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A hyperbolic fibration of PG(3, q) is a collection of q − 1 hyperbolic
quadrics Q+

i (3, q), i = 1, 2, . . . , q − 1, and two lines L0, L∞ in PG(3, q) that
partition the points of PG(3, q), see [1]. A hyperbolic fibration is called
regular if the lines L0 and L∞ form a conjugate (skew) pair with respect to
each of the polarities associated with the q−1 hyperbolic quadrics Q+

i (3, q) of
the fibration. A regular hyperbolic fibration agrees on L0, respectively L∞,
if the extension to GF(q2) of each quadric Q+

i (3, q), i = 1, 2, . . . , q−1, meets
L0, respectively L∞, in the same pair of points {x, x} which are conjugate
with respect to the extension GF(q2) of GF(q).

In [2], Baker, Ebert and Penttila show (algebraically) that a regular
hyperbolic fibration that agrees on one of its lines corresponds to a flock of
a quadratic cone in PG(3, q) with one conic (plane) specified, and conversely.
For this correspondence, a unified geometric construction will be given for
all q. Further it will be explained that all hyperbolic fibrations that agree
on one of their lines, are necessarily regular. If q is even, an even stronger
result holds: in this case it will be pointed out that all hyperbolic fibrations
are regular.
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