
1991 International Conference on Parallel Processing

Directed Taskgraph Scheduling
U sing Simulated Annealing

Erik H. D'Hollander and Yves Dem's
Department of Electrical Engineering

State University of Ghent
B-9000 Ghent, Belgium

Abstract

Simulated annealing is recognized as a novel method to
optimize the load in multicomputer systems, subject to
the interprocessor communication overhead. Recently,
highly nonlinear mapping and load balancing of undi­
rected taskgraphs has been solved in a successful way. In
this paper the scope is extended to directed taskgraphs,
representing the data and control dependencies in com­
mon programs. The annealing algorithm operates in stages.
In each stage an annealing packet of ready tasks is formed
and the tasks are allocated to the idle processors. The cost
function is based on the priority level of the tasks in the
taskgraph and the intertask communication requirements.
The resulting schedule of four programs on three architec­
tures show a significant speedup improvement compared
to the Highest Level First list algorithm.

1 Introduction

For the execution on a multiprocessor a program is par­
titioned into tasks and these tasks are allocated to the
available processors. The scheduling process must pur­
sue two conflicting objectives: to maximize the processor
utilization and to minimize the inter processor communi­
cation. This problem is known to be NP-complete and a
solution is approximated by suboptimal heuristics such as
the well known Highest Level First (HLF) list algorithm
17,1,9]. These algorithms have proven adequate when the
communication overhead is moderate, e.g. for strongly
coupled shared memory multiprocessor systems.

Since the revival of neural networks several assignment
problems have been addressed by simulated annealing. In
these problems an undirected taskgraph is mapped onto a
machine graph. An undirected taskgraph represent a set
of communicating tasks without precedence constraints.
The cost function aims to balance the load subject to a
minimal communication overhead.

In this paper a directed graph is scheduled by simulated
annealing. The algorithm performs a load balance and
minimizes the communication, subject to the precedence
constraints between the tasks.

lThis research was supported by the Belgian Ministery of Science,
under the contract OOA~87/93-117.

In particular the algorithm takes into account the chang­
ing communication patterns during the execution of task­
graph. The performance of simulated annealing schedul­
ing has been measured by simulating the execution of four
progra111B on three different multicomputer topologies. In
all cases simulated annealing outperformed the best list­
algorithm.

2 Definitions and Notations

Host Configuration
Consider a distributed processing system He = {P,L}
consisting of a set of processors P and an interconnec­
tion network L. The Np processors are represented by
P = {Pi,i = 1, ... ,Np}. The network topology is de­
scribed by the processor interconnection matrix L, where
tij = 1 indicates the presence of a point-to-point link be­
tween two processors Pi and Pj' This includes a bus (star),
a hypercube or a ring network. The distance d(i,j) be­
tween two processors equals the number of links on the
shortest path joining the processors Pi and Pj. The links
are bidirectional (L is symmetrical), have a bandwidth
BW (Mbits per second) and can carry only one message
at a time. It is assumed that incoming messages preempt
an active processor.
Taskgraph

The program is partitioned into a directed taskgraph TG =
{T, R, W, <*}. This quadruple consists of the set of tasks
T = ti, i = 1, ... , NT, the load requirements R = {ri}, the
communication weights W = {Wij} and the precedence
constraints <*. The nodes tj represent tasks and have
an estimated CPU-load rio The edges are labeled with
weights Wi;, indicating the communication time between
task ti and task tj. tj <* tj indicates that tj must start
after the termination of ti' tj is a predecessor of tj and tj
is a successor of t i .

Simulated Annealing

With the arrival of neural networks, statistical methods
have gained success in the area of highly complex and
combinatorial optimization problems with many interact­
ingvariables [10]. Most of these problems are NP-complete,
and require ingenious heuristic approaches. Yet often the
heuristics are trapped in local minima of the multidimen­
sional cost surface. Simulated annealing is able to over­
come this barrier by statistical hill climbing. Instead of

II·l80

1991 International Conference on Parallel Processing

following a steepest descent trajectory, the path is per­
turbed by random walks with a decreasing probability.
The minimization process is controlled by a cooling tem­
perature which makes the trajectory evolve from a purely
random walk towards a deterministic path. The idea is
to find the global minimum by escaping the local cavities
during the cooling process.

