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Commonly used abbreviations 
• [Ca2+]   Calcium concentration 

• [Ca2+]i   Intracellular calcium concentration 

• [Ca2+]m  Intramitochondrial calcium concentration 

• ANT   Adenine nucleotide translocase 

• APD   Action potential duration 

• ATP   Adenine Triphosphate 

• BGA   b-glycerrhetinic acid 

• BKCa   Calcium sensitive potassium channel, large conductance 

• CaM   Calmodulin 

• CaM-KII  Calmodulin kinase-II 

• CaMBD  Calmodulin binding domain 

• CF   Coronary flow 

• CHEm   Mitochondrial calcium-hydrogen exchanger 

• CPC   Calcium induced pre-conditioning 

• Cx43   Connexin 43 

• ELISA   Enzyme Linked Immuno Sorbent assay 

• EPR   Electron paramagnetic resonance 

• FADH   Flavin adenine dinucleotide (reduced) 

• GJ   Gap junction 

• GSK-3b  Glycogen synthase-kinase 3b 

• HC   Hemichannel 

• HCMD  High calcium microdomains 

• HK-II   Hexokinase-II 

• HPLC   High performance liquid chromatography 

• HR   Heart rate 

• HSP90   Heat shock protein 90 

• HUVEC  Human umbilical vessel endothelial cell 

• ICa   Calcium current 

• IEF   Iso-electric focusing 

• IEM   Immuno-electron microscopy 
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• IFM   Interfibrillar mitochondria 

• IK   Potassium current 

• IKCa   Calcium sensitive potassium channel- intermediate  

conductance 

• IMAC   Inner membrane anion channel 

• IMM   Mitochondrial inner membrane 

• INa   Sodium current 

• IP3   Inositol tri-phosphate 

• IPC   Ischemic pre-conditioning 

• IR   Ischemia-reperfusion 

• KATP, KATP  ATP sensitive potassium channel 

• KHE   Potassium hydrogen exchanger 

• KR   Krebs-Ringer's buffer 

• LETM1  Leucine Zipper EF hand containing  

• LVP   Left ventricular pressure 

• m[Ca2+]  Mitochondrial calcium 

• MCU   Mitochondrial calcium uniporter 

• MICU   Mitochondrial calcium uniporter regulatory subunit 

• mitoCx43  Mitochondrial connexin 43 

• mKHE   Mitochondrial potassium hydrogen exchanger 

• MPTP   Mitochondrial permeability transition pore 

• mRyR   Mitochondrial ryanodine receptor 

• MS   Mass spectrometry 

• NADH   Nicotinamide adenine dinucleotide (reduced) 

• NCE   Sodium-Calcium exchange 

• NICE   Sodium independent calcium exchanger 

• NMDA  N-methyl D-aspartate receptor 

• OMM   Mitochondrial outer membrane 

• OXPHOS  Oxidative phosphorylation 

• pHm   Mitochondrial pH 

• PKC   Protein kinase-C 
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• Po   Open probability 

• POC   Ischemic post-conditioning 

• PPC   Pharmacological pre-conditioning 

• PTM   Post translational modification 

• RaM   Rapid uptake mode 

• Ran   Ranolazine 

• CI   Respiratory control index 

• ROS   Reactive oxygen species 

• RyR   Ryanodine receptor 

• SKCa   Calcium sensitive potassium channel, small conductance 

• SNCE   Stepped normalized collision energy 

• SR   Sarcoplasmic reticulum 

• SSM   Sub-sarcolemmal mitochondria 

• TIM   Translocase of inner membrane 

• TLC   Thin layer chromatography 

• TOM   Translocase of outer membrane 

• UCP   Uncoupling protein 

• VDAC   Voltage dependent anion channel 

• Dym   Mitochondrial membrane potential 

• yH   Mitochondrial proton gradient  
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Samenvatting 
 

Mitochondriën worden beschouwd als de ‘energiecentrales’ van de cel. Naast hun belangrijke 

functie in het produceren van energie, zijn ze ook cruciaal voor de ion homeostase en de cellulaire 

integriteit. Een groot aantal mitochondriale aandoeningen zijn reeds geïdentificeerd waaronder 

diabetes type II, cardiovasculaire ziektes, kanker en neurodegeneratieve aandoeningen. De 

celfysiologie steunt in belangrijke mate op de zuurstofafhankelijke energieproductie die 

plaatsvindt in de mitochondriën. Hierin spelen de elektronentransportketen en verschillende 

ionkanalen, aanwezig in de buitenste en binnenste mitochondriale membraan, een cruciale rol. 

Verscheidene studies hebben echter het belang van de respiratoire keten, niet enkel in ATP 

productie, maar ook in de generatie van schadelijke hoeveelheden reactieve zuurstofradicalen in 

diverse pathologische condities aangetoond, waaronder cardiale ischemie reperfusie (IR) schade. 

Niet enkel het mitochondriaal DNA, maar ook de elektronentransportketen en mitochondriale 

proteïnen zijn belangrijke doelwitten van de reactieve zuurstofradicalen. In het kader van deze 

observaties zijn mitochondriën voorgesteld als nieuwe, prominente therapeutische doelwitten. De 

componenten die kunnen bijdragen tot een mitochondriale dysfunctie zijn echter nog niet volledig 

geïdentificeerd. 

 

De focus van deze thesis was voornamelijk gericht op de respiratoire keten en de ionkanalen, twee 

mitochondriale componenten die betrokken zijn in de energieproductie en de ion homeostase. 

Daarenboven werd de toepassing van mitochondriaal gerichte medicijnen en peptiden in het 

moduleren van celdood geïnduceerd door mitochondriale dysfunctie verder onderzocht. 

 

In her eerste hoofdstuk, beschrijf ik de karakterisatie van een nieuw geïdentificeerd Cx43 eiwit in 

subsarcolemmale mitochondriën in cardiomyocyten. Voorgaande studies hebben aangetoond dat 

Cx43 een belangrijke speler is in de mitochondriale opname van calcium en kalium. De exacte 

functie van Cx43 ter hoogte van de mitochondriale membraan was echter nog niet volledig 

opgehelderd. Aan de hand van elektrofysiologische studies, heb ik aangetoond dat Cx43 

functionele kanalen vormt in de mitochondriale membraan waarvan de activiteit kan geblokkeerd 

worden met behulp van Cx43 gerichte peptiden. Het effect van deze peptiden werd verder 
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bestudeerd op de mitochondriale calcium opname, een kritische factor in het celdoodproces. In een 

volgende stap werd dan ook het effect van deze peptiden op celdood geïnduceerd door 

verschillende apoptotische stimuli zoals ceramide, staurosporine en het cardiotoxische doxorubine 

nagegaan. Deze agentia induceren apoptose via de intrinsieke, mitochondriaal gemedieerde 

pathway. Samengevat resulteerden de bovenstaande experimenten in de belangrijke bevinding dat 

mitochondriaal Cx43 een efficiënter en belangrijker doelwit is om celdood te voorkomen dan enkel 

Cx43 ter hoogte van de plasma membraan. Verder werd het cardioprotectief effect van Cx43 

gerichte peptiden nagegaan in harten blootgesteld aan IR. Deze peptiden reduceerden significant 

de grootte van het infarct wanneer ze toegediend werden voor de inductie van ischemie en 

aanwezig waren tijdens de eerste 10 min van reperfusie. Dit wijst op een cruciale rol van Cx43, 

zowel aanwezig in de mitochondriën als in de plasma membraan, in cardiale schade veroorzaakt 

door ischemie.  

 

In het tweede hoofdstuk, werden de protectieve effecten van ranolazine, een inhibitor van het 

respiratoir complex I, op IR bestudeerd. Hiernaast werden ook de effecten van IR schade op 

complex I in kaart gebracht. Samengevat onderlijnen de bevindingen van dit onderzoek niet alleen 

de belangrijke rol van het respiratoir complex in het onderhouden van de cellulaire energiebalans 

maar ze benadrukken ook de cruciale rol voor het behouden van de complex I geassocieerde 

structuren in de mitochondriën. Daarenboven tonen de resultaten ook de voordelige effecten van 

ranolazine aan in het beperken van de ontwikkeling van een ischemisch infarct, in het bijzonder 

wanneer ranolazine toegediend wordt tijdens de kritische beginfase van reperfusie. 

 

In het derde hoofdstuk, identificeerde en karakteriseerde ik een nieuw calcium gevoelig kalium 

kanaal in de binnenste mitochondriale membraan. De rol van mitochondriale ionkanalen in het 

behouden van de cellulaire ion homeostase is een belangrijke focus van veel recente onderzoeken. 

Mitochondriën spelen een prominente rol in de intracellulaire calcium en kalium buffering. 

Aangezien een calcium en kalium dyshomeostase een belangrijk kenmerk is van celdood, is een 

accurate kennis van de mitochondriale ionkanalen noodzakelijk voor de ontwikkeling van meer 

gerichte therapieën. In deze studie, identificeerde ik een nieuw kalium kanaal met een lage 

conductantie, waarvan de activiteit gevoelig is voor calcium en geblokkeerd wordt door apamine, 
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een gekende blokker van het SKCa kanaal in de plasmamembraan. De kanaalactiviteit werd verder 

ook geïnhibeerd door NS1619, welke een protectief effect heeft tegen cardiale IR schade. 

 

Samengevat wijzen de resultaten behaald in deze thesis op de belangrijke maar ook complexe rol 

die mitochondriale energieproductie en ion homeostase kunnen spelen in het behoud van de 

cellulaire integriteit en hoe deze kennis verder kan toegepast worden voor de ontwikkeling van 

efficiënte therapeutische doelwitten gericht op de behandeling van mitochondriale aandoeningen. 
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Summary 
 

Mitochondria have recently been acknowledged to be not only responsible for the fulfillment of 

energy requirements of the cell, but also for the maintenance of ion homeostasis and ultimately in 

the determination of cell fate. Indeed, a host of mitochondrial-associated diseases have been 

identified in the last few years including diabetes type II, cardiovascular diseases, cancer and 

neurodegenerative disease in addition to others. Cells depend on energy generated by 

mitochondrial consumption of oxygen. A critical feature of mitochondria in cellular energy and 

homeostasis is the electron transport chain and the various ion channels located in the 

mitochondrial membranes (inner and outer). Various studies have proven the importance of 

respiratory complexes in not just ATP production but also in the generation of reactive oxygen 

species, in deleterious amounts in pathological conditions such as cardiac ischemia-reperfusion 

injury. As such, the electron transport chain and the mitochondrial proteins, in addition to 

mitochondrial DNA are targets of the deleterious effects exerted by the reactive oxygen species. 

In light of these observations over the course of the last few years, mitochondria have emerged to 

be a leading therapeutic target, yet the important mitochondrial proteins involved have not been 

fully explored. 

 

In the present thesis, I focus on two important aspects of mitochondria in energy and ion 

homeostasis- the respiratory complexes involved in generation of ATP and the ion channels of 

mitochondria responsible for the ion homeostasis of mitochondria and in turn the cell. In addition, 

I explore the use of mitochondria targeted drugs and peptides to mitigate cell death induced by 

mitochondrial dysfunction.  

 

In the first chapter, I characterize the role of connexin43 protein in the cardiac subsarcolemmal 

mitochondria. Previous studies have shown that mitochondrial connexin43 is a player in 

mitochondrial uptake of calcium and potassium, but a specific identification of the channel was 

still lacking. In my studies, I performed electrophysiological studies on connexin43 purified from 

cardiac subsarcolemmal mitochondria and found that not only does mitochondrial connexin43 

form a functional channel, but also that the channel activity can be blocked by the use of 

connexin43 targeting peptides. Since modulation of mitochondrial calcium dynamics is a critical 



8 
 

player in cell death, I further studied the effect of the peptides on cell death induced by various 

mitochondrial targeting apoptotic stimuli such as the ones induced by ceramide, staurosporine and 

cardio-toxic doxorubicin. These studies showed that targeting mitochondrial connexin43 is much 

more beneficial in preventing cell death than targeting just the plasmalemmal connexin43. To 

further investigate the beneficial effect of connexin43 targeting peptides in cardioprotection, I 

tested their effect on hearts exposed to ischemia-reperfusion injury and found that they 

significantly reduced infarct size, when administered before the onset of ischemia and being 

present during the initial 10 minutes of reperfusion, pointing towards a critical role for connexin43- 

both mitochondrial and plasmalemmal, in ischemic injury.  

 

In the second chapter, I determine the role of a mitochondrial complex I targeting drug- ranolazine 

in ameliorating the deleterious effects of 30 minutes of ischemia and 10 minutes of reperfusion 

(IR), in addition to characterizing the effects of IR injury on respiratory complex I. The findings 

from this chapter not only underscore the importance of respiratory complex I in maintenance of 

cellular energy balance but also the critical role for maintenance of complex I associated structures 

within the mitochondria. In addition, I also show that targeted therapy such as ranolazine, 

especially when used within the critical time period of initial reperfusion, is beneficial in restricting 

the development of infarct size- a major deleterious outcome of ischemic injury.  

 

In the third chapter, I identify and characterize a novel potassium channel located in the inner 

mitochondrial membrane- the small conductance calcium sensitive potassium channel. The role of 

mitochondrial ion channels in maintenance of cellular ion homeostasis has been the focus of many 

recent studies, with the common observation that mitochondria act as strong buffers of calcium 

and potassium, whose imbalance is an important feature of cell death. Given this information, 

knowledge of mitochondrial ion channels is necessary for development of targeted therapies. In 

my studies, I identified a putative small conductance calcium sensitive potassium channel, the 

activity of which was sensitive to calcium and was blocked by apamin- a known blocker of the 

SKCa channel in the plasma membrane. In addition, the channel activity was also sensitive to 

NS1619, which when administered to the heart prior to IR injury, showed a protective effect. 

 

In summary, my thesis elucidates the complex part mitochondrial energy and ion homeostasis  
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have in the maintenance of cellular integrity and how this knowledge can be explored for the 

development of effective therapeutic targets aimed at ameliorating various mitochondrial 

associated disorders 
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Chapter 1 
 
Introduction  
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1.1 General introduction 

 

Ischemic heart disease is one of the leading causes of death in industrialized nations. Cardiac 

ischemic disease can lead to a myriad of clinical outcomes including acute myocardial infarction, 

sudden cardiac death, arrhythmias and heart failure. The cause of ischemic injury is a blockage of 

oxygen supply to the tissue, associated with the blockage of an artery. In case of cardiac ischemia, 

it is usually a result of occlusion of the coronary artery. In such cases, upon removal of the 

occlusion, reperfusion of the ischemic tissue restores oxygen supply thereby preventing tissue 

damage. A major indicator of damage to the myocardium following ischemic injury is infarct size. 

Even though the metabolic changes associated with ischemic injury can be restored eventually via 

therapeutics and/or natural healing of the tissue, the structural changes brought upon the 

myocardium by the infarct are permanent and lead to remodeling of the ventricular tissue which 

can lead to heart failure1. 

 

Infarct size is a major determinant of mortality, and limitation of its size has been an important 

objective of strategies to improve clinical outcomes. Different approaches employing 

physiological pathways and drugs have since been used towards this goal. Murry et al. firstly 

demonstrated that brief episodes of ischemia-reperfusion (IR) in dogs are beneficial for myocardial 

preservation after 40 minutes of ischemia2. This phenomenon of inducing protection by short 

pulses of ischemia before a longer ischemic insult is termed ischemic pre-conditioning (IPC). 

Many studies have been performed to elucidate the mechanisms involved in IPC. IPC induced 

protection is conferred over two periods of time: the acute protection, which disappears within 2 

hours of IPC, and another one appearing after 24-48 hours, which lasts much longer up to 96 

hours3. Given the different molecular players involved in acute and delayed protection, the 

efficiency of protection also differs, with acute phase protection being stronger than late phase 

protection3. The acute phase relies on recruitment of readily available cellular factors such as anti-

oxidant enzymes2 whereas the delayed phase protection depends on proteins, such as catalase, 

HSP72 and SOD4, whose increased expression is triggered by the acute phase. These enzymes are 

thought to be produced in response to a slightly increased ROS generation observed during the 

brief ischemic pulses followed by reperfusion4. ROS generation is thought to be sufficient to 

trigger downstream protective pathways but not enough to be lethal by themselves4. 
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One of the major molecules associated with IPC is adenosine which triggers downstream 

protective pathways5. Adenosine activates protein kinase C (PKC), which in turn activates the 

downstream reperfusion injury salvage kinase (RISK) pathway and the endothelial nitric oxide 

synthase (eNOS)/protein kinase G (PKG) pathways. The major action of adenosine activated RISK 

pathway is at reperfusion, as studies have shown that use of adenosine receptor antagonist and thus 

blockage of RISK pathway abrogates IPC induced protection6. Javodov et al. showed that IPC 

inhibits the mitochondrial permeability transition pore (MPTP) opening during index ischemia, 

possibly through mild uncoupling of oxidative phosphorylation (OXPHOS) without blockage of 

the electron transport chain7.  

 

However IPC is not clinically useful, given the unpredictability of ischemic injury. Another 

strategy for protection of the myocardium following IR injury involves short pulses of ischemia 

following the longer index ischemia, called post conditioning (POC). This phenomenon has been 

shown to be cardioprotective in dogs, and it affords protection similar in extent to pre-

conditioning8. Argaud et al. showed that POC also prevents MPTP opening9. As with IPC, the 

exact mechanism by which POC affords protection is not yet clearly known. However, nitric oxide 

(NO), generated from eNOS is also causally involved in POC10. Hydrogen sulfide, synthesized by 

cystathione-β-synthase and carbon monoxide synthesized by heme oxygenase are also thought to 

be involved in protection afforded by POC11,12. Peptide hormones such as natriuretic peptide and 

adrenomedullin also afford protection against IR injury, via a POC mode and involve NO, 

mitochondrial KATP channels and RISK or surface activating factor enhancement (SAFE) 

pathway13. Given the difficulty of angioplasty (by which patients receive IPC or POC), 

pharmacological agents mimicking them have been developed with a continued focus on 

development of novel and better therapeutic agents. The use of therapeutic agents to induce 

cardioprotection via IPC or POC is termed “pharmacological.” as opposed to “ischemic”.  

 

Pharmacological preconditioning (PPC) has been achieved via the use of volatile anesthetics such 

as isoflurane, halothane and desflurane. PPC using volatile anesthetics was first demonstrated by 

Freedman et al. in isolated rat heart exposed to global ischemia14. Warltier et al. further reported 

the protective effects of halothane and isoflurane on stunned myocardium of dogs during 

reperfusion15. Novalija and Stowe reported that PPC via anesthetics mimicked IPC16. Acute PPC 
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involves phosphorylation and translocation of pre-existing proteins while delayed PPC involves 

de novo protein synthesis17–21. 

 

In addition to IPC, POC and PPC, temperature has also been used to protect the myocardium. Riess 

et al. showed that hypothermia protects heart against ischemic insult after a variety of surgical 

procedures. Beneficial effects seen after hypothermia include better tissue perfusion, improved 

metabolic and mechanical function, reduced arrhythmias as well as reduced infarct size as shown 

by Riess et al.22. Furthermore, hypothermia has also been shown to reduce ROS generation in the 

mitochondria22. 

 

A key cellular event during IR injury and the protective mechanisms described above is the change 

in cellular redox state23. Change in redox state is a key signaling mechanism in modulation of 

transcription, translation and cell death. Mitochondria play an important role in maintenance of the 

cellular redox state which is achieved by mitochondrial regulation of cellular ion homeostasis, 

given the fact that mitochondria have high Ca2+ and K+ buffering24. For example potassium (K+) 

selective or anion selective pores are known to be important in regulating mitochondrial volume- 

a key factor in maintenance of ionic balance in the cytosol25. Under physiological conditions, the 

opening of mitochondrial ion channels leads to a change in membrane potential (from the normal 

value of -180 mV) which is compensated by increased substrate production, net oxidation of the 

matrix and a change in ROS generation25. Key mitochondrial channels whose role in cellular life 

and death have been well characterized include the mitochondrial ATP sensitive K+ channels 

(mitoKATP), the mitochondrial calcium (Ca2+) sensitive K+ channels (mitoKCa), mitochondrial Ca2+ 

uniporter (MCU), MPTP and the inner membrane anion channel (IMAC).  
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Figure 1: Overview of mitochondrial role on cellular ion and energy homeostasis 

 

The mitochondrial outer membrane (OMM), which is permeable to large solutes and proteins has 

been shown to contain the voltage dependent anion channel (VDAC), and porins. In addition, 

translocases, which act as chaperones for transportation of proteins to the inner and outer 

mitochondrial membranes have also been shown to act as pores, although their role as ion channels 

is as yet unclear. The MPTP is also thought to be a channel in the OMM albeit in conjunction with 

inner mitochondrial membrane (IMM) proteins26,27. One interesting aspect with regard to 

permeability transition is that an increase in permeability of the OMM does not always correlate 

with an increase in permeability of the IMM thereby indicating that the MPTP is not solely 

composed of OMM proteins.  

 

Mitochondrial ATP generation and local energy demand are crucial for cell functioning. Cellular 

Ca2+ is an important player in this coupling and Ca2+ activation of mitochondrial oxidative 

phosphorylation has been known for a longtime28. Mitochondrial Ca2+ handling is controlled by 

tightly regulated influx and efflux pathways. The influx pathways include the MCU, rapid uptake 

mode (RaM), and the putative mitochondrial ryanodine receptors (mRyR). Influx of Ca2+ into the 

mitochondria is controlled by membrane potential. Efflux of Ca2+ involves sodium (Na+)/ Ca2+ 

exchanger (NCE) and H+/ Ca2+ exchanger with the NCE being electrogenic and therefore 

membrane potential–dependent29. Recent studies have suggested that connexin 43 (Cx43) also 

influences mitochondrial Ca2+ (30). The other mechanism by which Ca2+ can exit from the 

mitochondria is the previously described MPTP.  
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There are two well-known IMM K+ channels playing an important role in ischemic injury: the 

mitochondrial KATP (mito KATP) channel, whose activation has been shown to be one of the key 

mechanisms that counteract ischemic injury31 and mitoKCa channels, whose opening has also been 

shown to be cytoprotective32. Recent studies have shown that Cx43 plays a major role in K+ uptake 

by the mitochondria33. Other studies, have shown that mitochondrial Cx43 is involved in IPC34. 

Even though a clear link between Cx43’s protective role in IPC and K+ uptake influenced by Cx43 

is yet to be established, it is clear that Cx43 does influence IPC via a K+ dependent mechanism.  

 

Several studies have shown that mitochondria are both targets and sources of cell damage during 

IR injury26. Indeed, IR injury results in damage to the respiratory chain with impairment of 

OXPHOS, which as described above is critical in maintenance of cellular energetics. 

Mitochondrial damage favors oxidative stress via the production of ROS by complexes I35 and 

III36. These ROS act as signaling molecules for apoptosis through a decrease in mitochondrial 

membrane potential and through MPTP opening. MPTP opening is a key event in IR injury 

because it leads to an influx of solutes into the mitochondrial matrix, which in turn leads to matrix 

swelling and ultimately in the release of cytochrome c, a key activator of apoptotic pathways. Even 

though MPTP is recognized as a multiprotein complex, the individual units comprising the 

complex are as yet not fully known. It is speculated that it is composed of VDAC, ANT, 

cyclophilin D and HK-II37 and dimers of the F0F1 ATP synthase38. 

 

The focus of the current thesis is directed to a better understanding of the contribution of 

mitochondrial Cx43 channels, mitochondrial KCa (mitoKCa) channels and the respiratory complex 

I in ischemic injury. I will further discuss the role of Cx43 in mitochondria (mitoCx43) as an ion 

channel contributing to mitochondrial Ca2+ entry thereby leading to cell death. This will be 

complimented by investigations towards potential blockers of mitoCx43 related Ca2+ entry and 

cell death. Additionally, I will discuss the identification and characterization of the mitoKCa 

channel, specifically the small conductance subtype, in cardiac mitochondria and the effect of IR 

injury on mitochondrial respiratory complex I. 
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1.2 Calcium and mitochondria 

 
Cardiac excitation is based on plasma membrane ion fluxes (called sarcolemmal ion fluxes in the 

context of cardiomyocytes) that are coupled to cytosolic Ca2+ and contraction. Excitation is 

initiated by the opening of voltage gated Na+ channels and Na+ current influx (INa) leading to the 

generation of action potential upstroke (phase 0). This phase is limited by fast inactivation of INa  

and the activation of transient outward K+ channels, resulting in early and partial repolarization 

which is the action potential (AP) notch (phase 1), followed by the plateau phase (phase 2). During 

the phase 2, membrane conductance falls significantly as the inward and outward currents are 

inactivated39. Due to the time- and voltage- dependent gating properties of K+ channels, K+ 

currents (IK) are small and only capable of balancing relatively small remaining inward Ca2+ 

current (ICa), via the L-type Ca2+ channels. This causes the repolarization rate at plateau voltages 

to be slow. Also, due to high membrane resistance, small currents such as the Na+/Ca+ exchange 

current, the Na+/K+-ATPase current or ICa can destabilize the plateau membrane potential resulting 

in arrhythmias40. 

 

The cardiomyocyte plasma membrane has transverse invaginations called T-tubules that reach 

deep into the myocytes. T-tubules make close contact with junctional sarcoplasmic reticulum 

cisternae. L-type Ca2+ channels are present in high densities at these clefts in close proximity to 

the ryanodine receptor (RyR2)- the SR Ca2+ release channel. ICa causes a local increase in Ca2+ 

concentration [Ca2+] to trigger RyR2 opening, thereby releasing Ca2+ from the SR during 

excitation-contraction coupling. This Ca2+-induced Ca2+ release amplifies the SR Ca2+ influx. The 

rise in [Ca2+] is transient because of the rapid inactivation of ICa, RyR2 closure and simultaneous 

activation of Ca2+ removal pathways. Sarcolemmal Na+/Ca2+ exchanger, sarcolemmal Ca2+-

ATPase and the MCU are responsible for Ca2+ removal. The intracellular and extracellular free 

[Ca2+] are normally approximately 0.1 and 1000-2000 µmol/L respectively. However, since the 

total cell Ca2+ content is approximately 1000 µmol/L, it can be said that almost 99% of the total 

cell Ca2+ content is bound to proteins, phospholipids or sequestered into the ER and 

mitochondria41.  

 

Mitochondria have a high capacity of buffering cytosolic Ca2+. In the mammalian heart, 
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mitochondria are more abundant than in any other tissue and account for about a third of the cell 

volume42. Mitochondria experience regular repetitive elevations in intracellular Ca2+. The 

abundant interfibrillar mitochondria are in close proximity to the sarcoplasmic reticulum and are 

influenced by Ca2+ release from RyR2 opening43,44. Although the global [Ca2+] increases from 100 

nM to ~500 nM with each heartbeat, the microdomains of the SR-mitochondrial contacts 

(approximately 5-100 nm apart) experience an effective [Ca2+] of about 10-20 µM45. 

 

The uptake of Ca2+ and the activation of the mitochondria not only depends on the global [Ca2+] in 

the cytosol but also the distance between the microdomains experiencing the increase in [Ca2+]. 

The morphological feature of the cell where the SR and mitochondria come into close proximity 

forms the basis for the confinement of this cytoplasmic microdomain which can influence the 

mitochondria46,47. These high-Ca2+ microdomains (HCMDs) are short lived but form rapidly in the 

perimitochondrial cytoplasm where inositol 1,4,5-trisphosphate (IP3) sensitive Ca2+ stores are 

present. The induction of mitochondrial Ca2+ signal induced by insulin producing cells or in 

adrenal chromaffin cells is attributed to this HCMD Ca2+ hotspots46,47. The importance of a HCMD 

is that the existence of such a microdomain facilitates an efficient Ca2+ transfer between the ER/SR 

and mitochondria to match the energy produced by the mitochondria to demand by Ca2+ dependent 

processes such as the excitation contraction coupling machinery48. A study estimated that areas 

within 500 nm from a HCMD take up much more Ca2+ than mitochondria more than 500 nm away 

from HCMD49. In addition, the kinetics of Ca2+ uptake were also significantly different between 

the two populations indicating that the uptake mechanisms between the two populations are 

different or at the very least, the same players have different affinities for Ca2+. However, it is 

highly unlikely that the same channel in two mitochondrial populations within the same cell would 

act differently, pointing to the existence of a different uptake mechanism among the two 

mitochondrial subpopulations. 

 

Even though there exists a range of [Ca2+] through which mitochondria take up Ca2+ from the 

cytosol, it has been shown that mitochondrial Ca2+  uptake occurs readily above cytoplasmic [Ca2+] 

of about half a micromolar50,51. Other studies have reported the generation of mitochondrial [Ca2+] 

transients in spite of the lack of HCMDs52. Still other studies53  have shown a range of cytoplasmic 

[Ca2+] ranging from 200-1000 nM for mitochondrial Ca2+ uptake.  
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In addition to the modulation of cytoplasmic [Ca2+], mitochondrial Ca2+ also has other roles, 

especially in the regulation of mitochondrial OXPHOS. Intramitochondrial Ca2+ has been observed 

to activate pyruvate dehydrogenase, isocitrate dehydrogenase and α- ketoglutarate dehydrogenase- 

all key enzymes of the Kreb's cycle54. Other loci within the electron transport chain such as 

F0F1ATPase, the adenine nucleotide translocase (ANT) have also been shown to be Ca2+ 

activated55 indicating that mitochondrial Ca2+ may act as one of the controls of cellular 

metabolism. The amount of Ca2+ taken up by the mitochondria is sufficient to activate the Ca2+ 

sensitive dehydrogenases increasing the amount of NADH54.  

 

In addition to the role of mitochondrial Ca2+ in maintenance of cellular Ca2+ transients and indirect 

control of cellular metabolism, evidence also points to the role of Ca2+ in control of apoptosis and 

necrosis of the cell, a key event of which is the release of cytochrome c or of the apoptosis inducing 

factor. Evidence points to the overload of mitochondrial Ca2+ leading to the opening of MPTP, 

leading to the release of these apoptotic factors56.  

 

Mitochondrial entry and exit of Ca2+ is very tightly controlled given the importance of maintenance 

of the integrity of IMM for proper functioning of the mitochondria. Entry of Ca2+ is mostly through 

the ruthenium red sensitive MCU complex, and a second mode of uptake- the rapid uptake mode 

(RaM). The MCU complex is composed of the uniporter pore and regulatory subunits, 

mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2). MCU is an integral membrane protein 

that is essential for the electrophysiologically defined uniporter current57. MICU1 contains EF-

hand Ca2+ binding domains and is found in the inter membrane space and essentially functions as 

a Ca2+ sensing gate keeper, allowing the channel to be closed when the external [Ca2+] is low and 

to open when Ca2+ transient rises58. The role and functions of MICU2 have not yet been fully 

characterized. The uniporter complex as a whole is sensitive to the hexavalent cation ruthenium 

red- a glycoprotein stain. On the other hand, it is activated at low Ca2+ concentrations by 

polyamines such as spermine59 and also by adenine nucleotides60. 
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Figure 2: Mitochondrial Ca2+ channels. OMM: Outer mitochondrial membrane; IMM: Inner mitochondrial 

membrane; IMS: Inter membrane space; Cx43: Connexin 43; MCU: Mitochondrial Ca2+ uniporter; RAM: Rapid 

uptake mode; VDAC: Voltage dependent anion channel; RyR: Ryanodine receptor; Black spheres: Ca2+; Red spheres: 

Na+; Arrows indicate direction of ion movement. 

 

Evidence for very rapid Ca2+ uptake into the mitochondria was first seen in liver mitochondria61. 

Similar observations of a very rapid uptake in the initial transient followed by an uptake similar to 

that of the MCU was seen in heart mitochondria as well as the brain mitochondria, suggesting a 

wide presence of a rapid uptake mode62. The main characteristic differentiating the RaM from the 

MCU is the very high rate of Ca2+ uptake via RaM at the beginning of every pulse and its inhibition 

very soon after that, which is thought via the binding of Ca2+ from the pulse itself to an external 

site that essentially blocks RaM61. Pharmacologically, RaM is inhibited by uncouplers which 

dissipate the mitochondrial membrane potential, suggesting that electrochemical gradient is the 

driving force behind Ca2+ uptake by RaM. Questions about the cellular identity of the RaM being 

from the mitochondria or the ER were answered by the use of thapsigargin- a potent inhibitor of 

ATPase responsible for ER Ca2+ uptake63. These studies showed no effect of thapsigargin on RaM 

uptake of Ca2+ by the mitochondria. RaM is also inhibited by ruthenium red, although a much 

higher concentration is needed for RaM inhibition (greater than 0.1 nM) than MCU inhibition 

(0.003 nM)64.  
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In addition to the MCU and the RaM, other proposed mitochondrial Ca2+ influx mechanisms 

include the mitochondrial ryanodine receptor (mRyR1), uncoupling proteins (UCP), leucine 

zipper-EF-hand containing transmembrane protein1 (LETM1) and the canonical transient receptor 

potential channel 3 (TRPC3)65. 

 

Mitochondrial RyR1 forms a ryanodine receptor in the IMM that participates in mitochondrial 

Ca2+ uptake in cardiomyocytes and neurons. It is present not only in native cardiomyocytes but 

also in cultured cardiac myoblasts. mRyR1 is inhibited by high concentrations of ryanodine and 

ruthenium red. Exhibiting a high Ca2+ sensitive current of about 500-800pS in planar lipid bilayer 

experiments, mRyR1 represents a putative mitochondrial Ca2+ intake route66.  

 

UCP are transporters located on the IMM responsible for proton leaks, thus uncoupling the 

OXPHOS from ATP synthesis. Trenker et al. reported the importance of the presence of UCP for 

Ca2+ uptake by the MCU67. However, it is not clearly known if UCP actually transports Ca2+ into 

the mitochondria. The function of LETM1, a highly conserved eukaryotic IMM protein, is 

controversial with studies identifying it as a K+/H+ exchanger and also as Ca2+/H+ exchanger, 

inhibited by ruthenium red. Later studies, however showed that LETM1 is Ca2+/H+ antiporter 

insensitive to ruthenium red68. 

 

Because of the large internally negative membrane potential across the IMM, Ca2+ efflux is 

electrically uphill. The two modes of Ca2+ efflux that are non-depolarizing are the Na+ dependent 

and the Na+ independent mechanisms (non-depolarizing means that the mitochondrial membrane 

potential is not lost). They exhibit very distinct kinetics and differential sensitivities to inhibitors. 

The Na+ dependent Ca2+ efflux mechanism in heart is known to exchange Ca2+ for Sr2+ or Na+. 

Baysal et al. found that Na+ dependent Ca2+ efflux could pump Ca2+ out of the mitochondria against 

a Ca2+ gradient whose energy is at least twice that of the Na+ gradient, mediated by the exchange 

of two Na+ for one Ca2+ (non-electrogenic) or three Na+ for one Ca2+ (electrogenic)69. 

 

The Na+ independent Ca2+ efflux mechanism also transports Ca2+, Sr2+ or Mn2+ from the matrix to 

the intermembrane space70. This transport is electroneutral71. However no specific cations are 

known to be exchanged for Ca2+ leading to the presumption that it was essentially a Ca2+/H+ 
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exchanger. However, other studies72 showing a decrease in this efflux with increasing matrix 

alkalinity suggest that this mechanism is not a passive exchange of Ca2+ for H+. This mechanism 

is sensitive to CN- (73), low levels of uncoupler CCCP74 and high concentrations (2 µM) of 

ruthenium red75.  

 

Another Ca2+ efflux pathway, albeit a depolarizing mechanism is the opening of the mitochondrial 

permeability transition pore. As the name suggests, it is essentially a pore in the IMM linked to 

necrotic and apoptotic cell death. As stated earlier, the exact composition of the MPTP is not yet 

known. Many chemicals and free radicals promote MPTP opening. Most of these agents modulate 

opening by decreasing the Ca2+ threshold needed for MPTP opening. However an overload of Ca2+ 

in the mitochondrial matrix is, by itself, sufficient to trigger MPTP opening. In cardiac IR, for 

example, the Ca2+ dysregulation in the cytoplasm leads to Ca2+ dysregulation in the mitochondria, 

leading to mitochondrial Ca2+ overload and promotes MPTP opening. This is often preceded by 

excess mitochondrial ROS formation. 

 

In conclusion, a clear balanced Ca2+ homeostasis, both in the cytoplasm as well as in the 

mitochondria is essential for normal cellular functioning and any dysregulation can be fatal to the 

cell and ultimately the organ affected.  
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1.3 Connexin 43 

 

Connexins are a family of proteins (named according to their molecular weight) whose well 

documented role is to form cell communication channels called gap junctions in which two 

hexameric structures of connexins (called connexons) from apposing cells fuse together to form 

the gap junction channel. In addition to gap junction channels, which are found at cell-cell contacts 

and are often organized as arrays of gap junction channels called gap junction plaques, these 

hexameric structures can also remain as hemichannels (HCs) when unapposed. These channels 

allow free passage of ions and metabolites less than 1.5 kDa in weight between the cells in case of 

gap junctions and the cytosol and the extracellular milieu in case of HCs.  

 

 
Figure 3: Connexin 43 topology and assemblies. NT: N-terminus; EL-1: extracellular loop 1; CL: cytoplasmic loop; 

EL2: extracellular loop 2; CT: C-terminus 

 

Connexin distribution is cell and tissue dependent and the most ubiquitous of all connexins is 

connexin 43 (Cx43)76,77. In spite of the ubiquitous distribution of connexins, their half-life is 

remarkably short. For example the half-life of Cx43 in the heart has been shown to be 1-2 hrs78,79. 

It is possible that connexins have such a short life time in order for the cell to rapidly respond to 

physiological requirements of either increased or decreased coupling. Just as with other classical 

integral membrane proteins, connexins are thought to thread into the ER via the translocon and 

encoded start and stop transfer sequences. Connexin oligomerization occurs in the ER80, except 

for Cx43, which was shown to be present in monomeric form in the Golgi apparatus and to 

oligomerize in the trans-Golgi network81. Even though connexins are not glycosylated, it has been 
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shown that cysteine residues form disulfide bonds between extracellular loops (ELs)82. Further 

evidence suggests that Cx43 is transiently phosphorylated early in the secretory pathway83,84 and 

the majority of Cx43 phosphorylation occurs when it reaches the plasma membrane85. 

 

Upon exiting the trans-Golgi network, connexins enter a variety of intermediate structures of 

different sizes and shapes including connexons86–88, and their transport is mediated in part by 

microtubules87,89. Upon insertion into the plasma membrane, connexons (with each connexin 

monomer being composed of the N-terminus (NT), four trans-membrane domains, two 

extracellular loops (EL-1, EL-2), cytoplasmic loop (CL) and C-terminus (CT)) freely diffuse 

within the lipid bilayer88 and guided by N-and E-cadherin based adhesion events, dock with 

connexons from adjacent cells to form gap junction channels90,91. The connexons may also remain 

as unapposed HCs.  

