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Summary 

Forests and forest management in western Europe have changed during the last two 

centuries. The proportion of coniferous forest has increased since the mid-19th century. 

As the species composition of the forest overstorey has an impact on the chemical, 

physical and biological characteristics of the soil, the conversions to coniferous forest 

may have a strong impact on the forest ecosystem and its functioning. More recently, 

reconverting secondary non-native coniferous plantations to more natural deciduous 

forests has become an important topic in forest management. The general aim of this 

thesis was to quantify the change trajectories of several abiotic and biotic variables after 

conversion from deciduous forest to Norway spruce (Picea abies, further called spruce) 

plantations and back.  

The observational studies in this thesis were performed in ancient deciduous woodlands 

mainly consisting of Quercus spp., Fagus sylvatica and Carpinus betulus in the Gaume 

region (southern Belgium). In the first observational study, we resurveyed 43 vegetation 

plots to see how the herbaceous understorey community of the deciduous stands has 

changed over the last fifty years. The species pool became more than 10 % smaller on the 

moderately acidic sites and nearly 30 % smaller on the acidic sites. At the moderately 

acidic sites, plot species richness declined by 20 %, and the community composition 

shifted towards a higher frequency and abundance of species requiring less light and more 

nutrients. The lower management intensity, the abandonment of the coppice with 

standards management and the increased acidifying deposition were the main drivers of 

temporal changes in the understorey diversity and composition in the studied deciduous 

forests. 

In the second observatory study, we described the changes in the forest floor, soil 

variables concerning acidification, earthworm community and understorey vegetation 

after conversion from deciduous stands to spruce plantations. Spruce plantations were 

established 35–50 years ago in the matrix of deciduous woodlands. We examined 40 

paired plots in spruce plantations and adjacent deciduous forests along a gradient of clay 

content (as proxy of soil buffering capacity). Spruce is generally considered to be a tree 

species with strong effects on the forest ecosystem and the impact of conversion on the 
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studied forests was indeed large. The mean forest floor mass under spruce was three times 

higher compared to the deciduous stands. The mean pH in the topsoil layer was 0.5 pH 

units lower under spruce. Significant differences between the earthworm communities 

under deciduous and spruce trees were observed as well: the earthworm biomass was five 

times lower under spruce trees and there were less epigeic earthworms and nearly no 

endogeic earthworms present. The species richness per plot and the species pool of the 

herbaceous understorey layer did not change after conversion. However, conversion to 

spruce caused a shift in the understorey species composition towards a higher frequency 

and abundance of more acid-tolerant and light-demanding species.  

In our study area there are both well buffered and moderately acidic soils in the cation 

exchange buffer range and acidic soils near or in the aluminium buffer range. A second 

aim of this thesis was to get a better insight in the rates of changes of the measured 

variables along a gradient of soil buffering capacity. The soil clay content, ranging from 3 

to 34 %, was used as a proxy for the natural gradient in soil buffering capacity, 

independent of the vegetation. The temporal changes in understorey vegetation 

composition and diversity were larger at the less acid soils. The changes in soil variables, 

earthworm biomass and the average Ellenberg indicator values for soil reaction of the 

understorey community between deciduous and spruce forests differ along this gradient 

with larger changes occurring on the better buffered soils. The decrease in pH and 

earthworm biomass was several times higher on the better buffered soils. 

In the first experimental study, we determined the species-specific effects of light 

availability and chemical soil characteristics – two important ecological factors that are 

known to change as a consequence of conversion – on the vegetative and regenerative 

performance of five characteristic herbaceous forest understorey plants and on the 

germination rates of two of them. Topsoil samples from both spruce and deciduous stands 

with two levels of soil acidity were used in a common garden experiment. Additionally, 

three different light regimes were applied, i.e., ‘light deciduous’, ‘dark deciduous’ (extra 

light reduction during summer) and ‘evergreen’ (light reduction during winter). The light 

regime was an important factor affecting both the vegetative and regenerative 

performance of the understorey species: compared to light deciduous light regime, 

Anemone nemorosa had a significantly lower performance under the evergreen light 

regime, Convallaria majalis under dark deciduous and Luzula luzuloides and Galium 
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odoratum under both light regimes. The vegetative performance was lower in soil from 

acidic sites for the acid-sensitive species G. odoratum and Primula elatior. Differences in 

the soil sampled under deciduous or spruce stands had no effect on the vegetative nor 

regenerative performance of these species, but lowered the germination of the two studied 

species in the germination experiment, L. luzuloides and P. elatior.  

Reconverting the secondary non-native coniferous plantations into native deciduous 

forests with the emphasis on biodiversity and close-to-nature forest management became 

a main aim of sustainable forestry, but the restoration possibilities of these acidified 

ecosystems are unclear. In the last experimental study, we assessed the effects of two 

opposite land cover changes (a conversion pathway from deciduous to spruce, and a 

restoration pathway from spruce to deciduous) on the forest floor, soil acidification and 

earthworm community. We exchanged soil monoliths from the deciduous to spruce 

stands (conversion pathway) and vice-versa for the restoration pathway and applied two 

additional treatments: +/- liming and +/- earthworm. Two and a half year after starting the 

experiment, the forest floor mass and the earthworm biomass, respectively, increased and 

decreased significantly under spruce cover. In the restoration pathway, the forest floor 

mass was significantly lowered and soil pH significantly increased under deciduous tree 

cover. The earthworm biomass under deciduous tree cover was twice as large as under 

spruce tree cover. In both the conversion and the restoration pathway, lime addition 

caused an increase of pH up to 2 pH units while the earthworm treatment had no effect.  

Our results provide insights into the effects of conversion from deciduous forests to 

spruce plantations. The deciduous forests were in a mesotrophic state with a mull-like 

humus type, soils in the exchange buffer range and with endogeic earthworm species 

present. Spruce is generally considered to be a tree species with strong ecological effects 

and therefore the conversion had a large impact on the forest ecosystem, especially on the 

well buffered soils. After conversion to spruce, the ecosystem shifted towards an 

oligotrophic state with moder/mor-like humus types, soils in the aluminium buffer range 

and without endogeic earthworms.  
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Samenvatting 

Bossen en hun beheer in West-Europa zijn sterk veranderd gedurende de laatste twee 

eeuwen. Het aandeel van fijnspar is gestegen sinds het midden van de 19de eeuw. Doordat 

de boomsoortensamenstelling een impact heeft op de chemische, fysische en biologische 

kenmerken van de bodem kunnen we verwachten dat de omvorming naar 

fijnsparaanplantingen een grote impact kan hebben op het bosecosysteem en zijn 

functioneren. Recenter werd de omvorming van de standplaatsvreemde fijnsparbestanden 

naar meer natuurlijke gemengde loofbossen een belangrijk topic in het bosbeheer. Het 

doel van deze thesis was om de veranderingen van verschillende abiotische en biotische 

variabelen na de omvorming van gemengd loofbos naar fijnsparaanplantingen en terug te 

onderzoeken. 

De observationele studies van deze doctoraatsthesis werden uitgevoerd in oude 

loofbossen, met als voornaamste boomsoorten Quercus spp., Fagus sylvatica en Carpinus 

betulus, in de Gaumestreek (zuiden van België). In de eerste observationele studie hebben 

we 43 vegetatieopnames heruitgevoerd om te zien hoe de kruidlaag van de loofbossen 

veranderde gedurende de laatste 50 jaar. De soortenpool werd meer dan 10 % kleiner op 

de matig zure locaties en meer dan 30 % kleiner op de zure locaties. Op de matig zure 

locaties daalde de soortenrijkdom in een plot met 20 % en veranderde de 

soortensamenstelling van de kruidlaag in de richting van minder lichtminnende en meer 

voedselrijke soorten. De lagere beheerintensiteit, het stopzetten van het hakhoutbeheer en 

de stijging van de verzurende depositie waren de belangrijkste oorzaken van de 

veranderingen doorheen de jaren in de kruidlaagdiversiteit en samenstelling in de 

bestudeerde bossen. 

In de tweede observationele studie hebben we de veranderingen na omvorming van 

loofbos naar fijnsparaanplantingen in de strooisellaag, bodemvariabelen, 

regenwormengemeenschap en de kruidlaag beschreven. In de matrix van loofbos werden 

35-50 jaar geleden eilandjes fijnspar aangeplant. We onderzochten 40 gepaarde plots in 

de fijnsparbestanden en de aangrenzende loofbestanden langsheen een gradiënt van 

kleipercentage in de bodem (als proxy van het zuurbufferend vermogen van de bodem). 

Algemeen wordt aangenomen dat fijnspar een boomsoort is met een sterke ecologische 
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impact op het bosecosysteem, en dat was ook zo in deze studie. De gemiddelde massa van 

de strooisellaag onder fijnspar was drie keer zo groot dan onder loofbos. De gemiddelde 

pH in de bovenste bodemlaag was 0.5 pH eenheid lager onder fijnspar. Ook voor de 

regenwormengemeenschap zagen we significante verschillen tussen loof en 

fijnsparbestanden: de regenwormenbiomassa was vijf keer kleiner onder fijnspar en er 

kwamen minder epigeïsche regenwormen en bijna geen endogeïsche regenwormen in 

voor. De soortenrijkdom per plot en de soortenpool van de kruidlaag veranderde niet na 

omvorming. Echter, de omvorming naar fijnspar veroorzaakte wel een verandering in de 

soortensamenstelling naar een hoger aantal en bedekking van meer lichtminnende en 

zuurtolerante soorten. 

In ons studiegebied kwamen zowel goed gebufferde bodems in het 

uitwisselingsbufferbereik voor als minder goed gebufferde bodems die zich bevinden op 

de rand van of in het aluminiumbufferbereik. Een tweede doel van deze thesis was dan 

ook om een beter inzicht te krijgen in de mate van verandering van de gemeten variabelen 

langsheen de gradiënt van zuurbufferend vermogen van de bodem. Het aandeel klei in de 

bodem varieerde van 3 tot 34 % en werd gebruikt als proxy van de natuurlijke gradiënt in 

zuurbufferend vermogen van de bodem. De temporele veranderingen in de 

soortensamenstelling en diversiteit in de kruidlaag waren groter op de matig zure locaties. 

De veranderingen in bodemvariabelen, regenwormenbiomassa en de gemiddelde 

Ellenberg indicatorwaarden voor de zuurtegraad van de kruidlaag tussen de loof- en 

naaldbestanden verschillen langsheen de gradiënt met grotere veranderingen op de beter 

gebufferde locaties. De daling van de pH en de regenwormenbiomassa na omvorming 

naar fijnspar was verschillende keren groter op de beter gebufferde bodems. 

In de eerste experimentele studie bestudeerden we de soort-specifieke effecten van 

lichtbeschikbaarheid en chemische kenmerken van de bodem – twee belangrijke 

ecologische factoren waarvan geweten is dat ze veranderen na omvorming – op de 

vegetatieve en de regeneratieve kenmerken van vijf kruidlaagsoorten en op de kieming 

van twee van die soorten. Voor dit experiment werd de bovenste bodemlaag uit 

verschillende loof- en fijnsparbestanden gebruikt in een experiment op één locatie. 

Daarbij pasten we nog drie verschillende lichtregimes toe: ‘licht loof’, ‘donker loof’ 

(extra schaduw in de zomer) en ‘altijd groen’ (extra schaduw in de winter). Het 

lichtregime had een grote invloed op zowel de vegetatieve als de regeneratieve 
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performantie van de kruidlaagsoorten: vergeleken met het ‘licht loof’ regime had 

Anemone nemorosa een significant lagere performantie onder het ‘altijd groen’ regime, 

Convallaria majalis onder ‘donker loof’ en Luzula luzuloides en Galium odoratum onder 

beide lichtregimes. De vegetatieve performantie was lager in bodems van zure locaties 

voor de zuurgevoelige soorten, G. odoratum en Primula elatior. Het maakte geen verschil 

voor de vegetatieve en regeneratieve performantie van de soorten of de bodem uit een 

loof- of fijnsparbestand kwam, maar bodem uit fijnsparbestanden zorgde wel voor een 

lagere kieming bij de twee soorten uit het kiemexperiment, L. luzuloides en P. elatior. 

Omvorming van de fijnsparbestanden naar meer natuurlijke gemengde loofbossen werd 

een belangrijk doel in het duurzaam bosbeheer, maar de herstelpotenties van de verzuurde 

systemen zijn nog onduidelijk. In het laatste experiment hebben we de effecten van 

omvorming loofbos naar fijnspar en het herstel terug naar loof op de strooisellaag, de 

bodemvariabelen en de regenwormengemeenschap bestudeerd. Hiervoor werd bodem 

uitgewisseld tussen loof en fijnspar (omvorming) en omgekeerd (herstel) en werd twee 

extra behandelingen toegepast: +/- bekalking en +/- regenwormen. Twee en een half jaar 

na de start van het experiment was het gewicht van de strooisellaag gestegen en de 

regenwormenbiomassa gedaald onder fijnspar. Bij het herstel daalde het gewicht van de 

strooisellaag significant en steeg de bodempH onder loof. De regenwormenbiomassa 

onder loofbos was dubbel zo groot als onder fijnspar. In zowel omvorming als herstel 

zorgde bekalking voor een stijging van de pH tot meer dan 2 pH eenheden terwijl de 

regenwormenbehandeling geen effect had. 

Onze resultaten geven inzichten in de effecten van omvorming van loofbos naar 

fijnsparaanplantingen. De loofbossen waren in een mesotrofe toestand met mull-

humustypes, een bodem in het uitwisselingsbufferbereik en met endogeïsche 

regenwormen aanwezig. Algemeen wordt aangenomen dat fijnspar een grote invloed 

heeft op het bosecosysteem waardoor de effecten van de omvormingen ook groot waren, 

vooral op de beter gebufferde bodems. Na omvorming naar fijnspar veranderde het 

ecosysteem naar een oligotrofe toestand met moder/mor humustypes, bodems in het 

aluminium bufferbereik en zonder endogeïsche regenwormen.  
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List of abbreviations and symbols 

 

Abbreviations 

AIV_L Average Ellenberg indicator value for light 

AIV_R Average Ellenberg indicator value for soil reaction 

AIV_N Average Ellenberg indicator value for nitrogen 

AIV_F Average Ellenberg indicator value for soil moisture 

CEC  Cation exchange capacity 

C:N  Carbon:nitrogen ratio 

CSR_C Competitive signature 

CSR_S Stress-tolerant signature 

CSR_R Ruderal signature  

DCA  Detrended Correspondence Analysis 

F Fragmentation layer (forest floor) 

FFM  Forest floor mass 

H Humus layer (forest floor) 

L Litter layer (forest floor) 

LAI Leaf area index 

LQ Litter quality 

RR Recovery rate 

SCA Shade casting ability index 

 

Definitions 

Vegetation layers used in this thesis: 

Herbaceous layer < 1 m, including brambles and ferns 

Shrub layer  > 1 m and < 7 m 

Tree layer  > 7 m 

 

 

Mesotrophic Moderately high nutrient availability 

Oligotrophic Low nutrient availability 





 

 

1 
Introduction 

 

This Phd thesis focuses on the impacts of the conversion from ancient mixed deciduous 

forests to Norway spruce (Picea abies, further called spruce) plantations on the forest 

floor, soil acidification, earthworm community and understorey vegetation. In the first 

part of this chapter, we take a look at the large-scale conversions to coniferous plantations 

performed during the last two centuries, with focus on the conversion from deciduous 

forests to spruce plantations. In the next part, we will give a brief introduction to tree 

species effects, and in the last part, we give an overview of the aims and chapters of this 

thesis. 

1.1 Forest conversion 

Forests in Europe are since long influenced by man (Table 1.1). At the end of the 18th 

century, after a long period of overutilisation and devastation of Central European forests 

through e.g. forest clearing, intense wood harvesting, litter extraction and forest pasture, 

the wood demand increased even further. In order to meet the increasing wood demand, 

large forest areas were afforested or converted into highly productive forests. Forest 

conversion is the sylvicultural process of changing the stand composition and structure.  

From the 19th century onwards, the tree species composition of many forests in Western 

and Central Europe has been changed. Large areas of mixed deciduous forest were 

converted into fast-growing coniferous plantations offering highly-demanded wood 

products (Klimo et al., 2000; Spiecker et al., 2004). In large parts of Europe, beech, oak 

and other deciduous tree species were replaced by fast-growing coniferous tree species 
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such as spruce and Pinus sylvestris. Spruce forests now appear far beyond their assumed 

natural range in Europe (Figure 1.1).  

The conversion to coniferous species did increase the wood production, but also has a 

large impact on the nutrient cycling, biodiversity and resistance against disturbances, e.g. 

storm, drought and insect or fungus infestations, of the forest (Solberg, 2004; Spiecker et 

al., 2004). In times of rapid climate change, cultivation of species close to and beyond 

their distributional limits involves even bigger risks (Bradshaw et al., 2000). Concerns 

about the environmental impact, potential degradation of soil fertility and sensitivity for 

disturbances of coniferous plantations have slowed down the extension of spruce 

plantations. More recently, reconverting these secondary non-native coniferous 

plantations into more natural deciduous forests became an important aim of sustainable 

forestry (Mosandl and Küssner, 1999; Spiecker et al., 2004).  

1.1.1 Forest conversion in Belgium 

Since the 19th century, the forested area in Belgium increased due to afforestation with 

conifers. In Flanders, this concerns about 33,500 ha of Pinus sylvestris and 11,500 ha of 

Pinus nigra var. laricio stands on sandy soils (Afdeling Bos & Groen, 2001a). There was 

Table 1.1. Past and recent changes of forests and forest sites in Central Europe (After Zerbe, 

2002; den Ouden et al., 2010b). 
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no net increase of forest area in Flanders because forest was converted to agriculture land 

on the well buffered soils (den Ouden et al., 2010b) . In Wallonia, spruce stands were 

planted after 1850 through the afforestation of mires, bogs, heathland and poor grasslands 

(“fagnes, bruyères, landes”). Spruce showed high wood production potential, even on 

poor soils, and produced high quality wood. So, the species was rapidly planted all over 

the Ardennes.  

The forest management in the existing deciduous forests also changed in Wallonia. Many 

ancient coppice and coppice with standards deciduous forests were transformed to 

deciduous high forests or to spruce plantations in the 20th century (Noirfalise, 1985). 

During the 1980s, the area covered by spruce reached a maximum of nearly 200,000 ha, 

i.e. 37 % of the forested area (545,000 ha) in Wallonia. The growing concerns about the 

environmental impact of spruce plantations slowed down the planting of spruce in 

Wallonia, which has resulted in a reduction of the area covered by spruce stands. The area 

of young spruce stands (less than 20 years old) particularly decreased. 

 

Figure 1.1. Actual distribution (left, percentage of the forest area covered by spruce) and 

natural range (right) of spruce in Europe (From Klimo et al., 2000).  
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1.2 Tree species effects 

The overstorey vegetation, soil chemistry and soil organisms in forests interact closely 

and can be viewed as co-developing components of terrestrial ecosystems (Zinke, 1962; 

Van Breemen, 1993; Reich et al., 2005). The species identity and composition of the 

overstorey can have a large impact on the forest ecosystem. Below, we discuss the most 

important and best-studied drivers of tree species effects, namely differences in litter 

quality and quantity, canopy interception and root growth. In the next part, we focus on 

tree species effects on the forest floor, several abiotic and biotic soil characteristics and 

the understorey vegetation, i.e. the variables studied in this thesis. 

1.2.1 Drivers of tree species effects 

1.2.1.1 Litter quality and quantity 

Litter quality is tree species specific. The decomposition rate of leaf litter is largely 

determined by the litter quality; litter with good quality having a high decomposition rate. 

The species-specific variation in litter decomposition is often related to physico-chemical 

characteristics of the leaf, e.g. morphology, hardness and chemical composition (Berg, 

1986; Augusto et al., 2002; Reich et al., 2005; Hobbie et al., 2006; Vesterdal et al., 2008; 

Vivanco and Austin, 2008). Studies have identified various variables related to the 

chemical composition of leaf litter that determine the decomposition rate. The variables 

that are most often reported are the ratio of carbon to nitrogen (C:N), the lignin 

concentration, the lignin:N ratio and the calcium concentration. Augusto et al. (2002) 

refer in their review to several articles that show big differences in nutrient concentrations 

of the leaf litter, especially between deciduous and coniferous tree species. Litter nutrient 

concentrations were 10 to 50 % higher for N and phosphorus (P) and 100 to 400 % higher 

for calcium (Ca), magnesium (Mg) and potassium (K) in deciduous tree species than in 

conifers, but there are also big differences within both species groups. Calcium 

concentrations are especially important when earthworms are present; high leaf litter 

calcium concentrations are associated with increased earthworm abundance and activity 

(Reich et al., 2005; De Schrijver et al., 2012). Low litter quality, and thus slowly 

decomposing litter, is generally caused by a low calcium concentration, a high C:N ratio 

and a high lignin, cellulose and hemicellulose concentration or lignin:N ratio.  
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In temperate forest, the litter quantity is mainly determined by stand structure, e.g. 

influenced by forest management, but litter quantity will also differ between tree species 

(Augusto et al., 2002).  

1.2.1.2 Canopy interception and filtering capacity 

The interception of atmospheric deposition differs between tree species and is strongly 

influenced by canopy structure, e.g. leaf area index and aerodynamic roughness (Binkley, 

1995; Augusto et al., 2002). The interception by coniferous species is often higher than 

for deciduous species (Nordstrøm and Rundgren, 1974; Ulrich, 1983a; Augusto et al., 

2002; Rothe et al., 2002; De Schrijver et al., 2007). During winter, the differences are 

more pronounced because then, the interception rates of conifers, due to their evergreen 

character, will be higher than those of deciduous tree species. The usually higher LAI of 

conifers also causes a generally higher interception of potentially acidifying elements, 

e.g. N and sulphur (S). For instance, in several studies, Augusto et al. (2002) found 

deposition under spruce to be nearly three times higher than in open area, compared to at 

most twice as high for oak Quercus spp., Fagus sylvatica and Carpinus betulus.  

The light transmission through the crown also differs between tree species. The seasonal 

changes in light conditions will be different in evergreen stands compared to deciduous 

stands, but also in summer, the variation in light transmission between tree species can be 

large (e.g. Canham et al., 1994; Ellenberg and Leuschner, 2010). Forest management 

measures like thinning can also have a highly significant influence on the light 

transmission. 

1.2.1.3 Root growth and nitrogen fixation 

Species-specific effects on the forest ecosystem via roots are less studied. The amount of 

acid exudated by tree roots varies between species and will influence soil acidification. 

For example, the rhizosphere of spruce is more acid than the rhizosphere of several other 

European species such as oak and beech (Calvaruso et al., 2011). Trees also have a 

physical impact on the soil through their roots (Augusto et al., 2002). Nitrogen fixation 

by tree species can enhance soil acidification through proton (H+) production as well as 

by the leaching of cations associated with mobile nitrate (NO3
-) (Van Miegroet and Cole, 

1984; De Schrijver et al., 2012). 
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1.2.2 Consequences of tree species effects 

1.2.2.1 Tree species effects on the forest floor 

Tree species affect the forest floor via the quality and the quantity of their leaf litter. The 

litter quality of tree species largely drives the humus type in case of comparable 

climatologic and soil characteristics and management history. A very convenient way to 

divide tree species into groups with a different impact on the forest ecosystem is the 

distinction between moder/mor-forming and mull-forming tree species (Figure 1.2) 

 

Figure 1.2. Characteristics associated with mull-forming and moder/mor-forming tree 

species. Mull-forming tree species (left) typically have fast-decomposing leaf litter; bacteria 

and earthworms are present in the decomposer soil community; nutrient cycling is fast; 

leaching is weak; and the herbaceous understorey community is mesotrophic. (After Toutain, 

1981; Muys and Granval, 1991; den Ouden et al. 2010a) 
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(Toutain, 1981; Muys and Granval, 1991; Van Calster, 2008). Mull, moder and mor 

humus types are the three main humus types according to e.g. Jabiol et al. (1995) (Table 

1.2, Figure 1.3). Mull is characterised by an intense mixing of organic matter with 

mineral soil. Soil fauna including earthworms and bacteria cause rapid organic matter 

decomposition and nutrient cycling, which results in a crumbly and nutrient-rich organo-

mineral horizon. Moder is characterised by a less rapid transformation of litter by litter-

dwelling animals and fungi, which results in the accumulation of organic humus at or 

near the soil surface. Mor is characterised by the slow transformation and accumulation 

of undecayed plant debris, with a sharp, clearly defined transition from the humus to the 

mineral soil. The decomposition is relatively slow and predominantly done by fungi. 

Mull-forming tree species have a good litter quality and therefore fast-decomposing leaf 

litter. Moder/mor-forming tree species have slowly-decomposing leaf litter, which usually 

results in a thicker fragmentation (F) layer and an accumulation of organic matter in the 

humus (H) layer. Species with high leaf litter calcium concentrations such as Tilia spp. 

and Acer spp. show rapid litter decomposition and high earthworm abundance (Reich et 

al., 2005; Hobbie et al., 2006). Species such as Picea spp. and Pinus spp. generally have  

 

 

Figure 1.3. Structure of a typical mull, moder and mor topsoil profile (From den Ouden et 

al., 2010a). L (litter layer): Horizon characterized by the accumulation of mainly 

leaves/needles, twigs and woody materials. F (fragmentation layer): Horizon characterized 

by the accumulation of partly decomposed (i.e. fragmented, bleached, spotted, skeletonized) 

litter, mainly from transformed leaves/needles, twigs and woody materials, but without any 

entire plant organ. H (humus layer): Horizon characterized by an accumulation of 

zoogenically transformed material, i.e. black, grey-brown, brown, reddish-brown well-

decomposed litter, mainly comprised of aged animal droppings. A organo-minaral horizons. 

E eluviated mineral soil. 
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very poor litter and accumulate a substantial forest floor mass (Hobbie et al., 2006). The 

forest floor mass under Picea abies could be up to twice that of hardwood species such as 

Fagus sylvatica (Augusto et al., 2002). Especially in the soil pH-range between 3.5 and 

4.6, tree species are decisive in determining the humus type. Tilia spp., Acer spp. and 

Fraxinus excelsior could have mull humus types until a pH of 3.5 to 4, while for e.g. 

Quercus spp. and Fagus sylvatica the turning point to moder/mor humus is already at 

about pH 4.5 (Rackham, 1980). 

1.2.2.2 Tree species effects on soil characteristics and soil acidification 

Ecologists and pedologists have long recognized that vegetation can influence soil 

properties (Jenny, 1941; Zinke, 1962), and recent evidence suggests that plants can 

change soils relatively rapidly (Wedin and Tilman, 1990; Muys et al., 1992; Berendse 

1998; Binkley and Giardina, 1998).  

Soil acidification is the accumulation of hydrogen ions, also called protons (H+), in the 

soil. A soil acidifies when its acid-neutralising capacity decreases and the proportion of 

cations such as K+, Ca2+ and Mg2+ on the clay-humus-exchange complex decreases at the 

benefit of aluminium (Al3+) and iron (Fe2+) (de Vries and Breeuwsma, 1985). Soils are 

buffered against acidification by a series of buffer reactions (Box 1). Acidification of the 

forest soil is a natural process, which is, however, accelerated by human activity. 

Tree species can have a high impact on soil acidification. De Schrijver et al. (2012) 

proposed a conceptual model to explain tree species effects on soil acidification (Figure 

1.4). The forest floor, and thus the leaf litter quality, has an important effect on soil pH 

and exchangeable cation concentrations. In the case of moder- and mor-forming tree 

species, a thick forest floor is built up, which can cause soil acidification through the 

production of organic acids as intermediate decomposition products (de Vries and 

Breeuwsma, 1985) and by causing a time delay in the return of buffering cations to the 

soil where they are taken up by tree roots in exchange for protons (Nilsson et al., 1982). 

