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CHAPTER 1. INTRODUCTION 

Selective serotonin reuptake inhibitors (SSRIs) are among the most prescribed drugs worldwide. 

Belonging to the overall group of antidepressants, SSRIs are primarily used for the treatment of 

major depressive disorder. In addition, they have proven to be effective in a number of psychiatric 

and neurological conditions such as obsessive-compulsive disorder, panic disorder and generalized 

anxiety disorder [1, 2]. Usually, SSRIs are well tolerated and have a beneficial side effect profile. 

However, recent evidence suggests that SSRIs might interfere with certain aspects of the immune 

system. Although confirmed by several research groups, this previously unnoticed adverse effect 

remains poorly characterized and the molecular mechanism underlying the immunological effects of 

SSRIs is not yet fully understood. Therefore, the first aim of this thesis was to characterize the 

immunological effects of SSRIs and to reveal the molecular mechanism behind them.  

In drug discovery, compounds developed for the treatment of a specific medical condition often turn 

out to possess secondary effects that sometimes lead to marketing of the drug for a completely 

different indication. One well-known example of this principle, also called drug repositioning, is 

sildenafil: although this compound was originally investigated for its application in angina pectoris 

and hypertension, clinical studies demonstrated it could induce penile erection, leading to the 

marketing of this compound as Viagra®, the first approved drug for treatment of erectile dysfunction. 

Drug repositioning may also be applied to SSRIs: whereas these drugs have been used in the clinic for 

decades as antidepressants, they now turn out to exert interesting immunomodulatory effects that 

potentially could be used in the treatment of immune-mediated disorders. We thus investigated 

whether SSRIs could be ‘reinvented’ as a novel class of immunosuppressants. More particularly, we 

investigated the effect of SSRIs in acute graft-versus-host disease, an important complication of stem 

cell transplantation that limits the broad application of this life-saving treatment.  

In order to provide the reader with the necessary background to interpret the results described in 

this thesis, this introductory chapter first describes the pharmacological background of SSRIs. Next, a 

general introduction on the immune system is given and the role of serotonin in immunity is 

discussed. In the third part, a brief background is given on the relation between depression and 

inflammation. The fourth part of the introduction consists of an overview of existing evidence on the 

impact of SSRIs on the immune system within and outside the context of depression. Finally, the last 

part provides an introduction on graft-versus-host disease as this condition was chosen to explore 

the in vivo immunosuppressive effects of SSRIs.  
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1. Selective serotonin reuptake inhibitors 

1.1. History 

Whereas many pharmacological compounds developed in the previous century were discovered by 

chance, the development of SSRIs is one of the first examples of ‘rational drug design’, a process in 

which the chemical structure of a drug is designed based on knowledge of its biological target. 

However, before one can design a pharmacological compound to treat a specific disease, the 

biological basis of that disease needs to be elucidated. As the biological basis of depression remained 

unknown until the second half of the twentieth century, the first antidepressants were discovered by 

chance. In the 1930s, a search for anti-malarial agents rendered a series of derivatives of 

phenothiazine which, although not effective against malaria, gained interest because of their 

antihistaminic, sedative properties. Further derivatization aiming on more effective compounds 

rendered chlorpromazine, which was marketed under the name Thorazine and became widely 

applied for the treatment of schizophrenia [3]. The finding that a pharmacological agent could 

alleviate psychosis, led to the recognition of schizophrenia having a biological basis. However, it was 

not until the 1960s that the biological basis of depression was unraveled. In the 1950s, in the course 

of a search for compounds effective against tuberculosis, isoniazid and iproniazid were synthesized 

and soon were found to be capable of enhancing mood in depressed patients [3]. At the time, the 

biological basis for this improvement in mental state was not known. Although effective in the 

treatment of depression, this class of drugs, now known as monoamine oxidase inhibitors (MAOi), 

was abandoned because of suspected induction of jaundice. In 1958, imipramine, a derivative of 

chlorpromazine and belonging to the class of tricyclic antidepressants, was equally found to alleviate 

depressive symptoms [4]. However, both types of antidepressants exhibited multiple side effects due 

to lack of selectivity. Not only did these drugs affect the availability of several neurotransmitters 

including serotonin, noradrenaline and dopamine, they also exerted antagonistic effects on 

histamine and acetylcholine receptors. 

In 1961, Axelrod et al. discovered that neurotransmitters were not only broken down by monoamine 

oxidase (MAO) but were taken up back into the presynaptic neuron where they were stored (figure 

1.1.)[5]. Two years later, it was established that antidepressant drugs available at the time worked 

through different mechanisms: whereas drugs like isoniazid and iproniazid inhibited MAO-mediated 

breakdown of monoamines, tricyclic compounds such as imipramine and amitriptyline blocked 

reuptake of neurotransmitters in the presynaptic nerves. Both resulted in increased levels of 

neurotransmitters, thus increasing their action on postsynaptic neurons. Understanding the way 
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monoamines were taken back up into nerve endings, would provide a clue on how to synthesize new 

compounds with higher selectivity [3].  

 

Figure 1.1. Mechanism of neurotransmission. (1) Neurotransmitters, such as noradrenaline, serotonin and 
dopamine are stored in vesicles in the presynaptic neuron. (2) Neurotransmitters are released into the synaptic 
cleft and (3) bind their specific receptors on the postsynaptic neuron. To terminate the signal, 
neurotransmitters are either taken back up into the presynaptic neuron (4), or degraded by monoamine 
oxidase (MAO)(5). 

 

At about the same time, it became clear that serotonin, one of the newly discovered 

neurotransmitters, was involved in the pathology of depression. Inhibiting the reuptake of serotonin 

would thus be the target of choice for development of new antidepressants. A search began to 

synthesize compounds with high affinity for serotonergic neurons, but lower affinity for 

noradrenergic neurons. Zimelidine, a derivate of brompheniramine, was synthesized by Astra and 

was marketed in 1982 as the first SSRI [6]. Although clinical testing demonstrated equal effectiveness 

as compared to tricyclic antidepressants for the treatment of depression and a far more beneficial 

side effect profile [7], zimelidine was withdrawn from the market in 1983 because of a rare but 

serious side effect (Guillain-Barré syndrome, a condition involving degeneration of the peripheral 

neural system leading to paralysis) [6]. In 1971, a new method to study the uptake of different 

neurotransmitters, including serotonin, dopamine and noradrenaline by the nerves became available 

using synaptosomal preparations of rat brain homogenates [8]. By means of this method several 
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compounds could be screened on their relative capacity to inhibit uptake of different 

neurotransmitters. In 1972, Eli Lilly performed a screening of derivatives of diphenhydramine, an 

antihistaminic, and retained fluoxetine [8]. This compound was found to inhibit serotonin reuptake 

200 times more potent than noradrenaline reuptake, and had no effect on acetylcholine nor 

histamine receptors. Although it would last until 1987 before fluoxetine, trademarked as Prozac, was 

approved by the FDA for treatment of depression, the most famous SSRI was born [3]. Soon, others 

would follow including paroxetine, sertraline, fluvoxamine and citalopram (figure 1.2). More recently, 

the active enantiomer of citalopram, escitalopram, was also marketed. Today, SSRIs are the most 

prescribed type of antidepressants worldwide. In 2012, Belgian physicians (both specialists and 

general practitioners) prescribed 165.59x106 defined daily doses (DDD) of SSRIs. The prescription of 

SSRIs (in DDD) accounted for 3.3% of all reimbursable drugs prescribed by Belgian physicians in the 

ambulatory practice. This places SSRIs at the 7th place of most prescribed drugs in Belgium. Within 

the class of SSRIs, escitalopram is the most prescribed with 63.27x106 DDD. Paroxetine and sertraline 

follow with 34.21x106 and 33.13x106 DDD, respectively. Citalopram comes at the fourth place with 

20.23x106 DDD. Fluoxetine and fluvoxamine close the list with 13.59x106 and 1.16x106 DDD, 

respectively [9]. 

1.2. Indications, adverse effects and interactions 

Indications for SSRIs are broad and comprise major depression, panic disorder, obsessive-compulsive 

disorder and other less well-established indications such as obesity, eating disorders, post-traumatic 

stress disorder, social phobia and premenstrual disorder [6]. Within the group of SSRIs, all 

compounds appear to have equal efficacy in the treatment of depression. With respect to time to 

onset of action, limited evidence exists suggesting that fluoxetine, the SSRI with the longest half-life, 

takes slightly longer to reach its effect than do the other SSRIs [6].  

In comparison to tricyclic antidepressants, SSRIs have a far more beneficial side effect profile. 

Frequent adverse effects of SSRIs include gastro-intestinal dysfunction (nausea, diarrhea) and central 

effects such as headache, dizziness, agitation, sedation and insomnia [2]. A third frequently reported 

side effect is sexual dysfunction [2]. Infrequent adverse effects include bleeding, serotonin syndrome 

and extrapyramidal symptoms such as tremor [10]. When side effects are compared between SSRIs, 

the majority of studies found no differences in overall adverse effects [6]. When however comparing 

specific side effects between two SSRIs, several studies did report differences. 
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Paroxetine (Seroxat®) 

 

Fluoxetine (Prozac®) 

 

Sertraline (Serlain®) 

 

 

Citalopram (Cipramil®) 

 

 

Fluvoxamine (Floxyfral®) 

 

 

Venlafaxine (Efexor®) 

 

Figure 1.2. Chemical structures of the (S)SRIs investigated in this thesis. Whereas paroxetine, fluoxetine, 
sertraline, citalopram and fluvoxamine are SSRIs, venlafaxine is a serotonin and noradrenaline reuptake 
inhibitor. Belgian trade names are displayed between brackets. Structures obtained from 
http://pubchem.ncbi.nlm.nih.gov/. 

 

From these studies it can be concluded that fluoxetine exerts more gastrointestinal effects than 

paroxetine or fluvoxamine, which in turn cause more nausea and diarrhea than citalopram [6]. With 

respect to central effects, fluoxetine was found to induce more agitation, insomnia and anxiety than 

sertraline [6]. Sexual dysfunction has been reported with all SSRIs and no clear evidence exists that 

one SSRI causes less sexual dysfunction than another [6]. Furthermore, SSRIs have been associated 

with an increased risk of suicide, especially in children and adolescents. However, suicide is also 

associated with depression and it is very difficult to distinguish between the possibility that a 

completed suicide was caused either by the SSRI or by the underlying disease it was prescribed for. 

From a comprehensive review of pediatric trials, it was concluded that the benefits of antidepressant 

treatment likely outweigh the risks in children and adolescents with depression or anxiety disorders 

http://pubchem.ncbi.nlm.nih.gov/
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[11]. In addition to the adverse effects that are associated with the use of all SSRIs, some side effects 

are limited to one specific compound. For paroxetine, anticholinergic effects have been reported. 

Citalopram and escitalopram are associated with a lengthened QT interval (torsade de pointes) [10].  

SSRIs have various inhibiting effects on CYP enzymes depending on the specific compound. 

Fluoxetine inhibits CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Fluvoxamine inhibits CYP1A2, CYP2C9, 

CYP2C19, CYP2D6 and CYP3A4. Citalopram, escitalopram, paroxetine and sertraline inhibit CYP2D6. 

Paroxetine is substrate to CYP2D6. Escitalopram is substrate to CYP2C19 [10]. Combination of SSRIs 

with a substrate of these enzymes can result in an interaction, although it is not always clear to what 

extent these interactions are clinically relevant. One important interaction can occur when SSRIs are 

combined with other serotonergic drugs such as dextromethorphan, narcotic analgesics 

(hydromorphone, pethidine, tramadol), certain antipsychotics, antidepressants (MAOi, tricyclic 

antidepressants, lithium, St-John’s wort), triptans, ergot derivatives and linezolide. As these drugs all 

increase serotonin levels, the combination with SSRIs can lead to excessively high serotonin 

concentrations and result in a condition called ‘serotonin syndrome’. This syndrome is characterized 

by hyperthermia, hyperreflexia, agitation and myoclonus [10]. In rare cases, convulsions and 

ventricular tachyarrhythmia occur, sometimes with fatal outcome. Serotonin syndrome rarely occurs 

after taking only a SSRI, except in overdose. It has been reported, however, when the wash-out 

period between a switch from one antidepressant to another was not sufficiently long. 

Especially important in the context of this research project is the consideration of interactions of 

SSRIs with other drugs frequently used in patients receiving a hematopoietic stem cell 

transplantation (hSCT). Due to inhibition of CYP3A4, fluoxetine and fluvoxamine might increase 

plasma levels of cyclosporine, tacrolimus and sirolimus. Although no clinically significant 

pharmacokinetic interactions of SSRIs with immunosuppressive agents such as cyclosporine or 

tacrolimus have been reported thus far [12], it is recommended to monitor plasma levels of these 

immunosuppressive agents when combined with SSRIs and if necessary decrease their respective 

doses. No interactions are expected to occur between SSRIs and mycophenolate mofetil (MMF) [12, 

13].  

In addition to immunosuppressive therapy, hSCT patients commonly receive antifungal, antiviral and 

antibacterial agents. When combined with azole antifungals such as fluconazole, posaconazole or 

voriconazole, SSRIs might increase the QTc interval [13]. Close monitoring is therefore indispensable 

when this combination is administered. In addition, voriconazole is metabolized primarily by 

CYP2C19, and plasma levels might be increased by fluoxetine or fluvoxamine. QTc prolongation might 
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also occur when the antibiotic co-trimoxazol (sulfamethoxazole + trimethoprim) is combined with 

SSRIs [13]. In addition, inhibition of CYP2C9 by fluoxetine or fluvoxamine might result in increased 

plasma levels of sulfamethoxazole. No known interactions exist between SSRIs and the antifungal 

caspofungin, the antiviral agent acyclovir, and the commonly used antibiotics piperacillin + 

tazobactam, meropenem, or vancomycin [13]. Other supportive care commonly administered to 

hSCT patients includes ranitidine, a proton pump inhibitor. The combination of SSRIs with ranitidine 

is not expected to result in any interactions [13].  

1.3. Pharmacokinetics 

In table 1.1. an overview is given of pharmacokinetic properties of the five clinically available SSRIs 

and one serotonin noradrenaline reuptake inhibitor (SNRI). The SNRI, venlafaxine, has been added 

because it will also be investigated in this thesis (see also figure 1.2). For none of the SSRIs, a 

relationship between plasma concentration and clinical effectiveness has been established [6]. As 

SSRIs are lipophilic molecules, extensive accumulation in tissue occurs and brain-to-plasma ratios in 

patients range from 2,6:1 for fluoxetine to 24:1 for fluvoxamine [14]. In addition, antidepressants 

have been demonstrated to accumulate in liver, kidney and spleen [15]. The lipophilic nature of SSRIs 

is also visible in the large apparent distribution volumes. As some of the SSRIs display non-linear 

kinetics, a small change in the administered dose does not necessarily relate to a proportional 

change in plasma concentration. This is particularly true for paroxetine, fluoxetine and fluvoxamine. 

However, as the therapeutic-toxic window for SSRIs is relatively large, this does not usually pose any 

problems with respect to toxicity.  

 

Table 1.1. Pharmacokinetic properties of five SSRIs and one SNRI [16].  

(S)SRI MW 

(g/mol) 

Daily  

dose (mg) 

T1/2 

(h) 

Vd  

(L/kg) 

Linear 

kinetics 

Cp  

(µM) 

Cp 

(ng/ml) 

Paroxetine  329 20-50 20 3-12 No 0,03-0,20 10-75 

Fluoxetine 309 20-80 96-144 20-42 No 0,43-1,45 150-500 

Sertraline 306 50-150 26 20 Yes 0,15-0,73 50-250 

Fluvoxamine 318 50-300 8-28 25 No 0,12-0,58 50-250 

Citalopram 324 10-60 25-40 12-16 Yes 0,05-0,49 20-200 

Venlafaxine 

(SNRI) 

277 75-150 4 4-12 Yes  0,13-0,64 40-200 

MW = molecular weight; T1/2 = half-life; Vd = distribution volume; Cp = plasma concentration. 
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1.4. Mechanism of action  

The three main classes of molecules which are used to treat depression (MAOi, TCAs, SSRIs) have 

different mechanisms of action. All of them increase neurotransmitter levels, but do so in a different 

way. MAOi inhibit the breakdown of monoamine neurotransmitters such as noradrenaline, serotonin 

and dopamine through inhibition of the enzyme monoamine oxidase (MAO). Antidepressant 

properties of TCAs are based on the inhibition of the reuptake of dopamine, noradrenaline and 

serotonin [17]. SSRIs were designed to selectively inhibit the reuptake of serotonin into the 

presynaptic neuron, thereby increasing the availability of serotonin for interaction with post-synaptic 

receptors (figure 1.1). In comparison to SSRIs, TCAs have a higher affinity for noradrenaline and 

dopamine transporters and also show affinity for acetylcholine and histamine receptors.  

1.4.1.  Serotonin (5HT) 

A key factor in the mechanism of action of SSRIs is serotonin. Serotonin or 5-hydroxytryptamine 

(5HT) is synthesized from the essential amino acid tryptophan through hydroxylation and 

decarboxylation (figure 1.3). After synthesis, 5HT is stored in vesicles in presynaptic neurons and 

released into the synapse when the neuron is stimulated. Once its mission to trigger postsynaptic 

receptors has been accomplished, 5HT is either catabolized through MAO or taken up into the 

presynaptic nerve for reuse. 

 

 

Figure 1.3. Synthesis of serotonin from tryptophan. L-tryptophan is hydroxylated into 5-hydroxy L-tryptophan 
by tryptophan hydroxylase. Subsequent decarboxylation by aromatic amino acid decarboxylase results in the 
formation of serotonin.  

 

Within the brain, serotonin is almost exclusively produced in neurons originating in the raphe nuclei 

located in the midline of the brainstem. From these neurons, different regions of the brain are 

innervated forming a complex efferent system. Within the central nervous system (CNS) 5HT 

regulates behavioral effects such as mood, perception, reward, anger, aggression, appetite, memory, 
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sexuality and attention [18]. In addition, 5HT controls other centrally regulated processes such as 

motor control, sleep and circadian rhythms, emesis, respiratory drive and body temperature (figure 

1.4). 

  

Figure 1.4. Central serotonergic pathways and effects. Within the brain, serotonin is almost exclusively 
produced in neurons originating in the raphe nuclei located in the midline of the brainstem. From these 
neurons, different regions of the brain are innervated forming a complex efferent system. Accordingly, 
serotonergic neurons control a wide variety of behavioral and neuropsychological functions, as well as many 
other CNS effects. Figure adapted from [18]. 

 

Although 5HT is mainly known for its role as a neurotransmitter in the brain, it is predominantly 

found in the periphery (>90%) where it is mainly released by enterochromaffin cells of the gut. In the 

gastro-intestinal tract, 5HT is involved in control of digestion by regulating both motility and 

secretion of digestive fluids [18]. In addition, 5HT is involved in vascular biology1 through regulation 

of vasodilatation and vasoconstriction, depending on which receptors are present in the vessel wall 

and surrounding smooth muscles. Platelets take up 5HT from the plasma and secrete it during 

platelet activation, resulting in enhanced aggregation and local vasoconstriction and facilitating 

hemostasis [18]. Furthermore, 5HT plays a role in cardiac function, breathing and respiratory drive, 

endocrine system and metabolism, pain control, genitourinary function and reproduction [18]. As 

                                                           
1 hence the name sero-tonin, which denoted the ability of a serum-derived factor to increase the tone of 

vascular smooth muscle [17]. 

 

Raphe nuclei

Behavioral effects:
Mood
Perception
Memory
Anger
Aggression
Fear
Stress responses
Appetite
Addiction
Sexuality

Other CNS effects:
Motor control
Cerebellar regulation
Sleep/circadian rhythms
CNS vascular tone
Emesis
Respiratory drive
Body temperature
Descending regulation of multiple organ systems
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demonstrated by these examples, 5HT exerts a wide variety of effects and plays a role in almost 

every function of the body. This also clarifies why SSRIs not only influence mood, but exert several 

other effects including nausea and sexual dysfunction. 

1.4.2. The serotonin transporter 

As described in 1.1., SSRIs were designed to block reuptake of serotonin in the presynaptic neuron. 

The protein responsible for (re)uptake of serotonin into a cell is the serotonin transporter (SERT or 

5HTT). This is a 630 amino acid long protein composed of twelve membrane-spanning segments, with 

both N- and C-termini embedded in the cytosol. SERT contains two sites for N-glycosylation and 

multiple sites for phosphorylation, enabling post-translational regulation of its function (figure 1.5) 

[19].  

The transporter is a member of the solute carrier family 6, which also includes transporters for e.g. 

dopamine, noradrenaline, and several amino acids. SERT is encoded by the solute carrier family 6 

member 4 (SLC6A4) gene, which is localized on human chromosome 17. A 44-bp insertion or deletion 

polymorphism within the promotor region of the SLC6A4 gene has been described. The short allele of 

this polymorphism, the 5HTT-linked polymorphic region (HTTLPR), is associated with a reduced 

transcriptional activity of the SLC6A4 gene, resulting in decreased SERT expression and 5HT uptake 

[20].  

 

Figure 1.5. Structure of the serotonin transporter. The serotonin transporter is a twelve-membrane domain 
containing protein with cytoplasmic tails on both N- and C-termini. N-glycosylation sites are depicted with ‘G’, 
phosphorylation sites with ‘P’. 
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The driving force for transport of serotonin into the cell is the energetically favorable co-transport of 

Na+ and Cl- ions. In the first step, a Na+ ion binds the SERT, followed by the protonated form of 5HT 

(5HT+). Then, a Cl- ion binds and the complex of 5HT+, Na+ and Cl- induces a conformational change in 

the protein. From an outward open conformation, SERT changes to an inward open conformation 

thereby enabling release of 5HT+, Na+ and Cl- to the cytosol. Subsequently, a K+ ion is bound and the 

transporter flips back to the original conformation, releasing the K+ ion into the extracellular milieu 

(figure 1.6) [19].  

 

Figure 1.6. Schematic representation of 5HT transport through SERT. 5HT is transported into the cell 
simultaneously with Na

+ 
and Cl

-
. A conformational change upon binding of all elements enables the release of 

5HT, Na
+
 and Cl

-
 into the cytosol. Subsequently, a K

+
 ion is bound and the transporter flips back into the 

outward open position, thereby releasing the K
+
 ion into the extracellular space.  

 

1.4.3. Binding of SSRIs to SERT 

As mentioned above, SSRIs block reuptake of serotonin in the presynaptic nerves, resulting in 

increased levels of serotonin in the synapse and enhanced serotonergic signaling. The binding 

characteristics of SSRIs to SERT have been subject of extensive research. Recently, a bacterial 

homologue of the eukaryotic monoamine transporter was mutated to produce a model that 
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approximates SERT pharmacology (Δ13 LeuBAT) [21]. According to this model, SSRIs bind to the 

primary binding pocket, which is also the binding site for serotonin [21]. SSRIs with different chemical 

structures (sertraline, paroxetine, fluoxetine and fluvoxamine) bind to SERT in a surprisingly similar 

way.  

They all bind to the transmembrane helix 3 (TM3), and form a wedge between TM3/T8 and 

TM1/TM6, locking the transporter in the sodium and chloride-bound outward-open conformation 

(figure 1.7)[21]. Binding affinities (Kd) for human SERT range from 0,13 ± 0,01 nM for paroxetine to 

2,2 ± 0,2 nM for fluvoxamine [22]. 

 

Figure 1.7. Binding of SSRIs to SERT. Cross-section of the crystal structure of the Δ13 LeuBAT-sertraline 
complex. Sertraline (shown in yellow sticks) binds to the primary binding pocket of the transporter, thereby 
locking it in the outward-open conformation. Figure obtained from [19]. 

 

However, in the case of citalopram it should be noted that both enantiomers act in a very different 

way. Whereas S-citalopram binds to SERT in a similar way as do the other SSRIs, R-citalopram is 

thought to alter the primary binding site trough allosteric modulation, which results in a decreased 

binding efficiency of S-citalopram [23]. This is the main reason why the purified S-enantiomer 

escitalopram was marketed (Belgian tradename Sipralexa®). 



INTRODUCTION 

 

 

27 

 

Whereas the blocking of 5HT transport through SERT occurs immediately after binding of a SSRI, the 

therapeutic effects of SSRIs usually take 2-3 weeks to fully develop. This discrepancy is explained by 

additional, adaptive mechanisms induced by SSRI-binding to SERT. Initially, SSRI-binding to SERT 

inhibits removal of 5HT from the synapse, thus increasing the available concentration of 5HT. 

However, 5HT not only binds post-synaptic receptors triggering signal transduction, but also pre-

synaptic receptors of the 5HT1A-type. Stimulation of this receptor activates a negative feedback 

mechanism that results in a decreased release of 5HT from the presynaptic nerve. As a consequence, 

the 5HT concentration in the synapse returns to normal. Upon prolonged exposure to SSRIs, 

presynaptic 5HT1A receptors desensitize and internalize whereby the negative feedback mechanism 

is cancelled. Presynaptic neurons start to release 5HT and the synaptic concentrations are 

augmented again [24]. In addition, prolonged treatment with SSRIs has been shown to cause 

downregulation of SERT [25]. This downregulation is controlled on the posttranscriptional level, as 

SERT mRNA expression is not altered [26]. Thus, SERT function is not only abrogated by 

pharmacological inhibition, but the number of SERT molecules is also decreased resulting in a further 

impairment of serotonin uptake into the presynaptic neuron.  

2. Immunology  

The human immune system is divided into two parts, determined by the speed and selectivity of the 

reaction. These parts are the innate and adaptive branches of immunity. Whereas innate immunity 

delivers a fast, but non-selective immune response with no generation of memory, adaptive 

immunity generates a slower, but highly specific response that results in the generation of 

immunological memory. With respect to cellular distribution, innate immunity is carried out by 

neutrophils, monocytes, and macrophages whereas effector cells from adaptive immune responses 

are T and B lymphocytes [27]. This thesis focuses on the effect of SSRIs on T lymphocytes. Therefore 

in the next section an overview of T cells, their working mechanism and the effect of serotonin on T 

cells is given. 

2.1. T lymphocytes 

Lymphocytes are differentiated in the bone marrow out of lymphoid progenitor cells. In the case of T 

lymphocytes the maturation takes place in the thymus, where the T cell undergoes positive and 

negative selection generating mature, naive T lymphocytes that carry a T cell receptor (TCR) capable 

of recognizing non-self peptides presented on self major histocompatibility complex (MHC) 

molecules. After successful completion of the selection process, mature naive T cells leave the 

thymus and enter the periphery, where they circulate from one lymphoid tissue to the next through 
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lymph and blood [27]. The encounter between a naive T cell and its specific antigen occurs in 

peripheral lymphoid organs and is mediated by antigen presenting cells (APC). T helper cells, which 

are CD4+, recognize peptides presented on MHC-II by an APC. Once activated, they differentiate 

either to Th1 cells that aid macrophages to kill intracellular organisms or Th2 cells that facilitate B cell 

activation and antibody production. Communication between helper T cells and macrophages or B 

lymphocytes is accomplished by cytokine secretion. Th1 cells produce interleukin 2 (IL2), which 

induces T cell proliferation and interferon γ, which activates macrophages. Th2 cells produce IL4, IL5, 

IL6 and IL10 that stimulate B cells to produce antibodies. IL4 also induces class switching to IgE in B 

cells, and IL5 enhances eosinophil growth [27]. Other types of CD4+ cells include Th17 cells and 

regulatory T cells. Th17 cells secrete IL17, which recruits inflammatory cells such as neutrophils to 

sites of infection. Regulatory T cells suppress T cell responses. They have an important function in 

preventing autoimmunity and restrain the immune response in order to protect surrounding tissue 

from damage [28]. Cytotoxic T cells, CD8+, recognize peptides presented on MHC-I, which is present 

on all nucleated cells of the body. MHC-I typically presents peptides derived from intracellular viruses 

or tumor-specific proteins. If a cytotoxic T cell becomes activated, it inserts perforins in the target 

cells’ plasma membrane and releases granzymes into the cytoplasm, resulting in the killing of that 

target cell (figure 1.8)[27].  

Type of 

effector T 

cell 

CD8+ Tc cells CD4+ Th1 cells CD4+ Th2 cells CD4+ Th17 cells CD4+ Treg cells 

     

Main 

function 

kill virus- 

infected and 

tumor cells 

activate infected 

macrophages 

stimulate B cell 
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enhance 
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interaction 
class I class II class II class II class II 

Effector 
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perforins, 

granzymes 
IL2, IFNγ IL4, IL5, IL6, IL10 IL17, IL6 IL10, TGFβ 

 

Figure 1.8. Different types of effector T cells and their function. Cellular immunity against intracellular 
pathogens is mainly regulated by T cells. CD8+ cytotoxic T cells kill virus-infected cells and tumor cells through 
release of perforins and granzymes. Macrophages containing intracellular pathogens are activated by CD4+ Th1 
cells. CD4+ Th2 cells stimulate B cell antibody production and induce class switching. CD4+ Th17 cells recruit 
neutrophils to sites of infection through release of IL17. Finally, CD4+ Treg cells control T cell responses in order 
to prevent autoimmunity and protect surrounding tissue. Figure adapted from [28].  
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2.2. T cell activation 

In order to induce the process of T cell activation, a naive T cell needs to obtain several signals: the 

first signal is the binding of the TCR with a peptide presented on a MHC-molecule by an APC. The TCR 

is formed by an α and β chain (or γ and δ in case of γδ T cells), associated with the CD3 complex that 

enables signal transduction (figure 1.9). CD4 and CD8 co-receptors bind to the MHC-molecule as well, 

but without binding to the antigen. The second signal is provided by CD80 (B7-1), CD86 (B7-2) and 

CD40 on the APC that bind with CD28, CTLA4 and CD40 ligand on the T cell [27]. Without the co-

stimulatory signal, TCR triggering results in a non-responsive state (anergy) in which T cells do not 

longer respond to restimulation [29]. The encounter between a naive T cell and an APC takes place in 

lymphoid tissue, after an APC has endocytosed an antigen locally and brought it to the nearest lymph 

node. Naive T cells travel through the lymphatic system continuously (around the body in 1-2 days), 

so that an antigen-bearing APC is quickly detected by the right T cell. Once the T cell has found its 

antigen, activation occurs within 2-3 days [27].  

So how does T cell activation work? If an antigen-MHC complex is bound by the TCR, aggregation of 

the receptor with tyrosine kinases like LCK and FYN takes place leading to phosphorylation of ITAM 

motifs in the cytoplasmic tail of the CD3 complex. Once phosphorylated, ZAP70 is recruited that in 

turn phosphorylates linker for activation of T cells (LAT) and SRC-homology 2 (SH2)-domain-

containing leukocyte protein of 76 kD (SLP76). Phosphorylated LAT then recruits SLP76 to the 

membrane, and activates phospholipase Cγ (PLCγ). This enzyme converts phosphatidyl-inositol 4,5-

bisphosphate (PIP2) to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Whereas DAG 

activates protein kinase C and ras-dependent pathways resulting in the activation of gene 

transcription mediated by the transcription factors NFκB and AP-1, IP3 migrates to the endoplasmic 

reticulum (ER) where it binds the IP3 receptor (IP3R) [28]. This ion channel is subsequently opened 

and ER Ca2+ stores are released into the cytoplasm. The release of Ca2+ from intracellular stores is 

further regulated by the ryanodine receptor (RyR)[30]. The initial release of ER Ca2+ into the 

cytoplasm in turn causes influx of extracellular Ca2+. STIM1 molecules present in the ER wall sense 

the decrease in ER Ca2+ content and make contact with ORAI in the plasma membrane [31]. In turn, 

store-operated Ca2+ channels (Ca2+-release activated Ca2+-channel (CRAC)) are opened and 

extracellular Ca2+ enters the cell, thereby causing a sustained increase in cytosolic Ca2+ concentration 

[32]. Ca2+ influx is further regulated by voltage-gated K+ channels, such as the Kv1.3 channel and Ca2+- 

activated K+ channels such as KCa3.1 [32]. The cytosolic Ca2+ binds calmodulin, which then activates 

calcineurin. Activated calcineurin dephosphorylates nuclear factor of activated T cells (NFAT), that 

subsequently migrates to the nucleus and stimulates transcription of a pleiotropic set of genes, 
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including IL2. As mentioned above, IL2 promotes long term T cell proliferation. The entire signaling 

pathway is illustrated in figure 1.9.  

