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To this day, most animals and people have hosted at least one helminth at some point. 

It is amazing how these parasites with their often very fascinating life cycles are able to adapt 

so well to their hosts and their environments. Once these parasites have established 

themselves they can even survive for several years within their host. Ascaris suum and A. 

lumbricoides are some of the most remarkable helminth species that infect pigs and people, 

respectively. They are both the largest and the most common nematode in their host and 

reside most of their life in the small intestine. A. suum causes serious economic losses in the 

most important meat-producing livestock species worldwide and it is estimated that close to 1 

billion people are currently infected with A. lumbricoides. However, despite having 

anthelmintics that are 100% effective against Ascaris worms, it remains difficult to keep this 

nematode under control. Due to high reinfection rates, lack of adequate sanitary standards 

and lack of effective vaccines, eradication of A. suum or A. lumbricoides is not for the 

foreseeable future. A better understanding of the protective immunity to these helminths 

should help in the development of new strategies of control. Research into A. suum in pigs 

offers the benefit of an investigation of the immune response against all life stages. However, 

not much focus has been put on elucidating the protective immune response.  This thesis aims 

to improve our knowledge of the protective immune response in the hope of providing a basis 

for immunological control strategies. 

This chapter provides a general overview of ascariosis in pigs and humans and 

concentrates on the effective immune response against this parasite. We have a very basic 

understanding of the dynamics of infection, but the role of the anthelmintic immune response 

remains elusive. In light of this, the immune responses against other helminth species is 

reviewed. Finally, some important consequences of the anthelmintic immune response, more 

specifically their link with allergies and the use of helminth infections as anti-inflammatory 

therapies are highlighted. 
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1.1 Ascariosis 

 Life cycle of Ascaris suum 

 

The lifecycle of Ascaris suum is relatively simple since no intermediate hosts are 

required to complete the lifecycle, see Figure 1.1. Pigs transmit the infection by passing Ascaris 

eggs with the faeces. These eggs develop in the soil to fully embryonated eggs within 4–6 

weeks at temperatures between 18 and 20 °C [1,2]. Ingestion of fully embryonated eggs 

through contaminated food or soil will trigger the eggs to hatch and release the L3 inside. The 

larvae penetrate the intestine at the caecum or proximal colon and are carried to the liver. 

They migrate from the liver and carried by the blood stream they will reach the lungs around 

5-7 days post infection (DPI). The L3 will penetrate the alveoli, get coughed up and swallowed 

back in around 10 DPI. Shortly after their journey to the small intestine is concluded, they molt 

to L4. There is another molt to L5 around 28 DPI and ultimately they will grow into sexually 

mature adults of 20-40 cm in the small intestine. As soon as 50 days after infection, 

inseminated females will lay thousands of eggs, completing the life cycle.   
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Figure 1.1: The life cycle of A. suum. Embryonated eggs, ingested by the host, will release the infective L3 in the 

small intestine. These larvae will penetrate the caecum or colon and through the portal vein they will reach the liver 

between 1-4 days. From the liver they will go to the lungs, around 7DPI, and after penetrating the alveoli they will 

be coughed up and swallowed back in. The L3 will molt to an L4 in the small intestine and eventually become adult. 

After sexual reproduction, the females will release eggs in the environment with the faeces. In the environment, 

the eggs will embryonate over the course of a few weeks and become infective. 
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 Clinical and economic importance of A. suum  

A. suum infections in pigs are highly prevalent and show a global distribution. In Belgium 

it is estimated that around 50% of pig farms is affected by A. suum [3,4]. It appears that Ascaris 

worms have developed very effective transmission mechanisms that resulted in their high 

prevalence. There is no need for intermediate hosts and adult worms can survive for more 

than a year in the small intestine. In addition, female adults can produce 200.000 eggs per day 

and these eggs have a protective coating that ensures their persistence in a contaminated 

environment.  

Infections with A. suum are mostly subclinical, which explains why they are often 

overlooked by the farmer. Nevertheless this parasite has important consequences for the pig 

production industry. A. suum has a relatively high economic impact, as infected animals have a 

higher feed conversion rate, lower daily weight gain and lower meat quality [5,6]. In addition, 

passage of larvae through the liver causes a host response that leads to white spot lesions and 

livers with too many white spots cannot be used for consumption [5]. The most obvious 

clinical symptom of ascariosis is the wheezing and coughing associated with the pulmonary 

migration of the L3 around 7 DPI [7]. Furthermore, the hepato-tracheal migration is associated 

with increased susceptibility to bacterial pathogens such as Escherichia coli, Pasteurella 

multocida and Salmonella spp. [8-11]. Finally, an important sequella of A. suum infection is a 

reduced efficacy of vaccines that target other pathogens, such as Mycoplasma 

hypopneumoniae [12]. 

Although it is difficult to calculate the economic loss caused by subclinical infections, it 

has been estimated that strategic deworming can result in an increase in profit of between 3 

and 12€ per average present finisher pig per year [13-15]. However, production losses are 

related to worm burden and may vary accordingly. 

Often overlooked in pig farms however is the zoonotic potential of A. suum. It is clear 

from several studies in industrialized countries that an important source of ascariosis in 

humans is cross-infections of A. suum [16-19]. In addition, cross-infections of pigs with A. 

lumbricoides is also possible [20], and as a consequence, pigs can be reservoir hosts for A. 

lumbricoides in endemic countries. This may have important consequences for the control of 

ascariosis, but has so far received little attention 
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 Protective immunity to A. suum. 

By following the dynamic distribution of A. suum infections in pigs, essential 

observations in the defense against primary and secondary Ascaris infections have been made. 

The most important are undoubtedly the formation of the pre-hepatic barrier and the self-

cure reaction. 

Pre-hepatic barrier 

When pigs are continuously exposed to low doses of infective eggs for 14 weeks, no 

larvae are able to penetrate the intestine and reach the liver [21-23]. When larvae are in vitro 

hatched and injected into the mesenteric veins of these immune animals, the larvae are able 

to reach the liver and induce white spots [24]. Since the immune barrier is situated before the 

liver, this type of resistance was termed the pre-hepatic barrier. Although some level of 

protection already establishes after a single infection [25], it is not directed at the invading 

larvae. It is still unclear why such a long time is required to establish protection at the gut, but 

it is not related to the presence of adult worms because the removal of worms did not affect 

protective immunity [26]. What effector mechanism prevents larval penetration remains to be 

determined. 

 

Self-cure 

It has always been difficult to predict the number of adult worms that will be present 

after giving a known infection dose. This is because there is a self-cure reaction or expulsion 

that eliminates most of the L4 from the small intestine between 14 and 21 days post infection 

(DPI) and it is independent of the inoculation dose [27]. Before this time the number of larvae 

in the small intestine is roughly 30-60% of the infection dose. After 21 DPI, however, the 

number of larvae is greatly aggregated, with the majority harboring low numbers of worms 

and a small proportion having the majority of worms. This overdispersion is also seen in 

humans infected with A. lumbricoides [28] and is therefore likely caused by a similar reaction 

there. Passage through the liver might be important as a sensitization for the later expulsion, 

as a previous study by Jungersen et al. found a higher percentage of animals harboring adult A. 

suum at 70 DPI than what is usually observed when the liver is bypassed by injecting in vitro 

hatched L3 intravenously in pigs, while at 14 DPI there were comparable numbers of L4 

between intravenously and orally infected animals [29]. Unfortunately, not enough time 
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points and control groups were included to confirm if previous priming in the liver was indeed 

required to eliminate the larvae from the small intestine. Also here the effector mechanism 

driving the expulsion is unknown, but IgA production has been associated with the expulsion, 

as are increased fluid secretion and muscle contractibility [30,31]. 

These studies performed with pigs illustrate the importance of the intestine in natural 

and acquired resistance against Ascaris. There are also inflammatory reactions in the liver and 

lungs, characterized by infiltration of granulocytes, mostly eosinophils, and lymphocytes; 

however they are only induced after the larvae have already moved on from these organs 

[27,32] and therefore are not likely to have a major impact on the larvae during primary 

infections. They may still be important for protection against reinfections, although little 

research has been performed on this topic. The inflammatory response in the liver causing the 

white spots suggests a role of the liver in the defense against larval A. suum [33]. There are 

two main types of white spots observed after Ascaris infections. The first is the granulation 

type white spots that form along the larval migration route and consist mostly of eosinophils, 

neutrophils and macrophages [34]. The second is the lymphonodular white spots that appear 

later and thought to arise from the granulation type white spots and contain more lymphoid 

cells [34]. However, very little larvae are actually killed at this stage, which may suggest these 

reactions are part of a wound healing process. 

In the acquired immunity against A. suum there is an important role for antibody 

production, since genes involved in antibody production and class switching, such as Ligase–IV, 

and B cell activating factor have been linked with resistance or susceptibility to this parasite 

[35] and transfer of protection has been achieved by giving colostrum [36,37]. 

 

 Control of A. suum and vaccination studies 

The most widely used drugs for treatment of A. suum are the benzimidazoles and to 

lesser extent macrocyclic lactones. Despite the availability of these drugs that are 100% 

efficacious against A. suum, it remains highly prevalent because the period between 

treatments is longer than the prepatent period of 7 weeks and the transmission is therefore 

only temporarily halted. Moreover, since the environment remains contaminated and the 

anthelmintic drugs used have little to no remnant effect, pigs will quickly re-infect themselves 

after treatment.  
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The rise in popularity of organic farming, with different management practices such as 

loose housing of sows in dynamic groups, outdoor access and no preventive anthelmintic 

treatment may have a negative impact on the control of A. suum because these systems allow 

for more transmission of A. suum [38,39]. As a consequence, the prevalence of A. suum is not 

likely to decrease anytime soon. 

Vaccination against Ascaris would offer better means of control than anthelmintic 

treatment since it would interfere with the infection, disease and transmission on a long-term 

basis. Because there is naturally acquired immunity against A. suum, vaccination should be 

feasible. Several researchers have developed experimental vaccines based on extracts, 

antigens or even UV-irradiated eggs of A. suum, with parasite reductions ranging from 58 to 

99% [40-55]. What we can conclude from these vaccination studies is that immunity against A. 

suum is inducible, which raises hope that one day vaccination against A. lumbricoides can also 

be achieved. However, most of these studies only evaluated the reduction of larvae in the 

lungs, while the ideal vaccine against Ascaris should mimic natural immunity and prevent 

larvae from penetrating the intestine and damage the internal organs. Especially for pigs this 

type of immunity is required to prevent liver white spots and make an economically more 

profitable vaccine. The investigation into the mechanisms of the pre-hepatic barrier may 

provide clues on how to induce this type of pre-hepatic immunity. 

 

 Ascaris lumbricoides 

A. lumbricoides belongs to the same genus as A. suum, but infects humans. Due to the 

faeco-oral transmission of eggs, wherever hygienic standards are inadequate, A. lumbricoides 

can be found. Not surprisingly then, A. lumbricoides is most prevalent in rural areas or shanty 

towns in (sub)tropical countries. The highest prevalence is in children aged 5-15 years. 

Children are more playful and thus more likely to come into contact with contaminated soil. 

Adults usually have lower worm burdens, due to a combination of better sanitary habits and 

acquired immunity. Ascaris transmission is highest when there is a lack of sanitation, access to 

safe water, health education and medical treatments. As a consequence, ascariosis is a disease 

of the poor.  

Although A. lumbricoides is the largest of man’s nematode parasites, many cases of 

ascariosis go by undetected, similar as in pigs. However, symptoms can vary from decreased 

food intake to bowel obstruction to reduced cognitive performances. The most obvious 

damage comes from the early stages of infection, as the migratory route through the host 
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inevitably damages the affected organs. The presence of larvae in the liver induces a host 

response that leads to white spot lesions and the passage through the lungs causes coughing, 

dyspnea and pneumonitis [56]. Adult Ascaris worms present in the small intestine can cause 

abdominal obstruction, vomiting, malabsorption and in rare cases they may penetrate the 

small intestine or get stuck in the bile or pancreatic ducts, creating life threatening situations 

[56]. Nevertheless, helminth infections have a low mortality and morbidity is generally related 

to worm burden. Therefore disease burden is usually expressed as Disability Adjusted Life 

Years (DALY), which takes into account not just life years lost due to premature death but also 

morbidity. Although Ascaris infections are often subclinical, their high prevalence assures that 

the total loss of Disability Adjusted Life Years is close to 2 million [57].  

Because of the identical life cycle, the high genetic similarity between A. suum and A. 

lumbricoides [58], and because A. suum is a zoonosis [19,59], A. suum infections in pigs make 

an ideal model for A. lumbricoides infections in humans. Cross infections and gene flow 

between the 2 species also occurs [60,61], which led to the debate whether or not they belong 

to the same species [62,63]. As a result, much of the findings about A. suum have been 

confirmed in humans. For example, genetic factors account for 30-50% for the variation of 

Ascaris infection load in both pigs and humans [64,65].  

Although in humans there is little information what effector mechanisms confer 

protection against A. lumbricoides, there is indirect evidence that resistance or immunity 

against A. lumbricoides is acquired. First of all, in hyperendemic areas there are children who 

remain uninfected even though they are undoubtedly exposed to the parasite. Secondly, there 

is a high degree of predisposition to high or low worm burdens [66], and this predisposition 

declines with increased age [67]. Predisposition towards A. lumbricoides infections can largely 

be explained by host genetic factors, which may account for up to 50% of the observed 

variability in worm burdens [65]. Other factors are exposure, socio-economic behavior and 

parasite genetics. Although behavior factors are important in the age pattern of A. 

lumbricoides infections, it also suggests that adults are less susceptible than children due to 

the establishment of immunity. It is also striking that despite being exposed to infective A. 

lumbricoides eggs in the environment over a prolonged period, people rarely suffer from lethal 

hyperinfectons. Infected individuals appear to be immune against newly arriving larvae, but 

the adult worms that are present are not affected. The term concomitant immunity has been 

put forward to describe this phenomenon. When the adults are removed by anthelmintic 

treatment, the host is again susceptible to new infections. Concomitant immunity has mostly 
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been described in the context of schistosomes or tapeworm infections, but the mechanisms 

behind it are unclear [68,69]. 

As a result of the high similarities between A. suum and A. lumbricoides, findings in A. 

suum may also be of interest for research into A. lumbricoides. It should be noted that, 

although A. lumbricoides and A. suum are practically identical, there are import differences 

between humans and pigs in terms of their immune systems (for details, see next section).  
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1.2 The protective immune response against helminth infections 
 

We now know that effective responses against A. suum are elicited in the intestines and 

that they are directed against different life stages. The effector mechanisms that drive these 

responses or what triggers them, however, are still unexplored. By looking at the immune 

response against other helminths, we might get an understanding of what effector 

mechanisms could be protective against A. lumbricoides or A. suum infections. The immune 

response against helminths is complex in nature, because helminths infect their host in a 

multitude of ways, affect different organs and have developed immune evasive strategies to 

avoid being killed. Moreover, the constant presence of helminths in the evolution of our 

immune system has led to a dynamic interplay between the two. How the anthelmintic 

response is able to create an unfavorable environment for helminths to reside in has long 

been abstruse. In recent years however, researchers have identified several effector 

mechanisms responsible for parasite clearing. It has become clear that our immune system 

possesses a remarkable versatility when it comes to dealing with helminth infections. What 

follows here is a general description of immune responses directed against helminths in 

general, with special attention to findings with A. lumbricoides and A. suum infections. 

 

 The Th2 paradigm 
 

T helper 2 cells 

 

Helminth infections have classically been associated with a T helper 2 (Th2) type 

immune response, which is characterized by high levels of interleukin (IL) 4, IL-5, 

IL-9 and IL-13. The main transcription factor in the Th2 response is signal transducer and 

activator of transcription 6 (STAT6). Interestingly, this type of immune response is also 

associated with allergic diseases such as asthma and allergic rhinitis. As a consequence allergic 

reactions towards helminth antigens occur [24,70]. The Th2 cell orchestrates much of the 

anthelmintic immune response. It produces many of the cytokines involved in the recruitment 

and activation of effector cells such as basophils, mast cells, goblet cells and eosinophils and 

induces IgE class switching in B-cells (Figure 1.2). When these cells are ablated, immunity 

against helminths is often compromised [71,72]. Especially the signaling through IL-4 and IL-13 

is essential in the defense against gastro-intestinal nematodes because it affects all cells 
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involved in parasite clearance [73]. Th2 cytokines also have a regulatory function, as they 

dampen Th1 cytokines, such as interferon- (IFN) and IL-12. 

There is not much data for cytokine responses in A. lumbricoides infected humans, 

particularly localized responses, but peripheral blood lymphocytes from infected people do 

express more IL-4 and IL-5 [74], and Th2 cytokines seem to predispose to resistance [75]. Pigs 

infected with A. suum show in general a more Th2-associated cytokine pattern, based on 

analyzed cytokine responses in the jejunum, ileum, spleen, liver and bronchoalveolar lavage 

fluid during the intestinal expulsion of A. suum [31]. How these cytokines create an 

unfavorable environment for A. suum or what triggers them, however, remain enigmatic. 

Of special interest to the anthelmintic immune response is the difference in function of  

IL-4 between humans and pigs. In humans and mice, IL-4 is one of the hallmarks of a Th2 

response and often associated with helminth infections. In pigs however, IL-4 does not 

stimulate T cell proliferation and antibody production [76]. Still, it is induced in response to 

parasite infection [77], so its role in the defense against parasites is quite puzzling. 

 

The mucosal barrier 

 

Before any ingested pathogen can invade the intestine, it has to find a way to 

get past the mucosal barrier. The gastro-intestinal mucus layer forms the first 

line of defense by forming a barrier between the lumen and the intestinal 

epithelium. The most important component of this layer are the secreted mucins. Mucins are 

goblet cell-secreted large glycoproteins. Although the mucus layer is also part of the innate 

defense, the adaptive immune response can induce goblet cell proliferation and changes in the 

mucus composition [78]. These alterations can be very important, for example Mucin 5AC is 

not expressed in the caecum or colon in healthy mice, but it is induced in Trichuris muris 

infections and Mucin 5AC-deficient mice have impaired T. muris expulsion [79]. Increased 

mucus can make it more difficult for the parasite to attach to it or degrade it and changes in 

acidity may disorient the parasite. Furthermore, the increased mucus production can help to 

close the gap in the mucosal barrier caused by the parasite and thereby prevent the 

concomitant infiltration of bacteria. Apart from mucins, goblet cells also secrete proteins with 

anti-microbial functions in the lumen of the intestine. One such protein of particular interest 

to the anthelmintic immune response is Resistin Like Molecule beta (Relmß). Relmß is induced 

by IL-13 and it binds directly to parasitic worms to disrupt their chemotactic sensors [80,81]. 
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Figure 1.2: The Th2 effector response against helminths. Early danger signals such as IL-25 

and IL-33 induce the proliferation and differentiation of Th2 cells that in turn produce 

cytokines such as IL-4, IL-5, IL-9 and IL-13. Together, these cytokines activate effector cells 

such as basophils, mast cells, eosinophils, B- cells, macrophages and goblet cells, which act 

together to eliminate the parasite. 
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Underneath the mucus layer, epithelial cells line the intestine. Together with dendritic 

cells, they act as sentinel cells by releasing the first danger signals upon contact with 

pathogens. These danger signals include IL-25, IL-33 and thymic stromal lymphopoietin that 

promote the differentiation and activation of Th2 cells. There is also important cross-talk 

between epithelial cells and inflammatory cells. For example, epithelial cells release eosinophil 

chemoattractants when damaged and eosinophils respond by secreting growth factors such as 

fibroblast growth factor-2 and transforming growth factor ß (TGF-ß) [82]. Epithelial cells are 

kept close together by tight junctions. These junctions can be broken by mast cell proteases. 

As a result, the permeability of the epithelial layer increases and more fluid leaks in the lumen 

as part of a ‘weep and sweep’ response. Certain parasites, such as Trichuris species, burrow 

their way in the epithelial layer. One host defense mechanism against these parasites is to 

increase the epithelial turnover in such a way that the parasite is shed in the lumen along with 

the desquamated epithelial cells [83]. 

 

Eosinophils 

 

Eosinophilia is a common observation in blood and tissue of helminth infected 

individuals and ever since the demonstration that eosinophils could kill 

schistosomula in vitro, these cells were considered to be the most important 

effector cells during helminth infections [84]. Follow-up studies with nematodes showed 

similar results and that coating of the parasite with IgE or IgG or complement factors is 

necessary for eosinophils to be efficient killers of these parasites. Crosslinking of IgE or IgG 

receptors triggers the release of the granules stored in the cytoplasm. These granules contain 

pre-formed cytotoxic molecules, cytokines, chemokines and growth factors. Because these 

molecules are pre-formed, eosinophils have a quick effect on their surroundings after their 

activation. The major cytotoxic proteins are eosinophil peroxidase (EPO), eosinophil cationic 

protein (ECP), eosinophil-derived neurotoxin (EDN) and major basic protein (MBP). MBP is the 

most abundant granular protein. It interferes with the plasma membrane, thereby increasing 

permeability. ECP and EDN are basic proteins that belong to the ribonuclease A family. EPO 

forms reactive oxygen and nitrogen species, causing toxic oxidative stress. Toxicity of these 

eosinophil granule proteins against nematodes has been shown for Toxocara canis, Trichinella 

spiralis, Onchocerca volvulus and Brugia malayi, mostly against juvenile stages [85]. The 

toxicity of these proteins is not limited to parasites and uncontrolled release in the 
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environment causes tissue damage. As a consequence, eosinophils are sometimes associated 

with pathology in chronic infections. 

Eosinophils have multiple ways to find their target. Tissue invaded by parasites releases 

eotaxins that recruit eosinophils from the blood through CCR3 binding. In addition, eosinophils 

carry receptors for complement factors such as C5a, which is released when complement 

binds to pathogens [86]. Furthermore, they can be directly recruited by parasite-secreted 

factors [87,88]. 