The simulated annealing technique is governed by the fol­
lowing components: the mapping junction, the cost func­
tion, the mapping scheme, and the cooling function.

The mapping function m : T ---j. P assigns the tasks to
the processors, such that Pk = m(tj) if task tj is allocated
onto processor Pic. The cost function F(m) measures the
quality of the mapping with respect to the load ba lance
and the communica.tion overhead.

The mapping scheme randomly redistributes the a.lloca.
tion of tasks to processors, thereby producing a. new map­
ping function m'. The simulated annealing process will
accept the new mapping m' depending on the cost F(m')
and the temperature Temp, with a probability

1
B(F, T emp) = _--'--- .

1 + e T p

(1)

where 0 ~ Temp ~ 00. For extreme values Temp = 0
and Temp = 00, the mapping m' is accepted with the
following probabilities:

B(F, (0) = .5

B(F, 0) = { 0
1 if F < 0 (accept move)

if F ~ 0 (reject move)
(2)

The cooling function generates a sequence of temperatures
Tempi, varying from 00 (an arbitrary acceptance) to 0 (a
deterministic acceptance). The cooling policy influences
the convergence speed and the quality of the obtained
solution.

3 Related Work

The ass ignment problems solved using simulated anneal­
ing differ by the assumptions on the host architecture,
the taskgraph and the cost function. Depending on the
number of tasks and processors, the following assignment
schemes were investigated:

• The mapping problem 131: NT ~ Np , <* = 0.
• The balancing problem 181: NT > Np , <* = 0.

• The scheduling problem (this paper) : NT > Np ,

<* f. 0.

In the mapping problem 131, Bollinger and Midkiff map
an undirected taskgraph on the host architecture. There

11-181

is at most one task per processor and the objective is to
minimize simultaneous ly the total communication and the
maximal point-to-point communication on a single link.
The authors take into account the communication weight
between the tasks, Wand allow arbitrary routing. The
simulating annealing approach allowed to adopt a more
realistic communication model than the one used in other
approaches [2,11], except for the condition NT < N p .

Hwang and Lee removed the restriction on the number of
tasks in the balancing problem [8]. With more tasks than
processors there are two objectives: to balance the load
and to minimize the interprocessor communication. The
cost function therefore has a balance term and a commu­
nication term. The bahmce term sums the absolute devi·
atian from the average processor load and the communi­
cation term sums the traffic on the interprocessor links.
In the balancing problem it is assumed that all modules
execute concurrently and communicate during the whole
execut ion of t he program. While this is true when the
modules are independent (e.g. production systems), in
many partitioned programs data and control dependen­
cies create precedence constraints. In this case one has a
scheduling problem. A load balancing scheme which takes
into account the precedence rules to solve the scheduling
problem is presented in this paper.

4 The Scheduling Problem

4.1 Annealing Packets

In programs characterized by a directed taskgraph, the
communication and the load patterns vary largely dur­
ing the execution time, invaHdating the assumptions of
the bala.ncing problem. We solve the scheduling prob­
lem by creating annealing packets at discrete assignment
epochs. The first epoch is at time zero and successive
epochs occur when one or more processors become idle.
An annealing packet contains the ready tasks and the id le
processors. The ready tasks have no unfinished predeces­
sors. At each epoch a simulated annealing process maps
the tasks of one packet onto the processors. Unassigned
tasks are moved to the following annealing packet and
new annealing packets are created until all t asks are as­
signed. The tasks compete for an ass ignment based on
their priority and on the communication overhead with
the other tasks.

4.2 Cost Function

T he cost function consists of a load balancing term and a
communication term.

a) Load Balancing Cost

The critical path of a directed taskgraph consists of the
longest chain joining the root task and a leaf task. In

1991 International Conference on Parallel Processing

order to minimize the execution time, the cost function
must encourage the assignment of tasks on the critical
path. Therefore tasks are given a priority measured by
the tasklevel [4]. The level nj of a task ti equals the accu­
mulated execution time of every task on the longest path
connecting ti with a leaf task. In other words, in a system
with an arbitrary number of processors and no commu­
nication overhead, the tasklevel represents the minimal
remaining execution time when the task is started. The
annealing process should favor the selection of high-level
tasks. This is realized using the following load balancing
cost function