Once activated, T cells differentiate in either helper T cells or cytotoxic T cells. They start to 

proliferate, thereby producing large amounts of cells with the same antigen-specificity. Depending 

on the type of effector cell, different cytokines are secreted. Part of these cells will become long-

lasting memory T cells, providing a strong and efficient mounting of an immune response in case of a 

second challenge with the same antigen.  

 

Figure 1.9. Signaling pathways involved in T cell activation. Interaction of the TCR with a peptide-MHC on an 
APC induces a complex signal transduction cascade eventually leading to activation, proliferation and 
differentiation of the T cell. Upon binding to the peptide-MHC complex, ITAM motifs in the CD3 tails are 
phosphorylated by PTKs LCK and FYN. ZAP70 is recruited and activates LAT and SLP76, that in turn activate 
PLCγ. PLCγ converts PIP2 into DAG and IP3. Whereas DAG activates PKC and Ras-dependent pathways leading to 
gene transcription mediated by NFκB and AP-1, IP3 induces release of intracellular Ca

2+
 from the endoplasmic 

reticulum. This in turn causes influx of extracellular Ca
2+ 

that binds to calmodulin and activates calcineurin. 
Calcineurin then dephosphorylates NFAT, a transcription factor that relocates to the nucleus and induces 
transcription of a pleiotropic set of genes, including IL2. Release of intracellular calcium is further regulated by 
RyR. Efficient activation only occurs when a costimulatory signal is present, provided by interaction of CD80/86 
with CD28.  
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2.3. T cell apoptosis 

In some situations, e.g. when the activation process is not optimal (co-stimulatory signal is absent) or 

when a T cell fails the negative or positive selection process in the thymus, T lymphocytes commit 

‘suicide’, in a tightly controlled process called apoptosis. Equally, apoptosis has an important role in 

terminating an immune response by eliminating cells that are no longer needed after the infection 

has been cleared [28]. The apoptotic process can be induced either by the extrinsic or intrinsic 

signaling transduction pathway. The extrinsic pathway starts with the binding of a death factor (TNF, 

FasL) to its receptor on the plasma membrane. Activation of the receptor results in the formation of 

a death-inducing signaling complex (DISC), composed of the death receptor, FADD or TRADD and pro-

caspase-8 that induces autocleavage of procaspase-8 or -10. These caspases, called initiator 

caspases, cleave caspase-3, -6 and -7, thereby activating them. The latter are also called effector 

caspases, and these carry out apoptosis through cleavage of intracellular proteins (figure 1.10, left). 

In addition, caspase-3 activates the caspase activated DNase (CAD) that degrades chromosomal DNA 

and induces chromatin condensation. Reorganization of the cytoskeleton occurs, and apoptotic 

bodies are formed [33]. As early apoptosis is accompanied by the flipping of phosphatidyl serine (PS) 

from the inside to the outside of the plasma membrane, apoptosis can be detected through binding 

of this exposed phospholipid with annexin V.  

The intrinsic or mitochondrial pathway is initiated when a pore in the outer mitochondrial membrane 

causes cytochrome C (cyt C) to be released into the cytosol. This can be induced by e.g. ultraviolet 

irradiation, chemotherapeutic drugs, starvation or a lack of growth factors needed for survival [28]. 

Recent evidence indicates that the initial release of a small amount of cyt C by mitochondria 

activates IP3R in the ER, thereby inducing the release of Ca2+ from ER stores. The rise in cytoplasmic 

Ca2+ in turn causes an orchestrated release of cyt C from all mitochondria [34]. Cyt C assembles, 

together with APAF-1 and pro-caspase-9, the apoptosome. Pro-caspase-9, an initiator caspase, is 

activated and in turn activates effector caspases [33] (figure 1.10, right).  
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Figure 1.10. Pathways leading to T cell apoptosis. (Left) The extrinsic pathway starts with binding of a death 
factor (TNF, Fas) on its plasma membrane receptor. A death-inducing signaling complex (DISC) is formed that 
induces cleavage of pro-caspase-8 into active caspase-8. This in turn activates caspase-3. (Right) The intrinsic 
pathway starts with leakage of Cyt C into the cytoplasm. An apoptosome is formed through association of Cyt C 
with APAF-1 and pro-caspase-9. Finally, caspase-3 is activated and cleavage of intracellular proteins occurs. 

 

2.4. Role of serotonin in immunity 

Although cytokines are the best known molecules used by immune cells to communicate with each 

other, they are not the only messengers within the immune system. Small molecules such as 

neurotransmitters are used both centrally and in the periphery to convey a message between 

immune cells reciprocally and in their communication with other tissue cell types. As this thesis 

focuses on the effect of SSRIs on the immune system, the following overview is limited to the role of 

serotonin in immunity. The role of other neurotransmitters in the immune system is beyond the 

scope of this thesis and will not be discussed here. 

As mentioned above, 5HT plays a role in almost every function of the body and the immune system is 

no exception. Enterochromaffin cells from the gut form the main source of 5HT in the periphery. 

Amongst other cell types, platelets take up 5HT and transport it through the blood stream, thereby 

providing a major source of 5HT in the circulation. 5HT is released in response to platelet activation 

by e.g. thrombin, IgE-containing immune complexes, platelet activating factor or certain complement 

factors [35]. Consequently, local 5HT concentrations can rise considerably in comparison with the 
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relatively low levels of free 5HT found in plasma. In addition, both primary and secondary lymphoid 

organs are innervated with nerves which release a variety of neurotransmitters, including 5HT. 

Lymphocytes can thus be exposed to 5HT both in the circulation and lymphoid organs. Furthermore, 

lymphocytes – especially when activated – can pass the blood brain barrier, thus exposure of 

lymphocytes to 5HT can occur both in the periphery and the central nervous system [35].  

5HT receptors and SERT have been found in various types of immune cells. In human T cells, 5HT1, 

5HT1A, 5HT1B, 5HT2A, 5HT3, and 5HT7 are expressed [36]. The expression of 5HT receptors is 

dependent on the subtype and appears very dynamic, changing in response to various stimuli. Some 

important factors that alter the expression of 5HT receptors in T lymphocytes are TCR activation, the 

cytokine environment and the neurotransmitter itself [36]. In naive murine splenic T cells, mRNA for 

both 5HT1B and 5HT7 was detected [37]. On the protein level however, only 5HT7 could be reliably 

detected [37]. A functional role for 5HT7 was confirmed using a 5HT7 receptor antagonist, which 

inhibited 5HT induced ERK activation and phosphorylation of IκBα [37]. Upon T cell activation, 5HT7 

receptors, as well as 5HT1B and 5HT2A are upregulated [37]. Yin et al. demonstrated that 

antagonism of 5HT1B receptors in activated CD4+ T helper cells results in impaired proliferation [38]. 

Further, antagonists of 5HT2A receptors inhibit IL2 and IFNγ production in response to T cell receptor 

stimulation [39, 40]. Another study demonstrated 5HT to promote mitogen-activated T and B cell 

survival and proliferation via 5HT1A receptors [41]. Through activation of 5HT3 receptors, 5HT 

inhibits primary CD4+ T cell migration towards endothelial-bound CXCL12, thereby facilitating 

extravasation and migration of CD4+ T lymphocytes into inflamed tissue [42]. From these studies, it is 

clear that 5HT exerts a variety of effects through activation of several types of 5HT receptors.  

In addition, tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme in the synthesis of 5HT, is 

expressed in T lymphocytes and expression is upregulated during T cell activation [37, 43]. Thus, it 

appears that T cells are capable of synthesizing 5HT. Possibly, activated T cells secrete 5HT as a 

means of communication with other lymphocytes or even other cell types. Interestingly, 5HT has 

been shown to be involved in early T cell activation [37]. Dendritic cells (DC’s), which have been 

shown to express SERT, are likely to take up 5HT at sites of inflammation and from activated T cells, 

and release it when encountering naive T cells. 5HT then acts as a cofactor that interacts 

synergistically with the TCR signaling to promote T cell activation and proliferation [37]. Furthermore, 

SERT expression has been shown in jurkat T lymphocytes and is upregulated in response to IFNα [44-

46]. Thus, T lymphocytes also appear to be capable of taking up 5HT, and the uptake is regulated by 

inflammatory stimuli.  
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5HT not only plays a role in adaptive immunity, but has also been shown to exert several effects on 

innate immune cells. First, 5HT has been demonstrated to induce adhesion and chemotaxis in mast 

cells [40, 47]. A chemotactic role has also been described for 5HT in the recruitment of eosinophils 

[48]. Whereas in mast cells, 5HT1A receptors are believed to be responsible for the effect, eosinophil 

recruitment appears to be mediated through 5HT2A receptors. Furthermore, a chemotactic role for 

5HT has been described in the attraction of neutrophils to inflammatory sites [49]. Activated 

platelets were shown to release 5HT, and this 5HT recruits neutrophils to sites of acute inflammation. 

In the absence of platelet 5HT, less neutrophil rolling on unstimulated endothelium was observed, 

and the neutrophils that did roll moved faster suggesting that less interaction with adhesion 

molecules occurred [49]. In LPS-stimulated endothelium, the absence of platelet 5HT resulted in less 

adhesion of leukocytes to the endothelium [49]. Finally, the migration, cytokine and chemokine 

secretion and T-cell priming capacity of dendritic cells is modulated by 5HT [50]. In accordance with 

data on mast cells and eosinophils, 5HT induced chemotaxis in immature DC’s through interaction 

with 5HT1 and 5HT2 receptors [50]. In LPS-stimulated DC’s, 5HT stimulated the production of CCL22 

and IL6 and inhibited the production of CXCL10. As CCL22 is a typical chemoattractant for Th2 cells, 

5HT appears to shift the immune response towards the Th2 response. This conclusion was further 

strengthened by the observation that 5HT-pretreated DC’s induced a Th2 polarization in naive T cells 

[50]. 

In conclusion, 5HT influences several aspects of adaptive and innate immunity and is involved in the 

communication between both branches of immunity. In adaptive immunity, a stimulatory effect on T 

cell activation predominates, whereas in innate immunity the major role of 5HT is chemotaxis.  

3. Immunological changes in depression 

In order to be able to interpret immunological effects executed by SSRIs in depressive patients, 

understanding of the immunological changes at the basis of depression is required. For a long time, 

depression has been considered the consequence of a disturbed neurotransmission with changes in 

monoamine neurotransmitters such as noradrenaline, dopamine and serotonin lying at the basis of 

the disorder. However, more recent evidence suggests that monoamine deficiency is to be 

considered a secondary change owing to primary, more upstream abnormalities [17].  

A hypothesis on the pathophysiology of depression receiving more and more attention is the role of 

glucocorticoids and cytokines. Hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis 

occurs in up to 80% of severely depressed patients [51]. The HPA axis is activated by environmental, 
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psychological and biological stressors and results in the release of corticotropin-releasing hormone 

(CRH) from the hypothalamus. CRH stimulates receptors in the pituitary gland, that responds by 

release of corticotropin (ACTH) into the plasma. Once bound on its receptors in the adrenal cortex, 

ACTH induces secretion of cortisol, a glucocorticoid, into the blood [51]. Glucocorticoids exert their 

effects through binding on the glucocorticoid receptor, which is expressed by many different body 

tissues. A negative feedback mechanism involving glucocorticoid receptors in the hypothalamus 

ensures the maintenance of homeostasis. The main effects of glucocorticoids are the regulation of 

energy metabolism, anti-inflammatory action and adaption of behavior in stressful situations. In 

addition to different types of stress, biological stimuli can also induce the HPA axis. Pro-inflammatory 

cytokines such as IL1 and IL6 have been shown to stimulate the HPA axis, thereby increasing cortisol 

secretion into the blood. Cortisol in turn exerts an immunosuppressive effect on immune cells 

through binding on the glucocorticoid receptor, preventing further secretion of pro-inflammatory 

cytokines. Elevated levels of cortisol and CRH have repeatedly been found in the blood and 

cerebrospinal fluid of depressed patients [52]. Further, impairment of the negative feedback 

regulation of the HPA axis has been reported in depressed patients, as well as hypertrophy of the 

adrenal and pituitary glands [51]. 

Despite elevated levels of cortisol, two recent meta-analyses demonstrated that depression is 

associated with an elevation of pro-inflammatory cytokines such as CRP, IL6 and TNFα [53, 54]. 

Evidence for the consideration of depression being an inflammatory state comes from the 

observation that ‘sickness behavior’ associated with activation of an inflammatory response shares 

many symptoms with depression, including weakness, malaise, listlessness, inability to concentrate, 

lethargy, decreasing interest in the surroundings and reduced food intake [55]. Additionally, cytokine 

treatment (e.g. with IFNα) induces a depressive state in around 30% of patients [56]. Moreover, 

IFNα-induced depression is responsive to SSRI treatment [57, 58]. Finally, anti-TNFα therapy 

(etanercept) has been shown to exert antidepressive effects in psoriasis-associated depression, 

independent of improvement in psoriasis symptoms [59]. In treatment-resistant depression, anti-

TNFα therapy (infliximab) improved depressive symptoms only in patients with high baseline TNFα 

levels [60]. Another clue to the link between inflammation and depression comes from the 

observation that there is a higher prevalence of depression in patients suffering from autoimmune 

disorders (e.g. rheumatoid arthritis) as compared to the general population [61].  

Interestingly, pro-inflammatory cytokines such as IL6, TNFα and IFNγ have been demonstrated to 

induce indoleamine 2,3-dioxygenase (IDO) expression, which converts tryptophan into kynurenines 
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and thereby reduces available tryptophan for serotonin synthesis. Additionally, IDO has also been 

shown to directly metabolize serotonin [55]. Lowered tryptophan and serotonin availability, as well 

as the formation of neurotoxic tryptophan catabolites are thought to lie at the biological basis of 

depression. In addition, cytokines such as IL1 and TNFα have been shown to increase serotonin and 

noradrenaline transporter expression and activity through stimulation of p38 MAPK, which in 

combination with the increased catabolism of tryptophan results in lowered serotonin availability 

[62].  

In conclusion, alterations in immune, endocrine and neurotransmitter systems are involved in the 

pathophysiology of depression. A considerable interplay between these three systems occurs, and 

abnormalities in any one of them can result in changes in both other systems. Accordingly, different 

causes might explain the occurrence of depression, including exposure to psychological stress or 

chronic low grade inflammation.  

4. Immunological effects of SSRIs  

Although antidepressant therapy has been developed for its restoring properties on 

neurotransmitter deficiency, immunomodulatory effects have also been described in patients with 

depression as well as healthy subjects. These immunomodulatory effects are described below in 

more detail. First, within the context of depression, SSRIs have been shown to alter cytokine plasma 

levels. Additionally, SSRIs have been shown to affect the in vitro proliferation and viability of 

lymphocytes from healthy human subjects. Whereas plasma concentrations in patients are typically 

below 1 µM, the majority of in vitro studies reports immunosuppressive effects at tenfold higher 

concentrations. Not only lymphocytes, but also cancer cells seem to undergo changes when they are 

incubated with SSRIs [63]. Finally, recent evidence showed an effect of fluoxetine on neutrophil 

adhesion and recruitment to inflammatory sites, demonstrating that not only cellular but also innate 

immunity is impacted by SSRIs [49]. 

4.1. Effect on cytokine levels and secretion 

4.1.1. within depression 

As described above, depression has been associated with an elevation of pro-inflammatory 

cytokines. Antidepressants, which have previously been shown to correct neurotransmitter levels in 

depression, also affect the altered cytokine levels in depression. Several antidepressants, including 

TCAs and SSRIs, have been shown to induce a shift from a Th1 type (pro-inflammatory) towards a Th2 

type (anti-inflammatory) immune response [55, 64]. A reduced IFNγ/IL10 ratio was found in diluted 



INTRODUCTION 

 

 

37 

 

whole blood of both healthy subjects and fluoxetine-treated depressive patients [65, 66]. Cytokine 

measurements in serum or plasma of depressed patients before and after treatment with 

antidepressants have revealed in vivo suppression of cytokine secretion. From a comprehensive 

review, Miller et al. concluded that 11 out of 20 studies examining the impact of antidepressant 

treatment on the inflammatory response showed a decrease of inflammatory markers in 

serum/plasma [67]. Especially for IL6, multiple studies have demonstrated elevation in depressed 

patients compared to control, and reduction of IL6 serum levels in response to SSRI treatment [68, 

69]. TNFα and CRP have also been demonstrated to decrease in response to SSRI treatment [70-72]. 

However, other studies have reported no changes or even increases in cytokine levels in response to 

antidepressant therapy [67]. Some of these studies reported an increase in body mass index (BMI) 

during antidepressant therapy, which itself has been shown to correlate with increases in 

inflammatory markers [67]. Thus, changes in BMI might complicate the establishment of a 

relationship between inflammation and antidepressant treatment [67]. Recently, an extensive study 

was performed analyzing the antidepressant effect on CRP, IL6 and TNFα in currently depressed or 

remitted patients taking lifestyle characteristics including BMI into account as covariate factors [73]. 

From this study, it was concluded that inflammation was present in depressed men, but not women. 

Different classes of antidepressants exerted different effects, with increased CRP and IL6 levels in 

response to SNRI treatment, increased CRP levels with tri- or tetracyclic antidepressant treatment 

and decreased IL6 in response to SSRI treatment [73].  

In conclusion, these data suggest that antidepressants, especially SSRIs, reduce pro-inflammatory 

cytokine secretion in depression. The exact mechanism behind these alterations is currently 

unknown. However, it is intriguing to find that a condition which was previously thought to be solely 

the result of a disturbed neurotransmission now appears to be the result of a low grade, chronic 

inflammatory response. Even more surprising is the observation that pharmacological compounds 

designed for their capacity to correct a monoamine deficiency, now turn out to correct the 

inflammatory component of depression as well. At this moment, it is not clear to what extent the 

anti-inflammatory effects contribute to the therapeutic efficacy of SSRIs in depression. Do SSRIs 

suppress the inflammation through enhancement of serotonin neurotransmission? Or should the 

anti-inflammatory effect of SSRIs be considered a primary effect that contributes to the 

antidepressive effect? It is likely to assume that both effects are dependent upon each other, and 

further research will hopefully detangle the interplay between both major systems of the human 

body – and the effect SSRIs exert on them.  
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4.1.2. outside the context of depression 

In addition to the effects of SSRIs on cytokine plasma levels in depression, these compounds have 

also been demonstrated to directly affect lymphocyte cytokine secretion from healthy subjects. For 

example, 20 µM citalopram decreased IL-2 and IFN secretion by mitogen-activated T cells [74]. 

Furthermore, paroxetine and sertraline (0-30 µM) have been demonstrated to reduce TNF 

secretion by human anti-CD3 stimulated T lymphocytes [75]. Others showed that sertraline (0.01 and 

1 µM) significantly decreases the IFN/IL-10 ratio in the supernatant of mitogen-stimulated whole 

blood [65, 66]. Although these studies point in the same direction, showing a suppressive effect of 

SSRIs on the production of pro-inflammatory cytokines, it should be noted that these studies are not 

equal in terms of experimental setup. Whereas the first two studies used purified lymphocytes, Maes 

et al. used whole blood assays [65]. In the latter model interactions between different types of blood 

cells are preserved, and this model is therefore believed to be more representative for the in vivo 

situation. Recently, Shenoy et al. demonstrated that not only peripheral blood lymphocytes but also 

thymocyte cytokine production is suppressed by citalopram [76]. Concentrations ranging from 25 to 

250 µM citalopram completely suppressed anti-CD3 triggered IL2 production, severely reduced IL4 

and partially suppressed IL17 production [76]. Overall, SSRIs appear capable of suppressing cytokine 

secretion in a concentration-dependent manner.  

4.2. Anti-proliferative effect 

Not only have SSRIs been shown to exert an anti-inflammatory effect under the form of cytokine 

suppression, they also directly interfere with lymphocyte proliferation. In the last decades, several 

research groups have demonstrated that micromolar concentrations of SSRIs are capable of altering 

lymphocyte proliferation. In vitro exposure to paroxetine, sertraline and fluoxetine has been shown 

to decrease the proliferation of mitogen-stimulated lymphocytes in a concentration-dependent 

manner [75, 77-81]. An anti-proliferative effect has also been observed in Jurkat T cells [82]. 

Pellegrino et al. found that in vivo administration of fluoxetine to rats similarly decreased lymphocyte 

proliferation when induced by mitogens ex vivo [83, 84]. The effect, however, seems to be 

dependent on the activation status of the cells. At suboptimal mitogenic Concanavalin A (ConA) 

concentrations, relatively low concentrations (0.1 – 1 µM) of fluoxetine have been found to stimulate 

T cell proliferation [80, 85]. In contrast, at optimal ConA concentrations, 1 µM fluoxetine inhibited T 

cell proliferation and a maximal suppressive effect was reached at 10 µM [80]. Although in some 

situations low levels of fluoxetine seem to stimulate lymphocyte proliferation, the majority of 

research in general points to a negative immunoregulatory effect of SSRIs on lymphocytes. Our own 

data support the observation that SSRIs reduce T cell proliferation in a concentration-dependent 
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manner at concentrations equal to or higher than 1 µM, when stimulated with anti-CD3/CD28 beads 

[86]. In addition to fluoxetine, other clinically available SSRIs (paroxetine, sertraline, citalopram, 

fluvoxamine) also appear to induce this anti-proliferative effect [86]. Like suppression of cytokine 

secretion, the anti-proliferative effect of SSRIs is concentration-dependent.  

4.3. Pro-apoptotic effect 

Finally, SSRIs have been shown to induce apoptosis in lymphocytes. Whereas paroxetine and 

sertraline were found to decrease activated T cell viability with an IC50 around 10 µM [75], other 

SSRIs exerted this effect only at tenfold higher concentrations. For citalopram, an IC50 of 180 µM was 

reported for pro-apoptotic action on naive T cells [87]. According to our own research, this apoptotic 

effect is induced by all SSRIs used in clinical practice (paroxetine, fluoxetine, sertraline, fluvoxamine 

and citalopram), albeit in different concentration ranges [86].  

Not only do SSRIs induce apoptosis in healthy lymphocytes, they also seem capable of reducing the 

viability of several cancerous immune cells. Amit et al. showed that paroxetine (IC50=18 µM) and 

sertraline (IC50=9.5 µM) reduced the viability of Jurkat T cells [82]. Fluoxetine did not affect the 

viability of the leukemic T cells [82]. Another group demonstrated an inhibitory effect of fluoxetine 

on (T cell) lymphoma growth in mice [85]. However, the tumor suppressive effects were attributed to 

an enhancement of anti-tumor immunity instead of a direct effect on the tumor cells [85, 88]. These 

data appear contradictory with the observed immunosuppressive effects in in vitro experiments with 

lymphocytes and in vivo models of autoimmune disorders. However, anti-tumor immunity involves 

different T cell subsets and different cytokines than autoimmune disorders and thus the 

immunosuppressive or immunostimulatory outcome of SSRI treatment might be determined by the 

underlying pathology.  

In Burkitt lymphoma cells, SSRIs (fluoxetine IC50=9.3 µM, paroxetine IC50=6.9 µM and citalopram 

IC50=20.9 µM) were also found to induce apoptosis through cessation of DNA synthesis [89]. These 

findings raised the question whether SSRIs could be reinvented as a novel class of chemotherapeutic 

agents. Although some discussion was raised on whether SSRIs were specific enough to solely target 

the malignant cells [90, 91] and whether the effects were mediated through SERT [90-92], it was 

concluded that SSRIs are interesting candidates for further testing in B cell malignancies. The 

subsequent foundation of Celentyx by Nicholas Barnes and John Gordon warrants the further 

development of new SSRI derivatives for the treatment of B cell cancers. Although this group 

specifically focuses on B cell malignancies, further investigation into the usefulness of SSRIs in T cell 

cancers is equally promising. 
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Interestingly, in comparison with cancer cells, resting peripheral lymphocytes are much less sensitive 

to the effects of SSRIs [89]. In contrast, actively proliferating lymphocytes respond to SSRIs in a 

comparable way as cancerous immune cells [90]. Our own data support that there is a difference in 

sensitivity to the pro-apoptotic action of SSRIs between activated and resting T cells, and that 

activated T cells undergo apoptosis at significantly lower SSRI concentrations [93]. According to 

Schuster et al., this discrepancy between resting and activated lymphocytes is due to the intrinsic 

higher sensitivity of proliferating cells to undergo apoptosis [90]. However, since the exact 

mechanism by which SSRIs induce their effects is to be established, other possibilities explaining the 

different response, such as a possible role for the serotonin transporter (SERT) cannot be excluded. 

This SERT protein was undetectable or expressed in only small amounts in resting tonsilar B cells, 

while upon activation with mitogens, B cells upregulated SERT [94]. The observation that 

proliferating B cells were more sensitive to SSRI-induced effects than resting B cells [94] leads to the 

assumption that SERT expression might be an important factor in the execution of the immunological 

effect of SSRIs. Therefore, SERT expression in T lymphocytes will be further investigated in this thesis. 

4.4. Potential mechanisms of action  

Although the immunological effects of SSRIs have been described by several research groups, little is 

known about the mechanism underlying these effects. Initially, the inhibition of SERT and 

consequent rise in extracellular 5HT concentration were thought to be responsible for the anti-

proliferative and pro-apoptotic action of SSRIs on lymphocytes. More recent research, however, 

provides several arguments against this assumption. Other research has focused on the participation 

of direct triggering or inhibition of signal transduction pathways in the immunological effects of SSRIs 

and on the pathways underlying the apoptotic action of SSRIs. Finally, some of the current views on 

antidepressant action in depression, such as modulation of membrane-associated lipid rafts or 

activation of the glucocorticoid receptor, may also be of importance in the immunomodulatory 

effects of SSRIs.  

4.4.1. Involvement of 5HT and its transporter 

Early work concerning the immunological effects of SSRIs assumed 5HT to be involved in the 

mechanism underlying the effects of SSRIs on lymphocytes. A role of 5HT was demonstrated by 

several research groups. Pellegrino and Bayer demonstrated that elevation of extracellular 5HT levels 

through administration of the 5HT precursor 5-hydroxytryptophan results in a decreased lymphocyte 

proliferation [83]. Also, when 5HT synthesis was inhibited in vivo, SSRIs were no longer capable of 

suppressing lymphocyte proliferation [83]. Lesioning of serotonergic neurons in vivo resulted in the 



INTRODUCTION 

 

 

41 

 

same inability of SSRIs to decrease lymphocyte proliferation [83]. Thus, if no 5HT was present, SSRIs 

were not able to increase the extracellular 5HT concentration and no effect on proliferation was 

observed. Also, fluoxetine and sertraline, two SSRIs with distinct chemical structures but with the 

same capacity to block SERT, were found to exert similar anti-proliferative effects on lymphocytes 

whereas dopamine and noradrenaline reuptake inhibitors did not [83]. These findings suggest an 

important role of 5HT in the anti-proliferative effect of SSRIs. In addition, 5HT itself has been shown 

to induce apoptosis in Burkitt lymphoma cells [95], and pro-apoptotic action of SSRIs thus might as 

well be explained through elevation of extracellular 5HT levels.  

Several research groups have shown that antagonism of 5HT receptors, as well as inhibition of 5HT 

synthesis, results in impaired T cell activation and proliferation. Both 5HT-1A [96], -1B [37, 38] and 

5HT-7 [37] receptors have been suggested to be involved in this process. Alternatively, it has been 

suggested that not the 5HT receptors, but the uptake of 5HT through SERT accounts for the 

mitogenic effect of 5HT [97]. Internalization of 5HT through SERT would lead to proliferation of the 

cells. Consequently, the anti-proliferative effect of SSRIs could be explained by the inhibition of 5HT 

uptake. These observations point to a stimulatory effect of 5HT on activation and proliferation of 

lymphocytes. The optimal activation of lymphocytes seems to require certain levels of 5HT, and both 

too low and too high concentrations result in sub-optimal lymphocyte activation, proliferation and 

viability. Taken together, these reports led to the postulation that SSRIs increased the extracellular 

5HT concentration by blockage of 5HT uptake through SERT, which has been shown to be present on 

the cell surface of lymphocytes (figure 1.12A) [79, 98]. 

On the contrary, several arguments have come up recently that refute the involvement of 5HT and 

SERT in the immunosuppressive effect of SSRIs. First, acetylation of fluvoxamine suppressed the 

capability of the compound to inhibit 5HT uptake, but did not impair the anti-proliferative effect [90]. 

Nevertheless, acetylation of paroxetine resulted in an increase of the IC50 from 6.5 µM to 93.3 µM 

[90] and thus decreased the ability of paroxetine to suppress proliferation. Whereas the anti-

proliferative effect of paroxetine shifted 15-fold by acetylation, the affinity for SERT decreased over 

1000-fold demonstrating that both effects are not entirely dependent on each other [90]. However, 

It should also be noted that isomerization of fluvoxamine from the trans to the cis form cancelled its 

capability to suppress in vitro neural cell proliferation, as well as its ability to block 5HT uptake [99].  

Second, the concentrations needed for inhibition of 5HT uptake are in the nanomolar range, while 

those exerting an anti-proliferative effect are in the micromolar range [77, 90]. Although Ferriere et 

al. found specific binding of 3H-paroxetine in fish lymphocytes to be in the nanomolar range (0-10 



CHAPTER 1 

 

 

42 

 

nM), micromolar concentrations were needed to substantially inhibit 5HT uptake in these cells [100]. 

Thus, anti-proliferative action of SSRIs in the micromolar range might be explained by the substantial 

inhibition of 5HT uptake in this concentration range, notwithstanding specific binding of SSRIs to 

SERT already occurs in the nanomolar range.  

Third, it was put forward that HEK293 cells, which were assumed not to express SERT, were still 

sensitive to the effects of SSRIs and thus these effects could not be mediated by SERT inhibition [90]. 

To this end, it should be noted that Chamba et al. found SERT expression in wild-type HEK293 cells 

both on mRNA and protein level [101], suggesting that these cells might yet encounter SSRI-induced 

effects through SERT inhibition.  

Cloonan et al. pointed out that not all SSRIs induced a pro-apoptotic effect (citalopram did not induce 

apoptosis in any of the tested cell lines), whereas they all do inhibit 5HT uptake through SERT. 

Further, the same group also showed that 5HT was not able to prevent the induction of cell death by 

SSRIs, and that 5HT itself, amongst other SERT ligands, could not induce apoptosis in the tested 

malignant cell lines [92]. In addition, SSRIs did not induce more extensive cell death in cells 

expressing higher levels of SERT [92]. Whereas Pellegrino et al. reported that in vivo administration 

of noradrenaline and dopamine reuptake inhibitors in rats did not affect lymphocyte proliferation, 

Diamond et al. found that antidepressants, inhibiting the reuptake of noradrenalin (reboxetine, 

desipramine) or not inhibiting the reuptake of any monoamine (trimipramine), were still capable of 

inhibiting in vitro T cell proliferation, as well as IFNγ secretion [102].  

Interestingly, it has been hypothesized that binding of monoamines on SERT can itself induce signal 

transduction pathways [95]. Possibly, binding of SSRIs on SERT induces the same changes in signal 

transduction pathways. Furthermore, 5HT uptake has been demonstrated to influence signal 

transduction directly through ‘serotonylation’ of small GTPases [103]. Thus, SSRIs might affect signal 

transduction through restriction of available 5HT for serotonylation. 