Apart from a direct toxic effect on the parasite, eosinophils also amplify the 

inflammatory response by releasing Th2 cytokines and chemokines, which leads to lymphocyte 

and further eosinophil recruitment and mast cell activation. Because eosinophils are 

depending on IL-5 for their development in bone marrow and recruitment to the blood, this 

cytokine makes an interesting target to study with respect to predisposition to helminth 

infections. These studies have shown that IL-5 levels correlate with the resistance against 

reinfections of schistosomes, hookworms and A. lumbricoides [75,89,90]. Interestingly, a 

population study in a hyperendemic region in Nigeria also showed that A. lumbricoides 

immune children had higher levels of eosinophil cationic protein in blood than susceptible 

children [91].  

Despite these findings, in vivo studies with eosinophil ablation and transgenic models 

have been inconclusive in determining if they are essential in the defense against helminths. 

For example intestinal Strongyloides stercoralis infections are not affected by anti-IL-5 

treatment during primary infections, yet lung stage larvae during reinfections were higher in 

the treated group [92]. Eosinophil-mediated resistance also depends on the susceptibility of 

the parasite species. IL-5 transgenic mice are resistant to Nippostrongylus brasiliensis, S. 

stercoralis and Angiostrongylus costaricensis [93,94], while resistance to T. canis is not 

affected [95]. Interestingly, the excretory and secretory material of T. canis (TES) contains 

proteins that inhibit the adherence of eosinophils to the larvae, even in such a manner that 

resistant IL-5 transgenic mice become susceptible to N. brasiliensis L3 when TES is given 

together with N. brasiliensis L3 [95]. In other studies there was no link between eosinophils 

and helminth resistance [96,97]. Unfortunately, functional studies in humans are scarce and 

studies with mice are complicated by the fact that mice are not natural hosts to many of the 

helminth infections studied and researchers often have to use artificial ways of infecting them. 

There are also important differences between eosinophils from humans and mice. While 

human eosinophils degranulate in response to a variety of allergens, eosinophils form mice are 
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less easily activated [98-100], possibly caused by the absence of certain receptors and effector 

proteins in mice [101]. 

From these findings, it appears that eosinophils are only essential in the killing of larvae 

during the tissue phases of helminth infections and during reinfections. It is therefore likely 

that eosinophils only recognize antibody or complement-coated parasites and that direct 

contact is required to induce eosinophil degranulation. Furthermore, differences in surface or 

secreted proteins between different life stages may explain why certain adult stages are not 

targeted by eosinophils. 

In humans and mice, eosinophils are assumed to only appear in the intestine of people 

suffering from diseases such as parasite infections, allergic diseases or inflammatory diseases. 

In pigs, eosinophils are present along the whole length of the intestine, also in healthy 

individuals [102]. However, recent reports could indicate that the level of eosinophils in the 

gut in healthy humans and mice are higher than previously recognized and that this is due to 

technical shortcomings in distinguishing these cells from others [103]. 

 

IgE 

 

In healthy individuals, IgE produced by B cells is only present in small amounts in 

the blood and it has a short half-life of only 2 days. High IgE blood levels are often 

seen in parasitized patients. IgE functions in arming eosinophils, mast cells and 

basophils, giving these cells the ability to recognize helminth antigens. IgE and IgG 

are essential for eosinophils to attach to worms and crosslinking of IgE on mast cells and 

basophils leads to the release of histamine. IgE class switching requires two signals: CD40 

binding on B cells by CD40 ligand present on T cells and signaling through IL-4 or IL-13 [104].  

Although all isotypes are usually induced during helminth infections, high levels of 

specific IgE are often associated with protection against reinfection, for example in A. 

lumbricoides infected people [91,105]. The importance of IgE in the defense against A. 

lumbricoides is further supported by the detection of a genetic locus that is related to A. 

lumbricoides susceptibility containing a set of 3 genes involved in antibody production and IgE 

class switching [35]. 
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Basophils & mast cells 

 

Basophils and mast cells are another cell type often associated with helminth 

infections. They are hard to differentiate from one another: they stain with 

toluidine blue, are filled with granules containing histamine and have similar 

functions. It was long assumed that basophils were mast cell precursors in the blood and that 

mast cells are the activated basophils that were recruited to the tissue. Recent work however 

showed that they do have distinct properties and that basophils are more than just precursor 

mast cells [106].  

Mast cells and basophils add to the general inflammation by producing Th2 type 

cytokines such as IL-4, IL-5 and IL-13. They also respond to Th2 cytokines by proliferating and 

producing the high affinity IgE receptor. Crosslinking of IgE on mast cells and basophils is a 

potent trigger for degranulation, but they are also activated by complement factors C3a and 

C5a and IgG crosslinking [104]. Their granules are filled with histamine, which works as a 

chemoattractant for eosinophils and induces smooth muscle contractions and vascular 

permeabilization [107]. Additionally, mast cell proteases can break tight junctions, leading to 

increased intestinal fluid secretion. Mast cell proteases may also activate receptors on enteric 

nerves in order to increase smooth muscle contractility in nematode infected mice [108]. Fluid 

secretion and muscle contractions are part of a ‘weep and sweep’ response that is often seen 

in gastro-intestinal infections [109]. 

Mast cells and basophils might contribute to the resistance against Ascaris. Dawson et 

al. also demonstrated a histamine-dependent increase in epithelial cell secretion and muscle 

contractibility during A. suum infection between 14 and 21 DPI, which corresponds to the 

timing of the self-cure reaction [31]. It was previously shown that mast cells and basophils 

released histamine after contact with Ascaris secretory antigens, but only in repeatedly 

infected animals [110,111]. This would indicate that A. suum specific IgE or IgG binding on 

these cells is essential in their activation.  

 

 

 

 



CHAPTER 1 

  

17  

Alternatively activated macrophages 

 

Macrophages can be divided into 2 categories: classically activated or 

alternatively activated. Classically activated macrophages were first discovered 

in the defense against bacteria. They are activated in a Th1 context and exert 

their bactericidal function through inducible nitric oxide synthesis (iNOS). iNOS converts 

arginine into nitric oxide (NO), which is toxic for most bacteria. In a Th2 type setting, however, 

macrophages express more arginase, which competes with iNOS for available arginine. These 

Th2 type macrophages are referred to as alternatively activated or M2 macrophages. These 

cells are further characterized by mannose receptor and Resistin like molecule alpha in mice. 

The exact role of AAM during helminth infections is still disputed, but depending on the 

setting, AAM can have immune-regulatory, wound healing or protective functions. Through 

arginase expression, arginine is metabolized and ultimately leads to increased proline, which is 

required for collagen deposition and explains why fibrosis is often associated with AAM [112]. 

They also promote angiogenesis and release growth factors, keeping the helminth-induced 

damage under control. 

To date, AAM have been shown to be essential in the clearance of secondary 

Heligmosomoides. polygyrus infections in mice [113] and the ablation of AAM blocked smooth 

muscle hypercontractility and impaired the expulsion of N. brasiliensis in primary infections 

[114]. Studies are yet to be performed to evaluate the role of AAM in the immunological 

defense against A. suum or A. lumbricoides. 

Classically activated macrophages and AAM have been well defined in mice but 

information on this subtype of cell in other mammals is scarce. Murine AAM markers RELM-α, 

YM-1 and arginase for example are either not present or not induced in macrophages in Th2 

polarizing conditions in humans [115] and there is inconsistency whether or not human 

macrophages produce NO through iNOS [116-118]. There is also very little information 

concerning the polarization of porcine macrophages. Porcine macrophages seem to resemble 

more closely human macrophages than murine macrophages, in terms of their response to 

bacterial lipopolysaccharide and individual gene homology [119,120]. Furthermore, porcine 

macrophages constitutively transcribe iNOS mRNA in lymphocytes [121]. This raises the 

question whether this classification is applicable to non-murine macrophages. 
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Innate type-2 cells 

 

Although Th2 cells are the major producers of type-2 cytokines during helminth 

infections, they are only induced some time after infection and do not explain the high type-2 

cytokine levels sometimes observed shortly after contact with helminths. Researchers have 

recently identified several other, non T-cells that play an important role in producing these 

cytokines early in infection. They consist of nuocytes, natural helper cells and multipotent 

progenitor type-2 cells and respond to the early release of IL-25 and IL-33 by stressed 

epithelial cells [122-124]. By expressing type-2 cytokines such as IL-4 and IL-13, they aid in 

initiating the immune effecter response against helminths. To what extent these findings 

obtained in mice studies can be extrapolated to pigs is unclear. 

 

 The Th2 paradigm taken with a pinch of salt 
 

Although the Th2 paradigm is widely accepted and explains many phenomena, it does 

not hold true for all helminth infections. The anthelmintic host response is much more 

dynamic than previously imagined. Over the past years, a considerable body of evidence has 

been collected that shows that Th1 responses are equally important for resistance against 

certain helminths. A nice illustration of the importance of Th1 responses is cysticercosis in 

rodents caused by Taenia crassiceps. STAT-4 is the transcription factor required for Th1 

responses and when STAT4-deficient mice were infected with T. crassiceps, although these 

animals had high levels of IL-4, IL-10 and IgE, they were unable to eliminate the parasite [125]. 

In contrast, STAT6-deficient animals are highly resistant to T. crassiceps [126]. Although little 

information is available in humans, people who are putatively immune to Onchocerca volvulus 

do show strong responses characterized by high IFNγ levels, a Th1 cytokine, when blood 

lymphocytes are challenged with O. volvulus antigens [127]. 

One product that deserves special attention in the context of a Th1 response is nitric 

oxide. iNOS is induced in many cell types as a defense mechanism in response to pro-

inflammatory cytokines such as IFNγ and TNFα and is regulated by others such as IL-4, IL-10 

and IL-13 [128]. iNOS catalyzes the formation of NO out of L-arginine. Nitric oxide reacts with 

oxygen to form unstable radicals and peroxynitrate anions (ONOO-). These molecules exert 

their toxicity by oxidizing protein, lipids and sulfhydryls. The role of iNOS during helminth 

infections is still unclear. Although nitric oxide is typically associated with bacterial infections, 
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it also has a detrimental effect on several helminth parasites. It has also been shown that 

macrophage-derived NO is toxic for Brugia malayi, especially the microfilariae [129]. NO 

production is also important for protection against T. crassiceps cysticercosis [130]. Both in 

cattle infected with Cooperia oncophora and in sheep infected with Haemonchus contortus or 

Trichostrongylus colubriformis, the iNOS encoding gene expression was associated with 

resistance [131,132]. In contrast, the NO produced during infection with T. canis is associated 

with pathology and not with protection [133]. Similar results are obtained with T. spiralis 

infections [134]. Interestingly T. spiralis excretory-secretory (ES) antigen from larvae induces 

iNOS, while ES antigen from adults decreases iNOS production [135]. This suggests that certain 

parasites have developed mechanisms to deal with iNOS. The effect of NO on Ascaris has not 

been investigated, although A. suum antigens are capable of inducing NO production in 

macrophages in vitro [136]. In addition to direct effects on helminths, NO can exert an 

anthelminthic effect indirectly by enhancing the inflammatory response [137], decreasing 

intestinal transit time [138] or increasing fluid secretion in the lumen [139]. 

Mixed Th1/Th2 responses appear more efficient against tissue residing helminths in 

which the Th1 response generates a pro-inflammatory environment that is toxic for the 

parasite and where the Th2 response helps to control excessive tissue damage to the 

surrounding tissue. For example, schistosome cercaria initially induce a Th1 type response and 

it is only once eggs are produced that the immune response will shift towards Th2 [140]. The 

filarial nematode Brugia malayi induces a similar pattern, with microfilaria that skew towards 

Th1 and adults towards Th2 [141]. Studies in cattle have put further emphasis on the interplay 

between Th1 and Th2 cytokines during the course of helminth infections, where general Th2 

responses are present with intermittent peaks of IFN [142]. 

 

These examples illustrate that the anthelmintic immune response is not a static one: it 

evolves over time and is dependent on the parasite species and the tissue affected. The 

responses can different for juvenile and adult worms. The result of the combined effects of all 

these cells is reduced helminth fitness and elimination. Juveniles are often killed in situ while 

adults usually persist, but have reduced fecundity, impaired feeding or reduced activity and 

are sometimes subsequently slowly driven out of the gastro-intestinal tract [81,143,144]. It 

appears the Th2 paradigm is best suited to describe immune responses against gastro-

intestinal nematodes, but that especially for tissue residing helminth infections, the Th2 

paradigm falls short and other T helper responses are equally essential for immunity. As for 

Ascaris, apart from some observations in infected people and pigs, we still know very little 



GENERAL INTRODUCTION 
20  

about the immune response directed against A. lumbricoides or A. suum. Especially the 

mucosal immune response has been relatively unexplored, which is surprising, since this is 

where this nematode resides most of its life. 

 

 Th2 in tissue repair 

When nematodes like Ascaris or Necator spp. penetrate the intestinal wall or skin and 

migrate through vital organs, they leave behind a trail of destruction. Tissue damage is also 

evident for tissue residing helminths such as filarial nematodes and schistosomes or worms 

that feed of the mucosa such as whipworms and hookworms. Consequently, rapid tissue 

repair is needed in order to avoid impaired organ function. Part of the type-2 response is 

designed to deal with the acute tissue damage associated with helminth infections. For 

example, the Th2 response in patent schistosome infections serves to quickly repair the 

intestinal damage caused by the eggs, preventing infiltration of bacteria and subsequent sepsis 

[145]. 

Several factors that aid in wound repair, such as insulin-like growth factor 1 (IGF1) and 

arginase 1 (ARG1) are controlled by Th2 cytokines [146]. As a consequence, IL-4Rα knockouts 

have reduced expression of IGF1 and ARG1 in helminth infection models [147]. IGF1 is 

involved in wound healing and functions in the proliferation of fibroblast, collagen synthesis 

and control of apoptosis [148,149]. ARG1, produced by alternatively activated macrophages, 

also promotes cell proliferation and collagen deposition. Resistin like molecule alpha and lectin 

Ym-1, both expressed by murine alternatively activated macrophages, have been implicated 

both in tissue remodeling and immunomodulation [150]. Amphiregulin, a member of the 

epidermal growth factor family, is produced by T cells and eosinophils and induces epithelial 

cell proliferation [151,152]. In the absence of amphiregulin, the expulsion of T. muris is 

delayed, possibly because increased proliferation and shedding of epithelial cells make it 

harder for T. muris to invade the mucosal layer [153]. 

Although wound repair is initiated very quickly and insures organ integrity during 

helminth infections, it comes at a price. Healing wounds properly takes time that is not 

available during helminth infections. There is a quick, but hardly clean repair with scar tissue 

as a consequence [146]. In acute infections, the type-2 response prevents excessive organ 

damage, but in chronic infections, uncontrolled wound healing leads to fibrosis, as is seen in 

the liver during schistosome infections [140]. The liver contains resident macrophages called 

Kupffer cells. Activation of Kupffer cells by toxic agents results in the release of inflammatory 
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cytokines as well as growth factors. As such they play a role in the initiation of liver fibrosis and 

inflammation. When they are activated by hepatic tissue damage in a Th2 type environment 

such as during helminth infections, they express the alternative activated macrophage markers 

and trigger fibrosis without inflammation [150], illustrating that Th2 cytokines can have both 

anti-inflammatory and wound healing functions at the same time. As such, they play a crucial 

role in schistosome infections, as they ensure the eggs in the liver are walled off by forming 

granulomas around them, but they are also responsible for fibrotic scarring [112].  

A. suum larvae migrating through the liver leave a necrotic trail behind and cause the 

formation of white spots [154]. White spot granulomas consist primarily out of macrophages, 

granulocytes and lymphocytes. Older lesions consist mostly out of fibrotic tissue [34]. Since 

few larvae are actually stopped in the liver, and more intense white spot formations do not 

necessarily impair larval migration [155], it seems likely that the infiltration of these immune 

cells also serves a different purpose than to attack the larvae. Although little research on the 

topic has been performed, the white spots may be the result of a quick wound healing 

response, initiated to prevent excessive hepatic tissue damage. This would help to explain the 

fibrosis and scar tissue on the livers of chronically infected pigs. 

 

 

1.3 Immune modulation and evasion strategies of helminths 
 

It is a fascinating concept how parasites, which are by definition detrimental to the host, 

can survive for several years in their hosts without triggering massive inflammation or 

anaphylactic shock. Helminths can even flourish in immunologically very active sites such as 

the lymphatic system or bloodstream. Hence, they have acquired immune-modulatory 

properties that prevent deregulated immune responses. The reason that helminths are so 

efficient in immune modulation is probably because it can be beneficial to host and parasite 

alike: the parasite survives longer without being eliminated from the host, but at the same 

time the host is protected against severe tissue damage by uncontrolled inflammation.  The 

observation that auto-immune diseases occur much less frequent in poorer areas of the world 

led to the formulation of the hygiene hypothesis, which simplified, states that immunological 

diseases may be caused by extreme hygiene measurements that deregulate the immune 

system and that especially helminth infections seem to protect against uncontrolled auto-

immune disorders[156]. 
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Apart from inducing Th2 responses, thereby leading the host response away from more 

pathology associated Th1 and Th17 responses; helminths are actively involved in immune 

suppression [157]. Probably the most important immunosuppression comes from the 

induction of CD25+ regulatory T cells (Treg). These cells create a regulatory environment that 

suppresses inflammation. IL-10 and TGF-ß promote the activation and differentiation of Treg 

cells. Through TGF-ß signaling, Treg cells are recruited by H. polygyrus secreted products [158]. 

Immune modulation is also apparent from the antigen unresponsiveness that follows filarial 

infections [159-161]. Two prominent cell types in the regulatory setting of helminth infections 

are the alternatively activated macrophages and myeloid-derived suppressor cells (MDSCs). 

MDSCs are induced in both protozoan and helminth infections and inhibit both Th2 and Th1 

responses [162]. Alternatively activated macrophages play a crucial role in the regulation of 

the immune response, as they limit arginine in environment, which is needed by proliferating T 

cells and the pro-inflammatory iNOS. 

Apart from the general immune-regulation, there is a plethora of examples in the 

helminth world that show that helminths have developed very specific mechanisms in order to 

evade the host immune response (see Table 1.1). Many parasitic worms come into contact 

with blood, either by following the blood stream or by invading tissues. Apart from antibodies, 

blood contains complement factors that contribute to the attachment of eosinophils, the 

opsonization of parasites and the recruitment of inflammatory cells. It is therefore not 

surprising that many of the immune evasion products identified involve the inhibition of the 

complement cascade. 

Although several Ascaris antigens are known allergens, adult worm extracts also contain 

compounds that reduce airway eosinophilia and hyper-responsiveness in asthmatic mice, most 

likely by suppressing IL-4 and IL-5 levels [163,164]. McConchie et al further show that 

pseudoceulomic fluid of adult worms also inhibits allergic responses, possibly by interfering 

with the activation of dendritic cells [165]. In A. lumbricoides infected people, an increase in 

CD25+ lymphocytes has been demonstrated, indicating a role for Treg cells in the 

immunomodulation [166]. There are however strikingly different effects on allergic diseases 

seen when animals are suffering from acute versus chronic Ascaris infections. Mice that were 

infected with A. suum at the same time of sensitization showed exacerbated allergic 

responses, while animals that were infected chronically before sensitization showed 

ameliorated responses to challenge [167]. These findings might help to explain some of the 

incongruent observations of allergic diseases in people suffering from Ascaris infections (see 

1.4.1).  
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Table 1.1: helminth immune evasion products 

Product Function Helminth Reference 

Cathepsin Cleaves IgE and IgG F. hepatica [168] 

Complement C2 receptor 
trispanning (CRIT) 

Complement formation inhibition 
Schistosoma, 
Trypanosoma 
cruzi 

[169] 

Cystatins Inhibits antigen processing 
H. contortus,  
N. brasiliensis 

[170,171] 

Cystein protease 
Inhibits IgG induced eosinophil 
degranulation 

Paragonius 
westermani 

[172] 

Eotaxin cleaving protease Digests eotaxin N. americanus [173] 

Glyceraldehyde 3 
phosphate dehydrogenase 

Complement C3 inhibition H. contortus [174] 

Neutrophil inhibitory 
factor 

Blocks neutrophil adhesion and 
degranulation 

A. caninum [175] 

Paramyosin 
Complement C1, C8 and C9 
inhibition 

T. solium, 
S. Mansoni,  
T. spiralis 

[176] 

Phosphorylcholine Suppresses lymphocyte proliferation Ascaris [177] 

Serine protease 
Inactivation of the complement 
anaphylatoxin C5a 

Brugia malayi [178] 

Superoxide dismutase Neutralizes superoxide radicals 
Fasciola spp,  
H. contortus,  
O. volvulus 

[179-181] 
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1.4 Important consequences of the anthelmintic response 
 

The effects that helminth species have on the immune system carry implications that 

stretch far beyond just the elimination or conservation of that species. When strong Th2 

responses are elicited and Th1 responses are repressed, pathogens that are susceptible to Th1 

responses can be harder to eliminate. S. mansoni for example induces strong Th2 responses 

that have a negative impact on the development of resistance against Toxoplasma gondii and 

Plasmodium spp. [182,183]. Conversely, S. mansoni helps to protect susceptible mice against 

T. muris infections, by inducing stringer Th2 responses [184]. This relationship is not always 

that clear however. Although filarial nematodes modulate cytokine responses to Mycobacteria 

spp in vitro [185], there is no evidence of in vivo modulation [186].  

Helminth induced immunosuppression can also have beneficial effects by suppressing 

inflammation induced pathology. A. lumbricoides for example is negatively associated with 

cerebral malaria [187]. The anthelmintic response may also have important consequences for 

vaccination programs. The immunosuppressive properties of helminths may compromise the 

response that is required with vaccination. Pigs infected with A. suum at the time of 

vaccination against Mycoplasma hypopneumoniae showed a delay in seroconversion and a 

decrease in the total number of pigs with seroconversion [12]. Furthermore, animals with A. 

suum had more lung pathology in response to M. hypopneumoniae infections than healthy 

pigs. Similar results were obtained in humans where it was shown that deworming had a 

positive effect on the antigen specific response after bacille Calmette-Guerin (BCG) and 

cholera vaccination [188,189]. Finally, diagnostic tests may be compromised by helminth 

infections, since the diagnostic predictive value of the tuberculosis test decreased when cows 

were infected with F. hepatica [190] and preliminary results indicate that A. lumbricoides 

infection might influence the predictive value of the tuberculosis test as well [191].  

