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SUMMARY 
 

Starches and gums or non-starch hydrocolloids are very often combined in foods. These 

functional ingredients provide a desirable texture and mouthfeel to products like dairy or soy 

desserts and drinks, sauces in ready-to-eat meals, salad dressings, table-top sauces and 

their light derivatives. Furthermore, they improve the physicochemical stability of the 

products through their emulsion-stabilizing and water-holding capacities. As a consequence 

of their commercial popularity, starch/gum combinations are extensively studied. However, 

scientific literature contains many contradictory observations regarding their gelatinization 

and pasting behavior, their synergistic interactions and their rheological properties in general.  

Most of these differences can be attributed to the widely differing nature of the starch and 

gum varieties that are studied.  

 

This dissertation focused specifically on waxy starch/xanthan systems. A detailed overview 

of the available literature regarding both xanthan gum and starch functionality is presented in 

chapter 1. Xanthan gum is an anionic polysaccharide, produced by fermentation of 

Xanthomonas campestris. In the presence of salt and at low temperatures, xanthan 

molecules in solution adopt an ordered helical conformation. Upon heating, a reversible 

conformational transition to a random coil structure takes place. Waxy starches contain 

almost no amylose and therefore they lack the strong gelling properties of normal starches, 

which makes them suitable for applications that require a more fluid-like behavior. However, 

the native varieties are sensitive towards elevated temperatures and shearing conditions, 

which cause granules to break up. For this reason chemically modified waxy starches are 

very frequently encountered in foodstuffs. Mainly driven by a negative consumer perception, 

ingredient producers are continuously looking for native alternatives for these chemically 

treated starches. This thesis was rather approached from the point of view of the food 

manufacturer and aimed at evaluating the effects of varying production conditions (salt 

content, applied concentrations, shearing, heating temperatures) on the functionality 

development of waxy starch/xanthan systems. The addition of gums to native starch 

systems, may overcome or compensate their shortcomings. Particularly regarding xanthan 

gum, some direct effects on the swelling and degradation behavior of starch granules have 

been reported in literature. A better practical understanding could assist in a more sensible 

use of these additives and should help to tune their functionality by altering the processing 

conditions. This could lead to an improved performance in products like dressings, soups 

and sauces.  
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In the second chapter, the effects of xanthan gum on the pasting behavior and flow 

properties of various types of waxy starches (potato, rice, native and modified maize) were 

studied. This setup aimed at deriving more generalized conclusions. Special attention was 

given to the effects of the conformational transition of xanthan gum. Although there was no 

significant effect on the gelatinization behavior of the starches, the occurrence of a 

conformational change induced a marked viscosity reduction during pasting. However, the 

effect of this transition was not directly noticeable in the flow behavior of the pastes after 

cooling, where the ordered conformation is restored. The flow behavior of the mixed pastes 

during pasting, but also after cooling, strongly depended on the specific type of starch that 

was combined with the gum. For modified maize and rice starch there was a marked effect of 

xanthan gum. Conversely, its relative influence was much smaller for potato and native 

maize starch systems. These differences were attributed to variations in swelling power and 

more importantly, variations in degradation behavior. As opposed to modified maize and rice 

starch used here, potato and native maize starch exhibited a significant degree of breakdown 

during the pasting step at 85°C. It was stated that the rheological properties for the latter 

systems were primarily governed by the amylopectin present in the continuous phase. 

Further, it was concluded that granule integrity is a prerequisite for optimal xanthan 

functionality. 

 

The fragile nature of native waxy maize and potato starches is clearly their main 

technological disadvantage. In chapter 3, it was attempted to preserve the granule structure 

during preparation, by imposing lower heating temperatures. It was demonstrated that when 

native waxy starches (maize or potato) are pasted at temperatures slightly higher than the 

gelatinization onset temperature, their swelling can be more controlled, but a limited fraction 

of the starch will remain ungelatinized. Under these conditions, granule disruption could be 

limited and a higher shear rate was even beneficial towards complete viscosity development, 

probably by weakening the intermolecular bonds in the granules and thus facilitating their 

water uptake. The heating temperature therefore proved to be a critical process parameter. 

When the temperature is too low, swelling will be incomplete and at more elevated 

temperatures, granule disruption will become more predominant. It was also suggested that 

in the latter case, the presence of xanthan gum can help to partly diminish the breakdown.  

 

The mild temperature processing of fragile waxy starches proved to be beneficial towards 

preserving their granular integrity. However, it was not known to which extent the 

microstructure of mildly heated (70 or 72°C) pastes changed during preservation and how 
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this was affected by xanthan gum. Therefore, chapter 4 was devoted to the physicochemical 

stability of these systems. The pastes heated to 70°C were structurally stable throughout the 

storage period of 8 weeks. Limited changes were attributed to shrinking of the granules and 

intensified granule associations. The addition of xanthan gum did not induce a higher 

stability, however, due to its direct contribution to the structural features of the systems, 

changes occurring in the starch fraction were partly masked. When the pastes were heated 

to a slightly more elevated temperature (72°C), a higher fraction of the granules was broken 

down. This rendered the structures to be more unstable and a slow but significant gelation 

was observed for all systems. This behavior was attributed to the association and 

crystallization of amylopectin molecules which are present in both the continuous phase and 

the granules. Under these circumstances, xanthan gum was found to enhance the gelation 

process. A phase separation between both polymers (amylopectin and xanthan) in the 

continuous phase, which favors intermolecular association, was proposed as an underlying 

mechanism.  

 

Chapter 5 focused on the influence of guar and xanthan gum on the shear induced 

breakdown of waxy maize starch granules. The use of slow heating rates and low heating 

temperatures allowed to restrict thermal breakdown. The effects of different shearing 

conditions (no shear, 50 s-1 and 150 s-1) during pasting were compared to elucidate the 

influence of the gums on granule swelling and breakdown. At the concentrations studied 

here, both gums did not induce marked differences in granule swelling. However, granule 

degradation was clearly affected by their presence. The ability of xanthan to inhibit granule 

disruption was reaffirmed, and guar gum appeared not to have this property. As a 

consequence, marked differences in particle size distributions, as well as rheological 

properties were observed between guar and xanthan containing systems. It was stated that 

both gums can enhance the rheological properties of these systems, but guar gum rather 

masks the shortcomings of the starch, whereas xanthan gum can actively improve the 

performance of the granules by better preserving their structure. It was proposed that 

xanthan gum exhibits a unique property, which modifies the impact between the granules 

during pasting. In this perspective, the ability of xanthan gum to associate with the starch 

granule surface, which is claimed by some authors, was investigated. Confocal micrographs 

demonstrated that this effect takes place at low salt concentrations. However, its role in the 

granule stabilizing effects appears unlikely. Therefore it was suggested that during pasting, 

xanthan gum reduces the impact between the granules by the formation of a shear-induced 

anisotropic organization in the continuous phase.  



Summary 

 

 

X 
 

Their different effects on granule degradation (and possibly swelling) complicate the 

comparison between guar and xanthan gum regarding their direct rheological effect on waxy 

starch systems. Therefore, the final chapter (6) focused on cross-linked starch systems in 

which granule degradation effects are limited. The effects of both gums were evaluated at 

different (swollen) starch volume fractions. First of all, it was demonstrated that the effects of 

gums on the flow behavior strongly depended on the starch content. At low starch volume 

fractions, the viscosity was primarily determined by the continuous gum phase. At higher 

starch volume fractions, the flow properties were governed by granule-granule interactions, 

hereby reducing the relative contribution of the gums. The effect of guar gum on the viscosity 

was purely additive over the studied concentration range. Conversely, xanthan gum exhibited 

the unique property of facilitating the flow in concentrated starch dispersions. Consequently, 

these results favored the aforementioned hypothesis of anisotropic arrangement of xanthan 

in the continuous phase, which is promoted at higher (effective) polymer concentrations. This 

specific effect of xanthan gum was observed at low temperatures as well as at elevated 

temperatures and occurs in both the ordered and the disordered conformation. 

 

Small deformation rheology demonstrated that already at relatively low starch volume 

fractions, a network of interacting granules is formed. Under these circumstances the 

network is further strengthened by a coexisting network of interacting gum molecules. In this 

regard, xanthan gum proved to be more effective due to its capacity of forming weak gel 

entangled networks. As the starch fraction increases, the concentrated continuous gum 

phase partly hinders granule interactions, thus enhancing the viscous character of the 

resulting pastes. 

 

It could be concluded that throughout this dissertation some valuable insights regarding waxy 

starch/xanthan functionality was gained. In particular, it has become clear that lowering the 

processing temperature of native waxy starches to the gelatinization temperature range 

greatly improves their structural preservation. Furthermore, the rheological properties of 

native waxy starch systems can be tuned indirectly (granule protection) and indirectly 

(exclusion effects) by the incorporation of xanthan gum. Some aspects presented in this work 

remain unclear and deserve a separate study. More specifically the phase behavior of 

amylopectin/xanthan  and the precise effects of xanthan anisotropy on the flow behavior of 

(starch) dispersions. Although an important step has been made, this work primarily counts 

as an incentive, and further research is required to reach commercial applicability. In this 

light, other types of starch and/or the use of different holding times could further help to 

mimic the behavior of chemically modified starches. 
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Zetmelen worden in levensmiddelformuleringen zeer vaak gecombineerd met niet-zetmeel 

hydrocolloïden of gommen. De combinatie van deze functionele ingrediënten zorgt voor de 

gewenste sensorische eigenschappen (textuur, mondgevoel) in producten zoals zuivel- of 

soja-gebaseerde desserten en drankjes,  sauzen in kant-en-klare maaltijden, dressings,  

hartige geëmulgeerde sauzen en hun light-varianten.  Als emulsie-stabilisator en waterbinder 

verbeteren ze bovendien de fysicochemische stabiliteit van deze producten.  

 

De focus van dit doctoraat lag op het sturen van de functionaliteit van waxy 

zetmeel/xanthaan systemen. In hoofdstuk 1 wordt de bestaande wetenschappelijke literatuur 

aangaande zetmeel en xanthaangom functionaliteit samengevat. Xanthaangom is een 

anionisch polysaccharide dat wordt geproduceerd door fermentatie van de bacterie 

Xanthomonas campestris. In de aanwezigheid van zout en bij lage temperaturen nemen de 

xanthaanmoleculen een geordende helicale structuur aan. Bij verhitten kan een 

conformatiewijziging plaatsvinden, waarbij de molecule transformeert naar een random coil. 

Waxy zetmelen bevatten geen amylose en vertonen daardoor veel minder sterke gelerende 

eigenschappen, wat interessant kan zijn voor toepassingen waar een zekere graad van 

vloeibaarheid gewenst is. Jammer genoeg zijn de natieve varianten zeer zwak, en erg 

gevoelig voor verhoogde temperaturen en afschuifkrachten, waarbij de granules opbreken. 

Om deze reden worden waxy zetmelen vaak chemisch verknoopt om hun gebruik in 

industriële toepassingen mogelijk te maken. Omwille van een eerder negatieve perceptie bij 

de consument, is er echter een stijgende vraag naar meer natuurlijke alternatieven voor 

chemisch gemodificeerde zetmelen. Voor vele ingrediëntleveranciers vormt deze zoektocht 

dan ook een hele uitdaging. In het kader van deze problematiek, worden de bestaande 

productieprocessen van afgewerkte levensmiddelen minder op de korrel genomen. Daarom 

werd in deze thesis onderzocht hoe de functionaliteit van natieve zetmelen gestuurd (liefst 

verbeterd) worden door aanpassing van de procesomstandigheden (zoutdosering, 

gehanteerde concentraties, afschuifomstandigheden, temperaturen) en door de toevoeging 

van xanthaangom. Gommen worden momenteel voornamelijk gecombineerd met 

(gemodificeerde) zetmelen om de eigenschappen van het afgewerkte product te verbeteren. 

Het wordt echter ook gesuggereerd dat hun aanwezigheid de intrinsieke eigenschappen van 

natief zetmeel kan verbeteren.  In het bijzonder voor xanthaangom zijn verschillende effecten 

op het zwelling- en degradatiegedrag van de granulen beschreven. Een beter inzicht in de 
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effecten van de aanwezigheid van xanthaangom en het variëren van de procescondities kan 

immers leiden tot een rationeler gebruik van deze componenten. 

 

In het tweede hoofdstuk werden de effecten van xanthaan gom op het pastinggedrag en de 

vloei-eigenschappen van verschillende waxy zetmeelsystemen (aardappel, rijst, natief en 

gemodificeerd mais) bestudeerd. Bijzondere aandacht werd geschonken aan de invloed van 

de xanthaantransitie. Hoewel er geen siginificant effect was op het gelatinisatiegedrag van 

de zetmelen, ging de conformatietransitie tijdens pasting gepaard met een duidelijke 

viscositeitsreductie. Daarentegen was dit effect niet merkbaar in het vloeigedrag van de 

gekoelde dispersies. De reologische eigenschappen van de zetmeel/xanthaan combinaties 

bleken sterk afhankelijk van het gebruikte type zetmeel. Het vloeigedrag van de systemen 

met gemodificeerd maiszetmeel of rijstzetmeel, werd sterk beïnvloed door xanthaan, zowel 

tijdens de pastingstap als na de koeling. De effecten waren daarentegen veel minder 

uitgesproken in het geval van aardappel of natief maiszetmeel. Deze verschillen werden 

voornamelijk toegeschreven aan verschillen in het degradatiegedrag van de verscheidene 

types.  In tegenstelling tot gemodificeerd mais- en rijstzetmeel, bleek een verhittingsstap tot 

85°C zeer destructief voor natief mais- en aardappelzetmeel. Er werd dan ook besloten dat 

een hoge graad van granule-integriteit een voorwaarde is voor optimale 

xanthaanfunctionaliteit. 

 

In hoofdstuk 3 werd getracht om de granulestructuur van zwakke zetmeeltypes (mais en 

aardappel) beter te bewaren door tijdens de verhittingsstap lagere temperaturen op te 

leggen. Zo werd aangetoond dat wanneer natieve zetmelen verwerkt worden bij 

temperaturen net boven de gelatinizatie onset, hun swelling beter gecontroleerd kan worden. 

Een fractie van het zetmeel zal hierdoor echter onverstijfseld blijven. De disruptie van de 

granules kon onder deze omstandigheden beperkt worden en een verhoogde 

afschuifsnelheid leidde zelfs tot een betere viscositeitsopbouw. De maximale 

verhittingstemperatuur blijkt daarom een kritische procesparameter. Wanneer de 

temperatuur te laag is, zal de zwelling te onvolledig blijven, bij hogere temperaturen, zullen 

er dan weer te veel granules opbreken. Voornamelijk in dit laatste geval, kan xanthaangom 

gedeeltelijk deze destructieve effecten beperken. 

 

De milde temperatuursbehandeling van zwakke zetmeeltypes is nuttig gebleken met oog op 

de bewaring van de granulestructuur. Het is echter niet duidelijk in welke mate de 

microstructuur wijzigt bij bewaring gedurende meerdere weken, en welke rol de 

aanwezigheid van xanthaan hierin kan spelen. In hoofdstuk 4 de fysicochemische stabiliteit 
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dan ook onder de loepe genomen. Wanneer dispersies van natief waxy maiszetmeel verhit 

werden tot 70°C, konden de systemen beschreven worden als een zwak netwerk van 

geaggregeerde gezwollen, grotendeels intacte granules. Structureel vonden er slechts 

beperkte veranderingen plaats gedurende de bewaringstermijn van 8 weken. Deze werden 

toegeschreven aan het krimpen van de granules en/of een toename in de mate van granule-

aggregatie. Wanneer xanthaan aanwezig was, resulteerde dit niet in een hogere stabiliteit, 

maar door zijn directe bijdrage in de structurele eigenschappen van het systeem, konden 

wijzigingen in het zetmeel gedeeltelijk gemaskeerd worden. Wanneer de systemen echter 

verhit werden tot een iets hogere temperatuur (72°C), is een groter aantal granules 

stukgekookt, wat leidt tot een hogere instabiliteit, en een trage maar duidelijke gelering trad 

op tijdens bewaring. Dit gedrag werd toegeschreven aan de associatie en herkristallisatie 

van de amylopectine molecules die aanwezig zijn in zowel de granules als in de continue 

fase. Onder deze omstandigheden bleek xanthaangom het geleringsproces zelfs te 

versterken. Een fasescheiding tussen beide polymeren in de continue fase, waardoor de 

effectieve amylopectinconcentratie lokaal toeneemt, werd voorgesteld als onderliggend 

mechanisme. 

 

In hoofdstuk 5 werd onderzocht welke rol xanthaan en guar gom kunnen spelen in de 

granuleafbraak ten gevolge van opgelegde afschuifkrachten. Het gebruik van lage 

opwarmsnelheden en lage maximale temperaturen, lieten toe dat thermische disintegratie 

beperkt bleef. De bestudeerde systemen werden bereid bij verschillende 

vervormingssnelheden. Bij de beschouwde concentraties veroorzaakten beide gommen 

geen significante effecten op de granulezwelling. Degradatie kon daarentegen wel worden 

beïnvloed. The resultaten bevestigden de beschermende rol van xanthaan, terwijl guar gom 

niet over deze eigenschap bleek te beschikken. Dit leidde tot merkbare verschillen in 

granulegrootte verdeling en het reologisch gedrag van de gekoelde dispersies, waarbij guar 

eerder de tekortkomingen van het zetmeel maskeert, terwijl xanthaangom ook actief de 

granules beschermt. Er werd gesteld dat xanthaangom een unieke eigenschap vertoont die 

ervoor zorgt dat de impact tussen de granules wordt gewijzigd tijdens pasting. In deze 

context werd onderzocht of xanthaangom kan associeren met het granuleoppervlak, zoals 

wordt beweerd door andere onderzoekers. Confocale beelden toonden aan dat dit effect wel 

degelijk plaatsvindt bij lage zoutgehaltes. Het effect hiervan op de granulestabilisatie lijkt 

echter onwaarschijnlijk. Een meer waarschijnlijke verklaring kan gevonden worden in de 

vorming van een door afschuiving geïnduceerde anisotropie van de xanthaanmoleculen in de 

continue fase. Deze sterke moleculaire alignering, gidst mogelijks de granules in een vlot 

vloeipatroon, en beschermt op deze manier hun structuur. 
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Omwille van hun uiteenlopende effecten op granule degradatie (en mogelijks zwelling), is het 

moeilijk om de directe reologische effecten van guar en xanthaan in kaart te brengen. 

Daarom werd in het laatste hoofdstuk gebruik gemaakt van chemisch verknoopte zetmelen 

die veel minder gemakkelijk opbreken. De effecten van beide gommen werden geëvalueerd 

bij verschillende zetmeel volumefracties. Ten eerste werd duidelijk dat de specifieke effecten 

van de gommen afhankelijk waren van het zetmeelgehalte. Bij lage concentraties, werd de 

viscositeit gedomineerd door de continue gomfase. Wanneer meer zetmeel aanwezig is, 

wordt het vloeigedrag bepaald door granule-granule interacties met, relatief gezien, een 

beperktere bijdrage van de gomfractie. Het effect van guar was additief over het gehele 

concentratiebereik. Xanthaangom daarentegen faciliteerde de vloei van de meer 

geconcentreerde dispersies (verlaagt de viscositeit). Deze resultaten ondersteunden dan ook 

de voornoemde hypothese van anisotropie van de xanthaanmoleculen. Dit specifieke effect 

werd bovendien geobserveerd bij zowel hoge als lage temperaturen en vindt plaats voor de 

helicale én de random coil conformatie. 

 

Met behulp van dynamische reologie werd aangetoond dat reeds bij relatief lage 

zetmeelvolumes een netwerk van geassocieerde granules gevormd wordt. Bij dergelijke 

systemen kan het netwerk verder versterkt worden door een nevennetwerk gevormd door 

interagerende gom-moleculen. Xanthaan bleek effectiever dan guar betreffende dit aspect 

omwille van zijn capaciteit om zwakke gelnetwerken te vormen. Wanneer het zetmeelgehalte 

toeneemt, verhindert de geconcentreerde gomfase gedeeltelijk de granule interacties, 

hetgeen leidt tot een meer viskeus karakter van de dispersies. 

 

Dit doctoraat leverde waardevolle inzichten op wat betreft waxy zetmeel/xanthaan 

functionaliteit. In het bijzonder blijkt dat het hanteren van procestemperaturen in de buurt van 

het gelatinisatiebereik, het granulebehoud van de natieve zetmelen substantieel verbetert. 

Verder werd duidelijk dat de reologische eigenschappen van deze zetmeelsystemen direct 

(door exclusie-effecten) maar ook indirect (granule bescherming) kunnen gestuurd worden 

door de toevoeging van xanthaangom. De bevindingen uit deze thesis kunnen op hun beurt 

het startpunt vormen voor nieuwe onderzoekspistes. In het bijzonder dient het fase-gedrag 

van amylopectine en xanthaangom verder in kaart gebracht te worden, alsook de invloed van 

de anisotropische organisatie van xanthaangom op het vloeigedrag van zetmeeldispersies. 

Wat de praktische toepasbaarheid van de resultaten betreft, kan er gesteld worden dat een 

verdere uitdieping vereist is (bijvoorbeeld vergelijken van andere types zetmeel, variatie van 

de isotherme tijden) om het gedrag van chemisch gemodificeerde zetmelen nog beter te 

benaderen.
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OUTLINE OF THE RESEARCH 
 

Combinations of starches and non-starch hydrocolloids or gums are used abundantly in the 

food industry. The aim of this dissertation was to gain a generalized understanding of waxy 

starch/waxy systems and more specifically to study how their functionality (primarily their 

rheological properties) can be tuned by variation of the processing conditions. 

 

Traditionally, the pasting properties of starch systems are derived at a fixed temperature-

time-shear combination by means of Brabender amylographs or rapid visco-analyzers. For 

this work, the starch pasting cell was used for the preparation and analysis of the samples. 

This rheometer geometry allowed the variation of accurately controlled processing conditions 

(temperature, shear rate, heating and cooling rates) for the preparation of the starch pastes, 

while continuously monitoring the viscosity. The resulting pastes were further analyzed by 

several other techniques (rheology, laser light scattering and confocal scanning laser 

microscopy). In this way, the microstructural analyses could be directly related with the 

pasting behavior, as they were performed on the same samples. Throughout the setup, each 

chapter builds further on a particular aspect of a preceding one (Figure 1). 

 

In the first chapter, an overview of the literature regarding xanthan, starch and starch/gum 

functionality is presented. The second chapter focuses on the influence of xanthan on the 

pasting and flow properties of various waxy starches. In particular, the effects of the xanthan 

conformational transition were studied. For this setup, waxy starches of different botanical 

origin were assessed in order to obtain more generalized conclusions. From a practical point 

of view, the intention was to help clarifying some of the discrepancies found in literature. 

Starch and gum concentrations were chosen within ranges typically used in food systems.  

 

Waxy maize and potato starches disintegrate very easily at elevated temperatures, hereby 

losing most of their functionality. Therefore, chapter 3 focused on the functionality 

development of the starch/xanthan systems, when processed at temperatures within the 

gelatinization range. In chapter 4, the physicochemical stability of these systems was 

evaluated over a preservation period of 8 weeks. High amounts of sample were required, for 

this preservation study, therefore the samples were prepared by means of a lab-scale unimix 

system. 
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Figure 1: Outline of the research 

 

Gums in general, and xanthan gum in particular, can tune the rheological properties of starch 

pastes in different ways. A direct contribution logically results from their presence in the bulk 

phase. However, when heated together, gums can influence the swelling and degradation of 

granules, which in turn affects the behavior or the mixed system. The intention of chapter 5 

and chapter 6 was to gain a more fundamental insight in the direct and indirect effects of 

xanthan gum on waxy starch systems. Therefore, the experimental setups in both chapters 

were designed in such a manner that part of the possible effects are excluded in order to 

facilitate the interpretation. For both chapters, the specific effects caused by xanthan gum 

were derived by comparison with gum free and guar gum containing systems. The latter 

allowed to designate whether another high molecular weight polysaccharide is capable of 

inducing the same phenomena as xanthan gum. 

 

Firstly (chapter 5), the effects of guar and xanthan gum on the shear induced breakdown of 

native waxy maize starch granules were studied. The use of slow heating rates and low 
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heating temperatures allowed to restrict thermal breakdown. The effects of different shearing 

conditions (no shear, 50 s-1 and 150 s-1) were compared to elucidate the underlying 

mechanisms. 

 

Their different effects on granule degradation (and possibly swelling) complicate the 

comparison between guar and xanthan gum. If indirect effects of gums can be excluded, a 

more fundamental insight in their direct rheological effects could be developed.  Therefore, 

the final chapter (6) focused on systems containing chemically cross-linked starch in which 

granule degradation effects are limited. 
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1.1. XANTHAN GUM 
 

1.1.1. INTRODUCTION 

Xanthan gum is an extracellular polysaccharide produced by fermentation of Xanthomonas 

campestris. This high molecular weight biopolymer is soluble in cold water and exhibits 

unique rheological properties. Part of its commercial success can be attributed to its ability to 

withstand elevated temperatures and to an excellent stability across a wide pH range. The 

most important industrial applications are viscosity modification and stabilization of food 

(sauces and dressings, baked goods, beverages, desserts and ice creams) and personal 

care products (lotions, creams and body washes) (Imeson, 2010). Xanthan is also used in 

drilling fluids for enhanced oil recovery and to attain drag reduction in piping (Wyatt & 

Liberatore, 2009).   

 

Xanthan consists of a cellulosic backbone (1,4-linked β-D-glucose residues) having a 

trisaccharide side chain attached to O-3 of alternate D-glucosyl residues. The side chains are 

(3→1)-α-linked D-mannopyranose, (4→1)-β-D-mannopyranose and (2→1)-β-D-glucuronic 

acid, which account for the anionic properties of xanthan gum (Figure 1-1). Molecular 

weights of xanthan gum are usually in the order of 106 g/mol (Born et al., 2005).  

 

 

Figure 1-1: Repeating unit in the structure of xanthan gum (Hamman, 2010) 

 

About 40 percent of the terminal mannose residues are 4,6-pyruvated and the inner 

mannose is mostly 6-acetylated, both depending on which strain of Xanthomonas campestris 

the xanthan is isolated from (Born et al., 2010; Chaplin, 2009; Katzbauer, 1998). Variations in 
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processing procedures and conditions may also lead to differing degrees of acetyl 

substitution and pyruvic acetal substitution (Bresolin et al., 1998; Wyatt & Liberatore, 2010). 

 

 

1.1.2. PRODUCTION 

Xanthan gum is produced by aerobic fermentation of Xanthomonas campestris. A small 

amount of the strain is activated in a small reactor containing a nutrient medium. After 

growth, this culture can be used to inoculate successive fermenters, which are used for the 

actual xanthan synthesis. Industrial production is usually performed by a batch-wise 

submersed fermentation. Throughout the fermentation process, pH, aeration, temperature 

and agitation are monitored and controlled. At temperatures between 30 and 33°C the 

highest polymer yield is attained. During fermentation, the broth acidifies, but in industrial 

processes the pH is kept between 7 and 8, which is ideal for production. Oxygen is provided 

by agitation of the fermentation broth. Because the viscosity changes during the process, 

fermentor and agitator design are of utmost importance. Growth substrate is also introduced 

into the system. Glucose is the most commonly used carbon source, and ammonium salts or 

amino acids are used as nitrogen source. The polymer production is promoted by a high ratio 

of carbon to nitrogen in the medium (Born et al., 2005). The production process is 

schematically represented in Figure 1-2. 

 

During the exponential growth phase, xanthan synthesis is maximal, but production 

continues during the succeeding stationary phase. In the different growth phases, xanthan 

molecules with different molecular weight and different degree of substitution are produced. 

Hence, the microstructural composition of the resulting batch is quite polydisperse. The 

quantity of polymer increases until about 30h after inoculation, when a steady state is 

reached with termination of bacterial growth and polymer production. At this point, the 

fermentation is stopped (Born et al., 2005).  

 

Post-fermentation treatments account for up to 50% of the total production costs. First, a 

pasteurization is performed to kill the bacteria. Subsequently, the whole fermentation broth is 

precipitated with isopropyl alcohol or ethanol. The obtained coagulum is isolated by solid-

liquid separation, rinsed with alcohol, pressed and dried. Finally, the xanthan is ground, 

resulting in a white or cream-colored powder with particle sizes ranging from 80 to 250 µm. 

The final product contains about 85% pure xanthan gum, 5% biomass and 10% moisture. A 
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filtration step sometimes precedes precipitation. This step serves to remove cell debris and 

yields clarified xanthan, which is used for transparent applications (Born et al., 2005). 

 

 

Figure 1-2: Schematic representation of the xanthan gum production process (adapted from Garcia-
Ochoa et al. (2000)) 

 

 

1.1.3. XANTHAN CONFORMATIONS 

At room temperature and in the presence of salt, xanthan adopts an ordered helical 

conformation, single or double stranded, depending on the thermal history of the sample 

(Laneuville et al., 2013). The side chains are folded-down and associated with the backbone 

by non-covalent interactions. The helix is stabilized by hydrogen bonds, electrostatic 

interaction and steric effects, thus resulting in a semi-flexible rod-like structure (Meyer et al., 

1993; Rodd et al., 2000). Generally, a distinction is made between two different ordered 

states: native and renatured.  The native form is the conformation under which xanthan 

appears in the unpasteurized fermentation broth. Renatured xanthan is obtained after 

heating (above the transition temperature, see 1.1.3.1) and subsequent cooling of native or 

already renatured xanthan. The distinction between the native and renatured conformation is 

important since commercially available xanthan gum is often heat treated and thus sold 

under its renatured form (Choppe et al., 2010). The details of its ordered conformations, as 

well as the number of chains involved have been discussed by many authors but still remain 

controversial. Most authors consider native xanthan as a helically paired dimer (Sato et al., 
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1984). However, the absence of a molecular weight reduction upon thermal denaturation has 

convinced other researchers that native xanthan exists as a monomer folded back to itself in 

a hairpin like fashion, thus generating the double helical structure (Milas & Rinaudo, 1986).  

 

 

1.1.3.1. Denaturation 

Upon heating, the ordered secondary structure undergoes a conformational transition to a 

disordered structure, where the side chains project away from the backbone. The structure of 

the disordered conformation can be described as a broken or imperfect helix (Wyatt & 

Liberatore, 2009). The characteristic transition temperature Tm is dependent on the ionic 

strength of the solution (Muller et al., 1986; Rochefort & Middleman, 1987), the acetyl and 

pyruvate acetal contents (Smith et al., 1981) and the concentration of the polymer (Milas et 

al., 1995). A higher ionic strength induces a higher transition temperature (Figure 1-3).  

 

 

Figure 1-3: Xanthan conformational transition during heating at different NaCl concentrations as 
measured by optical rotation (dotted line is the result of successive lowering of the temperature for the 

solution with 0.01M NaCl) (Liu et al., 1987) 

 

In dilute xanthan solutions, Tm rises from near room temperature in the absence of salts to 

slightly above the boiling point of water at a NaCl concentration of 0.1M.  In concentrated 

solutions the ionic character of the polymer contributes to the ionic strength and further 

increases Tm (Lee & Brant, 2002c). Remarkably, the pH-dependence of the xanthan 

transition is studied far less frequently than the effect of NaCl. Holzwarth (1976) found that 
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lowering the pH from neutral to acidic, causes an increase in transition temperature. 

Conversely, an alkaline environment results in a faster denaturation (Bejenariu et al., 2010).  

It should be noted that the thermal interconversion of the ordered and disordered forms 

occurs over a temperature range of 10°C or more and the limits of this range depend on the 

specific property that is monitored (Lee & Brant, 2002c). 

 

Whether or not the molecules dissociate into monomers or remain associated during 

denaturation, appears to depend on the heating conditions. It is stated that this might explain 

some of the contradictions found in literature (Born et al., 2010; Capron et al., 1997). Several 

authors have suggested that the denaturation process of the double helical conformation is a 

two-step process and follows an extension-dissociation path. According to Muller & 

Lecourtier (1988) the lateral chains unfold in the first stage, resulting in a more extended and 

more flexible double helical structure. Others demonstrated that the double helix melts down 

from both ends to produce a dimerized expanded coil (Capron et al., 1997; Liu et al., 1987). 

The ends of the chain can dissociate where short portions of ordered double strands in the 

middle remains associated, forming an X-like molecule. At this step the molecular weight 

does not change but the molecule has a smaller persistence length. The second step is an 

intermolecular process and occurs under more severe conditions (i.e. salinities < 10-5 M) or 

exposure to temperatures above Tm for longer periods of time (Kawakami et al., 1990). Under 

such conditions the molecular weight is roughly halved indicating a complete dissociation of 

aggregates and double helices into single-stranded chains. Furthermore, the degree of 

dissociation was also suggested to depend on the concentration used. In dilute 

concentrations (0.1 wt%), double stranded xanthan can dissociate into two single chains, but 

at a higher concentration of molecules (1-2 wt%), they can only partly dissociate due to steric 

effects (Capron et al., 1998b; Matsuda et al., 2009).  

 

 

1.1.3.2. Renaturation 

When cooling denatured xanthan to temperatures below Tm, renatured xanthan is formed (a 

temperature hysteresis is generally observed). The reassembly of chains generates an 

architecture which differs from the original one and depends on the ionic strength and 

whether the heat treatment was performed on dilute or concentrated solutions. In dilute 

solutions (< 0.1%), when the xanthan dimers have been fully dissociated, each dissociated 

single chain forms the anti-parallel double helical structure folded in a hairpin-like fashion 

during cooling (Capron et al., 1997; Matsuda et al., 2009). When more concentrated xanthan 
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solutions are renatured, a highly entangled structure is formed in which intermolecular 

interactions are very prevalent (Capron et al., 1998c; Kawakami et al., 1990; Matsuda et al., 

2009; Oviatt & Brant, 1993). In the renaturation process, the denatured xanthan dimers 

aggregate linearly by the mismatched pairing (Matsuda et al., 2009). This mechanism is 

depicted in Figure 1-4. These interactions most likely share the characteristics of those 

stabilizing the ordered xanthan structure before thermal denaturation (Sereno et al., 2007). 

The extent of intermolecular association depends on the molecular weight distribution, the 

method of sample preparation and in particular on the thermal history of the sample. 

Sonication and molecular weight fractionation of the double helical material produce samples 

with more highly perfected helical order, containing fewer segments available for network 

formation (Lee & Brant, 2002a). The conformational changes and reassociations that take 

place during heating and recooling steps are illustrated in Figure 1-4. 

 

Figure 1-4: Denaturation and renaturation processes occurring in xanthan solutions (Matsuda et al., 2009) 

 

The presence of NaCl affects the reorganization of the xanthan gum structure on cooling 

from above Tm. For dilute systems, Camesano & Wilkinson (2001) observed that the 

presence of salt was required for complete intramolecular renaturation. Similarly, it was 

observed that for more concentrated solutions, molecular aggregation was favored in the 

presence of salts (Capron et al., 1998a; Kawakami et al., 1990; Matsuda et al., 2009; 

Rochefort & Middleman, 1987).  In dilute as well as more concentrated solutions, inter- or 

intramolecular associations are restricted at low salt contents, due to electrostatic repulsion 

between the anionic charges on the polymer. When salts are added, intermolecular 

T↗ 

T↗ 

T↘ 

T↘ 
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associations can more easily take place due to shielding of this repulsion (Sereno et al., 

2007). 

 

 

1.1.4. RHEOLOGY OF XANTHAN SOLUTIONS 

Like many other polymer systems, xanthan solutions exhibit a newtonian plateau at low 

shear rates where the viscosity is independent of the applied shear rate. As the shear rate is 

increased, the viscosity is markedly reduced. Compared to other polysaccharides, the shear-

thinning behavior of xanthan gum is much more extreme (Figure 1-5). These high viscosities 

at low shear rates and very low viscosities at high shear are typical for xanthan gum. 

Therefore, its addition to foodstuffs imparts texture and mouthfeel while guaranteeing easy 

mixing, pumping and pouring during production (Imeson, 2010). 

 

Figure 1-5: Flow behavior of xanthan gum solutions compared with other polysaccharides (Imeson, 2010) 

 

 

 

1.1.4.1. Rheology scaling of polymeric solutions 

Based on their rheological behavior, critical concentrations are often derived for polymer 

solutions. Mostly two characteristic concentrations, c* and c**, are observed, bordering 

regions with differing rheological behavior: a dilute region, an intermediate (or semidilute 

unentangled) region and an entangled region. Generally, these concentrations are derived by 

plotting the rheological characteristic (zero shear rate viscosity , characteristic relaxation 

time ) in a log-log plot versus the polymer concentration (Wyatt & Liberatore, 2009). The 

critical overlap concentration c*, marks the onset of molecular overlap: individual molecules 

begin to physically interact in the quiescent state (Rodd et al., 2000). Starting at the 

entanglement concentration c**, viscosity increases more rapidly as a function of polymer 
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content. From this point, polymers engage in intermolecular associations. A schematic 

overview of these different concentration regimes is depicted in Figure 1-6. 

 

Figure 1-6: Concentration regimes in polymeric solutions: dilute (Left), overlapping (Middle) and 
entangled (Right) (Walstra, 2003) 

 

 

 

1.1.4.2. Concentration dependence of xanthan rheology 

When studying the concentration-dependent rheological behavior of xanthan gum, many 

discrepancies are encountered. Evidently, there is a strong effect of the molecular weight 

distribution and the acetyl and pyruvate substitution of the sample used. Even more 

important are the preparation conditions. Particularly in more concentrated solutions, the 

rheological properties of the studied solutions are strongly dependent on the thermal history 

as well as the ionic content (Meyer et al., 1993).   