As abovementioned arguments do not entirely in- nor exclude the SERT as a target through which 

SSRIs exert their immunosuppressive effects, other approaches to study the involvement of SERT are 

required. Convincing evidence for a role of SERT in the immunosuppressive effects of SSRIs might 

come from studies in SERT knockout mice. Limited evidence in SERT knockout mice has been 

gathered showing that SERT plays a role in experimental autoimmune encephalomyelitis (EAE)[104] 

and inflammatory bowel disease (IBD)[105], indicating that impaired serotonin transport indeed 

affects immunological mechanisms of these diseases. Further research comparing the immunological 
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effects of SSRIs in SERT knockout versus wild-type mice both in healthy conditions and in models for 

autoimmune disorders might reveal the role of SERT in the immunosuppressive effects of SSRIs.  

Furthermore, a modified SERT knock-in mouse strain (SERT I172M) was recently developed that 

expresses a modified SERT protein with normal 5HT recognition and transport, but with a decreased 

sensitivity for antidepressants, including fluoxetine and citalopram [106]. The pranging question 

whether or not SERT is involved in the immunomodulating effects of SSRIs might be answered using 

this SERT I172M mouse model [107]. 

4.4.2.  Effects on signaling transduction pathways 

Regardless the blockage of SERT, further downstream events leading to SSRI-induced suppression of 

proliferation have been investigated by studying the interference of SSRIs with signal transduction 

pathways, such as the cAMP and phosphoinositol system. SSRIs have been demonstrated to interfere 

with the activation of the cAMP-dependent protein kinase A (PKA) pathway and the activation of 

protein kinase C (PKC), as well as with the influx of Ca2+ (figure 1.12B).  

cAMP has been shown to be an important regulator of immune responses by inhibition of T cell 

proliferation [108]. Consequently, an increase in cAMP in response to SSRIs could explain the anti-

proliferative action of SSRIs on lymphocytes. At optimal concentrations of ConA, fluoxetine induced a 

rise in intracellular cAMP concentration [77, 80]. Citalopram similarly elevated cAMP levels in T cells 

stimulated with phytohaemagglutinin [74]. However, Kenis et al. did not find any increase in cAMP in 

peripheral blood mononuclear cells exposed to 0.01 – 1 µM paroxetine [109]. The same group 

further examined the involvement of cAMP and PKA activation in the immunoregulatory effect of 

fluoxetine and concluded that the cAMP-dependent PKA pathway was probably not involved in the 

fluoxetine-induced suppression of the IFNγ/IL-10 ratio, but activation of PKA might contribute to the 

reduction in TNFα secretion [110].  

On the other hand, PKC activation stimulates lymphocyte proliferation [77] and SSRI-mediated 

suppression of PKC translocation to the cell surface may account for the anti-proliferative effect. 

Translocation of PKC was inhibited by fluoxetine at optimal mitogenic concentrations [77], which 

might contribute to the observed anti-proliferative effect.  

Further, cytosolic Ca2+ influx is an important factor in lymphocyte activation and subsequent 

proliferation [111]. Thus, SSRIs might interfere with lymphocyte proliferation through interference 

with Ca2+ influx. Edgar et al. demonstrated that fluoxetine exerted similar effects on mitogen-induced 

T cell proliferation as calcium ionophores [80]. At sub-optimal mitogen concentrations, both 
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fluoxetine and calcium ionophores stimulated T cell proliferation, whereas at optimal mitogen 

concentrations, both compounds inhibited T cell proliferation [80]. Thus, when suboptimal mitogen 

concentrations were used, fluoxetine possibly induced an influx of extracellular Ca2+ that enhanced T 

cell proliferation. In T cells exposed to optimal mitogen concentrations, however, fluoxetine caused 

an excessively high Ca2+ concentration resulting in impaired proliferation [80]. Further, fluoxetine, 

paroxetine and citalopram directly increased intracellular Ca2+ in malignant B cells [89].  

In conclusion, interference with cAMP and phosphoinositol systems can explain some of the effects 

of SSRIs on lymphocytes, but the exact mechanism behind the immunomodulating effects of SSRIs 

remains unresolved and therefore requires further investigation. The direct effects of fluoxetine on 

Ca2+ signaling in T lymphocytes will be further investigated in this thesis. 

4.4.3. Induction of the apoptotic cascade 

Besides an anti-proliferative effect, SSRIs have been found to induce apoptosis in lymphocytes and 

cancer cells. The pathways involved in this apoptotic effect of SSRIs have been investigated 

extensively. Xia et al. showed that the decrease in cellular viability was due to the induction of 

apoptosis, and was accompanied by extensive DNA fragmentation [87]. In lymphocytes exposed to 

citalopram, the anti-apoptotic genes c-myc and bcl-2 were downregulated and Fas membrane 

expression was increased [112]. In cancer cells, the process involves caspase-3 activation, as was 

demonstrated in both Jurkat T cells [82] and acute myeloid leukemia HL-60 cells [113]. Early in the 

apoptotic cascade triggered by SSRIs in HL-60 cells, reactive oxygen species are formed, and this 

precedes the change in mitochondrial trans-membrane potential [114]. Further, Taler et al. showed 

an activation of the MAPK death signaling pathway and suppression of the anti-apoptotic protein bcl-

2 in mitogen-activated rat splenocytes [81]. As an extensive cross-talk exists between bcl-2 and Ca2+, 

and bcl-2 has been shown to exert its anti-apoptotic effects through regulation of ER Ca2+ stores 

[115], the observed effects of SSRIs on Ca2+ signaling might also relate to the observed decrease in 

bcl-2 and resulting apoptosis.    

Finally, in human cervical cancer (SiHa) and breast cancer cells (MDA MB 231), fluoxetine was shown 

to induce an anti-proliferative and apoptotic effect which was mediated through cell cycle arrest at 

the G0/G1 phase [116]. By the use of bioinformatics tools, it was predicted that fluoxetine might 

interfere with CKS1, a protein involved in cell division. Further in vitro experiments confirmed 

functional inhibition of CKS1 by fluoxetine [116]. As the outcome of G1 arrest has been shown to be 

either differentiation or apoptosis, it was concluded that both the observed anti-proliferative and 

apoptotic effect of fluoxetine were mediated by inhibition of CKS1 [116]. Whether the same 
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mechanism accounts for the anti-proliferative and apoptotic effect of SSRIs in other types of cancer 

cells and non-malignant cells such as lymphocytes is not clear. In conclusion, several well-known 

mechanisms leading to apoptosis are involved in the process by which SSRIs reduce cellular viability 

of lymphocytes (figure 1.12C).  

 

 

 

Figure 1.12. Possible mechanisms underlying the anti-proliferative and apoptotic effect of SSRIs on 
lymphocytes. A) Inhibition of 5HT uptake through SERT results in increased binding of 5HT on 5HT receptors, 
thereby reducing lymphocyte proliferation. The inability to take up 5HT itself might as well cause decreased 
lymphocyte proliferation. B) SSRIs increase cAMP levels, thereby activating the PKA pathway; SSRIs inhibit 
translocation of PKC, ultimately resulting in reduced lymphocyte proliferation and/or SSRIs increase Ca

2+ 
influx, 

causing reduced T cell proliferation in response to optimal mitogen concentrations. Alterations in these 
signaling pathways, especially Ca

2+
 signaling, might elicit apoptosis. C) SSRIs induce activation of the apoptotic 

cascade, with activation of caspase 3 and MAPK, generation of reactive oxygen species (ROS), upregulation of 
Fas and downregulation of bcl-2 and c-myc. 
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4.4.4. Unexplored mechanisms 

In addition to abovementioned targets that have been investigated in lymphocytes to a greater or 

lesser extent, other mechanisms explaining the antidepressive action of SSRIs might as well account 

for their immunological effects. Amongst others, it was suggested that SSRIs might directly influence 

mitochondrial pathways, as was demonstrated for clomipramine in human glioma cells [117, 118].  

Furthermore, it was proposed that SSRIs could affect cell dynamics through e.g. phospholipid binding 

and lysosomal trapping, given their lipophilic and amphiphilic nature [117]. In this respect, SSRIs have 

been found to accumulate in membrane-associated lipid rafts in HEK293 and N1E-115 

neuroblastoma cells [119]. Moreover, antidepressants have been shown to enhance G protein Sα 

migration from lipid rafts and thereby facilitate adenylyl cyclase activity and cAMP formation in C6 

glioma cells [120]. As a result, signal transduction post G protein-coupled receptor activation is 

enhanced. The observed rise in cAMP after SSRI treatment of T lymphocytes activated with mitogens 

as described by Edgar et al. [77, 80] and Xia et al. [74] (see 4.4.2) might relate to the effects of SSRIs 

on lipid rafts. Given the presumed importance of lipid rafts in TCR clustering during T cell activation 

[121], SSRIs might disturb T cell function either directly via disturbance of lipid raft integrity or 

indirectly via enhanced G protein signaling.  

Another possible mechanism is upregulation of the glucocorticoid receptor (GR). Antidepressants 

have been shown to increase GR expression, promote GR nuclear translocation and enhance GR 

function in mouse fibroblasts [51, 122]. As glucocorticoids have strong immunosuppressive effects, it 

is possible that SSRIs exert their immunosuppressive effects on T lymphocytes through GR 

modulation. However, these suggestions have not been investigated in lymphocytes and further 

research will be necessary to clarify whether the immunomodulating effects of SSRIs are mediated 

through any of the abovementioned mechanisms.  

4.5. SSRI-mediated immunomodulation in animal models of autoimmune disorders 

As it became more and more clear that SSRIs induced significant changes in immune cells, the 

possibility to use SSRIs in immune related pathologies was investigated. The potentially beneficial 

effects of SSRIs in autoimmune diseases have been tested in animal models of multiple sclerosis, 

rheumatoid arthritis, contact hypersensitivity reaction, inflammatory bowel disease, septic shock and 

allergic asthma. An overview is given in table 1.2. 

In experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), 

venlafaxine, paroxetine and sertraline were tested and both venlafaxine and sertraline were able to 
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ameliorate clinical symptoms of disease (tail limpness, paraparesis, hindlimb and forelimb paralysis) 

[123, 124]. Paroxetine did not affect the clinical progression of EAE [123]. However, animals were 

treated with only 5 mg/kg paroxetine, which may have failed to induce high enough plasma 

concentrations to reach an immunomodulatory effect. Cytokine secretion was also investigated and 

sertraline decreased the secretion of IFNγ, TNFα and IL-2 as well as the viability and in vitro 

proliferation of EAE splenocytes [123]. Histological examination of venlafaxine-treated animals 

revealed decreased central nerve system inflammation and infiltration of inflammatory cells in the 

brain and spinal cord [124]. Venlafaxine also reduced pro-inflammatory cytokine secretion (IL12 p40, 

IFNγ, TNFα) and diminished mRNA expression of inflammatory genes [124]. In a similar multiple 

sclerosis model in rats, fluoxetine has recently been shown to promote remission of EAE [125]. 

Fluoxetine-pretreated rats recovered faster and clinical scores during remission were lower than 

those found in vehicle-treated animals [125]. Spinal cord demyelination and inflammatory foci were 

reduced and IFNγ production was suppressed [125].  

In a murine model for rheumatoid arthritis (RA), fluoxetine and citalopram were tested and both 

SSRIs were able to reduce clinical scores (based on the occurrence of erythema, swelling and joint 

deformity with ankylosis) [126]. Fluoxetine additionally improved paw thickness and significantly 

reduced IL12 secretion, whereas citalopram did not [126]. Histological examination of the affected 

joints revealed reduced inflammation, cartilage and bone erosion in fluoxetine-treated animals and a 

tendency towards reduced inflammatory cell infiltration, pannus formation and joint deformation in 

citalopram-treated mice [126]. Further, a beneficial effect of sertraline has been demonstrated in a 

rat model of RA [127]. The decrease in clinical symptoms was accompanied by an increase in IL10 

secretion, and a decrease in TNFα and cox2 levels [127].  

Recently, the effect of fluoxetine on murine contact hypersensitivity (CS) reaction of the skin has 

been studied [128]. CS is a T cell mediated immune reaction that was successfully suppressed by 

fluoxetine as determined by the reduction in swelling of the ear to which the contact allergen was 

applied. The weight of axillary lymph nodes was decreased and the production of IL10, an anti-

inflammatory cytokine, was increased by fluoxetine [128]. A similar effect was observed for 

fluoxetine by the same group when using a different CS model [129]. 
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Table 1.2: Animal studies of SSRIs in autoimmune diseases. 

SSRI pathology animal model/species beneficial effect reference(s) 

paroxetine multiple sclerosis EAE, murine no Taler et al, 2011 

fluoxetine allergic asthma ovalbumin-sensitization, rat yes Roumestan et al, 2007 

 septic shock LPS-induced, murine yes Roumestan et al, 2007 

 inflammatory bowel disease acetic acid, rat yes Guemei et al, 2008 

 rheumatoid arthritis CIA, murine yes Sacre et al, 2010 

 inflammatory bowel disease DSS, murine yes Koh et al, 2011 

 multiple sclerosis EAE, rat yes Yuan et al, 2012 

 contact hypersensitivity picryl chloride, murine yes Kubera et al, 2012 

 contact hypersensitivity 2,4-dinitrofluorobenzene, murine yes Curzytek et al, 2013 

sertraline multiple sclerosis EAE, murine yes, moderately Taler et al, 2011 

 rheumatoid arthritis CIA, rat yes Baharav et al, 2012 

citalopram rheumatoid arthritis CIA, murine yes, partial Sacre et al, 2010 

venlafaxine multiple sclerosis EAE, murine yes Vollmar et al, 2008 

EAE: experimental autoimmune encephalomyelitis, LPS: lipopolysaccharide, CIA: collagen-induced arthritis, DSS: dextran-sulphate sodium. 
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Inflammatory bowel disease is another example of an immunological disorder that might benefit 

from SSRI treatment. This disease is caused by a dysregulation of the gastro-intestinal immune 

system and is considered to be the result of an altered immune response to luminal antigens. In a 

dextran sulphate sodium (DSS)-induced murine model for colitis, fluoxetine showed to improve the 

disease activity index, consisting of a composite score for weight loss, stool consistency and gross 

rectal bleeding [130]. Histological examination of the proximal and distal colon showed less 

infiltration of inflammatory cells and reduced impairment of the glandular architecture in fluoxetine-

treated animals versus controls. Another study demonstrated that fluoxetine and desipramine 

attenuate acetic acid-induced experimental colitis in rats [131]. In addition to a reduction of colonic 

damage, fluoxetine and desipramine suppressed serum cytokine levels (TNFα, IL1β) that were 

induced by experimental colitis [131]. 

Finally, in a lipopolysaccharide (LPS)-induced murine model of septic shock, preventive 

administration of fluoxetine diminished the expression of TNFα and the mortality rate [132]. In a rat 

model of allergic asthma, fluoxetine reduced lung inflammation and infiltration of inflammatory cell 

types [132]. Fluoxetine not only reduced the number of lymphocytes, but also macrophages, 

neutrophils and eosinophils [132]. In vitro, fluoxetine dose-dependently inhibited the release of TNF-

α from LPS-treated monocytes [132]. 

4.6. SSRI-mediated immunomodulation in human autoimmune disorders 

Although clinical evidence for SSRI use in autoimmune diseases is scarce, three studies have been 

conducted that demonstrate the usefulness of SSRIs in MS and RA. In undepressed patients with 

relapsing MS, fluoxetine (20 mg/d) reduced the occurrence of new enhancing lesions, as measured 

by MRI scan [133]. The beneficial effect was attributed to an anti-inflammatory effect of fluoxetine 

on astrocytes, rather than a suppressive effect on peripheral lymphocytes. The peripheral effects on 

immune cells, however, were not investigated.  

In RA patients, a clinical trial was performed to evaluate the efficacy of paroxetine and amitriptyline 

for concurrent depression [134]. In addition to an improvement in depressive symptomatology, an 

improvement of RA associated pain and disability has also been detected with both paroxetine (20-

40 mg/d) and amitriptyline (75-150 mg/d). Although this study did not measure direct immunological 

parameters, the improvement in RA symptoms seems to indicate a beneficial effect of paroxetine 

and amitriptyline in this pathology. It is not clear, however, whether this is a direct effect of the 

antidepressants on immune parameters, or an indirect effect through resolving the depressive 
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symptomatology which is known to exacerbate the arthritic symptoms [134]. In order to differentiate 

between both possibilities, studies in non-depressed RA patients should be conducted. 

Furthermore, a patient suffering from RA was found to be in remission when treated with citalopram 

for concurrent depression and discontinuation of citalopram treatment resulted in reoccurrence of 

the rheumatic symptoms [135]. Although it can be argued that the mental state of a patient 

influences his perception of rheumatic symptoms, this case report mentions a significant 

improvement of DAS28 score, which is an objective measure of RA disease activity [136]. Therefore, 

it seems to indicate that there is a direct link between SSRI treatment and severity of RA symptoms in 

this patient.  

Recently, a clinical study was performed evaluating the combination of a low dose prednisolone (3 

mg) with 10 mg paroxetine (CRx-139low)(n=71) or 20 mg paroxetine (CRx-139high) (n=69) in 

undepressed RA patients [137]. Comparison was made against treatment with prednisolone alone 

(n=69). The primary endpoint of the study was a 20% improvement of ACR score (ACR20) from 

baseline to the end of the study period (day 70). The ACR criteria were developed by the American 

college of Rheumatology to assess RA disease improvement, and are thus well suited to compare 

different treatment regimens [138]. Secondary endpoints were the difference in ACR50, ACR70, 

EULAR good response, remission, DAS28 score, CRP levels, and inflammatory cytokine levels. 

Although no significant effect was found for CRx-139low and CRx-139high on the primary endpoint 

(ACR20 at day 70), multiple secondary endpoints showed significant improvement in the group of 

patients receiving CRx-139high. Whereas the ACR20 and ACR50 responses were significantly higher at 

day 42, no significant effect could be observed at day 70. Thus, the beneficial effect of CRx-139high on 

ACR response appears to be transient. With respect to the EULAR good response and remission, a 

significant improvement could be detected for CRx-139high at day 42 and day 70, demonstrating that 

the beneficial effect on these endpoints was maintained until the end of the study period [137]. From 

these data, it can be concluded that addition of 20 mg paroxetine to a low dose prednisolone yields a 

limited, but clinically meaningful decrease in disease activity. The lower dose of paroxetine, 10 mg, 

did not yield an added value to the standard therapy of 3 mg prednisolone with respect to RA disease 

control. Possibly, increasing the dose of paroxetine to 40 or 60 mg would augment the beneficial 

effect of this combination therapy on RA disease activity.  

Abovementioned studies in humans and animals demonstrate the potential use of SSRIs in a wide 

variety of autoimmune diseases. Nonetheless, the data are limited and further research is needed to 

evaluate which SSRI, which dose and dosage regimen are optimal for each individual pathology. To 
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date, most preclinical evidence of immunosuppression exists for fluoxetine (table 1.2). Whereas 

fluoxetine is definitely a suitable candidate to proceed to clinical testing, it is worthwhile to screen 

the effect of other SSRIs in autoimmune disorders as well, as these might show to be equally or even 

more effective.  

Other autoimmune disorders, such as diabetes mellitus type 1, lupus erythematosus, autoimmune 

thyroid diseases and others might as well benefit from SSRI treatment and studies exploring the 

potential use of SSRIs in these disorders should be encouraged. In addition, other conditions where 

unwanted immune activation occurs can potentially be controlled with SSRIs. Such conditions include 

several types of transplantation, where the host’s immune system mounts an immune response 

against the transplanted organ (host-versus-graft response). Another unwanted immune reaction 

that might benefit from SSRI treatment occurs in patients receiving allogeneic stem cell 

transplantation. In these patients, immunocompetent cells in the stem cell graft can mount an 

immune response to the host’s tissues and cells (graft-versus-host response).  

5. Graft-versus-host disease 

In this thesis, the potential application of SSRIs as immunosuppressants in graft-versus-host disease is 

further investigated. Therefore, an introduction on this major complication of stem cell 

transplantation is provided in the following section.  

5.1. Definition 

Graft-versus-host disease (GvHD) is a common complication after transplantation of haematopoietic 

stem cells (the ‘graft’) from one individual (the ‘donor’) to another (the ‘host’). This type of 

transplantation, termed allogeneic hematopoietic stem cell transplantation (hSCT) is an increasingly 

applied treatment for inherited disorders of blood cells, immunodeficiencies or hematological 

malignancies such as acute and chronic leukemia. The transplantation is preceded by a conditioning 

regimen, which can be chemotherapy and/or irradiation and is intended to induce 

immunosuppression to prevent graft rejection, suppress the bone marrow of the patient to create a 

niche for stem cell engraftment and to eradicate the malignant cells (= myeloablative conditioning). 

Unfortunately, the immunosuppression not only aids to prevent graft rejection, but also 

compromises the patient’s immune function and therefore increases the susceptibility to infection. In 

order to restore the blood forming compartment and immune function, a hematopoietic stem cell 

transplantation is provided. In addition, the graft provides an anti-tumor effect known as the graft-

versus-leukemia (GvL) effect, that eliminates remaining cancer cells and prevents relapse [139]. 
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Whereas the patient or host is pretreated with radio- and chemotherapy, the donor receives 

granulocyte-colony stimulating factor (G-CSF) to mobilize hematopoietic stem cells into the blood. 

There, they are collected through leukapheresis, a process that separates white blood cells from the 

rest of the blood. The resulting cell preparation, containing hematopoietic stem cells, is administered 

to the patient intravenously (figure 1.13). Neutrophils and platelets engraft within 10-20 days after 

transplantation. Other cell types, including T and B lymphocytes, macrophages, dendritic cells and 

erythrocytes may take longer to engraft [139]. The goal of hSCT is to replace the patient’s blood cells 

entirely with donor cells, in which case full donor chimerism is obtained.  

Whether a stem cell transplantation is effective largely depends on the genetic relationship between 

the donor and the host. Each individual has a specific tissue type that is defined by a set of 

histocompatibility genes. These genes encode histocompatibility antigens, which determine whether 

two tissues are either compatible or incompatible. 

In men, major histocompatibility antigens are known as the human leukocyte antigens or HLA. In 

addition to HLA, minor histocompatibility antigens (miHA), that are encoded outside of the HLA loci, 

equally contribute to the (in)compatibility of a tissue [140]. In case of autologous stem cell 

transplantation, in which donor and host are one and the same individual, tissue types are identical 

and no immune response occurs. However, in case of allogeneic stem cell transplantation, in which 

donor and host are genetically disparate individuals, an immune response can be raised. The immune 

response against histocompatibility antigens, also called the allograft reaction, can result in a host-

versus-graft reaction in which case the graft is rejected by the host. Alternatively, the 

immunocompetent cells present in the graft can mount an immune response against the host tissue. 

The latter event is called a graft-versus-host reaction. The consequences of a graft-versus-host 

reaction are immunological damage to the skin, liver and gastro-intestinal (GI) tract and are generally 

referred to as GvHD.  

A distinction can be made between acute and chronic forms of GvHD, as well as an overlap syndrome 

which bears features of both. Whereas classic acute GvHD occurs within 100 days after 

transplantation, no time limits exist for chronic GvHD. Furthermore, a late-onset form of acute GvHD 

can occur more than 100 days post-hSCT [141]. Besides the time of onset, acute and chronic GvHD 

differ in many other aspects, including pathophysiological mechanism, target organs, clinical 

symptoms and treatment. Since the research in this thesis is only focusing on acute GvHD, the 

pathophysiology and treatment of chronic GvHD are not further discussed.  
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Figure 1.13. Principle of hematopoietic stem cell transplantation. The donor receives granulocyte-colony 
stimulating factor (G-CSF) to stimulate migration of hematopoietic stem cells into the blood, which are 
collected through leukapheresis. Meanwhile, the patient or recipient is treated with chemotherapy and/or 
radiotherapy to induce immunosuppression, create a niche for the hematopoietic stem cells and eradicate 
cancer cells. The cell preparation is administered to the patient intravenously. In the next 10-20 days, 
neutrophils and platelets engraft. Other cell types including T and B lymphocytes, macrophages, dendritic cells 
and erythrocytes may take longer to engraft. The goal of hSCT is to replace the patient’s blood cells entirely 
with donor cells, in which case full donor chimerism is obtained. Figure obtained from [139]. 

 

5.2. Pathophysiology of acute GvHD 

The development of acute GvHD can be divided in three phases: (1) activation of host antigen 

presenting cells (APC); (2) donor T cell activation, proliferation, differentiation and migration, and (3) 
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target tissue destruction (figure 1.14) [141]. The first step comprises activation of host APC as a result 

of the underlying disease and conditioning regimen. Damaged host tissue produces ‘danger signals’ 

such as pro-inflammatory cytokines, chemokines, MHC antigens and co-stimulatory molecules on 

host APC. Especially important is the damage to the GI tract following the conditioning regimen. Due 

to increased permeability of the GI mucosa, inflammatory molecules such as bacterial 

lipopolysaccharides (LPS) enter the body and additionally stimulate the activation of host APC [141, 

142]. Activated host APC present self-antigens in association with MHC molecules.  

The second phase is initiated when activated host APC, presenting self-antigens, encounter 

alloreactive donor T cells, which are efficiently activated as they recognize these self-antigens as non-

self. The ‘danger signals’ produced in phase 1 further enhance this process. Activated T cells start to 

proliferate and differentiate into effector cells. Activation of donor T cells results in the production of 

large amounts of pro-inflammatory cytokines such as IL2, TNFα and IFNγ [141, 142].  

In the third and last phase, both cellular and soluble inflammatory effectors work together to further 

promote inflammation and damage host tissues. Cellular effectors are cytotoxic T lymphocytes and 

natural killer (NK) cells that are attracted to target organs through chemokines. At the target organs 

such as skin, liver and GI tract, effectors use Fas/FasL or perforin/granzyme pathways to lyse target 

cells. Meanwhile, inflammatory effectors such as TNFα are produced in response to microbial 

products such as LPS leaking through the GI wall. TNFα is produced by both donor and host cells and 

causes activation of host APC, attracts effector cells to target organs and directly causes tissue 

necrosis [141, 142].  

5.3. Prevention and treatment of acute GvHD 

Standard pharmacological prevention of acute GvHD after myeloablative hSCT is a combination of a 

calcineurin inhibitor (cyclosporine or tacrolimus) and methotrexate or sirolimus. In case of non-

myeloablative hSCT (see below), the golden standard is tacrolimus + mycophenolate mofetil (MMF). 

Cyclosporine and tacrolimus have similar mechanisms of action – inhibition of the enzyme calcineurin 

which plays an important role in T cell activation, see 2.2.–, clinical effectiveness and toxicity profiles, 

with transplant-associated thrombotic microangiopathy, neurotoxicity, nephrotoxicity, hypertension, 

hypomagnesaemia and hyperkalemia [141].  
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Figure 1.14. Pathophysiology of acute GvHD. In the initial phase, recipient conditioning through irradiation or 
chemotherapy causes tissue damage that induces leaking of bacterial products (e.g. LPS) through the intestinal 
wall and cytokine production in host tissues. Subsequently, donor T cells are activated by host antigens 
presented on host APCs, which is enhanced by circulating cytokines. In the effector phase, both cellular 
(cytotoxic T cells and NK cells) and soluble (TNFα, IL1) effectors induce target cell apoptosis, thereby causing 
damage to target organs such as liver, gastro-intestinal system and skin. Figure obtained from [142]. 

 

The immunosuppressive effect of methotrexate relies on its interference with the enzyme 

dihydrofolic acid reductase, thereby inhibiting the conversion of folic acid to tetrahydrofolate and 

preventing DNA synthesis, repair and cellular replication [143]. Adverse effects of methotrexate 

include mucositis, delayed neutrophil engraftment and liver toxicity [143]. Although the combination 

of a calcineurin inhibitor with methotrexate is successful in up to ¾ of patients, further progress is 

needed. Not only protection from developing acute GvHD is incomplete, as many patients still 

develop a degree of GvHD despite prophylaxis, but also problems with toxicity of methotrexate 

stimulate researchers to search for better alternatives [144]. Pharmacological alternatives include 

MMF and sirolimus, which mainly provide a benefit in terms of side effects. MMF is an 

antimetabolite that, like methotrexate, inhibits purine synthesis. In comparison to methotrexate, 

MMF induces significantly less severe mucositis and allows for more rapid neutrophil engraftment 

[141]. Sirolimus, although structurally related to tacrolimus, is not a calcineurin inhibitor. Instead, it 

binds to the FK binding protein 12 and forms a complex with the mammalian target of rapamycin 

(mTOR), resulting in decreased DNA transcription, translation and protein synthesis, as well as cell 

cycle arrest in activated T cells [145]. Sirolimus also inhibits the response of T cells to pro-
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inflammatory cytokines, B cell proliferation and antibody production [145]. In contrast to 

cyclosporine and tacrolimus, sirolimus does not cause renal toxicity and hypertension, but it does 

induce microangiopathic hemolytic anemia, thrombocytopenia, hypercholesterolemia and 

hypertriglyceridemia [143].  

Besides pharmacological alternatives, alterations to the conditioning regimen and stem cell 

transplantation itself have been considered. As mentioned in 5.2, the myeloablative conditioning 

regimen causes damage to the GI tract that results in the leakage of microbial products through the 

GI wall, thereby contributing greatly to the initiation of acute GvHD. As clinical experience with hSCT 

showed that myeloablative conditioning did not usually succeed in fully eradicating the malignant 

cells and the true therapeutic potential of hSCT actually relied on the anti-leukemia effect, reduced 

intensity conditioning (RIC) or non-myeloablative conditioning was developed. The primary goal of 

this approach was to induce sufficient immunosuppression to allow engraftment, and no longer to 

fully eradicate the cancer cells. RIC therefore greatly decreased the risk of developing acute GvHD, 

while maintaining the efficacy of the hSCT [141].  

Further, ex vivo depletion of donor T cells from the graft has been proposed as a means of effectively 

preventing acute GvHD. However, this approach is associated with impaired immune reconstitution, 

infectious complications and an increased risk of primary disease relapse [144]. Another approach is 

the in vivo use of anti-lymphocyte antibodies, such as anti-thymocyte globulin (ATG). This approach 

has a double goal: it suppresses the host immune response thereby facilitating engraftment, and 

suppresses donor T cells after transplantation thus preventing GvHD. Although successful in the 

prevention of GvHD, this approach has the same disadvantages as ex vivo depletion of donor T-cells 

from the graft.  

When prophylaxis has been unsuccessful and acute GvHD develops, the golden standard for 

treatment are corticosteroids. However, systemic glucocorticoid treatment results in complete 

remission in only 30 to 50% of patients [144], emphasizing the need for better treatment options. In 

case of steroid-refractory GvHD, other pharmacological approaches have been applied, including 

ATG, monoclonal antibodies against CD3 or CD25 (both specific T lymphocyte antigens), MMF and 

sirolimus, TNF-targeting agents such as infliximab and extracorporal photopheresis. The latter uses 

ultraviolet A light to damage the DNA of peripheral blood cells after exposing the cells to 8-

methoxypsoralen. Unfortunately, these alternative treatments have shown to be effective in only a 

minority of cases, and are an additional source of toxicity [144]. Accordingly, there is a need for novel 
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preventive and curative treatment options for acute GvHD that can efficiently prevent and treat this 

major complication of hematopoietic stem cell transplantation.  

5.4. Animal models of acute GvHD 

In order to study the pathophysiology of acute GvHD, as well as to develop new preventive or 

curative treatment strategies, animal models for acute GvHD have been developed. The majority of 

these use mice as these animals are inexpensive and easy to maintain in a laboratory environment. 

Whereas at the present time, stem cells for transplantation in humans are increasingly obtained from 

peripheral blood, murine models use bone marrow as a source for transplantable stem cells. 

Comparable with the human HLA system, mice have the H-2 system defining their histocompatibility 

antigens. There are generally two types of animal models for acute GvHD: whereas the first type is 

based on a mismatch between one or more major histocompatibility antigens, the second type uses 

MHC-matched mouse strains. In the latter case, the graft-versus-host reaction is induced by 

disparities in minor histocompatibility antigens (miHA) [140]. As over 50% of human hSCT are MHC-

matched [146], mouse models using MHC-matched, miHA-mismatched mouse strains resemble the 

human hSCT more closely.  

