
 
 

 

 

 

 

 

 

 

 

 

 

 

The very basic core of a man's living spirit is his passion for adventure. The joy of life comes from our 

encounters with new experiences, and hence there is no greater joy than to have an endlessly 

changing horizon, for each day to have a new and different sun. 

― Christopher McCandless 
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1.2. Ecological risk assessment 

Awareness for the anthropogenic impact on the environment has greatly increased the past decades. 

Human activities have been recognized as the major cause of climate change, biodiversity loss and 

disruption of  nutrient cycles (Hooper et al. 2005; Cardinale et al. 2012). Public reports of massive 

animal mortality after e.g. oil spills such as the Deepwater Horizon disaster (Abbriano et al. 2011) are 

typically observed following accidental discharges of chemical waste e.g. the 2015 dam burst in a 

Brazilian mine (UN Human Rigths 2015). However, pollution also affects ecosystems at smaller spatial 

scales and many effects are more subtle and do not necessarily lead to mass mortality of individuals 

(Fleeger et al. 2003). In order to prevent such effects, it is important to quantify the risk a chemical poses 

to the ecosystem to make informed decisions about its production and use. Most chemicals are potential 

hazards for ecosystems i.e. they have inherent properties that can cause damage to the ecosystem (van 

Leeuwen and Vermeire 2007). The ecological risk of a chemical refers to the probability that a chemical 

will cause damage to the ecosystem, taking into account exposure. Quantification of the risk a chemical 

poses for the ecosystem is done by performing an ecological risk assessment (ERA).  

In general, the goal of ecological risk assessment of chemicals is to quantify the risk that a concentration 

of a given chemical would impair the structure and functioning of natural ecosystems and to derive 

maximum environmental concentrations that prevent ecological effects (Preston 2002; De Laender and 

Janssen 2013). Typically, ecological risk assessment is divided in two parts: exposure assessment and 

assessment of the potential ecological effects (Figure 1.1; van Leeuwen and Vermeire 2007). Exposure 

assessment is used to determine the concentration to which the ecosystem will be exposed. In Europe, 

this is typically the Predicted Environmental Concentration (PEC). Chemicals in the environment 

undergo different processes such as (bio)degradation, absorption and evaporation (Chapman et al. 1998). 

All these processes will determine the final bioavailable concentration i.e. the concentration to which 

organisms are actually exposed. Effect assessment is used to determine the Predicted No Effect 

Concentration (PNEC), a threshold environmental concentration below which effects to the ecosystem 

are not expected to occur. Traditionally, the PEC value is divided by the PNEC to calculate the Risk 

Quotient (RQ). RQ values higher than 1 indicate potential risk when the chemical of concern would be 

released in the environment without mitigation measures.  
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Figure 1.1: Scheme of a traditional ecological risk assessment. Adapted from van Leeuwen and 
Vermeire 2007. 

Box 1.1: Selection of important environmental legislation in the European Union and their respective 
environmental objectives. 

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH; EC 2007): to regulate 

the production and use of chemicals. 

 Protection of human health and the environment 

 Increased transparency 

 Promotion of non-animal testing 

 Integration with international efforts 

Water Framework Directive (WFD; EC 2000; SCHER et al. 2013): to protect the ground and surface 

waters of Europe against environmental pollution 

 Good ecological status of aquatic water bodies. In other words, the characteristics of aquatic 

ecosystems should be as close as possible to the reference conditions of natural water bodies 

not subject to human pressure. 

Regulation 91/ 414/EEC: to regulate plant protection products (EC 2004) 

 The use of plant protection products does not have any long-term repercussions for the 

abundance and diversity of non-target species. This implies protection of populations and 

communities (not individual organisms), and the possibility of accepting some short-term 

effects if followed by recovery.  
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Legislation has been developed to prevent environmental risk by performing predictive risk assessments 

and specifying formal environmental protection goals. In Europe, several legislations were adopted over 

the years (Box 1.1). Biodiversity and ecosystem functions are usually specified as protection goals 

(Hommen et al. 2010). For example, the European Commission has made a commitment towards 

“halting the loss of biodiversity and the degradation of ecosystem services in the EU by 2020” (EU, 

2010) and, according to the Water Framework Directive (WFD), all European surface and groundwater 

bodies should have a good ecological status by 2015 (EU, 2000). The focus on biodiversity in legislation 

is understandable as biodiversity is generally considered an useful descriptor of ecosystem structure and 

its role in ecosystem productivity and stability is generally accepted in the ecological literature (Hooper 

et al. 2005, 2012; Cardinale et al. 2012).  

1.3. Current ERA methods and their limitations 

The number of registered chemicals is approximately 100,000 and still increasing (Clements and Rohr 

2009). To cope with this high number of chemicals, ERA is typically conducted using a tiered approach 

(Figure 1.2) i.e. chemicals that pose a higher risk at lower tiers are subjected to more extensive and 

complex risk assessment methods at higher tiers (Brock et al. 2006; SCHER et al. 2013). The lowest tier 

is primarily used for screening chemicals i.e. identification of chemicals that could pose a risk. This 

lowest tier is very similar in all EU directives and is based on the risk quotient i.e. the ratio of the PEC 

and the concentration at which effects are expected (Hommen et al. 2010). In all directives except for 

the plant protection directive, the Predicted No Effect Concentration (PNEC) is used as the reference 

concentration for effects. The PNEC is calculated by dividing the endpoint of the most sensitive test 

species by an appropriate assessment factor. Assessment factors, also sometimes called safety factors, 

are used to account for uncertainty concerning the accuracy of the selected endpoint such as intra- and 

interspecies differences in sensitivity, differences between acute and chronic tests and the lab-to-field 

extrapolation (Chapman et al. 1998). If the risk quotient is larger than 1, the chemical has a potential 

risk to the environment and needs to either undergo higher tier risk assessment to further assess the risk 

or be risk managed.  

The use of the risk quotient, and especially assessment factors, has been heavily criticized in ERA. 

Assessment factors are a conservative method to deal with the uncertainty related to the extrapolation 

to real situations but are based on policy and not on science (Chapman et al. 1998; Forbes et al. 2008). 

Indeed, this approach relies too much on expert judgement to relate risk ratios to environmental 

protection goals (Forbes et al. 2009a). This often leads to an overestimation of the risk and consequently, 

unrealistically low “safe” concentrations (Chapman et al. 1998). Also, this approach only uses the most 

sensitive endpoint of the available toxicity tests (Forbes et al. 2008). Unless additional toxicity tests 

reduce the assessment factor e.g. a chronic test versus an acute test, they are only used to calculate a 
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new PNEC when the measured endpoint is even more sensitive than the previous one. More information 

on the potential toxicity of a chemical does thus not necessarily lead to more accurate risk assessments 

with this approach. 

 
Figure 1.2: The tiered approach to the risk assessment of chemicals. Chemicals that pose a higher risk 
may be subject to more extensive assessment methods.   

Higher tier risk assessment methods include the use of extrapolation models and multi-species test 

systems. The species sensitivity distribution (SSD) is the most used extrapolation model and fits a 

probability distribution to a set of toxicity thresholds derived in single species toxicity tests (Forbes and 

Calow 2002; Posthuma et al. 2002). The probability distribution is used to determine a concentration at 

which a certain percentage of the species is not affected. Typically, the concentration at which 95% of 

the species are protected is used as  the PNEC value. A major advantage of this approach compared to 

the risk quotient technique is that it incorporates all information available from different species. The 

SSD approach has been compared with model ecosystem data and field data for many chemicals e.g. for 

endosulfan (Hose and Van den Brink 2004) and fluazinam (van Wijngaarden et al. 2005). Indeed, most 

SSD-derived treshold concentrations were protective for ecosystem structure and functioning (Versteeg 

et al. 1999).  However, the properties and underlying assumptions of SSDs have been discussed in depth 

over the years and questions, mainly related to their underlying assumptions, have been raised about 

their use for ecological risk assessment (Forbes and Calow 2002).  

One of the main issues is that the species included in the SSD are considered as components of a realistic 

community while this is rarely the case (Forbes and Calow 2002). Generally, any organism for which 

sensitivity data are available is included and this species is assumed to be equally important for structure 

and functioning of the ecosystem. This ignores the possible presence of keystone species which have a 

larger than average contribution to ecosystem structure and functioning. Also, SSDs assume that 

interactions between individuals and species will not influence the sensitivity of the community (De 

Laender et al. 2008c; Schmitt-Jansen et al. 2008). However, there are many examples of how ecological 

interactions can influence the outcome of chemical exposure and this assumption is thus unrealistic. For 

example, one modelling study compared a SSD approach that neglected ecological interactions with one 

that accounted for ecological interactions (De Laender et al. 2008c). The latter study showed that for 

approximately 25% of the toxicants, the SSD approach that took ecological interactions into account 
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was more strict than the SSD approach that neglected ecological interactions. Therefore, it is impossible 

to determine if derived safe concentrations with a SSD are protective for real ecological communities.  

Several statistical considerations need to be accounted for when applying SSDs. To calculate accurate 

percentiles, a sufficient number of species needs to be included and the appropriate distribution should 

be used. The amount of species needed differs between cases but has been estimated to range between 

15 and 55 species (Newman et al. 2000). This is higher than what is required for most regulatory 

purposes and for most chemicals this amount of data is not available. Also, the identity of the species 

included in the SSD will influence the derived safe concentrations (Forbes et al. 2001; De Laender et al. 

2013). Inclusion of a large number of species sensitive to a certain chemical e.g. primary producer for a 

photo-synthesis inhibiting herbicide, will lead to lower safe concentrations than a set of species where 

primary producers are under-represented (Van den Brink et al. 2006). To fit the SSD to the data, the log-

normal distribution is often chosen but this distribution is often not applicable to the data (Newman et 

al. 2000). These statistical considerations are often neglected which leads to inaccurate predictions and 

a high uncertainty on the derived percentiles and thus ‘safe’ concentrations (Forbes and Calow 2002). 

Finally, questions can be raised about how a SSD is used and interpreted. Often the HC5 i.e. the 

concentration at which 5% of all species are affected, is calculated and used as a safe environmental 

concentration. This assumes that 5% of the species is an appropriate protection level i.e. that the loss of 

5% of the species does not affect the ecosystem structure and functioning (functional redundancy) and 

that biodiversity, as a measure of ecosystem structure, is a more sensitive ecosystem endpoint than 

ecosystem functions (Newman et al. 2000; Forbes and Calow 2002; De Laender et al. 2008a). This 

appears to be true for herbicides, insecticides and fungicides: comparison between SSD-derived HC5 

values and no-effect concentrations in model communities showed that HC5 values were, in general, 

protective for at least short-term exposure (Van den Brink et al. 2006; Maltby et al. 2009). For 

insecticides, the SSD-approach was protective in 25 of the 27 cases when compared with experiments 

with model communities (van Wijngaarden et al. 2015). Further evaluation is however required for 

chemicals that have chronic toxicity or modes of action that have been rarely tested e.g. neonicotinoids.  

Experiments with model communities, both small scale (microcosms) and large scale (mesocosms), are 

currently considered the most ecologically relevant effect assessment techniques because they expose 

realistic aquatic communities over a longer period of time to the chemical (Schmitt-Jansen et al. 2008). 

This approach can account for ecological interactions and indirect effects i.e. effects on tolerant species 

through interactions with sensitive species (Fleeger et al. 2003; De Laender et al. 2011). Population and 

ecosystem recovery can also be assessed with this method. However, micro- and mesocosms also have 

several disadvantages. The amount of time and resources required to perform such experiments is a 

major drawback (De Laender et al. 2013). Also, interpretation of the results is non-trivial, although 

methods like the principal response curve technique have been developed to deal with this (Van den 

Brink and Ter Braak 1998). Other disadvantages include problems with scaling effects, the protection 
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of rare species, sensitivity to starting conditions and the inability to replicate every natural system 

(Forbes et al. 2008; Schmitt-Jansen et al. 2008). Effects occurring in the model communities do not 

necessarily correspond with effects at more realistic spatial scales, referred to as scaling effects (Forbes 

et al. 2008). For example, in realistic landscapes, migration of individuals can alter the observed effects. 

Moreover, model communities might miss effects on rare species not present in the sampled community. 

Species can also be sensitive to the starting conditions of the model community experiment, reducing 

the relevance of the experiments (Hjorth et al. 2007). Lastly, it is impossible to perform such 

experiments for each natural system. Comparison between different communities exposed to the same 

chemical has shown that, although the sensitive species are affected at similar concentrations, indirect 

effects and recovery can indeed be very different (Daam and Van den Brink 2010).   

In general, all current ERA methods fail to provide an accurate and certain answer to the central question 

in ecotoxicology: what are the large-scale effects of chemical stress in real-world systems (Beketov and 

Liess 2012). As a result, decisions in risk assessment are accompanied with large uncertainty and the 

prescribed protective concentrations are possibly either under- or overprotective. The major problem is 

how to extrapolate from these, at best, simple community tests performed in a controlled environment 

to the protection goals set by the authorities (De Laender et al. 2008a; Forbes et al. 2008). The 

relationship between typical ecotoxicological endpoints such as growth, survival and fecundity and 

population or ecosystem dynamics is complex, non-linear and thus difficult to predict using simple 

techniques (Forbes et al. 2008). Therefore, ecological risk cannot be adequately assessed using 

procedures that disregard most of the inherent environmental and ecological complexity (De Laender et 

al. 2014a). However, current ERA procedures fail to consider newly developed methods such as 

ecological models that were specifically developed to reduce the uncertainty in ERA. Also, it is unclear 

that current approaches are able to accurately predict future risks, especially considering that the number 

of environmental stressors are increasing (Grimm and Martin 2013). Multiple stressors can refer to a 

combination of different chemicals but also to the combination of chemicals and other abiotic stressors 

such as temperature (De Laender and Janssen 2013). How these multiple stressors interact is difficult to 

predict (Gabsi et al. 2014b) but it is clear that the presence of multiple stressors may have potentially 

large implications for ERA. 

1.4. Integration of ecology into the risk assessment procedure 

In order to more accurately predict the effects of chemicals on communities and ecosystems, more 

ecology needs to be integrated in ERA approaches (Chapman 2002; Clements and Rohr 2009; Grimm 

et al. 2009). The call for integration of ecological processes was already brought up as early as the 1980s 

– “putting the eco in ecotoxicology” (Cairns 1988) – and 1990s (Baird et al. 1996). Recent notable 

efforts call for the integration of macro-ecology in ecotoxicology (Beketov and Liess 2012) and for the 
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application of community ecology to ecotoxicological theory (Schmitt-Jansen et al. 2008). Scientific 

efforts have been done to address these concerns e.g. the use of ecological models (Galic et al. 2010). 

However, integration of more ecology at the regulatory level has thus far been limited to the use of 

micro- and mesocosm experiments as highest tier ERA tools. Criticism of the current ERA procedures 

was summarized in an opinion report of different Scientific Committees of the European Union (SCHER 

et al. 2013). The report recognizes that current ERA procedures lack ecological realism which leads to 

high uncertainty associated with the predictions made.  

With the current advances in ecological modelling and informatics, it should be feasible to use more 

complex and computationally intensive techniques that are better at integrating ecological principles. 

Several ecological features have been identified or suggested as important to consider in ERA. These 

include, but are not limited to, ecological interactions, patterns in exposure, the spatial structure and 

scale, the presence of keystone species, functional redundancy and recovery potential (Figure 1.3). Three 

of these are addressed in detail in this PhD thesis: ecological interactions, spatial scale and structure and 

recovery. Keystone species are not the focus of this PhD because they are not present in every 

community. Effects on functional redundancy is related to effects on ecosystem functioning while this 

work focuses more on patterns in species abundances. However, the tools developed in this thesis could 

easily be adapted to cover these two cases e.g. by adjusting the community to incorporate a keystone 

species or by monitoring ecosystem functions such as primary or secondary production.  

 

Figure 1.3: Overview of different ecological aspects that are often overlooked with traditional 
ecological risk assessment approaches. Aspects covered in this PhD thesis are marked in green. 

In ecosystems, individuals exposed to a chemical are not isolated but interact with individuals of the 

same and/or of other species. However, traditional ERA approaches regard individuals as discrete units 

instead of interacting entities (Preston 2002). In more diverse communities the number and complexity 

of interactions is higher than in less diverse communities (Relyea and Hoverman 2006). Accurately 

assessing species interactions is essential to perform ecologically realistic risk assessments (De Laender 

et al. 2014a). In natural systems, indirect effects of chemicals - effects on more tolerant species through 
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interactions with sensitive species - are common (Rohr et al. 2006; Clements and Rohr 2009). Because 

they involve multiple species, indirect effects are also intrinsically more complex and more difficult to 

predict (Rohr et al. 2006). Competition and predation are regarded as the most important ecological 

interactions when considering indirect effects of chemicals (Preston 2002).  

Competition can refer to competition for the same food source but also to competition for space, light 

or other limiting resources. Competition can occur between individuals of different species (interspecific 

competition) but also within one population of the same species (intraspecific competition). Generally, 

when chemical stress leads to decreased population densities, the surviving individuals in the population 

experience less intraspecific competition (Foit et al. 2012). This decreased intraspecific competition 

reduces the effect of chemical stress on population densities (Liess 2002; Foit et al. 2012; Del Arco et 

al. 2015) and allows more rapid recovery of population density or size structure after exposure (Foit et 

al. 2012; Knillmann et al. 2012b). For competition between tolerant and sensitive species, tolerant 

species are expected to be, at least partly, relieved from competition (Foit et al. 2012). Consequently, 

the tolerant species perform better after exposure to stress. This was experimentally shown for Daphnia 

magna and Culex sp. larvae exposed to fenvalerate (Foit et al. 2012) and for Daphnia spp. in microcosms 

exposed to esfenvalerate (Knillmann et al. 2012b). Other examples include modelling studies where 

competition prolonged the effects of the chemical (Kattwinkel and Liess 2013) or increased the 

vulnerability of the population to chemical stress (Gabsi et al. 2014b). In reality, species can interact in 

other ways than only via competition. For example, in an experiment with Asellus aquaticus and 

Gammarus pulex, competition positively influenced G. pulex survival during exposure to carbendazim 

(Del Arco et al. 2015). This was attributed to predatory compensatory mechanisms by G. pulex under 

food-limited conditions, showing that reality can be much more complex and unpredictable than 

standard experiments would suggest.   

For predation, chemical stress can either affect the prey, the predator, or both. Similarly to interspecific 

competition, effects on the predator may relieve the prey species from predation, allowing it to increase 

in abundance (Fleeger et al. 2003). For example, phytoplankton species increased in abundance after 

elimination of the grazers due to carbendazim toxicity (Van den Brink et al. 2000). A common 

observation when prey are more sensitive than predators is that prey exposed to a toxicant are more 

vulnerable to predation (Fleeger et al. 2003; Beketov and Liess 2006). For example, Artemia sp. 

populations went extinct after combined exposure to chemical stress and simulated predation (Beketov 

and Liess 2006). In this case, the predation pressure prevented density-dependent compensation for the 

chemical effect i.e. increased reproduction at low densities was not possible. Chironomus larvae were 

less active after cadmium exposure (Rooks et al. 2009). This increased their susceptibility to active 

predators but interestingly, the predation rate by ambush predators was not affected. Predator species 

can also be affected by chemical stress through their prey e.g. ciliates starved when their food source 

was eliminated by prometryn (Liebig et al. 2008). However, predation does not always lead to higher 
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effects of a chemical. Presence of predator kairomones resulted in Daphnia magna producing larger 

offspring that were more resistant to chemicals, thus reducing the effect of carbaryl exposure (Coors and 

Meester 2008; Gergs et al. 2013). How chemical stress interacts with competition and predation is 

clearly chemical and species specific. To predict how these interactions influence the effect of 

chemicals, a better understanding of the underlying processes is needed. 

Differences in application time, emission rates and location can result in significant differences in timing 

and levels of exposure, ultimately leading to different effects on local populations (Galic et al. 2012). 

Depending on the chemical identity, exposure patterns can differ greatly (De Laender et al. 2014a). 

Chemicals differ in their application time, partition to different compartments in the environment and 

differ in their persistence in the environment. These realistic exposure patterns can differ greatly from 

typical lab tests with short, constant exposure. Another important aspect is the timing of exposure in the 

life cycle of the exposed populations. Early life stages, especially embryonic stages, are often more 

sensitive to chemicals. Exposure during periods of reproduction can thus lead to larger population effects 

than exposure during periods of no reproduction, especially for species with long life cycles (Bridges 

2000; Galic et al. 2012). The landscape structure and the presence of unexposed populations is another 

factor determining the outcome of chemical exposure and is especially important for the recovery of the 

affected populations. For example, isolated communities recovered more slowly from the application of 

endosulfan than less isolated communities (Trekels et al. 2011). Similarly, the presence of 

uncontaminated patches decreased the recovery time of mesocosm communities after lufenuron 

exposure (Brock et al. 2009).  

“Keystone species” are species that are essential for certain ecosystem functions or that enable other 

species to survive in the ecosystem (Chapman 2002). Keystone species often indicate the presence of 

an ecological threshold and the loss of these keystone species often results in abrupt, non-linear changes 

in ecosystem structure and functioning that are difficult to recover from (Clements and Rohr 2009). For 

example, the burrowing ghost shrimp Neotrypaea californiensis is an important facilitator for many 

other species of the soft sediment benthos. Direct effects of carbaryl on this shrimp species also 

indirectly affected the associated benthos species (Dumbauld et al. 2001). Therefore, it is important to 

identify the presence and identity of keystone species in ecosystems. Closely related to this is the concept 

of functional redundancy. Functional redundancy occurs when the loss of some species does not result 

in the loss of ecosystem functioning because more tolerant species compensate for the affected species 

(Chapman 2002). Not all species are thus always equally important for the ecosystem structure and 

functioning and  ecological risk assessments should take this into account.  

Another often neglected characteristic of natural populations is their potential to recover after a 

disturbance event. In natural ecosystems, populations are regularly disturbed by environmental factors. 

If we consider the long-term effects of chemicals, the recovery potential of a population or ecosystem 
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is thus an important factor (Relyea and Hoverman 2006; Clements and Rohr 2009). The recovery 

potential differs between species and systems e.g. short lived species will typically recover quicker from 

chemical stress than species with a longer life cycle, and is influenced by other environmental factors 

e.g. indirect effects (De Lange et al. 2010; Knillmann et al. 2012b). Ideally, ecological risk assessments 

should take the recovery potential of a system into account and be more stringent when the recovery 

potential is low.   

1.5. Modelling as a risk assessment tool 

A main challenge in the field of ecotoxicology is to develop tools that can take into account the 

ecological complexity displayed in real ecosystems (Figure 1.3) so that site-specific effects can be 

assessed. Ecological modelling was proposed as one of the best options to improve effect assessment, 

specifically to account for ecological interactions and spatial and temporal variability in exposure 

(SCHER et al. 2013). However, the use of models is far less accepted in effect assessment than in 

exposure assessment. In particular, the development of FOCUS (FOrum for the Co-ordination of 

pesticide fate models and their Use; FOCUS 2001) models and scenarios provided a standardized way 

to develop and use environmental fate models (Grimm and Martin 2013; SCHER et al. 2013). The 

inherent complexity of ecosystems, the apparent lack of universal ecological laws and the lack of clear 

protection goals have hindered the acceptance of models as tools for effect assessment of chemicals 

(Van Straalen 2003; Van den Brink et al. 2006). In legislation, ecological models are thus mostly ignored 

as possible ERA tools. Only the guidance document relating to aquatic toxicology under Directive 

91/414/ EEC (SANCO 2002) lists ecological models as possible tools in higher tiered risk assessments 

for extrapolation from microcosm or mesocosm studies to the field (Hommen et al. 2010). It is clear that 

more ecological knowledge and more complex decision making is required to apply ecological models 

as tools for effect assessment (Dohmen et al. 2015). Indeed, modelling could be an ecology based 

alternative to the standard ERA approaches and can actually be used to assess the effects of chemicals 

on the actual protection goals i.e. biodiversity and ecosystem functioning (De Laender et al. 2008b; 

Forbes et al. 2009a). Potential applications of models in ERA include (i) evaluating the relevance of 

effects on individuals for population dynamics, (ii) extrapolation to untested exposure patterns, (iii) 

extrapolation of recovery processes from lab to field, (iv) assessment of indirect effects and (v) 

evaluation of bioaccumulation and biomagnification of chemicals (Hommen et al. 2010). Several 

initiatives have been taken during the past decade to explore and promote the use of ecological models 

in risk assessment e.g. the CREAM (Grimm et al. 2009) and ChimERA (De Laender et al. 2014a) 

projects, as well as through the establishment of  the MemoRisk SETAC advisory group (Preuss et al. 

2009b) and the organization of several workshops e.g. LEMTOX (Forbes et al. 2009b) and 

MODELLINK (Hommen et al. 2016).  
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Using models to assess the effects of chemicals on populations, communities or ecosystems has several 

advantages. Most importantly, models can help clarify how chemicals affect higher levels of biological 

organization, why certain effects are happening and what the most important drivers are (Grimm et al. 

2009). Ecological models have successfully been used to comprehend and predict the effects of 

chemicals on populations (Galic et al. 2010; Preuss et al. 2010; Dohmen et al. 2015), communities (De 

Laender et al. 2014b), and ecosystems (De Laender et al. 2015). With advances in computational power 

and efficiency, the explicit consideration of time and space in models is becoming more feasible (Galic 

et al. 2010). This allows the modelling of populations in heterogeneous landscapes, where the exposure 

can be drastically different between different locations and different times of the year. Modelled Asellus 

aquaticus populations were predicted to recover faster when connectivity in the habitat was higher 

(Galic et al. 2012). Exposure during periods of reproduction resulted in slower recovery, indicating the 

importance of the exposure profile. Models are also ideally suited to study how effects on individuals 

translate to effects on population and ecosystem dynamics (Bradbury et al. 2004; Forbes and Calow 

2012). For example, evaluation of different physiological modes of actions in Daphnia magna 

populations showed that direct effects on survival and reproduction had a much larger impact on 

population densities than effects on growth or feeding rate (Gabsi et al. 2014a). Modelling can thus help 

reduce the uncertainty associated with the extrapolation from ecotoxicological observations to 

ecological effects (Forbes et al. 2008).  

Modelling approaches can also be informative for the lower tiers of risk assessment. Experiments in 

silico can help to design toxicity tests, interpret individual responses to chemical stress and identify 

deficits in current datasets, allowing for more focused experimental work (Galic et al. 2010; Jager et al. 

2014). Moreover, the large amount of historical ecotoxicology data can be used for modelling purposes 

and models can reduce the need for additional ecotoxicological tests, reducing the amount of test animals 

needed. 

1.6. Individual based modelling 

Individual based models (IBMs) seem particularly suited for use in ERA. IBMs consider processes 

occurring at the individual level such as feeding, growth and reproduction (Martin et al. 2013b; Gabsi 

et al. 2014b). Population properties are not modelled directly but emerge from the individuals in the 

population. Since most ecotoxicological tests focus on the individual level, IBMs are ideal tools to 

translate these test results to the population level. Incorporating chemical effects on individuals in IBMs 

allows exploration of the effects of chemicals at the population level. In recent years, IBMs have been 

used to predict the population dynamics of a number of typical test species used in ecotoxicology e.g. 

Daphnia magna (Preuss et al. 2010; Martin et al. 2013a) and Asellus aquaticus (Galic et al. 2012). 

Similarly, the effects of a hypothetical insecticide on three populations of arthropods were modelled 
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using individual based models (Dohmen et al. 2015). These IBM applications neglected possible 

interactions with other species and focused solely on a single species. However, the absence of 

interactions between species is one of the main criticisms on current ERA methods (Rohr et al. 2006; 

Clements and Rohr 2009). Considering that ecological models have been suggested as tools to 

extrapolate individual-level effects observed in experiments to population, food web and ecosystem 

level effects (Grimm et al. 2009; De Laender et al. 2014a), it is important to develop ecological models 

that do incorporate interactions between species. One recent modelling effort showed that adding 

interspecific competition to individual-based models increased recovery times following chemical stress 

up to three times (Kattwinkel and Liess 2013). IBMs have however not been applied yet for more 

complex systems e.g. food webs, where more species and more interactions between these species need 

to be considered.  

1.7. Current limitations to using modelling in risk assessment 

Modelling could be useful to overcome many of the shortcomings of current ERA procedures. However, 

modelling needs to improve in certain key areas before it will be fully accepted as an ERA tool. These 

improvements are two-fold: (1) improvements of the science underlying the models and (2) 

improvements of the regulatory use of models (Grimm and Martin 2013). To improve the science behind 

the models, validation is of key importance i.e. how can we know that developed models capture reality, 

that the science is sound (Forbes et al. 2008; Grimm and Martin 2013)? Validation is, however, a very 

broad term and unclear terminology is often an obstacle to understand what validation entails (Augusiak 

et al. 2014). A better defined validation process such as the evaludation process defined by Augusiak et 

al. 2014, will increase the acceptance of models and increase the understanding of the science behind it.  

Validation is closely linked to the emergence of patterns from data (Grimm and Martin 2013). 

Observations are considered patterns if they are unlikely to result from random processes and thus 

contain information about the underlying organization. By comparing model output with these patterns, 

we can validate the model i.e. assess if the model accurately captures the underlying processes and is 

thus a realistic, scientifically sound representation of the world. A related scientific question is how 

general does a model need to be, how much complexity does it need, to accurately answer the questions 

posed (Forbes et al. 2008). In general, more complex models can predict the outcome more accurately 

but are harder to validate. The selection of the correct level of complexity for the focus situation is thus 

essential. 

To improve the regulatory use of models, risk assessors need to be convinced of their accuracy and 

potential (Forbes et al. 2009b; Grimm and Martin 2013). Risk assessors are usually not trained in 

modelling and cannot be expected to accurately assess the appropriateness and validity of a model. For 

exposure assessment, this problem was solved by developing the FOCUS framework (FOCUS 2001). 
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This provided risk assessors with a standard way to evaluate exposure models. A similar standardization 

is needed for ecological models. Some efforts have been made to promote the use of ecological models 

for ERA e.g. The EU-funded CREAM project (Chemical Risk Effects Assessment models; Grimm et 

al. 2009; Grimm and Thorbek 2014). Similarly, good modelling practices such as the ODD (overview, 

design concepts and details) protocol and TRACE (transparent and comprehensive ecological 

modelling) have been developed (Grimm et al. 2006; Schmolke et al. 2010).  

1.8. Problem formulation and objectives of this PhD thesis 

It is clear that ERA needs state-of-the-art tools to achieve its goal: accurately assessing the risk a 

chemical poses to the environment, taking into account essential ecological characteristics of real 

systems. One key characteristic that needs to be accounted for are interactions between individuals, both 

within one species and between different species. Individual based models (IBMs) are one of the most 

promising tools for ERA but their applicability to food webs is unclear. Also, realistic exposure 

scenarios, with spatial and temporal variability in exposure, need to be considered. Therefore, the 

objectives of this PhD thesis are: 

 understand how species interactions (competition and predation) interfere with chemical stress;  

 develop and apply IBMs for two species competing for the same food source; 

 develop an individual-based food-web model; 

 develop and apply an integrated ecological risk assessment model (ChimERA) to different 

environmental scenarios; 

This research is presented in five main chapters (Figure 1.4), increasing the complexity from simple 

food webs in the laboratory to more complex food webs in an integrated exposure and effect model. The 

main conclusions were summarized in a final chapter.  
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1.9. Thesis outline 

1.9.1. Species interactions and chemical stress 

Interactions between individuals of the same species and of different species will alter how these 

individuals respond to chemical stress. To understand how intra- and interspecific competition and 

predation can alter the effect of chemical stress, experiments were performed with simple food webs 

(Chapter 2). Communities of the water flea Daphnia magna, the rotifer Brachionus calyciflorus and 

the phantom midge Chaoborus obscuripes larvae were exposed to pyrene. Effects of pyrene were 

expected to be higher in D. magna populations exposed to strong competition or predation. The tolerant 

competitor B. calyciflorus was expected to increase in abundance after pyrene exposure. An indirect 

negative effect on the predator C. obscuripes was expected through direct pyrene effects on its prey D. 

magna. 

1.9.2. Modelling competing species under chemical stress 

Models can help to understand and predict the effects of chemicals on populations and food webs. IBMs 

in particular are useful because effects of chemicals can be included at the level of the individual, the 

focal level of standard ecotoxicity tests. To make the IBMs as widely applicable as possible, they should 

be based on a generic theory. In Chapter 3, I describe the development of the DEBkiss IBM: an 

individual based model based on the DEBkiss theory. Chemical effects were included in the model by 

considering effects on survival using either concentration-response curves or toxicokinetic-

toxicodynamics models.  

The validity of the DEBkiss IBM framework was tested in Chapter 4 by applying IBMs to the 

experiments with D. magna and B. calyciflorus described in Chapter 2. More specifically, I evaluated 

whether the DEBkiss IBM framework could simulate the population densities of these two grazers when 

exposed to pyrene, interspecific competition and both pyrene exposure and interspecific competition. 

This was done by comparing the model simulations with the patterns observed in the experiment.      

1.9.3. Food web model development and integration with a fate model: the ChimERA 

model 

Realistic ecosystems are not limited to two species but consist of many interacting species. In Chapter 

5, predation was therefore added to the competition implementation presented in Chapters 3 and 4 and 

used to develop an individual-based food web model. Although traditionally separated, exposure and 

effect assessment are both integral parts of ecological risk assessment. Chapter 5 is therefore concluded 
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with the integration of a fate model with the food web model, forming the ChimERA model: a spatially-

explicit model simulating both the fate of a chemical and the effects on the food web.  

