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1.1 Cichorium 
Industrial chicory (Cichorium intybus L., 2n = 2x = 18) belongs to the subfamily 

Cichorioideae, which is a part of the Asteraceae family, containing approximately 23,000 

species. Within the Cichorium genus there are 2 important cultivated species: C. intybus and 

C. endivia. C. endivia is an annual, self-compatible crop, whereas C. intybus is annual or 

biannual and self-incompatible. Different taxonomic trees of Cichorium can be found in 

literature. Lucchin et al. (2008) classifies the species according to their application (Table 1-

1); two main Cichorium types (with different breeding objectives) can be distinguished: the 

salad-type genotypes such as C. endivia and C. intybus var. foliosum and the root chicory 

genotypes (C. intybus var. sativum) mainly used for the inulin extraction. This classification is 

in accordance with Kiers et al. (2000), who showed the existence of four cultivar groups 

within C. intybus: (1) the root cultivars, (2) the witloof cultivars, (3) the sugarloaf cultivars 

and (4) the Radicchio cultivars. The endives (C. endivia) are generally divided in three 

groups: (1) the broad-leaved Scarole group, (2) the crispy and curly narrow-leaved Frisé 

group endives and (3) the ancient endive cultivars with narrow, incised leaves (Ryder, 1999; 

Kiers et al., 2000) (Fig. 1-1). 

 

 

Table 1-1 Chicory and endive: European species of Cichorium, cultivar groups and  use 
(Lucchin et al., 2008) 
 
Taxonomic determination Cultivar group Use 
C. endivia   
  subsp. endivia wild  
    var. latifolium Endive Salads 
    var. crispum Crispum Salads 
  subsp. pumilum wild  
   
C. intybus   
  subsp. intybus wild  
    var. foliosum Witloof chicory Cooked/salad 
 Pain de sucre Cooked/salad 
 Radicchio Salad 
 Catalogne Cooked 
    var. sativum  Root chicory (roasted)  Coffee substitute 
 Root chicory (industrial) Inulin extraction 
 Root chicory Cooked 
  subsp. glabratum wild  
   
C. spinosum wild  
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Fig. 1-1 (A) Industrial chicory C. intybus (B) C. intybus ‘Radicchio’ types, (C) C. intybus 
‘Witloof’ types and (D) Endive C. endivia 
 

The first written facts on chicory were mentioned in the Egyptian era; the ancient Egyptians 

grew chicory as a medicinal plant and vegetable, and for animal forage. Later on, Greeks and 

Romans proceeded the cultivation of chicory as a vegetable crop (Grieve, 1971). Gradually, 

chicory and endive (C. endivia L.) became two traditional European crops and through time 

these two species developed in a variety of cultivated types. At the time of Napoleon, in the 

19th century, the so called ‘Magdeburg’ chicory (C. intybus) was introduced as a coffee 

substitute since Napoleon banished the coffee import through a trade embargo with England. 

At the end of the 19th century about 13,000 ha of chicory to be used as coffee surrogate was 

grown in Belgium. Nowadays, there is still coffee chicory production in the north of France, 

India and South Africa (Lucchin et al., 2008). Also the leaf vegetable C. intybus var. foliosum 

‘Witloof’, or Belgian endive, is considered to be a derivative of the ‘Magdeburg’ chicory and 

is suggested to be introduced by a Belgian farmer around 1870 (Lucchin et al., 2008). The 

Belgian endive has cream-yellowish, packed leaves which have been forced from roots, kept 

on soil or hydroponic trays, in darkness and warmth inhibiting chlorophyll development 
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(Vanstreels et al., 2002; Hertog et al., 2007). According to 2002 US Department of 

Commerce tariff and trade data, the US imported over 2.3 million kilograms of  Belgian 

endive and 1.9 million kilograms roasted chicory roots for coffee (Schmidt et al., 2007). 

Belgium is the main exporter of the witloof heads (19,000 ton) (In: Proeftuinnieuws Oktober 

2010). Next to witloof, the Italian red headed ‘Radicchio’ types and the Pain de Sucre types  

(C. intybus var. foliosum) are used as salads. The Italian red chicory is mainly grown in the 

north eastern regions of Italy, but is also grown in Flanders (Belgium). The Pain de Sucre 

types are mainly cultivated in northwestern Europe (Kiers et al., 2000; Lucchin et al., 2008). 

From 1870 onwards, cultivars of the Belgian endive (witloof) were developed by mass 

selection. Several breeding goals became important, including uniform tight heads, 

commercial uniform size and shape, tolerance to internal browning, resistance to premature 

bolting and reduced bitterness (Ryder, 1999). Also new variants were developed; the 

‘roodloof’ cultivar combined the features of an Italian red chicory and witloof types 

(Bannerot and de Coninck, 1976). 

From the 1970s onwards, new broad leaf varieties of chicory were bred, the so called forage 

chicory. In 1986, the world’s first forage cultivar of chicory, C. intybus ‘Grasslands Puna’ 

was released in New Zealand. This cultivar has a wide range of adaptation and is nowadays 

being grown worldwide, including Canada, US, Mexico and China (Hume et al., 1995; Wang 

and Cui, 2011).  
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1.2 Industrial chicory 

 
1.2.1 Cultivation 

Since 1990, root chicory (C. intybus var. sativum) has become more important for the 

extraction of inulin and its hydrolysis products such as oligofructose and fructose, whereas 

earlier it had only been used as a coffee surrogate. The presence of inulin, a soluble dietary 

fiber is the reason for the revival of chicory breeding (Baert and Van Bockstaele, 1993; Baert, 

1997; Velayutham et al., 2006). The cultivation of the root chicory is situated in the 

traditional production areas in North-Western Europe (Belgium, The Netherlands and the 

north of France). At present, in The Netherlands about 4,000 ha and in France about 2,000 ha 

of industrial chicory are cultivated. In Belgium, industrial chicory was produced on 8,126 ha 

in 2010, www.statbel.fgov.be. The evolution of the chicory acreage in Belgium from 1990 till 

2010 is shown in Fig. 1-2. The first statistics available showed a 13,000 ha chicory acreage in 

Belgium in 1895. This number dropped to less than 1,000 ha until 1990, as chicory was 

mainly produced as coffee surrogate. From 1990 onwards, chicory was grown for its inulin 

and fructose and the acreage increased to 15,000 ha in 2005. Due to the reformation of the 

European sugar policy in 2005, EU member states were asked to abandon part of their 

production quotas to reduce the total EU sugar production by approximately 6 million tons. 

Therefore, the industry agreed to stop the production of fructose from chicory. Consequently, 

the chicory acreage in Belgium dropped to 8,000 ha since then.  

 

 

Fig. 1-2 Chicory acreage in Belgium (ha) from 1990 till 2010 
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Industrial chicory is a biannual plant; in the first year a vegetative state is maintained, 

including the growth of a tap root and leaves forming a rosette. Overwintering or cold 

treatments (< 5°C) are needed for the vernalization of the plants to induce seed stalk growth. 

Consequently, in the second season, the plant becomes generative, developing a stem bearing 

blueish flowers. The flowers exhibit the features of typical Asteraceae ligulate flowers, 

including the inflorescence structure containing 15 to 25 single androgynous flowers (Ryder, 

1999; Lucchin et al., 2008). 

 

1.2.2 Use of industrial chicory 

1.2.2.1 Inulin 

Chicory is one of the two plants, next to Jerusalem artichoke (Helianthus tuberosus), that is 

industrially exploited for the extraction of inulin-type fructans (Chi et al., 2011). High levels 

of fructans are found in the chicory roots, while chicory leaves only contain low fructan 

concentrations (Ernst et al., 1995). Fructans are linear polydisperse carbohydrates consisting 

-fructose linkages, with or without a glucose unit at the reducing end 

(Monti et al., 2005; Roberfroid, 2005) (Fig. 1-3). 

 

 

Fig. 1-3 Molecular composition -fructose lineages, 
with or without a glucose unit at the reducing end (after Bais and Ravishankar, 2001). 
 

Chicory inulin is stored in the taproot as a spare carbohydrate (Bais and Ravishankar, 2001) 

and has a degree of polymerization (DP) of 2 to 60 (DPav = 12). Almost 10% of the fructans 

in crude chicory inulin extracts has a DP ranging between 2 and 5. During shoot formation, 
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the accumulated inulin is partially hydrolyzed through the enzyme inulase and oligofructose is 

formed (DP 2 to 8, DPav = 4) (Bais and Ravishankar, 2001; Roberfroid, 2005)

bonds of the inulin-type fructans are not digested by animal intestinal enzymes and are, 

therefore, low caloric dietary fibers. Fermentation of the undigested inulin takes place by 

beneficial bacteria Lactobacillus and Bifidus in the colon. Consequently, a preferentially 

stimulated growth of these bacteria causes a drastic change in the gut microflora, increasing 

the amount of health-promoting bacteria and decreasing harmful bacteria. Inulin also 

promotes the absorption of calcium by lowering the pH of the colon. Besides these prebiotic 

features of the long inulin chains, its short chain hydrolysis product, oligofructose, has a 

sweetening feature. The shorter the oligofructose chain, the sweeter the taste and the higher 

the caloric content. A reduction in total cholesterol level and a decrease of triglyceridaemia is 

ascribed to the use of inulin-type fructans (Roberfroid and Delzenne, 1998). Moreover, inulin 

can be used to optimize food and feed textures: adding water to inulin results in a structure 

that can be used as a fat replacer, with the same mouthfeel and texture as fat. A high DP 

inulin facilitates gel formation at lower concentrations (Koch et al., 1999). Nowadays, the 

production of health promoting nutrition based on inulin is marketed. Oligofructose-enriched 

inulin, which is produced by mixing low- and high-molecular weight inulin chains, can be 

found in several nutrition drinks and food (Niness, 1999; Roberfroid, 2005). Next to the 

medicinal and nutritive aspects, inulin is a promising alternative for expensive and rare raw 

materials. Inulin is a renewable, inexpensive and abundant compound that can be used as the 

source for ethanol fermentation and single-cell protein, single-cell oil, citric acid, 

inulooligosaccharides and other chemicals production. Inulin is also found in cosmetic 

products (Chi et al., 2011).  

Sucrose plays a major role in inulin metabolism by promoting polymerization and inhibiting 

depolymerization. Sucrose is translocated from the leaves to the root and split in fructose and 

glucose units, which are used to build up fructans. When shooting is started, the sucrose 

transport from leaves to root decreases and consequently, inulin chains are broken down to 

fulfill the need for energy supplies. The economically optimal harvest date is met when the 

highest yield of extractable inulin is achieved in the chicory root (Baert and Van Bockstaele, 

1993).  

Harvest date, plant density and temperature all influence the fructan yield and quality (DP, 

fructan chain length) of chicory. Water regime and nitrogen supply did not change the 

distribution of the DP classes of chicory (Koch et al., 1999; Monti et al., 2005). Baert et al. 

(1997) tested the effect of sowing and harvest date on inulin chain length with three chicory 
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varieties for two years (1992 & 1993) in Belgium. Inulin yield increased with 30 % in both 

years when early sowing (before mid-April) was performed. The average inulin chain length 

was two fructose units longer when the roots were harvested around mid-September, 

compared to 2 months later. In contrast, the carbohydrate yield was only 10% lower at this 

early harvest date than at the late harvest date. However, the inulin breakdown was more 

influenced by the different chicory varieties. Koch et al., 1999 described similar results for six 

chicory cultivars grown in Sweden. The highest DPav values were obtained when harvesting 

in mid- and late-October. The DPav values dropped when the weather turned colder, in mid-

November. Also cultivar differences were observed as four cultivars showed significantly 

higher DPav values. Ernst et al., 1995 noted the decrease of inulin-type fructans during cooler 

fall temperatures and especially during storage. However, fructans containing no glucose, the 

so-called inulonoses, accumulated at storage time. The inulonoses can be regarded as a 

breakdown product of inulin and thus can be a good indicator of inulin mobilization. 

 

1.2.2.2 Other extracts 

Next to inulin, in ethanolic and methanolic extracts, the sesquiterpene glycosides are found in 

chicory. They reduce cholesterol (Kim, 2000) and glucose uptake (Kim and Shin, 1996) in 

rats, affect the lipid and fatty acid concentrations (Kim and Shin, 1998) and intestinal 

morphology in rats (Kim, 2002) and affect tumor development in mice (Hazra et al., 2002), 

they also prevent immunotoxicity (Kim et al., 2002) and are showing anti-inflammatory 

properties (Cavin et al., 2005; Schmidt et al., 2007). 

Other compounds found in roots and heads of chicory are the sesquiterpene lactones (SL) 

responsible for plant bitterness (Bais and Ravishankar, 2001). SLs are a group of C15 

terpenoid compounds including more than 500 members, characteristic for the Asteraceae 

family (Ferioli and D'Antuono, 2012). Chicory SLs are mainly lactucin, lactucopicrin or their 

derivatives (Kisiel and Zielinska, 2001; Ferioli and D'Antuono, 2012). SLs are believed to 

have biological and pharmaceutical activities including anti-tumour, anti-leukaemic, 

cytotoxic, antimicrobial and allergenic properties (Ferioli and D'Antuono, 2012). Their 

clinical use was also described for inflammatory conditions by the use of SLs of Tanacetum 

parthenium for the treatment of migraines (Palevitch et al., 1997) and SL containing Arnica 

montana gel for treating arthritis (Knuesel et al., 2002). Due to their contribution of the 

bitterness of the chicory plant, SLs play a major role in appetite and digestion in humans 

(Kisiel and Zielinska, 2001). 
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1.3 Breeding of industrial chicory 
 

1.3.1 Classical breeding program 

Today, industrial chicory is mainly cultivated for the extraction of inulin. A high root yield, a 

high inulin content in the root and high-quality long inulin chains are major characteristics in 

chicory breeding. Besides genetically, these features are also influenced by cultivation 

methods, including sowing date and harvest date (Baert, 1997). Early sowing prolongs the 

growth season, contributing to a higher inulin yield. A fast early leaf growth may even 

increase this yield (Baert, 1997). Industrial chicory seeds are usually sown between mid-April 

and mid-May. However, early sowing increases the risk of bolting (becoming generative) due 

to the exposure to low vernalization temperatures (Devacht et al., 2011). Because of the high 

heritability of bolting resistance, this may be overcome by breeding (Baert and Van 

Bockstaele, 1993). Besides bolting, also low temperatures negatively affect the early growth 

of the chicory plants. The optimal harvest date is defined as the moment the maximum yield 

of long chain inulin per ha is achieved (Baert and Van Bockstaele, 1993). After a cold period 

(harvest period), the inulin chains are depolymerized and the content of free fructose and 

sucrose increases with harvest time, while the content of free glucose and inulin diminishes. 

Varieties showing a slow breakdown of the inulin chains are preferred (Baert, 1997). The 

pollination of the allogamous industrial chicory occurs by flying insects. 

The classical breeding program for the production of industrial chicory varieties at the 

Institute for Agricultural and Fisheries Research (ILVO) in cooperation with the COSUCRA-

Groupe Warcoing S.A. division Chicoline is shown in Fig. 1-4. The varieties are developed 

from clones or their halfsib progeny. Selection is based on the root shape, weight, inulin 

content and chain length. The selected roots are vegetatively propagated. The clones are 

selected on their bolting and disease resistance. Selected clones are then used in polycrosses. 

Seeds are harvested on each genotype. These halfsib families are tested in early-sown bolting 

tests and normally-sown yield trials. Bolting resistance, leaf development and disease, root 

yield and shape, inulin content and DP are determined. Four to 10 clones or remnant seed 

with the best performing progenies form the components of a synthetic candidate race. The 

progeny tests provide roots for the breeding populations. By recurrent selection, the frequency 

of desired genes in the selected roots is upgraded. The candidate varieties are tested in official 

trials in Belgium, The Netherlands or France. Table 1-2 gives the actual industrial chicory 

variety list of 2012 for Belgium with their agronomical performances.  
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Year        breeding population                varieties  ecotypes 
 
 
1                      selected roots 
 
 
2                  clones   
 
 
3 polycross 
 
 
4  progeny test 
 
 
5     synthesis 
 
 
6-8        official trials 

                   propagation 
     
9                industrial trials 
 
 
10           commercial circuit 
 
 
Fig. 1-4 The classical breeding program for the production of industrial chicory varieties at 
ILVO 
 
 
 
Tabel 1-2 Belgian list 2012 of industrial chicory varieties with their agronomical features 
(Pannecoucque et al., 2012) 
 
 
Features  Yield (relative) 

fresh * 
Yield (relative) 
carbohydrates  

Total 
carbohydrate 
content **  

DP ***  Tarra (%)  

Canzona  98.8  102.0  20.3  10.8  10.2  
Continuo  96.9  97.9  20.1  10.3  11.1  
Crescendo  99.0  98.1  19.5  10.0  11.5  
Diesis  102.4  101.4  19.6  10.4  11.8  
Enigme  96.4  98.5  20.1  10.5  11.7  
Gong   100.6  102.2  20.0  10.4  10.8  
Hera  103.3  99.8  19.0  9.8  11.8  
Maurane  100.9  98.3  19.2  10.1  11.9  
Melci  102.5  101.2  19.4  10.0  11.4  
Zingaro  99.2  100.5  19.9  10.4  11.7  
Mean  60.0 t/ha  11.8 t/ha  19.7  10.3  11.4  
* 100 = mean of all races 
**Total carbohydrate content = (% fructose + % glucose, after hydrolysis) / 1.1 (1.1 is used as a correction for 
the molecular weight of water used for hydrolysis) 
*** DP = (fructose / glucose, after hydrolysis) + 1 
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1.3.2 Hybrid breeding 

As in many flowering plant species, maintenance of the genetic variability is the key to the 

further adaptation in a changing environment. One strategy for increasing genetic variability 

is limiting inbreeding due to self-fertilization. Self-incompatibility (SI) can be described as a 

cell-cell recognition mechanism by which the pistil discriminates self-pollen from genetically 

distinct pollen (Dzelzkalns et al., 1992; Varotto et al., 1995). Thus, not only the germination 

of self-pollen is inhibited, but also the pollen of identical incompatible phenotypes. Another 

form of SI is pseudoselfincompatibility, characterized by a variable degree of 

selfcompatibility and a phenomenon of pollen competition favouring the growth of allopollen 

tubes to selfpollen tubes within the style. C. intybus is self-incompatible. Two SI types can be 

distinguished. Gametophytic SI is determined by the haploid genome of the pollen. 

Sphorophytic SI is determined by the diploid genome of the pollen parent plant, by the pollen 

coat formation during microgametogenesis (Dzelzkalns et al., 1992; Lucchin et al., 2008). 

Observations in Italian red chicory (Varotto et al., 1995) and ‘Witloof’ chicory (Eenink, 1981) 

suggested the presence of sphorophytic incompatibility in C. intybus. Regardless of the SI 

system, still selfing at a low rate can occur in chicory. As stated by Lucchin et al., 2008 SI 

chicory plants might produce 1 or 2 fertile seeds per flowerhead by selfing. Due to the high 

number of flowerheads produced during a generative period, the amount of seeds formed can 

be high. In contrast with C. intybus, C. endivia is a self-pollinating species with less than 1% 

spontaneous cross fertilization (Rick, 1953). Chicory and endive are genetically close (Rick, 

1953). Therefore, interspecific crosses could take place between the two species. Due to the 

SI system in chicory and the selfing of the endives, the easiest cross type is C. intybus x C. 

endivia. This cross leads to the formation of diploid, hybrid plants containing 50% of the 

nuclear information of both parents and the cytoplasm of C. intybus. As we are interested in 

C. intybus plants containing the C. endivia cytoplasm, this cross is undesired and the C. 

endivia x C. intybus cross is needed. 

Commercial breeding in chicory has traditionally been based on intercrossing a number of 

phenotypically superior parents selected for several commercial traits (Lucchin et al., 2008). 

Hybrid vigour or heterosis can exploit the superior performance of the heterozygous hybrids 

in comparison to the parents. Moreover, their uniformity offers great opportunities for modern 

growing and harvesting techniques. In chicory, breeders observed heterosis effects in progeny 

obtained from crosses between distant genotypes, indicating that F1 hybrids can contribute to 

the development of chicory (Bannerot and Deconinck, 1965; Bannerot and Deconinck, 1970). 

Hybrid production requires a good pollination control where selfing of the female line is 
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inhibited (Perez-Prat and van Lookeren Campagne, 2002; Nizampatnam et al., 2009). 

However, since the SI system is unstable under certain environmental conditions and is not 

100% reliable (Baert and Van Bockstaele, 1993), difficulties arise in setting up a reliable 

hybrid seed production scheme. RAPD analysis of F1 hybrid seed samples of C. intybus 

revealed only 71.25% true hybrids (Bellamy et al., 1996). Manual emasculation of the female 

plant is an option but this technique is labour-intensive, time-consuming and thus, expensive. 

Male sterility can contribute to the creation of 100% true hybrids without the use of manual 

labour.  
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1.4 Cytoplasmic male sterility 

 
1.4.1 Male sterility types 

Three types of male sterility are present: Genetic male sterility (GMS), cytoplasmic male 

sterility (CMS) and cytoplasmic genetic male sterility (CGMS). GMS is based on a recessive 

mutation (ms) that inhibits the normal functioning of nuclear genes involved in pollen 

production (Lucchin et al., 2008). Development of male sterile lines through genetic 

engineering has opened new ways of hybrid breeding. A chimaeric ribonuclease gene, 

barnase from Bacillus amyloliquifaciens, cloned under a tapetum-specific promoter TA29, 

was expressed in the anthers of transformed tobacco and oilseed rape plants. The expression 

of this gene destroyed the tapetal cell layer surrounding the pollen sac and prevented pollen 

formation, leading to nuclear male sterility (Mariani et al., 1990). Similar experiments were 

performed on Brassica napus (Denis et al., 1993) and cauliflower and chicory (Reynaerts et 

al., 1993). Expression of a ribonuclease inhibitor gene, barstar, in the tapetal cells, restored 

fertility in the male sterile plants by binding to the ribonuclease active site, preventing 

barnase from damaging the cell's RNA (Mariani et al., 1992). Another gene encodes for 

phosphinothricin acetyltransferase (PAT) enzyme which inactivates phosphinothricin, the 

active component in the broad-spectrum, contact herbicide glufosinate. Although these lines 

are tolerant to the herbicide, their hybrid progeny may or may not be tolerant to the herbicide. 

Selection of male sterile plants in breeding programs could be detected using this herbicide. 

CGMS results from the interaction of a sterile cytoplasm (S) and the homozygous recessive 

alleles (rf/rf) present at one (or more) nuclear restorer locus (loci). This sterility type, caused 

by a cytoplasmic gene dysfunction, can be restored in its progeny by crossing with another 

plant containing dominant nuclear restorer genes (Rf). These Rf genes interact through 

different mechanisms to restore the malfunctioning of the mitochondria: mitochondrial 

transcript processing, posttranscriptional functions, possible modes of biochemical 

detoxification and alteration of mitochondrial genome organization (Leon et al., 1998). CMS, 

which is closely related to CGMS, is characterized by mutations or rearrangements in the 

mitochondrial genome, leading to alterations in transcription and/or translation (Kohler et al., 

1991). CMS by rearrangements in the mtDNA was already observed in 150 plant species 

including maize (Dewey et al., 1986; Dewey et al., 1991), sunflower (Kohler et al., 1991), 

Beta vulgaris (Saumitou-Laprade et al., 1993), rice (Akagi et al., 1995), Brassica (Bellaoui et 

al., 1998), tobacco (Bergman et al., 1995), petunia (Rasmussen and Hanson, 1989), bean 
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(Janska and Mackenzie, 1993), radish (Makaroff and Palmer, 1988), tomato (Stoeva-Popova 

et al., 2007) and sorghum (Bailey-Serres et al., 1986). CMS is inherited as a dominant, 

maternally transmitted trait (Perez-Prat and van Lookeren Campagne, 2002). Alloplasmic 

CMS is a result of inter-, intraspecific or intergeneric crosses. Due to incompatibilities 

between the nuclear genome and the mitochondrial genome or both mitochondrial genomes of 

the different parents, mutations, recombinations or deletions can occur which lead to 

disturbances in mitochondrial gene expression or signal transduction. These errors are no 

longer suppressed by the original parental nuclear restorer genes, thus causing CMS (Stoeva-

Popova et al., 2007). Moreover, when no mutations or recombinations occur, CMS can also 

be obtained due to incompatible nuclear-cytoplasmic interactions between the nucleus and the 

alien cytoplasm (Hanson and Conde, 1985). 

Several techniques can be used to introduce CMS in plant species. Inter-, intraspecific or 

intergeneric crosses contribute to an alloplasmic CMS. However, intergeneric crosses might 

negatively influence agronomically important features. Therefore, inter- and intraspecific 

crosses are more likely to succeed. Alloplasmic CMS was observed in Brassica (Shinada et 

al., 2006) and Gossypium (Galau and Wilkins, 1989). As in any other breeding program, the 

introduction of new features into a crop is restricted by reproductive barriers and the genetic 

structure of the different populations. It is also a time-consuming approach, including the 

need for backcrosses to eliminate undesired features. To address these possible limitations in 

conventional commercial breeding programs, somatic protoplast hybridization can be useful 

to circumvent sexual incompatibility and to enable the direct transfer of both nuclear and 

cytoplasmic genome features into the plant cells (Deryckere et al., 2012). Another technique 

to obtain CMS is through mutagen application. In sunflower, mitomycin and streptomycin 

induced mutations in cytoplasm DNA, leading to CMS (Jan and Rutger, 1988). In petunia, 

chemical treatment with ethylnitroso urea induced CMS in 27 plants (Harten et al., 1985). 

 

 

1.4.2 Male gametophyte development and molecular basis of CMS 

Anthers of C. intybus are tetrasporangiate. The primary sporogenous cells in the anther 

develop into pollen mother cells. Microspores, originated from the pollen mother cell, form 

microspore tetrads after meiosis. Callosic walls are formed around the tetrad and between 

each monad, leading to microspores. The nucleus of the microsporocytes will undergo mitosis 

and form two unequal nuclei, a large vegetative and a small generative. Cichorium pollen is 

spherical, tricolpate and bi-cellular (Chehregani et al., 2011). A three layered, dicotyledonous-
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type anther wall is formed from differentiating archesporial cells. The three layers consist of 

an epidermis, endothecia and a tapetum layer. A general remark is that mitochondria are vital 

elements in pollen development (Chehregani et al., 2011).  

In plant populations, a disturbed floral development, mainly exhibited by male sterility is 

mainly due to a dysfunctioning nucleus-mitochondria connection. Next to the natural 

occurrence of CMS in plant species, CMS has been established as a result of crossing a 

nuclear genome in an alien cytoplasmic background, called alloplasmic male sterility. Several 

reasons are mentioned, including aberrant cytoplasmic genes that are no longer restored by 

their original nuclear genes and hybridization-induced disturbances in cytoplasmic genome 

configurations (Hanson and Bentolila, 2004).  

Due to its maternal inheritance, it became obvious that CMS was the result of errors in either 

the mt or cp genome. Several strategies have been used to identify molecular markers 

associated with CMS. The most simple strategy was the comparison of cytoplasmic genomes 

of CMS and a fertile line. However, when there is no recently emerged CMS in those plants, 

differences in cytoplasmic genomes can be contributed to evolution. Another strategy was the 

use of somatic hybrids containing a recombinant cytoplasmic genome. When these 

recombinant genomes induce CMS, molecular markers could be identified. Through this 

technique, it was shown that fertility was not segregating with cpDNA (Hanson and Bentolila, 

2004). 

The first indications of the involvement of the mitochondrial genome in CMS were described 

in maize. Male-sterility conferring (cms-T) maize mitochondria contained a recombined T-

urf2H3 fragment and novel ORFs. These novel ORFs were suggested to be involved in maize 

CMS (Dewey et al., 1986). In Petunia, a mtDNA arrangement unique to the CMS parent was 

found in all stable sterile somatic hybrids, but in none of the stable fertile somatic hybrids, 

suggesting that this fragment segregates with CMS in somatic hybrids (Boeshore et al., 1985). 

Hanson and Bentolila (2004) described 12 mtDNA regions associated with CMS in Brassica, 

radish, rice, sorghum, wheat, sunflower, maize and Petunia. In as much examples ATP 

synthase subunits sequences were involved. Male sterile tobacco lines displayed abnormal 

mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratios. A novel 

ORF, located upstream of atp1 produced transcripts only detected in the male sterile lines 

(Bergman et al., 2000). Also, a lower activity of the enzym ATP synthase in seedling tissue of 

male sterile sunflower was observed. Indeed, during microspore development, the demand for 

energy and mitochondrial substrates can be so high that a dysfunctioning leads to fatal pollen 

development (Sabar et al., 2003). Several other hypotheses were noted on the mechanisms of 
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the CMS-associated genes. The T-urf2H3 protein in CMS-T maize formed pores in the inner 

mitochondrial membrane in the presence of a fungal toxin. This maize T-urf2H3 protein is 

suggested to cause pores in anthers, leading to pollen abortion. Similar mitochondrial 

membrane disruptions were associated with chimeric genes conducting oxidase activity in 

Petunia and Nicotiana (Hanson and Bentolila, 2004). In Phaseolus, the CMS-associated 

ORF239 protein inhibited the cell wall synthesis of developing microspores (Schnable and 

Wise, 1998). Some mt proteins were only expressed in regenerative tissues of Phaseolus. 

Other mt proteins reached an elevated level in tapetal or sporogenous tissues due to an 

increased expression or an increased number of mitochondria in these tissues. (Hanson and 

Bentolila, 2004). 

Fertility restorer alleles undo the effects of CMS-associated genes. Like SI, also restoration 

systems can be sporophytic or gametophytic. Sporophytic restorers act prior to meiosis, 

gametophytic restorers act after meiosis in microspores or pollen. Fertility restoration can be 

contributed to one or few restorer loci (Schnable and Wise, 1998). The restorer alleles 

influence the (post)transcript profile, the protein accumulation or both. In CMS-sunflower, an 

increased polyadenylation and elevated degradation of the atpA-orf522 transcript, correlated 

with CMS in sunflower, is observed in restored lines. The polyadenylation can be 

developmentally regulated by nuclear genes (Gagliardi and Leaver, 1999). The Rf2 locus in 

maize functions as an aldehyde dehydrogenase. Rf2 can therefore reduce the amount of toxic 

aldehyde produced by the CMS-associated T-urf2H3 fragment (Liu and Schnable, 2002). As 

mentioned before, a peculiar nuclear-controlled fertility restoration was observed in common 

bean. The nuclear Fr locus resulted in the loss of a CMS-associated mtDNA region pvs 

(Janska et al., 1998). Fr lowered the RNA expression by reducing the DNA amount. 

 

 

1.4.3 CMS in Cichorium 

In chicory, CMS doesn’t occur naturally. However, up to now, different approaches were 

undertaken to obtain male sterility in chicory. Tetraploid chicory was developed to allow the 

production of triploids after crossing with diploids. The triploid plants were completely sterile 

and had a higher sugar reserve than diploids (Rambaud et al., 1992). As mentioned before, 

Reynaerts et al. (1993) induced GMS in the witloof chicory (C. intybus ‘Hollandse 

Middelvroege’) through genetic engineering. GMS lines were produced by expressing the 

RnaseT1 from Aspergillus oryzae or barnase from Bacillus amyloliquifaciens, cloned under a 
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tapetum-specific promoter TA29, isolated from tobacco. To restore fertility, a ribonuclease 

inhibitor gene, barstar, was expressed simultaneously with barnase in the same tapetal cells. 

Alloplasmic CMS chicory plants were obtained by intergeneric protoplast fusions of chicory 

mesophyll protoplasts and hypocotyl protoplasts of CMS sunflower plants. C. intybus 

‘Magdeburg’ varieties (Rambaud et al., 1993) and red chicory genotypes (Varotto et al., 

2001) were used as chicory fusion partners. As stated by Varotto et al. (2001), the observed 

male sterility in the cybrids might be attributed to the introgression of CMS sunflower 

cytoplasm or to the incompatibility between the chicory nucleus and the alien sunflower 

cytoplasm. Rambaud et al. (1993) noted that in the cybrids large parts of sunflower mtDNA 

were incorporated in the chicory mtDNA. These rearrangements affected mtDNA 

transcription and abnormalities were observed both in fertility and vigour of the plant. Only 

one plant showed yields similar to the parental plants. The mitochondrial fragment, orf522, 

responsible for CMS in sunflower, was not responsible for CMS in chicory. Orf522 was 

absent in one male sterile cybrid (Dubreucq et al., 1999) and present in restored, fertile 

cybrids (Rambaud et al., 1997). Therefore, CMS was believed to result from a dysfunction 

between the chicory nucleus and the recombined, hybrid mitochondrial genome (Dubreucq et 

al., 1999). The mtDNA of the progeny of plants derived from CMS chicory cybrids and 

different chicory pollinators was analyzed. After four generations, sunflower mtDNA was still 

present in cybrid mtDNA. However, the mitochondrial genome was not stably inherited in the 

sexual progeny. It seemed that the recombined mitochondrial genome was pursuing stability 

by eliminating particular parts of its mtDNA (Rambaud et al., 1997). The use of different 

pollinators revealed that fertility was restored when using a certain pollinator, although a 

recombined mitochondrial genome containing sunflower fragments was present (Dubreucq et 

al., 1999). The nuclear genotype is believed to be a determining factor for fertility restoring 

through its involvement in the mitochondrial genome structure (Rambaud et al., 1997). In 

CMS common bean, restoration of pollen fertility is controlled by a single dominant gene, Fr. 

Remarkably, no sterility segregation was noticed for fully restored fertile F2 plants. The 

fertility restoration was a permanent condition that could not be reversed by segregation at the 

Fr locus. Moreover, the presence of the Fr gene directly altered the configuration of the 

mitochondrial genome by the loss of a 25 kb mitochondrial fragment (Mackenzie and Chase, 

1990). 

Cappelle et al. (2007) performed interspecific protopast fusions between C. intybus and C. 

endivia and produced one symmetric (tetraploid) somatic hybrid exhibiting male sterility out 

of 192 hybrids. Male sterility was maintained in the progeny after backcrossing with 
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tetraploid fertile C. intybus genotypes. The chloroplast genome was identical to that of C. 

intybus, while the mitochondrial genome showed fragments from both partners and 

recombined, unique fragments. The presence of only one male sterile plant among the hybrids 

of C. intybus and C. endivia was low in comparison to the higher frequence of sterile plants in 

a sunflower/chicory fusion experiment (Rambaud et al., 1993). This could be due to the 

smaller genetic distance between endive and chicory compared to sunflower and chicory. A 

greater genetic distance between species enhances mitochondrial rearrangements, leading to 

male sterility (Cappelle et al., 2007). 

 

 

1.4.4  Nucleo-plastome incompatibility 

Next to nucleo-mitochondrial, also nucleo-plastome incompatibilities can arise. The 

development of chloroplasts is co-ordinated by chloroplast and nuclear genes encoding 

chloroplast proteins. A nucleo-plastome incompatibility can lead to a failure in chloroplast 

development, inducing a hampered chloroplast activity and albinism (Leon et al., 1998). This 

was observed in cybrids of Nicotiana tabacum and Hyoscyamus aureus (Zubko et al., 2002) 

and interspecific sexual hybrids in Zantedeschia (Yao and Cohen, 2000). The cybrids of N. 

tabacum and H. aureus -

irradiated H. aureus protoplasts The cybrids contained a plastome of H. aureus and a 

recombined mtDNA. The nucleo-plastome incompatibility was expressed as a chlorophyll 

deficiency of cotyledonary and true leaves at early stages of development. The normal green 

coloration, however, was restored during later development. These cybrids were fertile and 

didn’t show other incompatibilities (Zubko et al., 2002). Also the plastome-genome 

incompatibility in the interspecific hybrids in Zantedeschia didn’t cause a decrease of the 

male fertility (Yao and Cohen, 2000). This suggests that nucleo-plastome incompatibility 

doesn’t involve CMS in these cybrids.  
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1.5 Plant mitochondria 
The main activity of plant mitochondria is the production of ATP through respiratory 

oxidation of fats, carbohydrates and proteins. Moreover, they produce primary and secondary 

metabolites, stress-related reactive oxygen species (ROS), synthetize nucleotides, vitamins 

and cofactors, metabolize lipids and amino acids, participate in the photorespiration and 

export organic acid intermediates for wider cellular use (Millar et al., 2005). The 

mitochondrial (mt) genome is much larger and highly variable in plants (high rates of 

rearrangements, duplication, genome growth and shrinkage) in comparison to the mt genome 

of other eukaryotes. Their size varies from 200 kb in Brassica species to 2500 kb in melon 

(Nair, 1993; Wolstenholme and Fauron, 1995). In contrast to their size, the coding capacity of 

the mt genome is remarkably low. Sequencing of the total mt genome of Arabidopsis 

identified 57 genes encoding components of complexes I to V, cytochrome c biogenesis, 

rRNAs, tRNAs and ribosomal proteins (Unseld et al., 1997). However, typically 90% of the 

total sequence can be attributed to introns and repeated elements (Galtier, 2011). The majority 

of mitochondrial proteins are encoded in the nucleus. The plant mt genome consists of a large 

circular molecule containing the whole genome and a couple of long repeats. Homologous 

recombination of these repeats produces subgenomic circles of highly variable size (Backert 

et al., 1996). In addition to these large circular molecules, the presence of linear and circular 

DNA plasmids and ds RNAs have been reported in many higher plant mitochondria (Nair, 

1993). The high rate of size variation can be contributed to the high coding redundancy. The 

variable mt genome structure is due to a active recombination system and extraneous DNA 

integration. DNA sequence homologies have been detected between nuclear and chloroplast 

DNA and mtDNA (Nair, 1993; Mackenzie and McIntosh, 1999). The nucleotide substitution 

rate, however, is very low, even lower than for nuclear DNA. The existence of an efficient 

DNA repair activity to undo the DNA damage caused by ectopic recombinations between 

repeated elements is the main reason for this low substitution rate. This is in contrast with 

animal mtDNA, which is devoid of repeated elements and ectopic recombinations, where no 

efficient DNA repair system is required, implementing a higher point mutation rate (Galtier, 

2011). The plant mt genome is multipartite containing different, redundant subgenomic 

molecules which are recombinationally active repeated sequences. Next to these molecules, 

the presence of smaller repeated sequences can induce recombinations causing novel open 

reading frames (ORFs) (Vedel et al., 1994). The subgenomic molecules can be held at a low 

copy number, even fewer than one per cell. Subdividing the genome by a differential 
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distinction of these unique forms gives the mitochondria a clear advantage in creating 

variation. A sudden increase in the copy number of the subgenomic molecules can cause 

genomic rearrangements. Otherwise, a decrease in copy number can give rise to the silencing 

of certain encoded genes (Janska et al., 1998). Not much is known on the mode of replication 

of chromosomal mtDNA. However, a rolling-circle mode of replication in the mitochondria 

of Chenopodium album was observed (Backert et al., 1996). Observations in other plant 

species suggest the rolling-circle model as a common phenomenon in higher plants (Backert 

et al., 1996). The copy number and general regulation of the mt genome is under nuclear 

control. This suggestion is supported by findings of a CHM locus in Arabidopsis (Martinez-

Zapater et al., 1992) and Fr gene in common bean (Mackenzie and Chase, 1990). Moreover, 

an ongoing process of mitochondrial genes tranfer to the nucleus is described. In 

angiosperms, the transfer of mt ribosomal protein genes to the nucleus was observed (Palmer 

et al., 2000). Transcription of plant mt genes is regulated by at least one nuclear-encoded 

RNA polymerase. Mackenzie and McIntosh (1999) suggested that different types of 

promotors might be responsible for particular genes, indicating that these promotors need 

their own specific (nuclear) transcription factors. Next to the direct nuclear-mediated 

mitochondrial transcription, nuclear-mediated transcript processing is an effective tool of 

gene regulation in plant mitochondria (Gray et al., 1992). In CMS-T maize, two nuclear loci 

are believed to promote mitochondrial transcript splicing (Laughnan and Gabay-Laughnan, 

1983). Another indirect nuclear-mediated regulation is the phosphorylation of mitochondrial 

proteins. 
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1.6 Somatic hybridization 

 
1.6.1 Historical overview 

Genetic improvement of cultivated species has been extensively investigated by breeders in 

their efforts towards a successful crop production. However, in conventional breeding 

programs, the transfer of desirable traits is restricted to sexually compatible species. A 

somatic hybridization protoplast-based approach may be an alternative for sexual interspecific 

hybridization, that is often confronted with prezygotic or postzygotic barriers (Eeckhaut et al., 

2006). Plant cells from which the cell wall has been enzymatically or mechanically removed 

are called protoplasts. Theoretically, protoplasts are totipotent, meaning that after their 

isolation and subsequent culture they have the capability to dedifferentiate, re-enter the cell 

cycle, go through repeated mitotic divisions and then proliferate or regenerate into various 

organs. In other words, applying the correct physical and chemical stimuli would suffice to 

regenerate fertile plants through tissue culture practices. This provides a multitude of 

opportunities for crop improvement, including a system for protoplast fusion (somatic 

hybridization), somaclonal variation, and plant transformation. For foreign gene introduction, 

somatic fusion is superior to plant gene transformation in some aspects as antibiotic resistance 

markers can be avoided and complex agronomic traits controlled by polygenes can be 

introgressed (Xia, 2009). 

