

ADAPTIVE PERSISTENCE LAYER FOR

SYNCHRONOUS REPLICATION (PLSR)

 IN HETEROGENEOUS SYSTEM

ABUL HASHEM BEG

MASTER OF SCIENCE (COMPUTER)

UNIVERSITI MALAYSIA PAHANG

ADAPTIVE PERSISTENCE LAYER FOR SYNCHRONOUS REPLICATION

(PLSR) IN HETEROGENEOUS SYSTEM

ABUL HASHEM BEG

Thesis submitted in fulfillment of the requirements

For the award of the degree of

Master of Science (Computer)

Faculty of Computer Systems & Software Engineering

UNIVERSITI MALAYSIA PAHANG

JULY 2011

ii

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion this thesis is

satisfactory in terms of scope and quality for the award of the degree of Master of

Science (Computer).

Signature :

Name of Supervisor : DR. NORAZIAH BINTI AHMAD

Position : SENIOR LECTURER

 FACULTY OF COMPUTER SYSTEMS & SOFTWARE

ENGINEERING, UNIVERSITI MALAYSIA PAHANG

Date : JULY 11, 2011

iii

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged. The thesis has not been accepted for

any degree and is not concurrently submitted for award of other degree.

Signature :

Name : ABUL HASHEM BEG

ID Number : MCC09004

Date : JULY 11, 2011

iv

This thesis is dedicated to

My beloved parents

Mohammad Anwar Hossen Beg and Bedena Khatun

For their endless care and comfort

&

 My dear brother

Dr. Mohammad Dalour Hossen Beg

For his care, support and suggestion

v

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude to the supervisory committee

Dr. Noraziah Binti Ahmad for her continuing support, professional guidance and for

giving me an opportunity to learn what research is all about. Special gratitude also to

Associate Professor Dr. Ahmed N Abdalla for his contributions, guidance and time

towards this research.

Sincerely thanks should be forwarded to Vice Chancellor University Malaysia

Pahang (UMP), Profesor Dato’ Dr. Daing Nasir Ibrahim for the GRS scholarship and

also sponsorships to the International Conference on ICSCT 2010.

I extend my deepest gratitude to Dr. Nubli, Dr. Anwar and Dr. Tutut Herawan

for their great effort and support during my study period.

Special gratitude also to my family, especially to my father, Mohammad Anwar

Hossen Beg; my mother, Bedena Khatun; my sister Aleya Akter; my brothers Dr. Dalour

Hossen Beg, Altab Hossen Beg; my sister in-law Afroza Khanom Lovely and niece

Nilanchol Chhnooa Beg; for their patience and morale support.

Finally, I thank to all my friends especially Khandaker Fazley Rabbi, Ainul Azila

Che Fauzi, Nawsher Khan, Noriyani Mohd Zin, El Rasheed Sultan and Mohammed

Fakheraldien who have contribute this research.

vi

ABSTRACT

Nowadays, in the grid community, distributed and clustering system, a lot of

work has been focused on providing efficient and safe replication management services

through designing of algorithms and systems. For many reasons, businesses or specially

enterprise business or industrial business use replication. Therefore, replication is a

useful technique for distributed systems. It can improve the performance and the

reliability of a database application. In addition, it can be considered as a data backup

method in case of hardware failure, software corruption or even a natural disaster. A

change of the main database is reflected, forwarded and applied at each of the replicated

server which might be in a remote location. Replication in the heterogeneous system is a

very promising and challenging platform which is a compound of multi environment.

Proper mechanism is significantly required in order to manage the complex

heterogeneous data replication. In this research, Persistence Layer for Synchronous

Replication (PLSR) has been proposed to support heterogeneous systems. The main

objective of this technique is to develop an adaptive persistence layer which consisted of

reliable and smooth replication. This technique also introduces a multi thread based

persistence layer, which supports early binding and parallel connection to the servers.

All the replication servers established its connection through interfaces. Furthermore,

similar with the Service Oriented Architecture (SOA) and the structure is flexible

enough to modify i.e.; adding and removing replication server. The PLSR is proposed

based on the multithreading technique in order to avoid the dependency of replicated

server from the main server and to make the enterprise software more enhanced so that

the system will never be unstable during system up-gradation or system crashes.

Consequently, the implementation of this technique will be applicable to enterprise

application such as bank, insurance, group of companies as well as a small and medium

organization such as NGO. The new replication process will also be used in e-commerce

application to secure user transaction information. The motivation of implementation is

to make sure the data replication is easy to maintain and cost effective. The PLSR

architecture, model, workflow and algorithms are described. The PLSR has been

developed using Java Programming language. The system requirements also have been

elaborated. The experimental main server and replication servers were established in

Windows and Linux platform using the local area network (LAN). Finally, series of

experiments have been carried out by using different servers. The snapshot of

implementation showed that the proposed framework works successfully with

replicating data in different operating systems. The result shows that PLSR performs

outstandingly and the value is 83.2 % and 2.49% than SQL server for transactional insert

and synchronization in compare to time (seconds).

vii

ABSTRAK

Dewasa kini, di dalam komuniti grid, sistem teragih dan sistem klustering,

banyak usaha telah difokuskan untuk menyediakan servis replikasi yang cekap dan

selamat dengan merekabentuk algoritma dan sistem. Perniagaan atau khususnya

perniagaan enterprise atau perniagaan industri banyak menggunakan replikasi

disebabkan pelbagai faktor. Oleh kerana itu, replikasi adalah teknik yang berguna untuk

sistem teragih Ianya dapat meningkatkan prestasi dan keboleh percayaan terhadap

aplikasi pangkalan data. Selain daripada itu, ia juga boleh dianggap sebagai kaedah

sandaran data sekiranya berlaku kegagalan peranti keras, kerosakan perisian mahupun

bencana alam. Perubahan dari pangkalan data utama akan diteruskan dan digunakan

pada setiap pelayan yang mungkin terletak pada lokasi berjauhan.Replikasi dalam sistem

heterogen adalah platform yang mencabar serta menjanjikan masa depan yang cerah

yang mana terdiri daripada persekitaran pelbagai. Mekanisme yang tepat diperlukan

untuk menguruskan replikasi data heterogen yang kompleks. Dalam kajian ini,

Persistence for Layer Synchronous Replication (PLSR) telah dicadangkan untuk

menyokong sistem heterogen. Tujuan utama teknik ini adalah untuk membangunkan

lapisan persistensi adaptif yang terdiri dari pada replikasi yang boleh dipercayai. Teknik

ini juga memperkenalkan lapisan persisten berasaskan multi bebenang yang menyokong

sambungan awal dan sambungan selari ke pelayan. Semua pelayan replikasi mendirikan

sambungannya melalui antaramuka, menyerupai Service Oriented Architecture (SOA)

dan strukturnya cukup fleksibel untuk diubahsuai seperti menambah dan membuang

pelayan replikasi. Dalam kajian ini, PLSR dicadangkan berdasarkan pada teknik multi

bebenang untuk mengelakkan pelayan direplikasi bergantung dengan pelayan utama

serta untuk meningkatkan taraf perisian Enterprise sehingga sistem itu tidak akan

menjadi tidak stabil pada masa sistem dinaik taraf atau sistem terjadinya kerosakan

sistem. Oleh itu, pelaksanaan teknik ini sesuai untuk aplikasi enterprise seperti

sekumpulan syarikat, insurans, bank organisasi kecil dan sederhana seperti NGO. Proses

replikasi baru juga akan digunakan dalam aplikasi e-dagang untuk melindungi maklumat

transaksi pengguna. Motivasi dari pelaksanaan tersebut adalah untuk memastikan

replikasi data mudah untuk penyelenggaraan dan pengurangan kos. Reka bentuk model,

alur kerja dan algoritma PLSR dijelaskan. PLSR telah dibangunkan dengan

menggunakan bahasa pengaturcaraan Java. Keperluan sistem juga telah

dihuraikan. Server utama yang diuji dan pelayan replikasi dibangunkan di platform

Windows dan platform Linux dengan menggunakan rangkaian kawasan tempatan

(LAN). Akhir sekali, suatu siri percubaan telah dilakukan dengan menggunakan pelayan

yang berbeza. Hasil kajian dengan snapshot menunjukkan bahawa model yang

dicadangkan berfungsi dengan baik bagi mereplikasi data dalam sistem operasi yang

berbeza. Keputusan menunjukkan PLSR platform befungsi dengan hebat dengan nilai

83.2% dan 2.49% daripada SQL server untuk kemasukkan transaksi dan sinkronisasi

dengan perbandingan masa (saat).

viii

TABLE OF CONTENTS

 Page

SUPERVISOR’S DECLARATION ii

STUDENT’S DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION

1.1 Introduction 1

1.2 Data Replication 2

1.3 Problem Statement 5

1.4 Objectives of Research 6

1.5 Scopes of Research 7

1.6 Organization of Thesis 7

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 8

2.2 Replication Model 8

 2.2.1 Synchronous Replication 14

 2.2.2 Peer-to-Peer Replication 16

2.3 Persistence Layer 18

2.4 Heterogeneous system 21

ix

2.5 Transaction 23

2.6 SQL server replication 25

2.7 Multi-threading technique 27

2.8 Conclusion 28

CHAPTER 3 METHODOLOGY

3.1 Introduction 29

3.2 Framework of PLSR model 29

3.3 Complete flowchart of PLSR model 30

3.4 Structure of persistence layer 32

 3.4.1 Exception Handler 33

 3.4.2 Global configuration 33

 3.4.3 Connecting sting 33

 3.4.4 Look up service 33

 3.4.5 Heterogeneous System 35

3.5 PLSR algorithm 37

 3.5.1 Persistence layer algorithm 38

 3.5.2 Connection string algorithm 39

 3.5.3 Lookup service algorithm 40

 3.5.4 Utility algorithm (add previous record) 41

 3.5.5 Utility algorithm (synchronous data) 42

3.6 Replication time calculation 43

3.7 Conclusion 43

CHAPTER 4 IMPLEMENTATION AND RESULTS

4.1 Introduction 44

4.2 Programming implementation 44

4.3 Hardware and Software components 51

x

4.4 PLSR Environment 53

 4.4.1 Experiment 1 53

 4.4.2 Experiment 2 54

4.5 PLSR implementation 56

4.6 Result and Discussion 65

4.7 Conclusion 71

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Introduction 72

5.2 Conclusion 72

5.3 Future Work 73

REFERENCES 75

APPENDIX 83

BIODATA OF THE AUTHOR 88

LIST OF PUBLICATIONS 89

xi

LIST OF TABLES

Table No. Title Page

2.1 Basic comparison of replication time between transaction and

merge insert

27

3.1 PLSR algorithm variable and definition 37

4.1 Server main components specifications 52

4.2 System development tools specifications 52

4.3 The local IP address for each server based on SQL Server 54

4.4 The local IP address for each server based on MySQL Server 55

4.5 Transactional insert time between SQL Server and PLSR

(SQL Server)

66

4.6 Transactional insert time between SQL Server and PLSR

(MySQL Server)

67

4.7 Total replication process time between SQL Server and PLSR

(SQL Server)

68

4.8 Total replication process time between SQL Server and PLSR

(MySQL Server)

69

xii

LIST OF FIGURES

Figure No. Title Page

2.1 Data distribution 10

2.2 Data consolidation 11

2.3 Bidirectional replication 12

2.4 Synchronous replication 15

2.5 Peer-to- Peer replication 17

2.6 Persistence layer in J2EE applications 21

2.7a COMMIT balances BEGIN TRANSACTION by reducing the

@@TRANCOUNT one

24

2.7b A single ROLLBACK undo the entire transaction 25

2.8 SQL server replication architecture 26

3.1 Structure of replication process 30

3.2 Flow chart of persistence layer replication process 31

3.3 Structure of persistence layer for synchronous data replication 32

3.4 Lookup service in PLSR 35

3.5 Heterogeneous replication process 36

3.6 Persistence layer algorithm 39

3.7 Connection string algorithm 40

3.8 Lookup Service algorithm 41

3.9 Utility algorithm (add previous record) 42

3.10 Utility algorithm (synchronize data) 43

4.1 Product authority information 45

4.2 Project view of persistence layer APP 46

4.3 Demonstration of server configuration file 47

4.4 Demonstration of connection string file 48

4.5 Source code view of persistence layer Engine 49

4.6 The Initial view of the application currently supporting data 50

xiii

insertion

4.7 The view after data insertion 51

4.8 Data replication on heterogeneous system with 3 replication

servers and SQL Server

53

4.9 Data replication on heterogeneous system with 3 replication

servers and MySQL server

55

4.10 The inserted data on the table in the main server (SQL Server) 56

4.11 IP address information of main Server (SQL Server) 57

4.12 The inserted data on the table in a replication server (MS Access) 58

4.13 IP address information of MS Access 59

4.14 The inserted data on the table in a replication server (MySQL in

Linux)

60

4.15 IP address information of MySQL Server (Linux) 61

4.16 The inserted data on the table in a replication server (MySQL in

Windows)

62

4.17 IP address information of MySQL (Windows Server) 63

4.18 Showing permalink SQLyog link under wine in Ubuntu 64

4.19 Running SQLyog in Ubuntu 65

4.20 Comparative time for transactional insert 69

4.21 Comparative time for synchronization 70

xiv

LIST OF ABBREVIATIONS

BHR Bandwidth Hierarchy Replication

BSL Boost Serialization Library

CRUD Create, Read, Update and Delete

CSCW Computer Supported Cooperative Learning/Work

DAG Direct Acyclic Graph

DDMS Distributed Database Management System

DDS Distributed Database System

DLL Dynamic Link Library

DML Data Modification Language

eFRD efficient Fault-Tolerant Reliability- Driven

EJB Enterprise Java Bean

FTP File Transfer Protocol

GUI Graphical User Interface

HDC Heterogeneous Distributed Computing

HCS Hierarchical Cluster Scheduling

HRS Hierarchical Replication Strategy

IDE Integrated Development Environments

LAN Local Area Network

MT Multi-Threading

MSE Multi-Staged Engine

ODR On Demand Replication

xv

ORM Object/Relational Mapping

OS Operating System

P2P Peer-to-Peer Replication

PADS Parallel and Distributed Simulation

PKI Public Key Infrastructure

PLSR Persistence Layer Synchronous Replication

PMI Privilege Management Infrastructure

POJO Plain Old Java Objects

PPR Periodic Push-Based Replication

RDBMS Relational Database Management System

ROWA Read-One-Write-All

RSS Replication Synchronous Service

SI Snapshot Isolation

SMP Symmetric Multi-Processors

SPEEDES The Synchronous Parallel Environment for Emulation

and Discrete-Event Simulation

SPF SPEEDES Persistence Framework

SME Software Main Engine

SRMT Software-based Redundant Multi-Threading

URL Uniform Resource Locator

TRLS Tree- based Replica Location Scheme

TSPS Tree-Structured Persistence Server

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Nowadays, in many fields, such as scientific experiments and technological

applications generate a huge amount of data. The appropriate use of data sharing and

collaboration, these generated data should be shared and distributed in wide area

networks. Therefore, the effective management of these wonderful sources of

information shared and distributed is becoming a very important topic of scientific

research and commercial applications. Thus, the data replication is a very useful

technique to manage the large scale data across the widely distributed networks (Sriram

and Cliff, 2010; Li and Shen, 2009; Lei et al., 2008).