1.9.4. Scenario analysis with the ChimERA model 

A key feature of the integrated ChimERA model is that the effects of different environmental parameters 

on the food web dynamics can be evaluated, opening a whole new, prospective approach to ERA. In 

Chapter 6, the influence of trophic state, temperature, hydrodynamics and chemical exposure pattern 

on the resulting chemical effects were evaluated. Effects of these environmental variables on the 

environmental fate of the chemical and on the food web dynamics was assessed.    

1.9.5. Conclusion and future directions 

In the final Chapter 7, the findings of this dissertation are reviewed and summarized in a set of 

conclusions. Suggestions and possible directions for future research are provided. 
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Figure 1.4: Schematic overview of the chapters included in this dissertation and the subjects they discuss. 
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2  
SPECIES INTERACTIONS AND CHEMICAL STRESS:

COMBINED EFFECTS OF INTRASPECIFIC AND

INTERSPECIFIC INTERACTIONS AND PYRENE ON 

DAPHNIA MAGNA POPULATION DYNAMICS 

Redrafted from: 

Viaene KPJ, De Laender F, Rico A, Van den Brink PJ, Di Guardo A, Morselli M, et al. Species 

interactions and chemical stress: Combined effects of intraspecific and interspecific interactions and 

pyrene on Daphnia magna population dynamics. Environ Toxicol Chem. 2015;34(8):1751–9.  
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Abstract 

Species interactions are often suggested as an important factor when assessing the effects of chemicals 

on higher levels of biological organization. Nevertheless, the contribution of intra- and interspecific 

interactions to chemical effects on populations is often overlooked. In the current chapter, Daphnia 

magna populations were initiated with different levels of intraspecific competition, interspecific 

competition and predation and exposed to pyrene pulses. Generalized linear models were used to test 

which of these factors significantly explained population size and structure at different time points. 

Pyrene had a negative effect on total population densities, with effects being more pronounced on 

smaller D. magna individuals. Among all species interactions tested, predation had the largest negative 

effect on population densities. Predation and high initial intraspecific competition were shown to 

interact antagonistically with pyrene exposure. This was attributed to differences in population 

structure prior to pyrene exposure and pyrene-induced reductions in predation pressure by Chaoborus 

sp. larvae. The results presented in this chapter provide empirical evidence that species interactions 

within and between populations can alter the response of aquatic populations to chemical exposure. It 

is concluded that such interactions are important factors to be considered in ecological risk 

assessments.  
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2.1. Introduction 

Current procedures for the ecological risk assessment (ERA) of chemicals are generally based on the 

extrapolation of individual-level responses to the whole ecosystem and often fail to integrate a sufficient 

level of ecological realism (De Laender et al. 2008b; SCHER (Scientific Committee on Health and 

Environmental Risks) et al. 2013). In ecosystems, individuals exposed to a chemical are rarely isolated 

but interact with individuals of the same and/or of another species. Despite being one of the key 

characteristics of ecosystems, interactions within and between species are rarely included in current 

prospective ERAs, especially for non-pesticidal chemicals (De Laender et al. 2008c). However, species 

interactions can alter the direct effects of a chemical on a sensitive species e.g. increased mortality after 

pesticide addition because of decreased predator avoidance behavior (Hanazato 2001). Alternatively, by 

interacting with sensitive species, tolerant species can also be affected leading to indirect effects of 

chemical stress e.g. starvation of the consumer species when the prey species is affected (Rohr and 

Crumrine 2005; De Hoop et al. 2013) or reduced competition with the affected species (Rohr and 

Crumrine 2005). The indirect effects of a chemical are often overlooked but can be as large or even 

larger than the direct effects of the chemical (Fleeger et al. 2003). Interactions with other species can 

either increase or decrease the susceptibility of populations and communities to a chemical (Preston 

2002; Fleeger et al. 2003). For example, the no observed effect concentration (NOEC) of prometryn for 

ciliates was more than two orders of magnitude lower in microcosms compared with a single-species 

toxicity test because of the sensitivity of their food source to prometryn (Liebig et al. 2008). Also, 

elimination of grazers by the fungicide carbendazim allowed certain phytoplankton species to increase 

in abundance (Van den Brink et al. 2000) and exposure to insecticides resulted in the development of 

anti-predator structures in daphnids, potentially reducing the effect of predation (Hanazato 2001). 

Accurately assessing species interactions is thus essential to perform ecologically realistic chemical risk 

assessments (De Laender et al. 2014a). 

Competition and predation are regarded as the most important species interactions when considering 

indirect effects of chemicals (Preston 2002). Competition can occur between individuals of different 

species (interspecific competition) but also within one population of the same species (intraspecific 

competition). Although several studies exist on the combined effects of interspecific competition and 

chemicals (Foit et al. 2012; Knillmann et al. 2012b), studies on how intraspecific competition affects 

the response of populations to chemical exposure are rather underrepresented in the ecotoxicological 

literature.  

The objective of the current chapter was to investigate how initial differences in species interactions 

influence the response of aquatic invertebrate populations to chemical stress. To this end, Daphnia 

magna populations were initiated with different levels of intraspecific and interspecific competition and 
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predation with pyrene as a chemical stressor. Population size and structure of D. magna were evaluated 

using generalized linear models. Higher effects of pyrene were expected in populations that are 

experiencing increased competition or predation pressure compared to a control population.  

2.2. Materials and Methods 

2.2.1. Experimental design 

D. magna populations were exposed to six levels of species interactions (i.e. species interaction control,

low and high intraspecific competition, low and high interspecific competition, and predation) and to

five different pyrene exposure profiles (i.e. control, solvent control, and low, medium and high exposure; 

see Table 2.1). The experiment was performed in triplicate (n = 3). Two additional replicates were added 

for the species interaction control treatment without pyrene exposure (n = 5). In a follow-up experiment, 

referred to as experiment 2, D. magna populations were exposed to continuous interspecific competition 

and to five different pyrene exposure profiles (i.e. control and four different pyrene concentrations; see

Table 2.1). The experiments were carried out in glass vessels (1.5 L) filled with 0.5 L of fresh water RT

medium (Tollrian 1993). The test vessels were randomly distributed within a water bath placed in a

temperature-controlled room (20.8 ± 1 °C) and exposed to low artificial light conditions (1000-1500

lux). Experiment 1 lasted for 29 days with an adaptation period of 7 days (day -7 until day 0). Pyrene

was added twice, on day 0 and day 8. After the second pyrene addition, population densities were

monitored for another 14 days until day 22. In the follow-up experiment, pyrene was added once after

15 days of adaptation (day -15 until day 0) and population densities were monitored for another 16 days 

until day 16.

The D. magna organisms used in the experiment were obtained from the laboratory culture of the 

department of Aquatic Ecology and Water Quality Management from Wageningen University (The 

Netherlands). Scenedesmus obliquus was used as a food source for the D. magna cultures prior to the 

experiment and throughout the course of the experiment. Test vessels were fed six times a week with S. 

obliquus (1 mg carbon ∙ L-1 ∙ day-1). The rotifer Brachionus calyciflorus, which also feeds on S. obliquus, 

is expected to compete with D. magna for food and was used to simulate interspecific competition. B. 

calyciflorus cysts were obtained from MicroBioTest Inc.© (Mariakerke, Belgium) and a stock culture 

was set up in RT medium at 20°C. Chaoborus sp. larvae, which were added to simulate predation, were 

collected from unpolluted mesocosms at ‘de Sinderhoeve’ research station (www.sinderhoeve.org, 

Renkum, The Netherlands). 
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Table 2.1. Overview of the different species interactions tested in Experiment 1. The columns indicate 
how many individuals of each species were added to the test vessels for the different species interaction 
treatments. Each of these treatments was exposed to five different pyrene exposure profiles in experiment 
1: no pyrene, solvent control, low, medium and high pyrene exposure. In experiment 2, each of the 
treatments was exposed to four different pyrene exposure profiles. 

Treatment Number of D. 
magna 

Number of B. 
calyciflorus 

Number of Chaoborus sp. 
larvae 

Experiment 1 

Control 10 0 0 

Intraspecific competition: low 20 0 0 

Intraspecific competition: high 40 0 0 

Interspecific competition: low 10 333 0 

Interspecific competition: high 10 999 0 

Predation 10 0 1 

Experiment 2 

Control 10 0 0 

Competition 10 200 week-1 0 
 

For both experiments, identical D. magna population structures were introduced in all test vessels. They 

were composed of 20% adults, 40% juveniles and 40% neonates. The classification of D. magna 

organisms within these three groups was based on size, and was performed by filtering the culture 

medium through sieves with different mesh sizes (i.e. adults > 800 μm; juveniles between 800 and 500 

μm; and neonates < 500 μm) (Preuss et al. 2009a). Neonates typically correspond to individuals younger 

than 48 hours. By using populations composed of different life stages, I wanted to simulate realistic 

population structures and  study the sensitivity of different life stages and its implications for D. magna 

population dynamics.  

In the first experiment, the effect of intraspecific competition on D. magna populations was studied by 

using initial densities of 10 (species interaction control), 20 (low intraspecific competition) and 40 (high 

intraspecific competition) D. magna individuals per test vessel. To study how interspecific competition 

affected the D. magna population, B. calyciflorus was added to the test vessels at the start of experiment 

1 in densities of approximately 333 rotifers ∙ vessel-1 (low interspecific competition) and 999 rotifers ∙ 

vessel-1 (high interspecific competition). In the follow-up experiment, more continuous competition was 

imposed by adding 200 rotifers ∙ vessel-1 weekly.  Predation was imposed by the addition of one 

Chaoborus sp. larva per test vessel. Chaoborus sp. larvae were added 3 days after the addition of 

daphnids to the test vessels to allow the daphnids to acclimatize. When a Chaoborus sp. larva died 

during the experiment, it was replaced to assure continuous predation pressure. 

Pyrene is a polycyclic aromatic hydrocarbon consisting of four benzene rings. Pyrene was chosen as 

model compound for this experiment because of its non-specific, narcotic mode of action (Di Toro et al. 
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2000). Phototoxicity of pyrene has been reported (Bellas et al. 2008) and experiments were therefore 

performed under low light conditions (1000-1500 lux). Acetonitrile was used as solvent for pyrene and, 

therefore, a solvent control was included in the experimental design (38 and 75 μg L-1  added for the 

first and second addition, respectively). A stock solution of 0.75 g L-1  pyrene was prepared in 

acetonitrile and stirred intensively before addition to the test vessels.  

In experiment 1, pyrene was applied twice to the test vessels. The first dosing was applied 7 days after 

the start of the experiment (day 0) at a nominal concentration of 7.5, 20 and 55 μg L-1  for the low 

(Pyrene1A), medium (Pyrene1B) and high (Pyrene1C) pyrene exposure profile, respectively. Pyrene 

concentrations were chosen between the EC10 and EC50 values for immobilization. An 

EC50,immobilization value of 68 (44-106) μg L-1 was estimated based on a 48 hours toxicity test with 

D. magna (OECD 2004) (See Appendix A Figure A1 for the concentration response curve). Using a 

similar protocol, no mortality effects were observed for B. calyciflorus and the Chaoborus sp. larvae at 

pyrene concentrations up to 150 μg L-1. Because the first pyrene addition had no observable effects on 

population densities, pyrene was added a second time at higher concentrations. The second application 

was performed 15 days after the start of the experiment (day 8) with a nominal pyrene concentration of 

15, 40 and 110 μg L-1, corresponding to the low, medium and high pyrene exposure profile, respectively. 

In experiment 2, pyrene was applied only once after 15 days in nominal pyrene concentrations of 20 

(Pyrene2A), 50 (Pyrene2B), 100 (Pyrene2C) and 150 μg L-1 (Pyrene2D). 

2.2.2. Biological monitoring 

In experiment 1, D. magna and B. calyciflorus abundances in the test vessels were monitored on day -

4, 0, 2, 4, 7, 10, 15 and 22. For experiment 2, abundances were counted on day -15, -12, -8, -5, -1, 2, 6, 

9, 13 and 16. D. magna were counted and divided into the size classes adult, juvenile and neonate by 

filtering the test medium over sieves with mesh sizes of 800 μm, 500 μm and 200 μm, respectively. B. 

calyciflorus abundances in the test medium of the interspecific treatments were monitored by taking two 

6 mL sub-samples per test vessel and counting swimming rotifers using an inverted microscope 

(magnification 10x).  

2.2.3. Chemical analyses 

Samples for pyrene analysis were taken after the first pyrene application, before the second pyrene 

application and two, four and twelve days after the second pyrene application. Pyrene samples were 

stored in the dark at -20 °C in glass tubes. The chemical analysis was performed with gas 

chromatography–mass spectrometry (Trace GC 2000 series, Thermoquest, DSQ, 

Finnigan/Thermoquest). An apolar Zebron ZB 5-ms column (Phenomenex) was used for the analysis, 

and extraction and elution were performed by solid-phase extraction according to the manufacturer’s 
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instructions (Waters and Phenomenex). An internal standard (fluoranthene-d10) at a concentration of 

10-50 μg L-1  (depending on expected pyrene concentration) was used to control and correct for 

extraction losses. The method’s recovery was always >75%. Immediately before injection of the sample, 

a recovery standard was also applied to control for the injection itself.  

2.2.4. Fate model analysis 

The recently developed dynamic water-sediment organism model EcoDyna (Morselli et al. 2014) was 

used  to predict the temporal fate of pyrene during the experiments. The model was calibrated using the 

nominal water volume (500 mL) of the experiment and water-sediment interaction was minimized to 

simulate negligible exchange, given the lack of a sediment phase in the vessels used. In order to calculate 

potential algal uptake, a daily contribution of 1 mg carbon L-1  was assumed, while organism biomass 

was calculated using length-weight relationships (Dumont et al. 1975; Dumont and Balvay 1979). 

Physical-chemical properties for pyrene were obtained from literature (Mackay et al. 1992).  

2.2.5. Statistical analyses 

All analyses were performed using the statistical software package R (version 3.1.1; (R Core Team 

2012)). For each sampling time, generalized linear models (GLMs) were constructed. Total, adult, 

juvenile and neonate D. magna densities were considered as response variables, allowing for the 

examination of population structure. The effect of intraspecific competition (control, low, high), 

interspecific competition (control, low, high) and predation (non-predation, and predation) was assessed 

for each point in time by constructing a GLM with pyrene and the species interaction considered as the 

predictor variables. Time itself was not included as a predictor variable because the effect of time is 

non-linear and the effects of the other predictor variables will change over time. The full model is given 

by: 

 

The expected density ( ) at time t is the result of the sum of the intercept α, the species 

interaction being considered ( ), the pyrene concentration ( ) and their interaction (

). 

GLMs were initially constructed assuming a Poisson distribution (Zuur et al. 2009) but this led to 

unsatisfactory model validation. I therefore opted to perform GLM analyses with a normal distribution 

on the log10-transformed D. magna abundance data. The solvent control treatment was not included in 

the GLM analysis as preliminary tests showed no significant differences between the control and the 

solvent control treatments. Backwards model selection was used, dropping predictor variables based on 

the Akaike’s Information Criterion (AIC), hypothesis testing and model validation analysis (Zuur et al. 
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2009). As model validation analysis, I (1) inspected if patterns in the data were present using predicted 

versus observed plots, (2) inspected if patterns in the residuals were present using predictor versus 

residuals plots, and (3) tested the normality of the residuals using QQ-plots (Zuur et al. 2009).  

2.3. Results 

The effects of the different explanatory variables and their interactions are discussed below. I only 

included the results for the total D. magna abundance in this chapter, results for the different size classes 

are included in Appendix A. 

2.3.1. Pyrene fate 

Measured pyrene concentrations in water were lower than expected from the nominal values (Table 2.2). 

Nevertheless, there was a clear difference between the three pyrene exposure profiles at any given point 

in time. The EcoDyna model was used to simulate pyrene concentration variations in water. The model 

was run to fit actual water concentrations, and the importance of the main fluxes dominating the change 

in concentration with time after the spikes. As a result of the fitting procedure, it was found that a 

chemical half-life in water of 30 h was necessary to reproduce the observed concentrations (no 

distinction could be made between biotic and abiotic processes), while volatilization accounted for about 

20% of losses. Simulations confirmed that pyrene uptake in algae and animal biomass was negligible. 

2.3.2. Population dynamics in absence of pyrene and interactions 

Independent of the explanatory variables, a clear trend in the model intercept value could be observed. 

In experiment 1, there was an increase in the intercept until day 7, afterwards the intercept slowly 

decreased (Table 2.3-2.5). Similarly, in experiment 2 there was a strong population increase the first 14 

days, followed by a slow decrease (Table 2.4).  The intercept is the value estimated by the GLMs without 

any effect of the predictor variables (pyrene and species interactions) and thus reflects the population 

dynamics of D. magna without stress. The initial increase and then the decline of the intercept indicated 

that the population was growing until the carrying capacity was reached (Figure 2.1).  
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Table 2.2: Measured pyrene concentrations (μg L-1) for the used pyrene exposure profiles. Measured 
pyrene concentrations are shown with standard deviations. Nominal concentrations (μg L-1)  are shown 
between brackets when pyrene was added (day 0 and day 8). The letters A, B, C and D refer to the used 
pyrene treatments. 

Experiment 1 

Time (d) 0 7 8 10 14 22 

Pyrene1A 5.2 ± 0.8 
(7.5) 0.2 ± 0.1 10.6 ± 1.4 

(15) (3.9 ± 1 0.6 ± 0.2 0.3 ± 0.2 

Pyrene1B 13.0 ± 2.2 
(20) 0.6 ± 0.3 22.9 ± 4 (40) 12.8 ± 2.1 3.2 ± 0.5 0.3 ± 0.2 

Pyrene1C 38.6 ± 11.9 
(55) 2.3 ± 0.5 62.8 ±26.6 

(110) 44.5 ± 16.9 13.0 ± 2.5 1.5 ± 1.3 

Experiment 2 

Time (d) 0 2 6 13 

Pyrene2A 9 ± 1.4 (20) 4.7 ± 0.5 1.3 ± 0.1 0.3 ± 0.0 

Pyrene2B 19.9 ± 2.0 (50) 10.9 ± 0.3 3.2 ± 0.6 0.6 ± 0.0 

Pyrene2C 27.4 ± 3.0 (100) 21.4 ± 6.7 6.1 ± 1.6 11 ± 0.5 

Pyrene2D 33.9 ± 4.1 (150) 24.5 ± 5.1 8.0 ± 0.9 1.1 ± 0.2 
 

Table 2.3: GLM estimates of pyrene exposure and intraspecific competition for log10-transformed total 
D. magna abundance after backwards model selection. For each time point, the significant estimates (p 
< 0.05) of explanatory variables and their interactions are shown. Positive and negative values indicate 
a higher or lower abundance than the control treatment, respectively. Non-significant predictor 
variables are not shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 

(Intercept) 1.03 1.18 1.64 1.91 2.13 2.03 1.97 1.88 

Low pyrene / / / / -0.12 / / 0.10 

Medium pyrene / 0.19 / / -0.09 / / / 

High pyrene / / / / / -0.07 -0.56 / 

Low intraspecific 0.26 0.22 / -0.12 -0.17 -0.09 / -0.07 

High intraspecific 0.50 0.39 0.12 -0.11 -0.11 -0.13 / -0.11 

Low pyrene X  Low intraspecific / / / / 0.17 / / / 

Medium pyrene X  High intraspecific / / / 0.18 / / / / 

High pyrene X  High intraspecific / / / / / / 0.30 / 
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Table 2.4: GLM estimates of pyrene exposure and interspecific competition for log10-transformed total 
D. magna abundance after backwards model selection for experiment 1 and 2. For each time point, the 
significant estimates (p < 0.05) of explanatory variables and their interactions are shown. Positive and 
negative values indicate a higher or lower abundance than the control treatment, respectively. Non-
significant predictor variables are not shown (if never significant) or indicated with “/”. 

Experiment 1 

Time (days) -4 0 2 4 7 10 15 22 

(Intercept) 1.06 1.20 1.70 1.90 2.13 2.02 1.97 1.88 

Low pyrene / / / / -0.12 / / / 

Medium pyrene / 0.17 / / / / / / 

High pyrene / / / / / -0.09 -0.63 / 

Low interspecific / 0.13 / / -0.15 -0.12 -0.11 / 

High interspecific / / / -0.16 -0.24 -0.12 -0.13 / 

Low pyrene X High interspecific / / / / 0.17 / / -0.18 

Experiment 2 

Time (days) -8 -5 -1 2 6 9 13 16 

(Intercept) 1.19 1.57 1.95 2.02 2.03 1.97 1.86 1.57 

PyreneC1 / / / / / / / / 

PyreneC2 / / / / / / -0.38 -0.71 

PyreneC3 / / / / / -0.10 -0.34 -0.72 

PyreneC4 / / / / -0.18 -0.25 -0.51 -0.88 

Competition -0.15 / / / / 0.09 0.25 0.58 
 

Table 2.5: GLM estimates of pyrene exposure and predation for log10-transformed total D. magna 
abundance after backwards model selection. For each time point, the significant estimates (p < 0.05) of 
explanatory variables and their interactions are shown. Positive and negative values indicate a higher 
or lower abundance than the control treatment, respectively. Non-significant predictor variables are 
not shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 

(Intercept) 1.07 1.27 1.69 1.90 2.08 2.01 1.97 1.88 

High pyrene / / / / / / -0.56 / 

Predation / / -0.32 -0.40 -0.38 -0.28 -0.25 -0.22 

High pyrene X Predation / / / / / / 0.37 / 
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Figure 2.1. Total D. magna abundances over time for experiment 1 (A) with four pyrene exposure 
profiles and for experiment 2 (B) with five pyrene exposure profiles. Data shown are the D. magna 
population densities with no additional species interactions. Average values with standard deviations 
(error bars) are depicted. Dashed lines indicate pyrene applications. 

 

  

(A) 

(B) 
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2.3.3. Effects of pyrene  

For the first experiment, the estimated direct effects of pyrene were almost identical between the 

different treatments of species interactions (Table 2.3-2.5). For experiment 1, I will therefore only refer 

to Table 2.3 here. The first pyrene addition did not significantly affect D. magna population densities 

(Figure 2.1 and Table 2.3). However, the highest pyrene exposure did reduce total population densities 

7 days after the second pyrene addition (day 15). The description and discussion of the experiment 

results will therefore focus on the observed effects after the second pyrene addition. Effects of the 

medium and low pyrene exposure profiles on total D. magna abundance were absent or negligible (< 

0.13; Table 2.3). The variance of the total population densities explained by pyrene exposure at day 15 

was >45% (Appendix A: Table A1-A3). Fourteen days after the second pyrene addition, D. magna 

populations were recovering (day 22): no differences in total population densities were observed 

between pyrene exposure profiles. However, at that time, the abundances of neonates were higher in the 

high pyrene exposure profile than in the control treatment (Appendix A: Table A6 and Figure A2). Also, 

the negative effect of high pyrene exposure on the abundances of adults persisted on day 22, although 

this effect was smaller than on day 15 (Appendix A: Table A4). Although the total population densities 

had recovered, differences in population structure were thus still observed between pyrene treatments 

(Figure 2.1 and 2.2). In experiment 2, a similar delay in pyrene effect was observed (Figure 1B).  

Significant negative effects were only observed 6 days after the pyrene addition (Table 2.4). Contrary 

to experiment 1, significant negative effects were observed at the lower nominal pyrene concentrations. 

Also, no recovery was observed at the end of experiment 2 and pyrene effects were visible at all size 

classes (Appendix A: Table A13-A15). 

2.3.4. Effects of interactions: competition and predation  

During the first 9 days of the experiment, the populations with the higher initial population density of 

40 individuals (and therefore a higher degree of intraspecific competition) remained more abundant but 

this effect decreased with time (Figure 2.3 and Table 2.3). For the populations with an initial population 

density of 20 individuals, this effect only persisted during the first 7 days. The variance explained by 

intraspecific competition also decreased from 71% to 22% over this period (Appendix A: Table A1). A 

high initial density resulted in lower future population densities (starting from day 4), although this 

effect was limited (Table 2.3). The population with the lowest initial density (10 Daphnia per test vessel) 

reached the highest total D. magna abundance (135 individuals). The initial positive effect of a high 

initial density persisted longer for adult D. magna (until day 10; Appendix A: Table A4) than for the 

other size classes (day 2 and -4 for juveniles and neonates, respectively; Appendix A: Table A5-A6). 

High initial densities resulted in a higher and more constant abundance of adults in the second half of 

the experiment compared to low initial densities (Figure 2.2).  
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In experiment 1, B. calyciflorus population densities decreased sharply after one week and B. 

calyciflorus completely disappeared by day 10 (Appendix A: Figure A14). Although B. calyciflorus 

disappeared, significant but limited differences were observed between population densities of D. 

magna of the different interspecific competition treatments starting from day 4 until day 15 (Figure 2.4 

and Table 2.4).  At the end of the experimental period, differences in population density were no longer 

observed between the different degrees of interspecific competition. Abundances of adult D. magna 

were never negatively affected by interspecific competition during the whole experiment (Appendix A: 

Table A7) while abundances of juvenile and neonate individuals were (Appendix A: Table A8-A9). The 

effect of interspecific competition on the abundance of neonates was only significant up to day 10 

because almost no neonates were observed in either of the pyrene exposure treatments the following 

sample days. 

 

 

Figure 2.2. Average population structure of D. magna just before and after the second pyrene 
application (day 8) for different treatments. Data shown are the average abundances of adults (dark 
grey), juveniles (medium grey) and neonates (light grey) of the specific treatments. “−“ and “+” 
indicate a significant negative and positive effect, respectively, of that treatment or combination of 
treatments on total population density, compared to the control treatment (“no pyrene”). High pyrene  
high pyrene exposure; INTRA = high intraspecific competition treatment; INTER = high interspecific 
competition treatment; PRED= predation treatment. 
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Figure 2.3. Total D. magna abundance over time for four pyrene exposure profiles. Data shown are the 
D. magna population densities for the treatment with no additional species interactions (points), low
intraspecific competition (crosses) and high intraspecific competition (black squares). Average values
with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second pyrene 
application. 

In experiment 2, B. calyciflorus individuals were added weekly to ensure more continuous competition. 

B. calyciflorus population dynamics were similar to experiment 1, with a sharp population decline after

one week (Appendix A: Figure A15). The weekly addition of B. calyciflorus did not result in notable

rotifer densities, although D. magna was significantly affected by pyrene from day 6 onward (Figure

2.4B and Table 2.4). Interspecific competition with rotifers had a negligible negative effect on total D.

magna abundances only on day -8 and even resulted in higher population densities from day 9 onwards

(Figure 4B and Table 2.4).

Of all species interactions studied, predation had the largest negative effect on population densities 

(Figure 2.2, 2.5 and Table 2.5). Predation had a continuous negative effect on total D. magna abundance. 

The explained variance was always higher than 42%, except on day 15 when most variance was 

explained by pyrene exposure (Table 2.5). Because Chaoborus sp. larvae were added 3 days after the 

start of the experiment, predation was not significant at day -4. A negative effect of predation was first 

observed for adults (at day 0) but the largest effects were observed for the abundances of neonates and 

juveniles (Figure 2.2 and Appendix A: Table A10-A12).  
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Figure 2.4. Total D. magna abundance over time for experiment 1 (A) with four pyrene exposure profiles 
and for experiment 2 (B) with five pyrene exposure profiles. (A) Data shown are the D. magna 
population densities for the treatment with no additional species interactions (points), low interspecific 
competition (crosses) and high interspecific competition (black squares); (B) Data shown are the D. 
magna population densities without interspecific competition (points) and with continuous B. 
calyciflorus competition (crosses). Average values with standard deviations (error bars) are depicted. 
Dashed lines indicate the pyrene applications. 

(B) 

(A) 
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Figure 2.5. Total D. magna abundance over time for four pyrene exposure profiles. Data shown are the 
D. magna population densities for the treatment without (points) and with predation (crosses). Average 
values with standard deviations (error bars) are depicted. Dashed lines indicate the first and the second 
pyrene application. 

2.3.5. Combined effects of pyrene and species interactions 

Significant interactions between pyrene and predation or between pyrene and competition were rare and 

most of the times changed inconsistently with increasing pyrene exposure (Tables 2.3-2.5). However, 

on day 15, the interaction between high pyrene exposure and predation and between high pyrene 

exposure and intraspecific competition positively affected the total D. magna abundance. These positive 

interactions indicated that the negative effect of high pyrene exposure was less pronounced when the 

population was already exposed to predation or had experienced high intraspecific competition at the 

start of the experiment, suggesting antagonism between each of these two types of species interaction 

and chemical toxicity. The variance of the total abundance explained by these two interactions on day 

15 was 8.4% and 16.8%, respectively (Appendix A: Table A1 and A3).  

2.4. Discussion 

2.4.1. Pyrene toxicity 

Short-term effects of pyrene were limited and the highest effects occurred 7 days after the second pyrene 

addition in experiment 1 and 6 days after the pyrene addition in experiment 2 (Table 2.3-2.5). It is 

unclear why the first pyrene addition in experiment 1 had no observable effects on population densities. 

The highest concentration measured after the first pyrene addition (71 μg/L) was similar to the 

EC50,immobilization (68 μg/L), determined in the toxicity test performed on neonate D. magna  (<500 μm) 
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from the same clone. However, even neonate D. magna – often considered the most sensitive individuals 

(Muyssen and Janssen 2007) - were not affected by the first pyrene addition (Appendix A: Figure A10 

and Table A6). The results of the pyrene toxicity test did thus not seem applicable to experiment 1.  

It was unclear if the negative effects of pyrene on the abundances of adults after the second pyrene 

addition resulted from direct mortality or from a combination of direct mortality and reduced survival 

or growth of smaller life classes. Reduced survival and growth of earlier life stages will reduce the 

number of juveniles that reach the adult stage (Liess and Foit 2010). The negative effect of pyrene was 

largest on abundances of juveniles (Appendix A: Table A4-A6). Adult D. magna were the only size 

class still affected by pyrene at the end of the experiment (Appendix A: Table 2.4). Probably, the 

negative effect of pyrene on the abundances of adults was thus, at least partly, attributable to effects on 

earlier life stages. Neonates were almost absent after the second pyrene addition, even in the control 

treatment (Appendix A: Figure A10), which explains the absence of significant pyrene effects for 

neonates. A low abundance of small individuals is not uncommon in similar experiments with Daphnia 

(Preuss et al. 2009a) and can be attributed to the strong competition which reduces the energy available 

for reproduction.  

Interestingly, abundances of neonates were significantly higher on day 22 in the high pyrene exposure 

profile than in the control treatment (Figure 2.2 and Appendix A: Table A6). As a result, total population 

densities were not significantly different between the different pyrene treatments at the end of the 

experiment (Table 2.3), leading to the conclusion that total population density was recovered. However, 

it should be noted that the final D. magna populations in the high pyrene exposure profile, consisting 

mainly of neonates, were probably more susceptible to new chemical stress events than those in the 

other pyrene treatments. This illustrates that population structure needs to be accounted for when 

assessing the response and recovery of a population to (chemical) stress (Foit et al. 2012).  

In the follow-up experiment, measured pyrene concentrations were similar to the measured 

concentrations of the first pyrene addition in the original experiment (Table 2.2). Nevertheless, this time 

significant effects were observed, even in the lower pyrene concentrations (Table 2.4). It is unclear 

whether this is the result of natural variation or of other factors such as the time of pyrene application. 

The follow-up experiment was performed six months after the original experiment and it is possible 

variations in environmental or biological conditions resulted in the observed differences in pyrene effect. 

However, it is likely that the time of application was also an important factor: in the first experiment, 

the pyrene was added when the population was growing and competition for resources between 

individuals was limited. In the follow-up experiment, pyrene was added after 15 days, when the 

population growth phase was already over. Competition for resources between D. magna individuals 

was strong at this moment, possibly making the individuals less resistant to pyrene stress.  
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Pyrene is a substance with low water solubility (0.132 mg L-1). Acetonitrile was used here as a solvent 

to ensure that pyrene was dissolved in the water. Solvents are often used with pesticides to ensure a 

solution that can easily be applied in the field. Solvents can possibly contribute to the toxicity of a 

pesticide and it is therefore important to test the toxicity of the solvent itself. Acetonitrile was not toxic 

to D. magna at the concentrations used here.     

2.4.2. Species interactions 

Of all species interactions studied, predation had the largest effect on total D. magna abundance. Effects 

were visible six days after the addition of Chaoborus sp. larvae (starting from day 2) and the highest 

effects were observed for the abundances of juveniles and neonates (Figure 2.2 and Appendix A: Table 

A10-A12). This indicated a feeding preference: Chaoborus sp. larvae preferred to prey on smaller 

juvenile and neonate D. magna than on adult D. magna. Size selective feeding by Chaoborus sp. larvae 

has been observed before (Swift 1992). Surprisingly, however, a significant negative effect of predation 

was first observed for adults (on day 0) and not for juveniles or neonates. Abundances of juveniles and 

neonates were very low (juveniles) or zero (neonates) until day 0, so probably the Chaoborus larvae 

were forced to feed on the larger D. magna adults. At later time points, neonates and juveniles were 

more abundant and Chaoborus larvae fed on these size classes, leading to a reduced or absent effect of 

predation on adults. These data show that feeding preferences depend on the ecological context shaped 

by the prey’s population structure.  

It is difficult to assess the effects of interspecific competition for the full duration of experiment 1 

because B. calyciflorus were reduced to low densities (<10%) after day 7 and completely disappeared 

after day 10 (Appendix A: Figure A14). The effects of interspecific competition on total population 

densities were therefore limited (Table 2.3). Posterior tests performed with the same conditions showed 

that even in the highest pyrene concentration, B. calyciflorus was able to survive for at least 24 days 

(Appendix A: Figure A16). The rotifers were thus outcompeted by D. magna, as previously observed in 

interaction experiments between B. calyciflorus and D. pulex without chemical stress (Gilbert 1985). 