Although both mechanical isolation (Klercker, 1892) and fusion (Küster, 1909) were 

originally described more than a century ago, protoplast related research was only well 

initiated after the first enzymatic digestion (Cocking, 1960). Some years later, mass 

production of protoplasts thanks to the availability of commercial macerating enzymes 

enabled worldwide protoplast research on a wide array of plant species. The first report on the 

full plantlet regeneration from protoplasts was described in tobacco mesophyll cells (Takebe 

et al., 1971). Tobacco was also the first crop in which successful interspecific somatic 

hybridization was reported through symmetric protoplast fusion (Carlson et al., 1972). 

Protoplast culture at low densities became possible for more species after the publication of 

the Kao & Michayluk medium composition (Kao and Michayluk, 1975). The first application 

of irradiation to obtain asymmetric hybrids was performed in parsley (Dudits et al., 1980). 

Since then, the 1970s and 1980s onwards, much progress has been reported on protoplast 

regeneration and fusion. Those were compiled in reviews by Melchers and Labib (1974), 

Davey & Kumar (1983), Gleba and Sytnik (1984), Bravo and Evans (1985) and Davey and 
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Power (1988). In spite of regeneration problems, protoplast fusion became a common 

technique for the introduction of novelties in commercial crops (Brown and Thorpe, 1995). 

However, during the 1990s protoplast based technologies for gene transfer were 

overshadowed by recombinant DNA technologies. Partly due to public antagonism towards 

these technologies, interest in protoplast research was renewed, although at that time only a 

limited number of plant families produced regenerative protoplasts (Waara and Glimelius, 

1995). 

A somatic breeding protocol can typically be subdivided into the following steps: isolation, 

fragmentation (in case of asymmetric hybridization), fusion, regeneration and selection (Liu 

et al., 2005). Protoplast isolation is typically performed through a 1-step-procedure in which a 

pectinase and a cellulase type enzyme are jointly added to an osmotically corrected solution to 

respectively separate the cells from their pectin rich matrix and to dissolve the cellulose rich 

cell wall. Several agents can be used to create an osmotic equilibrium between the protoplasts 

and their environment to prevent protoplast bursting: metabolically inactive sugar alcohols 

such as mannitol and sorbitol are most frequently applied but also glucose, sucrose or salts 

can be used (Razdan, 2003). Carlson et al., 1972 described the first protoplast fusion. 

However, this fusion between tobacco species was spontaneous. Fusions can also be induced 

through mechanical pushing, NaNO3 treatment, or high pH/Ca2+ treatment (Razdan, 2003). 

Currently, fusion is nearly exclusively performed through polyethylene glycol (PEG) (Kao et 

al., 1974) or electrofusion (Zimmerman and Scheurich, 1981). Chemical fusogens cause the 

isolated protoplast to adhere to each other and lead to tight agglutination. By adding a high 

pH/Ca2+ solution, cell membranes will be disrupted and neighbouring protoplasts will fuse. 

Chemofusion is non-specific and inexpensive but can be cytotoxic. For electrofusion, 

protoplasts are first aligned between electrodes in a low strength electric field generated by 

alternating current, upon which fusion is induced by application of one or a few high-voltage 

direct current pulses. The electroporation induced by these pulses enables cell fusion. 

Electrofusion is less cytotoxic than chemical fusion, but more expensive. After fusion, 

different types of homokaryons or heterokaryons can be created, as well alloplasmic hybrids 

(cybrids) (Liu et al., 2005). Fusion of divergent parental protoplasts leads to the formation of 

symmetric hybrids, combining both nuclear genomes. Symmetric fusion events, however, 

lead to the incorporation of total genomes, which can disturb the regeneration capacity, the 

development or the fertility of the somatic hybrid. By reducing the amount of transmitted 

nuclear information, these problems can be overcome. Asymmetric fusions enable us to only 

transfer partial genomes. Several techniques can be used for fragmentation of the so-called 
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‘donor’ genome, such as X or gamma rays, ultraviolet (UV) irradiation (Hall et al., 1992) or 

microprotoplasts (Yemets and Blume, 2009). Moreover, by introgressing fewer genes than 

after sexual crossing or symmetric somatic fusion, the number of backcrosses could be 

significantly reduced. Also, cytoplasmic genomes can be recombined with nuclear genomes 

for applications like CMS introduction (Liu et al., 2005). Although much investigation was 

already performed on fragmentation, chromosome elimination is random and unpredictable. 

Generally, irradiation causes the reduction of the amount of donor DNA, but this may vary 

from a few traits, one or a few chromosomes to a big part of the donor genome (Waara and 

Glimelius, 1995). Protoplast regeneration is often the bottleneck in somatic hybridization 

breeding programs. Evidently, regeneration within a single species is strongly genotype 

related. In a given crop however, lots of parameters are usually optimized to achieve an 

optimal efficiency. In Razdan (2003), Davey et al. (2005) and Veilleux et al. (2005), the 

importance of parameters as protoplast source, protoplast density in culture, chemical media 

composition, physical culture method, refreshment rates and plant hormones are discussed. 

Regeneration problems have forced researchers to come up with more innovative approaches, 

such as electrical stimulation, non-ionic surfactants and artificial gas carriers. A complete 

overview of regeneration related parameters is presented by Davey et al. (2005). All types of 

fusion products can be found after protoplast fusion; heterokaryotes, homokaryotes and 

unfused parental protoplasts. Identifying the hybrids in a population requires a stringent 

selection system. Usually, screening is performed during or after in vitro regeneration. Apart 

from morphological markers, many tools were developed (Liu et al., 2005); flow cytometry, 

in situ hybridization, isoenzymes and molecular markers. A thorough screening can be 

complicated by genotype instability such as chromosome loss or by hybrid growth vigor as in 

sexual hybrids (Eeckhaut et al., 2006). Tables 1-3, 1-4 and 1-5 give a extended overview of 

protoplast research during the last decade. Special attention is given to protoplast 

regeneration, (a)symmetric hybridizations and hybrid screening methods.  

 

 

1.6.2 Protoplast regeneration 

Protoplast regeneration is often the bottleneck in somatic hybridizations. Therefore, and due 

to the increasing interest in protoplast-related research, nowadays, much is invested in 

protoplast regeneration protocols. Table 1-3 gives an overview of recent progress of 

protoplast regeneration in spermatophytes. For many species complete protoplast regeneration 

has been realized for the first time including for Echinacea purpurea, Gossypium hirsutum, 
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Gossypium davidsonii, Ipomoea cairica, Lilium japonicum, Solanum virginianum, Zingiber 

officinale, Cyclamen alpinum, Cyclamen graecum, Cyclamen mirabile and Cyclamen coum 

(Table 1-3). In the case of Kalanchoë blossfeldiana, protoplast regeneration was achieved for 

the first time in the Crassulaceae family (Castelblanque et al., 2010). In recent years, 

regeneration protocols for plants that could already be regenerated were redefined and 

optimized for their use in a later protoplast-related research. Variable parameters for an 

increased efficiency of protoplast regeneration were investigated. An analysis of the most 

successful methods during the last decade on protoplast regeneration gives us following 

summary: 

 

1.6.2.1 Protoplast source 

The most efficient protoplast sources are mesophyll cells and suspension cells; other 

protoplast suppliers are callus, hypocotyls somatic embryos and, in a single case, cotyledons. 

Donor material type has often been decisive for successful regeneration. Ipomoea white soft 

callus is not regenerative, as opposed to compact callus (Guo et al., 2006). In citrus, calli 

donor material is suspected to result in slower colony growth rates (Takami et al., 2005). In 

the case of Kalanchoë blossfeldiana, leaves were used, and leaf preculture can lead up to 

isolation of more dense protoplast types, probably due to dedifferentiation during the 

preculture (Castelblanque et al., 2010). Dedifferentiation requires that somatic cells reprogram 

and enter the cell division cycle. Arabidopsis thaliana mesophyll protoplasts were used as a 

representation of dedifferentiated cells in which the vacuolar architecture could be monitored 

during repair mechanisms (Sheahan et al., 2007). Before dedifferentiated plant cells entered 

cell division, the vacuole developed a complex architecture which is actinomyosin dependent 

and contributes to nuclear positioning and an enhanced cellular metabolism, both required for 

division. Embryogenic suspension cells were particularly used as protoplast source in 

monocot species (Chabane et al., 2007). Suspension cells are more dedifferentiated than 

callus, which is a possible reason for their better regeneration upon protoplast isolation. Like 

callus and unlike mesophyll cells, suspension cells contain more mitochondria, suggesting a 

better energy supply to dividing protoplasts (Moreira et al., 2000). When mesophyll cells 

were used to create somatic hybrids, their lack of calli differentiation capacity might decrease 

hybrid regeneration capacity (Szczerbakowa et al., 2005). Mesophyll cells were rarely used in 

monocots. Although cell suspensions theoretically were the best starting material they were 

often hard to accomplish in cereals (Li et al., 2004). Another drawback is the possible 

introduction of cytological aberrations or mutations (Grosser et al., 2007b). For instance, 
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standard citrus fusions are performed between cell suspension protoplasts and mesophyll 

protoplasts, because complementation from the leaf parent probably allows the fusion 

products to overcome cytological mutations, built up over time during callus or cell 

suspension culture (Guo and Grosser, 2005). As opposed to this, Wu et al. (2005) used callus 

as protoplast source for both partners, yielding 90% hybrids among the regenerants, probably 

due to heterosis effects. 

 

1.6.2.2 Culture types 

Table 1-4 shows that about half of the culture types mentioned were liquid based, whereas the 

other half was mostly based on culture in alginate or agarose embedding. Mostly these 

embedding agents were used for culture in beads or layers in liquid medium. Only four 

reports mentioned culture in solid medium as the optimal strategy. Recent results have led to a 

better understanding of the importance of culture systems. A nurse layer of tuber mustard 

cells significantly increased regeneration of cauliflower (Sheng et al., 2011) and red cabbage 

protoplasts (Chen et al., 2004). It was the first time red cabbage protoplast culture was 

successful; without a nurse layer microcalli did not form. Also the sustained division of 

banana protoplasts exclusively occured when a feeder system was implemented (Xiao et al., 

2007); possibly the feeder layer had a signaling function on top of a nutrient providing 

function. Cell suspensions were often used as feeder layers (He et al., 2006), and their 

efficiency was determined by their culture time, possibly because a more vigorous growth 

coincided with the release of more stimulatory substances in the medium that can initiate 

divisions in the more recalcitrant protoplasts. As not any cell suspension was a suitable source 

for a feeder layer, as well genotype, pretreatment and medium of the original callus could 

affect the final efficiency of the protocol. Liquid medium rarely yielded better protoplast 

division (Castelblanque et al., 2010). The lower colony formation in liquid medium was 

assumed to be caused by a shortage of aeration and light (Azad et al., 2006) or a release of 

toxic components (Duquenne et al., 2007). Shrestha et al. (2007) proposed that the reasons for 

efficient division of cell suspension Phalaenopsis protoplasts were the better dilution of 

inhibitory substances and the better distribution of nutrients. Niedz (2006) regenerated 

somatic embryos through culture of citrus protoplasts on semi-permeable membranes which 

enabled a better oxygen supply to the cells. Microfluidic devices were beneficial for culture of 

small cell populations and continuous supplementation with no need of large culture media 

volumes. Nicotiana tabacum protoplasts were cultured in microfluidic polydimethylsiloxane 

channels with microtubes for continuous medium supply and successfully developed into 
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microcolonies within four weeks (Ko et al., 2006). A general finding was the better 

performance of protoplasts when embedded in alginate or agarose. In the genus Cichorium, 

regeneration of a wide variety of species and genotypes could be accomplished by agarose 

bead culture (Deryckere et al., 2012). For other crops, as well beads, discs, layers, thin layers 

or extra thin films were used. A major advantage of embedding systems is the easier handling 

of the cultures which permits replacement of the culture media without disturbing the 

development of the microcolonies and may prevent microbial contamination. When discs 

were used, protoplasts divided at a higher rate at the edge (Rakosy-Tican et al., 2007). The 

thinner the matrix was, the higher plating efficiencies were (Pati et al., 2005). For carrot 

protoplast culture, layer thickness was minimized by circular rotation of the 

protoplast/alginate suspension during application and before polymerization (Grzebelus et al., 

2012a). Also the embedding agent type affects the final outcome, possibly by interacting with 

genotype, osmolarity, temperature, culture system or aeration (Prange et al., 2010; 

Kielkowska and Adamus, 2012). This is in accordance with earlier postulations on the 

positive effect of embedding by membrane stabilization through lipid peroxidase inhibition, 

the prevention of leakage of cell wall precursors or other metabolites, and lower ethylene 

levels (Bajaj, 1989). Moreover, protoplast aggregation leading up to poor oxygen supply and 

browning was avoided (Pati et al., 2008; Lian et al., 2011). Also, the osmotic pressure 

changed steadily instead of stepwise (Kanwar et al., 2009). Briere et al. (2004) studied the 

organization of actin microfilaments during sunflower protoplast culture in an agarose matrix. 

Removal of the cell wall completely disrupted the actin cytoskeleton, which became 

progressively reorganized into cortical microfilament arrays and actin cables during protoplast 

culture. Treatment of protoplasts with arginine-glycine-aspartic acid (Arg-Gly-Asp) motif-

containing peptides, to inhibit putative cell contacts with the agarose matrix, strongly affected 

this repair process: microfilament elongation and cable formation were inhibited and the 

connectivity between the cortical network and the perinuclear basket was lost. Furthermore, 

embryoid formation induced by agarose embedding was reduced. Similar effects were 

observed with a short treatment with latrunculin B, known to disrupt actin microfilaments. 

These results indicate that the actin network is involved in the signaling process that leads to 

polarity acquisition and embryoid determination in agarose-embedded protoplasts. It is thus 

likely that agarose embedding of protoplasts allows the formation of transmembrane adhesion 

complexes that anchor the protoplast to this extracellular matrix and stabilize the cytoskeleton 

network. This will help to determine and/or fix the polarity of the cell, leading to asymmetric 

division and embryoid development. Another important parameter for optimal protoplast 
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culture are initial protoplast density. Typically, protoplast densities were 100,000-200,000 ml-

1, with a minimum of 10,000 for Ipomoea cairica (Guo et al., 2006) and a maximum of 

1,000,000 for Solanum virginianum (Borgato et al., 2007), Phoenix dactylifera (Chabane et 

al., 2007) and Musa species (Dai et al., 2010). 

 

1.6.2.3 Medium composition 

Chemical modifications have recently contributed to regeneration of some afore recalcitrant 

species or materials. A contribution on the optimization of mineral composition with respect 

to the type of callus development in Lupinus was published (Sonntag et al., 2009), stating that 

B5 mineral composition, established by Gamborg et al. (1968), resulted in more compact 

callus development than MS medium (Murashige and Skoog, 1962) or any other composition 

attempted. In 1984, Okamura et al. published the detrimental effect of ammonium on 

regeneration of Asteraceae plants. Recent publications however clarified that this is not 

restricted to Asteraceae (Umate et al., 2005; Fiuk and Rybczynski, 2007; Guo et al., 2007; 

Kanwar et al., 2009). In Beta vulgaris, protoplast regeneration recalcitrance was problematic. 

The plating efficiency of mesophyll cells however drastically increased after adding 100 nM 

phytosulfokine, a peptide growth factor, that has antioxidant properties but possibly also 

generates a nurse cell effect (Grzebelus et al., 2012b). Furthermore, through extensively 

investigating the identification of genotype related factors like cell wall polysaccharides 

responsible for plant regeneration from single cells, the supply of exogenous arabinogalactan 

protein-rich extracts significantly improved the protoplast derived callus organogenesis 

(Wisniewska and Majewska-Sawka, 2007; Wisniewska and Majewska-Sawka, 2008). 

Galactoglucomannan-derived oligosaccharides in very low concentrations acted as 

regulatory/signaling molecules in plant cells elongation, differentiation and development. 

They evoked inhibition of elongation growth induced by auxins probably associated with cell 

wall modifications catalyzed by peroxidases. Combined with NAA they positively influenced 

not only the viability, but also the protoplast regeneration and division. They influenced both 

quality and quantity of extracellular proteins in regenerating protoplasts. They probably 

fulfilled a protective role in this process of spruce protoplast regeneration (Kakoniova et al., 

2010). Sotiriou et al. (2007) have presented the first report on the presence of glucuromannan 

in cell walls regenerated from protoplasts; simultaneously oligosaccharides and 

arabinogalactans were released. In Brassicaceae, iodoacetamide (IOA) was added to prevent 

division of unfused protoplasts, who subsequently could nurse the fused cells (Chen et al., 

2005; Tu et al., 2008). Plant hormones remain among the best studied parameters for 
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protoplast regeneration. Auxin 1-NAA addition to protoplasts isolated from leaves of 6-day-

old wheat seedlings induced an increase in the cytosolic Ca concentration within 5–10 s, 

while the physiologically non-active analogue, 2-NAA, did not (Shishova and Lindberg, 

2004). A complicated mechanism of auxin-induced rise in cytosolic Ca was suggested. A 2,4-

D shock was found to be indispensable for Helianthus protoplast regeneration (Taski-

Ajdukovic et al., 2006). The cytokinin TDZ act as a regulator of morphogenetic responses, 

including somatic embryogenesis, micro-propagation, regeneration and shoot formation, 

probably through modulation of auxin levels (Xiao et al., 2007; Thomas, 2009); for shoot 

induction, the cytokinin type may be decisive (Borgato et al., 2007). Also, as well interactions 

of gibberellic acid (Yang et al., 2007a; An et al., 2008) as ethylene inhibitors (Guo et al., 

2007) with regeneration were studied. Endogenous hormones can interact with exogenously 

applied plant growth regulators, as demonstrated by the different reaction of multiple explants 

types on phytohormone treatments (Sun et al., 2005). Polyamines are known to be involved in 

a variety of growth and developmental processes in higher plants, as well as in adaptation to 

stresses. The isolation process contributed to increased putrescine levels, which were higher 

in non-totipotent tobacco protoplasts than in totipotent tobacco protoplasts (Papadakis et al., 

2005). During culture, putrescin predominated over other polyamines, and the highest 

accumulation was found in totipotent protoplasts. The authors suggested that the levels and 

metabolism of the intracellular polyamines could be related to the expression of totipotency of 

plant protoplasts. Rakosy-Tican et al (2007) found that a combination of spermidine and 

haemoglobin increased plating efficiency but was unable to provoke full regeneration. They 

proposed spermidine to stimulate mitosis and to reduce stress impacts. 
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Table 1-3 Progress on protoplast regeneration in different plant families from 2004 onward. 

Plant family and species Protoplast 
sourcey 

Culture method  Optimal density  

(104 pp/ml) 

Best 
resultz 

Reference 

Alstroemeriaceae      
Alstroemeria spp. C Liquid  10 P Kim et al., 2005 
Apiaceae      
Daucus carota H Thin alginate layer 40 P Grzebelus et al., 2012a 
Araceae      
Anthurium scherzerianum SE Agarose beads  10 MCO Duquenne et al., 2007 
Anubias nana M Agarose beads 50 MCO Pongchawee et al., 2006 
Cryptocoryne wendtii M Liquid  50 MCO Pongchawee et al., 2007 
Spathiphyllum wallisii SE Agarose beads  10 MCO Duquenne et al., 2007 
Arecaceae      
Phoenix dactylifera C Liquid, feeder layer  100 C Chabane et al., 2007 
Phoenix dactylifera C Feeder layer  100 C Rizkalla et al., 2007 
Asclepidaceae      
Tylophora indica M Liquid  50 P Thomas, 2009 
Asteraceae      
Chrysanthemum spp. M Agarose solid plating, co-culture  10 MCO Zhou et al., 2005 
Chrysanthemum indicum M Liquid 10 C Eeckhaut and Van 

Huylenbroeck, 2011 
Cichorium intybus M Agarose embedded 5 P Deryckere et al., 2012 
Echinacea purpurea M Alginate block/liquid  10 P Pan et al., 2004 
Helianthus annuus H Alginate discs  80 P Rakosy-Tican et al., 2007 
Brassicaceae      
Brassica oleracea H Agarose embedded, co-culture  10 P Chen et al., 2004a 
Brassica oleracea H Agarose embedded, co-culture  10 P Sheng et al., 2011 
Brassica oleracea H Alginate layer 40 P Kielkowska and Adamus, 

2012 
Caryophyllaceae      
Dianthus acicularis M,  SC Solid (Gelrite)  10 P Shiba and Mii, 2005 
Chenopodiaceae      
Beta vulgaris M Thin alginate layer 40 MC Grzebelus et al., 2012b 
Convolvulaceae      
Ipomoea cairica M Liquid  1-2 P Guo et al., 2006 
Crassulaceae      
Kalanchoë blossfeldiana M Liquid  10 P Castelblanque et al., 2010 
Cucurbitaceae      
Cucumis anguria M Liquid  20 C Gajdova et al., 2007 
Cucumis melo M Liquid  20 C 
Cucumis metuliferus M Liquid  20 C 
Cucumis sativus M Liquid  20 C 
Fabaceae      
Astragalus melilotoides C Liquid  40-50 P Hou and Jia, 2004 
Ceratonia siliqua H Liquid  25-40 MC Sotiriou et al., 2007 
Lupinus luteus H Liquid  20 MCO Wiszniewska and Pindel, 

2009 
Robinia pseudoacacia C Liquid  20-40 P Kanwar et al., 2009 
Gentianaceae      
Gentiana kurroo SC (CO) Agarose bead cultures  20 P Fiuk and Rybczynski,  2007 
Goodeniaceae      
Scaevola aemula M Agarose droplets  10 E Wang, 2011 
Hypericaceae      
Hypericum perforatum HC Alginate blocks  20 P Pan et al., 2005 
Iridaceae      
Iris fulva SC Agarose block  10 P Inoue et al., 2004 
Lauraceae      
Cinnamomum camphora SC Liquid  10 P Du and Bao, 2005 
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Liliaceae      
Lilium japonicum SC Agarose embedded, nurse cells  10 P Komai et al., 2006 
Muscari neglectum C Alginate beads with nurse cells  10 P Karamian and Ranjbar, 2010 
Malvaceae      
Gossypium hirsutum SE, SC Liquid  20-100 P Sun et al., 2005c 
Gossypium hirsutum SC Liquid  20 P Wang et al., 2008a 
Gossypium klotzschianum SE, SC Liquid  20-100 P Sun et al., 2005b 
Gossypium davidsonii SC Liquid over solid  20-100 P Yang et al., 2007a 
Moraceae      
Morus indica M Liquid  10 P Umate et al., 2005 
Musaceae      
Musa acuminata SC Liquid, feeder layer  100 P Xiao et al., 2007 
Musa paradisiacal SC Liquid, feeder layer  100 P Dai et al., 2010 
Myrsinaceae      
Cyclamen coum SC Agarose or alginate embedded  15 P Prange et al., 2010b 
Cyclamen alpinum SC Agarose or alginate embedded  15 P Prange et al., 2010a 
Cyclamen graecum SC Agarose or alginate embedded  15 P Prange et al., 2010a 
Cyclamen mirabile SC Agarose or alginate embedded  15 P Prange et al., 2010a 
Cyclamen persicum SC Alginate films  15 P Winkelmann et al., 2006 
Nelumbonaceae      
Lotus corniculatus CO Extra thin alginate film  20 P Pati et al., 2005 
Orchidaceae      
Phalaenopsis sp SC Solid, gellan gum  10 P Shrestha et al., 2007 
Poaceae      
Zea mays SC Solid/feeder/liquid  20-40 P He et al., 2006 
Rutaceae      
Citrus sinensis C Alginate beads  25 E Niedz, 2006 
Phellodendron amurense M Solid, gellan gum  40 P Azad et al., 2006 
Solanaceae      
Calibrachoa spp. M Liquid  or alginate embedded  15 S Meyer et al., 2009 
Petunia spp. M Liquid  15 S Meyer et al., 2009 
Nicotiana tabacum M Extra thin alginate film  10 P Pati et al., 2005 
Solanum virginianum M Thin alginate layers in liquid  100 P Borgato et al., 2007b 
Ulmaceae      
Ulmus minor M Agarose droplets  20 MC Conde and Santos, 2006 
Zingiberaceae      
Zingiber officinale SC Liquid  10-50 P Guo et al., 2007b 
yC: callus; CO: cotyledon; H: in vitro hypocotyls; HC: hypocotyls derived callus; M: mesophyll cells from in vitro leaves; 
SC: suspension cells; SE: somatic embryos 
zC: callus; E: embryos; MC: microcalli; MCO: microcolonies; P: plants; S:shoots 
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1.6.3 Symmetric hybridization 

In Table 1-4, publications of the past 10 years on symmetric hybridization are listed. The best 

studied plant families when analyzing symmetric fusions, were Brassicaceae, Rutaceae and 

Solanaceae. Compared to earlier publications (before 2004), innovation was mainly achieved 

by making new fusion combinations. In symmetric hybridization experiments, the use of 

either chemical fusion mediation or electrofusion largely depended on the plant family. PEG-

mediated fusion was standard in Brassicaceae, whereas electrofusion was routineously 

applied in Solanaceae and Malvaceae; for Rutaceae both fusions methods were used. Over all 

families, the most widely used tissue types were leaf mesophyll cells, cell suspension cells, 

callus and hypocotyls (mainly in Brassicaceae and Fabaceae). Somatic embryos, cotyledons, 

pollen and petioles were only occasionally used. The final objectives of the different projects 

were quite diverse. The most important driver was breeding for biotic resistance or tolerance, 

especially in the genus Solanum. Gene pool enlargement of a commercial crop through fusion 

with a wild species and the creation of hybrids to monitor hybrid creation and to develop tools 

for hybrid screening was another important aim. Of course, this was primarily performed in 

well studied families as Rutaceae, Brassicaceae and Solanaceae. Of relatively lesser 

importance were breeding for abiotic resistance or tolerance, production of secondary 

metabolites, rootstock breeding in Citrus, hybridization, altered morphology and ploidy 

breeding. Biomass production, introduction of cytoplasmic male sterility, N2 fixation and 

formation of storage roots were rare objectives (Table 1-4). 

  

 

1.6.4 Asymmetric hybridization 

Asymmetric fusion techniques have been widely applied over the last decade and several new 

asymmetric hybrids were obtained (Table 1-5). Genome fragmentation of the donor parent 

encourages the elimination of much of its redundant genetic material in the somatic hybrid. 

Moreover, most karyotype instability causing donor genes are elimated during the first post-

fusion mitoses, as opposed to symmetrical fusions after which eliminations can occur up to 

the first sexually derived generation (Cui et al., 2009). The most studied families were 

Brassicacae and Poaceae followed by Rutaceae. In asymmetric hybridization experiments, a 

4-fold more chemical fusions were performed than electrical fusions. The Apiaceae species 

Bupleurum scorzonerifolium was used as acceptor as well as donor. Recently, a lot of new 

combinations to produce somatic hybrids were produced. For the first time, an asymmetric 
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hybrid was reported in banana (Xiao et al., 2009). Interfamilial asymmetric hybrids have been 

produced for the first time between the dicot Arabidopsis thaliana and the monocot common 

wheat (Deng et al., 2007). Fusion between phylogenetically remote tall fescue, Italian 

ryegrass and common wheat was achieved (Cheng and Xia, 2004; Ge et al., 2006; Cai et al., 

2007). In cotton, asymmetric hybrids were obtained as an alternative for symmetric hybrids 

(Yang et al., 2007b). New somatic hybrids were obtained between monocot Festuca 

arundinacea Schreb. and dicot B. scorzonerifolium through symmetric as well as asymmetric 

fusions (Wang et al., 2011b). The first successful somatic hybrid regeneration between Oryza 

sativa L. japonica and O.meyerina L. was reported (Yan et al., 2004). Scholze et al. (2010) 

produced the first Raphanus-Brassica somatic hybrids with fungal and virus disease 

resistance. Cybrids were produced between chloroplast transformant tobacco and petunia 

(Sigeno et al., 2009). Using UV irradiated asymmetric hybrids a radiation hybrid panel was 

established for Lolium multiflorum (Cheng et al., 2006). Taski-Adjukovic et al. (2006) 

regenerated an asymmetric hybrid between sunflower and Helianthus maximiliani for the first 

time. Acceptor protoplast sources for asymmetric hybridization existed mainly of suspension 

cell cultures, mesophyll, callus and hypocotyls. The donor protoplast source rarely differed 

from the one for the acceptor. Brassicaceae and Asteraceae hypocotyl acceptor protoplasts 

were combined with mesophyll donor protoplasts (Taski-Ajdukovic et al., 2006; Scholze et 

al., 2010; Wang et al., 2011a). Biotic resistance introduction, genetic variation, hybrid 

analysis, fragmentation technology development and secondary metabolite production were 

recently the most important aims for asymmetric hybridization. Other motives were plastome 

and/or CMS transfer or a modification of agronomic traits such as protein content or seedless 

fruits. Abiotic resistance introduction, hybridization, genome mapping and the establishment 

of chromosome addition lines were rare objectives (Table 1-5). 

 

 

1.6.5 Fragmentation techniques - Irradiation 

1.6.5.1 Historical overview  

Symmetric protoplast fusion combines complete genomes and cytoplasms of different 

parents. Fusion of intact cells leads to hybrids with desirable as well as undesirable traits, 

disturbing the regeneration capacity, the development or the fertility of the somatic hybrid. By 

reducing the amount of transmitted nuclear information, these problems can possibly be 

overcome. By introgressing fewer genes than after sexual crossing or symmetric somatic 

fusion, the number of backcrosses could be significantly reduced. Asymmetric protoplast 
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fusion enables the selective transfer of one or few donor chromosomes or fragments. To 

create cybrids, only cytoplasmic related features are transmitted after complete fragmentation 

of the donor nucleus. Several techniques can be used for donor genome fragmentation, such 

as X or gamma rays, UV irradiation (Hall et al., 1992) or microprotoplasts (MPP) (Yemets 

and Blume, 2009). The technique of MPP requires donor cells with one or few chromosomes 

through synchronisation, micro-nucleation and MPP isolation from plant cells (Zhang et al., 

2006; Famelaer et al., 2007). However, the contamination of MPP by a low percentage of 

non-fragmented protoplasts can cause problems in further protoplast screening (Hall et al., 

1992). The first application of irradiation (X-ray) to obtain asymmetric hybrids was 

performed in parsley (Dudits et al., 1980). UV-light used to create asymmetric hybrids was 

used for the first time on Nicotiana donor protoplasts (Dimanov and Atanassov, 1989). 

Asymmetric fusion products were also noticed without fragmentation treatment. Due to 

chromosome rearrangements during meiosis, chromosomes and chromosome fragments of 

different parents could be lost (Rambaud et al., 1993). The production of these asymmetric 

hybrids decreased possible long term irradiation effects on hybrid growth and development 

(Li et al., 2004). Whereas earlier, X or gamma rays were more frequently used for the 

fragmentation of the donor protoplasts, UV treated protoplasts are currently more widely 

applied. However, within a single species susceptibility towards both radiation types can 

strongly differ (Wang et al., 2012). Hall et al. (1992) investigated whether UV radiation (a 

non ionizing radiation tool) could be used as an alternative for ionizing radiation techniques 

(X or gamma rays). Fragmentation through ionizing radiation resulted in less genomic 

elimination than desired (Famelaer et al., 1990). The extent of DNA loss did not clearly 

correlate with the ionizing radiation dose. UV had a detrimental effect on sugar beet 

protoplasts: resynthesis of a cell wall, cell growth and cell division were partially or totally 

eliminated. Protoplast viability had not decreased after 6 days culture, but after 14 days, the 

UV-treated cells died. Another advantage of UV radiation over ionizing radiation was its easy 

application and high reproducibility (Hall et al., 1992). Both UV and X ray irradiation 

efficiently induced asymmetry in somatic hybrids between Brassica napus and Arabidopsis 

thaliana, in a dose-dependent manner (Forsberg et al., 1998). A restriction enzyme treatment, 

creating DNA double strand breaks, didn’t affect the frequency of hybrid asymmetry. 

 

1.6.5.2 Effect of UV irradiation on plant systems 

The reduction of the ozone layer, because of man’s activities, has opened the discussion on 

plant response mechanisms towards solar UV radiation. UV radiation, about 7-9% of the solar 
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radiation plants are exposed to, is generally classified into three classes: UVA (315-400 nm), 

UVB (280-315 nm) and UVC (200-280 nm) (Navratilova et al., 2008; Sarghein et al., 2011). 

UVC rays, containing the highest radiation energy, are mainly absorbed by the ozone layer 

and don’t reach the earth’s surface. However, all types of UV radiation can influence plant 

processes in different ways; by DNA damaging, causing heritable mutations, or by altering 

physiological processes (Stapleton, 1992). UV photons are effeciently absorbed by biological 

macromolecules, chromophores, resulting in photochemical reactions. Among those 

chromophores, nucleic acids absorb most and are thus more sensitive to the destructive action 

of UV. Other plant chromophores are proteins, flavoproteins and lipids. Any changes of UV 

conditions might lead to physiological alterations in the plant. The effects of UV radiation 

differs between species and varieties (Teramura, 1983), and can be primary or secondary. 

UV-induced primary effects, like mutations, in DNA and/or RNA can cause secondary effects 

including an altered protein transcription/translation. Lipid components of plant membranes 

absorb UV rays effectively, causing changes in membrane characteristics, leading to 

alterations in permeability, ionic balance, photosynthesis and respiration (Caldwell, 1981). 

Also plant disease susceptibility, plant growth and development, photosynthesis and 

reproduction can be affected (Teramura and Sullivan, 1994; Jansen et al., 1998). Increased 

UVB irradiation results in structural changes like epidermal deformation, altered cuticular 

composition and increased flavonoid levels (Stapleton, 1992) and ultrastructural changes 

including dysfunctioning of chloroplasts and peroxisomes, auxin inactivation and ATPase 

destruction (Sarghein et al., 2011). Moreover, environmental conditions, including 

temperature, soil and air nutrient concentrations and moisture, might affect the UV sensitivity 

of plants (Sarghein et al., 2011). 

As stated before, UV is efficiently absorbed by nucleic acids. The consequences of UV 

absorption are the highest at the DNA level. Much higher UV doses are needed to inactivate 

RNA and proteins, due to the relative cellular abundance of these compounds compared to 

DNA (Caldwell, 1981). The best studied UVC-induced DNA lesions are dimers of pyrimidine 

bases such as cyclobutane-type (CPDs) and pyrimidone-type (PPs) dimers. CPDs are 

subjected to conversion of CC to TT tandem substitution. UVC is therefore frequently used 

for mutagenesis studies. Mismatch repair (MMR) prevents the formation of these UV-induced 

tandem mutations by repairing mismatched bases and small insertions/deletions (Skinner et 

al., 2008). Next to mutations, UV irradiation induces the formation of single strand breaks 

(ssbs) through base or nucleotide excision repair (BER or NER). Double strand breaks (dsbs) 

are observed when CPDs or PPs are not excised before DNA replication (Abas et al., 2007). 



Chapter 1                                                             Introduction on Cichorium and somatic hybridization 

36 
  

DNA photoproducts, protein crosslinks and ROS damage are other common UVC-induced 

cytotoxins (Peak and Peak, 1986). DNA damage can be repaired by photoreactivation, 

excision repair and recombinational repair, however, the last mechanism has not yet been 

reported in plants (Stapleton, 1992). Photoreactivation is an enzymatic photoreversal which 

induces the monomerization of pyrimidine dimers by photolyases. It is driven by UVA and 

blue light. Excision repair is non light-driven and not limited to pyrimidine dimers. This 

mechanism involves the identification and excision of the lesion from the strand and the 

synthesis of a replacement patch using the complementary strand as a template (Caldwell, 

1981; Stapleton, 1992). A non molecular repair system is photoprotection: organisms, 

subjected to longwave UV or visible radiation in an earlier stage, are less influenced when 

submitted to high energetic radiation. Photoprotection will lead to a delayed cell division, 

allowing more time for cell repair systems. As a consequence of photoprotection, plant 

competitiveness is reduced leading to a delayed plant growth or leaf expansion.  

In most UV photoinhibition studies, UV, at shorter wavelengths, reduces plant 

photosynthesis. However, chlorophyll concentration only decreased when applying large 

UVB doses. Moreover, some studies suggest an increased photosynthesis through the 

stimulative effect of UV at longer wavelengths (Caldwell, 1981). The UVB-induced 

photosynthesis reduction is mainly due to the UV damage of Photosystem II (PS II), directly 

or indirectly through photoreceptors quinones, leading to a decrease in the oxidative capacity. 

An altered chloroplast ultrastructure and reduced Rubisco activity are other consequences of 

UVB radiation. Plants have developed several responses to circumvent UV damage, for 

instance anatomical changes such as alterations in epidermal layers and epicuticular waxes, an 

increased leaf thickness or weight and changes in leaf ultrastructures (Teramura and Sullivan, 

1994). Another strategy is the accumulation of UV-absorbing compounds, such as flavonoids 

and anthocyanins, in the leaf epidermis, reducing UVB radiation transmittance. Flavonoids 

accumulation is regulated by enzymes in the flavonoid biosynthetic pathway. The production 

of these enzymes, chalcone synthase (CHS) and phenylalanine ammonia lyase (PAL) is 

induced by UV radiation. However, these strategies are leading indirectly to lower 

photosynthesis by also hindering the penetration of visible, photosynthetic radiation 

(Stapleton, 1992; Teramura and Sullivan, 1994). 

