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Abstract

When considering sampling models described by a distri-

bution from an exponential family, it is possible to create

two types of imprecise probability models. One is based

on the corresponding conjugate distribution and the other

on the corresponding predictive distribution. In this paper,

we show how these types of models can be constructed for

any (regular, linear, canonical) exponential family, such as

the centered normal distribution.

To illustrate the possible use of such models, we take a

look at credal classification. We show that they are very

natural and potentially promising candidates for describ-

ing the attributes of a credal classifier, also in the case of

continuous attributes.

Keywords. Exponential family, Imprecise probability

models, Inference, Conjugate analysis, Naive credal clas-

sifier.

1 Introduction

The imprecise Dirichlet model [11] and the imprecise

Dirichlet-Multinomial model [13] were introduced as im-

precise probability models for making inferences from cat-

egorical data. These models have two features of interest.

They are elicited using i.i.d. samples and the parameters of

the distributions they are based upon, correspond to some

sort of average sample. This last feature allows for impre-

cision by making a particular use of pseudocounts.

The basis for these features is not only present in the case

of categorical data, but also in other common sampling

models, such as normal sampling. In fact, it is possible

to construct similar imprecise probability models for sam-

pling from a distribution that belongs to an exponential

family. This is the main theme of this paper. So we start

by introducing the exponential families of distributions in

Section 2. In Section 3 we show how to construct the cor-

responding imprecise probability models.

The underlying ideas of the development in these two sec-

tions are the following:

• We restrict ourselves to nicely behaving sampling

models, namely those described by exponential fami-

lies of distributions. (Section 2.1)

• We wish to make assessments about the parameters

of such a sampling model and update these assess-

ments in the light of new information. For this, we

use conjugate distributions, so that the prior and pos-

terior (obtained after updating the prior) belong to the

same class. The general expression for the conjugate

can be given. (Section 2.2)

• We also wish to make predictive statements about fu-

ture samples. A predictive distribution can easily be

given using the expression of the exponential family

and its conjugate. (Section 2.3)

• Lack of specific prior information leads to the use of

imprecise probability models.

• Both the conjugate and the predictive distribution are

parameterized by: (Section 3.1)

(i) a parameter y that can be made to vary in a set

Y (which initially, before updating, is chosen to

reflect the prior information), producing a coher-

ent lower prevision by using the lower envelope

theorem;

(ii) a parameter n acting like sample counts, whose

initially chosen value (pseudocounts) deter-

mines how fast the imprecision is reduced by up-

dating.

The imprecise Dirichlet model can be used for construct-

ing the naive credal classifier [14], which does a classifica-

tion on the basis of categorical (discrete) attributes. Using

the models we introduce in this paper, we show in Sec-

tion 4 that the naive credal classifier can be extended to

allow for continuous attributes.
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2 Exponential families

Let us give a summary of the relevant theory about expo-

nential families. As this is only a partial overview, we

refer to the literature [7, 5, 1] for more detailed informa-

tion. The theoretical exposition is interspersed with a sim-

ple but representative example, illustrating the theoretical

concepts we introduce.

2.1 An exponential family

We look at sampling models where i.i.d. samples of a ran-

dom variable (or vector) X are taken from a sample space

X that is distributed according to an exponential family.1

Such a distribution can be defined by giving its probability

(density or mass) function

Ef(x |ψ) = a(x) exp(〈ψ, τ(x)〉 − b(ψ)), x ∈ X. (1)

In this expression, τ : X → T is a so-called sufficient

statistic of X (more about this in Section 2.4.1) and ψ ∈ Ψ
is a so-called canonical parameter. Both T and Ψ are

(subsets of) finite-dimensional real vector spaces and 〈·, ·〉
is a scalar product between elements of these subsets. Par-

ticular to each family are the functions a : X → R+ and

b : Ψ→ R.2

As an example, we look at the centered normal distribution.

This is a relatively simple case, but the calculations are still

representative of what is necessary for other families. To

obtain the form of Equation (1) we rewrite its classical

probability density function:

N(x | 0, σ) =
1
√

2πσ
exp(− x2

2σ2
)

(with x ∈ R = X, σ ∈ R+)

=
1
√

2π
exp(− 1

2σ2
x2 − ln(σ))

=
1
√

2π
exp(ψτ(x) +

1

2
ln(−2ψ))

(with τ(x) = x2 ∈ R+0 = T , ψ = − 1

2σ2
∈ R− = Ψ)

We can see that for this example, the scalar product is an

algebraic product, a = 1/
√

2π, and b(ψ) = − ln(−2ψ)/2.

A nice property of these distributions is that P(τ |ψ) = ∇b.

Here, we introduced our notation for the linear prevision

(expectation) associated with the distribution considered.

