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CHAPTER I 
 

INTRODUCTION 

 

 

 
 

 

“Heard melodies are sweet, but those unheard are sweeter.”  
 

 
 John Keats  

(°1795 - †1821, English poet) 
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CHAPTER I 

INTRODUCTION 

1. CYCLIC DEPSIPEPTIDES 

Peptides are becoming an increasingly important group within the current diversity of therapies and 

health products, which help to meet the current health care needs. The technological advances, 

making peptides accessible and affordable, as well as our more detailed understanding of their 

biological roles, have made them fulfil their interest and made them available for use as diagnostic 

and therapeutic products. Currently, several hundred peptides are already authorised or are 

undergoing preclinical and clinical development [1]. 

A subcategory of peptides are the so-called ‘cyclic depsipeptides’ (CDPs) (also known as 

‘cyclodepsipeptides’ or ‘peptolides’), a term first introduced in scientific literature in mid-1960s [2,3]. 

It is used to describe cyclic peptide-related compounds of which the ring is mainly composed of 

amino- and hydroxy-acid residues joined by amide and ester bonds (at least one is required to refer 

to a depsipeptide), which are commonly, but not necessarily, regularly alternating [3-5]. 

Reports on the isolation of these compounds started as early as the 1940s, i.e. with the isolation of 

enniatin A from the fungus Fusarium orthoceras var. enniatinum [6]; however, it took decades before 

scientists began to unravel their biosynthesis [7,8], which still today is an active research field [9-15]. 

Inspection of the structures of diverse CDP members illustrates that many of these compounds are 

not only synthesized by non-ribosomal peptide synthases (NRPS) [16-18], but actually are hybrids 

formed by both NRPS and polyketide synthases (PKS), due to similarities in their modular 

organization and biosynthetic processes [11,19-22] or fatty acid (FA) synthase enzyme systems. The 

latter, however, is currently under debate, as Ishidoh and colleagues surprisingly demonstrated that 

for the cyclic lipodepsipeptide verlamelin, there are no genes coding for fatty acid synthase or even 

polyketide synthase, suggesting that the hydroxytetradecanoic acid moiety of the CDP is supplied via 

the primary fatty acid metabolism and then loaded onto the NRPS [13]. 

In both enzyme systems, a so-called thiol template mechanism is followed to catalyse stepwise 

condensation in a modularly organized way, where each module is responsible for the incorporation 

of a specific monomer. Both enzyme systems are thus generally described as having a modular 

organisation, although it was recently revealed by Wang et al. that they can have nonmodular 

compositions as well [23]. The amino acid and carboxylic acid precursors are selected and attached 

as thioesters to the long phosphopantetheinyl arms of carrier proteins, i.e. ACP (acyl carrier protein) 
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in the case of PKS and PCP (peptidyl carrier protein) in the case of NRPS. In a following step, linkage 

occurs between the monomer bound to the downstream ACP/PCP domain and the activated 

thioester of the upstream ACP/PCP domain bound intermediate, via a peptide bond by the 

condensation (C) domains or through a C–C bond by ketosynthase (KS) domains in respectively NRPS 

and PKS. This is schematically presented in Figure 1.  

 

Figure 1: Modular organization of NRPS, PKS and hybrid NRPS-PKS systems, showing the C-N and C-C bond 

formation between two hypothetical modules. A = adenylation; ACP = acyl carrier protein; AT = acyltransferase; 

C = condensation; KS = ketosynthase; NRPS = non-ribosomal peptide synthase; PCP = peptidyl carrier protein; 

PKS = polyketide synthase (adapted from Du et al. [20]). 

Subsequent modifications by additional secondary domains can also be involved in synthesis, e.g. 

epimerisation (E), heterocyclisation (Cy), oxidation (Ox), methylation (M), ketoreduction (KR), 

dehydration (DH) and formylation (F), contributing to the immense structural diversity characterising 

CDPs. Finally, the mature chain is released via cyclization or hydrolysis by a thioesterase (TE) domain, 

or in the case of fungi a condensation-like (CT) domain, in the terminal modules of the assembly line 

[16,19-21,23-35]. Hybrid NRPS-PKS systems can combine these PKS and NRPS in two different ways, 

namely in a non-iterative and iterative manner. The former is predominantly found in bacteria and 

places different PKS modules and NRPS modules together in a production line, whereas the latter 
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uses a single PKS module followed by a single NRPS module and is mainly found in fungi. However, 

complete understanding of CDP biosynthesis and full agreement between researchers working in the 

field still has a long way to go, especially since only a few enzymes are currently linked to their 

biosynthetic products and programming of these enzymes is still poorly understood [21]. 

Considering these natural assembly lines, it is thus not unexpected that different CDPs vary in i.a. 

number and nature of monomeric building blocks, molecular mass, lipophilicity, polarity, side chains 

and ring size, creating thus a chemically extremely diverse family. As a consequence, these 

compounds also exert a broad range of biological activities including antitumor, anti-inflammatory, 

anthelmintic, insecticidal, antibiotic, antifungal, antimalarial and immunosuppressant activities. Due 

to these unique structural and biological properties, CDPs have emerged as promising drugs and lead 

structures or are feared as mycotoxins [21,29]. To date, a significant number of original research 

papers has already been published, presenting the identification and structure elucidation of 

newfound CDPs, sometimes complemented with some biological activity data. Upon their discovery, 

these compounds are named very arbitrarily, e.g. after the geographic location where they were first 

found, after the producing organism they were first isolated from or referring to a particular aspect 

of their chemical structure. 

2. MYCOTOXINS 

The harmful effect of moulds and fungi have been known to mankind already from ancient times 

[36]. Famous were the epidemic ergotism outbreaks (“St. Anthony's fire”) during the Middle Ages, 

caused by eating rye bread contaminated with ergot alkaloids from the fungus Claviceps purpurea 

and clinically characterised by mutilating gangrene, neurological disorders and eventually death 

[36,37]. However, it was not until the mid-1950s before the terms ‘mycotoxin’ (MT) and 

‘mycotoxicosis’, both combinations of the Greek word ‘mykes’ meaning fungus and the Latin word 

for poison ‘toxicum’, were first introduced. During this time, it was discovered that aflatoxins, which 

are secondary metabolites from the fungus Aspergillus, had caused the death of more than 100,000 

turkeys in the England’s poultry industry [38-40]. From then on, scientific research on mycotoxins 

grew tremendously (Figure 2). 

Today, it is widely recognised that dietary, respiratory and dermal exposures to these toxic fungal 

metabolites can produce diseases collectively called mycotoxicoses. The symptoms and severity of 

such a mycotoxicosis depend on the age, sex, health and nutritional status of the individual, many 

poorly understood synergistic effects involving genetics, dietary status and interactions with other 

chemicals to which the individual is exposed and the toxicity and extent of exposure of the 

mycotoxin [36,41,42]. 
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Figure 2: ‘Mycotoxin’ as topic of scientific publications (consulted on February 25
th

, 2016). 

The chemical structures of mycotoxins vary considerably, some of which are simple, such as patulin, 

while others are rather complex, e.g. penitrem [43]. Moreover, some were initially considered to be 

beneficial as antibiotics (e.g. citrinin); however, were subsequently found to be too toxic for 

therapeutic use [36,44]. 

Mycotoxin-producing fungi (e.g. Fusarium, Aspergillus and Penicillium) can grow on a wide range of 

substrates and under a wide range of environmental conditions, making infestation very common 

and ultimately resulting in worldwide mycotoxin occurrence [45-47]. For example, a Dutch study 

demonstrated that 50% of a total of 11 768 animal feed samples, collected over a period from 2001 

to 2009 in the Netherlands, was found to be positive for at least one of the eight major mycotoxins 

investigated [48]. Moreover, in another study, 72% of a total of 17,316 samples of feed and feed raw 

materials from all over the world, collected during an 8-year period (2004 – 2011), tested positive for 

at least one of the five major mycotoxins investigated [49]. Animal and human health are not only 

exposed to these hazards through contaminated feed and foodstuff, but also through the use of 

herbal medicinal plant products as well [50-53]. Therefore, in order to protect consumers, several 

national and international organisations have set up guidelines concerning i.a. prevention, reduction, 

sampling and analysis of mycotoxins. Moreover, regulatory authorities have established legislative 

regulations [41]. An overview of these regulations is given in Table 1. 

The most investigated and regulated mycotoxins, or otherwise called ‘major’ mycotoxins, are the 

aflatoxins produced by Aspergillus, patulin isolated from Penicillium and ochratoxin A synthesised by 

both Aspergillus and Penicillium fungi, Claviceps ergot alkaloids, the Fusarium mycotoxins fumonisins, 

zearalenone and the trichothecenes deoxynivalenol, T-2 and HT-2 toxin [41,54,55]. However, besides 

these ‘traditional’ mycotoxins, Fusarium species are also able to produce other ‘emerging’ 

mycotoxins, such as beauvericin and enniatins, which only recently became of interest but for which 

worldwide no legal maximum levels have yet been set [56,57]. 
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Overall, it is stated that over 400 compounds are recognized as mycotoxins [41,55,58-63] although 

only a few of these have been thoroughly investigated for their potential toxic effects [64,61] and 

have been addressed by legislation (Table 1) [60]. Moreover, it has been suggested that thousands of 

these potentially toxic fungal metabolites exist [54,58,65-67]. However, according to Miller and 

McMullin, on many occasions it seems that nearly any fungal secondary metabolite is casually, but 

incorrectly referred to as a mycotoxin [68]. It has indeed been recognized that mycotoxins are hard 

to define [41].  
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Table 1: Mycotoxin legislation in Europe and the US. 

Food/Feed Europe: European Commission United States: FDA
(5),(6),(7)

 

Food  Food & Feed 
Legislation  178/2002: general principles + requirements feed/food law 

 882/2004: official controls of compliance with feed/food law 
 1754/2006: granting financial assistance to laboratories  
 96/23: monitor certain substances and residues 
 2002/657: analytical methods and interpretation of results 
 315/93: procedures for contaminants in food 
 401/2006: sampling and analysis methods for official control of 

mycotoxins 
 2008/128: purity criteria colours for use in foodstuffs 
 1272/2009: buying-in and selling of agricultural products 

(1234/2007) 
 1152/2009: import of certain foodstuffs from certain third 

countries due to contamination risk by aflatoxins 
 2008/47: pre-export checks carried out by the United States of 

America on peanuts and derived products thereof as regards the 
presence of aflatoxins 

FDA has not yet established 
regulatory limits for mycotoxins 
in food or feed. 
 
Action levels (regulatory actions 
can be taken): 

 Aflatoxin B1: 20 – 300 ppb 
 Aflatoxin M1: 0.5 ppb 
 Patulin: 50 ppb 

 
Advisory levels (guidance levels, 
adequate margin of safety): 

 Deoxynivalenol: 1 – 30 ppm 
 Fumonisins B1, B2, B3: 2-100 

ppm 

MTs + limits 1881/2006: maximum levels for contaminants in foodstuffs
(2)

: 
 Aflatoxin B1: 0.10 – 12.0 µg/kg 
 Aflatoxins B1, B2, G1, G2: 4.0 – 15.0 µg/kg 
 Aflatoxin M1: 0.025 – 0.050 µg/kg 
 Ochratoxin A: 0.50 – 80 µg/kg 
 Patulin: 10.0 – 50 µg/kg 
 Deoxynivalenol: 200 – 1750 µg/kg 
 Zearalenone: 20 – 400 µg/kg 
 Fumonisins B1, B2: 200 – 4000 µg/kg 
 Citrinin: 2000 µg/kg 
 T-2 and HT-2 toxin

(1)
: 15 – 2000 µg/kg 

 Ergot alkaloids
(4)

: 1000 mg/kg 
Feed  
Legislation 178/2002, 882/2004, 1754/2006, 1272/2009, 2008/47 (identical to 

food law) 
MTs + limits 2002/32: undesirable substances in animal feed

(2)
: 

 Aflatoxin B1: 0.005 – 0.02 ppm 
 Ochratoxin A

(3)
: 0.01 – 0.25 mg/kg 

 Deoxynivalenol
(3)

: 0.9 – 12 mg/kg 
 Zearalenone

(3)
: 0.1 – 3 mg/kg 

 Fumonisin B1, B2
(3)

: 5 – 60 mg/kg 
 T-2 and HT-2 toxin

(1),(3)
 : 0.015 – 2 mg/kg 

 Ergot alkaloids
(4)

: 1000 mg/kg 

Medicines Europe: Ph.Eur.  Unites States: USP 

Conditions General monographs on herbal drugs: 2.8.18 and 2.8.22: General monograph on articles of 
botanical origin: <561>: 

  Routine testing not required: only herbal drugs that are subject to 
contamination 
Appropriate risk assessment 

 Extent of testing considers the 
likelihood of contamination 

 Risk-based approach 
MTs + limits  Aflatoxin B1: ≤ 2 ppb 

 Sum of aflatoxins B1, B2, G1 and G2: ≤ 4 ppb (if required by 
competent authority) 

 Ochratoxin A: limits in specific monographs 

 Aflatoxin B1: ≤ 5 ppb 
 Sum of aflatoxins B1, B2, G1 

and G2: ≤ 20 ppb 

(1) Recommended indication levels only: 2013/165 on the presence of T-2 and HT-2 toxin in cereals and cereal products [69]. 
(2) The limit range is given here, individual limits depend on the type of food/feedstuff [70]. 
(3) Recommended indication levels only: 2006/576: on the presence of other mycotoxins in products intended for animal feed [71]. 
(4) Recommended indication levels only: 2012/154: on the presence of ergot alkaloids in feed and food [72]. 
(5) FDA Regulatory Guidance for Mycotoxins [73]. 
(6) CPG Sec.510.150 Apple juice, apple juice concentrates, and apple juice products - adulteration with patulin [74]. 
(7) CPG Sec. 683.100 Action levels for aflatoxins in animal feeds [75]. 
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3. BEAUVERICIN AND ENNIATINS 

Beauvericin (BEA) and enniatins (ENNs) are secondary metabolites mainly produced by Fusarium 

species [56]. Other fungal genera known to synthesise enniatins are Alternaria, Halosarpheia and 

Verticillium [76,77], while beauvericin was isolated from Paecilomyces, Isaria and Beauveria as well 

[78,79]. 

These lipophilic mycotoxins consist of three D-α-hydroxyisovaleric acid residues and three N-

methylated amino acid units, alternatingly linked with peptide and ester bonds to form a cyclic 

hexadepsipeptide. In BEA, the amino acids are aromatic phenylalanines, whereas for the ENNs 

discussed in this thesis (ENNs A, A1, B, B1, C, D, E and F), it concerns aliphatic valines and/or 

(iso)leucines (Figure 3) [56].  

  

Figure 3: Chemical structures of BEA and ENNs A, A1, B, B1, C, D, E and F. 
*
For ENN E two homologues were 

described, i.e. E1 and E2, for which R2 and R3 are switched (adapted from Sy-Cordero et al. [77]). 

Many different useful biological activities have been ascribed to these cyclic hexadepsipeptides, e.g. 

antimicrobial, antiviral and insecticidal properties [56,77,80]. 

Tomoda et al. also suggested that, especially BEA and to a lesser extent ENNs are able to inhibit acyl-

CoA:cholesterol acyltransferase (ACAT), by demonstrating their inhibitory activity in vitro in rodent 

enzyme and cell based assays [81]. ACAT is a membrane-bound enzyme that plays an important role 

in cellular cholesterol homeostasis [82] and is therefore a popular drug target in diseases like 

atherosclerosis [83] and hypercholesterolemia, but also in Alzheimer’s disease [84-86] and even 

cancer [87]. In 1991, a patent was issued for a 5 mg BEA tablet to lower blood cholesterol levels 

[56,88]. 
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Their cytotoxicity, with activities in the low micromolar range, was demonstrated in vitro in various 

cell lines, e.g. human colorectal (Caco-2, HCT-15 and HT-29), cervical (HeLa), breast (BC-1 and MCF-

7), liver (Hep-G2), lung (A549, NCI-H460 and MRC-5), pancreatic (MIA Pa Ca-2), ovarian (SK-OV-3), 

glioma (SF-268) and skin (SK-MEL-2) cancer cells [56,76,89-97]. As a consequence, ENNs have been 

put forward as useful chemotherapeutics since they exert prominent cytostatic/cytotoxic effects 

against diverse malignant cells, whereas normal cells showed comparable insensitivity [91]. 

It was also demonstrated in vitro that BEA and ENNs are able to interact with different ABC (ATP 

binding cassette) transport proteins, which are a large family of ATP driven transmembrane proteins. 

Under normal physiological conditions, these act as efflux pumps of multiple xenobiotics at defined 

organ sites, such as the intestinal epithelial barrier and cerebral micro-vascular endothelial blood-

brain barrier, whereas in certain cancer tissues, they are hyperactivated, leading to the efflux of 

chemotherapeutics and consequently therapy failure [98-102]. Overexpression of ABCG2 (breast 

cancer resistance protein) and ABCB1 (P-glycoprotein) showed a weak but significant reduction in 

BEA and/or ENN cytotoxicity, suggesting their interference with these cell membrane proteins, 

resulting in the prevention of these CDP mycotoxins to reach other cellular targets [98]. Moreover, 

these cyclic depsipeptides were also found to be potent inhibitors of ABCB1- and ABCG2-mediated 

efflux transport of substrates [98,103]. While these efflux inhibiting properties might be of interest in 

altering pharmacokinetics and bioavailability of certain drugs as it can improve their efficacy 

[104,105], they can have toxic consequences as well, i.e. since possible unwanted interactions with 

detoxification processes of e.g. drugs or other mycotoxins might occur. This is especially important as 

these inhibitory effects already occur at low concentrations, which are likely to be reached through 

continuous exposure via food intake and tissue accumulation [98,106,107]. 

On the other hand, ENNs and BEA have also evoked the interest of toxicologists, because of their 

potential harmful, undesirable properties. Recently, it was demonstrated in vitro in PK15 porcine 

kidney epithelial cells and human leukocytes and lymphocytes that BEA is potentially genotoxic 

[89,108,109], causing i.a. an increase in chromosomal aberrations, albeit the Ames test performed by 

Fotso and Smith was negative [110]. For ENN B, no significant mutagenic nor genotoxic potential 

could be demonstrated in the Ames, comet and micronucleus assay performed by Behm et al. [111]. 

Because of these conflicting results it cannot be excluded that prolonged exposure to these cyclic 

depsipeptide mycotoxins may contribute to carcinogenicity in humans. 

In contrast to their earlier mentioned anticancer potential, Dornetshuber et al. also suggested that 

short-term exposure to low submicromolar concentrations of ENNs (which can be reached via food 

intake) might have tumour-promoting functions [91]. 

Moreover, an in vitro study on human dendritic cells and macrophages indicated immunological 

disorders could also occur after exposure to these mycotoxins [112]. 
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Furthermore, Tonshin and colleagues demonstrated that both BEA and ENNs can cause 

mitochondrial dysfunction, an effect strongly connected with their potassium (K+) ionophoric activity 

[113]. Presently, it is generally assumed that the primary toxic action of these cyclic depsipeptide 

mycotoxins is related to their ionophoric properties, allowing transport of cations across biological 

membranes, either by carrier sandwich complexes or pore forming channels [114-116]. Ionophores 

transport cations down their electrochemical gradient from one side of the membrane to the other 

side, diffusing across the bilayer, and thus act to collapse the gradients between cellular 

compartments, such as the plasma membrane, the sarcoplasmatic/endoplasmatic reticulum or 

mitochondria [117,118]. Exposure to enniatins thus caused an efflux of K+ from the cytoplasm, 

decreasing the cytoplasmatic [K+] [113]. It was also indicated that ENNs and BEA increase intracellular 

Ca2+, which may play an important role in cell death signalling [113,116,119]. These disturbances of 

physiological ion balance and pH homeostasis lead to a combination of complex molecular 

responses, ultimately resulting in cell death. The induction of this cell death is believed to be both of 

apoptotic and necrotic nature [119]. Oxidative stress and DNA interactions play only a minor role 

[98], but with important involvement of mitochondrial dysfunction, which is suggested to be a more 

downstream event, following lysosomal membrane permeabilisation. However, for this lysosome-to-

mitochondria flow, no direct evidence is available up till now [120]. Figure 4 gives a schematic 

overview of the different mechanisms that are currently believed to be involved in the toxic action of 

beauvericin and enniatins [113,114-120]. 
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Figure 4: Schematic overview of the different mechanisms currently believed to be involved in BEA and ENNs 

toxicity. ATP = adenosine triphosphate; Cyt c = cytochrome c; LMP = lysosomal membrane permeabilisation; 

MOMP = mitochondrial outer membrane permeabilisation; ROS = reactive oxygen species. 

Exposure to these emerging mycotoxins should thus not be considered trivial, seen their possible 

biological effects and as they were indeed found to be common contaminants in food and feed 

[56,121]. As an illustration, some of the most recent reported feed/food contamination data are 

given in Table 2.  
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Table 2: Examples of recent BEA and ENNs feed/food contamination data. 

MT Feed/food product Positive 
samples (%) 

Concentration 
range (μg/kg)

(1)
 

Year Origin Reference 

BEA Barley malt 10 48.2 2012 Germany Habler and Rychlik 
[122]  10 7.08 2013 

 20 4.63 – 6.09 2014 
 Coffee 40 0.10 – 1.34 2013/2014 Spain García-Moraleja et al. 

[123] 
 Soft wheat 100 32.2 2009 Italy Covarelli et al. [124] 
 Durum wheat 100 0.6 2010 
 Farmed fish feed 95 0.1 – 6.6 n.m. Spain Tolosa et al. [125] 
 Pasta 18 0.10 – 20.96 2011 Spain Serrano et al. [126] 
 Tiger-nuts 10 51600 – 228500 n.m. Spain Sebastià et al. [127] 
 Maize 96 12 2005/2006 Brazil de Lourdes Mendes 

de Souza et al. [128]  Poultry feed 92 3.6 
 Factory residue 100 116 
 Barley 100 0.4 2011 Norway Uhlig et al. [129] 
 Oats 100 3.5 
 Wheat 100 0.4 
 Oat 57 7.2 – 41 n.m. Italy Juan et al. [130] 
 Wheat 9 9.6 – 35 
 Barley 11 0.81 
 Rye 45 8.9 – 16.5 
 Hazelnuts shell n.m. 30 n.m. Spain Tolosa et al. [131] 
 Dates n.m. 6 
 General feed 98 6.7 2010/2012 Worldwide Streit et al. [49] 
ENN B Barley malt 100 7.50 – 60200 2012 Germany Habler and Rychlik 

[122]  80 3.19 – 1160  2013 
 100 11.3 – 2070 2014 
 Coffee 70 59.15 – 3569.92 2013/2014 Spain García-Moraleja et al. 

[123]  Pre-portioned milk 
added coffee 

100 290.22 – 659.27 

 Durum wheat 60 2.74 2009 Italy Covarelli et al. [124] 
 100 9.15 2010 
 Soft wheat 100 9.08 2009 
 100 6.7 2010 
 Fish (muscle) 65 1.3 – 44.6 n.m. Spain Tolosa et al. [125] 
 Pasta 80 0.50 – 122.13 2011 Spain Serrano et al. [126] 
 Tiger-nuts 2 44800 n.m. Spain Sebastià et al. [127] 
 Barley 100 440 2011 Norway Uhlig et al. [129] 
 Oats 100 69.6 
 Wheat 100 347 
 Oat 43 5.6 – 8.2 n.m. Italy Juan et al. [130] 
 Wheat 28 5.5 – 97 
 Rye 55 6.7 – 45 
 Hazelnuts shell n.m. 76 n.m. Spain Tolosa et al. [131] 
 Dates n.m. 490 
 General feed 92 11 2010/2012 Worldwide Streit et al. [49] 
ENN B1 Barley malt 90 21.6 – 1540  2012 Germany Habler and Rychlik 

[122]  60 6.49 – 203 2013 
 100 4.78 – 735  2014 
 Coffee 10 10.03 – 15.61 2013/2014 Spain García-Moraleja et al. 

[123]  Pre-portioned milk 
added coffee 

27 14.82 – 29.54 

 Soft wheat 93 7.98 2009 Italy Covarelli et al. [124] 
 Fish (muscle) 50 1.4 – 31.5 n.m. Spain Tolosa et al. [125] 
 Pasta 71 0.50 – 979.56 2011 Spain Serrano et al. [126] 
 Tiger-nuts 10 21600 – 346000 n.m. Spain Sebastià et al. [127] 
 Barley 100 529 2011 Norway Uhlig et al. [129] 
 Oats 100 65.5 

(1) If a single value is given, it equals the median or mean (source dependent). Note that maximum levels can be even higher. 
n.m. = not mentioned 
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Table 2: Examples of recent BEA and ENNs feed/food contamination data (continued). 

 Wheat 100 296    
 Wheat 4 5.47 – 33.1  n.m. Italy Juan et al. [130] 
 Barley 22 5.5 – 7.3 
 Hazelnuts shell n.m. 417 n.m. Spain Tolosa et al. [131] 
 General feed 92 14 2010/2012 Worldwide Streit et al. [49] 
ENN A1 Barley malt 70 28.2 – 1700 2012 Germany Habler and Rychlik 

[122]  30 41.3 – 74.9 2013 
 80 8.02 – 286  2014 
 Coffee 85 13.75 – 749.33 2013/2014 Spain García-Moraleja et al. 

[123]  Pre-portioned milk 
added coffee 

91 57.54 – 224.39 

 Soft wheat 79 42.3 2009 Italy Covarelli et al. [124] 
 Fish (muscle) 40 1.7 – 7.5 n.m. Spain Tolosa et al. [125] 
 Pasta 76 0.25 – 21.89 2011 Spain Serrano et al. [126] 
 Tiger nuts 20 32200 – 

4440000 
n.m. Spain Sebastià et al. [127] 

 Grapes n.m. 5930 2008 Slovakia Mikušová et al. [132] 
 Barley 100 145 2011 Norway Uhlig et al. [129] 
 Oats 100 21.4 
 Wheat 100 48.0 
 Oat 29 9 – 45.5 n.m. Italy Juan et al. [130] 
 Wheat 19 5.3 - 55 
 Dates n.m. 25 n.m. Spain Tolosa et al. [131] 
 General feed 95 5.5 2010/2012 Worldwide Streit et al. [49] 
ENN A Barley malt 40 37.3 – 362 2012 Germany Habler and Rychlik 

[122]  10 6.80 2013 
 50 1.43 – 25.1 2014 
 Coffee 39 1.20 – 935.53 2013/2014 Spain García-Moraleja et al. 

[123] 
 Soft wheat 93 180.6 2009 Italy Covarelli et al. [124] 
 Pasta 77 0.50 – 42.04 2011 Spain Serrano et al. [126] 
 Tiger-nuts 2 676500 n.m. Spain Sebastià et al. [127] 
 Grapes n.m. 7980 2008 Slovakia Mikušová et al. [132] 
 Barley 100 17.1 2011 Norway Uhlig et al. [129] 
 Oats 100 3.7 
 Wheat 100 4.1 
 Spelt 67 7.2 – 8.0 n.m. Italy Juan et al. [130] 
 Wheat 11 8.4 – 29.8 
 Rye 36 7.8 – 9.8 
 Hazelnuts shell n.m. 732 n.m. Spain Tolosa et al. [131] 
 Dates n.m. 666 
 General feed 87 0.8 2010/2012 Worldwide Streit et al. [49] 

(1) If a single value is given, it equals the median or mean (source dependent). Note that maximum levels can be even higher. 
n.m. = not mentioned 

 

At the start of the research described in this thesis, no formal regulatory opinion was yet adopted 

concerning these cyclic depsipeptides and no legal maximum levels were set for these compounds in 

food and feed [57,133,134]. As they became more of interest, in 2010 the European Commission 

asked the European Food Safety Authority (EFSA) for ‘a scientific opinion on the risk to human and 

animal health related to the presence of beauvericin and enniatins in food and feed’. This report was 

only recently (2014) released and stated that currently there is a lack of relevant toxicity data, 

making it impossible to perform a proper risk assessment. However, the EFSA CONTAM 

(Contaminants in the Food Chain) Panel concluded that acute exposure to these emerging 
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mycotoxins most probably does not indicate a concern for human health, but there might be a 

concern with respect to chronic exposure. So far, no adverse effects in humans or animals were 

reported due to contaminated food or feed. For beauvericin, the LD50 for acute toxicity was 100 

mg/kg body weight upon oral administration to mice, while for fusafungine (a mixture of enniatins) 

this was 350 mg/kg body weight [57]. Moreover, a recent subchronic feeding experiment on rats, 

where a dose of 21 mg ENN A/kg body weight was given during 28 days, showed no adverse effects 

[135]. 

The discrepancy between these in vitro and in vivo toxicity results might be ascribed to a low 

bioavailability. However, using different in vitro gastro-intestinal Caco-2 cell models, a relatively high 

bioavailability of approximately 52% was shown for BEA [94], while for ENNs (A, A1, B and B1) this 

ranged from 51% up to 77%, depending on the protocol [136,137]. A recent in vivo trial in pigs 

showed an even higher oral bioavailability of 91% for ENN B1, indicating a clear systemic exposure 

[138]. Other mechanisms such as rapid elimination from the systemic circulation could explain the 

low acute in vivo toxicity. The lipophilic character of these CDP mycotoxins, however, may allow for 

bioaccumulation in animal and human tissues, which could affect their chronic toxicity. In the 28 day 

study on rats, ENN A could not be detected in faeces and urine, while in serum an increasing 

concentration over time was noticed, suggesting indeed the distribution and accumulation in some 

organs, saturation of metabolisation/detoxification enzymes and/or decrease in organ functionality 

[139]. An even more recent study in mice showed that the highest amounts of ENN B and BEA were 

found in liver and fat, demonstrating their tendency to bioaccumulate in lipophilic tissues. Moreover, 

in the tumour of the KB-3-1 xenograft mice, distinct levels of BEA and ENN B were measured, 

underlining their possible use as chemotherapeutics [140]. 

Remarkably, the European Medicines Agency (EMA) Pharmacovigilance Risk Assessment Committee 

(PRAC) recently recommended to withdraw nasal and mouth sprays containing fusafungine, originally 

patented in 1953 (FR1021824) and used topically to treat upper respiratory tract diseases [141-143], 

from the market in the European Union. The Committee concluded that the benefits of fusafungine 

do not outweigh its risks, especially the risk for serious allergic reactions and antibiotic resistance 

(EMEA/H/A-31/1420, February 12th, 2016) [144]. This advice was followed by the CMDh 

(Coordination Group for Mutual Recognition and Decentralised Procedures – Human), which has 

authorised the revocation of marketing authorisations for fusafungine sprays in the EU. The different 

EU Member States are currently implementing this decision and start withdrawing the affected 

medicinal products in their territories, according to an agreed timetable (EMEA/H/A-31/1420, April 

1st, 2016) [145]. For example, in Belgium the Federal Agency for Medicines and Health Products 

(FAMHP) has issued the revocation of Locabiotal (May 4th, 2016) [146]. In several EU countries 

fusafungine was available under various trade names (Bioparox, Fusaloyos, Locabiotal and 
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Locabiosol) for over 50 years: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Estonia, Germany, 

Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Portugal, Romania, Slovakia 

and Spain. In some Member States, these medicines were even available without prescription [147]. 

It contains a mixture of the cyclic hexadepsipeptides enniatins mainly formulated in ethanol (EtOH) 

and isopropyl myristate (IPM), which are both chemical skin and mucosal penetration enhancers 

[148-157]. The summary of product characteristics (SmPC) explicitly indicated no systemic absorption 

of the active compound. However, no data substantiating this claim could be found in literature, 

questioning its validity. 

4. BIOLOGICAL BARRIERS IN THE HUMAN BODY 

The human body applies various defence mechanisms, designed by nature in order to protect and 

maintain its internal homeostasis. As a first frontier, the body is lined by the epithelial cells of skin 

and mucosa, which separate the internal milieu from the external environment. Additional internal 

barriers are also present, defining protected compartments within the human body. These barriers 

provide both a physical, as well as immunological/enzymatic defence, intended to strictly regulate 

the uptake and secretion of certain compounds, i.e. keep toxic/foreign material out and let necessary 

molecules pass [158]. An overview of the most important human biological barriers is presented in 

Figure 5. Other barriers exist as well, for example the peritoneal membrane lining the abdominal 

cavity and covering most of the intra-abdominal organs. 

 

Figure 5: Overview of important human biological barriers. 
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Transport across these barriers can be achieved via either a transcellular or intercellular 

(paracellular) route and using passive and/or active transport mechanisms. The latter mechanism 

requires a carrier or receptor and is highly substrate specific, while the former is dependent on the 

diffusional concentration gradient [159,160]. The paracellular permeability is one of the most 

important routes in molecule transportation and differs greatly between various epithelial tissues 

and barriers. The lowest tightness is ascribed to the small intestine, which is considered a rather 

leaky epithelial tissue, whereas the colon and the stomach are of intermediate tightness. The brain 

capillaries and skin epithelial cells form the tightest barriers [161]. 

The largest human organ and apparent barrier is the skin, which protects against external, chemical, 

mechanical, microbial and physical influences. Because of its large surface area, the skin has a great 

drug delivery potential as well [162]. In Figure 6, the structure of the skin is schematically presented.  

 

Figure 6: Structure of the skin (adapted from Blausen.com staff and Shutterstock Alexilusmedical). 

In the basal cell layer, keratinocytes are formed, after which they differentiate and migrate in the 

direction of the skin surface. The most outer layer, i.e. the stratum corneum is composed of dead 

keratin filled cells (corneocytes) surrounded by covalently bound lipid envelope and embedded in 

long lipid lamellae filling the intercellular regions [163]. It is this outer ‘brick and mortar’ layer that 

mainly dominates skin permeation. In addition to the above mentioned transcellular or intercellular 

transport routes across the intact stratum corneum, skin permeation can also be achieved by the use 

of shunts like hair follicles and sweat glands, although these only account for approximately 0.1 % of 

the total skin area [159,160]. Moreover, it is generally accepted that skin permeation of small 

molecules occurs by diffusion and is not an active process [164]. Dermal and transdermal delivery of 
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larger molecules such as peptides, proteins and DNA and particles remains a significant challenge 

[165,166]. 

The oral mucosa, similar to the skin, is easily accessible and thus an attractive site for drug delivery. 

The rather limited surface area is compensated by the extensive vascularization. Due to the direct 

drainage of blood into the internal jugular vein, the gastrointestinal tract and first-pass metabolism in 

the liver are also by-passed [167,168]. Compared to skin permeability, that of the oral mucosa is 

significantly higher, i.e. in general, it is estimated there is a 5 to 100 fold difference [169-173]. 

Depending on the region in the oral cavity, there is a morphologic diversity between the different 

oral mucosae, with the sublingual mucosa being relatively thin and non-keratinised, the buccal 

mucosa also being non-keratinised but thicker and the palatal mucosa being intermediate in 

thickness but keratinised [174]. Based on this, the permeability of the oral mucosae increases in the 

following order: palatal < buccal < sublingual [175]. As for the skin, the major rate-limiting step and 

permeability barrier is also the outermost epithelial layer. Keratinisation itself is not expected to play 

a significant role; however, the components of the membrane coating granules (lamellar bodies) is 

[172-174,176,177]. Epidermis, palatal and gingival mucosa show similar lipid compositions, i.e. 

lamellar lipid stacks composed of non-polar lipids (mostly (O-acyl)(glucosyl)ceramides), whereas the 

non-keratinised sublingual and buccal mucosae contain less neutral, but more polar and amorphous 

lipids (e.g. cholesterol (esters) and glycosylceramides but only very small quantities of ceramides) 

[174,177-179]. The most superficial layer, i.e. the gel-structure mucus, is not expected to influence 

drug diffusion and thus seems to be of inferior importance as a physical barrier [180,181]. The main 

composition of the oral mucosa is shown in Figure 7.  

 

Figure 7: Structure of the oral mucosa (adapted from Nanci [182]). 

It is suggested that hydrophilic molecules will permeate via the intercellular route, while lipophilic 

molecules are preferably absorbed via the transcellular route [168,183,184], although the validity of 

the latter has been questioned [167]. 
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Once the systemic circulation is reached, molecules encounter another important biological barrier, 

namely the blood-brain barrier (BBB), which is an anatomical defence barrier characterised by 

capillary endothelial cells with an extensive network of tight junctions (physical barrier), energy-

dependent efflux transporters such as P-glycoproteins (transport barrier) and bordered by astrocytic 

foot, serving to protect the central nervous system (CNS) from toxic substances and maintaining 

brain homeostasis [185,186]. The tight junctions normally severely restrict the permeation of water-

soluble compounds. However, lipid-soluble agents are able to use the large surface area of the lipid 

membranes of the endothelium, which offers an effective diffusive pathway. Another route of 

transportation across the BBB is specific receptor-mediated transcytosis (e.g. insulin and transferrin) 

[187,188]. Most CNS drugs are believed to be transported across the BBB using the direct 

transcellular diffusional pathway, due to the presence of tight junctions between the adjacent 

endothelial cells hampering the paracellular route [189]. It has also been demonstrated that peptides 

are able to cross the BBB, either by using the passive membrane diffusional permeation, or by a 

saturable, active or facilitated, transport mechanism, or both [190-194]. A schematic representation 

of the BBB is shown in Figure 8. 

 

Figure 8: Schematic representation of the blood-brain barrier (adopted from Perkins et al. [195]). 
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5. STUDY OBJECTIVES 

This research project will mainly focus on beauvericin (BEA) and the most abundant enniatins (ENNs 

A, A1, B, B1, C, D, E and F) as selected revelant bioactive cyclic hexadepsipeptides, currently 

investigated both as potential hazardous emerging mycotoxins, as well as useful therapeutics. To 

better understand and appreciate their biological role, their kinetic interaction with some of the 

most important and relevant biological barrier systems should be known. This knowledge is not only 

required for the urgently needed global risk assessment of these emerging mycotoxins due to skin-

contact of contaminated food, feed, indoor surfaces and airborne particles, but also in the 

development of topically applied new drugs with CDP structure, treating dermatological diseases like 

eczema or skin cancers, or having systemic functions after transdermal penetration. Therefore, the 

main goal of this research project is to quantitatively investigate the local skin, mucosa and BBB 

kinetics of the model cyclic depsipeptide mycotoxins BEA and ENNs. 

In order to answer the central question of this research project, following objectives were set: 

(1) Explore the CDP chemical space to allow positioning of BEA and ENNs as model CDPs and 

propose a comprehensive classification system for CDPs. 

Cyclic depsipeptides are a chemically diverse group of secondary metabolites produced by a 

variety of both marine and terrestrial organisms, which exert a wide range of biological activities, 

making them potentially interesting biomedical compounds. However, an enormous amount of 

CDP data are scattered in literature and a comprehensive classification for these compounds is 

currently lacking, although important for global scientific understanding in terms of 

differentiation, relation, standardization, organization and conservation of all efforts related to 

these CDPs. 

(2) Introduce a clear, unambiguous and quantitatively expressed ‘mycotoxin’ definition and apply 

it on a set of fungal CDPs to determine whether these metabolites should also be classified as 

mycotoxins. 

Currently, BEA and ENNs are (nearly) the only CDPs positioned as mycotoxins. However, as there 

are hundreds more fungal cyclic depsipeptides already identified, should these not be considered 

as mycotoxins as well? Today a huge amount of information about mycotoxins is already 

available, but in the scientific community, authors do not all share the same vision about what 

should be called a mycotoxin, revealing a lack of consistency and leading to confusion about 

what compounds should or should not be called mycotoxins. A re-evaluation of the traditional 

concept is thus most certainly required, since this is of pivotal importance in risk assessment 

prioritization and allowing more awareness of the now underestimated potential hazard of some 

of these fungal metabolites. 
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(3) Development and verification of a quantitative, selective and high throughput bioanalytical 

method for the determination of BEA and ENNs. 

In order to calculate their barrier (skin – oral mucosa – BBB) kinetics, we need to quantitatively 

determine BEA and ENNs in different matrix samples. Therefore, a high throughput bioanalytical 

method must be developed and verified allowing the quantitative, selective and simultaneous 

determination of the cyclic depsipeptide mycotoxins BEA and ENNs (A, A1, B, B1, C, D, E and F). 

Special attention should also be paid to analytical stability and adsorption to glass, possibly 

leading to loss of the analyte and increased analytical variability. 

(4) Quantitatively determine the transdermal kinetics of BEA and ENNs and evaluate the impact of 

dermal exposure. 

Studying the local pharmacokinetics of molecules through human skin is not only important 

within the pharmaceutical industry, but also in the field of environmental toxicology. For the 

cyclic depsipeptide mycotoxins BEA and ENNs, however, the skin remains unexplored as 

exposure route, with skin permeability data being non-existing. However, in view of the 

accumulating evidence of their toxic potential, this information is essential for risk assessment. 

(5) Characterise the blood-brain barrier transport of BEA and ENNs. 

Once they have entered the blood stream, xenobiotics (such as CDPs) might be able to pass the 

BBB and enter the brain parenchyma, where they can exert local CNS effects. However to date, 

no information is available about the transport kinetics of CDPs, including the mycotoxins BEA 

and ENNs, across the BBB.  

(6) Investigate if enniatins, marketed as oral sprays, are able to permeate the mucosa and reach 

the systemic circulation and determine what the influence of formulation variability is on their 

mucosal kinetics. 

At the start of this research, fusafungine, a mixture of different ENNs, was marketed in several 

European countries under different trade names (Bioparox, Fusaloyos, Locabiosol and 

Locabiotal), recommended for topical use to treat upper respiratory tract diseases. As these CDP 

mycotoxins are formulated in ethanol and isopropyl myristate, both being chemical skin and 

mucosal penetration enhancers, variability in their excipient composition may thus result in a 

different bioavailability of the enniatins, due to a difference in mucosal permeation.  

6. THESIS OUTLINE 

The different aspects covered in this thesis are outlined in Figure 9. The first two chapters will focus 

on (1) the exploration of cyclic depsipeptides and (2) defining mycotoxins, while subsequent chapters 

will deal with the biological barrier interaction of the cyclic depsipeptide mycotoxins BEA and ENNs. 
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Figure 9: Thesis outline. 

The last chapter is dedicated to the broader international context, relevance and future perspectives 

related to this research. Each chapter of this thesis is presented as a stand-alone text, with the 

introduction giving the specific context of that section. 

In Chapter II, an extensive literature search is performed to gather an almost exhaustive amount of 

scattered CDP data, leading to a database composed of 1348 naturally occurring cyclic depsipeptides. 

A chemical classification system is proposed, based on the different structures of these CDPs, using 

their apparent chemical characteristics and the validity of this approach is confirmed with the current 

literature knowledge. Ultimately, for the first time a comprehensive chemical classification tool is 

presented, which allows researchers working in the field to get a better global understanding of the 

wide diversity in CDP structures, their chemical interrelationships and identification of existing and 

newly found CDPs. In this classification system, the cyclic hexadepsipeptides beauvericin and 

enniatins constitute an important group of CDPs.  

Chapter III starts with revealing the current lack of consistency, confounding approaches and obvious 

disagreement in scientific literature concerning the mycotoxin definition. Using a philosophical 

explanation approach, a clear, unambiguous and quantitatively expressed mycotoxin definition is 

proposed, based upon hazard data of some already well-known and widely accepted “traditional” 
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mycotoxins. Finally, this concept is applied to a set of fungal cyclic depsipeptides to determine 

whether or not these metabolites should be classified as mycotoxins. 

Starting from Chapter IV, focus lies on BEA and ENNs as model cyclic hexadepsipeptides and 

emerging mycotoxins. First, a high throughput selective and sensitive UHPLC-MS/MS is developed, 

using state of the art technology, which allows for quantitative and simultaneous determination of 

the cyclic depsipeptide mycotoxins BEA and ENNs (A, A1, B, B1, C, D, E and F). Additionally, in view of 

succeeding experiments, analytical stability and adsorption to glass of these peptides is also studied. 

In Chapter V, the quantitative characterisation of the transdermal kinetics of BEA and ENNs is 

evaluated using intact and damaged human skin in an ex vivo in vitro Franz diffusion cell (FDC) set-up, 

by kinetic profiling of the FDC receptor fluid, yielding the experimentally obtained secondary flux 

parameters, as well as the derived calculated primary permeability coefficient. This latter is then 

used to determine the daily dermal exposure (DDE) in a worst-case scenario, as well as in a typical 

industrial occupational scenario. 

Chapter VI comprises the in vivo BBB transport study of BEA and ENNs. In addition to the UHPLC-

MS/MS method earlier described in Chapter IV, sample preparation methods for mouse serum and 

brains are developed and verified. Also, the metabolic stability of the mycotoxins is evaluated in vitro 

in mouse serum and brain homogenate. The BBB rate kinetics of BEA and ENNS are studied, using an 

in vivo mouse model, applying multiple time regression for studying the blood-to-brain influx, 

capillary depletion for determination of the fraction transported into the brain versus the fraction 

trapped by the endothelial cells lining the BBB, and finally an efflux study is performed to investigate 

brain-to-blood transport kinetics. 

To determine whether fusafungine ENNs are able to permeate the mucosa and reach blood 

circulation, as the summary of product characteristics of marketed oral sprays (e.g. Locabiotal) 

indicates this is not the case, an ex vivo in vitro Franz diffusion cell experiment is performed using 

porcine buccal mucosa in Chapter VII. Moreover, the concentration of the two main excipients and 

known penetration enhancers, isopropyl myristate and ethanol, is determined in several marketed 

samples, using an in-house developed and verified GC-FID method. Finally, the influence of excipient 

concentration variability on mucosal permeation bioavailability is also investigated, by quantifying 

the transdermal kinetics of the ENNs. 

To conclude the research presented in this thesis, the broader international context, relevance and 

future perspectives are discussed.  
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“Although our intellect always longs for clarity and certainty, 
our nature often finds uncertainty fascinating.”  

 
Carl von Clausewitz 

(°1780 - †1831, Prussian general and military theorist) 
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Taevernier L, Wynendaele E, Gevaert B, De Spiegeleer B. Chemical classification of cyclic 
depsipeptides. Current Protein and Peptide Science (under revision). 
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ABSTRACT 

Cyclic depsipeptides (CDPs) are a family of cyclic peptide-related compounds, of which the ring is 

mainly composed of amino- and hydroxy-acid residues joined by amide and ester bonds (at least 

one), leading to a wide diversity of fascinating chemical structures. They differ not only in their ring 

structure but also in their side chains, especially by the nature of the unusual and non-amino acid 

building blocks. To date, however, there is no overall uniform chemical classification system 

available for CDPs and naming of the diverse family members is done rather arbitrarily. Therefore, 

a broad evaluation of different CDP structures is done, i.e. 1348 naturally occurring CDPs were 

included, and a straightforward chemical classification system using apparent chemical 

characteristics is proposed, in order to organize the currently scattered CDP data. The overall 

validity of the classification approach is verified and the compounds categorized in the same 

groups are considered to be structurally related. This evaluation also revealed that traditionally 

formed CDP subfamilies, like the dolastatins, might be misleading from a chemical point of view 

seen the structural differences in this subfamily. This up-to-date CDP overview enables peptide 

and natural product scientists to study the wide diversity in CDP structures, their chemical 

interrelationships and identification of existing and newly found CDPs. Together with the available 

information on the species producing these CDPs and their reported biological activities, this paper 

provides a useful tool to gain new insights into this diverse group of peptides. 
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CHAPTER II 

CHEMICAL CLASSIFICATION OF  

CYCLIC DEPSIPEPTIDES 

Main focus in this chapter: 

 Organize and structure the scattered cyclic depsipeptide data: 

o present an up-to-date overview containing 1348 naturally occurring CDPs; 

o propose and validate a uniform and straightforward chemical classification system. 

 

1. CYCLIC DEPSIPEPTIDES: A DIVERSE FAMILY 

The term ‘cyclic depsipeptides’ (CDPs), also known as ‘cyclodepsipeptides’ or ‘peptolides’, was first 

introduced in scientific literature in mid-1960s [1,2] and is used to describe cyclic peptide-related 

compounds of which the ring is mainly composed of amino- and hydroxy-acid residues joined by 

amide and ester bonds (at least one is required to refer to a depsipeptide), which are commonly, but 

not necessarily, regularly alternating [1,3,4]. 

Reports on the isolation of these compounds started as early as the 1940s, i.e. with the isolation of 

enniatin A from the fungus Fusarium orthoceras var. enniatinum [5]; however, it took decades before 

scientists began to unravel their biosynthesis [6,7], which is still an active research field today [8-14]. 

