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I Foreword 

People fƌeƋueŶtly ask ǁhat I haǀe ďeeŶ studyiŶg foƌ so ŵaŶy yeaƌs aŶd ŵy aŶsǁeƌ is: ͚Cypeƌ 

gƌasses͛ ;iŶ DutĐh: CypeƌgƌasseŶͿ! AŶd they ƌeply: ͚Uh, Supeƌ gƌasses?͛ Well, ͚supeƌ͛ they aƌe iŶdeed, 

what a great plant family to study and what an intriguing evolution they went through! I am very 

proud to be able to present this PhD study on sedges. However, this piece of work would not have 

been there in the current form, without the help of many colleagues, family and friends: 

My foremost thanks go to Paul Goetghebeur, supervisor of this thesis, who at first gave me 

the opportunity to make my master thesis on the sedges of Rwanda and Burundi. Paul, thank you for 

your contagious enthusiasm for botany and Cyperaceae! I also want to thank you for the opportunity 

to start and continue for a second time this PhD project on Pycreus for many years, for your open 

mindedness and belief in the creativity of your research team, for your patience and support.  

Special thanks go to the rather small, but very collaborative international cyperologists 

community. First of all to our ”Cyperus teaŵ” iŶ GheŶt: KeŶŶeth Bauteƌs, Wim Huygh and Isabel 

Larridon. I͛ŵ ƌeally pƌoud ǁe ŵaŶaged to pƌoduĐe so ŵaŶy papeƌs the past yeaƌs. Isabel, thanks for 

your work on the nomenclatural and phylogeny papers and for the reading. Wim, thanks for your 

collegiality and cooperation on the molecular work. Kenneth, thanks for your help with the lab work, 

your input for the phylogeny paper and for continuing your research on sedges! Alex Vrijdaghs from 

K.U.Leuven was most helpful in sharing his experience and data for the ontogeny papers. Alex, I also 

want to thank you for the many hours we spend behind the SEM, our long discussions on sedge 

ontogeny, your very critical notes that lifted our papers to the next level! Muasya, many thanks for 

your input  on the molecular phylogenetic part, for the many silica gel samples and for sharing your 

field work experience, especially in Madagascar. Dave Simpson, thank you for your positive 

comments on our papers and for warmly welcoming us in Kew. 

Thank you also to all of my former colleagues at Gent University, especially: Pieter Asselman, 

Elke Bellefroid, Peter Chaerle, Leander Depypere, Yannick De Smet, Kristof de Vos, Bƌaŵ D͛hoŶdt, 

Carolina Granados Mendoza, Rosette Heynderickx, Bieke Lybeer, Jorinde Nuytinck, Eduardo Cirez 

Rodriguez, Dirk Rosseel, Marie-Stéphanie Samain, Dirk Stubbe, Kobeke Van de Putte, Liesbeth 

Vanderschaeve, Mieke Verbeken, Ronald Viane, Marleen Vlaeminck, Adelin Van Heuverswyn and the 

many others. Thanks for your friendship, positive collaboration on both research and student labs, 

the conversations during the breaks (my apologies for being absent from most of those breaks), so 

many tips & tricks on the various research methods and eƋuipŵeŶt͛s, for the glimpses into the 

botanical world outside of sedges, …  
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I am grateful to all the people who gave me opportunities to collaborate on so many other 
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Camelbeke, Anna Paula Prata, Carolina Fedon, Marie-Stéphanie Samain, Guido Mathieu, Sandra 
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I want to express my gratitude to all the people who made possible the expeditions to the 

Philippines, Cameroon and Madagascar. Special thanks go to Baltazar Sabulao (Tatay) for his help 

with the collection of sedges in the Philippines. Thank you to the organizers of the two AETFAT 

congresses which coincided with the Africa expeditions I took part off. Thank you also to the staff of 

Limbe botanical gardens and the National Herbarium of Yaounde in Cameroon for the organization 

and assistance of the field work in Cameroon. I want to thank also the people from Parc Botanique et 

Zoologique de Tsimbazaza for their collaboration and support during the Malagassy fieldwork.  Thank 
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II Abstract 

Cypereae form one of the largest and most complex tribes of the sedge family (Cyperaceae).  

Recently, two clades have been revealed within the tribe, the largest of which includes the giant 

genus Cyperus and its closest allies. However, thirteen genera of the generally accepted classification 

of Goetghebeur (1998) appear to be nested within Cyperus. The taxonomic status of many of these 

taxa has been under discussion since they are based on different combinations of a limited set of 

derived characters. Pycreus, the largest of these segregate genera, is characterised by laterally 

compressed dimerous pistils of which the derivation from the general trimerous situation was not 

yet understood. It shares this pistil with Kyllinga and Queenslandiella that both are, as is Pycreus, 

embedded in the Cyperus clade which uses C4 photosynthesis. 

The recent insights from molecular phylogenetics make a reevaluation possible of the 

taxonomic status of the thirteen different segregate genera of Cyperus and of the taxonomic value of 

the characteristics that have been used to delimitate these taxa. This is currently tackled in a joint 

international research effort, using a combination of molecular phylogenetics, ontogeny, anatomy 

and morphology, to understand evolutionary patterns in Cyperaceae and to build a modern 

classification of sedges. This research strategy is situated on three taxonomic levels: family to tribal 

level (macro-scale), tribal to generic level (meso-scale) and infrageneric level (micro-scale). The 

current thesis is embedded in this international research context and focusses mainly on meso-scale 

objectives (C4 Cyperus and the position and taxonomic state of its segregate genera, including 

Pycreus) and micro-scale objectives (the infrageneric taxonomy of Pycreus). 

At first, a complete nomenclatural survey is presented of all generic and subdivisional names 

that have been published for the taxa now included in the Cyperus clade (around 350 names), along 

with an evaluation of their validity, legitimacy and priority. Types are indicated and where necessary 

lectotypes are designated. This nomenclatural survey serves as a base for the selection of 

representative taxa in the molecular, ontogenetic, anatomical and morphological studies. In addition 

it forms an essential tool when building a modern revision for the clade. In the current thesis only 

names for taxa in which Pycreus species have been placed are included. 

Next, to be able to reevaluate the taxonomical value of derived pistils in the Cyperus clade, 

especially the laterally compressed dimerous pistils of Pycreus, an elaborate ontogenetic study of 

Pycreus and Cyperus species was performed. This study shows that both taxa follow the general 

ontogenetic patterns of spikelets and flowers found throughout Cyperoideae. In addition, the 

ontogeny and anatomy of the different types of pistils was reviewed with addition of new 

ontogenetic and anatomical data. These demonstrate that in Cyperoideae the pistil wall starts from 

an annular primordium (which evolved from congenitally fused carpels) on top of which the stigma 
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primordia develop. The development of the central ovule is decoupled from the ovary wall 

development. Vascular patterns follow the development of the primordia and vascular bundles are 

formed where necessary. The presence of an annular gynoecial wall primordium appears to have 

opened new possibilities for the development of the stigma primordia in new positions independent 

from the constraints of individual carpels.  

An elaborate molecular phylogenetic study was performed on the C4 Cyperus clade using 

ETS1f, rpl32-trnL, trnH-psbA. Although relationships within the C4 Cyperus clade are still largely 

unresolved in a large polytomy, early emerging branches show better resolution than in previous 

studies. Pycreus appears to be para- or polyphyletic and in addition no relationships have been found 

between Pycreus, Kyllinga and Queenslandiella. Therefore, we have to admit, laterally compressed 

dimerous pistils have most likely originated multiple times in the clade. Subsequently, the most 

appropriate classification strategy for these taxa is sinking them into Cyperus. This also seems to be 

the most appropriate strategy for all other segregate genera based on a reevaluation of the 

taxonomical value of their key characters. Only for the C4 Cyperus clade (accommodated in C. 

subgenus Cyperus), which is nested within a grade of species using C3 photosynthesis 

(accommodated in C. subgenus Anosporum), an evolutionary classification strategy has been 

adopted. This is based on the evolutionary value of the origin of C4 photosynthesis which had led to a 

major radiation of species. 

On the micro-scale, it is not yet possible to present a modern classification for Pycreus since 

molecular phylogenetic relationships are largely unresolved. Therefore, results are presented as 

several case studies. First, in an elaborate SEM study, the taxonomical value of the nutlet epidermis 

was reevaluated. Next, the reestablishment of P. sect. Tuberculati is discussed. Finally, the new 

classification strategy for the Cyperus clade was applied on Pycreus and necessary combinations and 

nomina nova under Cyperus are listed along with some critical notes on synonymisations of several 

taxa. 
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III Samenvatting 

De tribus Cypereae vormt één van de grootste en meest complexe takken van de 

Zeggenfamilie (Cyperaceae). Recent werden twee clades opgelost binnen de tribus, de grootste 

hiervan omvat Cyperus en aanverwante genera. Maar, dertien genera uit de algemeen aanvaarde 

classificatie van Goetghebeur (1998) blijken genest te zitten in het reuzengenus Cyperus. De 

taxonomische status van veel van deze genera wordt echter reeds lang betwist daar deze genera 

gebaseerd zijn op verschillende combinaties van een beperkte set aan afgeleide kenmerken. Pycreus, 

het grootste van deze satelliet genera, wordt gekenmerkt door lateraal samengedrukte dimere 

stampers waarvan het ontstaan vanuit de trimere toestand nog niet duidelijk was. Pycreus deelt dit 

stamper type met Kyllinga en Queenslandiella, twee andere genera die, net als Pycreus, genest zitten 

in de Cyperus subclade die gebruik maakt van C4 fotosynthese. 

De recente inzichten uit moleculair fylogenetisch onderzoek maken een herevaluatie 

mogelijk van de taxonomische status van de dertien satelliet genera van Cyperus en van de 

taxonomische waarde van de hiervoor gebruikte diagnostische kenmerken. Dit werd aangepakt 

tijdens een internationaal samenwerking. Door middel van moleculair fylogenetisch, ontogenetisch, 

anatomisch en morfologisch onderzoek werd gepoogd de evolutionaire patronen beter te begrijpen 

en een modern classificatiesysteem te ontwikkelen voor Cyperaceae. Deze onderzoeksstrategie 

speelde zich af op drie niveaus: familie tot tribus niveau (macro-niveau), tribus tot genus niveau 

(meso-schaal) en het infra generisch niveau (micro-niveau). De huidige thesis is genest binnen deze 

internationale onderzoek context en focust hoofdzakelijk op meso- niveau (C4 Cyperus en de positie 

en taxonomische status van de satelliet genera, inclusief Pycreus) en micro-niveau (de infra 

generische taxonomie van Pycreus). 

In eerste instantie werd een volledige nomenclatuur lijst voorgesteld van alle generische en 

infra generische namen van taxa in de Cyperus clade (350 namen) samen met een evaluatie van de 

geldigheid, legitimiteit en prioriteit. Types werden aangegeven en lectotypes werden aangeduid waar 

noodzakelijk. Dit nomenclaturaal overzicht diende als basis voor het selecteren van representatieve 

taxa voor het moleculair fylogenetisch, ontogenetisch, anatomisch en morfologisch onderzoek op 

Pycreus en Cyperus. Daarnaast vormt het een onmisbaar instrument voor het maken van een 

moderne revisie van de groep. In de huidige thesis worden enkele de namen die verband houden 

met Pycreus weergegeven. 

Vervolgens, om de taxonomische waarde van afgeleide stamper types in de Cyperus clade te 

kunnen revalueren (meer bepaald de lateraal samengedrukte stampers van Pycreus), werd een 

uitgebreide ontogenetische studie uitgevoerd van aartjes en bloemetjes van Pycreus en Cyperus 

soorten. Deze studie toont dat de soorten van beide genera de algemene ontwikkelingspatronen 
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volgen die teruggevonden waren overheen de hele onderfamilie Cyperoideae.  Daarnaast werd de 

ontogenie en anatomie van de verschillende stamper types gerevieuwed en met toevoeging van 

nieuwe data. Deze studie toonde aan dat de ontwikkeling van de wand van het gynoecium vertrekt 

vanuit een ring primordium (dat zelf evolueerde vanuit congenitaal versmolten carpellen). Op de top 

hiervan ontwikkelen zich vervolgens de stigma primordia. De ontwikkeling van de centrale ovule 

vanuit het bloem-apex primordium is ontkoppeld van het gynoecium wand primordium. De 

ontwikkeling van vaatbundels volgt de ontwikkeling van de primordia waardoor vaatbundels worden 

gevormd waar noodzakelijk. De aanwezigheid van een ring-primordium heeft nieuwe mogelijkheden 

geopend voor de ontwikkeling van stigma primordia in posities onafhankelijk van de vaste posities 

van individuele carpellen. 

Een uitgebreide ontogenetische studie werd uitgevoerd van de C4 Cyperus clade met gebruik 

van ETS1f, rpl32-trnL, trnH-psbA merkers. Hoewel verwantschappen binnen in de C4 Cyperus clade 

nog grotendeels onopgelost bleven in een grote polytomy, vertonen de laagst geplaatste subclades 

een betere resolutie dan in voorgaande onderzoeken. Pycreus is para- tot polyfyletisch en daarnaast 

werden voorlopig nog geen verwantschappen gevonden tussen Pycreus, Kyllinga en Queenslandiella. 

Daarom moeten we toegeven dat lateraal samengedrukte stampers waarschijnlijk meerdere keren 

ontstaan zijn in de C4 Cyperus subclade. Bijgevolg vormt de best geschikte classificatie strategie voor 

deze taxa een opname in Cyperus. Dit lijkt momenteel eveneens de meest geschikte strategie te zijn 

voor alle andere satelliet genera van de Cyperus clade, gebaseerd op een evaluatie van de 

taxonomische waarde van de kenmerken. Enkel voor de C4 Cyperus clade (die overeenstemt met C. 

subgenus Cyperus), die genest zit binnen een groep van soorten die C3 fotosynthese gebruiken (die 

overeenkomt met C. subg. Anosporum), werd een evolutionaire classificatie strategie toegepast. Dit 

is gestoeld op de evolutionaire waarde van het ontstaan van C4 fotosynthese dat heeft geleid tot een 

grote radiatie van soorten. 

Op micro niveau was het nog niet mogelijk om een modern classificatie voor te stellen voor 

Pycreus, daar de moleculair fylogenetisch relaties nog grotendeels onopgelost blijven. Er werden wel 

enkele case studies uitgevoerd over de taxonomie van Pycreus. Een eerste vormt een uitgebreide 

SEM studie waarin de taxonomische waarde van de vruchtwand epidermis werd geëvalueerd. 

Vervolgens werd het heroprichten van de kleine sectie Tuberculati besproken. Tenslotte werd de 

nieuwe classificatie strategie voor de Cyperus clade toegepast op Pycreus waardoor verschillende 

nieuwe combinaties en nomina nova werden gemaakt samen met enkele kritische bemerking over 

de synonymie van een aantal taxa. 
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IV Outline of this thesis 

Chapter 1 first briefly addresses the research context of this PhD project and collaborative 

framework with other cyperologists. International cooperation on sedges plays on different scales: 

family scale, tribal and generic scale and subgeneric scale. The current research is mostly focused on 

the evolution of the Cyperus clade (meso-scale) and its segregate genus Pycreus (micro-scale). Next  

the taxonomical context of this research is presented, starting with Cyperaceae and their characters 

and phylogeny to pass through the tribe Cypereae to Cyperus and the challenging taxonomy of its 

segregate genera. Special attention is given to Pycreus and its laterally compressed pistils. Finally an  

outline is given of the research strategy followed on meso- and micro-scale together with the 

objectives of the research presented in the following chapters.  

Chapter 2 gives a brief focus on the plant material used for botanical research and different 

types of samples required for modern botanical research. 

Chapter 3 lists our results of the nomenclatural survey of generic and subdivisional names for 

Pycreus. Validity and legitimacy of names is discussed and lectotypes are designated where 

necessary. 

Chapter 4 shows our results on the ontogeny of spikelets and flowers of Cyperus and Pycreus. 

The species of these taxa follow the main developmental patterns that have been found throughout 

cyperoid sedges.  

Chapter 5 reviews the pistil development of Cyperoideae with addition of new data on the 

anatomy and development of the vasculature in the pistil of Pycreus, Kyllinga, Queenslandiella and 

Cyperus. A general developmental hypothesis is presented which allows understanding the origin of 

derived dimerous gynoecium types found in Cyperoideae. 

Chapter 6 discusses the molecular phylogenetic analysis of the C4 Cyperus clade with a 

reevaluation of the generic status of the different specialised genera nested within this clade 

(including Pycreus).  

Chapter 7 includes the results of an elaborate scanning electron microscopy study of the 

nutlet epidermis of 50 Pycreus species together with a discussion the taxonomical value of nutlet 

characters and character states in Pycreus. These have been used as a key characters in previous 

subgeneric classifications of Pycreus.  

Chapter 8 reviews the small section Tuberculati, which was erroneously synonimised by 

Kükenthal (1935-36) with his section Muricati. 

Chaper 9 lists necessary combinations and nomina nova for Pycreus names that need to be 

sunken into Cyperus with application of our new classification strategy In addition, several cases on 

synonymimy are discussed. 
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Chapter 10 gives a general discussion and integration of the results from the different 

research lines. An important focus is laid on the selection of the most appropriate classification 

strategy for the different segregate lineages of the paraphyletic genus Cyperus. Finally, future 

prospects and possible research lines are discussed for Cyperus and Pycreus. 

Chapter 11 lists the references that have been cited in this work. 
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             Botany, the science of the vegetable Kingdom, 

is one of the most attractive, most useful, and most 

extensive departments of human knowledge. It is, 

above every other, the science of beauty.  

 

Joseph Paxton (1803-1865) 

1 Introduction  

 
 

 Fig. 1.1 Swamp at Gen. McArthur, Samar Island, Philippines; ͞dƌeaŵ destiŶatioŶ͟ foƌ 
Cyperologists. 

 

Spikelet theme: Pycreus cataractarum  
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1.1 In this chapter… 

The introductory chapter sets out the framework and goals of the research presented in 

this thesis: 

First, in 1.2, a brief introduction is given on the disciplinary context of this research as 

some confusion exists on the definitions of the different disciplines within modern 

botany. Next, 1.3 highlights the research context and collaboration.  

The taxonomic framework is addressed in 1.4. Herein, key questions are highlighted in 

the systematics and taxonomy of the sedges that go flat: C4 Cyperus and more specific of 

Pycreus. We will gradually zoom in on the research topic: first introducing the 

Cyperaceae family, then visiting the rich evolutionary history of the challenging 

Cypereae tribe, to end with Pycreus and its laterally flattened dimerous pistils. 

Finally, A more detailed overview of the objectives of the Pycreus PhD project is given in 

1.5. The goals are set out within two taxonomic scales that were introduced in 1.3: the 

meso-scale, focusing on the relationships and evolutionary processes in Cyperus s.l. and 

the micro-scale that focuses on the infrageneric relationships within Pycreus. This 

chapter interconnects research and taxonomic frameworks with the results that are set 

out in chapters 3 to 9. 

 

1.2 The disciplinary context of this research 

 

1.2.1 Modern botany and cyperology 

 Let us start with a quote of Johann Hermann Baas: ͞BotaŶǇ, the eldest daughteƌ of 

ŵediĐiŶe͟ ;Baas & HaŶdeƌsoŶ, ϭϴϴϵ: ϴϰϯͿ. EaƌlǇ desĐƌiptiǀe ďotaŶiĐal ǁoƌks ǁeƌe iŶdeed 

mostly in function of medicinal uses (e.g. Dodoens, 1554). In contrast, modern botany has 

grown into a multidisciplinary study with many output areas. Various data types are combined 

to build solid hypotheses about plant life evolution in all of its aspects.  

 Within the diversity of plant life, various groups show very specific characteristics and 

evolutionary patterns each requiring an appropriate approach. For example, the research 

presented in this thesis can be situated within the branch of botany that studies Cyperaceae 

or sedges, named: cyperology. Consequently, scientists studying sedges are called 

cyperologists (see fig. 1.2). 



Introduction_____________________________________________________________ 

21  

 

 

Fig. 1.2 Cyperologists in the field in Madagascar & the Philippines. 
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1.2.2 Taxonomy 

 Taxonomy studies how individual organisms can be grouped at various ranks (e.g. Judd 

et al., 2007; Harper, 2011). A taxon is a certain group of organisms based on mutual 

characters. Each taxon bears a name governed by nomenclatural rules (e.g. McNeill et al., 

2012). Besides classification, taxonomy also deals with identification of organisms. 

  While 18
th

 and 19
th

 century classifications were purely based on morphology (e.g. 

Manktelow, 2010), during the 20
th

 century, the insights from plant systematics, and more 

precisely, from molecular phylogenetics (e.g. Angiosperm Phylogeny Group III, 2009), put 

taxonomy in an evolutionary context. Consequently, taxa are now generally based on 

common ancestry (reflected by shared characters or similarity).  

 To be able to handle the large amounts of information and names that are inherent to 

taxonomy, data basing has become an important aspect of modern plant taxonomy (ITIS, 

2012). 

 

1.2.3 Systematics 

 Systematics aims to interpret the data obtained from various kinds of investigations in 

the search for evolutionary relationships of different taxa. These hypotheses are then 

translated in the taxonomic treatments. The progress in plant systematics largely depends on 

the development of new technologies (Mayr, 1982).  

 In particular, from the start of the 20
th

 century, the development of different types of 

light microscopy, anatomical techniques and later electron microscopy allowed for 

exploration of new types of data (e.g. anatomy and ontogeny), resulting in a more accurate 

interpretation of relationships. From the second half of the 20
th

 century, statistical methods 

were developed to investigate relations in a more standardised and objective way (e.g. 

Hennig, 1950; Sokal & Sneath, 1963).  Today, molecular phylogenetics forms the basis of our 

evolutionary hypotheses, which are further tested with data from morphology, ontogeny, 

anatomy, phytochemistry, etc. (APG III, 2009). 
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1.3 Research context and collaboration 

 

1.3.1 International research strategy on Cyperaceae 

Cyperaceae or sedges form a large and widespread family of grass-like plants, which 

are known for their complex morphological evolution and taxonomy.  Within the family, the 

giant genera Carex and Cyperus and their relatives are some of the best examples of groups 

with complex morphological evolution (e.g. Starr & Ford, 2009). 

With the availability of new research techniques, there is a joint international effort 

towards insight in the evolution of sedges, leading to a modern classification of the family and 

its genera. Two main strategies are followed: firstly, a molecular phylogenetic approach (e.g. 

Simpson et al., 2007; Muasya et al., 2009a) and secondly, in parallel, studies (ontogeny, 

morphology, anatomy, etc.) are being conducted to resolve homology problems and to test 

the molecular phylogenetic hypotheses (e.g. Vrijdaghs, 2006; Vrijdaghs et al., 2009, 2010). 

Both strategies are conducted on three different scales: family to subfamily level (macro-

scale); tribe level (meso-scale) and (sub-) generic level (micro-scale). 

 

1.3.2 The current PhD study focusing on C4 Cyperus and Pycreus 

The research presented in this thesis is framed within this joint international research 

strategy on Cyperaceae and more specifically on Cypereae. It focuses primarily on the meso- 

and micro-scale. The main objectives of this study are: 1) meso-scale: to unravel the links 

between Pycreus and related taxa (C4 Cyperus and its segregate genera), with a focus on the 

origin, nature and taxonomic value of the laterally compressed pistils that characterize 

Pycreus.  This with special attention to the reevaluation of  the generic status of Pycreus and 

other segregate genera of Cyperus. 2) micro-scale: to reveal the relationships within Pycreus 

towards a revision of the taxon. Fig. 1.3 shows how the current research (thick lines) is 

embedded within the relevant international research context. 
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Fig. 1.3 Research context of the current study. The three different scales of collaboration corresponding to 

different taxonomic ranks are shown in three colors: the macro-scale or family/ subfamily level in red; the 

meso-scale corresponding to the tribal to generic ranks in blue. Also, subdivisional relationships within 

Cyperus s.l. are treated on this collaborative scale; and the micro-scale in green, which includes the specific 

research topics of the different cooperating researchers on Cyperus s.l. This micro-scale corresponds to 

groups or segregate genera within Cyperus s.l. For macro- and meso-scales, the international researchers 

are listed that are involved in the collaborative context of the current research together with their 

expertise. Only subfamilies, tribes and genera relevant for the research context are shown in the diagram. 

     Cyperaceae  

   

     Classification : Goetghebeur P., UGent 

     Nomenclatural database: Govaerts R., RBG Kew 

     Molecular phylogeny: Simpson D.A., RBG Kew 

                                           Muasya A.M., University of Cape Town 

     Ontogeny (Cyperoideae): Vrijdaghs A., KU Leuven 

 

Cypereae (Muasya A.M., University of Cape Town & 

Research Group Spermatophytes, UGent) 

 

Cyperus s.l. (Research Group Spermatophytes, UGent) 

C3 Cyperus (Larridon I., UGent) 

C4 Cyperus (Research Group Spermatophytes, UGent) 

 

Pycreus (Reynders M., UGent) 

Kyllinga (Huygh W., UGent) 

Ascolepis & Lipocarpha  (Bauters K., UGent) 
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1.3.3 Collaborative framework  

At the time this research started in October 2004, there was already an established 

international collaboration network (involving persons from the Research Group 

Spermatophytes) on molecular phylogenetic research and ontogeny of the sedge family: 

At Gent, Molecular phylogenetic research was started in 2000 in collaboration with David A. 

Simpson of the Royal Botanic Gardens, Kew, UK (e.g. Dhooghe et al., 2003). Dr. Simpson 

specialises in mapanioid sedges and family level molecular phylogenetics (e.g. Simpson et al., 

2003, 2007). Later cooperation on molecular phylogenetics was extended with Dr. A.M. 

Muasya (University of Cape Town) who has expertise in family level molecular phylogenetics 

and a specific interest in Cypereae (e.g. Muasya et al., 2009a, 2011). In 2005, the Research 

Group Spermatophytes became a partner in the Centre for Molecular Phylogeny and 

Evolution (CeMoFE, UGent), where the molecular lab work of the current and related studies 

was performed (e.g. Larridon, 2011). 

In 2001, collaboration was started with Alex Vrijdaghs ( KU Leuven, Belgium) who 

works on floral and inflorescence ontogeny to resolve homology problems within the sedge 

family.  This resulted in numerous publications on the topic (Vrijdaghs et al., 2004, 2005a, b, 

2006, 2009, 2010, 2011; Larridon et al., 2011b; Reynders & Vrijdaghs et al., 2012). Within this 

cooperation, also a palynological study was performed (Nagels et al., 2009). 

With the current PhD project (which started in October 2004, a new cycle of 

Cyperaceae research was started at the Research Group Spermatophytes.  In 2005, Wim 

Huygh joined the group with a PhD study on Kyllinga, a taxon showing similar derived pistils as 

Pycreus. Next, in 2007 Isabel Larridon started with a PhD study on C3 Cyperus and its segregate 

taxa (Courtoisina, Oxycaryum and Kyllingiella). Finally in 2010, Kenneth Bauters made a 

phylogenetic study of Ascolepis  and Lipocarpha for his MSc thesis (Bauters, 2011) and 

currently he has a PhD project on Sclerieae. 
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1.4 Taxonomic framework 

1.4.1 The sedge family 

1.4.1.1 Cyperaceae and their characters 

With its approximately 109 genera and over 5500 species (Govaerts et al., 2007) the 

Cyperaceae is the third largest monocot family in the world after Orchids and Grasses. The 

family is characterised by its species diversity and it is also cosmopolitan, only being absent 

from Antarctica (Goetghebeur, 1998; Govaerts et al., 2007). Sedges are adapted to many 

different habitats (figs. 1.1 & 1.5). Nevertheless, they are predominantly wetland dwellers, 

often forming the dominant elements in such environment (then called sedgelands, e.g. fig. 

1.6). Cyperaceae also have considerable local economic importance as many members are 

notorious agricultural weeds, whereas others provide food, fuel, and medicines together with 

construction, weaving, and perfumery materials (Simpson and Inglis, 2001). More recently 

sedges, are gaining interest as bio-indicators for the environmental quality of wetlands (e.g. 

Shuping et al., 2011) and in natural water purification facilities (e.g. Lu et al., 2006). Several 

sedges are also useful in climate change monitoring (Simpson et al., 2011).  

 Cyperaceae combine a vast number of characters that, in most cases, allows them to be 

recognized as sedges, even only from vegetative parts (e.g. Goetghebeur, 1998). In their habit, 

most sedges resemble members of Grasses (Poaceae) and Rushes (Juncaceae) (Fig.1.4A). 

However, triangular culms with leaves in three ranks and closed leaf sheaths allow them to be 

distinguished from the other two families, although there are several exceptions. Important 

generative characters for Cyperaceae are the small, strongly reduced and mostly wind 

pollinated flowers, pistils with a single basal ovule (Goetghebeur, 1998) and pseudomonad 

pollen (Nagels et al., 2009).  
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Fig. 1.4 Nemum atracuminatum. A. Habit. B & C. Inflorescence with spikelets. D-G. Glumes. H. Stigma branches. I 

& J. Nutlet. After Larridon et al. (2008a).  
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Fig 1.5 Examples of tropical sedge habitats. (1) Samar Island, Philippines: A. Coastal rainforest in Gen. McArthur, 

the habitat of Paramapania parvibracteata. B. Seashore with Cyperus rotundus. C. Rice fields. (2) Madagascar: D. 

Rocky pools on an inselberg. E. Rock vegetation at Andringitra National Park. F. Lakeshores with seepage zones, 

Lac Froid. G. Swamp dominated by Costularia sp., Ranomafana National Park.  

A 

B 

D 

C 

E F 

G 
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Flowers are arranged in spikelets (Fig.1.4B-C) with a central axis or rachilla on which the 

flower bearing bracts or glumes are arranged (see e.g. Goetghebeur, 1998; Vrijdaghs et al., 

2010) (Fig.1.4D-G). Due to reduction and contraction processes, many derived inflorescence 

types originated. The flowers of sedges are usually trimerous, small and bisexual to unisexual. 

When a perianth is present, it consists of two whorls of tree bristle hairs (e.g. fig. 1.15D) or 

scales. These have an air-capturing function, which helps the mature nutlets float on water for 

dispersal. There usually is a single whorl of three stamens. Gynoecia are tri- or dimerous, 

unilocular and have a single ovule with basal placentation. The fruit is a nutlet (Goetghebeur, 

1998; Fig.1.4I-J). 

 

 

 

 

  

Fig. 1.6 Floating mats on a lake near Antsirabe, Madagascar.  A. These mats are formed by the entwined stolons 

of Pycreus mundtii and according to Haines & Lye (1983) these are strong enough to hold crocodiles and most 

likely also cyperologists in their quest for the many sedges that inhabit these mats. B. Cyperus pectinatus. C. 

Ascolepis brasiliensis. Pictures taken by I. Larridon (A) & M. Reynders (B & C). 

C 

B 

A 



  ____________________________________________________________ Chapter 1 

30 

1.4.1.2 Cyperaceae in an evolutionary context 

 As ͞ŶothiŶg iŶ BiologǇ ŵakes seŶse eǆĐept iŶ the light of eǀolutioŶ͟ ;DoďzhaŶskǇ, 

1973), the next part will focus on the larger evolutionary context of Cyperaceae and 

subsequently discuss the general phylogenetic relationships within the family. 

 

Cyperaceae within the Poales 

The latest classification of angiosperms based on molecular phylogenetic data (A.P.G. 

III, 2009), places Cyperaceae in the order Poales (Stevens, 2001 onwards; Fig.1.7A). This is a 

plant order containing 18 families of which four encompass over 1000 species. Poales are 

estimated to have originated ca. 113-106 mya (Janssen & Bremer, 2004; Leebens-Mack et al., 

2005), which coincides with the Gondwana break-up. As many early diverged members of the 

different Poales families seem to be linked to the South American Gondwanan shield, the 

origin of Poales could be assumed to be South American (Janssen & Bremer, 2004). Africa is 

also rich in Poales. However, it is not yet clear whether vicariance following continental drift, 

or long distance dispersal forms the basis for these distribution patterns. Most Poales families 

have gynoecia with 2-3 loci and numerous ovules, but fusion and reduction processes of the 

pistils are common (e.g. Ronse Decraene et al., 2002; Rudall & Bateman, 2004). In sedges, the 

superior gynoecium consists of congenitally fused carpels, A single style and most often two 

or three stigmas (e.g. Vrijdaghs, 2006). 

Within Poales, Cyperaceae are consistently sister to Juncaceae and Thurniaceae (Chase 

et al., 1993; Plunkett et al., 1995) in a clade also containing Mayacaceae, Eriocaulaceae and 

Xyridaceae (fig. 1.7A). The molecular confirmation of the relationships between Thurniaceae, 

Juncaceae and Cyperaceae ;ofteŶ ƌefeƌƌed to as ͚ĐǇpeƌid Đlade͛; Stevens, 2001 onwards) did 

not come as a surprise as several characters hold these families together (e.g. Takhtajan, 

1997). The most important characters for the cyperoid clade are porate pollen in tetrads 

(becoming pseudomonads in Cyperaceae) and chromosomes with diffuse centromeres. The 

latter are often accompanied by considerable variation in chromosome numbers (see e.g. 

Escudero et al., 2012). In addition, these families share an affinity for wetland habitats. Within 

the cyperoid clade, Cyperaceae originated around 88 mya and the crown group diversification 

started ca. 76 mya (Janssen & Bremer, 2004; Besnard et al., 2009). 
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Fig. 1.7 A brief overview of Poales. A. Phylogenetic relationships of the families in the Poales sensu APG III (2009). 

Cyperaceae are encircled in red. After Stevens (2011 onwards). B. Mayaca fluviatilis (Mayacaceae), BG UGent. C. 

Xyris sp. (Xyridaceae), Madagascar. D. Luzula abyssinica (Juncaceae), BG UGent. C. Cyperus ustulatus 

(Cyperaceae), BG UGent.  

B C 

A 

D 

E 
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Tribal relationships within Cyperaceae 

With growing knowledge, the need for a classification of the large sedges family 

became apparent. From the 19
th

 century on, genera had been grouped in tribes and these 

tribes into subfamilies. A major challenge in sedge classification is the strongly derived and 

reduced nature of many inflorescences and flowers. Homology assessments are therefore not 

straightforward and sometimes even impossible when using morphology alone (Goetghebeur, 

1986). Next, the choice priority in diagnostic value that was granted to conflicting 

morphological characters proved to be challenging as well (e.g. Goetghebeur, 1986; see fig. 

1.20). Consequently, during the 19
th

, 20
th

 and 21th centuries, many adjustments were made 

to the subfamilial classification of sedges reflecting growing insights from morphology, 

anatomy, biochemistry, embryography, palynology and eventually also molecular 

phylogenetic analysis.  

During the 19
th

 century, classifications were primarily based on the presence of 

unisexual or bisexual flowers (e.g. Jussieu, 1789; Bentham, 1883). At the start of the 20
th

 

century, cyperologists started to use a broad range of flower and inflorescence characters 

(e.g. Clarke, 1908; Chermezon, 1937). From the middle of the 20
th

 century, morphological, 

anatomical, embryographical, biochemical and physiological characters were added to 

produce the first modern classifications based on cladistic analysis (e.g. Bruhl, 1995; 

Goetghebeur, 1998). Embryography showed to be especially reliable for tribal delimitations in 

Cyperaceae (Van der Veken, 1965; Goetghebeur, 1986). Within Cyperaceae, Goetghebeur 

(1998) recognized four subfamilies and 16 tribes. 

Finally, from the nineties to date, molecular phylogenetic studies, integrating other 

available data such as those from ontogenetic studies, allowed testing of evolutionary 

hypotheses and this will lead to a more stabilised classification of sedges. Simpson et al. 

(2007) and Muasya et al. (1998, 2002 & 2009a), produced a well resolved and supported 

backbone phylogenetic hypothesis for Cyperaceae. The resulting molecular phylogenetic 

classification (fig. 1.8) largely reflects the tribal classification of Goetghebeur (1998). 

Mapanioideae and Cyperoideae, each correspond to a well supported clade (Simpson et al., 

2007; Muasya et al., 2009a) and have both distinct morphological characteristics (see next 

paragraphs). 
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Fig. 1.8 Simplified cladogram of tribal relationships within Cyperaceae, adapted from a strict consensus tree from 

Muasya et al. (2009a).  

B 
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On the other hand Sclerioideae and Caricoideae are merged into Cyperoideae.  In addition, 

within Cyperoideae, several tribes from the classification of Goetghebeur (1998) appear to be 

paraphyletic (e.g. Schoeneae, Scirpeae and Fuireneae).  

 

 Mapanioideae, enigmatic forest dwellers 

Mapanioideae seem to possess peculiar characters such as complex flowering units. 

These flowering units consist of two large opposite and usually dorsally scabrid scales 

enclosing a spadix-like axis with variable numbers of smaller scales and stamens with in the 

center one rather large gynoecium (e.g. Kern, 1974; fig. 1.9D). In many taxa, there are also 

three scales between the stamens and the gynoecium. It has been unclear whether these 

flowering units should be interpreted as flowers (the euanthial hypothesis; Goetghebeur, 

1986, 1998) or compacted spikelets composed of unisexual flowers, also called ͚spiĐoids͛ (the 

synanthial hypothesis; cf. Kukkonen, 1984; Simpson, 1992; Simpson et al. 2003). Recently a 

study combining floral ontogeny and gene protein localization in Lepironia supports the 

synanthial hypothesis as the evolutionary origin of the reproductive unit in Mapanioideae. The 

two lateral scales are interpreted as a split prophyll (Prychid & Bruhl, 2013). Ontogenetic 

studies in Mapanioideae are still limited due to the difficult access to plant material (Vrijdaghs 

et al., 2006; Richards et al., 2006).  

Diversification within Mapanioideae began ca. 33 mya (Stevens, 2001 onwards). Fossil 

records represent members from the Eurasian Eocene ca. 48 mya (Volkeria messelensis 

& Caricoidea,  Smith et al., 2009). Mapanioid sedges such as Scirpodendron (fig. 1.9A-B) have 

for a long time been considered to be ͚primitive͛ members of the family (e.g. Kern, 1974). This 

is based especially on their preferences for old biomes such as rainforest habitats, containing 

many basal lineages of Angiosperms (e.g. Couvreur et al., 2011).  

Nevertheless, the actual Mapanioid sedges have to be seen as highly derived since in 

the corresponding clade many derived characters accumulated in the ca. 40 million years 

between its origin and its diversification. Mapanioideae now consist of two tribes: 

Hypolytreae and Chrysitricheae, containing 13 genera (Simpson et al., 2003). Hypolytreae 

developed a specific, uniporate pollen type (l.c.). 
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Fig. 1.9 Mapanioid sedges from Gen. McArthur, Eastern Samar, Philippines. A. Scirpodendron ghaeri, habit. B. S. 

ghaeri, mature inflorescence. C. Paramapania parvibracteata, mature inflorescence. D. SEM picture of one 

flowering unit in P. parvibracteata adapted from fig. 7D of Vrijdaghs et al. (2006). Abbreviations: f. filament; isc, 

inner scale; lsc, lateral scale; sg, stigma; st, style.  

A 

B 
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Cyperoideae, an extraordinary diversity 

In contrast to Mapanioideae, floral and inflorescence morphology of Cyperoideae are 

better understood. Floral units in Cyperoideae were confirmed to be homologous to standard 

pentacyclic and trimerous monocot flowers (Vrijdaghs, 2006). 

 Cyperoideae show high diversification levels with several giant genera such as Carex 

(ca. 2000 species, mainly from temperate to subarctic regions) and Cyperus (ca. 950 species, 

mainly tropical) (Starr & Ford, 2008; fig. 1.11). This diversification started around ca. 77 mya, 

which falls close to the crown group age of the family. Trilepideae, corresponding to the 

earliest emerged clade within the cyperoid clade, is linked to the Gondwana shield in South 

America (Trilepis) and granite outcrops (inselbergs) on the African mainland and Madagascar 

  

Fig. 1.10 Trilepideae, the basalmost clade in Cyperoideae, have been surviving on Inselbergs for millions of years. 

By inactivation of their chlorophyll, they can survive long periods of drought. In wetter conditions, these 

͚ƌesuƌƌeĐtioŶ plaŶts͛ are green within a few days. A. Inselbergs near Yaounde (Cameroon), covered with 

Afrotrilepis pilosa. B. Microdracoides squamosus. C. Creeping rhizomes of Afrotrilepis pilosa.  

A 

B 
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 (Afrotrilepis, Microdracoides & Coleochloa; fig. 1.10). Resulting from their resilience in the 

landscape over 70 million years, these habitats are known to have accumulated many highly 

adapted palaeoendemics (e.g. Porembski & Barthlott, 2000).   

Of the 14 tribes of Goetghebeur (1998) that are currently included in the Cyperoideae, 

four were found to be paraphyletic and need new circumscriptions (e.g. Muasya et al., 2009a; 

fig. 1.8). While most smaller tribes were included in the family level phylogenetic analyses 

(Simpson et al., 2007; Muasya et al., 2009a), the larger tribes received additional interest in 

more detailed molecular phylogenetic studies. This was already the case for Abildgaardieae 

(Ghamkhar et al., 2003), Cariceae (Starr & Ford, 2008), Cypereae (Muasya et al., 2002; 

Larridon et al., 2011a, 2013), Rhynchosporeae (Thomas et al., 2009), Schoeneae (Verboom, 

2006) and recently also Sclerieae (K. Bauters, UGent). Examples of species of most tribes are 

shown in fig. 1.11. 

Noteworthy in the light of the current research is the multiple occurrence of C4 

photosynthesis within Cyperoideae. During the late Eocene, C4 photosynthesis arose in at 

least five different Cyperaceae lineages opening possibilities for the colonization of open 

habitats (Besnard et al., 2009). Lineages that developed C4 photosynthesis are found in 

Rhynchospora, Abildgaardieae (Bulbostylis, Nemum), Eleocharis (2 origins) and Cyperus s.l. 

(Besnard et al., 2009). Most of these lineages are rich in species indicating the adaptive 

importance of the C4 innovation. C4 photosynthesis is also linked to several types of Kranz 

anatomy of leaves and culms (Bruhl & Perry, 1995; Soros & Bruhl, 2000; Edwards & 

Voznensenskaya, 2011) and has been useful (besides embryography) to test the classification 

of several taxa with unclear relationships, especially in Cypereae (e.g. Ascolepis & Lipocarpha) 

(Goetghebeur, 1986).  
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Fig. 1.11a Diversity of Cyperoideae part 1. A. Scleria depressa (Sclerieae), Cameroon. B. Costularia spec. 

(Schoeneae), Madagascar. C. Eriophorum spec. (Scirpeae), BG UGent. D. Uncinia spec. (Cariceae), BG UGent. E. 

Carex spec. (Cariceae), BG UGent. F. Dulichium arundinaceum (Dulichieae), BG UGent.  
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Fig. 1.11b Diversity of Cyperoideae part 2. A. Rhynchospora colorata (Rhynchosporeae), BG UGent. B. Fimbristylis 

dichotoma (Abildgaardieae), BG UGent; C. Eleocharis acutangula (Eleocharideae), Madagascar. D. Fuirena ciliaris 

(Fuireneae), BG UGent. E. Schoenoplectus spec. (Fuireneae), Madagascar. F. Cyperus involucratus (Cypereae), BG 

UGent. Pictures taken by M. Reynders (A, B, D & F), W. Huygh (D) & A.M. Muasya (C & E). 
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1.4.2 The Cypereae 

Cypereae correspond to one of the crown clades of Cyperaceae and is the most speciose 

sedge tribe in the tropics. The clade arose within a grade representing the Fuireneae sensu 

Goetghebeur. Schoenoplectiella forms the clade sister to the Cypereae clade (Muasya et al., 

2009a; fig. 1.8). Morphological diversification within the tribe resulted in several types of 

highly specialized inflorescences. Generic circumscriptions and affinities within Cypereae are 

challenging as the amount of homology problems is among the highest in the sedge family 

(due to multiple origins of several characters as pistil dimerisations, deciduous spikelets, 

inflorescence condensations, etc.). In this chapter, a detailed overview of the history and the 

challenges for the taxonomy of this tribe are given. 

 

1.4.2.1 Current delimitation of Cypereae 

Cypereae originally included only genera characterised by spikelets with distichously 

placed glumes and reduced flowers without perianth: corresponding to the genus Cyperus and 

its most obvious relatives (e.g. Colla, 1836). More recently, when combining molecular, 

morphological, embryographical, anatomical, chemical and ontogenetic studies, Cypereae 

have grown to include also species with spirally arranged glumes (Haines & Lye, 1983; 

Goetghebeur, 1986, 1998) and perianth parts (Vrijdaghs et al., 2006; Muasya et al., 2009a, 

2012). The only diagnostic criterion left is the Cyperus- type embryo (or the related Ficinia- 

type embryo) (Muasya et al., 2009b).  

Based on molecular phylogenetic data, two main clades were recognised within Cypereae 

(Muasya et al., 2002, 2009a) as shown in fig. 1.12. The Ficinia clade consists of species with a 

generally southern (African) distribution, characterised by usually spirally arranged glumes 

and pseudolateral inflorescences. This clade currently includes six genera: Dracoscirpoides (fig. 

1.15), Erioscirpus, Ficinia (fig. 1.13A), Hellmuthia, Isolepis (fig. 1.13B) and Scirpoides. 

Dracoscirpoides, Erioscirpus and Hellmuthia possess (remnants of) perianth parts (Vrijdaghs et 

al., 2006; Muasya et al., 2009a, 2012; Yano et al., 2012). Isolepis is paraphyletic containing 

Ficinia (Muasya et al., 2009a). The latter is characterised by a gynophore (Vrijdaghs et al., 

2005b). In Isolepis levynsiana (formerly Cyperus tenellus), glume placement is distichous 

(Muasya et al., 2006, 2007). 
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Fig. 1.12 Cladogram of Cypereae combining topologies from Muasya et al., 2009a (Ficinia clade & 

Androtrichum),  Yano et al., 2012 (position Erioscirpus) & Larridon et al., 2011a (Cyperus s.l.). Color codes: 

Blue= genera of the Ficinia clade. Orange= Androtrichum. Green= C3 Cyperus grade. Red= C4 Cyperus clade. * 

Either perianth got lost as the first node with 2 reversals or got lost at three different nodes. 
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The Cyperus clade is highly diversified, consisting of Cyperus s.s. and related genera 

(fig. 1.12). Most species in the clade bear spikelets with distichous glumes. Androtrichum is 

sister to the rest of the Cyperus clade, while 12 other currently recognized genera (following 

the classification of Goetghebeur, 1998) are nested within Cyperus s.s.: Alinula, Ascolepis, 

Courtoisina, Kyllinga, Kyllingiella, Lipocarpha, Oxycaryum, Pycreus, Queenslandiella, Remirea, 

Sphaerocyperus and Volkiella. 

1.4.2.2 A history of misunderstanding and homoplasy 

The taxonomy of Cypereae has seen many changes and differing, strongly opposing 

views during its history (e.g. Goetghebeur, 1986; Bruhl, 1995). Generally, two main reasons 

can be identified: at first, interpretations of the strongly reduced morphologies of certain taxa 

were not obvious, and secondly, there were different opinions on which diagnostic 

characteristics are the most reliable. 

Before reaching the current delimitation, which largely corresponds to the tribal 

classification of Goetghebeur (1986, 1998), Cypereae have seen a long history of 

misinterpretations of the many derived morphologies present in the group. For example, 

Lipocarpha (fig. 1.14) was moved around within the family, first placed in Hypolytreae (e.g. 

Nees, 1834; Kunth, 1837; Boeckeler, 1871) subsequently in Scirpeae (e.g. Clarke, 1908; Kern, 

1974), and even receiving its own tribe Lipocarpheae (e.g. Koyama, 1982). Eventually, 

  

Fig. 1.13 Examples of species from the Ficinia clade, characterised by a pseudolateral inflorescence and spirally 

arranged glumes.  A. Ficinia nodosa. B. Isolepis cernua. Pictures taken in the BG Ugent. 

B A 
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investigation of other characters (such as embryos and chlorocyperoid anatomy) combined 

with a more correct interpretation of the inflorescence lead to the current classification of the 

genus in Cypereae (Goetghebeur, 1986). With the latest treatment based on molecular 

phylogenetic data, Lipocarpha sensu Goetghebeur is found to be polyphyletic and will be 

sunken into Cyperus s.k. (Bauters, 2011;  Bauters et al., submitted). 

Different choices in the priority of characters important for generic delimitations have 

led to disagreements between the cyperologists studying this group. This is especially the case 

for the status of the segregate genera within Cyperus s.l., which have largely been 

circumscribed by different combinations of a limited set of characters (fig. 1.20). Inevitably, 

some of these characters represent homoplasies (Goetghebeur, 1986).  

  

Fig. 1.14 The challenging morphology of the Lipocarpha inflorescence.  A. Head-like inflorescence of L. chinensis 

(BG UGent). B, C & D. Models showing the different interpretations of the flowering units as mapanioid flowering 

units (B), scirpoid flowers with perianth (C) or reduced spikelets with a prophyll and first glume surrounding the 

flower (D). E & F.  3D models showing the difference between normal spikelets with spirally arranged glumes (E) 

and a  pseudospikelet with reduced deciduous spikelets in the axis of the spikelet bracts (F).  Color codes: Black= 

mapanioid scales. Blue= spikelet bract. Green (dark)= perianth. Green (pale)=  spike axis & rachilla. Orange= 

stamens. Pink= Spikelet prophyll. Red= pistil. Yellow= glume.  
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Cypereae in the 18
th

 & 19
th

 centuries 

Already in 1753, Linnaeus laid the foundation for distinguishing species in the larger 

genera such as Cyperus and Scirpus, Cyperus species being characterised by glumes with a 

distichous arrangement and Scirpus species having spirally arranged glumes.  

During the following century, more and more species were added to the family and 

many new genera were described to house aberrant species with specific morphologies ( e.g. 

Nees, 1834). With the growing amount of genera within the Cyperaceae, a more elaborate 

classification became necessary and the first tribal classifications were effected around large 

genera such as Carex, Rhynchospora, Scleria, Cyperus and Scirpus s.l.. Earlier circumscriptions 

of the tribe Cypereae were rather narrow, including only Cyperus and several taxa with an 

obvious relationship with Cyperus such as Pycreus, Kyllinga and Mariscus (e.g. Colla, 1836; 

Clarke, 1908; Kükenthal, 1935-36).  

While several tribes had very reliable diagnostic characters such as utricles or large 

ornaments on the fruits, Scirpeae and Cypereae were primarily distinguished based on the 

position of the glumes, respectively spiral and distichous arrangements (Clarke, 1908). As 

spirally arranged glumes are a widespread character state in Cyperaceae, Scirpus and Scirpeae 

became a dump for all species not obviously linkable to one of the other tribes (e.g. Dhooghe 

et al., 2003; Simpson et al., 2007) and as a consequence an important amount of species now 

belonging to Cypereae was hidden in the heterogeneous Scirpus until beyond the mid of the 

20
th

 century. The application of modern techniques resulted in major shifts in our 

understanding of the evolutionary patterns in sedges and of the reliability of morphological 

characters used for taxonomic delimitations within the family (Goetghebeur, 1986). 

 

Embryography: breaking of the Scirpeae bubble! 

During the 1960s, Van der Veken (1965) studied the embryo morphology all over 

Cyperaceae. When focusing on the shapes and positions of the cotyledon, embryonic root, 

germination furrow and coleoptile, these characters appeared to be well conserved within 

certain tribes as Cariceae and Cypereae. Cypereae were found to be homogenous, all 

containing an embryo of the Cyperus-type. In contrast, in Scirpeae, the embryo types showed 

to be very heterogeneous, suggesting that Scirpeae, and more specifically Scirpus with its 

spirally arranged glumes, does not represent a natural entity. Actually Scirpus served as a 
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large taxonomical garbage bin to collect species that did not fit in any other, better 

circumscribed taxonomical entity.  

With the acceptance of the heterogeneity of Scirpus, many, mostly small, genera were 

resurrected or newly described to accommodate aberrant species previously hidden in Scirpus 

such as Alinula, Ascolepis, Kyllingiella, Lipocarpha, Oxycaryum, Remirea, Rikliella, 

Sphaerocyperus and more recently also Dracoscirpoides and Erioscirpus (now all in Cypereae) 

(e.g. Raynal, 1973; Haines & Lye, 1983; Muasya et al., 2012; Yano et al., 2012). 

 

The classification of Goetghebeur (1986) 

While most embryographical studies up to then remained rather descriptive, 

Goetghebeur (1986) combined these findings with his observations on inflorescence typology 

and any other data available from literature on anatomy and morphology to evaluate the 

taxonomical value of all known sedge genera and their tribal classification. A general criterion 

was that each tribe should contain only a single embryo type.  

Consequently, Cypereae were circumscribed to contain taxa with a Cyperus-type 

embryo (Goetghebeur, 1986). Based on this criterion, Goetghebeur (l.c.) identified six scirpoid 

genera (Ficinia, Isolepis, Desmoschoenus, Scirpoides, Kyllingiella and Oxycaryum) having more 

affinities with Cypereae than with Scirpeae. He initially placed Isolepis, Ficinia and 

Desmoschoenus in a separate tribe Ficinieae differing from Cypereae by a deeper furrow 

above the primary root in the embryo. Later, Goetghebeur (1998) combined both tribes under 

Cypereae s.l. as some species of Isolepis also seem to have an embryo of the Cyperus-type. 

The absence of perianth parts were seen as a strong common character of Cypereae to 

distinguish them with the scirpoid tribes.  

In Cypereae, Goetghebeur (1998) ultimately listed 26 different genera. Oxycaryum, 

Kyllingiella, Scirpoides and Androtrichum were considered to be the most primitive taxa based 

on a weakly differentiated embryo. However, this type of embryo is also present in many C3 

Cyperus species, and even more differentiated lineages with C4 photosynthesis, such as 

Ascolepis and Lipocarpha. Moreover, Oxycaryum, Kyllingiella and Scirpoides also share 

spikelets with a spiral glume arrangement which he assumed to be the primitive condition in 

Cypereae (Goetghebeur, 1986). Within the core Cypereae, Goetghebeur (l.c.) discussed 

several conflicts in generic characteristics. 
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Fig. 1.15 Dracoscirpoides surculosa, a new genus and species of  Cypereae. A. Habit. B. Spikelet. C. Glume. D. 

Flower (abaxial view). E. Fruit (abaxial view). All drawn from Browning 647 (GENT). After fig. 6 of Muasya et al., 

2012. 
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For example laterally compressed dimerous pistils can be found in species with 

deciduous glumes (Pycreus) and also in species with deciduous spikelets (Kyllinga and 

Queenslandiella). However, also deciduous spikelets and deciduous glumes can be found in 

species with trimerous pistils. Hence either or both laterally flattened dimerous pistils or 

deciduous spikelets must have originated at least twice within the group (convergent 

evolution). This is only one of the examples in the Cyperus clade where the phylogenetic 

homology question for the derived characters has been unresolved for a long time. This will 

be further addressed in 1.4.3. 

 

The era of molecular phylogeny: even more homology questions in Cypereae! 

Results from molecular phylogenetic analyses (Simpson et al., 2007; Muasya et al., 

2009a; Yano et al., 2012) support Cypereae sensu Goetghebeur (1998) as corresponding to a 

single clade (further called the Cypereae clade). However, some smaller adjustments needed 

to be made that have an important impact on the circumscription of the tribe and of its 

genera (Muasya et al., 2009b). 

First there was the recent addition of three small, perianth bearing, genera 

(Hellmuthia, Dracoscirpoides and Erioscirpus) to the Ficinia clade, one of the two subclades of 

the Cypereae clade. Hellmuthia had been classified in Hypolytreae as its two laterally placed 

perianth scales had previously been confused with the scales present around the flowering 

units in mapanioid sedges (Goetghebeur, 1998; Vrijdaghs et al.,  2006). Dracoscirpoides 

Muasya is a newly described genus including two species that were not yet removed from 

Scirpus s.l.: Scirpus falsus and S. ficinioides. During the description of the new genus, a third 

and novel species was discovered and described (Muasya et al., 2012; fig. 1.15). Erioscirpus is 

characterised by cotton-like long perianth bristles and contains two species from the southern 

Himalaya (Yano et al., 2012). 

 Secondly, the molecular studies of Muasya et al. (2002, 2009a) showed that distichous 

glume arrangements had multiple origins in the Cypereae clade and multiple reversals of 

distichous to spiral glume arrangements also occurred. Concerning distichously arranged 

glumes a first origin seems to have occurred somewhere at the base of the Cyperus clade 

(depending whether Androtrichum would be mono- or paraphyletic, one of the two species 

has a spiral glume arrangement while the other has a distichous arrangement) and a second 
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origin of distichously arranged glumes within the main clade of Isolepis (Isolepis levynsiana; 

Muasya et al., 2006, 2007). In addition, in the Cyperus clade, spiral glume placement appears 

to be a multiple reversed condition from a distichous arrangement, as both Kyllingiella and 

Oxycaryum (both with spirally arranged glumes) seem to cluster among the C3 species of 

Cyperus (characterised by distichous glumes). As a consequence, the character that Linnaeus 

(1753) once presented as the key character in the distinction between the two genera Cyperus 

and Scirpus, was later on extended to Scirpeae and Cypereae, is not valid anymore for the 

distinction between different genera and sometimes not even separate species in Cypereae 

(Muasya et al., 2009b).  

Thirdly, in Cyperus the species with C4 photosynthesis form a well-supported clade 

(Muasya et al., 2002; Larridon et al., 2011a).  However, this clade contains nine genera 

accepted in the classification of Goetghebeur (1998; fig 2.10). Unfortunately, the relationships 

between the different specialized lineages are not resolved since most of C4 Cyperus forms 

one large polytomy. Cyperus cuspidatus and relatives consistently form the earliest emerging 

clade in the C4 Cyperus phylogenies (Muasya et al., 2009b; Larridon et al., 2011a). 

 

1.4.3 Cyperus s.l. 

1.4.3.1 A giant genus 

When including the 12 segregate lineages, Cyperus s.l. encompasses ca. 950 species 

and forms the largest sedge genus in the tropics. Frodin (2004) lists Cyperus s.l. as the 23
rd

 

largest angiosperm genus, and it can be considered as a giant genus as it contains over 500 

species. In human culture nutsedges or flatsedges have had a wide variety of uses, e.g. for 

paper making (C. papyrus), weaving & building materials (C. iria, C. textilis, C. malaccensis,…Ϳ, 

essential oils (Cyperus scariosus), food source (C. esculentus) and ornamental plants (C. 

haspan, C. involucratus, …Ϳ ;“iŵpsoŶ & IŶglis, ϮϬϬϭͿ. 

Growth forms are adapted to various, especially wetland, habitats. Species are known 

from forest floors, swamps, savanna, sand dunes, seashores, rock outcrops, high altitude 

mountains, rice fields, etc. (e.g. Haines & Lye, 1983). Growth size varies from a few 

centimeters to several meters. The basic inflorescence in the Cyperus clade is an anthela of 

spikelets with a basal whorl of leaflike bracts (involucre). Two main types can be found, a first 

where the spikelets are grouped in digitate clusters and a second where spikelets are grouped 
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in spikes( see fig. 1.16). The anthela can be modified in various ways. Common modifications 

are contractions or elongations of axes and reductions in numbers of branches and spikelets. 

Spikelets are highly variable in shape, sizes and numbers; they have (with a few exceptions) a 

distichous glume arrangement, which makes them appear flat! In many species, the spikelets 

are deciduous as a whole and then often bearing a single maturing fruit. Empty glumes may 

also be present. The flowers are small and perianthless with one whorl of 3-1 stamens and a 

tri- to dimerous gynoecium. Nutlets are usually small and are dispersed either separately or 

enclosed within a deciduous spikelet/ partial spikelet. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 1.16 Subdivisions described in Cyperus s.s. showing the inflorescences of: A. Cyperus fuscus ( BG UGent) with 

digitate spikelet clusters and C3 photosynthesis. B. Cyperus waterlotii (Madagascar) with digitate clusters and C4 

photosynthesis. C. Cyperus congestus (BG UGent) with spikes of spikelets and C4 photosynthesis. Pictures taken 

by M. Reynders (A & C) and W. Huygh (B). 
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Within Cyperus, two subdivisions were distinguished, based on either photosynthetic 

type (C3 or C4 photosynthesis, linked with a specific anatomy type; e.g. Rikli, 1895) or the 

inflorescence typology (spikelets in digitate cluster or in spikes; e.g. Clarke, 1893; Kükenthal, 

1935-36; fig. 1.16).  Anthelate inflorescences with spikelets with digitate clusters and derived 

forms seemed to be primarily linked with C3 photosynthesis and spikes of spikelets are 

exclusively found in species with C4 photosynthesis. However, as demonstrated by 

Goetghebeur (1986; fig. 1.16) these two classification systems are not congruent since several 

C4 Cyperus species (e.g. C. cuspidatus) possess digitately clustered spikelets. Isotope analyses 

confirmed the photosynthetic type of these species (Bruhl & Wilson, 2007; Larridon et al., 

2011a). 

Several authors considered the C4 pathway to have originated in a single event within 

the Cyperus clade (Raynal, 1973; Goetghebeur, 1986, 1998; Soros & Bruhl, 2000). This was 

confirmed by molecular phylogenetic studies which show a highly supported C4 Cyperus clade 

which is nested within a grade of clades with C3 photosynthesis (Muasya et al., 2002; Besnard 

et al., 2009; Larridon et al., 2011a). Larridon et al. (2011b) suggested a classification of two 

subgenera within Cyperus s.l. Species with a C4 photosynthetic pathway are accommodated in 

Cyperus subgenus Cyperus and species with C3 photosynthetic pathway in a paraphyletically 

circumscribed Cyperus subg. Anosporum.  

 

1.4.3.2 Cyperus subgenus Anosporum 

Cyperus subg. Anosporum sensu Larridon et al. (2011b), includes the Cyperus s.l. 

species using C3 photosynthesis (C3 Cyperus) and forms a grade at the basis of the 

phylogenetic hypothesis of the genus (Larridon et al., 2011a; fig. 1.12). This subgenus 

encompasses around 150 species (fig. 1.17). Spikelets in C3 Cyperus are digitately clustered 

and different lineages show condensation of the inflorescence through prophyll branching, 

serial axillary budding or combinations of both (Guarise & Vegetti, 2008; Larridon et al., 

2011c). Most species of this group prefer shaded conditions with low seasonality such as 

forest edges and even forest floors in deep shade. Nevertheless, a few lineages are adapted to 

more open, permanently wet conditions. The majority of species are hemicryptophytes, 

geophytic and therophytic species are rare in this group. 



Introduction_____________________________________________________________ 

51  

     

   

Fig. 1.17 Species in Cyperus subg. Anosporum.  A. C. haspan (Haspani). B. C. buchholzii (Diffusi). C. C. rufostriatus 

(Incurvi). D. C. luzulae (Luzuloidei). E. C. pulchellus (Leucocephali). F. C. pectinatus (Anosporum). Pictures taken by 

M. Reynders, except pict. E by W. Huygh at BG UGent (A & D), Cameroon (B) & Madagascar (C, E & F). 
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Fig. 1.18 Diversity within Cyperus subg. Cyperus.  A. Cyperus papyrus. B. C. capitatus. C. C. waterlotii. D. C. 

micrantherus. E. C. strigosus. F. C. vestitus. Pictures taken at BG UGent (B & E) and Madagascar (A, C, D & F). 
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While the relationships among the species with C3 photosynthesis were unresolved in 

the molecular phylogenetic study of Muasya et al. (2002), Larridon et al. (2011a) managed to 

obtain a well-supported phylogenetic hypothesis for this group and subsequently a new 

classification could be proposed for Cyperus subg. Anosporum (Larridon et al., 2011c; fig. 

1.12). 

Courtoisina, Oxycaryum and Kyllingiella are nested within the C3 Cyperus grade 

(Larridon et al., 2011a). More profound morphological and ontogenetic research shows 

transitional states between these tree taxa and related C3 Cyperus species. Therefore it is 

most appropriate to sink Oxycaryum, Courtoisina and Kyllingiella into Cyperus (Larridon et al., 

2011b). Kyllingiella and Oxycaryum both show spiral glume arrangements, a character that is 

now confirmed to have originated in multiple reversals from the standard distichous glume 

arrangement in the clade. Kyllingiella is now merged with Cyperus sect. Leucocephali, together 

forming the sister clade of C4 Cyperus. Although species of this section use the C3 

photosynthetic pathway, they prefer more open and 

 drier growth conditions than most other members of C3 Cyperus (Larridon et al., 

2011c). 

 

1.4.3.3 Cyperus subgenus Cyperus 

The C4 Cyperus clade 

Cyperus subgenus Cyperus encompasses the Cyperus species with C4 photosynthesis 

(C4 Cyperus). The C4 Cyperus clade contains around 800 of the 950 species of Cyperus s.l., 

reflecting high diversification rates for this group. Besnard et al. (2009) calculated that this 

clade arose around 10 mya, a period of aridifications. The species are successful as they are 

found in all tropical habitats with open and at least seasonally wet conditions (e.g. Haines & 

Lye, 1983; Li et al., 1999; Stock et al., 2004). Therophytic and geophytic species are common 

within the clade, enabling the species to survive periods of drought. In addition, several 

species show high resistance to disturbance (e.g. burning and grazing; Pycreus fibrillosus), 

while others are able to survive various limiting conditions such as salty (e.g. Remirea 

maritima) or oligotrophic soils. Last but not least,  many species are highly competitive and 

form dominant elements (e.g. C. papyrus) or are   notorious weeds (e.g. C. rotundus; Holm et 

al., 1977, 1978).  
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The segregate genera of C4 Cyperus 

Morphological diversification of C4 Cyperus is reflected in the presence of 9 so-called 

segregate genera that were recognised (Goetghebeur, 1998) based on several specialised 

characters such as deciduous spikelets (Mariscus, Queenslandiella) combined with 

inflorescence compaction (Kyllinga, Mariscus), empty glumes (Remirea, Sphaerocyperus) or 

advanced spikelet reductions (pseudospikelets in Alinula, Ascolepis, Lipocarpha and Volkiella). 

Also, dimerisations of the gynoecium were used to delimitate several taxa (Pycreus, Kyllinga, 

Queenslandiella and Juncellus), see figs 18 & 19.   

Unclear homology questions cast a large shadow on the stability of the classification 

and especially on the generic recognition of the segregate genera. Goetghebeur (1986) 

addressed the conflict in generic characteristics present in Cyperus and its closest relatives. 

Three morphological features, which were assumed to be reliable in generic delimitations, are 

present in all possible combinations in different groups: C3 vs. C4 photosynthesis, deciduous 

glumes vs. deciduous spikelets and trimerous vs. dimerous pistils  (fig. 1.20).  Inevitably the 

unique origin of one of these characters implies the multiple origins of the others. As a 

consequence, there were major disagreements on the generic statuses of the different  

  

Fig. 1.19 Representative species of the former genera Mariscus and Juncellus, now placed in Cyperus. A. Cyperus 

cyperoides, with deciduous spikelets set in pedicillate spike. B. Cyperus laevigatus, with dorsiventrally 

compressed pistils. Pictures taken at the BG UGent. 

B A 
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Fig. 1.21 Diversity of C4 Cyperus segregate genera. A. Pycreus flavescens. B. Kyllinga bulbosa. C.  Remirea 

maritima. D.  Queenslandiella hyalina. E. Lipocarpha nana. F. Lipocarpha chinensis and Ascolepis brasiliensis. 

Pictures taken at BG UGent (A & B), GENT herbarium (C & D) and Andringitra National Park, Madagascar (E & F). 
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Fig. 1.20 Conflicts in generic characteristics in Cyperus s.l. Columns indicate different pistil types (from left to 

right: trimerous, dorsiventrally flattened dimerous, laterally flattened dimerous). Rows indicate deciduous 

glumes vs. deciduous spikelets (from top to bottom). Colors of names indicate photosynthesis type (C3 = blue, C4 

= red). Underlined taxa have pseudospikelets, which can be seen as the extreme situation of deciduous spikelets. 

Taxa with transitional morphologies are placed in overlapping boxes. 
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taxa in the various taxonomic treatments (e.g. Chermezon, 1934; Kükenthal, 1935-36; 

Koyama, 1961; Haines & Lye, 1983; Tucker, 1987, 1994; Goetghebeur, 1998). 

Goetghebeur (1986) assumed that C4 photosynthesis originated in a single 

evolutionary event in Cypereae. While C4 photosynthesis originated in several different sedge 

groups, in Cypereae, all C4 taxa represent a single Kranz anatomy type (the chlorocyperoid 

anatomy; Rikli, (1895). Goetghebeur (1986) admitted a high possibility for a paraphyletic 

Cyperus from which the 9 mentioned segregate genera arose. However, he did not consider 

paraphyly to be an obstacle for recognizing these specialised lineages as separate genera as 

long as they themselves originated in a single evolutionary event. 

  On the other hand, deciduous spikelets are present in species that clearly belong to 

unrelated groups of species, both in C3 and C4 Cyperus, which was also discussed in detail by 

Lye (1992). Moreover, some species, such as Cyperus distans, possess populations showing 

intermediate morphologies with deciduous spikelets or deciduous fruits or both on the same 

plants. From the nineties on, deciduous spikelets are not considered as a valid generic 

character anymore unless combined with other specialised morphologies with a higher 

taxonomical value. As a consequence, Mariscus species were sunken into Cyperus while other 

taxa with additional characters such as laterally compressed pistils (Kyllinga, Queenslandiella), 

glume wings (Courtoisina), pseudospikelets (Alinula, Ascolepis, Lipocarpha) or empty glumes 

at the base of the spikelet (Remirea and Sphaerocyperus) are still upheld in the classification 

of Goetghebeur (1998). 

Next, many Cypereae species possessing dimerous pistils were classified in separate 

genera. Dorsiventrally flattened pistils are common in many different sedge lineages. Cyperus 

species with dorsiventrally flattened dimerous pistils were previously placed in a separate 

genus Juncellus (e.g. Clarke, 1908). However, since some species within Cyperus s.l. (e.g. C. 

alopecuroides) possess both trimerous and dorsiventrally flattened dimerous pistils, Juncellus 

could no longer be maintained as a separate genus (Goetghebeur, 1986).  

Also, several of the other Cypereae genera include species with dorsiventrally flattened pistils, 

such as Lipocarpha and Oxycaryum. Dorsiventrally flattened pistils seem to have originated 

many times in Cypereae and therefore are not reliable for generic delimitations. In contrast, 

laterally flattened pistils are restricted to three Cypereae lineages (with only few exceptions 

elsewhere in Cyperoideae: Lagenocarpus amazonicus and Rhynchospora rubra ssp. rubra). 
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Goetghebeur (1986) postulated a single origin for laterally flattened pistils in Cypereae (see 

further in chapter 1.5.2). The use of this character for generic delimitations implies the 

postulation of multiple origins of deciduous spikelets (Lye, 1992; fig. 1.20). 

In previous studies, phylogenetic relationships in the C4 Cyperus clade are poorly 

resolved (Muasya et al., 2002; Larridon et al., 2011a) as most species and segregates are 

nested within a major polytomy. Consequently, the question whether the segregate genera 

are monophyletic is still unresolved. A more elaborate phylogenetic investigation with focus 

on the segregate genera, along with a discussion of characteristics and classification strategies 

for C4 Cyperus is presented in chapter 6. More detailed cladograms are also produced for 

Kyllinga (Huygh et al., unpublished data) and Lipocarpha s.l. (Bauters et al., submitted). 

 

1.4.4 Pycreus and its laterally compressed pistils 

1.4.4.1 Pycreus 

With its ca. 120 species, Pycreus is the largest of currently recognised segregate genera 

of Cyperus s.l. and is easily recognised by the combination of laterally compressed dimerous 

pistils and deciduous glumes and nutlets (e.g. Clarke, 1908; Goetghebeur, 1986; fig. 1.22).  

The first species belonging to this taxon was already described by Linnaeus in his 

Species Plantarum (1753), as Cyperus flavescens (fig. 1.22E). With the description as a 

separate genus, Palisot de Beauvois (1816) emphasized the close relationship with Cyperus in 

using the name Pycreus, which is an anagram of Cyperus. At that time the new genus 

contained only Pycreus polystachyos (fig. 1.22A), which therefore serves as the type species of 

Pycreus. As relationships with Cyperus are obvious, many authors were not convinced of the 

separate generic status for Pycreus (e.g. Kükenthal, 1935-36; Haines & Lye, 1983; Tucker, 

1994). Nevertheless, whether considered as a separate entity or as a subdivision of Cyperus, 

Pycreus has been consistently treated as a well circumscribed taxon.  

Africa forms the center of diversity for Pycreus where it is especially well represented 

in the Soudano-Zambesian phytochorion. Several lowland species also managed to spread 

around the Indian Ocean and/or to the New World where a few smaller radiations followed, 

for example in the southern US (e.g. Corcoran, 1941)  and Madagascar (e.g. Muasya et al., 

2012). A few therophytic species also spread to temperate regions (e.g. P. flavescens, fig.  
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Fig. 1.22 Diversity of Pycreus species. A. P. polystachyos. B. P. holosericeus. C. P. divulsus. D. P. sanguinolentus. E. 

P. flavescens. F. P. nitidus. Pictures taken by M. Reynders except pict. A by W. Huygh at BG UGent (B, D & E) and 

Madagascar (A, C & F). 
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Fig. 1.23 Different niches of Pycreus species at Andringitra National Park, Madagascar. A. Bridge over river with 

the high plateau on the background, a top location for sedges (picture taken by I. Larridon). B. Moorlands on the 

high plateau with P. nigricans (C) as dominant species. D. Mountain forest with P. ferrugineus (E) along paths. F. 

Seepage zone on the rocks near the river, rich in sedges as P. flavescens var. vicinus (F). H. Peat like packages 

along seepage zones, formed by P. atropurpureus (I). J. The edges of the seepage zones are prone to fluctuations 

in humidity and inhabited by very small therophytes as P. reductus (K), which is here photographed on its type 

locality.  
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1.22E). Habitat preferences are diverse, from coastal sand dunes to salt marches and thermal 

springs, dambos, floating prairies and high altitude mountains. Typically, most species prefer 

exposed conditions, only a few species are tolerant for part-shade (e.g. Pycreus ferrugineus; 

Chermezon, 1937; fig. 1.23D-E). Short living, pioneering therophytes or hemicryptophytes are 

mostly found in temporal habitats in the lowlands (ditches, dambos, rice fields, edges of rock 

vegetation, etc.; e.g. Pycreus polystachyos (fig. 1.22A), P. macrostachyos, P. capillifolius, P. 

reductus (fig. 1.23J-K), whereas taller and more competitive species dwell in or next to more 

permanent water bodies in different zones of the water banks and sometimes they even form 

floating mats (e.g. Pycreus nitidus (fig. 1.22F), P. mundtii; e.g. Haines & Lye, 1983; fig. 1.6). 