Gilbert et al. (1985) observed limited to no effects of the competition with B. calyciflorus on population 

densities of D. pulex, similar to the results of the current chapter. In the follow-up experiment, B. 

calyciflorus was added weekly but, even when D. magna was negatively affected by pyrene, notable 

population densities of B. calyciflorus were not observed (Appendix A: Figure A15). Clearly, D. magna 

was the superior competitor, even when exposed to the pyrene concentrations applied here. 

Unexpectedly, weekly addition of rotifers had a positive effect on total D. magna population density in 

the second half of experiment 2 (Table 2.4). To avoid the addition of additional algae, rotifers were 

taken from the rotifer culture at least 24 hours after feeding. Nevertheless, it seems that algae and 

possibly other nutrients were still present in high enough concentrations to positively influence D. 

magna population abundances, masking any possible competition effect.  
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Both intraspecific and interspecific competition seemed to result in effects on reproductive output in 

experiment 1. Negative effects of different initial densities on the abundances of neonates and juveniles 

were observed starting from day 2 while these were absent for adults (Appendix A: Table A4-A6). 

Similarly, negative effects of interspecific competition were observed for juveniles and neonates from 

day 4 onward while adults were not affected (Appendix A: Table A7-A9). High initial competition thus 

mainly affected early life stages at later time points, suggesting competition-induced effects on D. 

magna reproduction over direct competition effects. According to the dynamic energy budget (DEB) 

theory, the competition with B. calyciflorus or other D. magna individuals could reduce the amount of 

energy that could be allocated to reproduction, resulting in less offspring (Kooijman 2010). However, it 

is probable that direct competition, through starvation, also contributed to the results. Young D. magna 

life stages are more prone to starvation than adults (Preuss et al. 2009a). Under high competition 

conditions, less food is available per capita, possibly leading to starvation of smaller individuals and 

contributing to the lower proportion of young life stages in the population.  

2.4.3. Reduced effect of pyrene when combined with predation and competition 

On day 15, when the pyrene effect was largest, predation and intraspecific competition reduced the 

negative effect of pyrene on population densities (Figure 2.2). Contrary to the antagonism observed in 

the current chapter, species interactions often lead to greater effects of chemical stress. For example, the 

combination of predation by Notonecta maculata and exposure to nonylphenol led to loss of resilience 

in Daphnia magna populations while individual stressors failed to affect population densities (Gergs et 

al. 2013). Synergistic effects of competition and chemical stress have been reported for D. magna (Foit 

et al. 2012) and other Daphnia species (Knillmann et al. 2012a). Next to synergistic effects, antagonistic 

effects have been reported as well. For example, exposure to predator kairomones led to antagonistic 

interactions with carbaryl exposure on reproduction of Daphnia magna (Coors and Meester 2008). This 

was attributed to larger-sized and thus more tolerant offspring when predation cues were present. Two 

mechanisms are proposed to explain the antagonism observed in the current chapter: differences in 

population structure and pyrene-induced alterations in species interactions. First, the structure of the 

populations exposed to predation or to high intraspecific competition differed from that of the 

populations experiencing low intraspecific competition and populations not exposed to predation. On 

day 7, immediately before the second pyrene addition, a large negative effect of intraspecific 

competition and predation on the abundances of juveniles and neonates was observed while the 

abundances of adults were less affected (Figure 2.2, Appendix A: Table A4-A6;A10-A12). Differences 

in sensitivity for different D. magna size classes have been shown before e.g. for four metals (Hoang 

and Klaine 2007) or carbaryl (Coors and Meester 2008). Because of the lower proportion of small-sized 

and thus more sensitive life stages in populations with predation or high (initial) intraspecific 

competition, pyrene effects were smaller. Second, the feeding rate of Chaoborus sp. larvae was possibly 
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inhibited by the pyrene exposure, leading to reduced predation losses. Indeed, the estimated effect of 

predation (Table 2.5) was lower on day 15. The effect of pyrene on the feeding rates of Chaoborus sp. 

larvae was not tested in the current chapter but chemicals have been shown to alter feeding behaviour 

of fish (Weis et al. 2001) and invertebrates (Maltby and Hills 2008). 

Contrary to a similar study with D. magna populations exposed to fenvalerate (Liess and Foit 2010), we 

observed no prolonged dominance of smaller-sized organisms after chemical stress in the treatment with 

predation: after high pyrene exposure, the proportion of small individuals was higher in the populations 

not exposed to predation (Figure 2.2). These contradicting results can be explained by differences in 

how predation was applied in the two studies. While Liess and Foit (2010) simulated predation by 

removing individuals non-selective on size, Chaoborus sp. larvae preferred to prey on smaller 

individuals, leading to lower abundances of neonates in the predation treatments at the end of the 

experiment. This highlights the complexity of assessing how ecological interactions alter the response 

of a population to chemical stress and the need for ecologically realistic tools  (De Laender and Janssen 

2013; Gabsi et al. 2014b).  

The results presented in the current chapter present an example of how species interactions can lead to 

a priori unpredictable effects of chemicals. Predation and intraspecific competition were shown to 

interact antagonistically with pyrene when the effect of pyrene was most pronounced. The current 

chapter also highlights the need to not only consider the effects of a chemical on population density but 

also on population structure when assessing the risk of chemicals for populations and communities. 

Although the complexity of the interactions studied in this chapter was limited to interactions between 

two species (competitors or predator-prey), this can yield significant insights that are applicable to more 

complex food webs. Studies such as this chapter, in combination with approaches such as mechanistic 

ecological models (De Laender et al. 2008b; Bontje et al. 2009; Galic et al. 2010), could be used to 

integrate species interactions while assessing the long-term ecological risk of a chemical. Using 

mechanistic ecological models will increase our understanding on how and when species interactions 

influence the effects of a chemical. This will help identify in which situations species interactions are 

an important factor for the ecological risk of a chemical and thus when special attention from the 

regulators for species interactions is required.
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3  
DEVELOPMENT OF THE DEBKISS IBM 

Redrafted from: 

Viaene KPJ, De Laender F, Janssen CR, Baveco JM, Van den Brink PJ, Focks A. DEBkiss IBMs as a 

novel tool to assess the population-level effects of chemicals on competing species. Submitted  
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Abstract 

Ecological models, in particular individual-based models (IBMs) have been suggested as a way forward 

for the ecological risk assessment of chemicals. Most ecotoxicological tests focus on the individual level 

and IBMs are ideal tools to translate these test results to the population and community level but need 

to be based on a sound theoretical basis. Dynamic energy budget theory based on the keep it simple, 

stupid principle (DEBkiss) offers a good compromise between complexity and the amount of data 

required to parameterize the model. In this chapter, DEBkiss theory is presented and implemented with 

an IBM to describe the life cycle of a generic organism. To account for the effects of chemicals, two 

possible toxicity models were implemented: concentration-response curves and toxicokinetic 

toxicodynamic models. 
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3.1. Introduction 

In Chapter 2, I have shown that interactions with other species can be important for population-level 

effects in a community context. In the current chapter I will lay the foundations of a food-web model 

based on IBMs. To this end, I present an novel and parameter sparse approach to individual-based 

modelling based on the DEBkiss theory (Figure 3.1).  

 

Figure 3.1: Overview of the DEBkiss IBM implementation. DEBkiss theory is used to model individual-
level processes (see 3.3). An IBM is used to model all individuals in the population and derive population 
properties (see 3.4). The effects of chemical exposure are modelled using either concentration-response 
(CR) curves or toxicokinetic-toxicodynamic (TKTD) models (see 3.5). 

3.2. Modelling species interactions under chemical stress 

The complexity of species interactions makes it difficult to predict population-, community-, and 

ecosystem-level effects of chemicals from single-species ecotoxicological tests. Therefore, ecological 

models have been used to understand and predict the effects of chemicals on populations (De Laender 

et al. 2008b; Galic et al. 2010), communities (De Laender et al. 2014b), and ecosystems (De Laender et 

al. 2015). Models can help to test hypotheses regarding the relationship between effects occurring at 

lower and higher levels of biological organisation. When based on solid mechanistic understanding, they 

can be used to perform experiments in silico. Individual based models (IBMs) seem particularly suited 

for use in ERA because population parameters and dynamics emerge from the mechanisms at the 

individual level on which most ecotoxicological tests focus (Martin et al. 2013b). IBMs thus allow 

exploring how individual-level effects extrapolate to higher levels of organisation (Galic et al. 2014; 

Martin et al. 2014). In recent years, IBMs have been used to predict chemical effects on the population 

dynamics of a number of typical test species used in ecotoxicology e.g. Daphnia magna (Martin et al. 

2013a) and Asellus aquaticus (Galic et al. 2012). However, these IBM applications have focused solely 

on the population level and not at higher levels of organisation.  

IBMs need a theory describing the underlying individual-level processes. The dynamic energy budget 

theory (DEB) was proposed as a suitable underlying theory for the individual level energy balance in 

IBMs because this theory provides mechanistic understanding of patterns in growth, reproduction and 
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mortality of individuals, and enables determination of species-specific parameters (Martin et al. 2013b). 

One of the main challenges of standard DEB theory is the number of parameters and the type of 

experiments required to accurately parameterize the model (Jager et al. 2013). For many species, these 

are not available and the standard DEB model can thus not be parameterized. Also, DEB has some 

shortcomings considering its use in a regulatory context: the equations in the standard DEB model can 

be difficult to grasp and implementation in software is not straightforward. Therefore, a simplified 

version of DEB, DEBkiss, following the paradigm of “keep it simple, stupid” and using less equations 

and parameters, has been proposed to allow more transparency, reduce the amount of data required and 

increase the user-friendliness (Jager et al. 2013). In DEBkiss, the parameters are more easy to interpret 

and they can be more readily related to easily measured endpoints such as the maximum length or the 

individual growth rate (Jager et al. 2013). Therefore, DEBkiss IBMs could be a useful tool for species 

for which data are sparse. 

When IBMs are used to predict the effects of chemicals, the individual-level (physiological) processes 

that are sensitive to chemical stress need to be defined. Chemicals can interfere with physiological 

processes in many ways. Even in a simplified DEB model, possible physiological modes of action 

include effects on assimilation, maintenance and reproduction (Jager and Zimmer 2012). To determine 

the actual physiological mode of action of a chemical, ideally full life-cycle studies are used (Jager and 

Zimmer 2012). However, when data availability is limited, one is often forced to focus solely on the 

effects of a chemical on individual survival. This drastically simplifies the model but also eases its 

parameterization because data are more abundant. For example, the General Unified Threshold model 

for Survival (GUTS) can be parameterized based on the results of simple acute toxicity tests (Jager et 

al. 2011). GUTS is a generalization of a large range of existing toxicokinetic-toxicodynamic (TKTD) 

models i.e. models that simulate the time course of processes leading to toxic effects. These models have 

the advantage over the often-used concentration-effect equations that they can predict toxic effects even 

when exposure is not constant. This allows them to be used in more realistic conditions, when exposure 

to a chemical is not constant but changes over time. 

3.3. DEBkiss theory 

The dynamic energy budget (DEB) theory was originally developed in the ‘80s (Kooijman and Metz 

1984) but only became widely applied for making sense of ecotoxicological studies during the past 

decade (Kooijman 2010; Jager and Zimmer 2012). In DEB theory, all processes and states of an 

individual are expressed as energy (or mass). Next, an energy (or mass) balance for the individual is 

created (Kooijman 2010). DEB models describe processes at the level of the individual because, 

compared to sub- and supra-individual levels of biological organization, it is relatively easy to make 

energy and mass balances at the individual level (Kooijman 2010). DEB models use differential 
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equations to describe how the energy from food is used by the individual for maintenance, growth and 

reproduction (Nisbet et al. 2000). A general overview of the mass fluxes considered in the standard DEB 

model can be found in Figure 3.2. 

The DEBkiss model is based on the standard DEB model but the number of parameters and processes 

is reduced by making additional assumptions relating to the life cycle and energy metabolism of the 

organism (Jager et al. 2013). The main assumption in DEBkiss is that the energy taken from food is 

immediately used to fuel other metabolic processes such as growth, maintenance or reproduction. A 

reserve compartment where the energy taken up from food is temporarily stored, is thus not considered 

in the DEBkiss theory. The mass fluxes (dry weight per unit of time) in the DEBkiss model are depicted 

in Figure 3.2. A concise description of the DEBkiss model used is provided in this chapter. For a more 

in depth description of the processes and assumptions in the model, I refer to (Jager et al. 2013). 

Abbreviations and symbols for all DEBkiss IBM parameters are provided in Table 3.1. 

The typical DEBkiss life cycle consists of three stages: embryo, juvenile and adult. Three compartments 

are considered for each individual: the egg buffer , structural body mass  and reproduction buffer 

. The changes of energy in these compartments over time is described by energy fluxes and are given 

by 

  until         (3.1) 

           (3.2) 

           (3.3) 

 

The egg buffer  is only relevant for embryos and once depleted, the embryo will hatch and become 

a juvenile. Once an individual reaches a critical body mass, the individual is considered mature (puberty) 

and starts allocating energy to the reproduction buffer.   
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Table 3.1: DEBkiss IBM model parameters. Primary parameters refer to parameters that are directly 
linked to the physiological processes and that do not depend on other parameters. Secondary 
parameters are determined by one or more primary parameters.    

Symbol Parameter Unit 

Primary parameters 

 Maximum specific searching rate L mm-2 d-1 

 Maximum specific assimilation rate  mg dw mm-2 d-1 

 Volume-specific maintenance costs mg dw mm-3 d-1 

 Assimilates in a single freshly laid egg mg dw 

 Structural body mass at puberty mg dw 

 Yield of structure on assimilates (growth) - 

 Yield of assimilates on structure (starvation) - 

 Yield for conversion of reproduction buffer to eggs - 

 Yield of assimilates on food - 

 Fraction of assimilates for growth and maintenance - 

Conversions 

 Dry-weight density of structure mg mm-3 

 Shape correction coefficient - 

Fluxes and states 

 Mass flux for assimilation mg dw d-1 

 Mass flux for maintenance mg dw d-1 

 Mass flux for reproduction buffer mg dw d-1 

 Mass flux for structure mg dw d-1 

 Mass flux of food mg dw d-1 

 Mass of egg mg dw 

 Mass of reproduction buffer mg dw 

 Mass of structural body mg dw 

X Food biomass mg dw L-1 

Secondary parameters 

f Scaled functional response (0-1) - 

 Maximum area-specific feeding rate mg dw mm-2 d-1 

K Half-saturation food density mg dw L-1 

L Volumetric body length mm 

 Maximum volumetric length mm 

 Physical body length mm 

 Von Bertalanffy growth rate constant d-1 

ΔR Number of eggs in a clutch number of eggs 
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Food biomass is taken up by the organism (feeding flux JX) and assimilated by juveniles and adults 

(assimilation flux JA) to fuel different metabolic processes. Embryos do not assimilate food but consume 

their egg buffer WB until birth. A fraction κ of the assimilation flux JA is used to support maintenance 

(JM) and for somatic growth (JV) of the structural biomass WV. A fraction 1 - κ of the assimilation flux 

JA is used by juveniles for maturation (not explicitly tracked). After puberty, the 1 - κ fraction of the 

assimilation flux describes the mass flux JR towards the reproduction buffer WR. At reproduction events, 

the available reproduction buffer is converted to eggs. The number of eggs is determined by the size of 

the reproduction buffer. Stochasticity is included in the model in two ways (Martin et al. 2013a). First, 

all mortality processes are probabilistic. Second, variation between individuals in DEBkiss parameter 

values was included by multiplying the maximum specific assimilation rate with a log-normally 

distributed scatter multiplier. 

In DEBkiss, food biomass (X) is assumed to be instantly assimilated with a conversion efficiency of 

. This conversion efficiency can be used to reflect the quality of the food and a higher efficiency 

indicates food of a higher quality. The assimilation flux JA is equal to  

  with with (3.4) 

where f is the scaled functional response that adjusts the assimilation flux to the available food biomass; 

is the maximum specific assimilation rate (mg DW mm-2 d-1); L is the volumetric body length (mm);

K is the half-saturation food density (mg DW L-1);  is the maximum area-specific feeding rate (mg

DW mm-2 d-1) and  the specific searching rate (L mm-2 d-1). Embryos do not consume an external

food source but their egg buffer WB and f is set to 1 for this life stage. Food dynamics can be included 

in multiple ways e.g. by daily adding a fixed amount of food or by using a differential equation that 

takes into account losses due to feeding. 

The change in structural body mass is the result of the amount of energy that is assimilated minus the 

amount of energy needed for maintenance. The flux in structural body mass is thus equal to 

 where  (3.5) 

where JV is the mass flux to structure (mg DW d-1);  is the yield of structure on assimilates; κ is the 

fraction of assimilates for growth and maintenance; JA is the mass flux for assimilation (mg DW d-1); JM 

the mass flux for maintenance (mg DW d-1);  the volume-specific maintenance costs (mg DW mm-3 

d-1) and L the volumetric length (mm).

The growth of an organism can be simplified to a von Bertalanffy equation (Jager et al. 2013) equal to 

 with  and (3.6) 
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where L is the volumetric length (mm); rB the von Bertalanffy growth constant (d-1);  is the yield of 

structure on assimilates; dV the dry-weight density of structure;  the volume-specific maintenance 

costs (mg DW mm-3 d-1); Lm the maximum volumetric length an individual can obtain (mm); κ is the 

fraction of assimilates for growth and maintenance; is the maximum specific assimilation rate (mg 

DW mm-2 d-1) and  the volume-specific maintenance costs (mg DW mm-3 d-1). 

The (1 – κ) fraction of the assimilation flux JA is used for maturation when the individual is juvenile 

( ) or for the reproduction buffer when the individual is mature. The dynamics of the mass in 

the reproduction buffer JR (mg DW d-1) are described by  

           (3.7) 

where κ is the fraction of assimilates for growth and maintenance and JA the mass flux for assimilation. 

At reproduction events, the available reproduction buffer is transformed into a number of eggs ( ) 

equal to 

          (3.8) 

where  is the yield for conversion of reproduction buffer to eggs; floor indicates that the lowest 

whole number made possible by the division is selected; WR the mass of the reproduction buffer (mg 

DW) and WB0 the egg mass (mg DW). 

A special set of rules was used in the case of starvation (Jager et al. 2013). Initially, the energy shortage 

is taken from the reproduction buffer (if any). In a second phase of starvation, the energy needed is 

translated from the structural biomass and the organism shrinks. If an organism shrinks to a critical 

fraction of its maximal attained weight, it has a high chance (0.35 d-1) of dying. 

first stage: if  but   or  

            (3.9) 

           (3.10) 

second stage: if  and  and  

           (3.11) 

            (3.12) 

where κ is the fraction of assimilates for growth and maintenance; JA the mass flux for assimilation (mg 

DW mm-2 d-1); JM the mass flux for maintenance (mg DW mm-2 d-1); WR the mass of the reproduction 

buffer (mg DW); JV the mass flux for structure (mg DW mm-2 d-1) and  the yield of assimilates on 

structure (starvation). 
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3.4. The DEBkiss individual based model 

A general feature of an IBM is that at every time step, all individuals obey a series of sequential rules 

(Figure 3.3). A specific feature of the DEBkiss IBM developed here is that these rules are based on 

DEBkiss theory (see 3.2). First, the individual takes up energy from food. Next, mortality of the 

individual is evaluated: does the individual die from stochastic processes, starvation, toxicity or aging? 

If the individual survives, the growth of the individual is calculated. If the individual is not yet adult, no 

more rules are considered this time step and the individual continues to the next time step. If the 

individual is adult, the next rule is to evaluate whether reproduction will occur. If not, the reproduction 

buffer is updated and the individual continues to the next time step. If reproduction occurs, the number 

of offspring is determined and afterwards the reproduction buffer is updated. New-born individuals 

undergo the same rules in the next time step.  

Figure 3.3: Rules that an individual in the IBM goes through during a time step. Rules that change their 
outcome depending on the state of the individual are marked in grey.  

3.5. Toxicity implementation 

Toxicity can be included in multiple ways in DEB model simulations. Often, toxic effects in DEB 

models are described by impairment of one, or a combination of, different physiological modes of action, 

where effects on survival, assimilation, growth, maintenance and reproduction are the most common 

(Kooijman 2010; Jager and Zimmer 2012). In this modelling framework, chemicals can thus have a 

wide range of effects on organisms and their physiology, and it can be very difficult to discern which 

modes of action are relevant for a specific chemical. Moreover, it is unclear how sub-lethal effects 
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translate to the population level. Consistent with the philosophy of DEBkiss, a simplified approach was 

implemented where only effects on survival were considered. Two approaches to predict the effects of 

a chemical on survival were evaluated: concentration-response (CR) relationships and toxicokinetic-

toxicodynamic (TKTD) models.  

3.5.1. Concentration-response relationships 

CR relationships give a straightforward relationship between the concentration of the chemical in the 

water and the survival probability of an individual, based on standard toxicity test results. The survival 

probability for a given time period (e.g. one day) can be predicted from the water concentration by 

         (3.13) 

which only includes the concentration of the chemical in the water ( ) and two chemical-specific 

parameters: the slope parameter  and the  of the chemical.  

3.5.2. Toxicokinetic-toxicodynamic models 

The TKTD model used is based on the general unified threshold model for survival (GUTS) which 

offers a general framework for the wide variety of TKTD models available (Jager et al. 2011). In short, 

toxicokinetic-toxicodynamic models predict the internal concentration over time from a given external 

concentration (toxicokinetics) and link this internal concentration to a toxic effect at the level of the 

individual over time (toxicodynamics) (Jager et al. 2011). The implemented TKTD model is based on 

the reduced GUTS-SD model, assuming stochastic death and using a scaled internal concentration 

(Figure 3.4). The GUTS-IT model, assuming the individual tolerance concept, was also implemented 

but was sub-optimal for the species and chemical used here when applied to standard toxicity 

experiments.  

 

Figure 3.4: The implemented TKTD model. The dominant rate constant (kD1) describes the rate at 
which a chemical is taken up by the individual (C*int) from the environment (Cext). The killing rate 
constant (kk) and the internal threshold for effects (z) are used to link the scaled internal concentration 
(C*int) to a survival probability over time. 

The TKTD model is described by three parameters: the dominant rate constant kD, the killing rate 

constant kK and the internal threshold for effects z. To calculate the internal concentration of a chemical 

(toxicokinetics), a first-order one-compartment model can often be used: 
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        (3.14) 

where Cint is the internal concentration (μg kg-1); t is the time (d), kI is the uptake rate constant (L kg-1 d-

1); Cext the external concentration (μg -1) and kE the elimination rate constant (d-1). However, in 

ecotoxicological studies, the internal concentration is mostly not measured. The GUTS model can still 

be parameterized then by rescaling equation (3.14) and dividing both sides by kI/kE. This way, the 

rescaled internal concentration C*int is directly proportional to the actual internal concentration and has 

the dimensions of the external concentration: 

        (3.15) 

where  is the rescaled internal concentration (μg L-1); t is the time (d); kD is the dominant rate 

constant and Cext the external concentration (μg -1). The elimination rate constant can be estimated from 

the time-course of survival data even if internal concentrations are unknown. However, it is not 

guaranteed that this estimated elimination rate constant represents only whole-body elimination. When 

the elimination rate is estimated from only external concentration and survival data over time, the 

slowest compensatory process, which can be either toxicokinetic (i.e. elimination from the body) or 

toxicodynamic (i.e. recovery from damage), will dominate the dynamics of toxicity. Therefore, we refer 

to the dominant rate constant kD instead of the elimination rate constant kE for the rescaled internal 

concentration (Equation 3.15). To translate this rescaled internal concentration to effects on survival 

over time, the cumulative hazard was used: 

 with      (3.16) 

where S(t) is the survival probability of an individual at time t; t is the time (d); HZ the cumulative hazard 

of an individual at time t; kK the killing rate (L μg-1 d-1);  selects the maximum of 0 and ; 

 is the rescaled internal concentration (μg L-1); z the internal threshold for effects (μg L-1) and hB the 

background mortality rate (d-1). 

Both toxicity approaches provide the probability, based on the chemical exposure, that an individual 

will survive one more day. This survival probability is then evaluated for each individual in a population 

to determine if it survives until the next day. The main difference between the two toxicity sub-models 

is that CR relationships only consider the current chemical concentration and not earlier exposure while 

chemical effects can still occur after exposure when using TKTD-SD.  

3.6. Software 

The DEBkiss IBM framework was implemented in NetLogo (Wilensky 1999), which was specifically 

designed for IBMs and has been used before to implement DEB IBMs (Martin et al. 2012). 
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4  
APPLICATION OF THE DEBKISS IBM FRAMEWORK TO 

ASSESS THE EFFECTS OF COMPETITION AND CHEMICAL 

STRESS ON THE POPULATION DYNAMICS OF 

BRACHIONUS CALYCIFLORUS AND DAPHNIA MAGNA 

 

 

 

 

 

 

Redrafted from: 

Viaene KPJ, De Laender F, Janssen CR, Baveco JM, Van den Brink PJ, Focks A. DEBkiss IBMs as a 

novel tool to assess the population-level effects of chemicals on competing species. In preparation.  
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Abstract 

To increase the ecological relevance of chemical risk assessment, the potential influence of species 

interactions such as competition need to be accounted for. Ecological models have been identified as a 

possible approach to consider species interactions, however, high data requirements often impair the 

use of modelling approaches. Individual-based models based on a simplified dynamic energy budget 

theory (DEBkiss IBMs) provide transparent and readily applicable models. In the current chapter, I 

tested the capacity of an integrated model composed of two DEBkiss IBMs to predict the effects of pyrene 

on two competing consumers, the cladoceran Daphnia magna and the rotifer Brachionus calyciflorus. 

Both IBMs were calibrated using only data available in the literature and their performance was 

evaluated using data from competition experiments. To predict the effects of pyrene, two possible toxicity 

model implementations – concentration-response curves and toxicokinetic-toxicodynamic models – in 

the IBMs were compared. Population dynamics of both species in isolation were reasonably well 

predicted, although the population structure for D. magna was less well predicted. Agreeing with the 

results of the experiments, D. magna outcompeted B. calyciflorus in the integrated model with both 

species. The toxicokinetic-toxicodynamic model captured short-term effects of pyrene better than the 

concentration-response model but overpredicted the chronic effects. Simulated rotifer population 

dynamics exposed to both pyrene and competition were higher than those observed because of the 

overprediction of pyrene effects on daphnid populations. Despite its limitations, the tested DEBkiss IBM 

approach can be a useful tool for assessing the risk to species with short life cycles in case of low data 

availability.      
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4.1. Introduction 

Ecological models and especially individual-based models (IBMs) have received increasing attention in 

ecotoxicology during the past decade. IBMs have been developed for several species such as Asellus 

aquaticus (Galic et al. 2012), Daphnia magna (Preuss et al. 2009a) and Chaoborus (Dohmen et al. 

2015). However, these models are still met with much scepticism by industry and regulators that are 

unfamiliar with using models for effect assessment. In order to improve their use and acceptance, models 

need to be validated (Grimm and Martin 2013; Grimm and Thorbek 2014). One common way to validate 

models is to compare model output with patterns in available data. Patterns in this context are defined 

as characteristics of the observations that are unlikely to be the result of random processes (Grimm and 

Martin 2013). For complex systems, it is critical to evaluate multiple patterns because single patterns 

can often be reproduced in multiple ways and it is then unknown whether the underlying mechanisms 

are correctly captured. Key characteristics of complex ecological systems are interactions between 

individuals of different species. Ecological models in general and IBMs more specifically that can 

accurately predict how these interactions affect the population dynamics of the species involved, 

especially in the context of chemical stress, could become essential tools in future ecological risk 

assessment approaches.  

The main objective of this chapter was therefore to test whether the DEBkiss IBM framework described 

in Chapter 3 is suitable to simulate and understand patterns observed for two interacting populations 

under chemical stress. To reach this objective, DEBkiss IBMs were implemented and parameterized for 

two grazers (the water flea Daphnia magna and the rotifer Brachionus calyciflorus) and a framework 

was developed to allow multiple DEBkiss IBMs to compete for a shared resource (the algae 

Scenedesmus obliquus).  Simulations were performed for the control treatment, for exposure to pyrene, 

for interspecific competition, and for a combination of pyrene exposure and interspecific competition. 

To evaluate the performance of the model for predicting the combination of ecological (competition) 

and chemical stress, simulation results were compared to the patterns observed in the experiments 

described in Chapter 2. 

4.2. Materials and Methods 

4.2.1. Model parameterization 

Available literature data were used to determine a range of possible DEBkiss IBM parameter values 

(Table 4.1). The available literature for Daphnia magna and Brachionus calyciflorus was queried for 

DEB-related parameters such as maximum body lengths, growth rates, ingestion rates, egg weights and 

length-weight relationships. Parameter values from other DEB models were avoided because these have 

been fitted for more complex DEB models which differ from DEBkiss (e.g. by including a reserve 
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compartment) and were therefore incomparable to the DEBkiss parameters. If not found, DEBkiss 

parameters were calculated from the available information. For example, if the von Bertalanffy growth 

constant ( ) was known and standard values of 0.1 mg DW mm-3 and 0.8 were used for the dry-weight 

density of structure ( ) and the yield of structure on assimilates ( ), respectively, the volume-specific 

maintenance costs were calculated using equation (3.6). This approach assumed that (1) the available 

literature data were applicable to the individuals used in the current chapter, which, given the large 

variation within a species, is not always certain and (2) the assumptions made in the original DEBkiss 

paper also applied here. Both the concentration-response curves and the TKTD model were 

parameterized using a standard 48-hour toxicity test performed with D. magna (See Chapter 2).  

4.2.2. Species-specific adjustments to the DEBkiss-IBM framework 

The DEBkiss IBM framework offers a very general description of an organism’s life cycle. This is very 

useful when specifics about the life cycle and physiology are not available. In the current chapter, two 

species are considered that have been widely used and studied in ecotoxicology. Species-specific details 

are thus known and species specific traits can be accounted for in the DEBkiss IBM.  

Daphnia magna 

Because of their carapace, D. magna individuals cannot physically shrink when starving (Martin et al. 

2013a). So, although their weight decreases, their length stays constant. This has implications for the 

assimilation of food because the amount of food daphnids obtain from the water depends on the length 

of the appendages. Therefore, instead of using the actual length of an individual, the maximum obtained 

length was used to calculate the assimilation flux (Equation 3-4). 

Under starvation, daphnids can convert body mass to energy until a critical weight is attained and 

mortality occurs (Rinke and Vijverberg 2005). To simulate this in the current chapter, individuals that 

shrink to 40% of their previously attained maximum weight have a high probability of dying (per capita 

death rate of 0.35 d-1 (Martin et al. 2013a)). Similar starvation rules were found insufficient in an earlier 

DEB IBM implementation for D. magna (Martin et al. 2013a). Indeed, preliminary simulations with 

these standard starvation rules showed shortcomings similar to those reported in Martin et al. 2013a 

study: densities of individuals in the medium size class were overpredicted and no increase of 

individuals in the largest size class was predicted when food becomes limiting.   
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Therefore, I evaluated if model fit could be improved by additional starvation rules. In Martin et al. 

(Martin et al. 2013a), this problem was mitigated by including an additional mortality term based on the 

amount of energy in the reserve compartment. In DEBkiss, a reserve compartment is missing (Jager et 

al. 2013) and therefore a mortality rate based on the reserve density cannot be included. However, this 

additional mortality can be viewed as a time-weighted average of the feeding history (Martin et al. 

2013a), summarized in the functional response f in DEBkiss. Therefore, a time-weighted average of the 

functional response values of the last five days is calculated (fH) and combined with a mortality 

coefficient m to provide a starvation-dependent additional mortality probability:  

Probability(mortality) = m (1 – fH) (4.1), 

Earlier work has shown that only considering this starvation mortality for juveniles led to the best 

simulations (Martin et al. 2013a). In the current implementation, starvation mortality was therefore only 

implemented for juveniles and values between 0 and 0.2 were evaluated for the mortality coefficient m.  

Brachionus calyciflorus 

B. calyciflorus is known to have a post-reproductive period of 1-2 days (at 20°C)  where individuals still 

feed but don’t reproduce (Jensen and Verschoor 2004). Given that the typical life duration of B.

calyciflorus is 10-11 days at 20°C (Jensen and Verschoor 2004), this is quite significant. This post-

reproductive period was included by limiting the reproduction to individuals younger than 9 days. Also, 

a maximum age of 11 days was included for rotifers. Post-reproduction individuals were not eliminated

from the simulated populations because they still feed and thus influence other B. calyciflorus and D. 

magna individuals.

4.2.3. Coupling 

Species that are in competition need to be able to interact with one another. Instead of implementing 

both species in one NetLogo instance, we opted to write a central interface in Java that calls separate 

NetLogo instances. This allows the whole modelling framework to be more flexible, making it easier to 

e.g. adjust the food input, use species-specific DEBkiss IBMs and extending the framework to more

than two species. This implementation also made it easier to the expand the food web further, as

described in chapter 5-6.

4.2.4. Comparison with data from experiments 

DEBkiss IBM simulations were compared to the experimental results described in Chapter 2. In these 

experiments, isolated populations of B. calyciflorus and D. magna and the two species in competition 

were exposed to a pyrene pulse. Using the population dynamics of the control populations (without 

competition and pyrene stress), parameter values were optimized. For D. magna, control population 
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dynamics were available from two experiments (see Chapter 2) and both were used for parameter 

optimization. To account for variation in the parameters, 100 simulations were performed with random 

sampling from the range of possible DEBkiss parameter values given in Table 4.1. 100 simulations were 

chosen because this was deemed a good compromise between computation time and accounting for the 

variation on the DEBkiss parameters. Optimization was done by likelihood optimization (Jager and 

Zimmer 2012) with the likelihood l of the parameter set θ given the data Y calculated as  

 

where N is the total number of data points and SSQ the sum of squared residuals. The SSQ is given by 

         (4.3) 

where i is the time point of the observation (from i to k),  the estimated value for observation i using 

parameter set θ and  the observed value for observation i. 

