
AN INTERNET-BASED LABORATORY FOR
DISTANCE LEARNING IN CONTROL

ENGINEERING

Tudor Buzdugan ∗ Ioan Naşcu ∗ Robin De Keyser ∗∗

∗ Faculty of Automation and Computer Science, Technical
University of Cluj-Napoca, Romania

∗∗ Electrical energy, Systems & Automation, Ghent
University, Belgium

tudor.buzdugan@control-lab.info ioan.nascu@aut.utcluj.ro
rdk@autoctrl.UGent.be

Abstract: The motivation, structure and performances of an educational Internet
based control engineering laboratory are presented. It is intended to be a general
tool, able to work with a large category of real processes and to provide support
for the most common and specific laboratory experiments in the field of control
engineering. It is a ready to use solution and a user friendly system from both
points of view, student and professor. Copyright c©2005 IFAC

Keywords: distance learning, laboratory experiments, real-time, control
engineering, internet

1. INTRODUCTION

Nowadays, in control engineering schools, the real
life experiments are often replaced by computer
simulations, this being a cheap alternative to
providing laboratories with support for a large
number of students. Also, distance learning in en-
gineering fields, especially in control engineering
is difficult, and the hands-on experience of the
student is obtained from simulations only.

Unfortunately, simulations cannot provide an ac-
curate description of the real process and therefore
nor the required experience for an engineer. Sim-
ulations represent a good development tool, but
the obtained results have to be tested on the real
process in order to verify their accuracy. In fact,
it is highly probable that in a real experiment,
the results will differ from the ones obtained via
simulation.

The purpose of this tool is to help teachers and
students rediscover the laboratory experiments,
with less resources and lower costs. Therefore, the
main objective of this project is the design and
implementation of a control engineering labora-
tory able to support large numbers of students,
distance learning and to provide real-plant ex-
periments. As nowadays Internet connections are
widely available, the straightforward option is an
Internet based laboratory.

Some other attempts in the field of online labo-
ratories have been analyzed. The general conclu-
sion was that they are either simulations, either
designed for a set of plants and therefore not a
general solution, either rely on expensive software
such as LabVIEW or Matlab/Simulink (B.C.Seet
and K.V.Ling, n.d.).

A complete system, able to connect the student’s
workstation with the real plant has been devel-
oped. The student can now perform laboratory

Preprints of the 16th IFAC World Congress, Prague, Czech Republic, 4-8July 2005, paper 02242, 6p

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55819044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


experiments in the laboratory or at home, via
internet, without too many constraints. The pro-
posed system is applicable to a large category of
real processes and provides support for the most
common and specific laboratory experiments in
the field of control engineering.

2. PERFORMANCE SPECIFICATIONS

Such an internet based laboratory should provide:

• generality - the system should be able to
work with a large category of plants, provide
the most general experiments that a teacher
would like to present to his students and
have a user interface that can run on any
workstation.

• transparency - from user’s work station to
the real plant the system should be transpar-
ent, have no interference, such that the user
doesn’t need to bother about implementation
related issues and focus on the experiment
only.

• feedback - it is essential that the system
transmits to the student as much feedback
as possible, especially in multimedia form, in
order to make the student feel closer to the
real experiment

• ease of use - the system has to be user-
friendly from both points of view, teacher
and student.

The target plant to be connected to the system
presents the following characteristics:

• fast - in order to minimize the time needed
to run an experiment and to maximize the
number of experiments, fast processes are
recommended. The smallest sampling time
the system allows is of one millisecond.

• safe - as the experiments will be executed
remotely, it is very important that the plant
presents self-diagnosis mechanisms able to
detect dangerous situations before any dam-
age occurs. In these cases (which are very
likely to appear in such an educational sys-
tem) the plant has to be able to reset to a
safe-state and report the situation.

• an example - one of the plants used during
system development was a DC motor with
variable load. It is a fast process, with a
time constant of about 0.2 seconds, allowing
experiments to take less than a minute. A
temperature sensor has been attached to
the motor and if its temperature exceeds a
threshold, power to the motor will be turned
off and the system will be signalized that the
plant is momentarily unavailable. After the
motor cools down, experiments can continue.

internet
connection

embedded
server

remote
workstationplants

real

bus
transceiver

data aquisition
network

plant interfaces

RS−485

Fig. 1. Structure of the System - General View

3. THE STRUCTURE OF THE SYSTEM

The chosen structure for this system is presented
in Figure 1. This architecture gives the possi-
bility to have several real plants simultaneously
connected to a single server, that controls and
supervises them in parallel.

At the student side, a simple PC connected to
internet and a web browser is needed. All experi-
ment data and relevant plots are provided by the
system.

