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I 

 

VOORWOORD – PREFACE 

 

Vaak wordt er gevraagd “hoe gaat het met jouw doctoraat?” en wordt er dan als antwoord 

gegeven “er is nog wel wat werk aan mijn doctoraat”. In mijn ogen is een doctoraat echter 

niet het werk van één persoon, maar eerder het werk dat ontstaan is dankzij de (directe of 

indirecte) hulp en steun van heel wat mensen. Ik zou deze mensen hier dan ook graag voor 

willen bedanken. 

Allereerst zou ik mijn promotoren willen bedanken voor al het werk dat ze in mij en in dit 

doctoraat gestoken hebben: 

Beste professor Van Langenhove, doordat mijn bureau op ILVO was, hebben we mekaar niet 

zo vaak gezien. Maar ook vanop afstand heb je ervoor gezorgd dat dit doctoraat in de juiste 

richting evolueerde. Bedankt om jouw kennis en ervaring te delen zodat dit doctoraat kon 

uitgroeien tot hetgeen het nu geworden is. 

Peter, vanaf het eerste ogenblik dat we elkaar spraken, had ik het gevoel dat je 100 % in mij 

geloofde. Ik hoop dat dit gevoel door de 4 jaren heen overeind is gebleven ☺. We waren het 

zeker niet altijd met elkaar eens, maar ik denk toch dat we mogen terugkijken op een mooie 

samenwerking. Bedankt voor de steun gedurende deze 4 jaar, voor de talloze verbeteringen 

van artikels en rapporten, voor de wetenschappelijke discussies die me veel kennis hebben 

bijgebracht en zéker voor het geduld als ik weer eens een andere mening had.  

Sam, ik wil ILVO Dier, maar zeker ook jou in het bijzonder danken om op het allerlaatste 

moment mee in dit doctoraatsonderzoek te stappen toen een andere projectpartner zich 

terugtrok. Ook al stonden emissies en milieuproblematiek ver van je bed, toch heb je het 

aangedurfd om deze stap te zetten. In een onderwerp dat niet helemaal het jouwe was, heb 

je steeds constructief meegedacht en kwam je met oplossingen als ik echt niet meer wist 

welke stappen ik nog kon ondernemen. Je voorliefde voor deadlines heeft me meer dan 

eens (inwendig) doen zuchten, maar uiteindelijk is hierdoor mijn doctoraat wel op tijd klaar 

geraakt. Bedankt voor alle hulp en ik hoop dat de kennis die je via mijn doctoraat mee hebt 

opgebouwd je nog van PAS kan komen ;-). 

Uiteraard wil ik ook alle juryleden bedanken voor het nalezen van dit proefschrift. Jullie 

inbreng heeft het naar een hoger niveau getild. Bedankt voor de opbouwende kritiek en de 

tijd die jullie voor me hebben vrij gemaakt. 

Naast mijn promotoren zijn er nog heel wat mensen die ik graag wil bedanken voor hun hulp 

tijdens mijn doctoraatsonderzoek: Stephanie, vooraleer ik jou leerde kennen, dacht ik 
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steevast “er zijn leugens, grote leugens en dan is er statistiek.”. Dankzij jou heb ik het 

tenminste leren aanvaarden ☺. Bedankt voor alle hulp, voor het zoeken naar nieuwe 

oplossingen als de statistiek me weer maar eens in de steek leek te laten, maar vooral ook 

voor de steun tijdens de mindere momenten van mijn doctoraat. Ik zal dit zeker niet 

vergeten! 

Veerle, ik heb jou eerst leren kennen als babbelgrage bureaugenoot, als wervelwind die door 

de gangen van het ILVO spurt en als (bijna) snelste vrouw van België. Na jouw verhuis werd 

het wat stiller op onze bureau maar gelukkig stond jouw deur nog steeds open voor me 

open. Zo kon ik wat stoom afblazen als er weer eens een technisch probleem opdook, de 

dataverwerking niet verliep zoals ik wou, de letters niet op papier wilden komen, ... Jij was er 

ook op de iets minder leuke momenten tijdens het doctoraat. Ik zal je vooral onthouden als 

iemand die én een drukke job én drie kinderen én topsport moeiteloos lijkt te combineren. 

Daarvoor kan ik alleen maar respect hebben. 

Bart Ampe, ook jij hebt me bijgestaan tijdens mijn statistische zoektocht, altijd vol 

enthousiasme en goed geluimd. Ik wil je zeker ook bedanken om op het einde van mijn 

doctoraat tijd vrij te maken om me te helpen bij de laatste loodjes en om me steeds  

statistisch advies te geven. 

Uiteraard wil ik ook alle technici van ILVO Technologie & Voeding en alle technici en 

dierenverzorgers van ILVO Dier bedanken voor hun hulp bij het uitvoeren van de praktische 

proeven. Zonder jullie was het me nooit gelukt! Daarbij zou ik graag twee personen in het 

bijzonder bedanken: Bart Lannau, jij bent héél vaak (vaker dan je waarschijnlijk zelf gewild 

hebt) met mij richting Diksmuide of richting een andere varkensstal getrokken. Zelfs op 

dagen dat er haast niemand zin had om naar de varkentjes te gaan (zoals bijvoorbeeld op 

een tweede kerstdag), was jij bereid om me uit de nood te helpen. Bedankt voor alle hulp en 

voor de fijne autoritjes! Olav, jij was ook vaak het slachtoffer als ik iemand nodig had om 

mee naar de stal te gaan. Dankzij jou heeft efficiëntie voor mij een nieuwe betekenis 

gekregen. De snelheid waarmee jij de werkjes die ik je gaf in de stal afwerkte, zijn tot op 

heden nog niet verbroken. Daarom, bedankt om je altijd voor de volle 200 % in te zetten. 

Uiteraard zijn praktijkmetingen enkel mogelijk als je een landbouwer vindt die je wil toelaten 

op zijn bedrijf. Daarom zou ik graag de familie Obin bedanken omdat ze me de mogelijkheid 

hebben gegeven om bijna een jaar lang hun deur plat te lopen en metingen uit te mogen 

voeren op hun bedrijf. Bedankt voor de gastvrije ontvangst die ik steeds bij jullie kreeg! 

Natuurlijk wil ik ook alle (ex-)collega’s van Milieutechniek bedanken, beginnende met mijn 

bureaugenootjes. Moet ik je nu “de wandelende encyclopedie van Milieutechniek” of toch 

gewoon maar Eva noemen? Iedere keer als ik op zoek was naar een artikel of een goede 

referentie kwam jij er wel mee op de proppen. De kennis die jij op korte termijn binnen 
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Milieutechniek hebt vergaard, is echt ongezien. Ik hoop voor jou dat dit eindelijk eens naar 

waarde zal geschat worden.  

Nathalie, mijn excuses dat mijn neus te variabel was om te kunnen toetreden tot jouw 

geurpanel. Jij bent nu ook aan het laatste gedeelte van jouw doctoraat begonnen. Hou de 

moed erin en hopelijk kan ik dan binnenkort naar jouw doctoraatsverdediging komen.  

Ik snap nog steeds niet helemaal wat jij nu eigenlijk allemaal berekent Sophie en of een reëel 

proces nu wordt gedefinieerd door het feit dat het exergie verliest of dat het gewoon een 

eigenschap van dat proces is ☺. Ook voor jou nog veel succes bij de afronding van je 

doctoraat.  

Niemand meer die commentaar geeft op je gesms, je dagdromen, je activiteiten in het 

weekend, ... Ja, Caroline, je zal toch moeten toegeven dat het een pak stiller zal worden op 

de bureau zonder mij. Maar je bent nog niet helemaal van mij verlost. Zodra de mogelijkheid 

zich voordoet, bel ik je op en gaan we samen naar de voetbal kijken!  

Philippe, naar jou heb ik altijd opgekeken (ah ja, zo groot dat jij bent!). Probeer je nu de 

komende maanden maar te focussen op het afwerken van je doctoraat zodat je je nadien 

weer kan uitleven  met allerlei ingewikkelde constructies te bouwen en daarvan nog 

indrukwekkendere animaties te maken. Bedankt voor alle activiteiten na het werk. Ook al 

werk ik niet meer op ILVO, ik zal toch proberen nog veel van deze activiteiten mee te maken!  

De grootste flapuit ooit ben ik waarschijnlijk wel op ILVO tegengekomen en dat is, Gerlinde, 

positief bedoeld. Zelfs op de mindere dagen bleef je vol goede moed en één brok energie. 

Als ik ooit iemand nodig heb om in mijn plaats gênante vragen te stellen, dan zal ik je zeker 

bellen ☺. 

De leukste discussies heb ik toch wel met jou gehad Filip. Onze visies stonden vaak lijnrecht 

tegenover elkaar maar toch hebben we altijd op een serene manier met elkaar kunnen 

discussiëren. Nog veel succes met je onderzoek, waar ik werkelijk haast niets van begrijp 

maar het lijkt me zeer beloftevol!  

For my non-Dutch speaking colleagues, Luciano and Raphael, I wish you all the best for your 

future research and hope you will have a great time in Flanders and at ILVO.  

We waren bijna terug collega’s geworden Merlijn, maar het heeft net niet mogen zijn. De 

papercraft-buddy, mijn favoriete PS3-uitleendienst en mijn partner-in-crime aangaande het 

photoshoppen van afbeeldingen. Je was het allemaal. Veel succes met je “nieuwe” job. Als ik 

ooit iets geweldigs uitvind, mag jij het patenteren!  

Ten slotte Nele, jij had de eer om me in te wijden in de wondere wereld van de 

stalmetingen. Ondertussen liggen ook jouw stalbezoekjes al ver in het verleden. Ik hoop je 

nog vaak terug te mogen zien op de planken in één of ander dolkomische deurenkomedie. 
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Natuurlijk wil ik ook alle andere collega’s bedanken voor de fijne sfeer gedurende mijn 

periode op ILVO. Ik ga me niet aan een opsomming wagen maar enkelen wil ik in het 

bijzonder nog eens vernoemen: Dr. D, eindelijk mag je me ook Dr. T noemen! Samen met jou 

op congres gaan, moet toch echt wel één van de hoogtepunten van mijn verblijf op ILVO 

geweest zijn. Interessante lezingen werden afgewisseld met de ontdekking van vele mooie 

landen en steevast sloten we ’s avonds samen de bar mee af. Ik wens je nog veel 

onderzoeksplezier, klimplezier en al het andere plezier dat je je maar kan voorstellen. Je 

bent, samen met mister improvisatie Bert, altijd welkom op eender welke rally waarop ik 

aanwezig ben. Maar goed, dit stuk was droog genoeg, dus tijd voor een G&T’ke?  

Natuurlijk mag in dit dankwoord Marleen niet ontbreken, de enige collega waarmee ik 

deftige voetbalgesprekken kon voeren. Bedankt voor de leuke babbels en koffiepauzes en 

laat ons hopen dat dit jaar de titel voor ons is!      

Verder zijn er natuurlijk ook mensen buiten het ILVO belangrijk geweest tijdens dit 

doctoraat. Ik zou daarom graag Sonja en Johan bedanken voor hun gastvrijheid waarmee ze 

me telkens verwelkomen. En natuurlijk ook voor al die keren dat ik bij jullie heb mogen mee-

eten. Het was altijd zeer goed (of lekker, al naargelang de streek waar je vandaan komt)!  

Uiteraard wil ik ook mijn ouders bedanken. Mama en papa, jullie hebben me altijd de kans 

gegeven om zelf mijn keuzes te maken (die 4 jaar verplichte Latijn-Wiskunde buiten 

beschouwing gelaten!) en hebben me ook altijd ondersteund. Niet alleen financieel, maar 

ook moreel. Ik weet dat het voor jullie niet gemakkelijk was om mij naar het “verre” Oost-

Vlaanderen te laten vertrekken, maar ik beloof dat ik vanaf nu ga proberen om iets 

regelmatiger langs te komen. 

Natuurlijk wil ik tenslotte mijn vriendin Liesbet bedanken. Zonder jou was dit doctoraat er 

nooit gekomen en zat ik nu al enkele jaren terug in Vlaams-Brabant. Jij hebt me steeds door 

alle minder periodes heen geholpen. Zelfs als voor de duizendste keer de wind op ILVO van 

kant veranderde, heb jij me steeds opnieuw de motivatie gegeven om er toch mee door te 

gaan. Ook al hebben we allebei zeker niet de gemakkelijkste karakters, toch lijkt het ons 

wonderwel samen goed te lukken. Ik hoop dat jij binnenkort ook jouw droomjob tegenkomt 

en dat we daarvan dan samen kunnen genieten in een nieuwe woonst. Nu deze hectische 

periode (hopelijk) achter de rug is, kunnen we weer wat meer tijd vrij maken om te 

wandelen in de natuur, om uit te waaien aan zee, om nieuwe steden en landen te 

ontdekken, maar vooral om van elkaars gezelschap te genieten. Je zou kunnen zeggen dat dit 

doctoraat een eerste vrucht van onze samenwerking is. Misschien moet dit niet de laatste 

zijn? 

Tim 
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SAMENVATTING 

 

De afgelopen decennia vond er een intensivering van de varkenshouderij plaats. Dit heeft 

geleid tot lokaal verhoogde polluentemissies en daarbij horende nadelige gevolgen voor het 

milieu en de menselijke gezondheid. Reductietechnieken zijn nodig om deze nadelige 

gevolgen te verminderen. Idealiter zouden deze reductietechnieken zoveel mogelijk 

polluenten tezelfdertijd moeten reduceren. Daarnaast zouden betaalbare (brongerichte) 

reductietechnieken in de stal moeten verkozen worden boven end-of-pipe technieken 

omdat deze laatste de binnenluchtkwaliteit niet verbeteren. Momenteel worden meestal 

langdurige en dure metingen ingezet om het potentieel van reductietechnieken in te 

schatten en om emissiefactoren (EF) te bepalen, die nodig zijn om een wettelijke erkenning 

te verkrijgen als emissiearme techniek. Om innovatie te stimuleren, zijn goedkopere 

evaluatiemethodes aangewezen.  

In dit proefschrift werden de volgende hoofdaspecten onderzocht: 

(1) de invloed van brongerichte technieken op meerdere polluenten in varkensstallen, 

gebruik makende van een multi-polluent onderzoeksaanpak.  

(2) de correlaties tussen de verschillende polluenten in varkensstallen. 

(3) de beoordeling van verkorte procedures voor het meten van ammoniak (NH3) emissies 

uit varkensstallen om de innovatie van reductietechnieken te stimuleren.  

De belangrijkste polluenten in de varkenshouderij zijn NH3, de broeikasgassen methaan (CH4) 

en distikstofoxide (N2O) en fijn stof (PM: PM10, PM2.5 en PM1). Het belang van deze 

polluenten in de Vlaamse emissieproblematiek, hun invloed op de omgeving en de 

menselijke gezondheid, evenals hun bronnen binnenin veestallen wordt besproken in 

hoofdstuk 1. Dit hoofdstuk geeft ook een overzicht van de belangrijkste wetgeving 

aangaande polluentemissies en reductiedoelen. Zowel reductietechnieken in de stal als end-

of-pipe technieken worden kort besproken, evenals technieken en strategieën om 

polluentemissies te meten. 
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Hoofdstuk 2 richt zich op brongerichte technieken en de correlaties tussen de 

binnenluchtconcentraties van de verschillende polluenten in varkensstallen. 

In hoofdstuk 2.1 werd het effect nagegaan van twee reinigingsprotocols en twee 

stalsystemen op de binnenluchtconcentraties van de polluenten. In deze studie werden er 

geen significante verschillen in binnenluchtconcentraties van NH3, CO2, CH4, N2O of PM 

gevonden over een volledige mestronde wanneer de hokken enkel gekuist werden met 

bezems en stofzuigers of met bezems en stofzuigers, gevolgd door een inweekstap met 

water en het grondig kuisen met een hogedrukreiniger. Dit was een teken dat het toepassen 

van een droge reiniging mogelijk al voldoende was om de polluentconcentraties te 

verminderen. De binnenluchtconcentraties aan N2O en PM1 waren significant lager wanneer 

de droge reiniging werd toegepast en enkel de eerste maand na reiniging in beschouwing 

werd genomen. Het was niet geheel duidelijk of het verschil in N2O binnenluchtconcentraties 

echt het gevolg was van het gebruik van verschillende reinigingsprotocols of eerder het 

gevolg was van het ontbreken van data tijdens bepaalde periodes in de eerste maand. Er 

werd verondersteld dat meer dan de helft van de PM1 binnenluchtconcentraties afkomstig 

was van buitenaf. Dit kan, in combinatie met het vier weken verschil in startdatum tussen de 

rondes met droge en natte reiniging, deels de onverwacht lagere PM1 

binnenluchtconcentraties verklaren bij toepassing van het droge reinigingsprotocol. In 

vergelijking met een conventioneel stalsysteem resulteerde het gebruik van een wettelijk 

erkend ammoniakemissiearm (LAE) stalsysteem, gebaseerd op partiële roostervloeren en 

schuine putwanden, enkel in verlaagde CH4 binnenluchtconcentraties wanneer de volledige 

mestronde in beschouwing werd genomen. Er werd geen effect op de andere 

binnenluchtconcentraties waargenomen. De lagere CH4 binnenluchtconcentraties in het LAE 

stalsysteem kunnen het resultaat zijn van een versnelde afvoer van mest via een overloop. 

Het was evenwel opmerkelijk dat geen significante verschillen in NH3 concentratie werd 

waargenomen tussen het LAE stalsysteem en het conventionele stalsysteem. De hogere 

vervuilingsgraad van de volle vloer in het LAE stalsysteem speelde hierin mogelijk een rol.  

De uitgebreide dataset, verkregen in de bovenstaande studie, werd vervolgens gebruikt om 

correlaties tussen de verschillende gassen en PM fracties te bepalen en om de 

deeltjesgrootteverdeling (PSD) van het fijn stof te beschrijven (hoofdstuk 2.2). Er werden 

hoge correlaties gevonden tussen de binnenluchtconcentraties van NH3, CO2 en CH4. De 
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correlatie van deze gassen met de N2O binnenluchtconcentratie was lager. De hoge 

correlaties tussen NH3, CO2 en CH4 kunnen mogelijk het gevolg zijn van de gelijkaardige 

manier waarop deze gasconcentraties toenemen wanneer de dieren groeien, al kan een 

invloed van het ventilatiepatroon op de gasconcentraties niet uitgesloten worden. Het 

ongeveer constant blijven van de N2O binnenluchtconcentraties gedurende de mestrondes is 

mogelijk de uitleg voor de lagere correlaties tussen NH3, CO2 en CH4 aan de ene kant en N2O 

aan de andere kant. Zeer hoge correlaties werden gevonden tussen de PM10 en PM2.5 

binnenluchtconcentraties. Dit kan deels verklaard worden door het feit dat PM2.5 een 

substantieel deel is van PM10. Afhankelijk van het meetinstrument werden er hoge (Grimm 

spectrometers) of lage (GrayWolf Particle Counters) correlaties gevonden tussen de PM10 en 

PM2.5 binnenluchtconcentraties aan de ene kant en de PM1 binnenluchtconcentraties aan de 

andere kant. In het algemeen werden er lage correlaties gevonden tussen de verschillende 

gassen en verschillende stoffracties. Dit duidt op een verschillend gedrag van gassen en fijn 

stof in de lucht.  

Het was opvallend dat er geen grote verschillen in PSD van fijn stof gevonden werden tussen 

de verschillende stalsystemen of wanneer een verschillend reinigingsprotocol werd 

toegepast. Hoewel de totale massa aan deeltjes (PM concentraties) significant veranderde 

(gedurende een dag en gedurende een mestperiode), bleef de PSD ongeveer dezelfde. 

Het effect van maalgrootte en pelletering van het varkensvoer was een derde brongerichte 

reductietechniek die werd bestudeerd in dit proefschrift (hoofdstuk 2.3). In compartimenten 

met gepelleteerd voer waren er hogere PM10, PM2.5 en PM1 binnenluchtconcentraties in 

vergelijking met compartimenten met meelvoer. Gezien pelletering als een tweede maalstap 

wordt gezien, kan het pelleteerproces tot verdere verfijning van het voer geleid hebben. Dit 

werd bevestigd door middel van een natte zeefanalyse. Verder kan het afbrokkelen van de 

pellets in de voederbakken er toe geleid hebben dat een fijn poeder achterbleef in deze 

voederbakken. Extra testen in het labo werden uitgevoerd om aanvullende verklaringen te 

vinden voor deze onverwachte bevindingen. De resultaten van de droptest gaven aan dat 

meelvoer hogere PM10 concentraties veroorzaakte in vergelijking met gepelleteerd voer. 

Kleine of geen verschillen in PM2.5 en PM1 concentraties werden gevonden. De droptest 

moet echter eerder gezien worden als een goede maatstaf voor het oppervlakkige (“los”) fijn 

stof, aanwezig op de pellets. Daarom werd er aanvullend een schudtest uitgevoerd, in een 



Samenvatting 

___________________________________________________________________________ 

VIII 

 

poging om de wrijvingen tussen de verschillende pellets in het voeder te simuleren. De 

resultaten van deze schudtest toonden aan dat hogere PM10 concentraties bekomen werden 

met het gepelleteerd voeder in vergelijking met het meelvoeder. Opnieuw werden er kleine 

of geen verschillen in PM2.5 en PM1 concentraties gevonden. Het fijn malen van de voeders 

leidde tot hogere PM10 concentraties in vergelijking met het grof malen van de voeders. Dit 

effect was evenwel kleiner dan het effect van het pelleteren van de voeders. Dit kan 

mogelijk te wijten zijn aan het feit dat niet alle ingrediënten gemalen werden in de voeders 

omdat sommige ingrediënten reeds vooraf zeer fijn waren of in een vloeibare vorm 

toegevoegd werden. Het verschil in PM binnenluchtconcentraties tussen beide 

gepelleteerde voeders kan ook veroorzaakt zijn door een verschil in hardheid van de pellets: 

pellets van het grof gemalen voer waren harder dan pellets van het fijn gemalen voer.  

Bij biggen die meelvoeders kregen, werd een hogere gemiddelde dagelijkse voederopname 

en een slechtere voederconversie waargenomen ten opzichte van biggen die gepelleteerde 

voeders kregen. Er werd geen effect van de maalgrootte op de voederconversie gevonden. 

Biggen die het fijn gemalen meelvoer kregen, hadden een lagere gemiddelde dagelijkse 

groei, en bijgevolg een lager lichaamsgewicht op 9 weken, dan de biggen die één van drie 

anders voeders kregen.  

In hoofdstuk 3 werden er een aantal verkorte meetstrategieën onderzocht om een NH3 EF te 

schatten voor varkensstallen. Gebaseerd op de uitgevoerde simulaties kon er besloten 

worden dat het mogelijk was om een EF te schatten met een relatieve fout van maximum 

15 % door gebruik te maken van verkorte meetstrategieën. Afhankelijk van de gebruikte 

dataset waren er hiervoor 21 tot 27 24-uursperioden, 20 tot 29 48-uursperioden, 13 tot 15 

7-dagen perioden of 27 tot 84 grab samples nodig. Een geschatte EF met een relatieve fout 

van maximum 15 % kon ook bekomen worden door wekelijks een grab sample te nemen op 

een willekeurige werkdag gedurende 28 tot 32 weken. 

Een overzicht van de technische problemen die men kan ondervinden tijdens gas- en fijn 

stofmetingen in het algemeen en in dit proefschrift in het bijzonder, is gegeven in hoofdstuk 

4. 

In de algemene discussie (hoofdstuk 5) wordt de doeltreffendheid van brongerichte 

technieken en hun toekomst als reductietechnieken geëvalueerd. Verder wordt ook het 
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economisch voordeel van het gebruik van gepelleteerde voeders becijferd. De winst, zowel 

in tijd als in geld, voor de meest belovende verkorte meetstrategieën werd ook berekend. 

Aan het einde van dit hoofdstuk worden er een aantal suggesties voor verder onderzoek 

voorgesteld. 
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SUMMARY 

 

In the last decades, livestock farming activities, including pig rearing activities, were 

intensified. This has led to locally increased pollutant emissions and associated adverse 

effects on the environment and the human health. Mitigation techniques are needed to 

decrease these adverse effects. Ideally, these mitigation techniques should reduce as many 

pollutants as possible at the same time. Additionally, affordable (source-oriented) mitigation 

techniques inside the barn should be chosen over end-of-pipe techniques, since the latter do 

not improve the indoor air quality. At the moment, long and expensive measurements are 

needed to assess the potential of mitigation techniques and to determine an emission factor 

(EF), needed for legal recognition. To stimulate innovation, cheaper evaluation techniques 

are needed. 

In this dissertation the following main aspects were investigated: 

(1) the influence of source-oriented techniques on several pollutants in piggeries, using a 

multi-pollutant research approach.  

(2) the correlations between the different pollutants inside piggeries.  

(3) the assessment of reduced sampling strategies for ammonia (NH3) emissions from 

piggeries in order to stimulate innovation in mitigation techniques.  

The main pollutants in pig husbandry are NH3, the greenhouse gases methane (CH4) and 

nitrous oxide (N2O) and particulate matter (PM: PM10, PM2.5 and PM1). The importance of 

these pollutants in the Flemish emissions, their influence on the environment and the 

human health and their sources inside livestock buildings are discussed in chapter 1. This 

chapter also gives an overview of the current legislations regarding pollutant emissions and 

reduction goals. Both mitigation techniques inside the barn and end-of-pipe techniques are 

briefly discussed as well as the measuring techniques and strategies to measure pollutant 

emissions. 
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Chapter 2 focussed on source-oriented techniques and correlations between the indoor 

concentrations of the different pollutants inside piggeries.  

In chapter 2.1, the effect of two cleaning protocols and two housing systems on indoor 

pollutant concentrations was evaluated. In the present study, no significant differences in 

indoor concentrations of NH3, CO2, CH4, N2O or PM over the whole fattening period were 

found by cleaning the pens between fattening periods with either only brooms and vacuum 

cleaners or with brooms and vacuum cleaners, followed by a soaking step with water and a 

thoroughly cleaning with a pressure washer. This was an indication that the application of 

dry cleaning might already be sufficient to reduce the pollutant concentrations. When only 

the first month after cleaning was taken into account, N2O and PM1 indoor concentrations 

were significantly reduced when performing the dry protocol. It was not clear if the 

difference in N2O indoor concentrations was really a consequence of the cleaning protocols 

or partially due to the lack of data at some points during the first month. It was hypothesised 

that the PM1 indoor concentrations originated for more than 50 % from the outside. This 

could partially explain, in combination with the four week differences in start-up time 

between fattening periods with dry or wet cleaning, the unexpected lower PM1 

concentrations for the dry protocol. The use of an officially approved low-ammonia-emission 

(LAE) housing system, based on partly slatted floors and sloped pit walls, only resulted in 

reduced indoor CH4 concentrations as compared to a conventional housing system with fully 

slatted floors and taking into account the entire fattening period. No effect on the other 

pollutants could be observed. The lower indoor CH4 concentrations in the LAE housing 

system may have been the result of a faster removal of manure via an overflow. It was 

surprising that no significant differences in indoor NH3 concentrations were found between 

the LAE housing system and the conventional housing system. The higher degree of fouling 

of the solid floor in the LAE housing system might have interfered. 

The comprehensive dataset, obtained in the study described above, was subsequently used 

to determine correlations between the gases and different PM fraction and to describe the 

particle size distribution (PSD) of PM, as described in chapter 2.2. High correlations were 

found between the indoor concentrations of NH3, CO2 and CH4. The correlations of these 

gases with indoor concentrations of N2O were lower. The high correlations between NH3, 

CO2 and CH4 might reflect the similar effect that animal growth has on these respective gas 
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concentrations, although an effect of the ventilation rate on the gas concentrations cannot 

be excluded. Since N2O indoor concentrations remained more constant during the fattening 

periods, this could have been the explanation for the low correlations of NH3, CO2 and CH4 

with N2O. Very high correlations were found between the indoor concentrations of PM10 and 

PM2.5. The fact that PM2.5 is a substantial part of PM10 can partially explain this finding. 

Depending on the measuring instrument, high (Grimm spectrometers) or low (GrayWolf 

Particle Counters) correlations between the indoor concentrations of PM10 and PM2.5 on the 

one hand and the indoor concentrations of PM1 on the other hand, were found. Generally, 

low correlations were found between the gases and different PM fractions, suggesting a 

different behaviour of gases and particles in the air. 

It was striking to see that no great differences in PSD were found when comparing PM from 

the different housing systems and when different cleaning protocols were applied, nor for 

the count median diameters (CMD), nor for the mass median diameters (MMD). 

Furthermore, although the total mass of particles (PM concentrations) changed significantly 

(during a day and during a fattening period), the CMD and MMD values remained about the 

same. 

The effect of grinding intensity and pelleting of pig diets was a third source-oriented 

mitigation technique that was studied (chapter 2.3). Compartments with pelleted diets had 

higher PM10, PM2.5 and PM1 indoor concentrations as compared to compartments with meal 

diets. Since pelleting is considered to be a secondary grinding step, the pelleting process may 

have led to smaller particles. This was confirmed by wet sieve analysis. The degradation of 

the pellets in the self-feeders, resulting in a fine powder at the bottom of those self-feeders, 

might also be part of the explanation. Additional laboratory tests were performed in order to 

find supplementary explanations for these, rather unexpected, findings. Results from the 

drop test indicated that meal diets gave rise to higher PM10 concentrations compared to the 

pelleted diets and small or no effects on PM2.5 or PM1 concentrations were found. The drop 

tests were rather a good measure of the superficial (“loose”) PM, present on the pellets. 

Therefore, in an attempt to simulate the frictions between the different particles in the feed, 

a shake test was performed. The results indicated that shaking the feeds led to higher PM10 

concentrations for the pelleted diets as compared to meal diets. Again, small or no effects 

on PM2.5 or PM1 concentrations were found. Finely grinding of the diets led to higher PM10 
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indoor concentrations as compared to coarsely grinding of the diets, although this effect 

seemed smaller than for pelleting the feed. This smaller effect may be due to the fact that 

not all ingredients were ground before mixing since they were already very fine or in a liquid 

form. The difference between the indoor PM concentrations for both pelleted diets may also 

have been caused by the hardness of the pelleted diets: coarsely ground pelleted diets had a 

higher hardness than finely ground pelleted diets. 

Pigs fed meal diets had a higher average daily feed intake (ADFI) and a lower feed efficiency 

than pigs fed pelleted diets. No effect of grinding intensity on feed efficiency was found. Pigs 

receiving the finely ground meal diet had a lower average daily gain (ADG) and, as a 

consequence, a lower bodyweight at 9 weeks of age than pigs receiving coarsely ground 

meal and finely or coarsely ground pelleted diets.  

In chapter 3, a number of reduced sampling strategies were assessed to estimate NH3 EFs of 

pig fattening facilities. Based on the performed simulations, it was concluded that an 

estimated EF with a relative error below 15 % could be obtained via reduced sampling 

strategies, instead of measuring continuously for two consecutive fattening periods. 

Depending on the tested dataset, 21 to 27 24 hour periods, 20 to 29 48 hour periods, 12 to 

16 7 day periods or 27 to 84 single grab samples were needed. An EF with a relative error 

below 15 % was also obtained by taking weekly grab samples on a random working day for 

28 to 32 consecutive weeks. 

An overview of the technical problems that can be encountered during gas and PM 

measurements in general and in this dissertation especially is given in chapter 4. 

In the general discussion (chapter 5), the effectiveness of source-oriented techniques and 

their future as mitigation techniques are evaluated. The economic advantage of feeding 

pellets was also evaluated. For the most promising reduced sampling strategies, the gain in 

measurement costs and measurement time are calculated. At the end of the chapter, 

directions for future research are suggested.  
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1 GENERAL INTRODUCTION 

 

1.1 PIG HUSBANDRY IN FLANDERS 

Pig husbandry is an important economic sector in Flanders and represented in 2011 43 % of 

the total production value from livestock industry and 27 % of the total production value 

from agriculture and horticulture in Flanders. In Flanders, of all agricultural exploitations in 

2011, about 11 % (2959 pig farms) were specialised in pig production. However, the total 

number of farms which had pigs was even larger (4928 farms in 2011) and comprised 19 % 

of the total agricultural exploitations. Since 2008, after a period of serious decline, pig 

production increased steadily in Flanders. In 2011, there were 3.3 % more pigs in Flanders 

compared to 2005. However, the number of pig farms decreased with 26 % from 2005 to 

2011. As a consequence, the average number of pigs per pig farm increased significantly 

(from 773 in 2001 to 1248 in 2011) (Platteau et al., 2012). This intensification of livestock 

farming has an impact on the environment due to the emissions of different aerial pollutants 

(Aneja et al., 2009; Steinfeld et al., 2006). In an attempt to reduce the emissions and adverse 

effects, policies were developed (e.g. implementation of low-ammonia-emission (LAE) 

housing systems). However, it has become difficult, especially in a densely populated area 

like Flanders with locally concentrated livestock farms, for livestock farmers to comply with 

all regulations (e.g. odour complaints due to proximity of farms and residents). The new 

regulations regarding conservation objectives for Natura 2000 sites, which will soon come 

into force in Flanders, will complicate livestock farming in some critical areas. It can be 

expected that the conflicts between agriculture, nature and nearby inhabitants will only 

become more pressing in the future. Therefore the challenge to envision pathways towards 

a sustainable agriculture in Flanders must be taken up urgently. The challenge is to balance 

environmental and economic requirements and needs. 
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1.2 MAIN AERIAL POLLUTANTS IN PIG HUSBANDRY 

A wide variety of aerial compounds and pollutants exists inside livestock barns. Most of the 

pollutants are gaseous and include ammonia (NH3) and the greenhouse gases (GHGs): 

carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Other pollutants consist of a 

mixture of many types of particle-like pollutants and are called particulate matter (PM). A 

number of gaseous pollutants (e.g. NH3, hydrogen sulphide (H2S) and volatile organic 

compounds (VOCs)) together with other aerial compounds can cause odour nuisance (NRC, 

2003).  

In this section, the importance of these different pollutants in pig production will be 

discussed, together with their formation processes and their possible effects on the 

environment or human health. 

1.2.1 AMMONIA 

Agricultural activities are the main source of NH3 emissions. In 2011, 92 % of the total NH3 

emissions in Flanders originated from agriculture. The largest contribution (83 %) to the NH3 

emissions comes from manure, either directly from the barn or indirectly after land 

application of manure (VMM, 2012). 

Deposition of NH3 into the environment can lead to eutrophication of waterways and 

acidification of soils which, in turn, lead to loss of biodiversity and damage to ecosystems 

(Fangmeier et al., 1994; Krupa, 2003). Emission of NH3 also has an effect on the formation of 

secondary PM formation through reactions with sulphuric and nitric acids. This leads to the 

formation of the ammonium salts ammonium sulphate and nitrate (Erisman & Schaap, 

2004). The detrimental effects of PM will be discussed further. 

NH3 is an irritating gas which can have an adverse effect on the human health. The effects on 

the respiratory system include irritation of the skin, mucous membranes, eyes and the upper 

respiratory tract (Cole et al., 2000). Clinical signs include coughing, sneezing and salivation 

(Donham, 2000). Commission Directive 2000/39/EC stated a first list of indicative 

occupational exposure limits to protect the health and safety of workers from the risks 

related to chemical agents at work. In this directive, the European Commission 

recommended a time-weighted average (TWA) limit over an eight hour period of 20 ppmv 

NH3 and a short term exposure limit (STEL) over a period of 15 minutes of 50 ppmv NH3. This 
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directive was also converted into the Belgian Royal Decree of October 11
th

, 2002. Up till 

present it must be noted that no systematic surveys are carried out to check the real 

conditions inside livestock buildings with regard to these safety levels. Furthermore, 

research on exposure limits for workers in pig fattening facilities estimated TWA limits of 7 

ppmv on the basis of dose-response correlations for human health problems (Donham, 

1991). 

