

Graphene, Nanotubes and Quantum Dots-Based Nanotechnology

Fundamentals and Applications

Edited by:

Yarub Al-Douri

Woodhead Publishing Series in Electronic and Optical Materials


Graphene, Nanotubes and Quantum Dots-Based Nanotechnology

Fundamentals and Applications

Edited by

Yarub Al-Douri

Engineering Department, American University of Iraq-Sulaimani, Sulaimani, Kurdistan, Iraq; Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul, Turkey; Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia

Woodhead Publishing is an imprint of Elsevier 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2022 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-85457-3

For Information on all Woodhead Publishing publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans

Acquisitions Editor: Kayla Dos Santos

Editorial Project Manager: Fernanda A. Oliveira Production Project Manager: Kamesh Ramajogi

Cover Designer: Miles Hitchen

Typeset by Aptara, New Delhi, India

Contents

	Contributors Preface		
1	Intr	oduction to graphene	1
		ij Saxena, Michael Loong Peng Tan and Vijay K. Arora	
	1.1	Introduction	1
	1.2	Graphene the carbon allotrope	1
	1.3	Bandgap structure and carrier density	3
	1.4	Electron transport	9
	1.5	Ballistic transport	11
	1.6	Magneto-transport	12
	1.7	Quantum electrochemical potential	14
	1.8	Closing remarks	16
	Refe	rences	17
2	Synt	hesis methods of graphene	19
	Nur Hidayati Othman, Nur Hashimah Alias,		
	Munawar Zaman Shahruddin, Fauziah Marpani		
	and.	NorFarah Diana Aba	
	2.1	Introduction	19
	2.2		20
	2.3	Bottom-up approach	31
	2.4	Outlook and conclusions	36
	Refe	rences	37
3	Che	mical properties of graphene	43
	Muh	ammad Haziq Noor Akashah, Mohd Rafal Sahudin,	
	Rozi	na Abdul Rani, Patricia J. Scully and Siti Rabizah Makhsin	
	3.1	Introduction	43
	3.2	Chemical properties of graphene	44
	3.3	Graphene functionalization	51
	3.4	Chemical properties of graphene-based nanocomposites	55
	3.5	Characterization of chemical properties of graphene	58
	3.6	Summary	59
	Ackı	nowledgment	60
	Refe	rences	60

vi Contents

4		ysis and characterization of graphene	67
		d Asyadi Azam and Raja Noor Amalina Raja Seman	67
	4.1 4.2	Introduction Structural properties of graphene	67 68
	4.2	Characterization of graphene as electrode material	08
	4.5	for energy storage device	79
	4.4	Summary	85
		rences	85
5	Mor	phology and topography of graphene	89
	Ame	r Al-Nafiey	
	5.1	Introduction	89
	5.2	Morphology characterization of graphene	90
	5.3	Topography characterization of graphene	100
	5.4	Conclusions	103
	Refe	rences	104
6		hanical behavior of graphene conductive ink for	
		rable applications	107
	Shun	naila Karamat	
	6.1	Introduction	107
	6.2	Methodology	109
	6.3	Results and discussions	117
	6.4	Summary	120
	Refe	rences	122
7		ctionalized 2D materials	127
	Xiao	yang Cui, Yu Li Huang and Andrew Thye Shen Wee	
	7.1	Introduction	127
	7.2	Inorganic functionalization of 2D materials	127
	7.3	Molecular functionalization of 2D materials	135
	7.4	Defect engineering	143
	7.5	Future outlook	150
	Refe	rences	150
8	Graj	ohene oxide	155
	Sentl	nil Kumar Kandasamy	
	8.1	Historical development of graphene oxide	155
	8.2	Mechanism of formation	156
	8.3	Properties and emerging applications	158
	8.4	Present challenges and future opportunities of graphene oxide	164
	8.5	Conclusions	165
	Refe	rences	166

Contents vii

9	Grap	phene and optoelectronics	173
	Ali Abu Odeh, Wasan A.M. Al Taie and Yarub Al-Douri		
	9.1	Introduction and background	173
	9.2	Graphene synthesis and processing	175
	9.3	Graphene's optoelectronic properties	177
	9.4	Graphene-based photodiodes	178
	9.5	Graphene-based solar cells	180
	9.6	Graphene-based light-emitting diodes	181
	9.7	Conclusion	183
	Refer	rences	183
10	Syntl	hesis, properties, and application of biomass-derived	
		hene-like material	189
	Elhar	n Sheikhzadeh, Nabila Akhyar and Wan Wardatul Amani Wan Salim	
	10.1	Introduction	189
	10.2	Synthesis method for biomass-derived graphene-like material	190
	10.3	Properties of biomass-derived graphene	195
	10.4	Applications of biomass-derived graphene	202
	10.5	Conclusions	205
	Refer	rences	205
11	Application of graphene in supercapacitors, batteries, and fuel cells		
		l Asyadi Azam and Raja Noor Amalina Raja Seman	• • •
	11.1	Introduction	209
	11.2	Application of graphene in supercapacitors	210
	11.3	Application of graphene in batteries	216
	11.4	Application of graphene in fuel cells	221
	11.5	Summary	227
	Refer	rences	227
12		duction to carbon nanotubes and nanoribbons	231
	_	prava Bhattacharyya and Vijay K. Arora	221
	12.1	Introduction	231
	12.2	Chirality	231
	12.3	Graphene to CNT	234
	12.4	CNT density of states	237
	12.5	Graphene nanoribbons	238
		Closing remarks	248
	Refer	rences	249
13	Synthesis methods of nanotubes		
	-	anshu Bhartiya, Ankit Awasthi and Deepak Marla	2.5
	13.1	Introduction	251
	13.2	Ball milling	252
	13.3	Arc discharge processing	253

viii Contents

	13.4	Chemical vapor deposition	257
		Laser ablation	261
	13.6	Electrochemical processing	266
	13.7	Other methods	269
	13.8	Purification	271
	13.9	Summary and outlook	273
	Refer	· · · · · · · · · · · · · · · · · · ·	275
14	Chen	nical properties of carbon nanotubes	281
	Sheri	n A. Saraireh, Mou'ad A. Tarawneh, Ruey Shan Chen,	
	Bahid	a Othman Alsobhi, Dalila Shahdan, Sinyee Gan	
	and S	eyedehmaryam Moosavi	
	14.1	Introduction	281
	14.2	Chemical properties of CNTs	283
	14.3	Method to improve the chemical properties of carbon nanotubes	285
	14.4	Application of CNTs	294
	14.5	Conclusions	297
	Refer	ences	297
15	Physi	ical properties of carbon nanotubes and nanoribbons	305
	Rakes	sh Vaid, Richa Gupta, Devi Dass and Vijay K. Arora	
	15.1	CNT carrier statistics	305
	15.2	Equilibrium to nonequilibrium for CNT and GNR	309
	15.3	High-field transport in metallic CNT	310
	15.4	E I	312
	15.5		313
	15.6	Interrelationships between GNR and CNT	318
	15.7	Conclusions	326
	Refer	ences	329
16		ysis and characterization of carbon nanotube	333
	Moha	l Asyadi Azam and Raja Noor Amalina Raja Seman	
	16.1	Introduction	333
	16.2	Structural properties of carbon nanotube	334
	16.3	Spectroscopies analyses	337
	16.4	Morphological and surface properties by microscopies analyses	342
	16.5	Characterization of carbon nanotube as electrode material for	
		energy storage device	344
	16.6	Device's resistance analysis from electrochemical	
		impedance spectroscopy	347
	16.7	Energy density and power density	349
	16.8	Summary	351
	Refer	ences	351

