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Summary

The topic of credit risk modeling has arguably become more impor-

tant than ever before given the recent financial turmoil. Conform

the international Basel accords on banking supervision, financial

institutions need to prove that they hold sufficient capital to pro-

tect themselves and the financial system against unforeseen losses

caused by defaulters. In order to determine the required minimal

capital, empirical models can be used to predict the loss given de-

fault (LGD). The main objectives of this doctoral thesis are to ob-

tain new insights in how to develop and validate predictive LGD

models through regression techniques.

The first part reveals how good real-life LGD can be predicted and

which techniques are best. Its value is in particular in the use of

default data from six major international financial institutions and

the evaluation of twenty-four different regression techniques, mak-

ing this the largest LGD benchmarking study so far. Nonetheless,

it is found that the resulting models have limited predictive perfor-

mance no matter what technique is employed, although non-linear

techniques yield higher performances than traditional linear tech-

niques. The results of this study strongly advocate the need for

financial institutions to invest in the collection of more relevant
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data.

The second part introduces a novel validation framework to back-

test the predictive performance of LGD models. The proposed key

idea is to assess the test performance relative to the performance

during model development with statistical hypothesis tests based on

commonly used LGD predictive performance metrics. The value of

this framework comprises a solution to the lack of reference values

to determine acceptable performance and to possible performance

bias caused by too little data. This study offers financial institu-

tions a practical tool to prove the validity of their LGD models and

corresponding predictions as required by national regulators.

The third part uncovers whether the optimal regression technique

can be selected based on typical characteristics of the data. Its value

is especially in the use of the recently introduced concept of datase-

toids which allows the generation of thousands of datasets repre-

senting real-life relations, thereby circumventing the scarcity prob-

lem of publicly available real-life datasets, making this the largest

meta learning regression study so far. It is found that typical data

based characteristics do not play any role in the performance of a

technique. Nonetheless, it is proven that algorithm based charac-

teristics are good drivers to select the optimal technique.

This thesis may be valuable for any financial institution implement-

ing credit risk models to determine their minimal capital require-

ments compliant with the Basel accords. The new insights provided

x



in this thesis may support financial institutions to develop and val-

idate their own LGD models. The results of the benchmarking and

meta learning study can help financial institutions to select the ap-

propriate regression technique to model their LGD portfolio’s. In

addition, the proposed backtesting framework, together with the

benchmarking results can be employed to support the validation of

the internally developed LGD models.
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Summary (in Dutch)

Het topic kredietrisico modellering is, gezien de recente financiële

crisis, misschien wel belangrijker dan ooit. Conform de interna-

tionale Basel akkoorden voor bankentoezicht dienen financiële in-

stellingen aan te tonen dat ze over voldoende kapitaal beschikken om

zichzelf en het financiële systeem te beschermen tegen onvoorziene

verliezen veroorzaakt door wanbetalers. Om het vereiste minimale

kapitaal te bepalen, kunnen empirische modellen worden gebruikt

om het verlies bij wanbetaling of Loss Given Default (LGD) te voor-

spellen. De voornaamste doelstellingen van deze thesis zijn nieuwe

inzichten te verkrijgen over hoe voorspellende LGD modellen te on-

twikkelen en te valideren via regressietechnieken.

Het eerste deel laat zien hoe goed LGD kan worden voorspeld en

welke technieken hiervoor het best zijn. De waarde zit in het bi-

jzonder in het gebruiken van gegevens over wanbetalingen van zes

grote internationale financiële instellingen en de evaluatie van vier-

entwintig verschillende regressietechnieken, wat dit de grootste LGD

benchmarking studie maakt tot nu toe. Desalniettemin blijkt dat

de resulterende modellen beperkt presteren ongeacht welke techniek

gebruikt wordt, hoewel niet-lineaire technieken beter presteren dan

traditionele lineaire technieken. De resultaten van deze studie tonen
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0. SUMMARY (IN DUTCH)

sterk de noodzaak aan voor financiële instellingen om te investeren

in het verzamelen van meer relevante gegevens.

Het tweede deel introduceert een nieuw backtesting raamwerk om de

prestaties van LGD modellen te testen. Het voorgestelde sleutelidee

is om de testprestaties te beoordelen ten opzichte van de prestaties

tijdens de ontwikkeling van het model met statistische hypothe-

setesten gebaseerd op algemeen gebruikte metrieken voor het meten

van de prestatie van LGD modellen. De waarde van dit raamwerk

omvat een oplossing voor het gebrek aan referentiewaarden om te

beslissen over al dan niet aanvaardbare prestaties en de verteken-

ing van de prestaties door te weinig data. Dit onderzoek biedt fi-

nanciële instellingen een praktisch instrument aan om de geldigheid

van hun LGD modellen en bijbehorende voorspellingen te bewijzen

zoals vereist door nationale toezichthouders.

Het derde deel onthult of de optimale regressietechniek kan worden

geselecteerd op basis van de typische kenmerken van de data. De

waarde zit vooral in het gebruik van het onlangs gëıntroduceerde

concept datasetoids die het genereren van duizenden datasets mo-

gelijk maakt zodat het schaarsteprobleem van publiek beschikbare

datasets kan verholpen worden, waardoor dit de grootste meta learn-

ing studie voor regressie tot dusver is. Het is gebleken dat typis-

che data gebaseerde karakteristieken geen enkele rol spelen in de

prestatie van een regressietechniek. Toch is het bewezen dat algo-

ritme gebaseerde karakteristieken goede drijvers zijn om de meest

optimale techniek te selecteren.
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Deze thesis kan waardevol zijn voor elke financiële instelling die

modellen implementeert voor kredietrisico om haar minimale kapi-

taalvereisten te bepalen en zo te voldoen aan de Basel akkoorden.

De nieuwe inzichten in deze thesis kunnen een hulp bieden aan fi-

nanciële instellingen om hun eigen LGD modellen te ontwikkelen en

te valideren. De resultaten van de benchmarking en meta learning

studie kunnen financiële instellingen helpen om de juiste regressi-

etechniek te selecteren voor hun LGD portefeuilles. Daarnaast kan

het voorgestelde backtesting raamwerk, samen met de benchmark-

ing resultaten worden gebruikt om de validatie van de intern on-

twikkelde LGD modellen te ondersteunen.
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1

Introduction

”If I owe you a pound, I have a problem;

but if I owe you a million, the problem is yours.”

-John Keynes

(British economist, 1883-1946)

”Risk varies inversely with knowledge.”

-Irving Fisher

(American economist, 1867-1947)

With the break out of the recent financial crisis, the topic of credit

risk modeling has become more important than ever before. Finan-

cial institutions are investing heavily in the development of models

to predict unforeseen losses in case debtors would fail to pay their

obligations. It is crucial for banks to predict the potential loss of

new loans in order to determine the minimal required capital to act

as a safety cushion in case of defaults. The importance of research

1



1. INTRODUCTION

in predicting Loss Given Default has nothing but strengthened be-

cause of the banking supervison by national regulators on Basel

compliance. The goal of this study is to gain more insights in pre-

dicting Loss Given Default. This introductory chapter starts with a

brief overview on how Loss Given Default drives a bank’s minimal

required capital conform with the Basel accords. Subsequently, a

literature review is performed on regulatory requirements and pre-

dictive modeling of Loss Given Default. Based on the literature

review, important literature gaps are identified and corresponding

research proposals are outlined which are elaborated in the subse-

quent chapters.

1.1 Overview

The concept of banking dates back to the old Babylonian empire

and, in essence, comes down on buying and selling financial prod-

ucts with corresponding profits and risks. A bank’s main source of

profits is generated through the difference between interests from

lending activities and deposit interests. These activities go hand in

hand with a certain risk that an obligor will default on its debt by

failing to make payments which it is obliged to do. Since banks on

their turn are buying from and selling to other banks, defaults can

cause cascading failures and a collapse of an entire financial market.

In order to protect the international financial system, international

agreements are established in the Basel accords (1, 2, 3, 4). The ac-

cords aim to provide regulations to ensure that banks hold sufficient

capital appropriate to the risks they are exposed to. Such capital

can act as a safety cushion in case a sizeably larger proportion of

2



1.1 Overview

debtors default on their repayment obligations than provisioned for.

The Basel accords are based on the principle that the required min-

imal capital to act as a safety cushion depends on the riskiness of

a bank’s assets. The more riskier a specific asset, the more capi-

tal is needed to absorb unexpected losses. Below is illustrated how

banks may determine their minimal required capital according to

the Basel regulations.

In the first Basel accord (1) a rather straightforward approach is

suggested towards the calculation of the minimal required capital.

It states that the ratio between the required capital and the value

of the risk weighted asset should not be less than 8%, which is also

known as the Cooke ratio:

required capital ≥ 8%× risk weight× exposure

where the risk weighted asset is the product of the exposure and the

corresponding risk weight of a certain asset. Basel defines several

risk categories to classify assets. Each category corresponds to a

weight factor from 0% for extremely safe investments (e.g. sovereign

debt) to 100% for very risky investments (e.g. corporate debt).

For example, let’s assume that a bank wants to cover a mortgage

loan of 100000 EUR. Mortgage loans are labeled as moderately safe

investments and represent a weight factor of 50%. If a bank tries

to hold capital equal to 8% of its risk weighted assets, the minimal

required capital will be:

3



1. INTRODUCTION

required capital ≥ 8%× 50%× 100000 EUR

≥ 4000 EUR

This approach is fairly limited since it lacks nuances in risk weight-

ing. Although assets in a particular risk category are labeled with

the same corresponding risk weight, they do not always imply the

same actual risks. For example, the risk weight of mortgage loans is

50% but the actual risk of a mortgage loan may be lower or higher

depending on the amount of the obligor’s monthly paycheck.

In order to quantify this actual risk more accurate, the second Basel

accord (2) introduced the risk weight function where the required

capital is driven by three key risk parameters to be estimated: PD

the probability of default, LGD the loss given default and EAD the

exposure at default.

required capital ≥ f(PD)× LGD × EAD

where f(.) is abstracted here for reasons of clarity but nonetheless

further specified in Appendix A. In order to estimate these param-

eters for new loans, banks are encouraged to build internal models

for each parameter based on their own historical loan data. For ex-

ample, let’s assume again that a bank wants to cover a mortgage of

100000 EUR and that internally built models estimate a PD of 3%,

a LGD of 50% and an EAD of 90000 EUR (assume that 10000 EUR

already is paid off at time of default), than the minimal required

capital will yield:

4



1.2 Literature review

required capital ≥ f(3%)× 50%× 90000 EUR

≥ 308 EUR

This approach is considered to be more risk sensitive as it takes into

account varied factors which are empirically proven to be relevant in

the bank’s own data history. Note that this is known as the Internal

Ratings Based (IRB) approach (5) and is also prevalent in the third

Basel accord (3, 4).

1.2 Literature review

1.2.1 Default

Since LGD represents losses of defaulted issues, the definition of

default is inherently connected to the LGD. There is a broad range

of definitions of default, which can be classified as either subjec-

tive or objective (6). An objective definition is based on observable

characteristics that are beyond the control of a bank (e.g. the grace

period which represents the number of days past due). A subjective

definition is based on risk managers appraisals or decisions made

by the bank themselves (e.g. starting a legal process). The Basel

definition of default is based on both a subjective and an objective

condition. A default is defined as the occurrence when the obligor

is past due more than ninety days on an obligation to the bank or

when the bank considers that the obligor is unlikely to pay its obli-

gation (§452 (2)). Note that the Basel definition of default applies

5
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at the level of the obligor. In case of retail exposures, however, this

can be applied at the level of a particular facility, rather than at the

level of the obligor. Types of facilities are for example a loan or a

bond. As such, defaults by a borrower on one obligation does not

require a bank to treat all other obligations to the bank as defaulted

(§455 (2)).

The first and objective part of the definition sets forth a grace pe-

riod of ninety days. This is confirmed to be a good overall cut-

off (7, 8). It is found that once obligors are ninety days in payment

arrears, they remain in this delinquency status while only a minor-

ity recovers. A majority of the obligors with less than ninety days

in payment arrears are most likely to recover. Hence, this point-

of-no-return justifies the Basel grace period of ninety days. Note

that Basel allows supervisors to define a default after a grace pe-

riod of 180 days instead of ninety days, in case of retail and PSE

(Public Sector Entity) exposures, if appropriate to local conditions

(§452 (2)). The second and subjective part of the definition incorpo-

rates the unlikeliness-to-pay formulation so as to give supervisors a

certain degree of freedom to take into account particularities of their

jurisdiction (9). The meaning of unlikeliness to pay is clarified in

Basel as a series of six elements, i.e. the bank puts the obligation in

non-accrued status, the bank makes a charge-off, the bank sells the

obligation with loss, the bank consents to a distressed restructuring

of the obligation, the bank files for obligor’s bankruptcy, the obligor

is placed in bankruptcy (§453 (2)). Supervisors have to provide ap-

propriate guidance as to how these elements must be implemented

6
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and monitored (§454 (2)).

Banks often do not have sufficient data from defaulted facilities (e.g.

a portfolio of large corporate loans) to estimate LGD. Therefore,

they might consider the use of external data sources (e.g. rating

agencies or pooled data across institutions). If external estimates

of LGD are based on another definition of default, it is necessary

to adjust for the difference in the definition of default (6). An LGD

dataset consists of defaulted issues only. As a consequence, the defi-

nition of default defines the LGD. Basel allows banks to use external

default data if the differences in the default definition are carefully

analyzed and made consistent (§462 (2)). Therefore, it is useful to

develop methods to establish a link between LGD estimates which

use different default definitions (10). Rating agencies (e.g. Moody’s,

Fitch, S&P) apply their own default definitions (11, 12, 13). These

may differ on how they treat missed payments that were made dur-

ing a grace period or missed payments because of commercial dis-

putes (7). Additionally, the grace period applied by rating agencies

varies compared to Basel, see Table 1.1.

Definition Grace period

Basel 90 - 180 days

Moody’s 0 days

Fitch 10 - 30 days

S&P 10 - 30 days

Table 1.1: Comparison of grace period (7)

7
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1.2.2 Loss

Basel defines LGD as the economic loss expressed as a percentage of

the exposure in case of default (§297 (2)). It is important to notice

that the economic loss (i.e. real loss) as defined by Basel is not the

same as the accounting loss (i.e. bookkeeping loss) (2, 6, 7). The

economic loss must include material discount effects and material

direct and indirect costs associated with collecting on the exposure

(§460 (2)). To calculate the economic loss using the observed recov-

eries and costs, it is necessary to discount them back to the date of

default using some discount rate. The impact of the chosen discount

rate is particularly important in portfolio’s where the recovery pe-

riod is long and has a low risk level (14, 15, 16). Direct costs are

those associated with a particular asset (e.g. a fee for an appraisal

of collateral). Indirect costs are necessary to carry out the recovery

process but are not associated with individual facilities (e.g. over-

head associated with the office space for the workout department).

The LGD can be measured via subjective methods or objective

methods. Subjective methods on the one hand are based on qual-

itative expert judgment. These are particularly used for portfolios

with no or few defaults. Objective methods on the other hand are

based on quantitative information about the economic loss. Ob-

jective methods can be subdivided into either explicit or implicit

methods, see Table 1.2. Explicit methods on the one hand use

the market value (market LGD) or discounted cash-flows from the

recovery process (workout LGD) from defaulted facilities to deter-

mine the LGD. Implicit methods on the other hand derive the LGD

8
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Source Measure Methods Exposure

Market values

Price differences Market LGD
Large corporate,

sovereigns, banks

Credit spreads
Implied Large corporate,

market LGD sovereigns, banks

Discounted
Workout LGD

Retail, SMEs,

Recovery and cash flows large corporate

cost experience Historical losses Implied
Retail

and estimated PD historical LGD

Table 1.2: Classification of the objective methods to obtain LGDs (6)

from the expected loss from the credit spread of risky bonds (im-

plied market LGD) or the historical total losses (implied historical

LGD) and the probability of default of non-defaulted facilities. The

method to be employed depends on the exposure as illustrated in

Table 1.2.

Workout LGD and implied historical LGD is driven by the recovery

and cost experience of the exposure. Workout LGD is calculated by

discounting cash flows and costs, resulting from the workout from

the date of default to the end of the recovery process. Both cash

and non-cash recoveries as well as direct and indirect costs have

to be determined as accurately as possible. In addition, it is im-

portant to use an appropriate discount factor which is the subject

of considerable disagreement amongst practitioners and banking su-

pervisors (15, 16, 17). Further, banks must define when a workout is

finished. Sometimes banks employ a recovery threshold (e.g. when

the remaining non-recovered value is lower than 5% of the EAD) or

a given time threshold (e.g. one year from the date of default) (6).

9
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The implied market LGD is determined by looking at the credit

spreads of the non-defaulted risky bonds. The credit spread reflects

the expected loss on the bonds next to a liquidity premium (18).

Recent models illustrate how to decompose this measure of expected

loss into the PD and the LGD (19, 20). Because the implied mar-

ket method uses information from non-defaulted facilities, there is

some debate whether this method is valid from a regulatory per-

spective (6).

Market LGD and implied market LGD is driven by the market value

of the exposure. Market LGD is computed by comparing the face

value of a facility before default and the market value of the fa-

cility after time of default. The price difference is a measure for

the economic loss, expressed as a percentage of the exposure (i.e.

the face value of the facility). The rating agency (21, 22, 23) re-

covery studies are based on this approach and typically evaluate

the market value of the defaulted facility about thirty days after

default (7, 18). The market prices reflect the discounted expected

recovery and thus implicitly represent the economic loss. However,

if markets are driven by fluctuations unrelated to the expected re-

covery, this measure may not be appropriate (6). Implied historical

LGD is obtained from the estimate of the PD and the experience of

total losses in the portfolio (§465 (2)). Consequently, the LGD can

than be determined according to the formula: Expected Loss (EL)

= Probability of Default (PD) x Loss Given Default (LGD). This

method may be useful for retail exposures because in most cases it

is easier to estimate the PD than the LGD (7).

10
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1.2.3 Prediction

According to the Basel accords, LGD estimates must be grounded in

historical experience and empirical evidence (§465 (2)). The most

common technique to meet this requirement is to build an LGD

model through regression analysis of historical default data. The

resulting LGD model can subsequently be used for predicting un-

known LGD values for new customers. Regression analysis allows

to determine the relationship between a number of potential drivers

of LGD (i.e. the independent variables) and the LGD on the other

hand (i.e. dependent variable) based on a dataset of defaulted bor-

rowers. Numerous techniques exist to perform regression analysis.

For a detailed overview of regression algorithms for LGD modeling

is referred to Chapter 2. Note that the Basel accords require the

data observation period to build an LGD model to be minimal five

years for retail exposures (§473 (2)) and minimal seven years for

corporates, sovereigns and bank exposures (§472 (2)). Hence, it is

ensured that empirically build LGD models cover at least one com-

plete economic cycle of default behavior.

When building a predictive LGD model it is of crucial importance

both to obtain correct outcomes and to understand how an LGD

model comes to its conclusions. Therefore, an LGD model is re-

quired to be both accurate and comprehensible. A model is said

to be accurate when the difference between its predicted values and

the observed values is small. The observed or realized LGD is the ex

11
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post measure of the realized economic loss, expressed as a percentage

of the exposure at time of default while the predicted or expected

LGD is the ex ante estimate of the economic loss conditional on

the default (6). Note that the realized LGD is also the complement

of the Recovery Rate (RR), i.e. LGD = 1 - RR. The accuracy is

most often measured by quantifying the similarity between predic-

tions and observations. Various performance metrics to measure

model accuracy are described in Chapter 2. A model is said to be

comprehensive when the relation between the LGD and its drivers

can be well interpreted and explained by a human being. Although

not straightforward to measure, the degree of comprehensibility de-

pends on the complexity of the type of model output. While the

accuracy measures the data fit, the comprehensibility measures the

mental fit of the model (24).

The Basel accords require banks to estimate LGD to reflect eco-

nomic downturn conditions where necessary to capture the relevant

risks (§468 (2)). The LGD may be lower in periods of recession

and the estimated LGD should be conservative enough in order not

to underestimate the actual loss. Two modeling approaches can be

distinguished in order to capture stressed economic conditions. One

way is to take into account cyclical effects in order to reflect eco-

nomic downturn conditions where necessary. Cyclical effects might

be captured by including macro-economic factors in the predictive

model (25). However, when the model fails in capturing downturn

conditions, LGD may be underestimated and can cause high losses.

Another way is not to take into account cyclical effects but instead

12



1.2 Literature review

to rely upon an overly conservative LGD in order to capture the

relevant risk in periods of economic downturn (26). A drawback,

however, is an overestimated LGD in general. This may needlessly

increase the capital requirements and hence may cause banks to be

less competitive. Note that the Basel accords require that the LGD

cannot be less than the long term average Loss Given Default cal-

culated based on the average economic loss of all observed defaults

within the data source for that type of facility (§468 (2)).

The identification of the most important drivers of LGD is crucial

for building high predictable models. Commonly used variables for

LGD analysis can be classified in features of the issuer, features

of the issue, macroeconomic factors and the relation between bank

and borrower (7). First, the features of the counterpart include the

creditworthiness of the borrower, the industry sector classification

and industry conditions, the size, the legal structure, age, country of

residence and its legal environment, balance-sheet structure, finan-

cial flexibility to increase revenues to repay debt in case of distress,

number of creditors. Second, the features of the issue are charac-

terized by absolute and relative seniority, product type, type and

value of the collateral, guarantees, exposure/size, length and costs

of the workout process, maturity and syndication. Third, macroe-

conomic factors include economic conditions, default rate levels, in-

terest rate levels, gross domestic product, growth, etc. Forth, the

relation between bank and borrower is important such as intensity of

the relation of the bank with the counterpart, length of the relation.
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Commonly used variables to characterize retail customers, corpo-

rates and local governments are listed below (7). For retail cus-

tomers (27, 27, 28, 29, 30, 31), typical application scoring vari-

ables are sociodemographic variables, financial indicators, product

information and customer information and typical behavioral score

variables are flow variables, interval measures, customer relation

measures, product status management, flash volume variables, debt

level and debt burden and demographic customer information. For

firm counterparts (32, 33, 34, 35, 36) income statement and balance

sheet information allows construction of typical quantitative vari-

ables such as profitability, leverage and gearing, growth, liquidity,

activity, size and volatility. Although banks and insurance compa-

nies are closely related to firms, it is important for these counter-

parts to measure the size of the equity buffer with respect to the

risks the insurer or bank are exposed to. Typical variables for lo-

cal governments (37) are debt, exploitation, self-financing ability,

macroeconomic and demographic elements and size.

In order to characterize insurance companies, banks and sovereigns,

the following variables are most frequently used (7). For insurance

companies (38), typical variables are capital adequacy, leverage and

debt, performance and profitability, liquidity, cash flow and size.

The variables for banks (39, 40, 41, 42, 43, 44) are typically or-

ganized along the CAMEL variables, i.e. capital adequacy, asset

quality, management, earnings and liquidity. Financial informa-

tion on countries and sovereigns is available from official interna-

tional sources like the IMF and the World Bank. Typical variables

14
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for sovereigns are social development level, macroeconomic environ-

ment, debt, states and markets, state efficiency, stability, political

regime. Important differences of sovereigns and public sector en-

tities with firm counterparts are legal and institutional differences.

Although macroeconomic and demographic variables are important

as well, the health of the public sector entity is determined by the

strength of the local economy and the management of the local au-

thority.

The most important LGD drivers appear to be the security and pri-

ority of the claims according to a series of empirical studies (45, 46,

47, 48, 49, 50, 51, 52, 53, 54, 55). Secured debt and high priority

decrease the LGD. Another important driver turns out to be the de-

fault rate (47, 48, 49, 54, 55, 56, 57). LGD is typically higher in a pe-

riod of high defaults. Other macroeconomic variables did not seem

to matter when the default rate was taken into account (45, 47).

The industry sector (45, 46, 57) and the liquidity of the collat-

eral (52, 58) also seems to affect LGD. Industry sectors with credits

that are backed up by liquid collateral (e.g. cash or accounts receiv-

able) seem to experience a lower LGD than industry sectors backed

up by less liquid collateral (e.g. property or equipment). Further,

the size of the borrower (51) and the size of the loan (46, 50, 51, 59)

did not tend to affect LGD. Note that the majority of these studies

cover corporate LGD.

According to the Basel studies on the validation of internal rating

systems (6), several main open issues in the area of LGD validation
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require further research. A first open issue is about how to deter-

mine realized LGD. The Basel report demonstrates the importance

of several decisions which may affect LGD estimation. These include

dealing with negative losses, choosing the interest rate for discount-

ing losses and deciding when the recovery process is over. A second

open issue is about which estimation techniques are most appropri-

ate for LGD estimation. The Basel report highlighted that the use

of simple techniques such as averages may be misleading given the

typical non-normal distribution of LGD. Hence, further research is

needed on more advanced regression analysis of rich LGD datasets

including multiple risk drivers. A third open issue is about how

to compare different LGD models (i.e. benchmarking) and how to

compare realized and estimated LGD (i.e. backtesting). Although

these validation procedures are regulatory requirements, the Basel

report is not explicit on which techniques to use for this purpose.

1.3 Research goals

1.3.1 Problems

First, the current empirical LGD literature is not clear about which

regression models may fit real-life LGD best. Although credit risk

modeling research has largely focused on the estimation of the PD

parameter (6, 60), the LGD parameter may have a larger impact

on capital requirements. The latter enters the Basel risk weight

function in a linear way, unlike PD which has less of a direct ef-

fect on minimal required capital. Hence, any changes in the LGD
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model estimates have a strong bearing on the capital of a financial

institution and as such also its long-term strategy. It is thus of

crucial importance to have models that estimate LGD as accurate

as possible. This seems however not a trivial issue as the empiri-

cal LGD literature typically reports low performances and does not

agree which regression technique is best suited for LGD modeling.

Suggested models are often built using simple averages (61, 62),

(generalized) linear regression (25, 61, 62, 63, 64, 65, 66, 67, 68)

or regression trees (25, 61, 64). The low accuracy results may be

caused either by the use of limited regression techniques or data

with limited predictability. Up to now, no empirical LGD study in

the literature has focused on gaining more insights in this matter

by assessing different state-of-the-art techniques on a multitude of

different LGD datasets.

Second, the current literature is not clear on how to validate in-

ternal LGD models. Basel requires financial institutions to regu-

larly validate its internal estimation process and its internal mod-

els but does not mention how this may be done (6). The assess-

ment of a model’s predictions typically includes backtesting which

is the process of evaluating to which degree the internal LGD model

estimates correspond with the realized LGD observations. Com-

monly used performance metrics in the empirical LGD literature

include MSE (25, 62, 64), RMSE (61, 63, 69), MAE (61, 63, 64),

R2 (25, 65, 67, 68) and AUROC (62, 66, 68). It is however not

straightforward to determine acceptable accuracy solely based on

these metrics. After all, a single value has little meaning without
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an appropriate reference value indicating acceptable accuracy. In

addition, these metrics do not take into account the number of LGD

observations. When the portfolio lacks sufficient observations, a few

extreme observations can distort the accuracy result and so degrade

its reliability. Recent research has largely focused on backtesting PD

models (70, 71, 72) while literature on statistical hypothesis testing

for LGD models is non-existing.

