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Chapter 1

1.1 Generalintroduction

For many years, applying chemical pesticides has proven to be a reliable and cost-effective method for
the control of pests and diseases in agriculture. However, the use of those chemicals also caused
several problems in crop production, including the development of pesticide resistance in the pest
insects, thereby drastically decreasing their efficiency (Mallet 1989; Georghiou 1990). Moreover, the
use of broad-spectrum pesticides can eliminate natural enemies and other beneficial organisms, giving
rise to secondary pest outbreaks. Furthermore, residues of pesticides in the food, the contamination
of the soil and groundwater, and the reduction of biodiversity induced a growing public awareness
regarding the risks associated with the use of chemical pesticides (Culliney et al. 1992; Pimentel et al.
1992; Danielopol et al. 2003; Gibbs et al. 2009; Cock et al. 2010). These growing concerns regarding
chemical pest control led to the development of integrated pest management (IPM), which takes both

economic as well as ecological aspects into account.

Biological control, one of the key strategies of IPM, encompasses the use of parasites, predators and
pathogens for the regulation of host (pest) densities (De Bach & Schlinger 1964; Van Driesche &
Bellows 1996; van Lenteren et al. 1997). There are three main techniques for biological control:
classical, augmentative and conservation biological control. In classical biological control a natural
enemy is collected in the area of origin of an exotic pest and introduced in the new region where the
pest has become established. The aim is permanent establishment of the exotic natural enemy and
long-term pest control. Conservation biological control involves taking various measures to enhance
the abundance or activity of natural enemies of pests in the field. These measures include manipulation
of the crop microclimate, creation of overwintering refuges, increasing the availability of alternative
hosts and prey, and providing essential food resources such as pollen and nectar producing flowers
(Bale et al. 2008). In augmentative biological control, mass-reared natural enemies are being released
with the purpose of providing pest suppression in the short term (by inundation, with an immediate
effect by the released individuals) or in the longer term (by (seasonal) inoculation, with an effect over
a number of generations through in —field reproduction by the released individuals) (van Lenteren &
Woets 1988; Van Driesche & Bellows 1996; De Clercq 2002). Since the 1970’s dozens of arthropods

were successfully commercialised and used in augmentative biological control programmes against
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many economically important pests. At present, over 170 arthropod species are commercially available
worldwide for augmentation programmes targeting a wide array of mite and insect pests (Cock et al.
2010). Within the Anthocoridae family, several species of the genus Orius are considered to be
important beneficial insects in various agrosystems (Barber 1936; Carayon 1961; Kelton 1963; Oku &
Kobayashi 1966; Alauzet et al. 1994). Currently, seven Orius species are commercially used in different

parts of the world (van Lenteren 2012).

Sugarcane is one of South Africa’s most important crops. The South African industry produces an
estimated average of 2.2 million tons of sugar per season (South African Sugar Association 2015). As
for many crops, sugarcane is susceptible to a range of pests, with Fulmekiola serrata Kobus
(Thysanoptera: Thripidae), the sugarcane thrips, being one of the major emerging pests in the young
cane stage. Fulmekiola serrata is native to Asia, but was recorded infesting sugarcane in mainland
Africa for the first time in 2004 (Way et al. 2006b). Observations in South Africa suggest that damage

could result in 10 to 20% reduction in sugarcane tonnage (Sallam 2009).

The South African Sugarcane Research Institute (SASRI), a division of the South African Sugar
Association (SASA), is a renowned agricultural research institute at the forefront of a thriving sugar
industry. The institute is situated in Mount Edgecombe in the eastern province KwaZulu-Natal, the
centre of the South African sugarcane industry. Research at SASRI is clustered within four
multidisciplinary programmes, with Crop Protection being one of them. The key objective of this
programme is to minimise the effects of pest diseases and weeds on crop production. One of the
projects within this Crop Protection programme concerns the crop losses caused by the sugarcane

thrips (South African Sugar Association 2015).

Because of their cryptic lifestyle and fast development of resistance to pesticides, thrips are difficult
to control. Therefore, the availability of an effective indigenous biological control agent could provide
local growers with an alternative pest management strategy. To find these potential native biological
control agents in South Africa, field surveys were done in 2008 and 2009 by three Master thesis
students from Ghent University in association with the SASRI (Maes 2009; Cottenie 2010; Vangansbeke

2010). These surveys were performed in and around sugarcane fields in the South African provinces
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Mpumalanga and KwaZulu-Natal, mainly resulting in observations of species from the Anthocoridae
family, preying on individuals of F. serrata and other thrips species. The most abundant natural
enemies of thrips were Orius tantillus (Motschulsky), Orius naivashae (Poppius) and Orius thripoborus
(Hesse). Since O. tantillus is a well-studied species and its potential as a biological control agent against
various insect pests in the Indo-Pacific region has been demonstrated (Mituda & Calilung 1989;
Nakashima & Hirose 1997a, b; Nagai et al. 1998; Nakashima & Hirose 1999; Venkatesan et al. 2008;
Gupta & Ballal 2009), only O. naivashae and O. thripoborus were considered in this dissertation.
Colonies of the two latter species were established at the Laboratory of Agrozoology of Ghent
University, Belgium, with the aim to determine whether O. naivashae and O. thripoborus can be
effective natural enemies against F. serrata, but also against other thrips species and other arthropod
pests for use in augmentative biological control programmes in both open field crops and protected
cultivation in southern Africa. Further, the role of O. naivashae and O. thripoborus in conservation
biological control was also considered as conservation measures may support natural populations of

both species and can improve the performance of augmentatively released populations.

Successful biological control depends on a comprehensive understanding of the biology and ecology
of the pest and natural enemy complex, and of the environments into which they will be released (Bale
et al. 2008). In this dissertation, aspects of the autecology of O. naivashae and O. thripoborus were
investigated, focusing on their interaction with their prey resources and with climatic conditions,
including temperature and photoperiod. The natural enemies should be able to develop, reproduce
and disperse in the climatic conditions under which they are to be used (van Lenteren and Woets 1988;
Bale et al. 2008). Dormancy also may play a major role in the ability to produce and use these predators

in (augmentative) biocontrol programmes (Coll & Ruberson 1998).

In augmentative biological control programmes, cheap and reliable mass production yielding high-
quality natural enemies is a prerequisite for cost-effective pest control (Leppla & King 1997). The use
of factitious foods or artificial diets can enhance mechanisation of rearing procedures and thus lower
production costs. In commercial insectaries, Orius bugs are mainly reared on eggs of the
Mediterranean flour moth Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). This constitutes an

effective but expensive factitious (i.e. unnatural) food, and therefore the search for a cheaper and
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more easily available alternative food is still ongoing. Practice has shown that polyphagous predators,
such as Orius spp., can be highly effective in augmentation biological control programmes (van
Lenteren & Woets 1988; Albajes & Alomar 1999; Symondson et al. 2002). The fact that polyphagous
predators are easily reared on unnatural foods and can be used against different pest species makes
them attractive for commercialisation. By feeding on plants, omnivorous predators have less difficulty
in maintaining their populations at low prey densities. As a result, they can sometimes be introduced
in the crop before the target pest is present, thus preventing the buildup of pest populations before
economic damage is done. On the other hand, facultative plant feeding by predatory arthropods

exceptionally causes crop damage (De Clercq 2002).

Reliability of augmentative biological control programmes depends on the quality of the beneficial
insects produced, which is largely determined by the quality of the diet used to rear them (Chaudhury
2009). The ultimate test for quality of predatory insects is the assessment of their field efficiency
measured as the rate of predation and pest suppression. However, besides being expensive and time-
consuming, the complexity of a field setting may obscure the actual cause for the failure or success of
a natural enemy release. Therefore, the first assessment of the quality of an in-vitro- or in-vivo-

produced beneficial will preferably be done in a laboratory setting (Grenier & De Clercq 2003).

1.2 Objectives and thesis outline

The overall objective of this thesis research was to elucidate the biology and biocontrol potential of
the indigenous predatory bugs O. thripoborus and O. naivashae against (thrips) pests in South Africa.
Firstly, field observations were performed to achieve a better understanding of some aspects of the
ecology of the common anthocorids in South African cropping systems. Next, in the laboratory, the
biology and predatory performance of both Orius species was studied, as well as aspects of its mass

rearing. The objectives can be translated into the following research questions:

e What is the prevalence of O. naivashae, O. thripoborus and other anthocorids in and around
sugarcane fields in South Africa?
e What is the effect of abiotic conditions (temperature and photoperiod) on the development

and reproduction of O. naivashae and O. thripoborus?
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How do O. naivashae and O. thripoborus survive South African winter conditions and are they

sensitive to diapause?

e How does feeding on plant materials affect the development and reproduction of O.
naivashae and O. thripoborus?

e (Can factitious prey support the development and reproduction of O. naivashae and O.
thripoborus?

e What is the predation capacity, development and reproduction of O. naivashae and O.

thripoborus on different prey types?

The research questions are addressed in several chapters: Chapter 2 provides an overview of the
literature on Orius bugs in general and on O. naivashae and O. thripoborus more in specific. In Chapter
3 the occurrence of anthocorids in and around South African agricultural ecosystems is described. In
Chapter 4 development and reproduction of O. naivashae and O. thripoborus are studied at several
temperatures and thermal requirements are estimated. Cold tolerance traits and the effect of
photoperiod on diapause incidence are assessed in Chapter 5. Chapter 6 focuses on the predation
capacity, development and reproduction of both anthocorids on various prey. In Chapter 7 the effects
of a moisture source on development of O. naivashae and O. thripoborus, and of natural and factitious
foods on their development and reproduction are investigated; a quick dissection method as quality
control tool for predicting their reproductive potential is evaluated. The search for alternative
factitious prey supporting the mass production of both anthocorids was continued in Chapter 8. The
final chapter (Chapter 9) presents a general discussion of the findings of this study and provides further

research perspectives.
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2.1 Taxonomy

The taxonomic classification of the two studied Orius species, Orius thripoborus and Orius naivashae,

is as follows:

Kingdom Animalia
Phylum Arthropoda
Subphylum Hexapoda
Class Insecta
Order Hemiptera
Suborder Heteroptera
Subgroup Geocorisae
Infraorder Cimicomorpha
Superfamily Cimicoidea
Family Anthocoridae Fieber, 1836
Subfamily Anthocorinae Reuter, 1984
Tribe Oriini Carayon, 1958
Genus Orius Wolff, 1811
Subgenus Orius sensu stricto Wolff, 1811
Species thripoborus Hesse, 1940
Subgenus Dimorphella Reuter, 1884
Species naivashae Poppius, 1920

The classification within the Anthocoridae family is still in a state of flux (Schuh & Stys 1991). In this
work we adopted the system suggested by Carayon (1972) and Péricart (1972), assented by Cassis and
Gros (1995) and by Lattin (1999). This classification recognises the single family Anthocoridae, with
three subfamilies: Anthocorinae, Lasiochilinae and Lyctocorinae. This system differs slightly from that
proposed by Schuh and Slater (1995), who accorded these subfamilies family status. The Oriini, as
described by Carayon (1972), is a tribe of Anthocoridae within the subfamily Anthocorinae. The group
consists of 17 genera (Carayon 1972) of which the largest is Orius Wolff (Postle et al. 2001). The genus

Orius contains about 75 described species distributed throughout the world (Péricart 1972; Lattin
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1999). In Africa it comprises more than 38 described species, but only 60 to 70% of the actual African

fauna of Orius is known (Hernandez & Stonedahl 1999).

The genus Orius can be divided into different subgenera, depending on the place of origin of the
species. For the classification of Palearctic and African species Carayon (1972) and Péricart (1972) used
the classification of Wagner (1952). Latter author divided the genus Orius into four subgenera: Orius
sensu stricto, Heterorius Wagner, Microtraechelia Blote and Dimorphella Reuter. This classification
cannot be applied to the taxa of the Western Hemisphere and the Asian species (Herring 1966). For
the Asian species, Yasunaga (1993) created three new subgenera: Paraorius, Xylorius and Trichorius.
The value of these and other classifications of the genus Orius cannot be adequately assessed without

more comprehensive studies of the world species (Herndndez & Stonedahl 1999).

2.2 Distribution

The genus Orius contains more than 70 species distributed throughout the world (Péricart 1972) and
has a strong representation in the Oriental, Ethiopian, Palearctic and Neotropical regions, but is
relatively poor represented in the Nearctic (Horton 2008). Orius thripoborus is known from Kenya (van
den Berg & Cock 1995; van den Berg et al. 1997), South Africa (Hesse 1940; van Hamburg & Guest
1997) and St. Helena (Carayon 1976), but is probably more widely distributed in intervening parts of
southern Africa (Hernandez & Stonedahl 1999). Orius naivashae is only known from Kenya (Hernandez

& Stonedahl 1999).

2.3 Morphology

2.3.1 Egg

Freshly laid eggs of all Orius species are about 0.4 mm long and 0.13 mm in diameter. They are initially
colourless, but get a milky-white colour after several hours. Eggs are imbedded in the host plant tissue
(= endophytic oviposition) and are sometimes laid in small clusters, but usually they are deposited
singly. The insertion of the eggs in plant tissue may protect them not only from dessication, but from
predation as well (Groenteman et al. 2006). The petioles are usually selected for oviposition, but the
female might lay its eggs in the plant stem or in the main veins at the lower side of the leaf (Figure

2.1). Only the top of the eggs is visible as they are inserted nearly perpendicular to the surface of the
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plant; hatched eggs are easier to spot as the operculum (egg cap) is clearly visible (Askari & Stern
1972a; Malais & Ravensberg 2002). The structure of the opercular surface varies between species
(Sands 1957). If the eggs are not fully embedded in the plant tissue the red eyes and yellowish-orange
body become visible through the chorion, with the timing of this phenomenon being dependent on

the temperature (Isenhour & Yeargan 1981a). If the plant tissue becomes dry before the eggs hatch,

the embryos are usually killed (Hagen et al. 1999).

Figure 2.1 Orius eggs imbedded in plant tissue (photo: A. Van de Walle)

2.3.2  Nymph

All Orius species have five nymphal stages (instars). Nymphs emerging from the egg are glossy and
colourless but turn yellow after several hours. Second and third instars can be yellow, orange or
brownish, depending on the observed species and stage (Figure 2.2). In the last two instars the brown
colour is more pronounced and nymphs start to look more like adults. In all stages the characteristic
red eyes of the nymphs are clearly visible. Ocelli are not present in nymphs. Wing formation starts in
the second instar but the wing pods are only externally distinguishable in the last instar (Figure 2.2)

(Askari & Stern 1972a; Isenhour & Yeargan 1981a; Malais & Ravensberg 2002).
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Figure 2.2 Nymphal stages of Orius species: N2 (upper left), N4 (lower left) and N5 (right) (photos: author)

2.3.3  Adult

Shortly after the final moult, adults are pale and soft. After some hours their cuticle hardens and they
obtain their characteristic colouration: from brown to blackish, with pale grey-white to brown areas
on the wings. The colouring of male and female adults is identical. The wings are deployed about one
hour after moulting (Askari & Stern 1972a; Malais & Ravensberg 2002). In general, O. thripoborus
adults are smaller than those of O. naivashae, and female adults are slightly larger than males. The size
of female adults varies between 1.8 and 2.1 mm for O. naivashae and between 1.86 and 1.98 mm for
O. thripoborus. Males lengths are between 1.67 and 1.95 mm, and between 1.61 and 1.86 mm for O.
naivashae and O. thripoborus, respectively (Hernandez & Stonedahl 1999). The general outer

morphological structures of Orius species are illustrated in Figure 2.3.

The head of Orius species (Figure 2.3 (1)) is short, black, and smooth (O. thripoborus) or coarsely
punctate (0. naivashae). Whilst the tylus is surpassing the tip of the first antennal segment in O.
naivashae, it is less strongly produced in O. thripoborus, but carries erect setae apically. Mouthparts
are of the piercing-sucking type, in the form of a slender beak or labium (Figure 2.3 (2)). The labium or

rostrum is short and reaches the anterior coxae. It has three visible segments and serves to house the
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four piercing stylets (paired mandibles and paired maxillae), which collectively form the two channels

through which digestive enzymes and the ingested food products are moved (Horton 2008).
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Figure 2.3 Morphological structures of Orius species: (1) dorsal view; (2) ventral view; (3) leg (Herndndez & Stonedahl 1999)

Figure 2.4 Male adult of O. thripoborus (left); female adult of O. naivashae (right) (photo: A. Van de Walle)
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The eyes are prominent and situated laterally on the head, occupying the entire height of the head in
lateral view. Paired ocelli are present near the eyes (Horton 2008). The antennae have four segments
and are inserted in front of the eyes. The trapezoidal pronotum (Figures 2.3 (1) and 2.4) of O. naivashae
is black, evenly and coarsely punctured, without long setae at its anterior angles. For O. thripoborus,
the pronotum is dark brown or black, smooth and shining, with the anterior angles each bearing a long
bristle-like seta. The lateral margin of the pronotum has a distinct carina (ridge-like elevation) towards
the anterior angle. The callosities of the pronotum (calli) of O. naivashae are flat or weakly convex with
fine punctures, separated by a deeply punctate area. The calli of O. thripoborus are prominent and
confluent, and depressed behind. The hemelytra (fore wings) are macropterous (long-winged) and
mostly yellow (more pale for O. thripoborus (Carayon 1961)), with the membrane of the fore wing
(apex of clavus and cuneus) of O. naivashae being smoky-brown (Figure 2.4). For O. thripoborus, the
cuneus, and sometimes also the apex of the clavus, is dark brown or black, the membrane is hyaline
and smoky apically, and the hemelytra have short yellow setae and longer brown setae at the apex of
the cuneus. The abdomen consists of nine segments, but only eight are easily visible. The males have
segments VI to VIl strongly asymmetrical. The female ovipositor is well developed and symmetrical
(Figure 2.5). The last two segments contain the paragenital system, which is the most important
character for species identification (Ribaut 1923). Orius males have a single spiral-shaped paramere,
distinguished by a strongly curved flagellum without teeth or processes on the lame in O. thripoborus
(Figure 2.6). This left paramere of O. naivashae males is characterised by a thick, lamelliform process,
reaching the tip of the lame (Figure 2.6). The female copulatory tube opens ventrally on the
intersegmental membrane and is composed of a basal part (basal segment) and a distal portion (apical
tube). For O. thripoborus females, the basal segment is long and curved, with the apical tube being
fairly short (Figure 2.7). Orius naivashae females are distinguished by a more elongated basal segment
of the copulatory tube, separated from the intersegmental membrane with a short but distinct apical
tube (Figure 2.7) (Hernandez & Stonedahl 1999).The metathoracic scent efferent system is located
ventrally on the metapleura (Figure 2.3 (2)). The sculpturing of the evaporative area is very useful in
the separation of subgenera and closely related species. The peritreme of the methathoric scent
system is very narrow for both O. naivashae and O. thripoborus, but has a narrow, smooth, shiny region

anteriorly in the latter species (Figure 2.8). The metasternum is triangular (Figure 2.3 (3)). The legs
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(Figures 2.3 (3) and 2.4) are linear, with three to five stout, dark spines on the ventral aspect of the
profemora of O. naivashae males. Except for the yellow protibia, legs of the latter species are dark

brown, with the profemora extensively darkened. Pro- and mesofemora of O. thripoborus are

uniformly pale yellow (Herndndez & Stonedahl 1999).

Figure 2.5 Ventral side of male (left) and female (right) adults of O. thripoborus (photo on the left) and O. naivashae (photo
on the right). The (a)symmetry of the last abdominal segments is used for sex determination (photos: author)

Figure 2.6 Left paramere of male genitalia of O. naivashae (left) and O. thripoborus (right) (f = foot, | = lame, Ip = lamilliform
process, fl = flagellum) (Herndndez & Stonedahl 1999)
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Figure 2.7 Female paragenital system of O. naivashae (left) and O. thripoborus (right) (at = apical tube, bs = basal segment)
(Herndndez & Stonedahl 1999)

Figure 2.8 Metathoracic scent efferent system of O. thripoborus (Herndndez & Stonedahl 1999)

2.4  Ecology

2.4.1 Life cycle

Orius species are hemimetabolous insects with seven stages of development: an egg stage, five
nymphal instars, and an adult stage (Malais & Ravensberg 2002) (Figure 2.9). Hemimetabolous insects
undergo an incomplete metamorphosis, and the nymphs resemble the adults morphologically except
in lacking wings, ocelli and reproductive structures (Horton 2008). In their natural habitat Orius species
are multivoltine and the number of generations developing annually varies from two to eight. This
number is usually determined by the required sum of effective temperatures and thus depends on the
geographic zone or latitude (Horton 2008; Saulich & Musolin 2009). The availability of food may also
influence the number of generations (Saulich & Musolin 2009). Most Orius species from temperate

and colder climate regions overwinter as adults in dry and protected places (see 2.4.4).
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2.4.2 Development
Development of Orius species is affected by several biotic and abiotic factors such as temperature,
photoperiod, food source (see 2.4.7), and to a lesser degree host plant (see 2.4.5) and relative

humidity.

Figure 2.9 Life cycle of Orius species (after Malais & Ravensberg 2002)

Seasonal development of multivoltine species is chiefly controlled by daylength and temperature
(Saulich & Musolin 2009). Temperature significantly affects both egg and nymphal development in
Orius species. The duration of egg and nymphal development decreases significantly with each
increase in temperature, but only within a range of moderate temperatures (Isenhour & Yeargan
1981a; Alauzet et al. 1994). The development of a species can only take place if the ambient
temperature is above its lower development threshold. The latter parameter is defined as the
temperature below which no measurable development occurs, based on a linear model (Campbell
1974). When exceeding the upper threshold temperature, developmental rate will decrease and
development will eventually stop completely. The thermal requirement of a stage, expressed in

degree-days (DD), is the amount of heat required to complete this stage (Peairs 1927). This need for
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heat is thus a combination of temperature (with respect to the lower development threshold) and
time. According to the linear degree-day model, the number of required degree-days will be constant
at temperatures between the lower and the upper threshold temperature for a particular stage of
development of a given species. However, there is a large variety of lower development thresholds
and thermal requirements between and even within species due to environmental factors and cues
such as food availability, geography and day length, and because of genetic differences (Musolin & Ito

2008; Saulich & Musolin 2009) (Table 2.1).

Table 2.1 Lower developmental thresholds (to) and degree-day requirements (K) for development of the immature stages of
different Orius species

to(°C) K (DD)
Species Origin Prey Reference
egg nymph egg nymph
O. laevigatus ~ Europe 9.3 10.5 714 166.7 E. kuehniella eggs Alauzet et al. 1994
O. insidiosus USA 11.2 13.8 69.4 1449 Heliothis virescens (F.) eggs Isenhour & Yeargan 1981a
O. insidiosus USA 8.8 10.7 66.5 240.4 Trogoderma glabrum Kingsley & Harrington
(Herbst) eggs 1981

O. insidiosus Brazil 11.8 12.6 63.8 159.6 E. kuehniella eggs Mendes et al. 2005

O. thyestes Brazil / 12.8 / 173.8 E. kuehniella eggs Carvalho et al. 2005

O. sauteri Japan 116 11.9 57.8 158.7 Thrips palmi Karny Nagai 1993

O. sauteri Japan  11.0 11.3 58.8 163.9 Myzus persicae (Sulzer) Nakata 1995

O. sauteri Japan 111 10.3 62.1 180.8 Thrips palmi Karny Nagai & Yano 1999
O. strigicollis Japan 115 10.8 57.5 162.7 F. occidentalis Ohta 2001

O. tantillus Japan  13.7 12.7 52.6 169.5 Thrips palmi Karny Nakashima & Hirose 1997a
O. tristicolor Japan 8.6 15.3 649 1515 Tetranychus pacificus Nakata 1995

McGregor

Rates of nymphal growth and development in insects can be controlled not only by obvious
environmental factors and cues such as temperature or food availability, but also by day length (Danks
1987; Saunders 2002). Photoperiodic responses reported in heteropteran species range from a slight

retardation or acceleration of nymphal growth to prolonged nymphal diapause (Askari & Stern 1972b;
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Saunders 1983; Kiritani 1985; Musolin & Saulich 1997, 1999; Tanaka et al. 2002; Saulich & Musolin
2007). In insects that overwinter in the adult stage in the temperate zone, acceleration of nymphal
growth under late-season short-day conditions may ensure completion of nymphal development and
synchronisation of adult emergence before the autumnal detoriation of environmental conditions
(Ruberson et al. 1991; Musolin & Saulich 1997, 1999; Musolin & Ito 2008). The effect of day length on
the duration of the nymphal period in Orius was studied in only a limited number of species. In Orius
majusculus (Reuter) from the Netherlands and Orius strigicollis (Poppius) from central Japan, short
days significantly accelerated the growth of nymphs at 18°C, although the trend was not always
consistent (van den Meiracker 1994; Musolin et al. 2004; Cho et al. 2005). In Orius insidiosus (Say) from
Arkansas, USA, short-day conditions accelerated the growth of nymphs at 20°C (Ruberson et al. 1991),
but the trend was somewhat reversed, though not consistent, in nymphs of the same species from
Georgia, USA, at 18°C (van den Meiracker 1994). Latter example shows that the response to

photoperiod in Orius nymphs depends on the geographic origin of the population.

2.4.3 Reproduction

When Orius adults emerge they immediately start to mate (Tawfik & Ata 1973). The average duration
of successful copulation in Orius laevigatus (Fieber) is 4.9 min, and the minimum time required for
successful copulation is 1.75 min (Leon-Beck & Coll 2009). The left paramere of males (see Figure 2.6)
is modified into an organ that serves to penetrate the body wall of the females during copulation.
Males penetrate the female in the midventral abdominal copulatory site (between the seventh and
eighth abdominal segment) and inject their sperm into the copulatory tube (see Figure 2.7). As
insemination occurs outside of the reproductive tract and within the abdominal cavity, it is referred to
as extragenital insemination. The sperm is collected in the spermatic pocket, which is a diverticulum
of the anterior vaginal wall at the internal end of the copulatory tube. From the spermatic pocket, the
sperm move to the ovaries through specialised conducting tissues, and fertilise the eggs within the

vitellarium (Schuh & Slater 1995; Horton 2008).

Females will lay 2 to 3 eggs each day on average, starting from 2 to 3 days after mating, which is
considered the preoviposition period needed for maturation of the eggs (Askari & Stern 1972a). The

lifetime amount of eggs oviposited by Orius species reportedly ranges from 50 to 200 (Malais &
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Ravensberg 2002). Besides temperature and food, the type of plant used as an oviposition substrate

also affects the reproductive potential of Orius species (see 2.4.6).

The role of males in Orius species was studied by Mendes et al. (2003), Leon-Beck and Coll (2009) and
Bonte and De Clercq (2010c). All studies concluded that virgin females of Orius species do not lay eggs
as ovarian development was limited or even non-existent (Ito & Nakata 1998b; Bonte & De Clercq
2010c). In females of Orius pumillo (Champion), vitellogenesis is a two-stage process: early
vitellogenesis requires a nutritious adult diet, whereas full vitellogenesis and egg maturation also
require mating (Shapiro & Shirk 2010). Leon-Beck and Coll (2009) concluded that females of O.
laevigatus are monandrous: once females have mated, they avoid any additional mating. In contrast,
males seem to be polygynous. Leon-Beck and Coll (2009) also reported that the female to mate first
with a male deposits more eggs than the following females. Further, female longevity and oviposition
of O. laevigatus were significantly lower when mated pairs remained together during oviposition, than
when females were isolated from the males after mating (Leon-Beck & Coll 2009). Age and feeding
status of male mates may affect the reproductive output of females. Females of O. laevigatus mated
with young virgin males produced fewer offspring than those mated with older virgin males, when
males were fed on a suboptimal artificial diet but did not when males were reared on the highly
nutritious eggs of the Mediterranean flour moth, Ephestia kuehniella Zeller (Bonte & De Clercq 2010c).
For some Orius species, male adults emerge earlier than females, particularly at lower temperatures
(Musolin et al. 2004; Musolin & Ito 2008). Faster development of males might have an ecological
significance: at the time females emerge, males are ready to mate with them (Musolin & Ito 2008).
This strategy is designed as temperature-regulated protandry (Boyd & Alverson 2004). Faster
development of male nymphs might be related to observations that males are always smaller than

females in Orius species (Nakata 1995).

The reproductive capacity of Orius females can be influenced by low temperatures due to induction of
reproductive diapause (see 2.4.4) or a decrease in mating activity (van den Meiracker 1994; Nagai &
Yano 1999). Further, low temperatures in Orius species extend longevities (Cho et al. 2005) and
(pre)oviposition periods, reduce fecundity, upturn adult body sizes (Nakata 1995), and increase

mortality during overwintering (Saulich & Musolin 2009). In contrast, high temperatures, at given day
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length, accelerate the prey consumption (Gitonga et al. 2002), mobility, and foraging/oviposition

activity of Orius species (Cocuzza et al. 1997a; Tuda & Shima 2002; Baniameri et al. 2005).

2.4.4 Dormancy

In general, the arrestment in development that enables living organisms to synchronise their life cycle
with favourable environmental conditions and that avoids unfavourable conditions is called dormancy,
which can occur during all seasons. Two types of dormancy are usually distinguished in insects:
quiescence and diapause. Quiescence is a reversible state, characterised by a reduction in metabolism
as a direct response to exposure to environmental extremes, such as temperature or humidity, and
which ends immediately when favourable conditions resume. Quiescence, or possibly weak diapause,
was found in southern strains of O. laevigatus from Italy (Tommasini & Nicoli 1995) and France (Rudolf

et al. 1993).

Diapause is an active response of individuals resulting in a dynamic state of low metabolic activity for
adaptation to seasonal cycles and enables insects to circumvent adverse conditions. Winter is most
commonly avoided in temperate zones, but diapause is also used to circumvent hot, dry summers and
periods of food shortage. Diapause is a developmental response that is expressed only during a specific
developmental stage, which depends on the species of insect. If the diapause occurs in response to
environmental cues it is referred to as ‘facultative diapause’, but if it occurs during each generation
regardless of the environmental cues it receives, it is considered to be ‘obligatory diapause’. Both
facultative and obligatory diapause are common in Orius species (Kingsley & Harrington 1982;

Ruberson et al. 1991; van den Meiracker 1994).

Many factors (biotic and abiotic) can function as the token stimulus to induce diapause. In fact, the
insects can translate the token stimuli in neurohormonal changes which lead to diapause (Williams
1952). Often, the most common and reliable token stimulus is photoperiod, whether or not in
interaction with temperature (Beck 1980; Saunders 1982; Tauber et al. 1986; Gullan & Cranston 1994).
Several factors other than temperature and day length, such as moisture, population density, food,
presence of males and changes in these factors, may influence the incidence of diapause in insects

(Tauber et al. 1986; Danks 1987).
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Most insects in the temperate zone, including Orius species, use day length as a token stimulus to enter
seasonal dormancy, usually adult (= reproductive) diapause in Orius species (van den Meiracker 1994;
Ruberson et al. 1998, 2000; Musolin & Ito 2008; Kobayashi & Osakabe 2009; Saulich & Musolin 2009),
and to stabilise their seasonal cycles (Danilevsky 1965; Beck 1980; Tauber et al. 1986; Danks 1987). For
insects which are sensitive to photoperiod, the ‘critical photoperiod’ is defined as the length of the day
at which 50% of the sensitive stages of the insect will enter diapause (Tauber et al. 1986; Danks 1987).
The critical photoperiod varies from species to species as well as within the same species for
populations occurring at different geographical areas (Tauber et al. 1986; Danks 1987; Leather et al.
1993; Shimizu & Fujisaki 2006). Reproductive diapause was found in the nearctic species O. insidiosus
(Iglinsky & Rainwater 1950; Kingsley & Harrington 1982; Ruberson et al. 1991; van den Meiracker 1994)
and Orius tristicolor (White) (Anderson 1962; Askari & Stern 1972b; Gillespie & Quiring 1993; van den
Meiracker 1994), as well as in the palearctic species O. majusculus (Fischer et al. 1992; van den
Meiracker 1994). No diapause was observed in Orius thyestes Herring from the neotropical region
(Carvalho et al. 2006), Orius albidipennis (Reuter) from the Canary Islands and Orius tantillus
(Motschulsky) from India and Southeast Asia (Nakashima & Hirose 19973, b). There is no published

information on diapause responses in O. naivashae and O. thripoborus.

All multivoltine anthocorids of the temperate zone studied to date have photoperiodic responses of a
long-day type: the females reproduce under long-day conditions, but enter diapause under short-day
conditions. Reproductive diapause was induced when reared under varying lengths of short-day
conditions in species with critical day lengths at 18°C, indicated as follows: O. majusculus between 14
and 16 h (van den Meiracker 1994), O. strigicollis between 12 and 14 h (Cho et al. 2005), O. insidiosus
from Georgia between 11 and 12 h (van den Meiracker 1994), O. insidiosus from Arkansas between 12
and 13 h (Ruberson et al. 1991). Stack and Drummond (1997) showed that, in the majority of O.
insidiosus individuals, extending photoperiod with supplemental blue light enhances reproduction and

averts reproductive diapause over a range of temperature regimes.

Towards the south, the photoperiodic response gradually becomes weaker: some populations do not
enter diapause even under short-day conditions, especially at higher temperatures (Horton 2008;

Saulich & Musolin 2009). A latitudinal cline was found in the photoperiodic response controlling
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reproductive diapause in Orius nagaii Yasunaga, Orius sauteri (Poppius), Orius minutus (L.), O. tantillus
and O. strigicollis from Japan: the lower the latitude, the lower the diapause incidence and the shorter

the critical day length (Shimizu & Kawasaki 2001).

For Orius species in which reproductive diapause is induced under short-day conditions, the
preoviposition period is inversely related to day length (Ruberson et al. 1991). In non-diapausing Orius
females, the preoviposition period is rather constant at different photoperiods and at a given

temperature (18°C) (Nakashima & Hirose 1997b).

Sensitivity to diapause-inducing photoperiods typically occurs in late instars, sometimes extending into
the adult stage (Ruberson et al. 1998). In short-day sensitive Orius species, like O. insidiosus (Ruberson
et al. 2000) and O. strigicollis (Cho et al. 2005), the sensitive stages seem to be the last (fourth and
fifth) instars and early adult stage, though some variations in response were recorded. Overwintering
in the adult stage may provide the greatest flexibility for location of, and movement within
overwintering sites, as well as for movement towards food and reproductive resources when
dormancy is completed (Tommasini & van Lenteren 2003). Orius species are reported to overwinter in
the grasses in field borders (O. insidiosus; Elkassabany et al. 1996), in leaf litter (O. tristicolor; Anderson
1962), on the ground of crop fields (Orius sauteri (Poppius); Yasunaga 1993), or underneath the bark
of trees (O. sauteri; Lee et al. 1992). In temperate areas, males usually copulate in autumn and die
before or during winter (van den Meiracker 1994; Ito & Nakata 1998a; Ruberson et al. 1998; Shimizu
& Kawasaki 2001; Musolin et al. 2004; Kobayashi & Osakabe 2009). Diapausing females contain no
mature eggs and have a hypertrophic fat body (Ruberson et al. 1991; van den Meiracker 1994; Ito &
Nakata 1998a; Ruberson et al. 1998). The return of suitable environmental conditions leads to
termination of diapause (Beck 1962), but at least in some anthocorids, exposure to low temperatures
for at least a few weeks is required to terminate diapause (Saulich & Musolin 2009). For the small
number of Orius species in which termination of diapause was studied, temperature was found to be

the most important factor (Saulich & Musolin 2009).