Inspection of the structures of diverse CDP members illustrates that many of these compounds are 

not only synthesized by non-ribosomal peptide synthases (NRPS) [15-17], but actually are hybrids 

formed by both NRPS and polyketide synthase (PKS) [10,18,19] or fatty acid (FA) synthase enzyme 

systems. The latter, however, is still under debate, as Ishidoh and colleagues [12] surprisingly 

demonstrated that for the cyclic lipodepsipeptide verlamelin, there are no genes coding for fatty acid 

synthase or even polyketide synthase, suggesting that the hydroxytetradecanoic acid moiety of the 

CDP is supplied via the primary fatty acid metabolism and then loaded onto the NRPS. It should also 

be noted that the genes responsible for this biosynthesis reside exclusively in prokaryotic genomes; 

therefore, it is generally proposed that invertebrate derived CDPs (e.g. from sponge origin) are 

actually synthesized by symbiotic microorganisms [20-22]. Complete understanding of these 

biosynthetic processes thus seems distant future, especially since only a few enzymes are currently 
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linked to their biosynthetic products and programming of these enzymes is still poorly understood 

[19]. 

These nonribosomal peptides are thus not only comprised of natural amino acids, but also of other 

unique building blocks, including unusual amino acids and non-amino acid moieties, such as D-amino 

acids, glycosylated amino acids, N-terminally attached fatty acid chains and N- and C-methylated 

residues [16,17]. A common feature is their constrained structure, which seems to be required for 

their bioactivity and is ensured by macrocyclization, whereby parts of the molecule distant in the 

linear peptide precursor are covalently linked to one another [16,23]. The members of the CDP family 

differ thus in the ring structure as well as side chains, i.a. number of amino- and hydroxy-acids, ring 

size, molecular mass, lipophilicity and nature of the unusual amino acids and non-amino acid 

moieties. 

Beside their chemical diversity, these peptides also exert a wide range of biological activities, such as 

histone deacetylase (HDAC) and protease inhibiting activities (e.g. romidepsin and cyanopeptolin S, 

respectively) [24-26], antibacterial (e.g. blocking of transglycosylation in bacterial cell wall 

peptidoglycan synthesis by plusbacins) [27], antifungal (e.g. dentigerumycin) [28], 

immunosuppressive (e.g. FK506 (= tacrolimus) and rapamycin, also known as sirolimus) [29], 

antimalarial (e.g. lagunamides) [30], HIV-inhibitory (e.g. mirabamides) [31] and cytotoxic activities 

(e.g. kahalalide F is currently under investigation as anti-cancer drug in clinical trials) [32,33]. 

Overall, a significant number of original research papers has already been published, presenting the 

identification and structural elucidation of newfound CDPs, sometimes complemented with limited 

biological activity data. Upon their discovery, these compounds are named very arbitrarily: for some, 

this is (i) after the geographic location where they were first found (e.g. sansalvamide was isolated 

from a fungal strain obtained from the surface of a sea grass collected in the inner lagoon of Little 

San Salvador Island, Bahamas) [34], (ii) after the organism they were first isolated from (e.g. 

aureobasidins are synthesized by Aureobasidium pullulans) [35] or (iii) after their chemical structure 

(e.g. leualacin consists of the amino acids leucine, N-methylphenylalanine and β-alanine; stevastelin 

also known as 3,5-dihydroxy-2,4-dimethylstearylvalylthreonyl) [36-38], while for others the origin of 

the name remains unclear. To date, no clear overall chemical classification system for cyclic 

depsipeptides exists, despite that different research groups have published reviews with limited 

scopes: (i) oriented towards only a selected group of organism(s) producing them, (ii) highlighting a 

limited group of compounds, (iii) focusing on a specific potential biomedical interest, or (iv) placing 

emphasis on a selected structural or synthesis-related feature (Table 1). Thus, none of them took into 

account the entire CDP population. 
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Table 1: Typical examples of cyclic depsipeptide review articles with limited scopes. 

Scope Cyclic depsipeptides discussed Ref. 

General angolide, amidomycin, enniatins, isariin, pithomycolide, serratamolide, 
sporidesmolides, valinomycin 

[2] 

Origin   
  Cyanobacteria 

o General 
antanapeptin A, cryptophycins, aeruginopeptin 917S-C, 
anabaenopeptilide 90-A, cyanopeptolin S, hofmannolin, microcystilide 
A, micropeptin 88-A, nostocyclin, scyptolin A, somamide A, symplostatin 
2, tasipeptin, kulolides, lyngbyabellins, malevamide C, microviridins, 
pitipeptolides, yanucamides 

[39] 

  anabaenopeptolides, cryptophycins, cyanopeptolins, dolastatins, 
lyngbyabellins, majusculamide C, oscillapeptins 

[40] 

 o Lyngbya species alotamide A, apratoxins, carriebowmide, cryptophycins, dolastatins, 
dudawalamide, grassypeptolides, guineamides, hantupeptins, 
hoiamides, itralamides, kempopeptins, largamides, lyngbyastatins, 
majusculamide, palmyramide A, pompanopeptin A, somamides, 
scyptolins, tiglicamides, trungapeptins 

[41] 

  Marine organisms 
o General 

arenastatin A, didemnins, discodermins, dolastatins, geodiamolides, 
halicylindramides, jaspamide, jasplakinolide, microspinosamide, 
onchidin B, papuamides, polydiscamides, tamandarins, 
theonellapeptolides 

[42] 

 o Cyanobacteria antillatoxin, apratoxins, coibamide, hoiamides, largazole [43] 
  antanapeptins, antillatoxins, apratoxins, aurilides, guineamides, 

homodolastatin 16, kulokekahilides, largamides, lyngbyabellins, 
lyngbyastatin 3, malevamide D, obyanamide, palau’amide, 
pitipeptolides, somamides, tasipeptins, trungapeptins, ulongamides, 
wewakpeptins 

[44] 

 o Indopacific vertibrates acremolides, hapalosin, stereocalpin A, taumycins, tausalarins [45] 
 o Macroalgae kahalalide A, F [46] 
 o Sponges aplidin, arenastatin A, callipeltin A, celebesides, geodiamolides, 

homophymines, jasplakinolide, microsponosamide, mirabamides, 
neamphamide A, papuamides, spongidepsin, theopapuamides 

[3] 

  callipeltins, cyclolithiside A, discodermins, halicylindramides, 
microspinosamide, papuamides, phoriospongins, polydiscamide A, 
theonellapeptolides 

 

 o Lithistid sponges callipeltins, discodermins, discokiolides, geodiamolides, jaspamides, 
neosiphoniamolide A, polydiscamides, theonellapeptolides 

[47] 

  Myxobacteria chondramide, miuraenamide  [48] 
Specific class of compounds   
  Beauverolides beauverolides [49] 
  Cyanopeptolins aeruginopeptins, cryptophycins, cyanopeptolins, dolastatins, hapalosin, 

majusculamide C, microcystilide A, micropeptins 
[50] 

  Destruxins destruxins, isaridins, roseotoxins [51] 
  destruxins [52] 
  Didemnins didemnins, tamandarins [53] 
  Dolastatins dolastatins [54] 
  Enniatins beauvericin, destruxins, enniatins [55] 
  beauvericin, enniatins [56] 
Biomedical interest aplidin, apratoxins, beauvericin, beauverolides, celebesides, destruxins, 

enniatins, eujavanicin, grassypeptolides, guangomides, hantupeptin, 
hirsutellide, homophymine A, ichtyopeptins, isaridins, isariins, kahalalide 
F, kempopeptins, largazole, lysobactin, malevamide, mirabamides, 
miuraenamides, neamphamide A, obyanamide, paecilodepsipeptides, 
papuamide B, PF1022A, romidepsin, salinamide A, sansalvamide A, 
serratamolide, spiruchostatin, scopularide, SW-163s, symplocamide A, 
tasipeptin, ulongapeptin, unnarmicins 

[57] 

 A83586C, aureobasidin A, azinothricin, beauvericins, callipeltins, 
citropeptin, cryptophycins, destruxin B, didemnins, dolastatins, 
emodepside, GE3, geodiamolides, globomycin, haliclamide, hapalosin, 
himastatin, jasplakinolides, kahalalide F, luzopeptins, lyngbyabellin A, 
papuamides, PF1022s, pholipeptin, polyoxypeptins, pseudomycins, 
quinoxapeptins, ramoplanins, romidepsin (FR901228, FK228), 
sansalvamide, somamide A, stevastellins, ulongamide F, verucopeptin 

[58] 
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Table 1: Typical examples of cyclic depsipeptide review articles with limited scopes (continued). 

Structural, synthesis related features   
  Bisintercalator products echinomycins, luzopeptins, quinoxapeptins, sandramycin, SW-163s, 

triostin 
[59] 

  Cyclisation of depsipeptides cryptophycins, destruxins, didemnins, dolastatins, doliculide, enniatins, 
geodiamolides, hapalosin, jasplakinolides, kahalalides, luzopeptins, 
stevastelins, tamandarins, valinomycin 

[60] 

  Head-to-side chain cyclic 
depsipeptides 

aeruginopeptins, callipeltins, corticiamide, didemnins, discodermins, 
halicylindramides, homophymines, kahalalides, largamides, 
lyngbyastatins, micropeptins, microspinosamide, mirabamides, 
neamphamides, nostopeptins, oscillapeptins, papuamides, 
pipecolidepsin, polydiscamides, somamide A, stellatolides, 
symplocamide A, tamandarins, theopapuamides 

[61] 

  Lipodepsipeptides A5415s, daptomycins (A21978s), enduracidins, fusaricidins, katanosin, 
lysobactin, plusbacins, ramoplanins, SF1902s, synringopeptins 

[62] 

  Synthesis challenges chondramide C, largazole, oxathiocoraline, romidepsin, spiruchostatins, 
symplocamide A 

[63] 

  Solid-phase synthesis cotransin/HUN-7293 [64] 

Therefore, it was our objective to structure these scattered CDP data and present a broad evaluation 

of different CDP structures, by proposing an overall classification system for cyclic depsipeptides 

based on their chemical properties. This should allow natural product researchers to more easily find 

similar structures. Moreover, this classification can be used for further exploring the taxonomic origin 

and bio-functionality. More than 1300 unique naturally occurring CDPs were gathered from literature 

and classified, providing insights into the cyclic depsipeptides as a whole. 

2. METHODS 

There were three stages in the literature retrieval and appraisal: (i) search of literature databases and 

searching the reference lists of relevant manuscripts (including reviews) to supplement the electronic 

searching, (ii) screening search hits for potential eligibility based on the presence of (a) cyclic 

depsipeptide structure(s) and (iii) data extraction. 

2.1. Literature search strategy 

An extensive literature search was performed using the search engine ‘Web of Science’, an online 

web interface providing access to a scientific citation indexing platform that allows a comprehensive 

cross-disciplinary search in multiple databases. All subscribed databases were used up to March 2016 

and the following terms were independently searched for in the ‘topic’ field, including the use of an 

asterisk to obtain a more comprehensive overview: ‘cyclodepsipeptide*’ (693 hits), ‘peptolide*’ (62 

hits), ‘cyclic depsipeptide*’ (1012 hits), ‘cyclic lipodepsipeptide*’ (93 hits), ‘*glyc* cycl* 

*depsipeptide*’ (140 hits). Additionally, relevant references cited in each of these studies were also 

included. 
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2.2. Inclusion assessment 

All acquired hits were reviewed for inclusion if the study reported the chemical structure of the cyclic 

depsipeptide. If reported structures were not cyclic depsipeptides (e.g. dolastatins 10 and 15 were 

excluded, while dolastatins 11-14 and 16 and 17 were included; scytonemide B included, while 

scytonemide A was excluded) or no chemical structure was given, the hit was excluded. A compound 

was considered a cyclic depsipeptide if it contained at least an amide and ester bond in the ring 

structure. Synthetic analogues of CDPs were excluded. In case the absolute stereochemistry 

remained unassigned or doubtful, the compound was still included in order to obtain a more 

comprehensive overview. Moreover, only CDPs with allocated unique (trivial) names were included, 

as for some CDPs no names were yet assigned. For foreign-language papers, the same strategy was 

followed. 

2.3. Data extraction 

Data of each withheld CDP were extracted, gathering information concerning the chemical structure, 

originating organism and reported biological functionality. It should be noted that isolation of the 

same CDP from a variety of organisms, that have a dietary or a symbiotic relationship, can cloud the 

issue of the compound’s true origin, as was already warned for by Williams et al. [65]. For example, 

bacteria may comprise up to 60% of the total biomass of sponges [66-68]. These microorganisms 

may be removed from the seawater and pass into the mesohyl of the sponge. Hence, CDPs isolated 

from sponges may actually be produced by these microorganisms [69-72]. However, the originating 

species as originally reported in the literature references were listed in the data set of Supporting 

Information S1. It should also be acknowledged that the reported biological activities suffer from 

bias, as natural products are often not broadly screened for diverse biological activities, i.e. similar 

structures are often screened for the activity of a known congener, and hence, the reported activities 

are by no means complete or exhaustive, but rather exemplary. In our list, we thus only have 

included the reported activities, acknowledging that the absence of a reported activity does not 

mean the absence of this activity. This has ultimately led to our set of compounds, composed of 1348 

naturally occurring cyclic depsipeptides, which is given in Supplementary Information S1, ordered 

alphabetically on their trivial name and including references, which formed the basis of the list. 

3. PROPOSED CLASSIFICATION 

A uniform classification system for 1348 cyclic depsipeptides is proposed based on their apparent 

chemical structures. In this approach, distinctive structural and directly observable features, often 
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used by peptide and natural product scientists, are used to cluster the diverse members of the cyclic 

depsipeptide family into different classes. 

Ester type  

The ester-type in the macrocycle is the first variable, since this chemical characteristic is a required 

necessity for a compound to be referred to as a cyclic depsipeptide. Formation of the ester bond is 

achieved between a C-terminus carboxyl group and a hydroxyl acid group. This hydroxyl acid group 

can either be an α-hydroxy, β-hydroxy or longer chain hydroxyl acid, which are likely of distinct 

biosynthetic origin (Figure 1).  

 

Figure 1: Generic structures for esters of α-hydroxy, β-hydroxy and longer chain hydroxyl acids. The different R-

groups can vary depending on the cyclic depsipeptide. 

Depsipeptides with a macrocyclic region closed by a β-hydroxy group have already been recognized 

as a separate CDP category by Pelay-Gimeno et al. and termed ‘head-to-side-chain’ CDPs [61]. 

Additionally, some compounds contain more than one ester bond, therefore combinations are also 

possible: α + β-hydroxy acid, longer chain + α-hydroxy acid and longer chain + β-hydroxy acid. Based 

on the hydroxy acid(s) involved in the ester in the ring, six major groups are thus distinguished 

(Figure 2). However, seen the great structural diversity, further sub-classification per group is 

required. 

 

Figure 2: Based on the hydroxy acid(s) involved in the ring ester(s), six major groups are distinguished. Between 

brackets are the number of CDPs classified in each of the major groups (total n = 1348, see Supporting 

Information S1). 
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α-hydroxy acid CDPs 

For the first group of α-hydroxy acid CDPs (Figure 3), a subdivision is made based on the number of 

ester bonds in the macrocycle, i.e. either one or >1, which in the latter case can be regularly 

alternating or irregular, referring again to distinct biosynthetic assembly lines, i.e. iterative versus 

non-iterative [19]. A structural example of each group is shown in Figure 4. Further following down 

the hierarchical categorisation system for the CDPs with one ester bond, leads to CDPs built up of 

either solely α-amino acids or both α-amino acids as well as other amino acid building blocks. This 

split was also made for CDPs containing multiple ester bonds comprised in a single CDP-ring. Figure 4 

shows the classification of the α-hydroxy acid CDPs into four major groups after two splits. 

Depending on the use of this classification system, these groups can be further structured into more 

well-defined classes, thereby however increasing the complexity of the classification. 

 

Figure 4: Some examples of CDPs containing multiple ester bonds closed through α-hydroxy acids; in the case 

of enniatin B1 these are regularly alternating (left), while irregular for guangomide B (mid) and himastatin 

(right), the former is composed of a single CDP ring, while the latter is built up of two joined CDP rings.  
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Figure 3: Classification for α-hydroxy acid CDPs, dividing them into four major groups after two splits. Between brackets are the number of CDPs classified in each of the 

groups. 
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β-hydroxy acid CDPs 

The β-hydroxy acid CDPs or ‘head-to-side-chain’ CDPs (Figure 5) are also first classified based on the 

number of ester bonds, similar as for the α-hydroxy acid CDPs. Following this first split, the type of β-

hydroxy acid is evaluated, originating from a (modified) amino acid or from a short or long chain acid. 

Illustrative examples are given in Figure 6. 

 

Figure 6: Different types of β-hydroxy acid CDPs containing one ester: melleumin A contains a β-hydroxy acid 

from threonine (left), whereas arenamide A (mid) and vioprolide A (right) contain a β-hydroxy acid originating 

from a long, respectively short (glyceric acid) fatty acid. 

For the CDPs of which the sole β-hydroxy acid is formed through a (modified) amino acid, further 

partitioning is based on the identification of some typical building blocks (e.g. amino 

hydroxy/methoxy piperidone (ahp/amp) and piperazic acid, as shown in Figure 7). 

 

Figure 7: Ahp-containing aeruginopeptin 917S-A (left) and piperazic acid containing GE3 (right). 

The CDPs containing more common groups are further classified based on their side chain and four 

main groups are identified: (i) containing solely amino acids (incl. modified and nonproteinogenic 

amino acid residues), (ii) both containing amino acids as well as α-hydroxy acids, (iii) a polyketide or 

FA side chain attached to a (modified) amino acid tail, and finally (iv) the last group does not contain 

additional amino acids in the side chain. An illustrative example is given for each group in Figure 8. 

The latter group can also be further distinguished according to the chart in Figure 5. In the case of 

CDPs from which the sole β-hydroxy acid originates from an acid chain, subdivision is based on 

saturated or unsaturated. 
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Figure 5: Classification for β-hydroxy acid CDPs, dividing them into four major groups after two splits. Between brackets are the number of CDPs classified in 

each of the groups.
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For CDPs containing multiple β-hydroxy acid esters, distinction is also first made based on the type of 

β-hydroxy acid. Following the β-hydroxy acid CDPs originating from a (modified) amino acid, 

distinction is made between CDPs containing different (e.g. salinamide A contains 2 ester bonds, one 

obtained from a threonine residue and another originating from a serine residue) or similar β-

hydroxy acid (e.g. echinomycin contains 2 ester bonds, both originating from a serine residue), the 

latter being further divided into one or multiple CDP ring systems. 

Figure 5 shows the classification of the β-hydroxy acid CDPs into four major groups, again after two 

splits. As mentioned for the α-hydroxy acids, depending on the use of this classification system, these 

4 groups can again be further structured into the proposed, more well-defined classes. 

 

Figure 8: Different types of side chains attached to the β-hydroxy acid CDPs formed from a (modified) amino 

acid. Ring β-hydroxy acid (red); amino acid tail (blue); α-hydroxy residue (orange); polyketide or FA chain 

(green). 

α- and β-hydroxy acid CDPs 

A third group of CDPs contains both an α-hydroxy and β-hydroxy acid (Figure 9), of which the type of 

β-hydroxy acid is the next relevant feature for further classification, similar as for the β-hydroxy 

acids. Figure 9 shows their classification into two major groups, which can be further divided into 

other distinct classes, depending on the level of complexity allowed and needed. 
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Figure 9: Classification for CDPs containing both an α-hydroxy and β-hydroxy acid, dividing them into two major 

groups. Between brackets are the number of CDPs classified in each of the groups. 

Longer hydroxy acid CDPs 

The longer chain hydroxy acid CDPs (Figure 10), whether or not in combination with an α-hydroxy or 

β-hydroxy acid, are first categorized based on the presence of a modified cysteine residue within the 

long hydroxyl acid chain, i.e. a thiazole or thiazoline unit, which strictly cannot be considered as 

amino acids anymore. The more common CDPs are categorized based on the type of amino acids in 

the ring, i.e. solely built up of α-amino acids or containing both α-amino acids as well as other amino 

acid building blocks. Figure 10 shows the classification of the longer hydroxy acid CDPs into four 

major groups, after two splits. 
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Figure 10: Classification for CDPs containing a longer hydroxy acid, dividing them into four major groups. Between brackets are the number of CDPs classified 

in each of the groups. 
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α/β-hydroxy acid and longer hydroxy acid CDPs 

CDPs containing a combination of a longer hydroxy acid and either an α-hydroxy or β-hydroxy acid 

comprise only a small number of CDP members, as shown in Figure 11. 

 

Figure 11: Chart for CDPs containing a longer hydroxy and α-hydroxy/β-hydroxy acid (top/bottom). 

Between brackets are the number of CDPs classified in each of the groups. 

Numerical classification code 

A numerical classification code is allocated to each of the different groups, creating a workable 

system, which also allows easy searching for similar CDPs in the list in Supporting Information S1. The 

first number of the code indicates the type of hydroxy acid(s) involved in the ring ester(s): 1. α-

hydroxy acid, 2. β-hydroxy acid, 3. α-hydroxy acid and β-hydroxy acid, 4. longer hydroxy acid, 5. α-

hydroxy acid and longer hydroxy acid, and 6. β-hydroxy acid and longer hydroxy acid (see also Figure 

2). The second number in the code represents the next split, e.g. in the case of longer hydroxy acid 

CDPs (first number of the code is 4), the second number is 1. for CDPs with a longer hydroxy acid 

containing a modified cysteine, while for CDPs without a modified cysteine in the longer hydroxy acid 

this is 2. This way, a number is given to every split, always in descending order from top to bottom. 

An explanatory example is presented in Figure 12. Moreover, for each of the classes, a structural 

example is given in Supplementary Information S2. 
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Figure 12: Explanation of the numbering classification code. A number is allocated to each split, forming in the end the classification code for a certain group of CDPs. The 

example in red is 421212. 
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Ring size 

Moreover, for each of the groups formed after the desired split, ring size can be used as a final cut-

off. This variable was not used as primary feature, as the different building blocks/units are 

considered as repeated chemical subunits and the number of repetitions does not alter its primary 

chemistry. However, this system allows the ring size to be included as a variable feature, which can 

be used at any level in addition to the chemical classification features. Some examples of ring size 

differences within certain groups are given in Figures 13 and 14. It should be noted that to obtain the 

CDP ring size, the number of building blocks within the main CDP ring is counted, neglecting other 

rings formed through side chain bridges, e.g. disulfide bridge in echinomycin (Figure 14). 

 

 

Figure 13: Examples of α-hydroxy acid CDPs with increasing ring sizes (from left to right). Between brackets are 

the number of CDPs classified in each of the groups. 
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Figure 14: Examples of β-hydroxy acid CDPs with increasing ring sizes (from left to right). Between brackets are 

the number of CDPs classified in each of the groups. 
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4. DISCUSSION 

The descriptors used in this classification approach are not based on mathematically calculated 

descriptors such as applied in different software (e.g. Dragon), intended for small molecules, but on 

apparent functional chemical characteristics which have the advantage that the classification system 

can be applied without the use of chemometric tools. 

The 1348 CDPs were classified according to the proposed classification scheme (Supporting 

Information S1). In order to verify the presented classification system and possibly point to the need 

for revision of current CDP subfamilies, a comparison with the current literature knowledge of 

structurally similar CDPs and already existing cyclic depsipeptide families was performed. 

α-hydroxy acid CDPs 

For the group containing CDPs with a single α-hydroxy acid (Figure 4), consisting of only α-amino 

acids and lacking other typical building blocks, after 4 splits and an additional split with ring size cut-

off, the small 2-membered CDPs (e.g. bassiatin, lateritin and ergosecalinine) are clustered together 

[73]. The classification validity is again confirmed by the literature reported similarity of exumolides, 

sansalvamides and zygosporamide [74], which are also classified together after 4 splits (class code: 

1112). 

According to Bai et al. dolastatin 11, dolastatin 12, ibu-epidolastatin 12, ibu-epilyngbyastatin 1 and 

lyngbyastatin 1 are structurally similar [75]. Additionally, majusculamide C and lyngbyastatin 3 have 

also been reported as congeners [65]. Following the proposed classification strategy, all these CDPs 

are clustered together in the same group after 6 splits (class code: 112411), i.e. single α-hydroxy acid, 

with both α- as well as other amino acids and the typical ibu (4-amino-2,2-dimethyl-3-oxopentanoic 

acid, see Figure 15) building block. 

 

Figure 15: Lyngbyastatin 1 (left) and majusculamide C (right), with their structural ibu (4-amino-2,2-dimethyl-3-

oxopentanoic acid) moiety in red. 

It should be noted that other members of the ‘dolastatin family’ were found structurally very 

different, some illustrative examples are shown in Figure 16. Dolastatin 10 and dolastatin E are not 
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CDPs [76,77]. Dolastatin 13 is an ahp containing β-hydroxy acid CDP (class code: 21211), while 

dolastatin 14 is a longer hydroxy acid CDP (class code: 42122) and dolastatin 17 is a CDP containing 

multiple irregular α-hydroxy acids (class code: 122222). This highlights the currently used arbitrary 

nomenclature for newly discovered compounds (e.g. dolastatins were all originally isolated from the 

sea hare Dolabella auricularia,) and the lack of a uniform classification system. 

 

Figure 16: Different members of the ‘dolastatin family’. 

Xu and co-workers reported that bassianolide, beauvericin, enniatins and PF1022A are related 

cyclooligomer nonribosomal depsipeptides derived from repeated structural units, consisting of 

amino acid and α-hydroxy acid building blocks, undergoing oligomerization via head-to-tail 

condensation or ligation through side chains and followed by macrocycle closure [78]. Following our 

proposed classification, all above mentioned CDPs were clustered in the same class after 3 splits 

(multiple regularly alternating α-hydroxy acids with class code: 121), together with other CDPs, i.e. 

allobeauvericins, amidomycin, angolide, arthogalin, bacillistatins, beauvenniatins, cereulide, 

cordycecin A, montanastatin, sporidesmolides, valinomycin and verticlides. Structural resemblance of 

bacillistatins, cereulide and valinomycin has also been confirmed in literature [79]. 

Conoideocrellide A and paecilodepsipeptide A (synonym gliotide) are closely related 

cyclohexadepsipeptides [80], which are also classified into the same class after 6 splits, i.e. CDPs 

containing multiple α-hydroxy acids that are not regularly alternating (irregular), composed of 1 

macrocycle and only α-amino acids and bearing an O-prenyl-L-tyrosine residue (class code: 122211). 

After 6 splits, other similar cyclohexadepsipeptides are grouped together (class code: 122212): 

guangomides, hirsutatins, hirsutellide A, pimaydolide, trichodepsipeptides, phomalide and BZR-
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cotoxins I, II and III. Trichodepsipeptides and guangomides were also previously reported together 

[81]. 

β-hydroxy acid CDPs 

Largazole, burkholdacs, thailandepsins, romidepsin and spiruchostatins are considered structurally 

related and they all exert a similar biological activity as HDAC inhibitors [82]. According to our 

classification, these CDPs are indeed clustered together after 5 splits, as β-hydroxy acids (Figure 5) 

with an unsaturated acid chain and containing multiple sulfur atoms (class code: 21122). 

According to literature, an important subfamily of closely related compounds are the ahp/amp 

(amino hydroxy/methoxy piperidone) containing CDPs [50,83-93]. This structural moiety was also 

considered as relevant feature in the classification of the β-hydroxy acid CDPs (class code: 21211).  

The cyclic lipodepsipeptides viscosin, massetolides A-L, viscosinamides A-D, WLIP (white line-inducing 

principle), pseudophomins A-B and pseudodesmins A-B were previously categorized under the 

‘viscosin group’ by Geudens et al. [94] and following our proposed classification system, these are 

also grouped in the same class after 7 splits, i.e. CDPs with a single β-hydroxy acid ester from a 

(modified) amino acid, consisting of common building blocks and a FA coupled to an amino acid tail 

as their side chain (class code: 2122111). 

Furthermore, Zolova and colleagues appointed the CDPs echinomycin, quinomycins, triostin A, 

sandramycin, luzopeptins, SW-163 C-G and quinoxapeptins to the same family of natural 

bisintercalator compounds [59], which also classify together after 5 splits into group 22221. 

α- and β-hydroxy acid CDPs 

Han and colleagues recognized structural similarity between kulolide-1 and wewakpeptins [95], while 

Sittachitta et al. mentioned that also yanucamides and kulokainalide-1 are related to kulolide-1 [96]. 

Following our classification system, these compounds were all classified in the same group after 2 

splits, i.e. containing both an α- and β-hydroxy acid (Figure 9), with a long chain as β-hydroxy acid 

type. Other compounds belonging to the same class are: antanapeptins, dudawalamide, georgamide, 

guineamide E, hantupeptins, hapalosin, kulomo’opunalides, mantillamide, naopopeptin, onchidin B, 

palmyramide A, pitipeptolides, pitiprolamide, trungapeptins, veraguamides and viequeamides. 

Indeed, hantupeptins and trungapeptins were found structurally similar according to Gupta et al. [97] 

and veraguamides are related to viequamides as reported by Wang et al. [98]. Further categorization 

of this group of compounds can be done in a third split, based on the (fatty) acid chain.  

Aplidin (synonyms dehydrodidemnin B, plitidepsin) and tamandarins are acknowledged to be 

structurally very similar CDPs [99,100], which are also classified together after 3 splits according to 

our proposed classification strategy (class 313). Both are CDPs consisting of a α-hydroxy acid, as well 
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as a β-hydroxy acid, with the latter formed through the hydroxyl group of threonine and also with 

the presence of a γ-amino acid. One additional compound was found in this group, namely 

pyridomycin, which can eventually be distinguished due to its smaller ring size, i.e. 3-membered 

instead of the 6- and 7-membered tamandarins and didemnins, respectively. 

Longer hydroxy acid CDPs 

Chondramides, doliculide, geodiamolides, jaspamides, miuraenamides, neosiphoniamolide A, 

pipestelides and seragamides were previously found to be closely related [101-105] and according to 

our classification system, these indeed classify into the same group after 2 splits, i.e. longer chain 

hydroxy-acids (Figure 10) without the presence of a modified cysteine (thiazole/thiazoline) residue. 

However, as can be seen in Figure 17, these CDPs are clearly further divided into two distinct groups 

after 2 additional splits: consisting only of α-amino acids and having a halogen atom substitution on 

the tyrosine residue (doliculide, geodiamolides (except for geodiamolides H and I), 

neosiphoniamolide A, miuraenamides and seragamides: class 421212), versus containing also other 

amino acids, namely β-hydroxy phenyl glycine (chondramides, geodiamolides H and I, jaspamides 

and pipestelides: class 42211). 

 

Figure 17: CDPs with longer hydroxy-acids without a modified cysteine residue. Top: consisting only of α-amino 

acids and having a halogen atom substitution on the tyrosine residue (left: neosiphoniamolide A; right: 

seragamide A); bottom: containing also other amino acids, namely β-hydroxy phenyl glycine (left: Jaspamide A; 

right: chondramide C). 
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The case of geodiamolides is another example indicating that current traditional categorization of 

compounds in families is rather arbitrarily done, i.e. geodiamolides H and I were also named after the 

sponge (Geodia sp.) they were isolated from. However, the presence of their β-hydroxy phenyl 

glycine moiety, which is absent in the other geodiamolides, but present in e.g. pipestelides and 

jaspamides, suggests a distinct biosynthetic process. As an illustrative example the structure of 

geodiamolides and are shown in Figure 18. 

 

Figure 18: The structurally different geodiamolide A (left) and geodiamolide H (right). 

α/β-hydroxy acid and longer hydroxy acid CDPs 

According to Tripathi et al., aurilides A, B and C, kulokekahilide-2 and lagunamides A, B and C and 

palau’amide, CDPs composed of both an α- and longer hydroxy acid, are all structurally related and 

belong to what is arbitrarily called the ‘aurilide class’ [30,106,107]. Following the above proposed 

classification system (Figure 11, top), all of these CDPs were also grouped together after 3 splits (class 

code: 521). 

5. CONCLUSIONS 

The presented chemical classification system is a first proposal for a straightforward classification of 

the diverse CDP compounds based on their apparent chemical characteristics. The overall validity of 

the classification approach has been verified and the compounds categorized in the same groups are 

considered to be structurally related, using apparent chemical characteristics. Moreover, it is 

confirmed that traditional CDP subfamilies (e.g. dolastatins and geodiamolides) are named 

arbitrarily, which might be misleading from a chemical point of view. This large overview enables 

peptide and natural product scientists to appreciate the wide diversity in CDP structures and their 

chemical interrelationships and also allows them to identify existing and newly found CDPs. It 

provides a useful tool to gain new insights into this diverse group of peptides. 
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SUPPLEMENTARY INFORMATION  

S1. List of 1348 naturally occurring cyclic depsipeptides. 

S2. Structural examples of cyclic depsipeptides for each of the proposed classes. 
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Table S1-1: List of 1348 naturally occurring cyclic depsipeptides. 

See CD-ROM attached at the end of this thesis. 

 

Table S1-2: References. 

See CD-ROM attached at the end of this thesis. 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes. 

Class code Cyclic depsipeptide Structure 

11111 AM-toxin I 

 

11112 Pullularin A 

 

11113 Piperazimycin A 

 

11114 Clavariopsin A 

 

1112 Exumolide A 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

1121 Destruxin A 

 

1122 Clavatustide A 

 

1123 Guineamide C 

 
The absolute stereochemistry of the Hmpa and Maoya substructures 

remain unassigned. 

112411 Dolastatin 11 

 

112412 Grassypeptolide A 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

11242 Porpoisamide A 

 

121 Enniatin B 

 

1221 Himastatin 

 

122211 Conoideocrellide A 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

122212 Guangomide A 

 

122221 Kulokekahilide-1 

 

122222 Onchidin 

 

21111 Unnarmicin A 

 

21112 Arenamide A 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

21121 Turnagainolide A 

 

21122 Burkholdac A 

 

21123 Cocosamide A 

 

21211 Aeruginopeptin 917S-A 

 

21212 GE3 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

21213 Ramoplanin A1 

 

21214 Scleritodermin A 

 

21215 Theonellapeptolide Id 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

2122111 Homophymine A 

 

2122112 Daptomycin 

 

212212 Papuamide B 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

212221 Discodermin A 

 

212222 Microviridin D 

 

212231 Melleumin A 

 

212232 Bromo-alterochromide A 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

21223311 Circulocin β 

 

21223312 Tumescenamide C 

 

2122332 Myxochromide A1 

 

212234 Xenobactin 

 
The stereochemistry of the Ile β-carbon was not indicated. 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

21224 Coibamide A 

 

221 Serratamolide A 

 

2221 Salinamide A 

 

22221 Echinomycin 

 

22222 Actinomycin D 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

311 Respirantin 

 

312 YM-254890 

 

313 Aplidin 

 

321 Hantupeptin A 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

322 Kulolide-1 

 

323 Pithomycolide 

 

411 Apratoxin A 

 

412 Siomycin A 

 

42111 Rapamycin 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

42112 Acremolide A 

 
The absolute stereochemistry of the fatty acid substructure remains 

unassigned. 

42113 Spongidepsin 

 

42114 Cyclolithistide A 

 
The absolute configuration of Cl-Ile remains unassigned. 

421211 Aetheramide A 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

421212 Geodiamolide A 

 

42122 Lyngbyastatin 2 

 

42211 Jaspamide 

 

42212 Alotamide A 

 
The absolute stereochemistry of the polyketide substructure remains 

unassigned. 

4222 Nagahamide A 
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Table S2: Structural examples of cyclic depsipeptides for each of the proposed classes (continued). 

51 Hoiamide A 

 

521 Lagunamide A 

 

522 Cryptophycin 1 

 

61 Lyngbyabellin A 

 

62 Lipodiscamide A 
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ABSTRACT 

Currently, next to the major classes, cyclic depsipeptides beauvericin and enniatins are also 

positioned as mycotoxins. However, as there are hundreds more fungal cyclic depsipeptides 

already identified, should these not be considered as mycotoxins as well? The current status of the 

mycotoxin definition revealed a lack of consistency, leading to confusion about what compounds 

should be called mycotoxins. Because this is of pivotal importance in risk assessment prioritization, 

a clear and quantitatively expressed mycotoxin definition is proposed, based upon data of widely 

accepted mycotoxins. Finally, this definition is applied to a set of fungal cyclic depsipeptides, 

revealing that some of these should indeed be considered as mycotoxins.  
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CHAPTER III 

THE MYCOTOXIN DEFINITION 

RECONSIDERED TOWARDS FUNGAL 

CYCLIC DEPSIPEPTIDES  

Main focus in this chapter: 

 To introduce a clear, unambiguous and quantitatively expressed ‘mycotoxin’ definition. 

 Apply this definition on a set of fungal cyclic depsipeptides to determine whether these should 

also be classified as mycotoxins. 

 

1. THE MYCOTOXIN DEFINITION: CURRENT STATUS 

The cyclic depsipeptides beauvericin (BEA) and enniatins (ENNs) have recently been positioned as 

mycotoxins, i.e. metabolites that are at least carcinogenic or toxic in experimental systems [1-3]. 

However, as there are hundreds more fungal cyclic depsipeptides already identified, an important 

question arises: should these not be considered as mycotoxins as well? An answer to this question is 

urgently required, due to its impact on the priority status in risk assessment. To determine whether 

or not these should be considered as mycotoxins, these compounds should meet the criteria posed 

by the mycotoxin definition. However, since the term was first introduced in the mid 1950s, when it 

was discovered that aflatoxins, which are secondary metabolites from the fungus Aspergillus, had 

caused the death of more than 100,000 turkeys in the England’s poultry industry [4-6], a lack of 

consistency in the definition and use of the word “mycotoxin” has arisen. Today a huge amount of 

information about mycotoxins is already available, but in scientific literature, the authors do not all 

share the same vision about what should be called a mycotoxin. A re-evaluation of the traditional 

concepts is thus most certainly required. In Table 1, an overview of the different mycotoxin 

definitions found in the literature is presented. 
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Table 1: Overview and current status of applied mycotoxin definitions. 

Reference Definition Status discussion (level of detail) 

FAO [7] Mycotoxins are toxic secondary metabolites of fungi belonging, essentially, to the Aspergillus, Penicillium 
and Fusarium genera. 

 Secondary metabolites of specific fungi 
 Definitely toxic 

Berthiller et al. [8] Mycotoxins are secondary metabolites of fungi toxic to animals and humans and have been reviewed.   Secondary metabolites of fungi 
 Extensively investigated: definitely toxic 

Pitt [9] Mycotoxins are insidious poisons, produced when, and only when, common fungi grow in foods and 
feeds. 

 Metabolites of different fungi 
 Agricultural/food and feed industry 
 Definitely toxic (poison) 

Frisvad [10] Mycotoxins are fungal specific (secondary) metabolites that are toxic to vertebrates when introduced in 
small amounts via a natural route. 

 Secondary metabolites of fungi 
 Exposure via a natural route 
 Definitely toxic: in low amounts 

Bhatnagar et al. [11] Mycotoxins are secondary metabolites produced by filamentous fungi that cause a toxic response 
(mycotoxicosis) when ingested by higher animals. 

 Secondary metabolites of filamentous fungi 
 Agricultural/food and feed industry 
 Definitely toxic when ingested 

Raghavender and Reddy [12] Mycotoxins are toxic secondary metabolites produced by certain fungi or moulds in agricultural products 
that are susceptible to mould infestation. 

 Secondary metabolites of certain fungi/molds 
 Agricultural/food and feed industry 
 Definitely toxic 

EFSA [13] Mycotoxins are toxic compounds produced by different types of fungi, belonging mainly to the 
Aspergillus, Penicillium and Fusarium genera. They commonly enter the food chain through 
contaminated food and feed crops, mainly cereals. 

 Metabolites of different fungi 
 Agricultural/food and feed industry 
 Definitely toxic 

Devreese et al. [14] Mycotoxins are secondary metabolites produced by different fungal species contaminating several food 
and feed commodities. Over 100 mycotoxins have been identified, although only a few of them have 
been thoroughly investigated because of their distinct toxic effects. 

 Secondary metabolites of different fungi 
 Agricultural/food and feed industry 
 No thorough investigation: potentially toxic 

FDA [15] Mycotoxins are natural poisons produced by fungi as secondary metabolites. Foods may become 
contaminated with mycotoxins as a result of mold growth during harvest, or storage. Three genera are 
responsible for the majority of the mycotoxins with which FDA is concerned: the Aspergillus, Penicillium 
and Fusarium sp. 

 Secondary metabolites of fungi 
 Agricultural/food and feed industry 
 Definitely toxic (natural poison) 

Yazar and Omurtag [16] Mycotoxins are secondary metabolites produced by a wide variety of fungal species that cause 
nutritional losses and represent a significant hazard to the food chain. The exposure risk to human is 
either directly through foods of plant origin (cereal grains) or indirectly through foods of animal origin 
(kidney, liver, milk and eggs). 

 Secondary metabolites of different fungi 
 Agricultural/food and feed industry 
 Hazard/risk identification 

Varga et al. [17] Mycotoxins are secondary fungal metabolites, which are found in a broad range of food and feed, such as 
cereals, spices, coffee, nuts or dried fruits. They have the capability of causing acute toxic, carcinogenic, 
mutagenic, teratogenic, immunotoxic or oestrogenic effects in animals and humans and they show a 
huge structural diversity resulting in a variety of chemical and physicochemical properties. 

 Secondary metabolites of fungi 
 Agricultural/food and feed industry 
 Potentially toxic 
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Table 1: Overview and current status of applied mycotoxin definitions (continued). 

Bennet and Klich [18] All mycotoxins are low-molecular-weight natural products produced as secondary metabolites by 
filamentous fungi. These metabolites constitute a toxigenically and chemically heterogeneous 
assemblage that are grouped together only because the members can cause disease and death in human 
beings and other vertebrates. They are toxic to vertebrates and other animal groups in low 
concentrations… Skin contact with mold infested substrates and inhalation of spore-borne toxins are also 
important sources of exposure. 

 Secondary metabolites of filamentous fungi 
 Other routes of exposure: dermal/respiratory 
 Definitely toxic: in low concentrations 

EMAN [19] The term 'mycotoxin' is usually reserved for the toxic chemical products formed by a few fungal species 
that readily colonise crops in the field or after harvest and thus pose a potential threat to human and 
animal health through the ingestion of food products prepared from these commodities. 

 Metabolites of specific fungi 
 Agricultural/food and feed industry 
 Potentially toxic 

Gravesen et al. [20] Mycotoxins are secondary metabolites produced by filamentous fungi that in small concentrations can 
evoke an acute or chronic disease in vertebrate animals when introduced via a natural route. 

 Secondary metabolites of filamentous fungi 
 Exposure via a natural route 
 Potentially toxic in small concentrations 
 Acute or chronic toxicity 

Whitlow and Hagler, [21] Molds also produce poisons called mycotoxins that affect animals when they consume mycotoxin 
contaminated feeds. Mycotoxins are produced by a wide range of different molds and are classified as 
secondary metabolites, meaning that their function is not essential to the mold's existence. 

 Secondary metabolites of molds 
 Metabolites of different fungi 
 Agricultural/food and feed industry 
 Poisons which affect upon consummation 

Jarvis and Miller [22] Mycotoxins are low molecular weight (generally <1 kDa) natural products (secondary metabolites) 
produced by filamentous fungi or molds, restricted to those that pose a potential health risk to animals 
and humans exposed to these natural products, through contamination of our feed and food. 

 Secondary metabolites of filamentous 
fungi/molds 

 Agricultural/food and feed industry 
 Small/low molecular weight compounds 
 Potentially toxic (risk identification) 

Milidevid et al. [23] Mycotoxins are small molecular weight toxic compounds, produced by the secondary metabolism of 
toxigenic moulds in the Aspergillus, Alternaria, Claviceps, Fusarium, Penicillium and Stachybotrys genera 
occurring in food and feed commodities both pre- and post-harvest, causing serious risks for human and 
animal health. 

 Secondary metabolites of toxigenic molds 
 Agricultural/food and feed industry 
 Small/low molecular weight compounds 
 Definitely toxic 
 Risk identification 

Richard [24] Fungal secondary metabolites proven to be toxic when consumed by man and other animals… Its 
occurrence in house dust and other airborne particulates may be of significance in human disease… The 
determination of which of the many known mycotoxins are significant can be based upon their frequency 
of occurrence and/or the severity of the disease that they produce, especially if they are known to be 
carcinogenic. 

 Secondary metabolites of fungi 
 Agricultural/food and feed industry 
 Other routes of exposure: dermal/respiratory 
 Significance based on occurrence and disease 

severity 
 Definitely toxic 

Barret [25] Mycotoxins are secondary metabolites produced by certain molds that infect food crops in the field and 
during storage. Depending on the quantities produced and consumed, mycotoxins can cause acute or 
chronic toxicity in the animals and humans who eat contaminated crops or foods prepared for them. 
Health effects of mycotoxins may include immunological effects, organ-specific toxicity, cancer, and, in 
some cases, death. Agricultural workers are also at risk for dermal and respiratory exposures during crop 
harvest and storage. 

 Secondary metabolites of certain molds 
 Agricultural/food and feed industry 
 Other routes of exposure: dermal/respiratory 
 Potentially toxic: depending on quantities 
 Acute or chronic toxicity 
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Although it is clear that the used definitions differ greatly, by the term ‘mycotoxins’ they all mean 

compounds produced by fungi which are potentially toxic to a certain degree. So all definitions have 

similarities, however, some of them include more details concerning certain aspects, whereas others 

are more detailed about other aspects. 

The vast majority of these definitions are situated within the agricultural and food industry, where it 

is indicated that mycotoxins are found in the food chain through contaminated food and feed, with 

the emphasis on harvest and storage. Whereas most sources focus on mycotoxin ingestion, Barret 

[25] also warns agricultural workers for the risk through dermal and respiratory exposure. Moreover, 

Bennet and Klich [18] and Richard [24] also recognize other routes of exposure besides food/feed 

contamination, i.a. contact with contaminated indoor surfaces and airborne particles which can be 

found e.g. in buildings which harbour high levels of molds. Moreover, some authors explicitly 

mention exposure via a natural route in their definition [10,20]. 

Additionally, Berthiller and co-workers defined a mycotoxin subgroup, termed ‘masked’ mycotoxins, 

as mycotoxin derivatives that are undetectable by conventional analytical techniques because their 

structure has been changed in the contaminated plant/crop [8]. Others have introduced another 

terminology, namely ‘emerging’ mycotoxins, as mycotoxins represent an emerging food safety risk 

[26,27]. According to the European Food and Safety Authority (EFSA) [28], an emerging risk can be 

defined as a risk to human, animal and/or plant health resulting from a newly identified hazard to 

which a significant exposure may occur, or from an unexpected new increased significant exposure 

and/or susceptibility to a known hazard. 

According to Berthiller et al. [8], mycotoxins are “secondary metabolites of fungi toxic to animals and 

humans and have been reviewed”, meaning that they have been extensively investigated. On the 

contrary, Devreese et al. [14] state that over 100 mycotoxins have been identified, although only a 

few of them have been thoroughly investigated, with or without maximum acceptable levels 

regulated by law [29], suggesting a compound can already be identified as a mycotoxin without an 

extensive investigation of its toxic effects. The latter also leans more towards Yazar and Omurtag’s 

[16] idea of a mycotoxin, namely that it represents a significant hazard. Richard [24] on the other 

hand, determines ‘significant’ mycotoxins based upon their frequency of occurrence and/or the 

severity of the disease that they produce. 

Moreover, it is suggested that (tens of) thousands of these potentially toxic fungal metabolites exist 

[30-34] leading to the European Mycotoxin Awareness Network’s (EMAN) question whether further 

important mycotoxins remain to be discovered [19]. 