Tree species with high filtering capacity cause a higher potentially acidifying input 

through atmospheric deposition, which will result in a higher soil acidification rate. Root 

uptake of nutrients and the amounts of acid exudated by tree roots vary between species 

and influence to a lesser extent the soil variables concerning acidification. Based on 

several studies, Augusto et al. (2002) ranked tree species in order of decreasing acidifying 
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ability as follows: (1) Picea abies, Picea sitchensis, Pinus sylvestris > (2) Abies alba, 

Pseudotsuga menziesii > (3) Betula pendula, Fagus sylvatica, Quercus petraea, Quercus 

robur > (4) Acer platanoides, Carpinus betulus, Fraxinus excelsior, Tilia cordata. 

Tree species also influence the physical properties of the soil (e.g. Binkley and Giardina, 

1998; Augusto et al., 2002). Light transmission through the tree canopy differs between 

tree species and influences the soil temperature. Differences in canopy interception and 

transpiration between tree species cause differences in soil moisture (Binkley, 1995). Soil 

aeration may be altered by root activity, e.g. through oxygen consumption and changes in 

soil porosity and perhaps structure.  

1.2.2.3 Tree species effects on the earthworm community 

The response of the earthworm community to tree species is complex. On the one hand, 

earthworms are sensitive to changes in environmental conditions. On the other hand, 

earthworm species also influence the chemical soil conditions through their role in litter 

 

Figure 1.4. Conceptual model of tree species-related causes of soil acidification in temperate 

forests (from De Schrijver et al., 2012) 
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decomposition and mixing. When earthworms are present in the soil, they typically play a 

major role in the translocation and decomposition of leaf litter (Lavelle, 1997; Edwards, 

1998). High species diversity and abundance of earthworms lead to increased organic 

matter turnover rates (Ponge et al., 1999). Several earthworm species show bioturbation 

activity: they are incorporating organic matter from the forest floor into the deeper soils. 

Earthworms, especially endogeic (shallow soil dwellers, Figure 1.5) and anecic species 

(deep-burrowers that feed at the surface on litter which they pull into their vertical 

burrows), are important in sustaining mull humus quality (Muys and Lust, 1992; 

Edwards, 2004). 

Tree species are an important determinant of the forest floor and therefore, soil conditions 

can influence the earthworm community significantly. Earthworm species are sensitive to 

acidification: soil acidification is related to decreased exchangeable base cations 

concentrations and increased potentially toxic aluminium concentrations, both harmful 

for earthworm communities (e.g. Muys, 1989; van Gestel and Hoogerwerf, 2001; Reich 

et al., 2005). Tree species influence the earthworm community by their litter quality: leaf 

litter rich in calcium exhibits fast litter decomposition and is related with high earthworm 

abundance; species with low leaf litter calcium concentrations are associated with lower 

 

Figure 1.5. Three ecological earthworm groups: epigeic (small litter dwellers, make almost 

no burrows), endogeic (shallow soil dwellers) and anecic (deep-burrowers that feed at the 

surface on litter which they pull into their vertical burrows) (from Schelfhout, 2010). 
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decomposition rates and low earthworm abundances (Reich et al., 2005; Hobbie et al., 

2006; De Schrijver et al., 2012). Earthworms are also very sensitive to dehydration (e.g. 

Nordstrøm and Rundgren, 1974; Grossi and Brun, 1997; Wever et al., 2001; Eggleton et 

al., 2009), and the lower humidity of the forest floor and soil under some tree species can 

adversely affect the earthworm community. 

1.2.2.4 Tree species effects on the understorey vegetation 

The understorey diversity and composition is profoundly influenced by the species 

composition of the tree canopy (Hunter, 1999; Gilliam 2007; Barbier et al., 2008) and by 

site conditions such as soil and microclimate characteristics (Augusto et al., 2003). The 

overstorey directly affects the understorey through its impact on light availability (Härdtle 

et al., 2003; Tinya et al., 2009) and by competition for water and nutrients (Small and 

McCarthy, 2005; Van Calster et al., 2008). Trees also have indirect effects on the 

understorey, especially through the quality and quantity of their litter, which influences 

the forest floor characteristics, the chemical soil conditions (Augusto et al., 2002; Mölder 

et al., 2008; Thomaes et al., 2011), the soil fauna (Reich et al., 2005) and, hence, the 

recruitment and growing conditions of the vegetation (Sydes and Grime, 1981; Verheyen 

et al., 2003b; Baeten et al., 2009).  

1.3 Aims and outline of the thesis  

During the last three decades, politicians and policy makers became more and more 

concerned about biodiversity loss. Now, it is clear that biodiversity loss will have a high 

impact on the functioning of ecosystems and their ability to provide goods and services to 

society. Therefore, biological conservation ranks high on the policy agendas (e.g., 

Millennium Ecosystem Assessment, 2005). In forestry, the interest in biodiversity 

conservation has also increased, and the conservation of biodiversity has become an 

important goal of multifunctional and sustainable forest management (e.g., Ministerial 

Conference of the Protection of Forest in Europe, 1993). Tree species changes, often to 

exotic species, lead to notable modifications of the whole forest ecosystem. The 

conversion to a non-native tree species can have a large influence on the species diversity 

of several ecological groups in the forest. Next to the loss of biodiversity, soil 

acidification due to tree species changes can cause nutrient depletion, lower productivity 

and, on the longer term, loss of ecosystem stability. Thus, it is important to investigate the 

short- and long-term impacts of forest conversion on soil fertility and biological diversity. 
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More recently, reconverting secondary non-native coniferous plantations to more natural 

deciduous forests has become an important topic in forest management (Mosandl and 

Küssner, 1999; Spiecker et al., 2004). The primary aim of this thesis was to quantify the 

effects of forest conversion to spruce plantations and back on several biotic and abiotic 

variables of the forest ecosystem.  

Different soil buffering mechanisms (Box 1) could cause differences in the changes of the 

soil acidity along the gradient of buffer capacity as response to the increased acidifying 

input after conversion to spruce. Therefore, we expect that the changes in the soil acidity, 

but also in other response variables measured in this thesis could differ in size along the 

gradient of soil buffering capacity. The secondary aim was to get a better insight into 

how these processes are triggered and whether the mechanisms are the same along a 

gradient of soil buffering capacity. This knowledge about this aim is rather limited and 

the possibility to study several variables along a gradient in a relatively small area makes 

this study unique. 

We focus on the conversion from mixed deciduous forest to spruce plantations and the 

effects on the forest floor, soil acidification, the earthworm community and the 

understorey vegetation. The thesis is divided into an observational and an experimental 

part. Figure 1.6 gives an overview of the variables studied in each chapter. 

 

Figure 1.6. Schematic outline of the five chapters in this thesis. The left part of the scheme 

shows the response variables measured in this thesis. The green rectangles showed the 

response variables measured in each chapter. 
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1.3.1 Observational part 

The study area (49° 37’ N, 5° 33’ E; approximately 10 km²) is part of a large forest 

complex in the south of Belgium (Gaume region, Figure 1.7). The soil parent material is 

sandstone with variable lime content (Ghysel et al., 2002; Belanger, 2006). The soil type 

is Lamellic Arenosol (Soil atlas of Europe, 2005) and the soil texture varies between 

sand, loamy sand or sandy loam (Service Public de Wallonie, 2007). The different depths 

and lime content of the substrate and the different texture classes create a gradient of soil 

fertility and buffering capacity. Elevation ranges between 250 and 360 m above sea level. 

The slope is mostly nearly level or gently sloping. 

The climate is sub-Atlantic with the mean annual precipitation amounting to 873 mm 

evenly distributed throughout the year. The mean annual temperature is 8.7°C; the mean 

temperature during the growing season (April–September) is 13.7°C (Royal 

Meteorological Institute of Belgium, http://www.kmi.be).  

The study area has been forested since at least the oldest full coverage, reliable 

topography map for the Austrian Low Countries (now Belgium) of 1777 (De Ferraris 

Map). The deciduous forest matrix is mainly uneven-aged high forest dominated by 

Quercus robur (percentage of total estimated tree canopy cover in the studied deciduous 

plots in chapter 3 and 4: 27%), Quercus petraea (6%), Fagus sylvatica (22%) and 

Carpinus betulus (36%). The area is located in two special protection areas from the 

Natura 2000 Network (‘Bassin supérieur de la Chevratte’ and ‘Vallées de Laclaireau et du 

Rabais’). Several deciduous forest stands are classified as important habitats to be 

protected in the EU Habitat Directive (Council Directive 92/43/EEG, 1992). The most 

abundant forest types in the study area are Luzulo-Fagetum beech forests (habitat type 

9110) and sub-Atlantic and medio-European oak or oak-hornbeam forests of the 

Carpinion betuli (habitat type 9160). In a smaller area, Asperulo-Fagetum beech forests 

(habitat type 9130) are present. In the region, there is also a significant area of alluvial 

forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae) 

(habitat type 91E0), but none of the study plots were situated in this forest type. 

The study area is ancient forest (forested at least since the Ferraris map, 1777) with a 

relatively undisturbed understorey layer in equilibrium with the site conditions. The 

former coppice with standards management system was abandoned in the mid-20th 

century. Today, the forest is dominated by trees originating from resprouts after the last 
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cut of the coppice wood, together with some remaining standards and younger 

regeneration. There is a mixture of forest management types, but the management is 

mostly not intensive. The thinning regime depends on the location; at some sites, only 

trees of interest are cut, at other sites, real high or low thinnings are performed. Firewood 

companies are also active in the region.  

Between 1950 and 1990, patches of 2 to 15 ha in this deciduous matrix were harvested 

and replanted with monoculture stands of spruce, which created random islands of 

coniferous forest within the larger deciduous matrix. The patch locations were mostly 

randomly chosen in the deciduous forest. As far as we known, the conversion has taken 

place without large disturbances or intensive soil tillage such as plowing. The spruce 

stands are mostly managed through high thinning, and their crown closure is lower 

compared to the deciduous stands.  

 

 

  

Figure 1.7. Location of the study area and plots (red points) in the Gaume region (map data: 

Aerodata International Surveys, 2013; DigitalGlobe, 2013; IGN-France 2013, Google, 2013) 
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The first specific aim was to get a better insight into the long-term temporal changes in 

the herbaceous understorey community of the deciduous stands during the last fifty years 

(Chapter 2). The management of the deciduous stands also changed during the last 

decades; the former coppice-with-standards management system was abandoned in the 

mid-20th century. Today, the forest is dominated by trees that resprouted after the last cut 

of the coppice together with some remaining standards and younger regeneration. In 

2008, we re-inventoried 43 vegetation recordings of 1953-1954 in deciduous forests to 

study the temporal changes in the herbaceous understorey vegetation. 

Spruce is generally considered a tree species with strong negative ecological effects due 

to its recalcitrant leaf litter, continuous leaf cover and high leaf area index (LAI) (e.g. 

Ranger and Nys, 1994; Augusto et al., 2002). Therefore, the second specific aim of the 

thesis was to describe the changes in the forest floor, soil variables concerning 

acidification, the earthworm community, the understorey vegetation and the seed bank 

after conversion from deciduous stands to spruce plantations (Chapter 3, Chapter 4 & 

Box 1). To our knowledge, the effect of a specific conversion type (e.g., from mixed 

deciduous to spruce monoculture) along a relatively long soil gradient has never been 

studied in a comparable manner. This study is also very suitable to enlarge the knowledge 

about the relation between all the variables studied in the different chapters. 

The study region is characterised by variation in soil buffering capacity, mainly created 

by differences in soil texture. We used this natural gradient in the chapters 2-5 to fulfil the 

second aim of this thesis. The trajectories of change after conversion were described and 

discussed along this gradient.  

1.3.2 Experimental part 

The experimental part builds further on the results of the observational part and 

investigates more into detail the effects on the understorey vegetation and possibilities for 

restoration. The third specific aim was to assess the effects of conversion from 

deciduous stand to spruce plantations on the adult performance and germination of 

several forest understorey species (Chapter 5). The knowledge about the mechanisms 

behind the vegetation changes after conversion is limited, and the combination of both 

observational and experimental research could bring new insights into conversions. We 

experimentally determined the effects of two important ecological factors that are known 

to change as a consequence of conversion, i.e. light availability and chemical soil 
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characteristics, on the vegetative and regenerative performance of five characteristic 

herbaceous forest understorey plant species. 

The fourth specific aim of this thesis was to assess the effects of restoration of spruce 

plantations by reconversion to deciduous stands on the soil variables concerning 

acidification, the forest floor and the earthworm community (Chapter 6). In this 

experiment, we simulated conversion and restoration by exchanging soil monoliths 

between deciduous and spruce stands. We also studied whether a lime addition and the 

absence or presence of earthworms are stimulating or slowing down the conversion or 

restoration trajectories. 
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Box 1: Soil buffer ranges and mechanisms 

 

Soil acidification is the build-up of hydrogen cations, also called protons, in the soil. A soil 

acidifies when its acid neutralising capacity decreases and the proportion of K+, Ca2+ and Mg2+ on 

the clay-humus-exchange complex decreases in advantage of aluminium and iron (de Vries and 

Breeuwsma, 1985). Soil acidification is caused by a flux in protons and is buffered by a 

subsequence of buffer reactions. Ulrich and Sumner (1991) determined a subsequence of acid 

buffer ranges in the soil (Table Box 1.1, Figure Box 1.1). The buffer range pH limits may vary 

depending on the composition of the buffer substances and on how much the soil state deviates 

from the chemical equilibrium (De Schrijver, 2007). As long as carbonates are present in the soil, 

acids are buffered by carbonate dissolution and the pH-H2O will stay in the range 6.2-8.6. When 

all carbonate has been consumed, mineral weathering is the only mechanism which can buffer 

incoming acids and the pH-H2O drops below 6.2. Mineral weathering is supposed to happen at 

any pH. Its buffering capacity is generally large and depends on the soil type and to a lesser 

degree on the forest type (Augusto et al., 2002), but its buffering rate is determined by the 

weathering rate (Kauppi et al., 1986). The soil pH will further decrease if the acid input is higher 

than the buffering capacity and comes into the cation exchange buffer range where the excess 

protons will be buffered by exchangeable bases (Kauppi et al., 1986). The exchange buffering 

capacity is small and once the base saturation drops below 5-10 % the forest soil enters the 

aluminium buffer range (prevailing pH-H2O of 3.8-4.2) where acid is buffered by dissolution of 

aluminium silicates. At pH values < 3.2, in horizons influenced by infiltrating organic matter with 

a pH below 3.8, the solubility of iron oxides becomes high enough to reach iron concentrations in 

the soil solution of ecological significance (De Schrijver, 2007). 
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Temporal changes in forest plant  

communities at different site types 

 

After: Verstraeten G., Baeten L., Van den Boeck T., De Frenne P., Demey A., Tack W., Muys B. 

& Verheyen K. (2013). Temporal changes in forest plant communities at different site types. 

Applied Vegetation Science, 16, 237-247. 

Abstract 

Given the significance of the herbaceous understorey layer for temperate forest ecosystem 

biodiversity and functioning, it is important to have a thorough understanding of its dynamics 

in response to environmental change. However, site-specific factors such as soil type may 

cause differential temporal herb-layer changes within a single study area under comparable 

external pressure. Surprisingly, relatively few studies have examined herb-layer changes on 

different site types within the same forest complex. The aim of this study is to determine the 

temporal differences in herb vegetation and to compare these for two differing site types in 

the same forest complex.  

The study plots were located in ancient broadleaved woodlands traditionally managed as 

coppice with standards in the South of Belgium, an area with Secondary deposits and a mild 

temperate climate. In 2008 we re-inventoried 43 vegetation recordings from 1953–1954 in 

forests on two site types (acidic and moderately acidic forests). First, we described 

differences in soil pH, litter and overstorey characteristics between the sites. Next, 

multivariate analysis, Ellenberg indicator values and dominant plant strategies (CSR-

signature) were used to determine differences in herb layer diversity and composition 

between both the two survey times and the two site types. Finally, we analysed temporal 

differences in individual species abundances and frequencies. 

The two site types clearly differed with respect to soil, litter and overstorey characteristics. 

Temporal changes between the surveys were mostly highly significant on the moderately 
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acidic sites and mostly not significant on the acidic sites. On both site types, the species pool 

size declined. On the moderately acidic site, also the mean plot species richness declined. 

From the plant-derived characteristics (Ellenberg indicator values) of the plots, we learned 

that the light availability decreased and nitrogen availability significantly increased on the 

moderately acidic sites. 

Input of eutrophying deposition and management changes are seen as key drivers of herb 

layer changes in the study area over the last half century. However, our study suggests that 

site characteristics such as parent material and soil pH should be considered as well. Together 

with the key drivers, incorporating differences in site characteristics may improve our 

understanding of temporal shifts in herb-layer vegetation in response to environmental 

change. 

 
 

2.1 Introduction 

Despite the small stature, the herbaceous understorey layer is important at the ecosystem 

level in forests (Gilliam, 2007). Given its significance in e.g. forest ecosystem 

functioning, it is important to establish a good understanding of the dynamics of the 

understorey layer. During the last decade, several studies in temperate forests have 

identified remarkable changes in the herb layer vegetation composition over time (e.g. 

Van Calster et al., 2008; Baeten et al., 2009a; Verheyen et al., 2012). Usually, those 

studies focused on the driving factors responsible for changes in the understorey 

communities. But less well understood is how change trajectories can differ because of 

variation in geological site characteristics between locations. Here, we investigated how 

site-specific factors cause differential temporal herb-layer changes within a single study 

area, i.e. keeping the external drivers constant.  

Temporal changes in herb layer communities in temperate ancient forests are often 

attributed to a combination of different driving factors including (i) the input of 

potentially acidifying and eutrophying atmospheric deposition (e.g. Thimonier et al., 

1992; Lameire et al., 2000; Bernhardt-Römermann et al., 2007), (ii) changes in forest 

management and intensity (e.g. Van Calster et al., 2007; Baeten et al., 2009a) and (iii) 

changes in grazing pressure (e.g. Kirby and Thomas, 2000; Rooney and Waller, 2003; 

Rooney, 2009). Whereas the temporal changes in species composition of the herb layer 

vegetation are generally significant, their magnitude and direction often vary among 

studies. This variation is probably due to differences in the nature of the underlying 

environmental changes and altered disturbance regimes, but may also be related to 

inherent site differences (Diekmann and Lawesson, 1999; Ellenberg and Leuschner, 
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2010; Verheyen et al., 2012). Verheyen et al. (2012) for instance, analysed decadal 

vegetation changes of more than 20 studies in lowland forests across western and central 

Europe. Changes in canopy species composition and cover were important factors 

explaining the changes in the understorey, but, at the same time, considerable 

unexplained variation between the studies remained, which may be partly related to 

differences in site characteristics within and between the studies.  

Variations in site characteristics are often related to differences in soil conditions. Soils 

weathered from alkaline bedrocks have a higher pH and higher concentrations of 

exchangeable cations in the mineral soil layer than soil weathered from non-alkaline 

bedrocks (Vestin et al., 2006). Soil texture influences water and nutrient retention (Troeh 

and Thompson, 2005). Chemical and physical soil properties can profoundly influence 

the composition of the herb layer (Falkengren-Grerup et al., 1995; Tyler, 1996; Ellenberg 

and Leuschner, 2010). Therefore, differences in parent material and soil type will be 

reflected in the composition of the understorey layer of forests. Different vegetation types 

could have a different succession pathway (Roberts and Gilliam, 1995) and therefore, 

they could generate a different response on changes of external influences (e.g. 

management and deposition) during longer time periods. External influences could also 

interact in a different way with soil characteristics and, hence indirectly influence the 

vegetation. For example, the sensitivity to acidifying deposition depends on the cation 

exchange capacity and the amounts of weatherable minerals (Wiklander and Andersson, 

1972). To explore variation in understorey shifts under comparable external drivers, we 

can investigate different site types in the same forest complex. So far, relatively few 

studies have examined herb layer changes within the same forest complex whereby they 

specifically looked to differences in temporal changes along a gradient of site types (like 

substrate properties or chemical soil properties). Lameire et al. (2000), for instance, found 

clearly discernible temporal changes between two site types, but the contrast between the 

site types was high (alluvial vs. plateau forest). Thimonier et al. (1994), on the other 

hand, found clear differences among sites with an eutrophication signal in the plant 

community change on moderately acid (mean pH 5.1) as well as on calcareous (mean pH 

6.9) site types, but with an acidification signal on the moderately acid soil. Van Calster et 

al. (2007; 2008) looked to shifts in soil and vegetation after conversion from coppice with 

standards to different types of high forest on two site types, but the effect of conversion 

type was more pronounced than the site effect. All these studies have shown a different 
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response of the herb layer on different site types in response to the same external driver(s) 

of change. 

Hence, we can expect differences in herb layer changes to be affected by differences in 

inherent site characteristics. In the present study, vegetation surveys from the 1950’s were 

compared with recent (2008) surveys in a forest complex in southern Belgium. All plots 

were situated in ancient forest (defined for Belgium as being continuously forested at 

least since the oldest available set of topographic maps of 1777; Hermy et al., 1999), so 

we can assume that the herb layer is well developed and adapted to the site. To gain a 

better insight into the changes of the herb layer on different site types with more or less 

similar external drivers, we selected plots on two site types in the same forest complex. 

Because of the proximity of both site types, the changes between the surveys in acidifying 

and eutrophying deposition, management and grazing density will be similar for both 

types. First, abiotic, litter and overstorey conditions were compared between the two site 

types. Next, we investigated herb layer diversity and a set of plant-derived variables (CSR 

signature, Ellenberg indicator values, etc.) to get a better understanding of the changes of 

the herb layer. Finally, we compared the shifts of individual plant species on both site 

types.  

2.2 Materials and methods 

2.2.1 Study site 

The study area was a part of a large forest complex in the south of Belgium (Gaume 

region, described in chapter 1.3.1).  

Between 1945 and 1963, a vegetation survey was done in the south of Belgium to make 

vegetation maps. We used this vegetation map and classification (Dethioux and Vanden 

Berghen 1966), and the soil map (Service Public de Wallonie 2007) to select two 

different forest types in our study area: (1) an acidic site type with acidophilous beech and 

oak forests (originally called ‘Chênaie sessiliflore’ and ‘Hêtraie à luzule blanche’; 

Dethioux and Vanden Berghen 1966) and (2) a moderately acidic site type with more 

nutrient-rich conditions supporting moderately acidic beech and oak hornbeam forests 

(called ‘Hêtraie à aspérule’; Dethioux and Vanden Berghen 1966). For the resurvey in 

July 2008, we used the vegetation recordings of the cartographical survey located in the 

selected forest types in the study region. Before the field survey, we selected plots from 

the old survey with full description of the herb, shrub and tree layer and with a 
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description of the location of the plot. Next, the plots were relocated as well as possible 

based on the name of the forest part, description of the site, elevation and orientation. 

Plots were not permanent, which is common in forest resurvey studies (cf. Verheyen et 

al., 2012), and our study should be regarded as a repetition of the old recordings with 

equal sampling efforts in the same locations, using the same methodology. On the field, 

plots with recent management disturbances and plots that were clear-felled in the period 

between the two surveys were rejected for resurvey. Finally, a total of 43 plots remained 

for analyses, 16 were located in the acidic site type and 27 in the moderately acidic site 

type. All the re-inventoried plots in the study area were first surveyed in 1953–1954. The 

plot size in the old survey was mostly 100 (22 plots out of 43) or 200 m² (16 plots), some 

plots were 50 (1), 300 (2) or 400 m² (2). We kept the plot sizes in the recent survey equal 

to that of the old survey. Analysis without the smallest (50 m²) and largest (300-400 m²) 

plots gave nearly identical results (results not shown) compared to the results presented 

below. 

2.2.2 Field survey and data preparation 

Three vegetation layers were recorded, i.e. the herb (≤ 1 m, including brambles, ferns and 

tree saplings), the shrub (> 1 m and ≤ 7 m) and the tree layer (> 7 m). For some analyses, 

the tree and shrub layer were combined and further referred to as ‘overstorey layer’. In 

both surveys, the classical Braun-Blanquet scale (7 cover classes) was used to estimate 

the cover of plant species. For the analyses, the Braun-Blanquet scale was back-

transformed to midrange values.  

The old survey was made between May and July and the resurvey in July. Some of the 

spring-flowering forest herbs were not visible in the recent survey. Therefore, we opted to 

exclude the spring-flowering forest herbs from further analysis in both the old and recent 

vegetation recordings (i.e. Adoxa moschatellina, Anemone nemorosa, Anemone 

ranunculoides, Corydalis solida, Gagea lutea, Neottia nidus-avis, Orchis mascula, 

Ranunculus ficaria). We defined the species pool as all species appearing on a site type in 

a survey period. 

To describe the site types, the soil pH and the litter quality were measured in the recent 

survey. Four soil samples (0–5 cm) were taken on the diagonals at about two meter of 

each corner of a plot and a mixed sample was analyzed for pHKCl (1 M KCl, 1:5 

suspension, ion-specific electrode). The thickness of the litter layer was calculated as the 
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mean thickness of four measurements in the plot. The humus type was determined 

according to Jabiol et al. (1995). 

To study changes in the canopy, we calculated the sum of the percentage cover of species 

in the shrub and tree layer, and two tree functional traits, being the average shade casting 

ability index and the average litter quality index. The shade casting ability index (SCA) is 

a species-specific, expert-based index that varies from 1 to 5 (low to high shade casting 

ability of the canopy species). The litter quality index (LQ) is a similar index also ranging 

from 1 to 5 (very slow to very fast litter decomposition) (indices scores listed in: 

Verheyen et al. (2011)). For each plot, the mean values of the SCA and LQ indices were 

calculated based on the index of each individual tree and shrub weighted by its cover (see 

also Van Calster et al., 2008; Baeten et al., 2009a; Verheyen et al., 2012).  

To get a better understanding of underlying causes of changes in the herb layer we 

calculated plant-derived variables related to the prevailing environmental conditions 

(Ellenberg indicator values) and dominant plant strategies (CSR-signature). As those 

variables reflect the environmental conditions of a site, their changes allow to make 

assumptions about which external drivers underlie the shifts in community composition. 

Ellenberg indicator values (Ellenberg and Leuschner, 2010) express individual species 

requirement along seven abiotic gradients. We used Ellenberg indicator values for light 

(L), soil reaction (R) and nitrogen state of the soil (N, often interpreted as general soil 

fertility) (Hill et al., 2000; Ellenberg and Leuschner, 2010). Ellenberg average indicator 

values (AIV) were calculated as weighted (by cover) averages of the indicator values of 

the herb species occurring in each plot. Weighted (using abundances) and unweighted 

(using presence/absence data) averages were strongly correlated for each of the three 

Ellenberg AIV’s (R² > 0.8, P < 0.001, n = 43). Furthermore, we calculated the functional 

signature for each plot based on the CSR-signature and the cover of each plant species 

following Hunt et al. (2004). This approach categorises species into 8 categories based on 

three primary strategies and their combinations (C-S-R strategies: competitive – stress-

tolerant – ruderal) (sensu Grime, 2001). 

2.2.3 Statistical analysis  

The analyses were composed of three major parts. (i) First, we described the two site 

types based on abiotic characteristics and the overstorey layer and looked to the 

differences in overstorey composition, shade casting ability and litter quality between the 
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old and recent survey; (ii) Next, we examined the temporal differences in the herb layer 

for the two sites with multivariate techniques and compared plant-derived explanatory 

variables; (iii) Finally, we looked into shifts in individual herb layer species on both site 

types. 

