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Yarub Al-Douri®®¢ and Rajan Jose®

2Engineering Department, American University of Irag-Sulaimani, Sulaimani,
Kurdistan, Iraq, " Department of Mechatronics Engineering, Faculty of
Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul,
Turkey, “Nanotechnology and Catalysis Research Centre, University of Malaya,
Kuala Lumpur, Malaysia, Y Nanostructured Renewable Energy Materials
Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia
Pahang, Kuantan, Pahang, Malaysia

26.1 Introduction

The semiconductors are interesting materials in solid-state physics. The most widely
studied materials are Groups IV and [I-V1. These materials have different band gaps
that are usually extending from few to several electron volts and whose temperature
coellicient dE; =dT is positive, and they have high mobility [1]. They are showing
interesting in optoelectronic applications [2]. It is advantageous to use the com-
putational method based on total energy calculations to study the phase transition
from the coordinated number Nc = 4- to 6-fold [3]. Third-generation approaches to
photovoltaics (PVs) aim to decrease costs and significantly increasing efficiencies but
maintaining the economic and environmental cost advantages of thin-film deposition
lechnigues [4]. There are several approaches to achieve such multiple eneregy threshold
devices [5]: tandem or multicolor cells, concentrator systems, intermediate-level cells,
multiple carrier excitation, up/down conversion, and hot carrier cells [6].

Billaud and Truong [7] have computed the ground state Lamb shift of a semi-
conductor spherical quantum dot in the effective mass approximation. It appears
to be significant enough to be detectable for a wide range of small quantum dots
synthesized in semiconductors. They have suggested the Casimir effect to observe it.
While Thu and Voskoboynikov [8] have calculated the lowest energy states of electrons
confined in an asymmetrical InAs/GaAs double lens-shaped quantum dot molecule in
external magnetic field. Based on the effective three-dimensional one electronic-band
Hamiltonian approximation, the electronic energy states of the system were computed
by nonlinear iterative method using Comsol MultiPhysics package. This description
allows them to simulate the semiconductor quantum dot molecule in arbitrary directed
magnetic field. Simulation results clearly have showed that the diamagnetic shifts of
the electronic energy levels are anisotropic and nonuniform. Therefore, they have
demonstrated an opportunity to dynamically manipulate electronic states not only
by varying the magnitude but also by changing the direction of the magnetic field.
Moreover., Lam and Ng [Y] have used bio-tags to emit different color light with
different dot sizes, and quantum dots are currently extensively studied for application

Graphene, Nanotohes and Quantum Dists-Rased Manotechnology: Fundamentals and Applications,
1= https oYdoi.org TIL 0T BY TR 32385457 . MM 293
Copyright &) 2022 Elsevier Lod. All rights reserved.
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as quantum devices taking advantage of the artificial atom™ properties, such as their
discrete energies, electron spins, and quanitum transport encrgies. The self-assembled
semiconductor quantum dots are grown on the wetting layer of a few monolayer
thickness and subsequently capped with a strain-reduction layer covering the dots to
stabilize them. They have studied the indium arsenide/gallium arsenide self-assembled
quantum dots modeled with a wetting layer between the quantum dot and substrate, and
the strain-reducing capping layer above the quantum dot. They have introduced a new
model with an interfacial layer between the quantum dot and the capping layer and
investigate the effective mechanical and electronic properties using the finite element
method and deformation potential theory. However, Udipi et al. [10] have presented
semiclassical simulation results for the potential energy profile and electron density
distribution in 200 nm silicon quantum dot. For the solution of the continuity equation,
the efficient difference approximations proposed by Scharfetter and Gummel [11] have
extended to three dimensions. In ¢ssence, they have followed the two-dimensional
approach due to Selberherr et al. [12] extend two to three dimensions.

The investigation of further materials research is interesting when one tries to gain
some information about the diameter dependence of the compounds; especially it is
proved with some of the other materials [13,14]. It seems more fundamental to relate
the diameter dependence behavior to the bonds between nearest atoms. By controlling
the evolution with diameter dependence of the compound, it could attempt to link the
effect of guantum dot diameter to the quantum dot potential. In this context, we have
used this procedure for testing the validity of our model [13] of QDs potential. The
obtained energy band gaps are used to calculate the quantum dot potential and to predict
materials tor QDs.

The aim of this chapter review is to present a comprehensive study of our model
[15] for calculating the diameter dependence on QDs potential for different dot
diameters for semiconductors using the full potential linearized augmented plane wave
(FP-LAPW), analytical and characterization researches of thermal evaporation and
chemical bath deposition techniques to investigate the structural and optical properties
utilizing specific models for the elements, compounds, and alloys materials.