Contents ix

17	Morp	hology and topography of nanotubes	355
	Amil A	Aligayev, Fazal Raziq, Ulkar Jabbarli, Nurlan Rzayev and Liang Qiao	
	17.1	Introducing carbon nanotubes	355
	17.2	Topology and basics nomenclature	363
	17.3	Morphology	376
	17.4	Synthesis and growth mechanism	383
	17.5	Morphological and topographical analysis techniques	387
	17.6	Functional properties	399
	17.7	Applications	404
	17.8	Summary and outlook	409
	Refere	ences	410
18	Funct	ionalized nanotubes	421
	Khalid	d Abed (M.), Adeeb Hayyan, Hanee F. Hizaddin,	
		Ali Hashim and Wan Jefrey Basirun	
		Introduction	421
	18.2	Functionalization process	421
	18.3	Effects of functional chemical groups of nanomaterials	422
	18.4	DESs as a functionalization agent	423
	18.5	Applications of functionalized CNTs	430
	18.6	Conclusion	433
	Refere	ences	434
19	Mech	anical properties of nanotubes	445
		fa K. Ismael	
	19.1	Introduction	445
	19.1 19.2	Introduction Classification of nanotubes structure and properties	445 445
	19.1 19.2 19.3	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes	_
	19.1 19.2 19.3 19.4	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications	445
	19.1 19.2 19.3 19.4 19.5	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes	445 446 447 458
	19.1 19.2 19.3 19.4 19.5 19.6	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite	445 446 447 458 458
	19.1 19.2 19.3 19.4 19.5 19.6 19.7	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes	445 446 447 458
	19.1 19.2 19.3 19.4 19.5 19.6	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties,	445 446 447 458 458 462
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization	445 446 447 458 458
	19.1 19.2 19.3 19.4 19.5 19.6 19.7	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization Silicon carbide nanotubes, mechanical properties,	445 446 447 458 458 462 466
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization Silicon carbide nanotubes, mechanical properties, and applications	445 446 447 458 458 462 466
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization Silicon carbide nanotubes, mechanical properties, and applications Conclusions	445 446 447 458 458 462 466 469 471
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization Silicon carbide nanotubes, mechanical properties, and applications Conclusions Future perspectives	445 446 447 458 458 462 466 469 471 471
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 19.11 Acknown	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization Silicon carbide nanotubes, mechanical properties, and applications Conclusions Future perspectives owledgment	445 446 447 458 458 462 466 469 471 471 472
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization Silicon carbide nanotubes, mechanical properties, and applications Conclusions Future perspectives owledgment	445 446 447 458 458 462 466 469 471 471
20	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 19.11 Acknown Reference	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization Silicon carbide nanotubes, mechanical properties, and applications Conclusions Future perspectives owledgment ences trial applications of nanotubes	445 446 447 458 458 462 466 469 471 471 472
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 19.11 Acknown Reference Industry Alfaro	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization Silicon carbide nanotubes, mechanical properties, and applications Conclusions Future perspectives owledgment ences trial applications of nanotubes and O. Basheer and Yarub Al-Douri	445 446 447 458 462 466 469 471 471 472 472
	19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 19.11 Acknown Reference	Introduction Classification of nanotubes structure and properties Unit cell of nanotubes Carbon nanotubes, synthesis, and applications Single, double, and multi-wall carbon nanotubes Carbon nanotubes reinforced metal matrix composite Titanium oxide nanotubes Boron nitride nanotubes: Synthesis, properties, and functionalization Silicon carbide nanotubes, mechanical properties, and applications Conclusions Future perspectives owledgment ences trial applications of nanotubes	445 446 447 458 462 466 469 471 471 472 472

x Contents

	20.3	Nanotubes applications	483
		Conclusions	493
	Refer	rences	493
21	Com	prehensive multiscale techniques to estimate the compressive	
		gth of concrete incorporated with carbon nanotubes	
	at va	rious curing times and mix proportions	497
	Nzar	Shakr Piro, Ahmed Salih, Samir M. Hamad and Rawaz Kurda	
	21.1	Introduction	497
	21.2	Methodology	499
	21.3	Statistical evaluation of normal strength concrete properties	
		modified with CNT	506
	21.4	Modeling	508
		Assessment criteria for models	519
		Analysis and output	519
	21.7	Conclusions	530
	Refer	rences	533
22	Carb	on nanostructures and 2D transition metal dichalcogenides	537
	Misbo	ah Irshad, Mian Habib Ur Rehman Mahmood and Mahreen Fatima	
	22.1	Carbon nanostructures	537
	22.2	Transition metal dichalcogenides	546
	22.3	Conclusion	550
	Refer	rences	550
23	Appl	ications of nanotubes in preparation of polymer	
		osite materials	557
	Mizai	n Izzati Mat Zin and Wan Mohd Fazli Wan Nawawi	
	23.1	Introduction	557
	23.2	The second secon	558
	23.3	Application of CNT polymer composite	562
	23.4	Conclusion	571
	Refer	rences	572
24	Intro	duction to quantum dots	579
	Rajar	a Jose and Yarub Al-Douri	
	24.1	Defining a nanomaterial—How much is the volume of a	
		material on its surface?	579
	24.2	Classification of nanocrystals based on morphology	581
	24.3	Forces in nanostructured materials	582
	24.4	Variation in electronic properties with increase in surface fraction	583
	24.5	Structure of CdSe quantum dots	592
	24.6	Thermal properties of quantum dots	593

Contents xi

	24.7 Conclusions	596
	Acknowledgments	596
	References	596
25	Synthesis methods of quantum dots	599
	Ritika Nagpal and Meenakshi Gusain	
	25.1 Introduction	599
	25.2 Bottom-up approach	607
	25.3 Other synthesis processes	618
	25.4 Conclusions	624
	References	624
26	Optical properties of quantum dots	631
	Yarub Al-Douri and Rajan Jose	
	26.1 Introduction	631
	26.2 Quantum dots	632
	26.3 Computational method	633
	26.4 Experimental techniques	634
	26.5 Results and discussion	635
	26.6 Conclusions	659
	References	660
27	Chemical properties of quantum dots	663
	Wasan A.M.Al Taie, Ali Abu Odeh and Yarub Al-Douri	
	27.1 Introduction	663
	27.2 Principle of quantum dots work	663
	27.3 Parts of quantum dots	664
	27.4 Forms of quantum dots	664
	27.5 Chemical composition of quantum dots	664
	27.6 Surface ligands and coordination of quantum dots	666
	27.7 Oxidation of quantum dots	672
	27.8 Redox chemistry of quantum dots	673
	27.9 Chemical stability of quantum dots	673
	27.10 Chemical reactions involving the surface of quantum dots	676 677
	27.11 Thermodynamic properties of quantum dots27.12 Kinetic properties of quantum dots	678
	27.12 Kinetic properties of quantum dots 27.13 Toxicity of quantum dots	678
	27.14 Conclusion	680
	Future perspective	681
	References	681
28	Physical properties of quantum dots	687
	Kah Hon Leong, Yik Heng Chin, Lan Ching Sim, Bo Tan,	007
	Chaomeng Dai and Pichiah Saravanan	
	28.1 Introduction	687
	28.2 Carbon quantum dots	688

