
One Step Backpropagation through time for
learning input mapping in reservoir computing

applied to speech recognition
Michiel Hermans and Benjamin Schrauwen

ELIS department
Ghent University

Sint Pietersnieuwstraat 42 Ghent, Belgium
Email: Michiel.Hermans@ugent.be, Benjamin.Schrauwen@ugent.be

Abstract— Recurrent neural networks are very powerful en-
gines for processing information that is coded in time. Many
problems with common training algorithms, such as Backpropa-
gation Through Time, remain however. Because of this, another
important learning setup known as Reservoir Computing has
appeared in recent years, where one uses an essentially untrained
network to perform computations. Though very successful in
many applications, using a random network can be quite inef-
ficient when considering the required number of neurons and
the associated computational costs. In this paper we introduce
a highly simplified version of Backpropagation Through Time
by basically truncating the error backpropagation to one step
back in time, and we combine this with the classic Reservoir
Computing setup using an instantaneous linear readout. We
apply this setup to a spoken digit recognition task and show
it to give very good results for small networks.

I. I NTRODUCTION

A significant body of research on neural networks focuses
on recurrent neural networks. These networks have for instance
been studied for their ability to store patterns (the so-called
Hopfield networks [1]). More recently however, recurrent
networks are being used to process temporal information; due
to internal feedback, these networks have an intrinsic ability
to retain information about past input for a certain time, which
allows for the processing of signals which are explicitly coded
in time.
Two important methods for using recurrent networks currently
exist. First of all one can define an error gradient, which can
be used in a classical gradient descent algorithm to adapt the
connection weights. This method is known asBackpropaga-
tion Through Time(BPTT) [2]. Though this algorithm can
in many cases be very powerful, some problems like slow
convergence, high complexity, bifurcations, unstability, and
limited applicability due to high computational costs remain
[3]. The gradient needed in BPTT typically depends on the
entire history of the network states, which greatly complicates
its implementation. An equally important criticism is the fact
that - even though BPTT is in many cases quite a powerful
technique to solve engineering tasks - such a form of error
backpropagation is highly unlikely to occur in the brain,
mostly due to its nonlocal character.

A second technique circumvents these difficulties by not
training the network at all, but rather train an external layer of
linear readout nodes which only get input from the network.
Training single linear nodes can be done very efficiently offline
by solving a system of linear equations or online by e.g.
recursive least squares (RLS) [4]. This technique is called
Reservoir Computing(RC), and is discovered independently
by Jaeger [5] and Maass [6]. Despite its recent introduction,
RC has already proved to be quite powerful: many applications
for RC have already been successfully implemented [7]–[9].
RC uses random networks, and even though these are already
very useful, one can also state that the performance of a
specific network will depend more on luck than anything else.
For this reason we shall look at a hybrid between RC and
BPTT, where we use the basic setup of RC (i.e. instantaneous
linear projections from input to network and from network
to output) and only propagate the error back one timestep,
which we shall call One Step Backpropagation (OSBP). We
apply this setup to a spoken digit classification task, where
we show that this approach is superior over using random
networks and causes an inherent representation of individual
digits within the network state. Furthermore we show that
only training the input connections already gives very good
performance, which has advantages in computational cost and
more importantly avoids problems as bifurcation and networks
that become unstable.
This paper is structured as follows: first we describe the gen-
eral network and training setup, next we measure performance
and analyze results. We conclude with a discussion of the
results and future work.