However, according to Miller and McMullin, on many occasions it seems that nearly any fungal 

secondary metabolite is casually, but incorrectly referred to as a mycotoxin [35]. It has indeed been 

recognized that mycotoxins are hard to define and classify [18], and as a result there is a lack of 
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consistency and disagreement in scientific literature about what compounds should or should not be 

called mycotoxins. Overall, the confusion concerning the ‘mycotoxin claim’ is understandable and a 

few major shortcomings cannot be overlooked. It is obvious that there is definite disagreement 

about the mycotoxin definition, e.g. should mycotoxin identification and classification be viewed 

from a hazard or risk point of view? Furthermore, do we consider a precautionary approach or adapt 

a rather wait-and-see policy? What is considered to be toxic, i.e. how should this toxicity be tested 

and what quantitative specification thresholds should be applied? Should structurally related 

compounds automatically be considered as mycotoxins, although they are not produced by the 

commonly referred fungi, such as Aspergillus, Penicillium and Fusarium, or although their toxicity has 

not yet been (fully) evaluated/elucidated, i.e. to what extent do we allow false negatives and 

positives? 

Therefore, by means of a literature review, we propose here a clear, unambiguous and quantitatively 

expressed definition, based upon data of some already well-known and widely accepted mycotoxins, 

allowing more awareness of the now underestimated potential hazard of some of these metabolites. 

Moreover, we apply our definition to a set of fungal cyclic depsipeptides to determine whether or 

not these metabolites should be classified as mycotoxins. 

2. PHILOSOPHICAL APPROACH TO A ‘DEFINITION’ 

A definition is supposed “to give the essence of a thing”. This way a definition can be divided into (i) a 

definition which gives the ‘real essence’ (e.g. defining water in terms of H2O) and (ii) a definition 

which gives the ‘nominal essence’ of something (e.g. defining water in terms of a transparent, 

odourless, potable liquid) [36,37]. 

As a starting point, the current mycotoxin concept and how it has been used thus far was evaluated. 

In that sense, the focus is on the nominal essence of a mycotoxin, i.e. all currently applied definitions 

are considered prototypical. This approach, however, automatically involves the rather undesirable 

and confusing result that different definitions will be given to the same word or concept [38], which 

is the case for mycotoxins. This indicates that currently mycotoxin definitions are likely made up by 

abstracting information from prototypical cases of mycotoxins of a certain, typical kind (e.g. 

aflatoxins). 

Aiming to bring the mycotoxin definition closer to its real essence, an explicative approach was 

applied [39], as illustrated in Figure 1.  
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Figure 1: The concept of ‘explication’. 

This is in accordance with the classical theory of concepts, which supposes that the meaning of a 

concept can be captured in a definitional structure. The definitional structure consists of simpler 

concepts, which express the necessary and sufficient conditions for the accurate use of the concept. 

For example, the necessary and sufficient conditions for something to be a “rectangle” are that (i) “it 

concerns a geometrical form”, (ii) “it has two pairs of parallel lines” and (iii) “it has four right angles”: 

something falls under the concept “rectangle” if and only if it is a “geometrical form with four right 

angles and it has two pairs of parallel lines”. Hence, “geometrical form”, “two pairs of parallel lines” 

and “four right angles” are the constituents of the concept “rectangle” [40]. In the case of the 

scientific concept of a mycotoxin, determining the necessary and sufficient conditions is required. 

3. PROPOSED MYCOTOXIN DEFINITION 

Something is a mycotoxin if and only if it is a secondary metabolite produced by microfungi, 

posing a health hazard to human and vertebrate animal species by exerting a toxic activity on 

human or vertebrate animal cells in vitro with 50% effectiveness levels < 1000 μM. 

 

3.1. Secondary microfungal metabolites 

It is generally accepted that mycotoxins are indeed secondary fungal metabolites [7,8,11,12,14-

18,21,23-25]. The term ‘mycotoxin’ refers only to metabolites produced by microfungi and by 

convention thus excluding mushroom and yeast toxins. However, opinions remain unclear and 

divided about the type of microfungi and its occurrence, responsible for the production of 

mycotoxins. International organizations, i.e. EFSA [28], FAO [7] and FDA [15], as well as scientific 

researchers [9,23], explicitly state that it especially involves common fungi such as Aspergillus, 

Penicillium and Fusarium. However, these definitions are all agricultural/food oriented, focusing only 

on fungi that contaminate feed and food, thereby completely neglecting other possible sources of 
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mycotoxin production. Therefore, this angle towards a proper and unambiguous mycotoxin 

definition seems insufficient, as traditional mycotoxins are also found in air particles or on walls of 

badly maintained, unventilated, humid houses [18,25]. Furthermore, marine derived fungi are not 

mentioned once, although these can also produce toxic secondary metabolites, some of which are 

structurally very similar to known mycotoxins such as beauvericin and enniatins, e.g. zygosporamide 

[36,37], causing thus a potential hazard not only to marine ecology, but also to humans through the 

fishing industry [38].  

Thus, restricting the mycotoxin definition to common agricultural fungal origin is inadequate, 

because it underestimates the impact on the public health. Therefore, we suggest to only include the 

term ‘microfungal secondary metabolites’ as such into the definition, without further confining the 

fungal origin. 

3.2. Hazard 

The International Programme on Chemical Safety (IPCS) has harmonised the context of hazard and 

risk assessments. Some authors consider introduction via a natural route an important factor in the 

determination of mycotoxins [20] and therefore attach little importance to cytotoxicity tests or 

studies evaluating toxicity based on intraperitoneal injection [39]. However, based on the 

information available, the whole mycotoxin definition discussion should, in our opinion, be best 

placed within the context of hazard assessment, an important and first part of risk assessment, since 

the intrinsic toxicity of a compound cannot be altered, meaning that it will always remain a hazard, 

because it possesses the potential to cause an adverse/toxic effect. Risk, on the other hand, through 

the process of exposure assessment to the hazard concerned, can be reduced by preventive actions 

and is very hard to unambiguously determine. Moreover, especially early on, the routes of exposure 

are usually not clarified. Therefore, while awaiting more toxicity exposure data concerning hazardous 

compounds, which can take up to several years, a precautionary approach is preferred above a long 

during risk policy. In this respect, cytotoxicity studies performed on human or vertebrate animal cells 

are a cost-effective and animal-friendly way to determine potential toxicity already at an early stage 

in the hazard assessment. The mycotoxins identified by this approach could first carefully be called 

‘pseudomycotoxins’, while awaiting formal mycotoxin nomination, which involves exposure and risk 

assessment.  

Also to be included in this discussion is the ‘low molecular weight’ condition for defining a mycotoxin 

as proposed by Bennet and Klich [18], which is essentially directed towards exposure/risk and not a 

hazard, since high molecular weight compounds are considered not to be bioavailable due to 

unfavorable pharmacokinetic properties, i.a. not absorbed through cell membranes. In fact, it is 

generally accepted that small or low molecular weight molecules have a molecular weight (MW) cut-
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off of 600 – 700 Da [40,41]. This limit, however, based upon the Lipinski’s rule of five, is an artificial 

limit associated with the observation that the attrition rates of oral drug compounds in the clinical 

development are significantly reduced if the MW is kept below this 500 Da limit. Molecules with a 

MW below this cut-off are believed to rapidly diffuse across cell membranes so that they can reach 

intracellular sites of action, the molecular size thus reflects bioavailability, i.e. exposure and risk [42-

44]. Recently, it has been shown by our group that also larger cyclic depsipeptide mycotoxins such as 

beauvericin and enniatins, with MW’s up to 783.96 Da, are capable of crossing the human skin 

barrier and reaching the viable epidermis and dermis [45]. Furthermore, a recent in vivo study in pigs 

demonstrated a high oral bioavailability (91%) for enniatin B1 [3], confirming also an earlier in vitro 

study, which assessed the biovailability of ENNs with Caco-2 cells to be 55-66% [46]. Moreover, the 

mycotoxin bassianolide, which has been shown to be cytotoxic to human cell lines in the low µM 

range, has a MW of 909.36 Da and thus already exceeds this low molecular weight cut-off [47,48]. 

Also, toxic metabolites of high MW compounds, such as glycopeptides, may not be overlooked, as 

these can also pose an important health hazard. Therefore, a quantitative molecular weight 

restriction should not be included in the mycotoxin definition. 

To further illustrate this, we would like to refer to the fumonisin paradox. Fumonisin B1 was 

confirmed to cause i.a. carcinoma, cirrhosis and nephrosis, but was shown to have a very poor oral 

bioavailability. These conflicting results are called the fumonisin paradox: “How can the toxin cause 

agriculturally significant diseases and possibly human cancer if it is not effectively absorbed after oral 

administration?” Shier explained that a higher bioavailability at lower doses, bioaccumulation and/or 

effective uptake of derivatives that are readily converted back in the body are plausible explanations. 

Also other important routes of exposure (e.g. dermal or respiratory) should be considered. As a 

consequence, the complete impact of a compound’s threat will thus not be identified until all 

elements affecting oral bioavailability are understood [49]. 

3.3. Toxicity 

Following the hazard approach, one could argue “dosis sola facit venenum”, meaning everything can 

be considered toxic as long as the dose is high enough: the amount of a substance is what makes it 

harmful, not the substance itself (Paracelsus, 16th century). Therefore, a quantitative toxicity limit is 

required as a condition for defining compounds as mycotoxins. 

In a first approach, the most objective/standardised, economic and ethically acceptable way for 

measuring a compound’s toxicity is screening its in vitro cytotoxic capacity on various cell lines, 

preferably of human origin. In vitro tests in general have proven their value, i.a. in order to reduce 

animal/human toxicological studies and/or full-scale trials. Moreover, in vitro-in vivo correlation 

mathematical models, which describe the relationship between an in vitro property and an in vivo 
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response, are widely acknowledged. A direct cytotoxic effect is quantitatively expressed as IC50, the 

concentration required for 50% inhibition of cell viability, a value generally agreed upon. The cell 

lines and concentration ranges used, together with the demonstrated IC50 of some already accepted 

mycotoxins are given in Supplementary Information S1. As we want to propose a quantitatively 

expressed definition, a toxicity IC50 threshold as a condition for claiming compounds as mycotoxins 

was set: IC50 < 1000 μM. This value can be justified by the data from Supplementary Information S1, 

which show that of all studies the maximum IC50 values quantitatively reported for well-established 

mycotoxins are within the 100-1000 µM class and by the fact that other low-molecular molecules 

toxic to humans, like ethanol, are not considered mycotoxins because these are only toxic in high 

concentrations [50]. Moreover, it is also important to note that multiple mycotoxins, such as ENNs, T-

2, deoxynivalenol (DON), nivalenol (NIV), BEA and fusarenon X (FUS-X), can influence each other’s 

toxicity, showing synergistic, additive and antagonistic effects [27,51-53], considering the well-

documented co-occurrence of mycotoxins in real-life [54]. As the majority of the IC50 values are 

located between 1 and 100 µM, the chosen upper limit of 1000 µM can therefore also be considered 

as a ‘worst case safety margin’ for toxicity.  

Moreover, it is recognised that toxic effects are not only concentration- but also time-dependent; 

therefore, both acute and chronic effects are of interest and are understood to be included in the 

mycotoxin definition. Furthermore, besides such direct cytotoxic effects, compounds can also exert 

indirect toxicity due to the formation of metabolites. It should thus be mentioned that a 

demonstrated in vitro toxicity does not per se implicate an in vivo effect and vice versa, e.g. N-acyl 

metabolites are more cytotoxic than the parent fumonisin B1 [55]. Therefore, we strongly encourage 

the inclusion of metabolites (from liver extracts, for example) and modified mycotoxins in these in 

vitro cell tests, to lower the probability of false negatives. And what about newly discovered 

compounds, of which the toxicity has not yet been thoroughly investigated? Since a lack of toxicity 

data does not mean that the compound itself is not toxic or has no toxic potential, within the context 

of risk assessment prioritization and precautionary approach, we suggest terming these compounds 

appropriately ‘potential mycotoxins’, defined as: secondary metabolites produced by microfungi, 

posing a health hazard to human and animal species, but for which the toxic activity is not yet 

investigated, i.e. no IC50 values are available. It goes without saying that these compounds should be 

further investigated with a prioritization according to their exposure level to humans.  

Lastly, it should also be mentioned that endocrine disrupting properties, which could occur at lower 

non-cytotoxic doses, might also suggest an important potential hazard and such effects have already 

been reported for the mycotoxins DON, ENN B, T-2 and HT-2 toxins [56,57]. Screening potential 

mycotoxins for their endocrine disrupting properties in cell based assays (e.g. using U2OS and H295R 

cells) should therefore also be considered during hazard assessment. 
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4. APPLICATION OF DEFINITION ON FUNGAL CYCLIC DEPSIPEPTIDES 

Lastly, we have applied our definition to a set of fungal cyclic depsipeptides, in order to determine 

whether or not these should also be considered as (potential) mycotoxins. 

4.1. Data handling 

Structural and functional information, as well as the origin of the producing species of nearly 800 

naturally occurring cyclic depsipeptides were gathered, of which 194 individual compounds were 

found to be produced by fungi. Since these compounds have currently not yet been properly 

classified, although this information can be of great biological importance, i.a. understanding their 

structure-property relationships, these fungal cyclic depsipeptides were also subjected to a clustering 

analysis based upon their chemical properties. Considering that the majority of the compounds have 

already been categorised in small existing groups (e.g. enniatin A, B, A1, E, etc. all belong to the 

‘enniatins group’), only a limited number of model compounds was selected, representative for the 

whole fungal CDP population. Therefore, sampling was done in a randomised way: first, all cyclic 

depsipeptides were stratified according to their already known existing groups, from which then 

randomly at least one representative cyclic depsipeptide compound per group was included. 

However, not every structure reported in literature has a completely clarified stereochemistry, which 

is of huge importance for many 3D descriptors, so wherever possible, another member of a group 

was taken. This strategy ultimately led to 32 CDPs retained for further analysis. Consequently, more 

than 3000 molecular descriptors were calculated, using Dragon 5.5 (Talete, Milan, Italy), HyperChem 

8.0 (Hypercube, Gainesville, FL, USA) and MarvinSketch 5.10.3 (ChemAxon, Budapest, Hungary), for 

which the MM+ in vacuo structure was optimized, using HyperChem 8.0. The non-discriminating 

descriptors were eliminated, resulting in a 32x1363 data-matrix. All descriptors were transformed by 

z-scaling, ensuring an equal contribution of each descriptor to the resulting model [58]. Multivariate 

data-analysis was performed using both principal component analysis (PCA) and hierarchical cluster 

analysis (HCA) with SIMCA-P+12.0.1.0 (Umetrics AB, Umea, Sweden) and SPSS Statistics 22.0.0 (IBM 

Corp., Armonk, NY, USA) software programs, respectively. Average-linkage HCA clustering was 

performed using the Euclidean distance as the dissimilarity criterion. PCA resulted in an explained 

variance of PC1 = 0.51 and PC2 = 0.16 (cumulative R² of 0.67). 

4.2. Chemical clustering classification 

Based on the score plot of the first two principal components of the PCA, the 32 cyclic depsipeptides 

could be categorized into four main clusters with six subclusters, which is confirmed by the 

dendrogram of the HCA (Figure 2). The corresponding loading plot of the PCA allowed for further 

interpretation of these groups, by means of the most discriminating molecular descriptors displayed 
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on both principal components. From this, it was deduced that components situated towards the right 

side of the space are larger, have larger ring sizes, have higher molecular weights and are folded and 

less flexible, i.e. have less conformational variability, compared to the compounds on the left. Cyclic 

depsipeptides located in the lower part of the space are less symmetrical than compounds located in 

the upper part. Other discriminating descriptors at the second axis are the number of terminal 

primary and tertiary carbons, which may indicate that CDPs located at the upper right part of the 

space most likely contain more valine, leucine, isoleucine amino acids and/or long branched alkyl 

chain(s). Moreover, a number of molecular descriptors indicate a higher presence of 

aromatic/benzene-like rings in CDPs at the lower side of the y-axis. More detailed information can be 

found in Supplementary Information S2. 

 

Figure 2: Clustering of 32 fungal cyclic depsipeptides. The four main clusters (blue, orange, pink and green 

clusters) and six subclusters (purple, yellow, black, red and grey clusters) are indicated by a bold coloured line. 

Number identifications can be found in Table 2. 

4.3. Mycotoxin claim 

For these compounds, classified according to the clustering analysis, (i) available toxicity data, (ii) 

their fungal origin and (iii) mycotoxin claim from literature, as well as (iv) their mycotoxin claim 

resulting from our definition, are all gathered in Table 2. 
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Beside beauvericin and enniatins, only three of these (groups of) compounds have been previously 

called mycotoxins in scientific literature: bassianolide [48], beauverolides [59] and destruxins [60]. In 

vitro cytotoxicity of these compounds has indeed been studied and was found significant (< 100 µM). 

Therefore, based upon our proposed definition, these compounds should indeed be defined as 

mycotoxins. However, according to our definition, seven other fungal metabolites should also be 

considered as mycotoxins, namely 1962A, emericellamides, guangomides, PF1022A, sansalvamides, 

scopularamides and zygosporamide, of which sansalvamides and zygosporamide currently seem the 

most investigated and also the most toxic, based on the available data. So, for these identified 

hazards, further investigations, i.a. exposure and risk assessment, are strongly recommended. For 

the other cyclic depsipeptides mentioned in Table 2 no quantitative toxicity data are currently 

available and hence at this point, these peptides are considered as ‘potential mycotoxins’ for which 

further toxicity testing is required. In Figure 3, the identified mycotoxins are indicated in de clustering 

dendrogram (HCA) and score plot (PCA). 

 

Figure 3: Clustering of 32 fungal cyclic depsipeptides. The identified mycotoxins are indicated by purple dots. 
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Table 2: Fungal cyclic depsipeptides as mycotoxin test group. 

No° Cyclic depsipeptide Fungal origin Available toxicity data References 
Mycotoxin claim 

Lit.
(1)

 Definition 

Group 1: small cyclic depsipeptides 

3 Angolide Pithomyces sp. n.a. Russell and Ward [61] no Potential mycotoxin 

Group 2: medium cyclic depsipeptides 

12 → 17
(3)

 Enniatins
(2)

 Alternaria sp. 
Fusarium sp. 
Halosarpheia sp. 
Verticillium sp. 

IC50 = 1.6 – 6.8 μM (Caco-2 cells) 
IC50 = 13 – 14.8 μM (Caco-2 cells) 
IC50 = 11.7 μM (Caco-2 cells) 
IC50 = 2.8 – 11.3 μM (Caco-2 cells) 
IC50 = 15.80 μM (IPEC-1 cells) 

Herrmann et al. [62] 
Ivanova et al. [63] 
Kolf-Clauw et al. [27] 
Prosperini et al. [53] 

yes Mycotoxins 

9 Conoideocrellide A Scale insect pathogenic fungus 
Conoideocrella tenuis (BCC 18627) 

n.a. Isaka et al. [64] no Potential mycotoxin 

20 Gliotide Marine alga-derived fungus 
Gliocladium sp. 

n.a. Lang et al. [65] no Potential mycotoxin 

6 Beauvericin
(2)

 Beauveria sp. 
Paecilomyces fumosoroseus 
Fusarium sp. 

IC50 = 12.08 – 17.22 μM (CHO-K1 cells) 
IC50 = 6.25 – 11.08 μM (Vero cells) 
IC50 = 12.75 – 20.62 μM (Caco-2 cells) 
IC50 = 9.75 – 15.00 μM (HT-29 cells) 

Ferrer et al. [66] 
Fukuda et al. [67] 
Prosperini et al. [68] 
Ruiz et al. [51] 
Sifou et al. [69] 
Song et al. [70] 
Wang et al. [71] 

yes Mycotoxin 

19 Exumolides Marine-derived Scytalidium sp. Demonstrated antimicroalgal activity Jenkins et al. [72] no Potential mycotoxins 

1 1962A Mangrove endophytic fungus  
(no. 1962) 

IC50 = 165.64 μM (MCF-7 cells) Huang et al. [73] no Mycotoxin 

2 Alternaramide Marine-derived Alternaria sp.  
(SF-5016) 

n.a. Kim et al. [74] no Potential mycotoxin 

(1) Has literature ever referred (in any way) to this compound as being a mycotoxin? 
(2) Already accepted mycotoxins, see also Supplementary Information S1. 
(3) No° 12, 13, 14, 15, 16, 17 = enniatin A, A1, B, B1, C, D. 
n.a. = not available 
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Table 2: Fungal cyclic depsipeptides as mycotoxin test group (continued). 

7 Beauverolides Beauveria bassiana 
Paecilomyces fumosoroseus 

IC50 = 76.20 μM (CEM-DNR cells) 
IC50 = 32.16 μM (K562 cells) 
IC50 = 53.63 μM (K562-Tax cells) 
IC50 = 15.64 μM (B2.4 cells) 
IC50 = 22.77 μM (A549 cells) 
IC50 = 60.31 μM (HT-29 cells) 
IC50 = 52.41 μM (MCF-7 cells) 
IC50 = 82.63 μM (PC-3 cells) 
IC50 = 100.00 μM (U87MG cells) 
IC50 = 45.63 μM (lymphocytes) 

Jegorov et al. [75] 
Kuzma et al. [76] 
Onstad et al. [59] 
 

yes Mycotoxins 

10 Destruxins
(4)

 Imperfect fungus (D1084) 
Marine-derived fungus Beauveria f. 
Metarhizium anisopliae 
Nigrosabulum globosum 
Trichothecium roseum 
 

IC50 = 0.05 – >10 μM (KB-3-1 cells) 
IC50 = 0.05 – >10 μM (Caco-2 cells) 
IC50 = 0.04 – >10 μM (HCT116 cells) 
IC50 = 0.22 – >10 μM (A549 cells) 

Boot et al. [77] 
Che et al [78] 
Dornetshuber-Fleiss et al. [79] 
Dumas et al. [60] 
Engstrom et al. [80] 
Kawazu et al. [81] 
Lira et al. [82] 
Springer et al. [83] 
Sree et al. [84] 

yes Mycotoxins 

11 Emericellamides Aspergillus nidulans 
Marine-derived Emericella sp. 

IC50 = 23 μM (HCT116 cells) Chiang et al. [85] 
Ghosh and Pradhan [86] 
Oh et al. [87] 

no Mycotoxins 

21 → 22 Guangomides
(5)

 Terrestrial filamentous fungus, 
Trichothecium sp. 
Unidentified marine-derived fungus 

IC50 = ± 15 μM (MCF-7 cells) 
IC50 = ± 15 μM (H460 cells) 
IC50 = ± 15 μM (SF268 cells) 

Amagata et al. [88] 
Sy-Cordero et al. [89] 

no Mycotoxins 

23 Hirsutatins Insect pathogenic fungus Hirsutella 
nivea ( BCC 2594) 

Noncytotoxic at 73.9 μM (Vero cells) Isaka et al. [90] no Potential mycotoxins 

24 Hirsutellides Entomopathogenic fungus 
Hirsutella kobayasii (BCC 1660) 

Noncytotoxic at 75.2 μM (Vero cells) Vongvanich et al. [91] no Potential mycotoxins 

25 Leualacin Hapsidospora irregularis 
(SANK17182) 

Demonstrated calcium blocker Hamano et al. [92] no Potential mycotoxin 

26 Petrosifungins Marine-derived Penicillium 
brevicompactum 

n.a. Bringmann et al. [93] no Potential mycotoxins 

28 Pithomycolide Pithomyces chartarum, n.a. Moussa and Le Quesne [94] no Potential mycotoxin 

(4) And its analogues (i.a. bursaphelocides, pseudodestruxins, roseotoxin, roseocardin). 
(5) No° 21, 22 = guangomide A, B. 
n.a. = not available 
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Table 2: Fungal cyclic depsipeptides as mycotoxin test group (continued). 

29 Sansalvamides Marine Fusarium sp. IC50 = 5.96 μM (Colo 205 cells) 
IC50 = 10.06 μM (SK-MEL-2 cells) 
IC50 = 46.70 μM (mean of 60 cancer cell 
lines)  
Demonstrated inhibition of a poxvirus 
topoisomerase (IC50 for inhibition of DNA 
binding = ± 80 μM) 
IC50 = 3.6 – 8.3 μM ( mean NCI human 
tumor cell line screen) 

Belofsky et al. [95] 
Cueto et al. [96] 
Hwang et al. [97] 

no Mycotoxins 

30 Trichodepsipetides Trichothecium sp. IC50 = >10 μM (noncytotoxic) (various cell 
lines) 

Sy-Cordero et al. [89] no Potential mycotoxins 

32 Zygosporamide Marine-derived fungus 
Zygosporium masonii 

IC50 = 0.0065 – 4.6 μM (SF268 cells) 
IC50 = 4.25 – 15 μM (SF295 cells) 
IC50 = 2.5– 7.4 μM (A549 cells) 
IC50 = 537 – 8.5 μM (MDA-MB-231) 
IC50 = < 5.0 nM (RXF 393 cells) 

Oh et al. [36] 
Wang et al. [37] 

no Mycotoxin 

Group 3: medium to large cyclic depsipeptides 

5 Bassianolide Beauveria bassiana 
Verticillium lecanii 
Wood-decaying fungus Xylaria sp. 

IC50 = 4.00 μM (KB cells) 
IC50 = 2.74 μM (BC-1 cells) 
IC50 = 1.21 μM (NCI-H187 cells) 
IC50 = 5.28 μM (Vero cells) 

Jirakkakul et al. [47] 
Suzuki et al. [98] 
Yun et al. [99] 

yes Mycotoxin 

27 PF1022A Imperfect fungus Mycelia sterilia 
(Rosellinia sp.) 

IC50 = 4.6 – 9.6 μM (HCT116 cells) 
IC50 = 4.3 – 7.5 μM (A549 cells) 

Dornetshuber et al. [100] 
Sasaki et al. [101] 

no Mycotoxin 

31 W493s Fusarium sp. Demonstrated antifungal activity Nihei et al. [102] no Potential mycotoxins 

Group 4: large cyclic depsipeptides 

4 Aureobasidins Marine-derived Aureobasidin sp. Demonstrated antibiotic effects Abdel-Lateff et al. [103] 
Detwiller and Lubell [104] 
Sonda et al. [105] 
Tan and Tay [106] 
Tanaka et al. [107] 

no Potential mycotoxins 

8 Clavariopsins Clavariopsis aquatica Demonstrated antifungal activity Kaida et al. [108] no Potential mycotoxins 

18 Eujavanicins Eupenicillium javanicum Demonstrated antifungal activity Nakadate et al. [109] no Potential mycotoxins 
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Table 2: Fungal cyclic depsipeptides as mycotoxin test group (continued). 

Cyclic depsipeptides with no assigned group
(6)

 

- Acremolides Marine-derived Acremonium sp. “Noncytotoxic” Ratnayake et al. [110] no Potential mycotoxins 

- Brevigellin Penicillium brevicompactum n.a. McCorkindale and Baxter [111] no Potential mycotoxin 

- Glomosporin Glomospora sp. (BAUA 2825) Demonstrated antifungal activity Sato et al. [112] no Potential mycotoxin 

- Isarfelin Isaria felina Demonstrated antifungal and insecticidal 
activity 

Guo et al. [113] no Potential mycotoxin 

- Isaridins 
Entomopathogenic fungus 
Beauveria felina 
Isaria sp. 

Demonstrated insecticidal activity 
Langenfeld et al. [114] 
Ravindra et al. [115] 

no Potential mycotoxins 

- Isariins Entomopathogenic fungus 
Beauveria feline 
Isaria sp. 

Demonstrated insecticidal activity Langenfeld et al. [114] 
Sabareesh et al. [116] 

no Potential mycotoxins 

- Scopularides Marine-derived Scopulariopsis 
brevicaulis 

IC50 = <15.51 μM (Colo357, Panc89, HT29 
cells) 

Yu et al. [117] no Mycotoxins 

- Sporidesmolides Pasture fungus Sporidesmium 
bakeri 
Pithomyces chartarum 

n.a.  Gillis et al. [118] 
Russell, 1960 [119] 
Russell, 1962 [120] 

no Potential mycotoxins 

- Stevastelins Penicillium sp. Demonstrated immunosuppressive effects Morino et al. [121] no Potential mycotoxins 

(6) These compounds’ structures have not yet been fully elucidated. Therefore these were excluded from the clustering analysis.  
n.a. = not available 
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5. CONCLUSIONS 

Evaluation of the current status of the mycotoxin definition revealed a lack of consistency, 

confounding approaches and definite disagreement. We propose here a clear, unambiguous and 

quantitatively expressed mycotoxin definition, by means of explication and based upon hazard data 

of some already well-known and widely accepted “traditional” mycotoxins. This definition was then 

applied to a set of fungal cyclic depsipeptides, concluding that some of these compounds should also 

be considered as mycotoxins, for which exposure and risk assessment investigations are to be 

considered. 

  



CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

122 

6. REFERENCES  

[1] Desjardins AE, Proctor RH. Molecular biology of Fusarium mycotoxins. International Journal 

of Food Microbiology 2007; 119: 47-50. 

[2] Jestoi M, Rokka M, Yli-Mattila T, Parikka P, Rizzo A, Peltonen K. Presence and concentrations 

of the Fusarium-related mycotoxins beauvericin, enniatins and moniliformin in Finnish grain 

samples. Food Additives and Contaminants Part A – Chemistry Analysis Control Exposure and 

Risk Assessment 2004; 21: 794-802.  

[3] Devreese M, Broekaert N, De Mil T, Fraeyman S, De Backer P, Croubels S. Pilot toxicokinetic 

study and absolute oral bioavailability of the Fusarium mycotoxin enniatin B1 in pigs. Food 

and Chemical Toxicology 2014; 63: 161-165. 

[4] Blount WP. Turkey “X” disease. Turkeys 1961; 9: 52-61. 

[5] Forgacs J, Carll WT. Preliminary mycotoxic studies on hemorrhagic disease in poultry. 

Veterinary Medicine 1955, 50: 172-177. 

[6] Thomas NJ, Hunter DB, Atkinson CT. Infectious diseases of wild birds. Wiley-Blackwell, 

Hoboken, New Jersey, 2007, pp. 484. 

[7] FAO (Food and Agriculture Organization of the United Nations), 2015, Food safety and 

quality: mycotoxins; http://www.fao.org/food/food-safety-quality/a-z-

index/mycotoxins/en/. 

[8] Berthiller F, Crews C, Dall’Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, 

Speijers G, Stroka J. Masked mycotoxins: a review. Molecular Nutrition and Food Research 

2013; 57: 165-186. 

[9] Njapau H, Trujillo S, van Egmond HP, Park DL. Mycotoxins and phycotoxins – advances in 

determination, toxicology and exposure management. Wageningen Academic Publishers, 

Wageningen, 2006 pp. 356. 

[10] De Saeger S. Determining mycotoxins and mycotoxigenic fungi in food and feed. Woodhead 

Publishing, Sawston, 2011; pp. 456. 

[11] Barug D, van Egmond H, López-García R, van Osenbruggen R, Visconti A. Meeting the 

mycotoxin menace. Wageningen Academic Publishers, Wageningen, 2004, pp. 320. 

[12] Raghavender CR, Reddy BN. Human and animal disease outbreaks in India due to mycotoxins 

other than aflatoxins. World Mycotoxin Journal 2009; 2: 23-30. 

[13] EFSA (European Food Safety Authority), 2015, Mycotoxins; 

http://www.efsa.europa.eu/en/topics/topic/mycotoxins.htm. 

[14] Devreese M, De Baere S, De Backer P, Croubels S. Quantitative determination of the 

Fusarium mycotoxins beauvericin, enniatin A, A1, B and B1 in pig plasma using high 

performance liquid chromatography–tandem mass spectrometry. Talanta 2013; 106: 212-

219. 

[15] FDA (US Food and Drug Administration) Office of Regulatory Affairs, Office of Regulatory 

Science, 2015, ORA Laboratory Manual, Section 7: Mycotoxin analysis; 

http://www.fao.org/food/food-safety-quality/a-z-index/mycotoxins/en/
http://www.fao.org/food/food-safety-quality/a-z-index/mycotoxins/en/
http://www.efsa.europa.eu/en/topics/topic/mycotoxins.htm


  CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

123 

http://www.fda.gov/downloads/scienceresearch/fieldscience/laboratorymanual/ucm092245

.pdf. 

[16] Yazar S, Omurtag GZ. Fumonisins, trichothecenes and zearalenone in cereals. International 

Journal of Molecular Sciences 2008; 9: 2062-2090. 

[17] Varga E, Glauner T, Berthiller F, Krska R, Schuhmacher R, Sulyok M. Development and 

validation of a (semi-) quantitative UHPLC-MS/MS method for the determination of 191 

mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. 

Analytical and Bioanalytical Chemistry 2013; 405: 5087-5104. 

[18] Bennett JW, Klich M. Mycotoxins. Clinical Microbiology Reviews 2003; 16: 497-516. 

[19] EMAN (European Mycotoxins Awareness Network), 2015; 

http://www.mycotoxins.org/node/36. 

[20] Gravesen S, Frisvad JC, Samson RA. Microfungi. Munksgaard, Copenhagen, 1994, pp. 192. 

[21] Whitlow LW, Hagler WM, 2015, Mycotoxins in dairy cattle: occurrence, toxicity, prevention 

and treatment; https://www.msu.edu/~mdr/mycotoxins.pdf. 

[22] Jarvis BB, Miller JD. Mycotoxins as harmful indoor air contaminants. Applied Microbiology 

and Biotechnology 2005; 66: 367-372. 

[23] Milicevic DR, Skrinjar M, Baltic T. Real and perceived risks for mycotoxin contamination in 

foods and feeds: Challenges for food safety control. Toxins 2010; 2: 572-592. 

[24] Richard JL. Some major mycotoxins and their mycotoxicoses - An overview. International 

Journal of Food Microbiology 2007; 119: 3-10. 

[25] Barrett JR. Mycotoxins: of molds and maladies. Environmental Health Perspectives 2000, 108: 

A20-A23. 

[26] Jestoi M. Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and 

moniliformin – a review. Critical Reviews in Food Science and Nutrition 2008; 48: 21-49. 

[27] Kolf-Clauw M, Sassahara M, Lucioli J, Rubira-Gerez J, Alassane-Kpembi I, Lyazhri F, Borin C, 

Oswald IP. The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal 

toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. 

Archives of Toxicology 2013; 87: 2233-2241. 

[28] EFSA (European Food Safety Authority), 2007, Definition and description of “emerging risks” 

within the EFSA’s mandate, EFSA/SC/415 Final, Parma; 

http://www.efsa.europa.eu/en/scdocs/doc/escoemriskdefinition.pdf. 

[29] Capriotti AL, Caruso G, Cavaliere C, Foglia P, Samperi R, Lagana A. Multiclass mycotoxin 

analysis in food, environmental and biological matrices, with chromatography/mass 

spectrometry. Mass Spectrometry Reviews 2012; 31: 466-503. 

[30] Laatsch H. AntiBase 2005, A Natural products database for rapid structure determination. 

Chemical Concepts, Weinheim, 2005. 

[31] Berthiller F, Sulyok M, Krska R, Schuhmacher R. Chromatographic methods for the 

simultaneous determination of mycotoxins and their conjugates in cereals. Int J Food 

Microbiol 2007; 119(1-2): 33-37. 

http://www.fda.gov/downloads/scienceresearch/fieldscience/laboratorymanual/ucm092245.pdf
http://www.fda.gov/downloads/scienceresearch/fieldscience/laboratorymanual/ucm092245.pdf
http://www.mycotoxins.org/node/36
https://www.msu.edu/~mdr/mycotoxins.pdf
http://www.efsa.europa.eu/en/scdocs/doc/escoemriskdefinition.pdf


CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

124 

[32] CAST (Council for Agricultural Science and Technology). Mycotoxins, risks in plant, animal and 

human systems. Ames, 2003, pp. 217. 

[33] Kuzdralinski A, Solarska E, Mazurkiewicz J. Mycotoxin content of organic and conventional 

oats from southeastern Poland. Food Control 2013, 33: 68-72. 

[34] Jarvis BB. Analysis for mycotoxins: the chemist's perspective. Arch Environ Health 2003; 

58(8): 479-483. 

[35] Miller JD, McMullin DR. Fungal secondary metabolites as harmful indoor air contaminants: 10 

years on. Appl Microbiol Biotechnol 2014; 98(24): 9953-9966. 

[36] Oh DC, Jensen PR, Fenical W. Zygosporamide, a cytotoxic cyclic depsipeptide from the 

marine-derived fungus Zygosporium masonii. Tetrahedron Letters 2006; 47: 8625-8628. 

[37] Wang Y, Zhang F, Zhang Y, Liu JO, Ma D. Synthesis and antitumor activity of 

cyclodepsipeptide zygosporamide and its analogues. Bioorganic and Medicinal Chemistry 

Letters 2008; 18: 4385-4387. 

[38] Geiger M, Guitton Y, Vansteelandt M, Kerzaon I, Blanchet E, du Pont TR, Frisvad JC, Hess P, 

Pouchus YF, Grovel O. Cytotoxicity and mycotoxin production of shellfish-derived Penicillium 

spp., a risk for shellfish consumers. Letters in Applied Microbiology 2013; 57: 385-392. 

[39] Sidell FR, Takafuji ET, Franz DR. Medical aspects of chemical and biological warfare. TMM 

Publications, Phoenix, Arizona, 1997, pp 721. 

[40] Kim EE, Baker CT, Dwyer MD, Murcko MA, Rao BG, Tung RD, Navia MA. Crystal-structure of 

HIV-1 protease in complex with VW-478, a potent and orally bioavailable inhibitor of the 

enzyme. Journal of the American Chemical Society 1995; 117: 1881-1882. 

[41] Thompson LA, Elman JA. Synthesis and applications of small molecule libraries. Chemical 

reviews 1996; 96: 555-600. 

[42] Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in 

medicinal chemistry. Nature Reviews Drug Discovery 2007; 6: 881-890. 

[43] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational 

approaches to estimate solubility and permeability in drug discovery and development 

settings. Advanced Drug Delivery Reviews 1997; 23: 3-25. 

[44] Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that 

influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry 2002; 45: 

2615-2623. 

[45] Taevernier L, Veryser L, Roche N, Peremans K, Burvenich C, Delesalle C, De Spiegeleer B. 

Human skin permeation of emerging mycotoxins (beauvericin and enniatins). Journal of 

Exposure Science and Environmental Epidemiology 2015; doi:10.1038/jes.2015.10. 

[46] Meca G, Mañes J, Font G, Ruiz M-J. Study of the potential toxicity of commercial crispy 

breads by evaluation of bioaccessibility and bioavailability of minor Fusarium mycotoxins. 

Food and Chemical Toxicology 2012; 50: 288-294. 

[47] Jirakkakul J, Punya J, Pongpattanakitshote S, Paungmoung P, Vorapreeda N, Tachaleat A, 

Klomnara C, Tanticharoen M, Cheedvadhanarak S. Identification of the nonribosomal peptide 



  CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

125 

synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. 

BCC1067. Microbiology 2008; 154: 995-1006. 

[48] Yu D, Xu F, Zi J, Wang S, Gage D, Zeng J, Zhan J. Engineered production of fungal anticancer 

cyclooligomer depsipeptides in Saccharomyces cerevisiae. Metabolic Engineering 2013; 18: 

60-68. 

[49] Shier WT. The fumonisin paradox: A review of research on oral bioavailablilty of fumonisin 

B1, a mycotoxin produced by Fusarium moniliforme. Journal of Toxicology: Toxin Reviews 

2000; 19: 161-187. 

[50] Jover R, Ponsoda X, Castell JV, Gomez-Lechon MJ. Evaluation of the cytotoxicity of ten 

chemicals on human cultured hepatocytes: Predictability of human toxicity and comparison 

with rodent cell culture systems. Toxicology in vitro 1992; 6: 47-52. 

[51] Ruiz MJ, Macakova P, Juan-Garcia A, Font G. Cytotoxic effects of mycotoxin combinations in 

mammalian kidney cells. Food and Chemical Toxicology 2011; 49: 2718-2724. 

[52] Alassane-Kpembi I, Kolf-Clauw M, Gauthier T, Abrami R, Abiola FA, Oswald IP, Puel OP. New 

insights into mycotoxin mixtures: The toxicity of low doses of type B trichothecenes on 

intestinal epithelial cells is synergistic. Toxicology and Applied Pharmacology 2013; 272: 191-

198. 

[53] Prosperini A, Font G, Ruiz MJ. Interaction effects of Fusarium enniatins (A, A1, B and B1) 

combinations on in vitro cytotoxicity of Caco-2 cells. Toxicology in vitro 2014; 28: 88-94. 

[54] Grenier B, Oswald IP. Mycotoxin co-contamination of food and feed: meta-analysis of 

publications describing toxicological interactions. World Mycotoxin Journal 2011; 4: 285-313. 

[55] Harrer H, Laviad EL, Humpf HU, Futerman AH. Identification of N-acyl-fumonisin B1 as new 

cytotoxic metabolites of fumonisin mycotoxins. Molecular Nutrition and Food Research 2013; 

57: 516-522. 

[56] Kayalou S, Ndossi D, Frizzell C, Groseth PK, Connolly L, Sorlie M, Verhaegen S, Ropstad E. An 

investigation of the endocrine disrupting potential of enniatin B using in vitro bioassays. 

Toxicology Letters 2015; 233: 84-94. 

[57] Ndossi DG, Frizzell C, Tremoen NH, Faeste CK, Verhaegen S, Dahl E, Eriksen GS, Sorlie M, 

Connolly L, Ropstad E. An in vitro investigation of endocrine disrupting effects of 

trichothecenes deoxynivalenol (DON), T-2 and HT-2 toxins. Toxicology Letters 2012; 214: 268-

278. 

[58] Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S. Multi- and 

megavariate data analysis: part I – Basic principles and applications. Umetrics AB, Umea, 

2006, pp. 355. 

[59] Onstad DW, Fuxa JR, Humber RA, Oestergaard J, Shapirollan DI, Gouli VV, Anderson RS, 

Andreadus TG, Lacey LA, 2006, An Abridged Glossary of Terms Used in Invertebrate 

Pathology, 3rd Ed. Society for Invertebrate Pathology; 

http://www.sipweb.org/resources/glossary.html. 

[60] Dumas C, Matha V, Quiot JM, Vey A. Effects of destruxins, cyclic depsipeptide mycotoxins, on 

calcium balance and phosphorylation of intracellular proteins in lepidopteran cell lines. 

http://www.sipweb.org/resources/glossary.html


CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

126 

Comparative Biochemistry and Physiology Part C Pharmacology, Toxicology and 

Endocrinology 1996; 114: 213-219. 

[61] Russell DW, Ward V. Abstract 1st Meeting Fed. European Biochem. Soc. London, 

Communication 1964; A97.  

[62] Herrmann M, Zocher R, Haese A. Enniatin production by Fusarium strains and its effect on 

potato tuber tissue. Applied and Environmental Microbiology 1996; 62: 393-398. 

[63] Ivanova L, Skjerve E, Eriksen GS, Uhlig S. Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from 

Fusarium avenaceum. Toxicon 2006; 47: 868-876. 

[64] Isaka M, Palasarn S, Supothina S, Komwijit S, Luangsa-ard JJ. Bioactive compounds from the 

scale insect pathogenic fungus Conoideocrella tenuis BCC 18627. Journal of Natural Products 

2011; 74: 782-789. 

[65] Lang G, Mitova MU, Ellis G, van der Sar S, Phipps RK, Blunt JW, Cummings NJ, Cole ALJ, Munro 

MHG. Bioactivity profiling using HPLC/microtiter-plate analysis: application to a New Zealand 

marine alga-derived fungus, Gliocladium sp. Journal of Natural Products 2006; 69: 621-624. 

[66] Ferrer E, Juan-García A, Font G, Ruiz MJ. Reactive oxygen species induced by beauvericin, 

patulin and zearalenone in CHO-K1 cells. Toxicology in vitro 2009; 23: 1504-1509. 

[67] Fukuda T, Arai M, Yamaguchi Y, Masuma R, Tomoda H, Omura S. New beauvericins, 

potentiators of antifungal miconazole activity, produced by Beauveria sp. FKI-1366 – I. 

Taxonomy, fermentation, isolation and biological properties. The Journal of Antibiotics 2004; 

57: 110-116. 

[68] Prosperini A, Meca G, Font G, Ruiz MJ. Study of the cytotoxic activity of beauvericin and 

fusaproliferin and bioavailability in vitro on Caco-2 cells. Food and Chemical Toxicology 2012; 

50: 2356-2361. 

[69] Sifou A, Meca G, Serrano AB, Mahnine N, Abidi AE, Mañes J, Azzouzi ME, Zinedine A. First 

report on the presence of emerging Fusarium mycotoxins enniatins (A, A1, B, B1), 

beauvericin and fusaproliferin in rice on the Moroccan retail markets. Food Control 2011; 22: 

1826-1830. 

[70] Song HH, Lee HS, Lee GP, Ha SD, Lee C. Structural analysis of enniatin H, I, and MK1688 and 

beauvericin by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and their 

production by Fusarium oxysporum KFCC 11363P. Food Additives and Contaminants: Part A 

2009; 26: 518-526. 

[71] Wang Q, Xu L. Beauvericin, a Bioactive Compound Produced by Fungi: A Short Review. 

Molecules 2012; 17: 2367-2377. 

[72] Jenkins KM, Renner MK, Jensen PR, Fenical W. Exumolides A and B: antimicroalgal cyclic 

depsipeptides produced by a marine fungus of the genus Scytalidium. Tetrahedron Letters 

1998; 39: 2463-2466. 

[73] Huang H, She Z, Lin Y, Vrijmoed LLP, Lin W. Cyclic peptides from an endophytic fungus 

obtained from a mangrove leaf (Kandelia candel). Journal of Natural Products 2007; 70: 1696-

1699. 



  CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

127 

[74] Kim MY, Sohn JH, Ahn JS, Oh H. Alternaramide, a cyclic depsipeptide from the marine-derived 

fungus Alternaria sp. SF-5016. Journal of Natural Products 2009; 72: 2065-2068. 

[75] Jegorov A, Hajduch M, Sulc M, Havlicek V. Nonribosomal cyclic peptides: specific markers of 

fungal infections. Journal of Mass Spectrometry 2006; 41: 563-576. 

[76] Kuzma M, Jegorov A, Kacer P, Havlicek V. Sequencing of new beauverolides by high 

performance liquid chromatography and mass spectrometry. Journal of Mass Spectrometry 

2001; 36: 1108-1115. 

[77] Boot CM, Amagata T, Tenneya K, Comptona JE, Pietraskiewicz H, Valeriote FA, Crews P. Four 

classes of structurally unusual peptides from two marine-derived fungi: structures and 

bioactivities. Tetrahedron 2007; 63: 9903-9914.  

[78] Che Y, Swenson DC, Gloer JB, Koster B, Malloch D. Pseudodestruxins A and B: new cyclic 

depsipeptides from the Coprophilous fungus Nigrosabulum globosum. Journal of Natural 

Products 2001; 64: 555-558. 

[79] Dornetshuber-Fleiss R, Heffeter P, Mohr T, Hazemi P, Kryeziu K, Seger C, Berger W, Lemmens-

Gruber R. Destruxins: fungal-derived cyclohexadepsipeptides with multifaceted anticancer 

and antiangiogenic activities. Biochemical Pharmacology 2013; 86: 361–377. 

[80] Engstrom GW, DeLance JV, Richard JL, Baetz AL. Purification and characterization of 

roseotoxin B, a toxic cyclodepsipeptide from Trichothecium roseum. Journal of Agricultural 

and Food Chemistry 1975; 23: 244-253. 

[81] Kawazu K, Murakami T, Ono Y, Kanzaki H, Kobayashi A, Mikawa T, Yoshikawa N. Isolation and 

characterization of two novel nematicidal depsipeptides from an imperfect fungus, strain 

D1084. Bioscience, Biotechnology and Biochemistry 1993; 57: 98-101. 

[82] Lira SP, Vita-Marques AM, Seleghum MHR, Bugni TS, LaBarbera DV, Sette LD, Sponchiado 

SRP, Ireland CM, Berlinck RGS. New destruxins from the marine-derived fungus Beauveria 

felina. The Journal of Antibiotics 2006; 59: 553-563. 

[83] Springer JP, Cole RJ, Dorner JW, Cox RH, Richard JL, Barnes CL, van der Helm D. Structure and 

conformation of roseotoxin B. Journal of the American Chemical Society 1984; 106: 2388-

2392. 

[84] Sree KS Padmaja V, Murthy YL. Insecticidal activity of destruxin, a mycotoxin from 

Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) 

larval stages. Pest Management Science 2008; 64: 119-125. 

[85] Chiang YM, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo HC, Ho WY, Simityan H, Kuo E, 

Praseuth A, Watanabe K, Oakley BR, Wang CCC. Molecular genetic mining of the Aspergillus 

secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chemistry 

and Biology 2008; 15: 527-532. 