 

Connexin channel regulation 

 

Connexin channels (both gap junctions and HCs) are regulated by voltage, intra- and extra-cellular 

Ca2+, intra- and extra-cellular pH as well as phosphorylation status of the protein itself. The activity 

of gap junctions and HCs are voltage dependent with gap junctions being regulated to a large extent 

by trans-junctional voltage (voltage across the cells sharing the gap junction) and HCs by the 

membrane potential. Under physiological conditions, since the membrane potential of adjacent 

cells is equal, the trans-junctional voltage is zero leading to open gap junctions consequently 

establishing a pathway for movement of ions, metabolites and signaling molecules along the 

concentration gradient between cells. However, when adjacent cells develop different membrane 

potentials, due to a deviation of junctional voltage, gap junctional communication decreases and 

can eventually cease, as seen in cardiac arrhythmias. HCs in contrast are typically closed under 

physiological conditions to prevent loss of metabolites and ions. However, HCs can open when 

there is membrane depolarization. Upon depolarization of the membrane to positive voltages, HCs 

open by a slow gating mechanism resembling transitions associated with extracellular loop domain 

docking92–94. Fast gating is also observed in HCs and can be activated via both positive and 

negative potential transitions. As such, voltage behavior of connexin HCs can be either uni- or 

bipolar. For bipolar HCs, currents increase with depolarization but decrease to fast states when 
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inside potentials approach positivity95,96. 

 

Lowering of intracellular pH inhibits gap junctional communication in a dose dependent manner. 

Severe acidification, as seen in ischemia, can lead to an intracellular pH approaching 6, and it has 

been demonstrated that gap junctions are blocked around the same pH-6(97). Connexin HCs are 

also sensitive to extracellular pH98, in addition to extracellular pH. However, it is possible that H+ 

entry through open channels can close HCs just as gap junctions are closed by cytoplasmic H+. 

Indeed, direct protonation of Cx43 has been described99. 

 

Lowenstein and Rose first demonstrated that Ca2+ was a cytoplasmic factor regulating gap junction 

communication100, where they demonstrated that microinjection of 50 µM Ca2+ uncoupled gap 

junctions within the vicinity of injection, whereas channels farther away were unaffected. In 

neonatal rat cardiomyocytes Ca2+ induced uncoupling was observed at a [Ca2+] of 400 µM101. 

Whereas gap junctions are only sensitive to intracellular [Ca2+], HC activity is modulated by both 

intra- and extra-cellular [Ca2+]. Lowering of extracellular [Ca2+] has been shown to trigger HC 

opening102–104. Modulation of HC activity by intracellular [Ca2+] was first shown by Cotrina et al. 

who showed Cx43 HC mediated ATP release triggered by activation of IP3-linked 

purinoreceptors105. A role for intracellular [Ca2+] was later confirmed by studies showing Cx32 

and Cx43 mediated ATP release via photoliberation of caged-IP3 and caged Ca2+ or Ca2+ 

ionophores106–108. The range of [Ca2+] for HC activation was shown as between 200-1000 nM, with 

a maximal activity at 500 nM108,109. Absence of Cx43 HC activation at high [Ca2+] was confirmed 

in cardiomyocytes where intracellular [Ca2+] above 500 nM closed HCs110. Wang et al. also 

showed that a mild elevation of [Ca2+] from 200-500 nM shifted membrane potential dependence 

of Cx43 HC and that HCs were activated at lower positive potentials and also that elevation of 

intracellular [Ca2+] to micromolar concentrations111. 

   

Phosphorylation of proteins is a widespread mechanism of functional modulation and its effects 

on channel function can include stabilization of open or closed states and alteration of kinetic 

transitions between states112. Most connexins contain phosphorylation sites in the CT domain and 

all connexins have been demonstrated to be phosphoproteins either in vivo or in vitro113. Cx43 has 

been shown to be phosphorylated at multiple sites by multiple kinases and contains three 



25 
 

PKA/PKC binding motifs in the CT domain. It has been demonstrated that injection of PKA can 

rapidly increase Cx43 mediated junctional communication114. Serine phosphorylation of human or 

rat Cx43 by PKC, but not PKA has been shown to decrease LY permeability as well as decreased 

channel conductivity115. Studies have also shown that alkaline phosphatase treatment of Cx43, 

increases Cx43 permeability and channel activity in Cx43 incorporated into lipid bilayer vesicles 

indicating the importance of phosphorylation status on Cx43 activity. 

 

Connexin mimetic peptides as tools for Cx43 channel modulation 

 

Pharmacological agents such as halothane, octane and the glycyrrhizic derivatives such as 

carbenoxolone are general connexin channel inhibitors that suffer from poor selectivity in that they 

affect all connexin types, all connexin channel types (gap junctions, HCs), and have major off-

target effects. Obviously, cardioprotection may necessitate more specific targeting. For example, 

in most cases, gap junctional coupling needs to be preserved in order to avoid conduction problems 

and consequent arrhythmia. By contrast, sarcolemmal HCs may benefit from being inhibited to 

counteract their deleterious effects as demonstrated by Wang et al116. During the 1980’s 

experiments performed in the Warner group indicated that connexin mimetic peptides could be 

used as inhibitors of gap junctions117. These peptides mimic selected amino-acid sequences of the 

well conserved extracellular loops of Cxs (for example, 43Gap26 and 43Gap27 for Cx43 and 
32Gap27 for Cx32) or the highly variable intracellular loop (for example, Gap24 for Cx32, and L2 

and Gap19 for Cx43). Various studies106,108,111,118,119 have shown that short exposure of cells to 

Gap26 or Gap27 first inhibits HCs (within minutes) whereas longer exposures (several hours) are 

needed to also inhibit gap junctions.  Wang et al showed that Gap26 and Gap27 also counteract 

the lowering of the activation voltage for HC opening exerted by a slight increase of cytoplasmic 

Ca2+ (111). It needs to be added that despite the fact that Gap26/Gap27 peptides have been used 

since the 80’s to block gap junctions, the actual interaction site with the connexin protein is still 

unknown. The only evidence available up to date is that these peptides interact with the 

extracellular loops of the protein, based on atomic force microscopy120. Despite a significant 

shortage of mechanistic insights, Gap26/Gap27 peptides have been extensively applied to probe 

their cell protective potential, with beneficial effects of Gap26 and on cardiac IR injury121, 

Peptide5, derived from EL2 of Cx43, was shown to reduce damage following ex-vivo as well as 
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in-vivo spinal cord injury model122 . 

 
Figure 4: Connexin 43 topology showing the peptidomimetics derived from protein sequence. (Left panel). 
Differential regulation of hemichannels and gao junctions based on CT-CL interactions (Right panel) 
 
In contrast to extracellular loop mimetic peptides (Gap26/Gap27), intracellular loop mimetics like 

L2 and Gap19 peptides identical to Cx43 amino acid sequences, act as specific HC blockers while 

at the same time they prevent the closure of gap junctions123,124. Wang et al. used Gap19 to protect 

against cardiac IR based on the hypothesis that opening of hemichannels, triggered by various 

signaling events during ischemia and reperfusion, may trigger the loss of essential metabolites and 

induce ion shifts that lead to cell swelling and cell death123.  

 

In order to understand how L2 and Gap19 peptides inhibit HCs, one needs to consider the effect 

of loop-tail interactions of the Cx43 protein. Ponsaerts et al. 124 and Wang et al.123 found that 

interaction of the Cx43 CT with the cytoplasmic loop (CL) is necessary to bring HCs in a state that 

is available for opening in response to triggers like voltage steps to positive membrane potentials 

or increases in cytoplasmic Ca2+ concentration111. L2 and Gap19 bind to the CT and therefore 

hinder CT-CL loop-tail interaction124,125. In the absence of loop-tail interaction, HCs remain in a 

closed state that is refractive to voltage or Ca2+ stimulation.  

 

Most remarkably, Cx43 loop-tail interactions have opposite effects on gap junctions: CT-CL 

interaction indeed closes gap junctions according to a ball-and-chain paradigm126,127. The exact 

reason why loop-tail interaction have distinct effects on gap junctions and HCs is currently not 

known. However, it is plausible that the conformational change that occurs when two HCs dock 

to form a gap junction, bring the channel in a distinct conformational state such that loop-tail 
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interaction has a different outcome. In line with this distinct conformational state, one should also 

consider the fact that in the resting state, gap junctions are open while HCs are closed. 
 
It is thought that gap junction closure associated with acidosis and IR is mediated by loop-tail 

interaction128,129. Based on the observation that CT-CL interaction closes gap junctions, Verma et 

al. developed a series of peptides called RXP, which can bind to Cx43 CT domain and therefore 

prevent acidosis induced or chemically triggered cardiac gap junction closure130. The common 

feature among the series of peptides is that they share the consensus sequence of RXP (Arginine 

(R)- Proline (P) and any amino acid(X)). Of the series, a 34 amino acid sequence called RXP-E 

was found to preserve intercellular communication and action potential propagation between 

cardiac cells. These studies were later followed up to determine the core active sequence, which 

eventually led to the development of linear octapeptide RRNYRRNY131. The common idea behind 

developing RRNYRRNY and related peptides131 was that these could be used as drugs to prevent 

gap junction closure and arrhythmia, in particular ventricular fibrillation, following IR injury. 
 
Cx43 in cell death 
 
The role and functions of gap junctions and HCs has been well documented not only in cell-cell 

communication but also in cell growth132, cell differentiation and cell death133,134, bystander cell 

death119, cell adhesion135 and cell migration136,137.  

 

Cx based communication has been shown to be altered during cell death. In the early phases of 

apoptosis, gap junctional communication is necessary138–140. Conversely, use of gap junction 

inhibitors such as carbenoxolone (Cbx) and 18β-glycerrhetinic acid (18β-GA) has been shown to 

prevent apoptosis140–142. On the other hand, tumor promoters and phenobarbital which are known 

to counteract apoptosis have been shown to inhibit gap junctional communication143,144. GJs have 

also been implicated in the spread of cell death signals in a phenomenon called bystander 

death119,145,146, in which cell death signaling molecules spread from dying cells to neighboring 

healthy cells. Connexins, not just in the form of GJs but also HCs are implicated in cell death. 

Many signals that trigger HC opening are also involved in signaling cascades leading to cell 

death147 including intracellular Ca2+ changes, protein oxidation and nitrosylation reactions. HCs, 

being essentially pores, can set off cell death by depolarizing the membrane, collapse of ion 

homeostasis, loss of metabolites and elevation of cytoplasmic Ca2+ (148,149).  
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The involvement of HCs in cell death, especially ischemic cell death has been demonstrated in 

many studies. Astrocytes and neonatal rat cardiomyocytes, when exposed to ischemia like 

conditions showed increased Cx43 HC opening and consequent increase in cell death150–153. The 

molecular mechanisms of HC activation by ischemia is not well known. However, studies have 

indicated that dephosphorylation (and consequent increased activation of HCs) and/or oxidation 

of protein may be responsible150,154. Retamal et al. have also shown that s-nitrosylation of 

intracellular Cx43 cysteine residues by NO leads to HC opening154. Activation of HCs can lead to 

uptake of toxic cell death signaling molecules or loss of crucial metabolites needed for cell 

survival104,134,155–157.  

 

Cx43 in the heart 

 

In the normal heart, sarcolemmal connexins are located almost exclusively at the intercalated discs 

of the myocardium, where they are present as gap junction plaques surrounded by HCs158,159. Cx40 

is present in the conduction system and atrium, and Cx45 plays a role during development and is 

also found in adult hearts in the conduction system and at the border between myocytes and 

fibroblasts160. Cx32, present at the atrioventricular nodal region can form functional HCs161. 

Furthermore, Cx43, Cx40 and Cx37 are also present in endothelial cells162. The primary role of 

cardiac connexins under physiological conditions is to form gap junctions which act as conduits 

for the conduction of electrical impulses from one cell to the other in a coordinated fashion. Of all 

the connexins present in the heart Cx40 and Cx43 are the major proteins involved in conduction 

system with Cx40 and 43 mediating the spread of excitation in the atria whereas Cx43 gap 

junctions are responsible for the electrical propagation in the ventricular myocytes125,163. The 

degree of electrical connectivity between the cells is in large part regulated by the open probability 

of gap junctions with any decrease in gap junction opening leading to shunting of the electrical 

pathway, which ultimately leads to arrhythmias due to lack of electrical coordination.  

 

The phenomenon of closure of gap junctions during ischemia was first proposed by McCallister et 

al.164, supported by later observations that during ischemia there are drastic changes in electrical 

coupling165,166 and cytosolic dearrangements of gap junctions during ischemia167. These 

dearrangements were later shown as lateralization of Cx43 from the intercalated disc to the lateral 
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margins of cardiomyocytes following ischemia168. This lateralization is thought to be one of the 

causes of arrhythmias in ischemic heart disease in addition to changes in Cx expression and 

alterations in phosphorylation states of Cx leading to dysregulation of channel opening. During 

ischemia, there is a progressive increase in [Ca2+]i, decrease in intracellular pH, increase in protein 

phosphatase 1 activity, and reduced protein kinase activity- all phenomena that increase HC 

activity as previously described.  

 

Lampe et al. showed that lateralized Cx43 was more dephosphorylated than Cx43 at intercalated 

discs169, and this can be attributed to conduction velocity slowing and enhanced susceptibility to 

ventricular tachycardia in canine ventricles170. A mouse model of pressure overload induced 

hypertrophy also demonstrated heterogeneous distribution of ventricular Cx43(171) and also in 

patients with non-ischemic cardiomyopathy172,173. Increased localization of Cx43 HCs at the lateral 

membranes combined with increased opening can lead to disruption of membrane potential and 

unabated leakage of metabolites including ATP, leading to increased cell stress and cell death.  

 

Recently, there have been a number of reports showing an important role for Cx43 in mitochondria 

and how its role is implicated in ischemia-reperfusion injury in particular. The importance of 

mitochondria in maintenance of cellular ion homeostasis and the newly emerging role for Cx43 

which has been shown to affect ion homeostasis, at a cellular level make it all the more important 

to develop an overview of how Cx43 can alter this cellular homeostasis ultimately affecting cell 

survival and death.  

 

Mitochondrial connexin 43: the location 

 

Interest in cardiac mitochondrial Cx43 (mitoCx43) has only recently started given the observations 

made with regard to the role of mitochondria in ion homeostasis and cell death. MitoCx43 was 

first documented in  endothelial cells, in a study that correlated the function of Cx43 with 

hyperhomocystinemia in which homocysteine exposed HUVECs showed an increased expression 

of Cx43(174). Cx43 was first shown to be present in the mitochondria of cardiac ventricular 

myocytes175 with the help of immunological colocalization of mitochondria and connexin 43. The  

specificity of the antibody used was demonstrated using a inducible knockout model for Cx43- 
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Cx43Cre-ER(T)/fl (175,176), in which Cx43 ablation is obtained by insertion of 4-hydroxytamoxufen 

inducible Cre recombinase into the endogenous Cx43 locus177. Further fractionation of the sub-

populations of mitochondria from cardiomyocytes showed that Cx43 is present mostly in the 

subsarcolemmal mitochondria and in very limited amounts in the interfibrillar population178.  
 
Given the lack of a mitochondrial targeting sequence on Cx43, it is perplexing as to how Cx43 is 

targeted to the mitochondria. Previous studies have shown that Tom20, a member of the TOM 

family of proteins and heat shock protein 90 are involved in the transport and incorporation of 

Cx43 in the mitochondria179. Rodriguez-Sinovas et al.179 and Srisakuldee et al.30 have shown 

electron immunomicrographs locating Cx43 in the inner mitochondrial membrane. The Tom20 

pathway transports Cx43 to the OMM, and in line with this Cx43 has been described to be also 

present in the OMM176. It is currently not known how Cx43 is transported from the OMM to IMM.  

 

Mitochondrial Cx43 in physiological conditions 
 
Mitochondrial Cx43 has been implicated in K+ uptake, by the formation of a putative HC in the 

IMM33. Open HCs indeed allow the passage of common ions like Na+, K+, Ca2+ and Mg2+ (153). The 

conclusive evidence for mitochondrial Cx43 HCs was based on the use of Cx43Cre-ER(T)/fl and the 

use of interfibrillar mitochondria, which have been shown to contain significantly less Cx43 than 

subsarcolemmal mitochondria178. The specificity of mitoCx43 playing a role in K+ uptake was also 

determined by the use of connexin mimetic peptide Gap19, which interacts with the C-terminal 

tail (CT) of Cx43 and  inhibits Cx43 HCs, while slightly promoting gap junction intercellular 

communication123. Recently, Srisakuldee et al. have shown that subsarcolemmal mitochondria 

(containing Cx43), isolated from hearts that were treated with FGF-2 to simulate the effect of pre-

conditioning, have a higher Ca2+ retention capacity compared to vehicle treated hearts, implicating 

a role for mitoCx43 in mitochondrial Ca2+ homeostasis30. Interestingly, increased mitochondrial 

Ca2+ retention capacity was associated with a concomitant increase in mitoCx43 phosphorylation, 

indicating a complex interplay between cytosolic factors and mitoCx43. Several lines of evidence 

point to mitoCx43 as a player in Ca2+ and K+ homeostasis in mitochondria, which may contribute 

and influence the cellular ion homeostasis. However, studies demonstrating the presence of Cx43 

as a HC or HC like structure in mitochondria facilitating small ion fluxes are currently lacking and 

are warranted.  
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The other important role ascribed to mitoCx43 relates to the fact that its modulation alters 

respiratory complex I activity180. This is an important observation given the fact that mitochondrial 

respiratory complex I is one of the major sources of ROS during ischemia-reperfusion and 

modulation of the function of complex I has been demonstrated to act in a cardioprotective 

manner56,181. Some studies indicate that mitoCx43 may be implicated in the generation of ROS in 

the context of IPC, which will be discussed in detail in the next section. The same study shows 

that mitochondrial complex II activity was not affected180. This is also significant given the fact 

that complex II is a matrix protein whereas complex I is a membrane associated structure. If Cx43 

is indeed associated with complex I in the IMM, Cx43 might be able to influence complex I 

activity, ATP production and oxygen consumption as shown by Boengler et al.180  

 

Mitochondrial Cx43 – a target in pathophysiological conditions 

 

Most studies showing that mitoCx43 is involved in affording the beneficial effects of IPC have 

focused on the association of Cx43 with PKC30,182, Tom2030,179 and HSP90179,183.  

 

In studies where animals were treated with IPC inducing protocols, an increased expression of 

mitoCx43 was observed within 20 min175. The authors suggest that this might be due to a change 

in the trafficking of Cx43 rather than a de novo Cx43 expression and incorporation into 

mitochondria, a process that is as yet still poorly understood as already mentioned. Diazoxide and 

menadione are known to afford cardioprotection by inducing a low level of ROS generation31, 

which triggers downstream cardioprotective pathways. The sites of action of diazoxide- and 

menadione-stimulated ROS generation are apparently distinct, with menadione having for a larger 

spectrum of putative ROS generation sites than diazoxide. Heinzel et al. used heterozygous Cx43+/- 

animals to differentiate between the protective effect attributed to diazoxide vs. menadione and 

the implications of Cx43 in the same. Their study showed a loss of diazoxide induced 

cardioprotection in Cx43 deficient animals, but not in menadione treated animals, implicating a 

role of Cx43 in ROS induced cardioprotection, especially in IPC184. In a similar study, using POC, 

no difference between Cx43 deficient and wild-type controls was seen in infarct sizes185 suggesting 

that the presence of Cx43 is required for IPC but not for POC.  
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In studies simulating IPC by the use of IGF-1, there was an increase in mitoCx43 along with 

increased cytoprotection186. In a recent study30  simulating IPC by the use of FGF-2 in mice, it was 

observed that there was a significant increase in Ca2+ retention capacity of the mitoCx43 containing 

subsarcolemmal mitochondria and also a significant increase in mitochondrial PKC, compared to 

interfibrillar mitochondria, which are devoid of Cx43, providing another layer of evidence for the 

protective role of mitoCx43 in IPC.  These observations were also supported by the use of the 

connexin channel inhibitor peptide Gap27, which affects gap junctions as well as hemichannels 

composed of Cx43 and Cx37111,118,187,188. A further direct evidence of the protective role of 

mitoCx43 was provided by Lu et al.189 where mitochondria specific over-expression of Cx43, 

obtained by the use of Cx43 containing shuttle vector, simulates pre-conditioning like 

cytoprotection in stem cells, and they show that this cardioprotective effect is afforded by a shift 

in Bcl-Xl/Bak balance190.  

 

Further studies to explain the role of mitoCx43 in cardioprotection have shown that mitoCx43 

plays a role in preventing cell death by apoptosis. Application of the non-specific connexin channel 

blocking agents heptanol and β-glycyrrhetinic acid (BGA), promoted Ca2+ release through MPTP 

and the subsequent release of cytochrome c from cardiomyocyte mitochondria176. Along the same 

line, Trudeau et al. demonstrated that down-regulation of mitoCx43 by high glucose triggers a 

change in mitochondrial morphology and the release of cytochrome c, leading to increased 

apoptosis in retinal cells191. While these studies support the concept that mitoCx43 acts in a 

protective manner, one should be cautious in interpreting the reported data. First, work with non-

specific connexin channel inhibitors is intrinsically prone to interpretation errors as the reported 

effects may well relate to off-target drug effects. Second, none of the drugs or experimental 

manipulations, have specific effects on mitoCx43 only. One should always consider at least three 

different levels of connexins that can be affected: those incorporated in gap junctions in the plasma 

membrane, those in plasma membrane HCs and those in the mitochondria. Additionally, it should 

be added that gap junctions may act as a Janus face with two different sides: a side that can rescue 

cells under stress by providing crucial and essential metabolic molecules, and another side that 

promotes cell death by passing cell death messengers119,192–194. 
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1.4 Mitochondrial Complex I 

 

Mitochondrial ATP is produced by the oxidative phosphorylation machinery. OXPHOS couples 

the phosphorylation of ADP and electron transfer through a chain of oxidoreductase reactions. 

These oxidoreductase reactions are carried out by five enzymes/enzyme complexes in the IMM: 

NADH:Ubiquinone oxidoreductase (Complex I, CI), Succinate:Ubiquinone oxidoreductase 

(Complex II, CII), Ubiquinol:Cytochrome c oxidoreductase (Complex III, CIII), Cytochrome C 

oxidase (Complex IV, CIV) and the ATP synthase (Complex V, CV). Complex I is the biggest of 

five respiratory complexes and CII is the smallest. Each of these five complexes is essential and 

four of the five complexes CI thru CIV pump a total of 5 protons from the matrix to the 

intermembrane space per pump cycle, which is essential for the maintenance of the mitochondrial 

membrane potential. The protons flow back via CV, which acts in a reverse mode producing ATP 

as opposed to the normal mode where ATP hydrolysis feeds transport. In addition to their role in 

OXPHOS, the complexes also play important roles in generation of ROS which can either be 

deleterious or beneficial, based on the context and extent of their generation.  

 

Eukaryotic CI is located in the IMM protruding into the matrix to form an “L” shaped structure. 

Forty five subunits are identified as comprising the bovine CI, which is closely related to human 

CI195. The subunits are named according to their apparent molecular weights (75, 51, 49, 30 and 

24 kDa subunits), or for the first four amino acids of the mature protein sequences (PSST and 

TYKY) or for the NADH dehydrogenase products of the mitochondrial DNA (ND1 to ND6 and 

ND4L) 14 of these subunits are conserved and are sufficient for energy transduction195. The other 

subunits differ from species to species. The core conserved subunits form two domains supported 

by the supernumerary subunits. Seven of the 14 subunits are hydrophilic and constitute the redox 

domain and are present in the matrix and the 7 hydrophobic units are present in the IMM196,197. In 

eukaryotes, the hydrophobic subunits are mitochondrial encoded whereas the supernumerary units 

are nuclear encoded198,199. The seven hydrophilic subunits form a Y shaped domain encasing the 

cofactor cohort of complex I: a flavin nucleotide for NADH oxidation and a chain of 7 Fe-S 

clusters (one [2Fe-2S] and 6 [4Fe-4S] - labeled N1 thru N7, though not necessarily present in that 

order)196. The 7 clusters are split on either side of the flavin moiety with the 2Fe-2S cluster lying 

on one side of the flavin and the other 6 on the other side. The last cluster in the chain donates 
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electrons to the quinone200. Subunits ND2, ND4 and ND5 are structurally similar and are related 

to the subunits of Mrp family of Na+/H+ antiporters indicating that they are likely sites of proton 

transfer across the membrane. These subunits are at a significant distance away from the FeS 

cluster chain and the quinine binding site. Hence coupling of the redox and transport processes 

require long range energy transfer through the protein201. This long range energy transfer forms a 

key factor in the generation of ROS especially in IR given a lack of receptor oxygen and 

availability of free electrons, which in turn react with any available oxygen forming ROS and 

nitrogen moieties forming reactive nitrogen species (RNS). Excess ROS and RNS generation is a 

key deleterious event in IR injury. 

 

Complex I in ischemia-reperfusion 

 

Acidification of cytosol following ischemia has been shown to be the key factor behind the 

blockage of complex I202. This blockage of complex I is a precursor of mitochondrial dysfunction 

following IR. The consequence of blockade of complex I, during reperfusion is an increase in the 

production of ROS, which ultimately leads to the opening of MPTP, following various pathways 

such as post-translational modifications induced by ROS and ROS induced dysfunction of ion 

channels leading to Ca2+ overload, and the induction of cell death. Superoxide anion production 

by antimycin inhibited bovine heart mitochondrial particles with NADH was first reported by 

Turrens et al35. The site of this production was deduced as the respiratory complex I based on the 

observation that superoxide generation was reduced in the presence of rotenone- a complex I 

blocker. Takeshige et al. showed for the first time that complex I was indeed the site of formation 

of NADH and NADPH-dependent superoxide formation203. Kang et al. showed differential 

kinetics of superoxide formation by complex I with NADH dependent reactions being much faster 

than those induced by NADPH204. Hence numerous studies have focused on the beneficial effect 

of partial or complete blockage of complex I for decrease in ROS during the critical initial phase 

of reperfusion where there is an increase in oxygen availability. 

 

Although complex I itself is a major source of ROS, complex III is the principal site of superoxide 

generation during oxidation of complex I substrates and hence the hypothesis that blockage of 

complex I essentially depletes complex III of the electrons needed for the generation of superoxide, 
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protecting the mitochondria and consequently the heart. This blockage can be achieved during 

ischemia or reperfusion. Blockade of electron transport at complex I by rotenone immediately 

before ischemia preserves respiration through cytochrome oxidase in the distal electron transport 

chain and significantly reduces cytochrome c loss from the mitochondria during ischemia205.  

 

As previously stated, blockage of complex I using rotenone can be a protective strategy in IR. 

However, since rotenone is a non-reversible blocker of complex I, this is not a permissible strategy 

as it would compromise resumption of normal OXPHOS needed for the recovery of cellular 

function. Hence Chen et al. used amobarbital, a reversible complex I blocker to block complex I 

activity immediately before IR and observed a significant reduction in infarct size, and decreased 

H2O2 and cytochrome c release206. In further studies, Aldakkak et al. found that even though 

administration of amobarbital at ischemia increased superoxide and NADH levels and decreased 

mitochondrial Ca2+, during ischemia, superoxide levels and mitochondrial Ca2+ were lower and 

ultimately a decrease in infarct size- consistent with a decrease in complex I activity and 

consequent better preservation of cardiac tissue207. Xu et al. also showed that a transient blockage 

of complex I activity achieved by extracellular acidification at the onset of reperfusion also led to 

a better preservation of tissue following ischemic injury202. The protective effect of the blockage 

of complex I is also observed in aging induced myocardial injury and mitochondrial 

dysfunction208. 
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1.5 Potassium channels of the IMM 

 

As stated previously, mitochondria play an important role in energy homeostasis of the cell. Apart 

from this function, they are also involved in cell death and survival. The key player in this 

phenomenon is the integrity of the mitochondrial membranes. The strict control of IMM 

permeability and mitochondrial membrane potential is vital for efficient ATP synthesis, whereas 

a loss of this strict control is an indicator of cell death. As such, K+ entry into the mitochondria is 

an important mechanism for control of IMM integrity. 

 

Transportation of K+ into the mitochondria occurs via ion channels, similar to cellular K+ entry via 

plasma membrane channels. K+ channels in the IMM include the mitoKATP, the voltage dependent 

K+ channels (mitoKv1.3), the TWIK-related Acid Sensitive K+ channel-3 (TASK-3) channels and 

the BKCa with mitochondrial connexin-43 being shown to be a player as well.  

 

Electrophysiological evidence for the presence of mitoKATP channels was first shown by Inoue et 

al. on patch clamped mitoplasts (obtained by incubating mitochondria in a hypotonic solution 

leading to mitochondrial swelling and ultimately rupture of the OMM) where K+ influx into the 

mitoplasts was blocked by matrix ATP (ATP added via the patch pipette)209. The channel 

properties were similar to those of the plasma membrane KATP channels although of much lower 

unitary conductance. Although no other studies have been able to demonstrate the same channel 

activity in mitoplasts, Paucek et al. purified and incorporated a 54kDa channel in planar lipid 

bilayers that was sensitive to ATP210. An interesting finding in these studies was that the channel 

exhibited polarity: ATP added to the trans but not the cis chamber inhibited the channel. These 

studies were later replicated by Zhang et al. who furthermore showed that MgATP inhibited the 

channel in a dose dependent manner and that they were activated by GTP, but only when added to 

the trans side of the bilayer211.  

 

Mitochondrial voltage gated channels of the Kv1.3 type were reported for the first time by Szabo 

et al. in mitoplasts as channels with a unitary conductance of ~17pS and inhibited by margatoxin- 

a Kv1.3 selective toxin212. The channel exhibited properties similar to the Kv1.3 channel of the 

plasma membrane. 
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TASK- is a two pore K+ channel, identified in the mitochondria of melanoma and keratinocyte 

cells by immunochemical and molecular biology methods213. Mitochondrial localization of 

functional TASK-3 was shown by Toczilowska-Maminska using mitoplasts from HaCaT 

keratinoycte cell lines with a single channel conductance of 83pS at positive voltages and 12pS at 

negative voltages in symmetric 150mM KCl. Lidocaine and acidic pH, known to inhibit plasma-

membrane TASK-3 completely blocked channel activity214. 

 

The role of Cx43 in mitochondrial K+ uptake was first demonstrated in permeabilized 

cardiomyocytes by Miro-Casas et al.215 They showed that in isolated and permeabilized 

cardiomyocytes K+ uptake could be inhibited by 18α-glycerrhetinic acid a non-specific connexin 

channel blocker. This was taken to a further level by Boengler et al. who determined  K+ uptake 

in cardiac mitochondria and found reduced uptake in the presence of the specific Cx43 HC 

blocking peptide Gap19 and in mitochondria isolated from induced Cx43 knock down animals 

(Cx43ER(T)/fl mice)33.  

 

Ca2+ sensitive K+ channels were first discovered in red blood cells where their activation results in 

hyperpolarization and cell shrinkage216. KCa currents were first described in the nervous system in 

mollusc neurons217 and cat spinal motor neurons218. It was shown in non-innervated skeletal 

muscle that afterhyperpolarization following action potential burst was mediated by KCa channels 

of small conductance. One of the differentiating factors between KCa channels is their antagonists, 

for example, BKCa channels are blocked by iberiotoxin219 and SKCa are blocked by apamin220, with 

their sensitivity to antagonists being highly selective. The other difference between the BKCa and 

SKCa channels is that BKCa is voltage and Ca2+ dependent whereas SKCa is voltage independent 

and is only regulated by Ca2+ (221).  

 

KCa channels were first detected in mitochondria from human glioma cells in 1999 by Siemen et 

al. using mitoplast patch clamp experiments222. The channels showed a conductance of 300 pS and 

were inhibited by the K+ channel blocker iberiotoxin and charybdotoxin resembling the properties 

BKCa channels of the plasma membrane. These channels were first described in cardiac 

mitochondria by Xu et al. where the KCa opener NS1619 accelerated K+ uptake into mitochondria 

and the toxins- iberiotoxin and charybdotoxin blunted this uptake223. They also showed that 
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antibodies against BK type KCa channel cross react with purified mitochondrial membrane. Other 

studies have also shown indirect evidence for the presence of these channels in the mitochondria 

by the use of channel openers and their effect on cardioprotection32,224.  

 

SKCa have been described to-date in neurons in the central nervous system, in skeletal muscle cells, 

glandular cells and T lymphocytes, and their distribution among various tissues is splice variant 

dependent225,226. Although voltage independent, the current voltage relationship of SKCa shows an 

inward rectification that is the consequence of voltage dependent block by intracellular divalent 

cations. At positive membrane potentials Ca2+ not only activates the channel but also blocks it in 

a concentration dependent manner. Low [Ca2+] (300-700nM) activates SKCa channels with Hill 

coefficients of 3-5, suggesting that the binding of more than one Ca2+ ion is necessary for channel 

activation227. Ca2+ binding to the SKCa also requires each α subunit to be linked to calmodulin 

(CaM), at a region called the CaM binding domain228. Ca2+ binding to CaM induces conformational 

changes in CaM, which in turn results in a conformational change of the α-subunit leading to 

opening of the channel.  

 

Mitochondrial potassium channels and IR injury 

 

Electrophoretic influx of K+ into the mitochondria causes membrane depolarization, matrix 

alkalinization and matrix swelling. Each of these effects, individually or synergistically are 

associated with an increase in production of ROS. ROS generation, as previously explained is a 

critical feature in induction of IPC. Mitochondrial K+ channels, especially mitoKATP and BKCa 

have been demonstrated to be linked to the induction of IPC. 

 

Garlid et al. first described that most of the KATP openers affected not only plasma membrane KATP 

channels but also those present in mitochondria (mitoKATP channels)31, suggesting that mitoKATP 

was a major player in IPC and cardioprotection25. KATP channel openers indeed mimic IPC while 

KATP channel blockers prevent IPC induced protection. Auchampach et al. showed that 

glibenclamide and 5-hydroxydecanoate (5-HD), two KATP channel blockers, abolished the 

protective effect of IPC229. Yao and Gross further showed that a combination of subthreshold IPC 

and subthreshold dose of bimakalim (another KATP opener) protected against ischemic injury230. 
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Various other studies confirmed the deleterious effect of KATP blockers on IPC protection in 

rabbits, rats, pigs and man230,231. The role of KATP channels in Ca2+ pre-conditioning (CPC) was 

shown by Kouchi et al.232. It needs to be added that most of these studies presumed that the 

protective effect afforded by KATP channel openers was due to their effect on the sarcolemmal 

KATP channels. Opening of sarcolemmal KATP shortens action potential duration (APD) and 

thereby reduces Ca2+ entry and the risk of cellular Ca2+ overload, thus acting in a cardioprotective 

manner. As already mentioned before, Garlid et al. showed that most of the KATP openers also 

opened mitoKATP channels31, putting mitoKATP forward as a player in IPC. They followed these 

observations by studies demonstrating that cardiac sarcolemmal KATP channels were insensitive to 

diazoxide and 5-HD whereas mitoKATP channels were sensitive to both drugs.  

 

A primary mechanism involved in IR injury is an increase in intracellular Ca2+ concentration, as 

has been previously mentioned. Yang et al. reported a decrease in endothelial SKCa currents 

following 60 min ischemia and 30 min reperfusion in porcine arteries233 suggesting the importance 

of SKCa channel activity in protection of the endothelium following IR. The protection of 

myocardium, by the protection of endothelium is linked primarily to the generation of NO by 

eNOS and the endothelial derived hyperpolarizing factor (EDHF), which maintains vascular tone 

preventing hypercontracture and maintaining oxygenation of the tissue. By maintenance of SKCa 

channel activity, EDHF mediated vasorelaxation can be preserved, which is critical in mitigating 

cardiac myocardial damage during IR. Endothelial membrane hyperpolarization as a result of SKCa 

opening is conducted along the endothelium via homocellular endothelial gap junctions and 

transmitted to smooth muscle cells through myoendothelial gap junctions to cause vasodilatation, 

thus affording the protection234. 

 

The protective effect of SKCa channel opening is not restricted to the cardiac tissue. In studies 

involving global cerebral ischemia in mice, Allen et al. showed that SK2 channel opening, 

achieved via the use of 1-EBIO, reduced CA-1 neuronal cell death and improved cognitive 

outcome235.  

 

Tanabe et al. showed apamin sensitive KCa current in CA3 pyramidal neurons and that its blockage 

was associated with a cellular Ca2+ overload inducing an ischemia like effect236. On the other hand 
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they also showed that opening of these apamin sensitive channels was cytoprotective. In contrast, 

Cipolla & Godfrey showed that the reduction in basal tone of cerebral parenchymal arterioles 

following IR injury was reversed by the use of SKCa blocker apamin237, indicating that SKCa 

channel is activated by IR. Yang et al. also showed that application of apamin on cerebral arterioles 

increased their basal tone238 indicating the important role of SKCa in regulation of muscle tone of 

the vasculature.  

 

The PPC like effect observed by the use of KCa channel openers has been known but the mechanism 

is not fully known. The findings by Siemen et al. and Xu et al. showing the protective effect of 

BKCa channel opener NS-1619 against IR injury led to the theory that the channel openers act upon 

the mitochondrial BKCa similar to the effect of diazoxide. Stowe et al. showed that cardiac 

mitochondrial pre-conditioning is afforded by the opening of the BKCa and also that it is dependent 

on the production of superoxide radicals produced during ischemic injury32. Heinen et al. showed 

that BKCa channel opening increases mitochondrial respiration and in turn enhances the production 

of ROS, while maintaining the mitochondrial membrane potential224- a critical feature of 

protection against IR injury. However, in a follow up study they showed that ROS production 

induced by reverse electron flow observed during ischemia is attenuated by the activation of 

mitoKCa channels239. They argue that ROS produced by complex I, a major source of ROS in 

contrast to complex III are effected by the opening of mitoKCa channels. The observation that NS-

1619, a BKCa opener has a biphasic effect on mitochondrial respiration, membrane potential and 

superoxide generation leads to the hypothesis that other mitoKCa channels can also play a role in 

PPC. 
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Chapter 2 
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The role of mitochondrial ion channels and respiratory complexes in the development of ischemia-

reperfusion induced damage on cardiac tissue is a wide field with novel players being discovered 

on a regular basis. In order to develop effective therapeutics and treatment modalities for ischemic 

injury, it is imperative to study and characterize these novel as well as established factors. Based 

on this premise, and the hypothesis that maintenance of mitochondrial ion and energy homeostasis 

of the cell is crucial for cell survival in cases of oxidative stress such as ischemia-reperfusion 

injury, the aims of the study were formulated. 