II. BASIC SETUP

A. Network setup

We use a network setup as used in [10], where each
neuron performs an additional low-pass filter on its output.
The evolution of the network states is then defined by the
following equation:

a(t + 1) =

(

1 −
1

τ

)

a(t) +
1

τ
f (Wa(t) + Vs(t)) , (1)

with a(t) the network states,τ a time constant, (which we
choose at 5 for all experiments in this paper) consistent with
the time scale of the low-pass filtering in each neuron,s(t) are
the input signals andW andV internal and input connection
weights respectively. The functionf(x) is the fermi function,
defined asf(x) = 1 + 1

2 tanh(x). The linear output is then
defined as

o(t) = Ua(t), (2)

with U readout weights, making the output an instantaneous
linear projection of the network states. For all experiments in
this paper we used networks of 50 neurons. All weights are
initially drawn from a uniform distribution between−1 and
1, and then divided by the spectral radius ofW. Notice that
the spectral radius has no specific meaning in a network with
a fermi function nonlinearity. We simply do this for having a
convenient scaling measure.

B. One Step Backpropagation

BPTT can be understood from an error gradient point of
view. Weights change according to the differential equation
Wij(t + 1) = Wij(t) − η dE(t)

dWij(t)
, with E(t) = ||e(t)||2, the

squared errore(t) = o(t)− o∗(t) between actual and desired
outputs, andη a small learning rate which we choose atη =
2×10−4 for all experiments in this paper. With the chain rule,
the derivative is then expanded to

dE(t)

dWij(t)
=

∑

k

∂E(t)

∂ak(t)

dak(t)

dWij(t)
. (3)

The total derivativedak(t)/dWij(t) then depends on the pre-
vious statesa(t−1) which on their turn depend on the previous
states and so forth. Put shortly, the gradient will depend on
the entire history of the network states, making BPTT quite
complicated. We apply the following simplification:

dak(t)

dWij(t)
≈

∂ak(t)

∂Wij(t)
, (4)

ignoring all dependency on the history of states. Using this
definition, and using similar expressions for the input and
output weights, we get the update rules for OSBP:

U(t + 1) = U(t) + ηe(t)aT(t) (5)

V(t + 1) = V(t) + ηD(t)UTe(t)sT(t − 1) (6)

W(t + 1) = W(t) + ηD(t)UTe(t)aT(t − 1), (7)

where the elements ofD are given by

Dij(t) = δij

1

2τ

(

1 − tanh2([Wa(t − 1) + Vs(t − 1)]i)
)

.

(8)
Notice that the update rule for the readout weights is that of
the classic perceptron rule. This means that, without OSBP,
we basically end up with the classical reservoir setup where
the readout weights are trained with the perceptron rule. This
means that the readout weights are constantly trying to get as
close as possible to the optimal readout values.
The update rules forV andW are in fact equivalent with the
setup of training an Elman network [11]. An Elman network

is basically a feedforward network which has the hidden states
of the previous timestep as extra inputs. It is easy to see that
an Elman network always has an equivalent recurrent network,
and that propagating the error back one timestep is equivalent
with classic backpropagation in an Elman network.
Even though OSBP is conceptually easier and less computa-
tionally demanding as BPTT, it also has the disadvantage of
bifurcations due to the fact that internal weights are trained.
Also, in general, the number of internal connections is quite
high compared to the number of input and output connections.
This is especially true for RC, where the rule of thumb is that
the dimensionality of state space should be much higher than
the input dimensionality. For this reason, we consider a further
simplification of OSBP by only training the input and output
weightsV andU, which is clearly more closely linked to the
RC setup.