In pig husbandry, nitrogen is excreted by the pigs either in faeces in the form of proteins or 

in urine, mainly as urea (Canh et al., 1997). However, a smaller amount of nitrogen, less than 

15 % of the total nitrogen excretion, is excreted in urine as creatinine (Figueroa et al., 2002). 

Hydrolysis of urea is catalysed by the enzyme urease leading to the production of carbonic 

acid and ammonium (NH4
+
), which in liquid phase is in a pH- and temperature dependent 

equilibrium with NH3 (Cortus et al., 2008; Mobley & Hausinger, 1989). The enzyme urease is 

only present in faeces and is produced by a variety of microbial organisms. Volatilisation can 

only occur as NH3 and depends on the concentrations of NH3 in the manure, the air velocity 

at the manure surface, the manure pH and temperature and the surface area (Ni, 1999). This 

enzymatic hydrolysis of urea is the main source of NH3 from manure. A slower, and less 

important form of NH3 formation, is the breakdown of undigested proteins in faeces 

(Zeeman, 1991). 

1.2.2 GREENHOUSE GASES 

An important group of aerial pollutants are the GHGs which can contribute to global 

warming. The most important GHGs in the atmosphere are CO2, CH4 and N2O. However, the 

net CO2 emission from livestock, with the exception of CO2 emission from the use of fossil 

fuels, is assumed to be zero since the CO2 originating from the exhalation of the animals is 

used by plants for their photosynthesis (IPCC, 2006). Therefore, GHGs from livestock 

buildings mainly consist of CH4 and N2O. However for the sake of completeness, CO2 will also 

be shortly discussed here. 

In 2011, agriculture was responsible for 6 % of the total greenhouse gas emissions in 

Flanders. The contribution of agriculture to the total CH4 emission was 79.3 %, with 77 % 

originating from livestock farming, 2 % from farmland and 0.3 % from fuel consumption. 

Furthermore, agriculture contributed for 56 % to the total N2O emission in 2011 in Flanders. 
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Since only the CO2 emission from the use of fossil fuels is taken into account, the 

contribution of agriculture to the total CO2 emissions is almost negligible (3 %) (VMM, 2012).  

CH4 and N2O (and CO2) belong to the GHGs which contribute to the global warming through 

the greenhouse effect. The greenhouse effect may be simplistically represented as follows: 

the Earth-atmosphere system absorbs (short-wave) radiation from the sun and re-radiates 

this energy by means of (long-wave) infrared radiation, maintaining a global energy balance. 

However, certain gases (called GHGs) and particles in the atmosphere allow (short-wave) 

sunlight to filter through to the surface, but adsorb the outgoing (long-wave) infrared 

radiation and re-radiate it, both into space and into the lower atmosphere. Therefore, part 

of the infrared radiation that would be emitted into space is “trapped” near the surface. The 

result is a net absorption of energy from short-radiation and heating of the Earth-

atmosphere system. When the concentrations of GHGs in the atmosphere increase, the 

amount of infrared radiation (and thus, heat) that is trapped in the lower atmosphere will 

increase, thereby increasing the planet’s surface temperature (Bowman, 1990; Raval & 

Ramanathan, 1989; Schneider, 1989). The contribution of a GHG to the global warming is 

generally expressed as the global warming potential (GWP) and is compared to the GWP of 

CO2, which is 1 by definition. On a time horizon of 100 years, CH4 and N2O have a GWP of 34 

and 298, respectively (IPCC, 2013). Besides its role in the greenhouse effect, N2O also 

contributes to the depletion of stratospheric ozone layer (Portmann et al., 2012). 

CH4 is a non-toxic gas, but can become explosive at higher concentrations, with a lower 

explosion limit of 50 000 ppmv, which is much higher than concentrations normally found 

within livestock buildings. CH4 can be classified as an asphyxiant gas, displacing oxygen in the 

air, which could lead to suffocation. N2O has a long history as anaesthetic and is only 

considered toxic when exposed to high concentrations for a long time (Weimann, 2003). 

However, N2O concentrations inside livestock buildings rarely exceed a few ppmv. Although 

CO2 can be considered a non-toxic gas, it can also be classified as an asphyxiant gas. Donham 

et al. (1991) proposed a TWA limit of 1540 ppmv CO2 inside livestock barns. 

There are two sources of CH4 production in pig husbandry: (1) enteric fermentation in the 

animal and (2) release from manure, both driven by anaerobic degradation of organic 

matter. The CH4 emission from livestock farming in Flanders can accordingly be split up 
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(Figure 1.1) into enteric fermentation (60 %) and release from manure (40 %) (VMM, 2012). 

Emission of CH4 by pigs through enteric fermentation is estimated to be 4.1 g CH4 per day 

(IPCC, 2006), although it is influenced by the diet: enteric fermentation in pigs, and thus CH4 

production, increases with increased dietary fibre content (Jensen & Jørgensen, 1994). Pig 

husbandry in Flanders is associated with 11 % of the total CH4 emission from enteric 

fermentation. Although the CH4 emission for enteric fermentation from one pig is low, the 

total CH4 emission cannot be neglected due to the high number of pigs in Flanders (VMM, 

2012). CH4 is mainly produced by anaerobic digestion of manure via hydrolysis of (hemi-) 

cellulose, acidogenesis, acetogenesis and methanogenesis. Temperature, pH, (un)availability 

of oxygen and the presence of inhibiting compounds have an important effect on the CH4 

production from manure (Monteny et al., 2001; Zeeman, 1991). The emission of CH4 from 

pig manure is estimated at 32.9 g per day (IPCC, 2006) and pig husbandry is responsible for 

84 % of the total CH4 emission from manure in Flanders (VMM, 2012). 

 

Figure 1.1. Overview of the different sources of CH4 and N2O emission from livestock farming in Flanders (VMM, 2012). 

N2O production in manure is a complex process of which the details and conditions are 

poorly understood. First, urea is converted into ammonium through an ammonification 

process. Then, under aerobic conditions, ammonium is converted into nitrites (NO2
-
, 

nitritation) and further into nitrates (NO3
-
, nitratation) by nitrifying bacteria (nitrification 

process). Finally, nitrate is converted into molecular nitrogen (N2) through a series of 

intermediate nitrogen oxide compounds at low oxygen concentrations (denitrification 

process), with N2O as intermediate compound (Kebreab et al., 2006; Monteny et al., 2001). 

In these series of processes, nitrification is the rate-limiting step (Ndegwa et al., 2008). 

Within the agricultural N2O emission in Flanders in 2011 (Figure 1.1), only 16 % originated 
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from manure storage. Other sources of N2O emission were direct (68 %) and indirect 

emissions (16 %) from agricultural soils. Direct emissions are the consequence of agricultural 

activities (e.g. use of fertilizer and manure) which add nitrogen to the soil, increasing the 

amount of nitrogen which becomes available for nitrification and denitrification processes. 

Indirect emissions involve nitrogen that is removed from agricultural soils via volatilisation, 

leaching or runoff into streams and rivers (VMM, 2012). While direct emissions originate 

from agricultural fields, indirect emissions occur in other locations (e.g. ground and surface 

waters) than the original nitrogen application site (Mosier et al., 1998).  

Carbon dioxide in pig husbandry originates mainly from exhalation by the animals. The CO2 

exhalation rate is influenced by the temperature and animal activity (Ni et al., 1999a). Pigs 

from 32 to 105 kg produce on average between 41.5 and 73.9 g CO2 per hour by respiration 

(Ni et al., 1999a). A second source of CO2 inside pig buildings is the manure.  

Although one research group has reported that the mean release of CO2 from manure 

reached an average of 37.5% of the tranquil CO2 exhalation rate (TCER), which was close to 

the daily mean CO2 exhalation rate (CER) (Ni et al., 1999a; Ni et al., 1999b), other 

researchers have shown that the quantity of CO2 that is released from manure is less than 

5 % of the CO2 formed by the exhalation of the animals (Anderson et al., 1987; van 

Ouwerkerk & Aarnink, 1992). More recent research suggested that the release of CO2 from 

manure is around 10 % of the CO2 formed by the exhalation of the animals, provided that 

manure pits are emptied regularly in a four weeks interval (Pedersen et al., 2008). There are 

three possible ways of CO2 formation in manure. The first one is the hydrolysis of urea, 

already mentioned above, which leads to carbonic acid that decomposes easily into water 

and CO2. Anaerobic digestion of organic components in manure is considered as a second 

CO2 source (Ni et al., 1999b). Third, CO2 can be formed from the aerobic degradation of 

organic matter (Wolter et al., 2004). Manure temperature and the total pig weight have an 

important influence on the CO2 release from the manure pit (Ni et al., 1999b). 

1.2.3 PARTICULATE MATTER 

In 2011, 21 % of the primary PM10 emission in Flanders originated from agriculture. Livestock 

farming attributed 57 % of these emissions. For primary PM2.5, agriculture was responsible 

for 18 % of the total emission in 2011 in Flanders. 26 % was related to livestock farming, but 
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the bulk of the emission (62 %) from agriculture was due to transport (mainly from the 

exhaust of agricultural vehicles) (VMM, 2012). Up till now, the agricultural impact on the 

PM1 emissions is unknown.  

PM emitted to the environment can have multiple negative effects. PM deposition can have 

an effect on the competitive viability and reproductive fitness of individual plants (Grantz et 

al., 2003). It is also connected to acidification and nitrogen saturation, which can have an 

impact on terrestrial ecosystems (Grantz et al., 2003). Particles can also have a direct effect 

on global warming through scattering and absorption of solar and infrared radiation. An 

indirect effect of particles as cloud condensation nuclei, affecting the Earth’s climate through 

cloud formation, changes in the cloud lifetime and precipitation, is also observed (IPCC, 

2001). 

PM can affect human health in three ways: through inhalation of pathogenic and non-

pathogenic micro-organisms, through irritation of the respiratory tract and through 

reduction of the immune resistance to respiratory diseases (Harry, 1978). In contrast to the 

other pollutants mentioned above, there is no safe level of exposure to PM and also PM 

concentrations outside livestock houses can give rise to health issues (Pope et al., 2002). For 

example, studies have shown a positive correlation between increased PM2.5 concentrations 

and increased illness of people (Pope, 2000; Thurston et al., 1994). These illnesses include 

mainly respiratory problems, but also heart malfunctions (Davidson et al., 2005). Radon et 

al. (2007) questioned about 7000 German rural residents living in a town with a high density 

of livestock barns and they medically examined about 800 of these residents. This study 

revealed a higher rate of wheezing without a cold and a lower lung function for residents 

living close to a large number of animal houses (more than 12 animal houses within 500m of 

their home). These asthma-like syndromes are also observed in farmers and farm workers 

(Radon et al., 2007). The role of endotoxins (on the PM particles) towards asthma is less 

clear: both increased risks due to endotoxins as well as a protection thanks to endotoxins are 

reported (Radon, 2006; Schulze et al., 2006; von Mutius & Radon, 2008). In recent years, 

other epidemiological studies and reviews were published on the relation between air 

pollution and the human health (near livestock houses)(Davidson et al., 2005; Schinasi et al., 

2011; Smit et al., 2013; Valavanidis et al., 2008). However, a more detailed description of the 

influence of PM on the human health is beyond the scope of this dissertation.  
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In contrast to the pollutants mentioned above, which are chemically well defined, PM is 

rather a mixture of particles with different properties, sizes and compositions which 

originates from different sources (U.S.EPA, 2004). The expression “PM” is mainly used in the 

context of air quality and covers fine solid or liquid particles suspended in a gaseous 

medium. The same definition holds for “aerosol”, but this expression is more commonly 

used in atmospheric science (Cambra-López et al., 2010). This heterogeneity results in 

different particles with differences in shape, size, density and chemical composition. The first 

three properties are combined into one parameter: the aerodynamic diameter (AED). It 

describes the behaviour of particles in the atmosphere and can be defined as the diameter 

of a perfect spherical particle, with a density of 1 g cm
-3

 that has the same terminal velocity 

when settling under gravity as the particle in question (Kulkarni et al., 2011). The different 

fractions of PM can be defined in multiple ways (modal classification, occupational health 

classification, size-selective classification), depending on the research area and topic of 

interest. In this dissertation, only the size-selective classification will be used. PM10, PM2.5 

and PM1 are defined as particles that pass through a size-selective inlet with a 50 % 

efficiency cut-off at 10 µm AED, 2.5 µm AED or 1 µm AED, respectively (U.S.EPA, 2004). 

PM can also be grouped on the basis of their origin or source. Primary PM is emitted directly 

into the atmosphere and originates mainly from mechanical processes, but can also contain 

micro-organisms, pollen, spores and toxins. Primary PM is mainly contained into the fraction 

PM10 – PM2.5. Secondary PM on the contrary, originates mainly from chemical reactions 

between gases (ammonia, sulphur dioxide, nitrogen oxide and VOCs) and particles in the 

atmosphere. Secondary PM is mainly contained in the fraction PM2.5. Exceptions to this are 

particles from combustion processes, which are primary in origin, but fall into the fraction 

PM2.5 (Cambra-López et al., 2010). In the context of livestock farming, the main sources of 

PM are feed, manure and skin parts, but can also contain hair and bedding material (Aarnink 

et al., 1999; Curtis et al., 1975; Donham et al., 1986; Heber et al., 1988a). Recently, chemical 

and morphological characterisation, including electron microscopy, of the fractions  

PM10 – PM2.5 and PM2.5 has shown that, based on particle number, manure was the most 

abundant source for pigs (41 to 94 % in the fraction PM10 – PM2.5, 70 to 98 % in the fraction 

PM2.5). When expressed in particle mass, the most important sources were skin parts (0 to 

71 % in the fraction PM10 – PM2.5 and 0 to 79 % in the fraction PM2.5) and manure (23 to 92 % 
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in the fraction PM10 – PM2.5 and 14 to 95% in the fraction PM2.5)(Cambra-López et al., 

2011b).  

1.2.4 ODOUR 

Odour can be defined as a sensation that occurs when the sensory receptors of the human 

nasal cavity are stimulated by an odorant, i.e. a chemical element (Schiffman et al., 2001; 

Ubeda et al., 2013). A study by Schiffman et al. (2001) revealed 331 different odour-causing 

VOCs and gases from swine facilities. These compounds consisted of acids, alcohols, 

aldehydes, amides, amines, aromatics, esters, ethers, fixed gases, halogenated 

hydrocarbons, hydrocarbons, ketones, nitriles, other nitrogen-containing compounds, 

phenols, sulphur-containing compounds, steroids and other compounds (Schiffman et al., 

2001). Odours from livestock are generally generated under anaerobic conditions by 

microbial decomposition of organic matter, mostly in the manure (Ubeda et al., 2013). 

Odour from livestock buildings and agricultural activities (e.g. spreading of manure) is mostly 

a concern at a very local level. Although some of these compounds can have health effects 

(mostly irritation of eyes, nose, throat or skin) or environmental effects (e.g. precursors to 

the formation of tropospheric ozone), odours associated with agricultural emissions are not 

regulated in response to health or environmental effects but rather in response to nuisance 

complaints (NRC, 2003).  

Investigating odour (nuisance) from livestock is a discipline on its own, which requires other 

measuring techniques (e.g. olfactometry) as compared to NH3, GHGs and PM measurements. 

In this dissertation, odorous emissions from livestock buildings were not measured and, 

hence, odour will not be discussed in detail. 

1.2.5 VOLATILE ORGANIC COMPOUNDS 

Volatile organic compounds (VOCs) are compounds which easily vaporise at room 

temperature (vapour pressure larger than 10 Pa at ambient conditions). Besides CH4 (already 

discussed in section 1.2.2), VOCs also consist of fatty acids, nitrogen heterocyclic 

compounds, sulphides, amines, alcohols, ethers, mercaptans, hydrocarbons and halocarbons 

(NRC, 2003). These VOCs are also often called non-methane volatile organic compounds 

(NMVOCs). NMVOCs originate mainly from undigested proteins that decompose in manure 

(Mackie et al., 1998). The volatile fatty acids, which represent a large portion of the NMVOCs 



Chapter 1 

___________________________________________________________________________ 

10 

 

are responsible for a significant proportion of odour emissions from pig production facilities 

(Zahn et al., 2001). NMVOCs can also be classified as GHGs, although their direct effect on 

the greenhouse effect is negligible. However, they have an indirect effect as precursor to 

tropospheric ozone (IPCC, 2001).  

As for odour, the measuring techniques (gas chromatography and mass spectrometry) for 

the characterisation and quantification of NMVOCs are different as compared to NH3, GHGs 

and PM measurements. 

 

1.3 POLICY AND LEGISLATION 

As mentioned in section 1.1, the intensification of livestock farming has negative impacts on 

air, water and soil and gives rise to concerns regarding emissions of the pollutants, described 

in section 1.2. Policy makers and governmental agencies became aware of this negative 

impact (Aneja et al., 2008). This awareness, together with growing public concerns, has led 

to regulations and mitigation strategies for the different pollutants. Already in the 1970s, 

protocols were adopted in Europe by the UN Economic Commission for Europe (UNECE) 

under the Convention on Long Range Transboundary Air Pollution to protect the 

environment and human health (Rosencranz, 1981). In 1999, the Gothenburg Protocol was 

adopted by the UNECE to abate acidification, eutrophication and ground-level ozone, setting 

emission ceilings to be reached by 2010 for four pollutants: sulphur oxide, nitrogen oxide, 

VOCs and NH3. This protocol was amended in 2012 to include national emission reduction 

commitments to be achieved in 2020 and beyond. Upper limits for the same four initial 

pollutants to be met in 2010 were also set for the Member States of the European Union 

under Directive 2001/81/EC. The National Emission Ceilings (NECs) in this Directive were 

slightly stricter than those in the Gothenburg Protocol. Currently, the amendment of this 

Directive is still under preparation, but should set NECS to be respected by 2020 and by 2030 

for the four already regulated pollutants.  

In Flanders, in order to reduce NH3 emissions from livestock buildings, a Ministerial Decree 

was adopted in 2004. This decree required pig and poultry producers in Flanders to use 

officially approved LAE housing systems when renovating, expanding or building new animal 

housing. The last decade, this had led to the development and approval of new LAE housing 
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systems which were added to this decree. The list of all officially approved LAE housing 

systems for fattening pigs in Flanders can be found in Appendix A. Furthermore, all European 

(and hence also all Flemish) pig fattening facilities with more than 2000 fatteners are 

subjected to the European Integrated Pollution Prevention and Control (IPPC) convention. 

The Intensive Rearing of Poultry and Pigs BREF (Best Available Techniques (BAT) reference 

document) gives an overview of the BAT, with good agricultural practice as an essential part 

of it, to reduce NH3 emissions (European Commission, 2003). Currently, this document is 

under revision. A draft version is already available (European Commission, 2013).  

Low emission spreading of manure to the fields in a way to reduce emissions is also 

regulated by decrees in Flanders. Furthermore, in order to lower the amount of nitrate in 

the soil, additional decrees for manure application techniques and fertilisation standards are 

in force.  

With regard to nature conservation, the Flemish government recently approved 36 specific 

conservation objectives decrees. These objectives serve to protect European habitats and 

species in Special Areas of Conservation (SACs), determined in the European Habitats 

Directive (Council Directive 92/43/EEC of 21 May 1992) and Special Protection Areas (SPAs), 

determined in the Birds Directive (Council Directive 79/409/EEC of 2 April 1979). The 

measures, taken by the Flemish government, also imply the establishment of a 

Programmatic Approach to Nitrogen (PAN/Programmatorische Aanpak Stikstof in Dutch). 

This PAN will have substantial consequences for livestock farms, located in or near SACs and 

can also result in extra generic measures to reduce NH3 emissions of livestock farms. 

Livestock farms that significantly contribute to the exceedance of the critical nitrogen 

deposition value of a SAC will have to take measures to reduce their NH3 emission levels. In 

case a livestock farm contributes more than 50 % to the critical deposition value, it may even 

be forced to stop its activities (E. Brusselman, personal communication).  

A national emission reduction commitment for PM2.5 for 2020 was added in the amended 

Gothenburg Protocol and will also be added to the amended Directive 2001/81/EC. PM 

concentrations in ambient air are regulated by the 2008/50/EC Directive on ambient air 

quality and cleaner air for Europe. This directive states that the limit value for the daily PM10 

average concentration is 50 μg m
−3

 and should not be exceeded more than 35 times in a 
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calendar year. A limit value of 40 μg m
−3

 was also set for the yearly PM10 average 

concentration. For PM2.5 a yearly limit average value of 25 μg m
−3

 was set.  

The emissions of GHGs are regulated by the Kyoto Protocol to the United Nations 

Framework Convention on Climate Change, adopted in 1997 and came in force in 2005. In 

this protocol, Belgium committed itself to reduce GHG emissions by about 7.5 % in the first 

commitment period (2008 – 2012) as compared to 1990. The first commitment period ended 

in 2012 and the second commitment period has not entered into legal force yet. In this 

second commitment period (2013 – 2020), Belgium should reduce its GHG emissions by 20 % 

as compared to 1990. Furthermore, it is also possible that a NEC for CH4 will be added to the 

amended Directive 2001/81/EC. 

Despite the limit values for PM and the Kyoto Protocol, up till now no regulations about PM 

or GHG emissions from livestock farming are in force in Belgium or Flanders. However, in 

agreement with the Kyoto Protocol, agriculture in Belgium (and Flanders) will have to reduce 

their GHG emission with 15 % by 2020 compared to 2005 (Campens et al., 2010).  

 

1.4 EMISSION MITIGATION TECHNIQUES 

Overall, emission mitigation techniques can be grouped into mitigation techniques inside the 

barn and end-of-pipe techniques. Mitigation techniques inside the barn try tackling the 

emissions at the source (source-oriented techniques), mainly by preventing the formation or 

the release of the pollutants, or try lowering the pollutant concentrations inside the barn. 

This has the considerable advantage that not only the emissions but also the indoor 

concentrations are positively affected. This is in contrast to end-of-pipe techniques which 

treat the outgoing air and only reduce the emission of pollutants, but do not prevent their 

formation or release inside the barn environment. Both groups of techniques will be briefly 

discussed for NH3, GHGs and PM in the next section. This overview will be limited to 

reduction techniques at the level of the barn. The processing of manure outside the barn, air 

guidance techniques outside the barn or reduction techniques for land application of 

manure are outside the focus of this thesis. Reported reduction percentages can differ 

considerably between studies as a consequence of differences in housing system, 

management, climate or measurement technique.  
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1.4.1 MITIGATION TECHNIQUES INSIDE THE BARN 

Different sources of NH3, GHGs and PM exist inside a livestock building. These sources 

include the animals, the diet of the animals, the manure and manure pit and the floor of the 

pens. Different techniques focus on these sources with the goal of reducing the pollutant 

emissions. All discussed techniques are summarised at the end of this section (Table 1.1). 

The reported reduction percentages and costs for the different mitigation techniques were 

calculated with the same denominator and are summarised in Table 1.2 and Table 1.3 

1.4.1.1 DIET 

Since the amount of protein in the diet is a key factor determining the amount of excreted 

nitrogen and the subsequent emission of NH3, it is very important to adjust the amount of 

protein in the diets to the needs of the pigs over time. This can be achieved by formulating 

towards an optimal amino acid profile and by a “phase feeding” strategy where the 

composition of the diet is matched to the requirements of the animals (Aarnink & Verstegen, 

2007; Dourmad et al., 1999; Lenis, 1989). The best results in the reduction of nitrogen 

excretion, up to 50 %, are reached when phase feeding is combined with a perfect balance 

of essential amino acids and an optimisation of the supply of non-essential amino acids 

(Bourdon et al., 1997; Dourmad et al., 1999). Modifying the number of diets to decrease the 

nitrogen excretion can reduce the cost of the feed. However, the supplementation of amino 

acids to the feed will increase the cost of the feed. According to Dourmad et al. (1995) it is 

possible to reduce the nitrogen excretion by about 20 % with phase feeding, without 

significantly increasing the cost of main feed ingredients. Compared with the one phase 

feeding strategy, other researchers report estimated savings of 1.3 € (two phases) and 2.3 € 

(three phases) per pig (Edwards et al., 2002). However, the cost effectiveness of dietary 

mitigation techniques is mainly determined by the price of the main feed ingredients, which 

can fluctuate over time. 

Reducing the nitrogen content in the diet is a possible way of reducing nitrogen excretion 

and consequently NH3 emissions (Canh et al., 1998a; Philippe et al., 2006). The reduction of 

the feed nitrogen content can be accomplished through the reduction of crude protein and 

addition of supplementary synthetic amino acids. This results in a reduction of NH3 emissions 

of about 6 to 13 % for every 10 g kg
-1

 reduction in dietary crude protein (Canh et al., 1998b; 

Hayes et al., 2004; Hobbs et al., 1996; Velthof et al., 2005). Various reduction percentages 
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are obtained as a result of the various differences in crude protein level between the control 

and experimental diet. In some studies, these differences were quite large. For instance, 

Hayes et al. (2004) compared diets with a difference in crude protein level of 90 g kg
-1

 (220 g 

kg
-1

 for the control diet and 130 g kg
-1

 for the experimental diet) while Canh et al. (1998b) 

used a smaller difference in crude protein level of 40 g kg
-1

 (165 g kg
-1

 for the control diet 

and 125 g kg
-1

 for the experimental diet). However, the reduction of the crude protein level 

and the supplementation of synthetic amino acids has its limits because other amino acids, 

which cannot be supplemented, can become limiting. Therefore, it is suggested that the 

lysine:crude protein ratio should not exceed 6.5 to 6.8 % (Dourmad et al., 1999). Aarnink et 

al. (2010) estimated that reducing the crude protein level (from 165 g kg
-1

 to 135 g kg
-1

 ) 

would cost approximately 6 € per year and per animal place (Aarnink et al., 2010). Although 

reducing the crude protein content in a diet reduces nitrogen excretion, at present, no effect 

on N2O emissions as a result of decreased dietary protein level was found (Clark et al., 2005; 

Osada et al., 2011). For CH4 emissions, both reduced and enhanced emissions or no changes 

in emissions were found when lowering the crude protein content (Clark et al., 2005; Osada 

et al., 2011; Philippe et al., 2006; Velthof et al., 2005). Enhanced (+10 %) CO2 emissions from 

the manure are reported after reducing dietary crude protein content. This unexpected 

finding was explained by the authors by the differences in microbial activity in the manure 

from the control and experimental compartment (Clark et al., 2005). 

Reducing the urinary pH and thereby reducing the pH of the manure can consequently 

reduce NH3 emissions from pig manure. This reduction in urine pH can be accomplished by 

the addition of acids or acidifier sources to the diet, resulting in NH3 emission reduction 

percentages between 15 and 30 % (Aarnink et al., 2008; Kim et al., 2004). The cost of adding 

1 % of benzoic acid to the feed is estimated to be approximately 10 € per year and per 

animal place (Aarnink et al., 2010). Another way of lowering the urine pH may be obtained 

by altering the acid-base status in pigs, through the dietary electrolyte balance (dEB), which 

can be calculated as Na
+
 + K

+
 - Cl

-
 and is expressed in mEq (Canh et al., 1997; Canh et al., 

1998b). Changing 6 g kg
-1

 CaCO3 to CaCl2 in the diet in order to alter the dEB is estimated to 

cost approximately 9 € per year and per animal place (Aarnink et al., 2010). Additionally, this 

reduction in urine pH has also the potential to lower (-14 %) the CH4 emissions in buildings 

with weekly pit recharge by reducing the pH in the large intestines of the pigs (Kim et al., 
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2004). Without this weekly pit recharge, the reduction in CH4 emissions is not observed 

(Aarnink et al., 2008). Adding acidifier sources to the feed is not believed to lower N2O 

emissions (Aarnink et al., 2008).  

The addition of dietary fibres (non-digestible carbohydrates) to the diet can shift the 

nitrogen excretion from urine (nitrogen mainly present in urea) to faeces by incorporating 

intestinal nitrogen and urea excreted from the blood into bacterial protein (Bakker et al., 

1996; Canh et al., 1997; Low, 1985). As already mentioned before, the breakdown of these 

proteins, and the production of NH3 is much slower than the production from urea (Zeeman, 

1991). Furthermore, fermentation of the dietary fibres in the hind gut of pigs to volatile fatty 

acids (VFA) can reduce manure pH (Aarnink & Verstegen, 2007). Increasing the dietary fibre 

content enhances VFA production (Bakker et al., 1996; Canh et al., 1997). However, 

increasing the fibre level will increase CH4 production, both from the animal itself as from 

the manure because of the higher concentrations of bacterial fermentable substrates 

(Aarnink & Verstegen, 2007; Velthof et al., 2005). CO2 emissions from manure were reported 

to decrease (Clark et al., 2005) or increase (Philippe et al., 2009) with increased fibre levels. 

No effect on N2O emissions is reported (Clark et al., 2005). 

The addition of antibiotics, probiotics, exogenous enzymes, plant extracts or zeolites to the 

feed have been suggested as measures against NH3 emission. However, their effectiveness is 

not always clear (Ndegwa et al., 2008). Furthermore, little is known about the influence of 

feed additives on GHG emissions. The extra cost of adding probiotics to the diet can be 

compensated by the increased feed conversion efficiency (European Commission, 2013). 

Adding animal fat (2.5 to 5 %) or oil (0.5 to 1 %) to the feed has shown to lower total and 

respirable indoor dust concentrations (Chiba et al., 1985; Chiba et al., 1987; Clark & 

McQuitty, 1988; Heber & Martin, 1988; Takai et al., 1996). However, other authors report no 

effects or even increased respirable PM concentrations after adding oil (2 %) to the feed 

(Welford et al., 1992). 

The form in which the feed is delivered to the animals can also influence NH3 emissions. 

Reducing the particle size of the diets or pelleting the diets can potentially reduce nitrogen 

excretion by increasing the surface area of the ingredient particles. This allows for a better 

interaction with digestive enzymes, higher nitrogen digestibility, a better feed conversion 
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ratio and consequently less nitrogen excretion (Ferket et al., 2002; Lahaye et al., 2004; Skoch 

et al., 1983). Furthermore, feeding pelleted diets instead of meal diets has shown to lower 

indoor PM concentrations (Bundy & Hazen, 1975; Li et al., 1992; Li et al., 1993; Robertson, 

1992; Zeitler et al., 1987). However, varying results were obtained depending on the feed 

delivery system and the season (Bundy & Hazen, 1975; Zeitler et al., 1987). The extra cost to 

pellet diets is approximately 7 €/tonne (I. Peeters, Aveve, personal communication). Coating 

of the pellets with fat or lignin can further decrease PM concentrations (Li et al., 1992). 

Liquid feeding has also been proposed as an option to reduce PM concentrations. However, 

in practice no unambiguous results were obtained (Dawson, 1990; Robertson, 1992; Takai & 

Pedersen, 2000; Zeitler et al., 1987).  

1.4.1.2 HOUSING SYSTEMS, TECHNIQUES AND MANAGEMENT PRACTICES 

Segregating the urine from the faeces immediately upon excretion is an efficient way of 

reducing the NH3 emissions. This segregation prevents contact between the urea present in 

the urine and the enzyme urease. As a consequence no NH4
+
 is formed (Mobley & Hausinger, 

1989). Although this technique gives rise to very high reduction percentages on a laboratory 

scale, application in livestock buildings has been proven to be less efficient. Still a significant 

reduction (≈ -50 %) in NH3 emission can be achieved (Ndegwa et al., 2008). Multiple 

solutions exist to segregate the urine and faeces fraction (Lachance et al., 2005; Von Bemuth 

et al., 2005). Segregation of urine and faeces is commonly accomplished by using various 

floor and pit designs, for example V-shaped pit floors with a scraper (Von Bemuth et al., 

2005) or conveyor belt systems (Lachance et al., 2005). Depending on the type of scraper 

system used, various reductions in NH3 emissions can be achieved. Flat scraper systems do 

not seem to lower NH3 emissions (Kim et al., 2008), possibly because the floor is still soiled 

with a thin film of faeces and manure after scraping. V-shaped scrapers (Von Bemuth et al., 

2005) or belt systems (Lachance et al., 2005; Van Kempen et al., 2003) on the other hand are 

effective (≈ -50 %) in reducing NH3 emissions. V-shaped conveyor belt systems can reduce 

CH4 emissions, probably because almost all CH4 emission from manure is eliminated through 

the separate disposal of faeces and urine (Aarnink et al., 2007a). PM10 emissions are not 

affected by this system while N2O emissions from this system are very low (Aarnink et al., 

2007a), although N2O emissions from outside storage as solid faeces can be drastically 

enhanced due to higher (de)nitrification (De Vries et al., 2013). The investment cost for a 
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housing system with a V-shaped manure belt is believed to be lower than for a fully slatted 

floor system (calculations with the steel price in 2007). This is mainly caused by the higher 

share of steel among the materials for construction and is therefore dependent of the steel 

price (Aarnink et al., 2007a; European Commission, 2013). 

Reducing the emitting surface of the manure pit can also reduce NH3 emissions. A housing 

system with a manure and water channel, both with sloped pit walls to reduce the emitting 

surface (Figure 1.2), is on the list of officially approved LAE housing systems in Flanders 

(Appendix A) and should have an emission factor of maximum 1.2 kg NH3 year
-1

 (animal 

place)
-1

. However, Van Ransbeeck et al. (2013a) found in practice an emission factor of 1.6 

kg NH3 year
-1

 (animal place)
-1

, while van Zeeland (1997) found an emission factor of 1.0 kg 

NH3 year
-1

 (animal place)
-1

 for the same system. In contrast to van Zeeland (1997), who 

performed almost continuous measurements during two consecutive fattening periods, Van 

Ransbeeck et al. (2013a) measured on average minimum 48 consecutive hours per month 

during two consecutive fattening periods. The length of the fattening periods were also 

longer for the measurement by Van Ransbeeck et al. (2013a)(round 1/2: 144/129 days) as 

compared to the fattening periods by Zeeland (1997)(111/109 days). The system with sloped 

pit walls was also successfully tested in housing systems for weaning piglets (van Zeeland & 

den Brok, 1998). In Belgium, implementing this technique to an existing barn with fully 

slatted floors is estimated to cost 344 € per animal place in case the originally fully slatted 

floor is changed into a partially slatted floor or 168 € per animal place in case the floor 

remains fully slatted (European Commission, 2013). The extra costs to build a new barn of 

this type as compared to the costs to build a conventional barn with fully slatted floor and 

manure pit, vary between 86 and 109 € per animal place (European Commission, 2013).  

The emitting surface can also be reduced by making use of partially slatted floors instead of 

fully slatted floors (Oldenburg, 1989; Sun et al., 2008). However, the influence of partly 

slatted floors on CH4 and N2O emissions is not clear: positive, neutral and negative effects 

have been reported (Guingand et al., 2010; Laguë et al., 2004). No significant differences 

between CO2 emissions from partially or fully slatted floors are found (Guingand et al., 2010; 

Sun et al., 2008). The costs for building a barn with fully-slatted floors or partially slatted 

floors are deemed similar (European Commission, 2013). The use of partly slatted floors 
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instead of solid floors can also reduce PM concentrations, because there is less potential for 

settled dust to resuspend (Dawson, 1990). 