 

1. Mitochondrial Cx43 forms hemichannels that contribute to calcium entry and cell death 

Ashish K. Gadicherla, Nan Wang, Marco Bulic, Esperanza Agullo-Pascual, Alessio Lissoni, 

Maarten A. De Smet, Mario Delmar, Dmitri V. Krysko, Amadou Camara, Klaus-Dieter Schlüter, 

Rainer Schulz, Wai-Meng Kwok, Luc Leybaert. Manuscript in preparation. 

 

• Mitochondrial ion homeostasis is maintained by a myriad of factors including ion 

channels/transporters, mitochondrial inner membrane potential and mitochondrial matrix 

pH. Each of the transporters and ion channels are influenced by, and can influence, the 

membrane potential and consequently the matrix pH leading to a tightly regulated sequence 

to maintain ion homeostasis24,25. Of crucial importance in maintenance of cellular energy 

and ion homeostasis is the mitochondrial balance of calcium and potassium involving 

channels and/or transporters. Mitochondrial Cx43 has been shown to be involved in 

homeostasis of potassium and calcium33,215,240,241, albeit without a direct attribution of its 

mitochondrial presence as a channel. Mitochondrial Cx43 has also been shown to play a 

major indirect role in IPC184. In the present work, I started form the hypothesis that 

mitochondrial Cx43 may act as a Ca2+-permeable channel, facilitating mitochondrial Ca2+ 

entry and leading to increased mitochondrial Ca2+ and thus cell death. I investigated this 

hypothesis by various approaches, including uptake studies of hemichannel-permeable 

dyes, biophysical analysis of channels reconstituted from Cx43 protein isolated from 

cardiomyocytes, mitochondrial Ca2+ imaging studies, cell death studies, in vitro hypoxia-

reoxygenation studies and ex vivo ischemia-reperfusion studies. Central to my approach 

was the use of various inhibitors of connexin channels and/or hemichannels. Most of these 
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inhibitor tools were peptides identical to sequences of the Cx43 protein (mimetic 

peptides)242. I also investigated the effect of RRNYRRNY peptide (RRNY) on Cx43 

hemichannels. RRNY is a non-mimetic peptide, which was designed based on the 

pharmacophore of the interaction of the loop of Cx43 with the tail of the protein (loop-tail 

interaction)131. This peptide was shown previously to prevent gap junction closure under 

ischemic conditions by disrupting loop-tail interactions. Here, I hypothesized that RRNY 

would in fact inhibit Cx43 hemichannels, based on its loop-tail interaction preventive 

effect. These investigations are the subject of the first manuscript of this thesis, which is 

also the core of my doctoral research work performed in the Physiology group at Ghent 

University, Belgium, in collaboration with the Medical College of Wisconsin, USA. 

 

2. Damage to mitochondrial complex I during cardiac ischemia-reperfusion injury is reduced 

indirectly by anti-anginal drug ranolazine 

Ashish K. Gadicherla, David F. Stowe, William E. Antholine, Meiying Yang, and Amadou K.S. 

Camara.  

Biochim Biophys Acta. 2012 March; 1817(3): 419–429 

 

• The role of mitochondrial complex I in cellular energy homeostasis and also in the 

generation of ROS during IR injury is well known, with pharmacological agents blocking 

its activity during IR injury being shown to reduce IR injury205,206. However, most of the 

pharmacological agents studied so far bind to complex I irreversibly, causing permanent 

dysfunction of complex I. Some pharmacological agents, such as ranolazine, a clinically 

used anti-anginal drug243–247 have been shown to reduce complex I activity, based on the 

observation of decreased ROS generation in ranolazine treated mitochondria56. However, 

the mechanism by which ranolazine acts to reduce ROS generation is far from understood. 

In order to study the protective effect attributed to ranolazine via complex I, I studied the 

structural/functional aspects of complex I, how electron flow through complex I can be 

maintained, and how structural integrity of mitochondrial membrane can be maintained by 

the use of ranolazine during IR injury in guinea pig isolated hearts. These aspects were 

published in the form of a manuscript. The work published in the manuscript was 

performed at Mitochondrial Biology Lab, at the Medical College of Wisconsin  
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3. Protection against cardiac injury by small Ca2+-sensitive K+ channels identified in guinea 

pig cardiac inner mitochondrial membrane 

 

David F. Stowe, Ashish K. Gadicherla, Yifan Zhou, Mohammed Aldakkak, Qunli Cheng, Wai-

Meng Kwok, Ming Tao Jiang, James S. Heisner, MeiYing Yang, Amadou K.S. Camara  

Biochim Biophys Acta. 2013 February; 1828(2): 427–442 

 

• IPC as a protective mechanism against IR injury has been shown to involve many players, 

including mitochondrial inner membrane potassium channels such as the KATP, and KCa 

channels3. PPC has also been shown to involve mitochondrial potassium channels, 

specifically the BKCa
32,224. Previous studies have indicated that NS-1619, a BKCa channel 

opener, induces PPC32. NS-1619 has been shown to induce a bi-phasic effect on 

mitochondrial ROS generation and bio-energetics, respiration and ATP generation, in 

isolated cardiac ventricular mitochondria224. However, given the absence of BKCa in the 

cardiac mitochondrial inner membrane, it is likely that NS-1619 exerts its protective effect 

through a different KCa channel. With the aim of determination of this mitochondrial target 

of NS1619’s protective effect, I identified a novel channel- the SKCa in the cardiac 

ventricular mitochondria using confocal and electron microscopy techniques followed by 

the characterization of purified channel in planar lipid bilayers. I also demonstrated that 

activation of SKCa by the use of DCEBIO resulted in preserved mitochondrial bioenergetics 

and improved hemodynamic parameters following IR, which were reversed when 

DCEBIO was co-administered with SKCa antagonist NS8593. The work published in the 

manuscript was performed at Mitochondrial Biology Lab, at the Medical College of 

Wisconsin. 

 

  



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 
Experimental work 
  



46 
 

3.1 Mitochondrial Cx43 forms hemichannels that contribute to calcium entry and cell 
death 

Ashish Kumar Gadicherla1, Nan Wang1, Marco Bulic2, Esperanza Agullo-Pascual3, Alessio 

Lisoni1, Maarten De Smet1, Mario Delmar3, Dmitri V. Krysko4, Amadou Camara5, Klaus-Dieter 

Schlüter2, Rainer Schulz2, Wai-Meng Kwok5, Luc Leybaert1 

1Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine & Health 

Sciences, Ghent University, 9000 Ghent, Belgium 

2Physiologisches Institut, Justus-Liebig-Univiersität Giessen, Giessen, Germany. 

3The Leon H Charney Division of Cardiology, New York University School of Medicine. New 

York, NY, USA 

4Inflammation Research Center, VIB, Ghent, Belgium and Department of Biomedical Molecular 

Biology, Ghent University, Ghent, Belgium 

5Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA 

Corresponding author:  

Luc Leybaert,  

De Pintelaan 185 (Block B, Rm 031), 9000 Ghent, Belgium 

Telephone: +32 9 332 3366 

Fax: +32 9 332 3059 

Luc.Leybaert@UGent.be 

  



47 
 

Abstract 

 

Mitochondrial connexin 43 (Cx43) plays a key role in cytoprotection caused by repeated exposure 

to short periods of non-lethal ischemia/reperfusion, a condition known as ischemic 

preconditioning. However, connexins form channels that are calcium (Ca2+) permeable and may 

also potentially lead to mitochondrial Ca2+ overload and cell death. Here, we studied the role of 

Cx43 in facilitating mitochondrial Ca2+ entry and investigated its downstream consequences. To 

that purpose, we used various connexin targeting peptides interacting with extracellular (Gap26) 

and intracellular (Gap19, RRNYRRNY) Cx43 domains and tested their effect on mitochondrial 

dye- and Ca2+-uptake, electrophysiological properties of plasmalemmal and mitochondrial Cx43 

channels, and cell injury/cell death. Our results in isolated mice cardiac subsarcolemmal 

mitochondria indicate that Cx43 forms hemichannels that contribute to Ca2+ entry and may trigger 

permeability transition and cell injury/death. RRNYRRNY displayed the strongest effects in all 

assays and inhibited plasma membrane as well as mitochondrial Cx43 hemichannels. 

RRNYRRNY also strongly reduced the infarct size in ex vivo cardiac ischemia-reperfusion studies. 

These results indicate that Cx43 contributes to mitochondrial Ca2+ homeostasis and is involved in 

triggering cell injury/death pathways.  

 

Keywords: 

 

Mitochondria/Connexin43/Ischemia/Calcium/peptidomimetics  
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1. Introduction 

 

Cardiac mitochondria play a crucial role in the maintenance of cellular bioenergetics and 

intracellular ion homeostasis, especially of calcium (Ca2+) and potassium (K+) ions. Cellular Ca2+ 

homeostasis is maintained in a very stringent manner by the cyclical uptake and release by the 

endoplasmic reticulum and mitochondria respectively248. These cyclical events are crucial to 

maintain the cardiac rhythm and any disturbance may lead to arrhythmia, cell death and tissue 

damage as observed in cardiac failure and ischemia-reperfusion injury249. Recent evidence points 

to a role of connexin 43 (Cx43), a plasma membrane protein involved in intercellular 

communication and in mitochondrial homeostasis of Ca2+ and K+ (33,215,240,241). Mitochondrial Cx43 

(mitoCx43), located in subsarcolemmal mitochondria (SSM) but not in interfibrillar mitochondria 

(IFM)178 , is known for its role in ischemic preconditioning, which acts cardioprotectively as a 

result of brief ischemia/reperfusion episodes preceding a long lasting index ischemia (ischemic 

period lasting longer than 5 minutes). MitoCx43 is also involved in protection and survival of stem 

cells transplanted in the infarcted heart186,189,190. In contrast, protection by POC, meaning exposure 

to sublethal doses of ischemia/reperfusion after a long lasting index ischemia, is Cx43-

independent185. Protection by mitoCx43 has been linked to reactive oxygen species (ROS) 

generation, mitochondrial KATP channels182, PKC signaling and stimulation of translocase of outer 

membrane-20 (Tom20) that facilitates Cx43 transport30,179,182,183,250,251. Diazoxide that promotes 

mitochondrial ROS generation, induces preconditioning-like cardioprotection in a Cx43-

dependent manner184. PKC phosphorylates mitoCx4330,252, whereas heat shock protein-90 

(HSP90) stimulates the TOM20 pathway mediating rapid Cx43 translocation to the inner 

mitochondrial membrane178,179,186. PKC is also involved in fibroblast growth factor-2 (FGF-2) 

induced preconditioning and cardioprotection, with protection linked to increased mitochondrial 

Ca2+ retention capacity30.The latter study indicates that mitoCx43 protects by mitigating Ca2+ 

overload, mitochondrial permeability transition and cell death. In principle, Cx43 hemichannels 

(HCs) are non-selective large conductance (200-220 pS)111,116 Ca2+-permeable channels that may 

facilitate mitochondrial Ca2+ entry253–256. Inner mitochondrial membrane Cx43 has indeed been 

proposed to be present as a hexameric HC179. Thus HCs might directly contribute to mitochondrial 

Ca2+entry/overload, permeability transition and cell death. In the present work we explored the 

role of mitoCx43 HCs as a mitochondrial Ca2+ entry pathway leading to cell injury and cell death.  
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We used isolated cardiac mitochondria and applied various approaches including dye uptake 

studies, mitochondrial Ca2+ imaging, patch-clamp and lipid bilayer studies to investigate HC 

function. Additionally, we applied various Cx43 modulatory peptides and characterized their effect 

on mitoCx43 HCs. In particular we used Gap26 as a connexin channel blocker that targets Cx43 

but also other connexins and Gap19 as a specific Cx43 HC blocker111 (Fig. 1A). We included 

RRNYRRNY (RRNY) peptide that was developed as a tool to prevent gap junction closure and 

risk of post infarct ventricular arrhythmia131,257. RRNY design was based on the pharmacophore 

for the binding of the Cx43 cytoplasmic loop (CL) to the C-terminal tail (CT) (loop-tail 

interaction), an interaction that closes gap junction channels possibly by a ball and chain 

mechanism131. RRNY binding to the CT prevents loop-tail interaction and thus prevents gap 

junction closure, f.e. as induced by acidosis131. We recently reported that the gap junction closing 

loop-tail interaction is actually necessary for Cx43 HC opening in response to trigger 

conditions111,116. As a consequence, we hypothesized that RRNY is a Cx43 HC inhibitor as it will 

prevent loop-tail interaction and impose upon Cx43 HCs a state that is unavailable for opening. 

Our data show for the first time that mitoCx43 HCs contribute to mitochondrial Ca2+ entry, with 

subsequent activation of permeability transition and cell death. RRNY potently inhibited opening 

of Cx43 HCs in the plasma membrane as well as in mitochondria. It also strongly protected against 

ischemia-reperfusion injury in isolated cardiomyocytes and in Langendorff perfused hearts. Thus, 

the family of Cx43 channels provide three distinct pathways that may contribute to cell 

dysfunction/cell death: by gap junction-mediated bystander effects119,193,194, by a plasma 

membrane HC leakage pore116 and by mitochondrial HC Ca2+ entry. In heart, RRNY protects by 

its HC blocking repertoire while its gap junction promotive effect may protect against loss of 

conduction and induction of arrhythmia.  

 

2. Results 

 

2.1 Mitochondrial labeling of Cx43, native detection and mitochondrial dye uptake 

 

Mitochondria isolated from mice ventricles were loaded with the mitochondrial dye mitotracker 

red and subsequently immunostained for Cx43. Cx43-positive mitochondria were observed in the 
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mixed mitochondrial preparation and were significantly more numerous in the SSM fraction 

compared to the IFM fraction (64 ± 6% in SSM versus 23 ± 4 % in IFM; n = 6; p<0.05) (Fig.1B), 

as reported by others178.  

 

In order to determine the molecular associations of Cx43 in the mitochondria, SSM were 

solubilized in digitonin and dodecylmaltoside under native conditions and electrophoresed. 

Probing with Cx43 antibody showed that Cx43 is present at 1MDa and 250 kDa molecular weights 

indicating that it is present as a complex. Probing the same membrane with antibody against 

Complex I subunit NDUFA9 revealed a band at 1 MDa indicating that Cx43 and complex I co-

migrated (Fig.1C). Other commonly attributed mechanistic associations of Cx43 such as GSK-3β, 

CAM-KII and PKC-ε258 could not be detected at those bands. This suggests the 250 kDa band may 

represent the hexameric form of Cx43 (6 x 43 kDa) corresponding to the HC (connexon) 

configuration of the protein.  

 

Fig. 1. Connexin-targeting peptides, mitochondrial Cx43 and characterization of RRNY. (A) Peptides used in 
this study. Gap26 (green) is identical to a 13 amino acid sequence on the extracellular loop 1 (EL1) of Cx43 while 
Gap19 (red) is a sequence from the cytoplasmic loop (CL). RRNY (blue) was developed based on RXP-E peptide (not 
shown), which itself derives from L2 peptide126,257. The L2 sequence (orange) on Cx43 includes the Gap19 sequence. 
NMR studies on a cyclic RRNY analogue has indicated interaction with various sites on the C-terminal tail (CT) of 
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Cx43130 (B) Cx43 immunostaining of isolated cardiac ventricular mitochondria loaded with mitotracker red. Top 
panels are images obtained from mixed (SSM/IFM) mitochondria, middle panels are SSM and lower panels show 
super resolution imaging of SSM. (C) SSM isolated from mouse cardiac ventricles solubilized under native conditions 
were analyzed for Cx43. Bands at approximately 1 MDa and 250 kDa were observed, suggesting that Cx43 exists in 
a HC like structure. (D) Uptake of Cx43 HC permeant Lucifer Yellow (LY, 50 µM) and HC impermeant 10 kDa RITC 
dextran (10 µM) were measured in the presence and absence of Cx43 HC modulators to determine if mitoCx43 forms 
functional channels. Cbx, Gap26, Gap19 and RRNY all blocked LY uptake while not affecting 10 kDa RITC dextran 
uptake. LY dye uptake was absent in mitochondria from Cx43 deficient Cre/Flox animals while normal in Flox/Flox 
control animals (both receiving tamoxifen, 4-OHT). *** indicates p<0.005 vs. Control. Scale bar= 2.5µm. Western 
blot at the right illustrates Cx43 knock-down in Cre/Flox 4-OHT mitochondria compared to Flox/Flox control. (E) 
Patch-clamp recording setup used for experiments shown in F-H. (F) Representative current traces of patch-clamp 
experiments on Cx43 expressing HeLa cells in control and with peptides (voltage steps from -30 to +60 mV; Gap19 
and RRNY added to the pipette solution at 100 µM). (G) Conductance histogram showing opening activity 
characterized by a single channel conductance of ~220 pS (control). (H) Summary data of unitary current charge 
transfer (Qm) illustrating strong inhibition by Gap19 and RRNY (n =6). ** indicates p<0.01 vs. Control. 
 

To determine whether the mitochondrial HCs were open, we performed dye uptake studies on 

SSM suspensions with HC permeable Lucifer yellow (LY; MW 457, 50 µM) and HC impermeable 

10 kDa RITC-dextran (50 µg/ml). Fig. 1D demonstrates strong LY uptake, without any 

stimulation, while uptake of the 10 kDa RITC-dextran was very low. Carbenoxolone (Cbx, a non-

specific Cx channel blocker; 100 µM), Gap26 (a peptide Cx channel blocker with rapid effects on 

HCs and slower effects on gap junctions; 100 µM111, Gap19 (a specific Cx43 HC blocker which 

does not inhibit gap junctions; 100 µM123) and RRNY peptide (100 µM) all strongly (3-4 fold) 

reduced LY uptake while having no effect on 10 kDa RITC-dextran uptake (Fig.1D). Of all 

substances tested, RRNY had the strongest effect. Control scrambled RRNY peptide did not inhibit 

LY or RITC-dextran uptake. LY uptake was also strongly (6 fold) reduced in mitochondria isolated 

from Cx43Cre-ER(T)/fl mice treated with tamoxifen (tamoxifen inducible Cx43 KO) compared to 

uptake in control Cx43fl/fl animals receiving tamoxifen (Fig. 1D). Fig. 1D inset illustrates Western 

blot analysis demonstrating 73 ± 8% knockdown of mitoCx43 (~4 fold reduction) in tamoxifen 

treated Cx43Cre-ER(T)/fl mice compared to tamoxifen treated Cx43fl/fl control animals (n = 6; 

p<0.05). 

 

Because RRNY inhibited mitochondrial dye uptake as all other Cx channel inhibitors, we tested 

its HC-blocking potential in single channel patch-clamp recordings on HeLa cells stably 

transfected with Cx43. Fig. 1E-H demonstrate that Gap19 and RRNY strongly inhibit plasma 

membrane unitary current activity characterized by a single channel conductance of ~220 pS, 

which is typical for Cx43 plasma membrane HCs in HeLa cells. 
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2.2 Electrophysiological characterization of mitoCx43 using planar lipid bilayers 

 

We performed further studies on purified mitoCx43, isolated from mice cardiac ventricles and 

incorporated into planar lipid bilayers (Fig. 2A). The experiments demonstrated a linear voltage 

dependence characterized by a single channel conductance of 132 ± 13 pS (n = 6 isolations from 

different animals) (Fig. 2C and D). Gap19 and RRNY (concentrations as used for dye uptake) 

significantly reduced the open probability of single channel activity; reduction by RRNY was 3 

fold, significantly stronger as compared to Gap19 (Fig. 2B and E). We investigated the effect of 

dephosphorylation of Cx43 by adding alkaline phosphatase (100 units, cis compartment) and found 

it to increase open probability by a factor of 3 (Fig. 2B and E).  

 

We repeated the lipid bilayer experiments with plasmalemmal instead of mitoCx43 purified from 

cardiac ventricles. These experiments showed a single channel conductance of 206 ± 26 pS (n = 

6) (Fig. 2G), close to the ~200 pS we observed previously in pig ventricular cardiomyocytes111,123. 

Gap19 and RRNY significantly reduced open probability (~3 fold for RRNY which acted most 

potently), as observed in the experiments with mitoCx43 (Fig. 2F and H). Similar to mitoCx43, 

and in line with reports from others on plasma membrane Cx43 HCs259,260, dephosphorylation of 

Cx43 from plasma membrane also significantly increased the channel open probability (Fig. 2F 

and H). 
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Fig. 2. Electrophysiological characterisation of mitochondrial Cx43 in planar lipid bilayer experiments. (A). 
Schematic view of the experimental setup with voltage clamp amplifier. Voltage steps to +50 mV and compounds 
tested were added at the cis side (B) Example traces of SSM-derived Cx43 incorporated into the lipid bilayer under 
control conditions and in the presence of RRNY or phosphatase. (C) I-V plot demonstrating that unitary event activity 
in the traces is characterized by a single channel conductance of 132 pS (n=6). (D) All point histogram of control 
traces demonstrating single channel conductance of 130 pS. (E) Summary data demonstrating Gap19 and RRNY 
inhibition of channel open probability; alkaline phosphatase strongly increased the open probability. (F) Example 
traces of plasma membrane-derived Cx43 incorporated into the lipid bilayer under control conditions and in the 
presence of RRNY or phosphatase. (G) All point histogram of control traces demonstrating single channel 
conductance of 200 pS. (H) Summary data demonstrating Gap19 and RRNY inhibition and phosphatase promotion of 
channel open probability. * indicates p<0.05 vs. Control. 

 

2.3 Cx43 mediated mitochondrial Ca2+ uptake and labeling of mitochondria with FITC-

Gap19 

 

Cx43 has been suggested to play a role in mitochondrial Ca2+ uptake30. Moreover, Cx43 HCs are 

Ca2+ permeable255 and so we further investigated intramitochondrial changes in Ca2+ 

concentration in response to externally applied Ca2+ pulses. To that purpose, we seeded 
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mitochondria preloaded with the low affinity Ca2+ indicator Rhod-FF on poly-L-lysine coated 

coverslips and recorded their response to perfusion with 50 µM free Ca2+ containing buffer on a 

Ca2+ imaging microscope (Fig. 3A). The area under the curve (AUC) of the Ca2+ transients 

recorded in IFM was significantly (3 fold) larger compared to those in SSM (Fig. 3B-E). Moreover, 

treatment with ruthenium red and verapamil to block Ca2+ entry via the mitochondrial Ca2+ 

uniporter (MCU) and Na+/Ca2+ exchanger261 respectively, strongly suppressed the AUC of the 

Ca2+ transients in IFM and had a small yet significant effect in SSM (Fig.3D-E).  

 

Fig. 3. Mitochondrial Ca2+ imaging experiments. (A) Schematic diagram of the setup. Cardiac ventricular 
mitochondria loaded with Ca2+ sensitive dye Rhod-FF, and immobilized on poly-lysine coated coverslips were 
perfused with experimental buffer and exposed to 50 µM free Ca2+ pulses. (B) Differential responses of SSM and IFM 
to the Ca2+ challenge. Mitochondrial  Ca2+ responses in SSM (top four images) and IFM (bottom four) under control 
conditions and in the presence of ruthenium red (RuRed) and verapamil (Vera). (C) Representative Ca2+ traces 
recorded from imaging experiments as shown in B. (D) Summary data of mitochondrial Ca2+ accumulation (measured 
as AUC in the Ca2+ traces). Treatment with RuRed and Vera added 2 min before Ca2+ perfusion significantly reduced 
the mitochondrial Ca2+ accumulation (AUC bar chart on left) and peak fluorescence (bar chart on right) associated 
with Rhod-FF. The decrease in AUC and peak fluorescence was much more in IFM compared to SSM. (B) In order 
to separate the two populations from a mixed population, following Ca2+ challenge, mitochondria were perfused with 
FITC-Gap19. Only SSM, which contain Cx43 are labeled with FITC-Gap19 whereas IFM, which do not contain Cx43, 
are not labeled (gray scale images). Representative traces obtained from point analysis of labeled and unlabeled 
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particles are shown. RuRed and Vera. were used at 20 µM concentration in experimental buffer Peptides and Cbx 
were used at 100 µM concentration. * indicates p<0.05 vs. Control. Scale bar= 20µm 

 

To limit mitochondrial processing steps, we repeated these experiments on mixed populations of 

mitochondria and stained them, after Ca2+ imaging, with 100 µM FITC-labeled Gap19. Gap19 

binds to the C-terminal end of Cx43 with an affinity of ~2.5 µM123. Validation experiments on 

separated mitochondrial fractions demonstrated that FITC-Gap19 fluorescence was only observed 

in the SSM fraction while not in IFM (n=4) (Fig.3F). Moreover, Ca2+ imaging on mixed 

mitochondria followed by trace analysis in FITC-Gap19 positive and negative mitochondria 

demonstrated the same responses to ruthenium red and verapamil as observed when experiments 

were done in separated SSM/IFM fractions (Fig.3G-K). We applied the FITC-Gap19 staining 

procedure for the Ca2+ imaging experiments described next.  

 

2.4 Mitochondrial Ca2+ entry is significantly affected by Cx HC inhibitors 

 

We tested the effect of HC block on mitochondrial Ca2+ transients triggered by Ca2+ 50 µM pulses. 

These experiments were done in the presence of ruthenium red and verapamil to reduce 

background Ca2+ changes via the MCU and Na+/Ca2+ exchanger. In FITC-Gap19 positive 

mitochondria, the AUC and peak fluorescence of the Ca2+ transients were significantly reduced 

by Cbx, Gap26, Gap19 and RRNY, while scrambled RRNY peptide had no effect (Fig.4A, C-F). 

In contrast, analysis of traces from FITC-Gap19 negative mitochondria demonstrated no 

significant change in AUC (Fig. 4B).  

 

We further analysed the kinetics of mitochondrial Ca2+ changes. The rise time (from 10 to 90 %, 

t10-90) was significantly prolonged by HC block, most strongly by RRNY (Fig. 4E). Some traces 

showed an abrupt drop of Ca2+ indicator fluorescence during exposure to the 50 µM Ca2+ pulse 

(Fig. 4A). All blockers prolonged the time from the onset of the Ca2+ change to the sudden drop 

of fluorescence; the effect was most pronounced for RRNY which prolonged the duration by a 

factor of 9 (Fig. 4F). By contrast, sRRNY did not alter t10-90 and Ca2+ transient duration (Fig. 4D-

F).  
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Fig. 4. Effect of HC inhibitors on mitochondrial Ca2+ loading. (A) Example mitochondrial Ca2+ traces in response 
to a 50 µM Ca2+ challenge and effect of peptides. (B) Average data on area under curve, (C) peak fluorescence, (D) 
rise time for 10-90%, and (E) total duration of the Ca2+ fluorescence signal. All experiments were performed in the 
presence of RuRed and Vera (20 µM). Peptides and Cbx concentrations were 100 µM. * indicates p<0.05 vs. Control; 
** p<0.01; *** p<0.005. 

 

The sudden drop of Ca2+ indicator fluorescence during exposure to the 50 µM Ca2+ pulse possibly 

indicates permeability transition as a result of Ca2+ overload56. We therefore performed additional 

experiments in which we measured extramitochondrial Ca2+ with calcium green as an indicator 

making use of mitochondrial suspensions and a fluorimeter setup (Fig. 5A). Mitochondria were 

challenged with serial pulses of 20 µM Ca2+ concentration every minute, resulting in Ca2+ 

indicator fluorescence jumps in the solution followed by a slow decline indicative of Ca2+ uptake 

by the mitochondria (Fig. 5B). After repeated Ca2+ challenges, the fluorescence suddenly started 

to progressively increase indicative of mitochondrial Ca2+ release caused by permeability 

transition56. The number of Ca2+ pulses needed for this transition were then counted and compared. 

Fig. 5C demonstrates that all HC blockers, except Gap26, significantly increased the number of 

Ca2+ pulses necessary to obtain permeability transition; RRNY again was most potent with respect 

to this assay (almost tripling the number of pulses) whereas sRRNY had no effect.  
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Fig. 5. Extramitochondrial Ca2+ measurements and permeability transition in SSM. (A) Cuvette fluorimetry 
setup. Mitochondria were exposed to repeated 20 µM Ca2+ pulses until fluorescence suddenly started to increase 
independently of the Ca2+ pulse, indicating mitochondrial Ca2+ release caused by permeability transition. (C) Average 
data from experiments shown in B. Carbenoxolone, Gap19 and RRNY significantly increased the number of pulses 
to achieve permeability transition while Gap26 and sRRNY had no effect. *** indicates p<0.005 vs. Control. 

 

2.5 RRNY protects against cell death induced by doxorubicin, ceramide and staurosporine 

We next verified in H9C2 cardiac cells if the protective effect of HC inhibition on mitochondrial 

Ca2+ loading and permeability transition translates to protection against cell death. Peptides for 

these studies were linked to the TAT translocation sequence to facilitate cell penetration, since the 

site of interaction of the peptides is intracellular123. We used three different agents for inducing 

cell death: staurosporine, a PKC inhibitor triggering apoptosis262, apoptosis-inducing ceramide263  

and the cardiotoxic drug doxorubicin264. In the staurosporine experiments, cell death was 

quantified by a pan-caspase assay while cell viability was assayed for ceramide and doxorubicin. 

In all assays, TAT-RRNY acted in a protective way; TAT-Gap19 only displayed protection in the 

doxorubicin model (Fig. 6A-C).  
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Fig. 6. Effect of HC inhibitors on cell death. (A) Cell death induced by staurosporine (B) by ceramide, and (C) by 
the cardiotoxic drug doxorubicin (C). In all three studies, TAT-RRNY significantly increased cellular resistance to 
apoptosis (A) or cell survival (B, C) while Gap26 and Gap19 had variable effects in these assays. Peptides were used 
at 100µM concentration. *indicates p<0.05 against Control; ** p<0.01; *** p<0.005. 

 

2.6 RRNY protects against cardiomyocyte cell death induced by hypoxia-reoxygenation, and 

reduces the infarct size in ex vivo experiments 

Some reports suggest that cell penetrating TAT peptide alone leads to increased pro-apoptotic Bad 

and Bax signaling and a decrease in anti-apoptotic Bcl-2, reducing caspase-3 activation265- all 

closely associated with mitochondrial ion homeostasis. Hence, to avoid influence of TAT in 

cardiomyocyte and ex-vivo studies, we used TAT free versions of the Cx targeting peptides. We 

previously demonstrated that Gap19 has intrinsic membrane permeability123 and further evaluated 

the RRNY ability to permeate the cell membrane. We found that FITC-labeled RRNY significantly 

accumulated into the cell without TAT sequence (Influx ratio (ratio of internalized fluorescence 

and external fluorescence) of 20%), probably related to its high content of positively charged 

arginine residues (as for Gap19 that has 4 lysine residues; Fig. 1A).  
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. 

Fig. 7. Effects of HC inhibitors on cardiac ischemia-reperfusion injury. (A) Representative images of experiments 
on neonatal mice cardiomyocytes exposed to 30 min of hypoxia and 120 min of reoxygenation and probed for cell 
morphology and trypan blue uptake indicative of cell death. (B) RRNY significantly increased the percentage of rod-
shaped cells (C) while RRNY and Gap19 decreased trypan blue uptake. (D) Ex-vivo Langendorff ischemia-
reperfusion studies in mouse hearts. Peptides were perfused 1 min before induction of a 30 min ischemia period and 
were present the first 10 min of a 120min reperfusion period. (E) Gap26, Gap19 and RRNY all reduced the infarct 
size compared to Control but the effect of RRNY was strongest. *indicates p<0.05 against Control. 

 

Mouse ventricular cardiomyocyte morphology and cell death were assessed under conditions of 

hypoxia-reoxygenation induced by oxygen and substrate depletion for 30 min followed by 

normoxia and substrate availability for 60 min in the presence or absence of the HC blockers. Cell 

morphology was assessed as the percentage of rod shaped cells, and cell death as the percentage 

of trypan blue positive cells (loss of sarcolemmal integrity). Fig. 7A shows representative images 

of trypan blue uptake and changes in cell morphology associated with hypoxia-reoxygenation and 

their amelioration in the presence of peptides, especially RRNY. Fig. 7B illustrates that hypoxia-

reoxygenation reduced the rod-shaped cardiomyocyte population almost 12 fold; RRNY strongly 

promoted the fraction of rod-shaped cardiomyocytes while none of the other peptides tested had 

any effect. Fig. 7C demonstrates a ~6 fold increase of trypan blue positive cardiomyocytes after 

exposure to hypoxia-reoxygenation and these counts were significantly reduced by Gap19 (~3 

fold) and RRNY (~4 fold). 

 

We next performed experiments on mouse hearts subjected to ex vivo Langendorff perfusion to 

assess the effect of HC blocking peptides on infarct size. Hearts were perfused with 100 µM of the 
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peptides 1 min before the onset of ischemia and were present during the initial 10 min of 

reperfusion. The infarct size (surface area), measured by permeation of triphenyl tetrazolium 

chloride and normalized to wet weight of the heart, was ~60 % under control conditions and was 

significantly reduced by Gap26, Gap19 and RRNY peptides (Fig. 7E). RRNY had the strongest 

effect, reducing the infarct area to ~50 % of the area observed in non-treated hearts.  

 

Discussion 

 

MitoCx43 has been suggested to exist in a HC-like configuration179,215; our native gel 

electrophoresis studies demonstrating a clear 250 kDa band support this view. Dye uptake with 

HC-permeable LY was strongly reduced in mitochondria isolated from Cx43 KD animals and 

occurred in the absence of any trigger, indicating that some Cx43 HCs are open. The mitochondrial 

membrane potential is inside negative and in the range of 150-180 mV. If IMM Cx43 is oriented 

with its CT, CL and NT looking outward (intermembrane space), then this side of the protein will 

experience an outside positive 150-180 mV, which is far above the voltage threshold for plasma 

membrane-based Cx43 HC opening (40-50 mV111). Alternatively, when the extracellular loops 

(ELs) are looking outside, HCs are also expected to be open because of the low cytoplasmic Ca2+ 

concentration that is known to open plasma membrane-located HCs266,267. Thus, whatever the 

Cx43 orientation is, HCs in the inner mitochondrial membrane are expected to be open (a not 

unusual shunt pathway given the presence of uncoupling proteins250). Accordingly, perfusing 

isolated mitochondria with 50 µM Ca2+ solution, under conditions of Ca2+ uniporter and Na+/Ca2+ 

exchanger blockade, provokes intramitochondrial Ca2+ changes as expected from their Ca2+ 

permeability. Channels reconstituted from SSM-enriched Cx43 protein indeed demonstrated a 

large single channel conductance of ~130 pS, lower but still in the same order of magnitude of 

their plasmalemmal counterparts. Importantly, the channels were non-selective as indicated by the 

0 mV reversal potential (Fig. 2C) and were modulated by phosphatase treatment to a similar extent 

as channels reconstituted from plasmalemmal Cx43 (Fig. 2E and H). Of note, the effect of Gap19 

and RRNY on hemichannels was very comparable in SSM-based Cx43 hemichannels (Fig. 2E) 

and their plasmalemmal counterparts (Fig. 2H).  
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The ability of mitochondria to buffer intramitochondrial Ca2+ is of crucial importance in a variety 

of pathophysiological processes such as ischemia-reperfusion. This buffering capacity is limited 

and once a threshold is surpassed, mitochondrial permeability transition occurs leading to the 

release of Ca2+, and cytotoxic molecules such as cytochrome c268,269. The extramitochondrial Ca2+ 

measurements (Fig. 5) demonstrated that HC inhibition, especially with RRNY, leads to increased 

resistance against Ca2+-triggered permeability transition. The cell death/viability studies on 

immortalized cardiac cell lines confirmed a protective effect of HC blockade and this was also 

noted in cardiomyocytes subjected to hypoxia-reoxygenation and in ex-vivo Langendorff perfused 

hearts exposed to ischemia-reperfusion. In the latter case, peptides were present in the heart during 

ischemia and the initial 10 minutes of reperfusion. This protective effect may be attributable to 

inhibition of mitochondrial Ca2+ entry but may also relate to ROS generation. Cx43 targeting 

peptides decrease complex I respiratory activity180, which contributes as a major ROS source; as a 

consequence, blocking its activity mitigates ROS production and limits infarct size181,207,270. Thus, 

protection by RRNY and other peptides used in this study may act directly via Ca2+ or via Ca2+-

dependent or independent ROS production. Of crucial importance is the fact that the peptides were 

present during the entire duration of ischemia and the initial ten minutes of reperfusion.  

 

In contrast to our findings with Cbx that restricted Ca2+ entry and prolonged permeability 

transition, others have shown that carbenoxolone promotes permeability transition by targeting 

Cx43240. However, the target of Cbx in mitochondria responsible for permeability transition are 

the various thiol groups on respiratory complex I. Also, the effect of Cbx is shown to be bi-modal 

with concentrations of less than 10 µM being protective against permeability transition, and higher 

concentrations having a deleterious effect271,272. Indeed, blocking complex I using Cx43 inhibitors 

has been shown to reduce ROS generation giving further evidence to the protective effect of 

inhibiting Cx43 HCs. 

 

Not all peptides used in this study had an equivalent effect on unitary currents, Ca2+ dynamics, cell 

death and/or infarct size. This may be caused by distinct interaction/binding properties with Cx43, 

by different accessibilities of the target motifs or by different spectra of connexin channels 

targeted. For example, Gap26 blocks HCs by interacting with the ELs116,123. If the ELs are inside 
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the mitochondria, then Gap26 may only be able to access them by permeating through the open 

HC pore. With the ELs inside, the CT is outside and readily available for interactions with Gap19 

and RRNY that have the CT as their target. Another reason for the distinct potencies on cell death 

and/or tissue damage may be linked to the spectrum of effects of these peptides on channels and 

HCs. Gap26 first blocks plasma membrane HCs111 and with some delay also gap 

junctions118,119,273; it also blocks Cx37 junctional channels in vascular endothelial cells274. Gap19 

is specific for Cx43 and only inhibits HCs, not gap junctions123. RRNY was developed as a tool to 

prevent gap junction closure in cardiac ischemia131,257. We here show that RRNY inhibits Cx43 

HCs in the plasma membrane as well as in mitochondria. In fact, the mitochondrial effect on dye 

uptake and unitary currents was stronger than that of Gap19. Thus, compared to the other peptides, 

RRNY may act at three levels: preventing gap junction closure, inhibiting HCs in the plasma 

membrane and inhibiting mitochondrial HCs. Such action at three fronts is probably the reason 

why its protection on ex-vivo Langendorff perfused hearts exposed to ischemia-reperfusion was 

stronger than that of Gap19 (~25% reduction by Gap19 versus ~50% reduction by RRNY).  