[86] Ghosh S, Pradhan TK. The first total synthesis of emericellamide A. Tetrahedron Letters 2008; 

49: 3697-3700. 

[87] Oh DC, Kauffman CA, Jensen PR, Fenical W. Induced production of emericellamides A and B 

from the marine-derived fungus Emericella sp. in competing co-culture. Journal of Natural 

Products 2007; 70: 515-520. 



CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

128 

[88] Amagata T, Morinaka BI, Amagata A, Tenney K, Valeriote FA, Lobkovsky E, Clardy J, Crews PJ. 

A chemical study of cyclic depsipeptides produced by a sponge-derived fungus. Journal of 

Natural Products 2006; 69: 1560-1565. 

[89] Sy-Cordero AA, Graf TN, Adcock AF, Kroll DJ, Shen Q, Swanson SM, Wani MC, Pearce CJ, 

Oberlies NH. Cyclodepsipeptides, sesquiterpenoids, and other cytotoxic metabolites from the 

filamentous fungus Trichothecium sp. (MSX 51320). Journal of Natural Products 2011; 74: 

2137-2142. 

[90] Isaka M, Palasarn S, Sriklung K, Kocharin K. Cyclohexadepsipeptides from the insect 

pathogenic fungus Hirsutella nivea BCC 2594. Journal of Natural Products 2005; 68: 1680-

1682. 

[91] Vongvanich N, Kittakoop P, Isaka M, Trakulnaleamsai S, Vimuttipong S, Tanticharoen M, 

Thebtaranonth Y. Hirsutellide A, a new antimycobacterial cyclohexadepsipeptide from the 

entomopathogenic fungus Hirsutella kobayasii. Journal of Natural Products 2002; 65: 1346-

1348. 

[92] Hamano K, Kinoshita M, Furuya K, Miyamotoll M, Takamatsu Y, Hemmi A, Tanzawa K. 

Leualacin, a novel calcium blocker from Hapsidospora irregularis. 1. Taxonomy, fermentation, 

isolation, physicochemical and biological properties. The Journal of Antibiotics 1992; 45: 899-

905. 

[93] Bringmann G, Lang G, Steffens S, Schaumann K. Petrosifungins A and B, novel 

cyclodepsipeptides from a sponge-derived strain of Penicillium brevicompactum. Journal of 

Natural Products 2004; 67: 311-315. 

[94] Moussa MM, Le Quesne PW. Total synthesis of the cyclodepsipeptide ionophore 

pithomycolide. Tetrahedron Letters 1996; 37: 6479-6482. 

[95] Belofsky GN, Jensen PR, Fenical W. Sansalvamide: a new cytotoxic cyclic depsipeptide 

produced by a marine fungus of the genus Fusarium. Tetrahedron Letters 1999; 40: 2913-

2916. 

[96] Cueto M, Jensen PR, Fenical W. N-Methylsansalvamide, a cytotoxic cyclic depsipeptide from a 

marine fungus of the genus Fusarium. Phytochemistry 2000; 55: 223-226. 

[97] Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F. Mechanism of inhibition of a 

poxvirus topoisomerase by the marine natural product sansalvamide A. Molecular 

Pharmacology 1999; 55: 1049-1053. 

[98] Suzuki A, Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Tamura, S. Bassianolide, a new 

insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron 

Letters 1977; 25: 2167-2170. 

[99] Yu D, Xu F, Zi J, Wang S, Gage D, Zeng J, Zahn J. Engineered production of fungal anticancer 

cyclooligomer depsipeptides in Saccharomyces cerevisiae. Metabolic Engineering 2013; 18: 

60-68. 

[100] Dornetshuber R, Kamyar MR, Rawnduzi P, Baburin I, Kouri K, Pilz E, Hornbogen T, Zocher R, 

Berder W, Lemmens-Gruber R. Effects of the anthelmintic drug PF1022A on mammalian 

tissue and cells. Biochemical Pharmacology 2009; 77: 1437-1444. 



  CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

129 

[101] Sasaki T, Takagi M, Yaguchi T, Miyadoh S, Okada T, Koyama M. A new anthelmintic 

cyclodepsipeptide, PF1022A. The Journal of Antibiotics 1992; 45: 692-697. 

[102] Nihei K, Itoh H, Hashimoto K, Miyairi K, Okuno T. Antifungal cyclodepsipeptides, W493 A and 

B, from Fusarium sp.: isolation and structural determination. Bioscience, Biotechnology and 

Biochemistry 1998; 62: 858-863. 

[103] Abdel-Lateff A, Elkhayat ES, Fouad MA, Okino T. Aureobasidin, new antifouling metabolite 

from marine-derived fungus Aureobasidium sp. Natural Product Communications 2009; 4: 

389-394. 

[104] Detwiller JE, Lubell WD. Progress in a structure activity study of the aureobasidin peptide 

antibiotics. Abstract (P185) 18th American Peptide Symposium, Biopolymers 2003; 71: 344-

345. 

[105] Sonda S, Sala G, Ghidoni R, Hemphill A, Pieters J. Inhibitory effect of aureobasidin A on 

Toxoplasma gondii. Antimicrobial Agents and Chemotherapy 2005; 49: 1794-1801. 

[106] Tan HW, Tay ST. The inhibitory effects of aureobasidin A on Candida planktonic and biofilm 

cells: Inhibitory effects of aureobasidin A on Candida. Mycoses 2013; 56: 150-156. 

[107] Tanaka AK, Valero VB, Takahashi HK, Straus AH. Inhibition of Leishmania (Leishmania) 

amazonensis growth and infectivity by aureobasidin A. Journal of Antimicrobial 

Chemotherapy 2007; 59: 487-492. 

[108] Kaida K, Fudou R, Kameyama T, Tubaki K, Suzuki Y, Ojika M, Sakagame Y. New cyclic 

depsipeptide antibiotics, clavariopsins A and B, produced by an aquatic hyphomycetes, 

Clavariopsis aquatica. The Journal of Antibiotics 2001; 54: 17-21. 

[109] Nakadate S, Nozawa K, Sato H, Horie H, Fujii Y, Nagai M, Hosoe T, Kawai K, Yaguchi T. 

Antifungal cyclic depsipeptide, eujavanicin A, isolated from Eupenicillium javanicum. Journal 

of Natural Products 2008; 71: 1640-1642. 

[110] Ratnayake R, Fremlin LJ, Lacey E, Gill JH, Capon RJ. Acremolides A-D, lipodepsipeptides from 

an Australian marine-derived fungus, Acremonium sp. Journal of Natural Products 2008; 71: 

403-408. 

[111] McCorkindale NJ, Baxter RL. Brevigellin, a benzoylated cyclodepsipeptide from Penicillium 

brevicompactum. Tetrahedron 1981; 37: 1795-1801. 

[112] Sato T, Ishiyama D, Honda R, Senda H, Konno H, Tokumasu S, Kanazawa S. Glomosporin, a 

novel antifungal cyclic depsipeptide from Glomospora sp. I. Production, isolation, physico-

chemical properties and biological activities. The Journal of Antibiotics 2000; 53: 597-602. 

[113] Guo YX, Liu QH, Ng TB, Wang HX. Isarfelin, a peptide with antifungal and insecticidal activities 

from Isaria felina. Peptides 2005; 26: 2384-2391.  

[114] Langenfeld A, Blond A, Gueye S, Herson P, Nay B, Dupont J, Prado S. Insecticidal 

cyclodepsipeptides from Beauveria felina. Journal of Natural Products 2011; 74: 825-830. 

[115] Ravindra G, Ranganayaki RS, Raghothama S, Srinivasan MC, Gilardi RD, Karle IL, Balaram P. 

Two novel hexadepsipeptides with several modified amino acid residues isolated from the 

fungus Isaria. Chemistry and Biodiversity 2004; 1: 489-504. 



CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

130 

[116] Sabareesh V, Ranganayaki RS, Raghothama S, Bopanna MP, Balaram H, Srinivasan MC, 

Balaram P. Identification and characterization of a library of microheterogeneous 

cyclohexadepsipeptides from the fungus Isaria. Journal of Natural Products 2007; 70: 715- 

729. 

[117] Yu Z, Lang G, Kajahn I, Schmaljohann R, Imhoff JF. Scopularides A and B, cyclodepsipeptides 

from a marine sponge-derived fungus, Scopulariopsis brevicaulis. Journal of Natural Products 

2008; 71: 1052-1054. 

[118] Gillis HA, Russell DW, Taylor A, Walter JA. Isolation and structure of sporidesmolide V from 

cultures of Pithomyces chartarum. Canadian Journal of Chemistry 1990; 68: 19-21.  

[119] Russell DW. Sporidesmolide-I, a metabolic product of Sporidesmium bakeri SYD. Biochimica 

et Biophysica Acta 1960; 45: 411-412. 

[120] Russell DW. Depsipeptides of Pithomyces chartarum – Structure of sporidesmolide I. Journal 

of the Chemical Society 1962; 753-761. 

[121] Morino T, Masuda A, Yamada M, Nishimoto M, Nishikiori T, Saito S. Stevastelins, novel 

immunosuppressants produced by Penicillium. The Journal of Antibiotics 1994; 47: 1341-

1343. 

 

 

  



  CHAPTER III – THE MYCOTOXIN DEFINITION RECONSIDERED TOWARDS FUNGAL CYCLIC DEPSIPEPTIDES 

 

 

131 

SUPPLEMENTARY INFORMATION  

S1. Quantitative in vitro cytotoxicity of some accepted mycotoxins. 
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Table S1: Quantitative in vitro cytotoxicity of some accepted mycotoxins. 

Mycotoxin Cell line Tested range IC50
(1)

 Reference 

Aflatoxin B1 AFB1 A2780  0 – 96 μM 14.7 nM Braicu et al. [1] 
HUVEC  0 – 96 μM 2.168 μM Braicu et al. [1] 
HFL  0 – 96 μM 19.81 nM Braicu et al. [1] 
SK-6  0.32 – 32.02 μM 5.89 μM Stec et al. [2] 
PO  0.32 – 32.02 μM 14.54 μM Stec et al. [2] 
FLK  0.32 – 32.02 μM 10.60 μM Stec et al. [2] 
HepG2  0.01 – 100 μM 1 μM McKean et al. [3] 
BEAS-2B  0.01 – 100 μM n.d. McKean et al. [3] 

Aflatoxin B2 AFB2 A2780  0 – 96 μM 0.4804 μM Braicu et al. [1] 
HUVEC  0 – 96 μM 15.34 μM 
HFL  0 – 96 μM 0.2135 μM 

Aflatoxin G1 AFG1 A2780  0 – 96 μM 0.4707 μM Braicu et al. [1] 
HUVEC  0 – 96 μM 2.607 μM 
HFL  0 – 96 μM 0.2212 μM 

Aflatoxin G2 AFG2 A2780  0 – 96 μM 0.5264 μM Braicu et al. [1] 
HUVEC  0 – 96 μM 5.824 μM 
HFL  0 – 96 μM 0.2212 μM 

Alternariol AOH HCT116  10 – 200 μM 65 μM Bensassi et al. [4] 
Beauvericin BEA CHO-K1  1 – 100 μM 12.08 – 17.22 μM Ferrer et al. [5] 

Vero  0.78 – 25 μM 6.25 – 11.08 μM Ruiz et al. [6] 
Caco-2  0.6 – 30 μM 12.75 – 20.62 μM Prosperini, et al. [7] 
HT-29  0.6 – 30 μM 9.75 – 15.00 μM Prosperini, et al. [7] 

Citrinin CIT SK-6  0.40 – 39.96 μM 12.99 μM Stec et al. [2] 
PO  0.40 – 39.96 μM 18.54 μM 
FLK  0.40 – 39.96 μM 15.38 μM 

Cytochalasin B CB HeLa  n.m.
(2)

 7.9 μM Hwang et al. [8] 

(1) If a range is given, this is the result of either multiple assays (e.g. NR versus MTT assay) or multiple time spans (e.g. 24h, 48h or 72h). 
(2) Only the abstract was available. 
n.d. = not determined 
n.m. = not mentioned 
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Table S1: Quantitative in vitro cytotoxicity of some accepted mycotoxins (continued). 

Deoxynivalenol DON Caco-2  7.5 nM – 6.67 μM 1.19 – 1.39 μM Alassane-Kpembi et al. [9] 
Caco-2  0.13 – 67.50 μM 3.40 μM Cetin and Bullerman [10] 
Caco-2 (differentiated) 0 – 10 μM >10 μM Bony et al. [11] 
Caco-2 (dividing) 0 – 10 μM 3.7 – 10.0 μM Bony et al. [11] 
Vero  0.25 – 8 μM 3.30 - 10 μM Ruiz et al. [6] 
HCT116  10 – 200 μM 125 μM Bensassi et al. [12] 
HepG2  0.1 – 100 μM 41.4 μM Königs et al. [13] 
HepG2  0.13 – 67.50 μM 28.2 μM Cetin and Bullerman [10] 
Human primary hepatocytes 0.1 – 100 μM 6.0 μM Königs et al. [13] 
K562  0.13 – 135 μM 1.31 μM Wu et al. [14] 
CHO-K1  0.13 – 67.50 μM 0.91 μM Cetin and Bullerman [10] 
V79  0.13 – 67.50 μM 1.55 μM Cetin and Bullerman [10] 
C5-O  0.13 – 67.50 μM 1.82 μM Cetin and Bullerman [10] 
PAM  0 – 8 μM 1.0 – 1.7 μM Döll et al. [15] 

3-Acetyldeoxynivalenol 3-ADON Caco-2  7.5 nM – 6.67 μM 1.99 – 2.94 μM Alassane-Kpembi et al. [9] 
15-Acetyldeoxynivalenol 15-ADON Caco-2  7.5 nM – 6.67 μM 1.1 – 1.47 μM Alassane-Kpembi et al. [9] 
Enniatin A ENN A Caco-2  0.94 – 7.5 μM 1.6 – 6.8 μM Prosperini et al. [16] 
Enniatin A1 ENN A1 Caco-2  0.94 – 15 μM 1.3 – 14.8 μM Prosperini et al. [16] 
Enniatin B ENN B Caco-2  0.94 – 15 μM 11.7 μM Prosperini et al. [16] 
Enniatin B1 ENN B1 Caco-2  0.94 – 15 μM 2.8 – 11.3 μM Prosperini et al. [16] 

IPEC-1  0.3 – 100 μM 15.80 μM Kolf-Clauw et al. [17] 
Fumonisin B1 FB1 Caco-2  0.28 – 138.54 μM 131 – >138 μM Cetin and Bullerman [10] 

HepG2  0.28 – 138.54 μM > 138 μM 
CHO-K1  0.28 – 138.54 μM 118 – >138 μM 
V79  0.28 – 138.54 μM 136 – >138 μM 
C5-O  0.28 – 138.54 μM > 138 μM 

Fusaproliferin FUS HT-29  0.6 – 30 μM n.d. Prosperini, et al. [7] 
Caco-2  0.6 – 30 μM n.d. 

Fusarenon-X FUS-X Caco-2  7.5 nM – 6.67 μM 0.02 – 0.04 μM Alassane-Kpembi et al. [9] 
Gliotoxin GLI Tetrahymena pyriformis GL  0.06 – 2.02 μM 0.38 μM Gräbsch et al. [18] 
Moniliformin MON Caco-2  1.67 – 833.06 μM 315 – >1020 μM Cetin and Bullerman [10] 

HepG2  1.67 – 833.06 μM 273 – 403 μM 
CHO-K1  1.67 – 833.06 μM >1020 μM 
V79  1.67 – 833.06 μM >1020 μM 
C5-O  1.67 – 833.06 μM 349 – >1020 μM 

Nivalenol NIV Caco-2  7.5 nM – 6.67 μM 0.69 – 0.90 μM Alassane-Kpembi et al. [9] 

n.d. = not determined 
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Table S1: Quantitative in vitro cytotoxicity of some accepted mycotoxins (continued). 

Ochratoxin A OTA SK-6 0.25 – 24.76 μM 2.58 μM Stec et al. [2] 
PO 0.25 – 24.76 μM 3.71 μM Stec et al. [2] 
FLK 0.25 – 24.76 μM 1.86 μM Stec et al. [2] 
SH-SY5Y neuroblastoma  0.1 – 2.5 μM n.d. Zhang et al. [19] 
Primary neurons 0.1 – 2.5 μM n.d. Zhang et al. [19] 

Patulin PAT CHO-K1  0.2 – 25 μM 0.69 – 4.4 μM Ferrer et al. [5] 
SK-6 0.65 – 64.88 μM 2.01 μM Stec et al. [2] 
PO 0.65 – 64.88 μM 3.05 μM Stec et al. [2] 
FLK 0.65 – 64.88 μM 1.49 μM Stec et al. [2] 

Penicillic acid  Tetrahymena pyriformis GL  73.5 – 588 μM 343.19 μM Gräbsch et al. [18] 
T-2 toxin T-2 Vero  0 – 100 nM 60 nM Bouaziz et al. [20] 

Vero  1.6 – 50 nM 4- 12 nM Ruiz et al. [6] 
IPEC-1  0.3 – 100 nM 9.35 nM Kolf-Clauw et al. [17] 
RPTEC  1 nM - 10 μM 0.2 μM Königs et al. [21] 
NHLF  1 nM - 10 μM 0.5 μM Königs et al. [21] 
HepG2  0.01 – 100 μM 980 nM McKean et al. [3] 
BEAS-2B  0.01 – 100 μM 32.1 nM McKean et al. [3] 
Ovarian rat granulosa  0 – 100 nM ± 100 nM Wu et al. [22] 

Zearalenone ZEA Vero  0 – 100 nM > 100 nM Bouaziz et al. [20] 
CHO-K1  1.5 – 150 μM 79.40 – 108.76 μM Ferrer et al. [5] 
CHO-K1  12.5 – 100 μM 60.3 – >100 μM Tatay et al. [23] 
CHO-K1  0.63 – 314.11 μM >313 μM Cetin and Bullerman [10] 
Caco-2  0 – 100 μM 20 μM Abid-Essefi et al. [24] 
Caco-2  0.63 – 314.11 μM 137 – >313 μM Cetin and Bullerman [10] 
HeLa  0 – 140 μM 60 μM Ayed et al. [25] 
SK-6 0.31 – 31.41 μM 31.35 μM Stec et al. [2] 
PO 0.31 – 31.41 μM >31.41 μM Stec et al. [2] 
FLK 0.31 – 31.41 μM >31.41 μM Stec et al. [2] 
HepG2  1 – 200 μM 95 μM Hassen et al. [26] 
HepG2  0.63 – 314.11 μM >313 μM Cetin and Bullerman [10] 
V79  0.63 – 314.11 μM >313 μM Cetin and Bullerman [10] 
C5-O  0.63 – 314.11 μM 75.5 – >313 μM Cetin and Bullerman [10] 

n.d. = not determined 
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S2. Principal component analysis. 

Based on the dendrogram of the HCA and the score plot of the first two principal components of the 

PCA, the 32 cyclic depsipeptides could be categorized into four main clusters with six subclusters, as 

denoted earlier in Figure 2. From the corresponding loading plot, the most discriminative molecular 

descriptors for principal components 1 and 2 could be deduced (see Tables S2-1 to S2-4 below). This 

indicated that principal component 1 on the horizontal axis, is mainly influenced by descriptors 

describing molecular size, volume and shape (e.g. MW, Sv, G1, nBTn nSK, etc.), connectivity (e.g. 

connectivity index X0, X1, X2, etc.) and flexibility (e.g. folding degree index FDI) of the peptides. So, 

cyclic depsipeptides situated towards the right side of the space are larger, have larger ring sizes, 

have higher molecular weights and are more folded and less flexible, i.e. have less conformational 

variability, compared to the compounds on the left. Compounds are further discriminated by 

principal component 2 on the vertical axis of the chemical space, which is highly influenced by a set 

of descriptors called complementary information content (CIC), which quantify the degree of 

heterogeneity and redundancy of topological neighbourhoods of atoms in molecules and is related to 

the symmetry of the molecule. Indeed, peptides located in the lower part of space are less 

symmetrical than compounds located at the upper part. Other discriminative descriptors at the 

second axis are nCp or C-001, the number of terminal primary carbons (CH3R), and nCt or C-003, the 

number of total tertiary carbons (CHR3), which may indicate that CDPs located at the upper right part 

of the space most likely contain more valine, leucine, isoleucine amino acids and/or long branched 

alkyl chain(s). Moreover, a number of molecular descriptors, such as ARR, nAB, nCar, nBnz, Ui, 

AROM, nCbH, nR06 and nBM, indicate a higher presence of aromatic/benzene-like rings in CDPs at 

the lower side of the y-axis. 

Table S2-1: Discriminative descriptors on right side of principal component 1 (x-axis). 

Descriptor Meaning 

MW molecular weight 
Mass molecular mass 
VED1 eigenvector coefficient sum from distance matrix 
Sv sum of atomic van der Waals volumes (scaled on Carbon atom) 
X0 connectivity index chi-0 
X0sol solvation connectivity index chi-0 
AMR Ghose-Crippen molar refractivity 
VEp1 eigenvector coefficient sum from polarizability weighted distance matrix 
VEv1 eigenvector coefficient sum from van der Waals weighted distance matrix 
Refractivity polarizability 
BID Balaban ID number 
nSK number of non-H atoms 
SRW01 self-returning walk count of order 01 (number of non-H atoms, nSK) 
VEm1 eigenvector coefficient sum from mass weighted distance matrix 
VEZ1 eigenvector coefficient sum from Z weighted distance matrix (Barysz matrix) 
VEe1 eigenvector coefficient sum from electronegativity weighted distance matrix 
X1v valence connectivity index chi-1 
Dz Pogliani index 
X2 connectivity index chi-2 
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Table S2-1: Discriminative descriptors on right side of principal component 1 (x-axis) (continued). 

X2sol solvation connectivity index chi-2 
Sp sum of atomic polarizabilities (scaled on Carbon atom) 
RHyDp reciprocal hyper-distance-path index 
Har Harary H index 
LPRS log of product of row sums (PRS) 
Har2 square reciprocal distance sum index 
TWC total walk count 
HTp H total index / weighted by atomic polarizabilities 
XMOD modified Randic connectivity index 
G1 gravitational index G1 
IAC total information index of atomic composition 
TIC0 total information content index (neighborhood symmetry of 0-order) 
X1 connectivity index chi-1 (Randic connectivity index) 
X1sol solvation connectivity index chi-1 
Xu Xu index 
X0v valence connectivity index chi-0 
SRW04 self-returning walk count of order 04 
IDDM mean information content on the distance degree magnitude 
RDSQ reciprocal distance squared Randic-type index 
MPC02 molecular path count of order 02 (Gordon-Scantlebury index) 
CID Randic ID number 
ZM1 first Zagreb index M1 
IDM mean information content on the distance magnitude 
nBT number of bonds 
HTv H total index / weighted by atomic van der Waals volumes 
SEig absolute eigenvalue sum on geometry matrix 
G2 gravitational index G2 (bond-restricted) 
Eig1p Leading eigenvalue from polarizability weighted distance matrix 
AEigp Absolute eigenvalue sum from polarizability weighted distance matrix 
Eig1v Leading eigenvalue from van der Waals weighted distance matrix 
AEigv Absolute eigenvalue sum from van der Waals weighted distance matrix 
VRZ1 Randic-type eigenvector-based index from Z weighted distance matrix (Barysz matrix) 
VRm1 Randic-type eigenvector-based index from mass weighted distance matrix 
VRe1 Randic-type eigenvector-based index from mass weighted distance matrix 
VRD1 Randic-type eigenvector-based index from distance matrix 
Mor01m 3D-MoRSE - signal 01 / weighted by atomic masses 
VRv1 Randic-type eigenvector-based index from van der Waals weighted distance matrix 
VRp1 Randic-type eigenvector-based index from polarizability weighted distance matrix 
nBO number of non-H bonds 
MWC01 molecular walk count of order 01 (number of non-H bonds, nBO) 
SRW02 Spectral moment 03 from edge adj. matrix weighted by resonance integrals 
MPC01 molecular path count of order 01 (number of non-H bonds, nBO) 
VRA1 Randic-type eigenvector-based index from adjacency matrix 
Mor01v 3D-MoRSE - signal 01 / weighted by atomic van der Waals volumes 
Se sum of atomic Sanderson electronegativities (scaled on Carbon atom) 
RDF025p Radial Distribution Function - 2.5 / weighted by atomic polarizabilities 
ZM2 second Zagreb index M2 
HTe H total index / weighted by atomic Sanderson electronegativities 
ESpm03r Spectral moment 03 from edge adj. matrix weighted by resonance integrals 
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Table S2-2: Discriminative descriptors on left side of principal component 1 (x-axis). 

Descriptor Meaning 

VEp2 average eigenvector coefficient sum from polarizability weighted distance matrix 
VEZ2 average eigenvector coefficient sum from Z weighted distance matrix (Barysz matrix) 
VEm2 average eigenvector coefficient sum from mass weighted distance matrix 
VEe2 average eigenvector coefficient sum from electronegativity weighted distance matrix 
VEv2 average eigenvector coefficient sum from van der Waals weighted distance matrix 
VED2 average eigenvector coefficient sum from distance matrix 
Mor05p 3D-MoRSE - signal 05 / weighted by atomic polarizabilities 
VEA2 average eigenvector coefficient sum from adjacency matrix 
Mor05v 3D-MoRSE - signal 05 / weighted by atomic van der Waals volumes 
HATS2u leverage-weighted autocorrelation of lag 2 / unweighted 
HATS0u leverage-weighted autocorrelation of lag 0 / unweighted 
HATS2e leverage-weighted autocorrelation of lag 2 / weighted by atomic Sanderson electronegativities 
HGM geometric mean on the leverage magnitude 
HATS4u leverage-weighted autocorrelation of lag 4 / unweighted 
Gs G total symmetry index / weighted by atomic electrotopological states 
SEigp Eigenvalue sum from polarizability weighted distance matrix 
SEigv Eigenvalue sum from van der Waals weighted distance matrix 
HATS0e leverage-weighted autocorrelation of lag 0 / weighted by atomic Sanderson electronegativities 
HATS4e leverage-weighted autocorrelation of lag 4 / weighted by atomic Sanderson electronegativities 
Mor05e 3D-MoRSE - signal 05 / weighted by atomic Sanderson electronegativities 
Mor05u 3D-MoRSE - signal 05 / unweighted 
Xt Total structure connectivity index 
HATS1u leverage-weighted autocorrelation of lag 1 / unweighted 
REIG first eigenvalue of the R matrix 
SHP2 average shape profile index of order 2 
HATS1e leverage-weighted autocorrelation of lag 1 / weighted by atomic Sanderson electronegativities 
Mor05m 3D-MoRSE - signal 05 / weighted by atomic masses 
HATS3u leverage-weighted autocorrelation of lag 3 / unweighted 
R4e+ R maximal autocorrelation of lag 4 / weighted by atomic Sanderson electronegativities 
G2s 2st component symmetry directional WHIM index / weighted by atomic electrotopological states 
Mor18e 3D-MoRSE - signal 18 / weighted by atomic Sanderson electronegativities 
HATS3e leverage-weighted autocorrelation of lag 3 / weighted by atomic Sanderson electronegativities 
G1s 1st component symmetry directional WHIM index / weighted by atomic electrotopological states 
Mor18u 3D-MoRSE - signal 18 / unweighted 
R2u+ R maximal autocorrelation of lag 2 / unweighted 
RARS R matrix average row sum 
R2e+ R maximal autocorrelation of lag 2 / weighted by atomic Sanderson electronegativities 
FDI folding degree index 
R4u+ R maximal autocorrelation of lag 4 / unweighted 
MSD mean square distance index (Balaban) 
HATS0p leverage-weighted autocorrelation of lag 0 / weighted by atomic polarizabilities 
Mor17p 3D-MoRSE - signal 17 / weighted by atomic polarizabilities 
Mor08m 3D-MoRSE - signal 08 / weighted by atomic masses 
G3s 3st component symmetry directional WHIM index / weighted by atomic electrotopological states 
HATS3p leverage-weighted autocorrelation of lag 3 / weighted by atomic polarizabilities 
ISH standardized information content on the leverage equality 
Mor17u 3D-MoRSE - signal 17 / unweighted 
Mor21u 3D-MoRSE - signal 21 / unweighted 
HATS4p leverage-weighted autocorrelation of lag 4 / weighted by atomic polarizabilities 
Mor17v 3D-MoRSE - signal 17 / weighted by atomic van der Waals volumes 
Mor18p 3D-MoRSE - signal 18 / weighted by atomic polarizabilities 
BIC0 bond information content (neighborhood symmetry of 0-order) 
R2v+ R maximal autocorrelation of lag 2 / weighted by atomic van der Waals volumes 
R2p+ R maximal autocorrelation of lag 2 / weighted by atomic polarizabilities 
HATS0v leverage-weighted autocorrelation of lag 0 / weighted by atomic van der Waals volumes 
HATS1p leverage-weighted autocorrelation of lag 1 / weighted by atomic polarizabilities 
Mor17e 3D-MoRSE - signal 17 / weighted by atomic Sanderson electronegativities 
R5m+ R maximal autocorrelation of lag 5 / weighted by atomic masses 
Mor23p 3D-MoRSE - signal 23 / weighted by atomic polarizabilities 
R8e+ R maximal autocorrelation of lag 8 / weighted by atomic Sanderson electronegativities 
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Table S2-2: Discriminative descriptors on left side of principal component 1 (x-axis) (continued). 

Mor21e 3D-MoRSE - signal 21 / weighted by atomic Sanderson electronegativities 
SIC0 structural information content (neighborhood symmetry of 0-order)  
Mor12u 3D-MoRSE - signal 12 / unweighted 
HATS3v leverage-weighted autocorrelation of lag 3 / weighted by atomic van der Waals volumes 
R3u+ R maximal autocorrelation of lag 3 / unweighted 
HATS2p leverage-weighted autocorrelation of lag 2 / weighted by atomic polarizabilities 
HATS1v leverage-weighted autocorrelation of lag 1 / weighted by atomic van der Waals volumes 
G2p 2st component symmetry directional WHIM index / weighted by atomic polarizabilities 
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Table S2-3: Discriminative descriptors on upper side of principal component 2 (y-axis). 

Descriptor Meaning 

X0Av average valence connectivity index chi-0 
JGI3 mean topological charge index of order3 
MATS6v Moran autocorrelation - lag 6 / weighted by atomic van der Waals volumes 
MATS6m Moran autocorrelation - lag 6 / weighted by atomic masses 
MATS6p Moran autocorrelation - lag 6 / weighted by atomic polarizabilities 
MATS6e Moran autocorrelation - lag 6 / weighted by atomic Sanderson electronegativities 
Jhetm Balaban-type index from mass weighted distance matrix 
JhetZ Balaban-type index from Z weighted distance matrix (Barysz matrix) 
Jhete Balaban-type index from electronegativity weighted distance matrix 
J Balaban distance connectivity index 
Yindex Balaban Y index 
Vindex Balaban V index 
Xindex Balaban X index 
J3D 3D-Balaban index 
X0A average connectivity index chi-0 
JGI6 mean topological charge index of order6 
Jhetv Balaban-type index from van der Waals weighted distance matrix 
Jhetp Balaban-type index from polarizability weighted distance matrix 
GATS1v Geary autocorrelation - lag 1 / weighted by atomic van der Waals volumes 
JGI2 mean topological charge index of order2 
GATS1p Geary autocorrelation - lag 1 / weighted by atomic polarizabilities 
GATS1m Geary autocorrelation - lag 1 / weighted by atomic masses 
GATS1e Geary autocorrelation - lag 1 / weighted by atomic Sanderson electronegativities 
C-003 CHR3 number of tertiairy carbons 
nCt number of total tertiary C(sp3) 
JGT global topological charge index 
R8u R autocorrelation of lag 8 / unweighted 
BLI Kier benzene-likeliness index 
PW2 path/walk 2 - Randic shape index 
X1Av average valence connectivity index chi-1 
R8e R autocorrelation of lag 8 / weighted by atomic Sanderson electronegativities 
C-001 CH3R / CH4 number of primary carbons 
CIC2 complementary information content (neighborhood symmetry of 2-order) 
CIC3 complementary information content (neighborhood symmetry of 3-order) 
nCp number of terminal primary C(sp3) 
R2u R autocorrelation of lag 2 / unweighted 
CIC1 complementary information content (neighborhood symmetry of 1-order) 
R4u R autocorrelation of lag 4 / unweighted 
R4e R autocorrelation of lag 4 / weighted by atomic Sanderson electronegativities 
R7u R autocorrelation of lag 7 / unweighted 
H-046 H attached to C0(sp3) no X attached to next C 
CIC4 complementary information content (neighborhood symmetry of 4-order) 
X2Av average valence connectivity index chi-2 
CIC5 complementary information content (neighborhood symmetry of 5-order) 
R7e R autocorrelation of lag 7 / weighted by atomic Sanderson electronegativities 
Mor06u 3D-MoRSE - signal 06 / unweighted 
Mor26v 3D-MoRSE - signal 26 / weighted by atomic van der Waals volumes 
Mor18m 3D-MoRSE - signal 18 / weighted by atomic masses 
Mor06e 3D-MoRSE - signal 06 / weighted by atomic Sanderson electronegativities 
Mor26p 3D-MoRSE - signal 26 / weighted by atomic polarizabilities 
F06[O-O] frequency of O - O at topological distance 06 
Mor26m 3D-MoRSE - signal 26 / weighted by atomic masses 
EEig03r Eigenvalue 03 from edge adj. matrix weighted by resonance integrals 
R8p R autocorrelation of lag 8 / weighted by atomic polarizabilities 
Mor26u 3D-MoRSE - signal 26 / unweighted 
Mor26e 3D-MoRSE - signal 26 / weighted by atomic Sanderson electronegativities 
F02[O-O] frequency of O - O at topological distance 02 
EEig01d Eigenvalue 01 from edge adj. matrix weighted by dipole moments 
EEig03d Eigenvalue 03 from edge adj. matrix weighted by dipole moments 
GATS3p Geary autocorrelation - lag 3 / weighted by atomic polarizabilities 
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Table S2-3: Discriminative descriptors on upper side of principal component 2 (y-axis) (continued). 

R7p R autocorrelation of lag 7 / weighted by atomic polarizabilities 
PW3 path/walk 3 - Randic shape index 
Mor14m 3D-MoRSE - signal 14 / weighted by atomic masses 
Mor09v 3D-MoRSE - signal 09 / weighted by atomic van der Waals volumes 
nRCOOR number of esters (aliphatic) 
EEig02d Eigenvalue 02 from edge adj. matrix weighted by dipole moments 
GATS3v Geary autocorrelation - lag 3 / weighted by atomic van der Waals volumes 
Mor21m 3D-MoRSE - signal 21 / weighted by atomic masses 
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Table S2-4: Discriminative descriptors on lower side of principal component 2 (y-axis). 

Descriptor Meaning 

IC1 information content index (neighborhood symmetry of 1-order) 
PCR ratio of multiple path count over path count 
HATSm leverage-weighted total index / weighted by atomic masses 
SIC1 structural information content (neighborhood symmetry of 1-order)  
R1m R autocorrelation of lag 1 / weighted by atomic masses 
BIC1 bond information content (neighborhood symmetry of 1-order) 
H0m H autocorrelation of lag 0 / weighted by atomic masses 
HATSv leverage-weighted total index / weighted by atomic van der Waals volumes 
HNar Narumi harmonic topological index 
PCD difference between multiple path count and path count 
ARR aromatic ratio 
H1m H autocorrelation of lag 1 / weighted by atomic masses 
nCb- number of substituted benzene C(sp2) 
H0v H autocorrelation of lag 0 / weighted by atomic van der Waals volumes 
MATS1e Moran autocorrelation - lag 1 / weighted by atomic Sanderson electronegativities 
Mv mean atomic van der Waals volume (scaled on Carbon atom) 
MATS1m Moran autocorrelation - lag 1 / weighted by atomic masses 
GNar Narumi geometric topological index 
nAB number of aromatic bonds 
nBnz number of benzene-like rings 
nCar number of aromatic C(sp2) 
C-025 R--CR--R 
HOMT HOMA total 
HATSp leverage-weighted total index / weighted by atomic polarizabilities 
R1v R autocorrelation of lag 1 / weighted by atomic van der Waals volumes 
Mp mean atomic polarizability (scaled on Carbon atom) 
BEHp1 highest eigenvalue n. 1 of Burden matrix / weighted by atomic polarizabilities 
BELe1 lowest eigenvalue n. 1 of Burden matrix / weighted by atomic Sanderson electronegativities 
BELm1 lowest eigenvalue n. 1 of Burden matrix / weighted by atomic masses 
Ui unsaturation index 
SIC2 structural information content (neighborhood symmetry of 2-order)  
BEHv1 highest eigenvalue n. 1 of Burden matrix / weighted by atomic van der Waals volumes 
HOMA Harmonic Oscillator Model of Aromaticity index 
H0p H autocorrelation of lag 0 / weighted by atomic polarizabilities 
ICR radial centric information index 
AMW average molecular weight 
MATS1v Moran autocorrelation - lag 1 / weighted by atomic van der Waals volumes 
IC2 information content index (neighborhood symmetry of 2-order) 
piPC09 molecular multiple path count of order 09  
AROM aromaticity index 
RCI Jug RC index 
nCbH number of unsubstituted benzene C(sp2) 
C-024 R--CH--R 
BIC2 bond information content (neighborhood symmetry of 2-order) 
H1v H autocorrelation of lag 1 / weighted by atomic van der Waals volumes 
nR06 number of 6-membered rings 
nBM number of multiple bonds 
MATS1p Moran autocorrelation - lag 1 / weighted by atomic polarizabilities 
GATS6e Geary autocorrelation - lag 6 / weighted by atomic Sanderson electronegativities 
HATS2m leverage-weighted autocorrelation of lag 2 / weighted by atomic masses 
GATS6m Geary autocorrelation - lag 6 / weighted by atomic masses 
R2m R autocorrelation of lag 2 / weighted by atomic masses 
HATS1m leverage-weighted autocorrelation of lag 1 / weighted by atomic masses 
GATS6v Geary autocorrelation - lag 6 / weighted by atomic van der Waals volumes 
SIC3 structural information content (neighborhood symmetry of 3-order)  
R2v R autocorrelation of lag 2 / weighted by atomic van der Waals volumes 
R1p R autocorrelation of lag 1 / weighted by atomic polarizabilities 
GATS6p Geary autocorrelation - lag 6 / weighted by atomic polarizabilities 
piPC10 molecular multiple path count of order 10  
Mor11p 3D-MoRSE - signal 11 / weighted by atomic polarizabilities 
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Table S2-4: Discriminative descriptors on lower side of principal component 2 (y-axis) (continued). 

BEHe2 highest eigenvalue n. 2 of Burden matrix / weighted by atomic Sanderson electronegativities 
Mor15v 3D-MoRSE - signal 15 / weighted by atomic van der Waals volumes 
Mor07u 3D-MoRSE - signal 07 / unweighted 
BEHv2 highest eigenvalue n. 2 of Burden matrix / weighted by atomic van der Waals volumes 
BEHp2 highest eigenvalue n. 2 of Burden matrix / weighted by atomic polarizabilities 
PJI2 2D Petitjean shape index 
H1p H autocorrelation of lag 1 / weighted by atomic polarizabilities 
Mor15p 3D-MoRSE - signal 15 / weighted by atomic polarizabilities 
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ABSTRACT 

Currently, dermal exposure data of cyclic depsipeptide mycotoxins beauvericin and enniatins are 

completely absent with a lack of local skin and systemic kinetics, despite their widespread skin 

contact and intrinsic hazard. Therefore a sensitive and specific bioanalytical high-throughput 

UHPLC-MS/MS method was developed for the quantitative and simultaneous determination of 

cyclic depsipeptide mycotoxins beauvericin and enniatins (A, A1, B, B1, D, E, C/F) in human skin 

Franz diffusion cell samples. The limits of detection ranged between 10 and 17 pg/mL, while the 

total run time was only 4.5 minutes. There was no significant effect of endogenous skin 

compounds on the mycotoxin MS signal observed, and the accuracy and precision were considered 

acceptable for our purposes. Moreover, it was demonstrated that these cyclic depsipeptides are 

stable for at least 7 days when formulated in different organic or aqueous mixtures. Finally, 

adsorption to glass did occur: at least 50% organic solvent is required to prevent significant 

adsorption effects, which could be as high as 45%. 
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CHAPTER IV 

UHPLC-MS/MS METHOD FOR THE 

DETERMINATION OF BEAUVERICIN AND 

ENNIATINS 

Main focus in this chapter: 

 To develop a high-throughput bioanalytical UHPLC-MS/MS method for BEA and ENNs. 

 To evaluate their analytical stability and adsorption to Franz diffusion cell glass. 

 

1. THE NEED FOR A QUANTITATIVE, SENSITIVE AND SELECTIVE  

HIGH-THROUGHPUT BIOANALYTICAL METHOD 

Studying the local pharmacokinetics of molecules through human skin is not only important within 

the pharmaceutical industry but also in the field of environmental toxicology. The skin, being the 

largest organ, is considered as a route of administration for topically applied medicines [1,2], but is 

also important in the dermal risk assessment of hazardous compounds, such as mycotoxins [3]. Both 

in vivo and in vitro methods can be used to measure the skin absorption. Laboratory animals (such as 

guinea pigs, rats, mice and pigs), readily available, provide indeed a reproducible, physiologically and 

metabolically intact test system to investigate the skin absorption of all kinds of compounds (e.g. 

pharmaceuticals, cosmetics, hazardous chemicals). However, these also have their limitations, i.a. 

inter-species variability, with often a higher permeability than for human skin. Therefore, human skin 

studies remain the “gold standard” by which all methods for measuring percutaneous absorption 

should be judged. However, given the extreme toxicity of some chemicals, such as mycotoxins, it is 

ethically unacceptable to use living human beings in the transdermal studies [3,4]. In vitro Franz 

diffusion cell (FDC) methods are currently the ideal alternative, since (i) it is possible to maintain the 

barrier properties of the stratum corneum in excised skin, (ii) there is good evidence that the 

obtained in vitro data are predictive for in vivo percutaneous absorption (in vitro in vivo correlation) 
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and (iii) there are standardisation recommendations, guidelines and protocols on how to execute 

these diffusion cell studies available, proposed by both regulatory entities and committees of 

interested parties [4,5]. 

Cyclic depsipeptides are a large group of naturally occurring bioactive peptides. Some of these are 

secondary fungal metabolites, which are toxic to humans and animals, such as the emerging 

mycotoxins beauvericin (BEA) and enniatins (ENNs) [6-18]. Currently, dermal exposure data of these 

compounds are completely absent with a lack of local skin and systemic kinetics, despite their 

potential skin contact and intrinsic hazard. BEA and ENNs are well-known Fusarium cyclic 

hexadepsipeptides, but they are also produced by other fungi such as Beauveria and Paecilomysces 

and Alternaria, Halosarpheia and Verticillium species, respectively [19-25]. These compounds, 

possessing cation-complexing ionophoric and lipophilic properties, which act as inhibitors of acyl-

CoA: cholesterol acyltransferase, exert cytotoxic effects in various cell lines [6-9,11-15,17,18] and 

have different effects on the immune system [26-30]. Moreover, it was also reported that BEA is 

genotoxic [6,10]. 

UHPLC-MS/MS analysis of these cyclic depsipeptides has only been reported in a few studies, all 

aiming for a multi-mycotoxin determination in food. Considering the abundance (up to 191 

compounds) and diversity of the investigated mycotoxins, these methods have relatively long run 

times, e.g. up to 21 min [31-33]. Quantitative transdermal kinetics are characterised by multiple skin 

donors with sufficient replicates and time points, which result in a large amount of different samples, 

i.e. dose solutions, skin extraction samples and receptor fluid samples. Hence, there is a need for a 

sensitive, selective and rapid high-throughput method for analysis of these frequently low 

concentrated samples, obtained in each FDC experiment. During these FDC experiments, the analytes 

are also exposed to elevated temperatures for significant amounts of time, i.e. ± 32°C (mimicking the 

human skin temperature) during 24 hours, indicating the importance of a stability study under these 

conditions. During analytical processes, adsorption of peptides, which is believed to be mostly due to 

non-covalent interactions and depending upon the experimental conditions, cannot only lead to 

significant loss of the analyte, but also to increased analytical variability [34,35]. The adsorption of 

these lipophilic cyclic depsipeptide analytes to the FDC glass wall, of which the quality differs from 

analytical volumetric glassware, was not yet investigated.  

The goal of this study was to develop a sensitive, selective and rapid high-throughput bioanalytical 

method to quantitatively determine the cyclic depsipeptide mycotoxins beauvericin and enniatins (A, 

A1, B, B1, D, E, F or C) in different FDC samples, using Ultra High Performance Liquid Chromatography 

combined with electrospray ionisation (ESI) tandem Mass Spectrometry (UHPLC-MS/MS). In addition, 

stability and adsorption to glass under our in vitro test conditions were investigated as well. 
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In this chapter, the general UHPLC-MS/MS method is presented, together with the human skin 

sample preparation as an application. The sample preparation used for the mice serum and brain 

samples is described in the methods part of Chapter VI. 

2. MATERIALS AND METHODS 

2.1. Chemicals and reagents 

Mycotoxins beauvericin (BEA) and enniatin B (ENN B) were supplied by BioAustralis (Smithfield NSW, 

Australia), while the enniatin mixture (ENNs) was obtained from Cfm Oscar Tropitzsch (Marktredwitz, 

Germany). No formal ENN composition was supplied by the manufacturer (only e-mail 

correspondence), therefore the composition was experimentally determined by our group, assuming 

a relative response factor (RRF) = 1 for the individual constituents: 43.8% ENN B, 34.4% ENN B1, 

14.0% ENN A1, 3.6% ENN D, 1.8% ENN A, 1.8% ENN E and 0.4% ENN C or F. These data were obtained 

by UHPLC-MS and UHPLC-UV (205 nm) normalised areas. ULC-MS grade acetonitrile (ACN), formic 

acid (FA) and 2-propanol, used for preparation of the mobile phase, were purchased from Biosolve 

(Valkenswaard, The Netherlands). Ultrapure water (H2O) was produced by an Arium pro VF TOC 

water purification system (Sartorius, Göttingen, Germany), resulting in ultrapure water of 18.2 MΩ × 

cm quality. Sigma-Aldrich (St. Louis, MO, USA) supplied 0.01 M phosphate buffered saline (PBS) and 

dimethyl sulfoxide (DMSO). Ethanol (EtOH), used for the dose solutions, was purchased from Merck 

(Darmstadt, Germany) and UHPLC grade ACN was bought from Fisher Scientific (Waltham, MA, USA). 

Pharma grade hydroxypropyl-β-cyclodextrin (HPBCD) was supplied by Cerestar (Mechelen, Belgium). 

This was used as a solubilising modifier to the receptor fluid (PBS), in order to guarantee sink 

conditions of the hydrophobic cyclic depsipeptide mycotoxins throughout the experiment [36]. 

2.2. Analytical method 

Preparation of standard solutions 

A separate stock solution of 100 µg/mL in ACN was prepared for BEA and the ENN mixture. ENN B 

(pure) was used as an internal standard (IS) for the determination of BEA, while BEA was used for the 

different enniatins present in the enniatin mixture. For each internal standard, a stock solution of 10 

µg/mL in ACN was prepared and stored at -80°C. For all experiments, except for the stability and 

adsorption tests, an internal standard was added to each sample, with a final IS concentration of 20 

ng/mL. From these four stock solutions (BEA 100 µg/mL in ACN, ENNs 100 µg/mL in ACN, ENN B 10 

µg/mL in ACN and BEA 10 µg/mL in ACN), the standard solutions were prepared by dilution in 70/30 

(V/V) ACN/H2O. 
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In vitro FDC protocol  

The specific FDC protocols applied in this research are given in detail in Chapter V and Chapter VII. 