These examples illustrate how widespread the repercussions are that helminth 

infections can have and stress the importance of identifying the helminth infection status in 

vaccination and diagnostic studies in endemic countries. 
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 Ascaris and allergies 

 

The helminth immune response and the allergic response show striking similarities: both 

induce eosinophilia, mastocytosis and IgE and are associated with a Th2 response. As a 

consequence, researchers have tried to elucidate the relationship between helminth infection 

and allergic diseases such as asthma and skin hypersensitivity. In general, allergic diseases are 

more prevalent in more developed and urban regions, while helminth infections are low in 

these settings. It was therefore assumed that helminth infections protect against allergic 

diseases. There is indeed a considerable body of evidence showing the negative correlation of 

helminth infections and allergic diseases [192-195]. The immune-modulatory properties of 

helminths can explain why helminth infected people have fewer allergic symptoms even in the 

presence of high allergen specific IgE levels [195]. 

However, no simple conclusion can be drawn from the interaction between Ascaris and 

allergies, as Ascaris may have both a modulating and exacerbating effect on atopic diseases 

[196-198]. A likely explanation is that Ascaris extracts contain both allergens, such as 

tropomyosin and ABA-1 [199] and antigens that modulate immune responses [163,164]. There 

is a fine balance between the stimulation and the regulation of the immune response and 

depending on the infection intensity, deworming can have beneficial or adverse effects on 

people with atopy [195,200]. 

The similarities in immune response between allergies and helminth also led to the 

speculation that people with atopic disease are better protected against helminth infection. 

However, for Ascaris no evidence exists to support this theory, probably because Ascaris 

specific IgE that is associated with protection does not cross-react with allergens [35,91]. 

 

 Helminth therapy 
 

The immune-modulatory properties of helminths inspired researchers to investigate the 

use of these worms or their by-products as a means of treatment for immune disorders such 

as autoimmune and allergic diseases. Although deliberately infecting humans with helminths is 

a somewhat unconventional approach, with some precautions it is reasonably safe. 

The two helminth species currently under investigation as medical treatments are the 

human hookworm Necator americanus and the pig whipworm Trichuris suis. Although the 
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trials have variable outcomes, the most promising results are obtained using T. suis ova (TSO), 

see Table 1.2. This porcine nematode is closely related to the human nematode T. trichiura but 

it is spontaneously cleared by humans after several weeks. The safety of TSO was recently 

confirmed in phase 1 trials with people suffering from Crohn’s disease [201,202]. It is not 

surprising that the best results are achieved with TSO and Crohn’s disease, as the parasite and 

the immune disorder are co-localized and T. suis is less pathogenic than N. americanus. Some 

adverse effects of TSO were recorded in allergic rhinitis patients, such as flatulence, diarrhea 

and abdominal pain [203]. The difference in adverse effects with Crohn’s disease patients may 

be that the positive effects of TSO on the intestine in these patients outweigh the negative 

effects of the intestinal nematode infection. Still, trials with TSO are currently planned or 

already in action for multiple sclerosis, Crohn’s disease, ulcerative colitis, autism, food allergy 

and psoriasis (clinicaltrials.gov) and are needed to confirm the preliminary trials. Nevertheless, 

the future of helminth therapy probably lies in the isolation of immune-modulatory molecules 

in order to avoid unnecessary side effects of the infection and achieve a more consistent and 

long-term outcome. 

The use of Ascaris eggs as treatment for immunomodulatory diseases is obviously not 

advised because of the damage caused by the hepato-tracheal migration and the presence of 

allergens. Unless Ascaris immunomodulatory molecules could be isolated and produced on a 

large scale, the potential harmful effects on human welfare would be too great. In that 

respect, the recent acquisition of the genome of A. suum raises the hope that these 

modulatory molecules will be easier to identify [204].  
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Table 1.2: Helminth therapy studies 

Disease Helminth Outcome Reference 

Inflammatory 
Bowel Disease 

T. suis 
No adverse effects 
Temporary remission in 6 out of 7 patients with CD or UC 

[205] 

  Remission in 72%, clinical improvement in 79% of CD patients [202] 

  
Clinical improvement in 43% of UC patients compared to 17% 
with placebo 
No differences in remission rate 

[206] 

 N. americanus 
Pilot study with trend towards reduced disease at 20 weeks p.i. 
Adverse events recorded include anemia, transient enteropathy 
and peripheral eosinophilia 

[207] 

 T. trichiura Case report. Remission after infection [208] 

Multiple 
Sclerosis 

T. suis 
Phase I study with trend towards reduced disease 
No adverse effects 

[209] 

Allergic rhinitis T. suis No effect on clinical disease or cytokine response [210,211] 

 N. americanus No effect on clinical disease [212,213] 

Celiac Disease N. americanus 
No effect on clinical disease. 
Adverse effects include reactions at the injection site and enteritis 

[214] 

CD: Crohn’s disease; UC: ulcerative colitis 
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1.5 Conclusion 
 

Ascariosis remains the most common helminth infection and an important health 

problem both in humans and in pigs, despite frequent treatments. Given the important 

consequences of the Ascaris immune response, and the potential benefit of vaccines for the 

control of this parasite, there is a need for a better understanding of the immunological 

changes contributing towards protection. What knowledge we have about protective 

responses against helminths mostly comes from studies with rodent models and may not be 

applicable to the situation in natural hosts. Therefore immunological studies in pigs are 

required. Protective immunity against invading larvae is a common observation after chronic 

exposure of pigs with A. suum, yet there is no information on how these larvae are prevented 

from penetrating the intestine. In addition, the distribution of A. suum in pigs becomes greatly 

aggregated after a process of expulsion or self-cure in the small intestine. Unraveling these 

two processes might hold the key to the development of immunological control strategies 

against Ascaris and could help to explain epidemiological phenomena in A. lumbricoides 

infected people as well. 
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Objectives 
 

In order to design and evaluate potential vaccine candidates against Ascaris suum , it is 

essential to understand the immunological basis of protection. The literature review showed 

that the strongest levels of protection are situated at the level of the gut. However, the 

knowledge of the effector mechanisms or how they are induced is currently insufficient. It is 

important to assess the immune response where it is localized. Therefore, in this thesis the 

goal was to unravel the effector mechanisms responsible for the intestinal protection against 

A. suum. 

 

The self-cure reaction forms the first strong defense against A. suum in primary 

infections and is directed against the L4. The first objective was therefore to identify the 

expulsion mechanism during primary infections with A. suum and to assess the contribution of 

the hepato-tracheal migration to the expulsion. 

 

Chronic infection with A. suum induces strong pre-hepatic immunity. The second 

objective of this PhD was to investigate the immunological changes in immune pigs and the 

effector mechanism(s) that prevent larval penetration of the intestine after chronic exposure. 

 

Functional studies in pigs are limited due to a lack of species-specific immunological 

reagents, such as antibodies and recombinant proteins. Therefore, the third objective was to 

determine, based on the findings of the pre-hepatic barrier in pigs, if mice also build up a 

similar pre-hepatic immunity and could be used as a model for the pre-hepatic barrier in pigs. 

 

The final objective was to assess if the results obtained here can be applied to vaccine 

development. 
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2.1 INTRODUCTION 

After ingestion, the A. suum eggs hatch and release third stage larvae in the intestine. 

The larvae will penetrate the caecal or colonic wall, reach the lungs via the liver, after which 

they will be coughed up and swallowed back in. Once back in the small intestine, they will 

develop first into L4 and then into adults, preferentially inhabiting the proximal half of the 

small intestine [27]. However, before the A. suum L4 can become adults, an expulsion 

mechanism, termed self-cure, causes the elimination of most of the L4 from the small intestine 

between 14 and 21 DPI. This self-cure occurs in primary infection, is independent of the 

inoculation dose and is the cause of the overdispersion of A. suum in pigs [27]. The effector 

mechanisms driving this elimination are largely unknown. The aim of this study was to 

investigate in more detail the gastro-intestinal immune response leading to the elimination of 

A. suum L4 from the small intestine and the contribution of the hepato-tracheal migration to 

the expulsion of the parasite.  

 

2.2 MATERIALS AND METHODS 

 Animals and parasites 

All animal experiments were conducted in accordance with the E.U. Animal Welfare 

Directives and VICH Guidelines for Good Clinical Practice, and ethical approval to conduct the 

studies were obtained from the Ethical Committee of the Faculty of Veterinary Medicine, 

Ghent University (EC2011/086, EC2009/145 and EC 2013/51). 

Helminth naive Rattlerow Seghers hybrid piglets of 10 weeks old were used. The animals 

were routinely checked for A. suum by coprological examination and at the start of the 

experiment 2 sentinel animals from the same pen were euthanized to confirm absence of 

larval stages. The animals had access to feed and water ad libitum.  

A. suum eggs were obtained from gravid female A. suum collected at the local abattoir 

from pigs that were being processed as part of the normal work of the abattoir. Embryonation 

was confirmed by way of light microscopy after incubation in 0,1% KCr2O7 for 2 months. 

 Experimental design 

Experimental infection with A. suum eggs 

Four groups of 5 pigs were used. The animals of 3 groups were infected via oral 

intubation with 2000 embryonated A. suum eggs each and euthanized 10, 17 and 28 days post 
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infection (DPI), respectively. One group was left uninfected and served as the negative control 

group.  

Lung stage larvae transfer experiment 

 Three donor animals were infected with 200.000 embryonated A. suum eggs and 

euthanized with a captive bolt pistol 9 days post infection. This time was chosen to avoid the 

chance that larvae would not have developed enough to be ready for the change in 

environment. The lungs of the animals were collected, minced and the homogenate put on a 

Baermann funnel incubated at 37 °C to collect the lung stage larvae. Preliminary trials showed 

that the transfer of larvae resulted in the manifestation of around 50% after 2 days. Within 2 

hours after necropsy of the donor animals, 15 naive pigs were orally infected with 1000 lung 

stage larvae each, in order to have a similar number of larvae in the small intestine as in the A. 

suum egg infected animals. Five animals were killed each at day 2, 7 and 18 post transfer (DPT) 

respectively. 

L4 intestinal larvae transfer experiment 

Three donor animals were infected with 25.000 embryonated A. suum eggs and 

euthanized 14 days post infection with a captive bolt pistol. The content of the small intestines 

of the animals were collected and the small intestine was washed with 37°C PBS to collect any 

remaining larvae. The content of the small intestine and the washing was sieved with a 122 

µm sieve and put on a Baermann funnel with PBS at 37°C to collect the intestinal L4. Within 2 

hours after necropsy of the donor animals, the L4 were collected from the Baermann funnel 

and 15 naive pigs were orally infected with 1000 L4 each. Five animals were killed each at day 

2, 7 and 18 DPT respectively.  

 

 Post mortem procedure 

All animals were fasted before necropsy and then killed with a captive bolt pistol, 

exsanguinated and the intestines were removed. Samples for RNA extraction and histological 

analysis of the jejunum were taken 3 meter caudal to the pylorus. The small intestine was 

further divided in duodenum, jejunum and ileum. The contents of the 3 parts of the small 

intestine were collected separately and the intestines were rinsed twice with water. The 

washing was added to the corresponding content. The content plus washing was passed 

through a 122 µm sieve and A. suum larvae were counted under a microscope. 
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 RNA extraction, cDNA synthesis and real time PCR assays. 

Jejunal tissue was immediately snap frozen in liquid nitrogen and stored at -80 until RNA 

extraction. RNA extraction was performed using Trizol reagent (Invitrogen), combined with an 

RNeasy mini kit (Qiagen). A DNase treatment was included to prevent genomic contamination. 

RNA integrity was assessed using a Biorad Experion with a standard sensitivity chip. cDNA was 

synthesized with a Biorad cDNA synthesis kit, starting from 1 µg of RNA. 

Primers for the real time PCR reactions were designed with the Primer3 software [215] 

and are listed in the Appendix. PCRs were run using Fast SYBR Green Master Mix (Applied 

Biosystems) on an AB StepOnePlus Real-Time PCR System. Primer specificity was confirmed by 

observing the melting curve and by sequencing PCR products. Gene expression levels were 

normalized based on housekeeping genes selected using Genorm [216]. Housekeeping genes 

tested were: b2m, gapdh, hmbs, rpl4, tbp1 and ywhaz. The genes selected for normalization 

were hmbs and tbp1. Gene transcription levels are expressed as fold change compared to 

uninfected controls. 

 Histological analysis 

Tissue samples of the jejunum without apparent peyer’s patches taken 3 meter caudal 

to the pylorus were washed in PBS, processed with the Swiss roll technique [217] and fixed in 

either 10% formaldehyde or Carnoy’s fixative for 24h. Carnoy’s fixative was used for mucosal 

mast cells because this fixative leads to the best staining of these cells [218]. After fixation, the 

tissues were dehydrated by passage through a series of graded alcohol dilutions, followed by 

embedment in paraffin. Tissue samples were cut in 4 µm sections. To assess general 

histopathological damage and the accumulation of eosinophils, formaldehyde fixed samples 

were routinely stained with haematoxylin-eosin. The length of the villi and depth of the crypts 

in the jejunum were measured for 20 villi and their corresponding crypts under a microscope 

using a calibrated micrometer at 100x magnification. Mucosal eosinophils were counted at 

400x magnification on 10 fields corresponding to 0.162 mm2. Mast cells were counted on 

carnoy fixed, toluidine blue stained slides at 200x magnification using a weibel2 graticule 

[219]. For immunohistochemistry: formaldehyde fixed, paraffin embedded sections were 

rehydrated and an antigen retrieval step with citrate buffer was included. Endogenous 

peroxidase activity was blocked using 1% hydrogen peroxide. Sections were stained with 

rabbit anti-human CD3 (Dakocytomation A/S) to detect intra-epithelial lymphocytes (IELs) or 

mouse anti-human MAC387 (Serotec) to stain macrophages. Biotinylated secondary antibodies 

(Dakocytomation A/S) were added and staining was performed using the peroxidase 

streptavidine complex (Dakocytomation A/S), diaminobenzidine tetrahydrochloride (DAB, 
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Sigma–Aldrich) and H2O2. Sections were counterstained with haematoxylin. Macrophages 

were counted at 200x magnification using a weibel2 graticule [219] while IELs were counted 

for 5 villi randomly and expressed as number of IELs per 100µm villus epithelium. 

 

 ELISA 

The Ascaris-specific IgA, IgG, IgE and IgM levels in the serum against the L4 were 

determined using an indirect ELISA. L4 were collected from the small intestines of animals at 

14 DPI. The larvae were ground in liquid nitrogen to a fine powder and subsequently dissolved 

in PBS to which a 1:1000 dilution of protease inhibitor cocktail (Sigma-Aldrich) was added. 

After incubating for 2 hours at 4°C, the extract was centrifuged at 10.000 g for 10 minutes. The 

supernatant was passed through a 0.22 µm filter and stored at –70°C until use. This extract is 

being referred to as AsL4. 

Plates were coated overnight at 4°C with 5 μg/ml AsL4 in 0.05M sodium bicarbonate 

buffer (pH 9,6). Serum was added at a concentration of 1/100 and HRP-conjugated goat anti-

pig IgM (Thermo Scientific), IgG and IgA (Bethyl laboratories) were used as conjugate at a 

dilution of 1:50000, 1:10000 and 1:5000, respectively. For the detection of pig IgE antibodies, a 

cross-reacting mouse anti-human IgE antibody [220](Sigma-Aldrich) at 1:5000 and HRP-

conjugated rabbit anti-mouse IgG at 1: 10000 were used. All measurements were performed 

in duplicate. 

 

 Eosinophil degranulation assay 

The purification of circulating eosinophils and the degranulation assay were performed 

as previously described [221]. Reactive oxygen species production was measured using a 

chemiluminescence assay with PMA 5µg/ml as positive control, HBSS with Ca2+/Mg+ as 

negative control or 1mM SIN-1 as a ROS donor. Eosinophils from 1 pig were seeded in a 96-

well plate at 2 × 105 cells/well in 100 μl luminol (1 mM) in HBSS with Ca2+/Mg+. After 5 min of 

background measurement at 37 °C, 10,20 or 50 A. suum L4 collected from infected pigs at 14 

DPI were added in 100 μl HBSS, as well as the control agents. To test if there was antibody or 

complement dependent degranulation, serum from 5 uninfected and 5 animals at 17 DPI was 

pooled and added at 1/100 dilution. Heat inactivation of serum was done at 58°C for 30 

minutes. ROS-production was measured during 120 min in the integration mode. Each 

condition was performed in triplicate and ROS-production was expressed as the fold change in 
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relative light units (RLU) compared to negative controls (HBSS). The experiment was 

performed 3 times independent from each other. 

 

 Small intestinal transit time 

Eleven pigs were infected with 3000 A. suum eggs. Ten days after infection, 2 animals 

were euthanized to confirm batch infectivity. The small intestinal worm counts in these two 

pigs were 2019 and 2315. Small intestinal transit time was measured in the remaining 9 pigs at 

5 days before infection and at 9, 17 and 35 days after A. suum infection. The pigs were starved 

for 12 hours before barium sulfate was given through gastric intubation at a dosis of 4 ml/kg 

bodyweight. Lateral and dorso-ventral radiographs were taken every half hour until barium 

sulfate was located in the colon. If a radiograph was inconclusive about the presence of 

contrast material in the colon, it was repeated after 10 minutes. The time it took for the 

barium to reach the colon was recorded as the small intestinal transit time. After the last 

transit time measurement, the animals were euthanized and worms were collected. 

 

 Statistical analysis 
 

For statistical analysis, GraphPad Prism software (v5.0c) was used. Because we could not 

assume Gaussian distribution, differences between the infected groups and uninfected 

animals were tested using a nonparametric Kruskal-Wallis test with Dunn’s multiple 

comparison post hoc tests. For the transit time measurements, a repeated measures Friedman 

test was used with a Dunn’s multiple comparison post hoc test. 
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2.3 RESULTS 

 Bypassing the hepato-tracheal migration does not impair the self-cure reaction 

Animals were either orally infected with 2000 A. suum eggs or with 1000 9-day-old L3 

that were collected from the lungs of donor animals. The worm counts are summarized in 

Table 2.1. For egg infected pigs, the average total worm count at 10 DPI was 312, with 19% of 

larvae present in the duodenum, 73% in the jejunum and 9% in the ileum. At 17 DPI, the 

average total number of larvae present was reduced to 19, most of which were present in the 

ileum. By 28 DPI, all animals were negative for A. suum. When animals were orally infected 

with lung larvae obtained from donor animals, they were still able to eliminate the larvae. At 2 

DPT, 38% of transferred larvae were recovered, almost exclusively from the jejunum, 

indicating a successful transfer. At 7 DPT, although the total number of worms was similar to 

that of 2 DPT, 50 % of the larvae were now present in the ileum. At 18 DPT, no larvae could be 

recovered from the animals.  

 

Table 2.1: Worm counts in the small intestine during an infection with 2000 A. suum 

eggs or 1000 L3 lung stage larvae. Numbers shown are the average (SD) of 5 animals. 

    
A. suum 

age* 
Duodenum Jejunum Ileum Total 

Egg 
infection 

10 DPI 10 58 (64) 227 (82) 27 (48) 312 (90) 

17 DPI 17 0 (0) 5 (6) 14 (20) 19 (26) 

28 DPI 28 0 (0) 0 (0) 0 (0) 0 (0) 

L3 transfer 2 DPT 11 1 (1) 384 (35) 26 (23) 411 (35) 

  7 DPT 18 0 (0) 220 (374) 267 (337) 487 (376) 

  18 DPT 29 0 (0) 0 (0) 0 (0) 0 (0) 

* in days; hatching out of the egg = 0 days 
    

 

 A. suum specific antibodies are not essential in the self-cure response 

Ascaris L4 specific IgA, IgE, IgG and IgM antibody levels in serum of A. suum egg or lungs 

stage infected animals were measured using an indirect ELISA (Figure 2.1). During infections 

with eggs, AsL4 specific IgA, IgM and IgG levels were increased from 10 DPI onwards, whereas 

AsL4 specific IgE levels were only detectable in serum at 17 DPI. Although the self-cure 

reaction occurs 7 days after L3 lung stage larvae are transferred, no statistically significant 
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increases of AsL4 specific IgA, IgM, IgG and IgE antibodies could be detected at this time. IgM, 

IgG and IgE levels were significantly increased only at 18 DPT whereas no change in serum IgA 

levels was observed.  

 

Figure 2.1: Serum antibodies are present during expulsion in infections with A. suum eggs, but not 

when larvae are transferred. Values represent the mean + SD of 5 animals. * p< 0.05 compared to 

uninfected controls 

 

 L4 transferred larvae are driven distally in the small intestine, but counteract this 

effect by 18 DPT 

We examined whether the release of antigens during the molt from L3 to L4 that occurs 

around D12 is necessary to trigger the expulsion of the larvae. Therefore we collected 14-day-

old L4 intestinal larvae from donor animals and transferred 1000 larvae orally into naïve 

animals. The number of larvae in each section of the small intestine was counted at 2, 7 and 18 

days post transfer. The larvae counts are summarized in Table 2.2. At 2 DPT around 60% of the 

transferred larvae could be recovered and 87% of the recovered larvae are present in the 

jejunum. Five days later the total number of larvae in the small intestine is similar to that at 2 
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DPT, but most larvae are present in the terminal part of the small intestine. At 18 DPT the total 

number of larvae has not decreased compared to 7 DPT, but 90% of larvae are now present 

again in the jejunum, indicating that they could counteract the peristaltic movement to inhabit 

the proximal region of the small intestine. 

 

Table 2.2: Worm counts in the small intestine after transfer of 1000 A. suum L4. Numbers 

shown are the average (SD) of 5 animals. Table 2.1 is incorporated in grey for reference. 