 

It has been shown that mitoCx43 is involved in protection linked to ischemic 

preconditioning34,175,275. Here, we show that mitoCx43 HCs contribute to cell injury/death and that 

blocking Cx43 HCs acts beneficially. The contrast between these two effects are linked to 

fundamental differences in the experimental models used. Ischemic preconditioning is generated 

by short pulses of ischemia/reperfusion, which generate small amounts of ROS from complex I 

triggering downstream protective pathways that include increased mitochondrial Ca2+ retention 

capacity amongst others30. In the case of index ischemia without preconditioning, however, 

blocking complex I is a major protective strategy181. We here demonstrate that in the absence of 

preconditioning, mitoCx43 play a detrimental role mediated by mitochondrial HC mediated Ca2+ 

entry. Moreover, HC mitochondrial Ca2+ entry may well be suppressed under conditions of 

ischemic preconditioning. PKC phosphorylation of Cx43 observed in ischemic preconditioning30 

invariably leads to decreased channel function, both at the level of GJs276 and HCs277 and, as a 

result, may inhibit HC-linked mitochondrial Ca2+ entry acting protectively. 

 

In conclusion, these results demonstrate that Cx43 contributes to mitochondrial Ca2+ entry that 

activates cascades leading to cell injury/cell death. This cascade was most potently inhibited by 
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RRNY peptide that targets three levels of connexin channels: inhibition of mitochondrial HCs, 

inhibition of HCs in the plasma membrane and prevention of closure of gap junction connections 

between cells.  

 

3. Materials and methods 

 

3.1 Isolation of cardiac ventricular mitochondria 

All animal experiments were performed with permission from the Committee on ethical usage of 

animals of the Ghent University. Male C57/Bl6 mice, 12-14 weeks of age, were anesthetized by a 

mixture of ketamine/xylazine (25 mg/kg body weight). The mice were also injected with heparin 

(1000 mg/kg) to prevent coagulation. Following induction of anesthesia, animals were sacrificed 

by cervical dislocation and rapid thoracotomy to excise heart. Hearts were immediately dropped 

into isolation buffer (in mM: 200 mannitol, 300 sucrose, 5 KH2PO4, 5 MOPS, 1 EGTA, 0.1% BSA 

and 0.5 mg/ml butylated hydroxy toluene as an anti-oxidant; pH adjusted to 7.15 with KOH)181. 

Hearts were then washed twice and atria and extraventricular tissue removed. The cleaned and 

trimmed ventricles were chopped to approximately 1 mm cubes and homogenized using a Potter 

Elveheijm homogenizer. Preparation of mixed mitochondria was done by centrifugation of the 

suspension at 700X g (10 min), followed by recentrifugation of the supernatant at 7500 g (10 

min) and collection of the resultant pellet that was stored on ice until usage178. For separation of 

the SSM fraction, the suspension was centrifuged at 700X g (10 min) and the supernatant was 

recentrifuged at 7000X g for 10 min. The resultant pellet enriched in SSM was stored on ice for 

further use. The pellet from the first centrifugation was resuspended in isolation buffer and 

incubated on ice for 10 min, in the presence of protease (Bacterial type II, Sigma). It was then 

centrifuged at 700X g (10 min), followed by centrifugation of the supernatant at 7000X g. The 

resultant pellet containing IFM was stored on ice until further usage. 

 

3.2 Mitochondrial immunochemical localization of Cx43 

Mitochondria were loaded with MitosoxRed-CMX ROS mitochondrial dye (500 nM) for 30 min. 

Following this, mitochondria immobilized on poly-lysine coated cover slips were fixed with 4% 

paraformaldehyde for 1 h. Following 3 washes with PBS the mitochondria were permeabilized 
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with 0.1% Triton X-100 for 5 min and then incubated in 2% BSA to block non-specific antibody 

binding for 1 h. Following this, rabbit anti-Cx43 antibodies (Sigma Aldrich) labeled with Alexa-

488 (Invitrogen) was added to the coverslips and incubated overnight. Coverslips were then 

washed 3 times with PBS and stored under Vectashield fluorescence recovery agent (Vector Labs) 

until imaging. Unlabeled antiCx43 antibody was used as antibody control and unloaded 

mitochondria were used as mitochondrial dye control. Imaging was performed on Leica XPS-8 for 

confocal imaging. Super resolution imaging by direct stochastic optical reconstruction microscopy 

(dSTORM) was performed as previously described278. Briefly, SSM from mice heart ventricles 

were isolated and treated as described until the addition of primary antibody against Cx43. 

Following this, mitochondria were incubated with secondary anti-rabbit antibody conjugated to 

Alexa-647. Imaging conditions were achieved by the addition of 200 mM mercaptoethanolamine 

and an oxygen scavenging system to the fluorophore containing solution combined with 

appropriate laser excitation. Movies containing a minimum of 2000 frames were used to generate 

reconstructed super-resolved images. Image analysis was performed using ImageJ software. 

Images were processed with a smoothing filter, adjusted for brightness and contrast and filtered to 

a threshold to obtain a binary image. 

 

3.3 Native detection of mitoCx43 

Mitochondria isolated as described above were solubilized in buffer containing 0.1% digitonin and 

1% dodecylmaltoside by incubation on ice for 15 min. The suspension was centrifuged at 32000x 

g for 10 min and supernatant collected. Protein concentration in the supernatant was determined 

via BioRad BCA protein assay. 50 µg of protein was loaded into each well of a 3-8% acrylamide 

gel and electrophoresis performed at 125 V for 2.5-3 hrs using non denaturing electrophoresis 

buffer. The proteins were then blotted onto PVDF membranes at a constant current of 100 mA/cm² 

for 3 h. Following blotting, the membranes were blocked with 5% milk in Tris buffered saline 

containing 0.1% Tween-20 (TBSt) for 1h. Membranes were then incubated overnight in 5% milk 

containing anti-Cx43 antibody and subsequently washed 3 times with TBSt and incubated in 

appropriate secondary antibody. Antibody binding was detected using chemiluminescence (Pierce, 

Belgium). To determine if Cx43 co-electrophoresed with other proteins, the same membrane was 

used for detection of complex I subunit NDUFA9 (Invitrogen, USA) or PKC-ε (Millipore, USA) 
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or CamKII (Millipore, USA) or GSK-3β (Millipore, USA) following antibody stripping.  

 

3.4 Mitochondrial dye uptake 

Dye uptake studies were done with the Cx43 HC permeant dye Lucifer Yellow (LY) and 

impermeant 10-kDa Rhodamine B isothiocyanate (RITC)-dextran. SSM were pelleted and 

resuspended at 0.5 mg/mL in experimental buffer (in mM: 150 KCl, 7 NaCl, 2 KH2PO4, 1 MgCl2, 

6 MOPS, pH 7.2, 6 succinate, 0.25 ADP, and 0.5 µM of rotenone). After 5 min incubation at 25°C, 

50 µM  LY (LY CH dilithium salt, L0259, Sigma) and 25 µg/mL RITC-dextran 10S (RITC-

dextran, R888, Sigma) were added simultaneously and allowed to permeate for 25 min. 

Mitochondria were subsequently washed and resuspended in the same experimental buffer. 

Fluorescence for LY was read at 535 nm and for RITC-dextran at 600 nm using a plate reader215 

(Miro-Casas et al, 2009). Peptides were added immediately prior to the addition of LY and were 

present throughout the experiment. 

 

3.5 Patch clamp studies of HeLaCx43 cells 

Hela-Cx43 cells were bathed in a recording chamber filled with a modified Krebs–Ringer solution 

consisting of (in mM): 150 NaCl, 6 CsCl, 2 CaCl2, 2 MgCl2, 1 BaCl2, 2 pyruvate, 5 glucose, 5 

HEPES and pH adjusted to 7.4. The standard whole-cell recording pipette solution was composed 

of (in mM): 130 CsCl, 10 Na-aspartate, 1.1 CaCl2, 1 MgCl2, 2 EGTA, 10 tetraethylammonium 

(TEA)-Cl and 5 HEPES; pH was adjusted to 7.2 and [Ca2+] was 200 nM as calculated with 

Webmax Standard software application (http://www.stanford.edu/~cpatton/webmaxcS.htm). 

Single channel recordings were performed by making use of an EPC 7 PLUS patch-clamp 

amplifier (HEKA Elektronik, Lambrecht/Pfalz, Germany). Data were acquired at 5kHz using a NI 

USB-6221 data acquisition device from National Instruments (Austin, TX, USA) and an 

acquisition software WinWCP designed by Dr. J. Dempster (University of Strathclyde, U.K.). 

Resting membrane potential was -30 mV and 30 s lasting voltage steps to +60 mV were applied 

to activate HC opening. All currents in whole-cell configuration were filtered at 1 kHz (7-pole 

Besselfilter). For single channel analysis, holding currents were subtracted from the recorded 

current traces, giving traces that only contained unitary current events. Unitary conductances were 



66 
 

calculated from the elementary current transitions Δi as: γ=Δi/Vm. The charge transfer Qm was 

quantified by integrating unitary current activity over the duration of the applied voltage step. 

 

3.6 Isolation and enrichment of Cx43 from mitochondria and plasma membrane 

Mitochondria isolated as described above were solubilized using 0.1% dodecylmaltoside and 0.1% 

digitonin in the presence of phosphatase and protease inhibitors (PPI). Following solubilization, 

50 µg protein suspension added to 2.75 ml dH2O, 15% glycerol and 15% DL-Dithiothreitol. 

Proteins were then subjected to isoelectric focusing (IEF) using ampholytes (pI: 3.5-10) in BioRad 

Microrotofor cell for 6 h at a constant voltage of 400V under non-denaturing conditions (4°C). 

Following separation the ten fractions were collected and analyzed for Cx43 using Western 

blotting. The fraction with highest concentration of Cx43 (pI 8.6) was collected and subjected to a 

second IEF under similar conditions in the presence of ampholytes (pI 5-10). The fraction 

containing enriched Cx43, identified using Western blot, was desalted and concentrated by 

centrifugation at 16000X g for 30 min using a 3 kDa filter279. In case of enrichment of Cx43 from 

plasma membrane, plasma membrane fractions were separated from non-plasma membrane 

fractions of C57/Bl6 mice heart ventricles using plasma membrane protein extraction kit (Cat. No. 

AB65400, Abcam, USA) and differential solubilization as the separation principle. In brief, 

ventricles were homogenized using solubilization buffer containing PPI. The homogenate was 

centrifuged at 700X g for 10 min. The supernatant was centrifuged again at 10000X g for 30 min 

at 4°C. The supernatant containing cytosolic fractions was discarded and the pellet containing total 

cellular membrane fractions was suspended in upper phase and mixed with lower phase. Following 

centrifugation at 1000X g for 5 min. The upper phase containing plasma membrane fractions was 

collected and further purified by re-centrifugation following addition of lower phase. Both the 

plasma membrane and non-plasma membrane protein fractions were collected and stored at -80°C 

until further use in IEF for enrichment of Cx43. Figure 8 shows a representative blot of the purified 

Cx43. 
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Fig.8: Representative blot of purified Cx43 using isoelectric focusing 

3.7 Planar lipid bilayer studies 

Channel activity of the purified and enriched Cx43 protein was monitored by incorporation into a 

planar lipid bilayer, as previously described280. Briefly, phospholipids were prepared by mixing 

phosphatidyl-ethanolamine, phosphatidyl-serine, phosphatidyl-choline, and cardiolipin (Avanti 

Polar Lipids) in a ratio of 5:4:1:0.3 (v/v). The phospholipids were dried under N2 and re-suspended 

in n-decane to a final concentration of 25 mg/mL. The cis/trans chambers contained symmetrical 

solutions of 10 mM HEPES, 200 mM KCl and 100 µM CaCl2 at pH 7.4. The trans chamber was 

held at virtual ground while the cis chamber was held at the command voltages. Cx43 protein, 

peptides and bovine alkaline phosphatase were added into the cis chamber. Currents were sampled 

at 5 kHz and low pass filtered at 1 kHz using a voltage clamp amplifier (Axopatch 200B, Molecular 

Devices) connected to a digitizer (DigiData 1440, Molecular Devices), and recorded in 1 min 

segments. The pClamp software (version 10, Molecular Devices) was used for data acquisition 

and analysis. For analysis, additional low-pass filtering was applied at 200 Hz.  

 

3.8 Mitochondrial Ca2+ uptake 

Mitochondria isolated as described above, either subpopulations or mixed populations were loaded 

with 25 µM of low affinity Ca2+ sensitive dye Rhod-FF (Kd = 19 µM) by incubation in a buffer 

containing (in mM) 30 KCl, 120 sucrose, 10 HEPES, 1 EGTA, 10 succinate, 1 Pi, 0.5 MgCl2, 0.04 

Ca, pH 7.2 (buffer A) for 30 minutes and excess dye washed by centrifugation at 8000xg for 10 

min. The mitochondria were resuspended in the same buffer but without Rhod-FF and stored on 

ice until use. For Ca2+ imaging, mitochondria were immobilized on poly-l-lysine coated coverslips 
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and superfused with the same buffer containing mitochondrial Ca2+ uniporter blocking ruthenium 

red (RuRed: 20 µM) and Na+-Ca2+ exchanger blocking verapamil (Vera: 20 µM), with or without 

peptides (buffer B). Following imaging for 2 minutes (3 minutes in case of treatment with 

peptides), mitochondria were superfused with 50 µM free Ca2+ containing buffer (buffer C) and 

images acquired for a further 7 minutes and then washed with buffer B. In case of experiments 

using combined populations, mitochondria were then superfused with a buffer containing 100 µM 

FITC-labeled Gap19 for one minute and washed for a further one minute and image acquired. For 

analysis, images acquired during Ca2+ challenge were superposed on FITC-Gap19 perfusion. Only 

the points positive for FITC-Gap19 labeling were analysed as Cx43 positive mitochondria. Point 

analysis was performed using FluoFrames inhouse software developed by Dr. Luc Leybaert.  

 

In case of Ca2+ studies where extra mitochondrial Ca2+ was measured, mitochondria were 

suspended in respiration buffer (buffer containing (in mM): 130 KCl, 5 K2HPO4, 20 MOPS, and 

2.5 EGTA, with 1 µM Na4P2O7, and 0.1% BSA, pH 7.15 adjusted with KOH)) in the presence of 

10 mM succinate and 50 nM of the fluorescent dye calcium green (50 nM, Invitrogen) to measure 

extra mitochondrial Ca2+ in a cuvette-based spectrophotometer (model QM-8; Photon Technology 

International, Birmingham, NJ).  [Ca2+] was monitored by fluorescence at 490 nm excitation and 

531 nm emission. After stabilization, pulses of CaCl2 (to yield 20 µM increases in Ca2+ ) were 

added every 60 s until permeability transition as indicated by a final increase in Ca2+ fluorescence 

without any added Ca2+ pulse56. Results from four replicates per heart were averaged. 

 

3.9 Cell viability/cell death studies 

In order to assess the effect of peptides on Ca2+ accumulation and cell death, we assessed cell 

viability and apoptosis on confluent H9C2 cells induced by doxorubicin, ceramide and 

staurosporine. Cells were incubated with either doxorubicin or ceramide in the presence or absence 

of peptides for 24 hours. Following the incubation period, MTT cell viability assay was performed 

as per manufacturer’s instructions (Cat. no. V13154, Invitrogen, USA). Results are shown as 

values normalized to no cell death trigger control. In case of staurosporine induced cell death 

model, cells were treated with staurosporine either in the presence or absence of peptides for 4 
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hours. Following incubation, cells were washed and incubated in a medium containing 30mM 

propidium iodide and active caspase-3 indicator for 30 minutes, and washed. The cells were then 

fixed and stained for propidium iodide and caspase-3 indicator positivity following manufacturer's 

instructions (Cat. no. 10402, Biotium, USA). Results are presented as percentage positivity relative 

to control condition (100%). 

 

In further studies on effect of HC blockers on cell death, cardiomyocytes isolated from C57/Bl6 

mice were subjected to hypoxia re-oxygenation in the presence or absence of HC blockers- Gap26, 

Gap19 and RRNY. Briefly, isolated mice cardiac myocytes were attached on glass-cover slips and 

introduced into a perfusion chamber and superfused with a flow rate of 0.5 ml/min. The buffers 

were transferred into the perfusion chamber through gas-tight steel capillaries. Ischemic conditions 

were simulated by perfusion of cells with anoxic, glucose-free media (pH 6.4) as described 

previously. After 10 min of normoxic perfusion, myocytes were exposed to simulated ischemia 

for 15 min and subsequently reoxygenated by perfusion of a normoxic, glucose-containing 

standard buffer (pH 7.4) for up to 30 min. PO2 of ischemic buffer was less than 1 mmHg as 

determined by a polarographic oxygen sensor. At defined time points after reoxygenation, cover 

slips were transferred to a microscope and five randomly selected pictures were taken for each 

cover slip. Ischemic tolerant cardiomyocytes were identified by their rod-shape structure. 

Hypercontracture leading to round-shaped cells was used as criteria to identify irreversible 

damaged myocytes. Trypan blue exclusion test was used to judge about sarcolemmal integrity281  

 

3.10 Ex vivo Langendorff ischemia-reperfusion studies in mouse hearts 

Hearts extracted from C57/Bl6 mice were subjected to ex vivo Langendorff perfusion. In groups 

subjected to ischemia reperfusion, following stabilization of hemodynamic parameters and a 

baseline perfusion of 10 min, hearts were subjected to global ischemia by clamping oxygenated 

buffer flow for 30 min and reperfused for 120 min. In the treated groups, peptides were perfused 

immediately before onset of ischemia and were present during entire ischemic period and initial 

10 min of reperfusion.  Control hearts which did not receive treatment were perfused for 160 min 

following 10 min stabilization. Following this, ventricles were cut into 2 mm transverse sections 

with a heart matrix and incubated in 1% 2,3,5-triphenyltetrazolium chloride (TTC) in 0.1 M 
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KH2PO4 buffer (pH 7.4, 38°C) for 10 min. TTC stains viable tissue red, indicating the presence of 

a formazan precipitate that results from TTC reduction by dehydrogenase enzymes present in 

viable tissue. All slices were digitally imaged on green background by a photoscanner, and the 

infarcted areas of each slice were measured automatically by planimetry using ImageJ-1.44i 

software (National Institutes of Health, Bethesda, MD), its ColorThreshold plug-in, and in-house 

macro ensuring fast and operator-independent measurements282. Infarcted areas of individual slices 

were averaged on the basis of their weight to calculate the total infarction of both ventricles. 

 

Statistics 

Results are expressed as means ± SEM. Statistical evaluation was performed using Students t-test 

or one way ANOVA, as appropriate. P-values <0.05 were considered as statistically significant.  



71 
 

Experimental contribution 
 
Ashish Kumar Gadicherla:  Designed, performed and analyzed all experiments with isolated 
mitochondria, planar lipid bilayer studies; confocal and super resolution imaging; cell death 
studies; ex-vivo Langendorff studies; prepared manuscript 
 
Nan Wang: Performed electrophysiology studies on HelaCx43 cells (Fig. 1F-H); reviewed and 
edited manuscript  
 
Marco Bulic: Performed and analyzed cell morphology and trypan blue uptake studies on isolated 
cardiomyocytes (Fig. 7A-C)  
 
Esperanza Agullo- Pascual: Guided and planned super resolution imaging (Fig. 1B, lower three 
panels). 
 
Alessio Lissoni: Helped with genetically modified animals; reviewed and edited manuscript 
 
Maarten De Smet: Helped with genetically modified animals; reviewed and edited manuscript 
 
Mario Delmar: Guided and planned super resolution imaging (Fig. 1B, lower three panels),  
 
Dmitri V. Krysko: Provided scientific input for the studies, reviewed and edited manuscript 
 
Amadou Camara: Guided proteomics experiments for planar lipid bilayer studies, reviewed and 
edited manuscript 
 
Klaus-Dieter Schlüter: Guided and planned cell morphology and trypan blue uptake studies on 
isolated cardiomyocytes 
 
Rainer Schulz: Guided and provided scientific input for the studies, reviewed and edited 
manuscript 
 
Wai-Meng Kwok: Guided planar lipid bilayer studies, reviewed and edited manuscript  
 
Luc Leybaert: Guided and provided scientific input for the studies, validated data, reviewed and 
edited manuscript. 
  



72 
 

3.2 Damage to mitochondrial complex I during cardiac ischemia-reperfusion injury is 
reduced indirectly by anti-anginal drug ranolazine 

 

Ashish Gadicherla, MS a, David F. Stowe, MD, PhD a,b,d-f, William E. Antholine, PhD c,  

Meiying Yang, PhD a, and Amadou K.S. Camara, PhD b,d,* 

 
aDepartment of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA     
bDepartment of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA             
cDepartment of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA               
dCardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA     
eResearch Service, Veterans Affairs Medical Center, Milwaukee, WI 53295, USA 
f Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53233, USA 
 

 

* Corresponding author: Amadou K.S. Camara, PhD, M4240, 8701 Watertown Plank Rd, Medical 

College of Wisconsin, Milwaukee, WI 53226. Phone: (414) 456-, Fax: (414) 456-6507, email: 

aksc@mcw.edu 

 

This work was published in part in abstract form: Biophys J 98:2068.pos, 2010; FASEB J 519.13, 

2010; Anesth Res Soc 808.pos, 2010; Biophys J 100:2500.pos, 2011.  

 

Short title: Protection of complex I during cardiac injury   



73 
 

Abstract 

Ranolazine (Ran), an anti-anginal drug, is a late Na+ channel current blocker that is also believed 

to attenuate fatty acid oxidation and mitochondrial respiratory complex I activity, especially during 

ischemia. In this study, we investigated if Ran’s protective effect against cardiac ischemia-

reperfusion (IR) injury is mediated at the mitochondrial level and specifically if respiratory 

complex I (NADH oxidoreductase) function is protected. We treated isolated and perfused guinea 

pig hearts with Ran just before 30 min ischemia and then isolated cardiac mitochondria at the end 

of 30 min ischemia and/or 30 min ischemia followed by 10 min reperfusion. We utilized 

spectrophotometric and histochemical techniques to assay complex I activity, western blot analysis 

for complex I subunit NDUFA9, electron paramagnetic resonance for activity of complex I Fe-S 

clusters, ELISA for determination of protein acetylation, native gel histochemical staining for 

respiratory supercomplex assemblies, and high pressure liquid chromatography for cardiolipin 

integrity; cardiac mechanical function was measured during IR. Ran treated hearts showed higher 

complex I activity and greater detectable complex I protein levels compared to untreated IR hearts. 

Ran treatment also led to more normalized electron transfer via Fe-S centers, supercomplex 

assembly and cardiolipin integrity. These improvements in complex I structure and function with 

Ran were associated with improved cardiac function after IR. These protective effects of Ran are 

not likely mediated directly on mitochondria, but via indirect cytosolic mechanisms which lead to 

decreased reactive oxygen species generation, which in turn leads to less oxidation and structural 

preservation of complex I. 

 
Key words 

Complex I, mitochondria, IR injury, ranolazine, EPR, heart 
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1. Introduction 

It is now evident that mitochondria play an important role in mediating both protection and damage 

during cardiac ischemia-reperfusion (IR) injury. An important target for protection is 

mitochondrial complex I (NADH-Ubiquinone oxidoreductase)207,283. Complex I is a large, multi-

subunit, integral membrane protein highly susceptible to functional and structural damage during 

IR injury284,285. Complex I is bound by cardiolipin, a highly unsaturated fatty acid in the inner 

mitochondrial membrane (IMM). Cardiolipin is essential for maintaining functional and structural 

integrity of the respiratory complexes and to assure efficient transfer of electrons within subunits 

of the complexes and between the complexes286. The transfer of electrons via sequential oxidation-

reduction of Fe in the seven Fe-S clusters of complex I exemplifies this critical role of 

cardiolipin287,288. Because cardiolipin is susceptible to oxidative attack by reactive O2 species 

(ROS)289,290 leading to peroxidation and carbon chain breakdown291 the assemblies of respiratory 

complexes are also dependent on integrity of cardiolipin. 

 

Ranolazine (Ran) is a clinically used drug known to reduce cardiac dysrhythmias244–247 and tissue 

damage after ischemia-reperfusion injury (IR)292. During IR injury, Na+ can slowly enter myocytes 

during phase 3 of the action potential to initiate dysrhythmias247. As a late Na+ channel current 

blocker243 Ran is thought to protect hearts by reducing the incidence of dysrhythmias during IR 

injury. However, since Ran prevents intracellular Na+ loading, particularly during ischemia, it 

could also decrease cytosolic Ca2+ overload via Na+/Ca2+ exchange (NCE) and consequently 

decrease mitochondrial Ca2+ (m[Ca2+]) overload293; Ca2+ overload is thought to cause increased 

production of ROS and to trigger cell apoptosis by release of cytochrome c. These events may 

underlie, at least in part, the protection afforded by Ran against cardiac tissue damage during IR.  

 

In a recent isolated heart study of IR injury56, we found that Ran treatment just before ischemia 

reduced ROS emission and cytosolic and m[Ca2+] loading and, in isolated mitochondria, reduced 

cytochrome c release and delayed opening of the mitochondrial permeability transition pore 

(mPTP) during cardiac IR injury. Other reports suggest that Ran exerts a cardioprotective effect 

by switching substrate utilization from fatty acids to glucose metabolism292,294,295, which reduces 

mitochondrial O2 demand and that Ran partially blocks respiratory complex I activity296. Although 

prior studies give insight into Ran’s mode of cardioprotection, there is no direct evidence that Ran 
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attenuates mitochondrial dysfunction during IR injury. 

 

Given the role of complex I in generating ROS during IR297,298 and the crucial role of 

cardiolipin291,297,298 in promoting efficient electron transfer, we sought to determine changes in 

complex I following IR injury and any beneficial biophysical and biochemical effects of Ran on 

complex I during IR. Because it is unclear if Ran directly targets mitochondria to protect against 

IR injury, we hypothesized that Ran, when present during ischemia, preserves cardiolipin and 

supercomplex assembly integrity, and especially complex I activity, by its effect to reduce ROS 

emission and oxidation of mitochondrial components as a primary mechanism to protect against 

cardiac IR injury. 

 

2. Results 

 

2.1. Spectrophotometric determination of complex I activity 

Representative traces of complex I activity, monitored in an absorbance spectrophotometer as the 

rate of oxidation of NADH to NAD+ in the presence of UQ10, illustrate differences dependent on 

the treatment (Fig. 1A). In summarized data from 4 individual hearts from each of the 5 

experimental groups (Fig. 1B) TC exhibited a NADH oxidation rate of 122±5 nM/min/mg protein 

with a large decrease in oxidation rate after I30 to 49±8 nM/min/mg, but partial restoration to 

106±1 nM/min/mg in RanI30. Similarly, there was a large decrease in complex I activity after IR 

to 70±4 nM/min/mg, which was completely restored to 123±7 nM/min/mg in RanIR. In RanTC, 

no changes were seen in complex I activity (Data not shown). In preliminary experiments to 

determine if Ran directly alters mitochondrial complex I activity in fractured mitochondria, Ran 

was added to freeze-thaw fractured mitochondria from the TC, I30 and IR groups, followed by 

measurement of complex I activity; the result was a slight but insignificant decrease in activity 

(Data not shown).  
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Fig. 1 A: Representative spectrophotometric assay of complex I activity, in solubilized mitochondria during cardiac 
IR depicting the time points of addition of substrate, enzyme and the inhibitor. B: Summary data shows I30 alone 
reduced the activity of the enzyme, which was restored by treatment with ranolazine (Ran). Reperfusion itself 
corrected the decrease in activity, but this was not as pronounced as with Ran on reperfusion. Note that the activities 
depicted in B have been corrected for rotenone sensitivity and normalized to citrate synthase levels. N= 4/group; # 
indicates p<0.05 vs. TC 
 

2.2. Histochemical staining for complex I function in gel 

A representative gel (Fig. 2A) for NBT-oxidoreductase activity, reflecting complex I function with 

or without ischemia, reperfusion and Ran, illustrates decreased band density after I30 and IR but 

higher band density in RanI30 group. Summary data (Fig. 2B) showed that band density decreased 

after I30 (87±3%) and IR (87±5%) compared to the normalized TC (100%). Ran treatment before 

ischemia resulted in a significantly higher band density (RanI30 =95±4%) vs. I30 alone, whereas 

band density RanIR (91±4%) was not greater than that for IR alone.  

 

 

Fig. 2A: Representative histochemical gel staining of complex I activity, in solubilized mitochondria, measured as 
NBT-oxidoreductase, during cardiac IR. B: Summary data shows I30 alone resulted in lower staining than in TC and 
IR. Ran treatment increased staining, indicating improved complex I function. N= 4/group; # indicates p<0.05 vs. TC 
 

2.3. Supercomplex assemblies detected by native gels 

 A representative image of a native gel (Fig. 3A) stained by Coomassie Brilliant Blue illustrates a 
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supercomplex comprised of complexes I, III and IV as identified by histochemical staining. 

Summary data (Fig. 3B) showed that band intensity for the supercomplex I+III+IV (TC 100%) 

was lower in I30 (96±1%) but restored to control levels in RanI30 (100±2%). Band intensity for 

the IR (100±3%) and RanIR (104±4%) groups were not different from the TC. Complex I was not 

found to associate further with complexes II and V to form other supercomplexes. 

 

 

Fig. 3 Representative detection of supercomplex I, III, and IV assemblies, in solubilized mitochondria, by native gel 
electrophoresis during IR (A-D). Summary data shows that ischemia reduced the integrity of the supercomplex 
assembly. Both reperfusion and Ran treatment during ischemia restored assembly integrity to TC levels (E). Complex 
I did not associate with complexes II or V. N= 4/group; # indicates p<0.05 vs. TC 
 
2.4. Determination of integrity of complex I subunit NDUFA9 by western blots 

A representative blot for the complex I subunit NDUFA9 (Fig. 4A) from hearts subjected to IR ± 

Ran illustrates decreased intensity in I30 and restoration in RanI30 and RanIR. Complex IV 

subunit I was used as the loading control. Summary data (Fig. 4B) showed that compared to TC 

(100%) the anti-NDUFA9 immune reactive band intensity was significantly lower in I30 (84±9%) 

but was restored in RanI30 (109±7%). Band densities for IR (101±4%) and RanIR (112±7%) 

groups were not different from the TC group. 

 

Fig. 4 Representative Western blot detection of complex I subunit NDUFA9 during IR. Summary data shows that 
ischemia reduced the amount of detectable subunit, indicating a loss of protein or protein damage. Both reperfusion 
and Ran treatment during ischemia restored protein levels to TC levels. N= 4/group; # indicates p<0.05 vs. TC 
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2.5. Analysis of acetylation of mitochondrial proteins using ELISA 

The optical density for acetylated mitochondrial proteins, as detected by ELISA, showed an overall 

decrease in all groups compared to TC (76±4.9 arb. units) (data not represented graphically). I30 

showed the least acetylation (41.7±3.1 arb. units), whereas IR partially restored the acetylation 

(57.8±4.6 arb. units). Treatment with Ran partially restored acetylation in both groups (Ran I30 = 

56.5±2.7 arb. units; RanIR = 59.8±2.3 arb. units). Values for each treatment group were 

significantly lower than the TC group, and there was statistically significant difference (p<0.05) 

between I30 and RanI30, but not between IR and RanIR. 

 

2.6. Electron transfer in Fe-S clusters by electron paramagnetic resonance 

Averaged peak intensities (4 hearts per group) of Fe-S resonance signals (in arb. units) showed 

differences in peak signals dependent on the treatments (Fig 5A). The g=2.023 signal was assigned 

to S3, the 3Fe-4S cluster of complex II, or to mitochondrial aconitase, g=2.006 to the semi-

ubiquinone radical, g=1.94 to cluster N1b of complex I or to cluster SI of complex II, and g=1.89 

to cluster N4 of complex I or to the Rieske center of complex III, respectively. Summary data (Fig. 

5B) showed that compared to TC (3.1±1.4 arb. units), neither I30 (2.7±0.8) nor IR (4.2±0.6) 

significantly altered the g=2.023 signal. However, Ran treatment reduced the g=2.023 signal 

further in RanI30 (1.6±0.4), but not in RanIR (4.2±1.0). There was a significant increase in the 

g=2.006 radical in I30 (1.49±0.07), which was reduced back to TC (0.87±0.09) in IR (1.06±0.03). 

Ran treatment also reduced the g=2.006 signal (RanI30=1.29±0.09; RanIR=1.02±0.04). There was 

also a significant increase in signals pertaining to g=1.94 and 1.89 during ischemia, which returned 

to TC levels after reperfusion. The contribution at g=1.94 for N4 can be verified by the changes 

noted at g=1.89; thus the contribution of N1b and S1 can be estimated after evaluating the 

contribution of N4. The signal at g=1.94, contributed by N3, is small as estimated by the weak 

signal at g=1.86, the low field g-value for the signal from N3. Similarly the contribution to the 

signal at g=1.92 from N2 is weak as determined by the absence of signal from the low field g-

value for N2 at 2.05.  
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Fig. 5 A: Representative traces of EPR signals during IR denoting changes in three mitochondrial Fe-S clusters and 
semiubiquinone (Q•). B: Summary data shows the changes in spectral magnitudes of the Fe-S clusters and Q•. Ischemia 
increased electron transfer within complex I and Q•; this was reversed on reperfusion. Ran had a small effect to 
decrease electron transfer during reperfusion. I, II, II = respiratory complexes; N and Rieske = FeS clusters. 
 

2.7. Determination of cardiolipin integrity by HPLC 

Representative HPLC traces of cardiolipin integrity were different depending on treatment (Fig. 

6A). Compared to the cardiolipin standard TC (93±2 arb. units), there were significant decreases 

in the areas under the curves in I30 (56±21 arb. units) and more so in IR (32±12 arb. units) groups 

reflective of damaged cardiolipin. In summary data (Fig.6B) the RanI30 group (49±15 arb. units) 

showed no improvement over I30 alone, but the RanIR (69±8 arb. units) group showed a larger 

area under the peak reflective of less fragmented cardiolipin. The number of peaks as detected by 

HPLC was also higher (reflecting more fragmented species) in I30 and IR groups compared to 

RanI30 and RanIR groups, respectively (Fig. 6A).  
 

 

 

Fig. 6. A: Representative traces of cardiolipin integrity by HPLC analysis during IR. B: Summary data shows that 
ischemia alone reduced the area under the major peak of cardiolipin, and reperfusion decreased it further. Treatment 
with ranolazine restored peak heights and also decreased the number of peaks, indicating that ranolazine treatment 
preserves cardiolipin. N= 4/group; # indicates p<0.05 vs. TC 
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2.8. Improved cardiac function after IR injury with ranolazine 

Heart rate, coronary flow, diastolic LVP, and developed (systolic-diastolic) LVP remained 

unchanged during continuous perfusion of hearts for 60 min (TC, data not displayed) after which 

time hearts were harvested for examination of complex I function using the methods described 

above. At the end of 30 min no flow global ischemia there was no heart beat and diastolic LVP 

was elevated (Table); after 10 min reperfusion heart rate and coronary flow were similar to those 

of the time control in all IR groups. Diastolic LVP was more elevated in the IR group than in the 

RanIR group and developed LVP was more depressed in the IR group than in the RanIR group. 

These data indicate that Ran had a protective effect on reducing contracture during ischemia and 

on increasing contractile function on reperfusion. These protective effects were associated with 

improvements in several assays of complex I function and the integrity of its support structure 

cardiolipin.  

 

3. Discussion 

 

3.1. Summary of findings 

 

Complex I is a major source of ROS during IR297,299 and this increase in ROS is a major cause for 

the poor return of cardiac function after IR injury207,239. For that reason we used several 

experimental tools to search for deleterious biochemical and biophysical changes in respiratory 

complex I integrity and function in hearts subjected to 30 ischemia alone, or to ischemia plus 10 

min reperfusion. Ran, which is reported to have cardio-protective effects on cardiac tissue244–247 

by switching substrate preference294,295 among other proposed effects292 was examined for its 

potential to attenuate damage to complex I and to improve cardiac function when present during 

ischemia.  

 

We found that ischemia alone a) reduced the rate of NADH oxidation, b) reduced protein 

acetylation, c) decreased complex I function, d) reduced supercomplex assembly, e) decreased the 

detection of a complex I subunit, f) increased the reduced state several fold in three distinct Fe-S 

clusters in complex I and/or complex II [2Fe-2S in N1b and/or S1 and the 4Fe-4S cluster N4, and 

in complex I N4 and/or Rieske center in complex III], increased the signal at 2.006 (semi-
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ubiquinone radical) but did not alter the signal at 2.023 [S3 in complex II and/or aconitase] and, 

g) reduced the structural integrity of cardiolipin, a supporting structure for mitochondrial 

complexes. Compared to ischemia alone, treatment with Ran during ischemia resulted in full or 

partial restoration of: a) the rate of NADH oxidation, b) the acetylation of mitochondrial proteins, 

c) the detection of complex I subunit, and d) the supercomplex assembly.  

 

During the short 10 min reperfusion period, complex I dysfunction persisted, acetylation levels 

remained lower, and cardiolipin showed greater disintegration. Because the expression levels of 

respiratory complex I subunits are not likely to change given the short time period of our protocols, 

any reduction in complex I subunit band intensity probably reflects compromised integrity of the 

subunit’s structure. The reduction in NADH oxidation rate with reperfusion alone was reversed 

and cardiolipin integrity was improved by Ran treatment. Electron transfer through N1b of 

complex I and/or SI of complex II was improved by Ran on reperfusion and through N4 of complex 

I or the Rieske center of complex III. Each of these changes observed after Ran treatment was 

associated with improved cardiac relaxation during ischemia and improved contractile function 

during reperfusion. However, Ran did not alter complex I activity when applied directly to 

fragmented mitochondria from the TC, I30, or IR groups.  

