
 

 

Ghent University 

Faculty of Pharmaceutical Sciences 

 

 

TOWARDS CONTINUOUS PHARMACEUTICAL TABLET 

MANUFACTURING: IMPLEMENTATION OF CONTINUOUS 

AGGLOMERATION TECHNIQUES 

 

Valérie VANHOORNE 

Master of Science in Drug Development 

 

 

Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences 

2016 

 

Promoters: 

 

Prof. Dr. Chris Vervaet  

Em. Prof. Dr. Jean-Paul Remon 

  



  



 

 

Ghent University 

Faculty of Pharmaceutical Sciences 

 

 

TOWARDS CONTINUOUS PHARMACEUTICAL TABLET 

MANUFACTURING: IMPLEMENTATION OF CONTINUOUS 

AGGLOMERATION TECHNIQUES 

 

Valérie VANHOORNE 

Master of Science in Drug Development 

 

 

Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences 

2016 

 

Promoters: 

 

Prof. Dr. Chris Vervaet  

Em. Prof. Dr. Jean-Paul Remon 

  



  



 

 

 

 

 

 

 

 

The author and the promoters give the authorization to consult and to copy part of this thesis 

for personal use only. Any other use is limited by the Laws of Copyright, especially 

concerning the obligation to refer to the source whenever results are cited from this thesis. 

Ghent,  May 5th, 2016 

 

 

 

 

The promoters The author 

Prof. Dr. C. Vervaet Prof. Dr. J.P. Remon  Valérie Vanhoorne 

  



  



 

DANKWOORD 

Bij het voltooien van deze doctoraatsthesis, wil ik graag even terugblikken en enkele 

personen bedanken voor hun hulp, ervaring en ondersteuning. Mede dankzij hen kon ik dit 

werk tot een goed einde brengen en waren de afgelopen jaren een boeiende en leerrijke 

uitdaging.  

Eerst en vooral wens ik mijn promotoren Prof. Dr. Jean-Paul Remon en Prof. Dr. Chris 

Vervaet uitdrukkelijk te bedanken voor hun vertrouwen en om me de kans te bieden te 

doctoreren in hun onderzoeksgroep en mezelf als mens en wetenschapper te laten groeien. 

Professor, bedankt voor uw enthousiaste begeleiding, voor het delen van uw nieuwe ideëen 

en voor uw hulp tijdens het sproeidrogen. Chris, bedankt voor de verhelderende discussies, 

het kritisch nalezen van de manuscripten en je nuchtere kijk op de experimenten. 

Verder wens ik Prof. Dr. Thomas De Beer te bedanken voor het delen van kennis en de hulp 

m.b.t. experimentele designs en multivariate analyse en Prof. Dr. Bruno De Geest voor de 

hulp bij de microscopie experimenten. Prof. Dr. Van Calenbergh wens ik te bedanken om me 

na het schrijven van mijn master thesis in Italië te stimuleren om een doctoraat te starten. 

Bedankt aan alle mensen waarmee ik nauw samengewerkt heb tijdens deze 

doctoraatsthesis. Patricia (Centro Universitario Franciscano, Brazil), thanks for your interest 

in my research and help during your stay in our lab. Mijn thesisstudenten Frederik, Brecht, 

Candies, Laure en Bram, bedankt voor jullie inzet en praktische assistentie tijdens de 

experimenten. De medewerkers van GEA Pharma Systems te Wommelgem en Halle, 

bedankt voor de ondersteuning bij het uitvoeren van experimenten en jullie interesse in mijn 

onderzoek. Collega’s van de faculteit bio-ingenieurswetenschappen, bedankt om me in jullie 

onderzoek te betrekken, dit was een meerwaarde. Katharine, Ilse en Christine, bedankt voor 

de administratieve en praktische ondersteuning voor mijn onderzoek en de organisatie van 

de practica. 

Alle (ex-)collega’s, bedankt voor de hulp bij experimenten, de aangename sfeer op het lab, 

de uitjes na het werk en de legendarische teambuildings. In het bijzonder mijn 

bureaugenoten, bedankt om af en toe een lach en een traan (al dan niet van het lachen) te 

delen, bedankt voor jullie steun en vriendschap! Ik had me geen betere bureaugenoten 

kunnen wensen. Collega’s van het ConsiGma-team, bedankt voor het excellente teamwork. 

Met jullie was het een plezier in de kelder te werken, ook als de experimenten eens 

tegenvielen!  



Bijzondere dank aan alle vrienden voor de ontspannen avondjes en reisjes, om mijn hoofd 

leeg te maken tijdens het lopen of stoom af te blazen tijdens het tennissen. Bedankt om altijd 

op jullie te kunnen rekenen! 

Mama en papa, bedankt voor jullie praktische en morele steun en liefde die ik al 28 jaar lang 

krijg! Alexander en Sanne, bedankt om steeds voor een vrolijke, onbezorgde noot te zorgen 

thuis! Claudine en Vincent, bedankt omdat jullie deur altijd openstaat! 

Tenslotte, Bram, bedankt om er altijd voor mij te zijn, om het beste in mij boven te laten 

komen, om me te motiveren, om te helpen relativeren, om dezelfde dromen achterna te gaan 

en zoveel meer. Ik zie je graag! 

Valérie 

  



 

TABLE OF CONTENTS 

OUTLINE AND AIMS 1 

CHAPTER 1 INTRODUCTION: CONTINUOUS MANUFACTURING 

OF TABLETS IN THE PHARMACEUTICAL INDUSTRY 3 

CHAPTER 2 CRYSTAL COATING VIA SPRAY DRYING TO 

IMPROVE POWDER TABLETABILITY 39 

CHAPTER 3 CONTINUOUS MANUFACTURING OF DELTA-

MANNITOL BY COSPRAY DRYING WITH PVP 57 

CHAPTER 4 IMPROVED TABLETABILITY AFTER A 

POLYMORPHIC TRANSITION OF DELTA-MANNITOL 

DURING TWIN SCREW GRANULATION 79 

CHAPTER 5 DEVELOPMENT OF A CONTROLLED RELEASE 

FORMULATION BY CONTINUOUS TWIN SCREW 

GRANULATION: INFLUENCE OF PROCESS AND 

FORMULATION PARAMETERS 113 

CHAPTER 6 CONTINUOUS TWIN SCREW GRANULATION OF 

CONTROLLED RELEASE FORMULATIONS WITH 

VARIOUS HPMC GRADES 135 

CHAPTER 7 BROADER INTERNATIONAL CONTEXT, RELEVANCE 

AND FUTURE PERSPECTIVES 161 

GENERAL CONCLUSIONS 173 

SUMMARY  175 

SAMENVATTING  179 

CURRICULUM VITAE  183 

  



 

  



 

LIST OF ABBREVIATIONS 

a50   Median aspect ratio    

API   Active pharmaceutical ingredient 

C%   Compressibility index 

d   Tablet diameter 

d50   Mean median particle size 

E   Energy 

F   Diametral crushing force 

FDA   Food and drug administration 

EMA   European Medicine Agency 

ffc   Flowability index 

Fwt Weight of granules retained on a 250 µm sieve after friability testing 

GSD   granule size distribution 

HPMC   hydroxypropylmethylcellulose 

ICH   International Council for Harmonization 

IER   In-die elastic recovery 

Iwt   Weight of granules subjected to friability testing 

L/S   Liquid-to-solid 

LOD    Loss on drying 

MCC   Microcrystalline cellulose 

MCP   Main compression pressure 

MDSC   Modulated differential scanning calorimetry 

MPT   Metoprolol tartrate 

PAT   Process analytical technology 

PC   Principal component 

PCA   Principal component analysis 

PCMM   Portable continuous miniature modular 

Ph. Eur.  European Pharmacopea 

PLC   Plasticity constant 

PVP   Polyvinylpyrrolidone 

RH   Relative humidity 

RMSECV  Root mean square error of cross validation 

SEM   Scanning electron microscopy 

SME   Screw mixing elements 

t   Tablet thickness 

Ta   Tablet height immediately after ejection 



Tid   Tablet height under maximum compression force 

To   Outlet temperature 

TS   Tensile strength 

USP   United States Pharmacopea 

V0   Bulk volume 

V1250   Tapped volume 

XRD   X-ray diffraction 



 

1 

OUTLINE AND AIMS 

Up to now pharmaceutical manufacturing has been synonymous with batch processing and 

little attention was paid to optimization of the manufacturing processes. However, faced with 

high pressure on the profit margins by generic competitors, decreasing health care budgets 

and smaller drug pipelines, the pharmaceutical industry and competent authorities recently 

recognized the potential of continuous processing to improve the efficiency and productivity 

of drug manufacturing. Indeed, continuous manufacturing offers numerous economic, 

environmental and quality-related advantages. The ultimate goal of continuous 

manufacturing is to continuously produce a high-quality product 24/7 for up to 50 weeks a 

year with real time product release. Although innovative continuous processes and 

implementation of process analytical technology were intensively studied by academic 

institutions and R&D units of brand and generic drug manufacturers over the last decade, 

more knowledge concerning the process dynamics, control strategies and process-

formulation interactions is essential to implement fully continuous manufacturing lines.  

Agglomeration processes are often necessary to improve the flowability, homogeneity and 

tabletability of powders prior to tableting. Spray drying and twin screw granulation are 

continuous agglomeration processes with high potential for implementation in continuous 

‘from-powder-to-tablet’ lines. Therefore these techniques were studied in this research 

project.  

The first aim of this project was to develop a modified spray drying process to improve the 

flowability and tabletability of drug formulations with poor tabletability. Although modified 

spray drying setups with return of fines into the atomization zone and integrated fluid beds in 

the bottom of the drying chamber are available to improve the flowability of spray dried 

powders, these setups have limited applicability in the pharmaceutical industry as the 

residence time of particles is uncontrolled. Therefore in current study a modified setup was 

developed to introduce solid particles in an atomized spray of droplets during spray drying 

with the intention to induce agglomeration between droplets and particles and consequently 

to improve the flowability and tabletability of the coprocessed particles.  

Twin screw granulation is an emerging continuous granulation technique. In recent years, 

studies on twin screw granulation focused on the influence of process parameters on critical 

quality attributes of granules while formulation development received little attention. Although 

mannitol is a preferred excipient for the formulation of tablets, most studies on twin screw 

granulation used lactose or microcrystalline cellulose as fillers. Therefore the second aim of 



OUTLINE AND AIMS 

2 

this project was to evaluate the potential of β- and δ-mannitol as excipient during twin screw 

granulation. Finally, research on twin screw granulation was almost exclusively limited to 

immediate release formulations. Therefore, the third aim was to investigate the potential of 

twin screw granulation with water as granulation liquid, for the production of a controlled 

release formulation with hydroxypropylmethylcellulose as matrix former. The influence of 

process parameters (screw speed, throughput, temperature, screw design) and formulation 

parameters (concentration of HPMC in the formulation, viscosity and substitution degree of 

HPMC) on critical quality attributes of granules and tablets was evaluated. 
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TOWARDS CONTINUOUS MANUFACTURING 

Driven by strict regulations the pharmaceutical industry has been very conservative and for a 

long time did not question its traditional batch-wise manufacturing methods while in other 

industries (e.g. chemical, food, personal care, mining and electronics industry) continuous 

techniques were introduced decades ago. The first continuous paper machine was 

developed and patented in 1799 by Louis-Nicolas Robert, and the Haber process for 

continuous production of ammonia, was fully operational around 1920 [1, 2]. However, under 

pressure from generic competitors, governments and rising development costs, the 

pharmaceutical industry recently recognized the potential of continuous manufacturing for 

more cost-efficient production, delivery of high quality products and lower environmental 

footprint.  

During batch processing raw materials are charged into the system at the beginning of the 

process and the product is discharged all at once at a later point in time. No ingredients are 

added or removed from the system between charging of the raw materials and discharge of 

the product. A common pharmaceutical manufacturing process generally consists of 

sequential batch processes with storage and off-line quality testing of intermediate products. 

If the product does not meet the quality specifications the complete batch is discarded [3]. 

This concept is schematically presented in Figure 1 for the production of tablets which is 

typically preceded by blending, granulation, drying and milling.  
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Figure 1. Schematic overview of typical unit operations in batch-wise manufacturing (top) and continuous manufacturing (bottom) including possibilities for 
monitoring critical quality attributes by PAT. 
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In a continuous manufacturing process all unit operations are connected and starting 

materials and end products are continuously charged into and discharged from the process, 

respectively, following the first-in-first-out principle. Additionally, process analytical 

technology (PAT) systems integrated in the manufacturing line can provide real-time data for 

process monitoring and control. This eliminates the need for storage and off-line 

characterization of intermediates and the final product, making the process more cost-

efficient. This concept of fully continuous manufacturing is compared in Figure 1 to traditional 

batch processing [3]. The ultimate goal of continuous manufacturing is to produce a high-

quality product 24/7 for up to 50 weeks a year with two weeks for annual maintenance of the 

equipment and this from the primary stage of drug production (API synthesis) on.  

Definition of a batch is important to trace the final product back to the used raw materials, 

applied process parameters and quality testing. Whereas batch definition is straightforward 

during batch processing, it should not be a hurdle after continuous processing as the 

definition of a batch by the Food and Drug Administration (FDA) is not related to the 

production method (batch-wise or continuous). Instead the FDA’s definition refers to the 

quantity of manufactured drug, defining a batch as ‘a specific quantity of a drug or other 

material that is intended to have uniform character and quality, within specified acceptance 

limits, and is produced according to a single manufacturing order during the same cycle of 

manufacture’. Therefore this definition should not impede the adoption of continuous 

processing from a regulatory point of view. The batch size of a continuous process could be 

defined either by a fixed quantity of product or by the amount produced in a fixed time 

interval [4]. 

Over the last decade individual companies have invested over a billion dollars in total in the 

development of continuous manufacturing technologies as they recognized the numerous 

benefits offered by this emerging manufacturing concept. Whereas initially there was limited 

collaboration across the industry, more recently a broader forum was initialized by the FDA 

as it is convinced of the enormous potential of continuous manufacturing. This platform aims 

to promote collaborations and exchange of knowledge between pharmaceutical companies 

and subsequently to facilitate the implementation of continuous manufacturing. With this 

initiative the discussion has shifted from whether continuous manufacturing should be 

implemented to how it is best implemented [5]. The numerous benefits of continuous 

manufacturing listed in Table 1 will be discussed in the following paragraphs. These benefits 

are related to improved product quality, cost-efficiency and reduced environmental impact.  

 



CONTINUOUS MANUFACTURING OF TABLETS IN THE PHARMACEUTICAL INDUSTRY 

7 

Table 1 Benefits of continuous manufacturing within the pharmaceutical industry 

Improved product quality 

Higher level of process robustness and control 
Implementation of PAT 
Elimination of batch-to-batch variability 
Compliance with Quality-by-design principle 
Prevention of drug shortages 
Faster market access of new drugs 

Improved cost-efficiency 

Flexibility 
Elimination of scaling-up 
Faster market access 
Accelerated capacity response in case of changing market needs 
Faster supply chain 
Reduced footprint 
Possibility for transportable manufacturing lines 
Reduction of API consumption during product development 
Less time needed for product development 
Lower investment in containment of highly potent drugs 

Reduced environmental impact 

Reduced solvent use 
Reduced resource consumption 

 

Improved product quality 

During continuous manufacturing intermediates are continuously transferred throughout the 

entire process, whereas in batch manufacturing a unit operation (e.g. drying, blending) can 

be prolonged to obtain an intermediate or product with the desired specifications. Therefore a 

higher level of process robustness and control should be implemented during continuous 

manufacturing to ensure improved product quality. This is achieved by processing under 

strictly controlled steady state conditions in combination with continuous evaluation of critical 

quality attributes via PAT. As intermediates are not isolated from the process flow during 

continuous manufacturing real-time monitoring of process parameters and quality attributes 

of in-process material by PAT is crucial to establish an effective control strategy with 

feedback and feedforward control loops. Linking critical quality attributes of the final drug 

product to process controls and intermediate attributes measurable by PAT probes should 

result in lower product variability. This concept is schematically presented in Figure 2. This is 

opposed to batch manufacturing where a batch is only transferred to the next unit operation 

when the quality of a batch is approved by analysis of isolated samples. Batch-to-batch 

variability can be eliminated by continuous manufacturing as the material is operated in plug 

flow, whereas during batch processing temperature, mass transfer and momentum vary with 

the position within the equipment, resulting in batch-to-batch variability and eventually 

rejection of complete batches [6]. Therefore continuous manufacturing is highly suited to 
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comply with the quality-by-design principle of the ICH Q8 guideline on pharmaceutical 

development. This guideline states that quality should be built into a product through process 

and product understanding and to use this understanding for implementation of effective 

quality control strategies to deliver high-quality products [7]. 

Drug shortages are a significant public health issue affecting the treatment of patients with 

life-threatening diseases such as cancer and infections. In 2011 the FDA reported 251 drug 

shortages in the USA [8]. Improved agility, flexibility and robustness of continuous 

manufacturing could be key in the prevention of these shortages as they mostly start with 

quality manufacturing problems [8]. The suitability of continuous processes for 

implementation of PAT and feedback and feedforward control should ensure a more 

consistent product quality.  Additionally continuous manufacturing techniques allow faster 

response to changing market needs in case of epidemics or emergencies as the time to 

market is significantly reduced by real time release testing of the product, elimination of 

scale-up and faster installation of the typically smaller plants. Faster market access can be 

particularly important for breakthrough therapies (therapies for serious and life-threatening 

diseases that demonstrated substantial improvement over existing therapies in preliminary 

clinical trials). 
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Figure 2. Concept of linking critical quality attributes of the final drug product to process controls and intermediate attributes measurable by PAT probes to improve 
the drug quality [adopted from 64]. 
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Improved cost-efficiency 

Continuous processes offer more flexibility as the production can be increased by prolonging 

the process time. Hence the same equipment can be used for production of small batches 

intended for clinical trials as for production after product approval by the competent 

authorities. In contrast scale-up of batch processes is necessary to transfer a process from 

the development to production stage and to respond to changing market needs. The scale 

factor between different scales is mostly limited to 10 which signifies that 3-5 scale-up steps 

are necessary to transfer a batch process to production scale [6, 9]. Scale-up steps are 

costly and time-consuming as they require different equipment scales and validation must be 

performed at all scales. Therefore elimination of the scale-up bottleneck facilitates market 

access for new drugs and accelerates the capacity response in case of changing market 

needs. In case of increasing demand the process time of continuous processes can easily be 

prolonged while there is no risk of overstock in case of decreasing market needs. 

Currently the supply chains of pharmaceutical products require months as chemical and 

drug-product manufacturing occur at different facilities around the world [10, 11]. Continuous 

manufacturing from API synthesis up to tablet production in one manufacturing site would 

significantly shorten the supply chain. In this regard Vertex expects to produce 100 000 

tablets of Kalydeco®, a new cystic fibrosis drug, in an hour by continuous processing rather 

than in four to six weeks which would be needed at a traditional batch plant, and Novartis 

aims to reduce the total process time of drug manufacturing (raw chemicals to finished drug 

product) from 300 to 10 days through adoption of continuous processing [11, 12]. 

Continuous manufacturing plants typically have a drastically reduced footprint as 

intermediate storage, stockpiling, material handling and off-line quality control are reduced. 

This offers opportunities to setup a continuously operating plant in portable containers which 

can be shipped around the world by boat, helicopter or truck in function of the manufacturing 

needs. This potential was recognized by Pfizer which invested several million dollars on its 

portable continuous miniature and modular (PCMM) line which is a prototype of an 

autonomous and transportable manufacturing line for oral solid dosage development and 

production. The PCMM line has a 60 – 70% lower footprint than a traditional batch 

manufacturing facility [13].  

A significant decrease of API expenses can be achieved in process development studies 

through adoption of continuous processing. A design of experiments (DOE) is often used to 

explore the process space of a new product. A data point of the process space can be 

determined with 1 - 10 kg of product (considering a machine running at 25 kg/h) for a 
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continuous process, depending on the time necessary to reach steady state and the 

residence time distributions of the unit operations. In contrast, 500 – 2000 kg of product is 

required to produce a data point at commercial scale using batch processing [14]. Moreover, 

running full-scale batch processes in the drug development stage is highly time-consuming. 

Thus reducing the amount of API and time needed during drug development is of great 

economic importance, particularly with highly dosed and expensive API’s. 

Containment of potent drugs requires higher equipment investments and safety precautions 

during batch processing as operators handle the material multiple times between each unit 

operations. In contrast, material handling is limited when production is organized in a 

continuous way. 

From the above it is clear that significant economical savings can be realized when switching 

from batch to continuous processing. In this context vice-president of Pfizer claimed as ‘a 

general rule of thumb that a well-designed continuous plant should cost about 40% less than 

a comparable batch plant’. An in-depth economic comparison between an optimized and 

commercially run (by Novartis) batch process and two continuous process (direct 

compression and roller compaction) for the same drug product was made by Schaber et al. 

[15]. The comparison started at the level of an intermediate molecule three steps before final 

synthesis of the API and ended with the product of tablets. Savings of 9 – 40% on the total 

budget for drug production were realized (depending on the price of the API intermediate and 

API loading) when switching from batch to continuous manufacturing [15].  

Reduced environmental footprint 

During primary manufacturing continuous drug synthesis and crystallization could 

significantly reduce solvent use, but also during secondary manufacturing there are 

opportunities to reduce the ecological impact of drug production via continuous 

manufacturing [16, 17]. Recently the resource consumption reduction (chemicals, heating, 

electromechanical power, cleaning agents, waste disposal, compressed air) was calculated 

to be 10.2% when switching Tramacet®, an analgetic drug product commercialized by 

Johnson & Johnson, from fluid bed batch granulation to continuous granulation. However, 

excluding the use of API and excipients (as more or less the same amount of API and 

excipients is needed for both manufacturing modes) a resource consumption reduction of 

34.0% was recorded [18]. 

  



CHAPTER 1 

12 

Challenges 

Despite the many advantages of continuous manufacturing, there are still some challenges 

related to its implementation. Initial investment in the construction of facilities, generation of 

process knowledge and possibly development of new equipment are necessary as batch 

manufacturing is still the prevailing production mode. Therefore a convincing business case 

is necessary to justify the replacement of existing batch technology by continuous 

manufacturing lines, and initially continuous manufacturing will most likely be implemented 

for new API’s rather than for existing drug products. However, the initial investments can be 

compensated during drug development by API savings and the elimination of scaling-up.  

PAT probes were successfully implemented in-line (a PAT probe is directly inserted in the 

product stream), at-line (a sample is removed from the product stream but analyzed in the 

process area) and on-line (automatic sampling and return of the sample to the product 

stream) for e.g. mixing performance after blending (by near infrared (NIR) spectroscopy), 

solid state analysis after wet granulation (by NIR or Raman spectroscopy), particle size 

analysis after wet granulation (by high speed camera or spatial filter velocimetry), moisture 

content after drying (by NIR spectroscopy), particle size distribution during spray drying (by 

laser diffraction), particle size analysis after milling (by focused beam reflectance 

measurement) and content uniformity of tablets (by NIR spectroscopy) [19]. Nevertheless 

interfaces between PAT probes and process remain challenging. Determination of the 

location of the sensor to achieve representative sampling and minimization of the influence of 

the probe on the process are important issues. Systems with purging gases or mechanical 

removal of material disturbing the measurements to solve probe fouling were therefore 

developed. 

There are also some other technical challenges and issues that require further development 

and investigation such as the development of in-line tests for friability, disintegration and 

dissolution, minimization of the start-up and shut-down phases and build-up of material 

during long runs (e.g. along the granulator barrel).  

Regulatory uncertainty was long perceived as a major hurdle to implement continuous 

manufacturing, but over the past few years the regulatory authorities (especially the FDA) 

expressed their preference for switching to continuous manufacturing. Early and frequent 

discussions with the FDA are encouraged before implementation to avoid that the choice for 

continuous manufacturing would delay the regulatory approval [4, 20]. Although the FDA and 

European Medicine Agency (EMA) are open for implementation of continuous processes, 

regulatory acceptance of continuous processes by other competent authorities is unclear. 
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Additionally, the pharmaceutical industry itself is a risk-aversed and conservative industry 

that is sceptic towards novel continuous processing as there is limited experience with long-

term routine manufacturing.  

Although few challenges remain they appear surmountable and are clearly outweighed by 

the advantages continuous manufacturing offers. This was recognized by several big 

pharmaceutical companies with e.g. Johnson and Johnson aiming to manufacture 70% of its 

highest-volume products continuously within 7 years from now [12].  
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CONTINUOUS MANUFACTURING TECHNIQUES FOR PRODUCTION OF TABLETS 

The full potential of continuous manufacturing will only be realized by coupling the primary 

(API production) and secondary (production of final dosage form) manufacturing steps in a 

continuous manufacturing train. Concerning primary manufacturing, several research groups 

studied continuous API synthesis and crystallization [16, 17, 21, 22, 23, 24, 25]. However, 

the discussion in this thesis is focused on secondary manufacturing of tablets. Tablets are 

the most popular dosage form for patients as well as manufacturers because of the 

convenience of administration, accurate dosing, ease of manufacturing and low costs. 

Additionally, they exhibit improved product stability in comparison to liquids, tamper-

proofness in comparison to capsules and safety in comparison to parenterals [26].  

The preferred tablet manufacturing method is direct compression where tablets are 

compressed directly from a powder blend of API and suitable excipients without prior 

granulation steps. The simplicity of this method and absence of water during processing is 

attractive to manufacturers [26]. Moreover, it is an inherently continuous process and the 

blending and feeding steps preceding tableting can also be operated in a continuous way 

[27, 28, 29]. These steps were incorporated in the ConsiGmaTM Continuous Direct 

Compression line (GEA Pharma Systems) which is an integrated continuous manufacturing 

platform for direct compression of tablets. However, it is estimated that only 20% of 

pharmaceutical ingredients are suited for direct compression [26]. The other materials exhibit 

insufficient flowability, tabletability and homogeneity for the production of tablets by direct 

compression [26, 30]. Excellent flowability is required to ensure uniform die filling during 

high-speed tableting. Homogeneity of the powder mix to be tableted is essential to avoid 

content uniformity issues. Finally, powders need to exhibit sufficient binding potential, by 

plastic deformation or fragmentation, for successful tableting. Powder agglomeration 

techniques such as granulation and spray drying can overcome issues related to flowability, 

tabletability and homogeneity, and can deliver agglomerates suitable for tableting.  

Granulation 

Granulation can be performed by wet or dry granulation techniques. During roller compaction 

a powder mixture is compacted between the compactor’s rolls into ribbon-shaped compacts 

that are finally milled to obtain granules suitable for tableting. A schematic of the roller 

compaction process is shown in Figure 3 [31]. 
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Figure 3. Schematic of the roller compaction process [adopted from 31]. 

This technique is inherently continuous and is therefore ultimately suited for implementation 

in a fully continuous tablet manufacturing line. Additionally, roller compaction is attractive for 

granulation of moisture and heat sensitive API’s. However, absence of water also causes the 

main limitation of the process; lack of binding potential. After all, bonding between particles 

during roller compaction exclusively depends on the compression properties of the material, 

whereas during wet granulation capillary forces and formation of solid bridges after 

crystallization also contribute to the granule formation. Additionally roller compaction was 

linked to inferior tablet hardness after tableting [32, 33, 34]. Thus the potential of dry 

granulation is limited to powders with excellent tabletability and formulators often need to 

resort to wet granulation techniques. 

Wet granulation has mostly been applied in batch-wise manner using fluid bed or high shear 

granulators. During fluid bed granulation granules are formed by spraying a binder solution 

on top of a powder bed that is fluidized by conditioned air (Figure 4).  
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Figure 4. Schematic of fluid bed granulation [adopted from 40]. 

High shear granulators consist of a jacketed mixing bowl, an impeller and a chopper (Figure 

5). The process starts with mixing of the dry powder ingredients by an impeller. After several 

minutes the granulation liquid is added, and the dry powder and granulation liquid are mixed 

by the impeller, while the chopper breaks down the wet mass to produce granules. Finally 

the wet granules are transferred from the granulator bowl and dried via fluid bed drying or 

tray drying. The desired granule density and friability can determine the choice of granulation 

process as granules produced via high shear granulation are denser but less friable than 

granules produced via fluid bed granulation [35]. As discussed in the first part of this chapter, 

batch manufacturing is not cost-efficient in comparison to continuous granulation and batch-

to-batch variability is often high. Therefore traditional batch high shear and fluid bed 

processes were modified for continuous operation.  
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Figure 5. Batch high shear granulator [Courtesy GEA Pharma Systems]. 

Horizontal fluid beds (e.g. Glatt GF series, Niro Contipharm granulator, Heinen drying 

technologies) consist of different functional zones where feeding, mixing, spraying, drying, 

cooling and discharging are performed (Figure 6). The air inlet temperature and air flow in 

these zones are independently regulated. Although popular in the food industry for 

manufacturing of instant products (e.g. instant coffee, milk powder, soup), horizontal fluid 

beds are generally not applicable in the pharmaceutical industry due to the long residence 

time of material and lack of plug-flow in the granulator [36, 37, 38]. Short and controllable 

residence times are of utmost importance during granulation of pharmaceutical products to 

avoid product degradation.  
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Figure 6. Horizontal continuous fluid bed granulator [adopted from 40]. 

In spouted bed granulators (Figure 7) fluidizing air enters the granulation chamber at high 

velocity through two longitudinal slots and spraying nozzles are positioned between these 

slots. Forward particle movement is obtained by applying an angled air flow. This design 

results in homogeneous wetting, fluidization of difficult-to-fluidize materials, elimination of 

lump formation and a short residence time, according to the manufacturer [39, 40]. 