III. E XPERIMENTAL VALIDATION

A. Spoken digit recognition

To investigate the performance of our learning algorithm,
we applied it to a spoken digit classification task. We used a
subset of the TI46 isolated digit corpus where the digits from
“zero” to “nine” are spoken 10 times by 5 different females (a
total of 500 words). The resulting data was preprocessed using
the Lyon passive ear model [12], which produces initially 88
frequency channels. We downsampled the data to 20 input
channels and a sample rate of approximately 35 timesteps per
word. Next, we randomly selected half the words to be part of
the test set, and the other half as the training set. The training
datasets were then constructed by randomly sampling digits
from the training set and separating them with intervals of
15 timesteps. Testing was performed by presenting all 250
words of the testset in a random order and measuring the
classification error, which we call the Word Error Rate (WER).
For each training and testing cycle, a new training and testing
set was drawn.
The readout layer consists of 10 classifiers where initiallyeach
classifier had a target output of1 when their corresponding
digit is uttered,−0.1 for the other classifiers, and zero for
all classifiers during the 15 timestep intervals. However, it
appears the networks have some trouble with this signal as a
desired output signal, probably since it is virtually impossible
to recognize a word at the very start of its utterance. This
results in slightly worse performance and we suspect this is
due to the fact that the network will make wrong associations
at the beginnings of the words. To reduce this effect, we
low-pass filtered the target output with the time scale of
the network, effectively slightly softening and delaying the
desired output. Put in a formula: if̂o∗ is the original desired
outputo∗we produce the actual desired output by calculating
o∗(t + 1) =

(

1 − τ−1
)

o∗(t) + τ−1ô∗(t).
Classification is finally performed by taking the mean of the
output signals for the duration of the utterance, and selecting
the digit which corresponds to the channel with the highest
mean output.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−3

10
−2

10
−1

10
0

number of presented digits

W
E

R

RLS
OSBP on whole network
OSBP on inputs and outputs only

Fig. 1. WER of the three training setups in function of the number of
presented digits. Results are averaged over 50 network initializations

B. Experimental setup

To compare OSBP to classic reservoir computing, i.e. with
random input mapping and random internal connections, we
compared its performance with training the readout layer
with RLS, which is an efficient way of determining optimal
linear readout weights in an online fashion1. To monitor the
progress of both learning rules, we freeze all the weights
every 1000 digits and measure the WER on the test set.
Second, we investigated whether or not the network internally
adapts specifically to the task, i.e., whether or not the internal
representation of the digits depends more on the digit itself
than its specific utterance. For this purpose we measured the
centroids of the reservoir states during each word (the mean
over time of the network activation during the utterance of a
word), which we denoteqk for thek-th word. We investigated
the clustering of these before and after OSBP. As a distance
measure2, we usedD = 1−r, in whichr is overall correlation
between the centroids, i.e., the distance between thek-th and
l-th word is then given by

Dkl = 1 −

∑N

i=1 (qk
i − q̄k)(ql

i − q̄l)
√

∑N

i=1 (qk
i − q̄k)2

∑N

i=1 (ql
i − q̄l)2

, (9)

whereq̄k = N−1
∑N

i=1 qk
i .

IV. RESULTS

Basic results of performance are shown in Figure 1. It
appears that the RLS algorithm very rapidly converges to
optimal readout weights and gives a final performance of about
3% WER. However, it is clear that OSBP, though slower in
convergence gives superior final results. Remarkably, it seems
that only training the input weights gives already a great
improvement over random networks but with obviously less
computational demands than training the full network.
Figure 2 gives an example of the dendrograms of the centroids

1Note that the perceptron rule will eventually also convergeto the optimal
readout weights. Its convergence however is very slow compared to RLS.

2Euclidian distance is less meaningfull in high dimensionalspaces [13].