Several researchers have been carried out regarding the replication process from

the last decade. Among them were those by Ibison (2010), Pucciani et al. (2010), Tanga

et al. (2010), Lou et al.(2009), Sato et al. (2009), Tong and Shu (2009), Elghirani et al.

(2007), Boyera and Hura (2005) and Ma et al. (2004). Those articles revealed that data

replication in heterogeneous system are one of the current issues that still unsolved in

distributed system. Therefore; the study on this basis is initiated.

A database can be defined as a common set of logically related data that can be

designed to meet the necessary information from an organization and to be used by

multiple users (Post, 2006; Connolly and Begg, 2005). The emergence of network

facilities and communication added to a database system can be taken from centralizing

2

to a decentralized concept (Bell and Grimson, 1992). Distributed Database System

(DDS) is one of the main developments in the field of database, where it moves from

centralization that led to the monolithic gigantic database to greater decentralization

(Deris et al., 2004; Deris et al., 2001). DDS is defined as a set of multiple independent

databases that run on two or more computers that are connected and share data over the

network (Post, 2006; Connolly and Begg, 2005). Meanwhile, a Distributed Database

Management System (DDMS) can be defined as software that manages the distributed

database and makes the distribution transparent to the user (Connolly, and Begg, 2005).

Even the commercial system databases such as Oracle Database (Version 11g) provide

the necessary support for data distribution and inter database communication (Freeman

et al., 2005). These concepts allow higher degrees of distributed and flexibility in

distributed databases (Mavromoustakis and Karatza, 2008; Deris et al., 2004). With the

development of distributed processing and distributed computing, database research

community makes a lot of work to solve the data distribution, distributed design,

distributed query processing, distributed transaction management.

The heterogeneous computing system is a very promising and challenging platform

that combines with the case of multi-environment. The single parallel architecture based

systems is not sufficient enough for a running application to exploit the parallelism. In

some cases, Heterogeneous Distributed Computing (HDC) systems can achieve better

performance than the single super computer system; moreover, it puts the lower cost

than the super computer. However, the HDC system is more exceptions oriented that

may put a negative impact on the running application (Tanga et al., 2010).

1.2 DATA REPLICATION

Data replication provides an important role in this involving world of the DDS.

Through this technique, an object request (read and write) will be accessed from

multiple locations such as Local Area Network (LAN) or in the worldwide distributed

network. For example, the results of a student in college will be read and updated by

lecturers from various departments. The price of financial instruments will be read and

3

updated from around the world (Noraziah et al., 2009; Chidambaram et al., 2008; Gu et

al., 2008).

Replication environment commonly use two approaches, namely asynchronous

or synchronous. With asynchronous replication, changes are made one after a certain

time with a lot of data from the master/main database to the different other database.

Synchronous means changes made immediately once some data transaction occurs to the

master/main database. Using synchronous replication, an update of transaction results

immediately replicates the update to all other databases (Urbano et al., 2003). Thus,

synchronous replication provides tight consistency between data stores. The meaning is

that, the latency between data consistency is zero. If any copy is updated, at the same

time the update applied to all other copies within the same transaction. So the data at all

sites is always the same and accurately consistent and there is no matter from which

replica the updated organized. On the other hand, asynchronous replication provides

loose consistency between data stores. The meaning is that, the latency between data

consistency is always greater than zero. If one copy is updated, the changes will be

broadcasted and applied to the other copies within separate transactions. These copy

changes can occur seconds, minutes, hours or even days later. Therefore, a certain

degree of lags always exists between the organizing transaction that has committed and

the effects of the transaction available on the other replicas (Buertta, 1997).

Replication is a process that copies and maintains database object, such as tables,

in multiple databases or even codes into a distributed environment (Urbano et al., 2003).

Since database replication maintains the same copy to other remote locations, thus it can

improve the performance of a database application. Replication can also be considered

as a data backup method which supports to the database application during hardware

failure, software corruption or even a natural disaster. A change of main database is

reflected, forwarded and applied at each of the replicated servers that usually located on

a remote environment (Filip et al., 2009; Caviglione and Cervellera, 2007; Kim et al.,

2007). Although, the definition of replicated database and a distributed database similar

in some case, there have some divergence. In the definition of distributed database, data

4

is available at many locations, but a particular table resides at only one location (Wang

and Li, 2006; Kosar and Livny, 2005). For example, the employees table resides at only

the pah.employee database in a distributed database system that also includes the

kl.employee and kn.world databases. However, replication means that the 100% same

data at other locations (Bost et al., 2009; Jianfeng et al., 2008). Moreover, Data

replication can be drives by programs which transport data to some other location and

then loaded at the receiving location which may be filtered and transformed during the

process. It should be considered in a replication process that must not interfere with

existing applications and should have the minimal impact on production systems. Thus

the replication processes, need to be managed and monitored (Gu et al., 2002). The

definition of database replication can be stated as improvement of data access time,

transaction time and provides fault tolerance by maintaining and managing multiple

copies of data (e.g. files, objects, databases or parts of databases) at different locations

(Ibej et al., 2005).

Replication balances the data transaction, and it provides fast, local access to

shared data over multiple databases (Hao.W et al., 2008; Lin, 2007). Thus replication

can also perform as load balancing. Recently, database replication protocols have been

designed using Snapshot Isolation (SI) replicas and follow the Read-One-Write-All

(ROWA) approach as well as the transactions are, firstly executed in a delegate replica

and their updates (if required) are propagated to the rest of the replicas at the committed

time (Inigo et al., 2011).

http://ieeexplore.ieee.org.ezproxy.ump.edu.my/search/searchresult.jsp?searchWithin=Authors:.QT.Zhu%20Jianfeng.QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/search/searchresult.jsp?searchWithin=Authors:.QT.Wei%20Hao.QT.&newsearch=partialPref

5

1.3 PROBLEM STATEMENT

Data replications used in the various field such as bank, insurance, group of

industries to protect their secure data to prevent unwanted crashes. Data replication in

terms of duplication of data creates a backup copy of the data on the different servers. In

the current enterprise software system, typically there used a persistence layer which

persists in different current objects, which in terms help the application to avoid fault

tolerance. So basically, on an enterprise system, replication helps to avoid fault of the

data server system. Currently, in the data replication system consist of the following

impediments:

i. Usually replication process depends on the main server

ii. Introducing the up-gradation of the replication process usually mute or pause the

system for a routine of time

iii. Fail or cashes of the main server, usually make the entire system stop working

(For a database driven system)

In the grid environment, Sato et al. (2009) proposed an approach for the

clustering base replication algorithm. The goal is to create a technique to determine

optimal file replication strategies. Their approach outperformed groups file stored in a

grid file system according to the relationship of simultaneous file access and determines

locations and movement of replicas of file clusters from the observed performance data

of file access and implementation specification was in Linux 2.6.1.8. However,

researchers do not consider the heterogeneous system and also the replication in the grid

environment needs a lot of inter connection speed, which is in gigabyte.

Elghirani et al. (2007) proposed an approach in an intelligent replication

framework for data grid. The main goal of their approach is to create a replica

management service that interrogates replica placement optimization mechanisms and

dynamic replication techniques, coupled with computation and job scheduling

6

algorithms for better performance in data grids. They use dynamic ordinary replication

strategies and replica placement schemes. The result shows that their approach improves

the job execution time by 10-23%. However, the replica management is only coupled

with computational job scheduling, which actually better performed in Symmetric Multi-

Processors Server (SMP).

Persistence data layer is one of an important part in the information system

design. It is the foundation of the system performance and its migration ability. Lou et

al. (2009) studied a reflected persistence data layer framework based on O/R mapping.

They presented five modules: data loadable module which are data write module,

database services module, primary key cache module and paging cache module for

persistence layer. However, the reflection is not native to the OS. A lot of execution

handling mechanisms should be included into the system. Besides replication using the

reflection mechanism is a very slow process and takes a lot of memory and sometimes

causes a buffer overflow.

1.4 OBJECTIVES OF RESEARCH

This research concentrates on the synchronous replication in the heterogeneous

environment. Persistence Layer for Synchronous Replication (PLSR) is proposed based

on the multithreading technique in order to avoid the dependency of replicated server

from the main server and to make the Enterprise software more enhanced so that the

system will never be unstable during system up-gradation or system crashes. This

framework supports the heterogeneous system. It can be implemented in SQL Server,

MySQL, and MS Access in Linux or Windows environment. Therefore, it is easy to

maintain and cost effective.

The objectives of this research are as follows:

i. To propose and to develop a new framework and algorithm of persistence

layer for synchronous replication in heterogeneous system

7

ii. To analyze the performance of the proposed framework and algorithm

1.5 SCOPES OF RESEARCH

The scopes of this research are as follows:

i. Design a new framework using multi-threading technique for synchronous

replication

ii. Develop a new algorithm for synchronous replication and implemented in the

heterogeneous environment

iii. Develop new replication process which will be applicable for enterprise

application such as bank, insurance and group of companies

iv. The new replication process will be used in e-commerce application to secure

users transaction information

v. The new replication also can be used in small and medium organization such as

NGO, Institutes to make their data more reliable and portable

1.6 ORGANIZATION OF THESIS

This thesis has been prepared to give details on the facts, observations,

arguments, and procedures in order to meet its objectives. Chapter 1 generally gives the

brief background of database replication, the problem statement, objectives and scope of

the research. Chapter 2 presents the literature review of replication model, synchronous

replication, peer-to-peer replication, persistence layer, heterogeneous system,

transaction, data grid solution and multi-threading technique. Chapter 3 carries out the

structure of the proposed persistence layer. Its different modules and algorithm of the

PLSR and definition of the notation have been described. Chapter 4 addresses the

implementation of PLSR framework and compares the performance with other

replication techniques. The conclusions of the present research are summarized and

presented in Chapter 5. Suggestion and recommendations for the future work are also

presents in this chapter.

8

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter reviews some of the foremost techniques namely replication model,

synchronous replication, Peer-to-Peer (P2P) replication, persistence layer, heterogeneous

system, transaction, data grid solution and Multi-Threading (MT) Technique. A review

of other relevant research studies is also provided.

2.2 REPLICATION MODEL

Replication is mainly used to store some or all data items redundantly at multiple

sites. The main objective of replication is to increase the system reliability and

application performance. In the grid community, distributed and clustering system, a lot

of work has been focused on providing efficient and safe replication management

services through the designing of algorithms and systems. Replication technology

creates data replication on the right node from where the data transmission becomes

faster. As such a network is in some remote location separated from the main server, and

the data transmission rate is too high. Thus a replication server can be created on that

remote location which in terms helps the remote system to reduce data transmission

impediments and improve visit delay, bandwidth consumption and system reliability

(Gao and Liu, 2007).

9

Businesses or specially Enterprise business or industrial business use replication

for many reasons. The business requirements can be categorized (Gu et al., 2002).

i. Distribution of data to other locations

ii. Consolidation of data from other locations

iii. Bidirectional exchange of data with other locations

i. Distribution of data to other locations

Distribution of data involves to move all or a subset of data to one or more

locations. The data is copied from a central data warehouse. Subsets of data can be

copied to the different data station to afford different groups of users with local access. It

is therefore, possible to use enterprise data with business intelligence tools, while

maintaining safety and performance of production applications. Distribution of data can

be used for other applications in the same or different environments. This is called

simply copying data from the main server to another replication and / or main server. It

may be necessary a complex data transmission for a new application. The new

application can be a web application, bought package, or a distributed desktop

application.

Data replication can also be used to provide a scalable application when

migrating from one environment to another. It can also be used for Legacy data copied

to the new environment for the reference by new applications and, unless the legacy

applications are migrated to the new environment. Figure 2.1 shows two target servers

replicating from a single source server (Gu et al., 2002).

10

Figure 2.1: Data distribution (Gu et al., 2002)

The two target servers are copying different subsets or transformations of the data on

different schedules.

ii. Consolidation of data from remote systems

An enterprise application can obtain data on many distributed systems. Retail

stores have data at each store. Manufacturing companies have data on each plant.

Insurance companies contain data at each branch office or on each sales person’s laptop

or computer. Therefore, replication can copy changes from each of the individual

distributed sites to a central point for analysis, reporting, and enterprise application

processing. Figure 2.2 shows a target server replication from two source servers (Gu et

al., 2002).

11

Figure 2.2: Data consolidation (Gu et al., 2002)

iii. Bidirectional exchange of data

This type of data replication functions as a coordinated fashion. In this system,

one location works as the master location and distributes changes to the target's

locations. Changes made at the target flow to other destination sites by the master.