One species is hydrophytic (P. waillyi; l.c.). Slow growing, tussocky and stress tolerant species 

can be found in high altitude mountain pastures and bogs (e.g. P. nigricans (fig. 1.23B-C), P. 

permutatus, P. atronervatus). Many species have narrow niche preferences e.g. Pycreus 

cataractarum only grows along fast flowing rivers and P. fontinalis only near thermal springs 

(Kükenthal, 1936). 

Pycreus species use C4 photosynthesis linked with the chlorocyperoid anatomy type 

and possess spikes of spikelets, hence many authors considered Pycreus to be related to the 

C4 species of Cyperus and other Cypereae genera with similar characteristics (e.g. Rikli, 1895; 

Palla, 1908). Goetghebeur (1986) was already aware of the probable paraphyletic nature of 

Cyperus. Nevertheless, Pycreus was maintained as a separate genus based on the presence of 

a distinct morphological character: its laterally compressed pistils.  

The first molecular phylogenetic analysis of Cyperus s.l. (Muasya et al., 2002) 

confirmed Pycreus to be nested within the C4 Cyperus clade. However, only a few species 

were included in this study and their position remained unresolved within a major polytomy. 

A more elaborate phylogenetic analysis representing the diversity present in Pycreus and 

other segregate lineages of C4 Cyperus is presented in chapter 6. 
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1.4.4.2 Laterally compressed dimerous pistils 

The laterally compressed dimerous pistils are the most important diagnostic 

characteristic of Pycreus which make the spikelets seem even flatter than in most other 

Cyperus s.l. species. Although rare in sedges, laterally flattened pistils are not restricted to 

Pycreus alone. Two other segregate genera of C4 Cyperus also possess this pistil type, namely 

Kyllinga and Queenslandiella (fig. 1.24). Both of the latter taxa are characterised by deciduous 

spikelets, while in Pycreus mature nutlets and glumes are shed separately (fig. 1.20). As 

Goetghebeur (1986) explained, there is a conflict in the simultaneous presence of laterally 

compressed pistils and deciduous spikelets within Cyperus s.l.. Subsequently it was uncertain 

which of the two characteristics originated first.  

As deciduous spikelets originated both in C3 and C4 lineages, these were not 

considered to be reliable for generic delimitations in Cypereae (Lye, 1992). On the other hand, 

many authors were convinced about the unique and derived nature of laterally compressed 

  

Fig. 1.24 Examples of laterally compressed nutlets in Cypereae. A. Pycreus macrostachyos (Berhaut 2643). B. 

Pycreus capillifolius (Reekmans 8811). C. Queenslandiella hyalina (Kilian & Lobin 2097). D. Kyllinga polyphylla 

(Reekmans 8399). E. Kyllinga squamulata (Reekmans 4304). SEM pictures taken by Marcel Verhaegen (BR). 
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dimerous pistils in Cypereae. Consequently, these pistils were considered as a reliable 

taxonomic character. Blaser (1941a) hypothesized a complex reorganization of the pistil 

vascular system in Pycreus, considering it to be a derivation from a scirpoid vasculature type 

and not from the Cyperus-type. However, Blaseƌ͛s assuŵptioŶ is not congruent with the other 

morphological and anatomical data on the relationships between Pycreus and Cyperus. Since 

there was no clear hypothesis on the origin of laterally compressed pistils, this character was 

considered to have originated from complex processes, and therefore it was hypothesized to 

have arisen probably only once (Goetghebeur, 1986). Better understanding of the origin of 

laterally compressed pistils in the context of pistil evolutionary processes within Cyperoideae 

is needed for a correct evaluation of its taxonomical value. This topic is addressed in chapter 5 

with combination of ontogenetic and anatomical data.  

Finally, the question remains whether the laterally compressed pistils in Pycreus, 

Kyllinga and Queenslandiella originated from a single evolutionary event, or do we have to 

consider two or perhaps even tree separate origins? In chapter 6 this question will be further 

discussed. 

 

1.4.4.3 Infrageneric classification of Pycreus 

High morphological diversification within Pycreus led to the establishment of many names 

and subdivisions under this taxon as shown in chapter 3.  

The latest revision for the complete genus with subdivisional treatment dates from 

Kükenthal (1936) who distinguished 9 sections divided among two unranked groups based on 

the shape of the nutlet epidermal cells (fig. 1.25). The Isodiametrici possess isodiametric cells 

(fig 2.23A), while the Zonati have elongated cells (fig 2.23B). These two unranked groups and 

their sections were based on the classifications of Clarke (e.g. 1908). Mariën (1969, 

uŶpuďlished thesisͿ aŶd VaŶ deƌ VekeŶ ;uŶpuďlished dataͿ suggested a thiƌd gƌoup ͚Mixtae͛ 

for the species with cells of intermediate length.  
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Fig. 1.25 Comparison of the two types of nutlet epidermal cells that were used in infrageneric classifications of 

Pycreus. A. Nutlet of Pycreus intactus with isodiametric cells containing one central silica body (Reid 559). B. 

Nutlet of Pycreus flavescens with elongated (or zonate) cells without silica bodies (Reid 1079).  SEM pictures taken 

by Marcel Verhaegen (BR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

200 µm 

A 

B 



  ____________________________________________________________ Chapter 1 

66 

1.5 Research objectives 

1.5.1 The Pycreus PhD research project 

 

1.5.1.1 Main focus and justifications 

The research presented in this thesis aims to contribute to a solution in understanding 

the evolutionary relationships within the diverse Cyperus s.l. (meso-scale), its homology, 

taxonomic and nomenclatural problems with a focus on Pycreus and its infrageneric taxonomy 

(micro-scale).  

Understanding the evolutionary history of Pycreus and the production of a 

(preliminary) revision for this taxon were the original aims of this PhD research. However, to 

be able to address taxonomical questions in Pycreus, first a more profound understanding was 

necessary of evolutionary processes and relationships within the Cyperus clade, Cypereae and 

even the Cyperoideae subfamily. Only when morphologies and larger scale relationships are 

understood (meso-scale), more solid taxonomic treatments can be produced on the lower 

taxonomical levels (micro-scale) (e.g. Larridon et al., 2011b), especially since the generic status 

of Pycreus needs to be reevaluated (this is further addressed below).  

 

1.5.1.2 The grey zone between genus and subgenus 

An important challenge in working with taxa such as Pycreus is their unstable generic 

status. In the standard binomial system  that is used to name infrageneric taxa, the genus 

name always forms a part of the name for an infrageneric taxon (McNeill et al., 2012). As a 

consequence, the choice to place a taxon on a generic or subgeneric level has an impact on 

perception of and communication about a certain species (and other infrageneric names) and 

also on the application of the nomenclatural rules.  For example, it has impact on the 

nomenclature as names may have different priority when used under different genera 

(certainly concerning homonymy) (l.c.). 

Therefore, segregate taxa such as Pycreus fall in a grey zone of taxonomic instability as 

they are balancing between a generic and subgeneric status. Cyperus and related genera have 

seen a long history of unstable classifications as different authors made different choices of 

priority in the taxonomical importance of the conflicting characters that were used for generic 

delimitations in Cypereae (Goetghebeur, 1986). Moreover, many authors changed their 

opinions about the generic status of Pycreus at least once (e.g.  Govindarajalu, 1978 & 1979 vs. 
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1990; Koyama 1961 vs. 1991; Lye, 1981c vs. Haines & Lye, 1983). As a major consequence, this 

disagreement of generic status has led to a very complex nomenclature for Pycreus and other 

similar taxa such as Kyllinga (e.g. Reynders et al., 2011).  

Deciding on the generic status of Pycreus and similar taxa, is the most important question 

in this PhD dissertation. To evaluate this status, a solid knowledge is needed on molecular 

phylogenetics and on the evolutionary and taxonomical value of the main diagnostic features 

of Pycreus. The decision on the generic status of Pycreus affects its taxonomical treatment as 

sorting out priority of names in nomenclature (1500 names for 120 species) is dependent on 

this decision. 

For the above reason and within the limited time frame of this PhD study, the main 

focus of this PhD research was on the meso-scale. On the micro-scale, at least some research 

lines with possibilities towards a modern revision of Pycreus were executed with a focus on 

nomenclature and the evaluation of the traditional diagnostic features. 

 

1.5.2 The choice of reference classifications 

In the current era, molecular phylogenetic studies form the basis for the testing of our 

existing classification systems (Hillis et al., 1996). Novel insights in plant relationships and 

evolution obtained from such studies require many adjustments in our taxonomic treatments 

as in (molecular) systematics all valid taxa need to be monophyletic (l.c.). This has been 

especially of impact on the taxonomy of giant genera that were found to primarily represent 

paraphyletic groups containing specialized lineages (e.g.  Salvia, Walker, 2004;  Croton, Berry 

et al., 2005; Euphorbia, Horn et al., 2012). However, as molecular phylogenetics form a very 

solid and statistical method for the investigation of plant relationships the resulting 

classification systems are generally considered to bring more stability in plant taxonomy in the 

future (APG, 2009). Until such a modern molecular taxonomy has been produced, the 

taxonomic status of the taxa involved remains uncertain. As addressed above, also the 

taxonomic status of Pycreus was still unstable at the start of this research project. For practical 

reasons, a widely accepted reference classification is used, which forms the null hypothesis 

that will be reevaluated during further investigations.  
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1.5.2.1 Familial and tribal reference classification  

We follow Simpson et al. (2007) and Muasya et al. (2009a) for the phylogenetic 

hypothesis based subfamilial and tribal classification of sedges, which largely reflects the 

classification of Goetghebeur (1998), see fig. 1.8.  On tribal level, several taxonomic changes 

still need to be executed for the paraphyletically circumscribed tribes. However, as 

Cyperoideae and Cypereae both form monophyletic entities, their delimitations and 

circumscriptions are currently stabilizing (e.g. Yano et al., 2012).  

 

1.5.2.2 Generic reference classification  

In the current research and also the joint research effort on Cyperus and related 

genera, the generic classification of Goetghebeur (1998) is folowed, which treats Pycreus on 

the generic level. Although Muasya et al. (2002) already confirmed that Pycreus is nested 

within Cyperus s.l., for practical reasons and until the production of more solid cladograms for 

the group, the classification of Goetghebeur (1998) remains widely used in the international 

research community (Govaerts et al., 2007; Muasya et al., 2009b). 

 

1.5.2.3 Infrageneric reference classification 

The most recent detailed infrageneric classification for Pycreus, is of Kükenthal (1935-

36), who treats the taxon on the subgenus rank under Cyperus. The taxonomical value of the 

characters used by Kükenthal needs to be reevaluated as well as the legitimacy of his sectional 

names. A modern revision and infrageneric classification has not yet been produced. 

 

1.5.3 Research strategy and goals 

Research strategy and goals are shown in fig. 1.26, 1.27 & 1.28. The goals are divided 

among two research scales. (1) At first, research goals are formulated which are important on 

genus level or higher with Pycreus, if considered on generic level, as reference point (meso-

scale). Within this chapter the macro-scale objectives are included in the meso-scale, as within 

the context of this PhD thesis, the main purpose of the study on derived pistils is 

understanding pistil evolution in Cyperus s.l.  (2) Below genus level (micro-scale), research lines 

are treated that are important for the subdivisional classification of Pycreus and its species.  
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1.5.3.1 Meso-scale: Cyperus s.l. and its segregate taxa 

As highlighted in 1.2, the meso-scale objectives were investigated in a collaboration 

within the Research Group Spermatophytes, UGent. Research strategy and objectives of this 

joint study on meso-scale are shown in fig. 1.26. In fig. 1.27, the meso-scale strategy diagram is 

repeated with specific objectives concerning the relationships of Pycreus with the remainder 

of the Cyperus clade, which is the part that is presented in this thesis.   

The most important objective on the meso-scale is to reevaluate the generic status of 

the segregate genera of the Cyperus clade and subsequently to set out a strategy for an 

integrated classification of the Cyperus clade. Therefore, two separate research lines were 

followed:  

1. To understand the origin and nature of the taxonomically important, but conflicting 

characters that were used to delimitate the segregate genera. As Pycreus is 

characterised by a laterally compressed dimerous pistil, the focus here is on 

understanding mechanisms of pistil evolution (fig. 1.28). For this research line a 

combination of ontogeny and anatomical techniques is used. 

2. An elaborate molecular phylogenetic study was performed to reveal the 

relationships within the Cyperus clade, the positions of the segregate taxa and to 

evaluate their monophyly. In addition also the homoplasy of taxonomically 

important characters is addressed.  

By combining the results from both research lines it is possible to reevaluate the 

taxonomic value of the pistil types in the Cyperus clade and consequently also the generic 

status of the segregate taxa.  

However, to be able to select representative taxa for both research lines, an overview 

was necessary of all available generic and subdivisional names for the taxa of the Cyperus 

clade. Therefore a list of ca. 350 names was compiled with evaluation of validity and priority 

and typifications of names where necessary. In chapter 3, a part of the results published 

(Huygh  et al., 2010; Larridon et al., 2011a; Reynders et al., 2011) are presented. 
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Fig. 1.26 Research strategy  and main goals of the on the meso-scale for the joint research on Cyperus s.l. within the 

Research Group Spermatophytes, UGent. 
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Specific goals in the study of floral ontogeny and anatomy  

Pycreus, Kyllinga, Queenslandiella and a few other sedges are characterised by a 

laterally compressed dimerous pistil, derived from an ancestral trimerous type (Goetghebeur, 

1986). However, it was not clear how to interpret the origin and evolution of this pistil type 

and not surprisingly many authors subsequently considered this pistil type as a unique 

morphological phenomenon with high taxonomical value (l.c.). The latter opinion was also fed 

by observations of Blaser (1941a, b) and his interpretations of the anatomy of these pistils. 

With modern techniques in ontogenetic, anatomical and phylogenetic research, was possible 

to study the origin and evolution of these laterally compressed pistils and to reevaluate its 

taxonomical value. For the results of this study see chapters 4 and 5. 

In the past decade, there has been an important research focus on floral and spikelet 

ontogenetic patterns of many different representatives of Cyperoideae (see e.g. Vrijdaghs, 

2008, 2010). The large amount of data made it possible to derive general developmental 

models for the Cyperoideae. A first important hypothesis tested in the current thesis is: 

a. Do the derived pistils of Pycreus, Kyllinga and Queenslandiella follow the same 

ontogenetic patterns as the other pistil types encountered in Cyperoideae? 

(see chapter 4) 

Blaser (1941 a, b) studied the vascular patters of many cyperoid taxa and concluded 

that the laterally compressed pistils of Pycreus originated from important reorganizations of 

the different vascular bundles, following from the use of an acropetal developmental pattern. 

There is increasing evidence that development of vascular bundles is highly conserved among 

different lineages and organs in Angiosperms. The development of vascular bundles follow 

gradients of hormones (such as auxin) within the meristematic zones (Endress, 1994). It is 

therefore necessary to revisit the vascular patterns of Pycreus from a developmental point of 

view to test the following hypotheses (see chapter 5): 

b. Are Blasers (1941) interpretations of pistil vasculature in Pycreus and 

subsequent conclusions on the evolutionary relationships of Pycreus within 

Cyperaceae valid? 

c. Does the vascular development of the derived pistils of Pycreus and related 

taxa follow the general developmental pattern found throughout 

Angiosperms? 
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Specific goals in the molecular phylogenetic  study 

Previous molecular phylogenetic studies of Muasya et al. (2002) showed that Pycreus, 

Kyllinga and Queenslandiella are nested within the giant genus Cyperus. In previous 

morphological studies with a phylogenetic focus, Cyperus s.s. was compared as a single unit to 

the different genera of Cypereae (Bruhl, 1995). As many Cypereae  genera were later found to 

be nested within Cyperus, Bruhl (1995) was not yet able to draw correct conclusions on their 

relationships. To investigate the relationships between Pycreus, Kyllinga and Queenslandiella 

and Cyperus, a molecular phylogenetic study with a broad dataset representing the different 

segregate taxa and sections of Cyperus s.l. was needed. Results from this study are presented 

in chapter 6. 

In this context the following questions needed to be answered: 

a. Is the paraphyletic nature of Cyperus s.s., found in previous studies, 

confirmed with the use of faster mutating markers such as ETS11f, trnH-

psbA and rpl32-trnL? 

b. Is Pycreus monophyletic? 

c. Did the laterally compressed pistils of Pycreus, Kyllinga and Queenslandiella 

originate in a single evolutionary event? 

 

1.5.3.2 Micro-scale: on infrageneric levels of Pycreus 

The most recent revision of Pycreus goes back to Kükenthal (1935-36), who recognized 

9 sections within this taxon. Infrageneric groups were largely based on the shapes of nutlet 

epidermal cells in combination with spikelet and glume characters. However, the taxonomic 

value of these characters had not yet been confirmed.  In addition, the uncertain taxonomic 

status of Pycreus resulted in a complex nomenclature encompassing ca. 1500 names for only 

120 accepted species. Therefore, a modern revision of Pycreus is required.  

As highlighted above, priority was granted to the more fundamental questions on the 

evolution and relationships of Pycreus within the Cyperus clade (meso-scale).  A reevaluation 

of the generic status of Pycreus and choice of a joint classification strategy for the Cyperus 

clade are also essential as a base for a new infrageneric treatment of Pycreus.  
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Fig. 1.27 Research strategy  and specific goals on the meso-scale for Pycreus within the joint research on Cyperus 

s.l. of the Research Group Spermatophytes, UGent. 

Reevaluation of the homoplasy and taxonomic value of 

characters used for generic delimitations in the Cyperus 

clade, including the derived pistils of Pycreus 

 

Molecular phylogenetic 

study:  Investigating relationships 

within the C4 Cyperus clade 

 Revealing positions of the 

segregate taxa including 

Pycreus 

 Testing monophyly of the 

different segregate genera, 

with a focus on Pycreus 

Ontogenetic and anatomical study:  

Understanding of occurrences, origin and nature 

of taxonomically important characters in the 

Cyperus clade with a focus on modified pistils:  Showing Cyperus and Pycreus species follow the 

standard ontogenetic pattern of Cyperoideae 

 Understanding evolution of pistil modifications 

in Cyperoideae, including the laterally 

compressed pistils of Pycreus, Kyllinga and 

Queenslandiella 

Nomenclature and typifications of 

generic and subdivisional names in 

the Cyperus clade, including Pycreus 

Choice of representative taxa and sampling of plant material 

 

Choice of reference classification to test 

(Generic: Goetghebeur, 1998; 

infrageneric: Kükenthal, 1935-36) 

 

Choice of new classification strategy for 

Cyperus and its segregate taxa 
 

Reevaluation of the generic status of the 

segregate genera of the Cyperus clade, 

including Pycreus 

Production of an integrated generic and 

infrageneric classification for the Cyperus 

clade, including Pycreus 

Reliable 

characters 

Production of a list of taxa 
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The research strategy (fig. 1.28) is similar to the strategy followed on the meso-scale 

(fig. 1.26 & 1.27). Infrageneric relationships and taxonomical value of the characters used in 

previous studies are reinvestigated  using  two research lines:  

1. A detailed molecular phylogenetic study to reveal the relationships within Pycreus, 

the positions of the existing subdivisions and to evaluate their monophyly and also 

the possible homoplasy of taxonomically important  

characters. The results of the molecular phylogenetic study are embedded within 

chapter 6. 

2. A micromorphological study of the nutlet epidermis. Nutlet epidermal cells show a 

remarkable variation within Pycreus. Many authors have used nutlet epidermal 

character states such as cell shapes and the presence/absence of silica bodies as 

the primary diagnostic characters for the different subdivisions in Pycreus. To 

reevaluate the taxonomic value of this characters and character states, an 

elaborate SEM study was performed investigating the nutlet epidermal cell walls of 

a range of species representing most sections previously recognized in Pycreus. The 

results of this study are included in chapter 7. 

By combining the results from both research lines a reevaluation was aimed of the 

taxonomic value of nutlet epidermal cells in Pycreus and the taxonomic status of sections 

described in previous studies. 

To be able to select representative taxa for both research lines an overview was necessary of 

all available infrageneric names published for Pycreus. A list of subdivisional names was 

compiled and is included in the publications on generic and subdivisional names in the Cyperus 

clade (see chapter 3). Evaluation of validity and priority of names and typifications of names 

was done where necessary. In addition, a preliminary list of specific and infraspecific names for 

Pycreus was compiled. This list includes ca. 1500 names that still need reevaluation of validity, 

priority and typifications (see electronic appendix). 
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Fig. 1.28 Research strategy  and specific goals on the micro-scale. 

Implementation of the joint generic and 

subdivisional classification strategy for 

Cyperus s.l. on Pycreus  

(micro-) morphological study:  

Understanding of occurrences, origin 

and nature of taxonomically 

important characters in Pycreus  Nutlet epidermal cells 

 

  

 

Molecular phylogenetic study:  Investigating infrageneric 

relationships  in Pycreus  Testing monophyly of existing 

subdivisions of Pycreus 

Reevaluation of the taxonomic value of characters used 

for subdivisional delimitations in Pycreus 

 

Reevaluation of the taxonomic status 

of the subdivisions of Pycreus 

Studies towards an integrated 

revision of Pycreus:  Reestablishment of Pycreus sect. 

Tuberculati  Publication of necessary 

taxonomical changes (new 

combinations, etc.) 

 

Choice of representative taxa and sampling of plant material 

 

Choice of reference classification to test 

(infrageneric: Kükenthal, 1936) 

 

Nomenclature and typifications of 

names in Pycreus  generic and subdivisional names   specific and infraspecific names 

Reliable 

characters 

Production of a list of taxa 
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Several smaller taxonomic case studies are included in chapter 8 and 9, these form 

smaller step stones towards a larger revision of the group: 

a. Reestablishment of P. section Tuberculati: As a result from the nutlet epidermal study 

and morphological study of Pycreus species a discrepancy was discovered in 

Kükenthal͛s (1936) delimitation of his C. sect. Muricati and in the nomenclatural 

priority of the sectional names used. Pycreus divulsus (type of P. sect. Tuberculati) 

needed to be removed from the section and in addition P. divulsus ssp. africanus is 

moved to the specific level based on a detailed comparative study of both taxa. Results 

of this case study were published (Reynders & Goetghebeur, 2010; chapter 8). 

b. Taxonomic changes: As a result of the joint decision to sink the segregate genera of the 

Cyperus clade into Cyperus s.l., several Pycreus species need to be combined into 

Cyperus. In addition, the synonymy of several African species is reevaluated and 

included as a summary of the taxonomic work performed on species level during this 

PhD project (Chapter 9). 
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To genus  

or not to genus, 

that is the question! 

Fig. 1.29 Pycreus ͚CǇpeƌtooŶ͛, ǁoŶdeƌiŶg aďout its taǆoŶoŵiĐ futuƌe… DƌaǁŶ iŶ ‘hiŶoĐeƌos ϯD foƌ a sǇŵposiuŵ 

posteƌ. Quote iŶspiƌed fƌoŵ “hakespeaƌe͛s Haŵlet ;AĐt III sĐeŶe ϭͿ. The ƋuestioŶ ǁhetheƌ the segƌegate taǆa of 

the Cyperus clade can be retained as separate genera or should be sunken into a broader circumscribed Cyperus 

forms one of the central questions of this PhD thesis. 
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“Soŵewhere, soŵethiŶg iŶĐrediďle is waitiŶg to ďe kŶowŶ.”  

― Carl Sagan (1934-1996) 

2 Plant material & sampling 
 

 Fig. 2.1 On a quest for sedges in Andringitra National Park, Madagascar. Picture taken by M. 

Reynders. 

 

Spikelet theme: Pycreus flavescens 

79 
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2.1 In this chapter… 

 In chapter 4, origin and types of plant material that are required in the different types 

of research are briefly discussed. In addition, a brief overview is given of the fieldwork 

executed during the course of this research and the collection of living Cyperaceae 

plants is addressed. 

 

2.2 Plant material  

2.2.1 Herbarium material 

Cyperaceae are generally easy to dry and usually pest-free. When special attention is 

paid on the collection of complete plants, they provide good herbarium specimens where 

most characters are easily observable. Herbarium material still forms a most important source 

of information in plant taxonomy. Besides being a source of morphological and morphometric 

data, labels of specimens contain data on distribution, ecology, phenology, etc.  

Well preserved herbarium specimens can also provide samples for molecular 

phylogenetic research, embryographical and SEM studies (micromorphology). The use of 

herbarium specimens for such samples is dependent on the policy of the herbaria where the 

specimens are deposited. Therefore, the current study mostly used samples of the GENT and 

BR herbaria that have  a relatively more open policy for destructive sampling from herbarium 

material (except from type-specimens). In addition, some herbaria allow for DNA extractions 

within the proper research facilities of the herbarium, for example DNA extraction of 

specimens from K was performed in the Jodrell Laboratory of the Royal Botanic Gardens, Kew. 

For the taxonomic parts of this PhD study, specimens have been studied mostly from 

Ghent University Herbarium (GENT), the National Botanic Garden of Belgium (BR), the Musée 

NatioŶal d’Histoire Naturelle iŶ Paris (P) and the Kew Herbarium (K). In addition also 

specimens were studied from the following herbaria: B, BM, CEBU, NY, TAN, UPS, WAG and YA 

(abbreviations according to Holmgren et al., 1900; underlined herbaria were visited during 

this study). Currently, many herbaria also provide access to an online catalogue and digital 

specimen consultation (e.g. BR, NY). In addition, large online databases have been made 

available through large scale international cooperation, providing digitalized (type) specimens 

( http://plants.jstor.org/ and http://www.tropicos.org/). 
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2.2.2 Fieldwork 

Botanical fieldwork makes it possible to collect additional herbarium material , more 

particularly from rare species poorly represented in herbaria such as narrow endemics. In 

addition, sampling is done to obtain high quality samples for DNA extraction and ontogenetic 

studies. The latter methods are difficult or even impossible to perform on historic herbarium 

specimens.  Both types of studies require different sampling techniques that are explained 

under 2.3. Attention has also been paid to the collection of living plants, which allows for 

more elaborate sampling and study after transplantation in a botanic garden.  An overview of 

the fieldwork performed during the joint research project of the Cyperus clade within the 

Research Group Spermatophytes of Ghent University is given by Larridon (2011). A summary 

of this fieldwork can also be found in table 4.1.  

With the ratifications of the Convention of Biodiversity, policies on collecting and 

transportation of plants have tightened. For most countries, collecting permits are required 

besides collaboration with local institutes and deposition of duplicate specimens in the 

herbaria of the cooperating institutes. Transportation regulations differ for the different kind 

of samples. Generally, for herbarium specimens and silica-gel samples, an export permit is 

sufficient as no Cyperaceae currently fall under the CITES regulations. For samples on alcohol, 

there are restrictions on the amount of alcohol that can be carried on board of aircrafts. 

Therefore, such samples need to be carried in small volumes or alternatively in wrapped 

alcohol soaked tissues sealed within a plastic bag. Policies for the transportation of living 

plants and soil are restricted by phytosanitary regulations. Sedges are generally not listed 

among the plants that fall within these regulations as few of them are cultivated.  
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Table 2.1 Overview of the fieldwork performed during the joint research project on Cyperus s.l.  

 

2.2.3 A living Cyperaceae collection 

In most living plant collections, sedges are poorly represented. Therefore, special 

attention was paid to the elaboration of the living sedge collection of the Ghent University 

Botanical Garden (BG Ugent) with new collections from fieldwork in the Philippines, 

Cameroon and Kenya (table 2.1, fig. 2.2) and with germination tests with seeds provided from 

other collections or seed banks (fig. 2.3).  

To be able to provide a dynamic and continuous flow of plant samples from all 

different required ages (such as for ontogeny an anatomy) the living ex situ collection of 

Cyperaceae at the BG UGent is essential. In addition, this living collection has been used as a 

Date Country Region Team #
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18/12/2005 

until 

25/01/2006  

 

Philippines East Samar & 

Bohol 

M. Reynders & B. Sabulao, in 

cooperation with DENR region 8 

75 V V v v 

23/02/2007 

until 

09/03/2007  

 

Cameroon Mt Cameroun W. Huygh, I. Larridon & M. Reynders, in 

cooperation with AETFAT & Limbe 

Botanic Gardens    

50 V V v  

Inselbergs near 

Yaounde and 

Highlands of 

the Northwest 

W. Huygh & M. Reynders, In 

cooperation with AETFAT & l’ Herbier 
National du Cameroun 

June- July 

2009 

Kenya  W. Huygh & I. Larridon, in cooperation 

with the East Africa herbarium of the 

National Museums of Kenya, Nairobi 

(M. Mbale) & Kenya Wildlife Service 

212 V v  V v  

 

01/04/2010 

until 

01/05/2010  

 

Madagascar Central North 

& East 

W. Huygh & I. Larridon, in cooperation 

ǁith l’Herbier NatioŶal of  Parc 

Botanique et Zoologique de 

Tsimbazaza,  Université 

d'Antananarivo (J. Razanatsoa & J. 

Andriantiana) & Missouri Botanical 

Garden 

350 v  v v 

South-Central 

Highlands 

W. Huygh, I. Larridon & M. Reynders, in 

cooperation with the University of 

Cape Town (A.M. Muasya), l’Herbier 
National of Parc Botanique et 

Zoologique de Tsimbazaza,  Université 

d'Antananarivo (Andri) & Missouri 

Botanical Garden 

20/07/2010 Philippines East Samar M. Reynders & B. Sabulao, in 

cooperation with DENR region 8 

6  V v v 

http://www.biocam.net/sites_fr/herbier.htm
http://www.biocam.net/sites_fr/herbier.htm
http://www.museums.or.ke/
http://www.univ-antananarivo.mg/
http://www.univ-antananarivo.mg/
http://www.univ-antananarivo.mg/
http://www.univ-antananarivo.mg/


Plant material & sampling ____________________________________________ 

 

83  

source of leaf material for the extraction of high quality DNA for molecular studies. With a 

living collection, it is also possible to do experiments on the reaction of the phenotypes of 

different organs to different environmental factors as is illustrated in fig. 2.3. Finally, the living 

collection makes it possible to monitor the growth and flowering and provided optimal 

opportunities for photography at different stages of the life cycle of the plants studied (see 

chapter 5).  

It is vital to maintain and extend these scientific reference collections for current and 

future research purposes. Currently, the Cyperaceae collection includes over 500 accessions 

representing 31 genera and 283 species (Larridon, 2011). 

 

 
 
 
 
 
 
 
 

Fig. 2.2 Living ex citu collection of Cyperaceae in the Ghent University Botanical Garden. A. Young potted plants 

of Paramapania parvibracteata brought from the Philippines. B. Temperate region sedges. C. Tropical species 

collected during the expedition in the Philippines and Cameroon.  

A 

B C 
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Fig. 2.3 Germination experiment in the  Ghent University Botanical Garden. A. Seeds of Pycreus flavescens were 

germinated on a petri dish with 1% agar. B. The agar with seedlings was cut in half and transferred to two 

different pots. The left pot was watered only from the top, while the right pot was placed in a dish filled with 

water. Seedling subsequently developed different phenotypes.  C. Phenotype of P. flavescens on a humid soil. D. 

Phenotype of P. flavescens on a wet soil.  

A 

B 

C 

D 
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2.3 Sampling  

The availability of suitable plant material plays an essential role in the performance of 

modern plant taxonomic studies using a combination of many different techniques, such as 

morphology (complete living/dried plants), anatomy (living material, alcohol samples), 

ontogeny (alcohol samples of different stages), molecular phylogeny (fresh/ silica gel dried 

samples), embryography (mature nutlets) etc. This requires a variety of sample types (fig. 2.4) 

from a wide range of species from the group studied. Below, the most important types of 

samples used are listed. 

 

2.3.1 Samples for micromorphological study and embryography 

 For micromorphological study of nutlets and glumes under a SEM, well preserved 

herbarium specimens provide a good source of samples. Mature fruit and glume samples from 

herbarium specimens are dry and do not need additional preparation before they are 

transferred to the stubs for SEM observation. For additional investigation of silica bodies, 

outer cell walls were removed following Goetghebeur & Van den Borre (1989). Mature fruits 

are also suitable for embryographical studies as sedge eŵbryo’s reŵaiŶ ǁell preserǀed ǁithiŶ 

the fruit. Dissection aŶd treatŵeŶt of eŵbryo’s was performed following the protocols of Van 

der Veken (1965). 

 

2.3.2 Samples for molecular study 

 Molecular studies require samples containing high quality DNA. Fresh samples and 

fastly dried samples (e.g. in silica gel, fig. 2.4D) provide the best results for DNA extraction of 

sedges. In addition, silica-gel dried material allows for long term preservation of samples 

when stored away from light (Chase & Hillis, 1991). Silica-gel samples for this study were 

obtained by sampling from the living collection of the BG UGent, from field studies or from 

collaboration with colleagues. Dr. A.M. Muasya provided a large amount of samples of 

Cyperaceae collected during his fieldwork in Africa and Thailand. Additional material was 

collected during several expeditions in the Philippines, Cameroon, Kenya and Madagascar (see 

table 2.1). 
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2.3.3 Samples for ontogenetic and anatomical studies 

For developmental and anatomical studies, samples freshly collected in the field or in 

botanic gardens are essential. These samples are stored in ethanol 70% or in FAA (5 % 

Formaldehyde 5% Acetic acid 90% Alcohol), fig. 2.4E.  

Collecting in the field has the advantage that rare species or species that are difficult to 

cultivate can be sampled when collections for herbarium are made. However, for some taxa 

(e.g. Cariceae, Sclerieae, etc.) it is difficult to collect a full series of growth stages that are 

required to produce complete ontogenies. In addition, there are often logistic problems such 

as availability of ethanol, transportation restrictions for large quantities, etc.  

In contrast, sampling from an ex situ living collection such as in the BG UGhent, makes 

it possible to collect samples from different developmental stages and to revisit the plants 

when needed. Therefore, for the ontogenetic and anatomical studies presented in chapter 4 

and 5, almost all samples were collected from the Ghent University Botanical Garden. 

 

2.3.4 Collecting living Cyperaceae plants 

Collection and transportation of living Cyperaceae is challenging. Good results have 

been achieved during our fieldwork by carrying the plants in sealed ziplock bags (Fig. 2.4C). 

Therefore, roots and rhizomes surrounded with the original humid soil are put as soon as 

possible after collection in separate bags. Leaves and culms are shortened to fit in the closed 

bags. The plants need to be exposed to light (not full sun) as often as possible to keep them 

vital. In this way, most Cyperaceae can be stored easily for up to two weeks. Upon 

transplantation to pots in the botanic garden, roots and covering soil have to be left 

undisturbed. When washing off the soil before international transportation, as was done with 

the samples from the Philippines of 2006, success of growth was limited in comparison with 

the samples form Cameroun or the Philippines in 2010, where original soil had been left on. 

Especially annual species, but also perennial species such as Lipocarpha chinensis, Scleria sp., 

Fuirena umbellata, Paramapania parvibracteata, Scirpodendron ghaeri, etc., have higher 

survival rates when soil is not removed., Perennial species of Cyperus, Pycreus, Kyllinga and 

Fimbristylis generally survived either method. Samples without soil or species from humid 

forest floors (e.g. Paramapania) suffer from dehydration after removal from the humid 



Plant material & sampling ____________________________________________ 

 

87  

environment in the sealed bags. Therefore, potted plants need to be sealed again within 

closed bags and slow acclimatization is required until new growth becomes visible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Different samples and data collected during fieldwork on Cyperaceae. A. Herbarium specimens, B. In situ 

pictures. C. Living collection in zip-lock bag. D. Silica gel sample. E. Samples on ethanol 70% for ontogeny and 

anatomy.  
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͞NoŵeŶĐlature, the other fouŶdatioŶ of ďotaŶy, should 
provide the names as soon as the classification is made... If the 

names are unknown knowledge of the things also perishes... 

For a siŶgle geŶus, a siŶgle Ŷaŵe.͟  

 

— Carolus Linnaeus (1707-1778) 

3 Nomenclature  
 

 Fig. 3.1 Pycreus holosericeus, brought from Guiuan (Philippines) to the Botanical Garden of 

Ghent University. Picture taken by M. Reynders. 

 

Spikelet theme: Pycreus macrostachyos 

89 
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3.1 In this chapter… 

 A series of three papers was published presenting a survey of all names of genera and 

subdivisions of genera published for taxa now included in the Cyperus clade. In chapter 

3, the introductions of the three papers are combined and subsequently, the 

nomenclature is treated of all names of genera and subdivisions of genera published 

for Pycreus taxa. In their PhD these, Isabel Larridon and Wim Huygh treat the names 

relating to C3 Cyperus and the names relating to Kyllinga respectively. 

1. Huygh, W., Larridon, I., Reynders, M., Muasya, A. M., Govaerts, R., Simpson, D.A. 

& Goetghebeur, P. (2010) Nomenclature and typification of names of genera and 

subdivisions of genera in Cypereae (Cyperaceae): 1. Names of genera in 

the Cyperus clade. Taxon 59: 1883–1890. 

2. Larridon, I., Huygh, W., Reynders, M., Muasya, AM., Govaerts, R., Simpson, DA., 

Goetghebeur, P. (2011) Nomenclature and typification of names of genera and 

subdivisions of genera in Cypereae (Cyperaceae): 2. Names of subdivisions in Cyperus. 

Taxon 60: 868–884. 

3. Reynders, M., Huygh, W., Larridon, I., Muasya, AM., Govaerts, R., Simpson, DA., 

Goetghebeur, P. (2011) Nomenclature and typification of names of genera and 

subdivisions of genera in Cypereae (Cyperaceae): 3. Names of subdivisions in segregate 

genera of Cyperus. Taxon 60: 885–895. 

The introduction presented below is a combination of the relavant parts of the 

intruductions of the published articles.  

3.2 Abstract 

The morphological diversity and the presence of several convergent evolutionary 

lineages in the tribe Cypereae (Cyperaceae) resulted in conflicting classifications. These 

conflicts do not only arise in the delimitation of genera and their subdivisions, but also in the 

use of similar subdivisional names for different species groups. This has resulted in the 

publication of ca. 350 names of genera and subdivisions of genera to accommodate the ca. 

950 species in Cyperus and its segregate genera. This complex nomenclature has led to an 

accumulation of errors in the assessment of valid publication, priority and legitimacy, and in 

typifications in almost all existing taxonomic treatments for the group. Renewed interest in 
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the phylogeny and taxonomy of Cypereae reveals the need to evaluate the nomenclature of 

names of genera and of subdivisions of genera. In a series of three papers, types were 

designated where needed and priority and legitimacy of the names was evaluated. This series 

represent the first complete nomenclatural survey of the names of genera and subdivisions of 

genera in Cypereae. This is an essential step towards a modern classification of the tribe. Here 

a selection of names related to Pycreus are listed. 

 

3.3 Introduction 

3.3.1 Genera in Cypereae 

The Cypereae tribe forms one of the most diverse lineages of Cyperaceae, and its 

species occur in almost all tropical wetland habitats. Cypereae include species, which are of 

both economic and ecological importance (e.g., Cyperus papyrus, C. esculentus; e.g., Boar & 

al., 1999; Junk & al., 2006). Originally, this tribe only included the large genus Cyperus and its 

obvious relatives characterised by spikelets with a distichous glume arrangement and flowers 

lacking perianth (Clarke, 1908; Kükenthal, 1935–1936). In Cypereae, several groups are 

recognizable based on morphological characters like presence of deciduous spikelets (e.g., 

Courtoisina, Kyllinga, Mariscus) or dimerisation of the pistils (e.g., Juncellus, Kyllinga, Pycreus, 

Queenslandiella). These groups have often been treated as separate genera. However, many 

of these genera, although described to distinguish species with distinctive characteristics, 

were only recognised for a short time and later included in Cyperus or one of its large 

segregate genera like Kyllinga and Pycreus (see Goetghebeur, 1989). Worth mentioning are 

the works of Palla (1905) and Rikli (1895) who used vegetative anatomy as key character for 

generic circumscription. Many other genera, phylogenetically belonging in Cypereae, have 

previously been included in other tribes such as Scirpeae due to the spiral glume placement 

(e.g., Bentham, 1878; Clarke, 1901–1902). Other genera had unclear affinities within the 

family and had been moved around between various tribes depending on the interpretations 

of their derived inflorescence morphologies (e.g., Ascolepis, Lipocarpha, Remirea; e.g., Nees, 

1842; Kern, 1974). A major breakthrough in the circumscription of Cypereae arose from the 

studies of Van der Veken (1965) and Goetghebeur (1998), who showed that many other 

genera share a specific Cyperus-type embryo. This specific embryo type allows a natural 

delimitation of Cypereae, including also taxa with spirally arranged glumes or with highly 

specialized inflorescences. Recent molecular studies confirm this  circumscription and reveal 
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that Cypereae largely consist of two well supported clades (Muasya & al., 2002, 2009a; 

Simpson & al., ϮϬϬϳ: the ͚Ficinia Đlade͛ aŶd the ͚Cyperus Đlade͛. The predominantly South 

African Ficinia clade (155 spp.) consists of several taxa previously placed in the heterogeneous 

Scirpeae and even in Chrysitricheae: Scirpoides, Hellmuthia, Ficinia and Isolepis and two 

Scirpus species, i.e., Scirpus falsus and Scirpus ficinioides, which needed to be transferred to a 

new genus (Muasya & al., 2009a). The two latter species and Hellmuthia are the only 

members of Cypereae that still have perianth parts. The core Ficinia clade consists of a 

paraphyletic Isolepis including Ficinia (Simpson & al., 2007; Muasya & al., 2009a). 

Desmoschoenus has recently been transferred to Ficinia (Muasya & de Lange, 2010). Both 

Isolepis and Ficinia seem to contain species, which developed a distichous glume placement, 

while several taxa in the Cyperus have spirally arranged glumes, blurring generic delimitations 

within Cypereae (Muasya & al., 2002, 2006, 2007, 2009a,b).  

The cosmopolitan Cyperus clade (950 spp.) is much more diverse. As in many large 

plant  groups, such as Peperomia (Wanke & al., 2006), Acacia (Miller & Bayer, 2001; Ariati & 

al., 2006), and Carex (Starr & al., 1999), the taxonomic relationships and generic delimitations 

in the Cyperus clade are still largely unresolved (Goetghebeur, 1998; Muasya & al., 2009b). 

The Cyperus clade includes a paraphyletic Cyperus s.str. (696 accepted species; Govaerts & al., 

2007, 2010) as the core genus, in which 13 segregate genera are nested (classification of 

Goetghebeur, 1998). The segregate genera, Alinula, Androtrichum, Ascolepis, Courtoisina, 

Kyllinga, Kyllingiella, Lipocarpha, Oxycaryum, Pycreus, Queenslandiella, Remirea, 

Sphaerocyperus, and Volkiella, have diverged significantly from typical Cyperus in vegetative, 

floral, and anatomical characters (Muasya & al., 2009b). The mutual relationships between 

these segregate genera and Cyperus s.str. are still unclear. 

The complex taxonomy, large species number, and often convergent morphology 

resulted in many conflicting classifications of Cypereae (e.g., Clarke, 1893; Chermezon, 1919; 

Kükenthal, 1935–1936; Kern, 1974; Haines & Lye, 1983). Comparing these treatments, it 

appears that the same names have been used for different taxa (homonyms) and that similar 

species groups are known under various synonyms. This has lead to the accumulation of ca. 

350 names to accommodate the 950 accepted species in Cyperus and its segregate genera. 

Previously, the lack of a survey of all published names lead to the adoption of many names 

that were contrary to priority or  were illegitimate in almost all treatments of the group (e.g., 

Kükenthal, 1935–1936; Koyama, 1961; Kern, 1974; Haines & Lye, 1983; Goetghebeur, 1989; 
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Väre & Kukkonen, 2006). In addition many citation errors have repeatedly occurred as Väre & 

KukkoŶeŶ ;ϮϬϬϲͿ alreadǇ iŶdiĐated for Nees͛s ;ϭϴϯϰͿ seĐtioŶs, which have often been 

incorrectly assigned to Kunth (1837). In total, 11% of all the intended names of genera and 

subdivisions of genera listed in this series of papers are not validly published and another 11% 

are superfluous and/or illegitimate after evaluation in accordance with the International Code 

of Botanical Nomenclature (ICBN; McNeill & al., 2006). Of the 67 intended names mentioned 

below, 9% are not validly published and 16% are superfluous and/or illegitimate. 

 

3.3.2 History of infrageneric taxonomy of Cyperus 

The morphological diversity and the presence of several convergent evolutionary lines 

in Cyperus result in various controversial classifications. Furthermore, there is no unanimity on 

the delimitation of the genus. Metcalfe (1971) already realised that to study relationships 

within Cyperaceae using only morphological ĐharaĐters is proďleŵatiĐ: ͞The ŵaiŶ diffiĐultǇ 

about the classification of the Cyperaceae when the subject is approached solely along 

traditional lines is that the flowers are very small, the exact morphology of their parts is often 

obscure, and the ŵorphologǇ of the iŶfloresĐeŶĐes is diffiĐult to iŶterpret.͟ This leads to 

uncertain homologies and conflicting interpretations. 

The first infrageneric classification of the genus (and of related genera which were 

later included in the genus) is that of Nees (1834). He was the first to apply a sectional division 

in the genus Cyperus, and created eight sections. Often, his sections have incorrectly been 

assigned to Kunth (1837) as stated by Väre & Kukkonen (2006). Bentham (1881) comments on 

Nees͛s ǁork that ͞he Đreated soŵe ĐoŶfusioŶ, as ǁell ďǇ his usual tendency to raise species to 

the rank of genera, as by a want of reference to the original papers or work where Cyperaceae 

had been described, and by using a terminology occasionally founded on mistaken views of 

the homology of floral orgaŶs.͟ Most geŶera Đreated ďǇ Nees iŶ Cyperaceae are no longer 

accepted as such. 

Kunth (1837) greatly expanded our knowledge of Cyperaceae. He classified the species 

of Cyperus with a trifid style into 19 groups of unspecified rank, now usually treated at 

sectional level. He discussed the species of Cyperus with a bifid style separately. Kunth (1837) 

accepted Mariscus and Kyllinga as distinct genera. His main error was, according to Bentham 

;ϭϴϴϭͿ, ͞a teŶdency to give as characters rather what in theory we ought to see than what we 

actually do see, and, in his later ǁorks, to desĐriďe speĐiŵeŶs rather thaŶ speĐies͟. 
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Steudel (1854) divided Cyperus into three unnamed sections. The first section included species 

with a bifid style and corresponds to the genus Pycreus. His ͞“eĐtio II͟, split iŶto ϭϳ groups of 

unspecified rank, comprised the species of Cyperus with a trifid style. Many of these groups 

are now treated at sectional level. The third section held the species with uncertain affinities. 

Furthermore, Steudel (1854) recognised Mariscus and Kyllinga ;͞Kyllingia͟Ϳ as segregate 

genera. 

Boeckeler (1868–77) studied Cyperaceae in the Berlin Herbarium. Like Steudel (1854), 

Boeckeler (1868) treated Kyllinga ;͞Kyllingia͟Ϳ as a separate geŶus, aŶd iŶĐluded Pycreus at 

sectional level in the genus Cyperus aloŶgside a seĐtioŶ ͞Eucyperus͟. However, he did not 

accept Mariscus at generic rank. Boeckeler ;ϭϴϲϴͿ diǀided his seĐtioŶ ͞Eucyperus͟ iŶto ϮϬ 

groups of unspecified rank, now usually treated at sectional level.  

Clarke (1883, 1884, 1893, 1897, 1900, 1902, 1908), the founder of modern cyperology, 

originally considered Cyperus in a wide sense, but in his later publications he proposed the 

subdivision of Cyperus s.l. into seven distinct genera, i.e., Cyperus, Courtoisina, Juncellus, 

Kyllinga, Mariscus, Pycreus, and Torulinium. 

The last complete revision of Cyperus was published in the generic monograph of 

Kükenthal (1935–36). His infrageneric classification is the one most commonly used at 

present. As in Valkenier “uriŶgar͛s ;ϭϴϵϴͿ eǆĐelleŶt reǀisioŶ of Cyperus in the Malaysian 

Archipelago, the genus is taken in its wide sense.  Kükenthal (1935–36) divided Cyperus s.l. 

into six subgenera (C. suďg. ͞Eucyperus͟, Juncellus, Pycreus, Mariscus, Kyllinga, and 

Torulinium), 61 sections and eight subsections. The sections were primarily delineated by the 

nature of branching of the compound inflorescence, extent of development of the rhizomes, 

and the number of stamens and carpels per flower. OďǀiouslǇ, ŵaŶǇ of KükeŶthal͛s seĐtioŶs 

need revision before a natural classification of the genus can be proposed.  

Van der Veken (1965) studied the embryos of 132 species of Cyperus belonging to 

different subdivisions of the genus. The uniformity of the embryos appears to support the 

wide concept of Cyperus. Furthermore, the study revealed the presence of embryos of the 

Cyperus type in many taxa previously placed near Scirpus (e.g., Ascolepis, Ficinia, Isolepis, 

Lipocarpha, Kyllingiella, and OxycaryumͿ. “iŶĐe VaŶ der VekeŶ͛s ;ϭϵϲϱͿ publication, the 

inclusion of these genera in Cypereae led to a more natural circumscription of that tribe. All of 

these genera have, until now, been treated separately from Cyperus, except for the treatment 

of Lipocarpha under Cyperus by Koyama (1961). In his treatment of the genus, Kern (1974) 
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only accepted C. subg. Cyperus, Pycreus and Kyllinga at subgeneric rank, as he considered 

Juncellus, Mariscus, and Torulinium too ill defined to be recognised as subgenera. 

Later publications are only regional studies of Cyperus (e.g., Kern, 1974; Haines & Lye, 

1983). Although they present extensive knowledge of the genus, they are decidedly less 

valuable in assessing species relationships in a large genus such as Cyperus, the members of 

which have successfully utilized long-distance dispersal as well as more gradual short-distance 

migration and in situ diversification.  

Goetghebeur (1989) discussed the problems in the lectotypification of names relating 

to the infrageneric classification of Cyperus. He specifically excluded all taxa with laterally 

compressed nutlets, i.e. Kyllinga, Pycreus and Queenslandiella, and several highly specialised 

taxa, i.e., Alinula, Courtoisina, Kyllingiella, Oxycaryum, Remirea and Sphaerocyperus, from 

Cyperus s.str. However, he included such segregates as Anosporum, Galilea, Juncellus, 

Mariscus, Sorostachys and Torulinium. Goetghebeur (1998) retained this perspective in his 

treatment of the family Cyperaceae. 

 

3.3.3 Current views on the infrageneric classification of Cyperus 

Cyperus s.str. is commonly divided into two units, determined by the alternative 

character states of an anatomical and of an inflorescence character set. The presence of Kranz 

anatomy, correlated with C4 photosynthesis, has been used in the classification of Cyperus 

since Rikli (1895). The vegetative anatomy is eucyperoid or chlorocyperoid, characterizing ͞C. 

subg. Eucyperus͟ ;GriseďaĐh, ϭϴϰϲͿ aŶd ͞C. subg. Chlorocyperus͟ (Schischkin, 1935). The 

inflorescence is composed of digitately clustered spikelets and is often condensed, or the 

inflorescence is an anthela composed of spikes of spikelets, characterising C. subg. 

Pycnostachys and C. subg. Choristachys (Clarke, 1893). As demonstrated by Goetghebeur 

(1989), the two classification systems are not completely congruent. 

Either a few sections of subg. Chlorocyperus (with predominantly open inflorescence) 

exhibit a (partly) condensed and depauperate inflorescence (Kükenthal, 1935–36), or a few 

sections of the predominantly eucyperoid subgenus Pycnostachys reveal a chlorocyperoid 

type of anatomy (Druyts-Voets, 1970) linked to C4 photosynthesis. Inevitably, this means that 

at least one, or perhaps both of these presumed apomorphic character states (chlorocyperoid 

anatomy, condensed inflorescence) has or have evolved several times. This raises questions 

about the switch from C3 to C4 anatomy either having evolved repeatedly with no significant 
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morphological divergence or only once with subsequent convergence in the morphology of 

unrelated species. Clearly these are problems that cannot be resolved using morphological 

data alone. As already suggested by Raynal (1973) and Goetghebeur (1989), Soros & Bruhl 

(2000) confirmed that the chlorocyperoid anatomy type arose only once within Cyperus. 

Soros & Bruhl (2000) stated that the C4 photosynthetic pathway arose at least four separate 

times in Cyperaceae. However, in the tribe Cypereae only the chlorocyperoid anatomical 

variant occurs. Ongoing molecular research suggests that the Cyperus C3 species form a 

paraphyletic group with a monophyletic C4 subclade nested within the C3 group (Muasya & al., 

2002, 2009a; Simpson & al., 2007; Larridon & al., 2011b). On the other hand, Goetghebeur 

(1989) remarked that a multiple origin of the condensed inflorescence within Cyperus is much 

more probable. There are many instances of species exhibiting both inflorescence types (open 

vs. condensed), in Cyperaceae in general, and in Cyperus in particular. 

Consequently, within Cyperus at least two main infrageneric groups have been 

recognised. An eucyperoid subgenus, uniting plants without the Kranz syndrome, and with an 

inflorescence composed of digitately clustered spikelets; and a chlorocyperoid subgenus, 

uniting plants with a chlorocyperoid type of Kranz syndrome, and an inflorescence composed 

of spikes of spikelets or condensed spikes. Within Cyperus, two subgenera thus circumscribed 

were recognised by Chermezon (1937), Raynal (1973), Tucker (1983) and Hooper (1985). 

However, Hooper (1985) also upheld C. subg. Juncellus, accommodating the chlorocyperoid 

species with a condensed inflorescence and dorsiventrally flattened nutlets. Even more 

subgenera were proposed by Haines & Lye (1983), who considered Cyperus in a broad sense, 

although iŶ LǇe͛s earlier ǁork generic segregates such as Anosporum, Sorostachys (Lye, 

1981b), Kyllinga (Lye, 1982), and Pycreus (Lye, 1981c) were recognised. Goetghebeur (1989) 

remarked that he failed to see the advantage of merging such easily recognisable taxa with 

obvious synapomorphies, like Alinula, Ascolepis, Courtoisina, Kyllinga, Kyllingiella, Lipocarpha, 

Oxycaryum, Pycreus and Queenslandiella. On the other hand Lye (1992) convincingly 

demonstrated the polyphyly of Mariscus within Cyperus. Most authors now accept Mariscus 

as an element of Cyperus (e.g., Goetghebeur, 1998; Simpson & Koyama, 1998). Goetghebeur 

(1989) proposed the recognition within Cyperus of only two subgenera, respectively 

composed of the eucyperoid and of the chlorocyperoid species, further arranged in sections. 

The recent molecular studies (Muasya & al., 2002, 2009a; Simpson & al., 2007; Larridon & al., 
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2013) reveal the paraphyletic character of Cyperus s.str. including several highly derived 

lineages, urging a redefinition of generic delimitations in Cypereae. 

 

3.3.4 Segregate genera of Cyperus 

  The segregate genera represent roughly 25% of the diversity within the Cyperus clade 

and are circumscribed based on derived floral or inflorescence characteristics. Flower and, 

more specific, pistil variation are quite large within Cyperus (Kükenthal, 1935–36). From the 

basic trimerous pistil type, several dimerisations occurred in Cypereae. These dimerous pistils 

can be dorsiventrally flattened, as represented by several species scattered within the Cyperus 

clade (e.g., Juncellus, Oxycaryum), and are also common in many other Cyperaceae genera. In 

contrast, the laterally compressed pistils are restricted to three segregate genera of C4 

Cyperus (Kyllinga, Pycreus, Queenslandiella) (Goetghebeur, 1998). 

All other segregate genera (except Pycreus) and the Cyperus s.str. species formerly 

included in Mariscus (Clarke, 1893) are characterised by a shift in seed dispersal units from a 

nutlet to a complete spikelet (Goetghebeur, 1998). Many of these species show strongly 

reduced and/or contracted inflorescences (for example: Kyllinga). Alinula, Ascolepis, 

Lipocarpha, and Volkiella are highly evolved Cypereae, in which partial inflorescences became 

functional spikelets (Palla, 1905; Raynal, 1973; Eiten, 1976; Goetghebeur, 1977). Spikelet 

organs like glumes gain new functions in seed dispersal, for instance, air captured around the 

nutlet facilitates dispersal over water (e.g., Alinula, Ascolepis ampullacea, Lipocarpha, 

Remirea), or development of wing-like structures for wind dispersal (e.g., Ascolepis capensis, 

Courtoisina, Kyllinga squamulata, K. alata) (Muasya & al., 2009b). In extreme cases these 

adaptations in seed dispersal unit causes the taxa in which they occur to lose most of the 

typical Cyperus characteristics. 

The generic status of many of these segregates has long been under discussion, 

especially for the large segregate taxa Juncellus, Kyllinga, Mariscus, and Pycreus. The shifting 

opinions in the treatment of these taxa under Cyperus or as separate entities resulted in a 

complex generic and subdivisional nomenclature with approximately 350 generic and 

subdivisional names to contain the roughly 950 species present in the Cyperus clade. The 

subdivisional classifications of the segregate genera of Cyperus (especially Kyllinga, Mariscus 

and Pycreus) comprise 83 intended names of which 18% were not validly published and 5% 



    _______________________________________________________ Chapter 3 

  

98 

are found to be illegitimate after evaluation in accordance with the International Code of 

Botanical Nomenclature (ICBN; 

McNeill & al., 2006). The lack of overview and limited availabilities of literature sources in the 

past have led to the erroneous use of names of subdivisions of genera with regards to valid 

publication and legitimacy in almost all recent and past classifications of the group (e.g., 

Kükenthal, 1935–36; Chermezon, 1937; Kern, 1974; Haines & Lye, 1983).  

The presence of this enormous diversity in floral, spikelet and inflorescence 

morphologies requires reassessment of generic delimitations and circumscriptions in 

Cypereae. Although a novel classification of this tribe is urgently needed, especially for 

Cyperus and its segregate genera, a well-resolved molecular phylogenetic hypothesis needs to 

be reconstructed first. 

 

3.4 Materials and Methods 

The typifications were made after careful review of the original descriptions of the 

taxa, examination of herbarium specimens, and of live specimens in the Ghent University 

Botanical Garden. They are founded on expertise in Cyperaceae obtained through long-

standing research into the systematics of this family by the Research Group Spermatophytes 

of the Ghent University. References to Articles refer to the International Code of Botanical 

Nomenclature (ICBN , McNeill & al., 2006). References to accepted names refer to the World 

Checklist of Cyperaceae (Govaerts & al., 2007, 2010). The classification used is that of 

Goetghebeur (1998). 

The names of subdivisions published in the segregate genera of C4 Cyperus will be 

treated per genus in which they were originally included, i.e., Ascolepis, Lipocarpha, Kyllinga, 

Mariscus, Pycreus and Scirpus. For Scirpus, only those names of subdivisions encompassing 

species now placed in the Cyperus clade are included in this paper. The type of each name of 

genus or a subdivision of Cyperus of one of its segregate genera is indicated. If in the 

protologue only one validly published species name is cited or referred to (Art. 10.3 of the 

ICBN), the entry appears siŵplǇ as ͞TǇpe: …͟ Where a tǇpe has ďeeŶ seleĐted later, the entry 

appears as ͞LeĐtotǇpe͟ ǁith a pareŶthetiĐal reference to the publication in which the 

selection was made. Names that are homotypic, e.g., under Art. 7.5, are indicated 

appropriately. If, when first published, the name of a subdivision of Cyperus had been 

assigned to a generic subdivision of higher rank, that assignment is given in parentheses even 
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although it has no nomenclatural significance. 

The large number of nomina nuda published by Chermezon are a consequence of the 

fact that Chermezon (1922, 1931) did not provide descriptions for his intended new names, 

and later Chermezon (1937) only provided a French diagnosis; therefore his names are not 

validly published (Art. 32.1(d) and 36.1). 

Of the names of subdivisions of Cyperus with epithets that are derived from the 

epithet of a constituent species and hence typified under Art. 22.6 by the type of that species 

name, a significant number, when published, included the already established type of a name 

of another generic subdivision of the same rank, thereby making them superfluous and under 

a strict reading of Art. 52, also illegitimate. As Art. 22.6 establishes that such a name has a 

different type from that of the name that ought to have been adopted, automatic typification 

under Art. 7.5 does not apply. The resultant situation is very unsatisfactory in that perfectly 

appropriate epithets of subdivisions of Cyperus based on the names of familiar species, are 

blocked from use even when the taxon is circumscribed to exclude the type of any earlier 

name at that rank. One might suppose by analogy with superfluous names formed from 

legitimate basionyms (Art. 52.3) that such names would be available for use when the cause 

of the superfluity was removed, but a strict reading of Art. 52.3 does not permit this. As it 

would seem logical that the Code should extend the provisions of Art. 52.3 to such cases, 

which are particularly important in large genera such as Cyperus, we have noted the 

superfluous situation in the listings below, but have refrained from adding the word 

͞illegitiŵate͟. 

 

3.5 Names of genera related to Pycreus. 

 

Chlorocyperus Rikli in Jahrb. Wiss. Bot. 27: 563. 1895, nom. illeg. (Art. 52.1) – Type: 

Chlorocyperus polystachyos ;͚polystachyus͛Ϳ ;‘ottď.Ϳ ‘ikli [≡ Pycreus polystachyos 

(Rottb.) P. Beauv. (Cyperus polystachyos Rottb.)] (Art. 7.5). 

Rikli (1895) divided Cyperus L. into two new genera based on vascular anatomy. In the 

genus Chlorocyperus, Rikli (1895) placed all species with a chlorocyperoid C4 anatomy type, 

including C. polystachyos Rottb., the original type of Pycreus P. Beauv. (1816), making 

Chlorocyperus nomenclaturally superfluous and illegitimate (Art. 52.1). 

= Cyperus L. 
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Cyperus L., Sp. Pl. 1: 44. 1753 – Lectotype (Britton, 1907: 6): Cyperus esculentus L. 

 

Distimus Raf. in J. Phys. Chim. Hist. Nat. Arts 89: 105. 1819 – Lectotype (designated here): 

Distimus flavescens (L.) Raf. [≡ Pycreus flavescens (L.) P. Beauv. ex Rchb. (Cyperus 

flavescens L.)]. 

= Pycreus P. Beauv. 

 

Pycreus P. Beauv., Fl. Oware 2: 48. 1816 – Type: Pycreus polystachyos (Rottb.) P. Beauv. 

(Cyperus polystachyos Rottb.) 

 

Torreya Raf. in J. Phys. Chim. Hist. Nat. Arts 89: 105. 1819, nom. illeg. (Art. 53.1), non Torreya 

Raf. (Dicot.: Lab.; 1818) – Lectotype (designated here): Torreya caespitosa Raf. [= 

Pycreus filicinus (Vahl) T. Koyama (Cyperus filicinus Vahl)]. 

Originally, two specific names were listed in the protologue of Torreya Raf., i.e., 

Torreya caespitosa and T. maritima ‘af. [≡ Pycreus diander (Torr.) C.B. Clarke]. Rafinesque first 

described a genus Torreya Raf. Belonging to the Labiatae in Amer. Monthly Mag. & Crit. Rev. 

3: 356. 1818 (type: T. grandiflora Raf.). The following year he used ͞Torreya͟ agaiŶ for a Ŷeǁ 

genus in Cyperaceae, which is a later homonym and thus illegitimate (Art. 53.1). The genus 

Torreya Raf. belonging to the Labiatae has since been rejected in favour of Torreya Arn. in 

Ann. Nat. Hist. 1: 130. 1838, nom. cons. (Taxaceae). 

= Pycreus P. Beauv. 

 

3.6 Subdivisional names 

3.6.1 Names of subdivisions under Cyperus  

 

Cyperus (subg. Pycreus) sect. Albomarginati Kük. in Engler, Pflanzenr. IV, 20 (Heft 101): 359. 

1936 – Type: Cyperus albomarginatus ( Mart. & S chrad. e x N ees) S teud. [ = Pycreus 

macrostachyos (Lam.) J. Raynal] (Art. 22.6). 

This sectional epithet has not been combined in Pycreus. 
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 ͞Cyperus subg. Chlorocyperus ;‘ikliͿ “ĐhisĐhk.͟ iŶ Koŵaroǀ, Fl. URSS 3: 17. 1935, nom. inval. 

(Art. 22.2). 

͞Cyperus subg. Chlorocyperus͟ is Ŷot validly published (Art. 22.2), as it included C. 

esculentus which was selected as type of Cyperus (Britton, 1907). This proposed name was 

based on: Chlorocyperus Rikli, Jahrb. Wiss. Bot. 27: 563. 1895, nom. illeg. (see Huygh & al., 

2010). 

 

Cyperus sect. Chrysanthi (C.B. Clarke) J. Kern (see Pycreus sect. Chrysanthi C.B. Clarke; 

Reynders & al., 2011). 

 

Cyperus L. sect. Cyperus, autonym automatically established by Nees in Linnaea 9: 284. 1834 

;Art. ϮϮ.ϯͿ ≡ Cyperus L., Sp. Pl. 1: 44. 1753 (Huygh & al., ϮϬϭϬͿ ≡ Cyperus subg. Cyperus, 

autonym automatically established in Petermann, Deutschl. Fl. 11: 595. 1849 (Art. 

ϮϮ.ϯͿ ≡ C. subg. Pterocyperus Peterŵ., DeutsĐhl. Fl. ϭϭ: ϱϵϱ. ϭϴϰϵ ≡ Pterocyperus 

;Peterŵ.Ϳ Opiz, “ezŶaŵ: ϴϬ. ϭϴϱϮ ≡ C. sect. Solubiles C.B. Clarke in J. Linn. Soc., Bot. 20: 

Ϯϵϭ. ϭϴϴϯ ≡ C. subg. Choristachys C.B. Clarke iŶ Hooker, Fl. Brit. IŶdia ϲ: ϲϬϱ. ϭϴϵϯ ≡ C. 

sect. Choristachys ;C.B. ClarkeͿ C.B. Clarke͟ iŶ UrďaŶ, Symb. Antill. 2: 22. 1900 

;͚Choristachyae͛Ϳ ≡ C. [unranked] Alati C.B. Clarke in Oliver, Fl. Trop. Afr. 8: 314. 1901 

;͚Alatae͛Ϳ ≡ Cyperus subsect. Cyperus, autonym automatically established by Nakai in 

Bot. Mag. (Tokyo) 26: 188. 1912 (Art. 22.3) – Lectotype: Cyperus esculentus L. 

(lectotype of Cyperus designated by Britton (1907) – lectotype of autonyms Art. 7.6 – 

lectotypes of C. subg. Pterocyperus, C. sect. Solubiles, C. subg. Choristachys, C. sect. 

Choristachys and C. [unranked] Alati designated here).  

Because the lectotype of Cyperus was only designated by Britton (1907), Art. 22.2 does 

not apply on the names of subdivisions of Cyperus including C. esculentus published before 

1907. Kern (1974) was the first to effectively use the autonyms of Cyperus at sectional and 

subgeneric rank. Väre & Kukkonen (2006) erroneously indicated C. rotundus L. as the type of 

C. sect. Cyperus. Five species were mentioned in the original description of C. subg. 

Pterocyperus, Opiz (1852) later established the genus Pterocyperus including only C. 

esculentus (Huygh & al., 2010). 
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Cyperus [unranked] Eupycreus Boeck. (see Pycreus P. Beauv. ser. Pycreus; Reynders & al., 

2011) 

 

Cyperus sect. Flavescentes Kük. (see Pycreus ser. Zonati (C.B. Clarke) C.B. Clarke; Reynders & 

al., 2011). 

 

Cyperus (sect. Pseudohaspani) subsect. Flavidi Nakai in Bot. Mag. (Tokyo) 26: 188. 1912 – 

Type: Cyperus flavidus Retz. [= Pycreus flavidus (Retz.) T. Koyama] (Art. 22.6). 

Nakai (1912) misinterpreted C. flavidus as being closely related to C. haspan L. and C. 

tenuispica Steud.; he mentioned the type of his C. sect. Pseudohaspani, i.e., C. pseudohaspan 

Makino [= C. tenuispica Steud.] as a synonym under C. flavidus. This subsection has not been 

combined in Pycreus. 

 

Cyperus (subg. Pycreus) sect. Fontinales K ük. i n E ngler, Pflanzenr. IV, 20 (Heft 101): 340. 

1936 – Type: Cyperus fontinalis (Cherm.) Kük. [≡ Pycreus fontinalis Cherm.] (Art. 22.6). 

This epithet has not been adopted for any ranked subdivision of Pycreus. 

 

Cyperus sect. Globosi (C.B. Clarke) Kük. (see Pycreus sect. Globosi C.B. Clarke; Reynders & al., 

2011). 

 

Cyperus (subg. Pycreus) [unranked] Isodiametrici Kük. In Engler, Pflanzenr. IV, 20 (Heft 101): 

327. 1936 – Lectotype (designated here): Cyperus polystachyos Rottb. [≡ Pycreus 

polystachyos (Rottb.) P. Beauv.].  

Cyperus polystachyos is the type of the name C. subg. Pycreus (P. Beauv.) J. Carey in 

which C. [unranked] Isodiametrici is included. Kükenthal (1936) used this name at a level 

between subgenus and section to replace Pycreus [unranked] Puncticulati C.B. Clarke and P. 

subg. Reticulati C.B. Clarke (both characterised by nutlets with isodiametric epidermal cells). 

Although this name is validly published under Art. 35.3, its epithet has not been adopted in 

any ranked subdivision of Pycreus. 

 

Cyperus [unranked] Pseudopycreus Boeck. (1868) is different from C. sect. Pseudopycreus (C.B. 

Clarke) Kük., nom. illeg. (1936). 
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Cyperus sect. Lancei Kük., nom. superfl. (see Pycreus sect. Lancei L.K. Dai; Reynders & al., 

2011). 

 

Cyperus sect. Latespicati Kük. (see Pycreus sect. Latespicati (Kük.) L.K. Dai; Reynders & al., 

2011). 

 

Cyperus (subg. Pycreus) sect. Muricati Kük. Nom. Superfl. in Engler, Pflanzenr. IV, 20 (Heft 

101): 394. 1936, nom. superfl. – Type: Cyperus muricatus Kük. [≡ Pycreus muricatus 

(Kük.) Napper] (Art. 22.6). 

When published, Cyperus sect. Muricati included the type of Pycreus sect. Tuberculati 

Cherm. (1919) and is therefore superfluous. However, Reynders & Goetghebeur (2010) 

misinterpreted Art. 52.3 in stating that the name C. sect. Muricati can be used when C. 

divulsus ‘idl. [≡ Pycreus divulsus (Ridl.) C.B. Clarke] is excluded. 

 

Cyperus sect. Platystachyi (Kunth) C.B. Clarke (see Cyperus sect. Hymenolepides Nees). 

 

Cyperus sect. Polystachyi (C.B. Clarke) Kük., nom. illeg. (see Pycreus P. Beauv. ser. Pycreus; 

Reynders & al., 2011). 

 

Cyperus sect. Propinqui (C.B. Clarke) Kük. (see Pycreus sect. Propinqui C.B. Clarke; Reynders & 

al., 2011). 

 

Cyperus (sect. Pycreus) [unranked] Pseudopycreus Boeck. (see Cyperus sect. Laevigati Kük.). 

 

Cyperus sect. Pseudopycreus (C.B. Clarke) Kük., nom. illeg. (see Kyllinga subg. Pseudopycreus 

C.B. Clarke; Reynders & al., 2011). 

 

Cyperus sect. Pumili Kük. (see Pycreus sect. Pumili (Kük.) L.K. Dai; Reynders & al., 2011). 

 

Cyperus sect. Pycreus (P. Beauv.) Griseb., Cyperus subg. Pycreus (P. Beauv.) J. Carey (see 

Pycreus P. Beauv. ser. Pycreus; Reynders & al., 2011). 
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Cyperus sect. Rhizomatosi Kük. (see Pycreus sect. Rhizomatosi (Kük.) J. Raynal; Reynders & al., 

2011). 

 

Cyperus (subg. Pycreus) sect. Sulcati Kük., nom. illeg. Non C. [unranked] Sulcati Boeck. (see 

Pycreus sect. Vestiti C.B. Clarke; Reynders & al., 2011). 

 

Cyperus sect. Vestiti (C.B. Clarke) J. Kern, nom. illeg. (see Pycreus sect. Vestiti C.B. Clarke; 

Reynders & al., 2011).  

 

Cyperus (subg. Pycreus) [unranked] Zonati (see Pycreus ser. Zonati (C.B. Clarke) C.B. Clarke; 

Reynders & al., 2011). 

 

3.6.2 Names of subdivisions of Pycreus 

The name Pycreus is an anagram of Cyperus illustrating the close relationship of the 

two taxa (Beauvois, 1816). Pycreus is the largest satellite genus of Cyperus s.l. Although 

opinions vary on the validity of its generic status, Pycreus has always been treated as a 

recognizable unit. The taxon only differs from the Cyperus C4 species in its laterally 

compressed pistils with only two style branches, a character that Pycreus shares with Kyllinga 

and Queenslandiella, both with deciduous spikelets. The first authors who published an 

extensive treatment of Cyperaceae considered Pycreus at the subgeneric level within Cyperus 

including those Cyperus species with two style branches and a dorsiventrally compressed pistil 

and also Cyperus hyalinus Vahl, which is now treated as Queenslandiella. These authors 

recognised two informal groups within the subgenus or section Pycreus of Cyperus based on 

this difference in the pistils. Boeckeler (1868) divided the species into C. [unranked] Eupycreus 

containing the species with laterally compressed pistils and C. [unranked] Pseudopycreus 

containing the species with dorsiventrally positioned pistils. Later authors, such as Clarke and 

Kükenthal, removed the latter group from Pycreus and treated it as a separate genus or 

subgenus Juncellus.  

Subdivisional classification of Pycreus, whether it is considered as a separate genus or 

as a subgenus of Cyperus, started with Boeckeler (1868) who arranged the species in the two 
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previously mentioned groups of unspecified rank based on the position of the pistils: C. 

[unranked] Eupycreus and Pseudopycreus.  

Clarke (1897) recognised two groups of unspecified rank, P. [unranked] Zonati and 

Puncticulati, based on the differences in shapes of the nutlet epidermal cells. In 1900, he 

formally described these groups as Pycreus ser. Zonati C.B. Clarke aŶd ͞P. ser. Reticulati C.B. 