Population dynamics of the control treatments were used to select the 10 best (out of 100) parameter 

combinations for each species based on the calculated likelihoods (Table 4.2). Because the size structure 

of the population was important for the response to stress (Chapter 2), likelihoods for D. magna were 

calculated for both the total density and the densities of the size classes. The likelihoods of the total 

density and of the three size classes were then multiplied to derive one value to be optimized. By doing 

so, the parameter combinations were selected that best described both the total population density and 

the population structure. Initial exploration of the likelihoods showed that the maximum area-specific 

assimilation rate ( ) was the dominant factor determining the likelihood, with the lowest likelihood 

for high values (Appendix B Figure B1). Therefore, the range for was limited in the simulations to 

values between 0.06 mg mm-2 d-1 and 0.121 mg mm-2 d-1. Extinction of B. calyciflorus in the control 

treatment was observed by the end of the experiment (31 days), most likely due to abiotic causes e.g. 

decreased water quality. Therefore, only the population densities of the control treatment of the first 22 

days were used to fit the model.  

Table 4.2: Steps, parameters and experiments used for the simulations in this Chapter. 

Step Parameters used Related Chapter 2 experiment  
1 100 random combinations of literature 

parameter values (Table 4.1) 
Experiment 1: Control 
Experiment 2: Control 

2 10 optimal parameter combinations from step 1 Experiment 2: Interspecific competition 
3 10 optimal parameter combinations from step 1 Experiment 2: Pyrene 
4 10 optimal parameter combinations from step 1 Experiment 2: Interspecific competition + 

Pyrene 
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The 10 optimal parameter combinations for both species were then used to predict the dynamics for 

exposure to competition, exposure to pyrene and exposure to both competition and pyrene (Table 4.2). 

When simulating two competing species, each of the 10 optimal parameter combination of D. magna 

were combined with each of the 10 optimal parameter combination of B. calyciflorus, resulting in a total 

of 100 simulations. To evaluate the effects of pyrene, both the concentration-response (CR) and the 

toxicokinetic-toxicodynamic (TKTD) models were tested. Simulations were only compared to the data 

of experiment 2 because it was unclear how exposure to two pyrene pulses, as was the case in experiment 

1, affected the daphnids and if the toxicity models could capture this. In experiment 2, only one pyrene 

addition was performed and the applicability of both toxicity models should be more clear. 100 

simulations were run for the pyrene exposure to account for stochasticity. Simulations for exposure to 

both competition and pyrene were also simulated 100 times. For all these treatments, the calculated 

likelihoods were used again to select the 10 simulations (out of 100) closest to the observed densities.  

4.3. Results  

4.3.1. Daphnia magna  

Figures 4.1-4.3 in the current chapter show the optimal fit of the DEBkiss IBMs i.e. the 10 best 

simulations of the 100 simulations performed per treatment, based on the likelihood. Simulations of 

isolated D. magna populations without chemical stress showed a population growth phase followed by 

a decline as the carrying capacity of the system was reached (Figure 4.1). Despite differences in the 

observed maximum population densities of the two experiments used for parameter optimization (150 

individuals versus 110 individuals), the population trends in both experiments were similar (Figure 4.1). 

The maximum density of the first experiment was predicted by some of the 100 performed simulations 

but since the optimization was performed for all counted abundances, the best simulations shown in 

Figure 4.1 are more in line with the maximum density counted in the second experiment. The maximum 

population density in the simulations was lower and occurred earlier than in the experimental 

observations. In the second half of the experiments, the simulated population density was therefore lower 

than the observed density. The population densities at the end of the experiment were more comparable 

between simulations and experiments (Figure 4.1).  

The largest discrepancy between the control treatment of experiments and simulations was observed for 

the abundance of large individuals at the end of the experiment (Appendix B Figure B2). While a steady 

increase of large individuals was observed until the end of the experiment, a constant, low abundance 

of large individuals was predicted. Related to this, the abundance of intermediate individuals strongly 

decreased in the experiments while this was not observed in the simulations. A similar trend was 

observed in an earlier study and was alleviated by including additional starvation mortality related to 

the reserve density of an individual (Martin et al. 2013a). Because DEBkiss IBMs lack a reserve 
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compartment, additional starvation mortality based on the history of the functional response parameter 

f was used as an alternative. Adding this functional response based starvation mortality did, however, 

not decrease the deviation for large individuals nor increase the fit for total abundances (Appendix B 

Figure B2-B3). Therefore, this additional starvation mortality mechanism was not used in other 

simulations shown in the current chapter (Figure 4.2-4.3). Similar to the experiments, the abundance of 

small individuals, indicating reproduction, was highest in the first half of the simulation period. 

However, while reproduction was not observed after day 10 in the experiments, low abundances (<20 

individuals) of small individuals were still observed in the simulations.  

 

Figure 4.1: Observed and predicted population dynamics for D. magna using a DEBkiss IBM. D. magna 
populations were exposed to (A) pyrene; (B) the competitor B. calyciflorus and (C) the competitor B. 
calyciflorus and pyrene. The grey area indicates the 10 best simulations out of 100 for the control 
treatment (no pyrene exposure or competition). Green shaded areas indicate the 10 best simulations out 
of 100 for populations under stress. Black bullets and squares show the observed dynamics for the 
control treatment in the two experiments. Green squares show the observed dynamics for populations 
under stress (competition and/or pyrene exposure). The red dashed line indicate the time of pyrene 
addition. Asterisks indicate significant differences (p < 0.05) between control and treatment in the 
experiment. 

  



Chapter 4 

60 

Two toxicity models were evaluated, concentration-response curves (CR) and toxicokinetic-

toxicodynamic models with stochastic death (TKTD-SD; Figure 4.2). Effects of pyrene were only 

considered for D. magna as no effects were observed for B. calyciflorus, neither in the acute toxicity 

test (Chapter 2) nor in the population experiment (Figure 4.3). Using CR curves, pyrene effects occurred 

immediately while a delay of a week was observed in the experiments (Figure 4.1). Also, D. magna 

populations recovered after two weeks in the simulations while this was not observed in the experiment. 

Using TKTD-SD, effects were more delayed (1-2 days) but still too fast. Also, the effects of pyrene 

were larger, potentially even leading to extinction of the daphnid population, and persisted longer than 

with the CR toxicity model (Figure 4.2). Both considered toxicity models were thus unable to fully 

capture the effects of pyrene on D. magna population dynamics. Although the predicted effects of pyrene 

were too high, the TKTD-SD model was preferred over the CR model because the slight delay in pyrene 

effects and the absence of population recovery matched the observations most closely. 

Figure 4.2: Comparison of the DEBkiss simulations for D. magna with concentration-response curve 
(A) or TKTD-SD (B) as toxic effect sub-model. The grey area indicates the 10 best simulations out of
100 for the control treatment (no pyrene exposure or competition). Green shaded areas indicate the 10
best simulations out of 100 for populations under stress. Black bullets and squares show the observed
dynamics for the control treatment in the two experiments. Green squares show the observed dynamics
for populations under stress (competition and/or pyrene exposure). The red dashed line indicates the
time of pyrene addition. Asterisks indicate significant differences (p < 0.05) between control and
treatment in the experiment.
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4.3.2. Brachionus calyciflorus 

Simulations for the isolated B. calyciflorus populations reflected the pattern of population increase and 

decrease observed in the experiment (Figure 4.3). For B. calyciflorus, the simulated maximum total 

population density was comparable to that observed in the experiments. Because pyrene effects were 

not predicted for individuals at the measured pyrene concentrations, exposure to pyrene did not alter the 

B. calyciflorus population dynamics.  

 
Figure 4.3: Simulated population dynamics of B. calyciflorus using a DEBkiss IBM. B. calyciflorus 
populations were exposed to (A) pyrene; (B) competition with D. magna and (C) both competition with 
D. magna and pyrene exposure. The grey area indicates the 10 best simulations out of 100 for the control 
treatment (no pyrene exposure or competition). Green shaded areas indicate the 10 best simulations out 
of 100 for populations under stress. Black  squares show the observed dynamics for the control treatment 
in the two experiments. Green squares show the observed dynamics for populations under stress 
(competition and/or pyrene exposure). The red dashed lines indicates the time of pyrene addition. 
Asterisks indicate significant differences (p < 0.05) between control and treatment in the experiment. 

 

4.3.3. Competition 

As observed in the experiments, daphnids were also the superior competitors in the simulations (Figure 

4.1 and Figure 4.3). Simulated daphnid population dynamics were largely unaffected by competition 

with rotifers, which corresponds to the experimental results. The only effects of competition on daphnid 

populations were a 23% lower maximum population density and an earlier cessation of population 

growth (five days earlier) in the competition treatment simulations than in the simulations of the control 

treatment. However, differences between isolated populations and populations in competition with 

rotifers were not observed in the experiment. Simulated population dynamics of B. calyciflorus 

competing with D. magna corresponded well with experimental results (Figure 4.3): a population 
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increase when food was not yet limiting – but lower than for isolated B. calyciflorus populations – and 

a very low population abundance or extinction when food was scarce, although the population persisted 

longer than observed.  

4.3.4. Competition and chemical stress 

When D. magna was exposed to both pyrene and competition, the effect of pyrene on D. magna was 

unaltered: daphnid populations decreased, potentially leading to extinction (Figure 4.1). This was similar 

to that observed in the experiments where the effect of pyrene showed no interaction with the effect of 

interspecific competition (see Chapter 2). Contrary to the experiments, rotifers increased in abundance 

after pyrene exposure (Figure 4.3). 

4.4. Discussion 

4.4.1. Predictive capability of DEBkiss IBM for Daphnia magna and Brachionus  

calyciflorus 

In general, the effects of food shortage on D. magna populations appeared sooner in the DEBkiss IBM 

than in reality. Several deviations between the experiments and the simulations could be ascribed to the 

absence of a reserve compartment in the D. magna DEBkiss IBM: compared to the experiments, the 

simulations showed lower maximum population densities, earlier population decline, lower abundance 

of large individuals and higher effects of competition with B. calyciflorus. The implementation of an 

additional starvation mechanism similar to another D. magna DEB IBM implementation (Martin et al. 

2013a) proved unsuccessful. The absence of a reserve compartment thus limits the application of the 

DEBkiss IBM for conditions when the population is starving. The starvation recovery rules were also 

lacking: while reproduction was not observed after day 10 in the experiments, low abundances (<20 

individuals) of small individuals were still observed in the simulations. In the DEBkiss implementation, 

starving individuals shrink to meet their energy needs. When food is available again, they immediately 

spend a fixed part of the assimilated energy on reproduction. However, it seems unlikely that the 

proportion of assimilated energy spent on reproduction is identical for well-fed individuals and 

individuals recovering from starvation. Implementing starvation recovery rules that favour recovery of 

weight over growth and reproduction could improve the fit of the simulations. However, many different 

starvation recovery strategies have been proposed for D. magna and a general consensus is lacking 

(Vanoverbeke 2008). 

The instantaneous effects of pyrene on D. magna populations when modelling toxicity with CR curves 

is not surprising given that only the current chemical concentration is used to predict pyrene effects. 

There is thus no delay between exposure and effects possible, although a delay of about a week was 
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observed for pyrene. Similarly, effects of pyrene disappear quickly with the CR approach, explaining 

the predicted recovery. The TKTD approach can account for a delay in effects and recovery but effects 

were still too fast for the experiments used. A possible cause for the deviation between the effects 

predicted by the toxicity models and the observed effects is that the parameterization of these models 

was done using the result from an acute toxicity test performed with D. magna juveniles. Chronic 

toxicity can differ from acute toxicity e.g. because of alternative modes of action or toxicity of the 

biotransformation products (Dom et al. 2012). Also, the endpoint used in the D. magna toxicity test was 

immobilization and it can take a few days for immobilized individuals to die. Moreover, the presence of 

different size classes can influence the susceptibility of a population to toxic stress: larger D. magna 

individuals have been shown to be more resistant to e.g. carbaryl (Coors and Meester 2008), possibly 

explaining the observed delay in effect of pyrene at concentrations close to the acute EC50. Alternatively, 

due to its assumed narcotic mode of action (Di Toro et al. 2000), it is possible that pyrene causes sub-

lethal effects in daphnids. Including such sub-lethal effects might explain the delayed effect of pyrene 

on total population density. More complex toxicity models which e.g. consider effects on maintenance 

costs or other modes of action were not tested because (1) the aim of the chapter was to test the efficacy 

of a simple (toxicity) model and (2) accurate information about the mode of action of pyrene or different 

sensitivity of life stages to pyrene is lacking.  

The observed population decline of rotifers at the end of the experiment was most likely due to 

unsuitable environmental conditions e.g. decreased water quality, waste accumulation and/or changed 

physico-chemical parameters of the water, which are not considered in the IBMs. For example, the pH 

decreased from 7.7 ± 0.1 at the start to 6.5 ± 0.3 at the end of the second experiment and the oxidation-

reduction potential increased over the same period from -61 ± 5 mV to 9 ± 16 mV. Other water quality 

parameter and waste products were not measured in the experiments.  

Competitive exclusion has been observed frequently for rotifers competing with daphnids (MacIsaac 

and Gilbert 1989). We were able to simulate this exclusion and its effects on both species, although the 

disappearance of rotifers was slower in the simulations than in the experiments. Possibly, other 

mechanisms not considered here accelerated the extinction of rotifers e.g. rotifers can be damaged by 

mechanical interference – rejection after accidental ingestion – with feeding daphnids (Gilbert 1988). It 

is also plausible that such low abundances of B. calyciflorus were simply not detected in the experiments. 

Because of the transparency and low complexity of the DEBkiss IBMs, it would be easy to implement 

additional competition mechanisms for species when this is needed.   

The predicted increase in rotifers after pyrene addition did not correspond with the experiments but is 

logical when looking at the other simulations. This difference was caused by the rotifers still being 

present in the simulations at the time of pyrene addition contrary to the experiments. Moreover, the 

effect of pyrene on daphnids occurred much faster in the simulations than in the experiments, increasing 
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the amount of algae available to rotifers. Also, some daphnid populations were completely eliminated 

by pyrene, which resulted in improved B. calyciflorus growth conditions i.e. without competition for 

food. In fact, if a similar pyrene effect had occurred on D. magna in the experiments as in the 

simulations, an increase in B. calyciflorus in the experiments would be expected. 

In general, population dynamics were accurately predicted using a DEBkiss IBM and the DEBkiss IBM 

approach is especially applicable for organisms with short life cycles. Despite the limitations of the 

DEBkiss IBM to capture the observed population dynamics and structure of D. magna exactly, the 

endpoints that are most focused on in traditional ERA – population growth, total population density and 

reproduction – were reasonably well predicted. Also, the toxicity models considered here do not account 

for size-dependent effects, which limits the impact of a faulty population structure on the population 

dynamics after toxic stress. 

4.4.2. Applicability of the DEBkiss IBM framework 

Without conducting the experiments often deemed necessary for DEB model parameterization (Jager et 

al. 2013), the population dynamics of two competing species were simulated reasonably well using 

available literature data and universal parameter values (Table 4.1). DEB parameters are often difficult 

to measure and interpret. When not available, these were derived from more easily available parameters 

using simple equations. For example, the area-specific searching rate of D. magna was derived from the 

half-saturation constant for ingestion using Equation (3.4). Although the use of these simple formulas 

entails acceptance of certain assumptions (Jager et al. 2013) - e.g. for the example above we assume that 

the functional response is a Holling type II - they also offer an easy way to calculate parameter values 

that are difficult to determine. Therefore, despite its limitations, DEBkiss IBMs can be useful to predict 

population-level effects for species where the large data requirements of typical DEB models is 

problematic. Given the limited complexity of DEBkiss IBMs and the problems encountered with 

simulating the size structure of the relatively simple D. magna in the current study, their usefulness for 

predicting population dynamics of more complex organisms such as fish or large macro-invertebrates 

with fluctuating food conditions seems limited. However, they might be used to simulate key life 

processes for these organisms such as growth in well-described situations e.g. when food is abundant, 

as was done for the pond snail Limnae stagnalis (Jager et al. 2013).  

Calibration of a model to only one dataset is not without risk. The validity of the model is only tested 

for a specific situation and the parameters can be adjusted to fit the observations without necessarily 

capturing the underlying processes(Forbes et al. 2008; Grimm and Martin 2013). In this chapter, the 

DEBkiss IBMs were calibrated using one experiment in the case of B. calyciflorus and two experiments 

in the case of D. magna. These calibrated models were then applied to three different treatments: pyrene 
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stress, competition and a combination of both. Although calibrated on a limited dataset, these models 

were thus applied successfully to very different situations, increasing their acceptability and credibility. 

In conclusion, the tested DEBkiss IBMs were able to capture the general patterns of the population 

dynamics observed in experiments with D. magna and B. calyciflorus, especially for B. calyciflorus. 

Two areas in particular need improvement: the simulated population structure of D. magna and the 

toxicity model of pyrene. Improving the modelling of the population structure might be a challenge 

because of the absence of a reserve compartment in DEBkiss theory. The toxicity of pyrene could be 

better captured using more complex toxicity models that consider other modes of action. This 

information is, however, currently lacking for pyrene. For chemicals that have clear acute effects on 

survival, the TKTD-SD model implemented here might already prove sufficient. 
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Abstract 

Ecological risk assessment does not aim to protect one or two species in the laboratory but to protect 

realistic communities in the field. Two of the most important interactions in a food web are competition 

and predation. In this chapter, a DEBkiss IBM implementation for predation was developed and 

combined with the earlier developed competition implementation to form the ChimERAfoodweb model. The 

ChimERAfoodweb model included two grazers (Brachionus and Daphnia), their predator (Chaoborus) and 

two detritus feeders (Asellus and Gammarus). To perform simulations for realistic environmental 

conditions, ChimERAfoodweb was coupled with ChimERAfate to form the integrated ChimERA model. 

ChimERAfate is a dynamic and spatially-explicit fate model that predicts environmental concentrations 

based on environmental variables (hydrodynamics, temperature and trophic state). The integrated 

ChimERA model is able to provide spatially-explicit predictions of food web dynamics and the effects 

of chemical exposure over time, based on the environmental conditions provided. 
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5.1. Introduction 

Ecological risk assessment (ERA) procedures were developed to quantify the risk that a chemical poses 

in the environment. Ecological risk assessment is typically divided in environmental exposure 

assessment and assessment of the potential ecological effects, with distinct procedures for exposure and 

effect assessment. Current ERA methods have however received considerable criticism for being 

unrealistic, both on the exposure and effect assessment side (Forbes et al. 2008; SCHER (Scientific 

Committee on Health and Environmental Risks) et al. 2013; De Laender et al. 2014a). Effect assessment 

procedures have been criticized for neglecting important ecological processes such as species 

interactions (Fleeger et al. 2003; De Laender et al. 2014a) and spatio-temporal variation in effects of 

chemicals (Beketov and Liess 2012). Exposure assessment procedures need to be improved to account 

more explicitly for variability in time and space (De Laender et al. 2014a). 

Interactions between species, such as competition and predation, can influence the outcome of chemical 

stress at the population level by increasing or decreasing the effect of the chemical. For example, 

competition with Culex larvae increased the recovery time of Daphnia magna after exposure to 

fenvalerate (Foit et al. 2012). Alternatively, in Chapter 2 of this thesis, the effects of pyrene were found 

to be lower in D. magna populations experiencing predation because of a higher proportion of large, 

more tolerant individuals. Accurately predicting the effects of chemical exposure on higher levels of 

biological organization can thus not be done without taking these interactions into account. This has 

been recognized in many opinion and review papers and in (regulatory) advisory documents (Fleeger et 

al. 2003; Forbes et al. 2009a; SCENIHR et al. 2012). 

The landscape structure, the location of exposure within the landscape and the presence of unexposed 

populations in the vicinity are other factors determining chemical effects and these are especially 

important for the recovery of the affected populations. For example, isolated communities recovered 

more slowly from the application of endosulfan than less isolated communities (Trekels et al. 2011). In 

another study, the presence of uncontaminated patches increased the recovery time of communities after 

lufenuron exposure in mesocosms (Brock et al. 2009). Similarly, the timing of exposure can greatly 

influence population dynamics (Relyea and Hoverman 2006). Early life stages, especially embryonic 

stages, are often more sensitive than “older” individuals to chemicals. Exposure during periods of 

reproduction can thus lead to larger population effects compared to exposure during periods without 

reproduction (Bridges 2000; Galic et al. 2012). Also, the exposure pattern of the chemical is important 

i.e. where the exposure occurs, how frequently and in what concentrations. Exposure patterns can differ 

greatly between chemicals and this leads to different effects on population dynamics (De Laender et al. 

2014a). For example, pesticides are typically applied during brief periods of the year. When pesticides 

have a rapid degradation rate, species will be exposed for only a short period to a peak concentration. 
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Pesticides that are more persistent will stay in the environment longer and species will thus be exposed 

for a longer time. Other chemicals may have no distinct application time and emission to the 

environment will hence be more constant (e.g. industrial chemicals or personal care products).  

Many factors, both abiotic and biotic, can thus influence the outcome of exposure to a chemical and it 

is impossible to account for all these factors in experiments. Models are a good alternatives and have 

been successfully applied in both exposure and effect studies. The dynamic and spatially-explicit 

ChimERAfate model, for example, has been developed to predict the chemical concentration in the 

different environmental compartments of a shallow pond (Morselli et al. 2015). Similarly, population 

models have been used to predict the effects of chemicals on populations. The effect of the insecticide 

modelmethrin to populations of three different arthropods (Chaoborus crystallinus, Daphnia magna and 

Gammarus pulex) was modelled using individual based models and a mechanistic effect model 

(Dohmen et al. 2015). In another study, the influence of where and when a stress event occurred on the 

recovery of the isopod Asellus aquaticus was studied using an individual based model (Galic et al. 2012). 

Ecological models have typically been applied to predict the effects of chemicals on populations of one 

species and thus neglecting possible effects of interspecies interactions. Considering that ecological 

models have been suggested as good tools to extrapolate individual-level effects to population, food web 

and/or ecosystem level effects (Grimm et al. 2009; De Laender et al. 2014a), it is important to 

incorporate interactions between species in these models. One recent modelling study showed for 

example that adding interspecific competition to individual based models increased recovery times after 

chemical exposure up to three times (Kattwinkel and Liess 2013).  

In Chapters 3 and 4, we developed and successfully applied DEBkiss IBMs for two grazers (D. magna 

and B. calyciflorus) competing for a shared food source and successfully simulated the effects of a 

chemical (pyrene) on the population dynamics of these two species. However, a second key interaction 

between species was not yet implemented within the DEBkiss IBM framework: the predator-prey 

relationship. Additionally, the DEBkiss IBMs were applied only for populations in a lab environment 

which lacked a spatial structure. As mentioned above, the spatial and temporal dimension of chemical 

exposure is, however, essential to perform a realistic ecological risk assessment. Also, the two 

components of ecological risk assessment – exposure and effect assessment – are closely linked and 

interact. For example, detritus and phytoplankton are two key aspects of food webs that also affect the 

bio-availability of a chemical (Morselli et al. 2015). In the models presented in the previous chapters we 

have neglected the role of environmental fate on the subsequent effects.  

The first objective of this chapter was therefore to develop a DEBkiss IBM implementation for predation 

and, by combining this with the earlier implementation of competition, to develop a complete food web 

model. The second objective was to implement an environmental fate model to predict where and when 

exposure will occur. Finally, both submodels were combined to form the ChimERA model, i.e. a 
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spatially-explicit model that can predict the dynamics of a food web exposed to the realistic emission 

pattern of a chemical. 

5.2. General architecture 

The ChimERA model consists of two submodels: the ChimERAfoodweb model and the ChimERAfate 

model (Figure 5.1). The ChimERAfoodweb model is used to predict the densities of the different species 

in a specified food web and the possible effects of chemical(s) on these densities. The ChimERAfate 

model predicts, based on the emission pattern of a chemical and environmental variables (temperature, 

trophic state and the hydrodynamics of the system), the concentration of a chemical in the environment 

as well as the phytoplankton and detritus concentration. Both submodels exchange information during 

simulations: the ChimERAfate model provides the (chemical) exposure concentration, phytoplankton 

concentration and detritus concentration to the ChimERAfoodweb  model. The ChimERAfoodweb model 

provides the amount of phytoplankton and detritus biomass consumed by the food web to the 

ChimERAfate model. The ChimERA model is a dynamic spatially-explicit model: chemical fate and food 

web dynamics take into account the spatial structure of the system and can provide predictions for 

environmental variables that are dynamic over time.  

 

 

Figure 5.1: Overview of the integrated ChimERA model: based on the trophic state, the 
hydrodynamics, and the temperature of a system and the chemical exposure present in a system, the 
integrated ChimERA model provides predictions of the chemical fate and food web dynamics.  

5.3. ChimERAfoodweb  model 

A simple pond food web consisting of five species was considered in the current food web model: two 

grazers predated by a predator and two detritus feeders (Figure 5.2). Model genera for the two grazers 

were Brachionus and Daphnia, Chaoborus was selected for the predator and Asellus and Gammarus 

were used as the two detritus feeders. All five species were modelled using DEBkiss IBMs (Chapter 3). 

The advantages of these DEBkiss IBMs over other IBM approaches were their transparency and 

simplicity, which allowed easier interpretation of the simulations compared to more complex DEB 
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approaches. Also, the limited complexity allowed for faster calculations. Parameterization of the 

DEBkiss IBMs was done using the ‘add my pet’ database 

(http://www.bio.vu.nl/thb/deb/deblab/add_my_pet) and literature sources (Table 5.1). Certain DEBkiss 

parameters, mainly feeding-related (maximum specific feeding and searching rate), were adjusted to 

allow stable population dynamics using the food levels provided by the fate model. The applicability of 

DEBkiss IBMs has not been tested for Asellus and Gammarus. However, the parameters used were 

based on the validated ‘add my pet’ database and the application of DEBkiss IBMs for competition has 

been tested in Chapter 4. The competition between Asellus and Gammarus is therefore expected to be 

realistically captured by DEBkiss IBMs.  

Figure 5.2: Configuration of the pond food web used in the current chapter. Full arrows indicate the 
mass fluxes between the different food web components. 

Chemical effects on survival were modelled using a toxicokinetic toxicodynamic (TKTD) approach, 

based on the generic universal threshold model for survival (GUTS) assuming stochastic death (Jager et 

al. 2011). A detailed description of the DEBkiss IBM and GUTS implementation is given in Chapter 3. 

Exposure to a mixture of different chemicals was also implemented in the ChimERA model. Different 

mixture toxicity models exist (e.g. concentration addition or independent action) and these are mostly 

based on the mode of action of the chemicals concerned (Jonker et al. 2005).  
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Often, a priori knowledge on how chemicals interact is not available and an informed choice of the 

correct mixture toxicity model is therefore not possible. Hence, as an alternative approach, the hazard 

of each chemical was calculated (see equations 3.14-3.16) and summed, assuming that the hazard of a 

chemical was not influenced by other chemicals. The summed hazard was then used to calculate the 

survival over time using 

         (5.3) 

with S(t) the survival probability of an individual at time t (d); HZ the cumulative hazard caused by 

chemical i of an individual at time t (Equation 3.16) and n the number of chemicals to which the 

individual is exposed. 

Some species-specific adjustments were done to enhance the realism of the DEBkiss IBMs. For Asellus, 

Daphnia and Gammarus, i.e. species with carapaces and appendices which are unable to shrink, the 

feeding flux was determined using their maximum attained structural length. All species were assumed 

to follow the general DEBkiss life cycle: individuals start their life cycle as an embryo, hatch as juveniles 

and grow to the adult life stage, where reproduction can occur. This is roughly applicable for all species 

except for Chaoborus. The Chaoborus present in the food web are actually the larval stage and 

emergence of the free-flying stage is needed for reproduction (Van Wijngaarden et al. 2006). This latter, 

free-flying life stage was ignored in the DEBkiss IBM implementation because its duration is small 

compared to that of the waterborne life stages (Von Ende 1982). So, when reproduction occurred, the 

Chaoborus individual was removed from the population and its energy available in the reproduction 

buffer was converted into eggs. 

Competition between grazers and detritus feeders was modelled using resource competition only, as 

described in Chapters 3 and 4 for experiments with Brachionus and Daphnia. With each time step, the 

biomass consumed by each species was summed and, if the theoretical consumption was higher than the 

available food, rescaled to the available biomass. Although density-dependent effects on mortality can 

be expected for e.g. the detritivores Asellus and Gammarus (Galic et al. 2012; Dohmen et al. 2015), they 

were not considered in our hypothetical scenarios. The outcome of competition was thus solely 

determined by the rate and the efficiency of food uptake and the ability to cope with low food conditions. 

Predation on the two grazers by Chaoborus was modelled following a multi-species predation approach 

(Krylov 1992; Rose et al. 1999): 

 with 
′

′        (5.4) 

with  the biomass of prey j eaten by predator i (mg dw d-1);  the maximum ingestion by the 

predator (mg dw d-1);  the weight of predator i; f the functional response parameter (-);  the 
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handling time of prey j (d); ′  the attack rate on prey j (L d-1);  the prey density of prey j; and n the 

amount of prey species. A detailed description of the derivation of the predation equations can be found 

in Appendix C. The used attack rate and handling time were 0.2 L d-1 and 0.76 d for Brachionus (Krylov 

1992), respectively and 0.11 L d-1 and 0.07 d for Daphnia (Moore 1988), respectively. Similar to the 

adjustment of the feeding-related DEBkiss parameters, these attack rates and handling times were 

adjusted literature values to avoid overexploitation of the prey species. 

The landscape implemented in the ChimERA model consisted of two connected ponds and inflow and 

outflow streams. The spatial landscape was implemented in the ChimERAfoodweb model by dividing the 

two pond system into 92 equal-sized patches of 10 m² (Figure 5.3). All patches have individual 

phytoplankton, detritus and population dynamics. Movement between patches was implemented as 

random movement: a species-specific movement parameter defined the probability to move to a 

neighbouring water patch (Table 5.1). All species except Brachionus were assumed to move on average 

1 patch per day. Brachionus movement was considered lower and individuals only moved 0.1 patch per 

day, on average.  

 

Figure 5.3: Spatial discretization of the two-pond system in the ChimERAfoodweb model. The spatial 
landscape is divided in 92 patches of 10m². 

 

5.4. ChimERAfate model 

Because the focus of this PhD thesis is on the ecological effects of chemical exposure, only a brief 

description of the chemical fate model is given here. For a detailed description of the ChimERAfate 

model, see Morselli et al. 2015 (Morselli et al. 2015). In short, the ChimERAfate model was based on the 

fugacity approach (Mackay 2001) and modelled the water-sediment system in two connected 450 m² 

ponds (Figure 5.4). Pond depth and sediment layer depth were assumed to be 50 cm and 1 cm, 

respectively. Phytoplankton was assumed to be the dominant autotrophic group in the water column and 

macrophytes were therefore not considered as a compartment. Different compartments and sub-

compartments were taken into account to predict the concentration of a chemical: water (water and 
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suspended solids), sediment (pore water and sediment solids), dissolved organic carbon, particulate 

organic carbon and phytoplankton. Spatial discretization was obtained by dividing the two pond system 

in 20 slices and describing the one-dimensional water flow between these slices. A hydrological module 

was used to compute water volumes (m3) and fluxes (m3 h−1) on an hourly basis in the slices. Slices 

reflect areas with identical hydrodynamic properties but are not necessarily equal in area (Figure 5.4). 

All calculations in the fate model were performed for each of these 20 slices.  

Because the model was dynamic, time-varying environmental variables could be used as an input for 

the model. Important environmental variables included the temperature, hydrodynamics and trophic 

state of the system. Temperature is not constant throughout the year and varies significantly between 

regions. The temperature influences partitioning constants and rates in the fate model e.g. the Henry law 

constant and the dissolution rate of detritus. Trophic state refers to the nutrient conditions in the system 

and is often described qualitatively as either oligotrophic, mesotrophic or eutrophic. The nutrient 

conditions will determine the phytoplankton concentrations in the system. The hydrodynamics of the 

systems describe the water flow. An often used measure for the water flow is the water residence time: 

the time needed for all water in a location to be replaced. The model was also capable of using time-

varying chemical emissions as input to predict chemical concentrations in the different compartments at 

different time points. 

Figure 5.4: The spatial configuration in the ChimERAfate model. (A) Side view of the two connected 
ponds. Blue arrows indicate the direction of the water flow, red arrows represent the flow of the 
chemical. (B) Top-down view of the two connected ponds. Red dashed lines indicate the division of the 
system in 20 slices by the ChimERAfate model. 



Development of the ChimERA model 
 

77 
 

The compartments included in the ChimERAfate model that were relevant for the ChimERAfoodweb model 

were the phytoplankton, detritus and water concentration of the chemical. Phytoplankton and detritus 

dynamics were described in the ChimERAfate model using ordinary differential equations (Equations 5.1 

and 5.2). The phytoplankton and detritus concentrations determined the energy available for the 

individuals in the food web. The food web model in turn provided the phytoplankton and detritus losses 

due to consumption. The water concentration of the chemical was used to determine possible effects on 

the food web.  