N

F, = - L: n;s(i) (3)
i=1

N is the number of task in the annealing packet, s(i) = 1
when task ti is selected, else s(£) = o. Minimizing this
function corresponds with assigning first the highest level
tasks of the annealing packet.

b) Interprocessor Communication Cost

Two parameters characterize the cost of sending a mes­
sage between processors P~ and PII: CT, the time to for­
ward one message and 7, the time to receive or to route
one message. These parameters account for the following
events: the context switches (8) to save and restore the
processor state, the output setup (0) to prepare the I/O
hardware and the header control (H) to determine if an
incoming message needs to be routed to other processors.
With these parameters, one has

u

r

28+0

28+H +0

For the bit-serial linked hypercube processor systems the
parameters were set to 0 = 3fls, 8 = H = 2J.Lsj this gives
CT = 7f.ls and 7 = 9f.ls.

On a connection link of BW bits per second, the time to
carry a message of length L over a path between proces­
sors £ and j equals

L
w··---

IJ - BW

The effective communication cost eij to send a message of
weight Wij between tasks tj and tj located at processors
m(t;) and m(t;) respectively is

c;; = w;;d;; + (d;; -1 + om;m;)r + (1 - om;m;JU (4)

where 6ii is the Kronecker delta. The communication cost
has three parts.

1. The distance-volume product measures the commu­
nication time on the links connecting the two pro­
cessors m(t;) and m(t;).

11-182

2. The intermediate processors contribute by routing
the message. This term vanishes if tj and tj are
located on neighboring processors.

3. The third term represents the extra cost to setup
a communication link. This term vanishes if both
tasks reside on the same processor.

The communication cost of the annealing packet is defined

(5)

c) Normalized cost function

For different architecture graphs and taskgraphs, the load
and communication terms can vary widely. A simple ad­
dition of the load balancing and the communication terms
could outweigh one cost and discard the other. Therefore
the load balancing and the communication costs are nor­
malized, each by their proper range. The range of the
balancing term is

"'F, = (Max - Min)jN;dl.

where Max and Min represent the cumulative level val­
ues when the Nidl~ free processors would execute the tasks
with the highest or the lowest levels respectively. The
communication range is obtained by placing the tasks
with the highest communication at the largest distance,
giving an estimate of the maximum communication cost,
fl.Fc·

The cost function is a weighted sum of the normalized
communication and load balancing terms,

()
F, F,

F m = Wc fl.Fc + Wb fl.Fb (6)

This function minimizes the communication and balances
the load, while the weight factors WI! and Wc allow to em­
phasize one or the other element in the cost function.
They are choosen such that Wb + Wc = 1 and can be
tuned to optimize the allocation for the highest speed-up.

5 Annealing Algorithm

For notational convenience, we introduce the following
abbreviation for the mapping function:m, = m(ti).

Until all tasks ti E T are assigned, do:

1. Assemble an annealing packet (AP) consisting of
the free processors and the ready tasks (i.e. task
without unfinished predecessors).

2. for cooling temperatures Tempk, k = I, .. " NJ until
convergence or until exceeding the maximum num­
ber of iterations, NIl do:

1991 International Conference on Parallel processing

(a) Arbitrarily select a task t, and a processor Pj)

where Pi 'I mi·

• If processor Pi is idle, assign tj to Pi (pos­
sibly by removing ti from another proces­
sor): 7'ni := Pi i

• IT processor Pi is busy executing tj E AP)
exchange ti and t;: m, := P;, mj := Pi-

(h) Accept the assignment with a probability given
by the Boltzmann function B(F, T emp.) (equa­
tion 1).

endfor

3. Repeat from {I} if not aU tasks are assigned.

6 Experimental Results

Four programs were scheduled on three different multi­
computer architectures. In each case the execution was
simulated to record the achieved speedup. The perfor­
mance analysis 151 covers both the simulated annealing
process as the speedup improvement over scheduling by
the HLF -list algorithm.
The scheduled programs are:

