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Abstract— Recurrent neural networks are very powerful en- A second technique circumvents these difficulties by not
gines for processing information that is coded in time. Many training the network at all, but rather train an externaklagf
problems with common training algorithms, such as Backpro@-  |inear readout nodes which only get input from the network.

gation Through Time, remain however. Because of this, anotr Traini inale li d be d ficienthirad
important learning setup known as Reservoir Computing has raining single inéar nodes can be done very efliciently

appeared in recent years, where one uses an essentially uained Py solving a system of linear equations or online by e.g.
network to perform computations. Though very successful in recursive least squares (RLS) [4]. This technique is called

many applications, using a random network can be quite inef- Reservoir ComputingRC), and is discovered independently
ficient when considering the required number of neurons and by Jaeger [5] and Maass [6]. Despite its recent introdugtion

the associated computational costs. In this paper we intragce RC h Iread dtob it ful: licati
a highly simplified version of Backpropagation Through Time as aiready provedto be quite poweriul: many application

by basically truncating the error backpropagation to one sep for RC have already been successfully implemented [7]-[9].
back in time, and we combine this with the classic Reservoir RC uses random networks, and even though these are already
Computing setup using an instantaneous linear readout. We very useful, one can also state that the performance of a
i?ptgly i\tlrgsv;ft”p tg a Sfl)t()k?” dlglt”rectc\)lgnlﬂon task and show gpecific network will depend more on luck than anything else.
9 Y good results for smafl nEetworks. For this reason we shall look at a hybrid between RC and
BPTT, where we use the basic setup of RC (i.e. instantaneous
linear projections from input to network and from network
A significant body of research on neural networks focusés output) and only propagate the error back one timestep,
on recurrent neural networks. These networks have fornasta which we shall call One Step Backpropagation (OSBP). We
been studied for their ability to store patterns (the séedal apply this setup to a spoken digit classification task, where
Hopfield networks [1]). More recently however, recurrenive show that this approach is superior over using random
networks are being used to process temporal informatios; duetworks and causes an inherent representation of indilidu
to internal feedback, these networks have an intrinsidtgbil digits within the network state. Furthermore we show that
to retain information about past input for a certain timejokh only training the input connections already gives very good
allows for the processing of signals which are explicitlgled performance, which has advantages in computational calst an
in time. more importantly avoids problems as bifurcation and nelkaor
Two important methods for using recurrent networks cutyentthat become unstable.
exist. First of all one can define an error gradient, which carhis paper is structured as follows: first we describe the gen
be used in a classical gradient descent algorithm to adapt &ral network and training setup, next we measure performanc
connection weights. This method is known Backpropaga- and analyze results. We conclude with a discussion of the
tion Through Time(BPTT) [2]. Though this algorithm can results and future work.
in many cases be very powerful, some problems like slow
convergence, high complexity, bifurcations, unstahiliayd Il. BAsIC seTUP
limited applicability due to high computational costs réma A, Network setup

[3]..Thej gradient needed in BPTT typ_lcally depends on the We use a network setup as used in [10], where each
entire history of the network states, which greatly congibs " i .
neuron performs an additional low-pass filter on its output.

its implementation. An equ_all_y Important cr|t|C|s_m s thact The evolution of the network states is then defined by the
that - even though BPTT is in many cases quite a powerf] . .

. ! . ollowing equation:
technique to solve engineering tasks - such a form of error

backpropagation is highly unlikely to occur in the brain, B 1 1
mostly due to its nonlocal character. a(t+1)={1- o a(t) + —f (Wa(t) +Vs()), (1)

I. INTRODUCTION



with a(t) the network statesr a time constant, (which we is basically a feedforward network which has the hidderestat
choose at 5 for all experiments in this paper) consistertt wibf the previous timestep as extra inputs. It is easy to see tha
the time scale of the low-pass filtering in each neuggt), are an Elman network always has an equivalent recurrent network
the input signals an® andV internal and input connection and that propagating the error back one timestep is equivale
weights respectively. The functiof(z) is the fermi function, with classic backpropagation in an Elman network.
defined asf(z) = 1+ %tanh(m). The linear output is then Even though OSBP is conceptually easier and less computa-
defined as tionally demanding as BPTT, it also has the disadvantage of
o(t) = Ua(t), (2) Difurcations due to the fact that internal weights are &din
Also, in general, the number of internal connections isejuit
Hlsgh compared to the number of input and output connections.
This is especially true for RC, where the rule of thumb is that
Afe dimensionality of state space should be much higher than
the input dimensionality. For this reason, we consider théur
implification of OSBP by only training the input and output
ightsV and U, which is clearly more closely linked to the
C setup.

with U readout weights, making the output an instantaneo
linear projection of the network states. For all experirsédnt
this paper we used networks of 50 neurons. All weights
initially drawn from a uniform distribution betweer1 and
1, and then divided by the spectral radius\df. Notice that
the spectral radius has no specific meaning in a network w
a fermi function nonlinearity. We simply do this for having Y
convenient scaling measure.