Phytoplankton growth was not constant throughout the year and was described by 

  (5.1) 

with  the change in phytoplankton concentration over time (mg ww d-1 L-1);  the phytoplankton 

concentration (mg ww L-1);  the time (days);  the gross primary production (d-1);  the fraction 

of  spend on respiration (-);  the fraction of  spend on excretion (-);  the carrying capacity 

(mg ww L-1);  the mortality rate of phytoplankton (d-1) and  the phytoplankton losses due to 

grazing (mg ww L-1 d-1).  

Detritus concentration was closely linked to the phytoplankton dynamics and was described by 

        (5.2) 

with  the change in detritus concentration over time (mg ww d-1 L-1);  the phytoplankton 

mortality rate (d-1);  the phytoplankton concentration (mg ww L-1);  the detritus dissolution rate 

(d-1);  the detritus concentration (mg ww L-1) and  the detritus losses due to consumption by 

detritus feeders (mg ww d-1 L-1).  

Gpp and K were two parameters that are specific for a given situation and were chosen on a case by case 

basis. Standard values were taken for the other phytoplankton and detritus model parameters (De 

Laender et al. 2015): Resp = 0.1; Excr = 0.1; Mort = 0.2 d-1; Dis = 0.01 d-1. 

5.5. Technical implementation 

The main technical challenge was coupling the fate model and the food web model which differed 

greatly in their architecture and internal communication. Instead of implementing direct communication 

between the two models, the ChimERAfate model and the ChimERAfoodweb model were coupled by 

coordinating the communication via a server (Figure 5.5). The advantage of this approach is that it is 

very flexible i.e. different models can easily be plugged in, regardless of the encoding language since 

only simple text strings with the necessary information are exchanged with the server. As long as they 
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can communicate with the server, new models can be connected to the server. This makes it easy to e.g. 

switch to a different food web model without needing to recode the server or fate model.  

A detailed description of how the communication between the two models was achieved is given in the 

communication protocol provided in Appendix C. In short, at each time step both the fate client and the 

food web client send the requested data to the server. The server then selects which data are needed by 

individual clients and forwards it to the respective clients. The server then asks the connected models to 

proceed to the next time step using the provided information. For example, at the start of a time step, 

the server requests the phytoplankton concentrations in all slices from the fate model. The fate model 

sends the requested data to the server. The server then sends these phytoplankton concentrations to the 

food web model and asks for the grazing losses. The food web model uses the phytoplankton 

concentrations to calculate the biomass of phytoplankton grazed in each slice. These grazing losses are 

then sent to the server, which communicates it back to the fate client to calculate the phytoplankton 

concentrations for the next time step.  

The server was developed using Pharo v4.0 (http://pharo.org). The ChimERAfate model was developed 

in Microsoft Visual Basic 6.0. DEBkiss IBMs were available in NetLogo (Wilensky 1999), as described 

in Chapter 3. To limit the communication necessary between server, fate model and NetLogo models, a 

Java framework was developed. This Java framework calls a NetLogo client per species and summarizes 

the information that needs to be exchanged e.g. the grazing losses provided by the Daphnia and 

Brachionus NetLogo clients are summed by the Java framework before being communicated to the 

server.  

 

Figure 5.5: Technical implementation of the ChimERA model. A server coordinates the communication 
between the different models. A client translates the server request and commands for the individual 
models. The food web model is divided in two parts, a detritus-based part (with ASE = Asellus and GAM 
= Gammarus) and a phytoplankton based part (with BRA = Brachionus, CHA = Chaoborus and DAP 
= Daphnia). 
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Phytoplankton and detritus concentrations at the start of the year are too low to support the food web. 

In reality, species have different strategies to overwinter. Therefore, we assumed that food web 

dynamics only started when a critical food concentration of 0.025 mg ww L-1 was reached. Simulations 

were started with 100 ind L-1. Early simulations showed that populations of Daphnia and Brachionus 

can reach high densities (> 106 individuals in the whole system) which increased the simulation times 

considerably. For the two grazers, a superindividual approach was therefore implemented to limit the 

computation times. Following the kiss principle, an implementation with limited complexity was 

chosen. Superindividuals were considered as one constant unit and were simulated in the same way as 

normal individuals (Grimm and Railsback 2013). The only adjustment made was that the amount of 

food eaten by the grazers was scaled to the superindividual level i.e. 100 individuals per superindividual 

for Daphnia and 1000 individuals per superindividual for Brachionus. Although this approach limits the 

variability in a population, it requires few additional assumptions and allows for an easy interpretation 

of the simulations. 

5.6. Applications 

The ChimERA model developed here is an innovative method because it immediately links realistic 

exposure predictions of chemicals to effects on food web dynamics. The flexibility and modularity of 

the model make it possible to apply the ChimERA model to any environmental and ecological scenario. 

Scenarios can differ, among others, in their spatial structure, identity of the emitted chemical, emission 

strength and frequency, species in the food web and food web structure. Scenarios can be simulated by 

supplying the currently used submodels with the necessary information or, if the currently implemented 

submodels are insufficient, by plugging in a more suitable fate or food web model. To demonstrate its 

potential, the use of the ChimERA model as a scenario analysis tool is explored in the next chapter. The 

ChimERA model will be used to study how differences in the environmental variables of a scenario lead 

to differences in the effects of the applied chemicals on food web dynamics.   
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Abstract 

The integrated ChimERA model was developed as a tool to perform more realistic ecological risk 

assessments. To test its performance, the ChimERA model was applied to a two-pond system connected 

by a stream in which 15 hypothetical scenarios – differing in water residence time, temperature, trophic 

state and applied chemical (carbendazim, chlorpyrifos, pyrene and the mixture of the three chemicals) 

– were evaluated. The predicted effects of the applied chemicals were clearly different for the selected

scenarios. Densities of species were generally highest in scenarios with a high trophic state temperature 

and water residence time. Daphnids were the dominant grazers in the ponds while rotifers dominated

in the streams. Concentrations of applied chemicals were highest in scenarios with a high water

residence time. The  physico-chemical properties of the chemical determined the spatial and temporal

pattern of the exposure i.e. where the concentrations were highest and how fast the chemical

disappeared. As expected from their sensitivities to the chemicals, direct effects were predicted on

Chaoborus, Daphnia and Gammarus. These effects were, however, heterogeneously distributed in space 

and time and reflected the predicted differences in exposure. The most notable indirect effects were

shifts in dominance from Daphnia and Gammarus to Brachionus and Asellus, respectively. Also, the

predator Chaoborus was affected indirectly through effects on its prey species Daphnia. For the mixture 

of three chemicals, the effects of pyrene dominated for Daphnia and the effects of carbendazim and

chlorpyrifos for Gammarus. These simulations demonstrate how much the outcome of chemical

exposure is determined by environmental conditions, which cannot be captured with traditional risk

assessment methods. Modelling tools like the ChimERA model can prove essential to answer the current 

challenges of ecological risk assessments.
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6.1. Introduction 

The ChimERA model was developed (Chapter 5) to demonstrate (proof of principle) how available 

knowledge and models can be combined into a predictive risk assessment tool applicable in a range of 

environmental conditions (De Laender et al. 2014a). To evaluate and demonstrate how such a type of 

model could be used to perform scenario analysis, the ChimERA model was applied to 15 hypothetical 

scenarios that differed in their environmental conditions and applied chemical(s). Although the main 

focus of this chapter is on the ecology and food web dynamics, a short discussion of the chemical fate 

model is also included. 

6.2. Methods  

6.2.1. Scenario description  

Three environmental variables can be manipulated in the ChimERA model: temperature, trophic state 

and hydrodynamics. Trophic state refers to the amount of nutrients available in the system: oligotrophic, 

mesotrophic or eutrophic. Hydrodynamics refer to how fast the water flows and thus the retention time 

of the water in the ponds. As numerous combinations of these environmental variables and thus 

environmental scenarios are possible, we selected three different ‘example’ combinations of these 

variable to evaluate the potential applications and limitations of the ChimERA model (Table 6.1): 

Scenario I is a high velocity system with a low average annual temperature and an oligotrophic nutrient 

status. Scenario II is characterized by intermediate water velocity, medium average annual temperature 

and a mesotrophic nutrient status. Scenario III has a low water velocity, high average annual temperature 

and eutrophic nutrient conditions.  

 

Table 6.1: Description of the selected scenarios. Scenarios differ in their temperature, trophic state and 
hydrodynamics. Annual minimum and maximum temperatures are shown. K = phytoplankton carrying 
capacity; Gpp = gross primary production; RT = residence time. 

Scenario Temperature  
(Di Guardo et al.) 

Trophic State  
(Håkanson and Peters 1995) 

Hydrodynamics  
(Peretyatko et al. 2007) 

I [4.2 - 20.1] °C K = 0.3 mg ww L-1;  
Gpp = 0.36 d-1 

RT = 5 d 

II [4.3 - 22.0] °C K = 0.5 mg ww L-1:  
Gpp = 0.42 d-1 

RT = 25 d 

III [6.9 - 26.3] °C K = 1 mg ww L-1:  
Gpp = 0.71 d-1 

RT = 100 d 
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These three selected environmental scenarios were combined with five exposure scenarios: no exposure, 

exposure to carbendazim, exposure to chlorpyrifos, exposure to pyrene and finally exposure to all three 

chemicals simultaneously. The three selected chemicals differ greatly in their physico-chemical 

properties and their exposure pattern (Appendix D: Table D1). Carbendazim is a fungicide used to 

control plant diseases (van Wijngaarden et al. 1998) and chlopyrifos is a widely-used insecticide (van 

der Hoeven and Gerritsen 1997). Pyrene is a polycyclic aromatic hydrocarbon (PAH) that is mostly 

formed as a by-product of anthropogenic activities (e.g. fossil fuel combustion). Pyrene mainly enters 

the aquatic environment accidentally through e.g. petroleum spills, wastewater or surface run-off 

(Nikkilä et al. 1999). Actual emission rates for these chemicals are difficult to find and are highly site-

specific. The current study is a proof of principle assessment and the performance of the ChimERA 

model can best be discussed when effects are expected to occur. Therefore, emission strengths were 

chosen to result in maximum water concentrations close to the acute LC50-values of the most sensitive 

species in the intermediate scenario II (Appendix D: Table D2). Both pesticides were considered to have 

a highly seasonal emission pattern, with short application periods in spring (day 180) and late summer 

(day 260; Figure 6.1). The length of the application periods was ten days: emission concentrations 

increased during the first five days and then decreased again. Maximum emission strengths were 3.7 ∙ 

10-4 mol L-1 h-1  and 6.7 ∙ 10-7 mol L-1 h-1 for carbendazim and chlorpyrifos, respectively. Pyrene was 

considered to have a continuous ambient exposure pattern, with stable emission concentrations of 2 ∙ 10-

6 mol L-1 h-1 throughout the year (Figure 6.1).  

The five species in the food web (Chapter 5) differed in their sensitivity to these three chemicals 

(Appendix D: Table D2). Gammarus and Daphnia were most sensitive to carbendazim: the acute LC50 

was 55 μg L-1 and 91 μg L-1, respectively (van Wijngaarden et al. 1998). No effects on Chaoborus were 

observed in toxicity tests at concentration of up to 3435 μg L-1 (van Wijngaarden et al. 1998). For 

chlorpyrifos, Gammarus, Chaoborus and Daphnia were considered the only sensitive species: the acute 

LC50 was 0.23 μg L-1, 0.3 μg L-1 and 0.8 μg L-1, respectively. Gammarus and Daphna were also the most 

sensitive of the five species when exposed to pyrene: the acute LC50 was 27.1 μg L-1 and 68 μg L-1, 

respectively (Chapter 2). No pyrene effects were observed at nominal concentrations of up to 2000 μg 

L-1 for Brachionus and Chaoborus (Chapter 2). Brachionus toxicity test results were not available for 

carbendazim and chlorpyrifos but rotifers are often more tolerant to chemicals than cladocerans (Girling 

et al. 2000) and no effects of these chemicals on rotifers were therefore assumed at the used exposure 

concentrations.  

Because mortality and organism mobility in the DEBkiss IBMs are stochastic processes, variability is 

expected between simulations. To account for this variability, simulations are typically iterated multiple 

times. However, in this case, simulation times for one scenario were as high as 3 hours, limiting the 

number of iterations possible. As a compromise, each scenario was run five times. Ideally, model 

performance is assessed by comparing model simulation with observations. However, these 
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observations were not available for the system and exposure scenarios modelled here. As an alternative 

approach, the scenario expectations were defined based on a priori knowledge and compared with the 

simulations. The expected environmental fate of each chemical was defined based on the physico-

chemical characteristics,. For the food web, the interactions between species and the sensitivity of each 

species to the chemical were taken into account to define a priori expected population dynamics.  

 

Figure 6.1: Used emission patterns for (A) carbendazim, (B) chlorpyrifos and (C) pyrene. 

 

6.2.2. Expectations regarding the outcome of the scenario analyses 

6.2.2.1. ChimERAfate 

In this section, a short description is given for each chemical of how their physico-chemical properties 

(Appendix D: Table D1) influence their environmental fate and how this is altered by changes in 

temperature, trophic state and water retention time. At the end of this section, a summary is given of the 

expectations for each chemical per scenario.   
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Carbendazim is a hydrophilic substance (logKow = 1.52) and will thus not accumulate in the sediment. 

Moreover, degradation is slow (HLwater = 720 h). Carbendazim will thus mainly disappear from the 

system with the water outflow and, because of the low sediment accumulation, the short peaks in 

emission are expected to be reflected by short peaks in water concentrations. The water retention time 

will thus be an important factor for its environmental fate. Chemical concentrations will be higher in 

systems with high water retention time: for the same amount of chemical emitted over an hour, the 

chemical is diluted less when the water is flowing slowly. Carbendazim will thus be present in the water 

longer and in higher concentrations in systems with high water residence times. Because of the limited 

sediment accumulation and degradation, carbendazim concentrations are not expected to be influenced 

much by temperature or the trophic state of the system, which mainly influence degradation and 

accumulation.  

Chlorpyrifos is a more hydrophobic substance (logKow = 4.96) and degrades quickly (HLwater = 24 h). 

Accumulation in the sediment and degradation are thus important environmental processes for this 

chemical. As a result of the high sediment accumulation, a long period of reduced but constant water 

concentrations are expected after a peak in emission. More organic material is available in eutrophic 

systems compared to oligotrophic systems, which leads to, among others, more accumulation in the 

sediment. Temperature increases the phytoplankton growth and biomass, further increasing the amount 

of organic material available in the system. Also, the temperature positively influences the degradation 

rate of the chemical. Temperature and trophic state will thus determine the water concentrations together 

with the water retention time. As described for carbendazim, higher water concentrations are expected 

for systems with high water retention time. However, high water retention times also increase the time 

available for accumulation to the sediment and for degradation, both decreasing the water concentration 

of the chemical. Which process is dominant is hard to predict a priori because this depends on the 

relative strength of the environmental fate processes. 

Pyrene is a hydrophobic substance (logKow = 5.18) that degrades slowly (HLwater = 17 ∙ 103 h). Pyrene 

will thus accumulate in the sediment and persist. Because of the continuous emission pattern, constant 

water concentrations are expected once equilibrium between all environmental compartments is 

reached. As was the case for chlorpyrifos, temperature and trophic state are expected to increase the 

accumulation in the system, decreasing the water concentrations of pyrene. The effect of water retention 

time is more predictable than for chlorpyrifos: a high water retention time will increase the water 

concentrations because of the lower dilution of the chemical. Effects of the water retention time on 

accumulation and degradation are negligible because of the continuous emission of pyrene. 

In summary, for the three selected environmental scenarios, carbendazim concentrations in scenario III 

are expected to be higher than in scenario II and I because of the longer residence times (100 days versus 

25 and 5 days, respectively; Table 6.1). Peaks in carbendazim concentration are expected to disappear 
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quickly in all scenarios because of the limited accumulation, with the narrowest peak in scenario I. For 

chlorpyrifos and pyrene, it is harder to predict a priori how the concentrations will differ between the 

scenarios. Water concentrations are expected to decrease with temperature and trophic state but the 

opposite is expected for water retention time. The differences between scenario I, II and III will thus 

reflect the relative importance of these three environmental variables. Chlorpyrifos peaks are expected 

to persist longer in scenario III than in scenario II and I because of the longer residence time and, as a 

result of the higher temperature and trophic state, the increased accumulation in the sediment. As was 

the case for chlorpyrifos, differences in pyrene concentrations between the three scenarios are hard to 

predict. Pyrene concentrations are expected to become constant once equilibrium between the 

compartments has been reached. 

6.2.2.2. ChimERAfoodweb 

This section starts with a description of how the food web dynamics are expected to be influenced by 

the environmental conditions. Next, the expected effects of the applied chemical(s) on the food web 

dynamics are discussed. Finally, a summary of the expected outcomes of the scenarios is given. 

The phytoplankton carrying capacity and gross primary production, indicators for the trophic state in 

the fate model, will determine the phytoplankton biomass and growth. A higher phytoplankton biomass 

means more energy is available for the grazers. The densities of the grazers Daphnia and Brachionus 

and their predator Chaoborus are thus expected to be higher when the trophic state of the system is high. 

Phytoplankton is the main source for detritus and detritus dynamics are thus closely linked to the 

phytoplankton dynamics. In the absence of phytoplankton grazing, a high trophic state is expected to 

lead to high detritus concentrations, which allows the densities of the detritus feeders Asellus and 

Gammarus to be higher. Phytoplankton grazing will limit the biomass of phytoplankton being converted 

to detritus, making it harder to predict how the detritus concentrations will differ between trophic states. 

Because of the close link between phytoplankton and detritus, patterns in the phytoplankton dynamics 

are expected to be reflected in the detritus dynamics. Because of the strong relation between their food 

sources, patterns in grazers and detritus feeders are also expected to be linked. Chaoborus dynamics in 

turn are expected to reflect the dynamics of its food source, the grazers. Phytoplankton drift with the 

water is not considered in the fate model and the water retention time thus should not influence the food 

web dynamics.  

Gammarus and Daphnia are the most sensitive species to the three chemicals considered here. Exposure 

to these three chemicals is therefore expected to lead to decreased abundances of Gammarus and 

Daphnia. Direct effects of chlorpyrifos are also expected for Chaoborus but not for the other two 

chemicals. As indirect effects, the densities of the more tolerant competitors Asellus and Brachionus are 

expected to increase. Chaoborus feeds on both Daphnia and Brachionus and because both prey species 
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are differently affected by carbendazim and pyrene, it is difficult to predict how these two chemicals 

will affect the predator dynamics. In the case of chlorpyrifos, direct effects are expected for both 

Chaoborus and Daphnia. Indirect effects on Brachionus are thus expected to be especially strong 

because of both reduced competition and predation by chlorpyrifos. Since chlorpyrifos and carbendazim 

are applied only during short periods, (partial) recovery of the Gammarus and Daphnia densities should 

be possible after the application periods. Pyrene exposure is constant throughout the year and 

consistently different food web dynamics from the control scenarios are therefore expected. When 

exposed to the mixture of all three chemicals, the continuous exposure to pyrene is expected to affect 

the food web the most because the exposure starts earlier: Daphnia and Gammarus densities will 

decrease and indirect effects on Asellus, Brachionus and Chaoborus will occur. The application of the 

other two chemicals will further increase the effects of pyrene, leading to higher effects than observed 

in the individual exposures.  

In summary, the densities of all species in the food web are expected to be higher in scenario III than in 

scenario II and I because of the higher trophic state and temperature in that scenario. Direct effects of 

the chemicals are mainly expected for Daphnia and Gammarus while Asellus, Brachionus and 

Chaoborus will be indirectly affected through reduced competition or reduced prey availability. The 

magnitude of the predicted effects of the chemicals on the food web is closely linked to the expected 

exposure patterns (See 6.2.2.1). For carbendazim, higher concentrations are expected in scenario III than 

in scenario II and I, and higher effects on the food web dynamics are thus also expected. For chlorpyrifos 

and pyrene, the expected concentration differences between the scenarios are less clear and it is thus 

hard to predict differences in effects between the scenarios. 

6.3. Results 

For a clear presentation of the simulations, four slices (see 5.4) were chosen that were representative for 

the whole system (Figure 6.2): slice 1 was located at the inflow of the first pond i.e. where the chemicals 

were emitted into the system, slice 5 was located in the middle of the first pond, slice 10 was located in 

the stream between the first and second pond and slice 15 was located in the middle of the second pond. 

The observed patterns in the simulations are described in this section for the ChimERAfate (6.3.1) and 

ChimERAfoodweb (6.3.2) model and compared to the expected patterns. The evaluation of the underlying 

processes is described in section 6.4. 
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Figure 6.2: Location of slices 1, 5, 10 and 15, for which the population dynamics are shown in Figures 
6.3-6.13. 

6.3.1. ChimERAfate 

In this section, the expected results of the ChimERAfate model are compared with the performed 

simulations for each chemical. The dominant fate processes for each chemical are also provided. For a 

discussion of the observed patterns and the underlying processes, see 6.4.1. 

As expected because of the higher water residence time, carbendazim concentrations in slice 1 were 

higher in scenario III (971.87 μg L-1) than in scenario II (255.54 μg L-1) and scenario I (51.92 μg L-1). 

Because of the increased water retention time, the decrease in carbendazim concentrations throughout 

the two-pond system was also higher in scenario III than in scenario II and scenario I (Figure 6.3): the 

carbendazim concentration in the outflow stream (slice 20) was 50.9%, 11.1% and 2.5% of the 

concentration in the inflow stream (slice 1) for scenario I, II and III, respectively. Because of the limited 

sediment accumulation, concentrations of carbendazim are expected to decrease sharply when emission 

stops. This was indeed observed for scenario I and scenario II but not for scenario III. In scenario III, 

the carbendazim concentration only decreased sharply after emission in slice 1, where emission 

occurred. Further downstream, peaks were much less pronounced (slice 5) or not observed (slice 15). 

Outflow with water, diffusion to sediment pore water and degradation were the most important fate 

processes for carbendazim.  

Chlorpyrifos concentrations were higher in scenario III (1.55 μg L-1) than in scenario II (0.42 μg L-1) 

and I (0.09 μg L-1), indicating that water retention time was more important than temperature and trophic 

state (see 6.2.2.1). As expected, a reduced but constant chlorpyrifos concentration was predicted after 

the application period because of the accumulation in the sediment (Figure 6.3). The peak chlorpyrifos 

concentrations decreased sharply further downstream and this was more pronounced with higher water 

residence times: peak chlorpyrifos concentrations in slice 20 were 21.8%, 0.3% and <0.01% of the peak 
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concentrations in slice 1 for scenario I, II and III, respectively. Outflow with water and degradation were 

the most important processes that determined the chlorpyrifos water concentration.  

Pyrene concentrations were higher for scenario III (6.79 μg L-1) than in scenario II (1.73 μg L-1) and 

scenario I (0.35 μg L-1) and, as expected, concentrations stayed constant once equilibrium was reached 

(Figure 6.3). This equilibrium between all environmental compartments was reached later further away 

from the emission source. Pyrene concentrations decreased further downstream and this was more 

pronounced in scenarios with a high water retention time: pyrene concentrations in the outflow stream 

were 87.0%, 52.5% and 9.9% of the concentrations in the inflow stream for scenario I, II and III, 

respectively. For pyrene, the dominating fate processes were the outflow with water and the particle 

deposition to the sediment. 
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6.3.2. ChimERAfoodweb 

In this section, the simulated food web dynamics are described and compared with the expectations. 

First, the scenarios with no exposure are discussed, next the carbendazim, chlorpyrifos and pyrene 

exposure and finally the exposure to the mixture of all three chemicals. The underlying processes are 

discussed in section 6.4.2. and 6.4.3. 

6.3.2.1. No exposure 

As expected, food web dynamics of the three environmental scenarios (I, II and III) differed greatly 

(Figures 6.4 and 6.5). In general, following expectations, population densities increased with an increase 

in the trophic state of the scenario e.g. the maximum population density of Brachionus was 101 ∙ 103 

ind L-1, 224 ∙ 103  ind L-1 and 1467 ∙ 103  ind L-1 for scenario I, II and III, respectively. This pattern was 

influenced by interactions between species: Daphnia was the dominant grazer in scenario I and II, 

preventing the Brachionus density to increase. The dominance pattern shifted in the highest trophic level 

(scenario III): Brachionus was able to benefit more from the increased phytoplankton concentrations 

than Daphnia and became the dominant grazer. Because of the strong competition with Brachionus, 

Daphnia densities in scenario III (733  ∙ 102 ind L-1) were not higher than the Daphnia densities in 

scenario II (740 ∙ 102 ind L-1). Chaoborus can predate on both grazers. However, Chaoborus densities 

were highest in scenario II (403 ind L-1), when Daphnia was dominant and not in scenario III (244 ind 

L-1), when Brachionus densities were high. The population dynamics of Chaoborus were closely linked 

with the Daphnia dynamics but not so much with the Brachionus dynamics. 

The higher population densities of the grazers also led to a more dynamic system in scenario III, with a 

typical cyclical pattern of phytoplankton growth, increase in grazer densities, phytoplankton decline and 

decrease in grazer densities. This pattern was also visible but with fewer peaks per year in scenario I 

and II where Daphnia followed the phytoplankton dynamics. Because of the grazing pressure, the 

phytoplankton was not able to grow until the carrying capacity of the system (K): maximum 

phytoplankton concentrations were 0.16 mg ww L-1 (K = 0.30 mg ww L-1), 0.31 mg ww L-1 (K = 0.50 

mg ww L-1) and 0.79 mg ww L-1 (K = 1.00 mg ww L-1) for scenario I, II and III, respectively. The 

detritus concentration reflected the phytoplankton concentration (Figure 6.5): more fluctuations and 

higher maximum detritus concentrations in scenario III (0.58 mg ww L-1) than in scenario II (0.22 mg 

ww L-1) and I (0.10 mg ww L-1).  

For the detritus feeders, Gammarus was the most dominant species in all scenarios while Asellus 

densities remained low (Figure 6.5). The highest densities of both detritus feeders were observed in 

scenario II, despite the higher detritus concentration in scenario III. Unexpectedly, the population 

dynamics of the detritus feeders differed greatly of those of the grazers: the densities of the detritus 
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feeders mainly increased in the second half of the year while periods of population growth were observed 

for grazers throughout the year.  

Unexpectedly, clear spatial differences were observed between the species: population densities of 

Daphnia and Chaoborus were much higher in the ponds (Slice 5 and 15) than in the inflow and 

connecting streams (Slice 1 and 10). Based on the Brachionus dynamics in scenario III, spatial 

differences are much less prominent for this species. Similar to Daphnia and Chaoborus, Asellus and 

Gammarus population densities were highest in the ponds and lower in the inflow and connecting 

streams. Contrary to the ponds, the reduced competition with Gammarus in the streams allowed short 

periods of population increase for Asellus e.g. slice 1 and 15 in scenario I around day 230. 
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Figure 6.4: Food web dynamics without chemical exposure as predicted by the ChimERA model for three environmental scenarios (scenarios 
I, II and III) and four selected locations in the two-pond system: at the inflow of the first pond (Slice 1), in the middle of the first pond (Slice 
5), between the two ponds (Slice 10) and in the middle of the second pond (Slice 15). Only the phytoplankton-based part of the food web is 
shown. Lines and shaded areas indicate the average and minimum and maximum densities, respectively, of five iterations per scenario. 
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6.3.2.2. Carbendazim exposure 

Direct effects 

As a result of the low carbendazim concentrations, only minimal effects of carbendazim on the food 

web dynamics were observed in scenario I (Figure 6.6-6.7). In scenario II and III, the expected negative 

effects of carbendazim exposure to Daphnia and Gammarus densities were observed. High spatial 

differences between the direct effects of carbendazim on Daphnia densities were observed in scenario 

II and III: carbendazim effects were mainly observed in the first pond and were lower and occurred later 

in the year in the second pond (slice 15), reflecting the lower carbendazim concentrations downstream. 

As a result of the higher carbendazim concentrations, effects were more pronounced in scenario III than 

in scenario II: after the first carbendazim application, the Daphnia densities decreased by 56% in the 

first pond (slice 5) in scenario II while, in scenario III, Daphnia went extinct in the first pond (Figure 

6.6). Recovery was only observed in the first pond in scenario II, where Daphnia densities increased 

again after the first exposure peak (around day 250). The reached densities after recovery were, however, 

only about 40% of the densities in the control scenario and the population peak occurred later (day 250 

instead of day 200). 

Carbendazim effects on Gammarus densities were observed in the whole system for both scenario II 

and III (Figure 6.7): the strong population growth phase at the end of the year, observed in the control 

scenarios (Figure 6.5), was no longer observed. Similar to the carbendazim effects on Daphnia, the 

effects of carbendazim were lower and occurred later in the second pond, especially in scenario III.  

Indirect effects 

Because direct effects of carbendazim were nearly absent in scenario I, indirect effects were mainly 

observed in scenario II and III on Asellus, Brachionus and Chaoborus. Indirect effects of carbendazim 

were especially visible for the detritus feeders (Figure 6.7): the tolerant Asellus was able to become the 

dominant species throughout in the system in both scenarios e.g. an increase in density by 329% in 

scenario II. Reflecting the direct effects of carbendazim on Gammarus, the indirect effects occurred later 

and the Asellus densities were lower in the second pond than in the first pond.  

For the grazers, in scenario II, the densities of the more tolerant Brachionus were higher after 

carbendazim exposure, although no shift in dominance occurred (Figure 6.6). As was the case for the 

direct effects, spatial differences were observed: Brachionus initially increased in density in the first 

pond after the first carbendazim application (day 160) but decreased again once Daphnia densities 

recovered. In the second pond, carbendazim effects were nearly absent after the first carbendazim 

application but an increase in Brachionus density was observed after the second application (day 250). 

In scenario III, these spatial differences were even more pronounced. In the first pond, the carbendazim 
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application further increased the dominance of Brachionus leading to an increase in the number of peaks 

in Brachionus density (from 5 to 7). In the second pond, however, indirect effects were absent.  

Because Chaoborus can feed on both grazers, it was hard to formulate expectations for the indirect 

effects of carbendazim. Apparently, the predator Chaoborus was affected indirectly in scenarios II and 

III through the effects of carbendazim on the prey species Daphnia (Figure 6.6). As was the case for 

Daphnia, effects were most pronounced in the first pond. In scenario II,  Chaoborus densities decreased 

by 32% in slice 5 but, following the recovery of Daphnia, stayed high for a longer period. In the second 

pond, indirect effects were only observed at the end of the year by the absence of a second population 

peak. In scenario III, Chaoborus followed the extinction of  Daphnia in the first pond but no indirect 

effects were observed in the second pond.  
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F
igure 6.7: Food w

eb dynam
ics w

ith carbendazim
 exposure as predicted by the C

him
ERA m

odel for three environm
ental scenarios (scenarios 

I, II and III) and four selected locati ons in the tw
o-pond system

: at the inflow
 of the first pond (Slice 1), in the m

iddle of the first pond (Slice 
5), betw

een the tw
o ponds (Slice 10) and in the m

iddle of the second pond (Slice 15). O
nly the detritus -based part of the food web is show

n. 
Lines and shaded areas indicate the average and m

inim
um

 and m
axim

um
 densities, respectively, of five iterations per scenario. 
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6.3.2.3. Chlorpyrifos exposure 

Direct effects 

As expected, direct effects of chlorpyrifos were observed for Chaoborus, Daphnia and Gammarus 

(Figures 6.8 and 6.9). The magnitude of the effects was directly linked to the exposure concentrations 

that were predicted by the ChimERAfate model (Figure 6.3): clear differences in effects could be 

observed between environmental scenarios (I, II and III) and between different locations in the system.  

Effects in scenario I were limited for the phytoplankton-based part of the food web (Figure 6.8). Because 

of the higher and prolonged exposure to chlorpyrifos, effects were more pronounced in scenario II and 

III than in scenario I. The fast decrease in chlorpyrifos concentrations away from the emission point 

resulted in effects mainly occurring in the inflow stream (slice 1) and the first pond (slice 5). In scenario 

II, the chlorpyrifos effects on Daphnia were clear in the first pond but recovery occurred quickly: the 

population peak occurred later (day 250 instead of day 200) and was lower (551 ∙ 102 ind L-1 instead of 

733 ∙ 102 ind L-1). A second population growth period at the end of the year (Figure 6.4) was no longer 

observed. For scenario II, chlorpyrifos effects on the predator Chaoborus were also mainly observed in 

the first pond e.g. the maximum density in slice 5 dropped from 397 ind L-1 to 114 ind L-1. In scenario 

III, the direct effects of chlorpyrifos were lower and the same spatial trend was observed: clear effects 

in the first pond and no effects in the second pond.   

For the detritus feeders, the densities of Gammarus were negatively affected in scenario I and effects 

were observed throughout the system (Figure 6.9). Gammarus completely disappeared in the first pond 

and the observed population growth in the second pond was only a fraction (<10%) of the control 

scenario. In scenario II, chlorpyrifos exposure led to the elimination of Gammarus in the first pond and 

severely affected the densities in the second pond, where maximum densities dropped from 1578 ind L-

1 to 1066 ind L-1
 for slice 15. In scenario III, although chlorpyrifos effects on Gammarus were lower 

than in scenario II, the differences between the first pond and the second pond were even greater than 

in scenario II: while chlorpyrifos effects were still observed in the first pond (52% reduction in density), 

these were negligible in the second pond. 

Indirect effects 

The expected indirect effects of chlorpyrifos were observed and reflected the spatial pattern of the direct 

effects (Figure 6.8-6.9). Indirect effects on Brachionus were absent in scenario I (Figure 6.8). In scenario 

II, the indirect effects on Brachionus only occurred in the inflow stream and the first pond and were 

limited because of the recovery of Daphnia after chlorpyrifos exposure. Chlorpyrifos effects on Daphnia 

also influenced the phytoplankton dynamics in scenario II: the first growth season of phytoplankton 

lasted longer in the first pond (from day 150 to day 230 versus from day 150 to day 190). In scenario 
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III, indirect effects on Brachionus were again limited to the inflow stream and the first pond and only 

resulted in a small increase in Brachionus density (<10%).  