xii Contents

	28.3	Graphene quantum dots	692
		Other quantum dots	696
		Conclusions and future perspective	700
		rences	702
29	Anal	ysis and characterization of quantum dots	709
2)		akshi Gusain, Ritika Nagpal and Yiqiang Zhan	10)
	29.1	Introduction	709
	29.2		709
	29.3	<u> </u>	711
		Optical characterization techniques	715
	29.5		719
	29.6	Supplementary characterization techniques	721
	Conc	lusions	722
	Refe	ences	724
30	Mor	phology and topography of quantum dots	727
	Kai J	eat Hong, Chun Hui Tan, Sin Tee Tan and Kok-Keong Chong	
	30.1	Introduction	727
	30.2	Synthesis and creation	739
	30.3	3	752
		lusion and future perspectives	760
		owledgments	761
	Refe	ences	761
31		strial applications of quantum dots	771
		Farha Shaafi and Saifful Kamaluddin Muzakir	
	31.1	Introduction	771
	31.2	Fabrications of device: From bulk to nanosized materials	772
	31.3		
	21.4	materials	777
	31.4	Evolution of optoelectronic properties: From bulk to	701
	21.5	nanostructured materials	781
	31.5	Advancement of photovoltaic technology using QDS: Future of energy generation industry	784
	31.6	The trends in research and development sector incorporating bulk	
		and QDS: Energy generation, energy storage, and energy	
		emitting devices	793
	31.7	Simulated QD-based device structure vs laboratory	
		scale vs. industry scale	795
	31.8	Summary and outlook	795
	Refer	rences	798

Contents xiii

32		cal applications of quantum dots	803
	•	P. Bhat, Sanjay J. Dhoble and Kishor G. Rewatkar	002
	32.1 32.2	Introduction	803
		Semiconductors QD	806
		Quantum dots in biomedical	809 815
		Property of Q dots Applications	819
	32.5	Disclosure	834
		owledgment	834
	Refer	<u> </u>	834
33	Envi	conmental impact of quantum dots	837
	Noor	Fitrah Abu Bakar, PhD, Associate Professor, Tan Huey Ling,	
	Lim Y	ing Pei, Nadia Adrus and Jaafar Abdullah	
	33.1	Introduction	837
	33.2	Toxicity of quantum dots	838
	33.3	Environmental degradation of quantum dots	843
	33.4	Methods for prevention of QDs degradation	856
	Conc	lusions	858
	Refer	ences	859
34	Quantum dots embedded ceramic materials—Synthesis		
		pplication	867
		abavathy	
		Introduction	867
		Fabrication methods	868
		Properties of QD embedded glass ceramics	875
		Applications	878
		Conclusions	882
	Refer	ences	882
35		tum dots: policy and ethics	887
		nadala Swarnaltha and Seema Siddharthan	
	35.1	Introduction	887
	35.2	Toxicity of QDs	888
	35.3	Quantum dots risks and ecotoxicology	889
	35.4	Minimizing the toxicity of quantum dots and outlook	891
	35.5	Uncertainty around quantum dots in different applications	892
	35.6	Policies and public issues, legal concerns	894
	35.7	Conclusions	894
	Refer	ences	895

xiv Contents

36	Quan	tum dots for modern display devices	899
	Swad	esh Kumar Gupta, Pawan Kumar and Dharmendra Pratap Singh	
	36.1	The magical journey of displays: Big CRT screens to foldable ones	899
	36.2	Current perspective and challenges in displays	901
	36.3	Quantum dots: A toolbox for future of display technologies	903
	36.4	Quantum dots in display technologies	904
	36.5	Quantum dot family for displays	908
	36.6	LCD vs OLED vs QLED	919
	36.7	Future opportunities and recycling of display devices	920
	36.8	Conclusions	923
	Refer	ences	923
Ind	ex		933

Optical properties of quantum dots

Yarub Al-Douria,b,c and Rajan Josed

^a Engineering Department, American University of Iraq-Sulaimani, Sulaimani, Kurdistan, Iraq, ^b Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul, Turkey, ^c Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia, ^d Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

26.1 Introduction

The semiconductors are interesting materials in solid-state physics. The most widely studied materials are Groups IV and II–VI. These materials have different band gaps that are usually extending from few to several electron volts and whose temperature coefficient $dE_g = dT$ is positive, and they have high mobility [1]. They are showing interesting in optoelectronic applications [2]. It is advantageous to use the computational method based on total energy calculations to study the phase transition from the coordinated number Nc = 4- to 6-fold [3]. Third-generation approaches to photovoltaics (PVs) aim to decrease costs and significantly increasing efficiencies but maintaining the economic and environmental cost advantages of thin-film deposition techniques [4]. There are several approaches to achieve such multiple energy threshold devices [5]; tandem or multicolor cells, concentrator systems, intermediate-level cells, multiple carrier excitation, up/down conversion, and hot carrier cells [6].

Billaud and Truong [7] have computed the ground state Lamb shift of a semiconductor spherical quantum dot in the effective mass approximation. It appears to be significant enough to be detectable for a wide range of small quantum dots synthesized in semiconductors. They have suggested the Casimir effect to observe it. While Thu and Voskoboynikov [8] have calculated the lowest energy states of electrons confined in an asymmetrical InAs/GaAs double lens-shaped quantum dot molecule in external magnetic field. Based on the effective three-dimensional one electronic-band Hamiltonian approximation, the electronic energy states of the system were computed by nonlinear iterative method using Comsol MultiPhysics package. This description allows them to simulate the semiconductor quantum dot molecule in arbitrary directed magnetic field. Simulation results clearly have showed that the diamagnetic shifts of the electronic energy levels are anisotropic and nonuniform. Therefore, they have demonstrated an opportunity to dynamically manipulate electronic states not only by varying the magnitude but also by changing the direction of the magnetic field. Moreover, Lam and Ng [9] have used bio-tags to emit different color light with different dot sizes, and quantum dots are currently extensively studied for application

as quantum devices taking advantage of the artificial atom" properties, such as their discrete energies, electron spins, and quantum transport energies. The self-assembled semiconductor quantum dots are grown on the wetting layer of a few monolayer thickness and subsequently capped with a strain-reduction layer covering the dots to stabilize them. They have studied the indium arsenide/gallium arsenide self-assembled quantum dots modeled with a wetting layer between the quantum dot and substrate, and the strain-reducing capping layer above the quantum dot. They have introduced a new model with an interfacial layer between the quantum dot and the capping layer and investigate the effective mechanical and electronic properties using the finite element method and deformation potential theory. However, Udipi et al. [10] have presented semiclassical simulation results for the potential energy profile and electron density distribution in 200 nm silicon quantum dot. For the solution of the continuity equation, the efficient difference approximations proposed by Scharfetter and Gummel [11] have extended to three dimensions. In essence, they have followed the two-dimensional approach due to Selberherr et al. [12] extend two to three dimensions.

The investigation of further materials research is interesting when one tries to gain some information about the diameter dependence of the compounds; especially it is proved with some of the other materials [13,14]. It seems more fundamental to relate the diameter dependence behavior to the bonds between nearest atoms. By controlling the evolution with diameter dependence of the compound, it could attempt to link the effect of quantum dot diameter to the quantum dot potential. In this context, we have used this procedure for testing the validity of our model [15] of QDs potential. The obtained energy band gaps are used to calculate the quantum dot potential and to predict materials for QDs.

The aim of this chapter review is to present a comprehensive study of our model [15] for calculating the diameter dependence on QDs potential for different dot diameters for semiconductors using the full potential linearized augmented plane wave (FP-LAPW), analytical and characterization researches of thermal evaporation and chemical bath deposition techniques to investigate the structural and optical properties utilizing specific models for the elements, compounds, and alloys materials.

