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Samenvatting 
 

Langdurige blootstelling aan omgevingslawaai krijgt stilaan de aandacht die dit 

milieuprobleem verdient, in hoofdzaak door het feit dat de negatieve impact op de 

gezondheid en levenskwaliteit steeds duidelijker wordt. Vooral in een stedelijke 

omgeving is dit een belangrijk probleem; de blootstelling aan wegverkeerslawaai 

blijft dan ook stijgen door de steeds sterkere verstedelijking en stadsverdichting. 

Belangrijke gezondheidsgerelateerde effecten door blootstelling aan 

verkeerslawaai zijn slaapverstoring, hinder en de hieraan gerelateerde 

stresseffecten, de bijdrage aan cardiovasculaire ziektes alsook bijvoorbeeld de 

negatieve impact op het cognitief functionering van de mens. Een van de 

belangrijkste uitdagingen voor onderzoekers in het domein van omgevingslawaai 

is het zoeken naar oplossingen om de negatieve invloed van verkeer op de 

maatschappij te beperken in het licht van duurzame stadsontwikkeling. 

 

Het gebruik van natuurlijk en duurzame materialen, zoals bijvoorbeeld vegetatie, 

groendaken en groene muren wint steeds meer aan populariteit. Dergelijke 

materialen interageren met de geluidsgolven op het pad tussen bron en ontvanger, 

en kunnen bij goed ontwerp bijdragen aan geluidsreductie. Dit werk focust op de 

numerieke modellering bij dergelijke interacties. 

 

De eindige-differenties-in-het-tijdsdomein model (finite-difference time-domain, 

FDTD) werd reeds succesvol toegepast voor het analyseren van allerhande 

omgevingslawaaiproblemen en het ontwerp van geluidsreducerende oplossingen. 

Vooral door zijn hoge flexibiliteit werd geopteerd voor deze numerieke 

tijdsdomeintechniek, om in het bijzonder de interactie tussen geluidsgolven en 

bladeren, alsook het effect van lage begroeide geluidsmuren te onderzoeken. 

Hiervoor werden verschillende uitbreidingen op het basismodel geïmplementeerd. 

 

De interactie tussen geluidsgolven en bladeren werd in detail gemodelleerd in een 

3D eindige-differenties-in-het-tijdsdomein model. Het doel is meer inzicht 

verwerven in de mogelijkheid om vegetatie te gebruiken als geluidsreducerende 

maatregel en het identificeren wat de relevante parameters zijn. Het buigen en 

draaien van bladeren onder invloed van een invallend geluidsveld werd 

geïncludeerd in het rekenmodel, inclusief de interne demping die dergelijke 

processen veroorzaken. Ook de energie die verloren gaat in de vorticiteits- en 

entropiegrenslagen van het blad werden meegerekend. Het poreus-elastisch Biot 

model werd geïmplementeerd om ook de aanwezigheid van poreuze materialen 

(bijvoorbeeld natuurlijke bodems of groeisubstraten) in detail in te kunnen 

schatten. 
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Het model werd gevalideerd door middel van twee soorten metingen. Enerzijds 

werd de drukval over een enkel blad(oppervlak) in een geluidsveld gemeten, 

alsook de snelheid waarmee het blad trilt. Een dergelijk experiment werd 

uitgevoerd voor 7 verschillende types bladeren. In een tweede experiment werd 

de absorptiecoëfficiënt van een poreus materiaal, bedekt met een blad, bepaald in 

een impedantiebuis. De numerieke voorspellingen in beide experimenten toonden 

aanvaardbare tot zeer goede overeenkomsten met de metingen. 

 

In een tweede stap werd de invloed van bladoppervlaktedichtheid numeriek 

onderzocht. Deze simulaties toonden dat een beperkte bladoppervlaktedichtheid 

resulteerde in sterkere verbetering van de absorptiecoëfficiënt bij lage frequenties, 

t.o.v. een substraat dat niet bedekt werd door een blad, dan bij een hogere 

bladoppervlaktedichtheid. Geluidspropagatie doorheen een reeks bladeren is een 

meer realistisch setting. Dit werd numeriek gemodelleerd door gebruik te maken 

van cyclische randvoorwaarden, wat de rekenkost sterk verlaagt in een dergelijke 

setting. Een dergelijke benadering resolveert expliciet een beperkt aantal bladeren, 

waarbij de geluidsgolven verschillende malen propageren doorheen doorheen een 

dergelijke volume. 

 

Het effect van lage absorberende geluidsmuren, geplaatst in een straat, werd 

onderzocht door middel van numerieke modellering alsook met een schaalmodel. 

Een dergelijke maatregel kan de geluidsblootstelling voor wandelaars op het 

voetpad beperken. Een schaalmodel (schaalfactor 30) van een straat werd 

geconstrueerd, met een zeer sterke graad van geveldetail. De extra attenuatie door 

de lucht, veroorzaakt door het meten bij hoge (opgeschaalde) geluidsfrequenties, 

werd gecompenseerd door middel van een wavelet-gebaseerde methode. In een 

eerste stap werd de accuraatheid van het schaalmodel gevalideerd door 

vergelijking met metingen in de straat (volle schaal) zelf. In een volgende stap 

werd het effect van lage absorberende geluidsschermen gemeten in het 

schaalmodel en numeriek gesimuleerd in een dwarsdoorsnede ter hoogte van de 

bron. De materiaaleigenschappen van het poreus scherm werden gemodelleerd 

met behulp van het Zwikker en Kosten model, waarbij een star frame werd 

verondersteld. Het effect van resonanties van de materiaalmatrix was eerder 

beperkt, terwijl het gebruik van het Biot model leidde tot een significante stijging 

in de rekenkost. De simulaties toonden duidelijk het belang aan van een goede 

benadering van het geveldetail. Diffuse reflectie is bijgevolg een essentieel aspect 

van geluidspropagatie in een zogenaamde streetcanyon. Met stijgende 

ontvangerhoogte werd het effect van de schermen zeer beperkt. De aanwezigheid 

van reflecterende facades zorgde er verder voor dat de efficiëntie van een 
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dergelijk geluidsscherm in de straat sterk daalde bijv. ten opzichte van een 

toepassing in een niet-stedelijke omgeving. 

 

In aanloop naar de ontwikkeling van een volledig drie-dimensionaal numeriek 

model werd een andere techniek onderzocht nl. de ultra-weak variational 

formulation (UWVF). Een dergelijk rekenmodel is nodig om bijvoorbeeld 

effecten van realistische 3D verstrooiing van geluid op gevels te onderzoeken, het 

effect van zijstraten te bekijken, of om rekening te houden met de eindige lengte 

(of onderbrekingen) van een laag geluidsscherm. Een belangrijk voordeel van 

UWVF is dat slechts 2 rekencellen per golflengte nodig zijn, ten opzicht van 10 

rekencellen in FDTD. Een ander voordeel is dat de geluidsbronpositie niet 

expliciet dient vastgelegd te worden in het rekenrooster, wat nuttig is bij typische 

verkeersconfiguraties met meerdere rijstroken. Bovendien werd een efficiënte 

techniek ontwikkeld om te rekenen in octaafbanden, wat nuttig is gezien de 

meeste omgevingslawaaibronnen breedbandig zijn. Om te verhinderen dat een 

nieuwe berekening dient gestart te worden voor elke afzonderlijke frequentie, 

zoals klassiek gebeurt bij een frequentiedomeintechniek, werd het aantal nodige 

basisfuncties in elke gridcel verkregen door middel van interpolatie. Op deze 

manier werd de rekenkost die een dergelijke initiële operatie met zich meebrengt 

sterk gereduceerd (wat leidde tot een finale reductie in totale rekentijd tussen 40 

en 70 %). Er werd bovendien aangetoond dat de zogenaamde “perfectly matched 

layers” (PML) makkelijk kunnen geïmplementeerd worden in de UWVF techniek 

(om het oneindig propagatiedomein te beperken tot een eindig rekengebied). Een 

twee-dimensionale versie van de UWVF techniek werd met succes gevalideerd 

door vergelijking met FDTD als referentie-oplossing, in geval van diffractie over 

een laag absorberend geluidsscherm met een complexe vorm, alsook voor 

geluidspropagatie over een vlakke absorberende grond in de aanwezigheid van 

een verticale geluidssnelheidsgradiënt.  
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English summary 
 

Noise pollution has drawn people's attention as it negatively impacts human well-

being. Especially in an urban environment, traffic noise has inevitably increased 

with human activities and city expansion. It has been reported that the adverse 

effects of exposure to traffic noise range from annoyance over sleep disturbance, 

to negative impacts on cognitive functioning and to cardiovascular diseases. 

Therefore, one of the main challenges for environmental acousticians is to find 

ways to reduce the negative influences of traffic noise to ensure sustainable 

development of our societies.  

 

Recently, natural/sustainable materials or structures, such as vegetation, green 

roofs or green wall systems are gaining popularity. They interact with sound 

waves along the path from source to receiver. This work focuses on numerical 

modeling of such materials. 

 

The finite-difference time-domain (FDTD) method has been used successfully in 

outdoor acoustics before. Given its high flexibility, the FDTD method is chosen 

to study the influences of low-height noise barriers and leaves. Several extensions 

to the FDTD method have been implemented in this thesis.  

 

The bending and twisting of the leaves are implemented in the three-dimensional 

finite-difference time-domain (3D-FDTD) method in order to provide a more 

accurate simulation of the effects of the leaves on the sound field. The internal 

damping in the process of bending is included. The energy damping in the 

vorticity and entropy boundary layers of the leaves is also taken into account. 

When a porous material is present (e.g. in case of soil or growing substrates), 

Biot's model is used. 

 

This model is validated by two types of measurements. The first type measures 

the pressure difference over the leaf and the velocity of a particular point on the 

leaf. Seven different leaf species are considered and the measurements agree 

reasonably well with the simulations. In the second type of measurements, the 

sound absorption coefficient of a porous material covered by a leaf is measured in 

an impedance tube. Two porous materials and four types of leaves are used. Biot's 

model is implemented in the FDTD method to simulate frame resonances in the 

porous materials. The simulations show a good agreement with the measurements. 

The integration of the leaf bending successfully models the fluctuations in the 

measured absorption coefficient.  

 



 

x 

 

Afterwards the extended FDTD method is used to study the influences of leaf 

surface density (LSD) on the materials' absorption coefficient. It shows that the 

leaves with small LSD result in a stronger enhancement in the low-frequency 

range. In a next step, this model is applied to study the behaviour of a group of 

leaves. Cyclic boundary conditions are used in order to improve the efficiency of 

the calculation. Three types of vegetation are taken into account. The normalized 

excess attenuation curves show a similar behaviour as in the measurements 

performed by Aylor. It is also noted that more leaves attenuate more energy 

because of stronger backscattering and higher energy dissipation.  

 

A two-dimensional FDTD method is also used to study the effect of low-height 

noise barriers in a street canyon. The absorbing low-height noise barriers are 

modelled by the rigid-frame Zwikker and Kosten's model, because the effect of 

frame resonances on the material's absorption coefficient is rather small and the 

Biot's model involves a higher computational cost. A highly detailed 1:30 scale 

model is constructed according to a real street canyon and its reliability is 

confirmed with comparison to the measurements in the real street canyon (full-

scale measurements). Furthermore, the scale model measurements in the cross-

section of the sound source are compared to simulation. Both flat and uneven 

facades are considered in the two-dimensional FDTD simulation. The comparison 

shows the importance of accounting for diffuse reflection at the facades. 

 

The scale model measurements investigate the effect of absorbing low-height 

noise barriers along the street canyon. Three receiver-height levels above the 

pavement are considered. In is found that absorbing low-height noise barriers 

have a significant influence on the sound pressure levels at the lowest observation 

height. This influence decreases when the height of observation increases. The 

presence of building facades strongly reduces the shielding provided by such low-

height barriers. 

 

This work also plans to develop a full three-dimensional numerical model in 

order to include effects such as finite length low-height noise barriers or 3D 

scattering on facades. Because of the high computational cost in full-wave 

techniques, the method should be sufficiently flexible to allow coupling to other 

methods. Therefore, the ultra-weak variational formulation (UWVF) method is 

studied. It is successful in calculating the effects of low-height noise barriers in a 

two-dimensional problem. Unlike the traditional finite-difference and finite-

element methods, needing 10 grid cells per wavelength, the UWVF method can 

choose fewer grid cells per wavelength. The UWVF method doesn't need the 

sound source to be included in the computational domain. The overall 
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conditioning of the UWVF method could be improved by adjusting the number of 

basis functions within each computational grid cell. An efficient approach to 

determine the number of basis functions for the frequencies in the same octave 

band is used in this work. Besides, when the position of sound source is changed, 

the UWVF method does not need to reassemble all the elements in the linear 

system and this helps reducing the computational cost in realistic traffic situations. 

Furthermore, the perfectly matched layer (PML) theory is applied in the UWVF 

technique to truncate the unlimited propagation domain.  

 

The 2D-UWVF code developed in this work has been successfully validated in 

two cases by comparison with the finite-difference time-domain (FDTD) method. 

One practical example about two types of vehicles in a two-lane road is 

investigated. It is proved that the low-height noise barriers can significantly 

reduce the noise levels behind them. Moreover, the low-height noise barriers 

constructed by absorbing materials show a better performance than the rigid 

barriers. 
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ALeaf Leaf projected area, 3.4 
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B Block diagonal matrix, 4.3 

B1, B2 Wave amplitude, 5.2 

b Vector related to external boundary and source, 4.3 

C Matrix in UWVF, 4.3 

Cond(.) Condition number, 4.4 

CN Courant number, 3.3 

C1, C2 Wave amplitude, 5.2 

c Speed of sound, 2.2 

c' Modified speed of sound (
skcc  ), 2.5 

D Bending stiffness per unit width, 2.3, 3.1 

Di Bending stiffness per unit width, 2.3 

D0 Bending stiffness per unit width without damping term, 

2.3 

�̃�𝑖 Laplace transform of bending stiffness per unit width, 2.3 

d Spatial dimension, 2.6 

dBL Boundary layer thickness, 3.1 

dPML Thickness of the PML, 2.6 

dLeaf Thickness of the leaf, 3.2 

dx, dy, dz Derivatives of complex stretched variables, 2.6, 4.1 

dPML Thickness of the PML, 2.6 

D Bending stiffness per unit width, 2.3, 3.1 

E Young's modulus of the leaf material, 2.3 

e Internal energy per unit mass, 2.1, 2.4 

ei,j Shear strain when i ≠ j and normal strain when i = j 

eall Sum of the normal strain (ei,i + ej,j + ek,k), 2.5 

f Porosity, 2.5 

fc Central frequency, 5.1 

fk Source term in Ωk, 4.1 

fs Source term, 2.6 

gi Body force per unit mass in i-direction, 2.1 

gk Boundary source term, 4.1 

H12, HI, HR Transfer functions for the incident wave, reflected wave 

and total sound field, respectively, 5.1 
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h Thickness of the leaf/plate, 2.3 

I Unit vector/matrix, 4.4 

i Imaginary unit: 1i , 2.2 

Κ Thermal conductivity, 2.4 

K0 Bulk modulus for an open system, 2.5 

Kc Bulk modulus for a closed system, 2.5 

Ka Bulk modulus of the fluid in the porous medium, 2.5 

Kf Bulk modulus of the solid frame in the porous medium, 

2.5 

k Permeability matrix, 2.5 

k0 Wave number, 5.1 

kb Bending wave number in plate/leaf, 3.4 

ks Structure factor, 2.5 

MD Leaf dry mass, 3.4 

M Elastic coefficient, 2.5 

MF Leaf fresh mass, 3.4 

𝑀𝑦 , 𝑀𝑧 Bending moments, 2.3 

�̃�𝑦, �̃�𝑧 Laplace transforms of the bending moments, 2.3 

𝑀𝑦𝑧 Twisting moments, 2.3 

�̃�𝑦𝑧 Laplace transform of the twisting moments, 2.3 

m Coefficient determined by the fluid density, the 

coordinates in the pore and the pore geometry, 2.5 

ma Mass per unit area, 3.4 

nk, nj Outgoing unit normal, 4.1 

P Pressure, 2.2 

�̃� Laplace transform of the pressure, 2.3 

Pa Pressure of the fluid averaged in the bulk materials, 2.5 

Pframe Pressure of the solid frame, 2.5 

Pnormal Artificial pressure component normal to the interface 

between the region of interest and the PML, 2.6 

Pparallel Artificial pressure component parallel to the interface 

between the region of interest and the PML, 2.6 

P0 Steady term of pressure P or ambient atmospheric 

pressure, 2.5 

Pf Fluid pressure, 2.5 

Ps Pressure on the solid materials, 2.5 

Pt Pressure on the total bulk materials, 2.5 

p Time-harmonic acoustic pressure, 2.2 

pk Time-harmonic acoustic pressure in sub-domain Ωk, 4.2 

Qk Complext boundary constant, 4.1 

qi Heat flux per unit area in i-direction, 2.1 
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�⃗� Heat flux, 2.4 

R Flow resistivity, 2.5 

Rf Coefficient for the internal dissipation in the solid frame, 

2.5 

RL Viscous damping coefficient, 2.3 

Rn, Ri,n Damping coefficients, 2.3 

Rs Ideal gas constant, 2.4 

r Radial coordinate, 2.6 

rc Reflection coefficient, 5.1 

rcc Correlation Coefficient, 3.4 

S Entropy, 2.4 

Spulse Sound source, 5.1 

�̂� Signal in frequency domain, 5.2 

s Signal in time domain, 5.2 

sn, si,n Damping coefficients, 2.3 

T0 Static temperature, 2.4 

tc Central time, 5.1 

Ux, Uy, Uz Displacement of the fluid in three directions, 2.5 

ux, uy, uz Displacement of the solid frame in three directions, 2.5 

u, v, w Three orthogonal directions, 5.2 

V


 Fluid velocity vector, 2.1 

Va Velocity vectors of the fluid, 2.5 

Vf Velocity vectors of the solid frame, 2.5 

VL Volume of the leaf, 3.4 

Vn Normal velocity, 2.4 

Vt Tangential velocity, 2.4 

vα Velocity component normal to the interface between the 

region of interest and the PML, 2.6 

vxa, vya, vza Velocities of air in x, y and z directions, 2.5, 3.1 

vβ  Velocities components parallel to the interface between 

the region of interest and the PML, 2.6  

v  Velocity parallel to the leaf surface plane, 3.1 

vxf, vyf, vzf Velocities of solid frame in x, y and z directions, 2.5, 3.1 

vi i-component of the velocity V


 and i=x, y, z, 2.1 

vk Smooth test functions in sub-domain Ωk, 4.2 

vx x-component of the velocity V


, 2.1 

vxp Velocity  in the x-direction (normal to the plate surface), 

2.3  

vy y-component of the velocity V


, 2.1 

vz z-component of the velocity V


, 2.1 

W Displacement normal to the leaf surface, 2.3 
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W
~

 Laplace transform of the displacement, 2.3 

wx, wy, wz Flow of the fluid relative to the solid in three directions 

but measured in terms of volume per unit area of the bulk 

medium 

α Elastic coefficient with value between porosity and 1, 2.5 

αj Incident angles, 2.6 

αpm Absorption coefficient, 5.1 

σ0,ξ PML decay parameter, 2.6 

Σk,j Interface between kth and jth finite element or subdomain, 

4.1 

φ Porosity, 2.5  

φk,m Basis function in Ωk, 4.3 

0  Bending and twisting moments per unit thickness, 2.3, 3.1 

  Visco-elastic damping during the bending of the leaf or 

plate, 2.3, 3.1 

ε Foliage bulk elastic modulus, 3.4 

ξ Spatial coordinates (x, y, or z), 2.6 

ξ0 Spatial coordinates of the interface of the PML, 2.6 

Γk Exterior boundary, 4.1 

κ Wave number, 2.2, 2.6 

κk Wave number in Ωk, 4.1 

κ' Wave number in the porous medium, 2.5 

κ1,normal, κ2,normal Damping coefficients in the direction normal to the 

interface between the region of interest and the PML, 2.6 

κ1,max Maximum damping coefficient, 2.6 
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CHAPTER 1  

Introduction 
 

1.1 Urban traffic noise pollution and its control 
 
Noise pollution in cities is one of the by-products of the technological revolution 

and urbanisation. Noise is present everywhere, both indoors and outdoors. In 

general, road traffic is a major contribution to the urban noise climate that has 

many adverse effects on people's wellbeing.  

 

Nowadays, the influences of urban traffic noise are becoming worse, not only 

because the number of vehicles in urban transportation networks is gradually 

increasing, but also because the number of quiet hours during the night tends to 

be diminishing. The adverse effects of exposure to traffic noise range from 

annoyance over sleep disturbance, to negative impacts on cognitive functioning 

and to contribution to cardiovascular diseases (for an overview, see e.g. [1]).  

 

In urban areas, common noise reduction measures are difficult to apply. A 

standard noise wall as found along the highways is not appropriate in a city centre, 

because such constructions are visually too intruding for both pedestrians and car 

drivers. However, there are still a variety of traditional measures that can be used 

to control and reduce the urban traffic noise, such as limiting vehicle speed, 

altering road surface materials, prohibiting the entrance of heavy vehicles to cities 

during some periods of the day, controlling the traffic flow to avoid sudden 

braking and acceleration, and encouraging the usage and design of low-noise tires. 

Unfortunately, most of these traditional measures are mainly used to reduce the 

rolling noise, arising from the contact zone in between the tire and the road 

surface. Because the typical vehicle speed in urban areas is usually limited, the 

engine noise is mostly dominant relative to rolling noise. 

 

For the purpose of reducing not only the rolling noise but also engine noise in 

urban areas, some new approaches have been explored, including low-height 

noise barriers (the height is usually not more than 1m), the use of vegetation, etc. 

These new approaches are related to the concept of 'quieter and greener cities' and 

merit further study because of their potential to tackle some disadvantages in the 

traditional measures. Recently, a European collaborative project HOSANNA 

(holistic and sustainable abatement of noise by optimised combinations of natural 

and artificial means) studied such new approaches. This PhD work is related to 

and supported by the HOSANNA project; and is focused on studying some of the 

new approaches to mitigate urban traffic noise. 
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1.2 Quieter and greener cities 
 

Vegetated areas and surfaces are greatly appreciated in urban environments 

because most of them have an aesthetical value and are visually pleasing, without 

involving large costs. Vegetated areas and surfaces are usually mentioned 

together with recycled materials in the city design, further adding to the benefit of 

low costs. Only very recently, the potential of urban green to make cities quieter 

became explored, and this work wants to contribute to such studies.  

 

One important concern in the improvement of the quieter and greener cities is to 

optimise the use of green spaces, green surfaces and other natural elements in 

combination with artificial elements for reducing the noise impact of traffic. The 

corresponding noise mitigation methods act on the noise during its path to the 

receiver. Because the factors determining the sound levels at the receiver mainly 

include distance, medium and boundary, therefore, noise barriers, vegetation, 

ground treatments and combining solutions are the focuses of the noise mitigation 

methods. The current work concentrates only on the low-height noise barriers and 

vegetation. 

 

1.2.1 Low-height noise barriers 

 
In urban areas, pedestrians on pavements are located very close to the traffic 

noise sources, and they are therefore exposed to high sound pressure levels. When 

people evaluate the noise annoyance in surveys, there is evidence that not only 

the sound levels inside their houses are considered, but also the soundscape in 

their neighborhood [2]. This means for example that façade insulation is not the 

only answer to the urban noise problem. 

 

In the previous section, it has been mentioned that engine noise is mostly 

dominant to the rolling noise. In order to find a good solution to prevent (mainly) 

the engine noise from reaching the observers or passengers, a number of studies 

have been carried out concerning low-height noise barriers along the streets 

[ 3 , 4 , 5 ]. Optimising the geometry of such barriers may lead to significant 

additional reductions of the noise levels in a zone where the pedestrians typically 

appear [5]. This can be explained by the facts that the typical source generation 

positions of road traffic noise are located at low heights (ranging from 0.3m to 

0.75m for engine noise and 0.01m for rolling noise according to the 

Harmonoise/Imagine road traffic source model [6]), and that such low-height 

barriers can be placed very close to the traffic lanes. 

 

The efficiency of low-height noise barriers can also be improved by the choice of 

its constituting materials. Generally, it is believed that porous materials are 
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advantageous compared to rigid materials. Although the use of rigid materials can 

avoid wave transmission to the shadow zone behind the noise barriers, sound 

energy diffracting towards the shadow zone is usually more important. 

Acoustically semi-transparent low-height noise barriers naturally have a soft top 

and are beneficial in reducing grazing sound waves. Furthermore, they reduce the 

reflections towards the other side of the street. At low frequencies, the 

transparency may even lead to conserving some of the positive ground effect. 

Such barriers are also easy to integrate in a street and they could be visually more 

pleasing than the concrete barriers. These may contain different types of materials 

like densely packed stones, recycled materials or growing substrates. 

 

Another advantage of a porous noise barrier is that it can absorb the scattered and 

reflected waves from the building façades in a street. Although purely specular 

reflection on the building façade has been usually assumed in many analyses [7] 

for simplicity, recently the other hypothesis that the building façades scatter 

sound completely randomly has drawn attention and has been applied in many 

research work [8, 9, 10, 11]. These multiple scattered or diffuse reflections occur 

at the building façades and the ground; and they can be a very substantial 

contribution to the overall sound levels in urban streets [12]. The porous noise 

barriers can dampen some scattered sound and then decrease the noise level in the 

street. 

 

1.2.2 Vegetation 

 
The interaction between sound and vegetation has been the subject of many 

studies. Already in 1946, Eyring [13] carried out experimental studies on the 

sound propagation in tropical jungles. Since then, some researchers found rather 

large reductions of road traffic noise by applying vegetation [14], while others 

concluded that the influence of vegetation is limited [15]. 

 

Vegetation has direct acoustical effects like reflection (mainly on stems or trunks) 

[16, 17], scattering, diffraction and absorption by canopy and leaves [18, 19, 20]. 

Moreover, there are also a number of significant indirect effects. When the noise 

reduction by vegetation belts is considered, the importance of the soil effect is 

well recognised [21, 22], but there have not been any systematic studies on the 

effect of plant leaves covering a porous soil. It is known that the presence of 

vegetation makes the ground more porous and thus acoustically softer. This 

process is caused by rooting of plants and by a layer of humus originating from 

the plant litter. This specific type of soil is often referred to as a 'forest floor'. This 

is a dynamic process in which the presence of the leaves cannot be ignored and 

the effect of the leaf layer on the ground attenuation is yet to be theoretically 

explained. Vegetation also influences the micro-meteorology, and this can be 
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used in a positive way, e.g. near noise barriers. It is well known that for 

downwind sound propagation, barrier efficiency can be largely reduced. The use 

of a row of trees was experimentally and numerically shown to increase shielding 

in the presence of wind along a highway noise screen [23]. However, in the 

absence of wind, the scattering by the tree crown could lead to the increased high 

frequency scattering into the acoustic shadow zone behind a barrier, compared to 

a barrier without trees. 