B. One Step Backpropagation [1l. EXPERIMENTAL VALIDATION

BPTT can be understood from an error gradient point @f spoken digit recognition
view. Weights change according to the differential equatio ) ) ) )
Wit +1) = Wi(t) — nd(‘ij[;@(t)t), with E(t) = ||e(t)|]?, the To mv_estl_gate the perforr_nz_ince of_ our learning algorithm,
i Jve applied it to a spoken digit classification task. We used a
outputs, and) a small learning rate which we choosergat fubset of the TI46 isolated digit corpus where the digitenfro

2 x 10~* for all experiments in this paper. With the chain rule,zem" to "nine” are spoken 10. times by 5 different females (?‘
the derivative is then expanded to total of 500 words). The resulting data was preprocessedjusi

the Lyon passive ear model [12], which produces initially 88
dE(t) Z OE(t) dax(t) 3) frequency channels. We downsampled the data to 20 input
k

squared erroe(t) = o(t) — o*(t) between actual and desire

AWy ()~ £~ dax(t) AWy (1) channels and a sample rate of approximately 35 timesteps per

Th | derivati hen d q h word. Next, we randomly selected half the words to be part of
¢ fotal derivativelay (t)/dWWi; (¢) then depends on the P'®the test set, and the other half as the training set. Theirigain

vious states(t—1) which on their turn depe_nd on Fhe PreViIoUyatasets were then constructed by randomly sampling digits
states E.ind S0 forth. Put shortly, the gradlent_ will depend_ dm the training set and separating them with intervals of
the en_tlre history of the network_state_s, ”_“f*k'”_g BPTT quites timesteps. Testing was performed by presenting all 250
complicated. We apply the following simplification: words of the testset in a random order and measuring the
dag(t) _ Oax(t) @) classification error, which we call the Word Error Rate (WER)
dW;;(¢) - oW, (t)’ For each training and testing cycle, a new training andrtgsti
t was drawn.

ignoring all dependency on the history of states. Using thi . - I
definition, and using similar expressions for the input an e readout layer consists of 10 classifiers where initielgh

output weights, we get the update rules for OSBP: c_a;s!fler had a target output dfwhen th?'r corresponding
digit is uttered,—0.1 for the other classifiers, and zero for

U(t+1) = U(t)+ne(t)a'(t) (5) all classifiers during the 15 timestep intervals. However, i
V(t+1) V(t) + D) UTe(t)sT(t — 1) (6) appears the networks have some trouble with this signal as a

W(t+1) = W(t)+nDt)UTe®)a (t—1), (7)

desired output signal, probably since it is virtually impibde
to recognize a word at the very start of its utterance. This
where the elements dD are given by results in slightly worse performance and we suspect this is
1 ) due to the fact that the network will make wrong associations
5 (1 —tanh*([Wa(t —1) + Vs(t —1)],)) . at the beginnings of the words. To reduce this effect, we
(8) low-pass filtered the target output with the time scale of
Notice that the update rule for the readout weights is that tife network, effectively slightly softening and delayinget
the classic perceptron rule. This means that, without OSBRsired output. Put in a formula: &* is the original desired
we basically end up with the classical reservoir setup wheoeitputo*we produce the actual desired output by calculating
the readout weights are trained with the perceptron rulés Tho*(t + 1) = (1 — 77!) o*(t) + 77 6% ().
means that the readout weights are constantly trying to get@assification is finally performed by taking the mean of the
close as possible to the optimal readout values. output signals for the duration of the utterance, and selgct
The update rules foW and W are in fact equivalent with the the digit which corresponds to the channel with the highest
setup of training an Elman network [11]. An Elman networknean output.