26.2 Quantum dots

The confinement can be due to electrostatic potentials (generated by external electrodes, doping, strain, impurities), the presence of an interface between different semiconductor materials (e.g., in core-shell nanocrystal systems), the presence of the semiconductor surface (e.g., semiconductor nanocrystal), or a combination of these. A quantum dot has a discrete quantized energy spectrum. The corresponding wave functions are spatially localized within the quantum dot but extend over many periods of the crystal lattice [13]. A quantum dot contains a small finite number (of the order of 1–100) of conduction band electrons, valence band holes, or excitons, i.e., a finite number of elementary electric charges. Small quantum dots, such as colloidal semiconductor nanocrystals, can be as small as 2–10 nanometers, corresponding to 10–50 atoms in diameter and a total of 100–100,000 atoms within the quantum dot volume. Self-assembled quantum dots are typically between 10 and 50 nm in size.

Quantum dots defined by lithographically patterned gate electrodes, or by etching on two-dimensional electron gases in semiconductor heterostructures can have lateral dimensions exceeding 100 nm. At 10 nm in diameter, nearly 3 million quantum dots could be lined up end to end and fit within the width of a human thumb. Simplifying things greatly (as this guide aims to do, mostly), quantum dots are incredibly small particles. They range between 2 and 10 nanometers in diameter, which is equivalent to 50 atoms. Yes, atoms. You cannot measure these things using your old-school shatter-proof ruler. It is this small size that gives quantum dots the unique properties to improve our tech. The color light that a quantum dot emits is directly related to its size; smaller dots appear blue, larger ones more red. In LCD screens, they are applied as a way of eliminating the need for White LED backlights and color filters [14,15].

Higher peak brightness—one of the reasons TV manufacturers like quantum dots is that they allow them to produce TVs with much higher peak brightness. This opens up some interesting possibilities, such as enabling support for "high dynamic range" TVs that support standards such as Dolby Vision. In simple terms, Dolby Vision is a film standard that, when used, results in content that retains more color and contrast information than existing standards. The result is pictures that have greater differences in the brightest and darkest parts of the image and look more "dynamic" and real as a result. Imagine shots were looking into the sun actually feels like looking in to the sun for real and you get an idea. To do this you need brighter TVs and quantum dots deliver exactly that. Following the acceptance of 4K resolutions, HDR, in general, is the next big feature of TVs, and all of the top TV sets announced at CES 2016 this year have made bold claims about their "high dynamic range" capabilities. Quantum Dot technology, like OLED, goes hand in hand with this advance [10,15].

26.3 Computational method

The LAPW method is utilized for solving the equations of density functional theory (DFT). Modern implementations allow for a number of approximations to exchange and correlation (LDA, generalized gradient approximation (GGA), and LDA+U, among others) and make no approximations to the shape of the crystal potential, unlike methods employing the atomic sphere approximation which assume spherical symmetry around each atom. Like most modern electronic-structure methods, the LAPW method is a variational expansion approach which solves the equations of DFT by approximating solutions as a finite linear combination of basis-functions. What distinguishes the LAPW method from others is the choice of basis. The LAPW basis is constructed to be particularly accurate and efficient for the solution of the all-electron ab initio electronic-structure problem, where solutions are rapidly varying and atomic-like (like isolated-atom solutions) near the atoms but more smoothly varying and not atomic-like throughout the rest of the cell.

The calculations were carried out using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in WIEN2K code [16]. The exchange-correlation potential was treated using the GGA [17] for the total energy calculations, the Engel-Vosko GGA (EVGGA) formalism [18] and modified Becke Johnson (mBJ) [19] for principal energy calculations. To overcome the shortcoming of both LDA and

GGA of underestimation of the energy gap [20], we have used EVGGA and mBJ. This shortcoming is ascribed to the fact that they do not reproduce the exchange-correlation energy and its charge derivative correctly. Hence, the modified form of GGA is the EVGGA that is improved in mBJ, which is capable to better reproduce the exchange potential at the expense of less agreement in the exchange energy that yields a better band splitting [21-25]. In the FP-LAPW method, the wave function, charge density, and potential were expanded by spherical harmonic functions inside nonoverlapping spheres surrounding the atomic sites (muffin-tin spheres) and by plane waves basis set in the remaining space of the unit cell (interstitial region). The maximal I value for the wave function expansion inside the atomic spheres was confined to $l_{max} = 8$. The muffin-tin radii were assumed to be 2.0 atomic units (a.u.) for Pb, S, and Te. The plane wave cut-off of $K_{max} = 8.0/RMT$ was chosen for the expansion of the wave functions in the interstitial region for the PbS and PbTe binary compounds, while the charge density is Fourier expanded up to $G_{max} = 14 \text{ (Ryd)}^{1/2}$. The irreducible wedge of the Brillouin zone was described by a mesh of 10 special k-points for binary compounds. The self-consistent calculations are converged since the total energy of the system is stable within 10⁻⁵ Ry. The FPLAPW has been proved to be one of the accurate methods of calculating the electronic properties within the DFT [26-29].

26.4 Experimental techniques

According to the following experimental steps, lead iodide was prepared by a reaction of potassium iodide (KI) with lead nitrate Pb(No₃)₂ [30]:

- a) Pb (No₃)₂ solution of 0.01 M by dissolving 3.31 mg in 1000 mL of distilled water.
- b) KI solution preparation with 0.05 M by dissolving 8.31 mg in 1000 mL of distilled water. Adding 50 ml of KI solution to 50 ml of Pb(No₃)₂ solutions to prepare PbI₂ will appear yellow lead iodide at the bottom of the beaker insoluble by water. Also, potassium nitrate (KNo₃) is dissolved by water. Afterthat, the water is discarded beyond drying deposited material. Finally, it is removed from the beaker to keep in desiccators.

$$Pb(No_3)_2 + KI \rightarrow PbI_2 + KNo_3$$
 (26.1)

PbI₂ nanostructures were grown on glass substrates at room temperature by Electron Beam Evaporation (Auto 306 Vacuum Coater, USA). The main reason of utilizing this method is to permit the large area deposition in cost-effective manner [11]. To measure the thickness, the weight method was used. Sensitive electrical balance (Metler AE-160, USA) was utilized, with precision reaching 10⁻⁴ g. The structural properties were investigated via X-ray diffractometer (XRD) to determine the crystallinity of sample, the diffraction for determining spacing, preferred orientation and the particle size. XRD system (Philips PW 1710 X-ray diffractometer, USA) has been used for the following: Source radiation of CuKα with 1.54 Å wavelengths, incidence angle: 10–60 degree, and scanning speed: (5 degree/min). The optical properties have been investigated by ultra-violet spectroscopy (UV-vis) at room temperature via Perkin-Elmer Lambda (950 spectrophotometer, USA) in the 300–1100 nm wavelength range.

Dot diameter	Ε _g (Γ-Γ)	E _g (Γ-X)	E _g (Γ-L)
54.3	2.742	1.436; 1.11a,b	2.028
54	2.747	1.396	2.094
53.6 53.3	2.751	1.352	2.164
53.3	2.757	1.272	2.279
53	2.752	1.345	2.174
52.7	2.759	1.233	2.332

Table 26.1 The calculated principal energy band gaps for Si (in eV) at different diameters (in nm) compared to other theoretical results and experimental data [13].