Briefly, the set-up consists of static Franz diffusion cells with a receptor compartment of 5 mL and an 

available diffusion area of 0.64 cm² (Logan Instruments Corp., New Jersey, USA). The topical layer of 

interest, e.g. human skin or buccal porcine mucosa, is cleaned with 0.01 M PBS pH 7.4 and the 

subcutaneous fat is removed [5]. These samples are wrapped in aluminium foil and stored in the 

freezer until their further use. Just before the start of the experiments, the samples are thawed, 

mounted on a template and dermatomed using an electrical powered dermatome (Integra Life 

Sciences, New Jersey, USA). Next, the dermatomed samples are visually inspected for damage and 

are then sandwiched between the donor and acceptor chambers, with the epidermis or epithelial 

layer facing upwards, making sure all air under the sample is removed. The whole assembly is fixed 

on a magnetic stirrer and the receptor fluid was continuously stirred using a Teflon coated magnetic 

stirring bar (600 rpm) to ensure sink conditions. Before starting the experiments, skin integrity is 

checked by measuring the skin impedance using an automatic micro-processor controlled LCR 

impedance bridge (Tinsley, Croydon, UK). Pieces with an impedance value < 10 kΩ, a validated 

system-suitability cut-off, are discarded and replaced by a new piece [37]. The dose solutions are 

topically applied and the donor chamber is covered with parafilm. The temperature of the receptor 

compartment is kept constant, depending on the topical layer used: 32 ± 1 °C for human skin and 37 

± 1 °C for buccal porcine mucosa. Samples (200 µL) are drawn at regular time intervals from the 

sampling port and are immediately replaced by 200 µL fresh receptor solution (the analytically 

determined assay values in the FDC samples are correspondingly corrected for these 

replenishments). At the end of the experiment, the topical surfaces are swabbed with cotton wool to 

remove the remaining donor solution and the exposed surfaces were carefully cut out using a scalpel 

and extracted. These samples are analysed as well and are used to construct a mass balance. 

Ultra high performance liquid chromatography 

The chromatography platform consisted of an Acquity UHPLC equipped with a temperature 

controlled autosampler tray and column oven, thermostated at 25°C (± 5°C) and 45°C (± 5°C), 

respectively (Waters, Milford, MA, USA). Chromatographic separation was achieved on an Acquity 

UHPLC charged surface hybrid (CSH) C18 column (1.7 µm, 100 × 2.1 mm, 130Å), attached to an 

Acquity UHPLC VanGuard pre-column (1.7 µm, 5 × 2.1 mm, 130Å), both obtained from Waters. The 

injection volume was 10 µL and the needle wash consisted of 10/10/80 (V/V/V) DMSO/2-

propanol/ACN. The isocratic flow rate was set to 0.6 mL/min, using 70/30 (V/V) ACN/H2O containing 

0.1% FA and 0.1% 2-propanol as mobile phase. The run time was 4.5 min, of which the first 1.5 min 

were diverted to the waste. A typical combined MRM overlay chromatogram is shown in Figure 1. 
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Figure 1: Combined UHPLC-MS/MS overlay chromatogram, normalised to the largest peak (ENN B). Beauvericin 

at a concentration of 20 ng/mL, whereas the enniatin mixture was 100 ng/mL. 

Mass spectrometry 

For the quantitative mycotoxin analysis, a multi-UHPLC-MS/MS method was developed, with the 

mass spectrometer being a Xevo TQ-S detector (Waters, Milford, MA, USA). The mass spectrometer 

was operated in the positive electrospray ionization mode (ESI+), with an optimised capillary voltage 

of 3.50 kV, cone voltage of 50 V and source offset of 60 V. Source and desolvation temperatures 

were set at 150°C and 600°C, respectively, while cone and desolvation gas flows were 150 and 1000 

L/h, respectively. Acquisition was performed in the multiple reaction monitoring (MRM) mode. The 

selected precursor and product ions, together with the applied collision energies are given in Table 1. 

Data were acquired using Masslynx software (V4.1 SCN 843, Waters, Milford, MA, USA). 
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Table 1: MRM transitions and MS/MS parameters. 

Compound Precursor ion (m/z) Product ions (m/z) Collision energy (eV) 

ENN B 639.91 [M+H]
+
 

196.08 25 
527.26 22 

ENN D 653.99 [M+H]
+
 

196.09 23 
541.05 21 

ENN B1 653.99 [M+H]
+
 

196.09 23 
541.05 21 

BEA 783.94 [M+H]
+
 

244.01 24 
623.23 23 

ENN E 668.07 [M+H]
+
 

209.99 24 
555.29 21 

ENN A1 668.07 [M+H]
+
 

209.99 24 
555.29 21 

ENN C/F 682.47 [M+H]
+
 

209.93 26 
555.01 23 

ENN A 682.47 [M+H]
+
 

209.93 26 
555.01 23 

For structure isomers (ENN D-B1, ENN E-A1 and ENN C/F-A) identical transitions were acquired. 

2.3. Method verification 

Adsorption to FDC glass 

A critical aspect in terms of bioanalytical method development is the adsorption of analytes, which is 

often overlooked. Therefore the adsorption of BEA and ENNs to FDC glass was determined as part of 

the analytical robustness. Therefore, BEA and ENNs mixture were solubilised at a concentration of 

approximately 1000 ng/mL in six different solvent mixtures (formulations), with different 

percentages of organic solvents: aqueous solutions, i.e. 90/10 (V/V) H2O/EtOH (1) and 90/10 (V/V) 

H2O/ACN (4), as well as intermediate organic solutions, i.e. 50/50 (V/V) H2O/EtOH (2) and 50/50 (V/V) 

H2O/ACN (5) and high organic solutions, i.e. 5/95 (V/V) H2O/EtOH (3) and 5/95 (V/V) H2O/ACN (6). 

These were exposed to FDC glass in duplicate and left to equilibrate for 24h at 25°C while 

continuously stirred (600 rpm), after which three independent aliquots were taken and diluted 1:10 

(V/V) with mobile phase, resulting in a final concentration of 100 ng/mL and assayed (hence, n = 2 × 

3). Responses were analysed for each compound separately, using ln-lin models which were fitted 

using generalised estimating equations with unstructured covariance to account for correlation 

within duplicates [38]. QQ-plots confirmed the normality of the raw residuals in these models. In 

general, the model can be described as: ln(mean response) = α + β1 × F2 + β2 × F3 + β3 × F4 + β4 × F5 

+ β5 × F6, with Fk = 1 or 0, when the formulation is equal to or different from k, respectively. The 

complete models, including coefficients α and β1-5, can be found in Table 2.  
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Table 2: Adsorption models. 

Compound Model 

BEA ln (mean response) = 13.88 + 0.29 × F2 + 0.30 × F3 – 0.33 × F4 + 0.22 × F5 + 0.23 × F6 
ENN B ln (mean response) = 14.46 + 0.0044 × F2 + 0.018 × F3 – 0.096 × F4 – 0.063 × F5 – 0.042 × F6 
ENN D ln (mean response) = 11.82 + 0.036 × F2 + 0.029 × F3 – 0.077 × F4 – 0.006 × F5 – 0.009 × F6 
ENN B1 ln (mean response) = 14.09 + 0.023 × F2 + 0.033 × F3 – 0.20 × F4 – 0.14 × F5 – 0.071 × F6 
ENN E ln (mean response) = 11.42 + 0.045 × F2 + 0.050 × F3 – 0.093 × F4 – 0.031 × F5 – 0.013 × F6 
ENN A1 ln (mean response) = 13.38 + 0.039 × F2 + 0.040 × F3 – 0.10 × F4 – 0.024 × F5 – 0.018 × F6 
ENN A ln (mean response) = 11.64 + 0.095 × F2 + 0.11 × F3 – 0.086 × F4 + 0.045 × F5 + 0.054 × F6 
ENN C/F ln (mean response) = 10.28 + 0.061 × F2 + 0.076 × F3 – 0.096 × F4 – 0.011 × F5 – 0.022 × F6 

For each compound separately, the mean response ratios (in %) were evaluated: (i) ACN and EtOH 

were compared per concentration level (10, 50 or 95% organic solvent) and (ii) the concentration 

levels (10 and 50%) were compared to the reference (95% = no adsorption assumed) per organic 

solvent (ACN or EtOH). Reported 95% confidence intervals were Bonferroni-adjusted to account for 

multiplicity in the analysis of each compound separately. An overview of these results is given in 

Tables 3 and 4, respectively. 
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Table 3: Comparison of EtOH (formulations 1, 2 and 3) and ACN (formulations 4, 5 and 6) adsorption per concentration level. 

Formulation Parameter ENN B ENN D BEA ENN E ENN C/F ENN A ENN A1 ENN B1 

1 vs. 4 
10% 

Ratio
(1)

 1.1009344571 1.0801792131 1.3931263473 1.0973838185 1.1008747212 1.0898055452 1.1076017992 1.2232474904 

Lower
(2)

 1.0589059057 0.9701861861 1.3270702847 1.0497497746 1.0513850674 1.053952915 1.0664868921 0.9903668109 

Upper
(2)

 1.1446311446 1.2026424919 1.4624704071 1.1471793319 1.1526938981 1.126877785 1.1503017568 1.5108891031 

p-value 4.385 × 10
-7

 0.37932084 0 2.50182 × 10
-5

 2.6206 × 10
-5

 1.343 × 10
-7

 2.69 × 10
-8

 0.1269154224 

2 vs. 5 
50% 

Ratio
(1)

 1.0697675314 1.0431657129 1.0709440924 1.0786857173 1.0513564029 1.0515199956 1.0649033717 1.1777382738 

Lower
(2)

 1.0108595164 0.9690574018 1.0199887677 1.0441267413 1.0214767574 1.0243252176 1.0293588141 0.9633987272 

Upper
(2)

 1.1321084212 1.12294143 1.1244449796 1.1143885418 1.0821100704 1.0794367669 1.1016753104 1.4397646608 

p-value 0.0338450626 0.666967444 0.0083143839 2.2261 × 10
-6

 0.0006559261 0.0001351252 0.0002424968 0.2492662167 

3 vs. 6 
95% 

Ratio
(1)

 1.0618465063 1.038585196 1.0708509518 1.0653750067 1.0549858861 1.0543339697 1.059351679 1.1095367724 

Lower
(2)

 0.9978672433 0.9930840777 0.9991440757 1.012528248 1.0197746547 1.0138116989 0.9999545723 0.9756308191 

Upper
(2)

 1.1299278642 1.0861710841 1.1477041088 1.1209799895 1.0914129065 1.0964759244 1.1222769621 1.2618214033 

p-value 0.1196561148 0.2163476343 0.106724426 0.0242321573 0.0023756713 0.0122032701 0.1004174304 0.2563858474 

(1) Relative mean response ratio. 
(2) Lower and upper limit of 95% confidence interval. 
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Table 4: Comparison of the adsorption results per organic solvent (ACN or EtOH). 

Formulation Parameter ENN B ENN D BEA ENN E ENN C/F ENN A ENN A1 ENN B1 

EtOH formulations 

10% vs. 95% 

Ratio
(1)

 0.982344 0.971436 0.744290 0.951171 0.926925 0.898625 0.960837 0.967167 

Lower
(2)

 0.931126 0.902527 0.702473 0.909795 0.889234 0.865178 0.915730 0.894629 

Upper
(2)

 1.036380 1.045606 0.788595 0.994430 0.966213 0.933366 1.008165 1.045586 

p-value 1.000000 1.000000 9.651884 × 10
-30

 0.046555 1.672715 × 10
-4

 1.071749 × 10
-9

 0.250225 1.000000 

50% vs. 95% 

Ratio
(1)

 0.986634 1.007389 0.990195 0.994518 0.985286 0.988508 0.998786 0.989831 

Lower
(2)

 0.933328 0.947850 0.934108 0.957302 0.954840 0.950561 0.951130 0.916305 

Upper
(2)

 1.042984 1.070667 1.049649 1.033181 1.016703 1.027970 1.048831 1.069257 

p-value 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

ACN formulations 

10% vs. 95% 

Ratio
(1)

 0.947467 0.934029 0.572111 0.923427 0.888287 0.869376 0.9189801 0.877261 

Lower
(2)

 0.896174 0.846819 0.534581 0.873590 0.850378 0.836277 0.870244 0.684238 

Upper
(2)

 1.001695 1.030220 0.612276 0.976108 0.927886 0.903785 0.970445 1.124735 

p-value 0.119067 0.474466 2.189531 × 10
-75

 0.005158 4.575133 × 10
-9

 2.526985 × 10
-15

 0.002040 0.950172 

50% vs. 95% 

Ratio
(1)

 0.979328 1.002965 0.990109 0.982246 0.988687 0.991153 0.993579 0.932511 

Lower
(2)

 0.914051 0.937616 0.925418 0.933479 0.954814 0.961330 0.944353 0.734244 

Upper
(2)

 1.044927 1.072869 1.059322 1.033560 1.023762 1.021902 1.045371 1.184368 

p-value 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

(1) Relative mean response ratio. 
(2) Lower and upper limit of 95% confidence interval. 
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Analytical stability 

From one duplicate of each of the six formulations from the adsorption experiment, multiple aliquots 

were taken and stored in HPLC glass vials protected from light at different conditions (-35°C, 5°C, 

25°C and 40°C). These were analysed at T0, T2days and T7days, after 1:10 (v/v) dilution with mobile phase 

and each compared with corresponding freshly prepared standard solutions (100 ng/mL). The 

percentage label claim (l.c.) was calculated for each compound separately, using the mean response 

factor of the standards, which were analysed on each experimental day, according to the following 

formulas: (1) response factor (RF) = area standard / theoretical concentration standard and (2) label 

claim percentage (%) = (area sample Tx / (theoretical concentration sample × RF)) × 100%. Next, for 

the worst case stability scenario of 40°C, these percentages were plotted against time (days) for each 

compound and formulation. Stability was evaluated based on the 95% confidence interval around the 

slope in a linear regression analysis of the recovery (%) against time (days) for the worst case 

scenario (40°C). If this interval contains zero, no significant degradation is observed. 

Calibration curve 

Linearity was evaluated by constructing a calibration curve using different standard solutions (1, 5, 

10, 50, 100, 500 and 1000 ng/mL BEA or ENN mixture), containing the respective IS (20 ng/mL ENN B 

or BEA). For each compound the linear range was evaluated and the coefficient of determination (R²) 

was determined. 

Limit of detection 

The limit of detection (LoD) was determined using the signal-to-noise approach, where LoD 

corresponds to a signal-to-noise ratio of 3:1. For BEA and ENNs B, B1, D, E, A and A1 a standard 

solution of 1 ng/mL beauvericin or enniatins mixture was used, while this was 5 ng/mL enniatins 

mixture for ENNs C/F and A. For each ENN, the concentration of the mixture was converted to the 

individual ENN concentration, according to the previously determined chemical composition. 

Injection repeatability 

The method injection repeatability was characterised by sextuplicate injections of standard solutions 

at 100 ng/mL beauvericin or enniatin mixture, containing their respective IS. The calculated 

percentage RSD should be ≤ 10%, based on the EDQM guideline for qualification of mass 

spectrometers [39]. 

Accuracy and precision of receptor fluid samples 

To evaluate the precision and accuracy, the receptor fluid (0.01 M PBS + 1% HPBCD) was spiked with 

beauvericin or enniatin mixture at two concentration levels (10 and 100 ng/mL), each in triplicate (n 
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= 2 × 3), and left to equilibrate for 24 ± 0.25 hours in pre-heated (32°C ± 1°C) FDCs. A 200 µL aliquot 

was taken at the end of the experiment, diluted with the respective IS in ACN and analysed. The 

percentage residual standard deviation (% RSD) and percentage bias were calculated. For the latter 

the following formula was used: bias (%) = (concentration sample – concentration standard) / 

concentration standard × 100%, where the concentration of the sample is calculated using the 

calibration curve. 

Effect of skin components on the mycotoxin MS signal 

Receptor fluid (0.01 M PBS + 1% HPBCD) and extraction solvent (95/5 (V/V) ACN/H2O), both as such 

and previously exposed to a large piece of full-thickness skin for 3.5h ± 0.5h in an incubation shaker 

set at 32°C/150 rpm, were spiked with BEA or ENNs mixture (100 ng/mL) and their respective 

internal standard and analysed. For the receptor fluid, this was done in triplicate (n = 3). This was also 

done in triplicate for the extraction solvent and combined with two dilution procedures, i.e. 1:2 

(V/V), resulting in a final concentration of 50 ng/mL, and 1:4 (V/V), resulting in a final concentration 

of 25 ng/mL (hence n = 2 × 3). The matrix effect is expressed as percentage recovery (responseskin 

soaked / responseas such × 100%). 

3. RESULTS AND DISCUSSION 

3.1. Method development 

The method development was based upon the multi-mycotoxin method described by Van Pamel et 

al. [33], using an Acquity UPLC BEH (Ethylene Bridged Hybrid) C18 (1.7 µm, 100 × 2.1 mm, L1) 

column, thermostated at 45°C. A gradient mobile phase consisting of H2O/ACN with 1mM 

ammonium acetate, 0.1% FA and 0.1% 2-propanol was used at a flow of 0.8 mL/min and an injection 

volume of 10 µL was applied. Considering the objective to determine only BEA and ENNs, an isocratic 

method was developed, using the same Acquity UPLC BEH C18 column, by first performing a scouting 

gradient, from which the optimal mobile phase composition was found to be approximately 70/30 

(V/V) ACN/H2O. However, this method resulted in significant and unacceptable tailing (Figure 2). 

Beside this BEH UPLC C18 column, other research groups have mentioned the use of other column 

chemistry types, i.e. Gemini LC C18 (5 µm, 150 × 4.6 mm, L1), ZORBAX UPLC Eclipse Plus C18 (1.8 µm, 

150 × 2.1 mm, L1), Luna LC C18 (5 µm, 150 × 3 mm, L1), Shiseido Capcell LC C18 (5 µm, 250 × 4.6 mm, 

L1) and Gemini LC C6 phenyl (3 µm, 50 × 2 mm, L11) columns [40-44]. Therefore, we switched to a 

different stationary phase, i.e. Acquity UPLC BEH phenyl (1.7 µm, 100 × 2.1 mm, L11), which 

unfortunately still led to bad peak shapes with unacceptable tailing (Figure 3).  
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UHPLC-PDA conditions 

Sample BEA 0.005 mg/mL + ENNs 0.125 mg/mL in mobile phase 
Injection volume 5 µL 
Isocratic mobile phase composition

(1)
 35/65 (V/V) A/B 

UPLC-PDA 190 – 300 nm (quantification at 205 nm) 
Flow 0.8 mL/min 
Column temperature 45°C 
Column Acquity UPLC BEH C18 (1.7 µm, 100 × 2.1 mm, L1) 

(1) Mobile phase composition: A: H2O + 1 mM ammonium acetate + 0.1% formic acid + 0.1% 2-propanol; B: ACN + 0.1% formic acid 

+ 0.1% 2-propanol. 

Figure 2: Acquity UPLC BEH C18 (1.7 µm, 100 × 2.1 mm, L1) conditions and results. 

UHPLC-PDA conditions 

Sample BEA 0.005 mg/mL + ENNs 0.125 mg/mL in mobile phase 
Injection volume 10 µL 
Isocratic mobile phase composition

(1)
 40/60 (V/V) A/B 

UPLC-PDA 190 – 300 nm (quantification at 205 nm) 
Flow 0.3 mL/min 
Column temperature 45°C 
Column Acquity UPLC BEH phenyl (1.7 µm, 100 × 2.1 mm, L11) 

(1) Mobile phase composition: A: H2O + 1 mM ammonium acetate + 0.1% formic acid + 0.1% 2-propanol; B: ACN + 0.1% formic acid 
+ 0.1% 2-propanol. 

 
Figure 3: Acquity UPLC BEH phenyl (1.7 µm, 100 × 2.1 mm, L11) conditions and results. 

Next, an Acquity UPLC BEH RP18 Shield column (1.7 µm, 100 × 2.1 mm, L1) was used, which 

incorporates a hydrophilic group within the C18 chain. This change in stationary phase resulted in 
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significantly improved peak shapes. However, not all enniatin stereoisomers in the mixture were 

baseline separated, an issue which remained unresolved even after lowering the organic amount in 

the mobile phase composition (Figure 4).  

UHPLC-PDA conditions 

Sample BEA 0.005 mg/mL + ENNs 0.125 mg/mL in mobile phase 
Injection volume 10 µL 
Isocratic mobile phase composition

(1)
 40/60 (V/V) A/B 

UPLC-PDA 190 – 300 nm (quantification at 205 nm) 
Flow 0.8 mL/min 
Column temperature 45°C 
Column Acquity UPLC BEH RP18 shield (1.7 µm, 100 × 2.1 mm, L1) 

(1) Mobile phase composition: A: H2O + 1 mM ammonium acetate + 0.1% formic acid + 0.1% 2-propanol; B: ACN + 0.1% formic acid 
+ 0.1% 2-propanol. 

 
Figure 4: Acquity UPLC BEH RP18 Shield (1.7 µm, 100 × 2.1 mm, L1) conditions and results. 

Therefore, a switch was made to the Acquity UPLC CSH C18 column (1.7 µm, 100 × 2.1 mm), with a 

low level surface charge, designed to improve sample loadability and peak asymmetry in low-ionic-

strength mobile phases. Indeed, higher resolution and overall better performance characteristics 

were achieved in comparison to the UPLC BEH RP18 Shield stationary phase (Table 5). It is also worth 

mentioning that the retention order changed upon switching between these stationary phases, from 

BEA eluting between ENN A1 and ENN C/F (BEH RP18 Shield) to BEA eluting between ENN B1 and 

ENN E (CSH C18). The MS instrument was operated in the positive ion electrospray mode, previously 

confirmed to be the most sensitive mode [33,40-42,44,45]. In our experiments, [M+H]+ ions gave the 

most intense signal and were monitored, as did Van Pamel et al. [33] and Sorensen et al. [40]. By 

infusing mixture solutions of both BEA and ENNs at concentrations of 100 and 500 ng/mL, the MS 

parameters capillary voltage, cone voltage, source offset and probe position were optimised towards 

maximal signal intensity, as well as the selection of product ions and optimisation of collision 

energies. 
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Table 5: Comparison column performance BEH shield C18 and CSH C18. 

Acquity UPLC BEH C18 shield 

Parameter ENN B ENN D ENN B1 ENN E ENN A1 BEA ENN C/F ENN A 

N
(1) 

2549 6804 4123 6236 4341 1523 6630 4207 
k’

(2) 
9.97 12.66 13.17 16.43 17.17 19.46 21.46 22.26 

AsF
(3) 

1.30 0.75 1.17 0.63 1.06 1.07 0.68 0.92 
α

(4) 
            1.27 1.04 1.25 1.05 1.14 1.10       1.04 

R
(5) 

            3.37 0.63 3.58 0.71 1.39 1.37       0.68 

Acquity UPLC C18 CSH  

Parameter ENN B ENN D ENN B1 BEA ENN E ENN A1 ENN C/F ENN A 

N
(1) 

8921 21065 14352 6709 13512 11810 16395 14751 
k’

(2) 
8.78 10.38 11.41 12.59 13.47 14.78 17.59 19.41 

AsF
(3) 

1.50 1.10 1.25 0.94 1.00 1.08 1.07 1.14 
α

(4) 
            1.18 1.10 1.10 1.07 1.10 1.19       1.10 

R
(5) 

            3.44 2.11 1.80 1.28 2.15 4.11       2.12 

(1) Number of theoretical plates: N = 5.54 x (Tr / w)²; with Tr = retention time and w = width of the peak at half-height. 
(2) Capacity factor: k’ = (Tr – T0) / T0; with T0 = hold-up time. 
(3) Asymmetry factor: AsF = (a+b) / 2a; with a the distance between the perpendicular dropped from the peak maximum and the 
leading edge of the peak at 10% of the peak height and a+b the width of the peak at 10% of the peak height. 
(4) Selectivity factor: α = k’B/k’A. 
(5) Resolution: R = ((2 x (TrB – TrA)) / (wA + wB). 

3.2. Method verification 

Adsorption to FDC glass 

The mean response ratios (in %) were evaluated for each compound separately: (i) ACN and EtOH 

were compared per concentration level (10, 50 or 95% organic solvent) (Figure 5) and (ii) the 

concentration levels (10 and 50%) were compared to the reference (95% = no adsorption assumed) 

per organic solvent (ACN or EtOH) (Figure 6). The target response ratio of 100% is indicated by a 

green line, while the pre-set specification limits are denoted by the red lines. 
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Figure 5: Adsorption to FDC glass: response ratios (in %) with 95% confidence intervals of EtOH versus ACN at 10% (A), 50% (B) and 95% (C) organic solvent. The target 

recovery (100%) is indicated by the green line, while the pre-set specification limits (90-110%) are denoted by the red lines. From left to right: BEA, ENN A, ENN C/F, ENN A1, 

ENN E, ENN D, ENN B1 and ENN B. 

 

Figure 6: Adsorption to FDC glass: response ratios (in %) with 95% confidence intervals of EtOH10%/EtOH95% (A), EtOH50%/EtOH95% (B), ACN10%/ACN95% % (C) and ACN50%/ACN95%. 

The target recovery (100%) is indicated by the green line, while the pre-set specification limits (90-110%) are denoted by the red lines. From left to right: BEA, ENN A, ENN 

C/F, ENN A1, ENN E, ENN D, ENN B1 and ENN B. 
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For the majority of compounds, a statistically significant difference between EtOH and ACN was 

observed (p values < 0.05) for 10% and 50% organic solvent levels, and EtOH formulations tended to 

give lower adsorption. If not, this might be related to a larger variability (e.g. ENN B1). However, 

considering a 10% deviation from the target response ratio of 100% as biopharmaceutically negligible 

(i.e. the pre-set specification limits), a biopharmaceutically significant difference was only observed 

for BEA at 10% organic solvent (based on the 95% confidence interval excluding the specification 

limits). BEA, the most lipophilic compound (highest log P), showed significantly more adsorption to 

FDC glass when formulated in ACN. Moreover, there was no biopharmaceutically significant 

adsorption effect at a concentration of ≥ 50% EtOH for all investigated cyclic depsipeptide 

mycotoxins. The latter also applied to the ACN formulations, except for ENN B1, where a possible 

significant adsorption effect could not be excluded. For BEA, significant adsorption was observed at 

low levels of organic solvent (10% EtOH or ACN), where adsorption losses as high as 45% were 

observed (Figure 6C). Most likely, the hydrophobicity of the compounds plays a role in the observed 

adsorption effects: compounds with higher log P values tend to give more adsorption to FDC glass. 

Log P values for all investigated cyclic depsipeptide mycotoxins are given in Table 6.  

Table 6: Log P values of the investigated cyclic depsipeptide mycotoxins BEA and ENNs. 

Compound BEA ENN A ENN C/F ENN A1 ENN E ENN B1 ENN D ENN B 

Log P
(1)

 7.13 5.87 5.66 5.48 5.40 5.08 5.01 4.68 

(1) Calculated using Hyperchem, version 8.0. 

These results were taken into account during the further method development: at least 50% organic 

solvent, either ACN or EtOH, was used when preparing solutions or samples containing BEA and/or 

ENNs. Only the receptor fluid (RF) itself did not contain any organic solvent, as the use of organic 

solvents is considered not well-suited as a biocompatible receptor medium [46]. Therefore, 1% 

HPBCD was added as a modifier. To investigate if this modifier can sufficiently inhibit adsorption of 

the cyclic depsipeptides to FDC glass and to further verify this method, precision and accuracy of the 

obtained RF samples were investigated as well. 

Analytical stability 

Linear regression analysis of the recovery (%) against time (days) was performed for each compound 

and formulation for the worst case scenario (40°C), after which the 95% confidence interval around 

the slope was investigated. If this interval contains zero, no significant degradation is observed. 

Figure 7 presents the plots, whereas regression analyses data can be found in Table 7. These data 

confirm that there was no significant degradation of BEA and ENNs in these sample solutions stored 

for a period of 7 days at 40°C. Considering this is the worst-case scenario, we conclude that there is 

likewise no evidence of degradation for the other storage conditions (-35°C, 5°C and 25°C). 
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Figure 7: Stability profile for each cyclic depsipeptide mycotoxin stored at 40°C for 7 days in six different formulations. 
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Table 7: Analytical stability regression results (40°C). 

Compound Formulation Slope Intercept 

ENN B 

10/90 (V/V) EtOH/H2O -1.11 [-10.94; 8.72] 104.24 [62.91; 145.56] 

50/50 (V/V) EtOH/H2O -0.79 [-18.07; -16.48] 105.46 [32.85; 178.07] 

95/5 (V/V) EtOH/H2O -0.51 [-15.67; 14.65] 107.16 [43.43; 170.88] 

10/90 (V/V) ACN/H2O -0.67 [-24.83; 23.48] 99.29 [-2.23; 200.81] 

50/50 (V/V) ACN/H2O -0.37 [-25.18; 24.44] 102.98 [-1.30; 207.26] 

95/5 (V/V) ACN/H2O -0.13 [-17.61; 17.34] 101.60 [28.15; 175.05] 

ENN D 

10/90 (V/V) EtOH/H2O 0.46 [-25.75; 26.68] 93.93 [-16.25; 204.12] 

50/50 (V/V) EtOH/H2O 0.47 [-21.57; 22.51] 98.51 [5.88; 191.14] 

95/5 (V/V) EtOH/H2O 0.57 [-18.15; 19.30] 101.53 [22.82; 180.23] 

10/90 (V/V) ACN/H2O -0.24 [-24.42; 23.94] 97.07 [-4.56; 198.70] 

50/50 (V/V) ACN/H2O -0.18 [-23.86; 23.49] 101.89 [2.38; 201.39] 

95/5 (V/V) ACN/H2O 0.18 [-16.52; 16.88] 100.25 [30.05; 170.45] 

ENN B1 

10/90 (V/V) EtOH/H2O -1.48 [-11.78; 8.82] 104.99 [61.70; 148.29] 

50/50 (V/V) EtOH/H2O -0.84 [-16.06; 14.39] 107.56 [43.55; 171.56] 

95/5 (V/V) EtOH/H2O -0.34 [-15.87; 15.19] 109.55 [44.29; 174.82] 

10/90 (V/V) ACN/H2O -0.48 [-29.86; 28.90] 100.35 [-23.13; 223.82] 

50/50 (V/V) ACN/H2O -0.28 [-26.95; 26.38] 104.92 [-7.17; 217.01] 

95/5 (V/V) ACN/H2O 0.24 [-18.49; 18.96] 103.43 [24.72; 182.13] 

BEA 

10/90 (V/V) EtOH/H2O -0.36 [-11.13; 10.42] 71.18 [25.89; 116.47] 

50/50 (V/V) EtOH/H2O 0.06 [-18.07; 18.18] 95.98 [19.79; 172.18] 

95/5 (V/V) EtOH/H2O 0.61 [-14.20; 15.42] 98.51 [36.25; 160.76] 

10/90 (V/V) ACN/H2O -0.18 [-7.68; 7.33] 52.36 [20.82; 83.91] 

50/50 (V/V) ACN/H2O 0.48 [-26.12; 27.09] 93.87 [-17.95; 205.70] 

95/5 (V/V) ACN/H2O 1.25 [-16.03; 18.54] 92.14 [19.48; 164.80] 

ENN E 

10/90 (V/V) EtOH/H2O -1.38 [-2.92; 0.15] 97.81 [91.37; 104.25] 

50/50 (V/V) EtOH/H2O -0.62 [-2.89; 1.64] 101.64 [92.12; 111.16] 

95/5 (V/V) EtOH/H2O -0.48 [-0.97; 0.01] 104.09 [102.02; 106.15] 

10/90 (V/V) ACN/H2O -0.54 [-18.48; 17.40] 94.67 [19.27; 170.07] 

50/50 (V/V) ACN/H2O -0.14 [-15.45; 15.17] 99.36 [35.01; 163.71] 

95/5 (V/V) ACN/H2O -0.09 [-6.73; 6.56] 99.02 [71.07; 126.96] 

ENN A1 

10/90 (V/V) EtOH/H2O -1.56 [-3.80; 0.69] 98.94 [89.49; 108.38] 

50/50 (V/V) EtOH/H2O -1.12 [-6.52; 4.29] 104.88 [82.17; 127.60] 

95/5 (V/V) EtOH/H2O -0.69 [-5.61; 4.23] 106.91 [86.23; 127.58] 

10/90 (V/V) ACN/H2O -0.60 [-16.80; 15.60] 94.55 [26.45; 162.65] 

50/50 (V/V) ACN/H2O -0.41 [-14.71; 13.89] 101.61 [41.49; 161.72] 

95/5 (V/V) ACN/H2O -0.20 [-6.10; 5.71] 100.50 [75.67; 125.32] 

ENN C/F 

10/90 (V/V) EtOH/H2O -1.65 [-19.34; 16.05] 95.83 [21.45; 170.21] 

50/50 (V/V) EtOH/H2O -1.36 [-11.08; 8.37] 102.61 [61.74; 143.49] 

95/5 (V/V) EtOH/H2O -0.68 [-10.40; 9.03] 105.04 [64.22; 145.85] 

10/90 (V/V) ACN/H2O -0.74 [-3.22; 1.75] 91.68 [81.25; 102.11] 

50/50 (V/V) ACN/H2O -0.68 [-1.68; 0.33] 100.41 [96.19; 104.62] 

95/5 (V/V) ACN/H2O -0.64 [-7.53; 6.25] 99.52 [70.56; 128.47] 

ENN A 

10/90 (V/V) EtOH/H2O -1.74 [-15.32; 11.85] 95.69 [38.57; 152.80] 

50/50 (V/V) EtOH/H2O -1.47 [-9.96; 7.02] 105.49 [69.81; 141.17] 

95/5 (V/V) EtOH/H2O -1.03 [-13.63; 11.56] 109.18 [56.24; 162.13] 

10/90 (V/V) ACN/H2O -1.02 [-1.54; -0.49] 92.34 [90.13; 94.55] 

50/50 (V/V) ACN/H2O -0.89 [-3.62; 1.84] 103.90 [92.43; 115.37] 

95/5 (V/V) ACN/H2O -0.59 [-10.86; 9.68] 102.54 [59.37; 145.71] 

In one case, namely for ENN A solubilised in 10/90 (V/V) ACN/H2O, the 95% confidence interval 

around the slope did not contain zero (-1.54; -0.49). However, following justifications allow us to 

assume that there is also no biopharmaceutically significant degradation for this compound in this 

formulation: (i) no significant difference between the different storage conditions at 7 days was 

observed, (ii) for the other tested formulations there was no significant degradation observed, (iii) 
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given the many tests, this may well be a false positive finding (e.g. the 99% confidence level interval 

does contain zero (-3.65; 1.62)), (iv) ENN A is a stereoisomer of ENN C/F and its chemical structure is 

also very similar to the other enniatins (A1, B, B1, C, D and E), which were demonstrated to be stable 

under these experimental conditions, and (v) the difference between T0 and T7days results were still 

<10% relative (7%). Overall, it was concluded that there is no biopharmaceutically, nor statistically 

significant degradation of enniatins or beauvericin after 7 days, when formulated in an organic or 

aqueous mixture, indicating no evidence of an unacceptable analytical stability of these compounds. 

Also no trend could be demonstrated, i.e. harsher conditions (ranging between -35°C and 40°C) do 

not translate into higher degradation.  

Calibration curve 

The linear calibration curve was forced through zero, which is justified by the fact that the difference 

in slope between the normal calibration curve and the one forced through zero is not significant, i.e. 

the 95% confidence interval around the intercept (without zero inclusion) also contains zero. For BEA 

a linear range was obtained from 1 to 100 ng/mL with an acceptable coefficient of determination of 

0.998. For ENNs B and B1 the same linear range was used, whereas for ENN A1 this was 1 – 500 

ng/mL and for ENN A this was 5 – 1000 ng/mL. For all other ENNs a linear range was obtained from 1 

to 1000 ng/mL. For all enniatins the determination coefficients were equal to 1.000. 

Limit of detection 

All compounds have similar experimentally determined detection limits, which was expected due to 

their structural similarity: 17 pg/mL for BEA and ENN B, 14 pg/mL for ENN D and ENN B1, 15 pg/mL 

for ENN E, ENN A1 and ENN A and 10 pg/mL for ENN C/F.  

Injection repeatability 

The RSDs ranged between 0.15% and 1.84% for all cyclic depsipeptide mycotoxins investigated, 

which means that the injection repeatability of the method is below the pre-set limit of 10% and thus 

acceptable for our purposes.  

Accuracy and precision of receptor fluid samples 

At the 100 ng/mL concentration level, the precision ranged between 0.57% to 9.25%, which is within 

the normal expected variability range of 10%. At the lower concentration level (i.e. 10 ng/mL), these 

values were slightly higher (3.62% to 10.70%), but still acceptable for our purposes. The only 

exception was for ENN C/F at the lowest level with a precision of 24.37%: this can be ascribed to the 

concentration being below the limit of quantification (ENN C/F accounts for only 0.4% of the total 

amount enniatins in the mixture). The bias at the highest concentration level (i.e. 100 ng/mL) ranged 
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between 0.91% and 24.47%. For the 10 ng/mL concentration level, this was 0.68% and 24.86%. These 

values are slightly higher than the specification limits given by the FDA in their guidelines for formal 

bioanalytical method validation (≤ 15.0% and 20.0% at LoQ, n = 5), but are considered sufficient for 

our purposes [47]. From these acceptable accuracies, it is concluded that there are no significant 

adsorption losses upon using 1% HPBCD in PBS as a modifier in the receptor fluid.  

Effect of skin components on the mycotoxin MS signal 

All obtained recoveries were between 103.1% and 107.7% for the extraction solvent and between 

95.0% and 113.4% for the receptor fluid. These results indicate no significant effect of skin 

compounds on the MS signal. Moreover, in an experimental FDC set-up the skin is only exposed at a 

0.64 cm² dermal surface area and not fully soaked in the receptor fluid, as in this method verification, 

representing a worst-case situation. 

4. CONCLUSIONS 

This chapter described the development of a sensitive, specific and high-throughput UHPLC-MS/MS 

method for the quantitative and simultaneous determination of cyclic depsipeptide mycotoxins 

beauvericin and enniatins (B, B1, A, A1, D, E, C/F) in human skin Franz diffusion cell samples from in 

vitro transdermal experiments. Special attention was paid to analytical stability and adsorption to 

glass. 
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ABSTRACT 

Currently, dermal exposure data of cyclic depsipeptide mycotoxins are completely absent. There is 

a lack of understanding about the local skin and systemic kinetics and effects, despite their 

widespread skin contact and intrinsic hazard. Therefore, we provide a quantitative characterisation 

of their dermal kinetics. The emerging mycotoxins enniatins and beauvericin were used as model 

compounds and their transdermal kinetics were quantitatively evaluated, using intact and 

damaged human skin in an in vitro Franz diffusion cell set-up and UHPLC-MS/MS analytics. We 

demonstrated that all investigated mycotoxins are able to penetrate through the skin. ENN B 

showed the highest permeation (kp,v = 9.44 × 10-6 cm/h), whereas BEA showed the lowest (kp,v = 

2.35 × 10-6 cm/h) and the other ENNs ranging in between. Combining these values with 

experimentally determined solubility data, Jmax values ranging from 0.02 to 0.35 μg/(cm2 × h) for 

intact skin and from 0.07 to 1.11 μg/(cm2 × h) for damaged skin were obtained. These were used 

to determine the daily dermal exposure (DDE) in a worst-case scenario. On the other hand, DDE’s 

for a typical occupational scenario were calculated based on real-life mycotoxin concentrations for 

the industrial exposure of food-related workers. In the latter case, for contact with intact human 

skin, DDE’s up to 0.0870 ng/(kg BW × day) for ENN A were calculated, whereas for impaired skin 

barrier this can even rise up to 0.3209 ng/(kg BW × day) for ENN B1. This knowledge is needed for 

the risk assessment after skin exposure of contaminated food, feed, indoor surfaces and airborne 

particles with mycotoxins. 
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CHAPTER V 

HUMAN SKIN PERMEATION OF 

BEAUVERICIN AND ENNIATINS 

Main focus in this chapter: 

 To quantitatively determine the human skin kinetics of CDPs beauvericin and enniatins. 

 Evaluate the impact on risk assessment after dermal exposure of these CDP mycotoxins. 

 

1. INTRODUCTION 

Cyclic depsipeptides are a group of naturally occurring bioactive peptides, some of which are already 

developed as pharmaceutical drugs, e.g. valinomycin. They are not only produced by fungi, e.g. the 

mycotoxins enniatins (ENNs) are produced by strains of some species of fungal genera Alternaria, 

Fusarium, Halosarpheia and Verticillium [1-5] and beauvericin (BEA) by Paecilomyces fumosoroseus 

and Fusarium and Beauveria species [6,7], but also by bacteria (e.g. the anti-lymphoma romidepsin) 

and many marine organisms (e.g. the anti-HIV papuamides) [8-10]. The emerging mycotoxins 

beauvericin and enniatins are non-ionised, cyclic hexadepsipeptides with cation-complexing 

ionophoric and lipophilic properties. Besides their well-known antibiotic and insecticidal activity, BEA 

and ENNs are also inhibitors of acyl-CoA:cholesterol acyl transferase [11-13]. Furthermore, their 

cytotoxicity has already been demonstrated in various cell lines, such as human colorectal (Caco-2, 

HCT-15 and HT-29), cervical (HeLa), breast (BC-1 and MCF-7), liver (Hep-G2), lung (A549, NCI-H460 

and MRC-5), pancreatic (MIA Pa Ca-2), ovarian (SK-OV-3), glioma (SF-268) and skin (SK-MEL-2) cancer 

cells, exerting cytotoxic activities in the low micromolar range [11,12,14-22]. Recently, it has also 

been demonstrated that beauvericin is potentially genotoxic to human lymphocytes in vitro, causing 

a significant increase in chromosomal aberrations, sister-chromatid exchanges and micronuclei 

formation on one hand and significantly decreasing the mitotic index on the other hand [14]. At the 

same time, Klaric et al. have concluded, using the Comet assay to PK15 cells, that exposure to BEA 

could induce DNA damage [23]. Despite these positive results for BEA, Fotso and Smith showed a 

negative mutagenicity in the Ames test [24]. For enniatin B also negative genotoxic potential was 

found in a Comet, Ames and micronucleus assay [25]. Although these conflicting results exist, it 
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cannot be excluded that prolonged exposure to these cyclic depsipeptide mycotoxins may contribute 

to carcinogenicity in humans. Tonshin and co-workers have also indicated that both ENNs and BEA 

cause significant mitochondrial dysfunction by affecting the mitochondrial volume regulation, 

oxidative phosphorylation and ion homeostasis [26]. The inherent cation-complexing properties of 

these cyclic depsipeptide mycotoxins, which might also cause changes in intracellular calcium 

concentrations, may partly explain their toxicity. 

It can thus be stated that the cyclic depsipeptides enniatins and beauvericin pose a potential health 

hazard and are considered as emerging mycotoxins. A number of studies have already been 

performed to evaluate the amount of BEA and ENNs present in food, as absorption of mycotoxins 

often occurs by ingestion of contaminated food [27-32]. However, inhalation and dermal exposure to 

air, dust and food (such as natural fruit waxes for example), containing these toxins may not be 

overlooked as well [33]. To date, only two studies, both in school buildings, have investigated the 

amount of BEA and ENNs in airborne samples [34,35] and up till now, no studies have been 

performed to investigate the transdermal behaviour of these cyclic depsipeptide mycotoxins. Our 

group has already recommended to limit dermal exposure to the traditional mycotoxins [33], 

however, the skin remains unexplored as exposure route for enniatins and beauvericin and to date, 

skin permeability data of these emerging mycotoxins are non-existing. However, in view of the 

accumulating evidence of their toxic potential, this information is essential for proper risk 

management [33,36].  

On the other hand, there is also an increasing appreciation for these cyclic depsipeptides as topically 

applied medicines, for the treatment of dermatological diseases like eczema, psoriasis and skin 

cancers or having systematic functions after transdermal permeation. For example, kahalalide F is 

currently under phase II clinical trials for several types of cancer and psoriasis [37]. Romidepsin or 

FR901228, a potent class 1 selective histone deacetylase (HDAC) inhibitor, has been shown to be 

effective in vitro to the cutaneous melanomas cancer cell lines SK-MEL2 and SK-MEL28, with IC50 

values ranging in the low nanomolar range [38]. Other cyclic depsipeptides like emodepside and 

PF1022, with structures closely resembling that of beauvericin and enniatins, have been patented in 

certain topical formulations for controlling endoparasites [39]. 

At this moment, there is a significant lack of knowledge about both the local skin and systemic effects 

that can occur due to dermal exposure to cyclic depsipeptides in general. Moreover, mechanical 

pathways and models are completely absent. Therefore, the transdermal kinetics of the cyclic 

depsipeptide mycotoxins beauvericin and enniatins were quantitatively evaluated in this study, using 

excised human skin in an ex vivo in vitro Franz diffusion cell (FDC) set-up. 
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2. MATERIALS AND METHODS 

2.1. Chemicals and reagents 

Mycotoxins beauvericin (BEA) and enniatin B (ENN B) were supplied by BioAustralis (Smithfield NSW, 

Australia), while the enniatin mixture (ENNs) was obtained from Cfm Oscar Tropitzsch (Marktredwitz, 

Germany). No formal ENN composition was supplied by the manufacturer (only e-mail 

correspondence), therefore the composition was experimentally determined by our group, assuming 

a relative response factor (RRF) = 1 for the individual constituents: 43.8% ENN B, 34.4% ENN B1, 

14.0% ENN A1, 3.6% ENN D, 1.8% ENN A, 1.8% ENN E and 0.4% ENN C or F. These data were obtained 

by UHPLC-MS and UHPLC-UV (205 nm) normalised areas. ULC-MS grade acetonitrile (ACN), formic 

acid (FA) and 2-propanol, used for preparation of the mobile phase, were purchased from Biosolve 

(Valkenswaard, The Netherlands). Ultrapure water (H2O) was produced by an Arium pro VF TOC 

water purification system (Sartorius, Göttingen, Germany), resulting in ultrapure water of 18.2 MΩ × 

cm quality. Sigma-Aldrich (St. Louis, MO, USA) supplied 0.01 M phosphate buffered saline (PBS) and 

dimethyl sulfoxide (DMSO). Ethanol (EtOH), used for preparation of the dose solutions, was 

purchased from Merck (Darmstadt, Germany) and UHPLC grade ACN and EtOH, used in the solubility 

experiments, was bought from Fisher Scientific (Waltham, MA, USA). Pharma grade hydroxypropyl-β-

cyclodextrin (HPBCD) was supplied by Cerestar (Mechelen, Belgium). This was used as a solubilising 

modifier to the receptor fluid (PBS), in order to guarantee sink conditions of the hydrophobic cyclic 

depsipeptide mycotoxins throughout the experiment [40]. 

2.2. Analytical method 

We previously developed a sensitive, specific and high-throughput bioanalytical ultra high 

performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for the 

quantitative and simultaneous determination of cyclic depsipeptide mycotoxins beauvericin and 

enniatins (A, A1, B, B1, D, E, C/F) in human skin Franz diffusion cell samples. Briefly, the UHPLC-

MS/MS platform consisted of an Acquity UHPLC equipped with a Xevo TQ-S MS detector (Waters, 

Milford, MA, USA). An Acquity UHPLC CSH C18 column (1.7 µm, 100 × 2.1 mm, 130Å), attached to an 

Acquity UHPLC VanGuard pre-column (1.7µm, 5 × 2.1 mm, 130Å), was used for the chromatographic 

separation, thermostated at 45°C (Waters, Milford, MA, USA). The injection volume was 10 µL and 

the needle wash consisted of 10/10/80 (V/V/V) DMSO/2-propanol/ACN. The isocratic flow rate was 

set to 0.6 mL/min, using 70/30 (V/V) ACN/H2O with 0.1% FA and 0.1% 2-propanol as mobile phase. 

The run time was 4.5 min. The mass spectrometer was operated in the positive electrospray 

ionization mode (ESI+), with a capillary voltage of 3.50 kV and cone voltage of 50 V. Source and 

desolvation temperatures were set at 150°C and 600°C, respectively, while cone and desolvation gas 
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flows were 150 and 1000 L/h, respectively. Data were acquired using Masslynx software (V4.1 SCN 

843, Waters, Milford, MA, USA). ENN B was used as an internal standard (IS) for the determination of 

BEA, while BEA was used for the enniatin mixture. The selected precursor and product ions, with the 

applied collision energies between brackets, are given. The selected precursor ion for ENN B was m/z 

639.91 with two selected product ions at m/z 196.08 (25 V) and m/z 527.26 (22 V), for ENN D and B1 

the precursor ion was m/z 653.99 and m/z 196.09 (23 V) and m/z 541.05 (21 V) were the product 

ions. For ENN E and A1, m/z 668.07 was the precursor ion and m/z 209.99 (24 V) and m/z 555.29 (21 

V) were its product ions. ENNs A and C or F have a precursor ion of m/z 682.47 with product ions m/z 

209.93 (26 V) and m/z 555.01 (23 V). Lastly BEA has a precursor ion at m/z 783.94, with m/z 244.01 

(24 V) and m/z 623.23 (23 V) as its product ions. 