  

Figure 7. Spouted bed granulator [adopted from 40]. 
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Glatt also developed another continuous fluid bed granulator based on the traditional batch 

granulator design. In the AGT system (Figure 8) granules exit the system via an outlet tube 

positioned in the middle of the bottom screen while starting material is fluidized and wetted in 

the granulation chamber. A classifying air stream through the outlet tube ensures that only 

larger particles can be discharged and that fine particles are returned to the granulation 

chamber. A major drawback of this system is again the long and uncontrollable residence 

time of granules as the concept is not based on plug-flow [37, 40]. Additionally, strict control 

of the powder feeding system is required as the amount of starting material added to the 

granulation chamber must match the amount of discharged granules to avoid varying 

powder/liquid ratios as this would result in varying granule characteristics [37]. 

 

Figure 8. AGT system for continuous fluid bed granulation [adopted from 40]. 

Traditional batch high shear granulators were also modified for continuous operation (e.g. 

Böhle Easy FlowTM system) by continuous addition of powder and granulation liquid to the 

granulation chamber while granules are simultaneously discharged by a chopper [37, 38]. 

This principle is illustrated in Figure 9 [41]. 



CHAPTER 1 

20 

Figure 9. Traditional high shear granulator modified for continuous operation [adopted from 41]. 

Next the granules are continuously fed into a rotating cylindrical dryer [37]. Although the 

concept is promising, it was only described in one research paper [41]. Another technique for 

continuous high shear granulation, ring layer granulation, was launched by Lödige 

(CoriMixTM). In the process chamber of the ring layer unit mixer blades are rotating on a 

central axis (Figure 10). High speed rotation of the blades results in formation of a concentric 

annular layer of product in the process chamber. The granulation liquid is sprayed via one or 

multiple nozzles onto the annular layer. According to the manufacturer, the design ensures 

plug-flow and the residence time can be influenced by the number of revolutions, geometry 

and adjustment of the mixing tools. 
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Figure 10. Ring layer unit for continuous high shear granulation [adopted from Loedige.de]. 

A quasi-continuous granulation unit, combining high shear and fluid bed technology, was 

developed by Glatt (Glatt MulticellTM) in co-operation with Roche and the University of Basel 

(Figure 11). In this quasi-continuous approach, discrete amounts of materials (mini-batches) 

pass sequentially through units of blending, granulation, drying and conditioning [37, 42, 43]. 

The production line consists of a high shear granulator connected to a series of fluid bed 

dryers. After granulation the first mini-batch is transferred to the first fluid bed dryer for the 

initial drying phase at high temperature, then to a second fluid bed dryer for further drying at 

low temperature and finally to a third fluid bed dryer for conditioning. After transport of the 

first mini-batch to the first fluid bed dryer, a second mini-batch is loaded into the granulator 

chamber and this mini-batch is then transferred to the first fluid bed dryer after transfer of the 

first mini-batch to the second fluid bed dryer. Mini-batches are granulated and transferred to 

a series of the fluid bed dryers until the required amount of material is produced. This 

process is not fully continuous as there is no constant output of material in function of time. 

However, it exhibits some advantages associated with continuous manufacturing such as 

elimination of scale-up, small footprint, less labor-intensive, improved output and suitability 

for implementation of PAT [42]. However the full potential of continuous manufacturing can 

only be achieved by implementation of fully continuous ‘from-powder-to-tablet’ production 

lines.  
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Figure 11. Glatt Multicell
TM

 for quasi-continuous granulation [adopted from 65]. 

Twin screw granulation is a novel and promising granulation technique as it ensures plug-

flow during processing, whereas the continuous granulation techniques discussed earlier 

often suffered from long and uncontrollable residence times. This technique is based on the 

extrusion technology, and was first described by Gamlen and Eardley (1986) and Lindberg et 

al. (1988) for the production of paracetamol and effervescent granules, respectively [37]. 

Modifications to this setup were made by Kleinebudde and Lindner (1993) and Keleb et al. 

(2004) through installation of a perforated die and removal of the die, respectively [44, 45]. 

Removal of the die block dramatically reduced the pressure build up at the end of the 

granulator barrel and avoided compression of the granules [45]. This resulted in less dense 

granules, in a higher process yield (as no lumps were produced) and in a higher granulation 

capacity (as a higher total input rate was possible) [45]. Over recent years multiple research 

groups studied the influence of process parameters (e.g. screw speed, barrel temperature, 

throughput, screw configuration) and formulation parameters (e.g. liquid-to-solid ratio, binder 

addition, particle size of the starting material, hydrophilicity of the excipients) on critical 

quality attributes of granules [46, 47]. Additionally, PAT probes were successfully 

implemented to monitor the moisture content, particle size and API content of granules 

exiting the granulator [19]. Continuous melt granulation using a modified twin-screw 

granulator is also possible and eliminates drying of the wet granules but requires cooling 

before further processing of the granules [48].  
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Integrated ‘from-powder-to-tablet’ manufacturing lines including continuous 

granulation technology 

Recognizing the potential of continuous manufacturing for pharmaceuticals, equipment 

suppliers (e.g. GEA Pharma Systems, Glatt, Lödige, Böhle) have developed integrated ‘from-

powder-to-tablet’ continuous production lines. GEA Pharma Systems was one of the first 

equipment manufacturers to commercialize such an integrated production line, the 

ConsiGmaTM Continuous Tableting Line (Figure 12).  

 

Figure 12. Consigma
TM

 continuous tableting line with: 1. Liquid and powder dosing via loss-in-weight-
feeders; 2. Twin screw granulation unit, 3. Segmented fluid bed dryer, 4. Granule evaluation unit, 5. 

Blender for external phase, 6. Tablet press [Courtesy GEA Pharma Systems]. 

Following unit operations can be distinguished in the ConsiGmaTM-25 Continuous Tableting 

Line: liquid and powder dosing via loss-in-weight feeders, twin screw granulation unit, 

segmented fluid bed dryer, granule evaluation unit, blender for external phase and tablet 

press (Figure 12). These units will be discussed below. 

- Liquid and powder dosing via loss-in-weight feeders: Up to 4 loss-in-weight feeders can be 

installed in connection with an in-line blender, dosing the powder mixture to the granulator 

barrel. The granulation liquid is added by two peristaltic pumps via two tubes with nozzles 

mounted in the granulator barrel. The liquid feed rate is also monitored by the loss-in-weight 

principle.  
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- Twin screw granulation unit: The granulation unit comprises a jacketed granulator barrel 

with two co-rotating screws. The granulator barrel consists of three zones: (1) a feed zone 

where powder is fed by one or multiple feeders and transported by conveying elements, (2) a 

working zone where granulation liquid is added to the barrel and mixed with the powder by 

kneading elements and (3) a discharge zone where the granules exit the barrel and are 

transported to the fluid bed dryer (Figure 13).  

 

Figure 13. Granulator barrel of a ConsiGma
TM

 Continuous Tableting Line [courtesy GEA Pharma 
Systems]. 

A temperature sensor is integrated in the working zone of the barrel and linked to a feedback 

control system which regulates the temperature in the barrel jacket and compensates for 

temperature increase during the process due to friction. A torque-gauge is built in for 

measurement of the torque during processing. The granulator screws are modular and 

typically consist of conveying elements, one or two blocks of kneading elements in the 

working zone, followed by a conveying zone and finally two small kneading elements at the 

end of the screw (Figure 14).  

 

Figure 14. Granulator screws of a ConsiGma
TM

 continuous tableting line, with 2 kneading blocks of 6 
kneading elements in the working zone [courtesy GEA Pharma Systems]. 
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Van Melkebeke et al. demonstrated that this standard screw configuration resulted in high 

process yields [49]. However, alternative screw elements for improvement of the process 

yield were recently introduced [50, 51]. Granule characteristics such as size distribution, 

density, friability and shape are affected by the granulation parameters (screw speed, barrel 

temperature, liquid feed rate, throughput, screw configuration). After granulation the granules 

are transported gravimetrically or pneumatically to a fluid bed dryer.  

- Six-segmented fluid bed dryer (Figure 15):  Drying is based on traditional fluid bed 

technology. However to limit the residence time distribution, the fluid bed dryer is divided in 6 

identical drying cells. After a first cell is filled for a set filling time, wet granules are filled into 

the next cell while the granules in the first cell are drying. The dry granules are discharged 

from the drying cell after a set drying time. This drying approach is quasi-continuous, 

signifying that plug flow is not maintained during drying, as mini-batches are discharged from 

the fluid bed dryer. However, quasi-continuous drying can also be advantageous in case of a 

disturbance in the process since individual mini-batch(es) containing the affected material 

can be discarded.   

- Granule evaluation unit: The granules can be milled by an integrated ComilTM (Quadro) 

system when elimination of oversized granules is required. Additionally, PAT probes for 

particle size analysis, residual moisture content or content uniformity can be implemented in 

this unit.  

 

Figure 15. Six-segmented fluid bed dryer of the ConsiGma
TM

-25 line (left: side view, right: bottom 
view) [courtesy GEA Pharma Systems]. 



CHAPTER 1 

26 

- Blender for external phase: The granules are loaded into a continuous blender and mixed 

with lubricant using a ribbon blender. 

- Tablet press: The final blend of granules is gravimetrically added to the hopper of the tablet 

press and compressed to tablets. Optionally, a continuous tablet coater can be implemented 

as final unit operation in the continuous manufacturing line. 

The stability and repeatability of the ConsiGmaTM-25 continuous tableting line was evaluated 

by Vercruysse et al. during three consecutive runs of 5h using the entire line [52]. Although 

steady-state level of torque, barrel temperature, mill screen temperature and differential 

pressure over the filters was only reached after a stabilization period, the critical quality 

attributes of granules and tablets were within the specifications during the entire run. 

Additionally, the three runs were highly repeatable. Therefore the ConsiGmaTM-25 

Continuous Tableting Line can be considered as a stable and repeatable system for the 

continuous production of granules and tablets [52]. Nevertheless, even longer runs are 

necessary to validate the process stability over a period of days and weeks.  

For research and development purposes a ConsiGmaTM-1, a mobile and smaller version of 

the ConsiGmaTM-25 line, was developed. The ConsiGmaTM-1 consists of an identical 

granulator barrel as the ConsiGmaTM-25 line and one segment of the 6-segmented fluid bed 

dryer incorporated in the ConsiGmaTM-25 line (Figure 16). As the fluid bed dryer of the 

ConsiGmaTM-1 consists of only one dryer cell, drying is performed batch wise. Nevertheless, 

this equipment allows performing short granulation experiments during early phases of 

research and development. 



CONTINUOUS MANUFACTURING OF TABLETS IN THE PHARMACEUTICAL INDUSTRY 

27 

 

Figure 16. ConsiGma
TM

-1 with: 1. Powder dosing, 2. Granulator barrel, 3. Fluid bed dryer [courtesy 
GEA Pharma Systems]. 

Similar lines (consisting of a twin screw granulation unit, fluid bed dryer and tablet press) for 

continuous production of tablets (MODCOSTM by Glatt in collaboration with Thermo Fisher 

Scientific and Fette and Böhle Conti Granulator BCG by Böhle in collaboration with Korsch) 

were recently introduced by Glatt and Böhle.   

Lödige designed a continuous line for manufacturing of granules (GranuconTM) including a 

ringlayer mixer and a horizontal fluid bed dryer (the integrated setup is shown in Figure 17). 

Recognizing the wide retention times continuous fluid bed dryers suffer from, Lödige 

implemented a screw in the dryer to obtain forced conveyance of granules and consequently 

to narrow down the residence time distribution of granules in the dryer.  

 

Figure 17. Granucon
TM

 continuous manufacturing line by Lödige [adopted from Loedige.de]. 
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Spray drying 

Spray drying is a continuous process which involves spraying of a liquid feed (solutions, 

suspensions or emulsions) in a hot drying medium to convert it into a dry product. It is widely 

applied across the food (e.g. production of baby food, milk, instant coffee, soup), chemical 

(e.g. production of catalysts, detergents, pigments) and pharmaceutical industry [53, 54].  

A schematic overview of the spray drying process is shown in Figure 18. A liquid feed is 

pumped to a drying chamber and atomized in a constant flow of hot air. Consequently the 

liquid phase of the droplets evaporates, yielding dry powder particles. After exit from the 

drying chamber, the powder is gravimetrically separated from the air in a cyclone where the 

particles sediment in a container.  

Figure 18. Schematic overview of the spray drying process [courtesy GEA Pharma Systems]. 

Different spray drying setups can be distinguished depending on the atomization mode, on 

the direction of the air and droplet/particle flow and on the exhaust of the solvent. Firstly, 

different atomization designs are available, differing in the energy (centrifugal, kinetic, 

pressure or sonic energy) used for creation of droplets. The droplet and particle size 

generated depend on the atomizer type with a pressure and sonic nozzle generating the 

largest and smallest particles, respectively [54, 55]. However, with all atomizer types the 

particle size can be reduced by adding more atomization energy [55]. Secondly, depending 

on the flow direction of drying air and atomized droplets, co-current, counter-current and 
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mixed flow setups are distinguished. In a co-current flow setup the atomized drops and 

drying air pass in the same direction through the drying chamber. This way the largest drops 

are exposed to the hottest air while dry particles are exposed to cooler air at the bottom of 

the drying chamber. Therefore this setup is ideally suited for spray drying of heat sensitive 

components. In a counter-current flow setup the atomized drops and drying air move in the 

opposite direction through the drying chamber. This setup induces particle agglomeration, 

resulting in larger and better flowing particles, but is not applicable for heat sensitive 

components as dry particles are exposed to the hottest air in the bottom of the drying 

chamber. In a mixed flow setup co- and counter-current flows are combined. Free flowing 

particles can be produced with this setup but it is not suited for heat sensitive components. 

Thirdly, spray drying systems can operate in open and closed loop. In open loop spray dryers 

the drying air is drawn from the atmosphere and exhausted back into the atmosphere after 

extensive filtering. This setup is used for spray drying of aqueous solutions. In closed loop 

spray dryers an inert drying gas (e.g. nitrogen) is used to allow processing of oxidizable 

products and flammable solvents. A solvent vapor condenser is implemented in this setup to 

recycle the solvent and inert gas. 

The particle size and flowability of spray dried particles are affected by the spray drying 

setup. Use of a pressure nozzle and a counter-current setup, for example, results in large 

and good flowing particles as large droplets are created and agglomeration is favored, 

respectively. However, spray dried particles are typically smaller than 200 µm [55]. If larger 

and better flowing particles are required, spray dryers can be equipped with multiple spraying 

nozzles, a fines return system, an integrated fluid bed dryer or combinations thereof to 

induce agglomeration of particles (Figure 19). These agglomerated particles exhibit a better 

flowability and have a porous structure with instant properties (good wettability, dispersibility, 

solubility) which is desirable for uniform dosing and use as instant product. Use of multiple 

nozzles induces forced primary agglomeration as the nozzles are positioned to create 

overlapping spray zones and collisions between droplets. Alternatively, fines collected after a 

cyclone or bag filter can be recycled to the atomization zone to induce forced secondary 

agglomeration. Agglomerated particles consisting of many particles are created through 

collisions between the returned fines and wet atomized drops. Finally, integration of a fluid 

bed dryer in the bottom of the spray dryer also promotes agglomeration as small fluidized 

particles are returned into the drying chamber and collide with partially dry particles. Although 

fines recycling and integration of a fluid bed are often applied in the food industry, these 

approaches for particle agglomeration are not applicable in pharmaceutical processing as dry 

particles are exposed to high temperatures in the atomization zone and their residence time 

is prolonged [56].  



CHAPTER 1 

30 

 

Figure 19. Schematic overview of a spray dryer setup with modifications for particle agglomeration 
(multiple atomization nozzles, fines recycling, integrated fluid bed) with: 1. Atomization and drying of 
droplets, 2. Fluidization provoking collisions between mois and dry particles, 3. Collisions of fines and 
partially dry particles, 4. Exhaust of non-agglomerated material from the drying chamber [adopted from 
54]. 

Spray drying is an inherently continuous, fast and robust process that can be run for months 

without interruption [55]. It is used during primary and secondary drug manufacturing. After 

API synthesis and crystallization, spray drying can be applied to obtain an API in powder 

form for further processing into a solid dosage form. During secondary manufacturing spray 

drying is applied to improve the tabletability of powders, to increase the bioavailability of an 

API, for encapsulation and for production of dry powder aerosols [53, 54].  

Improved tabletability of excipients as well as API’s can be achieved via spray drying. Spray 

dried lactose is a popular excipient for direct compression as it exhibits excellent flowability 

and tabletability. It is produced through spray drying of a suspension of lactose crystals and 

consists of a mixture of α-lactose monohydrate and amorphous lactose exhibiting brittle 

fracture and plastic deformation upon compaction, respectively. The combination of 

amorphous and crystalline lactose with different compaction mechanisms results in better 

tabletability and flowability of spray dried lactose in comparison to α-lactose monohydrate 
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[26, 57]. Microcrystalline cellulose is another frequently used direct compression excipient 

that is spray dried during to yield porous microcrystals with good tabletability [26]. However, 

different materials are often coprocessed via spray drying to obtain a product with improved 

properties compared to a physical mixture of the individual components. During coprocessing 

the physical properties of the product are modified without altering the chemical structure 

[26].  Several spray dried coprocessed excipients for direct compression are available: e.g. 

Cellactose® (α-lactose monohydrate and powdered cellulose), Starlac® (α-lactose 

monohydrate and native maize starch), Combilac® (α-lactose monohydrate, microcrystalline 

cellulose and native corn starch), Ludipress® (lactose monohydrate, polyvinylpyrrolidone 

K30, crospovidone) and Prosolv® SMCC (microcrystalline cellulose and silicon dioxide). 

Coprocessing of excipients and a poorly compressible API (e.g. paracetamol, ibuprofen, 

cimetidine) via spray drying can also improve the tabletability of the formulation [58, 59].  

The physical properties of spray dried particles, e.g. size, shape, moisture content, density, 

can be controlled through selection of the spray drying setup and process parameters [55]. 

These particle properties are important for clinical efficacy of pulmonary and nasally 

administered dry powder aerosols as they affect the site of drug deposition in the airways or 

lungs. Therefore spray drying is ideally suited for the production of dry powder aerosols. 

Examples of dry powder aerosols produced by spray drying include a vaccine for mass 

vaccination of poultry and antibiotics for treatment of cystic fibrosis, chronic obstructive 

pulmonary disease and tuberculosis [60, 61, 62, 63]. The solid state of spray dried particles 

can also be controlled by the process parameters. Amorphous products are often formed 

during fast dehydration during the spray drying process [53]. The sticky nature of amorphous 

particles present during spray drying can favor agglomeration by acting as a binder between 

particles and result in good flowing, highly wettable particles. Turchiuli et al. and Williams et 

al. reported on agglomeration of maltodextrin due to the sticky nature of amorphous 

maltodextrin and lactose, respectively [56, 66]. However, amorphization during the spray 

drying process is not always desired as it can result in stability issues.  
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Abstract 

A continuous crystal coating method was developed to improve both flowability and 

tabletability of powders. The method includes the introduction of solid, dry particles into an 

atomized spray during spray drying in order to coat and agglomerate individual particles. 

Paracetamol was used as a model drug as it exhibits poor flowability and high capping 

tendency upon compaction. The particle size enlargement and flowability was evaluated by 

the mean median particle size and flow index of the resulting powders. The crystal coating 

coprocessing method was successful for the production of powders containing 75% 

paracetamol with excellent tableting properties. However, the extent of agglomeration 

achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in 

manual mode showed excellent compression properties without capping tendency. A 

formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile 

strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets 

compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was 

attributed to the coating of paracetamol crystals with amorphous lactose and PVP through 

coprocessing and the presence of brittle and plastic components in the formulation. The 

coprocessing method was also successfully applied for the production of directly 

compressible lactose showing improved tensile strength and friability in comparison to a 

spray dried direct compression lactose grade. 
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INTRODUCTION 

Tablets are the most popular dosage form for patients as well as manufacturers because of 

the convenience of administration, accurate dosing, ease of manufacturing, product stability 

in comparison to liquids and tamper-proofness in comparison to capsules [1]. Direct 

compression is the preferred manufacturing method for tablets because of its simplicity, 

continuous nature and related financial benefits. However, it is estimated that less than 20% 

of pharmaceutical powders can be directly compressed into tablets as powders must have 

appropriate flowability, compressibility and homogeneity to be suited for direct compression 

[1, 2].  

To improve these properties coprocessing of materials is widely applied for the preparation of 

powder mixtures enabling direct compression of a drug substance. During coprocessing two 

or more components are combined by a specific process, yielding a material with superior 

properties compared to physical mixtures of their components, without modification of the 

chemical structure of the ingredients [1, 3].  

In this work we aimed to improve both flowability and tabletability of powders by the 

development of a continuous crystal coating method. The manufacturing method is based on 

the introduction of dry powder particles into an atomized spray during spray drying. The 

resulting powders were microscopically evaluated and characterized through particle size 

analysis, flowability testing and tableting experiments. It was first investigated if the method 

allowed to produce paracetamol tablets without capping tendency via coating of paracetamol 

particles with spray dried lactose and polyvinylpyrrolidone (PVP). The flowability and 

tabletability of the resulting powders was assessed and compared to the characteristics of 

the corresponding physical mixtures. In a second part, it was investigated if the method is 

also applicable for the production of direct compression lactose. 

MATERIALS AND METHODS 

Materials 

Paracetamol (semi fine) was received from Mallinckrodt Chemical (Hazelwood, USA). Milled 

α-lactose monohydrate (Pharmatose® 200M) was purchased from Caldic (Hemiksem, 

Belgium).  A direct compression grade of spray dried lactose (DCL 11) was purchased from 

DFE Pharma (Goch, Germany). Silicon dioxide and magnesium stearate (Fagron, Waregem, 

Belgium) were used as glidant and lubricant, respectively. PVP and Crospovidone® were 

used as binder and desintegrant, respectively and were received from BASF (Burgbernheim, 



CHAPTER 2 

42 

Germany). Miglyol (Cremer Oleo, Witten, Germany) with 0.2% polysorbate 80 (Fagron, 

Waregem, Belgium) was used as dispersant for laser diffraction measurements. 

Preparation of the coprocessed powders 

In a first set of experiments, aqueous solutions of lactose and PVP (16% and 8% w/w lactose 

with lactose/PVP ratio 4/1) and of pure PVP (3% w/w) were prepared. These solutions were 

fed to the fountain two-fluid nozzle (nozzle orifice 2.6 mm) of a production-scale spray dryer 

(type 6.3-SD, GEA Niro, Copenhagen, Denmark) by a peristaltic pump (type 520U, Watson 

Marlow, Cornwall, UK) and marprene tubing (inside diameter 4.8 mm). The spray dryer 

operated in counter-current mode. The dimensions of the spray dryer were 2.0 m cylindrical 

height with a diameter of 3.5 m and 60° conical base. The main powder fraction was 

collected in a reservoir under the drying chamber and fines were collected in a reservoir 

attached to a cyclone. The solutions were spray dried according to the following parameters: 

feed rate: 100 g/min, inlet drying air temperature: 240 °C, outlet drying air temperature: 112 

°C, drying gas rate: 210 kg/h, atomizing air pressure: 0.5 bar. Paracetamol was preblended 

with 0.05% silicon dioxide and introduced during the spray drying process into the cone of 

the drying chamber via an in-house designed setup shown in Figure 1. This setup consists of 

a vibratory feeder (DR 100, Retsch, Haan, Germany) presenting the powder to a Venturi-

based system that introduces the powder through two small tubes (internal diameter 7 mm) 

into the dryer. The tubes were positioned close to the nozzle and were oriented to directly 

inject the solid particles in the spray pattern of the atomized drops.   
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Figure 1. Schematic of the setup that allows to directly inject solid particles into the atomization zone 
of a two-fluid nozzle positioned in the drying chamber of a spray dryer. 1. Wall of the drying chamber, 

2. Two-fluid nozzle, 3. Tubes for dry powder injection into the spray zone. 

The composition of the spray dried solutions, the feed rate of solid particle introduction and 

the final composition of the coprocessed powders (fraction spray dried lactose, fraction dry 

inserted paracetamol, content PVP) is given in Table 1.  

Formulation 
Composition of the 

spray dried solution  

Feed rate solid 

particles 

(g/min) 

Final composition of the 

coprocessed powders (%) 

Lactose 

(%w/w) 

PVP 

(%w/w) 

Lactose PVP Para-

cetamol 

Lac/PVP/par(1) 16 4 60 20 5 75 

Lac/PVP/par(2) 8 2 30 20 5 75 

PVP/par - 3 49 - 5 95 

Table 1. Composition of the spray dried solution, feed rate of the solid particles introduced into the 
spray drying chamber and final composition of the coprocessed paracetamol powders. 

In a second set of experiments, aqueous solutions of lactose (2.5%, 5%, 10% and 16% w/w) 

and PVP (0.85%, 1%, 1.25%, 0.8% w/w, respectively) and of pure PVP (0.8% w/w) were 

spray dried, while lactose crystals were introduced via the same procedure as described 

above. The composition of the solutions, feed rate of solid particle introduction and the final 

composition of these coprocessed powders are listed in Table 2.  



CHAPTER 2 

44 

Formulation Composition of 

spray dried solution  

Feed rate solid 

particle 

introduction 

(g/min) 

Final composition of the 

coprocessed powders (%) 

 

PVP 

(%w/w) 

 

Lactose 

(%w/w) 

Spray 

dried 

lactose 

Dry 

introduced 

lactose 

PVP 

1 0.8 0 14 0 95 5 

2 0.85 2.5 14 14 81 5 

3 1 5 14 25 70 5 

4 1.25 10 14 40 55 5 

5 0.8 16 - 95 - 5 

Table 2. Composition of the spray dried solution, feed rate of the solid particles introduced in the spray 
drying chamber (g/min) and final composition of the coprocessed lactose powders. 

Tableting 

The coprocessed powders, physical mixtures and reference lactose (spray dried α-lactose 

monohydrate for direct compression) were blended (Turbula mixer type T2F, W.A. Bachofen 

Maschinenfabrik, Basel, Switzerland) with 5% Crospovidon® and 0.5% magnesium stearate.  

Tablets (500 ± 5 mg) of the coprocessed powders with paracetamol and of the corresponding 

physical mixtures were compressed on a rotary tablet press (MODULTM P, GEA Pharma 

Systems, Courtoy, Halle, Belgium) equipped with a single round concave Euro B punch of 12 

mm diameter at a tableting speed of 5 rpm. The tablets were compressed at 7 different main 

compression pressures: 31, 61, 104, 146, 188, 237 and 288 MPa after precompression at 18 

MPa. The friability was tested on tablets compressed at 188 MPa.  

The coprocessed powders consisting of lactose and PVP and the lactose reference were 

compressed (1g ± 10 mg) on an excentric tablet press (Type EKO, Korsch, Berlin, Germany) 

equipped with 16.0 mm edged punches at a compression pressure of 132 MPa.  
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Material characterization 

Morphology 

The powders were examined by scanning electron microscopy (SEM) (JEOL JSM-5600-LV, 

JEOL Ltd., Zaventem, Belgium) after sputtering with a platinum coating using the JEOL JFC 

1300 Autofine Coater (JEOL Ltd., Zaventem, Belgium) to improve the electron conductivity of 

the samples. 

Loss-on-drying (LOD) 

The residual moisture content of the coprocessed powders was determined via LOD using a 

moisture analyzer (Mettler LP16, Mettler-Toledo, Zaventem, Belgium) including an infrared 

dryer and a balance. A sample of 5 g was dried at 105 °C until the weight was constant for 

30 s. 

Particle size analysis 

The particle size distribution of the paracetamol starting material and coprocessed powders 

was measured in triplicate by laser diffraction (Mastersizer S long bench, Malvern 

Instruments, Worcestershire, UK). The wet dispersion technique was applied using the 

300RF lens (Malvern Instruments, Worcestershire, UK). The powders were dispersed in a 

solution of 0.2% Tween 80 in Miglyol 812 and subsequently vortexed and sonicated in order 

to eliminate agglomerates. The results are expressed as volume diameters. 

Ring shear testing 

The flowability expressed as the flowability index (ffc) of the powders was measured in 

triplicate by ring shear testing (Type RST-XS, Dietmar Schulze Schüttgutmesstechnik, 

Wolfenbuttel, Germany). The powders were tested using three consolidation stresses, 400, 

600 and 800 Pa, and a preshear of 1000 Pa. 

Solid state characterization 

Crystallinity was analyzed using X-ray diffraction (XRD) and modulated differential scanning 

calorimetry (MDSC) on the pure compounds, physical mixtures and coprocessed samples. 

XRD was performed on a CuKα diffractor (ARLTM X’TRA, Thermo Fischer Scientific, 

Waltham, United States) with a voltage of 40mV in the angular range of 8°<2θ<60° using a 

step scan mode with step size of 0.02° and counting time of 1s/step. 
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MDSC was performed using a Q2000 differential scanning calorimeter (TA Instruments, 

Zellik, Belgium) equipped with a refrigerated cooling system. Samples (5-10 mg) were 

accurately weighed and run in Tzero pans (TA Instruments, Zellik, Belgium). They were 

cooled to -20 °C and subsequently heated up to 220 °C with a heating rate of 2 °C/min. The 

modulation time and amplitude were set at 60 s and 0.318 °C, respectively. Dry nitrogen was 

used as a purge gas through the cell at a flow rate of 50 ml/min. The results were analyzed 

using TA Instruments Universal Analysis software. 

Tablet characterization 

The hardness, thickness and diameter of the tablets (n=10) were determined using a 

hardness tester (Type HT 10, Sotax, Basel, Switzerland) and the tensile strength (T) of the 

tablets was calculated according to the formula of Fell and Newton [4]: 

T = 2F/πdt 

Where F, d and t denote the diametral crushing force, tablet diameter and tablet thickness, 

respectively.  

The tablet friability was determined using a friabilator (PTFE, Pharma Test, Hainburg, 

Germany) as described in the European Pharmacopea at a speed of 25 rpm for 4 min. The 

percentage weight loss was expressed as the tablet friability.  

RESULTS AND DISCUSSION 

Lack of flowability and tabletability often constitutes a problem for the production of tablets. 