Also, ZnCl₂ and Na₂S were used as zinc source and sulfur source, respectively. ZnCl₂, Na₂S, and mercaptoethanol (ME) were obtained from Sigma-Aldrich. ZnS nanomaterials were synthesized with chemical bath deposition technique with ME, as capping agent (or surface-active agent surfactant). The first 50 mL aqueous solution of ZnCl₂ (0.01 M) was prepared at room temperature, where, 50 mL aqueous solutions of ME with different concentrations (0.001, 0.1, 0.7 M) were added dropwise to the first solution under continuous stirring. Then, 50 mL of Na₂S (0.01 M) solution was added to the mixture. A three-neck reaction flask was used under N₂ inert gas to prevent any oxidation effect. While reaction was going on, a magnetic stirrer was used for continuous stirring of solution in the reaction vessel. The final solution was centrifuged and washed several times with double distilled water, to wash out the NaCl impurities. The remaining centrifuged ZnS was dried under a table lamp. The obtained powder was analyzed via XRD (Philips PW 1710 X-ray diffractometer, USA), UV-visible (Jobin Yvon model HR 800 UV system, Kyoto, Japan), and transmission electron microscopy (TEM) (Model JEOL JEM-100cx, Japan) techniques [31].

26.5 Results and discussion

26.5.1 Si element

Normally, the covalent semiconductors are fourfold coordinated. The reason that the density is so low and the nearest neighbors are bound by overlapping hybridized orbitals, which are the well-known sp^3 hybrids with tetrahedral direction [32]. Hence, it is possible to tune the band gaps using dot diameter. The calculated values of the direct $(\Gamma \to \Gamma)$ and the indirect $(\Gamma \to X)$ and $(\Gamma \to L)$ band gaps within EVGGA of the investigated Si-element at different diameters are listed in Table 26.1 along with the experimental data [33] and other previous theoretical calculation [34]. Our calculated value of the $(\Gamma \to X)$ bandgap is slightly overestimated compared to the available data. This could be attributed to our use of the EVGGA approximation. Due to these small values, Si has been classified as a narrow band gaps semiconductor. Because of their use in infrared light generation and detection, the bandgap variations of dot diameters represent an important property to study. As mentioned at Table 26.1, the band gaps

a [36] expt.;

^b[37].

Page numbers followed by "f" and "t" indicate, figures and tables respectively.

A	characteristics and applications, 198
Activated biomass-derived graphene-based	chemical blowing technique, 192
carbon, 196	CO ₂ capture, 204
Activated carbons, 333	dye removal, 204
ŕ	fuel cells, 203
Allowed quantum det 722	hydrothermal carbonization, 193
Angle resolved photoemission anothers any	molecular-cracking method, 193
Angle-resolved photoemission spectroscopy	oil and water purification, 204
(ARPES), 59	plasma-enhanced chemical vapor
Arc discharge, 29	deposition, 194
process description, 253	properties, 195
processing, 253	salt-based method, 191
process parameters, 256	supercapacitors, 202
Armchair graphene nanoribbons (AGNR),	template-based confinement, 193
239	ultrasound method, 193
Armchair nanotubes, 238	Black phosphorus, 127
Artificial atom, 590	Boron nitride nanotubes (BNNT)
Artificial neural network (ANN), 516, 524	mechanical properties, 468
Atomic force microscopy (AFM), 100, 195	synthesis and properties, 466
graphene, 100	Bose-Einstein distribution, 10, 311
tapping mode, 100	Bovine serum albumin (BSA), 293
Average pore size (APS), 70	Bravais lattice, 5
В	Brunauer-Emmett-Teller (BET), 67, 68, 69,
_	196,
Ballistic transport, 11,	see also Graphene
see also Graphene	Bulge test, 108
Ball milling, 252	Bulge test, 100
Bandgap material, 178	C
Bandgap structure, of graphene, 3	
Barrett-Joyner-Halenda (BJH) model, 69	Carbon, 57
Batteries, graphene, 216	nanofibers, 57
Beer–Lambert law, 715	nanohorns, 356
Biomass, 190	Carbon-based supercapacitors, 202
Biomass-derived graphene, 190	Carbon nanostructures
adsorbent, 203	carbon nanorods, 543
antibiotics, 204	carbon nanotubes and nanocomposites, 541
applications, 202	carbon nanowires, 543
catalytic chemical vapor deposition	classification scheme, 541
method, 194	nanocomposites of polymer, 542

Fourier-transform infrared spectroscopy,
337
functionalized, 369
functional properties, 399
galvanostatic charge-discharge, 344
graphene, 234
high-pressure carbon monoxide synthesis
449
images-based morphological study, 376
interactions with biomolecules, 292
laser ablation production, 452
linear regression model, 508, 519
magnetic properties, 403
metallic, 310
methodology, 387, 499
microscopies analyses, 342
modeling, 508
morphological and topographical analysis
techniques, 387
morphology, 376, 378
multilinear regression model, 516, 521
multiple walled, 369
nanoparticle modified carbon nanotubes,
291
network structure and symmetry, 374
noncovalent functionalization, 290
nonlinear regression, 516, 521
optoelectronics, 405
phonons and thermal properties, 400
photoelectron spectroscopy, 340
plasma-enhanced chemical vapor
deposition, 450
polymer composite, 562
radar adsorption, 408
Raman and photoluminescence
spectroscopy, 388
reinforced metal matrix composite, 458
research objectives, 499
sensitivity, 527
sensor, 565
single-wall, 369
in solar and fuel cells, 406
in space elevator, 408
specific heat, 400
spectroscopies analyses, 337
structural properties, 334
synthesis and growth mechanism, 383
theory of electric arc discharge, 452, 453

thermal conductivity, 401	oxidation, 286
topology and basics nomenclature, 363	silanization, 288
transmission electron microscopy, 342	
Carbon nuclear magnetic resonance	D
spectroscopy (C-NMR), 396	Deep eutectic solvents (DES)
Carbon quantum dot (CQD), 688, 916	advantages, 424
biocompatibility, 690	
luminescence properties, 691	CNT, 429
solubility, 690	features, 423
structures, 689	physicochemical properties, 424
Carrier density, of graphene, 3	preparation, 426
Catalytic chemical vapor deposition (CCVD)	Defect engineering, 143
method, 194	extrinsic defects, 146
Catalytic deposition. See also Nanotubes, 269	line defects, 145
Cathode ray tube (CRT), 899	point defects, 143
current perspective and challenges in	Dehydrogenation, 47
displays, 901	Density functional theory (DFT), 633
screens to foldable ones, 899	Density of states (DOS), 6, 52, 237, 312
CdSe quantum dots, 592	Diels–Alder (D-A) reaction, 23
bulk crystal structure, 592	Display devices
density functional theory calculations, 593	current perspective and challenges, 901
Cement content, 507	recycling, 920
carbon nanotube, 508	Double vacancies (DV), 49
coarse aggregate, 507	Double-walled carbon nanotubes (DWCNT), 369
compressive strength, 508	
fine aggregate, 507	Dry ball milling, 27 Dry etching, 605
Chalcogenides, 642	Dye removal, 204
Chemical blowing technique, 192	Dye-sensitized solar cells, 180, 488
Chemical doping, 127	
Chemical purification, of nanotubes. See also	Dynamic light scattering (DLS), 714
Nanotubes, 271	
Chemical vapor deposition (CVD), 31, 32,	E
57, 67, 257, 385, 448, 616	Effective mass approximation (EMA), 728
growth mechanism, 259	Electric double-layer capacitors (EDLC), 485
process description, 258	Electrochemical capacitance (EC), 14
process parameters, 260	Electrochemical double-layer capacitor
Chirality, 231	(EDLC), 79, 202
Chitosan, 190	Electrochemical impedance spectroscopy
Classical fullerene, 359	(EIS), 210, 347
Cluster-seed technique, 620	Electrochemical processing, 266
Colloidal synthesis, 777	process description, 266
Comelting, 869,	process parameters, 268
see also Quantum dot (QD)	Electron beam lithography, 599
Concrete, 497	components, 600
Conduction band minimum (CBM), 138, 324,	principle, 599
636	Electron diffraction spectroscopy (EDS), 719
Core-shell QD (CSQD), 731	Electron energy loss spectroscopy
Covalent functionalization, 54, 135, 286	(EELS), 95, 196
fluorination, 288	Electronic conductivity, 175