Bidirectional replication can be used for mobile applications, where the goal may be a

computer at a branch or a delivery truck. The connection can be made through telephone

lines, while efficiency is important. Figure 2.3 illustrates the bidirectional replication

with a designated master (Gu et al., 2002).

12

Figure 2.3: Bidirectional replication (Gu et al., 2002)

Ahmad N et al. (2010) proposed new Neighbour Replica Transaction Failure

Framework (NRTFF) in data grid. They developed a reliable system for managing

transaction on neighbor replication data grid (NRDG) to maintain data availability, fault

tolerance and avoid the deadlock. When two neighbour replicas have failures at a

specific given point of time, the transaction can perform without waiting to obtain a

majority quorum. In particular, Tγ x q , 1 ЄT at a primary replica becomes as ' , 1 T γ x q

. ' , 1 T γ x q will change an access permission mode of data file x. Then it acknowledged

the client for an updated the process and also commits the transaction changes. Their

implementation also showed that managing transactions on NRTFF provided fault

tolerance capabilities that allow it to withstand failure both in handling quorum locking

and the transaction execution.

13

Tang et al. (2006) proposed architecture for data replication and job scheduling

to reduce the job turnaround time remarkably and evaluate the performance of the

scheduling heuristics combination with different replication algorithms. The adaptive

object replication algorithm (Wujuan and Veeravalli, 2008), replicate on line request for

serving random arriving requests in a distributed network system and consider the costs

involved that occur in servicing requests, like the I/O cost, control-message and data-

message transferring cost. In another paper (Zhoua and Xu, 2007), the authors proposed

an efficient algorithm of video replication and placement on a cluster of streaming

servers. The goal of their video replication strategy is to duplicate videos according to

their popularity levels and also places the replicas entirely on servers. Litke et al., (2007)

present a fault tolerant model. For this model, they used four different algorithms and

implement their model based on task replication for task scheduling in Mobile Grid

systems. The efficient task was designed for diverse failure probabilities of the resources

and operates in Grid middleware. The authors introduced an indirect replication

algorithm (Wang and Li, 2006) followed the inherent characteristic of a distributed

storage system and the P2P model. The characteristic of the algorithm is to provide less

granularity of replication, less bandwidth and storage costs, and also provides higher

availability, durability, and security.

Some research activities have been investigated MANET-specific solutions to

bind/rebind to new discover distributed resources, thus enabled wireless clients to

automatically redirect requests to service components. Bellavista et al. (2005) proposed

REDMAN middleware to manage, retrieve, and disseminate replicas of data/service

components to cooperated nodes in a dense MANET.

Sashi and Thanamani (2011) proposed a modified Bandwidth Hierarchy

Replication (BHR), which reduces the data access time by avoiding unnecessary

replication in the data grid network. The modified BHR can increase the data availability

by replicating the files within the region to region header and also stored them in the site

where the file has been accessed frequently. It can minimize the job execution time. In

14

another paper (Horri et al., 2008), the authors proposed another BHR algorithm, and

they used three hierarchical structures. They concentrated to the problem of replication

and scheduling.

There are some mixed approaches to use of static and dynamic replica

placement. The static replica placement algorithm are used to optimize the average

response time and dynamic replica placement algorithm are used to re-allocate replicas

to new candidate sites if a performance metric degrades extensively (Rahman et al.,

2006). P2P strategy (Shena and Zhu, 2009) and parallel transmission (Wang.C et al.,

2007) have been also used for replica placement in data grids. Nam et al. (2004) have

been proposed a Tree based Replica Location Scheme (TRLS) to decide the replica

locations. The main objective of TRLS is to minimize the sum of storage cost and

communication cost of the replication and used the linear programming for problem

solved. Youn et al. (2002) proposed hybrid protocol using trees and grid replication. P2P

and DHTS approaches have also been practices for replication in grid systems. Knezevic

et al. (2006) proposed a DHT based replication protocol that can adjust autonomously

the number of replicas to deliver a configured data availability guarantee.

2.2.1 Synchronous Replication

Synchronous remote data replication is the right solution for organizations

looking for the fastest possible data recovery, minimal data loss, and protection against

the problems of integrity of the database. It ensures that a remote copy of data, which is

identical to the primary copy, is created when the primary copy is updated. In

synchronous replication, an input or output updates operations is not considered done

until the end of confirmation both primary and mirrored sites. An incomplete operation

is rolled back at both locations to ensure that the remote copy is always an exact mirror

of the primary as shown in Figure 2.4 (Hitachi data system, 2007).

15

Figure 2.4: Synchronous replication (Hitachi data system, 2007)

The main benefit of synchronous replication is that data can be recovered

quickly. Operations in the remote, mirror site may begin immediately when the primary

site stopped should operations at the primary site be disrupted. Only some operations in

the process at the instant of disruption may be lost. Because neither the primary nor a

remote site has a record of these transactions, the database rolls back to the last

committed state (Hitachi data system, 2007).

In synchronous replication there have several schemes, including all-data-to-all-

sites (full replication) and some-data-item-to-all sites & some-data-item-to-some-sites

(partial replication). Among all of these ROWA (read one write all) is one of the

simplest techniques. An object is allowed to read by the read operation and write

operation writes all the copies of the object (Stockinger, 2001).

Ahmad et al. (2010) presented an algorithm to manage replication and

synchronization transaction system using ROWA-MSTS. They deployed their algorithm

in the real time application in the distributed environment. Read-One-Write-All

16

Monitoring Synchronization Transactions Systems (ROWA-MSTS) have been

developed based on ROWA technique. The ROWA-MSTS techniques handle each site

either it is operational or down and to communicate each other. The researcher used

VSFTPD (GPL licensed FTP server for UNIX systems) as an agent communication

between replicated servers.

A set of services for the replica content synchronization has been presented

(Ciglan and Hluchy, 2007). The researchers designed their system to support relational

and XML data resources to provide the interoperability of heterogeneous systems. The

main objectives of their approach are virtualization of underlying data resource

heterogeneity, provision of rich functionality that can enable the implementation of a

number of proven consistencies protocols. Experiment shows that they are able to

replicate relational and XML databases and can manage the distinct replicas in different

systems.

The applications based on the distributed system became more and more popular

by the benefit of the development of the network technology. In distributed application,

same copy of data stored in different databases thus data synchronization is very

important. Hao.Y et al. (2008) analyze the data synchronization technology and describe

the advantages of the Oracle stream mechanisms. They compare the result based on

CPU utilization and processing time. The result shows that for insertion, update and

delete operation, the CPU utilization rate of synchronous replication is very low

compare to asynchronous replication and Oracle streams.

2.2.2 Peer-to-Peer (P2P) Replication

This is another type of bidirectional replication that does not have a designated

master. Each site copies changes from all other sites directly. This is called multi-master

or P2P replication. It can be used to maintain disaster recovery, providing fail-over

systems for high availability and load balancing queries across multiple sites. Figure 2.5

shows a P2P replication (Gu et al., 2002).

17

Figure 2.5: Peer-to-Peer replication (Gu et al., 2002)

In the P2P network environment, using dynamic replication proposed a load

sharing technique (Chidambaram et al., 2008) providing and improving access

performance. The authors proposed two load sharing techniques, which use data

replication. At the first technique there has been used a Periodic Push-based Replication

(PPR) to reduce the hop count (the number of legs traversed by a packet) and at the

second technique it uses On Demand Replication (ODR) that performs and improves

access frequency. However, they proposed two algorithms: improve access performance

on a P2P network. File replication facilitates efficient file consistency maintenance and

is a widely used technique for high performance in P2P content delivery networks.

Caviglione and Cervellera (2007) introduce a P2P based system for content replication.

They evaluate the process through a discrete–time system, where decisions are taken by

the tracker at starting of the each temporal stage, and they also consider a single-stage

18

optimization because peers can enter and leave the system in every time unpredictably

(Caviglione and Cervellera, 2007). Secure content access and replication in pure P2P

networks addressed in (Palomar et al., 2008) through the idea of attribute certificates that

does not rely on the existence of a Public Key Infrastructure (PKI), Privilege

Management Infrastructure (PMI), or any other form of centralized authority for content

authentication and access control in pure P2P networks. Optimization of a P2P system

for efficient content replication has been proposed in (Cervellera and Caviglione, 2009).

They introduced a model to addressing single peer quantities such as bandwidths and

chunk completion and also present a procedure for the optimal control of the replication

process, through the characterization of connections among peers and the management

of their bandwidth shares.

2.3 PERSISTENCE LAYER

Persistence layer provides an abstract interface to the data access layer which is a

part of an information storage mechanism. Such an interface is abstract and independent

of storage technology. The typical features include:

i. Store and/or Retrieve of the whole database objects

ii. Abstraction of the database cursor with all instances of a given type

iii. All available transaction support, including open, commit, abort and

rollback

iv. Data session management

v. Data querying support

Usually persistence layers are building from at least two internal layers of an

application: It first includes an abstract interface and second is a set of binding to each

targeted database. In implementation there may have more than two internal divisions

between the logic layer and storage mechanism layer (Open EHR, 2007).

19

Zhang et al. (2010) studied on data persistence layer. Based on the data persistence

layer, they established data dictionary persistence layer and business layer of data

dictionary to reduce the workload of database management to attain the maintenance of

the database model and data persistence layer. In their model they showed that they can

maintain the synchronization of the database and data persistence layer with doubly

persistence layer while database model changed. The persistence layer framework

considered mainly of two parts. One was data map known as Sql Map and the other was

data access object. In their data dictionary persistence layer, they configured different

XML files according to different data dictionaries to map and realized access and

operation of data dictionary. During the changes of database model, firstly they changed

corresponding list or field in the database. Secondly they, changed corresponding XML

file according to the corresponding relationship between sqlMaps and XML files in the

data persistence layer.

In another paper, Wu et al. (2010) presented a data persistence layer of multitier

web application, which enabled the developers to interact with a relational database by

an object-oriented programming surface. To implement the data persistency, they use the

Object/Relational Mapping (ORM). The feature was to map from java classes to

database tables, which provided data query and relational facilities. Their approach

outperformed the improvement of data access efficiency and ensures the Web

application's quality.

Persistence layer is not only used in data dictionary and load balancing systems but

also used in simulation checkpoint and restart, and it is very important in parallel and

distributed system. Qiao et al. (2006) describe two frameworks SPEEDES Persistence

Framework (SPF) and Boost Serialization Library (BSL) and applied persistence

framework in parallel and distributed systems. The main contribution of their work

tested a C++ template based persistence framework BSL in a Parallel and Distributed

Simulation (PADS) application.

20

In a collaborative computing environment, the collaborative applications required a

simple and transparent persistence middleware to deal with complex data accesses.

Wang.C.M et al. (2005) proposed a data persistence mechanism and implement a

persistence server, called Tree-Structured Persistence Server, which known as TSPS.

Their TSPS allowed states of collaborative applications to stored in a tree fashion beside

tables. Their main goal to develop the TPS is to serve as a persistence layer to support a

project of computer collaborative work.

Essmann et al. (2007) proposed a distributed persistence layer for Computer

Supported Cooperative Learning/Work (CSCW) application. Their concern is to provide

a unified persistence layer for all applications accessing the distributed knowledge

spaces. That can allow developers to implement views that access and change distributed

objects like local ones. Their approach is quite similar to the concept of generative

communication from parallel computing.

Nowadays, J2EE technology has been widely used in enterprise applications.

Usually, a multilayered model is used to encompass client layer, web presentation layer,

business logic layer, and database layer. To access durable stores, usually, relational

databases, J2EE have two means including JDBC. The first one is the standard API

provided by J2SE for relational database management system access, and the second one

is the entity beans, an Enterprise Java Bean (EJB) component type dedicated to model a

persistent entity (Di et al., 2010). In another paper, Zhou et al. (2010) proposed an

Object Relational Mapping (ORM) to provide a transparent persistence layer for Plain

Old Java Objects (POJO). Their main objective is to improve the performance and

availability of J2EE systems. In their system persistence layer is separately

interconnected between business logic layer and databases, shown in Figure 2.6.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Rui-Hua%20Di.QT.&newsearch=partialPref

21

Figure 2.6: Persistence layer in J2EE applications (Zhou et al., 2010)

2.4 HETEROGENEOUS SYSTEM

A Distributed Heterogeneous Computing (DHC) is a collection of autonomous

dissimilar computing machines that are linked by a network and synchronized by

software that functioning as a single powerful computing facility. As computer tasks can

be broken into different parts so it is possible to distribute the task for parallel execution.

A DHC system has some advantages over homogeneous computing because some parts

of an application perform better in some system, and some parts may perform better in

another system (Boyera and Hura, 2005). The homogeneous computing system is easier

to control as the processing times are not dependent and identically with an arbitrary

distribution (Tong and Shu, 2009).

22

Several systems have been increasingly used in scientific applications and

commercial applications, such as real-time safety-critical applications. Qin and Jiang

(2006) proposed an efficient fault-tolerant reliability- driven algorithm known as eFRD

for precedence constrained tasks in real-time heterogeneous systems. In their work, they

comprehensively address the issues of fault-tolerance, reliability, real-time, task

precedence constraints on the heterogeneous system.

Heterogeneous database management systems are also used in various

administrative domains in the grid environment. Pucciani et al. (2010) presented a data

consistency service that is called CONStanza. They designed and implemented a grid

based data replication and synchronization system for updating and synchronizing of

both flat as well as a relational database. Their system allows for replicating updates

from a commercial system (Oracle) to an open source system (MySQL). Their service

can synchronize four wide area distributed MySQL salve databases with an Oracle

master database, and their result shows that for 1000 rows insertion time taken near

about 12 seconds.

Recently, heterogeneous systems have emerged as a major high-performance

computing platform in parallel and distributed system. Chen et al. (2008) proposed an

isospeed-efficiency model based on mark speed for heterogeneous computing. Chi et al.