Clarke͟, ǁhiĐh appear iŶ Clarke͛s puďliĐatioŶ of ϭϵϬϴ at the suďgeŶeriĐ leǀel. The latter 

subgenus was established to unite his former group P. [unranked] Puncticulati with P. 

nigricans (Steud.) C.B. Clarke (and relatives), which he originally placed in P. [unranked] 

Zonati. Within P. subg. Reticulati Clarke simultaneously described six sections. Chermezon 

;ϭϵϭϵͿ treated Clarke͛s suďgeŶera at seĐtioŶal level as Pycreus sect. Zonati and P. sect. 

Puncticulati adding a third section P. sect. Tuberculati to accommodate the unique species P. 

divulsus (Ridl.) C.B. Clarke.  

Finally, Kükenthal (1936) treated Pycreus as a subgenus of Cyperus and plaĐed Clarke͛s 

subgenera as the rankless taxa C. [unranked] Isodiametrici (incorporatiŶg Clarke͛s P. subg. 

Reticulati and P. sect. Puncticulati) and C. [unranked] Zonati. At sectional level, Kükenthal only 

retaiŶed three of Clarke͛s seĐtioŶs aŶd divided the species from the other sections into nine 

new sections. KükeŶthal͛s classification was later adopted unchanged for the New World 

species by Corcoran in 1941. 

Kern (1974) treated five of the existing sections in the Flora Malesiana. He retained 

tǁo of KükeŶthal͛s seĐtioŶs aŶd traŶsferred tǁo of Clarke͛s seĐtioŶal epithets into Cyperus to 

replaĐe tǁo of KükeŶthal͛s later sǇŶoŶǇŵs. He replaĐed C. sect. Polystachyi by C. sect. 

Pycreus, but he did not mention that Grisebach had already published the latter in 1846. 

 

͞Pycreus sect. Capitati Nakai͟ iŶ Bot. Mag. ;TokǇoͿ Ϯϲ: ϮϬϭ. 1912, nom. inval. (Art. 22.2). 

 

Pycreus sect. Chrysanthi C.B. Clarke in Bull. Misc. Inform. Kew, Addit. Ser. 8: 95. 1908 

;͚Chrysanthae͛Ϳ ≡ Cyperus (subg. Pycreus) sect. Chrysanthi (C.B. Clarke) J. Kern, Fl. 

Males., ser. 1, 7(3): 648. 1974 – Type: Pycreus chrysanthus (Boeck.) C.B. Clarke (Art. 

22.6). 

Clarke (1908) includes six species in this section, which share yellow to reddish 

spikelets and a compound anthela. 
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Pycreus sect. Colorati C.B. Clarke in Bull. Misc. Inform. Kew, Addit. Ser. 8: 95. 1908 

;͚Coloratae͛Ϳ – Lectotype (designated here): Pycreus nigricans (Ridl.) C.B. Clarke. 

The characters of P. nigricans fit very well the description of this section (Clarke, 1908). 

Clarke (1908) included 21 species in this section based mainly on their brown to very dark 

glume Đolour: ͞“piĐulae ĐastaŶeae aut atrae, ǀel ĐastaŶeo-tinctae (in P. spissiflora, 

fusĐeŶtesͿ.͟ 

 

Pycreus sect. Flavescentes (Kük.) T.V. Egorova (see Pycreus ser. Zonati (C.B. Clarke) C.B. 

Clarke). 

 

Pycreus sect. Globosi C.B. Clarke i n Bull. M isc. Inform. Kew, Addit. Ser. 8: 95. 1908 

;͚Globosus͛Ϳ ≡ Cyperus (subg. Pycreus) sect. Globosi (C.B. Clarke) Kük. in Engler, 

Pflanzenr. IV, 20 (Heft 101): 352. ϭϵϯϲ ≡ P. sect. Umbellati Nakai in Bot. Mag. (Tokyo) 

26: 202. 1912 ;͚Umbellata͛Ϳ, Ŷoŵ. illeg. (Art. 7.5, Art. 52.1) – Type: Pycreus globosus 

Rchb. [= P. flavidus (Retz.) T. Koyama] (Art. 22.6). 

 

Pycreus sect. Lancei L.K. Dai in Tang & Wang, Fl. Reipubl. Popularis “iŶ. ϭϭ: ϭϲϰ. ϭϵϲϭ ;͚;Kük.Ϳ 

L.K. Dai͛Ϳ ≡ Cyperus (subg. Pycreus) sect. Lancei Kük. in Engler, Pflanzenr. IV, 20 (Heft 

101): 330. 1936, nom. superfl. – Type: Pycreus lanceus (Thunb.) Turrill (Cyperus lanceus 

Thunb.) (Art. 22.6) [= P. nitidus (Lam.) J. Raynal]. 

When published, Cyperus sect. Lancei included the type of Pycreus sect. Chrysanthi 

C.B. Clarke (1908). Kükenthal (1936) should haǀe used Clarke͛s epithet for this seĐtioŶ. 

However, according to Art. 52.3 the name C. sect. Lancei can be used when Cyperus 

chrysanthus BoeĐk. [≡ Pycreus chrysanthus (Boeck.) C.B. Clarke] is excluded. Dai (1961) did not 

include Pycreus chrysanthus when he combined Cyperus sect. Lancei into Pycreus as P. sect. 

Lancei. 

 

Pycreus sect. Latespicati (Kük.) L.K. Dai in Tang & Wang, Fl. Reipubl. Popularis Sin. 11: 172. 

ϭϵϲϭ ≡ Cyperus (subg. Pycreus) sect. Latespicati Kük. in Engler, Pflanzenr. IV, 20 (Heft 

101): 388. 1936 – Type: Pycreus latespicatus (Boeck.) C.B. Clarke (Cyperus latespicatus 

Boeck.) (Art. 22.6) [= P. diaphanus (Schrad. ex Roem. & Schult.) S.S. Hooper & T. 

Koyama]. 
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= Pycreus sect. Monocephali Nakai. 

 

Pycreus sect. Monocephali Nakai in Bot. Mag. (Tokyo) 26: 201. 1912 – Type: Pycreus 

setiformis (Korsh.) Nakai ;≡ Cyperus setiformis Korsh.) [= P. diaphanus (Schrad. Ex 

Roem. & Schult.) S.S. Hooper & T. Koyama]. 

 

͞Pycreus sect. Polystachyi C.B. Clarke͟ iŶ Bull. Misc. Inform. Kew, Addit. Ser. 8: 94. 1908 

;͚Polystachyae͛Ϳ, Ŷoŵ. iŶǀal. (Art. 22.2). 

 

Pycreus sect. Propinqui C.B. Clarke in Bull. Misc. Inform. Kew, Addit. Ser. 8: 95. 1908 

;͚Propinquae͛Ϳ ≡ Cyperus (subg. Pycreus) sect. Propinqui (C.B. Clarke) Kük. in Engler, 

Pflanzenr. IV, 20 (Heft 101): 342. 1936 – Type: Pycreus propinquus Nees [= P. 

lanceolatus (Poir.) C.B. Clarke] (Art. 22.6). 

 

Pycreus sect. Pumili (Kük.) L.K. Dai in Fl. Reipubl. Popularis “iŶ. ϭϭ: ϭϲϵ. ϭϵϲϭ ≡ Cyperus (subg. 

Pycreus) sect. Pumili Kük. in Engler, Pflanzenr. IV, 20 (Heft 101): 375. 1936 – Type: 

Cyperus pumilus L. [≡ Pycreus pumilus (L.) Nees]. ͞Pycreus [unranked] Puncticulati C.B. 

Clarke͟ iŶ ThiseltoŶ- Dyer, Fl. Cap. 7: 155. ϭϴϵϳ ;͚Puncticulatae͛Ϳ, Ŷoŵ. iŶǀal. (Art. 22.2) 

– ͞Pycreus sect. Puncticulati Cherŵ.͟ iŶ AŶŶ. Mus. Colon. Marseille, ser. 3, 7(2): 66. 

1919, nom. inval. (Art. 22.2). 

 

Pycreus P. Beauv. ser. Pycreus, autonym automatically established by C.B. Clarke in Urban, 

Symb. Antill. 2: 15 1900 ;Art. ϮϮ.ϯͿ ≡ Pycreus P. Beauǀ., Fl. Oǁare Ϯ: ϰϴ. ϭϴϭϲ ≡ 

 

Cyperus sect. Pycreus (P. Beauv.) Griseb., Spic. Fl. Rumel. Ϯ: ϰϭϵ. ϭϴϰϲ ≡ C. subg. Pycreus (P. 

Beauv.) J. Carey in GraǇ, MaŶual: ϱϭϳ. ϭϴϰϳ ≡ C. (sect. Pycreus) [unranked] Eupycreus 

BoeĐk. iŶ LiŶŶaea ϯϱ: ϰϯϳ. ϭϴϲϴ ≡ Pycreus subg. Pycreus, autonym automatically 

established by C.B. Clarke in Bull. Misc. Inform. Kew, Addit. Ser. 8. 1908 (Art. ϮϮ.ϯͿ ≡ 

Pycreus sect. Pycreus, autonym automatically established by C.B. Clarke in Bull. Misc. 

Inform. Kew, Addit. Ser. 8: 94. 190ϴ ;Art. ϮϮ.ϯͿ ≡ C. (subg. Pycreus) sect. Polystachyi 

Kük. in Engler, Pflanzenr. IV, 20 (Heft 101): 363. 1936, nom. illeg. (Art. 52.1) – Type: 

Pycreus polystachyos (Rottb.) P. Beauv. (type of Pycreus – type of autonyms Art. 7.6 – 
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type of C. subdivisions Pycreus Art. 7.4 – lectotype of C. [unranked] Eupycreus 

designated here – type of C. sect. Polystachyi Art. 22.6). 

Cyperus polystachyos ‘ottď. [≡ P. polystachyos] is the type of the name C. sect. Pycreus 

in which C. [unranked] Eupycreus is included. Boeckeler (1868) i ncluded all species with bifid 

stigmas in C. sect. Pycreus. He divided it into two subgroups of unspecified rank: Eupycreus 

having laterally compressed pistils and Pseudopycreus having dorsiventrally compressed 

pistils. The latter group was later excluded from Pycreus. Although the epithet in Boeckeler͛s 

unranked subdivision of Cyperus begins with the prefix Eu-, Art. 21.3 does not apply here as it 

was not the generic name Cyperus to which it was prefixed. 

 

͞Pycreus ser. Reticulati C.B. Clarke͟ iŶ UrďaŶ, “Ǉŵď. AŶtill. Ϯ: ϭϱ. ϭϵϬϬ ;͚Reticulatae͛Ϳ, Ŷoŵ. 

inval. (Art. 22.2) – ͞Pycreus subg. Reticulati C.B. Clarke͟ iŶ Bull. MisĐ. IŶforŵ. Kew, 

Addit. “er. ϴ: ϵϰ. ϭϵϬϴ ;͚Reticulatae͛Ϳ, Ŷoŵ. iŶǀal. (Art. 22.2). 

 

Pycreus sect. Rhizomatosi (Kük.) J. Raynal in Adansonia, ser. Ϯ, ϭϲ;ϰͿ: ϰϬϯ. ϭϵϳϳ ≡ Cyperus 

(subg. Pycreus) sect. Rhizomatosi Kük. in Engler, Pflanzenr. IV, 20 (Heft 101): 327. 1936 

– Type: Cyperus rhizomatosus (C.B. Clarke) Kük. ;Art. ϮϮ.ϲͿ [≡ Pycreus rhizomatosus C.B. 

Clarke]. Pycreus sect. Sulcati L.K. Dai, nom. illeg. (see Pycreus sect. Vestiti C.B. Clarke). 

 

Pycreus sect. Tuberculati Cherm. in Ann. Mus. Colon. Marseille, ser. 3, 7(2): 65. 1919 – Type: 

Pycreus divulsus (Ridl.) C.B. Clarke. 

Pycreus divulsus is the only species included in this section by Chermezon (1919). The 

name is based on the tuberculate nutlets, which are unique for this species. Although most of 

the sections described by Chermezon in 1919 are nomina nuda, he added a remark to P. sect. 

Tuberculati, describing its difference with the existing sections of Pycreus, which is acceptable 

as diagnosis. For more detailed information see Reynders & Goetghebeur (2010). 

 

Pycreus sect. Umbellati Nakai, nom. illeg. (see Pycreus sect. Globosi C.B. Clarke). 

 

Pycreus sect. Vestiti C.B. Clarke in Bull. Misc. Inform. Kew, Addit. Ser. 8: 94. ϭϵϬϴ ;͚Vestitae͛Ϳ ≡ 

Cyperus (subg. Pycreus) sect. Sulcati Kük. in Engler, Pflanzenr. IV, 20 (Heft 101): 379. 

ϭϵϯϲ, Ŷoŵ. illeg. ;Art. ϱϮ.ϭͿ ≡ P. sect. Sulcati L.K. Dai in Tang & Wang, Fl. Reipubl. 
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Popularis Sin. ϭϭ: ϭϳϬ. ϭϵϲϭ, Ŷoŵ. illeg. ;Art. ϱϮ.ϭͿ ≡ C. (subg. Pycreus) sect. Vestiti (C.B. 

Clarke) J. Kern, Fl. Males., ser. 1, 7(3): 646. 1974, nom. illeg. (Art. 53.4) – Lectotype 

(Kern, 1974): Cyperus sanguinolentus Vahl [≡ Pycreus sanguinolentus (Vahl) Nees]. 

Clarke (1908) included five species in this section. Pycreus divulsus differs from the 

others in having strongly tuberculate nutlets and a simply spicate inflorescence which does 

not fit the description of this section by Clarke ;ϭϵϬϴͿ: ͞Culŵus ďasi deĐuŵďeŶtes͟ Ŷor to 

͞Uŵďella siŵpleǆ aut ŵoŶoĐephala͟. Pycreus atronervatus has multinerved glumes in 

contrast to the other species. Kükenthal (1936) used the epithet Sulcati instead of the epithet 

Vestiti when treating this section in Cyperus, although Clarke͛s epithet has prioritǇ ;Art. ϭϭ.ϰͿ. 

Cyperus sect. Sulcati Kük. is illegitimate since it is a later homonym of C. [unranked] Sulcati 

Boeck. (Art. 35.3 and Art. 53.4). However, the transfer of Pycreus sect. Vestiti C.B. Clarke to 

Cyperus by Kern (1974) as C. sect. Vestiti also creates an illegitimate name under Art. 53.4 

since Cyperus (subg. Mariscus) subsect. Vestiti Kük. (1936) is an older homonym. 

 

Pycreus [unranked] Zonati C.B. Clarke in Thiselton-Dyer, Fl. Cap. 7: 155. ϭϴϵϳ ;͚Zonatae͛Ϳ ≡ P. 

ser. Zonati (C.B. Clarke) C.B. Clarke iŶ UrďaŶ, “Ǉŵď. AŶtill. Ϯ: ϭϱ. ϭϵϬϬ ;͚Zonatae͛Ϳ ≡ P. 

subg. Zonati (C.B. Clarke) C.B. Clarke in Bull. Misc. Inform. Kew, Addit. Ser. 8: 94. 1908 

;͚Zonatae͛Ϳ ≡ P. sect. Zonati (C.B. Clarke) Cherm. in Ann. Mus. Colon. Marseille, ser. 3, 

ϳ;ϮͿ: ϴϯ. ϭϵϭϵ ≡ Cyperus (subg. Pycreus) [unranked] Zonati (C.B. Clarke) Kük. in Engler, 

Pflanzenr. IV, ϮϬ ;Heft ϭϬϭͿ: ϯϮϳ. ϭϵϯϲ ≡ C. (subg. Pycreus) sect. Flavescentes Kük. in 

Engler, Pflanzenr. IV, 20 (Heft 101): ϯϵϱ. ϭϵϯϲ ≡ P. sect. Flavescentes (Kük.) T.V. 

Egorova in Novosti Sist. Vyssh. Rast. 35: 36. 2003 – Type: Pycreus flavescens (L.) P. 

Beauv. ex Rchb. ;≡ Cyperus flavescens L.) (lectotype of Pycreus [unranked], subg., sect., 

& ser. Zonati designated here – type of C. sect. Flavescentes and P. sect. Flavescentes 

Art. 22.6). 

Clarke (1897) published P. [unranked] Zonati including P. flavescens, P. rehmannianus 

C.B. Clarke and P. macranthus (Boeck.) C.B. Clarke. Pycreus flavescens is the only species 

mentioned when he published P. ser. Zonati (Clarke, 1900). Pycreus flavescens is a widespread 

species and it fits very well to the desĐriptioŶ giǀeŶ ďǇ Clarke ;ϭϴϵϳͿ ͞“uperfiĐial Đells of the 

nut longitudinally oblong; nut often appearing zonate by reason of the narrow ends of the 

cells running into an undulating or ďrokeŶ horizoŶtal liŶe͟. KükeŶthal ;ϭϵϯϲͿ used the epithet 

Zonati for a group of unspecified rank under Cyperus subg. Pycreus and divided it into three 
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new sections: C. sect. Flavescentes, Latespicati and Muricati. As Kükenthal placed P. 

macranthus in his C. sect. Latespicati, he did not include in C. sect. Flavescentes, ͞all eleŵeŶts 

eligible as type under Art. ϭϬ.Ϯ͟ ;Art. ϱϮ.ϮͿ of C. sect. Zonati, and so his name is legitimate, 

although now superfluous by the typification here of the names based on C. unranked Zonati 

C.B. Clarke. 
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Fig. 3.2 Flyer distributed on the XVII
th

 International Botanical Congress in Vienna, 2005. Illustration by M. 

Reynders. 
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͞If we knew what it was we were doing, 

it would not be called research, would it?͟ 

 

— Albert Einstein (1979-1955)   

 

4 Development of  

spikelets and flowers 

 Fig. 4.1 Pycreus sanguinolentus in the Ghent University Botanic Garden supplied wonderful 

results on floral vasculature. 

 

      Spikelet theme: Pycreus pauper 
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4.1 In this chapter… 

 Chapter 4 includes the results of an ontogenetic and anatomical study of floral and 

spikelet ontogeny in Cyperus and Pycreus. These results have been published as the 

following article: 

1. Vrijdaghs, A., Reynders, M., Muasya, AM., Larridon, I., Goetghebeur, P., Smets, E. 

(2011). Spikelet and floral morphology and development in Cyperus and Pycreus 

(Cyperaceae). Plant Ecology and Evolution 144: 44–63. 

Remark: The circumscription for the gynoecium development used in the article Is 

somewhat outdated. Here follows a more correct phasing: In Cyperoideae, the 

gynoecium originates from an annular gynoecium wall primordium, (previously 

described as ovary wall primordium, surrounding a central, floral-apical meristematic 

zoŶe ;preǀiouslǇ desĐriďed as ͚oǀule priŵordiuŵ͛Ϳ froŵ ǁhiĐh later oŶ a siŶgle ovule 

originates. At early developmental stage, r-the raising, bag-like gynoecium wall 

surrounds the developing ovule, thus forming an immature open ovary. With the 

gynoecium wall further raising and forming a single style, the initially open ovary is 

gradually closed. 

 

4.2 Abstract 

 

Pycreus, Kyllinga, and Queenslandiella cluster together with Cyperus within the 

Cyperus s. lat. clade, one of the two large clades in Cypereae. However, in contrast with 

Cyperus, they have laterally flattened pistils/nutlets. Pycreus, Kyllinga and Queenslandiella 

form morphologically well circumscribed independent genera. In the context of a broader 

systematic project to work out a well-supported, evolution based taxonomy for Cyperus s. lat., 

we present in this paper general morphological and developmental data of species of Pycreus 

in comparison with three species of Cyperus, including C. laevigatus with dorsiventrally 

flattened nutlets. Freshly collected material was investigated using scanning electron 

microscopy (SEM) and light microscopy (LM). Special attention was given to spikelet and 

gynoecial development. SE micrographs of all species studied show an indeterminate rachilla 

with distichously arranged glumes, each subtending a bisexual flower. In spikelets of C. 

capitatus and P. pumilus, the proximal glume sometimes subtends a lateral spikelet instead of 
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a flower. In the species of Pycreus studied, each flower sits in a cavity formed by the growth of 

the rachilla, which is congenitally fused with the wings of the glume of the higher, alternate 

flower. Glumes appear successively, each soon forming a flower primordium in its axil, which 

develops according to a general cyperoid ontogenetic pattern. In Pycreus, the stigma branches 

grow out from dorsiventrally positioned primordia. During gynoecium development, a 

hypogynous stalklet (gynophore) appears in all species studied. In spikelets of Pycreus, the 

rachilla and wings of the glumes are congenitally fused and consequently develop with 

epicaulescent displacements of the glumes resulting in typical spikelets with flowers in 

cavities. In spikelets of Cyperus, a similar though less pronounced development results in 

spikelets with zigzagging rachilla. The particular positions of the stigma branches in C. 

laevigatus and Pycreus are explained by the development of the gynoecium from an annular 

primordium, which facilitates shifts in localisation of the stigma primordia. Though we 

consider the combination of the typical spikelet ontogeny and the independently originated 

laterally flattened nutlets to be strong arguments in favor of a genus Pycreus, a phylogenetic 

confirmation that the taxon is monophyletic is an absolute, until now unfulfilled, condition. 

Moreover, the consequences for the giant genus Cyperus must be taken in consideration. 

 

4.3 Introduction 

 

4.3.1 Taxonomical data  of Cyperus s.lat. 

According to molecular phylogenetic studies in Cyperaceae (Muasya et al., 2009a), the 

subfamily Cyperoideae comprises most of the cyperaceous genera, including the derived 

Cypereae clade (corresponding to Cypereae sensu Goetghebeur, 1998). Within this clade, 

Cyperus and allied genera, called Cyperus s. lat., form a subclade that is sister to a Hellmuthia- 

Scirpoides-Isolepis-Ficinia clade (Muasya et al., 1998, 2001b, 2009a; Simpson et al., 2007, fig. 

4.2). Based on the embryological study of Van der Veken (1964) and corroborated by more 

recent molecular phylogenetic studies (Muasya et al., 2002, 2009a, 2009b; Simpson et al., 

2007), several smaller satellite genera appear to be nested within the Cyperus s. lat. clade, 

such as among others, Kyllinga, Queenslandiella and Pycreus. Each of these is characterised by 

specialised inflorescence and flower morphologies. Kyllinga can be distinguished by its 

reduced spikelets and flowers with laterally flattened ovaries, Pycreus by flattened spikelets 

and flowers with laterally flattened ovaries, and Queenslandiella by deciduous spikelets 
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(formerly placed in Mariscus) and flowers with laterally flattened ovaries (Goetghebeur, 

1986). In 1998, Goetgheďeur ǁrote: ͞Pycreus and Kyllinga, plus some highly specialized 

smaller taxa are often excluded [from Cyperus s. lat.] and recognized at the generic level. 

Authors who include these taxa into Cyperus s. lat. mostly maintain them on the subgeneric 

leǀel.͟ Moreover, the more derived part of Cyperus s. lat., including C. capitatus, C. laevigatus, 

and Pycreus, consists of genera with C4 photosynthesis and Kranz anatomy (fig. 4.2). Since 

Kyllinga, Pycreus and Queenslandiella are not sister taxa, we hypothesize independent and 

multiple origin of the laterally flattened pistil. 

 

4.3.2 Inflorescence morphology in Cyperus s.lat. and Pycreus 

The inflorescence in Cyperoideae is a compound inflorescence, essentially a panicle of 

spikelets with the main axis
1
 called a culm. The ultimate branch in a cyperoid inforescence is 

always a lateral spikelet, consisting of a rachilla and spirally to distichously placed glumes, 

each subtending (or not) a bisexual (most Cyperoideae) or unisexual (Cariceae) flower. Lateral 

spikelets are subtended by a bract and have a prophyll (Goetghebeur, 1998). Terminal  

spikelets end the culm or a branch of it as a (co)florescence sensu Troll (1964; see Weberling, 

1992), and as a consequence it is separated from its prophyll by the length of the culm/lateral 

branch, which constitutes also the axis of the terminal spikelet (Haines & Lye, 1983; 

Goetghebeur, 1998). In Cyperus s. lat., spikelets are distichously organised, which can be 

considered as a synapomorphy though a number of reversals to terete spikelets are recorded 

(Muasya et al., 2001b). In Pycreus, the inflorescence is antheloid with as well the culm as 

lateral branches ending with a terminal spike of flattened spikelets. In Pycreus, the 

inflorescence is antheloid with as well the culm as lateral branches ending with a terminal 

spike of flattened spikelets.  

Vrijdaghs et al. (2010) showed that cyperoid spikelets, including several, mostly 

distichously organised controversial ones that by some authors were interpreted as sympodial 

(e.g. Celakovsky, 1887; Kern,1962; Zhang et al., 2004), have an indeterminate rachilla and can 

be considered to be an open spike as cited by Weberling (1992). Guarise & Vegetti (2008: 41) 

reported that in Cyperus section Luzuloidei, fascicles of spikelets oĐĐur, ͞ǁhiĐh ĐaŶ ďe serial, 

prophǇllar, or ŵiǆed͟. Serial fascicles of spikelets are mainly found in the distal part of the 

florescence and paraclades, the latter being a repetition of the ŵaiŶ iŶfloresĐeŶĐe͛s struĐture. 

                                                 
1
 The main axis of Monocots is also often referred to as a ‘scape’ 
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A serial fascicle of spikelets is subtended by a single bract. Guarise & Vegetti (2008: 55) also 

ŵeŶtioŶed a ͚torsioŶ͛ ǁithiŶ the spikelets: ͞soŵe spikelets appear ǁith the glumes in the 

same plane as the pherophǇll aŶd prophǇll, or iŶ aŶ iŶterŵediate positioŶ͟. Several species in 

Cyperus s. lat., formerly grouped together in Mariscus, have dehiscent spikelets. Haines (1967: 

57) reported a ͚pulǀiŶus͛ or sǁelliŶg ďodǇ at the ďase of lateral spikelets in Cyperus tenuis Sw., 

statiŶg ͞But at the attaĐhŵeŶt of the prophyll, and probably a part of the prophyll, is a 

pulvinus which adjusts the position of both the branch and the uŵďel ďraĐt that suďteŶds it͟. 

Haines & Lye (1983: 17) meŶtioŶed ͞a Đallus is deǀeloped at the prophǇll ďase, sǁelliŶg of this 

Đallus ĐausiŶg diǀergeŶĐe of the shoot͟.  

 

 

 

 

 
Fig. 4.2 Simplified cladogram of Cypereae based on Muasya et al., (2009a). In dark grey, taxa of which species 

were used in this study. Cyperus luzulae is a C3 species, whereas C. capitatus and C. laevigatus are C4 species. 
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4.3.3 Floral morphology and development in Cyperus s.s. and Pycreus 

Flowers in Cyperoideae either have a perianth (3 + 3 parts or less
2
) of varying size and 

shape or lack a perianth as observed in most species of Cypereae (e.g. Goetghebeur, 1998, 

Muasya et al., 2009b). The androecium in most Cyperoideae is haplostemonous with usually 

three stamens with basifix and introrse anthers (Bruhl, 1991; Vrijdaghs et al., 2005a), resulting 

from the reduction of the inner staminal whorl (Takhtajan, 1997). However, particularly in 

Cyperus s. lat., the number of stamens can be reduced to two or one (Haines & Lye,  1983). In 

the first developmental stages in cyperoid flowers, the stamens grow faster than the 

gynoecium (Vrijdaghs et al., 2005a), but at maturity of the flower, the stigma branches usually 

are functionally active before the pollen grains are released (Goetghebeur, 1998). In many 

species of Cyperus, an apiculus or connective crest is formed on the top of the anthers (Haines 

& Lye, 1983).  

The pistils in flowers within the Cyperus s. lat. clade vary from triangular with three 

stigma branches to dorsiventrally or laterally compressed with only two stigma branches. 

Raynal (1966) studied some African Cyperus species (e.g. C. meeboldii Kük., C.. clavinux 

C.B.Clarke, C.. lateriticus J. Raynal) with triangular nutlets and a single stigma branch. Most 

species with a dorsiventrally flattened pistil were often classified in a separate taxon 

(Juncellus) by several authors (e.g. Clarke, 1893; Kükenthal, 1936; Podlech, 1960). Already 

Clarke eǆpressed soŵe douďt: ͞This speĐies [Juncellus pustulatus] has differentiated itself into 

Juncellus, but has not broken its connection with Cyperus eŶtirelǇ Ǉet.͟ ;Clarke, 1901: 308). In 

some former Juncellus species, even within single specimens, the flowers can have both 

trigonous and dorsiventrally compressed nutlets (e.g. Cyperus alopecuroides Rottb., C. 

pustulatus Vahl, C. pygmaeus Rottb.). The polyphyletic dispersion of the Juncellus species was 

confirmed by many other authors (e.g. Goetghebeur, 1986; Muasya et al., 2002). Therefore, a 

separate genus Juncellus is no longer recognised. Moreover, dorsiventrally flattened pistils can 

also be found in diverse other cyperoid genera such as Dulichium arundinaceum (L.) Britton, 

Eleocharis, Fimbristylis, Nemum, and Carex.  

On the other hand, laterally compressed pistils are restricted to three genera, Pycreus, 

Kyllinga and Queenslandiella. Blaser (1941) showed that the laterally flattened pistil in Pycreus 

concurs with new vascular patterns. Several authors based the subdivisional classification 

within Pycreus among others on the morphology of the fruit wall epiderm cells (e.g. Clarke, 

                                                 
2
 Or sometimes more (e.g. Coleochloa, Eriophorum, Dulichium, ect.) 
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1897; Chermezon, 1919; Kükenthal, 1936). Clarke (1897: 155) described the epiderm cells of 

Ŷutlets iŶ his ͞)oŶatae͟ as folloǁs: ͞“uperfiĐial Đells of the Ŷut loŶgitudiŶallǇ oďloŶg; Ŷut often 

appearing zonate by reason of the narrow ends of the cells running into an undulating or 

ďrokeŶ horizoŶtal liŶe.͟ In several species, these cells contain silica bodies, though according 

to Metcalfe (1971), they have little taxonomical value. 

 

4.3.4 Aims 

This study represents the first results in a broader project in which the Cyperus s. lat. 

clade is investigated in analogy with our earlier study of the Hellmuthia-Scirpoides-Isolepis-

Ficinia clade, which resulted in several publications (Muasya et al., 2009a, 2009b; Vrijdaghs et 

al., 2005b, 2006a, 2006b, 2009). By combining molecular phylogenetic data, anatomy, 

morphology and spikelet/floral ontogeny, our goal is to clarify the evolution of Cyperus s. lat. 

and the position of the so-Đalled ͚satellite geŶera͛ ǁithiŶ it. IŶ this paper, ǁe preseŶt and 

discuss original SEM and LM images of the morphology and spikelet/floral development in 

species of Pycreus, which were selected based on our preliminary phylogenetic data and 

compared with two Cyperus C4 and one Cyperus C3 species (respectively C. laevigatus, C. 

capitatus, and C. luzulae), starting from the hypothesis that Pycreus can be considered to be a 

genus of its own. Of the three genera with laterally compressed pistils, the mainly African 

genus Pycreus (±120) was chosen to be examined first, because it is the largest one. 

 

4.4 Materials and Methods 

 

4.4.1 Plant material 

Inflorescences of the species studied were collected in the field and at the Ghent 

University botanical garden (table 4.1) and subsequently fixed in FAA (70% ethanol, acetic 

acid, 40% formaldehyde, 90/5/5). Spikelets and floral buds were dissected in 70% ethanol 

under a Wild M3 (Leica Microsystems AG, Wetzlar, Germany) stereo microscope equipped 

with a cold-light source (Schott KL1500; Schott-Fostec LLC, Auburn, NY, USA).  

Since in Cyperus s. lat. most spikelets have many and a variable amount of flowers, and 

consequently in order to avoid the use of abstract numbers, (flower subtending) glumes are 

numbered from young (1) to old (x). 
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Table 4.1 Species of Cypereae (Cyperaceae) studied and voucher data. 

taxa Collector and origin voucher 

Cyperus capitatus Poir. Goetghebeur, Sep. 2004, HBUG 2003-1782 

(w) 

PG10744 

Cyperus laevigatus L. Goetghebeur, Sep. 2004, HBUG1997-1237  

Reynders, Nov. 2007, HBUG2003-1192 

PG10202 

Cyperus luzulae Rottb. Vrijdaghs, HBUG1900-3306 AV05 

Pycreus bipartitus C.B. Clarke Reynders, Nov. 2004, HBUG 2003-0327 (s)  

Idem (fig.4.13) Laegaard, Ecuador Laegaard 101015 (GENT) 

Pycreus flavescens (L.) P.Beauv.ex 

Rchb. 

Reynders, Jul. 2007, HBUG2005-0401 (s)  

Idem (fig.4.13) Muasya, 2005, Kenya AM2585 

Pycreus pelophylus (Ridl.) 

C.B.Clarke 

Musili, 2005, Kenya PM029 

Idem (fig. 4.13) Reekmans, Burundi Reekmans 2547 (GENT) 

Pycreus polystachyos subsp. 

holocericeus (Rottb.) P. Beauv. 

Reynders, Jul. 2007, HBUG 2006-1258 (w)  

Idem (fig.4.13) Lewalle, Burundi Lewalle 6290 (GENT) 

Pycreus pumilus (L.) Nees Muasya, 2005, Kenya AM2150 

Idem (fig. 4.13) Reekmans, Burundi Reekmans 5795 (GENT) 

Pycreus sanguinolentus (Vahl) 

Nees 

Reynders, Jul. 2007, HBUG2006-1753 (w)  

 

4.4.2 Scanning electron microscopy (SEM)  

The prepared material was washed twice with 70% ethanol for 5 minutes and then 

placed in a mixture (1/1) of 70% ethanol and DMM (dimethoxymethane) for 5 minutes. 

Subsequently, the material was transferred to 100% DMM for 20 min, before it was CO2 

critical point dried using a CPD 030 critical point dryer (BAL-TEC AG, Balzers, Liechtenstein). 

The dried samples were mounted on aluminium stubs using Leit-C and coated with gold with a 

SPI-ModuleTM Sputter Coater (SPI Supplies, West-Chester, PA, USA). Images were obtained 

on a Jeol JSM-6360 (Jeol, Tokyo) at the Laboratory of Plant Systematics (K.U. Leuven). 

 

4.4.3 Light microscopy (LM) 

Samples were prepared in ethanol 70% and subsequently gradually transferred to 

ethanol 100%. Then, the samples were transferred to LR White Resin, hard grade (London 

Resin Company Ltd, Reading, England) in a graded LR White Resin/ethanol series using 

solutions of 25/75, 50/50, 75/25, 100/0 resin/ethanol 100% for at least 5 h each. Next, the 

samples were placed in a closed capsule filled with fresh resin, and hardened at 60°C during 
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48 h. Sections of 2 μm were made with a rotation microtome (Microm HM360 Waldorf, 

Germany) and subsequently stained with 0,1% toluidine blue. The stained sections were fixed 

on microscopy slides using Eukitt© quick hardening mounting medium (Fluka Chemie GmbH, 

Switzerland). Observations were done with a light microscope (Leitz Dialux 20, Van Hopplynus, 

Brussels, Belgium) equipped with a camera (PixeLINK PL-B622CF, Ottawa, Canada) with 

specially developed software (Microscopica v1.3, Orbicule, Leuven, Belgium). 

 

4.5 Results  

The development and morphology of spikelet and flower in Cyperus and Pycreus are 

described below. 

 

4.5.1 Cyperus: spikelet structure 

In all species studied, the spikelet consists of a open axis (rachilla) and many 

distichously arranged glumes, each subtending a bisexual flower (figs 4.3A, 4.4A, 4.5A & B). 

Glumes develop fast, the older glumes not only protecting the flower they subtend, but also 

the apical part of the spikelet (figs 4.3A, B & D, 4.4A, 4.5A, B & M). Mature glumes have lateral 

wings, which partially envelop the rachilla and alternate, lower flower (figs  4.3D & I, 4.4P, 

4.5A, C & L, fig. 4.14). The basal part of glume and wings is congenitally fused with the rachilla 

(fig. 4.14B–E). In C. luzulae, mature glumes have conspicuous prickles at the distal side, as well 

as high numbers of stomata (fig. 4.3M & N). 

 

4.5.2 Cyperus: floral ontogeny 

A new glume originates below the rachilla apex, forming a rim-like primordium (figs 

4.3A & D, 4.4A, 4.5A–C). Soon, a flower primordium appears in the axil of the glume. The 

flower primordium expands laterally, forming a stamen primordium at each side, followed by 

a third abaxial one (figs 4.3A, B & D, 4.4A & B, 4.5B–D). In C. luzulae, usually there is a single,  

lateral stamen primordium (fig. 4.3A, B & D). Simultaneously, the floral apex becomes convex 

(figs 4.3B & D, 4.4B, 4.5D) and starts differentiating into an annular ovary primordium 

surrounding a central ovule primordium (figs 4.4C–E, 4.5E). Subsequently, the ovary wall 

grows up from the base, enveloping the ovule (figs 4.3C & D, 4.4C–E, 4.5E). On its top, one 

abaxial and two adaxial stigma primordia appear (figs 4.3C & D, 4.4F & G). The stigma 

primordia grow out into three papillose stigma branches (figs 4.3D–F & K, 4.4G–J). In C. 
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laevigatus, only two laterally positioned stigma primordia appear, which results in a 

dorsiventrally flattened ovary (fig. 4.5F–L & O). In C. capitatus, samples with four stigma 

branches occur (fig. 4.4H). Meanwhile, the ovary wall continues its growth, forming a single 

style (figs 4.3E & F, 4.4I & J, 4.5I–K). Simultaneously with the development of the ovary, the 

stamen primordia differentiate into filament and anther (figs 4.3G, 4.4F–J, 4.4P, 4.5F–H). Until 

this stage, the development of the stamens is as fast as or faster than the development of the 

pistil (figs 4.3G, 4.4G–I, 4.4P, 4.5E–H). However, at the later floral developmental stages style 

and stigma branches elongate faster, so that eventually they protrude above the stamens and 

even the glume (figs 4.3J, 4.4J, 4.5J–M). Meanwhile, the base of each pollen sac becomes 

papillose (figs 4.3J, 4.4K, 4.5K), and on the top of the anther an apiculus is formed (figs 4.4K, 

4.5K). The ovule primordium develops into an anatropous bitegmic ovule, and within the 

locule, in a zone around the micropyle, hairs appear (figs 4.4M, 4.5N). In C. capitatus, the 

anther of the mature stamen becomes spiralised (fig. 4.4L). The nutlets of C. laevigatus and C. 

luzulae have a hypogynous stalklet, also called gynophore (figs 4.3L, 4.5O). The nutlet in C. 

laevigatus is dorsiventrally flattened (figs 4.5O, 4.13I).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.3  Cyperus luzulae, SE micrographs of floral ontogeny. A, lateral view of the rachilla apex, with six  

istichously placed glumes at successive developmental stages (numbered 1–ϲ froŵ ǇouŶg to older; ͚ϭ͛, ͚ϯ͛ aŶd ͚ϱ͛ 

show the wings of alternately positioned glumes); B, lateral view of glume 2 and a flower primordium in its axil; C, 

apical view of developing ovary wall surrounding a central ovule primordium with two adaxial and one abaxial 

stigma primordium; D, lateral view of a developing bractless spikelet belonging to a spikelet fascicle subtended by 

a common bract (not visible here) with flowers at successive developmental stages (encircled) and numbered 

from 1 (distal flower) to 7 (proximal flower). Arrows shows the wings of glume 4, which is also visible as the glume 

protecting the rachilla apex. The main axis, indicated as rachis, actually belongs to another, older spikelet in the 

fascicle; E, lateral view of a developing gynoecium. A single style appears (arrowed); F, lateral view of a developing 

ovary, with three stigma branches becoming papillose (encircled); G, lateral view of a part of a spikelet. 

Proximally, a developing flower with elongating stamen, and a stigma branch protruding above it (arrowed). At 

right hand side a glume with a wing enveloping the rachilla and a part of the stamen of the alternate flower; H, 

apical view of a part of a spikelet with removed glumes and stamens (arrowed); I, apical view of the distal part of a 

spikelet, with some glumes removed (arrows indicate the wings of the glumes); J, adaxial view of a developing 

flower; K, detail of developing style and stigma branches; L, nutlet with gynophore (arrowed); M, detail of apical 

part of a glume, with numerous stomata (encircled) and prickles (arrowed); N, detail of prickles.  

Abbreviations: a, anther; F, flower primordium; f, filament; fa, floral apex; G, glume; nu, nutlet; o, ovule 

primordium; ov, ovary wall (primordium); R1, rachilla; Ra, rachis; s, stamen primordium; sg, stigma (primordium); 

st, style; *, rachilla apex. 
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4.5.3 Pycreus: spikelet structure  

The spikelet in all species studied consists of an indeterminate rachilla and many 

distichously arranged glumes, each subtending a bisexual flower (figs 4.6A & B, 4.8A, 4.9A & B, 

4.10A & B, 4.11A & B). The basal part of glume and wings is fused with the rachilla (fig. 4.14F–

I). At later stages, each flower stands in an alcove-like cavity (figs 4.6B, 4.6J, K & M, 4.7A, C & 

E, 4.8B & C, 4.9A & B, 4.10B & C, 4.11B & C, fig.13). In P. pumilus, a glume like bract in 

proximal position alternating with the prophyll subtends a lateral axis, which develops into a 

spikelet (fig. 4.6A & J), instead of a flower. In P. pelophilus, P. polystachyos and P. 

sanguinolentus, an adaxial swelling body
3
 can be seen at the base of the spikelet (figs 4.7G, 

4.8H, 4.10L). The spikelet of P. polystachyos has a long first internode or epipodium, which is 

enveloped by the tubular sheath of the spikelet prophyll (fig. 4.8G & H). The developing 

glumes at the apical part of the spikelet envelop the apex of the rachilla with a bonnet-like 

mucro (figs 4.6B, 4.8A, 4.10A). 

                                                 
3
 This swelling body belongs to the basal part of the prophyl 

 Fig. 4.4 Cyperus capitatus, SE micrographs of floral ontogeny. A, apical view of the rachilla apex, and two  

flower primordia (arrowed) at early stages of development; B, differentiating flower primordium with three 

stamen primordia and a floral apex; C, annular ovary primordium surrounding a central ovule primordium 

;eŶĐirĐledͿ, aŶd three staŵeŶ priŵordia; D, ideŵ as iŶ ͚C͛, ǁith the oǀarǇ ǁall groǁiŶg up from the base; E, 

position of a flower at early developmental stage with respect to the rachilla; F, apical view of developing flower, 

with the ovary wall enveloping the ovule (two adaxial stigma primordia and an abaxial one appear); G, lateral-

adaxial view of developing flower (lateral stamen is removed); H, adaxial view of a developing flower, with one 

lateral stamen removed. The four (!) stigma primordia are growing out (encircled); I, adaxial view of a developing 

flower (arrow indicates single style); J, developing gynoecium and a single stamen, with stigma branches 

protruding high above the stamen (encircled); K, developing stamen before the elongation starts, with apiculus 

(left upper corner inset) and papillose cells at the bases of the pollen sacs (right hand side inset); L, elongated, 

withered stamen, with spiralised anther; M, ovule with obturator hairs covering the micropyle (arrowed); N, 

nutlet, with withered style still present; O, distal part of a culm, in the transition zone between florescence and 

lateral branches. These are spiro-tristichously positioned and each subtended by a bract, whereas in the terminal 

spikelet (florescence), the glumes are distichously arranged. This explains the position of the proximal glume-like 

bracts subtending a rudimentary spikelet; P, middle-apical part of spikelet with two developing flowers (encircled) 

and the wings of the glumes of the higher, opposite flower (arrows).  

Abbreviations: a, anther; f, filament; fa, floral apex; G, glume; nu, nutlet; o, ovule (primordium); ov, ovary wall 

(primordium); Rl, rachilla; s, stamen primordium; sg, stigma (primordium); st, style; *, rachilla apex. 
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4.5.4 Pycreus: floral ontogeny 

Glumes originate below the indeterminate spikelet apex (figs 4.6A & B, 4.8A, 4.9A & B, 

4.10A & B, 4.11A & B), forming a rim-like primordium, of which the edges partially envelop the 

alternate, lower flower primordium (figs 4.6C, 4.6H & J, 4.8B, 4.9B). Soon after the formation 

of a new glume primordium, a flower primordium appears in its axil (figs 4.6B & C, 4.8B, 4.9B, 

4.10B & C, 4.11B). With the glume developing, the flower primordium expands laterally, 

forming two lateral stamen primordia, followed with some delay by a third abaxial one (P. 

flavescens, P. sanguinolentus; figs 4.10C–E, 4.11B & C). In species with flowers with two 

stamens, no abaxial stamen primordium is formed (P. bipartitus, P. pelophilus, P. 

polystachyos; figs 4.8B, 4.9B–D). In flowers with only one stamen, the flower primordium 

expands laterally, forming only one stamen primordium (P. pumilus; fig. 4.6B–D). 

Simultaneously with the formation of the stamen primordia, a floral apex appears (figs 4.9C, 

4.10D). Next, the floral apex differentiates into an annular ovary primordium, surrounding a 

central ovule primordium (figs 4.6E, 4.7A, 4.9D, 4.10E & F, 4.11C & D). The ovary wall 

primordium grows up from the base, gradually enveloping the central ovule (figs 4.6F & H, 

4.7A & B, 4.9D & E, 4.10F, 4.11E). At this stage, on the top of the ovary wall two dorsiventrally 

positioned stigma primordia appear (figs 4.6G, I & J, 4.7C, 4.8C, 4.9E, 4.10G, 4.11F).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.5 Cyperus laevigatus, SE micrographs of floral ontogeny. A, lateral view of a spikelet apex with flower 

subtending glumes at suĐĐessiǀe stages of deǀelopŵeŶt, Ŷuŵďered ͚ϭ͛ ;ǇouŶgestͿ to ͚ϲ͛ ;oldestͿ. The ǁiŶgs of 

each glume envelop partially the alternate, lower flower (arrowed); B, apical-abaxial view of spikelet apex with 

developing glumes; C, detail of very young glume subtending a flower primordium, and a wing of the alternate, 

higher glume (arrowed); D, differentiating flower primordium with three stamen primordia, and a part of the 

floral apex; E, developing flower with ovary wall growing up, and three stamen primordia beginning to 

differentiate; F, apicalabaxial view of a developing flower. Two laterally positioned stigma primordia are growing 

out on the top of the ovary wall, which envelops the ovule. Filaments and anthers are well developed; G, apical 

view of developing flower. The two stigma primordia are growing out; H, apical view of a transversally cut 

spikelet, with two alternating flowers at intermediary developmental stages (encircled); I, abaxial view of a 

developing flower; J, adaxial view of a developing flower; K, detail of a developing stamen, with apiculus 

(arrowed); L, abaxial view of a developing flower (encircled) in a tranversely cut spikelet. The subtending glume is 

removed. The wings of the higher, opposite flower can be seen (arrowed); M, apical part of a spikelet, with 

several, distichously placed glumes, and protruding style branches; N, lateral view of an ovule, with funiculus 

(black line) and obturator hairs covering the micropyle (arrowed); O, dorsiventrally flattened nutlet with a 

hypogynous stalklet or gynophore (arrowed).  

Abbreviations: a, anther; F, flower primordium; f, filament; G, glume; nu, nutlet; o, ovule primordium; ov, ovary 

wall (primordium); Rl, rachilla; s, stamen primordium; sg, stigma (primordium); st, style; *, rachilla apex. 
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The development of the adaxial stigma primordium is sometimes slightly delayed with respect 

to the abaxial one (figs 4.9E & F, 4.10G–I, 4.11F–H, 4.12A & B). In P. bipartitus, the early 

adaxial stigma primordium sometimes splits (figs 4.9G & H). Subsequently, the growing ovary 

wall develops a single style without distinct style base, while the stigma primordia grow out 

into two papillose stigma branches (figs 4.6G & K, 4.6D–F, 4.7D & E, 4.8G & H, 4.9I, 4.10G & H, 

4.11A & B). In P. sanguinolentus, at this stage, an annular constriction appears in the apical 

part of the ovary (fig. 4.10K).  

 

 

 

 

 

 

 

 Fig. 4.6 Pycreus pumilus, SE micrographs of floral ontogeny. A, lateral view of a branched spikelet with 

proximally a glume-like bract subtending a secondary spikelet (encircled). The prophylls (P) of the main and 

secondary spikelet are parallel to each other. All visible flowers have a single stamen; B, detail of a spikelet apex 

with 11 glumes, each subtending a flower (primordium), numbered 1–11 from young ͚ϭ͛ to older ͚ϭϭ͛. IŶ floǁer 

11, the wings (arrowed) of the opposite, higher glume (number 10, only partially visible) form the walls of an 

alcove-like cavity in which the flower develops; C, detail of a young glume with flower primordium. At the right 

hand side, the wing of the alternate, superior glume is visible (arrowed); D, differentiating flower with primordia 

of stamen and ovary wall; E, flower with developing stamen and early gynoecium. The ring primordium of the 

ovary wall surrounds the central ovule primordium; F, developing flower with ovary wall growing up from the 

base, and stamen with distinct filament and anther; G, lateral-abaxial view of part of a spikelet with three flowers 

at different developmental stages. In the middle flower, two dorsiventrally oriented stigma primordia appear on 

the top of the ovary wall (encircled). In the lower flower, the ovary wall entirely envelops the ovule, a single style 

appears, and the stigma primordia are growing (encircled); H & I, detail of the development of the ovary and 

appearance of the dorsiventrally positioned stigma primordia, and simultaneously the development of the 

stamen; J, transversely cut proximal part of a main spikelet with proximally a glume-like bract, subtending a lateral 

spikelet. Alternately of it, the second glume can be seen, subtending a flower of which only the developing 

gynoecium is visible. This is partially enveloped by the wing (arrowed) of the third glume (removed together with 

the flower it subtends). This wing is fused with the rachilla of the main spikelet; K, lateral-abaxial view of a part of 

a spikelet with two flowers at developmental stages following on the developmental stage at ͚I͛. IŶ the loǁest 

flower, a single style appears (arrowed); L, adaxial view of a developing gynoecium and a glume with a 

conspicuous mucro (encircled) subtending a flower; M, lateral view of a part of a spikelet. In the lowest flower, 

consisting of a gynoecium aŶd tǁo staŵeŶs, a ͚ĐoŶŶeĐtiǀe stalklet͛ ĐaŶ ďe oďserǀed ďetǁeeŶ filaŵeŶt aŶd aŶther 

(arrowed); N, lateral view of semi-mature flower with two stamens, protected by the wings of the alternate, 

higher glume. 

Abbreviations: a, anther; B, bract; F, flower primordium; f, filament; G, glume; o, ovule primordium; ov, ovary wall 

(primordium); P, prophyll; Rl, rachilla; s, stamen primordium; sg or white dot, stigma (primordium); st, style; W, 

wing of glume; *, rachilla apex. 

 Fig. 4.9 Pycreus bipartitus, SE micrographs of floral ontogeny. A, apical view of a spikelet apex with 

glumes/flowers at different deǀelopŵeŶtal stages, Ŷuŵďered froŵ ǇouŶg ͚ϭ͛ to older ͚ϱ͛. EŶĐirĐled is a proǆiŵal 

developing flower, with the ovary wall enclosing the ovule, and two developing stamens; B, spikelet apex with 

very young glume subtending a yet undifferentiated flower primordium. Arrows indicate wings of two superposed 

glumes at the other side of the spikelet; C, differentiating flower primordium with two lateral stamen primordia 

and a conspicuous floral apex; D, developing flower with the two stamens removed. The ovary wall is enveloping 

the central ovule; E, apical view of a developing flower. Two dorsiventrally oriented stigma primordia originate on 

the top of the ovary wall; F, lateral view of a developing flower. On the top of the anthers, an apiculus appears 

(arrowed); G, lateral view of a developing flower. A single style appears, with the stigma primordia growing out 

into stigma branches (encircled). The adaxial stigma primordium is split into two (arrowed); H, detail of stigma 

primordia with splitted adaxial one (encircled), and apiculus (arrowed); I, developing ovule with the micropyle 

nearly bent back over 180° (arrowed). The funiculus is indicated with a black line; J, mature flower. Stigma 

branches are encircled; K, lateral view of mature flower. The gynoecium/nutlet has a hypogynous stalklet or 

gynophore (arrowed).  

Abbreviations: a, anther; F, flower primordium; f, filament; G, glume; o, ovule primordium; ov, ovary wall 

(primordium); s, stamen primordium; sg, stigma (primordium); st, style; te, outer tegument; ti, inner tegument; *, 

rachilla apex. 
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Fig. 4.7 Pycreus pelophilus, SE micrographs of floral ontogeny. A, transverse section in the distal part of a 

spikelet, with two flowers at early developmental stages. In the flower below, two stamen primordia and an 

annular ovary primordium surrounding a central ovule primordium are visible. In the upper flower, the stamen 

primordia start differentiating into anther and filament (not visible), and the annular ovary primordium grows up 

from the base; B, growing ovary wall enclosing the central ovule; C, apical-abaxial view of a developing flower 

and part of a tranverse section through the distal part of the rachilla. Two dorsiventrally positioned stigma 

primordia appear on the top of the ovary wall. In between the glume and the flower it subtends, two wings of 

the alternate, higher flower (removed) partially envelop the flower (arrowed). The wings are fused with the 

rachilla; D, abaxial view of a developing flower. A single style appears. The anthers are shorter than the 

filaments; E, lateral view of the middle part of a spikelet with removed glumes. Two developing flowers are 

visible, each partially envelopped by the wings of the higher, opposite glume (arrowed); F, abaxial view of a 

semi-mature flower; G, lateral view of the proximal part of a spikelet, with spikelet subtending bract, prophyll of 

the spikelet, proximal glume and proximal flower (encircled), partially hidden by the wing of the next glume. At 

the base of the prophyll, a swelling body or pulvinus is visible (arrowed); H, detail of the connective stalklet 

(arrowed) in between filament and anther. 

Abbreviations: a, anther; B, bract; co, connective; f, filament; Fp, proximal flower primordium; G, glume; Gp, 

proximal glume; o, ovule primordium; ov, ovary wall (primordium); P, prophyll; ps, pollen sac; Ra, rachis; Rl, 

rachilla; s, stamen primordium; sg or white dot, stigma primordium; st, style; W, wing; *, rachilla apex. 
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Fig. 4.8 Pycreus polystachyos, SE micrographs of floral ontogeny. A, rachilla apex and first glume (encircled); B, 

transverse section in the apical part of the spikelet, showing a newly formed glume with wings (arrowed) 

partially enveloping the alternate, lower flower primordium. The glume subtending this flower primordium is 

removed; C, lateral view of a developing flower. The wings (arrowed) of the alternate, higher flower contribute 

to its protection. The ovary wall is enveloping the ovule, and two dorsiventrally positioned stigma primordia 

appear. The two stamen primordia are differentiating into filament and anther; D, developing flower. A single 

style is formed, and the stigma primordia grow out into stigma branches; E, semi-mature flower. The anther 

becomes shorter than the filament; F, lateral view of a part of a spikelet with two semi-mature flowers. The cells 

at the bases of the pollen sacs become papillose; G, entire spikelet, with a long first internode enveloped by a 

sheath-like prophyll. At the base of the prophyll, a swelling body is present (encircled). Stigma branches 

protrude above the glumes (arrowed); H, detail of the first internode (white bar) and spikelet prophyll, with a 

conspicuous swelling body. The spikelet subtending bract is removed. (I) Nutlet with hypogynous stalklet or 

gynophore; J, detail of the surface of the nutlet, with tabular silica-bodies. 

Abbreviations: a, anther; F, flower primordium; f, filament; G, glume; Gp, proximal glume; nu, nutlet; ov, ovary 

wall (primordium); P, prophyll; Ra, rachis; Rl, rachilla; st, style; white dot, stigma (primordium); *, rachilla apex. 
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Meanwhile, the stamen primordia have developed into introrse stamens with basifixed 

anthers with longitudinal slits (figs 4.6G, H, I & K, 4.7C–F, 4.8C–F, 4.9E–G, H & J, 4.10G & H–J, 

4.11E & F, 4.12A & B). In semi-mature flowers of P. flavescens, and P. sanguinolentus, the 

anthers are as long as or longer than the filaments (figs 4.10J, 4.12A & B), whereas in P. 

bipartitus, P. pelophilus, P. polystachyos and P. pumilus the anthers are relatively short with 

respect to the filaments (figs 4.6K–N, 4.7D–G, 4.8E & F, 4.9J & K). In P. pelophilus and P. 

pumilus, a short connective stalklet appears between filament and anther (figs 4.6M, 4.7G & 

H). In all species studied, the cells at the base of the pollen sacs in developing anthers become 

more or less papillose (figs 4.6M & N, 4.7H, 4.8F, 4.9G & K, 4.10J, 4.11A & B). An apiculus is 

absent or remains rudimentary, with the apical cells becoming papillose (e.g. in P. bipartitus.  

fig. 4.9H). Maturing gynoecia and nutlets have a hypogynous stalklet or gynophore (e.g. figs 

4.8I, 4.9K, 4.12C & D, 4.13A, C, E & G–I). In P. polystachyos and P. pumilus, the cells of the 

nutlet wall each contain a conspicuous tabular silica body (figs 4.8I & J, 4.13A–F), in P. 

polystachyos often with microsatellites around its top. In P. pelophilus, similar cells only occur 

in the center of each lateral side (fig. 4.13C & D). In P. flavescens, the epidermal cells of the 

mature nutlet become longitudinally elongated (zonate cells) pushing up the transverse cell 

walls, which gives the nutlet its typical wrinkled appearance (fig. 4.12D & E, 4.13H). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.9 Pycreus bipartitus, SE micrographs of floral ontogeny. A, apical view of a spikelet apex with 

glumes/flowers at different deǀelopŵeŶtal stages, Ŷuŵďered froŵ ǇouŶg ͚ϭ͛ to older ͚ϱ͛. EŶĐirĐled is a proǆiŵal 

developing flower, with the ovary wall enclosing the ovule, and two developing stamens; B, spikelet apex with 

very young glume subtending a yet undifferentiated flower primordium. Arrows indicate wings of two 

superposed glumes at the other side of the spikelet; C, differentiating flower primordium with two lateral stamen 

primordia and a conspicuous floral apex; D, developing flower with the two stamens removed. The ovary wall is 

enveloping the central ovule; E, apical view of a developing flower. Two dorsiventrally oriented stigma primordia 

originate on the top of the ovary wall; F, lateral view of a developing flower. On the top of the anthers, an 

apiculus appears (arrowed); G, lateral view of a developing flower. A single style appears, with the stigma 

primordia growing out into stigma branches (encircled). The adaxial stigma primordium is split into two 

(arrowed); H, detail of stigma primordia with splitted adaxial one (encircled), and apiculus (arrowed); I, 

developing ovule with the micropyle nearly bent back over 180° (arrowed). The funiculus is indicated with a black 

line; J, mature flower. Stigma branches are encircled; K, lateral view of mature flower. The gynoecium/nutlet has 

a hypogynous stalklet or gynophore (arrowed).  

Abbreviations: a, anther; F, flower primordium; f, filament; G, glume; o, ovule primordium; ov, ovary wall 

(primordium); s, stamen primordium; sg, stigma (primordium); st, style; te, outer tegument; ti, inner tegument; 

*, rachilla apex. 
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4.5.5 Anatomical data 

Cross sections were made at different levels through developing spikelets of Cyperus 

laevigatus (fig. 4.14A–E) and Pycreus flavescens (fig. 4.14F–I). Figure 4.14A serves as a key to 

symbols for 4.14B–I. Cross sections at the basal part of a flower in C. laevigatus (fig. 4.14B–D) 

and P. flavescens (fig. 4.14F–H) reveal that glume and rachilla are fused below the level where 

the filaments are clearly distinguishable. Cross sections at anther level show a separate glume 

and rachilla (fig. 4.14E & I). In both species, a cross section through the rachilla at internode 

level is butterfly-shaped (fig. 4.14E & I). 
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4.6 Discussion 

4.6.1 Spikelet development and morphology 

In all our observations presented here on Cyperus and Pycreus, the spikelet consists of 

an indeterminate rachilla and numerous, acropetally developing glumes, each subtending a 

single flower. This concurs with our earlier observations in a wide range of cyperoid species   

(Vrijdaghs et al., 2006a, 2007, 2010). In Cypereae, a lateral spikelet (which is defined as 

͚ultiŵate ďraŶĐh͛ aŶd heŶĐe should Ŷot haǀe any ramification within it) is not always clearly 

distinguishable from a branched partial inflorescence; in some species, a secondary spikelet 

instead of a flower is formed in the axil of a glume (e.g. in Hellmuthia; Vrijdaghs et al., 2006b). 

This was also observed in Ficinia (Muasya, unpubl. res.), Cyperus (figs 4.3D, 4.4E), and Pycreus 

(fig. 4.6A & J). Therefore, in strict sense, in such cases a glume subtending a secondary 

spikelet should ďe Đalled ͚gluŵe-like ďraĐt͛, aŶd the raĐhilla of the ŵaiŶ spikelet ͚raĐhis͛. IŶ C. 

luzulae, spikelets belong to a serial fascicle of spikelets (fig. 4.3D), in which several spikelets 

originate in the axil of a common bract, the one above the other, as described by Guarise & 

Vegetti (2008: fig. 4.9).  We also observed similar spikelet clusters in C. eragrostis Lam. (both 

belonging to the section Luzuloidei; Denton, 1978). In all C3 species studied, the position of the 

spikelet prophyll of rather distally on the rachis positioned spikelets is shifted in comparison  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.10 Pycreus sanguinolentus, SE micrographs of floral ontogeny. A, apical part of a spikelet, with 

glumes/flowers at successive developmental stages, numbered froŵ ǇouŶg ͚ϭ͛ to older ͚ϲ͛; B, detail of raĐhilla 

apex with a young glume primordium with undifferentiated flower primordium. The wings of the alternate glume 

reach the underlaying flower (arrowed); C, detail of a glume and flower primordium, which is expanding laterally. 

The wings of the glume envelop partially the rachilla (arrowed); D, differentiating flower primordium, with two 

lateral and a slightly delayed abaxial stamen primordium, and a floral apex. E, developing flower. The floral apex is 

starting to form an annular ovary primordium (arrowed); F, developing ovary, with ovary wall enveloping the 

central ovule; G, apical view of a developing flower. Two dorsiventrally positioned stigma primordia are visible on 

the top of the ovary wall; H, apical-adaxial view of a developing flower. The wings (arrowed) of the opposite, 

higher flower (not in the image) envelop partially the lateral stamens; I, lateral view of a developing flower. A 

single style appears; J, lateral view of a developing flower. The stigma branches are growing out; K, lateral view of 

semi-mature flower, one lateral stamen is removed. An annular constriction around the apical part of the ovary is 

formed (arrowed); L, entire spikelet. At the base of the prophyll, a conspicuous swelling body or pulvinus is visible 

(arrowed). 

Abbreviations: a, anther; B, bract; f, filament; fa, floral apex; G, glume; Gp, proximal glume; o, ovule primordium; 

ov, ovary wall (primordium); P, prophyll; Ra, rachis; Rl, rachilla; s, stamen primordium; sg, stigma (primordium); st, 

style; *, rachilla apex. 
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with the plane determined by the distiĐhous arraŶgeŵeŶt of the spikelet͛s other gluŵes. In C4 

species, such torsion has not been observed. Similar observations are reported by Guarise & 

Vegetti (2008). 

In C. capitatus, the culm ends in a terminal spikelet (florescence) in which the glumes 

are distichously placed. Below the florescence, lateral branches, each subtended by a bract, 

are spiro-tristichously positioned (fig. 4.4O). This allows us to interpret the proximal glume-

like bracts as bracts subtending a lateral spikelet, positioned out of the plane determined by 

the higher distichously placed glumes of the terminal spikelet. In the transition zone between 

florescence and the lower part of the culm with lateral branches, primordia in the axil of a 

bract have a high flexibility to become flower or lateral axis. This flexibility to determine a 

given, yet undetermined primordium in the axil of a glume(-like bract) also explains the 

presence of secondary spikelets in spikelets of e.g. Pycreus pumilus (fig. 4.6A & J; Vrijdaghs et 

al., 2010). The glumes in all species studied are winged, with the wings of one glume partially 

enveloping the opposite, lower flower. In both Cyperus and Pycreus, the basal part of the 

glume including (part of) the wings is congenitally fused with the rachilla (figs 4.7C, 4.8B, 4.14) 

and grows up with it. This is most obvious in P. pumilus, whereas in P. pelophilus (fig. 4.7) and 

P. flavescens (fig. 4.11), a large part of the wings grows free from the rachilla. Consequently, 

the main part of the glume and the flower primordium it subtends are epicaulescently 

displaced to a more apical position (actually, until the next node) on the rachilla. As a result, 

the rachilla itself is winged along the common growth zone (Vrijdaghs et al., 2010). In Pycreus, 

this epicaulescent metatopic displacement is more pronounced than in species of Cyperus or 

other Cyperoideae, resulting in the typical alcove-like cavities along the rachilla, of which the 

lateral walls consist mainly of the wings of the opposite, higher glume (fig. 4.14). In Pycreus, 

the glumes often have a prolonged midvein or mucro, which becomes cap-shaped, protecting 

the rachilla apex (e.g. figs 4.6B, 4.8A, 4.10A). At the adaxial lower part of prophylls of both 

inflorescence branches and spikelets in P. pelophilus, P. polystachyos and P. sanguinolentus, 

an adaxial swelling body can be seen (figs 4.7G, 4.8H, 4.10L). We also observed it in other 

Cypereae, such as C. luzulae (Reynders, unpubl. res.) and Kyllinga Rottb. (Huygh, University of 

Ghent, Belgium, and Vrijdaghs, unpubl. res.). These observations allow ĐoŶfirŵiŶg HaiŶes͛ 

(1967) suggestion that the swelling body or pulvinus is part of the prophyll. 
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4.6.2 Floral ontogeny and fruit morphology 

The floral ontogenetic pattern in Cyperus and Pycreus is similar to the pattern 

observed by us in many other Cyperoideae (e.g. Vrijdaghs et al., 2005, 2009). However, there 

is no formation of perianth primordia, which is a common feature for Cyperus s. lat. and 

Cypereae. However, in the Ficinia-Isolepis clade, two southern African species previously 

named as Scirpus (S. falsus and S. ficinioides) were added, as well as the formerly mapanioid 

Hellmuthia. These three species are the only recorded Cypereae with remnants of a perianth 

(Simpson et al., 2003, Vrijdaghs et al., 2006, Muasya et al., 2009a, 2009b).  

In Pycreus, the number of stamens is highly variable, with basic number three as in 

most other Cyperoideae (e.g. figs 4.10D, E, G & H, 4.11C, E & F). Kükenthal (1936) reported 

that nearly half of the 72 species he recognized in Pycreus have a constant number of two 

stamens instead of three. In these cases it is the abaxial stamen that does not develop (e.g. 

figs 4.7, 4.9A–G). In some species, the number of stamens can also vary within the species, 

and even within a single plant (e.g. P. pumilus, fig. 4.6M). We observed a tendency to delay 

the formation of the abaxial stamen or to reduce it completely in various other cyperoid 

genera, such as Eriophorum, Scirpoides (Vrijdaghs et al., 2005a), Fuirena (Vrijdaghs et al., 

2004), Ficinia and Isolepis (Vrijdaghs et al., 2005b). From from an annular ovary primordium. 

We believe that the organizational freedom resulting from the congenital fusion of the carpels 

into an annular ovary primordium made laterally flattened nutlets like in Pycreus, as well as 

dorsiventrally flattened nutlets like in C. laevigatus, possible. 

In P. bipartitus, at early developmental stages, two adaxial stigma branches can occur 

(fig. 4.9G). Haines & Lye (1983) also reported the presence of three stigma branches in some 

specimens of P. nigricans. It is tempting to interpret these observations as an argument to  

state that the adaxial stigma branch in Pycreus resulted from the fusion of the two ancestral 

lateral ones. However, how to explain the presence of four stigma branches in C. capitatus 

(fig. 4.4H)? Therefore, we consider these particular structures rather as developmental 

accidents; the meristematic zones from which the stigma branches originate (we call them 

stigma primordia because they are not carpel tips, though we do not exclude that they are 

homologous with carpel tips) can be splitted (dédoublement). In P. flavescens, the 

development of the adaxial stigma branch at early developmental stages is slightly delayed 

with respect to the abaxial one (figs 4.11, 4.12A). This too might be explained by a temporary 

lack of space. In P. sanguinolentus, an apical constriction of the ovary appears at semi-mature 



  ______________________________________________________________Chapter 4 

    

138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11 Pycreus flavescens, SE micrographs of floral ontogeny. A, lateral view of a spikelet apex, with 

glumes/flowers at successive developmental stages numbered from young to older 1–3; B, rachilla apex with 

young glume subtending a flower primordium; C–D, differentiating flower primordium with one abaxial and two 

adaxial stamen primordia, and with the floral apex differentiating into an annular ovary primordium (arrowed) 

surrouŶdiŶg a ĐeŶtral oǀule priŵordiuŵ. IŶ ͚D͛, the staŵeŶ primordia start differentiating into filament and 

anther; E, transverse section through the rachilla, with three flowers (1, youngest; 3, oldest) at different 

deǀelopŵeŶtal stages. Floǁer ͚ϭ͛ is shoǁŶ froŵ aŶ adaǆial ǀieǁpoiŶt, floǁers ͚Ϯ͛ aŶd ͚ϯ͛ froŵ aŶ abaxial 

ǀieǁpoiŶt, eaĐh ǁith reŵoǀed staŵeŶs. IŶ floǁer ͚Ϯ͛, the adhesioŶ of the wings of the subtending glume of flower 

͚ϭ͛ to the raĐhilla ĐaŶ ďe seeŶ ;eŶĐirĐledͿ; F, apiĐal ǀieǁ of a traŶsǀerse seĐtioŶ through the rachilla, with two 

flowers. The right hand one is less developed, with two dorsiventrally stigma primordia appearing on the top of 

the ovary wall (arrowed); G–H, apical view of a developing gyncoecium. A single style appears, and the stigma 

primordia grow out, the adaxial one (arrowed) delayed with respect to the abaxial stigma primordium. 

Abbreviations: a, anther; F, flower primordium; f, filament; G, glume; o, ovule primordium; ov, ovary wall 

(primordium); s, stamen primordium; sg, stigma (primordium); W, wing; *, rachilla apex. 
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stage. We observed a similar phenomenon in Fuirena abnormalis C.B.Clarke (Vrijdaghs et al., 

2004). In maturing flowers of several Cyperus and Pycreus species, a rudimentary hypogynous 

stalklet or gynophore appears (e.g. figs 4.3E these observations, we may deduce that the 

reduction of the abaxial stamen occurred independently in different Cyperoid clades. In all 

cases, this tendency can probably be explained by a limited spacial freedom to develop the 

three stamens. Pycreus pumilus, with its highly compacted spikelets and flowers with usually 

one, sometimes two stamens, clearly illustrates this. Moreover, in stamens of flowers of P. 

pelophilus and P. pumilus, a ͚ĐoŶŶeĐtiǀe stalklet͛ appears iŶ seŵi-mature stamens. Similar 

observations were made in other Cypereae (e.g. Kyllinga and Oxycaryum; Vrijdaghs, unpubl. 

res.). We adŵit that this ͚ĐoŶŶeĐtiǀe stalklet͛ aĐts as aŶ artiĐulatioŶ alloǁiŶg the anther to 

bend over for better pollen dispersal by the wind.  

Fig. 4.12 Pycreus flavescens, SE micrographs of floral ontogeny. A–B, lateral-adaxial view of developing flower. In 

͚B͛, the delaǇ of the development of the adaxial stigma branch diminishes; C, longitudinal section of a fruit wall 

with rests of the obturator hairs, and a hypogynous stalklet or gynophore (arrowed); D, nutlet; E, detail of the 

fruit wall. Abbreviations: a, anther; f, filament; nu, nutlet; ov, ovary wall; sg, stigma (primordium); st, style. 
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As in all other Cyperoideae studied by us, the gynoecium in the species of Cyperus and 

Pycreus presented here are formed from an annular ovary primordium surrounding a central 

ovule primordium. Since the ovary wall in Cyperoideae is not resulting from a postgenital 

fusion of three distinct carpel primordia but growing up from an annular ovary primordium, 

new possibilities arise in organizing the vascularisation of the gynoecium and consequently 

also for its morphology, such as the positions and number of the stigmas. In Pycreus, only two 

stigma branches are formed, positioned dorsiventrally, which results in laterally flattened 

Fig. 4.13 SE micrographs of mature nutlets in Pycreus (A–H) and Cyperus (I). A, P. bipartitus, lateral view of a 

nutlet with a gynophore (arrowed); B, P. bipartitus. Detail of the fruit wall epidermis with cells with small conical 

silica bodies; C, P. pelophilus, lateral view of a nutlet with a gynophore (arrowed); D, P. pelophilus. Detail of the 

fruit wall epidermis with cells with each a tabular silica body; E, P. pumilus, lateral view of a nutlet with a 

gynophore (arrowed); F, P. pumilus. Detail of the fruit wall epidermis with small cells, each filled with a tabular 

silica body; G, P. sanguinolentus, lateral view of a nutlet with a hypogynous stalklet or gynophore (arrowed); H, 

P. flavescens, lateral view of a nutlet with a gynophore (arrowed). The epidermis consists of zonate 

(longitudinally elongated) cells; I, Cyperus laevigatus. Dorsiventral view of a nutlet with a gynophore (arrowed). 

Abbreviation: nu, nutlet. 
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gynoecia/nutlets (figs 4.6–11). Similar pistils also occur in Kyllinga and Queenslandiella. 

However, molecular phylogenetic data (Muasya et al., 2009a) show that these genera form 

different clades within Cyperus s. lat., which suggests that this feature evolved independently 

in each of the three genera characterized by it. Also in C. laevigatus, only two, though laterally 

positioned stigma primordia appear, resulting in a dorsiventrally flattened pistil/nutlet (fig. 

4.5F–H). Goetghebeur (1986) suggested that such a pistil, which also occurs in other Cyperus 

species and other cyperoid genera such as Blysmus, Dulichium, Eleocharis and Fimbristylis, 

results from the reduction of the abaxial carpel and a fusion of the two remaining adaxial 

carpels. However, each attempt to explain the Pycreus type pistil using the carpel concept 

fails. Moreover, in strict sense, carpels are not present in cyperoid Cyperaceae since the ovary 

originates from an annular ovary primordium. We believe that the organizational freedom 

resulting from the congenital fusion of the carpels into an annular ovary primordium made 

laterally flattened nutlets like in Pycreus, as well as dorsiventrally flattened nutlets like in C. 

laevigatus, possible.  