(i) Because of the small sample size and non-normality of some variables, non-parametric 

Wilcoxon rank-sum tests were used to compare soil and litter characteristics between the 

acidic and moderately acidic forest types. In a multivariate Detrended Correspondence 

Analysis (DCA), we visualised differences in overstorey composition. DCA is an 

eigenvector ordination technique which ordinates simultaneously both species and plots 

by a re-iterative weighting procedure (Hill, 1979; Hill and Gauch, 1980) and was 

executed with Canoco (ter Braak and Šmilauer, 2002). A permutation multivariate 

analysis of variance (PerMANOVA, Anderson, 2001; McArdle and Anderson, 2001) was 

used to test whether the overstorey composition was significantly different between the 

two forest types and between the survey periods. We performed PerMANOVA with the 

adonis function in the vegan library (Oksanen et al., 2010) of R (R Develompment Core 

Team, 2010) using Bray-Curtis dissimilarities.  

(ii) The herb layer differences between the two survey periods were examined for both 

site types. First, we characterise the herb layer diversity using two diversity indices: 

species richness (number of species per plot, α-diversity) and the species pool for a site 

type and survey period (γ-diversity). Next, we did a multivariate analysis of the herb 

vegetation data by using again PerMANOVA and DCA. We correlated the Ellenberg 

indicator values and CSR strategies with the plot-scores of the first two DCA-axes to get 

an insight in the differences between the two sites and in the shifts of the vegetation 

between the survey periods. Also the pH values of the recent survey (no data for the old 

survey) were correlated with the plot-scores of the first two DCA-axes. Finally, the 

differences in plant-derived variables (Ellenberg indicator values, CSR) between the 

survey periods were examined for both site types. Wilcoxon rank-sum tests were used to 

compare the diversity indices and plant-derived variables between the old and recent 

survey.  

(iii) We looked into species-specific shifts in the herb layer. Following Wiegmann and 

Waller (2006), we used the log likelihood ratio (G-test) goodness of fit test to identify the 

‘winners’ and ‘losers’ i.e. those species that increased or decreased significantly between 
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the two surveys. Because the small species pool on the acidic sites, this was only done for 

the moderately acidic sites  

For DCA, PerMANOVA and the identification of winners and losers, only species that 

appeared in at least 15% of the plots in the old or recent survey were used (moderately 

acidic sites: 65 species; acidic sites: 28 species).  

2.3 Results 

2.3.1 Abiotic site characteristics and overstorey vegetation 

The acidic sites had a significantly lower pH than the moderately acidic sites (pHKCl 3.23 

and 4.44 respectively, P < 0.001) and a significantly thicker litter layer (30 and 20 mm 

respectively, P = 0.006) (Figure 2.1). The dominant humus types were mull types on the 

moderately acidic site type (most frequent humus type: oligomull (13/27)), while more 

moder types occurred on the acidic sites (most frequent humus type: hemimoder (10/16)). 

The species composition of the overstorey layer differed marginally significant between 

the two surveys (PerMANOVA, P = 0.089). The most abundant tree species in both 

surveys were Fagus sylvatica (old survey: 38% of the total tree and shrub cover; recent 

survey: 34%), Quercus (Quercus petraea and Quercus robur) (old survey: 13%; recent 

survey: 15%), Carpinus betulus (old survey: 16%; recent survey: 12%) and Corylus 

avellana (old survey: 13%; recent survey: 13%). In the new survey, Acer pseudoplatanus 

became also became an important tree species (old survey: 2%; recent survey: 10%). The 

two site types were clearly different in the overstorey layer (PerMANOVA, P = 0.001). 

The DCA of the tree species (Figure 2.2) showed that Quercus petraea, Sorbus 

aucuparia, Rhamnus frangula and Betula spp. were more abundant or had higher cover 

values in the plots on the acidic sites, while Quercus robur, Carpinus betulus, Corylus 

avellana, Fraxinus excelsior and Prunus avium were more associated with the moderately 

acidic sites. The litter quality (LQ, Table 2.1) was higher for the plots on the moderately 

acidic sites compared to the acidic sites.  
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Figure 2.1. Boxplots of a. the soil pH (pHKCl) and b. litter thickness on the moderately acidic 

and acidic sites. 
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Figure 2.2. Detrended correspondence analysis (DCA) of the tree and shrub layer. Biplot of 

the plots and the tree species. Species: tree species with mean cover > 2% are plotted. Plots: 

black symbols are for the old survey and grey symbols for the recent survey period; the 

triangles are the plots on the acidic sites and the squares are the plots on the moderately 

acidic sites. 
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The cover of the overstorey layer stayed comparable, but the cover of the tree layer 

increased significantly on the moderately acidic sites. The cover of the shrub layer 

showed a small decrease on both site types. We could only find temporal changes in LQ 

and SCA for the tree layer of the moderately acidic site type, the shade casting ability 

became lower and the litter quality became better (Table 2.1). There was no interaction 

between site type and the survey time (PerMANOVA, P = 0.499). 

2.3.2 Understorey vegetation shifts 

For both site types, the species pools of the old survey were larger than those of the recent 

survey. The mean species diversity per plot in the old survey was significantly higher 

than the recent survey for the moderately acidic site type, while there was no significant 

difference for plots on the acidic site type (Table 2.1).  

The two site types could be clearly differentiated along the first DCA-axis (length of 

gradient: 4.5 S.D.; explaining 15% of the variation in species data, Figure 2.3). This first 

axis was strongly correlated with AIV_R (ρ = 0.84; P < 0.001), AIV_N (ρ = 0.69; P < 

0.001), CSR_R (ρ = 0.85; P < 0.001) and pH (only pH-values available for the recent 

survey: ρ = 0.88; P < 0.001). This first axis indicated a gradient of soil acidity and 

nutrient availability with the acidic sites on the side with low pH and lower nutrient 

levels, and the moderately acidic sites on the side with higher pH and nutrient levels. The 

old and recent surveys were clearly distinguishable along the second DCA-axis 

(explaining 6% of the variation in species data), but the correlations of the variables with 

this axis where smaller. CSR_C (ρ = -0.43; P < 0.001), AIV_N (ρ = 0.34; P < 0.001), 

CSR_S (ρ = 0.34; P = 0.001), AIV_L (ρ = 0.31; P = 0.004) and AIV_R (ρ = 0.30; P = 

0.004) were correlated with this second axis. This means that the understorey vegetation 

shifted towards more competitive strategy and less stress-tolerant strategy, and towards 

lower light levels and higher pH and nutrient levels in the plots. Also the PerMANOVA-

analysis showed a significant difference between the site types (Pseudo-F = 16.08; 6.53; 

P ≤ 0.001) and between the old and the recent survey (Pseudo-F = 6.53; P ≤ 0.001). The 

interaction between survey time and site type was also significant (Pseudo-F = 2.45; P = 

0.007), indicating that the two site types differentially changed over time. From the DCA 

(Figure 2.3), it can be deduced that the differences between the old and recent survey 

were larger for the moderately acidic forest types than for the acidic sites.  
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Comparing Ellenberg indicator values between the old and recent survey showed only 

significant differences for the moderately acidic forest types. The trend of the herb layer 

changes on the acidic site types was equal, but not large enough to be significant. For the 

moderately acidic forest sites, the AIV_L significantly decreased and AIV_N and AIV_R 

increased in the recent survey (Table 2.1). This can be interpreted as a shift of the 

understorey layer on the moderately acidic sites to plants requiring less light, more 

nutrients and more basic soil conditions. The changes in CSR-signature between the old 

and new survey were similar for both site types. There was a significant increase of the 

‘competitive’ (C)-strategy and a decrease of the ‘stress-tolerant’ (S)-strategy and the 

‘ruderal’ (R)-strategy.  

 

 

Figure 2.3. Scatterplot of DCA of the herb layer. Plot scores on the first and second DCA-

axis of old (black) and new (grey) surveys. Triangles are plots on the acidic sites type, 

squares are plots on the moderately acidic sites type. Explanatory variables correlated 

significantly (P < 0.05) with the DCA-axis are listed on the axis with their spearman’s rank 

correlation coefficient. Average Ellenberg indicator values for light (AIV_L), soil reaction 

(AIV_R) and nitrogen state of the soil (AIV_N). CSR-strategy: value for stress-tolerance 

(CSR_S), competive signature (CSR_C) and ruderal signature (CSR_R). 
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2.3.3 Species-specific changes 

Most significant changes in the herb layer species were found on the moderately acidic 

sites. In those plots, 16 losers and only 4 winners were found (Figure 2.4). The herb layer 

species that increased significantly in cover and abundance are Corylus avellana, Circaea 

lutetiana, Galeopsis tetrahit and Stellaria nemorum. On the side of the losers, 9 species 

which occur at least six times in the old survey were absent in the recent survey. The 

small number of winners compared with the larger group of losers did not allow us to 

make a statement about characteristics of these groups. But, it is clear that the species that 

were abundant in the old survey and decreased or disappeared in the recent survey, are 

species that occur in forests in the more open sites (clear-felled areas and forest edges) or 

in forests with high light availability on the forest floor (e.g. Scrophularia nodosa, Poa 

chaixii, Euphorbia amygdaloides and Veronica chamaedrys). 

 

Figure 2.4. Changes in the frequency of winner and loser species of the moderately acidic 

sites. Species ordered from highly significant to less significant changes in frequency. 

Numbers shown on the y-axis-labels represent the highest frequency in the old or recent 

survey (winners: frequency in recent survey, losers: frequency in old survey). Ancient forest 

plant species according to Hermy et al. (2009).  
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2.4 Discussion 

The two site types were clearly different with regards to soil and litter characteristics as 

well as over- and understorey community composition. The higher pH, better litter 

quality and thinner litter layer on the moderately acidic sites are indicators of a more 

nutrient-rich system. The differences between the site types are probably explained by the 

variation in depth and lime content of the substrate and different soil texture classes. The 

overstorey composition will be influenced by this geomorphic variation (Ellenberg and 

Leuschner, 2010) and by management, but on the other hand, composition differences of 

the overstorey layer will have an effect on the soil pH and the litter layer (Reich et al., 

Table 2.1. Changes in diversity and plant-derived variables of the herb layer and overstorey 

variables for the acidic and moderately acidic site types between the old and recent 

vegetation survey (Wilcoxon rank-sum test). Significance: NS, not significant; (*) P ≤ 0.10; 

* P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001. Overstorey variables: LQ, litter quality index; SCA, 

shade casting ability index. 

  Acidic site type Moderately acidic site type 

  mean Statistic significance mean statistic significance 

 Survey old recent 
  

old recent     

Species diversity and cover 

Species pool 64 46   113 99   

Species richness 13.6 12.3 147 NS 26.2 20.5 565 *** 

Average Ellenberg indicator values (AIV) 

Light (AIV_L) 5.31 5.11 138 NS 4.04 3.70 479 * 

Nitrogen (AIV_N) 3.32 3.42 153 NS 5.01 5.51 163 *** 

Soil reaction (AIV_R) 2.62 2.93 98 NS 5.61 6.16 210 ** 

CSR-strategy 

Competitive signature (C) 0.40 0.58 48 ** 0.39 0.49 105 *** 

Stress-tolerance (S) 0.56 0.40 203 ** 0.43 0.33 551 ** 

Ruderal signature (R) 0.04 0.02 186 * 0.17 0.18 361 NS 

Overstorey layer 

Cover overstorey  102.28 105.42 127 NS 128.65 134.87 341 NS 

Cover trees 69.46 86.78 98 NS 74.67 96.23 226 * 

Cover shrubs 32.81 18.64 177 (*) 56.06 38.64 433 NS 

SCA overstorey 3.67 3.72 136 NS 4.13 3.97 440 NS 

SCA trees 3.85 3.64 144 NS 4.18 4.09  462 (*) 

SCA shrubs 3.96 4.16 98 NS 3.86 3.66 415 NS 

LQ overstorey 1.67 1.65 135 NS 2.27 2.34 305 NS 

LQ trees 1.45 1.60 98 NS 1.91 2.28 189 ** 

LQ shrubs 2.03 1.79 153 NS 2.88 2.75 444 NS 
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2005). Both geomorphic differences and overstorey composition are interacting and 

resulted into two site types with related forest types. The temporal differences of the 

overstorey layer were not significant. The small differences in cover of the tree species 

could occur due to observer bias, the use of semi-permanent plots or due to forest 

management or succession. Despite that the plots are not permanent, the species 

composition of the tree layer was similar enough to have no effects on the herb layer. In 

contrast with the unchanged overstorey species composition, there were significant 

changes in the herb layer diversity and composition, especially on the moderately acidic 

site type.  

In forest in western and central Europe, the species richness generally increases with 

higher pH (Brunet et al., 1997; Ewald, 2003; Schuster and Diekmann, 2003; Partel et al., 

2004; Kooijman, 2010). In this study, the most diverse plots were also located on the 

moderately acidic sites. The local species pool declined for both site types over time. 

However, the average species diversity in a plot decreased significantly only at the 

moderately acidic sites, and there were significantly more losers than winners. This result 

is consistent with other studies performed in Belgium and northern France that found 

decreasing species diversity over time (e.g. Lameire et al., 2000; Van Calster et al., 2008; 

Baeten et al., 2009a; Baeten et al., 2010a), although Thimonier et al. (1994) found an 

increase of diversity. Moreover, a recent meta-analysis of herb-layer resurvey studies in 

deciduous forests revealed that there was no clear directional temporal change in the 

understorey diversity across Europe (Verheyen et al., 2012). In the present study, we 

showed that changes of species diversity between site types can differ markedly, even 

within a small region. 

The direction of the changes in plant-derived variables was similar on both sites, but 

changed most on the moderately acidic sites: the community composition shifted towards 

more N-demanding and shade-tolerant species. This trend is similar to the overall 

tendency of understorey vegetation shifts in deciduous forests in western-Europe 

(Verheyen et al., 2012). Contrary to our expectations, the AIV_R increased, suggesting 

an increasing pH. However, we believe that this increased value does not necessarily 

mean that the soil pH has effectively increased. This could be explained by following 

three causes: First, AIV_R and AIV_N were strongly correlated (R² 0.84, p<0.001, n = 

86). Thimonier et al. (1992) suggested that, even if there was a small decrease or no 
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change of pH, we probably would not be able to detect this change in the AIV_R because 

the correlation with the strongly increased AIV_N. Secondly, as mentioned by Diekmann 

(2003), an acidification of the vegetation is not always indicated by a decreasing AIV_R, 

because eutrophication and lower management intensity may lead to denser canopies 

which causes the disappearance of light-demanding species which often have lower R-

values. Thirdly, some temporal vegetation studies with a decreasing soil pH (based on pH 

measurements for both survey periods) also showed an increased or unchanged AIV_R 

value (Van Calster et al., 2007; Baeten et al., 2009a).  

Below, we first look to the key drivers of these shifts, and then we discuss the potential 

causes of the different shifts between the two site types. In most vegetation studies in 

ancient forests in Western-Europe, temporal shifts in understorey vegetation could be 

attributed to one or more of the three main key drivers: (i) the input of potentially 

acidifying and eutrophying deposition and (ii) changes in management type and intensity 

or (iii) changes in grazing densities. The last one seems not applicable for this study area. 

Significant changes in browsing and grazing intensity by increasing or decreasing deer 

population (e.g. Kirby and Thomas, 2000) or total closure for deer (Rooney, 2009) have 

to take place to be able to detect an impact on the understorey vegetation. Based on 

counts of wild boar and deer by hunters and forest managers, the grazing density was 

relatively stable over the last 50 years in our study area. Roe deer and red deer densities 

were estimated to be 16 per 100 ha for the recent survey. So, this key driver could be 

excluded for this study area. Below, we discuss the two remaining key drivers. Since both 

factors occur together and interact it is difficult to clearly distinguish the relative 

importance of the two drivers (Van Calster et al., 2007; Baeten et al., 2009a).  

(i) The high input of potentially acidifying and eutrophying deposition during the last 

decades has caused soil acidification and eutrophication in many temperate forests and 

these altered soil conditions have changed the herb layer towards a more acidic and 

eutrophic type (Falkengren-Grerup, 1986; Thimonier et al., 1994; reviewed in: Bobbink 

et al., 1998; Gilliam, 2006). Also in this study, an increasing AIV_N indicate this shift on 

the moderately acidic sites. Very likely, deposition is also the cause for the increase of the 

competitive signature and decrease in stress-tolerance of plots on both site types 

(Bobbink et al., 1998).  
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(ii) Forest management became less intensive in many western European forests (e.g. Van 

Calster et al., 2007; Baeten et al., 2009a; Hedl et al., 2010). Also in our study area, the 

former coppice or coppice with standards silvicultural system was abandoned in the first 

decades after the first survey and changed to mixed and uneven aged high forest 

management, resulting in a lower cover of shrubs and increase of tree cover. Changes in 

cover and composition of the overstorey layer influence the herb layer mainly by changes 

in litter quality and increased shading (Van Calster et al., 2007; Baeten et al., 2009a). 

Also for this study, these changes very likely caused shifts in the herb-layer vegetation 

towards more shade-tolerant plant species and may, to some extent, also explain the 

eutrophication signal (Verheyen et al., 2012).  

Although shifts in understorey vegetation differed between the moderately acidic and 

acidic site type, the input of potentially acidifying and eutrophying deposition and the 

management change did not. Therefore, these two key drivers are unable to explain the 

differences in shifts between the two site types. We argue that the differences between the 

two site types mainly occur due to variation in site type and related differences in abiotic 

and biotic conditions. We suppose that the external drivers of change could have a 

different impact depending on the soil type and herb vegetation. Below, we discuss the 

origin of the differences between the site types in detail.  

Input of acidifying deposition may lead to losses of buffer capacity and lower pH, but 

soils have an inherent potential to buffer acidity depending on e.g. soil type and parent 

material (Ulrich, 1983b). The acidic sites were situated mostly in the hydroxy-aluminium 

buffer range, while the moderately acidic sites were situated in the cation exchange buffer 

range at the time of the last surveys. A similar accumulated acid load has been shown to 

cause different pH-changes in different buffer ranges (Bowman et al., 2008). Variation in 

soil characteristics, e.g. texture, pH and nutrient status, interact to determine the 

sensitivity to a higher N-input (Matson et al., 2002; Bobbink et al., 2010). The higher 

sensitivity for acidifying input of the better buffered soils is also shown in the next 

chapter of this thesis. In addition, there are also differences in sensitivity of plants to 

acidification and eutrophication. Plant communities often change due to N-input, 

probably through various ecological mechanisms (Matson et al., 2002). Increased N 

availability favours the growth and dominance of fast-growing, nutrient-rich species over 

slow-growing nutrient poor ones, with resulted in a decline of the species richness 
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(Tilman, 1997, Aerts and Berendse, 1988). Hence, a first cause for the different shift at 

the two site types was that the soil and vegetation of these two site types showed a 

different response to an equal N-input.  

Furthermore, the effect of changes in management type and intensity could differ between 

site types. Generally, lower management intensity allowed the forest to shift to more 

developed forests. It is known that the peak in plant diversity during succession may vary 

with site quality (Roberts and Gilliam, 1995). In the specific case of conversion from 

coppice to high forest, Van Calster et al. (2007; 2008) compared different conversion 

types on two site types. They observed different shifts of the soil characteristics and the 

herb layer between conversion to even and uneven aged high forest and for some 

variables also between the site types. Changes in tree species cover and composition had 

a significant influence on the direction of these changes. Tree species with base-rich litter 

could enrich soil and vegetation while species with lower litter quality could induce soil 

acidification (Reich et al., 2005). But, in our study, the tree species composition, litter 

quality and shade casting ability of the overstorey did not change significantly. Still, the 

increased cover of trees on the moderately acidic site could create more shaded conditions 

for the herb layer and could increase the litter input. The coppice forests were 

characterised by short cyclic rotations with different levels of light and temperature for 

different stadia (Ash and Barkham, 1976). Several plant species need these periods with 

optimal environmental conditions (for example: temporal increase of light after logging) 

to survive the intermediate, less favourable periods (Salisbury, 1916; Barkham, 1992). 

Due to a higher productivity on the moderately acidic sites, the management cycles were 

shorter on these sites, and probably more species were adapted to these cyclic conditions. 

This could contribute to a higher loss of species and a more significant shift in 

composition on the moderately acidic sites. The management changes could possibly also 

be interpreted in the context of the intermediate disturbance hypothesis (Connell, 1978), 

which proposes that the maximum diversity is maintained at intermediate disturbance 

size, frequency and intensity. At low disturbance levels, a few competitive species will 

dominate the ecosystem, whereas only a few species can survive the more extreme 

conditions at high disturbance levels. In addition, higher levels of diversity are expected 

when the present disturbance regime resembles the historic regime (Denslow, 1980). 

Centuries of coppice management resulted in a specific understorey flora in these forests 

(e.g. Rackham, 1980; Evans and Barkham, 1992).�On the moderately acidic sites, the 
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disturbances intensity was high and the frequency intermediate (intermediate situation). 

Disturbance frequency and especially disturbance intensity will decrease on these sites 

after conversion, with lower understorey diversity and increased competition as result. On 

the acidic sites, competitive species increased as well, but α-diversity did not. On this site 

type, the rotation time in the coppice system was likely longer due to the lower 

productivity. This contributes to smaller differences between the historic and present 

management regime, which could explain the smaller effect on the diversity. 

Moreover, both site types had a different understorey species pool. Species have specific 

environmental requirements with different sensitivities (Ellenberg and Leuschner, 2010) 

or strategies to survive (Grime, 2001). Therefore, also vegetation types with different 

species could have different sensitivities for environmental changes (Diekmann, 2003) or 

strategies (Hunt et al., 2004) which made the vegetation to show a different shift on 

different site types with a similar external change. In the context of conversion from 

coppice to high forest, Van Calster et al. (2008) mentioned also that the initially larger 

species pool on the rich soils was more sensitive to a decline of demanding species and an 

increase in acidic or indifferent species. Higher nitrogen input also has variable effects on 

plants (Gilliam, 2006) which made that different plants, and probably also plant 

communities, could show different responses to increased nitrogen availability. 
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Abstract 

We assessed how the conversion of mixed deciduous forests to Norway spruce (Picea abies) 

plantations affects soil characteristics, the forest floor mass and the earthworm community. 

We also investigated whether the effects of this conversion depend on the initial soil 

buffering capacity. The study area contained ancient deciduous woodlands mainly consisting 

of Quercus spp., Fagus sylvatica and Carpinus betulus in the Gaume, an area with a mild 

temperate climate in southern Belgium. Spruce plantations were established 35–50 years ago 

in this matrix of deciduous woodlands. The forest floor, soil characteristics and earthworm 

community were compared in paired plots in spruce plantations and adjacent deciduous forest 

along a soil buffering capacity gradient. The soil clay content varied between 3 and 34 % and 

was used as a proxy for the natural gradient in soil buffering capacity independent of the 

vegetation. In the deciduous plots, clay content was correlated with pH, forest floor mass, 

overstorey layer and earthworm biomass. The topsoil pH was significantly lower in the 

spruce stands compared to the adjacent deciduous stands. In spruce stands, the exchangeable 

aluminium and calcium concentrations were higher and lower, respectively. The forest floor 

mass was between two to ten times higher under spruce. The total earthworm biomass was 

significantly lower in the spruce stands and endogeic earthworms were mostly absent. 

Differences between deciduous and spruce stands in soil variables and earthworm biomass 

were more pronounced on sites with higher clay content, so the initially well buffered soils. 

 
 

�
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3.1 Introduction 

It is known for a long time that vegetation, soil characteristics and soil organisms closely 

interact and can be viewed as co-developing components of terrestrial ecosystems (Zinke, 

1962; Van Breemen, 1993; Reich et al., 2005). In forests, tree species composition 

influences abiotic and biotic soil characteristics in different ways, among others through 

leaf litter quality and quantity (Augusto et al., 2002). The chemical composition of leaf 

litter is an important determinant of the litter decomposition rate: litter rich in calcium 

and with a low lignin content and C:N ratio decomposes faster (Hobbie et al., 2006). 

High leaf litter calcium concentrations are also associated with increased earthworm 

abundance (Reich et al., 2005; De Schrijver et al., 2012). Bioturbation by earthworms is 

important for the rate of litter decomposition and sustaining mull humus quality (Muys 

and Lust, 1992), but species with bioturbation activity are sensitive to acidification (Muys 

and Lust, 1992; Muys and Granval, 1997). Slowly decomposing litter favours the build-

up of the forest floor, which results in the production of organic acids as intermediate 

decomposition products (de Vries and Breeuwsma, 1985) and causes a delay in the 

cycling of buffering cations (Nilsson et al., 1982). Organic acids leach through the soil 

profile, where they might cause strong modifications in soil chemical, physical and 

biological characteristics. Next to litter quality, tree species’ specific dry deposition and 

canopy exchange can cause differences in potentially acidifying input, with generally a 

higher potentially acidifying input on the forest floor and soil under evergreen coniferous 

species compared to deciduous species (De Schrijver et al., 2007). Also the amounts of 

acid exudates by tree roots vary between species. For example, the rhizosphere of 

Norway spruce (Picea abies, further called spruce) is more acid than several other 

European species like oak and beech (Calvaruso et al., 2011). Tree species composition 

creates also variation in microclimate by differences in rainfall interception and light 

irradiance (Porte et al., 2004). So, tree species composition affects several important 

ecosystem characteristics and processes and therefore, the impact of conversion to 

another tree species can cascade through the whole forest ecosystem. 

The tree species composition of many forests in western and central Europe has been 

changed since the beginning of the 20th century. Large areas of mixed deciduous forests 

were converted into conifer plantations offering faster growth of highly demanded wood 

products (Klimo et al., 2000; Spiecker et al., 2004). In our study area, ancient deciduous 

forests have also been converted to spruce monocultures. The impact of spruce on forest 
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ecosystem functioning is well-studied. Spruce is generally considered to be a tree species 

with strong negative ecological effects due to its recalcitrant leaf litter, continuous leaf 

cover and high leaf area index (LAI) (Ranger and Nys, 1994; Augusto et al., 2002). As a 

result of its recalcitrant litter, spruce litter decomposes slowly and causes a significant 

build-up of the forest floor (Gerboth, 1998; Vesterdal et al., 2008); so soil acidification 

can be expected (Binkley and Valentine, 1991). Soil acidification is related to decreased 

exchangeable base cations concentrations and increased potentially toxic aluminium 

concentrations, both detrimental for earthworm communities (e.g. Muys, 1989; van 

Gestel and Hoogerwerf, 2001; Reich et al., 2005). The high LAI and continuous leaf 

cover of spruce cause dryer soils and high interception rates of potentially acidifying 

pollutants (Augusto et al., 2002) that adversely affect the earthworm populations (e.g. 

Nordstrøm and Rundgren, 1974; Grossi and Brun, 1997; Wever et al., 2001; Eggleton et 

al., 2009).  

Based on this substantial knowledge base from the literature we could expect that the 

conversion of deciduous forest into spruce plantations causes severe changes in the 

ecosystem, more particularly soil acidification, an accumulation of the forest floor mass, 

and a decrease of the earthworm activity, but the question remains how this process is 

triggered and if this mechanism is the same along a gradient of site conditions. Ulrich and 

Sumner (1991) pointed already to the fact that soil acidification is not linearly correlated 

with the acidifying input, but depends on soil buffering capacity. The latter depends on 

discrete buffer ranges (overview of buffer ranges in Box 1). In sum, the buffering 

capacity and rate of the soil depends mainly on the availability of CaCO3, the weathering 

capacity and the proportion of clay and humus that is present in a particular soil. Hence, 

we could expect a different acidification rate due to spruce trees along a gradient of soil 

buffering capacity determined by e.g. CaCO3, soil depth and clay content. 