It is defined as follows:

P( f |ψ) =

∫

X
Ef(· |ψ) f ,

1To be more precise and to follow the nomenclature in the literature

[7, 1], we should say: regular, linear, canonical exponential family.
2Notation: R+ is the set of strictly positive reals. Further on, we use

R
+

0
, the set of nonnegative reals, and N0, the set of nonnegative integers.

where
∫

X stands for integration or summation over the

space X, and f is an element of L(X), the set of measur-

able gambles (bounded functions) on X. (Note: we use

similar terminology and notation further on.)

In our example, P(X2 |ψ) = ∇b = −1/2ψ, which is (ev-

idently) equal to the variance σ2 of the centered normal

distribution.

2.2 The conjugate distribution

When reinterpreting the probability function in Equa-

tion (1) as a likelihood function

Lx : Ψ→ R+ : ψ→ Ef(x |ψ),

we can define the corresponding conjugate distribution [5,

1] by giving its probability density function

CEf(ψ | n, y) = c(n, y) exp(n
[〈ψ, y〉 − b(ψ)

]

), ψ ∈ Ψ. (2)

There are two parameters, n and y. The first, n ∈ R+, can

be interpreted as a number of counts (possibly including

some so-called pseudocounts). The other, y ∈ Y, corre-

sponds to an average sufficient statistic, so it is natural that

Y is the convex hull co(T ) of T without—for technical

reasons—the border. The function c represents a normal-

ization factor.

A prior distribution with density CEf(· | n, y) can be up-

dated after observing a sample x. This gives a posterior

distribution with density p(· | n, y, x) ∝ CEf(· | n, y)Lx. This

posterior’s density is equal to CEf(· | n+1,
ny+τ(x)

n+1
) and thus

a member of the same class as the prior. This property is

called conjugacy.

We now have enough information to find the conjugate dis-

tribution for our example. From T = R+
0

we derive that

Y = R+. To determine the normalization function c, we

transform Ψ such that ψ is mapped to the so-called preci-

sion λ = 1
σ2 = −2ψ:

CEf(ψ | n, y)dψ = c(n, y) exp(n

[

−λ
2

y +
1

2
ln(λ)

]

)

∥

∥

∥

∥

∥

dψ

dλ

∥

∥

∥

∥

∥

dλ

=
1

2
c(n, y)λ

n
2 exp(−ny

2
λ)dλ

∝ Ga(λ | n + 2

2
,

ny

2
)dλ.

This allows us to use the normalization factor βα/Γ(α) of

the probability density function Ga(· |α, β) of the gamma

distribution to find

c(n, y) = 2

[

ny

2

]
n+2

2

Γ( n+2
2

)
,

where Γ is the gamma function.



Also illustrated in the above example is the following gen-

eral idea. By applying a transformation to the parameter

space Ψ that maps ψ to an element of the classical param-

eter space of the exponential family considered, the conju-

gate can usually be written in terms of well-known density

functions. Besides helping interpretation, this also leads to

an easy way of determining the normalization function c.

A nice property of the conjugate prevision PC(· | n, y) on

L(Ψ) associated with a conjugate distribution, is that

PC(∇b | n, y) = y. This implies that PC(P(τ |Ψ) | n, y) = y—

where P(· |Ψ) is the function that maps ψ to P(· |ψ)—

allowing us to give an interpretation to y.

For our example, the prevision of the variance—which is

clearly of interest for inference problems—can now be eas-

ily determined: PC(P(τ |Ψ) | n, y) = PC(σ2 | n, y) = y. This

tells us that y can be interpreted as a variance.

2.3 The predictive distribution

Using the conjugate distribution, we can also derive the

corresponding predictive distribution [1]. Its probability

function is given by

PEf(x | n, y) =

∫

Ψ

CEf(· | n, y)Lx =
c(n, y)a(x)

c(n + 1,
ny+τ(x)

n+1
)
, x ∈ X.

(3)

The predictive prevision associated with the predictive dis-

tribution is PP(· | n, y) on L(X).

Combining the results of the previous fragments of our ex-

ample, we can write down the probability density function

of the predictive distribution,

PEf(x | n, y) =
1
√
π

Γ( n+3
2

)

Γ( n+2
2

)

[

ny
]

n+2
2

[

ny + x2
]

n+3
2

.

2.4 Remarks

2.4.1 Multiple samples

The joint distribution for m i.i.d. samples x j is also an expo-

nential family distribution with the same conjugate. One

just applies the following changes to Equation (1):

τ(x)→ τ(x1, . . . , xm) =
∑

j

τ(x j),

a(x)→ a(x1, . . . , xm) =
∏

j

a(x j),

b→ mb

Additionally, one might have to multiply a by a factor

(such as m!) due to limited knowledge about the ordering

of the samples, but for simplicity’s sake, we disregard this

here.

The dimension of the sufficient statistic (i.e., a statistic con-

taining all the information in the sample that is relevant for

inference) remains the same, independent of the number of

samples. Exponential families of distributions are the only

families for which such finite sufficient statistics exist [1].