In a primary immune response, less than 0.01% of T cells recognize a conventional antigen presented 

by MHC. However, minor lymphocyte stimulating (Mls) antigens are able to induce a response in up 

to 25% of T cells [147]. In contrast with conventional antigens, Mls antigens do not interact with the 

hypervariable regions of the TCR but rather bind to invariable parts of specific Vβ-chains. Therefore, 

a specific Mls antigen is recognized by all T cells of a given Vβ-type. This type of antigens does not (or 

minimally) show MHC restriction. However, the presence of MHC-II is required. This mechanism of T 

cell stimulation is also seen with bacterial superantigens (figure 1.15).  

In mice, several genes encode Mls antigens. These genes are all encoded in mouse mammary tumor 

virus (MMTV) sequences, which have incorporated in the murine genome over time [147]. For each 

Mls antigen, a stimulatory (e.g. Mls-1a) and a null allele (e.g. Mls-1b) exists. When a specific Mls 

antigen is expressed at birth, the developing immune system deletes the T cells bearing the specific 

Vβ-chain that recognizes this Mls antigen. One example is the AKR mouse strain, that bears the Mtv-

7 genome in which Mls-1a is encoded. In these mice, TCR-Vβ6+ T cells are deleted through negative 

selection in the thymus. When using donor mice that do not contain the Mtv-7 genome (e.g. C3H), 

these mice do not express the Mls-1a antigen and accordingly possess functional TCR-Vβ6+ T cells.  
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Figure 1.15. Mechanism of T cell stimulation by conventional antigens (left) and superantigens (right). 
Conventional antigens are presented by MHC and recognized by T cells through binding on both the antigen 
and the MHC molecule. Superantigens are bound on MHC molecules outside of the specific peptide-presenting 
region. T cells bind to the superantigens with invariable parts of their Vβ-chains. The mechanism through which 
Mls antigens stimulate T cells resembles the one used by superantigens. 

 

 The mouse model used in this thesis is based on the combination of AKR recipients, deficient of TCR-

Vβ6+ T cells and C3H donor mice, that do have TCR-Vβ6+ T cells [148, 149]. Both mouse strains are 

MHC-matched, bearing H-2Kk. When TCR-Vβ6+ T cells from C3H donor mice are transplanted into 

AKR recipients, which do contain the Mtv-7 genome and thus express the Mls-1a antigen, donor TCR-

Vβ6+ T cells recognize recipient Mls-1a antigens (figure 1.16). In this model, donor and recipient mice 

differ in their expression of the Mtv7-genome, which has been shown to be associated with a highly 

increased rate and severity of GvHD [150]. The result of a transplantation of C3H bone marrow cells 

(usually enriched with C3H spleen cells to ensure a high enough percentage of mature T lymphocytes 

to induce GvHD) into lethally irradiated AKR recipients, is the occurrence of acute GvHD. In mice, 

symptoms of acute GvHD include ruffled fur, hunched back, lethargy, diarrhea, inflammation of the 

eyes and weight loss [148, 149].  
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Figure 1.16. Schematic representation of the murine bone marrow transplantation model using C3H donor 
mice and AKR recipient mice. The mouse strains are MHC-matched (H-2K

k
) but differ in the expression of Mls1. 

C3H mice express Mls1b, a null allele. Vβ6+ T cells are therefore retained in C3H mice. AKR mice express Mls1a, 
the stimulatory allele. In the latter mice, Vβ6+ T cells are deleted through negative selection in the thymus. 
When transferring C3H T cells into AKR recipients, Vβ6+ T cells from the C3H donors respond to Mls1a 
expressed in the recipient and mount an immune response.  
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CHAPTER 2. AIMS AND OVERVIEW 

Pharmacological treatment of depression and mood disorders is most commonly based on 

antidepressants. Within the group of antidepressants, selective serotonin reuptake inhibitors (SSRIs) 

are most frequently prescribed, due to their efficacy, tolerability and safety [1]. Since their 

marketing, SSRIs have been shown not only to induce changes in the central nervous system, but also 

in the immune system. This project was initiated upon a study conducted by Denys et al. 

investigating the immunological changes in patients with obsessive-compulsive disorder (OCD) and 

the impact SSRIs and SNRIs (together SRIs) exert on them [2, 3]. In this study, it was observed that 

some of the patients treated with SRIs showed a complete inhibition of peripheral blood T 

lymphocyte proliferation. In one patient, the absence of an in vitro proliferative response was 

accompanied by the clinical manifestation of sinusitis, which persisted despite 3 antibiotic regimens 

[4]. Upon cessation of the antidepressant treatment, the sinusitis ceased. These findings raised the 

question whether SRIs were responsible for the observed immunosuppression. Accordingly, this 

project aimed at resolving this question. In the study conducted by Denys et al. paroxetine and 

venlafaxine were analyzed as these were prescribed most frequently to OCD patients at the time. 

However, immunosuppressive effects had been described for several SSRIs and therefore, we 

decided to investigate the immunological effects of the entire class of SSRIs. Venlafaxine, although a 

SNRI, was also retained in the analyses.  

The first aim of this PhD thesis was to characterize the effects of SSRIs on the immune system. More 

specifically, we analyzed the effects of SSRIs on T cell proliferation and viability. These experiments 

were carried out in vitro using freshly isolated human lymphocytes. The results of these experiments 

are described in chapter 3. In the next phase of this research, we attempted to unravel the 

mechanism behind the observed immunosuppressive effects. Two hypotheses were investigated, 

namely the impact on [1] serotonin transporter expression and [2] calcium signaling in T 

lymphocytes. Equally, these experiments were performed in vitro using freshly isolated human 

lymphocytes or an immortalized human T lymphocyte cell line. The results of these experiments are 

described in chapters 4 and 5, respectively. 

As the first phase of this research demonstrated that SSRIs possess interesting immunosuppressive 

characteristics, we and others hypothesized that SSRIs might be reinvented as a novel class of 

immunosuppressants. The application of SSRIs in several autoimmune disorders such as multiple 

sclerosis and rheumatoid arthritis has been investigated by others and the majority of research 

indeed demonstrated a beneficial effect of SSRIs. We decided to investigate whether SSRIs, and 
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fluoxetine in particular, could be used as a preventive and/or therapeutic strategy for acute graft-

versus-host disease. To this end, we used a murine bone marrow transplantation model that closely 

resembles the human situation. The results of these experiments are described in chapter 6.  

Throughout this thesis, the immunosuppressive properties of SSRIs became clear and the possible 

reinvention of this class of drugs as immunosuppressants was investigated. Some considerations with 

respect to the feasibility of using this class of drugs as immunosuppressants in the clinic are 

enumerated in chapter 7. Further, the consequences of the immunosuppressive effects for the use of 

SSRIs as antidepressants in the clinical practice are discussed. Finally, a perspective on future steps in 

the development of SSRIs as immunosuppressants is given.  
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CHAPTER 3. CHARACTERIZATION OF THE IN VITRO EFFECTS OF SRI’S ON THE 

PROLIFERATION AND VIABILITY OF HUMAN T LYMPHOCYTES 

 

Abstract 

Serotonin reuptake inhibitors (SRIs) are widely used drugs in the treatment of depression and anxiety 

disorders. Although SRIs are generally regarded as safe drugs with relatively few side effects, 

literature suggests that high concentrations of SRIs may alter immune function. In this study, we 

analyzed the direct in vitro effect of six SRIs on the viability and proliferation of human peripheral T 

lymphocytes and found an anti-proliferative and pro-apoptotic effect that was significantly larger in 

activated than in resting T cells. We discuss these results in the light of potential future exploration of 

SRIs as a novel class of T cell immunosuppressive drugs.  
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1. Introduction 

Serotonin reuptake inhibitors (SRIs) belong to the most frequently prescribed drugs worldwide. 

While originally introduced to treat major depressive disorder, they have proven to be effective in a 

number of psychiatric and neurological conditions such as obsessive-compulsive disorder, panic 

disorder and generalized anxiety disorder [1, 2]. In the past decades, it has become clear that SRIs 

not only affect biological mechanisms within the central nervous system, but also have an influence 

on immunity. Several in vivo and in vitro reports have demonstrated a negative effect of SRIs on 

mitogen-induced lymphocyte proliferation [3-9], pro-inflammatory cytokine secretion [8, 10-13] and 

lymphocyte viability [8, 10, 14]. Although it is clear that several research groups have investigated 

the anti-proliferative and pro-apoptotic effects of SRIs, variation in the SRIs studied, the 

concentrations used and the experimental read-out hampers comparison between studies and 

interpretation of results. Therefore, a comprehensive study comparing the anti-proliferative and pro-

apoptotic effects of all available SRIs in both activated and resting human T lymphocytes would 

contribute to our understanding of the potential immunomodulatory effects of SRI treatment. Thus, 

the aim of this study was to determine and compare the direct in vitro effects of six different SRIs 

used in clinical practice (paroxetine, fluoxetine, sertraline, fluvoxamine, citalopram and venlafaxine) 

on the viability and proliferation of T lymphocytes from healthy human subjects. Whereas the first 

five compounds listed are SSRIs, venlafaxine is a mixed serotonin and noradrenalin reuptake inhibitor 

(SNRI), and was included in the study since it has also been shown to induce immunosuppression [15-

17]. We found clear in vivo and in vitro evidence that SRIs may alter T cell responsiveness.  

2. Materials and methods 

2.1. Reagents 

Citalopram, sertraline, fluvoxamine and venlafaxine were purchased from Sigma Aldrich (St-Louis, 

MO, USA). Paroxetine was purchased from Fagron (Nieuwerkerk a/d IJssel, The Netherlands), and 

fluoxetine from ABC chemicals (Wouters-Brakel, Belgium). The drugs were diluted in RPMI-1640, 

supplemented with 10% heat-inactivated fetal bovine serum, 1% glutamine and 1% 

penicillin/streptomycin (100 U/ml penicillin G; 100 µg/ml streptomycin). All cell culture reagents 

were purchased from Invitrogen (Carlsbad, CA, USA).  

 

 



IN VITRO EFFECTS 

 

 

79 

 

2.2. Apoptosis assay 

Human peripheral blood mononuclear cells (PBMCs) from six healthy volunteers were obtained by 

Ficoll density centrifugation. T cells were isolated from PBMCs using a human T cell enrichment kit 

containing tetrameric antibody complexes recognizing CD14, CD16, CD19, CD20, CD36, CD56, CD66b, 

CD123 and glycophorin A (STEMCELL technologies, Vancouver, Canada) according to the 

manufacturer’s instructions. T cell purity was determined by staining with anti-CD3 PECy5 and flow 

cytometric analysis and was in each experiment greater than 97%. Anti-CD3/CD28 beads 

(Dynabeads® Human T-activator CD3/CD28, Life Technologies) were added in a 1:1 ratio and 2x105 

cells were seeded per well in a total volume of 200 µl. After a 24h-incubation in the presence of SRIs, 

cells were stained with 0.5 µl annexin V-FITC and 10 µl propidium iodide (PI) (BD Pharmingen, San 

Diego, CA, USA). Activation status was determined by staining with anti-CD69 PECy7 (eBiosciences, 

San Diego, CA, USA).  

2.3. Proliferation assay  

Isolated PBMCs from six healthy volunteers were stained with 10 µM carboxy-fluorescein diacetate 

succinimidyl ester (CFSE) (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s 

instructions. Subsequently, cells were activated with 4x105 anti-CD3/CD28 beads per 106 PBMCs. 

25x104 PBMCs were seeded per well in a total volume of 250 µl and incubated for 6 days in the 

presence of SRIs. Thereafter, cells were stained with anti-CD3 PECy5 (eBiosciences, San Diego, CA, 

USA). All analyses were performed on a Cytomics FC500 flow cytometer (Beckman Coulter, Miami 

Florida). Dead cells were excluded based on FSC-SSC properties. For CD3+ T cells, a proliferation 

index (PI) was calculated according to the following formula [18]:  

Proliferation index = 
∑ 𝑁𝑖
𝑖
0

∑ 𝑁𝑖
2𝑖
⁄𝑖

0

 

With i = generation number (0 is the undivided population) and Ni = the number of events in 

generation i. Using control samples without SRIs, the maximal proliferative response was 

determined. Relative to these samples, the percentage inhibition by SRIs was calculated. All in vitro 

experiments were approved by the Ethical Committee of the Ghent University Hospital. 

2.4. Statistics 

Wilcoxon signed ranks tests were used to identify statistically significant differences between 

treatment and control, and between activated and resting T cells. Results were considered 

statistically significant if one-tailed p-values were <0.05. 
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3. Results 

3.1. Activated human T cells are more sensitive to SRI-induced apoptosis than resting T cells 

We investigated the viability of both resting and activated T cells, obtained from 6 healthy human 

volunteers, when exposed to SRIs in vitro. In this study, we incorporated the most frequently used 

SRIs (paroxetine, fluoxetine, sertraline, citalopram, fluvoxamine and venlafaxine). T cells were 

stimulated using anti-CD3/CD28 beads and the activation status of the cells was confirmed by the 

expression of CD69. More than 80% of the T cells were CD69 positive after a 24h-incubation with 

anti-CD3/CD28 beads (‘activated T cells’). In contrast, less than 2% of the T cells that were not 

stimulated expressed CD69 (‘resting T cells’).  

To detect apoptotic cells, annexin V and PI staining was performed. PI staining correlated well with 

annexin V data (correlation coefficients were typically >0.99) and therefore, only annexin V data 

were further used for data analysis. The mean percentage annexin V+ cells in control samples (n=6) 

was 4.05 ± 1.72% for resting T cells and 5.99 ± 4.65% for activated T cells. In order to compare 

apoptosis rates in resting and activated T cells, annexin V+ percentages obtained in control samples 

were subtracted from the individual percentages determined in the test samples. Thus, differences in 

SRI-induced apoptosis found between resting and activated T cells cannot be ascribed to differences 

in basal apoptosis. 

Detailed analysis of the annexin V+ T cell percentages revealed that paroxetine (p= 0.016) and 

sertraline (p=0.031) significantly induced apoptosis in activated T cells at 5 µM, while for the other 

SRIs, no apoptosis could be detected at this concentration. For fluoxetine on the other hand, 

apoptosis could be detected at concentrations of 10 µM or higher in activated T cells (p=0.016). 

Fluvoxamine showed a similar effect, but at a higher concentration range: apoptosis started to 

appear at concentrations of 50 µM (p=0.016). Citalopram only induced a slight increase in apoptotic 

cells, and statistical significance was reached at 100 µM only (p=0.016). No apoptosis could be 

detected after treatment with venlafaxine at concentrations up to 100 µM.  

Interestingly, activated T cells were more sensitive to the apoptotic effect compared to resting T cells 

(figure 3.1). Paroxetine, fluoxetine, sertraline and fluvoxamine induced significantly more apoptosis 

in activated T cells than in resting T cells. For paroxetine, already the lowest tested concentration (5 

µM) induced significantly more apoptosis in the activated cells (p=0.031). This difference was 

maintained with higher concentrations (10 µM, p=0.016 and 20 µM, p=0.016). For fluoxetine 

(p=0.016) and sertraline (p=0.031), a significantly higher effect could be detected in the activated T 
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cells at 10 µM. Fluoxetine maintained this significantly higher induction of apoptosis at 20 µM 

(p=0.031). In contrast, sertraline did not exert a differential effect on activated and resting T cells at 

the highest concentration tested (20 µM). The absence of a significant difference at this 

concentration might be due to an increased cytotoxicity of this high concentration of sertraline. 

Fluvoxamine induced significantly more apoptosis in the activated T cells at the 2 highest 

concentrations tested (50 µM, p=0.016 and 100 µM, p=0.016). Citalopram did not exert a differential 

effect on activated versus resting T cells, however this may be due to the fact that citalopram only 

induced a very low percentage of apoptosis in both cell populations. No apoptosis could be detected 

after treatment with venlafaxine in concentrations up to 100 µM.  

3.2. SRIs can inhibit T cell proliferation at concentrations that do not affect T cell viability 

In order to evaluate the effect of SRIs on T cell proliferation, PBMCs from healthy volunteers were 

labelled with CFSE, activated with anti-CD3/CD28 beads and incubated for 6 days in the presence of 

SRIs. The amount of T cells in each cell cycle was determined by flow cytometry and the results were 

expressed as a proliferation index.  

All SRIs tested decreased the proliferation index in a concentration-dependent manner (figure 3.2). 

Paroxetine exerted an anti-proliferative effect at 10 µM (p=0.016). Fluoxetine and sertraline 

significantly decreased the proliferation index at concentrations as low as 1 µM (p=0.018 and 

p=0.047 respectively). Fluvoxamine and citalopram significantly decreased T cell proliferation at 2 µM 

(lowest dose tested, p=0.029 and p=0.016 respectively). For venlafaxine, higher doses were needed 

in order to reduce T cell proliferation: a significant decrease for venlafaxine was detected only at 20 

µM (p=0.047). Importantly, the SRI concentrations needed to reduce T cell proliferation were, except 

for paroxetine, below those inducing apoptosis in activated and/or resting T cells (gray background in 

figure 3.2). 
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Figure 3.1. Apoptotic effect of SRIs on activated and resting T cells. In vitro activated and resting T cells were 
incubated for 24h with 0-20 µM paroxetine, 0-20 µM fluoxetine, 0-20 µM sertraline, 0-100 µM fluvoxamine, 0-
100 µM citalopram, 0-100 µM venlafaxine and subsequently analyzed by annexin V staining. Mean ± SEM 
percentages of annexin V+ cells (- control) in activated and resting T cells are shown (n=6). ( ) = T cells 
activated with anti-CD3/CD28 beads in a 1:1 bead:cell ratio; (  ) = resting T cells. Statistically significant 
differences between activated and resting T cells are depicted with * (one-tailed p<0.05). 
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Figure 3.2. Inhibition of T cell proliferation by SRIs. PBMCs were labelled with CFSE, activated with 4x10
5
 anti-

CD3/CD28 beads per 10
6 

cells and incubated in the presence of 0-10 µM paroxetine, 0-10 µM fluoxetine, 0-10 
µM sertraline, 0-50 µM fluvoxamine, 0-50 µM citalopram, 0-50 µM venlafaxine for 6 days. Viable CD3+ cells 
were gated and proliferation indices were calculated based on the number of cells in each division peak. Values 
are expressed as % inhibition in comparison to control cells not exposed to SRIs. Mean ± SEM % inhibition of 6 
individual experiments are shown. Concentrations that induce more than 5% apoptosis in activated and/or 
resting T cells are displayed with gray background. Statistically significant differences in proliferation indices 
compared to control cells not exposed to SRIs are depicted with * (one-tailed p<0.05).  
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The strongest decrease in T cell proliferation was induced by sertraline. Whereas a 5 µM 

concentration only slightly affected the viability of resting T cells (an increase of 1.78 ± 1.38% annexin 

V+ cells was observed as compared to controls), this concentration also dramatically reduced the 

proliferation of activated T cells (a mean reduction of 39.4% was found) (figure 3.3). At even higher 

concentrations, proliferation was almost completely inhibited, but in this concentration range, also 

the viability of both resting and activated T cells was affected.  

 

Fig. 3.3. Histogram plots of CFSE labelled PBMCs, gated on viable CD3+ T cells. Cells were loaded with 10 µM 
CFSE, activated with 10 µl anti-CD3/CD28 beads per 10

6
 cells and cultured for 6 days with 0-10 µM sertraline. 

Thereafter, cells were stained with anti-CD3 antibody and analysed by flow cytometry. Dead cells were 
excluded based on FSC-SSC properties and gate was set on CD3+ cells. Proliferation indices (PI) were calculated 
based on the number of cells in each generation.  

 

We provided a comprehensive study comparing the anti-proliferative and pro-apoptotic effects of all 

available SRIs in both activated and resting human T lymphocytes. We clearly demonstrated that in 

vitro exposure of human T cells to SRIs affects their responsiveness and viability.  

4. Discussion 

Several papers reported on the effect of SRIs on the immune response, but large differences are seen 

in the type of SRI, the experimental setup, the test species and the detection methods. Therefore, 

the need emerged to correlate all these previous findings and extend them in order to obtain one 

standardized study that gives an overview of the effect of all clinically available SRIs on both 

activated and resting T cells. This study compared the in vitro immunomodulatory effects of five 

selective SRIs (paroxetine, fluoxetine, sertraline, fluvoxamine, citalopram) and one serotonin and 

noradrenalin reuptake inhibitor (venlafaxine). We incubated human PBMCs or purified T cells with 

SRIs in vitro and determined the effect on viability and proliferation. SRIs were shown to exert direct 

in vitro effects on the viability and proliferation of T cells. Paroxetine, fluoxetine, sertraline, 
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fluvoxamine and citalopram were found to induce apoptosis in activated T cells, and this pro-

apoptotic effect was significantly lower in resting T cells. For citalopram, only a slight increase in 

apoptosis could be detected and no differential effect on activated versus resting T cells was found. 

However, it should be noted that others showed a substantial pro-apoptotic effect in resting T cells 

for citalopram at 180 µM [14]. Therefore, it cannot be ruled out that citalopram exerts a differential 

effect at concentrations higher than 100 µM. Venlafaxine did not induce apoptosis in both activated 

and resting T cells at concentrations up to 100 µM.  

Further, all SRIs were found to reduce T cell proliferation in a concentration-dependent manner, at 

concentrations below those inducing apoptosis (except for paroxetine, which inhibited T cell 

proliferation and viability at the same concentration). Since the concentrations needed to 

significantly reduce T cell proliferation are substantially lower than those affecting resting T cell 

viability, SRIs could be used to suppress proliferation of pathologically activated T cells while at the 

same time the repertoire of resting T cells remains unaffected and preserves the capability of 

reacting to pathogens and cancer cells at later stages.  

In the central nervous system, SRIs inhibit reuptake of serotonin through the serotonin transporter 

(SERT) in the presynaptic neuron, resulting in increased synaptic serotonin concentrations [19]. 

Although SERT expression has also been shown in lymphocytes [9, 20], it is doubted that the 

immunosuppressive effects of SRIs are mediated through the serotonergic system [21, 22]. On the 

other hand, it has been suggested that the immunological effects of SRIs are due to induced changes 

in several signaling pathways. SRIs have been demonstrated to interfere with the activation of the 

cAMP-dependent protein kinase A (PKA) pathway and the activation of protein kinase C (PKC), as well 

as with the influx of Ca2+ [4, 5, 23, 24]. Furthermore, SRI-mediated induction of apoptosis was 

accompanied by activation of the MAPK signaling pathway and downregulation of the anti-apoptotic 

factor bcl-2 [8]. Finally, it has been suggested that triggering of SERT itself can induce changes in 

downstream signaling pathways [25], thus linking the known affinity of SRIs for SERT with the 

observed changes in signaling pathways. However, the exact mechanism through which SRIs induce 

immunosuppression requires further investigation.  

Our in vitro data indicate that not all SRIs have the same magnitude of effect in lymphocytes. 

Whereas paroxetine, fluoxetine and sertraline exert immunosuppressive effects at concentrations 

below 10 µM, fluvoxamine, citalopram and venlafaxine only exert immunosuppressive effects at 50 

µM or higher. Since the mechanism through which SRIs induce immunosuppression is not fully 

understood, it is difficult to interpret differences in SRIs that might explain the observed differences 
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in immunological effects. However, assuming that triggering of SERT is important for the observed 

effects, the difference in immunological effects might be explained by the different affinity of SRIs for 

SERT. The three SRIs that exert the strongest immunosuppressive effects (paroxetine, fluoxetine and 

sertraline), also have the highest affinity for SERT (Kd < 1 nM). The SRIs that show less or no 

immunosuppressive action, fluvoxamine, citalopram and venlafaxine, have a lower affinity for SERT 

(1 nM < Kd < 10 nM) [26]. Possibly, the lack of effect for venlafaxine might as well be explained by 

the fact that venlafaxine is a mixed serotonin and noradrenaline reuptake inhibitor, whereas the 

other tested SRIs are selective for serotonin. In the case of citalopram, it is known that the R-

enantiomer induces an allosteric modification in SERT, thereby reducing the binding capacity of the 

active S-enantiomer escitalopram [27]. Possibly, the lack of immunosuppressive effect seen with the 

racemic mixture citalopram is due to the presence of the R-enantiomer.  
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CHAPTER 4. CHARACTERIZATION OF SEROTONIN TRANSPORTER EXPRESSION 

IN HUMAN T LYMPHOCYTES 

 

Abstract 

Serotonin transporter (SERT) expression has been demonstrated in human lymphocytes, including B 

lymphocytes, NK cells and other immune cells. However, discussion remains on whether human T 

lymphocytes express SERT. Given the potentially important role of serotonin (5HT) in lymphocyte 

activation and proliferation, we investigated SERT expression in purified human T lymphocytes both 

in resting and activated state. Blood samples were collected from 9 healthy volunteers. PBMCs were 

isolated using Ficoll density centrifugation and T lymphocytes were further purified with magnetic 

activated cell sorting. T cells were either processed for mRNA and protein isolation immediately, or 

after activation using anti-CD3/CD28 coated magnetic beads and proliferation for 72h at 37°C and 5% 

CO2. SERT mRNA expression was measured using qRT-PCR and droplet digital PCR while SERT protein 

was detected on western blot. SERT expression was detected both on mRNA and protein level, 

although expression levels were low. On mRNA level, SERT was expressed in both resting and 

activated cells. On the protein level however, only activated cells displayed SERT expression. This 

observation might point to a ‘translational readiness’ where resting T lymphocytes already produce 

SERT mRNA, but translation is only induced after activation of the cells.   
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1. Introduction 

In order to understand how SSRIs alter certain aspects of T lymphocyte functioning, we first 

investigated the most obvious possibility: as SSRIs are known to selectively block the uptake of 

serotonin (5HT) through the serotonin transporter (SERT) in the central nervous system, it was 

hypothesized that the anti-proliferative and pro-apoptotic action of SSRIs on T lymphocytes was 

related to their capacity to block 5HT uptake in this cell type. However, as described in more detail 

below, the presence of SERT in T lymphocytes had not been demonstrated with certainty and thus, 

we decided to investigate whether T cells express SERT as a first step in the search of the molecular 

mechanism behind the SSRI-induced immunomodulatory effects. The monoamine neurotransmitter 

5HT is well known to act as a signaling molecule in the central nervous system [1]. In the past 

decades, 5HT has also been shown to exert several functions outside the brain, such as platelet 

coagulation and gastrointestinal function [1]. It has now been well established that 5HT also plays a 

role in several immune mechanisms, such as regulation of NK cell activity, chemotaxis, MHC 

expression by macrophages and delayed-type hypersensitivity [2-4]. More recently, a role for 5HT 

has been described in the communication between dendritic cells and T cells [5]. In general, the 

major role of 5HT appears to be stimulation of T cell activation within the adaptive immune system 

and chemotaxis within the innate immune system.  

Several cells of the immune system have been shown to express 5HT receptors and SERT [3]. 

Whereas a consensus has been reached about SERT expression in B cells, macrophages, dendritic 

cells and mast cells [4], discussion remains on whether T lymphocytes express this membrane 

protein. The majority of research regarding SERT expression was conducted on peripheral blood 

lymphocytes, where no further discrimination was made between B, T and NK cells [6-12]. When 

using Ficoll density centrifugation, blood platelets can contaminate the peripheral lymphocyte 

fraction and concern has been raised on the impact hereof on the analysis of 5-HT uptake [13]. 

Although SERT expression has been described in Jurkat T cells [14, 15], evidence for SERT expression 

in primary T lymphocytes is scarce [16]. Others failed to detect SERT in T lymphocytes [17] or 

concluded that 5HT transport in T cells was mediated by other transporters than SERT [13].  

Considering these contradicting research findings, our first aim was to determine SERT expression in 

purified human T lymphocytes. As different reports used techniques that either detected SERT on 

gene expression level or on protein level, we decided to compare both SERT mRNA and protein 

expression. Furthermore, the difference in SERT expression could be influenced by the activation 

status of the cells [18]. Therefore, we analyzed both resting and in vitro activated T cells. Further, 
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previous research indicated that activated T cells were more susceptible to SSRI-induced apoptosis 

than resting T cells. Therefore, differences between SERT expression in activated and resting T 

lymphocytes might explain the different response to SSRIs.  

2. Methods 

2.1. T lymphocyte isolation and culture 

Venous blood was drawn from healthy human volunteers. Peripheral blood mononuclear cells 

(PBMCs) were isolated from the blood by Ficoll density centrifugation. T cells were further isolated by 

negative selection using the EasySep human T lymphocyte enrichment kit (STEMCELL Technologies, 

Vancouver, Canada) according to the manufacturer’s instructions. Purity of the resulting T 

lymphocyte population was analyzed by staining with anti-CD3 PECy5 (eBioscience, San Diego, USA) 

and flow cytometric detection on a FC500 (Beckman Coulter, Miami, Florida, USA). Purified T cells 

were either used directly, or cultured at one million cells per ml in DMEM supplemented with 10% 

heat-inactivated fetal bovine serum (FBS), 1% glutamine and 1% penicillin/streptomycin (100 U/ml 

penicillin G; 100 µg/ml streptomycin). All cell culture reagents were purchased from Life 

Technologies (Carlsbad, CA, USA). Activation of the cells was obtained by stimulation with magnetic 

particles coated with anti-CD3 and anti-CD28 antibodies (Dynabeads® Human T-activator CD3/CD28, 

Life Technologies) in a 1:1 bead:cell ratio (25 µl per 106 cells) for 72h. 

2.2. Cell lines 

HEK293 cells stably transfected with human SERT were used as a positive control [19]. These cells, 

which were a kind gift of Randy Blakely (Vanderbilt university, Nashville, TN), were cultured in DMEM 

supplemented with 10% heat-inactivated FBS, 1% glutamine and 1% penicillin/streptomycin at 37°C 

and 5% CO2. Jurkat and RAJI cells were cultured in RPMI supplemented with 10% heat-inactivated 

FBS, 1% glutamine and 1% penicillin/streptomycin at 37°C and 5% C02.  

2.3. mRNA isolation and cDNA synthesis 

0.5-4x106 cells were resuspended in 1 ml Trizol (Invitrogen) and stored at -80°C until further analysis. 

After thawing, samples were left at room temperature for 5 minutes to obtain total dissociation of 

nucleoproteins. 200 µl chloroform was added and samples were vortexed thoroughly for 15 seconds. 

After additional incubation for 2-3 minutes at room temperature, samples were centrifuged for 15 

minutes at 15000g and 4°C. The watery phase containing RNA was aspirated and purified using the 

RNeasy mini kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. On column 

digestion of genomic DNA was performed using the RNase-free DNase set (QIAGEN). RNA was finally 
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eluted in 40 µl DNase-free water and concentrated to 12.5 µl using Vivacon® 500-50.000 MWCO 

columns (Sartorius, Göttingen, Germany). RNA concentrations were determined with the Quant-itTM 

Ribogreen® RNA assay kit (Life Technologies). RNA quality assessment using microfluidic capillary 

electrophoresis (Experion RNA HighSens Chip, Bio-Rad) showed good quality RNA samples as 

determined by 18S/28S rRNA ratios (RNA quality index [RQI] 8.5 for positive control, 9.3-9.4 for 

representative T lymphocyte samples; a RQI >7 indicates good quality). mRNA was transcribed to 

cDNA using the iScript advanced cDNA synthesis kit (Bio-Rad, Hercules, CA, USA) and cDNA 

concentration was estimated using the Quant-itTM oligreen® ssDNA kit (Life Technologies). All kits 

were used according to the manufacturer’s instructions. 