We designed an original sampling scheme of paired plots along a natural soil buffering 

gradient, where each pair consist of a deciduous forest plot and an adjacent plot converted 

to spruce in recent decades. With such an approach we were able to examine the change 

trajectories from deciduous to spruce for the soil acidity, the forest floor and the 

earthworm communities and to study the effects of the soil buffering gradient on them. 
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3.2 Materials and methods 

3.2.1 Study site 

The study area was a part of a large forest complex in the south of Belgium (Gaume 

region, described in chapter 1.3.1).  

3.2.2 Study design and data collection 

To evaluate how forest conversion from deciduous forest to spruce plantation affected the 

forest floor and variables related to soil acidification, we compared unconverted 

(deciduous) and adjacent converted (spruce) stands in fourty pairs along a gradient in soil 

buffering capacity. The plots were selected in a two-step approach: First, we identified all 

the spruce stands in the study region on aerial photographs and topographical maps; 

stands at the outer edges of the forest complex were excluded to avoid edge effects. As 

such, only tree stage stands of 35-50 years old, so comparable with the deciduous stands, 

were retained. The soil texture map of the Service Public de Wallonie (2007) and the 

vegetation map of Dethioux and Vanden Berghen (1966) were used to select the plots 

along a broad range in soil buffering capacity.  

In a second step, we examined all preselected spruce and adjacent deciduous stands in the 

field. Paired deciduous and spruce stands ought to have similar elevation, slope and slope 

orientation. Deciduous stands that were clearcut after the start of conversion (50 years 

ago) were omitted. An important assumption in this study design was that, just before 

planting the spruce trees, both stands were comparable in forest history, tree species 

composition, vegetation and abiotic characteristics. This was verified ex ante by 

comparison of soil and vegetation maps and forest management archives, by in situ 

comparison of soil profiles and by ex post comparison of the chemical soil properties of 

the deepest soil layer sampled (25-35 cm; see below), and resulted in 40 deciduous-

spruce pairs. 

In each of the selected paired stands, a squared 10 m x 10 m plot was set out, of which the 

centre was always 30 m (about one tree height) from the border into both the deciduous 

and coniferous stands to minimize plot differences as well as mutual influences between 

the stands. In June 2009, the cover of all species in the herb, shrub and tree layer was 

recorded in the squared plots, but only the tree layer data are used in this study. Soil 

variables were determined by analysing soil characteristics at three depth intervals (0 – 5 

cm, 10 – 20 cm and 25 – 35 cm). The plots were divided in four parts by the diagonals 



Biogeochemical effects of forest conversion 

45 

and for each depth interval, one sample was randomly taken in each part pooled into a 

composite soil sample. The soil samples were dried at 40°C until constant weight and 

analysed for pH (extraction in 1 M KCl, 1:5 suspension, ion-specific electrode) at the 

three depths and exchangeable concentrations of Ca2+ and Al³+ (extraction in 0.1 M 

BaCl2, 1:20 suspension, Dutch standard method NEN 5738; flame atomic absorption 

spectrophotometry, SpectrAA-220, Varian) for the 0 – 5 cm and 25 – 35 cm layer. The 

soil texture of the 10 – 20 cm depth interval (expressed in percentages clay, sand and 

loam) was determined by laser granulometry (Malvern Mastersizer S). The litter (L), 

fragmentation (F) and humus (H) layer of the forest floor were collected separately in 

four squares of 20 cm x 20 cm in each plot. These samples were dried at 70°C until 

constant weight and weighted. The total forest floor mass was the sum of the three layers. 

The earthworm community was determined in thirty of the forty deciduous-spruce pairs. 

Earthworms were sampled at two opposite corners of the vegetation plot. The sampling 

was performed in three steps: first a 0.5 m² square was put on the ground in which the 

vegetation was carefully removed. From a smaller square of 0.1 m² positioned in the 

middle of the big square, the forest floor was collected and stored in plastic bags; the 

forest floor outside that small square was removed. The earthworms in the collected 

forest floor were retrieved by hand-sorting. Next, we poured 60 litre of mustard solution 

per plot (6 g mustard powder L-1) in the big 0.5 m² square (Valckx et al., 2011). The 

frequency of pouring depended on the percolation rate of the solution. The earthworms 

were collected directly after emerging. Finally, a soil monolith (0.1 m² and 20 cm deep) 

in the mustard affected area was thoroughly checked for earthworms by hand-sorting. All 

the earthworms were first stored in 95 % ethanol and after a few hours transferred to a 5 

% formalin solution for fixation. After 3 days they were transferred to 95 % ethanol for 

further preservation and identification. In the laboratory, the earthworms were identified 

to species level following the nomenclature of Sims and Gerard (1999) and they were 

weighed with gut contents. Earthworm mass was expressed as g m-2 formalin-preserved 

weight. In the few cases that identification to species level was not possible, the 

earthworms were identified at genus or ecological group level and were assigned pro rata 

to species level (cf. Valckx et al., 2006). 
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3.2.3 Data analysis 

To compare the means of the different variables we used non-parametric Wilcoxon tests 

to test whether the means of two sets of paired measurements are significantly different. 

Correlations were calculated by Pearson’s correlation in case of normality and the 

presence of a linear relationship and Spearman’s rank correlation in other cases. We 

extracted the first axis of a Detrended Correspondence Analysis (DCA) on the overstorey 

vegetation in the deciduous stands (canopy cover data) as a proxy for the overstorey 

composition. DCA is an eigenvector ordination technique which ordinates simultaneously 

both species and plots by a re-iterative weighting procedure (Hill, 1979).  

We produced a synthesis diagram where we looked at the relations between several 

variables of both deciduous and spruce stands together. We calculated standardised 

regression coefficients to visualize relations between tree species, forest floor, soil and 

earthworms. Standardised regression coefficients express the standard deviation change 

in a response variable associated with the change in standard deviation change of a 

predictor variable and this makes the relations between the variables more comparable. 

For this diagram, we created a new variable (tree composition * clay) that takes both the 

acidifying input of the tree layer as well as the acidification potential of the soil into 

account. Thus, we combined the clay content of the soil (as a proxy for the acidification 

potential) with the first DCA axis of the percentages tree species cover in a plot. Plots 

with high cover of acidifying species (spruce) had low values on the first DCA-axis and 

plots with the highest percentage cover by the least acidifying species (e.g. Fraxinus 

excelsior, Prunus avium) had high values on the first DCA-axis. Plots with low clay 

content and acidifying trees had low values for this variable, plots with high clay content 

and least acidifying species had high values. All statistical analyses were performed with 

R 2.15.2 (R Development Core Team 2010). 

3.3 Results 

3.3.1 Site gradient 

The clay content in the soil varied between 3 and 34 % and was used as a proxy for the 

natural gradient in soil buffering capacity independent of the vegetation. This gradient 

was correlated with soil variables concerning acidification, the forest floor, the overstorey 

composition and the earthworm community in the deciduous stands (Table 3.1). The clay 

content of the soil was significantly and positively correlated with the mineral topsoil (0 – 
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5 cm) pH-KCl. Both variables showed similar correlations with the soil acidification 

parameters, the forest floor and the earthworm biomass, but correlations were the 

strongest for pH-KCl. The pH-KCl in the deciduous stand varies between 3.2 and 4.7 

(Figure 3.1). The pH-KCl and the clay content were significantly correlated with the 

calcium concentration of the mineral topsoil (0 – 5 cm) in the deciduous stands, but not 

with the aluminium concentration. The relation between pH and the aluminium 

concentration was a unimodal relationship with a maximum concentration around pH-

KCl 3.6. Also the overstorey composition (first axis of the DCA of the deciduous 

overstorey layer) was significantly correlated with the clay content and the mineral 

topsoil pH-KCl in the deciduous stands. The species composition varied from stands 

dominated by Q. robur in plots with low clay content to a species mixture with species as 

F. excelsior and P. avium in plots with higher clay content. The total forest floor mass 

and the biomass of the fragmentation and the humus layer in the deciduous stands 

decreased with increasing clay content and pH-KCl of the soil (Table 3.1). The litter layer 

mass of the forest floor was not correlated with the clay content and pH-KCl. There was 

no H-layer in 18 out of the 40 deciduous plots. Both the endogeic en epigeic earthworm 

biomasses in the deciduous stands were positively correlated with the topsoil pH-KCl and 

the clay content (Table 3.1).  

Table 3.1. Correlations (Spearman rho correlation coefficient) between clay content (at 10 – 

20 cm), variables related to soil acidity in the topsoil (0 – 5 cm), the overstorey composition, 

the forest floor and the earthworm community in the deciduous stands. FFM: forest floor 

mass. Topsoil: 0 - 5 cm layer. Significance: * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.  

  Clay content of the soil Topsoil pH 

Topsoil pH-KCl 0.65 ***   

 Log (topsoil calcium concentration) 0.58 *** 0.84 *** 

 Topsoil aluminum concentration  NS  NS 

Overstorey vegetation First DCA axis overstorey 0.56 ** 0.87 *** 

Forest floor Total forest floor mass - 0.55 ** - 0.79 *** 

 FFM - litter layer  NS  NS 

 FFM - fragmentation layer -0.54 ** -0.71 *** 

 FFM – humus layer -0.52  ** -0.72 *** 

Earthworm community Endogeic earthworm biomass 0.54 ** 0.84 *** 

 Epigeic eartworm biomass 0.49 ** 0.59 *** 
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3.3.2 Conversion effects 

The soil pH-KCl in the spruce stands was significantly lower than in the deciduous stands 

for both the 0 – 5 cm and the 10 – 20 cm soil layers (Figure 3.1). The exchangeable 

aluminium concentrations were significantly higher and the exchangeable calcium 

concentrations were significantly lower in the topsoil (0 – 5 cm) in spruce stands. In the 

deepest measured soil layer (25 - 35 cm), the soil pH-KCl and calcium concentrations did 

not differ significantly (Figure 3.1) while the aluminium concentration was significantly 

higher under spruce, but the within-pair difference was smaller than in the topsoil.  
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Figure 3.1. Comparison of pH, calcium and aluminium concentrations in different soil layers 

of deciduous (light grey) and spruce (dark grey) stands (number of pairs = 40). Significant 

differences are shown (Wilcoxon signed-rank test): * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.  
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The forest floor mass was between two to ten times higher in the spruce stands compared 

to the deciduous stands. The differences in biomass were also significant for the L, F and 

H-layers separate, although most obvious and significant for the H-layer (Figure 3.2). 

The total earthworm biomass was significantly lower in the spruce stands compared with 

the adjacent deciduous stands. Anecic earthworms were only found in one deciduous 

forest plot. Endogeic earthworm species were almost absent in plots with topsoil pH-KCl 

values lower than 3.5 and their mass strongly increased in soils with pH-KCl higher than 

4. The endogeic earthworms were mostly absent in the spruce stands where also their 

biomass was significantly lower compared to the deciduous stands. Epigeic species were 

present in both coniferous and deciduous forest stands, but their biomass was 

significantly lower in the spruce stands, mostly between 1.5 to 5 times lower under spruce 

(Figure 3.3).  

3.3.3 Interactions between site and conversion effects 

The differences between deciduous and spruce stands in soil pH, exchangeable 

aluminium and calcium concentrations were more pronounced on sites with higher clay 

content (Figure 3.4). Plots with the lowest clay content exhibited only small differences 

within a deciduous-spruce pair: about less than 0.2 pH unit. At the other side of the clay 

gradient, differences were about 0.8 pH units within a deciduous - spruce pair (Figure 
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Figure 3.2. Comparison of the biomass of the forest floor layers (L: litter layer; F: 

fragmentation layer; H: humus layer) of the deciduous (light grey) and spruce (dark grey) 

stands. Significant differences are shown (Wilcoxon signed-rank test): * P ≤ 0.05; ** P ≤0.01; 

*** P ≤ 0.001.  
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3.4). For the total forest floor mass, differences between deciduous and coniferous stands 

could not be related to the soil buffering gradient, although the fragmentation layer 

difference was correlated with the clay gradient (rs 0.73; n = 40; P < 0.0001). The 

differences in total earthworm biomass within a deciduous-spruce pair increased with 

increasing clay content. An even clearer correlation between the logarithm of the 

earthworm biomass and pH-KCl was found: the difference increased significantly with 

higher pH-KCl in the deciduous stands (Figure 3.5).  

 

3.4 Discussion 

We will discuss the changes we observed along a natural soil gradient as a consequence 

of deciduous forest conversion to spruce. We focused our analysis on changes in 1) 

different soil acidification variables, 2) forest floor characteristics, and 3) earthworm 

communities. First we check if the sampling design was valid by discussing the clay 

gradient and by verifying whether the soil conditions were comparable within pairs along 

the gradient. Second, we evaluate the general effects of the conversion on the mentioned 

variables. Third we evaluate if the large gradient in potential soil buffering capacity - clay 

contents varied between 3 and 34 % - had an effect on the rate of changes after 

conversion, and fourth we try to explain the mechanisms behind the observed differences 

in change trajectory along the buffering gradient.  
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Figure 3.3. Comparison of the epigeic and endogeic earthworm biomass of the deciduous 

(light grey) and spruce (dark grey) stands. Significant differences are shown (Wilcoxon 

signed-rank test): * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001. 
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3.4.1 Was the sampling design satisfactory to answer our research questions? 

Based on the soil texture, and more specifically the clay content, we assessed the gradient 

in soil buffering capacity of our sites. Mineral weathering is buffering the soil at any pH 

and the buffering rate is depending on the weathering rate. Its buffering capacity is 

generally large depending on the soil type, especially the clay-size fraction. Clay content 

is also known to determine, among others, the cation exchange capacity of soils. Clay 

particles and organic material tend to be negatively charged and hold cations through 

electrostatic forces. Both determine the cation exchange capacity (CEC); this is the total 
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Figure 3.4. Relation between the clay content of the soil as proxy of the soil buffering 

gradient and the difference in pH, calcium and aluminium concentrations in the topsoil (0 – 

5 cm) within a deciduous-spruce pair. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.  
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of the exchangeable cations that a soil can hold at a specified pH. Soils with a higher 

CEC have a higher buffering capacity and are able to buffer more acidifying input. The 

CEC range of clay minerals is usually between 10 to 150 cmol kg-1, while the CEC of 

organic matter may range from 200 to 400 cmol kg-1 depending on the pH (Parker, 2010). 

Differences in the content and type of clay and organic matter in a soil create large 

variation in CEC between soils. The percentage of organic matter decreases in the deeper 

soil layers and higher clay content of a soil compared to the organic matter content makes 

the clay content important for determining the CEC, and thus also the buffering capacity 

of the soil. The clay content of the soil is not influenced by the vegetation. Here, the soils 

of the deciduous stands were in the cation exchange buffer or in the transition zone to the 

aluminium buffer range. Therefore, we could use the clay content of the soil as a proxy of 

the initial buffering capacity of the soil, independent of the vegetation. The initial soil 

buffering gradient determined the potential tree species composition across the sites. In  

the study region, well-buffered soils generally facilitate tree species with rapid 

decomposing leaf litter (Verstraeten et al., 2013b). Leaf litter with high calcium 

concentrations and low C:N ratios exhibits higher decomposition rates and can improve 

the chemical properties of the topsoil (Reich et al., 2005; Hobbie et al., 2006; De 

Schrijver et al., 2012). The initial gradient of soil buffering capacity interacts with the 

tree species composition to determine the current soil buffering capacity, soil pH and 
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Figure 3.5. Relation between topsoil (0-5 cm) pH-KCl of the deciduous stands and the 

difference in earthworm biomass within a deciduous-spruce pair. Regression is done without 

the plot with highest pH and biggest difference between the stands. Significance: *** P ≤ 

0.001.  
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calcium concentrations. Also several other variables were related with the clay content, 

such as the forest floor mass, the earthworm community and the understorey vegetation 

composition varied along the gradient.  

Pairwise comparison of the soil acidification variables in the deciduous and converted 

spruce stands showed no differences for pH and calcium concentration in the deepest soil 

layer sampled (25 – 35 cm). The influence of tree species on chemical soil parameters in 

the deeper soil layer is considered to be smaller for the deeper soil layers as showed by 

studies of post-agriculture afforestations with different tree species (Hagen-Thorn et al., 

2004; De Schrijver et al., 2012). The similarity of pH and Ca content in deepest soil 

layers sampled strengthens our hypothesis, together with the ex ante verification of 

historic information and in situ verification of the soil profile, that the situation before 

conversion was equal in both stands. In the deepest soil layer, there was a difference in Al 

concentrations, probably due to the leaching of Al from the more shallow soils layers. 

Other parameters, e.g. climate and nitrogen and sulphur concentrations in the air, are 

similar for both stands in a pair during the years. Therefore, we could assume that the 

measured differences between deciduous and spruce stands can largely be attributed to 

different tree species composition.  

3.4.2 What was the overall effect of conversion from ancient deciduous to spruce 

stands in terms of soil acidification variables, forest floor characteristics and 

earthworm communities? 

The overstorey, the soil acidification variables and the earthworm biomass in the 

deciduous stands were significantly related after a long period of continued forest cover 

(a stable state sensu Scheffer et al., 2001). However, large changes, such as the 

conversion to a tree species with a different chemical composition of the leaf litter, could 

have large impacts on the whole system. The conversion of ancient deciduous stands into 

spruce stands highly impacted on the variables related to acidification in the topsoil layer, 

on the forest floor mass and on the earthworm community. Spruce is a strongly acidifying 

tree species compared with most of the deciduous species (Ranger and Nys, 1994; 

Augusto et al., 1998; Binkley and Giardina, 1998; Reich et al., 2005). After conversion, 

the chemical variables of the upper 20 cm of the mineral soil shifted towards more acid 

conditions. This is in accordance with several other observational and experimental 

studies where the pH and the base cation pools are lower and the acid cation pools higher 
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under spruce trees (e.g. Tamm and Hallbäcken, 1986; Augusto et al., 1998; Hagen-Thorn 

et al., 2004). Differences between tree species in variables concerning acidification are 

more significant in the upper soil layers (De Schrijver et al., 2012). In this study, we also 

found a smaller acidification with increasing depth. We did not find any correlation with 

the age of the stands and the change trajectories, probably because the small age 

difference between the stands (most stands were planted within a timespan of 15 year).  

The forest floor mass was found to be significantly higher in the spruce stands compared 

to the deciduous forest matrix and there was an accumulation of organic matter in the H-

layer. It is known that lower calcium concentrations and higher C:N ratio concentrations 

of spruce trees lower the decomposition rate (Augusto et al., 2002; Reich et al., 2005; 

Hobbie et al., 2006). The lower decomposition rate of spruce leaf litter and the decreased 

bioturbation by earthworms probably caused the forest floor build-up, especially in the H-

layer. This forest floor build-up could acidify the soil through the production of organic 

acids as intermediate decomposition products (de Vries and Breeuwsma, 1985) and by 

causing a time delay in the return of buffering cations to the soil where they were taken 

up by tree roots in exchange for protons (Nilsson et al., 1982).  

The earthworm biomass declines when soil pH and calcium concentrations decrease 

(Nordstrøm and Rundgren, 1974; Edwards, 2004) and also with decreasing litter quality. 

Especially lower calcium concentrations and high C:N in leaf litter, will lower earthworm 

biomass (Reich et al., 2005; Hobbie et al., 2006). The total earthworm biomass decreased 

after conversion to spruce. Earthworms fragment freshly fallen litter and drag it deeper 

into the organic and mineral soil through their burrows, leading to increased organic 

matter turnover rates (Muys et al., 1992). Higher forest floor mass was significantly 

related with lower earthworm biomass (Figure 3.6). Muys and Granval (1997) proposed 

that the presence of endogeic earthworms is a good indicator that soils are in the cation 

exchange buffer range. Endogeic earthworm species disappeared in the deciduous stands 

on less buffered soils (pH-KCl < 3.5; also an indicative value of the transition to the 

aluminium buffer range) and in nearly all spruce stands because of their sensitivity for 

acidification. However, these endogeic species are important to maintain a mull humus 

type due to their important bioturbation activity (Muys and Granval, 1997). Epigeic 

species lived along the whole gradient, but their biomass decreased after conversion to 

spruce.  
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3.4.3 Are differences in change trajectory between the deciduous and spruce 

stands related to the soil buffering capacity?  

Change trajectories after conversion were larger on the well buffered soils for soil 

properties related to acidification, for the F layer of the forest floor and for the earthworm 

biomass. The absence of a relation between the clay content of the soil and the difference 

within a deciduous-spruce pair in total forest floor mass is probably due to the big 

difference between both stand types: almost half of the deciduous stands had no H-layer 

while in spruce stands the litter accumulates in the H-layer and the total forest floor mass 

was significantly higher in a spruce plot than its adjacent deciduous plot. For the other 

variables, we assume that the following three interrelated causes importantly contributed 

to the spruce-deciduous difference along the gradient in buffer capacity: the difference in 

buffer capacity, the shifts in the earthworm community and the differences in litter 

quality. (i) The soil can buffer incoming protons with a series of buffer reactions along 

the soil pH-gradient (Bowman et al., 2008). The capacity of a soil to buffer incoming 

protons depends on the buffer system: the drop in soil pH for one unit acidifying input 

will be larger in the base cation exchange buffer range (indicative interval: pH-KCl 

between 4.3 and 3.5 sensu Bowman et al., 2008) - especially at the lower pH-values of 

this interval - than in the hydroxyl-aluminium buffer range (pH-KCl < 3.5). The cation 

exchange buffer range is a small buffer which is very quickly exhausted in situations 

where large proton input occurs. Since we can assume that the acidifying input in the 

spruce stands was similar along the gradient of soil buffering capacity, the difference in 

topsoil pH is expected to be larger at the well buffered sites in the cation exchange buffer 

range. (ii) We further assume that the increased earthworm mass and presence of 

endogeic earthworm species at the well-buffered sites contributed to the larger differences 

between deciduous and coniferous stands on these sites. Endogeic species will disappear 

when soil reach the aluminium buffer range. On the more acid sites, we found no 

endogeic earthworms in both stand types and the differences in biomass within these pairs 

were small. On the well buffered soils, endogeic earthworms were numerously found in 

the deciduous stands, while we could not detect them in the spruce stands. This caused 

the bigger difference in earthworm mass within a pair on the well buffered soils. This 

bigger difference in earthworm biomass could also enhance differences within pairs for 

soil variables and the forest floor because of the importance of earthworms in maintaining 

good humus quality and more general as ecosystem engineer (e.g. Jones et al., 1994; 

Barot et al., 2007). (iii) The composition of the deciduous forest matrix changed along the 
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buffering gradient: on the well-buffered sites occurred more species with fast 

decomposing litter (such as F. excelsior, P. avium, Acer spp.) while the sites with low 

buffering capacity were the stands dominated by oak and beech. The difference in leaf 

litter quality between oak or beech and spruce is smaller than between species with good 

litter quality like F. excelsior en P. avium and spruce (Hobbie et al., 2006; Vesterdal et 

al., 2008). This makes that the disturbance driver is larger and the effects on the soil, 

forest floor and earthworm community are also larger on the well buffered sites.   

3.4.4 Interconnectedness between tree species, soil, forest floor and earthworm 

community  

 In Figure 3.6, we showed an overview diagram of deciduous and spruce stands together 

and try to explain the relations between the four important variables measured in this 

study: tree species, soil, forest floor and earthworm community. De Schrijver et al. (2012) 

described relations between these and other variables and we adapted that conceptual 

model to our situation and our measured variables. All variables were closely interrelated 

and relations could be bidirectional. As described above, the tree species composition and 

the soil buffering capacity (with clay content used as proxy) interact as important factors 

determining the biogeochemical state of the forest system. The variable tree composition 

* clay is negatively correlated with the forest floor (Figure 3.6). Forest floor build-up 

increased in plots on less buffered sites and with lower leaf litter quality. Poor leaf litter 

quality and low buffering capacity contributes also to a lower earthworm biomass which 

result in retarded leaf litter decomposition and lower burrowing activity and consequently 

in forest floor build-up. Earthworm biomass was also significantly correlated with soil 

acidification because earthworms, and especially burrowing species, accelerate the base 

cation circulation in the soil (De Schrijver et al., 2012). Forest floor build-up resulted also 

in soil acidification as described already higher in the discussion. The variable tree 

composition * clay is also significantly correlated with topsoil pH because the clay 

content determines the initial soil buffering capacity and several direct and indirect 

effects related to tree species composition influence the soil pH.  

The strong relations between the different variables studied demonstrated their complex 

interactions. It is clear that conversion to spruce had a significant impact on the abiotic 

and biotic state of the forest. Change trajectories of soil variables concerning acidification 

and earthworms were longer on the initial well buffered soils. Interconnectedness 
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between the factors and as a consequence the positive feedback loops likely enhance the 

effects of the conversions. After 35 to 50 years of conversion to spruce, the shifts are 

clearly visible for several variables of the forest system but it is unclear if this state is 

already at a new equilibrium. The system made already a large shift from a mesotrophic 

to an oligotrophic state but the continuous pressure of high acidifying input in the spruce 

stands compared to the deciduous stands could possibly cause further acidification.  

 

  

Figure 3.6: Synthesis diagram with standardised regression coefficients showing the relation 

between: tree composition * clay, forest floor (total forest floor mass), earthworm biomass 

(both epigeic and endogeic earthworm species) and soil pH-KCl. All regressions were 

significant (P ≤ 0.001). + variable is logarithmic transformed. 



 

 

Deciduous and coniferous forest, Fammene (Belgium), 2013 

 



 

 

4 
Understorey vegetation shifts following the conversion 

of temperate deciduous forest to spruce plantation 

After: Verstraeten G., Baeten L., De Frenne P., Vanhellemont M., Thomaes A., Boonen W., 

Muys B. & Verheyen K. (2013). Understorey vegetation shifts following the conversion of 

temperate deciduous forest to spruce plantation. Forest Ecology and Management, 289, 363-370. 

Abstract 

The identity and composition of the overstorey trees can have large impacts on the 

understorey vegetation in temperate forests. Here, we assess the effects of the conversion of 

mixed deciduous forests to Norway spruce (Picea abies) plantations on the understorey 

vegetation composition and diversity. We also investigated whether the effects of this 

conversion depend on the soil buffering capacity and if they affect the species pool at the 

landscape scale. The study area contained ancient deciduous woodlands mainly consisting of 

Quercus spp., Fagus sylvatica and Carpinus betulus in the Gaume, an area with a mild 

temperate climate in southern Belgium. Spruce plantations were established 35–50 years ago 

in this matrix of deciduous woodlands. Differences in overstorey and understorey vegetation, 

forest floor and soil characteristics between 40 paired plots in spruce plantations and adjacent 

deciduous forest were compared along a gradient of soil buffering capacity. The forest floor 

mass was higher and the soil pH was lower in spruce plantations. The composition of the 

understorey vegetation differed between deciduous forest and spruce plantations: the spruce 

stands contained more light-demanding and acid-tolerant understorey species than the 

adjacent deciduous stands. The mean understorey species diversity, i.e., the local species 

diversity in a plot (α-diversity) as well as the total number of species (γ-diversity), did not 

differ significantly between the deciduous and spruce stands. Hence, the differing species 

composition of the spruce plantations contributes to a larger overall species pool and higher 

across site β-diversity. Although the differences in the environmental variables within a plot 

pair increased along the gradient of soil buffering capacity, the differences in understorey 

vegetation diversity between deciduous and spruce stands showed no relationship with the 

gradient. Only the difference in Ellenberg indicator value for soil reaction (R) within a pair 
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increased with increasing soil soil buffering capacity. In line with the abiotic changes, the 

understorey vegetation composition had shifted towards a more acid-tolerant vegetation type 

35–50 years after conversion to spruce plantations. The increase in light-demanding species 

was probably due to a more intensive thinning management in the spruce stands.  