The corresponding likelihood function Lx1,...,xm
can then

also be used for updating and for calculating a predic-

tive distribution. After updating CEf(· | n, y), we obtain

CEf(· | n + m,
ny+

∑

j τ(x j)

n+m
). The probability function of the

predictive distribution becomes

PEf(x1, . . . , xm | n, y) =
c(n, y)

∏

j a(x j)

c(n + m,
ny+

∑

j τ(x j)

n+m
)
.

2.4.2 Reference table

The characteristics of exponential families as we describe

them here are not commonly found in the literature. There-

fore, we have included Table 1 for easy reference. For

some common sampling models that are described by an

exponential family, it contains information similar to that

derived for the centered normal in our example.

3 Imprecise probability models

Some ideas for using imprecise probability models involv-

ing exponential families for inference can be found in the

literature. One idea takes a prior conjugate distribution

with fixed ny and uses the neighborhood around this prior

created by varying ny [2] (robust Bayesian literature). An-

other idea uses lower and upper density functions [4] (im-

precise probabilities literature).

The approach we present in this paper differs from the ones

cited above, because it isn’t based on lower and upper den-

sity functions and because it doesn’t start from one fixed

prior distribution, but uses a convex set of distributions.

Our approach is inspired by the approach to inference from

categorical data taken in the imprecise Dirichlet model or

IDM [11] and the imprecise Dirichlet-Multinomial model

or IDMM [13].

We should also mention the bounded derivative model [12].

This model is defined by the set of all strictly positive, con-

tinuous, smooth probability density functions that have a

bounded logarithmic derivative. It is of interest because

it produces tractable inferences for P(τ |ψ) when the sam-

pling model is described by a one-parameter exponential

family. This is also the case for our model, even outside of

the one-parameter case. We will comment on this further

on in Section 3.2, where we introduce this result.

3Notation in Table 1: Rd×d
sy,pd

are the symmetrical positive definite ma-

trices and

Γd(z) = π
d[d−1]

4
∏d

i=1 Γ(
2z+1−i

2 )

is the generalized gamma function.



Exponential family

probability function

(classical parameters used)

X ψ τ(x) Y

Normal

N(x | µ, λ), µ ∈ R, λ ∈ R+
(σ2
=

1
λ
)

R

(

λµ

− 1
2
λ

) (

x

x2

)

{

y ∈ R × R+ : y2 − y1
2 > 0

}

Centered normal

N(x | 0, λ), λ ∈ R+
(σ2
=

1
λ
)

R −1

2
λ x2

R
+

Scaled normal

N(x | µ, 1), µ ∈ R R µ x R

Multivariate normal3

N(x | µ,Λ), µ ∈ Rd ,Λ ∈ Rd×d
sy,pd

(Σ2
= Λ

−1)

R
d

(

Λµ

− 1
2
Λ

) (

x

xxT

)

{

y ∈ Rd × Rd×d
sy,pd

: y2 − y1y1
T ∈ Rd×d

sy,pd

}

Bernoulli

Br(x | θ), θ ∈ (0, 1)
{0, 1} ln( θ

1−θ ) x (0, 1)

Multivariate Bernoulli

Br(x | θ), θ ∈ (0, 1)d : ‖θ‖ < 1

(take θ0 = 1 −∑

i θi)

{

x ∈ {0, 1}d : ‖x‖ ≤ 1
} (

ln( θi

θ0
)
)d

i=1
x

{

y ∈ (0, 1)d : ‖y‖ < 1
}

(take y0 = 1 −∑

i yi)

Exponential

Ex(x | β), β ∈ R+ R
+

0
−β x R

+

Poisson

Pn(x | λ), λ ∈ R+ N0 ln(λ) x R
+

Exponential family

probability function

(classical parameters used)

a b c ∇b

Conjugate

probability density function

(classical parameters as argument)

Normal

N(x | µ, λ), µ ∈ R, λ ∈ R+
(σ2
=

1
λ
, m2 = σ

2
+ µ2)

1√
2π

λµ2−ln(λ)

2

2
√

n√
2π

[

n[y2−y1
2]

2

]
n+3

2

Γ( n+3
2

)

(

µ

m2

) Normal-gamma

N(µ | y1, nλ)Ga(λ | n+3
2
,

n[y2−y1
2]

2
)

Centered normal

N(x | 0, λ), λ ∈ R+
(σ2
=

1
λ
)

1√
2π

− ln(λ)

2

2
[

ny

2

]
n+2

2

Γ( n+2
2

)
σ2

Gamma

Ga(λ | n+2
2
,

ny

2
)

Scaled normal

N(x | µ, 1), µ ∈ R
e
− x2

2√
2π

µ2

2

√
ne

ny2

2√
2π

µ
Normal

N(µ | y, n)

Multivariate normal3

N(x | µ,Λ), µ ∈ Rd,Λ ∈ Rd×d
sy,pd

(Σ2
= Λ

−1, M2 = Σ
2
+ µµT )

1√
2π

d

µT
Λµ−ln(|Λ|)