 

Another case of interest is the absorption by a green wall. Such a system consists 

of a highly porous and light-weight soil substrate layer which is mechanically 

attached to a building facade. The substrate is used to grow small plants. These 

plants develop into foliage which densely covers the porous substrate and might 

affect its acoustic absorption properties. The substrates typically used for growing 

wall vegetation exhibit high values of the absorption coefficient [24, 25] and can 

be adopted in noise abatement applications in an urban environment. These 

applications include the cases when multiple reflections between parallel 

reflecting building facades lead to a strong amplification of the environmental 

noise level. It has been demonstrated that increasing wall absorption in a city 

street generally results in a noticeable noise reduction in an adjacent city canyon 

as well [26, 27]. Plants in a porous substrate deposited on a green roof reduce the 

noise diffracting into quiet areas [28, 29, 30]. Wall vegetation and green roof 

systems might also cover the faces of classical noise barriers to reduce the effects 

of multiple reflections and diffraction of noise into the shadow zone behind the 

barriers [24].  

 

Scattering by trees can be wanted. The presence of scattering objects and facades 

was shown to decrease the sound levels in a street canyon [31], and also for the 

propagation to nearby canyons or courtyards [26, 32 ]. It could therefore be 

beneficial to place trees with a high degree of scattering in such situations. 

  

1.3 Research motivations and methods 
 
The previous section gives brief descriptions of the influences of low-height noise 

barriers and vegetation on urban noise propagation. Their advantages indicate that 

they can play an important role in reducing the urban traffic noise and that further 

studies are necessary.  

 

Noise barriers have been studied extensively by numerical methods. The term 

"low-height noise barrier" is typically used when the top height does not exceed 1 

m. Tyurina et al. [33] and Fard et al. [34] used the 2D finite element method 

(FEM) to study the effect of noise barriers to abate traffic noise. Especially the 

boundary element method (BEM) has been used to study noise reductions 
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provided by barriers [5, 35, 36, 37, 38, 39, 40, 41, 42]. Seznec [35] and Hothersall 

et al. [36] considered noise barriers with different shapes. Baulac et al. [5] found 

a good agreement by comparing the results by BEM and scale model 

measurements. Premat and Gabillet's BEM model [39, 40] takes into account, to 

some extent, refraction phenomena. Baulac et al. [41] optimised the top-profile of 

noise barriers by BEM and Ishizuka and Fujiwara [42] studied the performance of 

noise barriers with various edge shapes and acoustical conditions with BEM. 

Thorssan [4] used the equivalent sources method (ESM) to optimise the low-

height noise barriers and the results calculated by ESM showed a good agreement 

with the results by BEM. Van Renterghem and Botteldooren [43] studied the 

performance of downwind noise barrier by the finite-difference time-domain 

(FDTD) method, including the so-called screen-induced refraction of sound by 

wind.  

 

In addition to the numerical methods mentioned above, there are still many other 

techniques which can be used to study the performance of noise barriers, such as 

the domain decomposition method [44], stabilised Galerkin-least square methods 

[45], partition of unity FEM [46], generalised FEM [47], least-square method [48, 

49], wave based method (WBM) [50] and ultra-weak variational formulation 

(UWVF) [51] method. Some of these methods show a good degree of efficiency 

allowing to obtain accurate results with a coarser grid than is usual for standard 

finite element methods. This thesis aims at exploring the UWVF method to 

estimate the effects of low-height noise barriers. 

 

The UWVF method was first presented by O. Cessenat et al. [51]; and later it was 

used to model the wave fields in biomedical ultrasonics [52]. For the Helmholtz 

problem, the UWVF method does not enforce the continuity of normal velocity 

and pressure on the interfaces of cells; instead, the continuity of their linear 

combination must be guaranteed and then it is substituted into the corresponding 

variational formulation. That is why this method has 'ultra' in its name. In general, 

the UWVF method has several features which make it an attractive candidate to 

model the acoustic problem of low-height noise barriers. First, this method, like 

the conventional FEM, needs to split the computational domain into small cells. 

The priori known information can also be incorporated in the determination of the 

basis functions. For the Helmholtz problem, plane waves can be used as the basis 

functions, so the formulation allows using a very large cell, up to two 

wavelengths [53, 54], without significant loss in accuracy. Second, compared to 

the conventional FEM, UWVF uses a different variational formulation, which 

reduces the problem from the whole element to the element surface [51]. That is 

to say, the dimension of the resulting integral in the system matrix is reduced by 

one; as a result, computational cost is reduced. Third, the integral operations can 

be performed in a closed form during the process of assembling the system matrix; 
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therefore, this improves the efficiency of the computations. Four, because the 

system matrix contains diagonal matrices, therefore, when the system matrix is 

assembled, its conditioning can be improved by adjusting the conditioning of 

each diagonal matrix. Moreover, it is much easier to improve the accuracy by 

using more basis functions than a finer mesh [52]. Therefore, these advantages 

allow the UWVF to handle the large domain problems efficiently. Huttunen [52] 

presented his detailed studies about the accuracy between the UWVF and the 

standard FEM methods; his conclusion was that in order to obtain a similar 

accuracy as the standard FEM method, UWVF method could use much larger 

cells and less storage than the standard FEM.  

 

Like all other frequency domain techniques, such as FEM or BEM, the UWVF 

method requires a new calculation for each frequency to be considered. However, 

it will be shown in this thesis that the acoustic response over a broad frequency 

range can be calculated in a more efficient way. Furthermore, compared to the 

FDTD method, which needs a new calculation when the source is moved, the 

UWVF method does not require a full re-calculation. This characteristic makes 

UWVF potentially competitive when multiple sound sources are considered like 

in multi-lane road traffic applications. Furthermore, the potential to couple the 

UWVF and other models, which can be used for simulating the plane wave sound 

propagation outside the modelling region, could be an asset of UWVF. 

 

Modelling the interaction between sound waves and vegetation needs to include 

the effects of vegetation elements such as trunks, branches, leaves, etc. Embleton 

[55] showed the importance of trunk resonances and Martens and Michelsen [18] 

presented their studies about the absorption of acoustic energy by plant leaves. 

This thesis aims to investigate the effect of leaves on the sound field by including 

their properties, such as density and thickness. 

 

Compared to other elements of vegetation, leaves are much softer and lighter, and 

they can easily bend and twist when they vibrate following the trigger of incident 

sound waves. Several measurements have been carried out to investigate the 

influences of leaves on sound transmission through vegetation [20, 56, 57]; and 

the vibration of plants leaves in a sound field was studied by using a laser 

Doppler-vibrometer system [18]. Magal et al. [58] studied the influences of leaf 

structure on vibration propagation in leaves. Tang et al. [59] used the Monte-

Carlo technique to study sound propagation through leafy foliage. Although the 

acoustics of leaves of trees and bushes has been studied for many decades, 

however, approaches to incorporate leaves in detail in propagation models are 

lacking. Therefore, developing such an approach is a goal of this thesis. It is 

expected that such propagation model might help in choosing the type of 
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vegetation to improve noise reduction and combine the influences of vegetation 

with other propagation related effects. 

 

The vibration process of leaves cannot be easily modelled in frequency domain, 

so a time domain model is needed. The bending and twisting of leaf can be 

modelled explicitly according to the vibration theory of a thin plate [ 60 ]. 

Furthermore, the energy dissipation in the boundary layer of the leaf must be 

considered. Previously, the dissipation in the vorticity and entropy boundary 

layers have been studied by the finite-difference time-domain method [ 61 ], 

therefore, the FDTD will be used to model the influences of leaves on sound 

transmission. The finite-difference time-domain (FDTD) technique [62, 63] is 

one of the most popular finite-difference methods in acoustics, which was firstly 

presented by K. Yee [64] to numerically solve the Maxwell's equations. As a 

well-validated reference model, FDTD has been extended for complex acoustic 

problems, such as room acoustics [65, 66, 67, 68], outdoor noise propagation [69, 

70, 71, 72], underwater acoustics [73], and elastic wave propagation [74]. Instead 

of the Helmholtz equation, pressure-velocity FDTD solves the continuity 

equation and momentum equation directly. 

 

When low-height noise barriers are designed in an urban environment, building 

façades should be considered [75]. The reflected waves from the façades can 

increase the sound pressure levels in a street canyon. Sound propagation in a 

street or between buildings has been studied for many decades. Wiener et al. [7] 

studied sound propagation in city streets in 1960s. Lyon [76] studied the multiple 

reflections of sound in urban street in the early 1970s and he suggested that non-

specular reflection from building surfaces might have an important effect. From 

then on, many models that accounted for the non-specular reflections had been 

developed. Bullen and Fricke [77] presented a model taking account of the effects 

of scattering from objects and protrusions in the street by including the 

evanescent modes in the solutions of the wave equation. Hothersall et al. [78] 

used a 2D boundary element method to predict the sound field near a tall building. 

A diffusion-equation model [79] and a radiosity-based model [80] that take into 

account the multiple diffuse-scattering reflections were presented. Moreover, the 

finite-difference time-domain method (FDTD) [26, 75] and the equivalent sources 

method (ESM) [81, 82, 83] have been used to model the sound propagation in a 

street canyon for 2D problems. Recently, Hornikx and Forssen [84] presented a 

pseudospectral time-domain method (PSTD) to model sound propagation to 3D 

urban courtyards. 

 

However, these models have their limitations. For example, the 2D models cannot 

consider cross streets and variations in cross-section along the street length axis. 

The current 3D models cannot provide the results at high frequencies because 
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they put a too high demand on the computational resources. Measurement could 

be an alternative, then. A scale model is a good option to accomplish such 

measurements in a controlled way, avoiding the limitations in full scale 

measurements. Horoshenkov et al. [85] used a 1:20 scale model to study the 

acoustic performance of several noise abatement schemes in a city street canyon. 

Picaut and Simon [86] made a 1:50 scale model experiment to study sound 

propagation along a street. Besides the multiple reflections, the façade 

irregularities were also included in their studies. This was implemented by 

placing the wooden cubes following the statistical distribution extracted from a 

real Haussmann building façade, which is a kind of French architectural 

representation and widespread in Paris and in most of the French cities. Hornikx 

and Forssen [87] used a 1:40 scale model to study the sound propagation in 

parallel urban canyons. The influences of surface absorption and diffusion were 

both considered in their measurements. 

 

Although the façades irregularities have been approximated to some extent, very 

few studies have considered the full geometrical complexity of façades. It has not 

been assessed whether this complexity has significant influences on the results. In 

this thesis, a highly detailed 1:30 scale model is constructed to study the sound 

propagation in an existing street canyon. The influences of low-height noise 

barrier on the sound propagation in the street canyon are also studied. The 

measurement results in the cross section of the sound source are compared with a 

2D full-wave model. Previously, it has been mentioned that UWVF is chosen to 

model the performance of low-height noise barrier. In the scale model, only one 

point source is present and the frequency of interest in full-scale exceeds 2000 Hz. 

Therefore, UWVF needs more calculation time for this case. As a result, the 2D 

FDTD model is chosen, providing a broadband response by using a pulse-like 

source and applying a Fourier transform afterwards.  

 

 

1.4 Outline of the dissertation 
 
This thesis consists of seven chapters in total and is organised as follows. 

 

An introduction is given in Chapter 1. In Chapter 2, the basic governing equations 

for both time-domain and frequency-domain acoustic problems are firstly 

introduced. Then, the bending equation for thin plates, used to simulate the leaf 

vibration, is described in section 2.3. Section 2.4 addresses the vorticity and 

entropy boundary layer which is a source for the energy decay in leaf vibration. 

Section 2.5 discusses the two models for sound propagation in a porous medium. 

Finally, section 2.6 gives a short review about the non-reflecting boundary 

conditions and more attention is paid on the perfectly matched layer theory.  
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In Chapter 3, the FDTD method, which is used to provide the solution for the 

problem of acoustic wave propagation through vegetation, is described in detail. 

The vibration theory of thin plates [60] is employed to simulate the vibration of 

leaves, including their bending and twisting. The viscous damping inside the leaf 

boundary layer is simulated by a time-domain approximation for a viscous 

boundary layer near an infinitely extended flat surface [61]. The visco-elastic 

damping during the leaf bending is included by employing the generalised 

Maxwell model. Biot's theory [88, 89] for a poro-elastic frame model is used to 

model the influence of a porous substrate, on which the vegetation is planted. 

 

The UWVF method, which will be used to estimate the effect of low-height noise 

barriers, is discussed in Chapter 4. Based on the Helmholtz equation, the UWVF 

method is derived and discretised. Specific challenges for this numerical 

technique like the implementation of perfectly matched layers (PML) [90] in 

UWVF is introduced. Finally, the two-dimensional UWVF method is validated 

by comparing its results with FDTD calculations. 

 

In Chapter 5, firstly, the vibration of one single leaf, excited by sound, is studied. 

The FDTD simulation results are validated with measurements in an anechoic 

room. In total, six types of leaves were considered. Secondly, the behaviour of 

one leaf placed in front of a porous substrate is investigated by the FDTD method. 

Measurements in an acoustic impedance tube are used to verify the simulation 

results. Based on the validated FDTD model, the effects of leaf surface density on 

the absorption coefficients of two types of hard-backed foams, 25mm Armaforam 

Sound 240 and 30mm melamine foams, are studied. Finally, this model is applied 

to simulate acoustic wave propagation through a cluster of leaves by using 

cyclical boundary conditions. The directional wave separation technique is used 

to obtain the wave components in three orthogonal directions. Then, the energy 

scattering and damping along the propagation path can be estimated. 

 

The effect of low-height noise barriers is studied in Chapter 6. In the first section, 

the effect is estimated by the UWVF method. The porous materials are modelled 

by Zwikker and Kosten's model [ 91 ]. The acoustic shielding of the semi-

transparent noise barrier is compared with that of a rigid noise barrier; and the 

effects of inverse- Γ  form noise barriers are compared with those from a 

rectangular one. In the second section, the application of low-height noise barriers 

in an urban street is studied by means of a scale model and by two dimensional 

FDTD simulations. The scale model measurements are performed in a high 

frequency semi-anechoic room at a scale ratio of 1:30. 
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Chapter 7 draws conclusions for this dissertation. It summarises the main research 

achievements and provides some recommendations for future studies. 
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CHAPTER 2  

Governing Equations 
 
This chapter gives a short review of the physical theory of acoustic wave 

propagation. Theories related to this topic are discussed to an extent that is 

sufficient for understanding the rest of this thesis. The detailed theories of fluid 

dynamics and acoustics are discussed in [92, 93]. This chapter begins with an 

introduction to the conservation laws and their linear approximation. These are 

needed in the derivation of the governing equations in both time- and frequency-

domain. Then, the bending wave equation for a thin uniform homogeneous plate 

is presented; this equation will be used in this thesis to model the vibration of 

leaves in vegetation. Next, the theory of the vorticity and entropy boundary layer 

is briefly reviewed, because this boundary layer theory will be used in this thesis 

to model the energy decay in the region close to the surface of a leaf. Afterwards, 

the rigid boundary condition and sound propagation in porous media are 

summarised. Both the Zwikker and Kosten’s model and Biot’s model will be used 

in this thesis to model sound propagation through porous media. Finally, the 

perfectly absorbing boundary conditions, which are used to truncate the 

computational domain in case of the unbounded acoustic problems, are discussed.  

 

2.1 Conservation laws 
 

The propagation of sound waves in a fluid (such as air) satisfies the three 

important conservation laws: conservation of mass, conservation of momentum 

and conservation of energy, which correspond to the continuity equation, 

momentum equation and thermal energy equation, respectively. These equations 

are summarized in this section. 

 

Continuity equation: 

0
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 ,                         (2.1) 

where   is the fluid density,  zyx vvvV ,,


 denotes the fluid velocity, and vx, vy 

and vz are the x-, y- and z-component of the velocity V
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Momentum equation: 
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where v
i
 is the velocity component with i = x, y, z, g

i
 is the body force per unit 

mass in direction i, τ
ij
 is the stress, which points in i-direction and acts on a 

surface normal to the j-direction. 
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Thermal energy equation (first law of thermodynamics): 
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where e is the internal energy per unit mass; and qi is the heat flux per unit area in 

i direction, where i=x, y or z. 

 

2.2 Linear acoustic wave equations 
 

In outdoor acoustics, the body forces can usually be neglected. The thickness of 

the boundary layer is negligible except when there are many surfaces close 

together, meaning that the sound propagation medium can be assumed to be 

inviscid and, as a result, only the normal stress, the pressure, is considered. 

Equation (2.2) then becomes 
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where P is the pressure. Equation (2.4), combined with eqn. (2.1), can be used to 

derive the linearised acoustic wave equations by neglecting the non-linear terms. 

Heat conduction is also neglected here. The amplitude of the wave is infinitesimal, 

therefore, each fluid particle undergoes a nearly isentropic process as the wave 

passes by. Van Renterghem [69] described this derivation process in his PhD 

thesis. 

 

The linearised continuity and momentum equations can be summarised as 

Continuity equation: 
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Momentum equation  
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where c is the speed of sound, and ρ0 is the steady term of the fluid density. 

 

Equations (2.5) and (2.6) can result in the wave equation for acoustic pressure. 

Taking the time derivative of eqn. (2.5), taking the divergence of eqn. (2.6) and 

eliminating the term   tV 


 from the two resulting equations gives 
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Equation (2.7) is called the wave equation. If it is assumed that the acoustic wave 

is harmonic, the pressure can be written as 

    tiezyxptzyxP  ,,,,, ,         (2.8) 
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where 𝜔 is the angular frequency of the acoustic wave and 1i  is the 

imaginary unit. Substituting eqn. (2.8) into eqn. (2.7) gives 

0
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,              (2.9) 

where κ=ω/c is the wave number. Equation (2.9) is called the Helmholtz equation. 

 

2.3 The bending wave in thin uniform homogeneous 

plates 
 
When foliage exists, studying its corresponding influence on the acoustic waves 

is a complicated problem that depends on a number of plant characteristics, such 

as the biomass distribution, leaf size and shape, the acoustic impedance of the 

foliage material and so on [94]. There are two possible techniques to characterise 

the influences of the foliage, which are the multiple scattering approach and the 

porous medium approach. The multiple scattering approach uses distributed 

scatters to represent the trunks, branches and the foliage [95, 96]. The latter 

method, porous medium approach, represents the foliage by a kind of porous 

material [97, 98], which provides the same influences as the foliage.  

 

Although these two methods can model the influences of the leaf, they don't focus 

on the details of the leaf, including the bending and twisting moments of the leaf 

induced by the acoustic wave, energy damping in the process of bending and 

twisting of the leaf and the energy dissipation in the boundary layer of the leaf. 

This section presents a model for the leaf vibration induced by sound which 

includes all the details above.  

 

The leaf is assumed to be a uniform, thin and isotropic plate and it is also 

assumed to be impermeable for air. Thus, the velocity of the air close to the 

surface of leaf is exactly the same as the velocity of the leaf. The leaf is supposed 

to be in the y-z plane and the sound wave is normally incident on the leaf. Then, 

the vibration of the leaf can be modelled by the bending wave equation [60] 
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where ρm is the density of the plate (leaf), h is the thickness of the plate (leaf), W 

is the displacement normal to the leaf surface, D=E·h
3
/12/(1-ν

2
) is the bending 

stiffness per unit width, E denotes the Young's modulus, ν is Poisson's ratio, and 

ΔP is the pressure drop across the leaf. The time derivative of the displacement W 

is the velocity in x-direction, 

xv
t
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 .    (2.11) 
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According to the bending equation above, it is noticed that the bending wave 

inside the leaf has no mechanism to be damped out except energy radiation. This 

is not consistent with the reality, because internal friction [99] exists in any 

structure. Hosaka et al. [100] included this internal structural damping for beam 

bending problem by adding new terms, which are the time derivatives of the 

fourth-order terms in eqn. (2.10). Rhaouti et al. [101] also used a time derivative 

term of the displacement to model the internal damping for the vibration of a 

kettledrum. For the time-harmonic problem, the influence of damping can be 

included by introducing the structural damping coefficient into the bending 

stiffness as an imaginary part [102]: 

 diDD  10
,        (2.12) 

where ηd is the structural damping coefficient; D0 is real and denotes the bending 

stiffness per unit width without damping term. Also, based on the generalised 

Maxwell model, Chaigne and Lambourg [ 103 ] and Lambourg et al. [ 104 ] 

presented damped plate equations in which the bending stiffness was modified by 

perturbation terms corresponding to damping. 

 

Because the inclusion of the time derivative term can cause some stability 

problem, the perturbation bending stiffness is chosen to include the structural 

damping. The damped plate equations are expressed in Laplace domain as 

follows [103] 
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where  szyM y ,,
~

,  szyM z ,,
~

 and  szyM yz ,,
~

 are the Laplace transforms of the 

bending and twisting moments; RL is the viscous damping coefficient;  szyW ,,
~

 

is the Laplace transform of the displacement in the x-direction; P
~

 is the Laplace 

transform of the pressure;  sDi

~  denotes the bending stiffness with damping term 

which can be written as: 

    sdDsD iii

~
1

~
 ,           (2.17) 
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where Ri,n and si,n are the damping coefficients.  
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Next, the inverse Laplace transform is used to transform eqns. (2.13)-(2.16) from 

the Laplace domain to the time domain. The first term in right hand side of eqn. 

(2.13) gives 
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According to the convolution property of Laplace transform, the second term in 

the right hand side of eqn. (2.19) can be written as 
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Therefore, eqn. (2.19) can be written as 
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Similarly, taking the inverse Laplace transform for the second term in the right 

hand side of eqn. (2.13) gives 
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Then, taking the inverse Laplace transform for eqn. (2.13) and substituting eqns. 

(2.21) and (2.22) into the resulting equation give 
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The same process can be used in the other moments  szyM z ,,
~

 and  szyM yz ,,
~ ; 

then after the inverse Laplace transform, it gives 
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Taking the inverse Laplace transform for the first three terms on the right-hand 

side of eqn. (2.16) and substituting eqns. (2.23)-(2.25) into the resulting equation 

lead to 
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.     (2.26) 

It is assumed that the leaf-plate is isotropic. As a result, the four bending 

stiffnesses (Di, i=1,...,4) can be denoted by D; and the damping coefficients Ri,n 

and si,n can be denoted by Rn and sn, respectively. Then, equation (2.26) can be 

simplified as 

 

 

 
 

 

 







































































































N

n

t

n

ts

n

N

n

t

n

ts

n

N

n

t

n

ts

n

yzzy

dse
z

W

z

W
RD

z

W
D

dse
yz

W

yz

W
RD

yz

W
D

dse
y

W

y

W
RD

y

W
D

zy

M

z

M

y

M

n

n

n

1
0 4

4

4

4

4

4

1
0 22

4

22

4

22

4

1
0 4

4

4

4

4

4

2

2

2

2

2

        

22        

        

2












.     (2.27) 

Define 

  0
,       (2.28) 

with 

2

2

2

2

0
z

W
D

y

W
D









            (2.29) 

denoting the bending of leaf; and 
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denoting the damping inside the leaf. Substituting eqns. (2.29) and (2.30) into eqn. 

(2.27) gives 
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Taking inverse Laplace transform for eqn. (2.16) and substituting eqn. (2.31) into 

the resulting equation leads to 
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 ,                 (2.32) 

where vxp is the first order time derivative of W and denotes the velocity in the x-

direction. Equation (2.32) is the governing equation for the leaf-plate vibration 

considering the visco-elastic damping. 

 

2.4 Vorticity and entropy boundary layer 
 

In addition to the decay during the process of the bending of leaf, the acoustic 

energy can also be dampened in a very thin layer of air close to the leaf surface, 

which is called the vorticity and entropy boundary layer [105]. Botteldooren [61] 

reviewed this theory and presented a finite-difference time-domain numerical 

model for this boundary layer effect. 

 

This theory starts from the three basic conservation laws presented in section 2.1. 

However, there are important differences. Firstly, it is assumed that the solution 

of the full set of linear wave equations near a leaf surface can be written as a 

superposition of an acoustic mode, and entropy mode and a vorticity mode. 

Secondly, in the thin boundary layer, the acoustic sound field only changes 

considerably in the direction orthogonal to the leaf surface. This assumption is a 

good approximation as long as the boundary layer is very thin compared to the 

wavelength of the acoustic wave and as long as the surface is flat on the same 

length scale. Therefore, in the thin boundary layer, with the inclusion of the 

viscous term, the momentum equations can be written as [61] 
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where Vt is the tangential velocity, Vn is the normal velocity, μB is the bulk 

viscosity, μf is the fluid viscosity, and ∂/∂n is the spatial derivative in the direction 

normal to the leaf surface. Thirdly, in the thin boundary layer, the relationship, 

c
2
=dP/dρ, is not valid and as a result, the pressure equation cannot be derived 

only based on the continuity equation. The entropy change relation (see equation 

1.18 in Ref. [92]) combined with the three conservation laws and the state 

equations are used to derive the pressure equation. The rate of change of entropy 
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S is related to the rates of changes of internal energy e and specific volume υ 

(=1/ρ) by 

dt

dP

dt

de

dt

dS
T




2

0

0  ,  (2.35) 

where T0 is the static temperature. The mechanical energy equation can be 

obtained by multiplying vi on both sides of momentum equation (2.2) and 

summing them over i (see Chapter 4 in Ref. [92]). Removing the mechanical 

energy from eqn. (2.3) and keeping the linear term lead to the thermal energy 

equation 
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.  (2.36) 

Substituting the continuity equation (2.1) and equation (2.36) into eqn. (2.35) 

gives 

q
dt
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T


00

.  (2.37) 

If the heat flux obeys Fourier’s law, 

TKq 


,  (2.38) 

where K is the thermal conductivity, and if K is constant; then eqn. (2.37) can be 

written as 

TK
dt

dS
T 2

00  .  (2.39)  

Substituting the entropy and temperature expressed by the state equations into 

eqn. (2.39), and neglecting the changes of the acoustic sound field in the 

tangential directions of the leaf surface give the following pressure equation 
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 ,  (2.40) 

where Vn is the velocity component which is normal to the leaf surface, Rs is the 

ideal gas constant, and γ is the ratio of specific heats. Now, the velocity and 

pressure in the vorticity and entropy boundary layer can be model by eqns. (2.33), 

(2.34) and (2.40). 