D;;(t) =46



— of the network dynamics for the different digits before and

——— OSBP on whole network after adaptation. Untrained networks seem to have vetg litt

rrin OSBP on inputs and outputs only

to no tendency to cluster the different digits, suggesthmg t
the dynamics of random networks depend more strongly on
the specific utterance of the digit than the actual digit. The
learning rule automatically seems to cluster the datandgryo
enforce similar trajectories for all digits within a singiéass
while enlarging the separation between the classes.
It is interesting to note that the clustering of the centsoisl
also very good when only the input weights are trained. This
can be due to two factors. First of all, the input mapping can
N T T T T T already improve the clustering of the digits itself, i.ee thput
number of presented digits x 10° mapping can try to find a projection which performs optimal
spatial clustering of the input data (where each datapoint
Fig. 1.  WER of the three training setups in function of the bemof corresponds to the mean over time of the input data of a digit,
presented digits. Results are averaged over 50 netwotdliétions i.e. the centroids of the digits). On the other hand, the tinpu
mapping could also take into account the dynamics of the
network itself, where the temporal structure of the datd wil
B. EXperimental setup p|ay a crucial role.

To compare OSBP to classic reservoir computing, i.e. witfo investigate this we consider the clustering of the cedsro
random input mapping and random internal connections, Wé the digits and the centroids of the digits after the linear
compared its performance with training the readout layérput mapping (i.e. the centroids &fs(t)). Examples of the
with RLS, which is an efficient way of determining optimaresulting dendrograms are shown in Figure 3. Though some
linear readout weights in an online fashtoifo monitor the improvement is apparent, the linear mapping alone cannot
progress of both learning rules, we freeze all the weighfiglly account for the nearly perfect clustering of the ceids
every 1000 digits and measure the WER on the test sef.the network states. This means that the learning rule finds
Second, we investigated whether or not the network intgrnafn optimal mapping from the input data to the network which
adapts specifically to the task, i.e., whether or not thermale also accounts for temporal information.
representation of the digits depends more on the digitfitséipparently, finding an optimal projection into the state @pa
than its specific utterance. For this purpose we measured @iéx random dynamic network - at least for digit recognition -
centroids of the reservoir states during each word (the mealready offers a very significant improvement over a random
over time of the network activation during the utterance of projection. Most importantly, training only the input and
word), which we denote” for the k-th word. We investigated output weights of a network has the great advantage that
the clustering of these before and after OSBP. As a distarg@blems as bifurcation or loss of stability can no longer
measuré we usedD = 1—r, in whichr is overall correlation occur, since none of the recurrent weights are trained. The
between the centroids, i.e., the distance betweerkitheand network itself can still be considered as a separate, stable

WER

I-th word is then given by construction dynamic system which is left unchanged. This
N ook g allows OSBP on the input weights to be interpreted as a
Dy =1- 2= (@ — a4 —7) . (9) powerful extension to the common RC setup.
N ok _ gk 2 SNVl F)2
\/Zizl (@ = ") Xiza (4 — 7) V. CONCLUSIONS AND FUTURE WORK
whereg® = N~! Zf;l qr. In this paper we have investigated a highly simplified ver-

sion of Backpropagation Through Time by simply truncating
the backpropagation process at one step back in time. We
Basic results of performance are shown in Figure 1. ffirthermore used a central paradigm of Reservoir Computing
appears that the RLS algorithm very rapidly converges f{@ uysing a single layer of instantaneous linear nodes as
optimal readout weights and gives a final performance of 8bqdadout units. We apply our learning algorithm to a spoken
3% WER. However, it is clear that OSBP, though slower iBigit classification task.
convergence gives superior final results. Remarkablygise The networks trained by OSBP outperformed random net-
that only training the input weights gives already a gregjorks, giving nearly perfect classification with a relatjve
improvement over random networks but with obviously lesgmall number of neurons. Furthermore, it appears that the
computational demands than training the full network. network adapts functionally to its task by improving theszlu
Figure 2 gives an example of the dendrograms of the centrojdging of the different digits. Remarkably, it seems thalyon

INote that the perceptron rule will eventually also conveig¢he optimal training the Input mapping gives already much improvement

readout weights. Its convergence however is very slow coetbt RLS. in performance. _ _
2Euclidian distance is less meaningfull in high dimensicsdces [13]. It appears that our learning method offers a possible way

IV. RESULTS
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Fig. 3. Examples of typical dendrograms of the centroidshefihput data
and the projected input data, the number between brackethemumber of
digits in each leaf.

to functionally improve performance of random recurrenio
neural networks, while at the same time remaining relativel
uncomplicated and being “safe”, in the sense that the commgo

Most importantly, it is unclear whether the fact that we use
a separate linear readout layer to generate output is aadriti
factor in our setup.

Another fairly natural extension is to try to speed up the
convergence by using recursive least squares on the readout
weights instead of the slow perceptron learning rule. This
would basically rapidly force output weights to optimal wes
such that the internal weight updates would never be very far
away from a local optimum. This idea would also draw an
interesting parallel between OSBP and the recently inttedu
FORCE learning rule [14], which uses RLS on the outputs,
combined with feedback to generate signals.
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