 

1.6.5.3 Fragmentation in asymmetric fusions for the last decade 

UV irradiation was the most common fragmentation tool as shown in Table 1-5: in 21 of the 

35 asymmetric protoplast fusions reported, UV irradiation was the preferred nuclear 
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fragmentation tool. On several occcasions, UV treated donor cells were fused with 

iodoacetamide (IOA) treated recipients. Gamma ( ) irradiation was reported in 6 studies. In 

citrus, two fusion combinations were made between IOA-treated recipient -

irradiated donors (de Bona et al., 2009a). Microprotoplast isolation through 

ultracentrifugation was also attempted, either alone (Xu et al., 2006) 

irradiation (de Bona et al., 2009b). X-rays were used as a fragmentation tool by Yan et al., 

(2004), Ge et al., (2006) and Scholze et al., (2010), combined with IOA acceptor inactivation 

in the Poaceae fusions. For combining N. tabacum and N. repanda, Sun et al. (2005) 

inactivated the acceptor cytoplasm by rhodamin 6G and fused directly with the receptor. A 

general problem is the quantification of DNA damage after an irradiation treatment. Abas et 

al. (2007) presented Comet assay single cell gel electrophoresis as a reliable tool to observe 

single and double strand breaks in mesophyll protoplasts of Nicotiana plumbaginifolia, and 

Xu et al. (2007) revealed extensive DNA fragmentation in UV irradiated Citrus unshiu 

protoplasts with the terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling 

assay. UV treatment significantly enhanced the levels of single and double strand breaks in 

light and dark cultured protoplasts. In cucumber, the negative effect of UVC irradiation on 

cell wall regeneration, protoplast viability and the intensity of the nuclei after DAPI staining 

is significant (Navratilova et al., 2008). Therefore, the use of micronuclei and MPPs has been 

considered as a method for partial genome transfer. In Beta vulgaris suspension cells, 

synchronisation and micronucleation were the first steps towards an efficient MPP production 

(Famelaer et al., 2007). After Citrus unshiu suspension cells were treated with a spindle toxin 

to obtain micronuclei, the micronucleated protoplasts were isolated, followed by 

ultracentrifugation to obtain MPPs (Zhang et al., 2006). Xu et al. (2006) isolated cytoplasts 

through protoplasts ultracentrifugation and produced diploid alloplasmic hybrids.  

 

 

1.6.6 Fragmentation techniques - cytoplasmic inactivation 

The use of metabolic inhibitors, as iodoacetamide (IOA), in plant somatic hybridizations was 

initiated in 1978 (Nehls, 1978). IOA can inhibit protoplast division and thus reduce the 

survival rate of protoplasts, while division is recovered after fusion with untreated protoplasts. 

These features make IOA a suitable inhibitor for the selection of somatic hybrids in plant cells 

(Iriawati et al., 1996). Moreover, the metabolic inhibitors were not only used as selection 

markers, but also to perform asymmetric fusions. Fusion of IOA-treated recipient parental 
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protoplasts with irradiated donor protoplasts could produce (totally) asymmetric fusion 

products.  

Iodoacetate and IOA have approximately the same spectrum, but IOA tends to penetrate the 

cells more easily because of being uncharged at neutral pH (Wright, 1978). Therefore, IOA is 

nowadays more frequently used. IOA is an alkylating reagent for cysteine residues. By 

reaction with cysteine, it is an irreversible inhibitor of enzymes with cysteine at the active site 

(Sigma-Aldrich). The exact function of IOA has not yet properly been described. IOA has 

already been noted as a glyceraldehydes 3-phosphate dehydrogenase inhibitor, thus blocking 

glycolysis, causing a significant reduction in ATP levels and a loss of viability (Epstein et al., 

1981; Hilf et al., 1986). Another report described IOA as an inhibitor of the mitochondrial 

oxidative phosphorylation, also causing reduced ATP levels (Minqin et al., 2005). The effects 

of IOA, observed in bean protoplasts, included viability reduction after 3 days of culture, 

absence of cell wall regeneration and cell division, overformation of rough endoplasmic 

reticulum (RER), formation of circular Golgi complexes, increased mitochondria size, 

overaccumulation of lipid bodies and swelling of the thylakoid structure in chloroplasts 

(Iriawati et al., 1996). Varotto et al. (2001) noted that IOA acts as an irreversible inhibitor of 

the mitotic-spindle assembly at the prophase of mitosis, thus impeding the cell division. 

From 2004 onward, incubation with iodoacetate and IOA was the preferred acceptor 

metabolic inhibitor in 8 of the 9 asymmetric protoplast fusions where the cytoplasm of the 

acceptor is inactivated. The other chemical used was rhodamine 6-G (Table 1-5). 

 

 

1.6.7 Screening techniques 

Somatic hybrids containing complete nuclear complements of both parents are generally rare 

(Liu et al., 2005). Nevertheless, somatic hybrids with complete chromosome addition have 

recently been produced in various plant families (Takami et al., 2005; Sarkar et al., 2011). 

The possible reason for this cytological phenomenon could be that the chromosomes are 

highly homologous and chromosomal rearrangement occurred during fusion and regeneration. 

However, most regenerated fusion products don’t have an additive genome. Different causes 

of elimination have been proposed by Wang et al. (2008b): (1) a different cell cycle of the 

remote parents, (2) smaller centromeres of eliminated chromosomes, (3) DNA methylation of 

genes involved in centromere function and (4) existence of secondary metabolites in the 

cytoplasm fusion partners. Whole chromosome block elimination and fragment loss upon 

genomic rearrangements are other possible explanations (Guo et al., 2010). During recent 
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years, a wide array of screening methods has been applied for hybrid analysis during or after 

protoplast fusion (Table 1-4 and 1-5). They can be subdivided into 5 types. A first type of 

tools was used to monitor or direct the fusion event and thus to optimize the entire process. 

This was done by labeling of heterokaryons with different fluorescing agents, magnetic cell 

sorting using antibiotin microbeads or proces monitoring using GFP transformed genotypes as 

fusion partners. When using fluorescing agents to label parental protoplasts, however, 

cytotoxic side-effects could disable regeneration (Duquenne et al., 2007). The four other types 

of tools were used after fusion products had been partly or fully regenerated. The second 

group of tools were the cytogenetic ones. Information on ploidy level was obtained directly, 

through chromosome counting and/or indirectly, through flow cytometry. 

Genomic/Fluorescence in situ hybridization (GISH/FISH) for hybrid genome determination 

and meiotic analyses were also described. A third type of tools was the most popular one, 

namely molecular markers. In a majority of the publications reporting on complete plant 

regeneration, the genomic constitution of the alleged hybrids was looked into with molecular 

tools. DNA markers were sometimes complemented with isozyme analysis, sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) or sequence analysis. The most 

frequently employed molecular markers were Random Amplification of Polymorphic DNA 

(RAPD), Simple Sequence Repeats (SSR), Amplification Fragment Length Polymorphism 

(AFLP), Restriction Fragment Length Polymorphism (RFLP) and Cleaved Amplified 

Polymorphic Sequence (CAPS). PCR-RFLP and CAPS analysis using mitochondrial or 

chloroplast universal primer pairs have proven to be efficient and reliable methods for 

characterizing the cytoplasmic genome. This technique was applied for both chloroplast and 

mitochondria screening, whereas SSR was only used once for chloroplast evaluation. 

Southern blotting for cpDNA and mtDNA were employed to screen cytoplasmic DNA, 

whereas Northern blotting was used once for chloroplast evaluation. Compared to  RFLP with 

labeled probes, CAPS is simpler, more rapid and less expensive (Guo et al., 2004). 

Chloroplast SSR is even more convenient and efficient since enzyme cutting following PCR 

reaction is not needed (Cheng et al., 2005). Also sequencing of common bands and searching 

for restriction endonuclease sites could be cheaper and more convenient than actual CAPS 

analysis (though after sequencing CAPS could be used to confirm the results). Sequence 

analysis yielded SNPs that were used for restriction mapping and CAPS marker development. 

This is a very robust, reproducible and codominant, but monogenic inheritance (Rode et al., 

2010). Somewhat less conventional techniques were occasionally used, such as Inter-

Retrotransposon Amplified Polymorphism (IRAP)/ Retrotransposon-microsatellite Amplified 
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Polymorphism (REMAP) (Patel et al., 2011), microsatellite anchored fragment 

polymorphism, semi-quantitative real time PCR (Wang et al., 2011b), Inter-simple Sequence 

Repeat (ISSR) (Borgato et al., 2007a; Bidami et al., 2007), Internal Transcribed Spacer (ITS) 

(Ovcharenko et al., 2011) or DNA methylation-sensitive amplification polymorphism 

(MSAP) technologies (Cai et al., 2007). Spectrometrical methods like High-performance 

Liquid Chromatography (HPLC) (Han et al., 2009), constituted the fourth group of screening 

tools, but were not used very often. Finally, tools were created to determine the practical 

value of the screening products, such as biotests for abiotic and biotic tolerance or resistance, 

pollen fertility testing, fatty acid analysis or determination of diverse agronomical traits. 

 

1.6.7.1 Fluorescence in situ hybridization (FISH) 

Karyological analyses have been performed to characterize cultivars, to develop genetic and 

physical maps or to detect the origin of hybrids in numerous crops (Jiang and Gill, 2006). An 

additive cytogenetic tool for individual plant chromosome characterization is fluorescence in 

situ hybridization (FISH). Single-stranded DNA probes, labeled with fluorescent dyes, 

hybridize on complementary target sequences. The site specific hybridization is visualized by 

fluorescence detection. The introduction of in situ hybridization (ISH) in the late 1960s 

enabled the accurate location of specific DNA and RNA sequences in mammalian tissues and 

cells (Chevalier et al., 1997). ISH was introduced in plants in 1985 (Jiang and Gill, 1994). Its 

sensitivity depends on (1) probe construction and the related hybridization conditions, (2) the 

type of probe labeling, (3) the method for signal detection and (4) the sample preparation, 

which must allow the hybridization (Chevalier et al., 1997). The first DNA/RNA probes were 

radioactively labeled. Despite of the high sensitivity of radioactively labeled probes, safety 

problems, reduced stability and slow visualization nursed the search for alternatives. Direct 

fluorochrome-labeled DNA/RNA showed relatively low sensitivity (Chevalier et al., 1997). 

The development of the biotin-avidin system enabled FISH. Biotin, a small vitamin molecule, 

binds with high affinity to avidin and streptavidin. Avidin, an egg white protein, and 

streptavidin, originated from Streptomyces avidini, can be conjugated with fluorescent dyes or 

other detection markers. The production of biotin-labeled UTPs enabled the production of 

biotinylated nucleic acids. As a biotin alternative, digoxigenin, a steroid isolate from Digitalis 

purpurea, can be used for labeling probes. Compared to radioactive ISH, which uses the 

amplificatory effect of autoradiography, FISH using biotin/digoxigenin requires 10- to 50-

fold higher concentration of probes (Chevalier et al., 1997). 
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ISH and FISH techniques have known a remarkable evolution and have obtained a key role in 

modern molecular cytogenetics. One major disadvantage of FISH probes are the low 

detection rates, in particular, for small DNA fragments. Most of the reports stated a lower 

limit for 1-3 kb fragments (Jiang and Gill, 2006). However, through tyramid-FISH (Tyr-

FISH) the signal amplification was significantly improved, leading to a 10-100 times higher 

sensitivity. Probes smaller than 1 kb can be visualized using Tyr-FISH (Khrustaleva and Kik, 

2001). However, the detection of small probes is often not reproducible. For karyotyping, 

repetitive DNA sequences, e.g. ribosomal genes (rRNA genes) and multicopy gene families 

can deliver unique FISH patterns, by which chromosomes within a species can be 

distinguished. Furthermore, the use of multiple repetitive DNA probes for FISH can increase 

the resolving power between chromosomes. The rDNA segments, e.g. 5S and 45S, are among 

the most widely used for physical chromosome mapping. Since these DNA fragments are 

highly conserved, probes originally from wheat can be used in other eukaryotic species. 

Although the copy number of these fragments can vary among plant species of the same 

genus (Pedrosa-Harand et al., 2006), the locations of these loci are mostly maintained (Jiang 

and Gill, 1994). 45S rDNA sequences, composed of three genes coding for 18S, 5.8S and 28S 

rRNA, two intergenic spacers and an external transcribed spacer, are on the nucleolar 

organizing region (NOR). Repeats of these units form clusters on one or several chromosome 

pairs. NOR variations, in the number and location, are studied between or within species 

(Britton-Davidian et al., 2012). A critical requirement for successful chromosome 

identification is an efficient chromosome preparation procedure. The most common targets 

for FISH are mitotic metaphase chromosomes from root tips. Their condensation state is, 

however, an important factor for probe accessibility and thus, influencing the resolving power 

of FISH. Minimally 5-10 Mb distance between two DNA probes on barley metaphase 

chromosomes were necessary to resolve FISH signals (Pedersen and Lindelaursen, 1995). 

Less condensed prometaphase chromosomes (Cheng et al., 2002) or interphase nuclei (Jiang 

et al., 1996) can be used, although they contain a high variation in chromatin condensation. 

The chance of obtaining a satisfactory FISH mapping depends also on the position of the 

target DNA inside the chromosome (Jiang and Gill, 2006). 
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1.6.8 Cytoplasmic inheritance 

Somatic fusion can yield a combination of cytoplasms from different sources, unlike sexual 

cross hybridization that leads to maternal inheritance of cytoplasmic genomes (Xu et al., 

2005). Nuclear inheritance during cell division is highly ordered, ensuring stringent, unbiased 

partitioning of chromosomes before cell division. Similarly, cytoplasmic components such as 

chloroplasts, mitochondria, and the endoplasmic reticulum display distinctive partitioning 

strategies that ensure unbiased inheritance before dedifferentiating cells enter cell division 

(Sheahan et al., 2004). Compared to nuclear DNA, cpDNA and mtDNA had relatively 

complex inheritance modes. Uniparental random chloroplast transmission has been 

predominantly detected in many citrus protoplast fusion combinations, regardless of whether 

they were intergeneric or interspecific. In some combinations, suspension parent cpDNA was 

transmitted to the somatic hybrids while in others leaf parent cpDNA was integrated (Fu et 

al., 2004; Medina-Urrutia et al., 2004; Takami et al., 2005). The general consensus is that 

cpDNA is randomly transmitted because of little difference in chloroplast abundance between 

the leaf and the embryogenic parent or the minor effects of cp on its transmission. For the 

hybrids obtained by Guo et al. (2008b), the random or selective cpDNA inheritance 

apparently depended on the ploidy level of the hybrids. As for the mtDNA, nearly all of the 

somatic hybrids got theirs from the suspension parents (Fu et al., 2004; Medina-Urrutia et al., 

2004; Xu et al., 2004; Guo et al., 2004; Takami et al., 2005). The preferential transmission 

was probably due to the difference in abundance (more mitochondria in embryogenic parent 

protoplasts) (Xu et al., 2004). However, mtDNA can also be derived from the leaf parent 

(Olivares-Fuster et al., 2005; Guo et al., 2008). In other citrus hybrids, all cytoplasmic DNA 

was exclusively inherited from 1 of the partners (Fu et al., 2011). This was also monitored 

after fusing two callus protoplast partners (Takami et al., 2004). In Citrus + Microcitrus 

cybrids, at all times the nuclear genome was inherited from 1 partner and all cytoplasmic 

DNA was identical to the one of the other partner (Xu et al., 2004). This configuration was 

likely the most stable and perhaps the only regenerative one. Wang et al. (2010) described a 

cybrid that combined nucleus and chloroplasts from partner 1 and mitochondria from parent 

2. The same nuclear DNA/mt DNA pattern was seen in Citrus + Poncirus cybrids (Medina-

Urrutia et al., 2004). Coexistence of different cytoplasm DNA types within a single hybrid 

genotype is also possible. In the Citrus + (Citrus x Poncirus) hybrids described by Guo et al. 

(2007a) the normal mtDNA (embryogenic parent) / cpDNA (random) was observed, except in 

1 plant where SSR markers demonstrated coexistence of cpDNA. Whether this coexistence 

was persistent or just a temporary status due to incomplete sorting out of cpDNA from 1 
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fusion partner, is still unclear. In Solanum somatic hybrids, coexistence of mtDNA, but not of 

cpDNA, was recorded (Sarkar et al., 2011; Polzerova et al., 2011). Like nuclear genomes, 

cytoplasmic genomes were not always stable upon fusion. Xu et al. (2005) studied Citrus + 

Fortunella somatic hybrids and found that mitochondria were transmitted from the suspension 

parent, but some fragments had been lost, unlike the cpDNA that was unmodified. 

Intergenomic chloroplast recombination is a rare event in higher plants in contrast to 

mitochondrial genomes that show high recombination levels (Trabelsi et al., 2005). MtDNA 

recombination was proven in Triticum aestivum + Setaria italica (Xiang et al., 2004), 

intraspecific Solanum tuberosum (Nouri-Ellouz et al., 2006), Cichorium intybus + endivia 

(Cappelle et al., 2007), Solanum bulbocastanum + tuberosum (Iovene et al., 2007), Solanum 

tubersosum + tarnii (Thieme et al., 2008) and Arabidopsis thaliana + Brassica oleracea 

(Yamagishi et al., 2008). Although more rarely occurring, cpDNA recombination in hybrids 

has been demonstrated. In Triticum aestivum + Setaria italica hybrids, cpDNA coexistence as 

well as recombination occurred (Xiang et al., 2004). It was also observed in Solanum 

tuberosum + verneï (Trabelsi et al., 2005), Solanum berthaultii + tuberosum (Bidani et al., 

2007) and Bupleurum schorzonerifolium + Swertia mussottii (Jiang et al., 2012). An 

important practical application of new genome/cytoplasmome combinations is the 

introduction of CMS. Fitter et al. (2005) demonstrated the possibility of introgressing CMS 

carried by mtDNA from a wild species into the cultivated crop. For mitochondrial interaction 

after protoplast fusion at the subcellular level, by fusing protoplasts containing either green 

fluorescent protein or MitoTracker-labelled mitochondria, Sheahan et al. (2005) reported the 

phenomenon of massive mitochondrial fusion (MMF) which led to near-complete mixing of 

the mitochondrial population within 24 h. MMF appeared specific to dedifferentiation, since it 

also occurred in mesophyll protoplasts of Arabidopsis and Medicago but not in protoplasts 

from already dedifferentiated cells such as tobacco BY-2 or callus cultures. These results 

allow a clearer interpretation of how novel mitochondrial genotypes develop following cell 

fusion. In other investigations, Sytnik et al. (2005) demonstrated that also chloroplasts can be 

transferred to remote species by protoplast fusion. 
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1.7 Objectives and outline 
 

In chicory (C. intybus var. sativum) cytoplasmic male sterility doesn’t occur naturally. 

However, CMS has been introduced by asymmetric protoplast fusion between chicory and 

sunflower (Varotto et al. 2001) and by the symmetric fusion between chicory and endive 

(Cappelle et al. 2007). The asymmetric hybrid (fertile chicory + CMS sunflower) of Varotto is 

a fusion product between two non crossable species and thus, controversial because of the 

Genetically Modified Organism (GMO) legislation in Belgium (Europe). Moreover, the use of 

only a single origin of male sterility in a breeding program is not without risks when 

analyzing sensitivity to diseases and pathogens. The symmetric hybrid (fertile chicory + 

fertile endive) of Cappelle is a fusion product between two sexually crossable (fertile) species, 

resulting in a tetraploid hybrid plant. Tetraploid industrial chicory has shown to exhibit bigger 

roots and leaves, but no increase in the inulin quantity. Another disadvantage was that these 

tetraploid plants also contained the undesired genes from endive, requiring time-consuming 

backcrosses. These facts encouraged us, in collaboration with a Belgian industrial chicory 

breeding company COSUCRA-Groupe Warcoing S.A. Chicoline division, to search for new 

CMS sources. Although Cappelle showed the possibility to produce a CMS plant via 

protoplast fusion of two fertile lines, the real challenge is to create a diploid CMS chicory 

plant by combining the economically valuable nuclear genome of the industrial chicory with 

the cytoplasm of other Cichorium species to obtain incompatibility between the nucleus and 

the cytoplasm, theoretically leading to alloplasmic CMS. 

Besides the introduction of CMS, also the broadening of the genetic variation in the industrial 

chicory by means of asymmetric protoplast fusion between protoplasts of different Cichorium 

species was another goal. 

The choice of genotypes in our study was based on the genetic distance between putative 

acceptor and donor genotypes. We expect that a bigger genetic distance between two fusion 

partners will enhance the occurrence of alloplasmic CMS in the regenerants or will broaden 

the genetic variation. Microsatellite analysis with 18 markers, provided by COSUCRA-

Groupe Warcoing S.A., Chicoline division, yielded a genetic distance tree constructed by 

Neighbor Joining, based on the DAS (Distance Allele Shared) method. This way, industrial 

and wild type chicory and endive genotypes were selected for further use in protoplast fusion 

experiments. 
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To our knowledge, asymmetric protoplast fusion in chicory has not been exploited so far. 

However, it offers interesting perspectives for better protoplast regeneration and reduced 

introduction of undesired chromosome fragments and genes in the fused products and thus 

decreases the need for backcrosses. Another important advantage of asymmetric protoplast 

fusion is the ability to transfer only the cytoplasm of donor plants, leading to the formation of 

cybrids. This is impossible by conventional breeding. Before we perform asymmetric 

protoplast fusion, we need to fragmentate the donor nucleus and inactivate the acceptor 

cytoplasm.  

The first aim of this thesis was to assess optimal protoplast regeneration conditions for several 

Cichorium species. Simultaneously, fragmentation techniques, based on UV irradiation and 

iodoacetamide (IOA) incubation were tested to transfer chromosome fragments or even only 

mitchondria or chloroplasts of the donor plants. The transfer was mediated through both 

electrical and chemical protoplast fusion. Finally, after fusion, putative hybrid regenerants 

were tested. Regenerating calli and full grown plantlets were genotypically analyzed. 

The specific objectives were: 

1) To develop a low melting point agarose-based, universal, protoplast regeneration protocol 

for different genotypes, as straightforward as possible (§Chapter 2). 

2) To develop a reproducible protoplast fusion protocol, based on the two main protoplast 

fusion techniques, namely electrical and chemical fusion (§Chapter 3). 

3) To study the influence of UV irradiation and IOA treatment on the production of 

asymmetric donor and acceptor genotypes, respectively (§Chapter 4). 

4) To initiate karyotype analysis to acquire basic knowledge of the genomic resources of 

Cichorium species (§Chapter 5) and to characterize putative hybrids on a fast and efficient 

way through high-resolution melting (HRM) analysis (§Chapter 6). 

 

Furthermore, the obtained knowledge was used in asymmetric fusion experiments to acquire 

hybrid and cybrid Cichorium regenerants (§Chapter 7). 

 

Finally, conclusions and future perspectives were expressed in §Chapter 8, focusing on the 
observations made in the aforementioned chapters. 
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Chapter 2 - Protoplast regeneration in Cichorium species 
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Based on the published article: Deryckere D, Eeckhaut T, Van Huylenbroeck J, Van 

Bockstaele E. (2012) Low melting point agarose beads as a standard method for plantlet 

regeneration from protoplasts within the Cichorium genus. Plant Cell Reports 31: 2261-2269. 
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2.1 Introduction 
Somatic hybridization through protoplast fusion and regeneration in Cichorium intybus has 

already been established. Efficient protoplast isolation and regeneration protocols of 

Cichorium intybus var. foliosum cultivars have been described by several authors (Crepy et 

al., 1982; Saksi et al., 1986a; Slabe and Bohanec, 1989). Crepy et al. (1982) noted that 

protoplasts of witloof type C. intybus did not divided in a Murashige and Skoog salts-based 

medium. By totally replacing nitrate with glutamine at the optimal level of 5 mM, plating 

efficiencies up to 1% were achieved. Saksi et al. (1986a) found that a lower sucrose 

concentration (5 g l-1) in the first week of regeneration was beneficial for the division of 

witloof protoplasts. In the 1990s, protoplast regeneration in C. intybus was studied by 

Rambaud et al. (1990) and Varotto et al. (1997). Both authors reported that the use of a 

semisolid proliferation medium after a liquid culture phase improved the plating efficiency. 

Rambaud et al. (1990) studied the protoplast regeneration of C. intybus var. Magdebourg. 

Their observations showed that higher sucrose levels (10 g l-1) and the assocation of nitrates 

with glutamine gave better results. Moreover, the use of in vitro plants allowed a standardized 

physiological stage of the plants. The youngest plants resulted in higher cell division and bud 

induction rates. Varotto et al. (1997) studied protoplast regeneration of Italian red chicory 

types. They noted that one of the most important factors for cell wall regeneration and 

sustained cell division is the cell density in the starting medium, depending on species and 

protoplast size. Nenz et al. (2000) demonstrated that the protoplast regeneration cycle could 

be shortened after embedding the protoplasts in Ca-alginate droplets. This enhanced the 

division frequency and plating efficiency for Italian red chicory mesophyll protoplasts. More 

recently, protoplast fusion experiments have illustrated the capacity of somatic hybridisation 

through protoplast fusion in Cichorium species. To obtain male-sterile asymmetric somatic 

hybrids, iodoacetic acid inactivated mesophyll chicory protoplasts (C. intybus) were 

chemically fused with irradiated hypocotyl sunflower protoplasts (Helianthus annuus L.) 

(Varotto et al., 2001). Cappelle et al. (2007) showed the possibility of regenerating an 

interspecific protoplast fusion between C. intybus and C. endivia.  

All protoplast research to date has focused on C. intybus varieties. However, the published 

protoplast regeneration protocols were cultivar-specific. Furthermore, no information is 

available on the regeneration of C. endivia protoplasts. Cappelle et al. (2007) mentioned the 

formation of callus after protoplast regeneration of C. endivia, but plants could not be 

obtained. An efficient plantlet regeneration system is the key to a successful protoplast-based 
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breeding program not only in chicory, but also in endive. It offers prospects towards the 

development of new varieties, the introgression of new traits and breeding time reduction 

compared to the time consuming conventional breeding approach.  

The main goal of this chapter was to develop a universal protocol for plantlet regeneration in 

Cichorium species. We therefore evaluated the low melting point agarose bead technique on 

different C. intybus and C. endivia genotypes. 

 

 

2.2 Materials and methods 
Plant material 

Seeds of two industrial chicory inbred lines, Cichorium intybus var. sativum (‘VL52’ and 

‘L4043’) bred at the ILVO and provided by the COSUCRA-Groupe Warcoing S.A. division 

Chicoline, in vitro shoots of two industrial chicory genotypes, C. intybus var. sativum 

(‘K1729’ and ‘K1093’: clones of heterozygous genotypes), seeds of three accessions of wild 

type chicory C. intybus from Hungary (‘Ames22531’, ‘Ames22532’ and ‘Pi531291’: USDA 

Plants Database) and seeds of four endive C. endivia cultivars (C. endivia var. crispum 

‘Wallone Despa’, C. endivia var. endivia ‘CICH192’, C. endivia var. latifolium ‘nr.5’ and C. 

endivia var. divaricatum ‘CICH50’) were used. Seeds of the in vivo Cichorium plants were 

initiated in vitro. After rinsing for 1 min in 70% ethanol, seeds were surface sterilized for 20 

min in 6.5% NaOCl and germinated in 60 mm petri dishes on solid Murashige and Skoog 

(1962) medium containing 150 mg l-1 casein hydrolysate and 30 g l-1 sucrose at pH 5.8. After 

germination, the plantlets were placed on solid Murashige and Skoog medium containing 20 g 

l-1  sucrose and grown in Meli jars (Meli NV Veurne, Belgium) at 23 ± 2°C under a 16 h/8 h 

(light/dark) photoperiod at 40 µmol m-2 s-1 photosynthetic active radiation (fluorescent tube 

lamps, Sylvania Standaard  F40W/33-640/RS Cool White). 

 

Protoplast isolation 

Protoplasts were isolated from 2-to-4-week old leaves. Leaves were chopped into small pieces 

and pre-incubated for 1 h in a 0.5 M mannitol solution P0 (Table 2-1). Subsequently, the 

mannitol solution was replaced with an enzymatic mixture containing P0 medium with 1 mg 

ml-1 cellulase Caylase 345 (Cayla/InvivoGen Ltd., Toulouse, France) and 0.5 mg ml-1 

pectinase Caylase M2 (Cayla/InvivoGen Ltd., Toulouse, France) at pH 5.5 (Cappelle et al., 

2007). Incubation was carried out in darkness at 23 ± 2 °C for 16 h with gentle agitation (25 
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rpm). After digestion, protoplasts were purified by filtration through a 100 µm pore size sieve 

(Cell Strainer, BD FalconTM, BD Biosciences) and centrifuged at 100 g for 10 min in a swing-

out rotor. Protoplasts were pelleted and the supernatant was removed. Finally, the protoplasts 

were washed twice with MC2 medium (Table 2-1) and centrifuged (100 g, 10 min). 

 

  

Table 2-1 Composition of washing solution and culture media for Cichorium protoplasts. 

  P0 MC1 MC2 MC3 

Murashige & Skoog macro elements ½ X ½ X (no NH4NO3) ½ X (no NH4NO3 or KNO3) ½ X 

Heller micro elements 1X 1 X 1 X 1 X 

Heller KCl - - 1 X (750 mg/l) - 

FeNa-EDTA 18.35 mg/l 18.35 mg/l 18.35 mg/l 18.35 mg/l 

Morel & Wetmore vitamines 1X 1 X 1 X 1 X 

Inositol 100 mg/l 250 mg/l 100 mg/l 100 mg/l 

Glutamine - 375 mg/l 750 mg/l - 

Sucrose 10 g/l 10 g/l 10 g/l 10 g/l 

Mannitol 90 g/l 90 g/l 60 g/l - 

NAA - 2 mg/l 0.5 mg/l 0.5 mg/l 

BAP - 1 mg/l 0.5 mg/l 0.5 mg/l 

Agar - - - 5 g/l 

pH 5.5 5.5 5.5 5.5 

 

 

Microscopical protoplast evaluation 

The protoplast yield was determined using a Bürker counting chamber. For viability (% of 

viable protoplasts) staining, about 100 µl protoplast solution was mixed with 1 µl of a 0.5 % 

(w/v) fluorescein diacetate (FDA) stock solution (5 mg FDA dissolved in 1 ml acetone), 

incubated for 10 min at room temperature and observed with a fluorescence microscope. 

Microscopic detection was carried out using an inverted fluorescence microscope (Leica 

DMIRB) equipped with a Leica Camera System (Leica DFC320). Cell wall regeneration was 

studied by using Calcofluor White M2R (CFW) (Sigma-Aldrich). CFW binds strongly to 

cellulose, carborylated polysaccharides and callose (Hughes and McCully, 1975) and thus can 

be used as an indicator of cell wall formation in protoplasts. Freshly isolated protoplasts were 

mixed with a stock solution of CFW resulting in a final dye concentration of 0.01% (w/v). 

Cell wall formation of the protoplasts was then analyzed. Protoplast diameters were measured 

by ImageJ Software (NIH, National Institutes of Health). 
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Protoplast regeneration systems 

Experiment 1 was set up to evaluate three culture systems on the regeneration ability of 

protoplasts of the industrial chicory C. intybus var. sativum ‘VL52’, the wild type chicory C. 

intybus ‘Pi531291’ and the endive C. endivia var. crispum ‘Wallone Despa’. In each culture 

system, the formation of the four-cell stage (four identical cells after two mitotic divisions of 

the protoplast), microcolonies (cell clumps of 10 to 20 cells), calli and plants was evaluated 

for the three genotypes. The media used in this experiment (Table 2-1) were based on Saksi et 

al. (1986a, 1986b), Cappelle et al. (2007) and Rambaud et al. (1990). Protoplasts were 

cultured at 23 ± 2 °C in both light and dark conditions (16 h/8 h (light/dark) photoperiod at 40 

µmol m-2 s-1 photosynthetic active radiation). 

The first culture system was based on solid medium. In this system, 5 g l-1 low melting point 

agarose (LMPA, Duchefa Biochemie B.V.) was added to both liquid MC1 and MC2 medium 

(Table 2-1). After heating (60 °C) and cooling (35 °C), equal volumes of this liquified MC1 

and MC2 were mixed with liquid MC1 and MC2, containing 1 x 105 protoplasts ml-1, 

respectively. Petri dishes (60 mm) were filled with 5 ml of the protoplast solution (final 

protoplast concentration was 5 x 104 protoplasts ml-1). Because the protoplasts were 

embedded in this solid matrix, the medium was not refreshed. 

The second culture system was based on a liquid medium culture consisting of 5 ml of 

starting medium (MC1 or MC2) containing 5 x 104 protoplasts ml-1 in a petri dish (60 mm) 

with gentle shaking (10 rpm). At day 5 of the regeneration process, the medium was fully 

replaced by fresh medium: MC1 was replaced by either MC1 or MC2; MC2 was replaced by 

MC2 only. 

The third culture system was based on low melting point agarose (LMPA) beads. Protoplasts 

were embedded in LMPA beads and surrounded by liquid media. For culture in LMPA beads, 

a protoplast suspension (containing 1 x 105 protoplasts ml-1 liquid MC2) was mixed with an 

equal volume of liquified solid MC2 (containing 5 g LMPA l-1 liquid MC2). Six beads of 50 µl 

of this mixture were dispensed in a petri dish (60 mm). After solidification of the beads, 5 ml 

of liquid MC1 or MC2 was added. At day 5 of the regeneration process, the liquid medium 

was fully replaced: MC1 was replaced by fresh MC1 or MC2 and MC2 was replaced by fresh 

MC2.  

When the microcolony phase was reached in the liquid culture systems and in the LMPA bead 

culture system, the liquid medium was refreshed each week. After 4 weeks, the mannitol 

concentration was stepwise reduced using liquid MC2, containing 30 g l-1 mannitol instead of 
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60 g l-1. After 6 weeks, protoplast-derived microcalli were transferred onto solid regeneration 

medium MC3 (Table 2-1) to induce callus growth. 

In experiment 2, the influence of different initial protoplast densities (1, 2, 5, 10 or 20 x 104 

protoplasts ml-1) in the LMPA beads were tested. All protoplasts were cultured in petri dishes 

(60 mm diameter) sealed with parafilm. The cultures were kept under 16 h/ 8 h day/night 

conditions at 23 ± 2 °C. Experiments were repeated 3 to 5 times. Data were collected from 1 

to 3 petri dishes per experiment and per treatment.  

Experiment 3 was set up to evaluate the impact of different auxins, either 1-naphthaleneacetic 

acid (NAA) or indole-3-acetic acid (IAA) in combination with cytokinin 6-

benzylaminopurine (BAP), on shoot formation. Regenerating calli obtained in experiment 1 

were placed on solid MC3 containing 0.5 mg l-1 BAP and 0.1, 0.5 or 1.0 mg l-1 NAA or IAA. 

Subsequently, regenerated shoots were placed on 100 ml solid medium (Murashige and Skoog 

medium containing 2% sucrose, pH 5.7) in Meli jars for rooting and further growth. 

Experiments were repeated 3 times. Data were collected from 3 petri dishes per experiment 

and per treatment. 

In experiment 4, the optimal conditions obtained for the model genotypes were tested for the 

regeneration of other Cichorium cultivars: C. intybus var. sativum ‘K1093’, ‘K1729’ and 

‘L4043’, for wild C. intybus ‘Ames22531’ and ‘Ames 22532’ and for C. endivia var. endivia 

‘CICH192’, C. endivia var. latifolium ‘nr.5’ and C. endivia var. divaricatum ‘CICH50’. 

Experiments were repeated 3 to 4 times. Data were collected from 2 to 3 petri dishes per 

experiment and per treatment. 

 

Statistical analysis 

One-way analysis of variance (ANOVA) and Tukey’s Post-Hoc test were used to analyze the 

effect of different media sequences on protoplast regeneration in the LMPA beads, the 

influence of different initial protoplast densities in the LMPA beads and the effect of the 

combination of either NAA or IAA with BAP on the shoot formation of regenerating calli. All 

calculations were obtained using the statistical software package Statistica v.10. 
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2.3 Results 
Protoplast Isolation 

On average, 1 x 106 highly chloroplast-rich protoplasts of 10-70 µm diameter were isolated 

per gram of fresh-weight leaves from all of the Cichorium genotypes tested. Their viability 

varied between 85% and 95% (Fig. 2.1).  

 

 

Fig. 2-1 (A) Yield of C. intybus var. sativum ‘VL52’ protoplasts after isolation. (B) Viability 
test with FDA staining: Fluorescent protoplasts are viable. 

 

 

Protoplast regeneration systems 

In experiment 1, the efficiency of the three culture systems with regard to four-cell stage and 

microcolony formation was tested. In solid medium, the protoplasts did not divide and all 

genotypes showed a high mortality rate within 5 days after isolation (Table 2-2). The liquid 

media induced initial divisions in the C. intybus ‘Pi531291’ protoplasts during the first week. 

Four-cell stages were obtained, but further development was limited. FDA tests on day 5 

showed a significantly improved protoplast viability when using MC1 as the initial medium 

(56.9 ± 2.8% viable protoplasts) compared to using MC2 as the initial medium (32.9 ± 6.3% 

viable protoplasts). In all liquid culture systems, however, anthocyanin production was 

observed, indicating stress. Monitoring cell wall formation with CFW in the liquid cultures 

revealed cell wall regeneration one day after protoplast isolation in 15% of the initiated 

protoplasts on average. After 5 days, up to 40% of the protoplasts had formed a new cell wall, 

suggesting the possibility of lowering the mannitol concentration after 5 days. However, 

replacing MC1 with MC2 after 5 days of culturing did not enable further divisions. Protoplasts 

of C. intybus var. sativum ‘VL52’ and C. endivia var. crispum ‘Wallone Despa’ did not 

initiate first divisions in the liquid culture system and subsequently died (Table 2-2).  
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Protoplasts cultured in the LMPA beads obtained the four-cell stage and developed further 

into microcolonies 14 days after isolation for all genotypes (Table 2-2). 

Testing of different media compositions in the LMPA bead technique showed that for both C. 

intybus var. sativum 'VL52' and C. intybus 'Pi531291' protoplasts, an initial 5-day culture in 

liquid MC1 medium produced twice as many four-cell stages compared to the beads in liquid 

MC2 medium (Table 2-3). Microcolony development increased significantly when MC1 was 

replaced by MC2 after 5 days of culturing. Refreshing the MC1 medium with fresh MC1 

limited further development of the four-cell stage. Although an initial incubation of the beads 

in liquid MC2 produced a significantly lower number of cells in the four-cell stage than in 

liquid MC1, further incubation in fresh MC2 resulted in a significant higher number of 

microcolonies in the beads (Table 2-3). Consequently, the highest number of microcolonies 

was obtained by initial incubation of the beads for 5 days in liquid MC1 medium and 

subsequent replacement of MC1 with MC2. Moreover, a higher percentage of microcolonies 

was observed at day 14 than the percentage of four-cell stages after 5 days, suggesting a 

beneficial effect of the replacement of MC1 with MC2. For C. endivia var. crispum ‘Wallone 

Despa’ protoplasts, no microcolonies were obtained under a 16/8 h light/dark photoperiod. 

However, when culturing the endive protoplasts continuously in the dark, microcolony 

formation could be observed. The percentage of microcolonies produced was significantly 

lower compared to C. intybus var. sativum 'VL52' and C. intybus 'Pi531291' (Table 2-3). 

When transferring the endive microcalli on solid medium for callus growth and shoot 

induction, standard light conditions were used. 

After 4 weeks, the LMPA beads contained a high number of developing microcalli and the 

mannitol concentration was gradually decreased. After 6 weeks, protoplast-derived microcalli 

were transferred to solid regeneration medium MC3 to induce callus growth. For C. intybus 

var. sativum 'VL52' and C. intybus 'Pi531291' cultures, 4% of the initiated protoplasts on 

average could be regenerated to calli. For the C. endivia var. crispum ‘Wallone Despa’ 

culture, this was less than 1% (Table 2-3). 
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Table 2-2 Effect of different culture systems and media composition on the regeneration of C. 
intybus var. sativum ‘VL52’, C. intybus ‘Pi531291’ and C. endivia var. crispum ‘Wallone 
Despa’ protoplasts. Four-cell stage and microcolony formation were analyzed 5 and 14 days 
after protoplast isolation, respectively. 