Third, the current literature is not clear whether and how dataset

characteristics may drive the fitting performance of regression mod-

els in general or LGD models in particular. In order to build a

model to fit the typical non-normal characteristics of LGD data

better, many studies suggest to transform the LGD prior to linear

regression. These result in models such as tobit models (25, 64),

logit models (25, 66), logistic models (61, 63, 65, 68), log-log mod-

els (61, 63, 66, 67) or beta models (25, 62, 66, 69). Nonetheless, it is

not proven that these significantly fit LGD data better. Apart from

LGD studies, many meta-learning studies claim that commonly used

dataset characteristics (e.g. size, dimensionality, composition, dis-

tribution, landmarks) may favor a specific predictive model algo-

rithm (73, 74, 75, 76, 77). However, the lack of sufficient real-

life datasets available to these meta-learning studies (i.e. merely

twenty-two (77) to hundred (78)) undermine the support of these

claims. In spite of the arsenal on meta-learning studies, it is not

clear how commonly used dataset characteristics drive regression

algorithm fitting performance.
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1.3.2 Questions

Research Question 1: How accurate can regression models fit

real-life LGD?

The objective is to uncover to which degree regression techniques

can fit a model to real-life LGD data. The predictive power of real-

life LGD should be clearly quantified by fitting various algorithms

to various LGD datasets. Additionally, any statistically signifi-

cant performance differences between regression techniques should

be quantified. Both the identification of the independent variables

which drive the observed real-life LGD and the detailed relation-

ships between these drivers and the LGD is however out of scope.

Research Question 2: How can the predictive performance of

LGD models be evaluated?

The objective is to develop a framework of tests in order to allow

financial institutions to support the validation of their internal LGD

models. The tests should be applied in such a way that they can

determine upon acceptable model performance. The tests should be

able to detect when the accuracy of an LGD model is significantly

deteriorating. In addition, the tests should take into account the

influence of possible accuracy distortion caused by a possible lack

of sufficient observations. The study of the evaluation of the LGD

model performance in low default portfolios are beyond the scope.

Research Question 3: How can dataset characteristics drive the
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fitting performance of regression models?

The objective is to gain insight whether and which dataset char-

acteristics drive the fitting performance of regression algorithms.

Any additional value of a meta model based on data characteris-

tics or algorithm based characteristics compared to a meta model

with simple training averages should be clearly quantified and sta-

tistically tested. Data based characteristics involve the number of

instances, dichotomous variables, continuous variables and distri-

bution properties of the dependent variable while algorithm based

characteristics involve the algorithm’s performance on very small

data samples. Since LGD models are required to be comprehensi-

ble, only algorithms which lead to a humanly understandable output

form are part of the scope.

1.3.3 Methods

The first research question is answered by applying the framework

on the statistical comparison of classifiers over multiple datasets by

Demsar (79) and its extensions by Garcia and Herrera (80). The

experiments are based on real-life LGD datasets which are obtained

from six international financial institutions, each of which contains

data about defaulted loans and their resulting losses. The types

of loan portfolios included are personal loans, corporate loans, re-

volving credit and mortgage loans. A varied arsenal of both most

commonly used regression techniques and performance metrics to

fit the real-life LGD datasets and to assess the model fit respec-
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tively, is employed. In total, eight performance metrics are employed

to assess twenty-four regression techniques applied on six real-life

LGD datasets from major international banks. The averaged per-

formances are statistically compared using Friedman’s test (81) and

the post-hoc multiple testing procedure of Hommel (82) to detect

any significant differences between every regression technique and

the best performing one. More details and results are discussed in

Chapter 2. Note that this study is also published as ‘Loterman et

al. (2012). Benchmarking regression algorithms for loss given de-

fault modeling. International Journal of Forecasting, 28: 161-170.’

The second research question is answered by proposing a workbench

of statistical hypothesis tests for LGD backtesting, analogous to a

recently introduced PD backtesting framework (70). The proposed

workbench includes standard parametric tests (i.e. T-test and F-

test) (83), standard non-parametric tests (i.e. Wilcoxon signed rank

test and Ansari-Bradley test) (84, 85) and a number of non-standard

tests constructed through a bootstrapping approach based on com-

monly used performance metrics in LGD literature (i.e. RMSE,

MAE, AUROC, AOREC, R2, r, ρ and τ) (86, 87, 88, 89). These

tests are applied in such a way that they take into account an appro-

priate reference value indicating acceptable accuracy in addition to

the number of LGD observations. The proposed backtesting frame-

work is demonstrated on a linear model based on real-life LGD data

which reflects corporate loan loss rates over a time span from 1984

to 2004 and contains 891 observations. Further, all tests are subject

to a statistical power analysis in order to evaluate the reliability of
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the proposed tests. More details and results are discussed in Chap-

ter 3.

The third research question is answered by applying the framework

on the algorithm selection problem by Rice (90). The experimental

data is constructed by implementing the recently introduced con-

cept of datasetoids (91, 92) on the algorithm selection problem. A

datasetoid is defined as a new dataset obtained by switching an in-

dependent variable with a dependent variable. This idea allows to

circumvent the scarcity of publicly available real-life datasets (93) by

generating more than thousand regression datasetoids to build up a

meta dataset. The meta dataset consist of dataset characteristics as

independent variables and the performance differences of the con-

sidered algorithms as dependent variables. In the context of LGD

analysis, the experiments involve comprehensible regression models

only (i.e. linear, spline, tree, linear tree and spline tree). Both a data

characteristics based meta model and an algorithm characteristics

based meta model is statistically compared with each other and a

simple training average based meta model using Friedman’s test (81)

followed by the Holm post-hoc pairwise testing procedure (94) to

determine any significant performance differences (79, 80). More

details and results are discussed in Chapter 4.
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Benchmarking LGD models

”Prediction is very difficult, especially if it’s about the future.”

-Niels Bohr

(Danish physicist, 1885-1962)

”Study the past if you would devine the future.”

-Confucius

(Chinese philosopher, 551-479 BCE)

In this large-scale LGD benchmarking study, various regression tech-

niques to model and predict LGD are investigated. These include

one-stage models, such as those built by ordinary least squares re-

gression, beta regression, robust regression, ridge regression, regres-

sion splines, neural networks, support vector machines and regres-

sion trees, as well as two-stage models which combine multiple tech-

niques. In total 24 techniques are compared using six real-life loss

datasets from major international banks. It is found that much of
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the variance in LGD remains unexplained as the average predic-

tion performance of the models in terms of R2 ranges from 4% to

43%. Nonetheless, a clear trend can be observed that non-linear

techniques and in particular support vector machines and neural

networks perform significantly better than more traditional linear

techniques. Also, two-stage models built by a combination of linear

and non-linear techniques are shown to have similarly good pre-

dictive power, while they offer the added advantage of having a

comprehensible linear model component.

2.1 Introduction

Credit risk research has so far largely focused on the estimation and

validation of the PD parameter, i.e. the likelihood of a default. The

LGD parameter on the other hand measures the economic loss, ex-

pressed as a percentage of the exposure, in case of default. In other

words, LGD is the proportion of the remaining loan amount that

the bank would not be able to recover. This parameter is a crucial

input to the regulatory capital calculations as it enters the Basel

risk weight function in a linear way (unlike PD, which therefore has

less of a direct effect on minimal capital). Hence, any changes in

the LGD estimates produced by models have a strong bearing on

the capital of a financial institution and as such also its long-term

strategy.

It is thus of crucial importance to have models that estimate LGD

as accurately as possible. This seems however not a trivial issue

as the empirical LGD literature typically reports low performances.
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Such models are often built using simple averages, (generalized) lin-

ear regression or regression trees. The low accuracy results may be

caused either by the use of limited regression techniques or data

with limited predictability. Up to now, no empirical LGD study in

the literature has focussed on gaining more insights in this matter

by assessing different techniques on a multitude of different LGD

datasets. This first large scale LGD benchmarking study investi-

gates using a set of six real-life default loss datasets whether other

approaches can improve the prediction performance of these LGD

models.

The remainder of this chapter is organized as follows. First, a lit-

erature review is conducted on empirical studies which explicitly

focus on modeling LGD for the purpose of forecasting. Second, an

overview is given of both the examined regression techniques and

the performance metrics used to evaluate and compare the models.

Third, the available real-life LGD datasets are described and the ex-

perimental set up is outlined in order to perform the benchmarking

experiments. Forth, the obtained experimental results are reported

and discussed and are followed with a conclusion.

2.2 Literature review

The literature on empirical studies which focus on forecasting LGD

is rather limited. Since LGD estimation has not been a regulatory

requirement since the advent of the second Basel accord, few insti-

tutions do not have a sufficiently large LGD dataset at the moment

to build and validate a predictive LGD model. In addition, banks
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are not eager to share these for scientific research because of rea-

sons of confidentiality if they do have a large track record of losses.

The select amount of empirical studies on forecasting LGD em-

ploy datasets which are mainly American (62), Portugese (61, 67),

German (95), Italian (64, 65), British (25) or Czech (66). The

largest LGD dataset in terms of time span covers more than three

decades of default losses and dates back to as early as 1981 (62). The

datasets vary in size from as small as 374 defaults (61) to as large

as 134937 defaults (64). These include portfolio’s such as loans to

SMEs (61, 64, 65, 66, 67, 95), large corporate loans (62, 66), credit

card accounts (25) and personal loans (64, 65, 95).

Based on the literature, the LGD distribution is typically non-

normal distributed but most often rather bimodally distributed.

Real life LGD tends to be characterized by high concentrations of

either total recovery or total loss or both. The majority of the em-

pirical literature studies report of a large peak on zero and a smaller

peak on one (61, 62, 64, 66, 67). Caselli et al. (65) report the op-

posite: a large peak on one and a smaller peak on zero. Bellotti

and Crook (25) even observe equally large peaks on both zero and

one for credit card accounts. Nonetheless, Gurtler and Hibbelz (95)

observe only a large peak on zero while Gupton (62) observe only a

large peak on one for the corporate loan segment. Similar observa-

tions are obtained in LGD studies which do not focus on forecasting

LGD (49, 50, 68, 96, 97). Based on these studies, there does not

seem to be an obvious connection between the relative size of the

peaks on zero and one and the type of portfolio. Note that these
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may be caused by factors as internal bank policies or external eco-

nomic conditions.

The most basic modeling practice observed in the empirical litera-

ture is the use of a simple historical average which often functions

as a benchmark to compare the predictive performance of more

advanced techniques (61, 62). Various regression techniques are

employed in the emperical literature to model real-life LGD. The

most often used technique seems to be ordinary least squares which

builds linear models (25, 64, 65, 66, 68). Given the bimodal dis-

tribution of LGD which violates the normality assumption of ordi-

nary least squares, several alternatives are proposed to circumvent

this issue. These result in models such as tobit models (25, 64),

logit models (25, 66), logistic models (61, 63, 65, 68), log-log mod-

els (61, 63, 66, 67) and beta models (25, 62, 66, 69). Further, exper-

iments are also done with non-linear techniques such as regression

trees (25, 61, 64) and neural networks (63).

The evaluation of the predictive performance of a model in the em-

pirical literature is generally done by comparing the LGDmodel pre-

dictions with the actual realized LGD dataset observations. These

may be error based such as the Mean Squared Error (MSE) (25, 62,

64), the Root Mean Squared Error (RMSE) (61, 63, 69) or the Mean

Absolute Error (MAE) (61, 63, 64). Although not used in an LGD

context, Bi and Bennet (86) proposed an alternative error based

metric, i.e. the Area Above the Regression Error Characteristics

curve (AOREC), which could also be used to assess the predictive

27



2. BENCHMARKING LGD MODELS

performance of LGD models. Other metrics observed in the LGD

literature are correlation based such as Pearson’s product-moment

correlation coefficient r (62), Kendall’s correlation coefficient τ (66)

or the Coefficient of Determination R2 (25, 65, 67, 68). Note that

Spearman’s rank correlation coefficient ρ (98) could be an alterna-

tive performance metric. Finally, even classification based metrics

are proposed to assess the predictive performance of LGD mod-

els such as the Area Under the Receiver Operation Characteristics

curve (62, 66, 68).

Different techniques are compared with each other in the literature

using the above mentioned methods. Based on these studies, it

is not clear which technique is best for LGD predictive modeling.

Gupton et al. (62) found that their LossCalc model based on beta

regression is more accurate that models based on a simple historical

average based on 3026 defaulted corporate loans and bonds. Ac-

cording to Calabrese et al. (64) a (joint) beta regression model is

better than a linear, tobit or decision tree model based on experi-

ments on 134937 defaulted loans to SMEs. Bellotti and Crook (25)

on the other hand report that linear models are better than beta,

tobit, logit and decision tree models based on 55000 defaulted credit

card accounts. Bastos et al. (61) reports that decision trees appear

to be more accurate than historical averages, log-log and logistic

models based on 374 defaulted loans granted to SMEs. According

to Chalupta et al. (66) logit models appear to be slightly better

than linear, log-log and beta models on a few hundred defaulted

corporate and SME loans.
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Based on previous empirical studies, LGD models typically show

weak predictive performance. Gupton et al. (62) recorded a perfor-

mance of 0.42 to 0.68 in terms of Pearson’s r and of 0.70 to 0.80

in terms of AUROC on 3026 defaulted corporate loans and bonds.

Dermine et al. (67) reported an R2 performance of 0.08 to 0.20 based

on 10000 loans to SMEs. Bellotti and Crook (25) obtained similar

R2 results ranging from 0.01 to 0.20 based on 55000 defaulted credit

card accounts. Chalupta et al. (66) reported a performance of 0.38

to 0.42 in terms of Kendall’s τ and of 0.58 to 0.66 in terms of AU-

ROC based on a few hundred corporate and SME loans. Gurtler

et al. (95) obtained relatively higher R2 results of 0.25 to 0.60 and

an average AUROC of 0.73 based on 69985 defaulted personal loans

and loans to SMEs. Casselli et al. (65) reported similar R2 results

of 0.42 to 0.66.

In order to make well founded conclusions about the predictive per-

formance of regression model techniques, a statistical evaluation

on multiple datasets is required, which is lacking in the empirical

LGD literature. For this purpose, Demsar (79) provided a work-

bench of statistical hypothesis tests in order to detect significant

differences between techniques in terms of predictive performance.

In first instance, it is suggested to use the Friedman’s test (81) in

order to statistically test the null hypothesis that there is no differ-

ence between the multiple hold-out validation performance of the

techniques on multiple datasets. When this null hypothesis can be

statistically rejected, it is suggested to use a pairwise post-hoc test-
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ing procedure to statistically test the null hypothesis that a pair of

techniques differ in multiple hold-out validation performance, e.g.

Nemenyi test (99). Garcia and Herrera (80) extended the work-

bench of Demsar with more powerful pairwise post-hoc tests, e.g.

Hommel test (82).

2.3 Regression techniques

This is an overview of the regression techniques for the benchmark-

ing experiments. These include the most popular techniques found

in the empirical LGD literature supplemented with more advanced

machine learning techniques commonly applied for regression tasks

in general. Both one stage and two stage techniques are considered.

One stage techniques can be divided into linear and nonlinear tech-

niques. Linear techniques model the dependent variable as a linear

function of the independent variables while nonlinear techniques fit

a nonlinear model to a dataset. Two stage models are a strategic

combination of the aforementioned one stage models. These either

combine the comprehensibility of an OLS model with the added

predictive power of a non-linear technique, or they use one model

to first discriminate between zero and higher LGDs and a second

model to estimate LGD for the subpopulation of nonzero LGDs.

The following mathematical notations are employed to describe the

techniques in a more formal way. A scalar x is denoted in normal

script. A vector x is represented in boldface and is assumed to

be a column vector. The corresponding row vector xT is obtained
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using the transpose T . Bold capital notation is used for a matrixX.

The number of independent variables is given by n and the number

of observations is given by l. The observation i is denoted as xi

whereas variable j is indicated as xj. The value of variable j for

observation i is represented as xi(j) and the independent variable

y for observation i is represented as yi. P is used to denote a

probability. A regression technique fits a dataset to a model y =

f(x) + e where y is the dependent variable, x are the independent

variables and e is the residual.

Ordinary Least Squares (OLS)

Ordinary least squares regression (87) is the most common tech-

nique to find optimal parameters bT = [b0 b1 b2 ... bn] to fit a linear

model to a dataset as

y = bTx

where xT = [1 x1 x2 ... xn]. OLS approaches this problem by mini-

mizing the sum of squared residuals:

l
∑

i=1

(ei)
2 =

l
∑

i=1

(yi − bTxi)
2

By taking the derivative of this expression and subsequently setting

the derivative equal to zero

l
∑

i=1

(yi − bTxi)x
T
i = 0

the model parameters b can be retrieved as

b = (XTX)−1XTy

with XT = [x1 x2 ... xl] and y = [y1 y2 ... yl]
T .
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Ridge Regression (RiR)

Ridge regression (100) is a linear regression variant that is less sen-

sitive to correlated independent variables than OLS. When inde-

pendent variables are strongly correlated with each other, inverting

the XTX matrix leads to large and unreliable parameter estimates.

Ridge regression reduces these undesirable symptoms by minimizing

λbTb+

l
∑

i=1

(ei)
2 = λbTb+

l
∑

i=1

(yi − bTxi)
2

where λ is defined as the ridge parameter which controls a trade-

off between bias and variance. With values of λ larger than zero,

the model parameters are more biased but can be estimated more

reliably as

b = (XTX+ λI)−1XTy

where I is the identity matrix.

Robust Regression (RoR)

Robust regression (101) is another linear regression variant that is

less sensitive to outliers as OLS. When the dataset contains outliers,

the model parameters can become unreliable. Therefore, the most

common method for robust regression called M-estimation (102)

minimizes
l

∑

i=1

ρ(ei) =
l

∑

i=1

ρ(yi − bTxi)

where the objective function ρ(e) should be less sensitive for outliers

than the function used by OLS, i.e. ρ(e) = e2. By taking the
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derivative of the objective function and subsequently setting the

derivative equal to zero

l
∑

i=1

wi(yi − bTxi)x
T
i = 0

where w(e) =

∂ρ

∂e
e

is defined as the weight function and wi = w(ei)

are the resulting weights. Because the weights depend upon the

residuals, the residuals depend upon the estimated coefficients and

the estimated coefficients depend upon the weights, the solution re-

quires an iterative procedure (Iteratively Reweighted Least Squares

or IRLS). To start, the initial model parameters b(0) are estimated

by setting wi = 1 as in OLS. At each iteration t, the model pa-

rameters b(t) are estimated using the residuals e
(t−1)
i and associated

weights w
(t−1)
i from the previous iteration. The new estimates are

given by

b(t) = (XTW(t−1)X)−1XTW(t−1)y

where W(t−1) = diag
{

w
(t−1)
i

}

. This procedure stops when the es-

timated model parameters b satisfy a convergence criterion (103).

Ordinary Least Squares with Beta transformation (B-OLS)

Whereas OLS regression tests generally assume normality of the de-

pendent variable y, the empirical distribution of LGD can often be

approximated more accurately by a Beta distribution (104). Assum-

ing that y is constrained to the open interval (0, 1), the cumulative

distribution function (CDF) of a Beta distribution is given by:

β(y; a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ y

0

va−1(1− v)b−1dv

33



2. BENCHMARKING LGD MODELS

where Γ() denotes the well-known Gamma function, and a and b

are two shape parameters, which can be estimated from the sample

mean µ and variance σ2 using the method of the moments, i.e.:

a =
µ2(1− µ)

σ2
− µ ; b = a(

1

µ
− 1)

A potential solution to improve model fit therefore is to estimate an

OLS model for a transformed dependent variable y∗i = N−1(β(yi; a, b))

(i = 1, ..., l), in whichN−1() denotes the inverse of the standard nor-

mal CDF. The predictions by the OLS model are then transformed

back through the standard normal CDF and the inverse of the fitted

Beta CDF to get the actual LGD estimates.

Beta Regression (BR)

Instead of performing a Beta transformation prior to fitting an

OLS model, an alternative Beta regression model approach can be

considered (105). This model for estimating a dependent variable

bounded between zero and one is closely related to the class of gen-

eralized linear models and allows for a dependent variable that is

Beta-distributed conditional on the covariates. Instead of the usual

parametrization though of the Beta distribution, with shape param-

eters a and b, they propose an alternative parametrization involving

a location parameter µ and a precision parameter φ, by letting:

µ =
a

a+ b
; φ = a+ b

It can be easily shown that the first parameter is indeed the mean

of a β(a, b)-distributed variable, whereas σ2 = µ(1−µ)
(φ+1)

, so for fixed µ,

the variance (dispersion) increases with smaller φ.
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Two link functions mapping the unbounded input space of the lin-

ear predictor into the required value range for both parameters are

then chosen, viz. the logit link function for the location parame-

ter (as its value must be squeezed into the open unit interval) and

a log function for the precision parameter (which must be strictly

positive), resulting in the following sub models:

µi = E(yi|xi) =
eb

Txi

1 + eb
Txi

φi = e−dTxi

This particular parametrization offers the advantage of producing

more intuitive variable coefficients (as the two rows of coefficients,

bT and dT , provide an indication of the effect on the estimate itself

and its precision, respectively). By further selecting which variables

to include in (or exclude from) the second submodel, one can ex-

plicitly model heteroskedasticity. The resulting log-likelihood func-

tion is then used to compute maximum-likelihood estimators for all

model parameters.

Ordinary Least Squares with Box-Cox transformation (BC-

OLS)

The aim of the family of Box-Cox transformations (106) is to make

the residuals of the regression model more homoskedastic and closer

to a normal distribution. The Box-Cox transformation on the de-

pendent variable yi takes the form






((yi + c)λ − 1)

λ
if λ 6= 0

log(yi + c) if λ = 0
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with power parameter λ and parameter c. If needed, the value of c

can be set to a non-zero value to rescale y so that it becomes strictly

positive. After a model is built on the transformed dependent vari-

able using OLS, the predicted values can be transformed back to

their original value range.

Regression trees (RT)

Classification and regression trees are decision tree models, for a

categorical or continuous dependent variable, respectively, that re-

cursively partition the original learning sample into smaller sub-

samples, so that some impurity criterion i() for the resulting node

segments is reduced (107). To grow the tree, one typically uses a

greedy algorithm that, at each node t, evaluates a large set of can-

didate variable splits so as to find the ’best’ split, i.e. the split s

that maximizes the weighted decrease in impurity:

∆i(s, t) = i(t)− pLi(tL)− pRi(tR)

where pL and pR denote the proportions of observations associated

with node t that are sent to the left child node tL or right child

node tR, respectively. A commonly applied impurity measure i(t)

for regression trees is the mean squared error or variance for the

subset of observations falling into node t. Alternatively, a split may

be chosen based on the p-value of an ANOVA F-test comparing

between-sample variances against within-sample variances for the

subsamples associated with its respective child nodes (ProbF crite-

rion).
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Multivariate Adaptive Regression Splines (MARS)

MARS (108) is a technique that uses piecewise linear functions

to capture non-linearities and interactions between variables. The

method is based on a ‘divide and conquer’ strategy where the in-

put space is divided in partitions and each partition holds its own

regression equation. MARS fits a dataset to a model of the form

y =
K
∑

k=1

bkBk(x) + e

where B(x) is a basis function and K refers to the number of ba-

sis functions. A basis function can either take the value one or a

single hinge function h(xj) that takes the form of max(0, xj − a) or

max(0, a − xj) with a a so-called knot, or a product of 2 or more

hinge functions to model interactions. MARS builds a model in 2

phases: a forward and a backward pass. The forward pass builds

an over fitted model by adding a number of Hinge functions, typ-

ically twice the number of Hinge functions with the lowest mean

squared error. Both variables and knots are selected via a partition

scheme and a subsequent exhaustive search. The backward proce-

dure prunes the model by removing those Hinge functions that are

associated with the smallest increase in the so-called GCV (Gener-

alized Cross Validation) error, defined as

GCV =

l
∑

i=1

(yi − f(xi))
2

(1− C

l
)2

where C = 1 + c · d, c is a penalty for adding a Hinge function and

d is the number of independent Hinge functions.
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Least Squares Support Vector Machines

(LSSVM)

In this study an SVM (109) variant, called LSSVM (110), is used

because of its higher efficiency for solving large scale problems (111).

The basic idea behind regression with LSSVM is to map the inde-

pendent variables to a high dimensional feature space with a non-

linear function ϕ so the data becomes more appropriate for linear

regression:

y = bTϕ(x) + e

with ϕT (x) = [1 ϕ(x1) ϕ(x2) ... ϕ(xn)]. However, the model is never

evaluated in this form. Instead, LSSVM regression fits a model to

a dataset by minimizing

1

2
bTb+

1

2
γ

l
∑

i=1

(ei)
2 =

1

2
bTb+

1

2
γ

l
∑

i=1

(yi − bTϕ(xi))
2

where γ is defined as the regularization parameter. The primal op-

timization problem indicates that each data point has to be mapped

to a high dimensional (possibly infinite) feature space. This map-

ping however becomes quite fast computationally infeasible. To by-

pass this problem, the kernel trick is used. In order to be able to do

the kernel trick, the optimization problem has to be reformulated in

its dual form by applying the method of Lagrange multipliers that

leads to the following equation:

y =

l
∑

i=1

αiϕ(x)
Tϕ(xi) + e

At this point the kernel trick can be performed. The kernel K is

a function that calculates the dot products of the input vectors in
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feature space without implicitly doing the mapping to the feature

space. The kernel trick is supported by Mercer’s theorem and re-

places every dot product in high dimensional feature space by a

simple kernel function:

K(x,xi) = ϕ(x)Tϕ(xi)

Artificial Neural Networks (ANN)

ANNs are mathematical representations inspired by the functioning

of the human brain (112). The benefit of an ANN is its flexibility

in modeling virtually any (non-linear) dependency between inde-

pendent variables and the dependent variable. Although various

architectures have been proposed, our study focuses on probably

the most widely used type of ANN, i.e. the Multilayer Perceptron

(MLP). A MLP is typically composed of an input layer (consist-

ing of neurons for all input variables), a hidden layer (consisting of

any number of hidden neurons), and an output layer (in our case,

one neuron). A common way of training ANNs is backpropagation.

Each neuron processes its inputs and transmits its output value to

the neurons in the subsequent layer. Each such connection between

neurons is assigned a weight during training. The output of hidden

neuron i is then computed by applying an activation function f (1)

to the weighted inputs and its bias term b
(1)
i (having a similar role

to the intercept of a regression model) as follows:

hi = f (1)(b
(1)
i +

n
∑

j=1

Wijxj)

W is the weight matrix whereby Wij denotes the weight connecting

input j to hidden neuron i. Similarly, the output of the output layer
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is computed as follows:

y = f (2)(b(2) +

nh
∑

j=1

vjhj)

with nh the number of hidden neurons and v the weight vector

whereby vj represents the weight connecting hidden neuron j to

the output neuron. Examples of transfer functions that are com-

monly used are the sigmoid function f(x) = 1
1+e−x , the hyperbolic

tangent f(x) = ex−e−x

ex+e−x and the linear transfer function f(x) = x.

During model estimation, the weights of the network are first ran-

domly initialized and then iteratively adjusted so as to minimize

an objective function, typically the sum of squared errors (possibly

accompanied by a regularization term to prevent over fitting). This

iterative procedure can be based on simple gradient descent learn-

ing or more sophisticated optimization methods such as Levenberg-

Marquardt or Quasi-Newton. The number of hidden neurons can

be determined through a grid search based on validation set perfor-

mance.

Linear regression + non-linear regression (OLS+)

The purpose of this two-stage technique is to combine the good

comprehensibility of OLS with the predictive power of a non-linear

regression technique (113). In a first stage, a linear model

y = bTx+ e
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is built with OLS. In a second stage, the residuals e of this linear

model

e = g(x) + e∗

are estimated with a non-linear regression model g in order to fur-

ther improve the predictive ability of the model. Doing so, the

model takes the following form:

y = bTx+ g(x) + e∗

where e∗ are the new residuals of estimating e. A combination of

OLS with RT, MARS, LSSVM and ANN is assessed in this study.

Logistic regression + (non)linear regression (LOG+)

The LGD distribution is often characterized by a large peak around

LGD = 0. This non-normal distribution can lead to inaccurate re-

gression models. This proposed two-stage technique attempts to

resolve this issue by modeling the peak separately from the rest.