This method has also been successfully verified. It was demonstrated that beauvericin and enniatins 

are stable for at least 7 days when formulated in different organic or aqueous mixtures. Additional 

attention was paid to the investigation of analyte losses due to adsorption issues. It was shown that 

at least 50% organic solvent is required to prevent significant adsorption to glass. The limits of 

detection were 17 pg/mL for BEA and ENN B, 14 pg/mL for ENN D and ENN B1, 15 pg/mL for ENN E, 

ENN A1 and ENN A and 10 pg/mL for ENN C/F. There was no significant effect of skin compounds on 

the mycotoxin MS signal observed and the accuracy and precision of the obtained receptor fluid 

samples were considered acceptable for our purposes. More details about the development and 

verification of the applied bioanalytical method are given in Chapter IV. 

2.3. In vitro FDC study using human skin 

Seen the potential toxicity of the cyclic depsipeptide mycotoxins beauvericin and enniatins, it is 

ethically unacceptable to use living human beings in the transdermal study. Therefore, the 

permeation of these mycotoxins through human skin was determined using a static Franz diffusion 

cell set-up with a receptor compartment of 5 mL and an available diffusion area of 0.64 cm² (Logan 

Instruments Corp., New Jersey, USA). Beside intact skin samples, this study also included damaged 

skin (tape-stripped 20 times with Scotch magic tape, 3M, Minnesota, USA) to evaluate the effect of 

an impaired skin barrier. The experiments were replicated four times for each compound 

(beauvericin and enniatin mixture) with three different skin donors, for both intact (n = 12) as well as 

damaged skin (n = 12). Human skin from the abdominal region was collected from healthy female 

patients (32 ± 4 years old (BEA) and 35 ± 2 years old (ENNs), mean ± SEM) who had undergone 

aesthetic reduction surgery, with informed consent and confidentiality procedures in place 

(University Hospital, Ghent, Belgium). Skin preparation was done according to the internationally 

accepted guidelines [41]. Immediately after surgical removal, the skin was cleaned with 0.01 M PBS 

pH 7.4 and the subcutaneous fat was removed. The skin samples were wrapped in aluminium foil and 
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stored at -20 °C for no longer than 6 months. Just before the start of the experiments, the full-

thickness skin was thawed, tape-stripped or left intact, mounted on a template and dermatomed to 

split-thickness skin using an electrical powered dermatome (Integra Life Sciences, New Jersey, USA). 

The experimentally obtained thickness of the skin, determined with a micrometer (Mitutoyo, Tokyo, 

Japan), was 270 ± 13 µm and 384 ± 14 µm (BEA) and 331 ± 13 µm and 287 ± 12 µm (ENNs), for the 

intact and stripped skin, respectively (mean ± SEM, n = 29-46). After visual inspection to avoid 

pinholes, the skin samples were sandwiched between the donor and acceptor chambers, with the 

epidermis facing upwards, making sure all air under the skin was removed. The whole assembly was 

fixed on a magnetic stirrer and the receptor fluid (1% HPBCD in 0.01 M PBS pH 7.4) was continuously 

stirred using a Teflon coated magnetic stirring bar (600 rpm) to ensure sink conditions. Before 

starting the experiments, skin integrity was checked by measuring the skin impedance using an 

automatic microprocessor-controlled LCR impedance bridge (Tinsley, Croydon, UK). Skin pieces with 

an impedance value < 10 kΩ, a previously validated system-suitability cut-off, were discarded and 

replaced by a new piece [42]. Overall impedance values of 52 ± 7 kΩ and 20 ± 3 kΩ (BEA) and 50 ± 7 

kΩ and 21 ± 2 kΩ (ENNs) (mean ± SEM, n = 12) were obtained for respectively intact and stripped skin 

pieces, indicating significant skin damaging by tape-stripping (p < 0.05). The dose solutions at a 

concentration of 1 mg/mL BEA or ENNs mixture (total concentration enniatins = 1 mg/mL) in 60/40 

(V/V) EtOH/H2O, were topically applied to the epidermal surface of the skin (400 µL). The 

experimentally determined applied concentration of each mycotoxin is given in Table 1. The donor 

chamber was covered with parafilm and the temperature of the receptor compartment was kept at 

32 ± 1 °C. Samples (200 µL) were drawn at regular time intervals (3, 6, 8, 10, 15, 17, 20, 22 and 24h) 

from the sampling port and were immediately replaced by 200 µL fresh receptor solution. The 

analytically determined mycotoxin assay values in the FDC samples were correspondingly corrected 

for the replenishments. At the end of the experiment (i.e. after 24h), the skin surfaces were swabbed 

with cotton wool to remove the remaining donor solution, then epidermis and dermis were 

separated and mycotoxins were extracted. These were all used to construct a mass balance: the 

recovery of each mycotoxin was between 100.4 ± 0.35% and 105.3 ± 0.39% (mean ± SEM, n = 23-24). 

Moreover, the recoveries of the individual replicates were all within 90 – 100%, confirming the 

quantitative validity of our data. Notwithstanding the confirmed stability of the mycotoxins for as 

long as 7 days under diverse storage conditions, all samples (i.a. skin extracts and receptor fluid 

samples) were analysed as soon as possible (within 72h).  



CHAPTER V – HUMAN SKIN PERMEATION OF BEAUVERICIN AND ENNIATINS 

 

 

178 

Table 1: Cyclic depsipeptide mycotoxins used in the transdermal investigation: structure, some molecular descriptors and the experimentally determined solubility in 

different solvent mixtures. 

Mycotoxin 
Structure

(1)
 

Log P
(2)

 
Molecular 

weight (Da) 
Conc. applied DS 

(mg/mL)
(3)

 
Solubility (mg/mL)

(5)
 

R1 R2 R3 100% H2O 30% EtOH in H2O 60% EtOH in H2O 

Beauvericin BEA 
   

7.13 783.96 1.13 0.082 0.069 7.151 

Enniatin B ENN B 
   

4.68 639.82 0.44 -
(6)

 -
(6)

 -
(6)

 

Enniatin B1 ENN B1 
   

5.08 653.85 0.38 -
(6)

 -
(6)

 -
(6)

 

Enniatin A1 ENN A1 
   

5.48 667.88 0.15 -
(6)

 -
(6)

 -
(6)

 

Enniatin D ENN D 
   

5.01 653.85 3.50 x 10
-2

 -
(6)

 -
(6)

 -
(6)

 

Enniatin A ENN A 
   

5.87 681.90 1.80 x 10
-2

 -
(6)

 -
(6)

 -
(6)

 

Enniatin E 
ENN E1 

 

ENN E2 

      

 

 

 

 

 

5.40 667.88 1.71 x 10
-2

 -
(6)

 -
(6)

 -
(6)

 

Enniatins total ENNs -
(4)

 -
(4)

 -
(4)

 1.03 0.294 0.847 36.918 

(1)  

(2) Hyperchem, version 8.0. 
(3) Experimentally determined; DS = dose solution. 
(4) Not applicable. 
(5) Experimentally determined; solvent mixtures are expressed as V/V. 
(6) Enniatin solubility is expressed as the solubility of the total enniatin complex. 
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2.4. Sample preparation 

Prior to analysis, the 200 µL receptor fluid samples, drawn from the FDC sampling port at regular 

time intervals, were 1:2 diluted with ACN, containing the respective IS. At the end of the experiment, 

the skin samples (i.e. separated in dermis and epidermis) were extracted overnight at 25°C, while 

shaking (750 rpm) in a mixture of 95/5 (V/V) ACN/H2O. Following this incubation, the skin samples 

were centrifuged at 20000 rpm at room temperature, after which an aliquot was appropriately 

diluted with a mixture of 70/30 ACN/H2O to prevent MS overload. The IS was added during the final 

dilution step. The samples containing the remaining dose solution swabs were also extracted 

overnight at 40°C (150 rpm) in a mixture of 70/30 ACN/H2O. Prior to analysis, an aliquot was 

appropriately diluted, whereby the IS was added in the final dilution step. 

2.5. Kinetic data analysis 

The skin permeation parameters were calculated from the individual curves of the cumulative 

amount of each mycotoxin permeated as a function of time. Steady-state flux (Jss) was obtained from 

the slope of the linear portion of the curve divided by 0.64 to correct for the exposed skin area. The 

lag time (tlag) was estimated by extrapolating the linear portion of the curve to the time-axis. The 

cumulative quantity, expressed as percentage of the effective dose applied, obtained after one day is 

Q1d. From these experimentally determined secondary kinetic parameters, the apparent primary 

parameters could be calculated according to the European Centre for Ecotoxicology and Toxicology 

of Chemicals [43]. The permeability coefficient kp,v was obtained using the following equation: kp,v = 

Jss/Cv, where Cv is the concentration of each mycotoxin in the vehicle (dose formulation). From the 

skin extractions, the mycotoxin concentrations within the skin (i.e. separated in dermis and 

epidermis) were also determined, taking the respective skin volumes into account: skin volume (cm³) 

= skin thickness (cm) × skin surface (0.64 cm²). An epidermis thickness of 50 µm was taken for intact 

skin, while this was 46 µm for tape-stripped skin. The dermis thickness was then calculated as 

follows: dermis thickness (cm) = experimentally determined skin thickness (cm) – epidermis thickness 

(cm). Considering the actual amount applied is different for each mycotoxin, skin concentrations as 

such cannot be directly compared. Therefore these were normalised to estimate a skin concentration 

after application of 1 mg/mL, assuming a linear relationship and using the following calculation: 

normalised skin concentration (µg/mL) = experimentally determined skin concentration (µg/mL) × [1 

(mg/mL)/ concentration dose solution applied (mg/mL)]. 
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2.6. Solubility experiments 

Since there was no data available about the solubility of these compounds in EtOH/H2O mixtures, 

these were experimentally determined using the shake flask technique. For each compound, i.e. 

beauvericin and enniatin mixture, three different solvents were tested (H2O, 30/70 (V/V) EtOH/H2O 

and 60/40 (V/V) EtOH/H2O), each in duplicate. In an 0.5 mL LoBind Eppendorf tube approximately 1.0 

mg compound was weighed, to which solvent increments of 10 µL were added to maximally 100 µL 

to assure saturation. These were then stirred at 300 rpm for 48h at room temperature (22.5 ± 2.5°C) 

in an Eppendorf thermomixer (Eppendorf, Hamburg, Germany). Next, the tubes were centrifuged at 

20,000 g for 30 minutes in an Eppendorf centrifuge 5417R (Eppendorf, Hamburg, Germany) to 

sediment the remaining undissolved compound material. An aliquot of the supernatant solution was 

appropriately diluted and analysed according to the previously mentioned UHPLC-MS/MS method 

[44]. It is also acknowledged that the unavailability of isolated ENN compounds hinders a detailed 

physicochemical solubility study, as currently only a mixture of ENN compounds was available. 

2.7. Risk assessment after dermal exposure 

In risk assessment the concept of maximum exposure is important with regard to estimating the 

exposure of the individual with the highest actual or possible exposure [45]. Therefore, EPA (US 

Environmental Protection Agency), has introduced the concept of maximum flux, which is stated to 

be an inherently more useful and practical parameter when evaluating the potential therapeutic 

benefit or toxicological risk of a topically or transdermally absorbed substance: Jmax = kp × S, where S 

is the solubility of the compound in the same vehicle used during the permeation studies 

determining kp [46-50]. Since the dose solution applied to the skin should be the same (or a realistic 

surrogate) as that to which humans may be exposed, it was decided to use a more lipophilic 

ethanolic matrix instead of water, as it resembles more closely the real-life matrix where mycotoxins 

are also presented e.g. in fruit-waxes [32,51]. Assuming that ethanol (or the matrix in general) does 

not influence the skin barrier, the maximum flux can be calculated as follows: Jmax = kp,v × Sv, where 

both kp,v and Sv are experimentally determined. When applied in the risk assessment calculation, daily 

dermal exposure can be calculated according to [52,53]: DDEmax = (Jmax × tevent × SA × ED × EF × EV) / 

(BW × AT), giving a worst-case scenario. Table 2 gives available occurrence data. These indicate that 

real-life mycotoxin concentrations are much lower than the solubility concentrations in the 

“lipophilic” matrix (i.e. ethanol-water mimicking the real-life matrix). Therefore, the product of the 

experimentally obtained non-aqueous kp,v and the reported literature mycotoxin concentrations is 

considered a typical occupational exposure scenario: DDE = (kp,v × [mycotoxin] × tevent × SA × ED × EF × 

EV) / (BW × AT). In these DDE calculations, the permeability coefficient for the investigated 

mycotoxins is obtained from our ex vivo in vitro transdermal FDC experiment (Table 3), [mycotoxin] is 
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the mycotoxin occurrence concentration and the event duration (tevent) is 8 h/event. The other 

exposure parameters are pre-defined as follows: a surface area (SA) of 0.08 m² was taken, 

considering only the hands are contacting fruits/nuts [54], exposure duration (ED) for industrial 

conditions is assumed to be 25 years, exposure frequency (EF) is supposed to be 250 days/year [53], 

event frequency (EV) is considered 1 event/day, the body weight (BW) was assumed to be 70 kg 

[53,55] and averaging times (AT) for non-carcinogenic chemical exposures are equivalent to the ED, 

i.e. 25 year (9125 days), whereas for carcinogenic chemical exposures, this is 70 year (25,550 days) 

[54]. Finally, the vehicle (matrix or medium) may alter the skin barrier functions as well. This 

additional effect is both compound and matrix (vehicle) dependent and still difficult to predict, but it 

is very likely that moderate ethanol concentrations, as well as waxes, will affect the skin [56-60]. 

Table 2: Occurrence data giving real concentrations of BEA and ENNs found in fruits/nuts (mean, mg/kg), 

obtained from Tolosa et al. [32]. 

Fruit/nut ENN A ENN A1 ENN B ENN B1 BEA 

Peanuts shell 7.972 0.523 14.61 -
(1)

 -
(1)

 
Almonds shell 0.09 -

(1)
 -

(1)
 -

(1)
 -

(1)
 

Pistachios shell 0.326 0.015 0.209 -
(1)

 -
(1)

 
Walnuts shell 0.125 -

(1)
 -

(1)
 -

(1)
 -

(1)
 

Hazelnuts shell 0.732 -
(1)

 0.076 0.417 0.03 

Sunflower seeds shell 2.62 0.026 0.047 0.22 -
(1)

 
Dates 0.666 0.025 0.49 -

(1)
 0.006 

Dried fruits 0.242 0.011 0.058 0.022 0.007 

Median
(2)

 0.4960 0.0250 0.1425 0.2200 0.0070 
(1) Not detectable. 
(2) The median estimator is chosen because it is less influenced by outliers in comparison to the mean. 

3. RESULTS 

3.1. Human skin kinetics 

For the first time, it is shown that the cyclic depsipeptide mycotoxins beauvericin and enniatins 

permeate the human skin (both intact as well as tape-stripped damaged skin) when applied in 60/40 

(V/V) EtOH/H2O. Only the amount of ENN C/F in the receptor fluid samples was too low to obtain 

useful cumulative amount versus time curves, but ENN C/F accounts for only 0.4% of the total 

amount of enniatins in the mixture and was therefore not taken into account. All other cyclic 

depsipeptide mycotoxins confirmed the unidirectional steady-state principle. After 24 hours, only 

0.007 – 0.030% (intact skin) and 0.021 – 0.119% (damaged skin) of the dose applied, was 

cumulatively found in the receptor chamber. Figure 1 shows their mean cumulative amount (ng) 

versus time (h) plots for both intact, as well as stripped skin.  
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Figure 1: Individual cumulative amount (ng) versus time (h) curves of the investigated mycotoxins for both 

intact and damaged skin (mean ± SEM, n = 3-11). 

Linear regression of the individual curves was performed for each compound, in order to calculate 

the transdermal parameters, which are presented in Table 3. The steady-state apparent permeability 

(kp,v) coefficients of the individual cyclic depsipeptide mycotoxins, ranked according to their log P 

values (BEA > ENN A > ENN A1 ~ ENN E > ENN B1 ~ ENN D > ENN B), are visualized in Figure 2 for both 

intact, as well as damaged skin. 
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Table 3: Transdermal parameters for cyclic depsipeptide mycotoxins obtained for intact and damaged skin 

after applying a 1 mg/mL 60/40 (V/V) EtOH/H2O dose solution for 24h (mean ± SEM, n = 3 – 11). 

Mycotoxin 
Jss (ng/(cm² × h)) Q1d (%) 

Intact skin Damaged skin Intact skin Damaged skin 

BEA 2.65 ± 0.59 10.98 ± 4.00 0.007 ± 0.002 0.036 ± 0.011 
ENN B 4.13 ± 0.85 13.18 ± 1.74 0.030 ± 0.007 0.119 ± 0.019 
ENN B1 2.12 ± 0.45 8.78 ± 1.07 0.018 ± 0.004 0.084 ± 0.014 
ENN A 0.050 ± 0.008 0.104 ± 0.023 0.008 ± 0.001 0.021 ± 0.004 
ENN A1 0.44 ± 0.09 1.88 ± 0.40 0.010 ± 0.002 0.042 ± 0.008 
ENN D 1.64 ± 0.36 6.68 ± 0.97 0.015 ± 0.003 0.075 ± 0.014 
ENN E 0.073 ± 0.015 0.230 ± 0.036 0.014 ± 0.003 0.045 ± 0.007 

Mycotoxin 
Lag time (h) kp,v (× 10

-6
 cm/h) 

Intact skin Damaged skin Intact skin Damaged skin 

BEA 8.4 ± 0.7 2.0 ± 0.7 2.35 ± 0.52 9.76 ± 3.56 
ENN B 8.5 ± 0.7 6.2 ± 0.6 9.44 ± 1.94 30.15 ± 3.99 
ENN B1 8.0 ± 0.8 7.4 ± 0.7 5.62 ± 1.19 23.29 ± 2.83 
ENN A 9.0 ± 1.1 4.9 ± 1.1 2.80 ± 0.42 5.78 ± 1.27 
ENN A1 7.5 ± 0.7 7.0 ± 0.9 3.03 ± 0.63 12.83 ± 2.73 
ENN D 7.3 ± 0.5 6.1 ± 0.5 4.67 ± 1.02 19.07 ± 0.28 
ENN E 7.8 ± 1.0 6.5 ± 0.7 4.26 ± 0.86 13.46 ± 2.12 

 

Figure 2: Mean permeability coefficient kp,v (10
-6

 × cm/h) of the different mycotoxins for both intact and 

damaged skin (mean ± SEM, n = 3-11). 

Analysis of the skin, i.e. epidermis and dermis, after 24 hours resulted in dermis concentrations 

ranging from 0.10 – 2.65 µg/mL and 0.25 – 6.09 µg/mL for enniatins in intact and damaged skin, 

respectively. For beauvericin this is 13.00 µg/mL in intact and 25.86 µg/mL in damaged skin. The 

epidermal concentration of beauvericin was on average 302.32 µg/mL, while for enniatins this 

ranged from 3.87 µg/mL to 98.91 µg/mL. The individual skin concentrations for each compound, 

after application of the aforementioned dose solutions (Table 1), are given in Table 4. Normalised 

skin concentrations, to estimate the skin concentrations after application of 1 mg/mL of each cyclic 

depsipeptide mycotoxin, are presented in Figure 3. 



CHAPTER V – HUMAN SKIN PERMEATION OF BEAUVERICIN AND ENNIATINS 

 

 

184 

Table 4: Experimentally determined concentrations of BEA and ENNs in different skin compartments (dermis and epidermis) after 24h (mean ± SEM, n = 11 – 12). 

Mycotoxin 
Conc. applied 
DS

 
(mg/mL)

(1)
 

Dermis
 
(µg/mL) Epidermis (µg/mL) Cepidermis/Cvehiculum Cdermis/Cepidermis 

Intact skin Damaged skin Intact skin Damaged skin Intact skin Damaged skin Intact skin Damaged skin 

BEA 1.13 13.00 ± 1.85 25.86 ± 4.72 275.64 ± 23.59 329.00 ± 27.04 0.245 0.293 0.047 0.079 
ENN B 0.44 2.46 ± 0.38 5.30 ± 0.73 78.01 ± 12.13 81.86 ± 11.09 0.178 0.187 0.032 0.065 
ENN B1 0.38 2.65 ± 0.44 6.09 ± 0.83 94.85 ± 13.94 102.97 ± 15.72 0.252 0.273 0.028 0.059 
ENN A1 0.15 1.16 ± 0.21 2.85 ± 0.39 46.29 ± 7.37 47.99 ± 6.34 0.316 0.328 0.025 0.059 
ENN A 1.80 x 10

-2
 0.15 ± 0.03 0.40 ± 0.05 7.08 ± 1.20 8.07 ± 1.08 0.394 0.450 0.022 0.050 

ENN D 3.50 x 10
-2

 0.16 ± 0.03 0.40 ± 0.07 6.15 ± 0.86 5.52 ± 0.70 0.176 0.158 0.027 0.073 
ENN E 1.71 x 10

-2
 0.10 ± 0.02 0.25 ± 0.05 3.96 ± 0.63 3.78 ± 0.50 0.232 0.222 0.025 0.067 

(1) Experimentally determined; DS = dose solution. 
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Figure 3: Normalised (to 1 mg/mL applied for each mycotoxin) concentration (µg/mL) of BEA and ENNs in the 

skin layers dermis and epidermis, for both intact and damaged skin after 24 h (mean ± SEM, n = 11-12). 

3.2. Solubility of BEA and ENNs 

For BEA, average solubility values of 0.082, 0.069 and 7.151 mg/mL were obtained for respectively 

H2O, 30/70 (V/V) EtOH/H2O and 60/40 (V/V) EtOH/H2O. For the enniatin mixture, the relative 

distribution of the different enniatins in the supernatans is calculated for each solvent, as well as for 

an analytical standard solution where the ENN mixture was completely dissolved, thus reflecting the 

relative composition (%) of the mixture. From the results it is concluded that there is no relevant 

difference in relative distribution between water as solvent compared to an analytical standard 

solution, and the EtOH/H2O mixtures in between the previous extremes confirm this. The fact that 

overall the same distribution proportions were found, indicated that the different enniatins have no 

relevant different solubility behaviour in our experimental set-up. Moreover, since we are working 

with a mixture and the structurally closely-related enniatins will influence each other’s solubility, the 

true solubility of an enniatin (i.e. if it were a pure compound) approximately equals the solubility of 
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the enniatin complex. Although small solubility differences between the different enniatins may be 

expected from a theoretical point of view, these are thus negligibly small for our purposes. The 

average determined solubility concentrations for the enniatin mixture was 0.294 mg/mL in H2O, 

0.847 mg/mL in 30/70 (V/V) EtOH/H2O and 36.918 mg/mL in 60/40 (V/V) EtOH/H2O. 

3.3. Risk assessment after dermal exposure 

The obtained Jmax values for BEA and ENNs were also compared to the experimental values for some 

compounds from the EDETOX database determined by Guy [61] and are found to be in the range of 

estradiol and testosterone (Figure 4). 

 

Figure 4: Comparison of calculated Jmax values (µg/(cm² × h)) for BEA and ENNs with the data obtained from 

Guy [61]. 

By calculating the dermal daily exposure, a first step was taken towards the exposure assessment of 

the cyclic depsipeptide mycotoxins BEA and ENNs. DDEmax values were calculated as worst-case 

scenario, while on the other hand, DDE’s for a typical occupational scenario were calculated based on 

real-life mycotoxin concentrations for the industrial exposure of food related workers (Table 5). Due 

to a lack of appropriate data, other plausible scenarios were not yet explored, e.g. exposure of 

industrial workers to contaminated grain dust and residential exposure to mycotoxin-containing dust 

of moldy, water-damaged houses. Moreover, the absence of exposure data does not mean that the 

potential risk does not exist [33].  
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Table 5: Estimate of dermal daily exposure
(1)

: genotoxic – non-genotoxic
(2)

. 

DDEmax:  
worst-case 
scenario 

BEA ENN A ENN A1 ENN B ENN B1 ENN D ENN E 

Intact skin 0.376 – 1.05 2.31 – 6.47 2.50 – 7.01 7.79 – 21.8 4.64 – 13.0 3.86 – 10.8 3.52 – 9.85 
Damaged skin 1.56 – 4.37 4.77 – 13.4 10.6 – 29.7 24.9 – 69.7 19.2 – 53.8 15.7 – 44.1 11.1 – 31.1 

DDE: 
occupational 
scenario 

BEA ENN A ENN A1 ENN B ENN B1 ENN D ENN E 

Intact skin 0.368 – 1.03 31.1 – 87.0 1.69 – 4.74 30.1 – 84.2 27.7 – 77.4 -
(3)

 -
(3)

 
Damaged skin 1.53 – 4.28 64.1 – 180 7.17 – 20.1 96.1 – 269 115 – 321 -

(3)
 -

(3)
 

(1) DDEmax is expressed as µg/(kg BW × day), while DDE is expressed as (µg × 10-6)/(kg BW × day). 
(2) All exposure parameters are identical, except for the averaging time, which is 25 years versus 70 years for non-carcinogenic and 
carcinogenic chemical industrial exposures, respectively. 
(3) For ENN D and ENN E no real-life exposure data was available (Table 2). 

4. DISCUSSION 

The skin is not only a protective barrier against many influences, it is also a popular target in 

therapeutic drug delivery, in which the stratum corneum is reputed to be the major barrier [62], 

thereby hindering the transdermal permeation of large molecules such as peptides, proteins and 

DNA. However, in the cosmetic field, peptides, e.g. derived from collagens and melanotropin, have 

been topically applied with functional claims [63,64]. Moreover, toxins, viruses and recombinant 

proteins have also been successfully delivered for skin immunisation purposes [65]. Most promising 

are cell penetrating peptides [66], such as SPACE-peptide [67,68] and Tat-peptide [69-73], which are 

not only able to cross the skin barrier, but allow transportation of a cargo as well. More specific for 

cyclic depsipeptides, it was found that romidepsin enhanced in vitro transfection of DNA complexes 

in Raji cells, indicating this compound can pass cellular membranes and therefore might also be able 

to cross the skin barrier [74]. Two cyclic lipodepsipeptides (fengycin and surfactin) increased acyclovir 

accumulation in the epidermis, most likely due to a combined interaction of the lipopeptides with the 

stratum corneum lipids on one side and acyclovir on the other [75].  

In this study, quantitative transdermal parameters of the cyclic depsipeptide mycotoxins beauvericin 

and enniatins were obtained using human skin. Currently, the dermal route for these mycotoxins has 

not yet been explored. However, such quantitative information is important, not only within the 

context of risk assessment of these emerging mycotoxins, but also with respect to the development 

of topically applied new drugs with a similar cyclic depsipeptide structure, treating e.g. 

dermatological diseases like eczema, psoriasis and skin cancers or having systematic functions after 

transdermal permeation. 
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4.1. Permeability kinetics and the effect of skin damage 

Since the outer most layer of the skin, the stratum corneum, serves as an important protective 

barrier, it is not surprising that superficial skin damage can influence transdermal kinetics. This effect 

was evaluated for the cyclic depsipeptide mycotoxins beauvericin and enniatins by comparing their 

intact and tape-stripped skin kinetics. Upon comparison of the kp,v, Jss and Q1d of both damaged and 

intact skin for each compound separately, a significant 2 to 5 times increase for damaged skin was 

observed (p < 0.10 for BEA and p < 0.05 for ENNs) (Figure 2 and Table 3). This enhanced permeability 

was also confirmed by the increased dermis concentrations found at the end of the experiment (after 

24h): a significant difference was observed between stripped and intact skin (p < 0.05), i.e. the 

concentration in the dermis after tape-stripping was increased by an overall mean factor of 2.4, 

which is in accordance with the increased kp,v, Q1d and flux (Jss) values (Table S1, Supplementary 

information). While comparing the epidermis concentration of each compound after 24 hours, it was 

found that for tape-stripped skin this concentration was marginally higher than the concentration 

found in the epidermis of intact skin, however, this was not significant (p > 0.15). The Kepi 

(Cepidermis/Cvehicle) was also compared for all investigated compounds and the ratios Kepi,stripped/Kepi,intact 

were indeed approximating 1 (Table S1, Supplementary Information). 

Furthermore, an inverse relationship between log P and both kp,v values (intact and tape-stripped) 

was observed. Indeed, ENN B, with the lowest log P of 4.68 showed the highest permeability 

coefficients, whereas BEA and ENN A, having a log P of 7.13 and 5.87, respectively, had the lowest 

kp,v’s. A significant difference in lag time was observed for BEA, ENNs A, D and B between damaged 

and intact skin (p < 0.10): for these ENNs the extrapolated lag time was approximately 1.5 times 

longer for intact skin, while for BEA this was 4.2 times (Table 3). This was not the case for the other 

ENNs A1, E and B1 (the obtained lag time for tape-stripped skin was similar to the lag time for intact 

skin, for each compound individually, p > 0.33). This effect could be linked to a difference in log P: 

compounds with either a higher (BEA, ENN A) or lower (ENNs D, B) log P experience a significant 

effect on their lag time compared to compounds with a mid-range log P (ENNs A1, E, B1). This can be 

explained by the fact that for lipophilic cyclic depsipeptides the SC acts as skin reservoir, while more 

hydrophilic compounds do not diffuse as readily through the lipid layers of the SC. However, log P is 

probably not the only descriptor influencing these observed skin kinetics and concentrations, as 

binding to high amount of proteins present in the dermis, like collagen, is also possible [33]. 

For ENNs it is also noticed that, while the Jss values are in line with the composition, differences 

between the ENNs are more explicitly reflected in the kp,v values: although they are all in the same 

order of magnitude, the relatively small differences observed are due to the different skin 

permeation characteristics of the ENNs. 
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4.2. Comparison with in silico permeability coefficients 

Most current models, including Potts-Guy and variants, are derived from and thus strictly speaking 

only applicable to aqueous solutions. Therefore, we have used our experimentally determined 

solubility data to calculate aqueous kp,w values for BEA and ENNs, neglecting the possible skin-barrier-

modulating properties of ethanol: kp,w = kp,v × (Sv/Sw), where kp,v is the experimentally obtained 

permeability coefficient of the compound in the vehicle (i.e. dose solution: 60/40 (V/V) EtOH/H2O) 

and Sv and Sw are the saturated concentration in the vehicle and in water, respectively [76]. These are 

compared to the in silico predicted aqueous kp,w’s determined using the Potts-Guy and Baert et al. 

models (Table 6) [50,77,78]. The predicted values from the Potts-Guy model are thus a very good 

approximation of the experimentally obtained kp,w’s for these compounds, as the ratios of 

experimental to predicted values fall within 0.2 – 2.5, whereas in general the MLR1 model obtained 

from Baert et al. is less applicable to these compounds with ratios between 0.1 and 0.18.  

Table 6: Comparison of the calculated kp,w values, with predicted kp,w’s determined using in silico transdermal 

permeability models. 

Mycotoxin kp,w (cm/h)
(1)

 Potts-Guy kp,w (cm/h)
(2)

 Baert et al.
 
kp,w (cm/h)

(3)
 

BEA 2.06 x 10
-4

 -
(4)

 2.57 x 10
-3

 
ENN B 1.19 x 10

-3
 4.74 x 10

-4
 6.68 x 10

-3
 

ENN B1 7.06 x 10
-4

 7.49 x 10
-4

 7.97 x 10
-3

 
ENN A 3.52 x 10

-4
 1.84 x 10

-3
 4.07 x 10

-2
 

ENN A1 3.81 x 10
-4

 1.18 x 10
-3

 1.53 x 10
-2

 
ENN D 5.87 x 10

-4
 6.68 x 10

-4
 5.85 x 10

-2
 

ENN E 5.35 x 10
-4

 1.04 x 10
-3

 8.92 x 10
-3

 

(1) kp,w = kp,v × (Sv/Sw). 
(2) log kp = – 6.3 + 0.71 × log P – 0.0061 × MW [50,78].  
(3) log kp = – 8.01 + 0.406 × ALOGP + 0.606 × Mor13v + 0.513 × Jhetv – 1.40 × Mor26v + 0.971 × P2v – 0.0703 × Mor11m – 0.484 × 
MATS2e + 0.0809 × Mor09u – 0.107 × GATS4e [77]. 
(4) Log P is considered out of range. 

4.3. Local skin concentrations and effects 

Considering the amount applied on the skin is different for each individual mycotoxin (i.e. 1 mg/mL 

BEA versus 1 mg/mL total enniatins mixture), skin concentrations cannot be directly compared. 

Therefore the experimentally obtained skin concentrations were transformed through linear 

normalisation to represent skin concentrations after application of 1 mg/mL of each cyclic 

depsipeptide mycotoxin at 24 hours (Figure 3). From this, it was observed that the more lipophilic 

compounds (BEA, ENN A and ENN A1) resulted in higher dermis and epidermis skin concentrations in 

comparison to the less lipophilic. Also, for all cyclic depsipeptide mycotoxins, the obtained epidermis 

concentrations were 21 to 46 times higher than the dermis concentrations for intact skin, which can 

be partly attributed to the reservoir function of the protective stratum corneum barrier. This was 

only 13 to 20 times for stripped skin, which is due to the partial removal of the stratum corneum by 
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tape-stripping. For other mycotoxins, i.e. aflatoxin B1, ochratoxin A and T-2 toxin, such skin reservoir 

effects have also been observed and were ascribed to the higher log P of these compounds, 

suggesting a higher affinity and distribution for the upper skin layer i.e. the SC [33,79,80]. This is also 

in accordance with the obtained kp,v values, which are lower for more lipophilic compounds, and are 

thus at least partly due to these compounds being trapped in the skin.  

The skin is an immunologically highly developed organ, containing Langerhans and T cells in the 

epidermis and macrophages, various dendritic cell and T cell subsets in the dermis [81,82]. This is 

important as it was shown that, besides their well-known cytotoxic properties [16,83-86], the cyclic 

depsipeptide mycotoxins ENNs and BEA also exert effects on the immune system in general. So have 

Gammelsrud et al. shown that ENN B en BEA influenced the expression of various co-stimulatory 

molecules [87], indicating that ENN B as well as BEA, could disturb dendritic cell migration and 

interfere with the macrophage differentiation process, inhibit the initiation of a specific immune 

response, modulate cytokine secretion and change the orientation of an immune response [83,88]. 

Moreover, Wu and co-workers have demonstrated that BEA decreased serum levels of TNF-α and 

IFN-γ in mice with experimental colitis and suppressed T-cell proliferation and activation, leading to 

apoptosis of activated T cells and making beauvericin a novel drug candidate for the treatment of 

colonic inflammation, such as Crohn’s disease [89]. Immunological skin cells can thus be considered 

as possible targets for these cyclic depsipeptides. Our results showed that application of 1 mg/mL 

after 24h resulted in dermis concentrations up to 12.53 µM for intact and 32.70 µM for damaged 

skin, while for the epidermis this was 577.70 µM and 659.96 µM, respectively (ENN A). Moreover, 

instead of 1 mg/mL concentrations, which are high, real-life found concentrations are considered, 

namely up to 0.5 µg/mL (Table 2). Assuming a linear relation, an epidermis concentration of 0.33 µM 

and dermis concentrations of 0.016 µM are calculated for real-life situations. Ficheux et al. noticed a 

decrease in macrophage and dendritic cell viability already starting from 0.1 µM ENN B or BEA. 

Furthermore, effects on the dendritic cells maturation and monocytes differentiation process were 

seen at similar concentrations from 0.3 µM BEA and 0.5 µM ENN B [83], which are considered to be 

in the same order of magnitude as our extrapolated results. Persons both chronically and 

occasionally exposed to the investigated mycotoxins have to consider local skin effects, such as 

epidermal apoptosis and immunological disorders. 

4.4. Risk assessment of mycotoxins after dermal exposure 

A European Food Safety Authority (EFSA) request has been made on the risks to human and animal 

health related to beauvericin and enniatins in food and feed, which should address (in short): their 

co-occurrence with other Fusarium toxins, exposure of the EU population to these mycotoxins, 

evaluation of their toxicity and the determination of the daily exposure levels [90].  
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In order to investigate the safety concern of these mycotoxins after dermal exposure, the calculated 

human DDE’s (Table 4) should be compared with risk assessment threshold limits, such as the 

negligible cancer risk intake (NCRI), no observed adverse effect level (NOAEL), lowest observed 

adverse effect level (LOAEL), benchmark dose (BMD) and tolerable daily intake (TDI). Only a few 

fragmentary in vivo toxicity studies have been reported concerning beauvericin and enniatins. The 

first ones date back to 1950, 1988 and 1989 and concern only the enniatins. These report that oral 

dosing of 0.5 – 1 mg/kg BW over 6 days in mice and single doses up to 50 mg/kg BW in rats did not 

produce toxic effects [91,92], that there is no transdermal lethality at 40 mg/kg for the subcutaneous 

route in guinea pig. A LD50 of 20.6 mg/kg (early deaths in 2 – 10 minutes and later deaths at 1 – 4 

days) by the intraperitoneal route in mice was also reported [93]. More recent studies are performed 

by McKee et al. [3] and Devreese et al. [94]. The former administered 1.25, 2.5, 5, 10, 20 and 40 

mg/kg enniatin mixture (ENNs A1, B and B1) to mice at 8h intervals by means of intraperitoneal 

injection. They reported that the top three doses (10, 20 and 40 mg/kg) were toxic to the mice, with 

fatal outcome occurring between days 2 – 3 for the 40 mg/kg dose and between days 4 – 5 for both 

the 10 and 20 mg/kg dose [3]. The most recent study was a pilot toxicokinetic study focusing on 

enniatin B1 in pigs [94], without evaluation of toxicological end-points. Considering the very limited 

available data, only a first approximation of the risk assessment of beauvericin and enniatins after 

dermal exposure could be made, based upon various assumptions. From the limited data of McKee 

et al. [3], the NOAEL is fixed at 5 mg/kg BW. From this, the TDI can be estimated by dividing the 

NOAEL by some safety or uncertainty factors, generally applied to reflect limitations of the data used. 

A factor of 1000 (10 × 10 × 10) seems appropriate here, to account for (i) possible differences in 

responsiveness between humans and animals, (ii) variation in susceptibility among individuals in the 

population and (iii) for data bases which are less complete [95]. Therefore, the estimated TDI for 

enniatins is 5 µg/(kg BW × day). The non-genotoxic DDEmax for both intact and damaged skin exceeds 

this TDI for all ENNs, but this is worst-case scenario (Jmax). DDE values for a more typical real-life 

situation are found to be much lower than the TDI. As these exposure data are only an estimation, 

they should, however, be interpreted with caution. Based on this approach and the limited available 

data used, industrial food related workers are potentially at risk to the cyclic depsipeptide 

mycotoxins beauvericin and enniatins after dermal exposure in the worst-case scenario, however in a 

typical real-life occupational scenario this is not the case. The latter is corroborated by the fact that, 

despite its proven cytotoxic effects, a mixture of enniatins has already been developed and is 

marketed as a pharmaceutical drug (fusafungine being its international non-proprietary name) for 

the treatment of local infections and inflammatory conditions of the nose and throat. Giving 500 µg 

per dose [96], this amounts to approximately 7 µg/(kg BW × day), assuming an average BW of 70 kg 
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[55], which is very similar to our derived TDI of 5 µg/(kg BW × day). However, more (reliable) in vivo 

toxicity data, leading to a proper hazard characterisation are still urgently needed. 

5. CONCLUSIONS 

Quantitative skin permeability data of the emerging cyclic depsipeptide mycotoxins beauvericin and 

enniatins were obtained by an ex vivo in vitro FDC approach, using dermatomed split-thickness intact 

human skin, as well as human skin with an impaired barrier. Using literature-based mycotoxin 

concentrations, dermal contact surface, exposure time and apparent kp,v’s obtained in this study, the 

daily dermal exposure (DDE) was estimated for the industrial exposure of food related workers to 

contaminated fruits/nuts as a first approximation. Besides this typical occupational exposure 

scenario, Jmax values calculated from experimentally determined kp,v and solubility values, were used 

to determine the DDEmax in a worst-case scenario as well. A TDI for enniatins of 5 µg/(kg BW × day) 

was estimated from available literature data and compared with our DDE and DDEmax values. 
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ABSTRACT 

The cyclic depsipeptide mycotoxins beauvericin and enniatins are capable of reaching the systemic 

circulation through various routes of exposure and are hence capable of exerting central nervous 

system (CNS) effects, if they are able to pass the blood-brain barrier (BBB), which was the main 

objective of this study.  

Quantification of the mycotoxins was performed using an in-house developed and verified bio-

analytical UHPLC-MS/MS method. Prior to the BBB experiments, the metabolic stability of the 

mycotoxins was evaluated in vitro in mouse serum and brain homogenate. The BBB permeation 

kinetics of beauvericin and enniatins were studied using an in vivo mouse model, applying multiple 

time regression for studying the blood-to-brain influx. Additionally, capillary depletion was applied 

to obtain the fraction of the peptides really entering the brain parenchyma and the fraction loosely 

adhered to the brain capillary wall. Finally, also the brain-to-blood efflux transport kinetics was 

studied.  

Metabolic stability data indicated that the investigated mycotoxins were stable during the duration 

of the in vivo study. The brain influx study showed that beauvericin and enniatins are able to cross 

the blood-brain barrier in mice: using the Gjedde-Patlak biphasic model, it was shown that all 

investigated mycotoxins exert a high initial influx rate into the brain (K1 ranging from 11 to 53 

μL/(g×min)), rapidly reaching a plateau. After penetration, the mycotoxins reached the brain 

parenchyma (95%) with only a limited amount residing in the capillaries (5%). No statistically 

significant efflux out of the brain was observed. 
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CHAPTER VI 

BLOOD-BRAIN BARRIER TRANSPORT 

KINETICS OF BEAUVERICIN AND ENNIATINS 

Main focus in this chapter: 

 Quantitative determination of BEA and ENNs BBB transport kinetics in an in vivo mouse model: 

o blood-to-brain (multiple time regression influx); 

o brain distribution, i.e. parenchyma vs. capillaries (capillary depletion); 

o brain-to-blood (efflux). 

 

1. INTRODUCTION 

Cyclic depsipeptides are a large group of nonribosomal peptides from natural origin, synthesised by 

i.a. bacteria, fungi and marine sponges, possessing a wide range of bioactivities [1]. A well-known 

example is romidepsin, an FDA approved medicine used in the treatment of cutaneous T-cell 

lymphoma. The cyclic hexadepsipeptides enniatins (ENNs) and beauvericin (BEA) are considered as 

mycotoxins, posing a potential health hazard [2]. They are non-ionised molecules which are further 

characterised by their ionophoric and lipophilic properties. Both ENNs and BEA are produced by i.a. 

Fusarium fungi, known to frequently infest crops and be the cause of mold in water-damaged houses 

in milder climate regions such as North America and Western Europe [3]. Indeed, in a recent study 

ENN B1 was detected in 92% of all investigated feed and feed ingredient samples [4]. Animals and 

humans may thus come in contact with these mycotoxins through different routes of exposure like 

inhalation [5] or ingestion of contaminated feed and food [3]. Moreover, it was recently 

demonstrated that these mycotoxins are capable of reaching systemic circulation after dermal and 

mucosal exposure as well [2,6]. Besides their well-known antibiotic and insecticidal activities, in vitro 

cytotoxicity and genotoxicity has been evidenced for BEA and ENNs [7-17].  

Zhang and colleagues demonstrated in an in vivo immunocompromised mouse model that BEA in 

combination with ketoconazole prolonged survival of the host infected with Candida parapsilosis and 

reduced fungal colony counts in animal organs such as the brains, which could not be achieved with 

ketoconazole alone [18]. Moreover, Zahn et al. determined that BEA was cytotoxic against SF-268 
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(human CNS cancer glioma) cells with an IC50 of 2.29 μM [17]. Entry of such xenobiotics in the brain is 

strictly regulated by the blood-brain-barrier (BBB), which is an anatomical defence barrier 

characterised by extensive tight junctions and energy-dependent efflux transporters. The BBB is 

important for protecting the central nervous system from toxic substances and serving to maintain 

brain homeostasis [19,20]. However, it has already been shown that peptides can cross the BBB, 

either by direct membrane permeation (i.e. passive diffusion) or by a saturable, active or facilitated, 

transport mechanism, or both [21-23]. Moreover, the BBB is an important biological barrier with 

declining functionality in ageing [24]. 

Moreover, it was demonstrated in vitro by Weidner et al. that both T-2 toxin and its main metabolite 

HT-2 toxin have the ability to enter the brain via the BBB. The same research group also recently 

investigated the BBB effects of the Fusarium mycotoxins deoxynivalenol, 3-acetyldeoxynivalenol, and 

moniliformin. All were shown to be permeable mycotoxins and possess the ability to reduce BBB 

integrity. Currently, however, there is no data available about the transport kinetics through the 

blood-brain barrier of BEA and ENNs, nor about cyclic depsipeptides in general. However, this 

information is highly wanted within the context of risk assessment, since these mycotoxins might 

cause local central nervous system (CNS) effects once they pass the BBB. Therefore, it was our 

objective to quantitatively determine the BBB transport kinetics of BEA and ENNs in an in vivo mouse 

model, encompassing the blood-to-brain (multiple time regression influx) as well as a brain-to-blood 

(efflux) transport. Moreover, their distribution, i.e. the fraction transported into the brain 

parenchyma and the fraction trapped by the endothelial cells lining the BBB (the capillaries) is also 

investigated by capillary depletion. Quantification of the mycotoxins is done using an in-house 

developed bio-analytical UHPLC-MS/MS method. 

2. MATERIALS 

2.1. Chemicals and reagents 

Mycotoxins BEA, ENN B and the enniatin mixture (ENNs) were supplied by Bioaustralis (Smithfield, 

NSW, Australia). For the latter, no formal ENN composition was supplied by the manufacturer (only 

e-mail correspondence), therefore the composition was experimentally determined by our group, 

assuming a relative response factor (RRF) = 1 for the individual constituents: 43.8% ENN B, 34.4% 

ENN B1, 14.0% ENN A1, 3.6% ENN D, 1.8% ENN A, 1.8% ENN E and 0.4% ENN C or F [1]. Ultrapure 

water (H2O) with a quality of 18.2 MΩ.cm was produced by an Arium 611 purification system 

(Sartorius, Göttingen, Germany). Disodium hydrogen phosphate dihydrate (Na2HPO4.2H2O) was 

purchased at VWR (Leuven, Belgium). Potassium chloride (KCl), dimethylsulfoxide (DMSO), sodium 

chloride (NaCl), calcium dichloride dihydrate (CaCl2.2H2O), sodium lactate, magnesium sulphate 
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(MgSO4), hydrated sodium dihydrogen phosphate (NaH2PO4.H2O), Krebs-Henseleit buffer and 

urethane were purchased from Sigma-Aldrich (Diegem, Belgium), while bovine serum albumin (BSA) 

was obtained from Merck KGaA (Darmstadt, Germany). Absolute ethanol came from Fisher Scientific 

(Erembodegem, Belgium). Dextran was obtained from AppliChem GmbH (Darmstadt, Germany). 

UHPLC-MS grade formic acid (FA), acetonitrile (ACN), trifluoroacetic acid (TFA) and 2-propanol came 

from Biosolve (Valkenswaard, The Netherlands) and D-glucose, sodium hydroxide (NaOH) and HEPES 

(N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid) were purchased at Fluka (Diegem, Belgium). 

The BBB-positive control dermorphin was obtained from Bachem (Bubendorf, Switzerland). For the 

radiolabeling, Iodo-Gen® coated tubes were purchased from Thermo Scientific (Erembodegem, 

Belgium) and the radioactive sodium iodide solution (Na125I) from Perkin Elmer (Zaventem, Belgium). 

2.1. Animals 

Female, Institute for Cancer Research, Caesarean Derived-1 (ICR-CD-1) mice of age 7-10 weeks and 

weighing 29-32 g, were obtained from Harlan Laboratories (Venray, Netherlands). All animal 

experiments were performed according to the Ethical Committee principles of laboratory animal 

welfare and approved by our institute (Ghent University, Faculty of Veterinary Medicine, no. 