2

2
√

n
√

2π
d

[

n|y2−y1y1
T |

2

]

n+d+2
2

Γd( n+d+2
2

)

(

µ

M2

)

Normal-Wishart

N(µ | y1, nΛ)Wi(Λ | n+d+2
2

,
n[y2−y1y1

T ]
2

)

Bernoulli

Br(x | θ), θ ∈ (0, 1)
1 − ln(1 − θ) Γ(n)

Γ(n
[

1 − y
]

)Γ(ny)
θ

Beta

Be(θ | ny, n
[

1 − y
]

)

Multivariate Bernoulli

Br(x | θ), θ ∈ (0, 1)d : ‖θ‖ < 1

(take θ0 = 1 −∑

i θi)

1 − ln(θ0)
Γ(n)

Γ(ny0)
∏

i Γ(nyi)
θ

Dirichlet

Di(θ | ny, ny0)

Exponential

Ex(x | β), β ∈ R+ 1 − ln(β)

[

ny
]n+1

Γ(n + 1)

1

β

Gamma

Ga(β | n + 1, ny)

Poisson

Pn(x | λ), λ ∈ R+
1

x!
λ

nny

Γ(ny)
λ

Gamma

Ga(λ | ny, n)

Table 1: Characteristics of some commonly used exponential families



In this section, we define and investigate our imprecise

probability models from a theoretical perspective. To

make this discussion more tangible and clear, we again

give an example and make the link to the already estab-

lished IDM and IDMM models [11, 13].

3.1 Definitions

3.1.1 Notation

Up until now, we haven’t made any special distinction be-

tween priors and posteriors. A prior could have been the

posterior of another prior. For what follows it is necessary

to introduce an initial prior, which is elicited on the basis

of assumptions about the sampling model under study, but

not on any observed samples.

We use an upper index k ∈ N0 to indicate the number of

samples x j that has been used to elicit the parameters of a

model. For example, a prior conjugate prevision will thus

be written as PC(· | n0, y0) and a predictive prevision based

on k samples will be denoted by PP(· | nk, yk).4

Remembering Section 2.4.1, it is easy to see that

nk
= n0

+ k, yk
=

n0y0
+ τk

n0 + k
, (4)

where we have used τk to abbreviate τ(x1, . . . , xk).

To finish this notational digression, consider a subset Y0

of Y. We define

Yk
=

{

n0y + τk

n0 + k
: y ∈ Y0

}

⊂ Y. (5)

3.1.2 Conjugate and predictive models

Both imprecise probability models we associate with an

exponential family are lower previsions P that are defined

as lower envelopes of linear previsions P. As such, these

lower previsions are coherent [10]. We also use the conju-

gate upper prevision P = −P(−·).5

The conjugate model is the lower envelope—taken over a

set Yk—of a set of conjugate previsions:

P
C

(· | nk,Yk) = inf
y∈Yk

PC(· | nk, y).

This lower prevision is defined on L(Ψ). Although this

is possible, we will not look at the case where the lower

envelope is also taken over a set of counts.

4Comparing our notation with the one typically used for the IDM(M)

[11, 13, 14], we get the following correspondences: n0 ↔ s and y0 ↔ t.
5The word ‘conjugate’ used in this sentence expresses the given re-

lationship between a lower and an upper prevision. It has nothing to do

with the use of the word ‘conjugate’ in the rest of this paper, which refers

to a relationship between prior, likelihood, and posterior.

The predictive model is the lower envelope—again taken

over a set Yk—of a set of predictive previsions:

P
P
(· | nk,Yk) = inf

y∈Yk
PP(· | nk, y).

This lower prevision is defined on L(X). This model can

be seen as a restriction of the first using likelihood func-

tions, i.e., P
P
( f | nk,Yk) = P

C
(
∫

X f (x)Lxdx | nk,Yk), where

f ∈ L(X).

The credal sets corresponding to the models given above

consist of the closure of convex mixtures of the distribu-

tions corresponding to the respective probability functions

CEf(· | nk, y) and PEf(· | nk, y), where y ∈ Yk.

3.1.3 The set Yk

Now let us turn our attention to the set Yk ⊂ Y. In Sec-

tion 3.1.1, Yk is defined as a convex ‘mixture’ of Y0 ⊂ Y
and τk/k ∈ co(T ) with respective coefficients n0/[n0

+ k]

and k/[n0
+ k]. This tells us that Yk is a translated (over

τk/[n0
+ k]) and scaled (factor n0/[n0

+ k]) version ofY0.

The imprecision of the inferences of a conjugate or predic-

tive model is (not necessary linearly) proportional to the

volume of the convex hull ofYk (relative to the volume of

Y). This indicates that the larger the number of pseudo-

counts n0 ∈ R+ is, the slower the scaling factor decreases,

which results in a more conservative learning model. The

choice of the number of pseudocounts depends on the ap-

plication and is as such partly arbitrary.