Therefore, the first stage of this two-stage model consists of a lo-

gistic regression to estimate whether LGD ≤ 0 or LGD > 0. In a

second stage the mean of the observed values of the peak is used

as prediction in the first case and a one-stage (non)linear regression

technique is used as prediction in the second case. More specifically,

a logistic regression (114) results in an estimate of the probability

P of being in the peak

P =
1

1 + e−(bTx)

with (1 − P ) as the probability of not being in the peak. This

two-stage model is built using the following equation:

y = P · ypeak + (1− P ) · f(x) + e
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where ypeak is the mean of the values of y ≤ 0, which practically

equals to 0, and f(x) is a one-stage (non)linear regression model,

build on those observations only that are not in the peak. Whereas

ypeak is determined using only the values of y ≤ 0, the one-stage

model is built using only the values of y > 0. A combination of

logistic regression with all aforementioned one-stage techniques as

described above, is assessed is this study.

2.4 Performance metrics

This is an overview of the performance metrics to evaluate the ex-

tend to which degree regression model predictions f(xi) differ from

the dataset observations yi of the dependent variable. These include

the most popular performance metrics found in the empirical LGD

literature supplemented with performance metrics applied for re-

gression tasks in general. Each of these metrics has its own method

of quantifying model performance.

Root Mean Squared Error (RMSE)

RMSE is defined as the square root of the average of the squared

difference between predictions and observations:

RMSE =

√

√

√

√

1

l

l
∑

i=1

(f(xi)− yi)
2

RMSE has the same units as the dependent variable being predicted.

Since residuals are squared, this metric heavily weights outliers.
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The RMSE is bound between the maximum squared error and zero

(perfect prediction).

Mean Absolute Error (MAE)

MAE is given by the averaged absolute differences of predicted and

observed values:

MAE =
1

l

l
∑

i=1

|f(xi)− yi|

Just like RMSE, MAE has the same unit scale as the dependent

variable being predicted. Unlike RMSE, MAE is not that sensitive

to outliers. The metric is bound between the maximum absolute

error and zero (perfect prediction).

Area under the Receiver Operating Characteristic Curves

(AUC)

ROC curves are normally used for the assessment of binary classifi-

cation techniques (89). It is however used in this context to measure

how good the regression technique is in distinguishing high values

from low values of the dependent variable. To build the ROC curve,

the observed values are first classified into high and low classes us-

ing the mean y of the training set as reference. The area under the

ROC curve (AUC) is an estimate for the discriminatory power of

the technique. The AUROC varies from 0.5 (random classification)

to one (perfect classification).
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Area over the Regression Error Characteristic curves (AOC)

REC curves (86) generalize ROC curves for regression. The AOC

curve plots the error tolerance on the x-axis versus the percentage

of points predicted within the tolerance (or accuracy) on the y-axis.

The resulting curve estimates the cumulative distribution function

of the squared error. The area over the REC curve (AOC) is an

estimate of the predictive power of the technique. Unlike the AU-

ROC, the AOREC is bound between zero (perfect prediction) and

the maximum squared error.

Coefficient of Determination (R2)

The Coefficient of Determination R2 (87) can be defined as one

minus the fraction of the residual sum of squares to the total sum

of squares:

R2 = 1− SSerr

SStot

where SSerr =

l
∑

i=1

(yi − f(xi))
2, SStot =

l
∑

i=1

(yi − y)2 and y is the

mean of the observed values. Since the second term in the formula

can be seen as the fraction of unexplained variance, the R2 can be

interpreted as the fraction of explained variance. The R2 is usually

expressed as a number on a scale from zero to one. However, R2

can yield negative values when the model predictions are worse than

using the mean y from the training set as prediction.
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Pearson’s Correlation Coefficient (r)

Pearson’s r (98) is defined as the sum of the products of the standard

scores of the observed and predicted values divided by the degrees

of freedom:

r =
1

l − 1

l
∑

i=1

(

yi − y

sy

)(

f(xi)− f)

sf

)

with y and f the mean and sy and sf the standard deviation of

respectively the observations and predictions. Pearson’s r can take

values between minus one (perfect negative correlation) and one

(perfect positive correlation) with zero meaning no correlation at

all.

Spearman’s Correlation Coefficient (ρ)

Spearman’s ρ (98) is defined as Pearson’s r applied to the rankings

of predicted and observed values. If there are no or few tied ranks

however, it is more usual to use the equivalent formula

ρ = 1−
6

l
∑

i=1

d2i

l(l2 − 1)

where dk is the difference between the ranks of observed and pre-

dicted values. Spearman’s ρ can take values between minus one

(perfect negative correlation) and one (perfect positive correlation)

with zero meaning no correlation at all.
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Kendall’s Correlation Coefficient (τ)

Kendall’s τ (98) measures the degree of correspondence between

observed and predicted values. In other words, it measures the

association of cross tabulations:

τ =
nc − nd

1
2 l(l − 1)

where nc is the number of concordant pairs and nd is the number of

discordant pairs. A pair of observations {i, k} is said to be concor-

dant when there is no tie in either observed or predicted LGD (i.e.

yi 6= yk, f(xi) 6= f(xk)), and if sgn(f(xk) − f(xi)) = sgn(yk − yi),

where i, k = 1, ..., l (i 6= k). Similarly, it is said to be discordant if

there is no tie and if sgn(f(xk)− f(xi)) = −sgn(yk− yi). Kendall’s

τ can take values between minus one (perfect negative correlation)

and one (perfect positive correlation) with zero meaning no corre-

lation at all.

2.5 Methods

This section describes the collected real-life LGD datasets and out-

lines the experimental benchmarking framework used to assess the

performance of the various models built on the real-life LGD datasets.

After data pre-processing, the models are built on the training sets

and predictive performance metrics are reported for the remaining

test sets. Several of the included techniques require parameter set-

tings or tuning and/or benefit from variable selection; further details

of both are provided below, along with the procedure used to as-

sess whether the observed performance differences are statistically
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significant.

2.5.1 Data collection

The LGD datasets are obtained from six financial institutions, each

of which contains loan-level data about defaulted loans and their

resulting losses. An overview of the datasets is given in Table 2.1.

The number of dataset entries varies from a few thousands to just

under 120000 observations. The number of available input vari-

ables ranges from twelve to forth-four. The types of loan portfolios

included are personal loans, corporate loans, revolving credit and

mortgage loans. The empirical distribution of LGD values observed

in each of the datasets is displayed in Figure 2.1. Note that the LGD

distribution in consumer lending often contains one or two spikes

around LGD=0 (in which case there was a full recovery) and/or

LGD=1 (no recovery). Also, a number of datasets include some

LGD values that are negative (e.g., because of penalties paid, gains

in collateral sales, etc.) or larger than one (e.g., due to additional

collection costs incurred); in other datasets, values outside the unit

interval were truncated to zero or one by the banks themselves. Im-

portantly, in none of these datasets, LGD appears to be normally

distributed. More information on these datasets is confidential.

Prior to the benchmarking experiments, the datasets are pre-processed

as follows. Instances with missing values are excluded from the

dataset. Each dataset is randomly shuffled and divided into two-

thirds training set and one-third test set. The training set is used to

build the models while the test set is used solely to assess the pre-
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Dataset Type Inputs Total size Training size Test size

BANK1 Personal loans 44 47853 31905 15948

BANK2 Mortgage loans 18 119211 79479 39732

BANK3 Mortgage loans 14 3351 2232 1119

BANK4 Revolving credit 12 7889 5260 2629

BANK5 Mortgage loans 35 4097 2733 1364

BANK6 Corporate loans 21 4276 2851 1425

Table 2.1: Overview of dataset characteristics
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Figure 2.1: Empirical LGD distributions for six real-life datasets
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diction performance of these models. The independent continuous

variables are standardized with the sample mean and standard de-

viation of the training set. Further, independent nominal variables

are transformed by introducing as many dummy variables as there

are nominal categories. A dummy variable takes the value 1 or 0 to

indicate the presence or absence of a specific nominal category. Fi-

nally, independent ordinal variables are transformed by introducing

as many thermo variables as there are ordinal categories. A thermo

variable takes the value 1 when a specific ordinal category or higher

order category is present and 0 otherwise.

2.5.2 Algorithm configurations

OLS, B-OLS and BR can be run without the need for any parame-

ter tuning. For RiR, the ridge parameter is tuned by ten-fold cross

validation on the training set. Values are varied from zero to one

in steps of 0.01, and mean squared error is used as selection cri-

terion. For RoR, the commonly used bisquare function is chosen

as objective function and its parameter k is set to 4.685 times the

standard deviation of the residual (115). The value of the power

parameter for the BC-OLS models is varied over a chosen range,

i.e. from minus three to three in 0.25 increments, and an optimal

value is chosen based on a maximum likelihood criterion.

For the RT model, the training set is further split into a training and

a validation subset. The validation set is used to select the crite-

rion for evaluating candidate splitting rules (i.e. variance reduction
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or ProbF), the depth of the tree and the threshold p-value for the

ProbF criterion. All were selected based on the mean squared error

on the validation set. To run MARS, we set the penalty for adding

a Hinge function to 2.5 (116); the maximum interaction degree is

varied from zero to five in steps of one and a setting is chosen based

on mean squared error using ten-fold cross validation on the train-

ing set.

For LSSVM regression, the radial basis function (RBF) kernel is

used because of its good overall performance for LSSVM classifiers

(117). Its hyperparameters are again tuned using ten-fold cross

validation on the training dataset. A grid search procedure eval-

uates a large space of possible hyperparameter combinations so as

to find a combination that minimizes the mean squared error. The

limits of the grid for the kernel and regularization parameter are

set to
[

0.5
√
n, 500

√
n
]

and

[

0.01

m
,
1000

m

]

, where n, m denote the

number of observations and variables, respectively (118). On a

larger dataset, this search process can be computationally intensive.

Therefore, a random sample of 4000 observations is chosen from the

complete training set for the purpose of tuning the LSSVM hyper-

parameters before the final model is run on the full training set.

In order to train the ANNs, we again split each training set into

a training and validation set. Validation-set mean squared error

is then used to select the target layer activation function (logistic,

linear, exponential, reciprocal, square, sine, cosine, tanh or arcTan)

and determine the number of hidden neurons (a range of one to
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twenty is considered). The hidden layer activation function is set to

logistic.

Further, input selection methods are used to remove irrelevant or

redundant independent variables from the datasets as this may im-

prove the performance of the resulting regression models. More

specifically, a stepwise selection procedure is applied in building the

linear models, i.e. OLS, B-OLS, BR, BC-OLS, RiR and RoR. For

computational efficiency reasons, an R2-based filter method (119)

is applied prior to building the LSSVM and ANN models. Both

RT and MARS already perform variable selection implicitly so no

additional input selection is required here.

2.5.3 Model evaluation

The performance of the resulting models is measured on the test set

according to the eight performance metrics. On each dataset, the

techniques are ranked from one (best) to twenty-four (worst) based

on the resulting values for each of these metrics. Then, the average

rank of each technique over all datasets is calculated for each met-

ric. To further summarize the results, an overall average ranking

of techniques over the datasets and over all metrics is also produced.

Model performance is statistically compared using Friedman’s test

(81) and the post-hoc multiple testing procedure of Hommel (82)

as suggested in the literature (79, 80). Friedman’s test is performed

to test the null hypothesis that all regression techniques perform
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alike based on their ranking for a chosen performance metric. We

then use Hommel’s method to compare each regression technique

against the best performing one and report significant rank differ-

ences. All statistical tests are conducted at the 95% confidence level.

2.5.4 Implementation details

The majority of regression techniques are implemented through

standard methods available in both Matlab (LOG, OLS, RT, RiR,

RoR) and SAS (ANN, BC-OLS, BC-OLS, BR). External Matlab

toolboxes are used for LSSVM (LS-SVMlab) and MARS (ARES-

Lab). Variable selection is performed through the sequential fea-

ture selection method in Matlab and the R2-based filter method in

SAS. Further, standard methods are available in Matlab for calcu-

lating correlation coefficients such as Pearson’s r, Spearman’s ρ and

Kendall’s τ . For the statistical comparison using Friedman’s test

and the post-hoc multiple testing procedure of Hommel, a stand-

alone Java application is used which is provided by Garcia and Her-

rera (80). All other code required for the experiments is developed

by the author.

2.6 Results and discussion

Tables B.1 to B.6 contain the performance results obtained for all

techniques on the six respective datasets. The best performing

model according to each metric is underlined. The Friedman test
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results for the respective performance measures all indicate that

the observed differences in performance are extremely unlikely to

be due to random chance (e.g. for R2, the p-value is 1.06·1008).
Figure 2.2 displays a series of box plots for the observed distribu-

tions of performance values for the metrics AUC, R2, r, ρ and τ .

No box plots are however constructed for RMSE, MAE and AOC

since these are dataset dependent and thus not comparable accross

different datasets. Similar trends can be observed across the box

plots. Note that differences in type of portfolio, number of obser-

vations and available independent variables are the likely causes of

the observed variability of actual performance levels between the six

different datasets.

Although all performance metrics listed above are useful measures

in their own right, it is common to use the coefficient of determi-

nation R2 to compare model performance across different datasets.

As shown in Figure 2.2, the average R2 of the models varies from

about 4% to 43% which is in line with the reported results in pre-

vious studies (25, 65, 67, 68). In other words, the variance in LGD

that can be explained by the independent variables is consistently

below 50%, implying that most of the variance cannot be explained

even with the best models. Note that although R2 usually is a num-

ber on a scale of zero to 1, R2 can yield negative values for non-OLS

models when the model predictions are worse than always using the

mean from the training set as prediction.

Table 2.2 shows the average ranking of techniques over the six
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Figure 2.2: Variability of LGD model performance observed for the six datasets
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Rank Technique RMSE MAE AUC AOC R2 r ρ τ OAR

1 LSSVM 4.0 9.0 3.8 4.0 4.5 4.2 3.5 4.8 4.7

2 ANN 3.5 3.7 6.3 3.2 3.8 3.8 8.8 8.9 5.3

3 OLS+LSSVM 5.3 9.6 4.1 5.0 5.8 5.8 5.5 6.2 5.9

4 LOG+ANN 5.1 7.0 10.0 5.4 5.7 5.2 7.8 8.3 6.8

5 OLS+ANN 5.7 9.3 4.6 7.8 6.8 5.8 7.7 7.8 6.9

6 LOG+LSSVM 8.2 8.4 5.9 8.3 8.8 6.2 6.7 6.6 7.4

7 OLS+MARS 5.4 13.4 5.5 5.1 5.9 5.3 10.0 11.0 7.7

8 OLS+RT 8.5 12.2 7.2 6.2 8.5 7.8 9.3 10.3 8.8

9 MARS 7.2 13.6 7.2 7.0 7.5 7.8 10.5 9.5 8.8

10 LOG+MARS 10.0 10.6 10.4 10.1 11.2 10.3 11.8 11.0 10.7

11 RT 10.1 11.4 19.1 10.4 10.5 11.2 10.8 6.5 11.2

12 LOG+RiR 13.2 14.7 12.6 13.0 15.1 14.2 11.0 11.8 13.2

13 LOG+RT 13.2 12.5 14.8 13.2 13.6 13.0 12.7 13.2 13.3

14 LOG+RoR 17.3 10.0 15.0 17.3 18.2 14.8 10.8 10.7 14.3

15 RiR 14.5 20.2 12.8 14.6 15.8 15.8 16.8 17.4 16.0

16 LOG+OLS 14.5 16.8 16.3 13.8 15.7 16.5 16.8 17.5 16.0

17 LOG+B-OLS 17.6 7.7 17.3 17.7 18.5 16.7 18.6 19.3 16.7

18 B-OLS 20.4 10.3 15.5 21.2 15.8 20.2 16.0 16.5 17.0

19 LOG+BC-OLS 19.9 10.3 19.0 19.9 14.7 18.5 16.8 17.0 17.0

20 OLS 15.4 19.7 13.8 15.3 17.0 17.3 18.4 19.5 17.1

21 RoR 19.7 16.4 16.3 19.5 18.8 17.7 17.8 14.0 17.5

22 BC-OLS 22.1 13.2 20.7 22.1 16.7 20.8 15.2 15.8 18.3

23 BR 18.2 20.3 20.3 18.5 19.8 20.8 16.7 16.7 18.9

24 LOG+BR 21.3 19.8 21.6 21.3 21.4 20.5 20.0 19.7 20.7

Table 2.2: Mean performance ranks of techniques over the six datasets and overall

average rank (OAR) over all metrics

datasets according to each performance metric. Additionally, their

overall average rank over the six datasets and over the eight per-

formance metrics is included in the last column. The techniques

are ordered according to their overall average ranking. The best

performing technique for each metric is again underlined and tech-

niques that perform significantly worse than this best technique

according to Hommel’s procedure are displayed in italic. It can be

observed that the same techniques, LSSVM and ANN, are consis-

tently ranked in the top two regardless of the metric.

The pure linear models built by OLS, RiR and RoR do not seem to
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show consistent differences in performance between one another. Al-

though RiR is ranked somewhat higher overall, it most often leads

to model performance identical to that of OLS. We suspect that

any potential benefits of RiR could be limited in this particular set-

ting because the chosen variable selection methods eliminate highly

correlated variables a priori. On all datasets, RoR produces models

that either perform slightly worse than the OLS models or they show

similar performance. Hence, RoR’s ability to reduce the impact of

outliers does not result in any actual performance improvement on

our real-life datasets.

The linear models that incorporate some form of transformation to

the dependent variable (i.e. B-OLS, BR, BC-OLS) are shown to

perform consistently worse than OLS, despite the fact that these

approaches are specifically designed to cope with the violation of

the OLS normality assumption. This suggests that they too have

difficulties dealing with the pronounced point densities observed in

LGD datasets, while they may be less efficient than OLS or they

could introduce model bias if a transformation is performed prior

to OLS estimation (as is the case for B-OLS and BC-OLS).

Perhaps the most striking result is that, in contrast with prior

benchmarking studies on classification models for PD (27), non-

linear models such as LSSVM and ANN significantly outperform

most linear models in the prediction of LGD. This implies that

the relation between LGD and the independent variables in the

datasets is non-linear (as is most apparent on dataset BANK3, see
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Table B.3). Also, LSSVM and ANN generally perform better than

RT or MARS. However, LSSVM and ANN result in black-box mod-

els while RT and MARS have the ability to produce comprehensible

white-box models.

The performance evaluation of the class of two-stage models in

which a logistic regression model is combined with a second-stage

(linear or non-linear) model (LOG+), is less straightforward. Al-

though a weak trend is noticeable that logistic regression combined

with a linear model tends to increase the performance of the latter,

it appears that logistic regression combined with a non-linear model

slightly reduces the strong performance of the latter. Because the

LGD distributions from BANK4, BANK5 and BANK6 also show a

peak at LGD=1, the performance of these models could possibly

be increased by slightly altering the technique. Replacing the (bi-

nary) logistic regression component by an ordinal logistic regression

model distinguishing between three classes (LGD≤ 0, 0<LGD< 1,

LGD≥ 1) and then using a second-stage model for 0<LGD< 1

could perhaps better account for the presence of both peaks.

In contrast with the previous class of two-stage models, a clear trend

can be observed for the combination of a linear and a non-linear

model (OLS+). By estimating the error residual of an OLS model

using a non-linear technique, the prediction performance tends to

increase to somewhere very near the level of the corresponding one-

stage non-linear technique. What makes these two-stage models

attractive is that they have the advantage of combining the high
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prediction performance of non-linear regression with the compre-

hensibility of a linear regression component.

2.7 Conclusions

In this chapter, twenty-four regression techniques were evaluated

on six real-life datasets obtained from major international bank-

ing institutions. The average performance of the models in terms

of R2 ranged from 4% to 43%, showing that several resulting mod-

els have limited explanatory power. These rather weak performance

results are quite similar to those obtained in previous LGD forecast-

ing studies. Nonetheless, a clear trend can be seen that non-linear

techniques, and support vector machines and artificial neural net-

works in particular, yield significantly higher model performance

than more traditional linear techniques. This suggests the presence

of non-linear relations between the independent variables and LGD,

contrary to previous benchmarking studies on PD modeling where

the difference between linear and non-linear techniques was not that

explicit. Therefore, the study clearly demonstrated the potential of

applying non-linear techniques to LGD modeling, possibly in the

form of first order regression splines so as to yield good predictive

performance while offering the advantage of being well interpretable.
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Backtesting LGD models

”When I see articles with lots of significance tests,

I say that the statisticians are p-ing on the research.”

-Herman Friedmann (American statistician, 1930-2010)

”The only relevant test of the validity of a hypothesis

is comparison of prediction with experience.”

-Milton Friedman (American economist, 1912-2006)

The Basel accords require financial institutions to regularly validate

their LGD models. This is crucial so banks are not underestimat-

ing or overestimating the minimal required capital to protect them

against the risks they are facing through their lending policies. The

validation of an LGD model typically includes backtesting which

is the process of evaluating to which degree the internal model es-

timates correspond with the realized observations. Current back-

testing practices are limited to solely measuring the similarity be-

tween model predictions and realized observations. It is however
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not straightforward to determine acceptable performance based on

these measurements. Although recent research lead to advanced

backtesting methods for PD models, literature on similar backtest-

ing methods for LGD models is non-existing. This study addresses

this literature gap by proposing a backtesting framework with sta-

tistical hypothesis tests to support the validation of LGD models.

The proposed statistical hypothesis tests implicitly define reliable

reference values to determine acceptable performance and take into

account the number of LGD observations which may influence the

quality of the backtesting procedure. The workbench of statistical

hypothesis tests is applied to an LGD model based on real-life data.

Special attention is given to the evaluation of the statistical power

of the proposed tests.

3.1 Introduction

Banks are required to regularly validate the internal estimation pro-

cess and the internal models so as to prove their soundness to the

national regulator (6). The validation of the estimation process in-

volves issues like data quality, reporting and problem handling and

how the predictive models are used by the bank. The validation

of the estimation process is mainly qualitative in nature, although

quantitative methods are useful for the examination of data quality.

The validation of the models on the other hand includes both the

examination of the model design and the predictions it produces.

The evaluation of the model design consists of a qualitative review

of the statistical techniques and the relevance of the data used to
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build the model. The assessment of a model’s predictions typically

includes quantitative methods as benchmarking and backtesting.

While benchmarking methods evaluate the internal model estimates

with external model estimates (88), backtesting methods evaluate

the internal model estimates with the actual realized observations.

The purpose of backtesting is to evaluate the predictive performance

of a model and to assess its time evolution to detect model deterio-

ration in a timely manner. An LGD model can experience reduced

predictive performance when current loan loss behavior does not

reflect previous loan loss behavior anymore on which the model is

built. This may lead to an overestimation or underestimation of a

bank’s required minimal capital so that its operations can become

less profitable or more risky respectively. Although banks are re-

quired to validate their models in order to be Basel compliant, the

accord does not mention how to perform the validation (6). In ad-

dition, recent research has largely focused on advanced methods for

backtesting PD models (70, 71, 72) but literature on comparable

methods for backtesting LGD models is non-existing.

Current LGD backtesting practices are usually limited to comparing

internal LGD predictions and realized LGD observations with error

based metrics, correlation based metrics or even classification based

metrics (88). It is however not straightforward to determine ac-

ceptable performance solely based on these metrics. A single value

has little meaning without an appropriate reference value indicating

acceptable accuracy. Additionally, these metrics do not take into ac-
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count the number of LGD observations. When the portfolio lacks

sufficient observations, a few extreme observations can distort the

accuracy result and so degrade its reliability. This study proposes a

backtesting framework where the model performance on test data is

evaluated with respect to the model performance on training data

with appropriate statistical hypothesis tests. Hence, an appropriate

reference value is introduced while the number of observations is

implicitly taken into account.

The remainder of this study is organized as follows. First, a litera-

ture review is conducted on empirical LGD studies which focus on

the evaluation of the predictive performance of LGD models. Sec-

ond, the key idea of the proposed backtesting procedure is explained

together with the workbench of appropriate statistical hypothesis

tests to evaluate LGD models. Third, the experimental set-up to

apply and to evaluate the backtesting framework is described. This

involves information about the employed real-life LGD data, the

design of a predictive LGD model based on this data, a statistical

significance analysis of the measured predictive model performance

and a statistical power analysis of the proposed tests based on these

performance metrics. Forth, the results of the backtesting procedure

applied to a real-life LGD model is reported and discussed.

3.2 Literature review

The Basel accords require banks to backtest their internal mod-

els but do not further specify how this needs to be performed (6).
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Current backtesting practices in the empirical LGD literature are

usually limited to comparing internal LGD predictions and realized

LGD observations with error based metrics (e.g. MAE, RMSE), cor-

relation based metrics (e.g. Pearson’s r, Kendall’s τ , Spearman’s ρ,

coefficient of determination R2) or even classification based metrics

(e.g. AUROC) (88). Each of these metrics has its own method with

respect to the way of quantifying the degree of similarity between

LGD model predictions and the actual realized observations. This

section describes the workings of these metrics more in detail and

how these are used to assess the predictive performance of LGD

models. To conclude, several problems are identified when using

these metrics for the purpose of backtesting LGD.

Error based metrics quantify the error or difference between pre-

dicted and observed values. The most often used error based metric

seems to be the MSE (25, 62, 64). The MSE is defined as the aver-

age of the squared difference between predictions and observations.

Since errors are squared, this metric heavily weights outliers. The

metric is bound between the maximum squared error and zero (per-

fect prediction). The RMSE is also often used as a metric in the

literature (61, 63, 69). The RMSE is merely the squared root of the

MSE but offers the additional advantage that it has the same units

as the dependent variable being predicted, unlike MSE. Another

error based metric used in the literature is the MAE (61, 63, 64).

The MAE is given by the averaged absolute differences of predicted

and observed values. Just like the RMSE, the MAE has the same

unit scale as the dependent variable being predicted. Unlike RMSE,
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MAE is not that sensitive to outliers. The metric is bound between

the maximum absolute error and zero (perfect prediction).

Correlation based metrics quantify the degree of a statistical rela-

tionship between predicted and observed values. A very popular

correlation based metric seems to be the R2 (25, 65, 67, 68). The

R2 can be defined as one minus the fraction of the sum of squared

errors to the variance of the observations. Since the second term

in the formula can be seen as the fraction of unexplained variance,

the R2 can be interpreted as the fraction of explained variance. Al-

though R2 is usually expressed as a number on a scale from zero to

one, R2 can yield negative values when the model predictions are

worse than using the mean y from the training set as prediction.

Other correlation based metrics include Pearson’s r (62), Spear-

man’s ρ (88) and Kendall’s τ (66). Pearson’s r measures the degree

of linear relationship between predictions and observations. Spear-

man’s ρ is defined as Pearson’s r applied to the rankings of predicted

and observed values. Likewise, Kendall’s τ measures a similar de-

gree of correspondence of the ranked ordenings between predictions

and observations. All three correlation coefficients can take values

between minus one (perfect negative correlation) and one (perfect

positive correlation) with zero meaning no correlation at all.

Although not considered to be a metric to assess the performance

of a regression model, a typical binary classification based metric as

the Area Under the Receiver Operating Characteristic curve (AU-

ROC) (89) is used in the LGD literature (62, 66, 68). It is employed
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in an LGD context to measure how good an LGD regression model

is able to distinguish between high and low losses. To build the

ROC curve, the observed values are first classified into high and low

classes using the mean y of the training set as reference. The area

under the ROC curve is an estimate for the discriminatory power

of a model. The metric varies from 0.5 (random classification) to

one (perfect classification). Another similar metric is the Area Over

the Regression Error Characteristic curve (AOREC) (86). It can be

seen as either a generalization of an error based metric or a gener-

alization of the AUROC. The AOC curve plots the error tolerance

on the x-axis versus the percentage of points predicted within the

tolerance (or accuracy) on the y-axis. The resulting curve estimates

the cumulative distribution function of the squared error. The area

over the REC curve (AOC) is an estimate of the predictive power

of the technique. The metric is bound between zero (perfect predic-

tion) and the maximum squared error.