Energy dispersive X-ray spectroscopy (EDXS), 95, 96	Generalized gradient approximation (GGA) 633
Environmental application, of nanotubes, 489	Graphene, 1, 2, 117, 173, 175, 177, 189
gas filtration, 489	advanced techniques, 95
heavy metal ions removal, 491	arc-discharge, 29
membrane separation, 492	atomic force microscopy, 100
oil-water separation, 490	ballistic transport, 11, 313
water desalination, 489	bandgap structure and carrier density, 3
Epitaxial growth, of graphene, 34,	based light-emitting diodes, 181
see also Graphene	basic structure, 45
Etching technique, 604	in batteries, 216
components, 604	bottom-up approach, 31
principle, 604	Brunauer-Emmett-Teller, 68
	to carbon nanotubes, 234
F	chemical properties, 44, 55, 58
Face-centered cubic, 47	chemical vapor deposition, 32
Femtosecond laser beam method, 874,	covalent functionalization, 54
see also Quantum dot (QD)	cyclic voltammetry, 79
Fermi-Dirac integral (FDI), 313	defects, 51
Fermi energy, 8, 14, 233, 305	defect structure, 48
Fermi velocity vectors, 5,	defined, 19, 43
see also Graphene	device's resistance analysis, 82
Fiber supercapacitors (FSC), 79	discovery, 89
Field emission scanning electron microscopy	double vacancies, 49
(FESEM), 67, 77, 342	dry ball milling, 27
Fluid dynamics, 27,	electrochemical process, 21
see also Graphene	electron transport, 9
Focused ion beam, 602	energy density and power density, 84
components, 602	for energy storage device, 79
principle, 602	epitaxial growth, 34
Focused ion beam (FIB), 599	experimental discovery, 107
Fourier-transform infrared spectroscopy	field emission scanning electron
(FTIR), 67, 72	microscopy, 77
Freundlich isotherm, 203	fluid dynamics, 27
Fuel cells, 203	Fourier-transform infrared spectroscopy,
graphene, 221	72
Fullerene, 173	in fuel cells, 221
classical, 359	functionalization, 51, 55
spherical, 361	galvanostatic charge-discharge, 79
Full potential linearized augmented	gravure printing, 115
planewave (FP-LAPW) method, 633	highly hydrophobic, 197
Full width at half maximum (FWHM), 710,	honeybee mesh, 3f
904	hybrid inks, 113
Fused deposition modeling (FDM), 569	hydrogenated, 52
Fused filament fabrication (FFF), 569	ink formation, 111
C	inkjet printing, 115
G	liquid-liquid exfoliation, 20
Galvanostatic charge-discharge (GCD)	magneto-transport, 12
profiles 79	mechanical exfoliation 24

metal nanocomposites, 55	Graphene-on-silicon (GOS), 34
methodology, 109	Graphene oxide (GO), 44, 89, 189
micromechanical cleavage, 24	emerging applications, 157
microscopies analyses, 77	future opportunities, 164
miscellaneous interfaces, 57	historical development, 155
molecular functionalization, 53	mechanism of formation, 156
monolayer, 19	properties, 158
morphology characterization, 90	roadmap, 156f
noncovalent functionalization, 55	structure, 157 <i>f</i>
one dimensional/line defect, 51	synthesis, 156
oxidative exfoliation, 30	synthesize, 159
polymer nanocomposites, 56	Graphene quantum dots (GQD), 692
precursor, 44	biocompatibility, 694
pressure-driven fluid dynamics, 28	dispersibility, 695
printing techniques, 114	luminescence properties, 696
production, 20	magnetic, 694
quantitative analysis, 96	structures, 693
quantum electrochemical potential, 14	Graphene's optoelectronic properties, 177
Raman spectroscopy, 71	Graphene synthesis and processing, 175
reduction, 30	Graphene synthesis techniques, 176 <i>f</i>
Salvia splendens petals, 196	Graphite, 89, 173
scanning electron microscopy, 91	Graphite intercalation compound (GIC), 44
scanning tunneling microscopy, 93	Graphite oxide (GO), 155
screen printing, 115	elemental analysis, 158
shear exfoliation techniques, 23	synthesis, 162
single vacancies, 49	Gravure printing, 115
in situ functionalization, 24	oravaro primarig, 110
sonication, 21	
spectroscopies analyses, 71	Н
Stone–Wales defect, 49	Halloysite nanotubes, 559
structural properties, 68	Halogenation, 288
structure, 157f	Hamiltonian formalism, 13
substrate-free, 35	Heavy metal-free quantum dot, 914
in supercapacitors, 210	Hexagonal boron nitride, 127
templated route, 36	Heyrovsky reaction, 549
top-down approaches, 20	Highest occupied molecular orbital (HOMO),
topography characterization, 100	138
transmission electron microscopy, 78, 94	High-field GNR transport, 312
ultraviolet–visible spectroscopy, 74	High-pressure carbon monoxide synthesis
vortex fluidic film, 28	(HiPco), 449
X-ray diffraction, 68	High-resolution transmission electron
X-ray photoelectron spectroscopy, 74	microscopy (HRTEM), 355
zero bandgap, 10	Hummers method, 156
Graphene-based photodiodes, 178	Hydrogenated graphene (HG), 54
Graphene-based solar cells, 180	Hydrogen bond donor (HBD), 423
Graphene-like carbon nanosheets (GCNS),	Hydrogen evolution reaction (HER), 548
196	Hydrophilic-lipophilic balance (HLB), 610
Graphene nanoplatelets (GNP), 44, 221	Hydrothermal carbonization (HTC), 193
Graphene nanoribbons (GNR), 1, 238	Hydrothermal treatment, 618