 

Our study lends support to our hypothesis that Ran treatment leads to partial protection of 

mitochondria, as shown in part, by improved complex I activity, restored e- transfer through some 

Fe-S clusters, and retained supercomplex assembly and cardiolipin integrity. Moreover, this range 

of protection implies that Ran is not likely to have a direct molecular interaction with complex I, 

which is substantiated by our finding that Ran had no effect on activity when added directly to 

fractured mitochondria. Hence we conclude that Ran acts indirectly at another site to reduce 

damage to mitochondrial structures. We suggest that by lowering ROS emission with reduced 

cytosolic and m[Ca2+] loading, as shown recently by us56, Ran indiscriminately reduces oxidative 

damage to complex I and to its supporting structures (among other mitochondrial and cytosolic 

molecules). Our study demonstrates the extent of structural and functional damage to complex I 

with IR injury and the important role of a non-mitochondrial targeted drug to indirectly protect 

mitochondrial function.  
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3.2. ROS and damage to respiratory complexes during cardiac injury 

 

Superoxide radicals (O2
•-) are produced in small amounts in mitochondria under O2 and substrate 

replete conditions, but the balance between O2
•- generation and free radical scavenging, (ROS 

emission), is altered in high oxidative conditions such as IR injury26,283,298,300. These O2
•- radicals 

and their downstream products attack all types of cellular molecules, i.e. proteins, lipids, 

carbohydrates, and D(R)NA, thereby altering their structure and function301,302. Although all major 

biomolecules are susceptible to oxidative damage, the extent of this damage is dependent on the 

molecular structure, the length of exposure to ROS, the concentration and kind of ROS, and the 

capacity of ROS scavengers available. 
 

Respiratory complexes differ in their susceptibility to IR injury. Complexes I and III are believed 

to be more susceptible to injury than complexes II, IV, and V298. A useful kinetic test for an effect 

of Ran to protect respiratory complex I against IR injury is the measure of catalytic conversion 

rate of NADH to NAD+ in complex I during IR. Although complex III is reported to be a major 

source of O2
•- generation283,285,303,304, many studies have implicated complex I to be the most 

susceptible of respiratory complexes to ischemic damage297,305. Complex I is also a major site of 

e- leak during IR; this is likely to drive e- transfer backward through complex I toward the NADH 

binding site207,306,307. Indeed, in our collateral histochemical and kinetic experiments we found that 

complex I function was attenuated; this is consistent with the increased (backward) e- transfer in 

complex I and the decreased (forward) e- transfer in complex II298,308. 
 

Interventions to limit backward e- transfer from complex II into complex I may be helpful in 

attenuating ROS release207,306,308. Indeed, Chen et al.308 showed previously that amobarbital, a 

complex I blocker at the rotenone site, itself slightly enhanced generation of O2
•- before ischemia 

but attenuated O2
•- emission during IR; we suggest that this may be attributable to inhibited 

backward e- transfer, thus preserving mitochondrial redox state207. Other modulators of complex I 

are also known to have protective effects against IR injury305. The decreased rate of NADH 

oxidation in ischemic hearts, compared to reperfused hearts, might also be due to a lack of the e- 

acceptor O2. When reperfusion begins there is an abrupt availability of O2, and hence a higher rate 

of activity. In support of this, we found faster respiratory complex I activity in Ran -treated hearts 

than in the untreated ischemia and IR groups  
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3.3. Mechanism of mitochondrial protection by ranolazine during cardiac IR injury 

 

Ranolazine is a clinically useful anti-anginal drug245,309 that was found originally to block the late 

Na+ current that occurs with ischemia247,310,311. But others have reported that Ran induces a switch 

from the usual substrate preference from fatty acids to glucose, and that it partially blocks complex 

I at an unconfirmed site, particularly in uncoupled mitochondria296. If Ran were indeed a partial 

complex I blocker in vivo as Wyatt et al. reported in in vitro isolated mitochondria296, this might 

contribute to preserving its structure and function during IR injury as we found. It is unknown if 

Ran penetrates membranes effectively due to its hydrophilic structure. It is conceivable that a fat 

soluble metabolite of Ran is a direct mitochondrial protective drug, but this will require direct 

evidence of a metabolite with actions on complexes and other mitochondrial targets. Because we 

found that Ran had no direct effects on mitochondrial function when applied directly to isolated, 

energized mitochondria56 or to fractured mitochondria, we believe it is unlikely to directly target 

complex I or any other mitochondrial protein. 

 

During ischemia there is an increase in cytosolic [Na+] due to failure of the Na+/K+ ATPase pump 

and an increase in toxic intermediates312. This triggers NCE, which results in increased cell Ca2+ 

loading, and consequently, m[Ca2+] loading which may lead to mitochondrial oxidative damage 

by “Ca2+-induced ROS release”300,313. Increased m[Ca2+] contributes to an increase in ROS 

emission under certain circumstances, either by increasing the rate of O2
•- generation or by 

reducing the rate of ROS scavenging293,313,314. Mitigating NCE was shown to reduce m[Ca2+] 

loading and thus to induce a cardioprotective effect314. Therefore we postulated that Ran induces 

its protective effect by reducing NCE in the cytosolic compartment to reduce Ca2+ loading, and by 

extension, to mitigate m[Ca2+] loading. Our conclusion derives from the principal earlier finding 

that Ran is a late Na+ channel current blocker247,310,311,315, and our report that Ran reduces m[Ca2+] 

overload and ROS emission during late ischemia and 60 min reperfusion56. This decrease in ROS 

may or may not be a direct consequence of an improved electron transport chain activity or excess 

Ca2+. However, Song et al. reported that Ran attenuated H2O2 -induced cytosolic Ca2+ overload 

and cardiac contractile dysfunction314 suggesting that “ROS induced Ca2+ loading” can be 

attenuated by Ran.  
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The oxidative stress that occurs in ischemia is known to activate deacetylases316,317, which cause a 

decrease in lysine acetylation. Deacetylation can disturb the secondary and tertiary associations 

among proteins and/or their subunits. Hence it is possible that by preserving acetylation, a 

reversible PTM, this might help preserve the integrity of mitochondrial proteins. Ran treatment 

attenuated the lysine deacetylation of mitochondrial proteins during ischemia. If Ran could access 

the mitochondrial matrix, it might interfere with the action of deacetylases to protect the proteins 

but there is no direct evidence for this.  

 

3.3. Electron transfer in complex I and protective effect of ranolazine during cardiac IR injury  

 

Changes in EPR spectra can occur due to many factors, including but not limited to: a loss of one 

or more Fe-S clusters, a saturated oxidation or reduction potential, and proximity of neighboring 

clusters. Complex I subunits with their Fe-S clusters mediate single e- transfer so any damage to 

these subunits or Fe-S clusters will cause disrupted e- transfer. Once an e- enters the Fe-S cluster 

chain, its further movement is affected by the redox states of the following Fe-S clusters288,318 

From FMN one e- enters a transport chain consisting of one binuclear and the six tetranuclear Fe-

S clusters leading (during forward e- transfer) to the ubiquinone (Q) binding site (FMN → 

N3→N1b–N4–N5–N6a–N6b→N2 → Q•→Q)319 and ultimately to complex II. In our study, we 

observed no significant change in the g=2.023 signal representing the 3Fe-4S cluster, S3, of 

complex II IR. In contrast, results of Myers et al. reported a decrease in the aconitase signal (with 

the same g value) following oxidative stress with chromium radicals320. There was a significant 

increase in the amount of the EPR detectable semi-ubiquinone (Q•) radical during ischemia, and 

this was reduced by reperfusion as well as by Ran treatment. It should be noted however, that Q• 

is one of the several free radicals generated during ischemia, and hence this is not representative 

of the total oxidative stress in the tissue.  

 

In contrast to S3 of complex II, there were significant increases in the signal intensities for g = 

1.94 and 1.89 during ischemia that decreased again on reperfusion; this could represent reverse e- 

transfer during ischemia within complex I. It is difficult to ascertain the exact source of this signal 

because it can emanate from cluster N1b of complex I or SI of complex II. Although other clusters 

like the 4Fe-4S and N3 have a g-value close to 1.94 (1.93 for N3) the complementary peak (2.04 
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for N3) is too weak to detect, implying there is little contribution of signal from N3 at 1.93. Thus 

the 1.94 signal is attributed to N1b and/or S1.   

 

Reverse e- transfer is believed to occur in the respiratory chain during ischemia, particularly within 

complex I306. Our results support this assumption. It is plausible from the EPR spectra of N1b 

(g=1.94) and N4 (g=1.89) clusters that ischemia can cause a severe back up of e- to cause reverse 

e- transfer back in complex I. Reperfusion appeared to largely correct this e- back up, whereas 

ranolazine did not affect signal intensity during ischemia, but increased it on reperfusion. The 

reason for this is unclear. Similarly, we observed an increase in signal intensity for g = 1.89 during 

ischemia. Again, this signal can be attributed to either cluster N4 of complex I or the Rieske center 

of complex III; however, since most of this signal was generated by the N4 cluster (as noticed after 

spectral splitting at higher resolution), we conclude that the changes we observed were due to 

cluster N4 and not to the Rieske center. 

 

The signal at g=2.023, assigned to the oxidized state of the 3Fe-4S, S3 cluster in complex II 

decreased with ischemia and fell even more during ischemia with ranolazine, but recovered during 

reperfusion with or without ranolazine. We can attribute the decrease in the 2.023 signal to greater 

e- flow through complex II, thus reducing the S3 center. This complements the suggestion that 

there is a reverse e- transfer during ischemia.  

 

3.4. Cardiolipin integrity and protective effect of ranolazine during cardiac injury 

 

Cardiolipin, as a highly unsaturated, fatty acid molecule, is prone to ROS attack with the most 

commonly encountered changes being lipid peroxidation and carbon chain breakdown304. The 

qualitative mobility of cardiolipin was assessed using HPLC by a change in area under the peak, 

compared to the cardiolipin standard, and by the appearance of secondary peaks with different 

retention times; these changes represent distortion of cardiolipin. Moreover, cardiolipin has a high 

content of oxidatively sensitive linoleic acid, a phospholipid unique to mitochondria. Its location 

in the IMM makes it extremely susceptible to oxidative damage by ROS, whether acutely as in IR 

injury or chronically as in aging289,290. Cardiolipin is necessary not only for the assembly of each 

respiratory complex and the supercomplexes, but also for the proper functioning of respiratory 
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complexes; thus any fragmentation or damage to cardiolipin reflects on the performance of the 

respiratory complexes286,291,297. 

 

Ran is also reported to partially inhibit fatty acid oxidation294,295 and to stimulate glucose oxidation 

in hearts during normoxia, ischemia, and IR295,321. Thus Ran may also act as a metabolic 

modulator294,295 that promotes more efficient use of O2 and substrates. A reduction in ROS 

emission would likely reduce oxidative damage to cardiolipin, as suggested by our HPLC 

experiments, in which Ran -treated hearts exhibited a partial restoration toward the control 

cardiolipin HPLC spectra. Our data showing restoration of cardiolipin integrity, along with 

improvements in complex I structure and activity in the Ran treated hearts, are consistent with 

another study showing that restoration of cardiolipin content in mitochondria can improve complex 

I activity297. 

 

3.5. Conclusions 

 

Protection of hearts against IR injury by ranolazine is associated with mitochondrial protection. 

Although Ran exerts a protective effect on complex I and its supporting structures, it is doubtful 

from our study that Ran mediates its protection by directly interacting at complex I, given our 

finding that Ran had no direct effect on complex I activity, or on any other mitochondrial function 

we measured in intact or fragmented mitochondria. The reversal or attenuation of complex I 

dysfunction, albeit indirect, by Ran points out the importance of complex I integrity and function 

as important factors in restoring cardiac function. Moreover, given the effects we observed and 

other studies from the literature, Ran appears to protect hearts in various ways, including but not 

limited to blocking the late Na+ current. Concomitant decreases in m[Ca2+] overload and ROS 

emission, induced by Ran, are the probable factors that lead to preservation of cardiolipin and less 

backward e- transfer through the Fe-S clusters of complex I, thereby improving its efficiency in 

function and NADH oxidizing capability. Nevertheless, our study emphasizes the extent of injury 

to complex I and other mitochondrial structures, and expresses the importance of understanding 

the mechanisms of compounds to protect mitochondria during cardiac IR injury.  
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4. Materials and Methods 
 

4.1. Isolated heart preparation and functional assessment 

The Institutional Animal Care and Usage Committee of the Medical College of Wisconsin 

approved all animal studies. Guinea pig hearts (n=43) were isolated and prepared for constant 

pressure perfusion studies as previously published207,224,322,323. Briefly, animals were injected i.p. 

with 10 mg/kg ketamine to induce anesthesia and with 5000 units heparin to prevent coagulation. 

Following decapitation and thoracotomy, hearts were removed and perfused with Krebs-Ringer’s 

buffer (KR) (in mM 138 Na+, 4.5 K+, 1.2 Mg2+, 2.5 Ca2+, 134 Cl-, 15 HCO3
-, 1.2 H2PO4

-, 11.5 

glucose, 2 pyruvate, 16 mannitol, 0.05 EDTA and 5 U/L insulin) gassed with 3% CO2, 97% O2 at 

pH 7.4 and 37°C. A saline filled balloon catheter attached to a transducer was used to measure left 

ventricular pressure (LVP). Diastolic LVP was set initially to zero in order to monitor any increase 

and an indicator of diastolic contracture, a marker of ischemic injury. Coronary flow was measured 

using an ultrasonic flowmeter (model T106X, Transonic Systems) placed directly into the aortic 

inflow line. Spontaneous heart rate was monitored using bipolar electrodes placed on the right 

atrial and ventricular walls.  

 

4.2. Protocols for isolated, perfused heart 

Given that IR injury is time dependent299,324,325, we used an experimental protocol of 30 min of 

ischemia followed by 10 min reperfusion to assess changes in complex I.  Once heart rate and LVP 

had stabilized each heart was subjected to one of the following six protocols: 60 min of control 

perfusion (TC) (n=8); 30 min global ischemia (I30) (n=8); 30 min global ischemia followed by 10 

min of reperfusion (IR) (n=8); 10 µM Ran given 1 min prior to 30 min global ischemia (RanI30) 

(n=8); 10 µM Ran given 1 min before 30 min global ischemia followed by 10 min reperfusion 

(RanIR) (n=8) and 10 µM Ran given for 1 min followed by 40 min of KR perfusion (RanTC) 

(n=3). At the end of each experiment, some hearts were immediately immersed into liquid N2 for 

later assessment of changes in electron paramagnetic resonance (EPR) signals, or for later 

determination of cardiolipin integrity by high pressure liquid chromatography (HPLC); 

alternatively mitochondria were isolated, as described below, for western blotting, analysis of 

supercomplex assemblies and assessment of complex I activity (NADH oxidation).  
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4.3. Isolation of mitochondria 

At the conclusion of each protocol, hearts were immediately removed from the perfusion apparatus 

and mitochondria were isolated as previously described224,326. In brief, ventricles were excised, 

placed in isolation buffer (in mM: 200 mannitol, 5 KH2PO4, 5 MOPS, 1 EGTA, 0.1% BSA and 

0.5 mg/ml butylated hydroxy toluene as an anti-oxidant (pH adjusted to 7.15 with KOH), and 

minced into fine pieces. The suspension was homogenized for 30 s in 2.5 ml isolation buffer 

containing 5 U/ml protease and for another 1 min after adding 17 ml isolation buffer. The 

suspension was centrifuged at 8,000 g for 10 min. The pellet was re-suspended in 25 ml isolation 

buffer and centrifuged at 750 g for 10 min, the supernatant was centrifuged again at 8,000 g for 10 

min, and the final pellet, enriched in mitochondria, was re-suspended in 0.5 ml isolation buffer and 

stored at -80°C until further use.  

 

4.4. Assessment of mitochondrial complex I activity 

Mitochondria isolated as described above were centrifuged at 10,000 g and the pellet was re-

suspended and washed in hypotonic buffer containing 25 mM potassium phosphate buffer with 5 

mM MgCl2 at pH 7.2 by centrifugation at 10,000 g. After dilution to the appropriate concentration, 

mitochondria were subjected to three rounds of freeze-thaw cycles in the same hypotonic buffer. 

The fractured mitochondria were used for assay of dynamic respiratory complex I activity using a 

cuvette based spectrophotometer (PTI- model QM-8, Photon Technology International). 

 

Complex I activity was measured by monitoring the dynamic change in absorbance from oxidation 

of NADH to NAD+ at 340 nm in a pH 7.2 buffer containing 25 mM potassium phosphate buffer 

with 5 mM MgCl2, 2 mM KCN, 2.5 mg/ml BSA, 13 mM NADH, and 65 mM ubiquinone 

(UQ10)327. Briefly, after a 3 min baseline measurement, 5 µg of the mitochondrial lysate was added 

and absorbance was recorded continuously for another 5 min; this was followed by absorbance 

recorded for 3 min after 2 µg rotenone to completely block complex I activity. The rate of 

absorbance after adding rotenone was subtracted from the initial rate of change in absorbance, due 

to addition of mitochondria, to obtain rotenone sensitive activity. The rates of enzyme activity of 

all groups were normalized to citrate synthase activity levels to account for difference in active 

enzyme at the time of isolation. Rate of activity was calculated using the extinction coefficient of 

NADH as 6.81 mM-1 cm-1 (327).  
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4.5. Detection of supercomplex assemblies and histochemical staining of complex I 

Mitochondrial respiratory complexes are integrated into multi-complex assemblies that can be 

detected using native gel electrophoresis328,329 with the use of mild detergents to solubilize the 

mitochondrial membranes while preserving both the functional and structural integrity of the 

complexes. First, freshly isolated mitochondria were disrupted using the method of Schägger et 

al330. Briefly, 400 µg of pelleted mitochondria was re-suspended in pH 7.0 buffer containing 50 

mM NaCl, 50 mM imidazole/HCl, 2 mM 6-aminohexanoic acid, and 1 mM EDTA. Next 

mitochondria were solubilized by adding dodecylmaltoside (2.5 g/g) and digitonin (6.0 g/g), 

followed by incubation on ice for 10 min and centrifugation at 16,000 g for 30 min. Then the 

supernatant was retained and 5 µl of 50% glycerol was added. Non-gradient, clear native gels (8% 

acrylamide) were used for resolving supercomplexes and individual complexes (Wittig et al. 

2007). Gels were used either for Coomassie staining or histochemical staining to assess 

mitochondrial complex I function. 

 

For Coomassie staining, gels were stained for 20 min in 0.2% Brilliant Blue G in methanol:acetic 

acid:water (MAW) (40:7:53 v/v), and later destained with MAW. After destaining, the gels were 

scanned using a desktop scanner (CanoScan 8400F) and densitometry was performed using the 

ImageJ program (National Institutes of Health, Bethesda, MD). Respiratory complex I function 

was detected by incubating the gel in 5 mM Tris-HCl, pH 7.4, containing 0.5 mg/ml Nitro Blue 

Tetrazolium chloride (NBT) and 2.5 mg/ml NADH. Bands were visible after 5 min incubation. 

The gels were transferred into Tris-HCl at pH 7.4 and scanned for densitometry. Complex III was 

detected by incubating the gels in 50 mM sodium phosphate buffer at pH 7.2 containing 0.5 mg/ml 

diaminobenzidine. Bands were visible after 45 min of staining. Gels were scanned for densitometry 

and reused for detecting complex IV function by transferring the gels into 50 mM sodium 

phosphate buffer at pH 7.2 containing 0.5 mg/ml diaminobenzidine and 5 mM cytochrome c331. 

Histochemical staining of complexes III and IV was performed to determine supercomplex 

components. 

 

4.6. Western blot detection of complex I 

Complex I subunit NDUFA9 is an integral membrane subunit, and is also known to be more prone 

to post translational modifications (PTM) than other subunits332. Hence any changes in levels of 
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this subunit indicate compromised membrane integrity and possible alterations in the PTMs of the 

subunit. Mitochondrial protein (50 µg) was solubilized in Laemmli buffer and resolved using 

sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SDS-PAGE) as described by 

Laemmli333 and transferred onto poly vinilidine difluoride membranes using Transblot System 

(Bio-Rad, Carlsbad, CA) in 50 mM tricine and 7.5 mM imidazole transfer buffer. Membranes were 

blocked with 10% non-fat dry milk in Tris Buffered Saline- TBSt (25 mM Tris-HCl at pH 7.5, 50 

mM NaCl and 0.1% Tween 20) by incubating for 1 h followed by incubation in anti- NDUFA9 

antibody (Invitrogen, CA) solution overnight at 4 °C. After three washes with TBSt the membrane 

was incubated with an appropriate secondary antibody conjugated to horse-radish peroxidase for 

3 h. After five washes with TBSt the membrane was incubated in enhanced chemiluminescence 

detection solution (ECL-Plus, GE-Amersham) and exposed to X-ray film for autoradiography. 

Equivalent protein loading was confirmed using an antibody against cytochrome c oxidase 

(complex IV) subunit 1 (Invitrogen, CA) since complex IV is relatively resistant to IR injury than 

complex I at 10 min of reperfusion299,324,325. 

 

4.7. Acetylation of mitochondrial protein 

A common PTM is acetylation. Total mitochondrial protein acetylation was analyzed using 

Enzyme Linked Immuno Sorbent Assay (ELISA). Mitochondria, isolated as described above, were 

solubilized by suspension in phosphate buffered saline, pH 7.4, by the addition of 0.5 % Tween-

20. 20 µg of the lysed protein was suspended in 50 µl of sodium carbonate-bicarbonate buffer, pH 

7.4 and coated overnight in a 96 well plate. The wells were washed with PBS and blocked with 

1% BSA. After three washes, anti-acetyl lysine antibody was added to each well. Following a 

three-hour incubation, the wells were washed again in PBS, and incubated with appropriate 

secondary antibody. Color development was achieved by the use of a solution containing o-

phenyline diamine, citric acid, and hydrogen peroxide. The plate was scanned for optical density 

measurements at 490 nm334.  

 

4.8. Electron paramagnetic resonance 

An EPR system (Elexsys 580 Pulse EPR spectrometer, Bruker, Billerica, MA) was used to detect 

the transfer of electrons (e-) through respiratory complexes I and II (succinate dehydrogenase) 

resulting from the successive oxidation/reduction of Fe in Fe-S clusters. Treated or untreated 
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isolated hearts (n=4 per group) were immediately transferred to liquid N2 at the end of the protocol 

and ground to a fine powder. The powder was transferred into quartz glass tubes which were stored 

at -80°C until analysis. EPR signals were obtained by scanning the samples in a high intensity 

magnetic field (3000-4000 G) at 10 Kelvin, 9.6 GHz, 5 mW microwave power and 5 G amplitude 

modulation. Each sample was scanned 9 times and spectra were averaged320,335. Signal intensities 

were measured for g’s of 2.023 (3Fe-4S attributed to cluster S3 of complex II or mitochondrial 

aconitase), 2.006 (attributed to semi-ubiquinone radical, Q•), 1.94 (2Fe-2S attributed to N1b of 

complex I or S1 of complex II), and 1.89 (4Fe-4S attributed to N4 of complex I and to the Rieske 

center of complex III336. 

 

4.9. Isolation and analysis of cardiolipin by HPLC 

The integrity of cardiolipin isolated from minced heart tissue was assessed using HPLC (System 

Gold, Beckman Coulter, Fullerton, CA). HPLC detects difference in molecular weight, and thus 

different species, by the change in mobility of individual molecules through the HPLC column. 

Lipids were extracted from hearts using a modified method of Hara et al337. Briefly, hearts were 

removed from the perfusion system after treatments and quickly frozen in liquid N2 and ground to 

a fine powder. Approximately 1 g of powdered tissue was added to 18 ml hexane:isopropanol (3:2) 

and mixed for 1 min. The suspension was filtered through Whatman no. 5 filter paper. The 

powdered tissue was washed twice with 2 ml hexane:isopropanol. Isolated lipids were then 

analyzed and estimated for cardiolipin content using thin layer chromatography (TLC). Briefly, 

200 µl of each sample was loaded onto a Whatman silica gel-60 TLC plate and allowed to dry; 50 

µg of purified bovine heart cardiolipin was used as the standard.  Lipids were separated using 

chloroform:methanol:acetic acid:water (55:37.5:3:2) (Barcelo-Coblijn & Murphy, 2008). Bands 

were visualized by exposure to iodine vapors for 5 min. The ratio of band intensity for each group’s 

cardiolipin was estimated and total lipids in each fraction were calculated. Appropriate amount of 

lipids equivalent to 200 µg of cardiolipin was dried under N2 gas and resuspended in 20 µl 

hexane:isopropanol (3:2) and then injected into the HPLC. HPLC analysis was performed using 

the method of Barcelo-Coblijn et al. at 208 nm338.  

 

4.10. Statistical evaluation of data 

For the intact heart studies, measurements for each group were compared at baseline, during the 
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brief treatment with or without ranolazine before ischemia, at 30 min ischemia, and at 10 min 

reperfusion. For all other studies, measurements for each group were measured at the end of the 

protocol. All data are expressed as mean ± SEM. Between groups and within group individual 

values were subject to two-way analysis of variance to determine overall significance. If F values 

were significant (P < 0.05), post hoc comparisons of means tests (Student-Newman-Keuls) were 

used to compare the groups within each subset. In mitochondrial studies, statistical analysis was 

performed similarly. Differences between means were considered significant when P < 0.05 (two-

tailed). 

 

Disclosures 

The authors have no disclosures to make. 

 

Acknowledgments 

This work was supported in part by grants from the American Heart Association (0855940G, D.F. 

Stowe), the National Institutes of Health (R01 HL095122, A.K.S. Camara, and R01 HL089514, 

D.F. Stowe), and the Veterans Administration (VA Merit 8204-05P, D.F. Stowe).   

 

 



93 
 

Experimental contribution: 
 
Ashish K. Gadicherla: Performed and analyzed spectroscopy and gel based complex-I assays, 
performed and analyzed native and denatured blots, performed and analyzed electron 
paramagnetic resonance studies, performed and analyzed TLC and HPLC studies  wrote and 
edited manuscript 
 
David F. Stowe: Designed and guided experiments, validated data, reviewed and edited 
manuscript 
 
William E. Antholine: Planned, guided and validated electron paramagnetic resonance studies  
 

MeiYing Yang: Performed and analyzed ELISA, reviewed and edited manuscript 
 
Amadou K.S. Camara: Designed and guided experiments, validated data, reviewed and edited 
manuscript 
  



94 
 

3.3 Protection against cardiac injury by small Ca2+-sensitive K+ channels identified in 
guinea pig cardiac inner mitochondrial membrane  

 

David F. Stowea,b,,d,e,f, Ashish K. Gadicherlaa, Yifan Zhouc, Mohammed Aldakkaka, Qunli Chenga, 

Wai-Meng Kwoka,c, Ming Tao Jianga, James S. Heisner a, MeiYing Yanga, Amadou K.S. Camaraa,e 

 
a Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA 
b Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA 
c Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 

USA 
d Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA 
e Cardiovascular Research Center, The Medical College of Wisconsin, Milwaukee, WI, USA 
f Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA 

 

Please address all correspondence to: David F. Stowe, M.D., Ph.D., M4280, 8701 Watertown Plank 

Road, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 USA,  

email: dfstowe@mcw.edu 

 

Abbreviated title: cardiac mitochondrial small Ca2+ sensitive K+ channels 

 

Highlights: We have identified small conductance Ca2+ -sensitive K+ channels in the inner 

mitochondrial membrane of guinea pig cardiac ventricular mitochondria where they appear to have 

a key role in pre-conditioning hearts against ischemia-reperfusion injury via a mechanism that is 

dependent on generation of oxygen free radicals. 

 

Key words: cardiac mitochondria; inner mitochondrial membrane; cell signaling; ischemia-

reperfusion injury; oxidant stress; small conductance Ca2+ -sensitive K+ channel 

 

Abbreviations: IR, ischemia-reperfusion; SKCa, small conductance Ca2+ -sensitive K+ channel; 

BKCa, big conductance Ca2+ -sensitive K+ channel; KATP, ATP -sensitive K+ channel; DCEB, 5,6-

dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one; IMM, inner mitochondrial membrane; 



95 
 

TBAP, Mn(III) tetrakis (4-benzoic acid) porphyrin; PPC, pharmacological pre-conditioning; 

TRAM, TRAM-34: 1-[(2-chlorophenyl) (diphenyl)methyl]-1H-pyrazole; GLIB, glibenclamide; 

PAX, paxilline; BSA, bovine serum albumin; IEM, immune-electron microscopy; MS, mass 

spectroscopy; NS8593, N-[(1R)-1,2,3,4-tetrahydro-1-naphthalenyl]-1H-benzimidazol-2-amine 

hydrochloride; UCL 1684, 6,10-diaza-3(1,3)8,(1,4)-dibenzena-1,5(1,4)-diquinolinacy 
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Abstract 
We tested if small conductance, Ca2+-sensitive K+ channels (SKCa) pre-condition hearts against 

ischemia-reperfusion (IR) injury by improving mitochondrial (m) bioenergetics, if O2–derived free 

radicals are required to initiate protection via SKCa channels, and, importantly, if SKCa channels are 

present in cardiac cell inner mitochondrial membrane (IMM). NADH and FAD, superoxide (O2
•–), 

and m[Ca2+] were measured in guinea pig isolated hearts by fluorescence spectrophotometry. SKCa 

and IKCa channel opener DCEBIO (DCEB) was given for 10 min ending 20 min before IR. Either 

TBAP, a dismutator of O2
•–, NS8593, an antagonist of SKCa isoforms, or other KCa and KATP 

channel antagonists, was given before DCEB and before ischemia. DCEB treatment resulted in a 

2-fold increase in LV pressure on reperfusion and a 2.5 fold decrease in infarct size vs. non-treated 

hearts associated with reduced O2
•– and m[Ca2+], and more normalized NADH and FAD during IR. 

Only NS8593 and TBAP antagonized protection by DCEB. Localization of SKCa channels to 

mitochondria and IMM was evidenced by a) identification of purified m SKCa protein by Western 

blotting, immuno-histochemical staining, confocal microscopy, and immuno-gold electron 

microscopy, b) 2-D gel electrophoresis and mass spectroscopy of IMM protein, c) [Ca2+]–

dependence of mSKCa channels in planar lipid bilayers, and d) matrix K+ influx induced by DCEB 

and blocked by SKCa antagonist UCL1684. This study shows that 1) SKCa channels are located and 

functional in IMM, 2) mSKCa channel opening by DCEB leads to protection that is O2
•– dependent, 

and 3) protection by DCEB is evident beginning during ischemia. 
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1. Introduction 

 

Depressed mitochondrial (m) bioenergetics, excess reactive oxygen species (ROS) generation, and 

mCa2+ loading are major factors underlying ischemia and reperfusion (IR) injury283. Prophylactic 

measures targeted in part to mitochondria that reduce cardiac IR injury26,339 include ischemic pre-

conditioning (IPC, i.e., brief pulses of ischemia and reperfusion before longer ischemia) and 

pharmacologic pre-conditioning (PPC), i.e., cardiac protection elicited sometime after the drug is 

washed out. PPC is theoretically a better approach because it does not require the heart to first 

undergo brief ischemia. We reported previously that activation of a large (big) conductance Ca2+ –

sensitive K+ channel (mBKCa), which may be located in the cardiac myocyte inner mitochondrial 

membrane (IMM), can induce PPC32. The BKCa channel has not been found in the cardiac myocyte 

plasma membrane, but we have shown that a BKCa channel opener, NS1619, has biphasic effects 

on mitochondrial respiration, membrane potential (ψm), and superoxide radical (O2
•-) production in 

isolated mitochondria224,239. This suggested that opening of other mitochondrial K+ channels could 

also elicit PPC.  
 

There are other KCa channels of intermediate or small conductances identified in non-cardiac 

cells340–342 that are membrane bound, calmodulin (CaM) –dependent and gated by Ca2+ and other 

factors. These channels have smaller unit conductances of 3-30 (small, SKCa) and 20-90 

(intermediate IKCa) pS343. The opening of SKCa channels is initiated by Ca2+ binding to calmodulin 

at the C terminus of the channel228,344 (Schumacher et al. 2001; Bruening-Wright et al. 2002). Of 

the known isoforms of SKCa channels that have been identified in endothelial cells, one is KCa2.3, 

which was found to exert a potent, tonic hyperpolarization that reduced vascular smooth muscle 

tone345. Moreover, there is evidence for the KCa2.2 isoform in rat and human hearts using Western 

blot analysis and reverse transcription -polymerase chain reaction346 (Xu et al. 2003). Clones of 

the channel from atria and ventricles showed much greater expression in atria compared to 

ventricles, and electrophysiological recordings exhibited much greater atrial than ventricular 

sensitivity to AP repolarization by apamin, a selective SKCa antagonist346,347.  

 

We postulated that activation of SKCa channels induces a pre-conditioning effect similar to that 

elicited by a BKCa (KCa1.1, maxi-K) opener, and that this effect is mediated via channels located 
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in the IMM, i.e., they promote K+ entry into the mitochondrial matrix. We tested if the KCa3.1 

(IKCa1)340,341,348 and KCa2.2 and KCa2.3 (SKCa)349–352 opener DCEBIO (DCEB), given transiently 

before ischemia, elicits PPC in a manner similar to that of the mBKCa channel opener NS161932. 

We specifically examined the role of DCEB in attenuating the deleterious effects of IR injury on 

mitochondrial bioenergetics by near continuous measurement of m[Ca2+], NADH and FAD, and 

O2
•- in isolated perfused hearts. We infused NS8593 to antagonize SKCa channel opening353,354, 

and several other K+ channel blockers to rule out effects of DCEB on other putative mK+ channels, 

i.e., IKCa (KCa3.1) BKCa, and KATP channels. Because protective effects of putative KATP
355 and 

BKCa
32 channel openers can be abolished by ROS scavengers, we similarly bracketed DCEB with 

a matrix targeted dismutator of O2
•- to assess the role of SKCa channel opening on O2

•- production, 

presumably by mitochondrial respiratory complexes. We used several approaches to furnish solid 

evidence for the presence and functionality of SKCa channel proteins in the IMM of guinea pig 

isolated cardiac mitochondria, and in isolated IMM. 

 

2. Results 

2.1. DCEB protects isolated heart against IR injury 

Spontaneous heart rate averaged 242±13 beats/min before ischemia for all groups; this was not 

statistically different at 120 min reperfusion for all groups (data not displayed). If ventricular 

fibrillation (VF) occurred, it was only once within the first 5 min of reperfusion in any heart; all 

were converted to sinus rhythm with intracoronary lidocaine. After 5 min reperfusion all hearts 

remained in sinus rhythm, some with occasional pre-ventricular excitations. In data not displayed 

the incidence of VF on reperfusion was CONTROL 100%, DCEB+TBAP 100%, DCEB 76%, 

DCEB+TRAM 72%, DCEB+PAX 77%, DCEB+GLIB 77% (all nonsignificant vs. control group).   

 

Figs. 1-4 show the marked degree of dysfunction or damage in the untreated control group during 

and after global ischemia and the beneficial effects of PPC elicited by DCEB treatment before 

ischemia. Developed LVP (Fig. 1A) and coronary flow (Fig. 1B) were reduced in each group after 

ischemia compared to before ischemia, but these changes were much larger in the CONTROL and 

DCEB+TBAP groups than in the other groups. Similarly, cardiac efficiency (Fig. 2A) was lower 

and infarct size (Fig. 2B) was largest in the CONTROL and DCEB+TBAP groups than in all other 

groups. The drug treatments before ischemia had no effects by themselves on any of the functional 
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variables. These figures indicate that these variables were markedly improved on reperfusion after 

treatment with DCEB and that these improvements were reversed by TBAP, but not by PAX, 

TRAM, or GLIB.   

 

Fig. 1. Improved (A) developed (systolic-diastolic) LV pressure and (B) coronary flow after preconditioning with 3 
µM DCEB.  Note that TBAP (synthetic superoxide dismutase mimetic) reversed the protective effects of DCEB 
whereas antagonists of big (PAX, paxilline) and intermediate (TRAM) conductance KCa channels did not. 

 

Fig. 2. A: Improved cardiac efficiency (developed LV pressure (mmHg)•heart rate (beats/min))/MVO2 (µL O2•g
-

1
•min-1) after pre-conditioning with DCEB. Note that TBAP reversed the protective effects of DCEB whereas 

antagonists of big (PAX) and intermediate (TRAM) conductance KCa channels did not. B: Marked decrease in infarct 
size after pre-conditioning with DCEB.  Note that TBAP reversed the anti-infarction effect of DCEB whereas 
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antagonists of big (PAX) and intermediate (TRAM) conductance KCa channels and KATP channels (glibenclamide, 
GLIB) did not. 

 
There was no detectable change in NADH and FAD autofluorescence in any group by drugs given 

and terminated before ischemia (Fig 3A,B). NADH (Fig. 3A) remained higher at the end of 

ischemia and fell less during reperfusion after treatment with DCEB; this was reversed by TBAP 

but not by TRAM. FAD remained lower at the end of ischemia and rose less during reperfusion 

after treatment with DCEB (Fig 3B); this was reversed by TBAP, but not by TRAM. In other 

experiments there were no detectable change in NADH or FAD on reperfusion after DCEB+PAX 

or +GLIB treatment vs. DCEB alone. 

 

 

Fig. 3. Improved redox state (A: NADH and B: FAD autofluorescence) after pre-conditioning with DCEB.  Note the 
inverse changes in NADH and FAD during ischemia and reperfusion and the more normalized responses in the DCEB 
group. TBAP reversed the protective effects DCEB whereas paxilline (PAX), an antagonist of big conductance BKCa 
channels did not. 
 

DHE fluorescence (O2
•- formation) (Fig. 4A) and indo 1 fluorescence (m[Ca2+]) (Fig. 4B) rose 

markedly in each group during the course of ischemia. TBAP caused a small, but insignificant, 

decrease in DHE fluorescence before ischemia. TBAP reversed the effect of DCEB to reduce O2
•- 

and m[Ca2+] on reperfusion. Other experiments (not shown) did not demonstrate detectable changes 

in ROS formation or m[Ca2+] on reperfusion after DCEB+PAX, +GLIB or +TRAM treatments vs. 

DCEB alone.  



101 
 

 

 

Fig. 4. Reduced (A) O
2
•- (DHE fluorescence) and (B) mitochondrial [Ca

2+
] (indo 1 fluorescence) after pre-

conditioning with DCEB. Note the increases in these signals during ischemia and the slow decline during reperfusion. 
DCEB attenuated the increase in these signals during ischemia and reperfusion and this was reversed by TBAP. 
 

In companion experiments (Fig. 5A-D) the protective effects of DCEB were abolished or 

antagonized by the SKCa channel antagonist NS8593, thus demonstrating that DCEB protected via 

activation of SKCa channels. DCEB–induced maintenance of developed LVP was completely 

blocked, while the maintenance of coronary flow and the reduction of diastolic LVP and FAD 

oxidation by DCEB were all markedly reversed by NS8593. NS8593 alone significantly depressed 

developed LVP when given before ischemia and tended (non significantly) to slightly increase 

coronary flow, possibly indirectly due to reduced ventricular compression; thus the small increase 

in flow (Fig. 5B) noted in the presence of DCEB is due to NS8593 rather than DCEB. Generally, 

cardiac depression before ischemia is cardioprotective, but giving NS8593 with DCEB before 

ischemia, resulted in a worsening of contractile function on reperfusion.  
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Fig. 5. Improved (A) developed LV pressure and coronary flow (B), and decreased diastolic LV pressure (C) and 
FAD oxidation (D), after pre-conditioning with DCEB. Note that 10 µM NS8593 (a specific SKCa antagonist) 
abrogated these protective effects of DCEB. 
 

