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On the discrete geometry of physical quantities

Philippe A.J.G. Chevalier
De oogst 7, B-9800 Deinze, Belgium

Abstract

The mathematical structure S classifying the physical quantities is presently unknown. We prove
that classes of physical quantities are represented by integer lattice points and that n-ary relations
between physical quantities are represented by constellations of lattice points path-wise connected in
the seven dimensional integer lattice Z7 . The distribution of the path lengths of the n-ary relations,
displays frequencies with a value f = 1 that indicates the existence of unique constellations between
physical quantities. The most famous equation of physics E = ymoc? is an element of the set of
constellations that have frequency f = 1. We discover that the unique constellations representing
energy are all embedded in a hyperplane of the integer lattice Z7. The measure polytopes Ps with
edge length 2s, where s = ¢, is the Chebyshev norm, are the framework for the classification. We
demonstrate that the mathematical structure S classifying the physical quantities is based on leader
classes which are distinct constellations of integer lattice points, that are related through a signed
permutation of the integer lattice point coordinates. We assign to each leader class representative,
that is an integer lattice point of ZZ_, a Godel number. We relate the partitioning of a physical
quantity to the factorization of the Goédel number of the leader class representative in distinct
non-negative integer factors. We find that the physical quantity energy is uniquely defined by 17
lattice points forming its constellation in Z”. We define the Gddel walk as a unique walk of length
n in Z’j with n, k € Z, . We prove that ternary relations between physical quantities are classified
in 4 distinct 2-colouring patterns of Z7. Orthogonality and linear independence properties of the
pairwise physical quantities result in classifying the ternary equations in 6 distinct types. We find
that each physical quantity can be orthogonally decomposed in a finite number of constellations that
are rectangles. The orthogonal decomposition results in the equation of a 7-sphere. The appendices
contain a preliminary classification of common physical quantities based on the measure polytope
P29 and also numerical data useful as starting point for the further exploration of the discrete
geometry of physical quantities.

Keywords: centrally symmetric polytope, lattice polytope, isoperimeter, 7-dimensional integer
lattice
2010 MSC: 52B12, 52B20, 52B60, 52C07

1. Introduction

Scientists along centuries, have tried to understand nature, more specifically the laws of nature
by capturing a subsystem of nature and encoding it into a formal mathematical system [1}[2]. Wigner
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postulated that the laws of nature form a sharply defined set [3] and that the laws of nature are the
correlations between events [4] where the events are modeled by points in the spacetime continuum
as defined by Einstein [5]. Feynman suggested that the best way to proceed for describing the
physical reality is to guess equations and disregard physical models or descriptions [0} [7]. Tegmark
proposes the mathematical universe hypothesis (MUH) [9] [8] as hypothetical framework for the
laws of the universe. Lange [10] formulates the question Must the fundamental laws of physics be
complete? while Barrow [I1] expands the problem to the impact of Gédel’s incompleteness theorem
on nature and physics. Rickles [I2] elaborates on the interpretation of the mathematical frameworks
in their relation to nature. Recently, a conference was organized at the Perimeter Institute for
Theoretical Physics [I3] where mathematicians, philosophers of physics and physicists debated on
Laws of Nature: Their Nature and Knowability. Fundamental questions as What is a law of nature?
How many laws are there? were discussed amongst others. In this article we elaborate further on
these topics, but focus on the mathematical relations [14] between physical quantities without giving
these mathematical relations the status of law of physics and without giving an interpretation to the
mathematical constructions. We will not study spacetime models but construct a discrete geometric
model M = (T, Q). Paraphrasing Rickles, we have I' = U, representing the possible components of
physical quantities in a universe and € = Z” representing the geometric structure associated to the
classes of physical quantities of a universe [15]. We further restrict the subject of this article to n-ary
operations between physical quantities resulting in equations of the type [x,] = [xo][z1] ... [Tn-1],
where [z;],7 € [0,...,n] represent classes of physical quantities. A common way to express the
relations between physical quantities is through their algebraic equations e.g. E = ymgoc?. We
show that there is an alternative representation that is based on discrete geometry and that this
geometric representation results in the discovery of a mathematical structure S that classifies the
physical quantities. We follow a bottom-up approach starting from the building blocks of the physics
language, that are the physical quantities. Each physical quantity is represented by a symbol or
label. Physical quantities are found in the form of scalars, vectors, multi-vectors, matrices and/or
tensors. All the physical quantities are eventually measured through their respective components
and thus we restrict our analysis to the components of physical quantities. The choice of a system of
units [16} 17,18, [19] and the number of dimensions are open issues [19},[20] amongst physicists. In the
limit one thinks of dimensionless physics [I9]. Throughout this article we will adopt the convention
of the SI units and dimensions. We use as mathematical framework a 7-dimensional integer lattice
Z" . The basis of the integer lattice represents the 7 base units of the SI. We will demonstrate
that dimensionless physics is not in contradiction with the use of a 7-dimensional integer lattice.
On the contrary of dimensional exploration [21I], we strongly rely on geometric properties related
to regular systems of points [22] to study the geometric properties of the components of physical
quantities. We prove that the properties uniqueness, orthogonality and linear independence between
pairs of physical quantities result in a sharply defined set of relations between physical quantities,
as hoped by Wigner [3]. We (re)discover the complete set of compatible physical quantities in the
form of the set of decompositions of a vertex in pairwise orthogonal vertices. Maxwell addressed
partially the research questions in his presentation “On the mathematical classification of physical
quantities” [23]. In the footsteps of Maxwell, we study the factoring of energy in detail and find
a discrete value distribution. The distribution represents the frequency of isoperimeters of the
ternary operations representing energy constellations. The frequency of the pathlengths expresses
the incidence of integer lattice points on families of 7-dimensional ellipsoids determined by the
lattice point representing the physical quantity [z]. A signed permutation of the coordinates of
each physical quantity of the leader class has the same path length distribution as the leader



lattice point and so these physical quantities are all mathematically equivalent to the physical
quantity represented by the leader class lattice point and thus express an automorphism of the
leader class. Measure polytopes can be partitioned, based on the £, ,-norm, in finite sets of leader
classes. Assignment of a Gddel number to each physical quantity in ZZ_ reveals the existence of
a unique Gddel walk of length 100 in Zf’. The factorization of the G6del number associated to
the leader class representative results in the enumeration of all distinct forms of n-ary relations of
the physical quantity. The existence of rules that have to be respected by the laws of nature, has
been proposed by Wigner and Feynman [I0]. We elaborate on this problem by proving one of these
rules applicable for ternary operations between physical quantities resulting in equations of the type
[2] = [K]]z][y] - One of these rules is related to the 2-colouring of 4-cycles. We list the cardinality of
sets of pairwise orthogonal lattice points resulting in the representative vertex of leader class [Z].

1.1. Outline of the paper

Section [T] comprises the definitions and preliminaries that are needed to allow a mathematical
elaboration of the discrete geometry of the relations between physical quantities. In section [2 we
discuss the images of classes of physical quantities as integer lattice points of Z7 . We demonstrate in
section [3| that equations of the type [z] = [k][z][y], where [k], [z], [y], [2] represent classes of physical
quantities, have a geometric representation in the integer lattice Z7. In section 4] we discuss the
cardinality of the isoperimetric distribution. We propose in section [f] that the classification of
classes of physical quantities is based on an equivalence relation applied to measure polytopes.
Graph properties related to relations between physical quantities are discussed in section [6 In
section [7] we analyse the properties of linear independence and orthogonality for integer lattice
points and discuss the complete set of decompositions of a vertex in pairwise orthogonal vertices.
The properties of compatible physical quantities are discussed in section [§] Section [J] contains the
future work and conclusion of the present research.

1.2. Preliminaries

A component of a physical quantity is a quantity that is used in the description of physical
processes. Let a universal set of components of physical quantities be U,. We partition this
set in equivalence classes with notation [a] where a is the representative of the equivalence class.
In the class energy [E] we find physical quantities like potential energy, kinetic energy, work,
heat, internal energy, ... which are all represented by the class [E]. A set of base quantities is a
finite number of classes of physical quantities, which by convention are regarded as dimensionally
independent in a system of physical quantities and equations defining the relationships between
them. The International System of Units (SI) base quantities are length, mass, time, electric
current, thermodynamic temperature, amount of substance and luminous intensity. The set of
classes of base physical quantities is called B = {[I], [m], [t], [¢], [T], [n], [L]} . The base units are the
set U = {u; | ug = m, ug =kg, uz =s, ug = A, us = K, ug = mol, uy = cd}. The dimensional
product is the expression of a class of a physical quantity as a product of powers of base quantities.
Each class of a physical quantity has parameters X¢, called dimensional exponents. We write [a]
as function of the SI base units u; € U and the dimensional exponents X° € Z,

o = {ar} - T T e, M)

where the physical quantity [a] of the idealized physical system assumes a numerical value {a1}. Tt
is known that some physical quantities (rms of a quantity, noise spectral density, specific detectivity,



thermal inertia, thermal effusivity, ...) are defined as the square root of some product or quotient
of other physical quantities. These physical quantities will have fractional exponents, where X* € Q
and so will not comply with the above definition. Each of these physical quantities are, by a proper
exponentiation, transformed to a physical quantity having integer exponents which then complies
with the above definition.

2. Image of a class of physical quantities

Let the set of integer septuples Z7 = {(X!,...,X7) | X? € Z} be called the 7-dimensional
integer lattice. Classes of physical quantities can be imaged on lattice points in the 7-dimensional
integer lattice. A set of lattice points is called a lattice constellation [25]. The image of a class
of physical quantities [a] has the notation @ which clearly indicates the distinction with physical
quantities represented by scalars, vectors, multi-vector, matrices and/or tensors. The image of the
class of dimensionless physical quantities [«] has the notation & which represents the origin of the
integer lattice Z7. We will see further that there is a mathematical justification for this notation.
The image of the class energy [E] is E .

Definition 1. The function ‘dex’ is defined from U, into Z”and formally as dex : U, — Z" |
dex ([a]) = a = (A1,..., A7) where A* € Z.

The A's are the contravariant components of the lattice point @. This means that the exponents
of the units of a class of physical quantities, taken in the correct order, form the coordinates of a
point in the integer lattice Z7. Every possible integer lattice point is the image of one class of
physical quantities and so the mapping ‘dex’ is bijective from U, on Z" and expresses ‘dex’ as
an isomorphism between U, and Z7. The Abelian group Z” [26] is a Z-module. The family
{7,7%,73,7*,7°,7°} are Z-submodules of Z7. The Z-module Z"/Z is called the quotient module
of Z7 with respect to Z. The prerequisite for the creation of a vector space is the existence of a
field F for the scalars. The elements of the vector space are then vectors. This justifies the notation
@, indicating that the elements of Z7,+,- are not vectors a. We select 7 linearly independent
lattice points éj,...,é7 of Z7. The & form a covariant basis [27] for the integer lattice in Z7 .
Every lattice point is expressed in a unique way as the linear combination: & = X'é; 4+ ...+ X7é7
where the coefficients X* are called the contravariant components of %. The inner product is

7T
defined as the expression: -y = > > a;; X'Y? where a;; = a;; . Consider seven lattice points €’
i=1j=1

7
satisfying the expression ' = 3 a’*¢; . This contravariant basis spans the space Z7 resulting in the
k=1
7 , 7
equations ) a;;€"' = )
i=1 i=1k

7
X;, such that * =

K2

M~

7
aija”“ék = > 5}“ék = ¢&;. A lattice point Z has covariant components
1 k=1

X,& . These components are related to the contravariant components by
1

. [N 7 }
the expressions: X7 = > a"X; and X; = > a;;X?. With this notation the inner product is
i=1 i=1
7 7 _ 7 7
represented as -7 = > X'V; = Y X;Y*. Observe that, since ¢-é; = > a™*¢)-é; = - a*aj, =
i=1 k=1 i=1 i=1

5; , each € is orthogonal to every é; except &; . We obtain that &*-&; = 1. We are free to select seven
basis lattice points. These points will receive the agreed [28] symbol for the dimension. We define:
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= (1,0,0,0,0,0,0), 1 = & = M = (0,1,0,0,0,0,0), f = é; = T = (0,0,1,0,0,0,0),
= =( ,0,0,1,0,0,0), T = ¢é; = © = (0,0,0,0,1,0,0), n = & = N = (0,0,0,0,0,1,0),
L=¢=1J= (O,O,O,O,O,O7 1), with & € Z7. This basis generates a cubic lattice [29] that is
orthonormal. e claim without giving proofs of the following “dex” identities:

A

Via], [b] € U, | dex ([a][b]) = dex (a) + dex (b) , (2a)

V(a], [b] € Uy | dex <[[Z}) = dex (a) — dex (b) , (2Db)

Vlal, (8], [c] € Uy | dex ([a][b][¢]) = dex ([a]([b][c])) = dex (([a][b])]e]) , (2¢)
Vp € Z | dex ([a)?) = pdex (a) . (2d)

Definition 2. The inverse of the “dex” function is a function of Z7 into Up, and defined as
dex ' : Vi€ Z", 3[a] € U, | dex (&) = [a].

We claim without giving proofs of the following dex ™! identities:

Vi, be 27| [allt] = dex " (a4 5) | (3a)
s he7l [a]: —“1(s 7
Va,be Z" | 7l dex <a b) ) (3b)
Va,b,é e Z7 | dex (d+ b+ c) — dex! (d+ (b+ c“)) — dex! ((d+ b) + c) . (30)
VpeZ|[a]P =dex t(pa) . (3d)

i M\]

7 .
We call the expression N(Z) = ||Z|1 Z a;, X' X* | the £;-norm of Z in Z7. We call the

7T
expression ||Z]]2 = /> Y ai X?X* the fy-norm or Euclidean norm of # in Z7. We call the
i=1k=1
expression || s = maz{|X*|,...,|X7|} the Chebyshev norm or infinity norm of % in Z7. Let ¥,y
be lattice points of Z7. The fo-distance (Euclidean distance) between the points &, is defined
7
by d(#,g) = & = glls = [ 3 (X = Yi)(Xi = Vi) where & — = (X' = Y',... X" —Y7) if
i=1

P = (X',...,X")and y = (Y',...,Y7). We call two integer lattice points neighbours if their
{5-distance is 1. We assign to each lattice point & of Z7 a hyperplane Hy. A set Hy in Z7 is a
hyperplane [30] if and only if there exist scalars Cy, Cy,...,C7, where not all Cy,...,C7 are zero,
such that Hy = {(X',...,X") | Co + C1 X' + ... + C; X" = 0}. Consider now the lattice point
g = (Y',...,Y") and select its associated hyperplane Hy that contains the lattice point 0. The

lattice point & is incident on the hyperplane Hy when it satisfies the equation Z YiX; =0. The

distance between the lattice point Z and the hyperplane Hy, measured along the perpendlcular is

y Z zZY"
Z- =
the projection of 0z in the direction of oy that is given by the equation H u”y = =1 . Let
Yll2 7
Yy
i=1



the lattice point &’ be the image of & by reflection in the hyperplane Hj. Consider the lattice
point # satisfying # = & — &', then the line 6% is parallel to the line 3. We define now a general

i Zigj We call the lattice point § the root [31] of

reflection [27] in the hyperplane Hy as & — &' = 2-

the reflecting hyperplane Hy . The root system for the Lie algebra By [32] has the basis &1, ..., &7
defined by &y = €1 — €3, g = €3 — €3, ...,06 = €g — €7, &7 = é7. This root system generates
the Z" integer lattice as root lattice [31] by reflections in the hyperplanes associated with the roots.
The reflections are characterized by signed permutation matrices [32]. As we will connect points in
the integer lattice, we use the term path from graph theory [33], where a k-path is a simple graph
of length k, i.e., consisting of k vertices and k edges and represented by a sequence of consecutive
vertices Zg ... Zx—1 [33]. The Euclidean dimension of a graph G is the smallest integer p such that
the vertices of G can be represented by points in the Euclidean space ZP with two points being 1
unit distance apart if and only if they represent adjacent vertices [34]. For undefined terms from
graph theory see [33].