In P. bipartitus, at early developmental stages, two adaxial stigma branches can occur 

(fig. 8G). Haines & Lye (1983) also reported the presence of three stigma branches in some 

specimens of P. nigricans. It is tempting to interpret these observations as an argument to 

state that the adaxial stigma branch in Pycreus resulted from the fusion of the two ancestral 

lateral ones. However, how to explain the presence of four stigma branches in C. capitatus 

(fig. 3H)? Therefore, we consider these particular structures rather as developmental 

accidents; the meristematic zones from which the stigma branches originate (we call them 

stigma primordia because they are not carpel tips, though we do not exclude that they are 

homologous with carpel tips) can be splitted (dédoublement). 

In P. flavescens, the development of the adaxial stigma branch at early developmental 

stages is slightly delayed with respect to the abaxial one (figs 10, 11A). This too might be 

explained by a temporary lack of space. In P. sanguinolentus, an apical constriction of the 

ovary appears at semi-mature stage. We observed a similar phenomenon in Fuirena 

abnormalis C.B.Clarke (Vrijdaghs et al. 2004). In maturing flowers of several Cyperus and 

Pycreus species, a rudimentary hypogynous stalklet or gynophore appears (e.g. figs 2E& L, 

4.5O, 4.8I, 4.9K). This also occurs in other genera in Cypereae, such as Ficinia, Isolepis, and 

Scirpoides (Vrijdaghs et al., 2005a, 2006b).  
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Fruit wall epiderm cells in Pycreus pelophilus, P. pumilus and P. polystachyos have (at 

least partially) similar, tabular silica-bodies (fig. 4.13C–F). The fruit wall epiderm cells in P. 

flavescens are zonate and do not have silica-bodies (fig. 4.12D & E, 4.13H). Pycreus bipartitus 

has fruit walls with isodiametric epiderm cells with small conical silica bodies (fig. 4.13A & B), 

which is also reported in P. sanguinolentus, though we did not observe this in nutlets from 

herbarium specimens (fig. 4.13G). According to Metcalfe (1971), only the few neither conical 

nor tabular silica-bodies found in some species might have systematic value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.14 A, Key for B–I; LM image of a cross section through a spikelet of Pycreus flavescens, at the height of the 

filaments. The green coloured areas are the fusion zones between rachilla and wings of a glume. The section of 

this glume and the flower in its axil (three filaments and centrally the gynoecium) are coloured in red. The wing 

tips are also coloured in red, and arrowed. The rachilla is coloured in yellow. In each section shown in figure B–I 

a similar glume with the flower it subtends can be observed, as well as a fusion zone of wings and rachilla; B–I, 

LM images of cross sections through the spikelet at different levels in Cyperus laevigatus (B–E) and Pycreus 

flavescens (F–I); B & F, cross sections through the basal level of a glume and its flower. In P. flavescens, the 

fusion of glume and rachilla (green arrow) is less complete than in C. laevigatus; C,D, G & H, cross sections at 

filament level; E & I, cross sections at anther level (or internode). Here, the glume is free from the rachilla. 

Abbreviations: F, flower; G, glume; Rl, rachilla. 
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4.7 Conclusions 

The spikelet ontogeny and morphology in the Cyperus and Pycreus species studied 

concurs with our observations in many other Cyperoideae that cyperoid spikelets consist of an 

indeterminate rachilla and many glumes which usually subtend (or not) a bisexual flower 

(Cariceae and sclerioid Cyperaceae not included). However, in Cypereae, proximal bracts of 

the spikelet may axillate a secondary spikelet. We consider this phenomenon to be a result of 

the flexibility plants have to activate different developmental patterns (to become a flower, a 

spikelet or a vegetative axis
4
) in yet undetermined primordia. Spikelets in Cyperus s. lat. have 

a typical zigzagging morphology, resulting from a congenital fusion of the rachilla and the 

wings of the glumes, which causes epicaulescent growth of the glumes with the rachilla. The 

particular morphology of a spikelet in Pycreus results from a pronounced epicaulescent 

growth of the glumes with the rachilla. The floral ontogeny in all species studied occurs 

according to the general Cyperoid floral ontogenetic pattern, though no perianth primordia 

are formed. The pistil, as it originates from an annular primordium, gets more organisational 

freedom, which is illustrated by the two dorsiventrally positioned stigma branches in Pycreus, 

as well as the two laterally positioned stigma branches in species with dorsiventrally flattened 

nutlets, such as C. laevigatus. Only on condition that in cladistic analysis Pycreus would appear 

as a monophyletic taxon, we think that the combination of 1) its particular spikelet ontogeny 

resulting iŶ a ͚Pycreus-tǇpe͛ spikelet, ϮͿ the laterallǇ flatteŶed oǀaries/ nutlets which 

originated independently in the evolution from other taxa with similar ovaries, are strong 

arguments to consider this taxon to be a genus on its own. However, we also realise that this 

would make Cyperus paraphyletic. 
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 c.f. Pseudovivipary found in e.g. Eleocharis 
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“The most exciting phrase to hear in science, the one that heralds 

the ŵost disĐoveries, is Ŷot "Eureka!" ;I fouŶd it!Ϳ ďut 'That's fuŶŶy...” 

 

― Isaac Asimov (1920-1992) 

5 Pistil evolution 

 

 Fig. 5.1 Dark field microscopy picture of the vasculature within the base of a flower of Pycreus 

sanguinolentus. 

 

Spikelet theme: Pycreus bipartitus 
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5.1 IŶ this chapter… 

 In chapter 5 pistil evolution with a focus on the origin of derived pistils in Cyperoideae 

is reviewed with presentation of additional data from ontogeny and anatomy. The 

results presented have been published as the following article: 

1. Reynders, M. & Vrijdaghs, A., Larridon, I., Huygh, W., Leroux, O., Muasya, AM., 

Goetghebeur, P. (2012). Gynoecial anatomy and development in Cyperoideae 

(Cyperaceae, Poales): congenital fusion of carpels facilitates evolutionary modifications 

in pistil structure. Plant Ecology and Evolution 145(1): 1-30. 

Remark: The circumscription for the gynoecium development used in the article Is 

somewhat outdated. Here follows a more correct phasing: In Cyperoideae, the 

gynoecium originates from an annular gynoecium wall primordium, (previously 

described as ovary wall primordium, surrounding a central, floral-apical meristematic 

zoŶe ;pƌeǀiouslǇ desĐƌiďed as ͚oǀule pƌiŵoƌdiuŵ͛Ϳ fƌoŵ ǁhiĐh lateƌ oŶ a siŶgle oǀule 

originates. At early developmental stage, r-the raising, bag-like gynoecium wall 

surrounds the developing ovule, thus forming an immature open ovary. With the 

gynoecium wall further raising and forming a single style, the initially open ovary is 

gradually closed. 

 

5.2 Abstract 

In Cyperaceae, the single ovuled, usually triangular gynoecia are widely considered to 

have a basic number of three carpels, often reduced to two, resulting in dimerous pistils. 

However, laterally flattened dimerous pistils cannot be explained by any existing carpel 

reduction theories, because a single stigma in median position replaces the two adaxial 

stigmata. This paper presents a comparative study of the ontogenetic and anatomical 

adaptations facilitating the origin of new pistil forms in Cyperoideae, focusing on modified 

gynoecia. It includes a reeǀaluatioŶ of Blaseƌ͛s ;ϭϵϰϭͿ aŶatoŵiĐal studies iŶ CǇpeƌaĐeae. We 

aiŵ to test Blaseƌ͛s hǇpothesis that is ďased oŶ aŶ aĐƌopetal deǀelopŵeŶtal ŵodel of the 

floral vasculature and the general Cyperoid ontogenetic model of Vrijdaghs et al., (2009), 

which states that cyperoid ovaries originate from an annular primordium. SEM, dark field and 

phase contrast microscopy were used to study the development of flowers ans vascular 
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bundles in Cyperoideae. All cyperoid pistils studied develop according to a cyperoid floral 

ontogenetic pattern, in which carpel primordia are congenitally fused. In Pycreus 

sanguinolentus (and other species), separate procambial initiation zones were observed in 

both the flower receptacle and separate floral primordia, which connect (or not) at later 

developmental stages. The presence of an annular ovary primordium instead of individual 

carpel primordia, combined with the bidirectional development of the pistil vasculature 

liberate the developing gynoecium from the structural constraints proper to a typical 

carpellate organisation. Procambial initiation zones in the receptacular vascular plexus and in 

individual floral primordia constitute the basis for the formation of a flexible vascular system 

in cyperoid flowers. Moreover the development of the ovary and ovule are decoupled. 

Consequently, in Cyperoideae the acquired developmental freedom of the pistil resulted in 

various adaptations. 

 

5.3 Introduction 

5.3.1 Cyperoideae and their flowers 

Cyperaceae, the third largest family in monocots, are characterised by their small, 

easily dispersible nutlets with a single ovule, which greatly contributed to their worldwide 

success. Whereas previously four subfamilies were considered (Muasya et al., 1998, Simpson 

et al., 2007), currently two main clades have been recognised as the only subfamilies of 

Cyperaceae, namely Cyperoideae and Mapanioideae (fig. 5.2). At tribal and generic levels, the 

classification of Goetghebeur (1998) is still in use (Govaerts et al,. 2007). 

In Mapanioideae, the reproduction units (flowers or synanthia?) are enveloped by two 

lateral scales (e.g. Kern, 1974). The reproductive units are controversial because of the 

presence of scales in between a terminal gynoecium and the more proximally situated 

stamens. Until now, only one complete floral ontogeny has been done, on Exocarya Benth. 

(Richards et al., 2006), unfortunately without much attention to the development of the 

gynoecium. From our current knowledge it becomes more and more clear that the whole 

floral organisation in mapanioids is fundamentally different from the one in cyperoids 

(Richards et al., 2006, Simpson et al., 2003, 2007, Vrijdaghs 2006). Therefore a thorough 

comparative study in Cyperoideae stands on its own. In Cyperoideae, flowers are typically 

monocotyledonous (e.g. Rudall & Bateman 2004) with a trimerous perianth, a trimerous 

androecium and a trimerous, superior gynoecium, or they are considered to be derived from 
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this pattern (e.g. Goetghebeur 1998, Vrijdaghs et al., 2009). A cyperoid flower usually 

originates in the axil of a subtending bract, called glume, with the glumes and their flowers 

being organized in spikelets (e.g. Haines & Lye, 1983, Goetghebeur, 1998, Vrijdaghs et al., 

2009, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Simplified cladogram of Cyperaceae, adapted from a strict consensus tree from Muasya et al. (2009a). 

 



Pistil evolution __________________________________________________________ 

 

149  

 

 

5.3.2 Aims of this study 

This paper presents an overview, strictly limited to the Cyperoideae, of existing 

anatomical and ontogenetic data of the gynoecium, complemented with new anatomical and 

floral ontogenetic evidence. For the first time, old and new anatomical and floral ontogenetic 

observations are integrated in order to test two existing hypotheses outlined in the following 

paƌagƌaphs: ;ϭͿ Blaseƌ͛s ;ϭϵϰϭa, ϭϵϰϭďͿ aŶatoŵǇ-based interpretation of vascularisation in 

Cyperoideae, especially for the gynoecium wall in Pycreus, where he assumed lateral bundles 

took over the function of the dorsal bundles (see chapter on pistil vascularisation for more 

details), and (2) the scirpoid floral ontogenetic model of Vrijdaghs et al., (2009) in which the 

pistil of all Cyperoideae is explained to originate from a ring primordium. In the anatomical 

study, special attention was given to procambial initiation patterns, which have not yet been 

studied iŶ ĐǇpeƌoid floǁeƌs, aŶd to eǀaluate Blaseƌ͛s ĐoŶĐlusioŶs iŶ the ĐoŶteǆt of ƌeĐeŶt 

molecular phylogenetic hypotheses (Muasya et al., 2002, Larridon et al., 2011a) especially 

concerning dimerous flattened pistils. 

Fig. 5.3 Overview of the pistil types present in Cyperoideae, which are studied in this paper. A, lateral-abaxial view 

of a typical flower in Cyperoideae (without perianth); B, apical view of a flower with a trimerous gynoecium; C, 

apical view of a flower with a dorsiventrally flattened dimerous gynoecium; D, apical view of flower with a laterally 

flattened dimerous gynoecium.  

Abbreviations: f, filament; G, glume; Rl, rachilla; s, stamen; sg, stigma. A black arrow indicates the abaxial side of 

each flower. 
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Moreover, to illustrate two fundamentally different developmental patterns that result 

in coenocarpous gynoecia (i.e. gynoecia with fused carpels, Weberling, 1992), cyperoid 

gynoecium development is compared with gynoecial development in a relatively distantly 

related monocot, Sansevieria trifasciata Prain (included in Dracaena, Ruscaceae, Asparagales, 

Stevens 2001 onwards). Sansevieria was chosen as a highly illustrative monocotyledonous 

species with an ovary developing from individual carpel primordia that fuse postgenitally. 

Finally, our conclusions are presented as a developmental model for the gynoecium 

and its vascularisation, giving a possible explanation for the variation of pistils found in 

Cyperoideae. 

 

5.3.3 Pistil modifications in Cyperoideae 

As in other monocots, in Cyperaceae, a trimerous gynoecium can be considered as the 

plesiomorphic condition (Endress, 1995). Usually, species of Cyperoideae have two lateral 

stigma branches at the adaxial side and one at the abaxial side (fig. 5.3A & B). While 

tetramerous, hexamerous and octamerous pistils occur in some tribes, dimerisation of pistils 

is more widespread within the family (Goetghebeur, 1998). In sedges, derived pistils have 

often been used for specific and generic delimitations, but their systematic value is 

controversial (e.g. Goetghebeur, 1998, Muasya et al., 2009b). 

In Cyperoideae, two main types of dimerous pistils occur: either dorsiventrally (fig. 

5.3C) or laterally flattened pistils (fig. 5.3D), causing bilateral floral symmetry. A dorsiventrally 

flattened pistil has laterally positioned stigma branches (fig. 5.3C). This type occurs in almost 

all cyperoid tribes sensu Goetghebeur (see table 5.2). In Mapanioideae, this pistil type is also 

common (Kern, 1974). Based on early anatomical and ontogenetic studies, many authors 

suggested that dorsiventrally flattened pistils could be explained by a reduction of the abaxial 

carpel (e.g. Baillon, 1893, Schumann, 1890, Snell, 1936, Goetghebeur, 1986). Although often 

used in generic circumscriptions, the taxonomic value of the dorsiventrally compressed 

dimerous pistil should be handled with caution (Goetghebeur, 1986). This is illustrated by 

some species such as Cyperus alopecuroides Rottb., Kyllingiella polyphylla (A.Rich.) Lye, 

Eleocharis variegata (Poir.) C.Presl. and Schoenoplectus corymbosus (Roth ex Roem. & Schult.) 

J.Raynal, which can have both trimerous and dorsiventrally flattened dimerous pistils within a 

single spikelet (Haines & Lye, 1983, Larridon et al., 2011b). In other  
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Taxonomy Gynoecium: number of stigmata 

G
lu

m
e

 

p
la

ce
m

e
n
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Clade  

(Muasya et al., 

2009a) 

 

Tribe and genus 

(Goetghebeur, 1998) 

2 lat. 
2 

dors. 
3 4 6 8 9 

Abildgaardieae Abildgardieae Lye 

      Bulbostylis Kunth  x X      S 

      Fimbristylis Vahl  X X      S 

      Nemum Desv. ex Ham.  X x      S 

Bisboeckelereae 1 Bisboeckelereae Pax ex L. T. Eiten 

      Calyptrocarya Nees  X       D 

Cariceae Cariceae Kunth ex Dumort. 

      Carex L.  x X x (x)    S 

       Kobresia Willd.  x X      S 

Cryptangieae Cryptangieae Benth. 

      Exochogyne C.B. Clarke X        D 

Cypereae Cypereae Dumort. 

      Ascolepis Nees ex. Steud.  x X (x)     S 

      Cyperus L. s.s.  x X      D/s 

      Ficinia Schrad.  x X      S 

      Isolepis R.Br.  x X      S 

      Kyllinga Rottb. X        D 

      Lipocarpha R.Br.  x X      S 

      Oxycaryum Nees  X       S 

      Pycreus P.Beauv. X        D 

      Queenslandiella Domin X        D 

Dulichieae Dulichieae Rchb. ex J. Schultze-Motel 

      Blysmus Panz. ex Schult.  X       D 

      Dulichium Pers.  X       D 

?       Sumatroscirpus Oteng-Yeb.  X (x)      S 

Eleocharideae Eleocharideae Goetgh. 

      Eleocharis R.Br.  x X      S 

      Websteria S.H.Wright  X       D 

Fuireneae 2 Fuireneae Rchb. ex Fenzl 

      Bolboschoenus (Asch.) Palla  x X      S 

Fuireneae 3 & 4       Schoenoplectus (Rchb.) Palla  x X      S 

Rhynchosporeae Schoeneae Dumort 

      Pleurostachys Brongn.  X       S/d 

      Rhynchospora Vahl x X       D 

Schoeneae 3       Cladium P.  (x) X      D 

Schoeneae 1       Cyathochaeta Nees  X       S/d 

      Evandra R.Br.      X   S 

      Gahnia J.R.Forst. & G.Forst.   X (x)     S 

      Lepidosperma Labill.   X (x)     S 

      Neesenbeckia Levyns     X (x)   D 

      Schoenus L.  (x) X      D 

      Tetraria P.Beauv.   X x   (x) D 

?       Trachystylis S.T.Blake  X       S 

Scirpeae 1 Scirpeae Kunth ex Dumort. 

      Amphiscirpus Oteng-Yeb.  X       S 

      Scirpus L.  x X      S 

Table 5.1  List of cyperoid genera that include species with derived pistils based on Goetghebeur (1998). Abbreviations: 

D, distichous; dors., dorsally compressed; lat., laterally compressed; S, spiral; X, the most common situation; x, the less 

common situation; (x), observed as a rare variation within species that normally have another type of pistils. 
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taxa, the dimerous, dorsiventrally flattened pistil state is constant such as in Cyperus 

laevigatus and Eleocharis minuta (Haines & Lye, 1983). 

Laterally flattened pistils are less common and their origin has been more 

controversial. In this pistil type, the two stigma branches have median positions (fig. 5.3D). 

According to Goetghebeur (1986), reduction of one of the (two adaxial) carpels is not likely 

since there is no trace of the then expected asymmetry. Laterally flattened pistils have only 

been recorded in three cyperoid tribes: Cypereae (Pycreus, ±120 spp.; Kyllinga, ± 80 spp.; 

Queenslandiella, 1 sp.), Cryptangieae (Exochogyne Clarke [accepted name =  Lagenocarpus 

amazonicus]) and Rhynchosporeae (Rhynchospora rubra subsp. rubra (Lour.) Makino) 

(Goetghebeur, 1998). Goetghebeur (1986) postulated a single origin of laterally flattened 

pistils for Kyllinga, Pycreus and  Queenslandiella (Cypereae). However, a putative homology
1
 

of the laterally flattened dimerous pistils in Kyllinga, Pycreus and Queenslandiella has not 

been confirmed by molecular phylogenetic hypotheses (Muasya et al., 2001, 2002, 2009a). 

Moreover, the recognition of these three taxa as genera (e.g. Goetghebeur, 1998) is 

controversial (e.g. Haines & Lye, 1983, Tucker et al., 2002, Muasya et al., 2009b). They are 

nested in a paraphyletic Cyperus ;togetheƌ ǁith seǀeƌal otheƌ segƌegate ͚geŶeƌa͛Ϳ, iŶ a 

polytomy of the clade of the Cyperus s.l. species using C4 photosynthesis (C4 Cyperus clade) 

(Muasya et al., 2002, 2009a, Besnard et al., 2009, Larridon et al., 2011a). Despite their obvious 

close relationships with Cyperus, these three taxa are generally considered as well 

circumscribed entities (whether considered as separate genera or at subgeneric level in 

Cyperus), based on, among others, the presence of laterally flattened pistils in each of them. 

In expectance of a more elaborate molecular study on C4 Cyperus and its segregate genera, we 

chose here to follow the classification of Goetghebeur (1998) and Govaerts et al., (2007) for 

the currently accepted names of the taxa. To be complete, it must be mentioned that some 

authors were not convinced of the systematic value of laterally flattened pistils for generic 

delimitation (e.g. Koyama, 1961). 

Finally, in several Cyperoideae taxa, apparent monomerous pistils can be found. In 

most of these cases the style is strongly elongated bearing very short stigma branches at its 

top (e.g.  Rhynchospora sect.  Haplostylis  and  Cyperus sect. Anosporum, Haines & Lye, 1983). 

                                                 
1
 Several authors such as Goetghebeur (1986) supposed laterally flattened dimerous pistils had originated in a 

single evolutionary event (phylogenetic homology). 
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In Cyperus meeboldii and relatives (e.g.  C. holostigma, C. clavinux), an unbranched style has 

also been observed (Raynal, 1966). 

 

5.3.4 The carpel concept and its application to Cyperoideae 

Goetghebeur (1986) pointed out that laterally flattened pistils in Cyperoideae are 

difficult to explain as resulting from the reduction of one of the two adaxial carpels. Instead, 

the two adaxial carpels seem to be replaced by a single carpel in median position. This novel 

position is remarkable since in most angiosperm groups, carpel positions appear to be highly 

conserved (Endress, 1995). In addition, Vrijdaghs et al., (e.g. 2005a, 2005b) showed that the 

cyperoid ovary originates from an annular ovary primordium. In this context, we think it useful 

to recapitulate the carpel concept and its application in Cyperoideae. 

Von Goethe (1790, in Miller, 1949: 256) was the first to see the carpel as a 

ƌepƌoduĐtiǀe phǇlloŵe: ͞Eaƌlieƌ I tƌied to ŵake as Đleaƌ as possiďle that the ǀaƌious plaŶt paƌts 

developed in sequence are intrinsically identical despite their manifold differences in outer 

form. It should come as no surprise that I also intend to explain the structure of the female 

paƌts iŶ the saŵe ǁaǇ.͟ Goethe did Ŷot suggest Đaƌpels to ďe deƌiǀed fƌoŵ leaǀes, ďut ƌatheƌ 

that leaves and all floral parts are lateral appendages of the stem, reflecting an archetypical 

leaf-like stƌuĐtuƌe, Đalled ͚Blatt͛ ďǇ Goethe aŶd fƌoŵ the eŶd of the ϭϵth ĐeŶtuƌǇ Đalled 

͚phǇlloŵe͛ ;Aƌďeƌ, 1937). The word ͚Đaƌpelluŵ͛ dates fƌoŵ the eaƌlǇ ϭϵth ĐeŶtuƌǇ, fƌoŵ the 

same period in which de Candolle (1827) hypothesised carpels to be structures derived from 

sporangium-bearing leaves. Goebel (1888) described a gynoecium as being formed by 

macrosporophylls, bearing ovules at the inner or ventral side of the leaf margins. This view 

ďeĐaŵe ͚ĐlassiĐ͛ ǁith EŶgleƌ ;ϭϵϬϬ–1968), who adopted it for all angiosperms. In the course of 

the 19th and 20th centuries, several alternative floral hypotheses arose, such as the 

pseudanthium hypothesis (e.g. Wettstein, 1935) or the gonophyll hypothesis (Melville, 1969), 

consequently suggesting other interpretations of carpels. As a summary, carpels can be seen 

as either (1) homologous with leaves (phyllomes) and thus formed laterally on an axis and the 

ovules formed upon them (phyllospory) or (2) leaf-axis structures, with the ovules being 

formed on an axis subtended by a carpel (stachyospory). Endress (2001) added that a carpel 

can also be a compound organ with an ovule producing part and a leaf component, or a totally 

new organ. Leins & Erbar (2011) consider carpels to be megasporophylls and describe them as 

comparable with a hollow cylinder, through which an inclined section is made above the base 
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of the cylinder and consequently defining a circular basal zone or ascidiate zone, and distally 

an open zone called plicate. In ovaries consisting of several carpels, the dorsal side of it always 

forms the ovary wall, whereas placentas/ovules are formed at the ventral side of the carpels, 

usually at the margins (axile placentation) or situated more centrally at the ventral side of the 

carpels and hence at the inner side of the ovary wall (laminal placentation). 

IŶ CǇpeƌaĐeae, PaǇeƌ ;ϭϴϱϳ: ϲϵϴͿ desĐƌiďed the oƌigiŶ of the gǇŶoeĐiuŵ ͞daŶs les  

Scirpus et les Eriophorum͟ as Đaƌpellate: ͞tƌois autƌes ďouƌƌelets Ƌui leuƌ [staŵeŶ primordia] 

soŶt supeƌposés et Ƌui soŶt les ƌudiŵeŶts du pistil͟, ǁith postgeŶital fusioŶ of these Đaƌpel 

pƌiŵoƌdia: ͞...ils soŶt pƌoŵpteŵeŶt ƌéuŶis à leuƌ ďase, de façoŶ à pƌoduiƌe uŶ saĐ oǀaƌieŶ͟ 

(Payer, 1857: 699). Until the last decade, Payer was the only author who did a thorough and 

complete floral ontogenetic investigation in Cyperoideae. In the course of the 20th century, 

floral ontogenetic data were only sporadically published (e.g. Schumann, 1890, Barnard, 1957, 

Schulze-Motel, 1959, Mora, 1960, Mora-Osejo, 1987, Bruhl, 1991). Since Payer (1857), in 

Cyperaceae-Cyperoideae, the ovary has always been described as tricarpellate, unilocular with 

one basal, anatropous and bitegmic crassinucellar ovule (e.g. Goetghebeur, 1998). However, 

according to Vrijdaghs et al., (e.g. 2009), in Cyperoideae, the ovary rises from an annular ovary 

primordium, enveloping the single, central ovule. 

 

 

  Fig. 5.4 3D reconstructions of the vascular bundle patterns within the base of different Cyperaceae flowers as 

interpreted by Blaser (1941a, 1941b). Vascular patters are grouped according to the pistils types (A–D) and the 

presence or absence of lateral bundles within the gynoecium wall (1–2). Vascular traces towards perianth parts 

are omitted. Bundles, which continue into the different floral organs, are arrowed, rudimentary bundles are not 

arrowed. The larger models are shown from a lateral-abaxial position and the abaxial position is always indicated 

with a small black arrow. A smaller inlay adds an apical view of each separate model (with staminal traces 

removed). Colour codes and circumscription for the different vascular bundles: purple, receptacular bundles, 

these bundles connect the vascular tissue of the flower with the stele; yellow, staminal bundles; green, dorsal 

bundles, running in the carpels and continuing in the stigmata; blue, ventral bundles, usually two bundles for each 

carpel that run towards the placentation of the ovule; orange, lateral bundles, running in the wall of the 

gynoecium in some taxa; red, central and ovular bundles connecting the ventral bundles to the ovule. A, trimerous 

pistil type; B, dorsiventrally flattened dimerous pistil with the abaxial receptacular bundles still contributing to the 

vascularisation of the pistil, however the abaxial dorsal bundle is reduced; C, dorsiventrally flattened dimerous 

pistil, the abaxial receptacular bundle does not contribute to the vascularisation of the pistil; D, the situation in 

the laterally compressed pistils of Cyperus rivularis (= Pycreus bipartitus) where Blaser (1941a) interpreted the 

bundles within the gynoecium wall to be lateral bundles (D1). D2 shows a hypothetical, alternate interpretation of 

these bundles to be interpreted as dorsals. See table 1 for a list of taxa and their vascularisation types as observed 

by Blaser (1941 a, 1941b). 
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5.3.5 Recent insights in the development of (floral) primordia 

 Gould (2002) linked classic morphology with evolutionary developmental biology (evo-

devo), suggesting that members of the floral whorls, including the gynoecium, originate from 

phǇlloŵe pƌiŵoƌdia that aƌe ͚eŵptǇ͛, uŶdeteƌŵiŶed stƌuĐtuƌes, gettiŶg ideŶtitǇ thƌough the 

functioning of developmental regulator genes/programs, such as the ABC model of Coen & 

Meyerowitz (1991). According to Endress (2006), annular primordia often result in a 

decoupling of the development of the concerned organ type from the neighboring floral 

organs, with alterations in time (sequence of floral organ appearance) and number. In  

Eriophorum, Vrijdaghs et al., (2005a) observed that congenital fusion of the perianth 

primordia into a massive perigonial primordium resulted in a new kind of perianth consisting 

of many perianth hairs. The development of a pappus in some Asteraceae from fused sepal 

primordia is a similar situation (see Harris, 1995). 

 

5.3.6 Pistil vascularization in Cyperoideae 

 In angiosperms, a carpel is most often vascularised by three vascular bundles: a 

midvein (or dorsal carpellary bundle), running towards the stigma and two marginal veins (or 

ventral carpellary bundles), which connect to the placentae and ovules (e.g. Dickison 2000). In  

Cyperoideae, only the dorsal bundles run within the ridges of the gynoecium wall towards the 

stigmata (fig. 5.4). Saunders (1937) and Snell (1936) both remarked that the vascular system 

within the receptacle is highly disorganised. However, since this vascular plexus connects 

towards the ovule, its bundles were interpreted as ventral bundles by all previous authors. 

Therefore, the ventral bundles of each carpel have been described to branch off already 

below the gynoecium and fuse in the centre of the receptacle to supply the single basal ovule 

(indicated as central bundle) (Saunders, 1937, Snell, 1936, Blaser, 1941a, 1941b) (fig. 5.4). 

Sometimes, adjacent ventral bundles fuse and continue shortly in the sides of the gynoecium 

wall (indicated as lateral bundles) (Blaser, 1941a, 1941b) (fig. 5.4, orange bundles). In an 

elaborate study of a wide spectrum of genera in Cyperaceae, Blaser (1941a, 1941b) used the 

vascularisation of Scirpus as a prototype from which all other patterns were derived (for 

details see fig. 5.4 and table 5.3). Based on the frequent presence of vestigial ventral and 

dorsal vascular bundles belonging to the hypothetical abaxial carpel (fig. 5.4B), Blaser (1941a, 

1941b) concluded that dorsiventrally flattened pistils originated by reduction of the abaxial 

carpel. 
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Concerning the laterally flattened type, Blaser (1941a) observed that vascularisation 

patterns in pistils of Pycreus bipartitus (Torr.) C.B.Clarke, P. lanceolatus (Poir) C.B.Clarke and P. 

diander (Torr.) C.B.Clarke include bundles towards the stigma branches, which connect to the 

ventral branches of the two adaxial main bundles entering the flower (fig. 5.4D1). He 

iŶteƌpƌeted these ďuŶdles as lateƌal ďuŶdles, statiŶg: ͞IŶ this speĐies ;Pycreus bipartitus), the 

dorsal bundles, which are characteristically midribs of foliar carpels, form none of the vascular 

supply of the pistil. The ventrals, in forming the ovule supply, are shortened as usual and the 

supply to the styles is assumed by the lateral bundles. The laterals are seen as vestiges in 

ŵaŶǇ CǇpeƌaĐeae ďut aƌe ǁell deǀeloped heƌe͟ ;Blaseƌ, 1941a: 547; figs 5.4D1 & 5.24C). In 

contrast, the vascularisation patterns in flowers of Kyllinga and Queenslandiella were not yet 

clear. Blaser (1941a) also included Kyllinga pumila Michx. in his study but surprisingly 

concluded that its vascular pattern is similar to the vascularisation of trimerous Cyperus pistils.  

Based on his anatomical studies in mature plants, Blaser (1941a, 1941b) assumed the 

vascular bundles running in the gynoecial wall of Pycreus up to the stigma branches to be 

homologues of the lateral branches found in scirpoid taxa. In Cyperus, lateral branches are 

absent and as a consequence Blaser postulated a separate origin of Pycreus from an ancestor 

with lateral bundles. 

In order to correctly address homology questions and evolutionary interpretations of 

vascularisation patterns it is necessary to have an idea of how these vascular strands develop 

(Pizzolato, 2000). In Cyperaceae, procambial initiation has so far only been studied in the 

leaves and culms of Cladium mariscus (L.) Pohl (Fisher, 1971). The vascular ontogeny in this 

species concurs with patterns found in other monocots, such as Tradescantia zebrina Bosse 

(Commelinaceae, Pizzolato 2006), in which differentiation of veins within the leaves is 

bidirectional and starting from several separate procambial initiation points, in a later stage 

these merge with each other and with the older vascular bundles of the culms (e.g. Dickison 

2000). Similar patterns have also been observed in the formation of reticulations between the 

main veins within the leaves of Arabidopsis Heyhn. (Scarpella et al., 2006). Merging of remote 

procambial strands from different plant organs seems to be the basic pattern in the 

development of the floral vascularisation found in angiosperms (e.g. Endress, 1994). 

According to Aloni (2004), auxin plays a leading role in procambial initiation and polar auxin 

transport from primordia is a controlling factor in both phyllotactic (Reinhardt et al., 2003) 

and leaf venation patterning (Scarpella & Meijer 2004, Scarpella et al., 2006), resulting in self-
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regulated development of vascular bundles where needed. Before these modern insights 

were generally accepted, vascularisation development in angiosperm flowers had been 

assumed to be acropetal (e.g. Grégoire, 1938). 

 

5.3.7 The ovule 

Cyperaceae are characterised by unilocular ovaries with a single basal ovule (e.g. 

Goetghebeur, 1998). According to Snell (1936), the presence of a single basal ovule could be 

interpreted as a final reduction state of a free central placentation. Van der Veken (1965) was 

the first to show in a dorsiventrally oriented longitudinal section through a semimature 

gynoecium, that hairs occur within the locule, around the micropylar zone of the ovule, which 

grow into the micropyle. He suggested that these hairs have a pollen tube guiding function 

aŶd Đalled theŵ theƌefoƌe ͚oďtuƌatoƌ haiƌs͛. “eǀeƌal authoƌs ƌeported outgrowth of funicular 

Đells iŶto a ͚fuŶiĐulaƌ oďtuƌatoƌ͛ ;e.g. CoaŶ et al., ϮϬϬϴͿ. Based oŶ its ͚glaŶdulaƌ Ŷatuƌe͛ 

observed in Bulbostylis, Gonzalez & López (2010) suggested an integumentary origin of the 

obturator. While Bouman (1984) considers the obturator to be degenerating after 

fertilisation, Gonzalez & López (2010) observed lignification of the obturator after fertilisation 

and persistence in the mature fruit. 

 

Table 5.2 List of genera studied by Blaser (1941a, 1941b) with the reference of the corresponding models of the 

floral vascularisation shown in fig. 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Genus Model (fig. 5.4) 

  

Bolboschoenus (Asch.) Palla (as Scirpus L.) A1/B1 

Carex L. A2/B2 

Cyperus L. A2 

Dulichium Pers. C1 

Eleocharis R.Br. (as Heleocharis T.Lestib.) A2/C2 

Eriophorum L. A1 

Fimbristylis Vahl A2/B2 

Lipocarpha R.Br. A2/B2 

Pycreus P. Beauv. (as Cyperus L.) D1 

Rhynchospora Vahl B1/B2/C1/C2 

Schoenoplectus (Rchb.) Palla (as Scirpus L.) A1/B1 
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5.4 Materials and methods 

5.4.1 Plant material 

Spikelets and flowers of 108 species from 34 cyperoid genera (fig. 5.2) were examined 

at early and mature stages (see appendix 1 of Vrijdaghs et al., 2010), of which only a 

representative selection of illustrative examples is presented here (table 5.4). Numbering of 

glumes and subtended flowers was done from most recently originated (1) to oldest (n), in 

order to avoid abstract numbers in spikelets with many and/or a variable number of (flower 

subtending) glumes. Partial inflorescences were collected in the field or in botanical gardens 

(table 5.4) and immediately fixed in FAA (70% ethanol, acetic acid, 40% formaldehyde, 90 : 5 : 

5). Spikelets were dissected in 70% ethanol under a Wild M3 stereo microscope (Leica 

Microsystems AG, Wetzlar, Germany) equipped with a cold-light source (Schott KL1500, 

SchottFostec LLC, Auburn, NY, USA). 

 

5.4.2 Scanning electron microscopy 

 To prepare the material for critical-point drying, it was washed twice with 70% ethanol 

for 5 min. Next it was placed in a mixture (1:1) of 70% ethanol and DMM (dimethoxymethane) 

for 5 min. The material was then transferred for 20 min to pure DMM. Critical-point drying 

was done using liquid CO2 with a CPD 030 critical-point dryer (BAL-TEC AG, Balzers, 

Liechtenstein). The dried samples were mounted on aluminium stubs using Leit-C. For SEM 

observation,  

the material was coated with gold via a SPI-ModuleTM Sputter Coater (SPI Supplies, West-

Chester, PA, USA). SEM images were obtained with a JEOL JSM-6360 (JEOL Ltd, Tokyo, Japan) 

at the Laboratory of Plant Systematics (K.U.Leuven), or with a JEOL JSM-5800 LV scanning 

electron microscope at the National Botanical Garden of Belgium in Meise. 

 

5.4.3 Bleaching 

 Flowers and spikelet tips were dissected and bleached with a 5% sodium hypochlorite 

(NaClO) solution for 15–60 min. Subsequently, samples were washed for the same period in 

distilled water and mounted on slides. Cleared up samples were studied under dark field, a 

technique using indirect light which is scattered by the object, enhancing contrast between 

different tissues in the sample and makes the xylem vessels to light up. Dark field images were 

recorded with a Nikon Eclipse E600 microscope, equipped with a Nikon digital camera 
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DXM1200. To enhance sharpness in depth, optical section images were taken from the 

samples and manually combined in Adobe Photoshop® CS 8.0 (Adobe Systems Inc., San Jose,  

USA). 

 

Table 5.3 Species studied and voucher data. Abbreviations: HBUG, Ghent University Botanical Garden, Belgium; 

KDTN-Leuven, Kruidtuin, botanical garden of the town of Leuven, Belgium; Ptk-K.U.Leuven, botanical garden of 

the Institute of Botany of the K.U.Leuven, Belgium. 

Taxa Collected by Origin Voucher 

 

Cyperus haspan L. Reynders M. 

 

HBUG 2006-1243 (wild origin 

Philippines) 

 

20061243 (GENT) 

Cyperus laevigatus L. Reynders M. HBUG 2002-0878 (wild origin 

Zimbabwe) 

20020878 (GENT) 

Dulichium arundinaceum (L.) 

Britton 

Goetghebeur P. HBUG 2002-1303 (P) PG 9914 (GENT) 

Eriophorum latifolium Hoppe Vrijdaghs A. KDTN-Leuven AV 04 

Lagenocarpus amazonicus (C.B. 

Clarke) H. Pfeiff. 

Aparecida da Silva M., 

Proença C., Cardoso E. 

& Paixao J.P. 

Brazil 1986 (GENT) 

Kyllinga microbulbosa Lye Muasya A.M. Kenya AM 2658 (EA) 

Kyllinga nemoralis (J.R.Forst. & 

G.Forst.) Dandy ex Hutch. & 

Dalziel 

Reynders M. HBUG 2006-1238 (wild origin 

Philippines) 

20061238 (GENT) 

Pycreus bipartitus (Torr.) 

C.B.Clarke 

Reynders M. HBUG 2005-0801 (S) 20050801 (GENT) 

Pycreus flavescens (L.) P.Beauv. 

ex Rchb. 

Reynders M. HBUG 2005-0401 (S) 20050401 (GENT) 

Pycreus sanguinolentus (Vahl) 

Nees 

Reynders M. HBUG 2007-1753 (wild origin 

China) 

20071753 (GENT) 

Queenslandiella hyalina (Vahl) 

Ballard 

Muasya A.M. Mombassa, Kenya AM 2189 (EA) 

Rhynchospora corymbosa (L.) 

Britton 

Reynders M. HBUG 2007-1418 (wild origin 

Cameroon) 

20071418 (GENT) 

Sansevieria trifasciata Prain. Goetghebeur P. HBUG 1900-1241 19001241 (GENT) 

Scirpus sylvaticus L. Vrijdaghs A. Ptk-K.U.Leuven AV 02 

 

5.4.4 Anatomy 

 Entire spikelets were fixed overnight in FAA (50% ethanol, 5% acetic acid and 5% 

commercial formalin in distilled water). Dehydration was performed using a 50%, 70%, 85% 

and 94% ethanol series. After the last alcohol step, the tissue was infiltrated using a mixture of 

Technovit® 7100 liquid (Heraeus, Kulzer, Wehrheim, Germany) (2-hydroxymethylmeth-

acrylate) and Hardner I (dibenzoylperoxide), which was diluted to 30%, 50% and 70% with 

ethanol 94%. To enhance infiltration, samples were placed under vacuum during 24 h. The 

infiltrated samples were transferred to a 100% infiltration liquid for 48 h. Next, the samples 
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were embedded according to Leroux et al., (2007) to obtain an optimal orientation of the 

samples within the resin. Transverse and longitudinal sections were cut at 5 µm with a 

rotation microtome (Minot, 1212, Leitz Wetzlar, Germany), equipped with a holder for 

disposable Superlap Knives (Adamas Instrumenten, Netherlands). The sections were collected 

on water drops on slides, which were subsequently dried on a hot plate at 40°C and stained 

with a 0.05% [w/v] aqueous solution of toluidine blue O (Meck, Darmstadt, Germany, C.I. No. 

52040) and 0.1% [w/v] Na2B4O7, and subsequently mounted with DePeX (Gurr, BDH 

Laboratory, Poole, U.K.). LM images were made with a Nikon Eclipse E600 microscope, 

equipped with a Nikon digital camera DXM1200 (Nikon, Tokyo, Japan). All anatomical images 

were taken using the phase contrast II position of the microscope, which creates a dark field 

effect under a magnification of 200x. Phase contrast adds contrast between the different 

stained tissues and makes xylem bundles to light up in bright blue when colored with a 

toluidine blue O solution. Slices are shown for the first distal flower with a fully developed 

vascular system. 

 

Fig. 5.5 SEM images of developing gynoecia in Sansevieria trifasciata. A, flower at early developmental stage in S. 

trifasciata. In red and arrowed, carpel primordia alternating with the stamen primordia; B, detail of a developing 

carpel in S. trifasciata, with a plicate zone (purple) and an ascidiate zone (green). Abbreviations: az, ascidiate 

zone; ca, carpel primordium; pz, plicate zone; s, stamen primordium. 
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5.4.5 3D diagrams 

The 3D diagrams as shown in figs 5.3, 5.4, 5.23, 5.24 & 5.25 were manually drawn in 

Rhinoceros 3D®  (Mc Neel, Seattle, USA) and were based on the data of Blaser (1941a, 1941b) 

and our new data. 

 

5.5 Results 

5.5.1 An illustration of individual carpel formation in flowers of Sansevieria 

At early developmental stages, Sansevieria trifasciata has three individual carpel 

primordia. These grow out into carpels in which a plicate zone and an ascidiate zone can be 

distinguished (fig. 5.5A & B). 

 

5.5.2 Cyperoid gynoecium development 

In Scirpus sylvaticus, an undifferentiated flower primordium is positioned in the axil of 

a glume (fig. 5.6A). The different floral whorls appear with apically an annular ovary wall 

primordium surrounding a central ovule primordium (fig. 5.6B). The ovary wall grows up from 

the ring primordium, forming a single style and three stigma branches developing from three 

stigma primordia on the top of the ovary wall, two lateral-adaxial and a single abaxial one. In 

some individuals, four stigma branches are formed like in this example of Scirpoides 

holoschoenus (fig. 5.6D). A detailed observation of the differentiation of the ovary wall 

primordium and ovule primordium at the floral apex in  Scirpus sylvaticus shows that both 

primordia originate simultaneously, after the formation of the stamen primordia, and also 

simultaneously with the formation of the perianth primordia (fig. 5.7A–D).  In species with 

dimerous, dorsiventrally flattened gynoecia, such as Dulichium arundinaceum, an annular 

ovary wall primordium surrounding a central ovule primordium is formed in the same way as 

in S. sylvaticus (fig. 5.8A & B). Two lateral stigma primordia appear on the top of the ovary 

wall, growing out into two stigma branches (fig. 5.8C & D). The development of dimerous, 

laterally flattened gynoecia only differs in the dorsiventral position of the two stigma 

primordia on the top of the ovary wall as illustrated in Pycreus bipartitus (fig. 5.9A & B), 

Kyllinga microbulbosa (fig. 5.9C & D) and Queenslandiella hyalina (fig. 5.9E & F). In Pycreus 

flavescens and P. sanguinolentus a delay in the development of the adaxial stigma branch was 

observed with respect to the abaxial stigma branch (figs 5.20A & 5.21A). In Lagenocarpus 

amazonicus, the ribs of the mature nutlets are in the symmetry plane formed by the spikelet 
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bract, prophyll and glumes of the spikelet for which we can confirm these to be laterally 

compressed dimerous pistils (fig. 5.10A). Several nutlets were observed with three instead of 

two ribs (fig. 5.10B–D), in such case, the second adaxial rib has sometimes only partially 

developed. 

 

 

 

Fig. 5.6 SEM images of the early development of the trimerous gynoecium in Scirpus sylvaticus (A–C) and of a 

developing gynoecium in Scirpoides holoschoenus (D). A, flower primordium in the axil of a developing glume; B, 

early stage in gynoecium development with an annular ovary wall primordium (red) around a central ovule 

primordium (amber); C, developing gynoecium with three growing stigma branches; D, developing gynoecium 

with four stigma branches (arrowed). 

Abbreviations: a, anther; f, filament; o, ovule primordium; ov, ovary wall primordium; sg, stigma primordium; st, 

style. 
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Fig. 5.7 SEM images of the earliest differentiation steps of the floral apex in Scirpus sylvaticus into annular ovary 

wall primordium and ovule primordium. A, flower primordium with perianth and stamen primordia and yet 

undifferentiated floral apex (encircled); B–C, an annular ovary wall primordium is being formed (encircled). B is a 

lateral-abaxial view, and C is an apical view on the same developmental stage; D, a central ovule primordium 

becomes visible, surrounded by the annular ovary wall primordium (encircled). The primordia of the other floral 

whorls also become more prominent. 

Abbreviations: fa, floral apex; G, glume subtending flower; o, ovule primordium; ov, ovary wall primordium; pp, 

perianth part primordium; s, stamen primordium. 
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Fig. 5.8 SEM images of the development of the gynoecium in Dulichium arundinaceum, a species with a 

dorsiventrally flattened dimerous gynoecium. A, distal part of a spikelet with a developing flower with floral apex 

differentiating into annular ovary wall primordium surrounding a central ovule primordium (encircled in red); B, 

the annular ovary wall primordium (in red) surrounding a central ovule primordium (in amber). The stamen 

primordia are also visible; C, rising ovary wall with two laterally oriented stigma primordia (in red) surrounding 

the central ovule primordium (amber). All primordia of the other floral whorls are visible; D, the ovary wall 

encloses the ovule, and the stigma branches grow out.  

Abbreviations: o, ovule; ov, ovary wall (primordium); pp, perianth part primordium; s, stamen primordium; sg, 

stigma primordium; asterisk (*), apex of the rachilla.  

 

5.5.3 Development of the vascular system within spikelets and flowers 

In cleared up spikelets and flowers, the annular xylem vessels are visible using a dark 

field light microscope (figs 5.11–5.14). The combination of bleaching and dark field 

microscopy forms a fast and cheap technique enabling the study of vascular developmental 

patterns in flowers and spikelets of Cyperoideae. However, the quality of the images obtained 

by this technique was variable. Species with flattened spikelets, which are continuously 
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producing new flowers and species with strongly reduced floral parts, such as Pycreus sp., 

were the most convenient to interpret. 

For spikelets of  Pycreus sanguinolentus, P. flavescens and  Queenslandiella hyalina, 

xylem vascular elements appear first within the rachilla and glumes (figs 5.11A, 5.13A & 

5.20A). The vascular bundles within the rachilla of the Pycreus species studied run in two 

opposite laterally positioned vascular zones (figs 5.11A & 5.15B, 5.16). In contrast, the rachilla 

in Cyperus laevigatus contains three groups of vascular bundles (fig. 5.12C, 5.18B) and a single 

group is present in Kyllinga nemoralis (fig. 5.15A, 5.17). 

In the flowers, vascular bundles start to develop only after all floral organs have been 

initiated (figs 5.11A & 5.12B, 5.13). At this stage, the stigma primordia are developing on the 

top of the ovary wall and the developing ovule starts to turn towards the abaxial base. The 

development of the xylem vessels is initiated within the receptacle of the flowers (fig. 5.11A). 

From there, connections to the vascular bundles of the rachilla (receptacular bundles) and to 

the different floral organs are formed (fig. 5.11A, 5.13C). In the Pycreus and  Queenslandiella 

species studied, only two receptacular bundles are present (figs 5.11A, 5.13A & 5.15B, 5.17C), 

whereas in the receptacle of the Cyperus species studied, three bundles are observed (figs 

5.12B & 5.15C). 

Stamens are the first floral organs in which vascular bundles originate (staminal 

bundles, figs 5.11A & 5.12B, 5.13A) and these subsequently connect to the developing 

bundles in the receptacle, which are at this stage not yet fully connected with the vascular 

traces of the rachilla. Within the receptacle of Cyperus laevigatus and C. haspan, a single trace 

branches off from each main receptacular bundle towards the stamen in the corresponding 

position. In Pycreus and Queenslandiella, there is no abaxial receptacular bundle and the 

vascular bundle of the abaxial stamen connects to both adaxial bundles (figs 5.11A, 5.13C & 

5.15B, 5.16). Subsequently and only after the stamens are fully vascularised and connections 

between vascular bundles in the rachilla and receptacle are made, vascularisation appears in 

the ovary wall and ovule (figs 5.11A, 5.12B & 5.20A). Meanwhile, the receptacular vascular 

network becomes denser towards adaxial and abaxial positions and towards the centre (figs 

5.11, 5.12C & 5.15B, 5.16). In  C. laevigatus, there are no connections between the abaxial 

receptacular bundle and the receptacular plexus (fig. 5.12C). In all species studied, the 

positions of the dorsal vascular bundles within the ovary wall are in line with the positions of 

the stigma primordia. Consequently, in Cyperus haspan, the ovary wall has two lateral and 
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one abaxial dorsal bundles (fig. 5.12D), while in C. laevigatus, only the two lateral ones are 

present (figs 5.12B–C & 5.15C, 5.18B), in both species dorsal bundles run in the prolongation 

of the main receptacular bundles. Both in Cyperus haspan and C. laevigatus (figs 5.12 & 5.15C, 

5.18) lateral bundles seem to be absent. Rhynchospora corymbosa is characterised by a very 

long style (fig. 5.14A), bearing two very short stigma branches at its top (fig. 5.14B). Within the 

whole gynoecium and style two dorsal vascular bundles run in lateral positions (fig. 5.14C), 

revealing the dorsiventrally flattened, dimerous nature of these pistils. In Pycreus and 

Kyllinga, a single adaxial and a single abaxial bundle are observed (figs 5.11A–B & 5.15A–B, 

5.16 & 5.17), which do not run in the prolongation of the two main receptacular bundles but 

merge with the vascular plexus in the receptacle. The ventral bundles that run towards the 

centre fuse to form the central bundles, eventually connecting to the developing ovule 

vascular bundle (figs 5.11B, 5.12C & 5.15B, 5.16). In C. laevigatus, this connection appears to 

be eccentric (fig. 5.12C). The vascular bundles of the ovary wall (dorsal bundles) and ovule 

(ovule bundles) independently connect to the vascular bundles of the receptacle (figs 5.11B, 

5.12C–D & 5.15B, 5.16). Meanwhile, the xylem vessel elements of the vascular bundles within 

the rachilla, glume and receptacle are become denser (figs 5.11A–B & 5.12C, 5.13B). 

 In Kyllinga nemoralis, the vascular bundles are concentrated into two laterally situated 

zones as they enter in the receptacle of the flower (fig. 5.15A, 5.17B). These soon split into 

two sets of three separate centres (fig. 5.15A, 5.17C). These centres expand abaxially and 

adaxially (fig. 5.15A, 5.17D–F) until eventually a ring of vascular bundles is formed (fig. 5.15A, 

5.17G). Subsequently the staminal traces and the adaxial dorsal bundle are branching off from 

the bundle ring (fig. 5.15A, 5.17G) followed by the abaxial dorsal bundle and several traces, 

which eventually fuse in the centre to form the ovule vascular bundle (fig. 5.15A, 5.17). The 

position of the abaxial ovary wall bundle is not on the symmetry plane formed by the rachilla 

and glume (fig. 5.15A, 5.17). 

Xylem elements differ in length and width among different organs. Rachilla and glume 

xylem bundles consist of long elements and the vascular tissue of the receptacle consists of a 

dense network of many short vessels, which results in a vascular plexus. The xylem bundles  

within the floral organs consist of only one or few long and narrow annular vessels (figs 

5.11A–B & 5.12C, 5.13A). 
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 Fig. 5.9 SEM images of the development of the gynoecium in Pycreus bipartitus (A–B), Kyllinga microbulbosa 

(C–D) and Queenslandiella hyalina (E–F), species with laterally flattened gynoecia. A, apical view of a middle part 

of a spikelet in P. bipartitus with the distal part of it removed. Two alternate flowers at different developmental 

stages are visible. The in the image lower (youngest) flower has a still open, developing gynoecium with annular 

ovary wall (red) surrounding a central ovule primordium (amber). In the upper (oldest) flower, the ovary wall (red) 

envelops totally the ovule, and two dorsiventrally situated stigma branch primordia are growing out; B, 

developing flower in P. bipartitus with laterally flattened, developing pistil (red); C, developing flower with annular 

ovary wall primordium (red) surrounding a central ovule primordium (amber) in K. microbulbosa; D, developing 

gynoecium in K. microbulbosa with two dorsiventrally placed stigma branches. The red arrow indicates the abaxial 

stamen. The left lateral stamen is removed; E, lateral view of the distal part of a developing spikelet in Q. hyalina. 

Proximally, a developing flower is visible with two lateral stamens (yellow) and an ovary (red). The rachilla apex is 

hidden by older bonnet-shaped glume (arrowed); F, adaxial view of a developing flower in Q. hyalina. The ovary 

wall (red) is rising from the base and enveloping the central ovule. Two dorsiventrally positioned stigma primordia 

are visible on the top of the ovary wall. The stamen primordia have developed into anther and filament. 

Abbreviations: a, anther; f, filament; G, glume; o, ovule; ov, ovary wall (primordium); Rl, rachilla; s, stamen 

primordium; sg, stigma primordium. 

5.5.4 Ovule development 

The ovule primordium is formed from the apex of the flower primordium, 

simultaneously with the annular ovary wall primordium (figs 5.6–5.9 & 5.19A). Once the 

developing ovary wall encloses it, the ovule primordium starts to differentiate, (figs 5.11A, 

5.19B & C). Subsequently and in successive order the interior and exterior teguments are 

formed, defining the micropylar zone (figs 5.19B, 5.20A & 5.21A). At this stage, three layers in 

the ovary wall start to differentiate (figs 5.19B & 5.20A). Meanwhile the ovule primordium 

grows out cylindrically, bending so that the micropylar zone forms an angle of 90°, directed to 

the abaxial side of the flower (figs 5.19B & 5.21C). When reaching this stage, the xylem of the 

vascular traces of pistil and ovule becomes visible (fig. 5.20A). The bending concurs with an 

elongation, continuing until the micropyle is turned over 180° and positioned against the 

basal-abaxial part of the funiculus (figs 5.19C & 5.21D). Meanwhile, at the basal and ventral 

(abaxial) part of the funiculus, Ŷuŵeƌous ͚oďtuƌatoƌ haiƌ͛ pƌiŵoƌdia oƌigiŶate ;figs 5.19C & 

5.21B–D). They develop fast in the direction of the micropyle, often sticking together to form 

a kind of cover, which closes the micropyle (figs 5.15A–C, 5.16A, 5.17, 5.18A, 5.19C, 5.21C & 

D). 
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Fig 5.10 SEM pictures of mature spikelets and nutlets in Lagenocarpus amazonicus, a species with laterally 

compressed dimerous nutlets. A, lateral view of a spikelet showing the ridges of a typical nutlet to lie in the 

symmetry plane formed by the bract, prophyll and glumes; B, lateral adaxial view on an atypical nutlet showing 

one fully developed ridge and one partially developed ridge at the adaxial side of the nutlet. The abaxial ridge is 

not visible; C, apical view of an atypical nutlet with one abaxial and two adaxial ridges; D, adaxial view of the 

same nutlet as in C showing two fully developed adaxial ridges. Abbreviations: B, spikelet bract; G, glume; nu, 

nutlet; P, prophyl. Arrows indicate the positions of the ridges of the different nutlets. 

 

5.6 Discussion 

5.5.1 Gynoecial ontogeny: congenitally fused carpels  

According to Payer (1857) and never previously tested (Vrijdaghs et al., 2009), a 

cyperoid gynoecium originates from individual carpel primordia, which fuse postgenitally (as 

can be observed in e.g. Sansevieria, fig. 5.5). However, our results show that in the earliest 

developmental stages of the gynoecium in all species studied, no individual carpel primordia 

are present (e.g. fig. 5.6–5.9). Instead, the ovary wall originates as a ring primordium 

surrounding the central ovule primordium. This annular ovary wall primordium grows up as a 

bag-like stƌuĐtuƌe, as also oďseƌǀed ďǇ PaǇeƌ ;ϭϴϱϳ: ϲϵϵͿ, ǁho Đalled it a ͚saĐ oǀaƌieŶ͛. We 

agree with Payer (same page) that the development of the stigma branches originates from 

͞deuǆ ou tƌois ďouƌƌelets pƌiŵitifs͟, tǁo oƌ thƌee pƌiŵitiǀe ďulges oŶ the top of the ƌisiŶg 

ovary wall, which we call stigma primordia since they are distinct meristematic zones 

positioned upon a structure with different nature (the ovary wall) and determined to grow out 

as stigma branches. In summary, in all cyperoid species studied, the floral apex consists of a 

fusion of the floral axis and the (three) carpels. From this tissue, both the annular ovary wall 

primordium, and the single, centrally positioned ovule primordium originate. The carpel tips 

(stigma primordia), from which the stigma branches develop subsequently can be considered  
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Fig. 5.11 Dark field images of a cleared up spikelet in Pycreus sanguinolentus, with laterally compressed dimerous 

gynoecia. Proximate glumes are removed. A, lateral view of a spikelet showing the gradual development of the 

vascular system within consecutive flowers; B, adaxial view of the base of a flower with all vascular traces 

developed. Abbreviations: a, anther; cb, central vascular bundle; db, dorsal vascular bundle; F, flower 

(primordium); f, filament; fa, flower apex; G, glume (primordium); Gb, glume vascular bundle; it, inner tegument; 

o, ovule (primordium); ob, ovule vascular bundle; ot, outer tegument; ov, ovary wall; rb, main receptacular 

vascular bundle; Rlb, rachilla vascular bundle; s, stamen (primordium); sb, staminal vascular bundle; sg, stigma 

primordium; vp, vascular plexus (ventral bundles); asterisk (*), apex of the rachilla. White arrows indicate 

procambial initiation points within the receptacle. The black arrow indicates developing vascular connections of 

the ovule. A white ellipse indicates the developing vascular bundles within the base of the receptacle, which are 

still unconnected with the rachilla vascular bundles. 
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Fig. 5.12 Dark field images of cleared up spikelets and flowers in Cyperus laevigatus (A–C) that has dorsiventrally 

flattened dimerous gynoecia and Cyperus haspan (D), with a trimerous gynoecium. A, lateral view of a spikelet tip 

of C. laevigatus showing consecutive developing flowers. Vascular bundles have not yet originated. White arrows 

indicate pollen grains; B, adaxial view of an immature flower of C. laevigatus showing development of the vascular 

bundles towards the ovary wall, ovule and stamens; C, adaxial view of a mature flower of C. laevigatus with 

densification of vascular bundles within the receptacle. Vascular bundles of all floral organs have differentiated. 

The white arrow shows the eccentric connection of the ovular vascular bundle with the central vascular bundle. A 

black arrow indicates the unconnected abaxial receptacular bundle; D, young fruit of C. haspan in lateral view 

showing the three dorsal bundles within the ovary wall. Abbreviations: cb, central vascular bundle; db, dorsal 

vascular bundle; F, flower primordium; f, filament; fa, flower apex; G, glume (primordium); it, inner tegument; o, 

ovule (primordium); ob, ovule vascular bundle; ot, outer tegument; ov, ovary wall; ovb, ovary wall vascular 

bundle; rb, main receptacular vascular bundle; rl, rachilla; Rlb, rachilla vascular bundle; s, stamen (primordium); 

sb, staminal vascular bundle; sg, stigma primordium; vb, ventral bundle; asterisk (*), apex of the rachilla. 
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Fig. 5.13 Dark field image of a cleared up developing spikelet in Queenslandiella hyalina, with laterally 

compressed dimerous gynoecia. Proximate glumes are removed. A, lateral view of a spikelet tip showing the 

gradual development of the vascular system within consecutive flowers. The vascular traces of the ovary wall 

and ovule have not yet developed. Zones encircled in red are enlarged in B & C; B, detail of the base of a young 

flower showing a densification of the vascular bundles within the receptacle. Receptacular bundles are 

connected with the vascular system of the rachilla; C, detail of the base of a young flower showing development 

of the vascular system towards the stamens. Receptacular bundles are not yet connected to the vascular system 

of the rachilla. Abbreviations: db, dorsal vascular bundle; f, filament; F, flower (primordium); G, glume 

(primordium); Gb, glume vascular bundle; Gw, glume wing attached to the rachilla; o, ovule; ov, ovary wall; rb, 

main receptacular vascular bundle; Rlb, rachilla vascular bundle; s, stamen (primordium); sb, stamen vascular 

bundle; sg, stigma primordium; asterisk (*), apex of the rachilla. White arrows indicate developing vascular traces 

within the rachilla and stamens. 
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Fig. 5.14 Pseudomonomery in Rhynchospora corymbosa, which has dorsiventrally flattened dimerous gynoecia. 

A, part of an inflorescence showing the long and single styles emerging from the tips of the spikelets. Red arrows 

indicate the parts of the style from which details are shown in B & C; B, dark field microscopy picture of a cleared 

up tip of the style showing the presence of two stigma rudiments; C, dark field microscopy picture of a cleared up 

middle part of the style showing two dorsal vascular bundles.  

Abbreviations: db, dorsal bundle; sg, stigma; st, style. 

 

as oŶtogeŶetiĐ ͚ǁitŶesses͛ of the ĐaƌpellaƌǇ oƌigiŶ of the ovary wall. Only when the stigma 

primordia originated on the top of the rising ovary wall, the positions of the original carpels 

become clear. Subsequently, vascular traces are initiated in these primordia, which will 

connect with the stele and give form to the ribs of the gynoecium/fruit. As carpel positions are 

quite well conserved (Endress, 1995, 2001), it is not surprising that in the majority of 

Cyperoideae, the pistil is triangular  with three stigma branches. However, the annular origin 

of the ovary wall gives it de facto new freedom of organisation since the stigma primordia are 

no longer linked to the rigid positions of individually developing carpels as found in most other 

monocots (fig. 5.22). We hypothesise that in Cyperoideae, the acquired organisational 

freedom might be reflected in the derived, dimerous pistils in at least some of the most 
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recent, rapidly radiated taxa in the C4 clade of the giant genus Cyperus with laterally flattened 

gynoecia, such as Pycreus, Kyllinga and Queenslandiella (fig. 5.9) (Larridon et al., 2011b). 

 

5.6.2 Consequences of the presence of an annular ovary primordium 

In our opinion, the observations of Endress (2006) and Vrijdaghs et al., (2005a) are 

examples of how congenital fusion of individual primordia into an annular primordium creates  

the condition to develop something totally new. Also for the Cyperoid pistils, several 

consequences of the presence of the annular pistil primordium can be identified especially 

involving alterations in the amount and positions of stigma primordia. 

Decoupling of gynoecium wall and ovule  – Firstly,  in Cyperoideae, the development of 

ovary and ovule seem to be decoupled. This is already visible in the earliest stages of pistil, 

where the ovule starts developing already before the ovary has closed above it (fig. 5.23). 

Ovules, which appeared in the evolution much earlier than carpels, are to be considered as 

individual organs (Endress 2006). While in most angiosperms ovules are superimposed on 

carpels, the development of carpels and ovules appear to be decoupled in Cyperoideae. 

Similar patterns in early ovary development have been reported for other angiosperm families 

with syncarpous fruit types and basal uniovulate placentation such as Asteraceae (Harris, 

1995), Chenopodiaceae (Flores Olvera et al., 2008, 2011) and advanced Poaceae (Philipson, 

1985). Vascular evidence and other developmental characteristics will be discussed in a 

separate chapter on ovules.  

Dedoublements and polymerisations  – As the stigma branches are supposed to grow 

from meristimatic zones in the carpel tips (stigma primordia), their number (in Cyperaceae 

usually three) reflects the number of original carpels. However, due to the congenital fusion 

of the carpel primordia, the number of stigma branches does not necessarily reflect anymore 

the original number of carpels. Moreover, splitting of a given primordium (dedoublement) is a 

common phenomenon, which can also result in deriving numbers of stigma branches. E.g. 

during our studies, we observed specimens with four stigma branches instead of three in 

Cyperus capitatus Vand. (Vrijdaghs et al., 2011) and  Scirpoides holoschoenus (fig. 5.6D). In a 

similar way, in taxa with laterally flattened dimerous pistils, we frequently found flowers with  

three instead of two stigma branches (e.g. in Pycreus bipartitus and P. flavescens, Vrijdaghs et 

al., 2011). 
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Fig. 5.15 Diagrams of sections through some Cyperoid flowers based on phase contrast microscopy pictures. A, 

Kyllinga nemoralis, with laterally compressed dimerous pistils. B, Pycreus flavescens, with laterally compressed 

dimerous pistils. C, Cyperus laevigatus, with dorsiventrally compressed pistils. The first diagram of each series 

shows a longitudinal section, subsequent transversal slices are indicated with black lines and numbered on the 

diagrams. Colour codes floral organs: pale blue, receptacle; pale green, gynoecium wall; pale red, ovule; pale 

yellow, stamens; grey, rachilla and glume. Colour codes vascular bundles: black, glume bundle; blue, receptacular 

plexus (ventral bundles); green, dorsal bundles; grey, receptacular bundle; red, ovule bundle; purple, main 

receptacular bundle; yellow, stamen bundle. 

A 

B 

C 
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In Lagenocarpus amazonicus (fig. 5.10B–D), we observed nutlets with three instead of two 

ribs, in that case one of the adaxial ribs sometimes only partially developed. In our opinion 

this is rather a reversal to the plesiomorphic trimerous state. In several Cyperoid species (see 

table 5.3), such as Carex dolichostachya Hayata (described by Hayata (1921) as a separate 

genus Diplocarex Hayata) and C. concinnoides Mack. (Snell, 1936), populations with four to six 

stigma branches were reported. In addition many rhynchosporoid species show a constant 

number of four (Tetraria p.p., Tetrariopsis), six (Neesenbeckia) or even eight (Evandra) to nine 

(Tetraria p.p.) stigma branches (Goetghebeur, 1998). Also in Mapanioideae, Kern (1974) 

reported that six stigma branches occur often in Chrysitrix L. and in Paramapania Uittien 

(Mapanioideae) he observed tetramerous pistils, most often in species which have normal 

trimerous pistils. In Paramapania gracillima (Kük. & Merr.) Uittien, tetramerous pistils are the 

dominant type (Kern, 1974). The multiplication of the number of stigmas has not yet been 

clarified and may be part of a larger polymerisation phenomenon in these taxa. This 

͚polǇŵeƌisatioŶ pheŶoŵeŶoŶ͛ is ƌefleĐted iŶ the eŶtiƌe floƌal oƌgaŶisatioŶ, iŶĐludiŶg peƌiaŶth 

and androecium as well as the culm. It seems logical that the tetra- and octamerous pistils in 

the taxa mentioned above, are most probably polymerizations of dimerous pistils. 

Nevertheless we believe both dedoublements and polymerizations to be facilitated by 

congenitally fused carpels. 

Facilitation of pistil dimerisations  – Reductions in carpel numbers are common in Poales and 

usually, these are explained by reduction or fusion of carpels (e.g. Philipson, 1985). Where 

reduction tendencies occur, a carpel (predestined to be reduced) first becomes sterile (e.g. in 

Eriocaulaceae, Ronse Decraene et al., 2002) and due to the rigid position of the carpel 

primordia, reduction of an adaxial carpel mostly results in an asymmetric gynoecium. 

Dimerisation may also result from a fusion between two of the three carpels, of which at least 

one is mostly sterile. The presences of multiple dorsal bundles are generally considered as 

proof of such a fusion product (e.g. Linder, 1992). This widely adapted classic carpel theory is 

difficult to apply for dimerous Cyperoid genera since all carpels are congenitally fused. We 

believe the ring primordium facilitates dimerisations since these can be established by a 

simple loss of one of the stigma primordia together with all vascular traces at this side of the 

gynoecium wall, instead of a gradual reduction of a complete carpel. Especially dorsiventrally 

flattened dimerous pistils can be explained by the loss of the abaxial stigma primordium (e.g. 

C. laevigatus, figs 5.12 & 5.15C). The multiple origins of this pistil type within many different  
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Fig. 5.16 Phase contrast pictures of sections through a flower of Pycreus flavescens, with laterally compressed 

dimerous gynoecia. A, radial section of a spikelet node showing a single flower in lateral view. White lines 

indicate several positions of transverse sections. The white arrow indicates the obturator hairs; B–K, subsequent 

transverse sections trough a spikelet node showing the vascularisation of the receptacle. Blue arrows show 

glume wings attached to the rachilla by epicaulescent growth (see Vrijdaghs et al., 2010). Yellow arrows indicate 

the connection of the abaxial staminal trace to both receptacular bundles. Red arrows show ventral bundles 

towards the adaxial pole. 

Abbreviations: cb, central bundle; db, dorsal vascular bundle; f, filament; G, glume; Gb, glume vascular bundle; o, 

ovule; ob, ovule bundle; rb, main receptacular vascular bundle; Rl, rachilla; Rlb, rachilla vascular bundle; sb, 

staminal vascular bundle; vp, vascular plexus (ventral bundles). 
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Fig. 5.17 Phase contrast pictures of sections through a flower of Kyllinga nemoralis, with laterally compressed 

dimerous gynoecia. A, radial section of a spikelet node showing the single flower in lateral view. White lines 

indicate several positions of transverse sections; B–L, subsequent transverse sections trough a spikelet node 

showing the vascularisation of the receptacle. 

Abbreviations: B, (spikelet) bract; cb, central vascular bundle; db, dorsal vascular bundle; f, filament; G, glume; 

Gb, glume vascular bundle; o, ovule; ob, ovule vascular bundle; ov, ovary wall; P, (spikelet) prophyll; rb, main 

receptacular vascular bundle; Rl, rachilla; Rlb, rachilla vascular bundle; sb, staminal vascular bundle; vp, vascular 

plexus (ventral bundles).  
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Fig. 5.18 Phase contrast pictures of sections through a spikelet of Cyperus laevigatus, with dorsiventrally 

compressed dimerous gynoecia. A, radial section of a spikelet node showing one flower in lateral view. The white 

lines indicate the transverse section in B; B, transverse section trough a spikelet node showing the 

vascularisation of the rachilla and the floral organs. 

Abbreviations: db, dorsal vascular bundle; f, filament; G, glume; Gb, glume vascular bundle; o, ovule; ob, ovule 

vascular bundle; ov, ovary wall; rb, main receptacular vascular bundle; Rl, rachilla; Rlb, rachilla vascular bundle; 

sb, staminal vascular bundle; vp, vascular plexus (ventral bundles). 

 

genera, representing almost all Cyperoid tribes (table 5.3), corroborates the relative ease in 

which this pistil type can be derived from a trimerous pistil due to the presence of 

congenitally fused carpels (fig. 5.22D). The situation in laterally flattened pistils seems to be 

more complex since it involves stigmata in novel positions (fig. 5.22C). Therefore, 

Goetghebeur (1986) remarked that it was not possible to explain the origin of laterally 

compressed pistils as a result from simple carpel reductions. However, now we understand 

the laterally compressed pistil as a result of newly acquainted organisational freedom due to 

(1) the invention of annular ovary primordia and (2) the initiation of floral vessels in the 

different floral primordia. Subsequently, the initiated vessels grow to and connect with the 

stele. Probably, spacial pressure in compact inflorescences/spikelets triggers in Pycreus the 

gynoecium adaptation from trimerous to dimerous( reduction in number of stigma branches) 

and laterally compressed. 
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Alterations in stigma positions – In most monocots, carpels develop as independent 

units that may (or not) fuse postgenitally with adjacent carpels (fig. 5.5). Consequently, at 

later developmental stages, their positions remain strongly conserved and this is even still the 

case for all trimerous Cyperaceae. However, in the laterally flattened dimerous pistils, this 

pattern is lost since they have two carpels in median positions (fig. 5.22C). Remarkably, both 

adaxial stigmata encountered in a regular cyperoid pistil are now replaced by a single stigma 

in an intermediate position. These pistils should therefore be considered as an exception of 

EŶdƌess͛ ;ϭϵϵϱͿ oďseƌǀatioŶ ĐoŶĐeƌŶiŶg ǁell-conserved carpel positions in angiosperms.  

Blaser (1941a) explained the nature of this pistil type by reorganisation of the 

vasculature. However, our observations (summarised in fig. 5.24A, B & CͿ falsifies Blaseƌ͛s 

theory, which is further explained in the chapter on anatomical evidence. We believe that due 

to the organisational freedom in a congenitally fused carpel complex, after loss of one of the 

adaxial stigma primordia, the remaining stigma primordium develops in a more optimal 

position concerning the available space on the ring primordium with respect to the other 

stigma primordia, which is in the case of Pycreus, Kyllinga and Queenslandiella, opposite to 

the abaxial carpel (figs 5.9, 5.15A–B & 5.22C). This is the organisational freedom that we 

assume to be a result from congenital fusion of carpels. In cases where an additional adaxial 

stigma primordium is formed in a few individual flowers as a developmental error, these shift 

again out of the intermediate position (e.g. Pycreus, Vrijdaghs et al., 2011,  Lagenocarpus 

amazonicus, fig. 5.10B–D) into a spatially more optimal position. A similar situation in which a 

single carpel in an intermediate position where originally two carpels were present has also 

been described in Eriocaulaceae and hypothesised to have resulted from the fusion of sterile 

carpels and their dorsal bundles (Ronse Decraene et al., 2002). We can assume congenitally 

fused carpels of Cyperoideae (which are decoupled from the ovule) can behave in a similar 

way as fused sterile carpels in other taxa. However, our findings on vascular development (see 

chapter on anatomical evidence) do not support the idea of fusion of two dorsal bundles to a 

single bundle in an intermediate position but support our theory that stigma primordia can 

shift to more optimal positions in some complexes of fused capels after loss of additional 

stigma primordia.  