2.4. Quantitative PCR and digital droplet PCR 

A commercially available Taqman® assay (Hs00984349_m1; Life Technologies) was used for 

amplification of serotonin transporter cDNA. For RT-qPCR experiments, iTaq supermix with ROX (Bio-

Rad) was used. RT-qPCR reactions were performed in a total volume of 25 µl, consisting of 5 µl cDNA 

(25-100 ng input material), 12.5 µl 2x iTaq supermix, 1.25 µl 20x Taqman® assay and 6.25 µl water. 

All analyses were performed in triplicate on an ABI prism 7000 Sequence Detection System (Applied 

Biosystems, Foster city, CA, USA). For ddPCR experiments, ddPCR supermix for probes (Bio-Rad) was 

used. 20 µl reactions were performed containing 5 µl of cDNA (500 ng input material), 10 µl 2x ddPCR 

supermix, 1 µl Taqman® assay and 4 µl water. Briefly, droplets were generated in 8-channel 

cartridges containing the 20 µl samples plus 50 µl droplet generating oil using the QX100™ droplet 

generator (Bio-Rad). Subsequently, droplet-in-oil suspensions were transferred to 96 well plates and 

placed into a T100™ Thermal Cycler (Bio-Rad). Cycling conditions were as follows: 95°C for 5 min, 

followed by 40 cycles of 95°C for 15 sec and 60°C for 60 sec. Subsequently, the droplets were 

automatically read by the QX100™ droplet reader (Bio-Rad) and the data were analyzed with the 

QuantaSoft™ analysis software 1.2.10.0 (Bio-Rad). All samples were tested in duplicate. No-template 

controls (NTCs) were included in every ddPCR run. HEK 293 cells stably transfected with hSERT (kind 

gift from Randy Blakely, Vanderbilt University) were used as a positive control. 

For normalization purposes, seven reference loci were screened with RT-qPCR and analyzed using the 

Genorm application in qBase+ software version 2.6. Tested references were: ribosomal protein L13A 

(RPL13A), importin 8 (IPO8), beta-2-microglobulin (B2M), peptidylprolyl isomerase A (PPIA), 

glyceraldehyde 3-phosphate dehydrogenase (GAPHD), beta-actin (ACTB) and Alu repeats (AluR). 

Primer sequences and concentrations are listed in table 4.1. For SYBR green detection, the iTaq 

universal SYBR green supermix was used (Bio-Rad).  
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Table 4.1. Primer sequences, concentrations and detection methods used for RT-qPCR and ddPCR analysis. 

Name Primers Conc. (nM) Detection method 

IPO8 FW: GTGTACACACTGGCAGAGC 

RE: GCCTCCCTGTTGTTCAATCT 

300 SYBR green 

PPIA FW: CAAATGCTGGACCCAATACAAA 

RE: GCCATCCAACCCCTCAGTCT 

300 6-FAM Probe: 

TGTTCCCAGTGTTTCATCTGCACTGCC 

GAPDH FW: AGCCTCAAGATCAGCAATG 

RE: ATGGACTGTGGTCATGAGTCCTT 

300 6-FAM Probe: 

CCAACTGCTTAGCACCCCTGGCC 

ACTB FW: AGAAAATCTGGCACCACACC 

RE: TAGCACAGCCTGGATAGCAA 

300 SYBR green 

AluR FW: CATGGTGAAACCCCGTCTCTA 

RE: GCCTCAGCCTCCCGAGTAG 

250 SYBR green 

B2M RTPrimerDB ID #2 250 SYBR green 

RPL13A RTPrimerDB ID #6 250 SYBR green 

SERT Taqman assay Hs00984349_m1  6-FAM probe 

 

2.5. Western blot 

107 cells were lysed in 1 ml radioimmunoprecipitation (RIPA) buffer containing 150 mM sodium 

chloride, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0 supplemented with 5 

mg/ml Complete Mini protease inhibitor cocktail (Roche, Basel, Switserland), 10 µl/ml phosphatase 

inhibitor cocktails 2 and 3 (Sigma-Aldrich, St-Louis, MO, USA) and 1 µl/ml benzonase® nuclease 

(Sigma-Aldrich). Protein concentrations were estimated using the Bradford assay. 50 µg of total 

protein was dissolved in laemlli buffer and incubated at 37°C for 30 minutes. Subsequently, the 

proteins were subjected to 10% sodium dodecyl sulphate polyacrylamide gelelectrophoresis (SDS-

PAGE) and transferred to PVDF membrane using Tris-glycine buffer (25 mM Tris base, 190 mM 

glycine, 0.05% SDS) as described elsewhere [14]. Serotonin transporter protein was detected with 

1:5000 dilution of ST51-1 (aa51-66) mouse monoclonal anti-human serotonin transporter antibody 

(Santa Cruz Biotechnology, CA, USA) overnight at room temperature in PBS + 0.3% Tween-20 and 

10% nonfat dry milk. Blots were incubated with secondary goat anti-mouse poly-HRP antibody 

(1:1000 dilution) (Thermo Fisher Scientific, Waltham, Massachusetts, USA) during 1h at room 

temperature in PBS + 0.3% Tween-20 + 5% nonfat dry milk. Protein bands were detected with 

enhanced chemiluminescence (Supersignal West Dura Extended Duration Substrate, Pierce, 
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Rockford, IL, USA). Specificity of the primary antibody was confirmed with a blocking peptide 

(PSPGAGDDTRHSIPAT) (Thermo Fisher Scientific, Waltham, Massachusetts, USA). The ST51 antibody 

was incubated for 2h at room temperature with the blocking peptide at 5- fold excess in PBS as 

described elsewhere [14]. Then, the antibody-peptide mixture was diluted in PBS containing 0.3% 

Tween-20 and 5% nonfat dry milk to obtain a final antibody concentration of 1:5000 and added to 

the membrane.  

2.6. Statistical analysis 

Statistical analysis was performed in Graphpad Prism 5. The difference in expression levels between 

resting and activated cells was analyzed with a paired t test. A two-tailed P-value < 0.05 was 

considered statistically significant. 

3. Results 

3.1. Serotonin transporter expression on the mRNA level 

3.1.1. SERT expression in purified T lymphocytes 

T lymphocytes from 9 healthy volunteers were isolated through negative selection from PBMCs. 

Purity of the obtained samples was checked by flow cytometric detection of CD3 expression and was 

in all samples greater than 98.7% (mean 99.4 ± 0.37%). From all samples, activated T lymphocytes 

were generated through stimulation with anti-CD3/CD28 beads and T cell activation was detected 

with flow cytometry using CD69 as an activation marker. A mean percentage of 86.76 ± 9.01% of 

CD69 positive T cells were found in the activated T cell samples. Resting T lymphocytes were not 

activated with anti-CD3/CD28 beads. 

In order to select the most suitable reference loci, we screened seven references (RPL13A, IPO8, 

B2M, PPIA, GAPHD, ACTB and AluR) with RT-qPCR and performed a Genorm analysis to select the 

most stably expressed ones among them. In the stability ranking, IPO8, B2M and AluR were 

repeatedly found to be among the four most stable reference loci for this type of samples, indicating 

that the expression of these loci was not affected by T cell activation. The stability measure M-values 

for these loci were consistently below 1, which is considered acceptably stable for heterogeneous 

samples [20]. Therefore the geometric mean of the relative quantities of these three loci was used as 

a normalization factor.  

Using reverse transcription quantitative PCR (RT-qPCR), serotonin transporter mRNA could be 

detected in all tested samples containing resting T cells. However, the obtained Cq-values were high 
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(~36 with 100 ng cDNA input) indicating a low abundancy of the transcript. In comparison, equal 

amounts of cDNA of the positive control, hSERT HEK293 cells, yielded Cq-values of ~22. The amount 

of SERT mRNA in T lymphocyte samples was found to be at the edge of the detection limit and we 

therefore concluded that the RT-qPCR assay could not be used to reliably estimate the amount of 

SERT mRNA present in the samples. Recently, digital droplet PCR (ddPCR) became available as an 

alternative to RT-qPCR promising increased sensitivity and precision for detection of low abundant 

transcripts [21]. We therefore analyzed the same set of samples with ddPCR using 500 ng of input 

cDNA per reaction. Since the sample is divided in a large amount of individual droplets, the ddPCR 

reaction is less subject to PCR inhibition than conventional PCR, making it possible to use larger 

amounts of input cDNA [22]. After optimization of the assay, SERT mRNA could be detected in all the 

samples, which contained either resting or activated T lymphocytes. An example of the data output is 

shown in figure 4.1. 

 

Figure 4.1. Examples of data output generated with ddPCR. One-dimensional scatter plots and histogram plots 
of a positive control (hSERT transfected HEK cells) showing clear separation of positive and negative droplets (A 
and B); no template control reactions (C and D) and a representative resting T lymphocyte sample (E and F). 
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No clear difference between resting and activated T cells was detected (figure 4.2), except for one 

sample (person 4 in figure 4.2) a remarkably higher SERT mRNA expression in resting T cells was 

detected. Upon activation, the SERT mRNA expression of these T cells decreased to a level 

comparable to the other samples, as can be seen in figure 4.2. In an attempt to confirm the high SERT 

expression of this blood donor, we analyzed a new blood sample and found that the SERT expression 

in resting T cells was decreased to normal values as compared to the other donor samples (data not 

shown). Thus, there appears to be high intra-individual variation in SERT mRNA expression in resting 

T lymphocytes.  

Samples of T cells that had been activated for 72h in vitro all contained detectable amounts of SERT 

mRNA. Whereas 5 samples showed a decrease in SERT expression compared to the respective resting 

T cells, 2 samples had an increased SERT expression and 2 showed equal expression in both resting 

and stimulated T cells (figure 4.2A). Statistical analysis of resting vs. activated T cells did not shown a 

significant difference in SERT expression (p=0.304)(figure 4.2B). Thus, it appears that SERT mRNA 

expression is not consistently altered by T cell activation.  

 

Figure 4.2. Serotonin transporter expression in resting and activated T lymphocytes. T lymphocytes were 
either analyzed directly (resting) or allowed to proliferate for 72h in culture in contact with anti-CD3/CD28 
beads (activated). SERT expression was analyzed in duplo with ddPCR and results (copies per µl sample) were 
normalized against the geometric mean of IPO8, B2M and AluR expression. Blood samples from 9 donors were 
analyzed. A) normalized SERT expression in resting and activated T lymphocytes per blood donor. B) 
Comparison between normalized SERT expression levels in resting and activated T lymphocytes. 

 

3.1.2. SERT expression in PBMCs different from T cells 

In order to confirm that SERT mRNA found in isolated T cell samples originated from the T cells and 

not from the small percentage of other cell types present in the samples, we performed a double 

isolation using first a negative selection strategy as described in materials and methods and 
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subsequently a positive selection strategy based on CD3 expression (Dynabeads FlowComp Human 

CD3, Life Technologies) according to the manufacturer’s instructions. This double T lymphocyte 

isolation technique provided a T lymphocyte sample with 99.6 % purity (based on CD3 expression as 

measured with flow cytometry)(figure 4.3, experiment 1).  

A genorm analysis was again performed to select the best reference loci among the seven available 

candidates. In this set of samples, IPO8, AluR and ActB were found to be the most stably expressed 

(M-values ranged from 0.513 to 0.607) and therefore, the geometric mean of the relative quantities 

of these three references was used as normalization factor. 

Whereas the unpurified peripheral blood mononuclear cell (PBMC) sample contained 19.66 

normalized copies SERT mRNA per µl sample, the T cell sample after the first negative selection 

(98.8% CD3+) expressed only 2.23 normalized copies/µl. The rest fraction generated by the first 

negative selection contained 20.06 normalized copies/µl showing that other blood cells, such as B 

lymphocytes, NK cells, monocytes, dendritic cells or contaminating blood platelets express higher 

levels of SERT. A second round of T lymphocyte isolation using a positive selection strategy generated 

a sample with 99.6% CD3+ cells. This sample contained 0.79 normalized copies/µl. The rest fraction 

generated after the second T lymphocyte isolation expressed SERT at 2.13 copies/µl. Thus, further 

elimination of contaminating cells from the sample did not abolish SERT expression, although SERT 

expression further decreased (figure 4.3, experiment 1). From this experiment it can be concluded 

that T lymphocytes most likely do express SERT mRNA at low levels, but that at least one other cell 

type present in PBMC preparations such as B lymphocytes, NK cells, dendritic cells or contaminating 

blood platelets expresses SERT at higher levels. 

In order to confirm and extend these results, the experiment was repeated and the percentage of B 

lymphocytes was additionally determined in all fractions, as B cells are the second most abundant 

cell type in PBMC preparations and have been shown to express SERT [23](figure 4.3, experiment 2). 

Similar results were obtained with respect to T cell percentages and SERT expression levels as 

compared to the first experiment. It must be noted that the second rest fraction (“rest 2”) also 

contained a large number of T cells, as the positive selection strategy did not capture all T cells 

present in the sample. SERT expression was also detected in RAJI cells, a malignant B cell line, with 

0.80 copies/µl sample (data not shown). Thus, the observation from the first experiment that T 

lymphocytes express much lower but yet existing levels of SERT in comparison to at least one other 

PBMC cell type was confirmed. Surprisingly, these data also suggest that malignant B lymphocytes 

express SERT at comparable levels as T lymphocytes.  
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Experiment 1 

 

Experiment 2 

 

Figure 4.3. SERT mRNA expression in highly purified T cells. In the first isolation round, a negative selection 
strategy was used to purify T cells from PBMCs. The second isolation was based on a positive selection strategy, 
using antibodies against CD3. SERT expression was determined with ddPCR and the results (copies/µl) were 
normalized against the geometric mean of IPO8, AluR and ActB. Percentages of CD3+ cells (experiment 1) or 
CD3+ and CD19+ cells (experiment 2) were determined by flow cytometry. Cp/µl = normalized copies per µl 
sample. 

 

3.1.3. SERT expression in Jurkat T cells 

In order to confirm the finding that human T lymphocytes express low levels of SERT, the expression 

was also determined in a Jurkat T cell line, which can be considered 100% pure. In this sample, we 

found 0.51 copies SERT per µl sample (data not shown). Although it is not certain that SERT 

expression is not altered by the malignant nature of Jurkat cells, the finding that Jurkat T cells express 

similar amounts of SERT mRNA as freshly isolated T lymphocytes contributes to the conclusion that T 

lymphocytes express low levels of SERT.  
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3.2. Serotonin transporter expression on the protein level 

Total cell lysates were prepared from both resting and activated T cell samples from 2 healthy 

volunteers. Protein extracts of hSERT HEK293 cells were used as a positive control. Using 50 µg of 

total protein, an intense protein band could be detected at 83.5 kDa for the positive control (figure 

4.4). Although the theoretical molecular weight of SERT is 70.3 kDa, protein bands of higher 

molecular weight have been described using this transfected cell line, presumably due to 

glycosylation [14]. A second, less intensive band could be detected at 62.5 kDa. The latter 

presumably represents the original non-glycosylated SERT protein. For T cell samples, only the 62.5 

kDa band could be detected (figure 4.4), which is in agreement with Chamba et al. who found that 

native cells expressed only the non-glycosylated protein [14].  

To control for non-specific binding of the antibody to proteins other than SERT, a blocking peptide 

(PSPGAGDDTRHSIPAT) was used to which the antibody was raised. The peptide corresponds with the 

51-66 amino acid sequence of SERT, which is situated at the cytoplasmic N-terminal region. With this 

approach a distinction can be made between specific binding of the antibody through its antigen-

binding site and non-specific binding through another part of the antibody (e.g. its Fc domain). Both 

protein bands at 83.5 kDa (positive control) and at 62.5 kDa disappeared when the ST51 antibody 

was pre-incubated with the blocking peptide (figure 4.4). Hence, it can be concluded that both the 

83.5 and 62.5 kDa bands are the result of specific binding of the primary antibody through its 

variable domain. Equal loading of the samples was checked through detection of beta-actin on the 

same blot (figure 4.4). 

On the protein level, SERT expression was detected in activated T cells of two out of eight tested 

blood donors as well as in jurkat T cells (figure 4.4). These data show that activated human peripheral 

T lymphocytes can express SERT. Analysis of activated T cell lysates from the 6 other blood donors 

did not reveal SERT protein expression (data not shown). Thus, SERT protein expression appears 

subject to high inter-individual variation. In contrast, no SERT protein could be detected in resting T 

cells from eight analyzed blood donors.  
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Figure 4.4. SERT protein detection on western blot. The upper left panel shows detection of SERT protein with 
ST51-1 antibody. Molecular weight (MW) is depicted on the right side (kDa). The upper right panel shows 
detection with ST51-1 antibody pre-incubated with 5-fold excess of a blocking peptide to demonstrate 
specificity of the antibody. The lower panel shows detection with anti-actin to ensure equal loading of the 
samples. hSERT transfected HEK cells were used as a positive control.  

 

4. Discussion 

Previous research has demonstrated that SSRIs induce immunosuppression in human T lymphocytes. 

As SSRIs are known to inhibit 5HT uptake through SERT in the central nervous system and a role for 

5HT has been described in immunity, we investigated whether the immunosuppressive effects of 

SSRIs could be related to their ability to inhibit 5HT uptake through SERT in T lymphocytes. SERT 

expression has been shown in several types of immune cells including B cells, dendritic cells, 

macrophages, mast cells and platelets [4]. In dendritic cells, the role of 5HT uptake has been 

described by O’Connell et al. who found that dendritic cells take up 5HT on inflammatory sites and 

shuttle it to naive T cells thereby influencing their activation and proliferation [5]. In peripheral T 

lymphocytes however, the presence of SERT has not been demonstrated with certainty. Whereas 

some research points to the presence of SERT expression [8, 16], others concluded no SERT 

expression was present in T lymphocytes [5, 13]. Nevertheless, it is clear that 5HT uptake and release 

are involved in the functioning of the immune system. Therefore, we analyzed SERT expression in 

human peripheral T lymphocytes on both mRNA and protein level. As the activation status of the T 

cells might affect SERT expression, we investigated both resting and activated T cells. Furthermore, 

activated T lymphocytes have been shown to be more susceptible to SSRI-induced apoptosis than 

resting T cells. In this study, we investigated whether differences in SERT expression between both 

populations can explain this discrepancy. 
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The results of this study show that human peripheral T cells express SERT both on mRNA and protein 

level. However, expression levels are low and therefore highly sensitive techniques are necessary to 

study SERT in this cell type. Here, we demonstrate that digital droplet PCR can provide the extra 

sensitivity over quantitative PCR to achieve this goal. Possibly, others that have failed to detect SERT 

in human T cells have used techniques that did not provide the required sensitivity. Moreover, we 

observed large differences in SERT expression levels between different blood donors. Since standard 

lab techniques like RT-qPCR and western blotting are only just sensitive enough to detect SERT mRNA 

or protein in T lymphocytes, the inter-individual variability might as well explain the contradictory 

conclusions of different research groups regarding the presence of SERT in this cell type. Differences 

in SERT expression levels between individuals might be related to a polymorphism in the promotor 

region of the SLC6A4 gene (5HTT-linked polymorphic region, 5HTTLPR), which encodes SERT. A short 

and long allele for 5HTTLPR have been described, possibly influencing the transcription of SLC6A4 

with a lower transcriptional activity in individuals carrying the short allele [24, 25]. Furthermore, 

whether or not the studied T lymphocytes were activated might also influence the detectability of 

SERT. Which factors influence the expression level of SERT in T lymphocytes is largely unknown. 

However, Tsao et al. demonstrated increased SERT mRNA expression and 5HT uptake in Jurkat T cells 

after exposure to IFNα [15], showing that inflammatory cytokines induce upregulation of SERT in 

these cells.  

On mRNA level, we found SERT expression in both resting and activated T cells. On the protein level, 

we could detect SERT only in activated T lymphocytes. It is not clear why resting T cells do not 

express detectable SERT protein. Possibly, SERT protein is not detected in resting T cells by the 

antibody used because of different post-translational modifications. It is also possible that resting T 

cells express only mRNA for SERT, and that translation is induced when T cells become activated. 

Interestingly, the same observation has been made by Chamba et al. in normal resting B lymphocytes 

[23]. Equally, they detected SERT mRNA expression in resting B lymphocytes, but could only find SERT 

protein upon activation and proliferation of the B cells. These data suggest a ‘translational readiness’, 

where SERT gene expression is already present in resting T lymphocytes, but translation is only 

induced after activation of the cells. Further, we detected SERT protein at two different molecular 

weights in hSERT transfected HEK cells. Whereas the 83.5 kDa SERT presumably represents a highly 

glycosylated form of SERT, the 62.5 kDa protein most likely represents the original full length SERT 

protein [14]. In activated T lymphocytes, we only detected the 62.5 kDa form of SERT. As 

glycosylation of SERT has been shown to be important for its trafficking to the plasma membrane 

[26], it can be questioned whether the ~60 kDa SERT is a functional form and is available at the 
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plasma membrane for 5HT transport. Although it has been reported that the ~60 kDa SERT protein 

remained in the endoplasmic reticulum in SERT-transfected COS-7 cells [26], others have shown that 

this non-glycosylated form of SERT was present at the plasma membrane of Burkitt lymphoma cells, 

although the majority of the ~60 kDa SERT was situated in the cytoplasm [14]. As the same group 

previously found that Burkitt lymphoma cells actively transport 5HT, it was concluded that the non-

glycosylated SERT protein was indeed a functional form [27].  

In order to confirm specificity of the ST51 antibody, we used a blocking peptide. As both detected 

protein bands at ~90 kDa and ~60 kDa disappeared when the antibody was pre-incubated with the 

blocking peptide, it was concluded that the detected bands were the result of specific binding of the 

antibody through its antigen-binding site. However, these data do not exclude the possibility that the 

antibody might bind to similar epitopes on other proteins through its antigen-binding site. The latter 

possibility is unlikely though, as detection of SERT with ST51 and another anti-SERT antibody (C20, a 

goat polyclonal antibody directed to SERT C-terminus aa611–630 from Santa Cruz Biotechnology, CA, 

USA) gave rise to bands of equal molecular size in both hSERT HEK cells (~90 and ~60 kDa) and L3/bcl-

2 cells (only ~60 kDa) [14]. In addition, enzymatic removal of N-linked glycans by PNGase treatment 

of the hSERT HEK samples resulted in a shift of the ~90 kDa band to 60 and 70 kDa bands [14]. 

In order to exclude the possibility that other cell types (e.g. B lymphocytes or platelets) contaminated 

the samples, we used purification techniques that generated T lymphocyte samples of very high 

purity. In addition, we determined percentages of T- and B lymphocytes in the isolated cell fractions, 

as well as in the rest fractions after negative and positive selection of T lymphocytes. In all these 

fractions, SERT mRNA expression was detected. From these data, we concluded that SERT mRNA was 

present in all isolated cell fractions, even those with approximately 100% T lymphocytes. However, 

we did find higher expression of SERT mRNA in total PBMC samples and rest fractions after the first 

(negative) selection round. Thus, one or more other blood cell types express higher levels of SERT 

than T lymphocytes. In addition to freshly isolated lymphocytes from peripheral blood, we analyzed 

SERT mRNA expression in two malignant cell lines: Jurkat leukemic T lymphocytes and RAJI Burkitt 

lymphoma B lymphocytes. Comparable SERT mRNA expression levels were found in both cell lines. As 

these cell lines can be considered 100% pure, the observation that Jurkat T lymphocytes express 

SERT mRNA contributes to the conclusion that human T lymphocytes express SERT. Furthermore, as 

Jurkat and RAJI cells expressed comparable levels of SERT mRNA, the high SERT levels found in PBMC 

samples and rest fractions are unlikely to originate from contaminating B lymphocytes. Instead, other 

cell types such as platelets might account for the high SERT levels. In order to confirm that platelets 
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are the source of high SERT expression in PBMC samples, the experiment should be repeated while 

monitoring the presence and abundance of platelets in the samples. Importantly, these data 

underscore the need for appropriate isolation kits and monitoring the purity of the generated 

samples when studying the expression of any type of gene or protein, especially when expression 

levels are low.  

In this study, only pan T cells were studied and no further distinction was made between different 

subsets of T lymphocytes. However, as pointed out by Levite M., the expression of specific 

neurotransmitter receptors and transporters is dependent on the subset of T lymphocytes studied, 

and is dynamically regulated in response to TCR activation, cytokines and the neurotransmitter itself 

[18]. Thus, although we demonstrated that SERT expression is generally present in T lymphocytes, it 

might be absent or more expressed in certain subtypes, e.g. CD4+ T helper cells or CD8+ cytotoxic T 

cells. Also within the group of CD4+ T cells, differences might be detected depending on the type of T 

helper cell studied, e.g. Th1 cells, Th2 cells, Th17 cells or regulatory T cells. As cytokines and the 

neurotransmitter itself have an impact on the expression of neurotransmitter receptors and 

transporters, it is important to control for these parameters when designing experiments. Indeed, 

standard cell culture medium contains 10% fetal bovine serum (FBS) which is a source of 5HT as well 

as different cytokines. Thus, batch-to-batch variations in the levels of these molecules in the FBS 

used might affect the detected SERT expression levels. 

In conclusion, this study demonstrates that human peripheral T lymphocytes express SERT both on 

mRNA and protein level. SERT mRNA expression is present in both resting and activated T cells, 

whereas SERT protein is only present in activated T lymphocytes. To the present, the role of SERT in T 

lymphocytes has not fully been established and therefore further research in this area should be 

encouraged. Considering that SERT is expressed in T lymphocytes, it can be expected that 5HT is 

actively taken up in these cells, especially in activated T cells since these have been shown to express 

SERT protein. It is thus likely to assume that SSRIs indeed inhibit 5HT uptake in T lymphocytes. The 

observation that SERT protein is upregulated in activated T cells as compared to resting T cells leads 

to the assumption that inhibition of 5HT uptake through SERT might be an important factor in the 

differential pro-apoptotic effect of SSRIs on activated versus resting T cells.  
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CHAPTER 5. EFFECTS OF FLUOXETINE ON CALCIUM SIGNALING IN HUMAN T 

LYMPHOCYTES 

 

Abstract 

Selective serotonin reuptake inhibitors, such as fluoxetine, have recently been shown to exert anti-

inflammatory and immunosuppressive effects. Although the effects on cytokine secretion, 

proliferation and viability of T lymphocytes have been extensively characterized, little is known about 

the mechanism behind these effects. It is well known that Ca2+ signaling is an important step in the 

signaling transduction pathway following T cell receptor activation. Therefore, we investigated if 

fluoxetine interferes with Ca2+ signaling in jurkat T lymphocytes. Fluoxetine was found to suppress 

Ca2+ signaling in response to T cell receptor activation. Moreover, fluoxetine inhibited IP3- and 

ryanodine-receptor mediated Ca2+ release from intracellular stores in a concentration-dependent 

manner. The Ca2+-modifying effects of fluoxetine are not related to its capability to block the 

serotonin transporter, as even a large excess of 5HT did not abolish the effects. In conclusion, these 

data show that fluoxetine inhibits IP3- and ryanodine-receptor mediated Ca2+ release in jurkat T 

lymphocytes, an effect likely to be at the basis of the observed immunosuppression. 
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1. Introduction 

Selective serotonin reuptake inhibitors (SSRIs) have been shown to exert anti-inflammatory and 

direct immunosuppressive effects such as suppression of T cell activation, cytokine secretion and 

proliferation and induction of apoptosis in vitro and in vivo [1-3]. Although it has been shown that 

these compounds have a high affinity for the serotonin transporter (SERT) in the central nervous 

system, it is not clear whether the immunological effects of SSRIs are mediated by inhibition of SERT-

mediated serotonin (5HT) uptake in lymphocytes. On the contrary, several arguments oppose to the 

involvement of 5HT and SERT in the immunosuppressive effects of SSRIs, especially the discrepancy 

between the concentration needed for blockage of 5HT uptake on the one hand (nM range) and for 

in vitro immunosuppression on the other hand (µM range) [4, 5]. The actual mechanism underlying 

the immunosuppressive effects of SSRIs has not been elucidated yet.  

Elevation of the cytoplasmic free Ca2+ concentration ([Ca2+]i) is one of the key triggering signals for T-

cell activation. The [Ca2+]i is regulated through an intimate interplay between Ca2+ in the extracellular 

space and intracellular storage sites such as the endoplasmic reticulum (ER). Ca2+ signaling 

mechanisms mostly rely on Ca2+ release from the ER through inositol 1,4,5 trisphosphate receptors 

(IP3R) and ryanodine receptors (RyR) following the activation of G-protein coupled receptors on the 

plasma membrane. Subsequent depletion of the ER triggers store-operated, capacitative Ca2+ entry 

to replenish the ER [6]. SSRIs have been shown to affect Ca2+ signaling in several cell types. Fluoxetine 

inhibited ATP-induced Ca2+ increases in PC12 cells through inhibition of both influx of extracellular 

Ca2+ and release of Ca2+ from intracellular stores [7]. Whereas fluoxetine has also been shown to 

suppress Ca2+ spikes in cultured rat hippocampal neurons, two other SSRIs, namely paroxetine and 

citalopram, did not [8]. Furthermore, chronic exposure of astrocytes to fluoxetine diminished RyR- 

and IP3R-mediated Ca2+ release as well as the subsequent capacitative Ca2+ entry [9]. In microglia, 

pretreatment with paroxetine or sertraline reduced the amplitude of the Ca2+ increase induced by 

interferon-gamma (IFNγ) [10]. Oppositely, sertraline induced a Ca2+ rise in MG63 osteosarcoma cells 

[11]. Fluoxetine, paroxetine and citalopram induced a rise in [Ca2+]i in Burkitt lymphoma cells [12]. In 

platelets, SSRIs (sertraline, paroxetine, fluoxetine) potentiated thrombin-mediated increases in 

intracellular Ca2+ [13]. Clearly, SSRIs are capable of interfering with Ca2+ signaling in a wide variety of 

cell types. Furthermore, it has been suggested that fluoxetine interferes with mitogen-induced Ca2+ 

influx in murine and human T lymphocytes as fluoxetine exerted similar effects as the Ca2+ ionophore 

A23187 on T cell proliferation, protein kinase C (PKC) degradation and cAMP levels [14, 15]. As 

ionophores promote Ca2+ entry, this suggests fluoxetine might increase [Ca2+]i in lymphocytes.  
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Given the importance of Ca2+ signaling in T cell activation [6], we investigated whether interference 

with Ca2+ signaling might be at the basis of the immunosuppressive effects of fluoxetine in jurkat T 

lymphocytes. In addition, we investigated whether the observed effects on Ca2+ signaling are related 

to the inhibition of 5HT uptake.  

2. Methods 

2.1. Cell culture 

Jurkat T cells, clone E6-1, were cultured at 37°C and 5% CO2 in RPMI supplemented with 10% heat-

inactivated fetal bovine serum, 1% glutamine and 1% penicillin/streptomycin (100 U/ml penicillin G; 

100 µg/ml streptomycin). All cell culture reagents were purchased from Life technologies (Carlsbad, 

CA, USA).  

2.2. Buffers and chemicals 

Krebs HEPES buffer contained 133.5 mM NaCl, 5.9 mM KCl, 1.2 mM MgCl2, 11.6 mM HEPES, 11.5 mM 

glucose and 1.5 mM CaCl2, pH 7,4. In Ca2+-free Krebs buffer, CaCl2 was replaced by 4.47 mM EGTA, pH 

7.4. 1,2-Bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid tetrakis-acetoxymethyl ester 

(BAPTA-AM), D-myo-inositol 1,4,5-trisphosphate, P4(5)-1-(2-nitrophenyl)ethyl ester (“NPE-caged IP3”), 

dextran Texas Red 10000 MW (DTR), fluo3-AM and thapsigargin were purchased from Molecular 

Probes, Life technologies. Caffeine was from Sigma-Aldrich (St. Louis, MO, USA), ryanodine from 

Abcam (Cambridge, UK) and fluoxetine from ABC chemicals (Woutersbrakel, Belgium). 