 

2.5 Sound propagation in a porous medium 
 

When sound meets a hard surface that doesn’t vibrate with incident wave, no 

energy can propagate through it. Then, the normal velocity component at this 

surface is set to zero: 

0nV .  (2.41) 

In many outdoor acoustic problems, the interaction between sound waves and the 

ground or porous substrates is important. Most of the ground can be modelled as 

a porous medium with rigid frames [106]. In Chapter 1, it has been introduced 

that in many situations, the plant grows on some porous substrates. Therefore, it 

is necessary to study the sound propagation in the porous medium. Since the 

middle of last century, the interaction between acoustic wave and porous medium 

has become a popular research topic. Zwikker and Kosten [91] presented a poro-
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rigid model in 1949. In this model, the solid particles in the porous medium are 

assumed to form rigid frames and only the air between these particles moves. To 

some extent, the problem of sound wave propagation in the porous medium 

becomes simple and only three new parameters are needed, which are flow 

resistivity (R), porosity (φ) and structure factor (ks). The model is 

0



 VR

t

V
P




 ,  (2.42) 

02 



Vc

t

P 
 ,  (2.43) 

where  sk0  and 
skcc  , ρ0 is the density of air and c is the speed of 

sound in the fluid. Equations (2.42) and (2.43) can be combined to an equation 

similar to the Helmholtz equation for sound propagation in a porous medium 

where the rigid-frame approach holds: 

0
1 2

















 pp





,  (2.44) 






Ri
k

c
s  ,  (2.45) 

where ω it is angular frequency of the sound wave and κ' is the wave number in 

the porous medium. Van Renterghem and Botteldooren [29, 30, 43] used Zwikker 

and Kosten's model to simulate efficiently the sound propagation in substrate 

layer and ground.  

 

However, for some porous materials, especially the fibrous materials with low 

density, the rigid-frame model cannot predict the elastic response/resonance at 

low frequencies [107] and this elastic response can be triggered by traffic noise. 

In this situation, these porous materials should be considered as poro-elastic 

media. The sound not only propagates in air but also in the frame. In 1956, Biot 

[88, 89] presented a theory for the propagation of stress waves in a porous elastic 

solid containing a compressible viscous fluid. It considers the wave propagation 

in both air and frame, and the interaction between them. Allard and Atalla [107] 

derived the weak integral form of Biot's poro-elasticity equation to realise the 

finite element modelling of poro-elastic materials. Zeng and Liu [108] used Biot's 

theory to simulate acoustic wave propagation in a heterogeneous soil in order to 

detect buried objects. Dong et al. [ 109 ] used Biot's theory to model sound 

propagation in a homogeneous atmosphere over layered poro-elastic ground. 

Wang et al. [110] studied the effects of compression on the sound absorption of 

porous materials by using Biot's theory. In this section, the equations used to 

model the sound propagation in poro-elastic medium are summarised based on 

Biot's work. 

 

In Biot's theory, the linear stress-strain relations and Darcy's law are used. The 

dynamic equations (see eqn. (8.24) in Ref. [111]) without considering gravity 

forces can be written as 
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where μ is Lame’s second parameter or shear modulus; α is within the range 

φ<α<1; fluid density ρ is defined as the total mass of bulk material per unit 

volume; 
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denotes the shear strain when i ≠ j and the normal strain when i = j. λc and 

Kc=λc+(2/3)μ respectively denote the Lame’s first parameter and the bulk 

modulus for a closed system, in which the pores are sealed. Similarly, λ and 

K0=λ+(2/3)μ are the Lame’s first parameter and the bulk modulus for an open 

system, respectively. The term eall can be calculated by eall=ei,i+ej,j+ek,k. ζ is 

determined by 

    Uudivwdiv
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  ;      (2.49) 

u
x
, u

y
 and u

z
 denotes the displacement of the solid matrix in x, y and z directions, 

respectively; Ux, Uy and Uz denotes the fluid displacement in x, y and z directions, 

respectively; wi=φ(Ui-ui) represents the flow of the fluid relative to the solid in i 

(i=x, y or z) direction but measured in terms of volume per unit area of the bulk 

medium; ρ
f
 denotes the mass density of the fluid; m is the coefficient determined 

by the fluid density, the coordinates in the pore and the pore geometry (more 

detailed descriptions can be found in section 8 of Ref. [111]); kpm represents the 

permeability matrix; in this thesis the media is assumed to be isotropic and as a 

result kpm is a constant; μf denotes the flow viscosity; and the coefficient M can be 

calculated by eqn. (3.26) in Ref. [111].  

 

The left hand side of eqn. (2.46) indicates the force acting on the bulk material 

(frame and fluid), and the right hand side of eqn. (2.46) indicates the change of 

momentum of the solid materials and fluid. The left hand side of eqn. (2.47) 

indicates the force acting on the fluid, and the right hand side of eqn. (2.47) 

indicates the coupling between solid materials and fluid, the change of 

momentum of the fluid, and the energy dissipation in the fluid.  

 

The x-components of eqn. (2.46) and eqn. (2.47) can be written as 
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Substituting eqns. (2.48) and (2.49) into eqn. (2.50) gives 
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Equation (2.51) can be simplified as 
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where Pf is the fluid pressure and it can be written as (See eqn. (3.8) in Ref. [111]) 

 MMeP allf  .         (2.54) 

The x-component of the total stress on the bulk materials (solid and fluid) can be 

written as (See eqn. (3.7) in Ref. [111]) 

 Mee allcxxxx  ,,  2 , 
zyx r ,   , 

yzx r ,   .      (2.55) 

The masses of solid and fluid, respectively, per unit volume of bulk material are 

(See eqn. (8.20) in Ref. [111]) 

ρ
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f
.         (2.56) 

Multiplying eqn. (2.53) with porosity φ gives 
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Subtracting eqn. (2.57) from equation (2.52) gives 
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We set 
2

12  mf  , 2

22  m , 2

11 2  mf  .         (2.59)       

Substituting eqns. (2.55) and (2.59) into eqns. (2.57) and (2.58) gives 
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Equation (2.60) is the same as the second one of eqn. (6.5) in Biot’s paper [88] 

published in 1956. Equations (2.60) and (2.61) are the velocity equations for solid 

materials and fluid; and in equation (2.61) the higher order shear force can be 

neglected in the linear regime. According to Biot’s [111] and Zwikker and 

Kosten’s work [91], defining: 

 mk asf 2 , 
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the momentum eqns. (2.60) and (2.61) can be written as 
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where ρa=φρf, the velocity of air xav ,  and the velocity of solid frame xfv ,  are 
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The pressure equations can be derived according to the stress-strain relationships 

(See equation (3.7) in Ref. [111]), which are 
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The pressure on the total bulk materials can be obtained by 




 MePPP allc

zzyyxx

fst 












3

2

3

,,, ,         (2.70) 

where Ps denotes the pressure on the solid materials; φ is the porosity and Pf
 
is the 

fluid pressure. Taking the time derivative of eqn. (2.69) gives 
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Substituting eqns. (2.48) and (2.49) into eqn. (2.71) and then multiplying it by 

porosity φ lead to 
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where the dot above the displacement of fluid and solid frame denotes the time 

derivative. Similarly, taking time derivative of eqn. (2.70) gives 
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Substituting eqns. (2.48) and (2.49) into eqn. (2.73) leads to 
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Combining eqns. (2.72) and (2.74) to eliminate fluid displacement gives 
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 and take the following approximation 
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eqns. (2.72) and (2.75) can be written as 
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where Pa and Pframe are the pressure of the fluid and solid frame, respectively; Ka 

and Kf are the bulk moduli of the fluid and solid frame, respectively; P0 is the 

ambient atmospheric pressure;  
zyxf uuu  ,,V  and  zyxa UUU  ,,V  are the 

velocity vectors for the solid frame and the air, respectively. Equations (2.63) and 

(2.64) can be written in the vector form as 
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where ρa and ρframe are the masses of the fluid and the solid frame per unit volume 

of bulk (fluid plus solid frame) materials, respectively; Rf is the coefficient for an 

extra damping term added to the momentum equation of solid frame in order to 

approximate dissipation mechanisms other than those caused by the flow 

resistivity. This term is different from that described in Biot's work [88, 89]. Biot 

suggested replacing flow velocity, bulk elasticity, etc., by complex functions of 

frequency to account for different damping mechanisms in the solid fraction. In 

theory, these complex functions could be approximated by digital filters and 

transformed to time domain, like will be done for vorticity and entropy boundary 

layers, but this complicates equations considerably while stability is not 

guaranteed. The first order approximation obtained by introducing Rf induces the 

basic frame damping that is needed to reproduce the measured results, at a lower 

computational cost. Now, the acoustic wave propagation in the poro-elastic 

medium is governed by eqns. (2.78)-(2.81). 

 

When the solid frame does not vibrate with the sound, Biot’s model can be 

simplified. The pressure and velocity for the frame can be neglected. Eqns. (2.78) 

and (2.80) can be written as 
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They correspond to eqns. (2.42) and (2.43) in Zwikker and Kosten's model.  
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2.6 Non-reflecting boundary conditions 
 

In outdoor acoustics, it is necessary to define a condition that characterises the 

behaviour of the fields at infinity in order to guarantee a unique solution for wave 

problems in unbounded domains. Sommerfeld [ 112 ] presented a so-called 

radiation condition to satisfy this requirement. This Sommerfeld radiation 

condition is written as 

  0lim 21 














Pi
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P
r d
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 ,                    (2.84) 

where r is the radial coordinate, P is the pressure, d

 

is the spatial dimension. In 

the situations that the artificial boundary is close to the sound source, the 

implementation of Sommerfeld radiation condition can become problematic [113]. 

As a result, perfectly absorbing boundary conditions or non-reflection boundary 

conditions (NRBC) are needed.  

 

The NRBC truncates the unbounded propagation domain artificially and this 

truncation must generate little spurious numerical reflections back into this 

computational domain. It is desirable that the conditions on such artificial 

boundaries in the truncated domain approach the solution of the original problem 

in the infinite domain. Moreover, the NRBC should be efficient (e.g. not needing 

a huge amount of cells) and be numerically stable. 

 

One standard approach to construct NRBC for time-harmonic problem is the non-

local Dirichlet-to-Neumann (DtN) condition [113, 114]. As a non-local condition, 

the DtN operator needs an integral over the whole boundary and needs to be 

truncated. The DtN condition requires the artificial boundary to be a circle or 

sphere. Besides, when the sound frequency is high or the radius of the circle or 

sphere bordering the computational domain is large, the computation will become 

more complicated and need more modes. 

 

In order to overcome these drawbacks, some local conditions have been proposed. 

Engquist and Majda [115] presented a sequence of local approximate boundary 

conditions of increasing order according to the theory of pseudo-differential 

operator [116]. These boundary conditions are perfectly absorbing at normal 

incidence. Based on an asymptotic expansion of the solution at large distances, 

Bayliss and Turkel [117] presented their boundary conditions in polar coordinates 

for wave propagation. Feng [118] presented a sequence of local NRBCs for the 

reduced Helmholtz equation in two dimensions. Kriegsmann and Morawetz [119] 

presented NRBC for a circular truncated domain. 
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Higdon [120] presented the NRBCs for two-dimensional wave equation in a 

rectangular computational domain. When one has a priori information about the 

directions from which the waves are approaching the boundary, then one should 

adjust the boundary condition to the appropriate angle of incident to obtain a 

perfect absorption. Furthermore, the use of a higher-order version of boundary 

conditions can lead to perfect absorption for the waves, which propagate towards 

the boundary at angles ±αj with j=1,...n and αj<π/2. Furthermore, other 

researchers, such as Trefethen and Halpern [ 121 ] and Lindman [ 122 ], also 

presented their NRBCs to truncate the computational domain of the wave 

problem.  

 

Generally speaking, these NRBCs mentioned above need either the waves with 

specific incident angles or very large radius R from the source to the boundary in 

order to avoid significant spurious reflection. In urban acoustics, phenomena, 

such as the reflection, diffraction and scattering, make the sound waves propagate 

in all directions. This will limit the uses of these NRBCs or will increase the 

computational load significantly when placing the boundary far away from the 

sound source. In 1994, Berenger [90] proposed his Perfectly Matched Layers 

(PML) for use with Maxwell's equations. After that, the PML method has gained 

immense popularity in the field of computational electromagnetics and has been 

introduced to the computational acoustics. The PML is an exterior layer, which 

surrounds the computational domain and does not reflect the waves hitting it (see 

Figure 2.1). The damping coefficient is 0 on the interface between the PML and 

the region of interest. This damping coefficient then gradually increases 

anisotropically until the exterior boundary of the PML is reached. Optimising the 

PML's parameters can guarantee that the waves become absorbed before reaching 

the exterior boundary. The most important advantage of the PML is that they 

work well for all angles of incidence and for all sound frequencies. In contrast to 

many other approaches for NRBCs, PML does not depend on the distance relative 

to the sound sources. Given these nice properties, the PML will be used in this 

thesis to truncate the computational domain in both the time-domain model 

(FDTD) and frequency-domain model (UWVF) considered.  
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Figure 2.1 Schematic of a typical wave problem. The left denotes the original problem. 

Some radiating waves escape from the region of interest to infinity. The right one shows 

the application of PML, which can be directly placed outside the region of interest and 

absorb outgoing waves with negligible reflections from the edge of the region of interest. 

 

In the FDTD model, the acoustic pressure in the PML is split in two artificial 

components, which are normal (Pnormal) and parallel (Pparallel) to the interface 

between the region of interest and the PML. When the medium flow is not 

considered, the PML equations are 
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where vα is the velocity normal to the interface, vβ denotes the velocity parallel to 

the interface, κ1,normal, κ1,parallel, κ2,normal, κ2,parallel are the damping coefficients, and  

normalnormal ,10,2   .  (2.90) 

Van Renterghem’s PhD thesis [69] provided a proof that the damping terms in the 

parallel pressure equation and parallel velocity equal zero. Berenger [ 123 ] 

proposed a damping coefficient which gradually increases in the PML, according 

to 
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where x is the depth inside the layer normal to the interface and dPML is the total 

thickness of the PML. As to the value of n, Berenger [123] found that the good 
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choice is between 3 and 4; and Hasting et al. [124] found that a value of 4 

resulted in the best performance. In this thesis, the value of m is fixed at 4. 

 

In the UWVF model, a complex stretching of the spatial coordinates is considered 

and defined by [52] 
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where ξ=x, y or z denotes the spatial coordinate, i is the imaginary unit, κ is the 

wavenumber, and ξ0 is the spatial coordinate of the interface of the PML. Based 

on eqn. (2.92), the Helmholtz equation in stretched spatial coordinates is [52] 
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where fs is the source term, and the matrix Ad and value η
2
 can be calculated by 

[52] 
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CHAPTER 3  

Finite-difference time-domain model for 

microscopic interaction between an acoustic 

wave and vegetation
1

 

 

In this chapter, a finite-difference time-domain model, which couples the 

acoustics and the vibration of leaves, is introduced. The governing equations and 

boundary conditions have been introduced in Chapter 2. In section 3.1, the 

governing equations used in this model are summarised. The non-reflecting 

boundary conditions for the time domain model can be found in eqns. (2.85)-

(2.89). In section 3.2, the finite-difference time-domain (FDTD) method, which is 

used to discretise and solve the current model, is introduced; and its stability 

analysis is given in section 3.3.  Finally, in section 3.4, the choice of appropriate 

material parameters is discussed. 

 

3.1 Theoretical model 
 

The propagation of acoustic waves in homogeneous and non-moving air is 

governed by the continuity equation and the momentum equation (see section 2.2) 

02
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 ,                 (3.2) 

where P is the acoustic pressure, c is the speed of sound, ρ0 is the mass density of 

air,  
zyx vvvV ,,


 is the velocity vector. 

 

The propagation of acoustic waves in porous elastic media can be formulated 

based on the dynamic equations and stress-strain relation in Biot’s theory [88, 89]. 

This leads to continuity and momentum equations for both the fluid inside the 

frame and the frame itself (see section 2.5) 
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1Part of this chapter has been published in: 

Lei Ding, Timothy Van Renterghem, Dick Botteldooren, Kirill Horoshenkov and Amir 

Khan: Sound absorption of porous substrates covered by foliage: experimental results and 

numerical predictions. J. Acoust. Soc. Am. 134 (6), 4599-4609 (2013). 
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where ρa is the mass of fluid per unit bulk volume; Ka is the bulk modulus of the 

fluid; Pa is the pressure of the fluid in the porous medium; φ is the porosity; P0 is 

the ambient atmospheric pressure;  zayaxaa vvv ,,, ,,V , and va,x, va,y and va,z are the 

air-particle velocity components in the x, y and z directions inside the porous 

medium, respectively; Pframe is the pressure on the solid frame; Vf = (v
f,x

, v
f,y

, v
f,z

), 

and v
f,x

, v
f,y

 and v
f,z

 are the frame velocity components in the x, y and z directions, 

respectively; ks is the structure factor; R is the flow resistivity; ρframe is the density 

of the frame material; Kf is the bulk modulus of the solid frame; and Rf is the 

coefficient for an extra damping term added to the momentum equation of the 

solid frame in order to approximate dissipation mechanisms other than those 

caused by the flow resistivity. 

 

When the frame's density is large or the frame resonance does not need to be 

considered (high frequency problems), the Zwikker and Kosten's model can be 

used. It reads 
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where  sk0  and 
skcc  , ρ0 is the density of fluid and c is the speed of 

sound. Or, eqns. (2.82) and (2.83) can be used. They are simplified Biot's model 

and they correspond to Zwikker and Kosten's model. 

 

The leaf is approximated by an acoustically infinitely thin plate forming the shape 

of the leaf. Bending waves can propagate in the two in-plane directions. 

Assuming that the plate is orthogonal to x direction, the velocity equation can be 

written as (see eqn. (2.32) in section 2.3) 
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in which, 

  0
,       (3.10) 

where ρmh is the surface mass density of the plate material (in kg/m
2
); h is the 

thickness of the plate; vxp is the plate velocity vector component in the x direction; 

RL denotes the viscous damping in the bending process. ϕ0 denotes the bending 

and twisting moments per unit thickness. If the leaf is assumed to be isotropic, 

they are given by  
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where D is the bending stiffness per unit width for plate; W is the displacement 

component in x direction and its time derivative is the velocity vxp. ϕ denotes the 

visco-elastic damping during the bending of the leaf which according to 

generalised Maxwell model can be obtained from: 
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where Rn and sn are the visco-elastic damping parameters.  

 

Close to the leaves, viscosity (and thermal conductivity) cannot be ignored since 

viscous energy decay in the boundary layer at the surface of the leaves is one of the 

mechanisms causing sound attenuation [18]. The basic equations have been 

summarised in section 2.4. As in Ref. [61], a time-domain approximation for a 

viscous boundary layer near an infinitely extended flat surface will be used. The 

viscosity adds an additional term (in frequency domain) to the linearised momentum 

equations (see Eqn. (3.2)) in the directions which are parallel to the leaf surface plane: 

v
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f

n ik



 02  ,              (3.14) 

where the subscript in  vγ denotes that the velocity is parallel to the leaf surface 

plane,  denotes that the velocity v  is averaged over a layer of thickness dBL; μf 

is the dynamic viscosity of air; 𝜔 is the angular frequency; and 1i  is the 

imaginary unit. 

 

The same process can also be applied to the pressure equation in the entropy 

boundary layer. One additional averaged acoustical pressure term p  is also added 

to the pressure equation in the frequency domain. When the velocity and pressure 

equations in the vorticity and entropy boundary layer are transformed back to the time 

domain, the corresponding equations can be discretised in the finite difference time 

domain model and the details will be given in section 3.2. 

 

3.2 3D finite-difference time-domain method 
 
The finite-difference time-domain method can be used to solve the set of 

equations presented in section 3.1. The staggered grid organisation, both in space 

and time, as suggested in Ref. [62] is considered. A leap-frog scheme is used to 

update acoustic pressure and velocity components over time. Using this method, 

second-order accuracy can be obtained in representing the spatial derivatives, 
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with the smallest possible stencil. The spatial organisation of some cells near the 

interface between the porous substrate and air, including a leaf, are illustrated in 

Figure 3. 1.  

 

For this specific scheme, the following notations are commonly used to represent 

the discrete pressures and velocity components in air 
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where dx, dy, and dz are the spatial discretisation steps in three directions; dt 

denotes the time discretisation step; and i, j and k are the spatial indices. The 

acoustic pressure is always updated at time ldt and the velocity components at 

intermediate times (l+0.5)dt.  

 

The acoustic pressures P
a
 and P

frame
 in the porous medium follow the same 

discretisation as the acoustic pressures in air, and the velocity components (Va 

and Vf) in the porous medium follow the same discretisation as the particle 

velocities in air. The parameters ϕ0, ϕ and Πn related to leaf vibration are all 

determined at the same grid positions as the particle velocity components v
xp

 (see 

Figure 3. 1), but they are updated at the integer times steps just like the acoustic 

pressures p, 
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The discretised forms of pressure and velocity eqns. (3.1)-(3.2) read 
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Figure 3. 1 Spatial organisation of the staggered grids for different materials. The left grid denotes the cell in air. The middle grid denotes the cell 

including the leaf. The star symbol on the leaf-plane which is perpendicular to x-axis denotes the site for the parameters ϕ0, ϕ and Πn. The right grid 

denotes the cell in the porous media. There are two pressures and two groups of velocity components shown in this grid, for air and solid frame, 

respectively. The double arrow denotes the velocity components for the solid frame. 
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In eqns. (3.17) and (3.18), α represents one of the three Cartesian indices; 

summation over β runs over all the Cartesian indices; α and β in α+0.5 , α+1 and 

β±0.5 denote one of the indices i, j and k; vα and vβ are the velocities in α and β 

directions, respectively. The pressure at time (l+1)dt is determined by the 

pressure at previous time ldt and the velocities at time (l+0.5)dt. The velocity at 

time (l+0.5)dt is determined by the velocity at previous time (l-0.5)dt and the 

pressure at time ldt. Similarly, the discretised forms of the governing equations 

(3.3)-(3.6) in the elastic porous media are 
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It must be noted that eqns. (3.21) and (3.22)  need to be added to the usual set of 

FDTD equations to obtain the velocities of both air and frame.  

 

When the grids include the leaf material, equations (3.9) are used as the 

momentum equation in the x-direction. The leaf is approximated by one layer of 

grid cells which together have roughly the form of the leaf. Because of this 

discretisation, the thickness of the plate, h, equals the grid size in the direction 

perpendicular to the plate surface. In these cells, the mass of the air cannot be 

neglected in comparison to the mass of the leaf. Thus, the ρ
m
h in the first term of 

eqn. (3.9) is replaced by ρ
A
dx with 

dx

dLeafLeaf

A


  0

,                         (3.23) 
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where ρA is the average density in these cells; ρ0 is the density of air; ρLeaf is the 

density of the leaf; dLeaf is the thickness of the leaf; and dx is the grid size. The 

discretised form of eqn. (3.9) becomes: 
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Equation (3.24) results in an FDTD equation for the vibration velocity of the leaf 
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The bending term ϕ
0
 of the leaf can be calculated by taking the time derivative of 

eqn. (3.11) which gives its discretised form: 
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Its value is determined by its previous value and the velocity vxp at the 

intermediate time step 
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For the discretisation of eqn. (3.12), two new variables are defined per damping 

term 

znynn IIQ ,,  ,        (3.28) 

where 
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the subscript 'n' in Qn corresponds to the n-th damping term in eqn. (2.18); and the 

letter 'y' or 'z' in the subscript of In,y and In,z indicates the partial derivative in y or z 

direction. 

 

Taking I1,y as an example, its discretisation form can be written as 
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,  (3.31) 

where a linear interpolation was used for the integrand within the time interval dt. 

The term l

yI ,1
  can be written as 
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Substituting eqn. (3.32) into eqn. (3.31) gives 
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Similarly, the In,y and In,z can be discretised as 
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Equation (3.28) can be discretised as 
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Then, eqn. (3.12) can be discretised as 
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The time derivative of 1l
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Taking the time derivative of eqn. (3.37) and substituting eqns. (3.38) into the 

resulting equation leads to 
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.  (3.40) 

Equations (3.24), (3.26) and (3.39) are the discretised forms for the momentum 

equation governing leaf vibration. It can be observed that the velocity vxp at time 
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step l+0.5 depends on the velocity vxp at time step l-0.5, pressure p at time step l, 

ϕ0 and ϕ at time step l. Furthermore, ϕ0 at time step l depends on ϕ0 at time l-1 and 

velocity vxp at time step l-0.5; ϕ at time step l depends on ϕ at time step l-1, 

velocity vxp at time steps l-0.5 and l-1-0.5. The calculation process for the 

pressure and velocities in air and absorbing materials and for the normal velocity 

on the leaf surface is summarized in Table 3. 1. 

 

Table 3. 1 Calculation process for the pressure and velocities in air and absorbing materials, 

and for the normal velocity on the leaf surface. 

Dependent Values Independent Values Corresponding Equation(s) 

Pressure in air:  

Pi,j,k at time step l+1 

Pi,j,k at time step l; 

vx i±0.5,j,k, vy i,j±0.5,k, vz i,j,k±0.5 at 

time step l+0.5 

Equation (3.17) 

Velocity in air:  

vα α+0.5 at time step l+0.5 

(α=x/i,y/j,z/k) 

vα α+0.5 at time step l-0.5; 

Pα+1, Pα at time step l  

Equation (3.18) 

Pressure of air in bulk 

material:  

Pa i,j,k at time step l+1 

Pa i,j,k at time step l; 

vxa i±0.5,j,k, vya i,j±0.5,k, vza i,j,k±0.5 

at time step l+0.5; 

vxf i±0.5,j,k, vyf i,j±0.5,k, vzf i,j,k±0.5 

at time step l+0.5 

Equation (3.19) 

Pressure of frame in 

absorbing materials:  

Pframe i,j,k at time step l+1 

Pframe i,j,k at time step l; 

vxa i±0.5,j,k, vya i,j±0.5,k, vza i,j,k±0.5 

at time step l+0.5; 

vxf i±0.5,j,k, vyf i,j±0.5,k, vzf i,j,k±0.5 

at time step l+0.5 

Equation (3.21) 

Velocities of air and frame 

in absorbing materials:  

vαa α+0.5 and vαf α+0.5 at time 

step l+0.5 

(α=x/i,y/j,z/k) 

vαa α+0.5 at time step l-0.5; 

vαf α+0.5 at time step l-0.5; 

Pa α and Pa α+1 at time step 

l; 

Pframe α and Pframe α+1 at time 

step l 

Equations (3.20) and (3.22) 

 

Normal velocity at leaf 

surface: 

vxp i+0.5,j,k at time step l+0.5 

vxp i+0.5,j,k at time step l-0.5; 

Pi+1,j,k, Pi,j,k, ϕi+0.5,j±1,k, 

ϕi+0.5,j,k, ϕ0i+0.5,j±1,k and 

ϕ0i+0.5,j,k at time step l 

Equation (3.25) 

ϕ0i+0.5,j,k at time step l ϕ0i+0.5,j,k at time step l-1; 

vxp i+0.5,j,k, vxp i+0.5,j±1,k, vxp 

i+0.5,j,k±1 at time step l-0.5 

Equation (3.27) 

ϕi+0.5,j,k at time step l ϕi+0.5,j,k at time step l-1; 

Πn i+0.5,j,k at time step l 

Equation (3.39) 

Πn i+0.5,j,k at time step l Πn i+0.5,j,k at time step l-1; 

vxp i+0.5,j,k, vxp i+0.5,j±1,k, vxp 

i+0.5,j,k±1 at time steps l-0.5 

and l-1-0.5 

Equation (3.40) 
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The updating equation for the velocity parallel to boundaries, vγ, is adapted to include 

the effect of the viscous boundary layer. The square root of 𝜔 dependence in eqn. 

