On regular hyperbolic fibrations

Deirdre Luyckx
Department of Pure Mathematics and Computer Algebra Ghent University
Krijgslaan 281, S25
9000 Gent
Belgium
dluyckx@cage.ugent.be
Joint work with Matthew Brown, Gary Ebert

A hyperbolic fibration of $\operatorname{PG}(3, q)$ is a collection of $q-1$ hyperbolic quadrics $Q_{i}^{+}(3, q), i=1,2, \ldots, q-1$, and two lines L_{0}, L_{∞} in $\mathrm{PG}(3, q)$ that partition the points of $\operatorname{PG}(3, q)$, see [1]. A hyperbolic fibration is called regular if the lines L_{0} and L_{∞} form a conjugate (skew) pair with respect to each of the polarities associated with the $q-1$ hyperbolic quadrics $Q_{i}^{+}(3, q)$ of the fibration. A regular hyperbolic fibration agrees on L_{0}, respectively L_{∞}, if the extension to $\mathrm{GF}\left(q^{2}\right)$ of each quadric $Q_{i}^{+}(3, q), i=1,2, \ldots, q-1$, meets L_{0}, respectively L_{∞}, in the same pair of points $\{x, \bar{x}\}$ which are conjugate with respect to the extension $\mathrm{GF}\left(q^{2}\right)$ of $\mathrm{GF}(q)$.

In [2], Baker, Ebert and Penttila show (algebraically) that a regular hyperbolic fibration that agrees on one of its lines corresponds to a flock of a quadratic cone in $\mathrm{PG}(3, q)$ with one conic (plane) specified, and conversely. For this correspondence, a unified geometric construction will be given for all q. Further it will be explained that all hyperbolic fibrations that agree on one of their lines, are necessarily regular. If q is even, an even stronger result holds: in this case it will be pointed out that all hyperbolic fibrations are regular.

References

[1] R. D. Baker, J. M. Dover, G. L. Ebert, and K. L. Wantz. Hyperbolic fibrations of $\mathrm{PG}(3, q)$. European J. Combin., 20(1):1-16, 1999.
[2] R. D. Baker, G. L. Ebert, and Tim Penttila. Hyperbolic fibrations and q-clans. Des. Codes Cryptogr., 34(2-3):295-305, 2005.