Whereas temperature itself is not a reliable seasonal indicator, its effect upon photoperiodic response
of diapause induction is significant in many insect species. The mode of action of temperature may

differ even among related species (Musolin et al. 2004). Constant temperatures are mostly reported
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to affect the photoperiodic response curve in two ways. First, temperature can modify the critical day
length. Second, temperature can modify the degree to which an insect responds to photoperiod (Beck
1980; Saunders 1982; Tauber et al. 1986). Low temperature and/or decrease in temperature and day
length enhance diapause induction in many insect species (Tauber et al. 1986; Danks 1987; Kohno
1998). Diapause in O. albidipennis from warm regions is mostly controlled by temperature, or is weak
in individuals from these populations (Carnero et al. 1993; van den Meiracker 1994; Chyzik et al. 1995;
Saulich & Musolin 2009). Increased temperature affects the photoperiodic response in O. sauteri but
not in O. minutus (Kohno 1998; Musolin & Ito 2008b). However, for O. insidiosus and O. strigicollis, day
length plays a dominant role in diapause induction: the photoperiodic response is thermostable at a
moderate temperature range, but high temperatures (>28°C) strongly suppress induction of diapause

(van den Meiracker 1994; Musolin et al. 2004).

The presence or absence of diapause in an important criterion to select an effective biocontrol agent,
mainly when the pest can overwinter without undergoing diapause (Ito & Nakata 2000; Tommasini &
van Lenteren 2003). In addition, the capacity to withstand periods with temperatures around or below
zero can also be an asset for a candidate biological control agent confronted with cold winters. Insects
can survive at low temperatures by either tolerating the formation of internal ice (freeze tolerance) or
by freeze avoidance, which involves both physiological and biochemical mechanisms to avoid freezing
of intracellular and extracellular body fluids (Bale 1996). At sub-zero temperatures, some freeze-
avoiding insects migrate to warmer regions, though in most insects a behavioral response directs them
to thermally-buffered overwintering sites. In addition, insects can invoke several cold-hardiness
mechanisms, but, to date, this has hardly been studied in anthocorids (Denlinger & Lee 1998; Danks
2005). The only noteworthy fact is that freezing of the adult body might not be the cause of the
overwintering mortality in males of O. sauteri and O. minutus as the supercooling point in adults reared

under short days was quite low (<—20°C) in both sexes (Ito & Nakata 1998a).

2.4.5 Habitat and host plants
Orius are small predaceous insects that occur in a variety of habitats, but are mainly found on forbs
and shrubs, especially in their flowers, as they also feed on pollen (Lattin 1999; Horton 2008; Malais &

Ravensberg 2002). Orius species are thigmotactic, preferring the small crevices in these flowers
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(Chambers et al. 1993; Lattin 1999). Shipp et al. (1992) determined intra-plant spatial patterns of Orius
insidiosus (Say) and O. tristicolor populations in greenhouse pepper and found that both Orius adults
and nymphs were aggregated in the top one-third of the plants. Orius species are typical agrobionts,
being abundant in arable, horticultural and ornamental agro-ecosystems where they feed on various
pest species and plant tissues (Bosco & Tavella 2008; Tommasini 2004; Perdikis et al. 2011). In
agroecosystems, Orius has been observed in a wide range of pollen bearing field crops, greenhouse
vegetables and ornamentals such as maize (Zea mays L.) (Mészaros et al. 1984; Albajes et al. 2011;
Veres et al. 2012), wheat (Triticum aestivum L.), rice (Oryza sativa L.), alfalfa (Medicago sativa L.)
(Bokina 2008), soybean (Glycine max (L.) Merr.) (Lundgren et al. 2009), faba bean (Vicia faba L.) (Atakan
2010), chili pepper (Capsicum annuum L.), cucumber (Cucumis sativus L.), eggplant (Solanum
melongena L.), potato (Solanum tuberosum L.) (Fathi 2009), cotton (Gossypium sp.) (Atakan 2006;
Lucas & Rosenheim 2011) and strawberry (Fragaria sp.) (Bosco & Tavella 2008). A few species of Orius
have been recovered from grape vine (Vitis vinifera L.), and apple and pear orchards, feeding on small
insects, or were found breeding on hawthorn (Crataegus monogyna L.), alder (Alnus sp.) and poplar
(Populus sp.) (Lattin 2000).

The southern African species O. naivashae and O. thripoborus are also associated with forbs and pollen
producing crops. Orius thripoborus has been reported on a series of crops: avocado (Persea americana
Mill.), citrus (Citrus sp.), peach (Prunus persica L.), cotton, sunflower (Helianthus annuus L.) and cassava
(Manihot esculenta Crantz) (Hesse 1940; Hamburg & Guest 1997; Steyn et al. 2003). This species has
been collected as well from the forbs Commidendrum robustum (Roxb.) DC. and Aster glutinosus (Less.)
Kuntze, and from the acacia tree (Acacia sp.) (Hesse 1940; Hernandez & Stonedahl 1999). The only

published records of O. naivashae were made on cotton (Gossypium arboretum L.).

The (semi)-natural habitats surrounding an agroecosystem serve as reservoirs for Orius species (Kemp
& Barret 1989; Ohno & Takemoto 1997). Orius species found in vineyards in California were more
abundant within a 20 m distance from a forest or from a corridor of flowering plants (Nicholls et al.
2000). The abundance pattern of Orius species at a landscape scale is shown to be driven by resource
patterns and availability of both semi-natural and cultivated areas, which may vary within the season
and between years (Péricart 1972; Veres et al. 2012). Tolerance for weeds in agricultural fields and
manipulation of vegetation near crops may favour Orius species populations (Scutareany et al. 1993).
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Predators are expected to attain higher densities in more diverse habitats because a greater variety of
prey is available at different times, a larger variety of microclimates (shade, moisture, and temperature
levels) and microhabitats is present, and more pollen and nectar food sources are available. Besides,
diverse habitats can harbour more prey refuges and overwintering sites, resulting in persistence of
prey and predator populations (Coll 1998; Landis et al. 2000; Lundgren & Fergen 2006). Moreover,
increasing plant diversity allows predators to optimise their fitness by exploiting various plant-based

resources such as nutrition and oviposition sites (Lundgren et al. 2008).

2.4.6 Role of plant material

Many predatory heteropterans benefit from plant material at some time in their life cycle. The
importance of plant materials is four-fold: 1) plants may serve as oviposition substrates; 2) plant
material can be a source of nutrients and water for the beneficial insect (see 2.4.7.2); 3) plants may
obstruct the predator in its behavior; and 4) plant material provides hiding places for insects (Coll
1998).

Most Orius species display clear preferences for certain plant species as oviposition sites (Lundgren &
Fergen 2006). When selecting an oviposition site, omnivores are expected to respond to both prey
availability and, even more strongly, to plant traits that affect both females and their offspring
(Groenteman et al. 2006; Lundgren et al. 2008). Orius bugs are characterised by endophytic
oviposition: their females insert their eggs into the plant tissue using an ovipositor. Such females prefer
plants as ovipositional hosts that have the thinnest external tissues. When the plant has been chosen
they will start searching for spots with low trichome densities and epidermis thickness (Lundgren &

Fergen 2006; Lundgren et al. 2009).

A number of plant morphological features are known to affect the behaviour and fitness of insects.
Trichomes (hair-like appendages) impede insect movement and constitute a physical and sometimes
chemical barrier to insect feeding (Lundgren et al. 2008). For example, the high trichome density
lowers the foraging speed of O. insidiosus on tomato (Coll & Ridgeway 1995; Coll et al. 1997; Coll 1998).
Plants, as host plants for their prey species, may also indirectly influence survival and oviposition of
the predators. The presence of plant allelochemicals in prey may inhibit feeding on that prey, lower

the predator’s fitness or even induce mortality in a predator (Orr & Boethel 1986; Coll 1998).
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Plant material also has the function of providing natural shelter to the insects. Taking away hiding spots
could lead to greater stress, resulting in energy loss and affecting the overall fitness of the insect in its

environment (Coll 1998).

2.4.7 Feeding ecology

Predatory bugs of the genus Orius (Hemiptera: Anthocoridae) display trophic omnivory (also called
zoophytophagy) and are characterised by piercing and sucking mouthparts, with which they feed on a
wide array of arthropod prey as well as on plant materials such as pollen and plant juices (Carayon &
Steffan 1959; Salas-Aguilar & Ehler 1977; Coll 1998; Cohen 2000). Most Orius species, if inadvertently

exposed to human skin, will probe and ‘bite’, especially if perspiration is present (Henry 1988).

2.4.7.1  Animal prey

Orius species are predators of various small, soft-bodied arthropods such as thrips, aphids (Hemiptera:
Aphididae), whiteflies (Hemiptera: Aleyrodidae), mites (Arachnida: Acari), young lepidopterous larvae
and small arthropod eggs (Barber 1936; Péricart 1972; Cranshaw et al. 1996; van Lenteren et al. 1997;

Lattin 1999; Malais & Ravensberg 2002).

Orius bugs are quick and active predators (Montserrat et al. 2004) that occur predominately on the
lower leaf side, and are reported to mainly attack their prey upon encounter (Shields & Watson 1980;
Malais & Ravensberg 2002; Yano et al. 2005). They do appear to have the ability to locate their prey
by means of olfactory and sense cues and to a lesser extent through visual cues (Carvalho et al. 2011).
The antennae of Orius species play an important role in the detection of prey movement, though the
predators perceive the prey only at 0.5 to 1 cm distance. After encountering prey, Orius species initiate
area-restricted search (Shipp et al. 1992). However, Teerling et al. (1993) discovered that, in the
absence of prey capture, the alarm pheromone of Franklinella occidentalis (Pergande) nymphs is used
as a prey-finding kairomone by O. tristicolor to initiate area-restricted search. The searching efficiency
of a predator is affected by plant species, both directly and indirectly, by the effect of the plant on prey
density and distribution (Coll et al. 1997). Furthermore, search rate decreases with gut fullness (Sabelis

1992).

Despite Orius species being polyphagous, they show a preference for thrips (Salas-Aguilar & Ehler

1977; Riudavets 1995; Malais & Ravensberg 2002; Baez et al. 2004; Kakimoto et al. 2006; Arno et al.
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2008; Xu & Enkegaard 2009). This can be an inherent prey preference or a preference driven by
overlapping habitats (Cloutier & Johnson 1993; Hansen et al. 2003). Prey preference is not necessarily
based on nutritional factors (Thompson & Hagen 1999). Also the vulnerability, type, density, size, and
mobility of the prey may influence the prey selection of Orius species (Evans 1996; Eubanks & Denno
2000; Mendes et al. 2002; Malais & Ravensberg 2002; Baez et al. 2004; Reitz et al. 2006). Furthermore,
Venzon et al. (2002) suggested that O. laevigatus selects prey based on patch productivity, i.e., the

number of eggs produced on a patch per bug per day, rather than on prey quality.

Once the prey is located, the stylets make contact and the front pair of the legs keep the prey under
control (Cocuzza et al. 1997a; Malais & Ravensberg 2002). The stylets pierce through the prey’s cuticle
and by way of extracorporeal digestion solid prey materials are liquefied into slurries. This feeding
method is termed ‘solid-to-liquid feeding’. This implies that digestive enzymes are injected into the
prey and together with specialised mechanical actions of the stylets the solid nutrients from the prey’s
carcass are predigested (type | extra-oral digestion/nonrefluxers). The digestive enzymes that are
mixed with the food externally are recaptured and ingested along with the food. This allows digestion
to continue in the gut and allows the predators to reduce the loss of proteins (Cohen 2004). This extra-
oral digestion allows them to utilise the high-nutrient prey tissues besides hemolymph and predisposes
them to attack relatively large prey (Cohen 1990, 1995, 2000). After feeding, Orius species clean their
mouthparts with the forelegs and appear to rest; they are relatively inactive for short periods (Askari

& Stern 1972a).

Handling times in Orius are relatively short. Isenhour and Yeargan (1981b) found average feeding times
of hungry females of O. insidiosus on adult thrips ranging from 9 to 19 min, whereas capture took only
a few seconds and pursuing rarely occurred. Orius predator bugs often consume their prey only
partially, and sometimes they do not even feed on killed prey (Askari & Stern 1972a; Isenhour &

Yeargan 1981c).

2.4.7.2  Plant foods
Orius bugs are known to be facultatively phytophagous or omnivorous (Coll 1996, 1998; Lattin 1999;
Lundgren 2009, 2011). They probe the plant in the first place to fulfill their need for water, as in many

cases water extracted from prey is insufficient to meet the predators’ needs. Besides, the acquired
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water may be essential for the process of prey feeding (Gillespie & McGregor 2000). In addition, Orius
can extract supplementary nutrients from plants (Coll 1998; Coll & Guershon 2002; Lundgren 2009,
2011). The American species O. insidiosus has been noted to feed on xylem and mesophyll contents,
allowing the bugs to ingest water, small amounts of sugars, starches and amino acids from the plant
(Armer et al. 1998). Likewise, Lundgren et al. (2008) showed that neonate O. insidiosus are able to use
plant tissues for nutrition in their early developmental stages and that the bugs not only feed on xylem
but also on the more nutritious phloem allowing them to survive solely on plant materials for several
days. There is a higher ability to utilise plant material in young nymphs and females than in older
nymphs and males (Coll 1996, 1998). Groenteman et al. (2006) showed that a high nitrogen level in
leaves stimulates development and survival in first instars of O. albidipennis. On the other hand, Coll
(1996) asserted that it is likely that protein-poor plant diets impede egg maturation by the predator
(Coll 1996). Orius species do not produce damage when piercing plant tissue (Malais & Ravensberg

2002).

Species of Orius occur commonly in the flowers of herbaceous vegetation and in other plant parts that
offer nectar (Barber 1936; van den Meiracker & Ramakers 1991; Coll 1998), and are known to
supplement their diets with pollen (Cocuzza et al. 1997b; Horton 2008). Pollen does not only serve as
a source of nutrients but also of moisture, as they are able to take up water from a humid environment
into their interior due to capillary effects (Diehl et al. 2001). Most pollen are known for their high levels
of proteins, amino acids, starch, lipids and some minor nutrients such as vitamins and minerals (Patt
et al. 2003; Lundgren & Wiedenmann 2004; Lundgren 2009). Besides interspecific differences in the
nutritional value of pollen, particularly in amino acid and lipid content, intraspecific variability (e.g.,
hybrids) can also have a significant influence on the biological performance of pollen feeding insects
(Richards & Schmidt 1996a; Lundgren 2009). Pollen may even show defensive properties against
larcenous pollinivores. The deterring structure and appendages, lower nutrient levels and toxic
phytochemicals of the pollen grains may deter facultatively pollinivorous natural enemies from

consuming them (Lundgren 2009).

There is considerable variation in the performance of Orius species on pollen. Fauvel (1974) concluded

that pollen is not an important food for Orius vicinus Ribaut and that it served primarily to attract the
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bugs towards the flowers in which they can find prey. In contrast, Carayon and Steffan (1959) stated
that pollen of the host plants is the main diet for Orius pallidicornis Reuter and may be used as an
alternative food source. The omnivorous feeding strategy of Orius species may allow them to perform
better in terms of development and reproduction or survive periods of prey scarcity (Kiman & Yeargan
1985; Cocuzza et al. 1997b), but it can also entail certain risks. For instance, when a crop is treated
with systemic pesticides, the toxins may harm the predators when they ingest the contaminated plant

sap or pollen (Ridgeway et al. 1967; Horton 2008).

2.5 Biological control

2.5.1 Use in biocontrol

Anthocorid bugs are often considered effective biological control agents based on their high efficiency
of prey seeking, ability to concentrate in the areas of the highest density of the potential prey, and
potential for rapid population growth (Hodgson & Aveling 1988). Among the Anthocoridae, many
species of the genus Orius are economically important beneficial insects in various agroecosystems
(Barber 1936; Carayon 1961; Kelton 1963; Oku & Kobayashi 1966; Alauzet et al. 1994). Seven Orius
species are currently commercially used of which O. insidiosus and O. laevigatus are being produced
on a very large scale with production figures of hundred thousands to millions of individuals per week

(van Lenteren 2012).

In many agricultural and horticultural crops Orius species are important natural enemies of a variety
of pest species such as thrips, whiteflies, aphids, lepidopterous larvae, and mites (Hernandez &
Stonedahl 1999), but they have mainly gained attention for their capability of controlling the western

flower thrips, F. occidentalis (Cocuzza et al. 1997a), and the onion thrips, Thrips tabaci Lindeman.

There are many advantages of using Orius species as biological control agents (Applied Bio-nomics
2015; Biobest 2015). Orius species are omnivores and are able to feed on plant material, which enables
their preventive use in pollen producing crops (see 2.4.7.2). These predators feed on all life stages of
thrips and often kill more prey than needed to survive (see 2.4.7.1). Orius species can locate prey
efficiently and have a small size, allowing them to prey on thrips in cryptic locations (Dennill 1992).

Further, Orius predators can easily be combined with other biological control agents such as
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Macrolophus pygmaeus (Rambur) (Jakobsen et al. 2004; Messelink & Janssen 2014) and several

predatory mites (e.g., Gillespie & Quiring 1992; Madadi et al. 2009; Chow et al. 2010).

A disadvantage of using Orius species as biological control agents is that several species are prone to
diapause when day length shortens (see 2.4.4), so supplemental lighting may be needed when used in
protected cultivation early in the season. Cannibalism is a recurring problem between adults or
between adults and nymphs (see 2.5.2.4). Orius species are also affected by systemic insecticides or
pesticides with long residual action, such as abamectin, teflubenzuron, diflubenzuron, imidacloprid
and spinosad (Delbeke et al. 1997; Studebaker & Kring 2003; Biondi et al. 2012; Biobest 2015).
Although a good dispersal ability is often considered a beneficial trait contributing to the success of a
biological control agent (van Lenteren & Woets 1988), the successful augmentation of natural enemies
at the same time requires that the released individuals remain and reproduce in the target field (Wang
et al. 2001). The dispersal capacities of members of the genus Orius are moderate: they have functional
wings, although their small size and limited flight capabilities make them more dependent on passive
dispersal via upper air currents for long range movements. Local dispersal of Orius adults is commonly
accomplished by diurnal, short, low-level flights, as compared to other anthocorids (Southwood 1960;
Lattin 1999). Dispersal ability of the predators is also relevant for their role in conservation biological
control and determines their capacity to move in and out of crops from and to conservation areas and

landscape elements. To our knowledge, however, little or no studies have addressed this for Orius spp.

Orius species can be released preventively at a 5,000 to 10,000 Orius/ha (or 0.5 to 1 Orius/m?) density
in pollen-bearing protected crops such as sweet pepper, gerbera (Gerbera sp.), strawberry and egg
plant. In several greenhouse vegetable and ornamental crops, Orius can also be released curatively at
5to 10 Orius/m? near local pest outbreaks (Biobest 2015). Although Orius species are routinely applied,
with overall good success, in augmentative biological control programmes in protected cultivation
(e.g., van den Meiracker & Ramakers 1991; Riudavets 1995; Cranshaw et al. 1996; van Lenteren et al.
1997; Ohta 2001), the number of success stories in open-field cropping systems remains limited

(Frescata & Mexia 1996; Funderburk et al. 2000; Wang et al. 2001).

Commercially available Orius predatory bugs are offered in plastic bottles, containing 500 to 2,000

adults and nymphs in dispersal carrier (buckwheat and/or vermiculite). The material can be dispersed
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from the bottle directly on the plant or applied by distribution boxes that are hung on the plants. It is
important that the dispersal carrier remains at its introduction site for a few days so that the predators
get a chance to mate and spread throughout the plant or crop. Four to six weeks are required after
release of Orius bugs before thrips populations decline markedly (Applied Bio-nomics 2015; BioBee

2015; Biobest 2015; Koppert 2015).

In South Africa, Steyn et al. (1993) reported O. thripoborus as a natural enemy of two species of thrips
damaging avocado, Heliothrips haemorrhoidalis (Bouché) and Selenothrips rubrocinctus (Giard). Dennil
(1992) concluded that this species might be a useful biological control agent against both thrips species
in the eastern Transvaal. Also in South Africa, Hesse (1940) found O. thripoborus feeding on the citrus
thrips Scirtothrips aurantii Faure, not only occurring on citrus fruits, but also on leaves of peach and
acacia. Further, O. thripoborus was seen preying on eggs of H. armigera in South African cotton fields
(Hamburg & Guest 1997) and on sunflower (H. annuus). This predator is also associated with the
cassava green mite Mononychellus tanajoa (Bonder) (Tetranychidae) on cassava (Manihot esculenta).
Orius naivashae is only known from Kenya, where it was observed on cotton preying on Helicoverpa
armigera (Hubner) (Hernandez & Stonedahl 1999). Up to present, however, there is no commercial

use of O. thripoborus or O. naivashae in southern Africa.

2.5.2 Artifical rearing systems

For reasons of confidentiality, there is little published information on commercial mass-rearing
systems for predatory heteropterans (De Clercq et al. 2013). van Lenteren and Tommasini (2003)
presented a mass production scheme for Orius bugs, based on E. kuehniella eggs as food and bean
pods as oviposition substrate and moisture source (Figure 2.10).

Several papers have described systems for medium- to large-scale production of economically
important predatory heteropterans. Major factors that were indicated to determine the success of a
rearing system were climate, food quality and quantity, living and oviposition substrate, type of
container, and rearing density/cannibalism (see 2.5.2.4). According to Mackauer (1976) and van
Lenteren (1991), the provision of some variation in rearing conditions (food, microclimate, space) may
enhance fitness and minimise selection during laboratory propagation of biological control agents

(Bueno & van Lenteren 2012).
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Figure 2.10 Production scheme for Orius species (van Lenteren & Tommasini 2003)

Some natural enemies are produced in a rearing system in which they are fed on their natural prey or
host. The natural prey or host is, in turn, reared on its natural host plant. Thus, this rearing method is
essentially a tritrophic system. Maintaining three trophic levels is highly labour intensive, requires
plenty of space and is therefore expensive. Eliminating the use of plants for the prey could yield a first
reduction of the rearing costs of a predator. Implementing factitious (or unnatural) prey in the rearing
system often eliminates the use of plant material and thus decreases production costs (see 2.5.2.1).
The next level of progression in cost-effective rearing of predators may involve the utilisation of an
artificial diet that obviates the use of prey (see 2.5.2.2). Finally, in order to realise a complete artificial

rearing system, the use of plant materials should be minimised (see 2.5.2.3).

2.5.2.1  Factitious foods

Factitious prey are comprised of organisms that are not normally attacked by the predator, mostly
because they do not occur in its natural habitat, but do sustain its development in a laboratory
environment (De Clercq 2008). Factitious prey may be offered fresh, but in many cases, they are frozen,

irradiated, or lyophilized for improved storage or use in predator cultures (Riddick 2009).

The use of factitious foods for the production of arthropod predators and parasitoids may allow some

degree of mechanisation of rearing procedures and lead to a significant reduction of operation costs,
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which in turn may make augmentation biological controls more competitive with chemical controls
(van Lenteren & Tommasini 2003; De Clercq 2008). As many heteropteran predators used in
augmentative biological control programmes (e.g., Orius species) are highly polyphagous, they are

amenable to rearing on factitious prey (Riddick 2009).

The most frequently used and most successful group of factitious foods are eggs of Lepidoptera. Eggs
of the Mediterranean flour moth E. kuehniella (Figure 2.11), the Indian meal moth Plodia interpunctella
(Hibner), the rice moth Corcyra cephalonica (Stainton), and the Angoumois grain moth Sitotroga
cerealella (Olivier) yielded satisfactory to excellent results when offered as a food to insect predators,
including predatory bugs (De Clercq et al. 2013). Since the 1990s, E. kuehniella eggs have become the
standard food for the production of Orius species (Schmidt et al. 1995; van den Meiracker 1999;
Tommasini et al. 2004; Kakimoto et al. 2005; Bueno et al. 2006; Bonte & De Clercq 2008; Venkatesan
et al. 2008). The nutritional value of E. kuehniella eggs for Orius species exceeds that of pollen or other
alternative diets (Bonte & De Clercq 2010a). The developmental and reproductive rates of O.

laevigatus have even been reported to be higher on eggs of E. kuehniella than on certain natural prey

(Cocuzza et al. 1997b; Bonte & De Clercq 2008).

Figure 2.11 Adult of O. naivashae feeding on E. kuehniella eggs (photo: author)

The continuous use of lepidopteran eggs as a factitious food in mass-rearing systems does have some

drawbacks, the most important of which is their high cost. Although the moths are easily produced on
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inexpensive foods, there are substantial monetary investments for the mechanisation of rearing
procedures, for climate management, and for the health care of the workers. This has led to high
market prices for E. kuehniella eggs, which are currently about US500$ per kilogram (De Clercq 2008;
De Clercq et al. 2013).

As a result, a search began to replace E. kuehniella eggs with other, cheaper factitious foods. Brine
shrimps of the genus Artemia naturally occur in lakes or pools with high salinities and are routinely
used as a feed in aquaculture (Lavens & Sorgeloos 2000). Hydrated, decapsulated Artemia franciscana
cysts (diapausing eggs) were found to be nutritionally sufficient to sustain development and
reproduction of Orius species and other predators (Hongo & Obayashi 1997; Arijs & De Clercq 2001b;
Castafié et al. 2006). Depending on their quality, these cysts can be an order of magnitude cheaper
than E. kuehniella eggs (Arijs & De Clercq 2001b). However, prolonged rearing on cysts as a sole food
has been associated with fitness losses in Orius bugs (De Clercq et al. 2005). Therefore, dry Artemia
cysts are currently used only in part of the life cycle or in a mixture with lepidopteran eggs in the
production process of different predatory heteropterans, including Orius bugs (Bonte & De Clercq
2008; De Clercq et al. 2013).

Another potential source of factitious foods for predatory heteropterans produced by the billions in
mass-rearing facilities for sterile insect techniques is fruit flies (Tephritidae). Takara and Nishida (1981)
reared O. insidiosus on a diet of of eggs of the oriental fruit fly, Dacys (Bactrocera) dorsalis (Hendel),
with similar developmental and reproductive performance as compared to a natural diet. Further, eggs
of the medfly, Ceratitis capitata (Wiedemann), have been used to produce the mirid predators
Cyrtorhinus lividipennis Reuter (Liquido & Nishida 1985) and M. pygmaeus (Nannini et al. 2009) and
were considered to have potential for predators of other heteropteran families.

2.5.2.2  Artificial diets

Artificial diets for insects have traditionally been classified as holidic (chemically defined), meridic
(most components are chemically known), or oligidic (mainly composed of crude organic materials)
(Dougherty 1959). As the distinction between these three categories is not always clear, Grenier and
De Clercq (2003) proposed a classification system that separates artificial diets for insect natural
enemies on whether they contain insect components (e.g., tissues, hemolymph, cells, protein, amino

acids) or not. Artificial diets containing insect components are useful when predators require certain
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growth factors, feeding stimulants and other chemical cues that are typically found in arthropod prey
(De Clercq 2008; Riddick 2009)

A nutritionally adequate artificial diet should contain the basic nutrients (proteins or amino acids,
lipids, carbohydrates) in appropriate proportions, and water. In addition, some specific minor
components may be needed as growth factors, like sterols, vitamins, minerals and nucleic acids (Cohen
2004; De Clercq 2008). Besides, artificial diets can also contain stabilisers, preservatives and sometimes
fillers or bulk agents and certain token stimuli. Token stimuli are components that evoke feeding but

have no known function in the insect’s metabolism (Cohen 2004).

The mode of presentation of an artificial diet is important in determining its acceptance by a predator
(Grenier et al. 1994; Cohen 2004). Important issues in diet presentation include phagostimulants,
texture, liquid or semi-solid state of the ingredients, and methods of containment (Ferkovich et al.

2007).

Ferkovich and Shapiro (2004) suspected that eggs of the Indian meal moth, P. interpunctella, and of E.
kuehniella contain a specific nutritional factor that stimulates egg production in O. insidiosus. Adding
soluble proteins from these lepidopteran eggs or adding an embryonic cell line of P. interpunctella to
an artificial diet (based on soy protein acid hydrolysate and chicken egg yolk) was reported to enhance

fecundity of the predator (Ferkovich & Shapiro 2004, 2005, 2007).

Using a deletion and addition approach, Arijs and De Clercq (2001a) found that egg yolk and beef liver
were important components, whereas ground beef, ascorbic acid and sucrose were minor components
in an artificial diet that supported the development of O. laevigatus. The artificial diet was packaged
in Parafilm. Further, Bonte and De Clercq (2008) tested four artificial diets, wrapped in Parafilm, and
concluded that a diet based on liver and ground beef resulted in better developmental and overall
fitness of O. laevigatus than egg yolk based meridic diets. Still, the developmental and reproductive
performance of O. laevigatus reared on eggs of E. kuehniella was superior to that of those reared on
artifical diets (Bonte & De Clercq 2008, 2010a). Tan et al. (2013) developed a microencapsulated
artificial diet for the rearing of O. sauteri. The ingredients included egg yolk, whole-pupa homogenate

of the Tussah silk moth Antheraea paphia (L.), honey, sucrose, rapeseed (Brassica napus L.) pollen and

35



Chapter 2

sinkaline (choline chloride). A complex coacervation method was used to make the artificial diet

microencapsules (Tan et al. 2010).

2.5.2.3  Plant materials

Pods of green bean (Phaseolus vulgaris L.) are routinely used as a moisture source and oviposition
substrate, in addition to insect prey, in cultures of Orius bugs (see 2.5.2). As compared to free water,
bean pods can have positive, neutral, or negative effects on the development and/or reproduction of
Orius species (Naranjo & Gibson 1996; Coll 1998; Bonte & De Clercq 2010a, 2011). Under some
conditions, Orius species can complete development when provided with only bean pod sections

(Salas-Aguilar & Ehler 1977; Richards & Schmidt 1996a).

Supplementing a diet of E. kuehniella eggs with pollen increased the fecundity in O. albidipennis and
O. insidiosus, but not in O. laevigatus (Richards & Schmidt 1996a; Cocuzza et al. 1997b). Many Orius
species can survive on pollen alone, however the resulting developmental and reproductive rates are
very poor (Salas-Aguilar & Ehler 1977; Kiman & Yeargan 1985; Cocuzza et al. 1997b; Vacante et al.
1997; Venkatesan et al. 2008; Bonte & De Clercq 2010a, 2011). Adding pollen to the diet of Orius
species may not only affect reproduction and survival, but also their behaviour. Supplementing a diet
of thrips with pollen did not enhance egg production by O. laevigatus, but surprisingly increased
predation rates on thrips larvae (Hulshof & Linnamdaki 2002). Further, the use of pollen in insect
cultures has some practical drawbacks as its quality tends to detoriate quickly, and, particularly when

offered fresh, it is prone to fungal contamination (De Clercq et al. 2013).

The list of plants or plant parts used as an oviposition substrate in Orius production systems is long:
green bean pods, plant seedlings (e.g., cotton, soybean, and sharp pepper), sprouts (e.g., potato,
soybean, alfalfa and broad bean), stems (e.g., green bean and geranium), leaves (e.g., geranium and
ivy), and inflorescences (e.g., farmer’s friend Bidens pilosa L.) (Isenhour & Yeargan 1982; Kiman &
Yeargan 1985; Ruberson et al. 1991; van den Meiracker & Ramakers 1991; Alauzet et al. 1992; Chyzik
et al. 1995; Richards & Schmidt 1996b; Cocuzza et al. 1997b; Vacante et al. 1997; Coll 1998; Ito 2007;
Murai et al. 2001; Bonte & De Clercg 2010a). However, in most Orius mass rearing systems green bean
is used as an oviposition medium (and moisture source). Nonetheless, this is not an optimal substrate

because of its perishability, limited seasonal availability, and the risk of contaminating the colony with

36



A literature review

pathogens or pesticide residues (Castafie & Zalom 1994; Murai et al. 2001). To overcome these
disadvantages, artificial oviposition substrates could provide valuable alternatives for plant material.
Some workers succeeded in developing an artificial oviposition substrate on which Orius bugs are able
to produce viable eggs (Castafié & Zalom 1994; Shapiro & Ferkovich 2006; De Puysseleyr et al. 2014).
However, none of these workers have succeeded in rearing these anthocorids without plants for

several generations, or the substrates are highly impractical for being used in mass rearing systems.

Plant material is also commonly used for storage, shipping, or application of commercially reared
predatory bugs (Coll 1998). For instance, buckwheat hull is used in cultures of Orius bugs (e.g., Thomas
etal. 2012) and as a carrier (in a mixture with vermiculite) in commercial packaging of these predators.
2.5.2.4  Cannibalism

Many of the commercially available predators are generalists and exhibit cannibalism in laboratory
cultures, especially when kept at high densities (van Lenteren & Tommasini 2003). Particularly in
populations with overlapping life stages, cannibalism is not uncommon, and older or larger predators
may look upon younger and smaller conspecifics (including eggs) as potential prey (Tommasini et al.
2002; Rudolf 2007; Bonte & De Clercq 2011; De Clercq et al. 2013). Cannibalism has been observed in
several Orius species, both in the laboratory and the field (Askari & Stern 1972a; Nakata 1994; van den

Meiracker 1999; Bueno & van Lenteren 2012).

Food quality and quantity affects cannibalistic behaviour by Orius species (Dong & Polis 1992; Malais
& Ravensberg 2002). Studies of Leon-Beck and Coll (2007) and Tommasini et al. (2002) showed a
reduction in the frequency of cannibalistic behaviour for O. laevigatus when offered increasing
quantities of a nutritionally superior food consisting of E. kuehniella eggs or plant material such as
pollen. These findings suggest that insects such as O. laevigatus can sustain themselves on plant
material when prey are scarce without encountering the risks associated with cannibalism (Leon-Beck
& Coll 2007). However, Bonte and De Clercq (2011) reported that providing ad libitum E. kuehniella
eggs to O. laevigatus did not prevent cannibalistic behaviour at high nymphal densities. The higher
attractiveness of the mobile conspecific food versus that of the immobile heterospecific (factitious)
food was believed to be the reason for this behaviour in this and other species of predatory bugs

(Grundy et al. 2000; Bonte & De Clercq 2011).
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In order to prevent cannibalism in laboratory colonies, several measures can be taken. Shelter
materials can be placed into the rearing cages, such as shredded paper (Chambers et al. 1993; Arijs &
De Clercq 2001a), wax paper (Bonte & De Clercq 2010a, 2011), mesh sheets (Shimizu & Kawasaki 2001),
rice grains (Ito & Nakata 1998b) and wheat grains (Ito 2007). Survival rates showed that oviposition
substrates such as bean pods or lipophilic surfaces such as wax paper and plastic were more suitable
for rearing O. laevigatus than household paper (Bonte & De Clercq 2010a). Moreover, nymphal
population density should be kept low to prevent mortality caused by cannibalism, competition for
food and space, and susceptibility to pathogens. In commercial facilities, initial densities of O.

laevigatus can go up to 4.25 eggs/cm? (Bonte & De Clercq 2011).