    
A. suum 

age* 
Duodenum Jejunum Ileum Total 

Egg infection 

10 DPI 10 58 (64) 227 (82) 27 (48) 312 (90) 

17 DPI 17 0 (0) 5 (6) 14 (20) 19 (26) 

28 DPI 28 0 (0) 0 (0) 0 (0) 0 (0) 

L3 transfer 

2 DPT 11 1 (1) 384 (35) 26 (23) 411 (35) 

7 DPT 18 0 (0) 220 (374) 267 (337) 487 (376) 

18 DPT 29 0 (0) 0 (0) 0 (0) 0 (0) 

L4 transfer 

2 DPT 16 1 (1) 521 (208) 73 (54) 595 (201) 

7 DPT 21 0.2 (0.4) 102 (148) 317 (262) 419 (369) 

18 DPT 32 24 (53) 409 (175) 19 (43) 452 (199) 

* in days; hatching out of the egg = 0 days 
    

 

 Self-cure is associated with eosinophilia and intra-epithelial T cells 
 

The results of the histological parameters investigated are shown in Figure 2.2. To assess 

general histopathological changes, villus length and crypt depth were measured. Villus/crypt 

ratios decreased shortly after contact with A. suum larvae, due to a blunting of the villi. 

Although this effect was observed in both infections with eggs and L3 and L4, it was only 

temporary, as the villi recovered by 17 DPI/7 DPT. At 17 DPI, coinciding with the expulsion of 

the parasite, there was a significant increase in mucosal eosinophils. After elimination of the 

larvae, i.e. 28 DPI, the number of eosinophils decreased to a level similar to that before the 

infection. A similar pattern was observed following transfer of L3, with a peak in eosinophil 

counts at 7 DPT. The transfer of L4 resulted in high eosinophil numbers at 7 DPT and 18 DPT.  

Mucosal macrophages followed a similar pattern as eosinophils in A. suum egg infected 

pigs, with a 9-fold increase in the number of macrophages per mm2 mucosa at 17 DPI that 

returned to baseline level at 28 DPI. In contrast to normal infections, in both L3 of L4 transfer 
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infections, no increase in the number of macrophages was observed at any of the time points 

investigated. No statistically significant changes were observed in the number of intestinal 

mast cells in any of the infection experiments. Finally, intra-epithelial T cells were significantly 

elevated in all infection experiments at the time when larvae were being driven towards the 

distal end of the small intestine, i.e. at 17 DPI/7DPT. In the A. suum egg infections and in the L3 

transfer experiment, IELs were still elevated even after the worms were eliminated, while in 

the L4 transfer experiment the IELs returned to normal levels at 18 DPT. 

 

 

Figure 2.2: Histopathological findings during infections with A. suum eggs and infections with L3 or L4 

transferred larvae. Values are mean + SD of 5 animals. * p<0.05 versus control group; ** p<0.01 versus 

control group; *** p<0.001 versus control group 
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The results of the quantitative PCR analysis on a set of 25 genes for egg infected, L3 and 

L4 transferred animals are summarized in Table 2.3 With egg infections, the gene expression 

pattern was polarized towards a Th1-like response, with significant upregulations observed for 

ifng, il12a, il12b, stat4 and nos2a. In contrast, none of the Th2 related genes were significantly 

impacted during infection with A. suum eggs. In the L3 and L4 transfer experiments, more 

mixed responses were measured. In addition to some Th1 markers, an increase in the typical 

Th2 transcripts il4 and il13, together with increases in regulatory transcripts, such as foxp3, 

and tgfb were observed.  

For all infection experiments there was an upregulation of genes associated with 

cytotoxic cells, mainly granzyme A and B, perforin 1 and NKG2D. Additionally, several 

eosinophil-associated genes were induced, such as those encoding for eosinophil peroxidase, 

eotaxin 1, eotaxin receptor and IL-5 receptor alpha. 
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Table 2.3: RNA transcription profile of A. suum egg infected animals and L3 and L4 infected animals. 

Results are shown as average fold change versus uninfected controls. 

Gene Description 
Egg infection 

 
L3 transfer 

 
L4 transfer 

 
10 DPI 17 DPI 

 
28 DPI 

 
2 DPT 7 DPT 18 DPT 2 DPT 7 DPT 18 DPT 

 
Th1 associated 

            
 

     
il12a Interleukin 12 subunit p35 2.29 ** 1.28 

 
1.48 

 
1.15 

 
1.98 

 
1.17 

 
1.45 

 
0.84 

 
0.56 

 
il12b Interleukin 12 subunit p40 2.28 * 2.63 

 
2.12 * 2.05 * 2.11 ** 1.98 

 
1.26 

 
1.09 

 
1.26 

 
nos2a Nitric oxide synthase 2a, inducible 2.11 

 
5.12 * 8.81 ** 1.19 

 
1.24 

 
0.97 

 
2.41 

 
1.35 

 
1.43 

 
ifng Interferon γ 4.30 ** 2.91 * 3.49 * 1.31 

 
2.27 

 
1.02 

 
2.65 * 1.44 

 
1.03 

 
tbx21 T-Box 21, T-bet 2.28 * 1.63 

 
2.05 

 
2.35 * 1.59 

 
1.83 

 
1.37 

 
1.04 

 
1.06 

 

stat4 
Signal transducer and activator of 

transcription 4 
1.66 * 0.96 

 
1.70 * 1.31 

 
1.15 

 
1.33 

 
6.49 * 3.84 * 3.42 * 

                    

 
Th2 associated 

                  
il4 Interleukin 4 1.59 

 
0.76 

 
1.16 

 
1.24 * 0.91 

 
0.92 

 
1.04 

 
0.93 

 
1.35 

 
il5 Interleukin 5 1.06 

 
0.92 

 
0.84 

 
0.79 

 
0.91 

 
0.80 

 
0.78 

 
0.59 * 0.53 * 

il13 Interleukin 13 0.52 
 

1.19 
 

1.32 
 

3.36 
 

1.50 * 1.60 * 1.38 
 

2.66 
 

40.25 ** 

stat6 
Signal transducer and activator of 

transcription 6 
0.74 

 
0.77 

 
0.86 

 
0.69 

 
1.39 

 
0.89 

 
0.76 

 
0.74 

 
0.81 

 

il25 Interleukin 25 1.36 
 

1.20 
 

1.95 
 

1.27 
 

0.83 
 

0.89 
 

0.41 * 0.92 
 

1.59 
 

il33 Interleukin 33 1.24 
 

1.07 
 

1.05 
 

0.73 
 

0.50 
 

0.54 
 

0.69 
 

0.71 
 

1.11 
 

cma1 Mast cell chymase 1 0.87 
 

0.68 
 

0.94 
 

0.80 
 

0.54 * 1.04 
 

0.89 
 

0.68 
 

0.68 * 

                    

 
Treg 

                  
foxp3 Forkhead box P3 0.89 

 
0.98 

 
1.47 

 
1.55 

 
1.64 * 1.95 * 1.54 

 
2.10 

 
2.05 * 

tgfb transforming growth factor β 0.99 
 

0.99 
 

1.15 
 

1.33 
 

1.89 * 1.32 
 

1.76 ** 1.92 
 

1.04 
 

il10 Interleukin 10 1.13 
 

1.74 
 

1.33 
 

0.84 
 

1.25 
 

0.59 ** 1.84 
 

1.65 
 

1.33 
 

pparg 
peroxisome proliferator-activated 

receptor gamma 
0.42 * 0.81 

 
1.35 

 
2.60 * 0.83 

 
1.11 

 
0.74 

 
0.89 

 
1.53 

 

  
         

         

 
Cytotoxic cell associated 

                  
nkl NK-lysin 0.52 

 
1.57 

 
1.16 

 
0.54 

 
0.71 

 
0.92 

 
1.97 

 
1.90 

 
0.97 

 
gzma Granzyme A 1.61 ** 1.46 

 
2.74 ** 2.03 

 
2.05 * 2.25 

 
1.59 * 1.46 

 
0.24 ** 

gzmb Granzyme B 4.14 * 2.66 
 

3.69 
 

2.58 ** 1.32 
 

2.34 
 

3.74 ** 2.11 * 1.04 
 

prf1 Perforin 1 1.50 
 

0.83 
 

1.61 
 

1.67 * 1.68 ** 1.70 * 2.61 * 1.86 
 

1.37 
 

klrk 
killer cell lectin-like receptor subfamily K, 

NKG2D 
2.71 ** 1.11 

 
2.28 * 1.25 

 
1.02 

 
1.42 

 
0.73 

 
0.41 

 
0.44 * 

                    

 
Eosinophil associated 

                  
epx Eosinophil peroxidase 2.64 * 0.33 

 
0.41 * 0.48 

 
0.44 

 
0.68 

 
0.43 

 
0.73 

 
3.47 ** 

ccl11 
Chemokine (C-C motif) ligand 11, Eotaxin 

1 
1.03 

 
0.79 

 
0.98 

 
1.25 

 
2.17 * 1.38 

 
0.88 

 
0.79 

 
0.87 

 

ccr3 Eotaxin receptor 2.28 * 1.32 
 

0.79 
 

0.86 
 

0.83 
 

1.06 
 

0.82 
 

0.88 
 

0.94 
 

il5ra Interleukin 5 Receptor, alpha 1.21 
 

0.59 
 

1.09 
 

1.72 
 

1.19 
 

2.67 * 1.42 
 

1.32 
 

1.33 
 

* p < 0.05 compared to uninfected controls 

** p< 0.01 compared to uninfected controls 
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 Eosinophils do not degranulate in response to L4 

Results of the eosinophil degranulation assay are shown in Figure 2.3. Measurement of 

the reactive oxygen species (ROS) indicated that the eosinophils did not degranulate after 

incubation with A. suum L4, even in the presence of serum from infected animals. To exclude 

the possibility that L4 would capture ROS released in the medium, A. suum L4 were cultured 

together with SIN-1, a molecule that releases NO and ROS. A. suum L4 together with SIN-1 in 

medium gave no significant differences in measured ROS compared to SIN-1 without L4 (1636 

± 704 RLU versus 977 ± 344 RLU, respectively).  

 

Figure 2.3: No ROS release by eosinophils in response to A. suum L4. Data are shown as the mean RLU 

± SEM of three independent experiments. PMA (5 μg/ml) and HBSS were used as a positive and negative 

control, respectively. 0: no serum added to the wells; -: serum from uninfected animals added to the 

wells; +: serum from 17 DPI animals added to the wells. ROS: Reactive oxygen species. 

 

 Small intestinal transit time is decreased during self-cure 

The small intestinal transit time was measured by following barium sulfate passage 

through the small intestine before infection and at 9, 17 and 31 days post infection with 3000 

A. suum eggs (Figure 2.4). There was a small, non-significant increase in the small intestinal 

transit time at 9 DPI compared to their pre-infection transit time. At 17 DPI the small intestinal 

transit time was significantly lower than before the infection. By 35 DPI, 8 out of 9 animals 

were A. suum negative and one pig had 29 A. suum worms. At this time, the intestinal transit 

time was still somewhat lower than before infection, but not significantly. 
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Figure 2.4: The small intestinal transit time decreases during self-cure. The time for the barium 

solution to reach the caecum or colon after gastric intubation was recorded in 9 animals before and 

during A. suum infection. * Transit time significantly different (p<0.05) than uninfected control group. 

 

2.4 DISCUSSION 

Here we investigated the immunological basis of the self-cure reaction during primary A. 

suum infections. In addition, we studied the influence of the migration of the larvae through 

the body on the self-cure reaction. By transferring lung stage A. suum larvae from one animal 

to another, we have a simple model to study the effect of tissue migration on the initiation of 

the self-cure response. In animals bypassing the passage through the liver and lungs, the self-

cure reaction occurred with the same kinetics as animals receiving infectious eggs, i.e. around 

7 days after contact with the small intestine. Furthermore, both in infections with eggs and 

with lung stage larvae all larvae were expelled by 18 days of exposure to the small intestine. A 

previous study by Jungersen et al. led to the speculation that the expulsion of A. suum might 

be affected when the liver is bypassed. They injected in vitro hatched L3 intravenously in pigs 

and found a higher percentage of animals harboring adult A. suum at 70 DPI than what is 

usually observed, even though at 14 DPI there were comparable numbers of L4 between 

intravenously and orally infected animals [29]. Unfortunately, not enough time points and 

control groups were included to confirm if previous priming in the liver was indeed required to 

eliminate the larvae from the small intestine. The results presented here now unequivocally 
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show that the self-cure mechanism is a locally triggered phenomenon, independent of 

previous passage through the liver or lungs.  

Additionally we sought to determine whether antibodies play an important role during 

self-cure. Since in normal infections there are already A. suum specific antibodies present at 10 

DPI, it was previously suggested that antibodies played an important role in the expulsion of 

the parasite [30]. Although we confirm the presence of antibodies during self-cure in egg 

infected pigs, the absence of A. suum specific antibodies when larvae were being expelled in 

animals that received lung stage larvae would indicate that A. suum specific antibodies do not 

have a major role in the early self-cure against A. suum. This is further supported by the 

observation that when L4 are transferred, most larvae were being driven to the distal end of 

the small intestine around 7 DPT. Therefore also the release of antigens during the molt from 

L3 to L4 prior to the self-cure does not appear to be an essential trigger of the expulsion. 

However, one of the drawbacks of this study is that we measured antibody levels solely in the 

serum. It would be interesting in future studies to also include the mucosal antibody response. 

Furthermore it remains possible that non-specific antibodies present in the mucosa could 

contribute to A. suum expulsion [222]. In addition, although it is not clear to what extent 

maternal antibodies would still be present in pigs of 12 weeks age, the passive transfer of 

antibodies has been shown to contribute to parasite expulsion [223].  

Remarkably, and in contrast to the transfer of lung stage larvae, the L4 transferred 

larvae were able to return to the jejunum by 18 DPT. By this time, the larvae are already 32 

days old, i.e. an age at which in natural infections they are also not affected by the self-cure 

response anymore. It appears that these larvae, once they have developed to a certain stage, 

are able to counteract the self-cure response. This is in agreement with a microarray study on 

larvae in the jejunum and ileum during self-cure, where they found that only the more 

metabolically active larvae could remain in the jejunum [224]. However, from our results it is 

clear that the larvae present in the ileum are still alive and can return to the jejunum if they 

are active enough. This also contradicts the suggestion that self-cure is a parasite-driven 

suicide phenomenon based on the density of the parasites [225]. It indicates that there is a 

fine balance between the host that is trying to drive the parasite out and the parasite’s ability 

to counteract this effort. This also explains why adults can remain in the small intestine for 

months or years without being driven out.  

 The histological and RNA transcription analysis showed some common characteristics 

associated with the expulsion of larvae in all the experiments performed here. The peak of 

expulsion coincided with a peak in mucosal eosinophils and IELs, suggesting an important role 
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for these cells in the innate defense against A. suum. Eosinophils can directly respond to a 

broad spectrum of pathogens through signaling via Toll like receptors, complement receptors 

and immunoglobulin receptors. In order to investigate whether eosinophils responded directly 

to A. suum L4, we monitored the release of reactive oxygen species from the eosinophilic 

granules after co-incubating the cells with the larvae. In contrast to results obtained with 

freshly hatched L3, where eosinophil degranulation occurred quickly after contact with L3 in 

the presence of serum of either infected or uninfected animals ([221], see chapter 3), 

eosinophils did not respond directly to Ascaris L4, even in the presence of serum. In addition, 

the larvae in the L4 transferred animals at 18 DPT were seemingly unharmed, even though 

eosinophil numbers remained high. These results may indicate that the L4 are expressing 

inhibitory factors that prevent eosinophil degranulation and that eosinophils are better 

equipped to deal with tissue-residing larvae, rather than lumen dwelling ones. This seems 

indeed the case for many helminth infections [226]. The function of eosinophils in the defense 

against L4 might also be of an indirect nature. Since the eosinophils were located deep in the 

mucosa, this assumption seems indeed likely. Through the release of preformed cytokines, 

chemokines, lipid mediators and cytotoxic molecules, eosinophils could quickly initiate a 

potent immune response after recognition of pathogen-associated molecular patterns, which 

in turn may lead to the initiation of the expulsion of A. suum.  

 Another important finding was a clear increase in the number of intra-epithelial T cells 

during the course of the infection. Although the IELs were not phenotyped, RNA transcription 

data would suggest that it was the cytotoxic T cell subset that was the most impacted, as there 

was an overall induction of molecules associated with cytotoxicity such as granzymes, perforin 

and NKG2D, all of which have been found to be expressed by IELs [227]. One of the functions 

of IELs is epithelial repair [227]. IELs may be activated in response to damage caused by the 

larvae. For example, Granzyme B has been found to be correlated with villus damage in 

helminth infections [228]. Our findings support this, as in all our experiments villous blunting 

and granzyme B upregulation were observed shortly after contact with A. suum larvae. The 

negative effect of A. suum on the intestinal structure might have important consequences for 

humans suffering from A. lumbricoides as well, as it might help to explain the malabsorption 

often associated with these infections. Whether there is a direct effect of the IELs on the 

expulsion of the parasite deserves further attention, since resistance against helminth 

infections in sheep has been associated with genes involved in cytotoxicity [229]. Increased 

epithelial turnover and shedding caused by cytotoxic cells might make it harder for the small 

L4 to stick to the mucosa. Interestingly, IELs were lower in the L4 transferred group at 18 DPT, 

which may indicate an active regulation of the immune response by these larvae. 
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 Mast cells and basophils have previously been associated with A. suum infections 

[110,111,221]. Repeated infections induced blood basophilia and intestinal mastocytosis, and 

these cells responded to stimulation with L3 or L4 secretory antigens by releasing histamine 

[110,111]. The maximum histamine release occurred between 14 and 21 days after daily 

exposure, therefore it has been suggested that these cells played an important role during 

self-cure [230]. However, only basophils or mast cells that had previously been exposed to 

Ascaris released histamine following contact with L3 or L4 secretory antigens [110,111]. We 

also show here that in contrast to experiments with repeated infections, mast cells were not 

induced in the small intestine after primary infections, suggesting that basophils or mast cells 

may only play a role in protection against secondary infections. 

 Interestingly, the local cytokine response in the jejunum seemed to be greatly 

impacted by the initial migration through the body. Naturally infected animals were more 

biased towards a Th1 type response with macrophages, while in both the L3 and L4 transfer 

experiments there was a much more mixed Th1/Th2 response and no recruitment of 

macrophages. Especially the animals infected with L4 showed high il13 transcription at 18 DPT, 

which may indicate that the initial Th1 bias shifts towards a Th2 response as the infection 

progresses.  

Together, these results suggest that the expulsion mechanism does not target the A. 

suum larvae directly. One possible mechanism by which larvae could be eliminated from the 

small intestine is increased gut movement. We show here that animals infected with A. suum 

indeed have decreased transit time around 17 DPI. This decrease is in agreement with a 

previous study showing an increase in smooth muscle contractility from 14 to 21 DPI and an 

increase in fluid secretion ex vivo [31]. Any increase in gut movement would indeed make it 

more difficult for the relatively small larvae to remain in the small intestine and may in fact be 

a universal mechanism of expulsion of intestinal lumen dwelling nematodes, as changes in 

intestinal smooth muscle contractility have been identified in Cooperia oncophora infected 

calves and Trichinella spiralis and Nippostrongylus brasiliensis infected mice [114,231,232]. 

Studies in mice have shown that the helminth induced increase in smooth muscle contractility 

is signaled through IL-4 or IL-13 [114,143,233], which could explain why it is a common 

observation with helminth infections. Of particular interest is the contribution of alternatively 

activated macrophages on the regulation of smooth muscle contractility [114]. While we could 

only detect an increase in macrophages in the A. suum egg infected animals, it remains 

possible that changes in the activation state of macrophages contribute to the change in 

smooth muscle contractility and deserves research.  
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 Taken together, this study indicates that the self-cure is a locally initiated mechanism. 

As part of a weep and sweep response, faster gut movement will make it harder for the larvae 

to remain in the small intestine. This effect can probably be overcome once A. suum larvae 

have developed to a point where they are large and active enough to counteract the increased 

peristaltic movements. Eosinophils and intra-epithelial T cells appear to play a pivotal role 

since they are consistently associated with self-cure, but further research is needed to 

elucidate how these cells operate in order to induce the weep and sweep response. 
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3.1 INTRODUCTION 
 

In addition to the self-cure reaction that occurs during primary infections, pigs build up a 

strong protective immunity after prolonged exposure to Ascaris. This protective immunity 

develops at the caecum and colon and prevents the infective larvae to penetrate the intestinal 

tissue and start their hepato-tracheal migration. This is the so-called pre-hepatic barrier [21-

24,234]. Little is known of what immunological factors are associated with this protective 

immune mechanism. The purpose of this study was therefore to identify the key 

immunological events involved in the formation of the pre-hepatic barrier in the caecum of 

pigs following Ascaris infections.  

 

 

3.2 MATERIALS AND METHODS 

 Animals and parasites  

All animal experiments were conducted in accordance with the E.U. Animal Welfare 

Directives and VICH Guidelines for Good Clinical Practice, and ethical approval to conduct the 

studies were obtained from the Ethical Committee of the Faculty of Veterinary Medicine, 

Ghent University. A. suum free, Rattlerow Seghers hybrid piglets of 10 weeks old were used. 

The animals had access to feed and water ad libitum.  

A. suum eggs were obtained from gravid female A. suum collected at the local abattoir 

from pigs that were being processed as part of the normal work of the abattoir. After 

incubation in 0.1% KCr2O7 for 2 months, embryonation was confirmed by way of light 

microscopy. 

For the in vitro tests, L3’s were collected from embryonated eggs. The eggs were 

incubated in sodium hypochlorite for 1h, washed with PBS and then hatched by magnetic 

stirring with 2 mm diameter glass beads. To separate the larvae from unhatched eggs, the 

suspension was put on a baermann sieve covered with cotton cloth. After overnight incubation 

at 37 °C, the larvae were collected and put in DMEM medium supplemented with 50 u/ml 

penicillin, 50 µg/ml streptomycin, 100 µg⁄ml kanamycin, 5 µg/ml amphotericin B and 2mM 

glutamine. 
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 Infection trial 

The experimental design is summarized in Table 3.1. Three groups of pigs were used. A 

first group of six pigs were fed 100 A. suum eggs per day in a small food bolus for 14 weeks. 