At the laboratory side, the system is composed of
the following parts:

• the server - the part of the system responsible
with running the experiments, based on pa-
rameters provided remotely by the user. The
control algorithms run on the server within a
real-time environment;

• the data acquisition network - the link be-
tween the experiments running on the server
and the real processes.

The most attractive approach would be an inter-
net connected plant, able to receive inputs and
send outputs over internet in real time. Unfortu-
nately such a connection is never deterministic,
i.e. the time needed to receive or send data over in-
terned cannot be specified as it can change at any
time (Burns and Wellings, 2001). Therefore such a
connection cannot assure constant sampling time
and it is not suitable for control engineering ex-
periments.

Instead of directly controlling a plant, a more real-
istic solution is to control an experiment. Control-
ling an experiment means setting it’s parameters,
starting and stopping it, operations that do not
require any special timing constraints. This is also
a better approach, the student having directly
available an already set-up platform so he can
focus on the experiment itself and not on imple-
mentation details.

4. THE SERVER

The server is the central part of the application
and the most complex one, integrating a wide
range of technologies. One of the most important
attributes of this part is a high transparency



between the student and the experiment. The
user shall not be concerned about implementation
details. The system as a whole must function
in such a way that it does respond exactly to
the user’s requirements without any interference
except for reasonable safety constraints.

From control engineering point of view, the most
critical real time activity is sampling signals at
a constant rate (Dutton, 1997). Therefore a real-
time environment is needed to run data acquisi-
tion and control algorithms routines in order to
satisfy these constraints.

On the other hand the internet connection and
user interface shall not be placed in a real-time
environment as these parts do not satisfy real-time
requirements as described above.

Therefore the chosen solution for the embedded
server has two functionalities:

• to provide the real-time environment for run-
ning the experiments.

• to provide an internet user interface for con-
trolling these experiments.

From the hardware point of view there are no
special requirements, any common PC can be
used. Standard serial port and a network card are
sufficient.

On the other hand the operating system has to
be very flexible and to allow access at any level
for the developer in order to be able to integrate
all the functionalities in a transparent manner.
Therefore an Open-Source operating system (e.g.
Linux) is needed for this application.

In order to be easy to use from professor point of
view, the system runs ”live on CD”, meaning that
the system runs directly from the CD, without the
need of installing anything on the hard-disk.

4.1 The Real-Time Environment

The proposed solution is to use real-time tech-
niques for running the experiments and leave ev-
erything else out of the real-time constraints, as
a background job, that gets executed whenever
there is time left after the critical sections did
their tasks. Such environments, able to run both
real-time constrained tasks and not constrained
tasks are offered by operating systems extensions
such as RTAI(Real Time Application Interface)
(Bruyninckx, 2002).

Modern processor architecture offers the possi-
bility of running programs in two hardware pro-
tection levels called kernel space and user space.
The first level allows direct access to all the
resources, while the latter has more protection
against erroneous accesses at the cost of larger

latencies(Bruyninckx, 2002). The real-time exten-
sions add a third layer, the real-time space. This
is in fact nothing else but a part of kernel space,
used in a particular way (Proctor, n.d.). The main
idea is to provide a virtual interrupt emulation to
standard Linux, and to offer a kernel space micro-
kernel with real-time scheduled threads. RTAI
intercepts all hardware interrupts, checks whether
an interrupt is destined for a real-time service rou-
tine (and launches the corresponding ISR if it is),
or forwards them to Linux in the form of a virtual
interrupt, which is held until no real-time activity
must run. In this scheme, Linux is never able
to disable hardware interrupts. This kernel takes
over the real hardware from Linux, and replaces
it with a software simulation (Mantegazza, n.d.).

For our system, real time functionality is needed
for controlling the real plant. This means the
Real Time Environment is responsible for running
control experiments while the HTTP service is
responsible for configuring the experiments and
return relevant results to the user.

Data Flow through the Server is presented in
Figure 2.

connection
internet

bus Device Driver

FIFOs

User Space

 Kernel Space

Real Time Environment

Hardware (serial port)

Data Flow
HTTP Server

Linux Kernel

Fig. 2. The Data Flow through the Server

The HTTP service receives experiment parame-
ters and start command from the user. It will
pass these parameters through RTAI FIFOs to
the Kernel, after checking their validity. Passing
parameters through FIFOs means writing these
values in a special device file ”/dev/rtf0”. These
values are not written on the hard-disk but stored
in kernel memory which is shared with the real
time environment. After the parameters have been
uploaded in kernel space, the control routine is
signalized to start the experiment.

At this point, the real time environment has all
the data it needs and is now ready to start the
requested experiment. First thing is to select the
required control algorithm and to set the sampling
time.