Definition 3. Let the surjective function “psc”, represent the parity of the sum of coordinates of
a lattice point of Z7 and define:

7
psc: Z" — {0,1} | psc (%) = \ZXW (mod 2),XcZ.
i=1
The “psc” function is a 2-colouring function. We have an evensum lattice point when psc () = 0

and an oddsum lattice point when psc(#) = 1 where ¥ € Z”. Observe that the lattice points
% for which psc () = 0 are elements of D7 that is an indecomposable root lattice [35] defined

7 .
as Dy = {(X',...,X7) € Z" | 3 X' is even}. The lattice D7 has 84 minimal points, that

i=1
are +é; £ €, where (1 < j < k < 7). These 84 points form a simple basis derived from the
canonical basis ¢1,...,¢é7 of Z7. Consider a lattice point %y and points &, which have the property

To+2 € As g—x € A then we call A a centrally symmetric set. In the remainder of the article
we will assume that %o = 0 is the origin of Z7. An integer lattice polytope is the convex hull of a
set of finitely many points in Z¢. A measure polytope P§ of edge-length 2s is a subset of Z¢ with
the following property Pj = {#(X!,..., X%) € Z?| ||l = s}, where X’ € Z and (1 <i < d).

3. Geometric representation of equations between physical quantities

A relationship between n components of physical quantities, represented by individual symbols,
which may be used to describe a phenomenon, without exception, is a n-ary operation between
physical quantities. The symbols are called terms. A finite sequence of terms is called a formula.
Formulas can be combined with the relational operator ”=" to generate equations. First we inves-
tigate the most basic n-ary operation where n = 3. The ternary operations under study, result in
equations of the type [z] = [][z][y] and the ternary operator is the multiplication operator.

Theorem 1. The equation [z] = [k][x][y] is physically valid, with k], [z], [y], [2] distinct classes of
physical quantities obeying the properties:

dex ™! (dex ([2]))
dex™! (dex ([z]))

(], dex™" (dex ([x])) = [s],
[z], dex ™" (dex ([y])) = [y],
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dex ([y]) = 9, dex ([2]) = %, dex ([k]) = & are distinct integer lattice points with & being the origin
of the integer lattice 77 .

Proof. The proof is of the ‘if and only if’~type where it is split in a necessary and sufficient
condition. We aim to prove that a ternary operation between physical quantities is equivalent with
a 4-cycle, being a parallelogram and vice-versa.

Condition 1 (Necessary). Let [x], [z], [y], [2] € U, be distinct classes of physical quantities and
dex ([k]) = 0 be a dimensionless quantity. Suppose that the equation [z] = [«][z][y] is physically
valid. By the “dex” identity we obtain dex ([z]) = dex ([«])+dex ([z][y]) = dex ([x])+dex ([z])+
dex ([y]) . By the definition of “dex”, see|l} one writes

F=0+i+7, (4)

where the addition is performed component-wise. The coordinates (X!,..., X7) of #, (Y1,...,Y7)
of ¥ and the origin ¢ determine uniquely the coordinates of a lattice point Z according to the
above equation . As no degree of freedom is left over for the coordinates of Z, we claim that a

uuuuu
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lines 6% and &y . Let 6 be, without loss of generality, the origin of the integer lattice Z7. By the
definition of a 4-cycle one writes 0 = 2 — & — ¢y. This equation is rewritten as 2 =06+ +¢y. We
apply on both sides of the equation the function dex ™! | see[2] and obtain the equation dex~! (%) =
dex™! (6 + &+ §) . By the definition, of dex™! identity we obtain

dex™! (dex (2)) = dex™! (dex (k) - dex™ ! (dex (z)) - dex™ ! (dex (y)) . (5)

As the product function (de)f1 o dex) results in the identity function we claim that there exists a
set {[x], [z], [y], [2]} € U, for which

dex™" (dex ([2])) = [2], dex™" (dex ([x])) = [#],
dex™" (dex ([2])) = [a], dex™" (dex ([y])) = [y]-
So, one obtains from the equation the equation [z] = [k][z][y] that is to be considered as

physically valid.
O
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hamiltonian circuit. Let the parallelogram oyzxo represent a directed graph on the vertices 1,...,4
and let the variable u; denote the vertex that follows vertex ¢ in the sequence. The set of values
that u; can take is the set of integers j for which (7, j) is an edge of the parallelogram oyzzo. The
constraint circuit(uy, us,us, us) requires that u = (ug,ue, us,uqs) describes a hamiltonian circuit,
and thus w is a circuit if my,..., 7, is a permutation of 1,...,n, where m; = 1 and 711 = U,
fori =1,...,(n—1) [36]. Thus =y,...,m, indicates the order in which the vertices are visited.
Dimensionless physics is obtained in the integer lattice Z” by considering dimensionless products of
physical quantities as k-cycles containing the origin of the integer lattice Z7 and having parallelogram
properties between its vertices.

4. Cardinality of isoperimetric parallelograms

Based on theorem [I] we explore the integer lattice and search for new relations between physical
quantities by selecting 2 points Z and & and create a constellation where the elements of the
constellation are forming a parallelogram. Distance from Z to the origin 0 was first studied but
without success. Inspired by concepts of random walk from the origin and back to the origin, the
walk length through the lattice was considered an interesting parameter to be studied. The followed
approach was to select a fixed point Z and to vary the point . For ease of calculation perimeters
of triangles p; instead of parallelograms p, were calculated and then converted. The fixed point to
start the survey through the integer lattice was selected to be zZ = E, representing energy. The
question became now more specific: Which lattice points are generating triangles representing an
energy constellation between physical quantities and how many of these triangles have the same
perimeter? Two polygons are called isoperimetric [37] if they have the same perimeter. A program
in MATLAB® was first created, but rapidly computational/memory problems occurred due to the
large amount of data to be processed. The program was adapted and written in the programming
language C'# . The algorithm is given in appendix A. The absolute frequency of occurrence of these
parallelogram perimeters p, are tabulated as a sequence of non-negative integers and represented
graphically for ¥ = E, as a discrete value distribution[38]. We observed that the constellations
representing energy are connected through the discrete value distribution in such a way that the
frequency f is identical to the order n of a graph G of wvertices representing relations between
physical quantities and edges representing a connection between relations of physical quantities.
This approach is similar to the one followed by Wigner where the laws of nature are the entities to
which the symmetry laws apply [4].

4.1. Perimeter of a triangle

Let p; be the perimeter of the triangle formed by the 3-cycle 6z2#6. The value of the perimeter
p¢ is obtained by the formula p; = /u + /v + w with w,v,w € Zy and expressed through the
following equations:



4.2. Area of a triangle

Y

Let A; be the enclosed area of a triangle formed by the 3-cycle 6zZZ0. The area of the triangle
defined by the lattice points 6Z% is given by the equation, see Abramowitz and Stegun [39], A; = %hb
, where h is the height of the triangle which correponds to the distance from the lattice point & to
the axis 6% and b is the base of the triangle and corresponds to ||Z||2. We call ¢ the angle between
Z and ¥ . From elementary goniometry, see Abramowitz and Stegun [39], we have:

7 7
(32 zima)? + B2 25 (3 ziwi)? + 447
i=1

2 .o i=1
cos” (@) + sin“(¢) =1 = — = — (6)
213112113 12(I3112(13

We rewrite the equation @ to a quadratic form Q(&)

7

7
Qz) = (Z Z?)(Z }) — (Z zia;)? = 447

i=1 i=1
which is easily transformed to a matrix equation given by:
Q(X) = XI"MX = 447 = AIZJ ,

and where X! is a 1 x 7 matrix, M is a symmetric 7 x 7 matrix and X is a 7 x 1 matrix. The term
quadratic form Q(X) represents positive integers. The square of the area of the parallelogram has
the property A2 > 1, when degenerated parallelograms are excluded. The parallelogram for which
Af, = 1 is a fundamental parallelogram of Z7. Observe that the parallelograms have the lattice
points 0 and Z as foci of an ellipse F, that has the lattice points & and § incident of it. From the
definition of an ellipse we have 2a = /u + /v.

4.3. Case study for the physical quantity energy

The lattice point 2 = (2,1,—2,0,0,0,0) = E represents the physical quantity energy. The
graphical representation (Fig. [2)) of the discrete value distribution of parallelogram perimeters p,
for parallelograms representing equations between physical quantities in Z” resulting in the physical
quantity emergy shows a rich structure. It reveals the distribution of energy constellations. The
enumeration as class 6 (Table of the first 50 frequencies is not found in the OEIS database
[40]. Observe that the lowest frequency fpin in Fig. [2| for the non-degenerated parallelograms is
fmin = 1 with exception of the point with perimeter p, = 6, that is a degenerated parallelogram.
This isoperimetric distribution shows that unique non-degenerated parallelograms exist, that form
unique constellations between physical quantities. At perimeter p, = 7,657 we find the well-known
equation E = ymgc? represented in its generic form as E = rgmgov? (Table . Observe (Table
that the parity of the sum of the coordinates of the lattice points & are odd while those of the lattice
points y are even. The components of physical quantities which are unknown to the author are
marked U; in the equations of components of physical quantities resulting in the physical quantity
energy. The first row represents a degenerated parallelogram. The dimensionless quantity xq is
associated to the dimensionless quantity « from the special relativity theory. The second row is
recognized as the product of the linear momentum and the velocity. The third row is recognized
as the kinetic energy and if v = ¢, as the famous equation E = ymoc?. The fourth column gives



the inner product of & and §. Observe that the lattice points & and ¢ are orthogonal for F(1,3,1).
Thus, the well-known equation E = ymgc? is a rectangle. We show later in sectionmthe importance
of this property of a parallelogram. The fourth row is a well-known form appearing as a term in a
Hamiltonian. The other rows express constellations between physical quantities that are unknown
to the author.

4.8.1. Graphs of order n=1

We use the notation E(n,g,v) for identifying the separate energy constellations. The index n
represents the order of the graph, the index ¢ identifies the graph and the index v represents the
vertex number in the graph.
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Figure 2: Discrete value distribution of parallelogram perimeters p, in 77 resulting in the physical quantity energy.

Table 1: Graphs of order n =1 for energy.

n g v Pp T Y Z-y form

1 1 1 6,000 (2120000 (0,0,0,0,0,0,0) 0 E(1,1,1) = k1 Eo
1 2 1 6293 (1,1-1,0,000) (1,0-1,0,0,00) 2  E(1,2,1)=kep-v

1 3 1 7657 (0,100,000 (20-20000) 0  E(1,3,1) = kgmov?

2
1 4 1 8928 (0-1,000,00) (22-20000) -2 E(174,1)=KL4%
0

10



n g v Dp z U Z-y form

1 5 1 11546 (3,1-3,0,0,0,0) (-1,0,1,0,0,00) -6  E(1,5,1) = kU1 Us
16 1 12845 (-1-1,1,0,000) (3,2-3,0,0,0,0) -8  E(1,6,1) = rcUsUs

Us

L7 11716 (41-40000) (20200000 -16 B(1,7,1) =k

18 1 19734 (4,3-40000) (-2-22,000,0) -22 E(1,8,1):58%

19 1 23415 (-3-1,30000) (52-5,0,000) -32 E(1,9,1) = koUrUs

110 1 24743 (53,500,000 (-3-2,3,0,00,0) -36 E(1,10,1) = rk10UsU10

The distribution in Fig. |2| is truncated at p, = 25 due to edge effects at the hypercube surface.
The edge effects are related to the memory capacity of the author’s computer. The computation of
the distribution in Z” was performed for a Chebyshev norm ||#||. = 5. The analysis covers 524287
parallelograms. The connectivity of the graphs is represented by n = f = 1 that is a single vertex
having a loop. The loop, which is an edge, is represented by a 7 x 7 signed permutation matrix that
transforms the relations in itself and so we find for the permutation matrix P;; = l;. The signed
permutation matrices m are Z-linear maps for which 76 = ¢ and 7(—a) = —na for all @ € Z7.
Observe in Fig. |3[ that all the unique energy equations are embedded in Z3 x {0}* and localized
in the hyperplane H; = {(X!,..., X7) | X! + X® = 0} with @ = (1,0,1,0,0,0,0) that represents
the product of length and time. We know that this product is a relativistic invariant in the special
relativity theory. Observe in Fig. 3] the symmetry axes determined by the line containing origin
and energy and the line containing velocity and linear momentum. We calculated the squared area
Af, of each parallelogram and find for the graphs of order n = f = 1 the equation log, (Af,) =2k+1
with k€ Z, .

Figure 3: Unique parallelograms resulting in the physical quantity energy.

11



1
Let ; = — with i = 1 to 10. The set X = {z1,...,210} represents 10 dimensionless physical
o

variables z; € R that are constructed from graphs of order 1.

Ey p-v mov? P>
Example 4.1. 21 = —, 29 = T3 = Ty=——,.
p 1 E 5 42 E s L3 B s L4 mOEa
We define a monomial ¢ = H£1 xf“ where a = (ai,...,a10) is a 10-tuple of non-negative
integers. We form a finite linear combination of monomials  to obtain a multivariate polyno-
mial f. The set of all multivariate polynomials in x1,...,x19 with coefficients in R is denoted
Rlzy,...,z10] [A1]. Let fi1,...,fs be multivariate polynomials in R[zy,...,210] then we define

V(fl,...,fs) = {(Il,...,l’lo) € Rlo | fi(l'l,...,.rlo) = O} for all 1 S ) S s. We call V(fl,...,fs)
the affine variety defined by f1,..., fs [41].

Example 4.2. V(23 + 23 — 1), that describes a unit circle in R?, is the variety that represents the
states of a free particle of rest mass myg, after the assignment v = ¢ in the dimensionless variable
T3 .

The further elaboration on the construction of other varieties based on dimensionless variables
is beyond the scope of the present article.

4.3.2. Graphs of order n=2

We analyse the parallelograms in Fig. [2| having frequency f = 2. The result is given in the
Table[2] Components of physical quantities which are unknown to the author are marked U; . The
first and second row in Table 2 represent two equations. The first equation is recognized as Planck’s
equation E = k1hv, when the angular momentum J = h. The second equation W = ko [ F - ds

represents the work done by the force F'. Both equations are combined to a new constellation
described by the form ko [ F -ds = k1hv.

Table 2: Graphs of order n = 2 for energy.

n g v Pp T Y Z-y form

2 1 1 6899 (00-1,0000) (2,1-1,0000 1 E21,1) =mJw

2 1 2 6899 (1,000,000 (1,1-2,0,000) 1  E(2,1,2) =koFs

A
2 2 1 7301 (20-1,00,00) (0,1,-1,0000) 1 E(2,2,1):n3%—t%—T
2 2 2 7301 (10-20000) (1,1,00000) 1  E(222) = ral;

Us

203 1 9483 (-1,000000) (31200000 3  B231)=rs

2 3 2 948  (0,0,1,000,0) (21-3,0000) -3 E(2,3,2) =rePt

2 4 1 11,075 (3,2-2,0000) (-1-1,0,00,0,0) -5  E(2,4,1) = k:UsUs

2 4 2 11,075 (2,2-3,0,0,00) (0-1,1,0,0,00) -5  F(2,4,2) = ng%
T

12



The signed 7 x 7 permutation matrix Pp11212 that transforms all the relations of the graphs of
order 2 is:

0 0 -1 0000

0 1 00 0 00

-1 0 00 0 00

Po11,212 = 0 0 01 0 0 O
0 0 00100

0 0 00 0 10

| 00 00 0 0 1]

The matrix P211,212 has the property of being a symmetric matrix. Observe that the permutation
matrix Paj1 012 has a block diagonal structure:

0 0 -1

S 0
P211,212 = {0 |4] S=| 01 0
M -1 0 0

Observe that the permutation matrices for the graphs of order 2 have a 4 x 4 identity matrix in the

last bottom block matrix and so are acting only in Z? x 0*. The third row of Table [2| represents

0A Om
the equation F = Hg—t—, where A represents an area. The factor — represents a diffusion

constant D or a flux of vorticity. The fourth row of Table [2] represents the equation E = kqamr
where a represents the acceleration and where F is recognized as potential energy when a = g with
0A Om

g the acceleration of the Earth gravitation. Both constellations combine to lﬁgaﬁ = Kqamr .

We anticipate a first order partial differential equation:

m
k3D —— — kgamr =0 .

ot

The combinations of the constellations could also generate the following partial differential equation:

% om_ =25 0 am) = (2502 — 5 Py = 0
K3 9t ot Rqamr = T(4ZkK3 ot ot rRqaam) = r(2K30 ot KR4 (9tm =Vu.

We see that the form and the combination of constellations is not uniquely defining one equation
but a set of equations.

4.83.3. Graphs of order n=8

We analyse the parallelograms in Fig. [2| having frequency f = n = 8. The first graph of order 8
corresponds with a parallelogram having the perimeter p, = 7,464 and the second graph of order 8
has a perimeter p, = 8,325. The result for the first and second graphs are given in the Table @ The
components of physical quantities which are unknown to the author are marked U; . The author is
not aware if these equations are known to the physics community. Observe that the constellations
of graph g = 1 are all related to E(1,2,1) = kop - v which is a graph of order n = 1.