 

Figure 1.2. Working principle of sloped pit walls. In a standard manure pit (a), the emitting surface area stays maximal 

throughout the fattening period. By introducing sloped pit walls (b), the emitting surface area is reduced at the start of the 

fattening period. However, at the end of the fattening period, the emitting surface area could become larger than for a 

conventional manure pit. This is solved by adding an overflow (c). This figure was adapted from Van Overbeke et al. (2010). 

Instead of using partially or fully slatted floors with a manure pit, deep litter bedded floor 

with various bedding materials can also be used. However, a deep litter system with straw is 

reported to increase NH3 (+110 %), CO2 (+14 %) and N2O (+106 %) emissions in comparison 

with a fully slatted floor system (Philippe et al., 2007). Though, the NH3 emission for the fully 

slatted floor system was rather low in that study. Emissions of N2O are believed to be higher 

in the bedded floor system due to the presence of both aerobic and anaerobic conditions in 

deep litter but not in manure. Higher CO2 emissions probably originated from higher 

emissions from the deep litter (Philippe et al., 2007). Changing from a straw based deep 
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litter system to a straw flow system
i
 can reduce GHG emissions (-55 % N2O, -47 % CO2 and  

-46 % CH4) but further increase NH3 (+10 %) emissions, possibly due to the daily scraping of 

the solid manure in the straw flow system (Philippe et al., 2012). However, contrasting 

results for deep litter systems are reported in other studies. An overview of the emissions of 

NH3 for different deep litter systems can be found in Philippe et al. (2011). In the United 

Kingdom, it was estimated that using a straw-based housing system instead of a fully slatted 

floor system gives rise to an extra cost of approximately 34 € per tonne of produced pig 

meat or 1.87 € per pig with a final weight of 115 kg (European Commission, 2013). These 

additional costs are mainly caused by the price of the straw (or other bedding material), but 

also the extra labour has to be taken into account.  

In a preliminary study by Guarino et al. (2008) and a follow-up study by Costa et al. (2012), 

the authors claimed that the combination of applying UV lights and titanium dioxide (TiO2) 

paint on the compartment walls inside a pig barn, had an effect on CH4 emissions (15 to  

27 % reduction). A reduction (-30 %) in NH3 emission was also claimed by Guarino et al. 

(2008), but not by Costa et al. (2012). However, in both studies, measurement were 

performed during only one farrowing cycle (Guarino et al., 2008) or one production cycle 

(Costa et al., 2012). Therefore, the possible effects of the farrowing room or weaning unit on 

the emissions cannot be assessed. Furthermore, in the study by Guarino et al. (2008) lower 

CO2 emissions were reported in the TiO2 treated compartment. No clear explanation was 

given for this remarkable finding. This may indicate that problems occurred during the gas 

measurements. Since so far no one has confirmed these results, caution has to be taken 

when interpreting these results. 

Filtration of the indoor air can lower PM concentrations. This can be achieved by using 

internal recirculating dry air filters (Carpenter & Fryer, 1990), electrostatic precipitators 

(Rosentrater, 2003) or ionisation systems (Tanaka & Zhang, 1996). The cost to install an 

ionisation system for a surface of 450 to 600 m² in a fattening pig housing system is 

                                                      
i
 The straw flow system, which is a kind of bedded system, was developed by Bruce (1990). In this system, 

the lying area is sloped and straw is supplied at the top of this lying area. Through the motion of the pigs, the 

straw travels down the slope where it is mixed with manure and leaves the pen through a fence onto a scraped 

passage outside the pen. 
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estimated to be around 2000 € with an annual operational cost of 8 € per animal place. The 

installation cost for a system with dry air filters is estimated to be 1.14 € per 30 m³ of air 

exchange (European Commission, 2013). Furthermore, large volume housing systems would 

also require large sizes of these instruments, making them impracticable in livestock 

buildings (Dawson, 1990). 

Ventilation can play an important role in the NH3, GHG and PM emissions. Higher ventilation 

rates can increase NH3 and CO2 emissions due to the increased air exchange rate above the 

manure and the reduced resistance of the transfer of NH3 and CO2 to the air above the 

manure (Ndegwa et al., 2008; Ni et al., 1999b). Short periods of increased ventilation 

(“purge ventilation”) can dilute and thus reduce total dust concentrations, however this 

effect only lasts for a short time (Robertson, 1989). The placement of the air inlet and outlet 

of the ventilation system can play an important role in reducing NH3 and PM concentrations. 

Lower NH3 concentrations at animal level and lower (-78 %) PM concentrations in the 

feeding passage are reported when the air inlet is situated near the breathing zones of the 

pigs and the outlet is situated near the slatted floor and manure pit. However, this 

alternative placement of the air in- and outlet does not significantly reduce NH3 emission 

levels (Aarnink & Wagemans, 1997). Combining ceiling ventilation with pit ventilation has 

shown to reduce (-42.6 %) indoor NH3 concentrations by removing NH3 from the air above 

the manure before it is transported above the slatted floor. However, due to enhanced air 

flow rates over the manure, slightly increased (+5 %) NH3 emissions are reported when using 

this partial pit ventilation system (Saha et al., 2010). This increase could be overcome by 

applying an end-of-pipe technique to the pit exhaust. 

Ventilation also largely influences the indoor air temperature and local climate inside a pig 

building. This local climate can influence the dunging and lying locations of the pigs in the 

pen. Pigs tend to excrete on cold floors or on places were cold air falls into the pen (Aarnink 

et al., 1996; Hacker et al., 1994; Randall et al., 1983). When indoor temperatures rise, pigs 

start to excrete on the solid floors, increasing the emission surface (Aarnink et al., 1996; 

Aarnink et al., 2006; Huynh et al., 2005). Therefore, it is important to establish a correct 

dunging and lying pattern through the ventilation and air flow pattern (Aarnink & 

Wagemans, 1997). Reduced pen fouling, independent of ventilation, can be achieved by the 
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placement of studs on the slatted floors, preventing the pigs from lying there (Aarnink et al., 

1997). 

Although natural ventilation is considered a BAT regarding electricity use and indoor noise 

(European Commission, 2003; European Commission, 2013), the effect on the pollutant 

emissions is less clear. Some authors report lower NH3 concentrations (Kim et al., 2008) or 

lower PM10 (-63 %), PM2.5 (-53 %) and PM1 (-50 %) concentrations inside naturally ventilated 

buildings as compared to mechanically ventilated buildings. Others find lower NH3 EFs when 

comparing EFs from mechanically and naturally ventilated buildings, found in other studies 

(Ni et al., 2000). Anyhow, information on pollutant emissions from naturally ventilated pig 

facilities is still scarce. This is partially because, certainly in Flanders and the more northern 

European countries, the use of natural ventilation for pig housing systems is limited 

(European Commission, 2013). Furthermore, the determination of EFs from naturally 

ventilated buildings is hampered by the lack of a solid reference to determine ventilation 

rates from naturally ventilated buildings. The CO2 balance method, heat balance method or 

tracer gas method are often used to estimate ventilation rates, but can only give a rough 

estimate and no field reference method is available against which these methods can be 

evaluated (Kim et al., 2008; Ogink et al., 2013b). Finally, even if a reference measuring 

technique would exist, comparative emission measurements between natural and 

mechanical ventilation would not be straightforward since the respective housing systems 

will probably not have an identical barn layout and management, making it hard to compare 

only the effect of the ventilation system.  

Spraying oil or water mixtures has shown to be effective in reducing PM concentrations 

(Takai et al., 1995; Takai & Pedersen, 2000). Takai et al. (1995) found reductions up to 52 % 

in respirable PM inside fattening pig housing systems when spraying one to four times each 

day a rapeseed oil mixture (5 to 20 % oil in water). However, spraying with water is not 

believed to strongly reduce PM concentrations (Takai & Pedersen, 2000). The investment 

costs associated with the use of fogging or misting are believed to be between 3.8 and 6 € 

per fattening pig (European Commission, 2013). 

Cleaning practices may affect the indoor air quality and hence emissions. Poor hygienic 

conditions inside pig buildings have been reported to increase indoor concentrations of NH3, 
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CO2 and airborne and respirable PM (Banhazi et al., 2008a; Banhazi et al., 2008b; Cargill & 

Banhazi, 1998; Lee et al., 2005). However, attempts to reduce PM concentrations through 

vacuum cleaning were not successful (van't Klooster et al., 1993).  

1.4.1.3 MANURE MANAGEMENT 

A possible way to reduce NH3 emissions from manure is to inhibit the urease enzyme activity 

with the aid of urease inhibitors (Varel, 1997). However, due to the need for a frequent 

administration of these inhibitors to the manure and the unknown effects of the inhibitors 

on the crops after application of the manure to the fields, the additives are rarely used in 

practice (Ndegwa et al., 2008). 

Because the equilibrium in liquid manure between NH3 and NH4
+
 is determined by pH and 

temperature, lowering the pH of the manure at constant temperature lowers the amount of 

NH3 present in the manure. Between pH 7 and pH 10, the greatest increase in NH3 release 

from the manure takes place, while at pH levels below 7, only small amounts are released. 

Below pH 4.5, almost no volatilisation occurs (Hartung & Phillips, 1994). Therefore, 

acidification of manure can be used as a NH3 emission mitigation technique. High reduction 

rates are accomplished by adding acids [e.g. sulphuric acid (70 - 85 % reduction in NH3 

emission)(Jensen, 2002; Kai et al., 2008; Sørensen & Eriksen, 2009; Stevens et al., 1989) or 

phosphoric acid (90 % reduction in NH3 emission)(Al-Kanani et al., 1992)] to the manure. 

Recently, the acidification of animal slurry was reviewed by Fangueiro et al. (2015). In this 

review, not only the impact of acidification of animal slurry on the NH3 emissions from the 

barn, but also its impact on land application and the consequences for combining this 

technique with other techniques, are discussed (Fangueiro et al., 2015). Manure acidification 

can be accomplished by pumping the manure to a process tank where the acid is added. 

Usually, the manure is also aerated to prevent the formation of H2S. Afterwards, part of the 

manure is transported back to the barn to ensure that the pH of manure in the barn is low 

enough. The investment cost for an acidification unit, capable of handling 2400 m³ of 

manure) is around 200 000 € with an extra cost of 1.4 – 7 € per animal place per year for 

maintenance, electricity and the cost of the acid (European Commission, 2013). Acidifying 

additives (e.g. alum or calcium and magnesium salts) can also lower the pH, but cannot 

maintain a stable pH as opposed to the acids, which makes these less cost-effective. On the 

other hand, the use of strong acids on a farm can be hazardous (Ndegwa et al., 2008). The 
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addition of quebracho tannins to manure has shown in vitro to strongly reduce (> +85 %) CH4 

emissions, probably by reducing the population of methanogenic microorganisms 

(Whitehead et al., 2013). However, the effectiveness of most of these substances is 

discussed only in a limited number of articles. Their effectiveness and applicability on a large 

scale are not yet clear. Feeding measures to reduce urinary and manure pH were already 

discussed in section 1.4.1.1 Diet.  

Temperature also plays an important role in the NH4
+
– NH3 equilibrium in manure and the 

volatilisation of NH3 from manure. Higher temperatures favour NH3 concentrations, because 

of the positive influence of temperature on the dissociation constant between NH3 and NH4
+
 

(Groot Koerkamp et al., 1998). Therefore, reducing the temperature of the manure could 

possibly reduce NH3 emissions. Cooling the manure with cooling coils in the floor of the 

manure pit has shown to reduce NH3 emissions (-7 – -47 %), however the authors could not 

exclude the possibility that this reduction was also partially caused by low ambient room 

temperatures (Andersson, 1998). Cooling of manure to a temperature of 10 °C is predicted 

to reduce (-74 %) CH4 emission from pig buildings, but can increase emissions from outside 

storage afterwards (Sommer et al., 2004). However, cooling of manure can be expensive and 

is not widely applied. 

Binding free NH4
+
 ions in the manure can reduce NH3 emissions. Popular binding agents for 

NH4
+
 are zeolite (65-71 % reduction in NH3 emissions), sphagnum moss (75 % reduction of 

NH3 losses) and saponins, although saponins are considered to be less effective (Al-Kanani et 

al., 1992; Panetta et al., 2005; Portejoie et al., 2003). Even when using the effective binding 

agents zeolite and sphagnum moss, still large amounts have to be added, making them a 

financially unattractive option (Ndegwa et al., 2008). 

Instead of adding substances to the manure, NH3 emissions can also be lowered by frequent 

removal of manure from the manure pit or flushing of the manure pit. This can be on a daily 

basis (Lim et al., 2004), every two or three days (Lachance et al., 2005) or on a (two) weekly 

basis (Hartung & Phillips, 1994; Osada et al., 1998). Changing the manure removal or pit 

flushing rate can also influence the GHG emissions. Weekly removal of manure is reported to 

reduce (-10 – -19 %) CH4 and (to a lesser extent) CO2 emissions (Guarino et al., 2003; Osada 
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et al., 1998). The effect on N2O emission is less clear (Guarino et al., 2003; Osada et al., 

1998). 

Table 1.1. Overview of the different mitigation techniques and their effect on pollutant concentrations or emissions.  

Mitigation 

principle 

Mitigation technique Reduces 

emissions or 

concentrations 

of …
1
 

Enhances 

emissions or 

concentrations 

of …
1
 

Source-

oriented 

technique

? 

Diet Phase feeding NH3  Yes 

Reducing nitrogen content in 

the feed 

NH3, CH4? CH4? Yes 

Reducing urinary pH (acids or 

dEB) 

NH3, CH4?  Yes 

Adding dietary fibres NH3, CO2? CH4, CO2? Yes 

Adding additives
2
 NH3?  Yes 

Adding animal fat/oil to the 

feed 

PM? PM? Yes 

Pelleting the feed NH3? PM?  Yes 

Coating of the pellets with fat PM?  Yes 

Housing 

systems, 

techniques & 

management 

practices 

Segregating urine and manure    

     flat scraper NH3?  Yes 

     V-shaped scraper NH3  Yes 

     Belt systems NH3, CH4 N2O? Yes 

Reducing emitting surface    

     Sloped pit walls NH3  Yes 

     Partially slatted floors NH3, PM, 

N2O?, CH4? 

N2O?, CH4? Yes 

1
 If the effect of a mitigation technique is not clear from the literature research, a question mark is put behind 

the relevant pollutant. 

2
 antibiotics, probiotics, exogenous enzymes, plant extracts or zeolites. 
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Table 1.1. Continued. 

Mitigation 

principle 

Mitigation technique Reduces 

emissions or 

concentration

s of …
1
 

Enhances 

emissions or 

concentration

s of …
1
 

Source-

oriented 

technique? 

Housing 

systems, 

techniques & 

management 

practices 

Filtration of the indoor air    

    Dry air filters PM  No 

    Electrostatic precipitators PM  No 

    Ionisation systems PM  No 

Ventilation management    

     Ventilation management PM? NH3?, CO2? No 

     Position of ventilators NH3, PM  No 

     Pit ventilation NH3? NH3? No 

Spraying oil and water 

mixtures 

PM  No 

Cleaning practices NH3, CO2  Yes 

Manure 

management 

Urease inhibitors NH3  Yes 

Acidifying manure    

     by acids NH3  Yes 

     by acidifying additives NH3?  Yes 

Cooling of the manure NH3  Yes 

Binding free NH4
+
 NH3  Yes 

Frequent manure removal NH3 , CO2, CH4  Yes 

1
 If the effect of a mitigation technique is not clear from the literature research, a question mark is put behind 

the relevant pollutant. 
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Table 1.2. Overview of the reduction percentages
1
 for different mitigation techniques. 

Mitigation 

principle 

Mitigation technique Reduction 

percentage 

Target Pollutant 

Diet Reducing nitrogen content in 

the feed (-10 g kg
-1

) 

6 to 13 % Emission NH3 

Reducing urinary pH (acids or 

dEB) 

   

     addition of 1 % of benzoic 

     acid 

15 % Emission NH3 

     addition of Ca and P salt 30 % Emission NH3 

Housing 

systems, 

techniques & 

management 

practices 

Segregating urine and manure    

     flat scraper 50 % Emission NH3 

     V-shaped scraper 50 % Emission NH3 

     Belt systems 50 % Emission NH3 

Reducing emitting surface    

     Sloped pit walls 30 to 40 % Emission NH3 

     Partially slatted floors 35 to 45 % Emission NH3 

Ventilation     

     Position of ventilators 30 to 70 %
2
 Concentration NH3 

 78 % Concentration PM 

     Pit ventilation 43 % Concentration NH3 

Spraying oil and water mixtures 52 % Concentration PM 

Manure 

management 

Acidifying manure by acids 90 % Concentration NH3 

 70 % Emission NH3 

Cooling of the manure 7 to 47 % Emission NH3 

Binding free NH4
+
 65 to 75 % Emission NH3 

1
 The reduction percentages are reported “per animal place”, but could also be interpreted as “per animal”. As 

already mentioned, reported reduction percentages can differ considerably between studies as a consequence 

of differences in housing system, management, climate or measurement technique.
 

2
 At animal height. 
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Table 1.3. Overview of the costs for different mitigation techniques. 

Mitigation 

principle 

Mitigation technique Cost (in €) of the 

technique per 

animal place
1
 

Diet Phase feeding  

     two phase 3.5 

     three phases 6.2 

Reducing nitrogen content in the feed 

(-10 g kg
-1

) 

2 

Reducing urinary pH (acids or dEB)  

     addition of 1 % of benzoic acid 10 

     changing from CaCO3 to CaCl2 (6 g  

     kg
-1

) 

9 

Housing systems, 

techniques & 

management 

practices 

Segregating urine and manure  

     V-shaped belt systems -22 

Reducing emitting surface  

     sloped pit walls 86 to 109
2
 

Spraying oil and water mixtures 10.3 to 16.2 

Manure 

management 

Acidifying manure  

     by acids
3
 1.4 to 1.7 

1
 For calculating the costs per animal place, it was assumed that on 1 animal place 2.7 pigs are kept each year 

(Vrints & Deunick, 2014). 

2
 Extra cost compared to building a conventional barn with fully slatted floor and manure pit. 

3
 Plus an initial investment cost of 200 000 € to handle 2400 m³ manure. 
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1.4.2 END-OF-PIPE TECHNIQUES 

Air leaving the barn can be treated to capture or trap different pollutants by means of 

(bio)filtration or air scrubbing. The ventilation system extracts air from the barn 

compartments into a central duct and forces it through the (bio)filter or air scrubber. 

Therefore, these techniques can only be applied in buildings with point extraction (e.g. 

mechanically ventilated buildings). 

Biological and chemical air scrubbers are primarily used to lower NH3 emissions. In short, an 

air scrubber consists of a reactor, filled with an inert or inorganic packing material (Figure 

1.3). This packing material is sprayed with a washing liquid (e.g. water or an acid solution) 

and thus wetted. Air is extracted from the barn and introduced into the scrubber. This 

results in an intensive contact between air and water, resulting in a mass transfer of water 

soluble compounds (e.g. NH3) from gas to liquid phase. A fraction of the washing liquid is 

recirculated, while the other fraction is discharged and replaced by fresh water or acid 

solution (Melse et al., 2009). 

 

Figure 1.3. Schematic representation of a counter-current air scrubber. This picture was adapted from Melse & Ogink 

(2005). 
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Acid scrubbers remove NH3 by using a sulphuric-acid solution as washing liquid, leading to a 

pH-driven dissociation of NH3 into NH4
+
 and hydroxide ions and the subsequent formation of 

ammonium salts. In order to ensure that the pH of the liquid phase remains low, acid is 

added to the liquid and ammonium salts are removed with the discharge water which is 

replaced by fresh water. NH3 removal efficiencies of 90% to 99% can be achieved (Melse & 

Ogink, 2005; Melse et al., 2009). Biological scrubbers (also called bioscrubber or biotrickling 

filter) transform NH3 into nitrite and nitrate by means of bacterial conversion in a 

nitrification process. The nitrifying bacteria are present in a biofilm and/or suspended in the 

washing liquid. The resulting nitrite and nitrate are removed with the discharge water. 

Average NH3 removal efficiencies ranging from 35 % to 90 % are reported (Girard et al., 

2012; Melse & Mol, 2004; Melse & Ogink, 2005; Scholtens et al., 1988). These lower 

efficiencies can be caused by inhibition of nitrifying bacteria due to high NH3 and nitrite 

concentrations (Melse & Ogink, 2005; Melse et al., 2009). Finally, multi-stage scrubbers are 

designed to not only remove NH3, but also to remove other pollutants or compounds from 

the exhaust air. A multi-stage scrubber combines different types of techniques (e.g. an acid 

and biological scrubber), each designed to remove a specific pollutant or type of compounds. 

Therefore it is also called multi-pollutant scrubber (Melse et al., 2009). These multi-stage 

scrubbers also have the potential to remove PM10 and PM2.5 from the exhaust air, e.g. by 

making use of water-curtains (Aarnink et al., 2007b; Ogink & Hahne, 2007). The total costs 

(investment cost & operational cost, both per year) per year and per animal place for a 

fattening pig facility with 460 to 700 animals were estimated by Arends et al. (2008) to be 

17.1 to 19.2 €, 19.0 to 20.3 €, 17.9 to 24.0 € and 18.3 to 20.2 € to use a biological, a 2-stage 

system (chemical and water stage), a 3-stage system with a water stage, a chemical stage 

and a biological stage and a 3-stage system with two water stages and a biological stage, 

respectively. Melse and Ogink (2005) reported investment costs of 33 and 36 € per animal 

place for a chemical and biological scrubber respectively and yearly operational costs of 11.7 

and 11.3 € per animal place, respectively. 

Biofilters are usually made up of a filter bed, a mixture of for example wood chips, peat and 

compost. NH3 is removed by nitrification and conversion into nitrous and nitric acid (Melse & 

van der Werf, 2005). However, the applicability of biofilters on a long-term is under question 
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because of problems that can arise when using biofilters: clogging by accumulation of dust, 

acidification and inhomogeneous humidification (Melse & Ogink, 2005; Melse et al., 2009). 

Literature on the reduction of CH4 by using a scrubber of biofilter is contradictory. Some 

authors do not expect that these filters reduce CH4 emissions, partly due to the low solubility 

of CH4 in water. However, methanotrophic bacteria, present in the filter bed can convert CH4 

into CO2 and H2O. Due to the relatively low CH4 concentrations in exhaust air from a barn, 

very large biofilter volumes would be necessary to reduce CH4 concentrations significantly 

(Girard et al., 2011; Melse et al., 2009; Melse & van der Werf, 2005). Formation of N2O can 

occur in a biofilter or bioscrubber as a by-product of the nitrification and denitrification 

processes (Maia et al., 2012; Melse et al., 2009; Melse & van der Werf, 2005). 

1.4.3 INTERACTION BETWEEN POLLUTANTS 

As mentioned above, reducing the emission of one pollutant can increase the emission of 

another pollutant. For example, the formation of CH4 in manure becomes inhibited by the 

presence of NH3. Inhibition starts when the free ammonia concentration in the manure 

reaches 1.1 g-N litre
-1

 (Hansen et al., 1998). Therefore, reducing the concentration of NH3 in 

manure may increase the CH4 production rate. On the other hand, reducing the 

concentration or emission of one pollutant can simultaneously reduce the concentration or 

emission of another pollutant. For example, NH3 (or its ionised form NH4
+
) formation is the 

first step in the production of N2O from manure (see section 1.2.2). Reducing the 

concentration of NH3 (and NH4
+
) in manure can therefore reduce the N2O production in the 

manure. It is also known that NH3 in the atmosphere plays an important role in the 

formation of secondary PM (in the form of ammonium salts). Reducing the concentration of 

NH3 in the atmosphere can therefore also reduce the formation of ammonium salts and thus 

secondary PM formation (Erisman & Schaap, 2004). The reduction of NH3 concentrations 

inside livestock buildings could perhaps also lead to a reduction of indoor PM 

concentrations. This would be the case if the formation of ammonium salts is not limited to 

take place in the atmosphere, but also occurs inside livestock buildings. However, knowledge 

about the occurrence of ammonium salts inside animal houses is still very scarce. The 

formation of secondary PM in the atmosphere may take several days. The specific 

circumstances inside an animal house (high NH3 concentrations, high relative humidity and 

enhanced bacterial activity) could speed up this process. Hence, it is not imaginary that 
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ammonium salts are formed inside livestock buildings. Different authors have characterised 

aerosols in the vicinity of livestock buildings. For example, Lammel et al. (2004) compared 

background aerosol concentrations with outdoor aerosol concentrations at the farm and 

concluded that the farm was a source of primary as well as secondary particles, mainly in the 

form of ammonium and nitrate salts, organic matter and calcium. At the farm, the number of 

particles in the 1-4 µm fraction increased with a factor 1.7 – 2.1 and with a factor 2.0 to 6.4 

in the fraction 4-20 µm as compared to the background levels (Lammel et al., 2004). Since 

the measurements were not performed inside the barns, it is impossible to determine if the 

secondary particulate matter was already formed inside the barn or outside the barn. 

Therefore, Roumeliotis and Van Heyst (2008) chemically characterised PM2.5 within an 

experimental layer house. The results of three different measuring days (and background 

measurement at the ventilation inlet) indicated that about 50 to almost 100 % of the total 

PM2.5 concentration existed of secondary particulate matter. The differences between the 

levels of secondary particulate matter from the inside measurements and the measurements 

at the air inlet could indicate that secondary particulate matter was formed inside the layer 

house (Roumeliotis & Van Heyst, 2008). The results of a subsequent study by the same 

research group in a commercial broiler barn indicated that secondary particulate matter 

formation was enhanced during warmer periods. The mean ratio of the inorganic aerosol 

concentration and the PM2.5 emission was 26 % for the cold period compared to 42 % for the 

warmer period (Roumeliotis et al., 2010). A recent preliminary study inside a commercial 

fattening pig facility showed 3 to 4 times higher NH4
+
 concentrations in indoor PM10 samples 

as compared to the NH4
+
 concentrations at the air inlet (Ulens et al., 2014). This is again an 

indication that secondary PM formation might occur inside livestock buildings. 

 

When reviewing mitigation techniques, not only the need for simultaneous desirable effects 

on several pollutants is important. Parameters like installation and operational costs, effect 

on animal health and productivity and effect on human health are also important to keep in 

mind. These parameters play an important role in determining the successful 

implementation of these mitigation techniques in practice. In this overview of mitigation 

techniques, influences on soil emissions (after land application) were not taken into account. 

It can be concluded that mitigation techniques should always be evaluated taking into 
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account the most important pollutants and other important parameters simultaneously, 

instead of performing an individual evaluation. 

 

1.5 ASSESSING EMISSION LEVELS AND REDUCTION EFFICIENCIES 

Different techniques exist to measure the different pollutant concentrations. Some 

pollutants (e.g. NH3 and GHGs) can be measured simultaneously with one technique, while 

other pollutants (e.g. PM) rely on a totally different measuring technique. Strategies to 

measure these pollutants can also vary depending on the application. Distinction can be 

made between measurements to compare treatments and measurements to define an 

emission factor.  

1.5.1 MEASURING TECHNIQUES 

1.5.1.1 GAS MEASURING TECHNIQUES 

One of the simplest and most reliable techniques to measure NH3 is an aqueous acid trap, 

based on wet chemistry (gas concentration determination in aqueous medium techniques). 

A known volume of air is passing through an acid solution, trapping the NH3 in the solution. 

Afterwards the NH4
+
 concentration in the solution can be determined using colorimetric 

techniques or via other established analytical methods (Ni & Heber, 2001). This technique is 

considered to be the standard technique for NH3 determination (Harper, 2005). Other, 

relative simple instruments to measure NH3 and CO2 concentrations are gas detection tubes. 

These disposable tubes have a solid surface that undergoes a colour change when a specific 

gas adsorbs onto the surface. Both active (with pump) and passive (without pump) gas 

detection tubes exist (Ni & Heber, 2001).  

Fourier transform-infrared spectroscopy (FTIR) can be used for both NH3 and GHGs. In FTIR, 

an interferometer produces an interference wave which interacts with the air sample, 

resulting in an interferogram. The Fourier transform of this interferogram yields a spectrum 

that can be compared with spectra of known samples (Ball, 2001). Different types (e.g. dual-

path or open-path) of FTIR spectrometers exist (Hu et al., 2014). Another spectroscopic 

instrument than can be used to measure NH3 and GHGs, is an infrared (IR) photoacoustic 

system (PAS). Unlike the FTIR spectrometer, which analyses the whole IR spectrum, the IR 
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PAS measures at one spectral band of the IR spectrum (Phillips et al., 2001). The Innova 

photoacoustic gas monitor 1314 (Innova AirTech Instruments, Santa Clara, CA, USA), which 

was used in this thesis, works on this principle. An air sample is drawn into the measuring 

cell. The measuring cell is then closed and the sample is irradiated with an IR beam, chopped 

at a constant frequency. The wavelength of the incoming beam can be modulated by means 

of optical filters. At a certain wavelength, specific for each gas, the IR light will be absorbed 

by the gas molecules. The excitation of the molecules results in heat generation, increasing 

the temperature in the cell and, since this is a closed cell, the pressure increases. Due to the 

chopped IR beam, a series of pressure pulses will emerge. These pressure pulses (≈ sound 

waves) are detected by microphones, situated in the wall of the measuring cell which 

convert the signal into a voltage differential and ultimately into a concentration (Yamulki & 

Jarvis, 1999). Laser absorption spectroscopy (LAS) can also be used to measure NH3, CH4 and 

N2O concentrations. This technique operates on the principle that every molecule absorbs 

light at a specific wavelength. The emitting laser beam is tuned to a wavelength specific for 

the molecule of interest while minimising the possibility of absorption by interfering gases. 

The emitted laser beam is reflected back by a reflector to a transceiver unit and the intensity 

of the reflected laser beam is measured. Therefore, this technique provides line average 

concentrations between two measuring points. The path between the emitter and reflector 

can be either open or closed (Hu et al., 2014; Mosquera et al., 2014). Another option to 

(indirectly) measure NH3 concentrations is with chemiluminescence analysers. First, NH3 has 

to be catalytically converted (with stainless-steel as converter) in nitric oxide (NO) at very 

high temperature (795 °C) (Aneja et al., 1978). Afterwards, the generated NO is further 

oxidized within the chemiluminescence analyser using ozone and nitrogen dioxide (NO2), in 

an excited state, is produced. When the NO2 molecules return to a lower energy state, they 

release photons, which are detected by the instrument (Phillips et al., 2001).  

Due to the high purchase prices of the aforementioned systems for continuous monitoring 

(FTIR, PAS and chemiluminescence analyser), research is being performed on simple, low 

price measuring systems which can still monitor continuously as opposed to the wet 

chemistry method or gas detection tubes. One of these measuring systems is the solid state 

sensor, which can be used to measure NH3 or GHG concentrations. This sensor works by 

measuring the change in a physical property due to adsorption/desorption processes and 
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chemical reactions on the surface of a sensing element, a solid-state film of a gas-sensitive 

material (Capone et al., 2003). A review on solid-state sensors was written by Capone et al. 

(2003).  

For further reading on this matter, several recent reviews are available. An overview of other 

techniques to measure NH3 emissions can be found in a review by Ni and Heber (2001). A 

review on techniques for NH3 or, more general, gas emissions, with a focus on agriculture 

and livestock, can be found in reviews by Philipps et al. (2001), Hu et al. (2014) and 

Mosquera et al. (2014).  

1.5.1.2 PARTICULATE MATTER MEASURING TECHNIQUES 

Particulate matter concentrations in animal houses can be measured by different 

techniques. The most commonly used devices are: a gravimetric sampler, an optical particle 

counter, a beta attenuation monitor or a tapered element oscillating microbalance.  

A gravimetric sampler draws air through a size selective inlet or cyclone. Particles with a size 

larger than the desired size collapse onto an impaction plate or hit the wall of the cyclone 

due to centrifugal forces. Particles, within the desired size range, are deposited onto a filter. 

By pre- and post-weighing the filter, the PM concentration can be calculated and be 

expressed in mass as mg of PM per m
3
 of air. 

A beta attenuation monitor also consists of a size selective inlet and a filter. However, 

instead of a single filter, a filter tape is used which allows for continuous monitoring. The 

filter tape is radiated with a beta radiation source and the transmission of this beta radiation 

over the tape is measured by a detector. Transmission before and after sampling is a 

measure for the mass of collected PM (Jaklevic et al., 1981). 

A tapered element oscillating microbalance exists of a hollowed tapered tube with a filter 

cartridge at the end of the tube. Air passes over the filter into the tube, while particles are 

collected onto the filter. The frequency of oscillation of the tapered tube (and filter) is 

dependent upon the physical properties of the tapered tube and the mass of the filter. This 

frequency changes when particles are deposited onto the filter. This change in frequency is 

directly related to the mass of the particles on the filter (Patashnick & Rupprecht, 1991). 
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An optical particle counter detects particles by light scattering inside a measuring cell. The 

intensity of a scattering light signal is classified to a certain particle size and the scattering 

light pulse of every particle is being counted. The Grimm 1.109 spectrometer (Grimm 

Aerosol Technik GmbH & Co. KG, Ainring, Germany), which was mostly used in this thesis, 

works on this principle. The wavelength of the laser diode, used in this spectrometer, is at 

655 nm. By modulating the intensity of the laser beam, particles can be detected in a range 

of 0.25 µm to 32 µm. Incoming air is focussed and guided through the inner area of a 

measuring volume, created by focussing the laser beam. Particles in the incoming air emit 

scattering light when hit by the focused laser beam. This scattering light is detected under a 

scattering angle of 90° and collected by a receiver diode. The signal, collected at the 

detector, is finally classified into size channels based on the intensity of the signal. This 

device counts the number of particles in an air stream with a sampling volume of 1.2 l/min. 

Conversion to mass concentrations is based on certain algorithms and a calibration 

procedure (maximum 5 % deviation compared to a reference unit)(manual Grimm 1.109 

spectrometer). 

1.5.2 MEASURING STRATEGIES 

As already mentioned in the introduction of this paragraph, measuring strategies can be split 

in strategies to measure differences in pollutant concentrations between treatments and 

strategies to define an emission factor. Strategies to compare between treatments will not 

be discussed because the number of strategies that are used in literature are almost 

uncountable. While in some studies whole fattening periods are monitored, other studies 

report data from measurements spread over the fattening period with variations in 

frequency and duration. On the other hand, an emission factor should reflect the mass of a 

certain pollutant that is emitted over a year and in an ideal case, measurements should be 

performed for one whole year. An emission factor (EF, kg year
-1

 (animal place)
-1

) can be 

calculated as the cumulative emission of a certain pollutant over one year, divided by the 

number of animals and corrected for vacancy in the barn (Eq. 1.3). Different emission rate 

(ER, g h
-1

) equations for PM (Eq. 1.1) and gas measurements (Eq. 1.2) are used. 

 �� = � ∗ �� ∗ 10
� Eq. 1.1 

 �� = � ∗	
�� − ��� ∗ 10
� ∗ ���� ∗ �
���� ∗

�����  
Eq. 1.2 
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 �� = ∑��
� �10
� ∗ 24 ∗ 365# $ ∗ �� 

Eq. 1.3 

 

Where Q is ventilation rate (m³ h
-1

), Co is concentration at the air outlet (ppm for the gasses, 

µg m
-3

 for the PM fractions), Ci is concentration at the air inlet (ppm for the gasses, µg m
-3

 

for the PM fractions), wm is molar mass (g mol
-1

), Vm is molar volume at reference 

temperature and pressure (m³ mol
-1

), P is air pressure (hPa), Pref is reference air pressure 

(1013.25 hPa), T is indoor temperature (K), Tref is reference temperature (273.15 K), N is the 

number of measuring hours, a is the number of animals and VP is the correction factor for 

the vacancy (0.9 for fattening pigs). 