 

4.1 Introduction 

As a reaction to the global loss of biodiversity, biological conservation ranks high on the 

policy agendas (e.g., Millenium Ecosystem Assessment 2005). In forestry, the interest in 

biodiversity conservation has also increased, and the conservation of biodiversity became 

an important goal of multifunctional and sustainable forest management (e.g., Ministerial 

Conference of the Protection of Forest in Europe 1993). The understorey vegetation 

contributes substantially to the total biodiversity of temperate forests, although it makes 

up only a small proportion of the total forest biomass (Gilliam, 2007). The understorey 

diversity and composition is profoundly influenced by the species composition of the tree 

canopy (Hunter, 1999; Gilliam, 2007; Barbier et al., 2008) and by site conditions such as 

soil and climate characteristics (Augusto et al., 2003). The overstorey directly affects the 

understorey through its impact on light availability (Härdtle et al., 2003; Tinya et al., 

2009) and by competition for water and nutrients (Small and McCarthy, 2005; Van 

Calster et al., 2008). Trees also have indirect effects on the understorey, especially 

through the quality and quantity of their litter, which influences the chemical soil 

conditions (Augusto et al., 2002; Van Calster et al., 2007; Mölder et al., 2008; Thomaes 

et al., 2012), the soil fauna (Reich et al., 2005) and the recruitment and growing 

conditions of the vegetation (Sydes and Grime, 1981; Verheyen et al., 2003b; Baeten et 

al., 2009a). As litter quality and quantity differ among tree species, the species 

composition of the overstorey layer is expected to influence the understorey. Yet, the 

effects of tree diversity on the understorey vary from study to study (Barbier et al., 2008), 

for instance because canopy diversity is often confounded with management practices and 

site conditions. More recently however, Mölder et al. (2008) and Vockenhuber et al. 

(2011) showed that the diversity of the understorey layer is higher in forest stands with 

high tree diversity because of their higher environmental heterogeneity. 

For economic reasons, the tree species composition of many forests in western and 

central Europe has been changed since the beginning of the 20th century. Large areas of 

mixed deciduous forests were converted into conifer plantations (Spiecker et al., 2004), 

and, more recently, reconverted to mixed or deciduous forests (Spiecker et al., 2004; 
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Ammer et al., 2008). The ecological impacts of those conversions are an important topic 

for biodiversity conservation. Here, we focus on the conversion of traditionally managed, 

semi-natural deciduous forests mainly consisting of oak (Quercus spp.), hornbeam 

(Carpinus betulus) and beech (Fagus sylvatica) towards plantations with non-native, 

coniferous tree species (Norway spruce Picea abies, further called spruce). As such, we 

could study the influence of forest conversion on the understorey vegetation composition 

and diversity and whether these changes depend on the local soil conditions. We looked 

already to the temporal changes in the vegetation (Chapter 2) and found clear differences 

between the two site types, both in the composition and the temporal changes. Therefore, 

we expect also differences after conversion from deciduous to spruce along the gradient 

of soil buffering capacity. We took advantage of an unintentional experimental setting 

formed by patches of spruce plantation in a large mixed deciduous ancient forest. To our 

knowledge, the effect of a specific conversion type (e.g., from mixed deciduous to spruce 

monoculture) along a relatively long soil gradient was never studied in a comparable 

manner.  

 

4.2 Materials and methods 

4.2.1 Study site 

The study area was a part of a large forest complex in the south of Belgium (Gaume 

region, described in chapter 1.3.1).  

4.2.2 Study design and data collection 

To determine how forest conversion from mixed deciduous forest into spruce plantation 

affected the understorey community, we compared 40 pairs of unconverted (deciduous) 

and adjacent converted (spruce) stands along a gradient of soil buffering capacity. The 

plots were selected in a step-wise approach: the first selection based on topographic maps 

was refined in the field.  

Firstly, all the spruce stands in the study region were identified on aerial photographs and 

topographical maps; stands at the outer edges of the forest complex were excluded. Only 

stands of 35-50 years old were retained because these stands were in the tree stage and 

therefore comparable with the deciduous stands. The soil texture map of the Service 

Public de Wallonie (2007) and the vegetation map of Dethioux and Vanden Berghen 

(1966) were used to choose plots distributed along a broad gradient of soil buffering 
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capacity. The soil texture (especially the clay content of the soil) was used to determine 

the initial site richness gradient, i.e., independent of vegetation influences. The initial 

gradient determined the potential tree species composition across the sites. In the study 

region, well buffered sites generally facilitate tree species with rapid decomposing leaf 

litter (Verstraeten et al. 2013b). Leaf litter with high nutrient concentrations and low C 

and lignin values and, consequently, also high C:N ratios, exhibits higher decomposition 

rates and can improve the chemical properties of the topsoil (Reich et al., 2005; Hobbie et 

al., 2006; De Schrijver et al., 2012). Thus, the initial soil buffering gradient interacts with 

the tree species composition and both variables are important determinants of the current 

soil buffering gradient (Appendix 1).  

Secondly, the preselected spruce and adjacent deciduous stands were examined in the 

field. Paired deciduous and spruce stands ought to have similar elevation, slope and slope 

orientation. Stands that were recently clearcut were omitted. An important assumption in 

this study design was that, just before planting the spruce, both stands were comparable in 

forest history, tree species composition, vegetation and abiotic variables. This was 

controlled ex ante by comparison of maps and management archives, by in situ 

comparison of soil profiles and by ex post comparison of the chemical soil properties of 

the deepest soil layer sampled (25-35 cm).  

The centre of the plots was always 30 m from the border into both the deciduous and 

coniferous stand. We chose the distance of 30 m from the border (about one tree height) 

to minimize plot differences as well as mutual influences among the stands. In June 2009, 

the vascular plant community was recorded in squared plots of 10 m × 10 m in each of 

the 40 selected paired stands, separately for the herbaceous (< 1 m, including brambles 

and ferns), shrub (> 1 m and < 7 m) and tree layer (> 7 m). Recordings were made using a 

decimal cover scale (Londo 1976) and back-transformed to percent cover values.  

Soil variables were determined by analysing soil characteristics at three depth intervals (0 

– 5 cm, 10 – 20 cm and 25 – 35 cm). Soil samples were randomly collected within each 

quadrant of the plot and for each depth interval pooled into a composite soil sample. The 

soil samples were dried at 40°C until constant weight and analysed for pH (extraction in 1 

M KCl, 1:5 suspension, ion-specific electrode) at the three depths and Ca2+ and Al³+ 

(extraction in 0.1 M BaCl2, 1:20 suspension, Dutch standard method NEN 5738; flame 

atomic absorption spectrophotometry, SpectrAA-220, Varian) for the 0 – 5 cm and 25 – 
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35 cm layer. The soil texture of the 10 – 20 cm depth interval (expressed in percentages 

clay, sand and loam) was determined by laser granulometry (Malvern Mastersizer S). The 

forest floor (comprising the litter, fragmentation and humus layer) was collected in four 

squares of 20 cm x 20 cm in each plot. These samples were dried at 70°C until constant 

weight and weighted.  

4.2.3 Data analysis  

The data analysis consists of three major parts: we analysed the differences between the 

deciduous and spruce plots for the abiotic variables (1) and the understorey community 

diversity (2) and composition (3). The differences within a deciduous – spruce pair for 

these variables were considered along the gradient of soil buffering capacity. We used the 

clay concentration of the soil as an indicator of the initial soil gradient of soil buffering 

capacity and the topsoil pH of the deciduous stands as an indicator of the current gradient 

of soil buffering capacity. All differences between deciduous and spruce stands were 

tested with the Wilcoxon signed-rank test. 

The understorey diversity was evaluated at three spatial scales. (1) At the plot level (α-

diversity), two indices were used: the total number of species in a plot (species richness) 

and the Shannon-Wiener diversity (cover-weighted α-diversity index). (2) The γ-diversity 

for the two forest types was the number of all species occurring in the deciduous or 

spruce stands. (3) The dissimilarity in floristic composition (β-diversity) was quantified 

with the Lennon dissimilarity index (Lennon et al., 2001). This index is calculated as 

min(b, c)/[min(b,c)+a], with ‘a’ representing the number of species shared by both plots; 

‘b’ the number of species that occur in the deciduous plot only and ‘c’ the number of 

species unique to the spruce plot. The mean dissimilarity of a plot against all other plots 

within the same stand type was calculated as that plot’s community divergence, and the 

dissimilarities were compared between deciduous and coniferous stands. Furthermore, the 

compositional turnover within each plot pair was calculated using the Lennon index.  

Compositional differences between the two stand types were tested with a permutational 

analysis of variance (PerMANOVA, Anderson, 2001; McArdle and Anderson, 2001). We 

used Bray-Curtis dissimilarities and 999 permutations for testing the differences in 

composition. Next, we focussed on the species and species characteristics that underlie 

the compositional differences to gain more insight into the factors that mainly determine 

the community differentiation. We first identified the species that occur in higher 
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frequencies or a higher cover in one of the stand types using indicator species analysis 

(Dufrêne and Legendre, 1997). Then we calculated the Ellenberg indicator values to 

assess the underlying environmental causes of the differences in composition between the 

deciduous and spruce stands. The Ellenberg indicator values (Ellenberg and Leuschner, 

2010) are plant-derived variables related to the prevailing environmental conditions. For 

this study, we used the Ellenberg values that express individual species’ requirement for 

light (L), soil reaction or acidity (R), nitrogen state of the soil (N, often more generally 

interpreted as soil fertility) and soil moisture (F). Ellenberg average indicator values 

(AIV) were then calculated for each plot as unweighted averages of the indicator values 

of the understorey species occurring in that plot. Because we expected an effect of the 

deciduous vs. evergreen canopy, we determined the differences in the flowering period of 

the understorey (based on flowering period of understorey species specified in De Langhe 

et al., 1995).  

4.3 Results 

4.3.1 Differences in soil and forest floor  

The topsoil pH (0-5 cm) was significantly higher in the deciduous stands compared with 

the spruce stands (Figure 4.1). The pH of the soil layer from 25 to 35 cm did not differ 

between the two stand types. The exchangeable Al3+ concentrations were higher and the 

exchangeable Ca2+ concentrations were lower in spruce plantations compared with 

deciduous stands (Table 4.1). The differences within a deciduous - spruce plot pair for 

pH, exchangeable Ca2+ and Al3+ concentrations were correlated with the gradient in soil 

buffering capacity; the differences increased towards the well buffered sites (Figure 4.2). 

The forest floor mass was significantly higher in spruce stands (Table 4.1).  

4.3.2 Differences in understorey diversity 

We recorded 108 vascular plant species in the understorey layer across the 40 paired 

deciduous-spruce plots. The species pool (γ-diversity) of both stand types was exactly the 

same, i.e., 86 understorey species occurred in both the deciduous and the spruce stands; 

64 of the species were found in both stand types, 22 species occurred only in the 

deciduous stands, and 22 were confined to the spruce stands. 
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Figure 4.1: Topsoil pH (0 – 5 cm) in the 40 paired plots in deciduous forest and adjacent 

spruce plantations. The full line is the 1:1 line of no difference; points below the 1:1 line 

indicate that the topsoil pH of the deciduous stands is higher than in the spruce stands. 

 

 

Figure 4.2. Differences between deciduous and spruce stands for topsoil pH (0 – 5 cm) (a), 

Ca concentrations (b) and Al concentrations (c) along the gradient of soil buffering capacity 

(clay content of the soil). Significance: NS not significant; * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 

0.001. 
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The species diversity in a plot (α-diversity) was equal for both stand types, i.e., the 

median was 19 species per plot (Table 4.2). Yet, the Shannon-Wiener diversity index was 

significantly higher in the spruce stands. The significantly higher Shannon-Wiener 

diversity index together with the equal number of species indicates that the evenness in 

cover among the species was higher in the spruce stands. The mean cover of the 

understorey layer was significantly higher in the deciduous plots than in the coniferous 

plots (Table 4.2). The species richness of a plot increased with topsoil pH for both stand 

types, with a steeper increase in the spruce stands (Figure 4.3a), and with increasing clay 

content in the soil (Figure 4.3b). The differences in species richness within a plot pair 

were not related to the clay content of the soil (Figure 4.4a). The Lennon dissimilarity 

index (β-diversity) of the deciduous and spruce stands did not significantly differ (Table 

4.2). So, the mean compositional differences within the deciduous plots were equal to the 

mean differences within the spruce plots.  

 

 

Table 4.1. Characteristics (median values and between brackets the 0.25 and 0.75 quantiles 

values) of the soil and forest floor in the deciduous and spruce stands.  

 Deciduous stands Spruce stands Test-statistic W P value 

Soil  

pH     

  0 – 5 cm 3.7 [3,4 – 4.0] 3.3 [3.1 – 3.5] 1309.5 < 0.001 

  25 – 35 cm 4.2 [4.1 – 4.5]  4.2 [4.0 – 4.3] 925 0.231 

Exchangeable Al3+ concentration (mg/kg) 

  0 – 5 cm 119.5 [60.0 – 170.0] 308.5 [164.5 – 346.5] 272.5 < 0.001 

  25 – 35 cm 86.0 [51.0 – 120.0] 138.5 [76.0 – 231.5] 484.5  0.003 

Exchangeable Ca2+  concentration (mg/kg) 

  0 – 5 cm 186.0 [105.8 – 503.2] 73.9 [52.4 – 118.1] 1309 < 0.001 

  25 – 35 cm 14.9 [8.5 – 200.5] 8.2 [5.8 – 89.0] 1005 0.049 

Forest Floor 

Forest floor mass (g/m²) 837.2 [622.1 – 1292.3] 2355.1 [1914.7 – 3076.7] 13 <0.001 
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Table 4.2. Characteristics (median values and between brackets the 0.25 and 0.75 quantiles 

values) of the vascular understorey vegetation in the deciduous and spruce stands.  

 Deciduous 

stands 

Spruce  

Stands 

Test-statistic W P value 

α-diversity 

Species number/plot 19 [14.5 – 22] 19 [13.5 – 24.5] 840 0.707 

Shannon-Wiener diversity 1.63 [1.18 – 1.91] 2.29 [1.79 – 2.65] 1254 < 0.001 

β-diversity 

Lennon dissimilarity  0.54 [0.49 – 0.58] 0.58 [0.52 – 0.61] 975 0.093 

γ-diversity 

Species pool 86 86   

Cover 

Cover (%) 77 [40 – 114] 38 [11 – 61] 369.5 < 0.001 

Ellenberg indicator values 

Light (AIV_L) 4.43 [4.05 – 4.72] 4.79 [4.47 – 5.00] 1179 < 0.001 

Moisture (AIV_F) 5.24 [5.06 – 5.40] 5.31 [5.06 – 5.53] 916 0.265 

Soil reaction (AIV_R) 5.21 [4.05 – 6.25] 4.24 [3.61 – 4.91] 420 < 0.001 

Nitrogen (AIV_N) 5.42 [4.83 – 6.08] 5.18 [4.78 – 5.75] 687 0.297 
 

 

 

 Figure 4.3: Species richness in relation to the topsoil pH (a) and the clay content (b). Filled and 

open circles represent plots in deciduous and spruce stands, respectively. The solid line shows 

the linear regression for the deciduous stands (pH 0-5 cm: R² = 0.276, n = 40, P < 0.001; clay 

content: R² = 0.119, n = 40, P = 0.029); the dotted line shows the linear regressions for the 

spruce stands (pH 0-5 cm: R² = 0.26, n = 40, P < 0.001; clay content: R² = 0.065, n = 40, P = 

0.040) 
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Figure 4.4. Differences between the paired plots in deciduous forest and spruce plantations 

along the gradient of soil buffering capacity: species richness (a), Lennon dissimilarity (b), 

AIV_R Average Ellenberg indicator value for soil reaction (c), AIV_L Average Ellenberg 

indicator value for light (c). If the relationship was significant, the regression line was 

shown. * P < 0.05 
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The species composition differed significantly between deciduous and spruce stands 

(PerManova, P < 0.001). The dissimilarity between the two plots of a pair was not 

correlated with the topsoil gradient of soil buffering capacity of the deciduous stands 
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and more ferns and graminoids in the spruce stands (Table 4.3). The indicator species of 

the spruce stands were species from a more acid soil type (cf. Hypericum pulchrum, 

Luzula luzuloides, Carex pilulifera) and species that need more light (cf. Digitalis 

purpurea and Silene dioica). The mean Ellenberg indicator values for the plots were 

consistent with the indicator species analysis: AIV_R was significantly lower and AIV_L 

significantly higher in the spruce stands (Table 4.2). Hence, the vegetation in the spruce 

plots consisted of more acid-tolerant and light-demanding understorey plant species. The 

difference in AIV_R within a deciduous-spruce pair increased significantly with 

increasing soil clay content (Figure 4.4c), while there was no relation between the AIV_L 

and the clay content (Figure 4.4d). The flowering period of understorey vegetation in 

deciduous and spruce stands differed significantly: the peak of flowering was earlier for 

plants in the deciduous stands (Figure 4.5).  

 

 

 

Figure 4.5. The mean number of flowering understorey species per plot in each month of the 

year. Error bars represent standard errors. Significance of the difference in flowering 

understorey species between deciduous and spruce stands:* P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 

0.001 
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Table 4.3. Species occurring in the 40 paired plots in deciduous forest and spruce plantations 

that are significantly associated (in terms of occurrence and/or cover) with deciduous versus 

spruce stands, determined by an indicator species analysis. Between the parentheses, the 

percentage of the plots were the species occurs (n=40) is shown. Species marked with * are 

ancient forest species, according to Hermy et al. (1999), or species with a recovery rate 

smaller than -0.5, according to De Frenne et al. (2011). De Frenne et al. (2011) quantified 

the recovery rate (RR) of species as the log-response ratio of the percentage occurrence in 

post-agricultural over ancient forests across 18 European landscapes. Species with an RR 

smaller than -0.5 (i.e., with the percentage occurrence in ancient forests approximately 1.65 

times the percentage in post-agricultural forests) were classified as ancient forest species.  

  Deciduous stands   Spruce stands 

Forbs  Adoxa moschatellina * (25)  Hypericum pulchrum * (15) 

 Anemone nemorosa * (100)  Oxalis acetosella * (45) 

 Convallaria majalis * (57.5) Veronica officinalis * (20) 

 Stellaria holostea* (42.5) Moehringia trinervia * (47.5) 

 Galium odoratum * (35) Epilobium montanum * (20) 

 Lamiastrum galeobdolon * (47.5) Digitalis purpurea * (35) 

 Maianthemum bifolium * (40) Mycelis muralis (15) 

 Paris quadrifolia *(30) Silene dioica (30) 

 Polygonatum multiflorum * (82.5) Rubus idaeus (72.5) 

 Arum maculatum * (12.5) 
 

 Lonicera periclymenum * (22.5) 
 

 Stachys sylvatica * (27.5) 
 

 Geum urbanum (15) 
 

 Alliaria petiolata (15) 
 

Tree seedlings Acer platanoides (35) Sambucus racemosa (37.5) 

 Fagus sylvatica (47.5) Picea abies (90) 

 Fraxinus excelsior (35) 
 

Graminoids 
 

Luzula pilosa * (50) 

 
 

Luzula luzuloides * (75) 

 
 

Carex pilulifera * (32.5) 

 
 

Festuca altissima (25) 

 
 

Juncus effusus (22.5) 

Ferns 
 

Dryopteris carthusiana * (82.5) 

 
 

Dryopteris dilatata (60) 
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4.4 Discussion 

The soil, forest floor and understorey community composition of the first-generation 

spruce plantations differed considerably from the paired deciduous forest stands 

consisting of native tree species. The conversion of traditionally managed, deciduous 

forest to spruce plantations seems to have had a significant impact on the soil, forest floor 

and understorey vegetation with a general shift towards a more acido-tolerant type. Soil 

acidification, and the associated changes in exchangeable calcium and aluminium 

concentrations, first occur in the topsoil layer; the initial effects on the deeper soil layers 

are smaller (De Schrijver et al., 2012). Indeed, the soil pH of the deepest soil layer did not 

differ within a plot pair (Table 4.1), which strengthens our assumption that the soil 

conditions of the selected plot pairs were similar before the spruce trees were planted. 

The calcium and aluminium concentrations of the deepest soil layer, however, did 

significantly differ within a pair (Table 4.1), but the differences were much smaller than 

in the topsoil.  

Many conifer tree species tend to acidify soils more than deciduous tree species, mainly 

due to the poor litter quality (low leaf nutrient concentrations and high C and lignin 

concentrations) and the higher interception of atmospheric pollutants (Binkley and 

Giardina, 1998; Augusto et al., 2003; Reich et al., 2005; De Schrijver et al., 2007). A 

poor leaf litter quality decreases the rates of litter decomposition and the presence of 

burrowing earthworms, which will increase the build-up of the forest floor and result in 

soil acidification (De Schrijver et al., 2012). The calcium concentration of leaf litter is an 

important determinant of litter decomposition rates in the presence of earthworms.  

Lignin-poor and nitrogen-rich leaves exhibit higher decomposition rates in systems with 

few earthworms (Reich et al., 2005; Hobbie et al., 2006). Differences in the capacity to 

capture potentially acidifying and eutrophying deposition among tree species are also an 

important cause of soil acidification (De Schrijver et al., 2012). Spruce has a higher 

interception capacity than deciduous species mainly due to its evergreen character 

(Erisman and Draaijers, 2003). All these factors together explain the acidification 

potential of the conversion of native deciduous into spruce forests.  

The clay content of the soil was an important independent determinant of the gradient of 

soil buffering capacity in this study. Along the gradient of increasing soil buffering 

capacity, the differences within a deciduous-spruce plot pair increased for several soil 
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variables and for the forest floor mass. This pattern can be explained by the changes in 

the soil buffer regime with increasing acidifying input (Bowman et al., 2008). The drop in 

soil pH for one unit acidifying input will be larger in the base cation exchange buffer 

range (pHKCl between 7.0 and 3.5) - especially at the lower pH-values of this interval - 

than in the hydroxyl-aluminium buffer range (pHKCl < 3.5). If we assume that the 

acidifying input in the spruce stands was similar along the gradient of soil buffering 

capacity, the difference in topsoil pH will be larger at the well buffered sites. The 

differences within a pair for several soil variables can be further enhanced by the higher 

mean litter quality on the well buffered sites (Verstraeten et al., 2013b). The contrast 

between litter quality of spruce and deciduous tree species is expected to increase along 

the gradient of soil buffering capacity.  

Given that the forest floor and the topsoil determine the physico-chemical growth 

conditions for understorey plants, changing their chemical and physical properties will 

influence the understorey vegetation. The acidification of the topsoil and accumulation of 

litter due to the conversion to spruce in the study area were reflected in the changes 

towards a more acid-tolerant vegetation. The increased differences in abiotic soil 

variables within a pair along the gradient of soil buffering capacity were also reflected in 

the species composition, with bigger differences for AIV_R on the richer sites. In 

addition, the spruce understorey also contained more light-demanding species. Light is a 

crucial resource that often limits the growth of forest understorey species (Bazzaz, 1979; 

Kirby, 1988; Jennings et al., 1999). Light transmittance through spruce canopies is 

commonly considered as lower than in deciduous species (Augusto et al., 2002). 

However, the variation among different deciduous tree species is high (Canham et al., 

1994; Ellenberg and Leuschner, 2010) and the forest management often determines the 

light climate to a greater extent (Cutini, 1996; Augusto et al., 2003). In our study area, 

however, more light is transmitted through the spruce canopies in summer, mainly due to 

the more intensive thinning management in these stands. Plant species that cannot survive 

in the darker deciduous stands seem to have established in the spruce stands. Several of 

these species are characteristic of open habitats and forest edges (e.g., Digitalis purpurea, 

Silene dioica). The higher cover and frequency of graminoids in the spruce stands may 

also be caused by a higher understorey light availability (Decocq et al., 2004). Since 

spruce is an evergreen species, the changes in light conditions throughout the year will 

differ in the spruce stands compared to the deciduous stands. The light availability for the 
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understorey vegetation will be higher in the leafless deciduous stands than in the 

coniferous stands, which is probably the cause for the earlier flowering peak of the 

understorey species in the deciduous stands. Early, spring-flowering forest understorey 

species have a typical shade-avoiding strategy; they use the brief period before the leafing 

out of the trees for photosynthesis (Schemske et al., 1978). Species such as Anemone 

nemorosa and Adoxa moschatellina were growing in many of the plots in the deciduous 

stands, but could probably not survive in the spruce stands due to a lack of light in early 

spring. There was no relation between the gradient of soil buffering capacity and the 

difference in AIV_L within a pair. Next to the influence on the understorey vegetation 

composition, light is often assumed to be the major limiting resource for understorey 

cover (Barbier et al., 2008). Yet, in our study, the mean understorey cover was higher in 

the darker deciduous stands, which may be due to the higher light levels in deciduous 

stands in spring and the more acid soil and thicker forest floor in spruce stands.  

The light regime and soil acidity seem the two most important variables to explain the 

differences in species composition between deciduous and spruce stands. Yet, additional 

factors may also be relevant to explain these differences. Firstly, the average soil moisture 

level by spruce stands is frequently considered to be lower than in deciduous stands 

(Augusto et al., 2002). The higher interception of water in spruce canopies decreases the 

water amount that reaches the forest floor. Stand variables such as the lower stand density 

and single vertical structure class also increase water throughfall (Carlyle-Moses et al., 

2004; Levia and Frost, 2006). In our study, however, the Ellenberg F values did not 

indicate differences in soil water availability between the deciduous and spruce plots. 

Secondly, the disturbances during forest conversion, i.e., the harvest of the deciduous 

trees and the planting of the spruce trees, can destroy the vegetation. Several forest 

understorey species are slowly-colonising species (e.g. Convallaria majalis and Galium 

odoratum; De Frenne et al., 2011) and will not be able to colonise the spruce stands in the 

short time period since harvesting, even if the environmental circumstances are suitable 

for the species. Thirdly, the morphological differences between coniferous and deciduous 

litter and the thicker forest floor in spruce stands may have had a differential influence on 

the understorey layer. The forest floor can hamper seed germination and seedling 

establishment of understorey plants (Eriksson, 1995). Many understorey plant species are 

well adapted to penetrate deciduous litter with their shoots, but may experience 

difficulties to grow in the thick forest floor of spruce. 
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While the vegetation composition shifted following the forest conversion, the understorey 

diversity did not change significantly. In a meta-analysis comparing the vascular 

understorey diversity in several deciduous and coniferous stands, Barbier et al. (2008) 

identified five studies with higher understorey species richness in coniferous and nine 

studies with higher species richness in deciduous stands. Differences in species diversity 

seem to depend on the local abiotic circumstances and management. In our study area, the 

spruce stands were managed in such a way that they have a lower canopy cover than the 

deciduous stands. The higher light availability in the spruce stands probably compensated 

their lower soil pH, which stabilized the species richness over time. Similarly, Augusto et 

al. (2003) found a higher understorey species richness in thinned spruce stands than in 

deciduous stands or unthinned spruce stands. On the other hand, soil pH is positively 

correlated with species diversity in many Central-European forests (Brunet et al., 1997; 

Ewald, 2003; Schuster and Diekmann, 2003; Partel et al., 2004; Kooijman, 2010), and 

also in our study region, species richness generally increases with soil pH (Verstraeten et 

al., 2013b). We expected to find a relation between the gradient of soil buffering capacity 

and the difference in understorey diversity within a plot pair because the chemical topsoil 

characteristics showed larger differences on the well buffered sites than on the poor sites. 

However, no relationship between the gradient of soil buffering capacity and the 

differences in species richness and dissimilarity within pairs was found.  