EC2014/128). 

3. METHODS 

3.1. In vitro metabolic stability 

The in vitro metabolic stability of BEA and ENNs in mouse brain homogenate and mouse serum was 

evaluated as previously described [25,26]. The protein content of the brain homogenate was 

determined using the Pierce Modified Lowry Protein Assay method (Thermo Scientific), in order to 

prepare a stock solution containing a 0.6 mg/mL protein concentration in Krebs-Henseleit buffer (pH 

7.4). To 75 μL of a 1 mg/mL peptide solution (BEA, respectively ENN mixture in 2% (V/V) ACN in 

Krebs-Henseleit buffer pH 7.4), 375 μL of serum/brain homogenate and 300 μL of Krebs-Henseleit 

buffer pH 7.4 was added. This mixture was incubated at 37 °C while shaking at 750 rpm. After 0, 5, 

10, 15 and 60 min, 100 µL aliquots were taken and transferred into LoBind Eppendorf tubes 

containing 100 μL of 1:99, TFA:H2O (V/V). Then, the samples were heated at 95 °C for 5 min and 

subsequently cooled on ice for 30 min. After centrifugation (20 000 g, 5 °C, 30 min) an aliquot of the 

clear supernatant was taken and analysed using HPLC-UV, as described below. Beside these test 

samples, control solutions were also prepared and analysed at t = 60 min: ‘placebo’ solutions 

(without peptide) to exclude matrix inferences, ‘stability’ solutions (peptide without serum/brain 

homogenate) to correct for chemical degradation and adsorption and ‘inactivated enzyme’ solutions 
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(heat inactivation prior to peptide addition) to determine if the enzyme inactivation process is able to 

completely inactivate the enzyme. We previously reported that these peptides are prone to 

adsorption [1], therefore during the metabolic stability study the necessary precautions were taken 

to minimise this adsorption phenomena (i.e. prior stock solutions were prepared immediately before 

use and containing at least 50% ACN). 

An Acquity UHPLC equipped with a temperature controlled autosampler tray and column oven was 

used, thermostated at respectively 5 °C and 45 °C (Waters, Milford, MA, USA). Chromatographic 

separation was achieved on an Acquity UHPLC charged surface hybrid (CSH) C18 column (1.7 μm, 150 

mm × 2.1 mm, 130 Å), attached to an Acquity UHPLC VanGuard pre-column (1.7 μm, 5 mm × 2.1 mm, 

130 Å), both obtained from Waters. The dwell volume of the system was 525 μL. A gradient mobile 

phase system consisting of (A) 5:95 ACN:H2O (V/V) containing 0.1% FA and 0.1% 2-propanol and (B) 

95:5 ACN:H2O (V/V) containing 0.1% FA and 0.1% 2-propanol was used. The gradient profile was as 

follows: 0-16 min, 65-79% B; 16-16.5 min, 79-100% B; 16.5-18.5 min, 100% B; 18.5-19 min, 100-65% 

B; 19-22 min, 65% B. The flow rate was set to 0.6 mL/min and 10 μL was injected. As needle wash 

10:10:80 DMSO:2-propanol:ACN (V/V/V) was used (for 6 s post-injection). The UHPLC system was 

coupled to a PDA detector, operated from 190 nm to 300 nm, with quantification at 205 nm (Waters, 

Milford, MA, USA). For ENN C/F data was below the limit of detection (0.3 μg/mL) and therefore not 

taken into account. 

3.2. In vivo blood-brain barrier experiments with mice 

Blood-to-brain transport 

An in vivo multiple time regression (MTR) analysis was performed to investigate if BEA and/or ENNs 

are able to enter the brain from the blood. A dose solution of BEA, respectively ENNs, with a final 

concentration of 33.2 μg/mL in 6:94 EtOH:Lactated Ringer’s solution containing 1% BSA (V/V) was 

prepared, corresponding to a dose of 0.2 mg/kg. This dose resembles a feed contamination of 1 

mg/kg, which is included in a broad range of contamination levels that have been detected in feed (± 

10 μg/kg to ≥ 5 mg/kg) [3,4,10], assuming the feed intake of a 30 g weighing mouse is approximately 

5 g/day [27]. 

The ICR-CD-1 mice were anesthetized by intraperitoneal injection with a 40% (w/V) urethane solution 

(3 g/kg), the jugular internalis vein and carotid artery were isolated and 200 µL of the dose solution 

was injected into the jugular vein. Blood was obtained from the carotid artery at regular time points 

after injection (1, 3, 5, 10, 12.5 and 15 min, with first and last in duplicate), thereafter the mice were 

immediately decapitated. Next, the brains were collected and the blood collected from the carotid 

artery was centrifuged at 10 000 g for 15 min at 21 °C. The serum and brain samples were analysed 

according to the described bioanalytical method (see section 3.3.). 
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As negative and positive control, 125I labelled BSA and dermorphin were used, respectively, to assure 

the overall validity of the experiment [28]. Furthermore, the influence of the ethanol-containing dose 

formulations on the BBB integrity was also investigated in a radioactive MTR influx study with 125I 

radiolabelled BSA.  

In order to determine the BBB permeability of BEA/ENN, the ratio of its brain and serum 

concentration (µL/g) was plotted versus a derived time variable, i.e. the exposure time (Θ) [29,30]. 

The exposure time is defined as the integral of the concentration of BEA/ENN in the serum from start 

(t=0 min) to time T, divided by the concentration of BEA/ENN in serum at time T:   ∫
        

     

 

 
. The 

area under the curve until time T is given by the integral of the concentration of BEA/ENN in serum 

from zero to time T. A biphasic model of blood-brain transfer was used to fit the uptake, as 

elaborated by Wong et al. [31]:  
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where Cbrain(T) is the concentration of cyclic depsipeptide mycotoxin in the brain at time T (ng/g), 

Cs(T) is the concentration of peptide in serum at time T (ng/µL), K is the net clearance (μL/(g×min)), K1 

is the unidirectional clearance (μL/(g×min)), Vg is the brain tissue distribution volume (µL/g), and V0 is 

the vascular brain distribution volume, experimentally determined as the brain distribution volume 

of radioiodinated BSA (14.8 µL/g) [28]. 

The obtained serum concentrations (ng/mL) were first plotted in function of time (min) semi-

logarithmically in order to determine whether the compounds exhibit a mono- or multi-exponential 

decay. Then, a two-compartment model was fitted [32]: 

                    

where C(t) is the serum concentration of cyclic depsipeptide mycotoxin at time t (ng/mL) and where 

A, B, α and β are obtained from the intercepts and slopes of the serum concentration versus time 

curve by curve fitting using nonlinear regression analysis (GraphPad®, La Jolla, USA). The half-lives 

were calculated as   
 ⁄
         ⁄ , where k is the rate constant of the distribution (α), respectively 

elimination (β) phase. 

Capillary depletion 

To investigate the distribution of BEA/ENNs in the capillaries (fraction trapped by the endothelial 

cells lining the BBB) and parenchyma (the fraction transported into the brain) of the brain, a capillary 

depletion experiment was performed. The method of Triguero et al. [33], as modified by Gutierrez et 

al. [34], was used [35]. Briefly, after anesthetizing the mice intraperitoneally with 40% (w/V) 

urethane solution (3 g/kg), 200 µL of the 33.2 μg/mL BEA/ENNs dose solution as used for the blood-
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to-brain influx experiment was injected into the jugular vein. Blood was collected from the 

abdominal aorta 10 min after injection (in duplicate) and serum was obtained by centrifuging the 

blood at 10 000 g during 15 min at 21 °C. Immediately thereafter, the skin of the mice’s chest was 

removed and the aorta was clamped so that perfusion occurs only in the direction of the brains and 

not through the whole body. Next, the brain was perfused manually with 20 mL of Lactated Ringer’s 

solution. Immediately after perfusion, the mice were decapitated and brain was collected. The brains 

were transferred into an Eppendorf tube and weighed to which 525 µL ice-cold capillary buffer (10 

mM HEPES, 141 mM NaCl, 4 mM KCl, 2.8 mM CaCl2, 1 mM MgSO4, 1 mM NaH2PO4 and 10 mM D-

glucose adjusted to pH 7.4) was added and homogenized. Then, 1000 µL of ice-cold 26% dextrane 

solution in capillary buffer was added and vortexed. The tubes were centrifuged at 20 000 g for 60 

min at 4 °C to separate pellet (capillaries) and supernatant (parenchyma and fat tissues). These were 

collected into separate Eppendorf tubes and weighed. For the pellet, the sample preparation as 

applied for mice brains was used, while for the supernatant the mice serum sample preparation 

method was used (see section 3.3.). 

The capillary depletion (CD) fractions taken up by the capillaries or present in the parenchyma are 

normalized to the total brain weight and the serum concentration as follows: 

                               ⁄⁄ , where Mtissue represents the amount of peptide in the 

capillaries, respectively parenchyma, Wbrain is the total brain weight and Cs is the concentration of 

peptide in serum. The distribution was then calculated as follows: 

             
        

                          
    .  

Brain-to-blood transport 

The BEA/ENN efflux out of the brain was evaluated using an in vivo method previously described 

[35]. First, the ICR-CD-1 mice were anesthetised using a 40% (w/V) urethane solution (3 g/kg), after 

which the skin of the skull was removed. Then, a hole was made in the skull above the lateral 

ventricle using a 22 G needle at a depth of 2 mm at the following coordinates: 1 mm lateral and 0.34 

mm posterior to the bregma. Next, 1 µL of a 6 mg/mL BEA/ENNs in 50:50 EtOH:Lactate Ringer’s 

solution (V/V), also corresponding to a dose of 0.2 mg/kg, was injected intracerebroventriculary (ICV) 

using a syringe pump (KDS100, KR analytical, Cheshire, UK) at a speed of 360 µL/h for 10 s. At 

specified time points post-injection (1, 3, 5, 10, 12.5 and 15 min), blood was obtained from the 

abdominal aorta, thereafter the mice were immediately decapitated. Serum was obtained by 

centrifuging the blood at 10 000 g during 15 min at 21 °C and brains were collected. 

The brain efflux was determined from the linear regression of the natural logarithm of the peptide 

concentration in brain (ng/g) versus time (min), where kout (min-1) is defined as the efflux rate 

constant calculated as the negative value of the slope of the linear regression. 
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3.3. Bio-analytics 

Sample preparation 

The sample preparation of the mice serum and brain samples was based on the method of Devreese 

et al., taking into account our results obtained from a quality-by-design Derringer desirability (D) 

study, where bovine serum albumin (BSA) loss, dilution factor and variability were combined [36]. In 

this approach we constructed an optimal working space for sample preparation of samples 

containing BSA, with the edge of failure defined as D < 0.9, indicating at least 80% ACN and 0.75% FA 

is required for a sufficient and robust protein precipitation [37]. 

As an internal standard (IS) ENN B (pure) was used for the determination of BEA, while BEA was used 

as IS for the different enniatins present in the enniatin mixture. 

To 50 μL serum, 200 μL IS in 1:99 FA:ACN (V/V) was added, followed by vortex mixing for 15 s and 

centrifugation (20 000 g, 15 min, room temperature). Then, 200 μL supernatans was transferred to 

another container and evaporated to dryness (N2, 45 °C, 5.1 torr). Next, the residue was 

reconstituted in 150 μL 70:30 ACN:H2O (V/V). After vortex mixing (15 s), the sample was transferred 

into an autosampler vial for UHPLC-MS/MS analysis. 

Isolated mice brains were transferred into a Eppendorf tube and weighed, after which 1.0 mL IS in 

ACN was added. Next, the brains were squashed and sliced, each time using a fresh scalpel knife. 

After vortex mixing (15 s), the samples were incubated for 30 min (300 rpm, room temperature) and 

centrifuged (20 000 g, 15 min, room temperature). Then, 800 μL supernatans was transferred to 

another container and evaporated to dryness (N2, 45 °C, 5.1 torr). Next, the residue was 

reconstituted in 150 μL 70:30 ACN:H2O (V/V). After vortex mixing (15 s), the sample was transferred 

into an autosampler vial for UHPLC-MS/MS analysis. 

UHPLC-MS2 

In Chapter IV, the previously developed bioanalytical high-throughput UHPLC-MS/MS method for the 

sensitive, specific and simultaneous determination and quantification of cyclic depsipeptide 

mycotoxins beauvericin and enniatins (A, A1, B, B1, D, E, C/F) was already presented. Briefly, an 

Acquity UHPLC equipped with a temperature controlled autosampler tray and column oven, 

thermostated at respectively 25±5 °C and 45±5 °C, was used (Waters, Milford, MA, USA). 

Chromatographic separation was achieved on an Acquity UHPLC charged surface hybrid (CSH) C18 

column (1.7 μm, 100 mm × 2.1 mm, 130 Å), attached to an Acquity UHPLC VanGuard pre-column (1.7 

μm, 5 mm × 2.1 mm, 130 Å), both obtained from Waters. The mobile phase consisted of 30:70 

ACN:H2O (V/V) containing 0.1% FA and 0.1% 2-propanol and the flow rate was set to 0.6 mL/min. 

From the samples a 10 μL aliquot was injected. 10:10:80 DMSO:2-propanol:ACN (V/V/V) was used as 
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needle wash (during 6 s post-injection). The total run time was 4.5 min, of which the first 1.5 min was 

diverted to the waste.  

The UHPLC system was coupled to a Xevo TQ-S detector, operated in the positive electrospray 

ionisation mode (ESI+) (Waters, Milford, MA, USA). An optimised capillary voltage of 3.50 kV, a cone 

voltage of 50 V and a source offset of 60 V was used. Desolvation and source temperatures were set 

at 600 and 150 °C, respectively, while desolvation and cone gas flows were 1000 and 150 L/h, 

respectively. Acquisition was done in the multiple reaction monitoring (MRM) mode. Optimised 

collision energies are given between brackets. The selected precursor ion for ENN B was m/z 639.91 

with two selected product ions at m/z 196.08 (25 V) as quantifier and m/z 527.26 (22 V) as qualifier, 

for ENN D and B1 the precursor ion was m/z 653.99 while m/z 196.09 (23 V) and m/z 541.05 (21 V) 

were the product ions (quantifier and qualifier, respectively). For ENN E and A1, m/z 668.07 was the 

precursor ion and m/z 209.99 (24 V) and m/z 555.29 (21 V) were its product ions (quantifier and 

qualifier, respectively). ENNs A and C/F have a precursor ion of m/z 682.47 with product ions m/z 

209.93 (26 V) as quantifier and m/z 555.01 (23 V) as qualifier. Lastly, BEA has a precursor ion at m/z 

783.94, with m/z 244.01 (24 V) and m/z 623.23 (23 V) as its product ions (quantifier and qualifier, 

respectively). Data were acquired using Masslynx software (V4.1 SCN 843, Waters, Milford, MA, 

USA). 

Method verification 

To verify the bioanalytical method, pre-spiked and post-spiked matrix calibration curves were 

constructed for both matrices (brain and serum), as well as a standard calibration curve in diluent, 

i.e. 70:30 ACN:H2O (V/V). For the ENNs mixture, this was done in duplicate for each of the three 

different concentration levels 10 ng/mL (low), 50 ng/mL (mid) and 100 ng/mL (high), with pre-spiked 

quality control (QC) samples in duplicate at two concentration levels 25 ng/mL (low-mid) and 75 

ng/mL (mid-high), for determination of the method accuracy. For BEA, additional concentration 

levels (1 ng/mL and 5 ng/mL) are added. 

The recoveries (responsepre-spiked/responsepost-spiked × 100%) in serum were 100.6% for BEA and 

between 92.5% and 101.6% for the ENNs, while in mouse brain this was 99.5% for BEA and between 

85.1% and 93.6% for the ENNs. The IS corrected matrix effect, determined as responsepost-

spiked/responsediluent × 100%, was 108.6% and 110.5% for BEA in serum and brain respectively, and for 

the ENNs, between 99.1% and 108.1% in serum and between 98.5% and 112.3% in mouse brain. The 

accuracy (concentrationback calculated/concentrationnominal × 100% using the QC samples) was determined 

to be 100.2% (5 ng/mL), 103.4% (25 ng/mL) and 98.8% (75 ng/mL) for BEA in mouse serum, while for 

brain matrix this was 101.4, 99.9 and 96.8%, respectively. For ENNs, accuracies were 88.1-97.3% (25 

ng/mL) and 96.3-103.1% (75 ng/mL) in serum, and 104.0-109.9% (25 ng/mL) and 93.2-98.9% (75 
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ng/mL) in brain. For ENN A and ENN C/F accuracy at 25 ng/mL in mouse brain was slightly higher: 

136.5% and 115.9%, respectively. The precision of the method, determined on the duplicates, ranged 

from 0.2% to 10.9% RSD for all samples. 

4. RESULTS 

4.1. In vitro metabolic stability 

In mouse serum, metabolic stability could only be unambiguously concluded for BEA, ENN B and ENN 

B1 due to co-eluting endogenous compounds with the other ENNs. However, considering their 

chemical resemblance, a similar metabolic stability behaviour is expected for all enniatins. The 

percentage of the amount at the start of the incubation, i.e. t = 0 min, versus t = 60 min was found to 

be between 90 – 110%. Moreover, the 95% confidence interval of the slope of the percentage versus 

time curves contains zero, which indicates no significant serum degradation under our analytical 

conditions. 

In the brain homogenate, these percentages were within 80 – 120% for all investigated peptides, 

once corrected for the controls to take into account adsorption and other analytical phenomena. 

Moreover, no additional degradation peaks were observed (reporting threshold 2%). 

Overall the results of this study indicate that these peptides are highly stable in serum and brain 

during the duration of the in vivo study under our operational conditions. 

4.2. Blood-to-brain transport kinetics 

The BBB transport kinetics of BEA and ENNs were investigated using the MTR method. The negative 

and the positive control confirmed the validity of the executed BBB experiments. The K1 value of the 

positive control dermorphin was 0.26 μL/(g×min), while for the negative control BSA this was 0.12 

μL/(g×min), both consistent with previous data [35,38]. The blank formulation did not influence the 

BBB functionality as no difference in BSA BBB influx was observed between the ethanol-containing 

formulation (Figure 1), i.e. Lactated Ringer’s solution containing 1% 125I BSA (m/V) and 6% EtOH 

(V/V), and the formulation without ethanol, i.e. Lactated Ringer’s solution containing 1% 125I BSA 

(m/V) only (Figure 1). 
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Figure 1: Multiple time regression influx study of 
125

I BSA using linear regression. Brain/serum activity ratio 

(μL/g) in function of exposure time (min) of both the ethanol-containing formulation (blue) and the formulation 

without ethanol control (black). 

In Figure 2, the ratio of the concentration of peptide in brain and serum is plotted versus the 

exposure time. These data indicate that the cyclic depsipeptide mycotoxins BEA and ENNs cross the 

blood-brain barrier: a significant influx into the mouse brain was observed.  

 

Figure 2: Brain influx results of beauvericin and enniatins (MTR in mice). The ratio of the brain-to-serum activity 

is plotted versus the exposure time, fitted using the biphasic Gjedde-Patlak model. 
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All mycotoxins thus showed a high initial influx rate into the brain with K1 values ranging between 11 

and 53 μL/(g×min), followed by a plateau phase characterised by negligible net brain clearance (very 

low K-values). Moreover, the brain tissue distribution volumes (Vg) ranges between 22 and 106 μL/g. 

These data are presented in Table 1.  

The serum concentrations obtained during these experiments are shown in Figure 3. From the semi-

logarithmic plots, i.e. ln of serum concentration (ng/mL) in function of time (min), a clear biphasic 

decline was noticed, indicating thus a two compartment model characterised by a very fast transfer 

from the central to the peripheral compartment (distribution phase), followed by a second, much 

longer and slower phase (elimination phase). The model parameters obtained for each of the cyclic 

depsipeptide mycotoxins and the calculated half-lives are given in Table 2. 
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Table 1: Summary of the BBB data obtained for all investigated cyclic depsipeptide mycotoxins (mean ± SE). 

Cyclic depsipeptide 
MTR blood-to-brain influx

(1)
 Capillary depletion Efflux 

K (µL/(g×min)) Vg (µL/g) K1 (µL/(g×min)) 
Parenchymal 
fraction (%) 

Capillary 
fraction (%) 

Slope (min
-1

) 

Beauvericin (BEA) 0.02272 ± 0.3153 21.91 ± 9.664 11.15 ± 11.42 91.92 ± 1.41 8.08 ± 1.41 -0.1205 ± 0.04218 
Enniatin B (ENN B)   2.071 × 10

-16 
 28.97 ± 11.07 52.95 ± 108.4 96.03 ± 0.19 3.97 ± 0.19 -0.08802 ± 0.06985 

Enniatin D (ENN D) 0.001640 ± 0.09873 34.39 ± 6.588 21.66 ± 11.43 96.71 ± 0.15 3.29 ± 0.15 0.005063 ± 0.003091 
Enniatin B1 (ENN B1)   1.444 × 10

-16
 29.94 ± 7.594 30.03 ± 24.19 96.10 ± 0.00 3.90 ± 0.00 0.002408 ± 0.002707 

Enniatin E (ENN E)   9.769 × 10
-13

 45.77 ± 5.795 25.08 ± 10.86 96.20 ± 0.36 3.80 ± 0.36 -0.005929 ± 0.003019  
Enniatin A1 (ENN A1)   2.185 × 10

-16
 45.38 ± 9.303 25.38 ± 13.12 95.70 ± 0.10 4.30 ± 0.10 -0.01277 ± 0.005588  

Enniatin C/F (ENN C/F)   1.845 × 10
-16

 75.43 ± 15.39 23.53 ± 10.22 95.30
(2)

 4.70
(2)

 -0.02976 ± 0.009449 
Enniatin A (ENN A)   1.840 × 10

-16
 105.8 ± 21.95 32.41 ± 13.76 94.20 ± 0.71 5.80 ± 0.71 -0.04421 ± 0.02059 

(1) V0 = 14.8 µL/g of BSA. 
(2) n = 1 (the other sample was < limit of detection). 

Table 2: Serum kinetics of all investigated cyclic depsipeptide mycotoxins, following a two compartment model. 

Cyclic depsipeptide 
Two compartment model Distribution half-life 

(min
-1

) 
Elimination half-life 

(min
-1

) A B α β R
2
 

Beauvericin (BEA) 3772000 307 6.709 0.02129 0.9993 0.10 32.6 
Enniatin B (ENN B) 222536 124 6.405 0.09259 0.9983 0.11 7.49 
Enniatin D (ENN D) 103128 18.1 7.831 0.2119 0.9990 0.09 3.27 
Enniatin B1 (ENN B1) 255568 161 6.315 0.1449 0.9985 0.11 4.78 
Enniatin E (ENN E) 6358 7.29 5.742 0.1936 0.9988 0.12 3.58 
Enniatin A1 (ENN A1) 35133 56.79 5.198 0.1539 0.9989 0.13 4.50 
Enniatin C/F (ENN C/F) 425.6 1.25 4.550 0.1972 0.9989 0.15 3.51 
Enniatin A (ENN A) 1952 5.58 4.370 0.1624 0.9991 0.16 4.27 
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Figure 3: Serum concentrations (ng/mL) of BEA and ENNS in function of time (min), as obtained during the MTR 

experiments. Data were fitted using a two compartment model. 

4.3. Capillary depletion 

The distribution of the peptides in the brain (at 10 minutes after injection) is expressed as fraction 

(%) with respect to the total brain homogenate (i.e. the sum of brain capillaries and parenchyma) and 

are presented in Figure 4. A very high brain penetration of all cyclic depsipeptide mycotoxins was 

found. Overall, approximately 95% of the total quantity retained by the brain was found in the brain 

parenchyma and only approximately 5% of the mycotoxins remained in the brain capillaries (Table 1). 

Moreover, when comparing the Cbrain/Cserum ratios (μL/g) at 10 min post-injection obtained from both 

the MTR and CD study, these data were found to be in the same order of magnitude, indicating the 

overall validity and consistency of the experiments. 
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Figure 4: Compartmental distribution by capillary depletion at 10 min post-injection (mean absolute amounts 

in μL/g), showing a very high brain parenchyma penetration for all investigated cyclic depsipeptide mycotoxins. 

4.4. Brain-to-blood transport kinetics 

The efflux properties of BEA and ENNs out of the brain were investigated by quantifying their 

concentration in the brain after intracerebroventricular injection of the dose solution and deriving 

the efflux transfer constant kout, which is the negative value of the slope of the natural logarithm of 

the concentration of BEA/ENNs in the brain (ng/g) versus the experimental time curve (min), as 

presented in Figure 5 and Table 1. It is concluded that there is no significant efflux out of the brain 

observed for each of the investigated cyclic depsipeptides (kout is less than 0.005 min-1). 
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Figure 5: Brain efflux of beauvericin and enniatins, fitted using linear regression of the natural logarithm of the 

peptide concentration in brain (ng/g) versus time (min). 

5. DISCUSSION 

In the present study, we investigated the blood-brain barrier transport kinetics of the cyclic 

depsipeptide mycotoxins BEA and ENNs in an in vivo mice experiment with a dose corresponding to 

0.2 mg/kg, resembling a real-life feed contamination. Our results clearly show that these peptides 

rapidly permeate the BBB after intravenous administration: applying a biphasic process model, high 

initial influx rates varying from 11.15 up to 52.95 µL/(g×min) were observed, after which a plateau is 

reached. These K1 values indicate significantly higher initial influx rates into the brains compared to 

the negative control 125I BSA (0.12 µL/(g×min)) and positive control 125I dermorphin (0.26 µL/(g×min)), 

also included in this study. Moreover, the capillary depletion results indicated a brain tissue 

distribution of 95% peptides in the brain parenchyma, whereas only 5% remained trapped in the 

capillaries. Comparable Cbrain/Cserum ratios (μL/g) at 10 min post-injection were obtained from both 

the MTR and CD study, indicating that for ENNs C/F and A there is a higher brain influx, for ENNs B, 

B1 and BEA the lowest influx is noticed, while the other ENNs (ENN A1, E and D) range in between. 

Furthermore, only for ENN D a minor efflux was observed (kout = 0.005 min-1), which is biologically 



CHAPTER VI – BLOOD-BRAIN BARRIER TRANSPORT KINETICS OF BEAUVERICIN AND ENNIATINS 

 

 

218 

negligible within the experimental time frame of 15 minutes, while for the others no statistically 

significant efflux out of the brain into the blood was observed. 

Our in vivo experimentally obtained BBB permeability results were compared with two in silico 

computational models as proposed by Suenderhauf et al. [39]. For the first model using CHAID (chi-

squared automatic interaction detector), conflicting results were obtained due to the rotatable 

bonds cut-off splitting criterion: for BEA, ENN A, ENN A1 and ENN C/F (> 7) a weak BBB permeation is 

expected, while for ENN B, ENN B1 and ENN D (≤ 7) a strong permeation is predicted. However, for 

the second model using CART (classification and regression tree), a strong BBB permeation is 

expected for all our investigated cyclic depsipeptides, which is in accordance with the results 

obtained in this study. The values for the molecular descriptors of BEA/ENNs used to calculate their 

in silico BBB permeability are given in Table 3. 

Table 3: Molecular descriptors of BEA and ENNs used for the in silico prediction of their BBB permeability. 

Compound 
Molecular descriptor

(1)
 

aLogP tPSA Number of rotatable bonds 

Beauvericin 7.661 139.83 9 
Enniatin A 6.890 139.83 9 
Enniatin A1 6.434 139.83 8 
Enniatin B 5.522 139.83 6 
Enniatin B1 5.978 139.83 7 
Enniatin C 6.688 139.83 9 
Enniatin D 5.910 139.83 7 

(1) Calculated using Dragon 5.5 (Talete, Milan, Italy). 

The BBB-influx classification system for peptides as proposed by Stalmans et al. indicated that BEA 

and ENNs are located in class 5, corresponding to a very high brain influx, which was also confirmed 

by comparing our obtained influx data of BEA/ENNs with those of other peptides [28,40]. 

The pharmacokinetic biphasic behaviour observed in the MTR study (Figure 2) demonstrates a 

bidirectional transport mechanism with transition from a phase with an initial sharp increase to a 

steady-state condition. These observations can be explained by a number of concurrent 

pharmacokinetic mechanisms. Indeed, taking into account the two compartment serum kinetics 

(Figure 3 and Table 2), a very fast distribution phase is noticed with a corresponding rapid decrease in 

serum concentration (half-lives ranging from 0.09 to 0.16 min-1 for the different compounds), due to 

a transfer from the central to the peripheral compartment, represented by the different tissues. A 

second elimination phase is much slower, with half-lives ranging from 3.27 to 7.49 min-1 for the 

different ENNs and 32.6 min-1 for BEA, indicating a slower diffusion back from the peripheral 

compartment to the central compartment. Considering their lipophilicity, bioaccumulation or 

sequestration of these mycotoxins seems plausible and has been numerously suggested [10,41-44]. 

In an earlier study with tritiated ENN B, bioaccumulation in liver, kidney and brain was indeed 

observed [44,45]. During a recent in vivo pilot toxicokinetic study in pigs, Devreese et al. 
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demonstrated rapid distribution (0.15h) and elimination (1.13h) half-lives for ENN B1 after 

intravenous administration [3]. In another in vivo study in rats, an elimination half-life of 3.2h was 

obtained for beauvericin after oral administration [46].  

Although in this study, no significant serum and brain metabolisation was observed in vitro, this 

should not be ruled out. Extensive metabolisation has been demonstrated in vitro by incubation of 

ENN B in human, dog and rat liver microsomes, indicating that oxidative phase I reactions (N-

demethylation and isopropyl oxidation of N-methyl-L-valine and D-2-hydroxyisovaleric acid) by 

CYP3A and CYP1A play an important role in the metabolism of this mycotoxin [44,47]. These CYP 

enzymes are not only active in the liver, but also occur in extrahepatic regions [48,49]. 

Both ENNs and BEA have been previously described to interact with proteins involved in efflux 

transport, where they either act as efflux pump inhibitors, inhibiting the ABCG2- and ABCB1-

mediated efflux of specific fluorescent substrates in human cell lines [50,51], or as efflux pump 

substrates, i.e. ENN B1 was found to be a substrate of intestinal P-glycoprotein in the human 

intestinal Caco-2 cell line, with the basolateral (blood) to apical (intestine) direction being 6.7× higher 

as compared to the permeability in the opposite direction, indicating significant efflux activity [52]. 

6. CONCLUSIONS 

This study evaluated the quantitative BBB transport kinetics of the cyclic depsipeptide mycotoxins 

BEA and ENNs. The results indicate a very high influx rate into the brain, with a significant 

distribution in the brain parenchyma. No significant serum or brain metabolisation, nor significant 

brain efflux to the blood was observed. Our results thus highly increases the possibility of these cyclic 

depsipeptide mycotoxins to exert local central nervous system (CNS) effects once present in the 

systemic circulation. 
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“Quality begins on the inside... then works its way out.”  
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(°1941 - †2007, American teacher, coach, author, innovator and benefactor) 
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ABSTRACT 

Fusafungine, a mixture of the cyclic hexadepsipeptides enniatins, is currently on the market for the 

treatment of upper respiratory tract diseases because of its bacteriostatic and anti-inflammatory 

effects.  

In this study, a quality-by-design risk assessment was performed with two objectives: (i) 

investigate whether enniatins are able to permeate the mucosa and reach blood circulation, as the 

summary of product characteristics indicates this is not the case, and if so, to quantify their 

transmucosal kinetics and (ii) study the influence of excipient concentration variability on mucosal 

permeation. 

First, the concentration of the two main excipients isopropyl myristate and ethanol, known 

penetration enhancers, in several marketed samples was determined using GC-FID. Then, the 

transmucosal kinetics of the enniatins were quantitatively evaluated for different dose solutions, 

using buccal porcine mucosa in an ex vivo in vitro Franz diffusion cell set-up, with UHPLC-MS/MS 

bioanalytics. 

This study demonstrated that enniatins are capable of permeating the mucosa. However, no risk of 

a significant different transmucosal permeability with varying excipient concentrations was 

detected. Moreover, steady-state plasma concentrations after buccal application were estimated 

up to 1.3 mg/L, or 13 mg/L for the marketed preparations, which contain up to a 10 times higher 

enniatin dosage and assuming linear extrapolation. These results indicate that enniatin-based 

therapies for treatment of upper respiratory tract infections should be questioned, because of the 

possibly negative benefit-risk ratio. 
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CHAPTER VII 

QUALITY-BY-DESIGN RISK ASSESSMENT OF 

ENNIATIN-CONTAINING SOLUTIONS FOR 

OROMUCOSAL USE 

Main focus in this chapter: 

 To evaluate if fusafungine ENNs are able to permeate the mucosa and reach blood circulation. 

 To determine the influence of the excipient concentration variability on ENNs bioavailability. 

 

1. INFLUENCE OF EXCIPIENTS 

Fusafungine, a mixture of the cyclic hexadepsipeptides enniatins (ENNs) produced by Fusarium 

lateritium strains, is a medicinal product, originally patented in 1953 (FR1021824) and marketed 

under the trade names Locabiotal®, Bioparox®, Locabiosol® and Fusaloyos® [1]. It is claimed to have 

clinically relevant bacteriostatic and anti-inflammatory effects [2,3] and is used topically to treat 

upper respiratory tract diseases [4-6]. 

The summary of product characteristics (SmPC) indicates that no systemic absorption of fusafungine 

has been shown. However, no data substantiating this claim could be found in literature, questioning 

its validity. It is likely to assume that enniatins might pass the mucosa, since (i) it was recently 

demonstrated in an ex vivo in vitro Franz diffusion cell (FDC) experiment that enniatins are in fact 

capable of crossing the human skin barrier [7], (ii) it is generally accepted that mucosal permeation is 

significantly higher than skin permeation [8-13] (iii) enniatins in pharmaceutical preparations are 

mainly formulated in ethanol (EtOH) and isopropyl myristate (IPM), which are both chemical skin and 

mucosal penetration enhancers [14-23] and (iv) a considerable total water solubility of 0.3 mg/mL 

has been demonstrated for enniatins [7]. 

On the other hand, as EtOH and IPM were previously mentioned to be chemical penetration 

enhancers, their presence in topical formulations might thus play a key role in the bioavailability of 

enniatins after administration. According to the European Medicines Agency (EMA) guideline on 
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‘specification and control tests on the finished product’, excipients which affect the bioavailability of 

active substances must be subjected to a quantitative determination in each batch [24].  

Therefore, the overall objective of this study was to quantitatively evaluate the transmucosal kinetics 

of enniatins, using excised buccal porcine mucosa in an ex vivo in vitro FDC set-up with the 

application of a quality-by-design (QbD) risk assessment of the quantitative excipient composition 

variability. This is of pivotal importance, since enniatins have recently been identified as mycotoxins, 

which are secondary metabolites produced by fungi, posing a health hazard by exerting a toxic 

activity on human or animal cells in vitro with 50% effect levels < 1000 μM [7,25-30]. The European 

Food and Safety Authority (EFSA) recently published their “scientific opinion on the risks to human 

and animal health related to the presence of beauvericin and enniatins in food and feed”. Therein, it 

is concluded that for the moment, based on the limited data available, human health is considered 

not at risk after acute exposure to these mycotoxins, however, with regard to chronic exposure no 

such conclusions could be drawn. Insufficient data also did not allow for the calculation of risk 

assessment threshold limits (such as tolerable daily intake), so relevant in vivo toxicokinetic data are 

urgently needed [1]. Moreover, one study where mice were topically treated with fusafungine 1% for 

10 days with two sprays daily showed histopathological changes, such as hyperplasia, low-grade 

dysplasia, congestion or oedema. Consequently, the authors already suggested a change or 

withdrawal of such locally applied agents [31]. 

The two main objectives of this study were (i) to investigate whether ENNs permeate the mucosa and 

reach the systemic circulation after oral application of fusafungine formulated preparations (such as 

Locabiotal®), and if so, their transmucosal kinetics will be quantified and (ii) to study the influence of 

excipient content variability on the ENNs penetration/permeation. 
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2. MATERIALS AND METHODS 

2.1. Chemicals and reagents 

The mycotoxin beauvericin (BEA), which was used as an internal standard, was supplied by 

BioAustralis (Smithfield NSW, Australia), while the enniatin mixture (ENNs) was obtained from Cfm 

Oscar Tropitzsch (Marktredwitz, Germany). As no formal ENN composition was supplied by the 

manufacturer (only e-mail correspondence), we experimentally determined the relative composition, 

assuming a relative response factor (RRF) = 1 for the individual constituents: 43.8% ENN B, 34.4% 

ENN B1, 14.0% ENN A1, 3.6% ENN D, 1.8% ENN A, 1.8% ENN E and 0.4% ENN C or F. These data were 

obtained by UHPLC-MS and UHPLC-UV (205 nm) normalised areas. For Locabiotal®, a very similar 

relative composition was found by our group [32]. Five different batches of the finished 

pharmaceutical product Locabiotal® were purchased from different Belgian pharmacies. Ultrapure 

water (H2O) was produced by an Arium pro VF TOC water purification system (Sartorius, Göttingen, 

Germany), resulting in ultrapure water of 18.2 MΩ × cm quality. ULC-MS grade formic acid (FA), 2-

propanol and acetonitrile (ACN), used for preparation of the mobile phase, were purchased from 

Biosolve (Valkenswaard, The Netherlands). Sigma-Aldrich (St. Louis, MO, USA) supplied dimethyl 

sulfoxide (DMSO), isopropyl myristate (IPM) and 0.01 M phosphate buffered saline (PBS). Ethanol 

(EtOH) was purchased from Fisher Scientific (Waltham, MA, USA), who also supplied UHPLC grade 

ACN, HPLC grade methanol (MeOH) and acetone. Dimethylacetamide (DMA) was obtained from 

Janssen Chimica (Geel, Belgium). Cerestar (Mechelen, Belgium) supplied pharma grade 

hydroxypropyl-β-cyclodextrin (HPBCD), used as a solubilising modifier to the receptor fluid (PBS), to 

assure sink conditions of the hydrophobic cyclic depsipeptides throughout the experiment [33]. 

2.2. Analytical methods 

GC-FID determination of EtOH and IPM 

Because no quantitative excipient composition of Locabiotal® is given (in SmPC nor in the patient 

information leaflet (PIL)), the amount EtOH and IPM was first quantitatively determined using an in-

house developed GC-FID method. This platform consisted of a Clarus 600 GC equipped with a liquid 

autosampler and a programmable split/splitless capillary injector, coupled to a FID detector and 

operated by TotalChrom V6.3.2 software (Perkin Elmer, Waltham, Massachusetts, USA). 

Chromatographic separation was achieved on a SE-54 (5%-phenyl)(1%-vinyl)-methylpolysiloxane 

column (30 m × 0.32 mm × 0.25 μm) obtained from Agilent (Santa Clara, CA, USA), with N2 as carrier 

gas. A method summary for both compounds, including the GC temperature gradient and sample 

information, is given in Table 1. Typical GC-FID chromatograms for EtOH and IPM in Locabiotal® are 

shown in Figure 1.  
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Table 1: GC-FID method for the quantitative determination of EtOH and IPM in Locabiotal®. 

Parameter General settings 

N2 linear velocity 12.0 cm/s 
H2 supply detector  40 mL/min 
Air supply detector 400 mL/min 
Injection volume 1 μL 
Split ratio 50:1 
Injection temperature 250°C 
Detector temperature 250°C 

Compound EtOH IPM 

Oven temperature programme 0 – 7.5 min: 100°C 0 – 8 min: 223°C (isothermal) 
 7.5 – 13 min: 30°C/min  
 13 – 20 min: 265°C  
Retention time 4.2 min 7.7 min 
Target concentration 1000 ppm (V/V) 100 ppm (V/V) 
Solvent dimethylacetamide (DMA) acetone 

 

Figure 1: Typical GC-FID chromatograms of Locabiotal® for the assay of IPM (A) and EtOH (B). 

These methods were in-house verified for their linearity, limit of detection (LoD), specificity, 

accuracy, repeatability and robustness. Linearity was determined using five concentrations, each in 

triplicate (50, 75, 100, 125 and 150 ppm (V/V) for IPM and 500, 750, 1000, 1250 and 1500 ppm (V/V) 

for EtOH). Repeatability and accuracy were determined using the 75 – 125 ppm (V/V) solutions for 
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IPM and the 750 – 1250 ppm (V/V) solutions for EtOH. Specificity was assessed using MeOH as a 

closely related structure. LoD was determined using the signal-to-noise approach, where LoD 

corresponds to a signal-to-noise ratio of 3:1. Robustness was assessed using the response factors and 

retention times as system suitability tests, performed at the start of each analysis. 

For the determination of IPM, Locabiotal® samples were prepared by appropriate dilution in acetone 

(target concentration = 100 ppm V/V) and reference solutions of 50, 75, 100, 125 and 150 ppm (V/V) 

IPM in acetone were prepared starting from a 1% (V/V) IPM in acetone stock solution. For the 

determination of EtOH in the Locabiotal® samples, these were appropriately diluted in DMA (target 

concentration = 1000 ppm (V/V)), with reference solutions of 500, 750, 1000, 1250 and 1500 ppm 

(V/V) EtOH in DMA, prepared from a 10% V/V EtOH in DMA stock solution. 

UHPLC-MS/MS determination of ENNs 

Previously, a sensitive, specific and high-throughput bioanalytical ultra high performance liquid 

chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for the 

quantitative and simultaneous determination of cyclic depsipeptide mycotoxins beauvericin and 

enniatins (A, A1, B, B1, D, E, C/F) in human skin Franz diffusion cell samples (Chapter IV). Briefly, the 

UHPLC-MS/MS platform consisted of an Acquity UHPLC equipped with a Xevo TQ-S MS detector 

(Waters, Milford, MA, USA). For chromatographic separation, an Acquity UHPLC CSH C18 column (1.7 

µm, 100 × 2.1 mm, 130Å), attached to an Acquity UHPLC VanGuard pre-column (1.7µm, 5 × 2.1 mm, 

130Å), thermostated at 45°C, was used (Waters, Milford, MA, USA). The needle wash consisted of 

10/10/80 (V/V/V) DMSO/2-propanol/ACN. The isocratic flow rate was set to 0.6 mL/min, using 70/30 

(V/V) ACN/H2O with 0.1% FA and 0.1% 2-propanol as mobile phase. The run time was 4.5 min and the 

injection volume was 10 µL. The mass spectrometer was operated in the positive electrospray 

ionization mode (ESI+), with a cone voltage of 50 V and a capillary voltage of 3.50 kV. Cone and 

desolvation gas flows were respectively 150 and 1000 L/h, while source and desolvation 

temperatures were set at 150 °C and 600 °C, respectively. Data were acquired using Masslynx 

software (V4.1 SCN 843, Waters, Milford, MA, USA). BEA was used as an internal standard for the 

enniatin mixture. The selected precursor and product ions, with the applied collision energies 

between brackets, are given. The selected precursor ion for ENN B was m/z 639.91 with two selected 

product ions at m/z 196.08 (25 V) and m/z 527.26 (22 V), for ENN D and B1 the precursor ion was m/z 

653.99 and m/z 196.09 (23 V) and m/z 541.05 (21 V) were the product ions. For ENN E and A1, m/z 

668.07 was the precursor ion and m/z 209.99 (24 V) and m/z 555.29 (21 V) were its product ions. 

ENNs A and C or F have a precursor ion of m/z 682.47 with product ions m/z 209.93 (26 V) and m/z 

555.01 (23 V). Lastly BEA has a precursor ion at m/z 783.94, with m/z 244.01 (24 V) and m/z 623.23 

(23 V) as its product ions. This method has also been successfully verified. It was demonstrated that 
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beauvericin and enniatins are stable for at least 7 days when formulated in different organic or 

aqueous mixtures and under different storage conditions. Additional attention was paid to the 

investigation of analyte losses due to adsorption issues. It was shown that at least 50% organic 

solvent is required to prevent significant adsorption to glass. The limits of detection were 17 pg/mL 

for BEA and ENN B, 14 pg/mL for ENN D and ENN B1, 15 pg/mL for ENN E, ENN A1 and ENN A and 10 

pg/mL for ENN C/F. More details about the development and verification of the applied bioanalytical 

method are given in Chapter IV. 

2.3. In vitro FDC study using buccal porcine mucosa 

The set-up consisted of static Franz diffusion cells with a receptor compartment of 5 mL and an 

available diffusion area of 0.64 cm² (Logan Instruments Corp., New Jersey, USA). Buccal porcine 

mucosa were collected from freshly slaughtered pigs (Porc Meat Zele NV, Zele, Belgium). 

Immediately thereafter, the mucosa samples were cleaned with 0.01 M PBS pH 7.4, wrapped in 

aluminium foil and stored at -35 °C. Just before the start of the experiments, the mucosa was 

thawed, mounted on a template and dermatomed using an electrically powered dermatome set at 

0.64 mm (Integra Life Sciences, New Jersey, USA). The experimentally obtained overall thickness of 

the mucosa, determined with a micrometer (Mitutoyo, Tokyo, Japan), was 524 ± 11 μm (mean ± 

SEM, n = 48). The samples were visually inspected for damage and were then sandwiched between 

the donor and acceptor chambers, with the epithelial layer facing upwards, making sure all air 

underneath is removed. The whole assembly was fixed on a magnetic stirrer and the receptor fluid 

was continuously stirred using a Teflon coated magnetic stirring bar (600 rpm). Before starting the 

experiments, the integrity was checked by measuring the impedance using an automatic micro-

processor controlled LCR impedance bridge (Tinsley, Croydon, UK). Mucosa pieces with an 

impedance value < 10 kΩ, a system-suitability cut-off, were discarded and replaced by a new piece 

[34]. Then, the dose solutions were topically applied (400 μL), the donor chamber was covered with 

parafilm and the temperature of the receptor compartment was kept at 37 ± 1 °C. Samples (200 µL) 

were drawn at regular time intervals (0.5, 1, 2, 3, 4, 6 and 8h) from the sampling port and were 

immediately replaced by 200 µL fresh receptor solution. The analytically determined assay values in 

the FDC samples were correspondingly corrected for these replenishments. At the end of the 

experiment (i.e. after 8h), the remaining donor solution was removed from the mucosa surfaces by 

swabbing with cotton wool, which was extracted overnight with 70:30 ACN:H2O (V/V) at 40 °C by 

mild shaking (150 rpm), using a Thermo max Q400 incubator shaker (Thermo Scientific, Waltham, 

MA, USA). The exposed mucosa were carefully cut out using a scalpel and extracted with 1 mL 95:5 

ACN:H2O (V/V) overnight at 25 °C with mild shaking at 750 rpm using a Thermomixer comfort 

(Eppendorf, Hamburg, Germany). These were all analysed and used to construct a mass balance: the 
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recovery of each enniatin was between 80.3 ± 1.3% and 101.9 ± 1.4% (mean ± SEM, n = 24), 

confirming the quantitative validity of our data. 

For the preparation of the dose solutions the following rationale is applied. According to the 

PIL/SmPC, Locabiotal® is composed of IPM as main solvent, as well as ethanol as most important 

ingredient, next to an aromatic mixture and the sweetener saccharine. Therefore, the concentration 

of both IPM and EtOH in Locabiotal® was determined by GC-FID. Based on this information, the dose 

solutions for investigation of composition variability within the context of a quality-by-design risk 

assessment are investigated for varying EtOH concentrations with matching IPM concentrations: 

1/99, 3/97, 5/95, 10/90 (V/V) EtOH/IPM, while maintaining a constant total enniatin concentration of 

1 mg/mL. 

2.4. Kinetic data analysis 

The mucosa permeation parameters were calculated from the individual curves of the cumulative 

amount of each enniatin permeated as a function of time. Steady-state flux (Jss) was derived from the 

slope of the linear portion of the curve divided by 0.64 cm² to correct for the exposed mucosal area. 

The lag time (tlag) was estimated by extrapolating the linear portion of the curve to the time-axis. 

From these experimentally determined secondary kinetic parameters, the apparent primary 

parameters could be calculated [35]. The permeability coefficient kp,v was obtained using the 

following equation: kp,v = Jss/Cv, where Cv is the experimentally determined concentration of each 

enniatin in the vehicle (dose formulation). From the mucosa extractions, the enniatin concentrations 

within the mucosa were also determined, taking the respective mucosa volumes into account: 

mucosa volume (cm³) = mucosa thickness (cm) × mucosa surface (0.64 cm²).  