 

There is some general agreement that at concentrations below 0.01-0.03 (w/v)% (c*), 

xanthan solutions can be described as dilute (Cuvelier & Launay, 1986; Southwick et al., 

1981; Wyatt & Liberatore, 2009). In this concentration range, the slope of the log 0-log 

concentration plot equals about 1.2. These solutions behave as Newtonian fluids and the 

elastic modulus tends to zero. Above this overlap concentration (but below c**), 

intermolecular interactions become important and the viscosity increases more sharply with 

concentration ( ~ C²). The solutions exhibit typical semidilute, weak elastic behavior, where 

the moduli are strongly frequency dependent and crossover between G’ and G” appears. 

 

Although the specific interpretations may vary, a second critical concentration c**, is reported 

above which the rheological properties of the xanthan solutions markedly change. In most 

cases, this occurs at concentrations around 0.1-0.2% (Cuvelier & Launay, 1986; Meyer et al., 

1993; Rochefort & Middleman, 1987; Southwick et al., 1981; Wyatt & Liberatore, 2009). Milas 

et al. (1990) and Wyatt & Liberatore (2009) describe these solutions as entangled solutions 
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without specific interactions, hence denominating c** as ‘entanglement concentration’. 

Cuvelier & Launay (1986) remarked that the viscosity increases more sharply ( ~ C4) than 

observed for purely physical entanglements. Furthermore, small deformation rheology of 

these systems demonstrates gellike behavior, where G’ is higher than G” over a very wide 

frequency range and both moduli are weakly affected by the frequency. Therefore, the 

presence of a transient network induced by specific attractive interactions is considered to be 

more likely (Richardson & Rossmurphy, 1987; Rochefort & Middleman, 1987). The network 

is formed at relatively low concentrations, but with increasing concentrations, the elasticity 

and thus the number of interacting chain segments levels off (Choppe et al., 2010; Cuvelier & 

Launay, 1986). It was suggested that this behavior could be explained by junction zones 

consisting of parallel-packed chain segments, which could also account for the strongly 

shear thinning properties of xanthan solutions. This hypothesis of aggregation is supported 

by dichroism (Meyer et al., 1993) and light scattering (Rodd et al., 2000) experiments. 

Therefore, the critical concentration c** is also referred to as critical aggregation 

concentration. 

 

 

Figure 1-7: Viscosity scaling of xanthan solutions at 0.05M NaCl, the entanglement concentration is 
indicated by ce (Wyatt & Liberatore, 2009)  

 

It should be remarked that when heating steps above Tm have been applied, the 

interpretation of the rheological properties and network structures is further complicated by 

the formation of intermolecular double-helical junction zones (as described in section 

1.1.3.2). It is, however, unclear to which extent both phenomena (parallel aggregation and 

double-helical association) are related and if both phenomena can coexist. Furthermore, at 

high xanthan concentrations (± 1%) the formation of anisotropic phases takes place, further 

complicating the rheological behavior (which is more elaborately described in section 1.1.5). 
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1.1.4.3. Salt (NaCl) dependence 

In most studies, which are also reported in the preceding paragraph, the helical conformation 

of xanthan is stabilized by the addition of NaCl at different levels. Under these conditions,  

there is only a limited effect of varying salt concentrations on the rheological properties 

(Sereno et al., 2007; Takada et al., 1991). At high xanthan concentrations, when anisotropic 

phases are formed, salt can have more distinct effects as described in paragraph 1.1.5. 

However, when salt variations give rise to different xanthan conformations, the effects are 

much more pronounced. In the absence of salts, xanthan occurs as a highly extended 

disordered polymer. This conformational difference causes distinct changes in rheological 

behavior. Wyatt & Liberatore (2009) rheologically determined three critical concentrations for 

salt-free xanthan solutions. Next to the overlap (c*) and entanglement concentration (c**), a 

third concentration, cD ,was observed where the viscosity scaling approaches that of an 

uncharged polymer.  

 

When comparing the xanthan properties in deionized water with their properties in salt 

solutions, the specific effects are dependent on the xanthan concentration (Pastor et al., 

1994; Rochefort & Middleman, 1987; Wyatt & Liberatore, 2009). Salts screen the anionic 

charges, resulting in a collapse of the side chains and a reduction of the overall 

hydrodynamic size. In dilute and semi-dilute regimes, the presence of salt causes a reduction 

in viscosity (Wyatt & Liberatore, 2010). Moreover, more xanthan molecules have to be 

present in solution to reach a critical concentration at which overlap starts to take place. As a 

consequence, the overlap and entanglement concentration are much lower in the absence of 

salt. For higher concentrations, (~ 0.2% ) - as claimed by Wyatt and coworkers above cD, the 

addition of salt results in a significant increase in viscosity. The enhanced ability of forming 

hydrogen bonds between chains due to the neutralization of charges dominates the 

decrease in hydrodynamic volume and the viscosity rises above that of the salt-free solution 

(Pastor et al., 1994; Wyatt et al., 2011).  

 

 

1.1.4.4. Influence of thermal transition 

The reported effects of the xanthan transition on the rheological properties are rather 

ambiguous. Depending on the concentration (and molecular weight) the rheological 

properties are either dominated by conformational changes or changing network properties. 

Lee & Brant (2002c) observed no marked deflection point during heating of low molecular 

weight xanthan solutions above Tm. They stated that it was unclear whether the complex 
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viscosity of coils was lower than that of rods. Even with its helical structure lost, the xanthan 

gum molecules still remain highly extended possibly due to intramolecular steric and 

electrostatic repulsion, conserving some of the initial solution viscosity (Sereno et al., 2007; 

Wyatt & Liberatore, 2009). Liu & Norisuye (1988) found that the intrinsic viscosity of xanthan 

solutions either increases or decreases during denaturation, depending on the molecular 

weight of the sample. 

 

For high molecular weight samples at concentrations above c**, a drop in viscosity or elastic 

behavior is often observed upon heating above Tm (Capron et al., 1998b; Choppe et al., 

2010; Pelletier et al., 2001; Rochefort & Middleman, 1987; Sereno et al., 2007). The network 

of associated molecules is stabilized by the helical conformation. By heating these 

interactions are (partially) disrupted, causing a loss of structural organization. 

 

 

1.1.5.  ANISOTROPY 

The stiff extended conformation of xanthan may promote mesomorphic organization. This 

type of organization is typical for rigid or semi-rigid polymers. Above a certain critical 

concentration, the molecules tend to spontaneously align side-to-side and form ordered 

phases to reduce molecular excluded volume. Below a characteristic concentration ci a 

completely isotropic phase exists and above ca a homogeneously anisotropic phase is 

observed. In the concentration range between ci and ca, the system is biphasic and the 

isotropic and cholesteric liquid crystalline phases coexist at concentrations of ci and ca, 

respectively (Lee & Brant, 2002c). The specific concentrations ci and ca depend on the 

molecular weight, salt concentration, pH, the presence of impurities and temperature (Allain 

et al., 1988; Lee & Brant, 2002c). Hence, different concentration ranges have been reported 

in literature. Phase boundaries can be determined by optical birefringence experiments 

(Allain et al., 1988; Carnali, 1991; Lim et al., 1984; Schorsch et al., 1995). Generally, 

anisotropy is observed at concentrations around 1% (w/v) and higher. In salt solutions, 

similar structures are observed but birefringence appears at higher concentration (Lee & 

Brant, 2002a; Milas & Rinaudo, 1979; Sato et al., 1990). At high salinities, the concentrations 

ci and ca are in the range of 10wt%. Upon heating, birefringence decreases and ultimately 

disappears. Generally no anisotropy is observed at temperatures above the ordered-

disordered transition temperature of the xanthan molecules (Lee & Brant, 2002c; Milas & 

Rinaudo, 1979; Schorsch et al., 1995). 

 



Chapter 1: Literature Review 

 

 

16 
 

Few studies describe the rheological behavior of xanthan at concentrations within the 

biphasic or completely anisotropic region.  The steady shear and dynamic viscosities strongly 

increase with concentration in the isotropic regime, but both decline in the biphasic region as 

the much less viscous anisotropic phase increases in volume fraction with increasing 

concentration (Figure 1-8)(Allain et al., 1988; Lee & Brant, 2002a, 2002b; Oertel & Kulicke, 

1991). Molecules in the anisotropic phase are parallel oriented so that entanglements are 

greatly reduced and network formation is suppressed (Lee & Brant, 2002b). For fully 

anisotropic solutions, the viscosities are generally less dependent on the concentration. 

.  

  

Figure 1-8: Viscosity of 0.1M NaCl xanthan solutions as a function of xanthan concentration and shear 
rate (25°C)(Jacobs & Kulicke, 1994) 

 

In isotropic solutions the axial ratio and hydrodynamic volume of the stiff xanthan molecules 

are relatively insensitive to ionic strength and the salt concentration has limited effects on the 

solution rheology (aside from salt-induced conformation changes or entanglements, see 

higher). Conversely, in the anisotropic phase the viscosities increase sharply with increasing 

ci ca 
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salt content. The longer range of the lateral electrostatic interactions between the xanthan 

molecules forces the liquid crystal order parameter to become greater at lower ionic 

strengths and consequently the viscosity declines as the salt concentration decreases at a 

given xanthan concentration (Lee & Brant, 2002b) 
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1.2. STARCH 
 

1.2.1. INTRODUCTION  

Starch is present as reserve polysaccharide in cereals (common and durum wheat, maize, 

rice and rye), in roots and tubers like potato and cassava, and in legumes such as peas. It is 

one of the most widely used, functional and flexible food stabilizers for both thickening and 

gelling. As a natural ingredient, it contributes to the characteristic properties of food products 

made from cereals, rice, potato and maize. Furthermore, it is also added in its native or 

chemically modified form as a functional ingredient to many foodstuffs ranging from sauces 

and puddings to confectionery and meat products. Starch is often added to fluid products to 

increase their viscosity and stability and also to semisolid products to contribute to their 

texture. In this regard, starches prove to be valuable additives in e.g. low-fat products 

(Hermansson & Svegmark, 1996; Imeson, 2010).  

 

 

1.2.2. STRUCTURE 

In nature, starch occurs as granules, and their dimensions and morphologies depend on the 

botanical origin. Starch comprises two different glucose polymers: amylose and amylopectin. 

Amylose is a linear polymer (MW=105 to 106  g/mol) of D-glucopyranose units which have -

(1,4) linkages. Amylopectin (MW=107 to 108 g/mol) has the same backbone but it is highly 

branched. On the branching points D-glucopyranose has an -(1,6) linkage. Amylopectin 

chains are subdivided in so called A-, B- and C-type chains. The A-chains do not carry any 

other chains, B-chains carry one or more chains and the C-chain is the original chain that 

carries the reducing end. Normally, starch contains 20-30% amylose and 70-80% 

amylopectin. Waxy starches are synthetized by mutants that do not have an amylose-

producing enzyme and consist exclusively of amylopectin.  

 

When examined under polarized light, native starch granules exhibit birefringence as a result 

of the internal macromolecular organization perpendicular to the surface (Buleon et al., 

1998). As represented in Figure 1-9, the starch granule consists of alternating amorphous 

and semi-crystalline growth rings. The amorphous shells are less dense and contain amylose 

and less ordered amylopectin whereas the semi-crystalline shells have alternating 

amorphous and crystalline lamellae (Tester et al., 2004). There is some convincing evidence 

that these lamellae are in turn organized into blocklets, ellipsoidal supramolecular structures 

of 20 to 500 nm in diameter. A blocklet is made up of the semi-crystalline lamellae, which 
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consist of amylopectin double helices, packed in a parallel fashion, and the amorphous 

lamellae, which incorporate amylopectin branching regions and possibly some amylose 

(Buleon et al., 1998; Goesaert et al., 2005). 

 

 

Figure 1-9: Lamellar starch granule structure (Tester et al., 2004) 

 

 

1.2.3. GELATINIZATION 

Starch granules are insoluble in cold water. However, they are very hydrophilic due to the 

high hydroxylation degree which allows a limited water absorption at room temperature. 

When starch granules are heated in excess water, they undergo a process called 

gelatinization. At the gelatinization temperature, the granule swells as hydrogen bonds in the 

amorphous regions are disrupted and water, which acts as a plasticizer, is absorbed. When 

heating proceeds, further hydration and more swelling occurs in the amorphous regions, 

pulling apart crystalline zones. Eventually, these regions also undergo hydration and ‘melt’. 

In this manner, the granules are converted to gel particles (Hermansson & Svegmark, 1996). 

This disruption of amorphous and crystalline structures results in the loss of birefringence 

(Parker & Ring, 2001). During the gelatinization process, starch polymer molecules, primarily 

amylose, diffuse out of the granules and into the surrounding continuous phase. Generally 

gelatinization of starch granules is determined microscopically, by loss of birefringence, or by 

differential scanning calorimetry. The latter allows the quantification of an endothermic peak, 

and the determination of gelatinization onset, peak and conclusion temperatures, describing 

the gelatinization temperature range. 

 

 

1.2.4. PASTING 

The process of pasting follows gelatinization and occurs upon continued heating of starch 

granules in the presence of excess water. External shear is generally applied. During 
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pasting, considerable granule swelling and leaching of starch polymer molecules take place. 

Due to the swelling of the granules, the viscosity of the dispersion is markedly increased. The 

granules can swell up to 50 times their original volume. The swelling degree of the granules 

is dependent on the available water, the amount of amylose and short chain amylopectines 

leaching out of the granule. The botanical source, which gives rise to different degrees of 

polymerization and amylose content, strongly determines the swelling properties. High-

amylose corn starch, with a low swelling power, results in small granules compared to waxy 

varieties which are capable of swelling to greater dimensions. Prolonged heating at 

temperatures higher than the gelatinization temperature of starch suspensions leads to 

disruption of the fragile, swollen granules, which is further stimulated by shear. The result is a 

visco-elastic mass (called a paste) consisting of a continuous phase that is a molecular 

dispersion of dissolved starch polymer molecules and a discontinuous phase of swollen 

granules, granule ghosts, and granule fragments (BeMiller, 2011). Already at relatively low 

concentrations (5-10%) amylose and amylopectin are immiscible. Therefore, a phase 

separation often occurs within the continuous phase (Kalichevsky & Ring, 1987). 

 

Pasting properties of starch systems are often determined by rapid visco-analyzers (RVA) or 

Brabender amylographs. Throughout the process, the viscosity is monitored and different 

parameters are derived from the obtained curves (Figure 1-10). The dispersions are heated 

(usually to 95°C), held isothermal and finally cooled with continued shearing. The pasting 

temperature is characterized as the onset of the initial viscosity increase. Although this 

temperature is related to the gelatinization process, it is affected by other factors as well and 

might even proceed the actual gelatinization temperature (see section 1.3.2). The peak 

viscosity is reached when the granules are maximally swollen. During the isothermal step, 

the fragile swollen granules disintegrate under the shear conditions of the instrument, and 

the viscosity decreases to a trough viscosity. The difference between the peak and trough 

viscosity, is defined as ‘breakdown’. 
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Figure 1-10: Typical starch pasting curve obtained with RVA and corresponding parameters 
 

When the hot pastes begin to cool, they become more elastic and develop distinct solid 

properties, i.e. gelation occurs. This transition, which is particularly pronounced for amylose 

containing starches, is called setback. The molecular process causing this setback is called 

retrogradation and will be treated in the following section. 

 

 

1.2.5. RETROGRADATION/GELATION 

The term retrogradation is used to describe changes that occur during cooling and storage of 

starch products. It refers to the non-equilibrium polymer association and crystallization 

processes (Keetels et al., 1996a, 1996b). The rate of retrogradation depends on the type and 

concentration of the starch as well as the storage temperature (Jouppila et al., 1998; 

Morikawa & Nishinari, 2000). Retrogradation is usually studied with differential scanning 

calorimetry (DSC), X-ray diffraction (XRD), turbidimetry and rheological methods (Abd Karim 

et al., 2000; Farhat et al., 2000; Jouppila et al., 1998; Thygesen et al., 2003). 

  

During the short term phase of retrogradation, leached amylose molecules begin to interact 

(through entanglements or junction zones) as the paste cools. Subsequently, crystallization 

in the polymer rich microphase occurs (BeMiller & Whistler, 2009). At low concentrations, 

amylose precipitates, whereas at higher concentrations (which are more commonly 

encountered) a network is formed, resulting in a gel. The swollen granules are present as 

inert fillers within the network. This short term gelation may last up to 48h. In a later stage, 

lateral association of the helices occurs. This process in particular results in a contraction of 
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the starch gel and water is expelled from the matrix, which is indicated by the term 

‘syneresis’.  Aged amylose networks consist of double helices, small aggregates of double 

helices (junction zones), nanocrystals and their aggregates (BeMiller & Whistler, 2009)  

 

Retrogradation of amylopectin is a much slower process that may proceed over several 

weeks, depending on the concentration and the storage temperature. The external chains of 

these branched molecules recrystallize (Krystyjan et al., 2013). The rate of amylopectin 

retrogradation depends on the molecular weight and happens faster with longer chain 

lengths (Kalichevsky et al., 1990). This crystallization is thermoreversible at temperatures 

around 40-60°C, as opposed to amylose crystals that melt at much higher temperatures (> 

100°C) (Miles et al., 1985).  Amylopectin crystallization within the granule results in an 

increased rigidity of the granules which in turn reinforces the amylose matrix (Miles et al., 

1985). The molecular changes occurring during heating and cooling of starch dispersions, 

are illustrated in Figure 1-11. Retrogradation of waxy starches is strongly influenced by 

moisture content and initial heating temperature (Liu & Thompson, 1998). At low moisture 

contents, granules can only swell to a limited extent, resulting in a lot of residual order which 

facilitates reassociation. A similar mechanism was used to explain the faster retrogradation 

of waxy starches heated at temperatures just above the gelatinization temperature (Fisher & 

Thompson, 1997). 

 

Figure 1-11: Molecular changes occurring during heating, cooling and storage of starch pastes (Goesaert 

et al., 2005) 
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1.2.6. RHEOLOGICAL PROPERTIES OF STARCH PASTES  

The rheological properties of starch pastes are strongly influenced by the physical state of 

the present granules, i.e. their swelling/degradation properties (Tattiyakul & Rao, 2000). 

When the granules disintegrate at high temperatures or under the influence of shear forces, 

the viscosity of the samples is drastically reduced and the consistency of the paste changes. 

For these systems which are called ‘overcooked’, the rheological properties are governed by 

the continuous phase containing the dissolved starch polymers and the texture becomes 

long or slimy (Hermansson & Svegmark, 1996). This overview focuses on the rheological 

properties of starch dispersions in which granule breakdown is restricted and swollen 

granules are the prominent structural feature of the system, which is the case for systems 

consisting of mildly treated native starches or shear-resistant chemically cross-linked 

starches. 

 

Gelatinized starch granules can be considered as microgel particles (Evans & Lips, 1992) 

and the net force between the granules is attractive (Acquarone & Rao, 2003). The 

rheological behavior of swollen starch dispersions depends on the concentration, the 

dimensions of the granules, the interactions between the granules, as well as the 

characteristics of the continuous phase (Rao et al., 1997). The properties of the granules are 

in turn determined by the temperature and deformation history of the sample (see 1.2.4).  For 

very low concentrations, the viscosity is uniquely determined by the particle volume fraction.  

In this concentration regime, starches with highest swelling power (i.e. when they can swell 

freely, the granules adopt the highest volumes) generate the highest viscosities. Generally, 

they also exhibit a more elastic behavior (higher value of storage modulus G’). When the 

concentration is increased, a close-packing concentration ccp can be attained where the fully 

swollen granules just fill up the available space. At higher concentrations, insufficient space 

is available for the granules to swell to their equilibrium volume (Figure 1-12). The system is 

completely filled with swollen starch particles and the rheological properties are mainly 

determined by the particle rigidity of the swollen granules. Under these conditions, starches 

with the lowest swelling power are more rigid (i.e. they are less deformable) and have the 

highest storage moduli, which is in contrast with the phenomena observed in the dilute 

concentration regime. Logically, starches with low swelling power require higher 

concentrations to attain close-packing (Eerlingen et al., 1997). Furthermore, it has been 

stated that a network of interacting swollen starch granules is already present at 

concentrations well below close-packing (Abdulmola et al., 1996b). Hence, for these systems 
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a dominant elastic behavior can be observed at relatively low starch volume fractions ( 

~20%). 

 

 

Figure 1-12: Swelling regimes of starch granules at different concentrations: full swelling at c < ccp (a), full 

swelling at c   ccp (b) and restricted swelling at c > ccp (c) (Eerlingen et al., 1997) 

 

Most gelatinized starch dispersions show a non-newtonian flow behavior. A yield stress is 

also often observed (Rao et al., 1997). Suspensions of highly swollen granules are generally 

pseudoplastic or shear-thinning, meaning that the viscosity is reduced, i.e. flow is facilitated, 

when the shear rate increases. Depending on the type of starch, granules are capable of 

orienting themselves with the flow (Jacquier et al., 2006). Moreover, Desse et al. (2010) 

demonstrated that swollen starch granules are deformed during flow and that part of the 

absorbed water can be expelled. Some starch pastes exhibit antitixotropic behavior: the 

shear stress recorded with increasing shear rate, is lower than the shear rate recorded upon 

subsequently lowering the shear rate (flow curves represent an anti-clockwise hysteresis 

loop). This behavior is attributed to the formation of shear-induced granule clusters 

(Chamberlain et al., 2000; Tattiyakul & Rao, 2000) or a rearrangement of the packed 

granules (Nayouf et al., 2003). 

 

Concentrated starch dispersions sometimes show dilatant or shear thickening behavior, 

particularly in the case of poorly swollen granules. For these dispersions, an abrupt rise in 

viscosity is observed at a characteristic shear rate   ̇ (Rao et al., 1997). This shear thickening 

is most likely induced by a flow instability of packed granules. When   ̇ is attained, the long 

range orientational order within the flow field is disturbed resulting in the typical 

discontinuous viscosity behavior. When more highly swollen granules are present, shear 

thickening diminishes, due to their more deformable and/or the broader size distribution (Rao 

et al., 1997).   
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1.2.7. STARCH MODIFICATIONS 

Native starches generally do not comply with the requirements for industrial food 

applications. Very often, native starches are chemically modified to improve their tolerance to 

processing conditions (heat, shear and acidic environments) and to provide cold storage and 

freeze-thaw stability. By introducing chemical modifications to the native starch granules, the 

resulting pastes or gels exhibit improved textures, which are better preserved over time, and 

in which syneresis is reduced (Tharanathan, 2005).  

 

The most important chemical modification in the starch industry is cross-linking, in which 

hydroxyl groups of adjacent polymers are covalently linked with a chemical agent.  In this 

manner, the granule structure is reinforced which results in a restricted swelling power and a 

higher resistance to elevated shear and temperatures during processing. Distarch 

phosphates and distarch adipates are the most frequently encountered crosslinked varieties 

in the food industry. Very often, starch hydroxyl groups are also chemically substituted with 

monofunctional reagents. Acetylation and hydroxypropylation are the most common 

examples. Their presence hinders the reassociation of starch polymers during storage. 

Stabilized starches are therefore less subject to retrogradation effects and contribute to a 

prolonged shelf-life of the food products (Singh et al., 2007; Tharanathan, 2005).  

 

 

1.3. STARCH/HYDROCOLLOID COMBINATIONS  

Aside from chemical modifications, shortcomings of native starches can partly be overcome 

or compensated by the incorporation of hydrocolloids (Appelqvist & Debet, 1997). Therefore 

many experiments have been conducted in order to understand the effects of hydrocolloids 

on the properties of the starch-based systems. Plenty of diverging effects are reported and 

one generalizing theory is lacking, because the results greatly depend on the botanical origin 

of the starch, the nature of the hydrocolloid, the applied concentrations and the preparation 

conditions (BeMiller, 2011). In this section, the complexity of starch/hydrocolloid systems will 

be illustrated by summarizing the most commonly reported effects of non-starch 

hydrocolloids or gums on starch-based systems, along with the proposed mechanisms. This 

overview is restricted to non-gelling hydrocolloids.  

 

 



Chapter 1: Literature Review 

 

 

26 
 

1.3.1. INFLUENCE ON GELATINIZATION 

Generally, hydrocolloids do not significantly change the gelatinization temperatures of 

starches (Chantaro & Pongsawatmanit, 2010; Gonera & Cornillon, 2002; Samutsri & 

Suphantharika, 2012; Viturawong et al., 2008). Some exceptions are encountered in which a 

slight increase in gelatinization temperature(s) is observed (Aguirre-Cruz et al., 2005; Ferrero 

et al., 1996; Kruger et al., 2003; Rojas et al., 1999; Tester & Sommerville, 2003; Yoshimura 

et al., 1996).  Presumably, the results are strongly affected by the concentrations used and 

apparent increases in gelatinization temperature can be due to reduced heating rates and 

water diffusivities in a more viscous medium. Nevertheless, the enthalpic transition H is 

often reduced by the addition of gums (Aguirre-Cruz et al., 2005; Chaisawang & 

Suphantharika, 2006; Rojas et al., 1999; Satrapai & Suphantharika, 2007; Tester & 

Sommerville, 2003; Viturawong et al., 2008). It has been proposed that this is caused by a 

reduction of water availability in the crystalline regions of the granule (Chaisawang & 

Suphantharika, 2006) or by the occurrence of specific gum starch interactions (Rojas et al., 

1999). 

 

 

1.3.2. INFLUENCE ON PASTING BEHAVIOR 

As opposed to the mostly unaffected gelatinization temperatures, the pasting temperature 

measured by means of RVA or Brabender, is often decreased by the addition of 

hydrocolloids (Alloncle et al., 1989; Christianson et al., 1981; Liu & Eskin, 1998; Shi & 

BeMiller, 2002). Christianson et al. (1981) proposed that this earlier viscosity onset was due 

to associations between leached starch molecules and hydrocolloid molecules. Similar 

conclusions were drawn by Shi & BeMiller (2002), who observed this effect for xanthan and 

guar gum in combination with several types of starches. In some other cases a delay in 

pasting onset is observed, particularly in the presence of xanthan gum (Achayuthakan & 

Suphantharika, 2008; Chaisawang & Suphantharika, 2005; Pongsawatmanit & 

Srijunthongsiri, 2008; Weber et al., 2009).  

 

A common result of starch-hydrocolloid combinations is an increase in paste viscosity. 

Generally, a synergistic effect is observed and the mixed systems exhibit higher viscosities 

than expected from an additive combination of the individual components. Several 

hypotheses that have been put forward are associated with polymer 

incompatibility/compatibility. They will be discussed in the following section because the 

same phenomena can be held responsible for the effects on cold paste viscosity. Aside from 
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the phase behavior of the polymers, some other changes might occur specifically during the 

pasting process. When heated together, gums can influence the swelling and degradation 

behavior of the granules, and in this manner indirectly affect the rheological behavior of the 

mixed pastes.  

 

Depending on the specific starch/gum combination, and the applied preparation conditions, 

both aspects can be affected. An inhibition of the granule swelling due to the hydrocolloid is 

often reported (Cai et al., 2011; Kruger et al., 2003; Song et al., 2006; Temsiripong et al., 

2005; Tester & Sommerville, 2003). Both kinetic and thermodynamic effects have been put 

forward to explain this effect. Kruger et al. (2003) suggested that in the presence of gums, 

granule swelling was reduced because of the lower heating rates and the reduced mobility of 

the water molecules. Kaur et al. (2008) observed that the expansion of starches with high 

swelling capacity was reduced whereas the effect on low swelling starches was limited. By 

affecting the migration of starch polymers from the granules, hydrocolloids can have an 

indirect effect on the granule swelling and degradation. Funami et al. (2005b), found that 

guar gum reduced the leaching of amylose from corn starch, with higher molecular weight 

fractions being more effective. Shi & BeMiller (2002) noticed an inhibited swelling of potato 

starch in the presence of anionic hydrocolloids, which was attributed to repelling forces 

between the phosphate groups of the starch and the anionic substituents of the polymer. 

Furthermore, if their swelling is restricted, the granules also become less sensitive to 

breakdown. Therefore, by retaining amylose in starch granules, hydrocolloids could possibly 

also strengthen them (Biliaderis et al., 1997; Hongsprabhas et al., 2007). Conversely, when 

more starch polymers leach from the granules, they can swell to a higher degree (BeMiller, 

2011).  In general, increased granule swelling is rarely reported although xanthan gum might 

be capable of inducing higher granule dimensions (Achayuthakan et al., 2006; Chaisawang & 

Suphantharika, 2006; Mandala & Bayas, 2004; Samutsri & Suphantharika, 2012).  

 

An increased breakdown as derived from RVA or Brabender pasting curves, has convinced 

some authors that gums enhance the rupture of the granules.  It has been proposed that due 

to the higher medium viscosity, the shear forces exerted on the granules are increased, 

which results in more breakdown during pasting (Achayuthakan & Suphantharika, 2008; 

Chaisawang & Suphantharika, 2006; Christianson et al., 1981; Mandala & Bayas, 2004). In 

conclusion, it can be stated that the effects of granule swelling (and degradation) are strongly 

dependent on the specific starch/gum combination and the applied pasting conditions, and 

are therefore difficult to predict.  
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1.3.3. INFLUENCE ON RHEOLOGICAL PROPERTIES 

The pasting and paste characteristics of starch-hydrocolloid mixtures are affected by at least 

three factors: the properties of the hydrocolloid solution in the continuous phase, granule 

swelling in the composite system and interactions between the continuous and dispersed 

phases (Chaisawang & Suphantharika, 2006). As explained in the preceding paragraph, 

hydrocolloids could affect granule swelling and/or degradation and hereby the rheological 

properties of the resulting mixed systems. Some other more direct phenomena have been 

hypothesized as well, which do not exclude the existence of indirect effects. Most likely a 

combination of mechanisms contributes to the eventually observed rheological synergies. 

 

Starch-hydrocolloid combinations usually result in increased paste viscosity or gel strength 

compared with starch alone pastes. Crossland & Favor (1948) proposed that the enhanced 

viscosity resulted from an increase in the work required to move swollen starch granules past 

each other in the more viscous medium. Others suggested that the observed synergy was 

due to associations between starch and hydrocolloid molecules in the continuous phase 

(Christianson et al., 1981). Comparable conclusions were drawn by Funami et al. (2005b) 

and Shi & BeMiller (2002). The specific interactions depend not only on the gum type and the 

mixing ratio, but also on molecular characteristics like the molecular weight of the gum and 

substitution degree  (Funami et al., 2008b; Funami et al., 2005b). Hence, for one type of 

gum, diverging results can be obtained. Possible interactions between gums and (leached) 

starch polymers can therefore strongly influence the properties of the continuous phase. 

Others went even further and observed that some hydrocolloid starch polymer interactions 

could result in collaborative network formation (Freitas et al., 2003).  

 

On the other hand, the enhanced rheological properties are often attributed to mutual 

exclusion of the starch and the gum fraction. Alloncle et al. (1989) first suggested that 

hydrocolloids remain outside the granules and their concentration in the continuous phase is 

increased when the granules swell by taking up water. This effect is suggested to cause the 

often observed synergies, a hypothesis that is embraced by other authors (Achayuthakan & 

Suphantharika, 2008; Alloncle & Doublier, 1991; Biliaderis et al., 1997; Mandala et al., 2004).  

 

Whereas the viscosities of a mixed paste can be markedly increased, the viscoelastic 

properties are generally less dramatically affected by gums (Alloncle & Doublier, 1991). In 

many cases, the elastic modulus G’ is slightly elevated by the addition of gums, but the 
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relative increase in viscous behavior (often expressed as loss tangent or tan delta) is higher 

as well. Kulicke et al. (1996) and Biliaderis et al. (1997) observed that hydrocolloids can 

render the starch network more viscous like. They suggested that the formation of permanent 

cross-links between starch molecules is inhibited. Similar suggestions were made by Eidam 

et al. (1995) and Yoo et al. (2005). It has also been proposed that guar gum inhibits starch 

components from leaching out of the granules, resulting in an increased viscous character of 

the system (Nagano et al., 2008). Others believed that a phase separation confined the 

starch components to the discontinuous phase and that the hydrocolloid molecules are 

concentrated in the continuous phase, therefore dominating the liquid like behavior of 

composite pastes and gels (Temsiripong et al., 2005). Rodriguez-Hernandez et al. (2006) 

and Savary et al. (2008) added that the properties of the composite pastes and gels depend 

on whether the concentrated molecules could engage in network formation. In the presence 

of a strongly gelling biopolymer, the increase in composite rheology originates mainly from 

the continuous gel matrix, whereas in the presence of a non-gelling gum, the major 

contribution originated from the associated starch granules (Abdulmola et al., 1996a, 1996b).  

 

 

1.3.4. INFLUENCE ON RETROGRADATION/GELATION 

Hydrocolloids can interfere with both short term (amylose gelation and recrystallization) and 

long term (amylopectin recrystallization) retrogradation. Direct as well as indirect 

mechanisms have been proposed, which depend on the type of hydrocolloid, preparation 

methods and storage temperatures (BeMiller, 2011). Similar to the preceding rheological 

properties, the retrogradation behavior also appears to be strongly affected by the 

compatibility between the gum and starch molecules. 

 

Most often, short term retrogradation or more specifically amylose gelation is enhanced by 

hydrocolloids (Alloncle & Doublier, 1991; Eidam et al., 1995; Funami et al., 2008c; Funami et 

al., 2008d; Yoshimura et al., 1999). It is generally hypothesized that due to their 

incompatibility, a phase separation exists between gums and the leached amylose 

molecules. In this manner the concentration of each polymer type in its microphase is 

increased. Because the molecules are now located more closely to each other, amylose-

amylose associations are favored which results in a faster gelation. However, despite the 

acceleration of gelation, the actual network strength is often weaker in the presence of gums. 

As described in the preceding section, this might be caused by a phase separation resulting 

a discontinuity of the present network. Others suggested that gums could also prevent 
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leaching of amylose during pasting and that this results in a weaker gel strength (Funami et 

al., 2008a; Funami et al., 2005a; Kim & Yoo, 2006; Nagano et al., 2008). Conversely, Funami 

et al. (2005c) found that, depending on the molecular weight, some guar gum molecules can 

retard short term retrogradation, because guar-amylose associations are formed at the 

expense of amylose-amylose associations. 

 

The effect of hydrocolloids on longer periods of storage, where crystallization of amylose and 

amylopectin and cocrystallization between both become predominant, are more vague. 

Crystallization can be quantified by means of differential scanning calorimetry (DSC) where 

an endothermic peak is observed upon reheating. The effects on amylose crystallization are 

mostly not reported, which complicates the interpretation of the changes in overall 

rheological behavior. As explained above (section 1.2.5), the detected enthalpic transition is 

only associated with the crystallized amylopectin fraction because the DSC-measurements 

are generally restricted to temperatures below 100°C. Most studies reveal that the presence 

of gums initially enhances amylopectin crystallization, which then levels off during longer 

storage (Biliaderis et al., 1997; Funami et al., 2005a; Temsiripong et al., 2005; Yoshimura et 

al., 1999). The effects of long term storage on the rheological properties are rarely 

monitored. It has been hypothesized that also during longer preservation, most gums inhibit 

the formation of long-ranged continuous network structure but the underlying mechanisms 

remain vague (Biliaderis et al., 1997; Temsiripong et al., 2005). Others suggested that in 

case the amylopectin remains inside the granules, and therefore is physically separated from 

the gums, its retrogradation is not affected by the gum molecules (Ferrero et al., 1994).   

  

 

 





Relevant publication: Heyman, B., De Hertogh, D., Van der Meeren, P., Depypere, F., Dewettinck, K. 

(2013). Influence of xanthan transition on the rheological properties of waxy starches. Carbohydrate 

Polymers, 96 (2), 568-577. 

 

2 INFLUENCE OF XANTHAN ON THE RHEOLOGICAL 

PROPERTIES OF WAXY STARCHES 
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2.1 INTRODUCTION 

Non-starch hydrocolloids or food gums prove to be very useful additives when combined with 

starches. In many cases they act synergistically and the gums are known to improve the 

rheological properties and stability of starch based systems like sauces and dressings 

(Arocas et al., 2009; Dolz et al., 2006; Heyman et al., 2010; Sikora et al., 2008a). Moreover, 

the suggestion is made that gums can compensate the shortcomings of native starches, 

hence reducing the need for chemically modified starches (BeMiller, 2011). 

 

One particular hydrocolloid of great interest is xanthan gum. In the presence of salt and at 

low temperatures, xanthan molecules in solution adopt an ordered helical conformation 

where the side chains are folded-down and associated with the backbone by non-covalent 

interactions. This high rigidity compared to other polysaccharides is the basis for its distinct 

rheological behavior and consequently the commercial value of xanthan. This secondary 

structure exhibits a temperature induced transition at Tm, to a disordered coil structure. Tm is 

dependent on the ionic strength of the solution, the nature of the electrolyte, as well as the 

acetyl and pyruvate acetal contents of the polysaccharide (Muller et al., 1986; Rochefort & 

Middleman, 1987; Smith et al., 1981). 