To conclude, the understorey communities in the deciduous and coniferous stands were 

similar in terms of their local species richness and compositional variation, but their 

species composition differed considerably. The islands of spruce plantations in the 

deciduous forest matrix provided a larger overall species pool and a higher across-site β-

diversity, increasing the biodiversity value at the scale of our study region. The 

conversion to spruce plantations was done especially from an economic interest. We 

showed that the impact on the understorey diversity of the small patches was rather 

limited. However, there are some important comments to be made from a conservation 

point of view. Firstly, all the coniferous stands in the present study were first-generation 

spruce stands. The abiotic variables already showed a significant shift towards more 

oligotrophic conditions, but the present situation is likely to be an intermediate state. We 

do expect a further acidification of the sites due to the permanently high acidification 

potential of the spruce trees. Acidification might enhance species loss in the longer term 

in the spruce stands because species richness generally decreases with a decreasing soil 
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pH. Secondly, many of the recorded understorey species probably survived in the spruce 

plots because of the enhanced light availability. These relatively light-demanding species 

also occur in open habitats and at other places in the deciduous forest and forest edges, 

and are less interesting from a biodiversity conservation point-of-view. 
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4.5 Appendix 1 

Simplified conceptual model explaining the relations between initial site richness 

gradient, the tree species composition and the current gradient of soil buffering capacity: 
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Box 2: Changes in the seed bank after conversion from deciduous forest  

            to spruce plantations 

 

The vegetation changed significantly after conversion. So, we also expected changes in 

the seed bank after conversion from deciduous forest to spruce plantations. Furthermore, 

the soil seed bank could give us additional information about the restoration potential 

after conversion: some species not found in the present-day understorey vegetation layer 

may still be present in the seed bank. In this box, we present the results of a study that 

compared the soil seed bank under deciduous forest and adjacent spruce plantations in our 

study area (see also Sluijs, 2012).  

This study was done in a subset of twenty out of the forty studied plots in chapter 4. The 

twenty plots were selected along the whole gradient in soil buffering capacity. The field 

survey was done in August 2011. We relocated the 10 m x 10 m plots used in chapter 3 

and 4 and made a new vegetation survey. In each of these plots a 2 m × 2 m plot was 

placed in the centre and this 4m² plot was subdivided into 25 0.4 m × 0.4 m plots. Strings 

were used to visualize the grid in the field and seed bank samples (0 - 5 cm and 5 – 10 cm 

deep, Ø = 3.4 cm) were collected systematically on the grid nodes (36 samples). The 

concentrated seed-bank samples (Ter Heerdt et al., 1996) were spread out over potting 

soil and placed in a greenhouse under a 16 hour day – 8 hour night regime with daytime 

temperatures between 20 and 25°C. The samples were kept moist through capillary rise 

and were drained by gravity. The germination period started in September and was 

terminated after two consecutive weeks of no new seedling records, 23 weeks after the 

start of the germination experiment. No additional chilling treatment was applied. All 

identified seedlings were counted and removed, whilst unidentified seedlings were 

transplanted and brought to flower for later identification. 

A total 26460 seeds germinated, belonging to 50 different species. The median number of 

germinated seeds was as double as high in the spruce stands compared to the deciduous 

stands (Table Box 2.1). The majority of the seedlings were Juncus effusus (80%) and this 

species occurred in nearly all the plots (Figure Box 2.2). Without the seeds of J. effusus, 

the difference in number of germinated seeds between the deciduous and the spruce 

stands was not significant, nor was there any difference in species richness. All species 
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found in spruce plots were also found in deciduous plots. Two species were only found in 

deciduous plots, these species were ancient forest species. However, the number of 

germinated species was significantly correlated with the topsoil pH gradient: the 

difference was larger on the soils with higher pH in the deciduous stand (Figure Box 2.1).  

We calculated the average Ellenberg indicator values (AIV) for light (L), nitrogen (N) 

and soil reaction (R) and found significant lower AIV_R values in the spruce plantations 

(Table Box 2.1). The germinated species in the seed bank of spruce plantations were 

more acid-tolerant compared to the species in the deciduous stands. 

 

The results of the study showed that the differences in the seed bank after conversion are 

in line with the results of the understorey vegetation: there where no differences in 

median species richness per plot, the species were more acid-tolerant in the spruce 

plantations and the differences between the deciduous and spruce stands were larger at de 

moderately acidic sites. In contrast with the results for the understorey vegetation, there 

were no differences between the deciduous and spruce stands in the light requirements of 

the seed bank species.  

Only one species significantly associated with deciduous plots versus seven species significantly 

associated with spruce stands (Table 4.3) were found back in more than three seed bank plots 

(Figure Box 2.2) . The understorey species associated with spruce were not more frequent in the 

seed bank in spruce; only two out of the seven species appeared in the seed bank of more spruce 

plots than deciduous plots. The presence in the understorey of Stachys sylvatica was significantly 

associated with deciduous plots, and in the seed bank, the species also only appeared in deciduous 

plots. Hence, most indicators of deciduous understorey plots were not retrieved in the seed bank 

of both the deciduous and spruce stands.  
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Table Box 2.1. Characteristics (median values and the 0.25 and 0.75 quantiles values between 

brackets) for germinated species in the deciduous and spruce stands (Wilcoxon signed rank-sum 

test). Significance: NS, not significant; (*) P ≤ 0.10; * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.  
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Figure Box 2.1. Relation between topsoil (0 – 5 cm) pH-KCl of the deciduous stands and the 

difference in number of germinated species within a deciduous-spruce pair [number of 

species in spruce – number of species in deciduous].  

 

 

 

3.5 4.0 4.5

-4
-2

0
2

4
6

8

pH-KCl

d
if
fe

re
n

c
e

 i
n

 s
p

e
c
ie

s
 r

ic
h

n
e

s
s

R-squared =  0.705   ***

Box 2 

80 



Changes in the understorey community after conversion 

81 

 

 

Figure Box 2.2. Overview of the species in the seed bank of deciduous forest (dark grey) and 

spruce plantations (light grey). Only species occurring in more than three plots are shown.  

* are ancient forest species, according to Hermy et al. (1999), or species with a recovery rate 

smaller than -0.5, according to De Frenne et al. (2011). De Frenne et al. (2011) quantified 

the recovery rate (RR) of species as the log-response ratio of the percentage occurrence in 

post-agricultural over ancient forests across 18 European landscapes. Species with an RR 

smaller than -0.5 (i.e., with the percentage occurrence in ancient forests approximately 1.65 

times the percentage in post-agricultural forests) were classified as ancient forest species.  
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Forest herbs show species-specific responses 

 to the variation in light regime and soil acidity:  

an experiment mimicking forest conversion scenarios 

After: Verstraeten G., Baeten L., De Frenne P., Thomaes A., Demey A., Muys B. & Verheyen K. 

Forest herbs show species-specific responses to the variation in light regime and soil acidity:  

an experiment mimicking forest conversion scenarios. Basic and Applied Ecology, submitted. 

Abstract 

Forest conversion from native deciduous forests to coniferous stands has been performed in 

many European regions and resulted in dramatic shifts in understorey plant community 

composition. However, the drivers for changes in specific understorey plant species remain 

unclear. 

Here, we experimentally determine the species-specific effects of two important ecological 

factors that are known to change as a consequence of conversion, i.e. the light availability and 

chemical soil characteristics, on the vegetative and regenerative performance of five 

characteristic herbaceous forest understorey plants. Topsoil samples from both spruce and 

deciduous stands at four locations, with two levels of soil acidity, were collected and used in 

a common garden experiment. Additionally, three different light levels were applied, i.e., 

‘light deciduous’, ‘dark deciduous’ (extra light reduction during summer) and ‘evergreen’ 

(light reduction during winter). In a second experiment we evaluated the germination of two 

of these species against the site type and tree species at the site of origin of the soil samples.  

The light regime was an important factor affecting both the vegetative and regenerative 

performance of the understorey species: compared to light deciduous, Anemone nemorosa 

had a significantly lower performance under the evergreen light regime, Convallaria majalis 

under dark deciduous and Luzula luzuloides and Galium odoratum under both light regimes. 

The vegetative performance was lower in soil from acid sites for the acid-sensitive species G. 

odoratum and Primula elatior. Differences in the soil sampled under deciduous or spruce 

stands had no effect on the vegetative, nor regenerative performance of these species. By 
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contrast, the germination of L. luzuloides and P. elatior was higher in soils sampled in 

deciduous stands and in neutral sites.  

Species-specific responses in vegetative and regenerative performance of adult plants to a 

changed light regime and soil acidification could be a reason for the changed vegetation 

composition in converted stands. Also lower germination and establishment of forest 

understorey species in spruce stands could influence the species distribution after conversion. 

 

5.1 Introduction 

The composition of the regional pool of forest plant species is principally controlled by 

climatological, geographical and geological characteristics (Augusto et al., 2003). At the 

local scale, the composition of the forest tree canopy, among other factors, plays an 

extremely important role in determining the understorey species diversity and community 

composition (e.g. van Oijen et al., 2005; Barbier et al., 2008; Wulf and Naaf, 2009). The 

ecological characteristics of the tree species and their abundance affect local 

environmental characteristics important for understorey species, including the amount of 

light transmittance (Barbier et al., 2008) and the leaf litter quality and quantity 

influencing several biotic and abiotic soil properties (Reich et al., 2005; Kooijman, 2010; 

De Schrijver et al., 2012). Therefore, changes in the composition of canopy tree species 

can significantly impact the local understorey species diversity and composition of 

forests.  

During the 19th and 20th century, large areas of native deciduous forests in Western and 

Central Europe were converted to coniferous plantations, mainly motivated by an 

economic interest (Spiecker et al., 2004). The conversion from native deciduous, 

broadleaved temperate forests to Norway spruce (Picea abies, further referred to as 

“spruce”) plantations is for instance widespread and changed chemical soil 

characteristics, the forest floor environment and the understorey composition in many 

European regions (e.g. Ewald, 2000; Máliš et al., 2012; Verstraeten et al., 2013a). 

Coniferous tree species contribute significantly to the soil acidification, often more than 

many deciduous tree species (Augusto et al., 1998; Augusto et al., 2002), and also change 

the understorey light regime. Lower light transmittance is particularly evident in winter 

due to their evergreen character. Nevertheless, the often more frequent thinning in 

coniferous stands creates gaps in the canopy which causes a higher, and probably also 

more heterogeneous, light availability at the forest floor. The changes in soil, litter and 
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light conditions may cause changes in the understorey community towards more acid-

tolerant species with higher light requirements in coniferous stands (e.g. Verstraeten et 

al., 2013a).  

Several similar observational studies stressed already the effects of changes in tree 

species composition on the understorey layer (e.g. Ewald, 2000; Van Calster et al., 2007; 

Mölder et al., 2008; Wulf and Naaf, 2009; Kooijman, 2010), yet they mainly reported 

community-level patterns of change. The influence of tree species conversion on species-

specific adult plant performance and germination, on the other hand, are more difficult to 

study in the field and therefore less explored. Pot-experiments allow testing individual 

species responses to particular environmental factors such as soil acidity (Falkengren-

Grerup and Tyler, 1993; Tyler, 1996), tree species effects (Thomaes et al., 2011) and 

light availability (Baeten et al., 2010b). However, the combination of light regime and 

acidification and the effect of an evergreen versus deciduous light regime have not been 

studied yet.  

Widespread conversions of native deciduous forests to coniferous plantations over the 

past decades have led to significant changes in the forest understorey communities of 

those forests. In this experiment we tested how the altered light regime and soil 

conditions after conversion might have influenced plant performance. We examined the 

response of five characteristic herbaceous understorey plant species to variations in the 

light regime (evergreen vs. light and dark deciduous) and tree species induced changes of 

soil characteristics (using soil sampled in deciduous and spruce forest). Because the 

impact of deciduous forest conversion to spruce on the soil conditions might depend on 

inherent site conditions (Verstraeten et al., 2013a), we also included a site type treatment 

using soil from sites with two levels of soil acidity. We selected five forest understorey 

species that are known to respond to forest conversion and that are different in terms of 

their leaf and flowering phenology and sensitivity to soil acidification. The vegetative and 

regenerative performance of each of these species was measured in a pot experiment. 

Moreover, the recruitment in terms of their germination of two of these species was also 

determined. We hypothesized to find species-specific changes in vegetative and 

regenerative performance in response to a changed light and soil conditions. Our first 

hypothesis is that the flowering period and the leaf phenology of a species will affect the 

response of the species performance on light regime. Spring-flowering species will be 
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more sensitive for light availability in spring while summer-flowering species for the 

light regime in summer. The second hypothesis is the response to differences in soil 

conditions will depend on the sensitivity of the species for soil acidification, depending 

on their occurrence in field. We also expected to find lower germination in soil from 

spruce stands from acid sites. 

5.2 Materials and Methods 

5.2.1 Species selection and experimental design 

We selected five herbaceous forest species (Anemone nemorosa, Convallaria majalis, 

Galium odoratum, Luzula luzuloides and Primula elatior) that are common in forests in 

Western Europe (Table 5.1). The selected species showed a strong change in frequency 

and abundances as a consequence of conversion from deciduous forests to spruce 

plantations in an observational study by Verstraeten et al. (2013a), see Table 5.1. The 

species were also selected to represent different plant traits in terms of sensitivity for 

acidity and different leaf and flowering phenologies (Table 5.1). The vegetative and 

regenerative performance of these species as a function of soil and light regime was 

tested in a common garden. Plants were retrieved from a commercial nursery specialised 

in wild plants where individuals or ramets (for A. nemorosa) of the five studied species 

were grown in optimal conditions from seeds or rhizomes in small pots (0.5 L) filled with 

standard potting soil. The location of origin of the seeds and ramets is unknown. For each 

species, the seeds were selected at one location and were grown up in similar conditions. 

In March 2010, healthy plants of the five species were transplanted in larger containers 

(2.4 L) with forest soil from forest stands in the south of Belgium. All potting soil was 

washed off the roots with water and no extra nutrients were added (Baeten et al., 2010b).  

To assess the effect of site quality, tree species and light regime on the plant performance, 

we performed a full factorial experiment. We selected two sites with acid soil conditions 

and two sites with more neutral soil conditions (factor site type, levels: acid and neutral 

site) located in the south of Belgium (49.7 °N, 5.5 °E). The selection of the four sites was 

based on soil data (pH, calcium and aluminium concentrations and clay content) of the 

observational study (Verstraeten et al., 2013a). The tree species treatment was introduced 

by taking soil from a deciduous stand (dominant tree species Quercus robur, Fagus 

sylvatica and Carpinus betulus) and the adjacent first generation spruce stand at each site 

– we assume the latter presented similar soil conditions prior to the spruce planting (~ 
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four decades ago; Verstraeten et al. 2013a). With this design, we could specifically focus 

on the variation in plant performance caused by differences in chemical soil variables due 

to difference in tree species (factor tree species, levels: soil from spruce and deciduous 

stand). The soil was collected by removing the litter layer and excavating the upper 

mineral soil layer (0 – 5 cm) and was thoroughly mixed to a homogeneous sample. We 

only took the topsoil layer because tree species effects are most significant in the topsoil 

(De Schrijver et al., 2012; Verstraeten et al., 2013a) and forest understorey species are 

rooting mainly in the topsoil. Chemical soil analyses confirmed the differences in soil 

properties and showed that the topsoil (0 – 5 cm) pH and calcium concentrations were 

lower and the aluminium concentrations were higher at the locations on the acid sites 

compared to the locations on the neutral sites. The mean pH-KCl for soil sampled in the 

deciduous and the spruce stands was 3.57 and 3.23, respectively, for the most acidic sites 

and 4.63 and 3.53 for the less acidic sites. 

After transplantation, the pots were put out in the same homogeneous forest conditions 

for the rest of the growing season to recover from transplantation stress (Baeten et al., 

2010b). The pots were placed in a homogeneous Fraxinus excelsior (tree layer) 

dominated forest stand of a forest near Ghent, Belgium (51.0 °N, 3.8 °E). In the autumn 

of 2010, we started with three different light treatments, each applied to three 

experimental plots (N = 9 plots). In each plot, we placed one replicate of each ‘site x tree 

species’ combination for every forest understorey plant species (2 tree species × 4 sites × 

5 understorey species: N = 40 in each plot). The three light regimes were: light deciduous, 

dark deciduous and evergreen (factor light regime). The plots were placed in a relatively 

open deciduous stand, so no extra shading was given for light regime “light deciduous”. 

To simulate the “dark deciduous” light regime, plots were covered with shade cloth from 

canopy flush in spring till leaf shedding in autumn (third week of April until the end of 

October). The polyethylene shade cloth was placed at 110 cm height (70% light 

reduction; Baeten et al., 2010b). The light regime “evergreen” was based on the light 

regime in the relatively open spruce stands: the light transmittance is comparable with a 

light deciduous stands in summer, but this canopy shade is also present in winter. To 

simulate the evergreen light regime, the shade cloths were installed from the moment of 

leaf shedding in autumn till the moment of canopy flush in spring (end of October until 

the third week of April). 
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We determined several aspects of the performance of plants by measuring a suite of 

species-specific traits related to growth and reproduction (cf. Endels et al., 2004; Baeten 

et al., 2009b; Baeten et al., 2010b). Table 5.1 gives an overview of the measured 

vegetative and regenerative traits for each species. The different morphology of the 

species required us to measure different traits on the five species. All measurements were 

done in the second year after planting, just following the peak flowering time of each 

species. For the regenerative traits of C. majalis we used data from the first growing 

season (2011) because there were no flowering plants of this species in 2012. 

5.2.2 Seed germination experiment 

The second experiment was started for all the species except C. majalis because of low 

seed availability for this species. Seeds of A. nemorosa were collected in a forest stand 

near our common garden site at seed maturity in 2010 and the seeds of the three other 

species were retrieved from a commercial nursery specialised in wild plants with local 

origin. Seeds of A. nemorosa were stored in moist sand at room temperature because of 

the risk of seed desiccation (Ali et al., 2007) and seeds of the other species were kept air 

dry at room temperature. Small pots (17 cm³) were filled with soil from the two more 

acidic and two less acidic sites and for each site sampled in a deciduous and spruce stand 

(similar as above, factor site type and tree species). We put 10 seeds in each pot and had 

10 replicates for each combination of site and tree species (2 tree species * 4 sites * 10 

replicates ~ N = 80 for each species). The pots were placed in a growth chamber where 

optimal conditions for germination were simulated. The pots were randomly rotated in the 

growth chamber each week and distilled water was supplied regularly. Based on earlier 

studies (Baskin and Baskin, 1998) seeds were given 10 weeks of warm stratification (14h: 

20 °C & full light; 10h: 10 °C & dark), 10 weeks with intermediate temperature (12h: 12 

°C & full light; 12h: 6 °C & dark) and 10 weeks of cold stratification (8 h: 2 °C & full 

light; 16h: 2 °C & dark). Subsequently, the incubator was set on 4 weeks of the 

intermediate regime and finally on 14h of 20 °C & full light and 10h of 10 °C & dark. 

Daytime always had full light (240 mol m-2 s-1) and night always complete darkness. In 

addition, to control for the potential germination capacity of the seeds, three Petri dishes 

lined with moist filter paper were filled with 50 randomly selected seeds of each species 

and exposed to the same climate conditions as the pots.  
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The final germination percentage was determined after 15 weeks under the final 

temperature and light regime by counting the number of germinated seeds and weighting 

the dry aboveground biomass in each replicate pot. We only show the results for L. 

luzuloides (control germination of the seeds: 66 %) and P. elatior (25 %). The 

germination in the Petri dishes of A. nemorosa and G. odoratum was too low to analyse 

the data (respectively no germination and less than 5 % germination).  

5.2.3 Data analysis 

For each species, we calculated a vegetative and regenerative performance index and 

tested the effects of the experimental treatments. An overview of the measured vegetative 

and regenerative traits for each species is shown in Table 5.1. When more than one 

vegetative or regenerative trait was measured, a principal components analysis (PCA) on 

the traits was performed and the extracted first axis was used as proxy of performance 

(Baeten et al., 2010b). When appropriate, the trait values were square root or log-

transformed to increase the proportion of variance extracted. For each species, the first 

axes extracted at least 67 % of the variation in either vegetative or regenerative traits. 

Each trait value showed a positive correlation with its associated PCA axis (i.e., there 

were no trade-offs among traits), the Pearson correlation coefficient between all traits and 

the first PCA axis was always higher than 0.73 (all significant at P < 0.0001) for the 

vegetative traits and higher than 0.91 (significant at P < 0.0001) for the regenerative 

traits. For the germination experiment, the germination of the seeds and the aboveground 

biomass of the seedlings was highly correlated (cor > 0.68; P < 0.0001). Therefore, we 

calculated a germination index, analogous to the vegetative and regenerative 

performance, using the first axis of a PCA on the number of seeds germinated and the 

total aboveground biomass of seedlings. The mean Pearson correlation coefficient 

between a trait and the first PCA axis was always higher than 0.90 (all significant at P < 

0.0001). All indices were rescaled to values between 0 (lowest value) and 1 (highest 

value). 
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The vegetative and regenerative performances were tested using hierarchical models: 

performance ~ light regime + tree species * site type with intercepts varying randomly by 

plot. Variation in germination was tested using general linear models with following 

model: germination index ~ tree species * site type. All statistic analysis where performed 

with R 2.15.2 and using the lme function of the nlme library (R Development Core Team 

2010).  

5.3 Results 

5.3.1 Vegetative performance 

The light regime was an important factor in determining the vegetative plant performance 

for all species except P. elatior (Table 5.2). For L. luzuloides and C. majalis the light 

regime was the only significant factor. Light regime and the interaction between tree 

species and site type were significant for A. nemorosa. For G. odoratum, also site type 

was a significant factor to explain the variation in plant performance. The vegetative 

performance of A. nemorosa was lowest for the evergreen light regime and highest for the 

light deciduous regime. Furthermore, C. majalis, G. odoratum and L. luzuloides showed 

the highest plant performance for the light deciduous light regime, but the lowest 

performance for these species was for the dark deciduous regime. The vegetative 

performance of G. odoratum depended also on the site type, this species had a higher 

performance in soil of the less acidic sites. The variation in vegetative performance of P. 

elatior was mainly determined by site type as only significant factor, with higher 

performance on the less acidic sites (Table 5.2, Figure 5.1). 

5.3.2 Regenerative performance 

For P. elatior and G. odoratum, the regenerative performance was higher in pots with soil 

from the less acidic sites. The regenerative performance of L. luzuloides was very low for 

plants of the dark deciduous light regime. For G. odoratum and A. nemorosa, the 

regenerative performance was lower in both the dark deciduous and evergreen light 

regime compared with the light deciduous regime. The regenerative performance of C. 

majalis was independent of the factors in the model, but these measurements of 

performance were done after one growing year. 
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Figure 5.1. Vegetative performance (mean ± SE) of the five studied species for the factors 

light regime (light D = light deciduous; dark D = dark deciduous, site type and tree species 

(D = deciduous; S = spruce). Significance: (*) P ≤ 0.1; * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 

0.001.  

  **  

 ***  (*) 

 *** ** 

 *  

 ***  (*) 
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5.3.3 Germination experiment 

The germination index of P. elatior and L. luzuloides was higher in pots with soil of the 

deciduous stand compared with soil of spruce stands (Figure 5.2). The difference between 

the sites was slightly significantly higher on the less acidic sites for L. luzuloides. For P. 

elatior, the germination index was clearly higher on the less acidic sites.  
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Figure 5.2. Germination index (mean ± SE) of Luzula luzuloides and Primula elatior. 

Anova results: L. luzuloides, factor site type F=5.07*, factor tree species F=41.38***, 

interaction NS. P. elatior, factor site type F=25.94***, factor tree species F=126.96***, 

interaction 4.09*. Light grey: acidic sites. Dark grey: moderately acidic sites. 

 

5.4 Discussion 

Forest conversion using contrasting tree species has been shown to have large impacts on 

forest ecosystem functioning. The overstorey composition also significantly influences 

the understorey composition (Palik and Engstrom, 1999; Barbier et al., 2008) and 

therefore changes in the understorey layer are expected after conversion. Tree species 

influence the understorey vegetation through modification of resource availability and 

quality (light, water and nutrients) and other effects such as the physical impact on the 

soil by roots and physical effects of litter (Barbier et al., 2008). Our observational study 
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(Verstraeten et al., 2013a) confirmed that the conversion from mixed deciduous to spruce 

stands changed the understorey composition, with changes in abiotic soil characteristics 

and light regime as important drivers. Here, we experimentally assessed the effects of 

these variables on five understorey plant species with different sensitivity for acidity and 

light regime. Below, we discuss the effects on the performance and germination, and 

compare the experimental results with the results of the observational study. 

The light regime appeared as an important factor for vegetative and regenerative 

performance for four of the five studied species, but the species showed a different 

response to this factor. A. nemorosa was the only species with a significant lower 

performance for the “evergreen” light regime compared with the two deciduous light 

regimes. A. nemorosa is a vernal species: the light availability on the forest floor at the 

end of the winter and early spring is important for this species. Peterken (1993) stated that 

planting coniferous species largely eliminated spring-growing understorey species; lower 

light availability in winter and spring lowered the performance of these species. The 

lower light availability in winter of the evergreen regime also had an effect on the 

vegetative performance of G. odoratum and L. luzuloides. For aestival (C. majalis, G. 

odoratum) and evergreen species (L. luzuloides), the light availability after tree canopy 

closure of the deciduous trees was more important. The performance of these species was 

lowest for “dark deciduous” regime. Baeten et al. (2010b) also experimentally studied the 

effect of summer light levels on four forest species; the light level in summer was also 

important for the performance of the two summer-flowering forest species and had no 

effect on the performance of the two spring-flowering species (also A. nemorosa and P. 

elatior). We did not study the effect of a ‘summer dark and evergreen light regime’ that 

might occur in less intensively managed coniferous plantations; so the focus in the 

present study was on regularly managed plantations. For all the studied species, both 

‘evergreen’ and ‘summer dark’ light regimes together are expected to lower their 

vegetative performance and this expectation could be studied analogous to our 

experiment. 

In this experiment, soil was taken in sites with rather more acidic soils and sites with less 

acidic soils. Only the acid sensitive species (P. elatior and G. odoratum) responded to this 

treatment with higher vegetative and regenerative performance in pots filled with soil of 

the less acidic sites. Similarly, the potexperiment of Falkengren-Grerup and Tyler (1993) 
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found a response of all species to pH, but the response differed between species: species 

with high frequencies on highly acidic soils had a lower performance on the very acidic 

situation (soil solution pH-H20 interval: 3.3 – 5.5). Our sites were less acid than the most 

acidic situation in their study. Therefore, it is possible that our most acidic sites did not 

have a pH that was low enough to find a response for the indifferent and acid-tolerant 

species. Falkengren- Grerup and Tyler (1993) also treated an acidic soil with carbonates 

to get different pH levels, which is not the same as soil collected along a real pH-gradient 

as in our study.  

The species distribution of the studied species in deciduous stands is in accordance with 

the experimental results. For example, G. odoratum and P. elatior had higher 

performance in the experiment in pots with soils of the less acidic sites and were more 

abundant in the field on less acidic soils. The acid-tolerant species did not show a lower 

performance on the richer sites, which is in accordance with other experimental studies 

(Brunet and Neymark, 1992; Falkengren-Grerup and Tyler, 1993; Thomaes et al., 2011). 

The results of the experiment give more information about the fundamental niche of the 

species, i.e. in the absence of competition, and the realised niche under real forest 

conditions is expected to be smaller. The higher competition on the less acidic sites could 

explain the lower abundances of the acid-tolerant species, rather than their preference for 

the most acidic sites. Temporal changes in understorey diversity and composition in 

deciduous stands have often been linked to acidification and lower management intensity 

and the concomitant lower light transmittance (Baeten et al., 2009a; Van Calster et al., 

2007; 2009a). The lower light availability in summer will probably be the most important 

factor that is lowering the performance of several species. For the more moderately acidic 

species, also acidification will be a driver of change.  