26.2 Quantum dots

The conlinement can be due o electrostatic polentials (generated by external elec-
trodes, doping, strain, impurities), the presence of an interface between different
semiconductor materials (e.g., in core-shell nanocrystal systems), the presence of the
semiconductor surface (e.g., semiconductor nanocrystal), or a combination of these.
A quantum dot has a discrete quantized energy spectrum. The corresponding wave
functions are spatially localized within the quantum dot but extend over many periods
of the crystal latice [13]. A quantum dol contains a small linite number (ol the
order of 1-100} of conduction band electrons, valence band holes, or excitons, i.e.,
a finite number of elementary electric charges. Small quantum dots, such as colloidal
semiconductor nanocrystals, can be as small as 2-10 nanometers, corresponding to
10-50 atoms in diameter and a total ol 100-100,000 atoms within the quantum dot
volume. Self-assembled quantum dots are typically between 10 and 50 nm in size.
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Quantum dots defined by lithographically patterned gate electrodes, or by eiching
on two-dimensional electron gases in semiconductor heterostructures can have lateral
dimensions exceeding 100 nm. At 10) nm in diameter, nearly 3 million quantum dots
could be lined up end to end and fit within the width of a human thumb. Simplifying
things greatly (as this guide aims to do, mostly), quantum dots are incredibly small
particles. They range between 2 and 10 nanometers in diameter, which is equivalent to
30 atoms. Yes, atoms. You cannot measure these things using your old-school shatter-
proof ruler. It is this small size that gives quantum dots the unique properties to improve
our tech. The color light that a quantum dot emits is directly related to its size; smaller
dots appear blue, larger ones more red. In LCD screens, they are applied as a way of
eliminating the need for White LED backlights and color filters [14,15].

Higher peak brightness—one of the reasons TV manufacturers like quantum dots
1s that they allow them to produce TVs with much higher peak brightness. This opens
up some interesting possibilitics, such as enabling support for “high dynamic range”
TVs that support standards such as Dolby Vision. In simple terms, Dolby Vision is a
film standard that, when used, results in content that retains more color and contrast
information than existing standards. The result is pictures that have greater differences
in the brightest and darkest parts of the image and look more “dynamic™ and real as
a result. Imagine shots were looking into the sun actually feels like looking in to the
sun for real and you get an idea. To do this you need brighter TVs and quantum dots
deliver exactly that. Following the acceptance of 4K resolutions, HDR, in general, is
the next big feature of TVs, and all of the top TV sets announced at CES 2016 this vear
have made bold claims about their “high dynamic range” capabilities. Quantum Dot
technology, like OLED, goes hand in hand with this advance [10,15].

26.3 Computational method

The LAPW method is utilized for solving the equations ol density functional theory
{DFT). Modern implementations allow for a number of approximations to exchange
and correlation (LDA, generalized gradient approximation (GGA), and LDA+U.
among others) and make no approximations to the shape of the crystal potential.
unlike methods employing the atomic sphere approximation which assume spherical
symmeltry around each atom. Like most modern electronic-structure methods, the
LAPW method 15 a vanational expansion approach which solves the equations of DFT
by approximating solutions as a finite linear combination of basis-functions. What
distinguishes the LAPW method from others is the choice ol basis. The LAPW basis is
constructed to be particularly accurate and efficient for the solution of the all-electron
ab initio clectronic-structure problem., where solutions are rapidly varyving and atomic-
like (like isolated-atom solutions) near the atoms but more smoothly varving and not
atomic-hke throughout the rest of the cell.

The calculations were carried out using the full potential linearized avugmented
plane wave (FP-LAPW) method as implemented in WIEN2ZK code [16]. The exchange-
correlation potential was treated using the GGA [17] for the total energy calculations,
the Engel-Vosko GGA (EVGGA) formalism [ 18] and modified Becke Johnson (mB1I)
[19] for principal energy calculations. To overcome the shortcoming of both LDA and
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GGA of underestimation of the energy gap [20], we have used EVGGA and mBJ. This
shortcoming is ascribed to the fact that they do not reproduce the exchange-correlation
energy and its charge derivative correctly. Hence, the modified form of GGA is the
EVGGA that is improved in mBJ. which is capable to better reproduce the exchange
potential at the expense of less agreement in the exchange energy that yields a better
band splitting [21-25]. In the FP-LAPW method, the wave function, charge density,
and potential were expanded by spherical harmonic functions inside nonoverlapping
spheres surrounding the atomic sites (muffin-tin spheres) and by plane waves basis sct
in the remaining space of the unit cell (interstitial region). The maximal 1 value for
the wave function expansion inside the atomic spheres was confined to 1., = 8. The
muffin-tin radii were assumed to be 2.0 atomic units (a.u.) for Ph, 8, and Te. The plane
wave cut-off of K, = 8.O/RMT was chosen for the expansion of the wave functions
in the interstitial region for the PhS and PbTe binary compounds, while the charge
density is Fourier expanded up to Gy, = 14 {R}'d}”g. The irreducible wedge of the
Brillouin zone was described by a mesh of 10 special k-points for binary compounds.
The self-consistent calculations are converged since the total energy of the system is
stable within 10 ° Ry. The FPLLAPW has been proved to be one of the accurate methods
of calculating the electronic properties within the DFT [26-29].