2.5.3 Storage

Orius species can be stored for relatively short periods at low temperatures (e.g., 9 to 13°C), but a
negative effect of the thermoperiodic condition on female fecundity and longevity may occur (Rudolf
et al. 1993). An appropriate temperature for cold storage of O. laevigatus without quality loss
appeared to be 10°C, and this for a maximum of 36 days (Kim et al. 2009). Bueno et al. (2014) found

that O. insidiosus can be stored up to 10 days at 8°C without loss of quality.

Diapausing predators can be stored for significantly longer periods and with considerably less negative
impact (e.g., reduced mortality) than is the case when non-diapausing predators are simply held at
lower temperatures (Tiitanen 1988; Tauber et al. 1993). For example, half of the females of O. sauteri
and O. minutus from Japan, in which diapause was induced under short days, survived for more than
100 days at 0°C (Ito & Nakata 1998a). Understanding the timing of photosensitive stages and the
conditions required for diapause induction, maintenance, and termination allows for more efficient
use of diapause in mass production and long-term storage of commercially produced predators

(Ruberson et al. 2000; Musolin et al. 2004).

2.5.4 Quality assurance

Augmentative biological control has become a worldwide booming business. This success puts
increasing pressure on the production capacities of the commercial insectaries, which may result in
the production of lower quality natural enemies. In order to anticipate problems concerning the quality

of the produced natural enemies quality assurance procedures are in place. The overall quality of a
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beneficial organism can be defined as its ability to function as intended after release into the field (van
Lenteren 2003). This implies that for every natural enemy quantifiable characteristics relevant for field
release must be defined (Bigler 1989). Possible quality control parameters for arthropod predators are:
morphological characters (body size, weight and abnormalities), developmental (duration and survival)
and reproduction parameters (sex ratio and symbiont association, fecundity and longevity),
biochemical composition (protein, lipid and carbohydrate content), behaviour and genetic traits. The
establishment of relationships between certain parameters, e.g., between body size and fecundity or
longevity, may help in simplifying quality control procedures. The ultimate quality criterion for a mass-
produced natural enemy is its capacity to reduce pest populations, which can be evaluated by
measuring the predation efficiency (Thompson & Hagen 1999; Grenier & De Clercq 2003; De Clercq
2008). Besides being expensive and time-consuming, the complexity of a field setting may obscure the
actual cause for the failure or success of natural-enemy release. Therefore, the first assessment of the
quality of an in-vitro- or in-vivo-produced beneficial will preferably be done in a laboratory setting
(Grenier & De Clercqg 2003). However, predation rates measured under unrealistic laboratory

conditions should be extrapolated to the field situation with caution.

The physiological (morphology, development and reproduction) and behavioral (predation or
parasitation rate, host localisation, walking and flying) characteristics of an insect can be influenced by
genetic and non-genetic factors. The most important genetic factor in a rearing environment is
selection. Selection pressure increases as the rearing becomes more artificial. The use of artificial diets
may also lead to genetic bottleneck effects further decreasing the genetic variability. This could lead
to a reduced capacity of the natural enemy to interact with its natural (target) prey or to adapt to
nonstandard environmental conditions. A further approach to maintain populations of good quality
during mass-rearing is to avoid the detrimental effects of inbreeding as much as possible during the
first generations of a new captive population. When inbreeding is extreme, loss of fitness is observed,
such as reduction in size, fertility and vigor (Manson et al. 1987; Grenier & De Clercq 2003). Inbreeding
problems depend on species characteristics, but are strongly influenced by the genetic heterogeneity
of the founder population. This heterogeneity largely depends on the number of founder individuals
in the colony. Castafié et al. (2014) showed that 10 founder couples suffice for starting a O. laevigatus
colony without loss in quality of its relevant biological characteristics. In practice, fitness reductions
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are often prevented by regularly replacing laboratory populations with new, field-collected individuals

(Hoekstra 2003).

Non-genetic parameters that can affect the characteristics of an insect include the physical conditions
of rearing systems, the presence of pathogens and the quality of the food offered (Bigler 1989; Grenier
& De Clercq 2003). Wolbachia is a well-known Rickettsiaceae that strongly interferes with ‘normal’ sex
ratio determination in many arthropod species (Werren 1997; Stouthamer et al. 1999). For
entomophages the main reported effects are cytoplasmic incompatibility and thelytokous
parthenogenesis in Hymenoptera, and male killing in Coccinellidae. Cytoplasmic incompatibility was
also reported in the Heteropteran species M. pygmaeus (Machtelinckx et al. 2009) and O. strigicollis
(Watanabe et al. 2011). The antibiotics used in artificial diets for preventing bacterial contamination,
mainly by gamma Proteobacteria, are not effective in removing endosymbiotic Wolbachia from
infected strains (Stouthamer et al. 1990). In fact, penicillin and streptomycin are used for bacterial
control and tetracyclin and rifampicin for Wolbachia elimination. Pure female lines with a Wolbachia
infection could be an advantage for biological control, because female predators kill most prey. On the
other hand, Wolbachia infections may modify the fecundities. The presence or absence of a symbiont
could be a key quality criterion for some insect species (Grenier & De Clercq 2003; Machtelinckx et al.

2009).

For a number of arthropod biological control agents the International Organisation for Biological
Control (IOBC) has developed quality control standards for commercially produced batches (van
Lenteren et al. 2003). These standards are mainly focused on the number of living specimens in a
container, their sex ratio, longevity and fecundity. In many synovigenic insects (i.e., insects in which
egg production is more or less continuous during the lifetime of the female), however, determining
lifetime fecundity is a tedious and time consuming activity. Callebaut et al. (2004) and Vandekerkhove
et al. (2006) proposed a method to assess fecundity of the predatory mirid M. pygmaeus based on
counting oocytes in dissected female adults. Likewise, Bonte and De Clercq (2008) found a strong
correlation between oocyte counts, lifetime oviposition, and the number of eggs laid after 8 days by
O. laevigatus females. This type of rapid dissection assay may thus be effective to reliably and

economically assess the fitness of these predators.
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Orius species in the South-African sugarcane agro-ecosystem: their
potential as biological control agents for Fulmekiola serrata Kobus and

other sap sucking pests
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3.1 Introduction

The sugarcane thrips, Fulmekiola serrata Kobus (Thysanoptera: Thripidae), is native to Asia and has
spread to Madagascar, Mauritius, Réunion, Barbados, Guadeloupe, Trinidad, Venezuela and South
Africa. It was possibly introduced into South Africa with planting material or by wind from Mauritius
(Way et al. 2006b; Sallam 2009). Since its first record in December 2004, F. serrata has rapidly spread
throughout South Africa’s sugarcane industry (Saccharum spp. hybrids) (Leslie & Donaldson 2005; Way
et al. 2006a; Way 2008). The species causes damage in young sugarcane (Figure 3.1), inhabiting rolled
leaf spindles and curled margins of leaves, where it oviposits and feeds on the leaf epidermis and
chlorophyll, thus reducing the plants photosynthetic ability (Sallam 2009). Because of their cryptic
lifestyle and fast development of resistance to pesticides (Jensen 2000), thrips are notably difficult to
control. Therefore, the availability of an effective indigenous natural enemy of F. serrata, living in the
same cryptic habitat, could provide local growers with an alternative management strategy against
this invasive pest. Such natural enemies may be even more valuable for biological control programs if
they also attack other sugarcane pests such as aphids (Hemiptera: Aphididae), and thrips pests in other
South African agricultural systems. Besides F. serrata in sugarcane, other economically important
thrips pests in South Africa include the citrus thrips Scirtothrips aurantii Faure and two avocado related
thrips species, Heliothrips haemorrhoidalis Bouché and Selenothrips rubrocinctus (Giard) (Hesse 1940;
Dennil 1992; Way et al. 2006b). Further, EPPO (2012) reported the presence in South Africa of
Frankliniella occidentalis (Pergande), a worldwide pest of a wide range of vegetable and ornamental

crops.

By examining more than 50,000 spindles of 3 to 4 month old sugarcane from 2005 to 2007 in South
Africa, Way (2008) found anthocorids (Hemiptera: Anthocoridae) to be amongst the most abundant
predators inhabiting the same ecological niche as F. serrata does. These insects, also called flower bugs
or minute pirate bugs, are common in many agricultural habitats and are typically amongst the most
abundant predators in field-cropping systems (Hernandez & Stonedahl 1999). Only 14 anthocorid
species have been recorded from southern Africa to date, but the museums possess many unidentified
specimens and it is highly likely that many more species (the majority of them probably undescribed)

occur in South Africa (D.H. Jacobs, personal communication). According to Carayon (1961), the most
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common South African anthocorids belong to the Oriini tribe and the majority of them fall into the
genus Orius . However, Hernandez and Stonedahl (1999) suggested that only about two-thirds of the

actual African Orius fauna is known.

Figure 3.1 Adult of F. serrata (left) and damaged young sugarcane plant by F. serrata (right) (Sallam 2009)

Most known anthocorid species are polyphagous predators (Péricart 1972) that feed on different life
stages of a wide range of small arthropods, including springtails (Collembola), leaf hoppers (Hemiptera:
Cicadellidae), psyllids (Hemiptera: Psyllidea), scales (Hemiptera: Coccidae), aphids, fly larvae (Diptera),
grain beetles (Coleoptera), caterpillars (Lepidoptera), leaf-roller larvae (Lepidoptera: Tortricidae),
psocids (Psocoptera), thrips (Carayon 1972; Kelton 1978; Hernandez & Stonedahl 1999), and different
mite (subclass: Acari) species, such as oribatids (Oribatida), phytoseiids (Mesostigmata: Phytoseiidae),
and tetranychids (Trombidiformes: Tetranychidae) (Askari & Stern 1972a; Tawfik & Ata 1973; Lattin
1999). Anthocorids are also known to be omnivores, feeding on pollen and other plant materials

besides arthropod prey (Coll 1998; Lattin 1999; Coll & Guershon 2002; Horton 2008).

Within the Anthocoridae family, species of the genus Orius Wolff are economically important
predators of agricultural pests such as thrips, aphids, mites, whiteflies (Hemiptera: Aleyrodidae) and
the eggs of Lepidoptera, both in greenhouses and field crops. However, they appear to show a

preference for attacking larval and adult thrips over other available prey (section 2.4.7.1).
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Consequently, Orius species have been used successfully in biological control programs in greenhouse

and open-field cropping systems against various thrips pests world-wide (section 2.5.1).

This paper presents the results from surveys conducted in 2008, 2009 and 2013 primarily in and around
South African sugarcane fields, in an attempt to find anthocorid natural enemies of sugarcane thrips.
Most observations were made in the provinces of Mpumalanga and KwaZulu-Natal, where sugarcane
is the predominant crop. In 2013, surveys were also done in the Western Cape Province where other

crops were monitored for the presence of anthocorids.

3.2 Materials and Methods

Specimens of Orius spp. and other anthocorids were collected from sugarcane flowers, spindles of
young sugarcane and several pollen producing neighbouring (weedy) plants (Maes 2009; Cottenie
2010; Vangansbeke 2010). In 2008 and 2009, the focus was on the sugarcane fields in Mpumalanga
and KwaZulu-Natal, representing the epicentre of the South African sugarcane production. In 2013,
besides sugarcane, other crops including maize (Zea mays L.) were inspected for the presence of
anthocorid thrips predators. In that year, the survey area was expanded to the non-sugarcane
producing Western Cape Province, where was being monitored for the presence of anthocorids in a
vineyard (Vitis sp.), an orange (Citrus sinensis (L.) Osbeck) plantation and in naturally occurring fynbos
(the natural shrubland or heathland vegetation occurring in a small belt of the Western Cape of South
Africa, mainly in winter rainfall coastal and mountainous areas with a Mediterranean climate).
Sampling sites were chosen at random (see map; Figure 3.2) as the main objective of the surveys was
to outline associations between anthocorids and plants rather than to assess their population densities
or spatial distributions. A list of the sampling sites per province, including some information on their
geography and climate, is given in Table 3.1. All sampling locations are situated in the warm temperate

climate zone (Kottek et al. 2006).

Insects were collected by placing a large Ziplock plastic bag (24 x 35 cm) over the flower heads and
shaking the bag plus flowering head vigourously. Dislodged anthocorids running inside the bag were
then directly sucked up using an aspirator, placed in ventilated vials (10 cm high, 3 cm diameter), and
taken back to the laboratory at the South African Sugarcane Research Institute (SASRI). There, they

were placed in a 70% ethanol solution to be preserved for later identification. Orius specimens were
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identified using the keys developed by Carayon (1961) and Hernandez and Stonedahl (1999), based on
an examination of male and female genitalia. Live adults of the two most abundant species were used
from subsequent field collections to initiate laboratory colonies. Based on laboratory experiments on
individuals of these colonies, their biology and biocontrol potential will be investigated (see all

following Chapters).
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Figure 3.2. Map of South Africa with sampling sites shown (see also Table 3.1)
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Table 3.1 List of the different sampling sites per province, including information on geography and climate

Province Location? Coordinates®  Altitude  Koppen-Geiger Annual mean Annual
(m)° climate min/max rainfall
classification®  temperature (°C)*  (mm/y)*

KwazZulu- Durban (1) 29°47'15.1"S 96 Cfa 16.6 /26.4 1040
Natal 30°57'51.2"E
KwaZulu- Eston (2) 29°51'59.0"S 516 Cfa 13.2/27.9 863
Natal 30°32'04.7"E
KwazZulu- Ginginhlovu  29°01'03.0"S 74 Cfa 17.8/24.7 1212
Natal (3) 31°35'01.3"E
KwaZulu- Mt Edge- 29°42'19.3"S 90 Cfa 17.6/25.0 925
Natal combe (4) 31°02'34.2"E
KwaZulu- Pongola (5) 27°23'36.0"S 509 Cfa 15.4/28.1 678
Natal 31°37'34.1"E
KwaZulu- Stanger (6) 29°22'40.8"S 43 Cfa 16.6 / 26.4 1040
Natal 31°17'47.4"E
KwaZulu- Umfolozi (7)  28°19'26.3"S 74 Cfa 17.8/24.7 1212
Natal 32°14'17.0"E
KwazZulu- Umzimkulu 30°15'37.1"S 763 Cfb 13.2/27.9 863
Natal (8) 29°55'27.1"E
Mpumalanga  Malelane (9) 25°28'50.2"S 345 Cwa 19.0/28.5 644
31°32'38.8"E
Western Citrusdal (10) 32°35'34.9"S 170 Csb 10.8/25.2 120
Cape 19°01'49.0"E
Western Stellenbosch  33°55'58.3"S 129 Csb 12.0/27.2 802
Cape (11) 18°52'28.6"E

2 the numbers between brackets are used to indicate the sampling locations on the map (Figure 3.2)
Sources: ? Google Earth (2015); © World Weather Online (2015)

d C = warm temperate climate; s = dry summer; w = dry winter; f = fully humid; a = hot summer; b = warm summer (Kottek
et al. 2006)

3.3 Results and Discussion

Our surveys extended the known distribution of Orius naivashae (Poppius) and Orius tantillus
(Motchulsky) southwards into South Africa (Tables 3.3 and 3.4). Orius naivashae was previously only
known from Kenya, preying on Helicoverpa armigera (Hibner) in cotton (Hernandez & Stonedahl,

1999). Orius tantillus has been observed in several East African countries, more in particular in
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association with H. armigera in sunflower and cotton in Kenya and on heads of Pennisetum typhoides
(Burm.) in Tanzania (Hernandez & Stonedahl 1999). Orius thripoborus (Hesse) (Table 3.5) had been
observed before in South Africa, feeding on H. armigera eggs in cotton fields (Van Hamburg & Guest
1997), and as a natural enemy of the thrips species S. aurantii, H. haemorrhoidalis and S. rubrocinctus
(Hesse 1940; Steyn et al. 1993). Dennil (1989) suggested that O. thripoborus might be a useful
biological control agent against H. haemorrhoidalis and S. rubrocinctus in the old Eastern Transvaal
Province in South Africa. In Kenya, O. thripoborus was found feeding on eggs of H. armigera in

sunflower and cotton (van den Berg & Cock 1995; van den Berg et al. 1997).

The single record of Orius brunnescens (Poppius) confirms its presence in South Africa (Table 3.2).
According to Carayon (1961), O. brunnescens is widely distributed in Africa, where it occurs from sea
level to the alpine meadows at altitudes of 3000 m. Nevertheless, it appears to mainly occur in
mountainous habitats rather than agricultural ecosystems (Carayon 1961). Likewise, during our survey,
O. brunnescens was only found in Eston, which is regarded as the midlands of KwaZulu-Natal, and not

at the coastal sugarcane sites sampled (Tables 3.1 and 3.2).

Table 3.2 Records of O. brunnescens from different locations and host plants in South Africa, from 2008 to 2013. Records are
clustered by plant category

Numbers?
Host plant (Neighbouring) crop system  Location Date

Male Female Nymph

Grassland weedy forbs

Senecio madagascariensis Poir. sugarcane Eston July 2008 / / /

@ Numbers of collected adults and nymphs were not registered when marked with ‘/’

Table 3.3 Records of O. naivashae from different locations and host plants in South Africa, from 2008 to 2013. Records are
clustered by plant category

(Neighbouring) . Numbers?
Host plant Location Date
crop system

Male Female Nymph

Grassland weedy forbs

Amaranthus hybridus L. sugarcane Mt Edgecombe Aug 2009 0 1 1
Ageratum conyzoides L. sugarcane Eston July 2008 / / /
Ageratum conyzoides L. sugarcane Mt Edgecombe Aug 2009 3 14 17
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Ageratum conyzoides L. sugarcane Mt Edgecombe Sept 2009 8 38 46
Ageratum conyzoides L. sugarcane Stanger Sept 2009 1 0 1
Ageratum conyzoides L. sugarcane Mt Edgecombe Oct 2013 2 9 4
Ageratum conyzoides L. sugarcane Pongola Oct 2013 0 3 0
Ageratum conyzoides L. sugarcane Mt Edgecombe Dec 2013 0 1 0
Athanasia trifurcata L. citrus Citrusdal Oct 2013 0 1 0
Bidens pilosa L. sugarcane Mt Edgecombe July 2009 1 8 9
Bidens pilosa L. sugarcane Umfolozi July 2009 0 4 4
Bidens pilosa L. sugarcane Mt Edgecombe Aug 2009 3 19 22
Bidens pilosa L. sugarcane Mt Edgecombe Sept 2009 1 2 3
Bidens pilosa L. sugarcane Pongola Oct 2013 0 4 0
Conyza bonariensis sugarcane Pongola Oct 2013 0 1 0
Conyza sp. sugarcane Pongola Oct 2013 0 3 0
Senecio madagascariensis Poir. sugarcane Eston July 2008 / / /
Senecio madagascariensis Poir. sugarcane Umfolozi July 2009 0 1 1
Senecio madagascariensis Poir. sugarcane Mt Edgecombe Aug 2009 6 16 22
Senecio madagascariensis Poir. sugarcane Mt Edgecombe Sept 2009 35 82 117
Senecio madagascariensis Poir. sugarcane Stanger Sept 2009 0 1 1
Senecio madagascariensis Poir. sugarcane Pongola Oct 2013 0 3 0
Senecio madagascariensis Poir. sugarcane Mt Edgecombe Oct 2013 1 6 3
Senecio sp. sugarcane Pongola Oct 2013 1 7 0
Tall grasses
Pennisetum purpureum Schumach. sugarcane Stanger Sept 2009 0 1 1
Saccharum officinarum L. sugarcane Ginginhlovu July 2008 / / /
Saccharum officinarum L. sugarcane Mt Edgecombe Aug 2009 0 1 1
Wetland tall grass reeds
Phragmites australis (Cav.) Trin. Ex sugarcane Mt Edgecombe Aug 2009 0 1 1
Steud.
Indigenous trees
Erythrina lyistemon Hutch. sugarcane Umfolozi July 2009 0 2 2
Totals collected®: 62 229 256

a Numbers of collected adults and nymphs were not registered when marked with ‘/’

b only for the years 2009 and 2013

48



Orius species in the South African sugarcane agro-ecosystem

Table 3.4 Records of O. tantillus from different locations and host plants in South Africa, from 2008 to 2013. Records are
clustered by plant category

(Neighbouring) . Numbers?
Host plant Location Date
crop system

Male Female Nymph

Grassland weedy forbs

Amaranthus spinosa L. sugarcane Stanger Sept 2009 0 1 1

Bidens pilosa L. sugarcane Malelane Aug 2008 / / /

Bidens pilosa L. sugarcane Stanger Sept 2009 0 1 1

Conyza sp. sugarcane Pongola Oct 2013 0 1 0

Flaveria bidentis L. sugarcane Malelane July 2009 0 1 1

Senecio madagascariensis Poir. sugarcane Eston July 2008 / / /
Tall grasses

Pennisetum purpureum Schumach. sugarcane Pongola Aug 2008 / / /

Pennisetum purpureum Schumach. sugarcane Stanger Aug 2009 13 44 57

Pennisetum purpureum Schumach. sugarcane Stanger Sept 2009 32 24 56

Saccharum officinarum L. sugarcane Pongola Aug 2008 / / /

Saccharum officinarum L. sugarcane Malelane Aug 2008 / / /

Saccharum officinarum L. (flowering) sugarcane Pongola Oct 2013 1 16 2

Sorghum sudanense Stapf. sugarcane Pongola Sept 2008 / / /

Zea mays L. sugarcane Pongola Aug 2008 / / /

Zea mays L. sugarcane Malelane July 2009 4 21 25

Zea mays L. sugarcane Pongola Oct 2013 2 13 0

Wetland tall grass reeds

Cyperus fastigiatus Robbt. sugarcane Pongola Aug 2008 / / /

Indigenous trees

Acacia nigrescens Oliver sugarcane Malelane Aug 2008 / / /
Bougainvillea sp. sugarcane Mt Edgecombe Oct 2013 1 0 0
Erythrina lysistemon Hutch. sugarcane Malelane Aug 2008 / / /
Melia azedarach L. sugarcane Pongola Aug 2008 / / /

Indigenous shrubs

Ochna atropurpurea (Hochst.) Walp. sugarcane Mt Edgecombe Sept 2008 / / /

Totals collected®: 53 122 143

a Numbers of collected adults and nymphs were not registered when marked with ‘/’

b only for the years 2009 and 2013
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Table 3.5 Records of O. thripoborus from different locations and host plants in South Africa, from 2008 to 2013. Records are
clustered by plant category

Host plant (Neighbouring) Location Date Numbers?
crop system Male Female Nymph
Grassland weedy forbs
Ageratum conyzoides L. sugarcane Eston July 2008 / / /
Ageratum conyzoides L. sugarcane Mt Edgecombe Sept 2009 2 1 3
Bidens pilosa L. sugarcane Umfolozi July 2009 2 6 8
Bidens pilosa L. sugarcane Mt Edgecombe Sept 2009 0 1 1
Flaveria bidentis L. sugarcane Malelane July 2009 1 1 2
Indigofera sp. vineyard Stellenbosch Nov 2013 1 0 2
Lantana camara L. sugarcane Pongola Aug 2008 / / /
Parthenium hysterophorus L. sugarcane Mt Edgecombe Oct 2013 0 1 0
Senecio madagascariensis Poir. sugarcane Eston July 2008 / / /
Senecio madagascariensis Poir. sugarcane Mt Edgecombe Aug 2009 0 1 1
Senecio madagascariensis Poir. sugarcane Mt Edgecombe Sept 2009 0 2 2
Tagetes minuta L. sugarcane Eston July 2008 / / /
Tall grasses
Saccharum officinarum L. sugarcane Pongola Aug 2008 / / /
Saccharum officinarum L. sugarcane Mt Edgecombe July 2009 0 2 2
Saccharum officinarum L. sugarcane Malelane July 2009 0 3 3
Saccharum officinarum L.
(young spindle with F.serrata) sugarcane Mt Edgecombe Nov 2013 1 2 0
Sorghum sudanense Stapf. sugarcane Pongola Sept 2008 / / /
Zea mays L. sugarcane Malelane Aug 2008 / / /
Zea mays L. sugarcane Pongola Sept 2008 / / /
Zea mays L. sugarcane Malelane July 2009 5 8 13
Indigenous trees
Acacia robusta Burch. sugarcane Malelane Aug 2008 / / /
(S?P:ﬁizn::cil.j)izlr\ylf:.lf\(lj\:li‘(;ht sugarcane Umzimkulu Sept 2008 / / /
Citrus limon L. sugarcane Pongola Sept 2008 / / /
Erythrina lysistemon Hutch. sugarcane Umfolozi July 2009 1 2 3
Erythrina lysistemon Hutch. sugarcane Durban Sept 2009 1 2 3
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Eucalyptus cladocalyx F. Muell. sugarcane Mt Edgecombe Oct 2013 7 4 0
Jacaranda acutifolia auct. non-
sugarcane Mt Edgecombe Oct 2013 0 4 0
Humb. & Bonpl.
Mangifera indica L. sugarcane Umzimkulu Sept 2008 / / /
Maytenus oleoides Loes. fynbos Stellenbosch Nov 2013 2 2 2
Melia azedarach L. sugarcane Pongola Sept 2008 / / /
Persea americana Mill. sugarcane Umzimkulu Sept 2008 / / /
Indigenous shrubs
Boscia senegalensis (Pers.) Lam.
. sugarcane Malelane Aug 2008 / / /
ex Poir.
Brunia sp. fynbos Stellenbosch Nov 2013 1 3 0
Erica glandulosa Thunb. fynbos Stellenbosch Nov 2013 4 11 0
Ochna atropurpurea (Hochst.
purp ( ) sugarcane Mt Edgecombe Sept 2008 / / /
Walp.
Rubus cuneifolius Pursh sugarcane Malelane Aug 2008 / / /
Totals collected®: 28 56 45

a Numbers of collected adults and nymphs were not registered when marked with ‘/’

b only for the years 2009 and 2013

Both abiotic (e.g., climate) and biotic factors (e.g., presence and abundance of prey and flowering host
plants) determine the seasonal occurrence of anthocorid predators in South Africa. As surveys in this
study were mainly performed during winter and spring over three scattered years, caution is needed
when trying to describe the habitat and climate preferences of the collected Orius species. Despite the
fact that most collections were done in and around sugarcane fields, the surveys indicated that the
recorded Orius species showed some degree of preference for certain plant categories (Tables 3.2 to
3.5). Nearly all of the predatory bugs were collected from the pollen producing parts of the plants.
High numbers of O. naivashae were collected from pollen producing grassland weedy forbs, and
occasionally from (wetland) tall grasses (Poaceae), including sugarcane (Table 3.3). Orius thripoborus
was more prevalent in taller vegetation (indigenous shrubs and trees, and tall grasses), most of which
were cash crops such as sugarcane, maize, lemon (Citrus limon (L.) Burm. f.), mango (Mangifera indica
L.) and avocado (Persea americana Mill.). It was the only anthocorid observed in the pollen-free spindle

of young sugarcane, with F. serrata. Orius thripoborus was more rarely observed on pollen producing
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weeds (Table 3.5). Orius tantillus was prevalent on tall grasses, including maize and sugarcane. This
species was only occasionally found on weeds, wetland tall grass reed, and indigenous shrubs and trees

(Table 3.4).

The abundance of O. naivashae was highest in regions with hot summers and humid conditions
throughout the year (e.g., Mount Edgecombe). A single record of O. naivashae was made in Citrusdal,
a location characterised by warm and dry summers, though it was in an irrigated crop (citrus). Orius
thripoborus was found at varying conditions within the widespread warm temperate climate zone.
Latter species was located in both the Western Cape (e.g., Stellenbosch, with warm and dry summers),
Mpumalanga (e.g., Malelane, with dry winters and hot summers) and KwaZulu-Natal (e.g., Mount
Edgecombe, humid all year round, with hot summers; or Umzimkulu, humid all year round, with warm
summers). Finally, O. tantillus, a species known from more tropical regions (Nakashima & Hirose
1997a, b), was mainly collected in regions where annual temperatures are overall higher, driven by hot
summers, combined with high year-round humidity (e.g., Pongola), or with dry winters (e.g.,
Malelane). Given the single record of O. brunnescens, there is insufficient information to hypothesise

about its host plant and climate preferences.

More female than male Orius individuals were observed in 2009 and 2013 (the numbers of collected
males and females were not recorded in the survey year 2008). For O. thripoborus, O. tantillus and O.
naivashae, 2, 2.3 and 3.7 times more females than males were recorded in the field, respectively
(Tables 3.3 to 3.5). In most species, dispersal rates vary between sexes and male and female offspring
may disperse from one habitat to another with different probabilities (Julliard 2000). Especially on
sunny days, Orius females engage less in flight activity than males do, and invest more time in on-plant
foraging and oviposition activities (Tuda & Shima 2002). As most of the field surveys took place when
weather conditions were favourable, the probability to encounter female Orius bugs was therefore
greater compared to males. The difference in observed sex ratio between O. naivashae on the one
hand, and O. thripoborus and O. tantillus on the other, is likely due to a naturally occurring female bias
in the sampled O. naivashae populations. Sex-determining mechanisms in invertebrates are of genetic
and/or environmental origin, but also cytoplasmic factors, like the secondary endosymbionts

Wolbachia and Spiroplasma, may be involved (Stouthamer et al. 1999; Cook 2002). Molecular studies
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have shown that the bacterial endosymbiont Wolbachia was present in our O. naivashae population
(J. Bonte, unpublished data), but the sex-determining mechanism of the endosymbiont in this
anthocorid needs further investigation (see Chapter 9). The only other report of a skewed sex ratio in
an Orius sp. is that by Shapiro et al. (2009), where a skewed field sex ratio was found for O. insidiosus
in the favour of males; however, the authors stated that this was most likely the result of sampling

error or differential hatch rate or survival of one sex.

Populations of Orius spp. may be supported by pollen-producing wild or cultivated plants in the vicinity
of the crop. Habitats with different plant communities and phenologies attract alternative prey and
can, whether or not in combination with pollen, support populations of omnivorous predators when
target prey becomes scarce in a given crop system (Coll 1998; Lundgren 2009). This aspect can be used
in the management of Orius spp. populations in an integrated pest management system against a pest
such as F. serrata. The temporal resources provided by the pollen-producing plants can be
appropriately synchronized with the predator and pest population buildup in nearby crops. Therefore,
regular cutting of weeds for example, may force predators to move into crop fields (Coll 1998).
Furthermore, the impact of Orius spp. may be broadened to other sugarcane pests, as many of the tall
grasses (e.g., sugarcane, Pennisetum purpureum Schumach., Z. mays and Sorghum spp.) and wetland
sedges (e.g., Cyperus spp.) on which Orius spp. were observed, are known hosts for Eldana saccharina
Walker (Lepidoptera: Pyralidae). This stalk borer has been the most serious pest in sugarcane since
1970 (Conlong 2001; Keeping et al. 2007). It has a very cryptic life cycle, hiding its eggs behind dry leaf
sheaths, which small predators such as Orius spp. can access. The neonate larvae move op the stalks
of sugarcane once hatched, to ‘parachute’ off the green leaves to surrounding plants which they then
infest (Conlong et al. 2007). During this dispersal phase they will be prone to predation by Orius spp.
Augmentation of the relevant Orius spp. when eggs and neonate larvae are abundant in sugarcane
may thus contribute to Integrated Pest Management of E. saccharina. Further, Orius spp. may also
hold promise for the suppression of the yellow sugarcane aphid, Sipha flava (Forbes) (Homoptera:

Aphididae), a recently discovered pest in sugarcane in South Africa (Conlong & Way 2014).
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Chapter 4

4.1 Introduction

Insects are poikilothermic animals with limited ability to regulate their body temperature. For this
reason, temperature can exert a major influence on such organisms: at a macrophysiological scale,
determining distributions and abundance, and at a more localised level, affecting ‘rate-based’
processes such as development, reproduction, activity, predation and survival (Andrewartha & Birch
1954; Jervis & Copland 1996; Cocuzza et al. 1997a; Obrycki & Kring 1998; Schwartz 2003; Bale et al.

2008).

The efficiency of biocontrol systems is largely defined by the knowledge about temperature responses
of an arthropod natural enemy. This knowledge is important for rearing the natural enemy, as well as
for assessing its field performance. The present study was undertaken to determine the effects of
temperature on the development and reproduction of O. thripoborus and O. naivashae. The
relationship between temperature and development of both predators was expressed as
developmental thresholds and degree-day accumulations. To achieve this, the widely applied and user-

friendly linear model was used (Kontodimas et al. 2004).

4.2  Materials and Methods

4.2.1 Stock culture

Cultures of O. thripoborus and O. naivashae were started in 2008 and 2009, respectively, with nymphs
and adults collected in and around sugarcane (Saccharum officinarum L.) fields in the South African
provinces Mpumalanga and KwaZulu-Natal (see Chapter 3). Stock colonies of both anthocorids were
established at Ghent University and maintained in climatic cabinets at 25 + 1°C, 65 + 5% relative
humidity (RH), and a photoperiod of 16:8 (L:D) h. The predators were cultured in cylindrical Plexiglas
containers (9 cm diameter, 4 cm high) containing a sharp pepper plant (Capsicum annuum L. ‘Cayenne
Long Slim’) as a water source and oviposition substrate (Figure 4.1). The food of nymphs and adults
consisted of a mixture of frozen Ephestia kuehniella Zeller eggs (Koppert B.V., Berkel en Rodenrijs, The
Netherlands); adults were also given dry honey bee pollen (N.V. Weyn’s Honingbedrijf, Ghent,
Belgium). Maintenance of the colony was being done every Monday, Wednesday and Friday. On these
days, adults were transferred to a fresh container, supplied with E. kuehniella eggs and pollen, and

allowed to oviposit for 2 or 3 days on the sharp pepper seedlings. On the next day of maintenance, the
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surviving adults were moved to a new container and their number was complemented to 80 adults,
using 4- to 5-day-old adults originating from the nymphal cultures. The remaining food in the old
container was removed and thus it eventually only contained a sharp pepper plant with a high number
of oviposited eggs which were allowed to develop and hatch during the following days. Upon egg
hatch, E. kuehniella eggs, adhered to 1 cm? pieces of household paper, were added to the rearing unit
as food for the predator nymphs; prey eggs were replenished on every maintenance day. The
predators remained in the same container for their entire nymphal life, until they had reached the
early adult stage. In this way the continuous culture of O. thripoborus and O. naivashae was assured.

To reduce cannibalism, a wrinkled piece of wax paper was placed in each container (Bonte & De Clercq

2011) (Figure 4.1).