However, the performance of adult plants in the experiment was clearly not sufficient to 

explain the species’ distributions in spruce stands. Four of the five species were less 

abundant in the spruce plots (Table 5.1) while the performance of these plants was not 

depending on the tree species in the stand where the soil was sampled and the evergreen 

light regime was for some species even better than the dark deciduous regime common in 

the study area. The differences will probably be the result of lower germination and 

establishment of forest herbs in the spruce stand. Germination was influenced by the tree 

species where the soil was sampled, as was also shown in other studies (Brunet and 
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Neymark, 1992; Thomaes et al., 2011). The altered abiotic soil conditions after 

conversion could limit the germination and establishment in the spruce stands. Dispersal 

limitation could also be a bottleneck for several forest plants after conversion. In case of 

direct conversion by plantation, the understorey community may be heavily damaged 

during conversion or may have difficulties to survive the period with very high canopy 

closure in young stands. Many ancient forest species are not found in the persistent seed 

bank (Bossuyt and Hermy, 2001; Verheyen et al., 2003a), although recent literature 

attributes this to a too low sampling intensity (Plue et al., 2012). Ancient forest species 

also have slow colonisation rates that could limit the recolonisation of these species into 

the converted stands (Verheyen et al., 2003b; De Frenne et al., 2011). Studies in post-

agricultural forests showed that several forest species have limited dispersal capacities 

(e.g. Matlack, 1994; Bossuyt et al., 1999; Verheyen and Hermy, 2001a, b) whereby also a 

slow recolonisation of the converted stands could be expected. The higher mass of the 

forest floor could maybe also have an effect on the performance (Baeten et al.2009b), but 

this factor was not incorporated in this study. For example, P. elatior was only found in 

deciduous stands in our study area, but the experimental vegetative and regenerative 

performance did not differ between deciduous and spruce tree species and the light 

regime did not affect the performance of this species. P. elatior has no long living seed 

bank and the low colonising capacity of P. elatior (Verheyen et al.2003c) will limit the 

colonisation of this species into the spruce stands. In addition, there was only a limited 

germination and establishment in spruce soil in this experiment. The germination of L. 

luzuloides was also lower in spruce stands. Nevertheless, this species is an indicator of 

spruce stands. L. luzuloides is the least dispersal-limited of our study species (fastest 

coloniser according to Verheyen et al. (2003a). Furthermore, L. luzuloides had a higher 

performance in stands with higher light transmittance in the experiment. The observed 

abundance of this species was higher because it takes advantage of the higher light 

availability in summer under spruce. It is difficult to relate a single variable to the lower 

germination of both species in soil sampled in spruce stands. The differences in abiotic 

soil conditions will contribute to the variation in germination index. Several studies 

showed that the germination and establishment of forest herbs decreased at lower soil pH-

values (Brunet and Neymark, 1992; Falkengren-Grerup and Tyler, 1993; Thomaes et al., 

2011). Therefore, the germination was expected to be lower in pots with soil of spruce 

stands, but pH alone was definitely not enough to explain the large differences in 

germination between deciduous and spruce stands. The spruce stands from less acidic 
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sites had a comparable pH with the deciduous stands from locations on most acidic sites, 

but the germination was significantly lower. Other factors will probably be important 

here: also mycorrhiza infection rates, root exudates and soil fauna community change 

after conversion. Changes of these and other variables and their effects on the 

germination of plant species are less known. Further research focussing on the factors 

causing the lower germination in spruce soil could be worthwhile. Also the direct effects 

of the thickness and structural differences of the forest floor could influence the 

germination and performance of these species (Barbier et al., 2008), but they were not 

studied here. Other studies showed that a thick forest floor litter layer has not always 

detrimental effects on the performance of forest species (Sydes and Grime, 1981; 

Eriksson, 1995; Baeten et al., 2009b), but it was only studied for deciduous species.  

To conclude, species-specific responses of understorey plant species to abiotic changes 

after forest conversion are important in determining the understorey community 

composition and diversity. For the adult plants of this study, the differences in 

performance between soil sampled in deciduous stands and spruce plantations were not 

significant. Light transmittance, on the other hand, both the quantity as well as the 

periodicity was clearly an important factor both for the vegetative and regenerative 

performance of understorey species. The lower germination and establishment in soil 

sampled in spruce stand will be also an important cause of the different species 

composition after conversion.  

 

 

 





 

 

 

Experimental conversion study, the two plots at the right sight are changed soil monoliths. Gaume, 2011 



 

 

6 
Conversion of deciduous stands to spruce  

plantations and back: experimental evaluation 

 of effects on soil, forest floor and earthworms 

Abstract 

Changes in tree species composition from native deciduous forest to spruce plantations often 

result in soil acidification, a build-up of the forest floor, retarded nutrient cycling and changes 

in the understorey composition. Reconverting these secondary non-native coniferous 

plantations into more natural deciduous forests became a main aim of sustainable forestry, 

but the restoration possibilities of these acidified ecosystems are unclear. Here we assess the 

effects of two opposite land cover changes (a conversion pathway from deciduous to spruce, 

and a restoration pathway from spruce to deciduous) on the forest floor, soil acidification and 

earthworm community. This experiment was carried out in the Gaume, an area with a mild 

temperate climate in southern Belgium where spruce plantations were established 35–50 

years ago in a matrix of deciduous woodlands. We changed soil monoliths from the 

deciduous forest to the spruce plantations (conversion pathway) and vice-versa for the 

restoration pathway and applied two additional treatments: +/- liming and +/- earthworm 

access. Two and a half year after transferring the deciduous soil in the spruce stand we 

already found the forest floor mass to be significantly higher and the earthworm biomass to 

be significantly lower under spruce cover. Soil pH and exchangeable calcium and aluminium 

concentrations were not influenced. In the restoration pathway, the forest floor mass was 

significantly lowered, soil pH and exchangeable calcium concentrations were significantly 

increased and exchangeable aluminium concentrations significantly decreased. The 

earthworm biomass under deciduous tree cover was twice as large as under spruce tree cover. 

In both the conversion and the restoration pathway, lime addition caused an increase of the 

pH up to 2 pH-units while the earthworm access treatment had no effect. This experiment 

confirms that conversion to spruce plantations has rapid significant negative effects on the 

forest floor and the earthworm community. Our short-term experiment further demonstrates 
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that changing the tree species cover back to deciduous tree species initiates a trajectory 

towards ecosystem restoration (especially in combination with lime addition).  

 

6.1 Introduction 

During the 19th and 20th century, large areas of native deciduous forests in Western and 

Central Europe were converted to coniferous plantations (Klimo et al., 2000; Spiecker et 

al., 2004). Conversions were mainly motivated by an economic interest; coniferous 

species grow faster and produce highly demanded industrial wood. A frequently used 

species for conversion was Norway spruce (Picea abies, further referred to as “spruce”). 

The composition of the forest overstorey has an impact on the chemical, physical and 

biological characteristics of the soil (Augusto et al., 2002). So, changes in tree species 

composition can have strong impact on ecosystem functioning. Spruce is generally 

considered to be a tree species with strong ecological effects due to its recalcitrant leaf 

litter and its large and permanent leaf area, leading to higher capturing of atmospheric 

pollutants (Ranger and Nys, 1994; Augusto et al., 2002; De Schrijver et al., 2007). 

Conversion of deciduous forests into spruce plantations often resulted in soil 

acidification, an accumulation of organic matter in the forest floor, retarded nutrient 

cycling and changes in the understorey composition (e.g. Binkley and Valentine, 1991; 

Emmer et al., 1998; Ewald, 2000; Máliš et al., 2012; Verstraeten et al., 2013a). Spruce 

plantations are also vulnerable for abiotic and biotic damages, for example higher risk for 

windfall and outbreaks of spruce bark beetle (Spiecker, 2000; Solberg, 2004). The natural 

range of spruce in Europe are the boreal forests and the mountains (Schmidt-Vogt, 1977), 

but spruce is also planted far outside its natural range. In times of rapid climate change, 

cultivation of species close to and beyond their distributional limits involves serious risks 

(Bradshaw et al., 2000). Therefore, reconverting these secondary non-native coniferous 

plantations into more natural deciduous forests has become an important topic for forest 

management (Mosandl and Küssner, 1999; Spiecker et al., 2004). Through this 

reconversion, restoration of the impoverished and acidified soils is strived for. Several 

studies investigated the effects of reconverting conifer plantations to deciduous or mixed 

stands (e.g. Zerbe, 2002; Heinrichs and Schmidt, 2009; Felton et al., 2010). Changing the 

tree species composition from spruce to deciduous tree species will increase the leaf litter 

quality and accelerate the decomposition of the forest floor, resulting in a lower 

acidifying input in the soil. Restoration could be strengthened and accelerated by liming 
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to neutralize accumulated soil acidity. Lime addition reduces the H+ ion concentrations 

and adds calcium ions to the soil exchange complex and soil solution which result in a 

decrease of the soil acidity and an improvement of the cation exchange capacity and base 

saturation. Liming is also stimulating the soil biota (e.g. Lang and Beese, 1985; 

Theenhaus and Schaefer, 1995; Deleporte and Tillier, 1999), which typically results in a 

faster decomposition of the forest floor. Much less studied is the impact of earthworm 

introduction on the restoration process. However, earthworm introduction (mainly anecic 

and endogeic species) can improve the physical and chemical soil conditions due to their 

bioturbation activity, which affects the forest floor and nutrient turnover (Huhta, 1979; 

Brun et al., 1987; Deleporte and Tillier, 1999). 

Integrated restoration with a combination of abiotic (neutralisation of the acidification by 

liming) and biotic restoration measures (e.g. conversion to tree species with fast 

decomposing litter and increase of the earthworm community) can possibly increase the 

chances for successful restoration (Muys et al., 2003). Liming will decrease soil acidity, 

improving the soil conditions for soil biota as endogeic earthworm species, while a 

stimulated earthworm community can in turn enhance the effects of liming. Especially 

endogeic and anecic earthworms species have a beneficial effect on the dispersal of lime 

by burrowing activities (Baker et al., 1999; Chan, 2003). Here, we tested and compared 

the effects of two opposite land cover changes (a conversion pathway from deciduous to 

spruce, and a restoration pathway from spruce to deciduous) on soil acidity and 

characteristics of the forest floor and of the earthworm community. We wanted to know 

whether the effects of conversion and restoration on these variables are already visible 

after a short time period (two and a half year) and whether the process is reversible; i.e. 

whether the restoration process follows the same pathway as conversion but in the 

opposite direction. We tested these questions in an experiment where we simulated 

conversion and restoration by exchanging soil monoliths between adjacent deciduous and 

spruce stands. We also studied whether lime addition and/or earthworms are stimulating 

or slowing down the conversion or the restoration paths.  
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6.2 Materials and methods 

6.2.1 Study site 

The study area was a part of a large forest complex in the south of Belgium (Gaume 

region, described in chapter 1.3.1).  

6.2.2 Study design 

To study the effect of conversion and restoration on the soil, the forest floor 

characteristics and the earthworm community, we selected six pairs of adjacent deciduous 

and spruce stands distributed along a natural gradient of soil buffering capacity. This site 

gradient, described in Verstraeten et al. (2013a), was confirmed by soil characteristics 

(pH, exchangeable calcium and aluminium concentrations and clay content measured in 

the broadleaved matrix). In November and December 2009, we established in each 

deciduous and spruce stand two square experimental plots of 1.6 m x 1.6 m subdivided in 

four subplots of 0.8 m x 0.8 m. The centre of the plots was situated about 30 m from the 

border of the adjacent stand (Figure 6.1) and thus about 60 m from the plots in the 

adjacent stand. This distance of 30 m (about one tree height) was chosen as an optimum 

to minimize site differences, as well as mutual influences between the stands. The 

distance between the two plots in each stand was about two meter (Figure 6.1). We 

simulated changes in tree species composition by exchanging soil monoliths from the 

deciduous stand to the spruce stand to simulate the conversion pathway, and from the 

spruce stand to the deciduous stand to simulate the restoration pathway. The soil 

exchange was done for two randomly selected subplots of each plot, while the other two 

subplots remained in their original position. In the transported subplots, we excavated soil 

monoliths in four undisturbed squares of about 0.4 m * 0.4 m and 15 cm deep. These 

monoliths were displaced in a subplot of the adjacent stand (Figure 6.1). The transport 

and the installation of the soil monoliths were done with great care to minimize structural 

changes in the soil.  

We further performed two additional treatments: a lime addition and an earthworm 

treatment. The liming treatment was done by adding twice (May and December 2010) 

180 g dolomite (equivalent to 2812 kg ha-1, 60% calcium carbonate, 30% magnesium 

carbonate, 2-10 mm granules) on the top of the forest floor (cf. Hultberg et al., 1995; 

Dulière et al., 2000). The lime was added in two of the four subplots of each plot. 

Introduction of earthworms can only give good results in case appropriate abiotic 
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conditions are present during and after introduction. We here opted not to introduce 

earthworms, but to allow or obstruct earthworm migration between the subplots and the 

surrounding forest floor and soil. In case of no obstruction, we expected the earthworm 

community to expand as a consequence of immigration in case of improved abiotic 

conditions. Therefore, we could interpret the obstruction of migration as ‘no introduction’ 

and allowing migration as ‘natural introduction in case of good abiotic circumstances’. 

The earthworm obstruction was done by placing wooden panels around a subplot (15 cm 

deep, 10 cm above the ground) to obstruct earthworms and other soil biota from entering 

the subplot. Around the other subplots, we placed similar wooden panels with big holes to 

minimize any difference in e.g. microclimate. In each plot, earthworms were obstructed 

from migration in two subplots and allowed to migrate in the two other subplots.  

 

 

Figure 6.1. Schematic overview of the experimental design. Light grey shows soil 

originating from the deciduous stand and dark grey shows soil origination from spruce 

stands. Plot size is 1.6 m x 1.6 m and subplot size is 0.8 m x 0.8 m. Earthworm migration 

was obstructed with wooden panels. For the conversion pathway we compared deciduous 

soil in the deciduous stands with soil originating from the deciduous stands in the spruce 

stands (light grey subplots). For the restoration pathway we compared spruce soil in the 

spruce stands with soil originating from the spruce stands in the deciduous stands (dark grey 

subplots). This design was repeated on six different sites.  
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In each stand we applied three treatments (soil origin, lime addition and earthworm 

migration) with each two levels. This makes eight combinations and thus eight subplots 

in each stand. We spread the subplots over two square plots so that each subplot has two 

sides adjacent to the surrounding forest stand and the two other sides adjacent to another 

subplot. 

6.2.3 Data collection 

We measured response variables in three categories: soil variables concerning 

acidification, the forest floor and the earthworm community. Soil variables were 

measured at the beginning of the experiment in each subplot. At the end of the 

experiment (May 2012), nearly two and a half years after establishment of the 

experiment, we measured all the response variables. We first removed the vegetation 

carefully. Next, we took the forest floor samples for measuring the forest floor biomass 

and the earthworms of the forest floor, then the soil samples were taken and finally we 

performed the earthworm sampling in the soil.  

Topsoil samples (0-5 cm of the mineral soil) were analysed for variables in relation to soil 

acidity. In each subplot, we randomly collected three mineral soil samples after removal 

of the forest floor by using a plastic tube of diameter 3.3 cm. At the beginning of the 

experiment, we took the soil samples at the border of the subplots to avoid disturbances. 

The three soil samples of each subplots were pooled into a composite soil sample. The 

soil samples were dried at 40°C until constant weight and analysed for pH (extraction in 1 

M KCl, 1:5 suspension, ion-specific electrode) and exchangeable calcium (Ca2+) and 

aluminium (Al³+) concentrations (extraction in 0.1 M BaCl2, 1:20 suspension, Dutch 

standard method NEN 5738; flame atomic absorption spectrophotometry, SpectrAA-220, 

Varian).  

Forest floor samples were collected in one square of 20 cm x 20 cm in each subplot. The 

two samples of the forest floor from the earthworm sampling (see further) were also used 

as measurement of the total forest floor mass. These samples were dried at 70°C until 

constant weight and weighted. 

Earthworms were sampled in tree steps. In a first step, the earthworms present in the 

forest floor were collected by placing two smaller squares of 0.2 m x 0.2 m on the forest 

floor in the middle of the big square and collected the forest floor in plastic bags. 
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Earthworms present in the forest floor were collected by hand-sorting the plastic bags. 

The forest floor outside the small squares was removed. In a second step, earthworms 

were extracted from the soil by using 30 litres of mustard suspension per plot (6 g 

mustard powder per litre) in a bigger square (0.5 x 0.5 m) (Valckx et al., 2011). The 

frequency and velocity of pouring depended on the percolation rate of the solution. The 

earthworms were collected directly after emerging and were stored on ethanol. In a third 

and last step, the mustard affected area was controlled for earthworms by handsorting a 

soil monolith (0.2 m x 0.2 m and 0.2 m depth). All earthworms were first stored in 

ethanol and after a few hours transferred to a 5 % formalin solution for fixation. After 3 

days, they were again transferred to 95 % ethanol solution for further preservation and 

identification. In the laboratory, earthworms were determined to species level following 

the nomenclature of Sims and Gerard (1999), their developmental stage was recorded 

((sub)adult vs. juvenile) and weighted with gut contents. Earthworm mass was expressed 

as g m-2 formalin-preserved weight. In the few cases that determination to species level 

was not possible, earthworms were identified at genus or ecological group level and were 

assigned pro rata to species level (cf. Valckx et al., 2006). 

6.2.4 Data analysis  

We both looked into the effects of the conversion pathway (conversion of deciduous 

forests to spruce plantations, using only data of subplots with soil origination from 

deciduous stands) and of the restoration pathway (reconversion of spruce plantations to 

deciduous forests, using only data of subplots with soil originating from spruce stands). 

We used linear mixed effect models and a model selection procedure according to Zuur 

(2009) to test the effects of the tree species cover, lime addition and earthworm migration 

on soil characteristics related to acidity, forest floor weight and the earthworm 

community. An optimal model was selected by comparing models with different random 

structure but equal full factorial fixed effects. A model with the intercepts varying 

randomly by site had the lowest AIC value and was selected. Then, we optimized the 

fixed effects structure and removed the interactions and explanatory variables 

successively based on likelihood ratio tests, i.e., if the fit of model is not significantly 

reduced when an effect is removed. Finally we obtained the optimal model for each 

response variable when no interaction or explanatory variables could be dropped out the 

model without reducing the model fit. A model was selected for each response variable in 

both the conversion and restoration pathway. All statistical analyses were performed with 
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R 2.15.2 and using the lme function of the lmne library (R Development Core Team 

2010).  

6.3 Results 

6.3.1 The conversion pathway: from deciduous to spruce forest 

For studying the conversion of deciduous forest to spruce forest, we compared the 

subplots with deciduous soil in the deciduous stand (tree species cover: deciduous) with 

the subplots of deciduous soil in the spruce stands (tree species cover: spruce). Two and a 

half year after transferring the deciduous soil monoliths in the spruce stand, the forest 

floor mass was significantly higher under the spruce tree cover compared to deciduous 

tree cover (Table 6.1, Figure 6.3). Also the earthworm biomass was significantly 

influenced by the tree species cover, with significantly lower earthworm biomasses under 

spruce tree cover compared to deciduous tree cover (Table 6.1, Figure 6.4). Changing tree 

species cover to spruce did not have an influence (yet) on the soil variables concerning 

acidification at the end of the experiment. 

Lime addition caused a significant higher soil pH and significantly higher exchangeable 

calcium concentrations (Table 6.1) in both stand types. Exchangeable aluminium 

concentrations were significantly lower after addition of lime (Table 6.1). The median pH 

increased with nearly 2 pH-units in the limed plots of both stands (Figure 6.2). The 

median values of earthworm biomass in limed plots were about double of the median 

values in plots without lime addition, but this was not a significant effect. The interaction 

between the earthworm treatment and liming was significant; the earthworm biomass was 

equal in the plots without liming, but was slightly higher in the limed plots with 

earthworm obstruction compared to the limed plots without earthworm obstruction.  
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6.3.2 The restoration pathway: from spruce to deciduous forest  

To study the restoration pathway, i.e. the reconversion of spruce forest to deciduous 

forest, we compared the subplots with spruce soil in the spruce stand (tree species cover: 

spruce) with the subplots of spruce soil in the deciduous stands (tree species cover: 

deciduous). Two and a half year after transferring the spruce soil in the deciduous stand, 

we found the forest floor mass to be significantly lower under the deciduous tree cover 

(Table 6.1, Figure 6.3). Also the soil pH and the exchangeable calcium and aluminium 

concentration were significantly influenced by the tree species cover (Table 6.1). 

Changing the tree cover to deciduous species increased the soil pH and the exchangeable 

calcium concentrations and lowered the exchangeable aluminium concentrations. The 

median earthworm biomass under the deciduous tree cover was twice as large as the 

median earthworm biomass under spruce tree cover (Table 6.1, Figure 6.4).  

Also liming significantly increased soil pH and exchangeable calcium concentrations, 

while exchangeable aluminium concentrations significantly decreased (Table 6.1). 

However, liming did not have a significant effect on the forest floor nor the earthworm 

community and there was no effect of the earthworm treatment on the reconversion 

pathway. 

The interaction between tree species cover and liming also had a significant effect on soil 

pH: transferring soil from a spruce stand to a deciduous tree cover in combination with a 

liming practice caused a stronger increase of the soil pH than when both factors were 

solely applied. The pH increased in the limed plots in the deciduous stands with about 1.5 

pH unit, while in the spruce stand with only about 0.5 pH unit (Figure 6.2).  

6.4 Discussion 

We tested in a short-term experiment the effects of two opposite pathways of tree species 

composition change (a conversion pathway from deciduous to spruce and a restoration 

pathway from spruce to deciduous) on soil acidification, biomass of the forest floor and 

biomass of the earthworm community. We exchanged soil monoliths to make it possible 

to study conversions between tree species in a short time period. Only two and a half 

years after the start of this tree species conversion experiment, we found a significant 

impact of the tree species cover on forest floor mass and earthworm population, and this 

both in the conversion and the restoration pathways. In case of the restoration pathway, 
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Figure 6.2. Boxplots of the topsoil (0 – 5 cm) pH for (a) the conversion pathway (soil 

originating from deciduous stands) and (b) the restoration pathway (soil originating from 

spruce stands). Light grey = no lime addition, dark grey = lime addition.  

 

Figure 6.3. Boxplots of the forest floor for (a) the conversion pathway (soil originating from 

deciduous stands) and (b) the reconversion pathway (soil originating from spruce stands). 

Light grey = no lime addition, dark grey = lime addition.  
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Figure 6.4. Boxplots of the earthworm biomass for (a) the conversion pathway (soil 

originating from deciduous stands) and (b) the reconversion pathway (soil originating from 

spruce stands). Light grey = no lime addition, dark grey = lime addition.  

 

where soil of the spruce forest was transferred to a deciduous stand, also soil acidity 

variables were influenced. We further observed a highly significant impact of a liming 

practice, both in the conversion and the restoration pathway, while excluding or including 

the earthworm community did not appear to be of any influence. Here we discuss 

successively the effect of tree species, lime addition and earthworm obstruction on the 

soil, the forest floor and the earthworm community in both the conversion and restoration 

pathways.  

6.4.1 Effect of the tree species cover  

Based on several observational studies, we expected a strong effect of tree species cover 

on topsoil characteristics (e.g. Tamm and Hallbäcken, 1986; Augusto et al., 1998; Hagen-

Thorn et al., 2004). Spruce is known as an acidifying tree species compared to most 

deciduous species (Ranger and Nys, 1994; Augusto et al., 1998; Binkley and Giardina, 

1998; Reich et al., 2005). As a consequence of its recalcitrant leaf litter properties, spruce 

litter decomposes slowly and causes a strong build-up of the forest floor (Vesterdal et al., 

2008). The lower decomposition rate of spruce needle litter, but also the decreased 
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presence of earthworms (Nordstrøm and Rundgren, 1974) causes forest floor build-up, 

especially in the H-layer. Tree species cover significantly influenced the forest floor mass 

in this study. We here hypothesize that this increase in forest floor mass in the conversion 

pathway is caused by the fact that (i) the low leaf litter quality of spruce and especially 

the low calcium concentration compared to deciduous species negatively affects the soil 

biotic community, causing lower decomposition activity (Reich et al., 2005; Hobbie et 

al., 2006) and (ii) differences in microclimate between the two stand types could change 

the decomposition velocity of the litter: less light and more constant temperature 

conditions in winter and often decreased humidity in spruce stands (Augusto et al., 2002) 

could cause slower litter decomposition. On the other hand, we hypothesize that the forest 

floor mass in the restoration pathway decreased due to (i) better litter quality of the 

deciduous trees compared to spruce and (ii) better microclimate for decomposition. 

A slow litter decomposition causes soil acidification by the production of organic acids as 

intermediate decomposition products (de Vries and Breeuwsma, 1985) and by causing a 

time delay in the cycling of buffering cations (Nilsson et al., 1982). The high LAI and 

continuous leaf cover of spruce trees causes high interception rates of potentially 

acidifying pollutants, which gives rise to additional soil acidification (Augusto et al., 

2002). In our study, however, conversion to spruce (conversion pathway) did not have a 

significant effect on the pH and exchangeable calcium and aluminium concentration after 

two and a half year. Most likely, the time interval of this study was too small to find 

significant effects. This experiment was also an approach to assess the effects of 

conversion, but not fully reflecting effective conversion. On the other hand, the soil pH 

and the exchangeable calcium concentrations increased in the restoration pathway, while 

exchangeable aluminium concentrations decreased. However, the time interval was 

probably too small to attribute the significant difference to the absence of the acidifying 

processes due to slow litter decomposition. Possibly, an accelerated turnover because of 

changes in microclimate (more light and more extreme temperature conditions in winter 

and increased humidity) together with the input of faster decomposing deciduous leaf 

litter and earthworms could have caused a significant difference in this short time period.  

The effects of tree species cover on the earthworm community in the conversion and the 

restoration pathways were clearly visible two and a half year after the start of the 

experiment: the earthworm biomass was lower under spruce tree cover in both pathways. 
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This was also found in observational studies to the effects of conversion (Chapter 3) and 

studies comparing earthworm communities under several different tree species (Reich et 

al., 2005; Hobbie et al., 2006). The unfavourable litter quality and the lower soil moisture 

in spruce stands could cause a decrease of the earthworm population.  

6.4.2 Effect of liming  

Addition of lime in spruce and deciduous stands could have effects on pH and calcium 

concentrations after less than one year (e.g. Duliere et al., 1999; Misson, 2001). Lime 

addition caused a dominant effect on the soil variables concerning acidification in all the 

subplots: where lime was added, the soil variables related to acidification changed in the 

direction of a less acid situation. Also on the longer time, liming could have a significant 

influence on the soil variables concerning acidification, especially in topsoil layers 

(Lundström et al., 2003).  

Liming often has a positive effect on the soil biota and earthworm community (e.g. Lang 

and Beese, 1985; Theenhaus and Schaefer, 1995; Deleporte and Tillier, 1999). We did not 

find a significant relation with the lime treatment, but Figure 6.4 seems to show a trend 

with slightly higher earthworm biomass in limed subplots. The variation is large, but the 

median earthworm biomass tends to be always higher in the limed plots.  

Liming could increase the calcium concentrations in the leaf litter (Misson, 2001), 

making the leaf litter more attractive for endogeic earthworms (Reich et al., 2005). 