2.3. Visualization of intracellular Ca2+ 

Dynamic changes in [Ca2+]i were monitored using fluo3-AM. Cells in suspension were loaded with 5 

µM fluo3-AM at 2x106/ml in Krebs buffer for 1h at room temperature and subsequently washed 3x in 

Krebs buffer. Thereafter, cells (0.5-1x106) were allowed to adhere on poly-L-lysine (0.1%) coated 

18mm diameter glass coverslips and left for 30 min at room temperature for de-esterification and 

settling on the dish. Cells were washed once in Krebs buffer to remove any unbound cells before 

imaging.  

Intracellular Ca2+ imaging was performed in Krebs buffer at room temperature and was carried out 

using a Nikon Eclipse TE300 inverted epifluorescence microscope (Nikon Belux, Brussels, Belgium), 

equipped with a 40x oil-immersion objective (Plan Fluor, NA 1.30; Nikon) and an EM-CCD camera 

(QuantEM™ 512SC CCD camera, Photometrics, Tucson, AZ). We used a Lambda DG-4 filterswitch 

(Sutter Instrument Company, Novato, CA) to deliver excitation at 482 nm and captured emitted light 

via a 505-nm long-pass dichroic mirror and a 535 nm bandpass filter (35 nm bandwidth). Images (1/s) 
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were generated with custom-generated QuantEMframes software written in Microsoft Visual C++ 6.0. 

Fluo3 fluorescence-intensity changes were analyzed with custom-developed FluoFrames software 

(generated by L.L., Ghent University, Belgium). Background fluorescence was subtracted from all 

images. Traces of individual cells were obtained by point analysis in Fluoframes software. 

2.4. Electroporation loading with NPE-caged IP3 and photoliberation 

In order to study IP3-mediated Ca2+ release from the ER, T cells were loaded with NPE-caged IP3 

through electroporation, as described elsewhere [16]. Briefly, cells seeded on coverslips were 

washed 3x with a low conductivity electroporation buffer (4.02 mM KH2PO4, 10.8 mM K2HPO4, 1.0 

mM MgCl2, 300 mM sorbitol, 2.0 mM HEPES, pH 7.4). The coverslips were then placed on the 

microscopic stage, 400 µm underneath a parallel wire Pt-Ir electrode and electroporated in the 

presence of 10 µl electroporation buffer containing 100 µM NPE-caged IP3 and 100 µM DTR to 

visualize the electroporation zone. Electroporation was done with 50 kHz bipolar pulses applied as 

trains of 10 pulses of 2 ms duration each and repeated 15 times. The field strength was 100V peak-

to-peak applied over a 500 µm electrode separation distance. After electroporation, cells were 

thoroughly washed with Krebs buffer. Electroporation was performed after fluo3 loading and did not 

result in loss of fluo3 from the cells [17]. 

After loading with NPE-caged IP3, coverslips were transferred to the microscope stage for Ca2+ 

imaging. Photoliberation of IP3 was done by spot (20 μm diameter) illumination with 1-kHz pulsed UV 

light (349 nm UV laser Explorer, Spectra-Physics, Newport, Utrecht, The Netherlands) applied during 

50 ms (50 pulses of 90 μJ energy measured at the entrance of the microscope epifluorescence tube). 

2.5. Activation with anti-CD3/CD28 beads 

T cell receptor activation was achieved by adding magnetic particles coated with antibodies against 

CD3 and CD28 (Dynabeads® Human T-Activator CD3/CD28, Life technologies) at a concentration of 

25 µl per 106 cells (1:1 bead:cell ratio). Cells were visually inspected under the microscope at the end 

of each experiment to determine which cells were making contact with at least one magnetic bead.  

2.6. Data analysis  

The statistical analysis was conducted in R [18]. Homoscedasticity and normality of residuals were 

visually checked using residuals vs fitted plots and QQ plots. If necessary, power transformations 

were applied, using a Box-Cox plot for guidance [19]. The datasets in section 3.1, 3.3. and 3.6 were 

analyzed using a one-way ANOVA or two-way ANOVA (to correct for the possible influence of time if 

the experiment was conducted for > 1 day). The other datasets (section 3.2, 3.4 and 3.5) were 
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analyzed using the non-parametric Kruskal-Wallis test. Student’s T tests (parametric) or Wilcoxon 

rank sum tests (non-parametric) were used for post-hoc testing with a Holm Bonferroni correction 

for multiple testing being applied. Data are presented as mean ± SD or median and range, for 

parametric and non-parametric data, respectively. Significance was set at p < 0.05, all tests were two-

tailed.  

Data are visually presented as boxplots showing median, first and third quartile. Whiskers represent 

lowest and highest data within 1,5 interquartile range (IQR). Data exceeding the 1.5 IQR were 

omitted from the graphs for clarity.  

2.7. Digital droplet (dd)PCR 

mRNA was isolated using the RNeasy® mini kit (QIAGEN, Hilden, Germany) and on column digestion 

of genomic DNA was performed using the RNase-free DNase set (QIAGEN). RNA concentrations were 

determined with the Quant-it™ Ribogreen® RNA assay kit (Bio-Rad, Hercules, CA, USA). RNA quality 

assessment using microfluidic capillary electrophoresis (Experion RNA HighSens Chip, Bio-Rad) 

showed good quality RNA samples as determined by 18S/28S rRNA ratios (RNA quality index [RQI] 

8.5 for positive control, 9.3-9.4 for representative T lymphocyte samples; a RQI >7 indicates good 

quality). mRNA was transcribed to cDNA using the iScript™ advanced cDNA synthesis kit (Bio-Rad). 

cDNA concentrations were subsequently estimated using the Quant-it™ oligreen® ssDNA kit (Life 

technologies). All kits were used according to the manufacturer’s instructions. A commercially 

available Taqman® assay (Hs00984349_m1; Life technologies) was used for amplification of serotonin 

transporter cDNA. 20 µl reactions were prepared containing 5 µl of cDNA (500 ng input material), 10 

µl 2x ddPCR™ super mix for probes (Bio-Rad), 1 µl Taqman® assay and 4 µl water. ddPCR assays were 

performed as described previously [20]. Briefly, droplets were generated in 8-channel cartridges 

containing the 20 µl samples plus 50 µl droplet generating oil using the QX100™ droplet generator 

(Bio-Rad). Subsequently, droplet-in-oil suspensions were transferred to 96 well plates and placed into 

a T100™ Thermal Cycler (Bio-Rad). Cycling conditions were as follows: 95°C for 5 min, followed by 40 

cycles of 95°C for 15 sec and 60°C for 60 sec. Subsequently, the droplets were automatically read by 

the QX100™ droplet reader (Bio-Rad) and the data were analyzed with the QuantaSoft™ analysis 

software 1.2.10.0 (Bio-Rad). All samples were tested in duplicate. No-template controls (NTCs) were 

included in every ddPCR run. HEK 293 cells stably transfected with hSERT (kind gift from Randy 

Blakely, Vanderbilt University) were used as a positive control.  
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2.8. Western blotting 

107 cells were lysed in 1 ml radioimmunoprecipitation (RIPA) buffer containing 150 mM sodium 

chloride, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0 and supplemented 

with 5 mg/ml Complete Mini protease inhibitor cocktail (Roche, Basel, Switzerland), 10 µl/ml 

phosphatase inhibitor cocktails 2 and 3 (Sigma-Aldrich) and 1 µl/ml benzonase® nuclease (Sigma-

Aldrich). 50 µg of total protein was subjected to 10% sodium dodecyl sulphate polyacrylamide 

gelelectrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF) membrane using 

Tris-glycine buffer (25 mM Tris base, 190 mM glycine, 0.05% SDS), as described elsewhere [21]. 

Serotonin transporter protein was detected with a 1:5000 dilution of ST51-1 (aa51-66) mouse 

monoclonal anti-human serotonin transporter antibody (Santa Cruz Biotechnology, CA, USA) in PBS + 

0.3% Tween-20 + 10% nonfat dry milk overnight at room temperature. Incubation with secondary 

goat anti-mouse poly-HRP antibody (Thermo Fisher Scientific, Waltham, Massachusetts, USA) (1:1000 

dilution) was performed during 1h at room temperature in PBS + 0.3% Tween-20 + 5% nonfat dry 

milk. Protein bands were detected with enhanced chemiluminescence. HEK 293 cells, stably 

transfected with hSERT were used as a positive control. Specificity of the primary antibody was 

confirmed with a blocking peptide (PSPGAGDDTRHSIPAT; Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). The ST51 antibody was incubated for 2h at room temperature with the 

blocking peptide at 5- fold excess in PBS, as described elsewhere [21]. Then, the antibody-peptide 

mixture was further diluted in PBS containing 0.3% Tween-20 and 5% nonfat dry milk and added to 

the membrane.  

2.9. Detection of T cell activation 

In order to detect T cell activation, T cells were stimulated with anti-CD3/CD28 beads in a 1:1 

bead:cell ratio for 5h at 37°C and 5% CO2. Fluoxetine or BAPTA-AM were added 30 minutes before 

addition of the T cell stimulus and were maintained in the culture medium throughout the 

experiment. After 5h incubation, cells were stained with anti-human CD69 PECy7 and anti-human 

CD3 PECy5 (eBioscience, San Diego, CA, USA) for 30 minutes in PBS + 1% bovine serum albumin and 

0.1% NaN3, washed once and analyzed on a FC500 (Beckman coulter, Fullerton, CA, USA). 

3. Results 

3.1. Fluoxetine suppresses Ca2+ signaling in response to T cell receptor activation 

In order to analyze the effect of fluoxetine on Ca2+ signaling when T cells are activated through the T 

cell receptor (TCR), we activated jurkat T cells with magnetic particles coated with antibodies against 

CD3 and CD28 and analyzed the resulting changes in [Ca2+]i through labeling with the fluorescent Ca2+ 
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dye fluo3-AM. The fluorescent images obtained and the response of T cells to the anti-CD3/CD28 

beads are illustrated in figure 5.1A. After each experiment, T cells making contact with at least one 

magnetic bead were visualized and selected for analysis. The changes in fluorescent signal over time 

(arbitrary units, A.U.), which relate to changes in [Ca2+]i, were plotted and result in a Ca2+ trace. The 

majority of cells in the control samples (83%) responded to contact with a bead with a short period 

of Ca2+ oscillations followed by a sustained increase in [Ca2+]i. A small percentage of cells showed an 

oscillatory pattern (11%) or transient response (6%) after contact with a bead (figure 5.1B). The same 

types of responses were found in T cells pre-incubated with 10 µM fluoxetine. A slight shift from 

sustained responses (75%) towards oscillatory (13%) and transient (12%) responses was observed, 

but no significant changes were detected as compared to control. However, fluoxetine did affect the 

magnitude of the response to TCR activation. T cells that were pre-incubated for 30 min with 10 µM 

fluoxetine (F10) responded with oscillations with smaller amplitude and a weaker sustained increase 

in [Ca2+]i. At 100 µM fluoxetine (F100), the response to TCR activation was almost completely absent 

(figure 5.1C). Viability of the cells was assessed by trypan blue staining at the end of the experiment 

and no increased cell death was observed in samples pre-incubated with fluoxetine compared to 

control samples (data not shown). The absence of a response in samples incubated with 100 µM 

fluoxetine was thus not due to loss of viability. In order to quantify the different responses, we 

calculated the difference between the maximum of the Ca2+ peak and the baseline (mean of 0-120s). 

Whereas the mean ± SD peak height of control T cells was 59.18 ± 30.38 (A.U.), the mean peak height 

of T cells pre-incubated with F10 was 50.97 ± 28.16 (p=0.041) (figure 5.1E). Cells pre-incubated with 

F100 showed a dramatically reduced response to TCR activation, with a mean peak height of only 

7.45 ± 7.05 (p<0.0001). Similar results were obtained when the area under the [Ca2+]i trace was 

analyzed instead of the peak [Ca2+]i change (data not shown). In resting T lymphocytes (no TCR 

activation), fluoxetine did not affect the [Ca2+]i (figure 5.1D). These results show that fluoxetine 

inhibits the Ca2+ signaling pathway following TCR activation in a concentration-dependent manner in 

T lymphocytes. 
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Figure 5.1: Effect of fluoxetine on Ca
2+

 signaling in response to TCR activation. Figure legend see opposite 
page. 
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Figure 5.1: Effect of fluoxetine on Ca
2+

 signaling in response to TCR activation. T cells were stimulated with 
magnetic beads coated with anti-CD3 and anti-CD28 antibodies. Figure 5.1A shows a series of images taken 
after addition of anti-CD3/CD28 beads (beads were added at 120s). The right image is a bright field image taken 
at the end of the experiment, in which the location of the beads can be seen. Scale bars are 50 µm. B) 
Representative Ca

2+
 responses induced by anti-CD3/CD28 beads in individual cells. Contact with a bead 

triggered sustained (top), transient (middle) or oscillatory (bottom) responses. The arrow indicates the addition 
of the beads. C) representative traces of T cells activated with anti-CD3/CD28 beads in Krebs buffer (contr), 10 
µM fluoxetine (F10), 100 µM fluoxetine (F100) or without beads (negative control). For the negative control, 
the arrow indicates addition of an equal amount of buffer without beads. D) Effect of fluoxetine on [Ca

2+
]i in 

resting T lymphocytes (no TCR activation). 100 µM fluoxetine was added after 60s (indicated by an arrow). 
Graph shows the mean trace of 89 cells. E) Peak height of the Ca

2+
 response of T cells when stimulated with 

anti-CD3/CD28 beads in Krebs buffer (contr) or fluoxetine (10 µM, F10 and 100 µM, F100). Peak height was 
calculated as the difference between the maximum and the baseline. Each condition was repeated at least 
three times and data were pooled for analysis. In total, 89-146 bead-bound cells per condition were analyzed. * 
= p<0.05. *** = p<0.0001. 

 

3.2. Interference of fluoxetine with endoplasmic reticulum Ca2+ stores 

We next questioned whether the observed suppression was due to either inhibition of capacitative 

Ca2+ entry or interference with the release of Ca2+ from intracellular stores. To this end we added 

thapsigargin (TG), a selective inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) that 

prevents reuptake of Ca2+ into the ER, to the cells in Ca2+-free buffer containing EGTA. Ca2+ exits the 

ER through a yet unidentified basal leak system, and blockage of SERCA consequently results in 

depletion of the ER. After a five-minute incubation period with TG that allowed the ER to be 

completely emptied, Ca2+-containing buffer (1.5 mM Ca2+) was added, thus allowing the cells to refill 

their ER with Ca2+ through capacitative Ca2+ entry (figure 5.2A). The impact of fluoxetine on both 

steps was analyzed. Interestingly, fluoxetine reduced the magnitude of the peak after TG addition in 

a concentration-dependent manner (control median 7.90, range [-75.54 – 192.90]; F10 3.35, [-58.45 

– 180.27], p<0.0001; F100 1.12, [-22.14 – 99.43], p<0.0001; figure 5.2B). No significant differences 

could be detected with respect to the magnitude of the peak after addition of Ca2+-containing buffer 

(control median 38.00, range [7.0-217.3]; F10 44.55, [5.2-196.1]; F100 41.00, [3.3-208.7]; p=0.423; 

figure 5.2C). These data suggest that fluoxetine might inhibit Ca2+ release from intracellular stores. In 

contrast, fluoxetine does not affect capacitative Ca2+ entry in T lymphocytes.  
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Figure 5.2. Effect of fluoxetine on thapsigargin-induced rise in [Ca
2+

]i and capacitative Ca
2+ 

entry. T cells were 
incubated in Ca

2+
-free buffer and 10 µM thapsigargin was added at 120s. At 420s, when the ER was emptied, 

Ca
2+

-free buffer was replaced for Ca
2+

-containing buffer (1.5 mM Ca
2+

). Cells were pre-incubated with 
fluoxetine (10 µM, F10 and 100 µM, F100) for 30 minutes, and fluoxetine was maintained in all added 
solutions. All conditions were repeated at least three times. Data were pooled for analysis. A) Mean traces of 
cells in Krebs buffer (contr), 10 µM fluoxetine (F10) and 100 µM fluoxetine (F100). Arrows indicate addition of 
thapsigargin (TG, peak1) and Ca

2+
-containing buffer (Ca

2+
, peak 2). B) Peak height of the Ca

2+
 change induced by 

thapsigargin (peak 1). Peak height was calculated as the difference between the maximum and the baseline. C) 
Peak height of Ca

2+
 change induced by re-introduction of Ca

2+
-containing buffer (peak 2). *** = p<0.0001. 

 

3.3. Interference of fluoxetine with IP3-induced Ca2+ release 

In order to study in more detail the effect of fluoxetine on the ER, T cells were loaded with NPE-

caged IP3 through electroporation, and IP3 was released during imaging through flash photolysis. The 

height of the resulting [Ca2+]i peak was measured. In accordance with the results of the TG 

experiment, fluoxetine reduced the height of the Ca2+ peak after release of IP3, although statistical 

significance was only reached at 100 µM fluoxetine (mean control 11.43 ± 11.81; F10 9.98 ± 12.94, 

p=0.11, F100 2.13 ± 2.65, p<0.0001 (figure 5.3). Thus, fluoxetine suppresses IP3-mediated Ca2+ release 

from the ER. 
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Figure 5.3. Effect of fluoxetine on IP3-mediated Ca
2+

 release. T cells were electroporated with NPE-caged IP3 
and IP3 was released by flash photolysis after 120s of imaging. Imaging was continued for 5 minutes. Fluoxetine 
(10 µM, F10 and 100 µM, F100) was added 30 minutes before the start of the experiment. The peak height of 
the Ca

2+
 change after photolytic release of IP3 was calculated as the difference between the maximum and the 

baseline. A total of 61 – 111 cells per group were analyzed. A) mean traces of electroporated cells within the 
flash zone in Krebs buffer (contr), 10 µM fluoxetine (F10) and 100 µM fluoxetine (F100). B) Calculated peak 
heights of the recorded Ca

2+
 changes after photolytic release of IP3. *** = p<0.0001. 

 

3.4. Interference of fluoxetine with ryanodine receptor-mediated Ca2+ release 

In addition to IP3R, ryanodine receptors (RyR) are equally known to regulate Ca2+ release from 

intracellular stores. Ca2+ released by IP3R in turn activates RyR, resulting in Ca2+-induced Ca2+ release 

(CICR). The effect of fluoxetine on RyR-mediated Ca2+ release was analyzed by addition of caffeine, 

which is known to activate RyR [22]. Preliminary experiments to select the most suitable 

concentration of caffeine showed a concentration-dependent increase in [Ca2+]i
 upon exposure to 

caffeine in a range from 10 to 50 mM (data not shown). As 50 mM caffeine induced the strongest 

effect, we selected this concentration to study the impact of fluoxetine hereon (figure 5.4A). Similar 

responses were obtained when the experiment was repeated in Ca2+-free buffer, indicating that 

caffeine indeed released intracellular Ca2+ and did not induce influx of Ca2+ through the plasma 

membrane (data not shown). In order to confirm that the rise in [Ca2+]i induced by caffeine was due 

to ryanodine receptor stimulation, cells were pre-incubated with an antagonistic concentration of 

ryanodine (200 µM). As shown in figure 5.4, ryanodine completely suppressed the rise in [Ca2+]i 

induced by caffeine. Fluoxetine suppressed the rise in [Ca2+]i in a concentration-dependent manner 

(figure 5.4A). In order to quantify the effect of fluoxetine on the RyR-mediated Ca2+ release, the 
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difference between the maximal and minimal [Ca2+]i was calculated. Control cells showed a median 

peak height of 17.5, range [2.8 - 74.9], F10 12.3, [0.4 - 50.8], p<0.0001 and F100 4.1, [0.0 - 57.8], 

p<0.0001 (figure 5.4B). Thus, fluoxetine inhibits ryanodine receptor-induced Ca2+-release in a 

concentration-dependent manner. The inhibitory effect of fluoxetine on caffeine-induced Ca2+ 

release is time-dependent, as longer incubation times resulted in a stronger inhibitory effect (figure 

5.4C). However, as addition of fluoxetine at the same time as caffeine (T=0) already produced a 

significant inhibition of Ca2+ release, the effect of fluoxetine is manifested immediately.  

 

Figure 5.4. Effect of fluoxetine on RyR-mediated Ca
2+ 

release. T cells were stimulated with 50 mM caffeine in 
the presence of different concentrations of fluoxetine. A) Individual traces of cells in Krebs buffer (contr), 10 
µM (F10), 100 µM (F100) fluoxetine or 200 µM ryanodine and stimulated with 50 mM caffeine at 120s (arrow 
on the graph). Fluoxetine was added 30 minutes before the start of the experiment and maintained in all added 
solutions. B) Calculated peak heights of the recorded Ca

2+
 changes. Per sample, 100 arbitrary cells were 

analyzed. Each condition was performed in duplicate and results were pooled for analysis. C) Time-dependent 
effect of fluoxetine on caffeine-induced Ca

2+
 release. Caffeine was added at 120s. T-30 = addition of fluoxetine 

30 min before the start of the experiment, T-15 = 15 minutes before the start, T-2 = at the start of the 
experiment; T0 = at the same time as addition of caffeine (120s). Contr = no fluoxetine added. * = p<0.05. *** = 
p<0.0001. ns = not significant. 
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3.5. Involvement of 5HT and SERT in the fluoxetine-induced effects on Ca2+ signaling 

As fluoxetine is known to inhibit serotonin uptake through the SERT, we next questioned whether 

the observed effects on Ca2+ signaling could be initiated by SERT inhibition. Therefore, we first 

analyzed whether jurkat T lymphocytes express SERT. As shown in figure 5.5, T lymphocytes express 

SERT both at the mRNA level and the protein level. Whereas the positive control (hSERT transfected 

HEK293 cells) showed a protein band at ~80 and 60 kDa, only the 60 kDa band was found in T cells. 

As described previously, the ~80 kDa band presumably represents a highly glycosylated form of SERT, 

whereas the 60 kDa band is most likely the unmodified SERT protein [21]. Further, it should be noted 

that the large difference in expression levels between the positive control and the T cells is due to 

overexpression of SERT in the hSERT transfected cell line [21]. Specific binding of the primary 

antibody through its antigen-binding site was confirmed by incubation with a blocking peptide. The 

results of these experiments indicate that T lymphocytes do express SERT. 

To investigate if the effects of fluoxetine on Ca2+ signaling are mediated by SERT inhibition, we 

analyzed the influence of a large excess (1 mM) 5HT on the fluoxetine-induced suppression of RyR-

mediated Ca2+ release (100 µM fluoxetine). If inhibition of SERT by fluoxetine causes the observed 

decrease in Ca2+ signaling, it can be expected that 5HT reverses this effect by competing with 

fluoxetine for binding to SERT. As shown in figure 5.5C, 5HT did not inhibit the suppression of RyR-

mediated Ca2+ release by 10 or 100 µM fluoxetine (control median 21.70, [0.0-70.7] vs 5HT 20.70, 

[3.1-71.1], p=0.61; F10 18.60, [0.9-60.3] vs F10 + 5HT 20.20, [-0.1-100], p=0.35; F100 7.30, [-0.9-62.2] 

vs F100 + 5HT 5.25, [-0.6-93.6], p=0.18). Thus, it is not likely that fluoxetine inhibits Ca2+ release from 

the ER through blockage of 5HT uptake by SERT.  
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Figure 5.5. Analysis of SERT expression in jurkat T lymphocytes and involvement of 5HT in the fluoxetine-
induced effects. A) SERT mRNA expression was detected with ddPCR. Samples were analyzed in duplo and 
compared to a positive control (hSERT transfected HEK293 cells); B) SERT protein expression in hSERT HEK cells 
(positive control) and T cells. Left: detection with anti-SERT; Right: detection with anti-SERT and a blocking 
peptide; C) Results of competition experiments with 5HT (1 mM) on fluoxetine (10 and 100 µM) inhibition of 
caffeine-induced Ca

2+
 release. Cells were incubated with fluoxetine and/or 5HT 30 minutes before the start of 

the experiment. All conditions were analyzed in triplicate and data were pooled for analysis. Peak height 
expresses the caffeine-induced change in Ca

2+
. ns = not significant. 

 

3.6. The effect of fluoxetine on T cell activation is mimicked by buffering of intracellular Ca2+  

In order to investigate whether the observed effect of fluoxetine on Ca2+ release from intracellular 

stores is at the basis of its immunosuppressive effect, we analyzed the effect of fluoxetine on CD69 

expression, an early activation marker. Incubation of T cells with anti-CD3/CD28 beads during 5h in 

the absence of fluoxetine induced a strong upregulation of CD69 expression (figure 5.6). Non 

stimulated (‘NS’) cells showed a mean fluorescence intensity (MFI) of 10.29 ± 0.97, whereas 

stimulated cells (‘S’) had a MFI of 107.0 ± 3.0. Fluoxetine (100 µM) decreased the MFI to 9.77 ± 1.97 

(p<0.0001 compared to ‘S’). The same suppressive effect was found when cells were incubated with 

BAPTA-AM (50 µM), an intracellular Ca2+ chelator added to silence cytoplasmic Ca2+ changes, 

demonstrating that interference with intracellular Ca2+ signals after TCR stimulation indeed impairs T 

cell activation (MFI 18.27 ± 0.21, p<0.0001 compared to ‘S’). Thus, the inhibitory effect of fluoxetine 
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on CD69 expression can be mimicked by buffering the intracellular Ca2+ of the cells with BAPTA-AM. 

These data show that interference with Ca2+ signaling in T lymphocytes results in impaired T cell 

activation, as estimated from CD69 expression, and that the effect of fluoxetine is comparable in 

magnitude to the effect of buffering [Ca2+]i with BAPTA-AM.  

 

Figure 5.6. Effect of fluoxetine and BAPTA-AM on CD69 expression in activated T cells. T cells were activated 
with anti-CD3/CD28 beads. BAPTA-AM (50 µM) or fluoxetine (100 µM, F100) were added 30 minutes before 
addition of the beads and the cells were incubated for 5h at 37°C and 5% CO2. Cells were stained with anti-
human CD3 PECy5 and CD69 PECy7 and analyzed by flow cytometry. NS = non-stimulated cells. S = cells 
stimulated with anti-CD3/CD28 beads. Mean ± SD of mean fluorescent intensities (MFI) are shown. Each 
condition was analyzed in triplicate. *** = p<0.0001. ns = not significant. 

 

4. Discussion 

In this report, we investigated the impact of fluoxetine on Ca2+ signaling in jurkat T lymphocytes. 

Previous research has demonstrated that fluoxetine and other SSRIs exert anti-inflammatory and 

immunosuppressive effects on T lymphocytes [23, 24]. Similar suppressive effects have been 

described in jurkat T lymphocytes [25]. Although several hypotheses on the mechanism behind the 

observed effects were investigated (reviewed in [2]), the exact mechanism by which fluoxetine 

suppresses T cell activation and proliferation was not clarified. SSRIs have been shown to affect Ca2+ 

signaling in several cell types including neurons [8], astrocytes [9], microglia [10], osteosarcoma cells 

[11], platelets [13] and adrenal medulla PC12 cells [7, 26]. Since elevation of intracellular Ca2+ plays a 

major role in the pathway leading to T cell activation in response to antigens [6], we investigated if 

SSRIs, in particular fluoxetine, interfere with this signaling pathway in T cells.  
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In the case of T lymphocytes, Ca2+ is stored in the ER and release from the ER is mediated 

predominantly by binding of IP3 to IP3R, and is further regulated by RyR [27]. The majority of research 

conducted on the effect of antidepressants, including SSRIs, on Ca2+ signaling in other cell types 

suggests interference with intracellular Ca2+ stores [7, 9, 11, 13]. In accordance with these data, we 

demonstrated that fluoxetine interferes with the ER Ca2+ stores in T lymphocytes. As opposed to 

tricyclic antidepressants, we found that fluoxetine inhibits IP3-induced Ca2+ release [28]. More 

specifically, we demonstrated that fluoxetine suppresses the rise in [Ca2+]i in response to TCR 

activation. Additionally, we showed that the decreased Ca2+ signaling is due to the inhibition of IP3- 

and RyR-mediated Ca2+ release from ER stores, rather than the blockage of capacitative Ca2+ entry. 

The observed inhibition of Ca2+ release from intracellular stores could be explained in two ways: 

either fluoxetine causes a depletion of stored Ca2+ thus leaving less Ca2+ available for release after 

IP3R or RyR activation, or fluoxetine directly interferes with the Ca2+ channels blocking the Ca2+ 

release in response to IP3R or RyR activation. In contrast to Serafeim et al., who found that fluoxetine 

and other SSRIs induced a rise in [Ca2+]i in malignant B cells [12], the addition of fluoxetine to resting 

T cells did not result in any increase of the cytoplasmic Ca2+ concentration. Therefore, it is unlikely 

that fluoxetine would deplete the ER stores in this cell type. In addition, the inhibitory effect of 

fluoxetine on caffeine-induced Ca2+ release occurs almost immediately, indicating that a slow and 

therefore unnoticed depletion of the ER Ca2+ stores is unlikely. Instead, these results indicate that 

fluoxetine directly interferes with the ER Ca2+ channels and thereby inhibits release of Ca2+ in 

response to IP3 or ryanodine receptor activation (figure 5.7). 

As to how fluoxetine interacts with Ca2+ channels, we demonstrated that the effect is not mediated 

through blockage of 5HT transport by SERT since addition of even a large excess of 5HT did not 

abrogate the effect of fluoxetine on Ca2+ signaling. Instead, it has been proposed that fluoxetine, 

being a highly lipophilic molecule, interacts with the membrane lipid bilayer and thereby influences 

the ion channel structure and function [7]. Future research will be needed to elucidate how 

fluoxetine interacts with Ca2+ channels at the molecular level.  
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Figure 5.7. Schematic representation of fluoxetine-induced effects on Ca
2+

 signaling in T lymphocytes. In T cell 
activation, binding of an antigen to the TCR results in activation of PLCγ, which converts PIP2 to IP3 and DAG. IP3 

induces Ca
2+

 release from the ER through activation of IP3R. Ca
2+

 in turn activates RyR thereby further 
stimulating Ca

2+
 release. RyR agonists such as ryanodine and caffeine also induce Ca

2+
 release by RyR. 

Secondary to the release of Ca
2+

 from the ER, influx of Ca
2+

 through the plasma membrane is induced. The rise 
in cytoplasmic Ca

2+
 eventually leads to transcription of a pleotropic set of genes, including IL2, resulting in T cell 

activation and proliferation. Fluoxetine inhibits IP3- and RyR-mediated release of Ca
2+

 from the ER. As Ca
2+

 
release from intracellular stores is an indispensable step in the pathway leading to T cell activation, inhibition 
of Ca

2+
 signaling by fluoxetine results in impaired T cell activation and proliferation. Intermediate steps in the 

signaling transduction pathway were omitted for clarity. TCR = T cell receptor, PLCγ = phospholipase Cγ; PIP2 = 
phosphatidylinositol 4,5-bisphosphate; IP3 = phosphatidylinositol 3,4,5-trisphosphate; DAG = diacylglycerol; ER 
= endoplasmic reticulum; TG = thapsigargin.  

 

Finally, we demonstrated that the immunosuppressive effects of fluoxetine - under the form of 

decreased CD69 expression in response to TCR activation – can be mimicked by buffering of 

intracellular Ca2+ with BAPTA-AM. Others have shown that inhibition of IP3- or RyR- mediated Ca2+ 

release downregulates jurkat T cell proliferation and IL2 production [27]. In primary human T cells, 

inhibition of RyR equally inhibited T cell proliferation [29]. These data suggest that inhibition of IP3- 

and RyR-mediated Ca2+ release from ER stores plays an important role in the immunosuppressive 
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effects of fluoxetine, although it cannot be excluded that other mechanisms contribute to the 

immunosuppressive outcome.  