(2006) proposed App.Net.P2P architecture to implement effective content delivery on

peer-to-peer networks for heterogeneous system. The main objective of their

App.Net.P2P is to allow delivering intermediate objects to other peers as well as the

final presentations. Therefore, the recipient peers can share the intermediate objects and

adapt their presentations for other peers using the associated service logic.

In another paper, Ho et al. (2007) studied of large scale video streaming for

heterogeneous network. They explore the impact on the broadcasting scheme coupled

with proxy and developed an analytical model, guidelines for resources allocation and

transmission strategy to evaluate the system performance in a highly heterogeneous

environment. The main concern of their strategy is to make their model applicable for

23

different system configurations such as centralized/distributed, unicast/broadcast as well

as replication/layering.

Ma et al. (2004) proposed a task scheduling algorithm for parallel real-time jobs in

heterogeneous system. The main objective of their work is to build a real time model

that is applicable to dynamically scheduling multiple Direct Acyclic Graph (DAG) s in

the heterogeneous environment. In their model, an assigned processor known as center

scheduler is responsible for dynamically scheduling the real-time jobs when they arrive.

2.5. TRANSACTION

A transaction is a group containing a set of tasks which inherent part of any

application that collects or manipulates data. SQL server has to make sure the data

integrity. That means two users should not modify the same piece of data at the same

time. In the SQL server, a transaction is a single statement or multiple Data

Manipulation Language (DML) statements executed together. In a transaction, all

statements are treated as a group of works. If one of the statements fails then the

transaction treated as a fail transaction and the whole transaction roll back to the

previous state. As a result, none of the changes are saved. On the other hand, if all the

statements are succeeded then the transaction treated as a succeed transaction and

commit i.e. save to the database. Therefore, transaction has only two consequences;

Success or failure (Tim Ford, 2010; Dewald and Kline, 2002). User can create two

groups or more transact-SQL statements into a single transaction by using the following

statements:

i. Begin Transaction

ii. Rollback Transaction

iii. Commit Transaction

If anything exception occurs on any of the grouped statements then all changes

need to abort. This reversing change process is called rollback. On the other hand, if

http://www.mssqltips.com/author.asp?authorid=13
http://www.informit.com/authors/bio.aspx?a=be0470b3-ab7f-4cc5-8f97-7c0ae88ff5de

24

everything in the statement within a single transaction occurs successfully, the changes

are recorded together in the database. Then these changes are called committed. SQL

server contains nest transactions. In nest transaction, a new transaction can start although

the previous one is not complete. This transaction operation is happened by issuing the

BEGIN TRAN commands. The @@ TRANCOUNT is an automatic variable, queried to

conclude the level of nesting. TRANCOUNT 0 indicates no nesting where

TRANCOUNT > 1 indicates the level of nesting (where TRANCOUNT is 3 shown in

the Figure 2.7a and Figure 2.7b). In the beginning of the nest transaction, the @@

TRANCOUNT automatic variable count increases from 0 to Level of Nesting. On the

other hand, in the COMMIT statements, the count decreases by 1 and in ROLLBACK

statements, the count is reduced to 0. That means the behavior of COMMIT and

ROLLBACK is not symmetric. Figure 2.7a shows that in the nest transactions,

COMMIT always decreases the nesting level by 1 and Figure 2.7b shows that in the

ROLLBACK command, rollback the entire transaction (Poddar, 2003).

@@TRANCOUNT

Figure 2.7a: COMMIT balances BEGIN TRANSACTION by reducing the

@@TRANCOUNT one (Poddar, 2003)

25

@@TRANCOUNT

Figure 2.7b: A single ROLLBACK undoes the entire transaction (Poddar, 2003)

2.6 SQL SERVER REPLICATION

SQL server is defined as a Relational Database Management System (RDBMS)

from Microsoft that is designed for the enterprise environments. It’s run on Transact-

SQL (T-SQL), a set programming extension from Sybase and Microsoft. The original

SQL Server code has been developed by Sybase in the 1980's, Microsoft. Sybase and

Ashton-Tate have collaborated to produce the first product version, SQL Server 4.2 for

OS / 2. Later, Sybase and Microsoft SQL Server provide the products. In November

2005, SQL Server 2005 was released. The features of the products were to offer

flexibility, scalability, reliability and security of database applications and were easier to

build and deploy, reduced the complexity and tediousness involved in database

26

management. This version also includes a more administrative support

(SearchSQlserver.com, 2006).

 Gutzait.M (2007) has been described SQL server database design, replication

design and architecture. The architectures shows that the databases are replicated with a

common structure and the changes are replicated to the subscribers with fewer

publications. During the replication consolidated information, users can publish a piece

of information about the specific site. This allows users to create one publication and

add WHERE clause according to the site or database code. The database servers are

connected with the main server. The main database also connected with replication

servers. Figure 2.8 show the SQL server replication.

Figure 2.8: SQL server replication architecture (Gutzait.M., 2007)

27

Ibison (2010) described a basic comparison of SQL server replication times

between Merge and Transactional insert and synchronization shown in Table 2.1. The

table used a sample table having fixed width columns: The fixed-length data types were

chosen because this table was also used to calibrate the problems of network bandwidth.

The table data shows that for the inserts, merge takes significantly longer than

transactional and snapshot. For a small number of insertions transactional and snapshot

are quite the same. When the number of row increases, transactional begins to take

longer than the snapshot. Conversely, there are a few rows is not much difference, but as

the increase in the number of rows, transactional and snapshot stay very similar, while

the merge becomes much larger.

Table 2.1: Basic comparison of SQL Server replication time between

Transaction and Merge insert

rows Snapshot

Inserts

Sync

Time

Transactional

Inserts

Sync

Time

Merge

Inserts

Sync

Time

100 0 4 0 0 1 2

500 1 4 1 1 3 6

1000 2 5 2 1 5 12

5000 6 7 7 2 21 42

10000 13 12 26 5 42 96

2.7 MULTI-THREADING TECHNIQUE

Multi-threading is the ability to run multiple processor threads. It seems, at the

same time. CPUs are very fast to execute instructions. Modern PCs can run almost one

billion instructions per second. Instead of running the same program for a second, the

processor executes a program to perhaps a few hundred microseconds, and then switch

28

to another and work for a short period and so on. It is also possible for an application to

have multiple parts that run simultaneously. For example, a background task could be to

respond to the mouse, while a file is loaded into RAM, and second task updates a

progress bar on the screen (Bolton, 2011).

Wang.C.H et al. (2007) present a Software-based Redundant Multi-Threading

(SRMT) approach for transient fault detection. Their technique use compiler to

automatically generate redundant threads, and they can run on general-purpose chip

multi-processors (CMPs). The result shows that their technique can provide a flexible

program execution environment where flexible scheduling legacy binary codes and

reliability-enhanced codes can co-exist in a fashion mix-and-match according to the

desired level of reliability and software compatibility.

Wei et al. (2009) present the Multi-Staged Engine (MSE) for high performance

and flexibility in the application of concurrent continuous query processing, using the

pipeline strategy and departs from the continuous query processing on three parallel

phases: preprocessing, execution and dispatching modules to improve the parallelism

with multi-threaded technology. They developed an algorithm multi-threaded (MTCNN)

for k nearest massive continuous query processing. MTCNN algorithm uses parallel

threaded workload and cache-conscious implementation of the reorganization to

improve spatial and temporal locality.

2.8 CONCLUSION

The definition and functionality of data replication and review of other relevant

research studies are covered. Synchronous replication, P2P replication, persistence layer,

transaction, heterogeneous system, and Multi-Threading (MT) technique are reviewed

with great details.

http://cplus.about.com/bio/David-Bolton-20620.htm

29

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter carries out the framework of PLSR. The flow chart and structure of

PLSR with all possible diagrams have been shown. All the associate modules PLSR

have also been described. The details algorithms have been shown as a pseudo code.

3.2 FRAMEWORK OF PLSR MODEL

In the proposed system PLSR modifies the persistence layer to adopt multi

processing use of multi-threading. The persistence layer is connected with different

database servers, from those one will be the main server that will take care of Create

Read, Update and Delete (CRUD) with the entire system and the several others are

known as the replicated server. A thread with higher priority, i.e.; main thread keeps the

consistent connection with the main server. Thread is defined as the single stream of

execution within a process. Programs that execute within its own address space are

known as Process. The persistence layer creates one thread for each of the replication

servers. One thread is the higher priority used for main server, and rest of all has the

lower priority. As the main server is maintained by a high priority thread, thus the data

should be saved or deleted or modified immediately with high priority. On the other

hand, replication servers are maintained by a low priority thread. Consequently, the data

transaction will be kept in a queue, and then it makes its own copy and does the

transaction with that thread. Figure 3.1 shows the structure of the replication process.

30

Figure 3.1: Structure of replication process

3.3 COMPLETE FLOWCHART OF PLSR FRAMEWORK

In this technique, the system promotes a GUI which facilitates users to insert

data to the system. From GUI, data send to the persistence layer. To configure the

servers i.e. to populate the server’s information persistence layer check the configuration

and connection string file either, which is existed and readable. Exception handler

generates messages. Therefore, send to the user. Alike with configuration file Exception

handler covers connection string, ether the connection string is readable or not. An

unreadable connection string shows a message to the user, other than that the system

read connection string where the database connection URL stored as a XML file. The

persistence layer creates multithread based on the configuration file, i. e. the definition

of main server and the replication servers along with the numbers (number of replication

servers). For the main server, persistence layer creates a high priority thread. The high

priority thread is responsible for the transactions to the main server. Along with this, for

the X number of replication server, persistence layer creates X number of low priority

31

threads, which provide service for the transaction to the replication servers. A

notification is sent to the end user/ administrator when the entire process is finished.

Figure 3.2 shows the flowchart of the PLSR.

Figure 3.2: Flowchart of persistence layer replication process

32

3.4 STRUCTURE OF THE PERSISTENCE LAYER

The persistence layer queues all the database transaction for the replicated server

which runs in a low priority multi-thread. Despite of this, the persistence layer contains

another higher priority thread, which makes a sound transaction with the main server

using a higher priority thread. The entire database server’s connection defines the

connection properties from a XML configuration. The XML architecture is flexible

enough to make an addition of other replication servers even doesn’t need to harm the

whole system. When the database server crashes then the persistence layer start using

transaction from one of the replication servers and sends system alert messages to the

administrators. It makes no down time to the entire system. The structure of persistence

layer for synchronous data replication (Figure 3.3) and then implement of the

corresponding function has been described below.

Figure 3.3: Structure of persistence layer for synchronous data replication

33

3.4.1 Exception Handler

The module/layer Exception is responsible to handle all kinds of exception of the

entire system. A database exception handler layer also incorporated within this layer. In

any system, typically an exception handler is defined by the occurrence of exceptions,

special conditions that change the normal flow of program execution. Such as, memory

overflow, null pointer, divided by zero is the special conditions which in terms handled

by the Exception layer. In the proposed algorithm, when a database server becomes to

overload and/or when main or replication server crashes, is treated as an exception. Thus

it creates its own defined exceptions to handle database crashes. As an example, when

the main server crashes, the exception layers get acknowledged, and it immediately

passes the exception type to the main engine which takes the proper actions.

3.4.2 Global Configuration

Global Configuration is a system resource where all the static data, class, etc. is

introduced by its values. As an example in a web enterprise application of the data

flow/routing class and the URL has been defined in the global configuration section.

3.4.3 Connection String

Connection string is the technical definition of a software development practice.

Connection string is a character string expression that uniquely identifies the data store

to use for a particular query or set of queries and methods for connecting. Connection

string holds all the connection expression of all the replication servers and main server.

3.4.4 Look up Service

The entire architecture can help an enterprise system to become more secure,

reliable through database replication. All the data are synchronously replicated to the

34

different database servers. The entire system becomes flexible enough to handle any

kind of database server. When a new replication server will be added to the system then

needs to add some connection string and the API details in the global configuration. It

also consists of a lookup service on that configuration file. If something adds or removes

from the configuration file then the lookup service updates the system and consist of

another service, which known as replication synchronous service. The replication

synchronous service updates the newly added replication server with the bulk of data

from the main server. This service adds all the data from the main server and updates the

newly added replication server.

The synchronous replication runs by the proposed algorithm and perform the

entire task with the use of multi-threading. A thread with higher priority keeps the

consistent connection with the main server. The persistence layer creates other many

threads for all the replication servers. One thread has the higher priority, and all other

have the lower priority of the system. Therefore, data that should be saved or deleted or

modified will be kept in a queue, and then it makes its own copy and does the

transaction with that thread. Figure 3.4 shows how the lookup service looks up the

global configuration file and notifies the persistence layer.

35

Figure 3.4: Lookup service in PLSR

3.4.5 Heterogeneous Replication Process

In the heterogeneous system, all the replication servers are connected from the

persistence layer through the Data Queue (DQ). A multithreading is introduced from the

DQ. In this system, data is flow from persistence layer to the main server in a high

priority thread and to the different replication server through lower priority thread. The

network architecture constructs through different OS. The main server contains the

software main engine (SME) which contains the independent Dynamic Link Library

(DLL) in C# or jar files in Java to solve complex business logics. On the persistence

layer; the data connectivity, complex query execution and the ORM executes. The

persistence layer is also responsible for more different service like DQ) and Replication

Synchronous Service (RSS) that supports the heterogeneous system as shown in Figure

3.5.

36

Figure 3.5: Heterogeneous replication process

In the heterogeneous system, all the replication servers are connected from the

persistence layer through the DQ. A multithreading is introduced from the DQ. Thus

data flows from persistence layer to the main server through high priority thread and to

the different replication server through lower priority thread.

37

3.5 PLSR ALGORITHM

To execute the PLSR framework has been developed different algorithms for

different function. These algorithms control most of the significant part of the PLSR.

Table 3.1 has been described the nomenclature which has been used in PLSR algorithm.