13



Table 3: Graphs of order n = 8 for energy.

n g v Dp by U Z-y form
8 1 1 7464 (1,0-1-1,000) (1,1-1,1,000) 1  E(8,1,1)= m%Ul
8 1 2 7464 (1,0-1,0-100) (1,1-1,01,00) 1  E(8,1,2)= @%UQ
8 1 3 7464 (1,0-1,00-1,0) (1,1-1,00,1,0) 1  E(81,3) = Iﬁg%Ug
8 1 4 7464 (1,0-1,0,00-1) (1,1-1,000,1) 1  E(8,1,4) = m%w
8 1 5 7,464  (1,0,-1,0,0,0,1) (1,1,-1,0,0,0,-1) 1 E8,1,5) = K5U5%
8 1 6 7464 (1,0-1,00,1,00 (1,1-1,00-1,00 1  E(81,6) = nﬁUﬁg
8 1 7 7464 (1,0-1,0,1,00) (1,1-1,0-1,00) 1  E(81,7) = mm%
8 1 8 7464 (1,0-1,1,00,0) (1,1-1-1,0,0,00 1  E(81,8) = /ﬁsUg;i[)
1
8 2 1 8325 (000-1000) (2121000 -1 B®21)= kel
1
8 2 2 8325  (0000-L00) (21:20100) -1 E(82,2)=royUs
1
8 2 3 8325 (00000-10) (21:20010) -1 B(823)=ru-Us
1
8 2 4 8325 (000000-) (21-20001) -1 BB24)=r2Us
E
8 2 5 8325 (0000001 (21-2000-1) -1 E@25) =rsly
E
8 2 6 8325  (0000010) (21:200-10) -1 E(826)=run_
E
8 2 7 8’325 (0507070717070) (2717_2707_17070) -1 E(87 27 7) - HlST?
E
8 2 8 8325 (0,001,000 (21-2-1,000) -1  E(82,8) = kicl —

I

8
The number of signed permutation matrices for graphs of order 8 is (2) = 28. The permutation

14



matrix Pgiy g12 that transforms the constellation E(8,1,1) in E(8,1,2) is:

Pgi1,812 =

OO OO OO
[N eNoNoNoll Nao)
SO OO~ OO
_ O O oo oo
SO O R OOoOO
OO = OO OO
O OO o oo

and is one of the 28 permutation matrices describing the connectivity between these 8 constella-
tions. It is obvious that this matrix Pgi1g12 is not symmetric. The permutation matrix Pgo1 g2o
that transforms the constellation E(8,2,1) in E(8,2,2) is identical to Pgi1 g12. Observe that the
permutation matrix Pgiq gi2 has a block structure:

| 0]
Pgi1,810 = [034 -|—4] T=

_ o O O
S oo
o o= O
o= O O

Observe that the permutation matrices for the graphs of order 8 have a 3 x 3 identity matrix in the
first upper block matrix and so are not transforming the Z3 x 0*. Consider the Z-module Z” and the
Z-submodule Z? then there exist a canonical Z-linear map from Z" to the factor group Z7/Z? that
sends a lattice point # € Z” to the element & + Z2. We study the dependency of the isoperimeter
distribution for the physical quantity energy as function of the dimension d of the integer lattice
when 3 < d < 8. The results (Table |4) show that the frequency f in the isoperimeter distribution
for the physical quantity energy is uncorrelated with the dimension d of the integer lattice when
d>band f=1or f=2.

Table 4: Variation of the frequency f of the isoperimeter distribution
for the physical quantity energy as a function of the dimension d of the
Z-modules denoted as Z? when 3 < d < 8.

Id pp Z* z* 7 7% 77 7B
1 0 1 1 1 1 1 1
2 6,146 1 1 1 1 1 1
3 6,449 2 2 2 2 2 2
4 6,650 2 2 2 2 2 2
5 6,732 0 2 4 6 8 10
6 6,828 1 1 1 1 1 1
7 7,059 0 4 8 12 16 20
8 7,162 0 2 4 6 8 10
9 7,181 1 5 9 13 17 21

10 7,236 2 2 6 14 26 42

11 7,414 2 4 6 8 10 12

12 7,464 1 1 1 1 1 1

15
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Figure 4: Discrete value distribution of parallelogram perimeters p, in 77 resulting in the physical quantity force.

4.4. Case study for the physical quantity force

The lattice point 2 = (1,1,—2,0,0,0,0) = F represents the physical quantity force. The graph-
ical representation (Fig. of the discrete value distribution of parallelogram perimeters p, for
parallelograms representing equations between physical quantities in Z” resulting in the physical
quantity force shows also a rich structure. It reveals the force constellations. Observe that the
lowest frequency fiin in Fig. [4]is fi.in = 1. Detailed analysis of the collinearity of £ and g indi-
cates that the points with perimeter p, = 4,899 and p, = 14,697 are degenerated parallelograms.
Observe (Table [5)) that the parity of the sum of the coordinates of the lattice points & and ¢ are
always equal. The components of physical quantities which are unknown to the author are marked
U; in the equations of components of physical quantities resulting in the physical quantity force.

Table 5: Unique parallelograms in Z7 for the physical quantity force.

v v

Dp x U -y form

4899  (1,1,2,00,00) (0,00,000,0) 0 F=rFo

d
5464  (1,1,-1,0,0,0,0) (0,0-1,0,0,0,0) 1 F:@d—?
om
5,657 (10-1,0000) (01-10000) 1 F=ryv

8,633  (0,0,1,0,0,00) (1,1-3,0,0,00) -3 F=rat—
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Dp T U Z-y form

11,710 (-1-1,1,0,0,0,0)  (2,2,-3,0,0,00) -7 F =rsl)—

14,697 (-1-1,2,0,0,0,0) (2,2,-4,0,0,0,0) -12 F = kgUsF?

2
18,122 (-1,-1,3,0,0,0,0) (2,2,-5,0,0,0,0) -19 F:ng%
1 dp .2
21,361  (-2,-2,3,0,0,0,0) (3,3,-5,0,0,0,0) -27 F =ksg — (=)
dp dt
(T

Wilezek [42] [43] [44] elaborated on Newton’s second law F = ma . We observe that this form of
constellation is not appearing in the list of unique parallelograms. We don’t find the lattice points
(0,1,0,0,0,0,0) and (1,0,-2,0,0,0,0) as vertices of unique parallelograms, which is in correspondence

with Wilczek’s arguments. What we observe in the detailed data of the discrete value distribution
2

m
is the occurrence of F = ma in a constellation with the form K§T 55 = Komd, having frequency
f =2 for a perimeter p, = 6,472. The second row is the basic form where the force is expressed as
the time derivative of the linear momentum [42]. The relation between force and energy, where a
force is expressed as the space derivative of the energy [42] is found in the discrete value distribution

at perimeter p, = 8 and has frequency f = 26. At perimeter p, = 10,312 we find another

OF 0
constellation form mg——m = k11vU4 with frequency f = 2. The list (Table of vertices, as

well as the complete distribution is derived purely mathematically without a priori knowledge of
physics using an algorithm based on discrete geometry. Observe in Fig. [f] that all
the unique force constellations are embedded in Z? x 0% and localized in the hyperplane Hy =

(XY, X7) | X' - X2 = 0} with b= (1,-1,0,0,0,0,0) that represents the reciprocal of the
linear density. One exception is observed for the equation F = f{g'v—T that forms a parallelogram

orthogonal to the hyperplane Hj;. Observe in Fig. [5| the symmetry axes determined by the line
containing origin and force and the line containing the time derivative and impulse.

4.5. Invariance of the isoperimetric distribution

Theorem 2. The isoperimetric distribution, for parallelograms containing the integer lattice points
0 and Z, is invariant when the coordinates of the integer lattice point Z are subjected to a signed
permutation.

Proof. The isometric property of the above mapping and mapping combinations is the origin of
the invariance in the isoperimetric distribution [45]. The perimeter of the parallelogram is based
on the Euclidean distance (f2-distance) between the lattice points and so neither a permutation of
the coordinates nor a change in the sign of the coordinates will modify the value of the distance
between the lattice points. O

For n-ary equations where n > 4 we have not a parallelogram, however the isometry properties
remain valid when considering the path length of the path connecting the n + 1 lattice points of
the constellation. The automorphism group of the 7-dimensional cubic lattice Aut(Z") contains all

17
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Figure 5: Unique parallelograms resulting in the physical quantity force.

permutations and sign changes of the 7 coordinates and has order 277! = 645120. Each signed
permutation matrix is an orthogonal matrix [45].

Example 4.3. The components of the physical quantity force, represented by (1, 1, -2, 0, 0, 0, 0),
and the components of the physical quantity angular momentum, represented by (2, 1, -1, 0, 0, 0,
0), have the same isoperimetric distribution.

Example 4.4. The components of the physical quantity mass, represented by (0, 1, 0, 0, 0, 0, 0),
and the components of the physical quantity frequency, represented by (0, 0, -1, 0, 0, 0, 0), have
the same isoperimetric distribution.

The fact that some physical quantities are related through a signed permutation implies that
these physical quantities are qualitatively indistinguishable [46]. Feynman remarks that “the fun-
damental laws of physics, when discovered, can appear in so many different forms that are not
apparently identical at first, but with a little mathematical fiddling you can show the relationship”
[7]. These many different forms are what we define as the constellations of the physical quantity
and the graphs of order n express the relationship between these geometrical forms.

5. Classification of components of physical quantities

To classify the components of physical quantities we need to find a partitioning of the integer
lattice Z7. Tt is known from linear vector quantization [47, 48, 49] that the ¢3-norm and the phase
of a lattice point are used to partition a lattice. However, this norm and phase are not the correct
classifiers for the physical quantities. If we use as classifier the ¢,.,-norm we obtain equivalence
classes for which the elements of the class have the same isoperimetric distribution.

5.1. Measure polytope properties

Theorem 3. Let Pj be a centrally symmetric d-dimensional measure polytope of edge-length 2s
then the cardinality of P§ is (25 +1)%.
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Proof. For d = 0 the result is trivial.

For d = 1 we have the set P = {—s,...,0,..., s} with edge-length 2s. Let us denote the cardinality
of the set S by # (S) then # (Pf) =2s+1.

For d = 2 we have to increase the dimension d by 1, which corresponds to calculate the Cartesian
product of the sets P} x P} = Py .

It is a property of cardinal numbers [50] that: # (Ps5) = # (P) x #(Pf) = #(Pf) - #(Pf) =
(25 +1)%. Assume that # (P;_;) = (2s+1)471. Then # (P§) = # (P_,) - # (P§) = (2s +1)¢7 1.
(2s+1) = (25 +1)4. O

o

We distinguish the measure polytope P; by the parameters d and s, where d represents the
dimension of the integer lattice and s represents the edge length. We define a leader class of a
measure polytope as:

Definition 4. A leader class of a measure polytope is the set of lattice points of Z7 that have the
same isoperimetric distribution.

A leader class of a measure polytope of Z7 is noted as [(X!,..., X7)] where (X*,..., X7) are the
coordinates of the representative lattice point. Each leader class forms a set of lattice points that
are symmetric about the origin. The cardinality of a leader class of a measure polytope is calculated
using elementary combinatorics. Let A = {0,1,2,...,k} be the alphabet of measure polytope with
edge length 2k . The representative of a leader class of a measure polytope is a word w constructed
from the alphabet A. The words w have a length d that corresponds to the dimension of Z”.
Let d; be the number of characters of type i of the alphabet A. Suppose that the characters are
subjected to permutation and change of sign, then using combinatorics the cardinality is given by
the equation u

__ od—do :
# ) = 2 (7)
Observe that each measure polytope in Z7 represents a centrally symmetric lattice polytope [27]
51, 52, [63]. The number of vertices in each leader class is equal to the cardinality of w. Observe
also that the representative lattice point, in coding theory [47] called an absolute leader, has only
coordinates that are non-negative integers. We define the total degree of a monomial as:

Definition 5. A monomial m in uy,us, ..., ur is a product of the form:

m=[Tu" (8)

where all the exponents X € Z, and u; € U (see section. The total degree deg of this monomial
is the sum X' 4 ...+ X7.

From the 7-tuple of non-negative integer exponents (X*,...,X7) € Z% a monomial [54] is
constructed one-to-one of the form m = Hi?:l uX " that we compare with equation . It means
that a lot of results known from the commutative module of monomials are applicable to the
classification of the components of physical quantities. The number of classes of monomials (Table@

with Chebyshev norm [|#]|o, < s in Z7 is the result from application of lemma 4 [55].
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Table 6: Properties of the measure polytopes P$ in Z7 for s < 10.

[Z]loc = s sum(# ([a]))  cumul(sum(7# ([a]))) # (P7) cumul(7# (P7))

0 1 1 1 1
1 2186 2187 7 8
2 75938 78125 28 36
3 745418 823543 84 120
4 3959426 4782969 210 330
5 14704202 19487171 462 792
6 43261346 62748517 924 1716
7 108110858 170859375 1716 3432
8 239479298 410338673 3003 6435
9 483533066 893871739 5005 11440
10 907216802 1801088541 8008 19448

In (Table [6) the second column shows the number of vertices while the third column gives
the cumulated number of vertices. The fourth and fifth columns have a similar meaning but are
expressing the number of classes in each measure polytope P; .

5.2. Enumeration of the measure polytopes

The enumeration table (Table of the measure polytope P2 consists of 8 columns. The
second column is the row identifier. The third column gives the representative of the leader class.
The fourth column contains the sum of the absolute value of the coordinates of the lattice points
being elements of the leader class that is exclusively the total degree of the monomial associated
with the leader class. The fifth column gives the parity of the representative of the leader class.
The sixth column gives the ¢1-norm of the representative. The seventh column gives the cardinality
of the leader class. The eighth column gives the Gédel number of the representative. The ordering
of the classes is based on graded reverse lex order [54]. We derive from Table |§| that the measure
T+s—1

S
classes is related to the theta series of the integer lattice Z7. We find in the OEIS [40] the sequence
A008451 given by r7(N) = 1, 14, 84, 280, 574, 840, 1288, 2368, 3444, 3542, 4424, 7560, 9240, 8456,
11088, 16576, 18494, 17808, 19740, 27720, 34440, 29456, 31304, 49728, 52808, 43414, 52248, 68320,
74048, 68376, 71120, 99456, 110964, 89936, 94864, 136080 ... . The sequence represents the number
of ways of writing a positive integer N as a sum of seven integral squares and is defined by:

polytopes Ps are partitioned in ( ) equivalence classes. The cardinality of the leader

Our(2) = 3 ra(N)g | (9)

) =
N=0

where ¢ = e™* and N is the norm of the lattice point [56]. The enumeration table (Table gives
the relation between the sequence A008451 and the partitioning of 7-spheres in leader classes of
the measure polytopes. The common physical quantities (Table which belong to the measure
polytopes, where the variable ||Z|l.. = s taking values from 0 to 10, are enumerated. Table
is far from exhaustive, but it highlights the sparse distribution of the common physical quantities
when taking in consideration the cardinalities (Table |§|) of classes and vertices.
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6. Paths, walks and cycles in a 7-dimensional integer lattice

A path in Z7 is a non-empty graph P = (V,E) of the form V = {&g,..., %} and E =
{¥o&1,...,Tp_12r} where the Z; are all distinct [33]. As we will connect points in the integer
lattice forming parallelograms, we use the term k-cycle from graph theory [33], where the k-cycle is
a simple graph of length k, i.e., consisting of k vertices and k edges and represented by a sequence
of consecutive vertices Zg...ZTr_1Z0. Equations between physical quantities are represented by
paths in Z7. Dimensional products are represented by cycles in Z7. A walk of length k in Z7 is
a non-empty alternating sequence @pegties . ..ep_10;, of vertices ¥; and edges e; in Z7 such that
e, = {’lu)i,fjlurl} forall i < k.