The set Y0 should be chosen such that it reflects the ini-

tial assumptions. It will often be required that inferences

from the initial prior are very conservative (expressing

some form of ‘near ignorance’ [10]) and choosingY0
= Y

would seem ideal. However, to make sure that the assess-

ments produced by the models do not remain vacuous as

more observations are made,Y0 should be bounded. A re-

sult of this is that the imprecision decreases as more obser-

vations are made, so no dilation (see, e.g., [8]) occurs with

these models. The choice of bound is again application-

dependent and as such partly arbitrary. Note that it should

not be hard to specify reasonable bounds, considering we

have already assumed it was possible to restrict the sam-

pling model to a specific exponential family.

As an example, let us look at the case of normal sampling.

From Table 1, we see that we can choose Y0 by taking a

bound α1
2 for y1

2 and a bound α2 + y1
2 for y2. The ratio-

nale for this choice will be made clear later. This example

is shown in Figure 1, where we also show what happens

when we update our model after observing a sample x.

Note that in the Bernoulli case (see Table 1) it isn’t neces-

sary to choose any bounds, asY is already bounded (i.e., it

is the so-called d-dimensional unit-simplex). In this case,

the conjugate model P
C

(· | nk,Yk) is an IDM [11] and the

predictive model P
P
(· | nk,Yk) is an IDMM [13].



Y0

y1

y2

T

−α1 α1

α2

X = x

Y1

x
n0+1

x2

n0+1

y1

y2

b

τ(x) = (x, x2)

−n0α1+x

n0+1

n0α1+x

n0+1

n0[α2+α1
2]+x2

n0+1

Figure 1: Case of normal sampling: choosingY0 and updating to Y1 (both sets are colored gray).

A convexY0 is used in the IDM(M), in contrast to our ex-

ample. For the conjugate and predictive models, the setY0

can be any continuous or discrete subset of Y. The actual

choice should be inspired by the assumptions warranted by

the application at hand.

3.2 Results

We showed in Section 2.2 that for any conjugate prevision

it holds that PC(∇b | n, y) = y. This allows us to derive the

following result for the conjugate model:

P
C

(∇b | nk,Yk) = yk
=

n0y0
+ τk

n0 + k
,

PC(∇b | nk,Yk) = y
k
=

n0y
0
+ τk

n0 + k
.

(6)

Here, yk and y
k are the pointwise infimum and supremum

values of the elements of Yk. Because ∇b = P(τ |ψ) is

often—though not always—a quantity of interest (see Ta-

ble 1), this result shows that the calculation of inferences

for these quantities is very straightforward.

We’ve already mentioned that for the bounded derivative

model [12], a similar result holds. This is due to the

fact that the credal set for the bounded derivative model

includes some conjugate distributions (but, in contrast to

our model, also many non-conjugate ones) and that two of

these determine the upper and lower prevision of P(τ |ψ)

(except when almost no samples have been observed).

Returning to our example of normal sampling, we know

it holds that ∇b = (µ,m2). So after one observation, the

lower and upper previsions for the mean µ and the noncen-

tral second moment m2 become:

P
C

((µ,m2) | n1,Y1) = (
−n0α1 + x

n0 + 1
,

x2

n0 + 1
),

PC((µ,m2) | n1,Y1) = (
n0α1 + x

n0 + 1
,

n0[α2 + α1
2] + x2

n0 + 1
).

These values are also indicated on Figure 1.

The fact that the values on the y1 axis can be interpreted

as means and the values on the y2 as a noncentral second

moments is what led us to our choice of bounds. Choosing

α2 + y1
2 as a bound for y2 is a seemingly reasonable ad-

hoc way of bounding the variance, because m2 = σ
2
+ µ2.

The need to take a bounded Y0 is immediately clear: if

‖α‖ → +∞, up to three out of four of the above inferences

would remain unchanged, no matter how many samples

we observe. This is clearly unwanted behavior.

If we take the difference between upper and lower previ-

sion as a measure for the imprecision, we see that in this

example, after m observations, we get

n0

n0 + m
(2α1, α2 + α1

2).

This illustrates the remark made earlier about the learning

conservatism increasing with n0. We see it takes m = n0

observations to decrease the imprecision to half its initial

value.

A similarly general result as in Equation (6) for the pre-

dictive model seems unlikely given the large variation in

functional form of the probability function (3) on which it

is based (see the functions a and c in Table 1).

However, it is useful to cite a nice property for the predic-

tive model when the sampling distribution is a multivari-

ate Bernoulli (see Table 1), which is the single-sample ver-

sion of the multinomial distribution. This predictive model



is an IDMM.6 For the linear previsions determining the

lower envelope P
P
(· | nk,Yk), it can be shown that

PP(Ii | nk, y) = yi, ∀i ∈ {0, . . . , d} , ∀y ∈ Yk, (7)

where Ii is the indicator function for category number i.

This property is the basis for the so-called representation

invariance principle [11], as it allows categories to be

pooled.