However, several reduced measuring strategies exist, both for PM as for NH3. These 

measuring strategies should take into account the between-farm variance, the within-farm 

variance, and the instrument measurement variance in order to get a good estimate of the 

true emission factor. Each of these variances attribute to the overall measurement variance 

of the mean emission of a housing system (Hofschreuder et al., 2008). 

1.5.2.1 GAS MEASURING STRATEGIES 

Since NH3 was the first gas in agriculture that was subjected to mandatory emission 

reduction, several researchers have tried to find reduced measuring strategies for the 

determination of NH3 emission factors. In the Netherlands, a first (slightly) reduced 

measuring protocol was developed under the Green Label framework (Groen Label, 1996; 

Mosquera & Ogink, 2011). The goal of this measuring protocol was to accurately estimate 

the mean annual NH3 emission of a housing system. The Green Label protocol was still a very 

elaborate sampling protocol with measurements in two growth cycles (e.g. fattening 

periods), one in summer and one in winter, both on the same farm. Ammonia 

concentrations had to be measured on a continuous basis, i.e. every 5 to 10 minutes. 

Afterwards, hourly means were used in further calculations (Groen Label, 1996). This 

protocol is also currently used in Flanders to determine NH3 emission factors. This extensive, 

expensive and time consuming protocol was followed-up in The Netherlands by an 

alternative sampling protocol (multiple-location approach), based on measurements at 

several (four) farms with the same housing system. In this new protocol, six 24-hour 

sampling periods per farm location, distributed over one year and randomly taken in 
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subsequent two month periods, are prescribed. For animal categories with growth cycles 

(e.g. fattening pigs) measurements had to be equally divided over the production cycle (e.g. 

fattening period) (Ogink et al., 2011). Recently, an alternative sampling protocol (case-

control approach) has been suggested. This approach is based on performing simultaneous 

measurements in both a newly proposed housing system (or in an existing housing system, 

but with application of a new management strategy; referred as “case” in this protocol) and 

a reference system (with known emission factor), both located at the same farm. The 

number of measurements per farm (6) and the conditions concerning spreading of the 

measurements over time remained the same, but the number of farms decreased from four 

to two. On the basis of the difference between the emissions in the reference system and 

the new housing system, the emission factor of the new housing system is estimated (Ogink 

et al., 2013a). These two alternative protocols (multiple-location approach and case-control 

approach) are incorporated in the international VERA protocols (VERA, 2011). Mosquera et 

al. (2011) investigated two alternative approaches to shorten the measuring protocol with 

four farms. The sampling period was shortened from one year to six months, resulting in 

only three 24-hour measuring periods per farm. Using the results from those six months, 

either solely or in combination with a mathematical model, led to a small increase in overall 

random measurement error of the mean emission (Mosquera & Ogink, 2011). Although not 

specified, the aforementioned protocols could also be used to determine GHG emission 

factors. 

Besides these protocols to determine housing system-specific emission factors, reduced 

building-specific NH3 measuring strategies for fattening pigs were proposed by Vranken et al. 

(2004) and later refined by Dekock et al. (2009). In the final protocol, a linear model 

containing ventilation rate, mean weight of the animals and inside and outside temperature, 

measured at specific times, was used to model the NH3 emission from a building. In total, 

four measurement periods (2 before day 70 and 2 after day 70 in the fattening period) per 

fattening period were needed to get a good estimate of the NH3 emissions. To get an EF for 

the building, three fattening periods had to be monitored (Dekock et al., 2009; Vranken et 

al., 2004). 
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1.5.2.2 PARTICULATE MATTER MEASURING STRATEGIES 

In comparison with NH3, less reduced strategies exist for PM. Hofschreuder et al. (2008) 

proposed a measuring strategy, similar to the Dutch measuring strategy for NH3, with 

measurement at four farms. These authors proposed to perform six 24-hour measurements 

on each farm, spread over one year, randomly taken in subsequent two month periods. For 

fattening pigs (or other animal categories with production cycles), measurements also had to 

be equally divided over the growing period (Hofschreuder et al., 2008). Recently, Van 

Ransbeeck et al. (2012) developed a reduced PM measuring strategy for fattening pigs. This 

strategy could be used for both indoor PM concentrations and PM emissions, as well as for 

three PM fractions (PM10, PM2.5 and PM1). Four measuring periods in one fattening period, 

with two consecutive measuring days per measuring period, were proposed. Sampling 

should be done during at least two consecutive fattening periods to determine an emission 

factor. The measuring periods should be between day 1 - day 9, day 29 - day 41, day 57 - day 

66 and day 100 – day 120 in the fattening period. If the impact of PM on human or animal 

health also has to be evaluated, the authors suggest an extra measuring period between day 

93 – day 103 to include the expected overall maximum PM concentrations, observed during 

the period day 93 – day 103 (Van Ransbeeck et al., 2012). 
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1.6 PROBLEM STATEMENT 

The intensification of animal husbandry in Flanders, Europe and the United States has come 

with great challenges regarding the mitigation of pollutant emissions (NH3, CO2, CH4, N2O 

and PM) and the associated detrimental effects on the environment and the human health. 

These challenges are worldwide recognized by the governments, politicians and concerned 

citizens. Mitigation strategies are applied and legislation is passed in an attempt to constrain 

the emissions and to lower their influence on the environment. However, most strategies or 

legislation only take into account one pollutant or one group of pollutants (e.g. NH3 or 

greenhouse gases). For example, in Flanders the decree on emission-low housing systems 

only addresses NH3 emissions. Consequently, the approved techniques are not designed for 

the reduction of, for example, greenhouse gases. Moreover, emissions of other pollutants 

may even be enhanced by the implementation of a “single pollutant” mitigation technique. 

Indeed, the currently going pollutant-by-pollutant approach does not take into account the 

possible relations among different pollutants or the extent to which different pollutants can 

affect each other. Although there is an emerging trend to investigate several pollutants at 

the same time in a so-called multi-pollutant research approach, up to now most studies 

have been limited to a small group of pollutants. 

While end-of-pipe techniques have shown great potential in reducing NH3 and PM 

emissions, they suffer from some drawbacks. Since pollutants are only reduced at the 

ventilation exhaust, no improvement of the indoor climate is achieved. Furthermore, these 

techniques are costly, both in installation and in operation. Besides, due to the need to 

cluster the exhaust air from different compartments and direct it to one single end-of-pipe 

technique, this technique can only be used in buildings with central extraction. Mitigation 

techniques inside the barn are usually cheaper, can be mostly applied to a wider range of 

housing systems and animal categories and, most importantly, can effectively improve the 

indoor climate. However, the reduction percentages obtained with these techniques are 

generally lower than those obtained with end-of-pipe techniques. Although numerous 

studies have been performed on mitigation techniques inside the barn (such as influence of 

feed and manure and farm management) there still remain ample questions. In order to 

assess the reduction percentages of mitigation techniques inside the barn or to determine 

emission factors for new housing systems, emission measurements are necessary. These 
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emission measurements can be both time consuming and expensive. Therefore, the 

accuracy of reduced sampling strategies should be tested, as well as their applicability. 

Although already a lot of research has been performed on reducing the emissions of 

different pollutants from pig husbandry, it is clear that there still remains a lot of work to be 

done. Optimisations in the field of measuring strategies are also desirable. To summarise, 

the following knowledge gaps can be identified for future research: 

1. Are mitigation techniques inside the barn and, more specifically source-oriented 

techniques, applicable to multiple pollutants and effective in reducing multiple 

pollutants at the same time? 

2. What are the relations among the different pollutants and how do pollutants affect 

each other? 

3. Can reduced sampling strategies be used to determine emission factors? 
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1.7 RESEARCH OBJECTIVES & THESIS OUTLINE 

In this dissertation, the indoor air quality of and emissions from pig facilities were studied. 

Data on multiple pollutants (multi-pollutant approach) were collected through performing 

different measurement campaigns at commercial and experimental farms where a limited 

number of new or not yet extensively studied source-oriented mitigation techniques were 

applied. This data could then be used to assess the effectiveness of these source-oriented 

techniques (knowledge gap 1), but also to generate hypotheses concerning the observed 

correlations between the various pollutants (knowledge gap 2). Already existing datasets 

were used to assess the applicability of reduced sampling strategies for the determination 

of NH3 emissions (knowledge gap 3). 

With the identified knowledge gaps in mind (see 1.6 Problem statement), different research 

objectives can be formulated. This dissertation aimed to answer the following research 

questions: 

• What is the influence of a dry or wet cleaning protocol and of a conventional or low-

ammonia-emission housing system on indoor pollutant concentrations of a 

commercial pig fattening facility? (knowledge gap 1; chapter 2.1) 

• Based on data from the experiment above: What are the correlations between the 

gases (NH3, CO2, CH4 and N2O) and the PM fractions? (knowledge gap 2) Do different 

cleaning protocols and housing systems lead to differences in the distribution of 

particle sizes? (chapter 2.2) 

• What is the effect of grinding intensity and feed form on the indoor PM 

concentrations and growth performances of weanling pigs inside a pig nursery? 

(knowledge gap 1; chapter 2.3) 

• Is it possible to obtain a good estimate of an NH3 emission factor via reduced 

measurement strategies which do not take into account possible influencing 

parameters? (knowledge gap 3; chapter 3) 

• Based on literature and on the experiences gained in this dissertation: What are the 

main problems associated with performing gas and PM measurements inside 

livestock buildings? (chapter 4) 
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2 SOURCE-ORIENTED TECHNIQUES 

 

This chapter is divided into three parts. The first part covers the influence of pen cleaning 

techniques and housing systems on the indoor concentrations of PM, NH3, CO2, CH4 and N2O 

in a fattening pig facility. In the second part and based on the data obtained in the first trial, 

the correlations between the indoor concentrations of the different pollutants were 

calculated and a particle size distribution (PSD) analysis was performed to get an overview of 

the dominant size ranges in fattening pig facilities. Finally, the influence of grinding intensity 

and pelleting of the diet on the indoor PM concentrations and the growth performance of 

weanling pigs was studied. 
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2.1 THE EFFECT OF DIFFERENT PEN CLEANING TECHNIQUES AND HOUSING SYSTEMS ON INDOOR 

CONCENTRATIONS OF PARTICULATE MATTER, AMMONIA AND GREENHOUSE GASES (CO2, 

CH4, N2O)
ii
 

 

2.1.1 INTRODUCTION 

Emissions of ammonia (NH3), greenhouse gases (methane (CH4) and nitrous oxide (N2O)) and 

particulate matter (PM) from pig housing systems have an impact on the environment. 

Ammonia emissions can lead to eutrophication and acidification of waterways and soils 

(Krupa, 2003). The emissions of greenhouse gases contribute to global warming, which is 

considered to be a major threat to the global environment (Flessa et al., 2002). PM is 

strongly associated with human health problems (Bates, 2000). Furthermore, PM can be a 

carrier of endotoxins and microorganisms, facilitating the transmission of pathogenic 

microorganisms and the transportation of odorous compounds which can cause a nuisance 

for nearby inhabitants (Hooda et al., 2000; Oehrl et al., 2001; Seedorf et al., 1998; Yuan et 

al., 2010; Zhao, 2011).  

Over the past few decades pig production in Flanders has intensified (European Commission, 

2003; Van Gijseghem et al., 2002). To minimise the environmental impact of this production 

intensification, new legislation has been implemented, especially with regard to NH3 

emissions. All European pig fattening facilities with more than 2000 fatteners, are subjected 

to the European Integrated Pollution Prevention and Control (IPPC) convention. The 

Intensive Rearing of Poultry and Pigs BREF (Best Available Techniques (BAT) reference 

document) gives an overview of the BAT, with good agricultural practice as an essential part 

of it, to reduce NH3 emissions. Regarding housing systems, the main principles to reduce 

ammonia emissions are: reduction or cooling of the emitting manure surfaces, quick removal 

of manure out of the barn or the use of surfaces (e.g. slats and manure channels) which are 

                                                      

ii Adapted from: Ulens, T., Millet, S., Van Ransbeeck, N., Van Weyenberg, S., Van Langenhove, H., & 

Demeyer, P. (2014). The effect of different pen cleaning techniques and housing systems on 

indoor concentrations of particulate matter, ammonia and greenhouse gases (CO2, CH4, N2O). 

Livestock Science, 159:123-132. 
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smooth and easy to clean. Other possibilities are end-of-pipe techniques (e.g. chemical wet 

air scrubber or bioscrubber) (European Commission, 2003). 

Legislation passed in 2004 requires pig and poultry producers in Flanders to use officially 

approved LAE housing systems when renovating, expanding or building new animal housing. 

These housing systems are usually more expensive than conventional housing systems. 

Furthermore, some of these techniques are pure end-of-pipe techniques. Such end-of-pipe 

techniques are not expected to reduce indoor concentrations of ammonia.  

The indoor air quality of pig housing is gaining increasing attention in relation to human and 

animal health (Banhazi et al., 2008b; Wathes et al., 1998). Exposure to high indoor 

concentrations of NH3, CO2 or PM can negatively affect the health of workers in pig houses 

(Asmar et al., 2001; Laitinen et al., 2001; Von Essen & Donham, 1999; von Essen & Banks, 

2009) and of the pigs themselves (Busse, 1993; Donham, 1991; Donham, 2000; Lee et al., 

2005; Urbain et al., 1999).The suggested maximum allowed CO2 concentration for workers 

(5000 ppmv) is rarely exceeded inside pig houses (Choudat et al., 1994; CIGR, 1992). 

According to the study of Banhazi et al. (2008a; 2008b) a decrease in pen cleanliness results 

in higher indoor concentrations of ammonia, airborne bacteria and respirable particles. 

These researchers stated that improved pen cleanliness can be considered the most practical 

recommendation for decreasing concentrations of ammonia, respirable particles and 

bacteria (Banhazi et al., 2008a; Banhazi et al., 2008b). Recently Chen et al. (2011) developed 

a empirical emission model for commercial swine finishing barns based upon a two-year 

emission dataset from a commercial swine finishing farm. The vacancy period of the barn 

and the emissions after high pressure washing were included. In this dataset, they observed 

a reduction in the emissions of NH3 and PM10 after wet cleaning of the barns. However, due 

to the limited amount of data for the empty-barn and power washing conditions, it was 

difficult to make accurate estimations of the influence of cleaning on the emissions (Chen et 

al., 2011).  

Information on this topic is scarce. Most studies evaluate only one single or a few important 

pollutants simultaneously. Furthermore, the cleaning techniques used usually differ greatly 

and are not always applicable in practice. Therefore we used a multi-pollutant approach to 

explore the effect of two practically applicable pen cleaning techniques on the indoor 
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concentrations of NH3, greenhouse gases (CO2, CH4 and N2O) and PM in two types of housing 

systems for fattening pigs. In this study, the chosen pen cleaning techniques were 1) dry 

cleaning versus 2) dry and wet cleaning with an additional disinfection step.  

2.1.2 MATERIALS AND METHODS 

2.1.2.1 LOCATION OF THE MEASUREMENTS 

The study was conducted in a commercial fattening pig barn (Diksmuide, Belgium) with all-

in/all-out management. Two types of housing systems were studied: (1) four conventional 

compartments with fully slatted floors (Figure 2.1, compartments A, B, G and H) and (2) four 

low-ammonia-emission compartments with reduced emission surfaces (i.e. partly-slatted 

floors with a central convex solid floor, a manure channel with sloped pit walls and a water 

channel (Figure 2.2))(Figure 2.1, compartments C, D, E and F). All compartments had one 

exhaust fan and automated temperature-controlled ventilation. Fresh air entered the 

compartments through an opening in the lower part of the door (door ventilation). The 

diameter of the exhaust fan was 0.45m in the low-ammonia-emission compartments and 

0.5m in the conventional compartments. In both housing systems, the exhaust fan was 

situated above the corridor. To check the ventilation pattern, a smoke test was performed in 

each compartment. Phase feeding was applied in all compartments, with pelleted feed and 

water available ad libitum. The feed was delivered automatically by a feeding chain in the 

open troughs. An overview of the main characteristics of the different compartments is 

shown in Table 2.1. 
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Figure 2.1. Two-dimensional floor plan of the barn with indication of the different compartments. 

 

 

Figure 2.2. Schematic overview of the manure pit in the low-ammonia-emission compartments with partly-slatted floors 

and a central convex solid floor [1], a manure channel with sloped pit walls [2] and a water channel [3] (adapted from N.V. 

Betonbedrijf R. Dobbelaere –Bonte). 

 

3 
2 
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Table 2.1. Overview of the main characteristics of the different compartments. 

Compartment Type
1
 #pens  #pigs/pen 

pen 

dimension 

% open floor 

area 

Area (m²) 

per pig 

A C 6 10 3.25m x 2m 11.5% 0.65 

B C 6 10 3.25m x 2m 11.5% 0.65 

C LAE 5 14 2m x 4.5m 8.8% 0.64 

D LAE 5 14 2m x 4.5m 8.8% 0.64 

E LAE 7 13 1.9m x 4.5m 8.7% 0.66 

F LAE 7 13 1.9m x 4.5m 8.7% 0.66 

G C 8 10 3.25m x 2m 11.5% 0.65 

H C 8 10 3.25m x 2m 11.5% 0.65 

1
 C: conventional compartment; LAE: low-ammonia-emission compartment. 

2.1.2.2 EXPERIMENTAL DESIGN 

All measurements were performed between August 2011 and June 2012 (Table 2.2). Two 

fattening periods were monitored per compartment and the eight compartments were 

divided into two groups with a difference of four weeks between the start of the first group 

and the start of the second group. Group 1 comprised compartments A, C, F and H. Group 2 

comprised compartments B, D, E and G. At the start of each fattening period, ten-week-old 

piglets with a weight of approximately 23 kg were randomly divided over the compartments.  

Table 2.2. Overview of the start and end date of the different fattening periods.  

Fattening period Type
1
 Cleaning protocol Compartments Start End 

1 C Dry A, H 8/08/2011 19/12/2011 

1 LAE Dry C, F 8/08/2011 19/12/2011 

1 C Wet B, G 6/09/2011 17/01/2012 

1 LAE Wet D, E 6/09/2011 17/01/2012 

2 C Dry A, H 27/12/2011 8/05/2012 

2 LAE Dry C, F 27/12/2011 8/05/2012 

2 C Wet B, G 25/01/2012 5/06/2012 

2 LAE Wet D, E 25/01/2012 5/06/2012 

1
 C: conventional compartment; LAE: low-ammonia-emission compartment. 
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Two types of cleaning protocols were compared, namely a “dry” (group 1) and a “wet” 

(group 2) protocol. Cleaning was always performed prior to the start of every fattening 

period by the farmer according to standard practices. In both protocols, the pens were 

cleaned with brooms and a vacuum cleaner. The manure pit for the conventional housing 

system or the manure and water channels for the low-ammonia-emission housing system 

were emptied before the start of each fattening period. For the “wet” protocol the floor of 

the pens was subsequently soaked with water and then the floor and, in the case of the low-

ammonia-emission housing system, the manure and water channel were cleaned with a 

pressure washer. In the “dry” protocol the manure (pit) and/or water channels were only 

emptied, but not cleaned with a pressure washer. Finally, for the “wet protocol”, the pens 

were disinfected using Virocid® (CID LINES N.V., Ieper, Belgium). After this disinfection step 

the pens stayed empty for at least two more days, allowing them to dry. No cleaning 

practices or removal of manure were carried out during the fattening periods. An overflow in 

the manure channel of the low-ammonia-emission housing system prevented the manure 

from flooding. 

A parallel study (Michiels et al., 2015), conducted at the same commercial fattening pig barn 

and during the same period, did not allow to change the cleaning protocols between the 

different compartments between the fattening periods. 

2.1.2.3 MEASURING EQUIPMENT 

Indoor concentrations of NH3, CO2, CH4 and N2O were measured using an Innova 

photoacoustic gas monitor 1314 (Innova AirTech Instruments, Santa Clara, CA, USA) 

connected to a multipoint sampler (CBISS, A1-Envirosciences ltd., Wirral, Merseyside, UK), 

which allowed us to sample all eight compartments sequentially. The gas monitor was 

calibrated by the Dutch Metrology Institute VSL according to ISO/IEC 17025. Sampling was 

performed in the middle of the central pen at 0.8m above the slatted floor, which is 

representative of the height of an adult pig. About one hour was needed to sample all eight 

compartments sequentially.  

Particulate matter was sampled using two Grimm 1.109 spectrometers (Grimm Aerosol 

Technik GmbH & Co. KG, Ainring, Germany) and two GrayWolf Particle Counters - Handheld 

3016IAQ (GrayWolf Sensing Solutions, Shelton, CT, USA). All instruments were equipped with 
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a temperature and relative humidity sensor to monitor indoor temperature and relative 

humidity. The manufacturer calibrated both types of instruments. At a certain point in the 

measuring campaign one of the Grimm spectrometers showed unlikely values; therefore an 

additional calibration was performed on this spectrometer on March 30
th

 2012.  

The instruments were placed in self-constructed iron cages (1.4 x 0.8 x 0.6m) attached to the 

slatted floor in the middle of the pens. The air inlet of the instruments was placed at 0.8m 

above the slatted floor. For the Grimm spectrometers, data was collected with a one-minute 

interval. To minimise the risk of clogging the pump of the GrayWolf Counters, only one 

measurement was done every 15 minutes. A rotation scheme was setup whereby the four 

monitors were rotated twice weekly among the different compartments. To ensure the 

equivalence of the four PM monitors, bi-weekly side-by-side measurements were performed 

inside a randomly-chosen compartment for 30 minutes. These potential differences between 

the PM monitors were calculated on the basis of one-minute interval data. When the 

differences between the mean PM10, PM2.5 or PM1 concentrations exceeded 10 %, the 

results from an aberrant monitor were corrected on the basis of these measurements (data 

not shown). Corrections were only made during the first fattening period after a check-up of 

both Grimm spectrometers by the manufacturer. One of both spectrometers was considered 

aberrant and gave consistently lower values. These were corrected based on the side-by-side 

measurements. The Grimm spectrometers were chosen as the reference monitors to 

compare the data from the GrayWolf Counters with (Van Ransbeeck et al., 2013b).  

Ventilation rates were monitored using free running impellers (Fancom, Panningen, the 

Netherlands) and logged using a DEWE-43 data logger (DEWETRON Ges.m.b.H, Graz-

Grambach, Austria). The outdoor temperature, relative humidity and atmospheric pressure 

were monitored using the Vantage Pro2 weather station (Davis Instruments Corp., Hayward, 

CA, USA). 

2.1.2.4 DATA ANALYSIS 

Erratic or outlier data was excluded for further analysis. Aberrant measurements occurred 

because (1) the compartment was entered for purposes of animal management (only for PM 

measurements), (2) the measuring instrument was repositioned (only for PM 

measurements) or (3) instrument failure (for PM and gas measurements). Data processing 
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revealed that the ventilation data gathered from August 2011 to April 2012 was erroneous. 

These data were not used. Different attempts were made to estimate the ventilation rates 

and validate these with the correct ventilation data between May and June 2012. However, 

both the use of a carbon dioxide balance (CIGR, 2002) and linear regression including 

outdoor and indoor temperatures did not result in comparable estimates of the ventilation 

data. In addition, at certain times no continuous measurements were obtained due to (1) the 

rotation scheme of the PM monitors and (2) maintenance or repair of the measuring device 

(e.g. gas data during fattening period 1; see Table 2.3). Table 2.3 provides an overview of the 

data used for statistical analysis of the four possible combinations of housing system and 

cleaning protocol. For each combination in each fattening period 2 compartments were 

taken into account. 

Table 2.3. Total number of daily mean measurement results (gasses, PM, outdoor temperature) for the different 

combinations of cleaning protocol and housing system per fattening period. Each of these combinations comprised 2 

compartments. 

 Fattening Period Gases PM Outdoor temperature 

Wet protocol 

LAE
1
 

1 136 127 268 

2 242 109 266 

     

Wet protocol 

C
1
 

1 135 134 268 

2 241 116 266 

     

Dry protocol 

LAE
1
 

1 128 119 268 

2 230 111 268 

     

Dry protocol 

C
1
 

1 128 128 268 

2 231 106 268 

1
 C: conventional compartment; LAE: low-ammonia-emission compartment. 

Data analysis was performed on daily averages using SAS/STAT software mixed procedure 

(SAS 9.3, Cary, NC, USA). A linear mixed model was built using the different gas and PM 

concentrations as dependent variables. Residuals were assumed to be normally distributed, 

with a null expectation, based on graphical evaluation (QQ-plot of the residuals). Fattening 

period was considered a random variable to correct for repeated measurements within a 

fattening period. Compound symmetry was used as autocorrelation structure. Day in 
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fattening period (linear and quadratic), outside temperature, cleaning method and housing 

system were investigated as independent variables in a backward stepwise regression 

process. In addition, interaction between cleaning method and housing system was tested 

for all dependent variables. However, this interaction was not statistically significant for any 

model, and hence it was excluded from the model. Statistical significance was considered for 

P < 0.05. 

Figures of the indoor concentrations of the gases and PM for each fattening period were 

obtained by averaging and grouping the data per two weeks in the period for the four 

combinations of housing system and cleaning protocol, respectively. 

2.1.3 RESULTS AND DISCUSSION 

2.1.3.1 EVOLUTION OF THE POLLUTANT CONCENTRATIONS ACROSS THE FATTENING PERIODS 

Large differences were observed in the evolution of the pollutant concentrations between 

the two fattening periods. For this reason, these two periods will be discussed separately. 

These differences are most probably due to seasonal effects. Fattening periods which 

started during summer months have generally lower indoor concentrations than fattening 

periods which started during winter months (Duchaine et al., 2000; Takai et al., 1998). 

During the first fattening period which started during summer, concentrations of NH3, CO2, 

PM10 and PM2.5 gradually increased over time (Figure 2.3, Figure 2.4 and Figure 2.7). On the 

other hand, concentrations of CH4, N2O and PM1 varied only slightly during this fattening 

period (Figure 2.5 and Figure 2.6). The latter is in accordance with the findings of Mosquera 

et al. (2010). The rather high concentrations for all pollutants at the beginning of fattening 

period 2 (first two weeks for the wet protocol, third and fourth week for the dry protocol) 

which started during winter are probably due to weather conditions with low outside 

temperatures (Figure 2.8). As a consequence of these lower temperatures, the ventilation 

rate decreased and because no heating devices were present in the compartments, the air 

inlets were partially closed in order to maintain a suitable indoor temperature. Furthermore, 

the concentrations at the end of the second fattening period were lower than at the end of 

the first fattening period. Again, ventilation rate as determined by outside temperature 

probably played a major role.  
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The encountered NH3 indoor concentrations in this study were quite high compared to NH3 

indoor concentrations found in literature. For example, Van Ransbeeck et al. (2013a) also 

investigated indoor concentrations in different Flemish commercial fattening pig barns and 

found mean NH3 indoor concentrations between 13.7 and 22.1 ppmv. The results from a 

large-scale sampling campaign across Northern Europe showed mean NH3 concentrations 

between 12.1 and 18.2 ppmv for fattening pigs kept on slatted floors. In this sampling 

campaign, a maximal NH3 concentration of 58.6 ppmv was measured (Groot Koerkamp et al., 

1998). However, in contrast to these studies, which measured NH3 concentrations at 1.6m 

above the slatted floor (Van Ransbeeck et al., 2013a) or at 1.5m and 2.5m (Groot Koerkamp 

et al., 1998), gas concentrations in this study were measured at 0.8m above the slatted floor. 

This could partly explain the higher concentrations, found in this study. As already stated 

above, the low outdoor temperatures, during the first two weeks for the wet protocol and 

the third and fourth week for the dry protocol, will most certainly have led to lower 

ventilation rates. Due to the inverse relation between ventilation rate and NH3 indoor 

concentrations, this reduced ventilation rate gave rise to higher NH3 indoor concentrations 

(Kim et al., 2007). 

 

Figure 2.3. Indoor concentrations of NH3 for each fattening period, averaged and grouped per two weeks for the four 

combinations of housing system and cleaning protocol (WP: “Wet” Protocol, DP: “Dry” Protocol, LAE: low-ammonia-

emission, C: conventional). 
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Figure 2.4. Indoor concentrations of CO2 for each fattening period, averaged and grouped per two weeks for the four 

combinations of housing system and cleaning protocol (WP: “Wet” Protocol, DP: “Dry” Protocol, LAE: low-ammonia-

emission, C: conventional). 

 

Figure 2.5. Indoor concentrations of CH4 for each fattening period, averaged and grouped per two weeks for the four 

combinations of housing system and cleaning protocol (WP: “Wet” Protocol, DP: “Dry” Protocol, LAE: low-ammonia-

emission, C: conventional). 

 



Chapter 2.1 

___________________________________________________________________________ 

56 

 

 

Figure 2.6. Indoor concentrations of N2O for each fattening period, averaged and grouped per two weeks for the four 

combinations of housing system and cleaning protocol (WP: “Wet” Protocol, DP: “Dry” Protocol, LAE: low-ammonia-

emission, C: conventional). 

 

 

Figure 2.7. Indoor concentrations of PM10, PM2.5 and PM1 for each fattening period, averaged and grouped per two weeks 

for the four combinations of housing system and cleaning protocol (WP: “Wet” Protocol, DP: “Dry” Protocol, LAE: low-

ammonia-emission, C: conventional). 
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Figure 2.8. Outdoor temperature for each fattening period, averaged and grouped per two weeks for the two cleaning 

protocols (WP: “Wet” Protocol, DP: “Dry” Protocol). 

2.1.3.2 INFLUENCE OF CLEANING PROTOCOL AND HOUSING SYSTEM ON INDOOR POLLUTANT CONCENTRATIONS 

DURING THE FIRST MONTH AFTER CLEANING 

To test for a short-term effect of cleaning protocol or of the housing system, the first 30 days 

of the fattening periods were analysed separately.  

INFLUENCE OF CLEANING PROTOCOL 

The use of different cleaning protocols had a significant effect on the N2O and PM1 indoor 

concentrations during the first 30 days. Lower N2O (P = 0.01) and PM1 (P < 0.0001) 

concentrations were observed after performing the “dry” cleaning protocol. A significant 

effect of the different cleaning protocols on NH3, CO2, CH4, PM10 or PM2.5 indoor 

concentrations was not found. The difference in PM1 concentration (Least Square Mean 

(LSM)dry: 16.4 ± 1.2 µg/m³; LSMwet: 31.2 ± 1.4 µg/m³) between the two cleaning protocols 

was the opposite of what we expected. There is no clear explanation for this finding. It might 

be partially caused by the four-week difference in start up date between the compartments 

where the “dry” protocol was performed and the compartments where the “wet” protocol 

was performed. Other research also indicated that about 52% of the particles inside animal 

houses and smaller than 1 µm (= PM1) is not formed inside the animal house but rather 

originates from outside (Aarnink et al., 2011). This would mean that the outdoor PM1 

concentration on a given day can have an important effect on the PM1 indoor concentrations 
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at that time. Nevertheless, this cannot completely explain the difference in PM1 

concentrations between the two cleaning protocols. The difference in N2O concentrations 

(LSMdry: 0.43 ± 0.02 ppmv; LSMwet: 0.51 ± 0.02 ppmv) for the first month should be 

interpreted with caution. There is a lack of data for the period from day 15 to 28 in fattening 

period 1 for the wet protocol (Figure 2.6). There was also a low mean outside temperature 

(Figure 2.8) during these days in fattening period 2, leading to the high concentrations of 

N2O (Figure 2.6). However, this lack of data in period 1 and the low outside temperatures for 

period 2 are also seen for the other gases without a significant effect between the two 

cleaning protocols.  

INFLUENCE OF HOUSING SYSTEM  

No effect of the housing system on any of the studied pollutants could be found during the 

first 30 days (Table 3). However, a trend (P = 0.09) was observed for CH4 concentrations, 

with lower concentrations in the low-ammonia-emission housing system (LSM: 105 ± 26 

ppmv) as compared to the conventional housing system (LSM: 175 ± 26 ppmv). 



 

 

 

 

Table 2.4. Least square means and standard error with level of statistical significance for cleaning protocol and housing system for the different pollutants and calculated over two fattening 

periods. 

  Cleaning protocol Housing system 

  Wet protocol Dry protocol P-value LAE
1
 Conventional P-value 

Ammonia 

(ppmv) 

first month 38.9 ± 3.6  33.8 ± 3.5  0.33 36.8 ± 3.6  35.9 ± 3.5  0.85 

entire fattening round 30.6 ± 1.7  26.8 ± 1.7  0.14 27.3 ± 1.7  30.1 ± 1.7  0.26 

Carbon 

dioxide 

(ppmv) 

first month 2389 ± 108  2355 ± 105  0.83 2393 ± 105  2350 ± 105  0.79 

entire fattening round 2016 ± 114  2045 ± 114  0.86 2012 ± 114  2049 ± 114  0.82 

Methane 

(ppmv) 

first month 165 ± 27  115 ± 26  0.21 105 ± 26  175 ± 26  0.09 

entire fattening round 101 ± 7  93 ± 7  0.51 74 ± 7  121 ± 7  0.003 

Nitrous oxide 

(ppmv) 

first month 0.51 ± 0.02  0.43 ± 0.02  0.01 0.46 ± 0.02  0.48 ± 0.02  0.41 

entire fattening round 0.43 ± 0.01  0.44 ± 0.01  0.42 0.42 ± 0.01  0.44 ± 0.01  0.12 

1
 LAE: low-ammonia-emission compartment. 

 

 



 

 

 

Table 2.4. Continued. 

  Cleaning protocol Housing system 

  Wet protocol Dry protocol P-value LAE
1
 Conventional P-value 

PM10 

(µg/m³) 

first month 1497 ± 164 1448 ± 163 0.83 1536 ± 163 1409 ± 162 0.59 

entire fattening round 2146 ± 159 2215 ± 159 0.76 2393 ± 159 1968 ± 159 0.08 

PM2.5 

(µg/m³) 

first month 143 ± 15 135 ± 15  0.72 146 ± 15  132 ± 15  0.54 

entire fattening round 201 ± 12  208 ± 12 0.69 219 ± 12 190 ± 12 0.12 

PM1 

(µg/m³) 

first month 31.2 ± 1.4  16.4 ± 1.2  <0.0001 24.5 ± 1.3  23.2 ± 1.3  0.5 

entire fattening round 28.7 ± 1.4  26.3 ± 1.4  0.25 27.8 ± 1.4  27.2 ± 1.4  0.75 

1
 LAE: low-ammonia-emission compartment. 
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2.1.3.3 INFLUENCE OF CLEANING PROTOCOL AND HOUSING SYSTEM ON INDOOR POLLUTANT CONCENTRATIONS 

DURING THE ENTIRE FATTENING PERIOD 

In addition to the analysis for the first 30 days, we also analysed the entire fattening period. 

This allowed us to determine whether the observed differences in PM1 and N2O 

concentrations for the different cleaning protocols were still valid when considering the 

entire fattening period. It also provided more information about the effect of housing 

system during an entire fattening period. 