6.1. Gédel walk in a 7-dimensional integer lattice

We encode each integer lattice point of Zi by using a similar scheme to the Goédel encoding
[57] applied to 7 non-negative integer variables. We define the Gédel number in Z%, where d is the
dimension of the integer lattice:

d .
ga(X' .. XY =], (10)
1=1

where p; is the i-th prime number, # = (X*!,..., X%) and X' € Z, .
Example 6.1. ¢7(1110000) = 2%-31.51.79.119.13°.17% = 30

This encoding which we denote as ¢7 is injective between Z_ﬁ_ and Z, . The range of ¢7 is a
subset ®7 of the non-negative integers Z because all the primes which are different from the first 7
primes are not images of lattice points of Zi, as well as all the composite numbers having divisors
larger than 17. Observe that each of the base physical quantities of the set B are assigned to a prime
number. The base physical quantities play the same role as the prime numbers, being the atoms in
number theory [58]. If we walk through the integer sublattice ZZ_ respecting the ordering created
by the Godel encoding, then we generate a series of segments in ZZL . We call this walk a Gddel walk
through the integer sublattice Zl . The segments are known in number theory as the prime gaps
g(p) = n of gap length n. All the leader class representatives are located on the Godel walk. When
the Godel walk is performed in Z2° then all the first 100 non-negative integers will be visited (Fig. @
When restricting the dimension to d = 7 we find 67 non-negative integers that will be visited. An
enumeration (Table of the first 67 lattice points shows also the crossings of the Godel walk with
the measure polytopes P . The successive lattice points of the Godel walk are orthogonal when
calculated for the first 100 lattice points in the integer lattice ZQE . Observe that the Godel walk
represents a unique walk in Z* , where k € Z, because it requires orthogonality between successive
lattice points and because it minimizes the function ¢y, at each lattice point. There are 23 segments
in Zj_ and 28 segments in Z‘j_ for the first 100 non-negative integers. The orthogonality between
successive lattice points remains valid within the segments that have more than 1 lattice point.
This walk encodes all the physical quantities of ZZF up to a signed permutation. Observe that the
leader class representative has always the smallest Godel number of the class. Physicists represent
correlations between physical quantities graphically in the form of cubes that contain the respective
physical quantities as the axes of the cube. The Goédel walk presents a natural way of selecting
mutually orthogonal sequential physical quantities. Inspection of the list (Table results in
cubes C(i, j, k), where i, j, k are successive Gdel numbers. We find 7 cubes C(3,4,5) = {M, L?, T},
C(5,6,7) = {T,ML,I}, C(7,8,9) = {I,L3 M?}, C(9,10,11) = {M? LT,0}, C(11,12,13) =
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Figure 6: Godel walk in Zf’ .

{6,ML? N}, C(13,14,15) = {N, LI, MT}, C(15,16,17) = {MT, L*, J} where we use the agreed
[28] symbol for the dimensions.

Example 6.2. The quantity M L in the cube C(5,6,7) = {T, M L, I'} could be expressed as function
h

of — and the product T x I is nothing else than the electric charge. The Compton effect for an
c

h
electron can be represented by a volume % in the cube C(5,6,7).
c

The mutual orthogonality in the 7 cubes is invariant when the integer lattice points repre-
senting the cube axes are subject to a signed permutation. We transform the set {M, L%, T} in
{M,L? T~} and observe that the volume of the new cube represents the angular momentum. The
set {M?, LT, O} can be transformed to {M?, LT, ©} representing a cube with on the x-axis the
mass squared, on the y-axis the speed and on the z-axis the thermodynamic temperature.

6.2. Additive partitioning of leader classes

The encoding of the leader classes with a Godel number allows the factorization of the Godel
number in distinct factors. Richard J. Mathar (http://home.strw.leidenuniv.nl/ mathar/) has listed
in the OEIS [40] the integer series A045778 that gives the factorization of non-negative integers up
to n=1500. In the present article we focussed on the most elementary constellation of lattice points
that form a parallelogram. The leader class is the representative for all the physical quantities
which are vertices of a partition of a measure polytope P7. A signed permutation can be found
that maps the factored equations to equivalent equations of the desired physical quantity that is
an element of the leader class. We show the method for the physical quantity energy.
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Example 6.3. The leader class for energy is [2210%]. It has Gddel number ¢7(2210000) = 180.
From the OEIS[40] A045778 series we find as factorizations:

180 =2x3x5x%x6

The 4-factoring results in 1 equation that represents a 5-ary equation. By applying the Godel
decoding on the 4-factoring of ¢7(2210000) = 180, we find the additive partitioning of the leader
class representative (2,2,1,0,0,0,0) in a 5-ary equation:

(i) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) +(1,0,0,0,0,0,0) +(0,1,0,0,0,0,0) + (0,0,1,0,0,0,0) +
(1,1,0,0,0,0,0);

180 =2x3x30=2x5x18 =2x6%x15 =2x9x10 =3%x4x15=3x5x12=3x6x10=4%x5x%9

The 3-factoring results in 8 equations that represent each a 4-ary equation. The additive partitioning
of the leader class representative (2,2,1,0,0,0,0) in 4-ary equations are:

(i) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (1,0,0,0,0,0,0) + (0,1,0,0,0,0,0) + (1,1,1,0,0,0,0)
(i) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (1,0,0,0,0,0,0) + (0,0,1,0,0,0,0) + (1,2,0,0,0,0,0)
(iii) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (1,0,0,0,0,0,0) + (1,1,0,0,0,0,0) + (0,1,1,0,0,0,0)
(iv) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (1,0,0,0,0,0,0) + (0,2,0,0,0,0,0) + (1,0,1,0,0,0,0)
(v) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (0,1,0,0,0,0,0) + (2,0,0,0,0,0,0) + (0,1,1,0,0,0,0)
(vi) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (0,1,0,0,0,0,0) + (0,0,1,0,0,0,0) + (2,1,0,0,0,0,0)

(vii) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (0,1,0,0,0,0,0) + (1,1,0,0,0,0,0) + (1,0,1,0,0,0,0)
(viii) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (2,0,0,0,0,0,0) + (0,0,1,0,0,0,0) + (0,2,0,0,0,0,0)

180=2x90=3x60=4x45=5x36=6x30=9%x20=10x 18 =12 x 15

The 2-factoring results also in 8 equations that represent each a ternary equation. The additive
partitioning of the leader class representative (2,2,1,0,0,0,0) in 3-ary equations are:

(i) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (1,0,0,0,0,0,0) + (1,2,1,0,0,0,0)
(i) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (0,1,0,0,0,0,0) + (2,1,1,0,0,0,0)
(i) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (2,0,0,0,0,0,0) + (0,2, 1,0,0,0,0)
(iv) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (0,0, 1,0,0,0,0) + (2,2,0,0,0,0,0)
(v) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (1,1,0,0,0,0,0) + (1,1,1,0,0,0,0)
(vi) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (0,2,0,0,0,0,0) + (2,0,1,0,0,0,0)

(vii) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (1,0, 1,0,0,0,0) + (1,2,0,0,0,0,0)
(viii) (2,2,1,0,0,0,0) = (0,0,0,0,0,0,0) + (2,1,0,0,0,0,0) + (0,1,1,0,0,0,0)
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We conclude that the leader class representative (2,2,1,0,0,0,0) can be partitioned in 17 distinct
terms. As this leader class is representative for the physical quantity energy we conclude to the
existence of 17 distinct forms of equations representing the physical quantity energy. Generalisation

of this methodology will reveal the generic constellations for the leader class representatives.

The signed permutation matrix Penergy transforms the leader class representative (2,2,1,0,0,0,0)
in the lattice point (2,1,—2,0,0,0,0) and is given below:

Penergy =

SO OO OO
SO O = OO
S OO OO O

S oo, O OO

OO R OO oo
O OO O oo

—_— o0 OO o oo

(12)

We apply the matrix Penergy on the seventeen equations that represent the additive partitions of
the leader class representative (2,2,1,0,0,0,0) and find the energy equations given in Table m . The

columns marked i, j, Ié, [ and 7 contain the 17 lattice points in Z” forming the energy constellation.

Table 7: Complete set of generic equations for the quantity energy.

i j k [ m form
(07) (1,0 (0,0, —1,0% (0,1,0%) (1,0,-1,0%)  E1 = kizvmo
(07) (1,09) (0,0,—1,0%) (1,1,—-1,0%) (07) Ey = kozvp
(07) (1,09) (0,1,0°) (1,0, -2,0%) (07) E3 = k3rma
(07) (1,09) (1,0,—1,0%)  (0,1,—1,0%) (07) Ey = /{4xv88—7:
(07) (1,09 (0,0, —2,0%) (1,1,0%) (07) Es = ksav” [ mdw
(07)  (0,0,—1,0% (2,09 (0,1,-1,0%) (07) FEs = mﬁuﬁ%?
(07)  (0,0,—1,0%) (0,1,0%) (2,0,—-1,0%) (07) E; = /i71/m68—?
(0" (0,0,—1,0" (1,0,-1,0%) (1,1,0°%) (07) Es = kgvv [ mdx
(07) (2,09 (0,1,0°%) (0,0, -2,0%) (07) Ey = koz’my?
(07) (1,0% (1,1,-2,0%) (07) (07) Evo = kiozF
(07 (0,0,—1,0%) (2,1,-1,0%) (07) (07) B = kuvJ
(07 (2,09 (0,1,-2,0%) (07) (07) Eis = Ki22? ’

ot2
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1 7 k [ m form

(0 (01,07 (2,0,-2,0  (07) (07)  Eus = magme?
(07) (1’0’_1’04) (1717_1704) (07) (07) E14 = K14vp
(07 (0,0,-2,0%  (2,1,0) (07) (O0) B =ms? [ [mdA
(07 (L,1,0°)  (1,0,-2,0% (07) (07) Frg = kga [ mds

4 4 . 0A Om
(0")  (2,0,-1,0*) (0,1,-1,0% (07) (07) Eur = ran e 2

The symbols used in the column form have the following interpretation: F;: energy; z: position,
distance; ¢: time; v: frequency; m: mass; A: area; v: speed; F: force; J: angular momentum; p:
linear momentum; a: acceleration; x;: dimensionless variable. The same methodology, as shown
for the physical quantity energy, can be applied to any physical quantity. This will then generate
for that physical quantity its complete set of generic equations. Table enumerates for leader
classes with Godel number < 1500 the factorization of the Godel number in ¢ distinct factors. The
number of distinct factors is found in the repective columns Fi where ¢ € [2,...,5]. We conclude
that there is a finite number of distinct equations for each physical quantity.

6.3. Bicolouring of a 4-cycle representing an equation between physical quantities

The hypothesis of the existence of rules that have to be respected by the laws of physics, has
been proposed by Wigner and Feynman, see Lange[I0]. We elaborate on this problem by proving
one of these rules applicable for ternary equations [z] = [k][z][y] between the distinct physical
quantities [], [z],[y], [2] . The rule constraints the bicolouring of 4-cycles [59, 60, 61] in Z7 .

Theorem 4. Any ternary equation [z] = [k][x][y] between distinct physical quantities [k], [z], [y], [2]
represents a distinct colouring pattern (psc (0) ,psc (&), psc () , psc (£)) that is an element of the set
of colouring patterns {(0,0,0,0),(0,0,1,1),(0,1,0,1),(0,1,1,0)}.

Proof. We will use the method proof by exhaustion for this theorem. Let the four distinct integer
parallelogram is the representation of the ternary equation [z] = [k][z][y] in the integer lattice Z7 .
Let the colouring pattern be defined by the 4-tuple (psc(5),psc (&), psc(9),psc (%)) in which ¢
is the origin of Z”. By convention psc(6) is placed as the first element and psc (%) as the last
element in the colouring patterns. By the definition of the “psc” function we obtain psc () = 0.
A 4-tuple having only two characters {0,1} has in total 2* = 16 combinations of 4-tuples. So, we
will review the 16 cases. The condition that the first element of the 4-tuple has to be 0 reduces the
number of combinations to 23 = 8 being the set of colouring patterns {(0,0,0,0), (0,0,0,1), (0,0,1,0),
(0,0,1,1), (0,1,0,0), (0,1,0,1),(0,1,1,0), (0,1,1,1)}. The four distinct integer lattice points o, &, ¢, Z of
the parallelogram have the property & + y = 2, see Fig. From elementary number theory [62],
it is known that:

(i) even + even = even

(ii) odd 4 odd = even
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(iii) even £ odd = odd

The function “psc” is binary-valued on Z” satisfying psc (& + ) = psc (&) + psc (¢) for all %,y € Z7 .
Thus the 4-tuples have the form (0, psc (Z) , psc () , psc (&) +psc (¢)) resulting in the following cases:
Case 1. (0,0,0,0)

If psc(#) = psc(§) = 0 then by number theory psc (%) + psc(§) = 0. The colouring pattern
(0,0,0,0) satisfies the above property and is a valid colouring pattern. This colouring pattern is
called monochromatic.

Case 2. (0,0,0,1)
If psc (&) = psc (§) = 0 then by number theory psc (&) +psc (§) = 0 . The colouring pattern (0,0,0,1)
violates the above property and is a forbidden colouring pattern.

Case 3. (0,0,1,0)
If psc (£) = 0 and psc (¢) = 1 then by number theory psc (#) + psc (§) = 1. The colouring pattern
(0,0,1,0) violates the above property and is a forbidden colouring pattern.

Case 4. (0,0,1,1)

If psc () = 0 and psc (§) = 1 then by number theory psc () + psc (§) = 1. The colouring pattern
(0,0,1,1) satisfies the above property and is a valid colouring pattern. This colouring pattern is
called two-coloured of pattern 242.

Case 5. (0,1,0,0)

If psc (¢) = 1 and psc (§) = 0 then by number theory psc (%) + psc () = 1. The colouring pattern
(0,1,0,0) violates the above property and is a forbidden colouring pattern.

Case 6. (0,1,0,1)

If psc (¢) = 1 and psc (§) = 0 then by number theory psc (%) + psc (§) = 1. The colouring pattern

(0,1,0,1) satisfies the above property and is a valid colouring pattern. This colouring pattern is
called mixed two-coloured.

Case 7. (0,1,1,0)

If psc (%) = 1 and psc (§) = 1 then by number theory psc () + psc () = 0. The colouring pattern
(0,1,1,0) satisfies the above property and is a valid colouring pattern. This colouring pattern is
called two-coloured of pattern 14+2-+1.

Case 8. (0,1,1,1)

If psc (£) = 1 and psc (¢) = 1 then by number theory psc (#) + psc (§) = 0. The colouring pattern
(0,1,1,1) violates the above property and is a forbidden colouring pattern.

We obtain as wvalid colouring patterns: (0,0,0,0), (0,0,1,1), (0,1,0,1), (0,1,1,0) . O

Corollary 1. If psc(£) = 0 then psc (&) = psc (). If psc(£) = 1 then psc (&) is the opposite of
psc (7)) -

7. Linear independence and orthogonality between classes of physical quantities

The representation of a class of physical quantities in Z” gives the means to study the linear
independence and the orthogonality between classes of physical quantities. Consider Z =6+ & + ¥
and form the inner product Z-§ =06 -9y + & -y + ¢ - . The classes [z] and [y] are orthogonal when
Z-y=0. We find Z-¢ = ¢ - ¢ which shows a linear relationship between |/%]|2 and ||§||2. So, an
equation [z] = [k][z][y] in which the classes [z] and [y] are orthogonal expresses a linear relationship
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between [z] and [z] or between [z] and [y] . We underline the difference between linearly independent
physical quantities and orthogonal physical quantities [63]. From these properties we define 6 types
of pairwise combinations of [x] and [y]. We give examples of each of the types. Consider the
representation of distance by the lattice point # = (1,0,0,0,0,0,0) and the representation of the
linear momentum by the lattice point p = (1,1,—1,0,0,0,0). We consider the 2 x 7 matrix formed
by the coordinates of 7 and p and obtain the rank = 2 for this matrix which means that 7 and
p are linearly independent. For the inner product we find #-p = 1 # 0 and so 7 and p are not
orthogonal. Consider the product of length and time with representation It = (1,0,1,0,0,0,0) and
energy represented by the lattice point E = (2,1,-2,0,0,0,0), we find that It and E are linearly
independent and orthogonal. Consider the distance representation ¥ = (1,0,0,0,0,0,0) and the
wave vector representation k= (—1,0,0,0,0,0,0), we find that # and k are linearly dependent
and not orthogonal. Consider the velocity representation ¥ = (1,0, —1,0,0,0,0) and the reciprocal
velocity representation v, = (—1,0,1,0,0,0,0), we find that © and v, are linearly dependent and
orthogonal. We conclude that ternary equations [z] = [«][z][y] of physical quantities are only one
of the six following cases:

(i) £-9 > 0 and 2 x 7 matrix rank = 2 (not orthogonal with positive inner product, linearly
independent)

(ii) -y =0 and 2 x 7 matrix rank = 2 (orthogonal, linearly independent)

(iii) # -y < 0 and 2 x 7 matrix rank = 2 (not orthogonal with negative inner product, linearly
independent)

(iv) -9 > 0 and 2 x 7 matrix rank < 2 (not orthogonal with positive inner product, linearly
dependent)

(v) -9 =0and 2 x 7 matrix rank < 2 (orthogonal, linearly dependent)

(vi) -9 < 0 and 2 x 7 matrix rank < 2 (not orthogonal with negative inner product, linearly
dependent)

7.1. Decompositions of a vertex in pairwise orthogonal vertices
The decomposition of a vertex Z in two pairwise orthogonal vertices & and ¢ assumes the existence
of a system of Diophantine equations:

T+y—2=0, (13a)
¥oj= (13b)

Foi—%-2=0. (14)

=0, (15)

Z Z
that represents a seven-dimensional hypersphere with center at 3 with radius ||=||2. We note that

the hyper-surface area of a unit radius hypersphere reaches a mazimum in a 7-dimensional space
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[64]. The center of the 7-sphere is only a lattice point of Z7 if all the coordinates of # are even. The
solution set of the equation are the integer lattice points incident on the 7-sphere and thus is
a finite set. It is obvious that a bijection exists between the physical quantity having the vertex z
and the 7-sphere with equation . A closed form for the solution set is not known to the author.
We use the brute force method and list the vertices of 524287 parallelograms 0Z2y embedded in
Z" representing equations [z] = [k][z][y]. From this listing, we find parallelograms that have the
property of being a rectangle. Let ng = # (Og4) represent the cardinality of the set of pairwise
orthogonal vertices in 7% x {0}7_d with dimension d € N where 2 < d < 7. Table contains the
cardinalities of the commonly known leader classes.