It should be noted that the concentrations of fluoxetine used in this report are considerably higher 

than the plasma concentrations found in depressive patients. Whereas plasma concentrations of 

fluoxetine are usually below 1 µM, we applied concentrations of 10-100 µM to study the effects of 

fluoxetine on Ca2+ signaling. The applied concentrations are based on previous reports on in vitro T 

cell immunosuppression by SSRIs [24]. However, since SSRIs are lipophilic compounds that 

accumulate in tissues, significantly higher concentrations in organs than in plasma can occur. In that 

respect, it has been demonstrated that SSRIs can reach 10-fold higher concentrations in spleen than 

in plasma [30]. As the meeting of a naive T cell and its antigen occurs in lymphoid tissue such as the 

spleen or lymph nodes, it can be expected that T lymphocytes going through the activation process in 

lymphoid tissue are actually exposed to fluoxetine concentrations up to 10 µM, a concentration 

which we have demonstrated to exert inhibitory effects on Ca2+ signaling in vitro.  

Finally, we selected fluoxetine to study the effects on Ca2+ signaling in T lymphocytes. As other SSRIs 

also induce immunosuppressive effects in T lymphocytes [24], it would be interesting to investigate 

whether these compounds also affect Ca2+ signaling in T lymphocytes.  

In conclusion, these data show that fluoxetine suppresses intracellular Ca2+ signaling in jurkat T 

lymphocytes through inhibition of Ca2+ release from IP3- and caffeine sensitive intracellular stores, an 

effect likely to be at the basis of the observed immunosuppression.  
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CHAPTER 6. FLUOXETINE REDUCES MURINE GRAFT-VERSUS-HOST DISEASE BY 

INDUCTION OF T CELL IMMUNOSUPPRESSION 

 

Abstract 

Serotonin reuptake inhibitors (SRIs) have been shown to possess immunomodulatory effects, which 

potentially could be used to treat immune-mediated disorders. After hematopoietic stem cell 

transplantation, immunocompetent cells present in the graft can mount an immune response to host 

antigens, resulting in graft-versus-host disease. We investigated whether high-dose treatment with 

fluoxetine was able to suppress acute graft-versus-host disease (GvHD) in a MHC-matched, minor 

histocompatibility antigen mismatched murine bone marrow transplantation model. We found that 

fluoxetine induces a significant reduction of clinical symptoms and increases survival of these 

animals. The amelioration of clinical GvHD was accompanied by a reduced expansion of alloreactive T 

cells. We discuss these results in the light of potential future exploration of SRIs as a novel class of T 

cell immunosuppressive drugs.  
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1. Introduction 

Serotonin reuptake inhibitors (SRIs) have been shown to possess immunomodulatory effects, which 

potentially could be used to treat immune-mediated disorders. Evidence exists that SRIs may 

attenuate autoimmune responses in experimental autoimmune encephalomyelitis, collagen-induced 

arthritis, murine allergic asthma and contact hypersensitivity reaction [3-8]. A different type of 

immune-mediated disorders occurs in the transplantation setting. Whereas organ transplantation is 

often complicated by immunological reactions of host immune cells against the transplanted donor 

organ (host-versus-graft reaction), the opposite occurs in stem cell transplantation. After 

transplantation of donor hematopoietic stem cells into a patient or host, immunocompetent cells 

present in the graft can mount an immune response to allogeneic antigens expressed by the host 

(graft-versus-host reaction). When this immunological reaction causes damage to target organs such 

as skin, liver and gastro-intestinal tract, it is called graft-versus-host disease (GvHD). Hypothesizing 

that SRIs may hold potential as a novel class of immunosuppressive drugs, the aim of this study was 

to determine whether SRIs could suppress alloreactive T cell responses in murine GvHD. The host 

antigens responsible for allogeneic reactions can be divided into major and minor histocompatibility 

antigens (MHC and miHA, respectively). Since over 50% of hematopoietic stem cell transplantations 

in the clinical practice are MHC-matched, we used a MHC-matched, minor histocompatibility antigen 

(miHA)-mismatched model of allogeneic bone marrow transplantation (BMT). In this study, we 

deliver proof-of-concept evidence that SRIs may attenuate murine GvHD. 

2. Materials and methods 

2.1. Animals 

Ten- to 12-week old female AKR (H-2k, Thy1.1, Mls1a/2b) mice were used as recipients and 6- to 8-

week old C3H (H-2k, Thy1.2, Mls1b/2a) mice as donors. Mice were purchased from Harlan BV, The 

Netherlands. Recipients were housed in groups of four or five in individually ventilated cages. 

Animals were fed standardised pellet chow and water, decontaminated by UV irradiation or by 

acidification. All experiments were approved by the Ethical Committee for Animal Science of the 

University of Leuven. 

2.2. Mixed lymphocyte culture (MLC) 

Single cell suspensions were prepared from spleens obtained from donor C3H and recipient AKR mice 

using a gentle MACS dissociator (Miltenyi Biotec, Bergisch Gladbach, Germany) and 70 µm cell 

strainers. Responder (C3H) splenocytes suspended in RPMI + 5% fetal bovine serum (FBS) + 1% 
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penicillin/streptomycin (100 U/ml penicillin G; 100 µg/ml streptomycin) were loaded onto a nylon-

wool column (Nylon Wool Fiber, Baseclear B.V., Leiden, The Netherlands) and incubated for 60 min 

at 37°C and 5% CO2. Following incubation, the column was washed with RPMI + 5% FBS + 1% 

antibiotics and the T cell-enriched eluate was resuspended at 5x106 cells/ml in RPMI + 10% FBS + 1% 

antibiotics + 0.5% 2-mercaptoethanol. AKR splenocytes were inactivated with 32 ng/ml mitomycin C 

(Kyowa Hakko Kogyo Co, Ltd, Tokyo, Japan) for 20 min at 37°C and washed 4x in RPMI + 10% FBS and 

1% antibiotics. MLC were performed at a concentration of 5x106 cells per ml in a 1:1 ratio and a final 

volume of 200 µl per well in flat-bottom 96-well microculture plates. Cells were cultured for 5 days in 

RPMI + 10% FBS + 1% antibiotics + 0.5% 2-mercaptoethanol. Reactions were performed in 

quadruplicate. DNA synthesis was assayed by adding 1 µCi methyl-³H-thymidine (Radio chemical 

centre, Amersham, Buckinghamshire, UK) per well during the last 18 hours of culture. Thereafter, 

cells were harvested on glass filter paper and the counts per minute were determined with a liquid 

scintillation counter. Results were calculated as the percentage suppression compared to control 

wells not containing SRIs: 

% suppression = 100- 
cpm SRI-treated cells x 100 

cpm control cells
 

2.3. GvHD model and SRI treatment 

Bone marrow (BM) cells were obtained by flushing RPMI containing 1% heparin through the shafts of 

the femurs and tibia of C3H donor mice. T cell depletion was performed using cytotoxic complement-

fixing anti-Thy1.2 antibody and low toxic rabbit complement (Serotec, Oxford, United Kingdom) as 

described previously [9]. AKR recipient mice received a single dose of 9.5 Gy total body irradiation on 

day -1. Within 24h after completion of irradiation, either 5x106 T cell depleted BM (BM only) or 5x106 

T cell depleted BM in combination with 50x106 spleen cells (BM + SPL) were injected into a tail vein in 

a total volume of 250 µl. Recipient mice were treated with 20 mg/kg fluoxetine IP 2x/day at the day 

of transplantation, 1x/day for the following 11 days, and 3x/week for the rest of the experiment. 

Control animals received vehicle (PBS) only. 

2.4. GvHD scoring 

Animals were inspected on a daily basis. Signs of GvHD typically observed in this model are ruffled fur 

and hunched posture, lethargy, inflammation of the eyes, weight loss and diarrhea [9, 10]. The mice 

were weighed and scored for GvHD once weekly, using a GvHD scoring system previously described 

in this model [11]. Scoring was always done by the same person. Each parameter received a score as 

followed: 0 = normal, 1 = mild, 2 = moderate, 3 = severe. For body weight, the following scoring 
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system was used: 0 = 100-90%, 1 = 90-80%, 2 = 80-70%, 3 = <70% of initial body weight. The 

maximum score was 15. Mice that succumbed to GvHD received the maximum score of 15. 

2.5. Donor T cell chimerism and host-reactive donor T cell frequency 

The percentage of donor T lymphocytes in peripheral blood was determined by flow cytometry, 

based on the differential expression of Thy1.2 (donor) and Thy1.1 (recipient). Following red blood cell 

lysis with NH4Cl, cells were labelled with FITC- or PE-conjugated anti-Thy1.1 and anti-Thy1.2 (Serotec, 

Oxford, UK). The frequency of host-reactive TCR-Vβ6+ T cells was determined as a parameter of in 

vivo alloreactive T cell expansion [9, 10]. Cells were labelled with APC-, PE- or PerCP-conjugated 

antibodies against CD3 and TCR-Vβ6 (BD Biosciences, Erembodegem, Belgium). 

2.6. Statistics 

The Gehan-Breslow-Wilcoxon test was used to estimate the level of significance of the difference in 

survival between treatment groups. The Wilcoxon signed ranks test was used to identify statistically 

significant differences for GvHD scores and flow cytometry data between treatment groups. 

3. Results 

3.1. Selection of the most potent SRI  

In order to select the most potent SRI for suppression of murine acute GvHD, a preliminary in vitro 

screening was performed by means of mixed lymphocyte culture (MLC). Paroxetine, fluoxetine and 

sertraline, the three SRIs that showed strongest anti-proliferative and pro-apoptotic effects in human 

T lymphocytes, were tested in concentrations ranging from 1 to 20 µM. The proliferative response of 

T cell-enriched C3H splenocytes was analyzed when stimulated by mitomycin C-inactivated AKR 

splenocytes, an in vitro situation mimicking the alloresponse that occurs in the in vivo mouse model. 

All tested SRIs induced a strong anti-proliferative effect that reached approximately 100% 

suppression at 10 µM (figure 6.1). At the lowest concentration tested, 1 µM, the strongest effect was 

observed for fluoxetine. These data correlated well with the human in vitro experiments (chapter 3) 

in which fluoxetine equally exerted an anti-proliferative effect at 1 µM. As expected plasma 

concentrations were in the lower micromolar range, fluoxetine was chosen to explore the in vivo 

immunosuppressive effect on murine acute GvHD. 
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Figure 6.1. Preliminary screening of the anti-proliferative effect of three SRIs in a mixed lymphocyte culture 
with C3H responder cells and AKR stimulator cells. T cell enriched C3H splenocytes (responders) and 
mitomycin C-inactivated AKR splenocytes (stimulators) were co-cultured for 5 days at a concentration of 5x10

6
 

cells per ml in a 1:1 ratio and total volume of 200 µl. DNA synthesis was assayed through ³H-thymidine 
incorporation during the last 18h of culture. Data are presented as mean + SEM. 

  

3.2. Fluoxetine delays the onset and attenuates the severity of GvHD 

An established model of acute GvHD in a MHC-matched miHA-mismatched mouse strain 

combination was used [9, 10]. AKR recipient mice carry the Mtv-7 retrovirus which encodes the Mls-1 

antigen, leading to deletion of TCR-Vβ6+ T cells. C3H donor mice do not carry the Mtv-7 virus and 

therefore TCR-Vβ6+ T cells are retained in these mice. In this model, donor and recipient mice differ 

in their expression of the Mtv7-genome, which has been shown to be associated with a highly 

increased rate and severity of GvHD [12].  

An IP dose of 20 mg/kg fluoxetine was administered twice at the day of transplantation in order to 

achieve high enough plasma levels to prevent alloreactive T cells to initiate an immune reaction. To 

prevent alloreactivity during the immediate posttransplant period (day 2-12), fluoxetine was 

administered 1x/day. In this period, the frequency and severity of GvHD is higher, possibly because of 

overstimulation of host-reactive T cells by the remnants of the cytokine storm elicited by the 

conditioning regimen [13]. In our murine model, cytokine mRNA expression is diminished by day ten 

after irradiation [14]. During the rest of the experiment, a maintenance dose was given 3x/week. A 

20 mg/kg IP dose was chosen as this dose gives rise to a plasma concentration of 4 µM [15], a 



CHAPTER 6 

 

 

138 

 

concentration that showed optimal anti-proliferative effect in preliminary murine mixed lymphocyte 

reactions without inducing cytotoxicity (figure 6.1). 

Throughout the course of the experiment, mice were observed daily for clinical symptoms of GvHD 

and the GvHD score was recorded weekly. Mice that were treated with vehicle developed typical 

symptoms of GvHD (score > 2) after 4 weeks, whereas fluoxetine-treated mice only showed clinical 

signs of illness after 8 weeks (figure 6.2A). Although fluoxetine-treated mice did develop clinical 

symptoms in the course of the experiment, GvHD was less severe in this group compared to vehicle-

treated mice (p<0.0001). Control mice receiving either BM+SRI (n=6), BM+vehicle (n=7) or BM only 

(n=5) did not develop clinical signs of GvHD (data not shown). 

 

Figure 6.2. Effect of fluoxetine on GvHD score and survival. AKR mice were irradiated with 9.5 Gy on day -1 
and transplanted with 5x10

6
 C3H BM only or together with 50x10

6
 SPL cells on day 0. Mice were treated with 

20 mg/kg IP fluoxetine or vehicle 2x/day on the day of transplantation, 1x/day for the following 11 days and 
3x/week for the rest of the experiment. (a) mean ± SEM GvHD scores from BM+SPL+SRI group (n=13) and 
BM+SPL+vehicle group (n=12). GvHD score was based on five parameters, each receiving a score of 0-3: ruffled 
fur and hunched back, inflammation of the eyes, weight, diarrhea and lethargy. (b) Survival curve. Results are 
the percentage survival from BM+SPL+SRI (n=13), BM+SPL+vehicle (n=12) and BM only (n=5) groups. Results 
are pooled data from two different experiments.  

 

3.3. Fluoxetine reduces GvHD lethality 

In figure 6.2B, the survival of AKR mice after transplantation of 5x106 C3H BM only or together with 

50x106 SPL cells and treated with 20 mg/kg fluoxetine or vehicle is shown. Whereas only 4/12 
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(33.3%) animals from the vehicle-treated group survived 6 months after transplantation, 7/13 

(53.8%) mice survived in the fluoxetine-treated group (p=0.05). Control mice receiving either BM+SRI 

(n=6) (data not shown), BM+vehicle (n=7) (data not shown) or BM only (n=5) all survived until the 

end of the experiment. 

3.4. Fluoxetine does not interfere with engraftment of cells 

In order to determine whether fluoxetine interferes with the engraftment of the allogeneic cells, 

peripheral blood donor T cell chimerism was determined at week 8 after transplantation, a time 

point at which donor T cell chimerism – in the absence of GvHD - can be expected to be near-

complete [9]. Thy1.2 and Thy1.1 expression was used to discriminate between donor- and recipient-

derived lymphocytes, respectively. Both fluoxetine-treated and vehicle-treated mice showed a donor 

T cell chimerism of more than 99%, indicating that the efficiency of the stem cell transplantation was 

equal in both groups and was not negatively influenced by fluoxetine. Consistent with previous work 

in this model, donor T cell chimerism of the ‘BM only’ group was around 90% (figure 6.3A).  

 

Figure 6.3. Donor chimerism and alloreactivity. (a) Percentage donor T cell chimerism in peripheral blood 
lymphocytes, determined by Thy1.1 (recipient) and Thy1.2 (donor) positivity. (b) percentage alloreactive 
CD3+Vβ6+ T cells. Results are mean ± SEM from 5 animals in BM+SPL+SRI and BM only group and from 4 
animals in BM+SPL+vehicle group. Statistically significant differences are depicted with * (one-tailed p<0.05). 
NS = not significant. 
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3.5. Fluoxetine reduces the expansion of donor-type host-reactive T cells 

In murine GvHD models involving Mls-disparate mouse strains, GvHD has been shown to be 

associated with expansion of donor-type T cells bearing TCR Vβ chains that are specific for host-type 

Mls antigens [9, 10, 16]. Accordingly, GvHD in C3H-AKR chimeras is associated with an expansion of 

TCR-Vβ6+ T cells [9, 10]. In order to determine whether fluoxetine suppressed the expansion of these 

host-reactive T cells, we determined the frequency of CD3+Vβ6+ T cells in peripheral blood of 

chimeras at week 8 after bone marrow transplantation, a time point at which control mice showed 

clear GvHD whereas SRI-treated mice were still free of GvHD clinical symptoms (score ≤ 2). The 

results are shown in figure 6.3B. Fluoxetine-treated mice showed a significantly lower percentage of 

peripheral blood CD3+Vβ6+ T cells than vehicle-treated mice (p=0.016), indicating that the beneficial 

effect of fluoxetine on GvHD is indeed associated with a reduced expansion of host-reactive T cells. 

4. Discussion  

In this study, we investigated whether high-dose treatment with fluoxetine was able to suppress 

acute graft-versus-host disease (GvHD) in a MHC-matched, minor histocompatibility antigen 

mismatched murine bone marrow transplantation model. Several lines of evidence exist that SRIs 

exert an influence on the immune system. First, in vitro studies have shown a suppressive effect of 

SRIs on both rat and human lymphocyte proliferation and viability [17, 18]. Second, animal studies 

have demonstrated that SRIs can attenuate symptoms and inflammatory activity in selected 

autoimmune disorders, such as experimental autoimmune encephalomyelitis [3-5], collagen-induced 

arthritis [6], septic shock and allergic asthma [7] and contact hypersensitivity reaction [8]. These 

studies suggest that SRIs might be beneficial in the treatment of autoimmune pathologies. Third, 

clinical case reports indicate that SRIs, when administered in high doses, may influence immune 

function. For instance, Reed and Glick report a reactivation of herpes simplex virus in patients 

receiving high doses of fluoxetine [19]. Also, a case of recurring sinusitis was associated with 

venlafaxine use [20]. 

The above mentioned papers indicate that SRIs might interfere with pathologically activated 

autoreactive T cells. Here, we investigated the role of SRIs in allo-antigen activated T cells in the 

course of acute GvHD. Acute GvHD after allogeneic haematopoietic stem cell transplantation 

(alloHSCT) is a cause of extensive morbidity and mortality. We used a murine MHC-matched, miHA-

mismatched bone marrow transplantation model to investigate whether fluoxetine could reduce 

GvHD. The MHC-matched, miHA-mismatched model was chosen in analogy with the human situation 

where over 50% of alloHSCT patients receive an HLA-matched graft [21]. In our study, fluoxetine was 
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found to significantly delay and reduce clinical symptoms, without interfering with the reconstitution 

of the hematopoietic compartment. An improvement in survival rate was also noted. Furthermore, 

the percentage of CD3+Vβ6+ T cells was significantly reduced by fluoxetine, consistent with an 

inhibitory effect of this compound on the expansion of alloreactive T cells. This leads to the 

assumption that fluoxetine, and possibly also other SRIs can have a beneficial effect on the outcome 

of acute GvHD.  

In our murine model, a 20 mg/kg fluoxetine dose was sufficient to delay and reduce clinical 

symptoms of GvHD. In comparison, fluoxetine doses used in mice to obtain an ‘antidepressive’ effect 

are around 10-18 mg/kg [22]. A single IP dose of 20 mg/kg fluoxetine in mice gives rise to a serum 

concentration around 4 µM, measured 30 min after administration [15]. Although plasma 

concentrations of SRIs in depressive patients are below 1 µM [15], SRIs are known to have a wide 

therapeutic-toxic range in humans and higher dosing may be achieved without serious adverse 

effects [23]. Therefore, plasma concentrations needed for immunomodulation are expected to be 

feasible.  

In conclusion, this study shows that fluoxetine can delay and reduce clinical symptoms of 

experimental GvHD, along with an inhibition of the expansion of alloreactive T cells. Data on T cells 

from healthy human subjects (chapter 3) show that this effect may be attributed to a direct anti-

proliferative and pro-apoptotic effect. Given the similar T cell immunosuppressive effects of other 

SRIs in vitro, the potential application of these compounds in GvHD should be investigated. Together 

with prior studies in EAE and CIA, our data from a GvHD mouse model support the exploration of the 

therapeutic value of SRI-induced T cell suppression in GvHD and other immune-mediated disorders. 

Moreover, the data underscore the need for further research into the potential immunomodulatory 

effects of the therapeutic use of SRIs in humans.  
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CHAPTER 7. GENERAL DISCUSSION AND CONCLUSIONS 

The research described in this thesis focused on the effects of SSRIs on the immune system. In the 

first part of this project, the effects of SSRIs on human peripheral T lymphocytes were characterized 

(chapter 3). Major functions of these cells within the body are 1) the ability to become activated 

when encountering an antigen, 2) the proliferation and differentiation into effector T cells and 3) the 

ability to commit ‘suicide’ through apoptosis when no longer needed or when responding to an 

inappropriate antigen (e.g. a self-antigen). In order to investigate the impact of SSRIs on these 

parameters, we isolated T lymphocytes from the blood of healthy volunteers. The lymphocytes were 

subsequently incubated with SSRIs and activated through triggering of the TCR, thereby mimicking 

the in vivo encountering of an antigen. We analyzed the effects of all clinically available SSRIs, namely 

paroxetine, fluoxetine, sertraline, fluvoxamine and citalopram. In addition, we also investigated the 

effect of venlafaxine, a mixed serotonin and noradrenaline reuptake inhibitor. All drugs were tested 

in different concentrations, thereby enabling us to identify possible concentration-dependent 

effects. T cell proliferation was analyzed with CFSE, a fluorescent dye that is distributed evenly over 

daughter cells upon mitosis and is thus decreasing in fluorescence with each cell division. Apoptosis 

was detected through annexin V and propidium iodide (PI) staining. With this method, a 

differentiation can be made between early apoptosis (annexin V positive and PI negative) and late 

apoptosis or necrosis (annexin V and PI double positive).  

The results obtained in these experiments pointed out that all tested SSRIs exerted 

immunosuppressive effects on T lymphocytes. A concentration-dependent suppressive effect was 

observed on T cell proliferation for all compounds tested (both SSRIs and SNRI), albeit in different 

concentration ranges. With respect to apoptosis, all SSRIs induced this form of programmed cell 

death, but not venlafaxine. Further, we demonstrated that SSRIs induce apoptosis preferentially in 

activated T cells. After 24h incubation with SSRIs, activated T lymphocytes were in a late phase of 

apoptosis as they stained annexin V and PI positive. In contrast, resting T cells are less susceptible to 

SSRI-induced apoptosis. This is an interesting property of SSRIs, as the selective targeting of activated 

T cells opens possibilities for the treatment of autoimmune diseases and other immune-mediated 

disorders where unwanted T cell activation occurs. Indeed, selective targeting of activated T cells 

provides a means of eliminating unwanted active T cells while at the same time preserving the 

resting T cell pool. The latter are thus still capable of mounting an immune response in case of 

infection or cancer at later stages. 
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Abovementioned results are in accordance with other research conducted on the in vitro effects of 

SSRIs on lymphocytes [1]. The added value of this study is the comparability of different SSRIs and 

one SNRI with respect to the anti-proliferative and pro-apoptotic effects on T lymphocytes in one 

experimental setup. Additionally, prior reports only focused on a small number of SSRIs, each with 

their own methods, patients and setups giving rise to several small scale comparisons but lacking a 

total overview. In addition, we did not use polyclonal mitogens to activate the T cells, but instead 

used magnetic beads coated with anti-CD3 and anti-CD28 antibodies. Whereas polyclonal mitogens 

such as concanavalin A and phytohaemagglutinin are a non-physiological method to induce T cell 

activation, the coated beads simulate the in vivo situation where an antigen-presenting cell makes 

contact with a T lymphocyte through presentation of an antigen on a MHC-molecule. In the in vivo 

situation, binding of the TCR to this MHC-antigen complex results in clustering of TCRs and formation 

of an ‘immunological synapse’ between an APC and a T cell. The same clustering is induced by the 

use of antibody-coated beads. Therefore, this method of activation is considered superior to 

polyclonal mitogens.  

The responsible mechanism for these observed in vitro effects of SSRIs on T lymphocytes is still 

unraveled. Two possible hypotheses were further investigated: 1) the expression of the serotonin 

transporter in T lymphocytes and 2) the interference of SSRIs with calcium signaling in response to T 

cell activation. The first hypothesis was based on the well-known inhibition of SERT activity by SSRIs 

in the central nervous system (chapter 4). SERT expression has been described in multiple cell types 

outside the central nervous system, including immune cells such as B lymphocytes, dendritic cells, 

macrophages and NK cells. Thus, we investigated whether T lymphocytes express SERT and whether 

upregulation or downregulation occurred in response to T cell activation. The underlying reasoning 

was that if the SERT expression level was different in activated versus resting T lymphocytes, this 

might explain the different susceptibility of both populations to SSRI-induced apoptosis. Although 

SERT expression in most cell types can be easily detected with classical methods such as RT-qPCR and 

western blotting, we experienced several technical difficulties to detect SERT in human T 

lymphocytes due to the low expression levels. On the mRNA level, we used ddPCR to allow for 

increased sensitivity and precision in comparison to RT-qPCR which was needed to detect the low 

levels of SERT mRNA present in the samples. mRNA was purified from resting and activated T cells 

from nine healthy volunteers and SERT mRNA could be detected in all of the samples. No significant 

differences in SERT expression were found between the resting and activated T lymphocytes. Thus, it 

can be concluded that transcription of the SLC6A4 gene is not affected by the process of T cell 

activation.  
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One aspect we turned our attention to is the possibility of other blood cells contaminating the 

samples. Previous research on SERT expression in lymphocytes was usually conducted on unpurified 

buffy coats after Ficoll density centrifugation. However, besides lymphocytes these buffy coats 

contain monocytes, dendritic cells and blood platelets and are thus not pure lymphocyte 

preparations. Therefore, detected SERT expression might be attributed to different cell types present 

in the samples and results should be interpreted with care. This problem has been notified by 

Beikmann et al. [2] who demonstrated that 5HT uptake was largely mediated by blood platelets 

present in the samples instead of the lymphocytes themselves. In order to exclude that SERT 

expression detected in our samples originated from other cell types than T lymphocytes, we 

performed a double T cell isolation thereby creating T cell samples with very high purity. In addition, 

we also analyzed the rest fractions containing all other cell types but T lymphocytes. Finally, we also 

analyzed SERT expression in a Jurkat human leukemic T cell line, which can be considered 100% pure. 

From these experiments, we concluded that SERT mRNA expression originated from the T 

lymphocytes and not from other cell types present in the blood, although one or more other cell 

types did express higher levels of SERT.  

On the protein level, extensive optimization was conducted to achieve a highly sensitive western 

blotting technique. Despite the attempts to increase the sensitivity of this technique, protein SERT 

expression was only detected in two of the eight tested lymphocyte samples. Presumably, inter-

individual differences in expression levels are at the basis of this discrepancy. Additionally, 

expression levels within individuals could change over time. Conclusions based on these experiments 

should therefore be interpreted with care, as they might not be representative for the entire 

population. Interestingly, we only detected SERT protein in activated T lymphocytes. Thus it appears 

that SERT protein is upregulated during T cell activation. These limited observations might point to a 

‘translational readiness’ where resting T lymphocytes already produce SERT mRNA, but translation is 

only induced after activation of the cells. Similar conclusions were drawn by Chamba et al. with 

respect to B lymphocytes [3]. They found SERT mRNA in both resting and activated B cells, but 

protein was upregulated only upon activation of the cells. As SERT protein and not mRNA is the 

functional form of this transporter, conclusions with respect to the impact of SSRIs should be based 

on the presence or absence of SERT protein in T lymphocytes. As our limited data show that SERT 

protein is upregulated in activated T cells, it seems likely to assume that SSRIs have a more 

pronounced effect on activated T cells because of the higher expression of SERT protein. Solid 

evidence to either include or exclude the SERT as a target for SSRIs in their immunosuppressive 

effects might be obtained using genetically altered mice either completely lacking SERT (SERT 
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knockout mice) or expressing a mutated version of SERT. Recently, a modified SERT knock-in mouse 

strain (SERT I172M) was developed that expresses a modified SERT protein with normal 5HT 

recognition and transport, but with a decreased sensitivity for antidepressants, including fluoxetine 

and citalopram [4]. The question whether or not SERT is involved in the immunosuppressive effects 

of SSRIs might be answered using this SERT I172M mouse model [5]. 

The second investigated hypothesis proposed that the immunosuppressive properties of SSRIs might 

be due to their capability to interfere with Ca2+ signaling in T lymphocytes (chapter 5). This 

hypothesis was based on the work performed by Edgar et al. in which they compared the 

immunosuppressive effects of SSRIs with ionophores [6, 7]. They concluded that fluoxetine 

modulated calcium influx in a similar way as ionophores, thereby causing an anti-proliferative effect. 

Unfortunately, Edgar et al. did not directly investigate the intracellular Ca2+ content, but instead 

based their conclusions on indirect evidence through comparison with ionophores. However, SSRIs 

have also been shown to affect Ca2+ signaling in a variety of other cell types, including neurons [8], 

astrocytes [9], microglia [10], osteosarcoma cells [11], platelets [12] and adrenal medulla PC12 cells 

[13, 14]. As Ca2+-mediated signaling transduction is an important step in T cell activation, we 

examined the impact of SSRIs on Ca2+ signaling in jurkat T lymphocytes. Jurkat T lymphocytes are a 

well-established model to study T cell activation [15] and were chosen instead of freshly isolated 

peripheral T lymphocytes because of practical reasons. From these experiments, we concluded that 

fluoxetine suppresses the increase in [Ca2+]i following T cell receptor activation in jurkat T 

lymphocytes in a concentration-dependent manner. We next examined whether the observed 

suppression was due to inhibition of Ca2+ release from the endoplasmic reticulum, or influx of Ca2+ 

through the plasma membrane. These experiments pointed out that fluoxetine inhibits both inositol 

trisphosphate and ryanodine receptor mediated release of Ca2+ from intracellular stores. No effects 

were seen on Ca2+ influx through CRAC channels in the plasma membrane. Finally, we demonstrated 

that the immunosuppressive effects of fluoxetine - under the form of decreased CD69 expression in 

response to TCR activation – can be mimicked by buffering of intracellular Ca2+ with BAPTA-AM. 

As we previously found that T lymphocytes express SERT and upregulate this transporter protein 

upon T cell activation, we next questioned whether the observed changes in Ca2+ signaling could be 

due to blockage of SERT. In order to provide an answer to this question, we performed competition 

experiments with a large excess 5HT. If inhibition of SERT accounts for the suppressive effect of 

fluoxetine on Ca2+ signaling, it could be expected that 5HT reverses this effect, as competition 

between fluoxetine and 5HT would occur for binding to SERT. However, the results of these 
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experiments showed no difference in Ca2+-suppressing effects of fluoxetine in the presence or 

absence of 5HT. Thus, it is unlikely that inhibition of SERT accounts for the effects fluoxetine exerts 

on Ca2+ signaling.  

In conclusion, we demonstrated that the immunosuppressive effects of SSRIs, at least for fluoxetine, 

can be explained by the inhibition of inositol trisphosphate and ryanodine receptor- mediated 

release of intracellular Ca2+, thereby impairing the necessary signaling transduction step in response 

to T cell receptor triggering and leading to T cell activation, proliferation and differentiation. 

Although human peripheral T lymphocytes express SERT, it is unlikely that the mechanism through 

which SSRIs induce immunosuppression is related to the blockage of SERT. Not only interference with 

Ca2+ signaling can explain the anti-proliferative effect of fluoxetine, it might also be involved in the 

pro-apoptotic effect as interference with ER Ca2+ stores has been reported to activate apoptotic 

pathways [16]. As SSRIs inhibit release of Ca2+ from ER stores, they might cause ER Ca2+ overload 

which is associated with increased apoptosis [16].   