At each sample time control signals are sent to the
plant and measured outputs are received from it
through the bus. The communication between the
real time environment and the data acquisition



network is done by a specialized device driver that
controls all activity on the bus.

All experiment data obtained at each sample in
the real time environment (such as plant inputs
and outputs, time, reference etc.) are passed to the
user space through another FIFO (”/dev/rtf2”).
All this data is stored in a file and a relevant plot
is generated. At the end of the experiment, the
plot along with the file containing all the relevant
sampled signals measured or computed during the
experiment are made available to the user by the
HTTP service.

4.2 User Interface

The experiment’s user interface shall be very flex-
ible and general. The most used internet proto-
col for user interface is nowadays HTTP. This
protocol is based on a server that delivers the
information in the form of a page, providing also
functionalities for user feedback.

On the other hand, the servers can provide dy-
namic content, as result of user’s feedback or cer-
tain events. As well, HTTP servers can interact
with other applications. For this project, the in-
teractions with other applications (the real-time
environment) consists on parameter update, start
and stop commands.

As all the needed functionality for the user inter-
face can be successfully accomplished by a HTTP
server, also resulting in being the most general
solution, this is the one chosen for this application.

An accounting system has been implemented in
order to allow the system generate personalized
user interface. This means that the system re-
members parameters and results of previous ex-
periments for the same user, in order to make
student’s work easier. Another positive aspect of
the accounting system is that the professor can
directly see and analyze results of each student
and be able to give specific advices to each in-
dividual according to the obtained results. One
special user is the administrator or the professor
responsible for the experiments. He has a special
interface from where he can change and apply
various settings of the system.

The administrator/professor is able to:

• add/remove users.
• add/remove new acquisition interfaces - each

real-plant is connected to the server through
a data acquisition interface; these interfaces
can be automatically detected by the system
but only upon administrator request; after an
interface has been successfully detected, the
other users can perform experiments with the
new added plant.

• suggest experiment parameters - when the
student will login for the first time and will
choose one experiment, the parameters sug-
gested by the professor will be automatically
filled in.

• apply restrictions on the parameters the sys-
tem will accept - each experiment parameter
can be restricted to take values within a cer-
tain range imposed by the professor; this rep-
resents a minimal safe-operation constraint.

All these operations can be executed from a web-
browser, so the professor does not need to be
present near the server. The only time when hu-
man physical presence is required is when starting
the system and when connecting new real pro-
cesses to the data acquisition network.

The user interface can be seen as an Expert Sys-
tem assisting the student in performing the ex-
periments. It gains initial knowledge (suggested
parameters and allowed ranges) from the human
expert (the professor) and then it adapts, remem-
bering last values of the parameters for each ex-
periment, for each student. It will prevent starting
an experiment with unsafe parameters.

5. THE DATA ACQUISITION NETWORK

This part of the system is used to connect several
plants to the server. The main functionalities
provided are:

• multi-point communication - in order to be
able to connect several real plants to the
server and be able to perform experiments on
several, different systems without requesting
local intervention.

• high speed - to be suitable for real plants with
small time constants.

• medium distance - in order to connect exper-
iments located in different places, not neces-
sarily in the same room with the server.

5.1 The bus

This data acquisition network is based on a RS-
485 bus to which up to 120 interfaces can be
connected. The interfaces are powered through
the bus, on separate power lines, making the
system simpler and more flexible.

The data control and transmission protocol is
application dedicated, adapted to the need of
high speed. Serial asynchronous protocol has been
chosen, as dedicated hardware for this protocol is
already available in most computers. A transceiver
is needed to convert voltage levels of PC serial
port and RS-485 bus. The transmission speed is
115 kbps, allowing bus lengths of 200 meters.



Matlab and LabVIEW drivers have been devel-
oped in order to allow the use of this network in
separate, independent applications, very useful for
network control systems research.

5.2 The plant interface

The plant interface is responsible with analog-
numeric conversions and with data transmission.
A low power micro-controller is used to implement
these functionalities.

A number of interfaces have been developed, al-
lowing 2, 3 and 4 inputs/outputs, with 8 and 10
bits accuracy. The inputs (with respect to the
interface) are analog signals in the range of [0..5]V,
while the outputs are PWM signals.

A digital input signal is used to sense if the plant
is ready to be used and a digital output signal
is used to inform the plant to turn off when not
used, between experiments.

For some real experiments numerical filtering is
also needed and therefore the interface is able to
perform this operation as well, on demand.