In scenario I, the densities of Gammarus were negatively affected but indirect effects on its competitor 

Asellus were not observed (Figure 6.9). In scenario II, however, Asellus densities increased strongly 

after chlorpyrifos emission in the inflow stream, first pond and connecting stream, leading to maximum 

densities of 5708 ind L-1 in slice 5 versus 116 ind L-1 in the control scenario. The sharp population 

decline in Asellus observed in the first pond around day 250 was a result of starvation. In scenario III, 

the spatial pattern of the direct effects on Gammarus was confirmed and (low) indirect effects of 

chlorpyrifos on Asellus were observed in slices 1 and 5 only.  
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F
igure 6.9: Food w

eb dynam
ics w

ith chlorpyrifos exposure as predicted by the C
him

ERA m
odel for three environm

ental scenarios (scenarios 
I, II and III) and four selected locations in the tw

o -pond system
: at the inflow

 of the first pond (Slice 1), in the m
iddle of the first pond (Slice 

5), betw
een the tw

o ponds (Slice 10) and in the m
iddle of t he second pond (Slice 15). O

nly the detritus-based part of the food web is show
n. 

Lines and shaded areas indicate the average and m
inim

um
 and m

axim
um

 densities, respectively, o f five iterations per scenario. 
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6.3.2.4. Pyrene exposure 

Direct effects 

In scenario I, Daphnia population dynamics exposed to pyrene (Figure 6.10) followed the same pattern 

as in the control scenario (Figure 6.4). However, the maximum observed densities of Daphnia were 

lower than those in the control scenario (131 ∙ 102 ind L-1 versus 205 ∙ 102 ind L-1). In scenario II and 

especially scenario III, effects on Daphnia were higher than in scenario I and eventually daphnids were 

eliminated from the food web. Following the exposure pattern, effects occurred first close to the 

emission point (slice 1). Direct effects on Gammarus were absent (Figure 6.11): in none of the scenarios 

was there a decrease in Gammarus densities that could be directly related to the pyrene concentration 

and Gammarus concentrations were even higher in scenario III. The observed effects on Gammarus 

were mainly indirect effects (see below). 

Indirect effects 

In scenario I, although expected, the decreased Daphnia densities did not lead to higher Brachionus 

densities (Figure 6.10). In scenario II, the expected indirect effects of pyrene were observed: Brachionus 

was clearly more abundant than in the control scenario and three peaks in density were observed 

throughout the year. In scenario III, after the early disappearance of Daphnia, Brachionus was even 

more dominant than in the control scenario: peaks in population density were even higher and the 

number of peaks in density increased from 5 to 8. The predator Chaoborus was affected indirectly by 

pyrene in all three scenarios through the lower prey density. In scenario I, Chaoborus densities decreased 

from 314 ind L-1 in the control scenario to 158 ind L-1. Both in scenario II and III, despite the increase 

in the other prey species Brachionus, Chaoborus disappeared once Daphnia was eliminated from the 

food web by pyrene.  

The combination of direct effects on Daphnia and indirect effects on Brachionus altered the 

phytoplankton dynamics (Figure 6.10). This, in turn, affected the detritus dynamics, resulting in 

unexpected indirect effects on the detritus feeders (Figure 6.11). In scenario I, the altered detritus 

dynamics resulted in the absence of Gammarus population growth at the end of the year. In scenario II, 

the phytoplankton concentration was more constant in the ponds between day 175 and 275, resulting in 

more constant detritus concentrations and the absence of a peak in detritus concentrations compared to 

the control scenario (Figure 6.5). This resulted in lower Gammarus densities (only 464 ind L-1 compared 

to 1579 ind L-1 in the control scenario) but did not affect Asellus densities. In scenario III, the number 

of phytoplankton growth periods increased from 6 to 9, which was reflected in the detritus dynamics. 

As a result, both Gammarus and Asellus densities increased in comparison to the control scenario, from 

1034 ind L-1 and 405 ind L-1 to 1401 ind L-1 and 545 ind L-1, respectively. 
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F
igure 6.11: Food w

eb dynam
ics w

ith pyrene exposure as predicted by the C
him

ERA m
odel for three environm

ental scenarios (scenarios I, 
II and III) and four selected locations in the tw

o -pond system
: at the inflow

 of the first pond (Slice 1), in the m
iddle of the first pond (Slice 5), 

betw
een the tw

o ponds (Slice 10) and in the m
iddle of the second pond (Slice 15). O

nly the detritus -based part of the food w
eb is show

n. Lines 
and shaded areas indicate the average and m

inim
um

 and m
axim

um
 densities, respectively, of five iterations per scenario. 
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6.3.2.5. Exposure to the mixture of all three chemicals 

Direct effects 

In scenario I, the pattern in Daphnia densities was similar to the control scenario (Figure 6.4) but the 

maximum densities were lower (Figure 6.12). In scenario II, Daphnia was eliminated quickly in the 

whole system with effects appearing earlier close to the emission source (slice 1). Daphnia disappeared 

from the first pond by day 200 and from the second pond by day 250. In scenario III, the effects of the 

mixture occurred even faster, with Daphnia disappearing from the first pond by day 150.   

For Gammarus in scenario I, direct effects of the mixture on the densities were limited and only occurred 

after day 250 (Figure 6.13). In scenario II, the effects were more clear, although they only started 

occurring after carbendazim and chlorpyrifos were first applied (day 180): Gammarus disappeared from 

the system and this occurred first close to the emission point. Effects of the mixture on Gammarus were 

also clear in scenario III but Gammarus was able to persist longer in the second pond compared to 

scenario II.        

Direct effects of the mixture for Chaoborus are expected to be similar to the direct effects of chlorpyrifos 

as this species is tolerant for the other two chemicals. Direct effects of the mixture on Chaoborus 

densities were not observed in scenario I (Figure 6.12). In scenario II, a sharp decrease in Chaoborus 

density is observed in the first pond (slice 5) after the application of chlorpyrifos and carbendazim (day 

180). Direct effects in the second pond were limited. In scenario III, direct effects of the mixture were 

no longer observed and the population dynamics of Chaoborus were determined by the indirect effects 

of the mixture (see below). 

Indirect effects 

For Brachionus in scenario I, the indirect effects were negligible (Figure 6.12) because the densities 

were very similar to the control scenario (Figure 6.4). In scenario II, following the disappearance of 

Daphnia after chemical exposure, densities of the tolerant Brachionus increased in all slices and showed 

three distinct population peaks. In scenario III, indirect effects of exposure to the mixture of three 

chemicals resulted in an increase in Brachionus densities. Also, the frequency of the peaks in Brachionus 

density increased from 5 to 8 compared to the control scenario.   

Through the strong direct and indirect effects of the mixture on the grazers, phytoplankton dynamics 

were altered. Because of the close link between phytoplankton and detritus, this resulted in indirect 

effects of the mixture on the detritus feeders. In scenario I, the altered detritus concentrations resulted 

in the absence of Gammarus growth at the end of the year (Figures 6.5 and 6.13). This did, however, 

not result in an increase in Asellus densities. In scenario II, the exposure to the mixture resulted indirectly 

in increased Asellus densities in the whole system and this increase was highest in the first pond (slice 
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5). In the case of scenario III, the increase of Asellus was only observed for the first pond. Also in 

scenario III, because of the altered detritus dynamics, Gammarus was able to reach higher densities in 

the second pond (1314 ind L-1) compared to the control scenario (1034 ind L-1).   

In scenario I, Chaoborus densities were lower (Figure 6.12) than the control scenario (Figure 6.5) 

because of the decreased densities of Daphnia. In scenario II, in addition to the direct effects of the 

mixture, Chaoborus was indirectly affected through the effects on Daphnia and population densities 

were never higher than 100 ind L-1. In scenario III, the effects of the mixture on Daphnia resulted in the 

elimination of Chaoborus even before carbendazim and chlorpyrifos were applied (day 180).  



The ChimERA model as a model analysis tool 

109 
 

  

F
igure 6.12: Food w

eb dynam
ics exposed to three chem

icals as predicted by the Chim
ERA m

odel for three environm
ental scenarios (scenarios 

I, II and III) and four selected locations in the tw
o -pond system

: at the inflow
 of the first pond (Slice 1), in the m

iddle of the first pond (Slice 
5), between the tw

o ponds (Slice 10) and in the m
iddle of the second pond (Slice 15). O

nly the phytoplankton -based part of the food w
eb is 

show
n. Lines and shaded areas indicate the average and m

inim
um

 and m
axim

um
 densities, respectively, of five iterations per scenario. 

Abundance 

- - -
500 1000 1500 0 50 150 250 350 0 50 100 150 

8 8 8 

~ ~ ~ 

8 8 ;jW (/) 
r 
0 

~ ~ m 
8 8 ...... 

8 

~ ~ ~ 
I 

tiJ 
iiJ 

0 0.25 0.5 0.75 1 0 025 0.5 0.75 1 0 0.25 0.5 0.75 

g. 0 500 1000 1500 0 50 150 250 350 0 50 100 150 
o· 
=> 8 8 8 
~ 

~ ~ ~ 

8 8 

: J~ 
(/) 
r 

~ ~ 
0 

() m ::r 
Q) 

CJ1 0 8 8 c::r 
0 
2 ~ ~ ~ "' 

-i 
~ï 

0 0.25 0.5 0.75 1 0 025 0.5 0.75 1 0 0.25 0.5 0.75 

ct> 0 500 1000 1500 0 50 150 250 350 0 50 100 150 

I:J 0: 8 8 8 
~ -::r ~ ~ 

~ j~ 
=> 

(/) iiï 

8 8 r 
() 

"' ~ ~ m 
...... 

8 8 0 
-o 

~ ~ ~ :::r 
'S. 
0 
"0 
iiï 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 
::> 

" ö 0 500 1000 1500 0 50 150 250 350 0 50 100 150 

::> 
8 8 8 

~ ~ 

~ j~ 
(/) 

8 8 r 
0 

~ ~ m 
...... 

8 8 CJ1 

~ ~ ~ 

0.25 0.5 0.75 1 0 025 0.5 0.75 1 0 0.25 0.5 0.75 

Phytoplankton (mg ww L -1
) 



Chapter 6 
 

110  

 
 

Figure 6.13: Food web dynamics exposed to three chemicals as predicted by the ChimERA model for three environmental scenarios (scenarios 
I, II and III) and four selected locations in the two-pond system: at the inflow of the first pond (Slice 1), in the middle of the first pond (Slice 
5), between the two ponds (Slice 10) and in the middle of the second pond (Slice 15). Only the detritus-based part of the food web is shown. 
Lines and shaded areas indicate the average and minimum and maximum densities, respectively, of five iterations per scenario. 
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6.4. Discussion 

6.4.1. ChimERAfate simulations 

When comparing the fate model predictions among the different scenarios, the residence time –reflecting 

the removal of the chemical from the ponds via with the water (out)flow – was the most important factor. 

Higher residence times resulted in less dilution of the chemical i.e. more chemical was emitted in the 

same volume of water. This explains why higher water concentrations were observed (for all chemicals) 

in scenario III (residence time of 100 days) compared to the concentrations in scenario II and I (residence 

time of 25 and 5 days, respectively). As discussed in the expectations section (6.2.2.1), sediment 

accumulation of the chemical also increased with water residence time, decreasing the concentration in 

the water. Apparently, sediment accumulation was not strong enough to compensate for the positive 

effect of retention time on the water concentration. However, the effects of sediment accumulation were 

visible in the spatial patterns within the system: because most of the chemical accumulated in the 

sediment, the water concentrations of the hydrophobic chemical chlorpyrifos were much lower in the 

second pond than in the first pond and this was more expressed in scenarios with long residence times. 

The expected negative effect of a higher temperature – and the resulting increased phytoplankton and 

detritus biomass – and a higher organic matter concentration on the water concentration were not 

observed. These two processes were apparently not strong enough to compensate for the positive effect 

of a higher residence time.  

The fate simulations for carbendazim differed substantially from the expectations (6.2.2.1). Despite the 

short peaks in emission, concentrations remained high for much longer than expected further away from 

the emission point in scenarios with higher residence times. Although no accumulation in sediment 

occurred for this hydrophilic chemical, diffusion into the sediment pore water and later again into the 

water column was an important fate process for carbendazim. This allowed for more constant dissolved 

water concentrations. More time for equilibrium between the sediment pore water and the water column 

was available in systems with high water residence times. This resulted in more diffusion into the 

sediment, explaining the stronger decrease in carbendazim water concentration further downstream in 

scenarios III than in scenario II and I.  

As expected, because of the hydrophobic nature of chlorpyrifos, accumulation in the sediment occurred 

and this led to constant water concentrations even when emission had stopped. This was best visible in 

slice 1, where the emission occurred: once emission stopped, the water concentration quickly decreased 

to a low but relatively constant ambient concentration. Because most of the chlorpyrifos accumulated in 

the sediment, maximum chlorpyrifos concentrations were lower and reached later further downstream 

in the system, especially in scenarios with high water residence time. Simulated pyrene concentrations 
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became stable over time, as expected, because of the constant emission strength. Water residence time 

and sediment accumulation determined how fast water concentrations stabilized: the emitted pyrene 

flowed downstream slower with increased water residence time and accumulation in the sediment 

further prolonged the stabilization of the water concentrations. 

With the ChimERAfate model, we clearly showed that spatiotemporal differences in exposure were 

determined by the physico-chemical properties of the chemical and the environmental variables 

considered here (hydrodynamics, trophic state and temperature). Although environmental fate processes 

are well studied and can be described accurately with equations, the predicted patterns in exposure 

sometimes differed from our expectations e.g. for carbendazim. The relative importance of each 

environmental process is not always clear a priori and can change with the environmental conditions. 

Fate models are thus ideal tools to identify which chemicals will show a strong spatial pattern and in 

which environmental conditions spatial patterns will be most prominent. Identifying whether chemicals 

will only be present in high concentrations close to the emission source or also further downstream is 

an invaluable tool to predict the risk of the chemical. 

6.4.2. ChimERAfoodweb without chemical exposure 

Both phytoplankton growth and maximum phytoplankton concentration increased with the increase in 

trophic state and temperature. As a result, grazer densities increased rapidly in eutrophic, high 

temperature environments such as scenario III. The higher trophic state and temperature in scenario III 

compared to the other two scenarios also led to a more dynamic system, with a typical cyclic pattern of 

phytoplankton growth, increase in grazer densities, phytoplankton decline and decrease in grazer 

densities. These faster food web dynamics in mesotrophic systems compared to those in oligotrophic 

systems were predicted before for a similar food web using ordinary differential equations to describe 

the biomass of the species in the food web (De Laender et al. 2015). Because Brachionus has a much 

shorter life cycle than Daphnia, the rotifers were able to increase in density more rapidly during 

phytoplankton growth periods, leading to the observed shift in dominance in scenario III compared to 

scenario I and II. However, this does not seem to reflect observations in real ecosystems, where daphnids 

are known to outcompete rotifers (Gilbert 1985; MacIsaac and Gilbert 1989). Other competitive 

mechanisms between large daphnids and rotifers have been suggested in literature e.g. through 

mechanical interference (MacIsaac and Gilbert 1989). As shown in Chapter 4, accounting for 

competitive exclusion was sufficient to simulate the outcome of competition between Daphnia magna 

and Brachionus calyciflorus for the experimental conditions used in Chapter 2. However, alternative 

mechanisms of competition could be more important when environmental conditions are more realistic 

than the controlled conditions used in Chapter 2. Because the relative importance of such alternative 

modes of competition was not known, they were therefore not implemented in the DEBkiss IBMs. 
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The current food web dynamics are clearly bottom-up regulated: grazer dynamics were limited by the 

phytoplankton, detritus feeders followed the detritus pattern and prey dynamics. Although they are able 

to prey on both Brachionus and Daphnia, Chaoborus was most abundant when Daphnia was dominant 

i.e. in scenario II. Seemingly, Chaoborus was thus not able to sustain high population densities in 

scenario III when maximum Brachionus densities were high. However, Brachionus densities also 

fluctuated strongly in scenario III. The lower Chaoborus densities in scenario III were probably related 

to the absence of a reserve compartment in the DEBkiss theory. When prey populations were high, 

energy uptake by Chaoborus was also high and this energy was immediately spent. When prey densities 

were low, the energy uptake by Chaoborus was insufficient. In reality, Chaoborus would first utilize 

energy from the reserve buffer in that situation (Kooijman 2010). However, since a reserve compartment 

is lacking in DEBkiss, energy is instead taken from the reproduction buffer or, when all energy in the 

reproduction buffer is spent, from structural biomass. This led to a much faster response to food shortage 

compared to reality, as discussed in Chapter 4. Daphnids show much less extreme population dynamics, 

serving as better prey species for the Chaoborus DEBkiss IBM.  

Even without chemical exposure, there were notable spatial differences in food web dynamics: except 

for Brachionus, population densities were lower in the streams than in the ponds. This is a direct result 

of the way movement was implemented. Movement was implemented as a species-specific chance to 

move to a neighbouring water patch. Patches located in a pond were surrounded by more water patches 

than patches in a stream. Patches in a pond thus had a higher chance of receiving new individuals than 

patches in a stream. This results in highly different population dynamics between ponds and streams for 

mobile species. For example, the probability for Daphnia 1 to move to a neighbour water patch was 1 d-

1. As a result, daphnid density was much higher (e.g. up to five times for scenario II) in ponds than in 

streams. The lower Daphnia and Chaoborus densities in the streams meant less competition and 

predation pressure, allowing Brachionus, which had a lower movement chance (0.1 d-1), to reach higher 

densities in the streams than in the ponds e.g. up to two times higher for scenario II.  

6.4.3.  ChimERAfoodweb with chemical exposure 

The magnitude of effects was directly linked to the concentrations that were predicted by the 

ChimERAfate model: clear differences in effects could be observed between the different environmental 

scenarios (I, II and III) and between the different locations in the system. Recovery of the phytoplankton-

based part of the food web was observed for chlorpyrifos and carbendazim after the first emission peak 

(around day 200). The second emission peak, combined with the decreased food availability and the 

increased competition with the tolerant species (Brachionus), prevented recovery during the simulated 

period. Unsurprisingly, recovery was not observed for pyrene exposure because the concentration was 

relatively constant throughout the year. Recovery of the detritus-based part of the food web was 

observed to be much more difficult. This was mainly due to the longer reproduction times of the detritus 
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feeders: i.e. these were at least 40 and 80 days between reproduction events for Gammarus and Asellus, 

respectively. Slower recovery of species with long life cycles or generation times has been raised as a 

concern for ERA before (De Lange et al. 2010; Rubach et al. 2010). By including species with different 

life cycle times or by adjusting the currently implemented generation times, the ChimERA model can 

be a tool to assess how life cycle duration affects food web recovery. 

Simulations performed using the ChimERA model showed a strong spatial pattern, with effects of 

chemicals being absent, smaller or delayed in the second pond compared to those observed in the first 

pond. A good example of the absence of effects in the second pond is the exposure to chlorpyrifos in 

scenario II: the water concentrations in the first pond clearly caused a delay in daphnid population 

growth while the food web dynamics in the second pond were completely unaffected. Smaller effects in 

the second pond than in the first pond were, for example, observed for carbendazim in scenario III: 

Gammarus densities were  less affected in the second pond compared to the first pond. Delayed effects 

were clearly visible for pyrene in scenario III: Daphnia populations in the second pond also became 

extinct but this occurred much later than in the first pond. Also, because Daphnia and Chaoborus tended 

to remain in the ponds and were much less abundant in the streams, the food web dynamics in the streams 

were already more determined by the tolerant Brachionus and effects of the chemical were generally 

less severe there. This highlights the need in a spatial landscape to account for the local conditions. 

Environmental variables such as temperature, light conditions and water flow strength are distributed 

heterogeneously in a landscape. Environmental conditions determine which species are successful and 

local food webs can thus differ greatly in their structure and composition. Chemical risk for a landscape 

is not homogeneously distributed but local differences will exist because exposure and food web 

vulnerability differ locally. The ChimERA model, although only applied here for a two-pond system, is 

a good example of how an integrated fate and effect model can be used to differentiate the local risks 

within a spatial system. 

Indirect effects were prevalent in the ChimERA simulations and included indirect effects on 

competitors, on predators and on a food source (i.e. phytoplankton and detritus). Chemical effects on 

the sensitive species often led to increased densities of the tolerant species which became dominant in 

some cases. Especially the indirect effect of chlorpyrifos on Asellus densities in scenario II was striking. 

Brachionus typically also increased in density after chemical effects on Daphnia had occurred. This 

effect was, however, less drastic than those observed on Asellus and mainly occurred in scenario II. In 

scenario I, rotifers were quickly outcompeted by the daphnids, even before chemical effects became 

apparent, preventing possible indirect effects on Brachionus. In scenario III, rotifers were already quite 

high in density and indirect effects only resulted in small increases in density. A shift in dominance 

between competitors is often observed after chemical exposure. For example, increases in rotifer 

abundance after chemical effects on cladocerans were observed after the application of fenvalerate in 

lake enclosures (Day et al. 1987). However, rotifers can also be outcompeted by cladocerans after 
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chemical exposure e.g. the cladoceran Moina macrocopa outcompeted the sensitive rotifer Brachionus 

calyciflorus after exposure to cadmium (Gama-Flores et al. 2006). Other examples of shifts in 

dominance after chemical exposure include the replacement of green algae by cyanobacteria and 

diatoms after fomesafen application (Caquet et al. 2005) or the increase in tolerant rotifers species after 

carbendazim effects on cladocerans and copepods (Van den Brink et al. 2000). Theoretically, it makes 

sense that an inferior competitor can be successful when the superior competitor is affected by chemical 

stress because less resources are consumed by the superior competitor. However, this is not always 

observed in experiments (Chapter 2). In the ChimERA simulations, even when the superior competitor 

was affected, other conditions were also important. For example, in the simulations performed for 

pyrene exposure in scenario I, effects of pyrene on Daphnia densities were not sufficiently high to 

prevent the elimination of Brachionus. Also, the food concentrations in scenario I were too low to sustain 

high densities of Brachionus, which was demonstrated in the streams where competition with Daphnia 

was almost absent but where Brachionus densities were still close to zero. Models like the ChimERA 

model can help to understand and predict when and why indirect effects occur. 

Indirect effects of carbendazim and pyrene were observed on the predator Chaoborus. Although the 

maximum densities of Brachionus increased after chemical exposure, these rotifer densities fluctuated 

much more than Daphnia densities. With the current Chaoborus DEBkiss IBM implementation, it was 

difficult to simulate stable population densities when food availability is highly dynamic, as discussed 

before (see 6.4.2). Because of the high fluctuations in Brachionus densities, Brachionus was thus a less 

suitable prey for Chaoborus, leading to the observed indirect effect on Chaoborus densities: reduced 

population densities when Daphnia density was negatively affected by chemical stress and even 

extinction e.g in the case of pyrene exposure in scenario III. Altered Daphnia densities due to chemical 

stress lowered the Chaoborus densities but could also lead to a longer period of stable predator densities 

when daphnid densities recovered from chemical exposure e.g. after carbendazim exposure in scenario 

II. 

Phytoplankton is the only source of detritus in the fate model. Therefore, it is expected that a chemical 

exposure affecting grazer dynamics will lead to changes in phytoplankton dynamics and as a result, in 

different detritus dynamics. For example, due to the pyrene exposure in scenario II, the phytoplankton 

dynamics shifted from two distinct peaks at day 175 and 250 in the ponds to a more constant 

phytoplankton concentration with four smaller peaks between day 150 and 250. This resulted in different 

detritus dynamics, ultimately also affecting the detritus feeders, in this case by preventing the strong 

increase in Gammarus density at the end of the year. Interestingly, shifts in grazer densities did not 

necessarily affect the detritus feeders negatively. For pyrene in scenario III for example, the dominance 

shift to Brachionus increased the amount of detritus available, resulting in higher Asellus and Gammarus 

densities. In reality, however, the main food sources of Asellus and Gammarus are not from 

phytoplankton origin. The diet of Asellus and Gammarus is much more diverse with leaf litter from 
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external sources (terrestrial plants) often cited as the most important food source (Moore 1975). This 

was not considered in the ChimERA model and Asellus and Gammarus were thus much more dependent 

on phytoplankton dynamics than in reality. However, this did allow us to study the interactions between 

phytoplankton, detritus and associated consumers.  

For the grazers and predator in the food web, the overall effect(s) of the mixture seemed to be dominated 

by the effects of pyrene: effects of the mixture on the grazers corresponded mostly with the effects of 

pyrene alone, with effects occurring almost immediately after the start of the simulated exposure. For 

the detritus feeders, however, this was not the case: direct effects of pyrene on Gammarus were limited 

in the pyrene only exposure, but effects of the mixture were clearly visible leading to a dominance of 

Asellus. Identification of the dominant chemical in the mixture was done by comparing which effects of 

the single exposure corresponded most to the effects of the mixture. For more complex food web models 

or mixtures, where more effects can occur, this approach is insufficient and alternative approaches need 

to be considered e.g. similarity indices such as the Bray-Curtis index (Bray and Curtis 1957). Similarity 

indices describe the composition of the community/food web with a single number. For example, the 

Bray-Curtis indices of the communities exposed to the mixture and of those exposed to the chemicals 

in the mixture individually could be compared. The Bray-Curtis index of the individual chemical closest 

to the index of the mixture then indicates in which community the effects of the individual chemical are 

most similar to the effects of the mixture i.e. which effect dominates.  

Mixture toxicity at the community level can be very different from mixture toxicity at the level of 

individuals and populations. For example, the effects of a herbicide and an insecticide, affecting 

phytoplankton and grazers, respectively, are not necessarily additive (i.e. the sum of the individual 

effects) at the food web level. Synergistic effects at the food web level (i.e. higher effects than what is 

expected from the individual effects) could occur when the grazers are affected both by direct effects of 

the insecticide and by indirect effects due to herbicide effects on the phytoplankton. Antagonistic effects 

(i.e. smaller effects than what is expected from the individual effects) could occur when the 

phytoplankton is affected by the herbicide but  is less grazed upon because of the adverse insecticide 

effects on the grazers. Models like the ChimERA model offer a unique way to account for this. 

6.4.4. The ChimERA model as a risk assessment tool 

The ChimERA model demonstrates how integrating a fate and food web model offers insights that 

cannot be obtained when running both models separately. Experimental/field data to compare our model 

simulations with were not available. However, the underlying models – ChimERAfate and 

ChimERAfoodweb – have been tested: the ChimERAfate model was successfully applied in three case 

studies for a pond system (Morselli et al. 2015) and the application of the DEBkiss IBMs for competing 

species – used in the ChimERAfoodweb model –was evaluated in Chapter 4. The simulations of the 



 

117 
 

ChimERA model were therefore considered realistic although it cannot be excluded that certain 

processes or mechanisms important for the integrated model were not incorporated.  

The ChimERA model can be seen as a proof of principle study of how a coupled fate and effect model 

can be used as a realistic risk assessment tool incorporating more ecological and fate processes. The 

uniqueness of the ChimERA model is that it used the input of various abiotic and biotic variables and 

translated these into food web dynamics that varied greatly between the selected scenarios. This makes 

models such as the ChimERA model ideally suited to address the question of multiple stressors (SCHER 

et al. 2013; Gunderson et al. 2016): the ChimERA model provides an integrated prediction of all the 

stressors present in the environment. Although the ChimERA model should be further improved with 

e.g. additional environmental stressors (see 7.6), the integrated model (1) was able to provide realistic 

effects of chemicals on food web dynamics based on the modelling of individual species, (2) included 

spatiotemporal differences in exposure and effects on food web dynamics, (3) showed how the effects 

of a chemical depend on the selected scenario, (4) included a feedback mechanisms between the abiotic 

and biotic part of the system, (5) implemented an effect model capable of taking exposure history into 

account and (6) considered the simultaneous effect of multiple chemicals.   

(1) Realistic effects of chemicals on food web dynamics 

Starting from the effects of a chemical assessed under laboratory conditions, the ChimERA model was 

able to suggest how the chemical affects a hypothetical food web, taking into account both direct and 

indirect effects. Indirect effects, occurring through competition and predation, need to be accounted for 

in realistic ecological risk assessments (Fleeger et al. 2003). Indirect effects are very difficult to predict 

based on single species toxicity tests alone and are difficult to account for in mesocosm studies (Van 

den Brink and Ter Braak 1998). Ecological models have been suggested as good alternatives to account 

for these indirect effects (Galic et al. 2010) and the ChimERA model demonstrated here how this can 

be achieved: Asellus and Brachionus became dominant after chemical effects on Gammarus and 

Daphnia, respectively, and the predator Chaoborus was negatively affected by chemical effects on its 

prey Daphnia.  

(2) Spatiotemporal differences in exposure and effects on food web dynamics 

Although typically ignored in ecological risk assessments, the spatial structure of the system and the 

location of emission can influence the effects of a chemical, e.g. as observed in mesocosms (Brock et 

al. 2009) and predicted by models (Galic et al. 2012). Spatial structure will determine where and when 

exposure is occurring (Wickwire et al. 2011), what fraction of the system is affected by the chemical 

(Brock et al. 2009) and how fast the system can recover e.g. through immigration of biota from 

unaffected locations (Dohmen et al. 2015). Because the spatial structure is explicitly taken into account 

in the ChimERA model, the effects of the tested chemicals clearly differed between different locations 
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in the system. The spatial dimension was not only important for differences in exposure. Differences in 

food web structure in different parts of the system were also observed.. For example, as a result of 

differences in movement potential of the different organisms, rotifers were more abundant and daphnids 

less abundant in the streams than in the ponds. 

(3) The outcome of chemical exposure depends on the selected scenario 

Although the amount of chemical emitted to the system was identical in all scenarios, exposure 

concentration and thus effects on the food web dynamics were highest in scenario III. The ChimERA 

model was able to translate differences in environmental variables to differences in (1) food web 

dynamics and (2) effects of chemical exposure. The three environmental scenarios studied here were 

only a limited selection of the many possible combinations of temperature, trophic state and 

hydrodynamics. Because of its flexibility, the ChimERA model structure can be tailored to specific real-

world situations by adjusting these environmental inputs. Similarly, the structure of the food web and 

the species involved are exchangeable, thus allowing for adjustments to site-specific communities. The 

scenarios studied here were limited to one spatial pattern i.e. two connected ponds. However, the 

ChimERA model can be used to simulate scenarios for any kind of spatial structure and can thus be 

applied to answer specific questions. For example, it could be used to assess how the presence of a non-

exposed part of the system affects the recovery of the food web.   

The large number of possible scenarios can be confusing for risk assessors who need to decide e.g. if 

the selected scenarios are applicable and/or if the food web and species are realistic. During the 

development of Chimera, a similar problem was encountered for exposure assessment where there was 

also a multitude of environmental fate models and scenarios available. To solve this, environmental 

modelling was standardized and the FOCUS scenarios were developed (FOCUS 2001). A similar 

standardization of ecological and effect models will help facilitate the acceptance of ecological models 

as tools for effect assessment.  

(4) Feedback mechanisms between the abiotic and biotic component of the system 

The typical separate assessment of the fate and effects of chemicals ignores the fact that the 

environmental fate is also influenced by the biological/ecological component of the system, and vice 

versa. For example, the biomass of phytoplankton is an important factor for determining the bioavailable 

concentration of a hydrophobic chemical (Morselli et al. 2015). However, phytoplankton is also a 

component of the food web as it is consumed by grazers. Strong grazing pressure will limit the amount 

of phytoplankton biomass in the system thus reducing the accumulation of the chemical in the 

phytoplankton. The impact of this feedback mechanism was limited for the scenarios chosen here 

because the effect of phytoplankton biomass on the chemical concentrations was limited. Other 

biological compartments like macrophytes (Morselli et al. 2015) and zooplankton (Turner 2002) have 
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been shown to influence the environmental fate of a chemical significantly and can be included in future 

scenarios. 

(5) Effects of chemicals take earlier exposure into account 

A TKTD model was used to predict the effects of chemicals on the survival of individuals. The nature 

of this type of model allows effects to occur even when the environmental concentration of the chemical 

have already decreased. This was visible e.g. for Daphnia exposed to chlorpyrifos in scenario II (Figure 

6.8): at day 200, chlorpyrifos concentrations in the system had dropped to almost background 

concentrations but adverse effects persisted and a population increase was only observed after day 210. 

Although not tested here, TKTD models are especially useful when the emission is highly dynamic 

(Jager et al. 2011). Even for chemicals that are emitted very irregularly, the TKTD approach is able to 

predict the effects when only information of a typical toxicity test is available i.e. short term exposure 

to a constant concentration. 

(6) Simultaneous effects of multiple chemicals   

The current implementation of the ChimERA model is able to predict the effects of a mixture of 

chemicals, although the validity of the used mixture model is uncertain for the chemicals used in this 

study. Mixture toxicity is complex and the selection of the appropriate mixture toxicity model depends 

on the chemicals involved, although concentration addition was the preferred model in over 90% of 

pesticide mixtures (Deneer 2000).  The mechanisms of  mixture toxicity between carbendazim, 

chlorpyrifos and pyrene are unknown and an appropriate mixture toxicity model could therefore not be 

chosen. The mixture toxicity model used here, although possibly invalid, did allow us to explore how 

mixture toxicity effects may affect food web dynamics in comparison with single substance exposures. 