of the network dynamics for the different digits before and
after adaptation. Untrained networks seem to have very little
to no tendency to cluster the different digits, suggesting that
the dynamics of random networks depend more strongly on
the specific utterance of the digit than the actual digit. The
learning rule automatically seems to cluster the data, trying to
enforce similar trajectories for all digits within a singleclass
while enlarging the separation between the classes.
It is interesting to note that the clustering of the centroids is
also very good when only the input weights are trained. This
can be due to two factors. First of all, the input mapping can
already improve the clustering of the digits itself, i.e. the input
mapping can try to find a projection which performs optimal
spatial clustering of the input data (where each datapoint
corresponds to the mean over time of the input data of a digit,
i.e. the centroids of the digits). On the other hand, the input
mapping could also take into account the dynamics of the
network itself, where the temporal structure of the data will
play a crucial role.
To investigate this we consider the clustering of the centroids
of the digits and the centroids of the digits after the linear
input mapping (i.e. the centroids ofVs(t)). Examples of the
resulting dendrograms are shown in Figure 3. Though some
improvement is apparent, the linear mapping alone cannot
fully account for the nearly perfect clustering of the centroids
of the network states. This means that the learning rule finds
an optimal mapping from the input data to the network which
also accounts for temporal information.
Apparently, finding an optimal projection into the state space
of a random dynamic network - at least for digit recognition -
already offers a very significant improvement over a random
projection. Most importantly, training only the input and
output weights of a network has the great advantage that
problems as bifurcation or loss of stability can no longer
occur, since none of the recurrent weights are trained. The
network itself can still be considered as a separate, stable-by-
construction dynamic system which is left unchanged. This
allows OSBP on the input weights to be interpreted as a
powerful extension to the common RC setup.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated a highly simplified ver-
sion of Backpropagation Through Time by simply truncating
the backpropagation process at one step back in time. We
furthermore used a central paradigm of Reservoir Computing,
i.e. using a single layer of instantaneous linear nodes as
readout units. We apply our learning algorithm to a spoken
digit classification task.
The networks trained by OSBP outperformed random net-
works, giving nearly perfect classification with a relatively
small number of neurons. Furthermore, it appears that the
network adapts functionally to its task by improving the clus-
tering of the different digits. Remarkably, it seems that only
training the input mapping gives already much improvement
in performance.
It appears that our learning method offers a possible way

0 0.1 0.2 0.3 0.4 0.5

four,(7)
zero,(1)
zero,(2)
four,(6)

three,(20)
zero,(8)
four,(3)
four,(9)
two,(4)

zero,(12)
two,(12)
four,(2)
zero,(1)
zero,(5)

three,(4)
two,(1)

nine,(7)
one,(2)
zero,(1)
five,(24)

seven,(5)
one,(2)

seven,(8)
seven,(9)

one,(7)
nine,(15)

one,(7)
nine,(4)
nine,(4)
two,(3)
four,(1)

eight,(19)
six,(30)

eight,(4)
two,(1)

B
ef

or
e

ad
ap

ta
tio

n

D

nine,(24)
one,(18)
two,(30)

three,(22)
six,(27)

seven,(25)
seven,(2)
five,(27)

zero,(18)
eight,(26)
four,(31)

A
da

pt
at

io
n

fu
ll

0 0.1 0.2 0.3 0.4

one,(29)
nine,(22)
nine,(1)
five,(19)
six,(28)

seven,(27)
four,(30)
two,(26)

three,(24)
zero,(19)
eight,(25)

A
da

pt
at

io
n

in
pu

tw
ei

gh
ts

D

Fig. 2. Examples of typical dendrograms of the centroids of the dynamics for
different digits before and after adaptation. The written words are the digits,
the number between brackets are the number of digits in each leaf.

0.1 0.2 0.3

one,(4)
nine,(3)
one,(1)
one,(1)
nine,(3)
one,(1)
zero,(5)
two,(6)

three,(17)
eight,(4)

two,(5)
three,(4)
zero,(2)

eight,(27)
three,(3)
zero,(4)
two,(8)
one,(7)
two,(4)
six,(23)

seven,(7)
seven,(4)
seven,(5)
five,(12)
four,(7)

five,(10)
one,(8)
nine,(4)
nine,(3)

seven,(7)
five,(6)

zero,(4)
four,(11)
zero,(1)

four,(12)
nine,(8)
zero,(3)

seven,(6)

R
aw

 in
pu

t d
at

a

D

0.08 0.1 0.12 0.14 0.16

zero,(4)
four,(16)
four,(3)
four,(4)
zero,(1)
zero,(3)
four,(7)
zero,(7)
zero,(4)

seven,(26)
five,(28)

seven,(3)
six,(23)
two,(6)

three,(24)
one,(22)
nine,(4)

nine,(16)
two,(9)
two,(8)

nine,(1)
eight,(31)