Eggs per gram feces (EPG) were monitored weekly from week 6 onwards. After 14 weeks the 

animals were dewormed with fenbendazole (5 mg/kg). Two weeks after deworming, these 

animals received a first challenge infection of 5000 eggs. Thirteen days later, a second 

challenge infection of 5000 eggs was administered. Twenty-four hours later, the animals were 

euthanized for sample collection. These animals are referred to as immune animals. A second 

group of 5 naïve animals received anthelmintic treatment 2 weeks before being infected with 

5000 eggs and euthanized 14 days post infection (DPI). These animals served to compare larval 

counts between immune and naïve animals at 14 DPI. A third group of 5 animals received 

anthelmintic treatment 2 weeks before being infected with 5000 eggs and euthanized 24 

hours later to compare the early immune response with the immune animals that received a 

challenge infection 24 hours prior to necropsy. 

Animals were denied feed from 24 h before until necropsy and then killed with a captive 

bolt pistol, exsanguinated and the intestines were removed. Samples for RNA extraction and 

histological analysis were taken from the caecum. The small intestine was washed and the 

contents passed through a 220 µm sieve. A. suum larvae were counted under a microscope.  

 RNA extraction, cDNA synthesis and real time PCR assays. 

Tissue samples from the caecum were taken from group 1 and 3 and immediately snap 

frozen in liquid nitrogen and stored at -80 °C until RNA extraction. RNA extraction was 

performed using Trizol reagent (Invitrogen), combined with an RNeasy mini kit (Qiagen). A 

DNase treatment was included to prevent genomic contamination. RNA integrity was assessed 

using a Biorad Experion with a standard sensitivity chip. cDNA was synthesized with a Biorad 

cDNA synthesis kit, starting from 1 µg of RNA. 

Primers for the real time PCR reactions were designed with the Primer3 software [215], 

or taken from the PIN database (http://199.133.11.115/fmi/iwp/cgi?-db=PINdb&-loadframes). 

For a list of primers, see Appendix. PCRs were run using Fast SYBR Green Master Mix (Applied 

Biosystems) on an AB StepOnePlus Real-Time PCR System. Primer specificity was confirmed by 

observing the melting curve. PCR products were confirmed through sequencing. Gene 

expression levels were normalized based on housekeeping genes selected using Genorm [216]. 

Housekeeping genes tested were: b2m, gapdh, hmbs, rpl4, tbp1 and ywhaz. The genes 

selected for normalization were hmbs and tbp1. Gene transcription levels are expressed as 

fold change in transcription levels of immune animals compared to naïve animals. 
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 Histological analysis 

Tissue samples were taken from animals in group 1 and 3 and were washed in PBS, 

processed with the Swiss roll technique [217] and fixed in either 10% formaldehyde or 

Carnoy’s fixative for 24h. Carnoy’s fixative was used for mucosal mast cells and goblet cells 

because this fixative leads to the best staining of these cells [218,235]. After fixation, the 

tissues were dehydrated by passage through a series of graded alcohol dilutions, followed by 

embedment in paraffin. Tissue samples were cut in 4 µm sections. To assess general 

histopathological damage and the accumulation of eosinophils, formaldehyde fixed samples 

were routinely stained with haematoxylin-eosin. Mucosal eosinophils were counted at 400x 

magnification on 10 fields corresponding to 0.162 mm2. Mast cells were counted on toluidine 

blue stained slides at 200x magnification using a weibel2 graticule[219]. Goblet cells were 

counted on Alcian blue-periodic acid shiff’s stain and expressed as number of goblet cells per 

100 µm crypt length. For immunohistochemistry, formaldehyde fixed, paraffin embedded 

sections were rehydrated and an antigen retrieval step with citrate buffer was included. 

Endogenous peroxidase activity was blocked using 1% hydrogen peroxide. Sections were 

stained with mouse anti-human MAC387 (Serotec) to stain macrophages. Biotinylated 

secondary antibodies (Dakocytomation A/S) were added and staining was performed using the 

peroxidase streptavidine complex (Dakocytomation A/S), diaminobenzidine tetrahydrochloride 

(DAB, Sigma–Aldrich) and H2O2. Sections were subsequently counterstained with 

haematoxylin. Macrophages were counted at 200x magnification using a weibel2 graticule 

[219]  

 

 Isolation of circulating eosinophils 

Peripheral blood was collected on EDTA from the jugular vein of pigs at 14 DPI. The 

blood was diluted with an equal amount of PBS and layered onto a discontinuous Percoll 

gradient (68% and 75%) and centrifuged (500 × g at 4 °C for 30 min) to separate the 

granulocyte fraction. After lysis of contaminating erythrocytes in 0.2% NaCl solution, 

eosinophils were separated by negative magnetic activated cell separation with mouse anti-pig 

CD16 antibody (AbD Serotec) and rat anti-mouse IgG1 microbeads (Miltenyi-Biotec). The 

purity of eosinophils was verified with a Giemsa stain after cytospin and was >95%. The cells 

were washed three times and resuspended at 106 cells/ml in RPMI-1640 without phenol-red. 
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 Eosinophil degranulation assay 

The degranulation assay was essentially performed as described by Donne et al. [236]. 

Reactive oxygen species production was measured using a chemiluminescence assay. 

Eosinophils from 1 pig were seeded in a 96-well plate at 2 × 105 cells/well in 200 μl of RPMI 

without phenol-red. The plates were incubated at 37 °C for 2 h in a humidified atmosphere 

with 5% CO2, so that the cells could adhere to the plastic surface. The supernatant was 

removed and 100 μl luminol (1 mM) in HBSS with Ca2+/Mg+ was added. After 5 min of 

background measurement at 37 °C, 100, 200 or 300 A. suum L3 in HBSS were added in 100 μl 

as well as the control agents (PMA 5µg/ml as positive control and HBSS with Ca2+/Mg+ as 

negative control). To test if there was antibody or complement dependent degranulation, 

serum taken either from 5 uninfected naive or 5 immune animals was pooled and added at 

1/100 dilution. Heat inactivation of serum was done at 58°C for 30 minutes. ROS-production 

was measured during 120 min in the integration mode. Each condition was performed in 

triplicate and ROS-production was expressed as the fold change in relative light units (RLU) 

compared to negative controls (HBSS). The experiment was performed 3 times independent 

from each other. 

 

 A. suum L3 viability assay 

Eosinophils from 1 animal were seeded at 2.106 /ml in 100 µl in a 96 well plate in RPMI 

supplemented with 50 u/ml penicillin, 50 µg/ml streptomycin and 2mM glutamine. L3 were 

added at 100 per well, with or without serum pooled from 5 uninfected naïve or 5 immune 

pigs at a final concentration of 1/100. After 16 h of incubation, viability of L3 was assessed 

morphologically. Curled up or moving larvae were considered alive, while immobile, straight 

larvae were considered dead. Viability was expressed as the number of live larvae to the total 

number of larvae. Every condition was assessed in triplicate with eosinophils from 2 different 

animals. Negative control conditions consisted of medium without eosinophils. 

Viability was also tested using an MTT assay as previously described [237]. Briefly, 

eosinophils were seeded at 2.106 /ml in a 96 well plate in 100 µl RPMI supplemented with 50 

u/ml penicillin, 50 µg/ml streptomycin and 2mM glutamine. 100 L3 were added per well with 

or without serum pooled from 5 naïve or 5 immune pigs at a final concentration of 1/100. MTT 

was added at a final concentration of 1 mg/ml. After 3 h of incubation at 37°C and 5% CO2, 

larvae were collected, washed and transferred to DMSO. After 1 hour the plate was read at 

562 nm. Every condition was tested in triplicate. 
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 Statistical analysis 

For statistical analysis, GraphPad Prism software (v5.0c) was used. Mann-whitney tests 

were used to test differences between immune and naïve animals. The data collected from 

each group in the degranulation and viability assays were compared by analysis of variance 

(ANOVA) using the SPSS v20.0 software package. 
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3.3 RESULTS 

 

 Parasitological data 

The infection protocol and worm counts are summarized in Table 3.1. Pigs in group 1 

were immunized for 14 weeks with 100 eggs/day. The average EPG at 14 weeks was 4008 

(range 50-11050). The animals were dewormed and then challenged with 5000 eggs. Worm 

counts at 14 days post challenge were compared to naïve animals receiving only anthelmintic 

treatment and the challenge infection (group 2). Immune pigs had a 99,7% reduction in the 

number of larvae that can migrate through the body and reach the small intestine compared 

to naïve pigs from group 2 (8 ± 4 in immune group versus 2333 ± 496 in naïve group).  

 

Table 3.1: Infection protocol and worm counts 

Group Na  Immunizedb Challenge 1c Challenge 2d Worm countse 

1 6 yes yes yes 8 ± 4 

2 5 no yes no 2333 ± 496 

3 5 no no yes N.D. 

a: number of animals in the group  

b: 100 A. suum eggs daily for 14 weeks 

c: 5000 A. suum eggs 14 days prior to necropsy 

d: 5000 A. suum eggs 24 hours prior to necropsy 

e: worm counts determined in the small intestine 

N.D. Not determined due to the early stage of infection 

 

 Cellular parameters associated with immunity 

Caecal tissue was collected from naïve and immune animals 24 hours post challenge. 

Eosinophils, goblet cells, macrophages and mast cells were quantified and results are shown in 

Figure 3.1. The major effect was seen for eosinophils, with a significant almost 10-fold increase 

in mucosal eosinophils (p<0.001) in the immune animals. There was also a modest increase in 

goblet cells in immune animals (p<0.05). In addition, mast cells seemed to be specifically 

recruited to the submucosa and muscularis layers of the caecum (p<0.05) of immune animals. 

No significant difference was observed for the number of macrophages between naïve and 

immune animals. 
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Figure 3.1: Eosinophil, macrophage, goblet cell and mast cell counts in the caecum of naïve and 

immune animals. Results are shown as average + SD. n.s.: not significant. 

 

 RNA transcription profile 

The outcome of the qRT-PCR analyses is shown in Table 3.2. Significantly higher 

transcription levels for c3 (complement factor 3), ccl11 (Eotaxin), ccr3, epx (Eosinophil 

peroxidase), gata3, il5, il12b, il13 and retnlb (Resistin Like Beta) were detected in the caecum 

of immune animals, whereas muc5ac (mucin 5AC) was significantly down regulated in immune 

animals compared to naïve ones. No significant differences were observed for the other genes 

analyzed. 
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Table 3.2: RNA transcription profile of the caecum. 

Gene Description Fold change 

ARG1 Arginase I 0.65 
 C3 Complement factor 3 1.84 * 

CCL11 Chemokine (C-C motif) ligand 11, Eotaxin 1 2.50 * 
CCR3 Chemokine (C-C motif) receptor 3, Eotaxin receptor 4.70 * 

ELANE Elastase, neutrophil expressed 0.89 
 EPX Eosinophil peroxidase 10.2 * 

FOXP3 Forkhead box P3 1.05 
 GATA3 GATA binding protein 3 1.62 * 

IFNy Interferon γ 1.27 
 IL10 Interleukin 10 1.28 
 IL12A Interleukin 12 subunit p35 0.98 
 IL12B Interleukin 12 subunit p40 2.43 * 

IL13 Interleukin 13 2.57 * 
IL17A Interleukin 17 A 1.87 

 IL33 Interleukin 33 0.71 
 IL4 Interleukin 4 1.12 
 IL5 Interleukin 5 1.65 * 

ITLN2 Intelectin 2 1.70 
 MRC1 Mannose receptor C type 1 1.06 
 MUC1 Mucin 1 1.36 
 MUC2 Mucin 2 1.19 
 MUC3 Mucin 3 1.08 
 MUC5AC Mucin 5 AC 0.17 * 

RETNLB Resistin-like molecule β 2.33 * 
TGFB Transforming growth factor β 0.96 

 TNFA Tumour necrosis factor α 1.16   

Results are shown as average fold change of transcription of immune animals versus naïve animals + SD 

* p < 0.05 

 

 Eosinophil ROS production in response to A. suum 

To investigate if eosinophils degranulated in the presence of infective L3, reactive 

oxygen species (ROS) release was measured in the medium for 2 hours following the addition 

of larvae to purified eosinophil cultures (Figure 3.2). Eosinophils or larvae alone with serum did 

not induce ROS release and eosinophils did not degranulate when larvae were added in the 

absence of serum. However, when serum from either immunized or naïve animals was added 

together with the L3, eosinophils released ROS in the medium. The release of ROS was 

proportional to the amount of larvae added. Heat-inactivation of serum reduced the amount 

of ROS release. 
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Figure 3.2: Eosinophil ROS production in response to direct contact with infective larvae. Eosinophils 

were purified from blood of animals at 14 DPI. 2.105 eosinophils from 1 animal were seeded per well in 

HBSS. PMA: Phorbol myristate acetate (5 µg/ml), positive control. HBSS: negative control. O: no serum 

added. -: Serum pooled from 5 naive animals added. +: Serum pooled from 5 immune animals added. 

HI-: heat inactivated serum pooled from 5 naïve animals. HI+: heat inactivated serum pooled from 5 

immune animals added. Results shown are expressed as the fold increase in ROS production compared 

to negative control (HBSS) and are the average + SD of 3 experiments with different animals. The bars 

indicate statistically significant differences between groups (p<0.05). 

 

 Viability of infective A. suum larvae after culture with eosinophils 

Eosinophils were cultured together with infective third stage A. suum larvae for 16 

hours after which viability of the larvae was assessed (Figure 3.3). Eosinophils had a toxic 

effect on the L3, which was enhanced when serum from naive animals was added and was 

highest when serum from immune animals was added. Heat inactivation of serum led to 

reduced killing compared to non-heat inactivated serum. Similar results were obtained with 

the MTT colorimetric assay (Figure 3.4). 
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Figure 3.3: A. suum L3 viability after culture with eosinophils. Eosinophils were purified from blood of 

animals at 14 DPI. Viability was assessed visually after 16 hours of incubation with 100 L3. O: no serum 

added. -: Serum pooled from 5 naive animals added. +: Serum pooled from 5 immune animals added. 

HI-: heat inactivated serum pooled from 5 naïve animals. HI+: heat inactivated serum pooled from 5 

immune animals added. Results are shown as mean + SD of two independent experiments with three 

incubations each. a: significantly different than L3 cultured without eosinophils or serum (p<0.05). b: 

significantly different than L3 cultured with eosinophils without serum (p<0.05). c: significantly different 

than L3 cultured with eosinophils and serum from immune animals (p<0.05). 

 

Figure 3.4: MTT assay of viability of infective larvae after culture with eosinophils. Eosinophils were 

purified from blood of 1 animal at 14 DPI. 2.106 /ml eosinophils were incubated together with 100 

infective L3 A. suum larvae. Viability was determined by the MTT assay after 3 hours of incubation. O: 

no serum added. -: Serum pooled from 5 naive animals added. +: Serum pooled from 5 immune animals 

added. HI-: heat inactivated serum pooled from 5 naïve animals. HI+: heat inactivated serum pooled 

from 5 immune animals added. Results are shown as mean + SD of three incubations. The bars indicate 

statistically significant differences between groups (p<0.05). 
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3.4 DISCUSSION 

In this study we showed that pigs continually exposed to infective A. suum eggs for 14 

weeks developed an almost sterilizing immunity, demonstrated by a 99,7% reduction in 

number of larvae that were able to migrate through the host, and that this immunity was 

associated with eosinophilia, mastocytosis and goblet cell hyperplasia in the caecum. To our 

knowledge, this is the first study to describe the immunological parameters at the actual site 

of parasite penetration, i.e. the caecum or proximal colon. Although immunity against A. suum 

infections can occur at the different organs affected, Urban et al. showed that the strongest 

response is already at the level of the gut [21]. They reported increased mast cell and 

eosinophil numbers in the small intestines of animals with intestinal immunity to A. suum. 

However, since it was later discovered that in fact the caecum and proximal colon are the site 

of parasite entry, it was unclear whether these findings reflected the response against the 

adult worms residing in the small intestine, rather than the response against the invading 

larvae.  

In our experiments, only a few larvae could complete their migration and reenter the 

small intestine. These few larvae would have a minimal impact on the immunological 

parameters observed in the caecum, since protective immunity was already present at the 

time of first challenge and results from another experimental infection trial performed by our 

research group showed that the presence of approximately 50 L4 in the small intestine at 14 

DPI in a primary infection did not result in eosinophilia, mastocytosis or goblet cell hyperplasia 

in the caecal tissue (unpublished observations). Furthermore, it was previously shown that 

removal of adult A. suum worms before challenge did not influence immunity against invading 

larvae [24]. 

We observed an almost 10-fold increase in mucosal eosinophils in immune animals. The 

recruitment of eosinophils to the caecum of immune animals was further supported by 

increased levels of IL-5, IL-13, CCL11 and eosinophil peroxidase (EPX) transcripts in the caecal 

mucosa. IL-5 is one of the key cytokines involved in the development of eosinophils. It is also 

essential in the recruitment of eosinophils from the bone marrow to the blood [238]. CCL11, 

also termed Eotaxin 1, is an eosinophil specific chemoattractant and functions to home 

eosinophils from blood to tissue and it can be induced by IL-13 [238]. EPX is a granule protein 

specific for eosinophils and results in the formation of reactive oxygen species [85]. As the A. 

suum larvae penetrate the caecal mucosa to reach the liver, they are likely to come into close 

contact with the mucosal eosinophils. Circulating eosinophils responded in vitro to direct 
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contact with the larvae by releasing the contents of their granules. This degranulation was 

observed with serum from both infected and uninfected animals and the effect was 

diminished when serum samples were heat-inactivated, indicating that at least a part of it was 

complement dependent. A. suum specific antibodies appear to be non-essential in the 

degranulation, since serum from immune animals did not lead to increased degranulation 

compared to serum from naïve animals. However, it is important to note that the experiments 

were performed with circulating eosinophils and so it still has to be determined if mucosal 

eosinophils would respond similarly. 

Previous work with guinea pigs and mice has shown that complement components can 

bind the surface of the Ascaris larvae and that leukocytes may damage larvae in the presence 

of serum [239,240]. In the current study, we extended this knowledge by demonstrating that 

the combination of purified circulating eosinophils from the natural host and serum from 

immune animals was highly effective in killing the infective larvae. Since the most efficient 

killing of the larvae was in the presence of serum from immune animals, A. suum specific 

antibodies, in addition to complement components, probably also play an important role in 

the toxicity towards the parasite. In humans, IgG and IgE are the predominant isotypes for the 

killing of schistosomula by eosinophils [241,242]. Although we did not test isotype specific 

responses, these isotypes might also be involved in the Ascaris larval killing, since these A. 

suum specific antibody isotypes were elevated from 5-6 weeks of exposure to A. suum eggs 

(data not shown).  

Eosinophils have long been associated with helminth infections and antibody dependent 

eosinophil cytotoxicity against helminths in vitro was first shown for Shistosoma [242]. Toxicity 

of eosinophil granule proteins against nematodes has been shown for Toxocara canis, 

Trichinella spiralis, and Brugia malayi, mostly against juvenile stages [85]. Indeed, eosinophils 

appear to be essential only in the defense against juvenile, tissue-residing helminthes [243]. 

Our findings support this conclusion, as eosinophils only degranulated in response to the 

tissue dwelling L3, and not the lumen dwelling L4 (Chapter 2). It would be interesting to 

investigate if these differences are caused by diminished complement activation in different 

life stages of Ascaris, as is the case for Nippostrongylus brasiliensis [244]. To build up a high 

enough concentration of eosinophils, complement and antibodies at the site of parasite entry 

probably requires multiple infection cycles over a longer period of time. This would explain 

why sterilizing immunity is not established until after several weeks of exposure to infectious 

A. suum eggs.  

In addition to eosinophils, mast cells were also recruited to the submucosa and 

muscularis layer of the caecum of the immune animals. Whether or not mast cell derived 
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products have direct effects on the invading larvae is unclear, but their submucosal and 

muscularis location would suggest that mast cells would more likely act in an indirect manner. 

Mast cells add to the general inflammation by producing Th2 type cytokines such as IL-4, IL-5 

and IL-13. They are also the primary source of histamine. It was previously shown that mast 

cells and basophils from repeatedly infected animals released histamine after contact with 

Ascaris secretory antigens [110,111]. Histamine has various functions. Amongst others, it 

works as a chemoattractant for eosinophils and histamine release by mast cells can also 

induce smooth muscle contractions [107]. Additionally, mast cell proteases can break tight 

junctions, leading to increased intestinal fluid secretion. Although we did not measure fluid 

secretion and muscle contractions, they are part of a ‘weep and sweep’ response that is often 

seen in gastro-intestinal infections [109] and might contribute to the resistance against 

Ascaris. 

Interestingly, Urban et al. previously also described eosinophilia and mast cell influx in 

the midgut region of the small intestine of animals with a pre-hepatic barrier [24]. Whether 

the influx of these immune cells is a result of the development of the pre-hepatic barrier at the 

level of the caecum and colon or rather caused by the exposure of the small intestinal mucosa 

to L4 and adults worms is still unclear.  

We also identified goblet cell hyperplasia in animals resistant to invading Ascaris larvae. 