All dimerous pistils found in Cyperoideae can thus be explained by a combination of a 

fusion step (congenital fusion of all the carpels, resulting in a new kind of primordium, the 

annular ovary primordium) and a reduction in number of stigma primordia, which implies a 
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corresponding reduction in number of dorsal bundles. While theoretically a ring primordium 

would allow for any novel position of the stigmata, in the case of dimerous pistils only two 

types can be distinguished in which the pistils are either in lateral (dorsiventrally flattened 

type) or median (laterally flattened type) positions, which are the only positions congruent 

with the symmetry plane of the flowers and their subtending bract (figs 5.3 & 5.22). In the 

following chapter we discuss some underlying mechanisms that could help to explain these 

patterns of pistil dimerisations in Cyperoideae. 

 

 

Fig. 5.19 SEM images of the development of the ovule in Eriophorum latifolium (A–B) and Dulichium 

arundinaceum (C). A, ovule primordium surrounded by the annular ovary wall primordium; B, developing ovule 

with outer integument (red) and inner integument (amber); C, longitudinal view of a mature, anatropous ovule 

with the funiculus (yellow), outer integument (red) and obturator hairs (purple) growing upon the funiculus and 

covering the micropylar zone (arrowed). 

Abbreviations: fn, funiculus; it, inner integument; o, ovule; ot, outer integument; ov, ovary wall (primordium); sg, 

stigma primordium. 

 



Pistil evolution __________________________________________________________ 

 

185  

5.6.3 Underlying mechanisms for pistil dimerisations in Cyperoideae  

Spatial pressures – In Poales, reduction of the number of carpels has often been 

interpreted to be a consequence of spatial pressures that the pistil suffers during its 

development, especially in taxa that bear dense spikelets such as Restionaceae (Ronse 

Decraene et al., 2002) and Poaceae (Philipson, 1985). In Cyperoideae, only part of the 

variation can be explained in this way. Dorsiventrally flattened pistils are quite common in 

Cyperaceae (table 5.2) and often appear to be correlated with taxa bearing dense spikelets 

with restricted developmental space for the flowers in the abaxial direction, e.g. Mapania 

Aubl., Nemum (Larridon et al., 2008). One could also try to understand dimerous, laterally 

flattened pistils as a result of lateral pressures caused by the two lateral stamens, forcing the 

adaxial carpel that remains after reduction into a median position. However, we would then 

expect the connection of the dorsal bundles to the ventral plexus to reflect the original 

position of the remaining carpel and therefore to be asymmetric, which is not the case (fig. 

5.15A–B, 5.16 & 5.17). Moreover, at early developmental stages of the flower, there is an 

equally strong spatial pressure on the median adaxial part of the ring primordium by the 

rachilla and the higher glume. In the species of Pycreus and  Queenslandiella studied, this 

spatial limitation even results in a delay of the development of the adaxial stigma branch with 

respect to the abaxial stigma (figs 5.9B, 5.20A & 5.21A) (Vrijdaghs et al., 2011), even before 

the developing stamens become large enough to interfere with the development of the 

stigma branches. In addition, the wings of the alternating glume, which are attached to the 

rachilla by epicaulescent growth (Vrijdaghs et al., 2009), push the developing stamens 

towards the abaxial position (fig. 5.9E). In Kyllinga
2
, Lagenocarpus amazonicus and 

Rhynchospora rubra subsp. rubra spikelets only bear a single flower and are aggregated in 

very dense florescences. Possibly spatial limitations played a more important role in these 

taxa than in Pycreus and Queenslandiella. From a spatial point of view trimerous pistils still 

seem to be the most advantageous in most Cyperoid spikelets since stigma primordia are in 

optimal positions to grow up easily in the spaces between the different overlapping glumes of 

the spikelet. 

                                                 
2
 Few Kyllinga species have spikelets with more than one maturing flower 



  __________________________________________________________ Chapter 5 

    

186 

 

Fig. 5.20 Dark field microscopy image of cleared up spikelets and flowers in Pycreus flavescens. A, lateral view of a 

spikelet with proximal glumes removed, showing the early development of the gynoecium and ovule in the 

subsequent flowers. A white arrow indicates a developing dorsal bundle; B, lateral view of a flower just before 

anthesis with fully developed vascular system; C, lateral view of a flower after anthesis. 

Abbreviations: a, anther; db, dorsal vascular bundle; f, filament; F, flower (primordium); fa, flower apex; fn, 

funiculus; G, glume (primordium); Gb, glume vascular bundle; it, inner tegument; o, ovule (primordium); ob, ovule 

bundle; ot, outer tegument; ov, ovary wall (primordium); Rl, rachilla; sb, staminal vascular bundle; st, style; vp, 

vascular plexus; asterisk (*), apex of the rachilla. 
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Zygomorphy of the spikelet  – All cases of laterally compressed dimerous pistils seem 

to be linked with distichously arranged spikelets (table 5.2). In other taxa, such as 

Rhynchospora, Dulichium, Websteria (now in Eleocharis) and Cyperus there may be a link of 

dorsiventrally compressed pistils with the presence of distichously placed glumes. This 

apparent correlation of floral zygomorphy with the presence of distichously organised 

spikelets may be part of an underlying pattern of bilateral symmetry of the complete spikelet 

as a functional flowering unit. Cyperoid spikelets (and sometimes whole inflorescences) tend 

to take over floral function (e.g. Vrijdaghs et al., 2009). In wind pollinated grasses and sedges, 

this often goes together with a reduction of floral parts (Rudall & Bateman 2004). As an 

example, the loss of abaxial stamens occurs frequently with bilateral floral symmetry (Rudall 

& Bateman 2004). Vrijdaghs et al., (2011) observed that in most Cyperoideae with a reduction 

of the number of stamens, the abaxial stamen disappears first. This is particularly the case in 

Pycreus, which has zygomorphic gynoecia (Kükenthal, 1936). Pressures from surrounding 

organs fail as an explanation for the frequent loss of the abaxial stamen in Pycreus. Possibly, in 

Pycreus, there is a connection with the absence of abaxial main bundles within rachilla and 

receptacle (fig. 5.15B, 5.16). In addition, we also observed a dimerisation of the vascular 

system at the level of the rachilla in all Pycreus and Queenslandiella species studied (figs 5.11, 

5.13, 5.15B, 5.16) However, the stigma primordia, and hence also the pistil vascularisation 

develop only after the formation of the vascular system within the rachilla (fig. 5.11). The 

number of dorsal bundles entering a flower equals the number of bundles within the rachilla. 

This can be explained by procambial initiation occurring in the centre of the receptacle. 

Subsequently, connections with the rachillar bundles are made (fig. 5.25). In their study of the 

wandering carpel mutant (wcr) of Zea mays (Poaceae), Irish et al., (2003) hypothesise that 

both spikelet polarisation/orientation and floral symmetry are regulated by changes in a same 

factor. Several other authors assumed that zygomorphic development in flowers and leaves is 

the result of the inhibition of growth in the adaxial part of the floral meristem, which is 

induced by the shoot meristem (e.g. Wardlaw, 1949, Luo et al.,, 1996). These hypotheses may 

help to understand the apparently higher frequency of pistil and other dimerisations in taxa 

with distichously organised spikelets in Cyperaceae and Poaceae.  

We can conclude that congenital fusion of carpels allowed several separate origins of 

laterally flattened pistils within Cyperoideae. Moreover, our study shows this pistil type 

originated much easier than previously assumed when using classic carpel reduction theories.  
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Fig. 5.21 Light microscopic images of sections through spikelets and gynoecia of Pycreus sanguinolentus. A, section 

through the central part of a spikelet showing a lateral view of the early development of the gynoecium and ovule 

in the subsequent flowers. A white arrow indicates the development of the inner tegument when the ovule tip 

starts to bend towards the abaxial side; B, older developmental stage showing a bending ovule with obturator 

hairs growing from the abaxial side of the funiculus (arrowed); C, lateral view of a mature ovule, fully bended 

ovule in which the obturator covers the micropylar zone; D, detail of the obturator of a mature ovule (arrowed) 

showing the obturator hairs growing into the micropyle.  

Abbreviations: a, anther; f, filament; F, flower (primordium); fn, funiculus; G, glume (primordium); it, inner 

tegument; o, ovule (primordium); ot, outer tegument; ov, ovary wall (primordium); Rl, rachilla; sg, stigma 

primordium; st, style; asterisk (*), apex of the rachilla. 
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Fig. 5.22 Series of models representing the decoupling in the development of the ovary wall (upper series) and of 

the ovule (lower series) in Cyperoideae.  

Colour codes: red, ovary wall; reddish brown, ovule tip; yellow, inner tegument; orange, outer tegument and 

funiculus; purple, obturator hairs. 

 

Therefore we might have to face the possibility of multiple origins of laterally flattened pistils 

even within Cypereae, which is however still waiting for molecular confirmation. 

 

5.6.4 AŶatoŵical arguŵeŶtatioŶs, iŶtegratioŶ aŶd coŵparisoŶ of our data with Blaser’s 

(1941a, 1941b)  

Bidirectional development of the floral vascular system – At early developmental 

stages of flowers of Pycreus sanguinolentus and  Queenslandiella hyalina, we found vessel 

initiations at several separate procambial zones within the rachilla and the base of the 

different floral organ primordia (fig. 5.11, 5.13). The development of vascular bundles in the 
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species studied concurs with the basic patern found in culms and leaves of Cladium (Fisher, 

1971) and in angiosperms in general (Endress, 1994, Dickison 2000), therefore we think that 

the formation of a vascular system by the merging of remote procambial strands from 

different organs in the plant may be the general pattern in all Cyperaceae. The formation of 

vascular connections with nearby main bundles seems to be regulated by signals from 

developing primordia resulting in the formation of vascular bundles where necessary. This is 

reflected in the sequence of initiation of the vascular tissue of the floral organs and their 

connections to the receptacular bundles (ventral bundles/receptacular plexus), which follow 

the same order as the sequence of appearance of the floral primordia, starting with the 

stamens (figs 5.11–5.13 & 5.25). 

 

Fig. 5.23 Schematic representation of: A, a tricarpellate gynoecium; B, a trimerous gynoecium developing from 

an annular ovary wall primordium and gynoecia derived from B; C, laterally flattened with dorsiventrally 

positioned stigma primordia; D, dorsiventrally flattened with laterally positioned stigma primordia. 

 

The presence of procambial initiation points within the receptacle and the formation 

of connections induced by the primordia of the different floral organs explains the connection 

of the gynoecial wall vascular traces in all pistil types to the central plexus within the 
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receptacle. It also explains that in species, which lack the abaxial receptacular bundle, the 

abaxial staminal bundle connects to both adaxial bundles (e.g. Pycreus sanguinolentus, fig. 

5.11A, Pycreus flavescens, figs 5.15B & 5.24F, 5.16D–G, Rhynchospora macrostachya  Torr. ex 

A.Gray, Blaser, 1941b). Concerning this case we should remark that Blaser (1941a) described 

an abaxial receptacular bundle in Cyperus rivularis (= Pycreus bipartitus), which branches 

towards the abaxial stamen and subsequently disappears. In P. diandrus, a species without 

abaxial stamen, he also observed only two receptacular bundles entering the flowers. Both P. 

bipartitus and P. diandrus are closely related to P. sanguinolentus (Clarke, 1908, Kükenthal, 

1936), which is included in this study. Next, our model predicts the amount and positions of 

dorsal bundles of the flower, which connect to the corresponding bundles within the rachilla, 

and it explains the existence of a dense network of rather disorganized and short vessels 

within the floral receptacles (e.g. figs 5.11B, 5.12C & 20F). Moreover, this concurs with the 

dissimilarities in xylem vessels we observed within the receptacle and floral organs. Vascular  

traces within the receptacle consist of a large amount of rather disorganised short vessels in 

comparison with the traces within the floral organs, which mostly consist of few, long and 

narrow annular vessels (e.g. fig. 5.11A). Finally, pistil and ovular vascular bundles in all 

samples studied branch off within the receptacle to form independent bundles before 

entering the gynoecia, which corroborates the presence of separate primordia for the ovule 

and ovary wall from the start of the differentiation of the floral apex (figs 5.23 & 20).  

In the receptacle of the Cyperoideae studied we observed a strong density of 

vascularisation (figs 5.11–5.17), which confirm the observations of Saunders (1937) and Snell 

(1936). In contrast with Blaser (1941a, 1941b), these authors considered the vascularisation 

within the receptacle to be disorganised. In our opinion, the dense and disorganised nature of 

the vascularisation within the receptacles of Cyperoideae reflects the presence of the annular 

primordium. This vascular plexus of the receptacle might be interpreted as an adaptation to 

fruit dispersal, since it position concurs with the abscission zone of the mature nutlets. 

To conclude, our observations suggest an ontogenetic pattern for the vascular system 

in Cyperoideae, which appears to be formed from different initiation zones from which the 

growing vessels find each other (fig. 5.25). In contrast, Blaser (1941a) followed an acropetal 

model (e.g. Grégoire, 1938) to understand the development of a vascular system in 

Cyperaceae, in despite of the fact that he reported unconnected vascular supply in 

rudimentary abaxial style branches of dimerous Schoenoplectus species and that he logically 
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suggested a bidirectional development of the vascular system within the receptacle, rather 

than acropetal development.  

Dorsiventrally flattened dimerous pistils – As in most taxa with dorsiventrally 

compressed pistils, we observed that in C. laevigatus the abaxial stigma branch disappears 

together with all vascular traces at this side of the ovary wall (figs 5.12 & 5.15C, 5.18). Blaser 

(1941a), reasoning from an acropetal vascularisation model, supported the idea of the loss of 

the abaxial carpel in Schoenoplectus, based on the presence of unconnected bundles within 

rudimentary abaxial style branches. However, traces originate in the floral organ primordia to 

subsequently connect with the stele. In this case, the connection with the stele was not made, 

but the presence of unconnected bundles can indeed be interpreted as an indication of an 

original third carpel. In many taxa with dorsiventrally compressed pistils, the ovule is still 

vascularised with bundles from the abaxial receptacular trace, which were interpreted by 

Blaser (1941a) as vestigial bundles of the abaxial carpel (see fig. 5.4B). However, in our 

opinion, the ovule is connected to the rachillar plexus, independently from the dorsal bundles 

of the carpels (figs 5.11–5.12, 5.15 & 5.25). In the species studied, the number and positions 

of the main receptacular bundles reflect the number and positions of vascular bundles within 

the rachilla of the spikelet, rather than the number and positions of the carpels (fig. 5.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.24 Seƌies of diagƌaŵs ĐoŶtƌastiŶg Blaseƌ͛s ;ϭϵϰϭa,b) model (A--C) with our current interpretation (D--F) 

of the ǀasĐulatuƌe iŶ lateƌallǇ Đoŵpƌessed diŵeƌous pistils: A, Blaseƌ͛s ;ϭϵϰϭa, ďͿ ŵodel of the ǀasĐulatuƌe iŶ a 

primitive sedge (e.g. Scirpus) in which lateral bundles are present in the sides of the gynoecium wall, which 

ĐoŶŶeĐt to the ǀeŶtƌal ďuŶdles; B, Blaseƌ͛s ;ϭϵϰϭa, ďͿ ŵodel of a Cyperus flower, where lateral bundles are absent; 

C, Blaseƌ͛s ;ϭϵϰϭa, ďͿ iŶteƌpƌetatioŶ of a Pycreus flower, which has laterally flattened dimerous pistils. Since the 

vascular bundles that run within the gynoecium wall towards the stigmata connect with the ventral bundles, 

Blaser (1941a) interpreted these as lateral bundles, which took over the function of the dorsals. Subsequently he 

postulated separate origins of models B and C from A (black arrows). A red arrow indicates an abaxial receptacular 

bundle connecting towards the abaxial anther, which Blaser (1941a) reported in his study; D, This model 

corresponds to model A. However, our current study shows the vasculature within the receptacle is highly 

disorganised and is here shown as a vascular plexus, which corresponds to what Blaser (1941a, b) indicated as 

ventral bundles; E, Same as model B with ventral bundles shown as a vascular plexus; F, Same as model C with 

ventral bundles shown as a vascular plexus. Vascular traces within the ovary wall are interpreted as dorsal bundles 

and thus as homologous to these in models D & E. This corroborates with the origin of Pycreus from a Cyperus 

ancestor (black arrows). A red arrow indicates the absence of an abaxial dorsal bundle in Pycreus and connection 

of the vascular bundle of the abaxial stamen to both adaxial receptacular bundles, as observed in this study. 

Colour codes: purple, receptacular bundles; yellow, staminal bundles; green, dorsal bundles; blue, ventral 

bundles; red, central and ovule bundles; orange, lateral bundles. 
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As a conclusion, general patterns of vascularisations of unrelated taxa with 

dorsiventrally flattened pistils can be similar (see table 5.2) since they all reflect the same 

underlying general pattern of pistil ontogeny. 

Laterally flattened pistils  – The origin of laterally compressed pistils required 

developmental freedom of the pistil, which is present as an annular primordium in several 

recently evolved lineages of Cyperoideae. Moreover, floral vascular patterns are a reflection 

of the floral ontogeny (fig. 5.25). In the next paragraphs, we discuss the vascular evidence 

supporting our theory on alterations of stigma positions but falsifying alternative hypotheses 

on homology (Blaser, 1941a) or fusion (Ronse Decraene et al., 2002) of vascular bundles. In 

addition, a discussion of some specific observations in taxa with laterally compressed pistils is 

presented here. 

The observed vascular ontogeny and recent phylogenetic studies (Muasya et al., 2002, 

Larridon et al., 2011a) imply the homology of the bundles within the ovary wall of Cyperus and  

Pycreus (fig. 5.24D–F). This is in contrast with Blaser (1941a), who, based on the connections 

of the bundles, interpreted the pistil bundles in Cyperus as dorsal bundles and the ones in 

 Fig. 5.25 Series of diagrams showing the development of organs and vasculature of a hypothetical cyperoid 

flower with a dorsiventrally flattened dimerous pistil and two stamens in adaxial positions: A, At the stage of the 

annular gynoecium wall primordium surrounding an ovule primordium the vascular traces of the rachilla start to 

differentiate; B, Once all floral organs are initiated (including the stigma primordia) several procambial initiation 

points originate within the receptacle and from the base of the stamens; C, In this stage the stamens are strongly 

developing. Connections are made between the procambial initiation points within receptacle with those of the 

stamens and towards the vascular traces of the rachilla. Meanwhile the stigma primordia are elongating and the 

first integument is formed on the ovule primordium that starts to bend; D, Stamens and their vascular system are 

fully differentiated. On the tip of the ovule primordium the second integument is formed. Additional procambial 

initiation points are formed from the base of the ovule and the stigma branches. Meanwhile, the vascular traces 

within the receptacle become denser and branch towards the different primordia of the gynoecium; E, Procambial 

initiation points from the base of the stigma branches differentiate further within the elongating pistil and 

stigmata. The ovule vascular traces also start differentiating in this stage; F, All floral organs and their vascular 

traces are completed and these all have formed connections with the now very dense vascular plexus within the 

receptacle.  

Diagrams are shown from an abaxial viewpoint and a black dotted line indicates the hypothetical border between 

the rachilla and the flower. Colour codes: grey: floral organs; orange: Vascular bundles within the rachilla, here 

seen in transversal section; blue: vascular traces within the rachilla (= receptacular, ventral and central bundles); 

green: vascular traces within the gynoecium wall (= dorsal bundles) and red: vascular traces within the ovule. 
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Pycreus as lateral bundles (fig. 5.24A–CͿ. IŶ Blaseƌ͛s ;ϭϵϰϭaͿ ǀieǁ, the doƌsal ďuŶdles within 

the ribs of the ovary are a continuation of the main vascular bundles within the receptacle 

after all bundles towards other floral organs and the ventral bundles have branched off (figs 

5.4A–C & 5.24A & B). However, in Pycreus, Kyllinga, and Queenslandiella, stigma branches 

connect to the vascular plexus (ventral bundles) within the receptacle (figs 5.4D, 5.11, 5.15A–

B, 5.16, 5.17 & 5.24C) and do not form a continuation of the main vascular bundles in the 

receptacle. Therefore, Blaser (1941a) saw the vascular bundles in the ovary wall of Pycreus as 

lateral bundles (figs 5.4D1 & 5.24C), comparable with those he found in the scirpoid taxa (figs 

5.4A1 & 5.24A). As these bundles continue to the style branches, Blaser assumed that they 

took over the function of the dorsals. In contrast, in the scirpoid taxa, the lateral bundles 

usually run within the sides of the triangular ovary wall and end below the style (fig. 5.24A). 

However, the time gap between the connecting of the receptacular plexus with the rachillar 

bundles and the connecting of the receptacular plexus with the vascular bundles of the pistil,  

suggests that both vascular systems are independent and thus do not necessarily need to 

converge. Also the vascular bundles from the different organs connect independently to the 

receptacular vascular plexus. Since lateral bundles are lacking in all Cyperus species studied by 

Blaser and the authors of the current study (figs 5.4A1 & 5.12) and taking the most recent 

phylogenetic hypothesis about Cyperus into consideration, with Pycreus, Kyllinga and 

Queenslandiella nested within the C4 Cyperus clade (Muasya et al., 2002, 2009a, Besnard et 

al., 2009, Larridon et al., 2011b), there are no reasons to assume homology of the ovary wall 

bundles in Pycreus and the lateral bundles in scirpoid taxa. The development of the 

ǀasĐulaƌisatioŶ iŶ aŶgiospeƌŵs teŶds to alloǁ the foƌŵatioŶ of ǀessels ͚ǁheƌeǀeƌ Ŷeeded͛, as 

the main vascularisation systems are determined by the positions of organ primordia, from 

where newly initiated bundles connect with existing vascular bundles (Endress, 1994). 

Consequently, the vascular bundles in the ovary in e.g. Pycreus, Kyllinga and Queenslandiella 

are therefore to be regarded as dorsal bundles similar to those found in ovaries of other 

Cyperoideae.  

Secondly, although all carpels are congenitally fused, we found no evidence in Pycreus 

and related taxa for a further fusion of the two adaxial stigmata and their dorsal bundles to 

form a single stigma and a dorsal bundle in intermediate position. The latter theory was 

applied by some authors to explain similar cases in African Restionaceae, where transitional 

series are known in which two dorsal bundles are present in a pair of fused sterile carpels, 
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while in the more derived situation only a single dorsal bundle is present in an intermediate 

position (Linder, 1992, Ronse Decraene et al., 2002). It is more parsimonious to assume a 

developmental reorganisation of the fused carpel complex resulting in an ovary with a single, 

intermediately positioned stigma primordium from which a corresponding dorsal bundle is 

initiated. 

Next, Blaser (1941a) included  Kyllinga pumila in his study, concluding that its vascular 

pattern is similar to the vascularisation in trimerous Cyperus flowers. However, Kyllinga pistils 

are dimerous and logically our observations do not confirm those of Blaser (1941a). Possibly 

the latter were based on misidentified material. In the rachilla of Kyllinga nemoralis, we 

observed that the vascularisation is concentrated into a single V-shaped bundle at a level 

above the branching of the first flower (fig. 5.15A). This can be explained by the strong 

reduction of the spikelet in most Kyllinga species, in which only one flower is functional. 

Vascular bundles entering the flowers of K. nemoralis run into two laterally positioned 

centres, comparable with the two bundles entering the flowers in the Pycreus species studied. 

However, in Kyllinga nemoralis these two bundles expand and split into three smaller bundles 

each, which then fuse again into an annular bundle before splitting off staminal and gynoecial 

traces (fig. 5.15A, 5.17). These observations for K. nemoralis concur with the observations of 

Blaser (1941a) for Cyperus retrorsus Champ. in which he observed six separate bundles 

entering the flowers. These six bundles fuse two by two to form the dorsal bundles of the 

flower. Possibly, this is due to the position of the flowers studied within the spikelet. In K. 

nemoralis as well as in C. retrorsus, only the most proximal flowers of the deciduous spikelets 

are functional. Also in other groups with strongly reduced or condensed spikelets, vascular 

connections of different structures within the spikelets tend to interfere, making correct 

interpretations of the original vascularisation almost impossible, e.g. Carex (Snell, 1936), 

Scleria P.J.Bergius (Blaser, 1941b). This adaptive nature of vascular development makes 

vascular patterns in our opinion less reliable for the study of evolutionary relationships 

between different taxa in Cyperoideae. 

Pseudomonomerous pistils – Finally, in both Rhynchospora and Cyperus, lineages arose 

in which the style is elongated with reduced the stigma branches. Such pistils are often called 

pseudomonomerous gynoecia (Dickison 2000). In these cases, remnants of the stigma 

primordia are still visible on the top of the style and two or three dorsal bundles can be 

observed within the style (fig. 5.14).  
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Vascular connections of the ovule – The vascularisation of the ovule connects to the 

central vascular plexus within the receptacle independently from the dorsal bundles of the 

gynoecial wall (fig. 5.25). This also reflects the developmental reorganisation of the 

gynoecium. The central position of the ovule results in an equal contribution of vascular 

connections (ventral bundles) from all vascular poles within the receptacle instead of a 

polarisation towards a single carpel. As discussed by Snell (1936) and Blaser (1941b), this 

reflects a vascularisation supply typical of axile or free central placentae from which the 

situation in Cyperoideae can be interpreted as a final reduction stage. Blaser (1941b) 

observed in some species that the ovule is asymmetrically positioned, with the funiculus 

inserted at the adaxial side of the locule and the micropyle bent back at the abaxial side. In 

Cyperus laevigatus, we observed an asymmetric connection of the ovule vascular bundle with 

the central vascular bundle coming from the receptacle (fig. 5.12C). However, ontogenetically, 

in all species studied by us, the ovule primordium is centrally positioned. Therefore, we 

assume that the asymmetric position of the ovule along the adaxial-abaxial axis is due to the 

bending of the ovule, which initially is atropous and subsequently turns to become 

anatropous. 

 

5.6.5 The Cyperoid ovule 

Reduced ovule numbers – Apparently, the congenital fusion of the carpel primordia 

allows a new developmental organisation with as a symptom the central, basal ovule (fig. 

5.23Ϳ. We ĐaŶ agƌee ǁith “Ŷell͛s ;ϭϵϯϲͿ iŶteƌpƌetatioŶ of a ĐeŶtƌal ďasal oǀule as a ͚ƌeduĐtioŶ͛ 

as far as we can see a reduction trend in Juncaceae where in Luzula DC. the ovary wall also 

originates from an annular primordium (Vrijdaghs et al., 2006, unpubl. res.). In contrast to 

Cyperaceae, in Luzula the originally carpellary structure of the gynoecium is still noticeable in 

the presence of the three basal ovules. This tendency apparently reaches its maximum in 

Cyperaceae with the single, basal ovule, which is no longer linked to a carpellary structure (fig. 

5.23Ϳ. Hoǁeǀeƌ, iŶ ouƌ opiŶioŶ, ͚ƌeduĐtioŶ͛ heƌe ƌatheƌ ŵeaŶs ƌeoƌgaŶisatioŶ of the 

development the ovary, accompanied by a simplification. According to Linder & Rudall (2005) 

reduced ovule number is often associated with aggregated inflorescences. 

Is there a link with pseudomonad pollen? – Kress (1981) suggested that while it could 

be advantageous to have simultaneous fertilisation of multiple ovules within the same ovary 

by a pollen unit (four at once for tetrads), such advantage is lost when only a single ovule is 
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present. McGlone (1978) discussed this hypothesis for Styphelioideae (Ericaceae) where such 

parallels between ovule number and tetradmonad reductions exist. A similar link might exist 

between respectively single ovuled pistils and pseudomonad pollen (Cyperaceae), and multi-

ovuled pistils and tetrad pollen (Juncaceae, Thurniaceae). However, this comparison does not 

consider the difference in pollination strategy between sedges (wind) and Styphelioideae 

(insect), which are known to have different effects on the natural selection of successful floral 

and pollen morphologies. Char et al., (1973) assumed pseudomonads are advantageous in 

wind pollination due to the smaller pollen size, which might explain the situation in sedges but 

not in Styphelioideae (McGlone, 1978). In addition, tetrad polled might still be advantageous 

for single ovuled gynoecia since it maintains a possibility of selection of the fittest member of 

the pollen tetrad. 

Placentation  – Blaser (1941b) also mentioned a distinct spine-like projection along one 

side of the ovule towards the top of the ovary of Bolboschoenus robustus (Pursch) Soják, 

which he interpreted to be remnants of a placental column. However, since the ovary wall 

rises from an annular primordium, and since the development of the ovule occurs 

independently of the development of the ovary wall, we consider it (in contrast to Blaser, 

1941b) impossible to find remnants of carpellary structures, which could only occur in a 

developing gynoecium resulting from postgenital fusion of (morphologically reduced) carpels, 

Ƌuod ŶoŶ. The teƌŵ ͚ĐeŶtƌal plaĐeŶta͛, hoǁeǀeƌ, ĐaŶ ďe used iŶ the ŵeaŶiŶg of ĐeŶtƌally 

positioned region of adhesion of the ovule, following Leins (2000: 100), who defined a 

plaĐeŶta as: ͞Iŵ ǁeitesteŶ “iŶŶe ist die PlazeŶta deƌ Geǁeďeteil eiŶes Kaƌpells ;odeƌ deƌ 

Blütenachse), der die Samenanlagen hervorbringt [In the widest sense, the placenta is the 

paƌt of the tissue of a Đaƌpel oƌ of the floƌal aǆis, ǁhiĐh pƌoduĐes the oǀules] ͟. 

Obturator hairs  – The recent observations of Coan et al., (2008) in Rhynchospora and 

Hypolytrum Rich. ex Pers., of Gonzalez & López (2010) in Bulbostylis, as well as our 

observations in 37 mostly African species in Scirpeae, Fuireneae, Eleocharideae, 

Abildgaardieae, Cypereae, Cariceae, Schoeneae and Trilepideae sensu Goetghebeur (1998) 

about intralocular hairs confirm the observations of Van der Veken (1965). In all species 

studied, obturator hairs originate at the basal-abaxial side of the funiculus and subsequently 

grow towards the micropyle where they stick together, thus closing the micropyle. Observed 

variation appeared to be totally random and hence of no systematic value. 
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5.7 Conclusions: Understanding pistil diversification in Cyperoideae, an 

integrated developmental model 

Integrating our anatomical, floral ontogenetic data and recent functional insights 

makes it possible to present a developmental model for the gynoecium in Cyperoideae to 

understand all variations of its essentially trimerous morphological Bauplan. 

(1) The ovary originates from an annular ovary primordium (Vrijdaghs et al., 2009) – 

During the earliest ontogenetic stages, the annular ovary primordium grows upwards to form 

a bag-like stƌuĐtuƌe. At this stage, the pƌiŵoƌdiuŵ ĐaŶ ďe ĐoŶsideƌed as aŶ ͚eŵptǇ ďoǆ͛ ;Gould 

2002), with no other developmental determination than growing upwards. Next, in most 

cyperoid species, two adaxially positioned and one abaxially positioned stigma primordia 

(according to the conservative positions of the original carpel tips) are formed on the top of 

the cylindrical ovary wall. However, other numbers and positions of stigma primordia are 

possible. We believe that congenital fusion of carpels allows shifts in positions of stigma 

primordia to novel, more optimal positions with respect to the available space (fig. 5.22). 

(2) Signaling from primordia causes bidirectional origin of the vascular system in the 

pistil (Endress, 1994) – Vessel initiation zones are present in the stigma primordia (fig. 5.25). 

From there, the vessels grow to the receptacular plexus, to be connected with the stele. These 

vessels constitute the ribs of the pistil. Consequently, the number and positions of the stigma 

primordia determine the future shape of the pistil, which develops initially as a bag-like 

structure, and subsequently typically assumes a triangular shape, or a derived dimerous, 

dorsiventrally or laterally flattened shape, or a polymerous shape. 

(3) Annular primordia facilitate decoupling of the development of a whorl with respect 

to the neighboring whorls (Endress 2006)  – The annular ovary primordium and central ovule 

primordium differentiate simultaneously from the floral apex. The development of the ovary 

wall and ovule appear as two distinct phenomena (fig. 5.23). Ovary wall and ovule vascular 

traces show independent connections with the receptacular plexus, thus reflecting the 

ontogenetic separation of the annular ovary wall primordium and ovule primordium. 
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͞The ŵost ďeautiful eǆperieŶĐe ǁe ĐaŶ haǀe is the 
mysterious - the fundamental emotion which stands at the 

Đradle of true art aŶd true sĐieŶĐe.͟ 

 

— Albert Einstein (1979-1955)   

6 Molecular phylogenetic 

hypothesis of C4 Cyperus 
 

 Fig. 6.1 Stylized cladogram of Pycreus species based on a maximum parsimony analysis of the 

ETS1f marker. Bootstrap values are indicated on the separate nodes, species are represented by 

a spikelets photographed from the GENT and BR herbaria. This image was presented on a poster 

on the XVIII AETFAT congress, Yaounde, Cameroon. 
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6.1 In this chapter… 

 The results presented in this chapter are published in the following paper: 

Larridon I, Bauters K, Reynders M, Huygh W, Muasya AM, Simpson DA, Goetghebeur P. 

2013. Towards a new classification of the giant paraphyletic genus Cyperus 

(Cyperaceae): phylogenetic relationships and generic delimitation in C4 Cyperus. 

Botanical Journal of the Linnean Society 172(1): 106-126. 

The original aim for this chapter was for it to be first authored by M. Reynders. 

However due to limitations in time the original draft was fine-tuned by I. Larridon and 

published, while K. Bauters updated the cladistic analysis. The contributions of M. 

Reynders consist mainly of the lab work on the ETS1f marker and DNA extractions of 

most taxa presented here, important parts of the discussion and the production of fig 

6.3. 

 

6.2 Abstract 

Maximum likelihood and Bayesian inference analyses of nuclear ribosomal DNA (ETS1f) 

and plastid DNA (rpl32-trnL, trnH-psbAͿ seƋueŶĐe data aƌe pƌeseŶted foƌ ͞C4 Cyperus͟ 

;CǇpeƌaĐeaeͿ. The teƌŵ ͞C4 Cyperus͟ eŶĐoŵpasses all speĐies of Cyperus s.l. that use C4 

photosynthesis linked with chlorocyperoid vegetative anatomy. Sampling comprises 107 

specimens of 104 different taxa, including many of the subdivisions of C4 Cyperus s.s. and all 

C4 segregate genera (Alinula, Ascolepis, Kyllinga, Lipocarpha, Pycreus, Queenslandiella, 

Remirea, Sphaerocyperus and Volkiella). According to our results, C4 Cyperus is a well-

supported monophyletic clade nested in C3 Cyperus. Despite the lack of resolution along the 

backbone of the C4 Cyperus clade and for some internal branches, several well-supported 

clades can be distinguished. The first clade in C4 Cyperus is formed by Cyperus cuspidatus and 

C. waterloti. Other recognizable and well-supported clades correspond to segregate genera, 

i.e. Ascolepis, Lipocarpha including Volkiella, and Kyllinga. Species of C4 Cyperus s.s. form a 

core grade in which the C4 segregate genera are embedded. Pycreus, the largest segregate 

genus composed of c. 120 species, is not monophyletic since it includes several C4 species of 

Cyperus s.s.. This study establishes a phylogenetic framework for revising classification and 

character evolution in Cyperus s.l. 
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6.3 Introduction 

6.3.1 Cypereae and the Cyperus clade 

Cyperaceae (the sedge family) have an almost cosmopolitan distribution and play a 

dominant role in wetland vegetation. The many reductions and convergences in 

inflorescences of Cyperaceae have impeded evolutionary reconstruction (homology 

questions; e.g. Bruhl, 1991; Vrijdaghs et al., 2009, 2010; Muasya et al., 2009b) and 

classification (e.g. Clarke, 1908; Kükenthal, 1935-36; Kern, 1974; Haines & Lye, 1983; Bruhl, 

1995; Goetghebeur, 1998). Based on recent molecular phylogenetic studies, Cyperaceae 

consist of two main clades corresponding to subfamilies Cyperoideae and Mapanioideae 

(Simpson et al., 2003, 2007; Muasya et al., 2009a). In Cyperoideae, two clades stand out due 

to their extraordinary species diversity: (1) the clade corresponding to the predominantly 

temperate tribe Cariceae (c. 1950 spp.); and (2) the clade corresponding to the mainly tropical 

tribe Cypereae (c. 1120 spp.). Together they cover nearly three fifths of species diversity in 

Cyperaceae (Govaerts et al., 2012). 

Recent molecular phylogenetic studies of Cyperaceae (Simpson et al., 2003, 2007; 

Muasya et al., 2009a) showed Cypereae sensu Goetghebeur (1998) to be monophyletic, but 

the generic delimitations in Cypereae remained controversial (Muasya et al., 2009b). In the 

past, Cypereae were circumscribed as having spikelets with distichous glumes and reduced, 

perianthless flowers (e.g. Kükenthal, 1935-36). However, neither the distichy of the glumes 

nor the absence of a perianth could be regarded as phylogenetically informative characters 

(e.g. Vrijdaghs et al., 2006; Muasya et al., 2009a, b; in press). Currently, Cypereae are 

circumscribed by the presence of a Cyperus-type embryo or the similar Ficinia-type embryo 

(Van der Veken, 1965; Goetghebeur, 1998; Muasya et al., 2009a, b). The presence of various 

combinations of characters (e.g. reduced flowers, reduced and/or contracted inflorescences) 

and convergent morphologies led to the misinterpretation of the relationships of many 

lineages of Cypereae. A number of taxa (belonging especially to Erioscirpus Palla, Ficinia 

Schrad, Hellmuthia Steud., Isolepis R.Br., Kyllingiella R.W.Haines & Lye, Oxycaryum Nees, 

Scirpoides Séq.) were allocated to various tribes in Cyperaceae, including Scirpeae, 

Rhynchosporeae, Hypolytreae and Schoeneae (e.g. Kunth, 1837; Nees, 1842; Steudel, 1854-

55; Clarke, 1908). However, extensive anatomical (Kranz anatomy), embryographical and 

molecular phylogenetic studies (e.g. Van der Veken, 1965; Goetghebeur, 1986, 1998; Bruhl, 
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1995; Simpson et al., 2003, 2007; Muasya et al., 2001a, 2002, 2009a, b; Larridon et al., 2011a, 

b; Yano et al., 2012) revealed that these genera are closely related to Cyperus L. 

Consequently, reinterpretation of the morphological characters of these genera in the context 

of Cypereae is required. 

Based on molecular phylogenetic studies (e.g. Simpson et al., 2007; Muasya et al., 

2009a), two clades are recognized in Cypereae: (1) the Ficinia clade and (2) the Cyperus clade. 

The first, smaller clade (c. 160 spp.) consists of several genera with a mainly southern African 

distribution, a ficinoid habit (hemicryptophytes, culm scapose, inflorescence capitate and 

appearing pseudolateral with main involucral bract being stem-like) and mostly spiral glumes. 

The basalmost branches include species with perianth parts (Dracoscirpoides Muasya, 

Erioscirpus, Hellmuthia; Vrijdaghs et al., 2006; Muasya et al., 2012; Yano et al., 2012). Prior to 

the embryographical study of Van der Veken (1965), most of these genera had been classified 

in or near Scirpus L. 

The second, larger, pantropical clade (c. 950 spp.), with mostly distichous glumes, 

comprises a paraphyletic Cyperus s.s. as the core genus (c. 700 spp.) in which at least 12 

segregate genera are nested (Goetghebeur, 1998; Govaerts et al., 2012; see Table 6.1). The 

branch leading to Androtrichum (Brongn.) Brongn. (two species) appears to be at the base of 

the Cyperus clade (Muasya et al., 2002, in press), but this needs further confirmation. 

Although molecular phylogenetic studies revealed that all these genera are nested in Cyperus 

(e.g. Muasya et al., 2002; Larridon et al., 2011a), there has been considerable discussion 

about whether to include these taxa into Cyperus. Contemporary treatments either recognize 

the segregate genera as separate from Cyperus (e.g. Bruhl, 1995; Goetghebeur, 1998;  

 Fig. 6.2 Morphological diversity in C4 Cyperus. A. Cyperus cyperoides (L.) Kuntze with strongly contracted 

spikes of spikelets in an anthelate inflorescence. B. Pycreus polystachyos (Rottb.) P.Beauv. with spikes of 

spikelets in an anthelate inflorescence. C. Cyperus laevigatus L. with a reduced inflorescence consisting of only 

a few sessile spikelets in a pseudolateral inflorescence. D. Lipocarpha chinensis (Osbeck) J.Kern with three 

sessile pseudospikelets. E. Cyperus capitatus with a capitate inflorescence. F. Kyllinga polyphylla Willd. ex 

Kunth with a capitate inflorescence of reduced, deciduous spikelets. G. Cyperus ustulatus A.Rich. with 

contracted spikes of spikelets in an anthelate inflorescence. H. Cyperus waterloti Cherm. with an inflorescence 

of digitately clustered spikelets. Photographs A--G taken by M. Reynders in the Ghent University Botanical 

Garden, H taken by W. Huygh at Cirque Rouge near Mahajanga, Madagascar. 
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Govaerts et al., 2007, 2012) or merge them into Cyperus at an infrageneric rank (e.g. 

Kükenthal, 1935-36; Haines & Lye, 1983; Lye, 1997). 

The Cyperus clade includes a grade of branches characterized by C3 photosynthesis (C3 

Cyperus, c. 190 spp.), which were well-resolved in a combined analysis of ETS1f, trnH-psbA 

and rpl32-trnL (Larridon et al., 2011a). In C3 Cyperus, most sections of the classification 

according to Kükenthal (1935-36) were confirmed. Larridon et al. (2011b) included the C3 

segregates Courtoisina Soják, Oxycaryum and Kyllingiella in Cyperus, supported by molecular 

data, combined with morphology, embryography, ontogeny and anatomy. 

Nested in C3 Cyperus is a highly diverse clade (C4 Cyperus, c. 760 spp.) with the C4 

photosynthetic pathway as a synapomorphy (e.g. Muasya et al., 2001b, 2002, 2009a, in press; 

Besnard et al., 2009; Larridon et al., 2011a). The nine C4 segregate genera represent c. 30 % of 

diversity in the C4 Cyperus clade. Figure 7.2 shows some of the morphological diversity of C4 

Cyperus lineages. They are generally considered as well-delimitated entities (e.g. 

Goetghebeur, 1998) and are circumscribed by a combination of morphological characters 

including inflorescence and spikelet morphology, unit of dispersal and nutlet orientation (e.g. 

Muasya et al., 2009b; Vrijdaghs et al., 2011; Reynders et al., 2012; Fig. 6.3). However, the 

mutual relationships of the taxa in C4 Cyperus still need to be determined.  

 

6.3.2 Paraphyly and modern classification strategies 

With the advancement of molecular phylogenetic research, species relationships and 

evolutionary patterns in giant genera provide new and valuable opportunities to study 

evolutionary processes. Often, these giant genera appear to contain derived lineages that 

have, up to now, been considered as separate genera (e.g. Acacia Mill., Miller & Bayer, 2001; 

Carex L.; Starr & Ford, 2009; Croton L., Berry et al., 2005; Euphorbia L., Steinmann & Porter, 

2002; Salvia L., Walker et al., 2004). The development of new classifications, encompassing 

the concept of monophyly for these large paraphyletic entities and their segregate genera has 

been highly challenging. Three main strategies can be implemented: (1) splitting; (2) accepting 

paraphyletic taxa; and (3) lumping. Splitting paraphyletic taxa into a large number of small 

genera has been proposed for a number of large genera (e.g. Acacia; Maslin, Miller & Seigler, 

2003). The decision on where to split needs to be based on a well-resolved phylogenetic 

hypothesis, and there are challenges to identifying diagnostic characters for the segregate 

entities and controversies about name application (Acacia; e.g. Moore et al., 2010, 2011; 
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Smith & Figueiredo, 2011; Thiele et al., 2011). A second, less popular, strategy is a 

classification in which various segregate genera are upheld which are themselves 

monophyletic, but remain part of a paraphyletically circumscribed giant genus. The use of 

paraphyletic genera has been defended by some authors (e.g. Brummitt, 1996; Brummitt & 

Sosef, 1998), but has been strongly opposed by others (e.g. Nelson, Murphy & Ladiges, 2003). 

The third and most popular strategy when dealing with paraphyletic giant genera is lumping 

all the segregates into a broader circumscribed genus (e.g. in Euphorbia; Steinmann & Porter, 

2002). A negative consequence of lumping is that it can become difficult to describe clearly 

the giant genus as a whole. 

 

Table 6.1 The genera in Cypereae currently accepted by Govaerts et al. (2012), plus the recently published genus 

Dracoscirpoides (Muasya et al., 2012) and the recent phylogenetic novelty Erioscirpus (Yano et al., 2012). The 

segregate genera using the C4 photosynthetic pathway are underlined. The taxa indicated by an asterisk were 

recently included in Cyperus (Larridon et al., 2011b) 

 

Cypereae 

Ficinia clade ? Cyperus clade 

Dracoscirpoides Muasya (3 spp.) 

Erioscirpus Palla (2 spp.) 

Hellmuthia Steud. (1 sp.) 

Ficinia Schrad. (75 spp.) 

Isolepis R.Br. (76 spp.) 

Scirpoides Ség. (4 spp.) 

 

Androtrichum (Brongn.) Brongn. Alinula J.Raynal (4 spp.) 

Ascolepis Nees ex Steud., (22 spp.) 

Courtoisina Soják (2 spp.)* 

Kyllinga Rottb. (74 spp.) 

Kyllingiella R.W.Haines & Lye (4 spp.)* 

Lipocarpha R.Br. (36 spp.) 

Oxycaryum Nees (1 sp.)* 

Pycreus P.Beauv. (114 spp.) 

Queenslandiella Domin (1 sp.) 

Remirea Aubl. (1 sp.) 

Sphaerocyperus Lye (1 sp.) 

Volkiella Merxm. & Czech (1 sp.) 
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6.4 OBJECTIVES 

In the present study, molecular phylogenetic data of the Cyperus clade were analysed: 

(1) to determine the mutual relationships of the taxa (i.e. genera, sections, species) included 

in C4 Cyperus; (2) to test whether the segregate genera and infrageneric taxa in C4 Cyperus 

(Kükenthal, 1935-36; Govaerts et al., 2012) are monophyletic; and (3) to examine the most 

suitable classification strategy for C4 Cyperus. Papers documenting the necessary 

nomenclatural/taxonomical changes based on the results presented in this paper and more 

detailed studies of several of the larger C4 segregates will be published elsewhere. This study 

is part of a larger research project aiming at recircumscribing Cyperus as a monophyletic unit 

and to create a new infrageneric classification of the genus supported by both molecular and 

morphological data. 

 

6.5 MATERIALS AND METHODS   

One hundred and seven samples from 104 different taxa were used for this study. 

Sixty-seven sequences from 23 species were used from a previous study (Larridon et al., 

2011a). The other 213 sequences from 81 different taxa were newly generated for this study. 

The samples with species names, voucher information, origin and GenBank accession 

numbers for the sequences, are given in Appendix 3. Taxa within Cyperus were selected to 

represent a broad morphological and geographical range and to include a wide range of the 

traditionally recognized sections, subgenera and segregate genera. As this study assesses 

relationships above the rank of species, multiple species samples and infraspecific taxa were 

generally not used. The outgroup taxa were selected based on the results of previous 

molecular phylogenetic analyses of Cypereae by Muasya et al. (2002, 2009a) and Larridon et 

al. (2011a). Taxonomic information for most taxa mentioned (such as author, place and date 

of publication, synonyms, distribution) follows Govaerts et al. (2007, 2012). The molecular 

phylogenetic hypothesis obtained was compared with the classification of Kükenthal (1935-

36). Detailed information on the nomenclature of generic and subdivisional names of the 

Cyperus clade (including the synonymy of the names used by Kükenthal) is given in Huygh et 

al. (2010), Larridon et al. (2011c) and Reynders et al. (2011). 

Samples were either of wild origin, mostly collected during recent field expeditions 

(silica-dried), or sampled from plants from the Ghent University Botanical Garden. Additional 
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dried leaf samples were selected from herbarium specimens (GENT, BR). The DNA extraction 

protocol, markers (ETS1f, rpl32-trnL and trnH-psbA) and methods for PCR amplification and 

sequencing and obtaining alignments used in this study follow Larridon et al. (2011a).  

Phylogenetic hypotheses were produced using maximum likelihood (ML) and Bayesian 

inference (BI) analyses. All analyses were first performed on the single marker data sets 

(ETS1f, rpl32-trnL, trnH-psbA). Since no conflicting clades with a significant confidence value 

were revealed, a combined data set was constructed and analyzed. The latter was subdivided 

into three partitions, corresponding to the single markers. The program RAxML v7.2.8 

(Stamatakis, 2006) was used to execute the Rapid Bootstrapping algorithm for 500 replicates 

combined with a ML search, using the GTRCAT model (Stamatakis, Hoover & Rougemont, 

2008). Model parameters were optimized for each partition when analyzing the combined 

dataset. 

 Bayesian phylogenetic (BI) analyses were carried out in MrBayes v3.1.2 (Ronquist & 

Huelsenbeck, 2003). For the analysis, MrModeltest v2.3 (Nylander, 2004) was used to 

determine the model that best fits the data, applying the Akaike Information Criterion. For the 

combined data set, a model was determined for each partition. This method is referred to as 

the BI method. Four independent, parallel runs of one cold and three heated chains were run 

for 30 million generations each. Trees and parameter estimates were saved every 1000 

generations. The analyses were run on a high performance computer at Ghent University 

(Stevin Supercomputer Infrastructure, ICT Department). Convergence, associated likelihood 

values, effective sample size values and burn-in values of the different runs were verified with 

Tracer v1.5 (Rambaut & Drummond, 2007). Calculation of the consensus tree and the 

posterior probability (PP) of clades was based upon the trees sampled after the chains 

converged. Trees were drawn using FigTree v1.3.1 and Adobe Photoshop CS3. 

 

 Fig. 6.3 3D reconstruction of the spikelet evolution in the Cyperus clade. The illustrations were drawn in 

Rhinoceros 3D
®
 (Mc Neel, Seattle, USA) by M. Reynders. The basic Cyperus spikelet with distichous glumes 

developed several times independently into lineages with spiral glumes. Also deciduous spikelets originated 

several times and from there different reduction lineages can be identified resulting in single-flowered 

spikelets. In the extreme situation the bracts subtending the spikelets behave like glumes bearing the strongly 

reduced spikelets. Difficult interpretation of the latter resulted in the classification of these taxa among various 

Cyperaceae tribes before their affinity with Cyperus had been resolved. 
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6.6 RESULTS 

6.6.1 Sequence alignments 

After alignment and application of Gblocks v0.91b (Castresana, 2000), the ETS1f 

alignment included 105 sequences of 953 bases, the rpl32-trnL alignment 94 sequences of 

1334 bases and the trnH-psbA alignment 81 sequences of 1364 bases. The concatenated data 

set included 108 sequences and the Gblocks program retained 57% or 2101 characters of the 

original alignment. Most excluded regions came from the ETS1f region. 

 

6.6.2 Phylogenetic analysis 

The three single-locus ML analyses revealed nearly identical topologies and bootstrap 

values. As expected, the clades supported by single-locus analyses, received greater support 

in the multi-locus ML-analysis. In the various analyses, only minor conflicts concerning the 

position of some C4 Cyperus spp. in the backbone of the C4 Cyperus clade were detected. Most 

nodes in the backbone of this clade had little or no support. 

The three single-locus BI analyses did not significantly differ in tree topologies. The 

multi-locus BI topologies did not differ from the multi-locus ML tree, except for some of the C4 

Cyperus spp. in the main polytomy as mentioned above for the ML analyses. Evaluation of the 

multi-locus BI analysis output showed that the four runs converged on similar log likelihood (-

23908) and parameter values. The burn-in value for all runs was determined at 3 million 

generations. The effective sample size (ESS) for the likelihood value of the combined runs 

consisted of 1397.38 uncorrelated samples. 

Figure 7.4 shows the 50% majority consensus multi-locus BI tree with the associated 

PP values and the bootstrap values of the multi-locus ML tree. Only bootstrap values above 

75% and posterior probabilities above 0.85 are shown. 
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6.7 DISCUSSION 

6.7.1 Affinities with C3 Cyperus 

In Cypereae, the Cyperus clade is sister to the Ficinia clade, here used as outgroup 

represented by species of Scirpoides, Isolepis and Ficinia (Fig. 6.4). The Cyperus clade is 

strongly supported as monophyletic, but includes several lineages which are currently 

recognised at the generic level. As in Larridon et al. (2011a), C3 Cyperus spp. form a grade at 

the base of Cyperus (Fig. 6.4; Table 6.2). The clade sister to the C4 Cyperus clade is formed by 

Cyperus section Leucocephali Cherm. ex Kük. sensu  Larridon et al. (2011b) (Fig. 6.4). Although 

the species of this section use C3 photosynthesis (e.g. Bruhl & Wilson, 2007; Larridon et al., 

2011a), they occur in open grassland habitats which are generally dominated by species using 

C4 photosynthesis. This suggests that the species of C. section Leucocephali have characters 

(e.g. geophytic hemicryptophytes, resprouting immediately at start of wet season and dying 

back on onset of dry season, photosynthesis in at high temperatures and irradiation) which 

make them fitter to survive in these habitats than most other C3 Cyperus spp. 

Table 6.2 C3 Cyperus species included in the phylogeny and the sections they represent 

Species Section 

Cyperus haspan 

Cyperus luzulae 

Cyperus pectinatus 

Cyperus alternifolius and C. marginatus 

Cyperus spiralis 

Cyperus section Haspani (Kunth) C.B. Clarke 

Cyperus section Luzuloidei (Kunth) C.B. Clarke 

Cyperus section Anosporum (Nees) Pax 

Cyperus section Alternifolii (Kunth) C.B. Clarke 

Cyperus section Leucocephali Cherm. ex Kük. 

 

6.7.2 C4 Cyperus radiation 

Our molecular phylogenetic hypothesis shows very short branch lengths for most of 

the C4 Cyperus clade when compared to the C3 Cyperus grade and the deepest nodes of the C4 

Cyperus clade, suggesting a rapid diversification of the clade. Endress (2011, p.370) wrote: 

"Many structural innovations originated in several clades of Angiosperms and in special cases 

could become key innovations, which likely were hotspots of diversification". The evolution of 

C4 photosynthesis in Cypereae can be considered as a key innovation, being the cause of a 

burst of speciation due to: (1) increased fitness in drier habitats (Besnard et al., 2009); (2) 

optimised nitrogen-uptake; and (3) improved resistance to higher irradiance, fire and chemical 

stress caused by salt and heavy metals (Li, Wedin & Tieszen, 1999; Stock et al., 2004). Based 
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on our results and on literature and herbarium data on the distribution of species, we 

hypothesise that the evolution of the C4 photosynthetic pathway in Cypereae occurred in East 

Africa. This region, particularly present-day Tanzania, is the centre of diversity for C4 Cyperus 

spp. In addition, all segregate lineages and most sections are represented in the East African 

flora. Outside Africa, the Cyperus clade is either represented by widespread species or by taxa 

which evolved locally due to smaller radiations originating from dispersal events. 

 

6.7.3 Affinities in C4 Cyperus 

The basal nodes -- Several early
1
 branches of the C4 Cyperus clade are strongly 

supported (Fig. 6.4). The first subclade, also retrieved in previous studies (e.g. Muasya et al., 

2002, in press, Larridon et al., 2011a), is represented by Cyperus cuspidatus Kunth (and its 

Malagasy relative C. waterlotii Cherm.). Kükenthal (1935-36) placed the species of this clade in 

C. section Amabiles C.B.Clarke. Although homogeneous, this section is only held together by 

characters which probably represent the plesiomorphic condition in C4 Cyperus, such as 

spikelets arranged in digitate clusters (as in many C3 Cyperus spp. vs. generally spikes of 

spikelets in C4 Cyperus) and multi-nerved glumes with an excurrent mucro. Species of Cyperus 

section Amabiles, Aristati Nees and Rupestres C.B.Clarke show similar characters. After the C. 

cuspidatus clade, the next branches of our molecular phylogenetic hypothesis include species 

of the segregates Alinula J.Raynal, Ascolepis Nees, Lipocarpha R.Br., Queenslandiella Domin 

and Volkiella Merxm. & Czech, and of C. section Rupestres (i.e. C. rupestris Kunth and C. 

meeboldii Kük.).  The relationship between the two species of C. section Rupestres is strongly 

supported in our analysis. Taxonomically, this section is well circumscribed by several 

synapomorphies, such as swollen stem bases and a tendency to reduced flowers, each with a 

single stigma branch and a single stamen. The exact position of its corresponding clade 

remains to be confirmed, but its position among the early branches of the C4 Cyperus clade 

seems acceptable. 

Queenslandiella -- The monotypic Queenslandiella is currently recognised as a separate 

genus, based on its laterally flattened, dimerous gynoecia and its deciduous spikelets. 

Queenslandiella has multi-nerved glumes with an excurrent mucro suggesting it is a early 

branching lineage of C4 Cyperus (Fig. 6.4). When dried, it has a strong curry odour, a character 

it shares with C. squarrosus L., another species showing many of the presumed plesiomorphic 

                                                 
1
 Early emerging clades 
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characters of the clade. Cyperus squarrosus falls among the basal nodes in an ITS analysis of 

Cyperus (Reid, unpubl. data). 

Alinula – According to the current circumscription, Alinula includes four species 

(Goetghebeur, 1998; Govaerts et al., 2012). Only one species, Alinula paradoxa  (Cherm.) 

Goetgh. & Vorster, is included in this study (Fig. 6.4). From a morphological point of view, this 

species significantly differs from the other three. In our opinion, the current circumscription of 

Alinula does not represent a natural group. Haines & Lye (1983), who treated Alinula as a 

subgenus in Cyperus, included A. paradoxa in Cyperus subgenus Fimbricyperus Lye separate 

from the other Alinula spp. In our molecular phylogenetic hypothesis, A. paradoxa clusters 

among the early branches of the C4 Cyperus clade. More research is needed to reveal its exact 

relationships. Alinula lipocarphioides (Kük.) J.Raynal has been shown to be closer to 

Lipocarpha (Muasya et al., 2009a, in press). 

Ascolepis-Lipocarpha clade -- A well-supported clade in our molecular phylogenetic 

hypothesis includes the genera Ascolepis, Lipocarpha and Volkiella (Fig. 6.2), which are all 

characterised by strongly reduced deciduous spikelets grouped into pseudospikelets (spikes of 

spikelets). Our results confirm that Ascolepis and Lipocarpha are closely related, as already 

observed by Muasya et al. (2002). Their relatively early branching position in C4 Cyperus is 

corroborated by the presence of a small, weakly differentiated Cyperus-type embryo that is 

also common in C3 Cyperus and in the early branches of the Ficinia clade (Reynders, unpubl. 

data). Lipocarpha appears paraphyletic, including Ascolepis and Volkiella (Fig. 6.4). The first 

diverging branch is formed by Lipocarpha kernii (Raymond) Goetgh. and L. rehmannii (Ridl.) 

Goetgh.  (Fig. 6.3), formerly placed in a separate genus Rikliella J.Raynal. Although these 

species strongly resemble Lipocarpha, prophyll and glumes have not been observed around 

the flower. Therefore, Goetghebeur & Van de Borre (1989) interpreted Rikliella as a highly 

evolved lineage of Lipocarpha. However, on the basis of our phylogenetic trees, it is unclear 

whether the partial inflorescences should be interpreted as pseudospikelets or as true 

spikelets with spiral glumes (which occur in at least three other lineages of the Cyperus clade; 

Muasya et al., in press). Sister to this clade is a clade comprising Ascolepis and Lipocarpha s.s. 

(Fig. 6.4). Ascolepis spikelets are characterised by a single large glume subtending a flower and 

the loss of the spikelet prophyll. In Lipocarpha s.s., the first branching clade is formed by 

Lipocarpha micrantha (Vahl) G.C.Tucker  (Fig. 6.4), which is characterised by a reduction of the 

glume. This clade is followed by the rest of Lipocarpha s.s. which also includes the monotypic 
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Volkiella (Fig. 6.4). Volkiella possesses both a spikelet prophyll and a glume and is included in a 

subclade with Lipocarpha albiceps Ridl. and L. comosa  J. Raynal (Fig. 6.4). These two 

Lipocarpha spp. are characterised by a well-developed, firm and often dark coloured prophyll 

which falls off the rachis separately from the flower and its glume. In other Lipocarpha spp. 

the prophyll is hyaline and falls off together with nutlet and glume. Volkiella shares the more 

rigid prophyll with the two abovementioned species. Volkiella disticha  Merxm. & Czech is in 

many aspects a special, highly derived species differing from Lipocarpha by the distichous 

arrangement of the spikelets on the rachis. A more elaborate study of Lipocarpha integrating 

molecular phylogeny and morphology will be presented in another paper (Bauters et al., 

submitted). 

The hard polytomy -- The vast majority of C4 Cyperus spp. are included in an 

unresolved polytomy (Fig. 6.4), which can also be found in all previous molecular phylogenetic 

studies (e.g. Muasya et al., 2002, 2009a, b). As it has not been possible to resolve this 

polytomy, even when using fast mutating plastid and nuclear markers, additional markers 

need to be tested as well as other techniques based on next generation sequencing (e.g. 

Harrison & Kidner, 2011). However, in our molecular phylogenetic study several subclades and 

the relationships between some taxa are strongly supported (Fig. 6.4). These taxa are 

discussed below. 

C4 Cyperus s.s. – One subclade of C4 Cyperus s.s. which is strongly supported in our 

molecular phylogenetic hypothesis (Fig. 6.4) contains species belonging to Cyperus sections 

Papyri (Willd.) Thouars (C. papyrus L., C. dives Delile, C. alopecuroides Rottb. ) and Rotundi 

C.B.Clarke (C. rotundus L., C. longus L., C. endlichii Kük., C. rigidifolius Steud. ). These species 

are all characterised by a narrowly to broadly winged rachilla with deciduous or persistent 

wings. Several other sections which are not represented in the current analysis, i.e. Cyperus 

sections Brevifoliati C.B.Clarke, Exaltati (Kunth) C.B.Clarke and Fastigiati Kük., share these 

characters. Cyperus compressus  L. (C. section Compressi Nees) also clusters in this clade (Fig. 

6.4). 

 

 Fig. 6.4 Phylogenetic hypothesis for the Cyperus clade: 50% majority consensus multi-locus BI tree with the 

associated PP values and the bootstrap values of the multi-locus ML tree. Only bootstrap values > 75% and 

posterior probabilities > 85% are shown. 
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Kyllinga -- Kyllinga Rottb. forms a strongly supported monophyletic clade (Fig. 6.4). 

There is weak support for the Kyllinga clade as sister to a clade including Cyperus iria L., C. 

croceus Vahl and C. fulgens C.B.Clarke. Kyllinga is delimited by the combination of a head-like 

inflorescence, deciduous spikelets and laterally flattened gynoecia. Three subclades can be 

recognised in the current molecular phylogenetic hypothesis (Fig. 6.4). A detailed molecular 

phylogenetic study of Kyllinga, including AFLP data, is being prepared (Huygh, Bauters, 

Larridon, Reynders, Muasya, De Riek, Simpson & Goetghebeur, unpubl. data). 

Remirea and Sphaerocyperus -- The monotypic genera Remirea Aubl. and 

Sphaerocyperus Lye remain unresolved in C4 Cyperus (Fig. 6.4). Both taxa are characterised by 

a series of empty scales below the flower-bearing glume. For this reason affinities with 

Schoeneae or Rhynchosporeae had been suggested (Fenzl, 1836: p. 144; Bentham, 1883: p. 

1038; Ridley, 1884: p. 165; Pax, 1888: p. 116; Baillon, 1894: p. 377; Clarke, 1901-02: p. 267; 

Kükenthal, 1944: p. 200-209). Additionally, Remirea has corky rachilla internodes. 

Pycreus -- Pycreus P.Beauv. is here retrieved as a paraphyletic entity including several 

Cyperus spp. (Fig. 6.4). In Pycreus, relationships are poorly resolved although good resolution 

is obtained for some smaller clades of related species. Furthermore, one large clade is well-

supported and contains the majority of the sections and species in addition to Cyperus 

laevigatus L. (Fig. 6.4Ϳ. This Đlade is ƌefeƌƌed to as the ͚Đoƌe Pycreus Đlade͛. 

The Pycreus species which are not included in the core Pycreus clade all belong to four 

of KükeŶthal͛s ;1935-36) sections, namely Cyperus section Albomarginati Kük., C. section 

Lancei Kük, nom. superfl., C. section Polystachyi ;C. .ClaƌkeͿ Kük.  Ŷoŵ. ille .  C. section Pumili 

Kük. and C. section Rhizomatosi Kük. Their mutual relationships remain unresolved, but their 

position outside the core Pycreus clade can be justified since the species in these sections 

possess plesiomorphic characters 
2
in contrast to the species in the core Pycreus clade (Table 

6.3). 

Among the early branching lineages, two smaller clades are well-supported (Fig. 6.4). 

Pycreus longistolon (Peter & Kük.) Napper and P. macrostachyos (Lam.) J.Raynal are strongly 

supported together. Kükenthal (1935-36) classified P. longistolon in C. section Lancei, nom. 

superfl., a section which appears artificial since the species only share rather large and dark 

glumes. Pycreus macrostachyos was included in C. section Albomarginati [as Cyperus 

albomarginatus (Mart. & Schrad. ex Nees) Steud.]. Including P. longistolon in C. section 

                                                 
2
 Such as multinerved glumes with an excurrent mucro, pioneering growth strategy, ect. 
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Albomarginati seems appropriate in view of the overall habit of the plants (except for the 

stolons), the large dimensions of the spikelets, glumes and nutlets and the wide, hyaline 

glume margins. However, the last character is less conspicuous than in P. macrostachyos. 

Another well-resolved subclade corresponds to C. section Polystachyi, nom. illeg., and is 

characterised by typically elongated nutlets and a winged rachilla. Pycreus pelophilus 

C.B.Clarke is an exception in having broad nutlets. Nevertheless, it was placed in this section 

by Kükenthal (1935-36) and this relationship is confirmed here (Fig. 6.4). 

The strongly supported inclusion of Cyperus aterrimus (Fig. 6.4) in the early branching 

lineages of Pycreus is noteworthy since this species has triangular nutlets, a different 

inflorescence and overall larger dimensions of the glumes and nutlets compared to Pycreus. 

Cyperus aterrimus Hochst. ex Steud. is strongly supported as sister of Pycreus nuerensis 

(Boeckeler) S.S.Hooper, which it resembles in its growth form, dark coloured inflorescence 

and Afromontane distribution. Cyperus kerstenii Boeckeler and C. congestus Vahl also appear 

to be associated with the early branching Pycreus lineages, although without support. We 

found no morphological characteristics to support this relationship, especially since both 

species have deciduous glumes, a character which does not occur in Pycreus. The presence of 

species with triangular nutlets in Pycreus suggests a reversion of the dimerisation of the 

gynoecium. Recently, Vrijdaghs (2006) and Reynders et al. (2012) showed that gynoecia in 

Cyperoideae originate from an annular primordium on which stigma primordia originate. This 

offers more flexibility for the positioning of stigma branches with respect to the restrictions 

previously assumed based on the anatomical studies by Blaser (1941a, b). 

The core Pycreus clade only includes Pycreus spp., except for Cyperus juncelliformis 

Peter & Kük. and C. laevigatus. Cyperus juncelliformis is a true Pycreus, but its name has never 

been combined into Pycreus. Theƌefoƌe  its Ŷaŵe is ŵeŶtioŶed as ͚PǇĐreus’ juŶĐelliforŵis in 

figure 7.4. The association of C. laevigatus with the core Pycreus clade seems to be strong. It 

was verified by including three separate samples of C. laevigatus, and this relationship also 

occurred in the analyses of the three markers separately (Reynders, unpubl. data). Whereas 

Pycreus is characterised by laterally flattened dimerous gynoecia, C. laevigatus has 

dorsiventrally flattened dimerous gynoecia. This might either represent an intermediate state 

between a trimerous Cyperus ancestor and Pycreus or a derived state from a Pycreus 

ancestor. Moreover, the vascularisation pattern in the rachilla of C. laevigatus differs from the 
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pattern in rachillas of several Pycreus spp. studied by Reynders et al. (2012). Shared 

characters of C. laevigatus and Pycreus are the rather glossy glumes and their ecology. 

ETS1f sequences of the species in the core Pycreus clade (except C. laevigatus) show a 

large duplication of 140 bp, which is a strong additional argument that this represents a 

natural group. In the core Pycreus clade, several species clusters are resolved (Fig. 6.4). 

Pycreus flavidus (Retz.) T.Koyama clusters with ͚Pycreus͛ juncelliformis, corresponding to 

KükeŶthal͛s ;1935-36) Cyperus section Globosi (C.B.Clarke) Kük. The inclusion of P. niger (Ruiz 

& Pav.) Cufod. is morphologically supported by the similar nutlets and the shape of the 

glumes. In contrast, the inclusion of P. flavescens (L.) P.Beauv. ex Rchb. subsp. microglumis 

Lye is remarkable and needs further investigation. Morphologically, the species cluster of P. 

capillifolius (A.Rich.) C.B.Clarke and P. reductus Cherm. shows resemblances to C. section 

Globosi, but this relationship remains unresolved in the current study. Also, species of C. 

section Sulcati Kük., nom. illeg., are distributed between two clades, although the species of 

this section all share peculiar glumes with a furrow on both sides. Pycreus sanguinolentus 

(Vahl) Nees and P. bipartitus (Torr.) C.B.Clarke are smaller representatives of this section, 

whereas P. mundtii Nees and P. megapotamicus (A.Dietr.) Nees are taller plants with long 

culms with spaced leaves that form floating mats on open water. The clustering of P. 

melanacme Nelmes with this section needs further investigation, since this is in many ways a 

rather distinct therophytic species. 

Pycreus africanus (S.S.Hooper) Reynders, P. smithianus (Ridl.) C.B.Clarke, P. 

cataractarum C.B.Clarke, P. fibrillosus (Kük.) Cherm. and P. gracillimus Chiov. form a well-

resolved clade. Pycreus africanus belongs to P. section Tuberculati Cherm. (Reynders & 

Goetghebeur, 2010). Pycreus smithianus and P. cataractarum share many characters such as a 

contracted inflorescence, straight rachilla, bright white glumes and a Guineo-Congolean 

distribution, with a preference for habitats by running water. Kükenthal (1935-36) included 

both species in Cyperus section Propinqui (C.B.Clarke) Kük. Pycreus fibrillosus and P. 

gracillimus both have a plant base covered with fibrous remains of old leaf sheaths, an 

inflorescence reduced to only a few spikelets, a flexuous rachilla and a Zambesian distribution 

in Afromontane habitats. These species were respectively placed in C. section Propinqui and C. 

section Latespicati Kük. by Kükenthal (1935-36) based on their pale versus dark glumes. As 

this character seems to depend on altitude (many species of Cyperus s.l. growing above 2000 
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m have dark-coloured glumes), it is not considered reliable for sectional delimitation. 

Therefore, these two sections are likely to be polyphyletic. 

A final strongly supported clade contains species belonging to Cyperus section 

Latespicati (Pycreus alleizettei Cherm.) and C. section Flavescentes Kük. nom.superfl.  (P. 

flavescens, P. rehmanianus C.B.Clarke) sensu Kükenthal (1935-36). Pycreus xantholepis 

Nelmes, a tall therophyte, shares its yellow glume colour and nutlet shape with P. alleizettei 

and P. flavescens. The inclusion of P. melas (Ridl.) C.B.Clarke [C. section Globosi (C.B. Clarke) 

Kük.] needs further investigation, as this species is morphologically distinct. 

 

Table 6.3 Comparison between the noncore Pycreus species and the core Pycreus clade (with the exception of 

Cyperus laevigatus) 

Character Noncore species Core Pycreus clade 

Glumes 

Mucro 

 

Anthela 

 

 

Nutlet epidermal cells 

Ecology 

 

Distribution and habitat 

Multi-nerved 

Usually present, excurrent 

 

Well-developed with long and 

narrow spikelets, often with 

second-order branches 

Isodiametric 

Mostly opportunistic and lowland 

concentrated.  

Widespread and common on 

ƌoadsides aŶd ƌiĐe fields 

 

Midrib with only three nerves 

Not present or rarely shortly 

excurrent 

Often condensed or reduced, 

especially in therophytic species 

 

Isodiametric to strongly elongate 

Often very specialised 

 

Narrow distribution, occurring in 

high-altitude bogs, salt marshes, 

floatiŶ  oŶ opeŶ ǁateƌ  etĐ. 

 

 

7.7.4 Re-evaluating the generic status of the segregate lineages 

In this section of the paper, we re-evaluate the generic status of the segregate lineages 

based on the currently available knowledge about these taxa. This is a combination of 

ŵoƌpholo iĐal  aŶatoŵiĐal  oŶto eŶetiĐ aŶd  eŵďƌǇo ƌaphiĐal  …  data  aŶd the ƌesults of 

previous and current molecular phylogenetic studies. 

Alinula -- Goetghebeur & Vorster (1988) included four species in this genus. A species 

from eastern Africa was originally described as Ficinia lipocarphioides Kük. based on the 

presence of a hypogynous disc around the base of the fruit. However, after studying its 
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inflorescence morphology and chlorocyperoid anatomy, Raynal (1973) hypothesised that the 

species was intermediate between Ascolepis and Mariscus Vahl, and eventually placed it in a 

new genus Alinula (Raynal, 1977). Three more species were added to Alinula, after a complex 

taxonomical trajectory (e.g. Goetghebeur, 1977; Voster, 1978; Haines & Lye, 1983). In our 

opinion, the current circumscription of Alinula does not represent a natural group, although A. 

lipocarphioides, A. malawica (J.Raynal) Goetgh. & Vorster and A. peteri (Kük.) Goetgh. & 

Vorster show clear morphological affinities, such as the presence of pseudospikelets. 

However, since pseudospikelets also occur in other, more distantly related taxa of Cypereae 

(e.g. Ascolepis and Lipocarpha), their presence is, in our opinion, insufficient for generic 

delimitation. Moreover, A. lipocarphioides has been shown to be nested in the Lipocarpha 

clade (Muasya et al., in press). 

Ascolepis -- The head-like inflorescence of Ascolepis consists of clusters of single-

flowered spikelets, sometimes with a rudimentary second glume. Typically the spikelet 

prophyll does not develop, but the only glume subtending the single flower is always well-

developed and larger than the bract which subtends the spikelet. In other species, the glume 

encloses the flower completely and wings are often developed, possibly for wind dispersal. In 

other species, the glume is strongly elongated and/or brightly coloured, which gives the 

inflorescence heads an Asteraceae-like appearance (e.g. as in A. protea Welw.), suggesting 

insect pollination. Raynal (1973) postulated the origin of Ascolepis from a mariscoid ancestor. 