To determine statistically significant differences at a 95% confidence level, one-way analyses of 

variances (ANOVA), incl. homogeneity of variances (Levene’s test), were performed. If these ANOVA 

analyses demonstrated a significant difference, a post hoc analysis was performed as well. In the 

case of equal variances, a Bonferroni test was used. When the assumption of equal variances was 

violated, a post hoc Games-Howell test (for unequal variances) was applied. 

2.5. Calculation of steady-state plasma concentration after buccal application 

For a clinical interpretation of these results, the steady-state plasma concentration after buccal 

application is calculated as well, using the following equation: Cpl,ss,buccal = (A × kp,v × Cv)/Cl, where A is 

the exposed mucosal area, Cv is the compound concentration in the vehicle, Cl is the plasma 

clearance of the compound and kp,v is the permeability coefficient for the investigated mycotoxins, 

obtained from our ex vivo in vitro transmucosal FDC experiment [36]. For ENN B1, an average plasma 

clearance of 1.96 L/h/kg was previously reported [29]. For the other enniatins, a similar plasma 
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clearance was assumed. An average body weight of 70 kg and total surface area of 100 cm² for the 

oral mucosa was considered for the calculations [37]. 

3. RESULTS AND DISCUSSION 

3.1. GC-FID determination of EtOH and IPM 

During the method evaluation, a linear range was established between 50 – 150 ppm (V/V) for IPM 

and 500 – 1500 ppm (V/V) for EtOH, confirmed by a coefficient of determination (R²) of respectively 

0.995 and 0.999 and the lack-of-fit F-test (α = 0.05). For accuracy, the bias ranged between -1.68 – 

0.59% for IPM and between 0.28 – 2.92% for EtOH, which comply with the previously set criteria (< 

3%) [38]. For repeatability, relative standard deviations (RSD) of 1.86 – 4.15% were obtained for IPM, 

while this was 1.52 – 5.28% for EtOH, which are slightly higher than the pre-set limit of 3% [39], 

however considered still acceptable for our purposes. Limit of detection was found to be 3.0 ppm 

(V/V) for IPM and 4.2 ppm (V/V) for EtOH. As discrimination between EtOH and MeOH was achieved 

by visual examination of the chromatograms, the method specificity was considered acceptable. 

Concerning robustness, the method was considered sufficiently robust: retention times remained 

unchanged and response factors were in agreement with the repeatability (2.3% RSD for IPM and 3% 

RSD for EtOH) during the analytical experiments. 

Experimental determination of the amount of IPM and EtOH in the different batches of Locabiotal® 

revealed an overall average content of 91.60 ± 2.02% (V/V) IPM and 1.67 ± 0.03% (V/V) EtOH after 

analysis (mean ± SEM, n = 5). No statistically significant differences were found between the batches 

(p > 0.10). 

3.2. Franz diffusion cell experiments using buccal porcine mucosa 

Our results demonstrate that ENNs are able to diffuse through buccal porcine mucosa skin when 

applied in an EtOH/IPM solution. Figure 2 shows the mean cumulative amount (ng) versus time (h) 

plots for the different enniatins applied on buccal porcine mucosa in the four varying EtOH/IPM dose 

formulations. Only the amount of ENN A and ENN C/F in the receptor fluid samples was too low to 

obtain useful cumulative amount versus time curves and were therefore not taken into account. All 

other ENNs confirmed the unidirectional steady-state principle. Linear regression of the individual 

curves was performed for each compound between 2 – 8h (R2 ≥ 0.96), in order to calculate the 

transmucosal parameters, which are presented in Table 2. 
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Figure 2: Individual cumulative amount (ng) versus time (h) curves of the investigated enniatins for buccal 

porcine mucosa when exposed to dose solutions containing 1 mg/mL total enniatin mixture in varying 

EtOH/IPM concentrations (1/99, 3/97, 5/95 and 10/90, V/V) (mean ± SEM, n = 2 – 6). 
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Table 2: Transmucosal parameters for enniatins obtained through buccal pig mucosa after applying 1 mg/mL dose solutions with varying EtOH/IPM (V/V) concentrations 

(mean ± SEM, n = 2 – 6). 

 Jss (ng/(cm² × h)) Q8h (%)
(1)

 
EtOH/IPM (V/V) 1/99 3/97 5/95 10/90 1/99 3/97 5/95 10/90 

ENN B 20.11 ± 2.00 15.16 ± 1.98 21.24 ± 1.76 19.43 ± 2.13 0.048 ± 0.006 0.035 ± 0.005 0.053 ± 0.005 0.053 ± 0.007 
ENN B1 5.54 ± 0.79 3.45 ± 0.62 5.96 ± 0.73 5.36 ± 0.93 0.018 ± 0.003 0.014 ± 0.002 0.020 ± 0.003 0.021 ± 0.004 
ENN A1 0.68 ± 0.12 0.56 ± 0.16 0.90 ± 0.19 0.81 ± 0.12 0.006 ± 0.001 0.006 ± 0.002 0.008 ± 0.002 0.008 ± 0.001 
ENN D 1.13 ± 0.14 6.79 ± 0.12 1.18 ± 0.10 1.16 ± 0.16 0.034 ± 0.005 0.024 ± 0.004 0.033 ± 0.004 0.038 ± 0.006 
ENN E 0.22 ± 0.04 0.14 ± 0.02 0.24 ± 0.04 0.22 ± 0.04 0.014 ± 0.003 0.011± 0.002 0.015 ± 0.003 0.014 ± 0.002 

 kp,v (× 10
-5

 cm/h) Lag time (h) 
EtOH/IPM (V/V) 1/99 3/97 5/95 10/90 1/99 3/97 5/95 10/90 

ENN B 4.36 ± 0.43 3.25 ± 0.43 4.75 ± 0.40 4.68 ± 0.51 1.24 ± 0.22 1.56 ± 0.16 0.93 ± 0.20 0.94 ± 0.19 
ENN B1 1.62 ± 0.23 1.06 ± 0.19 1.79 ± 0.22 1.87 ± 0.32 1.16 ± 0.24 0.73 ± 0.21 1.13 ± 0.05 0.93 ± 0.08 
ENN A1 0.50 ± 0.08 0.43 ± 0.12 0.67 ± 0.14 0.70 ± 0.11 0.67 ± 0.38 -

(2)
 0.53 ± 0.20 0.68 ± 0.21 

ENN D 3.04 ± 0.39 2.14 ± 0.33 2.95 ± 0.25 3.47 ± 0.48 1.20 ± 0.14 1.31 ± 0.09 0.94 ± 0.18 1.16 ± 0.13 
ENN E 1.20 ± 0.22 0.80 ± 0.14 1.36 ± 0.21 1.45 ± 0.30 0.86 ± 0.12 0.50 ± 0.11 0.92 ± 0.05 0.86 ± 0.12 

(1) Q8h = the cumulative quantity, expressed as percentage of the effective dose applied, obtained after one day. 
(2) Lag time could not be calculated due to a positive intercept in the linear regression. 

Table 3: Local buccal pig mucosa concentrations for enniatins obtained after applying in 1 mg/mL total enniatins dose solutions with varying EtOH/IPM (V/V) concentrations 

for 8h (mean ± SEM, n = 6). 

EtOH/IPM 
(V/V) 

Local mucosa concentrations (μM) 
ENN B ENN B1 ENN A1 ENN D ENN A ENN E ENN C/F Total ENNs 

1/99 13.23 ± 2.24 5.67 ± 2.00 1.62 ± 0.48 0.56 ± 0.13 0.16 ± 0.05 0.22 ± 0.06 0.04 ± 0.01 21.49 ± 4.84 
3/97 18.96 ± 2.16 9.78 ± 2.24 2.41 ± 0.43 0.82 ± 0.13 0.24 ± 0.05 0.32 ± 0.05 0.06 ± 0.01 32.59 ± 5.00 
5/95 15.06 ± 3.09 6.31 ± 2.51 1.63 ± 0.48 0.57 ± 0.15 0.16 ± 0.05 0.22 ± 0.06 0.04 ± 0.01 23.98 ± 6.34 

10/90 11.00 ± 1.54 3.81 ± 0.97 1.08 ± 0.22 0.44 ± 0.09 0.10 ± 0.02 0.16 ± 0.03 0.03 ± 0.01 16.62 ± 2.86 

 



  CHAPTER VII – QBD RISK ASSESSMENT OF ENNIATIN-CONTAINING SOLUTIONS FOR OROMUCOSAL USE 

 

 

237 

Upon comparison of the kp,v, Jss, tlag and Q8h of the four different dose solutions, containing a fixed 

concentration of enniatins and a varying amount of EtOH/IPM (V/V), for each compound separately, 

no statistically significant differences were observed (p > 0.05).  

Figure 3 presents a distribution overview of the ENN B (i.e. the most abundant ENN present in 

Locabiotal®) concentrations in the different compartments (dose solution, mucosa and receptor 

fluid) obtained under our experimental conditions, applying dose solutions of 1 mg/mL total enniatin 

mixture. The obtained distribution pattern is comparable for the four different dose solutions: a 

decreasing concentration gradient is observed, however, with relatively high local mucosal 

concentrations. For the other investigated enniatins, a similar distribution was obtained (data not 

shown). 

 

Figure 3: Distribution overview of the ENN B concentrations in the different compartments (dose solution, 

mucosa and receptor fluid) obtained under our experimental conditions, applying dose solutions of 1 mg/mL 

total enniatin mixture. 

Local mucosa concentration for each enniatin is given in Table 3. After 8h exposure under our 

operational conditions, a total enniatin concentration up to 33 μM was found. No statistically 

significant difference in mucosa concentration was found between the different dose solutions for 

each investigated enniatin (p > 0.05). 

From this QbD approach, it is concluded that the transmucosal permeability of the enniatins through 

buccal porcine mucosa is not affected with varying concentrations of the excipients EtOH and IPM 

within the investigated range. There is thus no risk of a significantly different (i.e. 

increased/decreased) systemic enniatin availability in terms of composition variability within the 

currently tested EtOH/IPM range (1/99 – 10/90, V/V). This is also confirmed by the enniatin amount 
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penetrated into the mucosa, for which no significant difference was found between the different 

dose solutions, investigated for each enniatin separately. 

After 8 hours, 0.006 – 0.053% of the dose applied was cumulatively found in the receptor chamber 

(Q8h), depending on the enniatin. Overall average permeability coefficients were determined to be 

between 0.60 × 10-5 and 4.26 × 10-5 cm/h, while for Jss this was between 0.21 and 18.99 ng/(cm² × h). 

Overall average lag times ranged from 0.63 – 1.17h for ENN A1 and ENN B, respectively. These are 

considerably shorter than the lag times reported for transdermal permeation through intact (± 8h) 

and even damaged (± 6h) human skin, when applied in a dose formulation with up to 60% EtOH [7]. 

This confirms previous observations, explained by the difference in anatomy between skin and 

mucosa: the skin has an extensive barrier function exerted by the stratum corneum, which the 

mucosa is lacking. This also explains the higher kp,v and Jss values obtained in this mucosa study. 

Furthermore, an inverse relationship between log P on the one hand and average kp,v, tlag and Q8h 

values on the other hand was observed. Indeed, ENN B, with the lowest log P of 4.68 showed the 

highest permeability coefficients, lag times and Q8h values, whereas ENN A1, having a log P of 5.48, 

respectively, had the lowest kp,v’s, tlag’s and Q8h’s. 

Taking into account that the marketed preparations contain up to a 10 times higher enniatin dosage 

than the dose experimentally applied in this study and assuming linear extrapolation, local mucosa 

concentrations up to 330 μM and transmucosal steady-state fluxes as high as 0.2 μg/(cm² × h) might 

be expected.  

3.3. Clinical interpretation 

This study proved that enniatins dissolved in IPM/EtOH mixtures are indeed capable of permeating 

the mucosa, at least questioning current SmPC information. Our ex vivo in vitro study neglects the in 

vivo situation where continuous saliva production and flow is present, metabolisation might occur, as 

well as GI absorption of the swallowed ENNs. Moreover, in these calculations a constant exposure to 

the fusafungine solution is assumed. Indeed, a clear systemic exposure can be expected, since it was 

already shown by Devreese et al. that ENN B1 is rapidly absorbed after oral administration (T1/2 = 

0.15h, Tmax = 0.24h) and that a high absolute oral bioavailability (90.9%) is reached [29]. As such, our 

study can be considered as a “worst-case” situation. The calculated steady-state plasma 

concentrations after buccal application for the different enniatins, given in Table 4, range from 0.026 

mg/L for ENN E to 1.339 mg/L for ENN B. Taking into account that the marketed preparations contain 

up to a 10 times higher enniatin dosage than the dose experimentally applied in this study and 

assuming linear extrapolation, steady-state plasma concentrations after buccal application up to 

13.39 mg/L might be expected. Moreover, according to the patient information given for these 

products (Locabiotal®, patient information leaflet), the spray should be applied every 4h, likely 
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causing local built-up, which might eventually lead to a mucosal enniatin sink reservoir, from which 

enniatins can slowly diffuse into the blood circulation and result in undesired chronic exposure to 

these mycotoxins. It is therefore recommended in the treatment of minor, rather innocent, upper 

respiratory infections, to question enniatin-based preparations, since for the mycotoxins present in 

the formulation local and systemic toxic effects cannot be excluded [7].  

Table 4: Estimated enniatin steady-state plasma concentrations Cpl,ss,buccal (mg/L) after buccal application. 

Compound 
kp,v 

(× 10
-5

 cm/h)
(1)

 
Cv 

(mg/mL)
(2)

 
Cl 

(L/h)
(3)

 
A 

(cm²)
(4)

 
Cpl,ss,buccal 

(mg/L)
(5)

 

ENN B 4.26 0.43 136.85 100 1.339 
ENN B1 1.58 0.31 136.85 100 0.358 
ENN A1 0.61 0.15 136.85 100 0.067 
ENN D 2.90 0.04 136.85 100 0.085 
ENN E 1.20 0.03 136.85 100 0.026 

(1) Overall mean kp,v values obtained from our ex-vivo in-vitro transmucosal FDC experiment. 
(2) The label claim of Locabiotal® is 10 mg/mL fusafungine. The quantitative composition of the enniatins in this formulation was 
previously determined (D’Hondt et al., 2014). Enniatins C/F and A were not taken into account (due to kp,v unavailable). 
(3) For ENN B1 a mean plasma clearance of 1.96 L/h/kg was previously reported [29]. For the other enniatins, a similar plasma 
clearance was assumed and an average body weight of 70 kg was taken into account. 
(4) The total surface area of the oral mucosa was assumed to be 100 cm² [37]. 
(5) Steady-state plasma concentration after buccal application: Cpl,ss,buccal = (A × kp,v × Cv)/Cl. 

Interestingly, approximately one year after our group published these results, the European 

Medicines Agency (EMA) Pharmacovigilance Risk Assessment Committee (PRAC) advised to withdraw 

nasal and mouth sprays containing fusafungine from the market because of its negative risk-benefit 

ratio, particularly the risk for serious allergic reactions and antibiotic resistance (EMEA/H/A-31/1420, 

February 12th, 2016). This negative advice was followed by the CMDh (Coordination Group for 

Mutual Recognition and Decentralised Procedures – Human), which has endorsed by consensus the 

revocation of marketing authorisations for fusafungine sprays in the EU. Member States will 

implement this decision and start revoking the medicinal products affected by the procedure in their 

territories, according to an agreed timetable (EMEA/H/A-31/1420, April 1st, 2016). For example, in 

Belgium the Federal Agency for Medicines and Health Products (FAMHP) has issued the revocation of 

Locabiotal (May 4th, 2016) [40]. 

4. CONCLUSIONS 

It was demonstrated in this study that enniatins in topical medicines are capable of permeating the 

mucosa barrier. Furthermore, is also proven that the transmucosal permeability of the enniatins 

through buccal porcine mucosa is not affected with varying concentrations of the penetration 

enhancers EtOH and IPM, present in marketed fusafungine preparations. 

Up to 0.05% of the dose applied was cumulatively detected in the receptor fluid after 8h exposure 

and high local mucosa concentrations were found as well. Moreover, steady-state plasma 
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concentrations after buccal application were estimated to reach up to 1.3 mg/L, or 13 mg/L for the 

marketed preparations, which contain up to a 10 times higher enniatin dosage and assuming linear 

extrapolation. Bearing in mind that this in vitro study represents a worst-case approach, neglecting 

the saliva flow, enniatin-based therapies should be questioned in the treatment of innocent upper 

respiratory tract infections, because of the negative benefit-risk ratio, as long-term chronic effects of 

these mycotoxins have not yet been thoroughly investigated. 
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BROADER INTERNATIONAL CONTEXT, 

RELEVANCE & FUTURE PERSPECTIVES 

1. BROADER INTERNATIONAL CONTEXT AND RELEVANCE 

Overall, this multidisciplinary work contributed to human health by means of an innovative blend of 

medicinal chemistry, philosophy, toxicology, pharmacokinetics and regulatory fields. This chapter will 

discuss our findings in a broader research field and highlight the relevance for improvement of 

human health, concluding with some interesting future research perspectives. 

Cyclic depsipeptides as drug leads of the future 

Within the pharmaceutical industry, peptides have certainly conquered their place next to traditional 

small molecules, with over a hundred peptides already authorised or currently used in (pre)clinical 

studies, displaying a wide array of interesting biological activities [1]. Today, nature still serves as an 

important factory for the discovery of new drug leads, with evolution as driving-force to create an 

enormous biodiversity of peptide-related compounds. Among these are also the cyclic depsipeptides, 

isolated from a variety of (micro)organisms, found all over the planet. As disparate as their presence 

is, are also their diverse chemical structures. Although in violation with many “drug-likeness” 

predictors and bioavailability rules, such as Lipinski’s “Rule of Five”, they offer a huge potential to the 

medicinal chemistry and pharmaceutical industry field for the development of new medicines. In 

recent years, technological advances have guided researchers towards further elucidation of disease 

targets, gaining insight in protein-protein or protein-DNA interactions. Naturally occurring cyclic 

peptides display a wide variety of unusual and potent biological activities, and they can be 

considered as a new generation drugs that are able to modify this large macromolecular target 

space, which lies beyond that of the enzyme active sites and receptors. Cyclic depsipeptides, and 

cyclic peptides in general, are characterised by larger molecular weights and more polar group 

counts, yet retaining membrane permeability, metabolic stability and oral bioavailability [2][3][4][5].  

This was also demonstrated in this research for the cyclic depsipeptides (CDPs) beauvericin and 

enniatins. They are capable of crossing different important biological barrier systems and are able to 

reach blood circulation and accumulate to significant local skin, oromucosal and brain 

concentrations. CDPs should thus indeed be considered as promising drug leads of the future.  

Some CDPs have already proven their potential as medicines: daptomycin (Cubicin®) is celebrating its 

10th anniversary on the European market as an agent against several bacterial infections, while 
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tacrolimus (Protopic® and Protopy®) has been authorised in 2002 by EMA as a therapy for atopic 

dermatitis. Another immunosuppressive compound is rapamycin (also known as sirolimus, 

Rapamune®), given as an oral solution or tablet and used to prevent the body from rejecting a newly 

transplanted kidney. In 2009, FDA has approved Istodax® (romidepsin),  a histone deacetylase (HDAC) 

inhibitor, and granted it the orphan drug status for treatment of patients with cutaneous T-cell 

lymphoma [6][7]. 

Currently, several other compounds with CDP structure are being evaluated in (pre)clinical trials, 

either naturally occurring secondary metabolites or synthetic derivatives thereof [8]. Kahalalide F, for 

example, is tested for its anticancer activity against prostate tumours. Although the mode of action 

has not been completely determined, it is known to target lysosomes. More recently, it was also 

investigated as an anti-Leishmania lead with a new mode of action [8][9]. Another investigational 

anticancer agent is dehydrodidemnin B or plitidepsin (Aplidin®), at the moment undergoing clinical 

development for treatment of diverse haematological cancers [8][10]. 

However, CDPs may not only be useful in our fight against cancer, but also in the cure of infectious 

diseases, in particular when caused by antibiotic resistant bacteria. Antibiotic resistance is a growing 

concern in the 21st century, as we are currently running out of last resort antibiotics. Fortunately, 

CDPs like katanosin B and plusbacin A3 offer a promising and viable alternative in treatment of the 

feared MRSA (methicillin resistant Staphylococcus aureus) infection, due to blocking of 

transglycosylation and other steps prior in peptidoglycan cell wall synthesis via a mechanism 

different from that of other antibiotics such as vancomycin [11]. Recently, CDPs with quorum sensing 

inhibitory effects were also identified: solonamides, ngercheumicins, arthroamide and turnagainolide 

A [12][13][14]. It has been suggested that such an inhibition of virulence factor production and 

activity could also serve as new therapeutic approach to treat infections caused by antibiotic 

resistant pathogens [15]. 

Many more CDPs are still being discovered, and are awaiting investigation of their  biological 

activities and potential drug use. CDP data is found widely scattered over literature, resulting in a 

daunting task for many researchers to get a complete overview and understanding of this group of 

natural peptides as a whole. Therefore, we presented a broad evaluation of different CDP structures 

and proposed a new straightforward classification system, whereby a total of 1348 naturally 

occurring CDPs were included. This tool allows natural product and peptide scientists to study the 

wide diversity in CDP structures, their chemical interrelationships and identification of existing and 

newly found CDPs. CDPs have a lot to offer to the medical world and they should not get lost in the 

huge pile of data available nowadays. Moreover, we would like to invite medicinal chemists, leading 

the drug discovery of the future, not to be fixated on conventional drug-likeness and bioavailability 
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rules, but rather encourage them to enter and further unravel the wonderful world of cyclic 

depsipeptides. 

Mycotoxins: the importance of risk prioritization  

We should, however, not only look at these CDPs from a pharmacological point of view as interesting 

bioactive lead compounds improving our health, but also from a toxicological point of view as 

hazards that are reasonably likely to cause harm or damage to humans, other organisms or the 

environment [16]. Indeed, the organisms that produce these CDPs are sometimes more closely in 

contact with us then we might originally suspect. They can, for example, be infecting our drinking 

water, feed and food [17][18][19], harbouring within the house dust mite, which are common on 

human skin and in house dusts [20], and can be widely distributed throughout the environment, i.e. 

present on plant debris, soil, wood, textiles and shower curtains [21][22][23]. 

Authorities seem overwhelmed by the idea that hundreds to thousands potentially toxic fungal 

metabolites exist. In their best efforts to control these hazards, multiple expert groups bend over the 

huge pile of research investigations available concerning mycotoxins and actions are taken to 

propose measures, guidelines, regulations and limits for these toxins. However, the struggle cannot 

be concealed: there should be no more mycotoxins identified, simply because we just cannot handle 

it… 

On no account must we gloss over this by avoiding the discussion: we believe this is hardly the right 

approach. While recognizing the limited resources available and understanding that not every single 

compound can be fully investigated, it seems to us that careful risk prioritization is a justifiable way 

to appropriately handle the large amount of potentially toxic fungal metabolites. Risk assessment is 

therefore a valuable method that is widely integrated in today’s society and applied in the fields of 

pharmaceutical health-care, ecological environment and the food industry, but also in other areas 

such as socio-economics and the financial world. Within the context of straightforward risk 

prioritization, clear definitions are indispensable. In this work, we highlighted the inconsistency, 

leading to confusion about what compounds should be called mycotoxin. Therefore, in an attempt to 

aid researchers as well as health authorities and tackle this problem, we have proposed a new 

mycotoxin definition in order to ease the risk prioritization process concerning mycotoxins in a 

global, objective and scientific way. While causing quite a stir, we certainly succeeded in bringing the 

topic under the attention. Although likely no consensus is reached (yet), the exact numbers are open 

for discussion and can be modified and supplemented, depending on the context, in order to achieve 

a future global risk prioritization plan for mycotoxins. 
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Beyond the oral exposure route 

For some mycotoxins, there are already regulations available and specific limitations are set for food, 

feed and medicines, in order to guarantee the safety of the consumer and patient. However, for the 

cyclic depsipeptide mycotoxins beauvericin and enniatins, investigated in this work, no regulations 

are set (yet). Therefore, in 2010 the European Commission requested the European Food Safety 

Authority (EFSA) for their scientific opinion concerning the risk to human and animal health related 

to the presence of beauvericin and enniatins in food and feed.  

EFSA is a European agency funded by the European Union that operates apart from the European 

legislative and its executive institutions and EU Member States. Following a series of food crises in 

the late 1990s, it was set up as an independent source of scientific advice and communication on 

risks associated with the food chain [24]. EFSA is working to keep food safe for the consumer, but it  

largely ignores other routes, such as respiration and dermal exposure, although it is widely 

recognised that inhalation of spore-borne toxins and skin contact with mould-infested substrates are 

also important sources of exposure [25]. In the case of industrial workers exposed to contaminated 

(natural) fruit waxes, grain dust and residential exposure to mycotoxin-containing dust of mouldy, 

water-damaged houses, these routes should thus certainly not be neglected. 

There are, however, agencies responsible for occupational safety and health, i.e. Occupational Safety 

and Health Administration (OSHA) of the US Department of Labour and the European Agency for 

Safety and Health at Work (EU-OSHA). These set out minimum requirements and lay out 

fundamental principles, as well as the responsibilities of employers and employees, aiming to 

facilitate the implementation of legislation and providing a safe and healthy workplace. 

These instances do recognize the intrinsic hazard and possible negative effects of moulds and their 

produced mycotoxins, which are an increasing risk at workplaces where workers may be exposed 

(e.g. bulk handling of agricultural foodstuffs (nuts, grain, maize, coffee), animal-feed production, 

brewing/malting, waste management, composting, food production, working with indoor moulds), 

and therefore give guidance information regarding recognition, prevention, detection and 

precautionary measures. It is, however, stated that the effects on human health are still controversial 

and more research has to be carried out on mycotoxins. Moreover, a detailed assessment of dermal 

and respiratory exposure to mycotoxins is currently lacking [26][27][28].  

In this research, we tackled the missing risk assessment of the emerging mycotoxins beauvericin and 

enniatins via dermal exposure, by quantitatively investigating their transdermal kinetics. By 

demonstrating that these CDP mycotoxins are able to cross the skin barrier and reach the systemic 

circulation, we underlined that topical exposure should not be forgotten as an important route next 

to ingestion and respiration. 
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European regulatory recall of enniatin medicines 

In the final chapter of this work, fusafungine medicines for topical treatment of upper respiratory 

tract infections were examined. These medicines contain a mixture of enniatins formulated in the 

known penetration-enhancing ethanol and isopropyl myristate, and, like many other traditional 

medicines, have been available on the market in several European countries for over 50 years 

[29][30][31][32]. Its summary of product characteristics (SmPC) explicitly mentioned no systemic 

absorption of the active compound; however, today newer techniques have become available and no 

data substantiating this claim could be found in literature, which made us question the validity of this 

statement. Therefore, the mucosal permeation of enniatins was investigated and it was concluded to 

question the use of fusafungine nasal-oral solutions in the treatment of innocent upper respiratory 

infections due to a negative risk-benefit ratio. It should be noted that only recently, approximately 

one year after our work was published, the European Medicines Agency (EMA) started to revoke the 

marketing authorizations of fusafungine medicines, through national procedures of the concerned 

member states, due to a negative risk-benefit balance [32]. This fusafungine case is thus a nice 

illustration that stresses the importance of continuous monitoring and quality-by-design risk 

assessment in both the pre- and post-market evaluation of topical products. 

Here, the spatio-temporal character of any published data is also emphasised, meaning that nothing 

is truly fixed, but it is rather a snapshot taken at a certain moment in time, at a certain place in space. 

In 1966, fusafungine was first introduced as topical antibiotic spray for improvement of human 

health, and has been marketed so for 50 years, while now in 2016 it is recalled from the market due 

to the fact that current information indicates that it does more bad than good. Changes in 

technology, our growing knowledge, evolution of economic standards, increasing concern for human 

health, etc. are continuously forcing us to both expand and re-evaluate our research.  

2. FUTURE PERSPECTIVES 

As it was previously mentioned that CDPs display a large variety of biological activities, including 

quorum sensing inhibitory effects, one of the next burning questions is if these CDPs are not quorum 

sensing molecules themselves? Could they be produced by bacteria and/or fungi present as 

commensals in and on our human bodies, as many of these CDPs are isolated from i.a. Bacillus, 

Fusarium and Alternaria sp., which are organisms of the oral [33] and gut microbiome [34]? As such, 

these CDPs could possibly influence our microbiome, or even our own cells, and thereby have a 

continuous impact on our health status, especially since it was demonstrated in this thesis that they 

are able to cross different important human barriers. 
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A chemical classification system for cyclic depsipeptides was proposed, based on apparent chemical 

characteristics. However, a more objective and automatic system would be of additional value. While 

we initially investigated the use of traditional descriptors used for small molecules, these were found 

inadequate for clustering/classification of the very diverse members of the CDP family. A current lack 

of obvious, useful chemical molecular descriptors available for peptide (related) products stimulates 

future on-going research to propose new relevant, mathematically calculated descriptors for 

peptides, allowing clustering of these peptide compounds from a chemometric point of view. 

In Chapter V of this work we investigated the quantitative transdermal kinetics of emerging 

mycotoxins BEA and ENNs, serving as model CDPs. We demonstrated that these are indeed capable 

of crossing the human skin barrier, leading us towards additional interesting research questions 

certainly worth investigating. In the skin, do CDPs BEA and ENNs use the transcellular or intercellular 

(paracellular) route or rather take advantage of shunt pathways, or in other words, what is their 

transdermal mechanistic transportation pathway and how can we map this? What is the affinity of 

BEA and ENNs for the different skin cell layers and cell types? Can we identify potential targets 

related to e.g. immune (e.g. mast and Langerhans cells) or malignant skin cells, which may reveal the 

potential use of these compounds as therapeutics in immunological skin diseases and skin cancers? 

In order to answer the first question, at this very moment, we are developing a method to determine 

BEA and ENNs in ex vivo human skin samples, using state-of-the-art MALDI-MS imaging. Recently, the 

scientific community has put forward imaging mass spectrometry techniques as a new powerful tool 

and as a viable alternative to microscopy and autoradiography, for mapping biological molecules in 

tissue samples [35][36][37][38][39][40], more specifically in skin tissue sections [41][42][43]. Our 

pilot data look at least promising and Figure 1 gives a flavour of what can be expected. 

 

  

Figure 1: Cross section of BEA-spiked skin tissue. Left: MALDI-MS image showing the intensity distribution of 

BEA as sodium adduct at m/z 806. Right: non-analysed sample, real image in grey scale taken with CCD camera.  

We previously demonstrated that BEA and ENNs are able to pass the BBB, with a very high influx rate 

into the brain and a significant distribution in the brain parenchyma. The time has come now to look 
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beyond their pharmacokinetics and further investigate their effects on a pharmacodynamics level. As 

their ability to enter the brain increases the possibility of these compounds to exert local CNS effects 

once present in the systemic circulation. Therefore, we are currently investigating the effects of BEA 

and ENNs on different brain cell types. Pilot experiments have been launched on BV-2 microglial 

cells. In the CNS, microglia are the principal resident immune cells, which undergo morphological and 

functional activation once they receive signals of damage, stress or other pathogenic danger-

associated molecular patterns, giving rise to their name as “sensors of pathology”. Activated 

microglia will secrete a number of pro-inflammatory factors, such as tumour necrosis factor-alpha 

(TNF-𝛼) and nitric oxide (NO), representing an acute inflammatory reaction that promotes neuronal 

recovery. A chronic neuroinflammatory reaction, however, leads to persistent microglial 

overactivation eventually causing slow neurodegeneration. Although still a controversial research 

area, microglial cells are said to underlie many neurological disorders or at least play a role in their 

pathology, e.g. Parkinson’s and Alzheimer’s disease, amyotrophic lateral sclerosis, multiple sclerosis, 

neuropathic pain and brain tumours [44][45][46][47]. Our group developed a protocol to evaluate 

the effect on immortalized BV-2 microglia on three levels: morphological, NO and cytokines (IL-

6/TNF-α). Awaiting future experiments, a glimpse of the preliminary results already reveals a 

significant increase of TNF-α, and IL-6 to a lesser extent, compared to the controls, when exposed to 

submicromolar BEA concentrations. Also under investigation is the PC-12 rat pheochromocytoma cell 

line. PC-12 cells respond reversibly to neural growth factor (NGF) by induction of the neuronal 

phenotype and have been widely used as a model for neural differentiation [48][49]. At this very 

moment, the neurotrophic (induction of neurite outgrowth) and neurotoxic (inhibition of neurite 

outgrowth) properties of BEA and ENNs are being investigated. 

In conclusion, our research is only the start of exploring the intriguing world of cyclic depsipeptides.  
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SUMMARY & GENERAL CONCLUSIONS 

Chapter I, provides an introduction to the fascinating and chemically diverse world of the natural 

cyclic depsipeptides (CDPs), isolated from various organisms found all over the world and displaying a 

wide range of interesting biological activities. In Chapter II of this work, we exposed the need for a 

uniform and straightforward classification system for these cyclic depsipeptides. Up till now, there 

was only scattered data available in literature, making it hard for natural product and peptide 

scientists to get a clear overview of this group of compounds as a whole. Although some groups have 

published different reviews discussing this family of compounds, they all had rather limited scopes. 

As these CDPs display a wide variety of biological activities, their biomedical potential and potential 

uses should not get lost in the huge pile of data available today. Therefore, we proposed a chemical 

classification system, using apparent chemical characteristics based on different structures of 1348 

naturally occurring CDPs. Moreover, it is demonstrated that traditional CDP subfamilies are named 

arbitrarily, which might be misleading from a chemical point of view. Overall, this tool allows 

researchers working in the field to get a better global understanding of the wide diversity in CDP 

structures, their chemical interrelationships and identification of existing and newly found CDPs. In 

this way, we contributed in a positive way to the appreciation of all efforts related to these CDPs and 

are looking forward to the new CDP (derived) molecules that will enrich our current array of 

medicinal treatments. 

As indicated in this classification system, the cyclic hexadepsipeptides beauvericin (BEA) and 

enniatins (ENNs) are members of an important group of CDPs. Moreover, these compounds are 

currently increasingly investigated as emerging mycotoxins. However, as there are hundreds more 

fungal CDPs already identified, the question rose if these should not be considered as mycotoxins as 

well? A literature study revealed that a lot of information about mycotoxins is already available, but 

the scientific community is not unanimous about what should be called a mycotoxin, revealing a lack 

of consistency in the definition, leading to confusion. Therefore, in Chapter III, we presented a clear, 

unambiguous and quantitatively expressed ‘mycotoxin’ definition, which is of pivotal importance in 

risk assessment prioritization and allows more awareness of the now underestimated potential 

hazard of some of these fungal metabolites. Moreover, this definition was also applied to a set of 

fungal CDPs to determine whether or not these metabolites should be classified as mycotoxins, 

which ultimately indicated that for some CDPs, this should indeed be the case. 

Further focus was laid on BEA and ENNs as model cyclic depsipeptide mycotoxins, as it was 

previously demonstrated in this thesis that exposure to these emerging mycotoxins should not be 

considered trivial, seen their possible biological effects and presence as common contaminants in 



SUMMARY & GENERAL CONCLUSIONS 

  

 

262 

food and feed. Moreover, it was indicated that in order to better understand and appreciate their 

biological role, their kinetic interaction with some of the most important and relevant biological 

barrier systems should be investigated. This knowledge is not only required for the urgently needed 

global risk assessment, but also in the development of new therapeutics with similar CDP structure. 

Therefore, in Chapter IV we developed a selective and high throughput bioanalytical method that 

empowered us to quantitatively determine BEA and ENNs in diverse biological matrices. The method 

was successfully validated, whereby special attention was paid to analytical stability and adsorption 

to glass. Both phenomena can possibly lead to loss of the analyte and increased analytical variability. 

We found that adsorption losses could be as high as 45%, an effect often overlooked by many 

researchers in the field but should certainly not be neglected. 

The transdermal kinetics of BEA and ENNs were quantitatively determined in Chapter V, using 

excised human skin in an ex vivo in vitro Franz diffusion cell (FDC) set-up. It was demonstrated for the 

first time that these CDPs mycotoxins are able to cross the human skin barrier and reach the systemic 

circulation, with significant concentrations residing in the skin (μM range). The calculated maximal 

fluxes of these CDPs are in the range of testosterone and estradiol. Furthermore, the daily dermal 

exposure was calculated for both a typical occupational, as well as worst-case scenario, emphasising 

the importance of the transdermal path as route of exposure, next to ingestion and respiration. 

In Chapter VII, the ENNs were viewed from a regulatory perspective, as they were first patented in 

1953 under the international nonproprietary name of fusafungine. Formulated in the known 

penetration-enhancing excipients ethanol and isopropyl myristate, it is used in the topical treatment 

of upper respiratory tract infections. Like many other traditional medicines, it has been available on 

the market under different trade names in several European countries for over 50 years. Its summary 

of product characteristics (SmPC) explicitly mentioned no systemic absorption of the active 

compound. Today however, newer techniques have become available that made us question the 

validity of this statement. Moreover, we also investigated the variability in mucosal permeation of 

ENNs due to a difference in excipient composition. It was demonstrated that ENNs are in fact capable 

of permeating the oral mucosa. However, no significant different transmucosal permeability with 

varying excipient concentrations was detected. In this study, we already questioned the use of 

enniatin-based therapies in the treatment of innocent upper respiratory tract infections, because of 

the possibly negative benefit-risk ratio. It should be noted that very recently, for the same reasons, 

the European Medicines Agency (EMA) started to revoke the marketing authorizations of these 

fusafungine medicines. This fusafungine case is a seminal example to illustrate the importance of a 

careful evaluation of pre- and post-market data of topical products, stressing the importance of 

continuous monitoring and quality-by-design risk assessment. 
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After it was demonstrated that the CDP mycotoxins BEA and ENNs are able to reach the blood 

stream, in Chapter VI it was investigated in a quantitative manner if they could also cross the blood-

brain-barrier and thus enter the CNS. By the use of in vivo mice studies, it was shown that BEA and 

ENNs are able to pass the BBB with a very high influx rate into the brain and a significant distribution 

in the brain parenchyma. This clearly indicates the possibility of these compounds to exert local CNS 

effects once present in the systemic circulation. 

Finally, in the last chapter, we discussed the broader international context, relevance and future 

perspectives related to this research. Interesting new research questions were revealed and we lifted 

a tip of the veil of currently on-going research in our group. In the future, we want to focus more on 

the pharmacodynamics part and study for example the effects of BEA and ENNs in different brain 

cells. Moreover, we are also developing a MALDI-MS imaging method to map more in detail the 

transdermal transportation of these compounds in the different human skin layers, which can help in 

elucidating the mechanistic pathway. 

Overall, this research contributed to the urgently needed global risk assessment of the emerging 

mycotoxins BEA and ENNs by quantitatively investigating their skin, mucosal and BBB kinetics, 

knowledge that is also highly appreciated in the drug development of new medicines with similar 

CDPs structures. 
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dat is het ware weten.” 
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SAMENVATTING & ALGEMENE CONCLUSIES 

Hoofdstuk I, geeft een inleiding tot de wondere wereld van de chemisch erg diverse cyclische 

depsipeptiden (CDPs). Deze moleculen worden gesynthetiseerd door een enorme variëteit aan in de 

natuur voorkomende organismen, die men kan vinden in alle uithoeken van de wereld. CDPs 

vertonen tal van biologische activiteiten, die interessante mogelijkheden bieden voor het 

ontwikkelen van nieuwe geneesmiddelen. In Hoofdstuk II van dit werk, toonden we aan dat er nood 

is aan een uniforme en eenduidige classificatiemethode voor CDPs. Tot op heden, was alle CDP-data 

echter verspreid over de literatuur, wat het voor onderzoekers in het veld erg moeilijk maakt om een 

duidelijk beeld te krijgen van deze groep componenten in zijn geheel. Bovendien handelen re reviews 

die al gepubliceerd zijn, slechts over een bepaald en nauw gebied. Gezien deze CDPs erg interessante 

biologische activiteiten vertonen mag hun biomedisch potentiaal dus niet verloren gaan in de 

gigantische berg aan data die vandaag de dag beschikbaar is. Daarom hebben wij een chemisch 

classificatiesysteem voor CDPs voorgesteld, dat gebaseerd is op duidelijk structurele aspecten van 

1348 verschillende CDPs. Daarnaast werd ook aangetoond dat nomenclatuur van traditionele CDP 

subfamilies zeer arbitrair gebeurd, wat misleidend kan zijn vanuit chemisch oogpunt. Deze 

classificatiemethode laat wetenschappers toe een globaal beeld te krijgen van de grote diversiteit 

aan CDP structuren, de chemische onderlinge verbanden beter te begrijpen en kan hen helpen bij het 

identificeren van zowel bestaande, als nieuw ontdekte CDPs. Op deze manier heeft dit onderzoek op 

een positieve manier bijgedragen tot de appreciatie van de CDP-familie, en wordt verder uitgekeken 

naar nieuwe CDP (afgeleide) moleculen, die onze huidig repertorium aan geneesmiddelen kunnen 

verrijken. 

Zoals werd aangetoond door middel van dit classificatiesysteem, maken de cyclische 

hexadepsipeptiden beauvericin (BEA) en enniatins (ENNs) deel uit van een belangrijke klasse aan 

CDPs. Daarenboven worden zij tegenwoordig naar voren geschoven als opkomende (‘emerging’) 

mycotoxines. Nochtans zijn er op vandaag nog veel meer CDPs die door schimmels worden 

aangemaakt geïdentificeerd, moeten deze dan ook niet als mycotoxines worden beschouwd? Een 

literatuurstudie heeft aangetoond dat er tegenwoordig heel wat informatie over mycotoxines 

beschikbaar is, maar dat niet iedereen het helemaal eens is over wat men al dan niet een mycotoxine 

noemt. Er is dus nood aan een duidelijke en consistente mycotoxine-definitie. Daarom hebben wij in 

Hoofdstuk III een ondubbelzinnige en kwantitatieve definitie voorgesteld, wat van centraal belang 

binnen risicoanalyse. Op deze manier werd ook de bewustwording gestimuleerd betreffende het 

soms nog onderschatte gevaar dat deze moleculen met zich mee kunnen brengen. Tot slot werd een 
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selectie aan fungale CDPs afgetoetst aan deze definitie en kon besloten worden dat sommige CDPs 

inderdaad als mycotoxines beschouwd kunnen worden.  

Verder werd de focus gelegd op BEA en ENNs als model CDP mycotoxines, waarbij eerder in deze 

thesis al werd aangetoond dat blootstelling aan deze opkomende mycotoxines niet als onbelangrijk 

beschouwd mag worden, gezien hun mogelijke biologische effecten en hun voorkomen als 

contaminanten in ons voedsel. Om hun biologische rol en invloed beter te begrijpen en waarderen, 

werd hun kinetische interactie met enkele van de belangrijkste biologische barrières in het menselijk 

lichaam bestudeerd. Deze kennis is niet alleen belangrijk bij het inschatten van hun globale risico, 

maar ook bij de ontwikkeling van nieuwe geneesmiddelen met gelijkaardige CDP structuur. 

Daarom ontwikkelden we in Hoofdstuk IV een selectieve en ‘high throughput’ bioanalytische 

methode die ons toelaat BEA en ENNs kwantitatief te bepalen in diverse biologische matrices. Deze 

methode werd succesvol gevalideerd, waarbij eveneens de analytische stabiliteit en adsorptie aan 

glas onderzocht werd. Deze twee fenomenen kunnen namelijk leiden tot verlies van de analyte en zo 

een hoge analytische variabiliteit tot gevolg hebben. Zo werd aangetoond dat adsorptieverliezen 

kunnen oplopen tot 45%, een effect waar vele onderzoekers vaak geen aandacht aan besteden, maar 

dat zeker niet genegeerd zou mogen worden.  

De transdermale kinetiek van BEA en ENNs werd kwantitatief  bepaald in Hoofdstuk V, gebruik 

makende van ex vivo in vivo humane huid in een Franz diffusie cel (FDC) set-up. Voor de eerste keer 

werd aangetoond dat deze CDP mycotoxines de humane huid barrière kunnen doorkruisen en de 

systemische circulatie kunnen bereiken, met significante concentraties in de huid zelf (μM gebied). 

De berekende maximale fluxen van deze CDPs liggen in de range van testosteron en estradiol. 

Verder, werd de dagelijkse dermale blootstelling berekend voor zowel een typische beroeps-, als 

worst-case situatie. Hierdoor benadrukten we het belang van de transdermale weg als 

blootstellingsroute, naast die van orale inname en inhalatie. 

In Hoofdstuk VII, werden de ENNs vanuit een regulatoir perspectief benaderd. Deze werden namelijk 

voor het eerst gepatenteerd in 1953 met als ‘international nonproprietary name’ fusafungine. 

Geformuleerd in de gekende penetratiebevorderende excipiënten ethanol en isopropylmyristaat, 

werd het gebruikt in de topische behandeling van infecties van de bovenste luchtwegen. Zoals zo 

vele andere traditionele geneesmiddelen, was het meer dan 50 jaar verkrijgbaar in verschillende 

Europese landen. De samenvatting van de kenmerken van het product (SKP) vermeldde expliciet dat 

de actieve component niet kon worden aangetoond in het plasma, echter vandaag de dag zijn er 

echter nieuwe technieken beschikbaar die deze claim in vraag stellen. Daarenboven onderzochten 

we eveneens de variabiliteit in mucosale permeatie van ENNs bij een verschil in samenstelling van de 

hulpstoffen. Er werd aangetoond dat ENNs wel degelijk in staat zijn doorheen de orale mucosa te 

dringen. Echter, er werd geen significant verschil in transmucosale permeabiliteit vastgesteld bij een 
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verschil in excipiënt concentratie. Door de resultaten van deze studie werd het gebruik van enniatin-

gebaseerde behandelingen van onschuldige infecties van de bovenste luchtwegen in vraag gesteld, 

door de mogelijk negatieve risico-baten verhouding. Er dient opgemerkt te worden dat, om diezelfde 

reden, het Europees Geneesmiddelen Agentschap (EMA) heel recent de terugtrekking van 

fusafungine bevattende geneesmiddelen heeft bekrachtigd. Het fusafungine verhaal is een kritisch 

voorbeeld dat het belang aantoont van een voorzichtige evaluatie van pre- en post marketing data 

van topische producten en van een continue monitoring en ‘quality-by-design’ risicoanalyse. 

Nadat werd aangetoond dat de CDP mycotoxines BEA en ENNs in staat zijn om de bloedbaan te 

bereiken, werd in Hoofdstuk VI kwantitatief onderzocht of ze eveneens de bloedhersenbarrière 

(BHB) kunnen doorkruisen en dus het centraal zenuwstelsel (CZS) bereiken. Aan de hand van in vivo 

muisstudies, werd vastgesteld dat BEA en ENNs de BHB doorkruisen met een hoge influx snelheid en 

een significante distributie in het hersenparenchym. Dit vergroot de mogelijkheid dat deze 

componenten lokale effecten kunnen uitoefenen in het CZS, eens ze de systemische circulatie 

bereiken. 

Tot slot werd in het laatste hoofdstuk de bredere internationale context, de relevantie en de 

toekomstperspectieven van dit onderzoek toegelicht. Interessante nieuwe onderzoeksvragen 

werden vooropgesteld en we lichtten reeds een tipje van de sluier op omtrent het onderzoek dat 

momenteel verder gevoerd wordt binnen onze groep. In de toekomst, willen we ons meer toespitsen 

op het farmacodynamische aspect en bijvoorbeeld de effecten van BEA en ENNs in de verschillende 

hersencellen bestuderen. Daarnaast, wordt op dit ogenblik ook een MALDI-MS 

beeldvormingsmethode ontwikkeld om nog meer in detail de transdermale route van deze 

moleculen in de verschillende lagen van de huid in kaart te kunnen brengen.  

We kunnen besluiten dat dit onderzoek heeft bijgedragen tot de globale risicoanalyse van deze 

‘emerging’ mycotoxines BEA en ENNs, door kwantitatief hun huid, mucosa en BHB kinetiek te 

onderzoeken. Deze kennis is zeker ook van belang binnen het gebied van de 

geneesmiddelenontwikkeling, waarbij men zoek gaat naar nieuwe geneesmiddelen met gelijkaardige 

CDP structuur. 
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“There is no real ending. It’s just the place where you stop the story.” 

 
Frank Herbert 

(°1920 - †1986, American science fiction writer) 
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