Example 7.1. We solve the equation for the leader class [2210%], that represents the class
energy. Table enumerates the 60 pairs of orthogonal vertices of Z7 resulting in the vertex
E=3= (2,1,-2,0,0,0,0). The orthogonality analysis of the 524287 parallelograms spans a
range of perimeters from p, = 6 to p, = 23,832. Table[§|lists the 4 pairs having in column 1 the
respective indices 1, 26, 35 and 36 that are embedded in Z3 x {0}*. We find that the rectangles
in the 7-sphere have the perimeter values 7,657 8,363 and 8,472. The perimeter distribution
indicates that the frequency of the rectangle perimeters is respectively 1, 17 and 26. Column 5 of
Table [§] gives the 2 x 7 matrix rank. We observe that the 4 orthogonal pairs have rank 2 and thus
are linearly independent. We find that the pair with index Id = 1 is the only rectangle having also
frequency 1. This rectangle emphasizes the uniqueness of the form E = 8;mwv? that is best known
as the equation F = ymgc?.

Table 8: Equations of orthogonal lattice points for energy in Z* x {0}*.

Id Dp T U 2 x 7 matrix rank Form Proposal
1 7,657 (0,1,0,0,0,0,0) (2,0,-2,0,0,0,0) 2 E =pmv®> E=~ymoc®
v p? P’
26 8,363 (1,-1,-1,0,0,0,0) (1,2,-1,0,0,0,0) 2 E=p—"— FE=mn—
m v 2m
35 8,472  (2,1,0,0,0,0,0)  (0,0,-2,0,0,0,0) 2 E = zmAr?  E = Bama’w?
m 8?m
36 8,472 (0,1,-2,0,0,0,0)  (2,0,0,0,0,0,0) 2 E=pfAs E=pfAs

The 4 rectangles representing ternary energy equations in Z3 x {0}* are shown in (Fig. E[)

8. Compatible physical quantities

Two physical quantities [z] and [y] are called by Schwinger compatible [24] when the measurement
of [x] does not destroy the knowledge gained by the prior measurement of [y]. The property of
compatibility of physical quantities is related to the orthogonality of [z] and [y] . Pairwise orthogonal
physical quantities are incident on unique 7-spheres that are forming finite sets. So, each
leader class representative has a unique leader hypersphere associated to it. A complete set of
compatible physical quantities {[x1], [z2], ..., [xx]} is a set for which every pair of these physical
quantities is compatible and that no other physical quantities exist apart from functions of the
set that are compatible with every member of this set [24]. We know already one of these sets
which is B = {[I], [m], [¢t], [é], [T],[n],[L]} . Each of the complete sets will have to comply with
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Figure 7: Rectangles embedded in Z3 x {0}* representing ternary equations of energy

7
>~ i = 28 orthogonality conditions expressed between the physical quantities of the complete set.
i=1

Observe that the orthogonality property between physical quantities in Z7 is related to the property
of commuting operators in quantum physics. Two incompatible physical quantities will generate
Heisenberg type inequalities [65]. The Heisenberg relation AxzAp > h expresses the degree of
correlation between position and linear momentum of a particle. When the mean in the correlation
formula becomes zero then the correlation formula is reduced to the orthogonality formula [63].
The lattice points £ and p, that represent respectively position and linear momentum are non-
orthogonal, while the sum of the vertices results in the vertex with coordinates (2,1,—1,0,0,0,0)
that represents the angular momentum .J in Z7. Observe in Table that the leader class [2120%]
has only 19 pairwise orthogonal physical quantities in Z7. We realize that the Table gives
the cardinality of compatible physical quantities. We calculate the inner product of the physical

1
quantities representing the reciprocal speed of light —, the Newton constant of gravitation G and
c

v v

the Planck constant h and find } -G =-5 , 1 h=-3and G -h = 7, that are all non-zero.

It indicates that the fundamentacl constants {(C},h,l /c} [66] are incompatible physical quantities
and thus should not be considered as the variables of the “cube of physical theories” [66] 20} 67],
because there is no freedom in choosing a point in this cube. We enumerated 7 natural cubes
in the subsection [6.1] that are constructed from compatible physical quantities. However, we note
that the physical quantities of the set {G,h,1/c} are linearly independent. Planck [68] proposed

|Gh [k
the physical quantities: Planck length Ip = 4/ —-, the Planck mass mp = 50 and the Planck
c

[hG
time ¢tp = 4/—, that form a set of compatible physical quantities. We conclude that pairwise
c

orthogonal physical quantities are compatible and could generate operators that are commuting
while pairwise non-orthogonal physical quantities are incompatible and could generate operators
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that are not commuting. The majority of pairs of physical quantities, that can generate operators,
will result in non-commuting operators.

8.1. Physical quantities compatible with energy

The values for the physical quantity energy range theoretically for an elementary particle from
5
c
almost 0 to the Planck energy Ep = el The largest particle accelerators are exploring a very

tiny part of this range. It is therefore difficult to make any verifiable statement about a physical
quantity that is in some way depending on the physical quantity energy, when taken in account this
vast range of energy values. The majority of the physical quantities are non-compatible with energy
with the exception of those that fulfill the equation ¥ - E = 0. The solutions # € Z" are lattice
points embedded in the hyperplane Hy = {(X!,..., X7) | 2X! + X2 — 2X3 = 0} . These solutions
represent physical quantities that combine to ternary relations valid up to the Planck energy.

Example 8.1. Consider the lattice points & = (—2,2,—1,0,0,0,0) and § = (—3,2,—2,0,0,0,0)

that are orthogonal to the lattice point representing energy. We form the ternary relation and
4

M
obtain # = (—5,4,—3,0,0,0,0). We interpret the physical quantity z as z = ﬁ—Sw?’ where M is
r
the mass of the system, r is a characteristic length of the system and w is the angular frequency of
the system. This ternary relation [z] = [8][x][y] is valid up to the Planck energy because the lattice
points &, ¢, 2 are orthogonal to the lattice point F'.

9. Future work and conclusion

We construct the mathematical foundation for the discrete geometry of physical quantities. We
prove that ternary operations between components of physical quantities are equivalent to a paral-
lelogram in the integer lattice Z” . This equivalence is the basis for a computer search for relations
between physical quantities based on geometric properties between the integer lattice points of
77, which are the representatives of components of physical quantities. We develop an algorithm
that creates a listing of the equations of the type [z] = [k][z][y] where [k],[z], [y], [2] represents
components of physical quantities. We find that ternary relations between physical quantities are
classified in 4 distinct 2-colouring patterns of Z”7. Application of the algorithm for the case where
[2] is representing the class energy, results in a discrete value distribution that is characteristic for
the leader class [2210%]. The analysis of the discrete value distribution for the physical quantity
energy indicates the existence of unique constellations between physical quantities. We discover
that the unique constellations representing energy are all embedded in a hyperplane of the inte-
ger lattice Z7. We observed that the frequency of some constellations is not depending on the
dimension d of the integer lattice. The algorithm that was applied for energy and also for force
is applicable to any other component of a physical quantity resulting in the discovery of new con-
stellations between physical quantities. The compilation of the listings generated by the algorithm,
will result in a catalog of equations of the type [z] = [«][z][y]. The equivalence relation z; has
the same isoperimetric distribution as zo applied on a finite set, representing a measure polytope
of Z7, results in the classification of physical quantities. We show that morphisms exists between
these equivalence classes and monomials. Assignment of a Gddel number to each physical quantity
in er reveals the existence of a unique Gddel walk in Zi. A scheme is described for analyzing
n-ary operations based on the factorization of the Gddel number of leader class representatives in
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distinct integer factors, that will allow the exploration of more complex constellations than paral-
lelograms. The n-ary operations between physical quantities are representing paths connecting the
lattice points of the constellation representing the physical quantity under study. Orthogonality
and linear independence properties of the pairs of vertices & and ¢ result in classifying the ternary
equations [z] = [k][z][y] in 6 distinct types. We find that each vertex Z can be decomposed in a
finite number of pairwise orthogonal vertices incident on a unique 7-sphere. The discrete geometry
of physical quantities provides inherently a predictive property for finding the form of equations
between physical quantities that are yet to be discovered. This research shows that our knowledge
about the components of physical quantities and about their constellations is far from being un-
derstood and that large hypervolumes of Z7, are still to be explored. The appendices contain a
preliminary classification of common physical quantities based on the measure polytopes P;. The
appendices also contain numerical data useful as starting point for the further exploration of the
discrete geometry of physical quantities.
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Appendix A. 3-cycle isoperimetric distribution algorithm

Algorithm. Calculate for each integer lattice point & of a 7-dimensional lattice the following:

(i) d(3,%), the Euclidean distance from & to the lattice point %, representing a component of a
physical quantity with coordinates (Z1,...,Z7),

(i) d(&,0), the Fuclidean distance from & to the origin o,

(iii) the cosine of the angle between & and Z,

(iv) 2a = d(%,%) + d(&,0), that is a characteristic of an ellipse,

(v) the perimeter of the 3-cycle py = d(0, %) + d(%, %) + d(,0),

(vi) store these results in a data structure allowing sorting by perimeter,

(vii) query the data structure to obtain the number of lattice points & generating the same triangle
perimeter,

(viii) find for each triangle perimeter p; the number of points corresponding to this triangle perimeter
and record the discrete value distribution,

(ix) select the set of vertices having the same perimeter starting with the shortest 3-cycle perimeter,

(z) calculate for each of these vertices the complementary vertices and write them in adjacent
rows creating a listing of increasing perimeter.
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Appendix B. Algorithm for finding all the n-ary operations of a physical quantity
Algorithm. FEzecute the following steps:
(i) Identify to which class the physical quantity belongs;

(ii) apply the function "dex” on the class of the physical quantity and identify the lattice point Z,
representing a component of a physical quantity with coordinates (Z1,...,Z7);

(iii) associate to the coordinates (Z1,...,Z") its leader class representative;
(iv) calculate using the function ¢7() the Giodel number;
(v) if the Godel number is < 1500 then;

(vi) open lookup table OELS A045778 and identify the row correponding to the Gédel number and
record the correponding factorization;

(vii) else
(viii) perform the factorization of the Gédel number in distinct integer factors;

(iz) calculate using the inverse Gédel encoding the additive partitions of the leader class represen-
tative;

(x) apply the appropriate signed permutation to transform the leader class representative in the
physical quantity under investigation;

(xi) generate a table of forms of equations for the physical quantity under study.

Appendix C. Measure polytopes

The enumeration table (Table of measure polytopes P# consists of 8 columns. The second
column is the row identifier. The third column gives the representative of the leader class. The
fourth column contains the sum of the absolute value of the coordinates of the lattice points being
elements of the leader class that is exclusively the total degree of the monomial associated with
the leader class. The fifth column gives the parity of the representative of the leader class. The
sixth column gives the /1-norm of the representative. The seventh column gives the cardinality of
the leader class. The eighth column gives the Gédel number of the representative. Observe that
for ||Z||cc = 1 the representative lattice points of the leader classes generate the successive minima
R; of the lattice Z7 [69] . The successive minima R; are given in the column 6 and correspond to
the values of N (%), the norm of the lattice point and thus the representative lattice points of the
leader classes for s = 1 form a set of minimal points of the lattice Z7 [69]. Observe that the leader
class [2210%] contains 840 integer lattice points with the same geometrical properties as the physical
quantity energy. The 7 x 7 signed permutation matrix Py;_p 291 transforms all energy constellations

32



to the leader class [2210%]:

Po1-2.201 =

OO OO OO -
OO OO OO
OO O OO —O
DO O, OO O
OO = OO OO
O OO O oo
_— O OO o oo

~~

Q

—

Nl

The representative of the leader class [2210%] is a physical quantity that could be expressed as an
integral of the form f k(Amg)?dt . This is the time integral of the square of the quantity with lattice
point (1,1,0,0,0,0,0).

Table C.9: Partitions of the measure polytope P

|l =s Id leader class deg psc(2) N(£) Number of vertices Godel number
0 1 [07] 0 0 0 1 1
1 1 [1 6} 1 1 1 14 2
12 [120°] 2 0 2 84 6
13 [130%] 3 1 3 280 30
1 4 [1%0%] 4 0 4 560 210
1 5 [ 02} 5 1 5 672 2310
1 6 [16 } 6 0 6 448 30030
1 7 17 7 1 7 128 510510
2 1 [206} 2 0 4 14 4
2 2 [210 ] 3 1 5 168 12
2 3 [21%0%] 4 0 6 840 60
2 4 [2205} 4 0 8 84 36
2 5 [21%0%] 5 1 7 2240 420
2 6 [22104} 5 1 9 840 180
2 7 [21%0?] 6 0 8 3360 4620
2 8 [22120°] 6 0 10 3360 1260
2 9 [2504} 6 0 12 280 900
2 10 [21°0] 7 1 9 2688 60060
2 11 [221%07] 7 1 11 6720 13860
2 12 [23103} 7 1 13 2240 6300
2 13 [21°] 8 0 10 896 1021020
2 14 [221%0] 8 0 12 6720 180180
2 15 [231207] 8 0 14 6720 69300
2 16 [2403} 8 0 16 560 44100
2 17 [221°] 9 1 13 2688 3063060
2 18 (23130 9 1 15 8960 900900
2 19 [24102} 9 1 17 3360 485100
2 20 2314 10 0 16 4480 15315300
2 21 [24120] 10 0 18 6720 6306300
2 22 [2502} 10 0 20 672 5336100
2 23 [24 } 11 1 19 4480 107207100
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|Zlc =s Id leader class deg psc(Z) N(Z) Number of vertices Godel number
2 24 [2510} 11 1 21 2688 69369300
2 25 [25 12 0 22 2688 1179278100
2 26 [260] 12 0 24 448 901800900
2 27 [261] 13 1 25 896 15330615300
2 28 [27] 14 0 28 128 260620460100
3 1 3 6} 3 1 9 14 8
32 [310 ] 4 0 10 168 24
3 3 [31 04} 5 1 11 840 120
3 4 [320 ] 5 1 13 168 72
3 5 [31%07%] 6 0 12 2240 840
3 6 [3210%] 6 0 14 1680 360
3 7 [3205} 6 0 18 84 216
3 8 [31%0%] 7 1 13 3360 9240
3 9 [321%0%] 7 1 15 6720 2520
3 10 [3220%] 7 1 17 840 1800
3 11 [32104} 7 1 19 840 1080
312 [31 0] 8 0 14 2688 120120
3 13 [321%0?] 8 0 16 13440 27720
3 14 [32%10°%] 8 0 18 6720 12600
3 15 [32120°] 8 0 20 3360 7560
3 16 [32204} 8 0 22 840 5400
3017 [31°] 9 1 15 896 2042040
3 18 [321%0] 9 1 17 13440 360360
3 19 [3221%07] 9 1 19 20160 138600
3 20 [32%0%] 9 1 21 2240 88200
3 21 [321 07] 9 1 21 6720 83160
3 22 (372107 9 1 23 6720 37800
3 23 [3304} 9 1 27 280 27000
3 24 [321°] 10 0 18 5376 6126120
3 25 [32%1%0] 10 0 20 26880 1801800
3 26 [32%10%] 10 0 22 13440 970200
327 [321 0] 10 0 22 6720 1081080
3 28 [3%21%0%] 10 0 24 20160 415800
3 29 [3%220°%] 10 0 26 3360 264600
3 30 [33103} 10 0 28 2240 189000
3 31 (32214 11 1 21 13440 30630600
3 32 [32°1%0] 11 1 23 26880 12612600
3 33 [32402} 11 1 25 3360 10672200
3 34 [32 11 1 23 2688 18378360
3 35 [3 21%0] 11 1 25 26880 5405400
3 36 [322%10%] 11 1 27 20160 2910600
3 37 [3%1%0%] 11 1 29 6720 2079000
3 38 [33203} 11 1 31 2240 1323000
3 39 [32%1%] 12 0 24 17920 214414200
3 40 [32%10] 12 0 26 13440 138738600
3 41 [3221 ] 12 0 26 13440 91891800
3 42 [322212 o} 12 0 28 40320 37837800
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|Zlc =s Id leader class deg psc(Z) N(Z) Number of vertices Godel number
3 43 [322%0%] 12 0 30 6720 32016600
3 44 [331%0] 12 0 30 8960 27027000
3 45 [3%210%] 12 0 32 13440 14553000
3 46 [3403} 12 0 36 560 9261000
347 [32%1?] 13 1 27 13440 2358556200
3 48 [32°0] 13 1 29 2688 1803601800
3 49 (322213 13 1 29 26880 643242600
3 50 3 2510} 13 1 31 26880 416215800
3 51 [3%1%] 13 1 31 4480 459459000
3 52 [3%21%0] 13 1 33 26880 189189000
3 53 [3%2%0%] 13 1 35 6720 160083000
3 54 [3*107] 13 1 37 3360 101871000
3 55 [325 } 14 0 30 5376 30661260600
3 56 [3%2%1%] 14 0 32 26880 7075668600
3 57 [322%0) 14 0 34 6720 5410805400
3 58 [3%21%] 14 0 34 17920 3216213000
3 59 [3%2%10] 14 0 36 26880 2081079000
3 60 [3*1%0] 14 0 38 6720 1324323000
3 61 [3%207] 14 0 40 3360 1120581000
3 62 [326] 15 1 33 896 521240920200
3 63 [322%1] 15 1 35 13440 91983691800
3 64 [3%221%] 15 1 37 26880 35378343000
3 65 [3%2%0] 15 1 39 8960 27054027000
3 66 [3*1%] 15 1 39 4480 22513491000
3 67 [3%210] 15 1 41 13440 14567553000
3 68 [3°02} 15 1 45 672 12326391000
3 69 [322°] 16 0 38 2688 1563722760600
3 70 [3%2%1] 16 0 40 17920 459918459000
3 7 [3*21?] 16 0 42 13440 247648401000
372 [3%220] 16 0 44 6720 189378189000
3 73 [3°10] 16 0 46 2688 160243083000
3 T4 [3%2Y 17 1 43 4480 7818613803000
3 75 (322 1} 17 1 45 13440 3219429213000
3 76 [3°1°] 17 1 47 2688 2724132411000
377 [3020} 17 1 49 2688 2083160079000
3 78 [3%2%] 18 0 48 4480 54730296621000
3 79 [3521} 18 0 50 5376 35413721343000
3 80 [3%] 18 0 54 448 27081081027000
3 81 [35 70019 1 53 2688 602033262831000
3 82 [3%1] 19 1 55 896 460378377459000
3 83 [3%2] 20 0 58 896 7826432416803000
3 84 371 21 1 63 128 133049351085651000