Culture system Protoplasts Medium sequence z 5 days (Four-cell stage) 14 days (Microcolony) 

Solid C. intybus var. sativum ‘VL52’ MC1 - - 

MC2 - - 

C. intybus ‘Pi531291’ MC1 - - 

MC2 - - 

C. endivia var. crispum ‘Wallone Despa’ MC1 - - 

MC2 - - 

Liquid C. intybus var. sativum ‘VL52’ MC1 1 - - 

MC1 2 - - 

MC2 2 - - 

C. intybus ‘Pi531291’ MC1 1 + - 

MC1 2 + - 

MC2 2 - - 

C. endivia var. crispum ‘Wallone Despa’ MC1 1 - - 

MC1 2 - - 

MC2 2 - - 

LMPA beads C. intybus var. sativum ‘VL52’ MC1 1 + - 

MC1 2 + + 

MC2 2 + + 

C. intybus ‘Pi531291’ MC1 1 + + 

MC1 2 + + 

MC2 2 + + 

C. endivia var. crispum ‘Wallone Despa’ MC1 1 + - 

MC1 2 + + 

    MC2 2 - - 
z For the liquid and LMPA bead culture: at day 5 of regeneration, MC1 was replaced by either MC1 or MC2. MC2 was 
replaced by MC2 only. 
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Table 2-3 Effect of different media sequences on C. intybus var. sativum ‘VL52’, C. intybus 
‘Pi531291’ and C. endivia var. crispum ‘Wallone Despa’ protoplast regeneration in LMPA 
beads (% of the initial number of cultured protoplasts). Four-cell stage and microcolony 
formation were analyzed after 5 and 14 days, respectively. Callus development was analyzed 
on solid MC3 medium. 

 Medium sequencez 5 days (Four-cell stage) 14 days (Microcolony)y Callus Plants 

C. intybus var. sativum ‘VL52’ MC1 1 34.5 ± 3.2ax 0c / / 

 MC1 2 39.5 ± 3.9a 47.5 ± 1.0a 4.1 ± 0.2a + 

 MC2 2 18.5 ± 2.2b 26.5 ± 2.5b 2.3 ± 0.2b + 

C. intybus ‘Pi531291’ MC1 1 37.5 ± 3.0a 9.0 ± 2.7c 0c / 

 MC1 2 39.5 ± 2.9a 56.5 ± 2.1a 4.4 ± 0.2a + 

 MC2 2 19.5 ± 1.0b 25.5 ± 1.7b 2.0 ± 0.1b + 

C. endivia var. crispum ‘Wallone Despa’ MC1 1 4.5 ± 0.5*a 0 / / 

 MC1 2 4.5 ± 1.3*a 6.5 ± 2.2* 0.7 ± 0.1 + 

  MC2 2 0*b / / / 

Data are means ± SE (n = 9, collected from three to five experiments) 
x  
medium sequences.  
z At day 5 of regeneration, MC1 was replaced by either MC1 or MC2; MC2 was replaced by MC2. 
y Microcolonies: cell clumps of 10 to 20 cells.  
* Regeneration under dark conditions 

 

 

Experiment 2 showed that for the three genotypes tested, a density of 5 x 104 protoplasts ml-1 

in the agarose beads resulted in the highest plating efficiencies (Figs. 2-2, 2-3). When using 

lower densities, fewer divisions occurred. The use of higher densities led to high frequency of 

first mitotic cell divisions, but further development stopped once the four-cell stage was 

obtained. The protoplast density of 5 x 104 protoplasts ml-1 was used in further protoplast 

regeneration experiments with the LMPA beads. 
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Fig. 2-2 The effect of different initial protoplast densities (1, 2, 5, 10 or 20 x 104 protoplasts 
(PP) ml-1) on callus development in the LMPA beads for three Cichorium genotypes (% of the 
initial number of cultured protoplasts). Data are means ± SE (n = 9, collected from three to 
five experiments) 

 

 

Fig. 2-3 The effect of different initial protoplast densities (1, 2, 5, x 104 protoplasts (pp) ml-1) 
on callus development in the LMPA beads for C.intybus var. sativum ‘VL52’ 

 

Experiment 3 demonstrated that shoots were induced more efficiently when callus was 

cultured in IAA enriched MC3 medium instead of in NAA enriched MC3 medium (Fig. 2-4). 

An IAA concentration of 0.5 mg ml-1 combined with 0.5 mg ml-1 BAP yielded the highest 

shoot formation for either C. intybus var. sativum 'VL52' (67.8 ± 8.8%), C. intybus 'Pi531291' 

(87.5 ± 4.0%) and C. endivia var. crispum ‘Wallone Despa’ (26.8 ± 2.6%). At higher IAA 

concentrations, the shoots were translucent and exhibited hyperhydric symptoms. Those 
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shoots did not develop further upon isolation. Lower IAA concentrations induced fewer 

shoots (Fig. 2-4). 

 

Fig. 2-4 Percentage of shoot-forming Cichorium protoplast-derived calli on MC3 medium 
supplemented with 0.5 mg l-1 BAP and 0.1, 0.5 or 1.0 mg l-1  NAA or IAA concentrations. 
Data are means ± SE (n = 9, collected from three experiments) 

 

In experiment 4, protoplast regeneration was tested on a higher number of Cichorium 

genotypes using the most optimal culture conditions from former experiments. Protoplasts of 

Cichorium intybus var. sativum ‘K1729’ and ‘L4043’ could be regenerated as efficient as C. 

intybus var. sativum ‘VL52’. C. intybus var. sativum ‘K1093’ yielded even a higher plating 

efficiency (PE) (Table 2-4). The wild type chicory C. intybus ‘Ames22532’ yielded 

comparable results as C. intybus ‘Pi531291’. C. intybus ‘Ames22531’ protoplasts formed as 

many microcolonies as the model genotype protoplasts. However, the frequency of callus 

formation was significantly lower compared to the other C. intybus cultivars (Table 2-4). The 

three endive cultivars yielded similar PEs as the endive model cultivar. Continuously dark 

conditions were needed to observe microcolony formation within the endive cultivars. When 

transferring the endive microcalli on solid medium for callus growth and shoot induction, 

standard light conditions were used. However, the endives produced significantly fewer calli 

than C. intybus plants. Full plantlet regeneration of protoplast-derived calli could be obtained 

for all plants tested. 
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Table 2-4 Callus formation of several Cichorium plants after protoplast regeneration in 
LMPA beads using the MC1 2 medium sequence (% of the initial number of cultured 
protoplasts). 

Species   Callus (%)  

C. intybus var. sativum  ‘VL52’ 4.1 ± 0.2bcx 

‘K1093’ 4.9 ± 0.1a 

‘K1729’ 4.6 ± 0.1ab 

‘L4043’ 3.9 ± 0.1c 

C. intybus  ‘Pi531291’ 4.4 ± 0.2abc 

‘Ames22531’ 1.7 ± 0.2d 

‘Ames22532’ 3.9 ± 0.1c 

C. endivia var. crispum  ‘Wallone Despa’ 0.7 ± 0.1e 

C. endivia var. endivia ‘CICH192’ 0.5 ± 0.04e 

C. endivia var. latifolium ‘nr.5’  0.5 ± 0.03e 

C. endivia var. divaricatum ‘CICH50’ 0.3 ± 0.05e 

Data are means ± SE (n = 8, collected from three to four experiments) 
x d 
between each genotype. 
 

 

2.4 Discussion 
Protoplasts were successfully isolated from leaves of four industrial chicory plants, Cichorium 

intybus var. sativum ‘VL52’, ‘K1093’, ‘K1729’ and ‘L4043’, three wild types from Hungary, 

C. intybus ‘Ames22531’, ‘Ames22532’ and ‘Pi531291’, and the endive cultivars C. endivia 

var. crispum ‘Wallone Despa’, C. endivia var. endivia ‘CICH192’, C. endivia var. latifolium 

‘nr.5’ and C. endivia var. divaricatum ‘CICH50’ using the method reported in Cappelle et al. 

2007. No further optimization of protoplast isolation was needed.  

The development of a suitable culture method is a key factor in the final efficiency of a 

protoplast regeneration protocol (Davey et al., 2005; Eeckhaut and Van Huylenbroeck, 2011). 

In this study, the regeneration ability of Cichorium protoplasts was tested using the gelating 

agent, low melting point agarose (LMPA). The first gelating agent used for protoplast 

regeneration was agar. This was successfully performed on tobacco mesophyll protoplasts 

(Nagata and Takebe, 1971; Davey et al., 2005). However, the use of agarose significantly 

improved the plating efficiency of regenerating protoplasts in numerous species. Due to its 

neutral charge and lower degree of chemical complexity, fewer interactions between 

biomolecular nutrients and agarose occurred. Furthermore, the larger pore size of agarose gels 

promoted a higher degree of biomolecule exchange within the agarose gel and between the 

gel and the external environment. The LMPA with a low gelling temperature of 24-30 °C, 
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used in this study, allowed protoplast mixture with the LMPA solution without exposing the 

cells to damaging temperatures as the LMPA solution remained fluid at 35 °C and gelation 

occured below 26 °C (Lorz et al., 1983; Shillito et al., 1983; Lian et al., 2012).  

We have evaluated the regeneration efficiency of protoplasts of various Cichorium plants in 

low melting point agarose beads in comparison to liquid and solid cultures. 

Culture in exclusively solid medium resulted in no divisions. These protoplasts soon burst and 

subsequently died. Stress factors typically linked with the use of solid media for protoplasts 

are the probable cause of this failure. Without the possibility of regular refreshment, the 

medium dehydrates, and thus lowers the osmotic potential. Moreover, toxic compounds of 

dying neighbouring protoplasts may accumulate in the medium and inhibit division of other 

protoplasts (Vanslogteren et al., 1980; Davey et al., 2005; Duquenne et al., 2007). 

Liquid medium was not optimal for Cichorium protoplast culture either. This was 

demonstrated by the overall decrease of protoplast viability, the production of anthocyanins 

(also observed in liquid culture of petunia protoplast (Frearson et al., 1973) and the limited 

division of protoplasts during the first week of culture. Similar results were obtained in the 

regeneration of protoplasts of C. intybus ‘Rosso do Chioggia’ in liquid conditions (Nenz et al., 

2000). Two possible explanations are the low accessibility of gases at the bottom of the petri 

dish, where the protoplasts are located (Duquenne et al., 2007), or the exposure of healthy 

cells to high concentrations of toxic substances of dying neighbouring cell due to the 

clustering of protoplasts in liquid cultures (Yu et al., 2000). 

Regeneration of protoplasts of all the Cichorium plants tested was achieved by embedding the 

protoplasts in LMPA beads surrounded by liquid medium. Compared to the solid medium 

culture, the LMPA bead technique enabled regular refreshment, preventing medium 

dehydration and toxic compounds accumulation. Unlike culturing in liquid media, protoplasts 

in the LMPA beads were homogeneously spread, inhibiting cluster formation. Moreover, due 

to the low concentration of the low melting point agarose used for the formation of the beads, 

nutrients and gasses could be exchanged easily between the liquid and solid phase. The use of 

LMPA in semisolid protoplast regeneration culture systems for chicory has been described 

previously (Saksi et al., 1986a; Slabe and Bohanec, 1989; Rambaud et al., 1990). Those 

systems required that the protoplasts first be cultured in liquid medium and subsequently 

centrifuged before starting culture in a semisolid medium. Protoplast loss can therefore be 

expected, and clustering can hinder protoplast separation on the semisolid medium. In the Ca-

alginate nurse-cultures described by Nenz et al. (2000), protoplasts are embedded in Ca-

alginate beads surrounded by liquid medium. This technique requires supplementary steps, 
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however: at the start of the culture, beads need to be formed through the merger of an alginate 

solution, in which protoplasts are suspended, as well as a Ca solution. Once microcalli have 

been formed in the beads, they need to be released by chelating the calcium from the matrix 

and centrifuging the released colonies, resulting in the aforementioned problems. Our LMPA 

bead based system has two major advantages compared to these culture systems: (1) it offers a 

high regeneration capacity for a greater number of genotypes, (2) its simplicity avoids the 

necessity of supplementary steps such as centrifugation and/or chemical bead breakdown that 

can be expected to significantly reduce the overall efficiency of the protocol. Developing 

microcalli can easily be removed from the soft LMPA beads with tweezers and placed on 

solid medium without an extra centrifugation step. Also, the proliferation of particular cells or 

colonies can be followed up on a daily basis. Changing or refreshing the medium at any time 

without disturbing the protoplasts is also possible. This is particularly important when 

culturing fused protoplasts, because supplementary toxic waste molecules produced by the 

fusion event must be more rapidly diluted. Our results demonstrate that the LMPA bead 

technique is a very efficient tool for protoplast regeneration, and makes it possible to change 

culture media to fit the suitable environmental conditions for many several Cichorium types. 

After microcalli formation in the LMPA beads and callus development on solid MC3 medium, 

shoot development was more efficiently induced when the regenerating calli were cultured in 

IAA enriched MC3 medium. Although, previous studies on shoot induction on protoplast-

derived calli of Cichorium reported the use of a NAA and BAP complemented medium for 

shoot inducing (Saksi et al., 1986a; Rambaud et al., 1990; Cappelle et al., 2007), we found an 

IAA and BAP complemented medium to be more effective. This is in accordance with 

findings in in vitro plant regeneration through organogenesis from cotyledon, petiole, leaf and 

root explants derived calli, which used IAA in favour of NAA in combination with BAP for 

shoot formation (Park and Lim, 1999; Velayutham et al., 2006; Choi et al., 2009).    

When using the LMPA bead technique with the medium sequence MC1 2, followed by 

an incubation of the protoplast-derived calli on IAA enriched MC3 medium, total protoplast 

regeneration was possible within 14 weeks for the Cichorium species under study (Fig. 2-5). 

In our experiments, a protoplast density of 5 x 104 protoplasts ml-1 in the agarose beads 

resulted in the highest plating efficiencies (Figs. 2-2, 2-3). Compared to previously reported 

results in chicory protoplast regeneration, which showed the highest plating efficiencies when 

using 2 x 104 protoplasts ml-1 in semisolid culture systems (Rambaud et al., 1990; Varotto et 

al., 1997) and in alginate culture systems (Nenz et al., 2000), our technique enables 

regeneration of more protoplasts in a single experiment. 
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For the first time, plantlets of as well industrial chicory (C. intybus var. sativum), wild chicory 

(C. intybus) and endive (C. endivia) were successfully regenerated from protoplasts, using the 

LMPA bead technique. To our knowledge, this technique is the only one that induces 

sustained protoplast division and complete regeneration in such a wide Cichorium range. A 

second innovation presented in this study is the first full plantlet regeneration from endive 

protoplasts. Consequently, our findings can contribute to the further development of somatic 

hybridization within C. endivia or between different Cichorium species. Indeed, the presence 

of an effective regeneration protocol is indispensable for the development of protoplast-based 

breeding tools, including both symmetric and asymmetric somatic fusion. The development of 

the LMPA technique therefore offers significant potential for interspecific Cichorium 

breeding and subsequent genetic variation broadening and introgression of new traits. 

 

 

 
Fig. 2-5 Cichorium intybus var. sativum ‘VL52’ protoplast culture: regeneration steps 
following the LMPA bead technique. First mitotic division (A); Four-cell stage after the 
second mitotic division (B); microcolony (C); microcalli development (D); shoot 
development (E); in vivo regenerants (F) 
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2.5 Conclusion 
Protoplast regeneration is essential for somatic hybridizations. In this study, a standard 

method for plantlet regeneration from Cichorium protoplasts was developed. We evaluated 

the effect of the low melting point agarose (LMPA) bead technique on the regeneration 

capacity of protoplasts of seven C. intybus types and four C. endivia cultivars. The LMPA 

bead technique was more efficient than culture in liquid or solid medium and allowed us to 

obtain plating efficiencies up to 4.9% in C. intybus protoplasts and efficiencies of up to 0.7% 

in C. endivia protoplasts. Moreover, the LMPA bead technique offers great advantages over 

liquid and solid culture systems: the media can be readily refreshed, protoplasts can be 

monitored separately, and microcalli can easily be removed from the beads. This increased 

efficiency was observed for all of the 11 Cichorium types tested. Shoot formation was 

induced more efficiently when using 0.5 mg l-1 indole-3-acetic acid (IAA) enriched medium 

(up to 87.5% of the protoplast-derived calli started shoot development) compared to 1-

naphthaleneacetic acid (NAA) enriched medium. The LMPA bead technique optimized in this 

study enabled for the first time the full plantlet regeneration from C. endivia protoplasts and 

increased the protoplast regenerating ability in other Cichorium species. This fine-tuned 

LMPA bead technique can therefore be applied for protoplast regeneration after protoplast 

fusions of the genus Cichorium. 
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Based on the published article: Deryckere D, Eeckhaut T, Van Huylenbroeck J, Van 

Bockstaele E. (2012) Optimization of somatic hybridization in Cichorium species. Acta 

Horticulturae (ISHS) 961, 95-102. Proceedings of the VII International symposium on in vitro 

culture and horticultural breeding: IVCHB, ‘Biotechnological advances in in vitro 

horticultural breeding’, September 18-22, 2011, Ghent (Belgium). 
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3.1 Introduction 
Improvement of traits such as yield, biomass production, (a)biotic resistance or tolerance, 

gene pool enlargement, secondary metabolite production, rootstock or ploidy breeding and 

altered morphology are of major interest for breeders in many crops. In addition to traditional 

breeding, protoplast fusion has become an alternative to achieve improved crop performance. 

The first interspecific hybridization was established between two tobacco species through 

symmetric protoplast fusion (Carlson et al., 1972). Since the 1980s, protoplast fusion has been 

commonly attempted in commercial crop breeding. Protoplast fusion transcends the limits of 

sexual crossing to enable the construction of previously impossible somatic hybrids. 

Moreover, cytoplasmic features can be transferred as well as traits transcribed from the 

nuclear genome. The main application of symmetric somatic hybridization is the production 

of allotetraploid hybrids that combine the complete nuclear genomes of both parents. These 

allotetraploids can be used as genetic pools, potential rootstock or as male parents in sexual 

crosses. In the latter case, they can be used to create other tetraploids or, when fused with 

diploids, they can produce (sterile) triploid cultivars (Rambaud et al., 1992; Grosser et al., 

2007a). New (seedless) triploid cultivars can directly be formed by symmetric fusion of 

haploids with diploids (Olivares-Fuster et al., 2005). The two main fusion tools currently used 

are electrical and chemical protoplast fusion. Chemical fusion combines the agglutination of 

neighboring protoplasts through polyethylene glycol (PEG) and the merging of these 

protoplasts through membrane disruption after adding a high concentration of calcium ions at 

high pH (Waara and Glimelius, 1995). Electrofusion is initiated by placing a protoplast 

suspension in a low-conductivity medium between electrodes. Applying an alternating current 

through the system aligns the protoplasts between the electrodes and forces them into close 

contact. The merging of the membranes of neighbouring protoplasts is mediated through the 

application of one (or a few) short pulse(s) of direct current (Waara and Glimelius, 1995). 

Electrofusion is believed to be less cytotoxic than chemical fusion, because PEG is rather 

toxic. Moreover, electrofusion allows the fusion conditions to be controlled more easily 

(Bates et al., 1987). Recent progress in protoplast fusion research showed that Brassicaceae, 

Rutaceae and Solanaceae are the most studied plant families for symmetric fusions. In 

general, neither PEG-mediated fusion nor electrofusion is preferred over the other technique. 

PEG-mediated fusion is more common in Brassicaceae, whereas electrofusion is more 

routinely used in Solanaceae. For Rutaceae both fusion methods have been used. 
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Industrial chicory is cultivated for the inulin found in the root. Improving the inulin yield and 

quality through conventional breeding has reached its limit. Therefore, we aim to broaden the 

genetic background of industrial chicory through symmetric protoplast fusion with wild 

chicory or endive. Since a reliable protoplast regeneration system in Cichorium has already 

been established, the use of protoplast fusion techniques is realistic (Crepy et al., 1982; Saksi 

et al., 1986b; Slabe and Bohanec, 1989; Rambaud et al., 1990; Varotto et al., 1997; Nenz et 

al., 2000; Deryckere et al., 2012). To date, several chemical symmetric protoplast fusion 

experiments are used. PEG-mediated chemical fusion of chicory leaf protoplasts has been 

used to obtain tetraploid plants (Rambaud et al., 1992). Male sterile chicory cybrids were 

obtained after intergeneric symmetric PEG-mediated fusion between C. intybus mesophyll 

protoplasts and CMS Helianthus annuus hypocotyl protoplasts (Rambaud et al., 1993). 

Interspecific symmetric protoplast fusions between mesophyll protoplasts of C. intybus and C. 

endivia have yielded tetraploid somatic hybrids containing the nuclear genomes of both 

parents (Cappelle et al., 2007).  

Rambaud et al. (1990) noted that the growth of Cichorium protoplasts is cultivar- and 

species–dependent, thus requiring refinements and adjustments to the protoplast isolation, 

regeneration and fusion protocols. The main goal of this study was to develop a universal 

protocol for symmetric protoplast fusion in Cichorium species. We therefore evaluated both 

electrical and chemical fusion of protoplasts of industrial chicory C. intybus var. sativum with 

endive C. endivia var. crispum and wild type chicory C. intybus protoplasts. 

 

 

3.2 Materials and methods 
Plant material 

One industrial chicory inbred line C. intybus var. sativum ‘VL52’, one wild type chicory C. 

intybus ‘Pi531291’ from Hungary and one endive cultivar C. endivia var. crispum ‘Wallone 

Despa’ were used. Seeds of in vivo plants of the selected Cichorium plants were initiated in 

vitro. After rinsing for 1 min in 70% ethanol, seeds were surface sterilized for 20 min in 6.5% 

NaOCl and germinated in 60 mm petri dishes on solid Murashige and Skoog (1962) medium 

containing 150 mg l-1 casein hydrolysate and 30 g l-1 sucrose at pH 5.8. After germination, the 

plantlets were placed on solid Murashige and Skoog medium containing 20 g l-1 sucrose and 

grown in Meli jars (Meli NV, Veurne Belgium) at 23 ± 2°C under a 16 h/8 h (light/dark) 

photoperiod at 40 µmol m-2 s-1 photosynthetic active radiation. 
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After protoplast isolation (performed according to Deryckere et al., 2012), protoplasts were 

stained to observe binary heterofusions. One hundred microliters of C. intybus var. sativum 

‘VL52’ protoplasts were mixed with 1 µl of a 0.5% (w/v) fluorescein diacetate (FDA) stock 

solution (5 mg FDA dissolved in 1 ml acetone), incubated for 10 min at room temperature and 

washed by centrifugation. Then 100 µl of C. endivia var. crispum ‘Wallone Despa’ or C. 

intybus 

isothiocyanate (Rho) (Sigma-Aldrich) stock solution (30 mg Rho dissolved in 1 ml acetone), 

incubated for 10 min at room temperature and washed by centrifugation. Microscopic 

detection was carried out using an inverted fluorescence microscope (Leica DMIRB) 

equipped with a Leica Camera System (Leica DFC320).  

 

Protoplast fusion 

C. intybus var. sativum ‘VL52’ protoplasts were both chemically and electrically fused with 

C. endivia var. crispum ‘Wallone Despa’ or C. intybus ‘Pi531291’ protoplasts. 

Chemical fusion was performed using PEG and a high concentration of calcium ions at high 

pH. Two PEG types with a different molecular weight (MW) were tested and several 

incubation times were analyzed by evaluating protoplast viability with FDA and binary 

heterofusion formation with FDA and Rho. Protoplasts were fused according to a modified 

protoplast fusion procedure based on Kao (1982). Specifically, protoplasts of the two fusion 

partners were resuspended at a density of 5 x 105 protoplasts ml-1 in a washing solution 

containing one-half strength Murashige and Skoog (MS) macroelements (Murashige and 

Skoog, 1962) (without NH4NO3 and KNO3), Heller microelements and Heller KCl (Heller, 

1953), Morel and Wetmore vitamins (Morel and Wetmore, 1951), 18.35 mg l-1 FeNa-EDTA, 

100 mg l-1 inositol, 750 mg l-1 glutamine, 10 g l-1 sucrose, 60 g l-1 mannitol, 0.5 mg l-1 1-

naphthaleneacetic acid (NAA) and 0.5 mg l-1 6-benzylaminopurine (BAP) at pH 5.5. 

Protoplasts were equally mixed and drops of 150 µl of the mixture were dispensed in 10 petri 

dishes (5.5 cm diameter). After the protoplasts had settled for 5 min, 100 µl PEG solution 

[300g l-1 PEG MW 3350 or PEG MW 6000 (Sigma-Aldrich), 1500 mg l-1 CaCl2 2H2O, 100 

mg l-1 KH2PO4, 10% dimethyl sulfoxide (DMSO), 80 g l-1 mannitol, pH 5.5] was added to the 

protoplast solution in each petri dish and incubated for 1, 2, 5 or 10 min. Subsequently, a Ca-

rich solution (80 g l-1 mannitol, 7.5 g l-1 glycine, 14.7 g l-1 CaCl2 2H2O) at high pH (10.5) was 

added to the fusion mixture in each petri dish. After 5 min, each fusion solution was gently 

diluted with 3 ml washing medium and incubated for 20 min. After incubation, the contents of 

the 10 petri dishes were collected, centrifuged (100g, 10 min) and washed twice. The 
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protoplasts were regenerated according to Deryckere et al. (2012) in low melting point 

agarose beads at a final density of 5 x 104 protoplasts ml-1. After adding the Ca-rich solution 

and the washing solution, the viability and the binary heterofusion rate were observed 

microscopically. Experiments were repeated 3 times. Data were collected from 3 petri dishes 

per experiment and per treatment. 

Electrical fusion was performed with an Eppendorf Multiporator. For optimizing the fusion 

parameters, a micro-fusion chamber (Eppendorf Multiporator) was used to microscopically 

observe the fusion process. After optimizing the parameters with the micro-fusion chamber, 

the Eppendorf helix fusion chamber was used for routine applications. Protoplasts of two 

fusion partners (5 x 105 protoplasts ml-1) were equally mixed and resuspended in an iso-

osmotic buffer (Eppendorf). Fifty microliters of the mixture were pipetted between the 

electrodes of the micro-fusion chamber. An alternating current (AC) of 1.5, 1.8 or 2 V was 

applied for a certain time period (30, 40 or 60 s) during both alignment and post-alignment. 

Two direct current (DC) pulses of 30, 40, 50, 60, 70 or 80 V for 25 µs were applied to induce 

membrane fusion. The fusion process was microscopically observed to analyze the alignment 

process and the fusion rate. Experiments were repeated 3 times. Data were collected from 3 

isolations per experiment and per treatment. During fusion, no fluorescent dyes were used to 

visualize viability and binary heterofusions because the dyes interfere with the iso-osmotic 

buffer. Protoplast viability was analyzed with FDA directly after fusion. The optimal fusion 

conditions of the micro-fusion chamber were used in the helix fusion chamber: 200 µl of a 1:1 

mixture of the two fusion partners, resuspended in the Eppendorf iso-osmotic buffer, were 

pipetted in the helix fusion chamber. Ten minutes after fusion, protoplasts were collected, 

washed and pelleted by centrifugation. The protoplasts were regenerated according to 

Deryckere et al. (2012) under light conditions. Callus fragments were used for both flow 

cytometric analysis and further regeneration. 

 

Hybrid Screening 

Three independent PEG-mediated fusion experiments between C. intybus var. sativum ‘VL52’ 

and C. endivia var. crispum ‘Wallone Despa’ were performed. From each experiment, the 

ploidy level of 50 regenerating calli was screened using flow cytometry. To this end, nuclei 

suspensions were prepared following a modification to the protocol described by Galbraith et 

al. (1983). Each callus (0.5 cm2) was put in a 55-mm-wide petri dish and 800 µl buffer I (21 g 

l-1 citrate and 5 g l-1 Tween dissolved in H2O) was added. The calli were manually chopped 

for 1 minute using a razor blade and the total suspension was filtered through a 50 µm filter. 
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Finally, 400 µl buffer II [40 g l-1 dibasic sodium phosphate and 0.0001% (w/v) DAPI] was 

cence of total DNA of single nuclei was analyzed with a Partec 

C. intybus var. 

sativum ‘VL52’ and C. endivia var. crispum ‘Wallone Despa’ were used as internal standard. 

The calli were further regenerated to plantlets. Leaf DNA of these plantlets was used for 

microsatellite marker analysis. This was performed by COSUCRA-Groupe Warcoing S.A., 

Chicoline division to evaluate the data obtained by flow cytometry: The 18 microsatellite 

markers (GA118, GA187, GA014, GA019, GA304, GA386, GA495, GA519, GA571, 

GA395, TGA001, GA007, GA036, GT082, GT082-X, GA355, GA075, GA357; Personal 

communication COSUCRA-Groupe Warcoing S.A.), are distributed over 7 of the 9 

chromosomes of the Cichorium species. 

Three independent PEG-mediated fusion experiments between C. intybus ‘VL52’ and C. 

intybus ‘Pi531291’ were performed. From each experiment, 35 regenerating calli were 

analyzed with the microsatellite markers. 

 

Statistical analysis 

One-way analysis of variance (ANOVA) and Tukey’s Post-Hoc test were used to analyze the 

following: 1) the effect of different incubation times in PEG MW 3350 on the viability and 

fusion properties of protoplasts and 2) the effect of DC pulse voltage on the total fusion rate in 

electrical fusion experiments. All calculations were obtained using the statistical software 

package Statistica v.11. 

 

 

3.3 Results 
Protoplast Fusion 

When chemically fusing protoplasts, the PEG molecular weight and the incubation time were 

critical for further protoplast regeneration. Viability tests during chemical fusion showed that 

PEG MW 6000 was lethal for protoplasts directly after addition, regardless of the incubation 

time. Consequently, PEG MW 6000 was not used in further experiments. Chemical fusion 

with PEG MW 3350 enabled protoplast fusion. However, a gradual decrease in protoplast 

viability was detected as the incubation time in the PEG solution increased (Fig. 3-1). Binary 

heterofusion was also analyzed (Fig. 3-2). The highest rate of binary heterofusions was 

observed after 1 min incubation for both C. intybus var. sativum 'VL52' + C.endiva var. 
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crispum 'Wallone Despa' (8.4 ± 1.3%) and C. intybus var. sativum 'VL52' + C. intybus 

'Pi531291' fusions (3.8 ± 0.4%) (Table 3-1). The binary heterofusion rate significantly 

decreased after 5 min incubation time. The highest total fusion rate was achieved after 1 min 

incubation for both fusion events. This total fusion rate included, besides the desired binary 

heterofusions, undesired homokaryon binary fusions and multifusions (Table 3-1). 

Electrical fusion experiments were monitored under the microscope using the micro-fusion 

chamber (Fig. 3-3). Optimal alignment and post-alignment were achieved by applying 1.5 V 

during 40 s (data not shown). The highest total fusion rate was obtained after two pulses of 40 

V for 25 µs. The rates of successful fusion were 47.6 ± 2.6% of the protoplasts of the fusion 

experiment C. intybus var. sativum 'VL52' + C. endivia var. crispum 'Wallone Despa' fused 

and 51.2 ± 2.3% for the C. intybus var. sativum 'VL52' + C. intybus 'Pi531291' fusion. FDA 

staining confirmed that after fusion, 85.2 ± 5.6% of the protoplasts were still viable. When 

pulse voltages of 60 V and higher were used, some protoplasts bursted, resulting in fewer 

fusion events (Fig. 3-4). 

 

 

Table 3-1 Effect of different incubation times in PEG MW 3350 solution on the binary 
heterofusion and total fusion rate of C. intybus var. sativum ‘VL52’ and C. endivia var. 
crispum ‘Wallone Despa’ and of C. intybus var. sativum ‘VL52’ and C. intybus ‘Pi531291’ 
protoplasts (% of the initial protoplast number) 

Fusion   Incubation time (min) 
1 2 5 10 

C. intybus var. sativum 'VL52'  Binary fusionx 8.4 ± 1.3ay 5.2 ± 0.7ab 2.4 ± 0.7bc 0.6 ± 0.4c 
+ C.endivia var. crispum 'Wallone Despa' Total fusion 16.6 ± 1.2a 11.6 ± 0.9b 5.2 ± 0.4c 1.0 ± 0.3d 

C. intybus var. sativum 'VL52' Binary fusion 3.8 ± 0.4a 2.8± 0.6a 1.0 ± 0.3b 0.2 ± 0.2b 
 + C. intybus 'Pi531291' Total fusion 7.6 ± 0.5a 6.0± 0.3a 2.0 ± 0.4b 0.6 ± 0.4b 

Data are means ± SE (n = 9, collected from three experiments) 
x Binary fusions included binary heterofusion events. Total fusion included all binary (hetero and homokaryon) and 
multifusion events. 
y on 
and total fusion rate within each fusion event for the four incubation times. 
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Fig. 3-1 Effect of different incubation times (1, 2, 5 and 10 min) in PEG MW 3350 solution 
on the viability of C. intybus var. sativum ‘VL52’, C. intybus ‘Pi531291’ and C. endivia var. 
crispum ‘Wallone Despa’ protoplasts (% of the initial protoplast number). Data are means ± 
SE (n = 9, collected from three experiments). a, b, c, d significant differences based on 

in each Cichorium type for the 
four incubation times. 

 

  

 

Fig. 3-2 Formation of heterokaryons through binary and multi fusions using PEG MW 3350. 
Red protoplasts: C. endivia var. crispum ‘Wallone Despa’ stained with Rho. Green 
protoplasts: C. intybus var. sativum ‘VL52’ stained with FDA. 
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Fig. 3-3 Different steps during electrofusion of C. intybus var. sativum 'VL52' and C.endiva 
var. crispum 'Wallone Despa' protoplasts using an AC of 1.5 V for 40 s for alignment and 
post-alignment and 2 DC pulses of 40 V for 25 µs for fusion. Boxes indicate (A and B) 
neighbouring protoplasts before adding DC pulses, (C and D) merging of protoplast 
membranes due to DC pulses, (E and F) post-alignment. 
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Fig. 3-4 Effect of DC pulse voltage on the total fusion rate of C. intybus var. sativum ‘VL52’ 
+ C. endivia var. crispum ‘Wallone Despa’ and of C. intybus var. sativum ‘VL52’ + C. 
intybus ‘Pi531291’ protoplasts (% of the initial protoplast number). Data are means ± SE (n = 
9, collected from three experiments). a, b, c, d significant differences based on Tukey’s Post 

voltages 

 

Plant regeneration 

All fusion products were cultured in low melting point agarose beads. The protoplasts 

obtained after chemical fusion showed the first cell divisions after 3 days and four-cell stages 

after 5 days. Microcolonies formed after two weeks. Within two months, calli developed and 

were screened. All fusion combinations regenerated plantlets. Protoplasts of parental, non-

fused C. intybus var. sativum ‘VL52’ and C. intybus ‘Pi531291’ showed full plantlet 

regeneration; protoplasts of C. endivia var. crispum ‘Wallone Despa’ did not regenerate in the 

applied light conditions. 

Protoplasts after electrical fusion showed an average of first division rates of 15% of the 

initial number of cultivated protoplasts. However, they were not able to sustain cell division 

and subsequently died.  

 

Hybrid screening 

Because chicory and endive nuclei contain a different amount of DNA, flow cytometric 

analysis could easily distinguish C. intybus var. sativum ‘VL52’ and C. endivia var. crispum 

‘Wallone Despa’. Consequently, the peak values of hybrid fusion products obtained after 
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symmetric fusion between chicory and endive is the sum of the peak values of both parents 

(Fig. 3-5). Flow cytometric analysis of regenerating calli produced 17.8 ± 3.2% somatic 

hybrids containing the full genomes of both parents. In total, 23.9 ± 1.4% and 58.3 ± 1.4% of 

the regenerants were tetraploid and diploid C. intybus var. sativum ‘VL52’, respectively. 

Moreover, two calli showed hexaploid peak values. No regeneration of C. endivia var. 

crispum ‘Wallone Despa’ occurred. Microsatellite analysis confirmed the data obtained by 

flow cytometry (an example of the microsatellite outcome is shown in Table 3-2). 

Due to the comparable DNA content of the fusion partners, flow cytometry could not 

distinguish putative fusion products of C. intybus var. sativum ‘VL52’ and C. intybus 

‘Pi531291’. Microsatellite markers demonstrated the presence of 4.2 ± 1.0% hybrids among 

the C. intybus var. sativum ‘VL52’ + C. intybus ‘Pi531291’ regenerants (an example of the 

microsatellite outcome is shown in Table 3-2). Regeneration rates for C. intybus var. sativum 

‘VL52’ were 8.5 ± 0.8% tetraploid and 40.2 ± 1.3% diploid. In contrast, 5.2 ± 1.1% tetraploid 

and 41.9 ± 1.5% diploid C. intybus ‘Pi531291’ were obtained. 
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Fig. 3-5 Flow cytometric analysis of the two fusion partners C. intybus var. sativum 'VL52', 
C.endiva var. crispum 'Wallone Despa' and their somatic hybrid (C. intybus var. sativum 
'VL52' + C.endiva var. crispum 'Wallone Despa'). 
 

 

3.4 Discussion 
In this study, intra- and interspecific somatic hybrid Cichorium plantlets could be obtained. 

We compared the two main somatic hybridization tools, electrical and chemical protoplast 

fusion, for the fusion of Cichorium species: industrial chicory C. intybus var. sativum ‘VL52’ 

protoplasts fused with endive C. endivia var. crispum ‘Wallone Despa’ protoplasts and with 

wild type chicory C. intybus ‘Pi531291’ protoplasts. Protoplasts were successfully fused 

using both the PEG-mediated chemical fusion and electrical fusion. Optimal electrical fusion 

conditions resulted in more total fusion events than could be induced through chemical fusion.  

These findings support the review of Jansky (2006). However, they are in contrast with 

former research describing higher fusion frequencies after chemical fusion (Hidaka and 

Omura, 1992; Assani et al., 2005). Due to the absence of fluorescent markers during electrical 

fusion, no clear comparison of the binary heterofusion rate could be made between chemical 

and electrical fusion. However, a larger proportion of undesired hybrids with higher ploidy 

levels is expected by electrical fusion (Jansky, 2006). The highest binary heterofusion rate 

obtained in this study was 8.4 ± 1.3%. Guan et al. (2010) found binary heterofusion rates up 
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to 4.2 ± 0.9% with PEG MW 6000 in ginger protoplasts. Rezazadeh et al. (2011) obtained up 

to 18% of binary fusions when using PEG MW 3000-3700 (Sigma-Aldrich) mediated 

protoplast fusion for intraspecific somatic hybridization in mango. Assani et al. (2005) 

observed an average binary fusion rate of 10% after electrical fusion and 17% after PEG-

mediated fusion. However, these percentages included heterokaryon as well as homokaryon 

binary fusions. We noted a decrease in (total and binary) fusion frequencies with an 

increasing incubation time in PEG MW 3350 (Table 3-1). This is probably due to the 

decreasing viability of the protoplasts when longer incubation times were applied (Fig. 3-1). 

Guan et al. (2010), however, described a higher binary fusion rate as the fusion time was 

prolonged in both 15% PEG MW 4000 and PEG MW 6000. A decrease was only observed at 

a prolonged fusion time when 30% PEG MW 4000/6000 was used. By contrast, the 

multifusion rate increased with prolonged fusion time, however, serious protoplast damage 

occurred when applying an incubation time of more than 30 min. The differences between 

their observations and our results might indicate that protoplast sensitivity towards the 

toxicity of PEG is species dependent. 