Figure 4.1 Orius sp. rearing unit, provided with a sharp pepper plant and a wrinkled piece of wax paper (photo: author)

4.2.2 Experiments

All experiments were done at Ghent University in climatic cabinets set at different constant
temperatures, 65 + 5% RH, and a 16 h photophase. In all treatments, both nymphs and adults were
offered a diet of frozen eggs of E. kuehniella and a flat green bean pod (Phaseolus vulgaris L.) was
provided as a source of water and extra nutrients, hiding place, and oviposition substrate. Depending
on temperature, E. kuehniella eggs and bean pods were refreshed daily (29 to 35°C), or every other

day (12 to 25°C).
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4.2.2.1 Egg and nymphal development

Egg and nymphal development were determined at eight constant temperatures: 12, 15, 19, 23, 25,
29, 33 and 35°C. Eggs (< 24 h old) were collected from the stock colony (25°C) and transferred to an
incubator set at the desired temperature. Incubation time of the eggs deposited in the pepper plants
was monitored on a daily basis. For each treatment, 50 to 130 first instars (< 24 h old) were then caged
in individual plastic containers (4.5 cm diameter, 3 cm high) sealed with a lid having a ventilation hole
covered with a fine-mesh gauze. Development and survival of nymphs were monitored daily, and
newly emerged adults were sexed and weighed using a Sartorius Genius ME 215P balance (Sartorius,

Goettingen, Germany).

4.2.2.2 Reproduction

Adult reproduction was studied at 15, 19, 25 and 33°C. For this purpose, newly emerged adults (< 24
h old) were paired and transferred to similar plastic containers as those used for development
experiments. Adults were exposed to the same temperature as during their nymphal life. Bean pods
were checked daily for eggs to determine pre-oviposition period. After the first egg was laid, bean pods
were replaced daily (25 and 33°C), or every other day (15 and 19°C). Lifetime oviposition and egg hatch
were also monitored. As developmental experiments for O. naivashae did not yield sufficient male
adults due to skewed sex ratios, females in different temperature treatments were paired with one to
two day old males from the stock colony where needed, in order to obtain at least 10 replicates

(couples) per treatment. Longevities of paired males and females were also examined.

4.2.3 Data analysis

4.2.3.1 Development and reproduction

For both species, means were compared by using pairwise comparison procedures (Kutner et al. 2005).
In case the means were normally distributed (according to a Kolmogorov-Smirnov test), they were
analysed using a one-way analysis of variance (ANOVA). When a Levene test indicated that their
variances were homoscedastic, means were separated using a Tukey test; in case of heteroscedasticity,
a Tamhane test was applied. A Kruskal-Wallis H test was applied to analyse means which were not
normally distributed. In the latter case, means were pairwise separated with a Mann-Whitney U test.

Parameters expressed as percentages, i.e. nymphal survival, egg hatch and proportion of ovipositing
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females, were compared by means of a logistic regression. This regression is a generalised linear model
using a probit (log odds) link and a binomial error function (McCullagh & Nelder 1989). Sex ratios were
evaluated versus an equal male:female distribution (1:1 ratio) by means of a non-parametric Chi-

Square test (IBM SPSS Statistics 19, IBM 2011).

4.2.3.2 Day degree model

The relationship between temperature and development rate (1/development time) of egg, total
nymphal stage, and egg to adult stage of O. thripoborus and O. naivashae was described by a linear
regression model (Arnold 1959). This model is expressed by the equation “Y = a + bX”, where Y is the
development rate, X is the rearing temperature, and a and b are parameters. The lower temperature
thresholds of insect development were determined as the x-intercept (to = -a/b) (Arnold 1959) and the
thermal requirements (in degree-days or DD) were determined as the inverse of the slope (K = 1/b) of
the regression lines (Campbell et al. 1974). Data points at extreme temperatures which deviated from
the straight line through the other points were rejected for correct estimation of regression

parameters (Campbell et al. 1974; De Clercq & Degheele 1992).

4.3 Results

4.3.1 Development
Developmental parameters of O. thripoborus and O. naivashae at seven constant temperatures are
shown in Tables 4.1 and 4.2, respectively. As eggs of O. thripoborus and O. naivashae were unable to

hatch at 12°C, the lowest temperature allowing full development of both species was 15°C.

For both anthocorids, nymphal survival was highest at 23°C, averaging 98.0% for O. thripoborus and
88.9% for O. naivashae, and lowest at the extreme temperatures tested (O. thripoborus: y* = 60.96; df
=5; P<0.001; O. naivashae: y* = 84.78; df = 6; P <0.001) (Tables 4.1 and 4.2). Survival of O. thripoborus
nymphs at 19, 25 and 29°C was similar, whereas for O. naivashae, nymphal survival at 19°C did not
differ significantly from that at temperatures between 25 and 35°C. Survival rates were below 50% for
O. thripoborus nymphs reared at 33 and 35°C, and for nymphs of O. naivashae maintained at 15°C. At

35°C, no nymphs of O. thripoborus reached adulthood.
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Developmental times of males and females of both Orius species varied with temperature for eggs (O.
thripoborus: x* = 440.98; df = 6; P < 0.001; O. naivashae: x* = 461.16; df = 6; P < 0.001), nymphs (O.
thripoborus males: x* = 167.78; df = 5; P < 0.001; O. thripoborus females: x> = 161.11; df = 5; P < 0.001;
O. naivashae males: x? = 69.50; df = 6; P < 0.001; O. naivashae females: y* = 233.88; df = 6; P < 0.001)
and for total development (O. thripoborus males: y* = 169.01; df = 5; P < 0.001; O. thripoborus females:
X% =162.94; df = 5; P < 0.001; O. naivashae males: y* = 70.02; df = 6; P < 0.001; O. naivashae females:
x> =235.28; df = 6; P < 0.001) (Tables 4.1 and 4.2). Total developmental time of males and females
decreased with increasing temperature from 45.9 and 44.7 days (15°C) to 13.6 and 13.3 days (29°C)
for O. thripoborus, and from 58.8 and 58.4 days (15°C) to 11.1 and 11.5 days (33°C) for O. naivashae.
As temperatures rose above latter maximum values, there was a significant decline of development
rate for both Orius species. Only O. thripoborus eggs at 33°C developed as fast as those at 29°C (Table

4.1).

Linear regression analysis indicated a significant negative slope for the relationship between adult
weight of O. thripoborus and temperature (Figure 4.2). Heaviest males and females emerged at 15 and
19°C, and lightest at 33°C (males: F = 50.49; df = 5, 168; P < 0.001; females: F = 43.66; df = 5, 176; P <
0.001) (Table 4.1). For O. naivashae, there was no linear relationship between adult weight and
temperature (Figure 4.2), but at 35°C, both males and females had lower body weights than at the
other temperatures (males: F = 13.93; df = 6, 67; P < 0.001; females: F = 42.08; df = 6, 241; P < 0.001)
(Table 4.2). It deserves emphasis that in particular for O. naivashae adults, non-linear models would

provide better fit to the data than the linear models used here.

Sex ratios of O. naivashae were all female biased, except at 23°C, at which the proportions of males
and females were similar. Male:female ratios of O. naivashae stuck out at 25°C (1:10.8) and 29°C (1:8.4)
(Table 4.2). For O. thripoborus, no significant deviations from a 1:1 sex ratio were observed at any

temperature (Table 4.1).
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Figure 4.2 Adult weights of males and females of O. thripoborus and O. naivashae plotted against temperature. Curves were
fitted to the data using linear regression analysis. (A) Orius thripoborus males. (B) Orius thripoborus females. (C) Orius
naivashae males. (D) Orius naivashae females.

4.3.2 Day-degree model

Table 4.3 presents the lower development thresholds, degree-day requirements and linear regression
equations for the immature stages of O. thripoborus and O. naivashae. The relationship between
temperature and development rate for the total (egg to adult) development of O. thripoborus and O.
naivashae is shown in Figure 4.3. Development rates at 33 and 35°C for O. thripoborus nymphs and at

35°C for eggs and nymphs of O. naivashae fell outside the linear part of the curve, and hence were not
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included in the regression. Coefficients of determination (R?) for each regression exceeded 97% (with
all P > 0.05), indicating a good linear model fit in all cases. The total development of O. thripoborus
required 258 DD with a lower threshold of 10.2°C, whereas for O. naivashae, the values of these
parameters were 236 DD and 11.6°C, respectively. Mean DD estimates for egg, nymph and total
development did not differ among species (Student’s t-tests: egg: t = 2.13; df = 10; P = 0.059; nymph:
t=1.16;df =9; P=0.135; total: t = 1.25; df = 9; P = 0.243). All to-values of O. naivashae were consistently

higher than those of O. thripoborus.

Table 4.3 Lower development thresholds (to), degree-day requirements (K, mean + SEM) and linear regression equations with
corresponding coefficients of determination (R?) and P-values for development of the immature stages of O. thripoborus and
O. naivashae at different constant temperatures

Species Stage t(°C) K (DD) Regression equation R? P

O. thripoborus Egg 9.40 73.8+2.4 Y=0.0136X-0.1278 0.970 <0.001

Total nymphal  10.2  191.1+10.8 Y =0.0052X-0.0531 0.975 0.002

Egg to adult 10.2 2584+13.4 VY=0.0039X-0.0398 0.977 0.001

O. naivashae Egg 11.3 65.2+3.2 Y=0.0152X-0.1711 0.984 <0.001

Total nymphal  11.8 168.2+9.0 Y=0.0059X-0.0699 0.974 <0.001

Egg to adult 11.6  236.3+11.6 Y=0.0043X-0.0497 0.978 <0.001

4.3.3 Reproduction and longevity

Tables 4.4 and 4.5 show the reproductive parameters and longevities of O. thripoborus and O.

naivashae, respectively, at four constant temperatures.

At 33°C, O. thripoborus females were not able to produce eggs (Table 4.4), while 68.8% of O. naivashae
females oviposited at this temperature (Table 4.5). Between 15 and 25°C, proportions of ovipositing
O. thripoborus females ranged between 50.0% (15°C) and 79.0% (25°C), though they did not differ
among temperatures (x> = 3.22; df = 2; P = 0.199). At 25°C, a significantly higher proportion of O.
naivashae females (92.9%) produced eggs as compared with 15 and 19°C (30.0 and 52.4%,

respectively) (x> = 10.26; df = 3, 42; P = 0.016).
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Figure 4.3 Relationship between temperature and developmental rate for total (egg to adult) development of O. thripoborus
and O. naivashae at constant temperatures. Solid and broken lines represent linear regressions of all data from 15 to 29°C for
O. thripoborus, and from 15 to 33°C for O. naivashae, respectively.

For O. thripoborus, the preoviposition period significantly decreased with increasing temperature (F =
9.76;df=2,42; P<0.001), ranging from 22.8 days at 15°C to 9.3 days at 25°C (Table 4.4). Preoviposition
periods of O. naivashae females varied between 5.5 days (33°C) and 32.3 days (15°C), but they only

showed significant differences between 19°C and the highest two temperatures (F = 33.04 df = 3, 34;

P <0.001) (Table 4.5).

The total number of eggs produced by O. thripoborus females was higher at 25°C (100.7 eggs) than at
15°C (25.8 eggs), but was similar to their fecundity at 19°C (46.8 eggs) (F = 5.95; df = 2, 67; P = 0.004)
(Table 4.4). Fecundities of O. naivashae at 19 and 33°C (15.9 and 13.5 eggs, respectively) were similar
and both significantly lower than that at 25°C (68.1 eggs) (F = 12.47; df = 3, 57; P < 0.001). At 15°C the
fecundity of the latter species was substantially lower (0.9 eggs) than that at all higher temperatures

(Table 4.5).
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Chapter 4

Egg hatch was highest at 25°C for both O. thripoborus and O. naivashae (65.8 and 70.4%, respectively),
and decreased with temperature (O. thripoborus: x* = 124.27; df = 3; P < 0.001; O. naivashae: x* =
90.96; df = 2; P < 0.001) (Tables 4.4 and 4.5). At 15°C, O. naivashae eggs did not hatch, while at 33°C,

their hatchability was similar to that at 19°C.

Longevities of paired females ranged from 91.1 (15°C) to 14.0 days (33°C) for O. thripoborus (F =31.94;
df =3, 76; P <0.001) and from 70.3 (15°C) to 12.5 days (33°C) for O. naivashae (F = 28.38; df = 3, 55; P
< 0.001). For paired males, life-spans were between 68.9 (19°C) and 8.2 (33°C) days for O. thripoborus
(F =30.07; df = 3, 70; P < 0.001) and between 71.6 (19°C) and 12.5 days (33°C) for O. naivashae (F =
6.85; df =3, 57; P = 0.001) (Tables 4.4 and 4.5). Longevities decreased with increasing temperature,
except for O. naivashae males. At 15 and 19°C, life-spans were similar, except for O. thripoborus males,

which showed a very high longevity at 15°C.

Oviposition periods of O. thripoborus ranged from 25.0 days at 25°C to 41.2 days at 15°C, though
differences were not significant (F = 1.83; df = 2, 42; P = 0.173). For O. naivashae, longest oviposition
periods were found at both 19 and 25°C (38.1 and 23.7 days, respectively), and shortest periods were

observed at the extreme temperatures tested (F = 19.33; df = 3, 34; P < 0.001).

4.4  Discussion

No previous studies have addressed the thermal biology of O. thripoborus and O. naivashae.
Developmental data of the present study suggest that O. thripoborus is adapted to a cooler
temperature range as compared with O. naivashae. The duration of egg and nymphal development of
O. thripoborus and O. naivashae decreased significantly with an increase in temperature between 15
and 29°C. At 15°C, O. naivashae showed a poor nymphal survival and a pronounced prolongation of
nymphal development as compared to that at medium temperatures. On the other hand, O.
thripoborus developed well at 15°C, but suffered greater nymphal mortality at the high end of the
tested temperature range (> 33°C). Furthermore, O. thripoborus and O. naivashae developed fastest
at 29 and 33°C, respectively, with a deceleration of egg to adult development as temperature rose
further. Our findings suggest that the upper threshold temperature for development (i.e. the
temperature above which the rate of development starts decreasing (De Clercq & Degheele 1992)) of

the egg and nymphal stages of O. naivashae was between 33 and 35°C, whereas for O. thripoborus,
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this was between 33 and 35°C for eggs and between 29 and 33°C for nymphal and total development.
At these higher temperatures, adult body weights of both Orius species were substantially lower than
at the medium temperatures. For practical reasons, eggs were used which had been deposited by
females kept at 25°C for the development tests. It can therefore not be excluded that survival and

development rate of resulting nymphs were influenced by maternal effects (Gilchrist & Huey 2001).

Whereas the respective degree-day requirements were similar among the studied species, estimated
lower thresholds for immature development of O. naivashae were consistently higher than those of
O. thripoborus. Linear models have been documented to be suitable for calculation of lower
development thresholds and thermal constants of arthropods within a limited temperature range
(usually 15 to 30°C) (e.g. Campbell et al. 1974; De Clercq & Degheele 1992; Jarosik et al. 2002;
Kontodimas et al. 2004; Jalali et al. 2010). However, the estimated threshold is an extrapolation of the
linear portion of the relationship into a region where the relationship is unlikely to be linear (Jervis &
Copland 1996), which may vyield ecologically inaccurate estimates (Kontodimas et al. 2004). In our
study, the linear model estimated the lower thermal threshold for egg development of O. thripoborus
and O. naivashae to be 9.4 and 11.3°C, respectively, whereas our observations showed that eggs of
both species did not develop successfully at a constant temperature of 12°C. Non-linear models (e.g.,
Briere and Lactin) may enable a more accurate description of the relationship between arthropod
development and temperature (Kontodimas et al. 2004; Jalali et al. 2010); on the negative side, they

do not permit the calculation of thermal constants (Kontodimas et al. 2004).

Whereas for O. thripoborus sex ratios at all temperatures were essentially 1:1, skewed sex ratios in O.
naivashae were observed. In the latter species, sex ratios were female biased, except at 23°C.
Strikingly, 11 and 8 times more females than males emerged at 25 and 29°C, respectively. Molecular
studies showed that the endosymbiont Wolbachia is involved in this sex-ratio distortion mechanism (J.

Bonte, unpublished data; see also Chapter 9).

In the present study, fecundities and egg hatch rates were superior at 25°C for both species, and O.
thripoborus produced more eggs than O. naivashae. At 15°C, the fecundity of O. naivashae females
was greatly reduced as compared with higher temperatures (> 19°C), and the eggs deposited at this

temperature did not hatch. Further, only about half of the females of both species produced eggs at
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15°C. The higher proportion of non-ovipositing females at this low temperature may be due to the
induction of reproductive diapause, or to a decrease of mating activity as reported for other Orius spp.
(Alauzet et al. 1994; van den Meiracker 1994; Nagai & Yano 1999). However, there is no information
on the diapause sensivity of O. thripoborus and O. naivashae. At the high end of the temperature
range, not a single O. thripoborus female was able to produce eggs at 33°C. This could be due to
unsuccessful mating under high temperatures, as was observed in Orius strigicollis (Poppius), Orius

sauteri (Poppius) and Orius minutus (Linnaeus) (Kakimoto et al. 2005).

The differing thermal adaptation of O. thripoborus and O. naivashae is partly reflected by the recorded
distribution of both Orius species in South Africa (see Chapter 3). With winter temperatures averaging
11°C at night and 23°C at day in KwaZulu-Natal, South Africa (South African Weather Service 2011), to-
values of both studied predators do not seem to limit their winter development. This is corroborated
by observations of nymphs of both O. thripoborus and O. naivashae in sugarcane fields in July and
August 2008 and 2009 in the South African provinces Mpumalanga and KwaZulu-Natal (Chapter 3).
Moreover, to-values of local overwintering populations may even be lower than those estimated in this
laboratory study under long day conditions and with insects directly taken from rearing stocks. Musolin
and Ito (2008) found that in O. sauteri, temperature dependence of pre-adult development was
smaller and a lower development threshold was estimated under a 12:12h (L:D) photoperiod than

under long-day conditions.

The present study may provide useful information to understand the potential role of these predators
in augmentation and conservation biological control programs in southern Africa. First, 25°C appears
to be the optimal rearing temperature for both studied species. This temperature, in combination with
a diet of E. kuehniella eggs and green bean pods, resulted in rapid development, good survival, and
high reproduction. Second, as both species are complementary in terms of temperature adaptation,
there may be opportunities for their use at different times of the season. Whereas O. thripoborus may
have potential when cool temperatures prevail, O. naivashae may perform better in hot summer
situations. In Chapter 3, the population dynamics of both predators and their focal prey in sugarcane
and other crops in southern Africa were studied. In sugarcane, thrips survey data collected over the

years 2005 to 2009 indicated that infestations in the South African Umfolozi region followed an annual
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pattern. Numbers of F. serrata were relatively low during autumn and winter (from March to August)
and peaked in the middle of summer (December) (van den Berg et al. 2009). As there is no information
on the predation capacities of both Orius species on F. serrata and other key thrips pests during

different parts of the season, more research on their predation ecology is warranted (see Chapter 6).
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Chapter 5

5.1 Introduction

Because of their cryptic lifestyle and fast development of resistance to pesticides, thrips are difficult
to control. Moreover, many invasive thrips species may remain active outdoors during mild winters as
they often lack obligate diapause (Morse & Hoddle 2006). For instance, F. occidentalis has been
observed to survive the mild to cold winters in the southern regions of USA and Europe, and in Australia
(Kirk & Terry 2003). Therefore, information on the winter ecology of their natural enemies is
indispensable in order to achieve an effective biological control. In Chapter 4, we showed that O.
thripoborus is adapted to a slightly cooler temperature range as compared with O. naivashae. Based
on a linear degree-day model, lower threshold temperatures for total development were estimated to
be 10.2°C for O. thripoborus and 11.6°C for O. naivashae, with thermal requirements of 258.4 and
236.3 DD, respectively (Chapter 4). Further, very little is known concerning the behavior of O.
thripoborus and O. naivashae during southern African winters. Southern Africa has a wide variety of
climatic conditions ranging from Mediterranean in the south-western corner, to temperate on the
interior plateau (Highveld), subtropical in the northeast, and desert in the northwest. At higher
elevation in the interior part of South Africa, average winter temperatures can be low (e.g., 7°C in
Lesotho Highlands) and occasionally drop to below freezing during winter nights (Brand South Africa

2015; South African Weather Service 2015).

Diapause is an essential life-cycle element underlying the overwintering success of many temperate
and colder climate arthropod species. In most Orius species studied so far, only adult females
overwinter in a state of reproductive diapause and day length appears to play a key role in diapause
induction in these insects. However, for (sub)tropical anthocorids, diapause responses are poorly
studied. In general, insects show a weakened diapause response towards the tropics and subtropics

(section 2.4.4).

In the present study, the cold hardiness and diapause responses of O. thripoborus and O. naivashae
were studied in order to assess their overwintering strategies in southern Africa. Cold hardiness was
evaluated by determining the supercooling point (SCP) and lower lethal times (LTs) in the laboratory
(e.g., Hart et al. 2002a, b; Hatherly et al. 2005, 2008; Berkvens et al. 2010; Maes et al. 2014; Van

Damme et al. 2014). SCP measurements evaluate an insect’s resistance to a brief cold exposure,
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whereas LT measurements assess its cold hardiness when faced with a long-term cold exposure
(Chown & Terblanche 2006). Further, our study assessed the effect of photoperiod and temperature
on the development and reproduction of O. thripoborus and O. naivashae in order to improve insights

in the diapause potential of these predators.

5.2 Materials and methods

5.2.1 Stock culture

Stock colonies of O. thripoborus and O. naivashae were reared as described in section 4.2.1.

5.2.2 Diapause induction

To study the diapause responses of O. thripoborus and O. naivashae, the anthocorids were exposed to
three photoperiods at 18°C during their entire nymphal and adult life. The tested photoperiods are
close to the average day lengths that occur during the four seasons in South Africa, i.e. 14:10 (L:D) hin
summer, 12:12 (L:D) h in spring and autumn, and 10:14 (L:D) h in winter. The selected temperature
(18°C) represents the mean autumn/spring temperature in the southwestern part of South Africa.

Relative humidity in the incubators was maintained at 65%.

In all treatments, both nymphs and adults were offered frozen eggs of the flour moth E. kuehniella and
a flat green bean pod (Phaseolus vulgaris L.) was provided as a water source and oviposition substrate.
Flour moth eggs and bean pods were refreshed every three days. Eggs (< 24 h old) were collected from
the stock colony and transferred to an incubator set at 18°C and one of the three photoperiods. For
each treatment, 70 to 120 nymphs (< 24 h old) were then caged in individual plastic containers (4.5 cm
diameter, 3 cm high) sealed with a lid having a ventilation hole covered with a fine mesh-gauze.
Development and survival of nymphs were monitored daily and newly emerged adults were sexed and
weighed using a Sartorius Genius ME 215P balance (Sartorius, Goettingen, Germany). Adults (< 24 h
old) were paired and transferred to similar plastic containers and placed in the same incubator as
during their nymphal life. Bean pods were checked daily for eggs in order to determine the
preoviposition period. When the first egg was laid, bean pods were replaced every three days and eggs
were counted. On day 20 after adult emergence, supercooling points of females and males were

assessed (see further). Afterwards, females were dissected to quantify oocyte development (Callebaut
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et al. 2004; Chapter 7). Ovipositing females and females carrying mature eggs in the ovaries upon

dissection were treated as non-diapausing females (Ruberson et al. 1991; Kohno 1997).

Additionally, to better understand the process of diapause induction, the experiment was repeated
with both species being exposed to a 12:12 (L:D) h photoperiod at 23°C during their entire nymphal

and adult life.

5.2.3 Cold hardiness

The SCP is reached when body fluids of freeze-intolerant individuals freeze in response to exposure to
below zero temperatures. However, chill injury caused by temperatures above the insect’s SCP can
lead to death as well (Bennett & Lee 1989; Denlinger 1991; Bale 1993). Therefore, LTs have been used
as an additional index of cold hardiness (Bale et al. 1988; Watanabe 2002) and were quantified at
different temperatures, i.e., 0 and 5°C.

5.2.3.1  Acclimation

In part of the experiments, individuals were allowed to acclimate to lower temperatures. For this
purpose, newly moulted adults (< 24 h) from the stock colony (25°C) were transferred to an incubator
set at 10°C and a photoperiod of 16:8 (L:D) h for seven days. During this period, adults were kept in an
insect breeding dish and provided with E. kuehniella eggs and a piece of bean pod. Free water was also

provided by way of a moist cotton plug fitted into a 1.5 cm (diameter) plastic dish.

5.2.3.2  Supercooling point

The supercooling capacity was determined separately for males and females of O. thripoborus and O.
naivashae, subjected to six different experimental conditions. Three treatment groups consisted of 20-
day-old adults obtained from the diapause induction experiments at 18°C and the three different
photoperiods. Their responses were compared with those of 20-day-old adults collected from the stock
colony (16:8 (L:D) h and 25°C). Two further groups were set up to test the influence of acclimation;
these consisted of 7-day-old acclimated insects (exposed to 10°C before testing, see 5.2.3.1) and 7-

day-old adults directly taken from the stock colony.

The SCP was measured using a Picotech TC-08 thermocouple datalogger (Pico Technology, UK) and a
low temperature programmable Haake Phoenix Il CP30 alcohol bath (Thermo Electron Corporation,
USA). Insects were placed individually in a 1.0 ml pipette tip with a thermocouple attached to the
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dorsal side of the body using Vaseline (Unilever, UK). After the pipette tip was sealed with Parafilm M,
it was placed in an individual glass test tube and subsequently immersed in the alcohol bath (Berkvens
et al. 2010). For each treatment 18 to 61 adults of each sex were tested. The starting temperature was
set at 18°C (as in the diapause induction experiment), 25°C (the rearing temperature) or 10°C (the
acclimation temperature) and then lowered to -25°C at a rate of 0.5°C min™%. The SCP of each individual

was detected by the release of exothermal heat when the insect’s body fluids froze.

5.2.3.3 Lower lethal time

Lower lethal time estimates how many days are needed to kill 10 (LT10), 50 (LTso) or 90% (LTso) of the
tested adults at a certain temperature. Lethal times were determined at 0 and 5°C for acclimated male
and female adults of O. thripoborus and O. naivashae (see below). Adults were placed in closed
polystyrene insect breeding dishes (10 cm diameter, 4 cm high) (SPL Life Sciences, Republic of Korea),
with a mesh hole (4 cm diameter) in the lid. Throughout the predators' exposure to 0 or 5°C, eggs of
E. kuehniella were provided as food, but none of the predators were observed to feed on them. Water
was supplied by means of a moist piece of cotton wadding. For exposure to 0 or 5°C, 20 (O. naivashae)
or 30 (O. thripoborus) breeding dishes each containing eight Orius adults (four males and four females)
were transferred to climatic cabinets (Type ET 2028, Weiss Technik, Belgium) set at the respective
temperatures. No light was provided and relative humidity was not controlled during the cold
exposure, although humidity was likely in a range of 55 to 75%. After 12 h for O. naivashae at 0°C and
after 48 h for all other treatments, two containers of either species were removed from the cabinets
every 24 h. To avoid temperature shock, the containers were first held for 1 h at 10°C in complete
darkness. The insects were finally transferred to an incubator set at 25°C and 16:8 (L:D) h and
maintained for 24 h with water but without food, after which survival was recorded. The anthocorids
were deemed to have died if they were incapable of moving upon prodding with a fine brush. All adults
were allowed to acclimate before being subjected to 0 or 5°C (see 5.2.3.1). As for both species no
differences in LTs between male and female adults were detected at either temperature, data of males

and females were pooled resulting in four remaining data sets.

5.2.4 Statistical analysis

Data analysis was carried out using IBM SPSS Statistics 21 (IBM Corp. 2012).
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If the data were continuous and a Kolmogorov-Smirnov test indicated that the data were normally
distributed, the parameter was analysed using analysis of variance (ANOVA). When continuous data
were not normally distributed, a non-parametric Kruskal-Wallis H test was used. In case of non-
continuous data, a generalised linear model was used with a link function and error distribution
depending on the nature of the data. Each analysis started with a saturated model and interactions
and non-significant main factors were dropped at a significance level of 0.05. Countable data were
analysed using a generalised linear model, with a Poisson distribution if applicable or a negative
binomial distribution in case of overdispersion, as determined by the deviance and Pearson goodness-
of-fit statistics (Hilbe 2011). If none of the generalised linear models were applicable, a non-parametric
model was applied. Parameters expressed as percentages (binary) were compared by means of a
logistic regression. This regression is a generalised linear model using a probit (log odds) link and a
binomial error function (McCullagh & Nelder 1989). For all studied parameters, a two-factor analysis
was applied using the appropriate model (2-way ANOVA or generalised linear model). In case a factor
with two degrees of freedom (df) was found to be significant, a post-hoc analysis was performed to
separate means. When a significant interaction between the factors was found, means were compared
pairwise. Sex ratios were tested versus an equal female:male distribution (1:1 ratio) by means of Chi-
square tests. Lethal times were analysed using Probit analysis in order to estimate the time required
to kill 10, 50 and 90% of the population at a temperature of 0 and 5°C. Significant differences were

identified by non-overlapping fiducial limits (Hart et al. 2002b).

5.3 Results

5.3.1 Diapause induction

A two-factor analysis at 18°C with Orius species and photoperiod as factors indicated no interaction
between these factors for the parameters male and female adult weight, preoviposition period and
proportion of ovipositing females (Table 5.1). For the remaining parameters at 18°C, and for those
observed at a 12:12 (L:D) h photoperiod, means were compared pairwise given significant interactions

(Tables 5.2 and 5.3).

At 18°C, survival rates of nymphs ranged from 80.8 to 92.2% for O. thripoborus and from 44.1 to 74.6%

for O. naivashae (Table 5.2; x> = 67.118; df = 5; P < 0.001). Hence, at this temperature, nymphal survival
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of O. thripoborus was higher than that of O. naivashae, except at a 14 h photoperiod (P = 0.207). For
O. thripoborus nymphs reared at 18°C, the highest survival occurred under short day conditions (10 h)
and the lowest under a 14-h photoperiod. For O. naivashae at 18°C, the lowest nymphal survival
(44.1%) was observed at a 12:12 (L:D) h photoperiod; the highest mortality was recorded during the
final (fifth) instar. However, when at the same photoperiod temperature was set to 23°C, nymphal
survival was more than doubled for O. naivashae and increased by 10% as well for O. thripoborus,

resulting in a similar survival rate of both anthocorids under the latter conditions (P = 0.434).

At 18°C, male and female nymphal developmental times were shorter for O. thripoborus than for O.
naivashae (all P < 0.001), and fluctuated between 27.1 and 30.6 days for O. thripoborus and between
31.3 and 40.6 days for O. naivashae. For O. thripoborus reared at 18°C, the fastest development was
observed at a 10-h light regime, whereas development was slowest at 12 h light. For O. naivashae, no
differences between developmental times were observed when reared at 10 or 14 h light and 18°C
(males: P=0.135; females: P =0.890), but primarily due to a prolongation of the fifth nymphal stadium,
nymphal development of O. naivashae was extended by 25% when the predator was maintained at a
12 h day length. At the latter photoperiod and 23°C, nymphal developmental times of both anthocorids
were much shorter than at 18°C (all P< 0.001), and development of O. naivashae was as long as (males;

P =0.216) or shorter than (females: P = 0.001) that of O. thripoborus (Table 5.2).

No effect of photoperiod on adult weight was observed at 18°C (Table 5.2). For all tested photoperiods
at the latter temperature, O. naivashae males and females were heavier than those of O. thripoborus.
However, when reared at a 12 h photoperiod, O. naivashae females were heavier at 23 than at 18°C

(P <0.001), whereas for O. thripoborus males the opposite was observed (P < 0.001) (Table 5.2).

Sex ratios of O. naivashae were female biased at a 14 h day length at 18°C and at 12 h light and 23°C.

For all other treatments, no significant deviations from a 1:1 sex ratio were observed (Table 5.2).

Preoviposition period at 18°C was influenced by species and photoperiod (Table 5.1). At this
temperature, first eggs were always laid earlier by O. thripoborus than by O. naivashae females. Orius
naivashae females did not oviposit during the 20-day-observation period at a 12 h day length and 18
°C, although 16 % of them showed a preoviposition period exceeding 20 days. This regime led to the
longest preoviposition period for O. thripoborus and O. naivashae, although only for the latter species
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a significant difference between its preoviposition periods at 12 and 14 h light was found. Whereas O.
naivashae females did not oviposit during the 20-day-observation period at a 12 h day length and 18°C,
this regime led to the longest preoviposition period for O. thripoborus, although only for the latter
species a significant difference between its preoviposition periods at 12 and 14 h light was found. At
23°C and 12 h light, preoviposition periods of both Orius species were similar (P = 0.065) and about
twice shorter than those observed for O. thripoborus at 18°C and 12 h light (both P < 0.001) (Table

5.3).

In O. thripoborus females at 18°C, the number of eggs produced within the first 20 days of adult life
did not differ between the three photoperiods. This number was also higher than egg numbers
produced by O. naivashae females at both temperatures (18°C: P < 0.001; 23°C: P = 0.006) (Table 5.3).
Likewise, the number of oocytes in females dissected on day 20 at 18°C was higher for O. thripoborus
than for O. naivashae, except at a 12 h light period. At the latter regime, oocyte counts in dissected O.
naivashae females were as high as those in O. thripoborus females (P = 0.302), despite the fact that
the former species did not oviposit during the first 20 days after adult emergence. For O. naivashae,
differences in the number of oviposited eggs occurred between photoperiods, but the total potential
egg production by day 20 (i.e., numbers of oviposited eggs plus oocyte counts) was not affected (F =
0.062; df = 2; P =0.939. At 23°C, a 12 h photoperiod led to similar oocyte numbers as those counted
at 18°C for both species (x> = 2.128; df = 3; P = 0.546), but more eggs were oviposited by day 20 at the

higher temperature (both P < 0.001) (Table 5.3).