Table 3.1: Nomenclature of PLSR algorithm

Variable Definition

NS Main Server Name

NL Main server Location

MS Main server in the XML tag

Rep Replication server in the XML tag

Loc Location of the replication server in the XML tag

RS The list of replication server name

RL The list of replication server location which has been read from XML

file

Name Name represents the name of the server

Location Location represents the network location of the server

Serv Serv represent the server

CS Main server’s connection string

CL Main Server’s operating information

SN Replication server’s connection string

SL Replication server’s operating information

TD The current data time of the main server

TF The lowest traffic information from the database

TC From the config it can find the information that when the file created

then it represented by Tc

TM From the config file, when the file has been modified then it represented

by TM

38

TLM The last modifications date represented by TLM

PC PC represent as the set of SQL comamnd

OSInfo Operating System information

Flog Log file information

Csql SQL command

Synclist Synchronous SQL command list

Configtext Configuration text (string value)

3.5.1 Persistence Layer algorithm

Definition: The x number of main server is equal to x number of thread. Where x =

constant. For Y number of replication server create Y number of thread. Where Y is 1 to

∞.

Persistence layer algorithm (Figure 3.6) parses the configuration file and

establishes the connection among all the replication database servers and the main

server. It makes to queue all database transactions for the replication server and the main

server.

PERSISTENCE_LAYER

1: Input: Config.XML

2: Output: [OutputPersistence]

3: If (Config.XML) do

4: [OutputPersistence] (File not found)

5: end if

6: Create NS null

7: NL null

8: RS null

9: RL null

10: ConfigText null

11: Read Config.XML

12: ConfigText Config.XML

13: for (NS ConfigText) do

14: NS (REP→Serv→MS→Name)

15: end for loop

16: for (NL ConfigText) do

39

17: NL (REP→Serv→MS→Loc)

18: end for loop

19: [OutputPersistence] NS

20: [OutputPersistence] NL

21: for (RS ConfigText) do

22: RS (Rep→Serv→ServerName)

23: [OutputPersistence] RS

24: end for loop

25: for (RL ConfigText) do

26: RL (Rep→Serv→Location)

27: [OutputPersistence] RL

28: end for loop

Figure 3.6: Persistence layer algorithm

3.5.2 Connection String algorithm

Definition: The c number of connection string depends on the addition of main server a,

and replication server n. Where n = 0 to ∞.

The connection string basically stores the way to connect to the server. In this

system, the connection strings located into an XML file (Figure 3.7). Thus, the

connection string algorithm parses the connection string from the XML file and sends

the string value to the persistence layer algorithm to establish the connectivity. In this

algorithm has been defined the operating information for the main server and the

replication server because some exceptions are operating system dependent, like some

threading is safe in Linux but usually not safe in XP.

CONNECTION_STRING

1: Input: ConnectionString.XML

2: Output: [OutputConnection]

3: If (ConnectionString.XML) do

4: [OutputConnection] (File not found)

5: end if

6: Create Cs null

40

7: CL null

8: SN null

9: SL null

10: ConnectionText null

11: Read ConnectionString.XML

12: ConnectionText ConnectionString.XML

13: for (CS ConnectionText) do

14 CS (REP→Serv→ConnectionString)

15: end for loop

16: for (CL ConnectionText) do

17: CL (REP→Serv→OSInfo)

18: end for loop

19: [OutputConnection] CS

20: [OutputConnection] CL

21: for (SN ConnectionText) do

22: SN (Rep→RepServ→ConnectionString)

23: [OutputConnection] SN

24: end for loop

25: for (SL ConnectionText) do

26: SL (Rep→RepServ→OSInfo)

27: [OutputConnection] SL

28: end for loop

Figure 3.7: Connection string algorithm

3.5.3 Lookup Service algorithm

Definition: Lookup service LS is a subset of traffic info SET TF .Config created date

SET Tc . Configuration modified date SET TM and last modified SET TLM .

In this system, lookup service (Figure 3.8) is the special layer from where lots of

synchronization occurred. The system keeps track of lowest traffic information into the

database and do a routine check that at when it can do synchronization. Synchronization

is necessary if the config file gets changed or if a new replication server added.

41

LOOKUP_SERVICE

1: Input: Config.XML

2: Output: Outputsync

3: Create TD null

4: TF null

5: TC null

6: TM null

7: TLM null

8: Read Config.XML

9: ConfigText Config.XML

10: TD DATEMAINSERVER

11: TF TRAFICINFOMAINSERVER

12: TC DATECONFIGCreated

13: TM DATECONFIGModified

14: TLM DATECONFIGLastModified

15: If (TD TF) do

16: Outputsync TRUE

17: end if

18: If (TC =TM || TM =TLM) do

19: Outputsync TRUE

20: else

21: Outputsync FALSE

22: end if

Figure 3.8: Lookup service algorithm

3.5.4 Utility algorithm (add previous record)

Definition: The NC number of sql command is proportional to the number sql text, T is

the log file.

The utility functions show how synchronization happened between the main

server and a newly added replication server (Figure 3.9). The system creates a log.txt file

which stores all the SQL commands for all tables and data. After that it executes those

SQL commands to the newly added replication server.

42

UTILITY_ADD_PREVIOUS_RECORD

1: Input: Replicationserver

2: Output: [Synclist]

3: Create TD null

4: Flog null

5: [Csql] null

6: Read Replicationserver Flog

7: Flog [Csql]

8: for (P Flog) do

9: P [Synclist]

10: end for loop

Figure 3.9: Utility algorithm (add previous record)

3.5.5 Utility Algorithm (Synchronize data)

Definition: The Sc numbers of executable sql command are exists in command XML

file.

This is another utility function to synchronous data between main server and

replication server (Figure 3.10). When any data could not replicate to the replication

server then it stores to an XML file as a SQL command. After that at the lowest traffic

time it parses all the SQL command and execute to the replication server.

UTILITY_SYNCHRONIZATION_DATA

1: Input: CommandXMLFile.XML

2: Output: [Outputsql]

3: Create PC null

4: ConfigText null

5: ReadCommandXMLFile.XML

6: ConfigText CommandXMLFile.XML

7: for (PC ConfigText) do

8: [Outputsql] PC

43

9: end for loop

Figure 3.10: Utility algorithm (synchronize data)

3.6 REPLICATION TIME CALCULATION

The total replication time (RT) has been calculated by using equation (1) (Beg et al.,

2011).

RT = ∑ (TT+ST)………………………………………….. (1)

Here, RT represents the replication time, TT represents Transactional time and ST

represents Synchronous time.

For 10000 rows of data insertion in SQL server, [refer Table 2.1 in section 2.5]

RT = (26+5) Seconds

 = 31 Seconds

For 10000 rows of data insertion in PLSR (SQL) server, [refer Table 4.5 in section 4.5]

RT = (4.786+0) Seconds [ST=0, Because PLSR TT and ST done at the same time]

 = 4.786 Seconds

3.7 CONCLUSION

The framework and flow chart of PLSR are presented in this chapter. The

structure of the persistence layer and heterogeneous replication process also has been

described. The detail's algorithms have been shown as a psudo code. These algorithms

control most of the significant part of the PLSR. After describing the details PLSR

design, these algorithms make a better understanding on an entire PLSR approach.

44

CHAPTER 4

IMPLEMENTATION AND RESULTS

4.1 INTRODUCTION

This chapter described the implementation of the heterogeneous synchronous

replication. The purposes of this implementation are to illustrate the algorithms

described in the previous chapter and to show that PLSR supports the heterogeneous

systems and can use in practical applications. Finally, the results have been compared

with other replication process.

4.2 PROGRAMMING IMPLEMENTATION

The programming implementation has been developed using Java programming

language. NetBean 6.9.1 has been used to write the source code of persistence layer.

This is because NetBean is comfortable Integrated Development Environments (IDE) to

implement Java source code. NetBean is developed and maintained by Sun

Microsystem. After installing NetBean, it can be accessible to the start menu. NetBean

has its own file format to maintain the source code. MySQL, SQLServer and MSAccess

have been used as the Database. To implement the SQL Query testing in MySQL has

been used SQLyog, which is a free tool. SQL Server has its own SQL IDE. To connect

to the database from Java has been used JavaMySQL connector API, and to connect to

MSSQL has been used JavaSQLServer connector API. Finally, Java can easily connect

to MS Access from the user control panel. The screen shot and the usability of the

experiment tool has shown and described below:

45

Figure 4.1: Product authority information

Figure 4.1 shows the first page of tool information and the authorization of the

application which belongs to the help menu. It is showing the product version, vendor

info and the home page of the copyright owner. The product version is 1.0 and the

vendor name has been assigned AHB.

46

Figure 4.2: Project view of persistence layer APP

Figure 4.2 shows the project and different package view of persistence layer application.

This snap shot shown in NetBeans and Java programming. This window appears when

the project is loaded on the NetBeans. The file system of NetBeans provides various

packages such as “source package," “test package," “libraries” and “test libraries." The

source code typically appears on “source package".

47

Figure 4.3: Demonstration of Server configuration file

Figure 4.3 shows the Server configuration file. The main purpose of the file is to identify

the server’s location and the type. The persistence layer read this configuration file to

determine which server is main server and which the replication servers are. Besides the

hosting address of the main server and replication server is also added within the XML

file.

48

Figure 4.4: Demonstration of connection string file

Figure 4.4 shows the connection string XML file. This file is responsible to demonstrate

the connection definition of server types. The persistence layer needs the address to

connect with the main server and replication servers. This file has all the necessary

information to get connected to the servers from the persistence layer.

49

Figure 4.5: Source code view of persistence layer Engine

Figure 4.5 shows the source code of persistence layer. The source code has been written

in Net Beans, and the screen shot is shows the part of the source code (persistence layer

APP) which has been written in Java. In the persistence layer APP contains the

persistence layer engine. When the program has been run, the persistence engine

generates the GUI to insert data. After inserting data, the persistence check the config

and connection string XML file and then it insert and replicate to the main and

replication server.

50

Figure 4.6: The Initial view of the application currently supporting data insertion

Figure 4.6 shows the initial view of the developed tool which currently allows users to

insert data through the persistence layer, thus a “Insert” button is shown at the left side

of the GUI containing 3 fields. The 3 fields are mapped with a database containing 3

columns. After clicking on the “Insert” button saves the values on the “Id”, “Name”,

“Faculty” to the database remains to the main server and replication servers.

51

Figure 4.7: The view after data insertion

Figure 4.7 shows the summary of the output on the system when data successfully insert

on the main server and on the replication servers. It shows the time for data insertion to

different servers.

4.3 HARDWARE AND SOFTWARE COMPONENTS

The implementation of PLSR requires some minimum hardware and software

specifications. To demonstrate PLSR system, prototypes across three replication servers

as in Figure 4.1 and Figure 4.2 are deployed. Each server or node has been connected to

one another through a fast Ethernet switch hub. Theoretically, each of the replication

servers and the main server should have to be connected each other logically. The

52

hardware specifications are shown in Table 4.1 was used in each replication server for

implementation.

Table 4.1: Server main components specifications

Hardware Specifications

Processor Intel (R) Core ((TM) 2 Quad CPU Q9650

@3.00 GHz 2.99 GHz

Memory 4.00 Gigabyte

Cache 3624 Megabyte

Hard Disk 300 Gigavyte

Chip Set ATI Radeon HD 3450- Dell Optiplex

Network Card Intel (R) 82567 LM-3 Gigabit Network

Connection

The implementation of the PLSR was carried out by using Java programming

language and has been deployed in different OS environment. Table 4.2 shows the

system development tools specification for this implementation.

Table 4.2: System development tools specifications

System Development Software Specifications

Java SE (Jdk 6.0)

SQLyog Community Edition 8.53

MySQL Server Version 5.0.89

Ubuntu Version 10.0.4

NetBeans IDE Version 6.9.1

Wine Version 1.14

Windows Vista
TM

Business

SQL Server Version 2008

MSAccess Version 2007

53

4.4 PLSR ENVIRONMENT

From the user’s perspective, the functionality offered by PLSR framework for

heterogeneous system. Nevertheless, PLSR is tested in different Server under the local

area network (LAN) for this implementation. There have been done two experiments. In

first experiment SQL Server was the main Server and meanwhile in second experiment

MySQL server in Linux OS was the main server.

4.4.1 Experiment 1

In this experiment, the heterogeneous replication has been done with one main

server and three replication servers. The entire servers are connected with the persistence

layers. SQL server is the main server and connected with the persistence layer with high

priority thread. Ms Access is the first replication server. MySQL in Windows OS is the

second replication server and MySQL in Linux OS is the third replication server that is

connected with the persistence layer with low priority thread as shown in Figure 4.1.

Figure 4.8 Data replication on heterogeneous system with 3 replication server and

SQL Server

54

The host name and IP address for each server depicted in Table 4.3. Server A

with IP address 172.21.202.232 is the main server. Server B with IP address

172.21.202.235 is the first replication server. Server C with IP address 172.21.202.231 is

the second replication server, and Server D with IP address 172.21.202.230 is the third

replication server.

Table 4.3: The local IP address for each server based on SQL Server

Server Host Name IP address Operating System Software

A Main Server 172.21.202.232 Windows Vista SQL Server

B Replication Server 1 172.21.202.235 Windows Vista MS Access

C Replication Server 2 172.21.202.231 Windows Vista MySQL

D Replication Server 3 172.21.202.230 Linux (Ubuntu) MySQL

4.4.2 Experiment 2

In this experiment, heterogeneous replication has been done with one main

server and three replication servers. The entire server is connected with the persistence

layers. MySQL in Linux OS is the main server and connected with the persistence layer

with high priority thread. MS Access is the first replication server. MySQL in Windows

OS is the second replication server and SQL Server is the third replication server that is

connected with the persistence layer with low priority thread as shown in Figure 4.2.