 

Combinations of starch and gums are discussed extensively in scientific literature. A lot of 

divergent effects of hydrocolloids on starch based systems are reported. As pointed out by 

BeMiller (2011), hydrocolloids and starches exhibit strongly varying functionalities, depending 

on their origin. This natural diversity of the ingredients, combined with the wide variety of 

procedures used for the preparation of the systems, make it hard to draw general 

conclusions. Particularly regarding the effects of xanthan gum on the pasting behavior of 

starches, diverging results are abundant.  Some reports describe increases in peak viscosity 

and/or breakdown (Achayuthakan & Suphantharika, 2008; Aguirre-Cruz et al., 2005; 

Chaisawang & Suphantharika, 2005; Chantaro & Pongsawatmanit, 2010; Christianson et al., 

1981; Korus et al., 2004; Pongsawatmanit & Srijunthongsiri, 2008; Rojas et al., 1999; 

Samutsri & Suphantharika, 2012; Song et al., 2006; Viturawong et al., 2008). Conversely, in 

other combinations xanthan induces a decrease in either or both parameters (Cai et al., 

2011; Chaisawang & Suphantharika, 2006; Lee et al., 2002; Samutsri & Suphantharika, 

2012; Sikora et al., 2008b; Song et al., 2006; Weber et al., 2009) 

 

Most of these discrepancies originate from differences in the concentrations used, the 

content of amylose (waxy vs. non-waxy) as well as the presence of ionic substituents (e.g. 
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anionic starch) or salts. In this work, the focus lies on the combination of xanthan gum with 

waxy starches, which are essentially free of amylose. From a practical point of view waxy 

starches are very interesting because their chemically modified counterparts are very often 

used in combination with xanthan gum. Due to the absence of amylose, they do not form 

strong gels upon cooling, which makes them suited for application in sauces and dressings. 

Furthermore, the interpretation of the results is not complicated by amylose-xanthan 

interactions in the continuous phase of the dispersion. 

 

The influence of salts on the transition temperature as well as the final rheological behavior 

of xanthan gum solutions have been widely documented. Surprisingly, the effects of salt 

content, and hence the occurrence of the xanthan transition, on mixed starch/xanthan 

systems is rarely studied. Aside from the contributions of Sudhakar et al. (1996), Viturawong 

et al. (2008) and Samutsri & Suphantharika (2012), few or no publications study the 

functionality of xanthan/starch mixtures at varying salt concentrations. Moreover, the effect of 

the xanthan gum transition on the functionality of the combined waxy starch/xanthan gum 

system is to our knowledge never reported. Some authors explicitly mention the use of high 

salt contents to stabilize the ordered conformation and to avoid the complication of the 

xanthan denaturation (Abdulmola et al., 1996b; Alloncle & Doublier, 1991), but more often no 

salts are added to the systems (Achayuthakan & Suphantharika, 2008; Achayuthakan et al., 

2006; Biliaderis et al., 1997; Weber et al., 2009).  

 

Furthermore, most studies are also restricted to one type of starch. Different types of waxy 

starches were included in this setup in order to derive more generalized conclusions. The 

central aim was to investigate the effects of the xanthan transition on the pasting behavior 

and the final properties of waxy starches. From a practical point of view, the intention was to 

help clarifying some of the discrepancies found in literature and to fill the gap between most 

experimental setups where no salt is added, and practical food applications which generally 

contain high amounts of salts. In order to buffer differences in ionic content originating from 

the different starch powders, a NaCl content of 0.01M was used for the low salinity systems. 

Pastes containing 0.1M NaCl represented the systems with high salinity.  
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2.2 MATERIALS AND METHODS 
 

2.2.1 MATERIALS 

Xanthan gum (Satiaxane CX911) was acquired from Cargill Texturizing Solutions (Ghent, 

Belgium). The supplier indicates that at least 1.5% of the terminal mannose residues are 

pyruvated and the. molecular weight ranges between 2 and 4 x 106 Dalton, an order of 

magnitude that is also mentioned by other authors (Benna-Zayani et al., 2008; Viturawong et 

al., 2008).  Native waxy maize starch (Merizet 300) and adipate crosslinked acetyl 

substituted waxy maize starch (Resistamyl 347, further denoted as ‘modified maize’) was 

supplied by Tate & Lyle Benelux. Native waxy rice starch (Remyline xs) and waxy potato 

starch (Eliane 100) were provided by Beneo-Remy (Wijgmaal, Belgium) and AVEBE 

(Veendam, The Netherlands), respectively. Because all starch types used here are of a waxy 

type, the denomination ‘waxy’ will not be further repeated throughout this chapter. 

 

 

2.2.2 PREPARATION OF XANTHAN SOLUTIONS 

Xanthan gum powder was dispersed in deionised water, whilst continuously stirring with a 

magnetic stirrer. Next, the premix was put in an Ekato Unimix LM3 laboratory mixer (EKATO 

Rühr- und Mischtechnik GmbH, Schopfheim, Germany), a mixing apparatus equipped with a 

temperature control system, paravisc agitator with revolving blades and a colloid mill 

homogenizer (Figure 2-1). To fully dissolve the xanthan gum, the premix was homogenized at 

room temperature for 15 minutes at 5000 rpm and stirred at an agitation speed of 150 rpm. 

During homogenization, the unimix system was placed under vacuum to limit air inclusion. 

The obtained xanthan solutions (0.8% (w/v)) were then diluted with NaCl solutions to the 

desired xanthan and salt content. An additional heating step could be introduced to solutions 

containing 0.4% (w/v) xanthan and 0.01M NaCl by means of the Ekato Unimix (heated to 

85°C and held at this temperature for 10min). These samples were afterwards diluted to 0.2 

% (w/v) xanthan with salt solutions to obtain a final NaCl concentration of 0.1M or 0.01M.  

Preheated xanthan solutions are indicated by ‘H’ and not-preheated solutions by ‘UH’.  
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Figure 2-1: Representation of the unimix system 

 

2.2.3 RHEOLOGY OF XANTHAN SOLUTIONS 

Rheological measurements of xanthan solutions (0.2 and 0.4%) were performed on an 

AR2000 and AR2000ex rheometer (TA Instruments, New Castle, USA), using 28mm conical 

concentric cylinders (gap of 500 µm between the inner and outer cylinder) with solvent trap to 

limit evaporation. A sample size of approximately 20g was used. 

 

To determine the linear visco-elastic region, strain sweeps were performed. First, 

equilibration was allowed for 2 minutes, at a temperature of 20°C. Next, a strain sweep step 

was performed: strain was varied from 0.1 to 100% (measuring 10 points per decade), at a 

constant frequency of 1Hz. A strain of 20% was applied in order to obtain reproducible 

measurements within the linear visco-elastic region of  the different xanthan solutions.  

 

To assess the xanthan transition from ordered to disordered conformation, a temperature 

ramp was imposed to the unheated xanthan solutions. The temperature was increased from 

20°C to 85°C at a rate of 3°C/min, held for 10 minutes and cooled down (3 °C/min) to 20°C. 

Hereby, the strain was held constant at 20% and the frequency was 1 Hz for samples 

containing 0.4% (w/w) xanthan gum and 0.5 Hz for samples containing 0.2% (w/w) xanthan 

gum. The transition temperature Tm was calculated by means of the sudden drop of the 
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complex modulus |G*|: the temperature at which the change in slope between the 4 

preceding and the 4 succeeding data points was maximal, was selected as Tm. 

 

Before and after this heating step, flow curves of the xanthan solutions were recorded. After 

2 minutes of equilibration at 20°C, samples were subjected to a stepped flow step: shear rate 

was varied from 0.01 to 100 s-1 (with 10 measuring points per decade). 

 

 

2.2.4 STARCH/XANTHAN SYSTEMS 

Starches were dispersed cold in salt solutions of 0.01M NaCl and 0.1M NaCl or in xanthan 

solutions (0.2%, 0.01M or 0.1M NaCl) prepared as described above. Either heated xanthan 

solutions (H) or unheated xanthan solutions were used (UH). The dry starch:continuous 

phase weight-ratio was always 5:100. Samples from this premix were either transferred to 

DSC-pans or to the starch pasting cell geometry of the rheometer. 

 

 

2.2.4.1 Differential scanning calorimetry (DSC) measurements 

About 10-15 mg of suspension was accurately weighted in an alodined DSC pan (TA 

Instruments, New Castle, USA) and hermetically sealed. A DSC Q1000 (TA Instruments, 

New Castle, USA) was used for all measurements. The instrument was calibrated with 

Indium (TA Instruments, New Castle, USA) for melting enthalpy and temperature. Additional 

temperature calibrations were performed with azobenzene (Sigma-Aldrich, Bornem, Belgium) 

and n-undecane (Acros Organics, Geel, Belgium). An empty pan was used as reference. The 

samples were heated from 20°C to 99°C at a heating rate of 3°C/min. The onset (To), peak 

(Tp) and conclusion (Tc) temperature of gelatinization, as well as the corresponding enthalpy 

(H) were calculated by means of the Universal Analysis 2000 Software (TA Instruments, 

New Castle, USA).  

 

 

2.2.4.2 Pasting experiments 

The pasting behavior was studied using a starch pasting cell mounted to a controlled stress 

rheometer AR2000 (TA Instruments, New Castle, USA).  This rheometer geometry (Figure 

2-2) consists of a jacket, a removable cup and an impeller. A gap of 5500 µm between rotor 

and the bottom of the cup is used. Since the impeller produces an ill-defined flow, analytical 

conversion factors to calculate shear rate or shear stress are not available. Therefore the 
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system was calibrated by the manufacturer with a Newtonian and non-Newtonian oil to 

determine the conversion factors (4.500 (-) for shear rate and 48,600 m–3 for shear stress). 

For the sake of simplicity, the word ‘shear rate’ is used in this manuscript, although the actual 

shear rates occurring in the sample will vary throughout the sample volume. The starch 

pasting cell has a very efficient and accurately controlled heating and cooling system. The 

temperature is continuously monitored with a Pt-probe in close thermal contact with the 

bottom of the cup. Heating is accomplished by the electrical elements inside the jacket. 

Cooling is performed with water circulating in a helical tract inside the jacket and around the 

sample.  

 

 

Figure 2-2: Representation of the starch pasting cell (source www.tainstruments.com) 

 

Starch suspensions were pre-sheared at 100 s-1 for 2 minutes and then heated to 85°C at a 

heating rate of 5°C/min, held isothermal for 10 minutes and then cooled down (5 °C/min) to 

20°C. Throughout the heating and cooling steps a shear rate of 50 s-1 was maintained. The 

peak viscosity was attained during the heating or the isothermal step, depending on the 

setpoint temperature. Sometimes, no true peak was observed as the viscosity kept 

increasing continuously. The peak viscosity then corresponds with the maximum viscosity 

which is attained at the end of the isothermal step (=’trough viscosity’). The breakdown was 

calculated as the difference between the peak viscosity and the trough viscosity. Throughout 

the manuscript, the term ‘breakdown’ refers to parameter derived from the pasting curves. 

Other terms shall be used to refer to the actual microstructural process of granule disruption 

(e.g. disintegration, abrasion, break up…). The cooled samples were recollected and stored 

for 24h in the refrigerator (5°C) for further analysis.  
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2.2.5 PARTICLE SIZE DETERMINATION 

The particle size distribution of the cooled starch pastes was determined by laser light 

diffraction using a Malvern Mastersizer S (Malvern, UK) equipped with a 300mm reversed 

Fourier lens and a MSX-17 sample dispersion unit. To measure the starch particle size in the 

cold paste samples, 4g of paste was diluted to 20g with deionized water and gently shaken 

manually. Pumping and stirring speeds were put on 30% of the maximum values and the 

background was determined before each individual measurement. The optical model used 

was the 3OHD with real refractive index 1.5295 and 1.33 for starch and the continuous 

phase, respectively (Tecante & Doublier, 1999; Zhu et al., 2009). The imaginary refractive 

index was set to 0.1.  

 

 

2.2.6 FLOW CURVES OF COOLED PASTES 

The flow curves of the cooled pastes were recorded using 40 mm cross hatched steel plate-

plate geometry with solvent trap. To prevent drying of the sample, 1 ml of water was brought 

in the solvent trap compartment.  The gap was set to 1000 µm. After 15 minutes of 

equilibration at 20°C, a steady state flow step was performed by logarithmically increasing 

the shear rate from 0.001 s-1 to 100 s-1. The absence of wall slip was verified by comparing 

different gap sizes (1000, 2000 and 3000 µm) for some randomly selected samples as 

suggested by Barnes (1995).  

 

At very low shear rates (< 0.01 s-1) unreliable data is obtained, resulting from the sample not 

reaching steady state or signals below the transducer limit of the instrument and the 

corresponding stresses are believed to be lower than the yield stress (Walls et al., 2003). 

Flow curves were fitted to the Herschel-Bulkley model with the SigmaPlot 10 software (Systat 

software inc., San Jose, USA).  

 

         ̇
  2-1 

 

In this equation, which relates the shear stress s (Pa) with the shear rate  ̇ (s-1), the 

parameters 0 (Pa), k (Pa.sn) and n (-) represent the yield stress, the consistency index and 

the flow behavior index, respectively. All flow curves were fitted from shear rate 0.01 s-1 to 

100 s-1, except for the potato starch systems (0.1 s-1 to 100 s-1) to obtain a better match with 

the model. 
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2.2.7 STATISTICAL ANALYSIS 

IBM SPSS Statistics software (version 20, SPSS inc., Chicago, USA) was used for statistical 

comparison of the DSC and pasting data. All the reported values are the average of three 

replicates. Analysis of variance was carried out to determine significant differences between 

the results, followed by Tukey’s post hoc test for pairwise comparisons. All tests were 

performed at a 95% significance level. 

 

 

2.2.8 PRINCIPAL COMPONENTS ANALYSIS  

Principal components analysis (PCA) is a mathematical method that transforms a number of 

possibly correlated variables into a number of uncorrelated variables, called principal 

components (PC). The central objective of PCA is reducing the dimensionality of the data 

without losing the original variability. These PCs are linear combinations of the original 

variables. The coefficients of the original variables in these linear combinations are chosen 

so that the first principal component accounts for as much of the variability in the data as 

possible and each succeeding component accounts for as much of the remaining variability 

as possible. Instead of working with all original variables, PCA can be performed and only 

the first two or three principal components can be retained in the subsequent analysis 

(Jolliffe, 2002).  

 

PCA was executed with the SPSS 20 software (SPSS inc., Chicago, USA). A varimax 

rotation was performed. This additional orthogonal rotation of the principal components 

optimizes the orientation of the original variables, where each variable has a high loading on 

a single factor but near-zero loadings on the remaining factors. In this manner the 

interpretation of the PCs and the scorings is facilitated. 

 

 

2.3 RESULTS AND DISCUSSION 
 

2.3.1 XANTHAN TRANSITION 

Already a low concentrations (> 0.1%), xanthan solutions exhibit marked rheological 

properties, as described in section 1.1.4. Hence, rheological measurements are sensitive 

tools to probe temperature induced conformational changes (Capron et al., 1998b; Choppe 
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et al., 2010; Milas & Rinaudo, 1986). Temperature ramps can be imposed to the solutions to 

monitor the conformational change with oscillatory rheology. The transition temperature is 

accompanied by a reduction in both moduli, G’ and G”, whereas the phase angle delta 

increases. The sudden drop in |G*|  was used to derive the transition temperature Tm (Figure 

2-3). For high molecular weight samples at concentrations above the entanglement 

concentration c**, a drop in viscosity and elastic behavior is often observed upon heating 

above Tm (Capron et al., 1998b; Choppe et al., 2010; Pelletier et al., 2001; Rochefort & 

Middleman, 1987; Sereno et al., 2007). In ideal xanthan solutions and at low concentrations, 

double helical molecules convert into random coils. However at intermediate concentrations 

(0.1-1%), which are studied in this work, aggregates are formed that can mask the behavior 

of individual macromolecules (Camesano & Wilkinson, 2001). The intermolecular 

associations – which are stabilized by the helical conformation – are disrupted by additional 

heating above the denaturation temperature, which may explain the quite pronounced 

differences observed here. Furthermore, the intrinsic viscosity of the denatured (random 

coiled) xanthan is much more sensitive to salts than helical molecules (Muller et al., 1986). 

Consequently, the transition could be accompanied by a reduction in hydrodynamic size of 

the polymers due to the presence of NaCl, which induces a further reduction in structural 

features (G’, G*) and viscosity. 

 

 

Figure 2-3: Influence of NaCl content on the conformational transition in a 0.4% (w/v) xanthan solution 
determined by oscillatory rheology. The conversion to random coil is accompanied by a marked 

reduction of the complex modulus |G*|.  

 

These experiments were performed at two xanthan concentrations (0.2% and 0.4%) and at 5 

salt concentrations (0.01, 0.02, 0.03, 0.04, 0.1M NaCl) and the results are summarized in 
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Table 2-1. As expected, the transition temperature is shifted to higher values when the salt 

content is increased (Muller et al., 1986; Pelletier et al., 2001). Salts shield the negative 

charges of the polymer molecules and hence the helical shape of the gum is stabilized, 

counteracting the thermal energy which forces the molecules to expand. Rheological data 

show that at a salt content of 0.04M the reduction of |G*| is limited, most likely because the 

dissociation is incomplete and/or a fraction of the xanthan molecules remains in the ordered 

state at 85°C. The transition temperatures do not increase linearly with increasing salt 

content, as the difference between Tm at 0.01M and 0.02M NaCl is larger than the difference 

between 0.02M and 0.03M. For the highest salt content, 0.1M, no transition could be 

observed rheologically within the studied temperature range. Our data reveal slightly higher 

transition temperatures at a xanthan concentration of 0.4%, although this could not be 

proven statistically. This effect might be explained by a slightly higher salt content, originating 

from the xanthan powder and/or by a slower heat transfer within a more viscous solution. Lee 

& Brant (2002c) state that in more concentrated solutions, the xanthan molecules themselves 

contribute to the ionic character of the solution, resulting in an increase of Tm. 

 

Table 2-1: Transition temperature Tm (°C) as a function of xanthan concentration and salt content 

NaCl (M) 0.2% xanthan 0.4% xanthan 

0.01 60.0 ± 2.4 
A
 62.6 ± 1.6 

A
 

0.02 69.6 ± 1.8 
B
 73.2 ± 0.4 

B
 

0.03 77.0 ± 2.3 
C
 78.9 ± 0.6 

C
 

0.04 80.8 ± 1.3 
C
 82.7 ± 0.8 

D
 

0.1  >85  
 

 >85  
 

Superscripts A-D indicate significant differences (p<0.05) between data within a same column 

 

Flow curves of the xanthan solutions were compared at 20°C before and after the heating 

step (Figure 2-4). It is generally known that the highly branched, anionic nature of xanthan 

makes its hydrodynamic volume susceptible to the presence of salt, but the distinct effects 

depend on the xanthan concentration. At lower xanthan concentrations (approximately up to 

0.2%), monovalent and divalent salts are reported to cause a decrease in viscosity. For 

higher concentrations the addition of salt results in a significant increase in viscosity (Wyatt 

et al., 2011; Wyatt & Liberatore, 2009, 2010). At low xanthan concentrations, salt causes a 

screening of the anionic charges, leading to a lower hydrodynamic volume and viscosity. At 

higher xanthan contents and when charges are shielded, hydrogen bonds can be formed 

between molecules causing an increase in viscosity. On the contrary, in this setup, no 

remarkable differences in flow behavior of the unheated xanthan solutions could be observed 

between the different salt contents, not even at 0.4% (data not represented). It must be 
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stated that in the before mentioned publications high salt contents (>0.1M) are compared 

with salt free systems in which xanthan gum might adopt a random coil conformation already 

at room temperature. Furthermore, preference was given here to a commercial xanthan 

sample, which is used as such in the food industry. No additional purification steps were 

performed, possibly causing less pronounced differences as compared with highly purified 

samples. 

 

Figure 2-4: Influence of NaCl content (:0.01M; : 0.03M; 0.1M) and heat treatment on the flow behavior 
of xanthan solutions (0.2%). Closed symbols: unheated; Open symbols: heated to 85°C. 

 

However, after imposing a heat treatment, marked effects on the flow behavior of the 

xanthan solutions were observed, depending on the salt content. Except for the xanthan 

solutions with 0.1M NaCl, a marked viscosity reduction had taken place after heating and 

recooling. These results indicate that following a thermal transition, the molecular 

conformations and/or associations are different compared to those in the unheated solutions. 

Presumably, some of the molecular aggregates present in the stock solutions were disrupted 

in the additional heating step above Tm, whereas these associations are better preserved 

when no conformational transition takes place (Capron et al., 1998b). In order to also 

incorporate these effects in the pasting experiments, both preheated as well as unheated 

xanthan solutions were used in combination with the starches.  

 

 

 



Chapter 2: Influence of xanthan on the rheological properties of waxy starches 

 

44 
 

2.3.2 INFLUENCE OF XANTHAN GUM ON THE GELATINIZATION PROPERTIES OF 

THE STARCHES 

Two NaCl contents were selected for this setup: 0.01M and 0.1M. As indicated in the 

previous section, no xanthan transition occurs at the highest salt content, whereas a marked 

transition is observed for the lowest salt content. The temperature onset, peak and 

conclusion of gelatinization derived from the DSC experiments are summarized in Table 2-2. 

The gelatinization temperatures are markedly influenced by the salt content. For the samples 

with 0.1M NaCl, the gelatinization temperatures are shifted to higher values compared to 

those of the samples with 0.01M NaCl. On the other hand, the gelatinization enthalpy is not 

significantly influenced.  

 

Salts can have divergent effects on the gelatinization behavior of starches, and the 

underlying mechanisms are only beginning to be unraveled. Explanations are now generally 

based on the Hofmeister theory, which states that the structure of water is modified by its 

solutes, like salts. The Hofmeister series ranks the relative influence of ions on the physical 

behavior of macromolecules (Chiotelli et al., 2002; Zhang & Cremer, 2006; Zhu et al., 2009). 

Salts in the upper end of the Hofmeister lyotropic series, called kosmotropes, or water 

structure makers, have strong electrostatic interactions with water molecules. They reduce 

the fraction of free water and increase the gelatinization temperature.  On the other hand, 

ions with low charge densities, called chaotropes, or water structure breakers, are less 

hydrated and increase the fraction of free water by breaking or weakening hydrogen bonds. 

They decrease the gelatinization temperature. The salts which are located in the middle of 

the lyotropic series, like NaCl, show an increase of the gelatinization temperatures at low 

concentrations where higher concentrations induce a decrease. 

 

Xanthan gum did not significantly affect the gelatinization temperatures and enthalpy of the 

different waxy starches. This conclusion was also drawn by other researchers (Chantaro & 

Pongsawatmanit, 2010; Samutsri & Suphantharika, 2012; Viturawong et al., 2008). A 

reduction of the gelatinization enthalpy was reported by some authors (Aguirre-Cruz et al., 

2005; Chaisawang & Suphantharika, 2006; Viturawong et al., 2008). However, their setups 

dealt with amylose-containing starches, which might behave differently than waxy starches. 

Others mention an increase of gelatinization temperatures, particularly in the case of high 

starch concentrations, when hydrocolloids are believed to restrict hydration of the granules 

(Aguirre-Cruz et al., 2005; Tester & Sommerville, 2003). In general, it should be noted that 

the gelatinization of all starches investigated in this setup, is not influenced by the presence 

of xanthan gum and consequently not by the occurrence of the xanthan transition. 
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Table 2-2: Effect of xanthan addition and NaCl concentration on the gelatinization parameters of different 
starches at a ratio 5:100 (starch:continuous phase). The used xanthan solutions were subjected to 
heating (85°C) during their preparation 

starch type 
conc.  
NaCl (M) xanthan To (°C) Tp (°C) Tc (°C) 

H (J/g dry 
starch) 

               

Maize 0.01 0% 67.03 ± 0.29
A
 73.02 ± 0.06

A
 78.68 ± 0.12

A
 12.76 ± 1.28

A
 

  
0.2%  67.28 ± 0.08

A
 73.16 ± 0.09

A
 78.93 ± 0.40

A
 13.50 ± 1.00

A
 

 
0.1 0% 70.04 ± 0.20

B
 75.72 ± 0.19

B
 81.00 ± 0.11

B
 12.37 ± 0.33

A
 

  
0.2%  70.29 ± 0.08

B
 76.04 ± 0.18

B
 81.53 ± 0.28

B
 12.93 ± 1.04

A
 

 
                            

Potato 0.01 0% 64.94 ± 0.22
A
 70.53 ± 0.16

A
 76.88 ± 0.21

A
 12.75 ± 0.69

A
 

  
0.2%  64.99 ± 0.13

A
 70.64 ± 0.04

A
 77.01 ± 0.13

A
 13.59 ± 0.99

A
 

 
0.1 0% 65.93 ± 0.23

B
 71.34 ± 0.16

B
 77.55 ± 0.21

B
 12.15 ± 1.52

A
 

  
0.2% 65.93 ± 0.17

B
 71.43 ± 0.12

B
 77.98 ± 0.19

B
 13.35 ± 0.38

A
 

 
                            

Rice 0.01 0% 61.07 ± 0.21
A
 68.40 ± 0.13

A
 74.92 ± 0.06

A
 10.25 ± 0.09

A
 

  
0.2%  60.80 ± 0.44

A
 68.44 ± 0.25

A
 74.07 ± 0.41

A
 10.19 ± 1.11

A
 

 
0.1 0% 64.17 ± 0.91

B
 71.44 ± 0.23

B
 77.91 ± 0.41

B
 10.34 ± 1.70

A
 

  
0.2% 64.47 ± 0.71

B
 71.63 ± 0.39

B
 77.36 ± 0.47

B
 9.63 ± 0.95

A
 

 
                            

Modified 0.01 0% 62.01 ± 0.10
A
 68.54 ± 0.08

A
 74.31 ± 0.29

A
 12.06 ± 0.16

A
 

Maize 
 

0.2%  61.73 ± 1.40
A
 68.89 ± 0.54

A
 75.31 ± 1.31

A
 13.18 ± 1.43

A
 

 
0.1 0% 64.86 ± 0.54

B
 71.22 ± 0.16

B
 77.02 ± 0.36

B
 11.68 ± 0.98

A
 

    0.2%  65.43 ± 0.28
B
 71.28 ± 0.18

B
 77.59 ± 0.60

B
 11.90 ± 0.27

A
 

For each starch type, superscripts A-B indicate significant differences within columns (p<0.05) 

2.3.3 INFLUENCE OF XANTHAN TRANSITION ON THE PASTING PROPERTIES 

The pasting curves of the different waxy starch systems were recorded at two NaCl contents 

(0.01M, 0.1M), in the presence and absence of xanthan gum, in order to derive the influence 

of the xanthan transition for each starch type. The derived peak viscosities and breakdown 

values are depicted in Figure 2-5. An overview of the different pasting parameters, 

comprising also the pasting temperatures and statistical analysis can be found in Table 2-3. 

Due to the absence of amylose, waxy starches exhibit a low pasting temperature, a high 

peak viscosity, little setback and low final viscosity (Wang et al., 2009). In the current setup, 

pasting temperatures are mostly very close to the gelatinization onset temperatures. In the 

case of maize and potato starch, pasting seems to start even at lower temperatures than the 

gelatinization, but this is uncertain considering standard deviations on both parameters, and 

the different heating conditions in DSC (small volume, no shear) and starch pasting cell 

(large volume, with shear). DSC measurements demonstrated that  -except for potato starch- 

the gelatinization temperature of all starches differed about 3-3.5°C between both salt 

contents, a difference that was also observed in the pasting temperatures of the xanthan free 
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systems. It can also be concluded that the addition of xanthan gum did not significantly affect 

the pasting temperature. Shi & BeMiller (2002) proposed that hydrocolloids like xanthan gum 

can induce an advanced viscosity onset by associating with leached molecules. This effect is 

expected to be more pronounced for non-waxy starches, where some degree of amylose 

leaching might occur before the actual gelatinization. Although it cannot be proven 

statistically, a slightly higher pasting temperature is suggested for maize and potato starch in 

the presence of unheated xanthan at the lowest salt content. A similar delay for pasting of 

waxy maize starch was also observed by Achayuthakan & Suphantharika (2008) and Weber 

et al. (2009).  

 

Table 2-3: Influence of xanthan gum and salt content on the pasting parameters of different starches at a 
ratio 5:100 (starch:continuous phase)*. The used xanthan solutions were either heated to 85°C during 
their preparation (indicated by ‘H’) or prepared without heating (unheated, indicated by ‘UH’). 

Starch 
type 

conc. NaCl 
(M) xanthan Peak viscosity (Pa.s) 

  
Breakdown (-)** 

Pasting temperature 
(°C) 

Maize 0.01 0% 1.27 ± 0.01
C
 0.52 ± 0.01

C
 67.1 ± 0.0

A
 

  
0.2% H 1.14 ± 0.01

A
 0.36 ± 0.00

A,B
 67.3 ± 0.4

A,B
 

  
0.2% UH 1.15 ± 0.00

A
 0.35 ± 0.00

A,B
 68.4 ± 0.0

B
 

 
0.1 0% 1.25 ± 0.02

B,C
 0.49 ± 0.02

C
 70 ± 0.7

C
 

  
0.2% H 1.23 ± 0.00

B
 0.34 ± 0.00

A
 70 ± 0.0

C
 

    0.2% UH 1.28 ± 0.01
C
 0.37 ± 0.01

B
 70 ± 0.0

C
 

            

Potato 0.01 0% 2.18 ± 0.01
C
 0.89 ± 0.01

D
 63.6 ± 0.9

A
 

  
0.2% H 1.56 ± 0.03

A
 0.22 ± 0.03

A
 63.7 ± 0.9

A
 

  
0.2% UH 1.56 ± 0.02

A
 0.22 ± 0.01

A
 64.6 ± 0.6

A
 

 
0.1 0% 1.93 ± 0.09

B
 0.61 ± 0.06

C
 64.9 ± 0.2

A
 

  
0.2% H 1.97 ± 0.03

B
 0.49 ± 0.03

B
 64 ± 0.4

A
 

    0.2% UH 1.99 ± 0.01
B
 0.49 ± 0.00

B
 65.1 ± 0.1

A
 

            

Rice 0.01 0% 0.57 ± 0.01
A
 N.D.  

 
61.7 ± 0.6

A,B
 

  
0.2% H 0.80 ± 0.00

B
 N.D.  

 
61.1 ± 0.0

A
 

  
0.2% UH 0.79 ± 0.01

B
 N.D.  

 
62.2 ± 0.5

A,B,C
 

 
0.1 0% 0.56 ± 0.01

A
 N.D.  

 
64.6 ± 0.0

D
 

  
0.2% H 0.96 ± 0.01

C
 N.D.  

 
63.5 ± 1.0

C,D
 

    0.2% UH 1.04 ± 0.01
D
  N.D.    63.0 ± 0.6

B,C,D
 

            

Modified 0.01 0% 0.68 ± 0.01
A
  N.D.  

 
63.9 ± 0.3

A
 

Maize 
 

0.2% H 0.77 ± 0.01
B
 N.D.  

 
62.4 ± 0.6

A
 

  
0.2% UH 0.76 ± 0.00

B
 N.D.  

 
63.6 ± 0.1

A
 

 
0.1 0% 0.70 ± 0.01

A
 N.D.  

 
66.4 ± 0.3

B
 

  
0.2% H 1.14 ± 0.00

C
 N.D.  

 
65.7 ± 0.4

B
 

    0.2% UH 1.24 ± 0.02
D
  N.D.    66.0 ± 1.1

B
 

*For each starch type, superscripts A-D indicate significant differences within columns 

** N.D. indicates parameters that were not detectable  
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Some representative pasting curves of the rice and native maize starch systems are depicted 

in Figure 2-6. Except for the potato starch system (not depicted), the pasting curves of the 

xanthan free systems exhibit a similar behavior at both salt contents. Nevertheless, this is 

strongly changed when xanthan is present. In all cases the peak viscosities of starch/xanthan 

systems with 0.01M NaCl are significantly lower than the corresponding systems with 0.1M 

NaCl. Furthermore, in the case of native maize and potato starch, peak viscosities of the 

xanthan containing systems are lower (0.01M) or similar (0.1M) to their gum free 

counterparts. This clearly demonstrates a strong influence of xanthan gum on the rheological 

properties of the mixed systems, but the exact effects differ between the different starch 

types. The most obvious explanation for the reduced peak viscosity observed in the potato 

and maize starch system would be a restricted swelling. However, this effect is unlikely as 

will be demonstrated by particle size determination (see section 2.3.4).   

 

 

Figure 2-5: Effects of NaCl concentration and the presence of xanthan gum on the pasting parameters of 
the different starch types. 

 

At least a partial explanation may be found in the xanthan transition. After converting to the 

random coil shape, the viscosity of the continuous xanthan phase is reduced. Logically more 

work is required to move granules past each other when the viscosity of the medium is 

higher. Because xanthan gum exhibits a lower viscosity in the random coil conformation, this 

might explain the differences between both salt contents of the mixed xanthan/starch 

systems. Assuming similar granule swelling in both xanthan free and xanthan containing 

media, this theory does not explain why peak viscosities can be higher in a xanthan free 

system. Therefore it is probable that xanthan modifies the manner in which particles interact 

or collide during pasting. It has been suggested that xanthan enwraps the granules as 

illustrated by Chaisawang & Suphantharika (2006) and Gonera & Cornillon (2002). This layer 
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associated with the granules might act as a stabilizing, lubricating film, which lowers the 

interaction between the granules and hence the overall viscosity. However, the effects of 

xanthan gum on the flow properties during pasting will be treated more into detail in chapters 

5 and 6. 

 

For the potato starch system with the lowest salt content, the addition of xanthan causes a 

very marked reduction in peak viscosity (and overall viscosity during the whole pasting 

process). Probably, this cannot solely be ascribed to the occurrence of the xanthan 

transition.  The distinct pasting behavior of potato starch/xanthan systems was previously 

attributed to an electrostatic repulsion (Cai et al., 2011; Shi & BeMiller, 2002). It was stated 

that due to its high degree of phosphorylation, potato starch is slightly anionic, which could 

repel the anionic xanthan molecules. Similar effects were observed with phosphorylated corn 

starch (Shi & BeMiller, 2002) and anionic tapioca starch (Chaisawang & Suphantharika, 

2006). However, it is unclear whether the altered pasting viscosities due to xanthan gum, 

originate from differences in swelling properties, an altered interaction during flow or a 

combination of both. Nevertheless, these effects appear particularly explicit at low salt 

contents. Presumably salts screen the negative charges and reduce the repulsion, hence 

diminishing the electrostatic influence on the overall flow behavior. 

 

 

Figure 2-6: Pasting properties of waxy rice starch (L) and native waxy maize starch (R) as influenced by 
salt content and xanthan gum ( no xanthan, 0.01M NaCl;  no xanthan 0.1M NaCl,  0.2% xanthan 0.01 

M NaCl;  0.2% xanthan 0.1 M NaCl). 

For modified maize and rice starch, the presence of xanthan gum caused more pronounced 

effects as in this case the viscosity during pasting was markedly increased (Figure 2-5). 

Hence, there is a higher direct contribution of the xanthan gum to the overall viscosity of the 

system. For the system with 0.01M NaCl the viscosity during pasting was significantly lower, 

which could again be caused by the xanthan transition. Furthermore, the difference in 

time (min)

0 5 10 15 20 25 30 35 40

a
p

p
a

re
n

t 
v
is

c
o

s
it
y
 (

P
a

.s
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
e

m
p

e
ra

tu
re

 (
°C

)

10

20

30

40

50

60

70

80

90

time (min)

0 5 10 15 20 25 30 35 40

a
p

p
a

re
n

t 
v
is

c
o

s
it
y
 (

P
a

.s
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
e

m
p

e
ra

tu
re

 (
°C

)

10

20

30

40

50

60

70

80

90



Chapter 2: Influence of xanthan on the rheological properties of waxy starches 

 

49 
 

viscosity of the preheated and the unheated xanthan solutions also became apparent in the 

pasting viscosities at the highest salt content (see annex II).  

 

Breakdown was not observed in the case of rice or modified maize starch, but this parameter 

was relatively high for native maize and potato starch. Furthermore, in the xanthan free 

potato starch systems, this parameter was significantly higher at the lowest salt content, 

whereas there was no significant salt effect in the native maize starch systems. On the other 

hand, the presence of xanthan gum markedly reduced the breakdown for both maize and 

potato starch, which could indicate a reduced degree of granule disruption. However, 

breakdown values calculated from pasting data should be interpreted cautiously, because 

the viscosity (hence also viscosity differences) is not solely governed by the starch granules. 

These phenomena shall be tackled more into detail in the following chapters. 

 

2.3.4 PARTICLE SIZE DISTRIBUTION 

The particle size distributions of the pastes were determined 24h after preparation in the 

starch pasting cell. Table 2-4 summarizes the derived volume weighted equivalent diameters 

D[4,3]. The average dimensions of pasted starch granules are generally influenced by two 

phenomena: granule swelling and granule disruption. Pasting data of modified maize starch 

and rice starch showed no breakdown during pasting, therefore the first effect is assumed to 

be predominant in these cases. Modified maize starch seems to be only slightly influenced 

by the presence of xanthan gum and salts whereas rice starch swelling appears to be 

inhibited by xanthan gum, as well as by salt. Rice starch granules have a low swelling power, 

and are often present as associated granules in the raw starch powder. These agglomerated 

granules dissociate when they start to swell. For this starch type the water binding properties 

of xanthan gum might restrict the water imbibition of the rice starch granules.  

 

Table 2-4: Volume weighted equivalent diameters D[4,3] (µm) of the pastes with different starch types as 
influenced by salt concentration and xanthan content. 

  D[4,3] 

Conc. 
NaCl (M) xanthan maize potato rice modified maize 

0.01 0% 29.9 ± 0.5
A
 143.8 ± 0.0

C,D
 24.0 ± 0.3

D
 40.1 ± 1.5

A
 

 0.2% H 37.8 ± 2.0
C
 145.4 ± 1.8

C,D
 21.0 ± 0.3

B
 41.6 ± 1.0

A
 

 0.2% UH 36.1 ± 0.4
C
 149.1 ± 1.5

D
 20.8 ± 0.4

B
 41.8 ± 1.0

A
 

0.1 0% 30.1 ± 1.4
A
 131.0 ± 0.1

A,B
 22.2 ± 0.5

C
 39.9 ± 1.4

A
 

 0.2% H 32.7 ± 0.3
B
 128.2 ± 4.3

A
 19.5 ± 0.3

A
 40.1 ± 0.4

A
 

 0.2% UH 32.6 ± 0.1
B
 139.6 ± 3.8

B,C
 19.5 ± 0.3

A
 40.1 ± 0.1

A
 

For each starch type, superscripts A-B indicate significant differences within columns (p<0.05) 
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The diameters of the maize starch appeared to be clearly higher when xanthan gum was 

present. When combining these findings with the lower breakdown derived from the pasting 

curves, it could be hypothesized that xanthan gum restricts the disruption of these granules. 