The evaluation schema to assess the predictive performance of an

LGD models varies in the literature. For prediction it is important

that the model performance is evaluated on unseen cases which it

will also encounter in real-life. These evaluation schema’s are called

out-of-sample. In an out-of-sample schema (61, 63, 65, 66, 68), the

LGD dataset is split in a random training set (typically two-third

of the total dataset) and a test set (remaining one-third of the to-

tal dataset). The training set is used to build the model and the

test set is used to evaluate the model. In order to enhance the re-

liability of the assessment, multiple hold-out validations are often
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executed (61, 63). A more strict out-of-sample evaluation schema is

also out-of-time. In an out-of-time schema (25, 61, 62, 64, 69), the

model is built on data of a specific time period and is evaluated on

data after this time period. While an average of multiple hold-out

validations is most applicable to assess how good a technique fits

a model to a dataset, an out-of-time validation is most applicable

to assess the real-life predictive model performance as the model is

strictly built using historical data and strictly evaluated on future

data. Backtesting always comes down to an out-of-time evaluation.

The use of the above described metrics for backtesting an LGD

model may cause flaws. First of all, it is not straightforward to de-

termine acceptable model performance solely based on these met-

rics. A single value has little meaning without an appropriate refer-

ence value indicating acceptable performance. For example, an LGD

model performance of 50% in terms ofR2 may sound bad since a per-

fect LGD model should correspond with an R2 of 100%. However,

comparing this performance with other real-life LGD benchmark-

ing results where the average R2 ranges from 4% to 43% (88), this

may sound very good. In addition, these metrics do not take into

account the number of LGD observations. When the portfolio lacks

sufficient observations, a small amount of extreme observations can

distort the accuracy results and so degrade its reliability. For exam-

ple, when assessing an LGD model performance in a specific year

containing only ten defaults in the portfolio, a few extreme bad

model predictions may cause a disproporationate low performance.
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3.3 Proposed backtesting framework

The proposed key idea to backtest the predictive performance of an

LGD model is to evaluate the model performance on the test data

with respect to the model performance on the training data with ap-

propriate statistical hypothesis tests. By comparing the model test

performance with the model training performance, a reference value

is introduced, tailored to the respective model. Model deterioration

is thus defined as a decrease of model performance compared to the

performance during model building. Note that this is in contrast

to the process of benchmarking where the performance of multi-

ple models is compared with each other. By applying statistical

hypothesis tests, model deterioration can be statistically detected

with a pre-defined significance level (e.g. de facto 5%). In addition,

statistical hypothesis tests implicitly take into account any insuffi-

cient number of observations (i.e. sample size) to prevent incorrect

judgements.

In what follows, the proposed statistical hypothesis tests to de-

cide upon acceptable model performance are explained. These tests

typically start with the formulation of a null hypothesis H0 which

assumes no model deterioration and an alternative hypothesis Ha

which indicates model deterioration. Further, a test statistic T is

identified in order to assess the truth of H0. A decision whether

or not to reject H0 can be made by calculating the test statistic T

on the concerning sample and to compare this to the critical value

corresponding to a significance level of 5%. If the resulting test

statistic is at least as extreme than the critical value, H0 may be
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rejected in favor of Ha, otherwise H0 may not be assumed.

3.3.1 Central tendency error tests

The most basic model performance metric is the central tendency of

the error. This is sometimes referred to as model calibration. The

error E is defined as the difference between predictions Ŷ and ob-

servations Y or E = Ŷ − Y . Two well-known statistical hypothesis

tests in the literature may be used for this purpose: the T test and

the Wilcoxon signed rank test. Both tests allow to evaluate to what

degree the central tendency of the error equals zero which serves

a the reference value. It is assumed that the central tendency of

the training error of a well-aligned model equals zero. While the T

test compares the mean error to zero, the Wilcoxon signed rank test

compares the median error to zero. Note that one-tailed tests are

used instead of two-tailed tests because these provide more power

to detect whether the average prediction is lower than the average

observation by not testing the opposite. An underestimation of av-

erage loss may be fatal for a bank but an overestimation may merely

increase its capital requirements.

The T test determines to what degree the mean of the error µE

equals zero:

H0 : µE = 0, Ha : µE < 0

The test statistic T can be derived from the Central Limit The-

orem which states that the sample mean e converges to a normal
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distribution and Cochran’s theorem which states that the sample

deviation se is χ2
n−1-distributed. Hence, in that case the resulting

test statistic follows a tn−1-distribution:

T =
ē
se√
n

∼ Z
√

χ2
n−1

n− 1

∼ tn−1

with n the number of predictions to backtest. Note that when n is

large (i.e. n > 30), a χ2
n−1-distribution converges to a normal dis-

tribution. Hence, the resulting test statistic also follows a normal

distribution and performing a Z test is equally appropriate.

The Wilcoxon signed rank test (85) determines to what degree the

median of the error equals zero:

H0 : ηE = 0, Ha : ηE < 0

The test statistic T can be derived by calculating the sum of the pos-

itive ranked errors r+. The positive ranked errors are determined

as follows. Zero errors are ignored, the smallest positive error is

ranked 1, the next smallest positive error is ranked 2, etc. In case of

ties, average ranks are assigned. The resulting test statistic approx-

imates a normal distribution according to the Lyapunov Central

Limit Theorem:

T =
r+ − n(n+ 1)

4
√

n(n+ 1)(2n+ 1)

24

∼ N(0, 1)

Compared to the T test which draws conclusions based on the abso-
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lute value of the mean of the test sample, the Wilcoxon test statistic

implicitly determines the deviation of the central tendency of the

error from zero. Nonetheless, in order to be able to easily quan-

tify and compare the central tendency error over the test years, the

Wilcoxon metric wr is defined and used in what follows. This is

the ratio of the sum of positive ranked errors (r+) to the total sum

of both negative and positive ranked errors (r+ + r−). It is bound

between zero (underestimation) and one (overestimation) with 0.5

indicating zero central tendency error.

3.3.2 Dispersion error tests

Next to the central tendency of the error, a complementary basic

model performance metric is the dispersion of the error. This is

sometimes referred to as model precision. Two well-known statisti-

cal hypothesis tests may be used for this purpose: the F test and

the Ansari-Bradley test. Both tests allow to evaluate to what degree

the dispersion of the error differs from the dispersion of the training

error which serves as a reference. While the F test compares the

variance of the error with the variance of the training error, the

Ansari-Bradley test measures and compares the dispersions of the

error and training errors by leaning upon rankings rather than on

the numeric values of the data. Note that also here one-tailed tests

are proposed to enhance the statistical power to detect when the

dispersion of the error is larger than the dispersion of the training

error. A larger dispersion may cause more unforeseen losses.

The F test (83) determines to what degree the variance of the error
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σ2
E is equal to the variance of the training error σ2

Et
:

H0 : σ
2
E = σ2

Et
, Ha : σ

2
E > σ2

Et

The test statistic T can be derived by inspecting the ratio of the

variances. According to Cochran’s theorem, the sample variances

s2e and s2et follow a χ2-distribution with n− 1 and nt − 1 degrees of

freedom, respectively. Hence, the resulting test statistic follows an

F-distribution with n− 1 and nt − 1 degrees of freedom:

T =
s2e
s2et

∼

(

χ2
n−1

n− 1

)

(

χ2
nt−1

nt − 1

) ∼ Fn−1,nt−1

with n the number of defaults to backtest and nt the number of

defaults to train the model.

The Ansari-Bradley test (84) determines to what degree the cumu-

lative distribution function of the error FE(u) and the cumulative

distribution function of the training errors FEt
(u) are equal, assum-

ing they can only differ in the value of a scale parameter θ:

H0 : FE(u) = FEt
(u), Ha : FE(θu) = FEt

(u) with θ > 1

The test statistic T can be derived by calculating the sum of weights

of the ordered errors of the combined sample e and et with total size

m = n+ nt. The weights assigned are one to both the smallest and

largest error in the combined sample, 2 to the next smallest and

next largest, etc., m
2 to the two middle observations ifm is even, and

m+1
2 to the one middle observation if m is odd. The resulting test
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statistic is the sum of weights of the ordered errors in the combined

sample associated with e, defined as we, and approximates a normal

distribution according to Ansari and Bradley:

T =
we −

n(m+ 2)

4
√

nnt(m+ 2)(m− 2)

48(m− 1)

∼ N(0, 1)

when m is even, or:

T =
we −

n(m+ 1)2

4m
√

nnt(m+ 1)(3 +m2)

48m2

∼ N(0, 1)

when m is odd. Although the test requires that E and Et have

identical population medians, Ansari and Bradley recommend sub-

tracting the sample medians and shift both e and et to zero median

if this assumption should not be met.

Compared to the F test which draws conclusions based on absolute

values of training and test sample variances, the Ansari-Bradley

test statistic implicitly determines the gap between training and

test sample dispersion. Nonetheless, in order to be able to easily

quantify and compare the test performances over the test years al-

beit relative to the training performance, the Ansari-Bradley metric

abw is defined and used in what follows. This is the ratio of the sum

of weights of the ordered errors in the combined sample associated

with e (we) to the total sum of weights of the ordered ranks in the

combined sample associated with both e and et (we + wet). It is
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bound between zero (larger dispersion) and one (lower dispersion)

with 0.5 indicating similar dispersion error.

3.3.3 Error, correlation and classification based tests

In addition to the central tendency and dispersion of the error, other

metrics are frequently used in the empirical LGD literature to as-

sess model performance. These are error based (i.e. RMSE, MAE,

AOREC), correlation based (i.e. R2, r, ρ, τ) or classification based

(i.e. AUROC) metrics. However, there are no statistical hypothesis

tests described in the literature on how these may be used to detect

model deterioration. The main problem is that it is not straightfor-

ward to determine the theoretic distribution of a test statistic under

a null hypothesis based on these metrics. Nonetheless, such a distri-

bution may be estimated via a bootstrapping approach. The basic

idea of bootstrapping is that inference of a population from sample

data can be modeled by inference sample data from resampling the

sample data. For this purpose, it allows to empirically construct a

distribution of a test statistic under a null hypothesis when this is

theoretically unknown.

A bootstrap test determines to what degree the performance P is

equal to the training performance Pt:

H0 : P = Pt, Ha : P > Pt

where the test statistic T is defined as Pt − P and where P may be

one of the commonly used LGD model performance metrics listed
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above. The distribution of the test statistic under the null hypothe-

sis can be simulated through bootstrapping according to the Beran

algorithm (120, 121, 122, 123). First, the training and test obser-

vations are stacked together as well as the training and test predic-

tions. Next, a training/test bootstrap sample with the same length

as the original training/test set is extracted from the stacked ob-

servations/predictions through random sampling with replacement.

Then, the difference of the concerning metric for the bootstrap train-

ing sample and bootstrap test sample is calculated. This procedure

is repeated (e.g. de facto about 1000 times) in order to empirically

build up the distribution of the test statistic under the null hypoth-

esis. Note again that only one-tailed tests are proposed to enhance

the statistical power to detect performance deterioration.

3.4 Methods

This section describes the evaluation of the proposed backtesting

framework applied on a real-life LGD model. The experimental set-

up is as follows. First, real-life loss data is collected consisting of a

variety of characteristics of the respective loans on the one hand and

the corresponding observed LGD on the other hand. Second, a re-

gression analysis of the loss data is performed in order to construct

a predictive LGD model. Third, the performance of the predic-

tive LGD model is out-of-time backtested on multiple years. For

this purpose the proposed statistical hypothesis tests are performed

in order to discover any significant model deteriorations. Forth,

the proposed statistical hypothesis tests are empirically evaluated
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through a statistical power analysis.

3.4.1 Data collection

The real-life LGD dataset collected in this study reflects corporate

loan loss over a time span from 1984 to 2004 and contains 891 ob-

servations. Data from 2001 to 2004 is used to yearly backtest the

constructed LGD model. The model is built with data from 1984

to 2000. This split between training and test data on 2000 is chosen

so as to have sufficient data (e.g. about 500 defaults) to train an

LGD model while still having sufficient time periods (i.e. four years)

to backtest the LGD model. The number of observations used for

training and backtesting purposes is given in Table 3.1.

Year Observations Purpose

2004 30

Backtesting
2003 47

2002 140

2001 155

1984-2000 519 Training

Table 3.1: Number of observations

The distribution of the LGD data used for both training and test-

ing is illustrated in Figure 3.1. This appears to be predominantly

J-shaped with the highest frequency at the end of the range. This

means that the dataset is characterized by high LGDs caused by the

majority of the defaults. Notice that especially 2001 and 2002 are

characterized with high LGDs while this shifts to generally lower

LGDs for 2003 and 2004. Based on the literature, the LGD distri-
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bution is indeed typically non-normal distributed and most often

rather bimodal distributed. Real-life LGD tends to be character-

ized by high concentrations of either total recovery or total loss or

both. The majority of the empirical LGD literature reports of a

large peak on zero and a smaller peak on one (61, 62, 64, 66, 67).

Nonetheless, few studies also report the opposite as is also the case

for this dataset: a large peak on one and a smaller or non-existing

peak on zero (62, 65).
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Figure 3.1: LGD observations histogram

The LGD dataset covers both loans and bonds from large corpo-

rates in the USA. Next to the LGD target variable, the dataset

includes 42 variables which represent potential LGD drivers, a.o.
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rating, level of seniority, country of domicile, type of industry, de-

fault rate. The data covers different sectors such as transportation,

finance, public, industrial and real estate. Domiciles are located in

America, Europe and Oceania. For the purpose of predictive mod-

eling, a few pre-processing actions are executed. Continuous vari-

ables are transformed to the standard z-score with the sample mean

and standard deviation of the training set. Furthermore, categori-

cal variables are quantified by dummy encoding. More information

about this dataset is confidential.

3.4.2 Predictive modeling

In first instance, a predictive LGD model is required to estimate

future outcomes as well as possible. This allows banks to protect

themselves against default risks and to remain competitive. In sec-

ond instance, banks need to provide comprehensible LGD models.

This is required by the national regulators in order to ensure that

banks fully understand their risks and underlying model relations.

Although non-linear models such as Support Vector Machines and

Artificial Neural Networks seem to show significantly higher per-

formance on average than linear models, these are labeled as being

non-comprehensible (88). National regulators may not allow hard to

interpret models since financial institutions may be legally obliged

to motivate why a customer is denied credit (124). Therefore, for

our research purposes, it is deliberately chosen to deploy a sim-

ple linear model to obtain the most understandable model form in

order to fully interpret its backtesting results. Note that, for the
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purpose of this backtesting exercise, the model performance in ab-

solute terms actually does not play any role.

Based on the real-life LGD dataset, a linear model is determined by

minimizing the sum of squared differences between predictions and

observations of the training set. In order to increase the generaliza-

tion behavior, i.e. the ability to estimate the LGD on out-of-sample

data, a variable selection method is used to exclude irrelevant or

redundant variables from the model. Based on a ten fold holdout

validation schema, a model wrapper searches for a subset of vari-

ables that best predicts the LGD by sequentially selecting variables

until there is no improvement in minimizing the sum of squared

differences between predictions and observations. The selected sub-

set includes two binary variables referring to the level of seniority,

i.e. senior unsecured (SU) and junior subordinated (JS), and one

continuous variable, i.e. US default rate from the previous year

(USDR(t-1)). The output of the variable selection strengthens pre-

vious literature studies which stress the importance of seniority and

default rate as major predictive drivers (6):

LGD = 0.74− 0.15 · SU+ 0.18 · JS+ 0.02 ·USDR(t-1)

The resulting linear model can be interpreted as follows. The base-

line LGD is 74% and decreases with 15% when the loan is senior un-

secured or increases with 18% when the loan is junior subordinated.

Additionally, the LGD increases with the US default rate from the

previous year with a speed of 2% per unit. These relations are in line

with previous empirical studies. Secured debt and high priority de-
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crease the LGD (45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55). Note that

the seniority of the loan dominates over the security in this model

since the SU dummy decreases the LGD. Further, LGD is typically

higher in a period of high defaults (47, 48, 49, 54, 55, 56, 57).

3.4.3 Significance analysis

Table 3.2 gives an overview of the performance metrics on which the

statistical hypothesis tests of the proposed backtesting framework

are based. The first two metrics specifically measure the central

tendency of the error while the subsequent two metrics specifically

measure the dispersion of the error. Standard (non-)parametric

tests are available in literature to test performance deterioration in

terms of these metrics. The following eight metrics are quite diverse

and have their own specific method of quantifying the degree of sim-

ilarity between predictions and observations. No standard tests are

however available in literature to detect performance deterioration

based on these metrics. Nonetheless, the proposed bootstrap based

tests can offer relief here.

The minimal and maximal performance values of the corresponding

metrics are given in columns two and three of Table 3.2. Although

R2 can yield excessive negative values when the model predictions

are worse than using the mean from the training set as prediction,

these have however the same meaning as zero values, i.e. that the

model does not explain any variation at all (125). Hence, any nega-

tive values are replaced by zero to enhance its interpretation and to

prevent distortion of the corresponding bootstrap tests. Note that
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strictly seen, AUROC can also yield values between 0 and 0.5 and

r, ρ and τ can also take negative values from -1 to 0. This may

occur in case of negative classification performance or negative cor-

relations, respectively.

Metric Worst Best

e -∞ 0

wr 0 0.5

s2e +∞ 0

abw 0 0.5

RMSE +∞ 0

MAE +∞ 0

AUROC 0.5 1

AOREC +∞ 0

R2 0 1

r 0 1

ρ 0 1

τ 0 1

Table 3.2: Performance metrics

In order to decide upon acceptable performance for the metrics de-

scribed above, the out-of-time performance is compared with the

training performance. Each statistical hypothesis test assumes a

null hypothesis and if sufficient evidence exists against the null hy-

pothesis, the alternative hypothesis is concluded. This evidence is

gathered in the form of a p-value. The p-value is the probability

of obtaining a test statistic at least as extreme as the one that was

actually observed, assuming that the null hypothesis is true. When

the resulting p-value is compared to a pre-defined significance level,

a decision can be made on statistical significance. The pre-defined
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significance level is the probability of making a type I error (i.e. the

incorrect rejection of the null hypothesis). This is generally denoted

as α and de facto pre-defined as 5% (126). Low p-values (i.e. <5%)

indicate that H0 can be more confidently rejected, whereas high p-

values (i.e. >5%) indicate that there is insufficient evidence to do so.

Note that a significance analysis may be extended in various ways.

First, statistical comparisons may also be performed between the

performance of the concerning test year and the performance of any

previous year(s) instead of the performance on the training set, if

required. Second, the statistical tests may also be performed on spe-

cific segments of the data. This segmentation could be either done

on the input data (e.g. different levels of seniority or security) or on

the output data (i.e. different levels from low to high LGD). Third,

a traffic lights approach may be used to support the visualization of

the resulting p-values. Different colors can be assigned to a specific

range of p-values (70). The choice of the different ranges of p-values

can however be decided by the financial institution. In addition, the

kind and number of colors can also be chosen at the discretion of

the financial institution, although a minimum satisfactory number

of three is suggested (127). These extensions are however not put

into practice for this study for reasons of clarity.

3.4.4 Power analysis

In order to evaluate whether the results of the statistical hypothesis

tests are sufficiently reliable, the statistical power π is empirically
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determined. The power of a test is defined as the probability that

the test rejects the null hypothesis when this is indeed false. Note

that this is the probability of not making a type II error (i.e. the

failure to reject the null hypothesis while it is actually false). The

probability of making a type II error is generally denoted as β. To

decide upon acceptable statistical power, a de facto threshold of

85% is used (126). A test is considered to be sufficiently powerful

when π is higher than 85% or β is lower than 15%. Note that β

and thus also π is related to α. When α is higher, β is lower or π is

higher, and vice versa.

The statistical power of a test is determined according to the Beran

algorithm (120, 121, 122, 123). First, the alternative hypothesis dis-

tribution is empirically built. Therefore, a training/test bootstrap

sample is extracted from the original training/test set with the same

size through random sampling with replacement. Subsequently, the

test statistic T is calculated on the bootstrap samples. This pro-

cedure is repeated about 1000 times as a rule of thumb in order to

empirically build up a reliable distribution of the test statistic un-

der the alternative hypothesis. Second, the probability of making

a type II error β is calculated. Therefore, the critical value corre-

sponding with the 95th (i.e. 1−α) percentile of the null distribution

is determined. Then, the difference between the percentile of the al-

ternative distribution corresponding with this critical value and the

0th percentile of the alternative distribution equals to β. Finally,

the power can be calculated as π = 1− β.
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3.4.5 Implementation details

The standard parametric and non-parametric statistical hypothesis

tests are implemented through standard methods in Matlab (T test,

Wilcoxon test, F test, Ansari-Bradley test). The linear regression

method and the sequential feature selection method in Matlab are

used for model building and variable selection respectively. In ad-

dition, standard methods in Matlab are also used for calculating

correlation coefficients as Pearson’s r, Spearman’s ρ and Kendall’s

τ . All other code required for the experiments is developed by the

author.

3.5 Results and discussion

Metric 1984-2000 2001 2002 2003 2004

e 0.00 -0.17 -0.12 0.08 0.16

wr 0.43 0.15 0.20 0.53 0.83

s2e 0.05 0.05 0.05 0.07 0.05

abw 0.50 0.24 0.21 0.06 0.05

RMSE 0.23 0.29 0.25 0.28 0.27

MAE 0.18 0.26 0.22 0.25 0.23

AUROC 0.70 0.56 0.55 0.63 0.55

AOREC 0.05 0.08 0.06 0.08 0.07

R2 0.12 0.00 0.00 0.01 0.00

r 0.34 0.14 0.19 0.30 0.17

ρ 0.33 0.03 0.22 0.24 0.07

τ 0.23 0.03 0.18 0.19 0.06

Table 3.3: Performance values
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Test 2001 2002 2003 2004

T 0.00 0.00 0.97 1.00

W 0.00 0.00 0.98 1.00

F 0.43 0.73 0.04 0.52

AB 0.86 0.29 0.00 0.10

RMSE 0.00 0.09 0.03 0.07

MAE 0.00 0.00 0.00 0.06

AUROC 0.00 0.00 0.21 0.10

AOREC 0.00 0.07 0.02 0.07

R2 0.00 0.00 0.13 0.18

r 0.01 0.05 0.33 0.15

ρ 0.00 0.13 0.25 0.10

τ 0.00 0.26 0.35 0.08

Table 3.4: Statistical significance values

This section reports and discusses the performance values of the

LGD model, the statistical significance values of the performance

differences between training and test sets and the statistical power

values of the applied statistical hypothesis tests. The performance

results of the LGD model for each metric are represented in Ta-

ble 3.3. Both training (i.e. data from 1984 to 2000) and test set

performances (i.e. data from 2001 to 2004) are given in order to

see the evolution of the performances of the subsequent years with

respect to the training performance. In order to detect significant

performance deteriorations based on these performance values, Ta-

ble 3.4 represents the resulting p-values of the appropriate statistical

hypothesis tests corresponding to each performance metric. Finally,

table 3.5 lists the power values of each statistical hypothesis tests

so as to evaluate to what degree these are sufficiently reliable to

discover performance deteriorations.
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Test 2001 2002 2003 2004

T 1.00 1.00 0.00 0.00

W 1.00 1.00 0.00 0.00

F 0.09 0.02 0.54 0.01

AB 0.05 0.15 0.94 0.30

RMSE 1.00 0.36 0.79 0.40

MAE 1.00 0.95 0.92 0.57

AUROC 0.87 0.95 0.15 0.19

AOREC 1.00 0.39 0.75 0.39

R2 0.98 0.91 0.13 0.09

r 0.89 0.50 0.06 0.38

ρ 0.96 0.27 0.15 0.50

τ 0.95 0.18 0.12 0.55

Table 3.5: Statistical power values

The evolution of the central tendency of the error in terms of the

mean error e or the Wilcoxon metric wr is represented in the first

and second row of Table 3.3. Regardless of measuring the central

tendency of the error with e or wr, the same trend is extracted. The

central tendency is below zero in terms of e and below 0.5 in terms

of wr for 2001 and 2002 while it is above zero in terms of e and above

0.5 in terms of wr for 2003 and 2004. The corresponding p-values in

Table 3.4 for both the T test and one sample Wilcoxon test equal

to zero for 2001 and 2002 and are (close to) one for 2003 and 2004.

This means that both tests agree that the model is significantly un-

derestimating LGD for 2001 and 2002 while this is not the case for

2003 and 2004. The consistent underestimations of the model may

point to more severe economic downturn period than expected. The

corresponding power values in Table 3.5 for both the T test and one
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sample Wilcoxon test are maximal for 2001 and 2002 and minimal

for 2003 and 2004. This means that the detection of significant

underestimations of LGD is supported by the large power in 2001

and 2002 and that the model is overestimating LGDs for 2003 and

2004. Notice that the Wilcoxon metric wr from the training errors

does not equal to 0.5 which ideally should be when there is zero

central tendency of the error. This small gap is because the er-

ror is non-normally distributed which leads to a difference between

the median error and the mean error which actually is equal to zero.

The evolution of the dispersion of the error in terms of the variance

of the error s2e or the Ansari-Bradley metric abw is shown in the

third and forth row of Table 3.3. According to s2e, the dispersion of

the error remains rather constant for the subsequent years, except

for 2003 which shows an increased dispersion of the error. Accord-

ing to abw on the other hand, the dispersion of the error slightly

degrades. The corresponding p-values in Table 3.4 for both the F

test and Ansari-Bradley test are above the significance level of 5%

except for 2003. This means both tests agree that there is only a

significant deterioration of the dispersion error for 2003. The cor-

responding power values in Table 3.5 are low for both the F test

and Ansari-Bradley test except for 2003. These low values how-

ever undermine the p-values pointing out no significant differences.

This means we can not conclude with much certainty that there is

no deterioration of the dispersion error. Nonetheless, the detection

of significant differences shown for 2003 is supported by increased

power of both tests for that year.
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The evolution of the metrics which impersonate either a degree of

error, classification or correlation are shown in the last eight rows

of Table 3.3. For 2001, it can be seen that the test performance

for 2001 is smaller than the training performance according to all

these metrics. The corresponding p-values for 2001 in Table 3.4 are

also all below the significance level of 5%. This means that all tests

unanimously agree that there is a significant deterioration of the

performance for 2001. For 2002 and 2003 however, some metrics

still agree on significant performance deterioration although there

is no unanimity. For 2004, no significant performance deteriorations

could be detected although all metrics show consistently lower test

performance with respect to the training performance. The cor-

responding power values in Table 3.5 are generally high for 2001

and slightly decrease for the subsequent years. The detected sig-

nificant differences for the bootstrap tests are backed up by large

power values. However, in the rest of the cases the bootstrap tests

show moderate power when no significant differences are detected.

This leaves decisions about performance deterioration in those years

rather unconclusive.

When taking into account the resulting performance values, the p-

values and power values, one can conclude that the model shows

significant weak performance in 2001 but slightly shows improved

performance during 2002 and 2003 to show rather good performance

in 2004. The model performance deterioration behavior may be

linked with the high number of defaults for 2001 which decrease
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for the subsequent years as can be observed in Table 3.1. Higher

default rates can lead to higher LGDs (128). This relation may be

strengthened when observing the histograms in Figure 3.1 where a

shift is noticed from high LGDs and a large number of defaults in

2001 and 2002 to lower LGDs and a small number of defaults. The

higher default rates in 2001 and 2002 may be ascribed to the big

recession period in the USA around the late 2000s, although the

model takes into account the US default rate as macro-economic

factor and is trained with data during a previous USA recession of

the 1990s. The subsequent recovery period may explain the slow

performance correction for these years. Generally, when the model

is well trained and deteriorates over time, it means that the original

training data is no longer representative for the current population.