Turchiuli et al. reported particle size enlargement due to forced secondary agglomeration 

when part of the spray dried powder was reintroduced into a spray of droplets [5]. They 

attributed the achieved agglomeration to the sticky nature of spray dried maltodextrin acting 

as an amorphous binder between reintroduced particles and drops. Similarly, Williams et al. 

studied the effect of fines recycling on agglomeration of milk powder during spray drying 

aiming to produce a free-flowing, non-dusty and easily dispersable powder [6]. It is known 

that fast evaporation during spray drying can yield amorphous particles and a high content of 

low molecular sugars reduces the glass transition temperature of the spray dried material 

below its product temperature. At this stage a liquid-like state of amorphous material exists, 

which is responsible for cohesion between particles [7]. As uncontrolled recycling of particles 

is not applicable in pharmaceutical industry, we investigated if particle size enlargement and 

as a consequence also improvement of flowability through formation of agglomerates of 
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discrete particles was achievable via injection of solid particles in the atomization zone of a 

spray dryer. 

In a first set of experiments it was investigated if the proposed coprocessing method could 

overcome the poor tableting properties of paracetamol by coating paracetamol crystals with 

spray dried lactose and PVP. PVP was included in the formulation as it is reported to 

increase the physical stability of amorphous lactose [8]. Paracetamol was used as a poorly 

compactable model drug as it has a low flowability and high capping tendency during 

tableting. Moreover, high doses (300 to 1000 mg) are needed for its analgesic and antipyretic 

actions, indicating that a minimal amount of excipients should be added to the formulation to 

minimize the weight of the final dosage form. Approaches to overcome the high capping 

tendency of monoclinic paracetamol include the preparation of a different crystal structure [9, 

10], special crystal habits [11-16], production of partially amorphous particles [17, 18], 

formation of cocrystals [19], granulation with different binder types [20, 21] and coprocessing 

via spray drying and extrusion [22, 23]. As most of these approaches address only the 

tableting issues associated with paracetamol, it was our aim to improve both tabletability and 

flowability of paracetamol through application of the proposed coprocessing method. 

Aqueous solutions of lactose and PVP and pure PVP were spray dried while introducing 

paracetamol crystals in the atomized spray. 

The mean median particle size (d50) of the samples was measured (Table 3) in order to 

evaluate the extent of agglomeration taking place during coprocessing. The d50 of samples 

Lac/PVP/par(1) and (2) were 226.0 and 165.0 µm, respectively, exceeding highly the d50 of 

paracetamol starting material. The composition of these powders is identical but they were 

processed under different conditions. A higher d50 value was obtained by spray drying an 

almost saturated lactose solution (16% w/w) and introducing paracetamol crystals at a higher 

feed rate. Under these conditions the collision probability between particles and droplets is 

higher which induces more agglomeration. Therefore, it appears that forced secondary 

agglomeration is achievable via the proposed coprocessing method as the density of 

particles inside the drying chamber is sufficient to allow interaction between the solid 

particles and the liquid droplets. Despite the differences in d50, all powders were classified as 

cohesive powders based on their ffc value. This is attributed to the short residence time of 

particles in the dryer. In contrast to the food industry where the agglomeration efficiency is 

increased by recycling fines to the process, this way of extending product residence time is 

not desirable in pharmaceutical processing. It is however expected that the extent of 

agglomeration will increase when the process is scaled-up to a production spray dryer. 

Especially when using tall spray drying towers, the residence time of the product will be 
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prolonged [24]. Although in preliminary tests the position of the tubes to inject solid particles 

in the atomization zone was evaluated, the setup is probably also susceptible for 

improvement. Addition of more tubes for particle injection around the spraying nozzle could 

favor the mixing between particles and atomized drops and therefore also the agglomeration 

efficiency. 

 d50 (µm) ± SD ffc ± SD Friability (%) 

Coprocessed 

powder 

Physical 

mixture 

Lac/PVP/par(1) 226.0 ± 4.2 2.9 ± 0.1 0.6 21.8 

Lac/PVP/par(2) 165.0 ± 4.0 2.9 ± 0.2 0.6 21.8 

PVP/par 167.4 ± 2.6 2.6 ± 0.2 4.7 - (*) 

Paracetamol starting 

material 

66.5 ± 0.8 1.3 ± 0.1 - (*) - (*) 

(*) Tablets could not be compressed at 188 MPa due to extensive capping  

Table 3. Mean median particle size (µm) and flowability index (mean ± SD) of coprocessed 
paracetamol powders and paracetamol starting material, and friability (%) of tablets compressed at 

188 MPa from the coprocessed paracetamol powders and corresponding physical mixtures. 

The crystallinity of the powders was investigated by XRD and MDSC. It was clear from XRD 

that lactose in all samples was amorphous after coprocessing as no characteristic reflections 

from the lactose crystals were detected in the spectral region specific for lactose between 

19.2 and 20.1° (Figure 2).  

The assessment of the crystallinity of lactose by MDSC was complicated by the predominant 

presence of paracetamol in the samples. However, a weak Tg was detected for the 

Lac/PVP/par(1) sample at 53.0 °C, confirming the presence of amorphous lactose. The 

morphology of the coprocessed particles was examined via SEM. While the paracetamol 

starting material consisted of needle-like particles, the sharp edges were rounded during 

coprocessing with spray dried lactose and PVP, due to the presence of an amorphous 

coating of lactose and PVP on the paracetamol crystals (Figure 3). 
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Figure 2. XRD patterns of coprocessed Lac/PVP/par(1), Lac/PVP/par(2) mixtures and their 
corresponding physical mixtures and starting materials. 
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Figure 3. SEM photographs of the coprocessed Lac/PVP/par(1) mixture and paracetamol starting 
material consisting of needle-like particles. 

The compression profiles of the coprocessed powders and their corresponding physical 

mixtures were compared in order to evaluate their tableting behavior (Figure 4). The 

Lac/PVP/par(1) and (2) powders exhibited similar tabletability with an almost linear 

relationship between the applied compaction pressure and tensile strength. The composition 

of these powders was identical but they were produced under different conditions resulting in 

a slightly different particle size distribution. Thus, the process conditions did not influence the 

tabletability of the formulation.  

Paracetamol coprocessed with lactose and PVP clearly exhibited superior tabletability in 

comparison to the corresponding physical mixture that in addition to low tensile strength 

suffered from capping and lamination during tableting (Figure 4). The excellent tabletability of 

the coprocessed powders can be attributed to the coating of monoclinic paracetamol 

crystals, exhibiting fragmentation and elastic recovery upon compaction, with a layer of 

amorphous lactose and PVP, displaying plastic behavior. In contrast to the coprocessed 

powders, the lactose present in the physical mixtures is crystalline α-lactose monohydrate 

which is brittle. It is well recognized that if a brittle and plastic material are combined in an 

optimal ratio, tabletability can be improved as during compaction of the fragmenting material 

a large number of interparticulate contacts are created while stronger bonds are formed 

during compaction of a ductile material [3, 25, 26]. The amorphous coating of lactose and 

PVP on the paracetamol crystals induces more binder-binder interactions during 

compression which also contributes to the excellent tabletability. The binding action of this 

coating is sufficient to allow some elastic recovery of paracetamol without breakage of the 

interparticulate bonds in the compacts. 
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Figure 4. Tabletability of the coprocessed powders with lactose and/or PVP: Lac/PVP/par (1) (full 
black line ▪) and Lac/PVP/par (2) (full black line▲) and their physical mixture (dotted black line), 

PVP/par (full blue line) and its physical mixture (dotted blue line). 

In order to assess the impact of solely PVP in the coprocessed powders, a solution of PVP 

was sprayed over paracetamol crystals (formulation PVP/par). The tensile strength of the 

resulting powder was inferior to the tensile strength of the coprocessed powders containing 

lactose, PVP and paracetamol (Figure 4). This indicates that the presence of amorphous 

lactose in the coprocessed powders is essential for the production of coprocessed powders 

with improved tableting properties. However, the tabletability of the coprocessed formulation 

PVP/par was clearly superior to its corresponding physical mixture, demonstrating the added 

value of the proposed coprocessing method.  

The excellent tabletability of the coprocessed Lac/PVP/par powders is also reflected in the 

friability of the resulting tablets, respectively 0.6 and 0.6%, whereas the friability of their 

physical mixture was 21.8%. The PVP/par formulation also suffered from a too high friability 

(4.7%).  

As the proposed coprocessing method was successfully applied to improve the tabletability 

of paracetamol, it was investigated in a second set of experiments if the method is also 

applicable for the production of direct compression lactose. Therefore lactose crystals were 

coated with spray dried lactose and PVP via the proposed coprocessing method. The 
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percentage of spray dried lactose in the coprocessed powders varied between 0 and 40% 

w/w (formulation 1 to 4 in Table 2). The d50, flowability, morphology and tabletability of these 

powders was assessed.  

The d50 of the coprocessed powders ranged between 80 and 134.5 µm, and all powders 

were classified as cohesive based on their ffc values. From microscopic evaluation, the 

edges of the particles appeared to be rounder and smoother when more spray dried lactose 

was present in the coprocessed powders. These coprocessed powders consisted of a 

mixture of amorphous and crystalline lactose (as indicated by XRD), whereas a spray dried 

solution of lactose and PVP was completely amorphous. It could therefore be assumed that 

by coprocessing a lactose solution in combination with solid lactose crystals an amorphous 

lactose coating was formed on the lactose crystals, smoothening the edges of the solid 

particles.  

As it is known that lactose powders consisting of an amorphous fraction (which displays 

plastic deformation) and a crystalline fraction (which exhibits brittle fragmentation upon 

compaction) have excellent tableting properties [1, 27, 28], the tensile strength of tablets 

manufactured using the coprocessed powders was compared to that of tablets formulated 

with a commercially available direct compression spray dried lactose grade (15% amorphous 

content) (Table 4). The coprocessed powders showed improved tensile strength when 

compared to a direct compression spray dried lactose grade. This was linked to the presence 

of PVP in the formulations as it was seen that the coprocessed powder consisting of solely 

crystalline lactose and PVP (formulation 1) also showed excellent tableting properties. It was 

reported by Schmidt et al. that PVP is present in Ludipress®, a commercially available direct 

compression lactose grade produced by spray agglomeration and consisting of both 

amorphous and crystalline lactose, in order to increase the compactibility of lactose [29]. The 

friability of the tablets consisting of coprocessed powders was acceptable as it ranged 

between 0.0 and 1.2%. In contrast, tablets made from the commercially available direct 

compression spray dried lactose grade suffered from a too high friability (Table 4). 

Thus, although the extent of agglomeration achieved by application of the coprocessing 

method was limited, it allowed producing powders with excellent tableting properties which 

were attributed to coating of lactose or paracetamol crystals with a layer of amorphous 

lactose and PVP.  
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Formulation D50 (µm) Ffc Tensile 

strength (MPa) 

Friability (%) 

1 134.5 ± 3.5 3.9 ± 0.1 8.2 ± 2.0 0.1 

2 93.3 ± 4.8 3.2 ± 0.3 8.5 ± 1.3 0.0 

3 80.9 ± 3.4 3.2 ± 0.1 8.3 ± 1.71 1.0 

4 85.3 ± 4.7 3.1 ± 0,1 8.3 ± 2.0 1.2 

5 117.3 ± 4.1 2.8 ± 0.4 6.9 ± 1.0 0.2 

reference 93.0 ± 3.6 3.9 ± 0.5 4.9 ± 0.9 3.9 

Table 4. Powder (mean median particle size, flowability index, n:3, mean ± SD) and tablet (tensile 
strength, n:10, mean ± SD, friability) properties of the coprocessed lactose samples and reference 
(direct compression spray dried lactose grade, DCL 11). 

CONCLUSIONS 

Paracetamol crystals, used as a poorly compactable model drug, were successfully coated 

with amorphous lactose and PVP in a continuous way via the simultaneous introduction of 

paracetamol crystals during spray drying of a lactose/ PVP solution. These particles did not 

exhibit capping during compaction. The excellent tableting properties are credited to the 

combination of a ductile (amorphous lactose, PVP) and brittle component (paracetamol) and 

to the coating of amorphous lactose and PVP on the paracetamol crystals ensuring extensive 

binder-binder contact. The proposed method was also suitable for the production of direct 

compression lactose and can therefore be considered as a promising platform technology for 

the single-step production of coprocessed drug substances or excipients with improved 

tableting properties. 
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Abstract 

Mannitol is a frequently used diluent in the production of tablets due to its non-hygroscopic 

character and low drug interaction potential. Although the δ-polymorph of mannitol exhibits 

superior tabletability in comparison to α- and β-mannitol, the latter are most commonly used 

because large-scale production of δ-mannitol is difficult. Therefore, a continuous method for 

production of δ-mannitol was developed in the current study. Spray drying an aqueous 

solution of mannitol and PVP in a ratio of 4:1 resulted in formation of δ-mannitol. The 

tabletability of a physical mixture of spray dried δ-mannitol with PVP (5%) and paracetamol 

(75%) was clearly superior to the tabletability of physical mixtures consisting of spray dried α- 

and β-mannitol with PVP (5%) and paracetamol (75%) which confirmed the excellent 

tableting properties of the δ-polymorph. In addition, a coprocessing method was applied to 

coat paracetamol crystals with δ-mannitol and PVP. The tabletability of the resulting 

coprocessed particles consisting of 5% PVP, 20% δ-mannitol and 75% paracetamol reached 

a maximal tensile strength of 2.1 MPa at a main compression pressure of 260 MPa. 

Moreover the friability of tablets compressed at 184 MPa was only 0.5%. This was attributed 

to the excellent compression properties of δ-mannitol and the coating of paracetamol crystals 

with δ-mannitol and PVP during coprocessing. 
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INTRODUCTION 

Tablets are the most commonly used dosage form, accounting for 70 - 80% of all 

pharmaceutical preparations, due to their ease of manufacturing, accurate dosing and high 

patient compliance [1, 2]. 

Mannitol is an acyclic sugar often used as tablet diluent in the nutraceutical and 

pharmaceutical industry [3]. The major advantages of mannitol over other excipients are its 

non-hygroscopic character, which makes it an excipient of choice for moisture sensitive 

drugs, and its low drug interaction potential [4, 5, 6]. Mannitol is also frequently used in 

chewable and orodispersible tablets due to its sweetness, cooling mouth sensation, high 

solubility and fast disintegration in water [3, 4, 6]. Especially with pediatric and geriatric 

patients, rapidly disintegrating and dispersing tablets can add to the patients’ compliance as 

it overcomes swallowing problems. Additionally, mannitol is used as a bulking agent in 

lyophilizates due to its ability to form solid, elegant cakes in the vials [4, 7]. 

Three polymorphs, α-, β- and δ-mannitol, and mannitol hemi-hydrate, a pseudo-polymorphic 

form formed during freeze-drying, have been described in literature [8]. Burger et al. 

evaluated the compaction properties of these three polymorphs since the crystallographic 

and thermodynamic properties of polymorphs vary which can affect their compaction 

behavior [8]. They reported on superior compressibility and tabletability of the δ-polymorph in 

comparison to the α- and β-polymorphs of mannitol. More recently, Wagner et al. confirmed 

this result as they found an improved tabletability of δ-mannitol granules after roller 

compaction [3]. 

Several crystallization reactions are reported for the production of δ-mannitol [8, 9, 10, 11]. 

However, reproducible and scalable production of δ-mannitol by crystallization is difficult [8]. 

δ-mannitol was also obtained during cospray drying of aqueous solutions of mannitol and 

trypsin in different ratios [12]. However, a coprocessed excipient including a protease is not 

preferred. As a result, commercially available mannitol grades consist almost exclusively of 

α- or β-mannitol or a mixture thereof. Therefore, it was the first aim to develop a continuous 

manufacturing method for the production of δ-mannitol via spray drying. Aqueous solutions of 

mannitol and polyvinylpyrrolidone (PVP) were spray dried at two outlet drying temperatures 

and the polymorphic content and tabletability of these spray dried samples were evaluated.  

The second part of the study evaluated if coprocessing of paracetamol with δ-mannitol and 

PVP could overcome the poor tabletability of paracetamol in a single processing step. 

Coprocessing of excipients is widely practiced for the production of directly compressible 

excipients: e.g. Cellactose® (microcrystalline cellulose and lactose), Ludipress® (lactose, PVP 
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and crospovidone), StarLac® (lactose and maize starch), Avicel® CE (microcrystalline 

cellulose and guar gum) [1]. Cospray drying of excipients and active pharmaceutical 

ingredients has also been successfully applied to generate agglomerates with a unique 

particle size and shape and physicochemical properties [13]. In the current study, a 

coprocessing method recently described by Vanhoorne et al. was applied for the production 

of a coprocessed mixture consisting of 5% PVP, 20% δ-mannitol, and 75% paracetamol [14]. 

The morphology, solid state and particle size distribution of the coprocessed sample was 

evaluated and its compression properties were compared to a physical mixture.  

MATERIALS AND METHODS 

Materials 

β-mannitol (C*PharmMannidex) and δ-mannitol (Parteck Delta) were kindly donated by 

Cargill (Vilvoorde, Belgium) and Merck (Darmstadt, Germany), respectively. β-mannitol was 

used for the preparation of the spray dried solutions. Paracetamol (semi-fine) was received 

from Mallinckrodt Chemical (Hazelwood, USA). Magnesium stearate and silicon dioxide 

(Fagron, Waregem, Belgium) were used as lubricant and glidant, respectively. PVP (Kollidon 

30) and crospovidon (Kollidon CR) were received from BASF (Burgbernheim, Germany). 

Miglyol 812 (Cremer Oleo, Witten, Germany) with 0.2% polysorbate 80 (Fagron, Waregem, 

Belgium) was used as dispersant for laser diffraction measurements. 

Spray drying and coprocessing 

In preliminary spray drying experiments, an 18% w/w aqueous solution of mannitol and PVP 

(ratio mannitol:PVP: 4:1) and an 18% w/w aqueous solution of pure mannitol were spray 

dried (F1 and F2, respectively) on a lab-scale spray dryer (B290, Büchi Labortechnik, Flawil, 

Switzerland) equipped with a two-fluid nozzle (nozzle orifice 1.4 mm). The spray dried 

samples were collected after the cyclone. The solutions were spray dried at a constant feed 

rate of 16 g/min and an atomization pressure of 50%. The inlet and outlet drying air 

temperature were 220 and 80 °C, respectively.  

In the main spray drying experiments, 18% w/w aqueous solutions of mannitol and PVP 

(mannitol:PVP ratios of 9:1 and 4:1) and an 18% w/w aqueous solution of pure mannitol were 

spray dried on a pilot-scale spray dryer (Mobile Minor, GEA Niro, Copenhagen, Denmark) 

equipped with a two-fluid nozzle (nozzle orifice 2.0 mm). The solutions were transferred to 

the spray dryer by a peristaltic pump (520U, Watson Marlow, Cornwall, UK) with marprene 

tubing (inside diameter 4.8 mm). The spray dryer was operated in co-current mode. The 

dimensions of the drying chamber were 0.84 m cylindrical height with a diameter of 0.80 m 
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and 60° conical base. The solutions were spray dried at a constant feed rate of 45 g/min and 

an atomizing air pressure of 1 bar. The inlet drying air temperature was varied between 170 

and 220 °C, resulting in outlet temperatures of 60 and 80 °C, respectively.  

An overview of the spray dried solutions (F1-3) on the lab-scale and pilot-scale spray dryers 

and the composition of the resulting solid samples is given in Table 1. The yield (%) of the 

spray drying process was defined as the weight fraction of the material recovered from the 

collecting reservoir after spray drying in relation to the amount of mannitol and PVP originally 

contained in the atomized liquid feed. 

In a second part of the study, paracetamol crystals were coated with mannitol and with 

mannitol and PVP via a coprocessing method proposed by Vanhoorne et al. in order to 

improve the tabletability of paracetamol crystals [14]. A detailed description of the method 

and schematic setup was given by Vanhoorne et al. [14]. Hence, 18% w/w aqueous solutions 

of pure mannitol and of mannitol and PVP (mannitol:PVP ratio: 4:1) were fed to the fountain 

two-fluid nozzle (nozzle orifice 2.6 mm) of a production-scale spray dryer (type 6.3-SD, GEA 

Niro, Copenhagen, Denmark) by a peristaltic pump (520U, Watson Marlow, Cornwall, UK) 

and marprene tubing (inside diameter 4.8 mm). The spray dryer operated in counter-current 

mode. The dimensions of the spray dryer were 2.0 m cylindrical height with a diameter of 3.5 

m and 60° conical base. The spray dried powder was collected in a reservoir under the 

drying chamber. The solutions were spray dried according to the following parameters: feed 

rate: 100 g/min, inlet drying air temperature: 240 °C, outlet drying air temperature: 112 °C, 

atomizing air pressure 0.5 bar. Paracetamol crystals were preblended with 0.05% silicon 

dioxide and introduced during the spray drying process at a feed rate of 48 g/min into the 

cone of the spray dryer via an in-house designed setup described by Vanhoorne et al. [14]. 

Using this setup, the paracetamol crystals were directly injected into the spray of atomized 

drops in the drying chamber of the spray dryer. The composition of the spray dried solutions 

and final composition of the coprocessed powders (F4 and F5) is included in Table 1. 
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 Composition of 

spray dried 

solutions (% 

w/w) 

Feed rate 

solid particle 

introduction 

(g/min) 

Final composition of spray dried 

sample (% w/w) 
Spray dryer 

 PVP mannitol  PVP mannitol paracetamol  

F1 0 18.0 - 0 100 - 
lab-scale + pilot-

plant 

F2 1.8 16.2 - 10 90 - pilot-plant 

F3 3.6 14.4 - 20 80 - 
lab-scale + pilot-

plant 

F4 0 16.0 48 0 25 75 production-scale 

F5 3.2 12.8 48 5 20 75 production-scale 

Table 1. Overview of the spray dried solutions and composition of the final spray dried and 
coprocessed samples. 

Preparation of physical mixtures 

Physical mixtures (PM1-4) were prepared in a tumbling blender (Turbula mixer type T2F, 

W.A. Bachofen Maschinenfabrik, Basel, Switzerland) for 10 min at 49 rpm to evaluate the 

influence of PVP and the added value of coprocessing via spray drying on tabletability. An 

overview of the prepared physical mixtures is listed in Table 2. 

 

 SD 

sample (% 

w/w) 

Paracetamol 

(% w/w) 

PVP  

(% w/w) 

PM1 20.0 (F1) 75.0 5.0 

PM2 22.5 (F2) 75.0 2.5 

PM3 25.0 (F3) 75.0 - 

PM4 25.0 (F1) 75.0 - 

Table 2. Overview of the prepared physical mixtures. 

Tableting 

The spray dried and coprocessed powders and physical mixtures were blended (Turbula 

mixer type T2F, W.A. Bachofen Maschinenfabrik, Basel, Switzerland) for 5 min at 49 rpm 

with 5% crospovidon® and 0.5% magnesium stearate prior tableting. 

Tablets (500 mg ± 10 mg) of the spray dried and coprocessed powders (F1-5) and physical 

mixtures (PM1-4) were compressed on a rotary tablet press (ModulTM P, GEA Courtoy, Halle, 
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Belgium) equipped with a single round concave Euro B punch of 12 mm diameter at a 

tableting speed of 5 rpm. The tablets were compressed at 6 different compaction pressures: 

34, 61, 100, 143, 184 and 229 MPa. 

Material characterization 

Morphology 

The powders were examined by scanning electron microscopy (SEM) (JEOL JSM-5600-LV, 

JEOL Ltd., Zaventem, Belgium) after sputtering with a platinum coating using the JEOL JFC 

1300 Autofine Coater (JEOL, Zaventem, Belgium) to improve the electron conductivity of the 

samples. 

Karl Fischer titration 

To determine the residual moisture content, Karl Fischer titrations (Mettler DL35, Mettler 

Toledo, Zaventem, Belgium) were performed (n=3) on the powder samples immediately after 

production. Powder (100 – 200 mg) was added to an airtight beaker containing absolute dry 

methanol (Biosolve, Valkenswaard, the Netherlands). Titration of the samples was performed 

using Karl Fischer reagent (Hydranal_Composite 2, Sigma–Aldrich, Munich, Germany). The 

mixture was stirred for 5 min before actual titration.  

Particle size analysis 

The particle size distribution of the paracetamol starting material, spray dried and 

coprocessed powders was measured in triplicate by laser diffraction (Mastersizer S long 

bench, Malvern Instruments, Worcestershire, UK) and the average particle size distribution 

was calculated via the Mastersizer 2000 software. The wet dispersion technique was applied 

using the 300RF lens (Malvern Instruments, Worcestershire, UK). The powders were 

dispersed in a solution of 0.2% Tween 80 in Miglyol 812 and subsequently vortexed and 

sonicated in order to eliminate agglomerates. The results are expressed as volume 

diameters. 

Ring shear testing 

The flowability expressed as the flowability index (ffc) of the powders was measured in 

duplicate by ring shear testing (Type RST-XS, Dietmar Schulze Schüttgutmesstechnik, 

Wolfenbuttel, Germany) and the mean values were reported. The powders were tested using 

a preshear of 1000 Pa at three consolidation stresses, 400, 600 and 800 Pa. 
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Solid state characterization 

The polymorphic mannitol composition in the spray dried and coprocessed samples was 

analyzed using Raman spectroscopy, X-ray diffraction (XRD) and modulated differential 

scanning calorimetry (MDSC). 

Raman spectra (Raman Rxn1, Kaiser Optical Systems, Ann Arbor, United States) of the 

samples were recorded (n=8) using exposure times of 10 s with 3 accumulations. All spectra 

were recorded with a resolution of 4 cm-1. The spectral region between 1000 and 1200 cm-1 

was selected for evaluation of mannitol polymorphism. Spectra were centered and SNV-

correction was applied to correct for the physical variation between measurements. The 

spectra were used for identification of the polymorphic forms present in the formulation and 

therefore the spectra were compared with the spectra of reference material of α-, β- and δ-

mannitol. Additionally, principal component analysis (PCA) was executed on the spectra of 

the pilot-scale spray dried samples with Simca 13.0.3 software (Umetrics, Umeå, Sweden). 

To investigate the stability of the pilot-scale spray dried samples, they were stored 6 months 

at 60% relative humidity and 25 °C in open cups and reanalyzed by Raman spectroscopy as 

described above. Raman spectra of reference materials of α-, β- and δ-mannitol were 

adopted from De Beer et al. [7]. 

XRD analysis of the samples and mannitol references was performed on a CuKα diffractor 

(ARLTM X’TRA, Thermo Fischer Scientific, Waltham, United States) with a voltage of 40 mV 

in the angular range of 5°<2θ<60° using a step scan mode with step size of 0.02° and 

counting time of 1s/step.  

MDSC was performed using a Q2000 differential scanning calorimeter (TA Instruments, 

Zellik, Belgium) equipped with a refrigerated cooling system. Samples (5 – 10 mg) were 

accurately weighed and run in Tzero pans (TA Instruments, Zellik, Belgium). They were 

cooled to -20 °C and subsequently heated up to 220 °C with a heating rate of 2 °C/min. The 

modulation time and amplitude were set at 60 s and 0.318 °C, respectively. Dry nitrogen was 

used as a purge gas through the cell at a flow rate of 50 ml/min. The results were analyzed 

using TA Instruments Universal Analysis software. 

Tablet characterization 

The hardness, thickness and diameter of the tablets (n=10) were determined using a 

hardness tester (Type HT 10, Sotax, Basel, Switzerland) and the tensile strength (TS) of the 

tablets was calculated according to the formula of Fell and Newton [15]: 
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TS = 2F/πdt 

Where F, d and t denote the diametral crushing force, tablet diameter and tablet thickness, 

respectively. The friability of tablets compressed at 184 (±5) MPa was determined using a 

friabilator (PTFE, Pharma Test, Hainburg, Germany) as described in the European 

Pharmacopea at a speed of 25 rpm for 4 min. The percentage weight loss was expressed as 

the tablet friability.  

RESULTS AND DISCUSSION 

Influence of PVP inclusion and outlet temperature on the formation of δ-mannitol 

In preliminary experiments spray dried mannitol samples without PVP (F1) and with 20% 

PVP (F3) were prepared on a lab-scale spray dryer. Identification of the mannitol polymorphs 

in the samples was performed by Raman spectroscopy, XRD and MDSC through 

comparison with reference material of α-, β- and δ-mannitol. Raman spectroscopy (Figure 1) 

and XRD (Figure 2) identified a mixture of α- and β-mannitol in the sample without PVP and 

δ-mannitol the sample with 20% PVP, respectively.  

 

Figure 1. Raman spectra of α-, β- and δ-mannitol reference material and samples F1 and F3 spray 
dried on a lab-scale spray dryer. 
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Figure 2. XRD spectra of α-, β- and δ-mannitol reference material and samples F1 and F3 spray dried 
on a lab-scale spray dryer. 

MDSC analysis of the samples proved not to be helpful for the identification of different 

mannitol polymorphs since a melting peak at 166 – 167 °C with identical melting enthalpy 

was detected for reference material of α-, β- and δ-mannitol. Not uniform melting of δ-

mannitol at 155 °C followed by crystallisation to α- or β-mannitol and melting of the 

respective crystal form or mixture is nevertheless reported in literature [8, 16].  

Formulations F1-3 (Table 1), containing different PVP concentrations in the final spray dried 

powder, were spray dried on a pilot-scale spray dryer at 2 different outlet temperatures (To): 

60 and 80 °C. The influence of the PVP content and the outlet temperature on the mannitol 

polymorph formed during spray drying was qualitatively evaluated by Raman spectroscopy. 

The results of the Raman analysis were summarized in a PC1 versus PC2 scores plot of the 

first and second principal component (PC), explaining 83% and 15% of the variation in the 

dataset, respectively (Figure 3). 
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Figure 3. PC1 versus PC2 scores plot obtained after PCA of all pilot-scale spray dried samples (To 
60 °C and 80 °C) and reference material of α-, β- and δ-mannitol. 