4 Credal classification

The naive credal classifier or NCC [14] was constructed

for classifying on the basis of one or more categorical at-

tributes. This means that for continuous attributes (such

as weight, length, etc.) a discretization must be performed.

We present an approach with which it is (at least theoret-

ically) possible to classify using the continuous attributes

directly if they are distributed according to an exponential

family. Note that for the naive Bayes classifier—the anal-

ogous classifier in a precise probability framework—there

already exist approaches using continuous attributes [6, 3].

We first reintroduce the concept of a credal classifier, but

in a different manner than in [14], in order to make our

contribution fit more naturally. Again, we give a small

example to illustrate the theory.

4.1 Classifying

Consider some attributes taking values in a setA, and a set

of classes C. A classifier is a function that maps attribute

values a ∈ A to one or more classes c ∈ C. For example, a

parent choosing a T-shirt size (the classes: small, medium,

large) for a child (with attributes: size, growth rate, etc.) is

a classifier.

A credal classifier uses a conditional imprecise probabil-

ity model P(· | A) defined on L(C) to determine the ex-

pected utility of deciding between one class and another

for a given set of attribute values. The specific approach to

decision making we use here is called maximality [10, 9].

Consider the utility functions fc′ , fc′′ ∈ L(C) associated

with the actions of choosing c′ or choosing c′′. Given at-

tribute values a, if the lower expected utility of choosing a

class c′ over c′′ is strictly positive, then class c′ is preferred

to c′′. Formally:

P( fc′ − fc′′ | a) > 0⇔ c′ ≻ c′′.

This criterion creates a strict partial order on the set of

classes C. The maximal, i.e., undominated, elements of

this partial order will be the output of the credal classifier.

To simplify matters, we use an indicator function Ic as the

utility function for choosing a class c. This corresponds

6To be exact, it differs slightly, but this difference is irrelevant.

to a choice of T-shirt size being either right or wrong. It

means we disregard, e.g., the fact that a T-shirt that is too

large, might one day fit the growing child, but that a T-shirt

that is too small, will never fit that child. Our criterion

becomes

P(Ic′ − Ic′′ | a) > 0⇔ c′ ≻ c′′. (8)

Of course, to use this criterion, we need the model P(· | A).

The construction of models that allow us to apply the

above criterion is the subject of the next section.

4.2 Class and attribute models

4.2.1 The general approach

First consider a class model that describes the knowl-

edge about the classes. This model could—in our T-shirt

example—contain the information that at least half of the

children need a size medium (this is what the parent be-

lieves). For this model we use a lower prevision P on

L(C).

Next, consider an attribute model that describes the knowl-

edge about the attribute values for a given class. A parent

could, e.g., believe that children that need size medium T-

shirts are mostly male pre-teens. For this model, we use a

conditional lower prevision P(· | C) on L(A).

Using marginal extension [10], we combine the class

model P and attribute model P(· | C) into a class-attribute

model E defined on L(C × A). Explicitly, for a gamble

f ∈ L(C ×A) we get

E( f ) = P(P( f | C)) = P(
∑

c∈C
IcP( f (c, ·) | c)).

This joint model could for instance tell us that size large

T-shirt-wearing toddlers make up less than one-tenth of all

the T-shirt-wearing children.

4.2.2 Specifying the models

To arrive at the probabilistic model we use in the NCC, we

now specify class and attribute models. Although we know

full well that other options are imaginable, we will restrict

ourselves to models of the type specified in Section 3.1.2,

because they form a natural generalization of the model

commonly used [14].

The sample space X for the class model consists of the fi-

nite number of classes in C. Together with the fact that

we suppose our samples are i.i.d., it is evident that we use

a model for the multivariate Bernoulli case. As our class

model must be defined on L(C), we have to use a predic-

tive model P
P
(· | nC,YC). (Note: to alleviate the notation

we omit—wherever possible—the superscript for the num-

ber of samples used to train our model. So nC and YC
should be read as nk

C and Yk
C.) The initial prior we use is



based on the set Y0
C = {y ∈ (0, 1)d :

∑

c∈C yc < 1}. As men-

tioned earlier, this model is an IDMM. Remember that the

choice of initial counts n0
C depends on the actual applica-

tion.

Incorporating our choice of class model, we can rewrite

our class-attribute model for any f ∈ L(C ×A),

E( f ) = P
P
(
∑

c∈C
IcP( f (c, ·) | c) | nC,YC)

= inf
y∈YC

PP(
∑

c∈C
IcP( f (c, ·) | c) | nC, y)

= inf
y∈YC

∑

c∈C
PP(Ic | nC, y)P( f (c, ·) | c)

= inf
y∈YC

∑

c∈C
ycP( f (c, ·) | c),

where we used Equation (7) in the last step.