Therefore, the higher calcium concentrations in the leaf litter could enhance the effects of 

liming on the longer term. This was not the case in our experiment due to the very local 

addition of lime (only four subplots in each stand), not leading to enriched leaf litter. 

6.4.3 Effect of the earthworm treatment 

We opted to obstruct and allow earthworm migration by wooden panels in place of 

introduction. Several studies (e.g. Judas et al., 1997; Muys et al., 2003; Ampoorter et al., 

2011) introduced earthworm species to expand the earthworm community and introduce 

other ecological groups (usually endogeic or anecic species), but often without good 

survival. Earthworm introduction could work in case of good abiotic conditions for the 

species. In case of bad abiotic conditions at the time of introduction, the earthworms are 

usually not found back at the end of the experiment. The earthworm composition and 
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abundances will change and species will migrate according the abiotic conditions and 

food quality and availability (Muys et al., 2003).  

However, the effects of allowing or obstructing earthworm migration on the earthworm 

community were less obvious. We could not determine significant differences due to 

earthworm obstruction in any response variable in this study. Possibly, the system of 

wooden panels to obstruct the earthworm community from migration was not working 

adequate, there was no migration or the time period was too short. Also, the spatial 

variation in the earthworm biomass in soils (Edwards and Bohlen, 1996; Nachtergale et 

al., 2002; Edwards, 2004) makes it also more difficult to find significant differences.  

6.4.4 Interaction between tree species cover and liming 

The interaction between lime addition and tree species cover was significant for the pH 

and the forest floor in the restoration pathway. We assume that earthworms and other soil 

biota play an important role in this interaction because of two possible causes: (i) 

Possibly, earthworms – especially endogeic species – and other soil biota in the 

deciduous stand enter the spruce soil monoliths and could enhance the restoration in case 

of liming. Many earthworm species are acid sensitive and avoid the more acid spruce soil 

(Chapter 3; Schelfhout, 2010). However, in case of lime addition, the soil pH increased 

and became more suitable for earthworms and other soil biota so the decomposition rate 

increased; (ii) Several studies pointed also to the beneficial effect of endogeic and anecic 

species on the dispersal of lime by burrowing activities (Baker et al., 1999; Chan, 2003). 

The absence of endogeic earthworm species in spruce stands and the presence in 

deciduous stands could possibly explain the stronger effects of liming on the soil pH in 

the deciduous stands in the restoration pathway. In the conversion pathway, the activity of 

earthworms and other soil biota in the deciduous soil monoliths placed in spruce stands 

will slowly decrease. This caused no significant changes in pH in this short time period, 

only a small trend for lower pH under spruce cover is visible in figure 6.2.  

6.4.5 Conclusion 

Other studies and reviews described many times hysteresis as limiting factor in 

restoration (Frost et al., 1995; Augustine et al., 1998; Scheffer and Carpenter, 2003): an 

ecosystem might be easily changed to another state by a disturbance, but removing the 

disturbance is mostly not enough to return to the original state. Usually it takes more time 

and another, longer route to reach the original state, if that is even possible at all (Tallis, 
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1991). The approach of this study tried to assess the effects of a conversion and 

restoration management. Our results show that there are potentials to restore the acid 

systems under spruce trees by converting to deciduous tree species, but indicate also that 

only a change from spruce to deciduous tree species results in a very slow recovery and is 

maybe not enough to return to the original state. Changing the tree species cover from 

spruce to deciduous species together with liming showed promising results in the 

direction of a less acid forest system already after two and a half year. The pH increased 

in the restoration pathway with lime treatment above the pH of the original deciduous 

stand without lime addition. Based on the results, it seems that earthworm species and 

other soil biota are probably also important in the restoration process. However, the 

earthworms were in the direct neighbourhood of the soil monoliths in this experiment, 

while the distance for migration in real forest restorations will be much larger. The 

additional effects of tree species conversion, earthworms and liming in this short-term 

experiment are promising for full restoration on the long term. 
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7 
General discussion & conclusions 

Forests and forest management in western Europe have changed during the last two 

centuries. The proportion of deciduous forests has decreased since the mid-19th century 

while the proportion coniferous forest has increased. On the one hand, large areas with 

deciduous forest have been converted to coniferous forest, and on the other hand, large 

areas of non-forested land were planted with conifers. Since the second half of the 20th 

century, forest management has become less focused on wood production and the 

conversions have been slowing down. As the species composition of the forest overstorey 

has an impact on the chemical, physical and biological characteristics of the soil (Augusto 

et al., 2002), the conversions to coniferous forest may have a strong impact on the forest 

ecosystem and its functioning. More recently, reconverting secondary non-native 

coniferous plantations to more natural deciduous forests has become an important topic in 

forest management (Mosandl and Küssner, 1999; Spiecker et al., 2004). The general aim 

of this thesis was to quantify the change trajectories of several abiotic and biotic variables 

after conversion from deciduous forest to spruce plantations and back. A second aim of 

this thesis was to get a better insight in the rates of changes of the measured variables 

along the gradient in buffer capacity. 

7.1 Temporal changes in deciduous forests 

To gain insight into the temporal changes in the herbaceous understorey of deciduous 

stands, we first studied 50-year understorey changes in deciduous stands in which the 

forest management became less intensive (Chapter 2), as in many regions in Europe (e.g. 

Van Calster et al., 2008; Hedl et al., 2010; Verheyen et al., 2012). The lower 

management intensity, the abandonment of the coppice with standards management and 

also the increased acidifying deposition were the main drivers of temporal changes in the 
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understorey diversity and composition in the studied deciduous forests. A new and 

interesting result was the difference in temporal changes of the understorey vegetation 

between the site types. The species pool became more than 10 % smaller on the 

moderately acidic sites and nearly 30 % smaller on the acidic sites. At the moderately 

acidic sites, plot species richness declined with 20 %, and the community composition 

shifted towards a higher frequency and abundance of species requiring less light and more 

nutrients. 

7.2 Effects of conversion to spruce 

We then focused on conversions from deciduous stands to spruce plantations and back, 

and studied changes in the forest floor, soil acidity, the earthworm community and 

understorey vegetation (Chapter 3, 4 & 6). The impact of conversion to spruce on the 

forest ecosystem was, however, much larger than the management changes in the 

deciduous stands; all variables measured in this thesis significantly changed after 

conversion (Chapter 3, 4 & 6). Spruce is indeed generally considered a tree species with 

strong ecological effects (Ranger and Nys, 1994; Augusto et al., 2002; De Schrijver et al., 

2007). The deciduous forests were in a mesotrophic state with a mull-like humus type, 

soils in the cation exchange buffer range and endogeic earthworm species present. After 

conversion to spruce, the ecosystem shifted towards an oligotrophic state with 

moder/mor-like humus types, soils in the aluminium buffer range and a lack of endogeic 

earthworms (Table 7.1). Most of the results are in line with the expectations based on the 

ecology of the species. The analysis of all these variables on a single location makes this 

study innovative and shows interesting links between these variables. 

Forest floor 

The tree species composition in the deciduous stands in the study area was correlated with 

the clay content of the soil. On the well-buffered sites, species such as Acer spp., 

Fraxinus excelsior and Prunus avium were present, while the stands on the less buffered 

sites were dominated by Fagus sylvatica and Quercus spp. (Chapter 2 & 4). The different 

tree species have different litter qualities resulting in a gradient in forest floor mass, also 

correlated with the gradient in buffering capacity. For the deciduous stands, the forest 

floor thickness was about 50 % higher and the forest floor mass was double as high on the 

acidic sites compared to the less acidic sites (Chapter 2 & 3). The differences between 

deciduous forest and spruce plantations were even bigger: the mean forest floor mass was 
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three times higher under spruce (Chapter 3, Table 7.1). The chemical composition of leaf 

litter is an important determinant of the litter decomposition rate: litter rich in calcium and 

with a low lignin content and C:N ratio decomposes faster (Reich et al., 2005; Hobbie et 

al., 2006). Leaf litter quality is largely determined by tree species, but site quality can 

also directly influence litter quality. On sites with higher soil calcium concentrations, the 

calcium uptake of the trees can be higher (Misson, 2001). Therefore, the litter quality of a 

species may be better (e.g. due to higher calcium concentrations) on the well buffered 

soils compared to the more acidic soils.  

Soil variables 

Slower decomposition causes forest floor build-up and can lead to soil acidification 

through the production of organic acids as intermediate decomposition products (de Vries 

and Breeuwsma, 1985) and by causing a delay in the return of buffering cations to the soil 

where they were taken up by tree roots in exchange for protons (Nilsson et al., 1982). 

Species-specific dry deposition and canopy exchange can cause differences in potentially 

acidifying input, with generally a higher potentially acidifying input on the forest floor 

and soil under evergreen coniferous species compared to deciduous species (De Schrijver 

et al., 2007). These effects were clearly visible after conversion: the mean pH in the 

topsoil layer was 0.5 pH units lower under spruce (Chapter 3). In the experimental 

conversion (Chapter 6), the soil acidification was not visible yet. In the experimental 

restoration (Chapter 6), we already observed a pH increase after only two and a half years 

under deciduous tree cover. Studies of temporal changes in understorey vegetation in 

Belgium frequently observed or inferred a gradual acidification of the soil over time (Van 

Calster et al., 2007; Baeten et al., 2009a), but this could not be concluded from the 

variables derived from the understorey vegetation resurvey in this study (Chapter 2). 

Earthworm community 

Overstorey trees provide strong controls over other biota because of their physical 

dominance. Trees provide resources for several biota and they influence ecosystem 

characteristics important for other species (Palik and Engstrom, 1999). Therefore, tree 

species conversion had a significant influence on, e.g., the earthworm community and the 

herbaceous understorey layer. There were significant differences between the earthworm 

community under deciduous and spruce tree cover: the earthworm biomass was five times  
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lower under spruce, and there were less epigeic earthworms and nearly no endogeic 

earthworms present in the spruce stands (Chapter 3). In the conversion and restoration 

pathway of the experimental study (Chapter 6), the changes in the earthworm community 

were already significant two and a half year after changing the tree species cover. Tree 

species influence the earthworm community composition through their leaf litter. Lower 

calcium concentrations and high C:N in leaf litter will lead to lower earthworm biomass 

(Reich et al., 2005; Hobbie et al., 2006). The high LAI and continuous leaf cover of 

spruce also cause dryer soils and high interception rates of potentially acidifying 

pollutants (Augusto et al., 2002), which adversely affects earthworm populations (e.g. 

Nordstrøm and Rundgren, 1974; Grossi and Brun, 1997; Wever et al., 2001; Eggleton et 

al., 2009). Earthworms are sensitive to soil acidification (Nordstrøm and Rundgren, 1974; 

Edwards, 2004). So, spruce also has an indirect effect on the earthworm community due 

the increased soil acidity in spruce stands. Burrowing earthworm species contribute to the 

incorporation of organic matter in the soil and are important to maintain a mull-like 

humus type (Muys and Granval, 1997). The disappearance of this ecological group in 

spruce stands due to lower litter quality and acidification of the soil might increase the 

forest floor build-up and reinforce acidification.  

Understorey vegetation 

Similar to the overstorey, the species composition of the herbaceous understorey is 

determined by the site quality. On the well buffered soils, more species and usually also 

less acid-tolerant species occurred (Ellenberg and Leuschner, 2010). The species richness 

per plot and the species pool were nearly twice as high on the well buffered sites (Chapter 

2), and this was also found in the deciduous and spruce stands where the plot species 

richness increased in both stands types with increasing clay content (Chapter 4). The 

changes in the forest management in the study area were partly responsible for the 

temporal changes in species richness and composition in the deciduous stands, as found 

by many other studies (e.g. Van Calster et al., 2008; Baeten et al., 2009a; e.g. Hedl et al., 

2010). Tree species also had a significant effect on the herbaceous understorey 

composition due to the physical dominance of trees and their influence on several 

ecosystem processes, e.g. forest floor build-up and soil acidification, affecting the 

understorey plants (Barbier et al., 2008). Interestingly, the conversion to spruce did not 

change the herbaceous understorey diversity. We expected a decrease in species richness 
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due to the conversion to coniferous forest (Barbier et al., 2008) and the mostly lower 

species richness on more acid soils (e.g. Brunet et al., 1997; Ewald, 2003; Partel et al., 

2004). Probably, the higher light availability during the growing seasons compensated for 

the conversion and the accompanying acidification. The species composition changed 

after conversion to spruce towards a higher frequency and abundance of more acid-

tolerant and light-demanding species. The different tree species had direct effects through 

their influence on light availability: the AIV_L values changed due to changed forest 

management and tree species composition in the observatory study (Chapter 2 & 4), and 

the different light regimes in the pot experiment (Chapter 5) had a significant influence on 

the plant performance of four of the five herbaceous study species. Several other tree-

species-related variables, for example differences in competition for nutrients and 

throughfall quantity and quality, can influence the understorey vegetation (Barbier et al., 

2008). These variables were, however, not measured in this study. We expected a 

decrease of the AIV_R in the study of the temporal changes in the understorey vegetation 

(Chapter 2), but found no changes in this value, e.g. probably due to the strong correlation 

between AIV_R and AIV_N. By contrast, in the comparison of spruce and deciduous 

stands (Chapter 4), we found a strong decrease of the AIV_R and no change in the 

AIV_N. In this study, we also directly measured the changes in soil acidity: the 

differences between spruce and deciduous stands were clearly significant, and certainly 

larger than the temporal changes in soil pH in the deciduous stands. Thus, the AIV_R can 

be useful in case of strong changes in acidity, but is probably not sensitive enough or 

overruled by other effects in case of small changes in soil pH. Besides direct effects, also 

indirect effects occurred. The presence of spruce caused forest floor build-up and soil 

acidification, which resulted in more acid-tolerant species in the understorey vegetation. 

The germination of understorey species was also influenced by the tree species: the 

germination index for Luzula luzuloides was twice as high in soil originating from 

deciduous stands compared to soil from spruce stands, and there was nearly no 

germination for Primula elatior in the spruce soil (Chapter 5). Hence, both the lower 

germination and the lower adult performance of several forest understorey species under 

spruce may have influenced the understorey composition in the spruce stands. 

7.2.1 Rates of change along the soil buffering gradient 

In our study area, both soils in the cation exchange buffer range (‘well buffered’) and 

soils near or in the aluminium buffer range (‘more acidic soils’) occurred. All 
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observations of the three observational chapters (2, 3 & 4) and the first experimental 

chapter (5) were done along the entire gradient of soil buffering capacity and brought 

forward innovative results in line with our expectations. The changes in soil variables, 

earthworm, understorey and seed bank community between deciduous and spruce stands 

differed along the soil buffering gradient, with larger changes on the well buffered soils. 

In the vegetation resurvey of chapter 2, we distinguished two groups of plots based on the 

vegetation composition. The temporal changes in Ellenberg indicator values and species 

richness were only significant for the less acidic sites. In chapters 3, 4 and 5, we used the 

clay content of the soil as a proxy for the buffering capacity of the soil. The differences in 

pH and earthworm biomass between deciduous and spruce stands were several times 

larger on the well buffered soils (Chapter 3). The results of chapter 4 showed a correlation 

between the changes in Ellenberg indicator values for acidification (AIV_R) after 

conversion and the soil buffering gradient. The difference between deciduous and spruce 

stands in the number of species in the seed bank was also correlated with the pH-gradient 

(Box 2). Opposite to our expectations, we did not find differences along the soil buffering 

gradient in our (re)conversion experiment (Chapter 6), probably due to the short time 

period of the experiment and the limited number of samples along the gradient.  

We assume that the following three interrelated causes contributed to the differences in 

rates of change along the gradient in buffer capacity: the difference in buffer system, the 

changes in the earthworm community and the differences in litter quality. (i) Soils can 

buffer incoming protons with a series of buffer reactions along the soil pH gradient 

(Bowman et al., 2008). The capacity of a soil to buffer incoming protons depends on the 

buffer system (Box 1). Since we can assume that the acidifying input in the spruce stands 

was similar along the soil buffering gradient, the difference in topsoil pH between 

deciduous and spruce stands is expected to be larger at the well buffered sites that are still 

in the cation exchange buffer range, since this is a small and quickly exhausted buffer 

range (Box 1). (ii) The higher earthworm mass and the presence of endogeic earthworm 

species at the well-buffered sites probably contributed to the larger differences between 

deciduous and spruce stands on these sites. Endogeic species will disappear when the soil 

reaches the aluminium buffer range. On the well buffered soils, endogeic earthworms 

were numerously found in the deciduous stands, while we could not detect them in the 

spruce stands. The differences in earthworm biomass within a plot pair were smaller at 

the more acid sites, and there were no endogeic species in both the deciduous and spruce 
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stands at these sites. The bigger difference in earthworm biomass between deciduous and 

spruce stands on less acid sites most likely lead to differences in the soil variables and 

forest floor because of the importance of earthworms in maintaining a good humus 

quality and, more generally, as ecosystem engineers (e.g. Jones et al., 1994; Barot et al., 

2007). (iii) The composition of the deciduous forest matrix changed along the buffering 

gradient: on the well-buffered sites more species with fast-decomposing litter such as 

Acer spp., F. excelsior and P. avium occurred, while the stands on the sites with lower 

buffering capacity were dominated by oak and beech, tree species with slowly-

decomposing litter (Chapter 2). The difference in leaf litter quality between oak or beech 

and spruce is smaller than between species such as F. excelsior en P. avium and spruce 

(Hobbie et al., 2006; Vesterdal et al., 2008). These bigger differences in litter quality on 

well-buffered soils caused larger effects of conversion on the soil, forest floor and 

earthworm community. 

7.2.2 Restoration potential 

Many spruce stands in the study region and at several other places in Europe are at an 

economically interesting age for harvesting; the oldest converted stands in our study area 

have already been cut. Therefore, it is highly relevant to look into the potential for 

restoring the oligotrophic spruce plantations back to mesotrophic deciduous forests. 

Integrated restoration with a combination of abiotic (neutralisation of the acidification by 

liming) and biotic restoration measures (e.g. conversion to tree species with fast 

decomposing litter and increase of the earthworm community) can possibly increase the 

chances for successful restoration (Muys et al., 2003). In our short-term experiment, we 

found a potential for integrated restoration (Chapter 6). After two and a half years, the 

soil pH and the earthworm biomass had already increased and the forest floor biomass 

had decreased. However, we could not find differences between the length of the change 

trajectory in the conversion and the restoration cases. The changes in the conversion 

pathway seemed to be slightly smaller than in the reconversion pathway. Possibly, the 

deciduous stand monoliths were temporarily buffered against the higher acidifying input 

and lower litter quality in the spruce stands and could therefore temporarily stay at a 

similar state. On the other hand, the better litter quality, the earthworms and the 

accelerated litter decomposition in the restoration pathway seemed to have positive 

effects on the restoration of the spruce monoliths. The abiotic conditions can be restored, 

but it remains unclear whether this will lead to restoration of the herbaceous understorey 
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vegetation. We found in the observational study of the seed bank (Box 2) that the species 

characteristic for the deciduous stands were mostly absent in the seed bank of both stand 

types. Colonisation of these species is generally very slow which will limit the fast 

restoration of the understorey. 

7.3 Suggestions for further research 

We measured trajectories of change after conversion for several variables in this thesis. 

The data set may be extended with other variables, for example measurements on 

bryophytes, other soil and forest floor fauna as well as fungi could be taken. Bryophytes 

are highly indicative for the conditions of the topsoil layers and canopy and were 

abundant in most spruce stands but nearly absent in deciduous stands. The role of roots 

and soil processes in relation to tree species effects are also less understood and therefore 

deserve more attention. 

An interesting point of this study was the study of several variables (soil, forest floor, 

earthworms and understorey vegetation) along a soil buffering gradient in one region. 

This study showed that there were many and complex relations between these variables, 

but it was not always clear how the variables interacted with each other and whether feed-

back mechanisms were present. We have tried to apply statistical tests that allow testing 

causal relationships between variables. We tried to test a causal model between the 

measured variables using, for example, structural equation models, but our data set did 

not have enough replications and data on some variables were missing (for example 

measurements of the leaf litter quality) for getting satisfying and correct results, and 

probably supplementary and specific experiments are necessary. 

Another question that still remains is how the change trajectories develop over time: 

along a gradual change trajectory, a non-hysteresis threshold model, or a hysteresis 

threshold model (Fig. 7.1, Suding and Hobbs, 2009). Gradual changes occur when there is 

a linear relationship between the environmental conditions and the ecosystem state. Non-

hysteresis threshold models occur when the state of the ecosystem rapidly changes at a 

certain point on the environmental gradient. Hysteresis thresholds can occur if there are 

multiple ecosystem states within the same habitat (alternative stable states sensu Scheffer 

et al., 2001); the environmental threshold conditions at which state one declines and shifts 

to the second state differs from the threshold conditions at which state two changes to 

state one. In our study system, there are two clearly different states: a mesotrophic state in 
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the deciduous stands and an oligotrophic state after conversion in the spruce stands (Table 

7.1), and no real gradient between them (cf. Fig. 7.1 b & c). Unfortunately, we did not 

have measurements along the whole age range of the spruce stands to study the complete 

trajectory of change. Yet, the complex interactions and feedback mechanisms between the 

variables measured in our study, in combination with the two distinct ecosystem states, 

lead us to expect a threshold model situation in our study area (Fig. 7.1 b or c).  

According to Scheffer et al. (2001), the combination of the following conditions gives a 

strong indication of the presence of alternative stable states: (1) a shift from one state to 

another is preceded by a hardly observable decrease of resilience of the original state; (2) 

severe disturbances trigger shifts between states, facilitated by feed-forward mechanisms; 

(3) there is a clear contrast between states, and (4) restoring the original state is difficult 

because the restoration efforts have to tilt the system with a combination of both biotic 

and abiotic levers. Evidence for alternative stable states should come from mechanistic 

models validated with experimental data (Scheffer and Carpenter, 2003). Further analysis 

of our data in combination with data from other studies and long-term restoration 

experiments is necessary to find evidence for regime shifts. The first condition of 

Scheffer et al. (2001) might be demonstrated by studying also younger spruce plantations, 

between the time of conversion and the youngest stands in our study (35 years old). The 

second condition is something we expected but were not able to prove: several changes 

reinforce each other. For example, the earthworm biomass may have decreased because 

of the lower litter quality and the acidification of the soil, but the lower earthworm 

biomass also caused further forest floor build-up and acidification of the soil. The third 

condition clearly stands in our study; we found clear differences between the deciduous 

and spruce ecosystem states. An experiment like the one in chapter 6 can be used to proof 

the fourth condition, but measurements on several time steps and during a longer time 

period are needed.  

Monitoring conversions in situ can give us information about the possibilities for 

ecological restoration in real forest conditions. The soil monoliths in the experiment 

(Chapter 6) were small, which made colonisation by earthworms possible; earthworm 

migration may be more difficult in real conversion cases. The time period of this 

experiment was also limited, but sufficiently long to give us some first insights. The  
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experiment was an approach to attempt the effects of conversion, but in real forest 

conversions there are several additional disturbances and there is a period with succession 

between the young planted stand and the full grown forest stand. Foresters and scientists 

could also experiment in these stands with integrated restoration and test different 

conversion scenarios. We studied the effects of ecological restoration on the soil, forest 

floor and earthworm community, but studying the effects of different restoration 

scenarios on other variables, for example the understorey vegetation, may be interesting 

as well.  

We resurveyed a more than fifty year old vegetation survey in deciduous stands. These 

data gave us interesting information about long-term changes in the forest understorey. 

The old and recent data sets can be used for a further monitoring of the changes in the 

forest understorey in the future. The data from chapter 3 and 4 can also be used in a 

follow-up study on the spruce stands or on restoration pathways when the stands are 

reconverted. 

 

 

Figure 7.1. Alternative models of ecosystem dynamics: gradual change (a), and two 

threshold models: non-hysteresis (b) and hysteresis (c). Each square defines relative 

abundances of two state characters (e.g. different species, functional groups or ecosystem 

processes). The ovals represent isoclines of perturbation strength (resilience) and the stars 

represent attractors. The dotted line in (c) indicates boundaries of basins of attraction. (From: 

Suding and Hobbs, 2009). 
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7.4 Management implications 

This thesis showed that the conversion from deciduous forest to spruce plantations 

changed several characteristics of the forest ecosystem. The soil, forest floor, earthworm 

community and vegetation changed from a mesotrophic to an oligotrophic state. 

Managers have to be aware that changing the tree species composition and management 

system also changes the communities of other species groups and ecosystem processes. 

Because of the equal species richness but divergent species composition in both stand 

types, the islands of spruce plantations in the deciduous forest matrix lead to a larger 

overall species pool and a higher across-site β diversity, increasing the biodiversity at the 

scale of our study region (Chapter 3). Yet, many of the recorded understorey species in 

the spruce stands were relatively light-demanding species that also occur in open habitats 

or deciduous forest edges and are less interesting from a biodiversity conservation point-

of-view. At the regional scale, the more acid-tolerant vegetation of the spruce stands is 

very common in the extensive spruce forests of the adjacent Ardennes and many other 

low mountain areas with non-calcareous bedrock in western and central Europe. The 

number of red-list species was also lower in the spruce stands compared to the deciduous 

stands. Moreover, across Belgium and Europe, mesotrophic deciduous stands with a well-

developed understorey layer like in our study area are quite rare. The study of the 

temporal changes in the deciduous forest (Chapter 2) showed that we are losing species in 

these forests and that several typical ancient-forest species seems to disappear. These 

deciduous forest types (e.g. 9110, Luzulo-Fagetum beech forests and 9160, sub-Atlantic 

and medio-European oak or oak-hornbeam forests of the Carpinion betuli) are 

habitattypes described for conservation in the annexes of the EU Habitat Directive 

(Council Directive 92/43/EEG, 1992) and, in contrast with spruce plantations, important 

to protect on an European scale. So, although at first sight conversion does not seem bad 

for the understorey diversity, the deciduous-to-spruce conversions in the study area were 

negative for the herbaceous understorey, especially on the well buffered soils. 

The impact of the conversions is mostly local and changed mainly variables in the 

converted stands. In the study area, the Gaume region, the impact on the regional forest 

system was rather small because the islands are mostly small and the total area with 

spruce plantation is limited. Therefore, the impact of the conversions on the forests on a 

regional scale was rather small. Yet, new conversions are not recommended because of 
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the large impact on the soil chemistry, soil biota and several other ecosystem variables. 

On the well buffered soils, we have to be even more careful with conversions because of 

the higher impact on these sites. The mesotrophic deciduous stands with a well-developed 

understorey layer are quite rare and are also threatened by atmospheric deposition. In 

addition, spruce plantations are vulnerable to abiotic and biotic damages (Spiecker, 2000; 

Solberg, 2004). In the study area, spruce was planted outside its distributional limits, 

which involves risks as climate change may render the zone unsuitable for spruce 

(Bradshaw et al., 2000). 

Managers will have to decide what to do with the current spruce stands. Since the survey 

of 2009, some spruce stands have already been clearcut and several other stands are near 

the age of final cut. We expect that replanting spruce trees will cause further acidification 

of the sites due to the permanently high acidification potential of spruce. Conversion to 

spruce did already lower the soil buffer capacity; the impact of a second generation 

spruce will likely be smaller. Restoration to mixed deciduous stands, i.e., changing the 

tree cover to deciduous trees, will probably take very long and may even not be enough to 

get a full ecological restoration of the forest ecosystem to the pre-conversion state. Due to 

the larger impact of conversion on the well buffered soils, we expect the restoration to be 

more difficult on these sites. Implementing an integrated restoration, i.e., using tree 

species with good litter quality and adding lime, will yield a greater chance of full 

ecological restoration (Chapter 6).  
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