55

Figure 4.9 Data replication on heterogeneous system with three replication servers and

MySQL server

On the other hand, in this experiment, the host name and IP address for each

server depicted in Table 4.4. Server A with IP address 172.21.202.230 is the main

server. Server B with IP address 172.21.202.235 is the first replication server. Server C

with IP address 172.21.202.231 is the second replication server and Server D with IP

address 172.21.202.232 is the third replication server.

Table 4.4: The local IP address for each server based on MySQL Server

Server Host Name IP address Operating System Software

A Main Server 172.21.202.230 Linux (Ubuntu) MySQL

B Replication Server 1 172.21.202.235 Windows Vista MS Access

C Replication Server 2 172.21.202.231 Windows Vista MySQL

D Replication Server 3 172.21.202.232 Windows Vista SQL Server

56

4.5 PLSR IMPLEMENTATION

PLSR has been implemented in the heterogeneous environment. The screen shot

and the usability of the implementation to the different replication server and main

server has shown and described below:

Figure 4.10: The inserted data on the table in the main server (SQL Server)

Figure 4.10 demonstrates the table exists on SQL Server in windows OS, which used as

the main server in the developed tool. The data is saved in column “Id”, “Name” and

“Faculty” stores the data in SQL Server.

57

Figure 4.11: IP address information of main Server (SQL Server)

Figure 4.11 shows the IP address information of main server (SQL Server). The IP

address is 172.21.202.232, Subnet mask 255.255.255.0 and Default gateway

172.21.202.254.

58

Figure 4.12: The inserted data on the table in a replication server (MS Access)

Figure 4.12 demonstrates the table exists on MS Access, which used as a replication

server in the developed tool. The data stores in column “Id”, “Name” and “Faculty” in

MS Access.

59

Figure 4.13: IP address information of MS Access

Figure 4.13 shows the IP address information of MS Access. The IP address is

172.21.202.235, Subnet mask 255.255.255.0 and Default gateway 172.21.202.254.

60

Figure 4.14: The inserted data on the table in a replication server (MySQL in Linux)

Figure 4.14 demonstrates the table exists on MySQL in Linux OS, which used as a

replication server in the developed tool. The available column “Id”, “Name” and

“Faculty” stores the data in SQL Server.

61

Figure 4.15: IP address information of MySQL Server (Linux)

Figure 4.15 shows the IP address information of MySQL Server (Linux). The IP address

is 172.21.202.230, Subnet mask 255.255.255.0 and Default gateway 172.21.202.254.

62

Figure 4.16: The inserted data on the table in a replication server (MySQL in Windows)

Figure 4.16 demonstrates the table exists on MySQL in Windows operating system,

which used as a replication server in the developed tool. The column “Id”, “Name” and

“Faculty” store the data in MySQL.

63

Figure 4.17: IP address information of MySQL (Windows server)

Figure 4.17 shows the IP address information of MySQL Server (Windows). The IP

address is 172.21.202.231, Subnet mask 255.255.255.0 and Default gateway

172.21.202.254.

64

Figure 4.18: Showing permalink SQLyog link under wine in Ubuntu

Figure 4.18 shows the permalink to run SQLyog which is installed under wine. In

Ubuntu has been installed wine utility software, which enables to run window exe or msi

files. Thus, after installing SQLyog, the permalink mark as wine software.

65

Figure 4.19: Running SQLyog in Ubuntu

Figure 4.19 shows the SQLyogrunning in Ubuntu OSunder wine software. In the SQL

yog there have some input parameters. The parameters are MySQL host name, user

name, user password and finally the port number. After filling the correct information of

the parameters users can able to connect on the MySQL Server. “Test Connection” is the

button to test the input parameter is correct or not.

4.6 RESULT AND DISCUSSION

The proposed heterogeneous synchronous replication (PLSR) has been compared

with other replication processes in terms of replication time for transactional insert and

synchronization. Table 4.5 shows the comparative time between SQL server and PLSR

replication for insertion. In the PLSR, SQL server is the main server and MS Access is

the replication server 1. MySQL in Linux OS is the replication server 2 and MySQL in

Windows is the replication server 3. The result shows that for 1000 rows of data

66

insertion, SQL server taken 2 seconds, where PLSR main server, replication server 1, 2

and 3 taken 0.798, 0.364, 5.416 and 6.295 seconds respectively. On the other hand, for

5000 rows of data insertion, SQL server taken 7 seconds, where PLSR main server,

replication server 1, 2 and 3 taken 2.411, 1.462, 6.356 and 13.762 seconds respectively.

Conversely, for 10000 rows of data insertion, SQL server taken 26 seconds, where,

PLSR main server, replication server1, 2 and 3 taken 4.786, 2.933, 7.494 and 22.183

seconds respectively. From the table data, it can be found that the main server (SQL

Server) and replication of PLSR take less time than SQL Server for transactional

insertion.

Table 4.5: Transactional insert time between SQL Server and PLSR (SQL Server)

Table 4.6 shows the comparative time between SQL Server and PLSR

replication for synchronization. In the PLSR system, MySQL in Linux OS is the main

server. MS Access is the replication server 1. SQL Server is the replication server 2 and

MySQL in windows is the replication server 3. The result demonstrates that, for 1000

rows of data insertion, SQL server taken 2 second, where PLSR main server, replication

server 1, 2 and 3 taken 5.487, 0.372, 0.790 and 6.140 seconds respectively. On the other

No.

of

Rows

SQL

Server

PLSR Main

Server (SQL

Server)

PLSR

Replication

Server 1(MS

Access)

PLSR

Replication

Server 2

(MySQL, Linux

OS)

PLSR

Replication

Server 3

(MySQL,

Windows)

100 0 0.381 0.099 5.184 2.388

500 1 0.537 0.216 5.287 3.424

1000 2 0.798 0.364 5.416 6.295

5000 7 2.411 1.462 6.356 13.762

10000 26 4.786 2.933 7.494 22.183

67

hand, for 5000 rows of data insertion, SQL server taken 7 seconds, where PLSR main

server, replication server 1, 2 and 3 taken 6.422, 1.507, 2.314 and 12.789 seconds

respectively. Conversely, for 10000 rows of data insertion, SQL server taken 26

seconds, where, PLSR main server, replication server 1, 2 and 3 taken 7.526, 2.900,

4.351 and 21.179 seconds respectively. From the table data, it can be found that the main

server (MySQL Server) and replication of PLSR take less time than SQL Server for

transactional insertion.

Table 4.6: Transactional insert time between PLSR (MySQL Server)

The total replication time for SQL server and PLSR replication are evaluated and

shown in Table 4.7 and 4.8. Table 4.7 shows that, the total replication time between

SQL server and PLSR replication. In the PLSR system, SQL Server is the main server.

MS Access is the replication server1. MySQL in Linux is the replication server 2 and

MySQL in windows is the replication server 3. The result shows that, for 1000 rows of

data replication, SQL server taken 3 seconds, where PLSR main server, replication

server 1, 2 and 3 taken 0.798, 0.364, 5.416 and 6.295 seconds respectively. On the other

hand, for 5000 rows of data replication, SQL server taken 9 seconds, where PLSR main

No.

of

Rows

SQL

Server

PLSR Main

Server (MySQL

Server, Linux)

PLSR

Replication

Server 1(MS

Access)

PLSR

Replication

Server 2 (SQL

Server)

PLSR

Replication

Server 3

(MySQL,

Windows)

100 0 5.252 0.097 0.342 2.260

500 1 5.392 0.220 0.501 3.351

1000 2 5.487 0.372 0.790 6.140

5000 7 6.422 1.507 2.314 12.789

10000 26 7.526 2.900 4.351 21.179

68

server, replication server 1, 2 and 3 taken 2.411, 1.462, 6.356 and 13.762 seconds

respectively. Conversely, for 10000 rows of data insertion, SQL server taken 31

seconds, where, PLSR main server, replication server 1, 2 and 3 taken 4.786, 2.933,

7.494 and 22.183 seconds respectively. From the table data, it can be found that the main

server (SQL Server) and replication of PLSR take less time than SQL Server on the

replication process.

Table 4.7: Total replication process time between SQL Server and PLSR (SQL Server)

No. of

Rows

SQL

Server

PLSR Main

Server (SQL

Server)

PLSR

Replication

Server 1(MS

Access)

PLSR

Replication

Server

2(MySQL,

Linux OS)

PLSR

Replication

Server 3

(MySQL,

Windows)

100 0 0.381 0.099 5.184 2.388

500 2 0.537 0.216 5.287 3.424

1000 3 0.798 0.364 5.416 6.295

5000 9 2.411 1.462 6.356 13.762

10000 31 4.786 2.933 7.494 22.183

Table 4.8 shows that the total replication time between SQL server and PLSR

replication. In the PLSR system, MySQL in Linux is the main server. MS Access is the

replication server1. SQL Server is the replication server 2 and MySQL in windows is the

replication server 3. The result shows that, for 1000 rows of data replication, SQL server

taken 3 seconds, where PLSR main server, replication server 1, 2 and 3 taken 5.487,

0.372, 0.790 and 6.140 seconds respectively. On the other hand, for 5000 rows of data

replication, SQL server taken 9 seconds, where PLSR main server, replication server 1,

2 and 3 taken 26.422, 1.507, 2.314 and 12.789 seconds respectively. Conversely, for

10000 rows of data insertion, SQL server taken 31 seconds, where, PLSR main server,

69

replication server 1, 2 and 3 taken 7.526, 2.900, 4.351 and 21.179 seconds respectively.

From the table data, it can be found that the main server (MySQL Server) and

replication of PLSR take less time than SQL Server on the total replication process.

Table 4.8: Total replication process time between SQL Server and PLSR (MySQL

Server)

No. of

Rows

SQL

Server

PLSR Main

Server (MySQL

Server, Linux

PLSR

Replication

Server 1(MS

Access)

PLSR

Replication

Server 2(SQL

Server)

PLSR

Replication

Server 3

(MySQL,

Windows)

100 0 5.252 0.097 0.342 2.260

500 2 5.392 0.220 0.501 3.351

1000 3 5.487 0.372 0.790 6.140

5000 9 6.422 1.507 2.314 12.789

10000 31 7.526 2.900 4.351 21.179

Figure 4.20: Comparative time for transactional insert

0

5

10

15

20

25

30

100 500 1000 5000 10000

Ti
m

e
 /

 S

Number of rows

SQL Server
Transactional
Inserts

PSR (SQL Server)
Transactional
Inserts

70

Figure 4.20 represent the comparative time between SQL Server and PLSR (SQL

Server) transactional time. The graph shows the transactional insertion's time for PLSR

(SQL Server) replication is significantly lower than SQL server replication, as the

number of data goes higher; SQL Server transactional inserts time getting much higher

in comparing to the PLSR replication.

Figure 4.21: Comparative time for synchronization

Figure 4.21 demonstrate the comparative time between SQL Server and PLSR

(SQL Server) Synchronization. From the figure, it can be seen that, PLSR (SQL Server)

takes less time for replication synchronization compare to SQL Server replication.

The motivation to compare the result of PLSR replication with SQL Server

replication is the transactional replications can alter using several trigger, which is

similar with the proposed strategy, as the algorithm can perform rollback command from

the persistence layer which can alter the result. The result shows that PLSR outstanding

performs 83.2% and 2.49% better than SQL server for transactional insert and

synchronization in compare to time per seconds. From this above result and the

execution point of view, it can be finding that PLSR is highly acceptable.

0

1

2

3

4

5

6

100 500 1000 5000 10000

Ti
m

e
/

S

Number of rows

SQL Server
Transactional
sync time

PSR (SQL Server)
Transactional
sync time

71

4.7 CONCLUSION

This chapter represents the detail description and the snap shot of the prototype

tool. A detailed performance evaluation has been shown as well. The comparative result

shows that the PLSR is highly accepted. A mathematical equation has also been shown.

From the result section, it is clearly identified that even in the heterogeneous system,

PLSR outperforms other commercial strategies.

72

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 INTRODUCTION

This work has been addressed using multi-threading technique to develop a

persistence layer for heterogeneous synchronous replication known as PLSR. This

chapter summarizes the important findings from the work carried out this research. It

also includes some suggestions for future work in each of the areas covered during this

research.

5.2 CONCLUSION

At the present time, in the data grid community and clustering system, a lot of

work has been focused on providing efficient and safe replication management services

through designing of algorithms and systems. A lot of organizations used replication for

many purposes.

In this work, the techniques based on the work by many researchers have been

discussed (refer Chapter 2). In particular, a new technique PLSR is proposed for

managing data replication in the heterogeneous system (refer Chapter 3 and 4). It can

provide several advantages like, enterprise application more secure and reliable data

transmission. In addition, one of the main goals is to make the database replication

easier to handle. Thus, make it vastly configurable and also the whole architecture is a

service oriented. It is used latest technology trends and the replication will be from the

73

persistence layer. Persistence layer is a part of a software engine and it is used the latest

customizable fourth generation language like Java. Therefore, a new era can move

forward related to networking as well as database programming. Adaptive persistence

layer is suitable to be used scalable in the large scale database system. This is because it

introduces some packages such as “Replication Sync Service," “Data Queue” and

“Intelligent Thread handler." This package provides a structural model to perform the

persistence layer more adaptive.

In Chapter 5, discussion and results show the comparative data between the SQL

server replication and PLSR replication. It can be seen that PLSR replication is

acceptable as the PLSR replication takes less time than SQL Server replication for

transactional insert and synchronization. It was observed that PLSR showed outstanding

performance and it was 83.2 % and 2.49% than SQL server for transactional insert and

synchronization in compare to time (seconds).

This research does provide the following novel contributions: The first major

contribution of the research is the framework and algorithm called Persistence Layer

Synchronous Replication (PLSR). The second contribution is the tools that can be used

in the heterogeneous environment and performs better than SQL Server replication.

5.3 FUTURE WORK

PLSR can be improved in many different ways. Currently, PLSR does not

support complex SQL queries, which can be a significant improvement in commercial

application.

Currently, PLSR is support only 3 types of databases. Supporting all other

popular databases can be another important improvement of PLSR.