Analysis of the loading plots (Figure 4) of the PC learned that the first PC was selective for 

the presence of δ-mannitol whereas the second PC could differentiate between α- and β-

mannitol. Three clusters of samples around the data points of the α-, β- and δ-mannitol 

reference materials could be differentiated on the PC1 versus PC2 scores plot. 

Independently of the applied outlet temperature, the spray dried samples containing 0% and 

10% PVP consisted of exclusively β- and α-mannitol, respectively. Inclusion of 20% PVP in 

the formulation (F3) yielded powders consisting of mainly δ-mannitol but traces of α-mannitol 

were also detected. The polymorphic content in these samples was dependent on the outlet 

temperature used. Applying an outlet temperature of 60 °C resulted in a spray dried sample 

with exclusively δ-mannitol next to PVP whereas traces of α-mannitol were still present in the 

sample spray dried at an outlet temperature of 80 °C.   
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Figure 4. Raman spectra of α-, β- and δ-mannitol reference material and loadings of PC1 and PC2 
obtained after PCA analysis. 

These results were confirmed by XRD (Figure 5) as characteristic peaks of β-mannitol 

(10.56°, 14.71°), α-mannitol (13.79°) and δ-mannitol (9.57°) were detected in samples F1, F2 

and F3, respectively. [5, 6, 7, 8, 17, 18]. 

 

Figure 5. XRD patterns of α-, β- and δ-mannitol reference material and samples F1-3 spray dried at To 
80 °C and 60 °C. 
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The yields of the spray drying experiments and residual moisture content of the resulting 

samples are listed in Table 3. The process yield varied between 23 and 89%, depending on 

the percentage of PVP in the formulation and the outlet temperature used. Inclusion of PVP 

decreased the process yield due to the sticky nature of PVP and its high hygroscopicity 

which is also reflected in the high residual moisture content of the samples with 20% PVP [4]. 

Increasing the outlet temperature positively influenced the yield as the particles were drier 

and therefore less sticky before they hit the dryer wall. 

Outlet temperature 

(°C) 
Formulation 

Yield 

(%) 

Moisture 

content (%) 

ffc 

60 

F1 70 0.16 (± 0.05) -(*) 

F2 54 3.10 (± 0.10)   -(*) 

F3 23 5.50 (± 0.10) -(*) 

80 

F1 89 0.63 (± 0.07) 1.68 

F2 66 2.56 (± 0.09) 4.00 

F3 59 5.19 (± 0.10) 5.55 

(*) 
No data collected 

Table 3. Overview of the yield and residual moisture (±SD) content of the spray drying experiments 
performed on the pilot-scale spray dryer. 

Spray drying of a pure mannitol solution resulted in small agglomerates composed of 

spherical particles (Figure 6). Addition of PVP to the spray dried mannitol solution yielded 

larger coalesced particles where individual particles were more difficult to distinguish. 

 

Figure 6. SEM images of spray dried samples F1-3. 

The particle size distribution and median particle size (d50) of spray dried samples F1-3 is 

shown in Figure 7. Inclusion of PVP in the formulation resulted in particles with a higher d50 

value since PVP acted as a binder favoring agglomeration during the spray drying process. 

However, increasing the PVP content from 10 to 20% in the final spray dried samples had no 

effect on d50. The larger d50 of F2 and F3 was reflected in their flowability as they were 

classified as easy-flowing (despite the higher moisture content of these samples), whereas 
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F1 was classified as very cohesive based on the ffc values. Thus, inclusion of PVP in the 

formulation to form δ-mannitol during spray drying also proved to be an asset with regard to 

flowability. 

 

Figure 7. Particle size distribution of samples F1, F2 and F3 spray dried at an outlet temperature of 
80 °C. 

Compression profiles of the spray dried samples were constructed for evaluation of the 

tabletability of the different mannitol polymorphs (Figure 8, full lines). The spray dried sample 

with δ-mannitol (F3) clearly exhibited superior tabletability in comparison to the samples with 

the α- and β-polymorphs (F1, F2), reaching a maximum TS of 6.2 (±0.3) MPa at a main 

compression pressure (MCP) of 184 (±5) MPa. Note that the PVP content of these samples 

was different. To exclude this effect (a plastically deforming binder under compression) 

paracetamol formulations containing the different spray dried mannitol samples with a 

constant (5%) PVP content (PM1-3 in Table 2) were processed into tablets (depending on 

the formulation part of PVP was included in the spray dried material and/or added as such to 

the physical mixture). Their tabletability is also included in Figure 8 (dotted lines). Obviously 

the tabletability of these formulations is lower compared to the spray dried samples due to 

the high load (75%) of paracetamol, a model drug known for its poor tabletability. However, 

the tabletability of the formulation containing δ-mannitol (PM3) was significantly higher than 

of the physical mixtures with α- and β-mannitol (PM1 and PM2), which was linked to the 

superior tabletability of δ-mannitol. This confirmed the findings of Burger et al. and Wagner et 

al. [3, 8].  

The excellent tabletability of spray dried δ-mannitol and PVP was also reflected in the 

friability of the tablets. While the friability of tablets composed of spray dried samples was 

below 0.1% (independently of their polymorphic content or the percentage PVP), the 
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inclusion of paracetamol in the physical mixtures resulted in a friability of 6.4%, 6.4% and 

3.0% for PM1, 2 and 3, respectively.  

 

Figure 8. Tabletability of the spray dried powders (F1-3) and physical mixtures (PM1-3). 

 

Tabletability of the coprocessed samples 

Since production of δ-mannitol in a continuous way via spray drying was possible, it was next 

investigated whether paracetamol and δ-mannitol could be coprocessed in a single step, 

using the method proposed by Vanhoorne et al. [14]. Paracetamol crystals were injected into 

a spray of atomized drops during the spray drying process. An aqueous solution of 18.0% 

w/w mannitol (F4) and an aqueous solution of mannitol and PVP (F5) were spray dried 

(Table 2). The ratio of mannitol to PVP in F5 was 4:1 which is equal to the ratio used in the 

spray drying experiments (F3) yielding δ-mannitol.  

The polymorphic state of mannitol in the coprocessed samples was investigated by XRD and 

Raman spectroscopy. Identification of the mannitol polymorphs by XRD was not possible due 

to the presence of 75% paracetamol, dominating the spectrum. Raman analysis revealed the 

presence of β-mannitol in coprocessed sample F4. However, δ-mannitol could not be 

detected in coprocessed sample F5 via Raman spectroscopy due to the dominant influence 
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of paracetamol on the spectrum. Since it was proven in the first part of the study that spray 

drying mannitol and PVP in a ratio of 4:1 yielded δ-mannitol on both a lab scale and pilot 

scale spray dryer irrespectively of the applied outlet temperature, the presence of δ-mannitol 

in sample F5 was assumed. 

The morphology of the coprocessed samples was evaluated by SEM and is shown in Figure 

9. In this case no spherical particles were obtained since irregular-shaped paracetamol 

crystals were introduced in the spray of atomized drops, and their shape dominated in the 

collected spray dried powder. More agglomerated particles were observed in sample F5 

which was attributed to PVP acting as a binder. 

This was confirmed by laser diffraction analysis of the samples (Figure 10): the d50 of 

samples F4 and F5 were 108.2 µm and 230.9 µm, respectively, exceeding the d50 of 

paracetamol starting material (44.4 µm). Thus in both experiments agglomeration occurred, 

however, inclusion of PVP in F5 favored agglomeration. Despite the significant difference in 

particle size of the coprocessed samples, both were classified as cohesive based on their ffc 

value (which is linked to their irregular shape). 
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Figure 9. SEM images of coprocessed samples F4 and F5. 

 

 

Figure 10. Particle size distribution of paracetamol starting material and coprocessed samples F4 and 
F5. 
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The tabletability of the coprocessed samples (F4 and F5) was compared to the tabletability of 

physical mixtures (PM3 and PM4) with the same composition (Figure 11). The tabletability of 

coprocessed sample F4 was slightly but significantly better than of its physical mixture PM4. 

In contrast, the tabletability of coprocessed sample F5 was clearly superior to the tabletability 

of physical mixture PM3: the TS of PM3 tablets was 0.9 MPa at a MCP of 300 MPa, whereas 

F5 tablets yielded a TS of 2.1 MPa. This demonstrated the added value of the applied 

coprocessing method which is due to the coating of paracetamol crystals with δ-mannitol and 

PVP.  

 

Figure 11. Tabletability of coprocessed samples F4 and F5 and corresponding physical mixtures PM4 
and PM3. 

While the tablet friability of coprocessed sample F4 (30.5%) and the corresponding physical 

mixture PM4 (46.8%), which contained 25% β-mannitol and 75% paracetamol, was too high, 

the friability of the coprocessed sample F5, formulated with 5% PVP, 20% δ-mannitol and 

5% paracetamol was excellent (0.5%) and considerably lower than of the corresponding 

physical mixture PM3 (3.0%) which again illustrated the added value of the coprocessing 

method.  

Stability of the spray dried samples 

It is well known that thermodynamically unstable polymorphs can convert over time to a more 

stable crystal form. As the δ-polymorph is not the thermodynamically stable crystal form of 

mannitol at ambient conditions, the physical stability of the spray dried samples (F1-3) stored 

in open cups at 60% relative humidity and 25 °C during 6 months was investigated by 

Raman spectroscopy [8]. No spectral differences were detected after storage which indicated 

stability of all mannitol polymorphs over at least 6 months. Kinetic stability of α- and δ-
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mannitol was also proven by Burger et al. during mechanical stress and storage for over five 

years at 25 °C at a relative humidity of 43% [8]. 

CONCLUSIONS 

Spray drying an aqueous solution of mannitol and PVP (mannitol:PVP 4:1) resulted in 

formation of δ-mannitol which exhibited excellent tabletability and friability in comparison to 

α- and β-mannitol. Spray drying at higher outlet temperature resulted in higher process yield 

but negatively affected the purity of the spray dried sample as traces of α-mannitol were 

present next to δ-mannitol. Inclusion of PVP in the spray dried mannitol solution positively 

influenced the flowability since the resulting agglomerates were larger.  

Additionally, a coprocessing method was applied for the production of δ-mannitol in a 

continuous way by spray drying aqueous solutions of mannitol and PVP and to agglomerate 

these particles with paracetamol crystals in the same process. The tabletability and friability 

of the resulting particles was excellent which was attributed to the superior tabletability of δ-

mannitol over α- and β-mannitol and to the application of the coprocessing method which 

enabled coating of paracetamol crystals with δ-mannitol and PVP.  
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Abstract 

In most formulations processed via continuous twin screw granulation microcrystalline 

cellulose (MCC) and/or lactose are used as excipients, but mannitol is also a preferred 

excipient for wet granulation and tableting due to its non-hygroscopicity and inertness. 

Therefore, the aim of the current study was to investigate the influence of process 

parameters on critical quality attributes of granules (moisture content, solid state, 

morphology, size distribution, specific surface area, friability, flowability and hygroscopicity) 

and tablets (tensile strength and friability) after twin screw granulation of δ-mannitol. The δ-

polymorph was selected since a moisture-induced transformation to β-mannitol was 

observed during batch wet granulation, which exhibited a unique morphology with a large 

surface area and improved tabletability. A full factorial experimental design was performed, 

varying screw speed (400 - 900 rpm), granulation temperature (25 - 40 °C), number of 

kneading elements (6 or 12) and liquid-to-solid (L/S) ratio (0.08 – 0.16), on the granulation 

unit of a ConsiGmaTM-25 line (a continuous powder-to-tablet manufacturing system). After 

tray drying the granules were milled and tableted. The results showed that the polymorphic 

transition from δ- to β-mannitol also occurred during twin screw granulation, although the 

residence time and L/S ratios were much lower in continuous twin screw granulation 

compared to batch processing. However, the polymorphic transition was not complete in all 

experiments and depended on the L/S ratio, screw speed and number of kneading elements. 

Nevertheless all granules exhibited the unique morphology linked to the polymorphic 

transition and had a superior tabletability compared to granules produced with β-mannitol as 

starting material. This was attributed to enhanced plastic deformation of the granules 

manufactured using δ-mannitol as starting material. In addition, it was concluded that 

mannitol was granulated via a different mechanism than other, less-soluble, excipients (e.g. 

lactose, microcrystalline cellulose) due to its high solubility and dissolution rate as the 

influence of process parameters on the mannitol granule characteristics was different. 

 

 

 

 

 

KEYWORDS: δ-mannitol, Polymorphism, Tabletability, Continuous production, Twin screw 

granulation, Plastic deformability   
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INTRODUCTION 

The interest in twin screw granulation is growing as it is a continuous process that can be 

implemented into a fully continuous from-powder-to-tablet line. This concept offers economic 

advantages, improved product quality and a lower environmental impact of processing [1, 2, 

3]. Moreover regulatory authorities recently recognized the potential of continuous 

manufacturing and encouraged adoption of it by the pharmaceutical industry [4].  

Only a limited number of studies on twin screw granulation addressed formulation 

development while most studies focused on the influence of process parameters on granule 

quality [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Moreover, most studies used 

formulations with lactose or microcrystalline cellulose as fillers. Mannitol is a preferred 

excipient for the formulation of tablets due to its non-hygroscopic character, compatibility with 

primary amines, high sweetness, cooling mouth sensation, high solubility and fast 

disintegration [21, 22, 23, 24].  Although it is a frequently used tablet diluent in the 

nutraceutical and pharmaceutical industry, no literature reports about the use of mannitol as 

an excipient during twin screw granulation are available [23].  

Three polymorphs of mannitol have been described: α-, β- and δ-mannitol. However, most 

commercially available mannitol grades consist of α- or β-mannitol or mixtures thereof. 

During high shear granulation of δ-mannitol a moisture mediated polymorphic transition from 

δ- to β-mannitol was reported which resulted in a unique granule morphology with a high 

specific surface area and enhanced plastic deformability [22]. As a result the δ-polymorph of 

mannitol (commercialized as Parteck Delta M by Merck) is specifically promoted for wet 

granulation processes to take advantage of the improved tableting properties associated with 

the moisture-induced polymorphic transition from δ- to β-mannitol during wet granulation [25]. 

It was our aim to use δ-mannitol during a continuous wet granulation process using a twin 

screw granulator and to evaluate how process parameters (number of kneading elements, 

granulation temperature, screw speed, liquid-to solid (L/S) ratio) affected the critical quality 

attributes of granules and tablets. In addition, it was investigated if the polymorphic transition 

from δ- to β-mannitol, which has only been reported during batch high shear granulation, also 

occurred during twin screw granulation and whether this transition depended on process 

parameters as the residence time as well as the liquid content during twin-screw granulation  

are considerably lower compared to batch granulation processes [6, 14, 17, 19, 26, 27, 28, 

29]. 

  



CHAPTER 4 

82 

MATERIALS AND METHODS 

Materials 

δ-mannitol (Parteck® Delta M), β-mannitol (C*PharmMannidex) and α-mannitol (Pearlitol 200) 

were kindly donated by Merck Millipore (Darmstadt, Germany), Cargill Italy (Castelmassa, 

Italy) and Cargill Belgium (Vilvoorde, Belgium), respectively. These samples were used as 

reference materials. Distilled water was used as granulation liquid. Magnesium stearate 

(Fagron, Waregem, Belgium) was used as lubricant for tableting. Raman spectra of 

reference materials of α-, β- and δ-mannitol were adopted from De Beer et al. [30]. 

Preparation of granules 

Pure β- or δ-mannitol was added to the loss-in-weight feeder (KT20, K-Tron Soder, 

Niederlenz, Switzerland) of the ConsiGmaTM-25 system (GEA Pharma Systems ColletteTM, 

Wommelgem, Belgium). In this continuous oral solid dosage manufacturing line a twin screw 

granulator is directly connected to a six-segmented fluid bed dryer, a mill and finally a tablet 

press. The barrel of the twin screw granulator (length-to-diameter ratio 20:1) can be divided 

into a feed zone with conveying elements and a working zone where the powder is 

intensively mixed with granulation liquid by kneading elements. Water as granulation liquid 

was pumped into the barrel just before the first kneading element via a double liquid addition 

port, injecting granulation liquid on top of each screw. The equipment has a built-in torque 

gauge which monitors the torque at 1-second intervals. The torque values obtained after 

equilibrium of the process were averaged to give the overall torque during each run. A PT-

100 temperature sensor was integrated in the working zone of the barrel and linked to a 

feedback control system which regulates the temperature in the barrel jacket and 

compensates for temperature increase during the process due to friction. As the aim of the 

study was to evaluate the polymorphic transition of δ-mannitol during granulation, the fluid 

bed dryer was not used to avoid interference of dynamic drying on the product properties. 

The granules were collected after the granulation unit and oven dried at 40 °C for 24 h until 

the moisture content (as measured by loss on drying (LOD)) was below 1%. After drying, 800 

g of the granules was milled through a 1500 µm grater screen with square impeller at 900 

rpm using the comill (U10, Quadro, Ontario, Canada) incorporated in the ConsiGmaTM-25 

line. 

Design of experiments 

A full factorial experimental design (20 runs) including four process parameters was 

performed using pure δ-mannitol: L/S ratio (0.08 – 0.16), barrel temperature (25 – 40 °C), 
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screw speed (400 – 900 rpm), number of kneading elements (6 or 12). The throughput was 

fixed at 20 kg/h in all experiments. The screw configuration with 6 kneading elements 

consisted of 1 block of kneading elements whereas the screw configuration with 12 kneading 

elements consisted of 2 kneading zones of 6 kneading elements (2x6) separated by a 

conveying zone. Reference is made to these configurations as 1x6 and 2x6, respectively. For 

both screw configurations the distance between liquid addition and the first kneading element 

was kept constant. Two center points (with screw configurations 1x6 and 2x6) were run in 

duplicate. An overview of the experiments is given in Table 1. The results were analyzed 

using Modde 10.1 (Umetrics, Umeå, Sweden) software. As the applied design was a full 

factorial design, interactions could be detected. However, the statistically non-significant 

interactions were not shown in the effect plots throughout the paper. Additionally two 

granulation experiments (runs 21 and 22) were performed with pure β-mannitol to allow 

comparison with the granules prepared with pure δ-mannitol (Table 1).  
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Run 
L/S 

ratio 

Temperature 

(°C) 

Screw 

speed 

Number of 

kneading 

elements 

Starting 

material 

1 0.12 32.5 650 12 δ-mannitol 

2 0.08 40 900 12 δ-mannitol 

3 0.08 40 400 12 δ-mannitol 

4 0.08 25 400 12 δ-mannitol 

5 0.08 25 900 12 δ-mannitol 

6 0.16 25 900 12 δ-mannitol 

7 0.16 25 400 12 δ-mannitol 

8 0.16 40 400 12 δ-mannitol 

9 0.16 40 900 12 δ-mannitol 

10 0.12 32.5 650 12 δ-mannitol 

11 0.12 32.5 650 6 δ-mannitol 

12 0.08 25 400 6 δ-mannitol 

13 0.08 25 900 6 δ-mannitol 

14 0.16 25 400 6 δ-mannitol 

15 0.16 25 900 6 δ-mannitol 

16 0.16 40 900 6 δ-mannitol 

17 0.16 40 400 6 δ-mannitol 

18 0.08 40 400 6 δ-mannitol 

19 0.08 40 900 6 δ-mannitol 

20 0.12 32.5 650 6 δ-mannitol 

21 0.16 25 400 12 β-mannitol 

22 0.08 25 900 6 β-mannitol 

Table 1. Overview of the granulation experiments. 
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Preparation of tablets 

The milled granules (runs 1 - 22) and β- and δ-mannitol starting material were blended with 

1.5% magnesium stearate in a tumbling blender for 3 minutes (T2F, W.A. Bachofen, Basel, 

Switzerland) before tableting. Tablets were prepared in manual mode at a speed of 20 

tablets per minute on the ModulTM P tablet press (GEA Pharma Systems CourtoyTM, Halle, 

Belgium) part of the ConsiGmaTM-25 line.  

The press was equipped with 1 pair of round flat-faced Euro B punches (GEA Pharma 

Systems, Halle, Belgium) (diameter 10 mm) and an overfill cam of 12 mm. A single-paddle 

feed frame equipped with a paddle with round thin fingers (n = 8) rotating counter-clockwise 

at 20 rotations per minute (rpm) (GEA Pharma Systems, Halle, Belgium) was used. This 

setup allowed producing tablets on a rotary press with a minimal amount of granules (± 50 

g). Tablets (320 mg ± 20 mg) were compressed at 3 different main compression pressures 

(MCP): 150, 250 and 350 MPa, for assessment of their tabletability. Tablets compressed at 

350 MPa were selected for friability testing. 

To elucidate the bonding mechanisms during compression, tableting experiments were 

performed with monitoring of punch stroke movements by linear variable displacement 

transducers clamped on the pair of punches (GEA Pharma Systems, Halle, Belgium). Data 

from these sensors was acquired continuously and transmitted wireless to a data acquisition 

and data analysis system (CDAAS, GEA Pharma Systems, Halle, Belgium). The CDAAS 

system measured signals (pre- and main compression force and displacement, punch 

strokes) and allowed reviewing and analysis of the recorded data. From the punch stroke 

signals, in-die elastic recovery (IER) and energy plots were calculated. For each formulation 

the punch stroke movements were monitored during compression at 150 MPa.  

Evaluation of the granules 

Loss-on-drying 

The residual moisture content of the granules was determined via LOD using a moisture 

analyzer (Mettler LP16, Mettler-Toledo, Zaventem, Belgium) including an infrared dryer and a 

balance. A sample of 5 g was dried at 105 °C until the weight was constant for 30 s. 
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Solid state characterization 

Raman spectra (Rxn1, Kaiser Optical Systems, Ann Arbor, USA) of the reference materials, 

unmilled (runs 1 – 22) and milled granules (runs 1 – 20) were recorded using exposure times 

of 10 s with 3 accumulations. Additionally, unmilled granules were measured after 6 months 

storage at 40 °C and 75% relative humidity (RH) and at 25 °C and 40% RH in open cups. At 

least 5 spectra were recorded for each sample. For the tablets, one spectrum was collected 

at each compression pressure. A PLS model was constructed to determine the ratio of δ- 

and β-mannitol in the granulated samples (Simca 13.0.3 software, Umetrics, Umeå, 

Sweden). This model was developed from the Raman spectra (5 spectra for each calibration 

sample) of calibration samples (i.e., powder mixtures) with a ratio of δ-mannitol:β-mannitol 

varying between 0 - 100% with increments of 10%. Data were corrected by standard normal 

variate preprocessing and center-scaled prior to analysis. Standard Normal Variate 

preprocessing was applied to eliminate the additive baseline offset variations and 

multiplicative scaling effects in the spectra which may be caused by small variations in 

distance between the Raman probe and the sample and possible differences in product 

density. The results of the PLS analysis were averaged for each sample.  

Additionally, XRD was performed on the reference materials and unmilled granules on a 

CuKα diffractor (ARLTM X’TRA, Thermo Fischer Scientific, Waltham, United States) with a 

voltage of 40 mV in the angular range of 8° < 2θ < 60° using a step scan mode with step size 

of 0.02° and counting time of 1 s / step. 

Morphology 

The unmilled granules and reference materials of β- and δ-mannitol were examined by 

scanning electron microscopy (SEM) (FEI QuantaTM 200F, FEI, Hillsboro, USA) after 

sputtering with a gold coating (Emitech SC7620, Quorum Technologies, East Grinstead, UK) 

to improve the electron conductivity of the samples. 

Particle size analysis 

Granule size was analyzed before and after milling via dynamic image analysis using the 

QICPICTM system (Sympatec, Clausthal-Zellerfeld, Germany) equipped with a vibrating 

feeder system (Vibri/LTM) for gravimetrical feeding of the granules. Samples of 20 g were 

measured in duplicate. Windox 5 software (Sympatec, Clausthal-Zellerfeld, Germany) was 

used to calculate the median granule size (d50) as the equivalent projected circle diameter 

based on a volume distribution. The amounts of fines and oversized granules were defined 
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as the fractions <150 µm and >1500 µm, respectively. The yield of the process was defined 

as the percentage of granules between 150 and 1500 µm. 

Flowability testing 

The flowability expressed as the flowability index (ffc) of the milled granules  was measured 

in duplicate by ring shear testing (Type RST-XS, Dietmar Schulze Schüttgutmesstechnik, 

Wolfenbuttel, Germany). The powders were tested using three consolidation stresses, 400, 

600 and 800 Pa, at a preshear of 1000 Pa. 

Additionally, the compressibility index (C%) was calculated from the bulk and tapped 

densities of the milled granules. The bulk volume (V0) of 30 g milled granules was measured 

in a 100 ml graduated cylinder as well as the tapped volume after 1250 taps (V1250) in a 

tapping machine (J. Englesman, Ludwigshafen, Germany). Experiments were performed in 

duplicate. Bulk and tapped densities were calculated as 30 g/V0 and 30 g/V1250, respectively. 

The compressibility index was calculated from the bulk (ρi) and tapped (ρf) densities using 

the following equation: C% = [(ρf - ρi)/ ρf]*100. 

Friability testing 

The granule friability was determined in duplicate using a friabilator (PTF E Pharma Test, 

Hainburg, Germany) at a speed of 25 rpm for 10 min, by subjecting 10 g (Iwt) of milled 

granules together with 200 glass beads (mean diameter 4 mm) to falling shocks. Prior to 

determination, the granule fraction <250 µm was removed to assure the same starting 

conditions. Afterwards, the glass beads were removed and the weight retained on a 250 µm 

sieve (Fwt) was determined. The friability was calculated as [(Iwt – Fwt)/Iwt]*100. 

Dynamic vapor sorption (DVS) 

Dynamic vapor sorption (DVS Advantage, Surface Measurement Systems, Middlesex, UK) 

was used to assess the overall hygroscopicity of the materials. Approximately 10 – 20 mg of 

unmilled sample was placed into the instrument’s microbalance and dried by a stream of dry 

nitrogen at 25 °C until equilibrium (i.e. a weight change of less than 0.002% per min during at 

least 15 min). The samples were subsequently exposed to varying RH, 0, 20, 40, 60, 80, 90 

and 95% and equilibrated at each interval. Sorption and desorption of the samples were 

recorded at these RH conditions. 
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Specific surface area analysis 

Nitrogen adsorption measurements were performed at 77 K on a selection of unmilled 

granules and β- and δ-mannitol reference material using a TriStar 3000 gas sorption 

apparatus (Micromeritics Inc., Norcross, USA). The specific surface area of the powder 

samples was determined from the adsorption isotherm using the Brunauer-Emmett-Teller–

theory. 

Evaluation of the tablets 

The hardness, thickness and diameter of the tablets (n = 10) were determined using a 

hardness tester (Type HT 10, Sotax, Basel, Switzerland) and the tensile strength (TS) of the 

tablets was calculated according to the formula of Fell and Newton [31]:  

T = 2F/πdt 

Where F, d and t denote the diametral crushing force, tablet diameter and tablet thickness, 

respectively.  

The tablet friability was determined using a friabilator (PTFE, Pharma Test, Hainburg, 

Germany) as described in the European Pharmacopeia at a speed of 25 rpm for 4 min. The 

percentage weight loss was expressed as the tablet friability.  

Energy plots were calculated based on the punch stroke movements. In the energy plot the 

punch stroke is plotted against the compression force. An example of an energy plot is 

shown in Figure 1 where B is the punch stroke when the punch force is zero, C is the punch 

stroke when the punch force is maximal (A) and D is punch stroke after decompression when 

punch force is zero again. The areas of ABC, ABD and ADC show the total compression 

energy, plastic energy and elastic energy, respectively [22]. Based on the energy plot, the 

plasticity constant (PLC) was calculated as: plastic energy/total compression energy*100. 

This parameter expresses the plasticity of a material under deformation. 

The in-die elastic recovery (IER) was calculated using the Armstrong and Haines-Nutt 

equation:  

IER = (Ta – Tid) / Tid * 100 

where Ta denotes the tablet height immediately after ejection and Tid the tablet height under 

maximum compression force [32]. 
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Figure 1. Energy plot of punch stroke against compression force for β-mannitol reference material 
compressed at 150 MPa. 

 

RESULTS AND DISCUSSION 

Although mannitol is a preferred excipient for wet granulation and tableting, its behavior 

during twin screw granulation was not studied yet. In contrast to frequently used excipients 

during twin screw granulation (lactose, MCC), mannitol exhibits a high solubility and solubility 

rate. Therefore mannitol was expected to behave differently during granulation. Moreover 

polymorphic transitions are possible during recrystallization of mannitol. Such transition of δ- 

to β-mannitol was reported during high shear granulation and promoted the tabletability of 

the granules. An experimental design was performed to investigate the influence of four 

process parameters on the process and critical quality attributes of mannitol granules and 

tablets.  

Evaluation of the granulation process 

The torque varied strongly across all experiments. Torque values as low as 0.9 - 1.0 Nm 

(runs 13 and 19) were recorded, whereas in runs 7 and 8 the torque exceeded 20 Nm, the 

maximal torque tolerated by the granulator. These runs were conducted with 12 kneading 

elements, at a low screw speed and using a high L/S ratio. Run 7 was excluded from the 

design as no material could be collected. During run 8 a limited amount of granules was 

collected after equilibration which allowed solid state characterization and size and shape 

analysis but no further characterization. A torque value of 20 Nm was assigned to this run in 
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the experimental design. The influence of the granulation parameters on torque is shown in 

the effect plot in Figure 2.  

 

Figure 2. Effect plot showing the influence of the process parameters on torque. 