Appendix D. Relation between 7-spheres and the leader classes of measure polytopes
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Table D.10: Partitioning 7-spheres in leader classes of measure polytopes

N disjunct union of leader classes of measure polytopes r7(N)
0 [07] 1
1 [10] 14
2 [1%0%] 84
3 [130%] 280
4 [110%] U [20°) 574
5 [1°02] U [210°] 840
6 [180] U [21%0%] 1288
7 17U [21%0%) 2368
8 [220°%] U [21402] 3444
9 [2210 Ju[21°0] U [309) 3542
10 [2%1%0%] U [21%] U [3107] 4424
11 [2°1%0% U [31204} 7560
12 [2°0*u2°1*0] U [31 03} 9240
13 [2°10°] U [2?1°] U [320°] U [31%0%] 8456
14 [2%1%0%] U [3210%] U [31°0] 11088
15 [2°1%0] U [32120%] U [31°] 16576
16 [2*0%) U [2°1*) U [321%02) U [40°] 18494
17 [2*10%] U [3220%] U [321*0] U [410) 17808
18 [2'1%0] U [3%0°] U [32210%] U [321°] U [41%0"] 19740
19 [2*1%) U [3%10% U [3221%0%) U [41307] 27720
20 [2°0%] U [3%120%) U [32%130] U [41*0%] U [420°] 34440
21 [2°10]U [32303] [3°1%0%] U [32%1] U [41°0] U [4210%] 29456
22 [2°17] U [3%20%) U [32%10%] U [3%1*0) U [41°] U [421%0°] 31304
23 [3%210%] U [32%1%0] U [3%1°] U [421%07] 49728
24 [2°0] U [3%21%0%] U [3231%] U [4210] U [42%0%] 52808
25 [261] U [32%0%) U [3%21%0] U [421°) U [42210°] U [430°] U [50°] 43414
26 [3%220%) U [32*10] U [3%21%] U [4221%0%] U [4310*] U [510°) 52248
27 [3%0% U [3%22107%] U [32*1%) U [42%1%0] U [431%0%] U [5120%] 68320
28 [27]U[3%10%) U [322%1%0] U [4221%) U [42°0%] U [431%07%] U [5107) 74048
29  [3%120%) U [32°0] U [3%221%) U [42°10%] U [431%0] U [4320%] U [51*0%] U [520°] 68376
30 [322%0%) U [3®1%0] U [32°1] U [42°1°%0] U [4315] U [43210%] U [51°0] U [5210%) 71120
31 [3%20%) U [322%10) U [3%1%) U [42°13] U [43212%0%] U [51°] U [521207) 99456
32 [3%210%] U [3%231%) U [42*07%] U [4%0°] U [4321°0] U [521°07) 110964
33 [3%21%0] U [32°] U [4210] U [4%10%] U [4321%] U [43220%] U [5210] U [5220%] 89936
34 [3%2%0) U [3%21%) U [42*1%] U [432210%] U [43%0"] U [42120%) U [521°] U [52210%] U [530°] 94864
35 [3%220%) U [3%2*1] U [43210%] U [421%0%] U [432%120] U [52%1%0%] U [5310%] 136080

Appendix E. Isoperimetric distributions of classes of the first polytope shell

Table [E-T1] consists of 8 columns and represents the isoperimetric distributions of leader classes
of polytope shell P}\ P?. The first column is the index of the integer sequence of frequencies of the
respective isoperimetric distributions. The other columns contain each the first 50 frequencies of the
isoperimetric distribution corresponding to the leader classes containing known physical quantities
Study of the minimum frequencies f,;, in the 7 distributions and
the corresponding vertices results in finding the classes that have unique ternary operations. The
results for the measure polytope P} are that only leader class 2 contains unique parallelograms.

from the measure polytope P} .
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The ternary operation for leader class 2 is represented by a physical quantity that is expressed as
length x mass. Observe that the frequencies in the sequence of leader class 1 also appear in the
OEIS [40] sequence A000141 given by r¢(m) = 1,12,60,160,252,312,544,960.... The sequence
represents the number of ways of writing a positive integer m as a sum of sixz integral squares. It
is known that this OEIS sequence A000141 is related to the theta function [56].

Table E.11: Truncated (n < 50) integer sequences of the frequencies of
the isoperimetric distributions of leader classes of the measure polytope

P}\ PY.
n cll cl2 cl3 cld clb cl6 cl7
1 1 1 1 1 1 1 1
2 12 1 3 4 5 6 7
3 1 10 8 3 10 15 21
4 60 10 24 6 4 10 35
5 12 2 3 24 20 2 7
6 160 42 30 18 40 12 42
7 60 40 75 4 5 30 105
8 252 20 24 24 24 26 147

9 160 100 80 60 50 30 147
10 312 80 120 40 65 60 21
11 1 1 3 24 20 66 105
12 252 80 75 80 80 30 210
13 544 170 168 104 120 12 252
14 12 91 150 48 100 60 315
15 312 10 24 6 10 120 441
16 960 160 120 60 50 15 35
17 60 272 240 156 114 132 147
18 544 122 288 180 170 60 252
19 1020 42 1 78 200 60 350
20 160 182 75 36 40 92 595
21 960 420 150 104 120 102 735
22 876 280 246 156 128 165 574
23 252 100 504 264 160 110 35
24 1020 244 8 176 10 30 147
25 1560 544 120 4 320 120 315
26 312 400 288 80 65 180 595

27 876 2 400 180 170 20 882
28 2400 170 528 192 260 180 840
29 1 560 30 328 320 270 854

30 544 682 150 240 375 180 1260
31 1560 290 504 24 40 66 21
32 2080 20 750 96 100 102 147
33 12 272 510 264 160 200 441
34 960 800 80 480 400 360 735
35 2400 910 288 480 5 342 840
36 2040 362 528 193 560 166 1050
37 60 80 728 60 340 132 1575
38 1020 420 840 156 65 180 1785
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n cll cl2 cl3 cld clb cl6 cl7
39 2080 580 3 328 200 15 1470
40 3264 1040 168 636 320 280 7
41 160 800 504 624 424 480 147
42 876 160 510 219 520 420 441
43 2040 544 576 6 20 132 574
44 4160 724 1227 104 530 60 854
45 252 1220 24 352 100 165 1575
46 1560 880 240 480 320 360 1750
47 3264 1 528 438 560 450 1533
48 4092 182 840 680 1 30 1932
49 312 682 1200 468 484 390 2387
50 2400 1600 1200 24 500 570 1

Appendix F. Isoperimetric distributions of leader classes of the second polytope shell

Table consists of 11 columns and represents the isoperimetric distributions of leader classes
of polytope shell P?\ P}. The first column is the index of the integer sequence of frequencies of
the respective isoperimetric distributions. The other columns contain each the first 50 frequencies
of the isoperimetric distribution corresponding to the leader classes with s = 2 and respective Id
from the measure polytope P3. Observe that minimum frequencies f,,;, = 1 are present in the
distributions. Listing the vertices that correspond to those frequency minima results in finding the
leader classes that have unique ternary operations. The leader class with s = 2 and Id = 6 (see

(C.9) has been studied in detail.

Table F.12:

Truncated (n < 50) integer sequences of the frequencies
of the isoperimetric distributions of leader classes of the polytope shell

P?\ P;.
n cll cl2 cl3 cld b cl6 c7? 8 1l cll12
1 1 1 1 2 1 1 1 1 1 1
2 1 1 2 1 1 1 1 1 1
3 12 1 1 5 3 2 4 1 3 3
4 30 10 2 20 3 2 3 2 2 3
5 60 10 9 31 9 8 4 4 6 3
6 81 11 8 80 19 1 10 8 3 6
7 160 40 8 50 6 16 20 8 10 3
8 126 1 18 42 21 8 17 13 14 1
9 12 40 34 2 3 17 20 6 11 18
10 252 1 26 160 36 26 4 26 4 19
11 156 50 26 85 45 10 40 28 28 18
12 60 81 1 100 18 1 44 14 36 18
13 312 11 64 20 1 48 20 16 29 6
14 272 80 74 182 57 56 16 2 18 21
15 160 120 34 136 83 50 1 34 3 40
16 544 100 18 170 63 26 44 60 32 9
17 480 10 50 80 21 2 80 2 48 45
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n cll cl2 cl3 cld b cl6 c7? 8 1l cll12
18 252 50 112 244 50 42 20 16 12 47
19 960 90 9 211 82 65 80 60 62 39
20 511 1 120 272 9 10 32 24 62 3
21 312 170 41 560 120 90 60 52 45 18
22 1020 152 64 432 122 88 10 16 18 57
23 438 40 2 10 57 48 80 57 72 45
24 12 120 88 420 3 16 91 62 57 60
25 544 114 114 800 114 96 140 98 75 36
26 876 202 185 341 108 58 88 55 44 96
27 780 10 104 182 135 98 44 36 132 9
28 60 320 34 42 36 42 4 13 11 43
29 960 81 112 544 249 160 106 88 68 81
30 1560 170 164 580 82 2 140 100 106 44
31 1200 260 16 455 150 72 40 52 45 78
32 160 352 164 244 19 136 122 84 134 18
33 1020 411 264 100 210 48 184 144 6 104
34 2400 40 184 682 219 139 130 98 140 111
35 1040 100 74 724 276 1 80 82 160 83
36 252 202 114 520 83 184 96 94 96 36
37 876 400 1 560 3 208 20 34 32 66
38 2080 1 240 910 108 96 184 1 93 3
39 1020 560 368 170 150 17 280 166 1 102
40 312 322 330 1600 339 116 244 234 105 172
41 1560 81 194 610 45 162 176 201 228 78
42 2040 152 120 2 399 296 6 170 68 210
43 1632 352 164 800 246 65 140 26 251 108
44 544 360 9 1040 120 352 160 136 147 39
45 2400 520 304 272 210 212 44 128 28 3
46 3264 11 480 272 19 8 244 57 116 120
47 2081 530 427 1760 300 136 400 212 162 153
48 960 100 160 850 366 176 364 324 72 83
49 2080 320 68 20 435 56 128 8 194 192
50 4160 560 185 580 63 256 91 262 10 21

Appendix G. Isoperimetric distributions of leader classes of the third polytope shell

Table consists of 11 columns and represents the isoperimetric distributions of leader classes
of polytope shell P2\ P?. The first column is the index of the integer sequence of frequencies of
the respective isoperimetric distributions. The other columns contain each the first 50 frequencies
of the isoperimetric distribution corresponding to the leader classes with s = 3 and respective Id
from the measure polytope P3. Observe that minimum frequencies f,,;, = 1 are present in the
distributions. Listing the vertices that correspond to those frequency minima results in finding the

leader classes that have unique ternary operations.
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Table G.13: Truncated (n < 50) integer sequences of the frequencies
of the isoperimetric distributions of leader classes of the polytope shell
P}\ P?.
n cdl 2 3 4 5 6 9 14 15 22
1 2 1 1 1 1 1 1 1 1 1
2 12 1 1 1 1 1 1 1 1 1
3 12 1 2 1 3 1 1 1 2 1
4 60 10 1 1 3 1 2 2 1 1
5 160 10 8 10 1 1 1 1 2 2
6 60 1 2 1 6 1 2 2 2 1
7 1 1 16 10 3 8 1 6 2 2
8 252 10 8 40 18 9 7 2 6 2
9 160 40 3 10 18 1 13 2 4 6
10 312 40 8 10 6 9 9 8 12 8
11 12 1 26 10 6 1 8 2 6 3
12 252 10 48 40 6 9 2 13 12 1
13 544 10 28 1 19 24 15 1 12 8
14 60 10 16 1 39 8 26 8 4 13
15 312 80 2 80 3 9 9 14 2 13
16 960 40 24 40 18 32 30 15 12 2
17 544 80 48 40 42 9 34 26 16 7
18 160 10 26 1 18 32 26 13 28 1
19 1020 40 64 40 36 1 2 14 6 14
20 960 1 64 80 18 10 15 6 24 13
21 252 10 49 11 50 33 43 13 20 26
22 876 41 1 90 42 35 38 30 30 13
23 1020 90 16 1 60 57 35 38 29 21
24 1 90 74 10 44 32 1 1 24 30
25 312 40 74 80 42 33 34 27 2 26
26 1560 80 51 1 1 1 70 32 32 6
27 876 1 48 80 18 24 14 46 28 15
28 12 80 120 90 78 56 46 40 12 22
29 544 90 3 80 96 66 1 40 40 8
30 2400 40 72 50 44 1 61 2 56 25
31 1560 112 112 10 66 40 43 32 52 1
32 2080 112 49 112 99 25 78 32 65 45
33 960 90 128 90 84 25 15 14 30 31
34 60 90 8 40 60 64 66 57 16 56
35 2400 91 120 10 84 66 90 80 56 33
36 2040 10 176 90 42 65 70 60 62 30
37 1020 1 72 10 6 57 26 82 2 9
38 160 130 24 112 116 34 62 39 40 44
39 2080 240 76 120 168 9 9 10 64 1
40 3264 241 2 90 174 96 71 68 106 50
41 876 170 122 240 152 128 143 50 12 43
42 252 40 192 113 36 97 61 44 30 62
43 2040 112 72 40 3 136 164 84 90 14
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n cll cl2 cl3 cl4d clb cl6 7 cl8 clll  cll2
44 4160 122 267 81 99 40 103 132 17 28
45 1560 41 194 112 120 9 43 13 38 52
46 312 192 26 40 60 88 8 24 80 75
47 3264 320 112 240 145 83 90 92 64 2
48 4092 10 160 1 240 40 108 40 5 39
49 2400 330 74 40 19 152 66 60 104 53
50 544 112 224 170 225 216 146 100 32 48

Appendix H. Classification of common physical quantities

Table contains 5 columns. The first column represents the name of a common physical
quantity. The second column indicates to which shell that the physical quantity belongs. The third
column gives the Id of the leader class within the respective polytope shell.
lists the leader class that contains the physical quantity. The fifth column identifies the physical

quantity by its integer lattice point in Z7 .