26.4 Experimental techniques

According to the following experimental steps, lead iodide was prepared by a reaction
of potassium iodide (K1) with lead nitrate Ph{Nos ), [30]:

a) Ph (Noq): solution of 0.01 M by dissolving 3.31 mg in 1000 mL of distilled water.

b} Kl solution preparation with 0.05 M by dissolving 8.31 mg in 1000 mL of distilled water.
Adding 50 ml of Kl solution to 50 ml of Pb{MNo, )» solutions to prepare Phl: will appear vellow
lead iodide at the bottom of the beaker insoluble by water. Also, potassium nitrate (KNog)
is dissolved by water. Afterthat, the water is discarded bevond drying deposited material.
Finally, it is removed from the beaker to keep in desiccators.

Pb(Nos ), + KI — Pbl, + KNos (26.1)

Pbl: nanostructures were grown on glass substrates al room temperature by Electron
Beam Evaporation ( Auto 306 Vacuum Coater, USA ). The main reason of utilizing this
method is to permit the large area deposition in cost-elfective manner [11]. To measure
the thickness, the weight method was used. Sensitive electrical balance (Metler AE-
160, USA) was utilized, with precision reaching 10~ g, The structural properties were
investigated via X-ray diffractometer (XED) o determine the crystallinity of sample,
the diffraction for determining spacing, preferred onentation and the particle size. XRD
system (Philips PW 1710 X-ray diffractometer, USA) has been used for the following:
Source radiation of CuKa with 1.54 A wavelengths, incidence angle: 10-60 degree,
and scanning speed: (5 degree/min). The optical properties have been investigated
by ultra-violet spectroscopy (UV-vis) at room temperature via Perkin-Elmer Lambda
(950 spectrophotometer, USA) in the 3001100 nm wavelength range.
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Table 26.1 The calculated principal energy band gaps for 51 (in V) at dilTerent diameters (in
nm} compared to other theoretical resulis and experimental data [13].

Dot diameter Eg (r=rj ["lg (r=X) Eg (Ir=1.)
343 2.742 1.436; 1.112.° 2.028

54 2.747 1.396 2.094
53.6 2.751 1.352 2.164
533 2.757 1.272 2279

33 2.752 1.345 2.174
52.7 2.759 1.233 2.332
1[36] expl;

b[37).

Also, ZnCl; and Na;§ were used as zinc source and sulfur source, respectively.
ZnCly, Na,5, and mercaptoethanol (ME) were obtained from Sigma-Aldrich. ZnS
nanomalenals were synthesized with chemical bath deposition techmque with ME, as
capping agent (or surface-active agent surfactant). The first 50 mL agueous solution of
ZnCl; (0.01 M) was prepared at room temperature, where, 50 mL aqueous solutions of
ME with different concentrations (0.001, 0.1, (.7 M) were added dropwise to the first
solution under continuous stirring. Then, 50 mL of Na; S (0.01 M) solution was added
to the mixture. A three-neck reaction flask was used under N, inert gas to prevent
any oxidation eflfect. While reaction was going on, a magnelic stirrer was used for
continuous stirring of solution in the reaction vessel. The final solution was centrifuged
and washed several times with double distilled water, to wash out the NaCl impurities.
The remaining centrifuged ZnS was dried under a table lamp. The obtained powder was
analyzed via XRD (Philips PW 1710 X-ray diffractometer, USA), UV-visible (Jobin
Y von model HR 800 UV system, Kyoto, Japan), and transmission electron microscopy
(TEM) (Model TEOL JEM-100cx, Japan) technigues [31].

26.5 Results and discussion

26.5.1 Sielement

Normally, the covalent semiconductors are fourfold coordinated. The reason that the
density 1s so low and the nearest neighbors are bound by overlapping hybridized
orbitals, which are the well-known sp® hybrids with tetrahedral direction [32]. Hence,
it 1s possible to tune the band gaps using dot diameter. The calculated values of the
direct (I'—T") and the indirect (I" — X) and (I'—L) band gaps within EVGGA of the
investigated Si-element at different diameters are listed in Table 26.1 along with the
experimental data [33] and other previous theoretical calculation [34]. Our calculated
vilue of the (I" — X)) bandgap is slightly overestimated compared w the available data.
This could be attributed to our use of the EVGGA approximation. Due to these small
vialues, Si has been classified as a narrow band gaps semiconductor. Because of their
use in infrared light generation and detection, the bandgap variations of dot diameters
represent an important property o study. As mentioned at Table 26.1, the band gaps
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