These studies demonstrated that DCEB had protective effects against cardiac IR injury mediated 

by the SKCa channel, and that cardiac mitochondria appeared to be involved in mediating this 

protection. Studies were then undertaken to isolate and identify the target of DCEB, the SKCa 

protein, in cardiac isolated mitochondria and in IMM, and to verify the functionality of the protein 

in an artificial lipid bilayer. 
 

2.2. Isoelectric focusing and peptide sequences identify SKCa in isolated IMM 
 

IMM protein, enhanced for calmodulin-binding residues, was separated by 2-D electrophoresis 

after silver staining. Three peptide spots of approximately 70 kD at pH 5.2 –5.5 were detected as 

SKCa using the anti KCa2.3 (anti-hSK3) (Fig. 6, panels a-c). Complementing this finding, a KCa2.3 

protein was identified by ESI-mass spectrometry from five matching peptides with an amino acid 

coverage of 10.73% (Table). There was no evidence for peptides matching Na+/K+ ATPase or Ca2+ 

ATPase suggesting the absence of sarcolemmal and t-tubular membranes in the mitochondrial 

fraction. The mass spectrum of one of these peptide sequences is shown (Fig. 7). These results 

demonstrated that SKCa channels were present in the IMM. 
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Fig. 6. Identity of small-conductance KCa channels in IMM from guinea pig heart. Top panel: Silver staining of 
calmodulin affinity column-purified protein fractions after 2-D gel fractionation. The square indicates the area of 
interest, which was magnified and is shown in the middle panel. The arrows indicate position of KCa2.3 proteins. Bottom 
panel: Western blot with an antibody targeting SKCa (anti-hSK3) channel detection at 3 spots at 70 kDa (arrow) 
between pH 5.2 and 5.5. Negative control was done by pre-incubatingKCa.3  antibodies with blocking peptide (not 
shown). 
 

 

Fig. 7. Identification of one peptide, FLQAIHQLRSVK (in CaMBD), from data obtained using nano-LC/MS. The 
b-ions and y-ions are fragment masses of the above peptide upon its collision fragmentation. Peptides were identified 
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by searching the rodent subset of Uniprot databases. This protein was identified based on the 5 matching peptide 
sequences shown in the Table. 

 
 

2.3. Western blots of serially purified mitochondria demonstrate SKCa channel protein 
 
Mitochondria exhibited increasing band densities for both SKCa and ANT protein (Fig. 8) when 

enriched by Percoll gradient serial purification. This furnished compelling Western blot evidence 

that SKCa channel protein increases in abundance with ANT, which is present only in the IMM.  

 

 

Fig. 8. Western blots of serially purified mitochondria showed increasing amounts of SKCa protein. Equal amounts of 
protein were loaded in the gel. Total homogenate (lane 1, TH) showed least band intensity, followed by mitochondria 
isolated by differential centrifugation (lane 2 RC); mitochondrial purified further by Percoll gradient purification (lane 
3, PP) had the highest band intensity. Protein bands of SKCa are approximately 68 KDa. Purity of mitochondria was 
followed by assaying the increased amount of ANT, along with SKCa protein in their respective purification fractions. 
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2.4. Immunochemistry and confocal microscopy identify SKCa channel protein in mitochondria 
 

Confocal microscopy was used to localize SKCa protein to intact mitochondria. Cardiac 

mitochondria were visualized as stained by an antibody against ANT (green), and SKCa channel 

protein was visualized using the anti-KCa2.2 (anti-SK2) antibody (red) (Fig. 9). Overlay of the two 

images (yellow) shows co-localization of SKCa and ANT proteins in cardiac mitochondria. Since 

ANT localizes only to the IMM, this suggested that SKCa channel protein also localizes to the 

IMM. 

 

Fig. 9. SKCa protein identified in isolated mitochondria and visualized by confocal microscopy. Overlay of the two 
images (anti-ANT, green and anti-SKCa, red) demonstrates co-localization (yellow) of the SKCa protein in 
mitochondria. 
 

2.5. Immuno-gold labeling and EM show localization of SKCa channels in mitochondrial matrix 

To further confirm the presence and localization of the SKCa channels on the IMM, mitochondria 

were visualized at high resolution using IEM. A large field EM view shows largely normal 

appearing cardiac mitochondria with intact outer membranes and cristae (Fig. 10). Enhanced 

resolution of immuno-gold labeled mitochondria show gold particles attributed to SKCa channels 

(Fig. 11A, B) or cytochrome c oxidase (COX) (Fig. 11C) within the matrix; in detailed examination 

of electron micrographs approximately 50% contained at least 2 gold particles. Negative controls 

(Fig. 11D) (non-immune rabbit polyclonal serum showed no gold particles in any field. Figs. 8, 9, 
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and 11 confirm that SKCa channels are located in mitochondria and most likely in the IMM. 

 
Fig. 10. Electron micrograph of isolated mitochondria. Larger field view of untreated mitochondria shows largely 
intact structural characteristics after isolation from guinea pig hearts. 
 

 

Fig. 11. Immuno-electron microscopy of isolated cardiac mitochondria. A, B: SKCa protein as visualized in two 
mitochondria; 50% of all viewed mitochondria exhibited gold labeling. Gold labeling was obtained by immuno-gold 
secondary antibody conjugated to primary rabbit polyclonal anti-KCa2.2 (anti-SK2). C: Positive control was anti-
cytochrome c oxidase (COX1) conjugated to goat anti-rabbit or mouse conjugated to colloidal gold; each 
mitochondrion in a large field view exhibited at least two gold particles. D: Negative control was only secondary 
polyclonal rabbit antibody conjugated to gold; there was no gold labeling of any mitochondria in any views. 
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2.6. Mitochondrial SKCa protein forms a functional channel 
 

To test if purified mitochondrial SKCa protein forms a functional channel, SKCa protein, isolated 

as noted above (2.9), was incorporated into a planar lipid bilayer for electrophysiological 

measurements. In the lipid bilayer, the SKCa protein exhibited robust activity in the presence of 

100 µM [Ca2+] (Fig. 12A). Two conducting states with chord conductances of 230 and 730 pS 

were observed when recorded in an ionic condition of equimolar 200 mM KCl. Adding apamin 

blocked channel activity (Fig. 12B) indicating that the functional channel formed by the mSKCa 

protein was inhibited by this SKCa channel blocker. The mSKCa channel protein incorporated into 

the planar lipid bilayer also displayed Ca2+–dependent activity (Fig. 13).  The mSKCa channel 

exhibited increasing activity as [Ca2+] was serially increased from 1 to 100 µM. As shown, channel 

open probability (Po) increased from Po=0.5 at 1 µM [Ca2+] to Po=1.0 at 50 and 100 µM Ca2+. A 

notable observation was also the [Ca2+] dependent increase in the number of conducting states. At 

1 µM Ca2+ the predominant conductance was 180 pS; however, at 50 and 100 µM Ca2+ multiple, 

larger conductances were revealed. Thus, as [Ca2+] was increased the mSKCa channel exhibited 

greater conducting states while at lower [Ca2+], low conductance states dominated. This 

observation is further supported by the existence of a smaller conductance channel of 70 pS which 

was detected, albeit infrequently, at 1 µM Ca2+ (Fig. 13, inset). 

   

 

Fig. 12. mSKCa channel protein activity. Purified mitochondrial SKCa protein was incorporated into a planar lipid 
bilayer and channel activity was recorded at a membrane potential of -10 mV in the presence of 100 µM CaCl2. Dotted 
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lines denote zero current levels and downward deflections denote channel openings. A: Two primary conductance 
states with chord conductances of 230 and 720 pS were observed under control conditions. The current recording is 
also depicted in an expanded time scale. Corresponding all-points amplitude histogram is also shown. B: Channel 
activity was blocked by adding100 nM apamin. 

 

 

Fig. 13. mSKCa channel sensitivity to Ca2+. Channel activity of purified mitochondrial SKCa protein, incorporated into 
the planar lipid bilayer, was recorded at a membrane potential of -10 mV. [Ca2+] was incrementally increased; dotted 
lines denote zero current levels and downward deflections denote channel openings. The corresponding all-points 
amplitude histogram is also shown. The predominant conductance was 180 pS when channel activity was recorded in 
1 µM [Ca2+]o However, we have also observed, infrequently, a smaller conducting state of 70 pS at 1 µM [Ca2+]. A 
sample tracing is depicted in the inset in which the calibration for the x- and y-axis is 200 ms and 1 pA, respectively; 
C and O denote the closed and open states, respectively. 
 

2.7. DCEB–induced increased matrix [K+] is blocked by UCL1684 

 

The consequence of opening of SKCa channels to changes in mitochondrial matrix [K+] was also 

determined. In isolated mitochondria the SKCa channel opener DCEB increased matrix [K+] in the 

presence of quinine to inhibit KHE and thus counter K+ extrusion (Fig. 14A, B).  The observed 

influx of K+ into the matrix was confirmed by similar K+ influx induced by the K+ ionophore 

valinomycin. The effect of DCEB was blocked by UCL1684 (a SKCa blocker) but not by iberotoxin 

(IBX) (a blocker of BKCa but not SKCa channels) (Fig. 14B). The increase in matrix K+ uptake 
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induced by DCEB and blocked by UCL1684 (Fig. 14), and the Ca2+ induced increases in K+ current 

and inhibition by apamin in lipid bilayers (Figs. 12, 13) functionally linked DCEB’s cardiac effects 

to SKCa channels presence and activity in cardiac mitochondria. 

 

 

Fig. 14. A: Sample time tracing showing effect of 30 µM DCEB in the presence of 500 µM quinine (KHE inhibitor) 
to increase matrix K+ (PBFI fluorescence) in mitochondria isolated from a guinea pig heart. No change was observed 
in the absence of quinine. The DCEB-induced increase in K+ flux was completely blocked by 100 nM UCL1684. Note 
larger but similar effect of 1 nM valinomycin, a K+ ionophore, to DCEB B: Summary effects (n = 10 mitochondrial 
preparations) of DCEB, expressed as a % of valinomycin effect, on increasing matrix K+ in the presence of quinine. 
This increase in K+ was blocked by SKCa channel blocker UCL1684 but not by 200 nM iberiotoxin (IBX), a blocker 
of BKCa channels. 

 

3. Discussion 

 

Our results suggest a novel role for the SKCa channel in cardiac myocyte pre-conditioning, likely 

mediated via altered mitochondrial function due to opening of SKCa channels located in myocyte 

mitochondrial IMM (mSKCa). Our comprehensive experimental approach shows that the well-

known SKCa (and IKCa) channel activator DCEB pre-conditioned hearts and that this was fully 
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reversible by bracketing DCEB with the intra-matrix O2
•- dismutator TBAP. Cardioprotective 

effects of DCEB were attributed specifically to activation of SKCa channels and not to activation 

of KATP, IKCa, or BKCa channels because NS8593, but not GLIB, TRAM, or PAX blocked its 

effects. DCEB increased K+ flux in isolated mitochondria and the purified SKCa protein formed a 

functional channel when incorporated into lipid bilayers. Thus mSKCa channel opening, similar to 

that of mKATP and mBKCa channel opening, appears to induce PPC by an as yet unclear mechanism 

related to enhanced matrix K+ entry. Moreover, mitochondrial-derived O2
•- is required to initiate 

PPC by DCEB, because if O2
•- is rapidly converted to downstream products the protection by 

DCEB is lost.  

 

Just as we supported our evidence that the SKCa channel is specifically involved in PPC of isolated 

hearts, we sought to support specifically that the mSKCa channel was associated with 

cardioprotection. To provide evidence that DCEB’s has protective effects mediated by mSKCa 

channels, it was necessary to rigorously identify mSKCa protein in purified mitochondria, and 

specifically in the IMM. To do so we utilized Western analysis and immuno-histochemistry, 

confocal microscopy, electron microscopy, and mass spectrometry of purified mitochondrial 

proteins derived from IMM. Organelle location was accompanied by channel functionality in 

isolated mitochondria and in lipid bilayers, thus supporting that this channel may play a role in 

cardiac protection via a mitochondrial mechanism. Overall our study indicates that the SKCa 

channel, localized in the cardiac cell IMM, mediates the effect of DCEB in pre-conditioning of the 

heart via a mitochondrial mechanism related to mK+ flux and O2
•- generation.  

 

The dequalinium analogue, UCL1684, is known to block opening of apamin-sensitive SKCa 

channels in mammalian cell lines356. We support involvement of the mitochondrion in DCEB’s 

PPC effect because TBAP could block the protective functional effects of DCEB as well as block 

DCEB’s effect to decrease ischemia-induced levels of mCa2+ and of O2
•-, presumably generated by 

complexes along the electron transport system357. Also, DCEB directly induced an increase in 

matrix K+ uptake. Moreover, since DCEB had no significant effects on coronary flow (Fig. 1), 

automaticity, or contractility, this suggests DCEB had no effect on endothelial/vascular or 

ventricular cell function. Overall, our results demonstrate the marked cardioprotective effects after 

pre-conditioning with DCEB and implicate mSKCa channel opening and generation of O2
•-, or its 
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products, as initiators and inhibitors of mitochondrial as well as cardiac myocyte PPC. 

 

The improvement in cardiac function by DCEB was accompanied by reduced formation of O2
•-, 

reduced m[Ca2+], and improved redox state (more normal NADH and FAD levels) during both 

ischemia and reperfusion. These cardioprotective effects of DCEB were blocked only by either 

TBAP or NS8593. We suggest that initial formation of O2
•- is essential for the triggering mechanism 

of PPC by mSKCa channel activation. However, a downstream product of O2
•-, e.g. H2O2, might 

actually mediate the protective effects of DCEB. A similar dependence for O2
•- has been observed 

for the mKATP channel opener diazoxide355, the BKCa channel opener NS161932 and volatile 

anesthetics22,358 Drug lipophilicity with mitochondrial membrane penetration may be an important 

common denominator for the activity of drugs such as diazoxide, a putative mKATP channel agonist, 

and DCEB. 

 

3.1 Distribution and function of Ca2+ -sensitive K+ channels 

 

The cell membranes of vascular smooth muscle, neural, and secretory cells contain large 

conductance (200-300 pS). i.e. Big Ca2+-sensitive K+ (BKCa, aka maxi-KCa) channels that when 

opened produce vasodilation, hyperpolarization, and secretion. BKCa channel opening is activated 

by increased [Ca2+]i and by cell membrane depolarization359. Activation of BKCa over a range of 

[Ca2+] is mediated at several binding sites within the channel360 so that there is a wide range of 

[Ca2+] responsiveness (Kd 10-1000 µM)361. As K+ exits the cell with BKCa channel opening, this 

elicits cell membrane repolarization or hyperpolarization, which in turn reduces Ca2+ entry by 

closing voltage-dependent Ca2+ channels. Altered redox potential in smooth muscle362 suggested 

mitochondrial involvement. Xu et al. first furnished evidence that BKCa channels are located in 

cardiac mitochondria223.  

 

The membrane bound, but non-voltage-gated, KCa channels, i.e., SKCa and IKCa
343 are gated by 

Ca2+ and other factors. SKCa (a.k.a. KCa2.1-2.3, KCNN1-3 -gene symbol) channels have 

characteristics that largely differ from the BKCa channels i.e. small unitary conductance (10-30 

pS), voltage independence with activation only by Ca2+ at very low Ka (0.3 µM with steep I/V 

slopes), a sensitivity to apamin, heteromeric assembly of the SKCa pore forming subunits with 
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calmodulin (CaM), N rather than C terminal EF hand domain for Ca2+ binding, and Ca2+ gating 

near the K+ selectivity filter 363. SKCa’s are unique in that calmodulin forms an integral part of the 

channel, forming its Ca2+-sensitive subunits227. In the presence of Ca2+, two calmodulin binding 

domains form a dimer, which allows the channel to open228. 

 

Antibodies against KCa2.2 and KCa2.3 were both used for immuno-staining and Western blot 

characterizations in purified mitochondria and in the enriched IMM fraction, respectively. We 

found that the identified protein was positive to both sets of antibodies. Because the sequence 

homology of the SKCa family of channels (KCa2.1, KCa2.2, KCa2.3) is highly conserved226 the 

commercial antibodies we used might not have been selective enough to definitely identify the 

molecular identity of the specific mSKCa isoform. But we did confirm that the purified mSKCa 

protein formed a functional channel by recording channel activity after incorporating the protein 

into a planar lipid bilayer. The channel was inhibited by apamin, a blocker of plasmalemmal 

membrane SKCa channels. However, the recorded conductance states were higher than those 

reported for cell membrane SKCa channels, which are in the range of 10-14 pS343,363. The 

underlying cause of this discrepancy is unclear. It is possible that mSKCa channels have biophysical 

attributes that are different from their cell membrane counterparts. In particular, the mSKCa 

channels exhibited multiple conducting states that appear to be Ca2+–dependent. As the [Ca2+] 

increased, the channel’s conductance also increased. Thus, at very low [Ca2+], lower conductances 

may be revealed that are closer to those reported for the plasmalemmal SKCa channel. In support 

of this, in some recordings we infrequently observed a conductance of 70 pS at 1 µM [Ca2+]. 

However, the mechanism that underlies this Ca2+–dependent gating of the mSKCa channel has yet 

to be delineated. Though it is premature to speculate on the structural homology between the 

mitochondrial and plasmalemmal SKCa channels, based on our MS data and the Ca2+ sensitivity of 

the mSKCa channel, the Ca2+calmodulin–binding domain and the S6 transmembrane region appear 

to be conserved. Indeed, the block of channel activity by apamin showed that this mSKCa channel 

does share a pharmacological property similar to the plasmalemmal SKCa. 

 

However, the planar lipid bilayer experiments appear to indicate that the apamin binding site and 

the Ca2+ binding site are both localized to the same side of the mSKCa channel. This was an 

unexpected finding because apamin has been reported to be an external pore blocker that binds to 
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the outer pore region of the plasmalemmal SKCa channel364 whereas the Ca2+ sensing region was 

believed to be on the intracellular side, conferred by calmodulin that is constitutively bound to the 

C-terminus of the channel228. Consequently, our findings would imply that the position of the C-

terminus in the mSKCa channel differs from that in the plasmalemmal SKCa channel. Therefore, 

based on the sidedness of the apamin effect and Ca2+ sensitivity, together with our observed 

biophysical properties, the mSKCa channel may exhibit some functional and structural differences 

from the plasmalemmal SKCa channel. Additional experiments will be needed to confirm this 

possibility. 

 

Our study represents the first conclusive report that identifies SKCa channels in cardiac myocyte 

mitochondria. Their presence in the IMM would indicate that they have an important function in 

fine-tuning regulation of mitochondrial bioenergetics, perhaps via volume control, which is largely 

controlled by K+ flux. In contrast, the voltage and Ca2+-dependent BKCa channels may open only 

when ∆ψm is high (state 4 respiration) or in response to a large imbalance in m[Ca2+] or cytosolic 

[Ca2+], much as BKCa channels regulate cell membrane potential in excitable cells.  

 

Three genes encode the SKCa family; all have been cloned, and the amino acid sequences predict 

subunits similar to those in other K+ channels. Channel specificity resides in the C terminal 

domains where each SKCa subtype interacts with the ubiquitous Ca2+ sensor CaM. This constitutive 

binding domain is called CaMBD365. Crystal structures show that SKCa+CaMBD contains two EF 

hand motifs within each of the globular N and C terminal regions separated by a flexible linker365. 

The C terminus is required to establish the link of SKCa and CaM. Substitution of neutral amino 

acids for aspartate and glutamate only in N terminus EF hand region blocks Ca2+ gating. This 

binding site is positioned just below the K+ selectivity filter, which suggests that conformational 

changes near or even in the selectivity filter itself function to gate SKCa channels. The 18 amino 

acid bee venom toxin apamin is highly selective for SK2 by docking at the pore entrance and 

between the S3-S4 loops366. 

 

SKCa channels in neurons lie adjacent to Ca2+ stores and Ca2+ channels. In nerve cells SKCa channels 

play a role in setting the intrinsic firing frequency, while BKCa channels regulate action potential 

shape and may contribute to the unique climbing fiber response346. The K+ flux mediated by BKCa 
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and SKCa channels in mitochondria may be differentiated by both their sensitivities to Ca2+ and 

dependence on ∆ψm during states 3 and 4 respiration. Because there are many differences between 

these channels, the functional effects of opening these channel are expected to differ; e.g., unlike 

BKCa, SKCa channel opening may “fine tune” matrix K+ influx due to changing Ca2+ levels 

independent of changes in ∆ψm during the variable rate of oxidative phosphorylation.  

 

3.2. mSKCa channel opening triggers pre-conditioning via ROS 

 

The presence of both SKCa and BKCa channels in cardiac myocyte IMM indicates a functional 

importance for these channels during excess mCa2+ loading; moreover their endogenous opening 

during IPC, or as a pharmacological therapy, may be an important trigger for cardioprotection. It 

is unclear if these drugs actually open these K+ channels directly to elicit pre-conditioning, or if 

they themselves alter mitochondrial bioenergetics (as mild uncouplers of oxidative 

phosphorylation), which mediates the memory of -conditioning by other downstream effectors. 

Although the mitochondrial pre-conditioning effect of DCEB appears to require both mSKCa 

channel opening and generation of O2
•-, these factors are not effectors of PPC as the DCEB and 

TBAP are washed out before ischemia. 

 

There is ample evidence that O2
•- is necessary to trigger PPC by mK+ channel openers but the 

mechanism of O2
•-, and its products or reactants, in mediating PPC is unknown. An increase in 

redox state (increased NADH, decreased FAD) at a given [O2] can result in increased O2
•- 

generation367. O2 derived free radical “bursts” are known to occur during reperfusion when excess 

O2 is available. Our group22,32,358,368 and others369,370 have shown, moreover, that ROS are also 

formed in excess during ischemia before reperfusion when tissue O2 tension decreases, the redox 

state increases and then decreases, and cytochrome c oxidase (complex IV) activity is low371. The 

putative mKATP channel opener diazoxide31 mimicked IPC on reducing infarct size and the ROS 

scavengers, N-acetylcysteine372 or N-mercapto-propionyl-glycine355, blocked the pre-conditioning 

effect of diazoxide. It has been suggested that mKATP channel opening can cause a small increase 

in ROS formation373, which may trigger cardioprotection through activation of protein kinases. 

Conversely, ROS have also been proposed to activate the sarcolemmal KATP channel by modulating 

its ATP binding sites as this effect is blocked by GLIB or by ROS scavengers374. Others have 
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proffered that ROS produced during IPC may afford cardioprotection on reperfusion directly, or 

via a feed forward mechanism for KATP channel-induced ROS production375,376. 

 

In the present study evidence that the protective effect of DCEB is mediated by ROS is indicated 

by reversal of the protection in the presence of TBAP. O2
•- or OH•, or even non-radical reactants 

like H2O2 or ONOO- (formed in the absence or presence of NO•, respectively) may actually produce 

the pre-conditioning responses, but O2
•- appears necessary to initiate the response. It is also possible 

that mSKCa, mBKCa, and or mKATP channel activation is altered by ROS as a feed forward controller 

of mitochondrial function. Enhanced electron transfer before ischemia may minimize respiratory 

inefficiency, i.e., reduced matrix contraction and improved respiration on reperfusion. mSKCa 

channel opening, like mKATP channel opening, and indeed opening of any mK+ channel, could 

induce PPC by mildly enhancing O2
•- generation, which stimulates enzymatic pathways that help 

to protect the cell from IR injury. Interestingly, we observed that O2
•- dismutation by TBAP blocked 

protection by DCEB. 

 

When DCEB was given alone or with any of the inhibitors, it had no direct detectable effect on 

mechanical function or mitochondrial bioenergetics (redox state, O2
•- levels) in isolated hearts. In 

our related study32 neither NS1619 nor its antagonist PAX showed any direct effect on measured 

variables. In the ex vivo, intact heart perfused with adequate substrates and O2, mitochondria are 

mostly respiring in the non-resting state 3, so small changes in O2
•- between states 3 (ample ADP) 

and 4 (consumed ADP) respiration cannot be observed. However, in isolated cardiac mitochondria 

we reported that low, but not high, concentrations of the BKCa channel opener NS1619 can increase 

resting state 4 respiration and ROS generation while maintaining IMM potential (∆ψm)224.  

 

We propose similarly that DCEB, like NS1619, increases intramatrix K+, which is replaced 

immediately with H+ via KHE. We suggest that at low concentrations of these openers a transient 

increase in matrix acidity, i.e., via a proton leak, stimulates respiration but maintains ∆ψm so that a 

greater amount of O2
•- is generated at mitochondrial respiratory complexes due to impaired electron 

transport. O2
•- itself, or a reactant, may in turn stimulate downstream-induced phosphorylation 

pathways fostering K+ channel opening as necessary when ischemia occurs. The net effect could 

be preservation of mitochondrial bioenergetics during ischemia as evidenced by better maintenance 
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of the reduced state (high NADH and low FAD) and smaller increases in O2
•- generation and less 

m[Ca2+] overload. This could lead to better preservation of oxidative phosphorylation and ATP 

turnover leading to better utilization of ATP on initial reperfusion after ischemia.  

 

3.3. Putative mechanism of mitochondrial K+ flux on mitochondrial protection during IR injury 

 

BKCa and SKCa channel openers appear to have a profound ability to induce PPC but the 

mechanism is unclear. It is possible that brief ischemia as in IPC causes a slight elevation of mCa2+ 

that induces mSKCa and mBKCa channel opening and, like mKATP channel opening, leads to partial 

dissipation of ∆ψm and or matrix swelling as a protective mechanism against subsequent IR injury. 

It is now clear that K+ is required for optimal functioning of oxidative phosphorylation because 

matrix K+ flux largely regulates matrix volume and can modulate ∆ψm
377–380. Trans-matrix K+ flux 

can also modulate ROS production224 mSKCa channels, like mBKCa channels223,380 may act to 

modulate matrix volume during times of increased matrix Ca2+ load, such as occurs during IR 

injury323,381. Xu et al. first suggested that opening mBKCa channels to enhance matrix K+ influx223 

is an important factor in mitigating IR injury in a manner similar to mKATP channels. They 

proposed that the function of mBKCa channels was to improve the efficiency of mitochondrial 

energy production223.  

 

As with the other two K+ channels reported in mitochondria, KATP and BKCa, once the K+ channel 

is opened the increase in K+ uptake leads to changes in the matrix as described by Garlid et al.382 

and Beavis et al.383. Electrogenic H+ efflux driven by the respiratory chain is balanced by 

electrophoretic K+ influx. If this were uncompensated, it would cause a very large increase in 

matrix pH of about 2 pH units. Partial compensation is provided by electroneutral uptake of 

substrate anions, such as phosphate. The compensation is partial because the concentration of 

phosphate in the cytosol is much lower than that of K+, and this imbalance leads to matrix 

alkalinization384,385. Matrix alkalinization now releases the K+/H+ antiporter from inhibition by 

matrix protons379 causing K+ efflux to increase in response to increased K+ uptake until a new K+ 

steady state is achieved. An increase in futile K+ cycling is believed to produce mild uncoupling382 

and regulates mitochondrial bioenergetics and ROS emission.  
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Although mKCa channels likely play a role in regulating mitochondrial bioenergetics, it is unknown 

how opening of these channels leads to more normalized NADH/FAD levels, reduces excess ROS, 

and decreases Ca2+ loading during IR. Just as the existence and function of the mKCa channel in 

IMM on mitochondrial respiration is unclear, so is the mechanism of K+ influx via mKATP channels 

in IMM377,380,386–389. For the KATP channel it was proposed that its opening depolarizes the IMM to 

cause uncoupling and hasten respiration380,386,390. Subsequent ischemia would then reduce the 

driving force for Ca2+ influx through the mCa2+ uniporter; this could attenuate mCa2+ overload391,392 

so that energized mitochondria on reperfusion would perform more efficiently. Indeed the putative 

mKATP channel opener diazoxide is reported to reduce the rate of mCa2+ uptake by depolarizing the 

IMM and decreasing the driving force for mCa2+ entry380,386,390 although this could be due to 

respiratory inhibition distinct from KATP channel opening377,393.  

 

Garlid’s group, however, proposed that the physiological role of potential mK+ channels is control 

of matrix volume rather than dissipation of ∆ψm and uncoupling377,393. They postulated that matrix 

swelling by K+ uptake is caused by concomitant uptake of Cl- and water by osmosis. But subsequent 

activation of mKHE may only slightly dissipate the proton gradient (∆µH) by increasing matrix 

acidity (proton leak) without significantly altering ∆ψm
378,393. In turn, mitochondrial swelling might 

optimize mitochondrial function because partial uncoupling was seen to improve efficiency of 

oxidative phosphorylation394. More specifically, during hypoxia matrix K+ influx appears to 

maintain a normal matrix volume, which preserves a narrow intermembrane space and helps to 

facilitate energy transfer to ATP-utilizing sites, to reduce outer membrane permeability to 

nucleotides, and to slow ATP hydrolysis377–379. The end result of mSKCa channel opening, like 

mKCa channel opening, may be to improve mitochondrial efficiency, reduce m[Ca2+] and ROS 

production, and thereby to protect overall mitochondrial function during IR.  

 

3.4. Interrelationship and timing of mCa2+ loading, ∆ψm, redox state, and ROS during cardiac IR 

injury 

 

Prolonged mitochondrial ischemia is marked by the following: decreasing ∆ψm, an oxidized redox 

state, excess ROS, matrix contraction, and increasing mCa2+ loading. Ca2+ overload due to leaky 

IMM could impede normal electron transfer so that greater amounts of ROS are produced during 
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IR. Alternatively, ROS can damage membranes by lipid peroxidation; this can hamper selective 

permeability to ions and allow cytosolic and mCa2+ uptake as a result of increased reverse mode 

sarcolemmal Na+/Ca2+ exchange (NCE)395,396.  

 

Our studies in the intact heart model show an interrelationship between O2
•– produced, redox state, 

and mCa2+ influx during ischemia. Continuously measured NADH and O2
•– changed together 

during ischemia as well as during reperfusion. Ischemia-induced rises in NADH, ROS, and 

m[Ca2+]22,32,323,355  returned closer to normal values on reperfusion after PPC. These effects were 

reversed by ROS scavengers or by blocking sarcolemmal KATP and/or mKATP channel opening with 

GLIB or 5-hydroxydecanoate323,358. Pre-conditioning also led to reduced ROS generation and 

improved ATP synthesis in isolated mitochondria397. These studies suggest that temporary 

exposure to distinct cardioprotective drugs before ischemia causes ROS-dependent changes in 

mitochondrial bioenergetics that initiates a pre-conditioning effect. mKCa is likely to be activated 

endogenously as matrix Ca2+ rises in response to an increase in Ca2+ load, such as occurs during 

ischemia; opening these channels pharmacologically before ischemia may lead to added protection.  

 

3.5 Summary and limitations 

 

We have furnished ample evidence for the presence of SKCa channels in purified mitochondria and 

in IMM from cardiac cells, for the functional effects of the IKCa and SKCa channel opener DCEB 

on K+ flux in isolated mitochondria, and for the channel conductance of SKCa proteins incorporated 

into planar lipid bilayers. Moreover, we have demonstrated that SKCa channel opener DCEB 

initiates cardiac PPC as shown by marked metabolic and functional improvements during 

reperfusion. These are supported by better preserved reduced redox state (high NADH and low 

FAD), decreased O2
•- production, reduced mCa2+ loading during IR, and reduced infarct size. The 

protection by DCEB was blocked by dismutation of O2
•- with TBAP and by the SKCa antagonist 

NS8593. It is possible that mSKCa channel opening induces a mild proton leak due to mKHE, which 

accelerates respiration, but maintains ∆ψm, so that small amounts of generated O2
•- triggers a 

downstream protective pathway. 

 

All of the K+ channel agonists may converge on a pathway that stimulates a small amount of ROS. 
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That TBAP blocks protection by this drug and that mitochondria are a major source of ROS, 

suggest that DCEB exerts its effects primarily in mitochondria. Only relative changes in NADH 

and FAD levels and ROS formation can be assessed in our model. We did not test if the mSKCa 

channel is open during IR injury, although we have preliminary evidence that the BKCa channel is 

open during reperfusion239. It is plausible that some factors that induce pre-conditioning, like small 

increases in ROS or m[Ca2+], are the same factors, albeit at much greater levels, that cause IR 

damage. Thus the individual stages of triggering, activation and end-effect must be well delineated 

to unravel the complicated mechanism underlying the cardiac protection afforded by pre-

conditioning.   

 

4. Materials and methods 

 

4.1. Isolated heart model 

The investigation conformed to the Guide for the Care and Use of Laboratory Animals (NIH 

Publication 85-23, revised 1996). Guinea pig hearts were isolated and prepared as described in 

detail32,323,358,368,381 with care to minimize IPC. These were pre-oxygenation, maintained respiration 

after anesthesia with ketamine (50 mg/kg), and immediate aortic perfusion with cold perfusate. 

Hearts were instrumented with a saline filled balloon and transducer to measure left ventricular 

pressure (LVP) and an aortic flow probe to measure coronary flow (CF). Heart rate and rhythm 

were measured via atrial and ventricular electrodes. Hearts were perfused at constant pressure with 

modified Krebs-Ringer’s solution at 37˚C. Heart rate (HR) and rhythm, myocardial function 

(isovolumetric LVP), coronary flow and venous pO2 were measured continuously. %O2 extraction, 

myocardial O2 consumption (MVO2) and cardiac efficiency (HR•LVP/MVO2) were calculated. At 

120 min reperfusion, hearts not isolated for mitochondria were stained with 2,3,5-

triphenyltetrazolium chloride (TTC) and infarct size was determined as a percentage of ventricular 

heart weight32,358,398.  

 

4.2. Cardiac fluorescence measurements 

Either m[Ca2+], NADH and FAD, or ROS (principally O2
•-) was measured near continuously or 

intermittently in the heart using one of four excitation (λex) and emission (λem) fluorescence spectra 

described below. NADH and FAD were measured in the same heart; m[Ca2+] and ROS were 
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measured in different subsets of hearts. A trifurcated fiberoptic probe (3.8 mm2 per bundle) was 

placed against the LV to excite and to record light signals at specific λ’s using 

spectrophotofluorometers (SLM Amico-Bowman and Photon Technology International). The 

incident polychromic light was filtered at 350 or 490 nm and recorded at 390/450 or 540 nm, 

respectively, to measure NADH22,381,399,400 and FAD398,400 tissue autofluorescence. Alternatively, 

hearts assigned to measure Ca2+, were loaded with 6 µM indo 1 AM for 30 min followed by 

washout of residual dye for 20 min. Ca2+ transients were recorded at the same wavelengths as for 

NADH. Then hearts were perfused with MnCl2 to quench cytosolic Ca2+ to reveal non-cytosolic 

[Ca2+], mostly [mCa2+]22,322,381. In other hearts, as reported earlier22,32,358,368, dihydroethidium (10 

µM, DHE), which is used to measure intracellular superoxide (O2
•-) level, was loaded for 30 min 

and washed out of residual dye for 20 min. The LV wall was excited with light λex 540 nm; λem 590 

nm) to measure a fluorescence signal that is primarily a marker of the free radical O2
•- 369,401. DHE 

enters cells and is oxidized by O2
•- where it is converted to the labile cation, 2-hydroxyethidium (2-

HE+), which causes a red-shift in the EM light spectrum402,403. 

 

Myocardial fluorescence intensity was recorded in arbitrary fluorescence units (afu) during 35 

discrete sampling periods throughout each experiment at a sampling rate of 100 points/s (100 Hz, 

pulse width 1 µs) during a 12 s triggered period for O2
•- and for a 2.5 s triggered period for NADH 

and FAD, and m[Ca2+]. For each fluorescence study, no drug alone had any effect on background 

autofluorescence. Signals were digitized and recorded at 200 Hz (Power LAB/16sp, Chart and 

Scope version 3.6.3. AD Instruments) on G5 Macintosh computers for later analysis using 

specifically designed programs with MATLAB (MathWorks) and Microsoft Excel software. All 

variables were averaged over the 2.5 or 12 s sampling period. 

 

4.3. Protocol 

Hearts were infused with 3 µM DCEBIO (DCEB) for 10 min ending 20 min before the onset of 

30 min global ischemia. DCEB is derived from the benzimidazolone class of compounds, which 

are known to stimulate chloride secretion in epithelial cells322,340,404. DCEB non-selectively opens 

KCa2.2 and 2.3 channels340,349–352. In most hearts DCEB was bracketed either with 40 µM PAX 

(paxilline), a blocker of BKCa channels405 20 µM TBAP, a chemical dismutator of O2
•- that can 

enter the matrix,  200 µM GLIB (glibenclamide), a KATP channel blocker, or 100 nM TRAM 



121 
 

(TRAM-34), an established blocker of IKCa conductance channels341. TRAM was selected because 

DCEB also opens IKCa channels340,341,352,353. PAX, TBAP, GLIB, or TRAM was given 5 min 

before, during DCEB perfusion, and for 5 min after stopping DCEB. In a separate study DCEB 

was bracketed with 10 µM NS8593, a specific antagonist of SKCa channels353,354 to compare with 

a no drug IR control. Drug exposure was discontinued 15 min before the onset of global ischemia 

and lasted 120 min. NS8593 caused a transient fall in systolic (and developed) LVP and an increase 

in coronary flow. Additional studies (not displayed) showed that each of these drugs, except for 

NS8593, given alone (without DCEB) for 20 min before ischemia elicited no appreciable effects 

and had no different effect on IR injury than the drug-free controls.   

 

4.4. Statistical Analyses 

A total of 155 isolated heart experiments were divided into 7 groups, a drug-free control, and 

DCEB alone or plus NS8593, PAX, TBAP, GLIB or TRAM. Functional data were recorded from 

12-15 hearts per group. Infarct size was measured in a blinded manner in 8 hearts per group. 

NADH and FAD were measured in approximately 6-8 hearts per group, O2
•- in 5-7 hearts per 

group, and m[Ca2+] in 6-8 hearts per group. Because functional studies showed trends that PAX, 

GLIB, or TRAM did not block protective effects of DCEB, only four groups were compared in 

NADH and FAD experiments and three groups were compared in O2
•- and m[Ca2+] experiments. 