However, Goetghebeur (1980) argued that, although glume and nutlet are shed together in 

Ascolepis, the rachilla remains fixed on the rachis in contrast to Mariscus. Mariscus was an 

artificial genus grouping together members of Cypereae with deciduous spikelets. Our results 

concur with Muasya et al. (2002) in resolving Ascolepis and Lipocarpha as sister taxa. 

Morphological differentiation in these two taxa shows that similar functional inflorescences 

originated in both groups using different organs (e.g. A. protea vs. L. comosa). In Lipocarpha, 

the spikelet bract is strongly developed, whereas the glume subtending the flower is reduced. 

In Ascolepis, the spikelet bract is rudimentary, whereas the glume subtending the flower is 

strongly developed. Because of the morphological diversity of the inflorescence, rachilla and 

glumes among the different subgroups in Ascolepis, Goetghebeur (1986) considered the 

possibility that Ascolepis is a complex of convergent lineages which developed a similar 

inflorescence Bauplan. A  more thorough molecular investigation of Ascolepis is needed to 

test the monophyly of this taxon.  
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Kyllinga -- Kyllinga is characterised by the combination of laterally flattened gynoecia, 

deciduous spikelets with a reduced number of flowers and capitate inflorescences. The close 

relationship of Kyllinga with Cyperus has always been acknowledged and various authors have 

treated Kyllinga at the subgeneric level in Cyperus (e.g. Kükenthal, 1935-36; Haines & Lye, 

1983). However, Kyllinga has always been considered a homogeneous, natural entity, as 

illustrated by the fact that several authors have maintained Kyllinga as a separate genus while 

lumping Mariscus, Pycreus, Torulinium Desv. ex Ham. and Juncellus C.B.Clarke in Cyperus (Lye, 

1972, 1982; Tucker, 1983). The monophyly of Kyllinga is confirmed by our results where it is 

retrieved as a strongly supported clade (Fig. 6.4). Since (1) Kyllinga is nested in C4 Cyperus, (2) 

capitate inflorescences with reduced, deciduous spikelets (i.e. pseudospikelets) are 

encountered in various lineages in C4 Cyperus, such as Cyperus section Bulbocaules 

(C.B.Clarke) Kük., Ascolepis, Lipocarpha and Remirea and (3) laterally flattened gynoecia also 

occur in Pycreus and Queenslandiella which are not immediately related, there are in our 

opinion no sufficient arguments to warrant generic status for Kyllinga. 

Lipocarpha -- Lipocarpha spp. generally have a highly specialised inflorescence 

consisting of a spike of highly reduced spikelets with each spikelet, subtended by a bract, 

containing an abaxial prophyll and an adaxial glume subtending the flower. A few Lipocarpha 

spp. have lost the glume subtending the flower, although some rudiments of it remain visible 

(Goetghebeur & Van den Borre, 1989). These species were originally classified in a separate 

genus Hemicarpha, based on the reduction of the glume and the presence of a pseudolateral 

inflorescence (Nees & Arnott, 1834). Since the type species of Hemicarpha Nees, H. isolepis 

Nees (accepted name: L. hemisphaerica (Roth) Goetgh. ), does not show this reduction, 

Hemicarpha was synonymised with Lipocarpha (Goetghebeur & Van den Borre, 1989). 

Lipocarpha micrantha, which belongs to this group, is sister to all other Lipocarpha spp. 

studied, including Volkiella. 

Haines & Lye (1971, 1983) and Goetghebeur & Van den Borre (1989) considered 

Rikliella to represent a final reduction step of a Lipocarpha spikelet in which the spikelet 

prophyll and glume subtending the flower are lost, resulting in a perfect pseudospikelet with 

flowers in the axil of the spikelet bracts. Hemicarpha was indicated as the transitional stage 

between Lipocarpha and Rikliella. Hemicarpha and Rikliella are no longer recognised at 

generic level (Goetghebeur & Van den Borre, 1989; Govaerts et al., 2012). Our results place 

the two species of Rikliella (L. rehmannii and L. kernii) on a separate, strongly supported 
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branch and not as a specialised lineage of Lipocarpha. This questions previous interpretations 

of its inflorescence Bauplan. 

As in Alinula, Ascolepis and Kyllinga, we do not consider the presence of 

pseudospikelets enough to warrant generic status for Lipocarpha. Furthermore, in this study, 

Lipocarpha is found to be paraphyletic, containing Ascolepis and Volkiella. A more detailed 

study of Lipocarpha and Rikliella will be published elsewhere (Bauters et al., submitted). 

Pycreus -- Pycreus is the largest segregate genus in C4 Cyperus. Furthermore, it is 

morphologically and ecologically diverse. The close relationship between Cyperus and Pycreus 

has never been doubted since Pycreus only differs from Cyperus s.s. in its laterally flattened 

gynoecia. These gynoecia also occur in Kyllinga and Queenslandiella, which, in contrast to 

Pycreus, also have deciduous spikelets. The generic status of these taxa has always been 

controversial and their status strongly correlated with the taxonomic value granted to 

laterally flattened gynoecia. From our results, it is evident that taxa with laterally flatttened 

gynoecia are not sister groups, and Kyllinga is strongly supported as separate entity. 

Therefore we can conclude that there have been multiple independent origins of lateral 

gynoecia in Cypereae. 

Our current molecular phylogenetic study includes species representing all 13 sections 

of Kükenthal (1935-36). Although relationships between the different sections remain poorly 

resolved, several patterns need further attention. Pycreus is not monophyletic, since species 

that Kükenthal (1935-36) included in Cyperus sections Albomarginati, Polystachyi, nom. illeg., 

Pumili and Rhizomatosi are found in the main C4 Cyperus polytomy (Fig. 6.4). Many species of 

these sections share several plesiomorphic characters which also occur in C4 Cyperus, whereas 

species in the core Pycreus clade show more evolved character states (see Table 6.3). As in 

Kyllinga, we do not consider laterally flattened gynoecia sufficient to maintain Pycreus at the 

generic level, especially as it resolved as polyphyletic in the present study. 

Queenslandiella -- Queenslandiella is a third taxon nested in the C4 Cyperus polytomy, 

which is characterised by laterally flattened gynoecia. It shares the open inflorescence with 

Pycreus (which is the plesiomorphic condition in C4 Cyperus). However, it was most often 

considered to be related to Kyllinga with which it shares deciduous spikelets, and keeled and 

multi-nerved glumes (Chermezon, 1919; Ballard, 1932, 1933; Koyama, 1977). The species has 

always been placed in or near Cyperus. However, even when included in Cyperus, it was most 
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often retained in its own section or subgenus (Kern, 1974; Govindaralaju, 1975; Haines & Lye, 

1983). 

As with the other specialised, short lived and monotypic segregate lineages, 

Queenslandiella has also accumulated many peculiar characters which isolate it from the 

other C4 Cyperus taxa. These characters include the large proportions of glumes and nutlets 

compared to most other Cyperus spp., vegetative anatomy (Govindaralaju, 1975) and embryo 

type (Van der Veken, 1965). Several Cyperus spp. have been considered closely related to 

Queenslandiella, including Cyperus soyauxii Boeckeler, which has similar deciduous spikelets 

with similar glumes and a similar embryo (Kükenthal, 1936; Van der Veken, 1965) but has 

trimerous pistils (Goetghebeur, 1986). Lye (1983) described Cyperus micromariscus Lye, which 

is only known from its type collection in Tanzania. This plant also has an open inflorescence 

with deciduous spikelets and laterally flattened pistils comparable to Queenslandiella but 

differs in the small glumes and nutlets and different habit. Therefore Lye (1983) assumed a 

different origin of this species and placed it in its own Cyperus subgenus Micromariscus Lye 

(Haines & Lye, 1983). The relationship of Queenslandiella to both C. soyauxii and C. 

micromariscus need further confirmation. As for the segregates above, we do not consider the 

specialised characters of Queenslandiella sufficient to warrant recognition at generic level. 

Remirea -- Remirea is another monotypic entity with special adaptations to its coastal 

habitat. It is characterised by a capitate inflorescence with deciduous spikelets. Each spikelet 

contains a few empty glumes at the base and a corky rachilla which envelops the fruit. For 

these reasons, it had been classified among Rhynchosporeae (Fenzl, 1836; Bentham, 1883; 

Pax, 1888; Baillon, 1894; Clarke, 1901-02; Kükenthal, 1944; Haines & Lye, 1983). However, 

Nees (1834) had already placed Remirea correctly in Cypereae. After Kunth (1837) gave a 

correct interpretation of the spikelet, this opinion was followed by Chermezon (1922), Kern 

(1958, 1974), Oteng-Yeboah (1975), Hooper (1983) and Goetghebeur (1986, 1998). 

Remirea is nested in the main C4 Cyperus polytomy similar to Sphaerocyperus (Fig. 6.4), 

which also has empty glumes in the lower part of the spikelets. The relationship between 

these two taxa remains unclear. However, we do not believe empty glumes at the base of the 

spikelets to be sufficient as a generic character considering that other links with C4 Cyperus 

are clear. The corky rachilla is also observed in Cyperus odoratus L. (formerly in the genus 

Torulinium Desv. ex Ham.), a species with multiple flowers in which the rachilla breaks up into 
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individual segments. The affinity between Remirea and C. odoratus needs further 

investigation. 

Sphaerocyperus -- The deciduous spikelets of the monotypic Sphaerocyperus have six 

or seven distichously arranged glumes of which only one bears a maturing nutlet. The sole 

species has variously been placed in Actinoschoenus Benth., Cyperus, Schoenus L. and 

Rhynchospora Vahl before it was described as a separate genus Sphaerocyperus (Lye, 1972). 

Like Remirea, we consider the empty glumes as insufficient to retain this taxon as a separate 

genus nested in a paraphyletic Cyperus with which it shares clear morphological affinities. 

Volkiella -- Volkiella is a rare monotypic taxon from south-western Africa (mainly 

Namibia) and can be seen as an extremely specialised lineage adapted to psammophytic 

habitats. When described, Volkiella was considered to be intermediate between Cyperus and 

Lipocarpha (Merxmüller & Czech, 1953). The relationship with Lipocarpha was explained by 

the siŵilaƌ pƌeseŶĐe of the tǁo ͞floƌal sĐales͟ ;͞hǇpo ǇŶeŶ “kaleŶ͟Ϳ of ǁhiĐh the ĐoƌƌeĐt 

interpretation was not yet clear, but the relationship with Cyperus was assumed based on the 

distiĐhous plaĐeŵeŶt of the ͞Gluŵae͟ ǁhiĐh aƌe iŶ faĐt the spikelet ďƌaĐts aŶd thus Ŷot 

homologues of the glumes in Cyperus and other sedges. This initial interpretation was 

followed by Van der Veken (1965) and Raynal (1973), but was later correctly interpreted by 

Goetghebeur (1986, 1998). As in several other lineages such as Ascolepis, Lipocarpha and 

Alinula, Volkiella shows highly derived pseudospikelets with a Bauplan comparable to that of 

Lipocarpha possessing a spikelet bract, a spikelet prophyll, a proximal glume subtending the 

single flower and a spikelet bract larger than the glume. Peculiarly, in Volkiella, the spikelets 

are distichously arranged on the spike axis whereas this position is spiral in all other C4 

Cyperus spp. Although Volkiella shows an abundance of autapomorphic, derived characters 

which isolate it from all other C4 Cyperus spp., it is nested in Lipocarpha and should thus be 

sunk into Cyperus together with Lipocarpha. 

 

7.7.5 Basis for a modern classification of Cyperus 

From the current and previous molecular phylogenetic analyses it is evident that the 

classification of Goetghebeur (1998) in Cypereae can no longer be upheld without accepting 

paraphyletic genera. Although most of the segregate genera are morphologically well-

circumscribed, the rapid diversification of the Cyperus clade has resulted in several nested 

paraphyletic entities (e.g. the genus Volkiella is nested in the genus Lipocarpha, which is 
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nested in the group of C4 Cyperus spp. formerly known as Mariscus, and C4 Cyperus is, in turn, 

nested in C3 Cyperus). Moreover, most morphological characteristics used for the delimitation 

of the different genera related to Cyperus appear to have a high level of homoplasy in the 

Cyperus clade (e.g. spiral glumes, dorsiventrally flattened dimerous pistils, deciduous 

spikelets, pseudospikelets; Fig. 6.3). Subsequently, different combinations of the same sets of 

these morphological characters have been used to circumscribe most taxa. 

Larridon et al. (2011a, b) placed the C3 segregate genera in C3 Cyperus based on a well-

resolved phylogenetic hypothesis combined with morphological, embryographical, 

ontogenetic and anatomical data. In that paper, a classification for the Cyperus clade was 

suggested in which two subgenera are recognised. Although Cyperus subgenus Anosporum 

(Nees) C.B.Clarke  (C3 Cyperus) is currently circumscribed as a paraphyletic entity (Larridon et 

al., 2011a, b), the single origin of C4 photosynthetic pathway, a clear apomorphy for the C4 

Cyperus clade, forms a sufficiently strong argument for the use of an evolutionary approach 

restricted to the subgeneric level in Cyperus. For the lower level classification a cladistic 

approach was followed in circumscribing only monophyletic sections and subsequently the 

segregate genera will be included in existing or new sections in Cyperus. 

This classification can be extended to include the different taxa of the C4 Cyperus clade 

(Cyperus subgenus Cyperus). However, since most segregate genera are nested in a hard 

polytomy with many species from different sections of Cyperus s.s. and since the lower level 

relationships in several segregate genera are poorly resolved, it is currently premature to 

build a new sectional classification for the largest part of Cyperus subgenus Cyperus. A joint 

international effort will be necessary to expand the current phylogenetic studies with more 

DNA markers and taxa. This will then serve as a basis for the growing modern classification of 

the giant genus Cyperus. 

 

7.8 Conclusions 

From the data presented here we conclude that the Cyperus clade consists of a 

paraphyletic C3 Cyperus and a well-supported monophyletic C4 Cyperus clade. Nine segregate 

genera are nested in C4 Cyperus, i.e. Alinula, Ascolepis, Lipocarpha, Kyllinga, Pycreus, 

Queenslandiella, Remirea, Sphaerocyperus and Volkiella, most of which are monophyletic. 

Because they are nested in the Cyperus clade and as a consequence of the multiple origins of 

the characters used to circumscribe them, we suggest including all nine C4 Cyperus segregate 
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genera into a more broadly circumscribed Cyperus. This study establishes a phylogenetic 

framework for future studies of the different C4 Cyperus sections and segregates and for the 

taxonomic inclusion of the C4 segregate genera into Cyperus s.l. 
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͞Of course in science there are things that are open to doubt 

and things need to be discussed. But among the things that 

science does know, evolution is about as certain as anything we 

know.͟  

― Richard Dawkins (1941 -    ) 

7 Nutlet micromorphology 
 

 Fig. 7.1 Nutlet epidermal cells of P. micromelas. 

 

Spikelet theme: Pycreus flavidus 
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7.1 In this chapter… 

 Chapter 7 shows the results of a micromorphological study of the nutlet epidermis in 

Pycreus. The SEM observations are combined with the results of the molecular 

phylogenetic study of chapter 6 to reevaluate the diagnostic value of nutlet characters 

and character states.  

 This study of the variation in nutlet epidermal cells in Pycreus was performed in 

collaboration with Ľuďoš Majeský (Palacký University in Olomouc, Czech Republic), 

who worked at the Spermatophytes Research Group in 2004, during an internship. 

 The results of this chapter are currently unpublished. 

  

7.2 Abstract 

Pycreus is the largest of the so called segregate genera nested within the C4 subclade 

of Cyperus. Variation in small structures as glumes and nutlets seems to be remarkably large 

in Pycreus. In the past variation in nutlet epidermis has already been used as a key 

characteristic in the subgeneric taxonomy of the genus. Generally two main types had been 

distinguished: isodiametric and elongated nutlet epidermal cells. To be able to re-evaluate the 

value of the variation in nutlet epidermis for subgeneric taxonomy in Pycreus, the nutlet 

surface is studied here using SEM.  In addition to the shapes of the cells, also the variation in 

silica bodies has been studied. Next to isodiametric and elongates cells, several species show a 

variety of cells with intermediate elongations. Of silica bodies three main types have been 

observed, each with several subtypes. In some species silica bodies were reduced or even 

absent. It is very hard to draw conclusions on homoplasy since the infrageneric relationships 

are poorly resolved. However, isodiametric cells with a single tabular silica body seem to be 

common among the noncore species, while isodiametric to zonate cells with silica bodies with 

a knobby apex or with silica bodies lacking are related to the core clade. Among the species of 

several sections of the classification of Kükenthal there seems to be a variation rather than a 

single cell type.  
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7.3 Introduction 

7.3.1 The nutlet epidermis, a key diagnostic character in Pycreus? 

Recent molecular studies (Muasya et al., 2002; Larridon et al., 2011a, 2013) all show 

the Cyperaceae genus Pycreus to be nested within the C4 Cyperus along with several other 

previously recognised genera. Moreover, Pycreus is not confirmed as a monophyletic entity as 

only one subclade is supported, which is sister to Cyperus laevigatus. Since the position of the 

other species remains unresolved, it is not yet clear whether Pycreus represents a 

paraphyletic or polyphyletic taxonomical entity. However, it is clear that a generic status 

separately from Cyperus can no longer be maintained. Previously, Pycreus was considered to 

be a well circumscribed taxon, characterised by its laterally flattened dimerous pistils in 

combination with fruits and glumes that are deciduous separately from the rachilla at 

maturity (Goetghebeur, 1998). 

Adaptation to several similar habitats resulted in many similarities in growth forms and 

morphological adaptations of Pycreus species. In the past, this was the source for many 

misclassifications and several heterogeneous sections (e.g. Kükenthal, 1935-36). The variation 

in small structures as glumes and nutlets is remarkably large in Pycreus. The variation in nutlet 

epidermis was used as a key character in the subgeneric taxonomy of the group (see chapter 

5). Generally, authors distinguished two main types of nutlet epidermal cells: isodiametric 

cells (cells which have more or less the same length and width) and zonate cells (strongly 

elongated cells). Usually isodiametric cells also possess silica bodies in the centre of each cell, 

which makes the nutlet surface appear to be puncticulate. The elongated cells of the zonate 

type on the other hand cause the short walls between the cells to become uplifted from the 

nutlets surface, resulting in a fringed appearance. There should be remarked that Chermezon 

(1937) described a third type, with a tuberculate nutlet surface (for P. divulsus). However this 

type is, unlike the previous groups, not caused by the shape of the epidermal cells (Reynders 

& Goetghebeur, 2010; see chapter 8), therefore, it is not further considered here.  Although 

the classification of Kükenthal (1935-36) using either isodiametric or zonate cell types has the 

appearance of being clear cut, there is also a grey zone of cell types with intermediate forms 

between isodiametric and zonate cells (in most cases lacking silica bodies). These were first 

classified by Clarke (1894) together with the zonate cells in the Reticulati, but later removed 

and added to the Puncticulati to form the Isodiametrici. Kükenthal took over the latter 
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strategy but Mariën (1969) suggested to classify them in a third (but unpublished) group 

͚Miǆtae͛. For sectional delimitations, both Kükenthal (1935-36) and Mariën (1969) opted that 

each section should contain only species with the same type of nutlet epidermal cells. 

To re-evaluate the value of the variation in nutlet epidermis for subgeneric taxonomy 

in Pycreus, the nutlet surface is studied here using scanning electron microscopy. This allows 

for a much more detailed view of the cells shapes and also of the variations in silica bodies, 

which have previously not yet been recorded in detail for Pycreus. In a detailed study of 

Lipocarpha, there appeared to be a large variation of silica bodies (Goetghebeur & Van den 

Borre, 1989), even within one single species. In Lipocarpha, these appeared to have only a 

moderate taxonomical value.  

The following research questions will be addressed in this chapter:  

1. Which characters and character states can be defined for the nutlet epidermis? 

2. Can these character (states) be useful for subgeneric taxonomy? 
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Fig. 7.2 Examples of isodiametric cells from three lineages of C4 Cyperus:  A. Cyperus longus (Coppejans 

5696). B. Kyllinga polyphylla (Lewalle 8399). C. Queenslandiella hyalina (Kilian & Lobin 2097). 
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Table 7.1 Specimens studied. The classification in groups and sections occurred according to Kükenthal (1935-36) 

(ISD = Isodiametrici group, Rhi-Rhizomatosi, Fon-Fontinales, Prp-Propinqui, Lan-Lancei, Glo-Globosi, Alb-

Albomarginati, Pol-Polystachyi, Pum-Pumili, Sul-Sulcati, ZON = Zonati group, Lat-Latespicati, Mur-Muricati, Fla-

Flavescenti). In the right column the numbers of the pictures displayed in this chapter are given for each 

specimen. Abbreviations c and n respectively indicate only the picture of the epidermal cells or complete nutlet 

are given for that specimen. For all other cases bot nutlets and cells are shown from the same specimen. 

SPECIES COUNTRY COLLECTOR NUMBER SECTION Fig. 

Cyperus longus Kenya Coppejans 5696 / 7.2A 

Kyllinga polyphylla Burundi Reekmans 8399 / 7.2B 

Pycreus africanus Congo Léonard 4156 ZON/Mur 7.10E 

Pycreus atribulbus S. Africa Browning 172 ISD/Pol 7.3H 

Pycreus betschuanus S. Africa Reid 794 ISD/Lan 7.4H 

Pycreus bipartitus Ecuador Laegaard 101015 ISD/Sul 7.5D 

Pycreus capillifolius Burundi Reekmans 8811 ISD/Glo 7.4F 

Pycreus cataractatum Cameroon de Wilde 1452 ISD/Prp 7.8D c 

Pycreus cataractatum Zambia Richards 2143 ISD/Prp 7.8D n 

Pycreus demangei Angola Hess 52/1983 ? 7.9E c 

Pycreus demangei Angola Hess 52/1835 ? 7.9E n 

Pycreus divulsus Madagascar Perrier de la Bâthie 13052 ZON/Mur 7.10D 

Pycreus flavescens S. Africa Reid 1079 ZON/flav 7.7H 

Pycreus flavidus var. nilagiricus China Clemens 1345 ISD/Glo 7.4A 

Pycreus fontinalis Zambia Robinson 3705 ISD/Fon 7.6B 

Pycreus gracillimus Zambia Robinson 4182 ISD/Lan 7.8B 

Pycreus intactus Senegal Vanden Berghen 2554 ISD/Pol 7.3J 

Pycreus intactus S. Africa Reid 559 ISD/Pol 7.3J 

Cyperus juncelliformis Zaire 
Malaisse & 

Goetghebeur 
409 ISD/Prp 7.4D 

Pycreus lanceolatus Burundi Reekmans 4907 ISD/Prp 7.7C 

Pycreus lanceolatus Burundi Reekmans 5280 ISD/Prp 7.7D 

Pycreus longistolon Tanganyika Bullock 3630 ISD/Lan 7.3A 

Pycreus macrostachyos Burundi Reekmans 4337 ISD/Alb 7.3B 

Pycreus megapotamicus Argentina Goetghebeur 4826 ISD/Prp 7.5E 

Pycreus melanacme Congo Schmitz 1294 ISD/? 7.5F 

Pycreus melas Zimbabwe Brain 8945 ISD/Glo 7.4G 

Pycreus micromelas Zambia Robinson 2310 ISD/? 7.6A 

Pycreus mortonii Burundi Reekmans 10342 ISD/Prp 7.7B 

Pycreus mundtii Rwanda Bouxin & Radoux 1178 ISD/Sul 7.5B 

Pycreus muricatus S. Africa Browning 633 ZON/Mur 7.10A 

Cyperus nervulosus Australia Wilson 3336 ISD/Pum 7.3C 

Pycreus niger subsp. 

elegantulus 
Rwanda Bouxin 909 ISD/Prp 7.4B 

Pycreus nigricans Uganda Greenway &Eggeling 7115 ISD/Lan 7.9B 

Pycreus nitidus Burundi Reekmans 8814 ISD/Lan 7.9A 

Cyperus oakfortensis S. Africa Taylor 117 ISD/Lan 7.5A 
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Pycreus overlaetii Zambia Robinson 4651 ZON/Fla 7.7E 

Pycreus pauper Cameroon Raynal 12334 ZON/Mur 7.9D 

Pycreus pelophilus Burundi Reekmans 2547 ISD/Pol 7.3F 

Pycreus poikilostachys Congo Malaisse 11551 ISD/Glo 7.4C 

Pycreus polystachyos Burundi Lewalle 6290 ISD/Pol 7.3G 

Pycreus pseudohildebrandtii Kenya Coppejans 5699 A ISD/Pol 7.3I 

Pycreus pumilus Burundi Reekmans 4383 ISD/Pum 7.3D 

Pycreus reductus Madagascar Dhondt 11 ISD/Rhi 7.4E 

Pycreus rhizomatosus Madagascar Gerau&Dumetz 5259 ISD/Rhi 7.3E 

Pycreus sanguinolentus Mississippi /USA/ Carter 11545 ISD/Sul 7.5C 

Pycreus scaettae Congo Troupin 618 ISD/Prp 7.8A 

Pycreus smithianus Burundi Reekmans 8057 ISD/Prp 7.8C n 

Pycreus smithianus Burundi Reekmans 2399 ISD/Prp 7.8C c 

Pycreus tener Brazil Irwin 15171 ISD/Prp 7.7A 

Pycreus unioloides Zambia Robinson 3339 ISD/Lan 7.7F 

Pycreus vicinus Madagascar Dhondt 4 ZON/Mur 7.7G 

Pycreus waillyi Congo Witte 6170 ZON/Lat 7.9F 

Pycreus xantholepis Congo Germain 6874 ISD/Fon 7.7I 

Pycreus aff. xantholepis Zambia Robinson 1299 ISD/Fon 7.7J 

Pycreus zonatus Zambia Robinson 3449 ZON/Mur 7.9C 

Queenslandiella hyalina Somalia Kilian&Lobin 2097 / 7.2C 

 

 

7.4 Materials and methods 

7.4.1 Plant material 

Nutlets used for this study were obtained from herbarium specimens from GENT and 

BR. All Pycreus species studied are mainly of (central) Africa and Madagascar, except to a few 

species from the Americas and two from Asia. From each specimen, two to ten mature nutlets 

were selected from each specimen, which can be recognised by a dark grey to black colour. 

We took care to have represented all sections according to Kükenthal (1935-36) in his Cyperus 

subgenus Pycreus with at least one specimen. 

7.4.2 Acid treatment 

Without any treatment, silica bodies are visible as cone-like structures in most 

Isodiametrici. When the fruit ripens this outer cell walls sometimes spontaneously disappears, 

or dries around the silica bodies. When the outer wall of the epidermis is removed, the silica 

cones and sometimes also satellites and other tubular structures, become visible. In some 

species the silica bodies (if present) cannot be seen without removal of the outer cell walls. 
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In this study, we used a modified technique from Goetghebeur and Van den Borre 

(1989). To remove the cell walls, the samples were transferred to 1,5 ml eppendorf tubes with 

1M sulphuric acid and 1M acetic acid (1:9) and subsequently treated with an ultrasonic 

cleaner during 30 minutes. One half of the samples was used for acid treatment while the 

other were left untreated.  

7.4.3 SEM study 

For SEM observation, two nutlets (one treated and one untreated) of each specimen 

were transferred to aluminum stubs using Leit-C and coated with gold with a SPI-Module™ 

Sputter Coater (SPI Supplies, West-Chester, PA, USA). Images were obtained using a JEOL JSM-

5800 LV (JEOL, Tokyo) scanning electron microscope at the National Botanic Garden of 

Belgium in Meise. Pictures were taken of the complete nutlet (treated, untreated), a detailed 

picture of the cells at the surface of treated/untreated nutlets and a picture of surface from 

lateral view.  

For the description of silica bodies, Ollendorf (1992) produced a categorisation of silica 

bodies in sedges based on the variations in the shape and top of the central silica body, the 

plate and satellites. Each character state is subsequently coded by a letter, which results in a 

string of  5-6 characters. However, the resulting code is difficult to interpret and to compare 

among species as small variations give different letters in the code (e.g. Majesky, unpublished 

data). Therefore, in the current study, we categorized silica bodies into different broader 

morphotypes and several subtypes (table 7.2). 
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Table 7.2 Overview of the main silica body types that have been observed among Pycreus species. 

Picture Type + characters Species 

Type 1: tabular with smooth apex 

 

Type 1a: 

 central tabular sb 

 no satellites 

 plesiomorphic state 

 

Common: 

 outgroup species 

 noncore clades 

 core clade: only observed in P. 

micromelas and sometimes also 

in P. capillifolius 

 

Type 1b: 

 central tabular sb 

 1 row of satellites around the 

central silica body 

 derived from 1a 

Restricted to P. rhizomatosus 

 

Type 1c: 

 central tabular sb 

 Satellites around the fringe of 

the top of the central body 

 derived from 1a 

Restricted to P. polystachyos & P. 

atribulbus 

 

Type 1d: 

 narrow central tabular sb 

 no satellites 

 derived from 1a 

Restricted to P. hildebrandtii 

Type 2: rounded with knobby apex 

 

Type 2a: 

 central sb rounded with knobby 

apex 

 no satellites 

 derived from 1a 

Common: 

 core clade 

 most often in species with 

isodiametric cell type 



Nutlet micromorphology ______________________________________________ 

 

239  

 

Type 2a reduced form: 

 central sb rounded but small 

 top with only a few knobs 

 no satellites 

 derived from 2a 

Common: 

 core clade 

 most often in species with 

intermediate to zonate cell 

types 

 

Type  2b: 

 central sb rounded with knobby 

apex 

 small cone shaped satellites 

around the central sb 

 derived 

 derived from 2a 

 

Restricted to P. reductus and P. 

capillifolius 

 

Type 2c: 

 central sb rounded with sharply 

pointed knobs 

 small pits around central sb 

 derived from 2a 

Restricted to P. melas and P. 

betschuanus 

 

Type 2d: 

 cental sb rounded with 

knobs 

 central sb uplifted 

 small rounded satellites 

around central sb 

 derived from 2a 

Restricted to P. poikilostachys 

Type 3:  cone shaped 

 

Type 3a: 

 low cone shaped central sb 

 small knobs only on apex 

 derived from 2a 

Restricted to P. megapotamicus 

 

Type 3b: 

 high cone shaped central sb 

 smooth 

 derived from 2a or 3a 

Restricted to P. melanacme 

 

 



  ______________________________________________________ Chapter 7 

    

240 

Table 7.3 Overview of species studied with mentioning of phylogenetic group (noncore clades, core clade or 

outgroup), sectional classification of Kükenthal (x indicates the species was not known by Kükenthal, 1935-36), 

the current most likable sectional position, the cell type (iso= isodiametric= as wide as long, int= intermediate= 

longer than wide but less than twice as long as wide, zon= zonate= more than twice as long as wide, main silica 

body type observed in this study. Colour codes help to recognize patterns between the different columns. 

SPECIES 
Phylogenetic 

position 

Cell 

type 

Silica 

body 

type 

section 

Kükenthal 

Current 

section 

Cyperus longus Outgroup iso Type 1a 
  

Kyllinga polyphylla Outgroup iso Type 1a 
  

Queenslandiella hyalina Outgroup iso Type 1a 
  

Pycreus longistolon 
Noncore 

Pycreus 
iso Type 1a Lancei Albomarginati 

Pycreus macrostachyos 
Noncore 

Pycreus 
iso Type 1a Albomarginati Albomarginati 

Pycreus nervulosus 
Noncore 

Pycreus 
iso Type 1a Pumili Pumili 

Pycreus pumilus 
Noncore 

Pycreus 
iso Type 1a Pumili Pumili 

Pycreus rhizomatosus 
Noncore 

Pycreus 
iso Type 1b Rhizomatosi Rhizomatosi 

Pycreus pelophilus 
Noncore 

Pycreus 
iso 

Type 

1a(r) 
Polystachyi Pycreus 

Pycreus atribulbus 
Noncore 

Pycreus 
iso Type1c Polystachyi Pycreus 

Pycreus intactus 
Noncore 

Pycreus 
iso Type 1a Polystachyi Pycreus 

Pycreus polystachyos 
Noncore 

Pycreus 
iso Type 1c Polystachyi Pycreus 

Pycreus pseudohildebrandtii 
Noncore 

Pycreus 
iso Type 1d Polystachyi Pycreus 

Pycreus micromelas Core Pycreus iso Type1a x Sect. nov.1 

Pycreus niger subsp. 

elegantulus 
Core Pycreus iso 

Type 

2a(r) 
Propinqui Globosi1 

Pycreus flavidus var. 

nilagiricus 
Core Pycreus iso Type 2a Globosi Globosi1 

Cyperus juncelliformis Core Pycreus iso Type 2a Propinqui Globosi1 

Pycreus poikilostachys Core Pycreus iso Type 2d x ? 

Pycreus capillifolius Core Pycreus iso Type 2b Globosi Globosi2 

Pycreus reductus Core Pycreus iso Type 2b x Globosi2 

Pycreus melas Core Pycreus iso Type 2c Globosi Globosi3 

Pycreus betschuanus Core Pycreus int Type 2c Lancei Globosi3? 

Cyperus oakfortensis Core Pycreus iso Type 2a Lancei Sulcati 

Pycreus mundtii Core Pycreus iso Type 2a Sulcati Sulcati 

Pycreus megapotamicus Core Pycreus iso Type 3a Propinqui Sulcati 
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Pycreus sanguinolentus Core Pycreus iso 
Type 

2a(r) 
Sulcati Sulcati 

Pycreus bipartitus Core Pycreus iso 
Type 

2a(r) 
Sulcati Sulcati 

Pycreus melanacme Core Pycreus iso Type 3b x Sulcati 

Pycreus africanus Core Pycreus int absent x Tuberculati 

Pycreus divulsus Core Pycreus int absent Muricati Tuberculati 

Pycreus gracillimus Core Pycreus int Type 2a Latespicati Propinqui2 

Pycreus scaettae Core Pycreus iso/int Type 2a Propinqui Propinqui2 

Pycreus smithianus Core Pycreus int Type 2a Propinqui Propinqui2 

Pycreus cataractarum Core Pycreus zon absent Propinqui Propinqui2 

Pycreus mortonii Core Pycreus iso 
Type 

2a(r) 
x Zonati 

Pycreus tener Core Pycreus iso 
Type 

2a(r) 
x Zonati 

Pycreus lanceolatus Core Pycreus iso/int 

Type 

2a(r)/ 

absent 

Propinqui Zonati 

Pycreus unioloides Core Pycreus int/zon absent Lancei Zonati 

Pycreus overlaetii Core Pycreus zon absent x Zonati 

Pycreus vicinus Core Pycreus zon absent Latespicati Zonati 

Pycreus flavescens Core Pycreus zon absent Flavescentes Zonati 

Pycreus aff. xantholepis Core Pycreus int Type2a(r) x Zonati? 

Pycreus xantholepis Core Pycreus int absent x Zonati? 

Pycreus fontinalis Core Pycreus int absent Fontinales Fontinales 

Pycreus nitidus Core Pycreus iso Type 2a Lancei ? 

Pycreus nigricans Core Pycreus int Type 2a Lancei Colorati 

Pycreus pauper Core Pycreus zon Type 2a Muricati Colorati? 

Pycreus zonatus Core Pycreus zon Type 2a Muricati Colorati? 

Pycreus muricatus Core Pycreus zon absent Muricati Colorati? 

Pycreus demangei Core Pycreus int absent x ? 

Pycreus waillyi Core Pycreus zon absent x ? 
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7.5 Results 

7.5.1 The nutlet epidermis in Cyperus, Kyllinga and Queenslandiella 

 In the Cyperus, Kyllinga and Queenslandiella species studied, the nutlet epidermal cells 

appear to be more or less isodiametric (Fig. 7.2). Each cell contains a single tabular silica body 

(Type 1a; table 7.2). 

 

7.5.2 Variation in the shapes of nutlet epidermal cells in Pycreus 

In our study, we found a large variation in the ornamentation of the cells with silica 

bodies and in the shape of the nutlet epidermal cells. The shape of the cells is from regular or 

irregular hexagonal (like a honeycomb), over more or less irregular polygonal, to elongated 

cells, which in some sections give a transversely wrinkled aspect to the nutlets. In some cases 

irregular cells or mixtures of the previous types were observed.  

All outgroup species studied (Fig. 7.2) as well as the species from the noncore sections 

possess isodiametric cells. In the core Pycreus clade, all types can be found (see table 7.3). 

 

7.5.3 Variation in silica bodies in Pycreus 

There is a large variation in shapes and in the presence of appendages or satellites 

around the central silica body. Although variation seems to linked to single species, some 

more general types can be found. We distinguish between three main types of silica bodies, 

each with several derived types (table 7.2). Table 7.3 gives an overview of the different 

character states and occurrence of these silica body types among the different Pycreus 

species. 

Most species with more or less hexagonal cells (isodiametric type) have silica bodies. 

Silica bodies also occur in some species with slightly to strongly elongated cells. Several 

species with intermediate to elongated cells lack silica bodies. Species without si-bodies occur 

in several non-related species clusters for which the loss of silica bodies probably occurred 

several times. Some species show strongly reduced silica bodies, in this case the silica bodies 

are often lacking in at least part of the cells (indicated with r in table 7.3). Many species in the 

core clade also seem to possess short cell walls that are raised. 
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Fig. 7.3. Part of the phylogenetic hypothesis for the Cyperus clade: 50% majority consensus multi-locus BI tree 

(Larridon et al., 2013). 

 

7.6 Discussion 

7.6.1 Which characters and character states can be defined for the nutlet epidermis and 

where do they occur? 

7.6.1.1 Nutlet epidermal cell shapes 

In Pycreus, shapes in nutlet epidermal cells show a large variation when compared to 

the most of the C4 Cyperus clade, where epidermal cells of the nutlet are generally 

isodiametric/hexagonal. In several Pycreus species, cells are extremely elongated, giving the 

nutlets a fringed appearance. In some other species, we confirm the observations of Mariën 

(1969), who observed intermediate cell lengths between the isodiametric and zonate types. 

The isodiametric type is considered to form the primitive state in Pycreus as it can be 

found throughout Cyperus and is also the most common type in other sedge genera, while 

elongated cells are restricted to certain species of Pycreus. Molecular phylogenic studies 

showed several species fall out of the core Pycreus clade, corresponding to sections as 

Noncore species 

Core Pycreus clade 
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Albomarginati, Pumili, Rhizomatosi and Polystachyi (Larridon et al., 2013). All species of these 

sections have isodiametric nutlet epidermal cells.  

In contrast among the species in the core clade the whole range from isodiametric to 

strongly elongated cells can be found. The core Pycreus clade contains, next to Cyperus 

laevigatus, which has in contrast to Pycreus species, dorsiventrally flattened dimerous pistils, 

species classified by Kükenthal (1935-36) in the sections Sulcati, Globosi, Fontinalis, Lancei, 

Propinqui, Flavescentes, Latespicati and Muricati. Although Kükenthal (1935-36) classified the 

five first of these sections in the Isodiametrici and the other three in the Zonati, Mariën (1969) 

placed the Fontinales, Propinqui and Lancei iŶ his ͞Mixtae͟ siŶĐe these eǆhiďit iŶterŵediate 

cell types. As, within Cyperus s.l., intermediate and zonate nutlet epidermal cells have only 

been described for several Pycreus species, these most likely represent derived character 

states.  

Molecular phylogenetic relationships within the core clade are currently still poorly 

resolved (Larridon et al., 2013; see chapter 6). Therefore, it is impossible to get a clear 

overview on the evolution of the nutlet epidermal characters in Pycreus and pointless to 

optimize the different character states on the phylogenetic hypothesis. However, some 

smaller species clusters are supported in the molecular phylogenetic hypothesis. Several of 

these species clusters show a mix of different types of nutlet epidermal cells, such as the 

relationships between P. fibrillosus, P. gracillimus, P. smithianus and P. cataractarum. Among 

these species, there seems to be a gradient in the elongation of the nutlet epidermal cells 

correlated with a loss of silica bodies. This most likely represents a group in which nutlet cell 

elongation originated independently from other groups with zonate cell types. Also, P. 

flavescens an P. rehmannianus (Flavescentes), which have zonate cells, are strongly supported 

with species with intermediate cells such as P. xantholepis (unplaced) or isodiametric cells 

such as P. melas (Globosi) and P. alleizettei (Propinqui).  Hooper and Raynal (1969) described 

several species such as P. mortonii and P. overlaetii, which show morphological links between 

P. flavescens (Flavescentes) and species such as P. unioloides (Lancei) and P. lanceolatus 

(Propinqui). These putative relationships however need further confirmation from molecular 

phylogenetic studies. However, the presence of a mix of cell types with various degrees of 

elongation within several separate subclades might indicate zonate cells probably originated 

multiple times within the core Pycreus clade. 
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Fig. 7.4 SEM pictures of nutlets and epidermal cells of species of the noncore sections. Sectional names according 

to Kükenthal (1935-36). Names of type species are underlined. 
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Fig. 7.5 SEM pictures of nutlets and epidermal cells of species of the core clade part 1. Species belonging to  sect. 

Globosi of Kükenthal (1935-36), and relatives according to the molecular phylogenetic analysis of Larridon et al. 

(2013). 
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Fig. 7.6 SEM pictures of nutlets and epidermal cells of species of the core clade part 2. Species belonging to  sect. 

Sulcati of Kükenthal (1935-36), and relatives according to the molecular phylogenetic analysis of Larridon et al. 

(2013). 
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7.6.1.2 The variation in silica bodies 

In the noncore lineages of Pycreus (representing the sections Albomarginati, Pumili, 

Rhizomatosi and Polystachyi), almost all species show isodiametric nutlet epidermal cells with 

one tabular to rounded central silica body. The type with a single tabular silica body is also 

very common throughout Cyperus s.l. (see fig. 7.2; Haines & Lye, 1981). In P. sect. Pumili the 

cells are very small and subsequently, they are completely filled with the silica body. A few 

species of the Polystachyi have satellites around the top of the central silica body (e.g. P. 

polystachyos). Only two species were found with derived morphologies: P. hildebrandtii shows 

very narrow silica bodies of the tabular type which are only around 2 µm wide while silica 

bodies are typically around 10 µm wide.  Also, P. rhizomatosus shows a derived state as it 

possesses one row of satellites along the edges of the cells. This type slightly resembles the 

one observed in for example P. reductus (core clade), but the latter has satellites which are 

irregularly placed and a central silica body with a knobby apex. 

In the core clade, we found three main types of silica bodies (see table 7.2): a first type 

with tabular silica bodies (type 1a), a second type with rounded silica bodies with a knobby 

apex (type 2) and a third type with cone shaped silica bodies (type 3). 

P. micromelas has tabular silica bodies (type 1a) within small isodiametric cells with 

undulating cell walls. Although the type of P. micromelas resembles the one observed in P. 

pumilus and P. nervulosus, this similarity is probably due to a reduction in size of the nutlet in 

all these small therophytic species and correlated reduction of the diameter of the epidermal 

cells while the silica bodies retained their general width of around 10 µm. As P. micromelas 

accumulated several peculiar characters, Mariën (1969) proposed to accommodate this 

species in a new (currently still uŶpuďlishedͿ seĐtioŶ ͚Angustispicati͛. 

Knobby silica bodies (Type 2) have been observed in many species previously classified 

in the sections Globosi, Sulcati, Propinqui, Lancei or Muricati. Consequently, they form the 

most common type within Pycreus. We observed this type not only in species with strictly 

isodiametric cells (e.g. P. flavidus, P. mortonii) but also in elongated (e.g. P. fibrillosus, P. 

nigricans, P. nitidus) to zonate cell types (e.g. P. zonatus). The number of knobs on the silica 

bodies is very variable and in many species the silica bodies are reduced in size. Usually, the 

cell walls between the cells are raised. A few species clusters such as the P. capillifolius + P. 

reductus clade show derived morphologies, with satellites around the central silica body (Type 
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2b). The relationship of P. capillifolius and P. reductus has been confirmed with molecular 

data, however their relationship with the remainder of the species is unclear. Kûkenthal 

(1935-36) placed them in the section Globosi. Moreover, P. melas and P. betschuanus both 

show sharply pointed knobs on the silica body in combination with pores in the noncore plate 

(Type 2c) (Fig. 7.4 G-H). Pycreus melas had also been classified in the section Globosi but 

molecular studies it clusters with P. xantholepis, which is however a very different species..  

The Sulcati share several apomorphies such as glumes with a paler depressed zone on 

each side of the midrib and the presence of decumbent culms in the perennial species. From 

the current study, we can observe a rather strong homogeneity in the nutlet epidermal cells. 

Although molecular phylogenetic relationships are currently only weakly supported, except 

for some species clusters, the Sulcati probably represent a monophyletic group.  

In many species silica bodies have been lost. Most often this is associated with species 

having elongated (e.g. P. divulsus, P. fontinalis, P. demangei) to zonate cells (P. flavescens, P. 

waillyi,.…Ϳ, ǁhiĐh are repreŶtatiǀes of the seĐtioŶs Tuberculati, Fontinales, Flavescentes and 

Latispicati. Both on morphological and molecular phylogenetic grounds, we found no 

arguments to assume that these species form a natural entity.  

The third type, with the cone shaped silica bodies, is restricted to P. melanacme and P. 

mesapotamicus. In the latter species the silica body has a knobby surface while the ones of P. 

melanacme have a smooth surface. P. melanacme is a therophyte with very large glumes and 

nutlets. It shows an accumulation of derived characters and it cannot easily be related to any 

of the existing sections. Subsequently, Mariën (1969) suggested to accommodate the species 

iŶ its oǁŶ ;uŶpuďlishedͿ seĐtioŶ ͚Variegati͛.  Our ŵoleĐular studǇ resolǀes this speĐies aloŶg 

with P. sanguinolentus and P. bipartitus (both Sulcati) while P. megapotamicus is sister to P. 

mundtii (also Sulcati). 
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Fig. 7.7 SEM pictures of nutlets and epidermal cells of species of the core clade part 5. Species belonging to  sect. 

Propinqui of Kükenthal (1935-36), according to the molecular phylogenetic analysis of Larridon et al. (2013) these 

form a strongly supported clade independent of the other species formerly placed in the sect. Propinqui. 

 Fig.7.8 SEM pictures of nutlets and epidermal cells of species of the core clade part 4. Species belonging to  

sect. Propinqui and Flavescentes of Kükenthal (1935-36). Most species are linked by intermediate morphologies, 

therefore, they most likely form a natural group. 

 

 

 

 

 

 

 

Fig. 7.9 SEM pictures of nutlets and epidermal cells of species of the core clade part 3. Pycreus micromelas is 

currently unplaced. P. fontinalis was classified in a monotypic section Fontinales by Kükenthal (1935-36). 

Relationships of these species remain unclear. 
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Fig. 7.10 SEM pictures of nutlets and epidermal cells of species of the core clade part 6. Species belonging to  

sect. Lancei and Muricati of Kükenthal (1935-36). The position of P. demangei and P. waillyi is still unclear. 
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7.6.2 Can nutlet characters be useful for subgeneric delimitations in Pycreus? 

The shape of the nutlet epidermal cells has been used as the most important 

characters for sectional delimitations by Clarke (1908), Kükenthal (1935-36) and Chermezon 

(1937) who recognised two types of cells: isodiametric or zonate. Consequently, this also 

influenced the species concept in Pycreus as a single species could only possess a single type 

of epidermal cell type.  

We distinguish three character states of nutlet epidermal cells in Pycreus: The 

isodiametric type with cells that are as long as wide; an intermediate type with cells slightly 

longer than wide to twice as long as wide and the zonate type which has cells of more than 

twice longer than wide. In reality the length of the cells represents a range rather than 

separate categories. Also Mariën (1969) observed intermediate cells in several species, which 

he Đlassified iŶ a third ĐategorǇ ͚Miǆtae͛. IŶ soŵe speĐies suĐh as P. permutatus he observed a 

wide range in the elongation of the nutlet epidermal cells. In a few resolved subclades we also 

observed a variation in the elongation of the epidermal cells among related species such as in 

the clade formed by P. cataractarum, P. smithianus, P. gracillimus and P. fibrillosus. In our 

molecular phylogenetic analysis P. flavescens subsp. microglumis, a taxon with zonate cells, is 

strongly supported with several species with isodiametric cells (P. juncelliformis, P. flavidus 

and P. elegantulus, all thre of which had been placed in different sections by Kükenthal (1935-

36).  Pycreus flavescens and P. rehmanianus, two taxa with zonate cells  assumed to be 

related to P. flavescens ssp. microglumis by Lye (Haines & Lye, 1981) cluster elsewhere 

together with other species with different elongations of nutlet epidermal cels. Nevertheless, 

many small subclades of strongly related species show the same character state of nutlet 

epidermal cells (e.g. P. macrostachyos and P. longistolon; P. reductus and P. capillifolius; P. 

cataractarum and P. smithianus; …Ϳ.  

Concerning silica bodies, we distinguish three main character states with several 

subtypes. Tabular silica bodies and silica bodies with a rounded and knobbed apex are the 

most common character states. Generally the first type only occurs in isodiametric cells, 

predominantly in the noncore clades while the rounded and knobbed type occurs in the core 

clade, in cells with different shapes. Several subtypes were observed that are mostly 

restricted to a single or a few species. In other species with intermediate or zonate cells the 

silica bodies are very small or absent. 
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As a conclusion, the poorly resolved molecular phylogenetic analysis of Pycreus 

currently does not allow us to do a full optimisation of the nutlet characters and character 

states to evaluate e homoplasy. However, from our observations in well resolved smaller 

clades we can conclude the different character states of both the cells shapes and silica bodies 

are not reliable as primary character for sectional delimitations. In some  cases these 

character states might concur with smaller groups of species or with single species, in other 

clades this is not the case.  

When better resolved phylogenetic hypothesis become available in the future 

optimisation of the different character states on the nutlet epidermis would be useful to 

investigate homoplasy. As shapes of nutlet epidermal cells has also been used for species 

delimitations, a future study of infraspecific variation is necessary to reevaluate the value for 

species delimitations and this might bring new insights to the taxonomy of sever 

taxonomically complex species clusters in Pycreus. 

 

7.7 Conclusions 

In Pycreus, nutlet epidermal cells show a large variation in shapes and silica bodies. 

While the shape of these cells was used in the past as a strong character for subgeneric 

classification in Pycreus. In our opinion its taxonomic value is rather limited since the different 

states of cell types are not linked to different subclades. However they might still be useful for 

certain species clusters of species. 

 Silica bodies are present in diverse forms in Pycreus. The noncore branches generally 

show the tabular type found commonly in C4 Cyperus and elsewhere in Cyperaceae while in 

the core Pycreus clade, the type with a knobby apex is the most common. We assume the 

taxonomical value is rather limited except for a few species clusters that possess derived 

types. 
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͞The important thing in science is not so much to obtain new facts as 

to discover new ways of thinking about them.͟  

― William Bragg (1862 - 1942) 

 

8 Reestablishment of  

Pycreus sect. Tuberculati 
 

 Fig. 8.1 Inflorescence of Pycreus divulsus, a Malagassy endemic. Photographed near Lac Froid, 

Ankaratra, Madagascar. 

 

Spikelet theme: Pycreus africanus 
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8.1 In this chapter… 

 During the study of the nutlet epidermis we found the wavy nutlets of Pycreus divulsus 

are significantly different than the ones of other members of the section Muricati, 

where Kükenthal (1935-36) placed P. divulsus. This was already known by Chermezon 

who originally placed the species in P. sect. Tuberculati.  These findings gave rise to the 

case study presented below, which was also published as the following article: 

 Reynders, M. & Goetghebeur, P. 2010. Reestablishment of Pycreus section Tuberculati 

(Cyperaceae). Blumea 55(3):226-230. 

   

8.2 Abstract 

In the latest treatment by Kükenthal (1936), who considered Pycreus Beauv. as a 

subgenus of Cyperus L., C. divulsus Ridl. was put in Cyperus sect. Muricati Kük. This name is 

however nomenclaturally a later name for Pycreus sect. Tuberculati Cherm., which has P. 

divulsus (Ridl.) C.B. Clarke as type (Chermezon 1919). The latter epithet should thus be used 

for correctly naming the section.  

Besides this a SEM study of the nutlet epidermal cells of the species placed by 

Kükenthal in the section Muricati reveals that the wavy nutlets of P. divulsus are not formed 

by extremely elongated epidermal cells as in the other species of this section. Since the 

species also differs from all other Pycreus species in its inflorescence characteristics it is most 

appropriate to reserve the section Tuberculati for P. divulsus and relatives.  

More recently a second subspecies, P. divulsus subsp. africanus Hooper, was described 

from the African mainland based on the completely smooth nutlets and the presence of three 

instead of two stamens, but having a similar inflorescence (Hooper 1972). The two taxa are 

easily distinguishable without any intermediates so the species level seems to be more 

appropriate for the younger taxon. We here reestablish Pycreus sect. Tuberculati Cherm. Both 

species are fully described and an illustration for P. africanus (Hooper) Reynders comb. nov. is 

added. 
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8.3 Introduction 

 The genus Pycreus Beauv. consists of around 120 mainly African species, all 

characterized by their combination of indehiscent spikelets with distichous glumes and laterally 

compressed pistils with only two style branches. Along with several other genera, Pycreus is 

nested within the C4 clade of Cyperus (Muasya et al. 2001, 2002), showing many typical 

characteristics of this clade, such as an anthela composed of spikes and the chlorocyperoid 

anatomy (Bruhl & Perry 1995; Soros & Bruhl 2000). 

 Pycreus divulsus (Ridl.) C.B. Clarke is an annual Madagascan endemic differing from the 

other Pycreus species by its reduced simply spicate inflorescence: a few large spikelets, each 

sessile in the axil of a bract and arranged in a single spike. Besides this the internodes of the 

main axis are elongated (Hooper 1972), (Fig. 8.1, 8.3.a-b).  Inflorescence reductions are quite 

common in Pycreus and related genera, and can be found in either annual species from seasonal 

habitats (e.g.. P. melanacme Nelmes, P. pauper (Hochst. ex Rich.) C.B. Clarke, P. atrorubidus 

Nees from the Soudano-Zambezian floristic region) or in perennial species with dense fibrous 

culm bases, living in extreme habitats such as high altitude mountains (e.g. P. gracillimus Chiov.) 

or frequently burnt vegetations (P. fibrillosus (Kük.) Cherm., P. diloloensis Kük. ex Cherm.). The 

combination of reduction and elongation of the internodes however is rather unique for P. 

divulsus. 

Not only the inflorescence makes this plant very peculiar among other Pycreus species, 

also the fruits show special characteristics and lead to several controversial classifications. At 

the time of its publication (Ridley, 1884), a subgeneric classification for Pycreus was not yet 

available; he related the species to C. intermedius Steudel and C. stramineus Nees since as he 

stated both latter rarely show signs of an elongation of the main axis but in a very much less 

degree. Clarke (1908) was the first to establish a detailed infrageneric classification of Pycreus. 

Pycreus divulsus was put in P. subgenus Reticulatae C.B. Clarke, which is characterized by 

(nearly) isodiametric nutlet epidermal cells, in contrast to his second subgenus Zonati, which 

has strongly elongated nutlet epidermal cells. On the sectional level Clarke placed P. divulsus 

together with P. sanguinolentus (Vahl) Nees, P. atronervatus (Böck.) C.B. Clarke, P. mundtii 

Nees and P. atropurpureus C.B. Clarke in P. sectio Vestitae C.B. Clarke, from which it differs 

however in having a completely different habit, inflorescence, different nutlets and glumes. It 

was Chermezon (1919) who remarked the difficulties of classifying Pycreus divulsus among the 
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other known species and, based on the unique tuberculated nutlets of the species, he 

established a new section Tuberculati. CherŵezoŶ treated Clarke͛s two suďgeŶera oŶ the 

sectional rank as well, resulting in a classification with three sections. Kükenthal (1936), who 

considered Pycreus as a subgenus of Cyperus L., finally synonymized P. sect. Tuberculati 

Cherm. with Cyperus (Pycreus) sect. Muricati Kük. within the rankless placed Zonati C.B. 

Clarke. This new section contains, next to C. divulsus, three other species: C. pauper (Hochst. 

ex Rich.) C.B. Clarke, C. zonatissimus Kük. and C. muricatus Kük.. All these species are 

characterized by turgid nutlets with a strongly wavy or muricate surface. In his key, Kükenthal 

places C. divulsus most closely to C. pauper, which is also an annual species with rather large 

glumes and nutlets and a reduced inflorescence.  

More recently Hooper (1972) identified several African collections as approximating 

Pycreus divulsus based on the presence of a simply spicate inflorescence. At first they were 

thought to be introductions of the Madagascan species on the African mainland. Considering 

the remote collections of this species all over tropical African and the clearly different nutlets 

(smooth vs. tuberculate) and three vs. two anthers, the African specimens were described as 

P. divulsus subsp. africanus Hooper. The distinction between the two taxa is however clear-cut 

and very easy observed, so the species level seems more appropriate for the African taxon. 

Both taxa are poorly known and often unidentified in the visited herbaria. A key and 

illustrations are added to overcome this problem in the future. The nutlet epidermis of these 

taxa was studied with SEM to evaluate their position in the Kükenthal (1936) classification. 

 

8.4 Materials and methods 

In order to compare the nutlet epidermis, SEM pictures were taken from mature 

nutlets of representative specimens from GENT and BR herbaria (Table 5.1). The following 

species were photographed: Pycreus divulsus (Ridl.) C.B. Clarke, Pycreus africanus (Hooper) 

Reynders comb. nov., Pycreus muricatus (Kük.) Napper, Pycreus pauper (Hochst. ex Rich.) C.B. 

Clarke and Pycreus zonatus Cherm. 

Representative specimens of P. divulsus and P. africanus from K, P and BR herbaria were 

studied and a distribution map was created with Arcview GIS 3.2. 

References to Articles refer to International Code of Botanical Nomenclature (McNeill et 

al., 2006). 
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Table 8.1 Specimens used in the SEM study of nutlet epidermal cells. 

 

8.5 Results and discussion 

8.5.1 The section Tuberculati Chermezon 

Cyperus (Pycreus) sect. Muricati Kük. was established to unite the Pycreus species with turgid 

and muricate nutlets (Kükenthal 1936). It can be automatically typified under Art. 22,6 by the 

type of the name of the species from which the subdivisional epithet was derived, i.e., C. 

muricatus Kükenthal. Although this section contains C. divulsus, which is the type of the in 

1919 established P. sect. Tuberculati Cherŵ., he plaĐed the latter iŶ syŶoŶyŵy. KükeŶthal͛s 

name should therefore be considered as a later synonym for the sect. Tuberculati Cherm. and 

thus becomes unavailable for future use (Art. 11.4).   

As Kükenthal (1936) noticed, the nutlets of Pycreus divulsus resemble those of the other 

members of the section in their wavy aspect. SEM pictures from the nutlets of Pycreus 

divulsus, Pycreus pauper, Pycreus muricatus and Pycreus zonatus however clearly show a 

difference in the shape of the nutlet epidermal cells. P. pauper, P. muricatus and P. zonatus all 

have strongly elongated epidermal cells and due to this elongation, the tangential walls of the 

epidermal cells are lifted resulting in the strongly wavy aspect of the nutlets (Fig. 8.2a-c). In 

other Pycreus species as for example P. flavescens this elongation is less expressed and only 

resulting in narrow transverse frills on the nutlets surface. The nutlet epidermal cells of P. 

divulsus in contrast are isodiametric or only slightly elongated, as already correctly observed 

by Clarke (1908) (see Fig. 8.2d-e).  

Taxa Collector Nr. Herbarium Country 

Pycreus     

   P. muricatus Browning  633 GENT South Africa 

   P. zonatus Robinson 5102 GENT Zambia 

   P. pauper Taylor 9184 BR Tanzania 

   P. divulsus Perrier de la Bâthie 13052 BR Madagascar 

   P. africanus Léonard 4156 BR D.R. Congo 
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Fig. 8.2 SEM pictures of the nutlets in the section Muricati Kükenthal and the section Tuberculati 

Chermezon, on the left lateral views of mature nutlets, on the right details of the nutlet epidermis of: 

a. P. muricatus (Browning 633, GENT), b. P. zonatus (Robinson 5102, GENT), c. P. pauper (Taylor 9184, 

BR), d. P. divulsus (Perrier de la Bâthie 13052, BR) and e. P. africanus (Léonard 4156, BR). 
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Hereby we can conclude that the classification of Pycreus divulsus iŶ the ͚ZoŶati͛ aŶd 

esteemed relationships with the other members of C. (Pycreus) sect. Muricati by Kükenthal 

(1936) was based on superficial similarities and the name P. sect. Tuberculati Cherm. should be 

reserved for P. divulsus and relatives. 

 

8.5.2 Formal taxonomy 

Pycreus sect. Tuberculati Cherm., Ann. Mus. Colon. Marseille XXVII, 3 ser. 7 (1919) : 65. – Type: 

Pycreus divulsus (Ridl.) C.B. Clarke. 

= Cyperus (Pycreus) sect. Muricati Kük. (1936) 394, nom.illeg. 

Note: The section comprises Pycreus species characterized by a simply spicate 

inflorescence and large, asymmetrically turgid nutlets (abaxial side most swollen) with a 

smooth to tuberculate surface. The section is automatically typified by P. divulsus, the only 

species in the section at the time of its description. 

 

 

1 a Nutlets strongly tuberculate, 1.2--1.5 mm long; plants from Madagascar       

                                                                   P. divulsus 

 b Nutlets smooth, 1.5--1.9 mm long; plants from tropical Africa     

                                                        P. africanus 

Pycreus divulsus (Ridl.) C. B. Clarke in T. A. Durand & H. Schinz, Consp. Fl. Afric. 5: 536 (1894).  

≡ Cyperus divulsus Ridl. (1884), 128. – Type: Madagascar, Centre: Betsiléo, in Sümpfen, 

2/1881, Hildebrandt 4020 (K holo: K000363055!, M iso: M0106884!, M iso: 

M0106885!, P iso: P00459905!, P iso: P00459906!, P iso: P00459907!). 

= Cyperus paucispiculatus Boeck. (1884), 497-498. – Type: see C. divulsus and 

discussion below. 

  Note: In January 1884, Ridley published Cyperus divulsus based on Hildebrandt 4020 

from central Madagascar. In September of the same year Boeckeler however described, 

independently from Ridley, Cyperus paucispiculatus Boeck. based on the same collection. 

Clarke (1894) subsequently synonymized C. paucispiculatus with C. divulsus and in later 

studies only the latter name has been used. Unfortunately Chermezon (1919) was unaware of 
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Boeckelers earlier name when he used C. paucispiculatus Cherm. nom. illeg. for a new 

Madagascan taxon and placed it in its own P. sect. Paucispiculati Cherm. The latter species 

clearly does not belong to Pycreus and is therefore not related to Pycreus divulsus, although 

both share a reduction in the number of spikelets. C. paucispiculatus Cherm. is a younger 

homonym of C. paucispiculatus Boeck. and thus illegal. A new name for this taxon has been 

given (Larridon et al. 2008). 

 Pycreus divulsus is a rare species found scattered, from central to east Madagascar (Fig. 

8.1, 8.4). Although it occurs also near sea level it is mainly a medium altitude species. Its 

habitat is quite variable from moist grassland to weedy gardens. 

  Annual herbs of 7--25 cm high, with triangular and glabrous culms of 0.4--0.8 mm 

wide, often curved. Leaves basal, 0.6--1.2 mm wide, canaliculate to flat, scabrid near the tip; 

sheaths pale.  Anthela simple and reduced to a terminal spike with 2 to 4 sessile and suberect 

spikelets, the spikelets widely spaced from each other; Bracts 3—4, leafy, at the base of each 

single spikelet, 1.5--7 cm long, erect. Spikelets narrow elliptic, suberect, 6--15 mm long (at 

approximately 7--10 mm from the top the fruits are ripe and the glumes are falling off) and 3--

4 mm wide with 6--20 flowers; rachilla straight, pale. Glumes ovate, with a narrow acute tip, 

2.3--3.9 mm long and 1.2--1.5 mm wide, shiny castaneous, with a narrow hyaline undulating 

border, keel green with 3 nerves; imbricate. Stamens 2, anthers linear, with a short reddish 

connective. Nutlets broadly elliptic to almost globose, 1.2--1.5 mm long and 1--1.1 mm wide, 

strongly swollen, black and shiny, apiculate, the surface strongly tuberculate; epidermal cells 

irregular. 

Reference specimens: 

 MADAGASCAR: Central, Betsileo, in Sümpfen, 1156m, 2/1881, Hildebrandt 4020 (K!, M!, M!, P!, P!, P!); 

Tananarive, marécage, Perrier de la Bâthie 2677b (P!), jardins, Perrier de la Bâthie 13052 (P!, BR!), bord de route, 

Perrier de la Bâthie 17606 (P!), 04/1922, Waterlot 495 (P!, P!); ca.5 km S of Tananarive centrum, in grassland in 

edge of pool, 31/03/1971, K. A. Lye 5932 (K!, P!); Antsirabe, Perrier de la Bâthie 2730 (P!), 1926 (P!); Forêt 

d'Analamazaotra: fonds humides vers 900 m, 1/10/1912, Viguier et Humbert 949 (P!); Region de l'est, Tamatave,  

11/1906, d'Alleizette 1380 (P!); Tamatave province, E of Moramanga, Andasibe, Perinet reserve, open area on 

trail trough forest, 5/03/1988, D.A. Simpson 88/109a (K!); s.l., Baron 5641; s.l. donné par l' Academie Malgache 

(R. Lambinon) 910 (P!, P!). 
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Pycreus africanus (Hooper) Reynders comb. nov.  

≡  Pycreus divulsus subsp. africanus S.S.Hooper (1972) 579. – Type: Cameroon, Gaudua, 

eastern foothills of the Gotel Mountains, march, 17 July 1969, J.Br. Hall 1381 (K 

holo!, P iso!). 

  Note: Pycreus africanus (Hooper) Reynders is a rare species known from several remote 

locations in tropical Africa (Fig. 8.4). Most collections are from moist grassland on medium 

altitudes except the collection in Sierra Leone which is from near the coast. In Ethiopia the 

species could be confused with Pycreus pauper which can be found in the same habitats (e.g. 

Robertson in Mooney 7548a & b (K), mixed collection). The latter is also an annual species 

with a reduced inflorescence and large spikelets and nutlets. It however differs from P. 

africanus in having a rather capitate inflorescence, black tipped glumes and nutlets with 

elongated epidermal cells as shown in fig. 1.c. 

  Annual herbs of 6.5--38 cm high, with triangular and glabrous culms of 0.7--1.1 mm wide 

(Fig. 8.3.a.). Leaves basal, 0.8--2 mm wide, scabrid near the tip; sheaths pale with many small 

red dots. Anthela simple and reduced to a terminal spike with 2--4 sessile and suberect 

spikelets, the lower spikelets often 5--7 mm lower than the others (Fig. 8.3.b.); Bracts 3--4, 

leafy, 1.4--9.8 cm long, erect. Spikelets narrowly elliptic, suberect, 4--15 mm long and 2.5--4.4 

mm wide with 4--18 flowers; rachilla strait, pale. Glumes oblong elliptic, with a narrow acute 

tip, 3.1--4.2 mm long and 1.1--1.5 mm wide, golden, brownish tinged and with many small red 

dots, hyaline border wider towards the tip, keel green with 5 nerves; slightly imbricate (Fig. 

8.3.g--h.). Stamens 3, anthers oblong, 0.5 mm long (Fig. 8.3.j.). Nutlets broad elliptic, 1.5--1.9 

mm long and 1--1.2 mm wide, strongly swollen (nearly round on section), black and shiny, the 

surface smooth (Fig. 8.3.d--f.); epidermal cells irregular (Fig. 8.3k.). 

 Reference specimens: 

 SIERRA LEONE: Freetown, Tower hill, in grass on dry gravel hillside, 2/11/1930, F.C. Deighton 1868 (K!, P!). 

 NIGERIA: Plateau province, near Farin Rua between William kamp and Marbai, short grass on bank of river in 

open situation, 24/08/1968, Hall J. Br. 652 (K!). 

 CAMEROON: Gaudua, eastern foothills of the Gotel Mountains, march, 17/07/1969, Hall J. Br. 1381 (K!, P!); 

Manengouba mts. Base, Nkongsamba, 900m, 30/09/1971, A.J.M. Leeuwenberg 8527 (K!). 

 ETHIOPIA: Midwest Ethiopia, Mattu near Gore, open grassland, 1500m, 23/10/1958, Robertson in Mooney 

7548a (K!); Wollega region, 138 km on Ghimbi-Asosa road, sloping short grassland, 16/09/1975, M.G. Gilbert &  
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Fig. 8.3  Pycreus africanus (Hooper) Reynders comb. nov.; a. habit, b. inflorescence, c. spikelet, d. 

nutlet upper view, e. nutlet lateral view, f. nutlet basal view, g. & h. glumes, i. transverse section culm, 

j. flower, k. detail nutlet epidermal cells. Drawing based on Leonard 4156 (BR!). 
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M. Thulin 796 (K!, P!); Hippo pool on Jimma river, c. 5 km North-west of Jimma on Addia Abala road, Kaffa 

province, 22/10/1973, Ash 2225 (K!); Illubabor region, 38 km north of Tepi, along the new road to Gore, 1900m, 

meadow in moist Pouteria adolfifriderici (Engl.) A. Meeuse - Schefflera abyssinica (Hochst. ex A. Rich.) Harms 

forest, 16/11/1995, I. Friis, S. Bidgood, P. Host, Dessalegn Desissa & Shigulte Kebede 7164 (K!). 

 CONGO: Kivu region, zone de Mwenga, Collectivité Luindi, Localité Kilimbwe, house yard in grass, 1300m, 

13/11/1977, Takako Yamada 134 (K!); Walungu, Kabare territory, Savanne á Eragrostis Wolf, 05/1959, Léonard 

4156 (BR!). 

 ZAMBIA: Namwala, heavily grazed mixed grassland, light sandy soil in a mixed woodland area, 17/04/1963, 

H.J. van Rensburg 2014 (K!). 
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Fig. 8.4 Distribution of Pycreus sect. Tuberculati Cherm. based on the specimens cited in the text. 
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 Fig. 3.1 Detail of the inflorescence of Pycreus nitidus, Ranomafana national park,  Madagascar. 

Picture taken by M. Reynders. 

 

Spikelet theme: Pycreus fontinalis 

 

ǲEverything must be made as simple as possible. But not simpler.ǳ  

― Albert Einstein (1979-1955)   
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9.1 In this chapter…. 

Implementation of the new classification strategy for Cyperus s.l. on the segregate taxa 

requires several taxonomic changes. In chapter 9, taxonomic changes are presented 

for Pycreus names that need to be combined in Cyperus in addition with several new or 

reviewed synonymisations. 

The results of this chapter will be included in a joint publication: 

Larridon I., Bauters K., Huygh W., Reynders M. & Goetghebeur P. (submitted). 

Taxonomic changes in C4 Cyperus (Cypereae, Cyperoideae, Cyperaceae): reducing the 

sedge genera Ascolepis, Kyllinga and Pycreus into Cyperus sensu lato. Phytotaxa. 

 

9.2 Abstract 

Recent molecular phylogenetic and morphological studies reveal the need to sink 

several segregate genera within a broadly circumscribed Cyperus. In this paper several names 

for African species of Pycreus, the largest of these segregates, are formally combined into 

Cyperus, some of which require a new name. Of several currently accepted species, the 

taxonomic status is doubtful and their synonymy is discussed. 

 

9.3 Introduction 

9.3.1 Research context: A growing classification for Cyperus s.l. 

The tribe Cypereae forms the second most species-rich tribe of Cyperaceae and its 

largest genus Cyperus forms the most diversified sedge genus in the tropics and in addition it 

represents probably one of the most ecologically important angiosperm genera in tropical 

wetlands. Cypereae have complex compound inflorescences, in which many adaptations such 

as reductions and contractions have occurred, complicating evolutionary reconstruction and 

classification. With the development of molecular phylogenetics (Simpson et al., Muasya et al. 

2002, 2009a; Larridon et al. 2013) there has been revival of interest in the classification of this 

tribe and a need for re-evaluation of the applicability of the morphological characteristics 

used for generic delimitation in this tribe (Muasya et al, 2009b; Huygh et al, 2010; Larridon et 

al, 2011, 2013; Reynders et al, 2011).  
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Cyperus s.l. is found to be paraphyletic, including 13 segregate genera (following the 

classification of Goetghebeur, 1998, accepted by Govaerts et al., 2007). Several supernested 

paraphyletic entities have been identified (e.g. Cyperus subgenus Anosporum < Cyperus 

subgenus. Cyperus (< Mariscus) < Lipocarpha < Volkiella). Most characteristics that have been 

used for generic delimitation in the tribe have been found to have originated multiple times 

such as switches from spiral to distichous glume arrangements and vice-versa, deciduous 

spikelets, pistil dimerisations and condensations of the inflorescence. Due to the complexity 

of the relationships within Cyperus s.l. a classification with inclusion of the segregate lineages 

in a broadly circumscribed Cyperus seems currently to be the best classification strategy. 

Larridon et al. (2011b) proposed two subgenera under Cyperus, based on the 

photosynthetic type: (1) Cyperus subgenus Anosporum (C3 photoynthesis, paraphyletic) and 

Cyperus subg. Cyperus (C4 photosynthesis, monophyletic). A new sectional classification for C. 

subgenus Anosporum could already be presented based on a well-resolved phylogeny for the 

part of Cyperus using C3 photosynthesis. The segregate lineages Courtoisina, Oxycaryum and 

Kyllingiella have formerly been sunken into different new or existing sections of Cyperus along 

with some intermediate species of Cyperus (Larridon et al., 2011b). Larridon et al. (2013) 

initiated the merging of the different segregate lineages of the C4 Cyperus clade. Bauters et al. 

(submitted) managed to propose a new sectional classification under Cyperus for the species 

formerly placed in Lipocarpha, Ascolepis and Volkiella. Also for the monophyletic Kyllinga a 

new subsectional classification is in preparation (Huygh et al., in prep). An overview of all 

published generic and subdivisional names is available for the Cyperus clade (Huygh et al, 

2010; Larridon et al., 2011, Reynders et al., 2011) and serves as the nomenclatural base in our 

efforts to construct a modern classification of the giant genus Cyperus. 