INFLUENCE OF CLEANING PROTOCOL 

Different cleaning protocols yielded no significant effect on any of the studied pollutants 

(Table 2.4). A study by Heber et al. (1988b) suggested that poor hygiene in piggery buildings, 

evaluated by the depth of floor litter, is related to increased airborne dust concentrations 

(Heber et al., 1988b). Other studies compared one form of cleaning with no cleaning at all 

and found significant differences. For example, Cargill and Banhazi (1998) showed that 

concentrations of respirable particles and airborne bacteria decreased with 21.1 % and 

25.4 %, respectively, after thoroughly cleaning between batches as compared to no cleaning 

between batches (Cargill & Banhazi, 1998). In a similar study with weaner pigs, a significant 

elevation of total dust (53.3 %), NH3 (117 %) and CO2 (37.9 %) concentrations was found in a 

‘dirty’ indoor environment, with no cleaning and disinfection before the start of the 

fattening period, versus a clean environment where cleaning and disinfection was performed 

before the start of the fattening period. However, they detected no differences on the 

respirable dust, total bacteria and endotoxin concentrations (Lee et al., 2005). In this study, 

the comparison of two practical protocols did not show any significant difference. This 

indicates that dry cleaning alone may sufficiently reduce pollutant concentrations and that 

the addition of extra wet cleaning steps doesn’t significantly reduce the concentrations 

further. Van’t Klooster et al. (1993) did not find a significant reduction in the indoor PM 

concentrations when evaluating the effect of weekly vacuum cleaning inside a pig finishing 

facility. For NH3, multiple studies have shown that concentrations in piggeries increase with 

a decrease in pen hygiene (Aarnink et al., 1996; Aarnink et al., 1997; Ni et al., 1999c). Pen 

hygiene was defined by Aarnink et al. (1996) as the surface area of urine-fouled floor. 

Aarnink et al. (1997) however, also included the frequency of urination and defecation on 

various locations in the pen. Ni et al. (1999c) considered the proportion of the solid floor 
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surface that was covered by a mixture of urine and faeces. The lack of a significant effect on 

any of the pollutants in the current study may have several causes. The effect of the cleaning 

protocol might be the strongest during the first four weeks after cleaning, therefore it might 

be possible that the effect during that period is lost when considering the entire fattening 

period. This might be the case for the PM1 and N2O concentrations, as we observed 

significant differences when considering the first 30 days, but no significant differences 

when considering the entire fattening period. Or the effect of the cleaning protocol could be 

relatively small and might have been overshadowed by differences in ventilation rate for the 

different compartments. This presumption could not be ascertained because of instrument 

failure during this period. It is also possible that the tested cleaning protocols did not differ 

sufficiently from each other. Finally, it is also possible that the four week difference in start 

up date between compartment with dry and wet cleaning and the decision not to change 

the treatments between different manure periods, have reduced the power of the 

experiments to differentiate between the cleaning protocols.  

INFLUENCE OF HOUSING SYSTEM 

When comparing housing systems, we only found a significant effect (P = 0.003) on the 

indoor CH4 concentrations with lower concentrations in the low-ammonia-emission housing 

system (LSMLAE: 73.60 ± 7.03 ppmv; LSMC: 120.67 ± 7.03 ppmv). This difference was already 

seen as a trend when looking at the first 30 days, but was not yet significant. Both the 

manure pit in the conventional housing system and the water and manure channels in the 

LAE housing system, were emptied before the start of each fattening period. However, the 

manure in the conventional housing system was completely collected in the manure pit (if 

the amount of manure which remained on the slatted floor is not taken into account). In the 

LAE housing system on the other hand, manure could be removed from the compartment 

via the overflow present in the manure channel. This could be the reason for the observed 

lower indoor CH4 concentrations. One would expect that, as a consequence of the reduced 

emission surface, the use of a LAE housing system would lead to lower NH3 indoor 

concentrations as compared to a conventional housing system. However, this was not 

observed. One possible explanation is that part of the NH3 concentration inside the low-

ammonia-emission housing system originates from the soiled solid floor and, together with 

the NH3 volatilisation from the reduced manure pit, results in the same concentrations as 
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can be found in the conventional housing system. It has been suggested that an important 

part of the total NH3 emission from a pig house originates from the pen floor (Hoeksma et 

al., 1992). The concentration levels of N2O are generally very low, allowing small differences 

to remain unnoticed. Research on the influence of a reduced emission surface on the PM10 

and PM2.5 concentrations is scarce. Mosquera et al. (2010) found that animal houses with 

reduced emission surfaces had 39 % more PM10 and 19 % more PM2.5 emissions as compared 

to animal houses with fully slatted floors (Mosquera et al., 2010). In our study, no 

differences could be detected for PM10, PM2.5 or PM1 indoor concentrations. There is no 

ready explanation for this finding. 

2.1.4 CONCLUSIONS 

This study compared the effects of two cleaning protocols and two housing systems on 

indoor pollutant concentrations at a commercial fattening pig barn. Data analysis showed 

that the use of a low-ammonia-emission housing system under field conditions in this study 

does not seem to lower the indoor concentrations of NH3, CO2, N2O or PM. The CH4 indoor 

concentrations were reduced, however, in the low-ammonia-emission system. In order to 

generalise the conclusion about the performance of low-ammonia-emission housing systems 

under field conditions, measurements on multiple farms are necessary. 

In this study and for this farm, with the technical problems of the study in mind, it was not 

possible to differentiate between the two cleaning protocols as applied between the 

fattening periods. The use of a more extensive cleaning protocol, with an additional wet 

cleaning and disinfection step, did not seem to lead to consistently lower indoor 

concentrations for the studied pollutants. This can also suggest that dry cleaning by itself 

may already be sufficient to reduce the pollutant concentrations or that the extra steps in 

the wet cleaning protocol do not result in a better indoor air quality. However, additional 

experiments on multiple farms will be necessary to validate this hypothesis.  
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2.2 CORRELATIONS BETWEEN AERIAL POLLUTANTS AND PARTICLE SIZE DISTRIBUTIONS OF 

PARTICULATE MATTER INSIDE A PIG FATTENING FACILITY
iii

 

 

2.2.1 INTRODUCTION 

Inside livestock barns, a wide variety of aerial pollutants can affect indoor air quality (NRC, 

2003). The main pollutants are particulate matter (PM), ammonia (NH3) and the greenhouse 

gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). High indoor 

concentrations of one or several of these pollutants can negatively affect human health 

(Asmar et al., 2001; Von Essen & Donham, 1999; von Essen & Banks, 2009) or the health and 

productivity of the animals (Busse, 1993; Donham, 1991; Donham, 2000; Urbain et al., 1999). 

Furthermore, emissions of these pollutants can have adverse effects for the environment 

and for nearby inhabitants (Flessa et al., 2002; Krupa, 2003; Oehrl et al., 2001; Zhao, 2011). 

The gases commonly found in livestock barns are formed through different processes and in 

various locations throughout the barn. Ammonia and CH4 are mainly formed from manure 

and released from either the manure pit (and almost entirely for CH4) or the floor of the 

pens (Canh et al., 1997; Zeeman, 1991). Carbon dioxide is mainly released via the pigs’ 

respiration (Ni et al., 1999a), but a significant part also originates from the manure pit (Ni et 

al., 1999b). Details about the N2O formation processes inside a livestock barn are still poorly 

understood (Monteny et al., 2001). Nitrous oxide is assumed to originate completely from 

the manure present (Philippe, 2013). In contrast to CH4 production, which requires 

anaerobic conditions, N2O production first requires an initial aerobic reaction followed by an 

anaerobic process (Monteny et al., 2001). Gaseous pollutants are defined by a single 

molecule, whereas particulate matter is a mixture of many types of particles that differ in 

size, shape, chemical composition and density (Pedersen et al., 2000). The main sources of 

PM inside fattening pig facilities are feed, manure and skin. PM can also contain or adsorb 

micro-organisms, toxins or residues of veterinary products (Cambra-López et al., 2011a; 

Cambra-López et al., 2011b). Although the formation processes and their locations can differ 

                                                      
iii Adapted from: Ulens, T., Millet, S., Van Weyenberg, S., Van Der Meeren, P., Van Langenhove, H., 

& Demeyer, P. (2015). Correlations between aerial pollutants and particle size distributions of 

particulate matter inside a pig fattening facility. Submitted. 
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widely, it seems plausible that interactions and correlations between the pollutants may 

exist. However, most of the mitigation strategies developed to minimise the emissions of 

these pollutants do not take these possible interactions and correlations into account. 

However, more recent sampling strategies incorporate measurements of several pollutants 

at the same time in their strategy and evaluate the mitigation strategies for different 

pollutants (VERA, 2011). 

To date, only few studies reported correlations between the emissions of the different 

pollutants. For example, Philippe et al. (2007) found high correlations between NH3 

emissions and CH4 (R = 0.77) and CO2 (R = 0.76) emissions for fattening pigs kept on a slatted 

floor. A high correlation (R = 0.71) between CH4 emissions and CO2 emissions was also found. 

Studies about the correlation of indoor concentrations are even scarcer. To our knowledge, 

Van Ransbeeck et al. (2013a) are the only researchers who reported correlations between 

the indoor concentrations of all the main aerial pollutants (NH3, GHGs and PM) inside 

fattening pig facilities. While it is impossible to distinguish causal relationships from co-

evolving patterns, calculating correlations between the different pollutant concentrations 

can help to generate hypotheses concerning underlying causes for the observed 

correlations. 

To cope with the heterogeneous nature of PM and the associated highly irregular shape and 

variety in density of the particles, the behaviour of the different particles is commonly 

described by the aerodynamic diameter (AED). The AED of an irregularly shaped particle is 

defined as the diameter of a sphere with a standard density (1000 kg/m³) that would have 

the same settling velocity in air as the particle (Zhang, 2004). A wide range of particles with 

different AED can be found inside livestock houses (Harry, 1978). Particle size distribution 

(PSD) analysis may help to describe and understand this heterogeneity in AED. Indeed, the 

PSD of PM is perhaps the most important physical parameter determining particle 

behaviour. PSD analysis can also be used to develop mitigation strategies or techniques to 

identify the particle size ranges that should be removed (Dawson, 1990). The changes 

associated with growing animals would make it likely that the amount and/or distribution of 

PM may evolve over time. Similarly, Dawson (1990) suggested that mitigation techniques 



Correlations and particle size distribution 

___________________________________________________________________________ 

67 

 

may affect PSD. However, to our knowledge, the effect of different mitigation techniques on 

PSD is not clear at the moment. 

Therefore, the aims of the current study were 1) to investigate the correlations between the 

indoor concentrations of NH3, GHGs and PM in a commercial fattening pig barn and 2) to 

perform PSD analysis in order to get an overview of the dominant size ranges in fattening pig 

facilities. An additional goal was to make a first assessment of the effect of different housing 

systems and cleaning protocols on PSD. 

2.2.2 MATERIALS AND METHODS 

2.2.2.1 EXPERIMENTAL DESIGN 

The measurements were performed at a commercial fattening pig facility in Diksmuide, 

Belgium during two fattening periods (August 2011 to June 2012). Two types of housing 

systems were used: conventional compartments with fully slatted floors (C) and low-

ammonia-emission compartments with reduced emission surfaces by means of sloped pit 

walls and partially slatted floors (LAE). Two cleaning protocols were performed in the 

different compartments, namely a “dry” (D) and a “wet” (W) protocol. A detailed description 

of the housing systems and more information about the cleaning protocols can be found in 

chapter 2.1. 

2.2.2.2 MEASURING EQUIPMENT 

Indoor gas concentrations (NH3, CO2, CH4 and N2O) were measured using a photoacoustic 

gas monitor (Innova 1314, Innova Air Tech Instruments, Santa Clara, CA, United States) 

connected to a multipoint sampler (CBISS, A1-Envirosciences ltd., Wirral, United Kingdom). 

Sampling was performed in the middle of the central pen at 0.8m above the slatted floor. 

This height is representative of the height of an adult pig. 

Particulate matter was sampled using two spectrometers (Grimm 1.109, Grimm Aerosol 

Technik GmbH & Co. KG, Ainring, Germany) and two particle counters (GrayWolf Particle 

Counters type Handheld 3016IAQ, GrayWolf Sensing Solutions, Shelton, CT, United States). 

The Grimm spectrometers make use of scattered light photometry inside an optical 

measuring cell that enables detection of each individual particle. Both the Grimm 

spectrometers and the GrayWolf Particle Counters use a laser diode light source. Scattered 
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light is collected and focused onto a photo diode that converts the bursts of light into 

electrical pulses. The amplitude of the pulses is used as the measure of the particle size. 

Van Ransbeeck et al. (2013b) revealed that the Grimm spectrometers were equivalent to a 

reference instrument in accordance with EN 123412 for the measurement of indoor PM10 

concentrations (Van Ransbeeck et al., 2013b). The spectrometers and particle counters were 

placed in self-constructed iron cages (1.4 x 0.8 x 0.6m) attached to the slatted floor in the 

middle of the pens with the air inlet of the instruments at 0.8m above the slatted floor. For 

the Grimm spectrometers, data were collected with a 1-min interval. To minimise the risk of 

clogging the pump of the GrayWolf Counters data were collected every 15 minutes during 1 

min. The equivalence of the four PM monitors was checked using a bi-weekly 30-min, side-

by-side measurement inside a randomly-chosen compartment (chapter 2.1). The Grimm 

spectrometers were chosen as the reference monitors to correct the data from the GrayWolf 

Counters (Van Ransbeeck et al., 2013b).  

More information about the measuring setup and characteristics of the different 

instruments can be found in chapter 2.1. 

2.2.2.3 DATA ANALYSIS 

Raw data from the gas and PM measurements were converted into hourly means. For PM 

measurements, data from periods with human interference in the compartment (e.g. 

entering of the compartment for purposes of animal management or repositioning of the 

measuring instrument) were deleted from the dataset. For both gas and PM measurements, 

data from periods with instrument failure were excluded from the dataset. 

CORRELATIONS 

Comparison of the data from the different housing systems and cleaning protocols revealed 

no significant differences in most gas and PM concentrations (chapter 2.1). Therefore, all 

correlations were calculated based on the full dataset. As mentioned previously (chapter 

2.1), ventilation measurements were performed. However, instrument failures rendered 

these measurements unreliable and they were not used. Therefore, it was not possible to 

take ventilation effects into account.  
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The full dataset contained approximately 30 000 hourly means of gas concentrations and 

18 000 hourly means of PM concentrations. Within the hourly means of PM concentrations, 

both data from the Grimm spectrometers (9 000 hourly means) and from the GrayWolf 

Particle Counters (9 000 hourly means) were present. 

Correlations between the different gas concentrations and PM fractions were calculated 

using SPSS Statistics 21.0 (SPSS Inc., Chicago, IL, USA). Relations between the different 

pollutants were checked for non-linearity by graphical presentation. Using the Kolmogorov-

Smirnov test and based on visual inspection of QQ-plots, it was shown that the data were 

not normally distributed (P < 0.05). Therefore, Spearman’s rank correlation coefficients were 

calculated. All statistical tests were performed at 0.05 significance level. 

PARTICLE SIZE DISTRIBUTION (PSD) 

For the PSD analysis, only the data from the Grimm 1.109 spectrometers were used. These 

spectrometers are capable of counting the number of particles in 31 size ranges with the 

following lower limits (µm): 0.25, 0.28, 0.30, 0.35, 0.40, 0.45, 0.50, 0.58, 0.65, 0.70, 0.80, 1.0, 

1.3, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.5, 7.5, 8.5, 10.0, 12.5, 15.0, 17.5, 20, 25, 30 and 32. The 

32 µm size range was not included in the analysis due to uncertainties about its upper limit. 

The Grimm 1.109 spectrometers were used in two conventional and two low-ammonia-

emission compartments. Both cleaning protocols were used in each type of housing system.  

To represent the PSD, the count median diameter (CMD) and the mass median diameter 

(MMD), together with their respective geometric standard deviation (GSD) were calculated, 

using equations adapted from Zhang (2004). Both diameters were calculated based upon the 

number of particles for the 30 size ranges of the Grimm spectrometers. For purposes of 

calculation we assumed that all particles were spherical and had the same density. 

The CMD (in µm) is defined as the geometric mean diameter of the number–weighted PSD. 

For a lognormal distribution, the geometric mean equals the median. The CMD was 

calculated using Eq. 2.1. 

 CMD = exp +	∑ �� ln .�∑�� / Eq. 2.1 
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Where: 

Fi: number of particles per m³ in size range i  

∑Fi: total number of particles per m³ 

di: mean diameter of the lower and upper limit of size range i, in µm 

The geometric standard deviation of the CMD (CGSD) is a dimensionless quantity with a 

value greater than 1.0 and is a measure for the width of the number-weighted aerodynamic 

particle size distribution. The CGSD for the number-weighted PSD was calculated using Eq. 

2.2. 

 CGSD = 	exp +∑��2ln .� − ln�345²
∑�� /

7/9
 

Eq. 2.2 

 

The MMD (in µm) is defined as the diameter for which half the total mass of particles is 

larger and half is smaller than this size. The MMD was calculated using Eq. 2.3. 

 MMD = 	exp +∑��.�� ln .�∑��.�� / Eq. 2.3 

 

The geometric standard deviation of the MMD (MGSD) is also a dimensionless quantity with 

a value greater than 1.0 and is a measure for the width of the mass-weighted aerodynamic 

particle size distribution. The MGSD was calculated using Eq. 2.4. 

 MGSD = exp +∑�� .:�� 2ln .� − ln3345²
∑��.�� /

7/9
 

Eq. 2.4 

 

CMD, MMD and their respective GSD were calculated on hourly data from the two 

consecutive fattening periods in the four compartments. These calculations were automated 

in R3.0.1 (R Core Team, 2013). 
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2.2.3 RESULTS 

2.2.3.1 CORRELATIONS BETWEEN DIFFERENT POLLUTANTS 

High correlations (R > 0.8) between NH3 and CO2 were found for the entire dataset (Table 

2.5). High correlations (R > 0.6) were also found between NH3 and CH4 and between CO2 and 

CH4. Lower correlations (R <= 0.5) were found between NH3 and N2O, between N2O and CO2 

and between N2O and CH4. 

Very high correlations (R > 0.95) were found between PM10 and PM2.5 when analysing data 

from both the Grimm spectrometers and GrayWolf Particle Counters (Table 2.6). When 

analysing the full dataset, lower correlations (R < 0.3) were found between PM10 and PM1 

and between PM2.5 and PM1. However, higher correlations (R > 0.5) between PM10 and PM1 

and between PM2.5 and PM1 were found when analysing only the data from the Grimm 

spectrometers, but not from the GrayWolf Particle Counters (Table 2.6). 

Table 2.5. Spearman’s rank correlation coefficients between the different gases. 

Spearman's rank correlation coefficient 

Ammonia Carbon Dioxide 0.87
a
 

Ammonia Methane 0.70
a
 

Ammonia Nitrous Oxide 0.40
a
 

Carbon Dioxide Methane 0.63
a
 

Carbon Dioxide Nitrous Oxide 0.31
a
 

Methane Nitrous Oxide 0.48
a
 

a
 Significant at P < 0.001. 

Table 2.6. Spearman’s rank correlation coefficients between the different PM fractions based upon the full PM dataset, the 

Grimm dataset and the GrayWolf dataset. 

  Spearman's rank correlation coefficient 

Full dataset  Grimm GrayWolf 

PM10 PM2.5 0.97
a
 0.95

a
 0.99

a
 

PM10 PM1 0.24
a
 0.59

a
 0.07

a
 

PM2.5 PM1 0.27
a
 0.69

a
 0.09

a
 

a
 Significant at P < 0.001. 
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Positive correlations were found for the full dataset between the gases NH3 and CO2 and PM 

fractions PM10 and PM2.5 (Table 2.7), whereas negative correlations were found between the 

gases and PM1. No significant correlations were found between CH4 and PM10, PM2.5 and 

PM1. Correlations between gases and PM1, both calculated from the Grimm dataset or from 

the GrayWolf dataset, were low (R < 0.4)(Table 2.7). Furthermore, all other measured 

correlations between the different gases and PM fractions were low or non-significant for 

the full dataset (Table 2.7). 

Table 2.7. Spearman’s rank correlation coefficients between the different gases and the PM fractions. 

  Spearman's rank correlation coefficient 

Full dataset Grimm GrayWolf 

Ammonia PM10 0.24
a
 0.26

a
 0.18

a
 

Ammonia PM2.5 0.23
a
 0.30

a
 0.12

a
 

Ammonia PM1 -0.04
a
 0.17

a
 -0.17

a
 

Carbon Dioxide PM10 0.33
a
 0.33

a
 0.28

a
 

Carbon Dioxide PM2.5 0.30
a
 0.34

a
 0.21

a
 

Carbon Dioxide PM1 -0.02
b
 0.21

a
 -0.14

a
 

Methane PM10 -0.006 -0.04
b
 0.03

b
 

Methane PM2.5 -0.017 0.04
b
 -0.015 

Methane PM1 0.011 0.02 -0.004 

Nitrous oxide PM10 0.11
a
 0.08

a
 0.12

a
 

Nitrous oxide PM2.5 0.17
a
 0.20

a
 0.12

a
 

Nitrous oxide PM1 0.22
a
 0.20

a
 0.27

a
 

a
 Significant at P < 0.001. 

b
 Significant at P < 0.05. 

2.2.3.2 PARTICLE SIZE DISTRIBUTION 

Examples of a differential number-weighted and differential mass-weighted particle size 

distribution are given in Figure 2.9. Few differences were found between the mean CMD 

values for the different compartments and fattening periods, with values ranging from 0.43 

to 0.49 µm (Figure 2.10). Also the mean CGSD values did not differ largely from one another 

with values between 2.01 and 2.29 (data not shown). Mean MMD values ranged from 10.73 
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to 12.18 µm (Figure 2.11) with MGSD values ranging from 1.88 to 1.97 (data not shown). 

More outliers were found for the MMD values from the low-ammonia-emission housing 

system. In general, for the four combinations of housing system and cleaning protocol, very 

similar PSDs were found. 

For neither the CMD values nor the MMD values could a daily pattern in the evolution of 

these values be found (Figure 2.12). No clear evolution of these values through the fattening 

period could be found either (Figure 2.13). 

 

 

Figure 2.9. Example of a differential number-weighted (circles) and mass-weighted (asterisk) PSD (data from 10 AM till 11 

AM for the 118
th

 day in fattening round 1 in the conventional compartment where dry cleaning was performed) 
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Figure 2.10. Overview of the CMD values for the different combination of housing systems and cleaning protocols in both 

fattening periods (C: conventional compartment; LAE: low-ammonia-emission compartment; D: “dry” cleaning protocol; W: 

“wet” cleaning protocol). 

 

Figure 2.11. Overview of the MMD values for the different combination of housing systems and cleaning protocols in both 

fattening periods (C: conventional compartment; LAE: low-ammonia-emission compartment; D: “dry” cleaning protocol; W: 

“wet” cleaning protocol). 
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Figure 2.12. Hourly CMD values from 3 consecutive days in the first fattening period for the low-ammonia-emission 

compartment where the dry cleaning protocol was executed. No clear diurnal pattern could be observed. 

 

 

Figure 2.13. Hourly MMD values in the second fattening period for the conventional compartment where the wet cleaning 

protocol was executed. The trend line and the equation of the trend line, with an almost horizontal slope, reflect the lack of 

evolution of the MMD values through the fattening period. 
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2.2.4 DISCUSSION 

2.2.4.1 CORRELATIONS 

Because the results were obtained from an observational study, it is not possible to establish 

causal relationships between the different gases and PM fractions. Nevertheless, the 

calculated correlations presented in this study are based upon a large number of hourly 

means and can hold valuable information about potential interactions/relations between the 

different pollutants. However, additional research will be needed to confirm these 

relationships and to explore the reasons for correlation. 

When calculating the correlations, the autocorrelation between the hourly measured gas 

and PM concentrations was not taken into account. Although this autocorrelation will 

certainly have an effect on the calculated correlations, this effect will be mainly on the 

number of degrees of freedom. If corrections would be made to take into account the 

autocorrelations, this would reduce the number of degrees of freedom. Furthermore, since 

most of the correlations found in this study, were very significant (P < 0.001), it is unlikely 

that they would not be significant anymore after correction for autocorrelation (Bartlett, 

1946; Bayley & Hammersley, 1946). 

As mentioned in the introduction, the gases found in livestock buildings have different 

formation processes and are formed in various locations within the building. Nevertheless, 

high correlations were found between the indoor concentrations of NH3, CH4 and CO2. These 

high correlations were also found by Van Ransbeeck et al. (2013a). In that study, correlations 

were calculated based upon two fattening periods in 7 barns on 3 farms. Instead of continual 

measurements, they performed on average one 48-hour measurement each month. 

Furthermore, in that study the indoor gas and PM concentrations were measured at 1.6m 

(human height) (Van Ransbeeck et al., 2013a). 

While an influence of the ventilation rate on the indoor gas concentrations (and the 

obtained correlations) cannot be excluded, a similar increase of the respective gas 

concentrations throughout a fattening period might be part of the reason for the observed 

highly correlated indoor gas concentrations. Indeed, the CO2 exhalation rates increase 

through a fattening period as a consequence of increasing pig weight (Ni et al., 1999a), but 

NH3 concentrations also tend to increase over a fattening period due to the increased feed 
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consumption and consequently higher manure production as the pigs become older and 

heavier (Aarnink et al., 1995; Philippe et al., 2007). Volatilisation of CH4 from manure is 

affected by the amount of excreted manure (Jarret et al., 2011), which is also likely to 

increase throughout a fattening round. 

High correlations between the emissions of NH3 and CO2 and between the emissions of NH3 

and CH4 are observed in other studies (Philippe et al., 2007). However, one should be careful 

when comparing correlations based upon indoor concentrations or based upon emission 

data, especially when the indoor concentrations are not measured at the air outlet. 

Correlations between indoor concentrations of N2O with indoor concentrations of NH3, CO2 

and CH4 were low in this study. This is in contrast with Van Ransbeeck et al. (2013a), who 

found higher correlations between N2O and NH3 (R = 0.57), CO2 (R = 0.65) or CH4 (R = 0.59). 

Unlike NH3, CO2 and CH4, the indoor concentrations of N2O remain more constant during a 

fattening period (Mosquera et al., 2010; chapter 2.1). This could be a possible explanation 

for the lower correlations found between the indoor concentrations of N2O and the other 

gases. Besides, the low correlation between NH3 and N2O may directly result from the 

formation processes of both gases. Nitrous oxide production in manure starts with the 

oxidation of ammonium into nitrite and is then converted into nitrate. Denitrification 

converts the nitrate into molecular nitrogen (N2), with N2O as an intermediate compound 

(Kebreab et al., 2006). It has been shown that higher N2O losses are correlated with lower 

ammonium concentrations (Brown et al., 2000). If NH3 volatises from the manure, less 

ammonium will be available in the manure to be converted to N2O. 

Indoor concentrations of PM10 and PM2.5 correlated well in the current study. The observed 

high correlation between PM10 and PM2.5 indoor concentrations was also found by Van 

Ransbeeck et al. (2013a) inside livestock buildings and by Marcazzan et al. (2001) in ambient 

air (R = 0.97 in winter, R = 0.93 in summer). This can partially be explained by the fact that 

PM2.5 is a substantial part of PM10. Nevertheless, in the current study the mean ratio 

PM10:PM2.5 was about 10:1, while Marcazzan et al. (2001) found a ratio of 3:2 in ambient air. 

Most of the PM inside livestock buildings is primary in origin and can mainly be found in the 

coarse (PM10-PM2.5) fraction. This is especially the case for PM originating from feed, animal 

hair and skin as well as manure (Cambra-López et al., 2011a). Particles in the fine (PM2.5) 
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fraction are mostly formed through chemical reactions between gases and particles. These 

secondary processes occur to a lesser extent inside livestock buildings and part of the 

mechanically generated particles can fall into the PM2.5 size range (Cambra-López et al., 

2010).  

Van Ransbeeck et al. (2013a) found a high correlation between PM2.5 and PM1 indoor 

concentrations (R = 0.77) and a lower correlation between PM10 and PM1 indoor 

concentrations (R = 0.46). This corresponds quite well with our observed correlations as 

calculated on the basis of the data from the Grimm spectrometers, which is the same type of 

instrument as used by Van Ransbeeck et al. (2013a). However, when using the GrayWolf 

Particle Counters, correlations between both fractions were much lower in our study. This 

indicates that the observed correlations with PM1 are dependent upon the measuring 

instrument used. However, both instruments offer a counting efficiency of 50 % at AED of 

0.3 µm and of 100 % for all particles larger than 0.45 µm (manufacturer’s website; Schmoll et 

al., 2010). The relative humidity inside the barn can also play an important role. At high 

relative humidity, water molecules risk of being recognised as particles by the optical 

instrumentation which can falsify the measurements. To overcome this problem, the Grimm 

spectrometers are equipped with an air mixing device which can add particle-free dry air to 

the sample airflow. This system is activated when the relative humidity exceeds 85 % 

(manual Grimm spectrometer). The GrayWolf Particle Counters however are not equipped 

with such a device and therefore do not correct for high relative humidity. 

While indoor concentrations of PM10, PM2.5 and PM1 changed throughout the fattening 

periods, the lack of relevant correlations between the gases and the PM fractions suggest a 

different behaviour of PM or gas particles in the air. This is in agreement with the findings of 

Van Ransbeeck et al. (2013a). 

2.2.4.2 PARTICLE SIZE DISTRIBUTION 

The mean CMD values found in the current study (ranging from 0.43 to 0.49 µm) are similar 

to the value (0.40 µm) found by Lai et al. (2012) who analysed the PSD in different pig 

buildings using identical Grimm spectrometers. The mean MMD values found in the current 

study (ranging from 10.73 to 12.18 µm) correspond well with values found by Maghirang et 

al. (1997) in a pig nursery (ranging from 10 to 19 µm) using a cascade impactor. Heber et al. 
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(1988a) found MMD values between 3.51 and 5.14 µm on dust samples from commercial 

swine finishing buildings. However, they used a resistive-pulse particle analyser with a very 

narrow dynamic range (1.76 to 7.01 µm) (Heber et al., 1988a). Lee et al. (2008) captured 

dust particles on filters from pig finishing, farrowing and gestation buildings and analysed 

the PSD with four types of instruments. For pig finishing buildings, depending on the 

instrument, Lee et al. (2008) found MMD values between 10.7 and 20.7 µm. The GSD values 

found in the current study for the number- and mass-weighted distribution were all larger 

than 1.22, indicating that the aerosols in all compartments were polydisperse. 

Despite the different housing systems and cleaning protocols observed in this study, CMD 

and MMD values showed no great differences. However, as reported previously (chapter 

2.1), indoor mass concentrations of PM10, PM2.5 and PM1 changed throughout the fattening 

periods. Furthermore, the lack of a clear pattern over a day or over a fattening period is in 

contrast with the observed diurnal pattern and day to day pattern during a fattening period 

found for PM10, PM2.5 and PM1 concentrations (Van Ransbeeck et al., 2012). This indicates 

that, although the total mass of particles (PM concentrations) changed significantly (during a 

day and during a fattening period) inside the barn, the CMD and MMD values remained 

about the same.  

It is known that besides PM concentrations and density, the size of the particles is an 

important parameter for the development and operation of reduction strategies or 

techniques (Zhang, 2004). In the current study, the lack of differences in CMD and MMD 

values between the different housing systems and cleaning protocols indicates that 

reduction techniques will probably need to target the same particle size ranges regardless of 

housing system and cleaning protocol. However, extended research in other livestock 

buildings will be necessary to verify that CMD and MMD values are in the same range as 

found here. Furthermore, when applying existing reduction techniques (e.g. electrostatic 

precipitators, dry filters or wet scrubbers) in the present livestock buildings, the same set-up 

settings could be used to tackle the most important particle size ranges. 

 



Chapter 2.2 

___________________________________________________________________________ 

80 

 

2.2.5 CONCLUSIONS 

The results from the present study showed high correlations between the indoor 

concentrations of NH3, CO2 and CH4. This was possibly related with co-evolving patterns due 

to ventilation rate or a similar increase for the respective gas concentrations throughout a 

fattening period. None of the indoor concentrations of these gases correlated well with the 

indoor concentrations of N2O. PM10 and PM2.5 indoor correlations also correlated well, but 

no high correlations were found between these PM indoor concentrations and the gas 

concentrations. No differences in PSD could be found between different housing systems or 

cleaning protocols. Further research will be needed to confirm the findings and possible 

explanations from this study. 
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2.3 EFFECT OF GRINDING INTENSITY AND PELLETING OF THE DIET ON INDOOR PARTICULATE 

MATTER CONCENTRATIONS AND GROWTH PERFORMANCE OF WEANLING PIGS
iv

 

 

2.3.1 INTRODUCTION 

The presence of particulate matter in ambient air affects air quality. A significant part of PM 

originates from agriculture. Inside pig barns, the main sources of PM are manure, skin parts 

and feed (Aarnink et al., 1999; Cambra-López et al., 2011b; Heber et al., 1988a). Indoor PM 

concentrations generated from feed depend on the feed composition, the type of feed, the 

pelleting process and the delivery method (Bundy & Hazen, 1975). Despite the current major 

concerns about PM, information on feed based mitigation strategies to reduce PM is limited 

to a few studies, all older than a decade. Feeding pellets instead of meal diets has been 

shown to lower PM production or indoor PM concentrations (Bundy & Hazen, 1975; 

Guingand, 1999; Li et al., 1993). However, in the study by Bundy and Hazen (1975) this was 

only true for floor feeding, but not for feeding with self-feeders. Zeitler et al. (1987) only 

found a significant reduction in PM with a diameter smaller than 5 µm in winter when 

feeding pellets instead of meal to the pigs. In summer, no differences in indoor PM 

concentrations could be found when feeding meal or pellets to the pigs (Zeitler et al., 1987). 

It is unclear to what extent grinding intensity affects PM concentration. Also, whereas both 

pelleting and grinding intensity have been shown to affect feed efficiency (Healy et al., 1994; 

Jensen & Becker, 1965), to our knowledge, no simultaneous study has been conducted on 

the influence of particle size and form of the feed on the growth performance of weaned 

piglets and the PM concentrations inside pig nurseries. Therefore, in the present 

experiment, a trial was designed to investigate the interaction between particle size and 

feed form on indoor PM concentrations and performance of pigs. 

2.3.2 MATERIALS AND METHODS 

All animal-based procedures followed Belgian and EU legislation (Council Directive 

86/609/EEC). No procedures required approval from the local ethics committee. 

                                                      
iv Adapted from: Ulens, T., Demeyer, P., Ampe, B., Van Langenhove, H., & Millet, S. (2015). Effect of 

grinding intensity and pelleting of the diet on indoor particulate matter concentrations and 

growth performance of weanling pigs. Accepted in Journal of Animal Science. 
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2.3.2.1 HOUSING AND ANIMALS  

The experiment, conducted at the Institute of Agricultural and Fisheries Research (ILVO) 

(Melle, Belgium), was divided into 4 weaning rounds, beginning on 18 July 2013 and ending 

14 November 2013. A total of 576 weanling pigs (Piétrain boar x RA-SE genetics hybrid sow, 

Ra-Se genetics holding N.V., Lokeren, Belgium) were used. In each weaning round, 144 pigs 

were divided over 4 compartments (Figure 2.14, 6 pens of 6 animals per compartment). The 

pigs were blocked according to sex (2 classes) and body weight (BW) (3 classes), leading to 1 

weight class and sex combination per compartment. The compartment was considered the 

experimental unit. After evenly distributing the piglets over the compartments, each 

compartment was assigned to 1 of the 4 treatments: finely ground meal, pelleted finely 

ground feed, coarsely ground meal or pelleted coarsely ground feed. This was repeated 4 

times, resulting in 4 replicates per treatment. No treatment was assigned twice to the same 

compartment in the different weaning rounds. One compartment (6.3 m x 3.6 m) consisted 

of 8 identical pens (2.16 m x 0.88 m), 4 on each side, with a central 0.35-m exhaust fan in the 

wall. Per compartment, 2 pens were left empty. The measuring instruments were placed in 

one of these empty pens. Each pen had a fully slatted plastic floor, 2 nipple drinkers and 1 

self-feeder (a four-space feeding trough). Feed was poured manually into the self-feeders. 