(3.14) is hereby approximated by a ratio of polynomials of order M and N in 

frequency domain. Eventually, this leads to the adapted FDTD update equation [125]: 
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,     (3.41) 

where dδ is the grid step in the direction orthogonal to the leaf plane; γ denotes 

the directions parallel to the leaf surface; and μf is the dynamic viscosity. For the 

simulations in this PhD thesis, M and N are chosen equal to 2. The values for ak, 

and bi are the same as those used by Bockstael et al. [126]:  a0=1, a1=-1.95, 

a2=0.95, a3=0, b0=403.73, b1=-802.77, b2=399.04, and b3=0. Similarly, the FDTD 

update equation for the pressure in the entropy boundary layer is 
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,  (3.42) 

where the values for ak and bi are the same used in eqns. (3.41). In eqn. (3.42), the 

influence of heat conduction on sound propagation is neglected because it is 

assumed that the temperature is constant on the leaf surface. 

 

3.3 Stability analysis 
 

The standard explicit FDTD method is not unconditionally stable, so the spatial 

and temporal steps in FDTD must be chosen carefully. When the bending wave, 

the Biot material, and the visco-thermal boundary are not considered, the Fourier 

stability analysis [127] requires the Courant number CN to satisfy the following 

relationship [69], 

1
1

,,
2
 

 zyx d
cdtCN

 
,                     (3.43) 

where c is sound speed. When the bending wave is included, the stability criterion 

has not been derived. 
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3.4 Choice of parameters 
 
In the FDTD model, there are many parameters, which must be determined before 

or during the simulations. Equations (3.9), (3.12) and (3.13) need to know the 

damping parameters during the bending of leaf. In this thesis, their values are 

chosen based on the data used in modelling the bending of wood (see Ref. 103), 

and they are R1=0.013, R2=0.038, s1=2000 rad/s, s2=33000 rad/s and RL=2.4 s
-1

. 

The parameters for modelling the poro-elastic substrate, such as Ka, Kf, φ, ks, R, 

and Rf (see eqns. (3.3)-(3.6)), must be tuned in the corresponding simulation 

process, which can be found in Chapter 5.  

 

Another important material parameter is bending stiffness of leaf. It is important 

in simulating the vibration of leaf excited by the sound and appears in the bending 

wave equation (see eqns. (3.11) and (3.12)). 

 

The bending stiffness of each leaf was estimated according to the following 

expression [60] 

 2

3

112 




LeafdE
D ,               (3.44) 

where D is the bending stiffness per unit width for a plate; E is Young’s modulus; 

dLeaf is the leaf thickness; and ν is Poisson’s ratio. Equation (3.44) has previously 

been used to determine the bending stiffness of a thin uniform homogeneous plate 

[60]. 

 

However, this method has limitations when used for the leaves of vegetation. For 

example, the leaf is not an isotropic plate, which has uniform mass distribution on 

the plate surface. The veins of the leaf can lead to non-uniform mass distribution 

and also non-homogeneous stiffness. Because there is no ideal way to get the 

bending stiffness, eqn. (3.44) will be used to obtain an approximation or order of 

magnitude for the bending stiffness of a leaf. 

 

In order to estimate the bending stiffness, we need to know the values of Young’s 

modulus E, thickness dLeaf and Poisson’s ratio ν of the leaf. The leaf's Young's 

modulus can be determined by measurement. Saito et al. [128] measured the 

Young's modulus of Quercus leaves; Satyanarayana et al. [129] measured the 

Young’s modulus of the coconut tree leaf; and Arib et al. [130] provided the data 

of Young’s modulus for pineapple leaf fiber.  

 

When there are no measurement results for the leaf's Young's modulus available, 

the work done by Saito et al. [128] and Niinemets [131] can be used as a first 

estimate. Saito et al. [128] presented a linear regression relationship between bulk 
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elastic modulus (ε) and Young’s modulus (E) for the leaves of Quercus glauca 

and Quercus serrata: 

BEA  .         (3.45) 

This relationship is derived based on the single leaf cell which has a spherical 

shell structure; and it can be used to estimate the Young's modulus from the bulk 

elastic modulus. For Quercus glauca, A=0.11 and B=1.21 result in a regression 

with rcc
2
=0.78, where rcc is the correlation coefficient; for Quercus serrata,  

A=0.13 and B=-1.42 give rcc
2
=0.84. The leaf's bulk elastic modulus can also be 

measured. Saito et al.[132], Scholz et al.[133] and Nardini et al.[134] provided 

the bulk elastic modulus for different leaves by pressure-volume measurement. 

When the measurement for the leaf's bulk elastic modulus is not available, 

Niinemets [131] presented a linear regression relationship between leaf volume 

density and its bulk modulus based on the data from 51 tree and shrub species: 

Leaf 4.2503.2  , with rcc
2
=0.35,     (3.46) 

where ε is the foliage bulk elastic modulus and ρ
Leaf

 is the leaf volume density. 

Therefore, the leaf's Young's modulus can be estimated by eqns. (3.45) and (3.46) 

when the leaf volume density is known. 

 

The best and fastest way to get the leaf thickness is measurement. The fresh leaf 

thickness can be measured by digital caliper. However, when the measurement is 

not available, leaf thickness can be estimated by other methods. White and 

Montes-R [135] pointed out the importance of variation in water or air content in 

the tree leaf. They provided the leaf thickness by measurement for the common 

bean (Phaseolus vulgaris L.) and the relationship between the leaf thickness and 

the leaf dry weight basis was found. They also proved that the mean leaf 

thickness had values between 0.11 mm and 0.375 mm depending on the 

measurement date after planting, planting season and planting site. Marenco et al. 

[136] studied the relationship between chlorophyll content of leaves and leaf 

parameters, which includes leaf thickness, for six Amazonian tree species. Vile et 

al. [137] provided a method to estimate thickness in laminar leaves. The leaf 

thickness (dLeaf) can be calculated from leaf fresh mass (MF), average density of 

the leaf (ρLeaf) and leaf projected area (ALeaf).  
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1 ,        (3.47) 

where VL is the volume of the leaf. The leaf dry mass (MD) was also introduced in 

the calculation and then eqn. (3.47) becomes 
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1 .       (3.48) 

In the measurements, they chose several hundreds of samples, which came from 

different parts of the world (including France, Spain, South Africa, central Europe, 

Great Britain, central Argentina, Canada, and Australia), different species and 
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different growth forms (such as, short-lived forbs, long-lived forbs, short-lived 

graminoids, long-lived graminoids, ferns, succulents, shrubs and trees). The leaf 

thickness was determined with a linear variable displacement transducer. The 

measurement results shown that the average density ρLeaf could be chosen as 1 

g/cm
3
 and the leaf thickness could be estimated from 

D

F

Leaf

D

Leaf

F
Leaf

M

M

A

M

A

M
d  .           (3.49) 

 

The Poisson’s ratio is another parameter needed to be chosen for the bending 

stiffness calculation. Saito et al. [128] set 0.25 as the Poisson’s ratio in their paper 

based on the assumption that the specimen was isotropic [138]. It was reported 

that the Poisson’s ratio for parenchyma tissue lay in the range 0.23-0.5 [139]. In 

this thesis, 0.25 is chosen as the Poisson's ratio. 

 

Grid step is another important model parameter in the calculation. It influences 

the accuracy and efficiency of the calculation. For sound propagation in fluids a 

rule of thumb consists in choosing 10 grid cells in one wavelength. Thus for 

example for an FDTD simulation of sound propagation in air to be accurate up to 

10000 Hz a grid cell size smaller than 0.0034 m would be appropriate.  

 

The bending wavelength λb on the leaf plate is related to wave number kb by 

b

b
k




2
 .             (3.50) 

The bending wave number can be calculated by [60] 

  412/1 Dmk ab  ,              (3.51) 

where ω is the angular frequency of the exciting force; ma is the mass per unit 

area and D is bending stiffness per unit width. To simulate the bending wave on 

the leaf accurately, the grid size must not be greater than 1/10 of one bending 

wavelength. For the leaves studied in this thesis, their mass per unit area (ma) is 

between 0.08 and 0.5 kg/m
2
; and their estimated bending stiffness (D) is between 

0.001 and 0.01 N·m. The wavelength corresponding to 10000 Hz according to 

eqns. (3.50) and (3.51) is 0.0053 m. Therefore, the grid size must be smaller than 

0.00053m. This is more restrictive than the requirement following from the 

propagation in air.  To model sound fields close to the bending leaf accurately, it 

is recommended that 0.0005m is used as the grid step to model sound propagation 

over leaf.  
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CHAPTER 4  

The ultra-weak variational formulation (UWVF) 

method for interaction of sound with porous 

substrates
2

 

 

In my thesis, the UWVF method is investigated as an alternative to FDTD to 

study the influences of low-height noise barriers on the sound propagation. The 

low-height noise barriers are assumed to be constructed by porous materials 

which have a rigid frame. In this case, Biot's theory [88, 89] is not necessary and 

instead Zwikker and Kosten’s phenomenological model [91] is used. The 

Zwikker and Kosten’s model has been introduced in section 2.5 and is reasonable 

for the typical materials envisaged in such low-height porous barriers, for 

instance stones or other granular material. In this rigid frame model, the air 

between the particles is allowed to vibrate, while the constituting part of the 

porous medium is assumed to be rigid. Only when there is interest in predicting 

the attenuation inside the porous medium at high sound frequencies and low flow 

resistivity, should adaption be made as presented by K. Wilson et al. [140]. 

Furthermore, this model allows for an easy introduction in the classical 

Helmholtz equation (see eqn. (2.9)).  

 

In Section 4.1, a generalised Helmholtz equation will be derived based on 

Zwikker and Kosten’s model. In the later sections, the generalised Helmholtz 

equation will be solved by UWVF method. It must be noted that other porous 

models can be implemented in UWVF method without additional difficulties.  

 

4.1 Helmholtz problem 
 

4.1.1 Generalised Helmholtz equation 
 

In the Zwikker and Kosten’s model, the porous media is described by three 

parameters, which are the flow resistivity (R), porosity (φ) and the structure factor 

(ks). The linear equations for sound propagation in a rigid frame porous medium 

are 

 
2Part of this chapter has been published in: 

Lei Ding, Timothy Van Renterghem and Dick Botteldooren: Estimating the effect of semi-

transparent low-height road traffic noise barriers with ultra weak variational formulation. 

ACTA ACUSTICA UNITED WITH ACUSTICA, 97(3), 391-402 (2011). 
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Similar to the procedure to get eqn. (2.9), taking the divergence of eqn. (4.1), 

taking the time derivative of eqn. (4.2), and eliminating   tV 


from the 

resulting equations give 
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The ratio R  is assumed to be constant, and the third term in eqn. (4.5) can be 

replaced with eqn. (4.2). Therefore, eqn. (4.5) can be written as 
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As the wave in this research work is assumed to be time harmonic (see eqn. (2.8)), 

eqn. (4.6) can be expressed as 
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The wave number in porous media can be defined as 

0




Ri
k

c
s  .                                 (4.8) 

Consequently, eqn. (4.7) can be simplified as 

0
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.       (4.9) 

In later work, a point source will be considered in the simulation, so the 

Helmholtz equation with point source is 

sfpp 






















21 ,         (4.10) 

where fs denotes the source term. Now the Helmholtz equation in rigid frame 

porous media has been obtained. It can found that when ks=1, φ=1 and R=0 are 

satisfied, eqn. (4.9) becomes eqn. (2.9), which is the Helmholtz equation for 

sound propagation in air. Therefore, eqn. (4.9) is the generalised Helmholtz 

equation. 
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Since UWVF is a volume-discretisation technique, the speed of sound can be 

location-dependent, and this provides a way to model the refracting atmosphere 

by using the effective sound speed approach. 

 

4.1.2 Perfectly matched layer for Helmholtz problem 
 

Using efficient and accurate absorbing boundary conditions is of primary 

importance in numerical models for outdoor sound propagation application. The 

unbounded sound propagation region has to be truncated to a limited calculation 

domain. The non-reflection boundary condition (NRBC) has been reviewed in 

section 2.6; and the perfectly matched layer (PML) approach is chosen in this 

thesis. The implementation of a PML in the UWVF method is based on extending 

the domain into a complex spatial coordinate space. In this section, this approach 

will be introduced and further details can be found in the ref. [52, 141]. 

 

In the previous section, the Helmholtz equation in inhomogeneous medium is 

given. Now, the complex stretching of the spatial coordinates is considered and 

defined by 
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The following definitions are given in order to simplify the notation 

   n0,0    ,        zyx ,, ,                                (4.14) 

where 
 ,0

 is constant and n is an integer. The derivative of stretched spatial 

variables is 
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This gives a substitution 

  







d

1
, and zyx ,, .         (4.18) 

The Helmholtz equation with stretched variables is 

sfpp 






















21 ,                           (4.19) 

where  Tzyx  ,,  is defined. Substituting eqn. (4.18) into eqn. (4.19) 

leads to 
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Defining 

zyx ddd2 ,           (4.21) 

and multiplying eqn. (4.21) to both sides of eqn. (4.20) gives 
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Equation (4.22) can be written in a more compact form, that is 

2
221







sd fppA 
















 ,                                     (4.23) 

where the matrix Ad is defined by 
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.             (4.24) 

Equation (4.23) is the Helmholtz equation with complex stretched spatial 

variables. It is noticed that in the non-PML region, the matrix Ad=I is identity 

matrix and η
2
 equals 1. In this case, Helmholtz equation (4.23) with stretched 

spatial variable becomes the Helmholtz equation (4.10). In other words, eqn. 

(4.10) is one special case of eqn. (4.23), when one chooses  zyx ,,,   . 
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4.1.3 Discretised problem 
 

After determining the governing equation and the non-reflecting boundary 

condition, the Helmholtz problem in the computational domain will be 

decomposed into many sub-problems in small elements or cells. A 2D problem 

about the effect of porous low-height noise barriers is studied in this thesis, so in 

this section a 2D discretisation of the Helmholtz problem is taken as an example. 

The triangular cell is chosen for the 2D discretised problem, because it is 

compatible with a lot of software and can be easily created by mesh-generation 

tools.  

 

For the 2D problem, the computational domain Ω is partitioned into a collection 

of disjoint triangular finite cells  N

kk 1
 . In Figure 4. 1, two elements, Ωk and Ωj 

are shown to explain the notations. The outward unit normal vector on the 

boundary of Ωk is denoted by nk. The boundary which connects the element Ωk to 

Ωj is Σk,j and similarly Σj,k connects Ωj to Ωk. The interface Σk,j has outgoing unit 

normal vector nk, while the interface Σj,k has outgoing unit normal vector nj. If the 

boundary of the element Ωk is also an exterior boundary of the total domain Ω, 

then this boundary is denoted as Гk. 

 

 

 
Figure 4. 1  Three adjacent computational cells with notations. 

 

The density and the wave number are assumed to be piecewise constants, so let  

kk  |  and 
kk  | . Therefore, the Helmholtz problem (4.23) in the domain 

Ω can be decomposed into a collection of sub-problems in the elements Ω
k
, 

k=1,2...N,  

Ωk 

Ωj 

Σk,j 

Σj,k 

nk 

Гk 

nk 

nj 
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  222

, kkkkkkkd fppA   ,     in 
k ,           (4.25) 

where the subscript k indicates the parameters or variables are in the sub-domain 

Ωk; and fk=fs ·ρ′k is introduced.  

 

On the interface between two neighboring cells, the continuity of pressure and the 

continuity of velocity must be satisfied [52, 141]. For time harmonic waves, the 

continuity of pressure gives 

jk pp  ,                          on 
jk , .     (4.26) 

where the subscripts k and j denote the adjacent cells. Considering the time 

harmonic wave,  
tievV 


 and tipeP  ,                                         (4.27) 

eqn. (4.1) can be written as 

0
11







 tititi evRevipe 






 .              (4.28) 

The velocity can be derived from eqn. (4.28), and it is 

p

Ri

v 










 1

11 .                                                         (4.29) 

Considering the general form of the Helmholtz problem (4.23), the continuity of 

the velocity normal to the interface between two neighboring cells k and j can be 

written as 
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, on jk , ,  (4.30) 

where 
kn


 and 

jn


 are the outgoing normal direction on the boundaries of the cells. 

If the medium is not porous, the continuity of velocity gives [52] 

   jjdj
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k
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11 


,    on 

jk , .     (4.31) 

Therefore, in order to get a more general form for the continuity of velocity, a 

term 'i𝜔' is multiplied to both sides of eqn. (4.30) and then it becomes 
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, on jk , .  (4.32) 

When, the medium is air, the flow resistivity Rk and Rj are 0, and then eqn. (4.32) 

becomes eqn. (4.31). 
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Combining eqns. (4.26) and (4.32) gives 
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where 
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1
,  is defined on the interface Σk,j. Equations 

(4.33) and (4.34) are called the matching conditions. 

 

On the exterior boundary this is generalised to 
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, on 
k ,   (4.35) 

where 
 

k

k
k







  is defined on the exterior boundary; and Qk is a complex 

constant and gk is a boundary source term. If Qk =1 and gk =0, the exterior 

boundary condition (4.35) becomes the rigid boundary condition. Equations 

(4.25), (4.33), (4.34) and (4.35) give the governing equation, transmission 

conditions, and boundary conditions for the sub-problems. 

 

4.2 The Ultra Weak Variational Formulation of 

Helmholtz problem 
 

In the previous section, the problem has been decomposed into many sub-

problems in element  N

kk 1
 . The ultra weak variational formulation (UWVF) of 
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the Helmholtz problem in the non-porous medium will be introduced in this 

section. For the Helmholtz problem in the porous medium, the corresponding 

UWVF can be obtained by considering the modified density (eqn. (4.3)) and 

wavenumber (eqn. (4.8)) and including the term i𝜔/(i𝜔-R
k
/ρ

k
) in the transmission 

conditions (eqns. (4.33) and (4.34)) and boundary condition (eqn. (4.35)). 

 

The following equality holds [51] 
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,       (4.36) 

for all smooth p
k
 and smooth test functions v

k
. The upper bars indicate the 

complex conjugate. Substituting eqn. (4.33) and eqn. (4.35) into eqn. (4.36) gives 
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Green’s theorem can simplify the last two terms in right hand side of eqn. (4.37). 

They become 
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In order to simplify the above equality, we introduce the following definitions 
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kk vivAnyF  
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 ,      Nk 1 .            (4.41) 

The basis function p
k
 satisfies eqn. (4.25), and the piecewise smooth test function 

v
k
 satisfies the following equation 

  022

,  kkkkkd vvA  ,            in 
k .         (4.42) 

Therefore, substituting eqn. (4.25) and eqn. (4.42) into eqn. (4.38) leads to 
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Substituting eqns. (4.39)-(4.41) and eqn. (4.43) into eqn. (4.37) gives 
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 .   (4.44) 

The double summation in the second term of left hand side of eqn. (4.44) is 

limited to cells that share a common face Σk,j. Equation (4.44) is called the ultra-

weak variational formulation of the Helmholtz problem. 

 

4.3 Linear system for 2D problem 
 
In this thesis, a local basis of plane waves is used for the expansion of the field 

within each triangular cell [51] 
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                       (4.45) 

where the index k refers to the k
th

 triangular cell, the index m counts the basis 

functions within the cell, κ
k
 is the complex wave number in the cell, mka ,


 is the 

propagation direction of the m
th

 basis function, and r 


 is the spatial coordinate 

becoming complex within the PML, and the over bars stand for complex 

conjugate. The angularly equally distributed directions 
mka ,


 in two-dimension 

problem are 
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 ,     (4.46) 

where Nk denotes the number of distributed directions and m is chosen from 1 to 

Nk. 
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The function k  defined in eqn. (4.39) can be approximated as 
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 ,                   (4.47) 

where mk ,  is the unknown to be determined. Following the Galerkin method 

used in Ref. [51, 52, 53, 141], ,kkv   is chosen as the test function. Substituting 

eqn. (4.47) and the test function kv  into eqn. (4.44) gives the following discrete 

UWVF problem 
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     (4.48) 

It must be stressed that the notation j in second term of the left hand side denotes 

the elements which have interfaces with element k. The matrix form of eqn. (4.48) 

can be given below 

  bXCB  ,                 (4.49) 

where  TNNNNNkmkkkN Nk
X ,2,1,,,2,1,,12,11,1 ,...,,...,,...,,...,,,...,,...,,

1
  contains 

the unknowns, and the number of unknowns is 


N

k

kN
1

; B is a block diagonal 

matrix that comes from the first term of left hand side in eqn. (4.48) and contains 

blocks Bk related to the k
th

 cell, Ωk; C comes from the other two terms of left hand 

side in eqn. (4.48) and is a sparse block matrix coupling the solution in a single 

cell to adjacent cells and boundary conditions; b is the vector that contains the 

information from the external boundary and sources; and it comes from the right 

hand side of eqn. (4.48). 

 

The entries of matrices B, C and vector b for two-dimensional problem are given 

below. The matrix B is the positive definite Hermitian block diagonal matrix 



 

53 

 





























N

k

2

1

       0       0           0      0

0              0                   

0        0              0        

                           0

0                          0

0                     0     

B

B

B

B

B











.

                           (4.50) 

The block Bk is created by choosing the test function ,k . The entries in Bk are 
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where   in superscript indicates the row and m indicates the column. Substituting 

eqns. (4.24), (4.45) and (4.46) into eqn. (4.51) gives 
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     (4.52) 

Based on the entries of Bk, the entries in matrix B can be written as 

   mBmcolrowB k ,,   ,                                                  (4.53) 

where row and col equal N1+N2+...+Nk-1, while, if k equals 1, row and col equal 0.        

 

The matrix C is sparse and also has a block structure. In the k
th

 block row of the 

matrix C, the number of blocks corresponds to how many interfaces the element k 

has with other adjoint elements. The entries in C are given by 
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       (4.54) 

where k in subscript indicates the k
th

 block row; j in subscript indicates the j
th

 

block column;   in superscript indicates the row in the k
th

 block row; and m in 
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superscript indicates the column in the j
th

 block column. In eqn. (4.54), the first 

term derives from the interface between two adjacent elements Ωk and Ωj; and the 

second term derives from the external boundary. It is clear that when the element 

k is located on the exterior boundary, the k
th

 diagonal block have non-zero entries; 

or else, the entries for the k
th 

diagonal block are 0. The first term in eqn. (4.54) 

can be rewritten with eqns. (4.24), (4.45) and (4.46) as 

 

 
 

 

 

 
 

 

  .  exp
1

2sin

1
2cos

    ,0

0   ,

,
1

exp
1

2sin

1
2cos

   ,0

0  ,

,
11

,

,

,

1

,

raiii

d
kN

d
kN

d

d

d

d

nn

raiii

d
jN

m

d
jN

m

dy

dx

dx

dy

nn

mC

kkk

y

x

y

x

x

y

kykx

k

mjjj

y

x

jyjx

j
jk



















































































 








 






























































































 








 









































 

          (4.55) 

The row and column of matrix C1 can be transferred to the row and column in 

matrix C by 

   mCmcolrowC ,, 1   ,                                                  (4.56) 

where row equals N1+N2+...+Nk-1 and col equals N1+N2+...+Nj-1; if k or j equals 1, 

row or col equals 0. Similarly, the second term in eqn. (4.54) can be rewritten 

with eqns. (4.24), (4.45) and (4.46) as 
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        (4.57) 

The row and the column of matrix C2 can be transferred to the row and column in 

C by 

   mCmcolrowC ,, 2   ,                    (4.58) 

where row and col equal N1+N2+...+Nk-1; row and col equal 0 if k equals 1. 
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The entries for vector b can be obtained from the right hand side of eqn.  (4.48): 
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Similarly, it is found that the first term in eqn. (4.59) only exists when the 

element k is located on the exterior boundary. For the second term in eqn. (4.59), 

it need only be considered for the element Ωk where the acoustic source exists. By 

using eqns. (4.24), (4.45) and (4.46), we can rewrite vector b as 
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  (4.60) 

where row equals N1+N2+...+Nk-1; and row equals 0 if k is 1. 

 

During the process of constructing the matrices B, C and vector b, it is found that 

the integration on the boundary is necessary. In order to calculate the integration, 

the normal outgoing unit, and both the upper and lower limits of the integration 

must be specified. Therefore, a two-dimensional sub-domain (See Figure 4.2) will 

be taken as an example to introduce how to get the outgoing unit normal and the 

integration's upper and lower limits. 

 

In Figure 4.2, a triangular element 
k  is given and three vertices are given by 

P1(x1, y1), P2(x2, y2) and P3(x3, y3) in counter-clockwise order. The outgoing unit 

normal kn


 on the three edges is 
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Figure 4.2 Configuration of one element Ωk. 

 

The three straight edges can be represented by the following equations: 

Line 1: 

 1

12

12
1 xx

xx

yy
yy 




 , passing P1(x1, y1) and P2(x2, y2);   (4.64) 

Line 2:  

 2

23

23
2 xx

xx

yy
yy 




 , passing P2(x2, y2) and P3(x3, y3);       (4.65) 

Line 3:  

 3

31

31
3 xx

xx

yy
yy 




 , passing P3(x3, y3) and P1(x1, y1).        (4.66) 

If the direction of integration is chosen as counter-clockwise, the integration is 

proceeded from (x1, y1) to (x2, y2) along ‘line 1’, from (x2, y2) to (x3, y3) along ‘line 

2’, and from (x3, y3) to (x1, y1) along ‘line 3’. If the direction of integration is 

chosen as clockwise, all the integration will give a contrary value compared to the 

integration in the counter-clockwise order. This can be considered as the fact that 

a ‘-1’ is multiplied on both sides of the linear system. As a result, for the two-

dimensional problem, the direction of integration, clockwise or counter-clockwise, 

has no influence on the solution. However, the Green’s theorem prefers the 

counter-clockwise order and MATLAB provides the mesh information in 

counter-clockwise order, therefore, in this thesis, the integration is computed in 

counter-clockwise order. 