Increased mucus production is often part of a general Th2 type response against gastro-

intestinal nematode infections [245]. It might play an important role as it could trap the 

hatched larvae, making it more difficult to penetrate the intestinal wall. Despite the apparent 

goblet cell hyperplasia, we could not demonstrate an increase in any specific mucin on 

transcriptional level. Although mucin 5AC has been described as a crucial mucin in the 

expulsion of gastro-intestinal nematodes in rodent models [79] and is up regulated in pigs 

infected with Trichuris suis [246], muc5ac was significantly down regulated in immune pigs 

compared to naïve ones. The apparent down regulation of muc5ac in immune animals may 

however reflect an early increase in transcription caused by the challenge infection in the 

naïve animals. In addition to mucus production, goblet cells also secrete proteins with 

antimicrobial properties. We demonstrated a significant increase in transcription of retnlb, the 

gene coding for Relmß. This goblet cell specific protein has shown to have direct anthelmintic 

properties. Relmß knockout mice are more susceptible to N. brasiliensis and Heligmosomoides 

polygyrus [81] and it was also shown that Relmß was able to bind the lateral alae of 

Strongyloides stercoralis, thereby disrupting chemotactic functions [80]. Whether it acts in a 

similar way against A. suum is still unclear and needs further research. 
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It is unclear to what extent the results obtained with A. suum in pigs can be extrapolated 

to humans and A. lumbricoides. However, similar infection patterns are observed in humans 

and because of the extremely high similarity between these two parasites on molecular level, 

there is even question whether or not A. suum and A. lumbricoides are the same species 

[62,247]. Eosinophilia is also often observed in humans infected with A. lumbricoides, but the 

link with protection against reinfection has not been made. Nevertheless, it seems likely that 

in humans eosinophils also play a crucial role in the defense against invading larvae, as pre-

treatment levels of IL-5 in humans are also related to resistance against reinfections with A. 

lumbricoides [248]. The fact that immunity against Ascaris is only built up after continuous 

exposure over a long period of time might explain why reinfections are so common in children 

treated for Ascaris. However, it is also likely that as the immune response increases with 

exposure, fewer larvae will be able to penetrate the gut and as such acute morbidity due to 

the hepato-tracheal migration will be lower as children age. 

In conclusion our results indicate that mast cells, eosinophils and goblet cells operate 

together to create an inhospitable environment that protects the host against invading Ascaris 

larvae. A general Th2 response, propagated by mast cells and eosinophils seems pivotal in the 

resistance against invading larvae. 
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4.1 INTRODUCTION 

In chapter 3 we identified eosinophilia as an important factor to prevent larval invasion 

of the intestine. Unfortunately, we could not determine whether these cells are an absolute 

requirement for pre-hepatic immunity, due to disadvantages of using pigs in research. The 

number of immunological reagents, such as antibodies available for pigs is low and there are 

no knockout or inbred strains available. Although mice are not natural hosts for A. 

lumbricoides or A. suum, larvae from these nematodes can migrate through the liver towards 

the lungs. The larvae will however quickly be eliminated after the migration and will not grow 

into adults. As a consequence, mice have been used to study the early migratory phase of 

Ascaris infections. It was found that similar as in pigs, the migration of larvae in mice also 

starts in the caecum and colon [249]. Studies in mice have also put emphasis on the negative 

impact of larval migration on body weight [250] and differences in susceptibility to A. suum for 

the different inbred strains stress the importance of host genetics [251]. The host factors 

responsible have not been identified yet, but research suggests that the protective response is 

located before the larvae reach the lungs, but after they arrive in the liver [252]. 

Although the use of mice in Ascaris research warrants caution due to the unnatural 

host-parasite relationship, they could provide us the necessary tool to further elucidate the 

immunological basis of protection against larval migration. The mouse model has been very 

useful in elucidating host immune reactions during helminth infections [253]. Because pre-

hepatic immunity is directed against the early migratory A. suum larval stage, it might be 

possible to use mouse models to study the pre-hepatic immunity. As such, the mouse model 

could be very useful to investigate the contribution of RELM-ß, identified in Chapter 3, towards 

the defense against invading A. suum larvae.  

Therefore in this chapter we explored the use of a mouse model to investigate the 

mechanisms of the pre-hepatic barrier. More specifically, we wanted to examine whether 

prolonged exposure to infective larvae resulted in the induction of a protective intestinal 

response and to compare these results to those obtained in pigs. 

 

4.2 MATERIALS AND METHODS 

 Animals and parasites  

All animal experiments were conducted in accordance with the E.U. Animal Welfare 

Directives and VICH Guidelines for Good Clinical Practice, and ethical approval to conduct the 

studies were obtained from the Ethical Committee of the Faculty of Veterinary Medicine, 
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Ghent University. A. suum free, female BALB/c mice of 7 weeks old were used. The animals 

had access to feed and water ad libitum.  

A. suum eggs were collected from gravid female A. suum collected at the local pig 

abattoir. After incubation in 0.1% KCr2O7 for 2 months, embryonation was confirmed by way 

of light microscopy. 

Third stage larvae were collected from embryonated eggs. After incubation in sodium 

hypochlorite for 1h, they were washed with PBS and then hatched by magnetic stirring with 2 

mm diameter glass beads. The suspension was put on a baermann sieve covered with cotton 

cloth to separate the larvae from unhatched eggs. After overnight incubation at 37 °C, the 

larvae were collected and put in DMEM medium supplemented with 50 u/ml penicillin, 50 

µg/ml streptomycin, 100 µg⁄ml kanamycin, 5 µg/ml amphotericin B and 2mM glutamine.  

A preliminary trial was performed to determine the optimal dose for the chronic 

infection. Ten mice were infected through gastric intubation with 100 embryonated A. suum 

eggs and 10 mice were infected with 1000 A. suum eggs. After 7 days the lungs were minced in 

PBS and the larvae were counted. From the 10 mice infected with 100 eggs, only 2 mice had 

lung stage larvae, and just one larva. The mice infected with 1000 eggs all had between 1 and 

5 larvae. Based on these results, for the chronic infection trial, we used 1000 A. suum eggs. 

Seven mice were daily infected orally with 1000 A. suum eggs in 15 µl for 14 weeks. A second 

group of 5 mice were kept uninfected. After 14 weeks, both groups received an oral challenge 

infection of 30000 infective eggs. Four days post challenge infection, the livers were removed, 

minced and larvae were counted under a binocular.  

 

 RNA extraction, cDNA synthesis and real time PCR assays. 

Tissue samples from the caecum were taken and immediately snap frozen in liquid 

nitrogen and stored at -80 °C until RNA extraction. RNA extraction was performed using Trizol 

reagent (Invitrogen), combined with an RNeasy mini kit (Qiagen) and a DNase treatment to 

prevent genomic contamination. RNA integrity was assessed using a Biorad Experion with a 

standard sensitivity chip. cDNA was synthesized with a Biorad cDNA synthesis kit, starting from 

1 µg of RNA. Primers for the real time PCR reactions were designed with the Primer3 software 

[215]. For a list of primers, see Appendix Table A2. PCRs were run using Fast SYBR Green 

Master Mix (Applied Biosystems) on an AB StepOnePlus Real-Time PCR System. Primer 

specificity was confirmed by observing the melting curve. Gene expression levels were 

normalized based on housekeeping genes selected using Genorm [216]. Housekeeping genes 
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tested were: actb, gapdh, gusb, hprt1, prlpo and tbp1. The genes selected for normalization 

were hprt1 and tbp1. 

 

 Histological analysis 

Tissue samples were processed essentially as previously described in Chapter 3. Briefly, 

either 10% formaldehyde or Carnoy’s fixated, paraffin embedded tissue samples were cut in 4 

µm sections. To assess general histopathological damage and the accumulation of eosinophils, 

formaldehyde fixed samples were routinely stained with haematoxylin-eosin. Mucosal 

eosinophils were counted for 20 crypt units with 400x magnification. Mast cells were counted 

on toluidine blue stained slides of Carnoy’s fixed samples at 400x magnification using a 

weibel2 graticule [219]. For goblet cells, Alcian blue-periodic acid shiff’s stain was used. For 

immunohistochemistry, formaldehyde fixed, paraffin-embedded sections were rehydrated and 

an antigen retrieval step with citrate buffer was included. Endogenous peroxidase activity was 

blocked using 1% hydrogen peroxide. Sections were stained overnight with 1/500 rabbit anti-

mouse RELM-ß (Peprotech), 1/100 goat anti-rabbit peroxidase (Sigma-Aldrich), diamino-

benzidine tetrahydrochloride (DAB, Sigma–Aldrich) and H2O2, according to [80]. Sections were 

subsequently counterstained with haematoxylin.  

 

 L3 incubations with RELM-ß 

Recombinant murine RELM-ß (rmRELM-ß, Peprotech) was incubated together with 1000 

live or dead (heated at 60°C for 2 minutes) L3 at a final concentration of 0.5 µg/ml in PBS. 

After 2 hours larvae were washed and stained with 1/100 rabbit anti-RELM-ß antibody and 

1/100 anti-rabbit IgG-alexa fluor 488-conjugated antibody. 

To study the effect of RELM-ß on the infectivity of the L3, larvae were incubated with 0, 

0.01, 0.1 and 1 µg/ml rmRELM-ß for 2 hours before inoculation. For each concentration, 5 

mice were infected with 10000 of the incubated larvae. After 4 days, worms present in the 

liver were counted. To test whether the acidic environment of the stomach caused 

degradation of the RELM-ß, mice were administered intraperitoneally with 60mg/kg body 

weight of acid secretion inhibitor Cimetidine one hour prior to infection with 1 µg/ml rmRELM-

ß incubated larvae. 
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 Statistical analysis 

Results are expressed as mean + SD in the graphs. To test differences in worm counts 

between naïve and chronically infected mice, a one-sided Mann-Whitney test was used. The 

effect of different concentrations of rmRELM-ß on the infectivity of A. suum larvae was tested 

via one-way ANOVA. To test the effect of cimetidine and or RELM-ß treatment, a univariate 

ANOVA was performed. 
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4.3 RESULTS 

 Worm counts 

The preliminary trial to determine the optimal dose for the chronic exposure revealed 

that 100 eggs per day would be too low because only 2 mice out of 10 had lung stage larvae,. 

The mice infected with 1000 eggs all had between 1 and 5 larvae. Based on these results, for 

the chronic infection trial, we used 1000 A. suum eggs. Compared to naïve mice, the mice 

chronically exposed with 1000 A. suum eggs daily for 14 weeks showed a 55% reduction in 

liver worm counts 4 days after a challenge infection of 30000 infective A. suum eggs (Figure 

4.1).  

 

Figure 4.1: liver worm counts in naïve and chronically exposed mice. 

 

 RNA transcription profile 
Tissue samples from the caecum were investigated for differential transcription of genes 

commonly associated with helminth infections. The results of the RNA transcription profiles 

are shown in Table 4.1. The transcription profile was skewed towards a Th2 type response, with 

increased transcription of typical Th2 markers such as il4 and il5 in immunized mice compared 

to naïve animals. Furthermore, no changes in ifng or il17a levels were detected. Alternatively 

activated macrophage markers arg1 (arginase 1) and mrc1 (mannose receptor 1) were also 

increased, while the classical activated macrophage marker nos2a (inducible nitric oxide 

synthase) was down regulated. In addition, the eosinophil specific genes eotaxin receptor 

(CCR3) and rnase3 showed an increased transcription. 

Other genes that have previously shown to be involved in the anthelmintic response and 

were also induced here include retnlb (resistin like molecule beta, RELM-ß) and itln2 (intelectin 

2). No differences in transcription were found for any of the mucin genes investigated.  
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Table 4.1: RNA transcription profiles of immune related genes in the caecum of immunized animals. 

Gene transcription levels are expressed as fold change in transcription levels of chronically infected 

animals compared to naïve animals. 

Gene Description Fold change 

areg Amphiregulin 0.42 * 

arg1 Arginase I 6.94 * 

c3 Complement factor 3 1.04 
 c9 Complement factor 9 1.10 
 ccl11 Chemokine (C-C motif) ligand 11, Eotaxin 1 1.09 
 ccr3 Eotaxin receptor 3.41 * 

cma1 Chymase 1 9.31 * 

elane Elastase, neutrophil expressed  ND 
 epx Eosinophil peroxidase ND 
 foxp3 Forkhead box P3 0.59 * 

gata3 GATA binding protein 3  0.94 
 gzma Granzyme A 1.57 
 gzmb Granzyme B 1.87 
 ifng Interferon γ 1.45 
 il10 Interleukin 10 1.83 
 il12b Interleukin 12 subunit p40 0.58 
 il13 Interleukin 13 1.17 
 il1b Interleukin 1β 0.83 
 il33 Interleukin 33 0.42 
 il4 Interleukin 4 3.16 * 

il5 Interleukin 5 6.05 * 

itln2 Intelectin 2 14.58 * 

mrc1 Mannose receptor C type 1 1.50 * 

muc1 Mucin 1 0.56 
 muc2 Mucin 2 1.13 
 muc5ac Mucin 5AC ND 
 nos2a Nitric oxide synthase 2a, inducible 0.75 * 

prg2 Proteoglycan 2, eosinophil major basic protein 0.89 
 retnlb Resistin-like molecule β 7.02 * 

rnase3 Ear3 eosinophil-associated, ribonuclease A family, member 3 1.83 * 

rorc RAR-related orphan receptor C 1.07 
 stat6 Signal transducer and activator of transcription 6 0.88 
 tgfb Transforming growth factor β 1.03 
 tnfa Tumor necrosis factor α 0.48 * 

tslp Thymic stromal lymphopoietin 0.92   

*: p<0.05 
 

  ND: Not deteceted 
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 Histopathological findings 

The caecum of both groups of mice was investigated for histopathological changes. 

There was no mastocytosis in naïve or immunized animals (result not depicted). There was 

however a modest eosinophilia in the chronically infected mice (Figure 4.2A). In addition, the 

number of goblet cells in the caecum of immunized mice was significantly higher than in naïve 

mice (Figure 4.2B). To confirm whether or not the increase in transcription of retnlb translated 

into increased protein production in the caecum, we stained the caecum with anti-RELM-ß 

antibody. In naive mice there was very little RELM-ß present in the intestine. In contrast, 

chronically infected mice showed uniform RELM-ß production, which was confined to the 

goblet cells (Figure 4.2C). 

 

 

Figure 4.2: (Immuno-) histopathological changes in the caecum of naïve and immunized mice. A: mean 

number of eosinophils +SD per 20 crypt units. B: Number of goblet cells +SD per 100 µm crypt length. C: 

RELM-ß staining of caecum of naïve (left) and chronically infected (right) animals.  
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 Pre-incubation of A. suum larvae with RELM-ß does not impair infectivity 

Previous studies showed a direct anthelmintic effect of RELM-ß by binding to the 

nematodes [80,81]. To test whether RELM-ß had any direct effect on the larvae, A. suum 

larvae were hatched from the eggs in vitro and incubated with 0.5 µg/ml recombinant murine 

RELM-ß. After washing, binding of RELM-ß on the larvae was visualized using fluorescently 

labeled anti-RELM-ß antibody. No RELM-ß binding could be detected microscopically, neither 

on live or dead larvae (data not depicted).  

To test if binding was too weak to remain attached to the larvae after washing, or 

whether there was any effect on the infectivity without direct binding to the larvae, infective 

L3 were incubated in 0, 0.01, 0.1 or 1µg/ml rmRELM-ß and after 2 hours 10000 larvae were 

administered orally to naïve mice. There were no significant differences in liver establishment 

rates between the different conditions tested (Figure 4.3A). To exclude the possibility that the 

acidic environment of the stomach had a detrimental effect on the RELM-ß, mice were also 

treated with an acidic inhibitor, cimetidine, prior to infection with RELM-ß treated larvae 

(Figure 4.3B). RELM-ß incubation still had no effect on the infectivity of the larvae. However, 

cimetidine treatment of mice had a negative inpact on the number of larvae that infiltrated 

the liver (p<0.05). 
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Figure 4.3: The effect of rmRELM-ß pre-incubation on the infectivity of A. suum larvae. A: Liver worm 

counts after pre-incubation of infective larvae in different concentrations of rmRELM-ß. No differences 

were statistically significant. B: The effect of cimetidine treatment prior to infection with larvae with or 

without pre-incubation in 1µg/ml rmRELM-ß. 
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4.4 DISCUSSION 

While the mouse model has been used to study natural resistance during primary 

infections with A. suum [250-252], to our knowledge no detailed study has been performed to 

explore the mechanisms of acquired immunity against reinfections. We chose to use the 

BALB/c mouse strain with intermediate susceptibility to A. suum [251] because we did not 

want to select for high natural susceptibility or resistance to A. suum and because this strain 

has been used before in immunological studies related to Ascaris infections [254-256]. 

Furthermore, the difference in susceptibility for the different mouse strains is only apparent in 

the post-hepatic phase of the infection [252] and will therefore probably not be a major factor 

in the development of the pre-hepatic immunity. For the chronic infection model, we wanted 

to expose the mice to a consistent low number of migrating larvae to avoid the development 

of severe pathology or weight loss, as was previously described [250]. The preliminary trial 

showed that an infection with 100 eggs resulted in only a few mice with lung stage larvae. 

Therefore we chose to use 1000 eggs for the daily infection, which led to a low number of lung 

stage larvae in all animals. There was a general low take of infection in our study, compared to 

some studies [251], but low recovery for A. suum in mice has been observed and attributed to 

Ascaris strain variability by others [257].  

Mice chronically exposed for 14 weeks showed a reduction of 55 % in the number of 

larvae that could reach the liver. This reduction was associated with a Th2 response, 

characterized by the transcriptional upregulation of typical Th2 markers such as il4 and il5, 

eosinophilia and goblet cell hyperplasia in the caecum. Furthermore, RELM-ß was expressed in 

the goblet cells of immunized mice. The presence of alternatively activated macrophage 

markers arginase and mannose receptor 1 suggests that immune-regulatory or wound healing 

processes are at play here. These functions are probably essential to maintain tissue integrity, 

because the migration of the larvae inevitably causes damage to the tissue. 

The goblet cell hyperplasia, as observed in the immunized mice, is often seen during 

gastro-intestinal nematode infections and mucus overproduction has been postulated to be 

one of the mechanisms of nematode expulsion [109]. Despite a significant increase in goblet 

cells, we did not detect an increase on transcription level of mucin 1, 2 or 5AC, the major 

mucins described in relation to helminth infections, which may indicate that these mucins are 

not essential in the defense against invading larvae. Goblet cells also secrete proteins with 

antimicrobial properties. Similar to our observations in pigs, RELM-ß was also more expressed 

in the goblet cells of the immunized mice. RELM-ß is a cysteine rich protein shown to have 

direct anthelmintic properties. Binding of RELM-ß to the worm alae hampers Strongyloides 
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stercoralis chemotaxis [80] and its expression is essential in the expulsion of Nippostrongylus 

brasiliensis [81]. However, RELM-ß does not appear to be important in the defense against all 

gastro-intestinal nematodes; for example, RELM-ß deficient mice are still able to expel 

Trichuris muris [258]. In line of these findings it is still unclear what role RELM-ß plays in the 

protective immune response against infective A. suum larvae. We could not demonstrate 

binding of rmRELM-ß on the infective larvae, nor did pre-treatment of the larvae with 

rmRELM-ß decrease their establishment in the liver. It remains possible however that RELM-ß 

works in an indirect fashion to help expel A. suum larvae. Other functions of RELM-ß identified 

include promotion of inflammation, tissue remodeling, epithelial cell proliferation and mucin 

production [80,259,260]. Furthermore RELM-ß might also exert its function in combination 

with other factors that were not present in primary infections, but are induced after chronic 

exposure. Future studies with RELM-ß knockout mice are therefore needed to clarify the role 

of RELM-ß during chronic A. suum infections.  

 Intelectin-2 gene transcription was highly increased in the chronically exposed 

animals. Since intelectin-2 is strongly induced in mice strains resistant to T. muris and 

Trichinella spiralis [261,262] and the gene is not present in A. suum susceptible C57B/6 mice, it 

was thought that intelectin might be responsible for the observed phenotype. However, it was 

recently shown in a cross-breeding study between susceptible and resistant mice strains that 

the presence of the intelectin-2 gene was not linked to resistance against A. suum [263]. The 

function of intelectin-2 is not fully understood, but it is probably involved in pathogen 

recognition, as it binds bacteria and chitin, a component of many nematodes, which may 

explain its upregulation in nematode infections [264]. 

In pigs, pre-hepatic immunity is associated with eosinophils, goblet cells, mast cells and 

transcription of RELM-ß (See chapter 3). The induction of eosinophils, goblet cells and RELM-ß 

in mice are therefore very similar to what we observed in pigs. Mice might therefore be a good 

model for a detailed immunological investigation into the immunological principles of the 

defense against A. suum larvae. However, in contrast to pigs, which develop an almost 

sterilizing immunity that prevents larvae from penetrating the caecum after 14 weeks of 

exposure [21,23], mice that were chronically exposed for the same time period showed a 

reduction of only 55 % of the number of larvae that could reach the liver. The difference in 

acquired immunity against A. suum in mice and pigs could be explained by several factors. 

First, the mucosa of the porcine caecum is several times thicker than that of mice (300-400 µm 

in pigs versus 100-150 µm in mice), suggesting that it probably takes longer for the larvae to 

penetrate the mucosa and thus increases the chance of being exposed to host immune 

factors. Second, the influx of eosinophils in the mucosa of chronically infected mice is rather 
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modest compared to the eosinophilia observed in pigs (a factor 2 versus 9, respectively), which 

could also be a consequence of the limited exposure in the mucosa. Furthermore, there are 

also important differences in biochemical, cellular, and physiologic pathways of eosinophils 

between mice and humans or other mammals (reviewed in [265]). Most notably, mouse 

eosinophils do not readily degranulate when challenged with allergens and they lack the high 

affinity IgE receptor [98-100]. It remains to be determined if eosinophils from mice 

degranulate to the same extent and under the same conditions as pig eosinophils after contact 

with A. suum. 

In conclusion, this work describes the mucosal changes at the site of parasite entry in 

mice and illustrates that although the impacted immunological pathways are consistent 

between mice and pigs infected with A. suum, there are important host specific differences in 

the efficiency of pre-hepatic immunity.  
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The objectives of this thesis were the identification of the immunological basis of protection 

against Ascaris suum during the self-cure in primary infections and the establishment of the 

pre-hepatic barrier and their implications for vaccine development. However, some peculiar 

findings surfaced during this work that also deserve extended attention in the general 

discussion of this work and that will be discussed before the implications on vaccine 

development. The first is the marked difference in eosinophil degranulation in response to 

contact with L3 compared to L4. The second is the implication of increased transit on the 

pathology and epidemiology of Ascaris. 