Species and photoperiod influenced the proportion of non-diapausing females at 18°C (Table 5.1). At
this temperature, the relative number of egg producing couples was higher in O. thripoborus than in
0. naivashae, ranging from 57.7 to 83.9% in O. thripoborus and from 15.8 to 57.1% in O. naivashae.
Whereas for both anthocorids no difference in the proportion of non-diapausing females between the
photoperiods 10 and 14 h was recorded, a day length of 12 h at 18°C was associated with the lowest
proportion of ovipositing females. However, at 12 h light and 23°C, the proportion of egg producing

females was equally high in both Orius species (P = 0.959).
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Chapter 5

Table 5.4 Supercooling points (SCP) (mean + SE) of 20-day-old females and males of O. thripoborus and O. naivashae reared

at 18°C and three photoperiods

Female Male
Species
Photoperiod (L:D) (h) n? SCP (°C) n? SCP (°C)
10:14 O. thripoborus 32 -18.79 £ 0.29a 30 -19.80+0.30a
O. naivashae 27 -18.03 £ 0.24ab 21 -19.07+0.36a
12:12 O. thripoborus 26 -19.21 £ 0.57aab 27 -19.14 £ 0.28a
O. naivashae 18 -17.09 £ 0.33b 18  -19.53+0.48a
14:10 O. thripoborus 29 -18.91+0.33a 24 -19.76 £ 0.47a
O. naivashae 21 -18.32 £ 0.42ab 23 -18.41+0.34a

Means within a column followed by the same letter are not significantly different (P > 0.05, Tamhane test)

@ number of adults tested

Table 5.5 Supercooling points (SCP) (mean + SE) of 7- and 20-day-old females and males of O. thripoborus and O. naivashae
reared at 25°C and a 16:8 (L:D) h photoperiod

Female Male
Age (d) Species
n? SCP (°C) n? SCP (°C)
7 O. thripoborus 61 -18.32+0.18a 30 -19.07+0.37b
O. naivashae 39 -18.70+0.27a 27 -20.51+0.24ab
20 O. thripoborus 28 -17.16 +0.34a 30 -18.71+0.24ab
O. naivashae 26 -17.85+0.33a 25 -18.28+0.61a

Means within a column followed by the same letter are not significantly different (P > 0.05, Tamhane test)

@ number of adults tested

Table 5.6 Supercooling points (SCP) (mean + SE) of 7-day-old acclimated and non-acclimated females and males of O.
thripoborus and O. naivashae reared at a 16:8 (L:D) h photoperiod

Female Male
Temperature (°C) Species
n? SCP (°C) n? SCP (°C)
25 O. thripoborus 61  -18.32 +0.18c 30 -19.07+0.37b
O. naivashae 39 -18.70 £0.27bc 27 -20.51+0.24ab
25/10P O. thripoborus 30 -20.16 + 0.33ab 33 -21.01+0.24a
O. naivashae 34  -20.47 +0.31a 34 -20.03+0.37ab

Means within a column followed by the same letter are not significantly different (P > 0.05, Tamhane test)

@ number of adults tested

b acclimated treatment group, consisting of newly moulted adults (< 24 h) from the stock colony (25°C and 16:8 (L:D) h),

transferred to an incubator set at 10°C and a photoperiod of 16:8 (L:D) h for 7 days before determination of SCP
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5.3.2 Cold hardiness

5.3.2.1 Supercooling point

Supercooling points of Orius males and females were affected by experimental conditions (F = 8.017,
df = 5,310, P < 0.001 and F = 16.717, df = 5, 359, P < 0.001 for males and females, respectively), but
not by species (F = 1.709, df = 1,310, P=0.192 and F = 3.295, df = 1, 359, P = 0.070, respectively). The
interaction between both factors was significant (F = 4.086, df =5, 310, P = 0.001 and F = 4.346, df =
5,359, P = 0.001 for males and females, respectively). At all tested conditions, no differences were
found between average SCP values of O. thripoborus and O. naivashae. When reared at 25°C and a 16
h light regime, SCP values of (non-acclimated) 7- and 20-day-old adults did not differ for both species
and sexes (Table 5.5). At 18°C, no differences in SCP values were detected between the three tested
regimes, for both species and sexes (Table 5.4). Lowest SCP values were found in acclimated adults of
both species, but test significances among SCPs at non-acclimating conditions were inconsistent.
Whereas SCP values of acclimated 7-day-old females of O. naivashae were significantly lower
compared to those of non-acclimated 7-day-old females, no differences were found between
acclimated and non-acclimated O. naivashae males (Table 5.6). Acclimated 7-day-old O. thripoborus
adults had lower SCP values than those of non-acclimated 7-day-old males and females and of 20-day-
old adults of both sexes reared at 25°C and a 16 h photoperiod (Table 5.6). Also, the SCP of 7-day-old
O. thripoborus males was higher when they were transferred from 18°C and 12 h light without

acclimation as compared with those which were allowed to acclimate at 10°C (P < 0.001).
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Lethaltime (days)

10 50 90
Mortality (%) at 0°C

151

Lethaltime (days)

10 50 S0
Mortality (%) at 5°C

M Orius naivashae W Orius thripoborus

Figure 5.1 Lethal times (LT1o, LTso and LTeo) (means + 95% fiducial limits) at 0°C (a) and 5°C (b) for acclimated adults of O.
thripoborus and O. naivashae. Asterisks indicate significant differences in lethal time values among species

5.3.2.2 Lower lethal time
Adults of both Orius species survived longer at 5°C (Figure 1b) than at 0°C (Figure 1a), but LTs were
overall lower in O. naivashae than in O. thripoborus. At 5°C, the time required to kill 50% of the

population of O. naivashae and O. thripoborus was 7.8 and 11.6 days, respectively, whereas at 0°C it

took 4.4 and 6.4 days, respectively.

5.4 Discussion
In the subtropics, where the mean winter temperature falls close to the developmental threshold of a
particular species very occasionally, the benefit of diapause varies from year to year, and therefore the

species may not achieve and maintain accurate seasonal synchronisation and adaptation to local
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seasonal conditions (Masaki 1990). In many Orius species the photoperiodic response becomes weaker
towards the (sub)tropics and some populations do not enter diapause at all (Tommasini & Nicoli 1995,
1996; Ito & Nakata 2000; Musolin & Ito 2008; Saulich & Musolin 2009). In the present study, however,
the low percentage of egg producing females of O. naivashae reared at 18°C and a 12 h day length
indicated a relatively high incidence of reproductive diapause in this species, at least under some
environmental conditions. The latter conditions, representing the southern African autumn, induced
diapause in twice as much females of O. naivashae as in those of O. thripoborus (84% as compared
with 42% of females, respectively). At 18°C, shorter and longer days induced reproductive diapause in
43 and 44% of the O. naivashae population, respectively, whereas for O. thripoborus diapause
incidence remained below 26%. Most Orius species enter diapause under short-day conditions, but
critical day length varies from species to species as well as within the same species for populations
occurring at different latitudes (Tauber et al. 1986; Danks 1987; Leather et al. 1995; Shimizu & Fujisaki
2006; Musolin and Ito 2008). Based on our results, critical day length for diapause induction in the
studied populations of O. naivashae and O. thripoborus appears to be around 12 h. As shorter days did
not increase the proportion of diapausing females, we assume that, when the autumn photoperiod
prevails in South Africa, temperature further enhances diapause induction and then prevents
premature diapause termination in these species. In temperate zones, both thermal and photoperiodic
conditions are well known to influence the incidence of reproductive diapause in Orius species (e.g.,
Kingsley & Harrington 1982; van den Meiracker 1994; Kohno 1998; Musolin et al. 2004; Cho et al.
2005). Yet, in subtropical climates, diapause incidence was low (< 20%) or nonexistent in the southern
Japanese species Orius tantillus (Motschulsky) (Nakashima & Hirose 1997b; Shimizu & Kawasaki 2001)
and Orius strigicollis (Poppius) (Shimizu & Kawasaki 2001), and in Orius albidipennis (Reuter) from the

Canary Islands (van den Meiracker 1994) and Israel (Chyzik et al. 1995).

Photoperiodic control of developmental time is a well-known phenomenon in many insects (Saunders
2002; Beck 1980). Short day lengths have been observed to cause decelerating or accelerating effects
to some extent in a number of heteropteran species (e.g., Ruberson et al. 1991; Musolin & Saulich
1997; Lopatina et al. 2007; Saulich & Musolin 2009), but can also lead to a pronounced prolongation
of development in other true bugs (Kiritani 1985; Musolin & Saulich 1997; Tanaka & Zhu 2003). In this
study, a 12 h light regime at 18°C prolonged development of O. naivashae, accompanied by a low
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nymphal survival (44%), mainly in the last instar. However, at 23°C development of O. naivashae at a
12 h photoperiod was more successful and data were comparable with those reported for this species
in previous experiments performed at long day conditions (16:8 (L:D) h) and 23°C (Chapter 4). For O.
thripoborus nymphs reared at 18°C, a photoperiod of 12 h also resulted in the slowest development,
but differences in developmental times among the three photoperiods were less pronounced than
those observed for O. naivashae. Moreover, at 18°C short day conditions accelerated growth of O.
thripoborus nymphs compared to long days, whereas for O. naivashae no differences in developmental
times were observed. Short-day acceleration of nymphal growth at low temperatures (18 to 20°C) has
been reported earlier for Orius insidiosus (Say) (Ruberson et al. 1991), Orius majusculus (Reuter) (van
den Meiracker 1994), O. strigicollis (Musolin et al. 2004), Orius sauteri (Poppius) and Orius minutus (L.)
(Musolin & Ito, 2008), but overall trends were inconsistent and geographically driven (Parker 1975;
Tauber et al. 1986; Tommasini & Nicoli 1995, 1996). These seasonal adaptations are always local and

differ among species and populations (Saulich & Musolin 2009).

After 20 days at 18°C and 12 h light, not a single O. naivashae female produced eggs, although upon
dissection 16% of females had vitellogenic oocytes in their ovarioles. These females were not
considered to be in reproductive diapause (Musolin & Ito 2008), but demonstrated a delayed
oviposition. At long and short day conditions (both at 18°C), half of the non-diapausing O. naivashae
females also showed delayed oviposition. For O. thripoborus, however, delayed oviposition was rarely

observed.

In Chapter 4, it was shown that the overall performance of O. thripoborus, in terms of its
developmental rates and reproduction, is generally superior to that of O. naivashae. In this study,
developmental and reproductive parameters of O. thripoborus were better than those of O. naivashae
at all tested photoperiods at 18°C. At 23°C (12:12 (L:D) h), both predators showed similar
developmental success, but O. thripoborus had a better reproductive output. Studying the thermal
biology of O. thripoborus and O. naivashae, we indicated that within a moderate temperature range
(19 to 25°C) the overall performance of both anthocorids improved with increasing temperature
(Chapter 4). Likewise, developmental and reproductive parameters obtained in the present study were

better at 23°C than at 18°C in both anthocorids.
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Lethal times (50% mortality) were 6.4 and 4.4 days at 0°C and 11.6 and 7.8 days at 5°C, for acclimated
adults (males and females combined) of O. thripoborus and O. naivashae, respectively. To our
knowledge, lower LTs have never been assessed for any anthocorid species even though responses to
cold storage have been studied in a few Orius species (Bueno et al. 2014; Zhang et al. 2008). Half of
the (non-acclimated) O. insidiosus adults of a population originating from Brazil survived a 14-day-
storage period at 5°C (Bueno et al. 2014), suggesting a higher cold tolerance than that observed for
the Orius species in the present study. When transferred from 22°C and short days (11:13 (L:D) h) to
0°C, Ito and Nakata (1998a) recorded longevities of ca. 90 and 140 days for 50% of the diapausing
females of O. minutus and O. sauteri, respectively. Based on recorded LT values, O. thripoborus has a
better cold tolerance than O. naivashae. However, this is not reflected in the SCP values of the species,

which were similar for all treatments and ranged between -21 and -17°C.

Several factors related to the experienced rearing conditions or origin of the population under study
may influence an insect’s cold tolerance. Maes et al. (2012) noted that acclimation period, infection
status with endosymbionts and diet may influence the supercooling ability of the predator
Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Also physiological changes associated with
diapause, reproductive maturation or ageing can affect an insect’s cold tolerance (Bowler &
Terblanche 2008; Saulich & Musolin 2009). For example, a decline in cold tolerance over adult life has
been observed in Drosophila melanogaster Meigen (Diptera: Drosophilidae) and Dacus tryoni (Frogatt)
(Diptera: Tephritidae) (Meats 1973; David et al. 1998; Jensen et al. 2007). In the present study, no
influence of adult age on SCP was found, and values recorded for males and females were similar.
Females in treatment groups showing higher diapause incidence did not have lower supercooling
points. The only factor influencing the SCP was the 7-day-acclimation of adults at 10°C. Acclimated
adults tended to have lower SCPs, but this was statistically significant only for O. naivashae females. A
similar trend towards lower SCP values for acclimated individuals was found in M. pygmaeus (Maes et
al. 2012). However, for another predatory mirid bug, Nesidiocoris tenuis Reuter, no significant decrease
in SCP was detected after acclimation for seven days at 10°C (Hughes et al. 2009). Also bacteria can
affect an insect’s freezing tolerance as they may act as heterogeneous ice nucleators inside the body
of their host (Lee et al. 1991; Worland & Block 1999). As a result, intracellular freezing may occur at
higher temperatures when hosts are infected with bacterial endosymbionts. Maes et al. (2012)
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reported that M. pygmaeus infected with Wolbachia pipientis and Rickettsia spp. had higher SCP values
than uninfected conspecifics. Given that these bacterial endosymbionts were also detected in the
studied O. naivashae population (J. Bonte, unpublished data), it remains to be investigated whether
SCPs of uninfected adults are lower than those measured in the present study. It again deserves
emphasis that SCP data alone are not sufficiently reliable and comprehensive indicators of cold
tolerance since the vast majority of species are freeze avoiding and SCP temperatures are rarely
experienced by individuals in their natural habitats (Bale 1996). Lethal time data are therefore believed
to best indicate naturally occurring cold stress as they do not only test temperature but also exposure

time (Allen 2010).

In many Orius species studied so far, only females (and usually fertilised ones) can properly accumulate
fat body and enter diapause to ensure successful overwintering, whereas males usually mate before
winter and do not survive until spring (Ito & Nakata 1998a, b; Kobayashi & Osakabe 2009; Saulich &
Musolin 2009; Shimizu & Kawasaki 2001). However, in this study, LTs did not differ between Orius
males and females and it is thus expected that both sexes survive southern African mild winters with
reasonably similar success. During field observations at the end of winter (July) in the provinces of
Mpumalanga and KwaZulu-Natal male and female adults as well as nymphs of both Orius species were
collected (J. Bonte, unpublished data). This implies that, in these areas, at least some nymphs and
adults of both sexes remain active in winter and do not enter reproductive diapause, or that diapause
in these individuals is very weak. In other words, winter diapause is not likely to be a critical trait in
populations of O. thripoborus and O. naivashae occurring in regions with less pronounced temperature
extremes. Our experiments showed that only a fraction of the studied Orius populations are able to
enter diapause: at 18°C and 12 h day length, 86 and 44% of the nymphs developed successfully without
entering diapause, and additionally, 58 and 16% of the adults were able to reproduce, for O.
thripoborus and O. naivashae, respectively. However, diapause may be induced in both anthocorids
during autumn in cooler regions. Further, it is worth noting that research on overwintering strategies
based solely on laboratory populations may not be representative of field situations. Prolonged
laboratory rearing of O. thripoborus and O. naivashae at a 16 h photoperiod and 25°C could have

reduced their diapause response and tolerance to cold conditions. Field observations can elucidate
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whether the studied predators remain active and are able to control crop pests in different parts of

southern Africa during different parts of the season.

In the previous Chapter (4), we showed that O. thripoborus is adapted to a slightly cooler temperature
range as compared with O. naivashae. Our present findings indicate that O. naivashae is less cold
tolerant and has a stronger tendency to enter reproductive diapause as compared with O. thripoborus.
In regions of southern Africa where average autumn/winter temperatures are around or below 18°C,
O. thripoborus thus appears to have stronger potential for use in biological control than O. naivashae.
However, for successful biocontrol programs using these anthocorids not only species-specific (e.g.,
type of diapause), but also population-specific diapause-related traits (e.g., critical day length) should
be taken into consideration (Musolin et al. 2004). Our laboratory study indicates that a combination
of a 12 h day length and low temperatures (e.g., 18 °C) induces (weak) diapause in O. thripoborus and
0. naivashae, but year-round field observations are warranted to elucidate whether the studied
predators remain active and are able to contribute to the suppression of crop pests in different parts

of southern Africa during different parts of the season.
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Chapter 6

Predation capacity, development and reproduction of Orius thripoborus
and Orius naivashae on various prey

Based on:

Bonte, J., De Hauwere, L., Conlong, D. and De Clercq, P. 2015. Predation capacity, development and
reproduction of the southern African flower bugs Orius thripoborus and Orius naivashae (Hemiptera:

Anthocoridae) on various prey. Biological Control 86: 52-59



Chapter 6

6.1 Introduction

Predatory bugs of the genus Orius (Hemiptera: Anthocoridae) are omnivores, feeding on a wide array
of arthropod prey as well as on plant materials such as pollen and plant juices. They are used worldwide
for the control of different thrips (Thysanoptera: Thripidae) pests, but are also known to attack a
variety of soft-bodied arthropods such as aphids (Hemiptera: Aphididae), whiteflies (Hemiptera:
Aleyrodidae), mites (Arachnida: Acari), young lepidopterous larvae and small arthropod eggs (section
2.4.7.1).

The little-studied southern African species Orius thripoborus (Hesse) and Orius naivashae (Poppius)
have been suggested as potential biological control agents of various thrips pests, which include the
sugarcane thrips Fulmekiola serrata Kobus, the citrus thrips Scirtothrips aurantii Faure, the two
avocado thrips pests Heliothrips haemorrhoidalis (Bouché) and Selenothrips rubrocinctus (Giard), and
the western flower thrips Frankliniella occidentalis (Pergande) (Hesse 1940; Dennil 1992; Way et al.
20064, b; EPPO 2014). However, little is known on the prey range of O. thripoborus and O. naivashae.
Given their good performance when reared on factitious or even artificial diets (see Chapters 7 and 8),
it is likely that their natural prey range reaches beyond the Thysanoptera. Therefore, it is warranted to
investigate whether these Orius species may also contribute to the suppression of non-thrips
arthropod pests in southern Africa.

The western flower thrips, F. occidentalis, the two-spotted spider mite, Tetranychus urticae Koch
(Acari: Tetranychidae) and the green peach aphid Myzus persicae Sulzer, including its subspecies M.
persicae nicotianae Blackman, are economically important pests on a wide range of agricultural and
ornamental plants worldwide. In South Africa, F. occidentalis and T. urticae are key pests in vineyards
(Schwartz 1990; De Villiers & Pringle 2007, 2011; Allsopp 2010), tomatoes and other fruit and vegetable
crops, while M. persicae is a known vector of two potato viruses in the area (van der Waals et al. 2013).
Their propensity to develop resistance to chemical pesticides greatly complicates the control of the
above pests, necessitating the development of alternative control strategies.

Laboratory experiments were conducted to assess the development, reproduction, intrinsic growth
rates and predation capacities of O. thripoborus and O. naivashae on different life-stages of F.
occidentalis, T. urticae and M. persicae nicotianae. Predation capacities of female adults of O.

thripoborus and O. naivashae on F. serrata adults were also quantified. In Chapter 4, it was suggested
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that, based on their developmental and reproductive performance at different constant temperatures,
O. thripoborus is adapted to a slightly cooler temperature range as compared with O. naivashae. The
second objective of the present chapter was to elucidate whether a similar temperature effect on the
predation capacity of these predators can be observed. Therefore, predation by female adults of O.
thripoborus and O. naivashae was examined at 19, 25 and 29°C, using larvae of F. occidentalis as prey.
These experiments are aimed to allow a better insight into the potential of the anthocorids as

biological control agents of a range of agricultural pests in southern Africa.

6.2 Materials and Methods

6.2.1 Stock culture

6.2.1.1  Orius thripoborus and O. naivashae

Stock colonies of O. thripoborus and O. naivashae were reared as described in section 4.2.1.

6.2.1.2  Frankliniella occidentalis

A laboratory population of F. occidentalis was established in 2011 using insects collected on rose plants
(Rosa spp.) in Belgian greenhouses. The thrips were reared on green bean pods (Phaseolus vulgaris L.),
serving as an oviposition substrate and food source, placed on a layer of vermiculite in vented plastic
boxes. The diet of adult F. occidentalis was supplemented with dry honeybee pollen to enhance
reproduction. Rearing containers were kept in an incubator set at 23 + 1°C, 65 + 5% RH and a 16:8 (L:D)
h photoperiod.

6.2.1.3  Myzus persicae subsp. nicotianae

A colony of M. persicae nicotianae was started in 2012 with individuals provided by Koppert B.V. and
maintained at ambient laboratory conditions on sharp pepper plants.

6.2.1.4  Tetranychus urticae

Two-spotted spider mites were collected from castor bean (Ricinus communis L.) at the Faculty of
Bioscience Engineering of Ghent University and a laboratory colony was set up using broad bean (Vicia
faba L.) plants. The infested plants were kept in ventilated Plexiglas containers (60 x 60 x 60 cm) at

ambient laboratory conditions.
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6.2.2 Experiments

Except for the assessment of the predation capacity on F. serrata, all experiments were performed at
Ghent University in climatic cabinets set at 25 + 1°C, 65 + 5% RH and a 16:8 (L:D) h photoperiod. Only
for the experiments described in section 6.2.2.2, two additional temperatures, i.e., 19 and 29°C, were
tested. Predation on F. serrata was assessed in the laboratories of the SASRI, Mount Edgecombe, South
Africa, in a climatised room set at 25 + 1°C, 75 + 5% RH and a 14:10 (L:D) h photoperiod.

For each experiment, similar plastic containers were used (4.5 cm diameter, 2 cm high), the lids of
which had a ventilation hole covered with fine-mesh gauze.

6.2.2.1 Predation capacity on different prey

Predation capacities of the 2" and 4'" instars, and female adults of O. thripoborus and O. naivashae
were assessed on different stages and species of prey: 2" instars and adults of F. occidentalis, 2" to
3" instars of M. persicae nicotianae, and eggs and deutonymphs of T. urticae. The predator/prey
combination between 2™ instar Orius nymphs and F. occidentalis adults was not examined, as
preliminary experiments indicated that the thrips adults were too agile to serve as prey for the small
predator nymphs.

Newly moulted (< 24 h) second and fourth instars, and 3- to 5-day-old female adults (i.e.,
reproductively active) of O. thripoborus and O. naivashae were collected randomly from stock cultures.
Fourth instars and adults were individually starved for 24 h, during which time water was provided by
way of a moist piece of cotton wadding fitted into a 1.5 cm plastic dish. Second instars of the predators
were only starved for 16 h. After starvation, each predator was transferred to an individual plastic cup
containing an excess of prey and a plant substrate serving as food for the prey and a moisture source
for the predator. The number of prey presented in each predator/prey combination was determined
based on preliminary experiments and is given in Table 6.1. In these preliminary experiments,
individual predators confined in 1.5 cm dishes (5-10 replicates per treatment) were offered ad libitum
prey during 24 h, after which the number of dead prey was counted. In all treatments, more prey was
provided than could be consumed.

When F. occidentalis were used as prey, a piece of bean pod was added to the container. The pod was
cut between two seeds and fixed on a small pile of Pritt Buddies (N.V. Henkel, Brussel, Belgium), in

order to limit hiding places for the prey. For M. persicae nicotianae, a reversed C. annuum leaf was
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placed on water-soaked cotton. T. urticae eggs and nymphs were offered on a circular bean leaf disc
(4 cm diameter) placed upside down on a 7 mm layer of agar (1% w/w). T. urticae eggs were obtained
by placing 8 to 10 females for 24 h on the leaf discs (Figure 6.1). Females were removed and the surplus
eggs were pierced with a fine needle. All other prey stages were directly transferred from the stock

colonies using a fine brush.

Table 6.1 Species and numbers of prey offered for the different predator/prey combinations

Prey species and stage

Predator stage  F. occidentalis M. persicae nicotianae T. urticae
Adults Larvae Nymphs Eggs Nymphs

27 |nstar - 20 10 20 20

4th Instar 15 30 15 30 20

Adult female 20 40 20 40 20

Figure 6.1 Arenas used for assessing the predation capacity of Orius sp. on F. occidentalis (left) , M. persicae nicotianae
(middle) and T. urticae (right) (photos: L. De Hauwere)

After 24 h the number of dead and live prey were counted. Data from predators that died during the
24 h test period were omitted from analysis. The number of replicates per treatment varied from 15
to 25. To check natural mortality of the prey in the absence of the predator, 10 to 15 containers were
set up as a control treatment using the prey densities given in Table 6.1. If control mortality exceeded
5%, the number of prey consumed by the predator in 24 h was corrected using Abbott's formula
(Abbott 1925).

For assessing the predation capacity of 1- to 2-day old females of O. thripoborus and O. naivashae on
adults of F. serrata, 20 field-collected adult thrips (Mount Edgecombe, South Africa; see Chapter 3)

and a piece of sugarcane stalk were added to each container. The predators used in these experiments
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originated from the stock colonies established at Ghent University and were reared as described in
section 4.2.1, in the facilities of the SASRI. Predation capacities were quantified as explained above for
Orius adults on F. occidentalis adults.

6.2.2.2  Predation capacity at different temperatures

Predation capacities of 4™ instars and female adults of O. thripoborus and O. naivashae were assessed
on 2" instars of F. occidentalis at 19, 25 and 29°C. The experimental setup was similar as described in
section 6.2.2.1. The number of prey presented for each temperature/predator stage combination was

determined based on preliminary experiments and is given in Table 6.3.

6.2.2.3  Effect of prey on development and reproduction

The developmental and reproductive performance of O. thripoborus and O. naivashae fed on the same
prey species as in section 6.2.2.1 was studied here. Unlike in the first experiment, mixed stages of each
prey species were offered as food, i.e., 1t and 2" instars of F. occidentalis, nymphs and adults of M.
persicae nicotianae, and eggs, nymphs and adults of T. urticae. In each treatment, a fresh, flat green
bean pod was provided as a water source and substrate for predators and prey. All prey were supplied
ad libitum and replenished every other day.

6.2.2.3.1 Development

In all treatments, 50 to 100 first instars (<24 h old) of the two Orius species were caged in individual
plastic containers. Development and survival of nymphs were monitored and recorded daily, and
newly emerged adults were sexed and weighed using a Sartorius Genius ME215P balance (Sartorius,
Goettingen, Germany).

6.2.2.3.2 Reproduction

On each tested prey, newly emerged adults (<24 h old) were paired and transferred to individual plastic
containers. The adults were offered the same prey as during their nymphal life. Bean pods were
checked daily for eggs to determine the pre-oviposition period. When the first egg was laid, bean pods
were replaced every other day with fresh ones, until the female died. Lifetime oviposition and egg
hatch were also monitored. As developmental experiments for O. naivashae did not yield sufficient
males because of strongly skewed sex ratios (see other Chapters), 20 to 45% of the females over the

different treatments were paired with 1- to 2-day-old males from the stock colony in order to have at
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least 20 replicates (= couples) per treatment. Longevities of paired males and females were also
examined.

6.2.2.3.3 Intrinsic rate of increase

Daily age-specific survival and age-specific fecundity were used to calculate the intrinsic rate of

increase (rm) of the two predatory species, expressed as the number of females per female per day,
using the formula of Birch (1948): Z:lxmxe_’""C =1, where x equals the female age (days), I, is the age

specific survival of the females at age x and my is the number of daughters produced per female in the
age interval x. The latter parameter is obtained by multiplying the mean number of eggs laid per female
by the proportion of female progeny produced at age x. The Jackknife procedure was used according

to Meyer et al. (1986) and Hulting et al. (1990) to calculate the standard error of .

6.2.3 Data analysis

If the data were continuous and a Kolmogorov-Smirnov test indicated that the data were normally
distributed, the parameter was analysed using analysis of variance (ANOVA). When continuous data
were not normally distributed, a non-parametric Kruskal-Wallis H test was used. In the case of non-
continuous data, a generalised linear model was used with the link function and error distribution
depending on the nature of the data. Each analysis started with a saturated model and interactions
and non-significant main factors were dropped at a significance level of 0.05. Countable data were
analysed using a generalised linear model, with a Poisson distribution if applicable or a negative
binomial distribution in case of overdispersion, as determined by the deviance and Pearson goodness-
of-fit statistics (Hilbe 2011). If none of the generalised linear models were applicable, a non-parametric
model was applied. Parameters expressed as percentages (binary) were compared by means of a
logistic regression. This regression is a generalised linear model using a probit (log odds) link and a
binomial error function (McCullagh and Nelder 1989). For all studied parameters, a two-factor analysis
was applied using the appropriate model (2-way ANOVA or generalised linear model). In case a factor
with two degrees of freedom (df) was found to be significant, a post-hoc analysis was performed to
separate means. When interaction between the factors was found, means were compared pairwise.
Predation capacities on F. serrata were compared using a t-test for equality of means. Sex ratios were

tested versus an equal male:female distribution (1:1 ratio) by means of Chi-square tests. All of the
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above statistical analyses were performed using IBM SPSS Statistics 21 (IBM Corp 2012). In case
predation capacities had to be corrected with Abbott’s formula (Abbott 1925), the statistical program
R 3.0.1 (R Core Team 2014) was used to perform a generalised linear model (Poisson or negative

binomial) with non-integer values.

6.3 Results

6.3.1 Predation capacity on different prey

Numbers of prey killed per day by nymphs and adults of O. thripoborus and O. naivashae are presented
in Table 6.2. A two-factor analysis with predator species and life-stage as factors indicated no
interaction between these when T. urticae deutonymphs were offered as prey (F = 0.533, df =2, 97, P
= 0.588). Predation of T. urticae deutonymphs was affected by predator species (F = 9.348, df = 1, 97,
P = 0.003), with all tested stages of O. thripoborus killing more T. urticae deutonymphs than the
corresponding stages of O. naivashae. Predator life-stage also influenced the predation capacity of O.
thripoborus and O. naivashae on T. urticae deutonymphs (F = 21.434, df = 2,97, P< 0.001). Adults killed
more T. urticae deutonymphs than did the predator nymphs, but no significant difference in predation
was observed between second and fourth nymphal instars of the predators. Predation on T. urticae
eggs was affected by predator life-stage (x> = 74.570, df = 2, P < 0.001), but not by predator species (x?
=0.422, df = 1, P = 0.516). There was also a significant combined effect of predator life-stage and
species on the predation of T. urticae eggs (x* = 6.733, df = 2, P = 0.035). Fourth instar nymphs and
females of O. thripoborus killed similar numbers of T. urticae eggs, but the predation capacity of its
second instar nymphs was significantly lower (x?> = 80.667, df =5, P < 0.001). For O. naivashae, on the
other hand, the predation of T. urticae eggs increased with age of the predator. No differences in
predation capacity on T. urticae eggs between corresponding life-stages of O. thripoborus and O.
naivashae were found.

Predation on F. occidentalis adults was affected by predator species, predator life-stage and their
interaction (F =27.343,df=1,71, P<0.001; F=17.341,df =1, 71, P<0.001 and F=18.671, df = 1, 71,
P < 0.001, respectively). Predation capacities on F. occidentalis larvae were affected by predator life-
stage (x? = 416.642, df = 2, P < 0.001), but not by predator species (x> =0.107, df = 1, P = 0.744). Also,

the interaction effect of predator life-stage and species on the predation on F. occidentalis larvae was
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significant (x? = 13.925, df = 2, P = 0.001). The younger (and smaller) the life-stage of F. occidentalis
and T. urticae, the more prey individuals were killed by fourth instar nymphs and female adults of both
Orius species. This is in contrast to when T. urticae were used as prey, as then second instar nymphs
of O. thripoborus and O. naivashae had similar predation capacities on T. urticae eggs and
deutonymphs. Overall, for both anthocorids, the predation capacity on larvae (x* = 514.352, df =5, P
<0.001) and adults (x? = 27.253, df = 3, P < 0.001) of F. occidentalis increased with developmental life-
stage of the predator. As the only exception, female adult O. naivashae did not kill more F. occidentalis
adults, compared to their fourth instar nymphs.

Predation capacities on nymphs of M. persicae nicotianae were affected by predator life-stage (x* =
47.904, df = 2, P < 0.001), but not by predator species (x*> = 0.340, df = 1, P = 0.560). The interaction
between both factors was significant (x? = 7.828, df =2, P = 0.020). Fourth instar nymphs of both Orius
species killed significantly more nymphs of M. persicae nicotianae than did their second instar nymphs,
and performed as well as, if not better on M. persicae nicotianae than did the predatory adults (x* =
52.427, df = 5, P < 0.001). Predation capacities on M. persicae nicotianae nymphs only differed
between the anthocorid species in the adult life-stage, with O. thripoborus females killing more M.
persicae nicotianae than those of O. naivashae (5.06 and 3.60 nymphs per day, respectively).
Predation capacities on F. serrata adults by 1- to 2-day old females of O. thripoborus (10.53 + 0.64
adults/24 h; 21 replications) and O. naivashae (9.06 + 0.75 adults/24 h; 20 replications) were similar (P
=0.137).

6.3.2 Predation capacity at different temperatures

Numbers of F. occidentalis larvae killed per day by 4" instars and female adults of O. thripoborus and

0. naivashae at 19, 25 and 29°C are shown in Figure 6.2.

A multi-factor analysis with temperature, predator species and predator stage as factors indicated that
predation on F. occidentalis larvae was affected by temperature, predator species, predator stage, the
temperature x predator species interaction and the temperature x predator stage interaction (x> =
385.127, df =2, P < 0.001; x* = 38.909, df = 1, P < 0.001; x* = 320.510, df = 1, P < 0.001; x* = 22.053, df
=2,P<0.001 and x? = 22.478, df = 2, P < 0.001, respectively), but not by the species x predator stage

interaction and the threefold interaction between all factors (x? = 3.050, df = 1, P = 0.081 and x2 =
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4.790, df = 2, P = 0.091, respectively). Predation increased with increasing temperature, except for O.
naivashae, which killed no more thrips larvae at 29°C than at 25°C. Irrespective of temperature and
predator species, female adults of the Orius spp. killed twice as many F. occidentalis larvae per day as
did their 4" instars. However, when comparing the two predator species, some marked predator stage-
dependent differences in predation capacity occurred. Predation by 4™ instars of both Orius spp. was
similar at 19 and 25°C, but at 29°C, 4" instars of O. thripoborus killed substantially more thrips larvae
than those of O. naivashae. For female adults, however, predation capacity of O. thripoborus was

higher than that of O. naivashae, except at 25°C (Figure 6.2).
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Figure 6.2 Predation capacities (means + SE), expressed as the number of thrips larvae killed in 24 hours, by fourth instars and
adult females of O. thripoborus and O. naivashae on 2nd instars of F. occidentalis at three temperatures, 16:8 (L:D) h
photoperiod and 65 + 5% RH.

Bars with the same letter are not significantly different (P > 0.05): generalized linear model with negative binomial distribution.
For bars with an asterisk, the predation capacity was corrected with Abbott’s formula (Abbott 1925).

The number of individuals tested is placed in parentheses below each bar

6.3.3 Development
Developmental parameters of O. thripoborus and O. naivashae as a function of prey species are shown
in Table 6.3. The species of prey and species of predator affected nymphal survival and male adult

weight (nymphal survival: x* = 8.885; df = 2, P = 0.012 and x* = 5.489, df = 1, P = 0.019; male adult
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weight: F=14.727,df=2,126, P<0.001 and F=20.646, df =1, 126 and P < 0.001 for prey and predator
species, respectively). The interaction between the factors, however, was not significant (x> = 3.678,
df =2, P=0.159 and F = 2.238, df = 2, 126, P = 0.111 for nymphal survival and male adult weight,
respectively). Nymphal survival until adulthood ranged from 73.8 to 80.8% for O. thripoborus, and from
61.4 to 83.1% for O. naivashae. Regardless of prey species, survival of O. thripoborus nymphs to
adulthood was higher than that of O. naivashae. For both anthocorids, feeding on F. occidentalis
resulted in the highest nymphal survival to adulthood, whilst M. persicae nicotianae and T. urticae as
prey resulted in lower survival rates.