I	dry ball milling, 27
Inkjet printing, 115	fluid dynamics, 27
advantages, 115	micromechanical cleavage, 24
Inorganic functionalization, of 2D materials,	pressure-driven fluid dynamics, 28
127	vortex fluidic film, 28
chemical doping, 127	Metallic carbon nanotubes, 310
interface engineering, 131	Metal matrix composites (MMC), 458
phase transition, 133	Metal oxide semiconductor (MOS), 772
Isotropic etching, 605	Michel-Levy interference color chart, 359
isotropic eterning, 603	Microemulsion, 611
	Micromechanical cleavage, 24
K	Mirror twin boundaries (MTB), 145
Kraft lignin, 193	Molecular beam epitaxy (MBE), 131, 614
	Monolayer graphene, 19
L	Mono vacancies, in graphene, 49
	Morphology characterization, of graphene, 90
Langmuir adsorption isotherm, 203	Multilinear regression (MLR) model, 516,
Langmuir-Blodgett (LB) depositions, 157	521
advantage, 157	Multiple exciton generation (MEG), 771
Laser ablation, 261, 383	Multiple walled carbon nanotubes
carbon nanotubes, 452	(MWCNT), 369, 445
growth mechanism, 262	(
process description, 261	N
process parameters, 265	Nanocrystals
Ligand exchange method, 668	classification, 581
Light-emitting diode (LED), 899	hierarchical, 581
Linear combination of atomic orbital theory	one-dimensional, 581
(LCAO), 728	two-dimensional, 581
Linear low-density polyethylene, 559	Nanographene, 47
Linear regression model, 508	Nanomaterials, 173, 174 <i>f</i> , 579
Liquid crystal display (LCD), 899	line defects, 579
Liquid-liquid exfoliation, 20	point defects, 579
electrochemical process, 21	Nanoparticles, 55
shear exfoliation techniques, 23	modified carbon nanotubes, 291,
in situ functionalization, 24	see also (Carbon nanotubes (CNT))
sonication, 21	Nanostructured materials, 582
Liquid metal ion source (LMIS), 602	Nanotube, 251
Lithium-ion batteries (LIB), 216	applications, 483
Local enrichment strategy (LES), 570	arc discharge processing, 253, 256
Local plasma surface resonance (LSPR), 177	ball milling, 252
Lowest unoccupied molecular orbital	biomedical, 486
(LUMO), 138	catalytic deposition, 269
Luryi's quantum capacitance, 14	chemical purification, 271
	chemical vapor deposition, 257, 258, 259,
M	260
Magneto-transport, 12,	classification, 445
see also Graphene	conventional pyrolysis, 270
Maleic anhydride, 23	direct melt mixing, 560
Mechanical exfoliation, 24	electrochemical processing, 266, 268
· · · · · · · · · · · · · · · · · · ·	F-5000000, 200, 200

energy storage, 484	P
environmental application, 489	Parallelogram, 45
fabrication parameters, 558	Partially fluorinated graphene (PFG), 215
fabrication strategies, 560	Perovskite-based quantum dot, 909
functional chemical groups, 422	Phase transfer method, 669
functionalization process, 421	Photolithography, 780,
gas filtration, 489	see also Quantum dot (QD)
heat treatment, 270	
heavy metal ions removal, 491	Photoluminescence (PL) spectroscopy, 717 Photoluminescent quentum yield (PLOY)
laser ablation, 261, 262, 265	Photoluminescent quantum yield (PLQY), 904
melt mixed process, 560	Photothermal therapy (PTT), 161
membrane separation, 492	
multistep purification, 272	Physical purification, of nanotubes. <i>See also</i>
oil–water separation, 490	Nanotubes, 272
physical purification, 272	Physical vapor deposition, 615
polymer composite, 558	Plasma-enhanced chemical vapor deposition
properties, 482	(PECVD), 177, 194, 450
purification, 271	Polymer-assisted graphene ink, 112
sensors, 488	Polymer electrolyte membrane (PEM) fuel
in situ catalysis, 270	cell, 221
solar cell, 488	Polymer solar cells (PSC), 163
solar processing, 269	Polyvinylpyrrolidone (PVP), 216
surface modification, 562	Porous graphene-like nanosheets (PGNS),
unit cell, 446	197
	Portland cement, 497
water desalination, 489	Pressure blister test, 108
Natural deep eutectic solvents	Pristine graphene inks, 111
(NADES), 423	Pseudocapacitors, 485
N-doped graphene quantum dots, 182	Pseudospin, 47
Nearest neighbor tight binding	Purification
(NNTB), 233	chemical, 271
Noncovalent functionalization, 55,	of nanotubes. See also (Nanotubes), 271
see also Graphene	physical, 272
Nonequilibrium Arora's distribution function	
(NEADF), 8	Q
Nonlinear density functional theory	Quantum confined structures, 589
(NLDFT), 70	Quantum confinement effect (QCE), 903
Nonlinear regression, 516	Quantum dot (QD), 155, 599, 632, 687, 709,
Nonlinear regression model, 521	727, 803, 837
Nonthermal plasma synthesis, 777,	active targeting, 821
see also Quantum dot (QD)	allergy and antigen sensor, 831
	alloyed, 158, 732, 758
0	applications, 819
Oil and water purification, 204,	aquatic invertebrates, 844, 845
see also Biomass-derived graphene	arc discharge, 739
Optoelectronic devices, 878,	assemblies electrochemically, 620
see also Quantum dot (QD)	bacteria and microorganisms, 850
Organic light-emitting diodes (OLED), 919	bacterial identification, 831
Ortho-dichlorobenzene (ODCB), 135	band gap energy, 806
Oxygen reduction reaction (ORR), 203	bioassays, 806

in bioimaging applications, 893	electron beam lithography, 599
biological synthesis, 619	electron diffraction spectroscopy, 719
in biomedical, 809	embedded glass ceramics, 868, 875
biosensing, 827	emissive displays, 906
bonding nature of ligands, 671	enhancement film, 904
bottom-up approach, 607, 744	environmental degradation, 843
cadmium selenide, 677	environment effect, 674
cancer detection and treatment, 822, 830	etching technique, 604
capping, 668	experimental techniques, 634
carbon, 733, 916	fabrication methods, 868
As carriers, 820	fabrications of device, 772
Cd alloys, 638	family for displays, 908
chalcogenides, 642	femtosecond laser beam method, 874
characterization and analysis, 752	focused ion beam, 602
chemical ablation, 743	forms, 164
chemical bonds, 672	future perspectives, 760
chemical classification, 667	gallium arsenide, 677
chemical composition, 165	gene therapy, 827
chemical reactions, 676	genotoxicity, 840
chemical stability, 673	gold, 812
chemical vapor deposition, 616, 751	greener approaches, 620
classifications, 730	heavy metal-free, 914
clinical use, 830	human health, 853
cluster-seed technique, 620	hydrothermal/solvothermal, 745
colloidal synthesis, 777	hydrothermal treatment, 618
color filters, 906	imaging in vitro, 823
comelting, 869	ingestion, 855
composition determination, 719	inhalation, 853
computational method, 633	inorganic group II-VI and III-V, 908
concentration, 819	ionic strength, 676
coordination, 666	ion-implantation method, 874
coordination number, 670	kinetic properties, 677
core, 730	labeling of fungi, 832
core shell, 731	labeling the cells, 829
core-shell, 665, 664, 755, 808	large-scale production, 777
core-type, 156, 755	laser ablation, 740
CQD, 813, 814	ligand interface bonding, 671
crystalline solar cell, 786	light emitting diodes, 878
degradation, 856	luminescence behavior, 875
delivering drugs, 830	metallic materials, 810
development sector incorporating bulk, 793	microbial food chain, 852
different particles tracking, 829	microemulsion process, 610
display technologies, 903, 904	microwaves synthesis, 745
drug delivery, 831	minimizing the toxicity, 891
drug distribution, 825	molecular absorber solar cell, 789
dynamic light scattering, 714	molecular beam epitaxy, 614
effect of ligands, 673	NIR, 812
electrical properties, 736	nonlinear optical property, 877
electrochemical, 740	nonthermal plasma synthesis, 777

