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Abstract: This paper deals with the control of variable-delay processes, where the delay 
depends on the value of the manipulated variable, which results in a non-linear system 
difficult to control. As a reference process, the case of a heated tank where the controlled 
variable is the liquid temperature and the placement of the sensor introduce a transport 
delay in the control loop, has been considered. This challenging problem is approached 
from the perspective of predictive control, using the non-linear EPSAC controller. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Time delays in the feedback loop appear frequently 
in industrial processes, both from the process itself 
and caused by the controllers. The presence of dead-
time in a feedback control loop has a significant 
impact on the performance of the control loop. 
Depending on the magnitude of the delay, 
performance of the feedback loop can be severely 
limited. A difficult and challenging problem is to 
control a process without instantaneous measurement 
of the state variables, or via delayed actuators 
(Richard, 2003). 
 
Dead-time compensating controllers (DTC) have 
received attention in the literature. The most widely 
used method in industry is the Smith predictor, 
(Smith, 1957). In Hägglund (1996), a PI controller 
with model-based prediction (PPI) was presented. 
Another dead-time compensation in the controller 
design is proposed in Normey-Rico et al. (1997). A 
simple modified Smith predictor controller was also 
related in Chien et al. (2002). Dead-time 
compensators seems to be a good option for 
improving the system� response without increasing 
too much the complexity of the controllers. But all of 

these dead-time compensators consider stable or 
integrating processes with a constant dead-time, 
identified like: 
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In the process industry is not uncommon to find 
transport delays due to the placement of measuring 
elements far away from the process being controlled. 
These transport delays introduce a pure significant 
dead time that changes with the value of the flow, 
which, in turn, is often a manipulated variable. This 
means that the difficulty of the control problem 
increases significantly as there is a relationship 
between the dead-time and the manipulated variable. 
The model then becomes: 

sud
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which is non-linear. The paper tries to contribute to 
the solution of this problem that is still an open one 
in spite of the many efforts developed in the past. 
(Richard, 2003). The approach  follows the NMPC 
ideas, taking advantage of the non-linear EPSAC (De 
Keyser, 1998) implementation to gain in adequacy  to 
the problem as well as in computation time. In this 
sense, it does not present a new approach, but shows 
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the advantages of the proposed method when dealing 
with variable time delays due to its dependence of the 
manipulated variable. Other NMPC linearization 
methods has been proposed in the literature 
(Kouvaritakis, 1999), (Lee, 2002), (Alvarez, 2000) 
but none is focused to the variable delay problem, 
nor offers clear advantages over the non-linear 
EPSAC.  
 
The paper content is split in five sections. After the 
introduction, section 2 describes the process to be 
controlled. In section 3 a brief review of the basic 
ideas of the non linear predictive control is presented 
followed by the nonlinear EPSAC algorithm. Section 
4 is devoted to experimental results concerning the 
controlled process and finally, some concluding 
remarks are provided. 
 
 

2. PROCESS DESCRIPTION 
 
With the purpose of illustrating the ideas behind the 
proposed controller, a simple, but challenging 
problem has been chosen. The process considered in 
our case study consists of a stirred tank (Fig. 1) with 
inlet volumetric flow q. The liquid is heated by a 
constant amount of heat Q supplied by a submerged 
electrical heating element and flows out of the tank 
by overflow. The objective is to keep the tank 
temperature T at a desired value manipulating the 
inlet flow q whose temperature is Ti. The temperature 
is measured, not in the tank, but in the effluent pipe 
in a place located at a distance L from the tank. This 
distance L introduces a transportation delay to the 
control loop that depends on the flow, which is the 
manipulated variable. 
 
The mathematical model that describes how the 
outlet temperature T(t) responds to changes in inlet 
flow q(t) is given by an energy balance: 
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where the constant parameters ρ, A, cp , density, cross 
section and specific heat, are characteristic of the 
tank and the heat losses to the surroundings are 
assumed to be negligible. 
 