Feed was added (approx. 25 kg) when the feeders were almost empty. 

 

Figure 2.14. Overview of the four compartments: different shades of grey represent different compartments with their 

pens; the green rectangles represent the self-feeders; the yellow rectangles represent the exhaust fans and the red squares 

represent the sampling points. 
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2.3.2.2 DIET COMPOSITION 

The ingredient and nutrient content of the feed were exactly the same in all 4 treatments 

(Table 2.8). The feed was processed using a hammer mill (Promill Type A36, Promill-Stolz 

S.A., Serville, France) provided with a 1.5 mm (feed A & B) or 6 mm (feed C & D) screen 

depending on treatment. Corn, wheat, barley, full fat soybeans and soybean meal were 

ground before mixing. Other ingredients were bought grounded or were liquids (Table 2.8). 

Per batch, half of the feed was kept as meal (feed B & D) and the other half was pelleted 

(feed A & C) using cold pelleting equipment (Promill Type A36, Promill-Stolz S.A., Serville, 

France; die characteristics: 6.0 mm hole size, 60.0 mm wall thickness, 10 rows, 124 holes per 

row, 490.0 mm flange diameter, 359.0 mm inside diameter, 155.0 mm width, and 78.0 mm 

track width), leading to pellets with 6 mm diameter. The feeds were provided ad libitum. 

 

 

  



Chapter 2.3 

___________________________________________________________________________ 

84 

 

Table 2.8. Ingredient and nutrient
1
 composition of the experimental diet (as-fed). 

Item Content  

Ingredient, g/kg  

Maize
2
 254.6 

Barley
2
 250.0 

Wheat
2
  150.0 

Toasted full-fat soybean
2
  99.1 

Soybean meal
2
 (49% CP) 80.0 

Premix
3
 60.0 

Beet molasses  30.0 

Wheat gluten feed (77% CP)  20.0 

Potato protein  20.0 

Nutrisure
4
  10.0 

L-Lys HCL  6.2 

Monocalcium phosphate  5.3 

Limestone  3.7 

NaCl  2.9 

L-Thr, 98%  2.4 

DL-Met, 99%  2.4 

L-Val , 96.5% 1.2 

Soy oil 1.1 

L-Trp, 98%  0.9 

Phytase (5000 IU/g)  0.1 

1
 Values were calculated according to CVB, 2007 (CVB, 2007). 

2
 Ingredient was ground before mixing. 

3
 The premix contained 80% dairy products and 20% vitamin and mineral premix, providing the following 

quantities of vitamins and minerals per kilogram of diet: vitamin A, 15,000 IU; vitamin D3, 2,000 IU; vitamin E, 

100 mg; vitamin K, 2 mg; vitamin B1, 2.5 mg; vitamin B2, 7.5 mg; vitamin B5, 20 mg; vitamin B6, 5 mg; vitamin 

B12, 0.04 mg; vitamin C, 100 mg; niacin, 30 mg; choline, 324 mg; folic acid, 3 mg; biotin, 0.15 mg; Ca, 516 mg; P, 

419 mg; Mg, 165 mg; Na, 353 mg; Cl, 1,375 mg; K, 1,227 mg; S, 234 mg; Fe, 100 mg; Cu, 160 mg; Mn, 60 mg; Zn, 

100 mg; I, 2 mg; Se, 0.4 mg. 

4
 A mixture of calcium salts of the following organic acids: lactic acid, formic acid, citric acid monohydrate, 

orthophosphoric acid and propionic acid (DSM Nutritional Products, Kaiseraugst, Switzerland). 
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Table 2.8. Continued. 

Item Content  

Analysed and calculated composition  

Net energy
1
, kcal/kg 2340.7 

Dry matter
5
, g/kg 888.0 

Crude ash
6
, g/kg 44.3 

Crude fiber
6
, g/kg 31.7 

Crude protein
6
, g/kg 185.0 

Ether extract
6
, g/kg 47.4 

Calcium
1
, g/kg 5.6 

Phosphorus
1
, g/kg 5.2 

Digestible phosphorus
1
, g/kg 3.5 

SID
7
 lysine

1
, g/kg 11.9 

SID methionine+cysteine
1
, g/kg 7.5 

SID threonine
1
, g/kg 7.7 

SID tryptophan
1
, g/kg 2.6 

SID leucine
1
, g/kg 12.1 

SID valine
1
, g/kg 8.3 

SID isoleucine
1
, g/kg 6.2 

1
 Values were calculated according to CVB, 2007 (CVB, 2007). 

5
 A mean value for the 4 diets is shown. The individual DM values were 885 g/kg (finely ground meal diet), 

881.3 g/kg (coarsely ground meal diet), 892.5 g/kg (finely ground pelleted diet) and 893 g/kg (coarsely ground 

pelleted diet). 

6
 A mean value for the 4 diets is shown. 

7
 SID: standardised ileal digestible. 

2.3.2.3 FEED CHARACTERISTICS 

To determine nutrient composition, separate feed samples from all 4 diets were ground 

through a 1-mm screen (Brabender Wiley, Rheotec, Maarkedal, Belgium). Moisture was 

determined by drying at 103 °C (EC, 1971). Crude ash was obtained by incineration at 550 °C 

(ISO, 2002). Crude protein (Nx6.25) was determined according to Kjeldahl (ISO, 2005). Crude 

fat was extracted using petroleum ether after hydrolysis with HCl (ISO, 1999). Crude fibre 
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was obtained using the Ankom Fibre Analyser (Ankom Technology, Macedon, NY, USA) after 

boiling with sulphuric acid first and then with sodium hydroxide (EC, 1992). 

The particle size distribution of the feeds was determined by wet sieve analysis according to 

Millet et al. (2012b). In short, 50 g of feed was placed in a tumbler and 1000 mL of water 

heated to 30 °C was added to the feed. The mixture was stirred with a spatula after 30 min. 

After an additional 30 min, the feed/water suspension was deposited onto the top of a sieve 

tower (sieves: 4.75, 3.35, 2.36, 1.18, 0.60, 0.30 mm) which was placed on a bowl with a 

downspout, then washed with 10 L cold, distilled water (water pressure = 1x10
5
 Pa). 

Afterwards, the sieve tower was dried (65 °C) in a ULE 800 ventilated oven (Memmert GmbH 

& Co KG, Schwabach, Germany) overnight, cooled down in a desiccator and each sieve was 

weighed again. Each feed was measured in duplicate. The particle size distribution of the 

meal diets was also determined by dry sieve analysis (ASAE, 1994). For this test, a sample of 

300 g was sieved using a set of sieves with apertures of 9.5, 4.75, 3.35, 2.36, 1.18, 0.60, 0.30 

mm respectively and a pan placed on a AS200 shaker (Retsch, Haan, Germany) for 5 min 

with an amplitude of 1.80 mm. The analysis was done in triplicate. The hardness of the 

pelleted feeds is expressed as the force (N) needed to break a pellet as measured by means 

of a Kahl Pellet Hardness Tester (Amandus Kahl Nachf., Hamburg, Germany). This was 

measured on 25 pellets for each pelleted diet and the average of these 25 measurements 

was considered the hardness value. 

2.3.2.4 PERFORMANCE TRAITS 

All pigs were weighed individually at the beginning of the trial, after two weeks and at the 

end of the weaning round. Feed consumption per pen was recorded and average daily feed 

intake (ADFI) was calculated for each weaning round. Average daily gain (ADG) and gain over 

feed (G:F) were also calculated over the entire weaning round on a pen basis. 

2.3.2.5 INDOOR AIR QUALITY 

Two Grimm 1.109 spectrometers (Grimm Aerosol Technik GmbH & Co. KG, Ainring, 

Germany), mounted in weatherproof housing, were used to monitor the indoor PM 

concentrations. Three different PM fractions were monitored: PM10, PM2.5 and PM1. The 

fractions PM10, PM2.5 and PM1 are defined as particle matter which passes through a size-

selective inlet with a 50 % efficiency cut-off at 10 µm aerodynamic diameter (AED), 2.5 µm 
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AED or 1 µm AED, respectively (U.S.EPA, 2004). The same instruments were used to log 

indoor temperature and relative humidity. Sampling was performed in an empty pen, 0.8 m 

above the slatted floor (Figure 2.14). Data were collected at intervals of 1 min. Because the 

number of Grimm spectrometers was smaller than the number of compartments to be 

sampled, a rotation scheme was used. Every day the Grimm spectrometers were moved to a 

different compartment, resulting in approximately one 24-h measurement per pen every 2 

days. Ventilation rates were monitored using free running impellers (Fancom, Panningen, 

the Netherlands) and automatically logged using F-Central FarmManager software (Fancom, 

Panningen, the Netherlands) at a 5-min interval. 

An Innova photoacoustic gas monitor 1314 (Innova AirTech Instruments, Santa Clara, CA, 

USA) connected to a multipoint sampler (CBISS, A1-Envirosciences ltd., Wirral, Merseyside, 

UK) was used to measure the indoor concentrations of NH3, CO2, CH4 and N2O sequentially in 

the four compartments. Sampling was performed in the middle of the central pen at 0.8m 

above the slatted floor (Figure 2.14). However, due to technical problems, it was not 

possible to measure the gas concentrations correctly and hence, this data is not presented 

here. More information on the technical problems encountered in this study can be found in 

section 4.1.  

Outdoor conditions (temperature, relative humidity and atmospheric pressure) were 

monitored using the Vantage Pro2 weather station (Davis Instruments Corp., Davis, CA, 

U.S.A.).  

2.3.2.6 DATA ANALYSIS  

Raw data were combined into hourly means. Data from periods where a disturbance of the 

pigs was observed (e.g. entering of the compartment for purposes of animal management, 

repositioning of the measuring instrument or instrument failure) were excluded for further 

analysis. The compartment was considered the experimental unit, with pen as repeated 

measure within a compartment for performance results. 

For determining the effect of grinding intensity and feed form on the growth performance, 

linear mixed models were built (using the GLIMMIX procedure in SAS9.4 (SAS Inst. Inc., Cary, 

NC)) using the different performance parameters (BW, ADFI, ADG and G:F from 4 to 6 weeks, 

from 6 to 9 weeks and from 4 to 9 weeks of age) as dependent variables. Grinding intensity, 



Chapter 2.3 

___________________________________________________________________________ 

88 

 

feed form, sex and the interaction between particle size and feed form were investigated as 

independent variables. Compartment and weaning round were included as random effects. 

Except for BW at 4 weeks, models were corrected for the initial BW at 4 weeks.  

For indoor air quality measurements, linear mixed models were built (using the GLIMMIX 

procedure) using the PM concentrations (PM10, PM2.5 and PM1) as dependent variables. To 

achieve normally distributed residuals, PM concentrations were log transformed. Grinding 

intensity, feed form, their interaction, ventilation rate and indoor relative humidity were 

investigated as independent variables. Non-significant interactions were removed from the 

final model. Random effects for compartment and weaning round were included in the 

model to correct for repeated measurements within a compartment and within a weaning 

round. Corrections were also made for measuring device for PM10 and PM2.5, but not for PM1 

concentrations. 

The data was assumed to be normally distributed, based on graphical evaluation (histogram 

and QQ-plot of the residuals). Statistical significance was considered for P < 0.05 and a trend 

was considered for 0.05 < P < 0.1. 

2.3.2.7 ADDITIONAL LAB TESTS  

To verify and to explain the results obtained inside the nurseries, 2 lab tests were 

performed: the “drop test” and the “shake test”.  

During the drop test, 300 g of the diet was dropped from 1 m above the floor into a bucket 

using a device of our own design (Figure 2.15). This was repeated 4 times (4 trials) for each 

diet in a Latin square design. A Grimm 1.109 spectrometer, with a 6-sec time interval, was 

placed directly beside the bucket to record PM10, PM2.5 and PM1 concentrations during 3 

min.  

During the shake test, 100 g of each diet was shaken for 20 minutes at 300 motions per 

minute using a mechanical shaker (Universal Shaker SM-30, Edmund Bühler GmbH, 

Tübingen, Germany). Particulate matter measurements were performed with a 6-sec time 

interval at 0.2 m above the mechanical shaker with a Grimm 1.109 spectrometer (Figure 

2.16). The shake test was repeated 4 times (4 trials) for each diet in a Latin square design.  
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For both laboratory tests, data analysis was performed using the GLIMMIX procedure in 

SAS9.4. The trial was considered the experimental unit, with measurements every 6 seconds 

as repeated measure within a trial. For determining the effect of grinding intensity and feed 

form on the PM concentrations from the drop and shake tests, a linear mixed model was 

built using the PM concentrations (PM10, PM2.5 and PM1) as dependent variables. To achieve 

normally distributed residuals, PM concentrations were log transformed for the drop test, 

PM concentrations for the shake test were already normally distributed. Grinding intensity, 

feed form and the interaction between both were investigated as independent variables. For 

the drop test, time after the drop was also added to the model. Residuals were assumed to 

be normally distributed, based on graphical evaluation (histogram and QQ-plot of the 

residuals). Statistical significance was considered for P < 0.05. 

 

Figure 2.15. Device (our own design) used for the drop test. From each diet, 300 g was dropped from 1 m into a bucket. 

Particulate matter concentrations were measured with a Grimm 1.109 spectrometer (Grimm Aerosol Technik GmbH & Co. 

KG, Ainring, Germany). 
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Figure 2.16. Mechanical shaker and Grimm 1.109 spectrometer (Grimm Aerosol Technik GmbH & Co. KG, Ainring, 

Germany), without the weatherproof housing, used for the shake test. From each diet, 100 g was shaken for 20 min. 

2.3.3 RESULTS 

2.3.3.1 FEED CHARACTERISTICS  

Within diets with the same grinding intensity, particle size distribution was comparable, 

despite a larger proportion of particles in the < 0.30 mm fraction in the pelleted diets (Table 

2.9). The particle size of finely ground diets was lower than the particle size of the coarsely 

ground diets (Table 2.9 & Table 2.10). The pelleted diets did not have particles in fractions 

larger than 3.35 mm (coarsely ground) or 2.36 mm (finely ground). Pelleted diets had a lower 

mean particle size within each grinding intensity as compared to meal diets. Hardness values 

of the pellets were lower in the finely ground pelleted diet (77.8 ± 15.0 N) compared to the 

coarsely ground pelleted diet (93.6 ± 14.5 N). 

 



 

 

 

Table 2.9. Particle size distribution of the diets measured in duplicate using wet sieve analysis. 

Feed form Meal  Pellets 

Particle size Finely ground Coarsely ground  Finely ground Coarsely ground 

< 300 µm, % 57.40 46.90  62.24 48.15 

301-600 µm, % 19.55 16.11  20.06 12.99 

601-1180 µm, % 21.69 15.89  16.92 25.53 

1181-2360 µm, % 1.02 17.93  0.78 11.87 

2361-3350 µm, % 0.23 2.61  0.00 1.46 

3351-4750 µm, %  0.00 0.57  0.00 0.00 

> 4750 µm, % 0.11 0.00  0.00 0.00 

Mean particle size, µm 400 700  350 610 

  



 

 

 

Table 2.10. Particle size distribution of the meal diets measured in triplicate using dry sieve analysis. 

Particle size Finely ground Coarsely ground 

< 300 µm, % 45.03 30.67 

301-600 µm, % 32.78 22.46 

601-1180 µm, % 16.26 26.11 

1181-2360 µm, % 2.94 17.85 

2361-3350 µm, % 0.86 2.42 

3351-4750 µm, %  1.11 0.44 

4751-9500 µm, % 1.02 0.04 

> 9500 µm, % 0.00 0.00 

Mean particle size, µm 550 790 

 

Table 2.11. Effect of grinding intensity and feed form on indoor PM fractions
1
. 

 Meal  Pellet  P-value 

Fraction, µg m
-
³ Finely ground Coarsely ground  Finely ground Coarsely ground  Particle size Feed form 

PM10 171 [74.4;390] 147 [64.2;337]  597 [261;1365] 515 [225;1178]  0.014 <0.001 

PM2.5 24.6 [11.4;52.8] 22.3 [10.4;47.9]  71.9 [33.4;155] 65.1 [30.3;140]  0.065 <0.001 

PM1 9.6 [7.2;12.8] 8.9 [6.7;11.9]  12.9 [9.7;17.1] 12.0 [9.0;15.9]  0.223 <0.001 

1
 Back-transformed LSMeans are given with back-transformed 95% CI. 
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2.3.3.2 INDOOR AIR QUALITY 

The indoor PM10, PM2.5 and PM1 concentrations were higher in the compartments where 

pellets were fed to the pigs (P < 0.001) (Table 2.11). Within feed form, feeding the finely 

ground feed resulted in higher indoor PM10 concentrations (P < 0.05). A tendency to a similar 

effect of grinding intensity was observed for PM2.5 (P < 0.1), but not for PM1 concentrations. 

No interaction between feed form and grinding intensity was found on any PM fraction.  

Ventilation rate and indoor relative humidity had an effect (P < 0.001) on all PM fractions. In 

this study, an increase in ventilation rate of 1 m³/h gave rise to increased PM10 (+ 0.0047 

µg/m³), PM2.5 (+ 0.0041 µg/m³) and PM1 (+ 0.0019 µg/m³) concentrations. An increase in the 

indoor relative humidity also increased the indoor PM concentrations. An increase of 1 % in 

indoor relative humidity corresponded with increases of 0.054 µg/m³, 0.056 µg/m³ and 

0.036 µg/m³ respectively for indoor PM10, PM2.5 and PM1 concentrations. It should be kept in 

mind that these effects were established at 0.8m above the slatted floor. 

2.3.3.3 PERFORMANCE 

In total, 5 pigs (3 on the coarsely ground meal diet, 1 on the finely ground meal diet and 1 on 

the finely ground pelleted diet) died over the course of the experiment. One pig that 

received the finely ground pelleted diet was eliminated from the experiment for health 

reasons.  

Between 4 and 6 weeks of age, the pigs consumed more of the coarsely ground feed 

(P < 0.001). In this period, we observed a tendency for higher feed intake on the meal versus 

pelleted diet (P < 0.1) without an interaction between grinding intensity and form (Table 

2.12). However, between 6 and 9 weeks of age (P < 0.05) and over the entire experiment 

(P < 0.05), grinding intensity and form did interact on ADFI. On the pellets, grinding intensity 

did not affect ADFI significantly. On the meal diet however, the piglets consumed more 

(P < 0.05) of the coarsely ground meal than the finely ground meal. Both groups consumed 

more feed than the groups receiving pellets. 

An interaction between grinding intensity and feed form on ADG was found for the 2 periods 

(P < 0.05 between 4 and 6 weeks of age and P < 0.05 between 6 and 9 weeks of age) and for 

the whole experiment (P < 0.001). For the periods 4 to 6 and 4 to 9 weeks of age, pigs fed on 

finely ground meal had lower ADG (P < 0.05) than pigs of the other 3 groups. However, for 
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the period 6 to 9 weeks of age, it was not possible to further differentiate between groups 

using Tukey’s post hoc test. 

An interaction between grinding intensity and form on BW at 6 (P < 0.05) and 9 (P < 0.001) 

weeks of age was found. Pigs that received the finely ground meal had lower BW (P < 0.05) 

than pigs of the other 3 groups at both time points.  

Between 4 and 6 weeks of age, an interaction (P < 0.001) between grinding intensity and 

feed form on G:F was found. Pigs receiving finely ground meal had a lower G:F (P < 0.05) 

than pigs receiving coarsely ground meal, which was in turn lower (P < 0.05) than pigs 

receiving pellets, with no differences in the 2 particle sizes when fed as pelleted diets. For 

the periods between 6 to 9 weeks and over the entire experiment, an interaction between 

grinding intensity and form was not observed. Pigs fed meal had lower (P < 0.001) G:F than 

pigs fed pelleted feeds. Across the entire experiment, grinding intensity did not significantly 

affect G:F. 

Sex did not affect the measured parameters significantly, except for the daily gain between 6 

and 9 weeks of age (P < 0.05, data not shown). Male pigs had a higher daily gain during that 

period than female pigs. 

 



 

 

 

Table 2.12. Effect of grinding intensity and feed form on the growth performance of the pigs. 

Meal Pellets P-value 

Finely 

ground 

Coarsely 

ground 

Finely 

ground 

Coarsely 

ground SEM 

Grinding 

intensity Form 

Grinding 

intensity x Form 

Body weight, kg 

4 weeks 8.01 8.04 8.01 7.98 0.13 0.989 0.924 0.914 

6 weeks 10.67
a
 11.33

b
 11.47

b
 11.5

b
 0.15 <0.001 <0.001 0.002 

9 weeks 21.44
a
 22.97

b
 23.02

b
 22.7

b
 0.25 0.080 0.008 <0.001 

Average daily feed intake, g 

4-6 weeks 294
b
 324

a
 282

b
 292

ab
 4.61 <0.001 0.078 0.126 

6-9 weeks 802
b
 869

a
 735

c
 710

c
 11.41 0.188 <0.001 0.004 

4-9 weeks 599
b
 651

a
 554

c
 543

c
 7.92 0.059 <0.001 0.004 

Average daily gain, g 

4-6 weeks 190
a
 235

b
 246

b
 251

b
 4.73 <0.001 <0.001 0.002 

6-9 weeks 513 555 549 534 6.17 0.781 0.514 0.002 

4-9 weeks 384
a
 427

b
 428

b
 421

b
 4.64 0.075 0.009 <0.001 

Gain over feed, g:g 

4-6 weeks 0.637
a
 0.719

b
 0.871

c
 0.858

c
 0.012 0.015 <0.001 <0.001 

6-9 weeks 0.641
a
 0.638

a
 0.743

b
 0.753

b
 0.007 0.892 <0.001 0.431 

4-9 weeks 0.642
a
 0.656

a
 0.771

b
 0.776

b
 0.007 0.521 <0.001 0.530 

a,b,c
 Within a row, values without a common superscript differ (P < 0.05) according to Tukey-Kramers’ post hoc test. 
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2.3.3.4 LABORATORY TESTS 

An interaction (P < 0.05 for PM10, P < 0.05 for PM2.5, P < 0.05 for PM1) between grinding 

intensity and feed form on PM concentrations was found (Table 2.13). PM10 concentration 

differed (P < 0.05) between the 2 meal diets, but for the pelleted diets, no significant 

differences were found. Finely ground meal diet showed the highest PM10 concentration in 

the drop test. According to Tukey’s post hoc test, no differences were found between the 

coarsely ground meal diet and the coarsely ground pelleted diet. Finely ground pelleted diet 

had the lowest PM10 concentration in the drop test. A difference in PM2.5 concentrations was 

only found between the finely ground meal and the coarsely ground meal (P < 0.05), the 

pellets gave intermediate values. For PM1 concentrations, although an interaction (P < 0.05) 

between grinding intensity and feed form was found, it was not possible to further 

differentiate between diets. 

An interaction (P < 0.05) between grinding intensity and feed form was observed in the 

shake test for PM10 concentrations (Table 2.13). Shaking the pelleted diets gave rise to 

higher PM10 concentrations than shaking the meal diets, with highest PM10 concentrations 

for the finely ground pelleted diets. No differences in PM10 concentrations between the 2 

meal diets were found. For PM2.5 concentrations, only the grinding intensity had an effect (P 

< 0.05), with coarsely ground diets giving rise to higher PM2.5 concentrations as compared to 

the finely ground diets. Shaking the coarsely ground meal resulted in the highest PM2.5 

concentrations. For PM1 concentrations, neither the grinding intensity nor the feed form nor 

the interaction of both had a significant effect. 

 

 

 



 

 

 

Table 2.13. Effect of grinding intensity and feed form on indoor PM fractions obtained from the drop and shake tests
1
. 

Meal Pellet P-value 

Fraction, µg m
-
³ Finely ground Coarsely ground Finely ground Coarsely ground 

Particle 

size 

Feed 

form 

Particle size x 

form 

Drop test          

PM10 327
a
 [241;445] 172

b
 [127;234] 

 
89

c
 [66;121] 107

bc
 [79;145] 0.126 <0.001 0.013 

PM2.5 14.8
a
 [12.6;17.4] 10.2

b
 [8.7;12.0] 

 
11.2

ab
 [9.6;13.2] 12.9

ab
 [10.9;15.2] 0.139 0.793 0.005 

PM1 7.9 [6.6;9.6] 5.8 [5.7;8.4] 
 

6.9 [4.8;7.0] 8.1 [6.7;9.7] 0.364 0.270 0.020 

Shake test          

PM10 18.8
c
 [16.1;21.4] 21.1

c
 [18.4;23.7]  49.5

a
 [46.9;52.2] 42.5

b
 [39.9;45.2]  0.074 <0.001 0.002 

PM2.5 6.7
b
 [5.8;7.5] 8.8

a
 [8.0;9.7]  8.0

ab
 [7.2;8.9] 8.7

a
 [7.8;9.5]  0.003 0.136 0.072 

PM1 4.9 [3.8;6.1] 6.3 [5.1;7.4]  5.7 [4.6;6.9] 6.5 [5.4;7.7]  0.063 0.331 0.635 

a,b,c
 Within a column, values without a common superscript differ (P < 0.05) according to Tukey’s post hoc test. 

1
 Back-transformed LSMeans are given with back-transformed 95% CI. 
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2.3.4 DISCUSSION 

The results of the current study indicate that both the physical form and grinding intensity of 

the feed affect largely the growth characteristics of weaning pigs as well as the indoor PM 

concentrations. 

This direct link between PM and feed was also found by other authors for finishing pigs 

(Heber et al., 1988a) and weaned piglets (Aarnink et al., 1999). Surprisingly however, 

pelleted diets gave rise to higher PM concentrations as compared to meal diets (more 

pronounced for PM10 and PM2.5 than for PM1). The effect of the grinding intensity seemed 

smaller, but nevertheless finely grinding the diet led to larger PM concentrations. It must be 

noted that ingredients which were already very fine or in a liquid form, were not ground 

before mixing. This may be one explanation for the smaller effect of grinding intensity on the 

indoor PM concentrations. Furthermore, the hardness of the coarsely ground pelleted diets 

was higher than the hardness of the finely ground pelleted diets. To our knowledge, no other 

studies have reported an increase in PM concentrations when feeding pellets to pigs. A 

possible explanation is that pelleting, which is considered to be a secondary grinding step 

(Grosse Liesner et al., 2009), leads to smaller particles. This has been shown by Wolf et al. 

(2010) and is in line with the slightly higher amount of fine particles in the pelleted diets as 

determined with the wet sieve analysis, which can eventually lead to a smaller mean particle 

size. Similarly, Bundy and Hazen (1975) attributed the lack of difference between pellets and 

meal in PM concentrations to the degradation of the pellets, which become a fine powder in 

the bottom of the self-feeders. Nevertheless, the fractions determined by the sieve analysis 

(with the smallest sieve at 300 μm), or the “visible fines” are far larger than PM fractions. 

Therefore, the results of the wet sieve analysis could be a better indicator for the breakdown 

of the diets in the animal rather than as an indicator for the production of PM. So, there 

might be no direct link between the results from the sieve analysis and the observed indoor 

PM concentrations. In an attempt to retrieve a better indicator of the production of PM and 

to find further possible explanations for the observed differences in PM concentrations, 

some additional laboratory tests on the experimental feeds were performed. Tests similar to 

the drop test have been used previously (Gast & Bundy, 1986; Heber & Martin, 1988). 

Dropping the feed into a bucket gave rise to higher PM10 concentrations for the meal diets 

compared to the pelleted ones. This is the opposite of what was found in our pig barn 
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experiments. However, during these experiments, data recorded during the dropping of the 

feeds into the self-feeders were not included in our dataset. For PM2.5 and PM1 

concentrations, small or no differences between the different diets were found. In an 

attempt to simulate the frictions between the different particles in the feed that can occur 

when the piglets were eating, a shake test was performed. The results of this test indicated 

that shaking the feeds led to higher PM10 concentrations for the pelleted diets, with highest 

PM10 concentrations coming from the finely ground pelleted diet. Again, for PM2.5 and PM1 

concentrations, small or no differences were found. These results were in line with the 

observations in the pig compartments. Whereas the drop test, which involved 1 single 

action, might be a good measure of the superficial (“loose”) PM, the shake test caused 

frictions in the sample and might indicate PM production as a result of agitation, possibly 

similar to frictions caused when pigs were eating. The shake test could also be considered as 

an indicator for the pellet durability. Optimising the laboratory tests (e.g. different drop 

height, different motions per minute, different placement of the Grimm spectrometer) 

might clarify the obtained results even further. The effect of both ventilation rate and indoor 

relative humidity on PM concentrations was very small (but significant) and seemed 

negligible compared to the observed differences in indoor PM concentrations. 

In the current study, pigs fed meal diets had higher ADFI than pigs fed pelleted diets. 

However, an interaction between the physical form and grinding intensity was found: 

grinding intensity only had an effect on the meal diets with higher ADFI for the coarsely 

ground meal. Other researchers also found that reducing the grinding intensity reduced the 

ADFI in weaning pigs (Healy et al., 1994; Mavromichalis et al., 2000). The same was found for 

finishing pigs (Wondra et al., 1995b). O’Doherty et al. (2001) also found decreased ADFI with 

pelleted feed. According to the authors, this can be a consequence of the increased energy 

value of the diets after pelleting, as feed intake is correlated with the energy value of the 

diets (Henry, 1985). Furthermore, before entering the trial, all piglets received creep feed, a 

meal diet, in the farrowing unit. The change from one form of diet to another can lead to 

lower feed intakes. This was already proven for turkeys when changing from crumbs to 

pellets (Lecuelle et al., 2010). Although care was taken to limit spillage and no significant 

feed losses were observed during the course of the experiments, it cannot be excluded that 

part of the higher ADFI for meal diets versus pelleted diets was caused by greater spillage of 
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the feed due to feed sticking to the mouth of the pig or being thrown out of the trough 

during rooting (O'Doherty et al., 2001). This would also explain the lower feed efficiency 

found for pigs receiving meal.  

Also for ADG, an interaction was also found between the form and grinding intensity. Finely 

ground meal had a lower ADG than the other 3 diets. No differences could be detected 

between pelleted feeds and coarsely ground meal. In other studies, some authors found a 

positive effect of pelleting on ADG (Wondra et al., 1995a; Wondra et al., 1995b), whereas 

others did not observe an improvement (Vande Ginste & De Schrijver, 1998). Wondra et al. 

(1995b) found no significant effect of reducing particle size on ADG, whereas Mavromichalis 

et al. (2000) found an increase in ADG when increasing the grinding intensity of the diets 

from 1.3 mm to 0.6 µm, but no increase was found when particle size was reduced to 0.4 

mm. To the contrary, in the current study, finely grinding the diet caused slower gain, 

probably because of reduced feed intake. However, the coarsely ground diet had a mean 

particle size that was already comparable to the finely ground diet in the study of 

Mavromichalis et al. (2000). 

The physical form of the feed had a clear impact on the feed efficiency. In line with other 

research (O'Doherty et al., 2001; Vande Ginste & De Schrijver, 1998; Wondra et al., 1995b), 

pelleting the feed gave rise to higher G:F. The pelleting process makes the nutrients in the 

feeds more accessible to digestive enzymes and can potentially improve the nutritional 

quality process (Vande Ginste & De Schrijver, 1998; Wondra et al., 1995b). Also, as 

mentioned before, reduced feed losses may be an explanation (O'Doherty et al., 2001). One 

would expect that reducing the particle size gives rise to an increased surface area which 

makes the nutrients more accessible to digestive enzymes (Mavromichalis et al., 2000; 

Wondra et al., 1995b). Decreased particle size has been linked to an increased ileal 

digestibility of proteins and amino acids (Lahaye et al., 2004). This is in line with the finding 

of Healy et al. (1994) and Wondra et al. (1995b), who observed better feed efficiency in 

finely ground diets. Similarly, Mavromichalis et al. (2000) found increased G:F when 

decreasing feed particle size from 1.3 to 0.6 mm, but a decrease in G:F when decreasing the 

particle size further to 0.4 mm. Chae et al. (2000) found no effect of reductions in particle 

size on digestibility of amino acids in the ileum. In the current study, finely grinding the meal 

diet led to a lower feed efficiency during the first 2 weeks of the trial. It seems logical to 
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assume that this is a result of lower feed intake and daily gain, which indicates that a 

relatively high amount of the feed was used to cover maintenance energy requirements.  

The present results show a contradiction between indoor air quality and performance 

results: whereas performance was best on the pelleted diets, these gave rise to a higher 

amount of PM in the barn. Besides, intestinal health was not taken into account. It is known 

that finely grinding the feed increases the risk of developing gastric ulcers (Grosse Liesner et 

al., 2009; Millet et al., 2012b; Wondra et al., 1995b). Furthermore, because pelleting the 

diets gives rise to a reduction in particle size (Wolf et al., 2010), pelleting can also increase 

the development of gastric ulcers and is considered equivalent to a secondary grinding 

process. Indeed, feed processing affected ulcer scores in slaughtering pigs (Millet et al., 

2012a). 

As with performance results and the risk on gastric ulceration, it seems plausible that the 

amount of particulate matter depends on the intensity and the type of feed processing (e.g. 

using steam pelleting, expanding or extrusion processes) or the ingredient composition. 

Besides the health of the animals, the health of the farmer is another important parameter 

not taken into account in the current study. Upscaling in pig production has created full-time 

occupations in which workers are exposed to PM more frequently and extensively (Pedersen 

et al., 2000). Several studies have reported a relationship between exposures to PM in 

livestock buildings and respiratory symptoms in farm workers (Donham et al., 1995; Radon 

et al., 2001; Reynolds et al., 1996). Furthermore, emissions of high PM concentrations can 

influence the local air quality and can cause health problems for the nearby inhabitants 

(Pope et al., 2002). Therefore, further research will be necessary before guidelines can be 

recommended for optimising feed structure that also account for performance, indoor air 

quality, health of the animals and the health of the farmers and nearby inhabitants. 

2.3.5 CONCLUSION 

Whereas pelleting improved performance results, it also gave rise to higher indoor PM 

concentrations. The effect of grinding intensity on PM concentration was less pronounced, 

but still visible. Moreover, finely grinding the meal diet negatively affected performance 

results. 
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3 REDUCED SAMPLING STRATEGIES 

 

This chapter is dedicated to the comparison of different reduced sampling strategies to 

sample NH3 emissions and to determine an NH3 emission factor. Computerised simulations 

were run to determine the effect of different reduced sampling strategies. 