nontoxic, 819, 833	synthesis and creation, 739
optical characteristics, 817	synthesis processes, 618
optical characterization techniques, 715	system for imaging, 829
optical properties, 737	systemic toxicity, 842
optoelectronic devices, 878	thermal decomposition process, 613
optoelectronic properties, 781	thermal properties, 593
oxidation, 672	thermodynamic properties, 677
parenteral administration, 855	thin film solar cell, 786
parts, 158	tissue engineering, 830
and PDT, 829	top-down approaches, 599, 739
perovskite-based, 909	toxicity, 678, 818, 824, 833, 838, 839, 888
in pharmaceuticals, 828	transmission electron microscopy, 711
pH effect, 674	ultrasonic or microwave irradiation, 618
photolithography, 780	ultraviolet-visible absorbance
photoluminescence spectroscopy, 717	spectroscopy, 715
photovoltaic technology, 784	uncertainty around, 892
physical vapor deposition, 615, 748	vapor-phase methods, 613
plants, 846	wet-chemical methods, 607
policies and public issues, 894	X-ray diffraction, 709
principle, 156	X-ray photoelectron spectroscopy, 719
Q dots, 815	Zn-PbI ₂ alloy, 647
quantum confinement effect, 738	ZnS compound, 654
radio-opacity and paramagnetic, 893	Quantum dots
Raman spectroscopic technique, 717	color filters, 906
redox chemistry, 673	enhancement film, 904
risks and ecotoxicology, 889	LED displays, 906
scanning electron microscopy, 712	Quantum electrochemical potential, 14,
semiconductor QDs II–VI, 808	see also Graphene
semiconductors, 806	
sensor, 879	R
shell structure, 665	Raman and photoluminescence spectroscopy,
Si element, 635	388
silver, 810	300
simulated, 795	Raman spectroscopy, 58, 67, 71
simulated, 795 size, 819	
size, 819	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195
	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717
size, 819 size determination techniques, 711	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189
size, 819 size determination techniques, 711 size effect, 735	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90,
size, 819 size determination techniques, 711 size effect, 735 skin penetration, 854	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189
size, 819 size determination techniques, 711 size effect, 735 skin penetration, 854 solar cells, 880	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189 S Salt-based method, 191
size, 819 size determination techniques, 711 size effect, 735 skin penetration, 854 solar cells, 880 sol-gel, 607, 748, 871	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189
size, 819 size determination techniques, 711 size effect, 735 skin penetration, 854 solar cells, 880 sol-gel, 607, 748, 871 solvothermal synthesis, 777	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189 S Salt-based method, 191 Scanning electron microscopy (SEM), 90,
size, 819 size determination techniques, 711 size effect, 735 skin penetration, 854 solar cells, 880 sol-gel, 607, 748, 871 solvothermal synthesis, 777 solvothermal treatment, 618	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189 S Salt-based method, 191 Scanning electron microscopy (SEM), 90, 712
size, 819 size determination techniques, 711 size effect, 735 skin penetration, 854 solar cells, 880 sol-gel, 607, 748, 871 solvothermal synthesis, 777 solvothermal treatment, 618 stability, 878	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189 S Salt-based method, 191 Scanning electron microscopy (SEM), 90, 712 graphene, 91
size, 819 size determination techniques, 711 size effect, 735 skin penetration, 854 solar cells, 880 sol-gel, 607, 748, 871 solvothermal synthesis, 777 solvothermal treatment, 618 stability, 878 structural characterization techniques, 709	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189 S Salt-based method, 191 Scanning electron microscopy (SEM), 90, 712 graphene, 91 images, 195
size, 819 size determination techniques, 711 size effect, 735 skin penetration, 854 solar cells, 880 sol-gel, 607, 748, 871 solvothermal synthesis, 777 solvothermal treatment, 618 stability, 878 structural characterization techniques, 709 supplementary characterization techniques,	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189 S Salt-based method, 191 Scanning electron microscopy (SEM), 90, 712 graphene, 91 images, 195 Scanning tunneling microscopy (STM), 90,
size, 819 size determination techniques, 711 size effect, 735 skin penetration, 854 solar cells, 880 sol-gel, 607, 748, 871 solvothermal synthesis, 777 solvothermal treatment, 618 stability, 878 structural characterization techniques, 709 supplementary characterization techniques, 721	Raman spectroscopy, 58, 67, 71 of graphene-like materials, 195 technique, 717 Reduced graphene oxide (RGO), 30, 44, 90, 189 S Salt-based method, 191 Scanning electron microscopy (SEM), 90, 712 graphene, 91 images, 195 Scanning tunneling microscopy (STM), 90, 93

Shear exfoliation techniques, 23,	Template-based confinement, 193
see also Graphene	Tetracyanoquinodimethane, 139
Silanization, 288	Tetrathiofulvalene, 139
Silicon carbide, 31, 469	Theory of electric arc discharge, 452
Single-layer graphene (SLG), 44	Titanium oxide nanotubes, 462
Single-layer graphene nanoribbons	fabrication, 463
(SLGNR), 318	mechanical properties, 463
electronic properties, 324	Topography characterization, of graphene,
structural properties, 319	100
Single-walled carbon nanotubes (SWCNT),	atomic force microscopy, 100
281, 318, 369, 458	Total color difference (TCD) method, 58
chirality values, 319	Transition metal dichalcogenides (TMDC),
electronic properties, 324	127, 546
and MWCNT, 282	applications, 546
structural properties, 319	basics, 546
Sodium ion batteries (SIB), 216	crystal structure, 548
Solar cells, 180, 488	electrochemistry, 548
Solar processing. See also Nanotubes, 269	modifications of CNT, 549
Solid, electronic properties, 583	physical properties, 548
density of states, 583, 585, 587, 588	Transmission electron microscopy (TEM),
size-dependent emission, 590	49, 67, 78, 90, 94, 195, 342, 711
white light-emitting CdSe quantum dots,	Two dimensional (2D) materials
591	chemical doping, 127
Solid-state ball milling, 27	covalent functionalization, 135
Solvothermal synthesis, 777,	defect engineering, 143
see also Quantum dot (QD)	extrinsic defects, 146
Solvothermal treatment, 618	inorganic functionalization, 127
Sonication, 21,	interface engineering, 131
see also Graphene	line defects, 145
Specific surface area (SSA), 69, 196	molecular functionalization, 135
Spherical fullerene, 361	phase transition, 133
Spray coating, 116	point defects, 143
Stone–Wales (SW) defect, 49	surface charge transfer doping, 138
Strain sensors, 120	surface change transfer doping, rec
Supercapacitors, 202	U
graphene, 210	Ultra-high vacuum (UHV), 100
and graphene, 79	Ultraviolet-Visible (UV-Vis) spectroscopy,
Surface charge transfer doping (SCTD), 127,	59, 67, 74
138	absorbance, 715
in devices, 141	absorbance, 713
early exploration, 139	\mathbf{V}
Surface energy, 582	Valence band maximum (VBM), 138, 324,
Surface-enhanced Raman scattering (SERS),	636
55	Van der Waals (vdW) interaction, 55
Surface silanization, 669	Van Hove singularities, 390
Surface diffillation, vo	Vapor-grown carbon fiber (VGCF), 448
	Volmer reaction, 549
T	Vortex fluidic film, 28,
Tafel reaction, 549	see also Graphene
	see and Graphene

W	X-ray diffraction (XRD), 68, 98, 709,
Wet-chemical methods, 607 microemulsion process, 610 sol–gel process, 607 thermal decomposition process, 613 Wet etching method, 605	see also Graphene spectroscopy, 59 X-ray magnetic circular dichroism (XMCD) 131 X-ray photoelectron spectroscopy (XPS), 67 74, 196, 719
X	X-ray powder diffractometer (XRD), 67
X-ray adsorption spectra (XAS), 146	