The measured variable is denoted as Td and its 
response will be the same as T(t) except that it will be 
delayed by a transportation time d(t): 
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The time delay d(t) is inversely proportional to 
manipulated variable: 
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where S is the cross section of the effluent pipe. The 
model (1) is non-linear, but if the measured variable 
were T, it could be fairly well controlled using 
standard controllers. Nevertheless, the strong 
relationship between the dead-time and the output of 
the controller, provides a variable delay that 
increases the difficulty of the problem and either 
force to �detune� the controller in order to gain 
stability margin or oblige us to  consider explicitly 
the dynamic non linear model of the process for the 
development and implementation of the control 
system.  
 
 

3. NONLINEAR PREDICTIVE CONTROLLER 
 
Nonlinear predictive control (NMPC) is a natural 
extension of the linear MPC technique. Most of the 
algorithms are based on the use of an internal non-
linear plant model, which captures the main process 
characteristics, followed by a dynamic optimization 
that provides the optimal manipulated variables. In 
our case, the physical model (1)-(3) was used trying 
to reflect the dynamics of the process. In this section, 
the NMPC and EPSAC approaches will be presented 
briefly.  
 
 
3.1 NMPC Controller 
 
The objective of the non-linear model predictive 
control (NMPC) is finding the future optimal 
manipulated variable sequence in order to minimize a 
function based on a desired output trajectory over a 
prediction horizon. The cost function is the integral 
over the squares of the residuals between the model 
predicted outputs ypred and the set point values r over 
the prediction interval N2τ (where N2 is the prediction 
horizon and τ is the sampling time). A typical 
formulation is 
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The change in the manipulated variable u is also 
included in the minimization. Other formulations 
include penalty terms or additional constraints in 
order to guarantee certain stability properties. In 
order to perform the optimization, it is necessary to 
parameterise the manipulated variable; otherwise an 
infinite number of decision variables would appear in 
the problem. An usual possibility is the discretization 
of the u along the control horizon (Nu) where the 
input remains constant over the sampling period τ: 
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u(t) = u(k),      kτ  ≤  t < (k+1)τ 
u(k) = u(Nu-1)             k > Nu-1 

 
The minimization (4) is done under the constraints of 
the continuous model equations and the typical ones 
applied on the manipulated and controlled variables: 
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Only the first component of the Nu moves optimal 
control sequence, is implemented, and the whole 
procedure is repeated every sampling period. 
 
The controller law solution leads to a dynamic non-
linear programming problem, which could be 
formulated generically as a real time minimization of 
a non-linear function with constraints, where the 
index J can be computed by simulation each time the 
optimization algorithm needs it. 
 
 
3.2 Nonlinear iterative EPSAC formulation  
 
The key idea of this formulation is to approximate 
the non-linear predictions by iterative linearizations 
around future trajectories, so that they converge to 
the true non-linear optimal solution. For this purpose, 
the future sequence of manipulated variables is 
considered as the sum of a basic future control 
scenario, called 0),/( ≥+ ktktubase  and optimizing 
future control actions 10),/( −≤≤+ uNktktuδ : 

)/()/()/( tktutktutktu base +++=+ δ            (6) 
 
In this way, see Fig.2, the output predictions can be 
considered in a first approximation as being the 
cumulative results of two effects: 

)/()/()/( tktytktytkty optimizebase +++≈+        (7) 
k=1,..N2 

The component )/( tktybase +  is calculated as the 
output of the non-linear model using the known 
(postulated) sequence )/( tktubase +  as the model 
input. The other component, )/( tktyoptimize + , is the 
response to the δu(t+k / t) component of the input. 
Notice that (7) is only an approximation based on the 
use of the superposition principle. We will come 
back on this point later on. 
 