This can be caused by external changes (e.g. new developments

in the economic, political or legal environment) or internal changes

(e.g. new business strategies, exploration of new market segments

or new organizational structure) (70). A data stability analysis may

offer more insight into which variables cause possible shifts (70). In

this case it is advised to build a new model with more representative

training data.

3.6 Conclusions

This study addresses the call for more research on backtesting LGD

models, a Basel validation requirement for any bank implement-

ing the advanced IRB approach. Current backtesting practices of-

ten consist of measuring the similarity between model predictions
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and realized observations. It is however not straightforward to de-

termine upon acceptable model performance solely based on these

metrics. First, a single value has little meaning without an ap-

propriate reference value indicating acceptable accuracy. Second,

when the portfolio lacks sufficient observations, a few extreme ob-

servations can distort the performance results and so degrade its

reliability. This study proposes a framework to backtest LGD test

with statistical hypothesis tests. The key idea is to evaluate the

model performance on the test data with respect to the model per-

formance on the training data with appropriate statistical hypothe-

sis tests. Hence, an appropriate reference values is introduced while

the number of observations is implicitly taken into account. For

professionals, it is advised to backtest LGD models in three steps.

First, the model performance needs to be measured with metrics

of choice in order to see its evolution over the years. Second, cor-

responding statistical tests need to be performed to check for any

significant deteriorations. Third, the power of each test needs to be

quantified in order to assure if the test is sufficiently reliable when

no significant deterioration is detected. The proposed backtesting

framework is illustrated by backtesting an LGD model based on

real-life loss rate rate data.
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4

Selecting LGD models

”All models are wrong, but some are useful.”

-George Box (British statistician, 1919-today)

”The proof of the pudding is in the eating.

By a small sample, we may judge of the whole piece.”

-Miguel de Cervantes (Spanish novelist, 1547-1616)

Although techniques such as Support Vector Machines and Arti-

ficial Neural Networks show superior accuracy on 6 real-life LGD

datasets, these are as such not suited for real-life LGD modeling be-

cause of their lack of comprehensibility which is a key requirement.

This chapter presents a set of techniques which produce humanly

interpretable models, i.e. linear, spline, tree, linear tree and spline

tree, which can be used for real-life LGD modeling. Unfortunately,

no model form is superior for all kind of regression datasets in gen-

eral and LGD datasets in particular. Some studies claim that some
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regression techniques are better suited for LGD modeling given its

typical non-normal distribution characteristics. Apart from LGD

research, other studies claim that also other typical dataset charac-

teristics may favor a specific model form. Nonetheless, sufficient ev-

idence remains absent. In this large-scale meta-learning study is ex-

plored in what degree dataset characteristics can predict which com-

prehensible model will fit a given dataset best. Since the very lim-

ited number of publicly available datasets, let alone LGD datasets,

the experiments are conducted with more than thousand so called

datasetoids representing various real-life dependencies to discover

possible relations. It is found that algorithm based characteristics

such as sampling landmarks are major drivers for successfully pre-

dicting the most accurate algorithm. Further, it is ascertained that

data based characteristics such as the length, dimensionality and

composition of the independent variables, or the asymmetry and

dispersion of the dependent variable do not matter for this purpose.

4.1 Introduction

According to the benchmarking study in Chapter 2 involving six

real-life LGD datasets, black box models built by Support Vector

Machines provide significantly better fits on average than white box

models such as for example built by Ordinary Least Squares. How-

ever, black box techniques as such are not suited for LGD modeling

because of their lack of comprehensibility. National regulators may

not allow hard to interpret models since financial institutions may

be legally obliged to motivate why a customer is denied credit (124).

Note that, next to domain of credit risk, it is often of crucial im-
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portance both to obtain correct outcomes and to understand how a

model comes to its conclusions. For example, in medical diagnosis

it is important to gain insight in how certain variables may have

an impact on the degree of a disease as these may provide valuable

information about a potential cure (129).

Based on the techniques employed in Chapter 2, a selection of tech-

niques to built humanly interpretable LGD models is suggested

which include linear, spline and tree models. In addition, combi-

nations such as linear and spline trees are also proposed. Unfor-

tunately, there is no model form amongst these which offers the

best fit for all datasets. According to Wolpert any two learning al-

gorithms are equivalent when their performance is averaged across

all possible problems (130, 131). This basically means that there

is no regression algorithm that outperforms all other regression al-

gorithms across all possible regression datasets. The statement is

referred to as the ’No Free Lunch’ or ’NFL’ theorem in supervised

learning. The adage implies the impossibility to get something for

nothing, i.e. an algorithm leading to superior model accuracy for

all possible datasets. A consequence of the NFL theorem is that

the accuracy of a regression algorithm solely depends on the given

dataset. Hence, an algorithm may outperform another algorithm on

a particular type of dataset but may be inferior to this algorithm

on another type of dataset.

In order to build a model to fit the typical non-normal characteris-

tics of LGD data better than a linear model, many studies suggest
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alternatives such as tobit models (25, 64), logit models (25, 66), lo-

gistic models (61, 63, 65, 68), log-log models (61, 63, 66, 67) or beta

models (25, 62, 66, 69). Nonetheless, it is not proven that these sig-

nificantly fit LGD data better. In addition to distribution character-

istics, many meta-learning studies (apart from LGD studies) claim

that also other commonly used dataset characteristics such as size,

dimensionality, composition and sampling landmarks may favor a

specific predictive model algorithm (73, 74, 75, 76, 77, 132, 133, 134).

However, the lack of sufficient real-life datasets available to these

meta-learning studies (i.e. merely twenty (77) to hundred (78)) un-

dermine the support of these claims.

In spite of the arsenal on meta-learning studies, the current litera-

ture is not clear whether and which commonly used dataset char-

acteristics drive regression algorithm fitting performance. In this

study, it is explored how simple dataset characteristics may drive

the fitting performance of regression algorithms. This may be rel-

evant to support the selection of an optimal model form based on

the characteristics of the data to be fit without empirically eval-

uating each candidate model on the dataset. For this purpose, a

meta model is built in order to evaluate how both data based and

algorithm based characteristics may favor model accuracy. Data

based characteristics involve the number of instances, dichotomous

variables, continuous variables and distribution properties of the de-

pendent variable while algorithm based characteristics involve the

algorithms performance on very small data samples.
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In contrast with previous meta-learning studies, a novel approach

is applied here so as to circumvent the scarcity of publicly available

regression datasets. The experimental data is constructed by im-

plementing the recently introduced concept of datasetoids (91, 92).

A datasetoid is defined as a new dataset obtained by switching an

independent variable with a dependent variable. This idea allows to

circumvent the scarcity of publicly available real-life datasets (93)

by generating more than thousand regression datasetoids to build

up a meta dataset. The meta dataset consist of dataset characteris-

tics as independent variables and the performance differences of the

considered algorithms as dependent variables. Note that this study

covers various real-life model relations, not specific LGD relations,

so as to make conclusions towards regression problems in general.

The remainder of this chapter is organized as follows. First, a liter-

ature review is conducted on previous meta-learning studies which

focus on the algorithm selection based on dataset characterization.

Special attention is devoted to the formalization of the algorithm

selection problem according to Rice. In the light of Rice’s meta-

learning framework, the most representing contributions on the sub-

ject of meta-learning are further reviewed. Second, the proposed

methods to discover possible relations between the characteristics

of dataset and the relative accuracy of algorithms are discussed

in function of Rice’s meta-learning framework. Third, the meta-

learning results are discussed and followed by a conclusion.
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4.2 Literature review

This section reviews the most important previous studies about the

use of meta-learning for algorithm selection. Although the majority

of these studies are focused on classification problems, meaning-

ful insights can be extracted for regression problems as well. Both

problems only differ in the modeling of the target variable which

is discrete in the case of classification and continuous in the case

of regression. In order to discuss and compare these studies, they

are framed into Rice’s abstract model which formalizes the algo-

rithm selection problem (90). Even though Rice’s framework does

not specify which methods to use, it offers a common language for

addressing the components to solve the algorithm selection problem.

4.2.1 Review of Rice’s meta-learning framework

Rice’s framework for the algorithm selection problem consists of

four essential components: the problem space P , the feature space

F , the algorithm space A and the performance space Y . Note that

these are adapted for the purpose of regression algorithm selection

while Rice’s framework may cover any kind of algorithm selection.

The problem space P is the collection of datasets which consist of

a series of values of continuous or dichotomous independent vari-

ables and a continuous dependent variable. The algorithm space A

is the collection of regression algorithms that can be applied to fit a

model to a dataset. The performance space P represents the perfor-

mance values of a model that is fitted to a dataset with a regression

algorithm. The feature space F contains a number of measurable
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characteristics for each dataset. The choice of features very much

depend on the type of algorithm and should ideally capture all rel-

evant properties of the dataset.

The aforementioned spaces in Rice’s framework are connected with

each other through mappings. The feature mapping f : P → F

extracts measurable characteristics from a dataset to a number of

features. The selection mapping s : F → A chooses the regression

algorithm with best performance based on the features extracted

from the dataset. The performance mapping p : P × A → Y de-

termines the performance of the regression algorithm applied to

the dataset. Hence, the algorithm selection problem can be for-

mally stated as follows: given a dataset x ∈ P with characteristics

f(x) ∈ F , find the algorithm s(f(x)) ∈ A which maximizes y ∈ Y .

An actual algorithm selection tool would thus consist of both the

feature mapping f and the selection mapping s combined. Hence,

the relevance of such an algorithm selection tool increases when

these mappings can be performed more effectively compared to a

priori benchmarking experiments.

Based on the above described framework, the following issues need

to be addressed to solve the algorithm selection problem. First, a

set of regression algorithms that the meta learner can choose from

needs to be defined. Second, a set of datasets for both building and

validating the meta learner needs to be gathered. Third, a num-

ber of dataset features needs to be decided upon so that datasets

characterized by similar features correspond to the same algorithms
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with similar performance. Forth, the output of the selection map-

ping needs to be determined so as to provide the actual user recom-

mendation. Fifth, a metric to decide upon the performance of an

algorithm applied to a specific dataset problem needs to be deter-

mined. Note that the selection algorithm takes as input exclusively

the features of the dataset but that the calculation of the perfor-

mance depends on the original dataset.

4.2.2 Review of previous meta-learning approaches

Rendell and Cho (135) provided one of the earliest contributions to

meta-learning by launching the idea that datasets can be charac-

terized by features which could serve as an input for automatic se-

lection mappings or the generation of artificial datasets. Aha (136)

used this idea to propose a meta-learning approach for the algorithm

selection problem. The suggested features were the number of train-

ing instances, the number of classes, the value range, the number

of prototypes per class, the relevant and irrelevant attributes, the

instance distribution space and the prototype distribution space.

Brazdil and Henery (77) extended the study of Aha by incorporating

additional features which were also used in a number of subsequent

studies (73, 74, 75, 76). These were divided into simple measures

(i.e. number of samples, number of attributes, number of classes,

number of binary attributes, cost matrix indicator), statistical mea-

sures (i.e. standard deviation ratio, mean absolute correlation of at-

tributes, first canonical correlation, fraction separability, skewness,

kurtosis) and information theory measures (i.e. entropy of class,
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mean entropy of attributes, mean mutual information of class and

attributes, equivalent number of attributes, noise signal ratio). The

above described features very much focus on the characteristics of

the independent and dependent variables separately but it was no-

ticed algorithm performance may however be more depending on

the relationship between independent and dependent variables. In

addition, it was observed that the computational effort to calculate

some features is often greater than for running simple algorithms.

In response, a number of studies were conducted to explore other

forms of features which were algorithm based rather than data

based. Several studies considered to use properties of specific mod-

els as features (e.g. number of nodes and leafs, width and depth of a

decision tree) (137, 138, 139) to characterize datasets. Other stud-

ies explored the use of relative landmarks (140, 141) and sampling

landmarks (132, 133, 134) as features. A relative landmark repre-

sents the performance of faster algorithms which may predict the

performance of other algorithms. A sampling landmark on the other

hand is the performance of an algorithm on a sample of the dataset

which may predict the performance of the respective algorithm on

the complete dataset. Further, a number of likewise studies were

conducted for the purpose of parameter selection rather than algo-

rithm selection. Kuba et al. (142) developed new features for regres-

sion specific problems with the aim of selecting parameter settings

for SVMs. These included the coefficient of variation, scarcity and

stationarity of the dependent variable, presence of outliers, the co-

efficient of determination of a linear regression model, average abso-
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lute correlations between the independent variables themselves and

between the independent variables and dependent variable. Soares

et al. (143) used these features to build a meta model to select the

most optimal width of the Gaussian kernel parameter for SVM re-

gression.

Various types of meta models are proposed to offer the user a rec-

ommendation on algorithm selection. This recommendation may be

either in the form of a single algorithm or a ranking of the algorithm

space. Various studies have used a single algorithm based approach

where classification rules are obtained for each algorithm to de-

scribe when it significantly outperforms the other algorithms (136)

or when it is proven to be applicable for a given dataset (77). Al-

though a single algorithm based approach is most straightforward,

the user has no further information about the performance of the

other algorithms. In a ranking based approach however, the user

might choose a lower ranked algorithm in favor of another crite-

rion as compactness, comprehensibility, computational complexity

or familiarity. Some studies presented an instance based learning

approach (73, 76) where the most similar dataset in a collection

of reference datasets is determined based on some features as de-

scribed earlier on. The performance of the algorithms on that sim-

ilar dataset is used to generate a recommendation in the form of a

ranking. Other studies provided a recommendation in the form of a

ranking by combining pairwise meta models (74, 78). For each pair

of algorithms classification rules are induced to indicate whether

their accuracy differs significantly or not. Combining these pairwise
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meta models altogether in a round robin schedule, a ranking of the

algorithm space can be predicted from best to worst accuracy given

a particular dataset. In addition, Gamma and Brazdil (144) exper-

imented with regression models to estimate the model error of each

algorithm which can be used to form a ranking.

A major problem in meta-learning is the scarcity of publicly avail-

able real-life learning problems to build reliable meta models. Two

paths may be distinguished to generate extra datasets. A first way

is to generate synthetic or artificial datasets (75, 141, 145, 146,

147). The advantage of such an approach is that a finite number

of datasets can be generated in order to reliably fit a meta model.

The drawback is that it is hard to resemble real-life characteristics.

Choices have to be made about the distribution and intercorrelation

of the independent variables, and their relation towards the depen-

dent variable (148, 149). Either way, inevitable biases are created

this way which are most often undesired (92). A second way to

generate datasets is to manipulate existing real-life datasets. This

could be done for example by random subsampling (150) with re-

placement or adding noise to the data. Although these types of

generated datasets reflect real-life relations, they also lack sufficient

variation or merely hide the same underlying relations a bit more.

Another approach however is the use of so called datasetoids, as

recently introduced by Soares (91, 92). A datasetoid is defined as a

new dataset obtained by switching an independent variable with a

dependent variable. Although a datasetoid from a real-life dataset

most often does not represent a meaningful learning problem, it
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does represent a datasets with relevant real-life relations which is

important for the purpose of meta-learning.

As discussed above, a number of different techniques are used to

build and validate meta models so as to provide a recommendation

to the user on algorithm selection. Although the use of diverse per-

formance metrics, algorithms and features makes it hard to compare

predictive performance results, experimental meta models show gen-

erally weak performance and are hardly useful in practice. Although

the reason for this weak performance could be caused by the use of

inappropriate meta algorithms, the lack of predictive power in the

meta datasets may rather be the malefactor. Both data based char-

acteristics and algorithm based characteristics are most often used

but their predictive power for algorithm selection remains vague.

The identification of relevant data based characteristics is a non-

trivial task and heavily depends on the algorithm space. The use of

sampling landmarks on the contrary is rather straightforward but its

additional advantage remains subject for discussion (132, 133, 134).

Either way, a major drawback in the past studies is the lack of suf-

ficient real-life datasets to build and test the obtained meta models.

The number of meta dataset instances varies from merely 22 to

100 real-life instances which is hardly sufficient for reliable analy-

sis (77, 78). In addition it is noticed that very little meta-learning

studies exist on algorithm selection for regression analysis in con-

trast to classification analysis (151).
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4.3 Methods

This section explains the proposed methods so as to implement the

components as described in Rice’s framework. In concreto, this

entails the following issues. First an overview is given which re-

gression techniques are considered to be a candidate to choose from

(algorithm space). Next is explained how the accuracy of regression

technique are measured in this study (performance mapping). Then

is explained which characteristics are extracted from a given dataset

as input for the meta models (feature mapping). Further, it is ex-

plained how the meta models will decide upon the most accurate

regression algorithm based on the dataset characteristics (selection

mapping). Finally is clarified how the meta models are developed

and tested. Special attention is given to the generation of datase-

toids to overcome the scarcity problem of datasets.

4.3.1 Algorithm space

The algorithm space is represented in Table 4.1 and restricted to

regression algorithms which produce linear, spline, tree, linear tree

and spline tree models. These white box models are considered to

be sufficiently comprehensible in order to be applicable for financial

institutions real-life LGD modeling. A linear model characterizes

the proportional effect of the independent variables individually. A

tree model on the other hand is able to represent constant values

in different partitions taken into account possible nonlinearities and

combined effects of variables. A spline model can be seen as both a

generalization of a linear model or a tree model. It extends a linear

103



4. SELECTING LGD MODELS

model in the sense that it models the data as piecewise linear func-

tions so as to capture nonlinearities. Nonetheless, it also extends a

tree model in the sense that it models the different data partitions

as linear functions instead of constants. Linear and spline tree mod-

els are extensions of tree models which model the leafs as linear or

spline functions respectively instead of constants. Although linear

and spline tree models aim to fit the data more flexible, their com-

prehensibility decreases due to increased complexity with respect to

ordinary tree models.

Model Algorithm

Linear (L) OLS is a linear algebra method that builds a multivari-

ate model from linear functions by minimizing the sum

of squared residuals.

Spline (S) MARS is a stepwise method that builds a multivariate

model from piecewise linear functions by minimizing the

sum of squared residuals.

Tree (T) CART is a recursive partitioning method that builds a

binary decision tree by minimizing the sum of squared

residuals.

Linear Tree (LT) CART/OLS is an extension of the tree regression algo-

rithm which models the leafs as linear models instead of

constants.

Spline Tree (ST) CART/MARS is an extension of the tree regression al-

gorithm which models the leafs as spline models instead

of constants.

Table 4.1: Algorithm space

The algorithms employed to build the linear, spline and tree mod-

els are Ordinary Least Squares (OLS), Multivariate Adaptive Re-
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gression Splines (MARS) and Classification And Regression Trees

(CART) respectively (107, 108, 152). The objective of OLS is to

find the optimal coefficients of the linear model while CART aims

to determine the optimal variables and splits. Seen as a general-

ization of OLS and CART, the objective of MARS is to select the

coefficients as well as the variables and splits. Despite their me-

thodic differences, all three algorithms minimize the sum of squared

residuals as criterion. While OLS uses linear algebra, CART and

MARS are using an exhaustive search method to solve the regres-

sion problem.

OLS can be run without the need for any parameter tuning. To

run CART, variance reduction is set to evaluate candidate splitting

rules and to determine the optimal depth of the tree. For reasons

of comprehensibility, the tree models are restricted to symmetric

binary trees with a maximal depth level of four, i.e. maximum six-

teen leafs. To run MARS, the penalty for adding a basic function

is set to 2.5 as suggested by Hastie et al. (116). Again, for reasons

of comprehensibility, the spline models are limited to include first

order basic functions only. In contrast to OLS, CART and MARS

do implicit variable selection in a recursive and stepwise way respec-

tively. For OLS, an explicit filter method (119) is applied to include

important independent variables in the linear models and exclude

irrelevant ones by minizing the mean squared error. Any parameter

setting or variable selection is performed using a ten times hold out

validation schema on the training set.

105



4. SELECTING LGD MODELS

4.3.2 Performance mapping

The proposed performance mapping consists of calculating the co-

efficient of determination, denoted R2, in a hold out validation set

up. The coefficient of determination can be defined as one minus the

fraction of the residual sum of squares to the total sum of squares:

R2 = 1−

n
∑

i=1

(yi − ŷi)
2

n
∑

i=1

(yi − y)2

with yi the observations, y the mean of the observations, ŷi the

predictions and n the number of instances. Since the second term

in the formula can be seen as the fraction of unexplained variance,

the coefficient of determination can be interpreted as the fraction of

explained variance. Although the coefficient of determination can

yield negative values when the model predictions are worse than

using the mean observations of the training set as prediction (153),

it is capped off to zero in these cases in order to obtain strict values

between zero and one. A value of zero than refers to a bad data fit

less than or equal to that of the mean observations of the training

set, while a value of one refers to an excellent data fit where predic-

tions resemble the observations perfectly.

The coefficient of determination as defined above is however suscep-

tible for the phenomenon of statistical shrinkage (154). This implies

that adding more independent variables automatically improves the

R2 which may be due to chance alone. In an attempt to take into

account this inflation, the adjusted coefficient of determination is
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suggested, denoted R
2
(155):

R
2
= 1− (1− R2)

n−m

n−m− 1

with n the number of instances and m the number of independent

variables. The adjusted coefficient of determination is a more rep-

resentative performance metric for the purpose of meta-learning as

this involves model comparisons with possibly varying independent

variables. Further, the models are validated on a randomly chosen

subset that is hold out from the initial dataset. The remaining sub-

set is employed as training set. A rule of thumb is to use about

one-fourth for validation and three-fourth for training. To reduce

the variability, multiple rounds of hold out validation are performed

and averaged. A rule of thumb is to use about ten rounds.

4.3.3 Feature mapping

The proposed feature mapping to characterize datasets is repre-

sented in Table 4.2. These include the most popular features found

in the meta-learning literature and are adapted to be applied for

regression tasks specifically. These are classified into data based

features on the one hand and algorithm based features on the other

hand. Data based features represent characteristics of the indepen-

dent variables and dependent variables individually while algorithm

based features represent dependency characteristics between both.

The data based features cover simple statistics as the number of

instances, number of variables and the amount of continuous and

dichotomous variables. The size of the dataset is represented by
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n being the number of instances in the dataset. In order to char-

acterize the dimensionality of the dataset, the ratio of the number

of variables m to the number of instances n is calculated. Fur-

ther, the continuous composition and dichotomous composition of

the dataset is given by the ratio of the number of continuous vari-

ables mc and the number of dichotomous variables md to the total

number of variables m respectively. In order to characterize the

dependent variable, two features are proposed to describe its asym-

metry and dispersion. The centrality of the independent variable is

defined as the difference between its median y50 and mean y with

respect to its full range y100 − y0. A low difference between mean

and 50th percentile indicate that the distribution is symmetrical

while a large difference refers to asymmetrical distribution. Since

it is of no matter whether the distribution is left or right skewed,

the absolute value is proposed. The dispersion of the independent

variable is represented by its interquartile range y75 − y25 with re-

spect to its full range y100 − y0. A low difference between the 75th

and 50th percentile indicate that the distribution is peaked while a

large difference refers to a widespread distribution.

The algorithm based features cover dependency characteristics which

are represented through sampling landmarks. In this study, sam-

pling landmarks are constructed by calculating the performance of

the models under consideration, built and holdout validated on a

sample of the dataset. These are assumed to be an indicator of

the ten times hold out validation model performance on the com-

plete dataset. More in detail, a sampling landmark is constructed
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Feature Description

Length The number of instances.

Dimensionality The ratio of the number of independent variables to the

number of instances.

Composition The ratio of the number of continuous and dichoto-

mous independent variables to the number of indepen-

dent variables.

Asymmetry The ratio of the absolute difference between the median

and mean of the dependent variable to the full range of

the dependent variable.

Dispersion The ratio of the interquartile range of the dependent

variable tot the full range of the dependent variable.

Landmarks The coefficient of determination of a model built and

holdout validated on a random sample of maximum 300

instances.

Table 4.2: Feature mapping

as follows. In first instance, a small but sufficiently representative

sample is randomly chosen from the complete dataset. According to

Knofczynski and Mundfrom (156), the size of a representative sam-

ple for regression analysis depends on the number of independent

variables, the chosen model and its corresponding R
2
. Based on

this study a sample of about 300 instances on average is sufficiently

representative, given an average number of about 13 independent

variables and an average R
2
across all above described models of

47% which is observed in a set of publicly available real-life regres-

sion datasets (93). Once a random sample is chosen, the algorithm

is holdout validated. The respective model is built by running the

corresponding algorithm on a random two-third of the sample. The

landmark represents the R
2
, evaluated on the remaining one-third
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of the sample. The sampling landmarks are assumed to be directly

proportional with the model performance.

4.3.4 Problem space

In order to circumvent the problem of scarcity of real-life datasets,

regression datasets with real-life relations may be constructed by

employing the recently introduced datasetoid approach (91, 92).

For each real-life dataset, a datasetoid is generated as an additional

dataset obtained by switching an independent variables with a de-

pendent variable. This way extra learning problems with real-life

relations are generated which may not always be meaningful as a

learning problem but are all the more relevant for the purpose of

meta-learning in particular. Since the size of datasetoids always

equals its corresponding original real-life dataset, a subset of each

datasetoid is randomly chosen to create variation in the number of

instances and variables as this might be a driver for algorithm se-

lection. Further, as datasetoids often do not represent meaningful

learning problems, it may occur that there is no relation between

its independent variables and dependent variable whatsoever. Be-

cause these type of problems are not relevant for the meta-learning

study, datasetoids with corresponding R2 of zero or less for all con-

sidered models are excluded. For the purpose of generating train-

ing datasetoids about sixty publicly available real-life classification

datasets from different domains are used. Note that classification

datasets can just as well be employed when these contain continuous

variables, although resulting datasetoids with categorical dependent
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variables are excluded. For the purpose of generating test datase-

toids about thirty-two publicly available real-life regression datasets

are used. Detailed information about both the real-life classification

and regression datasets are provided by Alcala et al. (93).

4.3.5 Selection mapping

The proposed selection mapping comprises a set of pairwise regres-

sion meta models which aim to predict the performance differences

between each pair of models. Notice that it would be convenient

to get a recommendation on which type of algorithm is best for

this purpose, stressing the relevance of this study. Nonetheless,

because the lack of a practical decision support tool, a benchmark-

ing experiment using the above described algorithm space is sug-

gested to select the most appropriate model for meta model con-

struction. Each of the resulting pairwise meta models represent the

performance difference of the corresponding two models, denoted

pi → j = g(f1, f2, ..., fk), where i 6= j = {L, S, T, LT, ST}, g(.) the

regression function, f1, f2, ..., fk the features and k the number of

features. In order to provide each algorithm with a score, these

pairwise performance differences can be combined in a round robin

schedule as illustrated in Table 4.3. Doing so, the total performance

ti for each model i is determined by adding its pairwise performance

differences. Based on these sums, an additional ranking of the algo-

rithms ri may be generated. The advantage of predicting pairwise

performance differences instead of only predicting which algorithm

is best out of a pair, is that not only a ranking can be provided but
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that also the size of the performance gaps between algorithms can

be quantified. When the performance gap between two algorithms

is small, the user might choose a lower ranked algorithm in favor of

another criterion such as compactness, comprehensibility, computa-

tional complexity or familiarity.