Orius naivashae males were always heavier than those of O. thripoborus. Further, body weights of
male Orius of both species were highest when fed on F. occidentalis and lowest on M. persicae
nicotianae. In both anthocorids, males presented with T. urticae had intermediate weights between
those of males fed on the other two prey species (Table 6.3).

Body weights of female adults were affected by predator species, predator stage and their interaction
(F=22.211; df = 2, 184, P < 0.001; F = 23.088; df = 1, 184, P < 0.001 and F = 11.702, df = 1, 184, P <
0.001, respectively). O. naivashae females were heavier than those of O. thripoborus fed on a diet of
F. occidentalis or T. urticae, but female weights of O. thripoborus (0.319 mg) and O. naivashae (0.310
mg) on M. persicae nicotianae did not differ (F = 21.867; df = 5, 184; P < 0.001) (Table 6.3). For O.
naivashae, similar effects of prey type on adult body weights as observed for males, were reflected in
female body weight. Adult weights of O. thripoborus females, on the other hand, were highest when
fed on F. occidentalis (0.342 mg), and lowest when fed on T. urticae (0.298 mg), but when fed on M.
persicae nicotianae their weights did not differ from those when fed on the other two prey species.

A two-way ANOVA indicated a significant effect of predator species and its interaction with prey
species on male (F = 5.955, df = 1, 126, P = 0.016 and F= 11.702, df = 2, 126, P < 0.001, respectively)
and female developmental times (F = 1.412, df =1, 184, P <0.001 and F = 68.442, df =2, 184, P < 0.001,
respectively). The influence of prey species on predator developmental time was significant for males
(F = 50.503, df = 2, 126, P < 0.001), but not for females (F = 65.090, df = 2, 184, P = 0.236).
Developmental times of O. thripoborus at 25°C fluctuated between 13.4 and 14.4 days for females and

between 13.3 and 14.6 days for males; for O. naivashae, they ranged from 11.6 to 16.3 days for females
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Chapter 6

and from 12.1 to 15.7 days for males (Table 6.3). Males (x? = 76.793; df = 5; P < 0.001) and females (x>
=133.431; df = 5; P < 0.001) of O. naivashae developed faster than those of O. thripoborus when fed
on F. occidentalis or T. urticae, but on M. persicae nicotianae the opposite was observed. In both
anthocorids, developmental times were shortest when F. occidentalis were offered. There was no
significant difference in developmental time of O. thripoborus females fed on F. occidentalis or M.
persicae nicotianae. Longest development times of O. thripoborus were recorded when it was fed on
T. urticae, although nymphal development of males fed on M. persicae nicotianae was similar to that
with T. urticae as prey. Developmental times of O. naivashae were longest when fed on M. persicae
nicotianae (Table 6.3).

Sex ratios of O. naivashae were female biased when presented with F. occidentalis or M. persicae
nicotianae. For O. thripoborus, no significant deviation from a 1:1 sex ratio was observed (Table 6.3).
6.3.4 Reproduction

Reproductive traits and longevities of O. thripoborus and O. naivashae reared on the three different
prey types are presented in Table 6.4. The proportion of ovipositing females ranged between 84.0 and
96.2% for O. thripoborus and between 58.6 and 85.2% for O. naivashae (Table 6.4). Prey and predator
species influenced the percentage of ovipositing females (x? = 7.656, df = 2, P = 0.022 and x? = 5.394,
df =1, P = 0.020 for prey and predator species, respectively), whereas their combined effect was not
significant (x? = 1.064, df = 2, P = 0.587). In general, proportionally more O. thripoborus than O.
naivashae females produced eggs. The best prey in terms of this parameter were T. urticae and F.
occidentalis. Myzus persicae nicotianae as prey resulted in the lowest proportion of egg producing
females, especially for O. naivashae (58.6%).

Pre-oviposition period was only affected by prey species (x? = 7.958, df =2, P =0.019; x> = 3.572, df =
1, P=0.059 and x? = 3.698, df = 2, P = 0.157 for prey species, predator species, and their interaction,
respectively). Pre-oviposition periods for females of both Orius species were similar on F. occidentalis
and T. urticae, whereas M. persicae nicotianae as prey resulted in the longest pre-oviposition period.
The oviposition period was influenced by prey and predator species (x> = 29.063, df = 2, P < 0.001 and
x? =53.621, df = 1, P < 0.001, respectively), but not by their interaction (x? = 5.150, df =2, P = 0.076)
ranging from 15.3 to 18.9 days for O. thripoborus and from 5.3 to 15.3 days for O. naivashae (Table

6.4). Regardless of prey, oviposition periods of O. thripoborus females were longer than those of O.
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naivashae. Frankliniella occidentalis always resulted in longer oviposition periods than did M. persicae
nicotianae or T. urticae.

Lifetime oviposition was affected by prey and predator species (x? = 50.174, df =2, P < 0.001 and x* =
58.390, df = 1, P < 0.001, respectively), but not by their interaction (x> = 3.416, df =2, P =0.181). Higher
fecundities were observed for O. thripoborus (40.2 to 122.6 eggs) than for O. naivashae (5.3 to 67.5
eggs) (Table 6.4). Female O. thripoborus and O. naivashae reared on F. occidentalis produced 2 and 6
times more eggs than when reared on M. persicae nicotianae, and 3 and 8 times more than when
reared on T. urticae, respectively.

Egg hatch of the studied Orius species never exceeded 70% and was affected by predator species,
predator life-stage and their interaction (x* = 21.005, df = 2, P < 0.001; x* = 11.529, df = 1, P < 0.001
and x2 = 7.822, df = 2, P = 0.020, respectively). Orius thripoborus egg hatch percentages were higher
when fed on F. occidentalis and M. persicae nicotianae, than when fed on T. urticae. Orius naivashae
egg hatchability when fed on F. occidentalis or T. urticae was higher than that when fed on M. persicae
nicotianae (x* = 28.037, df =5, P < 0.001) (Table 6.4).

Male and female longevities were affected by predator species, predator life-stage and their
interaction (males: 2 = 47.001, df = 2, P < 0.001; x* = 14.697, df =1, P < 0.001 and 2 = 17.202, df = 2,
P < 0.001, respectively; females: x> = 27.499, df = 2, P < 0.001; x> = 40.654, df =1, P < 0.001 and x% =
29.202, df = 2, P < 0.001, respectively). Male and female longevities were longer for O. thripoborus
than for O. naivashae, except on a diet of F. occidentalis which yielded similar longevities (males: x* =
66.202, df =5, P < 0.001; females: x> = 94.170, df = 2, P < 0.001). Adult O. naivashae lived longest when
fed on a diet of F. occidentalis, half as long when fed M. persicae nicotianae and shortest when fed T.
urticae as prey. Female O. thripoborus lived significantly longer when fed on M. persicae nicotianae
compared to the other two prey species. Male O. thripoborus had similar longevities when fed on F.
occidentalis or M. persicae nicotianae as prey; longevity of males of this predatory species fed on T.
urticae was similar to that on M. persicae nicotianae, but shorter than that on F. occidentalis (Table
6.4).

There was a significant effect of the factors prey species and predator species on the intrinsic rate of
increase (rm) (F =76.755, df =2, 145, P <0.001 and F = 82.543, df = 1, 145, P < 0.001, respectively), and

the interaction between the factors was also significant (F = 24.469, df = 2, 145, P <0.001). The intrinsic
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rates of increase of O. thripoborus and O. naivashae were highest when reared on F. occidentalis, with
similar values of 0.123 and 0.131 females/female/day, respectively (x> = 96.568; df = 5; P < 0.001). On
the other prey, O. thripoborus showed significantly higher rn-values than O. naivashae. Overall, growth
rates of both Orius species when fed on M. persicae nicotianae were higher than when fed on T.

urticae, although differences were only significant for O. thripoborus (Table 6.4).

6.4 Discussion

Although Orius species are considered generalist predators attacking a wide array of arthropod prey,
the results of our study on O. thripoborus and O. naivashae show that the type of prey can have
considerable impact on the performance of the predators. Predation capacities and intrinsic rates of
increase of the studied anthocorids showed large variations when they were offered different prey
species and life-stages. Our results indicate that F. occidentalis larvae are the most suitable as food,
amongst the arthropod prey tested, for both O. thripoborus and O. naivashae. This is demonstrated by
high survival rates, short developmental times, and favourable reproductive parameters of the two
predatory species when fed F. occidentalis. The estimated rm-values of O. thripoborus and O. naivashae
in the present study (0.123 and 0.131, respectively) approach those obtained for other thermophilic
Orius species reared on various thrips species under similar climatic conditions (i.e., 25°C and a 16 h
photoperiod). These include Orius sauteri (Poppius) on Thrips palmi Karny (Thysanoptera: Thripidae)
larvae (rm = 0.128) (Nagai & Yano 1999) and Orius albidipennis (Reuter) on F. occidentalis adults (rm =
0.121) (Cocuzza et al. 1997a).

Several studies have shown that E. kuehniella eggs constitute a nutritionally superior food for Orius
species (e.g., Cocuzza et al. 1997b; Ferkovich & Shapiro 2004; Bonte & De Clercq 2008; De Clercq et al.
2013; and other Chapters). The population growth rates of O. thripoborus and O. naivashae reared on
E. kuehniella eggs (Van de Walle 2014; J. Bonte, unpublished data) compared well with those reared
on F. occidentalis (this study). Orius naivashae (rm = 0.138 on E. kuehniella eggs) performed similarly
on both hosts, but O. thripoborus had a much higher intrinsic growth rate when fed on E. kuehniella
(rm = 0.159). Even though the rn-values of O. thripoborus and O. naivashae fed on F. occidentalis were
similar, O. thripoborus produced almost twice as many eggs as did O. naivashae. This is related to the

faster development rate of the latter species and its female biased sex ratio (see other Chapters).
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In addition to favourable intrinsic rates of increase on F. occidentalis larvae, O. thripoborus and O.
naivashae killed higher numbers of F. occidentalis larvae than any of the other prey types tested. This
is reflected in the findings for other Orius species, such as O. sauteri (Kohno & Kashio 1998), Orius
insidiosus (Say) (Tommasini & Nicoli 1994) and Orius laevigatus (Fieber) (Bonte & De Clercq 2010b).
High predation capacities are, however, not always an indication of prey suitability. Mendes et al.
(2002) found that high prey consumption by a predatory anthocorid may occur to fill a nutritional gap
caused by low quality prey. In contrast, a relatively small amount of E. kuehniella eggs, a nutritionally
high quality prey type, is sufficient to successfully rear Orius species (Yano et al. 2002; Mendes et al.
2002). However, other factors such as prey mobility, or prey defense tactics are important factors to
consider in prey selection and attack by a predator (De Clercq & Degheele 1994; Eubanks & Denno
2000). Butler and O’Neil (2006) and Desneux and O’Neil (2008) recorded defensive mechanisms of the
soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), against O. insidiosus, which were
more obvious and effective than those observed for F. occidentalis.

Within a limited temperature range, the activity of an insect increases with increasing temperature,
leading to higher levels of predation in insect predators (Rabbinge 1976; McCaffrey & Horsburgh 1986;
Cocuzza et al. 1997a; Nagai & Yano 1999). In this study, the number of F. occidentalis larvae consumed
by fourth instars and female adults of O. thripoborus increased with increasing temperature between
19 and 29°C. However, predation of O. naivashae at 29°C did not increase compared to that at 25°C.
Based on this study, it seems that the optimal temperature for predation fell between 25 and 29°C for
0. naivashae, whereas this was higher for O. thripoborus. This is not in line with the lower temperature
preference of O. thripoborus compared to O. naivashae in terms of development and reproduction
(Chapter 4).

In the present study, nymphs and adults of both Orius species only killed low numbers of F. occidentalis
adults. Tommasini et al. (2004) found similar predation patterns, ranging from 3.0 to 4.6 F. occidentalis
adults per day killed by fourth instars of different Orius species at 26°C. However, the same authors
recorded predation rates for 8-day-old Orius adults of between 10.2 and 14.9 F. occidentalis adults per
day, which are higher than those observed in our study. Three- to five-day-old female adults of O.
thripoborus in our study killed more F. occidentalis in 24 hours than those of O. naivashae. However,

when offered adults of the sugarcane thrips, F. serrata, no marked differences in predation capacity
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between the two anthocorids was found, averaging 10.5 and 9.1 adult F. serrata per day for O.
thripoborus and O. naivashae respectively. The higher predation on adults of F. serrata compared to
that on F. occidentalis may be due to the smaller size of F. serrata (Dixon & Russel 1972; Reitz et al.
2006). Nutritional value and behavior of the prey though, may also influence predator response (Evans
1976; Isenhour & Yeargan 1981b, c; Eubanks & Denno 2000; Mendes et al., 2002; Reitz et al. 2006), as
indicated above. Adult thrips are winged, move fast and thus have better ability to escape from
predators, such as Orius adults. As attacking this very agile type of prey uses more energy than can be
gained from feeding on it, the predator may cease hunting it before being satiated (van den Meiracker
& Sabelis 1999).

In our study, nymphs of O. thripoborus and O. naivashae killed only half as many M. persicae nicotianae
nymphs than they did F. occidentalis larvae. Further, adults of both Orius species killed similar or even
lower numbers of M. persicae nicotianae nymphs, compared to those killed by their fourth instars.
Nympbhal survival and developmental time of O. thripoborus on M. persicae nicotianae did not differ
from that on F. occidentalis, but its reproductive performance was lower on M. persicae nicotianae
than on the F. occidentalis. As a result, the intrinsic rate of increase of O. thripoborus on M. persicae
nicotianae (rm = 0.0966) was significantly lower than on F. occidentalis. Orius naivashae, on a diet of
M. persicae nicotianae, yielded a slightly negative growth rate (r, = -0.0017). This population decrease
was due to poor nymphal survival, slow development, low number of ovipositing females, an extended
pre-oviposition period, low fecundity and egg hatchability, and shortened longevity on the M. persicae
nicotianae. The quality of aphids in general as prey for generalist predators has been shown to be
lower relative to other prey types (Toft 2005). Mendes et al. (2002) reared O. insidiosus on nymphs of
the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and on adults of Caliothrips phaseoli
(Hood) (Thysanoptera: Thripidae) at 25°C and a 12 h photoperiod, and found a faster nymphal
development on the latter prey. Yet, in the same study on O. insidiosus, prey consumption by nymphs
(all stages) and total female fecundity of the predator were two and three times higher on A. gossypii
than on C. phaseoli, respectively. At 25°C and a 15 h photoperiod, Bush et al. (1993) recorded
developmental times for O. insidiosus on A. gossypii and on the greenbug aphid, Schizaphis graminum
(Rondani) (Hemiptera: Aphididae), similar to those obtained by Mendes et al. (2002) on A. gossypii.

However, total egg production for O. insidiosus on A. gossypii observed by Mendes et al. (2002) was
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higher than that reported by Bush et al. (1993) (ca. 70 vs. 19.4 eggs). Besides aphid species (Sengonca
et al. 2008), also plant-aphid interactions (Goggin 2007), omnivore-plant relations (Coll & Ridgeway
1995; Coll 1998; Coll & Guershon 2002; Rutledge & O‘Neil 2005), (in)direct interactions between aphids
and other prey (Desneux a& O’Neil 2008; Messelinck et al. 2013), and intraguild predation (Rosenheim
et al. 1995) may influence the behavior of an arthropod predator towards its aphid prey.

Tetranychus urticae also caused negative growth of O. naivashae in the present study, as was observed
on a diet of M. persicae nicotianae. Although most developmental and reproductive parameters of O.
naivashae were better on T. urticae than on M. persicae nicotianae, the poor fecundity and longevity
on the former prey substantially lowered the predator's intrinsic growth rate. Reduced adult
longevities, as noted for O. naivashae fed on M. persicae nicotianae or T. urticae, may be caused by
allocation of energy to reproduction in the predator rather than to survival (Nakashima & Hirose 1999).
However, O. thripoborus showed no such tradeoff between longevity and reproduction.

Orius thripoborus killed more T. urticae deutonymphs than O. naivashae, but no differences in
predation on T. urticae eggs were found. Even though T. urticae were the worst prey for O. thripoborus
in terms of development and reproduction, their consumption by the predator still resulted in a
positive growth rate (rm = 0.0725). Intrinsic growth rates reported for other Orius species fed on T.
urticae strongly diverge from that found in the present study but have never been reported to be
negative (e.g., 0.0126 females/female/day for O. laevigatus at 25°C (Venzon et al. 2002), 0.1279 for O.
albidipennis at 26°C (Sobhy et al. 2010), 0.097 for O. minutus (L.) at 24°C, and 0.039 for O. niger Wolff
at 24°C (Fathi 2009)). Similar to O. laevigatus (Venzon et al. 2002), our study showed that overall fitness
of O. thripoborus and O. naivashae was better when fed on F. occidentalis than when fed on T. urticae.
Under natural conditions, however, prey species may co-occur and influence a predator’s responses.
Venzon et al. (2000), for example, found that thrips larvae reduced the risk of being attacked by O.
laevigatus by residing inside the webbing produced by spider mites. In future studies, prey preferences
of O. thripoborus and O. naivashae could be tested by offering these predators assemblages of several
prey species both in small scale arenas and on plants .

The anthocorids in the present study killed prey without fully consuming it. This behavior has been
observed for other predatory anthocorids, and has been suggested to increase their effectiveness as

biological control agents (Isenhour & Yeargan 1981b; De Clercq & Degheele 1994; Kohno & Kashio
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1998; Meyling et al. 2003; Yano et al. 2005; Fantinou et al. 2008). However, predator attack rates
measured in small arenas with high prey densities may not be realistic. Under such laboratory
conditions, prey handling time is the most limiting factor, whereas in a field setting, attack rates will
be limited more by searching behavior of the predators (Isenhour & Yeargan 1981b; De Clercq &
Degheele 1994; van den Meiracker & Sabelis 1999).

A predator's predation capacity, as well as its developmental and reproductive performance on a given
prey, are indicative of its potential value as a biological control agent (van Lenteren & Manzaroli 1999;
Grenier & De Clercq 2003). In general, predation capacities of O. thripoborus measured in our
laboratory experiments were slightly better than those of O. naivashae, which may be related to the
higher mobility of the former species, based on laboratory observations. High predation and
favourable life history characteristics are supportive for considering O. thripoborus and O. naivashae
as biocontrol agents of F. occidentalis and likely also other thrips species in southern Africa. For the
suppression of M. persicae nicotianae and T. urticae, however, our findings suggest that only O.
thripoborus would have potential, as only this species was able to achieve a positive population growth
on these prey types. Again, findings from laboratory experiments using small arenas and high densities
of prey may not reflect what happens in the field (Isenhour & Yeargan 1981b, c; De Clercq & Degheele
1994). Therefore, semi-field and field trials are needed to fully understand the ecology and ecosystem

service potential of the studied anthocorids in different cropping systems in southern Africa.
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Chapter 7

7.1 Introduction

In order to optimise and rationalise the mass production and release of O. naivashae and O.
thripoborus, it is crucial to understand their nutritional ecology. Important aspects of a successful mass
rearing system for these Orius spp. include the availability of alternative food sources, adequate water

sources and suitable oviposition substrates (section 2.5.2).

Plant feeding has been shown to provide moisture and nutrients to numerous predatory
heteropterans. Additionally, Orius spp. are zoophytophagous, allowing them to benefit from plant
materials and animal prey. Several Orius spp. are able to develop on certain pollens as a sole food

source (section 2.4.7.2).

In commercial insectaries, Orius bugs are mainly reared on eggs of the Mediterranean flour moth
Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae), which constitutes an effective but expensive
factitious (i.e., unnatural) food. This has resulted in a search for cheaper alternative foods, such as

brine shrimp (Artemia sp.) cysts (section 2.5.2.1) and various artificial diets (section 2.5.2.2).

To evaluate the quality of insects, several biological parameters such as immature developmental time
and survival, body weight, fecundity and longevity are routinely used (section 2.5.4). In many
synovigenic insects, determining lifetime fecundity is a tedious and time-consuming activity. Bonte and
De Clercq (2008) proposed a method to assess fecundity of Orius laevigatus Fieber based on oocyte
counts in dissected female adults. In the latter study, oocyte counts at day eight were strongly
correlated with lifetime oviposition of the predator reared on different diets. Similar methods have

been developed for Macrolophus spp. by Callebaut et al. (2004) and Vandekerkhove et al. (2006).

In the present study, we hypothesized that both O. thripoborus and O. naivashae are amenable to
mass production and may have potential as biological control agents in southern Africa. First, the effect
of moisture source on the development of O. thripoborus and O. naivashae was determined. Second,
the impact of several factitious foods and bee pollen on developmental and reproductive parameters
of both Orius species was studied. Finally, the reliability of the dissection test designed by Bonte and
De Clercq (2008) to predict the influence of diet on the reproductive potential of O. laevigatus, was

investigated for these two little studied Orius species from southern Africa.
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7.2 Materials and Methods

7.2.1 Stock culture

Stock colonies of O. naivashae and O. thripoborus were reared as described in section 4.2.1.

7.2.2 Influence of water source on development

All experiments were conducted in an incubator set at 23 + 1°C, 65 + 5% RH and a photoperiod of 16:8
(L:D) h. In a first experiment, the effect of two water sources on the developmental performance of O.
thripoborus and O. naivashae was assessed. In the first treatment, water was provided in
hemispherical domes (70 pl) made of Parafilm M using an encapsulation device (ARS, Gainesville, FL,
USA). Stretching the Parafilm M before encapsulation facilitated stylet penetration by early instars of
the insect. The domes were sealed using transparent tape (Scotch 3M Packaging Super Tape, St. Paul,
MN, USA). In the second treatment, a flat green bean pod (Phaseolus vulgaris L.) was used as a source
of water. Green bean pods were thoroughly washed before being used in the experiment to avoid
contamination with pesticide residues. The bean pod was cut between two seeds into 2 to 3 cm pieces
to prevent nymphs from hiding inside the bean. As this plant substrate also provides nutrients besides
being a source of moisture, ‘water source’ is an operational term and is not meant to be physiologically

defining. Frozen eggs of E. kuehniella were supplied as food in both treatments. Ephestia kuehniella

eggs and water sources were refreshed every other day.

Figure 7.1 Water sources tested on Orius sp.: water-filled Parafilm dome (left) and green bean pod (right) (photos: author)

For each treatment, 40 first instars (<24 h old) were caged in individual plastic containers (4.5 cm

diameter, 3 cm high) sealed with a lid having a ventilation hole covered with a fine-mesh gauze.
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Development and survival of nymphs were monitored daily, and newly emerged adults were sexed

and weighed using a Sartorius Genius ME215P balance (Sartorius, Goettingen, Germany).

A two-way ANOVA was conducted to evaluate whether water source had a different effect on
developmental time and body weights of adult males and females of O. thripoborus and O. naivashae.
As no interaction occurred between the main factors water source and species for all tested
parameters, means within each factor were separated using the Tukey pairwise comparison procedure
(Kutner et al. 2005). Survival rates were compared by means of a logistic regression. This regression is
a generalised linear model using a probit (log odds) link and a binomial error function. Each test
consists of a regression coefficient that is calculated and tested for being significantly different from
zero, for which P-values are presented (McCullagh & Nelder 1989). P-values smaller than or equal to
0.05 are considered significant. Sex ratios were evaluated versus an equal male:female distribution

(1:1 ratio) by means of a nonparametric Chi-Square test (SPSS-Inc. 2006).

7.2.3 Effect of diet on development and reproduction

7.2.3.1 Diets

In a second experiment, three foods were tested on both Orius species: two factitious prey types and
one plant diet (Figure 7.1). The first factitious food consisted of frozen eggs of E. kuehniella, which
were supplied by Koppert B.V. (Berkel en Rodenrijs, The Netherlands). A second factitious food
consisted of hydrated decapsulated cysts of the brine shrimp Artemia franciscana Kellogg (Crustacea:
Artemiidae), originating from Great Salt Lake (Utah, USA) and supplied by the Artemia Reference
Center at Ghent University in Ghent, Belgium. The cysts were hydrated by placing them in tap water
for 2 h, after which excess water was removed. The plant diet was composed of moist frozen honey
bee pollen, also supplied by Koppert B.V. The pollen pellets were finely crushed before being offered

to the predator.

In each treatment, a flat green bean pod was provided as a water source, substrate (hiding place) and
extra nutrient source. All foods were supplied ad libitum and replenished every other day, except for

A. franciscana cysts, which were refreshed on a daily basis.
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Figure 7.2 Diets tested on Orius species: E. kuehniella eggs (left), bee pollen (middle), A. franciscana cysts (right) (photos:

author)

7.2.3.2  Nymphal development
For each diet, 120 first instars (<24 h old) of both Orius species were individually caged in 5 cm diameter

containers. Developmental performance of the predators was assessed as described above.

A two-way ANOVA was conducted to evaluate effects of diet on developmental time and body weight
of adult males and females of both predators. Where no interaction was found means within each
factor were separated using a Tukey test. When interactions were significant pairwise multiple
comparison procedures were used (Kutner et al. 2005). In case a Kolmogorov—Smirnov test indicated
that these means were normally distributed, the parameter was analysed using a one-way analysis of
variance (ANOVA). When means were not normally distributed, a non-parametric Kruskal-Wallis H test

was used. Survival rates were compared by means of a logistic regression (SPSS-Inc. 2006).

7.2.3.3  Reproduction

For each diet, newly emerged adults (<24 h old) were paired and transferred into 5 cm diameter
containers. The adults were offered the same diet as in their nymphal life. Half of the females were
dissected, whereas the other half was held to determine lifetime oviposition. The latter group of
females were offered a piece of green bean pod as an oviposition substrate. The bean pods were
checked daily for eggs to determine the preoviposition period. When the first egg was laid, bean pods
were replaced every other day until the female died. Lifetime oviposition and egg hatch were

monitored. Eight days after adult emergence, the second half of the females was dissected to quantify
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oocyte development. For dissection, the females were pinned down on their dorsal side. The ovipositor
together with the last two abdominal segments was carefully separated from the abdomen, exposing
the ovaries. The number of oocytes (follicles) in the ovaries and oviducts was counted and scored
according to the method described by Callebaut et al. (2004): late vitellogenic to mature oocyte, 1;
early to mid vitellogenic oocyte, 0.5; previtellogenic oocyte, 0.25; no observable oocyte, O; early
previtellogenic oocytes that were not clearly discernible under the dissection microscope
(magnification 25x) were not scored. During the 8-d period before dissection, oviposition of this cohort
was monitored. As the presence of an oviposition substrate could affect oocyte counts for this cohort,
the bean pod was replaced by a water dome to provide moisture. Whereas Shapiro and Ferkovich
(2006) used water-filled Parafilm domes to collect Orius insidiosus (Say) eggs, females of O. laevigatus
(Bonte & De Clercq 2010a), O. thripoborus and O. naivashae were rarely observed to deposit eggs into

water domes.

To evaluate whether diet had a different effect on reproduction of O. thripoborus and O. naivashae,
measures of reproduction were subjected to a two-way ANOVA. As no interaction between diet and
species was found for the parameters preoviposition period, lifetime oviposition, weighted sum of
oocytes and longevity, means within each factor were separated using the Tukey pairwise comparison
procedure (Kutner et al. 2005). Means for egg hatch were compared by way of a logistic regression. To
evaluate the relationship between lifetime fecundity and oocyte counts, a Pearson’s correlation test

was performed (SPSS-Inc. 2006).

7.3 Results

7.3.1 Influence of water source on development
Nympbhal survival was significantly affected by water source but not by species (Table 7.1). Survival
rate of nymphs of both O. thripoborus and O. naivashae fed E. kuehniella eggs was about 30% higher

when a bean pod was offered as a water source than when a water dome was offered (Table 7.2).

Both male and female developmental time was influenced by species. Regardless of water source, O.
thripoborus developed faster than O. naivashae (Tables 7.1 and 7.2). Male developmental time was
also influenced by water source. When a bean pod was offered, males of both O. thripoborus and O.
naivashae developed faster than when a water dome was offered (Table 7.1).
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Table 7.1 Results of a logistic regression and a two-way ANOVA indicating the effect of water source (water dome or bean

pod) and species (O. thripoborus and O. naivashae) on developmental parameters

Nymphal Developmental time (days)® Adult weight (mg)®
Source
survival (%)? Males Females Males  Females
Water source F - 10.988 1.182 0.036 3.802
df - 1 1 1 1
P <0.001 0.002 0.281 0.851 0.056
Species - 36.884 6.665 0.279 2.027
df - 1 1 1 1
P 0.073 <0.001 0.012 0.600 0.160
Water source x Species  F - 0.382 1.079 0.083 0.304
df - 1 1 1 1
P 0.767 0.540 0.303 0.774 0.583
Error term df - 44 59 44 59

aProbit (Wald Chi-square); ® Two-way ANOVA

Neither of the tested factors influenced adult weight of both males and females (Table 7.1).

Sex ratios of both species within all treatments did not deviate essentially from a 1:1 ratio (Table 7.2),

although O. naivashae produced more females than males in both treatments.

7.3.2 Effect of diet on development and reproduction

7.3.2.1  Nymphal development
Table 7.3 presents the results of a two-way ANOVA assessing the effect of diet and species on

developmental parameters.

Regardless of the species, nymphal survival of predators fed E. kuehniella eggs was not significantly
different from that of predators reared on A. franciscana cysts (logistic regression; P = 0.377). On the
other hand, nymphal survival of the anthocorids fed either factitious food (E. kuehniella eggs or A.
franciscana cysts) was significantly better than that of those fed pollen (P < 0.001 and P = 0.008,
respectively). For both anthocorids, nymphal survival ranged from 66.3 to 86.6% on the tested diets

(Table 7.4).
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Table 7.3 Results of a logistic regression and a two-way ANOVA indicating the effect of diet (E. kuehniella eggs, A. franciscana

cysts or bee pollen) and species (O. thripoborus and O. naivashae) on developmental parameters

Developmental time (days)® Adult weight (mg)®
Source Nymphal survival (%)?
Males Females Males  Females
Diet F - 125.606 252.810 20.140  34.451
df - 2 2 2 2
P 0.001 <0.001 <0.001 <0.001 <0.001
Species F - 47.715 59.543 10.493 30.216
df - 1 1 1 1
P 0.900 <0.001 <0.001 0.001 <0.001
Diet x Species  F - 12.715 16.762 2.158 18.027
df - 2 2 2 2
P 0.053 <0.001 <0.001 0.118 <0.001
Error term df - 190 336 190 336

a Probit (Wald Chi-square); ® Two-way ANOVA

For developmental time, interactions were found to be significant (two-way ANOVA); here, the
treatment means were compared pairwise using multiple comparison procedures. As developmental
times were not normally distributed they were analysed using a non-parametric Kruskal-Wallis H test.
Development of males (x 2 = 144.843; df = 5; P < 0.001) and females (x 2 = 244.275; df = 5; P < 0.001) of
either species was faster on the factitious foods than on pollen. Predators fed flour moth eggs had
shorter developmental times than those fed brine shrimp cysts (Table 7.4). When pollen was offered
as food, development took longer than when cysts were offered, except for O. naivashae males. In the
latter case, no significant differences in developmental time were observed between pollen and A.

franciscana cysts.

As there was no interaction between diet and species for weights of male adults (two-way ANOVA),
means within each factor were separated using a Tukey test. Both diet and species influenced male
adult weight. In general, O. naivashae males were heavier than O. thripoborus males (Table 7.3).
Artemia cysts and pollen yielded males with similar adult weights (P = 0.295) which were in turn lighter

than those reared on E. kuehniella eggs (both P <0.001).
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Moisture source and diet

For female adult weight, interactions were found to be significant (two-way ANOVA). Consequently,
the treatment means were compared pairwise using multiple comparison procedures; here, body
weights of female adults were normally distributed and therefore analysed using a one-way analysis
of variance (ANOVA). Their variances of means were heteroscedastic and hence separated using a
Tamhane test (P = 0.05). Female adult weights of O. thripoborus were similar to those of O. naivashae
on cysts and pollen, but adults of the latter species produced on E. kuehniella eggs were heavier than
those of the former (one-way ANOVA; F = 33.881; df = 5, 336; P < 0.001). Within O. naivashae, flour
moth eggs yielded heavier females than brine shrimp cysts, which in turn yielded heavier females than

did pollen (Table 7.4).

Sex ratios of O. naivashae were female biased on all diets (P < 0.001). For O. thripoborus, no significant

deviations from a 1:1 sex ratio were observed (Table 7.4).

7.3.2.2  Reproduction
Reproduction characteristics of both Orius species reared on different diets are given in Table 7.6.

Females of both species were able to produce viable eggs on all diets.

The diet x species interaction was only significant for the parameter egg hatch (Table 7.5). Egg hatch
exceeded 83% in all treatments. Hatching rate of O. thripoborus eggs was superior to that of O.
naivashae eggs except on A. franciscana cysts. For O. thripoborus, E. kuehniella eggs resulted in the
highest egg hatch, whereas A. franciscana cysts yielded the lowest hatching rate. In O. naivashae, egg

hatch did not differ among diets (Table 7.6).

Preoviposition period was affected by species but not by diet. Females of O. thripoborus had shorter

preoviposition periods than those of O. naivashae (Tables 7.5 and 7.6).

Both diet and species influenced lifetime oviposition. Regardless of diet, O. thripoborus produced more
eggs than O. naivashae (Table 7.5). Variability of lifetime oviposition was high, with coefficients of
variation ranging from 70.7 to 89.3%. Overall, females of both species fed pollen laid 26 to 51% of the

number of eggs deposited by those fed E. kuehniella eggs or A. franciscana cysts (Table 7.6).

Oocyte counts were similar in all treatments (Table 7.5) and varied between 7.6 and 11.2 (Table 7.6).
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A strong significant correlation was found between lifetime oviposition and the weighted sum of

oocytes at dissection for O. thripoborus (r =0.999; P =0.022; n = 3), but for O. naivashae the correlation

was not significant at the 0.05 level, despite a high magnitude of the correlation coefficient (r = 0.992;

P=0.082;n=3).

Longevity of females varied between 50.5 and 61.1 days and did not differ among treatments (Tables

7.5 and 7.6). Male longevity depended on both diet and species. In general, O. naivashae males lived

longer than those of O. thripoborus (Table 7.5). Regardless of the species, males lived longer on E.

kuehniella eggs than on A. franciscana cysts (P = 0.011).