The sample space X for the attribute model is the set of

attribute values A. We assume from now on that the at-

tribute values are distributed according to an exponential

family. Given a class c, we can then use a type-1 product

[10] of predictive models P
P
(· | nA|c,YA|c)—one for every

attribute—as our attribute model. Such a type-1 product

can be used under the assumption that given the class, the

different attributes are independent, which is why the name

naive credal classifier is used. To simplify the notation, we

will from now on suppose we only use one attribute. The

generalization to multiple attributes is straightforward, al-

though coping with the corresponding increase in compu-

tational complexity is much less so. Again, the initial pa-

rameters n0
A|c and Y0

A|c are application-dependent and can

as such be chosen relatively freely.

When taking P
P
(· | nA|c,YA|c) to be an IDMM, the result-

ing classifier corresponds to the classical definition of the

NCC [14].

Taking into account the restriction of our attribute models

to predictive models for exponential families, our class-

attribute model can be written as ( f ∈ L(C ×A))

E( f ) = inf
y∈YC

∑

c∈C
ycP

P
( f (c, ·) | nA|c,YA|c).

It is useful to have a short look at how updating works

in our model. This updating corresponds to the so-called

training of our model with a set of pre-classified attribute

samples, or couples of the form (c, a). (Training would—

in our T-shirt example—correspond to the parent assimilat-

ing the specifics of any child with nicely fitting T-shirt that

they see.) We suppose that we’ve already updated with a

number of samples and now observe (c′, a′). We update E

by updating the parameters of the class and attribute mod-

els that compose it (see Equation (4)):

nC → nC + 1,

YC →
{(

nCyc + δcc′

nC + 1

)

c∈C
: y ∈ YC

}

,

nA|c′ → nA|c′ + 1,

YA|c′ →
{

nA|c′yA|c′ + a′

nA|c′ + 1
: yA|c′ ∈ YA|c′

}

.

All the other parameters remain unchanged.

From the above it follows that nCyc → nCyc + δcc′ .
7 Given

we have some freedom in choosing nA|c, this property al-

lows us to set nA|c = nCyc for all c ∈ C. This is also done

implicitly in the classical definition of the NCC [14].8 Al-

though it is possible to use values for nA|c that do not de-

pend on yc (which even leads to easier calculations), the

above choice allows for a very nice interpretation. We can

now interpret n0
C as pseudocounts: a number of hypothet-

ical observations (c, a) we use in our model. These hy-

pothetical observations have an average sufficient statistic

that can take on any value in Y0
C ×Y0

A|c. They correspond

to y in Equation (5) and account for all the imprecision in

our inferences. As the number of real observations (c, a)

grows, the relative weight of the pseudocounts will dimin-

ish, and with it the imprecision.

So finally, the class-attribute model we are going to use

can be written as ( f ∈ L(C ×A))

E( f | nC,YC,YA|C)

= inf
y∈YC

∑

c∈C
ycP

P
( f (c, ·) | nCyc,YA|c)

= inf
y∈YC

yA|C∈YA|C

∑

c∈C
ycPP( f (c, ·) | nCyc, yA|c)

= inf
y∈YC

yA|C∈YA|C

∑

c∈C
yc

∫

A
f (c, ·)PEf(· | nCyc, yA|c),

whereYA|C = (YA|c)c∈C.

4.3 Classifying (bis)

We now have a joint model E(· | nC,YC,YA|C) defined on

L(C × A), while we need the corresponding conditional

model P(· | A) on L(C). Using Bayes’ rule for density

functions [10], we can write (g ∈ L(C))

P(g | A) = inf
y∈YC

yA|C∈YA|C

∑

c∈C g(c)ycPEf(a | nCyc, yA|c)
∑

c∈C ycPEf(a | nCyc, yA|c)
,

if

inf
y∈YC

yA|C∈YA|C

∑

c∈C
ycPEf(a | nCyc, yA|c) > 0. (9)

7Notation: δαβ is the Kronecker delta, which is 1 when α = β and 0

otherwise.
8This is compatible with a sensitivity analysis interpretation [10].



Whenever Condition (9) holds, we can rewrite Crite-

rion (8) as follows:

inf
y∈YC

yA|C∈YA|C

[

yc′PEf(a | nCyc′ , yA|c′)

−yc′′PEf(a | nCyc′′ , yA|c′′)
]

> 0⇔ c′ ≻ c′′.

This criterion can be put into its final form by realizing that

the parameters yA|c, c ∈ C are independent. We find

inf
y∈YC

[

yc′ inf
yA|c′ ∈YA|c′

PEf(a | nCyc′ , yA|c′)

−yc′′ sup
yA|c′′ ∈YA|c′′

PEf(a | nCyc′′ , yA|c′′)















> 0⇔ c′ ≻ c′′.

(10)

This criterion can also be shown to be equivalent to Crite-

rion (8) if Condition (9) does not hold.