The screw speed, which was varied over a broad range of 400 - 900 rpm in the current study, 

proved the major factor affecting torque. Since the throughput was constant in all 

experiments, increasing the screw speed resulted in a lower filling degree of the barrel which 

in turn yielded lower torque values. This is in accordance with research from Kumar et al., 

Tan et al., Tu et al. and Keleb et al. (on formulations with mainly lactose, microcrystalline 

cellulose (MCC) or paracetamol), but is opposed to the report of Vercruysse et al. (on a 

formulation with lactose and theophylline) stating that screw speed did not influence torque 

[5, 7, 17, 26, 29]. The influence of screw speed on torque is possibly formulation dependent, 

but could also be more prominent at lower screw speeds (and consequently higher filling 

degrees) since the research of Kumar et al. (500 - 900 rpm), Tan et al. (100 - 150 rpm) and 

current study (400 - 900 rpm) were conducted at lower screw speeds than the study of 

Vercruysse et al. (600 - 950 rpm). 

Increasing the L/S ratio resulted in higher torque values. This is in agreement with research 

of Dhenge et al. (on a formulation with mainly lactose and MCC) who reported that a higher 

L/S ratio prolonged the residence time in the barrel as the material behaved like paste [27]. 

However, an inverse relationship between L/S ratio and torque was established by Tan et al. 

and Kumar et al. (on formulations with mainly paracetamol and lactose, respectively) [6, 17]. 

They explained that at a higher L/S ratio the material was more malleable, thus requiring less 

energy to deform and compress [17]. Finally, Tu et al. reported (on a formulation with MCC) 

that the torque increased until a critical L/S ratio was reached and then decreased with 
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formation of over-wetted particles. The effect of the L/S ratio on torque appears again 

formulation dependent. 

A higher number of kneading elements resulted in higher torque values due to the retaining 

character of the kneading elements causing more friction. Additionally, more mannitol could 

go into solution and participate in bond formation which could increase the torque.  Varying 

the granulation temperature did not have a significant effect on torque.  

Influence of the design variables on granule quality 

Solid state characterization 

Raman spectra of the unmilled and milled granules were compared to reference spectra of 

α-, β- and δ-mannitol. The data showed that a polymorphic transition occurred from δ- to β-

mannitol during twin screw granulation, similar to the observations of Yoshinari et al. for 

batch granulation [22]. This is noteworthy since the residence time during twin screw 

granulation is short, typically 5 - 20 s, compared to batch granulation where granulation times 

are in the order of tens of minutes [6, 19, 26, 27]. Moreover, Keleb et al., Beer et al. and Tan 

et al. demonstrated that lower L/S ratios are used in twin screw granulation in comparison to 

batch granulation [17, 28, 29]. The L/S ratio that could be applied during granulation in the 

current study varied between 0.08 and 0.16, whereas Yoshinari et al. used an L/S ratio of 

0.25 during batch granulation [22]. However, the polymorphic transition was not complete in 

all samples of current study. Therefore a PLS model was constructed to quantify the 

percentage of δ-mannitol left in the samples. The model gave a rough quantitative estimation 

of the composition of the samples since its root mean square error of cross validation 

(RMSECV) was relatively high (8.15). As β- and δ-mannitol particles where physically mixed 

in the PLS calibration samples, the variability on the spectra of these samples was higher 

than of the measured granules (where β- and δ-mannitol are homogeneously mixed during 

granulation), resulting in a model with a high RMSECV value. An overview of the percentage 

δ-mannitol in the granulated samples before and after milling is presented in Table 2 and it is 

clear that milling did not change the polymorphic content of the samples. Stability of δ-

mannitol, although thermodynamically the least stable mannitol polymorph, under 

mechanical stress was also demonstrated by Burger et al. [34]. 
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Run % δ-

mannitol 

before 

milling 

% δ-

mannitol 

after 

milling 

% δ-mannitol 

after 6 

months at 25 

°C and 40% 

RH 

% δ-mannitol 

after 6 

months at 40 

°C and 75% 

RH 

Moisture 

content at 

95% RH 

(%) 

Specific 

surface 

area 

(m²/g) 

1 10 7 6 7 1.87 -c 

2 14 12 9 9 1.54 -c 

3 9 9 6 7 1.84 -c 

4 10 9 7 6 1.84 1.7620 

5 23 26 26 12 2.08 -c 

6 8 8 5 6 1.81 -c 

7 -a -a -a -a -a -c 

8 6 -b 3 6 -c -c 

9 7 5 4 6 1.74 1.4312 

10 9 6 4 6 1.80 1.1167 

11 14 10 8 9 1.18 -c 

12 15 16 11 10 1.27 -c 

13 31 28 24 13 0.87 -c 

14 8 8 4 6 1.83 -c 

15 15 13 10 10 1.57 -c 

16 13 9 10 11 1.48 -c 

17 9 8 6 6 1.83 1.0907 

18 19 20 15 10 1.40 2.4289 

19 45 40 39 13 1.34 1.7945 

20 13 14 10 10 1.33 2.0907 

21 6 -d 4 -c 0.43 -c 

22 6 -d 4 -c 0.56 0.2346 

β-mannitol 

reference 
-c -c -c -c 0.26 0.1355 

δ-mannitol 

reference 
-c -c -c -c 0.60 0.5169 

aRun 7 was eliminated from the experimental design because of too high torque values 
immediately after start-up. 
bThe amount of granules collected was too limited to mill the samples. 
cNo data collected. 
 
Table 2. Overview of the percentage δ-mannitol in the unmilled and milled granules and unmilled 
granules after 6 months storage (25 °C and 40% RH or 40 °C and 75% RH), the maximal moisture 
content absorbed during DVS analysis and the specific surface area. 
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These results were also included as responses in the experimental design to investigate the 

influence of the process parameters on the polymorphic transition from δ- to β-mannitol. The 

corresponding effect plots showed that the L/S ratio, screw speed and number of kneading 

elements influenced the polymorphic transition during granulation and confirmed that milling 

did not significantly influence the polymorphic content (Figure 3).  

 

Figure 3. Effect plot showing the influence of the process parameters on the percentage residual δ-
mannitol in the granules before (top) and after milling (bottom). 

The L/S ratio was the strongest influencing process parameter as more mannitol could go 

into solution at higher L/S ratios which favored recrystallization to the β-polymorph [35]. 

Increasing the screw speed resulted in more residual δ-mannitol in the samples as it 

shortened the residence time and consequently also the duration of granulation during which 

the polymorphic transition could occur. Mixing of mannitol and water induced by the kneading 
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elements also affected the polymorphic composition of the granulated samples. More 

kneading elements resulted in more β-mannitol as more mixing promoted mannitol to go into 

solution. Run 8, which was performed with a high L/S ratio, low screw speed and 12 

kneading elements, yielded the sample with the lowest fraction of residual δ-mannitol. 

However, combining these process parameters was not feasible because of too high torque. 

In the section on tablet quality it will be investigated if complete transition of δ- to β-mannitol 

is necessary to obtain improved tablet properties.

 

Figure 4. XRD patterns of reference material of α-, β- and δ-mannitol and runs 1-20. 

The results of the Raman analysis were confirmed by XRD measurements (Figure 4). β-

mannitol was identified in all samples by its unique peak at 14.74°. Moreover, a small peak at 

9.90°, selective for δ-mannitol, in the diffractograms of runs 5, 12, 13, 18 and 19 indicated a 

significant residual percentage of δ-mannitol in these samples [21, 22, 30, 34, 36, 37]. The 
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overall lower intensity of the peaks in the diffractograms of the granules was attributed to a 

different crystal habit of the granules in comparison to the reference materials (powders) [38]. 

Morphology and specific surface analysis 

SEM images of the granulated samples were compared to those of β- and δ-mannitol 

reference materials. The granules derived from δ-mannitol as starting material (e.g. runs 14 

and 19) possessed a completely different morphology than the granules derived from β-

mannitol (runs 21 and 22) and the reference materials of β- and δ-mannitol (Figure 5). They 

consisted of aggregates of many small needle-shaped primary crystals, similarly as 

described by Yoshinari et al. after a polymorphic transition from δ- to β-mannitol during high 

shear granulation [22, 35]. This specific morphology was observed in all granules derived 

from δ-mannitol and was not correlated to the percentage of residual δ-mannitol in the 

granules.  

Yoshinari et al. also reported on a higher specific surface area associated with this specific 

surface morphology. Therefore, the specific surface area (SSA) of a selection of granules 

was determined (Table 2). The SSA of the granules derived from δ-mannitol was at least 

twice the SSA of δ-mannitol reference material, at least 8 times the SSA of β-mannitol 

reference material and at least 4 times the SSA of granules derived from β-mannitol. This 

confirmed the microscopic observations. 
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Figure 5. SEM images of β- and δ-mannitol reference material and representative samples of granulated β-mannitol (runs 21 and 22) and of granulated δ-
mannitol (runs 14, 19). 
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Size analysis 

The particle size distributions of granules before and after milling were determined. They 

were evaluated with regard to d50, fines fraction (<150 µm), oversized fraction (>1500 µm) 

and yield (150 - 1500 µm).  

A significant relationship between the L/S ratio and the d50, fines fraction and oversized 

fraction was detected: by adding more water, more liquid and solid bonds were formed, 

resulting in a larger d50, less fines and more oversized particles (Figure 6). This effect of L/S 

on particle size is generally recognized in literature [1, 5, 14, 19, 27]. 

A direct relationship was established between screw speed and the d50 and oversized 

fraction. This is in contrast to most literature reports (on a variety of formulations), indicating 

no correlation between screw speed and d50 [1, 7, 16, 17, 29] or an inverse relationship [1, 5, 

8]. They attributed the larger particle size at lower screw speeds to higher torque values, 

resulting in higher compressive forces in the granulator barrel. However, it is clear from the 

effect plot in Figure 6 that the directly proportional relation was dominant for all size 

parameters in the current study. The solubility and the solubility rate of the formulation could 

be determining factors for the influence of screw speed on granule size. Pure mannitol was 

used as excipient in current study and has a higher solubility and solubility rate constant than 

most other commonly used excipients for twin screw granulation (lactose, MCC, active drug 

substances…) [1, 7, 8, 10, 12, 13, 17, 19, 20, 26, 27, 39, 40]. Whereas higher compressive 

forces at low screw speed generally favor granule growth with less soluble excipients, 

granulation of mannitol could be driven by its high and fast solubility, rather than by 

compressive forces. It can even be concluded that compressive forces at low screw speeds 

induce breakage of the mannitol granules due to collision and friction. Additionally, an 

interaction between screw speed and L/S ratio influenced the d50 and oversized fraction: the 

positive influence of screw speed on the d50 and oversized fraction was more pronounced at 

high L/S ratios. This is illustrated by the interaction plot in Figure 7. 
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Figure 6. Effect plots visualizing the influence of the process parameters on d50 (A), yield (B), fines (C) and oversized fraction (D) of the granules before 
milling. 
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Figure 7. Interaction plots showing the combined effect of the L/S ratio (full line: L/S = 0.16 and dotted 
line: L/S = 0.08) and screw speed on the d50 (A), yield (B) and the fraction of oversized granules (C). 

Although the torque was increased by a higher number of kneading elements, no influence of 

the number of kneading elements on the granule size distribution was detected (Figure 6). 

This is most remarkable since compaction of the powder mass takes place along the 

kneading zone and kneading elements favor mixing between the granulation liquid and the 

powder. Taking into account that the compressive forces at low screw speed due to a high 

filling degree of the granulator barrel did not favor granule growth either, this confirmed the 

hypothesis that granule growth of mannitol particles was not caused by compressive forces 

but rather by formation of liquid and solid bridges after crystallization of solubilized material. 
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The yield of the granulation process varied between 13 and 56% before milling and was 

strongly affected by a high oversized fraction (varying between 36 and 86%). Consequently, 

the process yield was inversely related to the screw speed and L/S ratio (Figure 6). 

After milling with a grater screen of 1500 µm, the oversized fraction was eliminated but the 

fines fraction was generally larger. Nevertheless, the yield of particles suitable for tableting 

increased after milling and varied between 79 and 89%. No influence of the process 

parameters on fines and oversized fraction or yield was detected after milling. The d50 after 

milling was only influenced by the L/S ratio (Figure 8). No effect of the screw speed on d50 

was observed since the oversized fraction, created at high screw speed, was eliminated by 

milling. 

  



IMPROVED TABLETABILITY AFTER A POLYMORPHIC TRANSITION OF DELTA-MANNITOL DURING TSG 

101 

Figure 8. Effect plots visualizing the influence of the process parameters on d50 (A), yield (B), fines (C) and oversized fraction (D) of the granules after milling. 
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Figure 9. Effect plots visualizing the influence of the process parameters on compressibility index (C%) 
(A), flowability index (ffc) (B) and granule friability (C). 
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Flowability and friability 

The compressibility index (C%) and flowability index (ffc) were influenced by the L/S ratio 

and screw speed (Figure 9). Increasing the L/S ratio resulted in higher d50 values of the 

milled granules and consequently yielded better flowing granules. Overall the granules were 

classified as very cohesive to easy flowing based on their ffc value, and as having a fair to 

excellent flowability based on the C% value [41].   

The friability of the granules ranged from 6.1 to 50.5% and mainly depended on the L/S ratio. 

At higher L/S ratios more material dissolved in the granulation liquid which formed strong 

solid bridges after crystallization, resulting in less friable granules. The screw speed had a 

minor influence on the granule friability (Figure 9). Fewer compaction forces acted on the 

material at high screw speeds and consequently weaker bonds were formed inside the 

granules.  

Dynamic vapor sorption 

Mannitol is considered as a non-hygroscopic excipient [24, 35]. Nevertheless, the 

hygroscopicity of the granules was investigated by DVS analysis since a strong increase in 

specific surface area was microscopically observed. Sorption and desorption curves of β- 

and δ-mannitol starting material, granules derived from β-mannitol starting material (runs 21 

and 22) and a selection of representative granules derived from δ-mannitol starting material 

(runs 14 and 19) are shown in Figure 10. The maximal moisture uptake of β- and δ-mannitol 

starting material and the granules derived from β-mannitol starting material did not exceed 

0.60%, whereas the maximal moisture uptake of the granules derived from δ-mannitol 

starting material varied between 0.87 and 2.08% (Table 2). The maximal moisture uptake 

was linked to the percentage of residual δ-mannitol. Granules with a high percentage of 

residual δ-mannitol (e.g. run 19 in Figure 10) absorbed less moisture compared to samples 

where the polymorphic transition of δ- to β-mannitol was almost complete (e.g. run 14 in 

Figure 10). No significant difference in level of hysteresis between sorption and desorption 

was observed in the samples.  
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Figure 10. DVS sorption and desorption curves of β-mannitol (full black line) and δ-mannitol (dotted 
black line) reference material, granulated β-mannitol samples 21 (full grey line) and 22 (dotted grey 

line) and granulated δ-mannitol samples 14 (full blue line) and 19 (full green line). 

 

Influence of the design variables on tablet quality 

Tabletability and compression mechanism 

The tensile strength (TS) of tablets produced with β- and δ-mannitol reference material and 

granules manufactured using β-mannitol was compared to the TS of tablets manufactured 

with granules using δ-mannitol as starting material (Figure 11). The tabletability of four 

samples (runs 2, 5, 13 and 19) was not investigated as they lacked sufficient flowability for 

tableting on a rotary tablet press. These samples were produced at low L/S ratios and at high 

screw speed, conditions that negatively influenced the flowability (Figure 9). 

The tabletability of δ-mannitol reference material was significantly higher than of β-mannitol 

reference material, reaching a maximal TS of 2.1 MPa. Superior compaction properties of δ-

mannitol were also reported by Burger et al., Wagner et al. and Vanhoorne et al. [23, 34, 42]. 

The TS of granules derived from β-mannitol starting material did not exceed 1.6 MPa and 

was independent of the applied MCP. However, the tabletability of all granules that used δ-

mannitol as starting material underwent a transition to β-mannitol during granulation and their 

tabletability was significantly enhanced compared to the other tested materials. A linear 

relationship between MCP and TS was observed and maximal TS values of 4.2 - 5.7 MPa 

were obtained. This was attributed to the polymorphic transition from δ- to β-mannitol during 
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granulation resulting in granules with a specific morphology (aggregates of small needle-

shaped primary crystals) and an increased specific surface area. Yoshinari et al. 

demonstrated that this unique particle structure resulted in enhanced plastic deformability 

and increased tabletability [22]. No correlation between the investigated properties (e.g. 

residual percentage of δ-mannitol) of granules derived from δ-mannitol and their tabletability 

was established. Therefore a full polymorphic transition from δ- to β-mannitol must not be 

pursued to obtain granules with improved tabletability and there is no optimum in the ratio of 

δ-:β-mannitol with regard to tabletability. This was in agreement with the microscopic 

observations and SSA measurements since the specific morphology (aggregates of small 

needle-shape primary crystals) and increased SSA were present in all granules derived from 

δ-mannitol, independently of the percentage residual δ-mannitol in the granules. It was 

therefore concluded that the specific granule morphology associated with the polymorphic 

transition was key to the improved tabletability. Moreover the process was considered to be 

robust since variation in the process parameters could not influence the tabletability. 

The compression mechanism of the granules derived from β- and δ-mannitol was also 

investigated in the current study. Therefore the in-die elastic recovery (IER), plasticity 

constant (PLC) and the elastic energy were calculated based on the energy plots (Table 3).  

Based on IER and elastic energy, no difference in elastic behavior was detected between the 

mannitol granules and β- and δ-mannitol reference material. However, granules derived from 

δ-mannitol and δ-mannitol reference material exhibited higher plasticity constants than 

granules derived from β-mannitol or β-mannitol reference material. Therefore it was 

concluded that the superior tabletability of granules derived from δ-mannitol over granules 

derived from β-mannitol was due to better plastic deformation characteristics of the former. 

This confirmed the research of Yoshinari et al. [22]. 
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Figure 11. Tabletability of β- and δ-mannitol reference material, granulated β-mannitol (run 21 and 22) 
and granulated δ-mannitol samples. 

Friability 

The friability of tablets produced with granules of runs 1 - 20 (δ-mannitol starting material) 

and with δ-mannitol reference material was lower than 1%. In contrast, granulation with β-

mannitol starting material resulted in highly friable tablets (4.7 and 21.5% for runs 21 and 22, 

respectively). This confirmed the tabletability experiments as the enhanced plastic 

deformation of granules derived from δ-mannitol resulted in tablets with a higher tensile 

strength and lower friability. The friability of tablets with β-mannitol starting material was 

excessively high as these tablets completely fragmented during friability testing.  

Stability 

Samples of the unmilled granules were stored at 25 °C / 40% RH and at 40 °C / 75% RH in 

open cups. They were analyzed by Raman spectroscopy after 6 months and the percentage 

δ-mannitol was calculated by the PLS model (Table 2). 
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run IER (%) PLC elastic E (J) 

1 2.6 93.3 0.5 

3 3.1 92.1 0.6 

4 2.8 92.8 0.5 

6 2.9 93.3 0.5 

9 2.5 93.2 0.5 

10 3.0 93.1 0.6 

11 3.4 94.2 0.4 

12 2.4 94.1 0.4 

14 3.0 92.4 0.5 

15 2.3 94.6 0.4 

16 3.0 92.4 0.5 

17 2.5 92.2 0.4 

18 2.4 94.0 0.5 

20 2.9 94.2 0.4 

21 2.3 89.0 0.4 

22 2.7 91.2 0.5 

β-mannitol reference 2.9 90.0 0.5 

δ-mannitol reference 2.2 94.0 0.4 

Table 3. Overview of in-die elastic recovery (IER), plasticity constant (PLC) and elastic energy (E). 

After storage, a lower amount of δ-mannitol was found in the samples, irrespectively of the 

storage conditions. However, a significant decrease in the percentage of residual δ-mannitol 

was only detected in three samples (runs 5, 13, 19) after storage at 40 °C / 75% RH. These 

samples were produced at a low L/S ratio and a high screw speed and contained a relatively 

large fraction of residual δ-mannitol. The limited moisture uptake during storage at higher RH 

apparently induced a further moisture-mediated transition from δ- to β-mannitol. Hence, 

storage at lower RH is preferred to avoid polymorphic transition. 

CONCLUSIONS  

A different granulation behavior of mannitol was identified during continuous twin-screw 

granulation compared to other commonly used excipients such as lactose and MCC as the 

effect of granulation parameters (filling degree, screw speed, number of kneading elements) 

on the granule size distribution of mannitol granules was different compared to literature 

reports on formulations containing lactose and/or MCC as filler. Based on the higher 

solubility and faster dissolution rate of mannitol it was concluded that granulation of mannitol 

was principally driven by formation of liquid and solid bridges of solubilized material, rather 

than by compressive forces in the granulator barrel. 
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A polymorphic transition of mannitol was reported during twin screw granulation, which 

allowed to improve the tabletability of this material. Despite the short residence times and low 

L/S ratios used in twin screw granulation in comparison to batch granulation, the polymorphic 

transition of δ- to β-mannitol was observed, yielding a unique granule morphology with a 

higher specific surface area and enhanced plastic deformability. The superior tabletability of 

these granules derived from δ-mannitol as starting material over granules derived from β-

mannitol as starting material was attributed to this unique granule morphology which was not 

dependent on the process parameters. Therefore, the process was considered as robust. 

The excellent tabletability of granules derived from δ-mannitol is promising and its potential in 

combination with highly dosed, poorly compressible drugs will be investigated in a next 

study.  
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Abstract 

The aim of this study was to evaluate the potential of twin screw granulation for the 

continuous production of controlled release formulations with hydroxypropylmethylcellulose 

as hydrophilic matrix former. Metoprolol tartrate was included in the formulation as very water 

soluble model drug. A premix of metoprolol tartrate, hydroxypropylmethylcellulose and filler 

(ratio 20/20/60, w/w) was granulated with demineralized water via twin screw granulation. 

After oven drying and milling, tablets were produced on a rotary ModulTM P tablet press. A D-

optimal design (29 experiments) was used to assess the influence of process (screw speed, 

throughput, barrel temperature and screw design) and formulation parameters (starch 

content of the filler) on the process (torque), granule (size distribution, shape, friability, 

density) and tablet (hardness, friability and dissolution) quality attributes. The torque was 

dominated by the number of kneading elements and throughput, whereas screw speed and 

filling degree only showed a minor influence on torque. Addition of screw mixing elements 

after a block of kneading elements improved the yield of the process before milling as it 

resulted in less oversized granules and also after milling as less fines were present. 

Temperature was also an important parameter to optimize as a higher temperature yielded 

less fines and positively influenced the aspect ratio. The shape of 

hydroxypropylmethylcellulose granules was comparable to that of immediate release 

formulations. Tensile strength and friability of tablets were not dependent on the process 

parameters. The use of starch as filler was not beneficial with regard to granule and tablet 

properties. Complete drug release was obtained after 16 - 20 h and was independent of the 

design’s parameters within the experimental space. 

 

 

 

 

 

 

 

KEYWORDS: Continuous production, twin screw granulation, wet granulation, controlled 
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INTRODUCTION 

Twin screw granulation has received much attention in recent years as this continuous 

manufacturing concept can be implemented by the pharmaceutical industry to make the 

switch from batch to continuous processing in order to improve time and cost efficiency, 

flexibility, quality and environmental impact during manufacturing of oral solid dosage forms 

[1-4]. Additionally, regulatory authorities also encouraged the pharmaceutical industry to 

adopt continuous processing [5]. 

Up to now most studies on twin screw granulation focused on the influence of process 

parameters on granule quality [6-15] while only a limited number of papers addressed 

formulation parameters [16-21]. In most studies excipients intended for immediate release 

formulations were used such as lactose, microcrystalline cellulose (MCC) and blends thereof. 

Occasionally formulation parameters were investigated such as different lactose isomers 

[12], lactose grades with different size characteristics [12, 20] and the hydrophobicity and 

solubility of excipients [2, 22]. More complex formulations however require special attention.  

Continuous granulation of controlled release formulations was up to now exclusively 

examined by Thompson et al. [23]. They studied the granulation behavior of two placebo 

formulations with hydroxypropylmethylcellulose (HPMC) or polyvinylacetate/povidone (5-20% 

w/w) as matrix formers and a mixture of MCC and lactose as filler (MCC/lactose ratio 20/80, 

w/w) on a 27 mm Leistritz extruder. This process yielded large granules with a twisted 

morphology, especially using HPMC as matrix former. The poor shape of the granules (the 

aspect ratio of the individual granules was as low as 0.25) could not be eliminated by 

changing the liquid-to-solid ratio (L/S), screw speed, throughput or polymer concentration. It 

was observed that these twisted granules were formed immediately after a non-conveying 

zone. Screw configurations with a kneading block or comb mixing elements at the end were 

the only effective means of eliminating the formation of these aberrant granules.  

It was the aim of this study to investigate the potential of continuous twin screw granulation 

with water as granulation liquid, for the production of a controlled release formulation with 

HPMC as hydrophilic matrix former and metoprolol tartrate (MPT) as very water soluble 

model drug. Therefore the influence of process (throughput, screw speed, temperature and 

screw design) and formulation (starch content of the filler) parameters on critical quality 

attributes of the process, granules and tablets were investigated using an experimental 

design. 
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MATERIALS AND METHODS 

Materials 

MPT was used as model drug and was purchased from Utag (Almere, The Netherlands). 

HPMC grade 90SH-4000 (substitution type 2208 according to the USP and Ph. Eur.) was 

kindly donated by ShinEtsu (Tokyo, Japan). Native maize starch (C*GelTM, Cargill, Mechelen, 

Belgium), MCC (Avicel PH101, FMC Health and Nutrition, Cork, Ireland) and α-lactose 

monohydrate (Pharmatose 200M, DMV-Fronterra, Veghel, The Netherlands) were used as 

fillers. Distilled water was used as granulation liquid. Magnesium stearate (Fagron, 

Waregem, Belgium) was used as lubricant during tableting.  

Preparation of granules 

MPT (20% w/w), HPMC (20% w/w) and filler (lactose or 1/1-mixture of lactose/starch) were 

preblended in a tumbling mixer (Inversina Bioengineering, Wald, Switzerland) for 10 minutes 

at 25 rpm and transferred to the loss-in-weight feeder (DDW-MD2-DDSR20, Brabender, 

Duisburg, Germany) of the ConsiGmaTM-1 (GEA Pharma Systems, ColletteTM, Wommelgem, 

Belgium) system. This system is a laboratory-scale continuous granulator with an integrated 

fluid bed dryer intended for early R&D work (Figure 1). The granulation unit consists of a co-

rotating twin screw granulator without a die plate and has a length-to-diameter ratio of 20/1. 

The barrel can be divided in a feed zone with conveying elements and a working zone where 

the powder is intensively mixed with the granulation liquid by kneading elements. Water as 

granulation liquid was pumped into the barrel just before the first kneading element via a 

double liquid addition port, dripping granulation liquid on top of each screw. For all 

experiments the distance between liquid addition and the first kneading element was kept 

constant. The L/S ratio was kept constant at 0.08 and 0.10 in MPT/HPMC mixtures using 

lactose and a lactose/starch (1/1-ratio) mixture as filler, respectively. The barrel jacket was 

equipped with an active cooling system in order to maintain the set temperature during 

processing, and torque was monitored by a built-in torque gauge at 1-second intervals. For 

each run, 1000 g of granules were collected at the outlet of the granulator and tray dried in 

an oven at 40 °C for 24 h. After drying, 750 g of the granules were milled through a 1000 µm 

grater screen with square impeller at 900 rpm using the Quadro comil (U10, Quadro, Ontario, 

Canada). 



DEVELOPMENT OF A CONTROLLED RELEASE FORMULATION BY CONTINUOUS TSG 

117 

 

Figure 1. ConsiGma
TM

-1 system with (a) high-shear granulator barrel, (b) liquid addition on both 
screws, (c) gravimetric feeder and (d) granulator exit to be optionally coupled to a fluid bed dryer. 

In addition a formulation used by Thompson et al. (2014), consisting of 20% HPMC, 16% 

MCC and 64% lactose was granulated using the granulation unit of the ConsiGmaTM-25 

system (GEA Pharma Systems, ColletteTM, Wommelgem Belgium) in order to evaluate the 

tendency of this formulation to form noodle-like granules on the ConsiGmaTM-25 system [23]. 

The HPMC type used in current study was identical to the HPMC type used by Thompson et 

al. according to classification of the USP and Ph. Eur. with regard to substitution degree and 

viscosity. Screw speed, temperature and throughput were fixed at 900 rpm, 25 °C, 25 kg/h, 

respectively, and a screw configuration with one block of six kneading elements was used. 

The L/S ratio was varied between 0.10 and 0.30.  

Preparation of tablets 

The milled granules were blended with 0.5% w/w magnesium stearate in a tumbling blender 

(T2F, W.A. Bachofen, Basel, Switzerland) before tableting. Tablets were prepared using a 

ModulTM P tablet press (GEA Pharma Systems, CourtoyTM, Halle, Belgium) in manual mode 

at a speed of 230 tablets per minute. The press was equipped with 10 round flat-faced bevel-

edged Euro B punches (SPC, Rillieux-la-Pape, France) of 13 mm diameter and an overfill 

cam of 16 mm. The paddles in the feed frame were rotating at a speed of 15 and 20 rpm. 

Filling depths between 9.8 and 10.5 mm were used, in function of the density of the samples. 

Tablets were compressed at 7 different main compression forces: 54, 126, 230, 352 and 521 
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MPa after precompression at 16 MPa in order to assess the tabletability of the granulates. 

Tablets compressed at 352 MPa were selected for friability testing and dissolution. 

Design of experiments 

Based on preliminary experiments the different L/S ratios (0.08 and 0.10 using lactose and a 

1/1-ratio lactose/starch mixture as fillers, respectively) and experimental ranges for 

throughput, screw speed, barrel temperature and screw design were determined. A D-

optimal design (G-efficiency 84, condition number 2.13) with 29 experiments was applied to 

study the influence of four process parameters: screw speed (600-900 rpm), throughput (10-

25 kg/h), temperature (10-40 °C) and screw design, and one formulation parameter: starch 

content of the filler (0-50%) on the granulation process, granule and tablet properties. Three 

different screw configurations were evaluated: 1 kneading zone of 6 kneading elements 

without (1x6) or with (1x6+SME) addition of screw mixing elements (SME) and 2 kneading 

zones of 6 kneading elements (2x6) separated by a conveying zone. A description of SME is 

given by Vercruysse et al. [15]. An overview of the screw configurations is shown in Figure 2. 