Chemical fusion enabled sustained division of protoplasts, while electrical fusion inhibited 

protoplast development. This is in accordance with findings of protoplast fusion in ginger, 

where the protoplast viability 24 h after electrical fusion was lower than after PEG-mediated 

fusion (Guan et al., 2010). Nonetheless, electrical fusion has already been reported as a more 

efficient method in terms of plant regeneration due to the cytotoxicity of PEG (Assani et al., 

2005; Olivares-Fuster et al., 2005; Rezazadeh et al., 2011). Moreover, Assani et al. (2005) 

stated that an electric field pulse technique stimulated the somatic embryogenesis and mitotic 

activities. The negative effect of electrical fusion found in this study is possibly due to toxic 

effects of the iso-osmotic buffer used for electrical fusion. The sensitivity of cells towards 

electric pulses is highly variable. In this study, electrical fusion parameters were optimized in 

the micro-fusion chamber, then applied in the helix fusion chamber. The optimal conditions 

for protoplast viability might therefore have changed. Another disadvantage of electrical 

fusion compared to chemical fusion is the inability to analyze binary heterofusion formations 

between the same cell types. 

It may be interesting to note that a novel protoplast fusion method, electrochemical fusion, 

which combines the advantages of both methods, can overcome the abovementioned 

problems. This alternative procedure is based on chemically induced protoplast aggregation 

and DC pulse-promoted membrane fusion. Classical chemical fusion protocols required two 

to three washes to remove the cytotoxic PEG. Removal of PEG in the novel technique is 
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simpler because of its low concentration. Together with the DC pulse-promoted membrane 

fusion, high yields in symmetric somatic hybrids and cybrids have already been obtained in 

Citrus (Olivares-Fuster et al., 2005). 

Putative hybrids of the C. intybus var. sativum ‘VL52’ and C. endivia var. crispum ‘Wallone 

Despa’ fusion were screened using flow cytometry. Flow cytometry has been used in previous 

studies to analyze ploidy levels of somatic hybrids after both electrical and chemical fusion 

(Sun et al., 2004; Guan et al., 2010). The flow cytometric analysis is fast, easy and does not 

require full plantlet regeneration. However, integration of one or two chromosomes or of 

small chromosomal fragments, which lead to asymmetric hybrids, are not always visible 

through flow cytometry. Therefore, flow cytometry can only be used for screening alleged 

symmetric hybrids between parents with a distinguishable DNA content. In situ 

hybridizations, karyotype analysis and molecular markers are convenient tools to obtain more 

detailed information about the hybrid genomic constitution.  

The chemical fusion between C. intybus var. sativum ‘VL52’ and C. endivia var. crispum 

‘Wallone Despa’ produced up to 18% somatic hybrids. Cappelle et al. (2007) fused 

protoplasts of two C. endivia varieties with C. intybus var. Cassel protoplasts according to a 

modified method of Kao (1982) based on PEG-mediated fusion. That study yielded 288 

regenerants, including 192 (77.42%) hybrid types with intermediate leaf shapes. However, not 

all of these hybrid types were tetraploid, suggesting the presence of asymmetric hybrids. 

Likewise, in our study, no plant was regenerated from the two C. endivia parents. In addition 

to somatic hybrids, we observed more than 20% tetraploid C. intybus var. sativum ‘VL52’ 

among the regenerants. Rambaud et al. (1992) noted similar results when inducing tetraploidy 

by chemical protoplast fusion in C. intybus var. Magdebourg. The fusion of C. intybus var. 

sativum ‘VL52’ with C. intybus ‘Pi531291’ produced up to 4% somatic hybrids. This lower 

percentage can be contributed to the higher regeneration capacities of the parental wild type 

C. intybus ‘Pi531291’ compared to the endive in the abovementioned fusion, leading to a 

lower percentage of somatic hybrids among the regenerants. 

In this study for the first time protoplasts of genotypes of industrial chicory (C. intybus var. 

sativum ‘VL52’), wild chicory (C. intybus ‘Pi531291’) and endive (C. endivia var. crispum 

‘Wallone Despa’) were successfully fused using electrical fusion. These findings can 

contribute to the further development of electrical somatic hybridization within Cichorium 

species. However, further research is needed to develop a protoplast regeneration protocol 

after electrical fusion. In this study, PEG-mediated chemical fusion has confirmed its value as 
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a protoplast-based breeding tool. The development of the somatic hybridization technique 

offers an alternative for interspecific Cichorium breeding. 

 

 

3.5 Conclusion 
Somatic hybridization may provide an alternative for interspecific sexual Cichorium breeding. 

To develop an efficient breeding tool, the protoplast fusion conditions must be optimized. We 

have evaluated the effect of chemical and electrical protoplast fusion on symmetric somatic 

hybrid production in Cichorium species. 

Protoplasts of industrial chicory (C. intybus var. sativum ‘VL52’) were successfully fused 

electrically as well as chemically with wild chicory (C. intybus ‘Pi531291’) and endive (C. 

endivia var. crispum ‘Wallone Despa’) protoplasts. Binary heterofusion could only be 

evaluated after chemical fusion; rates up to 8% were achieved. The highest total fusion rates 

(up to 51.2 ± 2.3%) were obtained after electrical fusion, whereas chemical fusion induced a 

fusion rate of 16.6 ± 1.2%. However, regeneration was only established after chemical fusion. 

Out of the regenerants after industrial chicory and endive fusion, 18% were somatic hybrids. 

Fusion of industrial chicory with wild chicory produced on average 4% hybrid regenerants. 

Our findings can contribute to the research needed to develop a protoplast regeneration 

protocol after electrical fusion. The methods for symmetric protoplast fusion described in this 

study can contribute to advanced asymmetric protoplast fusion experiments in Cichorium 

species. 
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4.1 Introduction 
Symmetric protoplast fusion combines desirable as well as undesirable traits of different 

parents, often leading to a disturbed regeneration capacity or fertility of the somatic hybrid. 

By reducing the amount of transmitted nuclear and/or cytoplasmic information through 

asymmetric protoplast fusion, these problems can possibly be overcome. To create cybrids, 

only the cytoplasm from a donor after complete fragmentation of its nucleus is transmitted to 

a cytoplasmic inactivated recipient. Several techniques can be used for donor nuclear genome 

fragmentation, but UV treatment is currently the most widely applied because of its easy 

application and high reproducibility (Hall et al., 1992). Within a single species susceptibility 

towards UV radiation can strongly differ (Wang et al., 2012). A general problem is the 

difficult quantification of DNA damage after an irradiation treatment. Denaturing (alkaline) 

gel electrophoresis and pulse field gel electrophoresis (PFGE) were used by Hall et al. (1992). 

Abas et al. (2007) used the Comet assay Single Cell Gel Electrophoresis (SCGE) to observe 

DNA strand breaks in protoplasts of Nicotiana plumbaginifolia. However, the DNA loading 

densities seemed critical for reproducible results with these techniques. Most of the DNA 

analysis is performed after partial or full plantlet regeneration using molecular techniques. 

Next to DNA analysis, the negative effect of UVC irradiation on several cell processes 

including cell wall regeneration, protoplast viability and cell division are observed 

(Navratilova et al., 2008). 

Metabolic inhibitors, as iodoacetamide (IOA) inhibit protoplast division by inactivating the 

cytoplasm and are suitable for the selection of somatic hybrids in plant cells (Iriawati et al., 

1996). Fusion of IOA-treated recipient parental protoplasts with irradiated donor protoplasts 

could produce 100% asymmetric fusion products. 

In Cichorium, successful asymmetric protoplast fusion has already been performed; for the 

creation of cybrids, Varotto et al. (2001) fused 135Cs -rays-irradiated sunflower (H. annuus) 

protoplasts (2n = 34) and iodoacetate-treated red chicory protoplasts (2n = 18). Out of 33 

regenerants, 6 had a chromosome number ranging from 30 to 36. Among the remainder, all 

containing the chromosome number of chicory, two regenerants showed mtDNA of both 

parents, and two others showed the hybridization pattern of sunflower mtDNA or 

recombination of the mt genomes of C. intybus and H.annuus, respectively. Cybrids of C. 

intybus and sunflower have also been obtained through symmetric protoplast fusion by 

Rambaud et al. (1993). Some regenerants showed the incorporation of sunflower mtDNA into 
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chicory mtDNA. No sunflower chromosomes were found in these regenerants, suggesting the 

elimination of the sunflower chromosomes during mitosis. 

As described in previous studies, a large variability exists among plant species and cultivars in 

their sensitivity to UV radiation (Teramura and Sullivan, 1994). The main goal of this study 

was to analyze the UVC sensitivity of Cichorium species that can be used as donor plants in 

further asymmetric protoplast research to obtain CMS in Cichorium. We therefore evaluated 

Cichorium protoplast viability, cell wall resynthesis and protoplast regeneration after UVC 

irradiation. The quantification of DNA damage after an irradiation treatment was measured 

using SCGE (Comet assay) and standard gel electrophoresis. To analyze the IOA sensitivity 

of recipient industrial chicory cultivars, we evaluated Cichorium protoplast viability and 

regeneration after IOA treatment. 
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4.2 UV irradiation 

 
4.2.1 Materials and methods 

Plant material and protoplast isolation 

Seeds of one wild type chicory (C. intybus ‘Pi531291’) from Hungary and one endive (C. 

endivia var. crispum ‘Wallone Despa’) were used in the experiments. In vitro plant 

production, protoplast isolation and culture were performed as described in §Chapter 2. 

 

UVC irradiation 

After protoplast isolation, 2 ml of protoplast solution (5 x 105 protoplasts ml-1 MC2 [Table 2-

1]) were dispersed in 90 mm petri dishes and irradiated by a UVC germicidal lamp 

(G30T8/OF of Sylvania, UVC output of 13.4 W at 254 nm) at a dose rate of approximately 

170 µW cm-2 during 0, 1, 2, 4, 6, 10, 15, 20 and 30 min. Protoplasts were then washed with 

MC2 (Table 2-1), centrifuged (100 g, 10 min) and resuspended in either MC1 or MC2 (Table 

2-1); to analyze protoplast viability and cell wall resynthesis, 3 ml of protoplast solution (5 x 

104 protoplasts ml-1 MC1) was cultured in 50 mm petri dishes under complete dark conditions. 

To analyze protoplast regeneration, protoplasts resuspended in MC2 were cultured in low 

melting point agarose (LMPA) beads following §Chapter 2, under complete dark conditions. 

 

Microscopic analysis of protoplast viability and cell wall resynthesis 

Microscopic detection was carried out using an inverted fluorescence microscope (Leica 

DMIRB) equipped with a Leica Camera System (Leica DFC320). For protoplast viability 

staining, 100 µl protoplast solution of the liquid cultures was mixed with 1 µl of a 0.5 % (w/v) 

fluorescein diacetate (FDA) stock solution (5 mg FDA dissolved in 1 ml acetone), incubated 

for 10 min at room temperature, rinsed and observed through excitation by 485 nm light. 

Observations were made directly after UV irradiation and after 5 days of culture in liquid 

medium. Cell wall regeneration was studied by using Calcofluor White M2R (CFW) (Sigma-

Aldrich). 100 µl protoplast solution of the liquid cultures were mixed with a stock solution of 

CFW resulting in a final dye concentration of 0.01% (w/v), rinsed and observed through 

excitation by 360 nm. Cell wall resynthesis was determined 5 days after protoplast culture in 

liquid medium. For both protoplast viability and cell wall regeneration, experiments were 

repeated 3 to 4 times. Data were collected from 2 to 3 petri dishes per experiment and per 

treatment. 
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Analysis of protoplast regeneration after UVC irradiation 

Protoplast regeneration was evaluated in the LMPA beads. After 7 days, the formation of 

four-cell stages was analyzed. After 14 days, the microcolony development was determined. 

Experiments were repeated 3 to 5 times. Data were collected from 2 to 3 petri dishes per 

experiment and per treatment. 

 

Evaluation of UVC damage using Single Cell Gel Electrophoresis (SCGE) and standard gel 

electrophoresis 

Ssbrs and dsbs were evaluated using SCGE (Comet assay). SCGE measures DNA damage 

from individual protoplasts based on the migration of denatured DNA through an 

electrophorectic field. SCGE was performed following manufacturer’s instructions (USB 

products, Affymetrix, Single Cell Gel Electrophoresis Comet Assay, www.usbweb.com). One 

side of microscope slides were coated with 1.5% molten agar and dried. Control and UVC 

irradiated protoplasts were diluted in 1 ml 1x phosphate buffered saline (PBS) solution, 

centrifuged at 100 g for 5 min at 4°C and resuspended in 1x PBS at a concentration of 

approximately 25,000 cells ml-1. The protoplast suspension (5 µl) was mixed with 35 µl 

liquified LMPA 0.8% (w/v) solution. The LMPA-embedded protoplast mixture was placed on 

a coated microscope slide and covered with a cover slip to allow gel formation. After removal 

of the cover slips, the slides were treated for 1 h at 4°C with lysis solution (2.5 M NaCl, 0.1 M 

EDTA, 10 mM Tris-HCl, pH 10) to expose DNA. The slides were washed 3 times with MQ 

water, before treated with denaturation solution (300 mM NaOH, 1 mM EDTA, pH > 13) for 

20 min at 4°C. The slides were washed 3 times with MQ water and electrophoresed for 3, 4, 

5, 10 and 15 min at 25 V and visualized by ethidium bromide (EtBr) under a fluorescence 

microscope. 

For standard gel electrophoresis, DNA from control and UVC irradiated protoplasts was 

isolated using the Qiagen DNeasy Plant Tissue Mini kit, according to the manufacturer’s 

instructions. The DNA concentration and quality was analyzed by an Eppendorf Nanodrop 

ND-1000 spectrophotometer. Samples were diluted to a 250 and 500 ng DNA µl-1. Gel 

electrophoresis was performed at 125 V in 1x tris-acetate-EDTA (TAE) buffer during no 

longer than 3 h due to heating of the agarose gels (0.5, 1, 1.5% agarose in 1x TAE (w/v)). A 

mixture of 10 µl DNA and 2 µl loading dye (Thermo Scientific Fermentas 6x DNA Loading 

Dye) were loaded on the gel for each sample. Because of the absence of alkalic conditions, 

this technique only reveals the presence of dsbs in DNA molecules. 
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Statistical analysis 

One-way analysis of variance (ANOVA) and Tukey’s Post-Hoc test were used to analyze the 

effect of different incubation times with UVC irradiation on the protoplast viability and cell 

wall resynthesis in liquid culture and four-cell stage and microcolony formation in the LMPA 

beads for both C. intybus ‘Pi531291’ and C. endivia var. crispum ‘Wallone Despa’. All 

calculations were obtained using the statistical software package Statistica v.11. 

 

4.2.2 Results 

Microscopic analysis of protoplast viability and cell wall resynthesis 

Protoplast viability observed directly after UVC irradiation, decreased stepwise with longer 

incubation times. After 4 min of UVC irradiation, the viability of both C. intybus ‘Pi531291’ 

and C. endivia var. crispum ‘Wallone Despa’ protoplasts decreased significantly. However, 

still more than 80% of the protoplasts were viable. After 30 min irradiation, the protoplast 

viability for C. intybus ‘Pi531291’ and C. endivia var. crispum ‘Wallone Despa’ dropped 

below 70% and 60%, respectively. After 5 days incubation in liquid medium, the protoplast 

viability dropped to on average 50% for both Cichorium types in the control group. C. endivia 

var. crispum ‘Wallone Despa’ protoplast viability decreased significantly when they had been 

incubated for 2 min; C. intybus ‘Pi531291’ protoplast viability declined significantly after 6 

min incubation. However, a major decrease in protoplast viability for both Cichorium types 

was only observed when 15 min of UVC irradiation was applied (Fig. 4.2-1). 

Cell wall resynthesis in the control group of both Cichorium types was observed during 24-48 

h after protoplast isolation. Cell wall formation of C. intybus ‘Pi531291’ protoplasts 

decreased more than 20 % after 5 days of liquid culture when 1 min irradiation had been 

applied. C. endivia var. crispum ‘Wallone Despa’ protoplasts formed 7 % less cell walls after 

1 min and 13 % less cell walls after 2 min irradiation (Fig. 4.2-2). 
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Fig 4.2-1 Protoplast viability (% of the initial number of cultured protoplasts) of two 
Cichorium species (C. intybus ‘Pi531291’ and C. endivia var. crispum ‘Wallone Despa’) after 
different UVC irradiation incubation times (0, 1, 2, 4, 6, 10, 15, 20 and 30 min), measured 
directly after irradiation (0 days) and after 5 days of protoplast culture. Data are means ± SE 
(n = 10, collected from three to four experiments). a, b, c, d, e, f are significant differences 

Cichorium type after 
0 and 5 days of protoplast culture. 
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Fig. 4.2-2 Cell wall resynthesis (% of the initial number of cultured protoplasts) of two 
Cichorium species (C. intybus ‘Pi531291’ and C. endivia var. crispum ‘Wallone Despa’) after 
different UVC irradiation incubation times (0, 1, 2, 4, 6, 10, 15, 20 and 30 min), measured 
after 5 days of protoplast culture. Data are means ± SE (n = 10, collected from three to four 
experiments)
0.05. Results compared within each Cichorium type. 

 

Analysis of protoplast regeneration after UVC irradiation 

Four-cell stage formation after 7 days culturing in LMPA beads significantly dropped after 2 

min of irradiation for C. intybus ‘Pi531291’ protoplasts, and 6 min of irradiation resulted in 

less than 5% of four-cell stage formation. Microcolony formation after 14 days significantly 

diminished after 2 min of irradiation. After 6 min of irradiation only 14% formed 

microcolonies, compared to 55% in the control group (Fig. 4.2-3).  

Four-cell stage formation after 7 days of C. endivia var. crispum ‘Wallone Despa’ protoplasts 

significantly decreased after 4 min irradiation. After 6 min irradiation, the protoplast 

regeneration rate dropped under 1%. Microcolony formation after 14 days was significantly 

reduced when the endive protoplasts had been UVC irradiated for 4 min (Fig. 4.2-4). 
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Fig. 4.2-3 Four-cell stage and microcolony formation (% of the initial number of cultured 
protoplasts) of C. intybus ‘Pi531291’ protoplasts after different UVC irradiation incubation 
times (0, 1, 2, 4, 6, 10, 15, 20 and 30 min). Data are means ± SE (n = 10, collected from three 
to five experiments). a, b, c, d, e, f are significant differences based on Tukey’s Post Hoc test, 

four-cell stage formation and microcolony formation 
phase. 

four-cell stage formation after 7 days of regeneration 
microcolony formation after 14 days of regeneration 
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Fig. 4.2-4 Four-cell stage and microcolony formation (% of the initial number of cultured 
protoplasts) of C. endivia var. crispum ‘Wallone Despa’ protoplasts after different UVC 
irradiation incubation times (0, 1, 2, 4, 6, 10, 15, 20 and 30 min). Data are means ± SE (n = 
10, collected from three to five experiments). a, b, c, d are significant differences based on 
Tukey’s Post Hoc t four-cell stage formation and 
microcolony formation phase. 

 

Evaluation of UVC damage using SCGE and standard gel electrophoresis 

Using SCGE, damaged DNA containing strand breaks will migrate further in the gel than 

intact DNA, creating an image similar to a comet (core and tail). Dependent on the amount of 

migrated DNA, the tail length will vary. The absence of a comet core would indicate the 

absence of large DNA parts, and therefore, would prove the positive effect of UVC on 

chromosome fragmentation. However, SCGE analysis of our control and UVC irradiated 

protoplasts delivered no clear results. No comet signals were obtained from UVC irradiated 

protoplasts. Nuclei of control protoplast samples were only slightly visible using this 

technique. 

The standard gel electrophoresis showed no clear distinction in DNA damage between control 

and UVC irradiated protoplasts. Only UVC irradiation of 60 min revealed a decreased 

four-cell stage formation after 7 days of regeneration 
microcolony formation after 14 days of regeneration 
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intensity of the EtBr-stained DNA in comparison to the control and 10, 20 and 30 min 

irradiated protoplasts (Fig. 4.2-5). The loading density (250 versus 500 ng DNA µl-1) and the 

agarose concentration in the gel did not influence the results. 

 

 

Fig. 4.2-5 The effect of UV dose on the mobility of C. intybus ‘Pi531291’ protoplasts DNA 
using gel electrophoresis (0.5% agarose) and EtBr staining. C = control. 10, 20, 30 and 60 
refer to the min of UVC irradiation. 1 kb ladders were used as reference. 

 

 

4.2.3 Discussion 

Preliminary studies were performed to analyze UVC irradiation dosage effects on Cichorium 

protoplasts to be used in prospective asymmetric fusion experiments. C. intybus and C. 

endivia protoplasts were submitted to 170 µW cm-2 UVC irradiation during 0, 1, 2, 4, 6, 10, 

15, 20 and 30 min. The protoplast viability measured directly after irradiation was not 

severely hampered. Even after longer irradiation times (15, 20 and 30 min) more than 55% of 

the endive protoplasts and more than 65% of the chicory wild type protoplasts showed active 

cytoplasmic activity as determined by FDA staining. The higher decrease of protoplast 

viability after long irradiation times could be mainly due to the evaporation of water from the 

liquid MC2 medium, leading to lethal dehydration. After 5 days liquid medium culture, 

protoplast viability clearly decreased, even in the control group. The viability of C. intybus 

‘Pi531291’ protoplasts decreased from 92% directly after irradiation to 55% after 5 days. For 

C. endivia var. crispum ‘Wallone Despa’ protoplasts, a decline was observed from 88% 

directly after irradiation to 50% after 5 days of incubation. This can probably be ascribed to 

the unfavorable protoplast regeneration conditions for Cichorium protoplasts (Deryckere et 
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al., 2012); Liquid culture systems showed to be less appropriate for protoplast development 

than the LMPA bead culture system. Therefore, an overestimation of the UVC effect on 

protoplast viability (and cell wall formation) can be expected. For both Cichorium types, the 

protoplast viability of the control group and the irradiated protoplasts after 5 days culture 

showed a minor gradual decrease when the protoplasts had been irradiated up to 10 min. 

Irradiation during 15 min or more caused a drop in protoplast viability. The high protoplast 

viability rate after UVC irradiation is in accordance with previous studies on sugar beet 

protoplasts (Hall et al., 1992). Sugar beet protoplasts irradiated at the highest UV dose (4200 J 

m-2) showed comparable viability rates as the untreated control cells after 6 days culture. The 

treated protoplasts, however, died after 14 days of culturing. High viability rates of Cucumis 

sativus protoplasts after UVC irradiation with a germicidal lamp during 10 min were also 

observed. These irradiated Cucumis protoplasts survived for 2 weeks and could be used in 

asymmetric somatic hybridizations (Navratilova et al., 2008). 

Cell wall formation was heavily inhibited by UVC irradiation in both Cichorium types. 1 min 

of irradiation was sufficient to cause a significantly high decrease of cell wall resynthesis; 6 

min of irradiation reduced the cell wall formation rate to less than 5%. These results are 

comparable with observations made by Hall et al. (1992). Cell wall resynthesis of sugar beet 

protoplasts showed a dose-dependent inhibition. Moreover, applying a short period of 

illumination during protoplast regeneration restored cell wall formation in cultures irradiated 

at the lowest doses (700 J m-2). At higher UV doses, no restoration was observed. Navratilova 

et al. (2008) suggested that enzymes participating in cell wall regeneration are encoded by 

nuclear DNA. As a result of UVC damage, the expression of these enzymes is heavily 

disturbed. 

Regeneration of C. endivia var. crispum ‘Wallone Despa’ protoplasts was already described 

in Deryckere et al. (2012). Compared to C. intybus protoplasts, C. endivia protoplasts are 

more recalcitrant, leading to a lower protoplast regeneration rate. This made it difficult to 

analyze the influence of UVC irradiation on endive protoplast regeneration. However, UVC 

irradiation caused a dose-dependent significant decrease in four-cell stage and microcolony 

formation. A comparable result was obtained for C. intybus ‘Pi531291’ protoplasts. Because 

of the higher regeneration capacity of C. intybus protoplasts, a more profound distinction 

between the control and irradiated culture was obtained. The increased percentage of 

microcolonies after 14 days in comparison to the percentage of cells in the four-cell stage 

after 7 days can be attributed to the refreshment of medium as suggested in Deryckere et al. 

(2012). Another suggestion is the reversion towards cell division through the repair of 
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damaged DNA. Light dependent and independent repair processes can undo the effects of 

UV-induced DNA damage (Stapleton, 1992). The aforementioned beneficial effect of a short 

illumination period, inducing repair mechanisms, during protoplast regeneration that restored 

cell wall formation in UV-irradiated cultures, did not restore cell division (Hall et al., 1992). 

The visualization of the DNA damage performed in this study did not yield valuable results. 

The use of SCGE was useful in the UV damage evaluation in N. plumbaginifolia protoplasts 

(Abas et al., 2007). However, in our study, no clear comets could be obtained. When comets 

were obtained in UVC-treated protoplasts, no clear quantification could be made based on tail 

moment, tail length and percentage of migrated DNA, because of the poor visualization 

quality. A possible explanation for the failure of the technique in our study is that the comet 

assay is not able to detect small DNA fragments (smaller than 50 kb) since they are mostly 

washed during the lysis and electrophoresis steps (Olive, 1999). The results obtained by the 

standard gel electrophoresis are also not valuable for UVC-induced DNA damage 

quantification. Although a slight difference was observed when performing 60 min of UVC 

irradiation, no clear quantification could be made. This is partly due to the relative short 

electrophoresis time of 3 h compared to the 6 days used in Hall et al. (1992). Possibly, 

fragments could be visualized when performing longer electrophoresis times, however, due to 

agarose gel melting, this was not possible in our laboratory.  

The problem of DNA damage visualization after UVC-irradiation during 10, 20 and 30 min is 

in contrast of the results obtained with the protoplast regeneration experiments, through which 

became clear that UVC irradiation had already profound effects after short incubation of the 

protoplasts on the cell wall formation, which was significantly hindered after 1 min UVC 

irradiation. UVC irradiation has profound effects on the cell’s mechanism already. Further 

research should focus on the effective rearrangements in the cell, not only on DNA levels, but 

also on RNA and protein levels.  

In this study, the effect of UVC irradiation on the regeneration capacities of Cichorium 

protoplasts was tested. UVC irradiation prevented cell wall resynthesis and cell division, 

probably due to induced DNA damage. No severe toxic effects of UVC irradiation on the 

cytoplasm of the protoplasts were observed, as protoplast viability was not heavily influenced. 

Furthermore, the use of UV is cheap, safe and easily applicable in comparison to ionizing 

radiation. UVC irradiation showed promising properties to obtain asymmetric somatic hybrids 

in Cichorium species. Further research on dose-dependent damage to the DNA structure by 

UVC irradiation in Cichorium protoplasts is needed to quantify the DNA damage. Optimal 

UVC irradiation parameters to obtain different levels of donor DNA damage are required 
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when we want to create different asymmetric products: for instance, the formation of 

chromosome addition lines needs the introgression of only one or few chromosomes from 

wild or cultivated relatives, whereas in the formation of complete asymmetric cybrids the 

introgression of nuclear donor DNA is undesired, however, no effect on the donor cytoplasm 

must be observed. Next to this dose-dependent damage, more research on UVC irradiation-

activated cell defence mechanisms and repair systems are needed. Moreover, the use of UVC 

irradiation in the production of asymmetric fusion products in Cichorium species should also 

be investigated. 
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4.3 IOA-induced cytoplasmic inactivation  

 
4.3.1 Materials and methods 

Plant material 

One industrial chicory inbred line, C. intybus var. sativum ‘VL52’ (seeds) and one industrial 

chicory genotype C. intybus var. sativum ‘K1093’ (shoots )were used. In vitro plant 

production, protoplast isolation and culture were performed as described in §Chapter 2.  

 

IOA treatment 

After isolation, protoplasts (1.5 x 105 protoplasts ml-1 MC2) were treated with different IOA 

concentrations (1, 1.5, 1.625, 1.75, 2 mM IOA dissolved in MC2) for 20 min at room 

temperature in dark conditions. After treatment, protoplasts were washed twice with MC2, 

centrifuged (100 g, 10 min) and resuspended in either MC1 or MC2 (Table 2-1); to analyze 

protoplast viability, 3 ml of protoplast solution (5 x 104 protoplasts ml-1 MC1) was cultured in 

50 mm petri dishes under complete dark conditions. To analyze protoplast regeneration, 

protoplasts resuspended in MC2 were cultured in low melting point agarose (LMPA) beads at 

a final density of 5 x 104 protoplasts ml-1 following §Chapter 2, under complete light 

conditions. 

 

Analysis of protoplast viability and regeneration after IOA treatment 

Microscopic detection of protoplast viability was carried out using FDA, as described in 

§4.2.1. Observations were made directly after IOA treatment and after 5 days of culture in 

liquid medium. Protoplast regeneration was evaluated in the LMPA beads. After 4 weeks, the 

microcalli development was determined. Experiments were repeated 3 to 5 times. Data were 

collected from 2 to 3 petri dishes per experiment and per treatment. 

 

Statistical analysis 

One-way analysis of variance (ANOVA) and Tukey’s Post-Hoc test were used to analyze the 

effect of different IOA concentrations on the protoplast viability in liquid culture and on the 

microcalli development in the LMPA beads for both industrial chicories. All calculations 

were obtained using the statistical software package Statistica v.11. 
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4.3.2 Results 

Analysis of protoplast viability and regeneration after IOA treatment 

The protoplast viability directly after IOA treatment of is shown in Fig. 4.3-1. No severe 

viability reduction was seen directly after treatment. For  C. intybus var. sativum ‘VL52’ 

protoplasts, only an IOA concentration of 1.75 and 2 mM yielded significantly less viable 

protoplasts. Parallel observations were made for C. intybus var. sativum ‘K1093’ protoplasts: 

an IOA concentration of 2 mM yielded significantly less viable protoplasts. However, still 

more than 80 % showed FDA fluorescence at these concentrations for both industrial 

chicories. 

After 5 days liquid medium culture, protoplast viability for both clearly dropped from 90 % to 

60 % in the control group. This is probably due to the unfavorable protoplast regeneration 

conditions for Cichorium protoplasts (Deryckere et al., 2012). More than 30 % protoplast 

viability was observed at 1 mM IOA concentration. IOA treatment at 1.625 mM or higher 

concentrations yielded less than 10 % of viable protoplasts after 5 days culture (Fig. 4.3-2). 

Four weeks after IOA treatment and protoplast culture in LMPA beads, microcalli formation 

reached 4.4 and 5.3 % for C. intybus var. sativum ‘VL52’ and C. intybus var. sativum ‘K1093’ 

control protoplasts, respectively. This is in comparison to results obtained for the same 

genotypes in Deryckere et al. (2012). IOA treatment with a concentration of 1 and 1.5 mM 

was not sufficient to prevent cell division, although a significant lower proportion of 

microcalli were formed. IOA treatment with concentrations of 1.625 and 1.75 yielded almost 

no divisions. 2 mM IOA concentration totally inhibited cell division (Fig 4.3-3). 
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Fig. 4.3-1 Protoplast viability (% of the initial number of cultured protoplasts) Left; C. intybus 
var. sativum ‘VL52’ and right; C. intybus var. sativum ‘K1093’ after different IOA treatments 
(0, 1, 1.5, 1.625, 1.75 and 2 mM), measured directly after treatment. Data are means ± SE (n = 
10, collected from three to five experiments). a, b are significant differences within each 
Cichorium type based on T  
 

 

  

Fig. 4.3-2 Protoplast viability (% of the initial number of cultured protoplasts) Left; C. intybus 
var. sativum ‘VL52’ and right; C. intybus var. sativum ‘K1093’ after different IOA treatments 
(0, 1, 1.5, 1.625, 1.75 and 2 mM), measured after 5 days culture. Data are means ± SE (n = 
10, collected from three to five experiments). a, b, c, d, e are significant differences within 
each Cichorium type based on T  
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Fig. 4.3-3 Microcalli formation (% of the initial number of cultured protoplasts) Left; C. 
intybus var. sativum ‘VL52’ and right; C. intybus var. sativum ‘K1093’ after different IOA 
treatments (0, 1, 1.5, 1.625, 1.75 and 2 mM), observed after 4 weeks culture. Data are means 
± SE (n = 10, collected from three to five experiments). a, b, c, d are significant differences 
within each Cichorium type based on Tu  
 
 
 
4.3.3 Discussion 

We observed that protoplast viability after 5 days culture and protoplast regeneration was 

heavily affected after IOA treatment of 1.625 mM and higher. However, an overestimation of 

the IOA effect on protoplast viability is most likely due to the used liquid culture systems 

which showed to be less appropriate for protoplast development than the LMPA bead culture 

system (Deryckere et al., 2012). Varotto et al. (2001) obtained totally inhibited cell division of 

red chicory mesophyll protoplasts when using 2 and 4 mM iodoacetate. In our study, 

iodoacetamide (IOA) was used instead of iodoacetate. IOA has been stated to penetrate the 

cells more easily than iodoacetate. The lower IOA concentrations we needed to totally inhibit 

cell division can partly be ascribed to this better cell penetration. A genotype effect is a 

possible, alternative explanation. Differences in sensitivity to iodoacetate and IOA were 

described by Creemers-Molenaar et al. (1992). Perennial ryegrass protoplasts were extremely 

sensitive to iodoacetate, whereby cell division was absent, even after heterokaryon formation. 

IOA treatments prevented cell division but allowed proliferation of heterokaryons after fusion 

with irradiated protoplasts. 

The optimal IOA concentration obtained in this study is 1.625 mM. Higher concentrations did 

not inhibit microcalli formation significantly more. The optimal IOA concentration obtained 

is in accordance to observations made in other IOA treatments used for asymmetric fusions: 
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A. thaliana (Yamagishi et al., 2002) and Musa (Xiao et al., 2009) protoplasts were treated for 

15 min at room temperature with 2 mM of IOA before cell fusion. Lower IOA concentrations 

(0.5 mM) stopped growth of Gossypium hirsutum protoplasts, whereas 3mM and 7.5 mM 

IOA were needed to stop cell proliferation in Citrus (de Bona et al., 2009a) and B. 

scorzonerifolium (Minqin et al., 2005), respectively. 

Wright (1978) noted that successful IOA treatment is very cell density-dependent. Optimal 

IOA concentrations (i.e. a dose that causes 100 % inactivation but does not prevent rescue) 

differ between experiments due to miscounting of cell densities or different amounts of cell 

aggregation. Xiao et al. (2009) used 1 x 106 protoplasts ml-1 treated with 0.07 - 2.5 mM IOA 

for 15 min at room temperature. After 1.5 mM IOA treatment, less than 5 % of the protoplasts 

formed cell colonies. Treatment with 2.5 mM IOA completely inhibited cell division, 

although no statistically significant difference was observed between 1.5 and 2.5 mM. 

Therefore, 1.5 mM was used as the optimal IOA concentration. In our study, we used 1.5 x 

105 protoplasts ml-1 for IOA treatment. Due to severe stickyness of the protoplasts at higher 

protoplast densities in the presence of IOA, this seemed to be the optimal protoplast density. 

After 1.625 mM IOA treatment, less than 10 % of the protoplasts of both Cichorium types 

showed protoplast viability. Microcalli formation dropped below 1 % after 1.625 mM IOA 

treatment. Using 1.75 and 2 mM IOA further inhibited cell division, although no significant 

difference was observed between 1.625, 1.75 and 2 mM. At high IOA concentrations, the 

solution became more viscous, causing protoplast agglutination. Therefore, 1.625 mM IOA 

was used as the optimal concentration for cytoplasm inactivation in our recipient chicories. 

 

 

4.4 Conclusion 
In this chapter, we evaluated the UVC irradiation dosage effects on putative Cichorium donor 

protoplasts and the IOA sensitivity of putative recipient industrial chicory cultivars to be used 

in prospective asymmetric fusion experiments. C. intybus and C. endivia protoplasts were 

submitted to 170 µW cm-2 UVC irradiation during 0, 1, 2, 4, 6, 10, 15, 20 and 30 min. 

Irradiation times of 6 to 10 min were appropriate for further asymmetric fusions because of 

their ability to significantly reduce protoplast regeneration without heavily disturbing 

protoplast viability. UVC-induced DNA damage quantification was not obtained using SCGE 

and the standard gel electrophoresis. Further research is required. 
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The optimal IOA concentration for inhibiting recipient protoplast regeneration was 1.625 mM 

for the two industrial chicory types tested. 

The fragmentation techniques as described in this chapter were used for asymmetric 

Cichorium fusion experiments to obtain cybrids (§Chapter 7). 

             



 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 - Cichorium karyotype analysis and fluorescence in situ 

hybridization (FISH) 
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5.1 Introduction 
The transfer of nuclear and/or cytoplasmic features from wild to cultivated species is of 

significant importance in crop improvement. Symmetric or asymmetric protoplast fusion 

overcomes sexual incompatibility and eliminates extensive backcrossing. However, the 

introduction of alien DNA in intra- or interspecific fusions may cause chromosome 

rearrangements. To determine these, identification of individual chromosomes in cytological 

preparations is essential. Among cytogenetic studies, chromosome identification and 

karyotype constructions are included. Karyotypes show the chromosomes ordered in sequence 

of decreasing length, characterized by arm length, centromere position and secondary 

constrictions, such as the location of nucleolar organizers (Van Laere et al., 2008). An 

additive cytogenetic tool for individual plant chromosome characterization is fluorescence in 

situ hybridization (FISH). 

For karyotyping, the ribosomal genes rDNA segments 5S and 45S and multicopy gene 

families can deliver unique FISH patterns, by which chromosomes within a species can be 

distinguished. A critical requirement for successful chromosome identification is an efficient 

chromosome preparation procedure. The most common targets for FISH are mitotic 

metaphase chromosomes from root tips. The chance of obtaining a satisfactory FISH mapping 

depends also on the position of the target DNA inside the chromosome and the chromosome 

condensation state (Jiang and Gill, 2006). 

The Asteraceae, containing over 20,000 species, are well known for their broad karyotypic 

variation between and within species (Fregonezi et al., 2004). So far, Cichorium has been 

poorly studied cytogenetically and a better cytogenetic understanding of the genus can help 

future breeding programs. Within the Cichorium genus, several studies have already provided 

valuable insights into the molecular background: nuclear (Bellamy et al., 1996; Kiers et al., 

2000; Lucchin et al., 2008) and plastid molecular markers (Bellamy et al., 1995; Varotto et 

al., 2001; Cappelle et al., 2007; Gonthier et al., 2010) have been developed to study the 

genetic relationship among Cichorium species and a genetic map of the nine chromosomes of 

the C. intybus genome was established (Cadalen et al., 2010). To our knowledge, only one 

study was performed on chromosome visualization in Cichorium species. Rambaud et al. 

(1992) estimated the ploidy level of regenerated rooted plantlets after protoplast fusion by 

counting young root-tip chromosomes after Feulgen staining. However, no karyotype 

characterization has been reported yet.  
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To this end, the genome size was estimated and detailed karyotypes of two Cichorium 

cultivars based on DAPI staining, arm lengths and centromeric index were established. 

Moreover, the distribution and organization of two ribosomal gene families (5S and 45S) 

were examined using fluorescence in situ hybridization (FISH). 