D

M
ap

pe
d

in
pu

t d
at

a

Fig. 3. Examples of typical dendrograms of the centroids of the input data
and the projected input data, the number between brackets are the number of
digits in each leaf.

to functionally improve performance of random recurrent
neural networks, while at the same time remaining relatively
uncomplicated and being “safe”, in the sense that the common
problems training recurrent weights - bifurcations and unsta-
bility - are avoided.
Many clear paths for future research remain available; most
obviously, trying to extend the above paradigm to more
difficult temporal tasks which depend on a longer history of the
input signal. This poses extra challenges as it is a well known
fact that these problems are hard to solve even with classic
BPTT. Also, it is not very clear how much the success of
OSBP depends on the low pass filtering operation, the shape
of the nonlinearity or the distribution of the initial weights.

Most importantly, it is unclear whether the fact that we use
a separate linear readout layer to generate output is a critical
factor in our setup.
Another fairly natural extension is to try to speed up the
convergence by using recursive least squares on the readout
weights instead of the slow perceptron learning rule. This
would basically rapidly force output weights to optimal values
such that the internal weight updates would never be very far
away from a local optimum. This idea would also draw an
interesting parallel between OSBP and the recently introduced
FORCE learning rule [14], which uses RLS on the outputs,
combined with feedback to generate signals.

ACKNOWLEDGMENT

The research leading to the results presented here has
received funding from the European Community’s Seventh
Framework Programme (EU FP7) under grant agreement n.
231267 “ Self-organized recurrent neural learning for language
processing (ORGANIC)”. This work was partially funded by
a Ph.D. grant of the Institute for the Promotion of Inno-
vation through Science and Technology in Flanders (IWT-
Vlaanderen).

REFERENCES

[1] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities.”Proc Natl Acad Sci U S A, vol. 79,
no. 8, pp. 2554–2558, Apr 1982.

[2] D. Rumelhart, G. Hinton, and R. Williams,Learning internal represen-
tations by error propagation. MIT Press, Cambridge, MA, 1986.

[3] B. Hammer and J. J. Steil, “Perspectives on learning withrecurrent neu-
ral networks,” inProceedings of the European Symposium on Artificial
Neural Networks (ESANN), 2002.

[4] M. H. Hayes, Statistical Digital Signal Processing and Modeling.
Wiley, 1996, ch. Recursive Least Squares, p. 541.

[5] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks,” German National Research Center for Information
Technology, Tech. Rep. GMD Report 148, 2001.

[6] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,”Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[7] D. Verstraeten, B. Schrauwen, and D. Stroobandt, “Reservoir-based tech-
niques for speech recognition,” inProceedings of the World Conference
on Computational Intelligence, 2006, pp. 1050–1053.

[8] E. A. Antonelo, B. Schrauwen, and D. Stroobandt, “Event detection and
localization for small mobile robots using reservoir computing,” Neural
Networks, vol. 21, pp. 862–871, 2008.

[9] H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunication,”Science, vol.
308, pp. 78–80, April 2 2004.

[10] H. Jaeger, “Short term memory in echo state networks,” German
National Research Center for Information Technology, Tech. Rep. GMD
Report 152, 2001.

[11] J. Elman, “Finding structure in time,”Cognitive Science, vol. 14, pp.
179–211, 1990.

[12] R. Lyon, “A computational model of filtering, detectionand compression
in the cochlea,” inProceedings of the IEEE ICASSP, May 1982, pp.
1282–1285.

[13] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” inLecture Notes
in Computer Science. Springer, 2001, pp. 420–434.

[14] D. Sussillo and L. F. Abbott, “Generating coherent patterns
of activity from chaotic neural networks,”Neuron, vol. 63,
no. 4, pp. 544–557, August 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.neuron.2009.07.018