Interestingly, different chemicals impacted different species: Daphnia was mainly affected by pyrene 

while the effects of carbendazim and chlorpyrifos mainly affected Gammarus. Assessing the effects of 

multiple chemicals on the food web is an important feature of the ChimERA model. Traditionally, 

mixture toxicity studies focus on effects on the same organism. With the ChimERA model, mixture 

toxicity effects can be evaluated for the whole food web. For example, how will the food web be affected 

by the simultaneous exposure to a chemical affecting the grazers and one affecting the predators? The 

ChimERA model can provide an answer to such a question by e.g. predicting that the negative effects 

on the grazers are compensated by the reduced predation pressure, resulting in negligible effects of the 

mixture on the grazer density. 

Ecological risk assessment needs new methods to deal with the large amount of chemicals to which 

ecosystems are possibly exposed and the increasing number of stressors that can interact with the effects 

of a chemical (SCHER et al. 2013; Gunderson et al. 2016). Modelling has been named as one of the 

most promising tools to face these challenges (SCHER et al. 2013). The simulations performed here 
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with the ChimERA model are an innovative approach to risk assessment: environmental fate predictions 

of the chemical are immediately coupled to its ecological effects and the effects could be differentiated 

in space and time. However, models like the ChimERA model are so complex and offer so many options 

that it can be difficult for risk assessors to correctly use them. How can such models be used as regulatory 

instruments? Lessons can be learned here from how environmental fate models were accepted in Europe 

i.e. the FOCUS scenarios and models  (FOCUS 2001). Before FOCUS was defined, a multitude of

environmental fate models had been developed by scientists but risk assessors had no foundation to

evaluate these models and were reluctant to use them. Intensive collaboration between the scientific

community, industry and risk assessors led to the description of the FOCUS scenarios and a selection

of accepted FOCUS models for these scenarios. The FOCUS scenarios were selected to represent a

limited number of typical European situations such as a ditch system in The Netherlands or a typical

Scandinavian pond. The FOCUS models are environmental fate models that have been extensively

validated and are now accepted as ‘approved’ models to predict the environmental fate of a chemical in

the FOCUS scenarios. When a new chemical is developed, these FOCUS models can be used to predict

the environmental fate of the chemical in the FOCUS scenarios and thus be used in the exposure

assessment of the chemical. Because of the standardization, risk assessors can evaluate the application

of the FOCUS models, judge whether the environmental fate has been correctly assessed and ultimately 

if the chemical poses a risk to the environment. Also, when new fate models are developed, these can

be tested with the FOCUS scenarios and compared with the validated FOCUS models. This allows new 

models to be more easily accepted – and thus used – by regulators.

A similar standardization is required for ecological and toxicity models before these models will be 

accepted by regulators and risk assessors. However, such standardization is hampered by the apparent 

lack of universal ecological rules and the lack of clear protection goals (Van den Brink et al. 2006). 

Question like what are acceptable effects in an ecosystem, should we focus on protecting biodiversity 

or ecosystem functioning (or both?) and do we allow effects if recovery occurs (but within what time 

frame?) need to be answered before standardized scenarios and models can be approved. This will 

require a large effort from both the scientific community, industry and regulators but is, I believe, 

absolutely necessary if we want ecological models and integrated models like the ChimERA model to 

be accepted as risk assessment tools. 
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GENERAL CONCLUSIONS AND FUTURE  

RESEARCH SUGGESTIONS 
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7.1. Introduction 

To perform adequate ecological risk assessment for the large amount of chemicals produced each year, 

appropriate methods and procedures reflecting the environmental diversity and reality are needed. 

Overall, current methods are, however, inadequate and lack ecological realism. New methods are 

therefore needed and the use of ecological models has been suggested as a powerful tool to improve 

ERA. In this PhD thesis the potential role of ecological interactions, one of the key characteristics 

lacking from current ERA methods,  was first studied experimentally. Individual based models (IBMs) 

were then developed to simulate and evaluate the patterns observed in these experiments. Next, the 

developed IBMs were integrated with an environmental fate model into the ChimERA model, capable 

of simulating spatially-explicit effects of chemicals on a food web in realistic conditions. Finally, the 

ChimERA model was tested as a scenario analysis tool. 

The results of this PhD thesis are summarized in this chapter and suggestions for future research are 

given. Each paragraph starts with the research question addressed in each chapter, then presents a 

summary of the conclusions and finally suggests possible future research directions.   

7.2. Species interactions and chemical stress: combined effects of intra- and 

interspecific interactions and pyrene on Daphnia magna population 

dynamics 

The main research question addressed in Chapter 2 was how interactions within and between species – 

intra- and interspecific competition with Brachionus calyciflorus and predation by Chaoborus sp. larvae 

– influenced the effects of pyrene on populations of Daphnia magna.

Exposure to pyrene led to decreased D. magna densities and pyrene predominately affected smaller 

individuals. Predation pressure by Chaoborus sp. larvae and intraspecific competition limited the D. 

magna population densities but competition with B. calyciflorus had no significant effects on D. magna. 

Predation pressure and intraspecific competition altered the size structure of the D. magna population, 

reducing the fraction of small, more sensitive individuals in the population. As a result, predation and 

intraspecific competition both interacted antagonistically with pyrene exposure i.e. reduced the effects 

of pyrene. It can be concluded that, overall, interactions within and between species altered the effects 

of pyrene, highlighting the need to account for such interactions in ecological risk assessments. 

Future research suggestions: D. magna is a much stronger competitor and quickly outcompetes B. 

calyciflorus in the used system. Probably, the influence of interspecific competition on the effects of a 

chemical depends on the strength of the competition. How the strength of competition alters the effect 
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of the chemical can be studied by e.g. using a smaller daphnid species. Similarly, the strength of the 

predation pressure is expected to alter the effects of chemical exposure. This interaction can be studied 

by using different predator species or densities. The effects of pyrene only became apparent after at least 

one week of exposure. It would be interesting to see if more acute chemical effects (i.e. occurring sooner) 

interact with species interactions in a different way. In the experiment, pyrene mainly affected the prey 

(D. magna) and not the predator (Chaoborus sp. larvae). Applying a chemical that affects the predator 

and not the prey can result in very different results. 

The effects of a chemical are not only dependent on the ecological interactions studied in this chapter 

i.e. competition and predation, but also on abiotic conditions. Multiple abiotic stressors can be present 

in the environment and influence the toxicity of  a chemical (SCHER et al. 2013; Gunderson et al. 2016). 

Mixture toxicity of chemicals, for example, has received a lot of attention e.g. for metals (Jonker et al. 

2005) and pesticides (Deneer 2000). Other, non-chemical stressors such as temperature (Scherer et al. 

2013) can also greatly alter the effects of a chemical. Moreover, when and how often organisms are 

exposed to these stressors is an important determining factor of their effects (Gunderson et al. 2016). 

Chemical effects occurring in realistic conditions are thus much more complex than the controlled 

environment studied in the laboratory. Ideally, future research should focus on studying how this 

complex reality – including ecological interactions, multiple stressors and differences in timing – 

influences the toxic effects of a chemical and how these can be accounted for in ecological risk 

assessment. Alternative approaches to experimental work such as the models presented in this PhD 

thesis are useful to address these challenges.  

7.3. Development of the DEBkiss IBM 

In Chapter 2, I have shown that interactions between species are essential to understand how chemicals 

affect populations. The objective of Chapter 3 was to identify and develop a modelling approach that is 

able to account for species interactions when assessing effects of chemicals. 

Individual-based models (IBMs) are ideal tools to simulate effects of chemicals on populations. These 

models, however, need to be based on a sound theoretical basis. Dynamic energy budget theory based 

on the keep it simple, stupid principle (DEBkiss) offers a good compromise between complexity and 

the amount of data required to parameterize such a model. DEBkiss IBMs were developed to account 

for species interactions when species are exposed to chemicals. Two possible methods to calculate the 

effects of a chemical were included: dose-response (DR) curves and toxicokinetic-toxicodynamic 

models. The applicability of the DEBkiss IBMs and two toxicity model was evaluated in Chapter 4. 
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7.4. Application of the DEBkiss IBM framework to assess the effects of 

competition and chemical stress on the population dynamics of 

Brachionus calyciflorus and Daphnia magna 

In Chapter 4, I explored how the DEBkiss IBMs developed in Chapter 3 can be used to predict how 

species interactions influence population responses to chemical exposure. Therefore, I applied the 

DEBkiss IBMs developed in Chapter 3 to the experiments performed in Chapter 2. 

DEBkiss IBMs were parameterized for D. magna and B. calyciflorus and compared to the experimental 

results of Chapter 2. Population dynamics of isolated D. magna populations were reasonably well 

predicted but the size structure of the population observed in Chapter 2 was not accurately predicted. 

This was attributed to the absence of an energy reserve compartment in the models, leading to faster 

starvation of the individuals when food is limited. The population dynamics of isolated B. calyciflorus 

were accurately predicted using the DEBkiss IBM. Pyrene effects were predicted to occur too early with 

both toxicity models but the TKTD model approached the observed effects best. The result of 

competition was accurately predicted when both DEBkiss IBMs were coupled to a shared food source: 

D. magna quickly outcompeted B. calyciflorus. Using the models to simulate competition when exposed 

to pyrene resulted in an increase of B. calyciflorus when D. magna densities decreased. This was not 

observed in the experiments and this can be explained by the fact that the predicted effects of pyrene 

occurred earlier in the simulations than in the experiments. 

Future research suggestions: the absence of a reserve compartment is proposed as the most likely 

reason for the inability of the developed DEBkiss IBMs to predict the size structure of the D. magna 

population. Application of an IBM based on the full DEB theory, where a reserve compartment is 

included, would allow to evaluate this hypothesis. An IBM based on the full DEB theory is available 

for D. magna (Martin et al. 2013a) and could be applied to these experiments to test whether this would 

alleviate the problems observed with the DEBkiss IBM implementation. This full DEB IBM was 

successfully applied to similar experiments with D. magna, although an additional starvation rule was 

also required (Martin et al. 2013a). However, different D. magna clones can still differ significantly in 

their parameters (Baird et al. 1991) and the experimental conditions were not identical e.g. different 

algal food source and feeding regime. It is therefore unsure whether this DEB IBM could be applied 

without adjustments to the experiments of Chapter 2. 

Ideally, the DEBkiss IBM implementation needs to be validated further. The models need to be 

compared with experiments where the same species were used in other conditions e.g. different food 

concentrations, different starting densities or exposure to different chemicals. This would greatly 

increase the acceptance of these models. Also, application of DEBkiss IBMs to other combinations of 
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species where e.g. the strength of competition is different, would show the general applicability of 

DEBkiss IBMs to other species. The applicability for different types of species interactions (e.g. 

predation) could also be explored further. 

7.5. Development of the integrated ChimERA model 

The objective of Chapter 5 was to develop an integrated ecological risk assessment model. As a first 

step, a food web model was described based on the DEBkiss IBMs from Chapter 3. To provide realistic 

simulations of the effects of a chemical on food web dynamics, the food web model was integrated with 

an environmental fate model.  

The ChimERA model was developed as a tool to perform more realistic ecological risk assessments. 

The ChimERA model integrates an environmental fate model (ChimERAfate) and a food web model 

based on DEBkiss IBMs (ChimERAfoodweb). ChimERAfate is a dynamic and spatially explicit fate model 

that predicts environmental concentrations based on environmental variables (hydrodynamics, 

temperature and trophic state). ChimERAfoodweb was developed based on the earlier implementation of 

competition between DEBkiss IBMs and a newly implemented predation interaction. The food web 

model included Brachionus and Daphnia as grazers, Chaoborus as a predator and Asellus and 

Gammarus as detritus feeders. The ChimERA model was used in Chapter 6 to evaluate the effects of 

chemicals on food web dynamics for different hypothetical scenarios.  

7.6. The ChimERA model as a scenario analysis tool 

Models have been suggested as good alternatives for current risk assessment methods. In Chapter 6, I 

explored how the developed ChimERA model could be used to predict the risk of chemicals for a 

range of different environmental conditions. 

The ChimERA model was applied to a two-pond system in 15 hypothetical scenarios, differing in water 

residence time, temperature, trophic state and the applied chemical. In general, the ChimERA model 

predicted food web dynamics and effects of chemicals that varied greatly between the 15 scenarios 

considered. Densities of the species were highest in scenarios with a high trophic state, high temperature 

and high water residence time. Daphnids were the dominant grazers in the ponds while rotifers 

dominated in the streams. Gammarus was the dominant detritus feeder. Concentrations of applied 

chemicals (carbendazim, chlorpyrifos and pyrene) were highest in scenarios with a high water residence 

time. The physico-chemical properties of the chemical determined the spatio-temporal pattern of the 

exposure, i.e. where the concentrations were highest and how fast the chemical disappeared. Direct 

effects of the chemicals on Chaoborus, Daphnia and Gammarus densities were predicted, as expected 

from their sensitivities to these chemicals. These effects were, however, heterogeneously distributed in 
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space and time, following the differences in exposure. The most notable indirect effects were a shift in 

dominance from Daphnia and Gammarus to Brachionus and Asellus, respectively. Also, the predator 

Chaoborus was affected indirectly through effects on its prey species Daphnia. The effects of the 

mixture of three chemicals differed between species, where the effects of pyrene dominated for Daphnia 

and the effects of carbendazim and chlorpyrifos for Gammarus.  

Future research suggestions: although the current work gives a good overview of the potential use of 

an integrated fate and effect model for risk assessment, further steps are needed before the model can be 

applied as a risk assessment tool. The suggested steps can be divided in three categories: more 

complexity, more testing and guidance on the model output.  

(1) More complexity

Multiple stressors and the timing of exposure to these stressors have been raised as a critical points 

missing in current ecological risk assessment (SCHER et al. 2013; Gunderson et al. 2016). The 

ChimERA model presented in this thesis offers a good first step on how these can be accounted for. 

However, although the ChimERA model is already able to account for realistic exposure scenarios, the 

complexity of the submodels is limited and probably needs to be increased further to better simulate 

reality. Some key areas where complexity can be improved are discussed here. 

The DEBkiss IBMs currently used in the food web model are most likely insufficient to accurately 

simulate the full life cycles of Asellus, Chaoborus, Gammarus and possibly also Daphnia. DEBkiss 

IBMs were used here because of their transparency and simplicity. This allowed for an easy 

interpretation of the food web dynamics and resulted in reasonable the computation times. Although 

their parametrization was based on a verified database and literature sources, the DEBkiss 

implementation has not been tested extensively against actual observational data. However, given the 

problems with the DEBkiss implementation for Daphnia (Chapter 4), it is likely that similar problems 

with e.g. the absence of a reserve compartment would arise for other species. The ChimERA framework 

was developed as a very flexible tool and, as long as the same information is exchanged with the server, 

other IBMs can be implemented in the food web. However, a tested implementation of the full DEB 

theory into an IBM is only available for Daphnia (Martin et al. 2012). Adaptation and validation of this 

implementation for the other species was not in the scope of this research. Validated IBMs not based on 

DEB theory are available for Asellus (Van den Brink et al. 2007), Chaoborus (Strauss et al. 2016) and 

Gammarus (Galic et al. 2014). However, these implementation do not always explicitly consider food 

and the use of different underlying theories could hinder interpretation.  

The complexity of several ecological processes included in the ChimERA model can be improved, of 

which a few will be discussed here in detail. One example of such an ecological process deals with the 

movement of individuals within the spatial structure. In the current simulations, random movement was 

assumed and this was shown to cause mobile individuals to accumulate in the ponds. However, 



General conclusions and future research suggestions 

127 
 

movement of individuals is not random and is dependent on the prevalent conditions. For example, the 

spatial distribution of Gammarus is highly dependent on the stream conditions (Adams et al. 1987), 

Chaoborus larvae move to other regions when prey become limited (Liljendahl-Nurminen et al. 2002) 

and Daphnia longispina are known to actively avoid contaminant exposure (Lopes et al. 2004). 

Movement within the system is thus dependent on many species-specific, often unknown, factors , 

making the modelling of realistic movement very complex and not within the scope of this PhD thesis. 

However, it could be worthwhile to explore this for species for which there is a known relationship 

between movement and an environmental factor.  

The selection and quality of food is another example of complexity that could be added. Food in the 

current implementation of the ChimERA model is limited to a very general description of phytoplankton 

(or detritus). However, in reality, phytoplankton consists of many species belonging to different algal 

classes. Grazers prefer to eat certain phytoplankton species and phytoplankton species differ in their 

nutritional value for the grazer. It is likely that differences in food selectivity and food quality 

(nutritional value) will impact the energy budgets of the individual species. Modelling multi-species 

grazing e.g. similar to how multi-species predation was added to the ChimERA model would allow to 

explore the implications of increasing the complexity of the phytoplankton compartment. Similarly, the 

detritus consists of many fractions, also from non-algal origin, and accounting for this will increase the 

realism of the models.   

Similarly, increasing the complexity of the fate model can be considered by including additional 

parameters and processes of importance. The fate model at the moment does not consider high frequency 

fluctuations in water chemistry parameters that can be important for the environmental fate of the 

chemical. For example, pH influences several environmental fate processes such as adsorption to soil 

and degradation (Vala Ragnarsdottir 2000) but high frequency (e.g. day-night) fluctuations are not 

included in ChimERAfate. Inclusion of such processes will further increase the accuracy of the fate 

model. Another important improvement to the chemical fate model would be the addition of chemical 

effects on the phytoplankton dynamics. For the three chemicals studied, phytoplankton effects were 

considered negligible. However, for other chemicals such as herbicides, effects on phytoplankton are 

likely. Because phytoplankton dynamics in the fate model are modelled using an ordinary differential 

equation (Equation 5.1), the effects of chemicals could be included easily by multiplying the 

phytoplankton growth rate with a concentration-response term (De Laender et al. 2015).  

Further development of the ChimERA model, or similar models, should strive to increase the spatial 

scale and the simulated period. Current application was limited to two connected ponds simulated for 

one year. Increasing the spatial scale and the simulated period will provide more in-depth, realistic 

ecological risk assessments. Questions such as what are the multi-annual effects of a chemical? Or how 

will a different spatial scale and structure affect the effects of a chemical e.g. when multiple isolated 
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ponds are located within a larger area? could be addressed. Also, new methods in ecology could be used 

to further increase the relevance of the risk assessment. For example, geographic information system 

(GIS) approaches have become popular in (landscape) ecology e.g. for fire risk assessment (Chuvieco 

et al. 2010). Combining a GIS approach with the ChimERA model could lead to ecological risk 

assessments for real-world situations.  

Finally, it would be interesting to explore the effects of chemicals for other food web types. The current 

ChimERAfoodweb model only considers five species and three trophic levels (phytoplankton/detritus, 

grazer/detritivore and a predator). Both direct and indirect effects of a chemical could be totally different 

when e.g. there are more trophic levels and more trophic links in the food web. Comparing effects 

between these food webs will allow more insight into how chemicals can affect food web dynamics. 

(2) More testing 

Parts of the ChimERA model were tested: e.g. DEBkiss IBMs for two competing grazers (see Chapter 

4) and the ChimERAfate model (Morselli et al. 2015). However, the applicability of ChimERA for more 

complex cases needs to be tested further by comparing the simulations with observational data. The 

DEBkiss IBMs have only been applied for species with a short life cycle. The applicability for species 

that live multiple months and even years needs to be further tested. Also, the DEBkiss IBMs were only 

compared with data for two interacting species (Chapter 4). In real food webs, interactions occur 

between more than two species. To test how well more complex species interactions are modelled, 

DEBkiss IBMs could be compared to the results of experiments in the lab with simplified food webs, 

e.g. including multiple grazers and predators. 

(3) Guidance on the model output 

The interpretation of the output of complex models such as the ChimERA model is a challenge. For 

non-experts, the model output can be intimidating and confusing. To increase the acceptance of the 

ChimERA model, clear guidance needs to be provided on how the model works and how the output 

should be interpreted. For the ChimERA model to be used as a risk assessment tool, further definition 

is required of which endpoints should be used and what effects are considered acceptable. This is of 

course strongly dependent on what regulators require and input from them is therefore pivotal at this 

point. Additionally, good modelling practice and standardized model documentation protocols such as 

TRACE (Schmolke et al. 2010) are essential in this regard to increase the transparency and general 

acceptance of models in general and the ChimERA model specifically.  
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7.7. Overall contribution of this PhD thesis to the future of ecological risk 

assessment 

This work has shown the importance of approaching chemical risk assessments from an ecological 

perspective. Species are not isolated entities but interact and influence the outcome of chemical 

exposure. The ChimERA model developed and applied here is an important proof of principle on how 

these interactions can be accounted for. In addition, the model also accounted for spatiotemporal 

differences in exposure and effects of chemicals. The ChimERA model, when further tested, validated 

and extended with more mechanisms, can serve as a blueprint for future efforts to model how chemicals 

affect ecosystems. The integration of a fate and effect model demonstrated the strength of 

simultaneously accounting for both the exposure and effects of chemicals when assessing potential 

ecological risks.   
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Table A1: Percentage of the total variance explained by pyrene exposure and intraspecific competition. 
Percentages shown are calculated for the optimal GLM for log10-transformed total D. magna 
abundance after backwards model selection on the intraspecific dataset. Non-significant predictor 
variables are indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
Pyrene / 13.7 10.4 2.1 16.6 12.3 75.4 32.1 
Intraspecific 71.0 46.7 21.9 20.4 40.3 38.5 0.9 21.6 
Pyrene X Intraspecific / / / 23.2 13.9 / 8.4 / 

Table A2: Percentage of the total variance explained by of pyrene exposure and interspecific 
competition. Percentages shown are calculated for the optimal GLM for log10-transformed total D. 
magna abundance after backwards model selection on the interspecific dataset. Non-significant 
predictor variables are indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
Pyrene / 19.5 / / 5.1 23.1 81.3 24.0 
Interspecific / 12.0 / 51.8 55.8 32.1 4.0 14.0 
Pyrene X Interspecific / / / / 9.6 / / 18.2 

Table A3: Percentage of the total variance explained by of pyrene exposure and predation. Percentages 
shown are calculated for the optimal GLM for log10-transformed total D. magna abundance after 
backwards model selection on the predation dataset. Non-significant predictor variables are indicated 
with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
Pyrene / / / / / / 45.1 13.3 
Predation / 11.4 51.8 42.4 46.8 54.6 19.5 55.0 
Pyrene X Predation / / / / / / 16.8 / 

Table A4: GLM estimates of pyrene exposure and intraspecific competition for log10-transformed adult 
D. magna abundance after backwards model selection. For each time point, the significant estimates (p
< 0.05) of explanatory variables and their interactions are shown. Non-significant predictor variables
are not shown (if never significant) or indicated with “/”.

Time (days) -4 0 2 4 7 10 15 22 
(Intercept) 0.57 1.02 1.11 1.22 1.40 1.48 1.69 1.73 
Medium pyrene / / / / / 0.10 / / 
High pyrene 0.12 / / / -0.12 / -0.37 -0.18
Low intraspecific 0.30 0.24 0.19 0.16 0.08 / / / 
High intraspecific 0.46 0.41 0.37 0.32 0.25 0.08 / / 
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Table A5: GLM estimates of pyrene exposure and intraspecific competition for log10-transformed 
juvenile D. magna abundance after backwards model selection. For each time point, the significant 
estimates (p < 0.05) of explanatory variables and their interactions are shown. Non-significant 
predictor variables are not shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
(Intercept) 0.74 0.56 1.15 1.57 1.89 1.79 1.56 1.08 
Low pyrene / / / / -0.17 / / 0.44 
High pyrene / / / / / / -0.70 / 
Low intraspecific 0.22 / / / -0.24 -0.14 / / 
High intraspecific 0.49 0.57 0.27 -0.21 -0.33 -0.28 / / 
Low pyrene X  Low intraspecific / / / / 0.32 / / / 
Medium pyrene X  High intraspecific / / / 0.28 / / / -0.63 

 

Table A6: GLM estimates of pyrene exposure and intraspecific competition for log10-transformed 
neonate D. magna abundance after backwards model selection. For each time point, the significant 
estimates (p < 0.05) of explanatory variables and their interactions are shown. Non-significant 
predictor variables are not shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
(Intercept) / / 1.25 1.47 1.47 0.69 / -0.52 
Medium pyrene / 0.79 / / / 0.32 / / 
High pyrene / 0.87 / / / 0.33 / 1.03 
Low intraspecific 0.51 / / -0.39 -0.34 / / / 
High intraspecific 0.75 / -0.71 -0.75 -0.61 -0.55 / / 
High pyrene X  Low intraspecific / -1.37 / / / / / / 
High pyrene X  High intraspecific / -1.02 / / / / / / 

 

Table A7: GLM estimates of pyrene exposure and interspecific competition for log10-transformed adult 
D. magna abundance after backwards model selection. For each time point, the significant estimates (p 
< 0.05) of explanatory variables and their interactions are shown. Non-significant predictor variables 
are not shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
(Intercept) 0.61 1.03 1.14 1.20 1.42 1.49 1.72 1.77 
Medium pyrene / / / / / 0.10 / / 
High pyrene / / / / -0.09 -0.10 -0.57 -0.22 
Low interspecific / / / 0.13 / / / / 
High pyrene X High interspecific / / / / / / / -0.29 
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Table A8: GLM estimates of pyrene exposure and interspecific competition for log10-transformed 
juvenile D. magna abundance after backwards model selection. For each time point, the significant 
estimates (p < 0.05) of explanatory variables and their interactions are shown. Non-significant 
predictor variables are not shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
(Intercept) 0.79 0.56 1.21 1.56 1.89 1.83 1.59 1.06 
Low pyrene / / / / -0.17 / / / 
High pyrene / / / / / -0.14 -0.81 0.42 
Low interspecific / 0.35 / / / -0.15 -0.32 -0.42 
High interspecific -0.35 0.32 / -0.14 -0.27 -0.16 -0.23 / 
Low pyrene X Low interspecific / / / / 0.22 / / / 
Low pyrene X High interspecific / / / / 0.23 / / / 
High pyrene X High interspecific 0.59 / / / / / / / 

 

Table A9: GLM estimates of pyrene exposure and interspecific competition for log10-transformed 
neonate D. magna abundance after backwards model selection. For each time point, the significant 
estimates (p < 0.05) of explanatory variables and their interactions are shown. Non-significant 
predictor variables are not shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
(Intercept) -0.48 / 1.15 1.44 1.52 0.57 / -0.81 
Medium pyrene 0.56 / / / / 0.56 / / 
High pyrene / / / / / / / 1.79 
Low interspecific -0.59 / / -0.38 -0.49 / / / 
High interspecific / / / -0.41 -0.57 -1.22 / / 
High pyrene X Low interspecific / -1.58 / / / / / / 
Low pyrene X High interspecific / / / / / 1.21 / / 
High pyrene X High interspecific / / / -0.44 / 1.00 / / 

 

Table A10: GLM estimates of pyrene exposure and predation for log10-transformed adult D. magna 
abundance after backwards model selection. For each time point, the significant estimates (p < 0.05) of 
explanatory variables and their interactions are shown. Non-significant predictor variables are not 
shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
(Intercept) 0.67 1.02 1.11 1.22 1.36 1.49 1.67 1.76 
High pyrene / / / / / / -0.36 -0.16 
Predation / -0.20 -0.22 -0.22 -0.18 / / -0.16 

 

  



Supportive Information Chapter 2 

135 
 

Table A11: GLM estimates of pyrene exposure and predation for log10-transformed juvenile D. magna 
abundance after backwards model selection. For each time point, the significant estimates (p < 0.05) of 
explanatory variables and their interactions are shown. Non-significant predictor variables are not 
shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
(Intercept) 0.67 0.55 1.01 1.56 1.89 1.79 1.56 1.27 
Medium pyrene / / / / -0.28 / / / 
High pyrene / / / / / / -0.70 / 
Predation / / / -0.34 -0.36 -0.37 -0.50 -0.33 

 

Table A12: GLM estimates of pyrene exposure and predation for log10-transformed neonate D. magna 
abundance after backwards model selection. For each time point, the significant estimates (p < 0.05) of 
explanatory variables and their interactions are shown. Non-significant predictor variables are not 
shown (if never significant) or indicated with “/”. 

Time (days) -4 0 2 4 7 10 15 22 
(Intercept) / / 1.25 1.51 1.47 0.57 -0.42 -0.57 
High pyrene / 0.79 / / / / / 0.96 
Predation / / -0.67 -1.03 -0.80 / / / 
Low pyrene X Predation / / / / / -1.07 / / 



Appendix A 

136 

Figure A1. Optimal concentration response curve for pyrene fitted to the results of a 48 hours test with 
neonate D. magna.  

Figure A2. Adult D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the adult D. magna abundances with no additional 
species interactions. Average values with standard deviations (error bars) are depicted. Dashed lines 
indicate the first and the second pyrene application. 
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Figure A3. Adult D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the treatments without (points) and with predation 
(crosses). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the 
first and the second pyrene application. 
 

 
Figure A4. Adult D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the treatments with no additional species 
interactions (points), low intraspecific competition (crosses) and high intraspecific competition (black 
squares). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the 
first and the second pyrene application. 
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Figure A5. Adult D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the treatments with no additional species 
interactions (points), low interspecific competition (crosses) and high interspecific competition (black 
squares). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the 
first and the second pyrene application. 

Figure A6. Juvenile D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the juvenile D. magna abundances with no 
additional species interactions. Average values with standard deviations (error bars) are depicted. 
Dashed lines indicate the first and the second pyrene application. 
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Figure A7. Juvenile D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the treatments without (points) and with predation 
(crosses). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the 
first and the second pyrene application. 
 

Figure A8. Juvenile D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the treatments with no additional species 
interactions (points), low intraspecific competition (crosses) and high intraspecific competition (black 
squares). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the 
first and the second pyrene application. 
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Figure A9. Juvenile D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the treatments with no additional species 
interactions (points), low interspecific competition (crosses) and high interspecific competition (black 
squares). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the 
first and the second pyrene application. 
 

 
Figure A10. Neonate D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the neonate D. magna abundances with no 
additional species interactions. Average values with standard deviations (error bars) are depicted. 
Dashed lines indicate the first and the second pyrene application. 
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Figure A11. Neonate D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the treatments without (points) and with predation 
(crosses). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the 
first and the second pyrene application. 

 

 
Figure A12. Neonate D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the treatments with no additional species 
interactions (points), low intraspecific competition (crosses) and high intraspecific competition (black 
squares). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the 
first and the second pyrene application. 
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Figure A13. Neonate D. magna abundance over time for four pyrene exposure profiles: control, low, 
medium and high pyrene exposure. Data shown are the treatments with no additional species 
interactions (points), low interspecific competition (crosses) and high interspecific competition (black 
squares). Average values with standard deviations (error bars) are depicted. Dashed lines indicate the 
first and the second pyrene application. 

Figure A14. B. calyciflorus population sizes over time with D. magna present for four pyrene exposure 
profiles: control, low, medium and high pyrene exposure. Populations were started with either 333 
rotifers · vessel-1 (points) or 999 rotifers · vessel-1 (crosses). Average values with standard deviations 
(error bars) are depicted. Dashed lines indicate first and the second pyrene application. 
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Figure A15. B. calyciflorus population sizes over time with D. magna present for four pyrene exposure 
profiles: control, low, medium and high pyrene exposure. Populations were started with either 333 
rotifers · vessel-1 (points) or 999 rotifers · vessel-1 (crosses). Average values with standard deviations 
(error bars) are depicted. Dashed lines indicate first and the second pyrene application. 

Figure A16. B. calyciflorus population sizes over time without competition with D. magna and for two 
pyrene exposure profiles: no exposure (“Control”) and high exposure (110 μg/L, “C4”). Average 
values with standard deviations (error bars) are depicted. Dashed lines indicate the time of pyrene 
application.
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Figure B1: Likelihood (LSS) of the DEBkiss models with values for the maximum area-specific 
assimilation rate (max_spec_assimr) between 0.006 and 0.121 mg mm-2 d-1. 
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Figure B2: Total population density (A) and densities of large (B), medium (C) and small (D) 

individuals for D. magna using a DEBkiss IBM without additional food starvation mortality. Black 

bullets and squares show the observed dynamics for populations without additional stress in two 

experiments. Green areas show the best predictions. 
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Figure B3: Total population density (A) and densities of large (B), medium (C) and small (D) 
individuals for D. magna using a DEBkiss IBM with additional food starvation mortality. Black bullets 
and squares show the observed dynamics for populations without additional stress in two experiments. 
Green areas show the best predictions. 
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C.1. Literature sources for DEBkiss parameters

Asellus: (Maltby 1991, 1995; Arakelova 2001; Galic et al. 2012) 

Brachionus: (Halbach 1970a; Dumont et al. 1975; Saunders III and Lewis Jr 1988; Hansen and Bjornsen 

1997; Mohr and Adrian 2000; Jensen and Verschoor 2004) 

Chaoborus: (Stenson 1978; Van Wijngaarden et al. 2006) 

Daphnia: (MacArthur and Baillie 1929; Dumont et al. 1975; Tillmann and Lampert 1984; Ebert 1992; 

Glazier 1992; Trubetskova and Lampert 1995; Jager and Zimmer 2012; Mulder and Hendriks 

2014) 

Gammarus:  (Nilsson 1977; Welton and Clarke 1980; Gee 1988; Ward 1988; McCahon and Pascoe 

1990; Maltby 1995) 

C.2. Derivation of multi-species predation equation

Disc equation for multiple prey: 

(Rose et al 1999) 

Where Cj = the biomass of prey j eaten by predator I (g); Cmax = the maximum food uptake by predator 

i (g d-1); Wi = the weight of the predator i (g); PDj = the density of prey j (prey L-1); Kj = the half-

saturation coefficient for prey j (prey L-1); n = the numer of prey species for predator i. 

Data available for Daphnia and Brachionus are based on: 

′

′  (Krylov 1992) 

Where PR = predation rate (prey predator-1 d-1); a’j = attack rate on prey j (L d-1); Nj = density of prey j 

(prey L-1); Thj = handling time of prey j (d); n = the number of prey species. 