 

 

5.2 Materials and methods 
Plant material 

One industrial chicory inbred line C. intybus var. sativum ‘VL52’ (2n = 2x = 18) and one 

endive cultivar C. endivia var. crispum ‘Wallone Despa’ (2n = 2x = 18) were used for 

karyotype analysis. Seeds of in vivo plants were initiated in vitro. After rinsing for 1 min in 

70% ethanol, seeds were surface sterilized for 20 min in 6.5% NaOCl and germinated in 60 

mm petri dishes on solid Murashige and Skoog (1962) medium containing 150 mg l-1 casein 

hydrolysate and 30 g l-1 sucrose at pH 5.8. After germination, the plantlets were placed on 

solid half strength Murashige and Skoog medium containing 20 g l-1  sucrose and grown in 

Meli jars (Meli NV Veurne, Belgium) at 23 ± 2°C under a 16 h/8 h (light/dark) photoperiod at 

40 µmol m-2 s-1 photosynthetic active radiation. 

 

Genome size 

The genome size was determined using flow cytometry analysis on 10 samples of each 

genotype. A PAS III flow cytometer (Partec, Münster, Germany) equipped with a 20 mW 

solid state laser (Sapphire 488-20) emitting at a fixed wavelength of 488 nm was used. Nuclei 

suspensions were prepared according to a modified protocol described by Galbraith et al. 

(1983). The extraction and staining buffers and the PI and RNase stock solutions were 

available in the CyStain PI Absolute P kit (Partec GmbH, Münster, Germany). Young leaves 

(0.5 cm2) were put in a 55-mm-wide petri dish together with a known internal standard. Four 

hundred microliter of extraction buffer was added before chopping the leaves for 1 min with a 

razor blade. The total suspension was filtered through a 50 µm filter and 1600 µl staining 

buffer including 10 µl propidium iodide (PI) stock solution and 5µl RNAse was added. The 

nuclei were incubated for 2 h in darkness. The DNA content was calculated assuming a linear 

relationship between the fluorescence signals from the PI-stained nuclei of Cichorium and the 

known internal standard. The internal standard used for the genome size determination of C. 

intybus var. sativum ‘VL52’ was Lycopersicon esculentum L. cv. Stupicke (2C = 1.96 pg) 
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(Dolezel et al., 1992). For C. endivia var. crispum ‘Wallone Despa’, Glycine max L. cv. 

Polanka (2C = 2.5 pg) was used as internal standard (Dolezel et al., 1994). 

 

Chromosome preparation 

Mitotic metaphase chromosome spreads were obtained from actively growing root meristems 

by squashing according to Van Laere et al. (2008) with adaptations. Therefore, root tips were 

pretreated with 0.001% (v/v) -bromonaphthalene (Merck) solution for 2 h at 4°C, then fixed 

in Carnoy solution (ethanol - acetic acid 3 : 1) for 2 h at room temperature and stored at -20°C 

until use. The root tips were rinsed in tap water before incubation in an enzyme mixture of 0.5 

% pectolyase (Sigma-Aldrich) and 0.5 % cellulase ‘Onozuka RS’ (Duchefa Biochemie BV) 

dissolved in a 10 mM citrate buffer (10 mM tri sodium citrate, 10 mM citric acid, pH 4.6) for 

45 min at 37°C. The partially digested root tips were squashed on slides in a small drop of 10 

mM citrate buffer. Thereafter, a few drops of 60% acetic acid were added to dissolve the 

cytoplasm. The slides were placed on a heating plate (42°C) and the nuclei solution was 

spread for 2 min over the slide. A few drops of Carnoy solution were added, after which the 

slides were dried after rinsing in 98% ethanol. The presence of well-spread metaphase 

chromosomes was evaluated with a phase contrast microscope (Leica DMIRB) using 100x 

and 400x magnification. Slides could be stored at 4°C until further use. 

 

Karyotype analysis 

Before DAPI staining, slides containing well-spread metaphase chromosome sets were 

washed twice with 2x saline sodium citrate (SSC, containing 0.03 M trisodium citrate, 0.3 M 

sodium chloride, pH 7). Thereafter, the slides were dehydrated by 3 min incubation in 70%, 

90% and 98% ethanol, successively. Slides were stained with 20 µl Vectashield (Vector 

Laboratories) containing 1 µg ml-1 DAPI. Chromosome measurements and karyotype 

construction were determined by analyzing 10 well-spread metaphase chromosomes sets of 

each genotype using a freeware computer application, MicroMeasure v.3.3 (Reeves, 2001). 

Centromere positions (centromeric index Ci% = [short arm/long arm] x 100), chromosome 

arm length and chromosome type were determined following the nomenclature of Levan et al. 

(1964) (Figs. 5-1 and 5-2). Also the asymmetry of the karyotype [(  length short arms)/(mean 

chromosome complement)*100] and the condensation index [(genome size 1C)/( mean 

chromosome complement)] (Mbp/µm). 
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Fig. 5-1 Spread of metaphase chromosomes of C. endivia var. crispum ‘Wallone Despa’, 
stained with DAPI; Centromere position and chromosome arm length were measured with 
MicroMeasure v.3.3 
 

 

Fig. 5-2 Spread of metaphase chromosomes of C. intybus var. sativum ‘VL52’, stained with 
DAPI; Centromere position and chromosome arm length were measured with MicroMeasure 
v.3.3 
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Fluorescence in situ hybridization 

Mitotic metaphases were hybridized in situ with the probes pTa71 (provided by University of 

Wageningen, The Netherlands) and pTa794 (provided by Université Paris Sud, France). The 

clone pTa71 (Gerlach and Bedbrook, 1979), containing a 9 kb EcoRI fragment of Triticum 

aestivum L. consisting of the 45S (18S - 5.8S - 25S) rDNA and the transcribed and 

nontranscribed intergenic spacer regions, and the clone pTa794 (Gerlach and Dyer, 1980), 

including a 410 bp 5S rDNA and the intergenic spacer isolated from Triticum aestivum L., 

were labeled with biotin-16-dUTP or digoxigenin (DIG)-11-dUTP (Roche Applied Science) 

(Fig. 5-3) by nick translation (according to the manufacturer’s instructions). 1 µg DNA was 

dissolved in 16 µl MilliQ water, mixed with 4 µl biotin/digoxigenin-nick translation mix, 

centrifuged and incubated for 90 min at 15°C. The reaction was stopped by adding 1 µl 0.5 M 

EDTA (pH 8) and heating for 10 min at 65°C. The labeling was confirmed using dot blot: 1 µl 

of each DNA probe was put on a Hybond N+ membrane (Amersham pharmacia biotech, 

Buckinghamshire, England) and UV-irradiated for 1 min to dry. Alkaline phosphatase (AP)-

labeled anti-DIG antibody and AP-labeled streptavidin were added for hybridization to a 

DIG-labeled or biotin-labeled probe, respectively. After incubation with nitro-blue-

tetrazolium (NBT) and 5-bromo-4-chloro-3'-indolyphosphate (BCIP) (Roche Applied 

Science), phosphatase activity was detected by a color reaction in the labeled probes.   

 

 
Fig. 5-3 Biotin-14- and digoxigenin-11-uridine triphosphate. Biotin and digoxigenin are 
linked through a spacer arm whose length can vary from 7 to 20 C/N atoms, to uridine (R1 = 
OH; R2 = OH), deoxyuridine (R1 = OH; R2 = H) or dedeoxyuridine (R1 = H; R2 = H) (after 
Chevalier et al., 1997) 
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Pretreatment and hybridization were performed according to Van Laere et al. (2008). Before 

hybridization, the selected chromosome slides were dried overnight and pretreated with 1 µg 

ml-1 RNase A for 1 h at 37°C, washed with 2x SSC and 0.01 M HCl, incubated with 0.05 ng 

ml-1 pepsin for 15 min at 37°C, washed with 2x SSC and finally incubated in 4% 

paraformaldehyde and washed with 2x SSC before air-drying (Leitch and Heslop-Harrison, 

1994). The hybridization mixture included 50% (v/v) formamide, 10% (w/v) dextran sulphate, 

2x SSC, 0.25% (w/v) sodium dodecyl sulphate (SDS) and 1.25 ng µl-1 probe DNA. The 

hybridization mixture was denaturated for 10 min at 70°C, placed on ice for 5 min and added 

to the pretreated chromosome slides. After a 5-min denaturation at 80°C, hybridization was 

performed overnight in a humid chamber at 37°C. Thereafter, the slides were washed with 2x 

SSC for 15 min at room temperature (RT), 0.1x SSC for 30 min at 48°C and 2x SSC for 15 

min at RT. Biotin-labeled DNA was detected with CY3-conjugated streptavidin (Jackson 

Immuno Research Laboratories, West Grove, Pa., USA) and amplified with biotinylated goat-

antistreptavidin (Vector Laboratories, Burlingame, Calif., USA) and again CY3-conjugated 

streptavidin. Digoxigenin-labeled DNA was detected with fluorescein isothiocyanate (FITC)-

conjugated antidigoxigenin from sheep (Roche Apllied Science) and amplified with FITC-

conjugated antisheep (Roche Applied Science). Slides were counterstained with 20 µl 

Vectashield (Vector Laboratories) containing 1 µg ml-1 DAPI. 45S rDNA FISH was carried 

out on both C. intybus var. sativum ‘VL52’ and C. endivia var. crispum ‘Wallone Despa’. The 

45S rDNA probes were labeled both with digoxigenin and biotin. Bicolor FISH with 5S and 

45S rDNA was carried out on C. intybus var. sativum ‘VL52’. The 5S rDNA and 45S rDNA 

fragments were labeled with digoxigenin and biotin, respectively. 

 

 

5.3 Results 
Genome size 

The diploid genome size (2C) of C. intybus var. sativum ‘VL52’ was 2.43 ±0.08 pg, based on 

the internal standard Solanum lycopersicum L. (2C = 1.96 pg). For C. endivia var. crispum 

‘Wallone Despa’,  2C was 1.92 ±0.01 pg, based on the internal standard Glycine max L. (2C = 

2.5 pg). 

 

 

 



Chapter 5                   Chromosome fragmentation and cytoplasm inactivation in Cichorium species 
 

125 
  

Karyotype analysis 

The mean total length of the haploid metaphase complement was 152.8 and 132.3 µm for C. 

intybus var. sativum ‘VL52’ and C. endivia var. crispum ‘Wallone Despa’ respectively. The 

karyotype of C. intybus var. sativum ‘VL52’ consisted of 5 metacentric (M) and 4 

submetacentric (SM) chromosomes. The karyotype of C. endivia var. crispum ‘Wallone 

Despa’ included 8 M and 1 SM chromosomes. The longest and shortest chromosome of C. 

intybus var. sativum ‘VL52’ was on average 22.3 and 12.8 µm, respectively. For C. endivia 

var. crispum ‘Wallone Despa’ the longest chromosome was on average 19.2 µm, the shortest 

9.9 µm (Table 5-1, Figs. 5-4 and 5-5). The asymmetry index of both species was comparable; 

38.8% for C. intybus var. sativum ‘VL52’ and 41.6% C. endivia var. crispum ‘Wallone 

Despa’. Also the condensation index showed a minor difference between both; 7.8 for C. 

intybus var. sativum ‘VL52’ and 7.1 for C. endivia var. crispum ‘Wallone Despa’ (Table 5-1). 

 

Chromosome localization of 45S and 5S rDNA 

Digoxigeninated 45S rDNA probes bound more specifically to the target DNA than the 

biotinylated probes. Biotinylated probes delivered an unclear, unspecific spot. Digoxigenin-

labeled probes, on the contrary, specifically elucidated the 45S rDNA position on the 

chromosomes. FISH with 45S rDNA on C. intybus var. sativum ‘VL52’ revealed 

hybridization signals in the pericentromeric regions of chromosomes 1 and 2 (Fig. 5-6). 

Moreover, the bicolor FISH revealed a 5S rDNA hybridization signal on the short arm of 

chromosome 7 (Fig. 5-7). Hybridization signals of 45S rDNA were observed on chromosome 

1, 2 and 6 of C. endivia var. crispum ‘Wallone Despa’. The spots on chromosomes 1 and 2 

were located in the pericentromeric region, comparable to the observations of  C. intybus var. 

sativum ‘VL52’. The hybridization signal on chromosome 6, however, was situated more 

distally from the centromeric region (Fig. 5-8). The idiograms of the two genotypes, with 

indication of chromosome length, Ci and hybridization signals are presented in Figs. 5-4 and 

5-5. 
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Fig. 5-4 Left: Idiogram of C. intybus var. sativum ‘VL52’; Red spots indicate 45S rDNA 
fragments, the green spot indicates the 5S rDNA fragment. Right: Total length, centromere 
index en chromosome type of the 9 chromosomes of the haploid complement (Data are means 
± SE, n = 10). 
 

 

 

 

Fig. 5-5 Left: Idiogram of C. endivia var. crispum ‘Wallone Despa’; Red spots indicate 45S 
rDNA fragments. Right: Total length, centromere index en chromosome type of the 9 
chromosomes of the haploid complement (Data are means ± SE, n = 10).  
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Fig. 5-6 FISH of digoxigenin-labeled 45S rDNA on a metaphase spread of C. intybus var. 
sativum ‘VL52’ (arrows). 
 

 

Fig. 5-7 FISH of digoxigenin-labeled 5S rDNA (yellow arrows) and biotin-labeled 45S rDNA 
(blue arrows) on a metaphase spread of C. intybus var. sativum ‘VL52’. 
 



Chapter 5                   Chromosome fragmentation and cytoplasm inactivation in Cichorium species 
 

129 
  

 

Fig. 5-8 FISH of digoxigenin-labeled 45S rDNA on a metaphase spread of C. endivia var. 
crispum ‘Wallone Despa’ (arrows).  
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5.4 Discussion 
Clear DNA content differences were observed between the two Cichorium species. For 

industrial chicory, 2C = 2.43 ±0.08 pg. For the endive, 2C was 1.92 ±0.01 pg. These findings 

are in accordance with the differences we observed in their total (haploid) chromosome 

complement, which was bigger for industrial chicory than for endive. Although, different 

internal standards were used to calculate the DNA content and nonlinearity can arise in flow 

cytometry due to undersaturated staining of nuclei or machine errors (Mortreau et al., 2009), 

the genome sizes of the two species are clearly different. To our knowledge, no information of 

the genome size in Cichorium species was available from earlier reports.  

In our study, C. intybus and C. endivia were also karyotyped for the first time. Their 

karyotypes were different in the number of metacentric (M) and submetacentric (SM) 

chromosomes and chromosome length. Despite this difference, the two karyotypes also 

showed similarities: The SM chromosomes 6 and 9 of C. intybus are closely situated near a Ci 

of 37.5, distinguishing SM from M chromosomes. In comparison, chromosomes 6 and 9 of C. 

endivia are metacentric. This demonstrates the close cytological relationship and can explain 

the possibility of sexual crossing between these two Cichorium species. The chromosome size 

of our Cichorium genotypes varied from 10 to 22 µm. These sizes are big in comparison to 

other plant species from the Asteraceae family; Crepis japonica (~ 1.9 - 2.2 µm), Galinsoga 

parviflora (~ 1.4 - 1.9 µm) and Chaptalia nutans chromosomes (~ 1.3 - 2.5 µm) are tenfold 

smaller (Fregonezi et al., 2004). Big chromosomes were also found in other families such as 

the Liliaceae and Alliaceae: Lilium longiflorum (2C = 77.1 pg) and L. rubellum (2C = 73.6 

pg) contain chromosomes varying from 18 up to 34 µm (Lim et al., 2001). Chromosomes of 

Allium cepa have a mean total length of 69.7 µm (Khrustaleva and Kik, 2001). 

Chromosome localization of 5S and 45S rDNA on C. intybus var. sativum ‘VL52’ 

chromosomes revealed one and two hybridization signals, respectively. The 5S rDNA 

fragment was located on the short arm of chromosome 7. The two 45S rDNA hybridization 

signals were situated in the pericentromeric region of chromosomes 1 and 2. Three 45S rDNA 

hybridization signals were found in the pericentromeric region on C. endivia var. crispum 

‘Wallone Despa’ chromosomes 1, 2 and 6. This variability of the number of 45S rDNA loci 

among plant species of the same genus has already frequently been reported (Pedrosa-Harand 

et al., 2006). The rDNA clusters are believed to be highly mobile due to the existence of 

transposons observed in plant rDNA clusters (Britton-Davidian et al., 2012). In plants and 

animals, 45S rDNA is mainly associated with a NOR in active state. Moreover, a NOR region 
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is often associated with a secondary constriction, like satellites, in the chromosome. Our 

findings, however, showed 45S rDNA signals in the pericentric region on chromosomes not 

containing secondary constrictions. These secondary constrictions can be lost during 

chromosome preparations, or totally absent in Cichorium. The detection of 45S rDNA signal 

without a nucleolar organizing region (NOR) has also been observed in Allium cepa (Ricroch 

et al., 1992) and Hydrangea species (Van Laere et al., 2008).  

Our best FISH results were obtained using digoxigenin-labeled probes. The use of biotin-

labeled probes yielded diffuse spots, through which accurate localization of our target DNA 

was hindered. However, size and charge differences between biotinylated and 

digoxigeninated probes are absent (Fig. 5-3). The nonspecific binding of biotin has previously 

also been reported in Chevalier et al. (1997), attributing this problem to the stickiness of the 

protein caused by its attached carbohydrates. Endogenous biotin interferes with specific 

signals, causing false-positive results, observed when using biotin-labeled probes (Chevalier 

et al., 1997). Generally, hybridization of labeled probes is also influenced by the accessibility 

of the target. The position of the target at the chromosomes and the chromosome condensation 

state are key factors who determine the accessibility of the target. Yet, another reason for the 

better results obtained using digoxigenin-labeled probes can be included: in our study, biotin-

streptavidin-labeled target DNA was detected with two amplifying layers containing 

biotinylated goat-antistreptavidin and CY3-conjugated streptavidin. This layered construction, 

enhanced the signal detection, but could mask the overall biotin residues which could not be 

detected. The digoxigenin-labeled probes, however, could be detected using only one 

amplification layer. 

The successful application of FISH on Cichorium species opened perspectives for the 

application of genomic in situ hybridization (GISH). GISH is able to differentiate the parental 

chromosomes or different chromosomal fragments in interspecific hybrids. As GISH is 

mostly used in plant species with large-sized chromosomes (Van Laere et al., 2010), this 

technique was promising for further research in our Cichorium genotypes. Preliminary GISH 

experiments, however, revealed a high degree of homology between C. intybus and C. endivia 

genotypes, impeding the differentiation in allotetraploid hybrids. Also, the detectable GISH 

signals were often restricted to pericentromeric regions, where repetitive DNA clusters are 

present, and disabling the clear difference between parental genomes in hybrids. Further 

research on the optimization of GISH in Cichorium can be made by improving more stringent 

hybridization conditions and changing the probe/block DNA ratio. However, the high 

homology between the chicory and endive genome can thwart the GISH technique. For this 
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reason, performing GISH on intraspecific somatic hybrids of industrial and wild type chicory 

is probably not recommended. Possible differences of the 5S probe would provide a solution 

to distinguish these hybrids. But therefore, first 5S localization through FISH on wild type 

chicory and endive should be observed. 

Our results demonstrated that FISH and bicolor FISH in combination with DAPI 

counterstaining can be a powerful tool to provide chromosomal landmarks for developing 

karyotypes in Cichorium species. More cytological markers can be added to develop 

chromosome portraits which can be used to more profoundly characterize progeny in plant 

breeding purposes. 

 

 

5.5 Conclusion 
To determine alien DNA in intra- or interspecific fusions between Cichorium species, 

karyotype analysis and FISH of two ribosomal gene families (5S and 45S) were performed on 

parental industrial chicory C. intybus var. sativum ‘VL52’ and endive C. endivia var. crispum 

‘Wallone Despa’. The karyotype of C. intybus var. sativum ‘VL52’ consisted of 5 metacentric 

(M) and 4 submetacentric (SM) chromosomes. The karyotype of C. endivia var. crispum 

‘Wallone Despa’ included 8 M and 1 SM chromosomes. FISH of 45S rDNA with C. intybus 

var. sativum ‘VL52’ revealed two hybridization signals on chromosomes 1 and 2. A single 5S 

rDNA hybridization signal was observed on chromosome 7. Three 45S rDNA hybridization 

signals were observed on chromosome 1, 2 and 6 of C. endivia var. crispum ‘Wallone Despa’. 

The karyotype information of industrial chicory and endive can be used for further plant 

breeding purposes or for the characterization of somatic hybrids after protoplast fusion. 
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Based on the published article: Deryckere D, De Keyser, E, Eeckhaut T, Van Huylenbroeck J, 

Van Bockstaele E. (2012) High resolution melting analysis as a rapid and highly sensitive 

method for Cichorium plasmotype characterization. Plant Molecular Biology Reporter doi: 

10.1007/s11105-012-0547-y 
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6.1 Introduction 
Somatic hybridization has been used in many species to circumvent sexual incompatibility 

and to enable the direct transfer of nuclear and cytoplasmic genome features into plant cells. 

In Cichorium species, somatic hybridization through protoplast fusion and regeneration has 

already been established (Varotto et al., 2001; Cappelle et al., 2007; Deryckere et al., 2012). 

This has created a great demand for the development of organelle markers to study somatic 

hybrids/cybrids. Molecular markers have been used to study the genetic relationship among 

Cichorium species and cultivar groups (Bellamy et al., 1996; Kiers et al., 2000; Lucchin et al., 

2008). Cadalen et al. (2010) calculated a genetic map based on 472 simple sequence repeats 

(SSR) and single nucleotide polymorphisms (SNP) markers covering the nine chromosomes 

of the C. intybus genome. Mitochondrial (mt) and chloroplast (cp) DNA sequence 

polymorphisms in Cichorium species have been investigated in the 1990s (Bellamy et al., 

1995). Cappelle et al. (2007) described specific mtDNA coding regions (atp6, atpA, coxII, 

coxIII, nad3, nad4 and orfB) and the cp DNA trnL-trnF intergenic spacer region as probes in 

Southern blot experiments. This revealed which parental mtDNA or cpDNA was present in 

interspecific symmetric somatic hybrids between C. intybus and C. endivia. Varotto et al. 

(2001) reported the use of the mt genes coxI, coxII and cob from the maize mt genome and the 

orf522 and atpA genes from the sunflower mt genome to characterize asymmetric somatic 

hybrid plants between C. intybus and Helianthus annuus L. Gonthier et al. (2010) used the mt 

genes atpA, atp9, cob and coxII and the cp DNA sequences matK, ndhF, rbcL and trnL-trnF 

to evaluate the level of contamination by organelle DNA in the construction of two BAC 

libraries representing deep coverage of the nuclear genome of C. intybus. In all of these 

studies, the visualization of the organelle DNA fragments was done using the cumbersome 

Southern blot analysis. 

High-resolution melting (HRM) analysis is a much faster and more sensitive detection 

technique for cytoplasms of various plant species. HRM was introduced in the 1970s with the 

genotyping of yeast mitochondrial DNA (Michel et al., 1974; Wu et al., 2008). Improvements 

to the saturating intercalating dyes have made HRM analysis a highly sensitive method for 

genotyping, discovering mutations and tracking SNPs (Han et al., 2012). Originally, the 

technique was used extensively in medical diagnostic applications to locate mutations in 

human genetics (Wittwer et al., 2003; Krypuy et al., 2006; Sinthuwiwat et al., 2008). HRM 

was soon inserted in the SNP genotyping of many plant species including barley (Lehmensiek 

et al., 2008), grapevine and olive (Mackay et al., 2008), perennial ryegrass (Studer et al., 
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2009), potato (De Koeyer et al., 2010), wheat (Botticella et al., 2011), rice (Li et al., 2011), 

Brassica rapa (Lochlainn et al., 2011), almond (Costa et al., 2012), alfalfa (Han et al., 2012), 

Capsicum (Jeong et al., 2012) and bean (Ganopoulos et al., 2012). HRM combines a 

polymerase chain reaction (PCR) using a double stranded DNA (dsDNA) binding dye with 

the melting behavior of the PCR amplicons. When dsDNA dissociates through melting in 

single stranded DNA (ssDNA), changes in fluorescence can be monitored. Shifts in melting 

temperature curves can be attributed to variations in amplicon sequences caused by SNPs, 

insertions/deletions (INDELS) or SSR variants and amplicon length (Lehmensiek et al., 2008; 

Wu et al., 2010). In contrast with other techniques such as Southern blotting, digestion with 

restriction enzymes and others, HRM is a fast and low cost technique due to its 384-well 

format. Moreover, HRM is non-destructive; the DNA can be recovered after melting and used 

for sequencing or cloning (Hofinger et al., 2009). No information is currently available on 

HRM analysis in Cichorium species.      

The aim of the present study was to evaluate HRM analysis for the detection of specific 

mitochondrial and chloroplast markers to distinguish the industrial chicory plasmotypes 

C.intybus var. sativum from the wild type chicory C. intybus and the endive C. endivia 

plasmotypes. The technique was used to characterize the cytoplasms of symmetric protoplast 

fusion products between C. intybus var. sativum ‘VL52’ and C. endivia var. crispum ‘Wallone 

Despa’. 

 

 

6.2 Materials and methods 
Plant material and DNA extraction 

One industrial chicory inbred line, C. intybus var. sativum ‘VL52’,  one industrial chicory 

clone C. intybus var. sativum ‘K1093’, five chicory wild types of C. intybus (‘Ames23224’, 

‘Ames26033’, ‘Ames22531’, ‘Ames22532’ and ‘Pi531291’) and two endive cultivars C. 

endivia (C. endivia var. crispum ‘Wallone Despa’ and C. endivia var. latifolium ‘nr. 5’) were 

used in the experiments. The plants were grown at the Institute for Agricultural and Fisheries 

Research (ILVO) and provided by the COSUCRA- Groupe Warcoing S.A., Chicoline 

division. Seeds of in vivo plants were rinsed for 1 min in 70% ethanol, surface sterilized for 

20 min in 6.5% NaOCl and germinated in 60 x 15 mm petri dishes on solid Murashige and 

Skoog (1962) medium containing 150 mg l-1 casein hydrolysate and 30 g l-1 sucrose at pH 5.8. 

After germination, the plantlets were grown on solid Murashige and Skoog medium 
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containing 20 g l-1 sucrose and grown in Meli jars (Meli NV Veurne, Belgium) at 23 ± 2°C 

under a 16 h/8 h (light/dark) photoperiod at 40 µmol m-2 s-1 photosynthetic active radiation 

supplied by cool white fluorescent tube lamps (Sylvania Standaard  F40W/33-640/RS Cool 

White). The HRM technique was tested on 50 somatic hybrids. The somatic hybrids resulted 

from symmetric protoplast fusions between C. intybus var. sativum ‘VL52’ and C. endivia 

var. crispum ‘Wallone Despa’ and were regenerated following the protocol of Deryckere et al. 

(2012). Their hybridity was demonstrated by genomic microsatellite markers provided by the 

COSUCRA-Groupe Warcoing S.A., Chicoline division (data not shown). 

Plant DNA was extracted from 100 mg fresh in vitro leaf material using the Qiagen DNeasy 

Plant Tissue Mini kit, according to the manufacturer’s instructions. The DNA concentration 

and quality was analyzed by an Eppendorf Nanodrop ND-1000 spectrophotometer. Samples 

were diluted to a 15 ng DNA µl-1 working concentration. 

 

Identification of cytoplasmic SNPs 

To obtain information on the presence of putative cytoplasmic SNPs in the nine Cichorium 

species, we selected five mtDNA (atpA, coxII, orfB, nad3 and cob) and two cpDNA (trnL-

trnF and ndhF) regions from literature (Cappelle et al., 2007; Gonthier et al., 2010) and 

sequenced them after PCR amplification. The 25-µl PCR reaction volume consisted of 75 ng 

total plant DNA template, 1.5 U AmpliTaq® DNA polymerase (Applied Biosystems), 1x PCR 

buffer (Applied Biosystems), 0.025 mM dNTP each, 0.2 µM each primer and deionized water 

up to 25 µl. For PCR amplification, a preheating period at 94°C for 4 min preceeded 30 cycles 

of 93°C for 45 s, 55°C for 45 s and 72°C for 2 min; a postamplification incubation at 72°C for 

10 min completed the reaction. PCR amplification was performed on the GeneAmp® PCR 

System 9700 (Applied Biosystems). The PCR fragments obtained were sequenced using the 

BigDye® Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) according to the 

manufacturer’s instructions, using the gene-specific primers. The sequencing reactions were 

analyzed on a 3130xI® Genetic Analyzer (Applied Biosystems) using the software program 

Sequence Analysis v5.2 Patch2 (Applied Biosystems). 

 

HRM primer design 

Primer pairs targeting SNP and INDEL sites were evaluated for HRM analysis. By using the 

online primer design tool Primer 3 Plus, the primer pairs were designed to be 20 ± 2 bp long 

and to have an annealing temperature of 60 ± 2°C. The amplicon length was chosen between 
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100 and 200 bp spanning one (several) SNP(s) and/or INDELs. The primer pairs tested for the 

HRM analysis are summarized in Table 6-1. 

 

PCR amplification and HRM analysis  

All PCR reactions were performed in 384-well plates using a LightCycler® 480 Real-Time 

PCR system (Roche Applied Science) in a total volume of 10 µl per well. The reaction 

mixture contained 30 ng total DNA, 2.5 mM MgCl2, 0.2 µM forward and reverse primers and 

1 x High-Resolution Melting Master Mix (Roche Applied Science). Before performing HRM, 

an initial denaturation at 95°C for 10 min was followed by 50 cycles of amplification 

(denaturation at 95°C for 10 s, annealing at 60°C for 15 s and extension at 72°C for 25 s). The 

amplification was followed by the high-resolution melting: denaturation at 95°C for 1 min, 

cooling to 40°C for 1 min, a one-step temperature increase to 65°C and a continuous further 

increase to 95°C at 0.02°C s-1 increments. During the incremental melting step, fluorescence 

data were acquired continuously. After samples were amplified using PCR and melted using 

HRM, the gene scanning software (LightCycler® 480 Gene Scanning Software) analyzed the 

Tm of the individual curves, calculated the relative fluorescence signal differences between 

the plasmotypes, and autogrouped those with similar melting curves (no melting standards 

were required). 

 

Testing the HRM sensitivity for heterozygous plasmotypes 

To determine whether our HRM markers could distinguish between homozygous and 

heterozygous samples, we tested the detection efficiency of the coxII-2, cob-1, cob-2, trnL-

trnF, trnL-trnF-2 and ndhF-1 fragments in pooled samples. For each amplicon type, 

fragments of C. intybus var. sativum ‘VL52’ were mixed with amplicons of C. endivia var. 

crispum ‘Wallone Despa’ at ratios of 0:100, 5:95, 25:75, 50:50, 75:25, 95:5 and 100:0. HRM 

analysis was performed on these mixed samples. 

 

HRM on protoplast fusion products 

The putative HRM markers coxII-2, cob-1, cob-2, trnL-trnF, trnL-trnF-2, and ndhF-1 

obtained in the previous experiments were used to characterize the cytoplasm of the 50 

somatic hybrids. The parent plasmotypes C. intybus var. sativum ‘VL52’ and C. endivia var. 

crispum ‘Wallone Despa’ were included as references. Furthermore, to confirm the sequence 

variations detected by HRM, sequence analysis was performed on 8 clones of PCR products 

from the somatic hybrids and the original fusion partners. 
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Before cloning, a PCR reaction was performed using Gotaq® Hot Start Polymerase (Promega) 

that consisted of preheating at 94°C for 2 min then 35 cycles of 94° for 30 s, 56°C for 30 s 

and 72°C for 1 min, finalized at 72°C for 5 min. PCR amplification was performed on the 

GeneAmp® PCR System 9700 (Applied Biosystems). The PCR products were cloned into a 

pCRTM2.1-TOPO® vector (Invitrogen) using the TOPO® TA Cloning® Kit (Invitrogen) 

according to the manufacturer’s protocol. After direct colony PCR using the universal M13 

primer, the sequences of the 8 clones for each plant and each cytoplasmic fragment were 

determined on a 3130xI® Genetic Analyzer (Applied Biosystems) and analyzed using the 

software program Sequence Analysis v5.2 Patch2 (Applied Biosystems). 
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6.3 Results   
Identification of cytoplasmic SNPs  

Sequence analysis of the seven cytoplasmic fragments revealed the presence of several SNPs 

and INDELs. In the mitochondrial fragments atpA (1500 bp) and orfB (450 bp), no variation 

was observed between the sequences of different Cichorium species. The fragment nad3 (335 

bp) showed one non-species-specific transversion (C/A) at 216 bp which discriminated the 

wild type C. intybus ‘Ames22532’ from all other plasmotypes. However, only SNPs or 

INDELs discriminating the industrial chicory plasmotypes from the endive and the wild type 

plasmotypes were useful for future HRM experiments. The sequences of the mitochondrial 

coxII and cob fragments yielded one and two valuable SNPs, respectively. One transversion 

(T/G) at 46 bp was observed in the coxII amplicon sequence (1700 bp) (Supplemental Fig. 6-

1). The cob fragment (698 bp) contained two transversions (G/T and A/C) at 193 bp and 620 

bp, respectively (Supplemental Fig. 6-2). 

For the chloroplast fragment ndhF (579 bp), three SNPs were found. One SNP (C/A) at 278 

bp discriminated between the industrial chicory plasmotypes and the others (Supplemental 

Fig. 6-3). The sequence of the chloroplast fragment trnL-trnF (395 bp) revealed three 

INDELs and one SNP. The endive plasmotypes showed an 11 bp insertion at 50 bp. A 1 bp 

insertion was observed at 68 bp in the industrial chicory plasmotypes and a 3-bp-long 

insertion at 298 bp was observed in the wild type chicories and the endives. The SNP (T/C) at 

153 bp distinguished the industrial chicory plasmotypes from the endive and wild type 

plasmotypes (Supplemental Fig. 6-4).  

 

HRM analysis 

No valuable HRM distinctions were obtained when using primer pairs coxII-1, cob-3, trnL-

trnF-1, trnL-trnF-3, trnL-trnF-4, trnL-trnF-5, ndhF-2 and ndhF-3. Plasmotypes were 

distinguishable on the melting curves of the fragments coxII-2, cob-1, cob-2, trnL-trnF, trnL-

trnF-2 and ndhF-1. A clear difference in fluorescence was observed between the industrial 

chicory plasmotypes versus the wild type chicory and endive plasmotypes when using the 

mitochondrial fragments coxII-2, cob-1 and cob-2 (Fig. 6-1). HRM analysis of the chloroplast 

fragments trnL-trnF-2 and ndhF-1 separated the industrial chicory plasmotypes from the wild 

type chicory and endive plasmotypes (Fig. 6-2). HRM analysis of the trnL-trnF fragment 

yielded three groups that represented the industrial chicory, the wild type chicory and the 

endive plasmotypes (Fig. 6-2). Six of the 14 primer pairs resulted in clearly distinguishable 
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HRM curves. Among them were three mitochondrial primer pairs (coxII-2, cob-1 and cob-2) 

and three chloroplast primer pairs (trnL-trnF, trnL-trnF-2, and ndhF-1) (Table 6-1). 

 

 
Fig. 6-1 HRM analysis of the mitochondrial fragments (A) coxII-2, (B) cob-1 and (C) cob-2. 
The red curves represent the industrial chicory plasmotypes C. intybus var. sativum ‘VL52’ 
and ‘K1093’. The blue curves represent the wild type chicory and endive plasmotypes 
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Fig. 6-2 HRM analysis of the chloroplast fragments (A) trnL-trnF, (B) trnL-trnF-2 and (C) 
ndhF-1. The red curves represent the industrial chicory plasmotypes C. intybus var. sativum 
‘VL52’ and ‘K1093’. The blue curves obtained for the fragments trnL-trnF-2, and ndhF-1 
represent the wild type chicory and endive plasmotypes. For the fragment trnL-trnF, the blue 
curves represent the wild type chicory, while the green curve represent an endive plasmotype. 

 

Testing HRM sensitivity for heterozygous plasmotypes 

A mixture of the two homozygous plasmotypes (C. intybus var. sativum ‘VL52’ and C. 

endivia var. crispum ‘Wallone Despa’) should produce a melting curve corresponding to that 

of a heterozygous plasmotype. The HRM analysis of the mixed plasmotypes for the coxII-2 

fragment revealed HRM curves for the 5:95 and 95:5 ratios parallel to the curves obtained for 

the homozygous parents C. endivia var. crispum ‘Wallone Despa’ and C. intybus var. sativum 

‘VL52’, respectively (Fig. 6-3). The melting curves of the 25:75, 50:50 and 75:25 ratios could 

be clearly distinguished from the parental plasmotypes and each other. The mixed 

plasmotypes for the trnL-trnF fragment (Fig. 6-4) yielded higher melting temperatures (Tm) 

than the original plasmotypes C. endivia var. crispum ‘Wallone Despa’ and C. intybus var. 

sativum ‘VL52’. The melting curves of all the ratios (50:50, 75:25, 25:75, 95:5 and 5:95) 

could clearly be distinguished from the parental plasmotypes. No discrimination between the 

parents C. endivia var. crispum ‘Wallone Despa’ and C. intybus var. sativum ‘VL52’ was 

observed. The HRM analysis of the other fragments (cob-1, cob-2, trnL-trnF-2, and ndhF-1) 

yielded no clear distinction between homozygotes and heterozygotes. 
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Fig. 6-3 HRM analysis of mixed plasmotypes for the coxII-2 fragment: (A) melting curve and 
(B) difference plot of the parental plasmotypes C. intybus var. sativum ‘VL52’ (red) and C. 
endivia var. crispum ‘Wallone Despa’ (blue) and the ratios 5:95 (blue), 25:75 (green), 50:50 
(pink), 75:25 (grey) and 95:5 (red) 



Chapter 6                     Plasmotype characterization 
 

147 
  

 

Fig. 6-4 HRM analysis of mixed plasmotypes for the trnL-trnF fragment: (A) melting curve 
and (B) difference plot of the parental plasmotypes C. intybus var. sativum ‘VL52’ (blue) and 
C. endivia var. crispum ‘Wallone Despa’ (blue) and the ratios 5:95 and 95:5 (brown), 25:75 
(red), 50:50 (green) and 75:25 (pink) 

 

HRM analysis of protoplast fusion products 

We tested the ability of the HRM markers coxII-2, cob-1, cob-2, trnL-trnF, trnL-trnF-2 and 

ndhF-1 to characterize the cytoplasm of 50 Cichorium somatic hybrids. Figure 6-5 shows the 

outcome of the HRM analysis for the coxII-2 and cob-2 fragments. The melting curves of the 

somatic hybrids corresponded to either the parent C. intybus var. sativum ‘VL52’ or to the 

parent C. endivia var. crispum ‘Wallone Despa’. Out of 50 somatic hybrids, 26 contained the 

mitochondrial coxII-2, cob-1 and cob-2 fragments of the industrial chicory, whereas 23 

contained the mitochondrial fragments of the endive plasmotype. In one somatic hybrid,  the 

coxII-2 and cob-1 endive fragments and the cob-2 industrial chicory fragment were present. 
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No intermediate melting curves were observed, suggesting the abscence of heterozygosity 

within each fragment. All the chloroplast fragments (trnL-trnF, trnL-trnF-2, and ndhF-1) 

corresponded to the industrial chicory plasmotypes. Sequence analysis after cloning of the 

PCR-fragments was consistent with the results obtained by HRM. 