The lowest salt content resulted in the highest average diameters for the xanthan containing 

system, which can suggest an additional beneficial effect of the xanthan transition. 

Furthermore, because of these higher diameters, the hypothesis of a more restricted swelling 

caused by xanthan gum seems more unlikely. On the other hand it cannot be fully excluded 

because the average diameters are always the result of combined swelling and breakdown 

effects, whereby it is difficult to distinguish between both phenomena. Nevertheless, the 

observed lower pasting viscosities associated with the xanthan transition, are most probably 

not due to restricted swelling. This effect was also observed for the modified maize starch 

pastes, where the particle size distributions demonstrated that there is no effect of salts and 

xanthan gum on the granule size. For the potato starch systems, there is no significant effect 

of xanthan gum. The size of these granules is primarily influenced by the salt content as 

such, where increasing the NaCl concentration to 0.1M leads to a significant reduction in 

average diameter. Furthermore, it should be remarked that the diverging pasting results 

caused by xanthan, strongly contrast with the limited differences observed in the particle size 

distributions of potato starch.  

 

 

2.3.5 FLOW CURVES OF STARCH PASTES AFTER COOLING 

Some characteristic flow curves of the pastes recorded after 1 day of cold storage are 

represented in Figure 2-7. The derived Herschel-Bulkley parameters of all systems are 

summarized in Table 2-5. The samples are shear thinning, because the flow behavior index 

of all pastes was <1. The upward curvature, which is depicted in the graph at higher shear 

rates, is due to the logarithmic scaling of the shear rate axis. When the data of the different 

systems are compared, it is clear that the presence of xanthan gum causes a more distinct 

change in flow behavior of the rice starch and the modified maize starch systems. 

Comparable observations were made regarding the viscosity differences during pasting. For 

these starch types, breakdown was not observed during pasting and the pastes are expected 

to consist largely of intact granules. For the rice and modified maize starch the increase of 

yield stress and consistency index by the addition of xanthan cannot be attributed to an 

enhanced swelling of the granules, as demonstrated by particle size distributions. In the case 

of rice starch even a reduction of the average granule diameter was observed. Therefore, the 

higher values of these parameters are most likely induced by direct effects of the xanthan 

gum. The presence of xanthan gum could require a higher shear stress for flow initiation and 
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hence a higher yield stress, due to the presence of molecular entanglements. Furthermore, 

Abdulmola et al. (1996b) suggested that even at relatively low concentrations, swollen starch 

granules interact and that this interaction can be further enhanced by xanthan gum through 

the mechanism of depletion flocculation: as two particles approach each other, a point will be 

reached at which surrounding polymer molecules will be excluded from the intervening gap, 

creating a region of lower concentration and hence a lower osmotic pressure which forces 

the two granules together.  

 

Figure 2-7: The effect of xanthan addition on the flow curves (20°C) of modified maize and native maize  
starch pastes containing 0.01M NaCl (starch:solvent ratio = 5:100). 

 

Preheating the xanthan solutions generally resulted in limited effects on the rheological 

properties of the cooled pastes. As mentioned above, the viscosity of the (starch free) 

unheated xanthan samples is higher than the viscosity of the heated solutions. At the highest 

salt content, when no transition can occur, the stabilizing action of the ions should preserve 

this difference during pasting.  Nevertheless, this effect fades in the presence of starch, as 

indicated by the comparable flow curves of starch pastes containing either unheated or 

preheated xanthan.  

 

The interpretation of the flow behavior of the native maize and potato starch systems is more 

complex. For these systems some marked differences in granule sizes were induced by the 

presence of xanthan gum. Nonetheless, it appears that the effects of xanthan gum on the 

final rheological behavior of these starches were rather limited. It can be assumed that 

despite the presence of more intact and/or larger granules, the majority of the granules is still 

disrupted and the remaining ones are highly swollen and consequently have lost their rigidity. 
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Microstructurally these systems can be described as still intact granules and granule 

remnants present in a continuous watery phase containing dissolved amylopectin and 

xanthan molecules.  Hermansson & Svegmark (1996) stated that the rheological behavior of 

overcooked starch pastes is dominated by the continuous phase. The flow properties of such 

a macromolecular solution are very complex and governed by the phase behavior of both 

polymers. Unfortunately, there is little or no direct evidence available regarding the phase 

behavior of amylopectin and xanthan molecules, that could help explaining these 

phenomena. 

 

Table 2-5: Influence of xanthan gum and salt content on the Herschel-Bulkley parameters fitted to the flow 
curves of the cooled pastes (20°C) at a ratio of 5:100 (starch:continuous phase). The used xanthan 
solutions were either heated to 85°C during their preparation (indicated by ‘H’) or prepared without 
heating (unheated, indicated by ‘UH’). 

Starch 
type 

NaCl (M) xanthan 0 (Pa) k (Pa.s
n
) n (-) R² 

Maize 0.01 0% 7.22 ± 0.23 6.83 ± 0.23 0.505 ± 0.008 0.997 

  
0.2% H 8.48 ± 0.21 7.81 ± 0.22 0.433 ± 0.006 0.998 

  
0.2% UH 8.09 ± 0.35 7.34 ± 0.39 0.415 ± 0.011 0.992 

 
0.1 0% 6.17 ± 0.37 7.94 ± 0.38 0.468 ± 0.010 0.994 

  
0.2% H 3.86 ± 0.42 13.36 ± 0.47 0.326 ± 0.007 0.996 

  
0.2% UH 4.18 ± 1.06 15.09 ± 1.19 0.307 ± 0.016 0.981 

             
Potato 0.01 0% 24.82 ± 0.84 6.86 ± 0.69 0.508 ± 0.022 0.987 

  
0.2% H 25.21 ± 0.36 7.32 ± 0.32 0.460 ± 0.009 0.998 

  
0.2% UH 24.36 ± 0.49 6.69 ± 0.43 0.453 ± 0.013 0.994 

 
0.1 0% 27.17 ± 0.91 7.69 ± 0.76 0.491 ± 0.021 0.987 

  
0.2% H 31.81 ± 0.83 7.78 ± 0.74 0.432 ± 0.020 0.988 

  
0.2% UH 32.59 ± 0.65 6.33 ± 0.57 0.455 ± 0.019 0.990 

             
Rice 0.01 0% 10.64 ± 0.34 4.88 ± 0.33 0.504 ± 0.015 0.988 

  
0.2% H 12.01 ± 0.22 12.93 ± 0.25 0.344 ± 0.004 0.999 

  
0.2% UH 11.92 ± 0.09 11.61 ± 0.11 0.352 ± 0.002 0.999 

 
0.1 0% 7.89 ± 0.27 4.50 ± 0.27 0.498 ± 0.014 0.990 

  
0.2% H 11.71 ± 0.78 12.13 ± 0.88 0.370 ± 0.015 0.983 

  
0.2% UH 12.30 ± 0.42 11.93 ± 0.47 0.357 ± 0.008 0.995 

             
Modified 0.01 0% 14.97 ± 0.08 3.34 ± 0.06 0.627 ± 0.004 0.999 

Maize 
 

0.2% H 15.40 ± 0.17 11.80 ± 0.18 0.377 ± 0.003 0.999 

  
0.2% UH 15.99 ± 0.16 11.50 ± 0.17 0.381 ± 0.003 0.999 

 
0.1 0% 16.61 ± 0.11 3.70 ± 0.09 0.634 ± 0.005 0.999 

  
0.2% H 18.28 ± 0.26 12.11 ± 0.28 0.409 ± 0.005 0.998 

    0.2% UH 19.67 ± 0.28 13.05 ± 0.31 0.388 ± 0.005 0.997 
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2.3.6 CLUSTERING OF THE STUDIED PASTES BY PRINCIPAL COMPONENTS 

ANALYSIS  

Throughout this setup, large differences in the derived analytical parameters were observed, 

depending on the type of starch that was used. In order to get an overview of the variability 

between the different starches and compositions, PCA was performed on the characteristics 

derived from pasting (peak viscosity, trough viscosity, breakdown), laser light scattering 

(D[4,3]) and flow experiments (0, k, n). Because the main focus of this dissertation lies on 

the (micro-)structural properties, gelatinization and pasting temperatures were not included in 

this analysis to facilitate the interpretation. Half of the samples (modified maize, rice) 

exhibited a breakdown equal to 0, this parameter was removed from the PCA, leading to a 

higher explanation of the total variance by PC1 and PC2 (58.67% and 32.67% respectively). 

Figure 2-8 represents the score and loading plots for the first two principal components. The 

loading plot illustrates how the original variables contribute to both principal components. The 

first PC is governed by the yield stress, the pasting properties and the average granule 

diameter. These properties can be grouped as swelling and degradation characteristics. PCA 

confirms the hypothesis that the yield stress is strongly related to the granule diameter. 

There is also a logical correlation between peak and trough viscosity. The flow parameters k 

and n determine the second PC and appear inversely correlated, which is expected 

considering the Herschel-Bulkley equation.  

 

The lower part of the scoring plot contains the samples with xanthan gum (closed symbols), 

which corresponds with their stronger shear thinning effect (= lower n-value) and higher 

consistency index k. The graph depicts the aforementioned differences between the starch 

types more graphically: there is a general similarity between rice starch and modified maize 

starch. The distinctively larger granule size starch and the corresponding pasting properties, 

separate the potato starch systems from the other types (PC1). However, their flow 

properties (PC2) resemble the native maize starch systems (except for 0.1M NaCl with 

xanthan). Furthermore, the presence of xanthan gum induces very little variation among the 

potato starch samples. The latter conclusion also holds for the maize starch at a salt content 

of 0.01M. As stated above, both maize and potato starch granules are prone to degradation, 

resulting in large amounts of amylopectin in the continuous phase, which could explain the 

analogies between both types. Conversely, modified maize and rice starch exhibit distinct 

properties. Their pastes were characterized by a high extent of granule preservation, and can 

therefore be considered as true swollen starch dispersions. In particular the presence of 

xanthan gum markedly influenced these pastes, which is reflected in large changes in flow 

properties (PC2).  
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Figure 2-8: Loading (top) and score plots (bottom) of the first two principal components (PC), visualizing 
the variability among the different starch pastes. The analysis is based on parameters derived from 

pasting (peak and trough viscosity), flow curves (yield stress, consistency index k and flow behavior 
index n) and particle size distributions (D[4,3]).  Symbols used in score plot:  native maize;  potato; 

rice;  modified maize. Open symbols: without xanthan, closed symbols: with xanthan. 

 

2.4 CONCLUSIONS 

This chapter described the influence of xanthan on the properties of waxy starches, with 

special focus on the effects of the conformational transition. Different types of waxy starches 

were assessed within the same setup, in order to develop a more generalized 

comprehension of these systems. The unique aspects of this work allowed to generate 

insights that can help understand some of the discrepancies found in literature. 
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At the investigated concentrations, the xanthan transition did not influence the gelatinization 

of waxy starches but it clearly affected the pasting behavior. When starch/xanthan systems 

were heated above the xanthan transition temperature, the conformational change of 

xanthan in the continuous phase gave rise to reduced pasting viscosities. However, the 

effect of this transition is not directly noticeable in the flow behavior of the pastes after 

cooling. 

 

Furthermore, xanthan gum appears capable of reducing breakdown of shear sensitive waxy 

starches (native maize, potato). This stabilizing action might be enhanced by the xanthan 

transition but further research is required to confirm this. Nevertheless, the possible granule 

protecting effect of xanthan gum only had a limited effect on the flow behavior after cooling. 

Most likely, the majority of the granules is broken down under these pasting conditions, even 

in the presence of xanthan gum. Therefore these pastes behave as macromolecular 

solutions, whose flow behavior is dominated by the dissolved starch fraction. 

 

The specific effects of xanthan gum on the flow properties of the systems, during pasting but 

also after cooling, strongly depended on the type of starch. Whereas its addition at the 

concentrations used here only caused slight (relative) changes in the native maize and 

potato starch systems, xanthan gum had a large influence on the flow behavior of the 

starches with a large extent of granule preservation (modified maize, rice). Therefore granule 

integrity appears to be a prerequisite for optimal xanthan functionality. 

 

The fragile nature of native waxy maize and potato starches is clearly their main 

technological disadvantage. A better preservation of their granular structure would not only 

result in better sensory properties, it might also lead to improved synergies with xanthan 

gum. In the following chapter, it will be attempted to better protect the granules during 

processing, by lowering the heating temperatures.  

 



Relevant publication: Heyman, B., Depypere, F., Van der Meeren, P., Dewettinck, K. (2013). 

Processing of waxy starch/xanthan gum mixtures within the gelatinization temperature range . 

Carbohydrate Polymers, 96 (2), 560-567.  
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3.1 INTRODUCTION 

When starch granules are heated in excess water, they undergo gelatinization. During this 

process, the hydrogen bonds in amorphous regions are disrupted and the internal order in 

the granules is lost. Water, which acts as a plasticizer, is absorbed and causes swelling of 

the starch granules. The process of pasting follows gelatinization and occurs with continued 

heating and shearing of starch granules in the presence of excess water. During this step, 

granule swelling proceeds, amylose leaches from the granules and some of the fragile, 

swollen granules are disrupted. The resulting paste consists of a dispersed phase of swollen 

granules, granule ghosts, and granule fragments within a continuous aqueous phase of 

dissolved starch polymer molecules (BeMiller, 2011; Hermansson & Svegmark, 1996). When 

granule degradation becomes predominant, undesired textures are formed and the 

rheological properties are governed by the continuous phase (Hermansson & Svegmark, 

1996). In food products such as sauces and puddings containing many broken starch 

granules, the texture becomes long or slimy. Conversely, it is generally known that 

sufficiently swollen starch granules, with limited breakdown, yield products with a good 

sensory perception.  

 

The swelling of starch granules becomes significant when heated above the gelatinization 

temperature (Choi & Kerr, 2004; Jacquier et al., 2006; Li & Yeh, 2001; Zhu et al., 2009). In 

food production processes, heating is usually performed at more elevated temperatures 

(>85°C) which can be advisable to impart microbial stability. However, these temperatures 

are not necessarily optimal for starch functionality, particularly because starch degradation 

might occur. Therefore, in most commercial applications cross-linked starches are used, 

which can withstand or even require more elevated temperatures and higher levels of 

shearing. Few studies suggest that when heated at temperatures slightly higher than the 

gelatinization temperature, granule swelling is incomplete, but their rigidity is preserved 

(Bagley & Christianson, 1982; Jacquier et al., 2006; Mandala & Bayas, 2004; Rao et al., 

1997). However, these setups are mostly restricted to static heating procedures (no shear) at 

low starch concentrations to determine the swelling power and polymer leaching as a 

function of different heating temperatures. On the contrary, little information is available 

regarding the actual pasting behavior of (native) starches under these conditions and how it 

affects the final properties of the resulting systems. Particularly for native waxy starches, 

which are extremely sensitive to thermal breakdown, it is a great challenge to preserve their 

granular integrity during production processes. It should therefore be interesting to know 



Chapter 3: Processing of waxy starch/xanthan gum mixtures within the gelatinization 
temperature range 

 
 

 

58 
 

whether the use of mild temperatures can result in improved performance of the waxy starch 

granules. 

 

When heated together, food gums in general (see section 1.3.2) and xanthan gum in 

particular are known to affect the granule swelling and degradation during pasting. At high 

starch contents swelling of the starch is reduced in the presence of xanthan, probably as a 

consequence of restricted water availability (Kruger et al., 2003; Song et al., 2008; Song et 

al., 2006; Tester & Sommerville, 2003; Weber et al., 2009). At lower starch concentrations 

(<6%) the granule swelling is sometimes enhanced by xanthan gum (Chaisawang & 

Suphantharika, 2006; Mandala & Bayas, 2004; Samutsri & Suphantharika, 2012). Shi & 

BeMiller (2002) attributed this to an interaction between xanthan and amylose in the 

continuous phase, causing increased amylose leaching, which in turn leads to a higher water 

absorption. It should also be remarked that, when swollen to higher dimensions, the granules 

become more vulnerable to disruption (BeMiller, 2011). In anionic starches an opposite effect 

was observed due to the repelling forces between the xanthan molecules and the starch 

polymers, leading to reduced swelling and lower viscosities (Cai et al., 2011; Shi & BeMiller, 

2002). Xanthan gum is also reported to reduce the breakdown during pasting (Chaisawang & 

Suphantharika, 2006; Samutsri & Suphantharika, 2012; Sikora et al., 2008b; Song et al., 

2006; Weber et al., 2009). Possibly, this can be related to its ability to enwrap the surface, 

hence stabilizing the granule (Abdulmola et al., 1996b; Achayuthakan & Suphantharika, 

2008; Achayuthakan et al., 2006; Gonera & Cornillon, 2002).  

 

In the preceding chapter, it was demonstrated that waxy maize and potato starches are 

easily disrupted during heating, even when a mild shear rate (50 s-1) is imposed. 

Furthermore, it was found that for these starches, the addition of xanthan gum can result in 

larger granule sizes. However, this effect was not noticeable in the final rheological 

properties because granule breakdown was abundant in all systems and the rheological 

properties were dominated by the amylopectin moiety present in the continuous phase. The 

purpose of this experimental setup was to investigate whether the use of temperatures within 

the gelatinization range, along with the addition of xanthan gum, could lead to a more 

controlled swelling and a more limited breakdown of the native starch granules. In a first step 

the optimal preparation temperatures were derived by DSC. Secondly, pasting experiments 

were performed at the selected temperatures and at two different shear rates (50 s-1 and 150 

s-1). The use of the starch pasting cell, mounted to a controlled stress rheometer offers the 

opportunity to work at accurately controlled heating and shearing conditions. Due to the 

sensitivity of this system small differences during the pasting process can be monitored. The 
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same samples were stored overnight and further characterized by means of laser light 

scattering and rheology (flow curves). 

 

 

3.2 MATERIALS AND METHODS 
 

3.2.1 MATERIALS 

The same type of xanthan gum, native waxy maize starch and waxy potato starch was used 

as described in the preceding chapter. Because both starch types are from a waxy variety 

the denomination ‘waxy’ will further not be repeated throughout the chapter. The preparation 

of the xanthan gum solutions (0.2% w/v) occurred in a similar manner as described in 

paragraph 2.2.2. 

 

 

3.2.2 STARCH/XANTHAN SYSTEMS 
Starches were dispersed at room temperature in salt solutions of 0.01M NaCl and 0.1M NaCl 

or in xanthan solutions (0.2% w/v) containing either 0.01M NaCl or 0.1M NaCl. Samples from 

this premix were either transferred to DSC-pans or to the starch pasting cell. The 

starch:solvent ratio (w:w) was always 5:100, except for the last part of the experimental setup 

where ratios of 3:100 and 7:100 were used as well.  

 

 

3.2.2.1 DSC measurements 

The gelatinization properties of the different systems have been derived in section 2.3.2.  

The total enthalpy of the gelatinization is denoted as Htot. Within the same starch type, the 

Htot of the different compositions were not significantly different (=0.05), as verified by 

ANOVA (see section 2.3.2). Therefore, one single averaged value of Htot was calculated for 

each starch type.  

  

Isothermal gelatinization was performed by heating (3°C/min) to the desired setpoint 

temperature and holding this isothermally for 10 minutes (Figure 3-1). Next a rapid cooling 

step (20°C/min) to 45°C was introduced and after holding for 5 minutes, the remaining 

gelatinization was determined by heating to 99°C at a ramp of 3°C/min. The enthalpic 

transition during this second ramp is denoted by Hungel. The fraction of the starch that did 
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not gelatinize during the isothermal step was quantified as Hungel/Htot (assuming no 

recrystallization). 

 

Figure 3-1: Temperature profile imposed during DSC-measurements for quantification of the starch 
fraction that remains ungelatinized after an isothermal step at the setpoint temperature 

 

 

3.2.2.2 Pasting experiments 

The pasting behavior was studied using the starch pasting cell conformation of the AR2000 

rheometer (TA Instruments, New Castle, USA). Starch suspensions were presheared at 100 

s-1 for 2 minutes and then heated to the desired holding temperature (67.5, 70 or 72.5°C) at a 

heating rate of 3°C/min, held isothermal for 10 minutes and then cooled down to 20°C 

(5°C/min). Throughout the heating and cooling steps a shear rate of either 50 or 150 s-1 was 

imposed. The peak viscosity was attained during the heating or the isothermal step, 

depending on the setpoint temperature. In many cases, no true peak was observed as the 

viscosity kept continuously increasing. The reported peak viscosity then corresponds with the 

maximum viscosity which is attained at the end of the isothermal step. The relative 

breakdown was calculated as the difference between the peak viscosity and the viscosity at 

the end of the isothermal step, divided by the peak viscosity (expressed as percent). 

Throughout the manuscript, the term ‘breakdown’ refers to parameter derived from the 

pasting curves. Other terms shall be used to refer to the actual microstructural process of 

granule disruption (e.g. disintegration, abrasion, break up…).  
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The cooled samples were recollected and stored for 24h in the refrigerator (5°C) for further 

analysis. The pasting data were statistically compared by ANOVA and Tukey’s post hoc test 

as described in §2.2.7 

 

 

3.2.3 ANALYSIS OF THE COLD PASTES 

Flow curves and particle size distributions of the cold pastes were performed as described in 

section 2.2.6 and section 2.2.5, respectively. 

 

3.2.4 CONFOCAL SCANNING LASER MICROSCOPY (CSLM) 

Stock solutions of rhodamine B (Sigma-Aldrich, Diegem, Belgium) reagent were prepared by 

dissolving the right amount (0.2 w/v%) in distilled water (Nagano et al., 2008). To prepare the 

stained samples, 20 µl of rhodamine stock solution was dropped onto to glass bottom dishes 

(MatTek corp., MA, USA). Subsequently approximately 200 mg of paste was added. Paste 

samples were covered and stored for at least 2h at 20°C to allow diffusion of the dye into the 

system. 

 

The samples were examined under a confocal microscope (Nikon A1R; Nikon Instruments 

Inc., Paris, France), using a 40x/1.4 oil Plan Apo objective. A multi-line Ar laser was used for 

excitation (562 nm) and fluorescence was detected with a 595/50 nm bandpass filter. The 

pinhole was set to 1 A.U. Digital image files were acquired at a resolution of 0.41µm/pixel 

and annotated using FIJI, a packaged version of ImageJ freeware (Rasband, W.S., ImageJ; 

US National Institutes of Health, Bethesda, MD, http://www.fiji.sc).  

 

 

3.3 RESULTS AND DISCUSSION 
 

3.3.1 DETERMINATION OF PROCESSING TEMPERATURES AND ISOTHERMAL 

GELATINIZATION 

The setpoint temperatures (i.e. temperatures of the isothermal heating step) for the pasting 

experiments were based on the previously determined gelatinization characteristics (section 

2.3.2). The intention is to use temperatures as low as possible, but which still allow swelling 

of the granules, i.e. gelatinization should still take place. For the maize starch system, 

gelatinization was not influenced by the xanthan content, as there were no statistical 

differences between the gelatinization temperatures and gelatinization enthalpy of the 
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samples when heated in a continuous ramp to 99°C. Between the two NaCl contents there is 

a difference in gelatinization temperatures of about 3°C. The average temperature between 

the gelatinization onset and the gelatinization peak of the systems at 0.01M NaCl and 0.1M 

NaCl, i.e. 70°C and 72.5°C respectively, were chosen as processing temperature for the 

isothermal step. In order to control the size of the setup, only discrete temperature steps of 

2.5°C were considered.  

 

The fraction of the starch that remained ungelatinized was quantified by DSC. For the maize 

starch, these experiments revealed that after heating at 70°C for 10 minutes, about 11% of 

the starch is ungelatinized for the xanthan free system and 17% for the xanthan containing 

system at the lowest salt content (Figure 3-2). This illustrates that particularly under these 

low temperature conditions xanthan gum might affect the gelatinization process, for example 

by slowing down water diffusion into the starch granules. At the highest salt content (0.1M), 

the larger part of the granules remained ungelatinized (±63%) at this temperature. The 

gelatinization occurs over a quite broad temperature range, and the preceding isothermal 

step has thus caused a fractionation between the granules gelatinizing at the lowest 

temperatures and the ones gelatinizing at the higher temperatures. After an isothermal step 

at 72.5°C, the systems with a salt content of 0.01M were fully gelatinized, whereas 

approximately 20% remained ungelatinized in the presence of 0.1M NaCl.  

 

 

Figure 3-2: Influence of xanthan (X) concentration and NaCl (0.01M, 0.1M) content on the degree of 
gelatinization after heating for 10 min to temperatures within the gelatinization range, as determined by 

DSC-measurements. Left: maize starch, right: potato starch 
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For the waxy potato starch, it has been demonstrated that the differences in salt content 

have a less strong effect on the gelatinization temperatures, only a slight shift of less than 

1°C was detected when increasing the salt content from 0.01 to 0.1M (section 2.3.2). A 

temperature of 67.5°C was chosen as isothermal processing temperature, along with 70°C. 

All samples appeared to be fully gelatinized after an isothermal step at 70°C of 10 minutes, 

but this was not the case when heated at 67.5°C. For the xanthan free system 12% of the 

starch was ungelatinized at the lowest salt content and 22% for the systems with 0.1M NaCl. 

In the case of the xanthan containing dispersions, this was 16% and 24%, respectively. 

 

 

3.3.2 INFLUENCE OF PROCESSING CONDITIONS ON PASTING BEHAVIOR 

Native waxy starches swell quickly when heated above the gelatinization temperature 

(Jacquier et al., 2006; Schirmer et al., 2013). This rapid swelling which leads to large granule 

sizes, is at least partially responsible for their high shear sensitivity. The selected processing 

temperatures in this setup were kept as closely as possible to the gelatinization temperature 

range to avoid excessive swelling and consequently rupture of the granules. Furthermore, 

the heating rate was kept relatively low (3°C/min) to allow an equal temperature distribution 

all over the sample and to avoid local temperature overshoot. In this manner, it was possible 

to work at different degrees of gelatinization as demonstrated in the preceding section. 

Pasting experiments were performed at two different shear rates (50 s-1 and 150 s-1). At too 

low shear rates, sedimentation of starch granules could occur, particularly in the xanthan-free 

systems. High shear rates (>200 s-1) appeared to be too destructive for some of the samples. 

 

Figure 3-3 depicts the pasting behavior of the maize starch systems at a temperature of 

72.5°C and a shear rate of 150 s-1. Peak viscosities and breakdown derived from the different 

pasting experiments are represented in Table 3-1.  For maize starch it is clear that the limited 

amount of gelatinization of the samples with 0.1M NaCl at 70°C led to a largely incomplete 

swelling of the starch granules, as illustrated by the low viscosities. For the lowest salt 

contents a significant viscosity increase indicated a fair extent of granule swelling at this 

temperature. When processed at a shear rate of 50 s-1 no breakdown was exhibited (i.e. no 

peak was observed in the curve), and the xanthan containing sample did not even show 

breakdown at the highest shear rate. Conversely, when pasting was performed at 72.5°C, all 

samples at the lowest salt content exhibited breakdown. However, this parameter was clearly 

lower when xanthan was present.  At this temperature, the swelling within the samples 

containing 0.1M resulted in a siginificant viscosity increase.  When sheared at 50 s-1 no 
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equilibrium viscosity was attained during the isothermal step.  However, plateau values were 

recorded at a shear rate of 150 s-1. Similar to the processes at 70°C, there was significantly 

less breakdown of the systems when xanthan gum was present.  

 

Figure 3-3: The salt content, which controls the gelatinization temperature, and the presence of xanthan 
gum, strongly affects the pasting behavior of waxy maize starch (starch:solvent = 5:100) at 72.5°C and a 
shear rate of 150 s

-1 
( no xanthan 0.01M NaCl;  0.2% xanthan 0.01M NaCl;  no xanthan, 0.1M NaCl;  

0.2% xanthan 0.1M NaCl).  

 

The differences in gelatinization temperature between the highest and the lowest salt content 

were much lower for the potato starch systems. Nonetheless at 67.5°C the systems at 0.1M 

NaCl showed an incomplete swelling when processed at 50 s-1 as indicated by the 

continuously increasing viscosity (not depicted), but at 150 s-1, plateau values (xanthan 

containing paste) and even breakdown (xanthan free paste) was observed (see Figure 3-4). 

Elevating the temperature to 70°C allowed more granules to gelatinize and swell at 0.1M 

NaCl, whereas the samples with the lowest salt content became more fragile as illustrated by 

the observed breakdown for the sample without xanthan at 50 s-1 and for both samples at 

150 s-1 (Table 3-1). 
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Figure 3-4: Pasting behavior of waxy potato starch (starch:solvent=5:100) systems at 67.5°C and a shear 
rate of 150 s

-1
 as affected by xanthan and salt content  ( no xanthan 0.01M NaCl;  0.2% xanthan 0.01M 

NaCl;  no xanthan, 0.1M NaCl;  0.2% xanthan 0.1M NaCl). 

 

These results clearly demonstrate that the pasting behavior of shear sensitive starches can 

be better controlled at low temperatures. By selecting a processing temperature slightly 

higher than the gelatinization onset, breakdown can be reduced. Furthermore an increased 

shear rate facilitates the viscosity build-up at slowly swelling conditions, similar phenomena 

have been observed with cross-linked starches (Nayouf et al., 2003). Presumably, the 

imposed shear weakens the internal bonds in the granules and facilitates water uptake of the 

granules. Conversely, increasing the shear can lead to breakdown at higher temperatures. In 

practice, operation temperatures can be chosen slightly lower when higher shear rates are 

applied and vice versa. Nonetheless, a correct choice of the operating temperature appears 

to be most decisive.  

 

Xanthan gum can play a mediating role in starch pasting at these moderate temperatures. 

Breakdown was significantly reduced for all investigated samples. In addition, DSC 

experiments suggested that at these temperature conditions, gelatinization is partially 

inhibited by xanthan. This could imply a more restricted swelling of the granules and 

consequently an additional reduction in breakdown. Particularly at the lowest salt content, 

pasting viscosities of the xanthan containing samples are lower than for the xanthan free 

systems. However, it was demonstrated in chapter 2 that this marked viscosity reduction is 

also observed at conditions where granule swelling is not restricted. These observations 
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suggest that a restriction in swelling, if it occurs, is probably not the only reason for the 

stabilizing effect of xanthan gum. When xanthan gum is heated at low salt contents, its rigid 

helical structure transforms to a random coil with much lower viscosity (Capron et al., 1998b; 

Choppe et al., 2010; Milas & Rinaudo, 1986). At higher salt contents this transition does not 

take place, which explains the differences between the two salt contents. Furthermore, 

xanthan gum most likely can change the impact between the granules during the pasting 

process. It was suggested before that xanthan gum is capable of enwrapping the starch 

granules (Cai et al., 2011; Chaisawang & Suphantharika, 2006; Gonera & Cornillon, 2002). 

This envelope might physically stabilize the particle by acting as a lubricating layer. Another 

explanation might be that an increased viscosity in the presence of xanthan in the continuous 

phase reduces the turbulence in the starch pasting cell and hence the Reynolds number, 

which leads to a lower collision rate of the granules (Walstra, 2003). These phenomena 

might explain why systems, even with the same extent of granule swelling, can exhibit lower 

viscosities when xanthan gum is present and will be studied more into detail in chapter 5.  

 

Table 3-1: Pasting properties of different starch/xanthan mixtures at two NaCl levels (0.01M, 0.1M) as 
influenced by temperature and shear rate imposed during pasting 

Starch 
type 

Setpoint 
temp. 
(°C) 

NaCl (M) xanthan Shear rate 50 s
-1

 Shear rate 150 s
-1

 

        
Peak viscosity 

(Pa.s) 

 Relative 
break-

down (%) 
Peak viscosity 

(Pa.s) 

 Relative 
break-

down (%) 

Maize 70 0.01 0% 0.79 ± 0.01
E
 0.0 0.37 ± 0.01

D
 7.5 

   
0.2% 0.66 ± 0.00

D
 0.0 0.38 ± 0.01

D
 0.0 

  
0.1 0% 0.02 ± 0.00

A
 0.0 0.04 ± 0.00

A
 0.0 

   
0.2% 0.14 ± 0.00

B
 0.0 0.12 ± 0.00

B
 0.8 

 
72.5 0.01 0% 1.21 ± 0.01

G
 15.9 0.56 ± 0.01

F
 34.1 

   
0.2% 1.06 ± 0.01

F
 3.3 0.49 ± 0.00

E
 14.6 

  
0.1 0% 0.50 ± 0.03

C
 0.0 0.29 ± 0.02

C
 1.7 

   
0.2% 0.69 ± 0.01

D
 0.0 0.40 ± 0.01

D
 0.5 

Potato 67.5 0.01 0% 1.89 ± 0.03
C
 0.0 0.86 ± 0.01

C
 14.2 

   
0.2% 1.13 ± 0.03

A
 0.0 0.62 ± 0.00

A
 1.1 

  
0.1 0% 1.23 ± 0.18

A
 0.0 0.70 ± 0.01

B
 3.7 

   
0.2% 1.41 ± 0.03

B
 0.0 0.73 ± 0.02

B
 1.1 

 
70 0.01 0% 2.20 ± 0.05

D
 9.2 1.03 ± 0.01

E
 29.5 

   
0.2% 1.33 ± 0.07

B
 0.0 0.73 ± 0.02

B
 4.1 

  
0.1 0% 1.88 ± 0.01

C
 0.8 0.95 ± 0.02

D
 18.6 

      0.2% 1.90 ± 0.00
C
 0.5 0.88 ± 0.00

C
 13.4 

For each starch type, superscripts A-G indicate significant differences within columns (p<0.05) 
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3.3.3 PARTICLE SIZE DISTRIBUTION 

Particle size distributions of the cooled pastes were determined in order to derive the effects 

of the different pasting conditions and the addition of xanthan gum on the granules. Two 

different derived diameters were taken into consideration. Besides the volume-weighted 

mean diameter D[4,3], the 10th percentile of the volume-weighted particle size distribution 

D(0.1) was considered. The latter accounts for the smaller fragments, as 10% (V) of the 

particles have a diameter smaller than this one. Consequently, this parameter can be 

regarded as a measure for the fragments originating from disrupted granules. The granule 

size distribution is determined by two phenomena: granule swelling and granule disruption. 

Hence, a combined interpretation of both parameters provides additional information on the 

microstructural changes that took place during the heating and cooling steps.  The derived 

diameters are summarized in Table 3-2. 