As an example, we will look at the case where the attribute

values are distributed according to a centered normal dis-

tribution. Using previous results, we know that

PEf(a | nCyc, yA|c) ∝
Γ(

nCyc+3

2
)

Γ(
nCyc+2

2
)

[

nCycyA|c
]

nCyc+2

2

[

nCycyA|c + a2
]

nCyc+3

2

. (11)

To apply Criterion (10), we first have to calculate the in-

fimum and supremum of this expression over YA|c, an in-

terval in R+. This can be done analytically. Then a two-

dimensional (yc′ , yc′′) constrained (yc′ + yc′′ ≤ 1) optimiza-

tion problem needs to be solved. It can be shown that

for most attribute values it is possible to reduce this to a

one-dimensional problem (yc′ + yc′′ = 1). (Note: this is al-

ways the case for discrete attributes) When the observed at-

tribute value a is an outlier—i.e., a2 is much larger than the

lower bound of the intervalsYA|c, c ∈ {c′, c′′}—it might be

necessary to solve the more complex two-dimensional op-

timization problem.

From the above example, it is clear that by not discretizing,

but rather using sampling models with continuous sample

spaces, the optimization problems we need to solve be-

come more of a challenge. In the example, we have used

only one attribute. In the case of multiple attributes, the

Expression (11) has to be replaced by a product of possi-

bly nonsimilar factors. As long as the optimization over

YA|c for each of the attributes can be done analytically,

the ensuing optimization problem will be two-dimensional.

The possibility that this can be reduced to one-dimensional

problems always remains, but because the two terms in

Criterion (10) will be more complex expressions in yc, this

becomes less likely.

4.4 Remarks

We can make some finishing remarks about the concep-

tual differences and similarities between using a model

for continuous variables or using a model for discrete (dis-

cretized) variables, i.e., an IDM(M).

When discretizing, one can approximate any type of distri-

bution, while the models we present are currently limited

to exponential families.

What one loses during discretization however, is that the

different classes may correspond to neighboring or distant

parts of the sample space. (One could imagine ad-hoc

ways of alleviating this problem by spreading out samples

over different classes.)

The models for the attributes, given different classes,

might be very different. When discretizing, this poses no

problem. When using models for continuous variables,

this may be taken into account by using different sampling

models for different classes. One could for example take

a model for centered normal variables for class c′, but one

for scaled normal variables for c′′.

5 Conclusions

In this paper we have first looked at exponential fami-

lies and the corresponding conjugate and predictive fam-

ilies. The manner in which these families are described

allowed us to introduce two imprecise probability models

for inference in exponential families. The first, the conju-

gate model, leads to an easy way of generating inferences

about the classical parameters of the exponential family

under study. The second, the predictive model, does not

seem such a good candidate for obtaining general results.

However, it does seem a very natural model for applica-

tions. One of these applications is the naive credal classi-

fier, which we introduced using an approach different from

the classical one, to allow for continuous attributes.

Throughout this paper, loose ends were inevitably left dan-

gling. Some of them are irritating, some of them are

promising. We take a brief look at both types in the next

two sections.

5.1 Problems

As has become clear in the example around Expres-

sion (11), solving optimization problems is an important

part of working with the models we propose. We have

not given a full account of the solution to the optimization

problem in that example. One reason is that the focus of

this paper is on the description of the conjugate and predic-

tive models. Another reason is that we judge the lengthy

description would be of little added value.

Devising approximation algorithms to solve the optimiza-

tion problem might be necessary. The problem with these

is that, because we want conservative inferences, an outer

approximation has to be used. For example, if in Crite-

rion (10), we would be satisfied with a local minimum in-



stead of the global minimum over YC (an inner approx-

imation), the resulting ‘≻’-relation would be too strong.

This means that a class could be preferred to another even

though it is not warranted by the model. This implies that

there could be non-maximal elements of the resulting par-

tial order that would have been maximal if the global min-

imum had been used.

5.2 Prospects for further research

We too can include the standard disclaimer about ample

prospects for further research. For one thing, one could

investigate other exponential families, whose probability

functions have a more general form than the one given by

Equation (1).9

Closer to the focus of this paper, we could investigate if

it is possible to find lower and upper cumulative distribu-

tion functions for (some) predictive models, as has already

been done for the IDMM [13].

In the paper introducing the naive credal classifier [14], a

section is devoted to the case of coping with missing data.

The approach taken there can theoretically also be used

when the attribute values are continuous. Letting a missing

attribute value a correspond to a subset of A, we just add

one more optimization problem over this subset. How this

works out in practice remains to be investigated.

The issue of missing data in the training set of a credal

classifier, or more generally, of noisy samples, will have

its effect on the updating process and thus on the form of

the sets YA|C, and is also interesting to look at.

A last issue, for all conjugate and predictive models, is

forgetting. In some applications it might be interesting to

not let the model become too precise. This can be achieved

in an ad-hoc way by manipulating the number of counts n

outside of the updating process. It would be interesting to

look for approaches that are better justified.
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[14] Marco Zaffalon. Statistical inference of the naive

credal classifier. In G. de Cooman, T. L. Fine, and

T. Seidenfeld, editors, ISIPTA ‘01: Proceedings of

the Second International Symposium on Imprecise

Probabilities and Their Applications, pages 384–393,

2001.