All data were expressed as means ± standard error of means. Appropriate comparisons were made 

among groups that differed by a variable at a given condition or time, and within a group over time 

compared to the initial control data. Statistical differences were measured across groups at specific 

time points (20, 50, 85, 145, and 200 min). Differences among variables were determined by two-

way multiple ANOVA for repeated measures (Statview® and CLR anova® software programs for 

Macintosh®); if F tests were significant, appropriate post-hoc tests (e.g., Student-Newman-Keul’s, 

SNK) were used to compare means. The incidence of ventricular fibrillation (VF) vs. sinus rhythm 

per group, and the number of VF’s per heart per group, were determined by Fisher’s Exact Test. 

In mitochondria K+ flux experiments drug treatments were compared to control using the same 

statistical tests. Mean values were considered significant at P values (two-tailed) <0.05. 

 

4.5. Isolation of cardiac mitochondria and inner mitochondrial membranes (IMMs) 

Mitochondria were freshly isolated from 25 guinea pig hearts by differential centrifugation as 
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described previously22,224,406,407. To test mitochondrial viability and function in each preparation, 

the respiratory control index (RCI, state 3/state 4) was determined under both pyruvate (P, 10 

mM), and succinate (S, 10 mM) + rotenone (R, 4 µM) conditions. State 3 respiration was 

determined after adding 250 µM ADP. Intact mitochondrial preparations were discarded if the RCI 

was less than 3 with succinate + R or less than 9 with pyruvate. 

 

To isolate fraction-enriched IMMs, isolated mitochondria were shocked osmotically by incubating 

in 10 mM phosphate buffer saline (PBS) (pH 7.4) for 20 min, and then in 20% sucrose for another 

15 min. The IMMs were sonicated for 30 s, 3 times, and then centrifuged at 8,000 g for 10 min. 

The supernatant containing sub-mitochondrial particles was fractionated using a continuous 

sucrose gradient (30% to 60%) and centrifuged at 80,000 g overnight in a SW28 rotor. The IMMs 

(enriched in the heavy fractions) were suspended with the isolation medium without EGTA and 

centrifuged at 184,000 g for 30 min. The final pellet enriched IMMs were suspended in isolation 

medium without EGTA and BSA and stored at -80ºC in small aliquots until use. 

 

4.6. Enhancement of calmodulin-binding proteins from IMM 

Calmodulin binds to SKCa channels so the calmodulin binding proteins obtained from the IMMs 

were concentrated to enhance the sensitivity of detection of mSKCa channels by Western blotting 

and by mass spectrometry. For calmodulin column chromatography (calmodulin-sepharose beads) 

the IMMs (5 mg protein) were solubilized for 2 h at 4°C in washing buffer, 200 mM KCl, 1 mM 

MgCl2, 200 µM CaCl2, 20 mM HEPES, pH 7.4, and 0.5% CHAPS with protease inhibitors. After 

centrifugation at 50,000 g for 30 min, the supernatant was applied to a calmodulin-sepharose 

column (10 by 1.5 cm) pre-equilibrated with the solubilization buffer containing 0.1% CHAPS. 

The column was washed rapidly with 500 mL of washing buffer as above. The proteins were eluted 

from the column by 2 mM EGTA in the elution buffer (200 mM KCl, 20 mM HEPES, pH 7.4, 

0.1% (w/v) CHAPS) after washing. The fractions collected were concentrated and the proteins 

were separated by 2-D gel electrophoresis as follows.  

 

4.7. Purification of SKCa channel proteins from IMM by isoelectric focusing 

After isolating the IMM protein fraction (4.5, 4.6) the first dimension of isoelectric focusing (IEF) 

during 2-D gel electrophoresis was done in native gel buffer on an Immobilon Drystrips 
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(Amersham) with pH 4~7 gradient. The antibody was targeted to KCa2.3 (aka, hSK3, KCN3, 

Osenses Pty, Ltd.). The second dimension was done in a 10% Criterion® tris-SDS gel (Bio-Rad). 

Two identical gels were run at the same time, with one used for transfer to nitrocellulose membrane 

for Western blot analysis, and the other for silver staining for visualization.  

 

4.8. IMM protein identification using electrospray LC/MS 

IMM proteins (from 2.5, 2.6) were digested with trypsin and subjected to pH focusing into 10 

fractions over pH 3-10 and each fraction was directly analyzed using a NP LC/ESI mass 

spectrometer (Finnigan™ LTQ™ Ion Trap MS, Thermo Electron Corporation) to generate specific 

mass spectra typical for a given protein. The instrument utilizes stepped normalized collision 

energy (SNCE) to improve fragmentation efficiency over a wide mass range. This increases the 

capacity of a linear trap and the accuracy and sensitivity of peptide detection in the fmol range. A 

mass database (NCBI Entrez Pubmed protein) was searched for matching proteins and 

consequently the SKCa channel protein of interest was tentatively identified in IMM. 

 

4.9. Purification of intact mitochondria by Percoll gradient fractionation 

To further verify localization of SKCa channel protein in an intact mitochondria preparation, the 

Percoll gradient technique408,409 with slight modifications, was used to purify intact mitochondria 

and immuno-histochemical staining was utilized to identify SKCa channel protein. In brief, 

mitochondria isolated as previously described (4.5) were layered over 30% Percoll (in buffer A 

containing 450 mM mannitol, 50 mM HEPES, 2 mM EDTA, pH adjusted to 7.4 followed by 

addition of 50 mg BSA), and centrifuged at 95,000 g for 30 min. The lower dense band observed 

at the bottom of the tube, enriched in mitochondria, was collected using a long tip glass pipette. 

Collected mitochondria (~4 ml) were resuspended in the same buffer used to dilute Percoll, and 

centrifuged again at 6300 g. The resulting pellet was suspended in the same buffer without BSA 

(buffer B) and re-centrifuged at 6300 g. The mitochondrial pellet was resuspended in a small 

volume (~0.3 ml) of buffer B and stored until further use. 

 

4.10. Identification and localization of SKCa channel protein in purified mitochondria 

Immuno-histochemical staining with an anti- SKCa antibody and confocal microscopy were used, 

in part, to verify that SKCa channel protein resides in mitochondria. Briefly, mitochondria, isolated 
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and purified as described above (4.5), were fixed onto poly-lysine coated coverslips. Mitochondrial 

structures were then fixed using paraformaldehyde and membranes were permeabilized using 

Triton X-100 and non-specific binding sites blocked by goat serum albumin. Coverslips were then 

incubated in solution containing anti-KCa2.2 (anti-SK2, ETQMENYDKHVTYNAERS, Alomone 

Labs (1:1000 in 5% milk)) and anti-ANT (adenine nucleotide translocase, Invitrogen) antibodies 

for 30 min followed by three washes in 0.1 M PBS. Coverslips were then incubated in appropriate 

secondary antibodies (Alexa Flour 455 and 546 respectively, Invitrogen (1:3000 in 2% milk)) for 

another 30 min and were then transferred onto microscope slides and visualized using a Leica 

confocal microscope (TCS SP5). Alternatively, mitochondria were utilized for immuno-gold 

labeling to localize SKCa channel protein in individual mitochondria.  

 

4.11. Localization of SKCa channel protein by immuno-gold labeling and electron microscopy 

Immuno-electron microscopy (IEM) was used to localize SKCa protein in purified cardiac 

mitochondria similar to the technique used by Douglas et al.410 to localize BKCa channel protein in 

mitochondria. The final mitochondrial pellet, prepared as described above (4.5), was resuspended 

in 500 µL isolation buffer before centrifugation at 16,000 g for 20 min. The supernatant was 

discarded and an EM fixative containing 0.1% glutaraldehyde + 2% paraformaldehyde in 0.1 M 

NaH2PO4 buffer (pH 7.4) was added. After 1h fixation at room temperature the pellet was gently 

detached from the tube with a 25G needle and processed following the protocols of Berryman and 

Rodewald411. Pellets were washed 3 x 20 min in 0.1M NaH2PO4 buffer containing 3.5% sucrose 

and 0.5 mM CaCl2, then rinsed in 0.1 M glycine in NaH2PO4 buffer for 1 h on ice before returning 

to NaH2PO4 buffer. The pellets were cut into 1 mm cubes and then washed 4 x 15 min in 0.1M tris 

maleate buffer + 3.5% sucrose, pH 6.5, at 4oC followed by post fixation in 2% Uranyl acetate (w/v) 

in tris buffer, pH 6, for 2 h at 4oC; specimens were then given a final rinse 2 x 5 min in Tris maleate 

buffer, pH 6.5. The specimens were then processed by the progressive lowering-of-temperature 

method into Lowicryl K4M resin and the resin was polymerized by UV irradiation. Ultrathin 

sections (70 nm) were cut onto Formvar/carbon coated grids. Immuno-labeling was performed by 

floating grids on droplets of 0.1 M NaH2PO4 buffer containing 5% BSA (PB-BSA), then 

incubating with rabbit polyclonal anti-KCa2.2 (anti-SK2, Alomone Labs) diluted 1:50 for 90 min, 

or with the positive control mitochondrial marker, cytochrome c oxidase (anti-COX1: Complex 

IV, subunit 1) mouse monoclonal antibody diluted 1:500. Non-immune rabbit polyclonal serum 
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was used as the negative control. This step was followed by 3 x 5 min washes in PB-BSA. The 

sections were then incubated with goat anti-rabbit IgG, or goat anti-mouse IgG, conjugated to 10 

nM colloidal gold412 for 90 min at room temp, rinsed in distilled water, and then stained with 2% 

aqueous uranyl acetate. Sections were examined in a JEOL JEM2100 TEM at 80 kV. 

 

4.12. Purification/identification of SKCa channel protein by isoelectric focusing (IEF) and Western 

blotting  

Total mitochondrial protein, once isolated and purified as above (4.6), was partitioned by IEF and 

the resulting fractions analyzed for mSKCa protein. Mitochondria (1 mg) were suspended in 3 mL 

electrophoresis buffer (0.1% w/v CHAPS, 0.1% w/v dodecyl maltoside, 5% (v/v) glycerol, 10 mg 

dithiothreitol) and IEF was performed using the Micro-Rotofor system (BioRad, CA) for 4 h at 

400 mA constant current. The fractions thus obtained were collected and analyzed for SKCa protein 

by Western blot using the anti-KCa2.2 (anti-SK2) antibody. Briefly, equal volumes of the 10 

fractions obtained by IEF were suspended in Laemmli buffer and resolved using sodium dodecyl 

sulfate- polyacrylamide gel electrophoresis (SDS-PAGE)330, as originally described by 

Laemmli333, and transferred onto poly vinilidine difluoride membranes using Transblot System 

(Bio-Rad) in 50 mM tricine and 7.5 mM imidazole transfer buffer. Membranes were blocked with 

10% non fat dry milk in tris buffered saline- TBSt (25 mM Tris-HCl at pH 7.5, 50 mM NaCl and 

0.1% Tween 20) by incubating for 1 h followed by incubation in the anti-KCa2.2 antibody (anti-

SK2) solution overnight at 4°C. After three washes with TBSt the membrane was incubated with 

an appropriate secondary antibody conjugated to horseradish peroxidase for 3 h. After five washes 

with TBSt the membrane was incubated in enhanced chemiluminescence detection solution (ECL-

Plus, GE-Amersham) and exposed to X-ray film for autoradiography. The protein fraction 

containing the largest amount of SKCa was used for single channel recordings. 

 

4.13. Enriching and incorporating mSKCa channel protein into lipid bilayers 

Channel activity of the purified and enriched mSKCa protein was monitored by incorporating it 

into a planar lipid bilayer, as previously described280. Briefly, phospholipids were prepared by 

mixing phosphatidyl-ethanolamine, phosphatidyl-serine, phosphatidyl-choline, and cardiolipin 

(Avanti Polar Lipids) in a ratio of 5:4:1:0.3 (v/v). The phospholipids were dried under N2 and re-

suspended in n-decane to a final concentration of 25 mg/mL. The cis/trans chambers contained 
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symmetrical solutions of 10 mM HEPES, 200 mM KCl and 100 µM CaCl2 at pH 7.4. The cis 

chamber was held at virtual ground and the trans chamber was held at the command voltages. 

SKCa protein was added into the cis chamber. The effect of the SKCa blocker apamin, 100 nM, on 

channel activity was tested by adding it to the cis chamber in the presence of 100 µM CaCl2. To 

test for Ca2+ dependence of the SKCa channel, [Ca2+] was serially increased (1, 50 and 100 µM) in 

the cis chamber. Currents were sampled at 5 kHz and low pass filtered at 1 kHz using a voltage 

clamp amplifier (Axopatch 200B, Molecular Devices) connected to a digitizer (DigiData 1440, 

Molecular Devices), and recorded in 1 min segments. The pClamp software (version 10, Molecular 

Devices) was used for data acquisition and analysis. Additional analyses were conducted using 

Origin 7.0 (OriginLab). 

 

4.14. Matrix K+ measured in isolated mitochondria 

Cardiac isolated mitochondria (0.5 mg protein/mL) were suspended in respiration buffer 

containing 130 mM KCl, 5 mM K2HPO4, 20 mM MOPS, 2.5 mM EGTA, 1 µM Na4P2O7, 0.1% 

BSA, pH 7.15 adjusted with KOH. Buffer [Ca2+] was less than 100 nM as assessed by the 

fluorescence dye indo 1. Matrix K+ was monitored during state 4 respiration (200 µM ATP) with 

substrate Na-pyruvate (10 mM) in a cuvette-based spectrophotometer (QM-8, Photon Technology 

International, PTI) with light (λex 340 and 380 nm; λex 500 nm) in the presence of the fluorescence 

dye PBFI (1 µM per mg/mL protein, Invitrogen)326. PBFI, in the acetylated methyl-ester (AM) 

form, was added to the mitochondrial preparation and incubated at 25°C for 20 min. After entering 

the matrix PBFI is retained in the matrix after it is cleaved from the methyl-ester. During the last 

pellet wash the extra-matrix residual dye was washed out. Most experiments were conducted in 

the presence of 500 µM quinine to block the mitochondrial K+/H+ exchanger (mKHE) and 

extrusion of the K+ (326). In some experiments 0.25 nM valinomycin, a K+ ionophore, was given to 

verify an increase in matrix K+ influx, and to be used as a reference for the change of K+ influx by 

DECB ± its antagonist UCL1684. 
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General Discussion  
 

The general aim of the thesis was to investigate and connect the multiple mitochondrial players in 

cardiac ischemia-reperfusion injury, and how knowledge on their modulation can be exploited for 

their use as therapeutic targets and/or development of novel strategies to arrest their dysfunction 

in pathological conditions. I focused on a) characterization of mitochondrial connexin 43 as a 

channel and how its modulation can effect mitochondrial calcium dynamics and how this can have 

an impact on cell death and cardiac injury; b)mitochondrial respiratory complex I in development 

of ischemic injury and its amelioration by the use of complex I targeting drug ranolazine and c) 

characterization of novel small conductance calcium sensitive potassium channels in mitochondria 

and how its modulation is beneficial in cardioprotection. 
 

One of the most intriguing aspects of mitoCx43 is its location in the mitochondria. Studies have 

shown it to be present in both the IMM and the OMM. However, a conclusive study showing its 

orientation in the mitochondria is lacking. It has been shown that mitoCx43 is transported via an 

HSP90/TOM20 dependent pathway179  However, given a lack of mitochondrial targeting sequence 

in Cx43, it is perplexing as to how Cx43 is transported. However, Cx43 is not the only nuclear 

encoded protein without mitochondrial targeting sequence that is transported into the 

mitochondria. For example, respiratory complex I, which is a multi-subunit protein, is composed 

of mitochondrial and nuclear DNA encoded proteins, with nuclear encoded subunits being 

transported into the mitochondria without any mitochondrial targeting sequence199. What is further 

interesting about translocation of Cx43 into the mitochondria is the rapid time line observed (less 

than 15 minutes to reduce mitoCx43 content by a third) when rat hearts are treated with HSP90 

blocker179. The importance of such rapid control of translocation of mitoCx43 is yet to be 

understood. 

 

Most studies to date have focused on the role of mitoCx43 in IPC184,275,413. However very little 

knowledge is available with regard to its role in acute ischemia. The role of mitoCx43 in IPC is 

closely linked to the generation of ROS34,184,275 which is supposed to be cytoprotective. However, 

nothing is known yet about the connection between ROS and mitoCx43 in acute ischemia. In my 

studies, I have not only seen that (a) Ca2+ entry into the mitochondria (a key precursor event of cell 
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death in IR), is facilitated by Cx43, but also (b) that using Cx43 HC blocker peptides delays MPTP 

opening, prevents cell death following hypoxia-reoxygenation in isolated cardiomyocytes and (c) 

that perfusion of isolated mice hearts with Cx43 HC blocking peptides, especially RRNY, before 

IR significantly reduces infarct size.  

 

A key factor necessary to understand how use of Cx43 HC blocking peptides affords 

cytoprotection is the opening and closed states of Cx43 HC and GJs and how these are 

differentially regulated. The interaction of  CT and CL domains of Cx43 keeps the GJs closed, 

while keeping the HCs in a state that is available to open when an opening stimulus such as 

intracellular acidification, or elevated [Ca2+]i
124,128. Under these conditions, the peptides do not 

change the states of either GJs or HCs. However, when an opening stimulus is applied in the 

presence of peptides, CT-CL interactions are disturbed thereby essentially “locking” the HCs in a 

closed state and keeping the GJs open. As mentioned previously, the orientation of Cx43, and thus 

its open or closed state in mitochondria is unknown. However, given that no matter what the 

orientation, the low [Ca2+]i or the high negative potential seen by the CT, channels are expected to 

be open. Hence, mitoCx43 can be presumed to allow Ca2+ entry into the mitochondria, perhaps 

with other ions and metabolites, as shown previously30,33,240. As previously stated, unmitigated 

Ca2+ entry into the mitochondria is a hallmark of IR injury, which ultimately leads to apoptosis. 

By blocking one of the key Ca2+ entry pathways by the use of Cx43 blocking peptides, in my 

studies, I observed a drastic decrease in mitochondrial Ca2+ entry and consequently decreased cell 

death and lower infarct size. This strongly points to the presence of open Cx43 HCs, which can be 

prevented from opening by the use of peptides, especially RRNY. 

 

The studies on mitoCx43 and IPC have shown a role for diazoxide induced ROS generation via a 

Cx43 mediated pathway. IPC is known to be afforded via various K+ channels of the mitochondria, 

including but not limited to KCa channels and the KATP channels. Recent observations by Boengler 

et al. showed that mitoCx43 acts as a K+ channel that can be blocked by Gap1933. This is an 

interesting observation in light of correlation between increased myocardial protection by the use 

of K+ channel openers32,224,279. Mitochondrial volume modulation achieved via the opening of K+ 

channels is thought to induce small amounts of ROS generation25, which in turn trigger 

downstream protective pathways. Hence, it is plausible that Cx43 mediated ROS generation is a 
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consequence of altered mitochondrial volume, given the fact that Cx43 is a non-selective channel, 

permeable to not just ions and metabolites but also water. It would indeed be helpful to see if 

mitochondrial volume changes in the presence of Cx43 blocking peptides, and its effect on ROS 

generation. 

 

Unmitigated generation of ROS by CI is a critical feature of IR injury, and blocking CI, during 

ischemia and not during reperfusion, is a cardioprotective pathway. Gap19 has been shown to 

block CI activity180, however, no association between Cx43 and CI had been shown. In my studies, 

using native gels, I observe a physical association between Cx43 and CI in the form of a 

supercomplex. The cardioprotective effect of Gap19 and perhaps RRNY in my studies could, by 

correlation, be attributed to the blockage of Ca2+ into the mitochondria, and also perhaps blockage 

of CI based excess ROS generation.  

 

In conclusion, my studies on mitoCx43, respiratory complex I and small conductance calcium 

sensitive potassium channels and the complicated interplay between various mitochondrial 

parameters show that mitochondria are complex organelles contributing to not just cellular energy 

needs, but also to cellular ion homeostasis. My studies also show that although dynamic buffers, 

mitochondria are susceptible to dysregulation of ion homeostasis with deleterious effects on 

energy generation, which in turn feeds back into the vicious loop of further deterioration. 

Understanding this complex interplay is critical for not just further insight into how pathological 

insults can act at different sites within the cell, but also in devising newer, more efficient 

therapeutic strategies. My studies have also shown that when devising therapeutic strategies, it is 

imperative to study not only the effects of these strategies on cellular parameters associated with 

the target, but also additional effects on the target itself to prevent inadvertently leading to 

deleterious effects. This is all the more crucial when targeting organelles such as the mitochondria- 

which are not only the deciders of cell death, but also for cell survival. 
 

Limitations of experimental models 

 

Although precautions have been taken to minimize avoidable mis-steps in devising experimental 

models and the studies on them, it is impossible to eliminate all limitations. In view of this, I briefly 
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mention the limitations that I feel the experimental models have. 

 

First, the studies on mitochondria- aimed towards a better understanding of IR injury, can 

themselves be exposed to ischemic conditions during isolation process, which will invariably 

influence experimental results.  Second- given the knowledge that mitochondria exist in two 

subpopulations- the SSM and IFM, only one manuscript (Chapter 3.1) takes into consideration of 

this difference. The other two manuscripts treat the entire mitochondrial pool as one population. 

Perhaps due to this pooling, I could have missed as yet unknown differences between the two 

populations with regard to either complex I (Chapter 3.2) or SKCa (Chapter 3.3).  Third- the 

environment of isolated organs and organelles in the studies is highly artificial. This is sure to have 

implications on results obtained.  

 

Therefore, a broad experimental approach which includes in vivo experiments as well as 

investigations at organ, cell and sub-cellular level can minimize the risk of drawing incorrect or 

partial results from experimental studies. 

 

Future perspectives 

  

Not only the understanding of exact mechanisms of IPC and POC and the players involved in these 

phenomena, but also pathological conditions such as IR injury and pharmaceuticals currently 

employed to treat these pathological conditions is incomplete. The results obtained in this thesis 

demonstrate that mitochondria are critically involved in signal transduction pathways of cardiac 

IR injury and play a major role in IPC and POC. Furthermore, given the fact that oxidative stress 

is one of the underlying mechanisms of ageing, diabetes etc. it is likely that mitochondria have a 

major role in those phenomenon as well. Further studies should investigate whether mitochondria 

are possible targets for pharmacological therapy for intervention in these pathological conditions 

as well. 
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Slow matrix Ca2+ uptake by Ca2+ uniport or Ca2+/H+ exchange in partially uncoupled cardiac 
cell mitochondria and its prevention by inhibiting complex V 
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Short title: mitochondrial Ca2+ flux during ATP hydrolysis 
 
Highlights: 
• We examined how Ca2+ uptake and pHm are altered by dinitrophenol (DNP) to stepwise uncouple 
ΔΨm and by oligomycin (OMN) to prevent H+ pumping at mitochondrial complex V. 

• The falls in ΔΨm and pHm after DNP and added CaCl2 were larger when complex V was blocked. 
• Early Ca2+ uptake fell as a function of declines in ΔΨm and pHm when complex V was blocked. 
• Late Ca2+ uptake and pHm rose with permissive H+ pumping by complex V in absence of OMN. 
• Fast mCa2+ influx is dependent on pHm and ΔCa2+

m in addition to ΔΨm, while slow mCa2+ uptake 
by the Ca2+ uniporter or Ca2+/H+ exchange augments the fall in ΔΨm and prevents a decline in 
pHm. 

• ATPm hydrolysis supports the falling pHm and promotes slow mCa2+ uptake that further 
uncouples ΔΨm. 
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Abstract 
The aim was to assess and quantify the time and rate dependency of mitochondrial (m) Ca2+ uptake 
by ΔΨm when altered by graded H+ leak into the matrix and by outward H+ pumping during ATP 
consumption. We postulated that pHm  –dependent mCa2+ uptake increases, rather than decreases, 
in partially uncoupled mitochondria when there is H+ pumping during ATP consumption by 
complex V (FOF1-ATP synthase/ase). To test this we assessed mCa2+ ion uptake quantitatively in 
mitochondria isolated from guinea pig hearts while stepwise decreasing ΔΨm with dinitrophenol 
(DNP) to test the effect of complex V activity on pHm and [Ca2+]m uptake in the presence and 
absence of oligomycin (OMN). We measured [Ca2+]m, ΔΨm, pHm, and NADH over time by 
fluorescence spectrophotometry and [ATP] by the luciferin-luciferase reaction. After energizing 
mitochondria with pyruvic acid, DNP was added to stepwise uncouple ΔΨm, after which CaCl2 
(equivalent to 114 and 485 nM [Ca2+]e) was added ± OMN to block complex V. Enhanced FoF1-
ATPase activity was evidenced by increased ATP consumption that was blocked by OMN and by 
the maintenance of pHm in the absence of OMN. DNP caused stepwise decreases in ΔΨm and pHm 
that were larger when complex V was blocked. The falls in pHm and ΔΨm were greater at increasing 
[Ca2+]m. Fast Ca2+ uptake rate and [Ca2+]m fell as a function of the falls in ΔΨm and pHm in the 
presence of OMN. Over time [Ca2+]m and pHm were higher as a function of a partial fall in ΔΨm 
in the absence of OMN, indicating slow mCa2+ uptake via the Ca2+ uniporter (CaU) and or Ca2+/H+ 
exchange (CHEm) as this was ruthenium red (RR) dependent. NADH decreased with the falls in 
ΔΨm and pHm only in the presence of OMN. This study demonstrates the relative importance not 
only of H+ pumping by complex V to support ΔΨm during uncoupling due to H+ leak, but also of 
the effect of maintaining matrix [H+] to promote slow mCa2+ influx, which augmented the fall in 
ΔΨm. Because inducing ATPm hydrolysis during partial uncoupling promotes uptake of mCa2+ 
which in turn further reduces ΔΨm,  under conditions of cell stress where uncoupled oxidative 
phosphorylation and excess mCa2+ loading are observed, temporarily inhibiting ATPm hydrolysis 
may prevent further mCa2+ loading and thus attenuate mitochondrial stress even though ΔΨm and 
pHm are not maintained. 
 
Key Words: cardiac, mitochondria, Ca2+uptake, Ca2+ uniporter, Ca2+/H+ exchange, H+ leak and 
pumping, complex V. 
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Introduction 
Mitochondrial matrix (m) Ca2+ overload is a damaging consequence of cardiac ischemia-
reperfusion (IR) injury and so is an important subject for potential therapy (Brookes et al. 2004; 
O’Rourke, Cortassa & Aon, 2005; Stowe & Camara, 2009; Camara, Lesnefsky & Stowe, 2010). 
Mitochondria can consume ATP instead of producing it during ischemia, and this could have 
consequences for augmenting mCa2+ loading with its deleterious effects on the metabolic state that 
can lead to induction of apoptosis and necrosis. [Ca2+]m is regulated in part by electrochemical 
dependent cation fluxes via transporters and exchangers within the inner mitochondrial membrane 
(IMM) (Brookes et al. 2004; Bernardi, 1999; Gunter & Pfeiffer, 1990; Gunter et al. 1994). One 
route for mCa2+ uptake is  the ruthenium red (RR) sensitive Ca2+ uniporter (CaU), and a primary 
mCa2+ efflux pathway is via a Na+/Ca2+ exchanger (NCEm). Another more rapid mode of Ca2+ 
uptake may occur via a mitochondrial type ryanodine receptor. There is also homeostatic evidence 
of mCa2+ influx or efflux through a Na+-independent Ca2+ exchanger (NICE), putatively a Ca2+/H+ 
exchanger (CHEm), a.k.a. Ca2+/H+ antiporter. Ca2+ handling across the IMM is affected by other 
cations, e.g. Mg2+, and most of the Ca2+ entering the matrix is dynamically buffered. Transport 
through the CaU and NCEm are largely voltage dependent, whereas CHEm may be pH dependent, 
but independent of the mitochondrial membrane potential (ΔΨm). 
 
Many studies have shown a direct correlation between ΔΨm and mCa2+ uptake according to the 
Nernst equation; a higher (more polarized) ΔΨm results in a higher [Ca2+]m (Gunter et al. 1994; 
Wingrove, Amatruda & Gunter, 1984). Although mCa2+ uptake via the CaU is highly dependent 
on ΔΨm, it is also dependent on the [Ca2+]m, and indirectly, on the [H+]m chemical gradient and 
mCa2+ buffering capacity. How the magnitude, rate, and source of mCa2+ uptake are affected by 
manipulation of these electrochemical gradients when mitochondria are partially uncoupled, e.g. 
during ischemia, is not well characterized. Moreover, it is not known if H+ pumping with ATP 
hydrolysis at complex V (FOF1-ATPsynthase/ase) to support ΔΨm (Chinopolous & Adam-Vizi, 
2010; Chinopolous, 2011) alters mCa2+ flux in partially uncoupled mitochondria. A 
comprehensive and quantitative understanding of mCa2+ uptake during these conditions that mimic 
IR injury is essential for developing therapeutic approaches to prevent or reduce excess mCa2+.  
 
A high ΔΨm and a high extra-matrix [Ca2+] promote increased voltage and concentration dependent 
mCa2+ uptake via the CaU (Hoppe, 2010). Thus a decrease in mCa2+ uptake is expected from drug-
induced graded decreases in ΔΨm by protonophore-induced H+ entry (“proton leak”) (Gunter et al. 
1994; Wingrove, Amatruda & Gunter, 1984). However, the added contribution of outward H+ 
pumping by complex V to counteract the H+ leak at less than fully polarized potentials may 
enhance slow ΔΨm –independent mCa2+ uptake through CaU or CHEm indirectly or directly due 
to the increase in [H+]m caused by the H+ leak. Moreover, induced increases in mCa2+ can 
significantly decrease ΔΨm (Delkam et al. 1998; De Lisa & Bernardi, 1998), due to the large influx 
of positive charges. In prior studies of mitochondrial Ca2+ handling, [Ca2+]m was not measured 
over time, and regulatory factors such as redox state, ΔΨm, pHm and ATP levels were not assessed, 
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particularly under the condition of an induced H+ leak.  
 
Our aim was to assess and quantify the time and rate dependence of mCa2+ uptake by a falling 
ΔΨm caused by a graded H+ leak into the matrix and by outward H+ pumping during ATP 
consumption. To carry out this aim we challenged isolated, energized mitochondria with added 
buffer CaCl2 while stepwise adding DNP in the absence or presence of the complex V inhibitor 
oligomycin (OMN) to block ATP hydrolysis, as assessed by timed measurements of matrix [ATP]. 
To determine how DNP, OMN and RR dynamically alter [Ca2+]m after adding CaCl2, we also 
dynamically measured matrix ΔΨm, pHm, and NADH over time. Our overall goal was to gain 
greater insight in the bioenergetic mechanisms of mCa2+ uptake rate and magnitude via the CaU, 
and/or the pHm -dependent CHEm, when ΔpHm and ΔΨm tend to fall due to a graded H+ leak with 
compensatory H+ pumping by complex V in the attempt to restore ΔpHm and ΔΨm.  

 
Materials and Methods  
Mitochondrial Isolation – All experiments conformed to the Guide for the Care and Use of 
Laboratory Animals and were approved by our institutional Biomedical Resource Center animal 
studies committee. All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) unless noted 
otherwise. Guinea pig heart mitochondria were isolated as described before (Heinen et al. 2007; 
Riess et al. 2007; Haumann et al. 2010). Briefly, guinea pigs (250-350 g) were anesthetized by 
intraperitoneal injection of 30 mg ketamine; 700 units heparin was given for anticoagulation. 
Hearts (n = 59) were excised and minced to approximately 1 mm3 pieces in ice-cold isolation buffer 
containing in mM: mannitol 200, sucrose 50, KH2PO4 5, 3-(N-morpholino) propanesulfonic acid 
(MOPS) 5, EGTA 1, BSA 0.1%, pH 7.15 (adjusted with KOH). The minced heart was suspended 
in 2.65 ml buffer with 5U/ml protease, and homogenized at low speed for 20 s; next 17 ml isolation 
buffer was added, and the suspension was again homogenized for 20 s. The suspension was 
centrifuged at 8000 g for 10 min. The supernatant was discarded and the pellet was suspended in 
25 ml of isolation buffer, and centrifuged at 900 g for 10 min. The supernatant was centrifuged 
once more at 8000 g to yield the final mitochondrial pellet, which was suspended in 0.5 ml isolation 
buffer and kept on ice. The mitochondrial protein concentration was measured using the Bradford 
method,30 and diluted to 12.5 mg mitochondrial protein/ml with isolation buffer. 

 
Fluorescence Measurements – Fluorescence techniques were used to measure mitochondrial 
matrix [Ca2+]m, NADH, pHm, and ΔΨm (Qm-8, Photon Technology International, Birmingham, 
NJ) spectrophotometrically (Heinen et al. 2007; Haumann et al. 2010; Aldakkak et al. 2010; Huang 
et al. 2007). A subset of isolated mitochondria (5 mg/ml) was incubated for 20 min at room 
temperature (25°C) with 5 µM indo-1 acetoxymethyl ester (AM) to measure [Ca2+]m or 5 µM 2’7’-
bis-(2-carboxyethyl)-5’(and 6-) carboxyfluroescein AM (BCECF) to measure pHm (Invitrogen, 
Carlsbad, CA), followed by suspension in 25 ml isolation buffer and centrifugation at 8000 g. The 
AM form of the dye is taken up into the mitochondrial matrix where it is de-esterified, so that the 
dye is retained in the matrix. The dye-loaded pellet was resuspended in 0.5 ml isolation buffer, and 
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the protein concentration was measured again and diluted to 12.5 mg mitochondrial protein/ml. 
NADH was measured using autofluorescence and ΔΨm was measured using rhodamine 123 
(R123). Mitochondria were kept on ice for the duration of the studies. All studies were conducted 
at room temperature. 

 
Experimental Protocol – Mitochondria were suspended (0.5 mg/ml) in experimental buffer 
solution containing in mM: KCl 130, K2HPO4 5, MOPS 20, bovine serum albumin 0.016 and 
EGTA 0.040 at pH 7.15 (adjusted with KOH). In the OMN groups 100 µM OMN was added to 
the experimental buffer before the start of the experiment. The experimental buffer was Na+-free 
to prevent activation of the NCE. The inactivity of the NCE was verified by comparing data from 
these experiments to data from experiments with added CGP-37157, a specific mitochondrial NCE 
inhibitor (data not shown). 
 
Experiments were initiated at t = -120 s; at t = -90 s mitochondria were added (Fig. 1). At t = 0 s 
pyruvic acid (PA, 0.5 mM) was added, followed by 0, 10, 20, 30 or 100 µM 2,4 dinitrophenol 
(DNP) at t = 120 s, and either of three levels of CaCl2 (0, 10, and 25 µM in de-ionized H2O). In 
some experiments (Supplemental Materials Figs. S.1, 2) 25 µM RR was added 60 s after adding 
CaCl2. In all fluorescence experiments 4 µM carbonyl cyanide m-chloro phenyl hydrazone 
(CCCP) was added at t = 760 s to fully abolish ΔΨm. DNP, RR, OMN or CCCP were dissolved in 
DMSO for a final buffer concentration of 0.4 to 1% (wt/vol).  

 
Fig. 1. Time line of experimental protocol: addition of mitochondria, ± oligomycin (OMN), pyruvic acid (PA), 
dinitrophenol (DNP), CaCl2, and CCCP to respiratory buffer. Early and late plots refer to time points where means of 

several variables are plotted to summarize their interrelationships. 

 

Measurement of ΔΨm – ΔΨm was measured by adding 50 nM rhodamine-123 (R123) (Calbiochem, 
San Diego, CA) to indo-1 treated mitochondria from 14 hearts to the experimental buffer. At an 
excitation wavelength (λex) of 503 nm the change in fluorescence was measured at the emission 
wavelength (λem) of 527 nm. R123 uptake is dependent on ΔΨm. As the dye is taken up, the 
fluorescence signal decreases as the dye autoquenches; therefore, a decrease in ΔΨm is represented 
by an increase in signal. Mitochondria energized with PA were considered fully polarized (0%), 
whereas the signal after adding CCCP represented complete IMM depolarization (100%). 
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Measurement of Matrix Ionized [Ca2+] – [Ca2+]m was measured in indo-1AM loaded mitochondria 
from 20 hearts. Indo-1 is a fluorescent dye that binds to Ca2+ with a Kd tested to be approximately 
240 nM. The λem shifts from 456 nm to 390 nm on binding to Ca2+ when a λex of 350 nm is applied. 
The ratio between the two λem’s corrects for differences in the amount of dye taken up into 
mitochondria. Since the λex and λem used for Ca2+ are the same as for NADH, the two NADH 
background λem signals were subtracted from the two λem indo-1 signals before calculating the ratio 
(R). The ratios obtained when all indo-1 becomes bound to Ca2+ (Rmax) and when the lowest 
amount of Ca2+ is bound to indo-1 (Rmin) were measured in energized mitochondria using 500 nM 
cyclosporine A and 500 µM CaCl2 for Rmax, and A23187 (Ca2+-ionophore) and 2.5 mM EGTA for 
Rmin (Haumann et al. 2010). [Ca2+]m was calculated using the formula (Grynkiewicz, Poenie & 
Tsien, 1985):  
 

[Ca2+]m (nM) = Kd • (R-Rmin)/(Rmax-R) • S456 
 

The Kd is the binding constant, and S456 is the ratio of fluorescence intensities during unsaturated 
and saturated Ca2+ at the 456 nm λem. Their ratio was measured to be 1.35. The Ca2+ signals were 
normalized to the averaged [Ca2+]m over all experiments at time point t = 10 s (see Experimental 
Protocol), which was calculated to be approximately 80 nM. A 0.15 decrease in pH increases the 
Kd negligibly by about 9 nM. ADP and ATP do not differentially alter light transmission at the λex 
and λem spectra for indo-1 or the alternative Ca2+ fluorescent probe Rhod-2.  

 
Measurement of Mitochondrial Redox State – Mitochondria from 9 hearts were used to measure 
NADH autofluorescence. Unlike NAD, NADH molecules have natural fluorescence properties 
that can be monitored (Chance et al. 1962). Therefore, an increase in the signal reflects an increase 
in the ratio of NADH to NAD+, i.e. a shift to a more reduced state. The emission spectrum of 
NADH is broad, and peaks at λem =456 nm and λex =350 nm. To correct for differences in total 
NADH and NAD+ pool sizes, the ratio of λem 456/390 nm was measured. In addition to providing 
data on the mitochondrial redox state, the raw NADH data was used to correct for the background 
autofluorescence measured by the indo-1 fluorescence probe for [Ca2+]m (Haumann et al. 2010; 
Grynkiewicz et al. 1985).  