Table 7.5 Results of a logistic regression and a two-way ANOVA indicating the effect of diet and species (O. thripoborus and

O. naivashae) on reproductive parameters

Preoviposition period Lifetime Weighted sum of Egg hatch Longevity (days)?
Source
(days)? oviposition? oocytes? (%) Males Females
Diet F 2.004 7.736 2.345 - 3.862 0.980
df 2 2 2 - 2 2
P 0.141 0.001 0.101 <0.001 0.024 0.379
Species F 4.133 21.004 0.002 - 6.734 2.607
df 1 1 1 - 1 1
P 0.045 <0.001 0.966 <0.001 0.011 0.110
Diet x F 2.129 0.581 0.267 - 0.664  0.261
Species df 2 2 2 - 2 2
P 0.125 0.561 0.766 0.001 0.517 0.771
Error term  df 84 105 107 - 92 96

a Two-way ANOVA; ® Probit (Wald Chi-square)
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7.4 Discussion

In a preliminary experiment, only a single O. thripoborus nymph (out of 20) reached the adult stage
when E. kuehniella eggs were offered without a supplementary water source. Despite the ca. 68%
water content of E. kuehniella eggs (De Clercq et al. 2005), a supplementary source of water was
needed to sustain the development of the predator when presented with this food. In most rearing
systems for heteropteran predators, water is supplied via plant materials. Besides being a source of
moisture (Grenier et al. 1989; Richards & Schmidt 1996a), plants also serve as an oviposition substrate
(Castafié & Zalom 1994; Coll 1996; Richards & Schmidt 1996b; Lundgren & Fergen 2006) and provide
hiding places, thus reducing cannibalism (van de Veire 1995; Cocuzza et al. 1997b). In addition, it has
been shown that several heteropteran predators, including Orius spp., may also derive supplemental
nutrients from plant materials (Lundgren 2009). Orius insidiosus gains water from the plant xylem, and
may ingest small amounts of starches, sugars, and amino acids from the mesophyll (Armer et al. 1998).
The influence of plant materials on the performance of predatory bugs varies greatly (Naranjo &
Gibson 1996; Lundgren 2009). Overall, supplementing prey diet with plant material has been reported
to accelerate nymphal development, increase nymphal survival and adult longevity, and enhance
fecundity (Coll 1998). In our experiments, nymphal survival was higher and development of males
faster when a piece of bean pod was added as water source to E. kuehniella eggs, for both O.
thripoborus and O. naivashae. Richards and Schmidt (1996a) stated that bean pods were an important
source of moisture, greatly affecting the proportion of nymphs of O. insidiosus reaching the adult stage.
Kiman and Yeargan (1985), on the other hand, observed no differences in nymphal survival or
developmental time of this species when a bean pod was supplemented to Heliothis virescens
(Fabricius) eggs. Bush et al. (1993) noted a faster development and better fecundity but similar survival
when O. insidiosus were offered a bean pod in addition to H. virescens eggs. In contrast, nymphs of O.
laevigatus developed slower when a bean pod was added to a diet of E. kuehniella eggs as compared

with free water as a moisture source (Bonte & De Clercq 2010a).

Our findings suggest that the presence of the bean pod had a positive influence on some of the
developmental parameters of the tested Orius species. Bonte & De Clercq (2010a) pointed out that

the use of plant materials to provide moisture in rearing systems for predatory heteropterans has
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several drawbacks. Artificial sources of water, like the Parafilm domes used in our study, may
contribute to rationalising the rearing process. However, for some species it may be advisable to
compensate for the extra nutrients which are normally gained from plant materials, when only free

water is provided.

Several studies have shown that eggs of the Mediterranean flour moth E. kuehniella constitute a
nutritionally superior food for Orius bugs (e.g., Cocuzza et al. 1997b; Ferkovich & Shapiro 2004; Bonte
& De Clercq 2008). Arijs & De Clercq (2001b) and Bonte and De Clercq (2008) demonstrated that
hydrated decapsulated cysts of A. franciscana also sustained development and reproduction of O.
laevigatus, with similar or slightly inferior results as compared with E. kuehniella eggs. The current
study indicates that Artemia cysts were also an acceptable food for O. thripoborus and O. naivashae
and may thus have value for use in the mass production of these species as well. However, Artemia
cysts may not be a suitable food to solely support long term cultures of Orius spp. (De Clercq et al.
2005) and may thus have more potential to replace the more expensive E. kuehniella eggs in part of

the rearing process.

Orius thripoborus and O. naivashae were able to complete their development on moist honey bee
pollen. With nymphal survival percentages of 66% for O. thripoborus and 78% for O. naivashae,
mortality on honey bee pollen was higher than on the tested factitious foods. However, these survival
rates are similar or even better than those reported for other Orius spp. reared on pollen from various
sources in combination with plant tissue (Kiman & Yeargan 1985; Richards & Schmidt 1996a; Vacante

et al. 1997; Venkatesan et al. 2008; Lundgren 2009; Bonte & De Clercq 2010a).

Overall, developmental fitness of both tested Orius species on factitious foods was better than on
pollen. There is considerable variation in the performance of Orius nymphs on pollen among studies.
Reported developmental times of different Orius spp. are generally longer on vegetal diets (e.g.,
pollen) than on insect prey (e.g., Kiman & Yeargan 1985; Funao & Yoshiyasu 1995; Richards & Schmidt
1996a). Lundgren (2009) showed that pollen from certain hybrids of Zea mays L. did not support
development in O. insidiosus at all, whereas that from others only allowed a small number of
individuals to complete development. In contrast, Duan et al. (2007) reported good survival and rapid

development of O. insidiosus on a bee pollen diet consisting of 40% water and 60% pollen. They
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suggested the use of this pollen diet in Tier-I toxicity assays to evaluate potential adverse effects of
transgenic plants on non-target heteropteran predators. Females of O. thripoborus and O. naivashae
showed a reduction in fecundity of 54 and 74%, respectively, when fed on pollen, as compared to when
fed on E. kuehniella eggs. Other studies reported a strong reduction in fecundity for Orius spp. fed
pollen instead of prey (Fauvel 1974; Salas-Aguilar & Ehler 1977; Kiman & Yeargan 1985; Cocuzza et al.
1997b). Females of Orius tantillus (Motschulsky) failed to lay any eggs when reared on maize pollen
(Venkatesan et al. 2008). Differences in developmental and reproductive performance of Orius spp.
feeding on pollen could be due to differences in nutritional quality, particularly pertaining amino acid
and lipid content, and defensive properties of the pollen (Stanley & Liskens 1974; Richards & Schmidt
1996a). Besides defensive structural traits of pollen grains, their antinutritive or even toxic qualities

may have a negative impact on the biological performance of pollinivores (Lundgren 2009).

Despite that animal prey is required for optimal development and reproduction, numerous workers
have observed Orius spp. feeding on pollen in the field (e.g., Salas-Aguilar & Ehler 1977; Cocuzza et al.
1997b; Corey et al. 1998). Pollinivory is considered to be an adaptive strategy to sustain populations
of these predators when prey numbers are low, which may eventually lead to a more effective pest
control. Feeding on pollen may also play an important role in a preventive release strategy (Cocuzza et
al. 1997b). Populations of Orius spp. may be supported by pollen-producing wild or cultivated plants
in the vicinity of the crop. Alternatively, the pollen itself can be applied to the crop (e.g., van Rijn et al.
2002). However, the outcome of conservation measures based on increasing pollen input may not be
unequivocal. Skirvin et al. (2007) found that the presence of pollen reduced predation by O. laevigatus
of thrips by 40%, leading to higher pest populations. More on the negative side, the plant feeding habit

may expose Orius bugs to systemic insecticides (Cocuzza et al. 1997b).

Like in O. laevigatus (Bonte & De Clercq 2008), lifetime oviposition data and oocyte counts were
strongly correlated in O. thripoborus and O. naivashae females reared on different diets. Some caution
is warranted in the case of O. naivashae, for which the correlation was only marginally significant, due
to the high variability of the oviposition data. This linear relationship may thus be used to more cost
effectively predict the reproductive capacity of these predators as a function of their diet (Bonte & De

Clercq 2008).
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Whereas reported sex ratios in other Orius spp. are essentially 1:1, sex ratios of O. naivashae were
female biased, particularly in the second experiment where 2 to 4.5 times more females emerged than
males. A similar trend was observed in the stock culture of O. naivashae and in previous experiments
(see Chapters 3 and 4). As nymphal survival in our experiments was very high, skewed sex ratios are
unlikely the result of differential survival of males and females. It is hypothesised that endosymbionts

are involved in this sex ratio distortion, but this requires further study (see Chapter 9).

Developmental and reproductive performance of O. thripoborus was superior to that of O. naivashae,
with a faster nymphal development, shorter preoviposition period and overall better fecundity. Orius
thripoborus also performed better on pollen than O. naivashae. Body weights of both species in our
study were generally similar, except when the predators were offered E. kuehniella eggs and green
beans, resulting in heavier body weights for O. naivashae. In field collections, adults of O. naivashae
are mostly larger than those of O. thripoborus (Hernandez & Stonedahl 1999). However, in Chapter 6
it was shown that the larger size of O. naivashae is not beneficial in terms of predation capacity as
compared with O. thripoborus. All these findings may lead to the conclusion that O. thripoborus has
greater potential than O. naivashae for use in biological control programmes. However, it deserves
emphasis that in the current study the predators were reared individually and only so for one
generation under (optimal) laboratory conditions. Other factors like diapause (see Chapter 5),
temperature preferences (see Chapter 4), searching behaviour, predation capacity (see Chapter 6) and
habitat and prey preference (see Chapter 6) may determine the effectiveness of these predators in

the field (Chambers et al. 1993; van den Meiracker 1994; Coll & Ridgeway 1995; Honda et al. 1998).
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Chapter 8

8.1 Introduction

Orius species are omnivores that can also exploit plant resources, such as plant juices and pollen
(section 2.4.7.2), and can be raised on unnatural/factitious and artificial foods (section 2.5.2). In the
current mass production of these and other predatory heteropterans, mainly factitious foods are being
used. Such alternative foods can reduce the cost of mass-rearing these natural enemies (section

2.5.2.1).

Factitious foods are live or dead organisms that are not normally attacked by the predator, mostly
because they do not occur in its natural habitat, but do sustain its development in a laboratory
environment (section 2.5.2.1). Several studies have shown that eggs of the Mediterranean flour moth
Ephestia kuehniella Zeller constitute a nutritionally superior food for Orius bugs (e.g., Cocuzza et al.
1997b; Ferkovich & Shapiro 2004; Bonte & De Clercq 2008; Tan et al. 2011; Chapter 7). However, the
continuous use of lepidopteran eggs as a factitious food in mass rearing systems does have some
drawbacks, the most important of which is their high cost (e.g., ca. USS$500 for 1 kg of E. kuehniella
eggs) (section 2.5.2.1). This has resulted in a search for cheaper alternative foods, like cysts of brine
shrimps (Artemia sp.) (Arijs & De Clercq 2001b; De Clercq et al. 2005). In Chapter 7, we demonstrated
that hydrated decapsulated cysts of Artemia franciscana Kellogg sustained development and
reproduction of O. thripoborus and O. naivashae, with similar or slightly inferior results as compared
with E. kuehniella eggs. However, prolonged rearing on cysts as a sole food has been associated with
fitness losses in Orius bugs (section 2.5.2.1). Moreover, as hydrated Artemia cysts need to be daily
refreshed — or at least rehydrated — for optimal Orius feeding (Arijs & De Clercq 2001b), using these
cysts in rearing systems is labor intensive. The availability of an economically viable and nutritionally
adequate food as an alternative to flour moth eggs and Artemia cysts could be a crucial asset for

rationalising the large-scale production of Orius bugs and other insect predators (De Clercq et al. 2005).

Eggs of fruit flies (Tephritidae) have been proposed as a potential source of factitious food for
predatory insects (De Clercq et al. 2013). Eggs of the oriental fruit fly, Dacus (Bactrocera) dorsalis
(Hendel) have been used to rear nymphs of the predaceous mirid Tytthus mundulus (Breddin) (Takara
& Nishida 1981). Furthermore, Liquido and Nishida (1985) suggested that fresh eggs of the medfly,

Ceratitis capitata Wiedemann, could be used as prey in the mass rearing of the mirid Cyrtorhinus
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lividipennis Reuter. Previous studies have also indicated the potential of fruit fly eggs for the culturing
of anthocorid bugs. Whereas Orius insidosus (Say) could be reared for at least a single generation on
D. dorsalis eggs (Takara & Nishida 1981), Steinberg and Cayol (2009) reported that the overall
performance of Orius laevigatus Fieber maintained on processed Mediterranean fruit fly eggs was
comparable to that on E. kuehniella eggs. As fruit flies are produced by the billions in mass-rearing
facilities for Sterile Insect Technique (SIT) purposes, market prices of their eggs are competitive with

those of E. kuehniella.

Commercial suppliers routinely use astigmatid mites such as Thyreophagus entomophagus
(Laboulbene), Tyrophagus putrescentiae (Schrank) and Carpoglyphus lactis (L.) as inexpensive prey for
culturing a number of predatory mites of the Phytoseiidae family (Bolckmans & Van Houten 2006;
Fidgett & Stinson 2014; Huang et al. 2013). Several Orius species have been reared on T. putrescentiae,
albeit with varying degrees of success (Husseini et al. 1993; Nagai et al. 1998; Gomaa & Agamy 2002;

Yang et al. 2009).

In the present paper, we compared the developmental and reproductive parameters of O. thripoborus
and O. naivashae on different factitious foods: eggs of E. kuehniella and C. capitata, and mixed motile
stages of the astigmatid mites T. putrescentiae and C. lactis. Given promising results in a first
generation, developmental and reproductive performance of O. thripoborus was assessed over four

generations of continuous rearing on C. capitata eggs.
8.2 Materials and Methods
8.2.1 Orius thripoborus and O. naivashae stock cultures

Stock colonies of O. naivashae and O. thripoborus were reared as described in section 4.2.1.

8.2.2 Factitious foods
Four factitious foods were tested for O. thripoborus and O. naivashae: frozen eggs of E. kuehniella and

C. capitata, and two types of live prey.

Frozen eggs of E. kuehniella were supplied by Koppert B.V. (Berkel en Rodenrijs, The Netherlands). A
second factitious food consisted of frozen inactivated C. capitata eggs and were supplied by Andermatt

Biocontrol AG (Grossdietwil, Switserland). The inactivation of medfly eggs, after having been harvested
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in water, is a patented process that includes removal of excess water. Eggs are then put into sachets
and subjected to Individual Quick Freezing (IQF), which ensures that they can be stored in a standard
freezer without loss of quality for a minimum period of 9 months (Shouster-Dagan et al. 2011). Thawed

eggs of E. kuehniella and C. capitata were stored in a refrigerator for no longer than two days.

Live prey comprised a mixture of all active stages (larvae, nymphs and adults) of the dried fruit mite,
C. lactis, and the mold mite, T. putrescentiae. Colonies of these astigmatid mites were initiated from
individuals supplied by Koppert B.V. and were kept in a climatic cabinet at 25°C. The mites were reared
in insect breeding dishes (10 cm diameter, 4 cm high) (SPL Life Sciences, Republic of Korea) with a mesh
hole (4 cm in diameter) in the lid. The dishes were placed in Styrofoam boxes (in complete darkness)
with 2 cm of water. As predators can be affected by the nutrient composition of the prey’s food
(Mayntz & Toft 2000; Huang et al. 2013), both astigmatid mites were cultured on the same diet. The
diet of the astigmatid mites was modified from Zdarkova et al. (1999) and Nguyen et al. (2013), and
consisted of a ground mixture of hulled buckwheat (55%), brewer’s yeast (10%), Pond Food Balance
Sticks (10%) (Vitakraft, Bremen, Germany), sucrose (5%), and tap water (20%). The diet was refreshed

every week.

8.2.3 Experiments

All experiments were performed at Ghent University in climatic cabinets set at 25 +1°C, 65 + 5% RH
and a 16:8 (L:D) h photoperiod. In each experiment, similar plastic containers were used (4.5 cm
diameter, 2 cm high), the lids of which had a ventilation hole screened with fine-mesh gauze. In each
treatment, a flat green bean pod (Phaseolus vulgaris L.) was provided as a water source and substrate.
All foods were supplied to the predators at libitum. Flour moth and medfly eggs were refreshed every

three days, astigmatid mites were replenished every other day.

8.2.3.1 Nymphal development

In the experiment assessing the development of both Orius spp. on the different diets, 67 to 95 first
instars (< 24 h old) were caged in individual plastic containers. Development and survival of the nymphs
were monitored daily, and newly emerged adults were sexed and weighed using a Sartorius Genius

ME215P balance (Sartorius, Goettingen, Germany).
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8.2.3.2 Reproduction

On each tested prey, newly emerged adults (< 24 h old) from the development experiment were paired
and transferred to individual plastic containers. The adults were offered the same food as during their
nymphal life. Bean pods were checked daily for eggs to determine the preoviposition period. When
the first egg was laid, bean pods were replaced every other day until the female died. Dead males were

not replaced. Lifetime oviposition, egg hatch, and adult longevity were monitored.

8.2.3.3  Multigeneration study with O. thripoborus on C. capitata eggs

Given promising results in a first generation, developmental and reproductive performance of O.
thripoborus was assessed over four generations of continuous rearing on C. capitata eggs. For this
purpose, about 80 adults from the stock culture were placed in a Plexiglas cage (9 cm diameter, 3.5 cm
high) containing a small sharp pepper plant and cultured in the same way as described for the stock
colony, but now E. kuehniella eggs were replaced by C. capitata eggs as food for the adults and their
progeny (founder generation, GO). Eggs were collected and subsequent nymphs and adults were
reared in groups as for the stock colony. This procedure was followed for four successive generations.
Seventy-two newly hatched nymphs from the third generation were individually caged to monitor their

development (G3) and reproduction (G4) on medfly eggs as described above.

8.2.4 Statistical analysis

Data analysis was carried out using IBM SPSS Statistics 21 (IBM Corp. 2012).

For all studied parameters, a two-factor analysis with food and species as factors was applied using the
appropriate model (2-way ANOVA or generalised linear model). In case the factor food was found to
be significant (i.e., for the parameters male and female adult weight, pre-oviposition period,
oviposition period, egg hatch and male longevity), a post-hoc analysis was performed to separate
means. A Tukey post-hoc test was used for male and female adult weight, whereas generalised linear
model based post-hoc tests were applied for all other of the above listed parameters. When a
significant interaction between the factors was found, means were compared pairwise. If the data
were continuous and a Kolmogorov-Smirnov test indicated that the values were normally distributed,
the parameter was analysed using analysis of variance (ANOVA). When continuous data were not

normally distributed, a non-parametric Kruskal-Wallis H test was used. In the latter case, means were
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separated using a Mann-Whitney U test. In case of non-continuous data, a generalised linear model
was used with a link function and error distribution depending on the nature of the data. Each analysis
started with a saturated model and interactions and non-significant main factors were dropped at a
significance level of 0.05. Countable data were analysed using a generalised linear model, with a
Poisson distribution if applicable or a negative binomial distribution in case of overdispersion, as
determined by the deviance and Pearson goodness-of-fit statistics (Hilbe 2011). If none of the
generalised linear models were applicable, a non-parametric model was applied (Kruskal-Wallis H test,
followed by Mann-Whitney U test). Parameters expressed as percentages (binary) were compared by
means of a logistic regression. This regression is a generalised linear model using a probit (log odds)
link and a binomial error function (McCullagh & Nelder 1989). Sex ratios were tested versus an equal

female:male distribution (1:1 ratio) by means of Chi-square tests.

Non-continuous data from the multigeneration experiment with O. thripoborus (GO vs. G3 for nymphs;
G1 vs. G4 for adults) were compared pairwise using a generalised linear model (see above), whereas

an independent sample t-test was applied for analysing normally distributed continuous data.

8.3 Results

Table 8.1 presents the results of a two-factor analysis assessing the effect of species and factitious
food on developmental and reproductive parameters of O. thripoborus and O. naivashae. Parameter
values and significant differences as a function of species and food are shown in Tables 8.2 and 8.3 for

development and reproduction, respectively.

8.3.1 Nymphal development

Nymphal survival on the different foods (x* = 217.443; df = 7; P < 0.001) ranged from 53.7 to 93.5% for
O. thripoborus and from 1.0 to 95.2% for O. naivashae (Table 8.2). Whereas survival of O. naivashae
nymphs reared on either type of factitious eggs was similar, nymphal survival of O. thripoborus was
higher on eggs of E. kuehniella than on medfly eggs. Survival rate of the latter species fed on T.
putrescentiae was as high as on C. capitata eggs. However, when reared on C. lactis, only about half of
the O. thripoborus nymphs survived. Less than 7% of O. naivashae nymphs reached adulthood when
astigmatid mites were offered. As a result, the number of replicates for O. naivashae fed on astigmatid
mites was low and statistical analysis of their parameters was uninformative.
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Table 8.1 Results of a logistic regression or a two-way ANOVA indicating the effect of species (O. thripoborus and O. naivashae)
and factitious foods (E. kuehniella eggs, C. capitata eggs, C. lactis and T. putrescentiae) on developmental and reproductive
parameters of the predators at 25°C

Parameter Species Food Species x food Error
term
F/x* df P F/x* df P F/x* df P df
Nymphal survival? 36.796 1 <0.001 158.686 3  <0.001 90.116 3 <0.001 -
Female developmental time®  2.111 1 0.148 87.471 3 <0.001 19.118 2 <0.001 199
Male developmental time® 3.385 1 0.068 49.286 3 <0.001 41.543 2 <0.001 160
Female adult weight® 46.372 1 <0.001 110.753 3 <0.001 2.827 1 0.094 199
Male adult weight® 17.836 1 <0.001 32870 3 <0.001 0.088 1 0.767 161
Proportion of ovipositing <0.001 1 1.000 2.297 3 0.513 6.857 2 0.032 -
females®
Preoviposition period® 0.203 1 0.653 13.996 3 0.003 0.217 1 0.641 -
Oviposition period® 3238 1 0.072 70.500 3 <0.001 1492 1 0.222 -
Lifetime oviposition® 47935 1 <0.001 115.015 3  <0.001 4.403 1 0.036 -
Egg hatch? 23369 1 <0.001 262.047 3 <0.001 2974 1 0.085 -
Female longevity® 9.280 1  0.002 71987 3 <0.001 8750 2 0.013 -
Male longevity© 6.136 1 0.013 45.836 3  <0.001 0.256 1 0.613 -

a Binary probit test (Wald Chi-square); ® two-way ANOVA; cgeneralised linear model with negative binomial distribution (Wald

Chi-square

Orius females (x? = 149.395; df = 6; P < 0.001) developed faster on factitious eggs (11.5 to 13.1 days)
than on astigmatid mites (14.9 to 16.5 days) (Table 8.2). Whereas developmental times of O.
thripoborus females were similar on eggs of C. capitata and E. kuehniella, O. naivashae females
developed slower on medfly eggs than on flour moth eggs. However, females of O. naivashae
developed faster on E. kuehniella eggs than those of O. thripoborus. Females of the latter species
developed faster on mould mites than on dried fruit mites. Developmental times of males showed
similar trends to those of females and similar effects of species and factitious food on developmental

time as observed for females were found in males of both species (x? = 129.413; df = 6; P < 0.001).
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Within each food, O. thripoborus adults were generally heavier than those of O. naivashae (Tables 8.1
and 2). Further, in both anthocorids, body weights were higher on E. kuehniella eggs than on C.
capitata eggs. Lightest O. thripoborus females were observed when nymphs were fed C. lactis or T.
putrescentiae (F = 81.737; df = 3, 201; P < 0.001). For males, similar effects of species and factitious

food on adult weight as mentioned for females were noted (F = 27.258; df = 3, 163; P < 0.001).

Sex ratios of both species did not deviate from a 1:1 ratio on any of the tested foods (Table 8.2).

8.3.2 Reproduction

Proportions of ovipositing females (x* = 8.559; df = 6; P = 0.200) fluctuated between 81.0 and 97.0%
for O. thripoborus, but this parameter was not affected by food within this species, whereas it was in
O. naivashae (Tables 8.1 and 8.3). Proportionally more O. thripoborus than O. naivashae females
oviposited when fed medfly eggs, but on flour moth eggs similar numbers of females produced eggs in
the two species. Proportions of egg producing O. naivashae females were higher on eggs of E.
kuehniella than on those of C. capitata. None of the three O. naivashae females that had reached

adulthood on T. putrescentiae mites were able to produce eggs.

No effect of species on preoviposition period was observed and first oviposition was only delayed when
predators were fed dried fruit mites. Likewise, oviposition periods did not differ between species and
were longer on insect eggs than on astigmatid mites. Nonetheless, the duration of egg production was

double as long on C. lactis than on T. putrescentiae (Table 8.3).

Lifetime oviposition ranged from 23.2 to 129.3 eggs for O. thripoborus and from 32.4 to 65.2 eggs for
O. naivashae (Table 8.3). Orius thripoborus females produced a higher number of eggs than those of
O. naivashae (x> = 126.520; df = 5; P < 0.001). Whereas lifetime oviposition of O. thripoborus did not
differ between eggs of E. kuehniella and C. capitata, O. naivashae females were twice as fecund on the
former than on the latter. The number of eggs produced by O. thripoborus on C. lactis and T.
putrescentiae was similar and lower than on both egg diets. Egg hatch was overall higher in O.
naivashae than in O. thripoborus, and in both species it was lower on medfly eggs than on the other

foods (Table 8.3).
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Mite and insect material as factitious foods

Female adults of O. thripoborus lived as long as those of O. naivashae, except on T. putrescentiae which
allowed O. thripoborus females to live twice as long as those of O. naivashae. Female longevities were
longest on the egg diets, intermediate on dried fruit mites and shortest on mould mites. In O.
naivashae, female longevity was shorter on C. capitata eggs than on E. kuehniella eggs (x* = 153.330;

df =6; P <0.001) (Table 8.3).

Longevities of male O. naivashae adults were longer than those of O. thripoborus and a similar effect

of diet on longevity as observed for females was seen in males (Table 8.1).

8.3.3 Multigeneration study with O. thripoborus on C. capitata eggs

Developmental parameters of O. thripoborus reared for four successive generations on C. capitata
eggs were 83.3 £ 4.4% for nymphal survival; 13.3 £ 0.19 and 13.5 £ 0.14 days for female and male
developmental time, respectively; 0.33 + 0.01 and 0.26 + 0.01 mg for female and male adult weight,
respectively; and a 1:1.40 (male:female) sex ratio. No differences in developmental traits were
observed between GO and G3, yet the first-generation adults were heavier than those from G4
(nymphal survival: x* = 1.310, df = 1, P = 0.252; female developmental time: P = 0.108; male
developmental time: P = 0.068; female adult weight: t = 2.714, df = 56, P = 0.009; and male adult

weight: t = 2.248, df = 55, P = 0.033).

Preoviposition period was the only reproductive trait that was influenced by multigeneration rearing,
being shorter in G4 (4.0 £ 0.2 days) than in G1 (P < 0.001). For the remaining reproductive parameters,
results were 91.7 + 5.8% for proportion of ovipositing females (x? = 0.750, df = 1, P = 0.386); 19.1 + 2.5
days for oviposition period (x* = 1.839, df = 1, P = 0.175); 105.8 + 17.8 eggs for total fecundity (x> =
0.173, df = 1, P = 0.677); 50.3 + 1.0% for egg hatch (x? = 2.059, df = 1, P = 0.151); and 28.1 + 2.8 and
25.8 + 1.5 days for female (x* = 2.126, df = 1, P = 0.145) and male longevity (x> = 1.352, df =1, P =

0.245), respectively.

8.4 Discussion

The present study demonstrates that frozen processed eggs of C. capitata sustained development and
reproduction of O. thripoborus and O. naivashae, with similar or slightly inferior results as compared

with E. kuehniella eggs. Only nymphal survival, adult weight and egg hatch of O. thripoborus were,
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albeit to a limited extent, less favourable on medfly eggs than on flour moth eggs. Whereas survival of
0. naivashae nymphs was similar on both egg diets, it was not as successful on C. capitata eggs as on
E. kuehniella eggs in terms of the other developmental and reproductive parameters. Fecundity was
even halved when O. naivashae was offered medfly eggs as compared to flour moth eggs. Nannini et
al. (2009) reported similar reductions in nymphal survival and female fertility in the mirid bug
Macrolophus pygmaeus Rambur when reared on fresh medfly eggs as compared with E. kuehniella
eggs, but its developmental rate was similar on both factitious foods. In contrast, in O. laevigatus
juvenile mortality and fecundity remained unaltered when processed medfly eggs were used as food
instead of E. kuehniella eggs in the mass production (Shouster-Dagan et al. 2011). A study carried out
by Liquido and Nishida (1985) showed that fruit fly eggs are also suitable for feeding the mirid C.
lividipennis. Besides the eggs, also the larval stages of C. capitata have been shown to be suitable for
rearing heteropteran predators, such as O. laevigatus (Steinberg & Cayol 2009) and Macrolophus

caliginosus Wagner (Nannini et al. 2008a, b).

Nutrient balances in a diet may be expressed and lead to impaired fitness of the insect only after
several generations of rearing (De Clercq et al. 2005). For instance, in the third generation on brine
shrimp cysts, O. laevigatus nymphs took 18% longer to develop, and adults were shorter-lived and
about 60% less fecund than those maintained on E. kuehniella eggs (De Clercq et al. 2005). However,
in the present study, developmental and reproductive performance of O. thripoborus did not
deteriorate after being reared for four successive generations on processed medfly eggs, but remained
slightly inferior as compared with E. kuehniella eggs. Based on these results, we suggest that C. capitata
eggs may be an adequate food to at least partially replace E. kuehniella eggs for long-term culturing of
Orius bugs, although there may be differences in performance on medfly eggs among Orius species, as
observed in the present study. To reduce inputs of expensive lepidopteran eggs, A. franciscana cysts
are currently being used as a supplemental food in commercial mass cultures of Orius spp. and other
predatory bugs (Bonte & De Clercq 2008; Chapter 7). Likewise, medfly eggs can be offered to these

predators either in part of their life cycle or in a mixture with lepidopteran eggs or Artemia cysts.

It deserves emphasis that in the present study the predators were reared individually. In mass rearing

systems of anthocorids and other arthropod predators, several stages coexist at the same time which
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has been noted to lead to cannibalism (De Clercq & Degheele 1992; Chambers et al. 1993; Tommasini
et al. 2002; Schausberger 2003; Baniameri et al. 2005). The rate of cannibalism may depend on
predator density and on the nutritional capacity of the food offered (Grundy et al. 2000; Tommasini et
al. 2002; Schausberger 2003; Leon-Beck & Coll 2007; Bonte & De Clercq 2011). When maintained on
processed C. capitata eggs, the phytoseiid mite Amblydromalus limonicus Garman & McGregor
displayed cannibalistic behavior, resulting in a negative population growth (Vangansbeke et al. 2014).
However, in our multigeneration study with O. thripoborus, in which the predator was maintained for

four consecutive generations on medfly eggs, no such problem was observed.

An important consideration for the commercial rearing of biocontrol agents on medfly eggs is that this
factitious food is a magnitude cheaper as compared with E. kuehniella eggs. Millions of C. capitata and
other tephritid fruit flies are currently being produced every week in SIT facilities. The great majority
of the C. capitata flies are employed in sterile insect releases, but the fly is also used as a host for
tephritid parasitoids (Nannini et al. 2008a). High numbers of C. capitata eggs can be produced at very
low cost (Mitchell et al. 1965; Tanaka et al. 1969; Hendrichs et al. 1995; Steinberg & Cayol 2009).
Shouster-Dagan et al. (2011) stated that processed medfly eggs are 35 to 50% cheaper than a diet
based on E. kuehniella eggs for the mass production of O. laevigatus. Another asset of using medfly
eggs in insect rearing systems is that this food allows a low frequency of replenishment, e.g. every 3

days in this study, resulting in reduced labor costs.

Due to its broad range of suitable diets, high fecundity and low rearing costs, T. putrescentiae is the
most popular astigmatid mite being used as an alternative prey for arthropod predators (Huang et al.
2013). Currently, there are more than 10 predator species that can be mass reared using T.
putrescentiae, mainly predatory mites (Li et al. 2000; Xia et al. 2003; Yang et al. 2009; Huang et al.
2013). Also C. lactis is routinely used by commercial biocontrol suppliers in the production of
phytoseiid mites (Bolckmans & Van Houten 2006; Fidgett & Stinson 2008; Huang et al. 2013). To our
knowledge, only a few studies have focused on the use of astigmatid mites for rearing Orius species,
and only T. putrescentiae was tested. The latter mite was deemed suitable for mass rearing O. sauteri
(Yang et al. 2009) and O. laevigatus (Gomaa & Agamy 2002), but resulted in poor nymphal survival and

low egg production in O. tantillus (Nagai et al. 1998). In our study, astigmatid mites were not a suitable
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food for O. thripoborus and O. naivashae. Nymphal survival of O. naivashae offered C. lactis or T.
putrescentiae was below 7%, and none of the resulting females produced eggs. O. thripoborus did
develop and reproduce when fed on astigmatid mites, albeit at significantly lower rates than on the
flour moth and medfly egg diets. These suboptimal to poor results indicate that C. lactis and T.
putrescentiae are a nutritionally inferior or difficult to handle prey for O. thripoborus and O. naivashae.
Furthermore, chemicals produced by astigmatid mites that act as alarm pheromones and allomones
may make them less suitable prey for insect predators (Kuwahara 2004; Raspotnig 2006). Our results
suggest that C. lactis is a more suitable prey, as compared with T. putrescentiae, during the adult life
of O. thripoborus than for its nymphal development. This may be due to the different nutritional
requirements of the immature versus adult stages of O. thripoborus, or to differences in their capacity
to handle the astigmatid prey. Previous experiments (Chapters 6 and 7) demonstrated a higher level
of nutritional plasticity in O. thripoborus as compared with O. naivashae. This difference was confirmed
on all tested foods in the present study, and was more pronounced on a less optimal prey, like the

astigmatid mites.

In conclusion, this and previous studies indicate that processed medfly eggs are a suitable and
relatively cheap alternative to E. kuehniella eggs for the rearing of Orius spp. and other heteropteran
predators. More research is warranted to optimise the application of medfly eggs in large-scale mass

cultures and to assess their value for the production of other predatory arthropods.
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Chapter 9

Since the end of the 19th century, biological control has been increasingly used and is considered the
most environmentally safe pest management system, that can be at the same time economically
profitable. Biological control agents have no or only little side-effects on non-target organisms and the
environment, and pest organisms cannot develop resistance against arthropod natural enemies. In
contrast to chemical control, the benefit-cost ratio and the success of finding new biological control
agents is higher whereas development costs are lower (Bale et al. 2008; van Lenteren 2012). As a result,
more than 170 arthropod species, of which seven of the genus Orius (Hemiptera: Anthocoridae), are
commercially used in biocontrol programmes in different parts of the world (Cock et al. 2010; van
Lenteren 2012). Orius species have been applied successfully in biological control programmes in
greenhouse and open-field cropping systems against various thrips pests worldwide (van den
Meiracker & Ramakers 1991; Riudavets 1995; Cranshaw et al. 1996; Frescata and Mexica 1996; van

Lenteren et al. 1997; Funderburk et al. 2000; Ohta 2001; Wang et al. 2001).