 

 
Fig 6-5 HRM analysis of the 50 somatic hybrids (A) melting curve and (B) difference plot for 
the coxII-2 fragment and (C) melting curve and (D) difference plot for the cob-2 fragment. 
The red and blue curves represent the C. intybus var. sativum ‘VL52’ and C. endivia var. 
crispum ‘Wallone Despa’ plasmotypes, respectively 
 

 

6.4 Discussion 
We have developed three mt (coxII-2, cob-1 and cob-2) and three cp markers (trnL-trnF, 

trnL-trnF-2, and ndhF-1) for HRM analysis to discriminate two industrial chicories 

(Cichorium intybus var. sativum ‘VL52’ and ‘K1093’) from five wild types (C. intybus 

‘Ames23224’, ‘Ames26033’, ‘Ames22531’, ‘Ames22532’ and ‘Pi531291’) and two endive 

cultivars C. endivia (C. endivia var. crispum ‘Wallone Despa’ and C. endivia var. latifolium 

‘nr.5’) (Figs. 6-1, 6-2).  

The sequence analysis of mt and cp fragments previously used in Cichorium species 

(Cappelle et al., 2007; Gonthier et al., 2010) revealed several SNPs and INDELs in our 

plasmotypes. The resulting SNP and INDEL data were used to construct primer pairs suitable 

for HRM analysis. Six (coxII-2, cob-1, cob-2, trnL-trnF, trnL-trnF-2, and ndhF-1) out of 14 

primer pairs produced different HRM profiles for industrial chicory plasmotypes and endive 
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and wild type chicory plasmotypes. SNPs as well as INDELs were responsible for the 

different melting behavior of the amplicons. Amplicon size ranged from 94 to 207 bp (except 

for the cp fragment trnL-trnF) and the primer pairs spanned at least one SNP or INDEL 

(Table 6-1). This is in accordance with De Koeyer et al. (2010) who obtained similarly sized 

fragments for SNP detection using HRM in potato. Shorter amplicons are assumed to result in 

more distinctive HRM curves (Reed and Wittwer, 2004; Seipp et al., 2007; Hofinger et al., 

2009; Han et al., 2012). Despite its 395-bp size, the cp fragment trnL-trnF resulted in clearly 

distinctive melting graphs for our plasmotypes. This is probably due to the presence of both a 

SNP and three INDELs.  

The lack of a good HRM analysis after implementation of the eight other primer pairs (coxII-

1, cob-3, trnL-trnF-1, trnL-trnF-3, trnL-trnF-4, trnL-trnF-5, ndhF-2 and ndhF-3) may be due 

to an inefficient PCR amplification. PCR conditions must be carefully chosen in order to 

amplify only one fragment. The presence of non-specific bands, primer dimers or secondary 

structures can interfere with HRM performance (White and Potts, 2006; Lehmensiek et al., 

2008). Another reason for the failure of putative HRM primer pairs can be the inability to 

identify SNPs located closely to the amplicon’s primers (<20 bp) as described by Hofinger et 

al. (2009) and Botticella et al. (2011). However, similar to the observations of Reed and 

Wittwer (2004), our HRM analysis did not suffer from the distance between primers and SNP 

position. The primers coxII-2F, cob-1R, cob-2R, ndhF-1F and trnL-trnF-2F were all located 

less than 15 bp from the SNP or INDEL. Also, the effect of amplicon concentration on the 

melting curve shape was negligible because any initial product concentration difference is 

equalized during the PCR plateau phase (Liew et al., 2004). 

In addition to the abovementioned possible problems during PCR amplification, the lack of 

different melting curves can be another reason for HRM analysis failure. The ability to 

discriminate homozygous plasmotypes depends on the melting temperature (Tm) difference 

between the plasmotypes and the potential of the LightCycler® 480 Real-Time PCR system to 

observe these Tm differences (Herrmann et al., 2006). Liew et al. (2004) has mentioned that 

differences in Tm depend on the class of SNPs. The following SNP classes were described: 

class 1, C/T or G/A; class 2, C/A or G/T; class 3, C/G and class 4, T/A. Homozygous 

genotypes containing class 1 or 2 SNPs were easily distinguished through different Tm. Tm 

differences between homozygous genotypes containing class-3 or class-4 SNPs were smaller 

and not always dinstiguisable (Liew et al., 2004; Herrmann et al., 2006). The different alleles 

of the homozygous Cichorium plasmotypes could be discriminated using HRM markers 

coxII-2, cob-1, cob-2 and ndhF-1 which included class-2 SNPs. The HRM markers trnL-trnF 
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and trnL-trnF-2 were embedding INDELs that caused a different melting pattern of the 

different alleles based on differences in amplicon size. 

The HRM markers developed were tested on regenerated fused protoplasts to determine the 

origin of the cytoplasmic organelles of 50 SSR confirmed somatic hybrids. The markers could 

easily distinguish between the industrial chicory and endive plasmotypes (Fig. 6-5). The 

results obtained were confirmed by sequencing eight clones of each somatic hybrid for each 

fragment. The absence of heterozygosity within the mitochondrial fragments in 49 hybrids 

suggests the preferential establishment of a single plasmotype within each somatic hybrid. No 

preference for either the C. intybus or the C. endivia-like mitochondria was observed. On the 

contrary, all the chloroplast fragments (trnL-trnF, trnL-trnF-2, and ndhF-1) corresponded to 

the industrial chicory plasmotypes. Cappelle et al. (2007) described a recombinant 

mitochondrial genome in one somatic hybrid analyzed with the restriction/probe combination 

HindIII/coxII. However, when tested with other mitochondrial probes (nad4ex1, atp6, nad3 

and orfB), these hybrids showed either the industrial chicory or the endive plasmotype. 

Varotto et al. (2001) produced 33 asymmetric somatic hybrid plants between C. intybus and 

Helianthus annuus. Southern blot analysis of total DNA with the coxII probe after HindIII 

restriction revealed three regenerants presenting both the sunflower and the chicory 

plasmotype. One plant showed a recombinant mitochondrial genome.  

Cappelle et al. (2007) also used the trnL-trnF marker for chloroplast DNA analysis and 

performed a long migration in 2.5% agarose gels to detect the 13 bp size polymorphism in 

somatic hybrids of C. intybus and C. endivia. In their hybrid plants, either the C. intybus 

fragment or the C. endivia fragment was observed. According to our findings they did not 

detect any heterozygosity or recombination in the chloroplast fragments of the somatic 

hybrids.  

Several ways to track SNPs have been developed recently. All of these techniques require a 

separation step including restriction fragment length polymorphsims (RFLP) analysis, single 

nucleotide extension (SNE) and sequencing (Liew et al., 2004). Although sequencing is 

considered a reference technique because of its ability to specifically reproduce the DNA 

sequence, it is time consuming and expensive to use for tracking SNPs. HRM, in contrast, 

enables rapid (less than 2 h) and efficient high-throughput scanning of multiple fragments due 

to the 384-well plates. Moreover, HRM is cost-efficient because of its small reaction volume 

(10 µl). Because of its low toxicity to PCR, the ResoLight high-resolution melting dye can be 

used at high concentrations to saturate the dsDNA PCR product and therefore contributes to 

higher resolution melting sensitivity. The non-destructive character of the technique also 
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allows a postmelting recovery of DNA fragments for sequencing or cloning (Hofinger et al., 

2009). 

Two HRM markers (coxII-2 and trnL-trnF) were also able to discriminate heterozygous 

plasmotypes containing at least 25% of one parental plasmotype (Figs. 6-3, 6-4). However, 

the heterozygous plasmotypes detected here are mixtures of both parental plasmotypes and 

not recombinations. When recombinations would occur, new HRM profiles would be 

detected, not representing the parent plasmotypes nor the mixture of both. These new HRM 

profiles, however, indicate the presence of irregularities requiring additional analysis. Another 

disadvantage of HRM is that not all SNPs elicit changes in the melting profile (Liew et al., 

2004; Herrmann et al., 2006); parallel melting curves therefore do not implicate the absence 

of SNPs. 

This is the first report on the use of HRM analysis on Cichorium species. Our technique 

provides a fast and simple approach for plasmotyping a pool of DNA from different 

Cichorium plants. Applying this technique when searching for cybrids among protoplast 

regenerants reduces the labor and expense associated with sequencing. 

 

 

6.5 Conclusion 
Somatic hybridization in Cichorium species has already been extensively investigated. Hybrid 

or cybrid characterization requires an effective plasmotype screening method. We evaluated 

high-resolution melting (HRM) analysis for the detection of specific mitochondrial and 

chloroplast markers to distinguish two industrial chicory (C.intybus var. sativum) plasmotypes 

from five wild type chicory (C. intybus) and two endive (C. endivia) plasmotypes. Three 

mitochondrial (coxII-2, cob-1 and cob-2) and three chloroplast HRM markers (trnL-trnF, 

trnL-trnF-2, and ndhF-1) were successfully developed. Two markers (coxII-2 and trnL-trnF) 

were additionally able to discriminate heterozygous plasmotypes containing at least 25% of 

one parental plasmotype. Moreover, the technique was successfully used to characterize the 

cytoplasms of 50 SSR confirmed somatic hybrids of C. intybus var. sativum ‘VL52’ and C. 

endivia var. crispum ‘Wallone Despa’. HRM enables a rapid (less than 2 h) and efficient high-

throughput scanning of multiple fragments due to the 384-well plates, and is cost-efficient 

because of its small reaction volume of 10 µl. This is the first report on the use of HRM 

analysis on Cichorium species. The technique is a fast and simple alternative for laborious and 

costly sequencing in plasmotyping regenerants obtained after somatic fusion.
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7.1 Introduction 
CMS in chicory has already been introduced by Varotto et al. (2001) through asymmetric 

protoplast fusion between chicory and CMS-sunflower. These asymmetric hybrids are fusion 

products between two non-crossable species and thus controversial because of the GMO 

legislation in Europe. Cappelle et al. (2007) introduced CMS in chicory by symmetric fusion 

between chicory and endive. This tetraploid hybrid is composed of two sexually crossable 

(fertile) species. However, these tetraploid plants contained undesired genes from endive, 

making time-consuming backcrosses needed. Although Cappelle showed the possibility to 

produce an alloplasmic CMS plant through protoplast fusion of two fertile lines, the real 

challenge is to create a diploid CMS chicory plant. Therefore, we searched for the 

introduction of CMS and the broadening of the genetic variation in the industrial chicory by 

means of asymmetric protoplast fusion between protoplasts of different Cichorium species, 

without producing GMOs, while maintaining the diploid status.  

We implemented the knowledge obtained by the aforementioned experiments in §Chapters 2-

6; based on the fragmentation techniques of §Chapter 4 and the protoplast fusion conditions 

obtained in §Chapter 3, we should be able to fuse recipient (industrial chicory) nuclei with 

donor (wild type chicory and endive) cytoplasms. The protoplast regeneration protocol of 

§Chapter 2 enables full plantlet development of putative cybrids. §Chapters 5 and 6 describe 

screening techniques to characterize these regenerants.  

   

 

7.2  Materials and methods 
Plant material 

The plants used as acceptor and donor in the experiments were chosen based on their genetic 

distance calculated through microsatellite analysis, provided by COSUCRA-Groupe 

Warcoing S.A., Chicoline division. A longer genetic distance between two fusion partners 

enhances the occurrence of alloplasmic CMS in the regenerants. As acceptors, an inbred line 

C. intybus var. sativum ‘VL52’ and a clone of a heterozygous genotype C. intybus var. 

sativum ‘K1093’ were selected. As donors, the endive C. endivia var. crispum ‘Wallone 

Despa’ and the wild type chicories C. intybus ‘Ames22531’ and ‘Pi531291’ were used.  
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Fragmentation, fusion and regeneration 

Asymmetric fusion was performed using the PEG-induced chemical protoplast fusion, 

optimized in §Chapter 3. The acceptor C. intybus var. sativum ‘VL52’, treated with 1.625 mM 

IOA (see §Chapter 4), was fused with the donors C. endivia var. crispum ‘Wallone Despa’ 

and C. intybus ‘Pi531291’. These donors were UV-irradiated for 1, 2, 6, 10 and 15 min. As a 

control, asymmetric fusions were performed using untreated acceptor or donor plants; in 

addition, symmetric fusions between untreated C. intybus var. sativum ‘VL52’ and untreated 

C. endivia var. crispum ‘Wallone Despa’ or C. intybus ‘Pi531291’ were performed.  

The acceptor C. intybus var. sativum ‘K1093’, treated with 1.625 mM IOA, was fused with 

the donor C. intybus ‘Ames22531’, UV-irradiated for 1, 2, 6, 10 and 15 min. Similar to the 

former fusion, both asymmetric and symmetric fusions were performed between untreated 

acceptor and/or donor plants, as a control. 

After fragmentation and fusion, protoplasts were regenerated according to §Chapter 2, but the 

first week of culture was performed under dark conditions, followed by one week under 

partial light. From week 3 onward, full light conditions were applied (16 h light / 8 h dark). 

After 4 weeks, the microcalli formation in the beads was analyzed to estimate the regeneration 

efficiency after fragmentation and fusion. As a control for regeneration efficiency, untreated 

and unfused acceptor plants were also regenerated. 

   

Regenerant screening 

Screening of the asymmetric fusion regenerants was performed using flow cytometry for 

ploidy determination (see §Chapter 3), microsatellite marker analysis provided by the 

COSUCRA-Groupe Warcoing S.A., Chicoline division for nuclear genome confirmation and 

HRM for cytoplasmic genome confirmation (see §Chapter 6). Symmetric fusion products 

were only screened for their nuclear genome constitution. 

 

 

7.3 Results 
Regeneration efficiency 

After 4 weeks of regeneration in the LMPA beads, microcalli formation was analyzed (Table 

7-1). For the fusions of untreated C. intybus var. sativum ‘VL52’ with untreated and treated C. 

endivia var. crispum ‘Wallone Despa’, microcalli formation was not significantly different 

from the unfused control acceptor when UV irradiation up to 6 min was used. Longer 
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irradiation diminished the regeneration capacity in the beads. Fusion of 1.625 mM IOA 

treated C. intybus var. sativum ‘VL52’ protoplasts with irradiated (up to 6 min) C. endivia var. 

crispum ‘Wallone Despa’ protoplasts, yielded higher microcalli formation rates than the 

unfused control acceptor. After 10 and 15 min irradiation, regeneration efficiencies decreased 

and were not significantly different from the percentage of microcalli formation from the 

unfused control acceptor. Similar effects were observed after fusion between C. intybus var. 

sativum ‘VL52’ and C. intybus ‘Pi531291’ and between C. intybus var. sativum ‘K1093’ and 

C. intybus ‘Ames22531’ (Table 7-1). 

 

Regenerant screening 

Table 7-2 shows the regenerants obtained after the fusion events. After fusion between C. 

intybus var. sativum ‘VL52’ and C. endivia var. crispum ‘Wallone, 176 asymmetric and 55 

symmetric fusion regenerants were obtained. Out of the 55 symmetric fusion regenerants, 7 

were hybrid when analyzed with flow cytometry. HRM analysis of the 176 asymmetric fusion 

regenerants showed 1 heterozygous plasmotype containing a 75 : 25 ratio mixture of the mt 

coxII-2 fragment of C. intybus var. sativum ‘VL52’ and C. endivia var. crispum ‘Wallone 

Despa’, respectively (Fig. 7-1). This plasmotype was a fusion product between 1.625 mM 

IOA-treated C. intybus var. sativum ‘VL52’ and 2 min UV-irradiated C. endivia var. crispum 

‘Wallone Despa’ protoplasts. HRM analysis on the cp genome of this plasmotype showed the 

presence of 100 % parental C. intybus var. sativum ‘VL52’ trnL-trnF fragments. The mt and 

cp constitution of the 175 other regenerants were all parental C. intybus var. sativum ‘VL52’ 

following HRM analysis. Due to the regeneration inability of C. endivia var. crispum 

‘Wallone Despa’ protoplasts, only C. intybus var. sativum ‘VL52’ regenerants were observed. 

This was confirmed through flow cytometry and microsatellite marker analyis. 

After fusion between C. intybus var. sativum ‘VL52’ and C. intybus ‘Pi531291’, 213 

asymmetric and 63 symmetric fusion regenerants were obtained. Within the latter one, 3 

symmetric hybrids were detected. HRM analysis and microsatellite marker analysis on the 

213 asymmetric fusion regenerants yielded no hybrids nor cybrids. Both parents were found 

among the regenerants. 

Fusion of C. intybus var. sativum ‘K1093’ with C. intybus ‘Ames22531’, yielded 128 

asymmetric and 45 symmetric fusion regenerants, respectively. Among the regenerants of 

both the asymmetric and symmetric fusions, no hybrids were found. 
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Fig. 7-1 HRM analysis for the coxII-2 fragment: (A) melting curve and (B) difference plot of 
a heterozygous plasmotype ‘hybrid’ of the fusion between 1.625 mM IOA-treated C. intybus 
var. sativum ‘VL52’ and 2 min UV irradiated C. endivia var. crispum ‘Wallone Despa’ 
protoplasts. 
 

 

7.4 Discussion 
Asymmetric protoplast fusions between an industrial chicory and a wild type chicory or 

endive yielded only one putative cybrid among the 517 tested regenerants. According to HRM 

analysis, the putative cybrid contained a 75 : 25 ratio mixture of the mt coxII-2 fragment of C. 

intybus var. sativum ‘VL52’ and C. endivia var. crispum ‘Wallone Despa’, respectively. The 

cybridity still needs to be confirmed by sequencing several clones of its mt coxII-2 fragment. 

So far, the sequence information of eight clones revealed only the presence of the mt coxII-2 

fragment of C. intybus var. sativum ‘VL52’. The sequences of more clones are expected soon. 
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Among the rest of the regenerants, no further hybrids/cybrids were observed. All these 

regenerants showed the nuclear and corresponding cytoplasmic genome characteristics of one 

of the parents; C. intybus var. sativum ‘VL52’, C. intybus ‘Pi531291’, C. intybus var. sativum 

‘K1093’ and C. intybus ‘Ames22531’. This was confirmed through microsatellite marker 

analysis and HRM analysis for the nuclear and cytoplasmic information, respectively. 

However, no 100% confirmed absence of asymmetric hybrids among the regenerants can be 

guaranteed as the 18 microsatellite markers only partially cover 7 of the 9 chromosomes.  

Liew et al. (2004) and Herrmann et al. (2006) stated that not all SNPs elicit changes in the 

HRM melting profiles. Parallel melting curves therefore do not implicate the absence of 

SNPs. The presence of false-negatives in our results is possible, but minimalized by the HRM 

markers we developed. We could clearly distinguish different plasmotypes in a pool of 

putative somatic hybrids after symmetric fusion (§Chapter 6, Fig. 6-5). Two other possible 

explanations can be suggested; (1) parental escape or (2) cytoplasmic segregation. Although 

an IOA concentration of 1.625 mM showed severe inhibition of microcalli formation in the 

control group in these and previous (§Chapter 4.3) experiments, we obtained a large number 

of IOA-escapes. Parental escape has already been observed in IOA-treated protoplasts used in 

asymmetric fusions; Terada et al. (1987) has previously described that IOA-treated, 

inactivated Brassica protoplasts were able to regenerate after cell fusion. This was probably 

due to the ‘nurse-effects’ of the untreated fusion partner protoplasts. Yamagishi et al. (2002) 

observed nurse-effects of UV-treated B. napus protoplasts by which a higher IOA 

concentration was needed to inhibit the regeneration of A. thaliana protoplast after protoplast 

fusion. The use of higher IOA concentrations, suggested by Minqin et al. (2005), is no 

alternative, because of the possibility of protoplast agglutination. In contrast, we did not 

observe restoration of protoplast regeneration after UV irradiation because of nurse-effects. 

This is in agreement with observations by Yamagishi et al. (2002) in UV-irradiated Brassica 

protoplasts.   

A second hypothesis for the low number of hybrids/cybrids can be cytoplasmic segregation. 

Chloroplast segregation has already been reported in somatic hybrids of Brassica and 

Raphanus species where a bias towards Brassica chloroplasts was noticed (Earle et al., 1992). 

A logically preferential chloroplast segregation was observed from the irradiated fusion 

partner after double inactivation fusion experiments in Nicotiana (Sidorov et al., 1981) and 

Brassica (Kirti et al., 1998) species. However, in contrast, Morgan and Maliga (1987) 

observed the retention of the chloroplasts of the iodoacetate-treated protoplasts in double 

inactivation fusions between Brassica and Raphanus species. These studies indicate that a 
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biparental transmission of chloroplasts leads to a mixed chloroplast population which is not 

maintained for a long time before segregation results in cells (plants) with one type of parental 

chloroplasts (Medgyesy et al., 1980). Butterfass (1989) described the nuclear influence on 

biased segregation as a control of the number and DNA content of plastids. In somatic 

hybridizations in Brassica (Kirti et al., 1998) and Nicotiana (Aviv and Galun, 1988) species a 

co-transmission of chloroplasts and mitochondria was observed. The nuclear influence and 

the co-transmission of cytoplasmic organelles may be the reasons for the cytoplasmic 

segregation towards the chicory plasmotype, because of the absence of a endive nucleus due 

to UVC-irradiation. 

 

 

7.5 Conclusion 
Through asymmetric protoplast fusion between protoplasts of different Cichorium species, we 

try to induce CMS and broaden the genetic variation in industrial chicory. In this chapter, we 

analyzed the possibility of producing cybrids containing recipient nuclei and donor 

cytoplasms. During protoplast regeneration, we observed in all the fusion combinations made, 

that fusion of 1.625 mM IOA treated acceptor protoplasts with UV-irradiated C. endivia var. 

crispum ‘Wallone Despa’ up to 6 min, yielded higher microcalli formation rates in 

comparison to the unfused control acceptor. Regenerant screening revealed only one putative 

cybrid among the 517 tested regenerants of the asymmetric protoplast fusions between 

industrial chicory and wild type chicory or endive. The putative cybrid contained a 75 : 25 

ratio mixture of the mt coxII-2 fragment of C. intybus var. sativum ‘VL52’ and C. endivia var. 

crispum ‘Wallone Despa’, respectively. As possible explanations for the low number of 

cybrids obtained, parental IOA-escape and cytoplasmic segregation were suggested. 
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Industrial chicory is mainly cultivated for inulin and its hydrolysis products. A high root 

yield, a high inulin content in the root and high-quality long inulin chains are essential. Both 

cultural techniques and genotype influence these features (Baert, 1997). Commercial chicory 

breeding has traditionally been based on intercrossing a number of phenotypically superior 

parents selected for several commercial traits (Lucchin et al., 2008). The production of 

chicory hybrids from crosses between distant genotypes showed the expected heterosis 

effects, indicating that F1 hybrids can contribute to the future chicory-derived inulin 

production (Bannerot and Deconinck, 1965; Bannerot and Deconinck, 1970). However, 

hybrid production requires a good pollination control where selfing of the female line is 

inhibited (Perez-Prat and van Lookeren Campagne, 2002; Nizampatnam et al., 2009). The 

development of male sterile lines through biotechnology can open new ways of chicory 

hybrid breeding. With this PhD work, methods were developed for a protoplast-based somatic 

hybridization frame by which future (a)symmetric protoplast fusions can be made between 

Cichorium species, delivering an additional tool for chicory breeders. This PhD was 

performed in close collaboration with the Belgian industrial chicory breeding company 

COSUCRA-Groupe Warcoing S.A. Chicoline division. The project was based on the 

background of private knowledge and demands of the COSUCRA-Groupe and on previous 

studies focusing on somatic hybridization in Cichorium: 

- COSUCRA-Groupe Warcoing showed through traditional breeding that CMS could be 

obtained when combining industrial chicory nuclear information with foreign (wild type, 

endive) cytoplasmic features.    

- Reliable protoplast regeneration systems in Cichorium were already established, mainly 

focusing on one particular Cichorium species (Crepy et al., 1982; Saksi et al., 1986b; Slabe 

and Bohanec, 1989; Rambaud et al., 1990; Varotto et al., 1997; Nenz et al., 2000). Somatic 

hybridization in Cichorium species has thoroughly been investigated with symmetric fusions 

between chicory and endives (Cappelle et al., 2007) and asymmetric fusions between chicory 

and sunflower (Varotto et al., 2001). 

Based on aforementioned knowledge, the aim of this PhD work was to establish a practical 

protoplast-based somatic hybridization approach that can be used in chicory breeding. For this 

purpose tools were developed for regeneration, fragmentation, fusion and screening. 

 

First, we successfully regenerated plantlets out of protoplasts of several Cichorium types 

(industrial chicory C. intybus var. sativum, wild chicory C. intybus and endive C. endivia) 

using the LMPA bead technique. For the first time, full plantlet regeneration of C. endivia 
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protoplasts was established. The efficiency of C. endivia protoplast regeneration was, 

however, lower than for C. intybus protoplasts. Therefore, efficiency of the regeneration 

protocol can still be improved by adjusting environmental internal and external conditions. 

Compared to earlier described protoplast regeneration from Cichorium species, our LMPA 

bead based system is the only one that induces sustained protoplast division and complete 

regeneration in such a wide Cichorium genotype range. Former studies were only applicable 

on limited chicory genotypes and the culture systems used (liquid, solid, semisolid and Ca-

alginate nurse-cultures) showed significant protoplast loss due to clustering and during 

refreshment steps. We developed a more robust system which by its simplicity also avoids 

supplementary protoplast loss, enhancing the overall efficiency of the protocol. This was a 

crucial step for further somatic hybridization in this work and future chicory breeding. 

The LMPA bead technique also offers opportunities in other (recalcitrant) crops. The absence 

of an efficient regeneration protocol for various genotypes is inconceivable when 

implementing protoplast fusion breeding programmes in any crop. As the LMPA bead 

technique offers a simple approach through which protoplast loss is reduced, the efficiency of 

existing protoplast regeneration protocols in other crops should be compared to our technique. 

Also the search for substantial factors enabling protoplast division should be investigated. For 

instance, in our case, culture under dark conditions triggered the endive protoplasts to start 

division. 

 

A second step towards asymmetric protoplast fusion incorporated the fragmentation of the 

(undesired) nuclear donor genome using UV irradiation. UV irradiation has shown its 

possibilities in producing asymmetric hybrids in other crops. Moreover, the technique is 

cheap, safe and easily applicable and preferred over ionizing radiation. Our results highlighted 

that UVC irradiation prevented cell wall resynthesis and cell division. No cytotoxic effects on 

Cichorium protoplasts were observed. Therefore, UVC irradiation is a promising tool to 

obtain asymmetric somatic hybrids in Cichorium species. The quantification of DNA damage 

after UVC irradiation treatment by two techniques, standard gel electrophoresis and the 

Comet assay single cell gel electrophoresis (SCGE) was not successful. As metabolic 

processes were already heavily hampered at short UVC incubation times, the importance of 

the long UVC-irradiation effect (10, 20 and 30 min) on DNA is minimalized. Further research 

should focus not only on DNA levels, but also on RNA and protein levels. Those will 

probably provide more information on the real dysfunctioning of the nuclear genome. As the 

distribution of UV-induced DNA damage along the DNA strands depends on the nucleotide 
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sequence and on the association of DNA with chromosomal proteins (Pfeifer, 1997), it can be 

valuable to screen the sequence for putative UV-inducible hot spots. These hot spots can be 

correlated to genes and thus, RNA and proteins. For example, it is known that UV-induced 

CPDs can occur at DNA sequences containing 5’-TT, 5’-TC, 5’-CT or 5’CC. The 5’-TT is the 

preferred sequence for CPD formation, whereas 5’-CC is the least preferred sequence (Pfeifer, 

1997). 

Recipient cytoplasm inactivation was the following step towards asymmetric protoplast 

fusion. The IOA sensitivity of industrial chicory cultivars was estimated by analyzing 

protoplast viability and regeneration after IOA treatment. The optimal IOA concentration 

obtained in this study was 1.625 mM whereby heavily affected protoplast viability and 

regeneration was observed. At this concentration, still escapes were possible. At higher IOA 

concentrations no divisions occurred, but the solution became more viscous, causing 

protoplast agglutination, unsuitable for PEG-induced protoplast fusion. As with UV-induced 

DNA damage, IOA-induced cytoplasmic damage was not clearly visualized. Although IOA 

impedes the mitochondrial oxidative phosphorylation and glycolysis and thus reduces the 

production of ATP, destruction of the cytoplasmic cell organelles was not observed. This 

indicates that recovery of the cytoplasmic features can be expected after washing and 

culturing. Moreover, Galtier (2011) noted that this recovery can be enhanced by the nucleus: 

the copy number and general regulation of the mt genome is under nuclear control, through 

which efficient DNA repair can be induced. As a consequence, the IOA concentration of 

1.625 mM, showing severe inhibition of microcalli formation in §Chapter 4.3, can be too low 

to be used in asymmetric fusion experiments where ‘nurse-effects’ of untreated fusion partner 

protoplasts are likely. 

 

Optimization of the fusion protocol was performed by testing the two common fusion 

techniques, PEG-induced chemical and electrical fusion. It was expected that electrical fusion 

was the better option because of its more easily controlled fusion conditions (Bates et al., 

1987). However, our results showed that only the PEG-mediated chemical fusion was reliable 

in Cichorium somatic hybridization. The failure of electrical fusion was possibly due to toxic 

effects of the iso-osmotic buffer, the sensitivity of cells towards electric pulses or the changed 

optimal conditions in the helix fusion chamber. Both fusion techniques, however, when used 

in asymmetric fusion, must deal with the IOA viscosity observed in §Chapter 4.3. This IOA 

viscosity can interfere with the optimal protoplast fusion conditions established in §Chapter 3. 

One solution is the use of lower IOA and/or PEG concentrations, causing more escapes and/or 
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less fusion events, respectively. The newly developed electrochemical fusion of Olivares-

Fuster et al. (2005), combining a low PEG concentration with a DC pulse-promoted 

membrane fusion, can be an alternative. 

 

Not much was known about the Cichorium species genome and karyotype. Karyological 

analyses and FISH have already often been used to characterize species (Jiang and Gill, 

2006). The karyotypes made in this study for the industrial chicory C. intybus var. sativum 

‘VL52’ and the endive C. endivia var. crispum ‘Wallone Despa’ give a basic view on the 

different physical chromosome constitution of both species in comparison to molecular 

techniques. The application of GISH was promising for further research in our Cichorium 

genotypes, as GISH is mostly used in plant species with large-sized chromosomes (Van Laere 

et al., 2010). Due to a high degree of homology between C. intybus and C. endivia, a 

differentiation was not possible, implicating the same problem when performing GISH on 

intraspecific somatic hybrids of industrial and wild type chicory. Nonetheless, karyotype 

analysis, FISH and GISH are labor intensive techniques, which allow no high-throughput 

screening of putative hybrid regenerants. These techniques can be used on hybrid-confirmed 

regenerants who require further research. 

 

In contradiction to karyotyping and ISH, HRM analysis is a much faster and more sensitive 

detection technique. Normally, HRM is inserted in the SNP genotyping of plant species. We 

used HRM as a screening technique, rather than a SNP localization technique. Based on 

gathered Cichorium sequence information, we adjusted HRM to locate specific cytoplasmic 

organelles in a pool of DNA from different Cichorium plants. In our study, two HRM markers 

(mt fragment coxII-2 and cp fragment trnL-trnF) were able to discriminate heterozygous 

plasmotypes. However, heterozygous plasmotypes can be mixtures of both parental 

plasmotypes or recombinations. The HRM markers established will be able to detect the 

mixture plasmotypes. Recombinations, on the other hand, will produce unique HRM profiles, 

not representing the parental plasmotypes nor the mixtures and will require additional 

analysis. Also not all present SNPs will change the HRM melting profiles, causing false-

negatives. With our HRM markers, which clearly distinguished different plasmotypes, the 

presence of false-negatives was minimalized. Applying this technique when searching for 

cybrids among protoplast regenerants reduces the labor and expense associated with 

sequencing, although sequencing will be required to characterize the HRM-confirmed 

hybrids/cybrids. The developed HRM analysis was used on organelle genomes in our study, 
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but can also be applied on nuclear fragments. Also for other plant species where somatic 

hybridization research is done, HRM analysis might be a valuable new screening tool. Before 

application, sequence information of these species is required. 

 

The acquired knowledge of the aforementioned experiments was combined in asymmetric 

fusion experiments. Only one putative cybrid among the 517 regenerants was found. Among 

the rest of the regenerants, no further hybrids/cybrids were observed. Although flow 

cytometric, HRM and microsatellite marker analysis were used, the presence of false-

negatives could not be ruled out completely. Other molecular techniques, such as AFLP, 

RFLP and CAPS can give additional information on the genomic constitution of the 

regenerants. Through GISH, cytogenetic information of the regenerant chromosomes could be 

highly valuable to distinguish the (fragments of) donor chromosomes. However, the high 

homology between the industrial chicory and the wild type chicory/endive genome impedes 

the use of this technique. Besides the occurrence of false-negatives, two other hypothesis can 

explain the absence of hybrids/cybrid: parental escape and cytoplasmic segregation. Except 

for the putative hybrid, the asymmetric fusion regenerants consisted of C. intybus var. sativum 

‘VL52’ regenerants, containing both the chicory nuclear and cytoplasmic genome. This is in 

contrast with the results obtained by HRM analysis (§Chapter 5.2) of the symmetric fusion 

experiments between C. intybus var. sativum ‘VL52’ and C. endivia var. crispum ‘Wallone 

Despa’; out of 50 somatic hybrids, 26 contained the mitochondrial fragments of the industrial 

chicory, whereas 23 contained the mitochondrial fragments of the endive plasmotype. In one 

somatic hybrid, the coxII-2 and cob-1 endive fragments and the cob-2 industrial chicory 

fragment were present. All the chloroplast fragments corresponded to the industrial chicory 

plasmotypes. The absence of heterozygosity suggests the presence of cytoplasmic segregation 

towards either one of the parents for mitochondrial fragments and towards the chicory 

chloroplasts. This also means that no co-transmission between chloroplasts and mitochondria 

was present, as endive mitochondria coexisted with chicory chloroplasts in 23 of the 50 

somatic hybrids. The difference in presence of endive mitochondria in somatic hybrids from 

symmetric fusions and their absence in asymmetric fusions, can be explained by the presence 

of the endive nucleus in the tetraploid somatic hybrids. In the asymmetric fusion regenerants, 

only the chicory nucleus was observed, suggesting the explanation for the chicory 

plasmotypes in these regenerants. More research, however, is needed to gain a more thorough 

knowledge on cytoplasmic segregation, starting at early stages of protoplast regeneration. 

This is thwarted by difficulties that arise when screening single cell plasmotypes, including 
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the DNA isolation from a single cell/microcolony. If cytoplasmic segregation is indeed 

hindering the production of desired cybrids, the use of higher IOA concentrations for the 

inactivation of the recipient parent might be considered, increasing the chance of protoplast 

agglutionation. An alternative is searching for other Cichorium species as donors and 

recipients by which less or no undesired cytoplasmic segregation is observed.     

 

In this thesis, several tools have been developed for a protoplast-based approach in chicory 

breeding. So far, one putative cybrid was obtained. Testing larger numbers of regenerants as 

well as testing different genotype combinations in asymmetric fusions might increase the 

chance to find cybrids in Cichorium. COSUCRA-Groupe Warcoing by intraspecific crossing 

and Cappelle by interspecific symmetric fusion showed both that CMS can be obtained when 

combining the industrial chicory nucleus with foreign (wild type, endive) cytoplasmic 

features. These results clearly demonstrate that also via asymmetric fusion CMS can be 

introduced in elite breeding material. This will be a necessary step for the creation of hybrids. 

Therefore, this thesis can be used as a good platform for future protoplast research in chicory 

breeding, where high-throughput fusions are made to create hybrids and cybrids, introducing 

CMS and broadening the genetic variation. 

Once CMS material is introduced in elite breeding material, further research will focus on 

hybrid production. For hybrid production, we need inbred lines as pollinators to cross with 

our CMS line. The hybrid progeny will be analyzed on its root shape, weight, inulin content 

and chain length and on its male sterility stability. Progeny fertility might be restored after 

crossing with certain pollinator lines. These lines are withdrawn from the breeding program. 
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Summary 
Since 1990, breeding of industrial root chicory (C. intybus var. sativum) has known a revival 

because of the presence of inulin in the root

fructosyl-fructose linkages

enzymes and are, therefore, low caloric dietary fibers. Inulin also promotes the absorption of 

calcium by lowering the pH of the colon. Besides these prebiotic features, oligofructose, 

inulin’s short chain hydrolysis product, has sweetening features. Nowadays, the production of 

health promoting nutrition based on inulin is marketed. Next to the medicinal and nutritive 

aspects, inulin is ascribed a promising alternative for raw materials and is found in cosmetics. 

Nowadays, industrial chicory breeding is based on the improvement of root yield, inulin 

content and high-quality long inulin chains. Hybrid breeding trials indicated heterosis effects 

in F1 progeny. Hybrid production requires a good pollination control where selfing of the 

female line is inhibited. Since the observed SI system in chicory is not 100% reliable, an 

alternative is required. Cytoplasmic male sterility (CMS) can contribute to the creation of 

100% true hybrids. However, CMS doesn’t naturally occur in chicory. In previous studies, 

CMS has been introduced by asymmetric protoplast fusion between chicory and sunflower, 

leading to GMO plants. Symmetric fusion between chicory and endive resulted in a tetraploid 

CMS chicory plant, containing the undesired genes from endive. 

 

The overall goal of this thesis was to develop several tools for a protoplast-based approach to 

introduce alloplasmic CMS in chicory. Methods were developed to perform asymmetric 

protoplast fusions between Cichorium species. We established protocols for protoplast 

regeneration, fragmentation and fusion and protocols for hybrid/cybrid regenerant screening. 

 

We successfully developed a full plantlet regeneration protocol for Cichorium protoplasts. 

Low melting point agarose (LMPA) beads surrounded by liquid medium were used for 

sustained protoplast division. Several Cichorium type protoplasts (industrial chicory C. 

intybus var. sativum, wild chicory C. intybus and endive C. endivia) were regenerated using 

the LMPA bead technique. For the first time, full plantlet regeneration of C. endivia 

protoplasts was established. We developed a robust system which is characterized by its 

simplicity, leading to a higher regeneration efficiency. 

Fragmentation studies were performed using UV irradiation for nuclear fragmentation and 

iodoacetamide (IOA) treatment for cytoplasm inactivation. The Cichorium sensitivity towards 
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these two techniques was analyzed. Our results highlighted that UVC irradiation prevented 

cell wall resynthesis and cell division, but no cytotoxicity of the Cichorium protoplasts was 

observed. The optimal IOA concentration for cytoplasm inactivation was 1.625 mM whereby 

heavily affected protoplast viability and regeneration was observed. Therefore, UVC 

irradiation and IOA-induced cytoplasm inactivation are promising tools to obtain asymmetric 

somatic hybrids in Cichorium.  

Two protoplast fusion techniques, PEG-induced chemical and electrical fusion, were 

compared. Our results showed that only the PEG-mediated chemical fusion enabled protoplast 

regeneration. Symmetric fusion hybrids of C. intybus var. sativum ‘VL52’ + C. endivia var. 

crispum ‘Wallone Despa’ and C. intybus var. sativum ‘VL52’ + C. intybus ‘Pi531291’were 

obtained. 

For hybrid screening, two techniques were used: Karyological analyses with fluorescence in 

situ hybridization (FISH) and High resolution melting (HRM) analysis. Karyotypes were 

made for the industrial chicory C. intybus var. sativum ‘VL52’ and the endive C. endivia var. 

crispum ‘Wallone Despa’. 45S and 5S FISH was also performed on these two species. 

We developed three mitochondrial (coxII-2, cob-1 and cob-2) and three chloropast markers 

(trnL-trnF, trnL-trnF-2, and ndhF-1) for HRM analysis to discriminate the cytoplasms of two 

industrial chicories from five wild type chicories and two endive cultivars. The HRM markers 

established will be able to effectively detect cybrids after asymmetric protoplast fusion. 