 

For the maize starch systems processed at 70°C, differences in particle diameters could only 

be observed at the lowest salt content (Table 3-2). In these cases the granule size was lower 

when pasted at a shear rate of 150 s-1. However this reduction was much less pronounced 

when xanthan gum was present. Similar trends are observed for the pastes prepared at 

72.5°C. Likewise, at a salt content of 0.1M (and heating temperature of 72.5°C), varying the 

shear rates was more noticeable in the xanthan free pastes than in the xanthan containing 

pastes. In general, these results are in line with the conclusions of the pasting experiments: 

the effect of increasing the shear rate during preparation resulted in smaller granule sizes for 

samples where breakdown was exhibited during pasting. Granules of samples where 

swelling was limited or incomplete, and breakdown seemed not to occur, appeared not to be 

influenced by xanthan gum (e.g. the pastes with 0.1M NaCl and prepared at 70°C with shear 

rate 50 s-1). This could prove that xanthan gum does not restrict swelling of the granules at 

the concentrations considered here. Although it should be noted that – based on the DSC 

measurements – xanthan gum might reduce the number of granules that can gelatinize in the 

given conditions. This does not necessarily mean that the ones that are capable of swelling, 

adopt smaller diameters.  As the volume-weighted mean diameter D[4,3] is dominated by the 

size of the fully swollen granules, the contribution of the unswollen granules might be 

overlooked. Conversely, it cannot be fully excluded that xanthan actually enhances the 

swelling of the granules. In chapter 5 it will be attempted to elucidate the precise effects of 

xanthan gum on these waxy maize starch systems. 
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Table 3-2: The volume-weighted mean diameter D[4,3] and the 10
th

 percentile of the volume-weighted 
particle size distribution D(0.1) as influenced by xanthan gum, NaCl content and pasting conditions (shear 
rate, temperature) 

      maize potato 

NaCl (M) Xanthan 
shear 
rate (s

-1
) D(0.1)     D[4,3]     D(0.1)     D[4,3]     

   
70°C 

     
67.5°C 

     
0.01 0% 50 15.2 ± 0.2

C 
34.0 ± 0.7

B
 46.0 ± 2.0

C
 144.1 ± 3.5

C
 

  
150 12.5 ± 0.1

A
 29.3 ± 0.5

A
 37.1 ± 0.3

A,B
 123.1 ± 2.2

B
 

 
0.2% 50 15.9 ± 0.4

C
 35.7 ± 2.2

B
 60.0 ± 0.7

E
 175.0 ± 1.8

E
 

  
150 14.3 ± 0.2

B 
34.6 ± 1.1

B
 48.2 ± 0.8

C,D
 149.6 ± 1.5

C,D
 

0.1 0% 50 13.1 ± 0.4
A
 28.0 ± 0.5

A
 47.7 ± 1.3

C,D
 148.9 ± 2.4

C,D
 

  
150 12.8 ± 0.2

A
 27.9 ± 0.3

A
 35.3 ± 0.6

A
 110.3 ± 1.1

A
 

 
0.2% 50 12.6 ± 0.3

A
 27.4 ± 0.3

A
 49.3 ± 1.0

D
 156.3 ± 4.0

D
 

  
150 12.3 ± 0.9

A
 27.0 ± 1.2

A
 38.4 ± 2.3

B
 122.6 ± 5.7

B
 

   
72.5°C 

     
70°C 

     
0.01 0% 50 13.8 ± 0.1

B,C
 34.0 ± 0.6

C
 45.3 ± 0.8

C,D
 140.5 ± 1.1

C,D 

  
150 11.3 ± 1.0

A
 29.0 ± 0.6

A
 37.3 ± 1.1

B
 124.1 ± 2.4

B,C
 

 
0.2% 50 14.7 ± 0.6

B,C
 36.8 ± 1.6

D
 52.4 ± 1.4

E
 175.1 ± 12.0

E
 

  
150 11.0 ± 0.2

A
 33.0 ± 0.7

B,C
 43.1 ± 0.4

C
 136.9 ± 2.5

C,D
 

0.1 0% 50 15.2 ± 0.1
C
 32.6 ± 0.8

B,C
 42.9 ± 0.8

C
 134.6 ± 2.1B,C,D 

  
150 13.4 ± 0.1

B
 29.9 ± 0.2

A
 32.1 ± 0.7

A
 108.3 ± 4.8

A
 

 
0.2% 50 14.6 ± 0.1

B,C
 32.1 ± 0.6

B
 48.6 ± 3.2

D
 148.5 ± 8.3

C,D
 

  
150 14.5 ± 1.0

B,C
 32.3 ± 0.1

B
 36.6 ± 1.7

B
 121.0 ± 7.3

A,B
 

   
85°C 

     
85°C 

     
0.01 0% 50 9.6 ± 0.2

A
 29.9 ± 0.5

A
 44.3 ± 0.1

A
 143.8 ± 0.0

A
 

  0.2% 50 9.4 ± 0.7
A
 37.8 ± 2.0

B
 46.4 ± 0.6

A
 145.3 ± 1.8

A
 

For each starch type/temperature combination, superscripts A-E indicate significant differences within columns 

(p<0.05) 

 

 

The results obtained for the potato starch pastes were comparable with those derived for the 

maize starch systems. Nevertheless, the differences induced by both shear rates were more 

distinct, even in the presence of xanthan gum (Table 3-2). Considering the large dimensions 

of potato starch granules, a lower shear-tolerance is not unlikely. In all of these systems the 

average diameters were much lower when processed at 150s-1, indicating a stronger shear 

sensitivity than for the maize starch. Nonetheless, the granules of the xanthan containing 

pastes proved to be larger compared to the gum free systems. In this case the effect of 

xanthan gum appears to be much more pronounced at the lowest salt content. This might be 

related to either the occurrence of the xanthan transition or to a higher electrostatic repulsion 

at low salt concentrations. Some researchers have suggested an electrostatic incompatibility 

between xanthan gum and the potato starch which has an anionic nature due to its high 

degree of phosphorylation (Cai et al., 2011; Shi & BeMiller, 2002). This repulsion might in 
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turn be (partially) shielded by the present ions, explaining the differences between both salt 

contents. The xanthan transition as such did not seem to have a distinct effect in the case of 

the maize system because comparable effects could be noted at the lowest as well as the 

highest salt content. Of course, one should be cautious when comparing systems with high 

and low salt content, given their difference in gelatinization temperature.  

 

In Table 3-2 the diameters of starches pasted at 85°C are represented as well (i.e. samples 

from chapter 2). These results demonstrate the positive effects of processing near the 

gelatinization temperature: the number of small granule fragments is reduced (higher D(0.1) 

values), as a result of the reduced starch disruption. In general, the value of D[4,3] is also 

lower when heated to 85°C, although the relative differences between the different 

temperatures are smaller. This is rather expected because its value is largely determined by 

the size of the largest (i.e. fully swollen) granules. Furthermore, it should be remarked that 

the averaged granule diameters are based on the granules which are actually present in the 

system. Particularly when heated to 85°C, it can be expected that a significant fraction of the 

starch granules is completely degraded (hence they do not contribute to the averaged 

diameters), resulting in a significantly lower granule concentration.  

 

3.3.4 MICROSTRUCTURE OF PASTES AS AFFECTED BY HEATING TEMPERATURE 
 

Lowering the heating temperature, clearly affected the pasting behavior, and as a result also 

the particle size distributions. These effects are also clearly noticeable on a macroscopic 

level. Figure 3-5 visually demonstrates the textures of the waxy maize starch pastes induced 

by different heating temperatures. When heated to 85°C, the granules have been broken 

down to a large extent, which results in slimy textures. Granules remain largely intact when 

heated to 70°C and give rise to a more yoghurt-like appearance. 
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Figure 3-5: Translucent long texture of waxy maize starch paste (5:100, no xanthan) heated to 85°C (L) 
and short opaque paste (R) heated to 70°C (5:100, no xanthan) 

 

Micrographs of maize starch pastes heated to different temperatures (70, 72.5 and 85°C) 

were recorded in order to illustrate the effects on their microstructure. Figure 3-6 depicts 

representative micrographs for each system. All pastes were sheared at 50 s-1 during the 

heating step. Visually it was not possible to detect differences between the xanthan-

containing and the xanthan-free systems, hence only the latter are shown. 

 

These micrographs confirm the beneficial effects of using mild temperature heating to 

prepare the waxy starch pastes: compared with more customary heating temperatures (c), 

significantly more granules remain intact (figure a and b). Furthermore, as suggested by the 

particle size determinations, a slight temperature increase from 70°C to 72.5°C already 

results in marked effects. Although the size of the granules present is not markedly different, 

the number of intact granules is lower when heated to 72.5°C. The temperatures imposed in 

the preceding chapter (85°C) are clearly too elevated to obtain true starch dispersions. As 

hypothesized in section 2.3.5, those systems are better described as macromolecular 

solutions containing only a limited number of remaining starch granules. 
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Figure 3-6: Confocal micrographs of maize starch pastes at a starch to solvent ratio of 3:100 (0% xanthan, 
0.01M NaCl). The samples are sheared at 50 s

-1 
and heated to 70°C (A), 72.5°C (B) or 85°C (C) 

 

 

3.3.5 FLOW CURVES OF PASTES AFTER COOLING 

Following pasting, the samples were stored (5°C) for 24h and subsequently analyzed 

rheologically. As an example, flow curves of the cooled maize starch pastes prepared at 

70°C are represented in Figure 3-7. For this temperature, only the samples with a NaCl 

concentration of 0.01M were considered. Granule swelling was too limited at 0.1M NaCl, 

resulting in a watery suspension of largely ungelatinized starch granules.  

 

Figure 3-7: Flow curves of cooled waxy maize starch pastes (0.01M NaCl) as influenced by imposed shear 
rate and the presence of xanthan gum (all pasted at 70°C). The curves illustrate the protective effects of 

xanthan gum 

 

Table 3-3 and Table 3-4 summarize the derived Herschel-Bulkley parameters for all the 

investigated systems. The higher shear during pasting, and consequently the higher extent of 

granule degradation, shifts the flow curves to lower values, which is translated in lower 

A B

A 

 
A 

 
A 

C

B

A 

 
A 

 
A 
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values of the yield stress and consistency index. The difference between both imposed shear 

rates was more pronounced in the case of the gum free pastes. This effect is also illustrated 

by the flow curves depicted in Figure 3-7. However, the increased values of the yield stress 

and the consistency index, cannot solely be attributed to differences in granular preservation, 

but the properties of the continuous phase might play a role as well. In dilute systems, the 

rheological behavior is governed by the properties of the continuous phase, e.g. the 

dissolved hydrocolloids, as well as the volume occupied by the swollen starch granules. In 

this manner, strongly swelling starches induce higher viscosities (Steeneken, 1989). At the 

given concentrations, the maize starch occupies a volume of ± 20% which is far below close 

packing (calculation based on the volume equivalent average diameter D[3,0] of the swollen 

and unswollen granules). Consequently, it can be assumed that the continuous phase, which 

contains xanthan gum, still strongly influences the rheological behavior. However, Abdulmola 

et al. (1996b) stated that even below close packing swollen starch granules interact and 

influence the small deformation rheology. Most likely the adjoining starch granules dominate 

the rheological behavior at low shear rates, whereas the influence of the continuous phase is 

more noticeable at higher shear rates.  

 

Table 3-3: Influence of xanthan content, NaCl concentration and preparation conditions (shear rate, 
temperature) on the Herschel-Bulkley parameters fitted to the flow curves (20°C) of waxy maize starch 
pastes (starch:solvent=5:100) 

NaCl (M) xanthan  
Shear 
 rate (s

-1
) 0  k (Pa.s

n
)  n (-)  R² 

   
70°C     

 
0.01 0% 50 5.9 ± 0.3 8.8 ± 0.3 0.37 ± 0.01 0.997 

  
150 3.1 ± 0.4 4.4 ± 0.4 0.47 ± 0.02 0.977 

 
0.2% 50 6.5 ± 0.2 11.0 ± 0.2 0.29 ± 0.00 0.999 

  
150 8.3 ± 0.3 8.0 ± 0.3 0.37 ± 0.01 0.994 

0.1 0% 50 Not determined 

  
150 Not determined 

 
0.2% 50 Not determined 

  
150 Not determined 

   
72.5°C 

   
0.01 0% 50 7.9 ± 0.2 9.8 ± 0.3 0.40 ± 0.01 0.998 

  
150 6.3 ± 0.1 4.3 ± 0.1 0.56 ± 0.01 0.999 

 
0.2% 50 12.6 ± 0.4 9.0 ± 0.4 0.39 ± 0.01 0.989 

  
150 9.8 ± 0.5 6.3 ± 0.5 0.44 ± 0.02 0.981 

0.1 0% 50 3.9 ± 0.3 6.0 ± 0.4 0.39 ± 0.01 0.989 

  
150 2.4 ± 0.1 4.1 ± 0.1 0.48 ± 0.00 0.999 

 
0.2% 50 5.3 ± 0.2 9.2 ± 0.2 0.33 ± 0.00 0.998 

    150 5.1 ± 0.3 12.1 ± 0.3 0.29 ± 0.00 0.998 
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The Herschel-Bulkley model appeared to be less suitable to fit the flow curves of the potato 

starch systems. Hence, the low shear data (< 0.1 s-1) were omitted in the fit. As a 

consequence, the absolute values of 0 and k varied more strongly among the different 

samples than the actual flow curves would suggest. There is a strong correlation between 

both fitted parameters, because higher values of k give rise to lower values of 0 and vice 

versa, as illustrated in the loading plots depicted in section 2.2.8. Purely as an interpretation 

aid, the sums of the yield stress and consistency index  are included in Table 3-4. This value 

corresponded well with the differences seen in the location of the flow curves. However, this 

is a purely empirical finding and the value of the sum holds no physical meaning (addition of 

different units). For the xanthan free systems, flow curves of systems pasted at 150 s-1 were 

systematically located below the curves of pastes prepared at 50 s-1, as expected. 

  

However, as opposed to the maize starch systems, the location of the flow curves appeared 

more difficult to predict based on the interpretation of the pasting curves (presence of 

breakdown) and the particle size distributions. At 0.01M NaCl, pasting experiments and 

particle size distributions showed less granule disruption when xanthan was present, but 

when processed at 50 s-1 the flow curves of these systems were located lower than their gum 

free counterparts (when pasted at 150 s-1 the differences were less pronounced). At 0.1M 

NaCl, the addition of xanthan gum shifted the flow curves upwards, which was expressed as 

higher values of the yield stress and the consistency index. For all samples processed at 50 

s-1, the addition of xanthan gum led to a significant reduction of the yield stress, an increased 

consistency index, and a lower flow behavior index. This distinct behavior may suggest a 

specific interaction between starch and xanthan, that modifies the way particles interact, as it 

was also observed during the pasting experiments. As suggested above, electrostatic 

repulsion probably plays a role. Furthermore the interpretation of the flow behavior of these 

potato starch systems is complicated by the fact that they cannot be considered as simple 

particles imbedded in a continuous phase of dissolved xanthan gum. Potato starch granules 

swell to relatively large dimensions, even when processed at moderate temperatures, they 

take in large effective volume fractions. Therefore they are likely to deform and even break 

up within a flow field.   
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Table 3-4: Influence of xanthan content, NaCl concentration and preparation conditions (shear rate, 
temperature) on the Herschel-Bulkley parameters fitted to the flow curves (20°C) of waxy potato starch 
pastes (starch:solvent=5:100) 

NaCl (M) xanthan  
shear  
rate (s

-1
) 0 k (Pa.s

n
) 

sum 

(0 +k) n (-) R² 

   
67.5°C   

 
  

 
0.01 0% 50 16.6 ± 0.5 9.0 ± 0.5 25.7 0.39 ± 0.01 0.996 

  
150 14.6 ± 0.3 6.3 ± 0.2 20.9 0.48 ± 0.01 0.998 

 
0.2% 50 3.6 ± 0.5 16.5 ± 0.5 20.1 0.25 ± 0.01 0.999 

  
150 16.6 ± 0.4 6.1 ± 0.4 22.7 0.42 ± 0.01 0.994 

0.1 0% 50 4.8 ± 1.0 5.7 ± 0.9 10.5 0.40 ± 0.03 0.966 

  
150 8.3 ± 0.4 5.0 ± 0.4 13.2 0.45 ± 0.02 0.992 

 
0.2% 50 0.2 ± 0.5 14.1 ± 0.5 14.3 0.27 ± 0.01 0.999 

  
150 13.2 ± 0.8 10.3±0.8 23.5 0.31 ± 0.01 0.992 

   
70°C 

    
0.01 0% 50 30.6 ± 0.6 6.1 ± 0.5 36.7 0.51 ± 0.02 0.990 

  
150 22.6 ± 0.3 4.0 ± 0.2 26.6 0.58 ± 0.01 0.996 

 
0.2% 50 13.2 ± 0.4 11.8 ± 0.4 25.0 0.32 ± 0.01 0.998 

  
150 22.1 ± 0.5 5.3 ± 0.4 27.3 0.47 ± 0.02 0.991 

0.1 0% 50 18.8 ± 1.1 7.8 ± 1.0 26.6 0.43 ± 0.03 0.979 

  
150 16.8 ± 0.1 4.7 ± 0.1 21.5 0.54 ± 0.00 1.000 

 
0.2% 50 10.9 ± 1.3 15.9 ± 1.3 26.8 0.30 ± 0.01 0.991 

    150 20.4 ± 1.2 12.9 ± 1.2 33.3 0.33 ± 0.02 0.988 

 

 

3.3.6 EFFECT OF VARYING STARCH CONCENTRATIONS 

The previous results showed the beneficial effects of both moderate temperature processing 

and xanthan gum on the stabilization of waxy starch granules during pasting at a fixed 

starch:water ratio of 5:100. The differences observed between maize starch and potato 

starch might be attributed to their strongly differing swelling power and hence their effective 

volume fraction in the dispersion. At higher starch volumes, the mutual friction between the 

granules is most likely further increased. Therefore it might be possible that the 

aforementioned effects of xanthan gum, namely the higher degree of starch granule 

preservation, are cancelled out at higher starch concentrations. To examine this, pasting 

experiments were compared at different starch contents (starch:solvent ratio 3:100; 5:100; 

7:100). For maize starch an isothermal temperature of 70°C was selected and for potato 

starch this was 67.5°C (all systems contained 0.01M NaCl).  Figure 3-8 represents the 

pasting behavior of the different potato starch systems.  
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Figure 3-8: Effect of xanthan gum (X) on pasting behavior of waxy potato starch at different 
concentrations (67.5°C; 0.01 M NaCl; shear rate 50 s

-1
) 

 

The peak exhibited for the highest starch concentration, demonstrates a more predominant 

granule disruption. This confirms the hypothesis that the denser packing leads to more 

abrasion of the granules. Similar results were observed for the maize starch system at a ratio 

of 7:100 (data not represented). Furthermore the positive effects of xanthan gum are clearly 

demonstrated as no breakdown could be observed for all systems. Specifically at higher 

starch contents, xanthan could restrict the swelling of the granules, due to competition for the 

available water or by slowing down the diffusion. This is suggested by a clearly less steep 

viscosity increase during pasting. When the granules remain less swollen, they are also less 

easily disrupted. 

 

For the potato starch systems, the varying starch concentrations resulted in marked effects in 

particle size distributions (Figure 3-9). These effects were more limited for the maize starch 

systems (not depicted). Potato starch has a high swelling power and at a 7:100 ratio, the 

higher concentration clearly limits granule swelling (Steeneken, 1989). When xanthan gum 

was present, higher diameters were measured, most likely due to less granule degradation. 

Surprisingly, an exception could be observed at the lowest starch content where the average 

diameter of the xanthan containing system was lower than its gum-free counterpart. In these 

dilute systems it is very likely that starch granules swell freely to high dimensions without 

breaking up. In a more viscous medium this expansion of the granule might be more limited. 

These phenomena could be caused by effects of conformational entropy: swelling reduces 
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the conformational freedom (and entropy) of the dissolved polymers between the granules, 

hence counteracting the driving forces for swelling. 

 

Figure 3-9: Influence of xanthan gum (X) on particle size distributions of two different concentrations of 
potato starch (pasted at 67.5°C, shear rate 150 s

-1
, 0.01 M NaCl) 

 

 

3.4 CONCLUSIONS 

When native waxy starches (maize or potato) are pasted at temperatures slightly higher than 

the gelatinization onset temperature, their swelling can be more controlled, but a limited 

fraction of the starch will remain ungelatinized. Under these conditions granule disruption can 

be limited and a higher shear rate can even be beneficial towards complete viscosity 

development. The correct choice of processing conditions allows to tune the (primarily 

rheological) properties of these waxy starch systems. The heating temperature is therefore a 

critical process-parameter. When the temperature is too low, swelling will be incomplete and 

at more elevated temperatures granule disintegration will become more predominant. In the 

latter case the presence of xanthan may help to stabilize the granules, probably by altering 

the impact between the granules although further research is required to elucidate the exact 

role of xanthan gum (see chapter 5).. In conclusion it can be stated that processing at 

temperatures within the gelatinization range, combined with the addition of xanthan gum may 

improve the performance of native starches in food systems. 

 

 



  

 



Relevant publication: Heyman, B., Van Bockstaele, F., Van de Walle, D., Dewettinck, K. (2013). Long-

term stability of waxy maize starch/xanthan gum mixtures prepared at a temperature within the 

gelatinization range. Food Research International (submitted).  
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4.1 INTRODUCTION 

Aside from their weak processing tolerance, native starches are preferentially not 

incorporated in industrially produced foodstuffs because of their tendency to retrograde 

during storage. Particularly for amylose containing starches, strongly gelled pastes are 

obtained after a few hours, making them unsuitable for applications requiring a more liquid 

behavior (BeMiller & Whistler, 2009). Moreover, during longer storage, the amylose gel 

further contracts, resulting in syneresis, which in turn may lead to consumer rejection. Due to 

the absence of amylose, waxy starches retrograde relatively slowly, where depending on the 

concentration and temperature, amylopectin chains recrystallize over several days to weeks 

(Kalichevsky et al., 1990; Ring et al., 1987). Unfortunately, native waxy starches are very 

sensitive to shear and/or elevated temperatures, which results in slimy products when 

processed under conventional circumstances. It was demonstrated in the preceding chapter 

that when processed within the gelatinization temperature range, waxy starches can better 

preserve their integrity and withstand shear forces. In this chapter, the retrogradation 

behavior of waxy maize starch pastes prepared at mild temperatures is studied. 

 

Keetels et al. (1996c) observed that the rate of retrogradation of maize starch systems was 

slower when subjected to mild heating. They proposed that the phase separation between 

amylose and amylopectin in the continuous phase was incomplete, resulting in a slower 

rearrangement of amylopectin moiety. For waxy starches, no amylose is present and the 

effects of mild heating differ. When heated to temperatures within the gelatinization 

temperature range, some residual gelatinization is observed during reheating in DSC. This is 

caused by some granules not being fully gelatinized during the first heating step, or not being 

gelatinized at all and/or the occurrence of annealing (Fisher & Thompson, 1997). As a direct 

consequence, a lower fraction of gelatinized amylopectin is available for recrystallization, 

resulting in a lower degree of retrogradation. However, when the starch granules are heated 

at temperatures just above the gelatinization range, all granules are fully gelatinized and all 

crystalline regions are melted, but some residual order among the molecules is still present. 

This in turn serves as a template for recrystallization and leads to a more rapid retrogradation 

(Fisher & Thompson, 1997; Liu & Thompson, 1998). Although these effects have been 

demonstrated experimentally, it is unclear how these mild heating conditions affect the 

microstructure and rheological properties of the formed pastes throughout longer periods of 

preservation. 
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The addition of hydrocolloids is generally known to affect the retrogradation behavior of 

starch pastes. However, the effects strongly vary and depend on the specific combination of 

gum and starch. Most studies focus on amylose gelation, which is mostly enhanced by gum 

addition. This effect is generally attributed to a phase separation between the gum molecules 

and amylose (see section 1.3.4). The phase behavior of gum molecules and amylopectin is 

remarkably rarely studied. Consequently, a mechanistic interpretation of their effects on waxy 

starch retrogradation is inconclusive. Biliaderis et al. (1997) observed a much slower gelation 

of waxy maize starch in the presence of gums, whereas DSC revealed a higher degree of 

crystallinity during preservation. They suggested a phase separation between the gums and 

the (largely degraded) waxy maize starch, favoring the short range amylopectin association, 

but inhibiting the long range associations required for gel formation. Although it has never 

been studied with direct methods, a phase separation between xanthan and amylopectin was 

also proposed by Ptaszek et al. (2009).  Ferrero et al. (1994) claimed at least the absence of 

specific interactions between both polymers.  

 

Low-field 1H-NMR can provide valuable information on the molecular mobility of the various 

components in starch systems, and consequently their retrogradation behavior. In relation 

with other direct methods like DSC and XRD, NMR offers some advantages. Because it is a 

non-destructive test, the same sample can be analyzed repeatedly as a function of 

preservation time. Furthermore, relatively large amounts of sample are analyzed, making the 

technique suitable for less concentrated and more heterogeneous pastes (Farhat et al., 

2000). However, the interpretation of the NMR data is less straightforward. When studying 1H 

spin-spin relaxation (= transverse or T2 relaxation) of polysaccharide systems, the obtained 

relaxation signal originates from hydrogen nuclei belonging to different classes of molecules. 

Each class is characterized by its physical state, its diffusion rate and its bonding or 

interaction with other molecules (Thygesen et al., 2003). For dilute polysaccharide systems, 

the T2 relaxation time is dominated by the signal originating from the water molecules, which 

is in turn modulated by the chemical exchange between the water protons and the protons of 

the macromolecules (Hills et al., 1990). As a result, the NMR transverse relaxation time of 

water in polysaccharide systems is significantly reduced in comparison with bulk water. The 

extent of this reduction, depends on the state of aggregation and gelation of the 

polysaccharide (Hills et al., 1991; Rayment et al., 2009). It should be remarked that as a 

consequence, proton relaxation measurements do not provide much useful information 

regarding the state of water (water binding and immobilization) in dilute polysaccharide 

systems (Hills et al., 1990). The observed relaxation rate and the corresponding T2-value is a 

complex function of the number of exchangeable protons, the rate of exchange (kgel) with 
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those sites and the relaxation time of the protons at those exchangeable sites (T2gel) as 

expressed by following equation (Potter et al., 1993): 

 

1

T2measured
=

1

T2bulk water
 
K.  polysaccharide 

T2gel  kgel
 1

 4-1 

 

In this equation, the parameter K relates the polysaccharide concentration to the relative 

number of exchangeable protons. When aggregation occurs, the relaxation behavior of the 

hydroxyl groups changes (T2gel). Furthermore, conformational changes can alter the 

accessibility of the polysaccharide hydroxyl groups and therefore the exchange rate. Hence, 

transverse relaxation measurements were proven to be a sensitive probe for changes in the 

polymer conditions, although the exact physical explanation is complicated.  

 

The evaluation of starch retrogradation in pastes containing relatively low amounts of starch 

is associated with a lot of practical difficulties, particularly when the microstructure changes 

continuously during storage. For the study of those systems, pulsed field NMR can be a 

valuable option. In starch pastes, the molecular interpretation is further complicated by the 

presence of different phases: some polymers are dissolved, others are present in dispersed 

granules or crystallized aggregates. Nonetheless, the technique proved to be very useful in 

sensitively detecting molecular ‘reordening’ of starch systems during retrogradation, where 

changes within the same sample can be monitored (Hansen et al., 2009; Thygesen et al., 

2003). This relative approach partly excludes the complex interpretation of the absolute 

signals as such. A marked reduction of the transverse relaxation time of the starch pastes 

was successfully related with the extent of retrogradation as measured by X-ray diffraction 

(Farhat et al., 2000).  

 

 

4.2 EXPERIMENTAL SETUP 

The samples were not prepared by means of the starch pasting cell, because larger amounts 

of sample were required. Hence, this setup markedly differs from the other chapters. Stock 

solutions of xanthan gum (0.8%, 0.01M NaCl) were prepared by means of the unimix system 

as described elsewhere (section 2.2.2). For the preparation of the xanthan free pastes, the 

starch powder was first dispersed in a NaCl (0.01M) solution and this slurry was transferred 

to the unimix system. For the xanthan-containing pastes, the xanthan stock solution was 

added as well. Two different starch contents were used in order to obtain a starch to solvent 
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ratio of 5:100 or 7:100 (w:w) in the final products. A schematic overview of the production 

steps is depicted in Figure 4-1. The NaCl concentration in the water phase of the slurry was 

0.01M, to allow the same gelatinization behavior as described in the preceding chapter.. The 

dispersions were heated to either 70°C or 72°C (a temperature of 72.5°C, which was used in 

the preceding chapter, could not be programmed in the system) under continuous stirring 

with the agitator (150 rpm). The setpoint temperature was maintained for 15 minutes and the 

system was subsequently cooled down to 30°C (cooling time ± 10 minutes). 

 

 

Figure 4-1: Schematic overview of the starch paste production 

 

The resulting concentrated paste was split up in two parts and further mixed with either an 

acid or a neutral preservative solution. In this manner, the possible effects of the additives 

(primarily the acid) on the pasting behavior were excluded and the differences in stability 

observed between the different compositions can be related solely to changes which take 

place during storage. Mixing the paste with the preservative solution was performed with a 

laboratory overhead mechanical stirrer. The neutral preservative solution contained sodium 

azide (0.1% w/v) and 0.01M NaCl. The acid solution consisted in practice of two separate 

solutions, one containing 1% potassium-sorbate and 0.01M NaCl and the other one 

containing 2.5% citric acid and 0.01M NaCl. This separation was required to avoid 

precipitation of sorbic acid in the concentrated blend. NaN3 is preferentially not used in acid 
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environment where the highly toxic hydrazoic vapor can be formed. The resulting ‘neutral’ 

pastes contained 0 or 0.4% (w/v) xanthan, 0.01M NaCl and 0.02% (w/v) NaN3. The acid 

pastes consisted of 0 or 0.4%  (w/v) xanthan, 0.01M NaCl, 0.1% K-sorbate and 0.25% (w/v) 

citric acid. It is important to remark that these final concentrations are expressed on water 

phase volume and not on total volume, hence with exclusion of the volume occupied by the 

raw starch powder. This approach is similar to the setups of the preceding chapters and 

allows to use the same stock solutions for both starch contents. The pH of the resulting 

pastes was measured and equaled 3.3±0.1 and 6.5±0.1, respectively for the acid and the 

neutral pastes. The finished pastes were filled into jars (± 100ml), NMR- (10ml) and 

centrifuge tubes (25g) and stored at 7°C for further analysis. In total, this setup comprised 16 

different systems.  An overview is given in Table 4-1. Each composition was prepared in 

duplicate (i.e. two completely independent production sets.  

 

Table 4-1: Composition and processing conditions of the pastes studied in this chapter 

Starch:solvent  
ratio 

heating  
temperature (°C) 

xanthan  
concentration acidity 

5:100 70 0% neutral 

   
acid 

  
0.4% neutral 

   
acid 

 
72 0% neutral 

   
acid 

  
0.4% neutral 

   
acid 

7:100 70 0% neutral 

   
acid 

  
0.4% neutral 

   
acid 

 
72 0% neutral 

   
acid 

  
0.4% neutral 

   
acid 

 

The aim of this setup was to study the retrogradation effects of these pastes which were 

prepared at temperatures within the gelatinization range. The samples were stored for 8 

weeks (7°C) and analyzed on day 1, 7, 14, 28 and 56. Texture analysis and rheology (flow 

curves, frequency sweeps) were used to evaluate macro- and microstructural changes, 

pulsed-field NMR was chosen to study the molecular aggregation. The amount of syneresis 

was quantified gravimetrically. 
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4.3 MATERIALS AND METHODS 
 

4.3.1 TEXTURE ANALYSIS 

Back extrusion tests were performed with an Instron 5942 materials testing system (Instron, 

Norwood, US) equipped with a 500N load cell (measurement accuracy: +/- 0.5% of reading 

down to 1/1000 of load cell capacity). A flat cylindrical probe (polypropylene, diameter 

50.6mm, height 20.0mm) was pressed into the sample cups (polystyrene, diameter 56.3mm, 

height 51.4mm) at a rate of 10mm/min. As soon as the disc is submersed and the sample 

starts to overflow, a maximum load plateau is attained (Figure 4-2). This value was selected 

for further analysis. The raw date were analyzed with the Bluehill 3 software (Instron, 

Norwood, US). 

 

 

Figure 4-2: Back extrusion test with corresponding time-load plot 

 

 

4.3.2 RHEOLOGICAL PROPERTIES OF THE PASTES 

The flow curves of the cooled pastes were recorded using a 40 mm cross hatched steel 

plate-plate geometry with solvent trap. To prevent drying of the sample, 1 ml of water was 

brought in the solvent trap compartment.  The gap was set to 1000 µm. Before each 

measurement (flow curves and frequency sweeps) the sample was allowed to equilibrate for 

15 minutes at 20°C. 

 

A steady state flow step was performed by logarithmically increasing the shear rate from 0.01 

s-1 to 100 s-1. The measurements were performed in duplicate (i.e. based on two 

independently produced batches). Because the texture of some samples evolved slowly from 
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fluid to strongly gelled during storage, the samples could not be molded into readily 

measurable gel discs immediately after preparation.  Hence, for analysis a small amount of 

paste was taken out of the jar and placed between the rheometer plates. Due to the 

sampling, part of the long range interactions in the gelled samples could be broken. A similar 

methodology was applied by Temsiripong et al. (2005). 

 

The frequency sweeps were recorded from 0.01 to 5 Hz (the frequency was increased 

logarithmically) at a stress amplitude of 1 Pa. This value was within the linear visco-elastic 

region of the samples, as determined by recording stress amplitude sweeps at 1 Hz. The 

measurements were also performed in duplicate (based on two independently produced 

batches). 

 

 

4.3.3 T2-MEASUREMENTS 
 

4.3.3.1 Principle of T2- relaxation  

Pulsed field gradient NMR is a fast, sensitive and non-invasive technique based on the spin 

of nuclei. The spinning motion causes a magnetic moment in the direction of the spin axis. 

This phenomenon is illustrated in Figure 4-3. When an external magnetic field B0 is imposed, 

the magnetic moments or spins are constrained to adopt parallel or anti-parallel orientations 

with respect to B0. 

 

 

Figure 4-3: Orientation of spins in the presence of external magnetic field (Puddephat, 2010) 
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The application of a radio frequent pulse causes nuclear spins to shift between parallel and 

anti-parallel states. When the magnetic field component of an RF pulse is parallel with the 

xy-plane, the pulse will cause the magnetization M to rotate from the z direction into the xy 

plane. The return of M to its equilibrium state (the direction of the z-axis) is known as 

relaxation. T2-relaxation (also known as transverse relaxation or spin-spin relaxation) is the 

decrease in the xy component of magnetization (Figure 4-4). Immediately following a 90 

degree pulse, the net magnetization M is rotated into the xy-plane.  Due to the absence of a 

perfectly uniform magnetic field strength, nuclei throughout the sample will experience 

slightly differing B0’s. These local variations of B0 are constant in time. As a result, the nuclei 

experience different precessional frequencies depending on their location, and the spins 

dephase and expand over the xy-plane. Consequently, the net signal detected in the xy-

plane will decay, because the opposed vectors cancel each other out (Ridgway, 2010).  

 

 

Figure 4-4: Signal decay following a 90° RF pulse (Ridgway, 2010) 

 

A second type of transverse decay is caused by the nature of the sample. Within a sample, 

the magnetic moments of different protons interact with each other and modify the electric 

field that is experienced by each individual proton. Due to the random nature of the spin-spin 

interactions, this effect is not constant over time. The decrease in transverse magnetisation 

is described by a time constant, T2*, that is the time it takes for the transverse magnetisation 

to decay to 37% of its original magnitude. This effect is generally described as free induction 
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decay (FID). T2* characterizes dephasing due to both B0 inhomogeneity and transverse 

relaxation (Ridgway, 2010). In order to obtain signal with a T2 dependence rather than a T2* 

dependence, a pulse sequence known as the Carr-Purcell-Meiboom-Gill (CPMG) spin-echo 

has been developed (Meiboom & Gill, 1958). This sequence consists of a 90° radio 

frequency pulse followed by an echo train induced by successive 180° pulses, characterized 

by a pulse spacing time  and an echo time TE ( = 2* ). The process is represented in 

Figure 4-5.  

 

 

 

 

Figure 4-5: Spin echo's induced by rephasing following 180° pulses (adapted from Puddephat (2010) and 
Zhang & Hirasaki (2003)) 

 

First a 90° pulse is applied, followed by an 180° degree pulse at time  which causes the 

three spins to invert. In this manner, the faster spins catch up with the slower ones. At time 

TE, the spins become coherent again so that an echo is produced and a signal is detected. If 
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an additional 180° pulse is applied at time TE/2 after the peak signal of the first spin echo, 

then a second spin echo signal will form at time TE after the first spin echo. The peak signal 

amplitude of each spin echo is reduced from its previous peak amplitude due to T2 

dephasing, which is a random and irreversible process and therefore cannot be rephased by 

the 180° pulses (as opposed to magnet inhomogeneity dephasing). Figure 4-5 shows how 

the signal from a spin echo sequence decays over time. A line drawn through the peak 

amplitude of a large number of spin echoes describes the T2 decay, while individual spin 

echoes exhibit T2* decay (Ridgway, 2010) . 

 

 

4.3.3.2 Setup T2-measurements 

A 23 MHz 1H NMR Maran instrument from Oxford Instruments (Tubney Woods, Abingdon, 

Oxfordshire, UK) was used to obtain Carr–Purcell–Meiboom–Gill (CPMG)  relaxation curves 

of the pastes at 7°C. The temperature in the measuring cell was lowered by means of 

externally circulating cooled water. For each sample, three test tubes (diameter 8 mm) were 

filled with 10 mL of paste, immediately after preparation. The tubes were then covered with 

Parafilm flexible film and stored at 7°C. Before each measurement, the samples  were 

allowed to equilibrate in a waterbath for at least 1h. Four scans (acquisitions) were 

accumulated during each measurement. The recycle delay between the scans was 10 s to 

allow full spin relaxation. For each composition and measuring day, 6 replicates were 

measured originating from two different production sets. The pulse spacing () was set to 400 

µs  and the number of recorded echoes was set to 8192. A short pulse spacing was chosen 

in order to record spin-echo relaxation of all liquid-like proton populations, particularly those 

representing the mobility of the hydrocolloids through proton exchange (Hansen et al., 2009). 

Relaxation curves were fitted to a mono-exponential decay curve by the WinDXP software 

(Resonance instruments, Skokie, Il, USA), providing the T2- relaxation times.  

 

The evolution of the T2-values as a function of preservation time t (days), could be well 

described (R² > 0.98) by a three parameter exponential decay function: 

 

T2=A B. e
  .t 4-2 

 

Curves were fitted by means of the SigmaPlot 10 software to obtain the parameters A, B and 

C (Systat software inc., San Jose, USA). As the measurements started after 1 day of 
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preservation, a hypothetical value T20 was calculated to describe the relaxation time of the 

fresh pastes, i.e. at t = 0:  

 

T2 =A B 4-3 

 

 

4.3.4 SYNERESIS 

The freshly prepared pastes (25g) were transferred to screw cap tubes and stored at 7°C. 

These samples were centrifuged at 8000g for 15 minutes after 1 day and after 8 weeks of 

storage. The watery top layer was removed and weighted. Syneresis was expressed as 

percentage of total water in the system.  

 

 

4.4 RESULTS AND DISCUSSION 
 

4.4.1 TEXTURE ANALYSIS 

Due to the microstructurally largely differing nature of the samples, particularly after longer 

storage times, a back extrusion test was preferred for texture evaluation of the starch pastes 

at different moments (day 1, 7, 14, 28 and 56) throughout the preservation period. This type 

of test is suitable for fluid as well as gelled samples. For the fresh pastes (day 1), the 

composition of the systems strongly influenced their strength (Figure 4-6). Especially at the 

lowest starch content, there was a relatively large effect due to the presence of xanthan gum 

which induces a higher resistance to flow. During further preservation, the specific evolution 

of the textures strongly varied among the samples. Particularly the differences caused by 

both preparation temperatures were marked. In all cases, the pastes prepared at 72°C 

proved to be more susceptible to structural changes during storage, in which a slow but 

strong gelling occurred. Conversely, the texture of the pastes heated at 70°C remained much 

more constant. 

 

The pasting behavior as described in the preceding chapter, demonstrated that the 

breakdown of starch granules was restricted at these mild temperatures. However, disruption 

of the granules cannot be fully excluded, particularly at temperatures higher than 70°C. 