Table H.14: Classification of common physical quantities.

physical quantity s Id leader class vertex
plane angle 0 1 [07] (0,0,0,0,0,0,0)
solid angle 0 1 [07] (0,0,0,0,0,0,0)
linear strain 0 1 [07] (0,0,0,0,0,0,0)
shear strain 0 1 [07] (0,0,0,0,0,0,0)
bulk strain 0o 1 [07] (0,0,0,0,0,0,0)
relative elongation 0 1 [07] (0,0,0,0,0,0,0)
refractive index 0 1 [07] (0,0,0,0,0,0,0)
electric susceptibility 0 1 [07] (0,0,0,0,0,0,0)
mass ratio 0 1 [07] (0,0,0,0,0,0,0)
fine-structure constant (c.) 0 1 [07] (0,0,0,0,0,0,0)
(otw) 0 1 [07] (0,0,0,0,0,0,0)
(as) 0 1 [07] (0,0,0,0,0,0,0)
(ag) 0 1 [07] (0,0,0,0,0,0,0)
redshift 0 1 [07] (0,0,0,0,0,0,0)
Poisson’s ratio 0 1 [07] (0,0,0,0,0,0,0)
length 1 1 [109) (1,0,0,0,0,0,0)
height 1 1 [10°] (1,0,0,0,0,0,0)
breadth 1 1 [10) (1,0,0,0,0,0,0)
thickness 1 1 [10) (1,0,0,0,0,0,0)
distance 1 1 [109] (1,0,0,0,0,0,0)
radius 1 1 [10) (1,0,0,0,0,0,0)
diameter 1 1 [109) (1,0,0,0,0,0,0)
path length 1 1 [10°] (1,0,0,0,0,0,0)
persistence length 1 1 [109) (1,0,0,0,0,0,0)
length of arc 1 1 [109) (1,0,0,0,0,0,0)
Planck length 1 1 [109] (

1000000)

41

The fourth column



physical quantity

[V

vertex

wavelength

Compton wavelength
relaxation length
luminosity distance
mass

reduced mass

Planck mass

time

period

relaxation time

time constant

time interval

proper time

Planck time

half-life time

specific impulse
electric current
thermodynamic temperature
Planck temperature
thermal expansion coefficient
amount of substance
luminous intensity
luminous flux

wave number

optical power

spatial frequency
absorption coefficient
laser gain

rotational constant
Rydberg constant
frequency

angular frequency
circular frequency
activity

specific material permeability
angular velocity

decay constant
Avogadro constant
velocity

group velocity
volumetric flux

speed

speed of light in vacuum
magnetic field strength
magnetisation
temperature gradient
electric charge

e T T T S S T = T o T T S e e e G = T S T T T o T = e e e e T T T
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(1,0,0,0,0,0,0)
(1,0,0,0,0,0,0)
(1,0,0,0,0,0,0)
(1,0,0,0,0,0,0)
(0,1,0,0,0,0,0)
(0,1,0,0,0,0,0)
(0,1,0,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,0,1,0,0,0)
(0,0,0,0,1,0,0)
(0,0,0,0,1,0,0)
(0,0,0,0,-1,0,0)
(0,0,0,0,0,1,0)
(0,0,0,0,0,0,1)
(0,0,0,0,0,0,1)
(-1,0,0,0,0,0,0)
(-1,0,0,0,0,0,0)
(-1,0,0,0,0,0,0)
(-1,0,0,0,0,0,0)
(-1,0,0,0,0,0,0)
(-1,0,0,0,0,0,0)
(-1,0,0,0,0,0,0)
(0,0,-1,0,0,0,0)
(0,0,-1,0,0,0,0)
(0,0,-1,0,0,0,0)
(0,0,-1,0,0,0,0)
(0,0,-1,0,0,0,0)
(0,0,-1,0,0,0,0)
(0,0,-1,0,0,0,0)
(0,0,0,0,0,-1,0)
(1,0,-1,0,0,0,0)
(1,0,-1,0,0,0,0)
(1,0,-1,0,0,0,0)
(1,0,-1,0,0,0,0)
(1,0,-1,0,0,0,0)
(-1,0,0,1,0,0,0)
(-1,0,0,1,0,0,0)
(-1,0,0,0,1,0,0)
(0,0,1,1,0,0 O)




physical quantity s Id  leader class vertex
electric flux 1 2 [1%0%] (0,0,1,1,0,0,0)
catalytic activity 1 2 [1%07] (0,0,-1,0,0,1,0)
molar mass 1 2 [1%0°] (0,1,0,0,0,-1,0)
second radiation constant 1 2 [1%0%] (1,0,0,0,1,0,0)
luminous energy 1 2 [1%07] (0,0,1,0,0,0,1)
linear density 1 2 [1%0°] (-1,1,0,0,0,0,0)
mass flow rate 1 2 [120%] (0,1,-1,0,0,0,0)
electric dipole moment 1 3 [1304] (1,0,1,1,0,0,0)
linear momentum 1 3 [130%] (1,1,-1,0,0,0,0)
Faraday constant 1 3 [1%0] (0,0,1,1,0,-1,0)
dynamic viscosity 1 3 [1304] (-1,1,-1,0,0,0,0)
fluidity 1 3 [130%] (1,-1,1,0,0,0,0)
magnetogyric ratio 1 3 [1%01] (0,-1,1,1,0,0,0)
vacuum condensate of Higgs field (n) 1 3 [1304] (0,1,-1,-1,0,0,0)
area 2 1 [209] (2,0,0,0,0,0,0)
elastic modulus 2 1 [20) (2,0,0,0,0,0,0)
Thomson cross section 2 1 [20) (2,0,0,0,0,0,0)
spacetime curvature 2 1 [20°] (-2,0,0,0,0,0,0)
angular acceleration 2 1 [20) (0,0,-2,0,0,0,0)
acceleration 2 1 [210°] (1,0,-2,0,0,0,0)
areal velocity 2 2 [210] (2,0,-1,0,0,0,0)
mass attenuation coefficient 2 2 [210°] (2,-1,0,0,0,0,0)
radiant exposure 2 2 [210°] (0,1,-2,0,0,0,0)
diffusion constant 2 2 [210%] (2,0,-1,0,0,0,0)
thermal diffusivity 2 2 [210°] (2,0,-1,0,0,0,0)
kinematic viscosity 2 2 [210°] (2,0,-1,0,0,0,0)
quantum of circulation 2 2 [210] (2,0,-1,0,0,0,0)
electric current density 2 2 [210°] (-2,0,0,1,0,0,0)
luminance 2 2 [210°] (-2,0,0,0,0,0,1)
illuminance 2 2 [210] (-2,0,0,0,0,0,1)
luminous emittance 2 2 [210°] (-2,0,0,0,0,0,1)
irradiance 2 2 [210°] (-2,0,0,0,0,0,1)
magnetic dipole moment 2 2 [210%] (2,0,0,1,0,0,0)
Bohr magneton 2 2 [210°] (2,0,0,1,0,0,0)
surface density 2 2 [210°] (-2,1,0,0,0,0,0)
surface tension 2 2 [2107] (0,1,-2,0,0,0,0)
stiffness 2 2 [210°]  (0,1,-2,0,0,0,0)
compliance 2 2 [210°]  (0,-1,2,0,0,0,0)
moment of inertia 2 2 [2107] (2,1,0,0,0,0,0)
accelerator luminosity 2 2 [210°] (-2,0,-1,0,0,0,0)
force 2 3 [2120%] (1,1, 2,0,0,0,0)
energy density 2 3 [2120%] (-1,1,-2,0,0,0,0)
radiant energy density 2 3 [2120%] (-1,1,-2,0,0,0,0)
sound energy density 2 3 [21%0]  (-1,1,-2,0,0,0,0)
toughness 2 3 [21%0"]  (-1,1,-2,0,0,0,0)
pressure 2 3 [21%0]  (-1,1,-2,0,0,0,0)
modulus of elasticity 2 3 [21%0]  (-1,1,-2,0,0,0 o)
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physical quantity
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Young’s modulus
shear modulus
compression modulus
normal stress

shear stress

energy momentum tensor
Planck constant
angular momentum
action

spin

acoustic impedance
mass flux

magnetic flux density
magnetic induction
surface charge density
dielectric polarisation
electrical displacement
electrical quadrupole moment
luminous exposure
absorbed dose

dose equivalent
specific energy
gravitational potential
molar Planck constant
magnetic vector potential
thermal conductivity
thermal resistivity
torque

moment of a force
specific heat capacity
energy

potential energy
kinetic energy

work

Lagrange function
Hamilton function
Hartree energy
ionization energy
electron affinity
electronegativity
dissociation energy
magnetic constant
permeability

magnetic flux
magnetic moment
entropy

specific heat
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physical quantity s Id leader class vertex
Boltzmann constant 2 8 [22120%) (2,1,-2,0,-1,0,0)
Josephson constant 2 8 [22120%) (-2,-1,2,1,0,0,0)
magnetic flux quantum 2 8 [221%0%] (2,1, 2,-1,0,0,0)
chemical potential 2 8 [22120%]  (2,1,-2,0,0,-1,0)
molar energy 2 8 [22120%]  (2,1,-2,0,0,-1,0)
molar heat capacity 2 8 [221%0%]  (2,1,-2,0,-1,-1,0)
molar gas constant 2 11 [221%0%]  (2,1,-2,0,-1,-1,0)
molar entropy 2 11 [221%0%]  (2,1,-2,0,-1,-1,0)
inductance 2 12 [2%10%] (2,1,-2,-2,0,0,0)
self-inductance 2 12 [23103] (2,1,-2,-2,0,0,0)
mutual inductance 2 12 [23107] (2,1,-2,-2,0,0,0)
magnetisability 2 12 [2%10%] (2,-1,2,2,0,0,0)
volume 3 1 [30) (3,0,0,0,0,0,0)
Loschmidt constant 3 1 [30) (-3,0,0,0,0,0,0)
number density 3 1 [30°] (-3,0,0,0,0,0,0)
mass density 3 2 [310°] (-3,1,0,0,0,0,0)
specific volume 3 2 [310°] (3,-1,0,0,0,0,0)
amount of substance concentration 3 2 [310] (-3,0,0,0,0,1,0)
molar volume 3 2 [310°] (3,0,0,0,0,-1,0)
heat flux density 3 2 [310°] (0,1,-3,0,0,0,0)
Poynting vector 3 2 [3107] (0,1,-3,0,0,0,0)
radiative flux 3 2 [310°] (0,1,-3,0,0,0,0)
thermal emittance 3 2 [310°] (0,1,-3,0,0,0,0)
sound intensity 3 2 [3107] (0,1,-3,0,0,0,0)
radiance 3 2 [310°] (0,1,-3,0,0,0,0)
irradiance 3 2 [3105] (0,1,-3,0,0,0,0)
radiant exitance 3 2 [310%] (0,1,-3,0,0,0,0)
radiant emittance 3 2 [310°] (0,1,-3,0,0,0,0)
radiosity 3 2 [310°] (0,1,-3,0,0,0,0)
volume rate of flow 3 2 [310%] (3,0,-1,0,0,0,0)
jerk 3 2 [310°] (1,0,-3,0,0,0,0)
electric field gradient 3 3 [31%0*]  (0,1,-3,-1,0,0,0)
electric charge density 3 3 [3120%] (-3,0,1,1,0,0,0)
heat transfer coefficient 3 3 [3120%] (0,1,-3,0,-1,0,0)
thermal insulance 3 3 [3120%] (0,-1,3,0,1,0,0)
spectral exitance 3 3 [31%0"]  (-1,1,-3,0,0,0,0)
spectral radiance 3 3 [31%0*]  (-1,1,-3,0,0,0,0)
spectral irradiance 3 3 [31%0*]  (-1,1,-3,0,0,0,0)
spectral power 3 3 [3120%] (1,1,-3,0,0,0,0)
spectral intensity 3 3 [31%0%] (1,1,-3,0,0,0,0)
luminous energy density 3 3 [3120%] (-3,0,1,0,0,0,1)
catalytic activity concentration 3 3 [3120%] (-3,0,-1,0,0,1,0)
reaction rate 3 3 [31%0*]  (-3,0,-1,0,0,1,0)
absorbed dose rate 3 4 [320°] (2,0,-3,0,0,0,0)
thermal conductivity 3 5 [31%0%]  (1,1,-3,0,-1,0,0)
first hyper-susceptibility 3 5 [31%0%]  (-1,-1,3,1,0,0,0)
electric field 3 5 ] (1,1, 3,-1,0,0 0)
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physical quantity s Id leader class vertex
radiant intensity 3 6 [3210%] (2,1,-3,0,0,0,0)
radiant flux 3 6 [3210%] (2,1,-3,0,0,0,0)
Newton constant of gravitation 3 6 [3210%] (3,-1,-2,0,0,0,0)
power 3 6 [3210%] (2,1,-3,0,0,0,0)
sound energy flux 3 6 [3210%] (2,1,-3,0,0,0,0)
bolometric luminosity 3 6 [3210%] (2,1,-3,0,0,0,0)
responsivity 3 6 [321%0%]  (-2,-1,3,1,0,0,0)
electric potential difference 3 9 [321%0%] (2,1,-3,-1,0,0,0)
electric potential 3 9 [321%0%]  (2,1,-3,-1,0,0,0)
thermal conductance 3 9 [321%0%] (2,1,-3,0,-1,0,0)
thermal resistance 3 9 [321%0%] (-2,-1,3,0,1,0,0)
electromotive force 3 9 [321%0%]  (2,1,-3,-1,0,0,0)
luminous efficacy 3 9 [321%0%] (-2,1,3,0,0,0,1)
electrical resistance 3 14 [32210%] (2,1,-3,-2,0,0,0)
reactance 3 14 (322103 (2,1,-3,-2,0,0,0)
impedance 3 14 [32210%]  (2,1,-3,-2,0,0,0)
conductance 3 14 [32210%] (-2,-1,3,2,0,0,0)
admittance 3 14 (322107 (-2,-1,3,2,0,0,0)
susceptance 3 14 [32210%] (-2,-1,3,2,0,0,0)
characteristic impedance of vacuum 3 14 [32210%] (2,1,-3,-2,0,0,0)
von Klitzing constant 3 14 (322103 (2,1,-3,-2,0,0,0)
specific resistance 3 15 [32120%) (3,1,-3,-1,0,0,0)
electrical resistivity 3 22 [3%210%]  (3,1,-3,-2,0,0,0)
electrical conductivity 3 22 (322107 (-3,-1,3,2,0,0,0)
second moment of area 4 1 [40) (4,0,0,0,0,0,0)
jounce 4 2 [410°] (1,0,-4,0,0,0,0)
electric polarisability 4 [4210%] (0,-1,4,2,0,0,0)
Stefan-Boltzmann constant 4 [4310] (0,1,-3,0,-4,0,0)
first radiation constant 4 [4310%] (4,1,-3,0,0,0,0)
electrical mobility 4 [431%0%]  (3,1,-4,-1,0,0,0)
electric capacitance 4 [42210%] (-2,-1,4,2,0,0,0)
electric constant 4 [432107] (-3,-1,4,2,0,0,0)
permittivity 4 [43210%]  (-3,-1,4,2,0,0,0)
second hyper-susceptibility 6 [6230°] (-2,-2,6,2,0,0,0)
first hyper-polarisability 7 [732103] (-1,-2,7,3,0,0,0)
second hyper-polarisability 10 [(10)4320%]  (-2,-3,10,4,0,0,0)

Appendix I. Gédel walk in 7-dimensional integer lattice

Table [LT8 contains in the first column the row identifier. In the second column we list the
vertices in the order of appearance in the Godel walk. The third column gives the value of the
Godel number up to the number 100. The fourth column shows the dimension d of Z? x {0}7~¢ in
which the lattice point is embedded. The fifth column indicates to which measure polytope P; the
lattice point belongs. The sixth column shows the leader class containing the lattice point.
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Table 1.15: Godel walk in Z7 .