Assuming that the perturbations δu(t+k / t) are small 
enough, its is possible to derive an expression for this 
term as the one that corresponds to a linearised model 
along )/( tktubase + . As the terms δu(t+j / t) are 
impulses at times t+k, except the last one at time Nu-
1, that is a step, and the effect at time t+k of an 
impulse at time t+j is hk-j, then the term 

)/( tktyoptimize +  is the acumulative effect of a series 

of impulse inputs and a step input (De Keyser, 1998): 
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where the parameters 
2

,...,..,, 21 Nk hhhh  are the 
coefficients of the unit impulse response of the 
system at the current operating point, whereas the 
values gk refer to the unit step response coefficients. 
Notice that the value of the parameters reflects the 
effect of the variable delay around this specific 
control actions. 
 
Using matrix notation, the prediction equation then 
becomes 

GUYY +=                          (9) 
where 
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A simple relationship exists between the control 
actions ∆u and δu: 
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with the matrix A and the vector b given by: 
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In this description, the coefficients of the matrix G 
are computed using the linearized model about the 
current trajectory at each sampling instant. In case of 
a complex dynamic model, obtaining a linearized 
model is not an easy task. To avoid it, a possible 
alternative is to use the non-linear model to calculate 
the coefficients hk and gk from perturbations in the 
model using a simulation procedure. Taking into 
account the relationship (11), and recalling that 

1−−= kkk ggh , a new formula is obtained for 
)/( tktyoptimize + : 
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The step response coefficients can be calculated each 
sampling instant simulating the nonlinear model of 
the system with a particular future sequence 

)/(* tktu +  taking as initial conditions the current 
process state and evaluating the predictions 

)/(* tkty + . 
A simple choice for )/(* tktu +  could be 

)()1( * tutu ∆+− . With this option and considering 
that 

)/()/()/( ** tktytktytkty optimizebase +++=+      (14) 
the coefficients gk verify the formula 
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Based on (9)...(12), the cost function is a quadratic 
form in U 
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and the optimisation problem, the minimization of J 
subject to the constraints (5), can be solved with 
simple quadratic programming techniques (QP). 
 
As mentioned before, as (7) is only an approximation 
because the superposition principle does not hold, the 
controls )/()/()/( tktutktutktu base +++=+ δ , 
based on the solution )/( tktu +δ of  (17), are 
suboptimal. However if the approach is repeated 
iteratively in the same sampling instant by redefining 

)/()/( tktutktubase +≡+  and recalculating 
)/( tktu +δ  and )/( tktu +  until 0)/( ≈+ tktuδ , 

then, as 0)/( ≈+ tktuδ  , the term )/( tktyoptimize +  is 
practically zero and then (7) holds. So, the solution 
obtained in this iteration, converge to the optimal 

non-linear solution. In this way, the non-linear 
optimization problem is replaced by several QP 
problems. 
 
To reduce the number of iterations, which is crucial 
for the efficiency of the algorithm, the initial value of 

)/( tktubase +  is important. A simple and effective 
choice, (De Keyser, 1998), is to start with the optimal 
control policy derived at the previous sample 

)1/()/( −+≡+ tktutktubase . In this paper, this 
strategy has been used, leading to a very small 
number of iterations per sampling time, usually three 
or four. 
 
 
3.3 State estimation 
 
On the other hand, the current state is needed as an 
initial condition at each iteration to predict the future 
behaviour and select an optimal control sequence. 
Since the state T of the nonlinear system is not 
directly measurable at time t, but with a delay, an 
estimation technique was implemented in order to 
reconstruct the current state of the system.  
 
The technique chosen was a receding horizon one. 
The model state is computed based on the process 
model and past values of manipulated variable u. The 
present measured output Td(t) is used as initial 
condition to simulate the process model starting at 
past time t � d, and applying the known past discrete 
control sequence u(t-NE), u(t-NE+1),�,u(t-1). The 
receding horizon NE depends on the dead time: 
NE=d/τ. So, the value T(t) is the one obtained 
integrating the model from TIME=t-NE*τ  to TIME=t 
when the past controls are applied. (Fig.3) 
 
 

4. SIMULATION RESULTS 
 
Several experiments have been carried out in a 
simulated environment in order to test the nonlinear 
EPSAC controller on the process previously 
described and to compare it with other approaches. In 
all of them the sampling period is 20 seconds 
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                  Fig.3 State estimation 



     

whereas the other parameters, prediction horizon, 
control horizon and control weight, are N2=15, Nu=1, 
γ=1, β=0 respectively. For the manipulated variables, 
the constraints were fixed to 25min =u , 100max =u  
and their changes were limited to 15∆u min −= ; 

15max =∆u .The controlled variables are constrained 
by 15min =y  and 30max =y .  
 