 

(x1, y1) 
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(x3, y3) 
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4.4 Solution of the linear system 
 

Now, how to get the linear system for 2D problem and how to assemble the 

matrices B, C and vector b have been described in the previous section. In this 

section, the way to solve the linear system and several advantages of UWVF will 

be discussed.  

 

4.4.1 Ill conditioning problem 
 

Wave based numerical methods are known to suffer from ill conditioning of the 

resulting matrix system. Ill conditioning system can lead to poor approximations 

[51, 52]. It is suggested that equation (4.49) can be solved in the form [52] 

  bBXCBI 11   .                   (4.67) 

This preconditioned approach requires the inversion of matrix B. In order to 

guarantee the numerical accuracy of the solution, matrix B must be well-

conditioned. With the fact that the inversion of matrix B can be obtained by 

finding the inversion of block matrix Bk, the well-conditioned matrix B can be 

obtained if the well-conditioned block matrix Bk can be found.  

 

The conditioning of the block matrix Bk is dependent on many factors, such as the 

properties of the medium, the size of the finite element cell hk, the number of the 

basis functions Nk, wave number κ
k
 and so on [52]. Because the properties of the 

medium are defined by the problem, the conditioning can only be improved by 

adjusting the other factors properly. In general, varying the wave number within 

the computational domain, an uneven element size of the cell or a homogeneous 

collection of plane wave basis functions in all elements can lead to ill 

conditioning problems and severe instability. Huttunen et al. [53] have solved this 

problem by streamlining the condition number of each of the sub matrices Bk by 

changing the number of basis functions in each cell and this method is adopted in 

this thesis. 

 

The general procedure to obtain a well-conditioned matrix B is summarised here. 

Firstly, according to the wave frequency, the element is initialised through mesh 

generation; and in the mesh generation the maximum element size is specified. In 

the UWVF method, this size can be two times the wavelength without losing 

accuracy [52]. Secondly, the initial guesses of the number of basis functions in 

each element are given. Based on these initial guesses, the corresponding block 

matrices Bk can be assembled and the condition number for each block matrix can 

be calculated by 
1

)(


 kkk BBBCond ,                (4.68) 
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where Cond(·) denotes the condition number, and     denotes the norm of the 

matrix. If this condition number is greater than the tolerance condition number 

(10
6
 in this thesis according to the value in the Ref. [52]), the number of basis 

functions for this block matrix must be decreased; or else, the number of basis 

functions should be increased. For the new basis functions, the block matrix Bk is 

re-assembled and the condition number is re-calculated. This process will be 

stopped when the number of basis functions has made the corresponding 

condition number smaller than the tolerance value and the number of basis 

function cannot be increased any more. Finally, all the elements have the 

corresponding block matrices, which are well-conditioned. Then, these block 

matrices compose the Cholesky factorized matrix B.  

 

After the well-conditioned matrix B is obtained, the matrix C and vector b are 

assembled according to the determined basis functions. Then, equation (4.67) can 

be solved numerically by iterative method. In this thesis, the bi-conjugate 

gradient method is used to solve equation (4.67). 

 

4.4.2 Octave band problem 
 

In road traffic noise applications, a wide range of frequencies has to be 

considered. The optimal number of basis functions for conditioning the matrices 

depends on the wavelength-to-cell-size ratio and thus the computationally 

expensive iterative pre-conditioning operation needs to be repeated for every 

frequency of interest.  

 

For the purpose of reducing the calculation time, a linear interpolation is used to 

determine the number of basis functions for different frequencies. Firstly, the 

optimal number of basis functions for the upper, central and lower frequencies in 

an octave band is calculated. With the determined number of basis function, the 

condition number of each block matrix Bk is below the tolerance condition 

number. In this thesis, the condition number is calculated based on the 2-norm of 

the block matrix. Secondly, a linear function is fitted to the relationship between 

the average number of basis functions per cell and the frequency. Finally, the 

required number of basis functions for the other frequencies constituting that 

octave band can be approximated by this linear function. An example is given in 

Figure 4.3. The comparison of the average number of basis functions in one grid 

calculated by iteration procedure and linear interpolation shows good compliance. 
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Figure 4.3 Average number of basis function in one grid calculated by an iteration 

procedure (open circles) and linear interpolation (solid line). The x-signs indicate the three 

frequencies on which the linear interpolation is based. 

 

The matrices B, C and vector b can now be constructed avoiding the iterative 

procedure. By the linear interpolation, the computational time can be shortened 

by 40% to 70%, depending on the frequency. For high frequencies, assembling 

matrices B and C occupies an equal amount of CPU time. The interpolation 

process can only limit the time used to assemble B. As a result, only 40% of the 

CPU time can be saved. For low frequencies, more time is used to assemble B 

when compared to C. Therefore, 70% of CPU time can be gained by applying this 

interpolation. When different octave bands are considered, it is more 

advantageous to adapt the grid cell size to the wavelength instead of further 

interpolation. In this thesis, the ratio between grid cell and the minimum 

wavelength in the octave band is chosen as 2. 

 

4.4.3 Multiple sources problem 
 

The numerical method can be further optimised in typical traffic noise situations 

with several source positions. Note that the matrices B and C are only related to 

the geometrical properties of the triangular meshes, the medium density, and the 

frequency of the sound wave; the source position has no influence on the entries 

in B and C. On the other hand, vector b is derived from the source term and the 

boundary term, which are closely related to the source position. Therefore, if no 

parameters are changed except for the source position, the process to assemble 

matrices B and C does not have to be repeated, which can reduce the 

computational cost by 90% for the cases studied in this thesis. 
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4.5 Numerical validation 
 

In this section, the UWVF method is verified to guarantee that it can provide 

reliable results. Two examples are considered. The first one deals with sound 

propagation over porous ground in a refracting atmosphere; and the second case 

is sound propagation near a porous noise barrier. 

 

4.5.1 Sound propagation over porous ground in a refracting 

atmosphere 
 

Since UWVF is a volume-discretisation technique, the speed of sound can be 

location-dependent. Therefore, refraction of sound due to the presence of 

gradients in air temperature and wind speed can be modelled by the effective 

sound speed approach. Gradients in air temperature lead to gradients in the sound 

speed. Furthermore, the effect of wind on sound propagation can be approached 

by considering the horizontal component of the wind speed, leading to a virtual 

increase or decrease in the sound speed. In many applications, including sound 

propagation over noise barriers in wind [142], this is a good approach. 

 

 
Figure 4.4 Geometry with a point source and a receiver above a porous ground medium: (a) 

no wind; (b) with wind.  

 

In the first validation test, sound propagation over porous ground in a refracting 

atmosphere is studied and the results by UWVF are compared to the results by 

FDTD, which have been published [69, 72]. The two dimensional example 

chosen here is similar to the one presented in [69, 72]. A source is located at a 

height of 0.5 m above the ground; the receiver is at a height of 1.5 m (see Figure 

4.4). The distance between the source and receiver is 5 m. Sound frequencies 

between 100 Hz and 1000 Hz are considered. Results are expressed relative to 

free field sound propagation. In Figure 4.5 and Figure 4.6, a homogeneous and 

downwardly refracting atmosphere is considered, respectively. In case of the non-
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homogeneous atmosphere, a linear increase in the speed of sound, with a gradient 

of 3 /s, is used. The numerical results show that in case of downward refraction, 

the ground dip is somewhat more pronounced, and a shift towards lower 

frequencies is observed. At 100 Hz, the difference between both models amounts 

up to 0.5 dB. The UWVF method is in good agreement with FDTD calculations 

in both situations, showing its validity in a non-homogeneous sound propagation 

medium as well. 

 

 
Figure 4.5 Spectra of the relative sound pressure levels in a non-refracting atmosphere. 

The porosity of the ground equals 0.3, the structure factor equals 3.0 and flow resistivity 

equals 10k Pa·s/m2. 

 

 
Figure 4.6 Spectra of the relative sound pressure levels in a downwardly refracting 

atmosphere. A linearly increasing sound speed profile is modelled, with a gradient of 3 /s. 

The porosity of the ground equals 0.3, the structure factor equals 3.0 and flow resistivity 

equals 10k Pa·s/m2. 
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4.5.2 Sound propagation near a porous barrier 
 

In the second validation test, the UWVF method is compared to FDTD 

calculations for the case of sound propagation near a complex-shaped, low-height 

and porous noise barrier in a still and homogeneous atmosphere. An inverse Г-

shaped porous barrier of 1m high and 1m wide is considered, as shown in Figure 

4.7. Two dimensional calculations are performed. 

 

 
Figure 4.7 Geometry of the porous noise barrier for the validation example. 

 

The computational domain is 4 m wide and 3 m high. Perfectly matched layers 

are used to border the simulation domain. The frequency of the sound wave under 

study is 1000 Hz. The noise source is present at 1m in front of the noise barrier 

and at 0.3 m above the rigid ground. The porosity, structure factor and flow 

resistivity of the barrier are chosen as 0.4, 1.35 and 50k Pa·s/m
2
, respectively. 

Although no particular material is aimed at, such a set of parameters could be 

representative for uncompacted earth [140, 143 ]. In the UWVF method, the 

largest allowed mesh size of 0.68 m is used, which is twice the wavelength which 

equals 0.34 m when using a speed of sound of 340 m/s. In total, 8666 unknowns 

are considered in the UWVF computation. For the FDTD calculation, a much 

larger number of unknowns are used. Since the FDTD method serves as a 

reference calculation here, a very fine spatial discretisation step of 0.01 m is used. 

This means that for the sound frequency under study, more than 30 computational 

cells per wavelength are present. This is far beyond the common practice of 10 

computational cells per wavelength, and will lead to a strong reduction of 

possible phase errors. The Courant number is set to 1. For the porous barrier, an 

implementation of the Zwikker and Kosten’s model [91] is used as well in FDTD. 

As in the UWVF method, perfectly matched layers are used to model an 

unbounded propagation domain. A detailed description of the FDTD 

implementation can be found in [43]. 

 

In Figure 4.8, the insertion loss fields are shown as calculated with UWVF and 

FDTD. All complex aspects of the sound field near this barrier are very well 

predicted by the UWVF method, showing its validity in this non-trivial sound 

propagation problem. The difference between the insertion loss fields calculated 
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with UWVF and FDTD is depicted in Figure 4.9. At most locations, the 

differences range from -2 dB to +2 dB. The largest differences are found in zones 

where pronounced interference of sound waves occurs. 

 
Figure 4.8 Comparison of the noise barrier insertion loss (dB) at a single sound frequency 

of 1000 Hz. On the left, calculations with FDTD are depicted, on the right UWVF is used. 

 

 
Figure 4.9 Difference between insertion loss (dB) fields of FDTD and UWVF as shown in 

Figure 4.8. 

 

 

4.6 Conclusion 
 

In this chapter, the 2D ultra weak variational formulation (UWVF) approach is 

introduced. This numerical method is extended to simulate sound propagation 

through a porous medium, based on the Zwikker and Kosten’s porous rigid-frame 

model. Since the UWVF method is a volume-discretisation technique, the 

effective sound speed approach could be used to model sound propagation in a 

refracting atmosphere. 

 

Finding the number of basis functions for each frequency is a time-consuming 

task. It is approached by three initial evaluations per octave band. For the other 

frequencies constituting that band, the number of basis functions could be linearly 

interpolated without loss of accuracy. Furthermore, it was shown that the exact 
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source location only influences some of the matrices forming the system to be 

solved. The presence of different source locations which is typical in many 

problems, such as mixed multi-lane road traffic, can therefore be solved in an 

efficient way. 

 

The UWVF method was validated successfully by comparison with 2D finite-

difference time-domain (FDTD) calculations. Two important outdoor sound 

propagation cases were considered, namely sound propagation near a (porous) 

noise barrier, and sound propagation above porous ground in a refracting 

atmosphere. 
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CHAPTER 5  

Sound interaction with vegetation 
 
In this chapter, the finite-difference time-domain method is used to simulate 

sound wave propagation over leaves. In section 5.1, the case of a single leaf is 

studied. Measurements were conducted in an anechoic room and an impedance 

tube, and FDTD simulations have been performed. In section 5.2, the FDTD 

method is used to study sound wave propagation through a group of leaves by 

considering cyclic boundary conditions. 

5.1 Interaction of sound with leaves 

5.1.1 Leaf vibration 
 

I. Introduction 

 

Although the acoustics of the leaves of trees and bushes has been studied for 

several decades [18, 57, 59], an approach to incorporate leaves in detail in 

propagation models is lacking. In this section, an approach to do so is introduced. 

It is expected that such a propagation model might help to choose the type of 

vegetation to enhance noise reduction and combine the influences of vegetation 

with other propagation-related effects. In order to achieve this goal, a 

measurement campaign was set up. The easiest way to include the presence of a 

leaf in FDTD is to assume that the leaf is infinitely thin, and to replace the density 

of air in the governing equations by an equivalent density. Hence, the 

measurement campaign aimed at determining this equivalent density.  

 

The work in this section will also be thought of as preparation for that presented 

in the next section. This section opens with a description of the measurements of 

leaf vibration. Then, the measurement results are compared with the simulation 

results in order to find a suitable model. 

 

II. Measurement setup 

 

The measurement was carried out in the anechoic room and its setup is shown 

schematically in Figure 5.1. A photograph of the setup is given in Figure 5.2. A 

single loudspeaker with a broad frequency response was used in this experiment 

to generate quasi-plane incident waves. Two microphones were placed in front of 

the loudspeaker at a distance of 0.01 m apart. The distance L1 between the 

loudspeaker and the centre of the two microphones was around 0.8 m. A laser 

Doppler Vibrometer (LDV) was used to measure the vibrations of a leaf that was 
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placed between the two microphones. A Bruel & Kjaer pulse system 3560C was 

used to control the measurement. It is connected to the loudspeaker through a 

Pioneer STEREO AMPLIFIER A-607R. The LDV system is composed of a 

fiber-coupled vibrometer sensor head OFV-534 and a vibrometer controller OFV-

5000 from Polytec. The measurements at the two microphones and the LDV can 

be done simultaneously by the pulse system. 

 
Figure 5.1 Configuration of the measurement setup 

 

 
Figure 5.2 Picture of the measurement setup in the anechoic chamber. Loudspeaker: left; 

two microphones and leaf: middle; vibrometer: right. 

 

The measurement procedure consists of several steps:  

Step 1: In the first step, the sound intensity calibrator 3541 (Bruel & Kjaer) is 

used to calibrate the two microphones. 

Step 2: The calibrator SV30A (1000Hz 94dB/114dB) is used as a reference in the 

recorded pressure signals. 

Step 3: A measurement without leaf is performed to identify the frequency range 

where the measurement is valid and not disturbed by the spatial separation 

between the two microphones or by microphone phase mismatch. This step is 

comparable to the error checking in vector sound intensity measurements using a 

two microphone system. The excitation is a logarithmic frequency sweep.  

Step 4: The leaf with branch is introduced in the measurement setup and the 

branch is fixed on a support. This support can be adjusted in order to guarantee 

the presence of the leaf between the two microphones when the measurement is 

`

Computer

Pulse system

LDA
Microphones

Loudspeaker

L1 L2

Amplifier
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ongoing. The measurement points can be chosen at the centre or at the boundary 

of the leaf. However, the measurement points for LDV are not exactly the same 

as those for the microphones since the laser beam reflection would otherwise be 

disturbed by the presence of the microphones. As a result, the measurement 

points for LDV are usually around 0.01m away from the centres of the 

microphones. The excitation is also a logarithmic frequency sweep. (Note: the 

leaves with their branches were taken from a tree about half an hour before the 

actual measurement. During this time, their branches were put in water to prevent 

withering.) 

 

Several tests were performed with this measurement setup; the microphones were 

interchanged each time to reduce the effect of phase error at low frequencies. The 

following leaf species have been considered: lime tree (Tilia), holly (Ilex), cherry 

laurel (Prunus laurocerasus), beech (Fagus), Japanese cherry (Prunus serrulata), 

elm (Ulmus), and butternut (Juglans cinerea). Some physical parameters of these 

leaves are given in Table 5.1 and pictures for each leaf are shown in Figure 5.3.  

 

Table 5.1 Parameters for the leaves used in the measurements. 

Name of the Leaf Weight 

(g) 

Area 

(10-3m2) 

Mass per unit 

area (g/m2) 

Measurement 

date 

Lime tree (Tilia) 1.247 14.3 87.2 Aug. 27, 2010 

Holly (Ilex) 1.614 5.4 298 Aug. 30, 2010 

Cherry laurel  

(Prunus laurocerasus) 

2.743 9.6 286 Aug. 30, 2010 

Beech (Fagus) 0.745 8.4 88 Aug. 31, 2010 

Japanese cherry 

(Prumus serrulata) 

1.131 6.8 166 Sep. 2, 2010 

Elm (Ulmus) 1.375 7.2 192 Sep. 2, 2010 

Butternut  

(Jaglans cinerea) 

0.748 8.1 92 Sep. 2, 2010 

 

The complex equivalent density is calculated from the measured velocity v and 

the two measured pressures p1 and p2 as 

v

pp

ri

211 





 ,  (5.1) 

where 𝜔 is the angular frequency and Δr is the distance between the two 

microphones. In order to reduce background noise, especially from the LDV 

equipment, both nominator and denominator are multiplied by p1 (or convolved in 

time domain) and the resulting transfer functions are truncated in the time domain. 
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Figure 5.3 Pictures of the seven leaves used in the measurements. 

 

III. Measurement results for different leaves 

 

The measurements for each leaf were repeated at least five times and an average 

was made for the experimentally defined density. The measurement point was 

located close to the centre of the leaf.  

 

The velocity spectrum of the lime tree is given in Figure 5.4; and the 

corresponding pressure spectrum at microphones 1 and 2 is given in Figure 5.5. 

The measurements at the same point were shown to be repeatable. According to 

the velocity spectrum of all the seven leaves (see Figure 5.4 and figures in 

Appendix A), the leaves appear to behave like plates with many different modes 

of vibration within the frequency range studied, which shows agreement with the 

findings by Martens and Michelsen [18]. It is noticed in Figure 5.5 that the 

pressure difference increases with the increase in frequency. At low frequency, 

the wavelength is much greater than the dimension of the leaf and as a result, the 

influence of the leaf is negligible. With the increase in frequency, the dimension 

of the leaf becomes comparable to and then larger than the wavelength, so the 

leaf has a significant influence on the sound wave and a different pressure 

spectrum between microphones 1 and 2 is observed.  

 

Figure 5.6 shows the real and imaginary part of the leaf density for the lime tree. 

For the other six leaves, the results of their density can be found in Appendix A. 

In this approach, density is frequency dependent. The frequency range where the 
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equivalent density somewhat resembles a real density is extremely narrow to non-

existing. It is noticed that below 200 Hz, all the results show an unexpected 

upward trend. This trend is caused by the integrated high-pass filter in the LDV 

equipment, resulting in changes in phase and amplitude. These changes can be 

compensated for according to the characteristic curves of the filter during post-

processing. Since the influences of the high-pass filter cannot be fully removed, 

this trend is still present. Near 500 Hz all density spectra show a little wiggle 

which originates in the pressure and velocity measurements. This is probably due 

to a standing wave between loudspeaker and leaf in this particular setup – heavier 

leaves indeed show a stronger peak near 500 Hz. Between 500 Hz and 8000 Hz, 

the expected fluctuations can be found; they can be attributed to the different 

modes of vibration and the fluctuations in pressure spectrum, which are visible in 

Figure 5.4 and Figure 5.5. At about 8000 Hz, the measured value drops to zero 

which is due to limitations in the measurement procedure.  

 

Due to the complexity of the structure of the leaves, no trend in the oscillating 

behaviour seems obvious by comparing the measurements of density. However, it 

can be found that with the increase of frequency, from 100Hz to 4000Hz, there 

are more peaks. This is caused by the fact that the wavelength becomes smaller 

and its value becomes closer to the leaf size. As a result, resonances appear. 

 
Figure 5.4 Frequency spectrum (dB) of the measured velocity for the leaf of a lime tree. 

The curves with different colour indicate different repetitions of the measurement. The 

reference velocity is 10-9 m/s, which was used in Ref. [18]. 

 

  



 

70 

 

 
Figure 5.5 Pressure spectrum (dB) for the leaf of a lime tree at 2 microphones. The curves 

with different colour indicate different repetitions of the measurement. The labels of 

'Pressure Spectrum 1' and 'Pressure Spectrum 2' indicate the results for microphones 1 and 

2, respectively. The reference pressure is 2×10-5 Pa. 

 
Figure 5.6 Average real part (left) and imaginary part (right) of the density spectrum for 

the leaf of a lime tree. 

 

IV Comparison between the measurement and FDTD simulation 

 

Representing the complex equivalent density as a simple function of frequency, 

which could be transformed to a time-domain model, appears almost impossible. 

Therefore, Chapter 3 presents another approach. In this approach, the bending of 

the leaf and the damping of the vibration are included (see eqn. (3.9)). This 

approach couples the leaf vibration to the air-acoustic part by assuming that the 

air moves at the same velocity as the leaf on its surface. The boundary conditions 

for the leaf vibration are not easily determined. For simplicity, it is assumed that 

the leaf is fixed (vx=0, the leaf is assumed to be on the y-z plane) at one point, 

thus ignoring the dynamics of the stem. Also, free vibration on all other edges is 

assumed. 

 

The leaf vibration also requires a stability criterion to be fulfilled. In general, the 

restrictions imposed by this criterion on dt are less stringent than the conditions 

imposed by the propagation in air, especially for the low bending stiffness 

encountered in leaves. 
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The mass per unit area of a leaf is easily determined and the values for the leaves 

used in the current studies are given in Table 5.1. The way to estimate the 

bending stiffness and the damping terms for each leaf is presented in section 3.4 

and it is assumed that the leaf is isotropic. As there is no accurate method to 

measure values like Poison's ratio and Young's modulus of a leaf, values 

appearing in literature will be used. 

 

As an example of this procedure, the leaf of cherry laurel is considered. The 

spatial discretisation step in the direction normal to the leaf was 0.01m 

corresponding exactly to the distance between the microphones, which leads to 

the same error due to approximating spatial derivatives by a finite difference. The 

spatial discretisation step in the direction parallel to the leaf plane is chosen to be 

0.0005m according the discussion in section 3.4. Figure 5.7 shows the results of 

equivalent density for a cherry laurel leaf with different bending stiffness 

(between 0.00021N·m and 0.00518N·m). It is worth noting that to some extent, 

the inclusion of the bending stiffness for the cherry laurel leaf induces 

fluctuations in the density spectrum. However, the simulated fluctuations cannot 

match the measured ones. The reason can be attributed to the complex structure 

of the leaf, such as the uneven density distribution and the irregular surface 

profile, which is not considered in the required detail in the FDTD model. The 

pressure difference is plotted in Figure 5.8; and the comparison shows that FDTD 

can provide reliable simulation results for the pressure field. In this figure, the 

pressure difference below 1000Hz is very small. This can be attributed to the fact 

that in this frequency range the wavelength is much larger than the size of leaf. 

As a result, the influence of the leaf is negligible. From 1000Hz to about 5000Hz, 

the pressure difference increases with the increase of frequency as the wavelength 

becomes comparable to the size of leaf and some energy is blocked by the leaf. 

Above 5000Hz, this difference becomes small perhaps because the leaf vibrates 

with the incident waves and as a result the energy can propagate through it. In 

addition, the pressure difference by numerical simulation is always greater than 

that by measurements. This can be attributed to the fact that in the measurements 

the leaf was connected with its twig which could vibrate with sound; while in the 

simulation the leaf was fixed at one point which had no velocity. 
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(a) D=0.00021 

 
(b) D=0.00052 

 
(c) D=0.00104 

 
(d) D=0.00207 
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(e) D=0.00415 

 
(f) D=0.00518 

Figure 5.7 Comparison of equivalent density from the measurement results and the 

numerical results by FDTD for cherry laurel. The bending coefficient D is from 

0.00021N·m to 0.00518 N·m. The damping terms R1=0.013, R2=0.038 and RL=2.4 s-1with 

reference to the values used by Chaigne and Lambourg [103]. 
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Figure 5.8 Comparison of the pressure difference (dB) from the measurement results and 

the numerical results by FDTD for cherry laurel.  The bending coefficient D is from 

0.00021N·m to 0.00518 N·m. The damping terms R11=0.013, R12=0.038 and RL=2.4 s-1 

with reference to the values used by Chaigne and Lambourg [103]. 

 

Although one cannot expect the FDTD model to predict the oscillation 

frequencies precisely, there are still possibilities for improvement: (1) vibration 

damping could be studied further, and the best fitted damping terms can be 

determined according to the comparison of measured and simulated reverberation 

time; (2) the bending stiffness could be made location-dependent with a higher 

stiffness towards the middle of the leaf; (3) the stem of the leaf could be included 

explicitly; (4) boundary conditions could be improved. The correspondence 

between measurement and simulation could also be improved further by 

accounting for the fact that the vibration and pressure measurements are not 

performed at the exact same location. 

5.1.2 Leaf above porous substrate
3
 

 

I. Introduction 

 

This section considers a specific case of a porous medium covered by a plant leaf. 

This situation is of interest to outdoors sound propagation studies whereby the 

presence of plant leaves can have an influence on the ground effect, green roof 

absorption, and the absorption coefficient of green walls.  

 

An important question is whether the presence of plant leaves can result in a 

noticeable change in the absorption coefficient of a porous material, such as the 

soil substrate in a green wall or a porous forest floor. 

 
3The content in section 5.1.2 has been published in JASA: 

Lei Ding, Timothy Van Renterghem, Dick Botteldooren, Kirill Horoshenkov and Amir 

Khan: Sound absorption of porous substrates covered by foliage: experimental results and 

numerical predictions. J. Acoust. Soc. Am. 134 (6), 4599-4609 (2013). 
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A porous substrate can often be simulated by a rigid frame model [91], which 

assumes that only the air inside the porous medium vibrates. Some examples of 

the application in the time-domain can be found in the work by Van Renterghem 

and Botteldooren [29, 30, 43], and Salomons et al. [72]. It has been shown that 

the rigid frame model can provide a reasonable parameter fit to model the 

reflection from typical outdoor soils [106]. However, there are situations where 

the frame density is relatively small so that the frame vibration cannot be 

neglected. In these situations, the acoustic characteristics of the material frame 

must be taken into account as well. This is the case for one of the low-density 

porous substrate used in the experiments by Horoshenkov that have been used for 

validation purposes here. Since the current study looks at much higher 

frequencies than in typical (outdoor) noise control applications, the use of more 

advanced models might be needed [140]. Accurately modelling the substrate 

behaviour is of importance in this study, since the interaction between leaves and 

substrate is expected to be a secondary effect. Also for consistency, the same 

model has been applied to both types of substrates considered in this section. 