A L S T LT ST t r

L pL→S pL→T pL→LT pL→ST tL rL

S pS→L pS→T pS→LT pS→ST tS rS

T pT→L pT→S pT→LT pT→ST tT rT

LT pLT→L pLT→S pLT→T pLT→ST tLT rLT

ST pST→L pST→S pST→T pST→LT tST rST

Table 4.3: Selection mapping

4.3.6 Meta model evaluation

The performances of the average based, data based and algorithm

based meta model are pairwise compared in order to discover any

differences in predictive power between these three set ups. For all

ten pairwise meta models in each set up, the predictive performance

is determined in terms of R
2
. In order to uncover any significant

differences between these performances, a statistical comparison is

performed across these three set ups. This is done through a Fried-

man’s test (81) followed by a Holm post-hoc pairwise testing proce-

dure (94) as suggested in the literature (79, 80) for these purposes.

Friedman’s test is performed to test the null hypothesis that all

three set ups perform alike based on the performance of their pair-

wise meta models. Subsequently, Holm’s method is used to compare
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each pair of set ups individually.

4.3.7 Implementation details

Standard methods in Matlab are used to build the linear models and

regression trees while an external Matlab toolbox is used for build-

ing the spline models (ARESLab). Variable selection is performed

through the sequential feature selection method in Matlab. For the

statistical comparison using Friedman’s test and the post-hoc mul-

tiple testing procedure of Holm, a stand-alone Java application is

used which is provided by Garcia and Herrera (80). All other code

required for the experiments is developed by the author.

4.4 Results and discussion

The distributions of both the data based and algorithm based datase-

toid features are represented in Figures 4.1 and 4.2 respectively,

and the corresponding statistics are shown in Table 4.4. The train-

ing meta dataset consists of 680 datasetoid instances (i.e. gener-

ated from sixty real-life datasets) and the test meta dataset covers

342 datasetoid instances (i.e. generated from thirty-two real-life

datasets). Columns two to twelve represent the aforementioned fea-

ture space (i.e. length, dimensionality, continuous composition, di-

chotomous composition, asymmetry, dispersion, linear, spline, tree,

linear tree and spline tree sampling landmark). For all features the

mean, the standard deviation, minimum and maximum values are
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presented. The training meta data shows similar feature statistics

with the test meta data. The number of instances n varies from

350 to 5782 for the training meta data and from 350 to 5815 for the

test meta data. Note that these numbers are randomly generated

between the interquartile range of what is observed on real-life clas-

sification datasets. The smallest datasets are after all considered to

be irrelevant and sufficient computer power is lacking for process-

ing the largest datasets. The number of variables m ranges from

one to 84 for the training meta data and from one to 85 for the

test meta data. The training datasetoids contain 0 to 67 continuous

variables and zero to twenty-four dichotomous variables and the test

datasetoids are composed of 0 to 68 continuous variables and of 0

to 25 dichotomous variables. The difference between the mean and

median of the dependent variables with respect to the total range

varies from 0% to 50% for the training meta data and from 0% to

38% for the test meta data. The interquartile range of the depen-

dent variables with respect to the total range goes from 2% to 50%

for the training meta data and from 1% to 48% for the test meta

data. Sampling landmarks are spread between 0% to 100% in terms

of R
2
for both the training and test meta data.

The distribution of the datasetoid performances are represented in

Figure 4.3 and corresponding basic statistics are shown in Table 4.5.

The linear, spline, tree, linear tree and spline tree model perfor-

mances in terms of R
2
are displayed in the form of histograms for

both training and test datasetoids. Based on these histograms, it

is clear that the datasetoid model performances a spread out from
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Figure 4.1: Datasetoid data based feature distributions
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Figure 4.2: Datasetoid algorithm based feature distributions
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Statistic n
m

n

mc

m

md

m

|y50 − y|

y100 − y0

y75 − y25

y100 − y0
lL lS lT lLT lST

Training

AVG 1913 3.22·10−2 0.88 0.12 0.05 0.20 0.38 0.48 0.33 0.27 0.41

STD 1738 5.00·10−2 0.17 0.17 0.08 0.10 0.39 0.40 0.35 0.37 0.41

MIN 350 1.92·10−4 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

MAX 5782 1.90·10−1 1.00 1.00 0.50 0.50 1.00 1.00 0.93 1.00 1.00

Test

AVG 2369 9.16·10−3 0.84 0.16 0.04 0.16 0.37 0.48 0.32 0.28 0.43

STD 1739 1.05·10−2 0.15 0.15 0.06 0.09 0.38 0.39 0.34 0.37 0.40

MIN 350 4.00·10−4 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

MAX 5815 1.00·10−1 1.00 1.00 0.38 0.48 1.00 1.00 0.94 1.00 1.00

Table 4.4: Datasetoid feature statistics

zero to one. This can be seen as a justification that both training

and test data possess sufficient variation to cover the total perfor-

mance range. The histograms also show that the training and test

datasetoid performance distributions are very much alike. This can

be seen as a justification that the training data is sufficiently repre-

sentative for the test data. Further, a peak at the first segment and

the last segment is dominantly present for all histograms. The peak

at the first segment is due to the fact that a majority of the datase-

toids lack predictive performance whatsoever. This is not surprising

since datasetoids are generally meaningless in real-life. Note that all

datasetoids which were not selected a priori even corresponded to a

performance equal to or below zero. The peak at the last segment

refers to a majority of the datasets with nearly perfect predictive

performance. This is most likely caused by heavily correlated in-

dependent variables where one of these is shifted into the role of

dependent variable during datasetoid fabrication. Although this is

seen as a drawback of the use of datasetoids, a representative ma-

jority of datasetoids with various performances remains present for

reliable meta-learning purposes.
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Figure 4.3: Datasetoid model performance distributions

Statistic pL pS pT pLT pST

Training

AVG 0.44 0.52 0.33 0.31 0.44

STD 0.37 0.38 0.35 0.35 0.41

MIN 0.00 0.00 0.00 0.00 0.00

MAX 1.00 1.00 0.92 1.00 1.00

Test

AVG 0.45 0.55 0.33 0.31 0.39

STD 0.35 0.36 0.33 0.35 0.39

MIN 0.00 0.00 0.00 0.00 0.00

MAX 1.00 1.00 0.95 1.00 1.00

Table 4.5: Datasetoid model performance statistics

The resulting average based meta model is illustrated in Table 4.6.

These can be seen as the benchmark as they represent the most ba-

sic meta models. The performance difference between two models

is simply predicted by the mean performance difference observed

on the training datasetoids. These kind of models are not driven

by any dataset features and, hence, correspond to a performance of

zero in terms of R
2
. When combining the average based pairwise

meta models, the ranked recommendation yields the spline model

as best performing model followed by the linear, spline tree, linear
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tree and tree model. It can also be seen that the performance of

the tree based models are close to each other while linear models

and a fortiori spline models show dominantly more performance.

When no time is available to predict the best performing model,

the average based meta model may offer a general recommendation.

These conclusions are at least true on average and are based on the

experience on the training meta dataset used in this study. Note

that according to the NFL theorem, the performance of these five

models should actually be equal on average. The difference can be

explained because the meta data used in this study merely covers

a small subset (i.e. 680 datasets) out of the infinite amount of all

possible datasets for which the NFL theorem holds.

A L S T LT ST t r

L -0.08 0.11 0.13 0.00 0.16 2

S 0.08 0.19 0.21 0.08 0.66 1

T -0.11 -0.19 0.02 0.00 -0.28 5

LT -0.13 -0.21 -0.02 -0.13 -0.23 4

ST 0.00 -0.08 0.00 -0.13 -0.21 3

Table 4.6: Average based pairwise meta models

The resulting pairwise meta models based on either data features or

algorithm features only are displayed in Table 4.7 and Table 4.8 re-

spectively. In order to decide upon which type of meta model form

to use, the performances of a linear, spline, tree, linear tree and

spline tree are compared across all ten pairwise meta-models. The

spline form seems to rank first with an average R2 of 27% closely

followed by the linear form with an average R2 of 25%. Nonetheless,
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a linear form is more easy to interpret since a spline form typically

includes more terms. Because of its higher comprehensiblity and

comparable accuracy with a spline form, a linear form is chosen as

meta model form. In order to compare the influence of the features

for algorithm selection, their values are adjusted to a notionally

common scale. All meta independent variables are standardized by

subtracting the meta training dataset mean and dividing this differ-

ence with the training meta dataset standard deviation. The mean

and standard deviation values of each meta independent variable

are reported in Table 4.4.

The data based pairwise meta models in in Table 4.7 seem to imply

that these commonly used data characteristics are negligible drivers

for algorithm selection. When observing the resulting data based

pairwise meta models, it appears that the size and dimensional-

ity of datasets play a role in the prediction of model performance

differences because these are included in some pairwise meta mod-

els. However, when observing the linear coefficients their influence

is rather small. In addition and even more important, the cor-

responding pairwise meta model performances in terms of R2 are

barely distinguishable from zero. This means that the meta mod-

els with the commonly employed data based features hardly provide

any additional advantage compared to the average based meta mod-

els. This makes the use of data based features rather irrelevant for

this matter.

The algorithm based pairwise meta models in Table 4.8 on the other
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Meta model R
2

pL→S = 0.08 + 0.03 · m
n

0.00

pL→T = −0.11− 0.05 · n 0.03

pL→LT = −0.13− 0.04 · m
n

0.00

pL→ST = −0.03 · n+ 0.03 · m
n
+ 0.03 · mc

m
0.02

pS→T = −0.19− 0.04 · n 0.00

pS→LT = −0.21− 0.07 · m
n

0.00

pS→ST = −0.08− 0.03 · |y50−y|
y100−y0

0.00

pT→LT = 0.06 · n− 0.06 · m
n

0.04

pT→ST = 0.03 · m
n
+ 0.03 · mc

m
0.02

pLT→ST = 0.13 + 0.06m
n
− 0.03 · md

m
0.04

Table 4.7: Data based pairwise meta models

hand seem to imply that sampling landmarks are important drivers

for predicting model performance differences. The coefficients of

the sampling landmarks are consistently either negative or positive

at the expense or in favor of the corresponding model. The ap-

proximately equal weights of the sampling landmarks indicate that

the difference between sampling landmarks is directly proportional

with model performance. In other words: a single validation run

on a random sample of 300 instances seems to be giving an good

indication of a ten times hold out validation run on the complete

dataset. Note that about half of the datasetoids has a size which

is between 350 and 1000 instances. This is close to the sampling

landmark size and may cause too optimistic performance results.

Further, it is noticed that the performance of the pairwise meta

models are higher when exclusively one stage models (i.e. linear,

spline and tree) are involved. These models are after all well dis-
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Meta model R
2

pL→S = 0.08− 0.10 · lL + 0.11 · lS 0.30

pL→T = −0.11− 0.23 · lL + 0.24 · lT 0.47

pL→LT = −0.13− 0.19 · lL + 0.17 · lLT 0.21

pL→ST = −0.21 · lL + 0.26 · lST 0.07

pS→T = −0.19− 0.33 · lS + 0.31 · lT 0.56

pS→LT = −0.21− 0.25 · lS + 0.21 · lLT 0.41

pS→ST = −0.08− 0.30 · lS + 0.33 · lST 0.12

pT→LT = −0.20 · lT + 0.18 · lLT 0.40

pT→ST = −0.21 · lT + 0.26 · lST 0.07

pLT→ST = 0.13− 0.16 · lLT + 0.23 · lST 0.10

Table 4.8: Algorithm based pairwise meta models

tinct from each other, and hence, may be easier to distinguish. Two

stage models (i.e. linear tree and spline tree) on the other hand are

a combination of the one stage models and are, as such, less dis-

tinct from each other, which may explain the lesser performances.

Nevertheless, the sampling landmarks as set up in this study do

not provide sufficient power to flawlessly predict performance dif-

ferences. This can however be resolved by adapting the sample size

and/or the number of runs to calculate the sampling landmark in

function of the dataset size. The latter may be matter for further

research.

The performances in terms of R
2
of the average based, data based

and algorithm based meta model are compared in Table 4.9. Ta-

ble 4.10 illustrates a statistical comparison between these three set

ups in order to uncover any significant differences. This is done us-

ing the Friedman’s test (81) followed by the Holm post-hoc pairwise
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testing procedure (94) as suggested in the literature (79, 80). Fried-

man’s test is performed to test the null hypothesis that all three set

ups perform alike based on the performance of their pairwise meta

models. Subsequently, Holm’s method is used to compare each pair

of set ups individually. Based on the results, the hypothesis that

there is no performance difference between the data based and av-

erage based meta model can not be rejected. This means that the

use of data based features do not provide any significant additional

value above the simple use of the average for algorithm selection

which is in contract to most studies in the literature. The hypoth-

esis that there is no performance difference between the algorithm

based on the one hand and the data based or average based meta

model on the other hand can be rejected with a significance level

of 1% and 0% respectively. This means that sampling landmarks

are proven to be significantly better drivers than both training av-

erages or data based features for algorithm selection which is rather

unclear based on past literature.

4.5 Conclusions

This chapter explores in what degree model performances can be

predicted based on both data based and algorithm based character-

istics of a given dataset. The study involves experiments with more

than thousand datasetoids representing real-life relations, thereby

circumventing the scarcity problem of publicly available real-life re-

gression datasets. This study applies the concept of datasetoids to

algorithm selection problem which increases the reliability of the
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Model Average based Data based Algorithm based

pL→S 0.00 0.00 0.30

pL→T 0.00 0.03 0.47

pL→LT 0.00 0.00 0.21

pL→ST 0.00 0.02 0.07

pS→T 0.00 0.00 0.56

pS→LT 0.00 0.00 0.41

pS→ST 0.00 0.00 0.12

pT→LT 0.00 0.04 0.40

pT→ST 0.00 0.02 0.07

pLT→ST 0.00 0.04 0.10

Average 0.00 0.01 0.27

Table 4.9: Performances of the meta models in terms of R
2

Hypothesis z p

Average based vs algorithm based 3.91 0.00

Data based vs algorithm based 2.80 0.01

Average based vs data based 1.12 0.26

Table 4.10: Statistical comparison of pairwise meta models

results. It is found that data based features such as the size, di-

mensionality, composition or target distribution of the dataset does

not provide any significant additional value above the simple use of

the average for algorithm selection which is in contract to several

studies in the literature. In addition is proven that sampling land-

marks are significantly better drivers than both training averages

or data based features for algorithm selection which is rather un-

clear based on past literature. Although the results of this study are

generalizable to other domains as well, these apply in particular for

LGD modeling. First, this study presents a selection of algorithms
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to build humanly interpretable models. This is important because

typical black box models such as those built by Support Vector

Machines or Artificial Neural Networks may not be approved by

the national regulator because of their lack of comprehensibility, al-

though they may show superior accuracy on various real-life LGD

datasets. Second, this study found no evidence that the typical

non-normal distribution characteristics of real-life LGD would fit

some models better in contrast to some studies who claim the op-

posite. Consequently, this study advises either to actually compare

the model performances for algorithm selection if computationally

possible or to compare sampling landmarks as a more time effective

way to successfully estimate and compare model performances.
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Conclusions

”Occurrences in this domain are beyond the reach of exact

prediction because of the variety of factors in operation,

not because of any lack of order in nature.”

-Albert Einstein (German physicist, 1879-1955)

”It is far better to foresee even without certainty

than not to foresee at all.”

-Henri Pointcare (French mathematician, 1854-1912)

This thesis results in various scientific contributions which are in

particular of practical use for financial institutions. First, a bench-

marking study is conducted to uncover the predictability of real-life

LGD with various types of regression modeling techniques. Second,

a backtesting tool is presented to support financial institutions to

quantitatively test their internal LGD models. Third, the founda-

tions of a selection tool are established to support model builders to
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decide upon the most appropriate model technique. This concluding

chapter is organized as follows. First, the most important results of

this thesis are briefly summarized. Second, it is explained how these

contribute to the scientific literature and how these are important

for the industry. Third, several limitations of the conducted studies

are highlighted. Fourth and finally, various paths are suggested for

further research.

5.1 Results

The first part of this thesis entails a benchmarking study with

twenty-four regression techniques and six real-life datasets obtained

from major international banking institutions. The average per-

formance of the techniques applied to the real-life LGD datasets

ranges from 4% to 43% in terms of R2. This means that these

resulting models have limited explanatory power and thus implies

that real-life LGD is hard to predict. Nonetheless, a clear trend can

be seen that non-linear techniques yield significantly higher model

performance than more traditional linear techniques. This suggests

the presence of non-linear relations between the independent vari-

ables and the LGD, contrary to a previous benchmarking study on

PD modeling where the difference between linear and non-linear

techniques is not that explicit. The study clearly demonstrates the

potential of non-linear techniques to LGD modeling, possibly in a

two stage setting with a linear component so as to improve the com-

prehensibility of the resulting models.
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The second part of this thesis addresses the call for research on back-

testing LGD models. Backtesting is a regulatory requirement for

any bank implementing the Basel advanced internal ratings based

approach. Current backtesting practices most often consist of solely

measuring the similarity between model predictions and realized

observations. Without proper reference values however, it is not

straightforward to determine upon acceptable model performance

solely based on these metrics. This study proposes an workbench

of statistical hypothesis tests which includes standard parametric

and non-parametric tests as well as a number of non-standard tests

constructed through a bootstrapping approach based on commonly

used LGD model performance metrics. These tests are applied in

such a way that they take into account an appropriate reference

value indicating acceptable accuracy in addition to the number of

LGD observations.

The third part of this thesis explores in what degree model perfor-

mance differences can be predicted based on both data based and

algorithm based characteristics of a given dataset. The study in-

volves experiments with more than thousand datasetoids represent-

ing real-life relations, thereby circumventing the scarcity problem

of publicly available real-life regression datasets. It is found that

data based features such as the size, dimensionality, composition

or target distribution of the dataset do not provide any significant

additional value above the simple use of the average for algorithm

selection which is in contrast to most studies in the literature. In

addition is proven that sampling landmarks are significantly better
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drivers than both training averages or data based features for algo-

rithm selection which is rather unclear based on past literature.

5.2 Contributions

The benchmarking study is the first large scale LGD study in terms

of both regression techniques and real-life LGD datasets. Its value

is in particular in the use of default data from major international

banks. It is not straightforward to obtain real-life LGD data for

research purposes because financial institutions either have no suf-

ficiently large track record of losses at the moment or choose not to

share these for scientific research because of reasons of confidential-

ity. The results of this study may offer other financial institutions

valuable information about the performance of techniques on real-

life LGD. In first instance, this study can help banks in selecting

the appropriate regression algorithm to model their LGD portfo-

lio’s. In second instance, banks are provided with an indication of

the performance of LGD models. This knowledge can serve to val-

idate their own internal LGD models by comparing these with the

model performances acquired in this study.

The backtesting study is the first study to introduce how statistical

hypothesis tests can be applied for validating LGD models. The im-

portance of validation methods for LGD models is increased since

the deployment of the advanced internal ratings based approach.

Although Basel requires banks to validate their internal LGD mod-

els at least yearly, it does not further specify how to perform this
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validation. This study may fill in this gap. The proposed statistical

hypothesis tests may be valuable for financial institutions imple-

menting the advanced internal ratings based approach. In order to

be Basel compliant, banks are required to have a documented ap-

proach towards the validation of their internal LGD models. Banks

can implement the proposed LGD backtesting methods and refer to

this study to prove the soundness of both their internal LGD models

and their validation process to the national regulator.

The meta-learning study is the first study to apply the concept of

datasetoids to algorithm selection which increases the reliability of

the results. The study proves that data based features do not mat-

ter while sampling landmarks do matter for algorithm selection.

These findings are either in contrast with the literature or rather

unclear based on previous studies. The results of this study may

be of practical use when models need to be fit on large datasets.

In these cases, sampling landmarks can be a time saving way to

either select the most accurate model technique or to optimize a

specific model parameter. Financial institutions in particular may

notice the average superiority of spline models for comprehensible

regression analysis. In addition to the results of the LGD bench-

marking study, the fitting of splines to LGD data may be preferred

to develop both an accurate and comprehensible LGD model.
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5.3 Limitations

Although the benchmarking study is up to now the largest LGD

study in terms of the number of datasets and techniques, it encoun-

ters limitations from a statistical point of view in two ways. First,

the number of real-life LGD datasets available for this research is

rather low. The low number of datasets causes to decrease the sta-

tistical power of the hypothesis tests to detect significant differences

between the considered algorithms when there actually are. Second,

all algorithms are merely single hold out validated because of rea-

sons of computational complexity. A single hold out schema may

distort the resulting model performances because of the large varia-

tion on these results when compared to a multiple hold out schema

(e.g. ten fold cross validation).

Although the backtesting study results in a workbench of statis-

tical hypothesis test to quantitatively evaluate the performance of

LGD models, these tests may be rather powerless for low default

portfolios. Several types of portfolios can be characterized by a low

number of defaults. These typically include portfolios of exposures

to sovereigns, large banks or insurance companies. Other exam-

ples are recent market entrants for a given portfolio or portfolios

with long workout periods. When the LGD portfolio lacks sufficient

observations, the statistical power of the corresponding statistical

hypothesis tests decrease. This means the concerning tests are not

able to detect significant model deterioration, even if this actually

would be the case. Hence, the use of the proposed statistical hy-

pothesis tests is limited to portfolios with sufficient defaults.
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Although the meta-learning study slightly circumvented the lack

of sufficient real-life datasets by extracting a multiple of so called

datasetoids, this method involves the following drawbacks. About

half of the generated datasetoids are less representable because there

predictive power either is extreme low or extreme high. On the one

hand datasetoids are generally meaningless content wise and often

may result datasetoids lacking any predictive performance at all. On

the other hand, datasetoids based on heavily correlated independent

variables where one of these is shifted into the role of dependent vari-

able during datasetoid fabrication result in nearly perfect predictive

performance. An additional limitation is the restricted sample size

of both datasetoids and sampling landmarks. Because of reasons of

computational complexity, large dataset sizes (i.e. more than about

6000) are not represented in this study. In addition about half of

the datasetoids has a size close to the sampling landmark size (i.e.

between 350 and 1000) and may cause too optimistic performance

results. Further, the size of the sampling landmarks is constant

while ideally should be depending on size of the datasetoid size.

5.4 Future research

Although the benchmarking study proves that there are significant

performance differences between algorithms, the observed predic-

tive model performances are considered low in general. This may

be an indication that real-life LGD datasets are lacking predictive

power. A possible path for future research could exist to search
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for variables with higher predictive power. Such a study can be

conducted via a Delphi method which relies on a panel of interact-

ing and anonymous LGD model experts. This panel of experts can

be given the task to identify and to prioritize the high predictive

candidate LGD drivers for various types of portfolios. In addition

the panel can be asked to agree upon a predictive model involving

the earlier identified drivers in an attempt to construct an expert

based LGD model. Subsequently, this expert based model can be

validated in two ways. First, the expert based model can be back-

tested by comparing its predictions with actual loss observations.

Second, the predictive performance of the expert based model can

be benchmarked by comparing them with empirically built models.

Although the backtesting study provides various useful tests to

quantitatively validate the predictive performance of LGD models,

these are rather useless for low default portfolios. Hence, there is a

need to develop applicable procedures to validate LGD models for

portfolios which are characterized by a small amount of observa-

tions. Since banks and supervisors may find that backtesting LGDs

for low default portfolios can not be done in a way that strongly

demonstrates good predictiveness in a quantitative way, more em-

phasis may be on qualitative techniques in order to satisfy both

themselves and their supervisor that their predictions are reason-

able. A study to extract best practices for qualitative validation

techniques could offer relief. The focus may be rather on the pro-

cess of collecting data, designing the predictive model and how it is

used in daily practice.
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The meta-learning study can be extended in a number of ways in or-

der to create a practical support tool for algorithm selection. First,

it seems that a single validation run on a sample of 300 instances is

not always sufficiently representative for a ten times hold out vali-

dation on the full dataset. This problem could be addressed with a

study aiming to build a model to estimate a sampling landmark’s

sample size in function of the required statistical power, the full

dataset size and the required model. Second, the relevance of an al-

gorithm selection model increases when the time effort to conduct a

benchmarking study is too high. The gained time profit when using

sampling landmarks for selecting purposes may be studied in func-

tion of the size of the full dataset, the type of algorithms and their

run times. Third, the comprehensibility of a model is often labeled

as very important but rather difficult to measure objectively across

different types of models. Therefore, an empirical study may be set

up with the goal of measuring the comprehensibility of models on a

common scale.
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5. CONCLUSIONS

134



Appendix A

Specification of the risk weight

function

The internal ratings based (IRB) approach (5) as introduced in

Basel II allows banks to use their own internal measures for key

drivers of credit risk as primary inputs to the capital calculation,

subject to meeting certain conditions and to explicit supervisory

approval. All institutions using the IRB approach are allowed to

determine the borrowers probabilities of default while those us-

ing the advanced IRB approach will also be permitted to rely on

own estimates of loss given default and exposure at default on an

exposure-by-exposure basis. These risk measures are converted into

risk weights and regulatory capital requirements by means of a risk

weight formula specified by the Basel Committee. This section de-

scribes the economic foundations, the regulatory requirements as

well as the underlying mathematical model of the IRB approach.
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A. SPECIFICATION OF THE RISK WEIGHT FUNCTION
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Figure A.1: Loss rate (5)

Economic foundation

The occurrence of loss of interest and principal capital is inherently

connected to the credit business. Because of the credit risk arising

from borrowers who do not make payments as promised, defaults

happen to occur. The number and severity of defaults can vary

from year to year. An example of realized losses in a particular

portfolio over time is captured in Figure A.1. The variation of these

losses can be illustrated with the portfolio loss distribution as seen

in Figure A.2. A distinction is made between expected loss (EL)

and unexpected loss (UL).

The expected loss of a portfolio is the average level of credit loss a

bank can reasonably expect to experience. This is seen as the nor-

mal cost of doing business. It is mainly covered by the interest rate

charged to the obligors and by provisioning. The expected loss gives

information about the location of the portfolio loss distribution.
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Figure A.2: Loss distribution (5)

The unexpected loss of a portfolio is the loss that differs from the

expected loss. Financial institutions know they will happen to occur

now and then but do not know in advance their timing and severity.

Banks need buffer capital to absorb these peak losses if they occur

so as to protect their own obligations. The unexpected loss gives

information about the dispersion of the portfolio loss distribution.

The value at risk (V aR) of a portfolio is the sum of the expected

loss and the unexpected loss that a bank is able to cover through

both profits and capital respectively. The value at risk is defined

at a given confidence level. The latter is the likelihood that a bank

will remain solvent when capital is set according to the unexpected

loss gap and if the expected loss is covered by provisions and rev-

enues. The value at risk is the corresponding threshold for a given

confidence level.
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A. SPECIFICATION OF THE RISK WEIGHT FUNCTION

Regulatory requirements

The Basel IRB model used for the derivation of supervisory capital

charges for unexpected loss is subject to an important restriction in

order to fit supervisory needs. The model should be portfolio invari-

ant, i.e. the capital required for any given loan should only depend

on the risk of that loan and must not depend on the portfolio it is

added to (5). This regulatory requirement is set forth for reasons

of simplicity. For supervisory needs, it is generally too complex to

take into account the composition of the portfolio to determine the

required capital for each single loan. It can be shown that only so-

called Asymptotic Single Risk Factor (ASRF) models are portfolio

invariant (157).