Therefore, the presence of significant amounts of amylopectin in the continuous phase 

should be taken into account, particularly for the pastes heated to 72°C. Associations 



Chapter 4: Long-term stability of waxy maize starch/xanthan gum mixtures prepared at  a 
temperature within the gelatinization range 

 
 

 

90 
 

between these amylopectin molecules can cause the observed gelling, but enhanced 

interactions between peripheral amylopectin molecules in the granules may occur as well. 

Considering the mild preparation conditions, a large fraction of the granules is undisrupted 

and closely packed, which allows the formation of granule bridges. Furthermore, the higher 

extent of gelatinization and swelling may increase the mutual interaction or even 

interpenetration of neighboring granules.  

 

 

 

Figure 4-6: Effect of composition and preparation temperature on the textural properties of 
starch/xanthan pastes. Top row: starch content 5:100, bottom row: starch content 7:100. Left column: 

neutral pastes, right column: acid pastes. 
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As demonstrated in the preceding chapter, the granules of the pastes prepared at 70°C are 

less degraded. It can therefore be assumed that due to the large extent of granule integrity, 

the amylopectin largely remained inside the granules. Hence, polymer associations in the 

continuous phase are inhibited, resulting in a higher stability. At the highest starch content 

(7:100), a limited structure build up was observed for all pastes prepared at 70°C. 

Presumably, a higher extent of granule disruption had occurred during pasting of more 

concentrated dispersions. In this way more amylopectin would be present between the 

granules. A second hypothesis is that amylopectin molecules at the surface of the intact 

granules associate, inducing a network of granules, which is logically favored by the 

presence of a higher number of granules. 

 

For both preparation temperatures, the texture evolution was not affected by xanthan: the 

texture of the xanthan free and the xanthan containing systems evolved comparably. It was 

suggested in chapter 3 that xanthan gum could restrict granule breakdown during pasting. 

This effect, however, did not result in a higher stability of the systems.  At the lowest starch 

content, there was a limited progression in strength for the pastes heated to 70°C. This 

change could either be attributed to a xanthan-induced aggregation of the granules and/or 

the formation of xanthan aggregates. It has been suggested before that xanthan gum can 

affect the interparticle bonding of waxy starches through mechanisms of bridging or depletion 

flocculation (Abdulmola et al., 1996b; Achayuthakan et al., 2006), which could proceed 

during storage. In addition, xanthan molecules are capable of aggregating during storage, 

further increasing the structural features of the mixed system. However, this effect is 

expected to occur during the first days of storage (Rochefort & Middleman, 1987). 

 

The differences between the acid and the neutral pastes are limited. Initially, the course of 

both curves is comparable, whereas the gel strength at the end of preservation is lower for 

the acid systems. The latter could possibly be caused by a higher extent of amylopectin 

hydrolysis, yielding softer gels (Sae-Kang & Suphantharika, 2006). This illustrates that the 

influence of acid addition is limited when dosed after the heating step. When heating is 

performed in acidic environment, the extent of hydrolysis is generally more profound, which 

leads to higher textural losses. 
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4.4.2 RHEOLOGY 
 

4.4.2.1 Flow behavior 

Flow curves of the pastes were recorded at fixed days during the preservation period. The 

strongly varying flow behavior of the different samples did not allow the use of a rheological 

model to fit all the obtained curves. Therefore the shear stresses corresponding with shear 

rates of 1 s-1 and 100 s-1 were used for sample comparison (Figure 4-7).  

 

 

Figure 4-7: Influence of preparation temperature (70 or 72°C) and xanthan content on the evolution flow 
behavior of the neutral pastes during storage. Top row: shear stress recorded at shear rate 1 s

-1
, bottom 

row: shear stress recorded at shear rate 100 s
-1

. Left column: starch content 5:100,  right column: starch 
content 7:100 
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At a shear rate of 1 s-1 the flow behavior of the fresh samples (day 1) was more affected by 

the composition than by the heating temperature. The samples with xanthan exhibited a 

higher shear stress (and hence a higher apparent viscosity) than the gum free samples.  

However, during storage a diverging behavior was observed between both preparation 

temperatures. A strong increase took place for the pastes heated to 72°C, and this behavior 

was slightly enhanced by the presence of xanthan. Again, the acid samples (see Figure 4-8) 

behaved very similar to the neutral pastes. It can therefore be stated that the findings from 

these flow measurements at low shear rates are entirely in line with the texture analysis. 

 

At higher shear rates (100 s-1), a different behavior was observed. Large differences between 

both production temperatures were present already at day 1. Furthermore, at the lowest 

starch content, the effect of xanthan gum was much more pronounced for pastes heated to 

70°C. These results are in line with the findings from chapter 2, where a large extent of 

granule integrity was found to be a prerequisite for synergistic rheological effects between 

xanthan and starch. At this shear rate, the corresponding shear stress of the pastes heated 

to 70°C decreased during storage, eventually leading to a plateau value. In the presence of 

xanthan gum, a slight increase towards the end is suggested. For pastes heated to 72°C, a 

reduction was observed during the first days, but for longer storage times, the shear stress 

was enhanced. In combination with the results obtained at 1 s-1, this indicates that the 

interactions developed within the mildly heated samples (70°C) – if they occur - are rather 

weak and can easily be disrupted by shear. This behavior is presumably caused by a 

network of flocculated starch granules. The occurring viscosity reduction can most likely be 

attributed to a shrinking of the starch granules. Morikawa & Nishinari (2000) demonstrated 

that the size of native potato starch granules decreased during long-term preservation. They 

concluded that (amylopectin) retrogradation in the granules caused the release of water. For 

pastes heated to 72°C, this effect also possibly occurs, accounting for the decrease at the 

beginning of the storage period, however, it is overruled by another phenomenon as the 

shear stress increases again at longer storage times. During preservation, amylopectin 

chains present in the continuous phase between the granules will associate and crystallize. 

These interactions are quite strong and are not so easily disrupted by shear. The presence of 

these strongly aggregated structures are most likely responsible for the observed viscosity 

increase. Logically, this effect is more pronounced at higher starch concentrations, due to a 

higher number of possible junction points.  
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Figure 4-8: Influence of preparation temperature (70 or 72°C) and xanthan content on the evolution flow 
behavior of the neutral pastes during storage. Top row: shear stress recorded at shear rate 1 s-1, bottom 
row: shear stress recorded at shear rate 100 s

-1
. Left column: starch content 5:100,  right column: starch 

content 7:100 

 

 

4.4.2.2 Visco-elastic behavior 

So far, the samples have been analyzed rheologically by destructing their microstructure 

(texture analysis and flow behavior). Oscillatory rheology was performed on the samples to 

study their stability in a non-destructive manner. This technique provides very useful 

information regarding the development of the present networks and the microstructural 

changes occurring over time. Xanthan free samples at the lowest starch content (5:100) were 
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not included because they exhibited a dominant viscous behavior throughout the whole 

storage period. In their initial state (day 1), the gum free systems with the highest starch 

content exhibited a dominant elastic behavior (G’ > G”) but with a strong frequency 

dependence. This behavior is typical for flocculated (micro-) gel particles at concentrations 

below close packing (Genovese & Rao, 2003; Kaneda & Sogabe, 2005). In the case of more 

severely disrupted granules (heated to temperatures > 90°C), the system would be governed 

by entangled amylopectin molecules, resulting in a less strong effect of the frequency on the 

moduli (Achayuthakan & Suphantharika, 2008; Kulicke et al., 1996). As stated above, the 

pastes prepared at 70°C consist of more intact and rigid granules compared with the pastes 

heated to 72°C. This can be derived from a higher value of G’ and relatively less viscous 

behavior (lower tan delta).  

 

Upon the addition of xanthan gum, the viscoelastic properties are radically modified (Figure 

4-9). The elastic behavior (G’) is significantly increased and the moduli are much less 

dependent on the applied frequency. This profile, typical for weak gels, demonstrated a 

dominant effect of xanthan gum, where its ability to engage in strong molecular 

entanglements is therefore clearly reflected in the profiles of the mixed pastes. The absolute 

increase of G’ is higher for the samples heated to 7 °  than for the samples prepared at 

72°C. Particularly when using non-gelling hydrocolloids, both the continuous and the 

dispersed phase contribute to the rheological properties (Alloncle & Doublier, 1991; Alloncle 

et al., 1989; Samutsri & Suphantharika, 2012). In the case more disruption of the granules 

took place, as it is the case for pastes heated to 72°C, the volume occupied by the swollen 

granules is decreased and therefore the effective xanthan concentration is lower as well. 

Consequently, both components contribute less to the overall rheology of the system. 

Moreover, the continuous phase does not solely contain dissolved xanthan molecules, but 

consists of a complex mixture of xanthan and amylopectin, which in turn can affect the 

continuity of the xanthan network. 
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Figure 4-9: Influence of preparation temperature and xanthan content on the evolution of the viscoelastic 
behavior of the acid pastes (starch content 7:100) during storage. Top row: pastes heated to 70°C, bottom 

row: pastes heated to 72°C. Left column: no xanthan, right column: 0.4% xanthan 
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amylopectin associations occur intragranular). The exact molecular changes occurring in the 

pastes heated to 72°C are more difficult to assign. Rheologically, it is not obvious to 

distinguish a pure amylopectin polymer network from a mixed network of associated starch 

gel particles and dissolved molecules. Considering the pasting properties as described in the 

preceding chapter, a significant amount of intact granules is still present, and the latter 

hypothesis is more likely. 

 

 

 

Figure 4-10: Influence of xanthan content and preparation temperature (70 or 72°C) on the evolution of 
storage modulus G' and phase angle delta during preservation (starch content 7:100). Top row: neutral 

pastes, bottom row: acidic pastes 
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In the presence of xanthan, the evolution of the microstructure becomes even more 

complicated. When prepared at the lowest temperature, the changes in elasticity are much 

more subtle, indicating a more limited tendency of associating. During the first 4 weeks of 

storage, xanthan gum even appears to exhibit a stabilizing effect, where the recorded curves 

vary less over time (Figure 4-9).  However, the absolute changes of G’ are comparable for 

the xanthan free and the xanthan containing systems, and the curves of pastes with and 

without xanthan even diverge towards the end of the storage period. As stated higher, both 

xanthan and starch contribute to the viscoelastic properties of the mixed system. Due to the 

direct effects of xanthan gum in the bulk, the retrogradation effects occurring in the starch 

moiety result in relatively less changes in the overall visco-elastic behavior as illustrated in 

Figure 4-9. This is also visible in the nearly constant value of the phase angle delta of the 

xanthan systems (Figure 4-10).  

 

For the pastes prepared at 72°C, an additive effect of xanthan on the network development is 

suggested as the curves of the gum free and xanthan containing pastes are explicitly 

diverging. These results in turn confirm that xanthan gum has no beneficial effect on the 

retrogradation effects. The observed effects could result from a phase separation between 

xanthan and the amylopectin, raising the effective concentration of the starch polymers and 

favoring their intermolecular associations. Another hypothesis could be that xanthan and 

amylopectin engage in the formation of a mixed network. The latter, however, seems unlikely 

considering the molecular differences between both types of polymers. Furthermore in the 

case of such a direct interaction, the association (which is no crystallization) is expected to 

occur much faster, resulting in firmer gels shortly after preparation, as it is also observed for 

synergistic xanthan-galactomannan gels (Lu et al., 2008; Tsai et al., 1997).  

 

In general, the evolution of the visco-elastic properties is comparable for both acidity levels. 

For longer preservation times (> 14 days), the neutral pastes exhibit higher values of G’ and 

lower values of delta, which suggests the presence of a stronger network. This is particularly 

the case for pastes heated to 72°C. Hence, these results are in line with the texture analysis 

reported above. Most likely, some hydrolysis of the amylopectin chains had taken place, 

which results in a reduced gelling capacity. 
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4.4.3 STARCH POLYMER ASSOCIATION MEASURED BY T2-RELAXATION 

NMR was selected as a complementary technique to the rheological methods, which were 

used to characterize the macroscopic (texture analysis, flow curves) and microstructural 

(oscillatory rheology) properties. By evaluating the proton relaxation, information is gathered 

on a molecular level. As explained in the introduction, this technique is suitable for monitoring 

relative changes in polymer mobility, rather than for quantifying an absolute degree of 

crystallization. Figure 4-11 shows the initial T2-values of all pastes. Pastes prepared at 70°C 

systematically exhibited lower values of this parameter than the pastes prepared at 72°C. 

The lower degree of gelatinization is expected to result in a higher extent of residual order 

and lower mobility of the starch polymers within the granules. The addition of xanthan gum 

always induced a faster relaxation. This could incorrectly be interpreted as a result of 

reduced water mobility. As stated before, proton relaxation provides little information on the 

state of water in these dilute systems (> 93% water). The reduction is due to the presence of 

an additional number of hydroxyl protons with their own characteristic relaxation time and 

which are available for exchange as observed for pure polysaccharide systems. Similarly, 

higher starch concentrations also result in lower values of T2. Finally, there is also a marked 

effect of pH. The presence of citric acid induces a remarkable reduction of T2 values. It has 

been stated before that pH variations significantly affect the proton exchange rate 

(Rabenstein & Fan, 1986).  For this reason, the behavior of the neutral and acidic pastes will 

not be compared directly with this technique. Moreover, the relative reduction induced by 

xanthan gum is significantly larger at lower pH (±35% vs. ±20%). Rabenstein & Fan (1986) 

demonstrated that the optimal pH for the exchange of labile protons may vary among 

different molecules. It could therefore be assumed that in acidic conditions the exchange rate 

of protons originating from xanthan is more enhanced than for those originating from the 

starch molecules. Consequently, the starch fraction contributes less to the overall signal of 

the acid pastes.  

 

In order to allow a better comparison between the different samples, the initial variation is 

eliminated by dividing the obtained T2-values by the T20-value. In this manner, changes 

relative to their initial state are represented (Figure 4-12). As expected, the transitions 

occurring in the acid pastes result in more explicit signal changes compared with the neutral 

pastes. Considering the striking similarities in rheological behavior, it can be expected that 

these differences are not primarily caused by an altered retrogradation behavior. Hirashima 

et al. (2012) demonstrated that the effects of different pH values on the retrogradation 

behavior are rather limited. The chemical exchange rate is clearly enhanced at lower pH, 
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hence molecular changes are more explicitly manifested for the citric acid containing 

systems. In general, it could be stated that the signal of pastes prepared at 70°C changes 

slightly less over longer storage periods. This corresponds with the hypotheses proposed by 

Fisher & Thompson (1997): a fraction of the starch molecules remains ungelatinized, hence 

crystallized, and is therefore not available for retrogradation.  

 

 

Figure 4-11: The effects of preparation temperature (70 or 72°C), acidity and xanthan content on the 
extrapolated T2-relaxation times at the start of the stability experiment (T20). Left: starch content 5:100,  

right: starch content 7:100 

 

Xanthan can also aggregate in solutions, although this is known to proceed more rapidly. 

Therefore the contribution of xanthan gum associations was assumed to be negligible 

throughout the preservation period. However, the indirect effect of xanthan gum on the mixed 

pastes is more ambiguous. The data from the acidic pastes suggest a slower amylopectin 

reassociation and therefore a lower extent of retrogradation whereas the neutral pastes 

indicate the opposite effect. As stated before, the relative contribution of the xanthan fraction 

to the signal is higher at acidic pH. This could explain why the relative change during storage 

is lower in the case of the acidic starch/xanthan pastes. When interested in the state of the 
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Figure 4-12: T2-reduction during preservation as affected by xanthan content, acidity and preparation 
temperature (70 or 72°C). Top row: starch content 5:100, bottom row: starch content 7:100. Left column: 

neutral pastes, right column: acid pastes. 

 

For the pastes prepared at 70°C, the differences between xanthan-containing and xanthan-

free pastes are more limited. However, when heated to the highest temperature, there is a 

marked effect of xanthan as a significantly larger reduction of T2 value is observed. This 

result could further evidence that xanthan gum enhances the association of amylopectin 

molecules provided that they are not present within the granules. As stated higher, this 

phenomenon could arise from phase separation between both polymers, concentrating the 

starch molecules in their microdomain and stimulating reassociation.  
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These results demonstrated that on a molecular level, strong changes take place during 

storage for pastes prepared at both heating temperatures. However, the rheological data 

demonstrated that for the pastes heated to 70°C, these changes are much less reflected in 

the macroscopic properties as compared with the pastes prepared at 72°C. It could be 

hypothesized that in the former case, molecular reassociations take place inside the 

granules. This should result in a reinforcement of the granules. Considering the restricted 

swelling at 70°C, the granules were supposed to be quite rigid from the start, and therefore 

this additional reinforcement only induces limited rheological changes.   

 

 

4.4.4 SYNERESIS 
Centrifuge tubes were filled with the different pastes after preparation and stored at 7°C. By 

using centrifugation, unbound water is forced out of the pastes. However, the external 

centrifugal forces could also induce a compression of the structure e.g. in case of a 

particulate network, resulting in a watery top layer after centrifugation. Data should therefore 

always be interpreted cautiously because both effects cannot be separated. Syneresis at the 

end of the storage period, expressed as relative percentage of expelled water, is listed for 

the different pastes in Table 4-2. The pastes with the lowest starch content that were 

prepared at 70°C (and without xanthan) exhibited water separation at day 1. Due to the 

restricted swelling of the granules, the swollen granules did not occupy a close packing 

volume nor created a space filling network like the other pastes. The amount of separated 

liquid on day 1 was subtracted from the values on day 56, to obtain an absolute change. For 

all the other pastes this was not required because they did not show syneresis after 

centrifugation on day 1. 

 

It is clear from the data that xanthan gum inhibits the separation of liquid from the systems as 

its addition induces a significant reduction in syneresis at the end of the storage period. 

However, for the pastes prepared at 72°C - even without xanthan - syneresis was not 

observed at the end of the considered period. Presumably, as opposed to amylose gels, the 

tendency to strongly contract is much less present in amylopectin gels. As retrogradation 

proceeds, the network might develop without expelling water. Furthermore, it can be 

expected that the complex mixture of dissolved amylopectin and swollen granules is 

incompressible at day 1, hence sedimentation cannot be achieved through centrifugation. 
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The marked increase in expellable water for the pastes heated to 70°C suggests a different 

microstructural evolution. As mentioned above, retrogradation may result in a release of 

water from the swollen granules. Consequently, more water can be removed by 

centrifugation and indirectly, the total volume occupied by the granules decreases. The latter 

leads to a more dense precipitate and in turn a higher observed syneresis. As demonstrated 

by the centrifugation results on day 1, xanthan inhibits sedimentation of the swollen granules. 

This effect is believed to cause the absolute difference in separated water layer on day 1. 

The water expelled from the xanthan containing pastes is therefore supposedly caused by 

changes in water holding capacity of the granules. For the xanthan pastes, the pH value did 

not significantly affect the results. However, for the systems pasted at 70°C, syneresis is 

significantly lower in the presence of citric acid, which suggests a lower extent of contraction 

of the granules. However, further research is required to clarify this pH effect.  

 

Table 4-2: Syneresis for the different compositions at the end of storage period (Day 56), expressed as % 
of total water 

  
Starch content 5:100 Starch content 7:100 

  
no xanthan 0.4% xanthan no xanthan 0.4% xanthan 

70°C acid 36.9 ± 1.7 7.6 ± 4.0 7.6 ± 2.9 0.0 ± 0.0 

 
neutral 44.3 ± 0.8 8.7 ± 9.9 32.0 ± 1.1 0.0 ± 0.0 

72°C acid 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

  neutral 3.7 ± 5.4 0.0 ± 0.0 5.6 ± 7.3 0.0 ± 0.0 

 

 

4.5 CONCLUSIONS 

The effects of xanthan gum addition and the use of mild preparation conditions on the long-

term retrogradation behavior of waxy maize starch systems were studied in this setup. 

Texture analysis, rheology and pulsed field NMR were used to evaluate structural changes at 

different  length scales.  

 

Pastes heated to 70°C are composed of swollen and largely intact granules. These systems 

behaved as flocculated dispersions and the rheological evaluations demonstrated that their 

structural properties remained largely constant during the preservation period. Slight 

changes were attributed to shrinking of the granules and intensified granule associations. 

The addition of xanthan gum did not induce a higher stability of the starch fraction. However, 

due to its direct contribution to the structural features of the systems, changes occurring in 

the starch fraction are partly masked. 
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When the granules are heated to a higher temperature (72°C), the pastes contain a 

significant amount of dissolved amylopectin in addition to the fully swollen granules. This 

higher degree of gelatinization and degradation, rendered the systems structurally unstable. 

A slow but significant gelation was observed for the pastes heated to this temperature. This 

behavior was attributed to the association and crystallization of amylopectin molecules in 

both the continuous phase and the granules. Under these circumstances, xanthan gum was 

found to enhance the gelation process. A phase separation between both polymers in the 

continuous phase was proposed as an underlying mechanism. In this manner the effective 

concentration of amylopectin is raised in its microdomain, favoring molecular interactions.  

 

The use of T2-relaxation to monitor the molecular reassociation during preservation clearly 

offers some practical advantages over other techniques. The results confirm that this is a 

sensitive probe to detect changes in these complex matrices. Hence, this technique holds a 

lot of potential for future setups. On the other hand, samples with different compositions 

should be compared with care, because even at low concentrations acids and hydrocolloids 

strongly affect the overall relaxation behavior. Nevertheless, in this setup it was strongly 

suggested that pastes heated to 72°C exhibit a higher tendency for molecular reassociation 

as compared to the pastes heated to 70°C, which is in line with the rheological results. 

 

It was previously demonstrated (see chapter 3) that the use of preparation temperatures 

within the gelatinization range, results in a higher extent of starch granule preservation. In 

this chapter it was found that as a direct consequence, the stability of the pastes is improved. 

However, the choice of heating temperature appears of utmost importance: a slight 

temperature increase could suffice to render the systems highly unstable. It was also 

suggested that xanthan gum may restrict the granule disruption during preparation. However, 

this beneficial effect on the freshly prepared pastes, did not result in an improved stability 

during storage. 

 

 



  



Relevant publication: Heyman, B., De Vos, W., Depypere, F., Van der Meeren, P., Dewettinck, K. 

(2013). Guar and xanthan gum differentially affect shear induced breakdown of native waxy maize 

starch. Food Hydrocolloids (in press).  

5 INFLUENCE OF GUAR AND XANTHAN GUM ON THE SHEAR 

INDUCED BREAKDOWN OF WAXY MAIZE STARCH 
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5.1 INTRODUCTION 

Along with xanthan, guar is one of the most commonly used gums in combination with 

starches. This non-ionic polysaccharide is derived from the ground endosperm of guar seeds 

(Cyamopsis tetragonoloba). Its molecular weight is generally in the order of 5-10 x 105 g/mol. 

Guar galactomannan is composed of galactose and mannose units in 1:2 ratios. The linear 

backbone consists of (1→4)-linked -D-mannose units with single -D-galactose units 

attached to the O-6 position. The galactose substitutions are not randomly distributed on the 

main chain, but exist as so-called hairy regions (Casas et al., 2000; Mudgil et al., 2012).  

 

Figure 5-1: Molecular structure of guar gum (Sostar & Schneider, 1998) 

 

Aside from their direct rheological effects, which will be treated in the next chapter, gums can 

also indirectly influence the rheological behavior of starch pastes by modifying the properties 

of the granules. When heated together, gums can affect the swelling and degradation 

behavior of the starch as described in section 1.3.2 and 3.1. In most experimental setups 

dealing with waxy starch systems, the intense heating of the starches causes extensive 

disruption of the granules. These treatments result in microstructurally complex systems of 

granule remnants and granule ghosts within a macromolecular solution of amylopectin and 

gums (Hermansson & Svegmark, 1996; Tsai et al., 1997). Therefore, it is difficult to draw 

conclusions regarding the effect of gums on their swelling and degradation behavior. 

Furthermore, when waxy starches are heated to elevated temperatures (> 85°C, see chapter 

2), differences in granule sizes hold little rheological relevance because the vast majority of 

the granules is disrupted and the continuous phase dominates the rheological behavior of the 

pastes. 

 

As demonstrated in chapter 3, the processing of waxy starches at temperatures close to the 

gelatinization range, helps to limit their breakdown. Furthermore it was found that at these 

mild temperatures, the presence of xanthan gum induced larger granule diameters in the 
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final paste. Although a reduced granule disruption was suggested, the exact underlying 

mechanism was not certain. Based on those results and the available literature, several 

hypotheses could be raised to explain this effect of xanthan gum: 

 

 Xanthan gum enhances the swelling of the starch granules through a yet unknown 

mechanism; 

 Swelling of the granules is slowed down due to competition for the available water 

and/or inhibited diffusion, as a result of the restricted swelling, breakdown is reduced 

as well; 

 The presence of a viscosity increasing agent like xanthan gum reduces the 

turbulence inside the starch pasting cell, which diminishes the collisions of the 

granules during pasting and inhibits breakdown; 

 The increased viscosity causes a less effective heat transfer inside the starch pasting 

cell, leading to a reduced thermal breakdown; 

 Xanthan gum associates with the starch granule surface, hereby slowing down the 

diffusion of water inside the granules. This reduces the swelling and results in less 

disruption of the granules; 

 Xanthan gum associates with the granule surface which creates a lubricating film 

around them and reduces the impact between the granules during pasting. 

 

All of these proposed mechanisms appear plausible. However, due to the complexity of 

gum/starch systems, it is difficult to directly demonstrate the effects. The aim of this setup 

was to gather circumstantial evidence for one or more hypotheses, by varying the 

preparation conditions. Two different heating temperatures were imposed (70°C and 72.5°C) 

and pasting was performed under oscillatory (i.e. no shear flow) as well as under shearing 

conditions (50 s-1 and 150 s-1). Furthermore, it was investigated whether the addition of guar 

gum can induce similar effects as xanthan gum. The comparison of both gums should clarify 

if the observed phenomena can be attributed to effects of the increased viscosity of the 

continuous phase – in this case guar should induce similar effects as xanthan gum - or to a 

more specific feature of xanthan gum. 

 

Due to its anionic nature, xanthan gum is sensitive to variations in salt content, which in turn 

affects its functionality when combined with starches (Samutsri & Suphantharika, 2012; 

Viturawong et al., 2008). Throughout the chapter, a salt concentration of 0.01M will be 
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maintained for the major part of this setup, however, the effect of varying salt concentrations 

will be briefly touched as well. 

 

 

5.2 MATERIALS AND METHODS 
 

5.2.1 GUM STOCK SOLUTIONS 

The preparation of the xanthan gum stock solutions is described elsewhere (see section 

2.2.2). Guar gum (Viscogum MP41230) was acquired from Cargill Texturizing Solutions 

(Ghent, Belgium). Guar gum stock solutions (1L) were prepared by dissolving the gum 

powder (0.8% w/v) in deionized water by means of a magnetic stirrer, followed by heating to 

70°C and continued stirring at room temperature for 4 hours. NaCl was added at a 

concentration of 0.01M. Both hydrocolloid stock solutions were allowed to rest overnight (at 

5°C) before use. 

 

5.2.2 PASTING EXPERIMENTS 

The same type of native waxy maize starch was used as described in the preceding chapters 

(Merizet 300, provided by Tate & Lyle Benelux). The starch powder was suspended either in 

a 0.01M NaCl solution (for preparation of the gum-free pastes), or in a mixture of the NaCl 

solution and gum stock solutions. In this manner, starch slurries were obtained with three 

different gum concentrations in the continuous phase: 0%, 0.2% and 0.4% (w/v), all of which 

had a salt concentration of 0.01M NaCl. The resulting starch:solvent ratio in all cases was 

kept constant at 5:100 (w:w).  

 

The dispersions were transferred to the starch pasting cell of the rheometer (see 2.2.4.2). 

Starch suspensions were pre-sheared at 100 s-1 for 2 minutes and then heated to either 70°C 

or 72.5°C at a heating rate of 3°C/min, held isothermal for 10 minutes and then cooled down 

to 20°C (5°C/min). Throughout the heating and cooling steps a shear rate of either 150 or 50 

s-1 was maintained.  

 

A similar time-temperature combination was employed for the preparation of the ‘unsheared’ 

samples. A heating ramp of 3°/min was imposed and the granules were sheared at 100 s-1 to 

avoid sedimentation until a temperature of 70°C was attained and granules started to swell. 

Preliminary tests at varying shear rates and temperatures ( 70°C) demonstrated that these 

preparatory steps had a negligible effect on the paste properties. From this temperature 
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onwards an oscillatory step was imposed with constant stress (1 Pa) and frequency (1 Hz). 

The set point temperature (70°C or 72.5°C) was maintained for 10 minutes and subsequently 

the sample was cooled to 20°C at 5°/min.  

 

Following these temperature/shear treatments, the cooled samples were recollected and 

stored for 24h in the refrigerator (5°C) for further analysis.  

 

 

5.2.3 FLOW CURVES OF GUM SOLUTIONS 

To characterize the continuous phases of the unheated starch dispersions, starch was 

suspended in the gum solutions as described for the pasting experiments. Without prior 

heating, the suspensions were centrifuged (Sigma 4K15, Sigma GmbH, Germany) at room 

temperature (8000g, 15 minutes). In this manner, viscosity differences induced by the gum 

powder (small amounts solutes and salts) are taken into account. The supernatant was 

transferred to an AR2000ex rheometer (TA Instruments, New Castle, USA), using 28mm 

conical concentric cylinders (gap of 500 µm between the inner and outer cylinder) with 

solvent trap to limit evaporation. A sample size of approximately 20g was used. Subsequent 

to an equilibration step at the desired temperatures, flow curves were recorded at 20°C and 

72.5°C by logarithmically increasing the shear rate from 0.001 s-1 to 1000 s-1.  

 

 

5.2.4 PARTICLE SIZE DISTRIBUTION 

The particle size distributions of the cooled starch pastes were determined by laser light 

scattering as described in section 2.2.5. 

 

 

5.2.5 FLOW CURVES OF THE PASTES AFTER COOLING 

The flow curves of the pastes were recorded and subsequently fitted to the Herschel-Bulkley 

model (see equation 2-1). When fitting the flow curves of the guar containing pastes, a yield 

stress close to zero was observed. This is a consequence of the steeper slope of the flow 

curve at low shear rates, leading to an underestimation of 0 by extrapolation of the model. 

Therefore, the yield stress was predetermined and its value was fixed in the Herschel-Bulkley 

equation before fitting. The yield stress was estimated by plotting the apparent viscosity as a 

function of the shear stress. The stress at which a sudden drop in apparent viscosity was 
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observed, was assigned as the yield stress. For the sake of uniformity, this approach was 

also used for the xanthan containing pastes and the gum free pastes.  

 

 

5.2.6 OSCILLATORY RHEOLOGY OF COOLED PASTES 

Frequency sweeps of the cooled pastes were recorded using the 40 mm cross hatched steel 

plate-plate geometry with solvent trap. To prevent drying of the sample, 1 ml of water was 

brought in the solvent trap compartment. The gap was set to 1000 µm. The samples were 

allowed to equilibrate for 15 minutes. Subsequently the frequency sweeps were recorded 

from 0.01 to 5 Hz (the frequency was increased logarithmically) at a stress amplitude of 1 Pa. 

This value was within the linear visco-elastic region of the samples, as determined by 

recording stress amplitude sweeps. 

 

 

5.2.7 COVALENT LABELING OF THE GUMS 

Gums were labeled with fluorescein isothiocyanate (FITC, Sigma-Aldrich, Germany) by a 

procedure adapted from Tromp et al. (2001). For this reaction polysaccharide (250 mg), FITC 

(40 mg), pyridine (100ml), and dibutyltin dilaurate (20 ml) were dissolved in dimethyl 

sulfoxide (DMSO) (25 ml). The reaction mixture was heated for 4 h at 100 °C, precipitated 

with isopropyl alcohol (100 ml) and centrifuged for 30 min at 9000g. The labeled gums were 

dissolved in water (50ml, deionized for guar gum, 0.1M NaCl for xanthan gum) and 

precipitated with isopropyl alcohol (2 times). The polysaccharide was redissolved in hot water 

(50 ml) and dialysed against NaCl-solution (0.1 M; 4x4l) and deionized water (4x2l). Finally, 

the samples were freeze-dried. Guar gum was also labeled with 5-([4,6-Dichlorotriazin-2-

yl]amino)fluorescein hydrochloride (DTAF, Sigma-Aldrich, Germany), based on the 

procedure described by Wei et al. (2011). Guar gum (300 mg) and DTAF (10mg) were 

separately dissolved in 50ml of  sodium carbonate buffer (0.1 M, pH= 9.5). After mixing both 

solutions, the mixture was stirred gently at room temperature overnight. The labeled 

polysaccharide was precipitated with isopropyl alcohol and redissolved in water twice. For 

further purification, dialysis was performed using 4x4l of NaCl solution (0.1M, pH adjusted to 

9.5) and 4x4l of deionized water. The labeled guar was freeze-dried and stored. All dialysis 

purifications were performed using a cellulose membrane with a molar mass cut off of 

12,000–14,000 g/mol (Spectra/Por 2, Spectrum Europe, Breda, The Netherlands). Dialysis 

duration was determined by deriving the dialysis time required for full visual decoloration of a 

non-reacted solution of gum and coloring agent within the membrane. 
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5.2.8 CONFOCAL LASER SCANNING MICRSOSCOPY 

Starch pastes containing labeled gums were prepared similarly to the procedure described in 

section 5.2.2, but in this case the starch to solvent ratio (w:w) was 3:100, to allow a better 

distinction of the swollen granules in the micrographs. The pastes were heated to 72.5°C at a 

shear rate of 50 s-1 and subsequently analyzed by transferring a small amount (200µl) to 

glass bottom dishes (MatTek corp., MA, USA). The samples were examined under a 

confocal microscope (Nikon A1R; Nikon Instruments Inc., Paris, France), using a 60x/1.4 oil 

Plan Apo objective. A multi-line Ar laser was used for excitation (488 nm) and fluorescence 

was detected through a 525/50 nm band-pass filter. The pinhole was set to 1 A.U. Digital 

image files were acquired in at a resolution of 0.41µm/pixel and annotated using FIJI, a 

packaged version of ImageJ freeware (Rasband, W.S., ImageJ; US National Institutes of 

Health, Bethesda, MD, http://www.fiji.sc).  

 

 

5.2.9 STATISTICAL ANALYSIS 

IBM SPSS Statistics software (version 20, SPSS inc., Chicago, USA) was used for statistical 

comparison of the rheological data. Analysis of variance was carried out to determine 

significant differences between the results, followed by Tukey’s post hoc test for pairwise 

comparisons. All tests were performed at a 95% significance level. 

 

 

5.3 RESULTS AND DISCUSSION 
 

5.3.1 FLOW BEHAVIOR OF THE GUM SOLUTIONS 

The hydrocolloid solutions that were later on used to perform the pasting experiments, were 

first rheologically characterized. Two concentrations were selected for both hydrocolloids: 

0.2% and 0.4% (w/v).  The flow curves of the obtained gum solutions were recorded at two 

temperatures: 20°C and 72.5°C (example curves are depicted in Figure 5-2). The curves 

confirm a strong shear thinning behavior of xanthan gum as the viscosity drops over several 

logarithmic scales with increasing shear rate. This effect was less pronounced for guar gum 

solutions. Xanthan molecules are subject to strong disentanglement and alignment under 

shear. At 20°C, viscosity differences between the solutions are therefore strongly shear rate 

dependent. Initially the xanthan solutions exhibit the highest viscosity, but at more elevated 

shear, the solution containing 0.4% guar exceeds the xanthan solutions. At 72.5°C the 

viscosity of all solutions is markedly reduced. The temperature increase strongly affected the 
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xanthan solutions, due to the occurrence of a xanthan transition.  At this NaCl content 

(0.01M), the Tm is situated below 70°C (see chapter 2). For high molecular weight samples, 

this transition is accompanied by a viscosity reduction (Capron et al., 1998b; Choppe et al., 

2010; Milas & Rinaudo, 1986). Guar gum is not subject to conformational transitions, hence 

the thermal effect on guar gum is more limited. For this temperature, the order of the flow 

curves is preserved over the whole shear rate range: 0.4% xanthan > 0.4% guar > 0.2% 

xanthan > 0.2% guar. 

 

 

Figure 5-2: Flow curves of gum solutions: 0.4% xanthan (), 0.2% xanthan (), 0.4% guar () and 0.2% 
guar () at 20°C (L) and 72.5°C (R) and a NaCl concentration of 0.01M 

 

Gums can affect the pasting properties of starches in various ways, as described in section 

1.3.2. Some of these phenomena could directly result from the increased viscosity of the 

continuous phase for example by slowing down the convective heat transfer (and hence the 

effective heating rate of the granules) or by changing the turbulence in the cell during 

pasting. In this regard it is particularly interesting to compare the samples containing 0.4% 

guar gum with the samples containing 0.2% xanthan gum. If the previously reported effects 

of xanthan gum are caused solely by a viscosity effect during pasting, this should be more 

pronounced in the case of the 0.4% guar gum solution, which exhibits an even higher 

viscosity at the shear rates and temperatures studied here. However, it should be remarked 

that the effective gum concentration in the pastes increases due to water absorption of the 

starch granules. Hence, the presence of simultaneous swelling and degradation phenomena 

complicate the calculation of effective gum concentrations. Part of these difficulties can be 

overcome by using chemically cross-linked starches, which will be demonstrated in chapter 

6. 
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5.3.2 EFFECT OF GUM SOLUTIONS ON THE PASTING BEHAVIOR 

Similar to the setup of chapter 3, the maximum temperature of the pasting experiments was 

set to either 70°C or 72.5°C. The gelatinization temperatures were not significantly affected 

by the presence of both gums at the concentrations studied here (data not shown). Figure 

5-3 depicts the pasting curves of the different samples when pasted at 50 s-1, the curves are 

the average of three replicates. Comparable curves were obtained at a shear rate of 150 s-1 

(not depicted).  This mild temperature pasting behavior is elaborately described in chapter 3. 