1. Newton·Euler Inverse Dynamics for robot control
(NE)

2. Gauss-Jordan linear system solver (GJ)

3. Matrix multiply (MM)

4. Fast Fourier Transform (FFT)

The programs GJ, FFT and MM are partitioned into vee·
tor operations and the NE program consists of scalar oper­
ations. The taskgraph characteristics are given in Table
1. The communication time is calculated for a 10Mb/s
link between two processors and 40 bit data per variable.
Extra communication overhead occurs due to the cost to
send, route and receive the messages (equation 4).
The taskgraphs were mapped onto the following architec­
tures:

1. A Hypercube with 8 processors

2. A Bus (star) topology with 8 processors

3. A Ring topology with 9 processors

a) Annealing Process Figure 1 shows the trajectories of
the level-, the communication- and the total cost, F6,Fe,

Flot (equations 3, 5, 6) of one annealing packet in the
Newton-Euler problem. It can be seen that the annealing
process decreases both the balancing and the communi­
cation costs. The program contains 95 tasks, which are

II-183

assigned in 65 annealing packets. On the average there
are 15 candidates for 1.46 free processors. The anneal­
ing stops when the cost function remains constant for five
iterations, or when a preset maximum number is reached.

b) Speedup To estimate the speedup improvement over
an heuristic task placement by the Highest Level First
(RLF) algorithm, a simulation program was developed
which accurately records the execution and interprocessor
communication. Figure 2 shows the start of the Newton­
Euler program partitioned on an 8 processor hypercube.

Furthermore Table 2 gives the speedups for both the sim­
ulated annealing and the heuristic RLF algorithm.

These results give rise to two observations. First, when
the communication is not taken into account, simulated
annealing gives the same or slightly better results than
the HLF algorithm. This occurs despite the fact that an
extensive statistical comparison of various list algorithms
indicates that the HLF generated schedules remain within
5% of the optimal solution in all but one of 900 random
generated taskgraphs [1]. Moreover we observed that the
SA algorithm is able to optimally solve the Graham list
scheduling anomalies t6]. Second, the simulated annealing
algorithm outperforms the RLF algorithm by 3.5 to 52 %.
This reveals that this altorithm is a worthwile alternative
to the arbitrary placement of the RLF-tasks, when the
interprocessor communication is not neglectable.

7 Conclusion

In recent years, simulated annealing has been recognized
as a novel method to balance the load in loosely coupled
multicomputers. We extended the use of simulated an­
nealing to the scheduling of directed taskgraphs . This
implies minimizing the communication and balancing the
processor load, while preserving the data and control de~
pendent precedence constraints. The results indicate that
the presented algorithm is able to improve the speedup in
real program taskgraphs by more than 50%.

References

[1) Adam T.L., Chandy K.M., Dickinson J.R., A com­
pan'son 01 list schedules lor parallel processing sys·
tems, Communications of the ACM 17, 12, 685-690,
1974

t2J Bianchini R.P., Shen J.P., interprocessor Traffic
Schedulr'ng Algorithm lor Multiple.Processor Net·
works, IEEE Trans. on Computers 36, 4, 396-409,
1987, Vol. 36, 4, pp. 396-409, 1987

[3) Bollinger S. Wayne, Midkiff Scott F., Processor and
Link ASSignment in Multicomputers using Simulated

1991 International Conference on Parallel Processing

Annealing, Proceedings of the IntI. Conf. on Parallel
Processing '88, I - Architecture, pp. 1-6, 1988

141 Coffman E.G. Jr. (Ed.), Computer and Jo b-Shop
Scheduling Theory, J. Wiley and Sons, New York,
1976

[5] Devis Yves, Process allocation in a distributed com­
puter system using a neural model, MS. Thesis, State
Univ. of Ghent, Report LEM-T9021, 1990

[6) Graham R.L., Bounds on Certain Multiprocessing
Anomalies, SIAM Journal on Applied Mathematics,
Vol. 17, 2, pp. 416-429, 1969

17\ Hu T.e., Parallel sequencing and assembly line prob­
lems, Op. Res. , 9, 6, 841-848, 1961

{SI Hwang K., Xu Jian, Mapping Partitioned program
Modules onto Multicomputer Nodes Using Simulated
Annealing, Proceedings of the IntI. Conf. on Parallel
Processing '90, II - Software, August 13- 17, pp. 292-
293, 1990

[91 Kaufman M.T., An almost optimal algorithm for the
assembly line problem, IEEE Trans. on Computers-
23, 11, 1169-1174, 1974