ASRF models assume that a) the portfolio is asymptotically fine-

grained and b) that there is only one single systematic risk fac-

tor. When a portfolio consists of a large number of relatively small

exposures, idiosyncratic risks associated with individual exposures

tend to cancel out one-another and only systematic risks that affect

many exposures have a material effect on portfolio losses (5). Note

that, although the use of ASRF models is suggested, Basel does by

no means enforce banks to employ a specific model. Due to the

portfolio invariance property, regulatory capital depend only on the

characteristics of the obligor and not on the characteristics of the

remainder of the portfolio (157). As such, obligor specific attributes

like the probability of default (PD), the loss given default (LGD)

and the exposure at default (EAD) suffice to determine the capital

charges.
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Model specification

So far, the unexpected loss for which banks should hold capital as a

safety cushion has been regarded from a top-down perspective, i.e.

as the difference of the value-at-risk and the expected loss of the

portfolio loss distribution:

UL = V aR − EL

In what follows, the unexpected loss is built from the bottom-up,

namely from its components PD, LGD and EAD. This eventually

leads to the Basel IRB formula to determine the regulatory capital

to cover the estimated unexpected loss:

RC = UL = 12.5 ·
N
∑

i=1

EAD∗
i · LGD∗

i

·
[

ΦN

[
√

1

1− ρ
φ−1
N (PDi) +

√

ρ

1− ρ
ΦN(0.999)

]

− PDi

]

·
(

1 + (Mi − 2.5) · b(PDi)

1− 1.5 · b(PDi)

)

where the factor 12.5 is introduced so as to fit the 8% capital ade-

quacy rule, i.e. 12.5 · 0.08 = 1.
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A. SPECIFICATION OF THE RISK WEIGHT FUNCTION

Expected loss

The expected loss of a portfolio is the sum of the expected loss of

each single loan in the portfolio:

EL = E[LP ] =
N
∑

i=1

E[Li]

where LP and Li denote the loss of the entire portfolio P and the

loss of an individual loan i respectively. The expected loss of an

individual loan is a stochastic variable and is assumed to follow the

equation below:

Li = EADi · LGDi · δPDi

where δPD is either 0 (non-default) or 1 (default). Hence, the ex-

pected value of the portfolio loss equals:

E[LP ] =

N
∑

i=1

EADi · LGDi · PDi

where EAD and LGD denote the average exposure at default and

loss given default respectively.

Value at risk

The value-at-risk is the level of capital that is required to prevent the

bank from going bankrupt in one year with a probability of no more

than 100% minus the confidence level. For this purpose, Vasicek’s

model was adopted as the heart of Basel’s IRB formula (158):

V aRi(α) =

N
∑

i=1

EADi·LGDi·ΦN

[
√

1

1− ρ
Φ−1

N (PDi) +

√

ρ

1− ρ
Φ−1

N (α)

]
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where Φ the cumulative standard normal distribution, α is the con-

fidence interval and ρ is the asset correlation. The Vasicek formula

is derived from an adaptation of Merton’s credit risk model (159).

However, Merton is interested in the value of equity of a single firm

in isolation, whereas Vasicek is interested in the probability of de-

fault on portfolio debt of a bank (160).

Vasicek’s formula is used to determine an appropriate downturn

PD, i.e. the conditional PD given economic downturn conditions.

In a first step, the default threshold for the PD is determined by

applying the inverse cumulative standard normal distribution func-

tion to the PD. Likewise, a default threshold for an appropriate

conservative value of the single risk factor can be derived by apply-

ing the inverse cumulative standard normal distribution function

to the predetermined supervisory confidence level. A correlation-

weighted sum of both the default threshold and the conservative

value of the single risk factor yields a downturn default threshold.

In a second step, the downturn PD is determined by applying the

cumulative standard normal distribution function to the downturn

default threshold.

Confidence level

The supervisory confidence level α is fixed at 99.9%. This means a

bank will not have sufficient capital to cover its losses in 1 out of

1000 years. A capital cushion with α = 0.999 would be far in ex-

cess of most regulators’ actual requirements if the Vasicek formula’s
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A. SPECIFICATION OF THE RISK WEIGHT FUNCTION

assumptions approximated reality. The high confidence level is jus-

tified so as to provide an appropriate conservative value of the single

risk factor, given the Vasicek model uncertanties. Estimation errors

might inevitable occur from banks’ internal PD, LGD and EAD

estimation (5). Further, Vasicek assumes an infinitely fine-grained

portfolio and a normally distributed single risk factor which is rarely

the case in reality (160).

Asset correlation

The asset correlation ρ shows how the asset value of one borrower

depends on the asset value of another borrower. In an ASRF model

all borrowers are linked to each other by the systematic risk fac-

tor that can be interpreted as a reflection of the state of the global

economy. Hence, the asset correlation may also be expressed as the

degree of the obligor’s exposure to that systematic risk factor. The

higher the asset correlation the more likely becomes higher unex-

pected losses. This means portfolios with higher asset correlations

require bigger capital cushions. The asset correlation is empirically

derived with different approaches and results for corporate expo-

sures on the one hand and retail exposures on the other hand.

The supervisory asset correlations for corporate exposures have been

derived by the analysis of datasets from G10 supervisors. The anal-

ysis of these time series revealed that asset correlations decrease
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with increasing PD and firm size S:

ρ = 0.12·1− e−50·PD

1− e50
+0.24·

(

1− 1− e−50·PD

1− e50

)

−0.04·H ·(1−S − 5

45
)

with values ranging from 12% to 24%, the correlations decreasing

with a pace of 50 and where the size adjustment factor affects bor-

rowers with annual sales between 5 million and 50 million (H = 1

for S ≤ 5 and H = 0 for S ≥ 50). Note that the asset correlation

for bank and sovereign exposures is the same as for corporate bor-

rowers, only that the size adjustment factor does not apply.

The asset correlations for retail exposures have been reverse en-

gineered from economic capital figures from large internationally

active banks and historical loss data from supervisory databases of

the G10 countries. This led to three different correlation functions:

a relatively high and constant correlation of ρ = 0.15 for residential

mortgages, a relatively low and constant correlation of ρ = 0.04 for

qualifying revolving retail exposures and a PD dependent correla-

tion for other retail exposures:

ρ = 0.03 · 1− e−35·PD

1− e35
+ 0.16 ·

(

1− 1− e−35·PD

1− e35

)

The latter is structurally equivalent to the corporate correlation

function. However, its lowest and highest values range from 3% to

16% and the correlations decrease with a pace of 35.
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A. SPECIFICATION OF THE RISK WEIGHT FUNCTION

Maturity

Portfolios consist of loans with different maturities. Both intuition

and empirical evidence indicate that long-term credits are riskier

than short-term credits (5). Hence, the required capital should in-

crease with maturity. Since the Vasicek formula calculates capital

for a one year horizon, the IRB formula is adjusted for loans with

a maturity over one year. The Basel maturity adjustment Madj is

derived by applying a specific market-to-market credit risk model to

capture the time structure of PD (i.e. the likelihood and magnitude

of PD changes) which leads to:

Madj =
1 + (M − 2.5) · b(PD)

1− 1.5 · b(PD)

with b(PD) = (0.11852 − 0.05478 · ln(PD))2. The maturity ad-

justment increases linearly with M and decreases with an increas-

ing PD. Note that the maturity adjustment is only applicable for

sovereign, bank and corporate exposures, but not for retail expo-

sures as the asset correlation for retail implicitly contains maturity

effects due to its empirical derivation (5).

Downturn LGD and EAD

The LGD parameter used to calculate the unexpected loss must also

reflect adverse economic scenario’s (5). During an economic down-

turn typically higher losses are reported than under normal business

conditions (48, 161, 162, 163). Therefore, Basel requires banks to

use their own estimate of downturn loss given default LGD∗ instead
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of a supervisory function to map LGD to LGD∗. Because LGD esti-

mation is a new and emerging field, the Basel committee determined

that it would be inappropriate to apply a single supervisory LGD

mapping function (as opposed to PD) (5). Likewise, a downturn

exposure at default EAD∗ is required for the calculation of the un-

expected loss. Note that Basel decided to also use downturn loss

given default LGD∗ and downturn exposure at default EAD∗ for

the calculation of EL. However this results in a higher expected

loss as LGD∗s and EAD∗s are generally higher, an additional com-

pliance and validation burden is avoided that would arise if banks

were required to estimate and report both LGD∗ and LGDs for the

exposures (5).
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A. SPECIFICATION OF THE RISK WEIGHT FUNCTION

146



Appendix B

Results of the benchmarking

experiment
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B. RESULTS OF THE BENCHMARKING EXPERIMENT

Technique MAE RMSE AUC AOC R2 r ρ τ

OLS 0.3257 0.3716 0.6570 0.1380 0.0972 0.3112 0.3084 0.2145

B-OLS 0.3474 0.4294 0.6580 0.1843 -0.2060 0.2954 0.2991 0.2071

BR 0.3356 0.3693 0.5690 0.1363 0.0546 0.2601 0.2641 0.1844

BC-OLS 0.3835 0.4579 0.5180 0.2096 -0.3747 0.2403 0.2312 0.1602

RiR 0.3267 0.3723 0.6561 0.1385 0.0933 0.3056 0.3033 0.2106

RoR 0.3262 0.3723 0.6565 0.1385 0.0935 0.3061 0.3034 0.2107

RT 0.3228 0.3732 0.5990 0.1392 0.0892 0.2997 0.2913 0.2095

MARS 0.3214 0.3704 0.6657 0.1372 0.1027 0.3205 0.3122 0.2187

LSSVM 0.3184 0.3669 0.6723 0.1346 0.1194 0.3466 0.3442 0.2444

ANN 0.3118 0.3648 0.6840 0.1331 0.1295 0.3603 0.3559 0.2524

LOG+OLS 0.3202 0.3700 0.6210 0.1366 0.1063 0.3262 0.3143 0.2214

LOG+B-OLS 0.3163 0.3750 0.6020 0.1406 0.1002 0.3166 0.3103 0.2185

LOG+BR 0.3560 0.4142 0.5270 0.1715 0.0782 0.2797 0.2591 0.1794

LOG+BC-OLS 0.4308 0.5090 0.5040 0.2590 -0.6946 0.2125 0.2440 0.1731

LOG+RiR 0.3193 0.3693 0.6655 0.1363 0.1081 0.3289 0.3167 0.2234

LOG+RoR 0.3171 0.3700 0.6554 0.1369 0.1045 0.3264 0.3205 0.2270

LOG+RT 0.3219 0.3693 0.6160 0.1363 0.1081 0.3301 0.3212 0.2263

LOG+MARS 0.3205 0.3689 0.6658 0.1360 0.1099 0.3320 0.3248 0.2286

LOG+LSSVM 0.3191 0.3679 0.6664 0.1353 0.1150 0.3401 0.3336 0.2371

LOG+ANN 0.3174 0.3664 0.6320 0.1342 0.1221 0.3502 0.3406 0.2395

OLS+RT 0.3170 0.3681 0.6730 0.1354 0.1137 0.3382 0.3342 0.2348

OLS+MARS 0.3177 0.3679 0.6799 0.1353 0.1150 0.3394 0.3363 0.2352

OLS+LSSVM 0.3115 0.3631 0.6929 0.1317 0.1379 0.3714 0.3666 0.2596

OLS+ANN 0.3079 0.3633 0.6960 0.1318 0.1367 0.3716 0.3638 0.2581

Table B.1: BANK1 model performance results
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Technique MAE RMSE AUC AOC R2 r ρ τ

OLS 0.1187 0.1613 0.8100 0.0259 0.2353 0.4851 0.4890 0.3823

B-OLS 0.1058 0.1621 0.8000 0.0262 0.2273 0.4768 0.4967 0.3881

BR 0.1020 0.1661 0.7300 0.0275 0.2120 0.4635 0.4857 0.3861

BC-OLS 0.1056 0.1623 0.7450 0.0262 0.2226 0.4718 0.4990 0.3900

RiR 0.1187 0.1606 0.8074 0.0258 0.2415 0.4915 0.4855 0.3792

RoR 0.1075 0.1663 0.8063 0.0277 0.1866 0.4770 0.4824 0.3751

RT 0.0978 0.1499 0.7710 0.0224 0.3390 0.5823 0.5452 0.4357

MARS 0.1068 0.1531 0.8397 0.0234 0.3113 0.5579 0.5321 0.4168

LSSVM 0.1047 0.1518 0.8365 0.0230 0.3229 0.5690 0.5301 0.4160

ANN 0.0956 0.1472 0.8530 0.0216 0.3632 0.6029 0.5549 0.4366

LOG+OLS 0.1060 0.1622 0.7590 0.0255 0.2268 0.4838 0.5206 0.4084

LOG+B-OLS 0.1040 0.1567 0.8320 0.0245 0.2779 0.5286 0.5202 0.4083

LOG+BR 0.1015 0.1688 0.7250 0.0285 0.2024 0.4529 0.4732 0.3876

LOG+BC-OLS 0.1034 0.1655 0.7320 0.0273 0.2124 0.4628 0.4870 0.3820

LOG+RiR 0.1049 0.1554 0.8312 0.0240 0.2901 0.5386 0.5209 0.4091

LOG+RoR 0.1043 0.1558 0.8307 0.0242 0.2859 0.5350 0.5200 0.4084

LOG+RT 0.1041 0.1538 0.8360 0.0236 0.3049 0.5545 0.5254 0.4126

LOG+MARS 0.1031 0.1537 0.8355 0.0236 0.3059 0.5531 0.5268 0.4149

LOG+LSSVM 0.1031 0.1530 0.8334 0.0234 0.3121 0.5587 0.5243 0.4128

LOG+ANN 0.1011 0.1531 0.8430 0.0234 0.3109 0.5585 0.5380 0.4240

OLS+RT 0.1015 0.1506 0.8410 0.0227 0.3331 0.5786 0.5344 0.4188

OLS+MARS 0.1081 0.1526 0.8379 0.0233 0.3150 0.5615 0.5300 0.4156

OLS+LSSVM 0.1029 0.1520 0.8428 0.0230 0.3208 0.5665 0.5398 0.4241

OLS+ANN 0.0999 0.1474 0.8560 0.0217 0.3612 0.6010 0.5585 0.4398

Table B.2: BANK2 model performance results
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B. RESULTS OF THE BENCHMARKING EXPERIMENT

Technique MAE RMSE AUC AOC R2 r ρ τ

OLS 0.0549 0.1411 0.6460 0.0178 0.0124 0.1168 0.0965 0.0718

B-OLS 0.0348 0.1449 0.6610 0.0188 -0.0419 0.0767 0.1754 0.1361

BR 0.0883 0.1315 0.6530 0.0169 -0.1128 0.1567 0.1719 0.1323

BC-OLS 0.0340 0.1456 0.6380 0.0190 -0.0529 0.1373 0.2312 0.1765

RiR 0.0550 0.1405 0.6499 0.0177 0.0210 0.1460 0.1270 0.0936

RoR 0.0347 0.1453 0.6438 0.0189 -0.0464 0.1733 0.1991 0.1501

RT 0.0482 0.1311 0.6990 0.0154 0.1477 0.3869 0.2007 0.1673

MARS 0.0478 0.1229 0.7345 0.0131 0.2506 0.5016 0.1344 0.0974

LSSVM 0.0473 0.1270 0.7441 0.0140 0.1998 0.4526 0.2085 0.1520

ANN 0.0458 0.1318 0.6000 0.0152 0.1386 0.3776 0.1482 0.1105

LOG+OLS 0.0553 0.1417 0.6010 0.0179 0.0043 0.0759 0.0701 0.0510

LOG+B-OLS 0.0392 0.1429 0.6330 0.0182 -0.0127 0.1214 0.1252 0.0923

LOG+BR 0.0569 0.1417 0.5790 0.0180 0.0043 0.0742 0.1710 0.1265

LOG+BC-OLS 0.0349 0.1448 0.6330 0.0188 -0.0395 0.1665 0.1918 0.1426

LOG+RiR 0.0545 0.1408 0.6404 0.0177 0.0169 0.1319 0.1511 0.1094

LOG+RoR 0.0366 0.1440 0.6510 0.0185 -0.0277 0.1510 0.2057 0.1504

LOG+RT 0.0434 0.1297 0.7210 0.0146 0.1663 0.4553 0.1571 0.1170

LOG+MARS 0.0467 0.1264 0.7365 0.0139 0.2082 0.4884 0.1381 0.0998

LOG+LSSVM 0.0460 0.1312 0.7485 0.0151 0.1471 0.4152 0.2272 0.1676

LOG+ANN 0.0452 0.1219 0.6190 0.0133 0.2634 0.5381 0.1671 0.1242

OLS+RT 0.0540 0.1372 0.7050 0.0168 0.0660 0.2578 0.1748 0.1285

OLS+MARS 0.0471 0.1229 0.7189 0.0131 0.2512 0.5018 0.1231 0.0879

OLS+LSSVM 0.0483 0.1258 0.7416 0.0137 0.2148 0.4648 0.1869 0.1354

OLS+ANN 0.0570 0.1388 0.6730 0.0171 0.0442 0.2605 0.1369 0.1005

Table B.3: BANK3 model performance results
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Technique MAE RMSE AUC AOC R2 r ρ τ

OLS 0.2712 0.3479 0.8520 0.1208 0.4412 0.6643 0.5835 0.4331

B-OLS 0.2214 0.3743 0.8500 0.1396 0.3530 0.6510 0.5822 0.4321

BR 0.3208 0.3777 0.8480 0.1425 0.3405 0.6527 0.5908 0.4452

BC-OLS 0.3185 0.4292 0.6750 0.1839 0.1478 0.5726 0.5820 0.4316

RiR 0.2707 0.3473 0.8541 0.1204 0.4429 0.6657 0.5972 0.4495

RoR 0.2576 0.3607 0.8483 0.1299 0.3992 0.6527 0.5857 0.4402

RT 0.2476 0.3362 0.8480 0.1128 0.4782 0.6916 0.5919 0.4762

MARS 0.2617 0.3361 0.8636 0.1128 0.4783 0.6917 0.6162 0.4631

LSSVM 0.2428 0.3315 0.8655 0.1097 0.4924 0.7017 0.6203 0.4692

ANN 0.2393 0.3299 0.8670 0.1086 0.4974 0.7053 0.6109 0.4555

LOG+OLS 0.2577 0.3465 0.8520 0.1199 0.4455 0.6678 0.5840 0.4338

LOG+B-OLS 0.2399 0.3551 0.8500 0.1259 0.4176 0.6651 0.5801 0.4301

LOG+BR 0.2738 0.3560 0.8520 0.1265 0.4147 0.6680 0.5868 0.4342

LOG+BC-OLS 0.2502 0.3489 0.8510 0.1215 0.4379 0.6659 0.5819 0.4322

LOG+RiR 0.2538 0.3432 0.8572 0.1176 0.4559 0.6755 0.6026 0.4543

LOG+RoR 0.2354 0.3521 0.8534 0.1238 0.4275 0.6728 0.5960 0.4477

LOG+RT 0.2679 0.3621 0.8570 0.1309 0.3945 0.6656 0.5899 0.4364

LOG+MARS 0.2536 0.3433 0.8572 0.1177 0.4558 0.6754 0.6027 0.4544

LOG+LSSVM 0.2534 0.3425 0.8590 0.1172 0.4581 0.6771 0.6024 0.4541

LOG+ANN 0.2558 0.3457 0.8540 0.1184 0.4480 0.6698 0.5852 0.4348

OLS+RT 0.2628 0.3425 0.8590 0.1171 0.4582 0.6776 0.6017 0.4498

OLS+MARS 0.2617 0.3362 0.8620 0.1128 0.4781 0.6915 0.6117 0.4582

OLS+LSSVM 0.2439 0.3322 0.8656 0.1102 0.4904 0.7003 0.6211 0.4698

OLS+ANN 0.2404 0.3300 0.8710 0.1087 0.4971 0.7053 0.6195 0.4635

Table B.4: BANK4 model performance results
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B. RESULTS OF THE BENCHMARKING EXPERIMENT

Technique MAE RMSE AUC AOC R2 r ρ τ

OLS 0.1875 0.2375 0.7480 0.0555 0.2218 0.4740 0.5192 0.3651

B-OLS 0.1861 0.2368 0.7410 0.0561 0.2263 0.5073 0.5168 0.3636

BR 0.1957 0.2402 0.7240 0.0575 0.2038 0.4557 0.4811 0.3359

BC-OLS 0.1848 0.2373 0.7390 0.0560 0.2228 0.5014 0.5155 0.3632

RiR 0.1864 0.2373 0.7467 0.0555 0.2233 0.4775 0.5238 0.3704

RoR 0.1892 0.2430 0.7406 0.0579 0.1852 0.4543 0.5121 0.3612

RT 0.1851 0.2324 0.7370 0.0538 0.2546 0.5056 0.4957 0.3888

MARS 0.1733 0.2222 0.7709 0.0488 0.3187 0.5666 0.5565 0.3980

LSSVM 0.1707 0.2198 0.7847 0.0479 0.3331 0.5794 0.5801 0.4167

ANN 0.1678 0.2173 0.7830 0.0470 0.3486 0.5964 0.5765 0.4148

LOG+OLS 0.1851 0.2336 0.7500 0.0542 0.2468 0.4975 0.5246 0.3704

LOG+B-OLS 0.1852 0.2347 0.7480 0.0548 0.2397 0.5117 0.5192 0.3658

LOG+BR 0.1939 0.2395 0.7250 0.0572 0.2083 0.4568 0.4820 0.3364

LOG+BC-OLS 0.1833 0.2349 0.7470 0.0549 0.2388 0.5099 0.5238 0.3699

LOG+RiR 0.1854 0.2347 0.7492 0.0547 0.2400 0.4922 0.5274 0.3730

LOG+RoR 0.1877 0.2390 0.7451 0.0567 0.2118 0.4744 0.5190 0.3665

LOG+RT 0.1846 0.2344 0.7380 0.0547 0.2420 0.5000 0.4903 0.3445

LOG+MARS 0.1738 0.2217 0.7726 0.0486 0.3215 0.5687 0.5597 0.3985

LOG+LSSVM 0.1708 0.2197 0.7835 0.0479 0.3340 0.5797 0.5795 0.4163

LOG+ANN 0.1689 0.2188 0.7810 0.0476 0.3396 0.5845 0.5737 0.4135

OLS+RT 0.1779 0.2320 0.7660 0.0530 0.2572 0.5357 0.5554 0.3963

OLS+MARS 0.1713 0.2215 0.7740 0.0484 0.3231 0.5769 0.5707 0.4082

OLS+LSSVM 0.1695 0.2216 0.7882 0.0485 0.3223 0.5755 0.5933 0.4279

OLS+ANN 0.1747 0.2277 0.7730 0.0510 0.2844 0.5567 0.5706 0.4086

Table B.5: BANK5 model performance results
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Technique MAE RMSE AUC AOC R2 r ρ τ

OLS 0.2085 0.2874 0.7180 0.0822 0.1197 0.3502 0.3032 0.2071

B-OLS 0.1783 0.3055 0.7120 0.0933 0.0933 0.3054 0.3112 0.2138

BR 0.2612 0.3019 0.7090 0.0909 0.1029 0.3209 0.3138 0.2151

BC-OLS 0.1824 0.3149 0.7100 0.0988 0.0815 0.2855 0.3139 0.2172

RiR 0.2086 0.2868 0.7200 0.0818 0.1231 0.3544 0.3045 0.2076

RoR 0.2087 0.2875 0.7180 0.0822 0.1189 0.3493 0.3030 0.2070

RT 0.2061 0.2885 0.7040 0.0829 0.1129 0.3390 0.3180 0.2482

MARS 0.2057 0.2856 0.7184 0.0811 0.1302 0.3615 0.3131 0.2251

LSSVM 0.2031 0.2812 0.7360 0.0787 0.1570 0.3964 0.3207 0.2190

ANN 0.2004 0.2860 0.7210 0.0815 0.1281 0.3619 0.2893 0.2000

LOG+OLS 0.2086 0.2876 0.7180 0.0824 0.1182 0.3479 0.3012 0.2060

LOG+B-OLS 0.1899 0.2964 0.7070 0.0875 0.0635 0.3225 0.2913 0.2000

LOG+BR 0.2875 0.3204 0.7070 0.1024 -0.0946 0.3346 0.2806 0.1918

LOG+BC-OLS 0.1863 0.3055 0.7120 0.0930 0.0963 0.3103 0.3050 0.2118

LOG+RiR 0.2062 0.2933 0.7128 0.0856 0.0831 0.3409 0.3150 0.2176

LOG+RoR 0.2060 0.2937 0.7118 0.0858 0.0806 0.3391 0.3162 0.2191

LOG+RT 0.2052 0.2890 0.6880 0.0832 0.1100 0.3348 0.3179 0.2219

LOG+MARS 0.2058 0.2934 0.6942 0.0857 0.0820 0.3285 0.2953 0.2121

LOG+LSSVM 0.2024 0.2887 0.7191 0.0829 0.1116 0.3652 0.3159 0.2190

LOG+ANN 0.2038 0.2854 0.7290 0.0811 0.1319 0.3689 0.3243 0.2216

OLS+RT 0.2066 0.2866 0.7190 0.0817 0.1244 0.3623 0.3067 0.2100

OLS+MARS 0.2068 0.2861 0.7237 0.0815 0.1271 0.3634 0.3081 0.2102

OLS+LSSVM 0.2087 0.2875 0.718 0.0822 0.1189 0.3493 0.3030 0.2070

OLS+ANN 0.2085 0.2874 0.7190 0.0822 0.1200 0.3498 0.3049 0.2086

Table B.6: BANK6 model performance results

153



B. RESULTS OF THE BENCHMARKING EXPERIMENT

154



References

[1] Basel Committee On Banking Supervision. International Convergence

of Capital Measurements and Capital Standards. Technical report, Bank

for International Settlements, 1988. 2, 3

[2] Basel Committee on Banking Supervision. Basel II: International Con-

vergence of Capital Measurement and Capital Standards: a Revised

Framework. Technical report, Bank for International Settlements, 2004. 2, 4,

5, 6, 7, 8, 10, 11, 12, 13

[3] Basel Committee on Banking Supervision. Basel III: A global regula-

tory framework for more resilient banks and banking systems. Technical

report, Bank for International Settlements, 2010. 2, 5

[4] Basel Committee on Banking Supervision. Basel III: International

framework for liquidity risk measurement, standards and monitoring.

Technical report, Bank for International Settlements, 2010. 2, 5

[5] Basel Committee on Banking Supervision. An Explanary Note on the

Basel II IRB Risk Weight Functions. Technical report, Bank for Interna-

tional Settlements, 2004. 5, 135, 136, 137, 138, 142, 144, 145

[6] Basel Committee on Banking Supervision. Studies on the Validation

of Internal Rating Systems, Working Paper No. 14. Technical report,

Bank for International Settlements, 2005. 5, 7, 8, 9, 10, 12, 15, 16, 17, 60, 61, 62,

78

[7] B. Baesens and T. Van Gestel. Credit Risk Management: Basic Concepts.

Oxford University Press, USA, 2009. 6, 7, 8, 10, 13, 14

[8] N. Siddiqi. Credit Risk Scorecards: Developing and Implementing Intelligent

Credit Scoring. Wiley, 2005. 6

155



REFERENCES

[9] Basel Committee on Banking Supervision. QIS Frequently Asked

Questions (as of 20 December 2002). Technical report, Bank for Inter-

national Settlements, 2010. 6

[10] G. Moral and R. Garcia. LGD Estimates in a Mortgage Portfolio.

Banco de Espana, Estabilidad Financiera, No. 3, 2002. 7

[11] K. Emery, S. Ou, J. Tennant, A. Matos, and R. Cantor. Corporate

Default and Recovery Rates. Technical report, Moody’s Global Credit Re-

search, 2009. 7

[12] C. Needham and M. Verde. Fitch Ratings Global Corporate Finance

2009 Transition and Default Study. Technical report, Credit market re-

search, Fitch Ratings, 2009. 7

[13] D. Vazza, D. Aurora, and N. Kraemer. Annual Global Corporate De-

fault Study And Rating Transitions. Technical report, Global Fixed Income

Research, Standard’s and Poor, 2009. 7

[14] H. Almeida and T. Phillipon. The Risk-Adjusted Cost of Financial

Distress. Journal of Finance, 6:2557–2586, 2007. 8

[15] B. Brady, P. Chang, P. Miu, B. Ozdemir, and D. Schwartz. Discount

Rate for Workout Recoveries: An empirical study. 2006. 8, 9

[16] I. Maclachlan. Choosing the Discount Factor for Estimating Economic

LGD. 2004. 8, 9

[17] G. Moral and R. Garcia. LGD Estimates in a Mortgage Portfolio.