 

For the case study in this section, the model, which has been derived from Biot's 

model [88, 89] and introduced in section 3.1, is used to predict the coupled 

movement of the elastic frame and fluid inside the porous medium. The model is 

implemented as an extension of the finite-difference time-domain approach.  

 

The bending wave equation for a thin uniform and homogeneous plate [60] is 

used to model the vibration of a loose leaf rested just above the porous substrate. 

Plate vibration damping and viscous and thermal conductivity boundary layer 

absorption on the leaf surface are the main mechanisms for acoustic energy loss. 

 

II. Numerical setup 

 

Figure 5.9 shows the cross-section of the impedance tube used. The diameter of 

the impedance tube is 0.029 m. The porous substrate is placed at the right end of 

the impedance tube. The distance between the plane wave sound source and the 

porous substrate is 0.07 m. The pressure is recorded at two points, M1 and M2, 

representing the positions of the two microphones in the experimental setup. The 

first microphone (at point M1) and the second microphone (at point M2) are at a 

distance of 0.03 m and 0.035 m from the source, respectively. In the simulations, 

a perfectly matched layer (PML) [90] is used at the left end of the impedance tube 

as a non-reflection boundary condition.  
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Figure 5.9 Cross-section of the impedance tube used in the numerical simulation. A plane 

wave sound source is located at S. Points M1 and M2 indicate the locations of two 

microphones. The leaf is placed at L, and the gap between leaf and porous substrate is 

0.001 m. 

 
For all the simulations in this section, the spatial discretisation step is 0.001 m in 

all three directions, and the time step dt equals 1.6981×10
-6

 s, yielding a Courant 

number of 1. To generate the normal incidence plane wave, a Gaussian modulated 

pulse is added to all grid points lying in the source plane: 

    2
exp2sin cscSpulse ttatfAS   ,        (5.2) 

where A
S
 is amplitude of the source; f

c is central frequency; t
c
 is central time; and 

as is the parameter determining the signal bandwidth. The following values are 

chosen: fc=3000Hz, tc=5dt, and a=1.6×10
7
. The value of AS has no meaning, since 

spectral division has been applied during post-processing of the time-domain 

responses. By these choices, it is guaranteed that all sound frequencies of interest 

are sufficiently excited, and that a smooth course of the pulse over time is 

obtained. 

 

For the numerical simulation in the poro-elastic substrate, it is assumed that the 

adiabatic index equals 1.4 and the ambient pressure (P0) is 0.1 MPa. The mass of 

air per unit volume (ρ
0
) is 1.2 kg/m

3
. Other material parameters are slightly tuned 

as explained later. 

 

After performing the time-domain simulation, the absorption coefficient can be 

calculated according to the ISO10534-2 standard [144]. Firstly, the fast Fourier 

transform is used to get the frequency spectra of the two pressure signals at points 

M1 and M2 (Figure 5.9). Then, these two pressure spectra and the distance 

between two microphones are used to calculate three parameters: HI, HR and H12, 

which are transfer functions for the incident wave, reflected wave and total sound 

field, respectively. After that, the reflection coefficient can be calculated by 

12

12

12 xj

R

I
c e

HH

HH
r 




 ,         (5.3) 

where κ is wave number and x1 is the coordinate of the first microphone with 

reference to the origin, the right-end of the impedance tube. Finally, the 

absorption coefficient can be obtained from 
2

1 cpm r .           (5.4) 
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III. Comparison with experimental results 

 

In this sub-section, the absorption coefficient for the porous substrate with and 

without leaf is calculated. Firstly, the leaf effect is not considered and the 

physical parameters of the porous substrate are determined. These parameters are 

the porosity, flow resistivity, structure factor, bulk modulus and damping 

coefficient of the material frame. Secondly, the effect of a leaf on the absorption 

of the porous substrate is studied. In this step, the influences of the bending 

stiffness of the leaf and the leaf surface density have to be determined as well. 

 

Porous substrate without foliage: 

The acoustical properties of a porous substrate were investigated with a 29-mm 

diameter impedance tube in the Acoustics Laboratory at the University of 

Bradford. The standard material characterisation procedure as described in Ref. 

[145] was used to determine the acoustical and related non-acoustical properties 

of the porous material specimens. Two kinds of porous substrates were used in 

the measurements. Figure 5.10 illustrates a 25-mm thick sample of Armafoam 

Sound 240 reconstituted foam supplied by Armacell UK Ltd and a 30-mm thick 

melamine foam supplied by Foam Techniques Ltd. These materials are well-

characterised so that it is possible to use them to represent soil substrates with two 

contrasting physical properties. Armafoam Sound 240 material has a relatively 

high density (240 kg/m
3
) which does not allow for frame vibration effects in the 

considered frequency range. This material has a relatively high porosity, φ≈0.8, 

which is akin to that typical for soil substrates used in green wall systems (Khan 

et al. [146]). The flow resistivity of melamine foam is similar to that of a porous 

soil substrate used for the design of green walls. The density of Melamine foam is 

relatively low (40 kg/m
3
) so that the frame vibration cannot be neglected and it is 

likely to have an effect on the acoustic absorption coefficient of the porous 

substrate. 

 

 
Figure 5.10 Photographs of the porous material samples used in the acoustic experiments, 

(a) Armafoam Sound 240, (b) Melamine foam. 

 

A trial-and-error approach has been applied in order to obtain a good fit between 

measurements and simulations. Initial values are the measured quantities and 

parameters for similar materials as found in literature. 
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Figure 5.11 shows the absorption coefficient spectrum of a 25-mm thick 

Armafoam Sound 240 specimen in the presence of a hard termination. A good fit 

between measurements and predictions is obtained when choosing the following 

material parameters: the porosity (φ) equal to 0.81; structure factor (ks) equal to 

8.4; flow resistivity (R) equal to 260 kPa·s·m
-2

; the Young's modulus of the 

substrate material (K
f
) equal to 1 MPa and a damping coefficient (R

f
) for the 

frame of 1600 kPa·s·m
-2

. The fitted porosity, structure factor and flow resistivity 

are compared with the non-acoustic measured results using the standard material 

characterisation procedure; and the comparison is given in Table 5.2. From this 

comparison and the results in Figure 5.11, it can be concluded that the 

implemented FDTD equations can provide a good and realistic prediction of the 

absorption coefficient of this type of porous substrate. 

 

Table 5.2. Comparison between the fitted porosity (φ), structure factor (ks) and flow 

resistivity (R: KPa·s·m-2) of the Armafoam Sound 240 foam and the non-acoustic 

measured results using the standard material characterisation procedure (Ref. [145]). 

 Fitted values Measured 

value 

φ 0.81
 

0.812
 

ks

 
8.4 7.37 

R  260 254 

 
Figure 5.12 shows the absorption coefficient of 30mm thick melamine foam, 

having a much smaller density of 40kg/m
3
. For this substrate, the one-fourth 

wavelength frame resonance [107] occurs around 2700 Hz. At this frequency, the 

wavelength is around four times the thickness of the melamine foam. The 

numerical model is able to simulate this frame resonance and accurately predicts 

the absorption coefficient of Melamine foam across the considered frequency 

range. The following values for the five non-acoustical parameters provide the 

best fit between the acoustic model and measured data: the porosity (φ) equal to 

0.98; structure factor (ks) equal to 1.22; flow resistivity (R) equal to 22 kPa·s·m
-2

; 

the bulk modulus of the substrate material (Kf) equal to 1.24 MPa and the 

damping coefficient (Rf) equal to 20 kPa·s·m
-2

. The comparison of the fitted 

porosity, structure factor and flow resistivity for this melamine foam with the 

measured values published by Dragonetti et al. [147] and Kino and Ueno [148] is 

given in Table 5.3. It is shown that these fitted parameters for the melamine foam 

are realistic. 
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Table 5.3. Comparison between the fitted porosity (φ), structure factor (ks) and flow 

resistivity (R: KPa·s·m-2) of the melamine foam with the published measured results by 

Dragonetti et al.(Ref. [147]) and Kina and Ueno (Ref. [148]). 

 Fitted 

values 

Dragonetti  

et al. 

Kino  

and Ueno 

φ 0.98 0.93 0.992-0.995 

ks 1.22 1.05 1.0053-1.0059 

R 22 10.7 10.5-17.5 

 
 

 

 
Figure 5.11 The absorption coefficient for a 25 mm hard-backed layer of Armafoam Sound 

240 foam. 

 

 
Figure 5.12 The absorption coefficient for a 30 mm hard-backed layer of Melamine foam.  
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Porous substrate with foliage 

 

In the experiment by K. Horoshenkov, leaves from four plants were used and 

their properties like surface densities and thickness are given in Table 5.4. A 29-

mm round cutter was used to produce a specimen from a leaf tissue that could fit 

accurately the diameter of the impedance tube. Photographs of these leaf 

specimens are shown in Figure 5.13. 

 

Table 5.4. Surface density and thickness of the leaves from four plants. 

Name Density 

(kg/m
2
) 

Thickness 

(mm) 

Japanese Andromeda (Pieris japonica) 0.367 0.41 

Scarlett Wonder (Rhododendron forrestii) 0.408 0.34 

Primrose (Primula vulgaris) 0.469 0.74 

Corsican Hellebore (Helleborus argutifolius) 0.22 0.43 

 

 

 
Figure 5.13 Photographs of the leaves used in the acoustic experiment. 

 

Three 1-mm diameter nails were inserted in the porous samples to form a support 

base for the 29-mm leaf specimen (see Figure 5.14). Measurements of the 

acoustic absorption of Armafoam Sound 240 material and Melamine foam with 

and without nails indicated that the effect of the three nails on the acoustic 

absorption spectra was negligible and comparable to the reproducibility of the 

adopted measurement procedure. These nails served as small columns to support 

the leaf specimen during the measurement and to restrain to some extent the 

frame vibration when melamine foam was used as a porous substrate. The leaf 

specimen was placed on the top of the nails in the porous sample in the 

impedance tube so that there was approximately a 1-mm air gap between the leaf 

and the top surface of the porous sample as illustrated in Figure 5.14. In this way, 
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there was no mechanical contact between the top surface of the porous sample 

and the bottom surface of the leaf specimen. Therefore, the leaf was simply 

supported at three points so that we were able to measure the influence of the leaf 

vibration and its acoustical shielding effect on the acoustic absorption coefficient 

of the porous sample that was representing the soil. 

 

 
Figure 5.14 The arrangement for the leaf support over the porous substrate: (a) dimensions 

of leaf support, the distance between two supports is 15 mm and the distance from support 

to the foam edge is 5.5 mm; (b) leaf on top of melamine foam. 

 

In the numerical simulation, a single leaf, which fully covers the cross section of 

the impedance tube, is placed in front of the porous substrate and the distance 

between the leaf and the substrate is set at 1 mm. The four leaves described above 

were considered and in the cells that form the 'numerical' leaf, the volume density 

is calculated according to the leaves' surface density. The bending stiffness of 

each leaf is estimated according to eqn. (3.44) introduced in section 3.4.  

 

For the leaves used in the following simulations, the average thickness has been 

given in Table 5.4. Earlier work suggests that the Poisson’s ratio of an isotropic 

leaf specimen is close to 0.25 [138]. For the leaf’s Young’s modulus, eqns. (3.45) 

and (3.46), based on the work done by Saito et al. [128] and Niinemets [131], can 

be used as a first estimate. The leaf volume density for Japanese Andromeda, 

Scarlet Wonder, Primrose and Corsican Hellebore can be calculated according to 

the surface density and thickness (Table 5.4), yielding 895kg/m
3
, 1200kg/m

3
, 

634kg/m
3
 and 512kg/m

3
, respectively. According to eqn. (3.46), the bulk elastic 

modulus for Japanese Andromeda, Scarlet Wonder, Primrose and Corsican 

Hellebore can be estimated to be 24.8 MPa, 32.5 MPa, 18.1 MPa and 15 MPa, 

respectively. Then, these values can be used in eqn. (3.45) to get the estimations 

for the leaves’ Young’s modulus. Finally, the bending stiffness can be calculated 

using eqn. (3.44). This finally gives as a rough estimate for the bending stiffness 

equal to 0.0025 N·m, 0.0018 N·m, 0.01 N·m and 0.0017 N·m for each of the four 

leaves.  

 

The absorption coefficients for the 25 mm Armafoam Sound 240 foam with three 

different leaves (Japanese Andromeda, Scarlet Wonder and Primrose) are shown 

in Figure 5.15-Figure 5.17. The simulation results in Figure 5.15(a), Figure 5.16(a) 
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and Figure 5.17(a) do not consider the influence of the leaf bending stiffness. 

They are smoother, when compared to the measurements. In Figure 5.15(b), 

Figure 5.16(b) and Figure 5.17(b), the effect of the bending stiffness on the 

predicted absorption coefficient of the porous substrate covered by a leaf is 

included in the simulation results. It can be found that when bending stiffness is 

included, the absorption coefficient follows the same trend as that without 

considering leaf bending, but obvious fluctuations can be noticed that show 

qualitative agreement with the measurements. The bending stiffness given in 

Figure 5.16 and Figure 5.17 is modified from the theoretical estimates discussed 

above to improve correspondence with measurements. A possible reason for this 

difference is that (3.45) is based on the leave from Quercus glauca and Quercus 

serrata, which both have a relative flat surface. In contrast, the leaves from 

Scarlet wonder and Primrose have a rather uneven surface (see Figure 5.13). As a 

result, eqn. (3.45) becomes less accurate and also makes it more difficult to obtain 

the correct leaf thickness, which has a strong effect on density and an even 

stronger effect on bending stiffness (third power dependency according to eqn. 

(3.44)). For the leaf from Japanese Andromeda, using the calculated bending 

stiffness gives an absorption coefficient that fits the measurements better because 

this kind of leaf has a flat surface. 

 

Figure 5.18 shows the absorption coefficient for the 30-mm melamine foam with 

Corsican Hellebore leaf. Unlike Figure 5.15-Figure 5.17, Figure 5.18 does not 

show results including leaf bending, as no effect of the latter was observed. A 

possible reason for this phenomenon is that the rather large absorption coefficient 

of the 30mm melamine foam generates much weaker standing waves between 

leaf and porous foam. As a result, the leaf bending does not influence the overall 

absorption characteristics significantly. 

 
The results presented in Figure 5.15-Figure 5.18 show that in the presence of a 

leaf the absorption coefficient of a porous substrate decreases in the high 

frequency range above 2000-3000 Hz, increases in the middle frequency range 

between 500 Hz and 2000 Hz and keeps unaffected in the low frequency range 

below 250 Hz. Although the agreement between measurements and simulations is 

generally close, there are some discrepancies. These can be attributed to the 

complex structure of the leaf, which is simplified in the numerical predictions. 

For example, the extension of the veins of leaf and the uneven distribution of the 

leaf surface density could give rise to deviations from the assumed uniform 

properties of the leaf. It is also difficult to ensure that there is no circumferential 

gap between the edge of the leaf and the wall of the impedance tube and that the 

mechanical boundary conditions on the edge of the leaf are accurately modelled. 
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Figure 5.15 The absorption coefficient of a 25 mm hard-backed layer of Armafoam Sound 

240 foam covered with a Pieris Japonica leaf: (a) D=0; (b) D=0.0025 N·m.  
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Figure 5.16 The absorption coefficient of a 25 mm hard-backed layer of Armafoam Sound 

240 foam covered with a Scarlet wonder leaf: (a) D=0; (b) D=0.004 N·m. 

 

 

 
Figure 5.17 The absorption coefficient of a 25 mm hard-backed layer of Armafoam Sound 

240 foam covered with a primrose leaf: (a) D=0; (b) D=0.002 N·m. 
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Figure 5.18 The absorption coefficient of a 30 mm hard-backed layer of Melamine foam 

covered with Argutifolius leaf.  

 

IV. The influence of leaf surface density 

 

In this section, the effect of leaf surface density is numerically studied and the 

bending stiffness is set to 0. The leaf surface density is a parameter that is likely 

to vary largely from plant to plant [137]. On the other hand, this is a parameter 

that is rather easy to quantify and use in the model so that the predicted results 

can be directly translated into practical applications. The effect of the leaf surface 

density on the absorption coefficient of the AFS240 foam and Melamine foam 

samples was modelled here and the results are shown in Figure 5.19 ~ Figure 5.20, 

respectively.  

 
The results presented in these figures suggest that below 1-2 kHz the effect of leaf 

surface density on the combined leaf-foam absorption system is relatively small 

and that above 1-2 kHz this effect becomes more pronounced. The absorption 

coefficient of the porous substrate covered by a leaf increases with the decreased 

leaf surface density. Furthermore, the presence of a leaf with a lower surface 

density results in absorption coefficient enhancement across a wider frequency 

range than in the case of a leaf with a higher surface density. This effect is 

particularly obvious for the low-permeability AFS240 foam. Specifically, Figure 

5.19 shows that adding a leaf with the surface density of 100 g/m
2
 can increase 

the absorption coefficient by up to 20% below 4000 Hz, while adding a leaf with 

a larger surface density results in absorption enhancement limited to frequencies 

below 2500 Hz. For the high-permeability foam, changes in absorption 

coefficient by adding a leaf are even stronger. The decrease in absorption at 

higher frequencies is more pronounced for leaves with a higher surface density. 

 

Three conclusions can be drawn from these results: (i) introducing a low-density 

leaf near a porous surface results in an enhancement of absorbing coefficient in 

the mid-frequency range (500-2500 Hz); (ii) this effect is particularly pronounced 
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in the case of a low-permeability porous substrate; (iii) at high frequencies, there 

is a decrease in absorption. 

 
Figure 5.19 The effect of leaf surface density on the absorption coefficient of a 25mm 

hard-backed layer of Armafoam Sound 240. 

 
Figure 5.20 The effect of leaf surface density on the absorption coefficient of a 30mm 

hard-backed Melamine foam. 

 

5.2 Behaviour of a group of leaves4
 

 

I. Introduction 

 

The 3D finite-difference time-domain model was used to simulate the interaction 

between a single leave and sound waves in section 5.1 and showed good 

agreement with measurements. 

 
4The content in section 5.2 was published in the following conference paper: 

Lei Ding, Timothy Van Renterghem and Dick Botteldooren: An efficient approach to 

evaluate multiple scattering by foliage in a 3D-FDTD model. Proceedings of the 41st 

International Congress and Exposition on Noise Control Engineering (Inter-Noise), New 

York (2012). 
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The relative importance of the various interactions between leaves and sound 

waves remain a question. Scattering is expected to be the main effect, but also 

leaf vibrations [18, 59] and (viscous) damping near the surface of leaves could 

add to noise reduction.  

 

In order to simulate the interaction between sound and plant leaves numerically, 

3D models are needed. Furthermore, since effects are expected to become 

important at wavelengths shorter than the dimensions of the leaves, fine 

numerical discretisations are mandatory. As a result, this leads to a high 

computational cost. Especially the memory requirement is typically a major 

bottleneck when using the FDTD technique. 

 

The use of periodic/cyclic boundaries is a possibility to limit the computational 

cost. Only a small volume is considered, where sound passes through a number of 

times. In this explicitly modelled volume, only a few leaves are placed, 

representing a realistic leaf area density. The total propagation time will then 

define the width of the vegetation zone. A drawback of this approach is that 

randomness in orientation and spacing of leaves cannot be considered. 

 

Wave reflection and scattering, and also energy dissipation caused by viscosity, 

thermal conductivity and structural damping, are captured by the implemented 

FDTD model (see Chapter 3). In order to quantify transmission, the incident wave 

and reflected wave must be separated, which will be done in frequency domain. 

Finally, the transmitted amount of energy can be calculated. 

 

II. NUMERICAL MODEL 

 

The numerical model has been introduced in detail in Chapter 3. In between the 

scattering objects (leaves), lossless isentropic sound propagation is assumed 

leading to the linearised continuity equation and momentum equation, see eqns. 

(3.1)-(3.2). Close to the objects, the viscous and thermal conductivity damping in 

the boundary layer can be modelled by adding additional terms (in frequency 

domain) to the linearised velocity equations (in the directions which are parallel 

to the leaf surface plane) and pressure equations, see section 3.1 and ref. [61].  

 

The vibration of a leaf is modelled as a vibrating thin plate [60]
.
 The viscoelastic 

damping accompanying the leaf vibration can be included by employing the 

generalised Maxwell model, which has been used by Chaigne et al. [103, 104]. 

The leaf is approximated by a homogeneous plate having the shape of the leaf 

since taking into account the fine structure of the leaf is beyond reach of the 

numerical discretisation. The bending wave can propagate in the two in-plane 

directions. The details can be found in section 3.1, and the velocity equation for 

the bending leaf is eqn. (3.9). 
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The discretisation process by the finite-difference time-domain method has been 

described in section 3.2 and it has been used in the application for the single leaf 

problem. The choices of the corresponding parameters for the viscous damping in 

the boundary layer and viscoelastic damping during leaf bending have been 

introduced in section 3.4. 

 

Instead of simulating the whole vegetation volume, only a small cubic box is 

considered and multiple passages through this volume are modelled. For this, the 

concept of cyclic boundary condition is used: outgoing values on one boundary will 

be used as the ingoing values in the next time step at the other side of the simulation 

domain. For example, on the boundaries x=x1 and x=xN, the pressure equation and the 

velocity equation in x-direction can be written as 
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.           (5.6)                              

This periodic extension introduces periodicity in the leaf placement which will 

lead to special effects of periodic structure but these will occur mainly below the 

frequencies of interest if the basic simulation cell is kept large enough.  

 

Most applications of FDTD assume a spatially localised sound source. Because of the 

cyclic boundary, such a source would also be periodically extended which is not 

desired. Hence, we opt for a plane wave as a starting field. To minimise numerical 

dispersion, the initial plane wave is chosen to propagate along the diagonal of the 

cubic box [63]. The initial values for pressures and velocities are Gaussian modulated 

sine waves both in space and time. The centre plane of the Gaussian pulse must be 

chosen carefully in order to make the pressure and velocities on the edge of this cubic 

box match the pressure and velocities on the edge of its adjacent cubic boxes. The 

initial wave fields are therefore centred at three planes as shown in Figure 5.21. 

 
Figure 5.21 Diagram showing the three planes on which the wave fields are centred. 
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III. Post-processing: directional wave separation 

 

During the time-stepping, the amplitude of the plane wave propagating in the incident 

direction will be reduced because of scattering and dissipation. In order to quantify 

these effects, this plane wave has to be separated out of the total field. For this, the 

velocities and the pressures on the three planes orthogonal to the diagonal propagation 

shown in Figure 5.21 are recorded and the least-square-method [149] is used to 

separate the wave fields. The waves in a 3D-problem can be written as 

   




   destzyxs ti

nnnn
ˆ,,, ,                                                   (5.7) 

where ω is the angular frequency;  tzyxs nnn ,,,  is the signal in time domain and  ŝ  

is its corresponding frequency spectrum, which can be locally approximated by  

            ziziyiyixi

ref

xi

inc eCeCeBeBeAeA
    2121
,     (5.8) 

where Ainc denotes the amplitude of the wave propagating in the original diagonal 

direction; and Aref, B1, B2, C1 
and C2 denote the amplitudes of scattered waves in three 

directions. One of the three directions, x’(xn, yn, zn) is parallel to the diagonal direction 

and the other two directions, y’(xn, yn, zn) and z’(xn, yn, zn), are orthogonal to the 

diagonal direction. These coefficients can be found for each point on the planes 

orthogonal to the propagation direction shown in Figure 5.21 based on the recorded 

data at m neighboring measurement points (one of them lying outside the plane) by 

minimising the quadratic error  
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 .          (5.9)  

In order to find the minimum value, the derivatives to these coefficients are set equal 

to 0. As a result, a linear system of equations can be constructed which must be 

solved. 

 

The procedure described above is applied to the pressure field and to the x’-

component of the velocity field Vx’ – where in the latter case the B and C terms can be 

assumed zero. The cross power spectrum density is used to denote the energy or 

intensity propagating in the original plane direction u, and it is given by 

      incxincI VPS ,

*

 ,                                         (5.10) 

where Pinc(ω) and Vx’,inc(ω) are the frequency spectrum of the pressure and velocity 

propagating forwards in the diagonal direction; and the * in the superscript denotes 

the complex conjugate. Finally, intensity is calculated on all points and averaged over 

the plane. 
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IV. Numerical calculation 

 

The size of the unit cubic box in the simulation has dimension 0.3m×0.3×m0.3m. The 

cell size is 0.01m×0.01m×0.01m and the time step is chosen to make the Courant 

number equal to 1. Three types of leaves, namely Prunus Laurocerasus, Tilia and 

Prunus Serrulata, are considered. The size (width×length) of the Prunus Laurocerasus 

leaf, Tilia and Prunus Serrulata is 8cm×16cm, 12.1cm×13.1cm and 7.5cm×12cm, 

respectively. Their corresponding leaf areas are approximately 1.01×10
-2

m
2
, 1.36×10

-

2
m

2
 and 0.69×10

-2
m

2
; and the leaf surface density is 271 g/m

2
, 104 g/m

2
 and 185 g/m

2
. 

For each type of vegetation, a calculation was made with one, two or three leaves 

placed in this cubic box (one example of two leaves is given in Figure 5.22). The 

simulation with one leaf corresponds to a leaf area density (LAD) of 0.374m
-1

 for 

Prunus Laurocerasus, 0.504m
-1

 for Tilia and 0.255 m
-1

 for Prunus Serrulata.  

 

 
Figure 5.22 Diagram showing the three planes on which the wave fields are centred with 2 

leaves. 

 

The bending stiffness of the leaf can be calculated by eqn. (3.44). Published work by 

Takami Saito et al. [128]
 
suggests that the Young's modulus of the leaves from 

Quercus glauca and Quercus serrata plants are in the range of 200-800 MPa. Other 

work suggests that the Poisson's ratio of an isotropic leaf specimen can be taken close 

to 0.25 [138]. The thickness of the leaf has the order of magnitude of 0.0005m. Based 

on these values, the bending stiffness can be estimated and in this section it is 

assumed to be 0.0025N·m for all leaves.  