Two centerpoints (with screw configurations 1x6 and 1x6+SME) were run in duplicate. An 

overview of the experiments is given in Table 1. The results were analyzed using Modde 

10.1 (Umetrics, Umeå, Sweden) software, and error bars represent 95% confidence 

intervals. 

 

Figure 2. Schematic overview of the screw configurations with: kneading elements with a length-to-
diameter (L/D) ratio of L/D 1/6 (yellow), kneading elements with L/D ratio of 1/4 (green), conveying 

elements (blue), SME (red). The process direction is indicated with an arrow. 
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Run Temperature 

(°C) 

Screw speed 

(rpm) 

Throughput 

(kg/h) 

Starch content 

of the filler (%) 

Screw 

configuration(*) 

1 40 600 10 0 2x6 

2 25 900 10 0 2x6 

3 25 600 25 0 2x6 

4 40 900 25 0 2x6 

5 25 600 10 50 2x6 

6 40 900 10 50 2x6 

7 40 600 25 50 2x6 

8 25 900 25 50 2x6 

9 25 600 10 0 1X6+SME 

10 40 900 10 0 1X6+SME 

11 40 600 25 0 1X6+SME 

12 25 900 25 0 1X6+SME 

13 40 600 10 50 1X6+SME 

14 25 900 10 50 1X6+SME 

15 25 600 25 50 1X6+SME 

16 40 900 25 50 1X6+SME 

17 40 600 10 0 1x6 

18 25 900 10 0 1x6 

19 40 900 10 0 1x6 

20 25 600 25 0 1x6 

21 40 900 25 0 1x6 

22 25 600 10 50 1x6 

23 40 900 10 50 1x6 

24 40 600 25 50 1x6 

25 25 900 25 50 1x6 

26 32.5 750 17.5 50 1x6 

27 32.5 750 17.5 50 1x6 

28 32.5 750 17.5 0 1X6+SME 

29 32.5 750 17.5 0 1X6+SME 

(*)Screw configurations: 1x6: 1 kneading zone of 6 kneading elements, 1x6+SME: 1 kneading 
zone of 6 kneading elements with addition of screw mixing elements (SME), 2x6: kneading 
zones of 6 kneading elements (2x6) separated by a conveying zone. 

Table 1. Overview of the experimental design.  
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Evaluation of granules 

Particle size and shape analysis 

Granule size and shape was analyzed before and after milling via dynamic image analysis 

using the QICPICTM system (Sympatec, Clausthal-Zellerfeld, Germany) equipped with a 

vibrating feeder system (Vibri/LTM) for gravimetrical addition of the granules. Samples of 3 g 

were measured in triplicate. Windox 5 software was used to calculate the median granule 

size (d50) as the equivalent projected circle diameter. In addition, the sphericity and aspect 

ratio of the granules were determined. The aspect ratio is defined as the ratio of the maximal 

Feret diameter to the minimal diameter orthogonal to it, and sphericity is the ratio of the 

perimeter of the equivalent circle to the real perimeter. The amounts of fines, coarse and 

oversized granules were defined as the fractions <150 µm, >900 µm and >1500 µm, 

respectively. The yield of the process was defined as the percentage of granules between 

150 and 1500 µm. All particle diameters were calculated based on volume. 

Bulk and tapped density 

The bulk volume (V0) of 30 g milled granules was measured in a 100 ml measuring cylinder 

as well as the tapped volume after 1250 taps (V1250) in a tapping machine (J. Englesman, 

Ludwigshafen, Germany). Experiments were performed in duplicate. Bulk and tapped 

densities were calculated as 30 g/V0 and 30 g/V1250, respectively. The compressibility index 

(C%) was calculated from the bulk (ρi) and tapped (ρf) densities using the following equation: 

C% = [
ρf − ρi

ρf
] ∗ 100 

Friability analysis 

The granule friability was determined in duplicate using a friabilator (PTF E Pharma Test, 

Hainburg, Germany) at a speed of 25 rpm for 10 min, by subjecting 10 g (Iwt) of milled 

granules together with 200 glass beads (mean diameter 4 mm) to falling shocks. Prior to 

determination, the granule fraction <250 µm was removed to assure the same starting 

conditions. Afterwards, the glass beads were removed and the weight retained on a 250 µm 

sieve (Fwt) was determined. The friability was calculated as: 

Friability (%) = [
Iwt − Fwt

Iwt
] ∗ 100 
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Tablet evaluation 

The hardness, thickness and diameter of the tablets (n=10) were determined (Sotax HT 10, 

Basel, Switzerland) and the tensile strength (TS) was calculated using the equation 

described by Fell and Newton [24]: 

TS = 2F/πdt 

Where F, d and t denote the diametral crushing force, tablet diameter and tablet thickness, 

respectively. 

The tablet friability was determined using a friabilator described in the European 

Pharmacopeia (PTF E Pharma Test, Hainburg, Germany) at a speed of 25 rpm for 4 min. 

The percentage weight loss was expressed as the tablet friability. 

Dissolution tests were performed (n=3) in 900 ml demineralized water using the paddle 

method (VK 7010, Vankel, Cary, NC, USA). The temperature of the dissolution medium was 

maintained at 37 ± 0.5 °C, while the rotation speed was set at 100 rpm. Samples of 5 ml 

were withdrawn after 0.5, 1, 2, 4, 6, 8, 12, 16, 20 and 24 h. The drug content in these 

samples was derived from the absorbance of the samples at 222 nm using a UV 

spectrophotometer (UV-1650PC, Shimadzu Benelux, Antwerp, Belgium). From the drug 

release profile, the time point of 50% drug release was determined. 

RESULTS AND DISCUSSION 

Evaluation of the granulation process 

For all experiments the torque was lower than about 5.5 Nm (which was far below 20 Nm, 

the maximum torque tolerated by the granulator) and was mainly influenced by screw design, 

screw speed and throughput. More kneading elements, which retain the material in the 

extruder, resulted in higher torque readings. An interaction between high throughput and the 

number of kneading elements was also detected as the torque was especially high when 

running at high throughput with the 2x6 screw configuration. This is in agreement with 

continuous wet granulation of immediate release formulations [6, 7, 8, 25, 26]. 

Addition of SME after a kneading block did not result in lower and more stable torque values 

as described by Vercruysse et al. [15]. As the geometry of SME is based on conveying 

elements, their conveying capacity is higher than of kneading elements, resulting in less 

shear and lower torque with an immediate release formulation. However, the HPMC-

formulation behaved differently when processed using SME which was attributed to swelling 
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and stickiness of HPMC upon hydration. This reduced the free volume between the screws 

and the barrel wall, resulting in more shear on the screws.  

Screw speed as such and in an interaction with throughput also affected the torque. At higher 

screw speed, lower torque values were recorded as the material residence time in the barrel 

is shorter and therefore swelling of HPMC was less pronounced [26, 7]. This is in accordance 

with the research of Dhenge et al. on a formulation containing 5% hydroxypropylcellulose 

and 20% microcrystalline cellulose, components that also swell upon hydration [7]. In 

addition, the interaction between throughput and screw speed affected torque: at high 

throughput an increase of screw speed reduced the torque, whereas it only had a minor 

impact at low throughput since the filling degree was more affected at higher screw speed 

(Figure 3).  

 

Figure 3. Contour plot of torque (Nm) as a function of throughput (kg/h) and speed (rpm) at a 
temperature of 32.5 °C, filler ratio of 25% and screw configuration 2x6. 

Influence of design variables on granule quality 

Granule size 

Narrow granule size distributions with all particles between 150 – 1500 µm are preferred as 

they prevent content uniformity issues after tableting due to poor flow.  However, in current 

study all granule size distributions were relatively broad after granulation with a process yield 

varying between 21.4 – 70.1%. This was mainly due to an extensive oversized fraction, 

varying between 26.1 – 78.2 %. Oversized granules are not desirable as they prevent 

homogeneous dosing during tableting. Therefore milling of the oversized fraction was 
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necessary and the granule size distributions of the granules before and after milling were 

evaluated. Although during milling fines were created, the yield of the process after milling 

generally increased and varied between 77.7 - 89.4%.  

Increasing the number of kneading elements resulted in high d50 values, an extensive fraction 

of oversized granules and a small fraction of fines, both before and after milling (Figure 4). 

Addition of SME after a block of kneading elements reduced the d50 and the fraction of 

oversized granules before milling but yielded slightly more fines which was in accordance 

with the results of Vercruysse et al. [15]. Overall a narrower granule size distribution and 

higher yield were obtained before milling when SME were added after a block of kneading 

elements which could improve the drying uniformity of the granules and potentially eliminate 

a milling step prior to tableting, making the manufacturing process more cost effective. This 

is illustrated for the centerpoints with screw configuration 1x6 (runs 26 and 27) and 1x6+SME 

(runs 28 and 29) in Figure 5. After milling there was no significant difference between the d50 

and the coarse fraction produced with screw configurations 1x6 and 1x6+SME, while less 

fines were present in the granulate produced with screw configuration 1x6+SME (Figure 4). 

This was due to the absence of a large oversized fraction after the granulator if SME were 

added after a kneading block as milling of oversized granules created fines during the milling 

process. 
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Figure 4. Top: effect plot (effects > 25 µm) of d50 of unmilled (left) and milled (right). Bottom: effect plot of the fines fraction (<150 µm) of unmilled (left, 
effects > 1.2 %) and milled (right, effects >2%). 
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Figure 5. Granule size distributions of centerpoints produced with screw configurations 1x6 (runs 26 
and 27) and 1x6+SME (runs 28 and 29) before milling. 

The filler ratio as such did not significantly affect the granule size distribution. However, two 

interactions including the filler were detected with respect to the d50 of the unmilled granules: 

an interaction between screw configuration and filler, and an interaction between 

temperature and filler. Whereas addition of SME after a kneading zone resulted in a 

considerable decrease in d50 when lactose was used as filler, this decrease was less 

pronounced in combination with starch as a filler in the formulation. This could be explained 

by the hypothesis that SME are responsible for breaking up the oversized granules and that 

the starch-containing formulation is more resistant to breakage during granulation as a higher 

L/S ratio was used. The interaction between the filler and temperature demonstrated a 

directly proportional relation between d50 and the barrel temperature when the lactose/starch 

mixture was used as filler, whereas an inversely proportional relation was found for the 

granules exclusively formulated with lactose as filler. At higher processing temperature the 

solubility of lactose and MPT increased, the solubility of HPMC decreased and the solubility 

of starch is not affected since this component is not water soluble at temperatures below the 

gelation point. It appears that the reduction in solubility of HPMC at higher temperatures only 

affected the formulation with lactose as filler as in this formulation the applied L/S ratio is 

lower, hence the decrease in HPMC solubility was not compensated by the higher solubility 

of lactose and MPT. 

A significant relationship between the barrel temperature and fines fraction of milled and 

unmilled granules was established (Figure 4). The reduction of fines at higher barrel 

temperature was attributed to the increased solubility of lactose and MPT and to the lower 

viscosity of HPMC at these settings (HPMC can act as binder next to its function as matrix 
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former). According to the supplier’s information, there is a sharp decrease in viscosity of a 

1% HPMC solution in water when the temperature is increased over 40 °C. Although the 

product temperature was monitored and kept constant at 40 °C, higher temperatures might 

temporarily been reached in the kneading zone due to high shear. A lower viscosity of the 

granulation liquid could improve the penetration of the granulation liquid in the powder bed, 

resulting in improved distribution of granulation liquid. This induced granule growth with 

layering of fines on granules. As a consequence, a high temperature positively influenced the 

yield of the milled granules. An interaction between temperature and screw design was also 

detected with respect to the fines fraction (Figure 4). The decrease in fines at higher 

temperatures was more distinct when using SME. Assuming that SME break oversized 

granules during granulation and thereby create fines, this effect can also be explained by the 

higher solubility of lactose and MPT and the lower viscosity of HPMC at higher temperatures. 

Therefore barrel temperature is an important process parameter to optimize when 

granulating HPMC-based formulations. 

An increase in throughput resulted in a lower d50 and a larger fines fraction of milled 

granules. This is in contrast to most reports in literature where denser and larger granules at 

higher throughput are linked to higher compressive forces during granulation [11, 19, 21, 28]. 

However, similar results were found by Dhenge et al. on a formulation containing 20% 

microcrystalline cellulose and 5% hydroxypropylcellulose, components that also swell upon 

hydration [7, 8]. At a higher throughput, less free volume in the barrel is available which could 

hinder the penetration of granulation liquid in the powder bed. Although this reasoning could 

be applicable for formulations with non-swelling components, it appeared to be exclusively 

valid for formulations with cellulose derivatives that swell upon hydration and consequently 

strongly hinder penetration of the granulation liquid [7, 8]. 

There was no influence of screw speed on the particle size distribution of the granules. This 

is in contrast to the research of Thompson et al. on an HPMC formulation where higher 

screw speeds resulted in larger granules [23]. However an interaction of screw speed and 

throughput was detected for the fines fraction of the milled and unmilled granules (Figure 4). 

At low throughput, the fines fraction decreased as screw speed increased. This could be 

attributed to the higher energy input in the process at high screw speed. At high throughput 

the effect of screw speed on fines was reversed. This is correlated to a decrease in torque at 

higher screw speed (section 3.1), resulting in lower compressive forces and therefore more 

fines. 
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Granule shape 

Overall the aspect ratio and sphericity varied between 0.61-0.69 and 0.69-0.75 (unmilled 

granules), and 0.64-0.69 and 0.75-0.79 (milled granules), respectively. Screw configuration 

and temperature showed a minor but significant influence on the granules’ shape. Screw 

configurations 2x6 and 1x6+SME yielded granules with the highest aspect ratio and 

sphericity, respectively, meaning that more kneading elements improved the overall shape of 

the granules and that the addition of SME smoothened the surface of the granules. 

Temperature positively influenced the aspect ratio as at a higher processing temperature the 

viscosity of HPMC in solution is lower and a higher fraction of lactose and MPT can dissolve, 

increasing the deformability during processing. The use of exclusively lactose as filler yielded 

granules with a higher aspect ratio as lactose can dissolve in the granulation liquid which 

makes it easier to deform during granulation than starch which is not soluble in the 

granulation liquid. No significant influence of screw speed or throughput on the granule 

shape was detected.  

In contrast to Thompson et al. who reported the formation of long (3-10 mm), twisted noodle-

like granules (Figure 6)  using  HPMC as controlled release excipient, the aspect ratios of the 

granules in the current study were comparable to those reported for immediate release 

formulations (typically between 0.64 and 0.70) [2, 23, 27].  

 

Figure 6. Twisted noodle-like granules reported by Thompson et al. [adopted from 23]. 

Thompson et al. suggested that the twisted, noodle-like HPMC-based granules were formed 

at the flight tips of the conveying elements, a process which mainly occured at the kneading 

zone where forces squeezed the liquid to the periphery of the granules [23]. The formation of 

these noodle-like granules could only be eliminated through inclusion of a kneading block at 

the end of the screws. As in the current study no such granules were formed, independent of 

the process parameters and screw design, it was evident that the granulator design and/or 

the composition of the formulation are vitally important to create controlled release granules 
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with acceptable size and shape. Thompson et al. used a formulation with 5 - 20% HPMC and 

filler mixture consisting of 20% MCC and 80% lactose [23]. Since MCC has a high water 

absorption capacity and is practically insoluble in water, formulations with MCC require more 

water for successful granulation [29, 30]. As a consequence a higher L/S ratio (0.25 w/w) 

was used in the study of Thompson et al. in comparison to the current study (L/S ratios of 

0.08 and 0.10 w/w using lactose or a 1/1-ratio mixture of lactose and starch, respectively) 

[23].  

In order to clarify whether the formation of twisted, noodle-like granules as described by 

Thompson et al. was due to a different granulator design or the use of MCC as filler in 

combination with a high L/S ratio, an identical formulation was granulated in the current 

study. The screw configuration applied in current study (1 block of 6 kneading elements 

followed by conveying elements) was as similar as possible to one of the screw 

configurations (1 block of 5 kneading elements followed by conveying elements) used by 

Thompson that resulted in noodle-like granules. An L/S ratio of 0.16 yielded granules with an 

acceptable shape having a mean aspect ratio of 0.60. Increasing the L/S ratio to 0.26 

resulted in oversized granules with a flake-like structure, while a further increase of the L/S 

ratio to 0.29 resulted in twisted elongated granules as described by Thompson et al. [23]. 

Their aspect ratio could not be reported as their size exceeded the measuring range of 

image analysis detector. However, in contrast to Thompson et al., the formation of these 

granules depended on the moisture content [23]. This indicated that both granulator design 

and composition of the formulation are essential parameters during continuous granulation of 

controlled release formulations with HPMC.  

Bulk and tapped density, flowability, friability 

The bulk and tapped density of the milled granules ranged between 0.46-0.53 and 0.58-0.67 

g/ml, respectively, with the granules containing starch displaying lower densities. This could 

be correlated to the lower aspect ratio of the granules with starch included in the filler. A 

higher number of kneading elements induced more densification during the granulation 

process, resulting in higher bulk and tapped densities, similar to the observations for 

immediate release formulations [6]. Furthermore, an interaction between screw design and 

temperature was detected (Figure 6). An increase in temperature only resulted in a higher 

density for granules produced with the 2x6 screw configuration. Apparently there was a 

synergy between a high temperature (solubilizing lactose and MPT which increased the 

plasticity and deformability of the powder mass in the granulator) and the higher number of 

kneading elements (which enhanced the compaction of the granules).  
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The compressibility index varied between 15 and 23%, indicating acceptable flow properties. 

No relevant relationships between flow properties and the design variables were detected. 

The friability of the milled granules ranged between 9 and 34% and was mainly affected by 

the screw design. Increasing the number of kneading elements yielded less friable granules, 

whereas addition of SME after a kneading block had no significant effect on friability. In 

addition an interaction between temperature and screw design influenced the friability of the 

granules (Figure 7): barrel temperature only determined friability using the 2x6 screw 

configuration due to the more extensive densification at higher temperatures. 

 

Figure 7. Interaction plot of tapped density (top) and granule friability (bottom) as a function of screw 
configuration and temperature. 
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Influence of design variables on tablet quality 

The tensile strength of the tablets was clearly affected by the fillers used. As starch exhibited 

elastic behavior during tableting, the tabletability of tablets containing exclusively lactose was 

superior [31]. However, in contrast to immediate release formulations, no significant influence 

of process parameters on tabletability was detected although it should be noted that the 

studies on immediate release formulations were performed at low tableting speeds [6, 9] and 

that no magnesium stearate was added before tableting [9]. 

Representative tabletability plots for formulations containing only lactose as filler and 

containing a 1/1-ratio lactose/starch mixture as filler are shown in Figure 8. Based on the 

tabletability plots, tablets compressed at 352 MPa were selected for friability and dissolution 

testing as from this compression force onwards the tablet hardness was constant. 

 

Figure 8. Representative tabletability plots of formulations with only lactose as filler (dotted line) and 
with a 1/1-ratio lactose/starch mixture (full line) as filler. 

The friability of all tablets was compliant to the European Pharmacopeia and ranged between 

0.13 and 0.53%.  

Release profiles of selected runs (4, 22 and 28) showed that MPT was released over 16-20 h 

(Figure 9). The release was independent of the parameters included in the design. This is in 

contrast to the reports of Dhenge et al. and Vercruysse et al. on immediate release 

formulations showing an effect of screw design and throughput on the drug release rate [6, 

8]. However, in our study the effect of HPMC as matrix former for controlled release and the 

high solubility of metoprolol tartrate dominated over the process parameters. 
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Figure 9. Drug release profile of selected runs: 4 (blue), 22 (green) and 28 (red). 

 

CONCLUSIONS 

The influence of process parameters and filler on the granule and tablet properties of a 

controlled release formulation was investigated using a D-optimal experimental design with 

29 experiments. Torque could be modulated by adjusting the filling degree and the screw 

configuration. Addition of SME after a block of kneading elements increased the yield of the 

process before and after milling. The shape of the controlled release granules was 

comparable to that of immediate release granules. No elongated granules were formed when 

lactose and/or starch were used as filler. However, combination of HPMC and MCC resulted 

in elongated granules at high L/S ratios. Therefore combination of HPMC with other cellulose 

derivatives was discouraged. The use of native starch as filler was not beneficial with regard 

to granule or tablet properties. Release of MPT was sustained over 16 - 20 h and was 

independent of the process and formulation parameters, signifying that the process is very 

robust with regard to dissolution. Twin screw granulation with water as granulation liquid 

followed by tableting proved to be an attractive technique for the continuous production of 

controlled release tablets with HPMC as hydrophilic matrix former.  
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Abstract 

HPMC is a popular matrix former to formulate tablets with extended drug release. Tablets 

with HPMC are preferentially produced by direct compression. However, granulation is often 

required prior to tableting to overcome poor flowability of the formulation. While continuous 

twin screw granulation has been extensively evaluated for granulation of immediate release 

formulations, twin screw granulation of controlled release formulations including the 

dissolution behavior of the formulations received little attention. Therefore, the influence of 

the HPMC grade (viscosity and substitution degree) and the particle size of theophylline on 

critical quality attributes of granules (continuously produced via twin screw granulation) and 

tablets was investigated in the current study. Formulations with 20 or 40% HPMC, 20% 

theophylline and lactose were granulated with water at fixed process parameters via twin 

screw granulation. The torque was influenced by the viscosity and substitution degree of 

HPMC, but was not a limiting factor for the granulation process. An optimal L/S ratio was 

selected for each formulation based on the granule size distribution. The granule size 

distributions were influenced by the substitution degree and concentration of HPMC and the 

particle size of theophylline. Raman and UV spectroscopic analysis on 8 sieve fractions of 

granules indicated an inhomogeneous distribution of theophylline over the size fractions. 

However, this phenomenon was not correlated with the hydration rate or viscosity of HPMC. 

Controlled release of theophylline could be obtained over 24 h with release profiles close to 

zero-order. The release of theophylline could be tailored via selection of the substitution 

degree and viscosity of HPMC.  

 

 

 

 

 

 

 

KEYWORDS: HPMC, continuous production, twin screw granulation, theophylline, controlled 

release  
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INTRODUCTION 

Hydroxypropylmethylcellulose (HPMC) is widely applied in oral, ophtalmic and topical 

pharmaceutical formulations. In oral products, HPMC is applied as binder, film coating and 

hydrophilic matrix former. As matrix former, it sustains drug release resulting in a prolonged 

therapeutic effect, minimization of side effects, reduced administration frequency and 

improved patient compliance. Hydrogen bonding between HPMC and water forms a gel layer 

at the surface of a wetted tablet, controlling the drug release via diffusion through and 

erosion of the highly viscous polymer matrix. The matrix forming and drug release 

mechanisms have been thoroughly studied by several research groups [1-3]. HPMC has a 

polymeric backbone of cellulose substituted with hydroxypropyl and methyl groups (Figure 

1). The ratio of hydroxypropyl and methyl substitutions is referred to as the degree of 

substitution and will determine the characteristics of the polymer (e.g. solubility, hydration 

rate). Additionally, commercially available HPMC grades differ with regard to molecular 

weight and therefore viscosity.  

 

Figure 1. Chemical structure of HPMC. 

 

HPMC is the most popular hydrophilic matrix former for production of controlled release 

tablets as it is non-ionic, stable over a broad pH range, enzyme resistant, odourless and 

tasteless, extensively studied and understood, non-toxic and cost-effective [4-8]. Moreover 

the available variety of HPMC grades with different substitution degrees and viscosities make 

it a versatile matrix former for controlled release of a wide range of drugs with varying 

solubilities and doses [8]. Tablets with HPMC can be produced by direct compression but 

often granulation is necessary [4, 9]. High shear and fluid bed granulation were successfully 

applied to improve the flowability of formulations with HPMC [4, 5, 9, 10-16], often requiring 

hydro-alcoholic granulation liquids as granulation with water yielded lumps as well as fines 

due to the irregular wetting of the formulation.  
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Twin screw granulation is an emerging continuous granulation technique that can be 

implemented in a fully continuous from-powder-to-tablet manufacturing line. This concept 

offers economic advantages, improved product quality and a lower environmental impact [17, 

18, 19, 20]. However, up to now only two studies addressed continuous granulation of 

formulations with HPMC [21, 22]. Whereas these studies used the same HPMC grade and 

investigated the influence of process parameters, in current study the impact of formulation 

variables on critical quality attributes of granules and tablets was studied. Three HPMC 

grades (in two concentrations), varying in substitution degree and viscosity, and two 

theophylline grades, varying in particle size, were included in the formulations.  

MATERIALS AND METHODS 

Materials 

Theophylline, in a micronized and powdered grade, was used as model drug and was kindly 

donated by BASF (Ludwigshafen, Germany). Three HPMC grades (90SH-4000-SR, 90SH-

100000-SR and 60SH-4000) were kindly donated by ShinEtsu (Tokyo, Japan). The 

substitution types (according to the USP and Ph. Eur.) and viscosities of these HPMC grades 

are included in Table 1. Magnesium stearate (Fagron, Waregem, Belgium) and α-lactose 

monohydrate (Pharmatose 200M, DMV-Fronterra, Veghel, The Netherlands) were used as 

lubricant and filler, respectively.  

Product Substi-

tution 

typea 

Viscosity 

(mPa*s) 

d10 

(µm) 

d50 

(µm) 

d90 

(µm) 

span True 

density 

(g/cm³) 

HPMC Metolose 90SH-4000-

SR 
2208 4000 18.8 80.4 208.5 2.4 1.32 

HPMC Metolose 90SH-

100000-SR 
2208 100000 14.5 49.7 287.6 5.5 1.32 

HPMC Metolose 60SH-4000 2910 4000 16.6 42.6 253.2 5.6 1.29 

α-lactose monohydrate  - - 6.6 41.4 113.8 2.6 1.46 

Micronized theophylline - - 0.5 8.6 25.6 2.9 1.49 

Powdered theophylline - - 4.5 41.7 95.0 2.2 1.48 

Table 1. Overview and characterization of the starting materials. 
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Preparation of the granules 

Theophylline (20% w/w), HPMC (20 or 40% w/w) and lactose were preblended in a tumbling 

mixer (Inversina Bioengineering, Wald, Switzerland) for 10 minutes at 25 rpm. An overview of 

the formulations is shown in Table 2. Subsequently they were transferred to the loss-in-

weight feeder (DDW-MD2-DDSR20, Brabender, Duisburg, Germany) of the ConsiGmaTM-1 

(GEA Pharma Systems, GEA Pharma Systems, Wommelgem, Belgium) system. This system 

is a laboratory-scale continuous granulator with an integrated fluid bed dryer intended for 

early R&D work. The granulation unit consists of a co-rotating twin screw granulator without a 

die plate and has a length-to-diameter ratio of 20/1. The barrel can be divided in a feed zone 

with conveying elements and a working zone where the powder is intensively mixed with the 

granulation liquid by kneading elements. A PT-100 temperature sensor was integrated in the 

working zone of the barrel and linked to a feedback control system which regulates the 

temperature in the barrel jacket and compensates for temperature increase during the 

process due to friction. Torque was monitored by a built-in torque gauge at 1-second 

intervals. All torque values were smoothed by application of moving average (over a period 

of 5 measurements). Water as granulation liquid was pumped into the barrel just before the 

first kneading element via a double liquid addition port (internal diameter 0.8 mm), injecting 

granulation liquid on top of each screw. For all experiments the distance between liquid 

addition and the first kneading element was kept constant. Granulation of the formulations 

was performed at constant process parameters (screw speed 900 rpm, throughput 10 kg/h, 

barrel temperature 25 °C) using a fixed screw configuration consisting of two kneading 

blocks with each 6 kneading elements at an angle of 60°. This screw configuration was 

schematically presented by Vanhoorne et al. [22]. The liquid-to-solid (L/S) ratio was varied 

between 0.08 and 0.18 with intervals of 0.02. After stabilization of torque at least 100 g 

granules were collected at the outlet of the granulator at each L/S ratio, while 1000 g 

granules was collected at an L/S ratio considered optimal for each formulation. The optimal 

L/S ratio (listed in Table 2) was dependent on the HPMC grade and percentage HPMC 

included in the formulation. The granules were tray dried in an oven at 40 °C for 24 h. After 

drying, the granules processed with an optimal L/S ratio were milled through a 1000 μm 

grater screen with square impeller at 900 rpm using the Quadro comil (U10, Quadro, Ontario, 

Canada) incorporated in the ConsiGmaTM-25 line. 
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Formulation 

Theophylline (%) 
HPMC (substitution 

type – viscosity) 
lactose 

Optimized 

L/S ratio 

micronized powdered 
2208-

4000 

2208-

100000 

2910-

4000 
 

F1 20 - 20 - - 60 0.10 

F2 20 - - 20 - 60 0.10 

F3 20 - - - 20 60 0.12 

F4 - 20 20 - - 60 0.10 

F5 - 20 - 20 - 60 0.10 

F6 - 20 - - 20 60 0.12 

F7 - 20 40 - - 40 0.12 

F8 - 20 - 40 - 40 0.12 

F9 - 20 - - 40 40 0.16 

Table 2. Composition of the granulated formulations. 

  

Preparation of tablets  

The milled granules were blended with 0.5% magnesium stearate in a tumbling blender for 2 

minutes at 49 rpm (T2F, W.A. Bachofen, Basel, Switzerland) before tableting. Tablets were 

prepared in manual mode at a speed of 230 tablets per minute on the ModulTM P tablet press 

(GEA Pharma Systems CourtoyTM, Halle, Belgium). The press was equipped with 10 pairs of 

round flat-faced bevel-edged Euro B punches (GEA Pharma Systems, Halle, Belgium) 

(diameter 12 mm) and an overfill cam of 16 mm. The paddles in the feed frame were rotating 

at 15 and 20 rpm. Filling depths between 5.75 and 7.50 mm were used, dependent on the 

density of the samples. Tablets were compressed at 7 different main compression pressures 

in order to assess the tabletability of the granules: 60, 110, 150, 190, 260, 330, 410 MPa 

after precompression at 15 MPa. Tablets compressed at 190 and 330 MPa were selected for 

friability and dissolution testing. 