Banco de Espana,Estabilidad Financiera,No. 3, 2002. 9

[18] T. Schuermann. What Do We Know About Loss Given Default. 2004.

10

[19] G. Bakshi, D. Madan, and F. Zhang. Understanding the Role of Re-

covery in Default Risk Models: Empirical Comparisons and Implied

Recovery Rates. Technical report, FDIC Center for Financial Research, 2006.

10

156



REFERENCES

[20] H. Unal, D. Madan, and L. Guntay. Pricing the Risk of Recovery in De-

fault with APR Violations. Journal of Banking and Finance, 27(6):10011025,

2003. 10

[21] M.J. Rowan, P. Stump, E. De Bodard, and D. Staples. Probability of

Default and Loss Given Default Assessments. Technical report, Moody’s

Corporate Finance, 2006. 10

[22] R. Merrit and R. Hunter. Recovery Ratings: Exposing the Compo-

nents of Credit Risk. Technical report, Credit Policy, Fitch Ratings, 2005.

10

[23] S.B. Samson. Corporate Ratings Criteria. Technical report, Standard and

Poor’s, 2006. 10

[24] O.O. Maimon and L. Rokach. Decompositional Methodology for Knowledge

Discovery and Data Mining: Theory and Applications (Machine Perception and

Artificial Intelligence). World Scientific Publishing Company, 2005. 12

[25] T. Bellotti and J. Crook. Loss given default models incorporating

macroeconomic variables for credit cards. International Journal of Fore-

casting, 28:171182, 2012. 12, 17, 18, 26, 27, 28, 29, 53, 63, 64, 66, 94

[26] E. Altman. Default Recovery Rates and LGD in Credit Risk Modeling

and Practice. 2006. 13

[27] B. Baesens, Mues C. Setiono, R., and J. Vanthienen. Using neural

network rule extraction and decision tables for credit-risk evaluation.

Management Science, 49(3):312329, 2003. 14, 56

[28] B. Baesens, T. Van Gestel, M. Stepanova, D. Van den Poel, and

J. Vanthienen. Neural network survival analysis for personal loan data.

Journal of Operation Research Society, 59(9):10891098, 2005. 14

[29] D.J. Hand. Modelling consumer credit risk. IMA Journal of Management

Mathematics, 12:139155, 2001. 14

[30] M. Stepanova and L.C. Thomas. Survival analysis methods for personal

loan data. Operations Research, 50(2):277289, 2002. 14

157



REFERENCES

[31] L.C. Thomas, J. Ho, and W.T. Scherer. Time will tell: Behavioural

scoring and the dynamics of consumer risk assessment. IMA Journal of

Management Mathematics, 12:89103, 2001. 14

[32] A.F. Atiya. Bankruptcy prediction for credit risk using neural net-

works: A survey and new results. IEEE Transactions on Neural Networks,

12(4):929935, 2001. 14

[33] L. Beccheti and J. Sierra. Bankruptcy risk and productive efficiency

in manufacturing firms. Journal of Banking and Finance, 27:20992120, 2002.

14

[34] D. Martens, B. Baesens, T. Van Gestel, and J. Vanthienen. Com-

prehensible credit scoring models using rule extraction from support

vector machines. European Journal of Operational Research, 183:1466–1476,

2007. 14

[35] M.L. Nasir, R.I. John, and S.C. Bennett. Predicting corporate

bankruptcy using modular neural networks. In Conference on Compu-

tational Intelligence for Financial Engineering, 2000. 14

[36] T. Van Gestel, B. Baesens, J.A.K. Suykens, D. Van den Poel, D. Baes-

taens, and M. Willekens. Bayesian kernel based classification for

financial distress detection. European Journal of Operational Research,

172:9791003, 2006. 14

[37] M. Klopfer. Gestion financire des collectivits locales. Guides et mthodes, 2010.

14

[38] D. Laster. Insurance company ratings. Technical report, Sigma 4, Swiss

Re, 2003. 14

[39] A. Estrella, S. Peristiani, and S. Park. Credit ratings, methodologies, ra-

tionale, and default risk, chapter Capital Ratios and Credit Ratings as Predictors

of Bank Failures, page 233256. Risk Books, London, UK, 2002. 14

[40] A.E. Kocagil, A. Reyngold, R.M. Stein, and E. Ibarra. Moodys

RiskCalcTM Model for Privately-Held US Banks. Technical report,

Global credit research, Moodys Investors Service., 2002. 14

158



REFERENCES

[41] A. Le Bras and D. Andrews. Bank rating methodology. Technical report,

Fitch Ratings, 2003. 14

[42] S. Sarkar and R. Sriram. Bayesian models for early warnings of bank

failures. Management Science, 47(10):14571475, 2001. 14

[43] T. Van Gestel, B. Baesens, P. Van Dijcke, J. Garcia, J. Suykens, and

T. Alderweireld. Linear and nonlinear credit scoring by combining

logistic regression and Support Vector Machines. Journal of Credit Risk,

1(4):32–60, 2005. 14

[44] D.C. Wheelock and P.W. Wilson. Why do banks disappear? The

determinants of US bank failures and acquisitions. Review of Economics

and Statistics, 82(1):127138, 2000. 14

[45] V.V. Acharya, S.T. Bharath, and A. Srinivasa. Understanding the

Recovery Rates on Defaulted Securities. 2004. 15, 79

[46] E. Altman and V.M. Kishore. Almost Everything You Wanted to Know

About Recoveries on Defaulted Bonds. Financial Analysts Journal, 52

(6):57–64, 1996. 15, 79

[47] E. Altman, A. Resti, and A. Sironi. Analyzing and Explaining Default

Recovery Rates. 2001. 15, 79

[48] E. Altman, A. Resti, and A. Sironi, editors. Recovery Risks: The Next

Challenge in Credit Risk Management. Recovery Books, 2005. 15, 79, 144

[49] M. Araten, M. Jacobs, and P. Varshney. Measuring LGD on Com-

mercial Loans: An 18-Year Internal Study. RMA Journal, 86:28–35, 2004.

15, 26, 79

[50] E. Asarnow and D. Edwards. Measuring Loss on Defaulted Bank

Loans: A 24-Year Study. Journal of Commercial Bank Lending, 77:11–23,

1995. 15, 26, 79

[51] L. Carty and D. Lieberman. Defaulted Bank Loan Recoveries. Moody’s

Investors Service, 1996. 15, 79

159



REFERENCES

[52] L.V. Carty, D.T. Hamilton, S.C. Keanan, A. Moss, T. Mulvaney,

T. Marshella, and M.G. Subhas. Bankrupt Bank Loan Recoveries.

Moody’s Investors Service, 1998. 15, 79

[53] R. Eales and E. Bosworth. Severity of Loss in the Event of Default in

Small Business and Large Consumer Loans. Journal of Lending and Credit

Risk Management, 80 (9):58–65, 1998. 15, 79

[54] J. Frye. LGD in High Default Years. Federal Reserve Bank of Chicago,

2003. 15, 79

[55] G.M. Gupton, D. Gates, and L.V. Carty. Bank Loan Loss Given De-

fault. Technical report, Moody’s Investors Service, 2000. 15, 79

[56] J. Frye. Depressing Recoveries. Risk, 13 (11):108–111, 2000. 15, 79

[57] D.T. Hamilton, P. Varma, S. Ou, and R. Cantor. Default and Recov-

ery Rates of Corporate Bond Issuers: A Statistical Review of Moody’s

Ratings Performance 1920-2002. Technical report, Moody’s Investors Ser-

vice, 2003. 15, 79

[58] S. O’Shea, S. Bonelli, and R. Grossman. Bank Loan and Bond Recov-

ery Study: 1997-2000. Fitch Structured Finance, 2001. 15

[59] J. Roche, W. Brennan, D. McGirt, and M. Verde. Bank Loan Ratings

in Bank Loans: Secondary Market and Portfolio Management. 1998. 15

[60] B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. A. K. Suykens,

and J. Vanthienen. Benchmarking state of the art classification al-

gorithms for credit scoring. Journal of the Operational Research Society,

54:627–635, 2003. 16

[61] J. A. Bastos. Forecasting bank loans loss-given-default. 34:2510–2517,

2009. 17, 18, 26, 27, 28, 63, 65, 66, 76, 94

[62] G. Gupton. Advancing Loss Given Default Prediction Models: How

the Quiet Have Quickened. Economic Notes by Banca Monte dei Paschi di

Siena SpA, 34:185230, 2005. 17, 18, 26, 27, 28, 29, 63, 64, 66, 76, 94

[63] J.A. Bastos. Predicting bank loan recovery rates with neural networks.

Technical report, Technical University of Lisbon, 2010. 17, 18, 27, 63, 65, 66, 94

160



REFERENCES

[64] R. Calabrese. Estimating bank loans loss given default by generalized

additive models. Technical report, University College Dublin, 2012. 17, 18, 26,

27, 28, 63, 66, 76, 94

[65] S. G. Caselli and F. Querci. The sensitivity of the loss given default

rate to systematic risk: New empirical evidence on bank loans. Journal

of Financial Services Research, 34:1–34, 2009. 17, 18, 26, 27, 28, 29, 53, 64, 65,

76, 94

[66] R. Chalupka and J. Kopecsni. Modeling Bank Loan LGD of Corpo-

rate and SME Segments: A Case Study. Czech Journal of Economics and

Finance, 59:360–382, 2009. 17, 18, 26, 27, 28, 29, 64, 65, 76, 94

[67] J. Dermine and C. Neto de Carvalho. Bank Loan Losses-Given-

Default, a Case Study. Journal of Banking and Finance, 2005. 17, 18, 26, 27,

28, 29, 53, 64, 76, 94

[68] J. Grunert and M. Webera. Recovery Rates of Bank Loans: Empirical

Evidence for Germany. Technical report, University of Mannheim, 2006. 17,

18, 26, 27, 28, 53, 64, 65, 94

[69] M. Bruche and C. Gonzlez-Aguado. Recovery rates, default proba-

bilities, and the credit cycle. Journal of Banking and Finance, 34:754–764,

2010. 17, 18, 27, 63, 66, 94

[70] G. Castermans, D. Martens, T. Van Gestel, B. Hamers, and B. Bae-

sens. An overview and framework for PD backtesting and benchmark-

ing. Journal of the Operational Research Society, pages 1–15, 2009. 18, 21, 61,

81, 88

[71] G. Christodoulakis and S. Satchell. The analytics of risk model validation.

Elsevier, 2008. 18, 61

[72] B. Engelmann and R. Rauhmeier. The Basel II Risk Parameters: Estima-

tion, Validation, and Stress Testing. Springer, 2006. 18, 61

[73] P. Brazdil and C. Soares. Ranking learning algorithms: using IBL and

meta-learning on accuracy and time results. Machine Learning, 50:251–

277, 2003. 18, 94, 98, 100

161



REFERENCES

[74] A. Kalousis and M. Hilario. Model selection via meta-learning. Inter-

national Journal on AI Tools, 10:4, 2001. 18, 94, 98, 100

[75] C. Kopf, C. Taylor, and J. Keller. Meta-analysis: From data char-

acterisation for meta-learning to meta-regression. In Proceedings of the

PKDD Workshop on Data Mining, Decision Support, Meta-Learning and ILP,

2000. 18, 94, 98, 101

[76] C. Linder and R. Studer. AST: support for algorithm selection with a

CBR approach. In Proceedings of the 16th International Conference on Machine

Learning, 1999. 18, 94, 98, 100

[77] D. Michie. Machine Learning, Neural and Statistical Classification, chapter 10.

1994. 18, 94, 98, 100, 102

[78] S. Ali and K. A. Smith. Kernel width selection for SVM classification:

A meta learning approach. International Journal of Data Warehousing and

Data Mining, 1:78–97, 2005. 18, 94, 100, 102

[79] J. Demsar. Statistical Comparison of Classifiers over Multiple Data

Sets. Journal of Machine Learning Research, 7:1–30, 2006. 20, 22, 29, 51, 112,

122

[80] S. Garcia and F. Herrera. An Extension onStatistical Comparisons of

Classifiers over Multiple Data Setsfor all Pairwise Comparisons. Journal

of Machine Learning Research, 9:2677–2694, 2008. 20, 22, 30, 51, 52, 112, 113,

122

[81] M. Friedman. A comparison of alternative tests of significance for the

problems of m rankings. Annals of Mathematical Statistics, 11:86–92, 1940.

21, 22, 29, 51, 112, 121

[82] G. Hommel. A stagewise rejective multiple test procedure based on a

modified Bonferroni test. Biometrika, 75:383–386, 1988. 21, 30, 51

[83] R. S. Witte and J. S. Witte. Statistics. Wiley, 2009. 21, 70

[84] A. R. Ansari and R. A. Bradley. Rank-Sum Tests for Dispersions. The

Annals of Mathematical Statistics, 31:1174–1189, 1960. 21, 71

162



REFERENCES

[85] F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics

Bulletin, 1:80–83, 1945. 21, 69

[86] J. Bi and K. P. Bennet. Regression Error Characteristic Curves. In

Twentieth International Conference on Machine Learning, 2003. 21, 27, 44, 65

[87] N. Draper and H. Smith. Applied Regression Analysis. Wiley, 1998. 21, 31,

44

[88] G. Loterman, I. Brown, D. Martens, C. Mues, and B. Baesens. Bench-

marking regression algorithms for loss given default modeling. Interna-

tional Journal of Forecasting, 28:161–170, 2012. 21, 61, 63, 64, 66, 77

[89] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,

27:861–874, 2006. 21, 43, 64

[90] J. R. Rice. The Algorithm Selection Problem. Advances in Computers,

15:65–118, 1976. 22, 96

[91] Soares C. Prudncio, R.B.C and T.B. Ludermir. Uncertainty Sampling-

Based Active Selection of Datasetoids for Meta-learning. In 21st inter-

national conference on artificial neural networks, 2011. 22, 95, 101, 110

[92] C. Soares. UCI++: Improved support for algorithm selection using

datasetoids. Advances in Knowledge Discovery and Data Mining, 5476:499–

506, 2009. 22, 95, 101, 110

[93] J. Alcal-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garca,

L. Snchez, and F. Herrera. KEEL Data-Mining Software Tool: Data

Set Repository, Integration of Algorithms and Experimental Analysis

Framework. Journal of Multiple-Valued Logic and Soft Computing, 17:255–287,

2011. 22, 95, 109, 111

[94] S. Holm. A Simple Sequentially Rejective Multiple Test Procedure.

Scandinavian Journal of Statistics, 6:65–70, 1979. 22, 112, 122

[95] M. Gurtler and M. Hibbeln. Improvements in loss given default fore-

casts for bank loans. Journal of Banking and Finance, 2013. 26, 29

[96] C. Friedman and S. Sandow. Ultimate recoveries. Risk, 16:6973, 2003. 26

163



REFERENCES

[97] O. Renault and O. Scaillet. On the Way to Recovery: A Nonparamet-

ric Bias Free Estimation of Recovery Rate Densities. Journal of Banking

and Finance, 28:2915–2931, 2004. 26

[98] P. Cohen, J. Cohen, S.G. West, and L.S. Aiken. Applied multiple regres-

sion/correlation analysis for the behavioral sciences. Lawrence Erlbaum, 2002.

28, 45, 46

[99] P. Nemenyi. Distribution-free multiple comparisons. PhD thesis, Princeton

University, 1963. 30

[100] A. E. Hoerl and R. W. Kennard. Ridge Regression: Biased Estimation

for Nonorthogonal Problems. Technometrics, 12:55–67, 1970. 32

[101] P.W. Holland and R.E. Welsch. Robust Regression Using Iteratively

Reweighted Least Squares. Communications in Statistics: Theory and Meth-

ods, 6:813 – 827, 1977. 32

[102] P.J. Huber. Robust Estimation of a Location Parameter. Annals of

Mathematical Statistics, 35:73–101, 1964. 32

[103] P.J. Huber and E.M. Ronchetti. Robust statistics. Wiley, 2009. 33

[104] G.M. Gupton and R.M. Stein. LossCalc TM: Moody’s Model for Pre-

dicting Loss Given Default. Technical report, Rating methodology, Moodys,

2002. 33

[105] M. Smithson and J. Verkuilen. A better lemon squeezer?Maximum-

likelihood regression with beta-distributed dependent variables. Psy-

chological Methods, 11:54–71, 2006. 34

[106] G.E.P. Box and D.R. Cox. An Analysis of Transformations. Journal of

Royal Statistics Society, 26:211–252, 1964. 35

[107] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification

and Regression Trees. Chapman & Hall/CRC, 1984. 36, 105

[108] J. F. Friedman. Multivariate Adaptive Regression Splines. The Annals

of Statistics, 19:1–141, 1991. 37, 105

[109] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995. 38

164



REFERENCES

[110] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and

J. Vandewalle. Least Squares Support Vector Machines. World Scientific Pub-

lishing Company, 2003. 38

[111] H. Wang and D. Hu. Comparison of SVM and LS-SVM for Regression.

International Conference on Neural Networks and Brain, 1:279–283, 2005. 38

[112] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University

Press, 1995. 39

[113] T. Van Gestel, D. Martens, D. Feremans, B. Baesens, J. Huysmans,

and J. Vanthienen. Forecasting and Analyzing Insurance Compa-

nies’Ratings. International Journal of Forecasting, 23:513–529, 2007. 40

[114] D.W. Hosmer and L. Stanley. Applied Logistic Regression. Wiley, 2nd edition

edition, 2000. 41

[115] F. Hampel, R. Ronchetti, P.J. Rousseeuw, and W.A. Stahel. Robust

statistics : the approach based on influence functions. Wiley, 1986. 49

[116] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning: Data Mining,Inference,and Prediction. Springer Series in Statistics,

2001. 50, 105

[117] B. Baesens, S. Viaene, T. Van Gestel, J. A. K. Suykens, G. Dedene,

B. De Moor, and J. Vanthienen. An Empirical Assessment of Kernel

Type Performance for Least Squares Support Vector Machine Clas-

sifiers. International Conference on Knowledge-Based Intelligent Engineering

Systems and Allied Technologies, 1:313–316, 2000. 50

[118] T. Van Gestel, J.A.K. Suykens, B. Baesens, S. Viaene, J. Vanthienen,

G. Dedene, B. De Moor, and J. Vandewalle. Benchmarking Least

Squares Support Vector Machine Classifiers. Machine Learning, 54:5–32,

2003. 50

[119] R. Freund and R. Littell. SAS System for Regression. Wiley, 2000. 51, 105

[120] R. Beran. Simulated Power Functions. The Annals of Statistics, 14:151–

173, 1986. 74, 82

165



REFERENCES

[121] P. Hall and S.R. Wilson. Two guidelines for bootstrap hypothesis

testing. Biometrics, 47:757–762, 1991. 74, 82

[122] P.H. Westfall. Re-sampling based multiple testing: examples & methods for

p-Value adjustment. Wiley, 1993. 74, 82

[123] K. Yuan. Bootstrap Approach to inference and power analysis based

on three test statistics for covariance structure models. British Journal

of Mathematical and Statistical Psychology, 56:93110, 2003. 74, 82

[124] Equal Credit Opportunity Act. Technical report, United States Code, 1974.

77, 92

[125] N. J. D. Nagelkerke. A Note on a General Definition of the Coefficient

of Determination. Biometrica, 3:691–692, 1991. 79

[126] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge,

1988. 81, 82

[127] M. Svec. PD backtest empirical study on credit retail portfolio. 81

[128] B. Bade, D. Rosch, and H. Scheule. Empirical performance of loss

given default prediction models. Journal of Risk Model Validation, 5:2544,

2011. 88

[129] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens.

An empirical evaluation of the comprehensibility of decision table, tree

and rule based predictive models. Decision Support Systems, 51:141–154,

2011. 93

[130] D. G. Wolpert. The Lack of A Priori Distinctions between Learning

Algorithms. Neural Computation, page 13411390., 1996. 93

[131] D. G. Wolpert. Any Two Learning Algorithms Are (Almost) Exactly

Identical. Technical report, NASA Ames Research Center, 2001. 93

[132] J. Furnkranz and J. Petrak. An evaluation of landmarking variants.

In Proceedings of the ECML/PKDD Workshop on Integrating Aspects of Data

Mining, Decision Support and Meta-Learning, 2001. 94, 99, 102

166



REFERENCES

[133] R. Leite and P. Brazdil. Predicting relative performance of classifiers

from samples. In 22nd international conference on Machine learning, 2005. 94,

99, 102

[134] C. Soares, J. Petrak, and P. Brazdil. Progress in Artificial Intelligence,

chapter Sampling-Based Relative Landmarks: Systematically Test-Driving Algo-

rithms before Choosing, pages 88–95. Lecture Notes in Computer Science, 2001.

94, 99, 102

[135] L. Rendell and H. Cho. The effect of data character on empirical

concept learning. Machine Learning, 5:267–298, 1990. 98

[136] D. Aha. Generalizing from case studies: a case study. In Proceedings of

the 9th International Conference on Machine Learning, 1992. 98, 100

[137] H. Bensusan. Odd Bites into Bananas Don’t Make You Blind: Learning

about Simplicity and Attribute Addition. In Proceedings of the ECML

Workshop on Upgrading Learning to the Meta-level, 1998. 99

[138] H. Bensusan, C. Giraud-Carrier, and C. Kennedy. A Higher-order

Approach to Meta-learning. In Proceedings of the ECML Workshop on Meta-

learning: Building Automatic Advice Strategies for Model Selection and Method

Combination, 2000. 99

[139] Y. Peng, P. A. Flach, P. Brazdil, and C. Soares. Improved Data Set

Characterisation for Meta-Learning. In Proceedings of the Fith International

Conference on Discovery Science, 2002. 99

[140] H. Bensusan and C. Giraud-Carrier. Discovering Task Neighbour-

hoods through Landmark Learning Performances. In Proceedings of the

Fourth European Conference on Principles and Practice of Knowledge Discovery

in Databases, 2000. 99

[141] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning

by Landmarking Various Learning Algorithms. In Proceedings of the Sev-

enteenth International Conference on Machine Learning, 2000. 99, 101

[142] P. Kuba, P. Brazdil, C. Soares, and A. Woznica. Exploiting sampling

and meta-learning for parameter setting for support vector machines.

In Proceedings of the Workshop Learning and Data Mining Associated, 2002. 99

167



REFERENCES

[143] C. Soares, P. Brazdil, and P. Kuba. A meta-learning method to select

the kernel width in support vector regression. Machine Learning, 54:195–

209, 2004. 100

[144] J. Gama and P. Brazdil. Characterization of classification algorithms.

In Proceedings of the 7th Portugese Conference in AI, 1995. 101

[145] G. Melli. The datgen Dataset Generator. 101

[146] D.A. Rachkovskij and E.M. Kussul. DataGen: a generator of datasets

for evaluation of classification algorithms. Pattern Recognition Letters,

19:537544, 1999. 101

[147] M. Reif, F. Shafait, and A. Dengel. Dataset Generation for Meta-

Learning. Technical report, German Research Center for Artificial Intelligence,

2012. 101

[148] L.A. Garrow, T.D. Bodea, and M. Lee. Generation of synthetic

datasets for discrete choice analysis. Transportation, 37:183–202, 2010.

101

[149] P.D. Scott and E. Wilkins. Evaluating data mining procedures: tech-

niques for generating artificial data sets. Information and Software Tech-

nology, 41:579587, 1999. 101

[150] P. W. Frey and D. J. Slate. Letter recognition using holland-style

adaptive classifiers. Machine Learning, 6:161–182, 1991. 101

[151] K. A. Smith-Miles. Cross-disciplinary perspectives on meta-learning

for algorithm selection. ACM Computing Surveys, 41, 2008. 102

[152] D. C. Montgomery, E. A. Peck, and G. Geoffrey Vining. Introduction

to Linear Regression Analysis. Wiley, 2012. 105

[153] A. C. Cameron, F. A.G. Windmeijer, H Gramajo, D. E. Cane, and

C Khosla. An R-squared measure of goodness of fit for some common

nonlinear regression models. Journal of Econometrics, 7:329–342, 1997. 106

[154] B.S. Everitt. Cambridge Dictionary of Statistics. Cambridge University Press,

2002. 106

168



REFERENCES

[155] H. Theil. Economic forecasts and policy. North-Holland Pub. Co., 1961. 107

[156] G. T. Knofczynski and D. Mundfrom. Sample Sizes When Using Mul-

tiple Linear Regression for Prediction. Educational and Psychological Mea-

surement, 68:431–442, 2008. 109

[157] M. Gordy. A risk-factor model foundation for ratings-based bank cap-

ital rules. Journal of Financial Intermediation, 12:199–232, 2003. 138

[158] O. Vasicek. Loan portfolio value. RISK, pages 160–162, 2002. 140

[159] R.C. Merton. On the pricing of corporate debt: The risk structure of

interest rates. Journal of Finance, 12:449–470, 1974. 141

[160] H. Thomas and Z. Wang. Interpreting the Internal Ratings-Based Cap-

ital Requirements. Journal of Banking Regulation, 6:274289, 2005. 141, 142

[161] A. De Servigny and O. Renault. Measuring and managing credit risk.

Risk, 16:90–94, 2003. 144

[162] G. Gupton and R. Stein. LossCalc V2: Dynamic prediction. Technical

report, Rating methodology, Moodys, 2005. 144

[163] T. Schuermann. Why were banks better off in the 2001 recession?

Current Issues in Economics and Finance, Federal Reserve Bank of New York,

10, 2004. 144

169


	Copyright
	Doctoral committee
	Acknowledgments
	Summary
	Summary (in Dutch)
	1 Introduction
	1.1 Overview
	1.2 Literature review
	1.2.1 Default
	1.2.2 Loss
	1.2.3 Prediction

	1.3 Research goals
	1.3.1 Problems
	1.3.2 Questions
	1.3.3 Methods


	2 Benchmarking LGD models
	2.1 Introduction
	2.2 Literature review
	2.3 Regression techniques
	2.4 Performance metrics
	2.5 Methods
	2.5.1 Data collection
	2.5.2 Algorithm configurations
	2.5.3 Model evaluation
	2.5.4 Implementation details

	2.6 Results and discussion
	2.7 Conclusions

	3 Backtesting LGD models
	3.1 Introduction
	3.2 Literature review
	3.3 Proposed backtesting framework
	3.3.1 Central tendency error tests
	3.3.2 Dispersion error tests
	3.3.3 Error, correlation and classification based tests

	3.4 Methods
	3.4.1 Data collection
	3.4.2 Predictive modeling
	3.4.3 Significance analysis
	3.4.4 Power analysis
	3.4.5 Implementation details

	3.5 Results and discussion
	3.6 Conclusions

	4 Selecting LGD models
	4.1 Introduction
	4.2 Literature review
	4.2.1 Review of Rice's meta-learning framework
	4.2.2 Review of previous meta-learning approaches

	4.3 Methods
	4.3.1 Algorithm space
	4.3.2 Performance mapping
	4.3.3 Feature mapping
	4.3.4 Problem space
	4.3.5 Selection mapping
	4.3.6 Meta model evaluation
	4.3.7 Implementation details

	4.4 Results and discussion
	4.5 Conclusions

	5 Conclusions
	5.1 Results
	5.2 Contributions
	5.3 Limitations
	5.4 Future research

	A Specification of the risk weight function
	B Results of the benchmarking experiment
	References