5.1 Mechanism of resistance to A. suum: the role of eosinophils 
 

A schematic representation of our findings concerning the pre-hepatic barrier is given in 

Figure 5.1. Long-term exposure of pigs to A. suum led to localized mastocytosis, eosinophilia 

and goblet cell hyperplasia. Known functions of activated mast cells during helminth infection 

include increased epithelial permeability and smooth muscle contractility. Together with an 

increase in mucus it can make it harder for the larvae to reach the epithelial border by creating 

a ‘weep and sweep’ response. Any larvae that would make it past the intestinal lining will be 

attacked by the combination of antibodies, complement and eosinophils, as shown in our in 

vitro assays. 

While the role of eosinophils in the immune response against helminths remains 

somewhat controversial (see Chapter 1.2.1), eosinophils appear to play an important role in 

the defense against invading A. suum larvae by attaching to the larvae and releasing the toxic 

content of their granules. Toxicity towards the larvae is probably mediated through the 

formation of reactive oxygen species (ROS). The in vitro degranulation assay demonstrated 

that ROS are released after contact between eosinophils and L3 and incubation of L3 with a 

chemical compound, SIN-1, that forms ROS when dissolved was also toxic for the larvae (data 

not shown). Mucosal eosinophils were also consistently associated with A. suum expulsion 

from the small intestine in primary infected animals as well. Surprisingly, eosinophils 

degranulated in response to L3’s, but not to L4. For degranulation against L3’s, the presence of 

serum of uninfected animals was sufficient, suggesting that degranulation is complement 

dependent. The complement cascade has been shown to be important in the defense against 

nematodes [266] and nematodes have developed several mechanisms to deal with 

complement factors (see Chapter 1.3). The acquisition of complement inhibitory factors can be 

life stage dependent, as has been shown for N. brasiliensis, where complement inhibitory 

factors are acquired in the lung L4 stage [244]. A recent study by Wang et al shows clear 
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differences in ES products released by different A. suum larval stages [267], see Figure 1.2 and 

the same is true for surface antigens [268]. Therefore it is possible that A. suum L4 express 

immune evasion products, such as complement inhibitory factors, distinct from L3.  

 

 

 

 

Figure 5.1: The effector mechanisms of the pre-hepatic barrier. Infective L3’s penetrate the intestinal barrier and 

induce a type-2 response characterized by IL4, IL-5, IL-13, eosinophils, goblet cells and mast cells. Eosinophils attach 

to the larvae and degranulate in a complement and antibody dependent manner. Mast cells during helminth 

infections can induce muscle contractions and fluid secretions that, together with goblet cell produced mucus, 

forms a weep and sweep response, making it harder for the larvae to reach the epithelial border.  
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It is however not clear why A. suum L4 would express these factors and L3 would not, 

especially given that L4 worms reside in the lumen of the small intestine and would not come 

into close contact with the mucosal eosinophils. Further research is needed to elucidate this 

enigma. Hopefully the recent acquisition of the genome and stage specific transcriptomes of A. 

suum can shed more light on which factors could account for the observed findings [204,269]. 

One such potential candidate that can be identified this way is paramyosin. Paramyosin is a 

structural component of many helminth species and paramyosin in T. spiralis has 

demonstrated to play a role in the defense against host complement [176]. In the genomic A. 

suum database we can find a predicted protein (L4_05431) with >80% homology to many 

other helminth paramyosins and transcriptomic analysis of the different life stages shows that 

this protein is highly expressed in A. suum L4 compared to L3 and it would therefore be a 

possible candidate to investigate further. 

 

 

Figure 1.2: Protein profile of the A. suum ES products. Note the distinct profile for each life stage. Adapted from 

Wang et al. [267]. 
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Unfortunately, because we lack the necessary immunological tools to ablate the 

eosinophils in pigs, we could not determine if eosinophils are an absolute requirement for 

protection against A. suum in vivo. For mice, these tools are available and for this reason much 

of our knowledge about the immune response against helminths has been unraveled by using 

mouse models. Since A. suum penetrates the caecum and colon of mice and reaches their 

lungs, mouse models could offer the necessary means of elucidating the importance of 

eosinophils in the defense against invading A. suum larvae. However, before we use these 

models in further research, it should be confirmed that chronic A. suum exposure in mice leads 

to pre-hepatic immunity. One of the goals of this PhD was therefore to determine if chronic A. 

suum infection in mice is indeed a relevant model for the pre-hepatic barrier in pigs. The 

immunological response after chronic exposure of mice to A. suum was very similar to that of 

pigs. There was a general Th2 response with influx of eosinophils and goblet cell hyperplasia. 

However, despite the induction of a strong inflammatory response, the reduction in larvae 

that reached the liver was disappointing. As a consequence, ablation studies to test the 

requirement of cells like eosinophils for the defense against invading larvae might not give 

clear-cut answers. Nevertheless, the A. suum mouse model can be useful for several reasons. 

They can help elucidate if certain host factors have a direct effect on larvae or to evaluate 

anthelmintic products or techniques such as RNA interference on the infectivity of the larvae. 

Moreover, they can be used to understand the role of inflammatory cells or products in the 

homeostasis of the affected tissue during helminth infections. For example, our experiment in 

mice did offer an interesting target for further fundamental research: RELM-ß. RELM-ß was 

upregulated in pigs and mice and since it has reported anthelmintic functions, most notably 

against lumen residing nematodes [80,81], it deserves further research in the context of an A. 

suum infection. We could not demonstrate direct binding of RELM-ß on A. suum and pre-

incubation of A. suum in recombinant RELM-ß did not alter infectivity of A. suum. However, it 

is still possible that RELM-ß plays an indirect role in the defense against A. suum, by promoting 

inflammation, tissue remodeling, epithelial cell proliferation and mucin production 

[80,259,260]. Since there are RELM-ß knockout mice available, the mouse model could be 

useful to clarify the role of RELM-ß during A. suum and other helminth infections. 
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5.2 Implications of increased intestinal transit during Ascaris infections 
 

A compelling finding in our study is that the expulsion of larvae was associated with a 

decrease in small intestinal transit time. Apart from A. suum in pigs, expulsion of intestinal 

nematodes has mostly been observed in mice with T. spiralis, H. polygyrus, N. brasiliensis, but 

also in large ruminants with Toxocara vitulorum [270] and Cooperia oncophora [271], probably 

because these animals are the most widely used in experimental research. Increased smooth 

muscle contractility has been shown for the small intestinal nematode infections in mice, T. 

spiralis and N. brasiliensis [231,233] and for C. oncophora in cattle [232]. It may therefore 

represent a universal reaction against intestinal nematode infections. Studies in mice have 

shown that the helminth induced increase in smooth muscle contractility is signaled through 

IL4 or IL-13 [114,143,233], which could explain why it is a common observation with helminth 

infections. Whether or not increased muscle contractions and faster transit will be sufficient to 

expel the worms will depend on the activity of these worms and their evasion mechanisms. 

Hookworms for example will be less or not susceptible to increased peristalsis compared to 

non-invasive species. But even for non-invasive species like A. suum there is a fine balance 

between being expelled and being able to remain in the small intestine, as our L4 transfer 

experiment illustrated. 

Because all but one animal was A. suum-free at 35 DPI in the intestinal transit study, it is 

not clear whether the intestinal transit is increased as long as worms are present in the small 

intestine. This could nevertheless have important consequences. Would prolonged faster 

transit for example have an effect on the intestinal absorption of nutrients or would it be 

negligible? Moreover, if the transit would indeed remain higher in the presence of adult 

worms, it would resolve the puzzling concept of concomitant immunity. It is assumed that the 

adult worms induce an activated state of the immune response directed against juvenile 

stages in order to prevent hyperinfections that could potentially be lethal to the host and thus 

also the parasite. The mechanism of concomitant immunity is however unclear and some 

questions remain unanswered. For example, when immunity is established, why does it quickly 

disappear when adult worms are eliminated? If the adults would indeed induce a permanent 

state of increased transit, newly arriving larvae would indeed be easier eliminated from the 

small intestine, while the full-grown adults are large enough to counter the increased 

peristalsis. Furthermore, removal of adult worms would also quickly revert the changes in the 

intestine. 

Some other essential aspects remain unanswered. We could demonstrate that self-cure 
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is a locally triggered response and that previous priming as part of a hypersensitivity reaction 

is not required to induce the expulsion. However, it is not clear how this response is initiated 

and whether the increased transit is the result of increased muscle contractility, fluid secretion 

or a combination of both. Intra-epithelial T cells and eosinophils seem pivotal player during 

self-cure, because they were consistently associated with self-cure in infections with A. suum 

eggs, L3 and L4 infections, but it will require further research to determine how these cells 

operate to induce the self-cure. 

 

5.3 Implications for vaccine development for A. suum and A. lumbricoides 

 

High reinfection rates after deworming, up to 55-88% within the year [272,273], create 

a an urgent need for a more permanent solution, such as vaccination. The prospects that our 

results give on the development of a vaccine against A. suum in the near future are however 

not very promising. Especially the high levels of eosinophils in the mucosa of immune animals 

combined with toxicity towards the invading L3, suggests that these cells are indispensable in 

pre-hepatic immunity. A successful vaccine would therefore have to result in a very fast influx 

of eosinophils in the mucosa of the caecum and colon. The question therefore remains how 

we could achieve this type of mucosal immunity through vaccination. The highest chance to 

induce mucosal immunity would be through mucosal administration, either oral or nasal 

vaccination, rather than systemic administration. But even then it is not likely that it would 

cause a long-term influx of eosinophils. Vaccination typically results in memory T and B cells 

which make it possible to induce a faster and strong immune response after contact with the 

pathogen. However, given that eosinophilia is required and because larvae can reach the liver 

as soon as 6 hours after ingestion of A. suum eggs, it is not very likely that robust pre-hepatic 

immunity can easily be achieved through vaccination, because even for vaccinated animals 

this time frame is extremely short to produce a strong immune response.  

If we cannot prevent larvae from penetrating the intestinal mucosa, perhaps we can 

prevent these larvae from reaching adulthood. During natural infections most larvae are 

eliminated by the self-cure reaction between 14 and 21 days post infection and could offer a 

second target for intervention. However, this self-cure of A. suum from the small intestine 

appears to be antibody-independent, since no A. suum specific antibodies were present in the 

animals infected with lung stage larvae at the time of parasite expulsion. Further support for 

this conclusion comes from the observation that in secondary infections the expulsion does 
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not occur faster [25]. As a consequence, there is little hope that this reaction can be induced 

by means of vaccination. 

Perhaps an even more important finding in light of vaccine development is that, despite 

the potential of sterilizing immunity, the formation of the pre-hepatic barrier takes more than 

10 weeks of chronic exposure to induce a high level of protection and even then some larvae 

are able to complete the hepato-tracheal migration. One possibility for this phenomenon is 

that it takes several rounds of exposure in the gut to reach a high enough concentration of 

eosinophils and antibody. This does however not seem very likely, since eosinophilia and A. 

suum specific antibody is already observed after primary infections within 2 weeks. A more 

likely explanation is the circulation of antigenic diverse strains which has also been put 

forward as a possible explanation for the age-dependent resistance against Ascaris and other 

helminths [274]. Antigenic diversity or polymorphism could indeed explain the epidemiological 

patterns of A. lumbricoides and A. suum and helps to explain why vaccination trials against 

Ascaris or in fact any other nematode with single antigens have so far not been very 

successful. Antigenic diversity is supported by the highly diverse A. suum specific antigenic 

repertoire against which individuals develop antibodies, even in individuals from the same 

household [275]. Furthermore, antibodies elicited against A. lumbricoides in one individual 

may not bind A. lumbricoides from another individual [276]. Although differences in expressed 

proteins could cause the observed antigen repertoire, antigens in the excretory-secretory 

material and surface of the worms are highly glycosylated and variation in the exposed 

epitopes could more easily be achieved by adding, modifying or removing carbohydrate 

residues. Support for this can be found in a recent report that show an exceptionally high 

proportion of glycosidases in the A. suum compared to other (free-living) nematodes [267], 

which, apart from a role in the digestion of host nutrients, may also be involved in immune 

evasion. 

These facts notwithstanding, since serum from immune animals had a slightly toxic 

effect on the larvae by itself and more so in the presence of eosinophils in vitro, if A. suum 

antibodies are already present before infection, it should help to mount a faster immune 

response directed towards these larvae, even if there is antigen polymorphism. In this regard, 

although worms would perhaps not be completely stopped pre-hepatically, vaccination would 

help to reduce worm burden, which may alleviate the high morbidity associated with A. suum 

and A. lumbricoides. Furthermore, larvae in secondary infections are smaller and more 

susceptible to the expulsion reaction [25], most likely due to contact with host antibodies and 

inflammatory cells during the hepato-tracheal migration through the host, which makes them 
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weaker on returning to the small intestine and consequently they have less chance to survive 

the expulsion reaction and reach adulthood. In this regard, in order to recognize the full 

potential of the investigated vaccine candidates, perhaps the evaluation of vaccine candidates 

in pigs should also take into account the possible effects on adult worms rather than just the 

larval stages, which is common practice today, although inevitably this comes with more 

variation and consequently larger samples sizes will be needed. 

It was previously shown that pigs show stronger white spot reactions against larvae that 

manage to enter the liver if the pigs have previously been primed by vaccination [155]. A 

concern is that when larval infiltration cannot be prevented, that increased liver white spot 

reactions would make a vaccine against A. suum economically less profitable. This concern 

about increased white spot reactions in vaccinated animals is probably overrated because it is 

most likely the result of a secondary immune reaction because more pronounced white spots 

are also observed in animals with secondary infections [23]. Non-vaccinated pigs in practice 

will be continuously exposed to infective A. suum eggs in the environment and will therefore 

always show strong white spot reactions. Simply comparing the white spots of primary 

infected animals to vaccinated and challenged animals may therefore not be biologically 

relevant. To evaluate the economic benefit of a potential A. suum vaccine, it would only be 

relevant to look at liver white spots in pigs at the time they would normally go to the 

slaughterhouse, because although white spots could be more pronounced when they are 

initially exposed to A. suum early in life, the vaccine induced immune response may result in a 

higher level of protection at an earlier age, giving the liver enough time to heal from these 

white spots before they are evaluated at the slaughterhouse. Furthermore, compared to the 

effects of A. suum on weight gain and feed conversion, liver white spots are a minor 

contributor on the economic impact of A. suum infections [277]. So even if white spots may 

not be prevented by vaccination, when the worm burdens can be kept to a minimum, there 

can still be an important improvement in pig health, as low A. suum worm burdens have little 

impact on pig health and profitability. Especially for humans, where people are exposed to A. 

lumbricoides for several years, the positive effects of vaccination would outweigh potential 

negative effects on liver white spot reactions early after exposure. 

There are still other barriers to overcome, however. Despite multiple successful 

vaccinations in animal models, no human vaccine against any of the STH exists today. One of 

the few recombinant vaccines against hookworms being tested in human clinical trials, 

Necator americanus ASP-2 protein, unfortunately had to be terminated prematurely in phase I 

due to unacceptable side effects [278]. Apparently, vaccination induced urticaria in people 
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previously exposed to N. americanus, whereas hookworm naïve people tolerated the vaccine. 

This does point out that some problems still remain and vaccine development against any 

helminth will probably be complicated by two factors: first the shared characteristics of Th2 

responses that are induced both during allergic reactions and helminth infections and secondly 

the complex regulation and interplay of protective and tolerant immune responses during 

infection. In order to resolve these shortcomings, we will need a better understanding of the 

protective and regulatory framework that is associated with these helminth infections.  

Another problem in vaccine development is that recombinant vaccines very often fail to 

induce strong protection, especially in single subunit vaccines [279-281]. To date, not a single 

molecularly defined vaccine against nematodes is available that gives rise to high levels of 

protection. Apart from potential antigenic diversity, as described earlier, the reason for the 

failure is most likely that the folding and post-translational modification in the recombinant 

expression systems (usually prokaryotic cells or yeast) do not mimic that of the native antigen 

or that multiple antigens are present in native protective antigen fractions. Furthermore, 

metazoan parasites are much more complex than other human pathogens and much better 

suited to manipulate the host immune response.  A possible solution to deal with the 

complexity of helminth biology could be to combine several recombinant antigens in one 

cocktail. This has recently been tried with relative successes for several vaccines against 

parasites, such as filarial nematodes, leishmania and malaria [282-284]. However, for 

helminths, these vaccines rarely offer protection over 70%. Strikingly, a combination of 8 

different recombinant antigens was made for the small ruminant nematode Teladorsagia 

circumsincta. Although the protection levels on worm counts were higher than any previously 

tested recombinant vaccine for this parasite, it is still offers only a limited protection of 

between 56% and 75% [285]. Attempts have also been made to express recombinant helminth 

antigens in more complex systems such as plants [286] or even the free-living nematode 

Caenorhabditis elegans [287] in the hope that these systems will make the appropriate 

modifications and folding, but also here we still have to see the first real successes. 

 

5.4 Concluding thoughts and future prospects 

The mucosal immune response against A. suum has not received much attention, and 

yet it may hold important clues for immunological strategies of control such as vaccine 

development and a better understanding of the pathology associated with Ascaris infections. 

In this work we focused on the 2 major phases of protection against A. suum in pigs: the 

formation of the pre-hepatic barrier and the self-cure reaction during primary infections. 
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Because pre-hepatic immunity is the result of long-term exposure and requires a combination 

of cellular and humoral factors, there is an important consideration for the epidemiology and 

control of A. lumbricoides. Although the implementation of mass drug treatments does not 

prevent larval reinfection because the drugs used do not have a remnant effect, the exposure 

to A. lumbricoides may decrease as a consequence of the recent mass drug treatments. 

Because egg-excreting adults are periodically removed, transmission will consequently 

decrease. Since immunity is related to exposure, it will be interesting to see if the age pattern 

of A. lumbricoides infected people shifts as a result of these treatments. 

An important role for eosinophils was identified in the defense against A. suum, 

especially against the early infective L3. The acquisition of high levels of eosinophils and 

antibody seems pivotal in killing larvae that penetrate the mucosal border. However, the 

relation between eosinophils and the expulsion reaction is less clear. Although there is an 

influx of eosinophils during self-cure, further research will be necessary in order to understand 

their purpose. In addition, the expulsion of A. suum is associated with faster transit, which 

holds a lot of potential for further research into the effects of Ascaris infections on the 

intestinal physiology.  

Since pigs acquire natural immunity to A. suum, vaccination remains feasible, but due to 

the nature of the immune response and the biology of Ascaris, we should not expect dramatic 

worm reductions from single antigen vaccines. Moreover, to evaluate potential vaccine 

candidates, we should take into account the effect of the vaccine on all life stages of the 

parasite, preferably over a longer period of time. 
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Summary 
 

Ascaris suum is the most common nematode infection in pigs and has detrimental 

effects on pig health and well-being, and consequently meat production. Embryonated eggs, 

ingested by the host, will release the infective L3 in the small intestine. These larvae will 

penetrate the caecum or colon and through the portal vein they will reach the liver. From the 

liver they will go to the lungs and after penetrating the alveoli they will be coughed up and 

swallowed back in. The L3 will molt to an L4 in the small intestine and eventually become 

adult. Today, the control strategy is based on mass treatment with anthelmintics, but it is 

insufficient for the elimination of this parasite. A better understanding of the immune 

response against Ascaris is necessary for the development and evaluation of alternative 

control strategies such as vaccination. A. suum is almost identical to A. lumbricoides, that 

infects humans. Infections in pigs with A. suum can therefore be used as models for infections 

in humans with A. lumbricoides. Ascaris lumbricoides is the most common helminth in humans, 

and affects mostly children in (sub)tropical climate. The literature review demonstrated that 

the strongest immune responses against primary and chronic A. suum infections are situated 

in the intestine. In primary infections there is an expulsion of larvae from the small intestine, 

termed self-cure, that eliminates most larvae after they completed their migration through the 

host. After chronic exposure to A. suum, pigs acquire immunity at the caecum and colon that 

prevents infective larvae to penetrate the mucosa and reach the liver. This type of immunity is 

called the pre-hepatic barrier. Unfortunately, almost no research has been performed on the 

development of these protective responses. Knowledge about the immune response in the 

context of helminth infections mostly comes from murine infection models, of which it is not 

clear whether it is also applicable to A. suum infections in pigs. The objective of this project 

was therefore to characterize the intestinal immune response of pigs following A. suum 

infections during the self-cure reaction and the formation of the pre-hepatic barrier. 

In chapter 2 we investigated the immunological changes in the small intestine during 

the expulsion of A. suum in primary infections and we determined whether the early migration 

through the host is required to initiate the self-cure reaction. Pigs that were infected orally 

with lung stage A. suum larvae and thereby bypassed the migration phase were able to 

eliminate the L4 to the same extent as pigs infected with A. suum eggs and also around 7 days 

after exposure to the small intestine, showing that the initial migration is not required to 

trigger the expulsion reaction. A. suum specific antibody is not yet present in animals that 

received lung stage larvae and that are driving the larvae out, which indicates that antibody is 
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not essential for self-cure. When pigs were orally infected with 14 day old intestinal L4, these 

larvae were also being driven out 7 days later. However, the L4 were subsequently able to 

counteract the expulsion reaction by 18 days after their transfer and to inhabit the more 

proximal region of the small intestine. This showed that larvae are not killed during self-cure. 

One possibility is that increased transit is responsible for the expulsion and that bigger and 

more active larvae can counteract this reaction. We therefore measured the intestinal transit 

prior to, during and after the expulsion reaction in pigs. The intestinal transit was indeed 

increased during the expulsion reaction. The RNA transcription profile showed a mixed T 

helper response and the histological analysis identified an influx of eosinophils and intra-

epithelial T cells during the self-cure in all experiments performed here. Although it has not 

become clear how these cells operate, it does seem likely that they are crucial in inducing the 

expulsion of A. suum larvae. 

Apart from the expulsion reaction, we studied the buildup of pre-hepatic immunity 

(Chapter 3). Chronic exposure of pigs to low doses of A. suum eggs for 14 weeks led to a 

reduction of 99.7% in the number of larvae after a challenge infection of 5000 A. suum eggs. 