The exhibited breakdown (i.e. viscosity reduction following the peak) is lower in the presence 

of both gums, and the lowest breakdown was observed for the xanthan-containing paste. 

From these graphs it is also clear that the additive effect of guar gum to the viscosity of the 

hot paste is larger than the contribution of xanthan gum.  

 

Remarkably, the order of the pasting curves at the isothermal step differs from the order 

observed in the flow curves of the gum alone systems. Although there is a strong correlation 

between with the viscosity of the dispersion before the pasting onset, the situation changes 

as the granules start to swell. These differences could result from an indirect effect, where 

both gums differently influence the interaction, swelling or degradation of the granules, or it 

could result from a direct effect in which both gums deliver a differential contribution to the 

overall viscosity. Furthermore, aside from the location, the shape of the pasting curves is 

affected as well. Whereas the effect of guar gum is primarily additive – the curves have 

shifted to higher values – xanthan gum changes its shape. The peak is less prominent in the 

presence of xanthan gum and the viscosity build up proceeds more slowly. These results 

suggest that both gums affect the pasting process of waxy maize starch differently. 
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Figure 5-3: Effects of xanthan (left column) and guar (right column) on the pasting behavior of waxy maize 
starch (starch:solvent ratio = 5:100)  at 70°C (top row) and 72.5°C (bottom row) and at a shear rate of 50 s

-1
 

 

In most setups dealing with starches and xanthan gum, salts are either not added or high salt 

contents (> 0.1M) are used to stabilize the helical xanthan gum conformation. For these waxy 

maize starch/xanthan systems, the comparison between 0.01M NaCl and 0.1M NaCl is 

described elaborately in chapter 3. Both salt contents not only affected the xanthan 

conformation but also induced differences in gelatinization temperature, which complicated 

the comparison of the samples when pasted at these moderate temperatures. Furthermore, it 

should also be interesting to study the effects for a system where no salt is added.  

 

Figure 5-4 illustrates the differences between a system containing 0.01M NaCl and a system 

without added salt. The changes caused by these low salt differences are surprisingly high. 

The salt free (of course salts are never absent, but present in both the gum and the starch 

powder) system better resembles the additive behavior of xanthan as it is more often 
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documented (Achayuthakan & Suphantharika, 2008; Viturawong et al., 2008) and  exhibits a 

pasting behavior similar to the guar gum systems as described above. In this case the curves 

are shifted to higher viscosities and breakdown is more explicitly manifested. A closer look 

into the rheological behavior of the pure gum solutions partly clarifies the observed 

differences in pasting behavior. The flow behavior of 0.2% xanthan solutions with 0.01M 

NaCl versus without added NaCl is shown in Figure 5-4. At 72.5°C the solution without salt 

exhibits a significantly higher viscosity. This could explain the viscosity differences recorded 

during pasting of the starch samples. It can be assumed that for both salt contents, the 

xanthan molecules were present in the random coil conformation at 72.5°C, but the presence 

of 0.01M NaCl causes a stronger shielding of the anionic charges, hence reducing the 

hydrodynamic volume of the polymer. Apparently, at 0.01 M NaCl an interesting condition is 

created, in which the viscosity of the xanthan solution is very low, but on the other hand is 

capable of strongly dominating the flow within the starch suspension. It should be noted that 

the pasting curve of the gum free systems also differed between both salt contents (0 M and 

0.01M NaCl), due to a slight shift in gelatinization temperature. In order not to further 

increase the number of variables, a salt content of 0.01M was maintained throughout the rest 

of this setup. 

 

 

Figure 5-4: Effects of xanthan concentration on the pasting behavior of waxy maize starch (starch:solvent 
ratio = 5:100) without added salt (L) and effects of NaCl on the flow behavior of xanthan solutions at 

72.5°C (R) 
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5.3.3 PARTICLE SIZE DISTRIBUTION 

Pastes prepared at three different shearing conditions (no shear, 50s-1, 150s-1) and two 

temperatures (70 and 72.5°C) were analyzed by laser diffraction. To limit the size of the 

experimental setup, three compositions were studied: no gum, 0.2% xanthan gum and 0.4% 

guar gum. The choice for these gum concentrations was based on their rheological 

properties, as mentioned above. The different imposed shear rates during pasting clearly 

affected the particle size distributions (PSD). When the shear rate is increased, the PSD 

gradually shifts to lower values and the peak is broadened (Figure 5-5). It is difficult to 

capture both effects in one averaged diameter, therefore preference was given to plotting the 

whole curve. The depicted curves are the average of three (independent) repetitions. The 

clear differences between the varying shear rates demonstrate that granule degradation 

effects take place even for the systems where no peak was observed in the pasting curves. 

When a starch paste is heated above the gelatinization onset temperature, a fraction of the 

granules will gelatinize very quickly and break up, even at these low temperatures. This 

however does not necessarily result in a reduction in paste viscosity because this effect is 

overruled by the other granules which are still swelling. Therefore, the absence of a viscosity 

drop does not indicate the absence of granule disintegration. When an actual drop is 

observed (i.e. breakdown is exhibited in the pasting curve), this means that degradation 

effects have become predominant. As expected, the effect of shear is more pronounced at 

the highest temperature (72.5°C). This slight increase in temperature not only enhances 

temperature induced breakdown – which is visible by comparing the unsheared samples at 

both temperatures – but also results in stronger shear effects. 
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Figure 5-5: Effect of shear ( __: no shear; ---: 50 s
-1

; __: 150 s
-1

) and temperatures imposed during pasting 
on the particle size distribution of waxy maize starch dispersions (starch:solvent ratio = 5:100, without 

gum) 

 

Figure 5-6 illustrates the effects of the gums at different pasting conditions. For the 

unsheared samples, the granule size of the xanthan system strongly resembles the gum free 

paste. In the presence of guar gum, the curve is slightly shifted to lower diameters. However, 

when the highest shear rate (150 s-1) was imposed during preparation, the differences 

between the compositions become more apparent. The granule sizes are clearly larger in the 

presence of xanthan. Remarkably this effect is not noticeable when guar gum is present. In 

fact, at 72.5°C the granules in the guar paste exhibit a very broad distribution and appear 

even more damaged than the granules in the pure starch system. From the viscosity drop in 

the pasting curves, a lower extent of granule disintegration in the presence of xanthan gum 

was expected, but this was also suggested for the guar gum systems. Although the paste 

viscosity is strongly related to the volume occupied by the granules, pasting data should be 

interpreted with caution, particularly when comparing gum free with gum containing systems. 

The contribution of the gum to the rheological properties of starch pastes is strongly 

determined by the integrity of the granules (Closs et al., 1999). In case the granules are 

largely intact, waxy starch pastes can be considered as swollen granules within a 

concentrated gum solution. When the granules are more disrupted, the rheological properties 

are governed by the continuous phase, which is in turn dependent on the phase behavior of 

the gum and the dissolved amylopectin molecules. Consequently, the synergistic effect of 

gums is not simply additive over the entire range of the pasting curve. As breakdown 

increases in the course of the process, the system changes from a gum-continuous starch 

dispersion to a macromolecular solution consisting of amylopectin and gum polymers. These 
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factors can give rise to a different viscosity drop at a similar extent of actual granule 

disruption (Chantaro et al., 2013) and complicates the comparison of systems with different 

compositions. 

 

 

Figure 5-6: Effect of gum presence (black: no gum; dotted: 0.2% xanthan; grey: 0.4% guar) on the particle 
size distributions after varying temperature and shear conditions during pasting 

 

Several hypotheses could be postulated in order to explain the higher granule size in the 

presence of xanthan gum. By including samples that have not been subjected to shear, 

some of these mechanisms can be refuted. If xanthan gum should slow down the swelling of 

the granules, leading to less disruption, the particle size distribution of the unsheared 

samples containing xanthan is expected to be lower than the gum free system. This is 

definitely not the case. On the contrary, this effect is more likely displayed for the samples 
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containing 0.4% guar gum, which show slightly lower diameter sizes. Conversely, because 

the particle size distributions of the unsheared samples with and without xanthan are very 

similar, an enhanced swelling induced by xanthan gum can also be excluded.  

 

It has also been suggested that due to their high viscosity, gums induce a slower heat 

transfer. This could result in a reduced (thermal) degradation of the granules. Because both 

gums increase the viscosity (the guar solution is even more viscous than the xanthan 

solution), similar effects should be observed for both gums, but this was clearly not the case. 

However, it should be noted that when performing pasting experiments with rapid visco-

analyzers or Brabender amylographs using high heating rates, the medium viscosity could 

change the actual heating rate. With the accurate temperature control in the starch pasting 

cell and the rather low heating rate, this effect is kept to a minimum in the current setup. 

 

Consequently, it can be concluded that the larger granule size in the presence of xanthan is 

induced by effects of shearing. Gums increase the viscosity of the continuous phase which 

can affect the impact between starch granules by reducing the turbulence within the starch 

pasting cell (Walstra, 2003). A higher viscosity of the continuous medium gives rise to lower 

Reynolds number (i.e. less turbulence). Building further on the viscosity profiles of the gum 

solutions, this would mean that there should be less turbulence in the systems containing 

0.4% guar than the systems containing 0.2% xanthan. Therefore, the guar pastes should 

have resulted in a higher extent of granule preservation. This was not the case, these 

observations rather indicate a specific feature of xanthan gum, which is not exhibited by guar 

gum. Hence, it can be stated that under these conditions, xanthan can reduce the shear 

induced breakdown of waxy maize starch, and this property is not induced by a viscosity 

effects, nor is it the result of competition for the available water.  

 

A first possibility could be the presence of shear induced anisotropy of xanthan gum. Within a 

flow field, the elongated xanthan molecules strongly align to reduce their molecular excluded 

volume, hence leading to mesomorphic organization (see also section 1.1.5). This property is 

observed for both the ordered and disordered state (Laneuville et al., 2013). The strong 

alignment of the xanthan molecules between the starch granules could guide them in a 

specific flow pattern, in which mutual friction and turbulent collisions are restricted. 

Unfortunately, little information is available on how mesophase formation in the continuous 

phase affects the flow of dispersions.    
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A second possible explanation is the specific association of xanthan gum with the surface of 

the starch granules. Several authors claim the unique ability of xanthan gum to enwrap 

starch granules (Chaisawang & Suphantharika, 2005, 2006; Gonera & Cornillon, 2002). If 

xanthan is associated with the outside of the granules, it might act as a physical barrier, 

slowing down the diffusion of water molecules into the starch granules. As a result, the 

granule swelling would occur more slowly. It was proposed before (see chapter 2 and 3) that 

this association could also modify the manner in which starch granules interact during 

pasting. A concentrated xanthan film surrounding the granules might also act as a lubricating 

layer, reducing the friction exerted during granule collisions. This property of granule 

association is studied more in detail in the following paragraph. 

 

 

5.3.4 CONFOCAL LASER SCANNING MICROSCOPY 

Gonera & Cornillon (2002) demonstrated that DTAF-labeled xanthan associated with the 

surface of unheated and heated normal maize starch. Xanthan gum also appeared to cover 

the surface of heated cationic and normal tapioca starch (Chaisawang & Suphantharika, 

2005, 2006). The same authors concluded that guar gum did not have this ability. The 

authors remain vague regarding exact mechanism, but non-covalent interactions like 

hydrogen bonding, van der Waals forces, which are also proposed for xanthan-

galactomannan interactions, appear very likely (Tako et al., 2010).  In all of those setups, the 

possible interaction of xanthan gum with amylose could have caused these results because 

they dealt with non-waxy starches, for cationic starches an electrostatic interaction was 

suggested as well. This specific feature of xanthan has not been demonstrated in waxy 

starch systems, which are essentially free of amylose. 

 

Both guar gum and xanthan gum were covalently labeled with a fluorescent dye. After 

intensive purification, they were dissolved and subsequently cold mixed with the waxy maize 

starch and pasted at 72.5°C in the starch pasting cell (at 50 s-1). For the xanthan systems, 

the effects of the NaCl concentration were studied as well (0 M, 0.01M). Figure 5-7 depicts 

some representative micrographs of each system. It should be marked that the CLSM-

micrographs are taken from samples with a starch to solvent ratio of 3:100 (w:w) which 

allowed the granules to swell more freely, causing slightly larger dimensions.  
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Figure 5-7: Confocal micrographs (recorded at room temperature) of waxy maize starch dispersions 
(starch:solvent ratio = 3:100) indicate presence of labeled gums (left: 0.2% DTAF-guar; middle: 0.2% 

xanthan-FITC no salt; right: 0.2% xanthan-FITC 0.01M NaCl). The dispersions are pasted at 72.5°C at a 
shear rate of 50 s

-1
. 

 

In case of the guar paste, the majority of the gum is present in the continuous phase. The 

starch granules can be observed as dark structures in a fluorescent medium. For the xanthan 

containing systems, the presence of NaCl and consequently the xanthan conformation 

appeared to greatly affect the results. In the salt free system, xanthan is mainly associated 

with the granule surface. At 0.01M NaCl the behavior is intermediate: an occasional 

association with the granules was observed, but the xanthan is predominantly present in the 

continuous phase. Moreover, these pastes (0.01M NaCl) were more heterogeneous, 

showing local accumulations of xanthan. 

 

These results suggest that, when present in the random coil conformation (no salt), xanthan 

can associate with the swollen starch granules. Possibly a similar effect can take place at 

higher salt contents when the xanthan is heated above the transition temperature, e.g. during 

pasting. If associations between xanthan and gelatinized waxy starch granules occur, these 

micrographs suggest that the xanthan, at least partly, desorbs upon reconverting to its helical 

form during cooling. The question however should be raised whether these associations are 

also present during the isothermal heating step, where the highest degree of granule 

disruption takes place. It has been stated before that molecular associations between 

polysaccharides are less likely to occur at elevated temperatures (BeMiller, 2011). More 

advanced equipment, capable of recording micrographs at elevated temperatures could 

further clarify this hypothesis. Nevertheless, these results invalidate the hypothesis that 

association of xanthan with the granule surface causes the stabilizing effect during shear. As 

described in chapter 3, xanthan also exhibited granule stabilizing properties at 0.1M NaCl, 

when no transition and likely no association with the granules is taking place.  Furthermore, 

the association of xanthan gum is not responsible for the specific flow behavior observed 
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during pasting of the samples at 0.01M NaCl. If this were true, the salt free system should 

exhibit comparable changes in pasting behavior, which was not observed. Consequently, it 

can be stated that xanthan gum, present in the continuous phase protects the starch 

granules from breaking, irrespective of its molecular conformation. This observation favors 

the hypothesis of shear anisotropy as stated above. 

 

 

5.3.5 RHEOLOGICAL PROPERTIES OF THE COOLED PASTES 

Unlike guar gum, xanthan gum limited the shear induced breakdown of the starch granules, 

as shown in the particle size distributions. However, laser light diffraction allows only to 

characterize the present granules and fragments. This technique provides no information 

about the fraction of the starch that has been completely broken down to its molecular 

constituents. Therefore, additional measurements were performed to evaluate the rheological 

relevance of the observed differences between the varying shear regimes and the 

differences induced by the gums. For practical reasons, the rheological analyses of the 

pastes were always performed after 24h of storage at 5°C. Because these waxy starches 

contain no amylose, retrogradation effects are limited, but can still induce minor changes in 

paste structure. Lu et al. (2008) demonstrated that the heating temperature can affect the 

structure buildup of waxy starch pastes during storage. In order to exclude differences 

induced by retrogradation effects, samples that only differed in shear rate during pasting 

were directly compared (i.e. same composition and the same heating temperature). 

 

 

5.3.5.1  Visco-elastic properties 

The viscoelastic properties of starch pastes are governed by the volume and the rigidity of 

the swollen granules, the continuous phase and the interaction between both (Chaisawang & 

Suphantharika, 2006). Therefore small deformation rheology is a sensitive probe for 

detecting microstructural differences within the samples. Figure 5-8 summarizes the effect of 

temperature and shear conditions on the elastic modulus G’ (recorded at 0.5 Hz). The effect 

of increased shear during pasting is clearly noticeable as G’ is significantly reduced when 

more shear was applied. Furthermore, this effect is more apparent when pasting was 

performed at 72.5°C. This illustrates that preparation conditions can induce modest changes 

in average granule size but with large rheological implications.  
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The effect of the shearing conditions is most pronounced for the gum free system, which 

exhibits the strongest fallback of G’. This is rather expected because the starch component is 

in this case the only ingredient that can contribute to the rheological properties. When gums 

are present, they inevitably have a direct influence as well, which is not affected by the shear 

conditions used in these experiments. At 70°C the xanthan containing system is the least 

affected by the different shear conditions. When comparing the samples sheared at 150 s-1 

with the unsheared samples, a reduction of about 3 % can be observed for G’ in the 

presence of xanthan gum, whereas there is a reduction of 50% in the presence of guar gum. 

For those samples, the granule preserving effect of xanthan is clearly noticeable. At 72.5°C 

the effects of increasing the shear rate during production are comparable for guar gum and 

xanthan gum. Based on the PSD of the samples, this result is unexpected because the 

granule sizes differed the most when the pastes were prepared at this temperature. When 

heated at 72.5°C, an important fraction of the starch is broken down for all the sheared 

samples (see confocal micrographs section 3.3.4) and the dynamic rheology is more affected 

by the gums and the starch amylopectin present in the continuous phase, than by the intact 

granules.  

 

 

Figure 5-8: Effects of processing temperature (left: 70°C; right 72.5°C) and shear on the value of G’ (0.5 
Hz) of the resulting pastes. For a given composition and preparation temperature, letters a, b and c 

indicate significant differences (p<0.05) induced by the applied shear conditions. 
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5.3.5.2 Flow parameters 

The flow curves of the samples and the derived Herschel-Bulkley parameters are strongly 

affected by the presence of both gums (Figure 5-9). The flow behavior index of all samples 

was smaller than 0.5 (not depicted), hence they all exhibited shear thinning behavior. 

Compared with the pure starch systems, the addition of guar gum gave rise to a reduced 

yield stress, whereas this parameter is significantly increased by xanthan. Xanthan gum 

solutions exhibit weak gel properties due to their rigid conformation and the presence of 

molecular entanglements. Therefore an increased yield stress is not unexpected. Moreover, 

it has been suggested that xanthan gum can enhance the granule association of waxy maize 

starch systems (Abdulmola et al., 1996b; Achayuthakan et al., 2006). The proposed 

mechanisms were bridging or depletion flocculation. De latter appears rather unlikely 

considering the size of the swollen granules and the rather high (effective) xanthan 

concentrations in the continuous phase. Several hypotheses could be formulated to explain 

the lower yield stress observed for the guar pastes. Because this effect is the clearest for the 

unsheared samples, the lower yield stress could be the result of a lower granule swelling, as 

suggested by the PSD. Guar gum might also affect the granule packing. Upon swelling, the 

guar gum concentration in the continuous phase is raised, thus encumbering granule-granule 

interactions and possibly lowering the yield stress. 

 

Conversely, the consistency index is strongly increased by guar gum while there is only a 

moderate influence of xanthan on this parameter. The consistency index (k) characterizes 

the behavior of the systems under flow, i.e. when the yield stress is exceeded. Their high 

values for the consistency indices demonstrate that the guar gum systems are more resistant 

to flow. Similar to the increased viscosities during pasting, a higher stress is required to move 

starch granules past each other in a more viscous medium. 
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Figure 5-9: Effects of processing temperatures (left: 70°C; right 72.5°C) and shear rate on the value of the 
Herschel-Bulkley parameters of the resulting waxy maize starch pastes. For a given composition and 

preparation temperature, letters a, b and c indicate significant differences (p<0.05) induced by the applied 
shear conditions. 

 

Based on the yield stress and the consistency index, the effect of the different preparation 

conditions was evaluated. In general, it could be stated that there is a marked effect from the 

imposed shear rates on both parameters (Figure 5-9). For pastes heated to 70°C, changing 

the shear rate from no shear to 50 s-1, results in limited effects. However, upon further 

increasing the shear rate to 150 s-1, the consistency index is significantly reduced except in 

the presence of xanthan gum. Pastes heated to 72.5°C exhibit more marked differences in 

both yield stress and consistency index. Particularly for the latter parameter, the limited 

differences for the xanthan pastes strongly contrast with the large shear induced effects 

which are observed for the gum free and the guar system. Their large influence on the 
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consistency index demonstrates the strong effects of the processing conditions on the 

macroscopic properties of these systems. 

 

These results further evidence the granule preserving properties of xanthan gum and 

illustrate that both gums enhance the rheological properties differently. The effect of guar 

gum is mainly additive because this component increases the consistency without affecting 

the granule properties. Xanthan gum also exhibits this feature, but more importantly it can 

protect the granules at varying shear conditions, hence improving the intrinsic contribution of 

the starch. 

 

 

5.4 CONCLUSIONS 

The effects of guar and xanthan gum on the mild temperature pasting behavior of waxy 

maize starch were studied in this setup. The use of the starch pasting cell geometry of the 

rheometer allowed to accurately control the preparation conditions of the pastes. In particular 

the effects of different shearing conditions (no shear, 50 s-1 and 150 s-1) were compared to 

elucidate the influence of the gums on granule swelling and breakdown (Figure 5-10). 

 

At the concentrations studied here, the gums did not induce marked differences in granule 

swelling. However, breakdown was clearly affected by their presence. The ability of xanthan 

to inhibit granule disruption was confirmed, whereas guar gum appeared not to have this 

property. As a consequence, large differences in pasting profiles as well as particle size 

distributions were observed between guar and xanthan systems. This specific feature of 

xanthan gum was attributed to its ability to modify the impact between the granules. The 

latter is possibly caused by a shear induced anisotropic organization of the xanthan 

molecules, rather than by an association with the granule surface.  

 

Furthermore, differences induced by the pasting conditions were also reflected in the 

rheological behavior of the pastes after cooling. For the gum free and the guar pastes, the 

consistency index as well as the elastic modulus were significantly reduced by an increased 

shear rate. In the presence of xanthan, these effects could be more restricted. In conclusion, 

it could be stated that both gums can enhance the rheological properties of these waxy 

starch pastes, but guar gum rather masks the shortcomings of the starch, whereas xanthan 

gum can actively improve the performance of the granules by preserving their structure.  

 



Chapter 5: Influence of guar and xanthan gum on the shear induced breakdown of waxy 
maize starch 

 
 

 

128 
 

 

Figure 5-10: Deductive decision scheme to explain the effect of xanthan gum 

 

These results demonstrated that gums indirectly influence the rheological properties of native 

waxy maize starch, by changing the granule properties. However, a deeper look into the 

existing literature shows that their direct rheological contributions are also not fully 

understood, which is also illustrated repeatedly in this chapter. If effects of gums on granule 

swelling and degradation could be excluded, a more fundamental insight in their rheological 

effects could be developed, which in turn could help interpreting the behavior of these more 

complex systems. Therefore, the following chapter will focus on cross-linked starch systems 

in which granule degradation effects are limited. 

 



 



Relevant publication: Heyman, B., De Vos, W., Van der Meeren, P., Dewettinck, K. (2013). Gums 

tuning the rheological properties of modified maize starch pastes: differences between guar and 

xanthan. Food Hydrocolloids (submitted). 
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6.1 INTRODUCTION 

For numerous industrial food applications chemically modified starches and gums are 

combined in order to improve their sensory and rheological properties as well as their 

physicochemical stability. Chemically cross-linked starches are very popular, because the 

strengthened granules can much better withstand the elevated temperatures and high shear 

forces often encountered in production processes (Singh et al., 2007; Tharanathan, 2005). 

However, the swelling of cross-linked starch is restricted by the presence of cross-link 

junctions. Therefore, in many liquid and semisolid foods, polysaccharide gums are added as 

the second thickening component to adjust the viscosity and texture in the final products 

(Fuongfuchat et al., 2012).  Surprisingly, modified starch/ gum mixtures are far less studied 

than their native counterparts, despite their industrial abundance. 

 

The specific effects of gums on the rheological properties of starch systems appear to 

strongly depend on the type of gum, the type of starch as well as the applied concentrations 

and preparation conditions (BeMiller, 2011).  Associations between starch and hydrocolloid 

molecules (Christianson et al., 1981; Freitas et al., 2003; Funami et al., 2005b; Shi & 

BeMiller, 2002) as well as their mutual exclusion (Achayuthakan & Suphantharika, 2008; 

Alloncle & Doublier, 1991; Alloncle et al., 1989; Biliaderis et al., 1997; Conde-Petit et al., 

1997; Mandala et al., 2004) have been proposed to explain the observed rheological 

phenomena. The hypothesis of mutual exclusion – which is embraced by many authors – 

states that gum molecules are confined to the continuous phase of the starch dispersion. 

This model is particularly important for cross-linked waxy starches where granules remain 

intact and no amylose is present.  Consequently, the pastes are regarded as discontinuous 

systems: the swollen starch granules are surrounded by the continuous watery phase 

containing the gum molecules (Abdulmola et al., 1996b; Alloncle & Doublier, 1991). Due to 

the water absorption of the starch, the effective concentration of the polysaccharides present 

in the external phase is raised. The latter is believed to cause the often observed synergistic 

effects in the rheological behavior of starch/gum systems.  

 

Under the impulse of granule swelling in mixed starch/gum systems, the concentration 

regime of the gum could differ before and after heating. Particularly for xanthan gum 

solutions, the rheological behavior strongly depends on the applied concentration and the 

corresponding molecular organization. Two characteristic concentrations are generally 

defined. The critical overlap concentration c* marks the start of the semi-dilute regime. Above 

the entanglement concentration c**, molecules start to engage in intermolecular interactions 
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(Meyer et al., 1993; Wyatt & Liberatore, 2009). At more elevated concentrations (~2% w/v), 

anisotropic phases are observed due to the spatial alignment of the stiff molecules and the 

rheological properties depend less strongly on the xanthan concentration (Allain et al., 1988; 

Lee & Brant, 2002a; Oertel & Kulicke, 1991; Sato et al., 1990). In this regard, it is interesting 

to compare the effects of guar gum and xanthan because both are high molecular weight 

polymers that induce high viscosities in solution. However, guar gum does not engage in 

strong molecular entanglements and does not exhibit mesophase formation. 

 

In this chapter, a comprehensive study on the rheological effects of xanthan and guar gum 

on waxy starch systems is presented. In contrast with the preceding chapters dealing with 

native starch systems, preference was given to chemically cross-linked and acetyl 

substituted waxy maize starch. This type of modified starch is not subject to degradation 

effects under the conditions used in this study, which facilitates the interpretation of the 

results, and allows to calculate the effective starch volume in the system (see further).  More 

specifically, it was evaluated to which extent the unique rheological effects of xanthan gum, 

as observed in the preceding chapters, are also reflected in modified starch systems. For 

that reason, results of the xanthan systems are compared with guar containing and gum free 

pastes.  A better insight in the effects of gums on the rheological properties of modified 

starches can not only result in a more sensible use of both components, but it might also 

assist in the search for native starch alternatives that can mimic the rheological behavior of 

their modified counterparts.  

 

 

6.2 MATERIALS AND METHODS 
 

6.2.1 MATERIALS 

Xanthan gum (Satiaxane CX911, pyruvic acid content >1.5%) and guar gum (Viscogum 

MP41230) were acquired from Cargill Texturizing Solutions (Ghent, Belgium). For the 

covalent labeling, a clarified version of the xanthan gum was used (Satiaxane CX931) to 

avoid complications during purification and noise within the micrographs due to residual cell 

debris and other fermentation impurities. Adipate cross-linked and acetyl substituted waxy 

maize starch (Resistamyl 347) was provided by Tate & Lyle Benelux.  
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6.2.2 PREPARATION OF GUM SOLUTIONS 

Gum solutions were prepared as described in the preceding chapter (see section 5.2.1). 

 

 

6.2.3 PASTING EXPERIMENTS 

By means of a magnetic stirrer, the starch powder was suspended in 0.1M (or 0.01M, for the 

last part of the setup) NaCl solutions or first suspended in 0.19 M NaCl (or 0.01M, for the last 

part of the setup) solutions and further diluted (50/50) with the gum stock solutions to obtain 

a final NaCl concentration of 0.1M in the continuous phase. The resulting gum concentration 

in the continuous phase was 0, 0.2 or 0.4% (w/w). As it will be remarked repeatedly 

throughout the text, the effective xanthan concentration in the systems is raised due to starch 

granule swelling in the heating step. When reference is made to ‘gum concentrations’, these 

initial concentrations (0.2%, 0.4%) in the continuous phase are intended, otherwise the term 

‘effective gum concentration’ is used. Different starch:continuous phase ratios (w:w) were 

applied: 3:100, 4:100, 5:100, 6:100 and 7:100.   

 

Pasting experiments were performed by means of the starch pasting cell. Starch 

suspensions were presheared at 100 s-1 for 2 minutes and then heated to 85°C at a heating 

rate of 5°C/min, held isothermal for 10 minutes and finally cooled down to 20°C (5°C/min). 

Throughout the heating and cooling steps a shear rate of 100 s-1 was maintained. The cooled 

samples were recollected and stored for 24h in the refrigerator (5°C) before further analysis.  

 

 

6.2.4 PARTICLE SIZE DISTRIBUTIONS 

The particle size distribution of the cooled starch pastes was determined by laser light 

scattering using a Malvern Mastersizer S (Malvern, UK) equipped with a 300mm reversed 

Fourier lens and a MSX-17 sample dispersion unit. To measure the starch particle size in the 

cold paste samples, approximately 4 g paste was diluted to 20g with deionized water and 

gently shaken manually. Pumping and stirring speeds were put on 30% of the maximum 

values and the background was measured. For the optical model, the refractive indices were 

1.6 and 1.33 for starch and the continuous phase, respectively. The average diameter of the 

unheated starch granules was determined with the dry powder feeder MSX-64. The 

refractive indices were 1.6 for the particles and 1.00 for air. 
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The volume fraction occupied by the swollen granules is calculated from the starch 

concentration c (g/ml), the raw starch volume-equivalent mean granule diameter D0[3,0], the 

swollen starch volume-equivalent mean diameter D[3,0] and the starch density  (g/ml). The 

calculations are similar to the procedure of Jacquier et al. (2006). As a starting point, it is 

assumed that the number of granules present remains constant, i.e. each raw granule results 

in a swollen granule, hence no disruption into smaller fragments takes place. The number of 

granules present in the system (n) can be calculated as follows: 

 

n = 
total volume of raw starch

volume of 1 raw starch granule
= 

ms
 ⁄

 
 ⁄ . D  3,   

 6-1 

 

 

The swollen starch volume fraction can now be calculated: 

 

 = 
Volume  occupied by swollen starch

Total volume of the system
= 

n .   ⁄ . D 3,   

Total volume of the system
= 

c .D[3, ]3

  . D [3, ]
3
 6-2 

 

The density of the raw starch was determined experimentally and equaled 1.47 g/ml. The 

value of D0[3,0] was experimentally determined to be 11.2 ± 0.2 µm, the average of 3 

replicates. This average size is comparable with other reports (BeMiller & Whistler, 2009; 

Tester et al., 2004). In this setup, starch/continuous phase ratios are used rather than starch 

concentrations. The concentration c can easily be calculated from the starch mass ms (g) and 

the corresponding solvent mass mw (g) and solvent density w (g/ml).  

 

c = 
ms

ms

 
 
mw

 w

 
6-3 

   

The solvent (water or gum solutions) largely constituted of water. Therefore, the value of w 

was for all systems fixed to 1 g/ml. 

 

 

6.2.5 FLOW CURVES OF THE PASTES AFTER COOLING 

The flow curves of the cooled pastes were recorded using a 40 mm cross hatched steel 

plate-plate geometry with solvent trap. To prevent drying of the sample, 1 ml of water was 
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brought in the solvent trap compartment.  The gap was set to 1000 µm. After 15 minutes of 

equilibration at 20°C, a steady state flow step was performed by logarithmically increasing 

the shear rate from 0.01 s-1 to 100 s-1.  

 

A comparable procedure was used for recording the flow curves at 85°C. The sample was 

applied at room temperature and heated to 85°C. After an equilibration time of 5 minutes, the 

flow curve was recorded (0.1 s-1 to 1000 s-1). In addition to the solvent trap, a liquid paraffin 

oil was wrapped around the edge of the sample to restrict evaporation. 

 

 

6.2.6 EMPIRICAL MODELING OF RHEOLOGICAL DATA 

The apparent viscosities () of both the hot and cooled pastes were plotted as a function of 

the starch volume fraction . For the hot paste viscosity (85), the final viscosity of the 

isothermal step during pasting was selected. The cold paste viscosity (20) at a shear rate of 

100 s-1 was derived from the flow curves recorded at 20°C. Within the studied volume fraction 

range, the course of the plots could be described by a three parameter power function: 

 

 = a   b .  c 6-4 

 

Curves were fitted to data obtained from pastes with a fixed initial gum concentration (no 

gum, 0.2% or 0.4%) by means of the SigmaPlot 10 software (Systat software inc., San Jose, 

USA). In order to depict the contribution of the gums relative to the gum free systems as a 

continuous function of , the ratio of both equations was plotted: 

 

viscosity ratio= 
ag  bg. 

cg

a   b . 
c 

 6-5 

 

The fitted parameters (a,b,c) with subscript ‘g’ refer to the fits of the gum containing systems 

and subscript ‘ ’ indicates the gum free systems. 

 

 

6.2.7 OSCILLATORY RHEOLOGY OF COOLED PASTES 

Frequency sweeps of the cooled pastes were recorded using a 40 mm cross hatched steel 

plate-plate geometry with solvent trap as described in section 5.2.6. 
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6.2.8 COVALENT LABELING OF THE GUMS AND CONFOCAL SCANNING LASER 

MICROSCOPY 

Gums were labeled with fluorescein isothiocyanate (FITC) as described in section 5.2.7. 

Labeled gums were dissolved (0.2%) in distilled water and if necessary NaCl was added 

(0.1M, 0.01M). Starch pastes containing labeled gums were prepared and analyzed as 

described in section 5.2.8. However, for this setup the pastes (starch to solvent ratio 3:100) 

were heated to 85°C, by the same procedure as described in section 6.2.3.  

 

 

6.3 RESULTS AND DISCUSSION 
 

6.3.1 CONFOCAL SCANNING LASER MICROSCOPY 

Starch/gum pastes and gels are mostly considered as swollen starch granules within a 

watery gum solution. Particularly in the case of xanthan gum, it was suggested as well that 

this polysaccharide is capable of associating with the granule surface (Chaisawang & 

Suphantharika, 2006; Gonera & Cornillon, 2002). In the previous chapter, it was 

demonstrated that this effect is also occurring for native waxy maize starch/xanthan systems. 

Furthermore, the extent of association appeared dependent on the salt content. To verify 

whether similar phenomena take place in these modified starch systems, the location of 

labeled gums in the pastes was visualized. Depending on the location of the xanthan within 

the systems, rheological data should be interpreted differently.  

  

Figure 6-1 represents the confocal micrographs of the different systems studied. Due to its 

strong salt sensitivity, three NaCl contents were applied for the xanthan pastes (no salt, 

0.01M and 0.1M). The starch dispersions containing xanthan but without the addition of salt, 

clearly differed from the others. Whereas xanthan and guar gum are clearly present in the 

continuous phase of the other dispersions, it is in this case (at least partly) associated with 

the surface of the granules. It should be remarked that also in the work of Gonera & Cornillon 

(2002), as well as Chaisawang & Suphantharika (2006) associations between xanthan and 

starch granules were observed in systems where no salts were added. At 0.01M NaCl, a 

somewhat intermediate behavior is observed, where a slight degree of granule association 

can be perceived, but the majority is present in the continuous phase.  The degree of 

association appears therefore dependent on the salt content of the dispersions, which 

confirms the findings from the preceding chapter. It is generally known that when cooling 

from above Tm to lower temperatures, xanthan converts to its helical form. At low salt 
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contents xanthan molecules occur in random coil (Muller et al., 1986; Stokke et al., 1989) 

and the driving force for renaturation is less strong (Camesano & Wilkinson, 2001). Xanthan 

gum is known to be able to engage in non-electrostatic interactions with polysaccharides, like 

guar gum or locust bean gum during cooling and it was proven that these interactions are 

suppressed by the helical conformation (Mao et al., 2012; Renou et al., 2013). Possibly the 

same mechanism is responsible for xanthan interactions with the starch polymers present at 

the periphery of the swollen granules. This topic deserves a separate study, and will not be 

the focus in the current setup. On the other hand, it is clear that the systems studied here, 

containing 0.1M NaCl (and presumably also at 0.01M) can be considered as discontinuous 

systems of swollen starch granules dispersed in a gum containing medium. 

 

 

Figure 6-1: Confocal micrographs (recorded at room temperature) of adipate crosslinked and acetylated 
starch (starch:solvent ratio 3:100) with FITC-labeled gums (A: 0.2% xanthan 0 M NaCl; B: 0.2% xanthan 

0.01 M NaCl, C: 0.2% xanthan, 0.1 M NaCl; D: 0.2% guar 0 M NaCl). Dispersions are prepared at 85°C and a 
shear rate of 100 s

-1
. 

 

 

6.3.2 VERIFICATION OF THE ADSORPTION HYPOTHESIS 

Although CSLM proves to be a powerful technique to visualize these complex systems, one 

should interpret the micrographs cautiously. First of all, the addition of fluorescent groups 

could modify the affinity of the polymer for the starch. Secondly, the labelling reaction as 

such might partially depolymerize the molecules which can also lead to a functionality 

change. Demonstrating whether or not xanthan gum adheres to the swollen granules is not 

easy. Generally, adsorption or association phenomena could be confirmed by concentration 

differences before and after centrifugation of the dispersed phase. In the case of starch 

dispersions, the particles as such absorb a large fraction of the water, hence increasing the 

concentrations of the gum, as described higher. Moreover, due to the irregular shape and the 

deformable nature of the swollen granules, the exact volume fraction of the starch is not 

known and can only be approximated. Furthermore, the quantification of polysaccharide 

gums poses a lot of practical difficulties. Chemical quantification methods like total organic 
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carbon (TOC) determination, which has been used for xanthan quantification (Van Nevel et 

al., 2012), are affected by the impurities (e.g. leached polymers) originating from the starch. 