74

The prototype tool shows only few fields to insert data into different master and

replication table. To make this more user friendly, various form of input can be

introduce. Therefore, many input type fields can be added in future.

PLSR does not show any charts or reports of data in different variations. In

future it can make a significant improvement for commercial usage. A web based

version of PLSR can also introduce for customizing replication service.

75

REFERENCES

Ahmad, N., Sidek, R.M., Klaib, M.F.J. and Jayan, T.L. 2010. A Novel Algorithm of

Managing Replication and Transaction through Read-One- Write-All Monitoring

Synchronization Transaction System (ROWA-MSTS). Second International

Conference on Network Applications, Protocols and Services, pp. 20- 25.

Ahmad, N., Zin , N.M., Sidek, R.M., Klaib, M.F and Wahab, M. H. 2010. Neighbour

Replica Transaction Failure Framework in Data Grid. NDT 2010, Part II, CCIS,

Springer-Verlag Berlin Heidelberg, 88: 488-495.

Alom, B.M. M., Henskens, F. and Hannaford, M. 2009. Querying Semistructured Data

with Compression in Distributed Environments. IEEE confernce on Information

Technology, New Generations, ITNG '09, pp.1546 - 1553.

Beg, A.H., Noraziah, A., Abdalla A.N., Mohd Zin, N., Sultan, E.I. 2011. Synchronous

Replication: Novel Strategy of Software Persistence Layer Supporting

Heterogeneous System. 2nd International Conference on Software Engineering

and Computer Systems, Communication in Computer and Information Science

(CCIS) Series of Springer LNCS, Pahang, Malaysia (Accepted)

Bell, D. and Grimson, J. 1992. Distributed Database Systems. Addison-Wesley.

Bellavista, P., Corradi, A. and Magistretti, E. 2005. REDMAN: An optimistic replication

middleware for read-only resources in dense MANETs. Pervasive and Mobile

Computing. 1: 279- 310.

Bolton, D. 2011. About.com Guide (online)

http://cplus.about.com/od/glossar1/g/multithreading.htm (February 12, 2011).

Bost, Charron, B., Pedone, F. and Schiper, A. 2009. Replication Theory and Practice.

Berlin Heidelberg NewYork, Springer, ISBN-10 3-642-11293-5 Springer, ch. 2.

Bsoul, M., Khasawneh, A., Abdallah, E. and Kilani,Y. 2010. Enhanced Fast Spread

Replication strategy for Data Grid. Journal of Network and Computer

Applications. j.jnca.12 (6).

Boyera, W.F and Hura G.S. 2005. Non-evolutionary algorithm for scheduling dependent

tasks in distributed heterogeneous computing environments. Journal of Parallel

Distributed Computing. 65: 1035-1046.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5070574
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5070574
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5070574
http://cplus.about.com/od/glossar1/g/multithreading.htm

76

Buertta, M. 1997. Data Replication: Tools and Techniques for Managing Distributed

Information. John Wiley, New York.

Caviglione, L. and Cervellera, C. 2007. Design of a peer-to-peer system for optimized

content replication. Computer Communications. 30 : 3107–3116.

Cervellera C. and Caviglione, L. 2009. Optimization of a peer-to-peer system for

efficient content replication. European Journal of Operational Research. 196:

423–433.

Chang, R.S., Chang, J.S. and Lin, S.Y. 2007. Job scheduling and data replication on data

grids. Future Generation Computer Systems. 23: 846- 860.

Chen, Y., Sun, X. and Wu, M. 2008. Algorithm-system scalability of heterogeneous

computing. Journal of Parallel Distributed Computing. 68: 1403-1412.

Chidambaram, J., Rao, P. A.N., Aneesh, C. S., Prabhu, C. S. R., Wankar, R. and

Agarwal, A. 2008. A Methodology for High Availability of Data for Business

Continuity Planning / Disaster Recovery in a Grid using Replication in a

Distributed Database. TENCON, IEEE Region 10 Conference, pp.1-6.

Chi, C.H., Su, M., Liu, L. and Wang, H.G. 2006. An Active Peer-to-Peer System for

Heterogeneous Service Provisioning. IEEE International Conference on

Information Reuse and Integration, pp. 17- 22.

Ciglan, M. and Hluchy, L. 2007. Content synchronization in replicated grid database

resources. Third International IEEE Conference on Signal-Image Technologies

and Internet-Based System, pp. 379-386

Connolly, T.M. and Begg, C.E. 2005. Database systems: A Practical Approach to

Design, Implementation and Management. 4th Edition, Addison- Wesley.

Deris, M.M., Mamat, A., Seng, P.C. and Saman, M.Y. 2001. Three Dimensional Grid

Structure of Efficient Access of Replicated Data. International Journal of

Interconnection Network, World Scientific. 2(3): 317-329.

Deris, M.M., Nathrah, B., Suzuri, M. H. and Osman A.M.T., 2004. Improving Data

Availibility Using Hybrid Replication Technique in Peer-to-Peer Environments.

Journal of Interconnection Networks. 5(3): 299-312.

Dewald, B. and Kline, K. InformIT. 2002. SQL Server: Transaction and Locking

Architecture (online)

http://www.informit.com/articles/article.aspx?p=26657 (January 30, 2011).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4753725
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4018442
http://www.informit.com/
http://www.informit.com/articles/article.aspx?p=26657

77

Di, R.H., Wang, T., Liang, Y. and Su, L. 2010. The Analysis and Implementation of

Partition Replication-Based Distributed Cache System. IEEE International

Conference on High Performance Computing and Communications (HPCC), pp.

719 – 724.

Dogan, A. 2009. A study on performance of dynamic file replication algorithms for real-

time file access in Data Grids. Future Generation Computer Systems. 25: 829-

839.

Elghirani, A., Zomaya, A.Y. and Subrata, R. 2007. An Intelligent Replication

Framework for Data Grids. Computer Systems and Applications, AICCSA '07,

IEEE/ACS International Conference, pp. 351- 358.

Filip, I., Vasar, C. and Robu, R. 2009. Considerations about an Oracle Database Multi-

Master Replication. IEEE/5th International Symposium on Applied

Computational Intelligence and Informatics. SACI '09, pp. 147 – 152.

Essmann, B., Hampel, T. and Keil-Slawik, R. 2007. Challenges towards a Distributed

Persistence Layer for Next Generation CSCW Applications. IEEE International

Conference on Pervasive Computing and Communications Workshops, PerCom

Workshops '07, pp. 199-203.

Freeman, R.G. 2005. Portable DBA Oracle, McGraw-Hill/Osborne, California, USA.

Gao, T. and Liu, F. 2007. A Dynamic Data Replication Technology in Educational

Resource Grid. Information Technologies and Applications in Education, ISITAE

'07. First IEEE International Symposium, pp. 287- 291.

Gutzait, M. Simplify SQL Server replication. 2007 (online)

http://searchsqlserver.techtarget.com/tip/Simplify-SQL-Server-replication (June

23, 2010)

Gu, L., Budd, L., Caycl, A., Hendricks, C., Purnell, M. and Rigdon, C. 2002. Practical

Guide to DB2 UDB Data Replication V8. Durham, NC, USA, IBM, ch.1.

Gu, X., Lin, W. and Veeravalli, B. 2006. Practically Realizable Efficient Data

Allocation and Replication Strategies for Distributed Databases with Buffer

Constraints. IEEE transactions on parallel and distributed systems, 17(9): 1001-

1013.

Hao, W., Fu, J., Yen, I.L. and Xia, Z. 2008. A Novel PSO-MP Approach for Database

Replications at Edge Servers. Tools with Artificial Intelligence, ICTAI '08. 20th

IEEE International Conference, pp. 291- 298.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5581177
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5581177
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4230920
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4230920
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4230920
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Essmann,%20B..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Hampel,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Keil-Slawik,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4144774
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4144774
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4409224
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4409224
http://searchsqlserver.techtarget.com/tip/Simplify-SQL-Server-replication
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/search/searchresult.jsp?searchWithin=Authors:.QT.%20Jicheng%20Fu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4669655
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4669655
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4669655

78

Hao, Y., Xing-chun, D. and Guo-quan, J. 2008. Research on Data Synchronization in

Oracle Distributed System. International Seminar on Future Information

Technology and Management Engineering, FITME '08. pp. 540 -542.

Hitachi data system. 2007. Synchronous Data Replication (online).

http://www.hds.co.uk/assets/pdf/sb-synchronous-data-replication.pdf (18

February, 2010).

Ho, K.M., Poon, W.F., and Lo, K.T. 2007. Performance Study of Large-Scale Video

Streaming Services in Highly Heterogeneous Environment. IEEE Transactions

on Broadcasting. 53 (4).

Horri, A., Sepahv, R. and Dastghaibyfard, Gh. 2008. A hierarchical scheduling and

replication strategy. International Journal of Computer Science and Network

Security. 8(8).

Ibej, U.C., Slivnik B. and Robic, B. 2005.The complexity of static data replication in

data grids. Parallel Computing. 31: 900- 912.

Ibison, P. 2010. Basic Comparison of Replication Times between Merge and

Transactional Replication. (online)

 http://www.replicationanswers.com/ReplicationTimesArticle.asp (November 28,

2010).

Inigo A. J.E., Rodriguez, J.J.R., Mendivil, G.J.R., Garitagoitia, J.R., Briz L.I., F.D. and

Escoi, M. 2011. A formal characterization of SI-based ROWA replication

protocols. Data & Knowledge Engineering. 70: 21- 34.

Jianfeng, Z., Leihua, Q., Dong, Z., Jinli, Z. 2008. A Duplicate-Aware Data Replication.

Frontier of Computer Science and Technology, FCST '08. Japan-China Joint

Workshop, pp. 112- 117.

Khan, S.U. and Ahmad I. 2008. Comparison and analysis of ten static heuristics-based

Internet data replication techniques. Journal of Parallel Distributed Computing.

68:113-136.

Khanli, L.M., Isazadeh, A. and Shishavan, T.N. 2011. PHFS: A dynamic replication

method, to decrease access latency in the multi-tier data grid. Future Generation

Computer Systems. 27: 233- 244.

Kim, J., Sim, S., and Park, S. 2007. A Cluster File System for High Data

Availabilityusing Locality-Aware Partial Replication. Seventh IEEE

International Conference on Computer and Information Technology, pp. 345 –

350.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4746419
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4746419
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4746419
http://www.hds.co.uk/assets/pdf/sb-synchronous-data-replication.pdf
http://www.replicationanswers.com/ReplicationTimesArticle.asp
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4736493
http://ieeexplore.ieee.org.ezproxy.ump.edu.my/xpl/mostRecentIssue.jsp?punumber=4736493

79

Knezevic, P., Wombacher, A. and Risse, T. 2006. DHT-based self-adapting replication

protocol for achieving high data availability. In: Proceedings of The

International Conference on Signal-image Technology and Internet based

Systems, SITIS.

Kosar, T. and Livny, M. 2005. A framework for reliable and efficient data placement in

distributed computing systems. Journal of Parallel Distributed Computing.

65:1146 – 1157

Lei, M., Vrbsky, S.V. and Hong, X. 2008. An on-line replication strategy to increase

availability in Data Grids. Future Generation Computer Systems. 24: 85- 98.

Li, Z. and Shen, H. 2009. A mobility and congestion resilient data management system

for distributed mobile networks. Mobile Adhoc and Sensor Systems, MASS '09.

IEEE 6th International Conference on Macau, pp. 60-69.

Lin, Y. 2007. Practical and consistent database replication. Mc Gill University Montreal,

Quebec, ch. 1-2.

Litke, A., Skoutas, D., Tserpes, K. and Varvarigou, T. 2007. Efficient task replication

and management for adaptive fault tolerance in Mobile Grid environments.

Future Generation Computer Systems. 23:163–178.

Lou, Y.S., Wang, Z.J., Huang, L. and Yue, L. 2009.The Study of a Reflected Persistence

Data Layer Framework.WRI World Congress on Software Engineering,

WCSE’09, pp. 291-294.

Ma, D., Zhang, W. and Li, Q. 2004. Dynamic Scheduling Algorithm for Parallel Real-

time Jobs in Heterogeneous System. The Fourth International Conference on

Computer and Information Technology, CIT '04, pp. 462- 466.

Mavromoustakis, C.X. and Karatza H.D. 2008. Under storage constraints of epidemic

backup node selection using HyMIS architecture for data replication in mobile

peer-to-peer networks. The Journal of Systems and Software. 81: 100–112.

Nam, C.D., Youn, C., Jeong, S., Shim, E., Lee, E. and Park, E. 2004. An efficient

replication scheme for data grids. In: Proceedings 12th IEEE International

Conference on Networks, ICON, pp. 392- 396.

Noraziah, A., Deris M. M., Saman, M.Y. M., Norhayati, R., Rabiei, M. and Shuhadah,

W.N.W. 2009. Managing Transaction on Grid-Neighbour Replication in

Distributed System. International Journal of Computer Mathematics, Taylor

and Francis. 86(9):1624-1633

Open EHR. Copyright 2007. (Online)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5312767
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5312767
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5312767
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9381

80

http://www.openehr.org/208-OE.html?branch=1&language=1 (February 18,

2010)

Palomar, E., Tapiador J.M.E., Castro, J.C. H. and Ribagorda, A. 2008. Secure content

access and replication in pure P2P networks. Computer Communications.

31:266-279

Perez, J.M., Carballeira, F.G., Carretero, J., Calderon, A. and Fernandez, J. 2010.

Branch replication scheme: A new model for data replication in large scale data

grids. Future Generation Computer Systems. 26: 12- 20.

Poddar, S. 2003. SQL Server Transactions and Error Handling (Online)

http://www.codeproject.com/KB/database/sqlservertransactions.aspx (January

30, 2011).

Post, G.V. 2006. Database Management system: Design and Building Business

Applications. McGraw-Hill/Irwin, New York.

Pucciani, G., Domenici, A., Donno, F. and Stockinger, H. 2010. A performance study

on the synchronisation of heterogeneous Grid databases using CONStanza.