6. EXPERIMENTS AND RESULTS

The project intends to provide a general set of
built-in experiments, able to cover most of the
needs of control engineering disciplines. The ex-
periments have been grouped into the following
categories:

• Systems Identification - providing Step Re-
sponse, Stair-Case Response, Custom Signal
Response experiments;

• Classic Controllers - PID Controller, PID
Relay Auto-tuning, Poles-Zeros Allocation;

• Fuzzy Controller - a Mamdani based Quasi-
PID Fuzzy Controller.

An artificial, additional dead-time can be added to
the real process and it is possible to control it for
all the experiments presented above. Noise/load
control for the SISO experiments is also possible
(if the plant allows this).

For Systems Identification, the most general ex-
periment is the Custom Signal Response, that
allows the user to feed into the real plant any test
signal. The student will provide this custom signal
as a file containing the values at each sample time.
This experiment can also be used for open-loop
control experiments.

In Figure 3 the results of a Custom Signal Re-
sponse Experiment are presented. The signals
were sampled with eight bit accuracy, so the best
and most general way to represent all these signals
on the same plot is to represent them as eight bit

integers, that means, all the values lie in the range
[0..255].

0 5 10 15 20 25 30 35
0

50

100

150

200

250

custom signal

time [s]

adc
pwm

Fig. 3. Custom Signal Response Experiment Re-
sults

For Classic Controllers, the most important pa-
rameters are the sampling time, the setpoint, the
load and the parameters of the controller. The ref-
erence and load values and dead-time can change
once per experiment from their initial values at
given times, provided by the user.

0 500 1000 1500
0

50

100

150

200

250

autotuning relay

time [ms]

adc
pwm

Fig. 4. Auto-tuning Relay Experiment Results

In Figure 4 results of an Auto-tuning Relay Ex-
periment are presented.

while the way a PID Controller experiment in-
terface looks in the user’s browser can be seen in
Figure 5.

In order to make the student ”feel” and under-
stand how plant signals are transformed into con-
trol signals by the controller, a fuzzy controller
experiment has been added. The fuzzy control
makes use of linguistic terms for describing signal
values and semantic rules to generate the output,
being therefore closer to human language than
mathematical formulas.

In this case the user interface is more complicated,
the student having to specify the set of rules that



Fig. 5. PID Controller Interface

becomes very big with the increase of the number
of linguistic terms. This problem is solved by the
expert system behind the user interface, based on
the fact that for a quasi-PID fuzzy controller, the
set of rules respects a typical pattern and only few
of the rules are needed in order to build the whole
set.

Normalization, fuzzification, defuzzification and
inference are performed by the system, the stu-
dent providing adequate parameters for each rou-
tine. Results of such an experiment are presented
in Figure 6.

0 2 4 6 8 10
0

50

100

150

200

250

Fuzzy experiment

time [s]

adc
pwm
ref

Fig. 6. Fuzzy Experiment Results

7. CONCLUSIONS

An internet based control engineering laboratory
has been developed. The implemented system is
generally applicable to a large category of real
processes. Any plant that accepts PWM control
signals as input and has analog output within the
range of 0-5V can be used. Also noise/load control
is possible, if accepted by the plant.

The plant control is very reliable, providing safety
mechanisms (turning off the plant between ex-
periments) and restricting experiment parameters
as indicated by the experiment’s administrator.

The system is password protected, so that only
authorized users can perform online experiments.

Experiment results are made available for the user
both as database and as a plot of relevant signals.
Experiment parameters provided by the user are
remembered by the system such that performing
experiments becomes easier.

The user interface works as an expert system as-
sisting the student while performing experiments.
Based on knowledge provided by the teacher it
suggests experiment parameters and applies re-
strictions on dangerous experiment parameters.
The system also helps the student in providing ex-
periment parameters when their number becomes
very big, such as for the Fuzzy Controller. The
user interface is user friendly and self explaining.

The system works ”live on CD” simplifying the
work of the professor, as there is no need to
install anything on the server’s hard-disk. At the
student’s side only a standard browser is required.

REFERENCES

B.C.Seet and K.V.Ling (n.d.). An internet-based
laboratory for control engineering education.

Bruyninckx, Herman (2002). Real-Time and Em-
bedded Guide. K.U.Leuven Mechanical Engi-
neering.

Burns, Alan and Andy Wellings (2001). Real-
time Systems and Programming Languages.
Addison-Wesley.

Dutton, Ken (1997). The Art of Control Engineer-
ing. Addison-Wesley.

Goldin, J. (1996). Ten ways to bulletproof rs-485
interfaces. National Semiconductor, Applica-
tion Note AN-1057.

Mantegazza, Paolo (n.d.). A hard real time sup-
port for linux. http://www.rtai.org/.

Proctor, Frederick (n.d.). Linux and real-time
linux. http://www.ddj.com/documents/.