 

In order to present the sound transmission loss through the foliage, the (dimensionless) 

approach presented by Aylor [57] is used. The excess attenuation EA divided by the 

square root of the product of LAD and the breadth/width of the vegetation L, is shown 

as a function of ka, where k is the wave number and a is the typical leaf width. This 
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way of representing was shown to be independent of species when looking at sound 

transmission through reeds and corn [57]. 

 

V. Results and discussion 

 

Because of the presence of the leaves, scattering and dissipation will lead to 

transmission loss. Figure 5.23-Figure 5.25 show the decrease in intensity of the 

plane wave when it propagates through an area filled with Prunus Laurocerasus, 

Tilia, or Prunus Serrulata leaves. For the results at 4000Hz, the decrease in 

intensity is enhanced with propagated distance, when compared to the results at 

2000Hz. Two or three leaves attenuate more energy than one leaf because of 

stronger backscattering and higher energy dissipation. Initially, the attenuation is 

stronger than linear while after some propagation distance the attenuation is less 

than linear. The latter is due to multiple scattering resulting in part of the waves 

returning to the initial direction. 

 
Figure 5.23 Plane sound wave attenuation in Prunus Laurocerasus. The left figure shows 

the results at 2000Hz and the right one at 4000Hz. 

 
Figure 5.24 Plane sound wave attenuation in Tilia. The left figure shows the results at 

2000Hz and the right one at 4000Hz. 
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Figure 5.25 Plane sound wave attenuation in Prunus Serrulata. The left figure shows the 

results at 2000Hz and the right one at 4000Hz. 

 

 

Figure 5.26-Figure 5.28 show the attenuation normalised by leaf area density and 

the length of the propagation path. These curves show a similar behaviour as in 

the measurements performed by Aylor [57]. Furthermore, the values obtained 

have the same order of magnitude. The dimensionless transmission loss values 

still depend on the number of leaves (or LAD), in contrast to Ref. [57]. Note 

however that the LAD is much smaller in the current simulations. The current 

approach is expected to become invalid above ka=10-15. Furthermore, Figure 

5.28 shows that at low frequency the excess attenuation is negative, which can be 

attributed to the fact that the current wave separation approach is not valid at low 

frequencies. 

 

 
Figure 5.26 Normalized Excess attenuation for the leaf of Prunus Laurocerasus. 
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Figure 5.27 Normalized Excess attenuation for the leaf of Tilia. 

 

 
Figure 5.28 Normalized Excess attenuation for the leaf of Prunus Serrulata. 

 

5.3 Conclusions 
 

The FDTD model described in Chapter 3 has been used to simulate single leaf 

vibrations. Although the complexity of the leaf structure makes the experimental 

and numerical results difficult to compare, the obvious significant vibration when 

acoustic wavelengths approach leaf size has been observed both experimentally 

and numerically.  

 

This FDTD model has been used to numerically study the influence of loose 

leaves on the acoustic absorption of a porous substrate. Biot's theory is included 

in this model to simulate elastic frame porous substrates. The leaf vibration is 

simulated by the isotropic plate vibration theory; the viscoelastic damping during 

leaf vibration and the energy dissipation in the leaf's vorticity and entropy 

boundary layer are also considered in this model.  

 

0 5 10 15
0

1

2

3

ka

E
x

ce
ss

 A
tt

en
u

at
io

n
/(

F
*

L
)1

/2

 

 

1 Leaf

2 Leaves

3 Leaves

0 2 4 6 8 10
-1

0

1

2

3

4

ka

E
x

ce
ss

 A
tt

en
u

at
io

n
/(

F
*

L
)1

/2

 

 

2 Leaf

4 Leaves

6 Leaves



 

94 

 

The equations based on the Biot’s elastic frame porous medium model and 

isotropic plate vibration theory are solved using a finite-difference time-domain 

approach. According to the comparison with experimental results, this approach 

enables an accurate prediction of the absorption coefficient spectrum of a leaf in 

front of a porous substrate. The predictions were made using non-acoustical 

parameters which were deduced from the absorption coefficient spectra of porous 

specimens measured at normal incidence in the absence of leaf. The changes in 

the absorption coefficient spectra caused by the leaf vibration were closely 

predicted. Both the experimental data and numerical model predictions indicate 

that the absorption characteristics change noticeably when a leaf is added to the 

porous substrate. Typically, an unaffected change in the absorption coefficient 

spectrum in low frequency range (below 250 Hz), an increase in the middle 

frequency range (500 Hz-2000 Hz) and a decrease in the higher frequency range 

(beyond 2000-3000 Hz) are observed. 

 

The influence of the leaf becomes more pronounced when the leaf is added to a 

low-permeability substrate and when the leaf surface density is relatively small. 

The increase in absorption coefficient by leaves is in the typical frequency range 

of road traffic noise, while the negative effect by the presence of leaves is 

observed at sound frequencies that are typically too high to be of importance in 

environmental acoustics. 

 

With the inclusion of the cyclical boundary condition, the model can also be used 

to model the sound propagation through a cluster of tree leaves. Its prediction 

about the energy attenuation shows the same trend as the measurements through 

foliage by Aylor [57].   
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CHAPTER 6  

Acoustic wave propagation over noise barriers 
 

 

6.1 Numerical assessment of porous barrier by 2D-

UWVF
5

 
 

In this section, the effects of the porous and rigid low-height barriers along a two-

lane road are studied as shown in Figure 6.1. The width of each traffic lane is 4 m. 

When mixed traffic (including both light and heavy vehicles) is modelled, sound 

emitted by six point sources must be considered following the 

Harmonoise/Imagine road traffic source model [6]. The point sources are located 

in the middle of the traffic lanes. Points P3 and P6 (at a height of 0.01 m) are for 

the tire/road noise interaction of both light and heavy cars. P2 and P5 (at a height 

of 0.30 m) represent the engine noise sources of light vehicles, while P1 and P4 

(at a height of 0.75 m) represent the engine noise sources of heavy vehicles. 

 

Two dimensional calculations are performed. This means that the barrier has a 

constant cross-section, and that a coherent line source is modelled. However, the 

Harmonoise/Imagine road traffic source model was developed for a point source. 

To overcome this discrepancy, the equivalence between sound pressure levels, 

expressed relative to free field sound propagation, of a coherent line source and a 

point source is assumed [150]. 

 

 
Figure 6.1 Multi-lane traffic noise situation under study for the assessment of 

low-height noise barriers. 

 

 
5The content in section 6.1 has been published in ACTA ACUSTICA UNITED WITH 

ACUSTICA: 

Lei Ding, Timothy Van Renterghem and Dick Botteldooren: Estimating the effect of semi-

transparent low-height road traffic noise barriers with ultra weak variational formulation. 

ACTA ACUSTICA UNITED WITH ACUSTICA, 97(3), 391-402 (2011). 
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Both the street surface and pavement are modelled as rigid. A homogeneous and 

windless atmosphere is assumed. Given the low barrier height and the short 

propagation distances between the road traffic noise sources and the passengers, 

screen-induced refraction of sound is most likely very limited. 

 

Various noise barriers were considered in this traffic noise assessment. These are 

shown in Figure 6.2. Both the height and the width of all barriers is 1 m. It has 

been found that the T-shaped noise barrier could provide good noise reduction 

[151]. When the noise barrier is constructed on the pavement, half of the T-

shaped noise barrier has been used [5]. This shape is identified as Г-shaped in this 

thesis. The exploration of the UWVF method to estimate the effect of low-height 

noise barriers is limited to Г-shaped barriers. Five inverse Г-shaped barriers were 

tested, with different properties. The first one, barrier (a), is completely rigid. 

Barriers (b) to (f) are porous and have the same porosity and structure factor, of 

0.4 and 1.35, respectively. Barriers (b) and (c) have a flow resistivity of 50k 

Pa·s/m
2
 (sand, Ref. [152]), while (d) and (e) have a lower flow resistivity of 10k 

Pa·s/m
2
 (gravel, Ref. [153]). Furthermore, a rigid thin inner barrier is inserted in 

barriers (c) and (e) to prevent possible transmission through the porous barrier. 

Barrier (f) has a rectangular shape and a flow resistivity of 50k Pa·s/m
2
. 

 

 
Figure 6.2 Configurations studied: (a) rigid noise barrier (RNB); (b) porous noise 

barrier, flow resistivity 50k Pa·s/m
2
 (PNB50); (c) porous noise barrier with inner 

rigid barrier, flow resistivity 50k Pa·s/m
2
 (PNB50_RI); (d) porous noise barrier, 

flow resistivity 10k Pa·s/m
2
 (PNB10); (e) porous noise barrier with inner rigid 

barrier, flow resistivity 10k Pa·s/m
2
 (PNB10_RI); (e) rectangular porous noise 

barrier (1 m1 m), flow resistivity 50k Pa·s/m
2
 (PNB50_REC). For all porous 

noise barriers, the porosity is 0.4 and the structure factor is 1.35. 

 

Three regions of interest were defined behind the barrier where passengers could 

appear. The upper region extends 5 m behind the noise barrier, at a height 

between 1.5 m and 2 m. The middle one, at heights between 1.0 m and 1.5 m, and 

the lower region of interest is located between a height of 0.5 m and 1 m. Results 

are expressed as the average insertion loss for total A-weighted traffic noise in a 

given region of interest. The full traffic noise spectrum [6] is modelled by 

including the octave bands with central frequencies ranging from 63 Hz to 2000 

Hz. For each octave band, 21 equally-spaced frequencies were sufficient to reach 

convergence in octave band level. Three vehicles speeds were considered, namely 

30, 50 and 70 km/h. 
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In Figure 6.3, the total traffic noise insertion loss is shown at different vehicle 

speeds (30, 50, and 70 km/h), for the different barrier configurations considered. 

Four traffic noise situations are considered, namely a light vehicle in lane 1, a 

light vehicle in lane 2, a heavy vehicle in lane 1, and a heavy vehicle in lane 2. 

The upper region of interest is considered here, since this is the typical ear height 

of an adult person. Values for the insertion loss range from 2.5 dBA to 9 dBA. 

 

Lane use is an important parameter. The presence of either a light or heavy 

vehicle in lane 1 gives a higher insertion loss than when the vehicle is present in 

lane 2. Lane choice has a stronger influence for light vehicles than for heavy 

vehicles. The presence of vehicles in lane 2 leads to more noise generation 

sources that can contribute directly, without diffraction, to the upper region. 

 

 

 
Figure 6.3 Average insertion loss in the upper region of interest: a) Light vehicle in lane 1; 

b) Light vehicle in lane 2; c) Heavy vehicle in lane 1; d) Heavy vehicle in lane 2. 

 

It is further observed that the insertion loss is higher for light vehicles. For these, 

high frequencies contribute more to the total traffic noise levels. Diffraction 

around an obstacle is less pronounced for higher frequencies, and furthermore, 

the absorption at the barrier top is larger. With increasing vehicle speed, higher 
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frequencies and rolling noise become more dominant, and larger insertion losses 

are observed. This effect is more pronounced for either light or heavy vehicles 

present in lane 1. For heavy traffic in lane 2, this trend is not observed, and even a 

very small decrease in insertion loss with increasing vehicle speed can be found 

for some barriers. 

 

When comparing the different screens, it is observed that in all cases the porous 

barriers offer an improvement in shielding relative to the rigid one. At a 

maximum, an increase in insertion of 2 dBA is observed for light vehicles. For 

heavy vehicles, an increased shielding up to 1 dBA is found.  

 

The use of a lower flow resistivity of 10k Pa·s/m
2
 gives a somewhat worse 

performance than in the case of 50k Pa·s/m
2
, especially for light vehicles in lane 

1. In this specific traffic noise situation, the difference may amount up to 1.2 dBA. 

For heavy traffic, the influence of the flow resistivities considered in this 

numerical evaluation is very limited.  

 

The presence of a rigid thin inner barrier has only a limited effect for the flow 

resistivity considered. At 50k Pa·s/m
2
, there is sufficient damping when sound 

propagates through the barrier. As a consequence, transmission through the 

barrier is subordinate to diffracting waves over it. At a flow resistivity of 10k 

Pa·s/m
2
, the leaking of acoustical energy through the barrier has some influence 

on the total traffic noise levels. Preventing this transmission path by placing such 

an inner barrier improves shielding only to a small extent. It is further observed 

that a inversely Г-shaped screen shows a similar performance as the rectangular 

screen with the same porous medium parameters. 
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Figure 6.4 Average insertion loss (dB) in the upper region of interest for different octave 

bands. Vehicle speed is 50 km/h. ●: rigid noise barrier; ◊: porous noise barrier, flow 

resistivity 50k Pa·s/m2; ○: porous noise barrier with rigid bar inside, flow resistivity 50k 

Pa·s/m2; △: porous noise barrier, flow resistivity 10k Pa·s/m2; □: porous noise barrier with 

rigid bar inside, flow resistivity 10k Pa·s/m2; : rectangular porous noise barrier, flow 

resistivity 50k Pa·s/m2: a) Light vehicle in lane 1; b) Light vehicle in lane 2; c) Heavy 

vehicle in lane 1; d) Heavy vehicle in lane 2. 

 

When analysing different octave bands in more detail, as is shown in Figure 6.4 

for vehicle speeds of 50 km/h and sound propagation to the upper region, we 

clearly see the complex nature of this sound propagation problem. When there is 

a light vehicle in lane 1, an increase in insertion loss with increasing frequency 

can be observed. For higher frequencies, the differences between the various 

noise barrier configurations increase. For the other source locations, a more 

complex behaviour can be observed. For both a light and heavy vehicle in lane 2, 

the insertion loss is very similar. The main difference here is the presence of the 

engine noise source at a height of 0.75 m instead of 0.30 m. The difference in 

engine noise height is much more significant when situated close to the barrier. 

Note that the sound paths leading to destructive interference in the reference 

situation (i.e. rigid ground without obstacles) might be prevented by the presence 

of a barrier. This could lead to a very low insertion loss, as is observed for heavy 

traffic in lane 1 for the octave band with central frequency 500 Hz. The insertion 

loss of the gamma shape compared to the full barrier is larger in the 63-Hz octave 

band due to an internal resonance in the cavity. Its performance is slightly worse 

only at a few frequencies where insertion loss is high anyhow. An advantage of 

the gamma-shaped barrier is that the amount of material needed for construction 

is lower. 

 

The shielding in the middle and lower regions is significantly higher (see Table 6. 

1 and Figure 6.5 and Figure 6.6). The area in the receiver zone with direct sound 
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contributions decreases, and only diffracted and transmitted sound energy is 

found there. In the middle region, values of the insertion loss range from 5.1 dB 

to 13.0 dB, when considering all barriers, lane choices, vehicle types, and vehicle 

speeds. In the lower region of interest, these values range from 9.9 dB to 17.9 dB. 

Lane choice has a less significant effect than in the upper region of interest. 

 

In the middle and lower regions of interest, the presence of a thin rigid barrier 

inside the 10k Pa·s/m
2
 barrier leads to a more significant increase in insertion loss 

of up to 1 dB. For the 50k Pa·s/m
2
 barrier, the effect of the inner rigid barrier 

stays limited. In the lower region, the typical increase of noise barrier shielding 

with frequency as for common highway noise barriers is found as shown in 

Figure 6.6. 
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Table 6. 1 Average insertion loss (dB) in the three regions of interest. Vehicle speed is 30, 50, and 70 km/h. LV denotes light vehicle, HV denotes 

heavy vehicle. L1 denotes traffic lane 1, L2 denotes traffic lane 2. 
 RNB PNB50 PNB50_RI 

30km/h 50km/h 70km/h 30km/h 50km/h 70km/h 30km/h 50km/h 70km/h 

LV in L1 Upper 6.54 6.77 6.93 8.32 8.79 9.05 8.13 8.56 8.82 

 Middle 9.65  10.20  10.49  11.56  12.51  13.01  11.38  12.27  12.74  

 Lower 13.25  14.66  15.32  14.63  16.64  17.69  14.56  16.48  17.47  

LV in L2 Upper 2.59 2.61  2.61  3.54  3.64 3.67 3.48 3.58 3.61 

 Middle 6.42  6.78  6.93  7.81  8.39  8.66  7.72  8.27  8.54  

 Lower 11.41  12.52  13.04  12.36  13.91  14.69  12.28  13.76  14.50  

HV in L1 Upper 3.32  3.49  3.65  4.45  4.69 4.89 4.35 4.58 4.77 

 Middle 5.54  5.67  5.81  6.81  7.01  7.21  6.68  6.87  7.06  

 Lower 10.04  10.29  10.50  11.36  11.73  12.02  11.20  11.55  11.82  

HV in L2 Upper 2.57 2.51 2.48 3.41 3.38 3.38 3.35 3.32 3.31 

 Middle 5.14  5.13  5.14  6.37  6.45  6.52  6.26  6.32  6.38  

 Lower 9.85  10.23  10.47  10.98  11.52  11.89  10.88  11.40  11.74  

 PNB10 PNB10_RI PNB50_REC 

30km/h 50km/h 70km/h 30km/h 50km/h 70km/h 30km/h 50km/h 70km/h 

LV in L1 Upper 7.37 7.65 7.82 7.58 7.84 8.00 8.28 8.75 9.04 

 Middle 10.24  10.97  11.34  10.74  11.38  11.71  11.41  12.43  12.99  

 Lower 13.22 14.7 15.35 13.98 15.51 16.24 14.3 16.48 17.64 

LV in L2 Upper 3.28 3.35 3.36 3.27 3.32 3.32 3.57 3.68 3.72 

 Middle 7.15  7.69  7.94  7.41  7.86  8.07  7.84  8.45  8.76  

 Lower 11.17 12.31 12.86 12.11 13.38 13.99 12.18 13.79 14.63 

HV in L1 Upper 4.62 4.77 4.90 4.42 4.58 4.73 4.46 4.68 4.87 

 Middle 7.14  7.30  7.46  6.77  6.92  7.08  6.76  6.95  7.15  

 Lower 11.04 11.43 11.72 11.24 11.55 11.79 11.17 11.57 11.88 

HV in L2 Upper 3.3 3.24 3.21 3.30 3.23 3.20 3.42 3.38 3.37 

 Middle 5.98  6.04  6.09  6.12  6.14  6.18  6.36  6.42  6.48  

 Lower 10.14 10.58 10.87 10.73 11.17 11.47 10.98 11.53 11.91 
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Figure 6.5 Average insertion loss (dB) in the middle region of interest for different octave 

bands. Vehicle speed is 50 km/h. For a definition of symbols see Figure 6.4: a) Light 

vehicle in lane 1; b) Light vehicle in lane 2; c) Heavy vehicle in lane 1; d) Heavy vehicle 

in lane 2. 
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Figure 6.6 Average insertion loss (dB) in the lower region of interest for different octave 

bands. Vehicle speed is 50 km/h. For a definition of symbols see Figure 6.4: a) Light 

vehicle in lane 1; b) Light vehicle in lane 2; c) Heavy vehicle in lane 1; d) Heavy vehicle 

in lane 2. 

 

6.2 Scale model measurement of a noise barrier 
 

In this section, a highly detailed 1:30 scale model is used to study the sound 

propagation in an existing street canyon. The effect of absorbing low-height noise 

barriers constructed on the pavements are analysed. The scale model results are 

compared with full-scale measurements and 2D FDTD simulations. 

6.2.1 Scale model set-up and data analysis 

 
Scale model of a street canyon 

A highly detailed 1:30 scale model was constructed according to the profile of an 

existing street canyon, namely the Gustaaf Magnelstraat, which is located in 
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Ghent, Belgium. The length and the width of the street are around 105m and 10m, 

respectively. In Figure 6.7, a drawing of the geometry of the street canyon is 

depicted. The detailed model is created by laser-cutting 3.6-mm thick plywood, 

based on these drawings [154]. After assembly, the model was vanished to make 

the material acoustically harder.  

 

 
Figure 6.7 Detailed geometry of the 105m long street canyon used for the scale model 

 
Data acquisition system 

A synchronization system is used to control the scale model measurements. A 

wav-file is played by the loudspeaker, and at the same time the receiver records 

the signal. This system is implemented with NI's Labview, as summarised in 

Figure 6.8. Two modules have been used. The first module is used to play the 

signal. A DMX 6Fire USB sound card, produced by TERRATEC, is used and it 

can provide a sampling frequency up to 192 kHz. Then, a VSX-521 amplifier, 

produced by Pioneer, was used to control the volume of the output signal and 

'pure direct' setting was chosen in order not to affect the signal. Finally, the signal 

is played by the loudspeakers.  

 
The second module is used to record the signal. The receiver is a G.R.A.S. 40DP 

1/8 inch externally polarized pressure microphone, and it was connected to a 

preamplifier (type: 2669), produced by Bruel & Kjaer. In the measurements, the 

preamplifier with the microphone is placed horizontally. The microphone power 
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supplier (type: 5935) is connected to the preamplifier and the microphone to 

guarantee a 200 V polarization required by the microphone. They are then 

connected to the PC through a NI PXIe-1082, in which a 192 kHz sampling 

frequency is chosen.  

 

 
Figure 6.8 The measurement system of the scale model. 

 
To approach a point sound source, two types of loudspeakers were used. The first 

loudspeaker is the SB29RDC-C000-4, which was produced by SB ACOUSTICS 

emitting in the frequency range between 400 Hz and 40 kHz; the second 

loudspeaker is Murata ESTD02, which was produced by Murata Manufacturing 

Co. Ltd., and could produce sound signals in a frequency range between 30 kHz 

and 100 kHz. Their frequency ranges correspond to 13.3-1333 Hz and 1000-3333 

Hz at full scale, respectively. They sufficiently cover the frequencies of interest in 

road traffic noise applications. The two loudspeakers are placed in a plastic box 

and they are separated by a plastic beam. The plastic box is fixed below the rigid 

ground and one 3mm cushion is placed between them as a buffer. On the rigid 

ground, there are two holes above the centres of both loudspeakers. A steel tube, 

whose inner diameter is 6 mm, can be inserted into the larger hole and was 

designed for the SB29RDC-C000-4 loudspeaker. Similarly, another steel tube, 

with an inner diameter of 4 mm, can be inserted into the smaller hole and was 

designed for the Murata ESTD02 loudspeaker. The height of the tubes above the 

ground can be adjusted to satisfy the measurement requirements. In this study, the 

height of the tubes is set at 1 cm in the scale model. 

 
The reliability of the approximated point source, constructed in this way, has been 

verified. The test measurements were carried out in a high-frequency anechoic 

room at Ghent University. These tests were conducted with a flat rigid ground 

plate in the anechoic room in absence of obstacles. The heights of the source and 

receiver are 1.8 cm and 3.8 cm, respectively. The measurement set-up is 

described in Figure 6.9. In total, six receiver positions were considered. The 

horizontal distances between the source and the receiver are 0.05 m, 0.1 m, 0.2 m, 

0.3 m, 0.4 m and 0.6 m. The results are depicted in Figure 6.10. It can be found 

that the design of the point source is reliable. 

 

`

Computer

SoundcardAmplifierLoudspeaker

Microphone
NI Chassis

Pre-amplifier Amplifier

Module II

Module I



 

106 

 

 
Figure 6.9 Measurement set-up for the verification of point source in anechoic chamber. 

 

 

 
Figure 6.10 Comparison between measurements (black line) and analytical solutions (red 

line) for sound propagation over rigid ground. The unit of SPL is dB. 

 
In the scale measurements, the influences of an absorbing low-height noise 

barrier has been studied. The length of the absorbing noise barrier is 1.8 m, and 

its height and width are 0.0320 m and 0.0213 m, respectively (dimensions as in 

the scale model). It has a wooden inner bar, which is 0.008 m wide and 0.0253 m 

tall. One layer of 0.0066 mm rock-wool (density: 70 kg/m
3
) is glued on three 

sides (left, right and top) of the wooden bar and a double-side adhesive tape is 

glued on the bottom side. In the measurement, the wooden bar can be pasted on 

the rigid ground and this prevents sound leaking underneath.  

 

 

 

Loudspeaker

Source

L

Microphone

HmHs



 

107 

 

Measurement method 

The scale model is placed in the high-frequency anechoic room. The movement 

of the microphone is controlled by VXM Stepping Motor Controller, produced by 

VELMEX. The atmospheric pressure, temperature and relative humidity are 

recorded during all the experiments. These values are used to compensate the 

excess air attenuation, which will be introduced later. 

 
Two types of measurements were performed. In the first group, the scale-model 

measurements have been compared to the measurements in the (full-scale) street. 

Only the rigid ground and the building facades are considered then. The source 

and the receivers are placed along the central length axis of the street canyon (see 

Figure 6.11). The source position is fixed. On both sides of the sound source, five 

measurement positions were chosen. The interval between the measurements 

points is 33 cm (at scale), which corresponds to 10 m in the in-situ measurements. 

In both scale and in-situ experiment, a reference microphone was placed in the 

same cross-section as the source (see Figure 6.11).  

 

 
Figure 6.11 Configurations of the scale model for the first group of measurements. 

The two figures denote different angles of view. In the scale model, the heights of 

receiver (R) and reference microphone (ref) are 0.06m and 0.05m, respectively.  

 
In the second set of measurements, two 1.8-m long absorbing noise barriers were 

added to the street canyon, along the interface between the road and the 

pavements. The receivers were placed above one of these pavements. Three 

receiver-height levels were used, namely 3.3cm, 5cm and 13.3cm, which 

correspond to 1m, 1.5m and 4m at full scale. At each receiver-height level, in 

total nine measurement positions were chosen and the middle position (point 5) is 

in the same cross-section as the sound source (see Figure 6.12). The interval 

between adjacent points is 20cm at scale. 

 

 
Figure 6.12 Illustration of three receiver-height levels in the scale model. The two 

figures denote different angles of view. In the scale model, the heights for 

receiver levels 1, 2 and 3 are 0.033m, 0.05m and 0.133m, respectively. 
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In the scale model measurements, logarithmical sweep signals were used. The 

SB29RDC-C000-4 loudspeaker played back a sweep signal from 500 Hz to 35 

kHz and afterwards, the Murata ESTD loudspeaker produced a sweep signal from 

15 kHz to 96 kHz.  

 
Data analysis 

In the measurements, the time-domain pressure was recorded and the fast Fourier 

transform is used to transfer to the frequency domain. The results were analysed 

and presented per 1/3-octave band. 