Characterization methods 

Laser diffraction 

The particle size distributions of all starting materials were measured in duplicate by laser 

diffraction (Mastersizer S long bench, Malvern Instruments, Worcestershire, UK) and the 

average particle size distributions were calculated via the Mastersizer 2000 software. The dry 

dispersion technique was applied using a 1000 mm lens at a jet pressure of 3.2 bar (Malvern 

220 Instruments, Worcestershire, UK). The results were expressed as volume diameters d10, 
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d50 and d90. The span was calculated as (d90-d10)/d50 and was an indication of the width of the 

particle size distribution. 

Loss on drying 

The residual moisture content of the milled granules was determined via loss-on-drying using 

a moisture analyzer (Mettler LP16, Mettler-Toledo, Zaventem, Belgium) including an infrared 

dryer and a balance. A sample of 5 g was dried at 105 °C until the weight was constant for 

30 s. 

Particle size and shape analysis 

The granule size and shape of all granules was analyzed before and after milling via dynamic 

image analysis using the QICPICTM system (Sympatec, Clausthal-Zellerfeld, Germany) 

equipped with a vibrating feeder system (Vibri/LTM) for gravimetrical feeding of the granules. 

Samples of 20 g were measured in duplicate. Averaged granule size distributions are shown, 

as the measurements were done in duplicate and the respective results did not differ from 

each other. Windox 5 software (Sympatec, Clausthal-Zellerfeld, Germany) was used to 

calculate the median granule size (d50) as the equivalent projected circle diameter based on 

a volume distribution. The amounts of fines and oversized granules were defined as the 

fractions <150 µm and >1500 µm, respectively. The yield of the process was defined as the 

percentage of granules between 150 and 1500 µm. The aspect ratio (i.e. the ratio of the 

minimal Ferret diameter to the maximal diameter orthogonal to it) of the granules was 

determined to evaluate the shape of the granules. The median aspect ratio (a50) of the 

granules was calculated by the Windox 5 software. 

For analysis of drug content in the granules by Raman and UV spectroscopy, different size 

fractions of the milled granules were isolated by sieve analysis using a Retsch VE 1000 sieve 

shaker (Haan, Germany). Granules were placed on the shaker during 10 min at an amplitude 

of 2 mm using a series of sieves (150, 250, 500, 710, 1000, 1400 and 2000 μm). The amount 

of granules retained on each sieve was determined and isolated. 

Flowability testing 

The flowability expressed as the flowability index (ffc) of the milled granules was measured in 

duplicate by ring shear testing (Type RST-XS, Dietmar Schulze Schüttgutmesstechnik, 

Wolfenbuttel, Germany). The powders were tested using three consolidation stresses (250,  

525 and 800 Pa) at a preshear of 1000 Pa. 



CHAPTER 6 

142 

Additionally, the compressibility index (C%) was calculated from the bulk and tapped 

densities of the milled granules. The bulk volume (V0) of 30 g milled granules was measured 

in a 100 ml graduated cylinder as well as the tapped volume after 1250 taps (V1250) in a 

tapping machine (J. Englesman, Ludwigshafen, Germany). Experiments were performed in 

duplicate. Bulk and tapped densities were calculated as 30 g/V0 and 30 g/V1250, respectively. 

The compressibility index was calculated from the bulk (ρi) and tapped (ρf) densities using 

the following equation:  

C% = [(ρf - ρi)/ ρf]*100 

Friability analysis 

The granule friability of the milled granules was determined in duplicate using a friabilator 

(PTF E Pharma Test, Hainburg, Germany) at a speed of 25 rpm for 10 min, by subjecting 10 

g (Iwt) of milled granules together with 200 glass beads (mean diameter 4 mm) to falling 

shocks. Prior to determination, the granule fraction <250 µm was removed to assure the 

same starting conditions. Afterwards, the glass beads were removed and the weight retained 

on a 250 µm sieve (Fwt) was determined. The friability was calculated as: 

[(Iwt – Fwt)/Iwt]*100 

Raman spectroscopy 

Raman spectroscopy was applied on isolated sieve fractions to evaluate the distribution of 

theophylline over the sieve fractions. Raman spectra (Raman Rxn1, Kaiser Optical Systems, 

Ann Arbor, United States) of the samples were recorded (n = 5) using exposure times of 5 s 

with 3 accumulations. All spectra were recorded with a resolution of 4 cm-1. The spectral 

region between 300 and 1500 cm-1 was selected for evaluation. Principal component 

analysis (PCA) was applied on the spectra with Simca 13.0.3 software (Umetrics, Umeå, 

Sweden). Data were corrected by standard normal variate preprocessing and center-scaled 

prior to analysis. Standard normal variate preprocessing was applied to eliminate the additive 

baseline offset variations and multiplicative scaling effects in the spectra which may be 

caused by small variations in distance between the Raman probe and the sample and 

possible differences in product density. 

UV spectroscopy 

The isolated sieve fractions were dissolved in water (1 mg/ml), diluted 20 times and 

measured by UV spectroscopy (UV-1650PC, Shimadzu Benelux, Antwerp, Belgium). The 

theophylline content in these samples was derived from their absorbance at 272 nm. 
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Tablet characterization 

The hardness, thickness and diameter of the tablets (n = 10) were determined using a 

hardness tester (Type HT 10, Sotax, Basel, Switzerland) and the tensile strength (TS) of the 

tablets was calculated according to the formula of Fell and Newton [23]:  

T = 2F/πdt 

Where F, d and t denote the diametral crushing force, tablet diameter and tablet thickness, 

respectively.  

The tablet friability of tablets compressed at 190 and 330 MPa was determined using a 

friabilator (PTFE, Pharma Test, Hainburg, Germany) as described in the European 

Pharmacopoeia at a speed of 25 rpm for 4 min. The percentage weight loss was expressed 

as the tablet friability.  

Dissolution tests were performed (n = 3) in 900 ml demineralized water using the paddle 

method (VK 7010, Vankel, Cary, NC, USA). The temperature of the dissolution medium was 

maintained at 37 ± 0.5 °C, while the rotation speed was set at 100 rpm. Samples of 5 ml 

were withdrawn after 0.5, 1, 2, 4, 6, 8, 12, 16, 20 and 24 h. The drug content in these 

samples was derived from the absorbance of the samples at 272 nm using a UV 

spectrophotometer (UV-1650PC, Shimadzu Benelux, Antwerp, Belgium). 

RESULTS AND DISCUSSION 

Evaluation of the granulation process 

Since HPMC swells upon hydration, excessive torque values might limit the processing of 

formulations with HPMC. Although inclusion of 40% HPMC in the formulations resulted in 

higher torque values compared to 20% HPMC, the torque was lower than 10 Nm for all 

experiments, which was far below the maximal torque (20 Nm) tolerated by the granulator.  

Increasing the L/S ratio resulted in higher torque values until a critical L/S ratio was reached 

where torque became independent of L/S ratio. This is illustrated in Figure 2 for F9 where the 

L/S ratio was increased up to 0.18. Reports on the influence of L/S ratio of immediate release 

formulations on torque are contradictory, indicating linear or inverse relationships depending 

on the formulation [24, 25, 26]. Nevertheless, the results in current study were compatible 

with the regime map presented by Tu et al. on an immediate release formulation with 

microcrystalline cellulose (MCC), a component also known to swell upon hydration, reporting 

that the torque increased until a critical L/S ratio was reached and then decreased [27]. First 
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the torque increased at higher L/S ratios due to interparticle bond formation but after 

reaching a critical L/S ratio over-wetted malleable particles were formed resulting in lower 

torque readings. 

 

Figure 2. Torque profiles in function of L/S ratio for formulation F9. 

 

Longer runs (at least 10 min) were performed using the optimized L/S ratio selected for each 

formulation (Table 2). The torque of these runs was compared to evaluate the influence of 

viscosity and the substitution degree of the HPMC grade on torque. The effect of these 

variables was most obvious with the formulations containing 40% HPMC. Inclusion of HPMC 

grades with a high viscosity and a high degree of hydroxypropyl substituents increased the 

torque. As viscous materials caused frictional resistance of the material to flow, the torque 

during granulation of F8 was higher compared to F7 (Figure 3). This is similar to literature 

reports on high torque values recorded during twin screw granulation with viscous liquids [24, 

25]. Granulation of a formulation with HPMC substitution type 2208 (F7) resulted in higher 

torque values than with HPMC substitution type 2910 (F9) (Figure 3). The former type has 

more hydroxypropyl substituents and consequently swells faster upon hydration in the 

granulation process. This resulted in faster formation of a highly viscous gel structure, 

yielding high torque values. The particle size of the theophylline grade did not influence the 

torque. 
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Figure 3. Torque profiles of F7, F8 and F9 granulated with optimized L/S ratios. 

 

Influence of formulation variables on granule quality 

Overall the granule size distribution (GSD) was broad which is a common observation for 

twin screw granulation, independently of the formulation [17, 24, 26, 27 28, 29, 30, 31, 32, 

33, 34]. These multimodal distributions can potentially result in segregation during 

downstream processing and have a negative effect on the drying uniformity. Efforts have 

been made to obtain monomodal GSD after continuous granulation through optimization of 

the feeder performance, screw design, binder addition, liquid pump, nozzle design and 

operation at low filling degree [22, 28, 30, 35, 36]. However, for granulation of HPMC bimodal 

distributions were also reported on high shear granulation which was attributed to the specific 

granulation mechanism of HPMC [11]. HPMC grades used as matrix former quickly absorb 

water and develop a gel layer during granulation. This hinders uniform distribution of 

granulation liquid in the powder bed. Moreover the viscous gel layer is resistant against 

shear forces and consequently limits breakage of the granules, resulting in a bimodal 

distribution [11]. Thus, obtaining a monomodal GSD by twin screw granulation is even more 

challenging for controlled release formulations with HPMC compared to immediate release 

formulations. 

The GSD (d50, fines and oversized fraction) was evaluated in function of the L/S ratios and 

formulation parameters (substitution degree, viscosity and concentration of HPMC, particle 

size of theophylline). The d50, fines and oversized fraction in function of L/S ratio are shown 
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in Figure 4 and Figure 5. Increasing the L/S ratio yielded granules with a higher d50, fewer 

fines and more oversized granules. The formulations with HPMC substitution type 2910 (F3, 

F6 and F9) required more water for efficient granulation compared to HPMC type 2208 (F1 

vs. F3, F4 vs. F6 and F7 vs. F9 in Figure 4). At a specific L/S ratio the granules with HPMC 

grade 2910 contained more fines and less oversized granules compared to the granules with 

HPMC grade 2208. This is linked to the higher hydrophilicity and faster polymer hydration of 

HPMC type 2208, which has less methoxy substituents than HPMC type 2910. This allows a 

faster interaction with water during twin-screw granulation, hence more bonds are formed 

between water and HPMC type 2208, yielding larger granules at a specific L/S ratio.  

The molecular weight (and therefore the viscosity) of the polymers did not influence GSD (F1 

vs. F2, F4 vs. F5 and F7 vs. F8 in Figure 5). The influence of the viscosity of cellulose-ether 

derivatives during twin screw granulation of immediate release formulations was studied in 

literature by varying the amount of binder in the granulation liquid. In these studies more 

binder resulted in larger granules which was linked to the higher binder viscosity [24, 36]. 

However, the viscosity of cellulose-ether derivatives used as binders in immediate release 

formulations is 100 to 100000-fold lower than the grades used for controlled release 

purposes. In addition, in immediate release applications the polymeric binder is often added 

to the process as an aqueous dispersion (i.e. via the granulation liquid), while HPMC in 

sustained release formulations can only be added dry (i.e. mixed with the other powder 

components prior to the addition of granulation liquid). Hence, the granulation behavior of 

cellulose-ether derivatives as binders in immediate release formulations cannot be compared 

to that of cellulose-ethers used as matrix former in sustained release formulations.  

While granule growth was affected by the substitution degree of HPMC during twin screw 

granulation, the viscosity of HPMC and not the substitution degree influenced GSD during 

high shear granulation [9]. This difference is likely due to the difference in residence time 

between continuous (5 – 20 s) and high shear granulation (tens of minutes) as the 

substitution degree (and thus hydration rate) only influences granule growth when the 

contact time between water and polymer is short [24, 26, 32, 36]. 
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Figure 4. Influence of HPMC substitution degree on granule size distribution: d50, fines fraction and oversized fraction of F1 and F3 (formulations with 

micronized theophylline and 20% HPMC), F4 and F6 (formulations with powdered theophylline and 20% HPMC) and F7 and F9 (formulations with powdered 

theophylline and 40% HPMC) as a function of the applied L/S ratio. 
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Figure 5. Influence of HPMC viscosity on granule size distribution: d50, fines fraction and oversized fraction of F1 and F2 (formulations with micronized 
theophylline and 20% HPMC), F4 and F5 (formulations with powdered theophylline and 20% HPMC) and F7 and F8 (formulations with powdered theophylline 

and 40% HPMC) as a function of the applied L/S ratio.  
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Inclusion of a higher HPMC concentration in the formulation required more water to obtain 

granules with a similar GSD. This is illustrated in Figure 6 for the formulation with HPMC type 

2910 and was attributed to the high water binding capacity of HPMC. To evaluate the 

influence of raw material variability on processability, granule and tablet critical quality 

attributes, two theophylline grades (F1-3: micronized, F4-6: powdered grade) were included 

in the formulations. The particle size distributions of all starting materials were summarized 

by their d10, d50, d90 and span (Table 2). The particle size of micronized theophylline was 

significantly smaller than of the powdered grade. However, the primary particle size of 

theophylline starting material did not influence the GSD of the formulations. This is in 

agreement with research of El Hagrasy et al. on immediate release formulations, reporting 

limited differences in GSD among formulations with different lactose grades at low L/S ratios 

[32]. At higher L/S ratios a direct correlation between the primary particle size of lactose and 

GSD was established by El Hagrasy et al. [32]. Furthermore, Fonteyne et al. linked the 

primary particle size of theophylline to differences in the GSD [37]. In the current study the 

inclusion of a high percentage of HPMC, which in addition to its function as matrix former 

also acts as binder, probably eliminated the effect of primary particle size on GSD.  

For each formulation an optimal L/S ratio was selected based on the GSD results: yielding 

granules with less than 10% fines, less than 52% oversized granules and a d50 between 1300 

and 1600 µm. As the GSD was broad, milling was necessary to narrow down the GSD before 

tableting. Therefore, a large fraction of oversized granules was tolerated in these samples. 

After milling, the samples were further analysed with regard to flowability, friability, 

distribution of theophylline over the sieve fractions and finally tableted. The yield of the 

process before milling varied between 40 and 49% which was mainly due to an extensive 

oversized fraction. This fraction was eliminated by milling, resulting in a yield varying 

between 78 and 86%.   

The median aspect ratios varied between 0.57 and 0.63 (Figure 7). This is slightly lower than 

typically reported for immediate release formulations [17, 21, 24]. The aspect ratios of the 

formulations with HPMC substitution type 2910 were higher compared to formulations with 

HPMC substitution type 2208, although the differences were minor. As the viscous gel layer 

of HPMC type 2910 formed slower due to the lower number of hydrophilic substituents, 

granules containing type 2910 are more deformable during the granulation process, yielding 

a higher aspect ratio. No correlation between the median aspect ratios and the applied L/S 

ratio was detected. 
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Figure 6. Influence of HPMC concentration on granule size distribution: d50, fines fraction and oversized fraction of F6 and F9, containing 20 and 40% HPMC, 
respectively. 

 

Figure 7. Aspect ratios at varying L/S ratios. 
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Thompson et al. reported the formation of elongated noodle-like granules (3-10 mm) during 

granulation with HPMC type 2208, even with formulations containing only 5% HPMC. In the 

current study a similar screw design was used but no elongated granules were formed with 

either HPMC grade. This confirmed previous research of our group, studying the influence of 

process parameters on the granulation behaviour of a formulation with HPMC type 2208, 

where no elongated granules were formed [22]. Thus, granule shape was not an issue for 

granulation of formulations with different types of HPMC.  

All granules were classified as passable and easy-flowing according to the C% and ffc 

values, respectively [38]. The friability of the granules was low, varying between 8.1 and 13.9 

% (friability lower than 30% is considered acceptable, using the applied method). 

The content uniformity of theophylline over 8 sieve fractions was evaluated by Raman and 

UV spectroscopy for all formulations. The results of the Raman analysis were summarized in 

a PC 1 vs. PC 2 scores plot of the first and second principal components (PC) explaining 54 

and 25% of variation in the dataset, respectively (Figure 8). The spectra of the fines fraction 

(< 150 µm) were clustered in the negative part of PC 2 while the spectra of fractions 150-250 

µm and 250-500 µm were clustered in the positive part of PC 2. The other size fractions were 

distributed homogeneously over the PC 1 vs. PC 2 scores plot. Comparison of the spectra of 

lactose and theophylline to the loading plot of PC 1 and PC 2 learned that PC 1 represented 

variation due to baseline offset variations while the maxima and minima of the PC 2 loading 

plot were characteristic for theophylline and lactose, respectively (Figure 9). This signified 

that theophylline was underdosed in the fines fraction (on average 15% less theophylline) 

and overdosed in the fractions 150 - 250 µm and 250 - 500 µm (an excess of 7 and 6%, 

respectively). The uneven distribution of theophylline over the size fractions was present in 

all formulations, independently of the viscosity and substitution degree of HPMC. 

Comparable observations were made after batch granulation of immediate release 

formulations [39, 40]. These studies pointed at differences in primary particle size between 

drug and fillers to explain preferential granule growth and consequently inhomogeneous drug 

distribution over the size fractions. Despite the similar primary particle size of lactose and 

powdered theophylline in formulations F4-6, theophylline was not evenly distributed over the 

size fractions of these formulations. This was also observed by Fonteyne et al. after 

continuous granulation of an immediate release formulation [37]. However, no explanation 

was found for the observations. Thorough characterization of the starting materials (e.g. 

solubility, solubility rate, wettability) could help to reveal the granulation mechanism leading 

to uneven API distribution over the size fractions of granules produced by twin screw 

granulation. 
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Figure 8. PC1 vs. PC2 scores plot obtained after PCA analysis on 8 sieve fractions of all formulations. 

 

Figure 9. Raman spectra of pure lactose and theophylline and loading plot of PC 2 after PCA analysis. 
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Influence of the formulation variables on tablet quality 

The tensile strength (TS) of the milled formulations tableted at 7 main compression 

pressures (MCP) was measured. The particle size distributions and moisture content of the 

different formulations were similar and could not bias the comparison of the formulations. A 

linear relationship between TS and MCP was established for all formulations. No differences 

in TS were detected between the formulations containing 20% HPMC, whereas the viscosity 

and substitution degree of HPMC influenced the TS of the formulations containing 40% 

HPMC (Figure 10). F7, containing an HPMC grade with a lower viscosity, showed a lower TS 

than F8, containing an HPMC grade with a higher viscosity. Similar observations were made 

after high shear granulation of HPMC with different viscosities [9]. This was attributed to the 

stronger plastic deformation during compression of HPMC grades with a high viscosity [9]. 

Comparing F7 (containing HPMC type 2208) and F9 (containing HPMC type 2910), it is clear 

that the substitution degree of HPMC also affected the TS of formulations containing 40% 

HPMC. HPMC type 2208 contains more hydrophilic substituents that can form hydrogen 

bonds during compression, yielding harder tablets. This in agreement with research on the 

compaction behavior of HPMC with different substitution degrees after direct compression 

and batch granulation [4, 9, 41, 42, 43, 44]. The particle size of theophylline starting material 

did not influence the TS. 

 

Figure 10. Tabletability of (A) F4 - 6 (containing 20% HPMC) and (B) F8 - 10 (containing 40% HPMC). 

Considering the linear relation between TS and MCP, the friability of tablets compressed at 

an intermediate (190 MPa) and high (330 MPa) MCP was determined. The friability of all 

tablets was low, varying between 0.05 and 0.16%. The tablets compressed at a higher MCP 

were harder and consequently less friable. No correlation between HPMC or theophylline 

grade and the friability of the corresponding tablets was detected. 
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The influence of viscosity and substitution degree of HPMC on the drug release rate after 

direct compression and batch granulation was already extensively studied [4, 9, 12]. 

However, a comparative study between twin screw granulation and high shear granulation 

demonstrated that granules produced by twin screw granulation were denser and that the 

drug release rate from tablets derived from these dense granules was slower [34]. Therefore 

the influence of viscosity and substitution degree of HPMC on drug release was investigated 

after twin screw granulation in the current study. 

The release of tablets compressed at 190 MPa and 330 MPa was measured but MCP did not 

significantly influence the release, a similar observation was already reported after high 

shear granulation [43]. Inclusion of 20% HPMC type 2208 resulted in controlled release of 

theophylline over 24 h, while complete drug release was obtained after 16 h with 20% HPMC 

type 2910 (F4 vs. F6 in Figure 11). The viscosity of HPMC also influenced the release rate of 

theophylline, a higher viscosity resulting in a slightly slower release (F4 vs F5 in Figure 11). 

At 40% polymer load, the drug release was only affected by the viscosity of HPMC and not 

by its substitution degree. Incomplete release (80%) of theophylline was obtained with the 

highest viscosity HPMC grade (F8), while F7 (HPMC type 2208) and F9 (HPMC type 2210) 

showed identical dissolution profiles and complete release after 24 h. These dissolution 

profiles also approached zero-order kinetics. Thus, at low polymer load the faster hydration 

of HPMC type 2208 resulted in a faster formation of the matrix and at both polymer loads the 

higher viscosity of HPMC formed a more tortuous and resistant barrier to diffusion and 

erosion, resulting in slower release rates. These results are in accordance with dissolution 

studies of HPMC after direct compression and batch granulation [4, 9, 12, 14, 41, 43, 45, 46]. 

The particle size of theophylline starting material did not influence the release of the 

formulations. 
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Figure 11. Dissolution profiles of (A) F4 - 6 (containing 20% HPMC) and (B) F7 - F9 (containing 40% 

HPMC). 

CONCLUSIONS 

HPMC was identified as versatile matrix former for manufacturing of controlled release 

formulations via twin screw granulation using water as granulation liquid. The torque during 

processing was linked to viscosity and hydration rate of HPMC, but the recorded torque 

values did not limit the process. HPMC type 2910 required more water during granulation to 

obtain a similar granule size distribution compared to HPMC type 2208 which was attributed 

to its lower hydrophilicity. Although theophylline was not homogenously distributed over the 

size fractions (with a lower theophylline content in the fines fraction), this phenomenon was 

not correlated to the hydration rate or viscosity of HPMC. The release of theophylline was 

independent of the compression pressure but could be steered by the viscosity and 

substitution degree of HPMC to obtain sustained release over 24 h. 
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BROADER INTERNATIONAL CONTEXT 

The International Council for Harmonization (ICH) issued high-level guidelines concerning 

pharmaceutical development to promote the ‘quality-by-design’ principle which signifies that 

‘quality cannot be tested into products but should be built in by design’ [ICH Q8]. This 

principle encompasses that product and process knowledge is required for the development 

of a robust process delivering high quality products. Continuous drug manufacturing perfectly 

meets this principle as a high level of product and process knowledge is also required for 

effective implementation of PAT and control strategies and eventually to routinely run the 

continuous production process for a longer period [1].   

Implementation of continuous manufacturing in the pharmaceutical industry requires more in-

depth process knowledge, innovative technologies, new equipment, strict control strategies 

and different plant design compared to batch processes. To achieve this academia, industry 

and equipment manufacturers joined forces in several global consortia: 

- C-SOPS (Center of Structured Organic Particulate Systems): is a multi-university 

consortium (Rutgers University, Purdue University, New Jersey Institute of Technology, 

University of Puerto Rico) founded in 2006. It is funded by the National Science Foundation, 

about 40 industrial member companies and several equipment manufacturers. Their 

research includes three areas: manufacturing science, composite synthesis and 

characterization and functionalization [2]. 

- Blue sky vision project: A 10-year, 65-million dollar collaboration between Novartis and the 

Massachusetts Institute of Technology (MIT) focusing on the development of a truly 

continuous manufacturing line from the primary manufacturing stage. This involves the 

development novel technologies and new synthesis approaches [2]. 

- European Consortium for Continuous Pharmaceutical Manufacturing: a collaboration 

between the Research Centre Pharmaceutical Engineering (RCPE) (Graz, Austria), industrial 

partners (AstraZeneca UK, Automatic Pelletizing Systems, Bayer Health Care Germany, 

GEA Pharma Systems Belgium, Siemens Austria, UCB Belgium) and four academic partners 

(Graz University of Technology, University of Eastern Finland, Heinrich Heine University 

Düsseldorf, Ghent University). This consortium focuses on investigation, development and 

implementation of continuous manufacturing strategies for solid oral dosage forms. 

- Britest: a membership based consortium developing innovative approaches to 

manufacturing and process design. Pharmaceutical companies (e.g. Pfizer, Hovione, Abbvie, 
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Astra Zeneca) and universities (University of Nottingham, Newcastle University, Purdue 

University, University of Limerick) joined forces in this consortium [2]. 

- L. B. Böhle Technology Center: A collaboration between industrial and academic partners 

working on the development and implementation of a modular production line for continuous 

manufacturing. Equipment manufacturers (Korsch, Gericke and Böhle), academic partners 

(Heinrich Heine University Düsseldorf, RWTH Aachen University and RCPE Graz) and 

companies specialized in PAT equipment and control strategies (Kaiser Optical Systems, 

Kraemer Elektronik and Sentronic) work together on this project. 

A continuous twin screw granulation process using a modified twin screw extruder was 

developed and patented by the Laboratory of Pharmaceutical Technology (Ghent University). 

This granulation process was incorporated in the ConsiGmaTM continuous tableting line (GEA 

Pharma Systems). The continuous ‘from-powder-to-tablet’-line ConsiGmaTM-25 as well as the 

ConsiGmaTM-1 intended for early R&D work have been sold worldwide (e.g. US, Mexico, UK, 

Switzerland, Japan, France, Belgium, Korea, Sweden, Singapore, Germany, Italy) over 

recent years. Currently at least three products are approved by the competent authorities for 

continuous manufacturing (Severin® and Antiflu-des® by Chinoin on the Mexican market and 

Kalydeco® by Vertex on the US market). It is however expected that over the coming years 

much more continuously manufactured drug products will be commercialized as several big 

pharma companies announced investments in the continuous manufacturing technology (e.g. 

Novartis, Roche, Pfizer, AstraZeneca, GlaxoSmithKline, Johnson and Johnson) [2-5]. 

Additionally, the European and US competent drug authorities (EMA and FDA) support the 

implementation of this innovative technology for manufacturing of drug products [6, 7].  

RELEVANCE 

Continuous manufacturing offers opportunities for highly educated and skilled staff, delivery 

of high quality products, cost reduction during drug development and production and lower 

environmental impact, and consequently has a positive effect on society.  

Economical 

As explained in the introduction, continuous manufacturing requires sound process 

knowledge but also tools for implementation of risk management strategies, design of 

experiments, profound formulation knowledge, advanced data analysis, statistics, process 

modeling and control. Partnerships and exchange between academia, industry and 

government play a crucial role in education and training in these areas as future 

pharmaceutical plants that operate continuously are likely to settle in regions where highly 

skilled staff is available. Availability of skilled staff in combination with a smaller footprint and 
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reduced manufacturing costs make continuous pharmaceutical manufacturing ideally suited 

for implementation in Europe or the US [3, 8]. This is a great opportunity in an era where 

most industries, including the pharmaceutical industry, moved production sites out of Europe 

and the US as this makes economically sense for labor-intensive production activities that 

require low skilled staff. Therefore fundamental process knowledge about continuous 

processes available at academic institutions in Europe and availability of highly educated and 

trained staff will be crucial to convince pharmaceutical companies to build new continuously 

operating manufacturing plants in Europe. Settlement and anchoring of pharmaceutical R&D 

and manufacturing activities in Europe involves direct and indirect employment and fast 

availability of new therapies to patients.  

Improved product quality 

Improved product quality of continuously manufactured drug products is achieved by plug-

flow of material during continuous processes and implementation of PAT for continuous 

monitoring of critical quality attributes. Drug products manufactured in a batch wise manner 

often suffer from batch-to-batch variability as the heat, mass and momentum experienced by 

material in a batch process differs with the position in the equipment [9]. In contrast, 

materials move in plug-flow during continuous processing, resulting in improved and constant 

product quality. Continuous manufacturing and PAT are inextricably connected as 

implementation of PAT probes will allow adjustment of process parameters to drive critical 

quality attributes to the requested target levels during continuous manufacturing and will 

allow real time release of drug products after continuous manufacturing. Thus by the very 

nature of continuous manufacturing, quality is built into continuously manufactured products.  

Furthermore, the agility, flexibility and robustness offered by continuous manufacturing could 

prevent drug shortages, accelerate the response to changing market needs and allow faster 

market access. Drug shortages are a real threat to public health and are often initiated by 

failing product quality, followed by product recalls. Therefore the FDA recognized the 

potential of continuous drug manufacturing to prevent these drug shortages [10]. Continuous 

manufacturing also offers a faster response to changing market needs (e.g. epidemics, 

emergencies) as real time release testing of the drug product decreases the time-to-market 

and scale-up issues are eliminated. Additionally, the typically smaller continuous production 

plants are installed faster than their batch counterparts and can be setup in portable 

containers that are shipped around the world [11]. This is also a tremendous advantage with 

regard to breakthrough therapies (therapies for serious and life-threatening diseases that 

demonstrate substantial improvement over existing therapies in preliminary clinical tests) [3]. 

A drug product designated as ‘breakthrough therapy’ profits from expedited review by the 
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competent regulatory authority to accelerate market access. Continuous manufacturing is 

ideally suited for development and manufacturing of these therapies as less API is necessary 

during development and manufacturing sites can be installed quickly after approval. Hence, 

continuous manufacturing enables fast patients’ access to therapies for serious and life-

threatening diseases. 