Future Generation Computer Systems. 26: 820- 834.

Qiao, H., Ju, R., Li, G., and Huang, K. 2006. A New Persistence Framework for Parallel

and Distributed Simulation. International on Multi-Symposiums on Computer

and Computational Sciences, IMSCCS '06, pp. 344- 348.

Qin X. and Jiang, H. 2006. A novel fault-tolerant scheduling algorithm for precedence

constrained tasks in real-time heterogeneous systems. Parallel Computing.

32:331-356.

Rahman, R., Barker, K. and Alhajj, R. 2006. Replica placement design with static

optimality and dynamic maintainability. In: Proceedings of the Sixth IEEE

International Symposium on Cluster Computing and the Grid, CCGRID, pp. 16-

19.

Rahman R.M., Alhajj, R. and Barker K. 2008. Replica selection strategies in data grid.

Journal of Parallel Distributed Computing. 68: 1561- 1574.

Sashi, K. and Thanamani, A. S. 2011. Dynamic replication in a data grid using a

Modified BHR Region Based Algorithm. Future Generation Computer Systems.

27: 202- 210.

Sato, H., Matsuoka, S., and Endo, T. 2009. File Clustering Based Replication Algorithm

in a Grid Environment. 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid, pp. 204 – 211.

http://www.openehr.org/208-OE.html?branch=1&language=1
http://www.codeproject.com/KB/database/sqlservertransactions.aspx
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10901
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10901
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10901

81

SearchSQlserver.com. Definition SQL Server. 2006 (online)

http://searchsqlserver.techtarget.com/definition/SQL-Server (February 25, 2011)

Shena H. and Zhu, Y. 2009. A proactive low-overhead file replication scheme for

structured P2P content delivery networks. Journal of Parallel and Distributed

Computing. 69: 429- 440.

Stockinger, H. 2001. Distributed Database Management Systems and the Data Grid.

IEEE-NASA Symposium, pp.1-12.

Sriram, I. and Cliff D. 2010. Effects of Component-Subscription Network Topology on

Large-Scale Data Centre Performance Scaling. Engineering of Complex

Computer Systems (ICECCS), 15th IEEE International Conference, pp. 72- 81.

Tang, M., Leel, B.S., Yeo, C.K. and Tang, X. 2005. Dynamic replication algorithms for

the multi-tier Data Grid. Future Generation Computer Systems. 21: 775- 790.

Tang, M., Lee, B.S., Tang, X. and Yeo, C.K. 2006. The impact of data replication on job

scheduling performance in the Data Grid. Future Generation Computer Systems.

22: 254- 268.

Tanga, X., Kenli L., Renfa, L., Veeravalli, B. 2010. Reliability-aware scheduling

strategy for heterogeneous distributed computing systems. Journal of Parallel

Distributed Computing. 70:941-952.

Tim Ford. 2010. MSSQL Tips (online)

http://www.mssqltips.com/tip.asp?tip=2183 (January 25, 2011).

Tong, X. and Shu, W. 2009. An Efficient Dynamic Load Balancing Scheme for

Heterogenous Processing System. IEEE Conference on Computational

Intelligence and Natural Computing, pp. 319- 322.

Urbano, R. 2003. Oracle Database Advanced Replication. Part No. B10732-01, Oracle

Corporation ,Ch. 1, Retrieved February 8, 2010, from

http://www.databasebooks.us/oracle_0003.php

Wang, C., Yang, C. and Chiang, M. 2007. A fair replica placement for parallel

download on cluster grid, in: Network-Based Information Systems. In: Lecture

Notes in Computer Science, 4658: 268-277.

Wang, C.H., Kim, H., Wu, Y. and Ying, V. 2007. Compiler-Managed Software-based

Redundant Multi-Threading for Transient Fault Detection. International

Symposium on Code Generation and Optimization, CGO '07. pp. 244- 258.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Sriram,%20I..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Cliff,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5626943
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5626943
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5626943
http://www.mssqltips.com/author.asp?authorid=13
http://www.mssqltips.com/tip.asp?tip=2183
http://www.databasebooks.us/oracle_0003.php
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4145089

82

Wang, Y. and Li, S. 2006. Research and performance evaluation of data replication

technology in distributed storage systems. Computers & Mathematics with

Applications. 51:1625-1632.

Wang, C.M., Chen, H.M., Lee, G.C., Wang, S.T., and Hong, S.F. 2005.A Tree-

Structured Persistence Server for Data Management ofCollaborative

Applications. IEEE International Conference on Advanced Information

Networking and Applications, AINA, pp. 503 – 506

Wei, L., Ping, W.X., Qi, Z. and Nong, Z. 2009. Improving Throughout of Continuous k-

Nearest Neighbor Queries with Multi-threaded Techniques. IEEE International

Conference on Intelligent Computing and Intelligent Systems, ICIS. pp. 438- 442.

Wu, H., Tong, H., Yu, C., Zhao, X. and Liu, Y. 2007. Real-time Compilation System for

Input-Output Table Based on Distributed Database and Remote Data Replication

Technology. IEEE conference on Convergence Information Technology, pp.

1988- 1992.

Wujuan, L. and Veeravalli, B. Design and analysis of an adaptive object replication

algorithm in distributed network systems. Computer Communications. 31: 2005-

2015.

Wu, Q., Hu Y. and Wang, Y. 2010. Research on Data Persistence Layer Based on

Hibernate Framework. 2nd International Workshop on Intelligent Systems and

Applications (ISA), pp. 1 – 4.

Youn, H.Y., Krishnamsetty, B., Lee, D., Lee, B.K., Choi, J.S., Kim, H.G., Park, C.W.,

and Su, L.H. 2002. An efficient hybrid replication protocol for highly available

distributed system. In: Proceedings of the Communications and Computer

Networks, CCN, Cambridge, USA. 381:078.

Zhang, Z., Wang, X., Qi, G. and Yao, W. 2010. Study on the Method of Building Data

Persistence Layer Based on the Data Dictionary. IEEE International Conference

on Computer and Communication Technologies in Agriculture Engineering

(CCTAE), pp. 320 - 323

Zhoua, X. and Xu, C.Z. 2007. Efficient algorithms of video replication and placement on

a cluster of streaming servers. Computer Applications. 30:515–540.

Zhou, Z. and Chen, Z. 2010. Performance Evaluation of Transparent Persistence Layer

in Java Applications. International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), pp. 21 - 26

http://www.sciencedirect.com/science/journal/08981221
http://www.sciencedirect.com/science/journal/08981221
http://www.sciencedirect.com/science/journal/08981221
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9746
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9746
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9746
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5351119
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5472913
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5472913
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5472913
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5613985
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5613985

83

APPENDIX

public class PersistentEngine implements Runnable {

 private ArrayList<String> valLst;

 private char actionType;

 private String mainServer = null;

 private ArrayList<String> replicationServers = null;

 JTextArea jT;

 public PersistentEngine()

 {

 replicationServers = new ArrayList<String>();

 }

 public void generateAction(JTextArea jT)

 {

 populateServerInfo();

 this.jT = jT;

 Thread thisThread = new Thread(this);

 thisThread.setPriority(Thread.MAX_PRIORITY);

 thisThread.start();

 }

private void populateServerInfo()

 {

 String path = "\\Config\\serverConfig.xml";

 XPathReader xPath = new XPathReader(path);

 String expression = "/root/server/main/one/type";

 this.mainServer = xPath.read(expression, XPathConstants.STRING).toString();

 expression = "/root/server/replications/one/type";

 this.replicationServers.add(xPath.read(expression,

XPathConstants.STRING).toString());

 expression = "/root/server/replications/two/type";

 this.replicationServers.add(xPath.read(expression,

XPathConstants.STRING).toString());

84

 }

 private void entryToServer(String serverName)

 {

 if(serverName.equals("mysql"))

 {

 new MySQL(valLst.get(0), valLst.get(1), valLst.get(2));

 }

 else if(serverName.equals("msaccess"))

 {

 new MSAccess(valLst.get(0), valLst.get(1), valLst.get(2));

 }

 else if(serverName.equals("mssql"))

 {

 new MSSQL(valLst.get(0), valLst.get(1), valLst.get(2));

 }

 }

public PersistentThread(ArrayList<String> lst, ArrayList<String> repServerLst,

JTextArea jT)

 {

 thisThread = new Thread(this);

 this.valLst = lst;

 this.repServer = repServerLst;

 this.jT = jT;

 thisThread.setPriority(Thread.NORM_PRIORITY);

 thisThread.start();

 }

public MSAccess(String id, String name, String faculty)

 {

 String path = "\\Connection\\connectionString.xml";

 XPathReader xPath = new XPathReader(path);

 String expression = "/root/connectionString/msaccess/driver";

 this.DRIVER = xPath.read(expression, XPathConstants.STRING).toString();

 expression = "/root/connectionString/msaccess/url";

 this.URL = xPath.read(expression, XPathConstants.STRING).toString();

 InsertData(id, name, faculty);

 }

85

 public void InsertData(String id, String name, String faculty) {

 try {

 Class.forName(DRIVER);

 Connection connection = null;

 connection = DriverManager.getConnection(URL);

 Statement stm = connection.createStatement();

 String query = "Insert into user values ('"+id+"', '"+name+"', '"+faculty+"')";

 stm.executeUpdate(query);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

public class MSSQL {

 private String connectionUrl = null;//"jdbc:sqlserver://localhost:1433;" +

 //"databaseName=ump;integratedSecurity=true;";

 private String DRIVER = null;//"com.microsoft.sqlserver.jdbc.SQLServerDriver";

 public MSSQL(String id, String name, String faculty)

 {

 String path = "\\Connection\\connectionString.xml";

 XPathReader xPath = new XPathReader(path);

 String expression = "/root/connectionString/mssql/connection";

 this.connectionUrl = xPath.read(expression, XPathConstants.STRING).toString();

 expression = "/root/connectionString/mssql/driver";

 this.DRIVER = xPath.read(expression, XPathConstants.STRING).toString();

 InsertData(id, name, faculty);

 }

 public void InsertData(String id, String name, String faculty)

 {

 Connection con = null;

 Statement stmt = null;

 try

 {

 // Establish the connection.

86

 Class.forName(DRIVER);

 con = DriverManager.getConnection(connectionUrl);

 // Create and execute an SQL statement that returns some data.

 stmt = con.createStatement();

 String query = "INSERT INTO [ump].[dbo].[user] ([id],[name],[faculty])

VALUES ('"+id+"','"+name+"','"+faculty+"')";

 stmt.executeUpdate(query);

 stmt.close();

 con.close();

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

public MySQL(String id, String name, String faculty)

 {

 String path = "\\Connection\\connectionString.xml";

 XPathReader xPath = new XPathReader(path);

 String expression = "/root/connectionString/mysql/connection";

 this.connectionString = xPath.read(expression,

XPathConstants.STRING).toString();

 expression = "/root/connectionString/mysql/username";

 this.userName = xPath.read(expression, XPathConstants.STRING).toString();

 expression = "/root/connectionString/mysql/password";

 this.password = xPath.read(expression, XPathConstants.STRING).toString();

 InsertData(id, name, faculty);

 }

 public void InsertData(String id, String name, String faculty) {

 try

 {

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 Connection conn = DriverManager.getConnection(connectionString, userName,

password);

 System.out.println("connected");

 Statement st = conn.createStatement();

87

 String query = "Insert into user values ('"+id+"', '"+name+"', '"+faculty+"')";

 st.executeUpdate(query);

 st.close();

 conn.close();

 System.out.println("Done");

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

88

BIODATA OF THE AUTHOR

The author was born in 1981 in Tangail, Bangladesh. He obtained bachelor degree in

Computer Science and Engineering in 2005 from Darul Ihsan University, Bangladesh.

Currently he is undergoing his M.Sc program at the Faculty of Computer Systems and

Software Engineering, University Malaysia Pahang.

His current research interests include distributed network, database systems and database

replication. He has published 6 articles in journals and proceedings (international). For

this work, he has published one scientific journal and three proceedings.

89

LIST OF PUBLICATIONS

1. A.H.Beg, Noraziah Ahmad, Ahmed N Abd Alla, Nawsher Khan,

“Framework of Persistence Layer for Synchronous Data Replication

(PSR)”, Australian Journal of Basic and Applied Sciences, 4(10): 5394-

5400, 2010. Index: ISI.

2. A.H.Beg, Noraziah Ahmad, Ahmed N Abd Alla, K.F. Rabbi, Nawsher

Khan, “ Structure and Framework of Synchronous Replication Based On

Data Persistency to Improve Data Availability into a Heterogeneous

System”, International Conference on Software and Computing

Technology, ICSCT 2010, Kunming, China.vol.1, pp. 127-130. Index:

IEEE.

3. A.H.Beg, Noraziah Ahmad, Ahmed N Abd Alla, K.F.Rabbi, Soffia

Suliman, “Architecture and Algorithm of Heterogeneous Persistence

Layer for Synchronous Replication Based on Multi-threading”, Annual

International Conference on Advances in Distributed and Parallel

Computing, ADPC 2010, Mandarin Orchard, Singapore, pp. 64-69.

Index: EBSCO, Scirus, EI Compendex, ISTP.

4. A.H.Beg, A.Noraziah, Ahmed N Abdalla, Noriyani Mohd Zin,

E.I.Sultan, “Synchronous Replication: Novel Strategy of Software

Persistence Layer Supporting Heterogeneous System”, 2nd International

Conference on Software Engineering and Computer Systems, ICSECS

2011, Pahang, Malaysia, Part II, CCIS 180, pp. 232–243, 2011.Springer-

Verlag Berlin Heidelberg 2011. Index: ISI Proceedings and Scopus.

http://ieeexplore.ieee.org.ezproxy.ump.edu.my/search/searchresult.jsp?searchWithin=Authors:.QT.Khan,%20Nawsher.QT.&newsearch=partialPref