 

Compensation for the excess attenuation of sound by air is needed during the 

scale-model experiment [86, 87]. This attenuation of sound is caused by classical 

absorption due to viscous and thermal conduction effects, and relaxation effects 

of nitrogen and oxygen molecules. Those effects increase non-linearly with 

frequency. Although the attenuation loss for the frequencies of interest in full 

scale can be negligible (e.g., up to 0.01 dB/m for 1000Hz according to ISO9613-

1:1993), it must be compensated for the frequency range employed at scale (e.g., 

attenuation loss is around 1 dB/m at 30 KHz for sound propagation through air at 

293 K, 53% relative humidity and 1.013 hPa according to ISO 9613-1:1993). In 

this thesis, a wavelet-based method is applied to correct the excess air attenuation 

and more details can be found in Hornikx and Forssen's work [87]. Based on the 

original and measured time signals, a corresponding impulse response can be 

obtained. In the time-scale plane, the impulse response is corrected for the time 

and frequency dependent excess air attenuation according to ISO9613-1:1993. A 

reconstruction gives a new impulse response, corrected for the excess attenuation. 

The frequency spectrum of the measured signals without air attenuation can be 

obtained from this new impulse response.  

 

6.2.2 Comparison between in-situ measurement and scale model 

 
The analysis for the in-situ measurements in the Gustaaf Magnelstraat has been 

presented by Thomas et al. [154, 155]. The comparison is shown in Figure 6.13. 

For the measurements whose central frequencies of 1/3 octave band at full scale 

are smaller than or equal to 630 Hz, the temperature and relative humidity in the 

measurements were 25 °C and 51%, respectively. For the measurements whose 

central frequencies of 1/3 octave band at full scale are greater than 630 Hz, the 

temperature and relative humidity in the measurements were 23 °C and 59%, 

respectively. The relative SPL is the difference of SPL between the measurement 

point and the reference position (see Figure 6.11 for the configuration of scale 

model). The value at distance=0m is therefore always 0. The other values are 

related to the 10 measurement positions. It can be found that although there were 

obvious differences between scale model and in-situ measurements, they show 

the similar trend of changes. At some 1/3 octave bands, such as 125, 200, 250, 

630, 800, 1600, and 2000Hz, the deviation is much smaller that that at others 1/3-
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octave bands, such as 400, 500, 1000 and 2500 Hz. One possible reason can be 

the presence of destructive or constructive interferences at the reference position. 

In the scale model, small deviations in the exact positioning between scale model 

and full scale could lead to large deviations in sound pressure levels under such 

conditions.  
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Figure 6.13 Comparison of 1/3-octave band sound pressure levels between the scale model 

measurements (circles) and the in-situ measurements (solid line). The excess air 

attenuation has been compensated. Sound pressure levels are referenced to the level at 0 m. 

6.2.3 Influence of absorbing noise barrier 
 

The influence of the absorbing noise barrier is studied by the same scale model. 

Two absorbing noise barriers with a wooden inner bar were placed at both sides 

of the street canyon. In total, four situations (see Figure 6.14) were considered, 

which are a rigid ground only (RG), an absorbing noise barrier on a rigid ground 

(ANB), an empty street canyon (SC) and a street canyon plus an absorbing noise 

barrier (SC+ANB). In each of these situations, nearly exact positioning was 

guaranteed by using the VXM Stepping Motor Controller.  

 

 
Figure 6.14 Four situations considered in the scale-model measurements. 

 

Three receiver-height levels were considered (see Figure 6.12). The first height is 

3.3 cm above the pavement and corresponds to the height of the absorbing noise 

barrier. This height corresponds to 1m at full scale, which is close to the average 

height of the ear of a five-year-old child. The second height is 5 cm above the 

pavement; a direct sound path could reach this receiver. This height corresponds 

to 1.5m at full scale and is close to the height of the ear of adults. The third height 

is 13.3 cm above the pavement and the absorbing noise barrier is again too low to 

block the direct sound. This height corresponds to 4m at full scale and is close to 

the height of the balcony of the first floor and is the standard height in noise 
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mapping. At each height, there are nine measurement positions. Point 5 is the 

middle position and is located in the same cross-section as the point source. On 

both sides of point 5, there are four measurement positions. For the measurements 

whose central frequencies of 1/3 octave band at full scale are smaller than or 

equal to 630 Hz, the temperature and relative humidity in the measurements were 

18 °C and 48%, respectively. For the measurements whose central frequencies of 

1/3 octave band at full scale are greater than 630 Hz, the temperature and relative 

humidity in the measurements were 23 °C and 54%, respectively. 

 

The relative sound pressure levels for each 1/3 octave band along the 

measurement points at level 1 is given in Figure 6.15. The SPL at the middle 

point at receiver-height level 1 in case of a rigid ground only is taken as a 

reference. The multiple reflections and diffusion in the street canyon have 

significant influences on the SPL. This conclusion can be drawn by looking at the 

comparisons between rigid ground (RG: rigid line) and street canyon (SC: solid 

line with circles) or between absorbing low-height noise barrier (ANB: rigid line 

with star) and street canyon plus absorbing low-height noise barrier (SC+ANB: 

dashed line). There are some exceptions, however, such as the difference between 

SC and RG at 250 Hz and the difference between SC+ANB and ANB at 160 Hz, 

and these can be attributed to the influences of wave interference. The insertion 

loss at this receiver-height level can be greater than 10 dB (see Figure 6.16). 

When the absorbing low-height noise barrier is applied, the direct sounds are 

blocked. If the street canyon is considered, the reflected and diffused sounds can 

be absorbed by this noise barrier.  
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Figure 6.15 Relative sound pressure levels per 1/3 octave band at level 1 for 4 situations: 

rigid ground (solid line), absorbing noise barrier (solid line with star), street canyon (solid 

line with circle), street canyon plus absorbing noise barrier (dashed line). CF denotes 

central frequency and the x-coordinate is the distance from the cross section of the sound 

source in full scale.  
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Figure 6.16 Insertion loss of the absorbing noise barriers on rigid ground (solid line) and in 

street canyon (dashed line with circles) at level 1. CF denotes central frequency and the x-

coordinate is the distance from the cross section of the sound source in full scale.  

 
The relative sound pressure levels for each 1/3-octave band along the 

measurement points at level 2 is given in Figure 6.17. The SPL at the middle 

point at level 2 in the measurements with rigid ground only is taken as the 

reference SPL. The influences of the absorbing low-height noise barrier are still 

important when comparing the results between RG (solid line) and ANB (solid 

line with stars) and between SC (solid line with circles) and SC+ANB (dashed 

line). However, the insertion loss of the absorbing noise barrier at level 2 (shown 

in Figure 6.18) is smaller than that at level 1 (shown in Figure 6.16). Figure 6.17 

shows that the effects of multiple reflections and diffusion are also significant, 

because SC (solid line with circles) and SC+ANB (dashed line) in general have 

larger sound pressure levels than RG (solid line) and ANB (solid line with stars), 
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respectively. The exceptions can be found because of the effect of wave 

interferences. 

 

 

 

 

 



 

118 

 

 

 

 

 
  
Figure 6.17 Relative sound pressure levels per 1/3 octave band at level 2 for 4 situations: 

rigid ground (solid line), absorbing noise barrier (solid line with star), street canyon (solid 

line with circle), street canyon plus absorbing noise barrier (dashed line). CF denotes 

central frequency and the x-coordinate is the distance from the cross section of the sound 

source in full scale.  
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Figure 6.18 Insertion loss of the absorbing noise barriers on rigid ground (solid line) and in 

street canyon (dashed line with circles) at level 2. CF indicates central frequency and the x-

coordinate is the distance from the cross section of the sound source in full scale.  

 

The relative sound pressure levels for each 1/3-octave band along the 

measurement points at level 3 is given in Figure 6.19. The SPL at the middle 
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point at level 3 in the measurements with rigid ground only is taken as the 

reference SPL. The insertion loss is shown in Figure 6.20. Similar conclusions as 

those at levels 1 and 2 can be drawn. According to the insertion loss of these three 

levels in Figure 6.16, Figure 6.18, and Figure 6.20, it can be concluded that with 

the increase of the height of the receivers, the influences of absorbing low-height 

noise barrier become less significant. 
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Figure 6.19  Relative sound pressure levels per 1/3 octave band at level 3 for 4 situations: 

rigid ground (solid line), absorbing noise barrier (solid line with star), street canyon (solid 

line with circle), street canyon plus absorbing noise barrier (dashed line). CF denotes 

central frequency and the x-coordinate is the distance from the cross section of the sound 

source in full scale.  
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Figure 6.20 Insertion loss of the absorbing noise barriers on rigid ground (solid line) and in 

street canyon (dashed line with circles) at level 3. CF indicates central frequency and the x-

coordinate is the distance from the cross section of the sound source in full scale.  

6.2.4 2D-FDTD simulation results 
 

In this section, the measurement results in the cross-section of the sound source 

are compared with the simulation results by 2D-FDTD model. The measurements 

were described in section 6.2.3 and in total four situations (rigid ground, 

absorbing noise barrier, street canyon and street canyon plus an absorbing noise 

barrier) are considered. The settings in the 2D-FDTD model are the same as those 

in the scale model measurements. There are two types of building facades 

considered in the 2D-FDTD model; one is a flat facade and the other is a 

simplified representation of the facade in the scale model (Figure 6.21). In the 

2D-FDTD model, the grid is 0.0005m and the time step is 8.4903×10
-7

s. 

 

 
Figure 6.21 Street canyon cross-section, used for the FDTD simulations in case of 

a uneven facade. The unit is meter.  

 

In the 2D-FDTD model, the building facades and the wooden inner bars are 

assumed to be rigid. The absorption coefficient of a 7 mm rock-wool sample, 

which was the same material as used in the scale model, was measured in an 

impedance tube. Then, a FDTD simulation was conducted and a trail-and-error 
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approach was applied to find a good fit between measurement and simulation. 

Two FDTD calculations were considered; one calculation uses Zwikker and 

Kosten's model [91] to simulate the rock-wool and the other uses Biot's model [88, 

89]. Although the rigid frame model has been used to simulate rock-wool [156], 

some other researchers mentioned that a poro-elastic model should be used 

instead [157]. Biot's model and Zwikker and Kosten's model are both tested here. 

One of the best fitting results is shown in Figure 6.22; the corresponding porosity, 

flow resistivity and structure factor for both two models are 0.97, 80 kPa·s·m
-2

, 

and 1.02, respectively. The simulations with Biot's model and Zwikker and 

Kosten's model are in good agreement, except that Biot's model predicts the 

frame resonance at around 5000 Hz. As the effect of frame resonance on the 

absorption coefficient is rather small, and focused in a narrow frequency region 

only, it was chosen to use the rigid-frame model given the significant increase in 

memory use and computing cost. 

 

 
Figure 6.22 Absorption coefficient of a 7mm rock-wool. The dotted line, dashed line and 

solid line denote the measurement results, the FDTD simulation with Zwikker and 

Kosten's model and the FDTD simulation with Biot's model, respectively. In both FDTD 

models, the porosity, flow resistivity and structure factor are 0.97, 80 kPa·s·m-2and 1.02, 

respectively. 

 
The insertion losses of the absorbing noise barriers on the rigid ground are given 

in Figure 6.23 - Figure 6.25. It is noticed that there are more obvious differences 

between FDTD simulation and scale measurements at lower receiver heights, 

where the influences of low height absorbing noise barrier is significant. For 

example, in Figure 6.23, the strong fluctuation is not simulated by the FDTD 

model. One possible reason, which can cause this disagreement between the 

measurements and the simulations, is the frequency-dependent characteristics of 

the absorbing materials [88, 89]. In the impedance tube measurement, the 

maximum frequency should not exceed 6400 Hz (See Figure 6.22), corresponding 

to 213 Hz at full scale. The characteristics of the absorbing materials at higher 

frequencies cannot be verified and rely on the suitability of the Zwikker and 

Kosten’s model with the fitted parameters from the low-frequency range. 
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Figure 6.23 Insertion loss of the absorbing noise barrier on the rigid ground at level 1 (1 m 

above the pavement in full scale).  

 
Figure 6.24 Insertion loss of the absorbing noise barrier on the rigid ground at level 2 (1.5 

m above the pavement in full scale).  

 
Figure 6.25 Insertion loss of the absorbing noise barrier on the rigid ground at level 3 (4 m 

above the pavement in full scale).  

 

The insertion losses of the absorbing noise barriers for the street canyon are given 

in Figure 6.26-Figure 6.28. The simulation results with flat and uneven facades 

are provided. FDTD simulation results (stars) with uneven building facade are in 

better agreement with the measurement results (solid line) than the FDTD 

simulation results (circles) with flat building facades. This shows the importance 

of incorporating the surface profile of the buildings. However, large differences 

between FDTD simulations and the scale model can be found, especially at 

higher frequencies and at lower receiver heights, such as 1000 Hz at levels 1 and 

2. The scale model has a complex 3D profile, and the 2D-FDTD simulation 

assumes that its 2D profile is extended infinitely. Furthermore, the real profile has 

been simplified. The backscattered waves from further in the street cannot be 

correctly modelled by a 2D model. Especially at high frequencies, this could be 
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relevant: direct sound cannot reach the measurement point and the diffracted 

waves are weak compared to the scattered waves.  

 

 
Figure 6.26 Insertion loss of the absorbing noise barrier in the street canyon at level 1 (1 m 

above the pavement in full scale).  

 

 
Figure 6.27 Insertion loss of the absorbing noise barrier in the street canyon at level 2 (1.5 

m above the pavement in full scale).  

 
Figure 6.28 Insertion loss of the absorbing noise barrier in the street canyon at level 3 (4 m 

above the pavement in full scale).  

 

6.3 Conclusions 
 
In section 6.1, the ultra weak variational formulation (UWVF) approach is used to 

study the effect of semi-transparent road traffic noise barriers of limited height for 

passengers on the pavement. This numerical method is extended to simulate 

sound propagation through a porous medium, based on the Zwikker and Kosten’s 
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porous rigid-frame model. Since the UWVF method is a volume-discretisation 

technique, the effective sound speed approach could be used to model sound 

propagation in a refracting atmosphere. 

 

Focus is on an efficient approach to calculate noise levels in multi-lane road 

traffic noise situations. Finding the number of basis functions for each frequency 

is a time-consuming task. It is approached by three initial evaluations per octave 

band. For the other frequencies constituting that band, the number of basis 

functions could be linearly interpolated without any loss in accuracy. Furthermore, 

it was shown that the exact source location only influences some of the matrices 

forming the system to be solved. The presence of different source locations, 

which is typical in mixed multi-lane road traffic, can therefore be solved in an 

efficient way. 

 

An assessment is made of the use of various porous low-height noise barriers of 1 

m high near multi-lane road traffic noise sources. Focus is on the zone were the 

human ear might be present. The Harmonoise/Imagine road traffic source model 

is used to predict total traffic noise levels. Depending on the type of traffic and 

the lane choice, values for the average insertion loss in a zone with heights 

between 1.5 m to 2 m (and for a distance of up to 5 m behind the noise barrier) 

range from 2.5 dBA to 9 dBA. The vehicle speeds considered were 30, 50, and 70 

km/h. It can therefore be concluded that although such zones are not completely 

shielded, significant reductions in the sound pressure levels are nevertheless 

found. The effect of vehicle speed on the insertion loss was shown to be very 

limited. At lower receiver-height levels, the values for the insertion loss are much 

higher, and may amount up to 18 dBA. These calculations were performed 

excluding facade reflections. 

 

Porous barriers can improve noise shielding up to 2 dBA for total road traffic 

noise, when compared to geometrically identical rigid noise barriers. The flow 

resistivity of the porous medium was shown to be an important property. 

However, a detailed optimisation of the porous medium properties is not 

considered in this study. For more transparent low-height noise barriers, the use 

of an inner rigid barrier leads to a small improvement in shielding, mainly at 

lower receiver heights.  

 
In section 6.2, scale model measurements, considering the full geometrical detail 

of the building facade, have been described. The comparison between the results 

from the scale model and the in-situ measurements shows good agreement for 

most 1/3 octave bands.  

 

When porous noise barriers are placed at both sides of the street canyon, the 

insertion loss significantly decreases compared to a situation without facade 

reflections (e.g. a non-urban situation). Numerical simulations further show the 

relevance of including facade irregularities that have a significant impact on the 

insertion loss of a low-height absorbing noise barrier placed in an urban canyon.  
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CHAPTER 7 General conclusions and future 

work 
 
Recently, natural and sustainable materials, such as vegetation, green roofs, green 

facades, and vegetated low-height noise barriers have been studied to elucidate 

their potential with respect to noise reduction in urban areas. This thesis aims at 

enriching already available methods by including the interaction between sound 

waves and such green materials. Low-height noise barriers and leaves are the 

focus in this work. Several new schemes have been integrated in the finite-

difference time-domain model. The model is then used to study the influence of 

leaves on the sound field and predict the performance of two-dimensional low-

height noise barriers in a street canyon. A highly detailed scale model is 

constructed to investigate the influence of low-height noise barriers in a street 

canyon. In view of the important interaction between the street canyon and the 

barrier that was observed, an improved method, which could tackle some 

limitations in traditional techniques, and has the potential to be coupled to 

geometrical acoustic approaches, was sought. A possible candidate, the UWVF 

method, is used to estimate the effects of two-dimensional low-height noise 

barriers.  

 

A three-dimensional time-domain (3D-FDTD) model was developed to simulate 

the effects of leaves on the sound field because the bending and twisting of the 

leaf caused by the sound could be more easily implemented in the time-domain 

model. It is assumed that the leaf is isotropic and the air on the leaf surface moves 

at the same velocity as the leaf in the direction orthogonal to the leaf surface. The 

theory of thin plates was used to model the bending of leaves and their damping. 

Besides, the energy damping in the vorticity and entropy boundary layers of 

leaves was also included in the model. 

 

This model was verified by two types of measurements. The first type measured 

the pressure difference over the leaf and the velocity of a particular point on the 

leaf. Seven different leaf species were considered. The measurements agreed 

reasonably well with the simulations. In the second type of measurements, the 

sound absorption coefficient of a porous material covered by a leaf was measured 

in an impedance tube. Two porous materials and four leaves were used. Biot's 

poro-elastic frame model was implemented in FDTD to simulate frame 

resonances in the porous materials. The simulations show a good agreement with 

the measurements and the fluctuations in the measured absorption coefficient can 

be modelled when the leaf bending is included. 

 

The extended FDTD method was used to study the influences of leaf surface 

density (LSD) on the materials' absorption coefficient. It showed that the leaves 

with small LSD resulted in a stronger enhancement in the mid-frequency range 

(500-2500 Hz). In a next step, the model was applied to study the behaviour of a 

group of leaves. The efficiency of the calculation was improved by using cyclic 
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boundary conditions. Although the introduced periodicity in the leaf placement 

can lead to special effects, these occur mainly below the frequencies of interest if 

the basic simulation cell is kept large enough. An initial field, more particularly a 

plane wave, was used and the least-square-method was applied to separate the 

reflected and scattered wave fields. The case studies considered three types of 

vegetation. The normalized excess attenuation curves show a similar behaviour as 

in the measurements performed by Aylor [57]. It is also noted that two or three 

leaves attenuate more energy than one leaf because of stronger backscattering and 

higher energy dissipation.  

 

A two-dimensional finite-difference time-domain model was used to study the 

effect of low-height noise barriers in a street canyon. In the FDTD calculations, 

the absorbing low-height noise barriers were modeled by the Zwikker and 

Kosten’s model because the effect of frame resonances on the material's 

absorption coefficient is rather small and the Biot's model involves a higher 

computational cost. Both flat and uneven facades have been considered in the 2D-

FDTD simulation. A highly detailed 1:30 scale model was developed based on a 

real street canyon. The comparison between the scale model and full-scale 

measurements confirmed the reliability of the scale model measurements. 

Furthermore, the measurements in the cross-section of the sound source were 

compared to simulations showing the importance of accounting for diffuse 

reflection at the facades. 

 

The scale model measurements investigated the effect of absorbing low-height 

noise barriers along the street canyon. Three receiver-height levels above the 

pavement were considered. It was found that absorbing low-height noise barriers 

have a significant influence on the sound pressure levels at the lowest observation 

height. This influence decreases when the height of observation increases. The 

presence of building facades strongly reduces the shielding provided by such low-

height barriers. 

 

This work also aimed at developing a full three-dimensional model in order to 

include effects such as finite length low-height noise barriers or 3D scattering on 

facades. Because of the high computational cost in full-wave techniques, the 

method should be sufficiently flexible to allow coupling to other methods. 

Therefore, the ultra-weak variational formulation (UWVF) method was studied. It 

was successful in calculating the effects of low-height noise barriers in a two-

dimensional problem. Unlike the traditional finite-difference and finite-element 

methods, needing 10 grid cells per wavelength, two grid cells per wavelength can 

be used in the UWVF method. Moreover, the sound source doesn't need to be 

included in the computational domain. Although the application of angularly 

equal-distributed plane wave basis functions in the UWVF method could cause 

numerical instability or ill-conditioning, the conditioning of the UWVF could be 

improved by allowing the number of basis functions to vary within each 

computational grid cell, because one property of the UWVF method is that its 

overall conditioning depends on the conditioning of each grid cell. In this thesis, 
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the largest number of basis functions in each grid cell, which allowed the stable 

solution of the UWVF problem, is used. 

 

As with any frequency domain technique, the UWVF method needs one 

calculation for each frequency, and a lengthy process is needed to determine the 

number of basis functions each time the frequency is changed. This work used an 

efficient way to determine the number of basis functions for the frequencies in the 

same octave band. The numbers of basis functions in each grid cell are 

determined at lower, central and upper frequencies of the octave band, and 

interpolation was used to determine the number of basis function at other 

frequencies. This approach did not lead to a loss in accuracy, while the computing 

time was shortened by 40% to 70%, depending on the octave band considered. 

Besides, when the position of the sound source is changed, the linear system in 

UWVF method doesn't need to be fully reassembled. This also helps reducing the 

computational cost in realistic traffic situations (e.g. involving different traffic 

lanes). Zwikker and Kosten’s model was implemented in the UWVF method to 

model sound propagation in porous media by introducing a Helmholtz equation 

with complex wave number and modified fluid density. The Perfectly Matched 

Layer (PML) theory was applied in the UWVF technique to truncate the 

unlimited propagation domain.  

 

The UWVF method used in this work was verified by comparison with the finite-

difference time-domain (FDTD) method. Two test cases were considered. The 

first one considers sound propagation over porous ground in a refracting 

atmosphere and the second one considers sound propagation near a porous barrier. 

For both cases the results from the UWVF and FDTD were in very good 

agreement.The potential of the UWVF method in a realistic multi-lane road 

traffic noise situation was illustrated by studying the effect of a Γ-shaped low-

height noise barrier 

 

In the remaining paragraphs, some suggestions for future work are provided. An 

interesting approach is using an equivalent fluid model to study sound 

propagation through foliage. Typically, effective medium parameters are deduced 

by fitting to detailed numerical or analytical techniques. Such an equivalent fluid 

model is simpler and needs less computational cost. A drawback, however, is that 

such a model only simulates absorption and neglects the scattering caused by the 

trunks and leaves. The extended FDTD model could be a good alternative as 

homogeneity of such an equivalent porous medium does not need to be imposed. 

The extended FDTD model therefore provides a way to determine the local 

effective parameters and could improve such an equivalent fluid model.  

 

The methods studied in this thesis, including the FDTD method and the UWVF 

method, can be coupled with other methods, such as the pseudospectral time-

domain method or ray tracing method, in order to solve three-dimensional or 
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large-domain problems. In two-dimensional simulations, the low-height noise 

barriers and the facades are assumed to be infinitely long with a constant cross-

section. This means that the influences of cross roads and complex facades cannot 

be included. In such a coupled method, the demanding FDTD or UWVF method 

can be used in the domains surrounding the barriers or the facades, while faster 

techniques are applied to zones where the sound propagation problem is less 

complicated. 

 

In this work, focus is primarily on physical noise reduction. An important 

question remains about how such sounds are perceived, especially for the case 

that the effect of leaves on sound propagation is in general rather limited. On 

condition that a sufficiently wide range of sound frequencies can be captured by 

the numerical approaches, calculated impulse responses could be used to auralise 

the presence of foliage in different environments (like in an urban street). Based 

on listening tests the importance of e.g. facade irregularities for the human 

perception of sound could be assessed as well.  
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APPENDIX A: Measurement results for leaf 

vibration 
 
In this appendix, the measurement results for six leaves' vibration are provided 

below. These 6 leaves include holly (Ilex), cherry laurel (Prunus laurocerasus), 

beech (Fagus), Japanese cherry (Prunus serrulata ), elm (Ulmus), and butternut 

(Juglans cinerea). Detailed measurement settings and discussion has been given 

in section 5.1.1, based on the results of the leaf of a lime tree. For the frequency 

spectrum of the measured velocities, the curves with different colours indicate 

different repetitions of the measurement and the reference velocity is 10
-9

 m/s. 

 
Figure A.1 Frequency spectrum (dB) of the measured velocity for the leaf of a holly tree. 

The curves with different colour indicate different repetitions of the measurement. The 

reference velocity is 10-9 m/s, which was used in Ref. [18]. 

 
Figure A.2 Average real part (left) and imaginary part (right) of the density spectrum for 

the leaf of a holly tree. 
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Figure A.3 Frequency spectrum (dB) of the measured velocity for the leaf of a cherry 

laurel tree. The curves with different colour indicate different repetitions of the 

measurement. The reference velocity is 10-9 m/s, which was used in Ref. [18].  

 
Figure A.4 Average real part (left) and imaginary part (right) of the density spectrum for 

the leaf of a cherry laurel tree.   

 
Figure A.5 Frequency spectrum (dB) of the measured velocity for the leaf of a beech tree. 

The curves with different colour indicate different repetitions of the measurement. The 

reference velocity is 10-9 m/s, which was used in Ref. [18]. 

Figure A.6 Average real part (left) and imaginary part (right) of the density spectrum for 

the leaf of a beech tree. 
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Figure A.7 Frequency spectrum (dB) of the measured velocity for the leaf of a Japanese 

cherry tree. The curves with different colour indicate different repetitions of the 

measurement. The reference velocity is 10-9 m/s, which was used in Ref. [18]. 

 
Figure A.8 Average real part (left) and imaginary part (right) of the density spectrum for 

the leaf of a Japanese cherry tree. 

 
Figure A.9 Frequency spectrum (dB) of the measured velocity for the leaf of a elm tree. 

The curves with different colour indicate different repetitions of the measurement. The 

reference velocity is 10-9 m/s, which was used in Ref. [18]. 
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Figure A.10 Average real part (left) and imaginary part (right) of the density spectrum for 

the leaf of a elm tree. 

 
Figure A.11 Frequency spectrum (dB) of the measured velocity for the leaf of a butternut 

tree. The curves with different colour indicate different repetitions of the measurement. 

The reference velocity is 10-9 m/s, which was used in Ref. [18]. 

 
Figure A.12 Average real part (left) and imaginary part (right) of the density spectrum for 

the leaf of a butternut tree. 
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