1101 Kirkpatrick S., Gelatt C.D., Vecchi M.P., Optimiza­
tion by Simulated Annealing, Science, Vol. 220, Num­
ber 4598, May, pp. 671-680, 1983

1111 Lee S-Y., Aggarwal J.K., A Mapping Strategy for
Parallel Processing, IEEE Trans. on Computers, Vol.
36, 4, pp. 433442, 1987

Table 1: Principal program characteris tics. The C/C ratio represents the
communication vs. computation ratio . Times are in J,LS

Program Tasks Average Average CIC Max.
Duration Commun. Ratio Speedup

Newton-Euler 95 9.12 3.96 43.0 % 7.86
Gauss-Jordan I II 84.77 6.85 8.1 % 9.14
FFT 73 72.74 6.41 8.8 % 40.85
Matrix Multiply 111 73.96 7.21 9.7 % 82.10

Table 2: Speedup figures for the benchmark programs. (S,)SA and (S,)HU
denote the speedup obtained with Simulated Anealing and with the HLF
heuristic respectively.

Newton-Euler w/ o Comm. with Comm.
(S.)SA (S.)HLF % gain (S,)SA (S')HLF % gain

Hypercube (Sp) 7.20 6.90 4.4 5.6 4.9 14.3
Bus (Sp) 7.20 6.90 4.4 6 .2 5.2 11.5
Ring (9p) 8.00 8.00 0.0 5.5 3.6 52.8

Gauss-Jordan wlo Comm. with Comm.

(S')SA (S')HLF % gain (S,)SA (S,)HLF % gain
Hypercube (Sp) 6.67 6.67 0.0 4.80 4.64 3.5
Bus (Sp) 6.76 6.67 1.4 4.93 4.74 3.9
Ring (9p) 8.25 8.25 0.0 5.02 4.77 5.0

Matrix Multiply wlo Comm. with Comm.
(S,lSA (S,)ULF % gain (Sp)SA (Sp)HLF % gain

Hypercube (Sp) 7.75 7.75 0.0 6 .11 5.19 17 .7
Bus (Sp) 7.75 7.75 0.0 6.34 5.71 11 .0
Ring (9p) 8.38 8.38 0.0 6.04 4 .96 21.8

FFT w/ o Comm. with Cornm.
(S,)SA (S,)lILF % gain (Sp)SA (S,lHLF % gain

Hypercube (8p) 7.38 7.38 0.0 6.23 4.93 26.3
Bus (Sp) 7.48 7.38 1.4 6.27 5.58 12.3
Ring (9p) 8.43 8.43 0.0 5.97 5.\0 17.0

1I-184

- ----_ . . _-_.-

1991 International Conference on Parallel Processing

Cosl
150 ,-----

100

50

-50

-100

-150

o 50 100

Iterations

- Comm. Cost - - Level Cost - Tal. Cost

Figure 1: Cost trajectories Fb (level), Fc (communicatioIl) :and Ftot
(weighted sum) of a Newton-Euler annealing packet for an 8 node hyper­
cube. The weights are W6 = We = .5

P a IamImzIF!mlmft!Iiffi:~

P 1
....,......F

P 6 _ _ __ --,IStd'~""Il5"'S""'t""i; L.-,~,.f[t;e"";;;;"": ~"'i$""S'''''@\a''l~,.f;"'''~~'''''if"''i@''''t$;!'''':$i'''}''''!!If""@""mt",'N/%I=~!

P 7 -----.!lI.--------,&l..-----..IS:f1lJ",...f'''';;;''''%l''''·~'''':l''''tM'''jl,,''"Ul,p~'''; z'''p",Jjli 'lSd'fc""nw"":;g",·lillitt",,,Wj

O.OO--OO:.O,""-'OCC.O •• --OO:.O;;"OO.:;;"'-'OiC.,;SSC-OO.:;;,.'-'O[;.2",~OO.2",-,O"~"?~oo.,",,, m.

Figure 2: Gantt-chart of the Newton-Euler program on an 8 processor
Hypercube (detail). Numbered blocks represent tasks, half-height blocks
above and below the base line denote sending and receiving messages re­
spectively, quarter-height blocks represent routing messages.

II-ISS