Reduced environmental impact 

A significant smaller environmental impact is associated with continuous manufacturing in 

comparison to traditional batch manufacturing. This is due to a reduction of solvent use, of 

resource consumption during continuous manufacturing and of waste. Firstly, as less API is 

necessary during drug development, less solvent and reagent are consumed. The solvents 

(often chlorinated and aromatic) and reagents (often polycyclic compounds with hetero-

atoms that are little or not biodegradable) involved in API production require special care with 

regard to their disposal to avoid negative effects on humans and the environment. Secondly, 

a resource reduction (heating, electromechanical power, chemicals, cleaning agents and 

their disposal, compressed air) can be achieved through adoption of continuous 

manufacturing [12]. The typically drastically reduced footprint of a continuous manufacturing 

plant (with less intermediate storage, stockpiling, material handling and off-line quality 

control) adds to the reduced resource consumption in comparison to batch wise operating 

plants since less energy is needed to condition the smaller production areas [8, 13]. Thirdly, 

the environmental impact of continuous pharmaceutical manufacturing is also less as the risk 

of quality failures is reduced [9]. In contrast to batch manufacturing, where the entire batch is 

at risk during production, corrections during the process are possible through in-line 

monitoring of critical quality attributes of intermediates by PAT and implementation of 

feedback and –forward loops. 

FUTURE PERSPECTIVES 

Twin screw granulation 

Current research provided more knowledge regarding twin screw granulation of (1) δ-

mannitol, a promising novel excipient to improve the tabletability of a formulation, and (2) a 

controlled release formulation with HPMC. However, much more knowledge and experience 

is required before continuous lines will routinely be operated for manufacturing of drug 

products. Future research topics should include process control strategies, development of 

new PAT interfaces and on-line probes, a design space approach for validation, modeling of 

variances and their propagation through the process and interactions between process and 
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formulation parameters. Below a few process and formulation related topics are identified for 

further investigation.  

A controlled release formulation including HPMC was successfully granulated on the twin 

screw granulator incorporated in the ConsiGmaTM system and tableted after tray drying and 

off-line milling. However, the suitability of the ConsiGmaTM system for further downstream 

processing (i.e. drying, milling, material transport between the unit operations) of controlled 

release formulations should also be investigated. Additionally, the suitability of twin screw 

granulation for other commonly used controlled release polymers (e.g. 

hydroxypropylcellulose, polyvinylacetate/povidone) should be studied.  

Formulations with different HPMC types were processable by twin screw granulation and 

drug release could be steered through variation of their concentration, viscosity and 

substitution degree. However, the ranges tolerated by the Ph. Eur. and USP with regard to 

viscosity and substitution degree of HPMC grades are broad and the batch-to-batch 

variability of HPMC could influence the granulation behavior of formulations with identical 

HPMC grades. Therefore, the influence of HPMC batch-to-batch variability on critical quality 

attributes of granules and tablets should be well studied and accounted for in the 

determination of the design space. In future research, the potential of feed-forward loops to 

compensate for the batch-to-batch variability of HPMC should be evaluated.  

The API distribution over different size fractions of controlled release granules produced by 

twin screw granulation was investigated in the current study. The recovery of API in the fines 

fraction (<150 µm) was lower than targeted. Even when the primary particle size and density 

of API and excipients were similar, less API was retrieved in the fines fractions. Uneven API 

distribution over different size fractions of granules is undesirable as it can potentially result 

in content uniformity issues after tableting. Thorough characterization of the starting 

materials (e.g. solubility, solubility rate, wettability) should be performed to reveal the 

granulation mechanism leading to uneven API distribution over the size fractions of granules 

produced by twin screw granulation. Additionally the influence of binder addition (type, 

concentration, wet or dry addition) on the API distribution should be investigated. 

Although twin screw granulation of formulations with HPMC was not limited by excessive 

torque values, longer runs should be performed to assess the stability of the process over a 

longer period. Process outcomes (e.g. torque, barrel temperature, pressure over the bag 

filters) and critical quality attributes of granules and tablets should be monitored over time to 

investigate if the process is capable of delivering a product with constant properties during 

routine operation for weeks.   
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In the current work the release of good soluble drugs was prolonged through twin screw 

granulation with HPMC. In contrast, the release of poorly soluble drugs processed via twin 

screw granulation should be fast enough to reach a high bioavailability. Therefore the 

influence of process and formulation parameters on the release profile of poorly soluble 

drugs should be investigated. Granules with a low porosity could favor the release rate of 

poorly soluble drugs. Studies comparing the porosity of granules after batch (high shear and 

fluid bed granulation) and continuous granulation are also needed as it is expected that over 

the coming years existing formulations will be switched from batch to continuous processing.  

Conversion of δ- to β-mannitol during twin screw granulation was associated with an 

increased specific surface area and a needle-like surface structure of the granules. This 

resulted in granules with excellent tabletability. In future work, the potential δ-mannitol as 

preferred excipient for twin screw granulation of a poorly tabletable API should be 

investigated. Inclusion of API in the formulation could affect the solubility of δ-mannitol and 

consequently the crystallization reaction from δ- to β-mannitol. Additionally, the potential of δ-

mannitol as excipient for production of tablets on the ConsiGmaTM line should also include 

experiments on the fluid bed dryer incorporated in the ConsiGmaTM line as the drying 

parameters (air flow, temperature, filling degree of the dryer cell) could also affect the 

polymorphic transition during drying of the granules.  

A thin powder layer along the screw chamber wall is frequently observed after twin screw 

granulation. As in the end continuous processes are intended for production during weeks 

and months, accumulation of material in the system is not acceptable due to risk of product 

degradation. Therefore it should be investigated whether the layer covering the screw 

chamber wall is static or dynamic (i.e. the material sticks temporarily to the barrel) and 

whether the build-up of the layer is correlated to the process parameters used.  

During melt granulation, a molten binder is used instead of an aqueous binder solution, 

eliminating a (semi-continuous) drying step after granulation. Therefore melt granulation by 

continuous twin screw granulation is of interest and the feasibility of melt granulation using 

the granulator barrel of the ConsiGmaTM system should be investigated. This might be 

challenging as the short residence time of material in the granulator barrel could limit the 

heat transfer needed to melt the binder.  

Although scaling-up of continuous processes can be avoided by running the process for a 

longer time, larger equipment scales are necessary for products requiring a high throughput. 

Therefore, the ConsiGmaTM Continuous Tableting Line is available in different sizes 

(ConsiGmaTM-25, 50, 100 with a throughput of 25, 50 and 100 kg/h, respectively). However, 

practically no information is available concerning the transfer of a formulation from a smaller 
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to larger scale twin screw granulator. Hence the effect of the dimension of the granulator 

barrel and dryer cells on the granule quality should be investigated and the most important 

scaling factors should be identified. 

Twin screw granulation received much attention over recent years and a lot of research 

papers on continuous twin screw granulation were published. Herein, different research 

groups reported the appearance of wide and multimodal granule size distributions. However, 

it is often hard to interpret and correlate the data as research was done using non-identical 

equipment (e.g. GEA Pharma Systems, Thermo Fisher Scientific, Leistritz). Moreover, some 

of these studies provided contradictory results. Besides the experimental studies, efforts are 

made for predictive modelling and model-based analysis of the experimental data. In order to 

be more generic such models also require consideration of these equipment differences to 

provide more robust predictions and accurate analysis. Therefore, a detailed study 

comparing process performance as well as product quality after granulation on different twin 

screw granulators is of interest.  

Spray drying 

It is expected that in the long run continuous processes will involve homogeneous processing 

technology in which API’s and excipients are processed together with a minimum of in-

process product transfer. Spray drying is extremely suited to achieve this aim as – at the end 

of primary manufacturing - excipients can be mixed into a purified API solution and further 

processed together. Additionally, the spray dried process is well studied and widely applied. 

However, before spray drying of dissolved excipients in a purified API solution becomes 

routinely applicable, more research is needed regarding (1) solvents used during API 

synthesis and (2) development of a formulation platform to match API characteristics with the 

appropriate excipients. Ideally, an aqueous solution of API is obtained in the final stages of 

primary drug manufacturing to eliminate issues of residual solvents after spray drying. Spray 

dryers in closed loop can handle organic solvents but often the amount of residual solvent in 

the spray dried product exceeds the acceptance limit, making secondary drying steps 

necessary. Next, excipients cospray dried with API should be carefully selected as 

coprocessing can affect the crystal structure and habit of API and excipient which in turn 

influences the tabletability and bioavailability of the final spray dried product.  

In the current project co-spray drying mannitol and PVP yielded δ-mannitol with excellent 

tableting properties. A mixture of the spray dried δ-mannitol/PVP particles (25%) could be 

directly tableted with highly dosed paracetamol (75%) that is known for its poor tabletability. 

Additionally, paracetamol crystals were coprocessed during the spray drying process using 

an modified setup for crystal coating.  In future work, mannitol and PVP could also be 
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cospray dried with API to deliver a directly compressible powder mixture. Challenges will 

include (1) the influence of the API on the crystallization of the excipients and vice versa, and 

(2) continuous mixing of polymer/API/excipient during solution preparation as slow 

dissolution of polymers can limit the performance.  
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GENERAL CONCLUSIONS 

Agglomeration processes are often necessary to improve the flowability, homogeneity and 

tabletability of powders prior to tableting. Spray drying and twin screw granulation, the 

techniques studied in this thesis, are continuous agglomeration processes with high potential 

for implementation in continuous ‘from-powder-to-tablet’ lines.  

The first objective of this doctoral thesis was to develop a modified spray drying method to 

improve the flowability and tabletability of drug formulations with poor tabletability. The 

developed method included the introduction of solid, dry particles into an atomized spray 

during spray drying in order to coat and agglomerate individual particles. The setup proved 

promising to coat paracetamol crystals with amorphous lactose and PVP, resulting in 

particles with excellent tabletability. Additionally, the proposed method was suitable for the 

production of direct compression lactose. However, the extent of agglomeration achieved 

during coprocessing was limited.  

The δ-polymorph of mannitol was continuously produced by spray drying of a mannitol/PVP 

(ratio 4/1) solution. Compression experiments confirmed that δ-mannitol exhibited superior 

tabletability in comparison to α- and β-mannitol. Next, paracetamol and δ-mannitol were 

coprocessed through application of the modified spray drying method. The tabletability and 

friability of the resulting particles was excellent which was attributed to the superior 

tabletability of δ-mannitol over α- and β-mannitol and to the application of the modified spray 

drying method which enabled coating of paracetamol crystals with δ-mannitol and PVP.  

The second aim of this project was to evaluate the potential of β- and δ-mannitol as excipient 

during twin screw granulation. A different granulation behavior of mannitol was identified 

during continuous twin-screw granulation compared to other commonly used excipients such 

as lactose and microcrystalline cellulose (MCC) as the effect of granulation parameters 

(filling degree, screw speed, number of kneading elements) on the granule size distribution of 

mannitol granules was different compared to literature reports on formulations containing 

lactose and/or MCC as filler. Based on the higher solubility and faster dissolution rate of 

mannitol it was concluded that granulation of mannitol was principally driven by formation of 

liquid and solid bridges of solubilized material, rather than by compressive forces in the 

granulator barrel. A polymorphic transition from δ- to β-mannitol during twin screw 

granulation was also reported. However, the polymorphic transition was not complete in all 

experiments and depended on the liquid-to-solid ratio, screw speed and number of kneading 

elements. Nevertheless all granules exhibited a unique morphology linked to the polymorphic 

transition and had a superior tabletability compared to granules produced with β-mannitol as 
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starting material. This was attributed to enhanced plastic deformation of the granules 

manufactured using δ-mannitol as starting material.  

The third aim was to investigate the potential of twin screw granulation with water as 

granulation liquid, for the production of a controlled release formulation with HPMC as matrix 

former. Although HPMC swells upon hydration, high torque values did not limit the 

granulation process. Addition of screw mixing elements after a block of kneading elements 

and a higher barrel temperature positively influenced the process yield. The shape of the 

controlled release granules was comparable to the shape of immediate release granules 

reported in literature. Although the tablet hardness and friability and drug release were not 

dependent on the process parameters, they could be steered by formulation parameters 

(substitution degree and concentration of HPMC). HPMC proved to be a useful and versatile 

matrix former for manufacturing of controlled release formulations via twin screw granulation 

with water as granulation liquid. 
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SUMMARY 

Over recent years, the advantages offered by continuous manufacturing were recognized by 

the pharmaceutical industry. Additionally, the competent authorities identified continuous 

manufacturing as means to comply with the quality-by-design principle of drug manufacturing 

set out by the International Council for Harmonization. However, process knowledge and 

understanding of continuous manufacturing techniques is indispensable for successful 

implementation of continuous pharmaceutical manufacturing. Therefore, spray drying and 

twin screw granulation, two continuous agglomeration techniques, with potential for 

implementation in fully continuous ‘from-powder-to-tablet’ lines were studied in current 

research work. 

In the introduction (Chapter 1) batch wise manufacturing is compared to continuous 

manufacturing. The advantages (improved product quality, improved cost-efficiency and 

reduced footprint) and challenges related to continuous manufacturing were explained. 

Additionally, the advantages and limitations of the techniques used for tablet manufacturing 

are discussed, covering batch, semi-continuous and continuous agglomeration techniques 

and providing some examples of integrated ‘from-powder-to-tablet’ lines.  

The aim of the research described in Chapter 2 was to develop a modified spray drying 

method to improve the flowability and tabletability of drug formulations with poor tabletability. 

The method included the introduction of solid, dry particles into an atomized spray during 

spray drying in order to coat and agglomerate individual particles. Paracetamol, a highly 

dosed API showing poor tabletability and high capping tendency, was used as model drug in 

the formulation and was injected into a spray of lactose/PVP droplets during spray drying. 

The spray dried solution consisted of lactose and PVP as these components can act as 

amorphous binders to induce agglomeration between particles and droplets. The particle size 

enlargement and flowability were evaluated by laser diffraction and ring shear testing, 

respectively. The developed method was successful for the production of particles containing 

75% paracetamol with excellent tabletability and friability. However, the extent of 

agglomeration was limited. The excellent tabletability of the coprocessed particles was 

attributed to the coating of paracetamol crystals with amorphous lactose and PVP and the 

presence of brittle and plastic components in the formulation. Additionally, the coprocessing 

method was successfully applied for the production of directly compressible lactose.  

Mannitol is a preferred excipient during manufacturing of tablets due to its non-hygroscopic 

character and low drug interaction potential. Although the δ-polymorph of mannitol exhibits 

superior tabletability in comparison to α- and β-mannitol, its large-scale production is difficult. 
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Therefore, Chapter 3 reported on the development of a continuous production method of δ-

mannitol via spray drying. Spray drying an aqueous solution of mannitol and PVP in a ratio of 

4:1 resulted in formation of δ-mannitol. The tabletability of a physical mixture of spray dried 

δ-mannitol (20%) with PVP (5%) and paracetamol (75%) was superior to the tabletability of 

physical mixtures consisting of spray dried α- and β-mannitol (20%) with PVP (5%) and 

paracetamol (75%), which confirmed the excellent tabletability of the δ-polymorph of 

mannitol. In addition, the modified spray drying method developed in Chapter 1 was applied 

to coat paracetamol crystals (75%) with δ-mannitol (20%) and PVP (5%). The tabletability 

and friability of these coprocessed samples was superior compared to physical mixtures with 

the same composition. This was attributed to the coating of paracetamol crystals with δ-

mannitol and PVP during coprocessing and illustrated the added value of the modified spray 

drying method developed in Chapter 1.  

Although mannitol is a preferred excipient for the formulation of tablets, most studies on twin 

screw granulation used lactose or microcrystalline cellulose as fillers. Therefore the potential 

of δ-mannitol as excipient during twin screw granulation was evaluated in Chapter 4. The 

influence of process parameters on critical quality attributes of granules (moisture content, 

solid state, morphology, size distribution, specific surface area, friability, flowability and 

hygroscopicity) and tablets (hardness and friability) was evaluated after twin screw 

granulation of δ-mannitol. The δ-polymorph was selected since a moisture-induced 

transformation to β-mannitol was observed during batch wet granulation, which exhibited a 

unique morphology with a large surface area and improved tabletability. A full factorial 

experimental design was performed, varying screw speed (400 – 900 rpm), granulation 

temperature (25 – 40 °C), number of kneading elements (6 or 12) and liquid-to-solid (L/S) 

ratios (0.08 – 0.16). The results showed that the polymorphic transition from δ- to β-mannitol 

also occurred during twin screw granulation, although the residence time and L/S ratios were 

much lower in continuous twin screw granulation compared to batch processing. However, 

the polymorphic transition was not complete in all experiments and depended on the L/S 

ratio, screw speed and number of kneading elements. Nevertheless all granules exhibited 

the unique morphology linked to the polymorphic transition and had a superior tabletability 

compared to granules produced with β-mannitol as starting material. This was attributed to 

enhanced plastic deformation of the granules manufactured using δ-mannitol as starting 

material. In addition, it was concluded that mannitol was granulated via a different 

mechanism than other, less-soluble, excipients (e.g. lactose, microcrystalline cellulose) due 

to its high solubility and dissolution rate as the influence of process parameters on the 

mannitol granule characteristics was different. 
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In Chapter 5 the potential of twin screw granulation for the continuous production of 

controlled release formulations with hydroxypropylmethylcellulose (HPMC) as hydrophilic 

matrix former was evaluated. Metoprolol tartrate was included in the formulation as very 

water soluble model drug. A premix of metoprolol tartrate, HPMC and filler (ratio 20/20/60) 

was granulated with demineralized water via twin screw granulation. After oven drying and 

milling, tablets were produced on a rotary ModulTM P tablet press. A D-optimal design (29 

experiments) was used to assess the influence of process (screw speed, throughput, barrel 

temperature and screw design) and formulation parameters (starch content of the filler) on 

the process (torque), granule (size distribution, shape, friability, density) and tablet 

(hardness, friability and dissolution) critical quality attributes. The torque was dominated by 

the number of kneading elements and throughput, whereas screw speed and filling degree 

only showed a minor influence on torque. Addition of screw mixing elements after a block of 

kneading elements improved the yield of the process before milling as it resulted in less 

oversized granules and also after milling as fewer fines were present. The barrel temperature 

was also an important parameter as fewer fines and more spherical granules were produced 

at higher temperatures. The shape of HPMC granules was comparable to that of immediate 

release formulations. Hardness and friability of tablets were only dependent on the filler ratio. 

Complete drug release was obtained after 16-20 h and was independent of the design’s 

parameters. 

In Chapter 6 the influence of formulation parameters during twin screw granulation of a 

controlled release formulation with HPMC was studied. The influence of the viscosity and 

substitution degree of HPMC and the particle size of theophylline on critical quality attributes 

of continuously produced granules (size distribution, shape, flowability, friability, density) and 

tablets (hardness, friability, dissolution) were investigated. Formulations with 20 or 40% 

HPMC, 20% theophylline and lactose as filler were granulated with water at fixed process 

parameters. The torque was influenced by the viscosity and substitution degree of HPMC but 

was not a limiting factor for the granulation process. An optimal L/S ratio was selected for 

each formulation based on the granule size distribution. The granule size distributions were 

influenced by the substitution degree and concentration of HPMC and the particle size of 

theophylline. Raman and UV spectroscopic analysis on 8 sieve fractions of granules 

indicated an inhomogeneous distribution of theophylline over the size fractions. However, 

this phenomenon was not dependent on the hydration rate or viscosity of HPMC. Controlled 

release of theophylline could be obtained over 24 h with release profiles close to zero-order. 

The release of theophylline could be tailored via selection of the substitution degree and 

viscosity of HPMC. 
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SAMENVATTING 

De voordelen verbonden aan continue productie van geneesmiddelen zijn recent erkend 

door de farmaceutische industrie. Bovendien hebben de bevoegde autoriteiten continue 

productie van geneesmiddelen aangeduid als middel om te voldoen aan het ‘quality-by-

design’ principe van de International Council for Harmonization (ICH). Proceskennis en 

begrip van continue productietechnieken is echter noodzakelijk voor een succesvolle 

implementatie van continue productietechnieken in de farmaceutische industrie. Daarom 

werden sproeidrogen en dubbeleschroefgranulatie, twee continue agglomeratietechnieken 

met potentieel voor implementatie in continue ‘van-poeder-tot-tablet’ lijnen, bestudeerd in 

deze thesis. 

 

In de inleiding (Hoofdstuk 1) werden batchgewijze en continue productie vergeleken. De 

voordelen (betere product kwaliteit, hogere kostenefficiëntie en gereduceerde voetafdruk) en 

uitdagingen verbonden aan continue productie werden uitgebreid besproken. De voordelen 

en beperkingen van technieken gebruikt voor productie van tabletten werden bovendien 

behandeld waarbij batch, semi-continue en continue agglomeratietechnieken aan bod 

kwamen en enkele voorbeelden van geïntegreerde ‘van-poeder-tot-tablet’ lijnen gegeven 

werden.  

 

Het doel van het ondezoek beschreven in Hoofdstuk 2 was de ontwikkeling van een 

aangepaste sproeidroogmethode om de vloei-eigenschappen en tableteerbaarheid van 

geneesmiddelformulaties te verbeteren. De methode omvatte de introductie van vaste, droge 

partikels in een geatomiseerde spray tijdens sproeidrogen om individuele partikels te coaten 

en agglomereren. Paracetamol, een hoog gedoseerde geneesmiddelmolecule met slechte 

tableteerbaarheid en sterke neiging tot capping, werd gebruikt als modelgeneesmiddel in de 

formulatie en werd in een spray van lactose/PVP druppels gespoten tijdens sproeidrogen. De 

gesproeidroogde oplossing bestond uit lactose en PVP aangezien deze componenten 

fungeren als amorfe binders om agglomeratie tussen partikels en druppels te induceren. De 

deeltjesvergroting en vloei-eigenschappen werden geëvalueerd d.m.v. respectievelijk 

laserdiffractie en ring shear testing. De ontwikkelde methode was succesvol voor de 

productie van partikels met excellente tableteerbaarheid en friabiliteit.  

 

Mannitol is een excipiënt dat vaak de voorkeur geniet tijdens formulatie van tabletten omwille 

van zijn niet-hygroscopisch karakter en laag interactiepotentieel. Alhoewel de δ-polymorf van 

mannitol een betere tableteerbaarheid vertoont dan met α- en β-mannitol, wordt het niet vaak 

toegepast aangezien grootschalige productie van δ-mannitol moeilijk is. Daarom werd in 
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Hoofdstuk 3 de ontwikkeling van een methode voor continue productie van δ-mannitol via 

sproeidrogen beschreven. Sproeidrogen van een mannitol/PVP oplossing (ratio 4/1) in water 

resulteerde in de vorming van δ-mannitol. De tableteerbaarheid van een fysisch mengsel van 

gesproeidroogd δ-mannitol (20%) met PVP (5%) en paracetamol (75%) was superieur aan 

de tableteerbaarheid van fysische mengsels bestaande uit α- en β-mannitol met PVP (5%) 

en paracetamol (75%), wat de excellente tableteerbaarheid van de δ-polymorf van mannitol 

bevestigde. Bovendien werd de aangepaste sproeidroogmethode ontwikkeld in Hoofdstuk 1 

toegepast om paracetamol kristallen (75%) te coaten met δ-mannitol (20%) en PVP (5%). De 

tableteerbaarheid en friabiliteit van deze stalen was beter dan deze van de fysische 

mengsels met een identieke samenstelling. Dit werd toegeschreven aan de coating van 

paracetamol kristallen met δ-mannitol en PVP tijdens het process en illustreerde de 

meerwaarde van de aangepaste sproeidroogmethode ontwikkeld in Hoofdstuk 1. 

 

Alhoewel mannitol als excipiënt vaak de voorkeur geniet tijdens formulatie van tabletten, 

werd in de meeste studies op dubbeleschroefgranulatie lactose of microkristallijne cellulose 

gebruikt als excipiënt. Daarom werd het potentieel van δ-mannitol als excipiënt voor 

dubbeleschroefgranulatie geëvalueerd in Hoofdstuk 4. De invloed van procesparameters op 

de kwaliteitskenmerken van granules (vochtgehalte, kristalvorm, morfologie, 

deeltjesgroottedistributie, specifieke granule-oppervlakte, friabiliteit, vloei-eigenschappen, 

hygroscopiciteit) en tabletten (hardheid en friabiliteit) werd geëvalueerd na 

dubbleschroefgranulatie van δ-mannitol. De δ-polymorf van mannitol werd geselecteerd 

omdat een vocht gemedieerde transformatie naar β-mannitol met een unieke morfologie, 

groot specifiek oppervlak en verbeterde tableteerbaarheid werd waargenomen tijdens 

batchgewijze granulatie. Een full factorial experimenteel design werd uitgevoerd bij 

verschillende schroefsnelheden (400 – 900 rpm), granulatietemperaturen (25 – 40 °C), 

aantal kneedelementen (6 of 12) en liquid-to-solid (L/S) ratio’s (0,08 – 0,16). De resultaten 

toonden aan dat de polymorfe transitie van δ- naar β-mannitol zich ook voordeed tijdens 

dubbeleschroefgranulatie, al zijn de residentietijden en L/S ratio’s tijdens 

dubbeleschroefgranulatie lager in vergelijking met batchgewijze granulatie. De polymorfe 

transitie was echter niet in alle experimenten compleet en was afhankelijk van de L/S ratio, 

schroefsnelheid en het aantal kneedelementen. Desondanks vertoonden alle granules de 

unieke morfologie die verbonden is aan de polymorfe transitie en een superieure 

tableteerbaarheid in vergelijking met granules geproduceerd met β-mannitol als start-

materiaal. Dit werd toegeschreven aan de verhoogde plastische deformatie van granules 

geproduceerd met δ-mannitol als startmateriaal. Bovendien werd geconcludeerd dat 

mannitol gegranuleerd werd volgens een ander mechanisme dan andere, minder oplosbare 

excipiëntia (bijvoorbeeld lactose en microkristallijne cellulose) omwille van zijn hoge 
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oplosbaarheid en oplossnelheid, aangezien de invloed van procesparameters op de 

kenmerken van mannitolgranules verschillend was. 

 

In Hoofdstuk 5 werd het potentieel van dubbeleschroefgranulatie voor continue productie 

van een formulatie met vertraagde geneesmiddelvrijstelling met 

hydroxypropylmethylcellulose (HPMC) als hydrofiele matrixvormer geëvalueerd. Metoprolol 

tartraat werd in de formulatie opgenomen als sterk wateroplosbaar geneesmiddel. Een 

mengsel van metoprolol tartraat, HPMC en vulstof (ratio 20/20/60) werd gegranuleerd met 

gedemineraliseerd water via dubbeleschroefgranulatie. Na drogen in de oven en malen, 

werden tabletten aangemaakt op een rotatieve tabletpers. Een D-optimal design (29 

experimenten) werd toegepast om de invloed van procesparameters (schroefsnelheid, 

toevoersnelheid van het poeder, temperatuur van de schroefkamer, schroefconfiguratie) en 

formulatieparameters (percentage zetmeel in de vulstof) op het granulatieproces (torque) en 

kwaliteitskenmerken van granules (deeltjesgroottedistributie, vorm, friabiliteit, densiteit) en 

tabletten (hardheid, friabiliteit, dissolutie) na te gaan. De torque werd gedomineerd door het 

aantal kneedelementen en de toevoersnelheid van poeder, terwijl de schroefsnelheid en 

vullingsgraad van de schroefkamer slechts een beperkte invloed op de torque vertoonden. 

Toevoeging van screw mixing elementen na een zone van kneedelementen verbeterde de 

opbrengst van het proces voor en na malen. De temperatuur van de schroefkamer was ook 

een belangrijke parameters aangezien minder ongegranuleerd materiaal en meer sferische 

granules gevormd werden bij hogere temperaturen. De vorm van de granules met HPMC 

was vergelijkbaar met deze van formulaties met onmiddellijke geneesmiddelvrijstelling. De 

hardheid en friabiliteit van de tabletten was enkel afhankelijk van het percentage zetmeel in 

de granules. Volledige geneesmiddelvrijstelling werd bekomen na 16 - 20 h en was 

onafhankelijk van de onderzochte parameters.  

 

In Hoofdstuk 6 werd de invloed van formulatieparameters tijdens dubbeleschroefgranulatie 

van een formulatie met vertraagde geneesmiddelvrijstelling met HPMC bestudeerd. De 

invloed van viscositeit, substitutiegraad van HPMC en de deeltjesgrootte van theofylline op 

de kwaliteitskenmerken van op continue wijze geproduceerde granules 

(deeltjesgroottedistributie, vorm, vloei-eigenschappen, friabiliteit, densiteit) en tabletten 

(hardheid, friabiliteit, dissolutie) werd onderzocht. Formulaties met 20 of 40% HPMC, 

20% theofylline en lactose als vulstof werden gegranuleerd met water bij constante 

procesparameters. De torque werd beïnvloed door de viscositeit en substitutiegraad van 

HPMC maar was geen beperkende factor voor het granulatieproces. Een optimale L/S ratio 

werd geselecteerd voor elke formulatie, gebaseerd op de granulegroottedistributie. De 

granulegroottedistributie werd beïnvloed door de substitutiegraad en concentratie HPMC en 
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de deeltjesgrootte van theofylline. Een ongelijke verdeling van theofylline over zeeffracties 

van de granules werd aangetoond na Raman- en UV spectroscopie. Dit fenomeen was 

echter niet gecorreleerd aan de snelheid van zwellen of viscositeit van HPMC. 

Gecontrolleerde vrijstelling van theophylline kan bekomen worden gedurende 24 h met 

vrijstellingsprofielen dicht bij nulde orde. De vrijstelling van theofylline kon aangepast worden 

door selectie van de viscositeit en substitutiegraad van HPMC.  
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