Id  vertex Godel number  dimension  ||Z|l.c =s leader class
1 (0,0,0,0,0,0,0) 1 0 0 [07]
2 (1,0,0,0,0,0,0) 2 1 1 [10]
3 (0,1,0,0,0,0,0) 3 2 1 [10]
4 (2,0,0,0,0,0,0) 4 1 2 [20)
5 (0,0,1,0,0,0,0) 5 3 1 [10]
6 (1,1,0,0,0,0,0) 6 2 1 [1%07]
7 (0,0,0,1,0,0,0) 7 4 1 [10)
8 (3,0,0,0,0,0,0) 8 1 3 [30]
9 (0,2,0,0,0,0,0) 9 2 2 [20°]

10 (1,0,1,0,0,0,0) 10 3 1 [120°]

11 (0,0,0,0,1,0,0) 11 5 1 [10]

12 (2,1,0,0,0,0,0) 12 2 2 [210°]

13 (0,0,0,0,0,1,0) 13 6 1 [10]

14 (1,0,0,1,0,0,0) 14 4 1 [1%07]

15 (0,1,1,0,0,0,0) 15 3 1 [120°]

16 (4,0,0,0,0,0,0) 16 1 4 [40)

17 (0,0,0,0,0,0,1) 17 7 1 [10)

18 (1,2,0,0,0,0,0) 18 2 2 [210°]

19 (2,0,1,0,0,0,0) 20 3 2 [210°]

20 (0,1,0,1,0,0,0) 21 4 1 [1%07]

21 (1,0,0,0,1,0,0) 22 5 1 [170%]

22 (3,1,0,0,0,0,0) 24 2 3 [310°]

23 (0,0,2,0,0,0,0) 25 3 2 [20°]

24 (1,0,0,0 0,1,0) 26 6 1 [1%07]

25 (0,3,0,0,0,0,0) 27 2 3 [30°]

26 (2,0,0,1,0,0,0) 28 4 2 [210°]

27 (1,1,1,0,0,0,0) 30 3 1 [120%]

28 (5,0,0,0,0,0,0) 32 1 5 [50°]

29 (0,1,0,0,1,0,0) 33 5 1 [1%07]

30 (1,0,0,0,0,0,1) 34 7 1 [120°]

31 (0,0,1,1,0,0,0) 35 4 1 [120%]

32 (2,2,0,0,0,0,0) 36 2 2 [2207]

33 (0,1,0,0 0,1,0) 39 6 1 [120°]

34 (3,0,1,0,0,0,0) 40 3 3 [310°]

35 (1,1,0,1,0,0,0) 42 4 1 [130]

36 (2,0,0,0,1,0,0) 44 5 2 [210°]

37 (0,2,1,0,0,0,0) 45 3 2 [210°]

38  (4,1,0,0,0,0,0) 48 2 4 [410°]

39 (0,0,0,2,0,0,0) 49 4 2 [20°]

40 (1,0,2,0,0,0,0) 50 3 2 [210°]

41 (0,1,0,0,0,0,1) 51 7 1 [120%]

42 (2,0,0,0 0,1,0) 52 6 2 [210°]

43 (1,3,0,0,0,0,0) 54 2 3 [310°]

44 (0,0,1,0,1,0,0) 55 5 1 [1207]

45 (3 0,0,1,0,0,0) 56 4 3 ]
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Id  vertex Godel number  dimension  ||Z||lc = s leader class
46 (2,1,1,0,0,0,0) 60 3 2 [2120%]
47 (0,2,0,1,0,0,0) 63 4 2 [210°]
48 (6,0,0,0,0,0,0) 64 1 6 [60°]
49 (0,0,1,0,0,1,0) 65 6 1 [120%]
50 (1,1,0,0,1,0,0) 66 5 1 [130]
51 (2,0,0,0,0,0,1) 68 7 2 [210°]
52 (1,0,1,1,0,0,0) 70 4 1 [1%0]
53 (3,2,0,0,0,0,0) 72 2 3 [320°]
54 (0,1,2,0,0,0,0) 75 3 2 [210°]
55  (0,0,0,1,1,0,0) 77 5 1 [120%]
56 (1,1,0,0,0,1,0) 78 6 1 [1304]
57 (4,0,1,0,0,0,0) 80 3 4 [410°]
58 (0,4,0,0,0,0,0) 81 2 4 [40°]
59 (2,1,0,1,0,0,0) 84 4 2 [21%07]
60 (0,0,1,0,0,0,1) 85 7 1 [120°]
61 (3,0,0,0,1,0,0) 88 5 3 [310°]
62 (1,2,1,0,0,0,0) 90 3 2 [2120%]
63 (0,0,0,1,0,1,0) 91 6 1 [120°]
64 (5,1,0,0,0,0,0) 96 2 5 [510°]
65 (1,0,0,2,0,0,0) 98 4 2 [210°]
66 (0,2,0,0,1,0,0) 99 5 2 [210°]
67  (2,0,2,0,0,0,0) 100 3 2 [2207]

Appendix J. Cardinality of sets of pairwise orthogonal vertices resulting in the repre-
sentative vertex of the leader class

Table 6| contains 11 columns. The first column is the row identifier. The second column
represents the infinity norm s of the polytope shell. The third column lists the leader classes [2]. The
fourth column gives the total degree “deg” of the leader classes. The fifth column contains N (%) = m
(mod 2) where N (%) is the square of the radius of the 7-sphere associated to the representative vertex
Z of the leader class [£ d] From column 6 to column 11 the cardinality ng is given as function of the
dimension d € N of Z? x {0}7~% where 2 < d < 7.

Table J.16: Cardinality of the sets of pairwise orthogonal vertices result-
ing in the representative vertex of leader class [Z].

Id s leader class deg N(2)=m (mod2) mn2 n3z na ns ne nr
1 1 [10] 1 N =1 (mod 2) 0 0 0 0 0 0
2 1 [120°] 2 N =0 (mod 2) 1 1 1 1 1 1
3 1 [130%) 3 N =1 (mod 2) 2 3 3 3 3 3
4 1 [140%] 4 N =0 (mod 2) 3 7T 07 7 7 7
5 1 [1°0?] 5 N =1 (mod 2) 3 7 15 15 15 15
6 1 [1°0] 6 N =0 (mod 2) 3 7 15 15 31 31
7 1 [17] 7 N =1 (mod 2) 3 7 15 15 31 63
8 2 2 N =0 (mod 2) 1 2 3 4 5 6
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Id s leader class deg N(2) =m (mod 2) no ns N4 ns ng ny

9 2 [210) 3 N =1 (mod 2) 1 3 5 7 9 11
10 2 [21%0] 4 N =0 (mod 2) 1 3 7 11 15 19
11 2 [220) 4 N =0 (mod 2) 1 5 11 19 29 41
12 2 [21°0%] 5 N=1(mod2) 3 7 7 15 23 31
13 2 [22107] 5 N =1 (mod 2) 4 4 12 24 40 60
14 2 [22120%] 6 N =0 (mod 2) 3 9 11 27 51 83
15 2 [230%] 6 N =0 (mod 2) 1 3 15 39 79 139
16 2 [221%07 7 N =1 (mod 2) 3 9 11 27 59 107
17 2 [2°10%] 7 N=1(mod2) 3 7 13 39 89 171
18 3 [30°] 3 N=1(mod2) 0 4 12 24 40 60
19 3 (3107 4 N =0 (mod 2) 3 3 11 27 51 83
20 3 [31%0%] 4 N=1(mod2) 7 11 11 27 59 107
21 3 [320°] 5 N =1 (mod 2) 1 3 13 39 89 171
22 3 [31%07] 6 N =0 (mod 2) 7 11 31 31 63 127
22 3 [320) 6 N =0 (mod 2) u u u u u u
23 3 [3210%] 6 N=0(mod2 3 7 15 39 95 199
24 3 [321%0°] 7 N=1(mod2) 4 20 60 260 620 1460
25 3 [32%107] 8 N =0 (mod 2) 3 15 25 61 145 341
26 3 [321%0°] 8 N =0 (mod 2) 3 23 47 63 207 479
27 3 [3%210°] 9 N =1 (mod 2) 3 7 23 79 263 671
28 4 [40°] 4 N =0 (mod 2) 1 2 11 44 125 286
20 4 [410°] 5 N =1 (mod 2) 17 17 47 129 311
30 4 [4210%] 7 N=1(mod2) 7 7 31 79 191 471
31 4 [4310%] 8 N=1(mod2) 5 11 27 99 339 923
32 4 [42210°] 9 N =1 (mod 2) 7 23 30 120 330 796
33 4 [431%07] 9 N =1 (mod 2) 5 23 39 111 327 975
34 4 [43210%] 10 N=1(mod2) 5 23 47 135 415 1287

Appendix K. Pairwise orthogonal vertices resulting in the vertex representing energy

Table [KI7 contains 5 columns. The first column is the row identifier. The second column
represents the perimeter of the parallelogram that is also a rectangle. The third column contains
vertex £. The fourth column contains the vertex . The fifth column contains the squared area
Af) of the parallelograms. We see that the squared areas are all even. We observe that the vertices
with Id =1, Id = 35 and Id = 36 were already found through the two-factoring of the leader class
[2210%]. We find in total 60 non-degenerated rectangles for the vertex # = (2,1, -2,0,0,0,0) with

z z
the 4 vertices of each rectangle incident on the same hypersphere (& — 5)2 = (5)2 .

Table K.17: Orthogonal pairwise vertices resulting in the physical quan-
tity energy.

Id  p, & g AZ

1 7657 (0,1,0,0000)  (20-20000) 8
2 8120 (0,0,-1-1,0,0,0) (2,1,-1,1,0,00) 14
3 8120 (0,0,-1,0-1,00) (2,1-1,0,1,00) 14
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4 8120 (0,0,-1,0,0-1,00 (2,1-1,0,001,0) 14
5 8120 (0,0-1,0,0,0,-1)  (2,1-1,0,00,1) 14
6 8120 (0,0,-1,0,0,0,1) (2,1,-1,0,0,0,-1) 14
7 8,120 (0,0,-1,0,0,1,0) (2,1,-1,0,0,-1,0) 14
8 8,120 (0,0,-1,0,1,0,0) (2,1,-1,0-1,0,0) 14
9 8,120 (0,0,-1,1,0,0,0) (2,1,-1-1,0,0,0) 14
10 8,120  (1,0,0,-1,0,0,0) (1,1,-2,1,0,0,0) 14
11 8120 (1,0,00,1,0,0)  (1,1,2,0,1,0,0) 14
12 8120 (1,0,0,0,0-1,0)  (1,1,-2,0,0,1,0) 14
13 8,120  (1,0,0,0,0,0,-1) (1,1,-2,0,0,0,1) 14
14 8120 (1,0,0,000,1)  (1,1-2,0,0,0-1) 14
15 8,120  (1,0,0,0,0,1,0) (1,1,-2,0,0,-1,0) 14
16 8,120  (1,0,0,0,1,0,0) (1,1,-2,0-1,0,0) 14
17 8120 (1,0,0,1,0,00)  (1,1-2-1,0,0,0) 14
18 8,363 (0,1,-1,-1,0,0,0) (2,0,-1,1,0,0,0) 18
19 8,363 (0,1,-1,0,-1,0,0) (2,0,-1,0,1,0,0) 18
20 8,363 (0,1,-1,0,0,-1,0) (2,0,-1,0,0,1,0) 18
21 8,363 (0,1,-1,0,0,0,-1) (2,0,-1,0,0,0,1) 18
22 8,363 (0,1,-1,0,0,0,1) (2,0,-1,0,0,0,-1) 18
23 8,363 (0,1,-1,0,0,1,0) (2,0,-1,0,0,-1,0) 18
24 8,363 (0,1,-1,0,1,0,0) (2,0,-1,0,-1,0,0) 18
25 8,363 (0,1,-1,1,0,0,0) (2,0,-1-1,0,0,0) 18
26 8,363 (1,-1,-1,0,0,0,0) (1,2,-1,0,0,0,0) 18
27 8,363 (1,0,-2,-1,0,0,0) (1,1,0,1,0,0,0) 18
28 8,363 (1,0,-2,0,-1,0,0) (1,1,0,0,1,0,0) 18
29 8,363 (1,0,-2,0,0,-1,0) (1,1,0,0,0,1,0) 18
30 8,363 (1,0,-2,0,0,0,-1) (1,1,0,0,0,0,1) 18
31 8,363 (1,0,-2,0,0,0,1) (1,1,0,0,0,0,-1) 18
32 8,363 (1,0,-2,0,0,1,0) (1,1,0,0,0,-1,0) 18
33 8,363 (1,0,-2,0,1,0,0) (1,1,0,0,-1,0,0) 18
34 8363 (1,021,000  (1,1,0-1,0,00) 18
35 8472  (0,0,-2,0,0,0,0) (2,1,0,0,0,0,0) 20
36 8472  (0,1,-2,0,0,0,0) (2,0,0,0,0,0,0) 20
37 8472 (1,0-1,-1,1,0,0) (1,1-1,1,1,0,0) 20
38 8472 (1,0-1,1,0-1,0) (1,1-1,1,0,1,0) 20
39 8472 (1,0-1,-1,0,0-1) (1,1-1,1,0,0,1) 20
40 8472 (1,0-1-1,0,0,1)  (1,1,-1,1,0,0-1) 20
41 8472 (1,0-1,1,0,1,0) (1,1-1,1,0,-1,0) 20
42 8472 (1,0-1,1,1,00) (1,1-1,1,1,0,0) 20
43 8472 (1,0-1,0-1-1,0) (1,1-1,0,1,1,0) 20
44 8472 (1,0-1,0-1,0-1)  (1,1,-1,0,1,0,1) 20
45 8472 (1,0-1,0-1,0,1)  (1,1-1,0,1,0-1) 20
46 8472 (1,0-1,0,-1,1,0)  (1,1,-1,0,1-1,0) 20
47 8472 (1,0-1,0,0-1-1)  (1,1,-1,0,0,1,1) 20
48 8472 (1,0-1,00-1,1)  (1,1-1,0,0,1-1) 20
49 8472 (1,0-1,0,0,1-1)  (1,1,-1,0,0-1,1) 20
50 8,472 20

(170,_170707171)

(1717_170707_17_1)
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51 8472 (1,0-1,0,1-1,0) (1,1-1,0-1,1,0) 20
52 8472 (1,0-1,0,1,0-1)  (1,1,-1,0-1,0,1) 20
53 8472  (1,0,1,0,1,0,1) (1,1,-1,0-1,0-1) 20
54 8472  (1,0-1,0,1,1,0) (1,1,-1,0-1,-1,0) 20
55 8472 (1,0-1,1-1,0,0) (1,1,-1-1,1,0,0) 20
56 8472 (1,0-1,1,0-1,0) (1,1,-1,-1,0,1,0) 20
57 8472 (1,0-1,1,0,0-1)  (1,1-1,-1,0,0,1) 20
58 8472 (1,0,1,1,0,01)  (1,1-1-1,0,0-1) 20
59 8472  (1,0,-1,1,0,1,0) (1,1,-1,1,0,-1,0) 20
60 8472 (1,0,-1,1,1,0,0)0 (1,1,-1,1,1,0,0) 20

Table K.18: Partitions of leader classes with Godel number < 1500

leader class deg psc(Z) N(Z) vertices Godel number F2 F3 F4 F5
07 0 0 0 1 1 0 0 0 0
(10 1 1 1 14 2 0 0 0 0
(206 2 0 4 14 4 0 0 0 0
[120] 2 0 2 84 6 1 0 0 0
30 3 1 9 14 8§ 1 0 0 0
210 3 1 5 168 12 2 0 0 0
3105 4 0 10 168 24 3 1 0 0
1204 3 1 3 280 30 3 1 0 0
2205 4 0 8 84 36 3 1 0 0
21204 4 0 6 840 60 5 3 0 0
[3205] 5 1 13 168 72 5 3 0 0
[31204] 5 1 11 840 120 7 7 1 0
22104] 5 1 9 840 18 8 8 1 0
1403 4 0 4 560 210 7 6 1 0
320 6 0 18 84 216 7 8 1 0
[32104] 6 0 14 1680 360 11 17 5 0
21%0%] 5 1 7 2240 20 11 15 4 0
(31303 6 0 12 2240 840 15 29 13 1
2304 6 0 12 280 900 12 20 7 0
32104 7 119 840 1080 15 33 17 1
[221203] 6 0 10 3360 1260 17 35 16 1
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