 

9.3.2 Pycreus, segregate lineage(s) of Cyperus 

Pycreus (approx. 120 sp.) forms the largest of the segregate genera nested within 

Cyperus. Yet with the description of the genus Pycreus Beauv., its relationship with Cyperus L. 

was the suďjeĐt of speĐulatioŶ, as illustrated ďy the Ŷaŵe ‘Pycreus’, being an anagram of 

Cyperus (Palisot de Beauvois, 1816). Many cyperologists were not convinced of the generic 

status of Pycreus and kept the species under Cyperus sensu lato (e.g. Kunth 1837, Steudel 

1854, Boeckeler 1868, Kükenthal 1935, Haines & Lye 1983). During their careers some authors 
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even changed their opinion from Pycreus to Cyperus (e.g. Govindaralaju 1974 vs 1991 , Lye 

1981 vs 1983) or the other way around (e.g. Clarke 1884 vs 1894).  

The key diagnostic feature separating Pycreus from Cyperus s.s. are its remarkable 

laterally flattened dimerous pistils that can be recognised by two stigma branches in median 

position. In a broad study of the evolution of pistils in Cyperoideae we showed the 

combination of a ring wall primordium and the adaptive development of the floral vasculature 

allowed multiple origins of laterally compressed pistils within this subfamily. Pycreus shares 

these pistils with both Kyllinga and Queenslandiella (two other segregates of the C4 Cyperus 

clade, separated from Pycreus by their deciduous spikelets). Our ontogenetic theory would 

even allow for multiple origins of the laterally compressed pistils within Cyperus but the 

phylogenetic relationship between these three taxa is currently still unresolved. 

As was expected (Goetghebeur, 1986), phylogenetic research revealed that Pycreus is 

consistently nested within the C4 clade of Cyperus along with several other genera as Kyllinga 

and Queenslandiella (Muasya & al. 2002a, 2002b, 2009; Larridon et al. 2011b, 2013), a 

relationship that is confirmed by morphological and anatomical data (Haines & Lye 1983, 

Bruhl & Perry 1995, Soros & Bruhl 2000). Modern molecular techniques show that the 

paraphyletic nature of large genera is a common phenomenon in flowering plants (e.g. Miller 

& Bayer 2001) and there is a growing opinion favouring the maintenance of paraphyletically 

circumscribed taxonomic entities. Unfortunately the different lineages of Pycreus are not 

resolved in the recent molecular studies. Several lineages are nested in the main Cyperus 

polytomy as are most segregate genera, while the crown group of Pycreus is monophyletic 

with Cyperus laevigatus (a species with dorsiventrally flattened pistils) strongly supported as 

sister. This implies a paraphyletic (with a reversal to a pistil state common among many 

different lineages of Cyperus) or even polyphyletic (multiple origins of laterally flattened 

pistils) nature of Pycreus. Since the monophyletic status of Pycreus as segregate lineage of 

Cyperus is not confirmed, it is currently impossible to maintain an evolutionary classification 

for this clade in treating Pycreus as a separate genus beside a paraphyletic circumscribed 

Cyperus s.s. as had been suggested by Goetghebeur (1986, 1998) and followed by many 

recent authors (Muasya et al, 2009b; Hoenselaar et al., 2010; Reynders & Goetghebeur, 2010; 

Govaerts et al., 2007). A decision on the taxonomic status and subgeneric level of Pycreus 

(treatment on the sectional level with the current sections on the subsectional level or 
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treatment as several different sections under Cyperus) and its current sections is currently 

impossible and awaits better-resolved phylogenies.  

 

9.3.3 Aims of this chapter 

Although at this stage it is not possible to propose a new subdivisional classification for 

Pycreus under Cyperus, the formal inclusion of Pycreus is needed in the light of the 

classification strategy for Cyperus s.l.. As both Pycreus and Cyperus have always been 

considered to be closely related, most names already have homotypic synonyms under both 

genera. Only few names need still to be transferred to Cyperus and most of these consist of 

fairly recent names for African or Asian species with a limited geographical range. Since the 

type collections are difficult to access little attention is given here to the Asian species 

pending an urgent need of confirmation of the taxonomic status of these species. Especially 

the Indian taxa described by Govindaralaju (e.g. 1990), who applied an extremely narrow 

morphological species concept, need closer study. For example Prasad (2009) synonymised 

five of these species with P. malabaricus. Also in the P. pumilus complex, similar re-

evaluations are needed for the Indian species.  Collections of the African species are better 

accessible (K, P, BR, B, Jstor Plants, 2011) for which it was possible to evaluate their 

taxonomical status here. Next also P. decumbens Koyama (1976) may fall within the variability 

range of P. mundtii (a species widespread in Africa). As P. decumbens is only known from a 

few locations along the Amazon river, it may represent introductions of P. mundtii. Anyhow 

both species are strongly related and this needs further investigation before P. decumbens 

can be transferred to Cyperus. 

In this chapter new combinations or new names are listed for African taxa we consider 

to be valid species. In addition several species names needed to be synonymised (see 9.4.2).  
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9.4 Results & discussion 

9.4.1 New combinations in Cyperus 

Cyperus africanus (S.S.Hooper) Reynders, comb. nov. Basionym: Pycreus divulsus subsp. 

africanus Hooper ;ϭ97Ϯ: 579Ϳ ≡ Pycreus africanus (S.S.Hooper) Reynders (2010: 227). 

Type: CAMEROON, Gaudua, foothills of Gotel Mountains, 17 July 1969, J.B. Hall 1381 

(holotype K!, isotype P!). 

Description: — Reynders et al. (2010). 

 

Cyperus acaulescens Reynders & Goetghebeur nom. nov. ≡ Pycreus acaulis Nelmes, Kew Bull. 

10: 91 (1955), non Cyperus acaulis Steudel (1842: 599). Type: MALAWI, Nyika Plateau, 

Kaulime Pond, 27 June 1952, G. Jackson 870 (holotype K!, isotype BR!). 

Description: —  Nelmes (1955 :91) 

 

Cyperus neocooperi Reynders nom. nov. ≡ Pycreus cooperi C.B.Clarke in W.H.Harvey & auct. 

suc. (eds.), Fl. Cap. 7: 160 (1897). Synonyms: — Cyperus cooperi (C.B.Clarke) Kük., Bot. 

Not. 1934: 68 (1934), nom. illeg. non Cyperus cooperi (C.B.Clarke) K.Schum. (1900: 

328). Type: SOUTH AFRICA, 17 January 1861, T. Cooper 912 (holotype K!). 

Description: — C.B.Clarke (1897: 160), Kükenthal (1936). 

Notes : — Kükenthal (1936) placed this species in his very heterogenous section Lancei 

based on the rather large and dark glumes. Blackish glumes are very common among Cyperus 

species growing on higher altitudes (see e.g. Haines & Lye 1983)1 and originated most likely 

multiple times within the genus.  

 

Cyperus okavangensis (Podlech) Reynders comb. nov. Basionym: Pycreus okavangensis 

Podlech, Mitt. Bot. Staatssamml. München 3: 522 (1960). Type: NAMIBIA, [Rundu], 11 

May 1939, O.H. Volk 1966 (holotype M!, isotype PRE!). 

Description: — Podlech (1960: 522), Kükenthal (1965) 
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Cyperus poikilostachys (Nelmes) Reynders comb. nov. Basionym: Pycreus poikilostachys 

Nelmes, Kew Bull. 6: 320 (1951 publ. 1952). Type: ZAMBIA, 24 January 1938, E. Milne-

Redhead 4311 (holotype K!, isotypes BR!, K!, PRE!). 

Description: — Nelmes (1952) 

 

Cyperus poikilostachys var. heterochrous (Nelmes) Reynders comb. nov. Basionym: Pycreus 

heterochrous Nelmes, Kew Bull. 6: 321 (1951 publ. 1952). Type: ZAMBIA, Mwinilunga 

District, Matonchi Farm, 0.5 mile South of farm, 24 January 1938, E. Milne-Redhead 

4309 (BR!, P!, isotype PRE!). 

Description: — Nelmes (1952: 321) 

Note : — Among the Milne-Redhead from Zambesia a few new species had been 

described simultaneously by Nelmes, among which P. poikilostachys and P. heterochrous. The 

latter two species only differ in their glume colour as P. poikilostachys  has dark brown glumes 

and P. heterochrous has pale reddish brown glumes. As both are sympatric with an absence of 

individuals showing intermediate glume colors, Nelmes (1938) considered both color variants 

as different species. Glume color alone is now generally considered to be unreliable for 

species delimitation in Cyperus (Goetghebeur, 1986). In addition, as known from classic 

Mendelian genetics, it is possible that different color variants can be present in the same 

populations without the presence of intermediates (dominant-recessive inheritance instead of 

intermediate inheritance). Different colour variants of a single species are usually treated on 

the variety rank or below. 

 

Cyperus poikilostachys var. poikilostachys (autonym, automatically established here) 

  

Cyperus scaettae (Cherm.) Reynders comb. nov. Basionym: Pycreus scaettae Cherm., Rev. 

Zool. Bot. Africaines 24: 295 (1934). Type: CONGO, 1930, H. Scaetta 58M (syntype BR!, 

isosyntype BR !, isosyntype K!) ; Scaetta 2418 (syntype BR !, isosyntype P !) 

Description: — Chermezon (1934: 295) 



  _   ____________________________________________________________ Chapter 9 

    

276 

Notes : —  Pycreus scaettae belongs to a group of species from Zambesian Africa 

showing thick accumulations of fibers (remains of leaf sheaths) surrounding the bases of the 

culms and most often inflorescences are reduced to only a few spikelets set in a single spike. 

With the description of the different taxa showing these characteristics, relatively less 

attention has been made to spikelets, glume and nutlet morphology than to the striking culm 

bases and glume color. In addition communication and consultation of type material seemed 

to have been rather limited in the short period these taxa have been described, combined and 

synonymised by different authors (Chermezon, 1932, 1933, 1934; Kükenthal, 1921, 1936). 

Subsequently species separations and especially synonymisations were not very clear from 

the beginning and several misinterpretations arose in later publications (e.g. Haines & Lye, 

1983).  Comparison of spikelet characteristics shows that P. scaettae clearly differs from P. 

fibrillosus (Fig. 8.13 b-c, f-g). 

 

Cyperus scaettae var. vanderystii (Cherm.) Reynders comb. nov. ≡ 

Pycreus vanderystii Cherm., Rev. Zool. Bot. Africaines 24: 296 (1934). Synonyms: -- Cyperus 

fibrillosus var. vanderystii (Cherm.) Kük. in H.G.A.Engler (ed.), Pflanzenr., IV, 20(101): 348 

(1936). TYPE: CONGO, Vanderyst 16469 (syntype BR!); Vanderyst s.n. (syntype BR!). 

Description: — Chermezon (1934: 296) 

 Notes: Pycreus vanderystii is clearly related to P. scaettae, which was already remarked 

by Chermezon (1934), in the description of both taxa in the same publication. Both taxa have 

the same habit, spikelet and glume shapes. The rachilla is straight. P. vanderystii only differs in 

its overall larger dimentions of the plant and of the glumes and a yellowish glume color. Since 

there is an overlap in size between both taxa, which are also sympatric, the variety level 

seems to be the most appropriate rank for P. vanderystii. As discussed under C. scaettae, C. 

fibrillosus is clearly different by its flexuous rachilla and different glumes. Therefore also P. 

vanderystii needs to be removed from synonymy with the latter taxon. 

 

Cyperus scaettae var. scaettae autonym established here. 
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9.4.2 Notes on synonymy of several African species 

P. sanguineosquamatus has not yet been combined into Cyperus. However, in our 

opinion this name represents a species that needs to be placed in synonymy of an older name. 

Therefore, a new combination into Cyperus would be superfluous. Also, the recently described 

Cyperus sumbawangensis is here considered as a synonym. 

 

Pycreus sanguineosquamatus Van der Veken Bull. Jard. Bot. État Bruxelles 24: 145 (1955). 

Type: CONGO, May 1939, H. Bredo 2750 (holotype BR!, isotypes BR!, C!, NY!, P!, PRE!). 

= Cyperus fontinalis (Cherm.) Kük. in H.G.A.Engler (ed.), Pflanzenr., IV, 20(101): 341 (1936). 

Basionym: -- Pycreus fontinalis Cherm., Bull. Soc. Bot. France 67: 327 (1920 publ. 

1921). 

Notes: — Pycreus fontinalis is a rare species only known from its type localities near 

the hot water sources of Antsirabe, Madagascar. P. sanguineosquamatus is described on 

material from salt marshes of volcanic origin in the region of Shaba (Congo). With the 

description of the latter species, Van der Veken already noted the similarity of this taxon with 

P. fontinalis. However P. fontinalis was circumscribed by Chermezon and Kükenthal by having 

a tiny rhizome. As Van de Veken interpreted the material from Congo as therophytic, both 

species were assumed to be separated by their growth form. However when comparing the 

type material of both taxa, this distinction of growth forms is in our opinion no more than a 

matter of interpretation as no striking differences could be observed between the plant bases 

of the Congolean and Malagasy material. In addition glumes and nutlets (the taxonomically 

most important characteristics in this group of Cyperus) are very similar. Type localities of 

Cyperus fontinalis in Antsirabe seem to be destroyed due to exploitation of the hot water 

from the springs by the local communities and the species may even be locally extinct (field 

observations in Madagascar, April 2010). Also the salt marshes in southern Congo are 

exploited. The salt marshes of this region are of volcanic origin and contain a large amount of 

endemic plant species that are adapted to the mineral rich soils (Symoens, 1953) such as 

several short lived (endemic) Pycreus and Bulbostylis (Cyperaceae with C4 photosynthesis!). 

Considering the strong local geographic distribution of the species (two known localities) with 
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a possible extinction from Antsirabe and a continuing human exploitations of both localities, 

we advise a IUCN Critically Endangered status for Cyperus fontinalis. 

 

Cyperus sumbawangensis (Hoenselaar) Lye, Lidia 7: 97 (2011). Basionym: -- Pycreus 

sumbawangensis Hoenselaar, in Fl. Trop. E. Afr., Cyp.: 297 (2010). Type: -- TANZANIA, 

Ufipa District: Sumbawanga, Richards 3452A 

= Cyperus gracillimus (Chiov.) Kük. in H.G.A.Engler (ed.), Pflanzenr., IV, 20(101): 393 (1936). 

Basionym: -- Pycreus gracillimus Chiov., Ann. Bot. (Rome) 13: 58 (1914). Type: Bovone 

75, Katanga, Kayoyo, supfige ebene. 

  Notes: -- In the Flora of Tropical East Africa, P. sumbawangensis is indicated for high 

altitude pastures from Burundi and W & SW Tanzania. It is characterised by its culm bases 

covered with fibers and its reduced anthela with a single spike of blackish spikelets. In our 

opinion no differences can be found between C. sumbawangensis and the numerous central 

African specimens in the BR and GENT herbaria, identified as C. gracillimus. Unfortunately we 

were not able to locate the type specimen in any of the Italian herbaria, most likely the 

specimen has been lost. Also Kükenthal (1936), who combined the species into Cyperus, 

indicated that he did not see the type specimen. However, the protologue of the species by 

Chiovenda is clearly speaking about culm bases covered with fibrous remains and black 

spikelets. Since the Bovone material is from the same habitat and region as the other 

specimens under this name in BR (high altitude mountains from Katanga and the southern 

Albertine rift), they undoubtedly represent the same species. 
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Fig 8.13 Comparision of spikelets of different fibrous Pycreus species clearly showing the difference between P. 

fibrillosus (b & f) and P. scaettae (c & g). P. fibrillosus has a flexuous rachilla which is hardly visible between the 

glumes. Lower glumes mostly have 1-2 additional nerves on their wings. These characteristics are in common 

with P. gracillimus (a & e). P. scaettae has larger spikelets with strongly imbricate glumes and a straight rachilla 

which is visible between the glumes which are characterisitcs in common with P. smithianus (d & h). 
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“An expert is a person who has made all the mistakes that can be 

ŵade iŶ a ǀery Ŷarroǁ field.”  

― Niels Bohr (1885-1962) 

10 General discussion  

& future prospects 
 

 Fig. 10.1 Cypertoon presented during a symposium at the XXX Aetfat congress, Antanarivo, 

Madagascar. Drawn by M. Reynders. 
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10.1 In this chapter… 

 Chapter 10 brings together the key results obtained during this PhD research project 

and gives a critical view on future strategies for the research of the taxonomy in C4 

Cyperus and Pycreus.  

 

10.2 State of the art 

10.2.1 Meso-scale 

 The Cyperus clade comprises ca. 950 species and forms the most important sedge 

genus in the tropics. Among the 800 species that use C4 photosynthesis, 9 segregate lineages 

(accepted in the classification of Goetghebeur, 1998) are nested in C4 Cyperus. Their 

taxonomical status needs to be reevaluated, especially since there is a conflict in the 

taxonomical importance of the characters used for the delimitation of the different segregate 

taxa.  

By combining an elaborate molecular phylogenetic study with morphology, anatomy 

and floral developmental investigations, we unraveled relationships and evolutionary patterns 

in C4 Cyperus. Consequently, the taxonomical value of delimitating characters and the generic 

status of the segregate lineages was reevaluated, with special attention to the taxonomic 

status of Pycreus.  

  

10.2.1.1 Nomenclature  and typifications 

 Firstly, a nomenclatural overview was made of all generic and subdivisional names 

related to the Cyperus clade sensu Muasya et al. (2009a). Types were designated where 

necessary and priority and legitimacy of names were evaluated. The resulting list of ca. 350 

names was published in a series of tree articles (Huygh et al., 2010; Larridon et al., 2011; 

Reynders et al., 2011). In this thesis, the names for taxa relating to Pycreus are presented. This 

list of published names served as a basis to select important taxa (e.g. types) for our molecular 

phylogenetic studies and to be able to use the correct names for the subdivisions in our 

modern classification of the Cyperus clade.  
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10.2.1.2 Phylogenetic relationships in C4 Cyperus, including Pycreus 

 In our molecular phylogenetic study, we included 107 specimens of 104 different taxa, 

representing all segregate genera (based on Goetghebeur, 1998 and Muasya et al., 2002) and 

many sections of Cyperus s.s. from the classification of Kükenthal (1935-36). For Pycreus, 

representatives of all 13 sections from the treatment of Kükenthal (1935-36) were included.  

From the combined molecular phylogenetic analysis using ETS1f, trnH-psbA and rpl32-

trnL markers we confirm a single origin of C4 Cyperus within a grade of Cyperus species using 

C3 photosynthesis. The diversity found in the C4 Cyperus clade, in combination with short 

branch lengths and poorly resolved relationships observed in our and other analyses, all 

suggest a fast diversification or radiative burst after the origin of C4 photosynthesis as a key 

innovation. C4 photosynthesis allowed colonization of new niches with more solar irradiation, 

periods of desiccation, limitations of nutrients and/or environmental stress (e.g. high salinity).  

Among the early emerging clades of the C4 Cyperus clade, in the main polytomy and 

also the early emerging species in more derived clades, there are many species that have a 

pioneering growth strategy which can be assumed to be the primitive state. Many of such 

pioneer species show plesiomorphic characters such as more or less digitately clustered 

spikelets, glumes with a well-developed mucro and multiple nerves on both sides of the 

midrib. Among early emerging lineages, the sections Amabiles and Rupestres are represented 

together with several segregate lineages as Queenslandiella and Alinula paradoxa. The taxa 

with pseudospikelets; Lipocarpha s.l., Volkiella and Ascolepis, form a single well resolved 

clade. All other C4 Cyperus sections and the segregate genera Remirea, Sphaerocyperus, 

Kyllinga and Pycreus are nested within a large hard polytomy. Kyllinga is monophyletic while 

the status of Pycreus remains unclear (para- or polyphyletic). Among the sections of Cyperus 

s.s. nested within this polytomy, better resolutions were obtained for the sections Papyri and 

Exaltati, which contain tall species with a competitive ecological strategy and are all 

characterised by a winged rachilla. 

 

10.2.1.3 Pistil evolution and the origins of laterally compressed pistils 

 From the combined investigation of the anatomy and ontogeny of the different pistil 

types in Cyperoideae (including several Cypereae an Pycreus species) and their vascularisation 

we can present the following developmental model for the gynoecium in Cyperoideae: 
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(1) Development of the gynoecium: The ovary originates from an annular gynoecium 

wall primordium (Vrijdaghs et al., 2009) – During the earliest ontogenetic stages, the annular 

gynoecium wall primordium grows upwards to form a bag-like structure. Next, in most 

cyperoid species, two adaxially positioned and one abaxially positioned stigma primordia 

(according to the conservative positions of the original carpel tips) are formed on the top of 

the cylindrical ovary wall. However, other numbers and positions of stigma primordia are 

possible. We believe that the formation of a ring primordium from congenitally fused carpels 

allows shifts in positions of stigma primordia to novel, more optimal positions with respect to 

the available space (fig. 6.35). 

(2) Development of the vascular bundles: Vessel initiation zones are present in the 

stigma primordia (fig. 6.38). From there, the vessels grow to the receptacular plexus, to be 

connected with the stele. These vessels constitute the ribs of the pistil. Consequently, the 

number and positions of the stigma primordia determine the future shape of the pistil, which 

develops initially as a bag-like structure, and subsequently typically assumes a triangular 

shape, or a derived dimerous, dorsiventrally or laterally flattened shape, or a polymerous 

shape. 

(3) The development of the ovary wall and ovule appear as two distinct phenomena 

(also in time; fig. 6.36). Ovary wall and ovule vascular traces show independent connections 

with the receptacular plexus, thus reflecting the ontogenetic separation of the annular 

gynoecium wall primordium and ovule primordium. 

  This model allows us to understand all variations of the essentially trimerous 

morphological Bauplan of the Cyperoid gynoecium. The derived character states, such as 

laterally flattened dimerous pistils, were made possible through a synapomorphy of 

Cyperoideae, namely the gynoecium wall annular primordium, which reduced the constrains 

of a carpellary  organization. Our observation on Lagenocarpus amazonicus suggest laterally 

flattened dimerous pistils originated from the loss of one adaxial stigma primordium and 

subsequent shift of the remaining pistil primordia into a spatially more optimal position 

allowed by the presence of the annular gynoecium wall primordium.  

Unfortunately, it has not yet been possible to fully resolve the relationships of Pycreus, 

Kyllinga and Queenslandiella within the C4 Cyperus clade. However, in none of the 

phylogenetic analyses Pycreus, Kyllinga and Queenslandiella cluster together. Queenslandiella 

is resolved among the early branches of the C4 Cyperus clade, separate from Pycreus and 
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Kyllinga, which are nested in the main polytomy. This implies at least a separate origin of 

character state of laterally flattened pistils for Queenslandiella, which is congruent with its 

general morphology with respect to Pycreus and Kyllinga species. Secondly, Pycreus is not 

monophyletic. As the noncore clades are not resolved it is not clear whether Pycreus is to be 

considered as para- or polyphyletic. However, the core clade of Pycreus is consistently 

associated with Cyperus laevigatus as sister group, a species characterised by a dorsiventrally 

flattened pistil. From our observations of the anatomy and morphology of the pistil it is 

unlikely that the dorsiventrally compressed pistils have originated from a reversal from the 

laterally flattened character state. We prefer the interpretation as a new origin of a 

dorsiventrally compressed dimerous pistil in one clade (loss of the abaxial stigma primordium) 

and a complementary origin of a laterally compressed pistil in the sister clade (loss of one of 

the adaxial stigma primordia). Clearly, the ring wall primordium as an independent 

ontogenetic zone reaches an optimum in C4 Cyperus which allows the variation in ovary 

structure that can be found in the clade.  

 

Fig. 10.2  Supernested paraphyletic entities in the Cyperus clade as found in our molecular studies. Four levels 

have been recognized. Possibly the Lipocarpha subclade can be additionally nested within Alinula. 
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10.2.1.4 An integrated classification strategy for Cyperus s.l. 

 The development of a modern classification of Cyperus s.l. is challenging due to the 

following reasons: 

1. The Cyperus clade appears to be a story of supernested paraphyletic entities (Fig. 

10.2), which makes it difficult to translate existing taxonomic delimitations of genera 

and subdivisions into a classification that uses exclusively monophyletic taxa.  

2. With inclusion of the derived lineages it is difficult to circumscribe Cyperus s.l. 

morphologically (Muasya et al., 2009b). The generic characters traditionally used for 

Cyperus s.l. are not valid for all segregate lineages (e.g. spirally glumes reappeared 

multiple times in Cyperus while distichously placed glumes also originated in a few 

members of the Ficinia clade).  

3. The C4 Cyperus clade remains largely unresolved (Fig. 7.4), even with the use of fast 

evolving markers. Although the sequences obtained show high mutation levels, a 

phylogenetic signal was insufficiently detected. This makes it difficult to draw 

conclusions on relationships within Cyperus and more specific on the mutual 

relationships of the different segregate taxa of Cyperus. 

As a consequence, although a decade ago, the first molecular findings already confirmed 

the paraphyletic nature of Cyperus, the generic classification of Goetghebeur (1998) remained 

largely accepted  for pragmatic reasons. Currently we obtained better resolution at least for 

parts of the Cyperus clade such as the species using C3 photosynthesis (including Courtoisina, 

Oxycaryum and Kyllingiella) and for the early emerging subclades of the C4 Cyperus clade, 

including the taxa with pseudospikelets (Alinula, Ascolepis, Lipocarpha and Volkiella). In 

addition, we have now a much better understanding of the spikelet and floral ontogeny of 

Cyperus s.l. This allows us, even with missing data, to set out a new classification strategy for 

Cyperus s.l. 

Two main classification strategies for resolving the taxonomies of paraphyletic taxa 

and their segregates are commonly accepted: lumping and splitting. Both methods use a 

cladistic approach in which taxa have a monophyletic circumscription. For giant genera, 

lumping is the most often applied strategy since with splitting we would end up with various 

smaller but morphologically undistinguishable genera (cfr. Euphorbia, Horn et al., 2012).  Both 

methods have advantages and also several disadvantages such as an under- or over- 

estimation of the morphological diversity present in the group (Fig. 10.3). Consequently, we 
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hesitated to apply one of these classification strategies on the complete Cyperus clade 

(especially concerning the taxa with pseudospikelets). Therefore, we considered a third (but 

ĐoŶtroǀersalͿ so Đalled ͚eǀolutioŶarǇ ĐlassifiĐatioŶ strategǇ͛ ;see taďle ϭϬ.ϭͿ, ǁhiĐh alloǁs for 

the use of paraphyletic genera (e.g. Brummitt, 2006; Hörandl, 2006). Hörandl & Stuessy (2010) 

proposed to use characters that play a major role in evolutionary success (adaptations) as 

basis for placing segregate groups on the same taxonomic level as the paraphyletic rest group. 

These characters can be objectively selected trough patrocladistic analysis (Stuessy & König, 

2008). Herein, a statistical comparison of the branch lengths of different clades form the most 

important clustering criterion (Pommier et al., 2009). A strong shortening of branch lengths in 

comparison to the branch lengths of the outgroup clades often indicates a radiative burst. In 

table 10.1 we give a brief  overview of advantages and disadvantages of each classification 

strategy. 

 

I told you this would 
become a mess! 

“Let’s challenge the taxonomists!” 

Fig. 10.3 Cypertoon of the largely unresolved phylogenetic relationships in C4 Cyperus, a challenge for 

taxonomists working on a modern classification for the group. Drawn by M. Reynders. 
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Table 10.1 Overview of different classification strategies that could be applied on Cyperus s.l. 

 

Strategy 
Phylogenetic 

status of taxa 
Arguments 

Splitting 

(cladistic) 

monophyletic Pro - Monophyletic taxa 

- Taxa with derived morphologies are recognised as 

separate entities. 

Contra - Could create several morphologically hardly 

separable groups  (overestimation of diversity). 

Lumping 

(cladistic) 

monophyletic Pro - Monophyletic taxa 

Contra - Several segregate taxa are highly atypical and hard 

to recognize as belonging to the higher taxon 

(underestimation of diversity). 

- Very broad generic concept, difficult to 

circumscribe as a group 

- More complex infrageneric taxonomy, many 

taxonomic changes 

Evolutionary mono or 

paraphyletic 

Pro - Morphological/ evolutionary diversity is reflected 

by different generic names 

- Generic circumscriptions often straightforward  

- Conservative regarding taxonomy and 

nomenclature, which is especially advantageous 

for widely known taxa (e.g. with economic 

importance). 

Contra - Generic circumscriptions sometimes based on 

plesiomorphic characters 

- Paraphyletic taxa are generally not accepted 

- Segregate taxa must show highly adaptive 

characters (altered speciation rates), with low 

levels of homoplasy. 
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Oh, no thanks,  
I’m a Papyrus now! 

And suddenly, with the pass of a splitter,  the yellow nutsedge realised  
its taxonomical future could once become very lonesome… 

Are you sure  
this is a Cyperus? 

The lumper’s effect…. 

Fig. 10.4 Cypertoon showing disadvantages of classifications strategies as splitting and lumping. Drawn by 

M. Reynders. 
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 We use a combination of molecular phylogenetics, anatomy, morphology and 

ontogeny to evaluate monophyly of the segregate taxa of Cyperus and the taxonomical value 

of the characters that have been used for generic delimitations in the Cyperus clade. Table 

10.2 shows an overview of these characters with an evaluation of the taxonomical value in 

three categories (low, moderate, high). Evaluation of the taxonomical value was based on two 

criteria: 

1. The estimated minimum number of origins of this character state based on result of 

the molecular study. A single origin means low levels of homoplasy and a very high 

taxonomical value, while multiple origins point to high homoplasy and low 

taxonomical value.  

2. The presence of intermediate characters or species which show both plesiomorphic 

and apomorphic states. This indicates divergence of the different taxonomical groups 

has not yet been fully completed. Subsequently, the taxonomical value of this 

character is rather low. 

In addition, also the evolutionary importance of the character state is evaluated. This 

depends on the ecological advantage the character state provides to the taxon (adaptiveness, 

e.g. advantages iŶ seed dispersal, polliŶatioŶ,…). In a cladogram, this evolutionary importance 

is often reflected in an alteration in branch lengths (fast divergence) and success of the clade 

(species richness). As already mentioned above, according to Hörandel & Stuessy (2010), 

evolutionary significant characters are essential to consider application of an evolutionary 

classification. 

Fig. 10.5 shows our decision tree for further selection of the most appropriate 

classification strategy or combination of classification strategies for the Cyperus clade. This 

selection is mainly based on our evaluation of the taxonomical value of the derived characters 

of the taxon, the evaluation of its evolutionary value, the possibility to split the paraphyletic 

rest genus into recognisable units and the possible (nomenclatural) disadvantage of lumping 

the segregate taxa.  
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Yes 

Taxonomical value of 

characters of the 

segregate lineages 

high? (single origin, no 

intermediate 

morphologies) 

Splitting 

Lumping 

Evolutionary 

classification 
(generic level) 

Lineages of the 

paraphyletic rest group 

are  few and/or 

morphologically clearly 

distinguishable 

Ecological/ evolutionary 

significance of 

apomorphies of 

segregate lineage high in 

comparison to direct 

ancestral state? 

No 

Yes 

Nomenclatural changes 

are highly unfavorable (if 

separate genus)? 

(names widely used, 

segregate taxon highly 

derived)  

or specialized group of 

the same genus easy to 

delimitate 

morphologically  

No 

No 

Yes 

Evolutionary 

classification 
(subgeneric level) 

No 

Q1 

Q2 

Q3 

Q4 

Fig. 10.5 Decision tree for the choice of the most appropriate classification strategy for specialised lineages that 

are nested within a paraphyletic genus. 
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Table 10.2 Evaluation of the taxonomical value of derived characters used for the delimitation of the segregate 

genera of the Cyperus clade. The evaluation of the taxonomical value is based on the number of origins of the 

derived characters and presence of taxa with transitional morphologies. Evolutionary significance of the 

character state can be seen as an additional but not essential criterion. Scoring: Number of origins (1=low, 

2=moderate,>2 high); Transitional stages present (no=low; yes=high); Taxonomic value (number of origins and or 

transitional stages high= low taxonomic value, number of origins moderate and transitional stages 

low/unknown= moderate taxonomic value, number of origins low and transitional stages low/unknown= high 

taxonomic value). *Unknown means no transitional stages have been observed so far, however in most cases 

sister taxa are not yet known. 

Character  Taxa 
Number of 

origins  

Transitional 

stages 

present 

Taxonomic 

(diagnostic) 

value 

Ecological/ 

evolutionary 

significance 

(adaptive) 

C4 

photosynthesis 

C4 Cyperus clade, 

including: Alinula, 

Ascolepis, 

Lipocarpha, 

Volkiella, 

Queenslandiella, 

Kyllinga, 

Pycreus, 

Remirea, 

Sphaerocyperus 

1 (low) Unknown* high 
high (key 

innovation) 

Spiral glume 

placement 

Oxycaryum, 

Kyllingiella, 

Cyperus 

pygmaeus 

3 (high) yes low low 

Deciduous 

spikelets 

Courtoisina, 

Cyperus deciduus,  

C4 Cyperus p.p., 

Queenslandiella, 

Kyllinga, Remirea, 

Sphaerocyperus 

>3 (high) yes low moderate 
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Character  Taxa 
Number of 

origins  

Transitional 

stages 

present 

Taxonomic 

(diagnostic) 

value 

Ecological/ 

evolutionary 

significance 

(adaptive) 

Pseudospikelet

s 

Alinula, 

Lipocarpha s.l., 

Ascolepis, 

Volkiella 

2 

(moderate) 
Unknown* moderate moderate 

Empty glumes 
Remirea, 

Sphaerocyperus 

1-2 

(moderate) 
Unknown* moderate low 

Headlike 

inflorescence 

C3 Cyperus p.p., 

Kyllingiella,  

C4 Cyperus p.p., 

Lipocarpha, 

Ascolepis, 

Volkiella, 

Remirea, 

Sphaerocyperus, 

Kyllinga, 

Pycreus p.p. 

>6 (high) yes low moderate 

Dorsiventrally 

compressed 

pistils 

Oxycaryum,  

C4 Cyperus p.p., 

Lipocarpha p.p., 

Ascolepis p.p.  

>5 (high) yes low low 

Laterally 

compressed 

pistils 

Pycreus, Kyllinga, 

Queenslandiella >2 (high) Unknown* low low 
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Table 10.3 Application of the decision tree (Questions 1-4) on the different segregate lineages of the Cyperus 

clade based on the evaluation of taxonomical and evolutionary value presented in table 10.2. 

Taxon Nested in Q1 Q2 Q3 Q4 Strategy 

C4 Cyperus C3 Cyperus yes no yes no Evolutionary 

classification 

(subgeneric 

level) 

Alinula C4 Cyperus no / / / lumping 

Courtoisina C3 Cyperus no / / / lumping 

Kyllinga C4 Cyperus no / / / lumping 

Kyllingiella C3 Cyperus no / / / lumping 

Lipocarpha 

clade (including 

Ascolepis and 

Volkiella) 

C4 Cyperus yes/no no no / lumping 

Oxycaryum C3 Cyperus no / / / lumping 

Pycreus C4 Cyperus no / / / lumping 

Queenslandiella C4 Cyperus no / / / lumping 

Remirea C4 Cyperus yes/no no no / lumping 

Sphaerocyperus C4 Cyperus yes/no no no / lumping 

 

In applying the decision tree on the evaluation of the taxonomic value of the different 

derived characters, only C4 photosynthesis stands out with a high taxonomic value. The 

lineages using C3 photosynthesis form a grade. Unfortunately, morphological variation in this 

group is too low to assign a separate generic status to each of the lineages within the grade. 

Therefore, splitting is not the appropriate classification strategy. However, an evolutionary 

classification (see table 10.1) is electable for this node. The evolutionary significance of the 

origin of C4 photosynthesis is scored high since it clearly gives the plants an ecological 

advantage which resulted in fast diversification (short branch lengths and large species 

diversity). However, as morphological characters other than the shift in photosynthesis 

system are not correlated fully with these groups, it is not favourable to grant a separate 

generic status to C3 and C4 groups and nomenclatural changes are not favorable for these 

groups (the type species of Cyperus sits in the large C4 Cyperus polytomy). We thus opted to 

use a paraphyletically circumscribed subgenus Anosporum to accommodate the C3 species. 

While the C4 clade, including its segregate lineages, is classified in C. subg. Cyperus. We did not 

perform a patrocladistic analysis (Hörandl & Stuessy, 2010) to objectively test our decision on 

the use of a paraphyletically circumscribed Cyperus subgenus Anosporum. However,  our 
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analysis of the Cyperus clade (Larridon et al., 2011, 2013) shows a change in branch lengths 

indicating the evolutionary significance of the origin of C4 photosynthesis.  

The proposed classification implies lumping of 12 segregate genera sensu Goetghebeur 

(1998) either due to a low evaluation of the taxonomic value from our study or lower 

evolutionary significance of the derived characters. Some characters, such as deciduous 

spikelets might have advantages in seed dispersal while others, such as headlike 

inflorescences might play a role in pollination (creating secondary spikelets or possibly even 

adaptations towards insect pollination). However, these characters are not necessarily linked 

with species rich clades. It was not possible yet to evaluate shifts in branch lengths since most 

of the C4 Cyperus clade is still unresolved. 

 

 

Fig. 10.6 Subgeneric classification sensu Larridon et al. (2011a). Lineages with C3 photosynthesis are classified in a 

paraphyletically circumscribed C. subg. Anosporum. While the taxa with C4 photosynthesis form C. subg. Cyperus. 
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From our results, the lumping of Pycreus in Cyperus subg. Cyperus was straightforward. 

With our findings that laterally compressed pistils probably originated in multiple evolutionary 

events in C4 Cyperus and that Pycreus is not monophyletic and is nested within Cyperus, there 

are no arguments left to maintain Pycreus on a separate generic level. 

A next step is to choose for the appropriate infrageneric level for each segregate 

lineage. This requires a well resolved species level phylogeny which has been accomplished 

for C3 Cyperus where Oxycaryum, Courtoisina and Kyllingiella are placed in three sections 

along with several transitional species (Larridon et al., 2011a). Also for the Lipocarpha clade, a 

new sectional classification is in construction (Bauters et al., submitted). Kyllinga has been 

shown to be monophyletic and consequently, it can be considered also as a separate section. 

A subsectional classification is also proposed by Huygh et al. (in prep). However, for most of 

the C4 Cyperus clade, current molecular phylogenetic hypothesis are not resolved well enough 

to be able to reevaluate the delimitations of existing sections and to propose a new 

classification. 

 

10.2.2 Micro-scale 

10.2.2.1 Phylogenetic relationships within Pycreus  

From our combined analysis of ETS1f, trnH-psbA and rpl32-trnL markers we found that 

Pycreus species do not form a monophyletic group and that Pycreus is nested within the large 

polytomy of C4 Cyperus. It is not yet clear whether the Pycreus species form a paraphyletic or 

polyphyletic group.  

Relationships between the species belonging to the sections Rhizomatosi, 

Albomarginati, Pumili and Polystachyi are not resolved within the large C4 Cyperus polytomy. 

However, throughout our different molecular analyses they seem to be consistently (but 

without strong support) associated with the core Pycreus clade. In contrast, in the recent 

analysis of Reid (in press) using ITS, these species seem to cluster among the early emerging 

lineages of the C4 Cyperus clade, away from the core Pycreus clade. Only relationships within 

the section Polystachyi have high support. Among these noncore sections many plesiomorphic 

characters states can be observed such as multinerved glumes, glumes with a mucro, strongly 

branched inflorescences, a pioneering growth strategy (many weeds in rice fields) and a 

preference for lowland (or even coastal habitats). Among these noncore sections several 

Cyperus species seem to be clustering. However, since relationships are poorly resolved we 
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cannot make any speculations about relationships. Moreover, in our previous analysis 

including only ETS1f, Ascolepis species tended to cluster among these noncore Pycreus species 

as well. However, Cyperus aterrimus is resolved among the species of section Polystachyi and 

resembles the high altitude species. Further investigation is needed to confirm this possible 

relationship, which would also implicate a reversal from laterally compressed dimerous pistils 

to trimerous pistils.  

The remainder of the Pycreus species form a well-supported clade representing the 

sections Globosi, Sulcati, Lancei, Propinqui, Fontinales, Flavescentes, Latespicati and Muricati. 

This clade is consistently supported as sister to Cyperus laevigatus, which is a species with 

dorsiventrally compressed dimerous pistils. Species belonging to these sections show more 

diversified and derived characters such as reduced or contracted inflorescences, glumes with 

only a trinerved midrib, a more continental dispersal up to high altitude mountains. Within 

this core clade relationships are still poorly resolved.  

 

10.2.2.2 Which characters and character states can be defined for the nutlet epidermis in 

Pycreus and what is their value for infrageneric classification? 

 The following characters and character states were observed in Pycreus: 

Isodiametric cells can be found throughout sedges and Cyperus, among the noncore clades of 

Pycreus and also in several species belonging to the core clade. Within several subclades of 

the core Pycreus clade, a variation range in the elongation of the nutlet epidermal calls can be 

found. From our analysis of silica bodies we conclude that two main types occur among the 

Pycreus species. The latter are restricted to small entities of 1-2 species. The first main type is 

the tabular silica body which is the most widespread type in sedges and also the 

plesiomorphic condition in C4 Cyperus. Noncore sections of Pycreus also possess this type or a 

derived condition of it. In the core clade we only observed tabular silica bodies in P. 

micromelas and in some specimens of P. capillifolius (central silica body variable in this 

species). However, most species of the core clade possess the second main type which is 

characterised by a rounded central silica body with a knobby apex. We observed this latter 

type in species with isodiametric, intermediate and zonate nutlet epidermal cells. In many 

species with intermediate to zonate cells silica bodies are very small or absent. In addition, six 

derived types can be distinguished that are restricted to only a few species. 
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The taxonomic value of nutlet epidermal characters and character states was 

reevaluated by combining our results from molecular phylogenetic analysis with the SEM 

observations of the nutlet epidermis cells and variation of silica bodies. Optimization of the 

characters and character states on the cladogram was not possible since the molecular 

phylogenetic hypothesis is poorly resolved. However, observations from several smaller, well 

resolved clades indicate nutlet epidermal cell schapes and silica bodies are not reliable as 

primary characters for infrageneric classification in Pycreus. Variations in the shape of nutlet 

epidermal cells were used as the most important character for subgeneric classifications in 

Pycreus (Clarke, 1897; Chermezon, 1937; Kükenthal, 1935-36).  

There is an urgent need for a better resolved molecular phylogenetic hypothesis of the 

group before further conclusions can be drawn on relationships based on nutlet epidermal 

characters. This is necessary to be able to readjust sectional boundaries.  

 

10.2.2.3 What remains of the classification of Kükenthal (1935-36)? 

Kükenthal (1935-36) used 12 sections to accommodate the Cyperus species with 

laterally compressed dimerous pistils without deciduous spikelets. From our nomenclatural 

analysis it became clear many of the subdivisional names used by Kükenthal (1935-36) are 

superfluous as they hold types of older names from the older but less elaborate classifications 

of Clarke (1908) and Chermezon (1937). In addition the nutlet epidermis does not seem to be 

reliable for subdivisional taxonomy in Pycreus for which sectional delimitations need to be 

redefined. The two groups Isodiametrici and Zonati therefore can no longer be upheld; 

neither can the uŶpuďlished group ͚Miǆtae͛ of MariëŶ ;ϭ9ϲ9Ϳ. 

 

Cyperus pars Isodiametrici – Isodiametric nutlet epidermal cells represent the plesiomorphic 

condition in Cyperus, the noncore sections of Pycreus as well as several species within 

the core clade. It is therefore not useful to maintain a group based on this character 

in future classifications. 

 

Noncore sections:  

Cyperus sect. Rhizomatosi – This section holds two endemic species from coastal sand dunes 

of Madagascar. The species are characterised by multinerved glumes with a short 

mucro which are plesiomorphic characters in C4 Cyperus. The phylogenetic position of 
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the section is unresolved among the noncore sections of Pycreus. C. rhizomatosus has 

peculiar silica bodies on its nutlets. As Raynal (1977a) already pointed out, this is 

most likely a natural group. 

Cyperus sect. Pumili – In our opinion, this section contains five small annual species and has 

been characterised by Kükenthal (1935-36) mainly on the presence of truncate 

glumes with a well-developed mucro. However, this character is considered to be the 

plesiomorphic condition in the genus since many taxa nested in the C4 Cyperus 

polytomy share this character along with multinerved glume wings which are still 

present in several species of the section Pumili (P. compressiformis and P. 

nervulosus). Also, this section comprises species restricted to lowland conditions. Not 

surprisingly it clusters along the noncore sections of Pycreus. Currently only P. 

pumilus was included in the molecular phylogenetic analysis. Although many 

plesiomorphic characters are present, based on the annual growth form and very 

small nutlets and glumes, we consider this as a natural group. The sections shows 

strong allopatric speciation around the Indian Ocean. Most species have narrow 

distributions while only P. pumilus is pantropical. The four species Govindaralaju 

(1991) described for India all seem to belong to the strongly related P. pumilus and P. 

nervulosus. 

Cyperus sect. Albomarginati – Kükenthal (1935-36) included three species in this section 

based on the very large glumes with a wide hyaline edge. Cyperus macrostachyos and 

C.tremulus are now considered as subspecies of the same species. In our molecular 

study, C. longistolon is strongly supported in this section which is itself one of the 

noncore lineages of Pycreus. Kükenthal (l.c.), previously classified the latter species in 

his section Lancei. Both C. longistolon and C. puncticulatus have glumes with a long 

straight mucro, which is a plesiomorphic state in C4 Cyperus, also the preference for 

lowland habitats of all species is typical for the noncore sections of Pycreus. The 

overall large dimensions of the plants, glumes and nutlets form a character of all 

species, which seem to form a natural group. 

Cyperus sect. Polystachyi (= C. sect. Pycreus) – This section clearly forms a natural group as 

several synapomorphies are shared by most of the species such as elongated nutlets 

and narrow spikelets with a winged rachilla. Cyperus pelophilus forms an atypical 

species as it has broad nutlets with only silica bodies in the central cells. However, 
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our molecular results confirm Kükenthal͛s (1935-36) inclusion of this species in the 

section. Only C. niger is transferred to C. sect. Globosi. Most species of the section are 

lowland taxa except for a few species that are specialized in high altitude habitats. 

Our molecular analysis shows well resolved species level relationships within this 

section. Cyperus aterrimus (a species with a trimerous nutlet) also clusters in this 

clade, which needs further investigation. 

Core clade sections : 

Cyperus sect. Globosi – Kükenthal (l.c.) based this section on species with narrow spikelets 

with more or less spaced flowers and brown to reddish-brown glumes. This section 

lacks clear apomorphies. Additionally, glume tips seem to be rounded with a narrow 

hyaline border and inflorescences appear pseudolateral in the species originally 

placed in this section. However, the three species originally included by Kükenthal (C. 

flavidus, C. capillifolius and C. melas) do not cluster together in our molecular 

phylogenetic analysis and, in addition, they all show different silica body types for 

which they not seem to be directly related. However, C. flavidus (the type species of 

the section) clusters together with C. niger and C. juncelliformis, which is consistent in 

the silica body types. C. capillifolius is strongly related to C. reductus (which only 

differs in the shape of its nutlet). The position of C.  melas is unclear, its peculiar silica 

body type strongly resembles the one we observed in C. betschuanus, which might 

indicate a close relationship. More recently, C. micromelas was described, which 

resembles C. melas but has much smaller glumes and nutlets and another type of 

silica bodies. It does not seem to be related to any of the species mentioned above. 

In conclusion, characters Kükenthal (l.c.) used for delimitation of this section seem to 

be based on convergent morphologies from different lineages of annual species with 

reduced habit and inflorescences. Further investigation is needed to be able to 

decide whether additional (sub) sections should be created for the accommodation 

of the different small clusters of annual species with derived morphologies. 

Cyperus sect. Sulcati – Although relationships within this section are currently unresolved, the 

sulcate glumes and decumbent culms with often strongly spaced leaves form clear 

synapomorphies for the species in this section. Cyperus atronervatus from Ethiopia 

bears multiple nerved glumes (a assumed plesiomorphic state among pycreoid 

species). The South African C. oakfortensis is very resembling this latter species 
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(except for the multinerved glumes) and clearly possesses the sectional characters. 

Therefore, it should be transferred from sect. Lancei where it was originally placed by 

Kükenthal (1935-36). As all species of the section show isodiametric cells, this section 

might represent an early emerging lineage within the core pycreoid clade. 

Cyperus sect. Lancei – Kükenthal (l.c.) based this group on the possession of broad spikelets 

with large densely imbricate  glumes. Nutlet epidermal cells are clearly visible but not 

zonate. In our analysis, Lancei do not hold together as a natural group. Several 

species need to be transferred to other sections as C. longistolon (Albomarginati) and 

C. oakfortensis (Sulcati). The yellow-glumed species (C. unioloides and C. 

chrysanthoides) are probably more related to the Propinqui and Flavescentes. The 

group of C. nigricans most likely is related to the Latispicati and Muricati, however 

this needs further investigation since DNA extraction from material of these three 

sections did not work well on herbarium specimens. Species of these groups are 

linked to Mediterranean regions (India-South China, Afromontane or South Africa). If 

relationships are confirmed the sectional name Colorati would be the correct name 

to be used. 

Cyperus sect. Propinqui – This section seems to be rather heterogeneous as Kükenthal (l.c.) 

used it to accommodate species with moderate glume length and an overall rather 

pale glume color. Several morphological groups can be recognised that correspond to 

different clades. C. lanceolatus (type) and relatives such as C. alleizettei are most 

likely linked to the Flavescentes (see discussion there). Cyperus smithianus is not 

surprisingly strongly related to C. cataractarum, both have white glumes and are 

linked to fast running rivers, Kükenthal (l.c.) placed both species in different sections 

sice the nutlet epidermal cells in C. cataractarum seem to be more elongated. Both 

are supported together with the species with fibrous culms bases (C. fibrillosus, C. 

scaettae) and need to be accommodated together in a new group. Finally, there are a 

few species that do not resemble either of both previous groups and need to be 

placed elsewhere (e.g. C. juncelliformis needs to be transferred to Globosi). 

Cyperus sect. Fontinales – Kükenthal (l.c.) created this section to accommodate C. fontinalis, a 

species with a very peculiar morphology and ecology (hot water springs). It was first 

only known from Madagascar but later also described from southern Congo (as P. 
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sanguineosquamatus). Relationships of this species with other pycreoid species are 

still unclear. 

Cyperus pars Zonati – From our molecular phylogenetic analysis, combined with a detailed 

SEM study of nutlet epidermis variation in Pycreus we can conclude zonate cells 

probably originated several times within the core clade of Pycreus. In addition, many 

species show intermediate elongations of the nutlet epidermal cells. Subsequently, it 

is difficult to sharply delimitate a zonate type. Therefore nutlet epidermal cells are 

insufficient for the delimitation of sections. 

Cyperus sect. Flavescentes (= C. sect. Zonati) – This section was delimited with the 

combination of zonate cells and small glumes. The section seems to be quite 

homogeneous in growth form, glume color (yellowish to reddish tinges) and nutlet 

shape. Several species are difficult to distinguish as many transitional morphologies 

are present. Therefore, this section probably forms a natural but only recently 

diverging group. The ETS1f sequences of C. flavescens and C. rehmannianus for 

example only differ in a single nucleotide pair.  Aside of the elongated cells there 

seem to be no other morphological similarities between the Flavescentes and the two 

other sections with zonate cells (Muricati and Latespicati). However, our molecular 

phylogenetic hypothesis suggests (although with low support) a possible link with C. 

lanceolatus (Propinqui) and relatives. Morphologically there are several similarities 

between both sections and also with species such as C. unioloides and C. 

chrysanthoides. In our opinion, these species should be accommodated in a single 

(sub)section. During the 20
th

 century Hooper (e.g. 1972) described many species 

which form morphological bridges between these groups of species such  as C. 

mortonii, C. diaphanus, C. overlaetii. Most likely, these species form a grade at the 

base of the Flavescentes with an evolutionary series in the reduction of the 

inflorescence and glume sizes linked with an evolution from a perennial growth form 

with stolons to annual species. In addition, there seems to be a series of increasing 

elongation of the nutlet epidermal cells. As there was a general agreement on 

granting a high taxonomic value to the shapes of nutlet epidermal cells in Pycreus 

many species and subtaxa have been delimitated based on small variations in nutlet 

epidermal cells. As this is considered to form a taxonomical difficult group, species 
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boundaries should be reinvestigated with a lower valuation of the nutlet epidermal 

characters.  

Cyperus sect. Latispicati – Relationships between species originally classified in this section are 

currently still unclear. For most species, it was not possible to extract good DNA from 

herbarium specimens. Most likely, this section will not hold as a monophyletic group 

since it currently contains many different species with broad spikelets. 

Cyperus sect. Muricati – Nutlet epidermal cells seem to be extremely elongated in C. pauper, 

C. muricatus and C. zonatissimus and subsequently, they most likely form a natural 

group. Kükenthal (l.c.) also included C. divulsus, which also has knobby nutlets. 

However, this is not caused by strong elongation of the cells. Chermezon (1934) 

already created a separate section for the latter species (C. sect. Tuberculati), which 

we reestablished, adding a second species.  

 

10.3 Future prospects 

10.3.1 Macro-scale: Towards an integrated classification of Cyperoideae and Cypereae 

During the last decades research on Cyperaceae and its different tribes has been in an 

acceleration. Some of the most remarkable findings have been made in the Cypereae, the 

crown tribe in sedge evolution, which holds both some of the most recognizable and some of 

the most enigmatic species of the family.  

Cyperus is not the only paraphyletic taxonomic entity that came to light during the 

family-wide molecular studies. Several tribes such as Schoeneae and Fuireneae form grades 

around more specialized tribes of the classification of Goetghebeur (1998). Currently, 

Cypereae are circumscribed by their Cyperus type (and Ficinia type )embryo as single 

deliŵitiŶg ĐharaĐter. Also other triďes are ŵaiŶlǇ ďased oŶ the eŵďrǇo tǇpes… aŶd seǀeral of 

these types represent plesiomorphic states. However, as different branches in the backbone 

phylogeny contain only a single genus, there has been a strong hesitation for creating 

additional tribes in order to fit everything into a formal cladistic classification. Instead, there in 

a general tendency to maintain the taxa from the tribal and generic classifications of 

Goetghebeur (1998) for pragmatic reasons and to opt for a clade based non formal 

ĐlassifiĐatioŶ ;e.g. “ĐhoeŶeae ϱ, FuireŶeae 3, …Ϳ.  

For the Cyperus clade, we opted to follow this strategy for a long period. However, 

with more profound study of evolutionary processes (through ontogeny, anatomy, molecular 
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phǇlogeŶetiĐs, …Ϳ, we made the decision to evaluate the different classification options more 

profoundly through a reevaluation of the taxonomic value of morphological characters that 

have been used for delimitating taxa in Cyperoideae. From the elaborate ontogenetic studies 

of flowers and spikelets (e.g. Vrijdaghs et al., 2011; Reynders & Vrijdaghs et al., 2012) in the 

subfamily, we learned that an important increase of flexibility of primordia opened various 

possibilities for diversification and adaptations within Cyperoideae and this has inevitably also 

lead to high levels of homoplasy. In addition, the high levels of paraphyly and revelation of the 

true affinities of many enigmatic taxa (e.g. Hellmuthia, …Ϳ has led to a fading of generic 

circumscriptions (e.g. see Muasya et al. 2009b: ͚What͛s a geŶus iŶ CǇpereae͛). We can say the 

saŵe aďout triďes: What͛s a tribe in Cyperoideae? Therefore, also on tribal level the need 

arises to reevaluate the taxonomical and also the evolutionary value of the characters linked 

to the different nodes of the Cyperaceae backbone phylogenetic hypothesis. Subsequently, 

we can select the most appropriate classification strategy for each group of taxa.  

On the level of Cypereae, a similar story can be told about Ficinia and Isolepis which 

are currently kept under separate generic names. A profound analysis of the taxonomic and 

evolutionary value of characters might help to decide on the most appropriate classification 

strategy once a more robust phylogeny is available for Ficinia. 

 

10.3.2 Meso-scale: The C4 Cyperus radiation: what next? 

10.3.2.1 Molecular Phylogenetic analysis 

While for Cyperus subgenus Anosporum, we have a good outline of feasibility and 

choice of molecular markers to fill the gaps in the current knowledge, for Cyperus subgenus 

Cyperus there is still a long way to go. A better resolution of the large polytomy is necessary to 

be able to produce a full modern revision of Cyperus. Therefore, screening for additional 

markers could be performed. However, the probability of solving the hard polytomy may be 

rather limited even when using fast mutating markers. For example the ETS1f region shows a 

large amount of variation while clades remained poorly resolved. As the C4 radiation probably 

happened very quickly, the mutations that occurred during that period are few with respect to 

the complete sequence. Subsequently statistical support is very low on the level of the 

radiation and phenomena such as long-branch attraction might influence the topology and 

support phylogenetic reconstruction. Additional data mining of the existing sequences with 
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cleaning of sequences, the use of other alignment criteria or methods of analysis might also 

improve the support of several relationships. 

For several parts of C4 Cyperus, we expect possibilities for further investigation based 

on the current combination of markers: 

The early emerging branches could be resolved more profoundly by using the 

methodology of Bauters et al. (submitted), used to resolve relationships within the Lipocarpha 

subclade. This involves species of the sections Amabiles, Monocephali (= Rupestres), Arenarii, 

Aristati, Minuti and Pygmaei. Also, species originally classified by Kükenthal (1935-36) in the 

sections Elegantes (GlutinosiͿ aŶd ͚Dichostylis͛, which appear to contain a mix of species with 

C3 and C4 photosynthesis are possibly linked to the early emerging clades. Next, of Alinula only 

one species has been included so far (A. paradoxa). Several authors already suggested the 

other three species represent a different taxon than A. paradoxa (e.g. Haines & Lye, 1983), a 

relation with the Lipocarpha clade might be possible for these tree species. Finally, 

Goetghebeur (1986) suggested a possible link between Queenslandiella hyalina and the rare 

African species Cyperus soyauxii, which is worth investigation.  

Several sections seem to cluster consistently together with reasonable resolution of 

species level relationships. For example, the sections Papyri, Dives, Exaltati and Rotundi. 

These sections consist mostly of tall to very tall species which all share a rachilla with 

deciduous wings. This gives morphological support to their relationships. Several of the 

species have economical/cultural importance or are notorious weeds for which there have 

already been profound molecular studies such as AFLP (usually below species level). A more 

elaborate phylogenetic analysis with a focus on a modern revision of these sections could be 

performed by one or two MSc Students. 

  

10.3.2.2 Morphology/ontogeny (spikelets) 

 Deciduous spikelets, which occur multiple times across both C3 and C4  groups of 

Cyperus form an intriguing phenomenon. Although, their (higher level) taxonomical value 

seems to be rather limited in Cypereae, deciduous spikelets seem to be of considerable 

adaptive value as they play a role in more specialised seed dispersal (certainly when other 

adaptations such as wings or corky thickened zone are added). In Cariceae, they might even 

be interpreted as a key innovative structure (utriculi), which has led to the enormous success 

of the tribe. In the Cyperus clade, several other adaptations (such as reduction of the amount 
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maturing fruits to one/spikelet and contraction of the complete inflorescences into a headlike 

inflorescence) seem often to be linked to species with deciduous spikelets.   

 With a combination of ontogenetic and anatomical techniques focusing on processes 

around the abscission zones, origins of deciduous spikelets could be better understood. Also, 

the link with the epicaulescent growth of the glume wings onto the rachilla (which is 

especially well represented in the Cyperus clade) would be an interesting research topic. 

 

10.3.3 Micro-scale: Research strategy for a revision of Pycreus 

  Since phylogenetic relationships in Pycreus are still largely unresolved, it is a this stage 

not possible to produce a modern infrageneric revision for the pycreoid species of Cyperus. 

Current subdivisions are mostly based on patterns in nutlet epidermal cells in combination 

with length and color of glumes and shapes of the spikelets. However, we showed several 

species groups to be very heterogeneous for these characters. Subsequently, it is not possible 

to interpret these correctly without a solid molecular phylogenetic background.  

Within several subclades, it was possible to resolve species level relationships in the 

current molecular analysis. For these, it seems realistic to perform more detailed analysis with 

more species and more samples for each species involved, using the existing markers. The 

following groups could be studied as two separate Ms thesis projects: 

1. C. sect. Pycreus (C. sect. Polystachyi nom. illeg.) : Although the position of this group is 

still unclear among the noncore pycreoid lineages, species relationships are very well 

supported in our previous analysis, which includes 5 species originally placed by 

Kükenthal (1935-36) in this section. The group is also morphologically distinct by its 

elongated nutlets and clearly winged rachilla. In our molecular analysis Cyperus 

aterrimus seems to be nested within this group. However, this needs further 

investigation. C. polystachyos (which is also the type species of Pycreus) is a 

pantropical species with many local variations. Kükenthal (1935-36) has sunken many 

taxa into C. polystachyos. However, several of these (e.g. C. holosericeus, C. thouarsii, 

…) have distinct characters and ecologies. This hidden diversity needs to be 

reinvestigated in a molecular phylogenetic analysis. It should be possible to 

reinvestigate this group in more detail in a molecular phylogenetic analysis. DNA 

extraction from herbarium specimens works reasonably well for the species of this 
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group, except for C. aethiops. The existing DNA markers can be used for the molecular 

analysis.  

2. Cyperus fibrillosus and relatives: In our molecular phylogenetic analysis, C. fibrillosus, 

C. gracillimus, C. smithianus and C. cataractarum form a well-supported subclade 

within the core Pycreus clade. Kükenthal (1935-36) classified these species among the 

sections Lancei, Propinqui and Flavescentes, based on differences in glume size and 

color and nutlet epidermal cell type. As the type species of these three sections are 

not related to this clade, a new subdivion might be needed for the subclade of C. 

fibrillosus. We also included one specimen from Ghana in our molecular study 

(Jongkind 2424), which was misidentified as P. pseudodiaphanus in the GENT 

herbarium. It most likely represents a new species. We did not publish it yet since it 

consists of only a single and immature specimen. Most likely also other species such as 

C. scaettae, C. permutatus and C. diloloensis belong to this group. However, all 

attempts to isolate high quality DNA from herbarium material of these species failed 

so far. Freshly collected or silica gel dried samples might yield better results. Species 

are all African and most of the species missing in the current molecular analysis can be 

found in the Zambesian part of Congo (Katanga/ Shaba). In addition, several species 

with fibrous culm bases such as C. permutatus and C. smithianus (including C. 

fluminalis) are very morphologically diverse, and currently have unclear species limits. 

These species are still poorly known and often misinterpreted as we discussed in 

chapter 8.3. Additional material from throughout the Soudano-Zambesian region 

should be investigated in regard to this species group as there could be some hidden 

diversity and poorly known taxa (e.g. C. segmentatus).  

As already addressed under C4 Cyperus, further search of new molecular markers and 

optimization of the analysis methods are needed to be able to obtain a better resolved 

phylogeny for the pycreoid species of Cyperus. We suggest to study a select group of species 

that are nested within the large polytomy in order to test a larger range of markers. For some 

sections the currently used markers yield enough support in our molecular study. Of these 

sections, more profound analysis can be performed and revisions can be made.   
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10.3.4 Patterns in ecology and speciation 

 Giant genera such as Cyperus form a living lab for the study of evolutionary 

mechanisms and patterns suĐh as ͞ŶiĐhe ĐoŶserǀatisŵ͟ ;see e.g. Wiens et al. 2010). Several 

studies already showed in Angiosperms, niches are generally strongly conserved within certain 

lineages. Even with the poorly resolved molecular phylogenies, numerous examples can be 

given of niche-conservatism among related species in Cyperus (see table 10.5).  

In the past these types of characters have often been considered as taxonomically less 

relevant since they evolve in parallel in unrelated lineages. However, within lineages of 

related species they might be of higher taxonomical importance. A more detailed study of 

characters linked to niche preferences (e.g. growth form and ecological strategy) might add 

additional relevant data to phylogenetic and taxonomic studies on Cyperus s.l. 

 

Table 10.5 Examples of niche conservatism among strongly related species of Cyperus (Pycreus).  

 

 

 

 

 

 

 

 

 

 Species cluster Ecology Distribution 

1 Cyperus divulsus Wet pastures on medium altitudes  Madagascar 

Cyperus africanus Wet pastures on medium altitudes Africa 

2 Cyperus macrostachyos Lowland pioneer Africa & New world 

Cyperus puncticulatus Lowland pioneer India to Australia 

3 Cyperus rhizomatosus Coastal sand dunes SE Madagascar 

Cyperus pervillei Coastal sand dunes NW Madagascar 

4 Cyperus cataractarum Edges of fast running streams W Central Africa 

Cyperus smithianus Edges of fast running streams E Central Africa 

Cyperus fluminalis Edges of fast running streams East Africa to Madagascar 
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10.4 Conclusions 

We recognize two subgenera in Cyperus: C. subg. Anosporum, comprising the species 

using C3 photosynthesis and C. subg. Cyperus comprising the species with C4 photosynthesis. 

The first subgenus is paraphyletically circumscribed while the latter represents a strongly 

diversified monophyletic clade. Unfortunately molecular phylogenetic relationships remain 

poorly resolved for large parts of C. subgenus Cyperus. The segregate genus Pycreus, along 

with 11 other segregate genera, is now included in Cyperus. Pycreus species have been 

recognised by their remarkable laterally compressed dimerous pistils. With investigations of 

ontogeny and anatomy we showed that Cyperus and Pycreus follow the general 

developmental patterns of flowers and spikelets found throughout Cyperoideae. The presence 

of an annular gynoecial wall primordium allowed for the development of stigma primordia in 

novel positions in Cyperoideae, formation of vascular bundles is adaptive and follows the 

development of the primordia. In addition our molecular phylogenetic research shows 

multiple origins for laterally compressed pistils in Cyperus and does not support Pycreus as a 

monophyletic group.  

On the subdivisional levels of Pycreus, relationships remain poorly resolved. Several 

sections remain in the main C4 Cyperus polytomy while the more derived species form a well-

supported clade, which is sister to Cyperus laevigatus. Also, within the core clade relationships 

are poorly resolved. From a SEM study of nutlet epidermis we conclude that characters such 

as cell shapes and silica bodies and their different character states are not useful for 

subdivisional classification of pycrioid species. A better resolved molecular phylogenetic 

hypothesis is needed to draw further conclusions on the correlations of nutlet epidermal 

character states with certain clades.  

A long term goal is to establish a modern revision of Pycreus with application of the 

joint classification strategy obtained from the meso-scale collaboration on the Cyperus clade. 

However, this requires better understanding of the relationships between the different 

species. As a contribution, several smaller case studies are presented: Section Tuberulati 

Chermezon is reestablished is this study and relevant new names and combinations of Pycreus 

species into Cyperus are presented with discussion of several critical synonymies. 
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“Nature is earlier than man, but man is earlier than natural 

science.” 
 

   ― Carl Friedrich von Weizsäcker (1912-2007) 
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 Fig. 11.1 Cyperus micrantherus endemic species in the Andringitra National Park, Madagascar. 

Picture taken by M. Reynders. 
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Appendix I Glossary 

Below you can find the definition of the common and recurrent technical terms used 

in this dissertation. Most defiŶitioŶs are adopted froŵ LarridoŶ, ϮϬϭϭ aŶd HeŶdersoŶ’s 
Dictionary of Biological Terms (13

th
 edition, edited by E. Lawrence, by Pearson Education, 

Prentice Hall). 

abaxial: the side facing away from the axis 

achene: one-seeded, dry, indehiscent fruit, developed from a single carpel, with the seed wall usually 

not fused with the fruit wall 

acropetal (<-> basipetal): ascending; leaves, flowers, roots or spores developing successively along 

an axis so that the youngest are at the apex 

acute: ending in a sharp point 

adaptive radiation/ radiative burst: a process in which organisms diversify rapidly into a multitude of 

new forms, particularly when a change in the environment makes new resources available and opens 

environmental niches 

adaxial: the side facing towards the axis 

anatropous: inverted; ovule bent over so that hilum and micropile are close together 

annular: having the shape of a ring 

anthela: cymous inflorescence with a contracted central axis, subsequently the different lateral axes 

and subtending bracts stand close together forming an involucre 

anther: pollen producing floral part 

antrorse: directed forwards or upwards 

apex: distal tip of an axis, usually with a meristematic zone from which new primordia originate 

articulate: (1) joined; (2) separating easily at certain points 

attenuated: gradually tapering to a point 

basal (placentation): The placenta is at the base (bottom) of the ovary. Simple or compound carpel 

basifixed (anthers): filaments fixed to the base of the anthers 

bract: leaf bearing a (partial) inflorescence, e.g. involucral bracts, bracts subtending spikelets 

bristle: long thin perianth part, often with scabrid edges 

C3 (photosynthesis): metabolic pathway for carbon fixation in photosynthesis, in which the first 

product of carbon fixation is a 3-carbon molecule 
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C4 (photosynthesis): metabolic pathway for carbon fixation in photosynthesis, in which the first 

product of carbon fixation is a 4-carbon molecule 

carina: ridge on bracts of certain grasses 

carpel: the ovule and seed producing reproductive organ in flowering plants 

chlorocyperoid (anatomy): type of Kranz anatomy found in Cypereae 

clade: a group consisting of an ancestor and all its descendants; branch in a phylogenetic hypothesis 

cladistic classification: classification using only monophyletic taxa 

compressed: flattened transversely 

concaulescence: metatopic displacement of a floral primordium with respect to the subtending 

glume with the growth of the next internode, because of the partial fusion between the flower 

primordium and apical growth zone of this axis, resulting in a separation of the flower and the flower 

subtending glume 

congenital (carpel fusion): emerging primordia of different carpels are fused from their origin 

contracted (inflorescence): shortening of internodes within a (partial) inflorescence 

coriaceous/ corious (leaves): leathery 

cuspidate: terminating in a sharp point 

cymose: inflorescence formed by successive growth of axillary shoots after growth of main shoot in 

each branch has stopped 

dambo: shallow wetlands dominated by grasses and sedges in central, southern and eastern Africa, 

particularly in Zambia and Zimbabwe 

deciduous: falling at the end of growth period or at maturity 

decumbent: with a creeping lower part 

decurrent: having leaf base prolonged down stem as a winged expansion of rib 

dimerous: consisting of two parts; applied on gynoecia: consisting of two carpels 

distichous (leaves): arranged in two vertical or spiral rows along an axis; alternate leaves arranged so 

that 1
st

 is more or less directly below 3
rd

 and so on 

epicaulescence: a metatopic displacement, sometimes occurring in distichously arranged spikelets 

where the glumes have wings, where a fusion zone of the wings of the glume and rachilla grows out 

with the rising rachilla, displacing the main part of the glume and the flower primordium in its axil to 

the next node (see Vrijdaghs et al., 2010). 

evolutionary (classification): classification using both monophyltic and paraphyletic taxa 
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ferruginous: rust-colored 

filament: elongated part of a stamen that bears the anther 

flexuous/ flexuose: curving in a zigzag manner 

floral apex: central-distal zone of a flower primordium from which ovary and ovule primordia 

originate 

foliaceous: (1) having the texture of a leaf ; (2) thin and leaf-like ; (3) bearing leaves 

funiculus: the stalk attaching an ovule to the ovary wall in a flower or fruit 

fuscous: of a dark, almost black, color 

fusiform: spindle-shaped, tapering at both ends 

geophyte: plant surviving unfavorable seasons with buds below the soil or water surface 

giant genus: genus consisting of more than 600 species 

glabrous: with a smooth even surface; without hairs 

globose: spherical or globular 

glume: bract subtending a flower, usually arranged in a spikelet; glumes can also be empty 

gynoecium: a collective term for all carpels in a flower 

halophyte: salt tolerating plant 

helophyte: plant surviving unfavorable seasons with buds below the water surface but bearing at 

least a few stems or leaves above the water surface during favorable seasons 

headlike (inflorescence): fully contracted inflorescence resembling a sphere of head 

hemicryptophyte: plant surviving unfavorable seasons with buds near the soil surface 

holotype: single specimen which bears the name of a newly described (lower) taxon and serves as 

primary reference specimen for identification of all other collections under that taxon; a holotype is 

designated with the description of the taxon 

homologous structures: structures in different plants possibly but not necessarily having a different 

morphology and function, but positioned at the same place in a plant, and developing according to a 

similar developmental pattern. According to the phylogenetic approach, it is added that homologous 

structures originated from a common ancestral structure 

hydrophyte: plant living completely submerged under the water surface for most of its life cycle or 

floating loosely on the water surface. 

hypogynium: structure supporting the ovary in flowers of some sedges 
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inselberg: an isolated rock hill, knob, ridge, or small mountain that rises abruptly from a gently 

sloping or virtually level surrounding plain. 

introrse: (1) turned inwards or towards the axis; (2) of anthers, opening towards the center of the 

flower 

involucre: bracts surrounding a terminal inflorescence with contraction of at least the main axis 

isodiametric: of a regular geometrical shape in such a way the sections taken from different angles 

all have about the same length 

isotype: specimen belonging to the same collection as the holotype 

key innovative structure: structure that is highly adaptive resulting in elevated levels of speciation  

Kranz (anatomy): presence of a bundle sheath surrounding the vascular bundles in stems and leaves; 

this is predominat in plants using C4 photosynthesis 

lanceolate: slightly broad or tapering at base, and tapering to a point at tip, appl. leaves, bracts and 

spikelets 

lax: loosely clustered 

lectotype: primary type designated after description of a taxon and chosen from the specimens or 

lower taxa cited with the original description of the taxon 

lustrous: shiny/ shining 

membranaceous: having the consistancy or structure of a membrane 

molecular (phylogenetics): hypothesis based on the comparison of DNA molecules 

monad (pollen): a single individual that is free from other individuals, not united with them into a 

group; pollen grain consisting of a single cell and is free from other pollen grains from its formation 

monophyletic: a taxon that forms a clade, meaning that it consists of an ancestral species and all its 

descendants  

monotypic: taxon consisting of a single lower taxon 

muticous: without a point or pointed process; blunt 

natural classification: classification based on the evolutionary relationships of taxa, usually based on 

phylogenetic hypotheses 

nervulose: having nerves 

niche: term describing the way of life of a species; the place a species fills within an ecosystem 

nodulose/ nodose: having knots or swellings 
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nutlet: small nut; dry, indehiscent fruit developed from unilocular superior ovary with the (usually 

single) seed wall not fused with the fruit wall 

oblong: elongated, as in oval, elliptical 

obturator hairs: hairs formed from the funiculus and covering the micropile (in sedges) 

orbiculate: nearly circular in outline 

ovary: part of the carpel or fused carpels surrounding the ovules 

ovule: structure that gives rise to and contains the female reproductive cells 

palynology: study of the pollen grains 

pappus: modified calyx, the part of an individual disk, ray or ligule floret surrounding the base of the 

corolla, in flower heads of the plant family Asteraceae 

paraphyletic: when a taxon or clade that consists of an ancestral species and only part of its 

descendants  

patrocladistic analysis: analysis of the correlation between branch lengths within a clade and 

characteristics linked to the different nodes to detect evolutionary significant characteristics. 

perianth: consists of the calyx (all sepals) and the corolla (all petals) of the flower 

phyllospory: interpretation of a carpel as a leaf bearing the ovules 

phylogeny: hypothesis about the evolutionary history of taxonomic groups 

pistil: discrete unit of the gynoecium; a pistil can consist of either a single carpel (in a monocarpous 

or apocarpous gynoecium), or of several fused carpels (in a syncarpous gynoecium) 

placentation: pattern of placement of the ovules within the gynoecium 

plicate: folded or ridged 

polyphyletic: when not all organisms in a taxonomical group share a single common ancestor 

polytomy: many temporal based branches; a section of a phylogeny in which the evolutionary 

relationships cannot be fully resolved to dichotomies 

postgenital (carpel fusion): primordia of different carpels fuse after they have emerged separately 

primordium: visible group of cells from which a plant structure develops 

procambium: group of cells from which vascular tissue develops 

prophyll: first leaf on an axis, situated adaxially and usually bi-keeled  

proliferous: (1) multiplying quickly, appl. bud-bearing leaves of inflorescences; (2) developing 

supernumery parts abnormally 
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protologue: the printed matter accompanying the first description of a name 

proximal: closest to the base of the axis (opposed to terminal/ distal) 

pseudanthium: (partial) inflorescence resembling a flower or fulfilling the function of a single flower 

pseudomonad (pollen): pollen grain that originates as a tetrad (4 attached cells) but in which one cell 

dominates and the other three are abortive 

pseudomonomerous (pistil): unilocular pistil that seemingly consists of a single carpel but in reality 

resulted from a fusion of several carpels 

pseudospikelet/ secondary spikelet: (partial) higher order inflorescence resembling a spikelet or 

fulfilling the function of a spikelet; the original spikelets are reduced and covered by the spikelet 

bracts, which fulfill the function of the glumes 

punctate: (1) dotted; (2) having surface covered with small holes, pores or dots ; (3) having a dot-like 

appearance 

puncticulate: slightly punctate 

rachilla: axis of a spikelet 

rachis: axis with spikelets 

ray: the stalk of a group of spikelets in an anthela 

recaulescence: when bract grows up with the lateral axis it is subtending because of partial fusion of 

the bract with the growth zone of the lateral axis. Consequently, the free part of the bract develops 

at the distal side of the lateral axis, while its insertion point is at the relative main axis. From its base 

up to the free part of the bract, the lateral axis is winged. 

reticulate: like a network 

retrorse: turned or directed backwards 

rugose: with many wrinkles or ridges 

rugulose: slightly rugose 

sanguineous: having the color of blood ; blood-red 

satellite: smaller structure or taxon which accompanies a similar larger structure/taxon  

scabrous/ scabrate: rough ; with a covering of stiff hairs, scales or points 

scape: flower stalk arising at or under ground level 

segregate (taxon): taxon nested within another paraphyletically circumscribed taxon 

silica body: type of silica deposition (phytolith) in specialized epidermal cells of grasses and sedges; 

consists mainly of noncrystalline silicon dioxide   
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speciation: the evolution of new species 

spicate: (1) having a flowerhead in the form of a spike; (2) bearing spikes 

spicoid: flowering unit in Mapanioideae when interpreted as a synanthium 

spike: a flowerhead with stalkless flowers or secondary small spikes (spikelets) of flowers borne 

alternately along a single axis 

spikelet: a mainly functional flowering unit, consisting of an indeterminate spikelet axis or rachilla, 

with spirally tot distichously arranged glumes. The glumes subtend (or not) a flower. Lateral spikelets 

are subtended by a bract and have a prophyll 

stachyospory: interpretation of a carpel as a structure of compound leaf and stem origin, bearing the 

ovules 

stamen: pollen producing floral organ; consists of filament and anther 

stigma: distal part of a carpel or of fused carpels that serves for pollen reception; in sedges formed 

from separate stigma primordia on top of the ovary wall 

stipitate: stalked 

stramineous: straw-colored 

striate(d): marked by narrow parallel lines or grooves 

style: narrow and elongated median part of a pistil bearing the stigma(ta) at is end; in sedges it is 

formed from the upper part of the ovary wall primordium 

subulate: awl-shaped, i.e. narrow and tapering from base to a fine point, appl. leaves as of an onion 

sulcate: grooved or furrowed 

tabular: cone shape with a flattened top (table shaped) 

taxon: group of organisms; unit of a classification with a certain rank 

terete: nearly cylindrical in section, as stems 

tetrad (pollen): pollen grain consisting of four attached cells of equal size 

therophyte: plant surviving unfavorable conditions as a seed 

tribe: taxonomical rank consisting of several related genera within a family 

trigonal: triangular in cross-section 

triquetrous/ triquetral: stem with three angles and three concave faces 

trimerous: consisting of three parts; applied on gynoecia: consisting of three carpels 

tristichous/ three-ranked: arranged in three vertical or spiral rows 
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truncate/ abrupt: terminating abruptly; as if tapering end were cut off 

type: reference specimen of a certain taxon 

unilocular (pistil): pistil formed from a single or more carpels but with only with a single chamber 

holding the ovules 

wing: (1) The membranous outgrowth of certain fruits; (2) the flat membranous sides of the glumes; 

(3) A flange running down a stem or stalk as, for example on the rachilla of certain species 

xylem: vascular tissue for the upward water transportation in plants 

zonate: with elongated cells on the surface 
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Appendix II List of cited taxa 

Abildgaardieae Lye 

Acacia Mill. 