 





 

105 

 

3.1 EVALUATION OF SAMPLING STRATEGIES FOR THE DETERMINATION OF AMMONIA 

EMISSIONS FROM FATTENING PIG FACILITIES  

 

3.1.1 INTRODUCTION 

Ammonia was the first gas in agriculture subjected to mandatory emission reduction. As a 

consequence, LAE housing systems were introduced in Flanders since 2004. Pig and poultry 

farmers are obliged to use officially approved LAE housing systems when renovating, 

expanding or building new animal housing. Innovative farmers can also ask permission to 

build new LAE housing systems of which the reduction potential towards NH3 is presently 

not yet established through measurements. The NH3 emission from these housing systems 

has to be measured by an officially approved (research) institute in order to determine an 

EF. This is traditionally done by measuring the NH3 concentrations and ventilation rates 

frequently (at least every hour) during long periods (> 200 days for fattening pigs), covering 

warm and cold seasons (Groen Label, 1996). However, the costs associated with this 

methodology are high (up to € 50 000) (Dekock et al., 2009). Therefore, researchers 

developed several reduced sampling strategies to obtain an NH3 EF for a housing system 

(Mosquera & Ogink, 2011; Ogink et al., 2011; Ogink et al., 2013a) or for a specific barn 

(Ogink et al., 2000; Vranken et al., 2004).  

Up to now, all reduced sampling strategies suggested in literature take into account the 

parameters that influence NH3 emissions, such as the increasing live weight of the pigs 

during a fattening period and the seasonal variations in NH3 emissions. A different method, 

that does not N2O emissions from a wastewater treatment plant (Daelman et al., 2013). In 

the present study, an introductory analysis on a limited number of datasets was performed 

to evaluate if a similar methodology could be applicable for the determination of an NH3 EF 

for pig houses. Therefore, we evaluated a methodology which investigated the accuracy of 

the estimated EF solely as a function of the sampling frequency and strategy. When 

comparing the different sampling strategies, the measuring costs (both labour costs of a 

technician and the operating costs of the gas monitor) associated with each strategy and the 

number of barns for which an EF could be estimated each year were also taken into account. 

It must be noted that the sampling strategies were only compared for the determination of 
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an EF for a specific barn, and not for a housing system. In the future, analyses on multiple 

datasets are desirable to confirm the obtained results. 

3.1.2 MATERIAL AND METHODS 

3.1.2.1 DATASETS 

Two datasets were used to evaluate the influence of reduced sampling strategies on the 

estimated NH3 emission factor from fattening pig facilities. The datasets originated from 

measurements performed to assign Green Label certificates of different animal housing 

systems in the Netherlands, applying the official Dutch measurement protocol for ammonia 

emission factors. 

The first dataset was collected in a conventional fattening pig facility between March 13
th

, 

1996 and November 18
th

, 1996 during two consecutive fattening periods (Figure 3.1, A & B 

and Figure 3.2, A & B). During the measurements, 130 fattening pigs were present in the pig 

unit. The dataset consisted of 5628 hourly outgoing (exhaust) and incoming (inlet) NH3 

concentrations (mg m
-3

) and ventilation rates (m³ hour
-1

). The dataset had a completeness of 

97.0 % for fattening period 1 and 95.2 % for fattening period 2. 

The second dataset was collected in a LAE fattening pig facility between January 28
th

, 2001 

and September 18
th

, 2001 during two consecutive fattening periods (Figure 3.1, C & D and 

Figure 3.2, C & D). During the measurements, 144 fattening pigs were present in the pig unit. 

The dataset consisted of 5338 hourly outgoing NH3 concentrations (mg m
-3

) and ventilation 

rates (m³ hour
-1

). No information on the incoming NH3 concentrations (background level) 

was present. The dataset had a completeness of 92.2 % for fattening period 1 and 98.2 % for 

fattening period 2. 
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Figure 3.1. Daily NH3 emission for both housing systems and both fattening periods. 

 

Figure 3.2. Distribution of the hourly NH3 emission rates for both barns (conventional and LAE) and both fattening periods. 



Chapter 3 

___________________________________________________________________________ 

108 

 

In the first dataset, for each hour, the NH3 emission rate (ER, g hour
-1

) was calculated 

according to Eq. 3.1. The average NH3 EF (kg year
-1

 (animal place)
-1

) was then calculated (Eq. 

3.2) by taking the mean over all the (N) NH3 emission rates and converting this mean from  

g hour
-1

 to kg year
-1

 (animal place)
-1

. In the second dataset, the hourly NH3 emission rates 

and the average NH3 EF were calculated in the same way, except that no correction for 

incoming NH3 concentrations was made.  

 �� = � ∗	
�� − ��� ∗ 10
� Eq. 3.1 

 �� = ∑��
� ∗ �10
� ∗ 24 ∗ 365# $ 

Eq. 3.2 

With ER: emission rate (g hour
-1

), Q: ventilation rate (m³ hour
-1

), Co: outgoing NH3 

concentration (mg m
-3

), Ci: incoming NH3 concentration (mg m
-3

), a: number of animal places 

and N: number of emission rates. 

Based on these calculations, the pig unit in dataset 1 had an EF of 2.16 kg NH3 year
-1

 (animal 

place)
-1

 and the pig unit in dataset 2 had an EF of 1.01 kg NH3 year
-1

 (animal place)
-1

. 

3.1.2.2 EVALUATION OF REDUCED SAMPLING STRATEGIES 

Five different sampling strategies were investigated (Table 3.1): single grab sampling, 

continuous sampling (for 24 hours), continuous sampling (for 48 hours), 7 day sampling and 

weekly grab sampling. With these reduced sampling strategies, EFs were estimated for both 

datasets using the same approach and implementations as in Daelman et al. (2013). The 

different reduced sampling strategies were then evaluated by comparing their estimated EF 

with the true average EF as calculated above. 

SAMPLING STRATEGIES 

An estimate of the NH3 EF was made by averaging the hourly NH3 emission rates over one 

single grab sample, one continuous 24 hour period, one continuous 48 hour period or one 

full week respectively and converting these averages to kg year
-1

 (animal place)
-1

 (Eq. 3.2). 

An estimate of the NH3 EF was also made by taking a weekly grab sample (a one hour 

measurement value) on a specific day of the week during several consecutive weeks, 

averaging the obtained grab sample results and converting this average to kg year
-1

 (animal 

place)
-1

 (Eq. 3.2). 
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For all sampling strategies, restrictions were applied, taking into account the normal working 

conditions in Flanders. For the single and weekly grab sampling strategy, it was assumed that 

a grab sample would always be taken between 9 a.m. and 5 p.m. during working days (single 

grab sampling strategy) or during a specific day of the week or a random working day 

(weekly grab sampling strategy). For the 24 hour and 48 hour continuous sampling 

strategies, it was presumed that measurements would not be performed during weekends 

and had to start between 10 and 11 a.m. For the 7 day sampling campaign it was assumed 

that measurements could only start on working days between 10 and 11 a.m. 

Table 3.1. Overview of evaluated reduced sampling strategies. 

Reduced sampling strategies Protocol 

Single grab sampling One sampling period of 1 hour on a working 

day (Monday to Friday) between 9 a.m. and 5 

p.m.  

Continuous sampling (24 h) One sampling period of 24 consecutive hours 

on a working day (Monday to Friday) with the 

start of the measurement between 10 a.m. 

and 11 a.m. on Monday to Thursday.  

Continuous sampling (48 h) One sampling period of 48 consecutive hours 

on a working day (Monday to Friday) with the 

start of the measurement between 10 a.m. 

and 11 a.m. on Monday to Wednesday.  

Continuous sampling (7 day) One sampling period of 7 consecutive days 

with the start of the measurement between 10 

a.m. and 11 a.m. on a working day (Monday to 

Friday).  

Long-term weekly grab sampling Sampling for 1 hour on a fixed weekday or on a 

random working day between 9 a.m. and 5 

p.m. during several consecutive weeks. 
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For all possible single grab samples, 24 hour, 48 hour or 7 day periods which fulfilled these 

conditions, emissions rates (ER) were calculated and then converted to kg year
-1

 (animal 

place)
-1

. For the 24 hour, 48 hour and 7 day periods, emission rates based on respectively 

less than 16, 32 or 112 sampling hours were not taken into account. The number of possible 

estimates for the single grab sampling, 24 hour, 48 hour or 7 day period campaigns and for 

both datasets are shown in Table 3.2. All possible estimates were collected in histograms 

with a bin width of 0.25 kg NH3 year
-1

 (animal place)
-1

. 

Table 3.2. Number of all possible estimates for the different sampling strategies from dataset 1 and 2. 

Sampling strategy dataset 1 dataset 2 

Single grab 1244 1258 

24 hour 115 116 

48 hour 72 85 

7 day 138 142 

 

To implement the long-term weekly grab sampling strategy, hourly NH3 emission rates 

(between 9 a.m. and 5 p.m.) were randomly selected for each day in the week. This resulted 

in seven long-term weekly grab sampling campaigns of 32, 33 or 34 weeks for dataset 1 and 

31, 33 or 34 weeks for dataset 2. The number of available weeks could differ because not all 

days were equally represented in the initial datasets due to interruptions in the real 

sampling campaigns. Contrary to the previously reduced sampling strategies, the total 

number of possible estimates was very high. Therefore, the procedure was repeated 1000 

times for each week day in order to get a representative sample of the full number of 

possible estimates. Doing so, 1000 estimated NH3 EFs were obtained for each weekday. This 

procedure was also applied to the scenario where a weekly sample was taken on a random 

working day instead of on a fixed day, again repeated 1000 times. For each of the fixed and 

random weekday campaigns, the 1000 values were possible outcomes for the respective 

sampling campaign. All possible estimates were collected in histograms with a bin width of 

0.25 kg NH3 year
-1

 (animal place)
-1

. 
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3.1.2.3 ACCURACY AS FUNCTION OF SAMPLING FREQUENCY 

The influence of taking multiple (n) single grab samples, 24 hour periods, 48 hour periods, 7 

day periods or long-term weekly grab samples during n consecutive weeks on the estimated 

EF was evaluated. These evaluations started by calculating all possible single grab samples, 

24 hour periods, 48 hour periods, 7 day periods or long-term weekly grab sample campaigns 

that fulfil the requirements as mentioned in section 3.1.2.2. Thereafter 1 to n single grab 

samples, 24 hour periods, 48 hour periods, 7 day periods or long-term weekly grab sample 

campaigns for 1 to n consecutive weeks were randomly taken for all possible periods. This 

was done by making use of script in R 3.1.1 for Windows (R Core Team, 2013). Finally, for all 

1 to n sampling cases, the relative error between the true EF (as determined in 3.1.2.1 and 

based on the whole dataset) and the estimated EF (based on the reduced number of 

measurements and only representing an estimation of the true EF) was determined as a 

function of the number (n) of sampling periods for each of the investigated reduced 

sampling strategies (Daelman et al., 2013). In the different reduced sampling strategies, 

these sampling periods were the number of 24 hours (or 48 hours) random periods or 7 day 

periods. For the single grab sampling campaigns, the number of single grab samples was 

determined necessary to obtain an estimate with an acceptable relative error. It was decided 

that the relative error had to be smaller than ± 15 % to be acceptable. Similarly, for the long-

term weekly grab sampling campaign, the number of weeks necessary to obtain an estimate 

with a relative error smaller than ± 15 % was determined. 

RELATIVE ERROR 

The relative error (ε) was calculated for all sampling strategies using the following equation: 

 ; = 	�<=>?#=@.	@?><<>AB	C#D=AE − �EF@	@?><<>AB	C#D=AE
�EF@	@?><<>AB	C#D=AE  

Eq. 3.3 

For the 24 hour/48 hour sampling period, this relative error could be calculated for any 

estimated EF, based on a number (n) of 24 hour/48 hour periods. These n 24 hour/48 hour 

periods were randomly picked from all possible 24 hour/48 hour periods calculated in 

section 3.1.2.2 and n could not be greater than the maximum number of possibilities 

calculated in section 3.1.2.2. These periods did not have to be consecutive. An example of a 

plot of the relative error ε against the number (n) of 24 hour periods for one simulation is 

seen in Figure 3.3. 
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Figure 3.3. Relative error (ε) between the estimated emission factor and the true emission factor versus the number (n) of 

24 h hour periods for one simulation. 

The accuracy of the estimated EF as a function of the number of 7 day periods was assessed 

in the same way as for the number of 24 h and 48 hour sampling periods. As a result, 138 

(dataset 1) and 142 (dataset 2) 7 day moving averages were calculated, representing all 

possible 7 consecutive measuring day periods starting between 10 and 11 a.m. and not 

starting in weekends. The maximum of non-overlapping periods in dataset 1 and 2 were 27 

and 28, respectively. Thus, a monitoring campaign could exist of n random non-overlapping 

and not necessarily consecutive weeks, with a maximum of n = 27 (dataset 1) or n = 28 

(dataset 2). As for the 24 hour and 48 hour sampling campaign, all of the hourly ERs over the 

n 7 day periods were averaged for each n. 

A grab sampling campaign could consist of 1 to n grab samples. However, there were 1244 

and 1258 possible single grab samples between 9 a.m. and 5 p.m. on working days in 

respectively dataset 1 and dataset 2. Taking a lot of grab samples is not very practical. In 

order to mimic a practical grab sampling campaign, 1 to 100 random grab samples were 

taken from the 1244 or 1258 possible grab samples. For each n, the n grab samples were 
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averaged to obtain an estimated ER and then converted to kg year
-1

 (animal place)
-1

. This 

resulted in 100 estimates, one for each value of n. 

The accuracy for the long-term weekly grab sampling strategy was determined for taking 

weekly grab samples on a random working day. So, this means that a grab sample would be 

taken on n consecutive weeks, each week on a random working day. This was simulated by 

combining the daytime values of the weekdays per week and taking n weekly grab samples 

from that combination during 1 to n weeks, starting on a random week. For each value of n, 

the values from the n weekly grab samples were averaged and then converted to kg year
-1

 

(animal place)
-1

. This resulted in 35 (dataset 1) and 34 (dataset 2) estimated EFs. 

For each sampling strategy and for each value of n, 1000 simulations were executed, yielding 

a distribution of the relative errors as a function of the number of sampling periods. 

Subsequently, the average (µ) and the standard deviation (σ) of this distribution were 

calculated for each value of n. The uncertainty bounds for ε are given by µ - 2σ and µ + 2σ. If 

the distribution of the relative error as a function of the number of sampling periods is 

normally distributed, the uncertainty bounds are the 95 % confidence interval around the 

mean. This was checked for each value of n using the Kolmogorov-Smirnov test. 

3.1.2.4 ESTIMATION OF COSTS AND WORKING TIME FOR THE REDUCED SAMPLING STRATEGIES 

The calculations of the measuring costs associated with the use of reduced sampling 

strategies were performed using the following cost estimations. The cost of using an Innova 

photoacoustic monitor was set at € 125 per day (24 hours). This included depreciation, 

calibration and upkeep of the equipment. The costs associated with the work of a technician 

were set at € 65 per hour. The overall costs were calculated for three different sampling 

strategies: the 24 hour continuous sampling strategy, the 7 days continuous sampling 

strategy and the random grab sampling strategy. The number of 24 hour samples, 7 day 

samples and random grab sampling periods needed to estimate an EF with a relative error 

below 15 % was based on the results from section 3.1.2.3. For all strategies it was assumed 

that it took one hour to get to the farm where the measurements are being performed (and 

one hour to get back to the workplace), that four hours were needed to set up the 

measuring system and install the sampling lines and one hour to dismantle the measuring 

system and the sampling lines afterwards (Table 3.6). For the short-term strategies (e.g. 24 
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hour and random grab sampling), no extra visits were deemed necessary. For the 7 day 

sampling strategy, it was assumed that the technician had to visit the farm one extra time to 

check the measuring setup. A comparison was also made with a complete measuring 

campaign as mostly used in Flanders to determine emission factors. Such a measuring 

campaign consists of 2 consecutive fattening periods. For the calculations, it was assumed 

that each fattening period lasted 135 days. Therefore, the working hours needed to sample 

for 270 consecutive days are also calculated. It was assumed that the technician had to visit 

the farm once every week to check the measuring setup. For all cases, no working time or 

costs were calculated for data processing and reporting. Subsequently, the maximum 

number of emission factors that could be estimated using the 24 hour sampling strategy, the 

7 day period sampling strategy and the random grab sampling strategy was determined, 

based on the calculations for the measuring costs. Again, a comparison was made with a 

complete measuring campaign. 

3.1.3 RESULTS 

3.1.3.1 EFFECT OF THE DIFFERENT SAMPLING STRATEGIES 

When all possible estimates (Table 3.2) were taken into account, similar outcomes were 

found for the single grab (Figure 3.4), the 24 hour (Figure 3.5), the 48 hour (Figure 3.6) and 

the 7 day sampling strategies (Figure 3.7). Except for the single grab sampling strategy in 

dataset 1, when taking one estimate, the chance of obtaining an estimated EF that is within 

15 % of the true EF was higher than the chance of obtaining an estimated EF that is more 

than 15 % higher than the true EF (Table 3.3). Except for the single grab sampling strategy in 

dataset 2, these sampling strategies had a higher chance of estimating an EF that is more 

than 15 % higher than the true EF than estimating an EF that is more than 15 % lower than 

the true EF, based on one estimate. For the long-term weekly grab sampling strategy (Figure 

3.8 & Figure 3.9), the chance of obtaining an estimated EF that is within 15 % of the true EF 

was 100 % for both datasets and for all days (data not shown).  
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Figure 3.4. Histograms of all possible outcomes from the single grab sampling strategy for dataset 1 (left) and dataset 2 

(right). The vertical lines indicate the true NH3 EF. 

 

Figure 3.5. Histograms of all possible outcomes from the 24 h sampling strategy for dataset 1 (left) and dataset 2 (right). The 

vertical lines indicate the true NH3 EF. 

For the single grab, the 24 hour, the 48 hour and the 7 day sampling strategy, the precision 

(defined as the dispersion of the histograms) for the results from dataset 2 was higher than 

for the results from dataset 1. For the long-term weekly grab sampling strategy, no apparent 

difference in precision could be found between both datasets.  
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Table 3.3. Percentage of values lower than 85 % of the true EF, between 85 % and 115 % of the true EF and larger than 115 

% of the true EF for all possible estimates for the different sampling strategies. 

Sampling 

protocol 

 < 0.85 x True EF >= 0.85 x True EF & 

<= 1.15 x True EF 

> 1.15 x True EF 

single grab 

sampling 

dataset 1 26.8 28.6 44.6 

dataset 2 32.8 35.6 31.6 

24 hour 

sampling 

dataset 1 25.2 38.3 36.5 

dataset 2 25.0 44.0 31.0 

48 hour 

sampling 

dataset 1 22.2 40.3 37.5 

dataset 2 22.4 45.9 31.8 

7 day 

sampling 

dataset 1 25.4 41.3 33.3 

dataset 2 23.2 43.0 33.8 

 

 

Figure 3.6. Histograms of all possible outcomes from the 48 h sampling strategy for dataset 1 (left) and dataset 2 (right). The 

vertical lines indicate the true NH3 EF. 
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Figure 3.7. Histograms of all possible outcomes from the 7 d period sampling strategy for dataset 1 (left) and dataset 2 

(right). The vertical lines indicate the true NH3 EF. 

 

Figure 3.8. Histograms of all possible outcomes from implementing the long-term (32, 33 or 34 weeks, depending on the 

day of the week) weekly grab sampling strategy for dataset 1. The first seven plots show the outcome per day of the week, 

the last plot shows the result for a random working day. The vertical lines indicate the true NH3 EF. 
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Figure 3.9. Histograms of all possible outcomes from implementing the long-term (31, 33 or 34 weeks, depending on the 

day of the week) weekly grab sampling strategy for dataset 2. The first seven plots show the outcome per day of the week, 

the last plot shows the result for a random working day. The vertical lines indicate the true NH3 EF. 

3.1.3.2 ACCURACY AS FUNCTION OF SAMPLING FREQUENCY 

For each sampling strategy, it was checked for which values of n, the 1000 relative errors (ε) 

per value of n were normally distributed (Table 3.4). If so, for these values of n, the 

uncertainty bounds were the bounds of the 95 % confidence interval around the average. 

Table 3.4. Values of n for which the 1000 relative errors (ε) per value of n are normally distributed. 

 dataset 1 dataset 2 

Single grab n>1 all n 

24 hour 2<n<113 1<n<114 

48 hour 3<n<70 1<n<83 

7 day n>2 1<n<27 

long term weekly n>32 n<5 & n>22 

 

Performing a sampling campaign based on 10 random grab samples (n = 10), 24 hour, 48 

hour or 7 day sampling periods or weekly grab samples for 10 consecutive weeks yielded an 

estimate of the EF with the uncertainty bounds between -39 % and 48 % (Table 3.5). If the 
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number of random 24 hour, 48 hour or 7 day sampling periods was increased, the relative 

error decreased (Figure 3.10, Figure 3.11 & Figure 3.12). 

Table 3.5. Relative error intervals of an estimated EF, based on 10 (n=10) random grab samples, 24 hour, 48 hour or 7 day 

sampling periods or weekly grab samples for 10 consecutive weeks. 

 dataset 1 dataset 2 

Single grab between -20 % and 33 %* between -24 % and 23 %* 

24 hour between -21 % and 23 %* between -19 % and 24 %* 

48 hour between -19 % and 21 %* between -16 % and 24 %* 

7 day between -15 % and 18 %* between -12 % and 20 %* 

long term weekly between -37 % and 48 % between -39 % and 35 % 

* The relative error has a 95 % chance of lying between these values. 

 

Figure 3.10. Uncertainty bounds of the relative error (ε) as a function of the number (n) of 24 hour sampling periods, based 

on 1000 iterations. The bold dotted line represents the mean relative error as a function of the number (n) of 24 hour 

sampling periods 
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Figure 3.11. Uncertainty bounds of the relative error (ε) as a function of the number (n) of 48 hour sampling periods, based 

on 1000 iterations. The bold dotted line represents the mean relative error as a function of the number (n) of 48 hour 

sampling periods 

 

Figure 3.12. Uncertainty bounds of the relative error (ε) as a function of the number (n) of 7 day sampling periods, based on 

1000 iterations. The bold dotted line represents the mean relative error as a function of the number (n) of 7 day sampling 

periods 
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In order to reduce the relative error to maximum ± 15 % for the single grab sampling 

strategy (Figure 3.13), 84 (dataset 1) and 27 (dataset 2) random grab samples needed to be 

taken. Taking 100 random grab samples reduced the relative error further down to -1 % and 

14 % (dataset 1) and -8 % and 7 % (dataset 2). If more grab samples were taken, the accuracy 

only improved slightly. In order to reduce the relative error to maximum ± 15 % for the long-

term weekly grab sampling strategy (Figure 3.14), weekly grab samples had to be taken 

during 32 (dataset 1) and 28 (dataset 2) consecutive weeks. 

 

Figure 3.13. Uncertainty bounds of the relative error (ε) as a function of the number (n) of random grab samples, based on 

1000 iterations. The bold dotted line represents the mean relative error as a function of the number (n) of random grab 

samples. 

For the 24 hour and 48 hour sampling strategies (Figure 3.10 & Figure 3.11), all 4 graphs 

showed a small positive bias. This bias is due to the fact that these sampling campaigns only 

take into account hour measurements started on specific days, while the true EF is based on 

continuous data over all days of the week. Furthermore, the lower and upper uncertainty 

bounds coincided for all 4 graphs. This is because, for each of the 1000 iterations, there is 

only one way to sample the maximum of n 24/48 hour sampling periods. In contrast to the 

previous sampling strategies, the lower and upper uncertainty bounds did not coincide for 

both graphs (Figure 3.12) when the maximum number of 7 day periods was reached. This is 
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because a 27 or 28 week sampling campaign can start on each working day of the week. 

Therefore, the estimates between mimicked campaigns will differ depending on which day 

of the week the campaign started. If the maximum number of single grab samples would be 

taken into account, the lower and upper uncertainty bounds would coincide for both graphs 

(Figure 3.13). As for the 7 day sampling strategy, the lower and upper uncertainty bounds for 

the weekly grab sampling strategy (Figure 3.14) did not coincide since the number of 

possible ways to conduct a weekly grab sampling campaign of 35 (dataset 1) or 34 (dataset 

2) consecutive weeks is almost infinite. 

 

 

Figure 3.14. Uncertainty bounds of the relative error (ε) as a function of the number (n) of weekly grab samples, based on 

1000 iterations. The bold dotted line represents the mean relative error as a function of the number (n) of weekly grab 

samples. 

3.1.3.3 ESTIMATION OF COSTS AND WORKING TIME FOR THE REDUCED SAMPLING STRATEGIES 

The working time needed to take one 24 hour sample, one 7 day sample, one random grab 

sample and one complete measuring campaign, taking into account transport, set-up, 

(control) and dismantle, was calculated as well as the number of days an Innova monitor is 

needed (Table 3.6). 
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Table 3.6. Work and measurement hours needed for one 24 hour period, one 7 day period, one random grab sample and 

one full measuring campaign. 

 Hours needed 

 24 hour 

sampling 

strategy 

7 day 

sampling 

strategy 

Random grab 

sampling 

strategy 

Complete 

measuring 

campaign
1
 

Technician     

   Set-up 4 4 4 4 

   Control 0 2 0 76 

   Dismantle 2 2 2 2 

   Transport 4 6 2 80 

Innova     

   Days needed
2
 1,33 7,33 0,38 270,33 

1
 It was assumed that a complete measuring campaign consisted of 240 days. 

2
 Not only the measuring period, but also the time during transport and set-up/dismantling is taken into 

account. 

Based on Table 3.6, the costs were calculated for the different sampling strategies, taking 

into account the number of periods needed to obtain a good estimate (i.e. an estimate of 

the emission factor with a relative error below 15 %), calculated in section 3.1.3.2 (Table 

3.7). The 24 hour sampling strategy was the most cost-effective one to assess the EF of the 

conventional housing system (dataset 1, n = 21) in this study. The use of this strategy gave a 

61 % reduction in costs compared to a complete measuring campaign. Using the 7 day 

sampling strategy for dataset 1 (n = 13) would result in higher costs as compared to the 24 

hour sampling strategy, but still would give a 46 % reduction in comparison with the 

complete measuring campaign. Since the number (n = 84) of grab samples that had to be 

taken to get a good estimate was high, performing a random grab sampling strategy was 

more expensive than a complete measuring campaign for this dataset. However, for the LAE 

housing system (dataset 2), the number (n = 27) of grab samples, needed to obtain a good 

estimate, was much lower in this study. Therefore, this sampling strategy was the most cost-

effective one and gave a 65 % reduction in costs compared to a complete measuring 

campaign. The use of the 24 hour sampling strategy (n = 24) or the 7 day period strategy (n = 

15) also reduced the costs of the sampling campaign considerably. 
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Table 3.7. Estimated costs associated with one 24 hour period, one 7 day period, one random grab sample and one full 

measuring campaign and with a measuring campaign with a good1 estimate. 

 Costs (€) 

 24 hour 

sampling 

strategy 

7 day 

sampling 

strategy 

Random grab 

sampling 

strategy 

Complete 

measuring 

campaign
2
 

Technician     

   Set-up 260 260 260 260 

   Control 0 130 0 4940 

   Dismantle 130 130 130 130 

   Transport 260 390 130 5200 

Innova
3
 166 916 47 33791 

Total for 1 period 816 1826 567 44321 

Total for good
1
 estimate     

   Dataset 1 17141 23741 47618 44321 

   Dataset 2 19590 27394 15306 44321 

1
 A good estimate was defined as an estimate of the emission factor with a relative error below ± 15 %. 

2
 It was assumed that a complete measuring campaign consisted of 240 days. 

3
 Not only the measuring period, but also the time during transport and set-up/dismantling is taken into 

account. 

The maximum number of barns for which an emission factors could be estimated with one 

Innova monitor, based on Table 3.6 and the number of periods needed to estimate an 

emission factor with a relative error below 15 %, was 1.35 for a complete measuring 

campaign of 240 days. For the 24 hour sampling strategy, there are 208 possible 24 hour 

periods in a year, fulfilling the criteria as determined in section 2.1. Depending on the 

dataset, the Innova is needed 42 (dataset 1) or 48 (dataset 2) days to estimate an emission 

factor with a relative error below 15 %. When time for repairs, maintenance and for 

calibration is not taken into account, 5 (dataset 1) or 4.3 (dataset 2) emission factors can be 

estimated each year with one Innova monitor following the 24 hour period sampling 

strategy. For the 7 day period sampling strategy and when assuming that no new 7 day 

period could start on the same day as another 7 day period ended, there are 43 possible 7 

day periods for the year 2014. Therefore, 3.3 (dataset 1) or 2.9 (dataset 2) emission factors 
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can be estimated each year with one Innova monitor following the 7 day period sampling 

strategy. Finally, for the random grab sampling, assuming that maximum one grab sample 

can be taken each day, there are 260 possible days in a year to take grab samples. Therefore, 

3.1 (dataset 1) or 9.6 (dataset 2) emission factors can be estimated each year with one 

Innova monitor following the grab sampling strategy. 

3.1.4 DISCUSSION 

3.1.4.1 EVALUATION OF THE DIFFERENT SAMPLING STRATEGIES 

Estimations of the NH3 EF based on just one single grab sample, one 24 hour period, one 48 

hour period or one 7 day period exhibited a relatively high chance (> 30 %) to overestimate 

the true EF. At first glance it seems striking that generally, with the exception of the single 

grab sampling strategy in dataset 2, there was a higher chance to overestimate the true EF 

than to underestimate it. 

When taking a closer look at the initial dataset, multiple explanations for this outcome can 

be found. It can be seen in Figure 3.1 that the NH3 emission increased more drastically 

towards the end of the fattening periods for both housing systems (although this was not 

equally pronounced in all fattening periods). For example, the NH3 emission in fattening 

period 1 for the conventional housing system (Figure 3.1A) increased rather abruptly 

between approximately day 30 and day 50. When only one 24 hour or 48 hour sample is 

taken during that fattening period, there is a higher chance for that sample to be taken in a 

period with relatively higher NH3 emission since there are more periods with relatively 

higher NH3 emission as compared to periods with relatively lower NH3 emission. If an EF 

would be estimated only on the basis of that sample, the estimated EF has, consequently, a 

higher chance to be larger than the true EF.  

The same explanation applies to the one week sampling strategy. Since there is a higher 

chance for a one week period to be taken in a period with higher NH3 emission, the 

estimated EF during that period has a higher chance to overestimate the true EF. This 

explanation is also valid for the single grab sampling strategy. However, for this reduced 

sampling strategy, the limited time period when the sampling can be performed (between 9 

a.m. and 5 p.m.) also plays a role. During these hours, the NH3 emissions are higher than 

during night hours (Figure 3.15). Higher NH3 emissions during daytime as compared to night 
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time have also been found by other researchers (Aarnink et al., 1996; Blanes-Vidal et al., 

2008; Ngwabie et al., 2011) and probably originate from increased urination behaviour of 

the pigs (Aarnink et al., 1996) and higher air movements over the manure surface during 

daytime (Blanes-Vidal et al., 2008). Since the true EF takes into account both (higher) day 

and (lower) night values, it is not surprising that, depending on the dataset, approximately 

30 % or 45 % of the grab samples overestimated the true EF with more than 15 %.  

The absolute difference between day and night values for both systems (Figure 3.15) may 

explain the different results between the two datasets for all short-term sampling strategies. 

The smaller difference between day and night values for dataset 2 (LAE) gave rise to a better 

precision (defined as the dispersion of the histograms) as compared to dataset 1 

(conventional). 

 

Figure 3.15. Mean emission rate for days 80 to 100 in fattening period 2 for the conventional (left) and LAE (right) housing 

system. Error bars indicate the standard deviations. 

The long-term weekly grab sampling strategy takes a grab sample every week and is 

therefore better equipped to capture the increase in NH3 emissions during a fattening 

period. However, as with the single grab sampling strategy, samples for the long-term 

weekly grab sampling strategy were only taken during daytime (between 9 a.m. and 5 p.m.). 
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Nevertheless, for all days and both datasets, all of the 1000 simulated long-term weekly grab 

sampling campaigns estimated an EF that is within 15 % of the true EF. This good accuracy 

for the long-term weekly grab sampling campaign probably originates from the fact that the 

increase in NH3 emissions during a fattening period is included in the data here. This 

indicates also that taking grab samples on a regular basis (on a specific day and/or once 

every week) during daytime can be enough to obtain an estimate of the EF that is within 15 

% of the true value. 

After evaluating all sampling strategies, one can decide that the use of only one grab sample, 

one 24 hour sample, one 48 hour sample or one 7 day sample has a relatively high chance of 

overestimating the true EF. So, much caution has to be taken when estimating an EF based 

on only one sample of a short-term sampling strategy. Furthermore, since the spread on the 

estimated EFs was larger for dataset 1, the use of only one sample is certainly not advisable 

in situations where large differences in NH3 emissions between days and between hours 

exist. Of course, in practice, no NH3 emissions are determined on such short periods. 

Therefore, in section 3.1.3.2, the accuracy as a function of the number of samples was 

determined. The estimated EF based on one long-term weekly grab sample campaign was, in 

contrast to the other sampling strategies, much more precise and accurate. With one single 

long-term weekly grab sampling campaign, the estimated EF is within 15 % of the true EF.  

3.1.4.2 ACCURACY AS FUNCTION OF SAMPLING FREQUENCY 

It was shown that the long-term weekly grab sampling strategy yielded the best estimate of 

the true EF. However, this sampling strategy took the maximum number of weeks into 

account. Since sampling for such a long period would be costly, simulations were made to 

determine if a shorter sampling frequency (i.e. taking grab samples for fewer weeks) would 

also be sufficient. Since weekly grab sampling on a random working day yielded equally good 

results as weekly grab sampling on a specific day of the week, it was decided to test the 

shorter sampling frequency for a random working day only. Decreasing the number of 

consecutive sampling weeks increased the relative error gradually. For 15 weeks of sampling, 

the relative error was between -25 % and 25 % (Figure 3.14). With less than 15 sampling 

weeks, the relative error increased rapidly. If grab sampling was performed for 25 

consecutive weeks on a random working day, an EF was estimated with a the relative error 
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between -12 % and 25 % for dataset 1 and a relative error which has 95 % chance of lying 

between -17 % and 13 % for dataset 2. If the same number of grab samples was taken 

completely at random (i.e. not systematically one measurement every week), the resulting 

estimated EF had a relative error which has 95 % chance of lying between -10 % and 24 % 

(dataset 1) and between -16 % and 15 % (dataset 2). So, a similar accuracy was obtained 

with completely random grab samples as with grab samples every week. If the number of 

random grab samples or the number of consecutive weeks decreased even further, the 

random grab sampling strategy had a better accuracy as compared to the grab sampling 

each week (Figure 3.13 & Figure 3.14). 

If more information on the diurnal patterns is desirable, strategies based on grab samples 

cannot be used. Instead, the 24 hour, 48 hour or 7 day sampling strategy has to be used. 

These strategies can also be used to estimate an EF if multiple 24 hour, 48 hour or 7 day 

periods are taken. To get an estimated EF with a relative error below 15 %, 21 (dataset 1) or 

27 (dataset 2) 24 hour periods, 20 (dataset 1) or 29 (dataset 2) 48 hour periods or 13 

(dataset 1) or 15 (dataset 2) 7 day periods were necessary. It can be concluded that there is 

no big difference in the number of 24 or 48 hour periods that have to be sampled. The 

number of 7 day periods needed to get a good estimate of the EF is about 40 % lower than 

the number of 24 or 48 hour periods.  