Sugarcane is one of South Africa’s most important crops and is susceptible to a range of pests, with
Fulmekiola serrata Kobus (Thysanoptera: Thripidae), the sugarcane thrips, being one of the major
emerging pests in young sugarcane. Because thrips exhibit a cryptic lifestyle and rapidly develop
resistance to pesticides, they are difficult to control. Therefore, an alternative pest management
strategy using an effective biological control agent would be beneficial for local growers. During
surveys performed in and around South African sugarcane fields in 2008 and 2009, Orius thripoborus
(Hesse) and Orius naivashae (Poppius) were selected as candidate biocontrol agents of F. serrata. To
establish whether these two anthocorids can be successful biological control agents, field observations
and laboratory experiments were performed during this study in order to achieve a comprehensive
understanding of their biology and ecology as natural enemies against thrips and other pests. The focus
was placed on the use of these predatory bugs in augmentative biological control, either in open field
crops or in protected cultivation. Furthermore, several alternative foods were tested with the aim of

reducing production costs for these predators.

Based on laboratory experiments, we suggested the complementarity of both predators in terms of

their temperature adaptations: O. thripoborus was found to be adapted to a slightly cooler
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temperature range as compared with O. naivashae. Yet, this complementarity could not be confirmed
based on our field observations. At the low end of the temperature range, lower threshold
temperatures for nymphal development were estimated to be 10.2°C for O. thripoborus and 11.8°C for
0. naivashae, whereas at 15°C, reproductive parameters of the former species were better than those
of the latter. Moreover, eggs of both species did not develop successfully at a constant temperature
of 12°C. However, average diurnal temperatures of 12°C or lower were not recorded in the regions of
survey. The temperature above which the rate of nymphal development started decreasing was
between 33 and 35°C for O. naivashae, whereas the upper threshold for nymphal development of O.
thripoborus was between 29 and 33°C. At this high end of the tested temperature range, also
reproduction of O. thripoborus began to drop at a lower temperature as compared with O. naivashae.
During field surveys, though, both anthocorid species occurred in the hottest regions that were
monitored, and O. thripoborus was also widespread in less hot and/or dryer regions. As only a part of
South Africa was surveyed, the geographical distribution of these predators may be much wider than
that observed in this study. Furthermore, laboratory tests were performed at constant temperatures,

which represent a simplified approach of the fluctuating outdoor temperatures.

To estimate the relationship between temperature and development, linear models are only reliable
within a limited temperature range. Still, they can be applied for estimating the thermal budgets and
number of generations per year. Based on our estimated linear model parameters, the number of
generations under Durban climate conditions (South African Weather Service 2011) was calculated to
be 10 for both O. thripoborus and O. naivashae. In the field, the number of observed generations may

be different from that calculated based on the model, but deviations are believed to be limited.

Further, our laboratory studies showed that a 12h photoperiod and 18°C, representing the average
autumn conditions in the southwestern part of South Africa, induced reproductive diapause in 84%
and 42% of O. naivashae and O. thripoborus females, respectively. Nonetheless, based on field
observations in autumn and winter in South Africa, winter diapause is not likely to be a critical trait in
populations of O. thripoborus and O. naivashae occurring in warm temperate climate regions. Still,
diapause may be induced in both anthocorids during autumn in cooler regions or in regions with more

pronounced temperature extremes. Such conditions may occur at higher elevations in the interior part
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of South Africa; unfortunately, in the framework of the present study no surveys for Orius species could
be performed in this part of South Africa. During winter nights, temperatures in this region can
occasionally drop below the freezing point. When it comes to such cold temperatures, laboratory tests
showed that O. naivashae was killed faster at 0°C or 5°C as compared with O. thripoborus. Measured
values of the supercooling points of both Orius species were similar, but these data are not believed

to be sufficiently reliable and comprehensive indicators of cold tolerance (Bale 1996).

The release of an exotic polyphagous predator can result in the establishment of the species and this
may have negative side effects. Although there are no plans for considering the use of these southern
African predators in northwestern Europe, it may be interesting to estimate their potential for outdoor
establishment in this region based on the observed cold hardiness in the laboratory. When exposed to
5°C, all adults in our study had died by day 8 and day 12, for O. naivashae and O. thripoborus,
respectively, indicating their susceptibility to chilling injury due to above-zero cold temperatures.
Hatherly et al. (2005) reported a strong positive correlation between maximum field survival and
survival at 5°C in the laboratory for several arthropod biological control agents and this trend has been
confirmed by subsequent studies (Hatherly et al. 2008; Hughes et al. 2009; Hughes et al. 2011). When
applying the relationship between LT50 at 5°C and field survival calculated by Hatherly and coworkers
(2005; updated by Bale et al. 2009) to our dataset, it can be predicted that O. thripoborus and O.
naivashae would not persist longer than 30 and 24 days, respectively, in the field during western
European winters and that both Orius predators can be classified in the low risk category based on
their low likelihood of establishment. It is noteworthy that more cold tolerant populations of O.
thripoborus and O. naivashae may appear in the cooler geographic regions of South Africa which may
have bearing on the risk they may pose when imported into cooler regions of other continents for

biocontrol purposes.

Both Orius spp. may hold promise as augmentative biological control agents in southern Africa
provided that they can be reared cost effectively. This study showed that optimal rearing conditions
for the tested anthocorids were 25°C and 16:8h L:D, with Ephestia kuehniella Zeller (Lepidoptera:
Pyralidae) eggs as a food source. Yet, when using these lepidopteran eggs as a food source, production

costs of Orius species can be high. Alternative factitious foods proposed in this study were cysts of the
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brine shrimp, Artemia franciscana Kellogg (Crustaceae: Artemiidae) and eggs of the medfly, Ceratitis
capitata Wiedemann (Diptera: Tephritidae). These foods fully supported development and
reproduction of both predators and are a magnitude cheaper than E. kuehniella eggs. Besides,
performance of O. thripoborus on both alternative factitious foods was only slightly inferior to that on
E. kuehniella eggs. However, medfly eggs seemed to be more promising for mass production of this
predator than A. franciscana cysts, as they were more easy to use and were suitable for prolonged
rearing of O. thripoborus. Moreover, as C. capitata is produced in South Africa in large numbers for
sterile insect technique (SIT) purposes (Fruit Fly Africa 2015), medfly eggs are easily available in this

country and could be a suitable diet to support local mass production of Orius bugs.

In order to further rationalise the mass production of heteropteran predators, plant material may be
omitted from the rearing system (Riddick 2009; De Clercq et al. 2013). In cultures of Orius bugs, water
is supplied via plant materials such as pods of green bean (Phaseolus vulgaris L.). Our findings
suggested that O. naivashae and O. thripoborus could develop and reproduce successfully on E.
kuehniella eggs supplemented with free water encapsulated in Parafilm. However, the presence of a
bean pod as a moisture source yielded better nymphal survival and faster development of O.
thripoborus and O. naivashae, suggesting that the predators may extract extra nutrients from the bean
pod. As a consequence, when omitting plant material from the rearing system, it may be advisable to
compensate for these extra nutrients when only free water is provided. Bonte and De Clercq (2010a)
showed that adding sucrose (5%) to a water dome did not benefit the overall fitness of O. laevigatus,
suggesting that other nutrients are more beneficial in its diet. Further research is warranted to identify
the supplemental nutrients that the anthocorids extract from plant materials. These nutrients can then
be added to the water source of the predators and offered in Parafilm domes or microcapsules (Tan
et al. 2010). Besides being a source a moisture (Grenier et al. 1989; Richards & Schmidt 1996a), plants
also serve as an oviposition substrate for Orius bugs (Castafié & Zalom 1994; Coll 1996; Richards &
Schmidt 1996b; Lundgren & Fergen 2006) and provide hiding places, thus reducing cannibalism (van
de Veire 1995; Cocuzza et al. 1997b). Wax paper has been proven to be a suitable artificial living
substrate for Orius species (Bonte & De Clercq 2010a, 2011), but an artificial oviposition substrate with
suitable physical qualities allowing proper insertion of the eggs by Orius females and easy hatching of
the nymphs has not been developed. More research on functional artificial oviposition substrates is
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needed in order to eliminate the need for plant material in commercial Orius rearing systems. Also the
attractiveness of the oviposition substrate for the females could be improved by incorporating plant

extracts as cues to elicit oviposition behaviour (De Puysseleyr et al. 2014).

Pollen appear to be an important alternative food in the life of the studied Orius species. In the
laboratory, a pollen diet alone allowed 66 and 78% of the nymphs of O. thripoborus and O. naivashae,
respectively, to reach adulthood. Moreover, 67 and 75% of the O. thripoborus and O. naivashae
females, respectively, were able to produce some viable eggs. During field surveys, nearly all of the
predatory bugs were collected from the flowers of their host plants, feeding on flower thrips or on the
pollen itself. Hence, populations of Orius spp. may be supported by pollen-producing wild or cultivated
plants in the vicinity of crops. Habitats with different plant communities and phenologies attract
alternative prey and can, whether or not in combination with pollen, support populations of
omnivorous predators when target prey becomes scarce in a given crop system (Coll 1998; Lundgren
2009). Providing pollen-producing plants in/around crops which may support natural or augmented
populations of O. thripoborus and/or O. naivashae may be a valuable conservation measure in South

African cropping systems.

Given the high predation capacity against the western flower thrips, Frankliniella occidentalis, shown
in our laboratory tests, O. thripoborus and O. naivashae are believed to have good potential as
biocontrol agents of thrips. However, in the absence of thrips prey, the feeding behaviour of both Orius
species may be very diverse. Based on the theory that an omnivorous insect chooses its food in order
to maximise reproductive success (Coll & Guershon 2002), O. naivashae may select pollen over non-
thrips prey when thrips prey is scarce. This food preference of O. naivashae was suggested by the high
numbers of this species collected from pollen producing grassland weedy forbs during our surveys in
South Africa. In contrast with O. thripoborus, O. naivashae has never been observed in the pollen-free
spindle of young sugarcane, in association with F. serrata. Although laboratory tests showed that O.
naivashae had a similar predation capacity on adult F. serrata thrips compared with O. thripoborus,
the habitat preferences of the former species may make it a less suitable predator for use against the
sugarcane thrips. The interaction between Orius species and F. serrata as a key pest in South African

sugarcane production was only touched upon briefly in this dissertation, mainly because of
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experimental limitations related to the rearing of this thrips species. In the future, more work needs
to be done on the predator performance of O. thripoborus towards F. serrata on individual sugarcane

plants in cage experiments and eventually in the field.

Compared with O. naivashae, O. thripoborus showed a faster nymphal development, shorter
preoviposition period, and overall higher fecundity on both animal prey and pollen. Moreover, when
thrips prey is scarce, our study showed that O. thripoborus may build up its populations on pollen
and/or on other prey. Further, our findings indicate that O. thripoborus appears to hold better promise
than O. naivashae for the suppression of non-thrips prey such as aphids and spider mites. Since our
field observations showed that O. thripoborus was more prevalent in taller vegetation than in pollen
producing weeds, this predator could be a candidate biocontrol agent for use against thrips and other
arthropod pests in cash crops such as sugarcane, maize, sunflower, mango, peach, avocado, citrus and
grape vine. In sugarcane, control of F. serrata is most critical in the young cane stage, so either
augmentation or conservation of O. thripoborus should focus on this crop stage. In the management
of Orius spp. populations for integrated pest control (e.g., against F. serrata), the temporal resources
provided by pollen-producing neighbouring plants can be appropriately synchronised with the
predator and pest population build-up in the crop (e.g., sugarcane). The flowers of adult sugarcane
could provide alternative food for O. thripoborus when no sufficient prey is available in the crop,
though these Orius populations run the risk of being reduced during harvesting of the cane. Given that
the sugarcane industry in South Africa burns 90% of its crop while 10% is harvested green (Hurly et al.
2003), it is important that there is a refuge for the mobile stages of natural enemies of sugarcane pests
during harvesting of the adult cane. Management practices in sugarcane should consider the
conservation of plants which support populations of natural enemies in the vicinity of the crop when
pest populations in the cane are still low. When pest populations in the crop start to build up again,
cutting of these neighbouring plants may force the predators to move into the crop (Coll 1998).
However, as O. thripoborus also may hold promise as a predator of eggs and larvae of the stalk borer,
Eldana saccharina Walker (Lepidoptera: Pyralidae), management practices could focus on keeping O.
thripoborus in the crop when this pest has been noted in the cane. Eldana saccharina attacks cane of
all ages, although it prefers physiologically mature cane (Atkinson 1980). Further, current management
practices in young sugarcane include the application of insecticides, with imidacloprid (plant cane) or
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acetamiprid (ratoon cane) as the main active substances (Mike Way, personal communication). Both
insecticides have been reported to be harmful for Orius predators (Delbeke et al. 1997; Naranjo & Akey
2005; Funderburk et al. 2013). In the context of the integrated pest management in sugarcane, the use

of these insecticides should be adjusted considering the role of natural enemies such as O. thripoborus.

In the laboratory, both in the stock colony and during the experiments, a female biased sex ratio was
repeatedly observed in O. naivashae, ranging between 1:1.8 and 1:11 (male:female). Treatment of the
adult population with an antibiotic (0.05% rifampicin) (Stouthamer et al. 1990) resulted in an equally
distributed sex ratio of their offspring, implying that endosymbionts are involved in this sex-
determining mechanism (J. Bonte, unpublished data). Molecular studies showed that Wolbachia
(Rickettsiaceae, class a-Proteobacteria) was present in infected adults, but a co-infection with another
endosymbiont, such as Spiroplasma (Spiroplasmataceae, class Mollicutes, phylum Firmicutes), cannot
be excluded. Bacterial symbionts of arthropods can have different modes of action in distorting the
sex ratio in their host (Stouthamer et al. 1990; Werren 1997) and, to date, the sex-determining
mechanism in O. naivashae has not been clarified. More research is needed on the effect of the
endosymbiont(s) on the overall performance of O. naivashae. These results can have important
implications for the potential use of this predator in biocontrol programmes (Werren 1997;
Stouthamer et al. 2004; Machtelinckx et al. 2009). On the condition that the development,
reproduction and predation of infected O. naivashae populations is not inferior to that of non-infected
ones, the excess of females in the infected populations could lead to a more effective biological
control. More females result in a faster population growth, and as females have to invest more energy
in their progeny, they consume more prey than males. However, if the relative rarity of males lowers
female mating success, then endosymbiont infection may indirectly reduce growth of the host’s

population (Floate et al. 2006).

In conclusion, O. thripoborus appeared to be, in many aspects, a more suitable biocontrol agent than
O. naivashae for use against arthropod pests in South Africa. Compared with O. naivashae, O.
thripoborus showed a less restricted climate preference, a more favourable cold tolerance and an
overall better predation. Further, a better nutritional plasticity was recorded in O. thripoborus on both

animal prey and pollen. Besides, O. thripoborus also adapted better to factitious foods, compared with
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0. naivashae. Thus, the better nutritional plasticity of O. thripoborus does not only make it a more easy
and cheaper to rear this predator compared with O. naivashae, but may also have a positive influence
on its performance as a biocontrol agent. Therefore, it makes sense that, based on our findings, a South
African company has recently started up the mass production of O. thripoborus for commercial

biological control purposes in South Africa.

Further research should focus on optimising the application of O. thripoborus for the suppression of
thrips pests in economically important protected and open field crops in South Africa, including
sugarcane. The currently used management practices in many of these crops, which are now primarily
based on frequent pesticide applications, need to be adapted in order to maximise the effect of this
natural enemy on the target pests. Training programmes and other extension tools should be
developed in order to convince local farmers of this integrated approach. Besides, within the scope of
optimising the effectiveness of O. thripoborus as a biocontrol agent, its prey preference and
interactions between this predator and non-target prey, including intraguild interactions, should be
assessed in the laboratory, as well as in the field. Further, it remains to be studied how combined
effects of abiotic factors and resources could lead to trade-offs and compensatory effects in the overall

performance of O. thripoborus.

The efficacy of augmentative biological control programmes in an open field crop like sugarcane relies
on the successful establishment of the natural enemy in the crop. First, the phenology of O. thripoborus
and its main prey in cropping systems at different locations in South Africa warrants further study.
Given the moderate dispersal capacity of Orius species, it is also important to identify the factors that
determine its movements in and out of the crop and to evaluate habitat management measures that
can assist in keeping this predatory bug in or near the crop. Furthermore, populations of O. thripoborus
from different geographic locations may show divergent climate and habitat preferences, which is an
aspect deserving further study, as these populations can extend the areas and cropping systems in

southern Africa in which this biocontrol agent can be applied.
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Biological control of arthropod pests is gaining the interest of growers all over the world. Species of
the genus Orius are important natural enemies of thrips and other harmful arthropods in a variety of
agricultural and horticultural crops and have been widely used in biological control programmes in
Europe, the Americas and Asia (Chapter 2). In South Africa, thrips are key pests in major crops, with
the sugarcane thrips, Fulmekiola serrata Kobus, as a model example. As thrips are notably difficult to
control with pesticides, an effective indigenous natural enemy could provide local growers with an
alternative management strategy against this pest. During surveys performed in and around South
African sugarcane fields, the two little studied anthocorid predators, Orius thripoborus (Hesse) and
Orius naivashae (Poppius), were selected as candidate biocontrol agents. In this dissertation, the
autecology of these flower bugs was studied and their potential as biocontrol agents of thrips and

other arthropod pests in South Africa was assessed based on field observations and laboratory tests.

Chapter 3 deals with the natural enemy surveys, especially for indigenous anthocorid predators of
sugarcane thrips, being done between 2008 and 2013 in and around sugarcane fields in the
Mpumalanga and KwaZulu-Natal Provinces of South Africa. Four Orius species were recorded during
the surveys. First records for South Africa of Orius tantillus (Motchulsky) and O. naivashae were made,
and the presence of O. thripoborus and Orius brunnescens (Poppius) in the country was confirmed. For
each species, habitat and climate preferences were described. Orius thripoborus was the only

anthocorid natural enemy which was observed preying on the sugarcane thrips F. serrata in the field.

In Chapter 4, the developmental and reproductive traits of O. thripoborus and O. naivashae were
examined at several constant temperatures in the laboratory. Development was studied at 12, 15, 19,
23, 25, 29, 33 and 35°C. Eggs of both species did not hatch at 12°C. Nymphal survival was poor at 15°C
for O. naivashae, and at 33°C and 35°C for O. thripoborus. Total development time of males and
females decreased with increasing temperature. Based on a linear degree-day (DD) model, lower
threshold temperatures for egg and nymphal development were estimated to be 9.4 and 10.2°C for O.

thripoborus, and 11.3 and 11.8°C for O. naivashae. Thermal requirements for these stages were 73.8
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and 191.1 DD, and 65.2 and 168.2 DD, respectively. Adult reproduction was studied at 15, 19, 25 and
33°C. Highest lifetime fecundities for O. thripoborus and O. naivashae were found at 25°C. At 15°C, half
of the O. thripoborus females oviposited, whereas O. naivashae females only produced infertile eggs.
At 33°C, on the other hand, most of the O. naivashae females produced eggs, while O. thripoborus
females did not oviposit. Our observations suggest that O. thripoborus is adapted to a slightly cooler
temperature range as compared with O. naivashae. The complementarity of both predators in terms
of their temperature adaptation opens possibilities for their use in biological control programmes at

different times of the season.

In Chapter 5, the cold hardiness and overwintering potential of O. thripoborus and O. naivashae were
assessed in the laboratory. Diapause traits were studied by observing nymphal development and
reproductive performance of adults at 18°C and three photoperiods (10:14, 12:12 and 14:10 (L:D) h);
a 12 hlight regime was also tested at 23°C. A 12 h photoperiod and 18°C induced reproductive diapause
in 84% and 42% of O. naivashae and O. thripoborus females, respectively. Cold tolerance of adults was
measured by determining the supercooling point (SCP, the temperature at which the insect’s body
fluids freeze) and lethal time (LTso, the time required to kill 50% of the population) at 0 and 5°C. All
observed SCPs ranged from -21 and -17°C. Significantly lower SCP values were observed for acclimated
(7 days at 10°C) O. naivashae females. LTso-values averaged 6.4 and 4.4 days at 0°C and 11.6 and 7.8
days at 5°C, for adults of O. thripoborus and O. naivashae, respectively. The findings indicate that O.
naivashae is less cold tolerant and has a higher diapause incidence compared with O. thripoborus.
Therefore, the latter species may have better potential for use in biological control programmes in the

cooler regions of southern Africa or elsewhere.

Orius thripoborus and O. naivashae have potential as biological control agents of thrips pests in
southern Africa, but may also hold promise for the control of other harmful arthropods. In Chapter 6,
the predation capacity, development, reproduction and growth rates of both predatory species on the
key pests Frankliniella occidentalis (Pergande) (western flower thrips), Tetranychus urticae Koch (two-
spotted spider mite) and Myzus persicae nicotianae Blackman (tobacco aphid) were examined under
laboratory conditions. Female adults of O. thripoborus and O. naivashae killed 24 and 18 F. occidentalis

2" instars, and 15 and 21 T. urticae eggs per day, respectively. Developmental and reproductive
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parameters of both Orius species were most favourable on F. occidentalis. Their intrinsic rates of
increase (rm) were highest when fed on F. occidentalis, averaging 0.123 and 0.131 females/female/day
for O. thripoborus and O. naivashae, respectively. On the other prey, O. thripoborus showed
significantly higher rn-values than O. naivashae. Overall, rn-values on M. persicae nicotianae were
higher than on T. urticae, although differences were only significant for O. thripoborus. For O.
naivashae, the estimated intrinsic rates of increase on the tested non-thrips prey were slightly
negative. Our findings indicate the potential of both Orius spp. as biocontrol agents of thrips, whereas

only O. thripoborus appears to hold promise for the suppression of aphids and spider mites as well.

In Chapter 7, the effect of moisture source and diet on the development and reproduction of O.
thripoborus and O. naivashae was examined in the laboratory. Supplementing eggs of the flour moth
Ephestia kuehniella (Zeller) with a green bean pod as a moisture source yielded better nymphal survival
and faster development, as compared with free water encapsulated in Parafilm, suggesting that the
predators may extract extra nutrients from the bean pod. The impact of two factitious foods and moist
honey bee pollen on developmental and reproductive parameters of both predators was also
investigated. The overall performance of both Orius species on E. kuehniella eggs and cysts of the brine
shrimp Artemia franciscana Kellogg was better than on pollen. Nonetheless, a pollen diet alone
allowed 66 and 70% of the nymphs of O. thripoborus and O. naivashae, respectively, to reach
adulthood. Overall, developmental and reproductive performance of O. thripoborus on the tested diets

was superior to that of O. naivashae.

As a follow up to the experiments with A. franciscana cysts in Chapter 7, several other factitious foods
were tested for rearing O. thripoborus and O. naivashae in Chapter 8. Developmental and reproductive
traits of both Orius species were examined when offered frozen eggs of the Mediterranean flour moth,
E. kuehniella, frozen processed eggs of the medfly, Ceratitis capitata Wiedemann, or mixed motile
stages of the astigmatid mites Tyrophagus putrescentiae (Schrank) or Carpoglyphus lactis (L). Whereas
C. lactis and T. putresecentiae proved to be an inferior food for rearing O. thripoborus and O. naivashae,
eggs of C. capitata fully supported development and reproduction of both predators. Results on medfly
eggs were similar or slightly inferior to those on E. kuehniella eggs, which is the standard food for

culturing these anthocorid bugs. Orius thripoborus could be maintained for four consecutive
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generations on C. capitata eggs, indicating that processed medfly eggs can be a suitable and cheaper

alternative to E. kuehniella eggs for prolonged rearing of these Orius spp.

In Chapter 9, general conclusions and future research perspectives are presented. In summary, O.
thripoborus appeared to be, in many aspects, a more suitable biocontrol agent than O. naivashae for
use against arthropod pests in South Africa. Due to its better nutritional plasticity, O. thripoborus is a
more easy and cheaper to rear natural enemy with an overall better predator performance compared
with O. naivashae. Based on these findings, a South African company has recently started up the mass
production of O. thripoborus for commercial biological control purposes in South Africa. Further
research is needed to optimise the augmentative application and conservation of O. thripoborus as a

biocontrol agent of thrips in sugarcane and other major crops in South Africa.
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De interesse bij land- en tuinbouwers voor de biologische bestrijding van geleedpotige
plaagorganismen groeit wereldwijd. Het genus Orius omvat belangrijke natuurlijke vijanden van trips
en andere schadelijke geleedpotigen in verscheidene land- en tuinbouwgewassen. Orius roofwantsen
worden dan ook vaak aangewend in biologische bestrijdingsprogramma’s in zowel Europa, Amerika als
Azié (Hoofdstuk 2). Tripsen vormen een sleutelplaag in economisch belangrijke gewassen in Zuid-
Afrika, met de suikerriettrips, Fulmekiola serrata Kobus, als typevoorbeeld. Daar de onderdrukking van
trips met pesticiden moeilijkheden kent, zou de beschikbaarheid van een doeltreffende inheemse
natuurlijke vijand van deze plaag interessant zijn voor de lokale suikerrietproducenten. Tijdens
veldonderzoek dat werd uitgevoerd in (de omgeving van) suikerrietplantages in Zuid-Afrika, werden
twee relatief onbekende predatoren van de Anthocoridae familie, namelijk Orius thripoborus (Hesse)
en Orius naivashae (Poppius), naar voor geschoven als kandidaat-biologische bestrijders. Op basis van
observaties in het veld en in het labo werd in dit proefschrift de autecologie van deze bloemenwantsen
bestudeerd en nagegaan of zij geschikt zouden zijn als biologische bestrijders van trips en andere

geleedpotige plaagorganismen in Zuid-Afrika.

Hoofdstuk 3 behandelt de zoektocht naar natuurlijke vijanden en inheemse roofwantsen van de
suikerriettrips in het bijzonder, uitgevoerd tussen 2008 en 2013 in en rondom suikerrietplantages in
de Zuid-Afrikaanse provincies Mpumalanga en KwaZulu-Natal. Er werden vier Orius soorten
waargenomen tijdens dit veldonderzoek. De eerste waarnemingen van Orius tantillus (Motchulsky) en
O. naivashae in Zuid-Afrika werden opgetekend. Verder werd de aanwezigheid van O. thripoborus en
Orius brunnescens (Poppius) in dit land bevestigd. De preferenties op vlak van habitat en klimaat
werden voor elke soort beschreven. Orius thripoborus was de enige waargenomen natuurlijke vijand

die zich in het veld effectief met de suikerriettrips voedde.

In Hoofdstuk 4 werd de ontwikkeling en voortplanting van O. thripoborus en O. naivashae bij
verscheidene constante temperaturen in het laboratorium onderzocht. De ontwikkeling werd

bestudeerd bij 12, 15, 19, 23, 25, 29, 33 en 35°C. De ontluiking van eitjes bleef uit bij 12°C. Bij een
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temperatuur van 15°C voor O. naivashae, en bij 33 en 35°C in het geval van O. thripoborus, was de
overleving van de nimfen ondermaats. De totale ontwikkelingsduur van zowel mannetjes als wijfjes
nam af bij stijgende temperaturen. Op basis van een lineair daggradenmodel werd het
ontwikkelingsnulpunt voor eitjes en nimfen geschat op 9.4 en 10.2°C voor O. thripoborus, en op 11.3
en 11.8°C voor O. naivashae. De warmtebehoeftes voor deze ontwikkelingsstadia waren
respectievelijk 73.8 en 191.1 daggraden, en 65.2 en 168.2 daggraden. De voortplanting werd
bestudeerd bij 15, 19, 25 en 33°C. De hoogste eiproducties bij O. thripoborus en O. naivashae werden
waargenomen bij 25°C. Bij 15°C slaagde de helft van de O. thripoborus wijfjes erin om eitjes af te
leggen, maar die van O. naivashae produceerden enkel onvruchtbare eitjes. Bij 33°C daarentegen
produceerde het merendeel van de wijfjes van O. naivashae eitjes, terwijl O. thripoborus wijfjes geen
eileg vertoonden. Onze waarnemingen geven aan dat het temperatuurbereik van O. thripoborus een
lichte verschuiving naar koelere temperaturen vertoont t.o.v. dat van O. naivashae. Het feit dat beide
roofwantsen elkaar aanvullen op vlak van temperatuur biedt mogelijkheden voor het gespreide

gebruik van deze predatoren in biologische bestrijdingsprogramma’s in de loop van het seizoen.

De winterhardheid en overwinteringsmogelijkheden van O. thripoborus en O. naivashae werden in
Hoofdstuk 5 onderzocht in het laboratorium. De diapauzekenmerken van deze roofwantsen werden
bestudeerd door observatie van hun nimfale overleving en voortplanting bij 18°C in combinatie met
drie lichtregimes (10:14, 12:12 en 14:10 (L:D) u); bijkomend werd een lichtperiode van 12 u bij 23°C
getest. Een lichtperiode van 12 u bij 18°C induceerde reproductieve diapauze bij respectievelijk 84 en
42% van de wijfjes van O. naivashae en O. thripoborus. De koudetolerantie van volwassen roofwantsen
werd achterhaald door het superkoelingspunt (de temperatuur waarbij de lichaamsvloeistoffen van
een insect bevriezen) en de letale tijd (LTso, de tijd vereist om 50% van de populatie af te doden) bij 0
en 5°C te bepalen. De waargenomen superkoelingspunten varieerden alle tussen -21 en -17°C, maar
waren lager voor geacclimatiseerde (7 dagen bij 10°C) wijfjes van O. naivashae. LTso-waarden voor
volwassen individuen van O. thripoborus en O. naivashae bedroegen gemiddeld respectievelijk 6.4 en
4.4 dagen bij 0°C en 11.6 en 7.8 dagen bij 5°C. Deze bevindingen geven aan dat O. naivashae minder
koudetolerant en meer diapauzegevoelig is dan O. thripoborus. De laatst vermelde soort heeft dan ook
meer potentieel om toegepast te worden in biologische bestrijdingsprogramma’s in de koelere regio’s
van zuidelijk Afrika.
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Orius thripoborus en O. naivashae bieden mogelijkheden als biologische bestrijders van tripsplagen in
zuidelijk Afrika, maar zijn mogelijk ook veelbelovend voor de onderdrukking van andere schadelijke
geleedpotigen. De predatiecapaciteit, ontwikkeling, voortplanting en populatiegroei van beide
roofwantssoorten op de sleutelplagen Frankliniella occidentalis (Pergande) (de Californische trips),
Tetranychus urticae Koch (de bonenspintmijt) en Myzus persicae nicotianae Blackman (de tabaksluis)
werden onderzocht onder laboratoriumomstandigheden in Hoofdstuk 6. Volwassen wijfjes van O.
thripoborus en O. naivashae voedden zich per dag met respectievelijk 24 en 18 tweedestadiumlarven
van F. occidentalis, en op 15 en 21 T. urticae eitjes per dag. De ontwikkeling en voortplanting van beide
Orius soorten waren het meest gunstig op F. occidentalis. Hun intrinsieke groeisnelheden (r») lagen
het hoogst wanneer ze zich voedden met F. occidentalis, met gemiddelde waarden van 0.123 en 0.131
wijfjes/wijfje/dag voor respectievelijk O. thripoborus en O. naivashae. Op andere prooien vertoonde
O. thripoborus beduidend hogere rn-waarden dan O. naivashae. Globaal gezien lagen de intrinsieke
groeisnelheden op M. persicae nicotianae hoger dan op T. urticae, maar beduidende verschillen
kwamen enkel voor bij O. thripoborus. De berekende rn-waarden voor O. naivashae gevoed op de niet-
trips prooien waren lichtjes negatief. Onze bevindingen tonen aan dat beide Orius soorten potentieel
hebben als biologische bestrijders van trips, maar dat enkel O. thripoborus eveneens geschikt lijkt voor

de onderdrukking van bladluizen en spintmijten.

In Hoofdstuk 7 werden laboratoriumproeven uitgevoerd om de invloed van de vochtbron en het dieet
op de ontwikkeling en de voortplanting van O. thripoborus en O. naivashae na te gaan. Indien eitjes
van de meelmot, Ephestia kuehniella (Zeller), werden aangevuld met een stukje snijboon als vochtbron
leverde dit een hogere nimfale overleving en een snellere ontwikkeling op in vergelijking met een
vochtbron bestaande uit water, ingekapseld in Parafilm. Dit geeft aan dat deze roofwantsen
bijkomende nutriénten uit de snijboon kunnen halen. Verder werd het belang van twee onnatuurlijke
voedingsbronnen en verse bijenpollen op de ontwikkeling en voortplanting van beide roofwantsen
nagegaan. De totale prestaties van beide Orius soorten op E. kuehniella eitjes en op cysten van het
pekelkreeftje Artemia franciscana Kellogg waren beter dan op bijenpollen. Desalniettemin maakte een
dieet van enkel bijenpollen het mogelijk dat respectievelijk 66 en 70% van de nimfen van O. thripoborus
en O. naivashae ontwikkelden tot volwassen wantsen. Globaal beschouwd was de ontwikkeling en
voortplanting van O. thripoborus op de onderzochte diéten superieur aan deze van O. naivashae.
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In navolging van de experimenten met A. franciscana cysten in Hoofdstuk 7, werden in Hoofdstuk 8
bijkomende onnatuurlijke diéten in het laboratorium onderzocht voor de kweek van O. thripoborus en
0. naivashae. De ontwikkeling en voortplanting van beide Orius soorten werden nagegaan op volgende
voedingsmedia: diepgevroren eitjes van de Mediterrane meelmot, E. kuehniella; diepgevroren,
behandelde eitjes van de Mediterrane fruitvlieg, Ceratitis capitata Wiedemann; en gemengde, mobiele
stadia van de voedermijten Tyrophagus putrescentiae (Schrank) of Carpoglyphus lactis (L). Er werd
aangetoond dat C. lactis en T. putrescentiae een weinig geschikte voedingsbron vormden voor de
kweek van O. thripoborus en O. naivashae, terwijl C. capitata eitjes de ontwikkeling en voortplanting
van beide roofwantsen volledig ondersteunden. De resultaten op eitjes van C. capitata waren
gelijkaardig of licht minderwaardig aan deze op E. kuehniella eitjes, welke de gebruikelijke
voedingsbron is om deze roofwantsen te produceren. Het was mogelijk om O. thripoborus gedurende
vier opeenvolgende generaties op eitjes van C. capitata te handhaven. Dit geeft aan dat behandelde
eitjes van de Mediterrane fruitvlieg een geschikt en goedkoper alternatief kunnen zijn voor E.

kuehniella eitjes bij de langdurige kweek van deze Orius soorten.

In Hoofdstuk 9 worden algemene conclusies getrokken en verdere onderzoeksvragen geformuleerd.
Orius thripoborus lijkt op vele vlakken een betere biologische bestrijder van geleedpotige
plaagorganismen in Zuid-Afrika dan O. naivashae. Omwille van zijn groter aanpassingsvermogen op
vlak van voeding valt O. thripoborus eenvoudiger en goedkoper te kweken en presteert deze soort
over de hele lijn beter als predator dan O. naivashae. Op basis van de resultaten uit dit proefschrift
begon een Zuid-Afrikaans bedrijf onlangs met de massaproductie van O. thripoborus voor de
commerciéle toepassing van deze biologische bestrijder in Zuid-Afrika. Om de vermeerdering en
conservatie van O. thripoborus als biologische bestrijder van trips in suikerriet en andere belangrijke

gwassen in Zuid-Afrika in praktijk te brengen, is verder onderzoek nodig.
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