Instead of directly interacting with the IP3R and RyR, it has been proposed that fluoxetine, being a 

highly lipophilic molecule, interacts with the membrane lipid bilayer and thereby influences the ion 

channel structure and function [14]. Furthermore, SSRIs have been shown to disturb lipid rafts, 

cholesterol and sphingolipid-rich microdomains in the plasma membrane that function as signaling 

transduction platforms [17]. As lipid rafts have been found to be important in TCR clustering after T 

cell activation [18] and many of the regulatory proteins and ion channels involved in Ca2+ signaling 

are situated in lipid rafts [19], it is possible that the observed effects of fluoxetine on Ca2+ release 

from intracellular stores are due to disturbance of the lipid raft organization. Although highly 

speculative, it is possible that interference with lipid raft structure and function is at the basis of 

several results described by different research groups regarding the underlying mechanism of SSRI-

induced immunosuppression. As described in chapter 1, others have found SSRIs to interfere with 

different signaling transduction pathways including cAMP, PKA and PKC pathways in lymphocytes [6, 

7, 20]. Since the importance of lipid rafts in the regulation of signaling transduction has recently been 

acknowledged [19], these results might as well relate to the capacity of SSRIs to interfere with and 

accumulate in lipid rafts. Furthermore, extensive crosstalk exists between cAMP and Ca2+ signaling 

[21] and an effect of fluoxetine on either one of these pathways might induce secondary changes in 

the other pathway. 
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One other possibility worthy of further investigation is the effect SSRIs exert on glucocorticoid 

receptor (GR) expression and function. Several reports have described increased GR expression, 

translocation and function in response to antidepressants [22]. Therefore, it is possible that SSRIs 

increase the sensitivity of T lymphocytes for the immunosuppressive effects of glucocorticoids 

through enhanced GR expression and function.   

From the abovementioned experiments, it is clear that SSRIs are capable of inducing T cell 

immunosuppression in vitro. Whether SSRIs are also successful in suppressing unwanted T cell 

activation in vivo, was tested in a murine bone marrow transplantation model for acute GvHD. This 

condition was chosen to explore the in vivo immunosuppressive effects of SSRIs because current 

treatment options for acute GvHD are inadequate. Corticosteroids form the golden standard therapy 

for acute GvHD, but these drugs can induce severe side effects such as increased infection risk, 

Cushing syndrome, diabetes, osteoporosis and myopathy [23]. Furthermore, steroid treatment 

results in complete remission in less than half of the patients [24], indicating that new treatment 

options are highly necessary. In comparison, SSRIs have a more beneficial side effect profile with 

nausea, diarrhea, sexual dysfunction, headache, dizziness, agitation and insomnia [25].  

The model used in this thesis is based on transplantation of bone marrow and spleen cells from 

MHC-matched, minor HC-mismatched C3H donors into lethally irradiated AKR recipients. In this 

model, immunologically competent donor cells mount an immune response towards recipient 

antigens presented by antigen-presenting cells, thereby causing acute GvHD. We investigated 

whether treatment with 20 mg/kg fluoxetine could suppress acute GvHD in this model. The results of 

these experiments are described in chapter 6. Fluoxetine significantly suppressed clinical scores of 

acute GvHD and improved survival of the mice. Importantly, these beneficial effects were reached 

without a negative impact on the engraftment of donor cells. Thus, the concern raised by Foley et al. 

that antidepressants could negatively impact graft fate due to increased prolactin levels does not 

hold stand for fluoxetine in our model [26]. With respect to the underlying mechanism, we found 

that percentages alloreactive Vβ6+ T lymphocytes in peripheral blood were significantly lower in 

fluoxetine treated animals than control mice. These data indicate that the beneficial effect of 

fluoxetine on GvHD is indeed associated with a reduced expansion of host-reactive T cells.  

In the past decades, it has become more and more clear that hematopoietic stem cell transplantation 

is a successful therapy for leukemia not only because of the replacement of the blood forming 

compartment, but also because of the anti-leukemia effect that is executed by the graft [27]. 

However, GvHD and graft-versus-leukemia effect often go hand-in-hand and are at least in part 
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mediated by the same effector cells and target antigens [27]. Whereas fluoxetine has been shown to 

suppress GvHD, the impact of this drug on the graft-versus-leukemia effect has not been 

investigated. Therefore, further research will be necessary to evaluate whether the anti-leukemia 

effect is maintained during SSRI therapy. Extension of the existing data in the murine BMT model to 

evaluate the effect of fluoxetine on the graft-versus-leukemia effect, as well as further 

characterization of the immunological changes induced by fluoxetine in this model is therefore 

desirable. 

An important issue in the consideration of SSRIs as a novel class of immunosuppressants is the 

possibility to administer high enough doses to achieve an optimal immunosuppressive effect. There 

is a considerable difference between the SSRI concentrations that are reported to exert 

immunosuppressive effects in vitro, and the ones found in plasma of depressed patients. 

Concentrations used in vitro for immunosuppressive effects range from 1-20 µM for paroxetine, 

fluoxetine and sertraline and even higher for the other SSRIs. These concentrations are considerably 

higher than plasma concentrations found in depressed patients, which range from 10 - 600 ng/ml or 

0.03 – 1.6 µM [28, 29]. However, various factors contribute to the reasoning that SSRIs might still be 

suitable for immunomodulation in vivo. First, SSRI concentrations might vary considerably between 

organs and lymphocytes may be exposed to high enough SSRI concentrations in peripheral 

compartments instead of in the blood. Uhr et al. determined plasma and organ concentrations of 

SSRIs after subcutaneous injection in mice and found 10-fold higher concentrations in spleen 

compared to plasma [30]. Thus, lymphocytes might be exposed to SSRI-concentrations high enough 

for immunomodulation in the spleen while plasma concentrations can be kept low. 

Second, evidence exists that doses currently used in patients already exert immunomodulatory 

effects. For instance, Reed and Glick reported reactivation of herpes simplex virus in patients 

receiving high doses of SSRIs [31]. A case of recurring sinusitis was reported in a patient suffering 

from obsessive-compulsive disorder and treated with high doses of venlafaxine [32]. Thus, the 

concentrations needed to establish an immunosuppressive effect in vitro might not correlate with 

those exerting an immunosuppressive effect in vivo.  

Third, the doses that exert immunomodulatory effects in some of the animal experiments give rise to 

plasma concentrations within the same range as concentrations found in patients. Chronic daily 

administration of 10 to 18 mg/kg fluoxetine orally given to mice gives rise to plasma concentrations 

within the same range as those found in patients (100 – 700 ng/ml) [33]. Several of the animal 

experiments analyzing the effect of fluoxetine on autoimmune diseases and cancer used doses below 
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20 mg/kg/day and reported significant changes in immune function and symptoms [34-36]. Others 

reported doses below 20 mg/kg/day to already exert small changes in immune function, but higher 

doses were needed in order to reach significance [36].  

Finally, if higher dosing would be necessary, this may be achieved without severe adverse effects. 

SRIs are known to have a wide therapeutic-toxic range in humans and higher dosing may be achieved 

without serious adverse effects [37]. Doses two to three times higher than the ones used for 

treatment of depression are already being subscribed for other disorders, such as obsessive 

compulsive disorder without unacceptable side effects [38]. As most SSRIs have a non-linear kinetic 

profile, higher dosing might result in a disproportional increase in plasma concentration. This was 

confirmed for fluoxetine in mice, where a chronic dose of 25 mg/kg per day gave rise to a plasma 

concentration 3.15 times higher than the plasma concentration obtained after a chronic dose of 18 

mg/kg (the latter dose gives rise to a plasma concentration within the same range as those found in 

patients) [33].  

Nevertheless, one aspect that needs further attention is the potentially increased risk to commit 

suicide under treatment with SSRIs. There is limited evidence that antidepressant treatment might 

elevate the risk of suicide in depressed patients, especially at the start of treatment [39]. When using 

SSRIs as immunosuppressants in patients suffering from autoimmune disorders or GvHD, in particular 

when concomitant depression is present, the potentially increased risk of suicide should be 

considered. In undepressed patients, this seems less to be an issue, as the increased suicide risk with 

antidepressants is associated with the underlying depression [39]. Thus, although immunoregulatory 

application of SSRIs will probably require higher doses than the ones currently used for treatment of 

major depressive disorder, there are indications that achieving the needed plasma concentrations 

may be feasible without competing against unacceptable side effects. 

The implications of the results described in this thesis are two-fold: on the one hand, SSRIs might be 

reinvented as a novel class of immunosuppressants and alleviate symptoms in a variety of (auto-) 

immune disorders. On the other hand, the observation that SSRIs induce immunosuppressive effects 

raises concern on the extensive clinical use of these drugs for the treatment of psychiatric disorders. 

As explained above, higher doses will probably be needed to obtain an optimal immunosuppressive 

effect in the context of (auto-)immune disorders, but immunosuppression has been described at 

doses already being prescribed in the clinic. Are we inducing immunosuppression in a considerable 

part of the population? What are the consequences for susceptibility to infection, efficacy of 

vaccination, spreading of diseases? No extensive research has been conducted to answer these 
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questions, and further investigation is highly desirable. To partially meet this need, we have set up a 

small scale clinical pilot study in which we will evaluate the efficacy of hepatitis B vaccination in 

obsessive compulsive disorder patients receiving 40-60 mg/day paroxetine. Whereas Denys et al. did 

not find any significant changes in immune parameters in these patients in the absence of an 

immunological challenge [40], we attempt to analyze whether SSRI-treated patients are still capable 

of mounting a sufficient immune response to an immunological challenge, under the form of a 

hepatitis B vaccine.  

The research conducted in this PhD thesis can be considered as an example of ‘drug repositioning’. 

Whereas SSRIs have been used in clinical practice for decades in the treatment of psychiatric 

disorders, their potential in the treatment of immunological disorders is only now being discovered. 

The major advantage of drug repositioning is that phase I clinical trials, which are intended to 

characterize the drug’s safety profile, have already been performed and an extensive experience in 

the clinical practice has been build up. Accordingly, development of a repositioned drug is cheaper 

and holds less risk of failure due to unexpected and unacceptable toxicity in comparison to a novel 

drug. As SSRIs have already proven to possess a beneficial side effect profile, it should be possible to 

conduct a small scale phase II pilot study to assess the effects of SSRIs in patients suffering from 

acute GvHD.  

Overall, the research described in this thesis contributes to the growing evidence that SSRIs exert 

immunomodulatory effects which might be useful in the treatment of a wide variety of immune-

mediated diseases. In autoimmune disorders such as rheumatoid arthritis and multiple sclerosis, the 

first clinical data have been gathered and results of these pilot studies are promising. With growing 

evidence in the future, SSRIs will hopefully find their way to the clinic as a novel class of 

immunosuppressants. 

 

“The most fruitful basis of the discovery of a new drug is to start with an old drug.” - James Black, 

Nobel laureate 1988.  
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SUMMARY  

Selective serotonin reuptake inhibitors (SSRIs) are among the most prescribed drugs worldwide. They 

belong to the class of antidepressants and are used in the treatment of depression, as well as in 

anxiety disorders such as obsessive-compulsive disorder. Since their marketing, SSRIs have been 

shown not only to induce changes in the central nervous system, but also in the immune system. The 

effects of SSRIs on immunity are, however, not yet fully known. Therefore, the first objective of this 

thesis was to characterize the immunomodulatory effects of SSRIs. More specifically, we studied the 

influence of paroxetine, fluoxetine, sertraline, citalopram, fluvoxamine and venlafaxine on the 

proliferation and viability of human T lymphocytes. The results of these experiments are described in 

Chapter 3. Whereas the first five drugs belong to the class of SSRIs, venlafaxine is a mixed serotonin 

and noradrenaline reuptake inhibitor (SNRI). The latter was included in the study because it has 

equally been associated with immunological alterations. The experiments were performed in vitro 

using T lymphocytes isolated from the blood of healthy volunteers. All tested compounds were found 

to suppress the proliferation of T lymphocytes in a concentration-dependent manner. Furthermore, 

we found that all SSRIs reduce the viability of T lymphocytes by induction of apoptosis. Venlafaxine, 

the only tested SNRI, had no effect on T cell viability. Both the anti-proliferative and apoptotic effects 

were concentration-dependent. Furthermore, activated T lymphocytes were found to be more 

sensitive to SSRIs than resting T lymphocytes. In the context of immunological diseases, this finding 

implies that SSRIs might be able to suppress unwanted T cell activation without affecting resting T 

lymphocytes. Therefore, when SSRIs would be administered to patients with an immunological 

disorder, e.g. an autoimmune disease or in case of rejection after transplantation, it would in theory 

be possible to suppress only the activated T lymphocytes - which are responsible for the occurrence 

of the disease. At the same time resting T lymphocytes are left untouched thus remaining capable of 

responding to infection at a later stage.  

In the second part of this work the underlying mechanism responsible for the immunosuppressive 

effects of SSRIs was studied. The first investigated hypothesis was related to the known mechanism 

of action of SSRIs in the brain. SSRIs block the uptake of serotonin (5HT), a neurotransmitter, in the 

presynaptic neuron by inhibition of the serotonin transporter (SERT), a protein responsible for the 

uptake of 5HT in the cell. Since conflicting evidence exists on whether human T lymphocytes express 

SERT, we decided to first determine whether this protein was present in human T lymphocytes. In 

order to get a complete picture on the expression of SERT in T lymphocytes, the experiments were 

performed at both messenger RNA (mRNA) and protein level. Because the activation state of a T 
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lymphocyte might be important for the expression of SERT, the experiments were carried out on 

both resting and activated T lymphocytes. In addition, differences in expression levels between 

activated and resting T cells might provide an answer on why especially activated T lymphocytes are 

suppressed by SSRIs. Again experiments were carried out on T lymphocytes isolated from the blood 

of healthy volunteers. The results of this research are described in Chapter 4 and confirm that T 

lymphocytes express SERT both at the mRNA and protein level, although the expression levels were 

low. SERT mRNA was found in both resting and activated T lymphocytes, and no statistically 

significant differences were found between the expression levels in both groups. At the protein level, 

SERT could be detected only in activated T lymphocytes. These results might indicate that there 

exists a "translational readiness" for SERT: resting T lymphocytes already produce SERT mRNA, but 

translation of this mRNA into a protein is induced only when the T lymphocyte is activated. The 

observation that activated T cells express higher levels of SERT protein than resting T lymphocytes 

might explain why this population is more sensitive to the apoptotic effects of SSRIs.  

A second hypothesis regarding the molecular mechanism at the basis of the immunosuppressive 

effects of SSRIs concerns an important signal transduction pathway, more specifically the calcium 

signaling pathway. This pathway is essential in T cell activation, and provides the intermediate step 

between the recognition of an antigen by the T cell receptor and the proliferation and differentiation 

of the T lymphocyte. As an effect of SSRIs on calcium signaling had already been reported in several 

other cell types, we hypothesized that SSRIs might disturb this pathway, and thereby impaired 

optimal T cell activation resulting in decreased proliferation. Further, interference with calcium 

signaling might also activate apoptotic pathways. Experiments to investigate this potential 

mechanism were performed using a human leukemic T cell line, a well-known model for T cell 

activation, which was chosen for practical reasons instead of peripheral blood T cells. Fluoxetine was 

used in these experiments as a model SSRI. The results of this study, as described in Chapter 5, 

indicate that fluoxetine suppresses the increase in the cytoplasmic Ca2+ concentration after T cell 

receptor activation. This increase is caused by both release of Ca2+ from the endoplasmic reticulum 

(ER), and influx of Ca2+ through the cell membrane (capacitative calcium entry). Further experiments 

showed that fluoxetine inhibits the release of Ca2+ from the ER when induced by inositol 

trisphosphate (IP3) or ryanodine receptor activation. The capacitative calcium entry was not affected 

by fluoxetine. As we previously showed that T lymphocytes express SERT, we further investigated 

whether the observed inhibition of Ca2+ release from the ER is due to the blockade of 5HT uptake 

through SERT. From competition experiments with 5HT, it was concluded that the inhibition of Ca2+ 

release from the ER by fluoxetine is not related to inhibition of 5HT uptake through SERT. Finally, we 
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confirmed that buffering cytoplasmic Ca2+ changes with BAPTA-AM leads to the suppression of 

activation marker expression (CD69) in T cells, an effect that was also observed with fluoxetine. In 

conclusion, we demonstrated that the immunosuppressive effects of fluoxetine likely are related to 

the inhibition of IP3 and ryanodine receptor- mediated release of Ca2+ from the ER during T cell 

activation.  

In the last part of this work, we investigated whether SSRIs may be used as immunosuppressive drugs 

in the prevention and/or treatment of acute graft-versus-host disease (GvHD). Being a major 

complication of hematopoietic stem cell transplantation, GvHD is a major source of morbidity and 

mortality that limits the applications of this life-saving therapy. In order to study the effect of 

fluoxetine on acute GvHD, we made use of a murine bone marrow transplantation model for acute 

GvHD in which the donors and recipients were different in the expression of minor histocompatibility 

antigens (miHA). Donors and recipients were matched for major histocompatibility complex antigens 

(MHC), which is also in the clinic the most common situation. The choice for fluoxetine was based on 

two reasons: its immunosuppressive effects at relatively low doses which came to light in the in vitro 

experiments, and because there was the most evidence that this SSRI showed immunosuppressive 

activity in animal models of other (auto-) immune disorders. The results of this study, described in 

Chapter 6, demonstrate that fluoxetine suppresses the symptoms of acute GvHD and improves the 

survival after transplantation. Furthermore, no adverse effects were observed for fluoxetine on 

engraftment of the transplanted stem cells. The improvement of clinical symptoms as a result of 

fluoxetine treatment was associated with a suppression of allo-reactive T cells (the cells responsible 

for the development of acute GvHD) in the blood of the experimental animals. From this study, it was 

concluded that fluoxetine can exert a favorable effect on acute GvHD in mice, and that further 

investigation of the immunological alterations induced by fluoxetine in mice as well as the 

applicability of fluoxetine as an immunosuppressant in acute GvHD in the clinical context is desirable.  

In Chapter 7, the findings of this work and the applicability of SSRIs as immunosuppressants in the 

clinical context are discussed. In particular, attention is paid to whether sufficiently high plasma 

concentrations can be achieved to induce the desired immunosuppression. Moreover, the impact of 

this research on the current application of SSRIs in the treatment of psychiatric disorders is also 

discussed, as immunosuppression may also be introduced unintentionally in these patients. 
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Selectieve serotonine heropname inhibitoren (SSRIs) behoren wereldwijd tot de meest 

voorgeschreven geneesmiddelen. Ze maken deel uit van de klasse der antidepressiva en worden 

gebruikt in de behandeling van depressie, alsook bij angststoornissen zoals obsessief-compulsief 

gedrag. Hoewel het bijwerkingenprofiel van SSRIs over het algemeen als zeer gunstig wordt 

beschouwd, is de voorbije jaren uit onderzoek gebleken dat deze geneesmiddelen een invloed 

uitoefenen op het immuunsysteem. De effecten van SSRIs op de immuniteit zijn echter nog niet 

volledig gekend. Daarom was de eerste doelstelling van dit onderzoek om de immunologische 

effecten van SSRIs in kaart te brengen. Meer bepaald werd de invloed onderzocht van paroxetine, 

fluoxetine, sertraline, citalopram, fluvoxamine en venlafaxine op de proliferatie en leefbaarheid van 

humane T lymfocyten. De resultaten van deze experimenten worden beschreven in hoofdstuk 3. 

Daar waar de eerste vijf opgesomde geneesmiddelen behoren tot de SSRIs, is venlafaxine in feite een 

gemengde serotonine en noradrenaline heropname inhibitor (SNRI). Deze laatste werd eveneens 

getest, omdat uit onderzoek gebleken is dat ook dit geneesmiddel een invloed uitoefent op de 

immuniteit. Deze experimenten werden in vitro uitgevoerd op T lymfocyten die werden geïsoleerd 

uit het bloed van gezonde vrijwilligers. Uit de resultaten kon worden afgeleid dat alle geteste 

geneesmiddelen de proliferatie van T lymfocyten onderdrukken op een concentratie-afhankelijke 

manier. Bovendien werd vastgesteld dat alle SSRIs de leefbaarheid van T lymfocyten verlagen door 

geprogrammeerde celdood (apoptose) te induceren. Venlafaxine, de enige geteste SNRI, had geen 

invloed op de leefbaarheid van T lymfocyten. Ook deze effecten waren concentratie-afhankelijk. 

Bovendien bleek uit deze experimenten dat geactiveerde T lymfocyten gevoeliger waren voor de 

effecten van SSRIs dan rustende T lymfocyten. Deze laatste observatie is zeer interessant in het kader 

van immunologische aandoeningen omdat dit betekent dat SSRIs in staat zijn geactiveerde T 

lymfocyten te onderdrukken zonder de rustende T lymfocyten aan te tasten. Wanneer SSRIs dus 

zouden worden toegediend aan patiënten met een immunologische aandoening, bijvoorbeeld een 

auto-immuunziekte of bij afstoting na transplantatie, zou het in theorie mogelijk zijn om enkel de 

geactiveerde T lymfocyten – die verantwoordelijk zijn voor het optreden van de ziekte – te 

onderdrukken. Tegelijkertijd worden de rustende T lymfocyten ongemoeid gelaten, zodat deze in 

staat blijven om te reageren tegen infecties in een later stadium.  

In het tweede gedeelte van dit onderzoek werd dieper ingegaan op het onderliggend mechanisme 

waardoor de immunosuppressieve effecten van SSRIs tot stand komen. Een eerste hypothese 

dewelke onderzocht werd, houdt verband met het gekende werkingsmechanisme van SSRIs in de 
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hersenen. Daar verhinderen SSRIs de opname van serotonine (5HT), een neurotransmitter, in het 

presynaptisch neuron. In het bijzonder blokkeren SSRIs de serotonine transporter (SERT), een eiwit 

dat instaat voor de opname van 5HT in de cel. Aangezien er in de literatuur nog geen consensus 

bereikt was of humane T lymfocyten de SERT tot expressie brengen, werd besloten eerst na te gaan 

of dit eiwit wel aanwezig was in humane T lymfocyten. Om een volledig beeld te krijgen van de 

aanwezigheid van de SERT in T lymfocyten, werd de bepaling uitgevoerd op twee niveaus: enerzijds 

werden boodschapper RNA (mRNA) gehalten bepaald, anderzijds werd het eiwit zelf gedetecteerd. 

Omdat de activatiestatus van een T lymfocyt bepalend kan zijn voor het tot expressie brengen van 

allerlei eiwitten, werden de experimenten uitgevoerd op zowel rustende als geactiveerde T 

lymfocyten. Bovendien zouden verschillen in SERT expressieniveaus tussen geactiveerde en rustende 

T cellen een verklaring kunnen bieden waarom vooral geactiveerde T lymfocyten door SSRIs worden 

onderdrukt. Opnieuw werd gewerkt met T lymfocyten die geïsoleerd werden uit het bloed van 

gezonde vrijwilligers. De resultaten van dit onderzoek worden beschreven in hoofdstuk 4. De 

resultaten van dit onderzoek bevestigen dat T lymfocyten de SERT tot expressie brengen, en dit 

zowel op mRNA als eiwit niveau. Er dient echter te worden opgemerkt dat de expressieniveaus laag 

waren. Er werd SERT mRNA teruggevonden in zowel rustende als geactiveerde T lymfocyten, en er 

werden geen statistisch significante verschillen gevonden tussen de expressieniveaus in beide 

groepen. Op eiwitniveau kon de SERT enkel gedetecteerd worden in geactiveerde T lymfocyten. Dit 

zou erop kunnen wijzen dat er een ‘translationele paraatheid’ bestaat voor dit eiwit: rustende T 

lymfocyten produceren reeds SERT mRNA, maar translatie van dit mRNA naar een eiwit wordt pas 

geïnduceerd wanneer de T lymfocyt geactiveerd wordt. De observatie dat geactiveerde T cellen meer 

SERT eiwit tot expressie brengen dan rustende T lymfocyten, zou kunnen verklaren waarom deze 

populatie gevoeliger is voor de apoptotische effecten van SSRIs.  

Een tweede hypothese omtrent het moleculaire mechanisme aan de basis van de 

immunosuppressieve werking van SSRIs betreft de interferentie met een belangrijke 

signaaltransductie pathway, nl. de calcium signalisatie. Deze pathway is van zeer groot belang bij T 

cel activatie, en zorgt ervoor dat herkenning van een antigeen door de T cel receptor uiteindelijk leidt 

tot de proliferatie en differentiatie van de T lymfocyt. Bovendien zou het verstoren van de calcium 

signalisatie ook kunnen leiden tot activatie van apoptose pathways. Deze hypothese kwam tot stand 

doordat een invloed van SSRIs op calcium signalisatie reeds werd gerapporteerd in verscheidene 

andere celtypes. Deze experimenten werden uitgevoerd op een humane leukemie T cellijn, een 

gekend model voor T cel activatie dat omwille van praktische redenen werd gekozen in plaats van uit 

het bloed geïsoleerde T cellen. Fluoxetine werd in deze experimenten getest als model SSRI. De 
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resultaten van dit onderzoek, beschreven in hoofdstuk 5, wijzen erop dat fluoxetine de toename van 

de intracellulaire calcium concentratie na T cel receptor activatie onderdrukt. Deze stijging wordt 

veroorzaakt door enerzijds vrijstelling van calcium uit het endoplasmatisch reticulum (ER), en 

anderzijds opname van calcium doorheen de celmembraan. Verdere experimenten toonden aan dat 

fluoxetine de vrijstelling van calcium vanuit het ER blokkeert, wanneer dit geïnduceerd wordt door 

inositol trisfosfaat (IP3) of ryanodine receptor activatie. De opname van calcium doorheen de 

celmembraan werd niet beïnvloed door fluoxetine. Verder werd onderzocht of de geobserveerde 

inhibitie van calcium vrijstelling vanuit het ER te maken had met de blokkade van 5HT opname 

doorheen de SERT. Uit competitie experimenten met 5HT kon besloten worden dat de inhibitie van 

calcium vrijstelling uit het ER door fluoxetine niet gerelateerd is aan de inhibitie van 5HT opname 

doorheen de SERT. Tenslotte werd bevestigd dat het bufferen van intracellulair calcium met BAPTA-

AM leidt tot het onderdrukken van activatiemerker expressie (CD69) in T lymfocyten, een effect dat 

ook met fluoxetine werd geobserveerd. Hieruit kan dus besloten worden dat de 

immunosuppressieve effecten van fluoxetine waarschijnlijk gerelateerd zijn aan de inhibitie van IP3- 

en ryanodine-receptor gemedieerde vrijstelling van calcium uit het ER bij T cel activatie. 

In het laatste gedeelte van dit onderzoeksproject werd onderzocht of SSRIs kunnen worden 

aangewend als immunosuppressiva in de preventie en/of behandeling van acute graft-versus-host 

ziekte (GvHD). Deze aandoening kan optreden na hematopoietische stamceltransplantatie en is een 

belangrijke bron van morbiditeit en mortaliteit die de toepassingen van deze levensreddende 

therapie beperkt. Er werd gebruik gemaakt van een beenmergtransplantatie muismodel voor acute 

GvHD waarbij de donoren en ontvangers verschilden in de expressie van mineure 

histocompatibiliteitsantigenen (miHA). De majeure histocompatibiliteitscomplex antigenen (MHC) 

waren in donors en ontvangers dezelfde, hetgeen ook in de kliniek de meest voorkomende situatie 

is. Als vertegenwoordiger van de groep SSRIs werd opnieuw voor fluoxetine gekozen. Enerzijds was 

deze keuze gebaseerd op de immunosuppressieve effecten die bij de in vitro experimenten aan het 

licht kwamen en die als zeer gunstig werden beschouwd, anderzijds was voor fluoxetine het meeste 

bewijs voorhanden dat dit geneesmiddel immunosuppressieve werking vertoonde in diermodellen 

van andere (auto-)immuun aandoeningen. De resultaten van dit onderzoek, beschreven in hoofdstuk 

6, tonen aan dat fluoxetine de symptomen van acute GvHD kan onderdrukken en de overleving na 

transplantatie verbetert. Bovendien werd geen nadelige invloed teruggevonden van fluoxetine op de 

innesteling van de getransplanteerde stamcellen. De verbetering van klinische symptomen onder 

invloed van fluoxetine ging gepaard met een onderdrukking van alloreactieve T cellen (de cellen 

verantwoordelijk voor het ontstaan van acute GvHD) in het bloed van de proefdieren. Uit dit 
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onderzoek werd besloten dat fluoxetine een gunstige invloed uitoefent op acute GvHD (althans in 

muizen) en dat verder onderzoek naar de immunologische wijzigingen die fluoxetine induceert in het 

muismodel, alsook de toepasbaarheid van fluoxetine als immunosuppressivum bij acute GvHD in de 

klinische context wenselijk is. 

In hoofdstuk 7 worden de bevindingen van dit onderzoek en de toepasbaarheid van SSRIs als 

immunosuppressiva in de klinische context besproken. In het bijzonder wordt aandacht besteed aan 

de vraag of voldoende hoge plasma concentraties kunnen bereikt worden om de gewenste 

immunosuppressie te induceren. Bovendien wordt hier ook besproken wat de impact is van dit 

onderzoek voor de huidige toepassing van SSRIs, nl. in de behandeling van psychiatrische 

aandoeningen. Immers, ook in deze patiënten wordt mogelijk een onderdrukking van het 

immuunsysteem geïntroduceerd.   
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Veerle te mogen zijn), Saskia (de vrolijkste persoon die ik ken), Petra, Sabine, Sylvie, Delphine, 
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Evelien en Evelyne. Fijn om met jullie samengewerkt te hebben! Ook Astrid, Nadine, Leen en Inge 

een welgemeende dankjewel om de administratieve taken uit onze handen te nemen.  

Dat brengt me tenslotte bij een hoop mensen die de voorbije vijf jaar mijn mentale gezondheid op 

pijl hielden: merci aan ‘de farma’, de vriend(-innet)jes uit Brussel en uit Gent, om me met regelmaat 

te entertainen op week- en weekendavonden. We hebben samen al heel wat mijlpalen bereikt, 

sneeuwwitte bergen getrotseerd, kleine en grote feestjes gebouwd, en als het van mij afhangt blijven 

we dat doen tot we oud en versleten zijn! Merci om interesse te tonen voor wat ik doe, en om mijn 

wellicht soms ietwat onverstaanbaar antwoord aan te horen op de vraag: ‘en wat onderzoek je nu 

weer precies?’ ;-) Ik hoop dat ik jullie daar vanavond voor eens en voor altijd een verstaanbaar 

antwoord op zal geven! Ook een special thanks aan Sofie, om al zolang mijn grote steun en 

toeverlaat te zijn, om met me te komen vieren na mijn interne verdediging en om me meter te laten 

worden van jouw zoontje!  

Dat brengt me tenslotte bij ‘the inner circle’: mama & papa, Peter, Jan, Marlies en kleine Jonas: 

simpelweg dankjewel om mijn familie te zijn. Jullie hebben me gemaakt tot wie ik ben, en zonder 

twijfel heb ik de wetenschappelijke ‘neus’ van jullie meegekregen. Een extra merci aan mama, om 

me de liefde voor het apothekersvak bij te brengen (hoe oud was ik toen ik mijn eerste gelulen 

mocht maken?) en me een extra duwtje in de rug te geven om aan dit doctoraat te beginnen. Je had 

gelijk, het was een kans die ik niet mocht laten schieten, en ook nu kan ik nog alle richtingen uit!  

Last but not least, diegene die me het beste kent van allemaal – Goemé: merci voor de 

onvoorwaardelijke steun, de ontelbare duwtjes in de rug, de andere invalshoek, de afleiding, het 

ontkurken van ‘de’ fles champagne en de zoveel andere bijdragen die jij geleverd hebt aan dit 

doctoraat. Maar nog veel meer merci voor alles wat je voor mij betekent daarbuiten. Binnen enkele 

dagen zijn we tien jaar samen, en in tegendeel tot wat weleens beweerd wordt – alfabetische liefde 

in het practicum, geen zin om het ver te zoeken? – zou ik ook voor jou gekozen hebben en nog steeds 

kiezen als je aan de andere kant van de aardbol (Eeklo bijvoorbeeld) elektrieker geworden was. En 

liefje, helaas, jouw gloriedagen zijn voorbij: het wordt terug gelijkstand wat het aantal diploma’s 

betreft! ;-) 

 

Veerle 