 
Measurement of Matrix pH – Matrix pH was measured in BCECF-AM treated mitochondria from 
9 hearts at λex =504 nm and λem =530 nm. BCECF is a fluorescent probe that becomes less 
fluorescent in an acidic environment; thus an increase in signal indicates matrix alkalinization and 
a decrease in signal indicates matrix acidification. The measured signals were normalized for each 
group to their average photon count at the steady state seen after adding CaCl2 or vehicle to correct 
for differences in signal strength and dye uptake. The measured signal was converted to pH units 
by measuring the BCECF signal from tritonized (1% triton X-100) mitochondria incubated in 
BCECF in buffers with known pH (7.00, 7.15 and 7.25) (Haumann et al. 2010). This gave a linear 



157 
 

relationship, which enabled calculation of pHm from the signal intensity. Because the wavelengths 
used for BCECF measurements did not overlap with the NADH autofluorescence signals, the 
matrix NADH and pHm measurements were conducted in the same mitochondrial preparation. 

 
Measurement of ATP Concentration – Mitochondrial [ATP] was estimated from ATP 
consumption in the total mitochondrial buffer: ATP+luciferin → luciferyl adenylate+PPi; luciferyl 
adenylate+O2 → oxyluciferin+AMP+light. In brief, mitochondria from 20 hearts were suspended 
in experimental buffer and the normal protocol as described above (Fig. 1) was followed, with the 
exceptions that mitochondria were added at t = -120 s, then PA at t = 0, next DNP (0, 10, 20, 30 
or 100 µM), and then CaCl2 (0, 10, or 25 µM) at the same time points. CCCP was not added in 
these experiments. At specific time points all proteins were precipitated by adding 100 µl of 70% 
perchloric acid (Sigma-Aldrich) to quench all reactions. The obtained aliquot was centrifuged for 
1 min at 50 g, 750 µl of the supernatant was collected, and the acidity was reversed by adding 180 
µl of 5 M KOH. ATP was measured in buffer containing 200 mM MOPS, 2 mM EGTA, 3 mM 
MgCl2, 0.3 mM D-luciferin and 1.25 mg/ml luciferase (Invitrogen) at pH 7.20 (adjusted with 
KOH). Samples of 2.4 µl were added to 97.5 µl buffer, the solution was mixed, and luminescence 
was measured using a luminometer (Turner Biosystems). Total buffer [ATP] was calculated from 
the calibration curve generated using 62.5 nM, 125 nM, and 1250 nM [ATP] standards. 
Mitochondrial [ATP] was estimated from the final mitochondrial protein concentration (8.8 µg/ml) 
and the ratio of mitochondrial water to protein (Vinnakota & Bassingthwaite, 2004) as follows: 
 
Final calculated mitochondrial [ATP] = 
([ATP](10-9 M)(10-3 L/ml) 
(8.8 µg/ml)(66.4/25.0 nl/µg)(10-9 L/nl) 
 

where mitochondrial protein mass = 0.25 of the total mitochondrial mass; mitochondrial water 
mass = 0.664 of the total mitochondrial mass; 66.4 g mito H2O/g sample = 66.4 nl mito H2O/µg 
because 1 µg H2O = 1 nl H2O; for example: if buffer [ATP] is 50 nM, then calculated mitochondrial 
[ATP] = 2.15 mM based on the estimated overall dilution factor of 4.3x104. (See Supplemental 
Materials for assessment of ATP/ADP ratios by HPLC and luminometry.) 

 
Statistical Analyses – All data are presented and expressed as average ±SEM. Repeated measure 
ANOVAs followed by a post hoc analyses using Student-Newman-Keuls’ test were performed to 
determine statistically significant differences within each DNP group. Data for analyses were 
collected at the times noted above, i.e. before and after adding DNP, and early and late after adding 
CaCl2. Effects of DNP and CaCl2 additions as a function of pHm were also examined by multiple 
regression analysis. A P value < 0.05 (two-tailed) was considered significant.  

 
2. Results  
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Membrane Potential – ΔΨm decreased (became uncoupled) in a stepwise manner at increasing 
[DNP] (Fig. 2). ΔΨm was assessed as % of depolarization (fully coupled to completely uncoupled), 
where PA = 0 s represents full polarization (0%) and CCCP full depolarization (100%), Adding 
20 µl DMSO (DNP vehicle) or 20 µl H2O alone caused a small decrease of the R123 fluorescence 
signal (Fig. 2A). Adding 0, 10, 20, 30, or 100 µM DNP reduced ΔΨm by 9.7±0.3, 16.7±0.7, 
18.7±1.1 and 92.4±2.4%, respectively. In the presence of OMN (Fig. 2C), adding 0, 10, 20, 30 or 
100 µM DNP reduced ΔΨm by 3.0±1.0, 6.0±1.0, 14.2±1.6, 31.0±5.0 and 99.0±2.1%, respectively. 
Overall, with no added CaCl2, the effect of DNP to decrease ΔΨm was larger in the presence of 
OMN (Fig. 2C,D vs. 2A,B).  
 
On adding either 10 µM (Fig. 2A,C) or 25 µM (Fig. 2B,D) CaCl2, ΔΨm was slightly and 
temporarily increased and this was not [DNP] dependent; this effect was followed by a gradual 
and graded uncoupling that was dependent on both the [DNP] and the [Ca2+]m. In the absence of 
added CaCl2 the extent of uncoupling induced by DNP was not altered over time (data not shown). 
This indicates that adding CaCl2 greatly enhanced ΔΨm uncoupling only if the ΔΨm was already 
partially uncoupled; i.e., adding 25 µM CaCl2 had no effect on changing ΔΨm if it was not already 
partially uncoupled. CaCl2-induced uncoupling was faster and greater in the 30 µM DNP group, 
particularly after adding 25 µM CaCl2 (Fig. 2B). In the presence of OMN (Fig. 2C,D), when ΔΨm 

was uncoupled more by DNP, the decrease in ΔΨm after adding either 10 or 25 µM CaCl2 was 
even greater than in the absence of OMN. 

 
Fig. 2. Change in mitochondrial membrane potential (ΔΨm), measured with rhodamine-123, as a function of time after 
adding dinitrophenol (DNP) and CaCl2 in the absence (A,B) and presence (C,D) of oligomycin (OMN). Note that 
adding DNP caused a concentration-dependent decrease in ΔΨm that was more pronounced in the presence of OMN. 
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Addition of CaCl2 caused a small polarization, while a continuous uncoupling occurred over time. Addition of 25 µM 

CaCl2 (B,D) resulted in a more pronounced uncoupling effect compared to 10 µM CaCl2 (A,C). For P<0.05: *after 

vs. before DNP; #after vs. before CaCl2; †late vs. early after CaCl2. 

 

Mitochondrial Free [Ca2+] – Adding 10 or 25 µM CaCl2 without DNP (ΔΨm fully coupled) 
increased [Ca2+]m from 80±9 (no added CaCl2) to 225±20 and 450±43 nM, respectively, at 240 s 
(Fig. 3A,B); [Ca2+]m remained unchanged over time after 10 µM CaCl2 but fell gradually over time 
after 25 µM CaCl2. When ΔΨm was stepwise uncoupled by 10-30 µM DNP, [Ca2+]m continued to 
rise after adding 10 µM CaCl2 (Fig. 3A) and also when stepwise uncoupled by 10 and 20 µM DNP 
after adding 25 µM CaCl2 (Fig. 3B)); this slow rise in [Ca2+]m was completely blocked by adding 
RR 60 s after adding CaCl2  When ΔΨm was nearly or totally uncoupled by 100 µM DNP in the 
absence of OMN, the rise in [Ca2+]m over time in the 10 µM CaCl2 group was negligible but it 
increased significantly over time in the 25 µM CaCl2 group. In contrast, the presence of OMN to 
block complex V abolished the gradual rise in [Ca2+]m over time in the 10 µM CaCl2 group (Fig. 
3C) and resulted in reduced [Ca2+]m over time in the 25 µM CaCl2 group (Fig. 3D). 
 

 
Fig. 3. Change in mitochondrial [Ca2+]m, measured with indo-1, as a function of time after adding DNP and CaCl2 in 
the absence (A,B) and presence (C,D) of OMN. Note that adding DNP did not alter [Ca2+]m, per se, but did affect 
[Ca2+]m depending on the concentration of DNP, the amount of CaCl2 added, and the absence or presence of OMN. 

Adding 10 µM CaCl2 (A,C) resulted in a lower increase in [Ca2+]m than 25 µM CaCl2 (B,D). In the presence of OMN 
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(C,D) DNP caused a concentration-dependent reduction in [Ca2+]m, whereas in the absence of OMN the effect of DNP 
on [Ca2+]m was less concentration –dependent and [Ca2+]m continued to increase over time. See Fig. 2 for statistical 
notation. 

 

The initial rate of rise in [Ca2+]m (0-7 s) was faster after adding 25 µM than 10 µM CaCl2 (Fig. 
4A,B) and was slowed stepwise at decreasing ΔΨm with added DNP. The uptake of mCa2+ during 
the first 7 s after adding 10 µM CaCl2 decreased from 8.2 (0 DNP) to 1.9 (100 µM DNP) nM/s, 
and after adding 25 µM CaCl2, from 87.6 (0 DNP) to 20.2 (100 µM DNP) nM/s. In the presence 
of OMN, the initial rises in [Ca2+]m in fully coupled (0 µM DNP) mitochondria were greater than 
those in the absence of OMN (Fig. 4A,B vs. Fig. 4C,D). In the presence of OMN, the initial mCa2+ 
uptake rates decreased from 30.1 (0 DNP) to 4.2 nM/s (100 µM DNP) after adding 10 µM CaCl2 
and from 129.9 (0 DNP) to 12.9 nM/s (100 µM DNP) after adding 25 µM CaCl2 (Fig. 4C,D). Thus 
the mCa2+ uptake rates with 10 and 25 µM CaCl2 were faster in the presence of OMN and 10, 20, 
and 30 µM DNP (Fig. 4C vs. A; Fig. 4D vs. C). 

 
Fig. 4. Summary of data for initial rates of mCa2+ uptake (nM/s) as a function of [DNP] after adding CaCl2 in the 
absence (A,B) or presence (C,D) of OMN. The rate of mCa2+ uptake decreased as the degree of ΔΨm uncoupling 
increased with increasing [DNP]. Note that mCa2+ uptake rate was higher in the presence of OMN (C,D) than in its 

absence (A,B). For P<0.05: ¶DNP vs. DMSO; ‡25 vs. 10 µM CaCl2. 

 

Mitochondrial pH – pHm, measured with BCECF-AM, increased on addition of PA (data not 
shown) as more H+ was pumped out of the matrix via the electron transport chain. In the absence 
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of OMN, DNP had only a small effect to decrease pHm at a partially uncoupled ΔΨm but had a 
large effect to acidify the matrix when ΔΨm was fully uncoupled (100 µM DNP) (Fig. 5A,B). 
Adding CaCl2 had no appreciable effect on pHm at a partially uncoupled ΔΨm, but enhanced the 
acidification observed at a fully uncoupled ΔΨm (Fig. 5A,C). In the presence of OMN there was a 
strong concentration-dependent acidification of the matrix dependent on the degree of ΔΨm 
uncoupling (Fig. 5C,D). This indicated that with complex V blocked, more H+ ions were able to 
enter the matrix (or fewer to exit) through the IMM. Conversely, in the absence of OMN when 
ΔΨm exhibited partial uncoupling, H+ ion entry was matched by H+ ion extrusion as pHm did not 
appreciably change. Moreover, the gradual acidification observed after adding CaCl2 was more 
pronounced in the presence of OMN. Multiple regression analysis showed that pHm was correlated 
to both CaCl2 addition and DNP addition. With no OMN, the pHm was dependent on DNP and 
CaCl2 addition with a beta of 0.42 (p<0.001) and 0.30 (p<0.05), respectively, with a correlation 
coefficient of 0.51. In the presence of OMN the dependences were similar; the beta’s were 0.62 
(p<0.001) and 0.30 (p<0.05), respectively, with a correlation coefficient of 0.68. 

 
Fig. 5. Change in pHm, measured with BCECF, as a function of time after adding DNP and CaCl2 in the absence 

(A,B) or presence (C,D) of OMN. Note that except for 100 µM DNP, neither DNP nor added CaCl2 altered pHm in 
the absence of OMN (A,B). However, in the presence of OMN (C,D) graded decreases of ΔΨm by DNP caused a 
graded increase in matrix acidity that was further increased in the presence of added CaCl2 (C,D). See Fig. 2 for 
statistical notation. 

 

Interrelationship of [H+]m, [Ca2+]m and ΔΨm – Changes in [Ca2+]m as a function of changes in 
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ΔΨm or [H+]m, and of [H+]m as a function of ΔΨm, were plotted from the means data of Figs. 2A,B, 
3A.B, and 5A,B) taken at two defined time points, early (A) at 270 s, and late (B) at 630 s; (see 
Fig. 1 time line). These plots display how these interrelationships shifted with time depending on 
the whether complex V was blocked or not.  
 

 
 

Fig. 6. Change in mitochondrial redox state, measured by NADH autofluorescence, as a function of time after adding 
DNP and CaCl2 in the absence (A,B) or presence (C,D) of OMN. Note that the redox state was maintained after adding 
10-30 µM DNP and CaCl2 in the absence of OMN (A,B) but that in the presence of OMN (C,D) there was a 
concentration-dependent decrease in NADH autofluorescence. Adding CaCl2 did not alter DNP-induced changes in 
redox state in the presence of OMN. See Fig. 2 for statistical notation. 

 
Mitochondrial Redox State – Redox state, as assessed by NADH autofluorescence, increased on 
addition of PA as substrate for the TCA cycle (data not shown). In the absence of OMN, redox 
state was not altered significantly by 10-30 µM DNP (100 µM DNP completely oxidized NADH, 
not shown) or by the addition of either 10 or 25 µM CaCl2 (Fig. 6A,B). This indicated that the 
redox state was maintained despite both substantial uncoupling and increased [Ca2+]m in the 
absence of OMN. However, in the presence of OMN to block complex V (Fig. 6C,D) NADH was 
decreased in a nearly concentration dependent manner by DNP; NADH redox state, however, was 
not additionally altered by adding CaCl2.  
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ATP Concentration –Total [ATP] was measured and expressed as mitochondrial [ATP] as 
explained in Materials and Methods. Adding mitochondria to the experimental buffer increased 
[ATP], as there was sufficient ADP and Pi available for ATP generation (Fig. 7). There was no 
additional change in [ATP] after adding PA. Adding 10-30 µM DNP alone had little effect on 
[ATP] until CaCl2 was added which greatly enhanced ΔΨm uncoupling; then there was a decrease 
in [ATP] with a fall in ΔΨm (Fig. 7 A,B). However, a small decrease in ΔΨm by 10 µM DNP did 
not significantly change [ATP] before or after adding CaCl2. DNP, 100 µM, alone caused a marked 
decrease in [ATP] (data not shown). In the presence of the complex V inhibitor OMN (Fig. 7 C,D), 
adding mitochondria to the experimental buffer alone did not change [ATP], indicating that 
isolated mitochondria contain limited ATP after isolation. [ATP] remained at a very low level and 
was unaffected by DNP or CaCl2 in the presence of OMN. ATP/ADP ratios (see Supplemental 
Materials) also decreased with added DNP and CaCl2, which progressively uncoupled ΔΨm.  
 

 
 

Fig. 7. [ATP], measured in total solution by the luciferin-luciferase reaction, and expressed as the calculated 
mitochondrial [ATP], was altered as a function of DNP and added CaCl2 in the presence and absence of OMN. Adding 
mitochondria to the respiration buffer increased [ATP]; adding pyruvic acid (PA) and DNP had no additional effect; 
but adding CaCl2 after DNP in the absence of OMN resulted in concentration-dependent decreases in [ATP] as graded 
depolarization of the IMM occurred (A,B). FOF1-ATP synthase/ase activity was near zero and remained essentially 
unchanged after adding PA, DNP, and CaCl2 in the presence of OMN (C,D). See Fig. 2 for statistical notation. 
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Discussion 
The important findings from these results are that:  
 

a) Inducing a limited, but severe, matrix inward H+ leak by 10-30 µM DNP alone uncouples 
ΔΨm stepwise by up to 20% (Fig. 2A,B) without changing the redox state (Fig. 6A,B); these small 
changes are likely due to reciprocal outward H+ pumping by complex V as shown by the lack of a 
decrease in pHm (Fig. 5A,B) and the lower [ATP] (Fig. 7A,B). In contrast, by inducing a H+ leak 
by DNP while inhibiting outward H+ pumping by complex V by OMN (Fig. 7C,D), this results in 
increased matrix acidity (Fig. 5C,D), reduced ΔΨm by up to 40% (Fig. 2C,D), and a lowering of 
the redox state (Fig. 6C,D).  

b) ΔΨm continued to fall over 6 min after adding CaCl2 (Fig. 2A-D), but only in already 
partially DNP -uncoupled mitochondria; this effect was compensated by H+ pumping by complex 
V (Fig 2. A,B) as the fall in ΔΨm was augmented. When H+ pumping was blocked (Fig. 2C,D), 
ΔΨm decreased further after adding CaCl2 because the influx of Ca2+ brings in positive charges not 
alleviated by H+ pumping at complex V. This was manifested by the exaggerated effect of more 
added CaCl2 on the uncoupling of ΔΨm over time (Fig. 2C,D), by the slow gradual fall in [Ca2+]m 
(Fig. 3C,D), and by the increased matrix acidity (Fig. 5C,D). In contrast, in the presence of 
compensatory H+ pumping by complex V, Ca2+ continued to enter as shown by the gradual RR-
dependent rise in [Ca2+]m, by the lower matrix acidity, and by the lesser fall in ΔΨm over time (C,D 
in Figs. 2, 3, 5). Matrix Ca2+ influx via CHEm may occur under these circumstances because pHm 
remained more stable (less acidic) when complex V was not blocked Fig. 5A,B vs. C,D).  

c) In mitochondria fully uncoupled by 100 µM DNP, and accompanied by a fall in pHm, 
adding CaCl2 abruptly increased [Ca2+]m (Fig. 3) but caused a gradual, accentuated fall in pHm 
(Fig. 5A-D); this is likely due to a failure of outward H+ pumping by complex V to counteract H+ 
influx by DNP.  

d) Only in already partially uncoupled (ΔΨm lowered by 10-20%) mitochondria did 
increasing [Ca2+]m (baseline ≈80 nM), initially to ≈150 nM (10 µM CaCl2) or ≈ 250 nM (25 µM 
CaCl2), result in additional time and pHm- dependent increases in [Ca2+]m over 6 min  (270 to 630 
s) of up to 400 nM and 550 nM, respectively; this increase in [Ca2+]m was accompanied by a 
maintained, less acidic pHm (Fig. 5A,B) and a maintained redox state (Fig. 6 A,B). We propose 
this paradoxical doubling of [Ca2+]m during a concomitant uncoupling of ΔΨm is linked to outward 
H+ pumping by complex V because [Ca2+]m fell rather than rose (Fig. 5C,D) and [H+]m became 
more acidic (Fig. 5C,D) during an equivalent uncoupling of ΔΨm after blocking complex V with 
OMN, as indicted by no change in [ATP] (Fig. 7).  
 
H+ Pumping by Complex V Results in Slow Matrix Ca2+ Loading and Lesser Uncoupling of ΔΨm 
– We observed a greater decline in ΔΨm induced by CaCl2 after OMN despite a lesser rise in mCa2+ 
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influx due to the inability of complex V to pump out H+ ions. This was accompanied by an increase 
in matrix acidity and a fall in redox state. In contrast, in the presence of compensatory H+ pumping 
by complex V, Ca2+ continued to enter the matrix via the CaU or CHEm as shown a) by the gradual 
rise in [Ca2+]m that was RR-dependent (Supplemental Fig. S. 1,2), b) by the absence of enhanced 
matrix acidity, and c) by the lesser uncoupling of ΔΨm over time. Overall, these findings suggest 
that increases in [Ca2+]m after adding CaCl2 is dependent not only on the existing ΔΨm and 
Δ[Ca2+]m for mCa2+ entry via the CaU, but also on a time-dependent and ΔΨm -independent slower 
mCa2+ entry via the CaU or CHEm when the IMM is partially protected against ΔΨm uncoupling 
by compensatory H+ pumping. We propose that slow Ca2+ uptake occurs at least in part via CHEm 
in the absence of OMN because pHm becomes more acidic in the presence of OMN. Our proposed 
mechanism is described schematically in Fig. 8A (– OMN) and 8B (+ OMN).  
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Fig. 8. Schema depicting putative role of CaU/CHEm during stepwise uncoupling with DNP with un-inhibited (A) vs. 

inhibited (B) FOF1-ATPsynthase(ase) (OMN) after increasing buffer [CaCl2]. A. (1) DNP allows H+ entry that tends 

to (2) decrease ΔΨm, which enhances H+ pumping by respiratory complexes, including (3) FOF1-ATPase so that pHm 
does not decrease and ΔΨm is supported. Adding CaCl2 further uncouples ΔΨm by allowing more cations into the 

matrix via the CaU (4). Over time in the range of 20-60% fall in ΔΨm, pHm remains unchanged as (5) H+ exits in 

exchange for Ca2+ entry causing ΔΨm to fall further when (6) NCE is blocked. B. Alternatively, when (3) FOF1-

ATPase is inhibited (2) ΔΨm is less supported and (5) Ca2+ exits in exchange for H+ entry, so that [Ca2+
]m decreases 

and [H+]m increases over time relative to the situation when FOF1-ATPase is activated.  DNP, dinitrophenol; OMN, 

oligomycin; ETC, electron transport chain; TCA, tricarboxylic acid. 
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The dependence of mCa2+ uptake on ΔΨm has been examined extensively (Gunter & Pfeiffer, 
1990; Wingrove, Amatruda & Gunter, 10984; Dash, Qi & Beard, 2009), as well as the importance 
of other factors (Haumann et al. 2010); however, this is the first study to show that when DNP –
induced H+ entry (leak) is supported by H+ pumping (no change in pHm), Ca2+ slowly continues to 
enter the matrix either via the CaU despite a progressively lower ΔΨm, or possibly due to Ca2+ 
influx in exchange for 2H+ efflux (“reverse mode” CHEm) secondary to the low ΔΨm. However, 
when mitochondria are fully coupled and H+ pumping by complexes I, III, and IV is in a steady 
state, this slow influx of Ca2+ does not occur (Fig. 2A) as we showed previously. Unfortunately, 
we cannot distinguish if this slow increase in mCa2+ influx occurs through the CaU or the CHEm 
because there are currently no known specific inhibitors for the putative CHEm, and unfortunately, 
RR may also block CHEm. A recent study identified a leucine zipper EF hand-containing trans-
membrane protein (Letm1) as a modulator of CHEm that is also sensitive to RR. However, prior 
studies indicate that Letm1 mediates K+/H+ exchange so the role of Letm1 in CHEm requires 
further study. The possibility that a fall in ΔΨm leads to a loss of membrane permeability 
selectiveness and inward Ca2+ leak also appears unlikely because the increase in mCa2+ uptake did 
not occur in the presence of RR. 

 
ΔΨm< ERev  promotes ATP Hydrolysis- FOF1-ATPsynthase/ase directionality is governed by ΔΨm  
and its “reversal potential “ERev “, which in turn is dependent on the concentration of the reactants 
ATP and ADP and ΔpHm. Related components of ERev that influence the direction and rate of ATP 
synthesis/hydrolysis are the free [Pi] and the H+/ATP coupling ration n. When ΔΨm becomes less 
negative than Erev, the electrochemical potential (high [ATP]m and ΔpHm, but low [ADP]m and 
ΔΨm) is thermodynamically favorable for proton ejection by complex V (Chinopoulous & Adam-
Vizi, 2010; Chinopolous, 2011; Chinopolous et al. 2010; Metelkin et al. 2009). ATP hydrolysis 
and ATP/ADP transport reversal occur at ΔΨm’s of approximately -125 and -110 mV, respectively, 
at a matrix ADP/ATP ratio of 2. We observed that ATP hydrolysis activity occurred with a 
relatively small (20-25%) reduction in ΔΨm. For our study (Fig. 2) a 25% reduction in ΔΨm 
represents a Ψm of approximately -125mV.  

 
Excess Ca2+ Plays an Important Role in Mitochondrial Dysfunction - Several mitochondrial TCA 
cycle enzymes are believed to be modulated by [Ca2+]m, based on increased mitochondrial enzyme 
activity with increased [Ca2+]m (Brandes & Bers, 1997; Brandes & Bers, 2002; McCormack, 
Halestrap & Denton, 1990; Nguyen, Dudycha & Jafri, 2007; Rossi & Lehninger, 1964; Territo et 
al. 2000). However, using our cardiac, isolated mitochondrial model, we have observed only a 
small acute increase in resting state respiration with increased [Ca2+]m (Haumann et al. 2010). In 
contrast, pathological mCa2+ overloading predisposes the mitochondrion to form the mitochondrial 
permeability transition pore (PTP) (Brookes et al. 2004, O’Rourke, Cortassa & Aon, 2005; 
Bernardi, 1999; Gunter et al. 1994; Duchen, 2000), which is key to initiating apoptosis. Inhibiting 
PTP has been shown to reduce IR injury (Argaud et al. 2005; Bopassa et al. 2006; Feng et al. 2005; 
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Halestrap, Clarke & Javadov, 2004; Hausenloy, Duchen & Yellon, 2003; Nishihara et al. 2007). 
Interestingly, temporarily blocking FOF1-ATPsynthase/ase (Di Lisa et al. 1998; Grover et al. 2004; 
Rodrigo & Staden, 2005), which was recently proposed as a component of the PTP (Giorgio et al. 
2013), is also protective against IR injury. Therefore, the importance of pHm and mCa2+ in both 
physiological and pathological conditions implies a major role of pHm as well as ΔΨm in the 
regulation of [Ca2+]m. Although we have here given a plausible explanation for the protection 
induced by complex V blockade (reduced mCa2+), the underlying thermodynamic processes 
remains incompletely understood.  
 
It is well known that uncoupling caused by a protonophore, such as DNP or CCCP, can induce 
ATP hydrolysis through reversal of FOF1-ATPase. DNP induced uncoupling of ΔΨm thus reduces 
the ATP/ADPm ratio by consuming ATP, if available. The consequent H+ pumping by complex V 
will tend to partially restore ΔΨm to offset the protonophore-induced decreases in pHm and ΔΨm. 
The contribution of all these factors indicates that a slight uncoupling of ΔΨm may not substantially 
decrease [ATP]m. But stepwise uncoupling initially slows ATP synthesis by FOF1-ATPsynthase 
and then promotes FOF1-ATPase to further decrease [ATP]m. Indirectly, the ΔpHm is correlated to 
the ΔΨm and both contribute to the total proton motive force (ΔΨm + ΔpHm) because the outward 
H+ pumping via respiratory complexes I, III and IV is the major contributor to a high ΔΨm. A new, 
interesting observation of our study is the important role of complex V in maintaining the proton 
motive force under increased Ca2+ loading conditions. If complex V H+ pumping is blocked 
(OMN) to counteract a H+ leak (DNP), an alkaline matrix pHm and ΔΨm cannot be maintained and, 
if there is concomitant mCa2+ loading, the matrix acidity and uncoupling are largely exacerbated 
(Fig. 8). 

 
ATP Hydrolysis Occurs with Changes in Matrix pHm and [Ca2+]m but not NADH – We found that 
as ΔΨm was stepwise uncoupled by DNP, ΔΨm remained at a relatively stable level over time 
before CaCl2 was added. However, adding CaCl2 resulted in a gradual, more complete uncoupling 
of ΔΨm over 6 min. ΔΨm is normally fully coupled when complex V is blocked by OMN (Valdez, 
Zaobornyj & Boveris, 2006); however, the effect of DNP to uncouple ΔΨm was intensified when 
OMN was present. The increased uncoupling effect of DNP in the presence of OMN indicates that 
ATP hydrolysis actually supports the ΔΨm via H+ pumping even at a relatively small decrease in 
ΔΨm with DNP. That ATP hydrolysis occurs is supported by the fall in [ATP] after addition of 20 
and 30 µM DNP. The lack of a significant change in ATP production after adding 10 µM DNP 
suggests that ATP hydrolysis is less evident with mild uncoupling. The reason for this can be found 
in the two condition-dependent sources of substrate level phosphorylation of ADP in mitochondria 
that can supply ATP and GTP for hydrolysis by complex V; the TCA cycle enzymes 
phosphoenolpyruvate carboxykinase and succinate-CoA synthetase (Chinopoulos & Adam-Vizi, 
2010; Chinopoulos et al. 2010). Adding PA did not increase [ATP] (Fig. 7) as there was no drive 
to produce ATP; however, with a continued supply of PA in the buffer the TCA, substrate level 
phosphorylation presumably supplied the ATP for consumption by complex V.  
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Supportive evidence for ATP hydrolysis is provided by the changes in pHm and NADH. Matrix 
pH did not decrease as expected on addition of DNP as H+ ions entered the matrix through the 
IMM. This is most likely due to reciprocal outward H+ pumping by FOF1-ATPase during partial 
uncoupling because pHm indeed fell in the presence of OMN when H+ could not be pumped out. 
Moreover, the stability of pHm after DNP was associated with a RR-sensitive increase in [Ca2+]m 
related to a lesser uncoupled ΔΨm during outward H+ pumping by FOF1-ATPase. A previous study 
showed an increase in [Ca2+]m upon acidification was independent of Ca2+ flux through the CaU 
(Gambassi et al. 1993). In our previous study (Haumann et al. 2010) we also did not observe a 
decrease in pHm that was dependent on mCa2+ uptake via the CaU in fully coupled mitochondria.  
 
The finding that NADH did not change significantly when DNP was added in the absence of OMN 
was interesting as we expected to find that adding the protonophore would lower the redox state, 
i.e., decrease NADH. Apparently the increasing FOF1-ATPase activity, combined with the faster 
TCA cycle turnover (enhanced reduction of NAD+ to NADH in respiratory complexes) was able 
to preserve NADH at normal levels even after DNP was given to uncouple ΔΨm. In the presence 
of OMN, however, NADH levels were lower indicating the inability to produce sufficient NADH 
through the TCA cycle to maintain the redox state. It is interesting that adding CaCl2 did not 
significantly change the NADH levels in this model, as also reported before (Haumann et al. 2010) 
despite reports that an increase in m[Ca2+] stimulates the NADH producing dehydrogenases 
(Brandes & Bers, 2002; Gambassi et al. 1993; Wan et al. 1989; McCormack & Denton, 1980; 
Denton, McCormack & Edgell, 1980).  
 
This discrepancy may be explained in part because our experiments were conducted below the K0.5 
of 1 µM where these dehydrogenases are reported to be activated (McCormack & Denton, 1980, 
Denton, McCormack & Edgell, 1980).   

 
ATP Hydrolysis Promotes a Slow Rise in [Ca2+]m via CaU or CHEm – We found that the increase 
in ATP hydrolysis during partial uncoupling was associated with an increase in [Ca2+]m, while the 
unchanged ATP synthesis/hydrolysis rate after OMN was accompanied by a decrease in [Ca2+]m. 
It has been postulated that the CaU can also operate in the reverse reaction, i.e. allowing mCa2+ 
efflux and causing [Ca2+]m to decrease; indeed, this has been reported in completely depolarized 
mitochondria by measuring an increase in extra-mitochondrial [Ca2+] (Vaur, Sartor & Dufy-Barbe, 
2000) In contrast, it is unlikely that there is a large efflux of mCa2+ through the CaU, even in 
partially uncoupled mitochondria, as the electrochemical force is still directed inward. Because of 
the absence of Na+ in our buffer, reverse NCEm activity also cannot occur, so the putative CHEm, 
which is dependent on the gradients of both Ca2+ and H+ for charge compensation is a possible 
cause of the increasing [Ca2+]m over time. Our study also indicates that complex V hydrolysis did 
not significantly affect the mCa2+ buffering capacity, i.e., a higher rate of ATP hydrolysis did not 
result in a higher [Ca2+]m since there was no significant difference between the initial [Ca2+]m in 
the presence or absence of OMN. Moreover, the slow rise in mCa2+ was not due to spectral 
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differences between ATP and ADP of indo-1. 
 
The necessity of mCa2+ extrusion pathways to oppose mCa2+ influx pathways is required to 
maintain mitochondrial ionic homeostasis. Unlike the transport of Ca2+ via the CaU, which is 
electrochemical, the exchange of Ca2+ through the CHEm is dependent on both [Ca2+] and [H+] 
gradients, but may not be directly dependent on ΔΨm  (Rottenberg & Marbach, 1990, Gunter, 
Zuscik & Gunter, 1991). This implies that the tendency of DNP to decrease the [H+] gradient, 
which is countered by H+ pumping at complex V to restore pHm and support the ΔΨm, could be 
linked to a slow increase of mCa2+ through the CHEm, or less likely, via CaU as a plausible cause 
for the RR-sensitive slow increase in [Ca2+]m after over time after adding CaCl2 despite the lower 
ΔΨm. This view is supported largely by the finding that the slow increase in [Ca2+]m is prevented 
by OMN, which is associated with increased matrix acidity over time. Matrix acidification may 
reduce mCa2+

 uptake in cardiac mitochondria, possibly by the effect of a lower pHm on reducing 
ΔΨm (Gursahani & Schaefer, 2004). 
 
We believe that the CaU and or CHEm may play a major role in the continued increase in [Ca2+]m 
in our model of partially uncoupled mitochondria associated with H+ pumping by complex V (Fig. 
8). However, we also considered that ATP hydrolysis by FOF1-ATPase causes a paradoxical 
increase in [Ca2+]m by a decrease in mCa2+ buffering by ADP vs. ATP (Haumann et al. 2010) by 
reduced precipitation of Ca2+ and PO4

3- as Ca3(PO4)2 (or other species), or by another mCa2+ import 
mechanism. For example, Ca2+ precipitation could be influenced by [PO4

3-]m, which is dependent 
on the ΔpHm, as the phosphate carrier co-transports HPO4

2-/2 H+ (Chalmers & Nicholls, 2003). 
Alterations in mitochondrial PO4

3- concentration ([Pi]m) can alter [Ca2+]m as well. A fall in ΔΨm 
can result in a decrease in [Pi]m as the [Pi] entry is dependent on the proton motive force, which is 
a function of ΔpHm as well as of ΔΨm. Because the proton motive force is decreased due to 
depolarization, [Pi]m should decrease and increase the free (unbound) [Ca2+]m. However, in the 
present study the changes in ΔpHm and ΔΨm were equivalent, or larger, in the presence of OMN 
vs. no OMN when [Ca2+]m was higher, so reduced [Pi]m entry is not itself likely to increase [Ca2+]m. 
On the other hand, hydrolysis of ATP to ADP would tend to increase [Pi]m. Because there was no 
associated decrease in [Ca2+]m with ATP hydrolysis, and since the consequent production of Pi is 
exchanged for H+ via the PiH symporter, we assume that changes in [Pi]m cannot significantly 
affect [Ca2+]m in this study. Moreover, in our study we showed that increasing buffer [PO4

3-] from 
1 to 10 mM did not significantly alter [Ca2+]m. This gradual increase in [Ca2+]m is also not likely 
due to matrix reaction and/or decreased buffering of matrix Ca2+ by ADP vs. ATP as the decrease 
in ATP/ADP ratio due to H+ pumping by complex V was not large. Moreover, when ΔΨm was 
completely uncoupled (100 µM DNP), with an even lower expected ATP/ADP ratio, [Ca2+]m was 
not higher but lower.  
 
Although we have considered many factors that might indirectly alter [Ca2+]m, our critical finding 
is that RR completely blocked the observed slow increase in [Ca2+]m in the OMN free group, 
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indicating there was active mCa2+ influx across the IMM by CaU or CHEm and not a significant 
change in matrix mCa2+ buffering due to mCa2+ precipitation, Pi, or mitochondrial volume. 
Previous studies have furnished indirect evidence for reversal of FOF1-ATPsynthase (reduced 
mCa2+ uptake and fully uncoupled ΔΨm with CCCP) (Leyssens et al. 1996; Bains et al. 2006), but 
this is the first study to directly show a graded increase in ATP hydrolysis and maintained pHm 
after partial ΔΨm uncoupling in isolated guinea pig heart mitochondria exposed to mCa2+ loading. 
An intrinsic factor, ATPase inhibitory factor 1 (IF1), is known to inhibit FOF1-ATPase (Rouslin & 
Broge, 1994). This protein is expressed in rabbit heart cells but exact concentrations and 
interspecies variations remain unclear. The optimal pH for inhibiting FOF1-ATPase by IF1 is 6.7, 
a pH value below that which we measured in the mitochondrial matrix. Therefore, it is unlikely 
that IF1 is activated fast enough in our mitochondrial preparation to intrinsically block FOF1-
ATPase.   

 
Conclusions and Limitations –Overall, the results provide new insights into the dynamics of mCa2+ 
flux, which is driven by interrelated chemical and electrical gradients. Our study indicates that 
compensatory H+  pumping by complex V during an imposed inward H+ leak leads to enhanced 
mCa2+ loading through either the CaU or CHEm even when mitochondria are partially uncoupled, 
but supported by H+ pumping, and when NCE is blocked. Compensatory H+ pumping by complex 
V to support the ΔpHm may largely explain the continued mCa2+ loading when CaCl2 is added, 
which in turn uncouples ΔΨm; this is a situation likely to occur during cell ischemia or anoxia. 
Under these circumstances the pH linked entry of Ca2+ by the CaU may lead to stepwise 
uncoupling of ΔΨm, suggesting that CaU activity is more dependent on a high pH gradient than on 
ΔΨm. So it is interesting that blocking complex V can prevent this slow mCa2+ loading as well as 
preserve glycolysis and TCA cycle-generated ATP, i.e. substrate level phosphorylation. Although 
the rapid uptake of mCa2+ may be largely ΔΨm and pHm dependent, the slow uptake of mCa2+ may 
be more pHm dependent, but less concentration and ΔΨm dependent.  
 
An important limitation of our study is the lack of a selective inhibitor to block CHEm and the poor 
selectivity of RR, which together greatly hampers elucidation of the mechanisms of trans-matrix 
Ca2+ flux. Another is that the mitochondria were examined outside their normal milieu so that the 
contributions of ATP synthesis by glycolysis and ATP hydrolysis for cellular metabolic support 
could not be assessed. We conclude that the differences in the rate and magnitude of mCa2+ uptake 
in partially uncoupled mitochondria in the presence or absence of FOF1-ATPase activity can be 
described in the context of the corresponding changes in pHm and ΔΨm. However, studies with 
specific transport inhibitors are needed to assess with certainty the exact mechanism that mediate 
these changes in [Ca2+]m. 
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