In order to avoid these complications, the continuous phase of the starch/gum dispersions 

was analyzed rheologically and compared with a reference solution. The starch pastes were 

prepared in the same manner as described in 6.2.3. And these pastes were transferred to 

screw cap tubes and centrifuged at 8000g for 15 minutes. A low starch to solvent ratio 

(3:100) was chosen in order to allow separation of the granules. Flow curves of the solvent 

phase were recorded by means of the concentrical cylinder geometry. 

 

The volume equivalent average diameter D[3.0] allowed to calculate the starch volume 

fraction in the systems and hence the corresponding theoretical gum concentration 

(assuming no association with the granules). For these tests, a starch-to-solvent ratio of 

3:100 was used (in this case, based on starch powder instead of dry starch). When the 

starting concentration of both gums was 0.2%, this should result in an effective gum 

concentration of 0.31%. Therefore, for all systems, the flow behavior of the supernatant was 

compared with solutions containing 0.3% of gum. The reference solutions were subjected to 

the same temperature-shear treatment as the starch pastes in the starch pasting cell. The 

resulting flow curves are represented in Figure 6-2. It is clear that in all cases, the viscosity of 

the reference solutions (0.3%) was below the supernatant curves. This indicates that the 

actual starch and gum concentrations were underestimated. However, there was one 

exception. The curves of the xanthan systems without salt were almost identical (reference 

solution and supernatant). This could demonstrate that the effective gum concentration in the 

supernatant of the salt free system was lower than for all the other systems, which in turn 

supports the findings of the confocal microscopy measurements. However, viscosity 

differences demonstrate a limited extent of association whereas the micrographs suggest 

much stronger effects. This could be caused by a higher affinity of the fluorescent xanthan 

gum for the granules. Another hypothesis is the occurrence of a contrast induced bias. The 

intensity of the perceived color is not linearly related with the actual concentration of the 

chromophores. Increased local concentrations might result in a much stronger visual signal, 

hence diminishing the signal originating from the more dilute regions. Therefore, it does not 

necessarily mean that all of the fluorescently labeled xanthan is associated with the granules. 

Finally, it cannot be excluded that part of the xanthan molecules are stripped from the 

granules during the centrifugation step e.g. due to molecular entanglements between the 

xanthan molecules.  
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Figure 6-2: Left figure: flow curves of the xanthan solutions after centrifugation and separation of the 
starch granules (full symbols) and the reference solutions containing 0.3% of gum (open symbols) at 

different salt concentrations ( 0.1M,  0.01M and  0M NaCl). Right figure: flow curves of the 
supernatant guar solution () and the reference (0.3%) guar solution () 

 

These preliminary tests demonstrate the complexity of xanthan-starch associations. 

Particularly the search for applicable techniques appears a challenge. The specific effects 

that are taking place e.g. at varying salt concentrations could therefore be one of the major 

topics of future research. The use of high salt contents, like e.g. 0.1M in this setup, avoids 

these complications and allows to consider these systems as discontinuous: swollen 

granules dispersed in a gum solution. 

 

 

6.3.3 COMPARISON BETWEEN GUAR GUM AND XANTHAN GUM 
 

6.3.3.1 Flow behavior during pasting 

The pasting profiles for the different compositions are depicted in Figure 6-3 for a starch: 

solvent ratio of 5:100. As expected, both hydrocolloids increase the viscosity during the 

pasting process. At a level of 0.2% the effect of guar gum and xanthan is comparable. For 

the samples containing 0.4% of gum, the effect of guar gum is significantly stronger. This 

already illustrates that the mixed paste viscosities are quite complex, not simply additive and 

that the obtained result for a given gum/starch ratio is strongly dependent on the type of gum. 

The shape of the curves is more or less the same for all systems. Because the cross-linked 

starches studied here are considered not to break up under the given processing conditions 
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(85°C,  shear rate 100 s-1), the pasting curves attain a plateau viscosity rather quickly within 

the isothermal heating step. During the cooling step, the slope of the guar curves is much 

steeper than the other ones. This could be due to a stronger temperature dependency of 

guar gum and/or an altered interaction between the granules, and will be discussed more 

into detail later on. 

 

Figure 6-3: Pasting behavior as affected by gums at starch:continuous phase ratio 5:100 ( no gum;  
0.2% guar;  0.4 % guar;  0.2% xanthan;  0.4% xanthan) 

 

The final viscosities of the isothermal step (85°C) are plotted as a function of starch volume 

fraction (Figure 6-4). Guar and xanthan increase the viscosity of the starch paste in the 

studied concentration range. Nonetheless, there are some marked differences between both 

gum systems. Firstly, the concentration increase from 0.2 to 0.4% is more pronounced in the 

case of guar gum. Secondly, the viscosity increases less strongly by elevating the starch 

volume in the presence of xanthan gum.  At a given starch volume, the viscosity is 

determined by the properties of the granules (size, distribution, deformability), their 

interactions, the viscosity of the continuous medium and the interactions between both 

phases (Genovese et al., 2007; Genovese & Rao, 2003). Along with the increasing starch 

content, the concentration of the gum in the continuous phase, and hence its viscosity, is 

increased as well. Therefore, the guar gum systems behave synergistically, as expected: 

compared to the gum-free system, the viscosity increases more quickly with increasing 

starch content. In the case of xanthan gum, the curves are more parallel or even slightly 

converging with the gum free systems. This suggests that there is an antagonistic effect 

cancelling out the viscosity increase of the continuous phase. 
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The addition of the gums induces limited (largest variation 5.4%) differences in average 

granule sizes. However, due to the large number of granules present in the system, this can 

result in relatively strong variations in total starch volumes. Consequently, the calculated 

starch volume fraction for a given starch/solvent ratio depends on the type of gum. In order to 

compare the effect of the gums for a fixed volume fraction, a three-parameter power function 

was fitted through the data. It should be remarked that the fitted parameters contain no 

physical meaning and are only valid for the systems and concentration range studied here, 

but allow an accurate continuous description of the data (R²>0.99). Modeling the viscosity of 

starch dispersions by two frequently used models, Krieger-Dougherty (Krieger & Dougherty, 

1959) and Quemada (Quemada, 1977) is complicated by the presence of gums. Both 

equations assume a constant fluidum viscosity. When gums are present, their concentration 

increases by swelling of the starches. Consequently, the fluidum viscosity varies as well with 

increasing volume fractions.   

 

Figure 6-4 shows the evolution of the paste viscosities of the gum systems relative to the 

gum free paste. Although it is clear that particularly upon the addition of guar gum, the 

absolute differences increase with starch content, the relative contributions become smaller 

(Figure C).  At low volume fractions, the viscosity can be raised 3 to 5 times by addition of 

the gums.  At high volume fractions the flow behavior is largely determined by the starch 

component and for each gum, both curves converge.  Initially, the viscosity of the xanthan 

samples is higher than the viscosities of the guar samples and the gum free system. When 

the starch concentration becomes higher, the viscosity of the 0.2% guar systems surpasses 

those of the xanthan pastes. Furthermore, it is remarkable that the relative viscosity of the 

guar paste decreases much more slowly than the xanthan systems, suggesting that the 

direct contribution of guar to the overall viscosity is stronger. 
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Figure 6-4: Apparent viscosity (shear rate 100 s
-1

, 85°C) at varying starch volume fractions as affected by 
guar (A) and xanthan (B) ( no gum;  0.2% guar;  0.4 % guar;  0.2% xanthan;  0.4% xanthan). 

Figure C represents the continuous viscosity ratio  gum/no gum (__0.2 % guar ; --- 0.4% guar ; __ 0.2% 
xanthan; --- 0.4 % xanthan) 

 

The different behavior between xanthan and guar gum is marked. This could be a direct 

effect of the increased viscosity of the continuous phase. At more elevated effective gum 

concentrations, due to a higher starch volume, the viscosity of the guar containing 

continuous phase might therefore exceed the viscosity of the xanthan phase. The viscosities 

of pure guar and xanthan of  1%  are approximately the same when measured at 85°C and a 

shear rate of 100 s-1 (0.21 Pa.s for guar, 0.22 Pa.s for xanthan, determined with conical 

concentric cylinders with solvent trap, data not depicted). This gum concentration 

corresponds to the effective gum concentrations at starch volume fractions of 60% and 80%, 
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provided that the initial concentration was 0.4% and 0.2% respectively. In both cases, the 

viscosity of the guar/starch paste was significantly higher than the viscosity of the 

xanthan/starch paste ( 0.55 vs. 0.41 Pa.s at =0.60 and 0.4% gum; 0.64 Pa.s vs. 0.58 Pa.s 

at =0.80 and 0.2% gum).  This illustrates that the observed differences in viscosity cannot 

be based on differences in gum viscosity alone. It was assumed that at an equal volume 

fraction, the rigidity/deformability was not affected by the gums. Therefore, it can be stated 

that within flow either the interactions between the granules or the interactions between the 

granules and the continuous phase were different in the presence of guar and xanthan. In an 

attempt to further explain the observed phenomena, comparable experiments were executed 

on the resulting pastes at room temperature, as it will be described in the following 

paragraph. 

 

 

6.3.3.2 Flow behavior of cold pastes 

The viscosity of the pastes at 100 s-1 was determined with a steady state flow step (at 20°C), 

24h after preparation in the pasting cell. The data are summarized in Figure 6-5, as a 

function of starch volume fraction. The guar and gum free systems exhibit a comparable 

behavior as observed at 85°C. In the case of guar gum there is again a strong effect of gum 

concentration. In the presence of xanthan gum, the difference between both concentrations 

is very limited. Remarkably, at high volume fractions the observed viscosities are lower than 

the ones of the gum free system. Based on the hypothesis raised in 6.3.3.1, this suggests 

that at high volume fractions – and high effective xanthan concentrations – the flow behavior 

of swollen starch suspensions can even be facilitated by xanthan, a property that is not 

observed for guar gum. Furthermore, this property is more explicitly manifested at 20°C than 

at 85°C.  

 

Figure 6-5 also depicts the evolution of the paste viscosity relative to the gum free systems. 

Similarly to the viscosities at 85°C the relative contribution of the gum is reduced with 

increasing starch volume fraction. The shape of the curves is very comparable with the ones 

obtained at 85°C, although their location has shifted. Whereas for all systems the absolute 

viscosities are higher at lower temperatures, the relative contributions of the gums as such 

are lower at 20°C. Aside from the thermal effects on the gums, there is also a clear effect on 

the starch component. Presumably the rigidity and/or volume of the modified starches does 

not significantly change during cooling. Abdulmola et al. (1996b) demonstrated that upon 

cooling of cross-linked waxy starch dispersions, the elastic modulus was not significantly 
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increased. A more likely suggestion is that the interaction between the granules is higher at 

low temperatures. Starch granules can be considered as microgel particles that cannot really 

interpenetrate but ‘overlap’ with polymers present on the surface (Kaneda & Sogabe, 2005; 

Ketz et al., 1988). Within flow, these particle interactions contribute to the viscosity and could 

– as many polymer interactions – be more predominant a lower temperatures. This behavior 

could also account for the viscosity increase during the cooling step of the pasting 

experiments. For some starch dispersions, it has even been demonstrated that these 

interparticle interactions can result in the formation of shear-induced aggregates (Nayouf et 

al., 2003; Tattiyakul & Rao, 2000). 
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Figure 6-5: Apparent viscosity (shear rate 100 s
-1

, 20°C) at varying starch volume fractions as affected by 
guar (A) and xanthan (B) ( no gum;  0.2% guar;  0.4 % guar;  0.2% xanthan;  0.4% xanthan). 

Figure C represents the continuous viscosity ratio  gum/no gum (__0.2 % guar ; --- 0.4% guar ; __ 0.2% 
xanthan; --- 0.4 % xanthan) 
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As mentioned before, the viscosity of the paste is governed by the starch interactions, the 

viscosity of the continuous phase and the interaction between the granules and the gums 

solution. The relative contribution of each phase strongly depends on the used concentration.  

It is assumed that for an equal granule size and volume fraction, the rigidity of the swollen 

granules is not affected by the gum. Based on these premises and the fact that in the 

presence of xanthan lower viscosities can be obtained than in the gum free systems, it can 

be suggested that xanthan can reduce the interactions of starch granules within flow. 

Although this cannot be directly demonstrated, other hypotheses can be ruled out. The 

viscosity of the continuous phase of the xanthan systems cannot be lower than that of the 

gum-free system (i.e. water). Similarly, it is unlikely that the hydrodynamic forces of the 

solvent, acting on the granules are higher in the gum free system. Furthermore, these 

observed effects are most predominant at high starch concentrations, where logically 

granule-granule interactions are more important than granule-continuous phase interactions. 

 

Because this facilitated flow is most predominant at higher starch and consequently at higher 

effective xanthan concentrations, a possible explanation could lie in mesophase formation of 

xanthan. When a critical concentration ci is exceeded, rigid molecules like xanthan are known 

to align, leading to the formation of anisotropic phases that can be observed as birefringence 

under polarized light (Allain et al., 1988; Oertel & Kulicke, 1991; Sato et al., 1990).  In this 

setup, effective gum concentrations are generated around and above this critical 

concentration range (>2%), due to the swelling of the starch. Moreover, there is a strong 

alignment of the molecules in the presence of shear, causing a flow induced birefringence at 

even lower concentrations (Laneuville et al., 2013; Lim et al., 1984). This behavior is not 

observed for randomly coiled polymers like guar. Under these conditions, the viscosity of 

xanthan gum solutions is less dependent on the concentration, partly explaining the large 

viscosity differences with guar gum. Furthermore, the presence of a dense array of aligned 

xanthan molecules between the granules might restrict their interaction and further facilitate 

their flow.  

 

Although their specific effects are strongly differing, it can be stated that the flow behavior of 

the starch pastes, both at elevated and low temperatures, is strongly affected by the gums 

even at high volume fractions of starch.  It is therefore interesting to find out  if this is also the 

case at small deformations, which is described in the following paragraph. 
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6.3.3.3 Visco-elastic properties of the pastes after cooling 

The frequency dependent behavior of the different pastes is represented in Figure 6-6 for 

starch:solvent ratios of 5:100. A dominant elastic response with limited frequency 

dependency is observed for all systems. Similar curves are usually obtained for particulate 

gel networks of starch granules (Abdulmola et al., 1996b; Genovese & Rao, 2003; 

Steeneken, 1989). Although the results are dominated by the starch component, the effects 

of the gums are clearly noticeable.  Compared to the gum-free paste, the slope of the elastic 

modulus G’ is steeper. Moreover, the values of the loss modulus G” are significantly 

increased. Particularly in the case of guar, there is a strong concentration dependency for 

this parameter. Such behavior suggests that, compared with the gum-free paste, different 

dissipation mechanisms are present in the mixed pastes and consequently that the 

microstructural nature of the network is modified by the gums. 

 

 

Figure 6-6: Frequency sweeps of starch pastes (5:100; 20°C) as affected by guar (L) and xanthan (R). 
 ( no gum;  0.2% gum;  0.4 % gum; closed symbols G’, open symbols G”) 

 

Figure 6-7 depicts the behavior of both G’ and G” as function of starch volume fraction. 

Similar to the viscosity data, power curves are fitted to the G’ data as a guide for the eye. A 

linear relation was used for G”. When examining the values of G’, the effect of xanthan 

appears to be purely additive over the whole concentration range. In the case of the lowest 

guar gum concentration, the pastes are less elastic than the reference system at low volume 

fractions, but become more elastic at increasing starch volume fractions. The values of the 

loss modulus (G”) on the other hand, suggest a more viscous behavior due to the gums over 

the whole starch concentration range. With increasing starch content, G” is further increased 
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relative to the reference system.  These results demonstrate that the network synergy 

between gums and starches is not purely additive and depends strongly on the concentration 

of both.  For the lowest starch volume fractions, a starch granule network is non-existing and 

the rheology is governed by the continuous phase. At volume fractions of 60% and higher, 

dominant elastic behavior is observed for all systems. The sharp reduction of the phase 

angle (Figure 6-7) suggests a network by interacting starch granules. This reduction happens 

much more gradually in the presence of gums. These curves demonstrate that due to the 

incorporation of gums, the network is not purely composed of interacting granules. Most 

likely, a starch network and a network of interacting gum molecules coexist, both contributing 

to the visco-elastic properties (Achayuthakan & Suphantharika, 2008; Alloncle & Doublier, 

1991). When the starch concentration is increased, the interactions between the gum 

polymers are enhanced by further concentrating the continuous phase. As a consequence, 

granule-granule interactions might be partly inhibited. The presence of these antagonistic 

effects is most explicitly manifested by the pastes with 0.2% guar, where the elastic moduli 

G’ are largely below the ones of the gum-free pastes. 
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Figure 6-7: Influence of guar (left column) and xanthan (right column) on the dynamic rheological 
parameters (20°C)  at different starch volume fractions ( no gum;  0.2% guar;  0.4 % guar;  0.2% 

xanthan;  0.4% xanthan) 
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Most likely, both guar and xanthan induce these effects, and the specific dissimilarities 

between both are due to the differing nature of their intermolecular interactions. Xanthan 

induces an overall increase in elastic behavior whereas the effect of guar gum depends on 

the concentrations and the applied frequency. Xanthan generally engages in strong 

intermolecular associations, resulting in a weak gel while guar molecules associate less 

strongly.  Based on the increased elasticity of the mixed xanthan/starch systems, Abdulmola 

et al. (1996b) suggested that xanthan can strengthen the interactions between the starch 

granules by e.g. depletion flocculation. They observed that the elastic modulus of the mixed 

system was higher than the purely additive contribution of both the starch and xanthan 

component. Unfortunately, they did not take into account the increased xanthan 

concentration due to granule swelling, and the corresponding enhanced rheological 

properties of the continuous phase. Their conclusion was based largely on the effects on G’ 

and cannot account for the increased viscous behavior. Furthermore, considering the high 

effective xanthan contents and the large size of the granules, depletion flocculation seems 

unlikely. As demonstrated by the CSLM data, xanthan might associate with starch granules 

in salt free media. Under these circumstances, bridging between the granules might be 

possible. However, in the current setup relatively high salt contents are used.  Under these 

conditions, association of xanthan with the granules does not occur and the occurrence of 

bridging flocculation can be ruled out as well. 

 

 

6.3.4 EFFECT OF XANTHAN TRANSITION 

So far, a constant NaCl content of 0.1 M was maintained throughout the setup. In this way, 

complications induced by the xanthan transition were excluded. It was demonstrated in 

chapter 2 that the occurrence of a xanthan transition strongly affects the pasting behavior of 

waxy starch systems. Furthermore, it was proposed repeatedly that during heating steps 

above the xanthan transition temperature, the flow behavior of the swollen granules is also 

strongly modified by xanthan gum. However, the interpretation was often complicated by 

possible effects on granule breakdown and/or differences in gelatinization behavior due to 

varying salt contents (particularly important when heated to temperatures around the 

gelatinization range). The use of cross-linked starches and elevated temperatures during 

pasting excludes these complications and allows to more directly compare the flow behavior 

of the systems with and without xanthan transition.  In the perspecitve of this chapter, 

experiments were performed at different starch contents. There was only a limited effect of 
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the salt content – and corresponding transition – on the flow and oscillatory rheology of the 

cooled pastes (data not shown). At 20°C, xanthan exists in its renatured form for both salt 

contents (0.01M and 0.1M). A slight downward shift in flow curve as well as moduli occurred, 

presumably due to disruption of xanthan aggregates during the heating step and/or a 

different degree of renaturation during cooling. Therefore, the focus of this part lies on the 

effects during pasting.  

 

For the xanthan free systems there were no differences in rheological behavior between 

0.01M NaCl and 0.1M NaCl, aside from a minor shift in gelatinization temperature and 

consequently a shift in pasting onset. Therefore, only one salt content (0.1M) was considered 

for the xanthan free systems. The conformational transition of xanthan solutions is 

accompanied by a reduction in the solution viscosity. As mentioned above, this is largely 

caused by the dissociation of helically linked molecules. This is depicted in Figure 6-8 for a 

xanthan concentration of 0.8% (corresponding with the effective xanthan concentration at 

= 0.75). This viscosity drop is comparable with the marked inflection point as observed in 

the oscillatory temperature sweeps performed in chapter 2 (section 2.3.1).   

 

 

Figure 6-8: Influence of xanthan transition on the apparent viscosity (at shear rate 100s
-1

) of xanthan gum 
(0.8%) (black: 0.1M NaCl; grey: 0.01M NaCl) 

 

As depicted in Figure 6-8, the transition-induced viscosity reduction is also reflected in the 

pasting behavior, where the curve with the lowest salt content is below the one with 0.1M for 

both starch concentrations. In the cooling ramp a distinct kink can also be observed due to 
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renaturation of the xanthan, comparable with the behavior of the pure xanthan solutions. For 

the pastes with the highest starch content, the viscosity of the xanthan containing system 

(with 0.01 M NaCl) was lower than the viscosity of the xanthan free system during the 

isothermal step. These results confirm that particularly at high starch volume fractions, 

xanthan gum markedly changes the flow behavior of the pastes. 

 

In order to better understand the flow behavior at elevated temperatures, flow curves were 

recorded at 85°C using serrated plates and solvent trap. For clarity reasons shear stress 

instead of the viscosity is plotted as function of the shear rate (Figure 6-9). Except for the 

gum free paste with the lowest starch content, the derived viscosities at 100 s-1 showed a 

good correlation with the plateau viscosities obtained from the pasting data. At high starch 

volume fractions flow within the starch-pasting cell is presumed not to be very turbulent, 

therefore a good agreement between both geometries was expected. Interestingly, both at 

4:100 and 6:100 ratio the viscosity of the xanthan sample with 0.01M NaCl is lower than the 

one of the gum free paste. It should be remarked that at more elevated shear rates there is 

also a crossover point at the highest salt content. This in turn confirms that in the close-

packing region, xanthan can facilitate the flow of starch suspensions, provided that the 

applied shear is high enough. Furthermore, the effect is more explicit when xanthan can 

convert into its random coil conformation. It can be remarked that these effects could also be 

the result of shear-induced anisotropy, which is observed in the random coil conformation as 

well (Laneuville et al., 2013) 

 

 

Figure 6-9: Influence of salt concentration on the pasting behavior (L) and flow behavior at 85°C (R) of 
starch/xanthan pastes ( no gum 0.1M NaCl;  0.2 % xanthan 0.01M NaCl;  0.2% xanthan 0.1M NaCl) at 

two different starch:continuous phase ratios (open symbols 6:100; closed symbols 4:100) 
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6.4 CONCLUSIONS 

Despite their commercial relevance, the rheological properties of mixed starch/gum systems 

are not fully understood. The results of the current setup contribute to this field by providing 

new insights, and by combining existing knowledge on starch systems and pure gum 

solutions . The use of shear-resistant starch allowed to consider the pastes as swollen, intact 

granules, surrounded by a continuous phase containing the gum molecules, which was 

confirmed by confocal micrographs. More specifically, the effects of two frequently used 

gums, guar and xanthan, were evaluated at different (swollen) starch volume fractions. 

 

First of all it was demonstrated that the effects of gums on the flow behavior strongly 

depended on the starch content. At low starch volume fractions, the viscosity is primarily 

determined by the continuous phase. Due to the absorption of water by the starch granules, 

the effective gum concentration is raised, leading to an apparent synergy. At starch volume 

fractions around and above close packing, the flow properties were governed by granule-

granule interactions, hereby reducing the relative contribution of the gums. The effect of guar 

gum was purely additive over the studied concentration range. Conversely, xanthan gum 

possesses the unique property of facilitating the flow in concentrated starch dispersions, 

presumably by restricting the interactions between the granules during flow. This specific 

effect of xanthan gum was observed at low temperatures as well as at elevated temperatures 

and occurs in both the ordered and the disordered conformation. It was hypothesized that 

this is caused by the anisotropic arrangement of the xanthan molecules in the continuous 

phase.  

 

Small deformation rheology demonstrated that already at relatively low starch volume 

fractions, a network of associated granules is formed. Under these circumstances the 

network is further strengthened by a coexisting network of interacting gum molecules. With 

this regard, xanthan gum proved to be more effective due to its capacity of forming weak gel 

entangled networks. As the starch fraction increases, the concentrated continuous gum 

phase partly hinders granule interactions, thus enhancing the viscous character of the 

resulting pastes. 

Figure 6-10 summarizes the proposed effects of both guar and xanthan gum on dilute and 

concentrated starch dispersions both under quiescent state and under externally applied 

shear. 
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Figure 6-10: Summary of the proposed microstructural models for modified starch/gum systems, 
depending on the starch concentration regime and the applied shear  
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GENERAL CONCLUSIONS 
 

Combinations of starches and non-starch hydrocolloids or gums are used abundantly in the 

food industry. As a consequence of their commercial popularity, starch/gum systems are 

extensively studied. However, scientific literature is riddled with assertions and contradictory 

observations, due to the differing concentrations and preparation conditions and the wide 

variety of starch and gum types. Because of its unique properties, xanthan gum is very often 

combined with starches. However, due to its different molecular conformations and its 

tendency to aggregate, this biopolymer offers a lot of challenges as a research subject. A 

thorough overview on xanthan gum and starch functionality is presented in chapter 1. 

 

In the second chapter, the effects of xanthan gum on various types of waxy starches (potato, 

rice, native and modified maize) were studied. This setup aimed at deriving more generalized 

conclusions that could help explaining some of the discrepancies found in literature. More 

specifically, the possible effects of the conformational transition of xanthan gum were 

studied. The obtained results strongly depended on the specific type of starch that was 

combined with the xanthan gum. The flow behavior of modified maize and rice starch 

systems during pasting at 85°C, but also after cooling, was markedly affected by xanthan 

gum. Conversely, its relative influence was much smaller for potato and native maize starch 

systems. These differences were attributed to variations in swelling power and more 

importantly, variations in degradation behavior. As opposed to the types of modified maize 

and rice starch used here, potato and native maize starch exhibited a significant degree of 

breakdown during the pasting step. It was stated that the rheological properties for the latter 

systems were primarily governed by the continuous phase, which surrounds the remaining 

granules. Therefore, granule integrity appears to be a prerequisite for optimal xanthan 

functionality. 

 

The pasting properties of the starch/xanthan systems were studied at two NaCl 

concentrations: 0.01M and 0.1M. For the lowest salt content, xanthan converts to a random 

coil during the heating step (85°C), at 0.1M the helical conformation of xanthan is maintained 

over the whole temperature range. At the concentrations studied here, the transition 

exhibited no significant effect on the gelatinization behavior of the starches. The 

conformational change of xanthan in the continuous phase was accompanied by a viscosity 

reduction, which was also clearly reflected in the pasting curves of all systems. However, the 
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effect of this transition was not directly noticeable in the flow behavior of the pastes after 

cooling.  

 

The fragile nature of native waxy maize and potato starches towards elevated temperatures 

and shear is clearly their main technological disadvantage. In chapter 3, it was attempted to 

better preserve the granule structure by varying the processing conditions. It became clear 

that the properties of the dispersions can be tuned by choosing a specific temperature/shear 

combination during pasting. When native waxy starches (maize or potato) are heated to 

temperatures slightly higher than the gelatinization onset temperature, it appears that their 

swelling can be more controlled. Nevertheless, a limited fraction of the starch will remain 

ungelatinized. Under these conditions, granule breakdown could be limited and a higher 

shear rate was even beneficial towards complete viscosity development. The heating 

temperature therefore proved to be a critical process parameter. When the temperature is 

too low, swelling will be incomplete and at more elevated temperatures granule breakdown 

will become more predominant. It was demonstrated that in the latter case, the presence of 

xanthan gum can help to restrict the breakdown. Several hypotheses for this effect were 

formulated, however the underlying mechanisms were further unraveled in chapter 5 and 6. 

 

The mild temperature processing of fragile waxy maize starch proved to be beneficial 

towards preserving its granular integrity. However, it was not known to which extent the 

microstructure of these pastes would change during preservation and how this was affected 

by xanthan gum. Therefore, chapter 4 was devoted to the physicochemical stability of these 

systems. Texture analysis, rheology and pulsed field NMR were used to evaluate structural 

changes at different scales during a storage period of 8 weeks. The pastes were prepared by 

means of the unimix system, which allows the production of larger batches (3L). Two 

different heating temperatures (70 and 72°C) were chosen within the gelatinization range. T2-

relaxation revealed that molecular reassociations took place in all samples, although the 

rheological consequences varied strongly among the different systems. The pastes heated to 

70°C consisted of partially swollen and largely intact granules and behaved as flocculated 

dispersions, which were structurally stable throughout the storage period. Slight rheological 

changes were attributed to shrinking of the granules and intensified granule associations. 

The addition of xanthan gum did not induce a higher stability, however, due to its direct 

contribution to the structural features of the systems, changes occurring in the starch fraction 

were partly masked. When the pastes were heated to a slightly more elevated temperature 

(72°C), a higher fraction of the granules was broken down. This rendered the systems more 

unstable: a slow but marked gelation was observed for all systems, presumably due to the 
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association and crystallization of amylopectin molecules, which are present in both the 

continuous phase and the granules. Under these circumstances, xanthan gum was found to 

enhance the gelation process. A phase separation between both polymers (amylopectin and 

xanthan) in the continuous phase was proposed as an underlying mechanism. By exclusion 

from the xanthan containing phase, the effective concentration in the amylopectin phase is 

increased and intermolecular associations are favored.  

 

In order to unravel the earlier suggested granule protecting features of xanthan gum, 

experiments of chapter 5 were designed in such a manner that several proposed underlying 

mechanisms could be challenged. The effects of xanthan gum were evaluated at different 

processing conditions (shear, temperature) and thoroughly compared with systems 

containing guar gum or no gum.  At the concentrations studied here, both gums did not 

induce marked differences in granule swelling. However, breakdown was clearly affected by 

their presence. The ability of xanthan to inhibit granule disruption was confirmed, and guar 

gum appeared not to have this property. As a consequence, large differences in pasting 

profiles as well as particle size distributions were observed between guar and xanthan 

systems. This effect was attributed to a specific property of xanthan gum which modifies the 

impact between the granules under shear. In this light, the ability of xanthan gum to 

associate with the starch granule surface, which is claimed by some authors, was 

investigated. This unique property of xanthan gum was demonstrated by confocal 

microscopy. However, its role in the granule stabilizing effects is unlikely. Even at higher salt 

contents, where it was proven that associations with the starch do not occur, xanthan gum 

protects the granules against shear. Furthermore, xanthan-starch associations are unlikely at 

elevated (pasting) temperatures, at which the largest extent of granule disruption takes 

place. Therefore it was suggested that during pasting, xanthan gum reduces the impact 

between the granules by the formation of a shear-induced anisotropic organization in the 

continuous phase. This strong molecular alignment, which is typical for extended molecules 

like xanthan gum, may guide the granules and induce a smooth flow and protects them from 

breaking down. The different effects of guar and xanthan gum that took place during pasting 

were also reflected in the rheological behavior of the cooled pastes. It was concluded that 

gums can enhance the rheological properties of these systems. However, guar gum rather 

masks the shortcomings of the starch by its direct rheological contribution to the bulk phase. 

Next to a similar direct contribution, xanthan gum can actively improve the performance of 

the granules by better preserving their structure. 
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Repeatedly throughout this research, it became clear that the interpretation of rheological 

data of starch/gum systems is very complicated, primarily because many different 

concomitant effects can take place during pasting. This complicates a targeted tuning of their 

rheological properties. The final chapter aimed at gaining a more fundamental rheological 

understanding of waxy starch/gum systems. By using chemically cross-linked waxy maize 

starch, degradation effects could be excluded. The pastes were composed of swollen, intact 

granules, surrounded by a continuous phase containing the gum molecules, as confirmed by 

confocal micrographs. It was demonstrated that the effects of gums on the flow behavior 

strongly depended on the starch content. At low starch volume fractions, the viscosity is 

primarily determined by the continuous phase. Due to the absorption of water by the starch 

granules, the effective gum concentration is raised, leading to an apparent synergy. At starch 

volume fractions around and above close packing, the flow properties were governed by 

granule-granule interactions, hereby reducing the relative contribution of the gums. The 

effect of guar gum was purely additive over the studied concentration range. Conversely, 

xanthan gum exhibited the unique property of facilitating the flow in concentrated starch 

dispersions. Because of the explicit effects at high starch volume fractions, and therefore 

high effective gum concentrations, these results favored the aforementioned hypothesis of 

anisotropic arrangement of the xanthan molecules in the continuous phase. Moreover, this 

specific effect of xanthan gum was observed at low temperatures as well as at elevated 

temperatures and occurs in both the ordered and the disordered conformation. 

 

It was demonstrated by small deformation rheology that already at relatively low starch 

volume fractions, a network of interacting granules is formed. Under these circumstances the 

network is further strengthened by a coexisting network of interacting gum molecules. With 

this regard, xanthan gum proved to be more effective due to its capacity of forming weak gel 

entangled networks. As the starch fraction increases, the concentrated continuous gum 

phase partly hinders granule interactions, thus enhancing the viscous character of the 

resulting pastes. 
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FUTURE PERSPECTIVES 
 

The central aim of this PhD research was to better understand waxy starch/xanthan 

functionality and to investigate whether the performance of native waxy starches can be 

improved by varying processing conditions and by the incorporation of xanthan gum. The 

setup was intended as an exploratory study and was designed to derive generally applicable 

principles that can assist in tuning the final properties of these systems. Although this work 

could assist in the search for chemically modified starch alternatives, the goal was not to 

develop clean-label products. Nevertheless, some more directly applicable conclusions could 

be drawn.  

 

For native waxy starch systems, it was demonstrated that when the maximum heating 

temperature is kept as closely as possible to the gelatinization onset, the disruption of the 

granules can be restricted. Furthermore, the resulting pastes exhibit an acceptable 

physicochemical stability. Throughout this work, short heating times were imposed, but it 

could be worthwhile to maintain longer isothermal steps to allow the granules to swell more 

gradually and to develop optimal functionality. The latter strategy was not included in this 

work, but is most likely more effective than further elevating the temperature, at which 

thermal breakdown starts to dominate. The addition of xanthan gum not only imparts a 

unique flow behavior to the pastes, but when prepared under these mild heating 

temperatures, this polysaccharide further protects the fragile granules against shear. 

 

Chemically modified starches have been used for many years and impart very unique 

properties to food products. It is becoming clear that there is no miraculous clean-label 

substitute. The major part of this work focused on waxy maize starch, which is a rather cheap 

but extremely fragile type of starch. For some commercial products, its application might 

therefore remain restricted, even with the adjustment of the processing conditions. However, 

by applying the findings of this dissertation – adaptation of processing conditions and the 

incorporation of xanthan gum – to other, better performing starches, it might be possible to 

produce satisfactory commercial products. For instance the use of waxy rice starches or 

even enzymatically or physically modified starches could provide a valid alternative. From a 

practical point of view, it could also be interesting to evaluate the performance of these native 

starch granules at more elevated shear rates (200-1000 s-1). 
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Aside from studying the performance of native starches, some important insights were also 

developed regarding the rheological behavior of starch/xanthan systems. Swollen granules 

cannot be considered as solid and regularly shaped particles, nor as true polymer systems, 

which strongly restricts the number of available analytical techniques. Hence, many 

researchers prefer rheological methods for starch functionality evaluation. However, this 

technique provides indirect information and requires a correct interpretation. The findings 

presented in this work can assist in the understanding of the rheological behavior, both 

during pasting and after cooling. Furthermore, the conclusions presented in the final chapter 

could contribute to a more sensible formulation of modified starch/xanthan systems, which 

are currently used abundantly in commercial products.  

 

Some scientific aspects were not covered or only briefly touched in this dissertation. These 

topics deserve a more specific, separate study. Throughout the manuscript, a standard 

commercial xanthan type was used. However, it could be interesting to study the functionality 

of xanthan at varying molecular weights or with varying substitutions (acetyl and pyruvate). 

Such an approach could be particularly useful to study the phase behavior of xanthan and 

amylopectin as well as its association behavior with swollen starch granules. In this 

perspective, the effect of salts and the corresponding xanthan conformations should also be 

further elucidated.   

 

The presence of flow anisotropy has been proposed as one of the major mechanisms 

causing the unique flow properties of mixed starch/xanthan systems. Due to the 

microstructural complexity, direct evidence for this behavior is lacking. Therefore, the flow 

behavior of more simplified and standardized dispersions should be studied. The use of 

purified xanthan samples is advised, but the replacement of starch granules by another type 

of particles will offer a challenge. Ideally, monomodal spherical microgels are used, but with 

the same dimensions, density and deformability as starch granules. 

 

The effect of varying processing conditions on the sensory properties of finished products 

has not yet been evaluated. More specifically, it could be interesting to see whether the taste 

of real products, which also contain flavors and seasonings is affected by the presence of 

ungelatinized granules. Furthermore, for many light-applications, chemically modified 

starches are used to impart viscosity. However, the properties of the original products are 

often difficult to copy (e.g. in the case of light-mayonnaise). The textures induced by mildly 

heated native starches differ from those of cross-linked starches and could possibly better 

approach the desired mouthfeel. 
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encumbered forever by desire and ambition 

there's a hunger still unsatisfied 

our weary eyes still stray to the horizon 

though down this road we've been so many times 

 

High Hopes – Pink Floyd 