For all the sampling strategies, investigated in this study, the mean relative error for each 

value of n, which can also be seen as the bias (an estimate of the systematic measurement 

error), was quite low. It was noticeable that the 24 hour, 48 hour and 7 day sampling 

strategies gave a higher bias for dataset 1 as compared to dataset 2. Similarly, the single 

grab and long-term weekly grab sampling strategies gave a higher bias for dataset 2 

compared to dataset 1. The latter can be explained by the smaller differences between the 

day and night values for the pig unit in dataset 2, as already mentioned in section 3.1.4.1. 

The reason why the 24 hour, 48 hour and 7 day sampling strategies gave a lower bias in 

dataset 2 is less clear. Since the bias remained almost constant for each sampling strategy, 

the precision of these sampling strategies increased with the number of sampling cases (n). 

This is because the relative error decreased when the number of sampling cases (n) 

increased. 
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3.1.4.3 ESTIMATION OF COSTS AND WORKING TIME FOR THE REDUCED SAMPLING STRATEGIES 

When deciding which strategy to use, the efforts and time needed to install and dismantle 

the measuring setup should also be taken into account. The most cost-effective method to 

estimate an EF with a relative error below 15 % was different for both datasets: 24 hour 

sampling strategy (twenty-one 24 hour periods) for dataset 1 and random grab sampling 

strategy (27 grab samples) for dataset 2. Since only two housing systems and two datasets 

were compared, it is not possible to decide if this difference is caused by the housing system 

or is rather a consequence of the smaller variations in NH3 emission obtained for the second 

dataset.  

Besides the costs benefits for the farmers and companies, reducing the sampling time also 

ensures a higher availability of the measuring equipment. This allows performing multiple 

measuring campaigns and assessments of mitigation techniques during a year. Again, 

different results were obtained for both datasets. For dataset 1, five emission factors could 

be estimated in one year using the 24 hour sampling strategy, whereas nearly double the 

number of emission factors could be estimated in dataset 2 using the random grab sampling 

strategy. 

3.1.4.4 GENERAL REMARKS 

All of the simulated sampling strategies in this study were entirely based on only two 

datasets. Therefore, the results and conclusions drawn in this study should be further tested 

with other datasets including other buildings. This could be verified in a follow up study 

where the same sampling strategies are applied to other long-term continuous datasets.  

Another very important remark to make is that the sampling strategies, proposed here, are 

only valid to estimate an EF for a certain barn and cannot be generalised to all barns of the 

same housing system. This in contrast to the reduced sampling strategies proposed by Ogink 

et al. (2011) or Mosquera and Ogink (2011). These authors determined a sampling strategy 

based on a limited number of measurements at multiple farms, in order to take into account 

the between-farm variance. Furthermore, these measurements had to be spread over time. 
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3.1.5 CONCLUSIONS 

Based on all simulations carried out in this study, one can conclude that the best strategy to 

get an estimated EF with a relative error below 15 % for dataset 1 is to sample during 21 

periods of 24 hour. Estimates with a relative error below ± 15 % for the long-term weekly 

grab sample strategy are only obtained when grab samples are taken during 32 consecutive 

weeks. For dataset 2, only 27 random grab samples are needed to obtain an estimated EF 

with a relative error below ± 15 %, which is equal to the number of 24 hour sampling periods 

needed.  
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4 TECHNICAL CHALLENGES FOR ENVIRONMENTAL RESEARCH IN 

LIVESTOCK BUILDINGS 

 

When performing gas, PM and ventilation experiments in animal houses, technical 

challenges need to be overcome and still technical problems can arise during measurements. 

This was also the case for the trials performed during this thesis. These challenges and 

problems can be the consequence of instrument-specific limitations of the measuring 

equipment (e.g. interfering gases or too narrow measuring range) or agriculture related 

challenges (e.g. presence of rats). Some problems can be easily fixed once the source of 

problem is found. For example, after repair of our data logger, ventilation rates were 

registered correctly. Other problems are far more challenging to solve. The focus of this 

chapter will be primarily on the limitations related to the measurement equipment used for 

the gas and PM measurements respectively. 





Technical challenges in livestock buildings 

___________________________________________________________________________ 

133 

 

4.1 GAS MEASUREMENTS 

All gas measurements in this thesis were performed using an Innova photoacoustic gas 

monitor 1314 connected to a multipoint sampler (CBISS, A1-Envirosciences ltd., Wirral, 

Merseyside, UK). The photoacoustic system (PAS) used in the experiments described in this 

thesis is equipped to measure NH3, CO2, N2O, CH4 and H2O and was cross-calibrated for the 

interference of all these gases onto the respective filters. 

The overall standard uncertainty
v
 on emissions in mechanically ventilated buildings, under 

very controlled circumstances, is reported to be between 5 to 12 % (Calvet et al., 2010; 

Gates et al., 2009). However, it is accepted that measurements of building emissions on a 

short time basis have an uncertainty in the range of 10 to 20 % (Calvet et al., 2013). Although 

the precision of photoacoustic techniques to measure ammonia concentrations is estimated 

to be around 2.5 % (Hinz & Linke, 1998), photoacoustic infrared spectrometers can suffer 

from inference from other (non)-measured gases and water vapour, leading to higher 

uncertainties (Calvet et al., 2013). It is believed that the uncertainties can even be higher 

than the proposed reduction targets (Hassouna et al., 2013). The narrow absorption bands 

of the optical filters give rise to a good selectivity. However, if a gas, not intended to 

measure with the PAS (non-target gas), absorbs infrared (IR) light at the same wavelength as 

the gas, intended to measure (target gas), the total IR absorbance at that wavelength will be 

higher and will be totally attributed to the target gas. Consequently, the concentration of the 

target gas will be overestimated (= interference). If the interfering gas is measured with a 

separate filter, cross-compensation can be performed, correcting the interference of the 

non-target gas on the target gas. However, absorption of IR light of another non-target gas 

on the filter of the interfering gas (leading to an apparent increase in concentration of the 

interfering gas) would ultimately lead to underestimation of the target gas (= cascade effect) 

(Hassouna et al., 2013). The interference between two target gases can be fully eliminated 

                                                      
v
 According to Calvet et al. (2013) uncertainty of measurement is defined as “a parameter that is associated 

with the result of that measurement. It characterizes the dispersion of the values that could reasonably be 

attributed to the quantity measured and thus has an inherent statistical basis. The parameter can be a standard 

deviation (standard uncertainty), or a confidence interval which is expected to encompass a certain fraction of 

the distribution of values (expanded uncertainty)”. 
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by the internal cross-compensation. However, the compensation of the cascade effect 

cannot be addressed by the internal cross-compensation. The cascade effect can potentially 

be estimated by a mathematical simulation (Zhao et al., 2012). Both under laboratory 

conditions and in practise in poultry and cattle barns, it has already been demonstrated that 

non-target gases can cause both overestimation through interference and underestimation 

through the cascade effect (Hassouna et al., 2013; Zhao et al., 2012). A visual example of 

interference and cascade effects is shown in Figure 4.1. 

 

Figure 4.1. From top to bottom are the IR absorption spectra of NH3, H2O, CO2, ethanol (EtOH), methanol (MeOH), N2O and 

CH4 with in orange boxes the filter centre and bandwidth for (from top to bottom) filter UA0976, SB0527, UA0982, UA0974, 

UA0936, UA0985 and UA0976. Situation 1: if a gas monitor is only equipped with filter UA0976 (NH3), the presence of 

MeOH (in this situation a non-target gas) in the air will cause additional absorption of IR at that filter regardless of the NH3 

concentration in the air. The NH3 concentration will be overestimated and this process is called interference. Situation 2: 

the gas monitor is equipped with filter UA0976 (NH3) and filter UA0936 (MeOH) and both filters are cross-compensated for 

each other. If EtOH (non-target gas) is present in the air, it will cause additional absorption of IR on the MeOH filter and the 

concentration of MeOH will be overestimated (= interference). Because the MeOH filter is cross-compensated for NH3, the 

(apparent!) contribution of MeOH to the NH3 concentration will be deducted. However, since the MeOH concentration is 

overestimated (due to interference of EtOH), too much will be deducted and the NH3 concentration will be underestimated. 

This is called the cascade effect (Figure adapted from Zhao et al. (2012)). 

The interference with water vapour has previously been described by other researchers and 

increases linearly with increasing water vapour concentrations in a range between 0 and 

30 000 ppmv for CO2 and CH4 and between 5 000 and 30 000 for N2O (Yamulki & Jarvis, 

1999). Since relative humidity inside livestock buildings is usually higher than 5 000 ppmv, 
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the non-linear relation between water vapour and N2O below 5 000 ppmv is not really an 

issue. 

To cope with these problems of over- and underestimation, it is necessary to include the 

analyser set-up, optical filters used and different management related parameters (e.g. 

animal feed) when publishing data (Hassouna et al., 2013). Of course, one should try to 

select the optimal filter configuration before performing the measurements. However, post 

measurement adjustments using mathematical simulations are a possible alternative to 

correct for non-target gas interferences (Zhao et al., 2012). 

Besides the problems directly associated with the measurement technique, Innova gas 

measurements, and especially NH3 measurements, can also be influenced by the adsorption 

of gases in the sampling lines. However, Shah et al. (2006) did not find a significant effect of 

tubing on NH3 adsorption (for 1 ppmv and 10 ppmv of NH3). In their experiment, 

polytetrafluoroethylene (PTFE) tubing (the kind of tubing used in this thesis) was included. 

Still, the high water solubility and polarity of NH3 can be a problem, causing it to adsorb onto 

various surfaces in the sampling system (such as filters, valves and pumps). This would give 

rise to time delays (“NH3 lag”) (Rom & Zhang, 2010). This problem can arise when 

sequentially measuring on multiple channels. It is of particular importance especially when 

the difference in NH3 concentrations between the different channels is large. A study by Rom 

and Zhang (2010) indicated that a substantial time delay exists when switching between 

channels with high and low NH3 concentrations. They concluded that measuring periods of 

12.5 to 25 minutes are needed in order to obtain reliable NH3 concentrations (Rom & Zhang, 

2010). 

Besides uncertainties and errors in measuring gas concentrations, measuring the ventilation 

rate, in order to calculate emissions, is also associated with errors. However, the errors 

associated with ventilation rate are beyond the scope of this discussion. More information, 

both for mechanical ventilation measurements and natural ventilation measurements, can 

be found in Calvet et al. (2013). 

In this thesis, problems with the Innova gas monitor were both a consequence of 

instrument-specific limitations and/or problems related to livestock indoor environments. 

The latter were associated with e.g. broken sample tubing due to rats or water condensation 
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in sample tubing due to electricity blackouts or defective heating ribbons. It seems 

impossible to totally exclude the possibility of these kinds of events to happen. As long as 

measurements will be performed, these problems will arise. Attention has to be paid in 

order to reduce the chance that these events occur. This can be done by, for example, 

protecting the sample tubing against rats or by making use of an uninterruptible power 

source to overcome short periods of time without electricity. Problems with NH3 lag are 

typically encountered in every measurement campaign. These problems can be overcome by 

measuring multiple times on the same channel. The other instrument-specific limitations 

were mainly encountered during the trial in the pig nursery (chapter 2.3). During this trial, 

the Innova reported negative NH3 concentrations. This is of course physically not possible. In 

an attempt to exclude as much potential causes as possible the dust filters, sampling tubes, 

length of the sample tubes and Innova gas monitor were replaced or changed between 

compartments with negative NH3 concentrations and compartments with normal NH3 

concentrations. However, the problem remained for some specific compartments. This was 

an indication that the problems were not Innova specific but were rather compartment 

specific. Together with the negative NH3 concentrations, unusually high indoor CH4 

concentrations were measured. During this trial, concentrations up to 2500 ppmv were 

obtained when measuring at animal height (0.8 m above the slatted floor). Such 

concentrations exceed the measuring range of the Innova or more specifically the range of 

CH4 concentrations at which the cross-compensation with the other gases is linear. In order 

to exclude the possibility on a non-target gas absorbing IR light at the same wavelength of 

CH4 and causing a cascade effect on NH3 concentrations, aerial samples were taken and sent 

for gas chromatography (GC) analysis. The comparison between the CH4 concentrations, 

measured above the manure drain and at animal height, obtained with the Innova (average 

over 20 minutes, approximately 6 measurements) and with GC are shown in Table 4.1. 

In general, methane concentrations measured with the Innova or GC corresponded well. 

However, a tendency of the Innova to overestimate CH4 concentrations at high 

concentrations and to underestimate CH4 at low concentrations can be seen. This 

overestimation has also been reported by other authors (Osada et al., 1998). The results 

from this small experiment show that the high CH4 indoor concentrations as reported by the 

Innova are not caused by interference from a non-target gas. This also means that the 
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negative NH3 indoor concentrations are not due to a cascade effect caused by interference 

of a non-target gas on the CH4 filter. It is possible that the cross-compensation between CH4 

and the other gases is no longer linear at high CH4 concentrations, leading to 

overcompensation of the influence of CH4 on the other gas concentrations. This is illustrated 

in Figure 4.2 where the CH4 indoor concentrations over one day are compared with the 

other indoor gas concentrations. From this figure, it can be seen that, when CH4 

concentration increases to very high values, the NH3 and N2O concentrations decrease (up to 

even physically impossible negative values). The effect on CO2 concentrations is less clear.  

Table 4.1. Comparison between the CH4 concentrations obtained with the Innova and with GC. 

    CH4 concentration (ppmv) 

    Measuring device 

Sample Compartment Location
1
  Innova²  GC 

1 A manure drain  3550 ± 230  2948 

2 B manure drain  4210 ± 582  3856 

3 A animal height  810 ± 141  1229 

4 B animal height  1060 ± 148  1318 

1
 animal height: 0.8 m above the slatted floor. 

2
 average over 20 minutes, approximately 6 measurements. 

The source of the high CH4 indoor concentrations was found to be the exterior underground 

manure pit, which was in direct air contact with the compartments. This direct contact was 

caused by the lack of a siphon in the piping between the manure drain in the compartment 

and the exterior manure pit. Because it was impossible to correct the aberrant NH3 and N2O 

concentrations and there were also doubts about the correctness of the CO2 concentrations, 

gas indoor concentrations were not taken into account when comparing different feed forms 

and grinding intensities (chapter 2.3). 
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Figure 4.2. Correlation of the observed CH4 indoor concentrations with the observed indoor concentrations of NH3, N2O and 

CO2 at high CH4 indoor concentrations. Data from August 8, 2013 10 a.m. till August 9, 2013 9 a.m. 

From the experiences gained during our measuring campaigns, one can conclude that it is 

very important to minimise the chance of problems related to agricultural settings to 

happen. Furthermore, further research should be performed on determining the measuring 
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ranges of the different gases, measured by the Innova, and the ranges in which the cross-

compensation between these different gases is still performed correctly. Ideally, to measure 

in an agricultural environment, the gas detection systems should be capable of measuring 

continuously and fast, chemically inert and durable, portable and remotely accessible, 

preferably at a low investment and operating cost. As long as such a method does not exist, 

control measurements will have to be performed in order to check the proper functioning of 

the measuring devices. An overview of the capabilities, limitations and applicability to NH3 

and GHGs in an agricultural environment of the currently available measurement methods 

can be found in a recent review by Hu et al. (2014). 

 

4.2 PM MEASUREMENTS 

The main problem associated with PM measurement inside livestock buildings, are the high 

PM concentrations encountered inside livestock buildings as compared to ambient air. This 

makes it almost impossible to get good results with a gravimetric sampling instrument with 

an impaction plate pre-separator (IPS), the reference instrument for measuring PM in 

ambient air. High PM concentrations lead to overloading of the IPS, causing larger particles 

to bounce off onto the filter, resulting in an overestimation of the PM concentrations (Zhao 

et al., 2009). Buser et al. (2001) suggested maximum PM10 (138.3 µg m
-3

) and PM2.5 

(11.9 µg m
-3

) concentrations at which the reference instrument could be used in an 

agricultural environment. Zhao et al. (2009) showed that a PM2.5 IPS in a poultry house gets 

overloaded in less than an hour, while a PM10 IPS did not get overloaded after 24 hours. 

Switching to another type of pre-separator (e.g. a cyclone pre-separator) could potentially 

solve this problem (Zhao et al., 2009). The lack of equivalence between a reference 

instrument and the Grimm spectrometers (Van Ransbeeck et al., 2013b) for PM2.5 and PM1 

concentrations from livestock buildings can be explained by the fact that the PM indoor 

concentrations are usually higher than the values proposed by Buser et al. (2001). This leads 

to overloading of a PM2.5 IPS at a very short time. Van Ransbeeck et al. (2013b) did find 

equivalence between these two devices for PM10 concentrations from livestock buildings 

although slightly higher PM10 concentrations were measured with the spectrometers (Van 

Ransbeeck et al., 2013b). Comparison of a PM10 gravimetric cyclone sampler and another 
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light scattering device (DustTrak aerosol monitor, TSI Incorporated, Shoreview, MN, U.S.A.) 

showed much lower PM10 concentrations measured by the light scattering device (Cambra-

López et al., 2012). 

Because of the many advantages (real-time and continuous measurements, particle size 

distribution, less overloading problems and portable) associated with the use of 

spectrometers, we used Grimm spectrometers and GrayWolf Particle Counters in our 

experiments. The GrayWolf Particle Counters were only used in the first trial (chapter 2.1). 

The latter showed problems due to overloading of the protective filters. Therefore the 

measuring interval was increased from 1 to 15 minutes and the instruments were no longer 

used in future trials. The main problem associated with the use of the Grimm spectrometers, 

was the breakdown of the pump (due to the high PM concentrations). The silicon beads also 

had to be frequently replaced (due to high relative humidity). Therefore, this device could 

not measure autonomously for a long time. It is also important to notice that spectrometers 

(or light scattering devices) are factory calibrated with a “standard” type of PM. This 

“standard” type can differ from PM found in livestock buildings. In particular, differences in 

particle shape, size and density are expected. Therefore, sampling bias may occur (Cambra-

López et al., 2012). 

There is still a need for a reference method for sampling indoor PM concentrations and 

probably even more specific for sampling in an agricultural environment. As long as this 

method is not available, results from different studies should be compared with caution. 
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5 GENERAL DISCUSSION 

 

5.1 INTRODUCTION 

Intensification of agriculture and more specifically livestock farming, has led to increased 

pollutant (NH3, CO2, CH4, N2O and PM) emissions at a local level, thus increasing the impact. 

This has increased the need for mitigation techniques in order to decrease the adverse 

effects on the environment and human health. In an ideal world, these mitigation 

techniques should take into account the relations among the different pollutants and the 

way the different pollutants can affect each other. This could then lead to mitigation 

techniques which reduce a wide range of pollutants. Furthermore, preference should be 

given to affordable (source-oriented) mitigation techniques inside the barn which also 

improve the quality of the indoor climate. However, mitigation techniques mainly focus at a 

single pollutant and, since the reduction potential of (source-oriented) mitigation techniques 

inside the barn is typically lower, more expensive end-of-pipe techniques are frequently 

used. 

Therefore, the aim of this thesis was to investigate the influence of three source-oriented 

techniques on a wide range of pollutants by a multi-pollutant research approach and to 

examine the possible relations between the different pollutants. The assessment of reduced 

sampling strategies for gaseous emissions was also part of this thesis. This chapter starts 

with an assessment of the effectiveness of the tested source-oriented techniques and a 

number of reasons why source-oriented techniques should be further investigated in the 

future. Next, the advantages, both in time and money, of reduced sampling strategies are 

discussed. At the end of this chapter, an overview is given of possible topics for further 

research with a focus on source-oriented techniques and reduced sampling strategies. 
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5.2 EFFECTIVENESS AND RELEVANCE OF SOURCE-ORIENTED TECHNIQUES 

In this dissertation, we could not find a positive effect of the studied cleaning protocols, 

housing systems (chapter 2.1) and diets (chapter 2.3) in reducing pollutant concentrations in 

pig barns. A more elaborate cleaning protocol did not result in significantly lower indoor 

pollutant concentrations and therefore, in this case, cannot be seen as an effective 

management strategy to reduce indoor concentrations (and most probably also emissions). 

Nevertheless, it can be expected that the extra steps in the more elaborate cleaning 

protocol, especially the disinfection step, reduces the number of bacteria inside livestock 

houses. However, other studies with daily fogging of disinfectants in a pig farrowing - 

weaning room did show a reduction of fungal spores, but not a reduction in airborne aerobic 

bacteria (Costa et al., 2014). Conversely, another study by Mannion et al. (2007) has shown 

that the application of cleaning and disinfection at pig farms can reduce the level of 

Enterobacteriaceae on the floor of the pens although the feeders and drinkers contained as 

many, or even higher numbers of Enterobacteriaceae after cleaning as compared to before 

cleaning. This could be the consequence rather of careless disinfection practices or due to 

the difficult accessibility of some edges of the feeders and drinkers. It was also possible that 

the use of pressure washers on the floor led to splashing of contaminated water and faeces 

onto the feeders and drinkers. Furthermore, cleaning practices increased the Salmonella 

contamination on farms with already high Salmonella prevalence (serological Salmonella 

prevalence of more than 50 % as determined by meat juice ELISA on finishing pigs at 

slaughter), but reduced the contamination of farms with low Salmonella contamination 

(serological Salmonella prevalence of less than 10 % as determined by meat juice ELISA on 

finishing pigs at slaughter). The authors did not give a further explanation for this 

remarkable finding (Mannion et al., 2007). Recent research also pinpointed the drinking-

nipples on a broiler farm as critical locations for cleaning and disinfection (K. Luyckx, ILVO, 

personal communication; Luyckx et al., 2013). 

In this dissertation, the use of an officially approved low-ammonia-emission housing system 

did not result in significantly lower NH3 indoor concentrations as compared to a 

conventional housing system. This indicates that it is not solely the housing system that 

determines the NH3 concentrations, but that other factors also play an important role. In this 

respect, management is probably important although the influence of management 
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practices on the emission factor of a given housing system was not investigated in this 

dissertation. The lack of effect on the other pollutants, except for the obtained reduction in 

CH4 indoor concentrations, could have been expected since this housing system was not 

designed to reduce these pollutants. However, if future legislation requires a reduction of 

PM, it seems unlikely that this housing system will provide solutions. 

Surprisingly, feeding pellets instead of meal to piglets dramatically increased indoor PM 

concentrations in the study conducted in this dissertation. This is in contradiction with 

previous research (Bundy & Hazen, 1975; Li et al., 1993; Zeitler et al., 1987), which was 

however conducted more than 20 years ago. Questions can be raised regarding the 

comparability of the dust monitors in the present and the older studies and their ensuing 

results. Furthermore, the results from the other studies are not always unambiguous. Zeitler 

et al. (1987) for example found differences in PM for floor feeding, but not for feeding with 

self-feeders, which was the type of feeders used in the study in this dissertation. With the 

exception of this study, recently no studies reported the influence of feed form on indoor 

PM concentrations. The feed efficiency for piglets on the pelleted diets however was much 

better as compared to the piglets on the meal diets. This makes it difficult to give proper 

advice to the livestock farmers. As long as no specific legislation regarding PM emissions or 

PM indoor concentrations in an agricultural environment or, more specifically, inside 

livestock houses are in force, farmers probably will favour the use of pellets for economic 

reasons. Because of the better feed efficiency (G:F = 0.77), growing a piglet from 8 to 25 kg 

required in our study 22.1 kg of pelleted feed compared to 26.2 kg of meal feed (G:F = 0.65). 

With a feed cost of 341 €/tonne (situation May 2014 in Flanders (Landbouw en Visserij,)) and 

a pelleting cost of approximately 7 €/tonne (I. Peeters, Aveve, personal communication), 

feeding pellets to a piglet (from 8 till 25 kg) would reduce the feed cost with 1.24 € per pig. It 

must be noted that the improvement in feed efficiency (+ 18 %) for pelleted diets as 

compared to meal diets found in this thesis and the G:F of both the meal and pelleted diets 

are high. The G:F of meal and pelleted diets are lower in other studies and improvements in 

G:F for pelleted diets are mostly around 5 % (Table 5.1). However, these improvements are 

almost never statistically significant. The observed differences can be a consequence of 

differences in ingredients of the diets, way of pelleting, genetics of the animals, farm 

management or other factors. This also implies that the differences found in PM indoor 
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concentrations between the diets can be different for diets with for example other 

ingredients or other pelleting techniques. Further research will be needed to validate the 

high difference in PM indoor concentrations for pelleted versus meal diets.  

Table 5.1. Effect on feed form on G:F ratio in different studies. 

Diet G:F
1
 Improvement Animals Reference 

Coarse meal 0.55  Piglets (Grosse Liesner et al., 2009) 

Very coarse Pellet 0.58 + 5.8 %  

Coarse pellet 0.60 + 8.9 %  

Fine pellet 0.58 + 6.4 %  

Very fine pellet 0.63 + 15.8 %  

Meal 0.39
a
  Growing pigs 

(30 kg - 60 kg) 

(O'Doherty et al., 2001) 

Pellet 0.41
b
 + 4.9 %  

Meal 0.33  Finishing pigs 

(60 kg - 88 kg) 

(O'Doherty et al., 2001) 

Pellet 0.35 + 4.6 %  

Meal 0.52  Starting pigs 

(20 - 40 kg) 

(Vande Ginste & De 

Schrijver, 1998) 

Pellet 0.51 - 2 %  

Meal 0.39  Growing pigs 

(40 - 70 kg) 

(Vande Ginste & De 

Schrijver, 1998) 

 Pellet 0.41 + 5.8 %  

Meal 0.30 + 4.7 % Finishing pigs 

(70 - 100 kg) 

(Vande Ginste & De 

Schrijver, 1998) 

Pellet 0.31   

Meal 0.65
a
  Piglets  

(8 - 23 kg) 

Chapter 2.3 

Pellet 0.77
b
 + 18.5 %  

1
 G:F ratios without a superscript are not significantly different (P > 0.05). 

As already discussed in chapter 2.3, the health of the farmer and workers in livestock 

buildings can be affected when exposed to high PM concentrations. The effects of high PM 

concentrations on the performance and the health of pigs are at the moment not totally 

clear (Chiba et al., 1985; Michiels et al., 2015; Takai et al., 1995; Wathes et al., 2004), but it 
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can be expected that lower PM concentrations are beneficial for the pigs. If the findings of 

our study are confirmed on other feeds, a difficult balance between economic reasons on 

the one hand and health and indoor air quality (and associated emissions) on the other hand 

exists for the choice of feeding pellets or meal diets to the pigs. Although the use of pellets 

gave rise to higher PM concentrations (and emissions), less pelleted feed was needed by the 

pigs to gain weight. Since the production of animal feed also has an environmental impact, 

this is another important parameter to include. Ideally, modifications of the pelleted feeds 

could lead to reduced PM generation while retaining good feed efficiency. 

 

The tested source-oriented techniques in this thesis did not result in significant reductions of 

pollutant concentrations. However, as described in chapter 1, other source-oriented 

techniques, and more general mitigation techniques inside the barn, have shown to be 

effective in the reduction of pollutant concentrations and/or emissions. One of the great 

advantages of the source-oriented techniques which are based on management (e.g. choice 

of feed, manure management or cleaning protocol), is that most of these techniques can be 

applied to a large group of farms, regardless the housing system. For example, reducing the 

crude protein level in the feed can be accomplished on virtually every farm, while end-of-

pipe techniques (e.g. wet air scrubbers) can only be used for farms with a central extraction 

point. This can be a very important aspect in Flanders, where upcoming legislation (e.g. PAN, 

see 1.3 Policy and legislation) will force a considerable group of farmers to reduce their 

pollutant emissions (in the case of PAN: NH3 emissions). Since the number of end-of-pipe 

techniques that can be implemented at an existing farm is rather limited (mainly air 

scrubbers) due to technical limitations, it is very important that farmers can choose from (a 

combination of) source-oriented techniques in order to keep up with legislation. Second, 

another advantage of management-based source-oriented techniques is that they can be 

combined at one farm at a relatively low cost. For example, the reduction of the crude 

protein level could be combined with another management-based source-oriented 

technique (e.g. frequent removal of manure from the pit). In that way, the relatively small 

individual reduction percentages (as compared with end-of-pipe techniques) from each 

individual management-based technique can be combined to get an overall acceptable 
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reduction percentage. However, in practice it is not always easy to quantify those individual 

reduction percentages. This is partly due to the fact that the application of source-oriented 

techniques tends to result in small reduction percentages which can be masked by other 

influencing parameters. Therefore, when assessing the overall reduction percentage of 

combined source-oriented techniques, it will be very difficult to determine the individual 

contribution of each technique. Third, as already stated several times before, source-

oriented techniques have a positive influence on the indoor climate. This can improve the 

working conditions for the farmer and living circumstances for the animals. Furthermore, if 

the hypothesis of the formation of secondary PM inside livestock buildings is confirmed, 

reducing indoor NH3 concentrations will also have a positive impact on indoor PM 

concentrations. With all these advantages in mind, it remains useful to investigate the 

effectiveness of source-oriented techniques in the future.  

 

5.3 REDUCED SAMPLING STRATEGIES 

Measuring NH3 concentrations and ventilation rates to determine emission factors is an 

essential process, both from a regulatory as from a scientific point of view. However, 

performing these measurements can be costly. The high costs associated with these 

measurements might be a hurdle for farmers and companies to develop innovative housing 

systems. Therefore, reduced sampling strategies, which estimate an emission factor on a 

reduced number of sampling days while keeping the error on the estimated emission factor 

at acceptable levels, could be a good alternative. In this dissertation (chapter 3), a number of 

reduced sampling strategies were tested and evaluated. These reduced sampling strategies 

determined the number of random periods needed to estimate an emission factor which 

had a relative error below 15 % without taking into account parameters that influence NH3 

emissions (e.g. temperature or total pig weight). It is possible that less 24 hour periods, 7 

day periods or random grab samples could be used if these periods were taken at regular 

intervals or at predefined time points. Instead of measuring on one farm, it would also be 

possible to measure at multiple farms. Doing so, the between-farm variance would be taken 

into account and the resulting estimated EF would then be valid for all barns of the same 

housing system. 
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The estimations made in chapter 3 show that the use of reduced sampling strategies can 

considerably reduce the cost of the measurements as well as the time needed to perform 

them. Hence, it becomes possible to estimate multiple emission factors in one year with the 

same equipment. However, these calculations were based on simulations, performed on 

only two datasets. More simulations on multiple datasets should be performed in order to 

determine whether the obtained results can be more widely applicable. Extra simulations on 

new datasets could also give more insight in the differences found between dataset 1 and 

dataset 2. Are these linked with a specific housing system or rather the consequence of the 

smaller variations in NH3 emission obtained for the second dataset? 
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5.4 FUTURE RESEARCH 

At the end of this thesis, plenty of challenges and opportunities remain to be solved.  

In order to perform correct and accurate measurements of gases and PM, it is necessary to 

keep searching for new techniques and reference methods. The applicability of already 

available instruments (e.g. Innova gas monitors) should be further investigated in order to 

determine the circumstances in which these instruments can be used. For example, a lab 

experiment with known NH3 and CH4 concentrations could give more information about the 

range in which the cross-compensation between those two gases is linear and correctly 

implemented by the Innova. Additionally, it is always highly recommended to perform 

additional measurements with an alternative measuring method at regular intervals to 

check the proper functioning of the used measuring devices. Furthermore, extra research 

should be conducted on the development of easy to maintain low-cost continuous 

measuring systems (e.g. electrochemical sensors or adapter laser systems). Reduced 

sampling strategies, together with low-cost continuous measuring systems, could 

significantly reduce the costs to measure the effectiveness of new low emission housing 

systems and techniques and consequently stimulate innovations in housing systems and 

techniques. Therefore, simulations on new datasets should be performed in order to 

validate the results obtained in chapter 3. Obtaining a reference method and sampling 

instrument for indoor measurements at high PM concentrations remains a challenge which 

needs to be tackled in the future. Apart from the mass or number concentrations of PM, 

future research will have to focus on the PSD of PM in agriculture and the nature (e.g. 

density, composition or source) of PM in agriculture. The latter could be accomplished by 

making use of techniques such as electron microscopy or other imaging techniques. The 

composition of secondary PM inside and in the vicinity of livestock buildings is another 

important aspect which has to be investigated in the future. 

Further research is also required in order to find the optimum between the feed efficiency 

of different diets and the PM (partly) generated by these different diets. In order to reduce 

the need for costly experimental trials inside pig buildings, the laboratory tests (drop and 

shake tests), as discussed in chapter 2.3, could be further modified and fine-tuned until a 

good correlation between the PM values obtained inside the barn and the PM values from 
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the laboratory tests is achieved. This would make it possible to test several different forms 

and compositions of diets in a standardised and cost efficient way. 

It remains useful to explore the effectiveness of source-oriented techniques. These 

techniques can reduce both the indoor pollutant concentrations as pollutant emissions, 

often at a lower cost than end-of-pipe techniques. Furthermore, it might be possible to 

combine these techniques to reach higher reduction percentages. However, care must be 

taken that, when combining different techniques, these techniques do not counteract each 

other. Therefore, the working principles of these techniques should be well documented and 

jointly evaluated. This evaluation should further take into account several pollutants and 

other important parameters, e.g. installation and operational costs. The reduction 

percentage, obtained with combined source-oriented techniques will also have to be 

established. 

The experience gained in this dissertation has also shown that it is not straightforward to 

combine different research goals into one measuring campaign. Therefore, it is strongly 

recommended to list the different needs of each research goal separately and to identify a 

common research approach which still corresponds to the individual needs of each project. 

However, financial and time-bound parameters will ensure that this task remains a difficult 

exercise in the future. 

Although this thesis already combined different measuring and analysis techniques and had 

a multidisciplinary approach, still a large number of relations between pollutants and other 

important aspects could not be investigated. Further research could, for example, 

investigate the link between PM emissions and the transmission of pathogens or the link 

between PM (and gas) emissions and odour issues. 
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APPENDIX A: LIST OF LAE HOUSING SYSTEMS FOR FATTENING PIGS IN 

FLANDERS 

 

The following LAE housing systems for fattening pigs were approved in the Ministerial 

Decree of May 31
th

, 2011 and have a maximal emission factor of 1.4 kg NH3 year
-1

 

animal place
-1

: 

System V4.1: Manure reception in aerated liquid manure and flushing with aerated liquid 

manure - pen area of 0.65 m² to 0.8 m² 

System V4.2: Manure reception in aerated manure and replacement of the aerated manure 

via a sewage system or another drainage which can be secluded from the air - pen area of 

0.65 m² to 0.8 m² 

System V4.3: Manure surface cooling system with 170 % cooling area and floors with 

increased manure passage 

System V4.4: Manure surface cooling system with 200 % cooling area and floors with 

increased manure passage, up to 0.8 m² emitting manure surface area per animal place 

System V4.5: Manure surface cooling system with 200 % cooling area and not with floors 

with increased manure passage, up to 0.6 m² emitting manure surface area per animal place 

System V4.6: Manure pit with (water) and manure channel with an overflow, eventually with 

sloped pit wall(s) and with floors with increased manure passage, up to 0.27 m² emitting 

manure surface area per animal place 

System V4.7: Manure pit with (water) and manure channel with an overflow, the latter with 

sloped pit wall(s) and not with floors with increased manure passage, up to 0.18 m² emitting 

manure surface area per animal place 

An eighth system was added to this list in the Ministerial Decree of March 26
th

, 2012: 
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System V4.8: separate discharge of manure and urine by means of a manure and liquid 

manure gutter with manure scraper 
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