Actinoschoenus Benth. 

Afrotrilepis ( Gilly ) J.Raynal 

Afrotrilepis pilosa (Boeck.) J.Raynal 

Alinula J.Raynal 

Alinula lipocarphioides  (Kük.) J.Raynal  

Alinula malawica (J.Raynal.) Goetgh. & 

Vorster  

Alinula paradoxa (Cherm.) Goetgh. & Vorster 

Alinula peteri (Kük.) Goetgh. & Vorster 

Anarthriaceae D.F.Cutler & Airy Shaw 

Androtrichum (Brongn.) Brongn.  

Anosporum  Nees 

Arabidopsis Heyhn. 

Ascolepis ampullacea J.Raynal 

Ascolepis brasiliensis  Benth. ex C.B.Clarke 

Ascolepis capensis Ridl. 

Ascolepis eriocaulides Nees ex Steud. 

Ascolepis hemisphaerica Peter ex Goetgh. 

Ascolepis Nees ex. Steud. 

Ascolepis protea Welw. 

Ascolepis pusilla Ridl. 

Ascopholis C.E.C.Fisch.  

Asparagales Bromhead 

Asteraceae Bercht. & J.Presl 

Bisboeckelereae Pax ex L. T. Eiten 

Blysmus Panz. ex Schult. 

Bolboschoenus (Asch.) Palla 

Bolboschoenus robustus (Pursch) Soják 

Bromeliaceae Juss. 

Bulbostylis Kunth 

Capeobolus J.Browning  

Carex concinnoides Mack. 

Carex dolichostachya  Hayata 

Carex L. 

Cariceae Kunth ex Dumort. 

Caricoidea Chandler 

Carpha Banks & Sol. ex R.Br. 

Centrolepidaceae Endl. 

Chenopodiaceae Vent. 

Chlorocyperus Rikli 

Chrysitricheae Nees 

Chrysitrix L. 

Cladieae Nees 

Cladium mariscus (L.) Pohl  

Coleochloa Gilli 

Commelinaceae Mirb. 

Costularia C.B.Clarke ex Dyer  

Courtoisina Soják 

Croton L. 

Cryptangieae Benth. 

Cyperaceae Juss. 

Cypereae Dumort. 

Cyperoideae Kostel. 

Cyperus L. 

Cyperus acaulescens Reynders nom.nov. 

Cyperus africanus (Hooper) Reynders 

Cyperus alopecuroides Rottb. 

Cyperus alternifolius L. 

Cyperus aterrimus Hochst. ex Steud. 

Cyperus buchholzii  Boeck. 

Cyperus bulbosus Vahl 

Cyperus capitatus (Poir.) Vand. 

Cyperus clavinux C.B.Clarke 

Cyperus compressus L. 

Cyperus congestus  Vahl 

Cyperus cooperi  (C.B.Clarke) Kük nom.illeg. 

Cyperus croceus Vahl 

Cyperus cuspidatus  Kunth 

Cyperus cyperoides (L.) Kuntze  

Cyperus deciduus Boeck. 

Cyperus distans L.f. 

Cyperus dives Delile 

Cyperus dubius Rottb. 

Cyperus elegans L. 

Cyperus endlichii Kük. 

Cyperus eragrostis Lam. 

Cyperus esculentus L. 

Cyperus filiculmis Vahl 

Cyperus fulgens C.B.Clarke 

Cyperus fuscus  L. 

Cyperus haspan L. 

Cyperus impubes var. fallax (Cherm.) Kük. 

Cyperus intermedius Steudel 

Cyperus involucratus  Rottb. 

Cyperus iria L. 
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Cyperus javanicus Houtt. 

Cyperus juncelliformis Peter & Kük.  

Cyperus kerstenii Boeck. 

Cyperus laevigatus L. 

Cyperus lateriticus Raynal 

Cyperus longibracteatus (Cherm.) Kük. 

Cyperus longus L. 

Cyperus luzulae Rottb. 

Cyperus malaccensis Lam. 

Cyperus marginatus Thunb. 

Cyperus meeboldii Kük. 

Cyperus meyenianus Kunth. 

Cyperus micrantherus Cherm. 

Cyperus micromariscus  Lye 

Cyperus muricatus Kük. 

Cyperus neocooperi Reynders nom.nov. 

Cyperus nervulosus (Kük.) S.T. Blake 

Cyperus oakfortensis Boeck. ex C.B.Clarke 

Cyperus odoratus  L. 

Cyperus okavangensis (Podlech) Reynders  

Cyperus papyrus L. 

Cyperus pectinatus Vahl 

Cyperus poikilostachys (Nelmes) Reynders 

Cyperus poikilostachys var. heterochrous  

(Nelmes) Reynders 

Cyperus pulchellus  R.Br. 

Cyperus pustulatus Vahl 

Cyperus pygmaeus Rottb. 

Cyperus reduncus Hochst. ex Boeck. 

Cyperus retrorsus Champ. 

Cyperus rigidifoius Steud. 

Cyperus rivularis Kunth 

Cyperus rotundus L. 

Cyperus rubiginosus Hook.f. 

Cyperus rufostriatus  C.B.Clarke ex Cherm. 

Cyperus rupestris Kunth 

Cyperus scaettae (Cherm.) Reynders 

Cyperus scaettae var. vanderystii (Cherm.) 

Reynders 

Cyperus scariosus R.Br. 

Cyperus sect. Albomarginati Kük. 

Cyperus sect. Alternifolii (Kunth) C.B.Clarke  

Cyperus sect. Amabiles C.B.Clarke 

Cyperus sect. Anosporum (Nees) Pax. 

Cyperus sect. Aristati Nees 

Cyperus sect. Brevifoliati C.B.Clarke 

Cyperus sect. Bulbocaules (C.B.Clarke) Kük. 

Cyperus sect. Compressi Nees 

Cyperus sect. Courtoisina (Sojàk) Larridon 

Cyperus sect. Exaltati (Kunth) C.B.Clarke  

Cyperus sect. Fastigiati Kük. 

Cyperus sect. Flavescentes Kük. nom. superfl. 

Cyperus sect. Fusci (Kunth) C.B.Clarke  

Cyperus sect. Globosi (C.B.Clarke) Kük.  

Cyperus sect. Haspani (Kunth) C.B.Clarke  

Cyperus sect. Lancei Kük. 

Cyperus sect. Latispicati Kük. 

Cyperus sect. Leucocephali Cherm. ex Kük.  

Cyperus sect. Luzuloidei (Kunth) C.B.Clarke  

Cyperus sect. Muricati Kük. nom. illeg. 

Cyperus sect. Oxycaryum (Nees) Larridon 

Cyperus sect. Papyri (Willd.) Thouars  

Cyperus sect. Polystachyi (C.B. Clarke) Kük. 

Cyperus sect. Propinqui (C.B.Clarke) Kük.  

Cyperus sect. Pumili Kük. 

Cyperus sect. Rhizomatosi Kük. 

Cyperus sect. Rotundi C.B.Clarke 

Cyperus sect. Rupestres C.B.Clarke 

Cyperus sect. Sulcati Kük., nom. illeg. 

Cyperus soyauxii  Boeck. 

Cyperus sphacelatus Rottb. 

Cyperus spiralis Larridon 

Cyperus squarrosus L. 

Cyperus stramineus Nees 

Cyperus strigosus L. 

Cyperus subg. Anosporum (Nees) C.B.Clarke 

Cyperus subg. Chlorocyperus (Rikli) Schischkin, 

nom. inval. 

Cyperus subg. Choristachys C.B.Clarke 

Cyperus subg. Cyperus  

Cyperus subg. Eucyperus Griseb. 

Cyperus subg. Juncellus Griseb. 

Cyperus subg. Micromariscus  Lye 

Cyperus subg. Pycnostachys C.B.Clarke 

Cyperus subgenus Fimbricyperus  Lye 

Cyperus sumbawangensis (Hoenselaar) Lye 

Cyperus tenellus L.f. 

Cyperus tenuis Sw. 

Cyperus textilis Thunb. 

Cyperus ustulatus  A.Rich. 

Cyperus vestitus Hochst. ex C.Krauss 

Cyperus waterlotii Cherm. 

Cyperus zonatissimus Kük. 
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Desmoschoenus Hook.f. 

Diplocarex Hayata 

Dracaena Vand. ex L. 

Dracoscirpoides Muasya 

Dracoscirpoides surculosa Muasya 

Dulichieae Rchb. ex J. Schultze-Motel 

Dulichium arundinaceum (L.) Britton 

Dulichium Pers. 

Ecdeiocoleaceae D.F.Cutler & Airy Shaw 

Eleocharideae Goetgh. 

Eleocharis acutangula  (Roxb.) Schult. 

Eleocharis R.Br. 

Eleocharis variegata (Poir.) C.Presl 

Ericaceae Juss. 

Eriocaulaceae Martinov. 

Eriocaulon L. 

Eriophorum L. 

Eriophorum latifolium Hoppe 

Erioscirpus Palla 

Eucyperus Rikli 

Euphorbia L. 

Evandra R.Br. 

Exocarya Benth. 

Exochogyne C.B.Clarke 

Ficinia Schrad. 

Ficinia gracilis Schrad. 

Ficinia lipocarphioides Kük. 

Fimbristylis dichotoma  (L.) Vahl 

Fimbristylis Vahl 

Flagellariaceae Dumort. 

Fuirena Rottb. 

Fuirena abnormalis C.B.Clarke 

Fuirena ciliaris  (L.) Roxb. 

Fuirena umbellata Rottb. 

Fuireneae Rchb. ex Fenzl 

Galilea Parl. 

Gymnoschoenus Nees 

Hellmuthia Steud. 

Hemicarpha isolepis Nees 

Hemicarpha Nees 

Hypolytreae Nees ex Wight & Arn. 

Hypolytrum Rich. ex Pers. 

Isolepis R.Br. 

Isolepis fluitans (L.) R.Br. 

Isolepis levynsiana  Muasya & D.A.Simpson 

Joinvilleaceae Toml. & A.C.Sm. 

Juncaceae Juss. 

Juncellus C.B.Clarke  

Juncellus pustulatus (Vahl) C.B.Clarke 

Khaosokia D.A. Simpson 

Kobresia Willd. 

Kyllinga Rottb. 

Kyllinga alata Nees 

Kyllinga brevifolia Rottb. 

Kyllinga bulbosa P.Beauv. 

Kyllinga chlorotropis Steud. 

Kyllinga nemoralis (J.R.Forst. & G.Forst.) 

Dandy ex Hutch. & Dalziel 

Kyllinga odorata Vahl. 

Kyllinga polyphylla  Willd. ex Kunth  

Kyllinga pumila Michx. 

Kyllinga squamulata  Vahl 

Kyllingiella R.W.Haines & Lye 

Kyllingiella polyphylla (A.Rich.) Lye 

Lagenocarpus amazonicus (C.B. Clarke) H. 

Pfeiff. 

Lipocarpha R.Br. 

Lipocarpha albiceps  Ridl. 

Lipocarpha chinensis  (Osbeck) J.Kern  

Lipocarpha comosa J.Raynal 

Lipocarpha filiformis (Vahl) Kunth 

Lipocarpha hemisphaerica (Roth) Goetgh.  

Lipocarpha kernii (Raymond) Goetgh.  

Lipocarpha micrantha  (Vahl) G.C.Tucker   

Lipocarpha nana (A.Rich.) Cherm. 

Lipocarpha rehmanii (Ridl.) Goetgh.  

Lipocarpha salzmanniana Steud. 

Lipocarpheae Chapm. 

Luzula DC. 

Luzula abyssinica  Novikov. 

Mapania Aubl. 

Mapanioideae C.B.Clarke 

Mariscus Scop. 

Mayaca fluviatilis Aubl. 

Mayacaceae Kunth 

Microdracoides Hua 

Microdracoides squamosus Hua 

Neesenbeckia Levyns 

Nemum Desv. ex Ham. 

Nemum angolense (C.B.Clarke) Larridon & 

Goetgh. 

Nemum atracuminatum Larridon, Reynders & 

Goetgh. 
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Nemum capitatum S.S.Hooper ex Larridon & 

Goetgh. 

Nemum raynalii S.S.Hooper ex Larridon & 

Goetgh. 

Nemum spadiceum (Lam.) Desv. ex Ham. 

Oxycaryum Nees   

Paramapania   Uittien 

Paramapania gracillima (Kük. & Merr.) Uittien 

Paramapania parvibractea (C.B.Clarke) 

Uittien 

Peperomia Ruiz. & Pav. 

Piperaceae Giseke 

Poaceae Samhart 

Poales Small 

Prionium serratum Baill. 

Pycreus P.Beauv. 

Pycreus acaulis Nelmes 

Pycreus africanus (S.S.Hooper) Reynders 

Pycreus alleizettei Cherm. 

Pycreus atribulbus (Kük. ) Napper 

Pycreus atronervatus (Boeck.) C.B. Clarke 

Pycreus atropurpureus  C.B.Clarke 

Pycreus atrorubidus Nees 

Pycreus betschuanus (Boeck.) C.B. Clarke 

Pycreus bipartitus (Torr.) C.B.Clarke 

Pycreus capillifolius (A.Rich.) C.B.Clarke  

Pycreus cataractarum C.B.Clarke 

Pycreus cooperi C.B.Clarke 

Pycreus decumbens T.Koyama 

Pycreus demangei J.Raynal 

Pycreus diander (Torr.) C.B.Clarke 

Pycreus diloloensis Kük. ex Cherm. 

Pycreus divulsus (Ridl.) C.B.Clarke 

Pycreus divulsus subsp. africanus S.S.Hooper 

Pycreus elegantulus (Steud.)C.B.Clarke 

Pycreus felicis J.Raynal 

Pycreus ferrugineus (Boeck.) C.B. Clarke 

Pycreus fibrillosus (Kük.) Cherm. 

Pycreus flavescens (L.) P.Beauv.ex Rchb. 

Pycreus flavescens subsp. intermedius (Rikli) 

Lye 

Pycreus flavescens subsp. microglumis Lye 

Pycreus flavidus (Retz.) T.Koyama  

Pycreus flavidus var. nilagiricus (Hochst. ex 

Steud.) Karthik. 

Pycreus fontinalis Cherm. 

Pycreus gracillimus Chiov. 

Pycreus heterochrous Nelmes 

Pycreus hildebrandtii C.B.Clarke 

Pycreus holosericeus Merr. 

Pycreus intactus  (Vahl) J. Raynal 

Pycreus lanceolatus (Poir.) C.B.Clarke 

Pycreus longistolon (Peter & Kük.) Napper  

Pycreus macranthus (Boeck.) C.B. Clarke 

Pycreus macrostachyos (Lam.) J.Raynal 

Pycreus malabaricus C.B.Clarke 

Pycreus megapotamicus (A.Dietr.) Nees  

Pycreus melanacme Nelmes 

Pycreus melas (Ridl.) C.B.Clarke  

Pycreus micromelas Lye 

Pycreus mortonii S.S.Hooper 

Pycreus mundtii Nees   

Pycreus muricatus (Kük.) Napper 

Pycreus niger subsp. elegantulus (Steud.) Lye 

Pycreus nigricans  (Steud.) C.B.Clarke 

Pycreus nitidus  (Lam.) J.Raynal 

Pycreus nuerensis (Boeck.) S.S.Hooper 

Pycreus overlaetii Cherm. ex S.S.Hooper 

Pycreus pauper (Hochst. ex Rich.) C.B. Clarke 

Pycreus pelophilus (Ridl.) C.B.Clarke 

Pycreus permutatus (Boeck.) Napper 

Pycreus poikilostachys Nelmes 

Pycreus polystachyos  (Rottb.) P.Beauv.  

Pycreus polystachyos subsp. holosericeus  

(Rottb.) P. Beauv. 

Pycreus pumilus (L.) Nees 

Pycreus reductus  Cherm. 

Pycreus rehmannianus C.B.Clarke 

Pycreus rhizomatosus C.B.Clarke 

Pycreus sanguineosquamatus Van der Veken 

Pycreus sanguinolentus (Vahl) Nees 

Pycreus scaettae Cherm. 

Pycreus scaettae var. katangensis Cherm. 

Pycreus sect. Tuberculati Cherm.  

Pycreus sect. Vestitae C.B.Clarke 

Pycreus smithianus (Ridl.) C.B.Clarke 

Pycreus subg. Reticulatae C.B.Clarke 

Pycreus sumbawangensis Hoenselaar 

Pycreus tener C.B. Clarke 

Pycreus unioloides (R.Br.) Urb. 

Pycreus vanderystii Cherm. 

Pycreus vicinus Cherm. 

Pycreus waillyi Cherm. 
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Pycreus xantholepis Nelmes 

Pycreus zonatissimus Cherm. 

Pycreus zonatus  Cherm. 

Queenslandiella Domin 

Queenslandiella hyalina (Vahl) Ballard 

Rapateaceae Dumort. 

Remirea Aubl. 

Remirea maritima Aubl. 

Restionaceae R.Br. 

Rhynchospora Vahl 

Rhynchospora colorata  (L.) H.Pfeiff. 

Rhynchospora corymbosa (L.) Britton 

Rhynchospora macrostachya  Torr. ex A.Gray 

Rhynchospora rubra subsp. rubra  (Lour.) 

Makino 

Rhynchospora sect. Haplostylis (Nees) Benth. 

Rhynchosporeae Wight & Arn. 

Rikliella J.Raynal 

Ruscaceae Sprengl. ex Hutch.  

Salvia L. 

Sansevieria trifasciata Prain 

Schoeneae Dumort. 

Schoenoplectiella Lye 

Schoenoplectus (Rchb.) Palla 

Schoenoplectus corymbosus (Roth ex Roem. & 

Schult.) J.Raynal 

Schoenus nigricans L. 

Scirpeae Kunth ex Dumort. 

Scirpodendron Sprengl. ex Hutch.  

Scirpodendron ghaerii (Gaertn.) Merr. 

Scirpoides Ség. 

Scirpoides holoschoenus (L.) Soják 

Scirpus L. 

Scirpus falsus C.B.Clarke 

Scirpus ficinioides Kunth 

Scirpus sylvaticus L. 

Scleria P.J. Bergius 

Scleria depressa  (C.B.Clarke) Nelmes 

Sclerieae Kunth ex Fenzl 

Sorostachys Steud. 

Sparganium L. 

Sphaerocyperus Lye 

Sphaerocyperus erinaceus (Ridl.) Lye 

Styphelioideae Sweet 

Tetraria   P.Beauv. 

Tetraria thermalis (L.) C.B.Clarke 

Tetrariopsis C.B.Clarke 

Thurniaceae Engl. 

Torulinium Desv. ex Ham.  

Tradescantia zebrina  Bosse 

Trichophorum Pers. 

Trilepideae Goetgh. 

Trilepis Nees 

Typha L. 

Typhaceae Juss. 

Uncinia Pers. 

Volkeria messelensis  S. Y. Smith, Collinson, 

Simpson, Rudall, Marone & Stampanoni 

Volkiella Merxm. & Czech  

Volkiella disticha Merxm. & Czech  

Websteria S.H.Wright 

Xyridaceae C.Agardh 

Xyris Gronov. ex L. 

Zea mays L. 
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Appendix III Sequences 

List of the samples used in the molecular phylogenetic study (see chapter 6) with 

species names, voucher information (*leaf sample courtesy of the collector A.M. Muasya), 

origin and GenBank accession numbers for the sequences. In addition single marker trees 

are added at the end of this appendix. Allignments can be downloaded at: 

https://www.researchgate.net/profile/Marc_Reynders/contributions/ 
 

Taxon Voucher (herbarium) Origin ETS1f trnH-psbA rpl32-trnL 

Alinula paradoxa Reid 1027 (GENT) South Africa HQ705964 - HQ705894 

Ascolepis brasiliensis Larridon et al. 2010-

0304 (GENT) 

Madagascar HE993954 HE993894 HE993685 

Ascolepis 

eriocauloides 

De Wilde s.n. (BR) Congo HE993955 HE993895 - 

Ascolepis 

hemisphaerica 

Reekmans 6729 (GENT) Burundi HE993956 - - 

Ascolepis protea Malaisse & Kisimba 695 

(GENT) 

Congo HE993957 HE993896 HE993686 

Ascolepis pusilla Malaisse & 

Goetghebeur 846 

(GENT) 

Congo HE993958 HE993897 - 

Cyperus 

alopecuroides 

Hess 52/1581 (GENT) Angola HE993959 HE993898 HE993687 

Cyperus alternifolius Goetghebeur 11516 

(GENT) 

BG Ghent HQ705948 HQ705818 HQ705878 

Cyperus aterrimus Muasya & Ramdhani 

2722 (BOL) 

South Africa HE993960 HE993899 HE993688 

Cyperus bulbosus Laegaard et al. 17024 

(GENT) 

Senegal HE993961 HE993900 HE993689 

Cyperus capitatus Goetghebeur 10744 

(GENT)  

BG Ghent HE993962 HE993901 HE993690 

Cyperus compressus Reynders & Sabulao 15 

(GENT) 

Philippines HE993963 HE993902 HE993691 

Cyperus congestus Goetghebeur 11988 

(GENT) 

BG Ghent HE993964 HE993903 HE993692 

Cyperus croceus Rostad s.n. (GENT) USA HE993965 HE993904 - 

Cyperus cuspidatus Jongkind & Nieuwhuis 

2847 (GENT) 

Ghana HQ705954 HQ705823 HQ705884 

Cyperus dives Muasya et al. 2529 (KA) Kenya HE993966 HE993905 HE993693 

Cyperus dubius Muasya & Muthama 

1251 (EA) 

Kenya HE993967 - HE993694 

Cyperus elegans Goetghebeur 5601 

(GENT) 

Cuba HQ705959 HQ705827 HQ705889 

Cyperus endlichii Muasya & Knox 954 (EA) Tanzania HE993968 - - 

Cyperus esculentus Goetghebeur 11303 

(GENT) 

BG Nantes, 

BG Ghent 

HQ705960 HQ705828 HQ705890 

Cyperus filiculmis Carter 4355 (GENT) Florida HE993969 HE993906 HE993695 

Cyperus fulgens Goetghebeur 4329 

(GENT) 

South Africa HE993970 HE993907 HE993696 
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Cyperus haspan Muasya & Muthama 

1269 (EA) 

Kenya HQ705927 HQ705803 HQ705803 

Cyperus impubes var. 

fallax 

Dhondt 9 (GENT) Madagascar HE993971 - HE993697 

Cyperus iria Desmet 77/13 (GENT) Burkina Faso HE993972 HE993908 HE993698 

Cyperus javanicus Reynders & Sabulao 60 

(GENT) 

Philippines HE993973 - HE993699 

Cyperus kerstenii Muasya 984 (EA, K; 

Muasya et al., 2002) 

Kenya HQ705961 HQ705829 HQ705891 

Cyperus laevigatus 

053 

Goetghebeur 10201 

(GENT) 

Morocco, 

BG Ghent 

HE993975 HE993910 - 

Cyperus laevigatus 

138 

Larridon et al. 2009-

0033 (GENT) 

Kenya HE993974 HE993909 HE993700 

Cyperus laevigatus 

142 

Goetghebeur 10202 

(GENT) 

Morocco, 

BG Ghent 

HE993976 HE993911 HE993701 

Cyperus longus Farjon 217 (GENT) Netherlands HE993977 HE993912 HE993702 

Cyperus luzulae Van den Eynden 213 

(GENT) 

Ecuador HQ705910 - HQ705846 

Cyperus marginatus Larridon et al. 2009-

0076 (GENT) 

Kenya HQ705949 HQ705819 HQ705879 

Cyperus meeboldii Kilian & Lobin 6848 

(GENT) 

Somalia HE993978 HE993913 HE993703 

Cyperus meyenianus Fosberg 47227 (GENT) Hawaii HE993979  

HE993914 

HE993704 

Cyperus papyrus Goetghebeur 5866 

(GENT) 

BG Ghent HQ705962 HQ705830 HQ705892 

Cyperus pectinatus Larridon et al. 2010-

0265 (GENT) 

Madagascar HQ705936 HQ705810 HQ705869 

Cyperus pustulatus Porembski 624 (GENT) Ivory Coast HE993980 HE993915 HE993705 

Cyperus rigidifolius  Samain 2005-001 

(GENT) 

Kenya  

HE993981 

HE993916 HE993706 

Cyperus rotundus Shaw 890 (K*)  Hong Kong 

(China)  

HQ705963 HQ705831 HQ705893 

Cyperus rubiginosus Unknown s.n. (GENT) Ecuador HE993982 HE993917 HE993707 

Cyperus rupestris Laegaard 15909 (GENT) Zimbabwe HE993983 HE993918 HE993708 

Cyperus sp. Goetghebeur 5965 

(GENT) 

BG Ghent HE993985 HE993920 HE993710 

Cyperus sphacelatus Goetghebeur 4908 

(GENT) 

Cameroon HE993984 HE993919 HE993709 

Cyperus spiralis Muasya & Muthama 

1247 (EA) 

Kenya HQ705953 HQ705822 HQ705883 

Cyperus strigosus BG 20051035G (GENT) BG Poznan, 

BG Ghent 

HE993986 HE993921 HE993711 

Cyperus waterlotii Larridon et al. 2010-

0010 (GENT) 

Madagascar HQ705955 HQ705824 HQ705885 

Cyperus waterlotii Larridon et al. 2010-

0043 (GENT) 

Madagascar HQ705956 HQ705825 HQ705886 

Ficinia gracilis Muasya 2713 (BOL) South Africa HQ705902 HQ705784 HQ705839 

Isolepis fluitans Muasya & Knox 3195 

(EA)  

Kenya HQ705901 HQ705783 HQ705838 

Kyllinga alata Acocks 22902 (BR) South Africa HE993987 - HE993712 

Kyllinga brevifolia Reynders and Sabulao Philippines, HE993988 HE993922 HE993713 
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68 (GENT) BG Ghent 

Kyllinga bulbosa Goetghebeur 11989 

(GENT)  

BG Ghent HE993989 - HE993714 

Kyllinga chlorotropis Muasya & Gerhke 2606 

(EA) 

Kenya HE993990 HE993923 HE993715 

Kyllinga nemoralis Goetghebeur 11518 

(GENT) 

Philippines, 

BG Ghent 

HQ705965 HQ705832 HQ705895 

Kyllinga odorata Strong 3485 (GENT) USA HE993991 HE993924 HE993716 

Kyllinga polyphylla Beeckman Z35 (GENT) Congo HE993992 HE993925 HE993717 

Kyllinga pulchella Muasya & Knox 991 (EA) Kenya  HE993926 HE993718 

Lipocarpha albiceps Hess 52/195 (GENT) Angola HE994025 HE993944 HE993748 

Lipocarpha chinensis Reynders & Sabulao 26A 

(GENT) 

Philippines HE994029 HE993948 HE993752 

Lipocarpha comosa Mincier 1027 (GENT) Zambia HE994028 HE993947 HE993751 

Lipocarpha filiformis Vanden Berghen 7913a 

(GENT) 

Senegal HE994030 HE993949 HE993753 

Lipocarpha kernii Laegaard 21195 (GENT) Burkina Faso HE994026 HE993945 HE993749 

Lipocarpha 

micrantha 

Luceño 186 (GENT) Brazil HE994032 HE993951 - 

Lipocarpha nana Larridon et al. 2010-

0041A (GENT) 

Madagascar HE994031 HE993950 HE993754 

Lipocarpha 

rehmannii 

Larridon et al. 2010-

0320 (GENT) 

Madagascar HE994027 HE993946 HE993750 

Lipocarpha 

salzmanniana 

Luceño 28 (GENT) Brazil HE994033 HE993952 - 

Pycreus africanus Leeuwenberg 8527 

(GENT) 

Congo HE993994 HE993927 - 

Pycreus alleizettei Larridon et al. 2010-

0299 (GENT) 

Madagascar HE993993 - HE993719 

Pycreus bipartitus Goetghebeur 11990 

(GENT)  

BG Ghent HE993995 HE993928 HE993720 

Pycreus capillifolius Muasya & Knox 999 (EA) Kenya HE993996 - HE993721 

Pycreus 

cataractarum 

De Wilde 1452 (GENT) Cameroon HE993997 - HE993722 

Pycreus elegantulus Unknown 348 (GENT) Kenya HE993998 HE993929 HE993723 

Pycreus fibrillosus Schmitz 7479 (GENT) Congo HE994005 - HE993729 

Pycreus flavescens Goetghebeur 10224 

(GENT) 

BG Ghent HE993999 HE993930 HE993724 

Pycreus flavescens 

subsp. microglumis 

Malaisse & 

Goetghebeur 390 

(GENT) 

Congo HE994000 HE993931 - 

Pycreus flavidus Reynders & Sabulao 45 

(GENT) 

Philippines HE994001 HE993932 HE993726 

Pycreus gracillimus Lewalle 2112 (GENT) Burundi HE994002 HE993933 - 

Pycreus intactus Reid 609 (GENT) South Africa HE994003 - HE993727 

Cyperus ͚Pycreus͛ 
juncelliformis 

Malaisse & 

Goetghebeur 409 

(GENT) 

Congo HE994004 - HE993728 

Pycreus longistolon Muasya & Knox 1027 

(EA) 

Kenya HE994006 HE993934 HE993730 

Pycreus macranthus Edwards 1038 (GENT) South Africa HE994007  HE993731 

Pycreus Muasya with Kirika, Kenya HE994008 HE993935 HE993732 
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macrostachyos Obunyali & Musili 2471 

(EA) 

Pycreus 

megapotamicus 

Goetghebeur 4826 

(GENT) 

Argentina HE994009 - HE993733 

Pycreus melanacme Richards 8409 (GENT) Congo HE994010 HE993936  

Pycreus melas Robinson 3478 (GENT) Zambia HE994011 - HE993734 

Pycreus micromelas Robinson 2310 (GENT) Zambia HE994012 - HE993735 

Pycreus mundtii Muasya & Knox 1018 

(EA) 

Kenya HE994013 HE993937 HE993736 

Pycreus nigricans Unknown 368 (GENT) Kenya HE994014 - HE993737 

Pycreus nuerensis Muasya & Knox 940 (EA) Tanzania HE994015 HE993938 HE993738 

Pycreus pauper Milne-Redhead & Taylor 

9184 (GENT) 

Tanzania HE994016 - HE993739 

Pycreus pelophilus Muasya & Muthama 

1263 (EA) 

Kenya HE994017 HE993939 HE993740 

Pycreus polystachyos Goetghebeur 11519 

(GENT) 

South Africa, 

BG Ghent 

HQ705966 HQ705833 HQ705896 

Pycreus polystachyos 

subsp. holosericeus 

Reynders and Sabulao 

64 (GENT) 

Philippines, 

BG Ghent 

- - HE993741 

Pycreus pumilus Muasya & Muthama 

1264 (EA) 

Kenya HE994018 - HE993742 

Pycreus reductus Dhondt 11 (GENT) Congo HE994020 HE993940 HE993744 

Pycreus reductus Larridon et al. 2010-

0161 (GENT) 

Madagascar HE994019  HE993743 

Pycreus 

rehmannianus 

Muasya & Knox 1022 

(EA) 

Kenya  HE993941 HE993725 

Pycreus 

rhizomatosus 

Gereau & Dumetz 3259 

(GENT) 

Madagascar HE994021 HE993942 - 

Pycreus 

sanguinolentus 

Kwika & Mundi 21 

(GENT) 

Kenya HE994022 - HE993745 

Pycreus smithianus Reekmans 7531 (GENT) Burundi HE994023 HE993943 HE993746 

Pycreus xantholepis Reekmans 9809 (GENT) Burundi HE994024 - HE993747 

Queenslandiella 

hyalina 

Muasya 2490 (EA) Kenya HQ705967 HQ705834 HQ705897 

Remirea maritima Faden et al. 96/48 (K*; 

Muasya et al., 2002) 

Tanzania HQ705968 HQ705835 HQ705898 

Scirpoides 

holoschoenus 

Goetghebeur 11520 

(GENT) 

BG Porto, 

BG Ghent 

HQ705900 HQ705782 HQ705837 

Sphaerocyperus 

erinaceus 

Faden et al. 96/358 (K*;  

Muasya et al., 2002) 

Tanzania HQ705969 HQ705836 HQ705899 

Volkiella disticha Müller & Giess 493 

(GENT) 

Namibia HE994034 HE993953 HE993755 
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 Fig. A.3.1. 50% majority consensus single marker ETS1f BI tree with the associated PP values 
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 Fig. A.3.2. 50% majority consensus single marker rpl32-trnL BI tree with the associated PP values 
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Fig. A.3.3. 50% majority consensus single marker psbA - trnH BI tree with the associated PP values 
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Appendix IV Curriculum Vitae 

Personal data 

 

 

 

 

 

 

 

 

 

Work experience 

Period Function Organisation 

16/01/2014 – current  Scientific assistant for the management of the greenhouse 

collections 
Agentschap Plantentuin Meise, 

Meise 

14/02/2013 – 15/01/2014  Ecology advisor Antea Group, Antwerp 

16/04/2012 – 19/12/2012 Lecturer  Hogeschool Gent, Ghent 

School of Arts  

 

1st & 2nd Bachelor Landscape- and Garden Architecture: plant 

knowledge, botany, vegetation biology and green management. 

01/10/2009 - 30/09/2011 Assistant Ghent University, Ghent 

Faculty of Sciences 

Research Group Spermatophytes:   

See website: 

www.spermatophytes.ugent.be  

1. Education (50%) 

2. Research (48%) 

3. Service (2%) 

01/10/2004 -30/09/2008 BOF-researcher 

1. Research (88%) 

2. Education (10%) 

3. Service (2%) 

12/10/2008 – 30/06/2009 

07/11/2011 - 10/03/2012 

Science teacher (Secondary school), several assignments Flemish Ministry for Education 

 

Education   

Period Subject Shool 

01/10/2004 – 18/10/2013 PhD in sciences, Biology  

Dissertation: The challenging taxonomy and evolution of C4 

Cyperus (Cyperaceae): A focus on Pycreus and its remarkable 

laterally flattened pistils. 

Ghent University, Ghent 

01/10/2002 - 30/06/2004 Master in Biology, option Botany 

Thesis: De Cyperaceae van Rwanda en Burundi: bijdrage tot 

een nieuwe flora  

Degree: cum magna laude 

Ghent University, Ghent 

01/10/2000 - 30/06/2002  Bachelor in Biology 

Degree: cum maxima laude 

University of Hasselt, Diepenbeek 

01/09/1994 - 30/06/2000 Latin-Math-Sciences Heilig Grafinstituut, Bilzen 

2005-2006 Advanced Academic English: writing skills – Natural Sciences Universitair Talencentrum, Gent 

Name: Marc Reynders   

Adress: J. de Bethunelaan 20,  

9800 Deinze 

  

Tel: 09 329 07 89   

Gsm: 0474 70 29 86   

E-mail: Marc.Reynders@UGent.be   

ResearchGate: Link: https://www.researchgate.net/profile/Marc_Reynders/ 
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Publications 

PUBLICATIONS as first author 

1. Reynders, M. & Vrijdaghs, A., Larridon, I., Huygh, W., Leroux, O., Muasya, AM., Goetghebeur, P. (2012).  Gynoecial anatomy 

and development in Cyperoideae (Cyperaceae, Poales): congenital fusion of carpels facilitates evolutionary modifications in pistil 

structure. Plant Ecology and Evolution 145(1): 1-30. 

2. Reynders, M., Huygh, W., Larridon, I., Muasya, AM., Govaerts, R., Simpson, DA., Goetghebeur, P. (2011) Nomenclature and 

tǇpifiĐatioŶ of Ŷaŵes of geŶera aŶd suďdivisioŶs of geŶera iŶ CǇpereae ;CǇperaĐeaeͿ: ϯ. Naŵes of suďdivisions in segregate 

genera of Cyperus. Taxon 60: 885–895. 

3. Reynders, M. & Goetghebeur, P. (2010) Reestablishment of Pycreus section Tuberculati (Cyperaceae). Blumea 55: 226–230. 

4. Reynders, M., Dhooge, S. & Goetghebeur, P. (2006) A new Central African species, Cyperus vandervekenii (Cyperaceae) from 

the sources of the Nile in Rwanda. Novon 16: 512–515. 

PUBLICATIONS as second author 

5. Muasya, AM., Reynders, M., Goetghebeur, P., Simpson, DA., Vrijdaghs, A. (2012) Dracoscirpoides (Cyperaceae) – a new genus 

froŵ SoutherŶ AfriĐa, its taǆoŶoŵǇ aŶd floral oŶtogeŶǇ. South African Journal of Botany. 78(1) 104-112. 

6. Larridon, I., Reynders, M., Huygh, W., Bauters, K., Vrijdaghs, A., Leroux, O., Muasya, AM., Goetghebeur, P. (2011). Taxonomic 

changes in C3 Cyperus (Cyperaceae) supported by molecular phylogenetic data, morphology, embryology, ontogeny and 

anatomy. Plant Ecology and Evolution 144(3): 327-356. 

7. Larridon, I., Reynders, M., Huygh, W., Bauters, K., Van de Putte, K., Muasya, AM., Boeckx, P., Simpson, DA., Vrijdaghs, A., 

Goetghebeur, P. (2011) Affinities in C3 Cyperus lineages (Cyperaceae) revealed using molecular phylogenetic data and carbon 

isotope analysis. Botanical Journal of the Linnean Society 167: 19–46. 

8. Vrijdaghs, A., Reynders, M., MuasǇa, AM., LarridoŶ, I., Goetgheďeur, P., Sŵets, E. ;ϮϬϭϭͿ. Spikelet aŶd floral ŵorphologǇ aŶd 

development in Cyperus and Pycreus (Cyperaceae). Plant Ecology and Evolution 144: 44–63. 

9. Bauters, K., Reynders, M., Larridon, I., Huygh, W. & Goetghebeur, P. (2010) Two New Species of Cyperus (Cyperaceae) from 

the Zambezian Region of Africa. Novon 20: 133-138. 

10. Vrijdaghs, A., Reynders, M., Larridon, I., Muasya, A. M., Smets, E. & Goetghebeur, P. (2010) Spikelet structure and 

development in Cyperoideae (Cyperaceae): a monopodial general model based on ontogenetic evidence. Annals of Botany 

105: 555-571. 

11. Larridon, I., Reynders, M. & Goetghebeur, P. (2008) Novelties in Nemum (Cyperaceae). Belg. J. Bot. 141: 129-149. 

12. Larridon, I., Reynders, M. & Goetghebeur, P. (2008) Cyperus limiticola, a New Name for a Madagascan Cyperus (Cyperaceae). 

Novon 18(2): 187-188. 

13. Verloove, F. & Reynders, M. (2007) Studies within the genus Paspalum (Paniceae, Poaceae) in Europe – 2. The Quadrifaria 

group. Willdenowia 37: 423-430. 

14. Verloove, F. & Reynders, M. (2007) Studies within the genus Paspalum (Paniceae, Poaceae) in Europe: 1. Paspalum distichum 

subsp. paucispicatum, an overlooked taxon in France. Willdenowia 37: 199-204. 

15. Samain, M.-S., Reynders, M. & Goetghebeur, P. (2006) Kyllinga beninensis (Cyperaceae), a new species from Bénin. Novon 16: 

516–519. 

PUBLICATIONS as third author 

16. Larridon I., Bauters K., Huygh W., Reynders M. & Goetghebeur P. Taxonomic changes in C4 Cyperus (Cypereae, Cyperoideae, 

Cyperaceae): reducing the sedge genera Ascolepis, Kyllinga and Pycreus into Cyperus sensu lato. Submitted for publication in 

Phytotaxa. 

17. Bauters K., Larridon I., Reynders M., Huygh W., Asselman P., Vrijdaghs A., Muasya A.M., Goetghebeur P. Infrageneric 

classification of Lipocarpha (Cypereae, Cyperoideae, Cyperaceae): based on morphological, developmental and molecular 

evidence. Submitted for publication in Phytotaxa. 

18. Larridon I, Bauters K, Reynders M, Huygh W, Muasya AM, Simpson DA, Goetghebeur P. (2013) Towards a new classification of 

the giant paraphyletic genus Cyperus (Cyperaceae): phylogenetic relationships and generic delimitation in C4 Cyperus. 

Botanical Journal of the Linnean Society 172(1):106-126.  
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19. Muasya, AM., Larridon, I, Reynders, M., Huygh, W., Goetghebeur P., Cable S., Simpson, DA., Gehrke, B. (2011).
 
The 

Cyperaceae in Madagascar show high diversification in high altitude forest and wetland habitats. Plant Ecology and Evolution 

(AETFAT proceedings). 144(3): 357-362. 

20. Larridon, I., Huygh, W., Reynders, M., Muasya, AM., Govaerts, R., Simpson, DA., Goetghebeur, P. (2011) Nomenclature and 

tǇpifiĐatioŶ of Ŷaŵes of geŶera aŶd suďdivisioŶs of geŶera iŶ CǇpereae ;CǇperaĐeaeͿ: Ϯ. Naŵes of suďdivisioŶs iŶ Cyperus. 

Taxon 60: 868–884. 

21. Huygh, W., Larridon, I., Reynders, M., Muasya, A. M., Govaerts, R., Simpson, D.A. & Goetghebeur, P. (2010) Nomenclature and 

typification of names of genera and subdivisions of genera in Cypereae (Cyperaceae): 1. Names of genera in the Cyperus clade. 

Taxon 59: 1883–1890. 

22. Mathieu, G., Samain, M.-S., Reynders, M. & Goetghebeur, P. (2008) Taxonomy of the Peperomia species (Piperaceae) with 

pseudo-epiphyllous inflorescences, including four new species. Bot. J. Linn. Soc. 157: 177-196. 

23. Prata, A.P., Camelbeke, K., Reynders, M., Goetghebeur, P. & Huber, O. (2007) Bulbostylis medusae (Cyperaceae), a new 

species from Venezuela. Novon 17: 67-71. 

 

Congresses and symposia 

Period Congress Location 

03/05/2005 PhD symposium Faculty of Sciences 

ABSTRACT 

Reynders, M., P. Goetghebeur & L. Majesky. (2005) Nutlet 

anatomy, a key character for the taxonomy of Pycreus 

(Cyperaceae). In: Doctoraatssymposium Faculteit 

Wetenschappen, 3 mei 2005: Book of Abstracts: p. 113, 

Universiteit Gent. (poster; nomination best poster) 

ICC International Convention 

Center, Ghent 

17-23/07/2005 International Botanic Congress XVII Vienna, Austria 

29-30/09/2005 Africa’s Great Rift: Diversity and Unity 

ABSTRACT 

Reynders, M., Goetghebeur, P. (2005) A key to the Cyperaceae 

of Rwanda and Burundi. In: AfriĐa’s Great Rift: DiversitǇ aŶd 
Unity 29-30 September 2005. Book of Abstracts: Royal 

Academy for Overseas Sciences, Brussels. (poster) 

Brussels 

26/02/2007 – 02/03/2007 AETFAT XVIII congress 

ABSTRACTS 

Reynders, M., Huygh, W., Muasya, AM., Goetghebeur P. 

(2007). Phylogeny and evolution of the mainly African genus 

Pycreus (Cyperaceae), based on molecular and morphological 

data. In: XVIIIth AETFAT Congress, 26 February – 2 March 2007. 

Abstracts: p.45. Yaoundé, Cameroon. 197 p. (poster) 

Huygh, W., Reynders, M., Muasya, M. Vrijdaghs, A. & P. 

Goetghebeur. (2007). Origin and evolution of 

the Cyperaceae with laterally compressed pistils. In: XVIIIth 

AETFAT Congress, 26 February – 2 March 2007. Abstracts: p.33. 

Yaoundé, Cameroon. 197 p. (talk) 

Larridon I., Reynders, M. Goetghebeur P. (2007). Systematic 

and phylogeny of the African genus Nemum (Cyperaceae). In: 

XVIII AETFAT congress abstracts: p. 35 Yaoundé. 197 p. (poster) 

Yaoundé, Cameroon 

24/04/2007 PhD symposium Faculty of Sciences 

ABSTRACTS 

Reynders, M., Huygh, W., Muasya, AM., Goetghebeur P. 

(2007). Phylogeny and evolution of the mainly African genus 

Pycreus (Cyperaceae), based on molecular and morphological 

data. In: Doctoraatssymposium Faculteit Wetenschappen 4 

april 20072007. Book of Abstracts: Universiteit Gent. (poster) 

Huygh, W., Reynders, M., Muasya, M. Vrijdaghs, A. & P. 

Goetghebeur. (2007). Origin and evolution of 

ICC International Convention 

Center, Ghent 
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the Cyperaceae with laterally compressed pistils.  In: 

Doctoraatssymposium Faculteit Wetenschappen 4 april 2007: 

Book of Abstracts: Universiteit Gent. (poster) 

11/08/2008 – 15/08/2008 The fourth International Conference on The Comparative 

Biology of the Monocotyledons (MONOCOTS IV) & The Fifth 

International Symposium on Grass Systematics and Evolution 

ABSTRACTS 

Reynders, M., Muasya, AM., Larridon I., Dludlu, MN., Huygh, 

W., Vrijdaghs, A., Simpson, DA., Goetghebeur P. (2008) 

Cypereae revisited – evidence from morphology and DNA data. 

In: Monocots IV, Abstracts: P. 51. Natural History Museum of 

Denmark, Copenhagen. 100p. (talk) 

Huygh, W., Reynders, M., Larridon, I., Muasya, AM., Vrijdaghs, 

A., SiŵpsoŶ, DA., Goetgheďeur P. ;ϮϬϬ8Ϳ KǇlliŶga, CǇperaĐeae’s 
worst nightmare? In: Monocots IV, Abstracts: P. 31. Natural 

History Museum of Danmark, Copenhagen. 100p. (talk) 

Larridon I., Reynders, M., Huygh, W., Simpson, DA., Muasya, 

AM., Goetghebeur P. (2008). Taxonomy and evolution of the 

Cyperus species (Cyperaceae) with C3 photosynthesis type. In: 

Monocots IV, Abstracts: P. 35. Natural History Museum of 

Danmark, Copenhagen. 100p. (talk) 

Copenhagen, Danmark 

25/04/2010 – 01/05/2010 AETFAT XIX congress 

ABSTRACTS 

Reynders, M. & Vrijdaghs, A., Larridon, I., Huygh, W., Leroux, 

O., Muasya, AM., Goetghebeur, P. (2010). The Cypereae 

radiation: Pycreus highlighted (Cyperaceae). In XIXth AETFAT 

Congress – Madagascar, 25-30 April, 2010. Abstracts. Scripta 

Botanica Belgica 46: 445. National Botanic Garden of Belgium. 

510p. (talk) 

Reynders, M., Larridon I., Muasya, AM., Goetghebeur P. (2010). 

Do you understand the fibrillous Pycrei (Cyperaceae)? In XIXth 

AETFAT Congress – Madagascar, 25-30 April, 2010. Abstracts. 

Scripta Botanica Belgica 46: 444. National Botanic Garden of 

Belgium. 510p. (poster) 

Huygh, W., Larridon, I., Reynders, M., Muasya, AM., Vrijdaghs, 

A., Simpson, DA., Goetghebeur P. (2010) Easy to see but hard to 

name! In XIXth AETFAT Congress – Madagascar, 25-30 April, 

2010. Abstracts. Scripta Botanica Belgica 46: 218. National 

Botanic Garden of Belgium. 510p. (talk) 

Larridon I., Huygh, W., Reynders, M., Vrijdaghs, A., Leroux, 

O., Boeckx, P., Simpson, DA., Muasya, AM., Goetghebeur P. 

(2010). The Cyperus Clade! In XIXth AETFAT Congress – 

Madagascar, 25-30 April, 2010. Abstracts. Scripta Botanica 

Belgica 46: 261. National Botanic Garden of Belgium. 510p. 

(talk) 

Antananarivo, Madagascar 

16/09/2010 – 18/09/2010 Botanical Diversity: exploration, understanding and use 

ABSTRACTS 

Reynders, M., Larridon I., Huygh, W., Muasya, AM., 

Goetghebeur P. (2010). To genus or not to genus? Radiations 

and paraphyly in Cypereae! In: Botanical Diversity: 

exploiration, understanding and use, 16-18 September 2010. 

Programme & Abstracts. Scripta Botanica Belgica 48:109-110. 

National Botanic Garden of Belgium. 110p. (poster) 

Larridon, I., Huygh, W., Reynders, M., Vrijdaghs, A., Leroux, 
O., Boeckx, P., Simpson, DA., Muasya, AM., Goetghebeur P. 

(2010). C3 Cyperus (Cyperaceae). In: Botanical Diversity: 

exploiration, understanding and use, 16-18 September 2010. 

Programme & Abstracts. Scripta Botanica Belgica 48:62. 

National Botanic Garden of Belgium. 110p. (poster) 

National Botanic Garden of 

Belgium,  Meise 

 

 

 



 

354 

 

Other abstracts: 

1. Larridon I., Huygh, W., Reynders, M., Vrijdaghs, A., Boeckx, P., Goetghebeur P. (2009). The Cyperus clade. In: 

Doctoraatssymposium Faculteit Wetenschappen 2009: Book of Abstracts: p. 144. Universiteit Gent. 193p. (poster) 

2. Vrijdaghs, A., Reynders, M., Larridon, I., Muthama Muasya, A., Smets, E. & P. Goetghebeur. (2011). Metatopic displacements 

as an explanation for deriving morphologies in spikelets of Cyperoideae, Cyperaceae. In: Borsch, T., Giere, P., Hoffmann, J., 

Jahn, R., Löhne, C., Nordt, B. & M. Ohl (eds.), BioSystematics Berlin, 21 – 27 February 2011, Programme and Abstracts: 379-

380. Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Germany. 434 p. ISBN 978 3 921800 68 3 

3. Reynders, M., Muasya, AM., Larridon, I., Huygh, W., Vrijdaghs, A., Goetghebeur, P. (2011). Radiations and paraphyly in 

Cyperus: Challanging taxonomy of a giant genus. In: International Botanic Congress 2011, 23-30 July 2011, Abstracts: p. 248-

249 , Melbourne, Australia.  

4. Bruhl, JJ., Vrijdaghs, A., Prychid, C., Reynders, M.  (2011). Mapaniids are critical to resolving floral and spikelet ontogeny in 

Cyperaceae. . In: International Botanic Congress 2011, 23-30 July 2011, Abstracts: p. 249 , Melbourne, Australia.  

 

Fieldwork experience 

Period Purpose Locations 

18/12/2005 – 25/01/2006 Collection of living Cyperaceae + herbarium,  sampling for 

ontogeny & DNA 

Philippines: Samar & Bohol islands 

23/02/2007 – 09/03/2007 Collection of living Cyperaceae & Peperomia + herbarium,  

sampling for ontogeny & DNA 

Cameroon: Mt Cameroon, 

inselbergs near Yaoundé, highlands 

of the northwest 

14/04/2010 – 01/05/2010 Collection of Cyperaceae: herbarium,  sampling for ontogeny & 

DNA 

Madagascar, central highlands 

 

International herbarium visits 

Period Location Purpose 

12/01/2006 San Carlos University, Cebu, Philippines 

(CEBU) 

Identifications. 

22-24/08/2007 Royal Botanic Gardens of Kew, UK (K) Identifications, registration of data, loan of material 

for taxonomic studies. 

31/07-1/08/2007 Herbier National d’Histoire Naturelle, Paris (P) Identifications, registration of data, loan of material 

for taxonomic studies. 

28/02/2007 Herbier National, Yaoundé, Cameroun (YA) Preparation of fieldwork, identifications, 

processing & deposit of collected materials   

14/04/2010 – 01/05/2010 Parc Botanique et Zoologique de Tsimbazaza, 

Antananarivo, Madagascar (TAN) 

Preparation of fieldwork, identifications, 

processing & deposit of collected materials   

 

Skills  

 Languages: Dutch: native speaker; English: fluent; French: well. 

 Ms Office: Word, Exell, Powerpoint, Outlook, Access  

 Specific software: vb. ArcView, ArcGis, BioEdit, Paup, PhyDe, … 

 Scientific illustrations: photography, ink-drawing, cartoons, Photoshop,  3D graphics (Rhinoceros 3D).  

 Molecular research: DNA extraction, PCR, AFLP, Nanodrop, gel-elektrophoresis, ... 

 Ecological fieldwork: floristic inventarisations, herborisation, vegetation study 

 Species knowledge: Tropical sedges, flora of Belgium, indoor & outdoor ornamental plants,  … 

 

Extra curricular 

 1998-2000: Floristic fieldwork with the botany workgroup of  LIKONA (Limburgse koepel voor Natuurstudie): participations to the 

‘black holes project’ for  the Atlas of the flora of Flanders and Brussels. Participation to nature management with the Jeugdbond 

voor Natuurstudie en Milieubescherming (JNM). 
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Appendix V Portfolio of botanical illustrations 

A.5.1 In this appendix… 

 Appendix VI contains a portfolio of botanic ink drawings, published in several additional papers, 

which are indirectly or not linked to the main research topic of this dissertation. 

 Visual presentation adds value to plant characteristics, which are difficult to describe such as 

complex shapes and densities. Especially in large taxonomically complex groups, adequate illustrations 

form a useful tool for fast and reliable species identification. 

 In the first part, novelties in Cyperaceae are presented from in and outside Cyperus s.l. The second 

part briefly focuses on three articles outside Cyperaceae. A few illustrations were already included in the 

previous chapters and are not repeated here (Figs. 2.2,  2.13 & 8.11). 

 For these articles my contribution was focused on drawing the botanical illustrations and maps and 

giving their correct interpretations. Good illustrations are most valuable for taxonomic works certainly in 

large and taxonomically difficult taxa as for example Cyperus s.l. (Cyperaceae), Peperomia (Piperaceae) 

and Paspalum (Poaceae) since they allow for correct interpretation in addition to the descriptions and 

keys. Detailed line drawings have the advantage over pictures that they not only show the different 

important structures but also show the interpretations of the authors. 

 

A.5.2 Illustrating novelties in Cyperaceae 

 

 Publications of new species, names and combinations is still one of the most important bases of 

taxonomy and working on such a large and diverse group as Cyperaceae gives many opportunities to 

provide science with stunning novelties.  

Figures A.5.2-A.5.11 were produced for several published papers with the following references: 

 

1) Reynders M., Dhooge S. & Goetghebeur P. 2006 A new Central African species, Cyperus 

vandervekenii (Cyperaceae) from the sources of the Nile in Rwanda. Novon 16: 512–515. 

Abstract:  

Cyperus vandervekenii Reynders, Dhooge & Goetghebeur, from Rwanda, is fully described and illustrated. It can 

easily be distinguished from the related Cyperus graciliculmis Lye by its slender subquadrangular culms, single 

pseudolateral spikelets, and by the associated bract shorter than the spikelet. 
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2) Samain M.-S., Reynders M. & Goetghebeur P. 2006 Kyllinga beninensis (Cyperaceae), a new species 

from Bénin. Novon 16: 516–519. 

Abstract:  

Kyllinga beninensis Samain, Reynders & Goetghebeur, a new species of Cyperaceae from the Borgou-Sud region of 

Benin, is fully described and illustrated. This species can be recognized by the slender habit with swollen stem base, 

the tiny white head consisting of a single spike, and the spikelets with two glumes and one flower. Morphological 

differences with the species K. microbulbosa Lye from East Africa, to which K. beninensis bears a superficial 

resemblance, are discussed. 

 

3) Prata A.P., Camelbeke K., Reynders M., Goetghebeur P., Fedon I. & Huber O. 2007 Bulbostylis 

medusae (Cyperaceae), a new species from Venezuela. Novon 17: 67-71. 

Abstract:  

Bulbostylis medusae Prata, Reynders & Goetghebeur from Venezuela is fully described and illustrated. This species 

differs from all other South American Bulbostylis Kunth species by the combination of long-ciliated leaf sheaths, leaf 

apices, bracts, and spikelet axes. The new species resembles B. sellowiana (Kunth) Palla, and a comparison of the 

two species is made. 

 

4) Larridon I., Reynders M. & Goetghebeur P. 2008 Cyperus limiticola, a New Name for a Madagascan 

Cyperus (Cyperaceae). Novon 18(2): 187-188. 

Abstract:  

There is a need to propose a new name in Cyperus L. for C. paucispiculatus Chermezon because the name currently 

used is n illegitimate later homonym of C. paucispiculatus Böckeler. A new name, C. limiticola Larridon & Reynders, is 

provided here. 

 

5) Larridon I., Reynders M. & Goetghebeur P. 2009 Novelties in Nemum (Cyperaceae). Belg. J. Bot. 141 

'2008': 157-177. 

Abstract:  

Five new taxa of the African genus Nemum (Cyperaceae) are recognised. The new combination Nemum angolense is 

made; three new species (Nemum atracuminatum, N. capitatum and N. raynalii) and a new subspecies (Nemum 

spadiceum subsp. spadolense) are described. The taxa are described and illustrated, and differences from their 

closest relatives are discussed. An identification key and commentaries on the interspecific affinities are included. 
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Fig. A.5.2 Habit drawings of Andean scirpoid species for the PhD dissertation of Sandra Dhooghe (2004). A. 

Phylloscirpus boliviensis, drawn from Beck 22360 (GENT). B .Phylloscipus acaulis, drawn from Laegard 

101436 (GENT).  C. Zamaioscirpus muticus, drawn from Renvoize & Laegard 5144 (Gent). 

 

A 

B 

C 
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Fig. A.5.3 Cyperus vandervekenii Reynders, Dhooge & Goetghebeur: A. habit; B. inflorescence; C. fruit upper 

view; D. fruit lateral view; E. glume; F. flower; G. stem section; H. stem detail  (drawn from the holo-type: 

Van der Veken 10116, GENT). (Reynders et al., 2006). 
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Fig. A.5.4 Kyllinga beninensis Samain, Reynders & Goetghebeur: A. habitus; B. swollen stem base; C. culm 

section; D. leaf tip; E. inflorescence; F. receptaculum; G. spikelet; H. fruit upper view; I. Fruit lateral view 

(Drawn from the holotype: Sinsin 3038, WAG). (Samain et al., 2006) 
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Fig. A.5.5 Bulbostylis medusae Prata, Reynders & Goetghebeur: A. habit; B. inflorescence; C. fruit upper view; D. 

fruit; E. lower glume; F. upper glume; G. hair from base of glumes; H. leaftip with bunch of hairs (Gröger 913, 

holo GENT); I, leaf tip of Bulbostylis sellowiana Palla (Furlan, Guilietti, Harley, Wanderley & Varanda 4569, 

GENT). (Prata et al., 2007) 
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Fig. A.5.6 Nemum  angolense (C.B. Clarke) Larridon & Goetgh.  Habit.  A.  Slender  annual  of  which  at  

least  one  inflorescence  bears  more  than  one  spikelet  (based  on  Hess  52/1370).  B.  Robust perennial  

habit  with  a  clearly  anthelate  inflorescence  (based  on  Hess  52/2100).  C.  Intermediate  form  with  

nearly  capitate  inflorescences   (based  on  Robinson  2323). (Larridon et al., 2009) 
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Fig. A.5.7 Nemum  angolense. (C.B. Clarke) Larridon & Goetgh. Details. A-D.  Based  on  Robinson  2323.  A.  

Spikelet.  B.  Glume.  C.  Nutlet  (apical  view).  D.  Nutlet  (lateral  view). E-H.  Based  on  Le  Testu  4113.  E.  

Spikelet.  F.  Glume.  G.  Nutlet  (apical  view).  H.  Nutlet  (lateral  view).    I-L  Based  on  Hess  52/1370.  I.  

Spikelet.  J.  Glume.  K.  Nutlet  (apical  view).  L.  Nutlet  (lateral  view). (Larridon et al., 2009) 

 



363  

 

  

Fig. A.5.8 Nemum raynalii S.S. Hooper ex Larridon & Goetgh. (based  on  Milne-Redhead  4290).  A.  Habit.  B.  

Anthela  of  spikelets.  C.  Glume  (lateral  view).  D.  Glume  (abaxial  view)  E.  Bifid  style. (Larridon et al., 

2009) 
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Fig. A.5.9 Nemum  capitatum S.S. Hooper ex Larridon & Goetgh. (based  on  Adam  22456bis).  A.  Habit.  B.  

Head  of  spikelets.  C.  Glume  (lateral  view).  D.  Glume  (abaxial  view)  E.  Bifid  style.  F.  Nutlet  (lateral 

view).  G.  Nutlet  (apical  view).  H.  Transition  leaf sheath  to  leaf blade.  I.  Almost  ensiform  tip  of  leaf. 

(Larridon et al., 2009)  
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Fig. A.5.10 Nemum spadiceum (Lam.) Desv. ex Ham. A-D.  &  G-H. Nemum  spadiceum  subsp.  spadiceum  

(based  on  Laegaard  21213).  A.  Habit.  B.  Spikelet.  C.  Glume  (lateral  view).  D.  Glume  (abaxial  view).  G.  

Nutlet  (abaxial  view).  H.  Nutlet  (lateral  view). E-F.  &  I-J. Nemum  spadiceum  subsp.  spadolense Larridon 

& Goetgh. (based  on  Gerard  3949).  E. Glume  (lateral  view).  F.  Glume  (abaxial  view).  I.  Nutlet  (apical  

view).  J.  Nutlet  (lateral  view). (Larridon et al., 2009) 
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Fig. A.5.11 Cyperus limiticola Larridon & Reynders: A, habit; B, inflorescence; C, detail of spikelets (Viguier & 

Humbert 1256, P). (Larridon et al., 2008) 

 



367  

A.5.3 Leaving the Cyperpath, just for a little while… 

 

A.5.3.1 Illustrative contributions to the taxonomy of Paspalum (Poaceae) 

 

Figures A.5.12-A.5.13 were produced for two published papers with the following references: 

 

1) Verloove F. & Reynders M. 2007. Studies within the genus Paspalum (Paniceae, Poaceae) in Europe: 1. 

Paspalum distichum subsp. paucispicatum, an overlooked taxon in France. Willdenowia 37: 199-204. 

Abstract: 

The present paper reports about the naturalization of the Mexican grass species Paspalum paucispicatum in the 

Loire valley in France. The species has long been confused with and erroneously referred to as P. dilatatum, P. 

distichum, P. longipilum or P. pubiflorum. A revision of several relevant herbaria enabled us to reconstruct the 

speĐies͛ iŶvasion history in France. Main diagnostic features are given and an identification key for Paspalum in 

France is presented. P. paucispicatum, of a debated taxonomic rank in its area of origin but clearly delimited in 

France, is probably better treated as a subspecies of P. distichum; hence the new combination at subspecific level is 

validated. 

 

2) Verloove F. & Reynders M. 2007. Studies within the genus Paspalum (Paniceae, Poaceae) in Europe – 2. 

The Quadrifaria group. Willdenowia 37: 423-430. 

Abstract: 

The South American Paspalum quadrifarium has been reported as a naturalized xenophyte in Tuscany and Liguria, 

Italy, since at least the 1960s. In the present contribution the discovery of the closely related P. exaltatum, also of 

South American origin, in Liguria, Italy, is reported. These are the only known occurrences in Europe of both species, 

which are very similar to each other and likely to be confused. In the present paper their diagnostic features are 

discussed and original line drawings and SEM photographs for both taxa are presented. Their current distribution in 

Italy is shown and some ecological remarks are added. 
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Fig. A.5.12 Paspalum distichum L. subsp. paucispicatum (Vasey) F. Verloove & M. Reynders comb. nov. – a: 

habit; b: node; c: leaf sheath with ligula; d,e: spikelets grouped two by two. Drawn after Verloove 4489. 

(Verloove & Reynders, 2007a) 
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 Fig. A.5.13 Comparison of Paspalum quadrifarium Lam. and Paspalum exaltatum J. Presl & C. Presl in Italy – a: 

habit; b: inflorescence; P. quadrifarium: c: upper floret in dorsal view showing lemma; d: upper floret in ventral 

view showing palea and margins of lemma; e: spikelet in lateral view; f: spikelet in dorsal view showing upper 

glume; g. spikelet in ventral view showing sterile lemma; P. exaltatum:  h: upper floret in dorsal view; i: upper 

floret in ventral view; j: spikelet in lateral view; k: spikelet in dorsal view; l. spikelet in ventral view. Drawn after 

F. Verloove 6004 and F. Garbari s.n. (Verloove & Reynders, 2007b) 
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A.5.3.2 Contributions to the taxonomy of Peperomia (Piperaceae) 

 

Figures A.5.14-A.5.20 were produced for a published paper with the following reference: 

 

1) Mathieu G., Samain M.S., Reynders M. & Goetghebeur P. 2007. Taxonomy of the Peperomia species 

(Piperaceae) with pseudo-epiphyllous inflorescences, including four new species. Bot. J. Linn. Soc. 

157: 177-196. 

Abstract: 

Twelve of the estimated 1500–1700 taxa in Peperomia show a particular feature: their terminal inflorescences seem 

to originate from the base of a leaf blade as a result of the presence of a sessile leaf at the base of these 

inflorescences. Three of these 12 taxa occur in Ecuador and four species are reported from Colombia. from Peru, 

two species are known from historical herbarium collections, and hree other species are new to science. One new 

species is described from Bolivia. Collections of all 12 species are quite rare and, in the past, their identification 

seems to have been rather problematic. Previous authors have referred to these inflorescences as epiphyllous but, 

as shown here, this is not a correct description. To make a clear distinction from genuine epiphyllous inflorescences, 

the terŵ ͚pseudo-epiphǇllous͛ is proposed. IŶ additioŶ to the puďliĐatioŶ of four Ŷeǁ species of Peperomia, 

emended descriptions are provided for the other species, synonymy is treated, and lectotypes are designated. The 

architecture of the plants is discussed and a key to the 12 species is provided. 

  

Fig. A.5.14 Developing order in a compound inflorescence of pseudo-epiphyllous Peperomia speĐies: A, ͚fertile͛ 
ďraŶĐh; B,͚fertile͛ leaf; 1–ϰ, suĐĐessiǀelǇ deǀelopiŶg spadiĐes; 1′-ϯ′, suĐĐessiǀe ďraĐts suďteŶdiŶg the aǆillarǇ ďud 
from which the next spadix develops. (Mathieu et al., 2007) 
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Fig. A.5.15 Architecture of the holotype of Peperomia palmiriensis: A, ͚ǀegetatiǀe͛ ;petiolateͿ leaf; B, 
͚fertile͛;sessileͿ leaf. ;Mathieu et al., 2007) 
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Fig. A.5.16 Architecture of pseudo-epiphyllous Peperomia species: A, with sympodial branching; B, with 

condensed lateral branching; 1–7, suĐĐessiǀe ͚fertile͛ leaǀes; 1′-7′, suĐĐessiǀe ͚ǀegetatiǀe͛ leaǀes; a, aǆillarǇ ďud 
that deǀelops iŶto the Ŷeǆt͚fertile͛ ďraŶĐh; ď, ďraĐt ďeiŶg part of a serial aǆillarǇ ďud. ;Mathieu et al., 2007) 
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Fig. A.5.17 Peperomia kjellii G.Mathieu: A, general habit; B, architecture; C, part of the rachis; D, branching 

detail; E, ǇouŶg terŵiŶal sǇŵpodial shoot; left, petiolate ͚ǀegetatiǀe͛ leaf; right, ďraŶĐh ǁith a sessile ͚fertile͛ 
leaf; middle, sympodial shoot; holotype. (Mathieu et al., 2007) 
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Fig. A.5.18 Peperomia magnifoliiflora G.Mathieu: A, general habit; B, basal part of the main nerves abaxially; C, 

architecture; D,fruit; E, distal part of the rachis; holotype. (Mathieu et al., 2007) 
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Fig. A.5.19 Peperomia pseudophyllantha Samain; A, general habit; B, architecture; C, apical part of rachis; D, 

fruit; E, ďasal part of ͚fertile͛ leaf;F, leaf ŵargiŶ adaǆiallǇ; G, ŵiddle part of the ŵaiŶ Ŷerǀes aďaǆiallǇ; holotǇpe. 
(Mathieu et al., 2007) 
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Fig. A.5.20 Peperomia pinoi G. Mathieu: A, general habit; B, cross-seĐtioŶ of steŵ; C, ͚fertile͛ leaf; D, siŶgle 
flower; E, apical part of rachis; F, architecture; G, main nerve abaxially; H, perimarginal zone adaxially; holotype. 

(Mathieu et al., 2007) 
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Appendix VI Poster presentations 

An print is included of the posters presented on diverse symposia during this PhD 

study: 

Poster 1: Presented on the PhD symposium Faculty of Sciences, Ghent University. ICC 

International Convention Center, Ghent. 3
rd

 May 2005 

Poster 2: Presented on the Africa’s Great Rift: Diversity aŶd UŶity syŵposiuŵ. Royal Academy 

for Overseas Sciences, Brussels. 29
th

 and 30
th

 September 2005 

Poster 3: Presented on the XVIIIth AETFAT Congress, Yaoundé, Cameroon. 26 February – 2
nd

 

March 2007. And also on the PhD symposium Faculty of Sciences, Ghent 

University. ICC International Convention Center, Ghent. 24
th

 April 2007 

Poster 4: Presented on the XIXth AETFAT Congress, Antanarivo, Madagascar. 25
th

 April - 1
st 

May 2010 

Poster 5: Presented on: Botanical Diversity: exploration, understanding and use,  National 

Botanic Garden of Belgium, Meise. 16
th

 to 18
th

 September 2010 
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