To implement multi-species predation in the IBMs, we need the biomass of prey eaten. However, we 

only have the parameters for the Krylov 1992 equation. Therefore, we combine both equations using the 

half-saturation coefficient K. The half-saturation coefficient K in a type II functional response function 

corresponds with the food density at which the food uptake is exactly 50% of the maximum food uptake. 

For the Krylov 1992 equation, the maximum food uptake corresponds to the limit of the function i.e. 

. Therefore the Krylov 1992 equivalent of K is equal to . The corresponding food density N is 

calculated by: 



Supportive Information Chapter 5 
 

151 
 

′

′  =>  ′   

Combined with the Disc equation, the amount of prey biomass Cj eaten can be calculated: 

 with 
′

′    

C.3. Communication protocol 

Communication between components in the ChimERA model 

Two considerations were taken into account for the design of the communication between the different 

model programs via the server. Firstly, without a minimum of synchronization imposed upon the system 

by the server program, it will be very hard to get a robust system. Synchronization implies here that all 

models/clients should receive a signal to perform their computations and all models/clients inform the 

server program when they are ready. Only when all model/clients are ready, the system should proceed 

with the next step. Secondly, the different types of data that need to be exchanged require a two-step 

process. Some data are state data that can be exchanged as soon as all (new) states are calculated. Other 

data however might refer to fluxes between models that are calculated only within one model but need 

to be accounted for in other models before their new state can be calculated. These data can only be send 

to model 2 when calculations in model 1 have been done. The two-step process thus involves first 

calculating changes in all models, then exchanging deltas (loss or increase terms) and then calculating 

the final next state. 

Main structure 

With the generic architecture presented here, the complete system can be split up in an arbitrary number 

of modules. Models have an associated client, that handles communication with the server. For the 

ChimERA model, one client handles the communication with the fate model, one client the 

communication with the two detritus feeders and one client the communication with the grazers and 

their predator (Figure C1).  
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Figure C1: Setup of the integrated ChimERA model. The server communicates with three clients. One 
client coordinates the chimERA fate model and the two other clients coordinate the DEBkiss IBMs: one 
client for the two detritus feeders (ASE and GAM for Asellus and Gammarus, respectively) and one 
client for the two grazers and the predator (BRA. DAP and CHA for Brachionus, Daphnia and 
Chaoborus, respectively). 

 

Table C1: Data exchanged between the communication server and clients. 

Name Type Definition Unit 

PHY STATE Phytoplankton concentration mg ww L-1 

CPW STATE Concentration chemical in water mol L-1 

PGL DELTA Loss (flux) of phytoplankton due to grazing mg ww L-1 h-1 

DET STATE Detritus (in water) concentration mg ww L-1 

DGL DELTA Loss (flux) of detritus due to grazing mg ww L-1 h-1 

 

Communication at connection time 

When first connecting with the sever, clients need to specify which data it needs to receive, 

distinguishing between state variables and fluxes. The two types are indicated by &STATE and 

&DELTA, and should be followed by the character @ and zero or more (comma-separated) keywords 

for the data, e.g., '&STATE@PHY,ZOOP1,ZOOP2&DELTA@GRA*'. Note that it should be possible 

to include models that do not need input from other models, so signalling: '&STATE@&DELTA@*' or 

just one of the two types: '&STATE@&DELTA@GRA*' 

Communication during simulation 
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The basic loop for each time step is worked out below. The following synchronized steps occur, starting 

at the moment all models’ state variables have just been updated. Exclamation marks are used to indicate 

the start of a command given by the server, or the following reply coming from the client. 

1. Server sends: !calcDelta* to all (waiting) clients and waits for replies from all. No data accompanies 

this command. The client allows its model to run up to the moment the next/new state is calculated. 

It has to stop then, because the calculation of the final new state may require information exchange 

with other models.  

2. All clients send: !delta* to the server, to signal that they are ready. When a client produced 

information that is needed in other models, the standard data string (possibly composed) with this 

information should be appended to !delta, e.g. !delta#1&GRA@1,2,3,4,5,6,7,8,9,10*. After sending 

confirmation/data, clients wait. 

3. When all confirmations have arrived at the server, the server starts the exchange of delta data by 

building for all clients that expressed the need for these data, the pure (and possibly composed) delta 

data strings, and subsequently sending them. The information from the server has the format 

!delta<data-string>*, with data-string in the format we decided upon, e.g. 

!delta#1&PGL@1,2,3,4,5,6,7,8,9,10&DGL@9,8,7,6,5,4,3,2,1,0* or 

!delta#1&PGL@1,2,3,4,5,6,7,8,9,10*. In the data string, any arbitrary data can be included. These 

data – not needed by other models – will not be exchanged between component models, but only 

stored and visualized by the server. E.g., 

!delta#1&PGL@1,2,3,4,5,6,7,8,9,10&MYDATA@9,8,7,6,5,4,3,2,1,0*.  

4. Server waits until all the clients that needed delta data have signalled that these data have been 

received, e.g. by replying !received* 

5. All clients now wait until the server sends them the message !calcState*. Upon receiving this 

message the clients make their model do the necessary thing to set the new state of the model (e.g. 

subtracting or adding fluxes calculated in other compartments/models).  

6. When new state has been set in the models, all clients have to signal that they are ready, by sending 

!state* to the server. In case clients provide state data that are needing in other models, the (possibly 

composed) state data are appended: !state<data-string>*  e.g. !state#1&PHY@1,2,3,4,5,6,7,8,9,10*. 

After sending confirmation, clients wait. Also here, in the data string, any arbitrary data can be 

included. These data – not needed by other models – will not be exchanged between component 

models, but only stored and visualized by the server. E.g., 

!state#1&PHY@1,2,3,4,5,6,7,8,9,10&MYDATA@9,8,7,6,5,4,3,2,1,0*.  

7. When all these confirmations have arrived at the server, the server starts the exchange of state data 

by building for all clients that expressed the need for these data, the pure (and possibly composed) 

state data strings, and subsequently sending them. 
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8. Server waits until all the clients that needed state data have signalled that these data have been

received, e.g. by replying !received*

9. Etc. continuing with step 1. This is the moment the server might be interrupted, leaving the system

in a resumable state.

Some specials steps need to be taken when initializing the whole system. Initialization can be done by 

a variant of the steps 5 to 8 (related to setting state): 

10. After the connections have been made (open socket connection created between server and client)

all clients wait until the server sends them the message !initialize*. Upon receiving this message the 

clients make their model do the necessary initializations to set the state of the model at time 0 (this

refers to state that can be initialized without information on the initial state of other models).

11. When initializations are done in the models, all clients have to signal that they are ready, by sending 

!initialized* to the server. In case clients provide state data that are needed in other models, the

(possibly composed) state data are appended, e.g., !initialized#1&PHY@1,2,3,4,5,6,7,8,9,10*.

After sending confirmation, clients wait. (we could also just copy/reuse the !state* protocol).

12. When all these confirmations have arrived at the server, the server starts the exchange of state data

by building for all clients that expressed the need for these data, the pure (and possibly composed)

state data strings, and subsequently sending them.

13. Server waits until all the clients that needed state data have signalled that these data have been

received, e.g. by replying !received*. After this, all models have their complete up to date state

related to t = 0.
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Table D1: Physico-chemical properties of the three selected chemicals. MW = molecular weight; VP = 
vapour pressure; WS = water solubility; Kow = octanol-water partition coefficient; HLwater = half-life in 
water. 

Chemical MW (g mol-1) VP (Pa) WS (mg L-1) Log KOW HLwater (h) 

Carbendazim 191.2 6.48 * 10-8 8 1.52 720 

Chlorpyrifos 350.6 2.27 *10-3 0.73 4.96 24 

Pyrene 202.3 6 * 10-4 0.132 5.18 1700 

 

Table D2: LC50 values and TKTD parameters for the five species considered in the food web. LC50 
values are reported in μg/L. kD = dominant rate constant (d-1); kK = killing rate constant (L μg-1 d-1); 
z = internal threshold for effects (μg L-1); ns = Not sensitive at the concentrations tested.  

Parameter Asellus Brachionus Chaoborus Daphnia Gammarus 

Carbendazim 

EC50 350 ns ns 91 55 

kD 4.6 * 10-4 1 * 10-6 1 * 10-6 2.5 * 10-3 0.05 

kK 4.7 * 10-3 1 * 10-6 1 * 10-6 0.46 0.021 

z 6.7 1 * 105 1 * 105 0.3 7.5 

Chlorpyrifos 

EC50 8.58 ns 0.3 0.82 0.23 

kD 9 * 10-4 1 * 10-6 53 0.3 0.7 

kK 27 1 * 10-6 0.23 0.35 2 

z 0.003 1 * 105 4.4 * 10-4 6.1 * 10-8 0.006 

Pyrene 

EC50 303.5 ns ns 68 27.1 

kD 0.021 1 * 10-6 1 * 10-6 0.969 0.23 

kK 0.022 1 * 10-6 1 * 10-6 0.008 0.11 

z 3.5 1 * 105 1 * 105 0 8.4 
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In Europe, the number of registered chemicals is approximately 100,000 and still increasing. To help 

make informed decisions about their production, use and disposal, it is important to accurately quantify 

the risk these chemicals pose to the environment. Chemicals are therefore subjected to an ecological risk 

assessment. The goal of an ecological risk assessment is to quantify the risk that a given chemical would 

impair the structure and functioning of natural ecosystems. Traditionally, this is approached by 

extrapolating the effects measured in a single species toxicity test to ecosystem-level effects. To this 

end, different extrapolation methods have been developed. For the chemicals that pose the highest risk, 

model ecosystems are used to assess the ecological risk of the chemical.  

All current ERA methods however fail to provide an accurate answer to the central question in 

ecotoxicology: what are the effects of chemical exposure in real-world systems? The major problem 

when approaching this question is to extrapolate from single species in a controlled environment to the 

protection goals set by the authorities, which involve population size and ecosystem structure and 

function. Ecological risk cannot be adequately assessed using procedures that disregard most of the 

inherent environmental and ecological complexity. In order to more accurately predict the effects of 

chemicals on communities and ecosystems, more ecology needs to be integrated. One of the most 

prominent problems with traditional ERA approaches is that they regard individuals as discrete units 

instead of interacting entities. In reality, however, individuals are not isolated but interact with 

individuals of the same and/or of another species. These species interactions can alter the direct effects 

of chemicals but also lead to indirect effects i.e. effects on tolerant species through interactions with 

sensitive species. Competition and predation are considered the most important interactions to account 

for. Accurately assessing how species interactions can alter the response to chemical exposure is 

therefore essential. The first objective of this work was therefore to understand how competition and 

predation interfere with chemical exposure. 

This PhD thesis starts with experimentally exploring how intraspecific competition, interspecific 

competition and predation alter the population dynamics of Daphnia magna exposed to pyrene 

(Chapter 2). Predation pressure by Chaoborus sp. larvae and intraspecific competition limited the D. 

magna population densities when pyrene exposure was absent. However, predation and intraspecific 

competition altered the size structure of the D. magna population, reducing the amount of small 

individuals that are most sensitive to pyrene. As a result, pyrene effects were smaller in these 

populations. Because the competitive advantage of D. magna over B. calyciflorus was so large, B. 

calyciflorus disappeared quickly from the system and no interactions of interspecific competition with 

pyrene exposure were observed.  

Ecological modelling has been proposed as one of the best options to improve effect assessment, 

specifically to account for ecological interactions. Individual based models (IBMs) seem particularly 

suited for use in ERA. Since most ecotoxicological tests focus on the individual level, IBMs are ideal 
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tools to translate these test results to the population and community level. However, current IBM 

applications have neglected possible interactions with other species, despite this being one of the main 

criticisms on current ERA methods. A second objective of this thesis was to develop an IBM framework 

capable of predicting chemical effects on interacting species.  

In Chapter 3, an individual-based modelling (IBMs) implementation was developed that accounted for 

interactions between species. IBMs are ideal tools to simulate effects of chemicals on populations but 

need to be based on a sound theoretical basis. Dynamic energy budget theory based on the keep it simple, 

stupid principle (DEBkiss) offers a good compromise between complexity and the amount of data 

required to parameterize the model. IBMs based on the DEBkiss theory were developed and chemical 

effects on survival were implemented. Two possible methods to calculate the effects of chemicals were 

included: concentration-response curves (CR) and toxicokinetic toxicodynamic models (TKTD). In 

order for models to be trustworthy, they need to be validated i.e. their predictions need to be compared 

with observations. Therefore, in Chapter 4, DEBkiss IBMs were parameterized for D. magna and B. 

calyciflorus and compared to the outcome of the experiments of Chapter 2. The population dynamics of 

isolated B. calyciflorus were accurately predicted using the DEBkiss IBM. Population dynamics of 

isolated D. magna populations were reasonably predicted but not the size structure of the population. 

This was attributed to the absence of a reserve compartment in the models, leading to faster starvation 

when food is limited. Both toxicity models predicted pyrene effects that occurred sooner than observed 

but the TKTD model approached the observed effects best. The outcome of competition was accurately 

predicted when both DEBkiss IBMs were coupled to a shared food source: D. magna quickly 

outcompeted B. calyciflorus. Using the models to simulate competition when exposed to pyrene resulted 

in an increase of B. calyciflorus when D. magna densities decreased. This was not observed in the 

experiments but was attributed to the predicted effects of pyrene occurring earlier in the simulations 

than in the experiments. 

Ecological risk assessment does not aim to protect one or two species in the laboratory but to protect 

realistic communities in the field. A third objective of this work was to develop an IBM-based 

modelling approach to account for chemical effects on higher ecological levels in realistic conditions. 

ChimERAfoodweb was developed as a novel approach (Chapter 5): a food web model based on DEBkiss 

IBMs. To achieve this, a newly implemented predation interaction was added to the earlier 

implementation of competition between DEBkiss IBMs. The food web included two grazers 

(Brachionus and Daphnia) and their predator (Chaoborus) and two detritus feeders (Asellus and 

Gammarus). In order to perform simulations for realistic conditions, ChimERAfoodweb was coupled with 

ChimERAfate to form the integrated ChimERA model. ChimERAfate is a dynamic and spatially explicit 

fate model that predicts environmental concentrations based on environmental variables 

(hydrodynamics, temperature and trophic state).  
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The integrated ChimERA model was developed as a tool to perform more realistic ecological risk 

assessments. To test its application, the ChimERA model was applied to a two-pond system in 15 

hypothetical scenarios (Chapter 6), differing in water residence time, temperature, trophic state and the 

applied chemical. These differences in environmental conditions greatly determined the effects of 

chemical exposure and large differences were predicted between the different scenarios. The physico-

chemical properties of the chemical determined the spatiotemporal pattern of the exposure i.e. where 

and when the concentrations were highest and how fast the chemical disappeared. Concentrations of 

applied chemicals were highest in scenarios with a high water residence time. Direct effects on 

Chaoborus, Daphnia and Gammarus were predicted, as expected from the sensitivities of these species. 

These effects however differed greatly between environmental scenarios, with more pronounced effects 

in scenarios with a high trophic state and temperature. Within one scenario, the effects of the chemicals 

on food web dynamics were heterogeneously distributed in space and time, following the differences in 

exposure. The most notable indirect effects were a shift in dominance from Daphnia and Gammarus to 

Brachionus and Asellus, respectively. Also, the predator Chaoborus was affected indirectly through 

effects on its prey species Daphnia. The effects of the mixture of three chemicals differed between 

species, where the effects of pyrene dominated for Daphnia and the effects of carbendazim and 

chlorpyrifos for Gammarus.  These simulations demonstrate how much the outcome of chemical 

exposure is determined by environmental conditions and how important it is to account for these 

environmental conditions in ERA through the use of models such as the ChimERA model. 

In Chapter 7, the main conclusions and proposals for future research directions are given. This work 

has shown how essential it is to approach the risk assessment of chemicals from an ecological 

perspective. Species are not isolated entities but interact and influence the outcome of chemical 

exposure. The ChimERA model developed and applied here is an important proof of principle on how 

these interactions can be accounted for. More than this, the model also accounted for spatiotemporal 

differences in exposure and effects of chemicals. The ChimERA model, when further tested and if 

necessary extended, can serve as a blueprint for future efforts to model how chemicals affect realistic 

systems.  
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Meer dan 100,000 verschillende chemicaliën zijn reeds geregistreerd in Europa. Om geïnformeerde 

keuzes te maken omtrent de productie, het gebruik en het verwerken van deze chemicaliën is het 

belangrijk om hun risico voor het milieu accuraat in te schatten. Dit wordt gedaan aan de hand van 

ecologische risico-evaluaties. Ecologische risico-evaluaties hebben als doel het risico van chemicaliën 

voor de structuur en het functioneren van natuurlijke ecosystemen te kwantificeren. Dit wordt 

traditioneel benaderd door de effecten gemeten met een toxische test op één soort te extrapoleren naar 

het ecosysteem-niveau. Hiervoor werden verschillende extrapolatietechnieken ontwikkeld en voor de 

chemicaliën die het grootste risico vormen worden testen met modelecosystemen uitgevoerd.   

Alle huidige ecologische risicoschatting technieken slagen er echter niet in een accuraat antwoord te 

geven op de centrale vraag in ecotoxicologie: wat zijn de effecten van chemicaliën in realistische 

ecosystemen? Het grootste probleem is hoe de effecten die gemeten zijn voor, in het beste geval, 

modelgemeenschappen in gecontroleerde omstandigheden te extrapoleren naar de 

beschermingsdoelstellingen vastgelegd door overheidsinstanties. Het ecologische risico kan niet 

accuraat berekend worden met technieken die voorbij gaan aan de inherente complexiteit van ecologie. 

Om het risico van chemicaliën voor gemeenschappen en het milieu beter in te schatten moet meer 

rekening gehouden worden met de ecologische realiteit. Eén van de grootste problemen met de huidige 

technieken voor ecologische risicoschatting is dat organismen als discrete eenheden worden beschouwd. 

In werkelijkheid interageren organismen met andere organismen van dezelfde en/of een andere soort. 

Deze soorteninteracties kunnen zowel de directe effecten van chemicaliën op gevoelige soorten 

beïnvloeden als de indirecte effecten, d.w.z. de effecten die ontstaan door interacties met tolerante 

soorten. Competitie en predatie worden algemeen beschouwd als de meest belangrijke types van 

soorteninteracties. Nauwkeurig inschatten hoe deze soorteninteracties de effecten van een chemische 

stof beïnvloeden is daarom essentieel.  

De eerste doelstelling van dit doctoraatswerk was dan ook om te begrijpen hoe competitie en predatie 

de effecten van chemicaliën kunnen beïnvloeden. 

Dit doctoraatsonderzoek begint met experimenteel na te gaan hoe intraspecifieke competitie, 

interspecifieke competitie en predatie een populatie van Daphnia magna beïnvloeden wanneer die 

blootgesteld wordt aan pyreen (Hoofdstuk 2). Lagere densiteiten van D. magna werden vastgesteld 

wanneer de populatie blootgesteld werd aan predatie door Chaoborus sp. larven of intraspecifieke 

competitie. Deze twee soorteninteracties leidden er ook toe dat grote individuen talrijker waren. Grote 

individuen zijn resistenter tegen pyreen effecten en de effecten van pyreen op de D. magna densiteit 

waren dan ook kleiner wanneer de populatie ook blootgesteld was aan predatie of intraspecifieke 

competitie. Omdat D. magna een veel sterkere competitor was dan B. calyciflorus had interspecifieke 

competitie, onafhankelijk van de blootstelling aan pyreen, weinig invloed op de D. magna densiteiten. 
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Ecologische modellen worden gesuggereerd als één van de beste opties om het inschatten van de 

ecologische effecten van chemicaliën te verbeteren. Individu-gebaseerde modellen (IBMs) in het 

bijzonder zijn uitermate geschikt om de gemeten effecten in standaard ecotoxicologische testen te 

extrapoleren naar populatie- en gemeenschapsniveau. De huidige toepassingen van IBMs houden echter 

geen rekening met hoe soorteninteracties de effecten van chemicaliën kunnen beïnvloeden. De tweede 

doelstelling van dit doctoraat was dan ook om een IBM te ontwikkelen waarmee de interacties tussen 

soorten kunnen in rekening gebracht worden.  

In hoofdstuk 3 werd een IBM model ontwikkeld om twee soorten in competitie met elkaar te 

modelleren. IBMs moeten een goede theoretische basis hebben om algemeen toepasbaar te zijn. De 

“Dynamic energy budget” theorie gebaseerd op het “keep it simple, stupid” principe (DEBkiss) werd 

gekozen omwille van de goede balans tussen complexiteit en benodigde data om het model te 

parameteriseren. Als nieuwe aanpak om chemische effecten te voorspellen werden deze DEBkiss IBMs 

gekoppeld met twee verschillende toxiciteitsmodellen :concentratie-effect curves en toxicokinetische-

toxicodynamische (TKTD) modellen. Als modelvalidatie werden de DEBkiss IBMs simulaties 

vergeleken in hoofdstuk 4 met de resultaten van de experimenten uit hoofdstuk 2. De 

populatiedensiteiten van B. calyciflorus werden accuraat voorspeld aan de hand van een DEBkiss IBM. 

De populatiedensiteit van D. magna werd redelijk accuraat voorspeld maar de voorspelde 

populatiestructuur week af van de geobserveerde. De afwezigheid van een reserve compartiment in de 

DEBkiss theorie was waarschijnlijk de oorzaak, waardoor de individuen sneller verhongerden wanneer 

voedsellimitatie optrad in de simulaties in vergelijking met de experimenten. De effecten van pyreen 

werden door beide toxiciteitsmodellen te snel voorspeld, maar deze afwijking was kleiner voor het 

TKTD model. Net als in de experimenten nam de B. calyciflorus populatie snel af door competitie met 

D. magna. Wanneer de twee soorten in competitie blootgesteld werden aan pyreen werd een toename 

van B. calyciflorus voorspeld. Dit werd niet waargenomen in de experimenten en was het gevolg van de 

te vroeg voorspelde effecten van pyreen op D. magna. 

Het doel van ecologische risicoschattingen is niet het beschermen van enkele soorten in het labo maar 

het beschermen van gemeenschappen in het veld. Een laatste doelstelling van dit doctoraat was dan ook 

om een model op basis van IBMs te ontwikkelen waarmee de effecten van chemicaliën op 

gemeenschapsniveau kunnen ingeschat worden in realistische omstandigheden. Als een nieuwe aanpak 

werd in hoofdstuk 5 het ChimERAfoodweb model ontwikkeld op basis van de hier ontwikkelde DEBkiss 

IBMs. Predatie werd geïmplementeerd voor DEBkiss IBMs en gekoppeld aan de eerder ontwikkelde 

implementatie voor competitie. Het gemodelleerde voedselweb bestond uit twee grazers (Brachionus en 

Daphnia), hun predator (Chaoborus) en twee detritivoren (Asellus en Gammarus). Dit 

voedselwebmodel werd gekoppeld aan ChimERAfate, een omgevingsmodel om de concentratie aan 

chemicaliën te voorspellen. Het geïntegreerde ChimERA model kan voor een opgegeven 
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landschapsstructuur de effecten van een chemische stof op het voedselweb voorspellen doorheen de tijd 

op basis van opgegeven omgevingsvariabelen (hydrodynamica, temperatuur en nutriëntenstatus). 

Het geïntegreerde ChimERA model werd ontwikkeld om meer realistische ecologische 

risicoschattingen uit te voeren. Om dit te testen werd het toegepast voor 15 hypothetische scenario’s op 

een landschap van twee geconnecteerde vijvers (Hoofdstuk 6). De retentietijd van water, temperatuur, 

nutriëntenstatus en toegevoegde chemische stof (carbendazim, chlorpyrifos en pyreen) werden 

aangepast tussen deze 15 scenario’s. De verschillen in omgevingsvariabelen bepaalden in grote mate de 

voorspelde effecten van blootstelling aan chemicaliën en grote verschillen werden dan ook vastgesteld 

tussen de verschillende scenario’s. Chemische concentraties waren het hoogst in scenario’s met een 

hoge retentietijd. De fysicochemische eigenschappen van een chemische stof bepaalden waar en 

wanneer de concentraties het hoogst waren en hoe snel de stof terug verdween uit de omgeving. Directe 

effecten van de blootstelling aan chemicaliën werden voorspeld voor de meest gevoelige soorten 

(Chaoborus, Daphnia en Gammarus). Deze voorspelde effecten vertoonden grote verschillen tussen de 

gekozen scenario’s en waren in het algemeen groter wanneer de nutriëntenstatus en de temperatuur hoog 

waren. In een scenario waren de voorspelde effecten van de chemicaliën heel heterogeen verdeeld in 

tijd en ruimte als gevolg van de grote spatiotemporele verschillen in blootstelling,. De meest 

voorkomende indirecte effect was het veranderen in dominantie van Daphnia en Gammarus naar 

respectievelijk Brachionus en Asellus. Indirecte effecten van blootstelling werden ook voorspeld op de 

predator Chaoborus via effecten op de gevoelige prooisoort Daphnia. Bij blootstelling aan het mengsel 

van alle drie de chemicaliën domineerden de effecten van pyreen voor Daphnia en de effecten van 

carbendazim en chlorpyrifos voor Gammarus. Deze scenariosimulaties tonen aan hoe groot de invloed 

van omgevingsvariabelen is op de effecten van blootstelling aan chemicaliën en hoe belangrijk het dus 

is om technieken zoals het ChimERA model te ontwikkelen.. 

In hoofdstuk 7 wordt een overzicht van de belangrijkste conclusies per hoofdstuk gegeven en worden 

mogelijke pistes voor verder onderzoek aangereikte. Dit doctoraatsonderzoek heeft aangetoond hoe 

essentieel het is om ecologische risicoschattingen te benaderen vanuit een ecologische invalshoek. 

Soorten zijn geen geïsoleerde eenheden maar interageren en bepalen wat de effecten zijn van 

blootstelling aan een chemische stof. Het hier ontwikkelde ChimERA model is een belangrijk “proof of 

principle” waarmee werd aangetoond hoe soorteninteracties kunnen in rekening gebracht worden. Meer 

dan dat, dit model was in staat om spatiotemporele verschillen in blootstelling en effecten van 

chemicaliën te voorspellen op gemeenschapsniveau. Het ChimERA model, wanneer het nog verder 

getest en uitgebreid wordt, kan als blauwdruk dienen voor toekomstige modellen en leiden tot meer 

realistische ecologische risicoschattingen. 
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Mijn doctoraat is het eindresultaat van een bijna vijfjarige, intense reis. Gedurende die reis heb ik lief 

en leed gedeeld met vele mede-reizigers die ik hier wil bedanken voor de vele mooie ervaringen.   

Laat mij eerst beginnen bij de “reisleiders”, Colin en Frederik, want zonder hen was deze reis er niet 

geweest. Colin, bedankt om mij als verloren gelopen bioloog de kans te geven om te beginnen aan het 

labo. Ondanks het niet halen van mijn IWT-beurs heb je me toch de kans gegeven om te blijven werken 

op interessante projecten. Je gezonde scepticisme voor het modelleren zorgde ook altijd voor de nodige 

reality check. En nog eens extra bedankt om er op het einde nog een serieuze duw aan te geven bij het 

schrijven, mijn doctoraat is er zeker nog een stuk beter door geworden. Frederik, ik weet niet goed waar 

te beginnen. Dankzij jou ben ik in dit doctoraat gerold en ik heb niet meer omgekeken. Al van in het 

begin gaf je me zo veel vertrouwen en vrijheid. We hebben samen veel rondgereisd (Noorwegen, Como, 

Berlijn) en ik kan je niet genoeg bedanken voor alle kansen die je me gegeven hebt. Je stond, en staat, 

altijd klaar met goede raad en oplossingen wanneer het wat minder ging. Je had er altijd het volste 

vertrouwen in wanneer ik aan iets nieuws begon en ik wist dat ik op je kon terugvallen als ik vast zat. 

En je hield ook altijd de menselijke kant in de gaten. Bedankt om zo geduldig te zijn, zo begrijpzaam, 

mij zo veel bij te leren en mij te steunen door dik en dun.  

De vaste reisgenoten waren natuurlijk de collega’s van de Plateau. En de reis zou niet half zo leuk 

geweest zijn zonder jullie! De gezellige koffiepauzes (die verassend vaak uitliepen), een “Brugske” doen 

(of waren het burgers?) over de middag, het pintje na de uren dat we ons af en toe toch eens beklaagd 

hebben “the day after”, de legendarische SETAC-congressen, het zijn allemaal reiservaringen die ik niet 

snel ga vergeten. Een aantal personen wil ik hierbij nog eens extra bedanken. Als eerste, mijn roomie 

Tina. De toffe babbels, de lachmomenten, de gezamenlijk powerpointsessies, ja, ik zal onze “oase van 

rust“ echt missen. David, Lisbeth en Charlotte, we leggen al dezelfde reisweg af sinds we samen biologie 

zijn begonnen en het zou absoluut niet hetzelfde geweest zijn zonder jullie. David, mijn vaste bunk 

buddy, merci om zo vaak mijn klankbord te zijn en altijd klaar te staan, ik weet gewoon dat wij elkaar 

zullen blijven horen. Maarten, ik heb het gevoel dat ik je eigenlijk al gans mijn leven ken. Ik zal je 

ongezouten uitspraken zeker missen! En laat me de andere Stickers niet vergeten: Jenny, de gin-tonics 

met jou erbij waren altijd de beste. Jan, vogels zullen nooit meer dezelfde zijn na jou. Emmanuel, 

ondertussen ben je toch ook officieel een Sticker. Bedankt voor de vele onvergetelijke uren op het labo 

en erbuiten! Cecilia, you are my favourite Portuguese person! Thanks for all the great talks and laughs. 

Tara, altijd lief en zorgzaam. Wanneer is de volgende spelletjesavond met pannenkoeken (ja, ik ben 

mezelf weer aan het uitnodigen)? Sacha, je dagelijkse bezoekje was een welgekomen verstrooiing 

tijdens het schrijven. Marianne, Sigrid en Veerle: bedankt voor alle steun, zowel administratief als in de 

vorm van een snoep en een babbel. Nancy, ik heb niet veel in het labo gestaan in Gent, maar ik kon toch 

altijd terecht bij je voor praktische vragen. En ik vergeet ongetwijfeld nog veel andere mensen, sorry 

daarvoor! Ik weet niet waar de reis nu naartoe gaat, maar als mijn toekomstige reisgenoten half zo leuk 

zijn als jullie, zal ik mezelf heel gelukkig prijzen. 
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Tijdens mijn doctoraatsreis werd er ook veel samengewerkt met buitenlandse collega’s. Aan de mensen 

van Wageningen, bedankt voor alles, de tijd in Nederland is echt voorbij gevlogen. Andreas en Hans, 

dit doctoraat zou er niet geweest zijn zonder jullie hulp. De vele mails, skype sessies en blitzbezoeken 

aan Wageningen, jullie stonden altijd klaar voor me. Ik ga onze gezamenlijke modelleersessies missen. 

Zoals afgesproken gaan we zeker nog eens een pintje drinken. Paul, bedankt voor de kans om bij jullie 

op het labo te werken, ik voelde me er echt thuis. De mensen van het labo in Wageningen wil ik zeker 

ook bedanken: Ana and Andreu, thanks for making the long days in the lab so enjoyable. Dimitri, ik wil 

je hier nog eens extra bedanken om me op weg te zetten in Wageningen en voor de babbels met onze 

hoofden boven de microcosmossen. John, Frits, Wendy, bedankt voor alle technische steun. 

Ook bedankt aan de mensen van Nijmegen voor de vlotte samenwerking. En Lisette, onze rondreis in 

de Lofoten zal me zeker altijd bijblijven. Veel succes met je verdediging! To the colleagues from Como: 

thanks for the great co-operation. Thanks to you, fate models seem less scary now! Melissa, thanks for 

being my co-PhD student in the ChimERA project, it was great to have somebody to share laughs with.   

Tijdens mijn doctoraatsreis kreeg ik ook vaak het gezelschap van enkele oude bekenden. Karen, er is 

veel gebeurd tussen ons, maar je hebt me zeker door een groot deel van dit doctoraat geholpen. Matthias 

en Sarah, dankzij jullie was Brugge één van de terugkerende reisbestemmingen. Zoals je weet, Matthias, 

is het leven van een doctoraatstudent toch hard he! Bedankt voor mij te pushen wanneer ik weer eens te 

veel slabakte en om gewoon een goeie maat te zijn. Wanneer brouwen we nog eens? Nuyttens en Tjorre, 

beste vrienden, we kennen elkaar al zo lang en ik vind het echt de max dat we blijven contact houden. 

Dit doctoraat is er ook gekomen dankzij jullie steun tijdens brunches of spelletjesavonden. Samuel, 

roomie, merci om zo relaxt te zijn. De vele boardgames, hots-kes en frisbee sessies hebben zeker 

geholpen om de stress te beperken. Thokie, ik ben echt blij dat we zo goed blijven overeen komen. 

Wanneer is de volgende roadtrip? Robin en Kevin, merci om er altijd te zijn, al zo lang. 

Ten slotte, er is niets zo leuk als te weten dat je na een lange reis altijd welkom bent bij het thuisfront. 

Mama en papa, merci om me altijd mijn ding te laten doen maar er toch te staan wanneer het nodig is. 

Ik zou nooit zo ver geraakt zijn zonder jullie, mijn veilige thuishaven. Thomas, Charlotte en Jozefien 

bedankt om mij te steunen door dik en dun, het heeft echt deugd gedaan om te weten dat jullie er waren.  

De reis gaat nu verder, ik weet niet waarheen. Maar ik kijk alvast met een brede glimlach terug op de 

reeds afgelegde weg.
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