Protection against infective larvae was associated with a general Th2 reaction with 

eosinophils, goblet cells and mast cells in the caecum. The RNA transcription profile 

demonstrated an upregulation of several eosinophil related genes. We showed that porcine 

eosinophils in combination with serum of infected and uninfected pigs degranulated after 

contact with A. suum, suggesting that degranulation was complement dependent. Eosinophils 

were the most toxic for A. suum L3 when used in combination with serum of the chronically 

exposed pigs, indicating that antibody also plays an important role in the formation of 

effective pre-hepatic protection. The role of the mast cells and goblet cells is less clear, but 

they possibly contribute to a weep and sweep response where more fluid and mucus is 

secreted in the lumen of the gut and larvae will be hindered in their attempt to reach the 

mucosa. Moreover, we also detected a higher transcription of the gene encoding for RELM-ß, 

a protein secreted by goblet cells with anthelmintic properties. Unfortunately, we lack the 

necessary immunological tools in pigs such as specific antibodies or knockout strains to 

elucidate the role of this protein in the defense against A. suum. 

For mice these tools are available and therefore we examined the use of a mouse model 

for research into the pre-hepatic barrier in Chapter 4. Mice were exposed for 14 weeks to A. 

suum and subsequently received a challenge infection. These immunized mice did not develop 

strong pre-hepatic immunity, since there was a 55% reduction in the number of larvae that 

reached the liver. Nevertheless, chronic exposure in mice, similar to pigs, did lead to a general 
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Th2 response with an influx of eosinophils and goblet cell hyperplasia. Furthermore, RELM-ß 

was also induced in these mice. Given the anthelmintic properties of this protein we tried to 

unravel the function of this protein during A. suum infections. We could not demonstrate 

binding of this protein directly on the infective larvae. Next we investigated whether 

incubation of larvae in this protein had an effect on the infectivity of the larvae, as has been 

shown for other gastro-intestinal nematodes. RELM-ß did not significantly affect the infectivity 

of the larvae. Other possible functions of RELM-ß and further directions were considered in 

the discussion.  

The general discussion addresses some of the most important and remarkable finding of 

this work. For example, eosinophils degranulated in response to contact with A. suum L3, but 

not to L4. Possible explanations for this phenomenon, such as the acquisition of complement 

inhibitory factors during the life cycles of A. suum are discussed. In addition, the increased 

intestinal transit during the expulsion of A. suum is considered as an explanation for 

concomitant immunity and compared to other gastro-intestinal nematode infections. 

As a last point in the discussion the results are considered in the context of A. suum 

vaccine development. The presence of antigenic diversity was put forward as the most likely 

explanation for the necessity of long-term exposure before strong immunity is established. 

Because pigs acquire natural immunity to A. suum, vaccination remains a feasible option for 

control strategies, but given the need for prolonged exposure and the presence of antigenic 

diversity, we should not expect dramatic reductions in the larvae that reach the liver, 

especially when using single antigen vaccines. It is also important that the evaluation of 

vaccine candidates takes into account the effect on adult worms, because larvae that 

complete their migration in vaccinated animals may be weakened and consequently more 

susceptible to the expulsion reaction. 
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Samenvatting 

 

Ascaris suum is de meest voorkomende wormbesmeting bij varkens, met een grote 

nadelige impact op de gezondheid en welzijn van de dieren, met als gevolg een slechtere 

vleesproductie. Varkens worden geïnfecteerd door het inslikken van geëmbryoneerde eieren 

die in de darm een Ascaris larve vrijstellen. Deze larven dringen door de dikke darm en 

bereiken via de portaalvene de lever. Vanuit de lever gaan ze via de bloedsomloop naar de 

longen, waarna ze opgehoest en terug ingeslikt worden. In de dunne darm zullen de wormen 

volwassen worden en zich seksueel voortplanten. De controle van deze infecties steunt 

voornamelijk op ontwormingsschema’s, maar dit blijkt ontoereikend te zijn om deze parasiet 

te elimineren. Voor de ontwikkeling en evaluatie van alternatieve controlestrategieën zoals 

vaccinatie is een betere kennis van de immuunrespons tegen Ascaris nodig. A. suum is zeer 

gelijkaardig als A. lumbricoides, die voorkomt bij mensen. A. lumbricoides infecties vormen de 

overgrote meerderheid van de wormbesmettingen bij de mens, waarbij de hoogste 

prevalentie voorkomt bij kinderen in (sub)tropische gebieden.  Wegens de grote gelijkenis 

tussen deze twee wormen kunnen we varkens geïnfecteerd met A. suum gebruiken als model 

voor A. lumbricoides infecties bij de mens. De literatuurstudie toont aan dat de meest 

beschermende immuunreacties tegen A. suum zich ter hoogte van de darm bevinden. 

Enerzijds is er tijdens een primaire infectie met A. suum een expulsiereactie die juveniele L4 

larven uit de dunne darm verdrijft kort nadat ze hun migratie door het lichaam voltooid 

hebben. Anderzijds bouwen varken na langdurige blootstelling immuniteit op ter hoogte van 

het caecum en colon die belet dat infectieuze L3 larven de darm kunnen penetreren en de 

lever bereiken. Dit type van bescherming kreeg de term pre-hepatische barrière. Er is echter 

nauwelijks onderzoek gevoerd naar de ontwikkeling van deze beschermende reacties van de 

gastheer. Kennis van de immuunrespons tegen worminfecties komt voornamelijk uit studies 

met muismodellen, waarvan niet duidelijk is of ze ook van toepassing is op A. suum infecties 

bij het varken. Het doel van dit doctoraatsproject was dan ook om de intestinale 

immuunrespons bij varkens te karakteriseren tijdens de pre- en posthepatische fase van A. 

Suum infecties. 

In hoofdstuk 2 werden de immunologische veranderingen ter hoogte van de darm 

tijdens de expulsie van A. suum in primaire infecties gevolgd en werd nagegaan of de initiële 

migratie door de gastheer een noodzakelijke trigger is voor de expulsiereactie. Varkens die 

oraal longstadium A. suum larven kregen en dus geen passage van A. suum larven door hun 

lever of longen hadden, dreven de L4 larven uit hun dunne darm in dezelfde mate als varkens 
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geïnfecteerd met A. suum eieren en ook 7 dagen na blootstelling aan de darm, waardoor 

duidelijk bleek dat de expulsie lokaal getriggerd wordt. Ascaris specifieke antilichamen zijn nog 

niet aanwezig in deze dieren op het moment dat de larven uitgedreven worden, wat er op 

wijst dat antilichaam wellicht niet essentieel is in deze fase. Wanneer varkens oraal 

geïnfecteerd werden met 14 dagen oude L4 wormen vanuit de darm van een ander varken, 

werden deze larven ook caudaal gedreven 7 dagen later. Deze larven waren echter in staat 

deze uitdrijvingsreactie tegen te werken tegen 18 dagen na transfectie en zich meer craniaal te 

begeven. Mogelijk ligt versnelde transit aan de basis van de expulsie reactie en kunnen grotere 

en actievere larven dit voldoende tegenwerken. Daarom werd de transittijd door de dunne 

darm gemeten in varkens vóór, tijdens en na de expulsiefase. Hieruit bleek dat de transit 

versneld was tijdens de uitdrijving van A. suum. Dit zou het mechanisme van expulsie tijdens 

primaire infecties kunnen verklaren. Het RNA transcriptiepatroon bij varkens tijdens de 

expulsie toonde een gemengde T helper reactie en in de verschillende experimenten in deze 

studie was de expulsie telkens geassocieerd met eosinofielen en intra-epitheliale T-cellen. 

Hoewel het niet duidelijk geworden is op welke manier deze immuuncellen fungeren, spelen 

ze wellicht een cruciale rol bij het tot stand brengen van de expulsie van A. suum.  

Naast de uitdrijvingsreactie werd ook de opbouw van de pre-hepatische barrière 

bestudeerd (hoofdstuk 3). Chronische blootstelling van varkens gedurende 14 weken aan A. 

suum eieren leidde tot een reductie van 99.7% van de larven na een challenge infectie van 

5000 A. suum eieren. Dit ging gepaard met een algemene Th2 reactie en een influx van 

eosinofielen, slijmbekercellen en mastcellen in de darm. Het RNA transcriptiepatroon 

demonstreerde een opregulatie van verschillende eosinofiel-gerelateerde genen. Er werd 

aangetoond dat eosinofielen van varkens in combinatie met serum van zowel geïnfecteerde 

als niet geïnfecteerde varkens degranuleren wanneer ze in contact komen met de infectieuze 

L3 larven. Dit wees erop dat degranulatie complement-afhankelijk is. Bovendien was de 

combinatie van eosinofielen en serum toxisch voor de larven. Het grootste toxische effect 

werd bereikt met serum van langdurig blootgestelde dieren, wat erop wijst dat antilichamen 

ook een belangrijke rol spelen bij het tot stand brengen van de pre-hepatische barrière. De rol 

van mastcellen en slijmbekercellen is minder duidelijk, maar wellicht dragen die bij tot een 

‘weep and sweep’ reactie waarbij meer vloeistof en mucus secretie plaatsvindt waardoor de 

larven moeilijker het darmepitheel kunnen bereiken. Bovendien was er meer RNA transcriptie 

van het gen coderend voor RELM-β, een eiwit met anti-worm eigenschappen. Helaas 

ontbreken de immunologische middelen zoals knockout stammen en specifieke antilichamen 

bij varkens om de rol van dit eiwit in de verdediging tegen A. suum te ontrafelen.  



 100 phdDriesMasure 

Voor muizen zijn deze middelen wel beschikbaar. Vandaar dat in hoofdstuk 4 het 

gebruik van een muismodel voor onderzoek naar de pre-hepatische barrière bestudeerd werd. 

Muizen werden gedurende 14 weken blootgesteld aan A. suum eieren en kregen vervolgens 

een challenge infectie. Deze muizen beschikten na de chronische blootstelling echter niet over 

een sterke pre-hepatische barrière, getuige de reductie van slechts 55% in het aantal larven in 

de lever. Niettemin leidde chronische blootstelling van muizen aan A. suum net zoals bij 

varkens tot een Th2 respons met een influx van eosinofielen en een toename van de 

slijmbekercellen. Bovendien nam de secretie van RELM-β door de slijmbekercellen naar het 

lumen van de darm toe. Gezien de anthelmintische eigenschappen van dit eiwit werd de 

functie ervan tijdens A. suum infecties nagegaan. Directe binding van RELM-β op de larven kon 

niet aangetoond worden. Vervolgens werd onderzocht of incubatie van infectieuze A. suum 

larven met RELM-β een negatieve impact had op de infectiviteit van de larven. Er bleek geen 

significant verschil in infectiviteit tussen larven geïncubeerd in RELM-β en larven geïncubeerd 

in controle-medium. Andere mogelijke functies van RELM-β werden besproken in de discussie. 

In de algemene discussie werden een aantal opperkelijke bevindingen in meer detail 

besproken. Opvallend in dit onderzoek was dat eosinofielen niet degranuleren na contact met 

L4 larven, maar wel na contact met L3 larven van A. suum. Mogelijke oorzaken zoals het 

verwerven van complement inhiberende factoren tijdens de levenscyclus van A. suum worden 

besproken in de algemene discussie. Verder wordt de verandering in intestinale 

darmmobiliteit tijdens de expulsie van A. suum in verband gebracht met concomitante 

immuniteit en andere gastro-intestinale worminfecties. 

Als laatste punt in de discussie worden de resultaten in het kader van vaccinonderzoek 

geplaatst. De aanwezigheid van antigenische diversiteit wordt als de meest valabele verklaring 

naar voor gebracht voor de nood aan langdurige blootstelling van varkens aan A. suum 

vooraleer sterke pre-hepatische immuniteit wordt opgebouwd. Omdat varkens natuurlijke 

immuniteit opbouwen tegen A. suum, is vaccinatie een haalbare controlestrategie, maar 

gezien de tijd die het immuunsysteem nodig heeft om bescherming te ontwikkelen en de 

aanwezigheid van antigen polymorfisme, kunnen we geen dramatische reducties verwachten 

in het aantal larven dat pre-hepatisch wordt tegengehouden, vooral niet wanneer gebruik 

gemaakt wordt van enkelvoudige antigen-vaccins. Belangrijk is ook dat tijdens 

vaccinonderzoek bij A. suum het effect op volwassen wormen wordt nagegaan, want larven 

die in gevaccineerde dieren toch de migratie kunnen voltooien, zijn mogelijk verzwakt en 

bijgevolg veel gevoeliger aan de expulsiereactie. 
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Table A1: primer sequences for porcine genes 

Gene Forward primer Reverse primer Accession number 

b2m CACTCCTAACGCTGTGGATCAG CCACTTAACTATCTTGGGCTTATCG AB436775.1 

arg1 GGCCACTGGCACACCAGTCC ACTGCCGTGTTCACCGTCCG NM_214048.2 

c3 CAAGAAATGATTGGTGGCTTCAA GACCTGTGGTTCACAGATGTCTTT NM_214009 

ccl11 CTTCTGTCGCCACCATCTG ATTCTCTTGGGCATCAGCAC XM_003131725.1 

ccr3 ACAATGTTCTGCATCTGACCTAAAAT AGAATGGAAAGAACCAGCTCTGTCT NM_001001620 

epx TGGCCTCCCAGGGTACAAT CAGGAACTTCCTCGCCAAAG Ssc.33169 

elane CAGCTCAACAGATTTGCCTTCA ACGCCTTGGTCCTGAGCA FP015903.2 

foxp3 GGTGCAGTCTCTGGAACAAC GGTGCCAGTGGCTACAATAC AY669812 

gapdh GGCATGGCCTTCCGTGT GCCCAGGATGCCCTTGAG DQ845173.1 

gata3 TCTAGCAAATCCAAAAAGTGCAAA GGGTTGAACGAGCTGCTCTT NM_001044567 

gzma GGAGCTCACTCGATAACCAAGAAA GCTTTAGAAGTTTAAGGTCACCCTCAT NM_001198926.1 

gzmb TCTCCTATGGAAGAAAGGATGGAA ATCCAGGGCAGGAAACTTGA NM_001143710 

hmbs GCACGGCCATGTCTGGTAAC CCACCACACTGTCCGTTTGTAT NM_001097412 

ifng TGGTAGCTCTGGGAAACTGAATG GGCTTTGCGCTGGATCTG AY188090 

il10 TGAGAACAGCTGCATCCACTTC TCTGGTCCTTCGTTTGAAAGAAA NM_214041 

il12a GGCCTGCTTACCACTTGAAC GCATTCATGGCCTGGAACTC NM_213993 

il12b CTGAAGAAGACGGCATCACG AGGAGTGACTGGCTCAGAAC NM_214013 

il13 CTGACCACCAGCATGCAGTACT  GCTGCAGTCGGAGATGTTGA NM_213803 

il25 GAACCCACACCTTCCATTTG ATCTCCAGAGGAGGCATGAG XM_001926286.2 

il33 AGCTTCGCTCTGGCCTTATC GCTGACAGGCAGCAAGTACC XM_003121912.1 

il4 GCCGGGCCTCGACTGT TCCGCTCAGGAGGCTCTTC NM_214123 

il5 TGGTGGCAGAGACCTTGACA CCATCGCCTATCAGCAGAGTT AJ010088 

il5ra CAAGGATGCCCCTGAGGA TGCTGTATTCTTGGCATTCTTCA XM_003358500.2 

irln2 CCGTGTCAACATGACTTCCAA GCCTCACAGAGAGCTGCAGAA NM_213867 

il17 GATGCTCATCCCAATTGCAA TGACGCGTAACTCCAGGAGAA U58142 

klrk1 TCTCAAAATTCCAGTCTTCTGAAGATATA AGGATCTGTTTGTTGGAATTTGTACTA NM_213813 

nkl GTCTGACCCCTGAGCACTCT CCCAGCTCCTCTCTTTGGAG XM_003124939.1 

nos2a CGTTATGCCACCAACAATGG AGACCCGGAAGTCGTGCTT NM_001143690 

rpl4 CAAGAGTAACTACAACCTTC  GAACTCTACGATGAATCTTC  DQ845176.1 

stat4 ACCATTCGCTGACATCCTTC TGGGAGCTGTAGTGTTTACC XM_001924928.1 

stat6 TCCCAGCTACGATCAAGATG AGTGAGAGTGTGGTGGATAC HM135386.1 

tbp1 AACAGTTCAGTAGTTATGAGCCAGA  AGATGTTCTCAAACGCTTCG DQ178129 

tgfb GAAGCGCATCGAGGCCATTC GGCTCCGGTTCGACACTTTC NM_214015 

muc1 GTGGGCAGCTGGACATCTTT GCCTGCAGAAACCTGCTCAT NC_010446 

muc2 GTGCAGGTGCAGGTCAACA AGAGGCCGTTGTAGGAGATGAG BX671371 

muc3 AGTGGTTCGAGATCTGGGATGA CCAAGGCCACATGGAGGTT BP153612 

muc5ac TGCTCCTGGTCCAAGTGGTT GGAGGATATTGCTGTAGGTCTCAAA AF054583 

retnlb GCCTTTCTATAGGATGAAGCCAACT ACAAGGGAGTCTAAGGAACACTGAGA NM_001103210 

mrc1 GGATGGCTCTGGTGTGGAA AATGCTGGTCAGTGGATCTTTATTC AY368183 

tnfa CCAATGGCAGAGTGGGTATG TGAAGAGGACCTGGGAGTAG X54859 

ywhaz ATGCAACCAACACATCCTATC GCATTATTAGCGTGCTGTCTT XM_001927228.2 
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Table A2: Primer sequences for murine genes 

Gene Forward Primer Reverse Primer Accession Number 
actb CTTCTTTGCAGCTCCTTCGTT TTCTGACCCATTCCCACCA NM_007393.3 

arg1 TGGTGCTGGGTGGAGACCACA AGGGTCTACGTCTCGCAAGCCA NM_007482.4 

c3 TACAGCCCCAGCTCGCCTCTG GGTCTCTTCGCTCTCCAGCCG NM_009778.2 

c9 AGGCTGTGAACCCACCCAGGA TCCGCTACTCGGTCACGGCA NM_013485.1 

ccl11 GGGTCCAGGATGCCACAAAGCA TCCTTGGGCGACTGGTGCTG NM_011330.4 

ccl2 GCAGAGAGCCAGACGGGAGGA AGTAGCAGCAGGTGAGTGGGGC NM_011333.3 

ccr3 GGGTCATGGCTCCTGCCTCCA GCCAAAACCCCACTCATTCCACAGA NM_009914.4 

cma1 TGAGCCAGCCTCCGACACACT ACAGCAGGGGGCTTTGCATTCC NM_010780.2 

elane TGCTTCGGGGACTCTGGCGG GGGGTGGGAGTGCAGACAGGT NM_015779.2 

foxp3 GCCCATGTCGCTGTGTTGGG TGCTCACTACTAGGCAGAGCTGTT NM_001199347.1 

gapdh TGGATACAGGCCAGACTTTGTT TGAAGGGGTCGTTGATGGC NM_008084.2 

gata3 GCAGCGTACCAGCTACCAACATGC CCAGGTGGCTCTCAGGACCAGG NM_008091.4 

gusb CCGATTATCCAGAGCGAGTATG CTCAGCGGTGACTGGTTCG NM_010368.1 

gzma CCTGAAGGAGGCTGTGAAAG GTTACAGTGGGCAGCAGTCA NM_010370.2 

gzmb ACAAGGTCACAGAGCCCCCTC CCCCGATGATCTCCCCTGCCTT NM_013542.2 

hprt1 TGGATACAGGCCAGACTTTGTT CAGATTCAACTTGCGCTCATC NM_013556.2 

ifng AGCTGCCATCGGCTGACCTA CCGCAGGAGGAGAAGCCCAGA NM_008337.3 

il10 GCTAACCGACTCCTTAATGCAG AGCTTCTCACCCAGGGAATT NM_010548.2 

il-4 TGTACCAGGAGCCATATCCAC CACCTTGGAAGCCCTACAGA  NM_021283.2 

il12b ACCAGACCCGCCCAAGAACT GCACGCAGACATTCCCGCCT NM_008352.2 

il13 CTCAGCCTGCACTGCCTGCC GCTCAAGCTGCTGCCTGCCT NM_008355.3 

il17a CTACCTCAACCGTTCCACGT AGCTCTCAGGCTCCCTCTTC NM_010552.3 

il33 GCAGAAGGGAGAAATCACGGCA CAAGGCGGGACCAGGGCTTC NM_133775.2 

il4 TGTACCAGGAGCCATATCCAC CACCTTGGAAGCCCTACAGA  NM_021283.2 

il5 GGCGAGGAGAGACGGAGGACG GCCTCAGCCTTCCATTGCCCA NM_010558.1 

itln2 TGCTGGCGTGAGGGTCACTG GACGCAAAGTCTCCACACTGCAC NM_010584.3 

mrc1 GCCAGGACGAAAGGCGGGATG GTGGGCTCTGGTGGGCGAGT NM_008625.2 

muc5ac GCAACTGGACCAAGTGGTTT TGACCCAGATCCTCCATCTC NM_010844.2 

nos2 CCGTGGTCACCTACCGCACC TCGGAAGGGAGCAATGCCCG NM_010927.4 

prg2 TCGGGGGAGCGTCTGCTCTT GGGGCACTGAAGGTCCACGTC NM_008920.4 

prlpo ACTGAGATTCGGGATATGCTGT TGCCTCTGGAGATTTTCGTG NM_007475.5 

retnlb CCGCTGCTGCCGAATGGCTTA TTCCTGGTCGAGACCGTGGTT NM_023881.4 

rnase3 TGTCTGTAACATCACCAGTCGGAGG CCAGTGAAGTTCTGGGATTACAGGC NM_017388.1 

rorc GAACCAGAACAGGGTCCAGA  CGTAGAAGGTCCTCCAGTCG NM_011281.2 

stat6 GCACACGTCATCCGGGGTCA ATCCGGTCCCCCAGTGAGCG NM_009284.2 

tbp CAAACCCAGAATTGTTCTCCTT ATGTGGTCTTCCTGAATCCCT NM_013684.3 

tgfb1 TTGCTTCAGCTCCACAGAGA TGGTTGTAGAGGGCAAGGAC NM_011577.1 

tnfa ACGGCATGGATCTCAAAGAC GTGGGTGAGGAGCACGTAGT NM_010548.2 
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