The simulations have been performed using the 
simulation language EcosimPro with the process 
being represented by equations (1)..(3), where the 
parameters had the following values: the area of the 
tank  was A=500 cm2, the length of the pipe L=150 
m, the initial level h=15 cm, the input temperature of 
the liquid  Ti=15 ºC and the initial value of the inlet 
flow q=50 cm3/s. 
 
 
4.1 Setpoint tracking 
 
Fig. 4 shows the evolution of the tank temperature 
with the proposed non-linear EPSAC controller 
during 10000 seconds where several set point step 
changes were performed, shown in dotted line. The 
estimation of the temperature in the tank is also 
shown. The controller was started with a reference 
value of 22.18 ºC (the steady-state value). The 
temperature T follows fairly well the set point 
changes. Notice that no delay appears in the graph 
because we have represented the temperature T in the 
tank and not the measured temperature Td. Also 
notice that the graphs of T and its estimation are 
superposed , so that no clear difference can be seen 
between them. 
 
The manipulated variable is represented in Fig. 5 and 
the time varying delay can be seen in Fig.6. 
 
In order to compare these results with the ones 
obtained with a linear predictive controller with fixed 
delay time and to keep the same methodology, the 
linear EPSAC was applied with the following 
CARIMA model: 
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Fig.4 Setpoint tracking of the controlled variable 
Fig. 5 The manipulated variable (non linear 
controller)
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seconds. 
Using the same parameters and constraints as the non 
linear controller and taking into account an identical 
simulation sequence, three cases was considered, 
with different values for the pure time delay kb taking 
into account the range represented in Fig. 6.  
 
In the first case, the constant model delay was 
underestimated. Fig. 7 illustrates the evolution of the 
temperature considering a constant small value for 
the dead-time: d=100 seconds < τ (kb=5). The 
response has a very big overshoot and it is too 
oscillatory. 
 
In the second experiment, shown in Fig. 8, an 
overestimated fix value of: d= 300=2τ (kb=15) is 
considered. The response improves, but is oscillatory 
and worst than the one of Fig.4. Notice that 
overstating a delay is not a solution for the 
stabilisation of the system as it is shown in Fig.9, 
which corresponds to the same linear controller 
operating with a model with a fixed dead-time of 
d=440 ≈3τ (kb=22). As we can see, the response is 
too oscillatory and clearly unacceptable.  
 

Fig. 6 The dead-time 



     

 
As a final test, the full NMPC controller was 
implemented and the experiments repeated. Results 
were identical to Fig. 4 but the computation time was 
twice the one needed for the non-linear EPSAC to 
obtain the same result. 
 
 

5. CONCLUSIONS 
 
In this paper an alternative approach to the solution 
of  NMPC problems have been presented, applied to 
a difficult control problem due to the variable delay 
involved. One important point to mention is that the 
way in which the internal  model is used in non-
linear EPSAC, gives through the ubase  the gross 
effect of the variable delay, particularly when Nu >1, 
and provides an automatic fitting to the change of 
this effect via the step and impulse coefficients, 
improving its response. Another advantage is the 
reduction in computation time over a pure NMPC 
approach.  
 
Notice that cases of variable, but computable, delay, 
like the one considered here, in which the main non-
linearity is the variable delay, can be represented by 
the model 

sud
n esGsP )()()( −=  

for which, the proposed non-linear EPSAC approach 
provides an attractive and simple solution. 
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