Finally, we implemented the knowledge obtained by performing asymmetric protoplast 

fusions between industrial chicory and endive or wild type chicory. One heterozygous 

plasmotype containing a 75 : 25 ratio mixture of the mt coxII-2 fragment of C. intybus var. 

sativum ‘VL52’ and C. endivia var. crispum ‘Wallone Despa’, respectively, was found. This 

plasmotype was a fusion product between 1.625 mM IOA-treated C. intybus var. sativum 

‘VL52’ and 2 min UV-irradiated C. endivia var. crispum ‘Wallone Despa’ protoplasts. HRM 

analysis on the cp genome of this plasmotype showed the presence of 100 % parental C. 

intybus var. sativum ‘VL52’ trnL-trnF fragments. 
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Samenvatting    

Sinds 1990 kent het verbouwen van industriële cichorei (C. intybus var. sativum) een opmars 

-

dierlijke, intestinale enzymes. Daardoor is inuline een voedingsvezel. Inulin promoot ook de 

absorptie van calcium in de darm door een verlaging van de darm-pH. Naast deze prebiotische 

kenmerken, wordt oligofructose, een korte-keten hydrolyseproduct van inuline, gebruikt als 

zoetstof. Vandaag de dag wordt gezondheidspromotend voedsel en drank gebaseerd op 

inuline, verkocht. Naast deze medicinale en nutritive kenmerken, wordt inuline ook gezien als 

alternatieve koolstofbron en kan je het vinden in cosmeticaproducten. 

De industriële cichoreiteelt is gebaseerd op het verhogen van de wortelopbrengst, de 

inulineconcentratie en -kwaliteit. Vroegere hybridetesten toonden aan dat er een 

heterosiseffect waarneembaar was in F1-nakomelingen. Voor een welonderbouwde hybrid 

productie is echter een goede bestuivingscontrole vereist, waarbij zelfbestuiving verhinderd 

wordt. Omdat het zelfincompatibiliteitssysteem in cichorei niet 100% betrouwbaar is, can 

cytoplasmatische mannelijke steriliteit (CMS) de oplossing bieden. CMS komt niet voor in 

cichorei. Vroegere studies toonden aan dat CMS kan geïntroduceerd worden door 

asymmetrische protoplastfusie tussen cichorei en zonnebloem. Maar dit leidde tot GGO 

planten. Symmetrische fusie tussen cichorei en andijvie resulteerde in tetraploïde CMS 

cichoreiplanten, maar deze bevatten de ongewenste genen van andijvie. 

 

Het overkoepelende doel van deze thesis was het ontwikkelen van alloplasmische CMS in 

cichorei gebaseerd op protoplastfusie. Protocols werden ontwikkeld om asymmetrische 

protoplastfusies uit te voeren tussen Cichorium-species onderling. We hebben technieken 

ontwikkeld voor protoplastregeneratie, - fragmentatie en -fusie en voor hybride en cybride 

regeneranten screening. 

 

We slaagden erin om een protoplastregeneratieprotocol te ontwikkelen voor verschillende 

Cichorium-species. Low melting point agarose (LMPA) droplets omgeven door vloeibaar 

medium induceerde en bevorderde protoplastdeling. Verschillende Cichorium-type 

protoplasten (industriële cichorei C. intybus var. sativum, wild type cichorei C. intybus en 

andijvie C. endivia) konden worden geregenereerd met de LMPA droplet techniek. Voor de 

eerste keer konden ook planten geregenereerd worden uit C. endivia protoplasten. We 
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ontwikkelden een robuust system dat gekarakteriseerd wordt door zijn eenvoud, waardoor een 

hogere regeneratie-efficiëntie bereikt wordt. 

Fragmentatiestudies met UV-bestraling voor nucleusfragmentatie en met 

iodoacetamidebehandeling (IOA-) voor cytoplasma-inactivatie werden uitgevoerd. De 

gevoeligheid van Cichorium species tegenover deze twee technieken werd geanalyseerd. De 

resultaten leerden ons dat UVC-bestraling de celwandsynthese en celdeling van protoplasten 

verhinderde, zonder daarbij cytotoxisch te zijn. De optimale IOA-concentratie voor 

cytoplasma-inactivatie was 1,625 mM. Daarbij werd de protoplastleefbaarheid en -regeneratie 

ernstig verstoord. UVC-bestraling en IOA-geïnduceerde cytoplasma-inactivatie zijn 

veelbelovende technieken om asymmetrische somatische hybriden te bekomen in Cichorium. 

Twee protoplastfusietechnieken werden vergeleken: PEG-geïnduceerde (chemische) en 

elektrische fusie. We leerden dat enkel de PEG-geïnduceerde fusie protoplastregeneratie 

toeliet.  Symmetrische fusie-hybriden werden bekomen tussen C. intybus var. sativum ‘VL52’ 

+ C. endivia var. crispum ‘Wallone Despa’ en C. intybus var. sativum ‘VL52’ + C. intybus 

‘Pi531291’. 

Twee technieken werden toegepast voor hybride screening: Karyologische analyse met 

fluorescentie in situ hybridisatie (FISH) en High resolution melting (HRM) analyse. 

Karyotypes van industriële cichorei C. intybus var. sativum ‘VL52’ en andijvie C. endivia var. 

crispum ‘Wallone Despa’ werden bekomen. Op deze twee species werd ook 45S en 5S FISH 

uitgevoerd. 

We ontwikkelden 3 mitochondriale (coxII-2, cob-1 and cob-2) en 3 chloroplastmerkers (trnL-

trnF, trnL-trnF-2, and ndhF-1) voor HRM-analyse om de cytoplasma’s van twee industriële 

cichoreien te kunnen onderscheiden van vijf wild types en twee andijvies. Met de HRM-

merkers zal het mogelijk zijn om op een efficiënte manier cybriden te detecteren na 

asymmetrische protoplastfusie. 

Uiteindelijk hebben we de opgebouwde kennis gebruikt in asymmetrische protoplastfusies 

tussen industriële cichorei en wild type cichorei of andijvie. Eén heterozygoot plasmotype 

werd gevonden waarin een 75 : 25 ratio mengsel van het mt coxII-2 fragment van C. intybus 

var. sativum ‘VL52’ en C. endivia var. crispum ‘Wallone Despa’, respectievelijk, aanwezig 

was. Dit plasmotype was een fusieproduct va 1.625 mM IOA-behandelde C. intybus var. 

sativum ‘VL52’ en 2 min UVC-bestraalde C. endivia var. crispum ‘Wallone Despa’ 

protoplasten. HRM-analyse van het cp genoom toonde de aanwezigheid van 100% parentale 

C. intybus var. sativum ‘VL52’ trnL-trnF fragmenten. 
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Supplementary Data 

 

                --------------coxII-2F---------------  
                          --------------coxII-1F--------------               
VL52        GGAATTCGCCCTTGCCCCTGACAGGATAGATGAGGAATCACTCTTTATATTTTTTATTGG 
K1093        GGAATTCGCCCTTGCCCCTGACAGGATAGATGAGGAATCACTCTTTATATTTTTTATTGG  
Wallone Despa GGAATTCGCCCTTGCCCCTGACAGGATAGATGAGGAATCACTCTTGATATTTTTTATTGG    
nr.5  GGAATTCGCCCTTGCCCCTGACAGGATAGATGAGGAATCACTCTTGATATTTTTTATTGG  
Pi531291  GGAATTCGCCCTTGCCCCTGACAGGATAGATGAGGAATCACTCTTGATATTTTTTATTGG  
Ames23224  GGAATTCGCCCTTGCCCCTGACAGGATAGATGAGGAATCACTCTTGATATTTTTTATTGG  
Ames26033  GGAATTCGCCCTTGCCCCTGACAGGATAGATGAGGAATCACTCTTGATATTTTTTATTGG 
Ames22531  GGAATTCGCCCTTGCCCCTGACAGGATAGATGAGGAATCACTCTTGATATTTTTTATTGG 
Ames22532  GGAATTCGCCCTTGCCCCTGACAGGATAGATGAGGAATCACTCTTGATATTTTTTATTGG  
 
                                    ----------coxII-2R----------------  
VL52  GGCCTACAACTTCTCCGAGCCGACTAGCATCCCTTTCCACTGCGCATTTCTCGAACAAAG  
K1093  GGCCTACAACTTCTCCGAGCCGACTAGCATCCCTTTCCACTGCGCATTTCTCGAACAAAG  
Wallone Despa GGCCTACAACTTCTCCGAGCCGACTAGCATCCCTTTCCACTGCGCATTTCTCGAACAAAG  
nr.5  GGCCTACAACTTCTCCGAGCCGACTAGCATCCCTTTCCACTGCGCATTTCTCGAACAAAG  
Pi531291  GGCCTACAACTTCTCCGAGCCGACTAGCATCCCTTTCCACTGCGCATTTCTCGAACAAAG  
Ames23224  GGCCTACAACTTCTCCGAGCCGACTAGCATCCCTTTCCACTGCGCATTTCTCGAACAAAG  
Ames26033  GGCCTACAACTTCTCCGAGCCGACTAGCATCCCTTTCCACTGCGCATTTCTCGAACAAAG 
Ames22531  GGCCTACAACTTCTCCGAGCCGACTAGCATCCCTTTCCACTGCGCATTTCTCGAACAAAG  
Ames22532  GGCCTACAACTTCTCCGAGCCGACTAGCATCCCTTTCCACTGCGCATTTCTCGAACAAAG 
                  
VL52  AAGACGACTATAGGATCGAATTCGCTTTCCATGGTGAACTGGTCGTCCCATACCTTCTGC  
K1093  AAGACGACTATAGGATCGAATTCGCTTTCCATGGTGAACTGGTCGTCCCATACCTTCTGC  
Wallone Despa AAGACGACTATAGGATCGAATTCGCTTTCCATGGTGAACTGGTCGTCCCATACCTTCTGC  
nr.5  AAGACGACTATAGGATCGAATTCGCTTTCCATGGTGAACTGGTCGTCCCATACCTTCTGC  
Pi531291  AAGACGACTATAGGATCGAATTCGCTTTCCATGGTGAACTGGTCGTCCCATACCTTCTGC  
Ames23224  AAGACGACTATAGGATCGAATTCGCTTTCCATGGTGAACTGGTCGTCCCATACCTTCTGC  
Ames26033  AAGACGACTATAGGATCGAATTCGCTTTCCATGGTGAACTGGTCGTCCCATACCTTCTGC 
Ames22531  AAGACGACTATAGGATCGAATTCGCTTTCCATGGTGAACTGGTCGTCCCATACCTTCTGC  
Ames22532  AAGACGACTATAGGATCGAATTCGCTTTCCATGGTGAACTGGTCGTCCCATACCTTCTGC  
                     
                             ------------coxII-1R----------------  
VL52  CTGTCTCATATGTGTGGAACCAGGTCTTTTTCGGTTCCAGCCCCCCCCTCGAATACATAG  
K1093  CTGTCTCATATGTGTGGAACCAGGTCTTTTTCGGTTCCAGCCCCCCCCTCGAATACATAG  
Wallone Despa CTGTCTCATATGTGTGGAACCAGGTCTTTTTCGGTTCCAGCCCCCCCCTCGAATACATAG  
nr.5  CTGTCTCATATGTGTGGAACCAGGTCTTTTTCGGTTCCAGCCCCCCCCTCGAATACATAG  
Pi531291  CTGTCTCATATGTGTGGAACCAGGTCTTTTTCGGTTCCAGCCCCCCCCTCGAATACATAG  
Ames23224  CTGTCTCATATGTGTGGAACCAGGTCTTTTTCGGTTCCAGCCCCCCCCTCGAATACATAG  
Ames26033  CTGTCTCATATGTGTGGAACCAGGTCTTTTTCGGTTCCAGCCCCCCCCTCGAATACATAG 
Ames22531         CTGTCTCATATGTGTGGAACCAGGTCTTTTTCGGTTCCAGCCCCCCCCTCGAATACATAG 
Ames22532         CTGTCTCATATGTGTGGAACCAGGTCTTTTTCGGTTCCAGCCCCCCCCTCGAATACATAG 
 
 
Supplemental Fig. 6-1 Part of the alignment of the coxII amplicon sequences (1700 bp) of 
the 9 Cichorium species: One SNP (grey) at 46 bp was detected, which discriminated the 
industrial chicory plasmotypes (‘VL52’, ‘K1093’) from the endives (‘Wallone Despa’, ‘nr.5’) 
and wild type plasmotypes (‘Pi531291’, ‘Ames23224’, ‘Ames26033’, ‘Ames22531’, 
‘Ames22532’). Two primer pairs for HRM analysis are depicted above the sequences 
(arrows). 
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VL52    GAGTTATAGCAGTCCTAGGGAATTTGTTCGGTGTCTCGGAGTTGTAATCTTCCTATTAATGATTGTGACA 
K1093    GAGTTATAGCAGTCCTAGGGAATTTGTTCGGTGTCTCGGAGTTGTAATCTTCCTATTAATGATTGTGACA 
Wallone Despa GAGTTATAGCAGTCCTAGGGAATTTGTTCGGTGTCTCGGAGTTGTAATCTTCCTATTAATGATTGTGACA 
nr.5    GAGTTATAGCAGTCCTAGGGAATTTGTTCGGTGTCTCGGAGTTGTAATCTTCCTATTAATGATTGTGACA 
Pi531291    GAGTTATAGCAGTCCTAGGGAATTTGTTCGGTGTCTCGGAGTTGTAATCTTCCTATTAATGATTGTGACA 
Ames23224    GAGTTATAGCAGTCCTAGGGAATTTGTTCGGTGTCTCGGAGTTGTAATCTTCCTATTAATGATTGTGACA 
Ames26033    GAGTTATAGCAGTCCTAGGGAATTTGTTCGGTGTCTCGGAGTTGTAATCTTCCTATTAATGATTGTGACA 
Ames22531    GAGTTATAGCAGTCCTAGGGAATTTGTTCGGTGTCTCGGAGTTGTAATCTTCCTATTAATGATTGTGACA 
Ames22532    GAGTTATAGCAGTCCTAGGGAATTTGTTCGGTGTCTCGGAGTTGTAATCTTCCTATTAATGATTGTGACA 
 
 
                                       -----------------cob-1F-------------  
VL52  GCTTTTATAGGATACGTACCACCTTGGGGTCAGATGAGCTTTTGGGGGGCTACAGTAATT 
K1093  GCTTTTATAGGATACGTACCACCTTGGGGTCAGATGAGCTTTTGGGGGGCTACAGTAATT 
Wallone Despa GCTTTTATAGGATACGTACCACCTTGGGGTCAGATGAGCTTTTGGGGGGCTACAGTAATT 
nr.5  GCTTTTATAGGATACGTACCACCTTGGGGTCAGATGAGCTTTTGGGGGGCTACAGTAATT 
Pi531291            GCTTTTATAGGATACGTACCACCTTGGGGTCAGATGAGCTTTTGGGGGGCTACAGTAATT 
Ames23224  GCTTTTATAGGATACGTACCACCTTGGGGTCAGATGAGCTTTTGGGGGGCTACAGTAATT  
Ames26033  GCTTTTATAGGATACGTACCACCTTGGGGTCAGATGAGCTTTTGGGGGGCTACAGTAATT 
Ames22531         GCTTTTATAGGATACGTACCACCTTGGGGTCAGATGAGCTTTTGGGGGGCTACAGTAATT  
Ames22532  GCTTTTATAGGATACGTACCACCTTGGGGTCAGATGAGCTTTTGGGGGGCTACAGTAATT 
 
VL52  ACAAGCTTAGCTAGCGCCATACCCGTAGTAGGAGATACCATAGTGACTTGGCTTTGGGGT 
K1093  ACAAGCTTAGCTAGCGCCATACCCGTAGTAGGAGATACCATAGTGACTTGGCTTTGGGGT 
Wallone Despa ACAAGCTTAGCTAGCGCCATACCCGTAGTAGGAGATACCATAGTGACTTGGCTTTGGGGT 
nr.5  ACAAGCTTAGCTAGCGCCATACCCGTAGTAGGAGATACCATAGTGACTTGGCTTTGGGGT 
Pi531291            ACAAGCTTAGCTAGCGCCATACCCGTAGTAGGAGATACCATAGTGACTTGGCTTTGGGGT 
Ames23224  ACAAGCTTAGCTAGCGCCATACCCGTAGTAGGAGATACCATAGTGACTTGGCTTTGGGGT  
Ames26033  ACAAGCTTAGCTAGCGCCATACCCGTAGTAGGAGATACCATAGTGACTTGGCTTTGGGGT 
Ames22531         ACAAGCTTAGCTAGCGCCATACCCGTAGTAGGAGATACCATAGTGACTTGGCTTTGGGGT  
Ames22532  ACAAGCTTAGCTAGCGCCATACCCGTAGTAGGAGATACCATAGTGACTTGGCTTTGGGGT 
 
 
                       --------------cob-1R----------------  
VL52  GGGTTCTCCGTGGACAATGCCACCTTAAATCGTTTTTTTAGTCTTCATCATTTACTCCCC 
K1093  GGGTTCTCCGTGGACAATGCCACCTTAAATCGTTTTTTTAGTCTTCATCATTTACTCCCC 
Wallone Despa GGTTTCTCCGTGGACAATGCCACCTTAAATCGTTTTTTTAGTCTTCATCATTTACTCCCC 
nr.5  GGTTTCTCCGTGGACAATGCCACCTTAAATCGTTTTTTTAGTCTTCATCATTTACTCCCC 
Pi531291            GGTTTCTCCGTGGACAATGCCACCTTAAATCGTTTTTTTAGTCTTCATCATTTACTCCCC 
Ames23224  GGTTTCTCCGTGGACAATGCCACCTTAAATCGTTTTTTTAGTCTTCATCATTTACTCCCC  
Ames26033  GGTTTCTCCGTGGACAATGCCACCTTAAATCGTTTTTTTAGTCTTCATCATTTACTCCCC 
Ames22531         GGTTTCTCCGTGGACAATGCCACCTTAAATCGTTTTTTTAGTCTTCATCATTTACTCCCC  
Ames22532         GGTTTCTCCGTGGACAATGCCACCTTAAATCGTTTTTTTAGTCTTCATCATTTACTCCCC     
                  
VL52  TTTCTTTTAGTAGGCGCCAGTCTTCTTCATCTGGCCGCATTGCATCAATATGGATCAAAT 
K1093  TTTCTTTTAGTAGGCGCCAGTCTTCTTCATCTGGCCGCATTGCATCAATATGGATCAAAT 
Wallone Despa TTTCTTTTAGTAGGCGCCAGTCTTCTTCATCTGGCCGCATTGCATCAATATGGATCAAAT 
nr.5  TTTCTTTTAGTAGGCGCCAGTCTTCTTCATCTGGCCGCATTGCATCAATATGGATCAAAT 
Pi531291            TTTCTTTTAGTAGGCGCCAGTCTTCTTCATCTGGCCGCATTGCATCAATATGGATCAAAT 
Ames23224  TTTCTTTTAGTAGGCGCCAGTCTTCTTCATCTGGCCGCATTGCATCAATATGGATCAAAT  
Ames26033  TTTCTTTTAGTAGGCGCCAGTCTTCTTCATCTGGCCGCATTGCATCAATATGGATCAAAT 
Ames22531         TTTCTTTTAGTAGGCGCCAGTCTTCTTCATCTGGCCGCATTGCATCAATATGGATCAAAT  
Ames22532          TTTCTTTTAGTAGGCGCCAGTCTTCTTCATCTGGCCGCATTGCATCAATATGGATCAAAT      
          
 
VL52  AATCCATTGGGTGTACATTCAGAGATGGATAAAATTGCTTCTTACCCTTATTTTTATGTA 
K1093  AATCCATTGGGTGTACATTCAGAGATGGATAAAATTGCTTCTTACCCTTATTTTTATGTA 
Wallone Despa AATCCATTGGGTGTACATTCAGAGATGGATAAAATTGCTTCTTACCCTTATTTTTATGTA 
nr.5  AATCCATTGGGTGTACATTCAGAGATGGATAAAATTGCTTCTTACCCTTATTTTTATGTA 
Pi531291            AATCCATTGGGTGTACATTCAGAGATGGATAAAATTGCTTCTTACCCTTATTTTTATGTA 
Ames23224  AATCCATTGGGTGTACATTCAGAGATGGATAAAATTGCTTCTTACCCTTATTTTTATGTA   
Ames26033  AATCCATTGGGTGTACATTCAGAGATGGATAAAATTGCTTCTTACCCTTATTTTTATGTA 
Ames22531         AATCCATTGGGTGTACATTCAGAGATGGATAAAATTGCTTCTTACCCTTATTTTTATGTA  
Ames22532          AATCCATTGGGTGTACATTCAGAGATGGATAAAATTGCTTCTTACCCTTATTTTTATGTA      
             
VL52  AAGGATCTAGTAGGTTGGGTAGCTTTTGCTATCTTTTCTTCCATTTTTATTTTTTATGCT 
K1093  AAGGATCTAGTAGGTTGGGTAGCTTTTGCTATCTTTTCTTCCATTTTTATTTTTTATGCT 
Wallone Despa AAGGATCTAGTAGGTTGGGTAGCTTTTGCTATCTTTTCTTCCATTTTTATTTTTTATGCT 
nr.5  AAGGATCTAGTAGGTTGGGTAGCTTTTGCTATCTTTTCTTCCATTTTTATTTTTTATGCT 
Pi531291            AAGGATCTAGTAGGTTGGGTAGCTTTTGCTATCTTTTCTTCCATTTTTATTTTTTATGCT 
Ames23224  AAGGATCTAGTAGGTTGGGTAGCTTTTGCTATCTTTTCTTCCATTTTTATTTTTTATGCT  
Ames26033  AAGGATCTAGTAGGTTGGGTAGCTTTTGCTATCTTTTCTTCCATTTTTATTTTTTATGCT 
Ames22531         AAGGATCTAGTAGGTTGGGTAGCTTTTGCTATCTTTTCTTCCATTTTTATTTTTTATGCT  
Ames22532          AAGGATCTAGTAGGTTGGGTAGCTTTTGCTATCTTTTCTTCCATTTTTATTTTTTATGCT 
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VL52  CCTAATGTTTTGGGGCATCCCGACAATTATATACCTGCTAATCCGATGCCCACCCCGCCT 
K1093  CCTAATGTTTTGGGGCATCCCGACAATTATATACCTGCTAATCCGATGCCCACCCCGCCT 
Wallone Despa CCTAATGTTTTGGGGCATCCCGACAATTATATACCTGCTAATCCGATGCCCACCCCGCCT 
nr.5  CCTAATGTTTTGGGGCATCCCGACAATTATATACCTGCTAATCCGATGCCCACCCCGCCT 
Pi531291            CCTAATGTTTTGGGGCATCCCGACAATTATATACCTGCTAATCCGATGCCCACCCCGCCT 
Ames23224  CCTAATGTTTTGGGGCATCCCGACAATTATATACCTGCTAATCCGATGCCCACCCCGCCT  
Ames26033  CCTAATGTTTTGGGGCATCCCGACAATTATATACCTGCTAATCCGATGCCCACCCCGCCT 
Ames22531         CCTAATGTTTTGGGGCATCCCGACAATTATATACCTGCTAATCCGATGCCCACCCCGCCT  
Ames22532          CCTAATGTTTTGGGGCATCCCGACAATTATATACCTGCTAATCCGATGCCCACCCCGCCT 
 
            --------------cob-2F----------------  
VL52  CATATTGTACCGGAATGGTATTTCCTACCGATCCATGCCATTCTTCGTAGTATACCTGAC 
K1093  CATATTGTACCGGAATGGTATTTCCTACCGATCCATGCCATTCTTCGTAGTATACCTGAC 
Wallone Despa CATATTGTACCGGAATGGTATTTCCTACCGATCCATGCCATTCTTCGTAGTATACCTGAC 
nr.5  CATATTGTACCGGAATGGTATTTCCTACCGATCCATGCCATTCTTCGTAGTATACCTGAC 
Pi531291            CATATTGTACCGGAATGGTATTTCCTACCGATCCATGCCATTCTTCGTAGTATACCTGAC 
Ames23224  CATATTGTACCGGAATGGTATTTCCTACCGATCCATGCCATTCTTCGTAGTATACCTGAC  
Ames26033  CATATTGTACCGGAATGGTATTTCCTACCGATCCATGCCATTCTTCGTAGTATACCTGAC 
Ames22531         CATATTGTACCGGAATGGTATTTCCTACCGATCCATGCCATTCTTCGTAGTATACCTGAC  
Ames22532          CATATTGTACCGGAATGGTATTTCCTACCGATCCATGCCATTCTTCGTAGTATACCTGAC 
 
                   
             ---------------cob-3F-----------------  
VL52  AAAGCGGGAGGTGTAGCCGCAATAGCACCAGTTTTTATATGTCTGTTGGCTTTACCTTTT 
K1093  AAAGCGGGAGGTGTAGCCGCAATAGCACCAGTTTTTATATGTCTGTTGGCTTTACCTTTT 
Wallone Despa AAAGCGGGAGGTGTAGCCGCAATAGCACCAGTTTTTATATGTCTGTTGGCTTTACCTTTT  
nr.5  AAAGCGGGAGGTGTAGCCGCAATAGCACCAGTTTTTATATGTCTGTTGGCTTTACCTTTT 
Pi531291            AAAGCGGGAGGTGTAGCCGCAATAGCACCAGTTTTTATATGTCTGTTGGCTTTACCTTTT 
Ames23224  AAAGCGGGAGGTGTAGCCGCAATAGCACCAGTTTTTATATGTCTGTTGGCTTTACCTTTT  
Ames26033  AAAGCGGGAGGTGTAGCCGCAATAGCACCAGTTTTTATATGTCTGTTGGCTTTACCTTTT 
Ames22531         AAAGCGGGAGGTGTAGCCGCAATAGCACCAGTTTTTATATGTCTGTTGGCTTTACCTTTT  
Ames22532          AAAGCGGGAGGTGTAGCCGCAATAGCACCAGTTTTTATATGTCTGTTGGCTTTACCTTTT  
 
                              --------------cob-3R--------------  
                           ---------------cob-2R---------------  
VL52  TTTAAAAGTATGTATGTACGTAGTTCAAGTTTTCGCCCGATTCACCAAGGAATATTTTGG 
K1093  TTTAAAAGTATGTATGTACGTAGTTCAAGTTTTCGCCCGATTCACCAAGGAATATTTTGG 
Wallone Despa TTTAAAAGTCTGTATGTACGTAGTTCAAGTTTTCGCCCGATTCACCAAGGAATATTTTGG  
nr.5  TTTAAAAGTCTGTATGTACGTAGTTCAAGTTTTCGCCCGATTCACCAAGGAATATTTTGG 
Pi531291            TTTAAAAGTCTGTATGTACGTAGTTCAAGTTTTCGCCCGATTCACCAAGGAATATTTTGG 
Ames23224  TTTAAAAGTCTGTATGTACGTAGTTCAAGTTTTCGCCCGATTCACCAAGGAATATTTTGG  
Ames26033  TTTAAAAGTCTGTATGTACGTAGTTCAAGTTTTCGCCCGATTCACCAAGGAATATTTTGG 
Ames22531         TTTAAAAGTCTGTATGTACGTAGTTCAAGTTTTCGCCCGATTCACCAAGGAATATTTTGG  
Ames22532          TTTAAAAGTCTGTATGTACGTAGTTCAAGTTTTCGCCCGATTCACCAAGGAATATTTTGG 
 
            
Supplemental Fig. 6-2 Alignment of the complete cob amplicon sequences (698 bp) of the 9 
Cichorium species: Two SNPs (grey) were detected at 193 and 620 bp, which discriminated 
the cultivated chicory plasmotypes (‘VL52’, ‘K1093’) from the endive (‘Wallone Despa’, 
‘nr.5’) and the wild type plasmotypes (‘Pi531291’, ‘Ames23224’, ‘Ames26033’, 
‘Ames22531’, ‘Ames22532’). Three primer pairs for HRM analysis are depicted above the 
sequences (arrows). 
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VL52  TACTTGTATTGATTCTATTTCTTTGTTCGTTGGATTCTTAGGAATTCCTTTCACTCAAGA 
K1093  TACTTGTATTGATTCTATTTCTTTGTTCGTTGGATTCTTAGGAATTCCTTTCACTCAAGA 
Wallone Despa TACTTGTATTGATTCTATTTCTTTGTTCGTTGGATTCTTAGGAATTCCTTTCACTCAAGA  
nr.5  TACTTGTATTGATTCTATTTCTTTGTTCGTTGGATTCTTAGGAATTCCTTTCACTCAAGA 
Pi531291            TACTTGTATTGATTCTATTTCTTTGTTCGTTGGATTCTTAGGAATTCCTTTCACTCAAGA 
Ames23224  TACTTGTATTGATTCTATTTCTTTGTTCGTTGGATTCTTAGGAATTCCTTTCACTCAAGA  
Ames26033  TACTTGTATTGATTCTATTTCTTTGTTCGTTGGATTCTTAGGAATTCCTTTCACTCAAGA 
Ames22531         TACTTGTATTGATTCTATTTCTTTGTTCGTTGGATTCTTAGGAATTCCTTTCACTCAAGA  
Ames22532          TACTTGTATTGATTCTATTTCTTTGTTCGTTGGATTCTTAGGAATTCCTTTCACTCAAGA  
                                                                             
VL52  CGTTGATATATTATCCAAATGGTTAACTCCCTCTATAAATCTTTTACATAAAAATTCAAA 
K1093  CGTTGATATATTATCCAAATGGTTAACTCCCTCTATAAATCTTTTACATAAAAATTCAAA 
Wallone Despa CGTTGATATATTATCCAAATGGTTAACTCCGTCTATAAATCTTTTACATAAAAATTCAAA 
nr.5  CGTTGATATATTATCCAAATGGTTAACTCCGTCTATAAATCTTTTACATAAAAATTCAAA   
Pi531291  CGTTGATATATTATCCAAATGGTTAACTCCCTCTATAAATCTTTTACATAAAAATTCAAA 
Ames23224  CGTTGATATATTATCCAAATGGTTAACTCCCTCTATAAATCTTTTACATAAAAATTCAAA 
Ames26033  CGTTGATATATTATCCAAATGGTTAACTCCCTCTATAAATCTTTTACATAAAAATTCAAA 
Ames22531  CGTTGATATATTATCCAAATGGTTAACTCCCTCTATAAATCTTTTACATAAAAATTCAAA 
Ames22532  CGTTGATATATTATCCAAATGGTTAACTCCCTCTATAAATCTTTTACATAAAAATTCAAA 
 
VL52  CAATTTGATAGATTGGTATGAATTTTCTAAAGATGCATTTTTTTCAGTCAGTATAGCTTC  
K1093  CAATTTGATAGATTGGTATGAATTTTCTAAAGATGCATTTTTTTCAGTCAGTATAGCTTC 
Wallone Despa CAATTTGATAGATTGGTATGAATTTTCTAAAGATGCATTTTTTTCAGTCAGTATAGCTTC 
nr.5  CAATTTGATAGATTGGTATGAATTTTCTAAAGATGCATTTTTTTCAGTCAGTATAGCTTC   
Pi531291  CAATTTGATAGATTGGTATGAATTTTCTAAAGATGCATTTTTTTCAGTCAGTATAGCTTC 
Ames23224  CAATTTGATAGATTGGTATGAATTTTCTAAAGATGCATTTTTTTCAGTCAGTATAGCTTC 
Ames26033  CAATTTGATAGATTGGTATGAATTTTCTAAAGATGCATTTTTTTCAGTCAGTATAGCTTC 
Ames22531  CAATTTGATAGATTGGTATGAATTTTCTAAAGATGCATTTTTTTCAGTCAGTATAGCTTC 
Ames22532  CAATTTGATAGATTGGTATGAATTTTCTAAAGATGCATTTTTTTCAGTCAGTATAGCTTC  
 
VL52  TTTCGGAATATTTATAGCATTTTTTTTATATAAACCTGTTTATTCATCTTTTCAAAATT  
K1093  TTTCGGAATATTTATAGCATTTTTTTTATATAAACCTGTTTATTCATCTTTTCAAAATT 
Wallone Despa TTTCGGAATATTTATAGCATTTTTTTTATATAAACCTGTTTATTCATCTTTTCAAAATT 
nr.5  TTTCGGAATATTTATAGCATTTTTTTTATATAAACCTGTTTATTCATCTTTTCAAAATT   
Pi531291  TTTCGGAATATTTATAGCATTTTTTTTATATAAACCTGTTTATTCATCTTTTCAAAATT 
Ames23224  TTTCGGAATATTTATAGCATTTTTTTTATATAAACCTGTTTATTCATCTTTTCAAAATT 
Ames26033  TTTCGGAATATTTATAGCATTTTTTTTATATAAACCTGTTTATTCATCTTTTCAAAATT 
Ames22531  TTTCGGAATATTTATAGCATTTTTTTTATATAAACCTGTTTATTCATCTTTTCAAAATT 
Ames22532  TTTCGGAATATTTATAGCATTTTTTTTATATAAACCTGTTTATTCATCTTTTCAAAATT  
 
  ----------------ndhF-2F--------------  
                         ------------ndhF-1/3F----------------  
VL52  TGGATTTCCTTAATGCATTTGTTAAAATGGGTCCTAATCGAATTTTTTATGACAAAATAAA 
K1093  TGGATTTCCTTAATGCATTTGTTAAAATGGGTCCTAATCGAATTTTTTATGACAAAATAAA  
Wallone Despa TGGATTTCCTTAATGCATTTGTTAAAATGGGTCCTAATAGAATTTTTTATGACAAAATAAA  
nr.5  TGGATTTCCTTAATGCATTTGTTAAAATGGGTCCTAATAGAATTTTTTATGACAAAATAAA   
Pi531291  TGGATTTCCTTAATGCATTTGTTAAAATGGGTCCTAATAGAATTTTTTATGACAAAATAAA 
Ames23224  TGGATTTCCTTAATGCATTTGTTAAAATGGGTCCTAATAGAATTTTTTATGACAAAATAAA 
Ames26033  TGGATTTCCTTAATGCATTTGTTAAAATGGGTCCTAATAGAATTTTTTATGACAAAATAAA 
Ames22531  TGGATTTCCTTAATGCATTTGTTAAAATGGGTCCTAATAGAATTTTTTATGACAAAATAAA 
Ames22532  TGGATTTCCTTAATGCATTTGTTAAAATGGGTCCTAATAGAATTTTTTATGACAAAATAAA 
 
                           ----------ndhF-1/2R-----------------  
VL52  AAATGCTATATATGATTGGTCATATAATCGGGGTTACATAGATGCCTTTTATGGAAGATT 
K1093  AAATGCTATATATGATTGGTCATATAATCGGGGTTACATAGATGCCTTTTATGGAAGATT 
Wallone Despa AAATGCTATATATGATTGGTCATATAATCGGGGTTACATAGATGCCTTTTATGGAAAATT 
nr.5  AAATGCTATATATGATTGGTCATATAATCGGGGTTACATAGATGCCTTTTATGGAAAATT 
Pi531291  AAATGCTATATATGATTGGTCATATAATCGGGGTTACATAGATGCCTTTTATGGAAGATT 
Ames23224  AAATGCTATATATGATTGGTCATATAATCGGGGTTACATAGATGCCTTTTATGGAAGATT 
Ames26033  AAATGCTATATATGATTGGTCATATAATCGGGGTTACATAGATGCCTTTTATGGAAGATT 
Ames22531  AAATGCTATATATGATTGGTCATATAATCGGGGTTACATAGATGCCTTTTATGGAAGATT 
Ames22532  AAATGCTATATATGATTGGTCATATAATCGGGGTTACATAGATGCCTTTTATGGAAGATT 
 
VL52  CTTAACTGCGGGGATGAGAAAATTGGCCGACTTCGCTCATTTTTTTGATAGACGAATAAT  
K1093  CTTAACTGCGGGGATGAGAAAATTGGCCGACTTCGCTCATTTTTTTGATAGACGAATAAT 
Wallone Despa CTTAACTGCGGGGATGAGAAAATTGGCCGACTTCGCTCATTTTTTTGATAGACGAATAAT 
nr.5  CTTAACTGCGGGGATGAGAAAATTGGCCGACTTCGCTCATTTTTTTGATAGACGAATAAT 
Pi531291  CTTAACTGCGGGGATGAGAAAATTGGCCGACTTCGCTCATTTTTTTGATAGACGAATAAT 
Ames23224  CTTAACTGCGGGGATGAGAAAATTGGCCGACTTCGCTCATTTTTTTGATAGACGAATAAT 
Ames26033  CTTAACTGCGGGGATGAGAAAATTGGCCGACTTCGCTCATTTTTTTGATAGACGAATAAT 
Ames22531  CTTAACTGCGGGGATGAGAAAATTGGCCGACTTCGCTCATTTTTTTGATAGACGAATAAT 
Ames22532  CTTAACTGCGGGGATGAGAAAATTGGCCGACTTCGCTCATTTTTTTGATAGACGAATAAT  
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  -------------ndhF-3R---------------  
VL52  TGATGCAATTCCAAATGGAGTTGGTCTTATGAGTTTCTTTCTAGCAGAGGTTATTAAATC  
K1093  TGATGCAATTCCAAATGGAGTTGGTCTTATGAGTTTCTTTCTAGCAGAGGTTATTAAATC 
Wallone Despa TGATGCAATTCCAAATGGAGTTGGTCTTATGAGTTTCTTTCTAGCAGAGGTTATTAAATC 
nr.5  TGATGCAATTCCAAATGGAGTTGGTCTTATGAGTTTCTTTCTAGCAGAGGTTATTAAATC 
Pi531291  TGATGCAATTCCAAATGGAGTTGGTCTTATGAGTTTCTTTCTAGCAGAGGTTATTAAATC 
Ames23224  TGATGCAATTCCAAATGGAGTTGGTCTTATGAGTTTCTTTCTAGCAGAGGTTATTAAATC 
Ames26033  TGATGCAATTCCAAATGGAGTTGGTCTTATGAGTTTCTTTCTAGCAGAGGTTATTAAATC 
Ames22531  TGATGCAATTCCAAATGGAGTTGGTCTTATGAGTTTCTTTCTAGCAGAGGTTATTAAATC 
Ames22532  TGATGCAATTCCAAATGGAGTTGGTCTTATGAGTTTCTTTCTAGCAGAGGTTATTAAATC  
 
VL52  GGTAGGGGGTGGGCGTATTTCTTCCTATCTGTTCTTTTATTTTTCGTATGTAGCAATTTT  
K1093  GGTAGGGGGTGGGCGTATTTCTTCCTATCTGTTCTTTTATTTTTCGTATGTAGCAATTTT 
Wallone Despa GGTAGGGGGTGGGCGTATTTCTTCCTATCTGTTCTTTTATTTTTCGTATGTAGCAATTTT 
nr.5  GGTAGGGGGTGGGCGTATTTCTTCCTATCTGTTCTTTTATTTTTCGTATGTAGCAATTTT 
Pi531291  GGTAGGGGGTGGGCGTATTTCTTCCTATCTGTTCTTTTATTTTTCGTATGTAGCAATTTT 
Ames23224  GGTAGGGGGTGGGCGTATTTCTTCCTATCTGTTCTTTTATTTTTCGTATGTAGCAATTTT 
Ames26033  GGTAGGGGGTGGGCGTATTTCTTCCTATCTGTTCTTTTATTTTTCGTATGTAGCAATTTT 
Ames22531  GGTAGGGGGTGGGCGTATTTCTTCCTATCTGTTCTTTTATTTTTCGTATGTAGCAATTTT 
Ames22532  GGTAGGGGGTGGGCGTATTTCTTCCTATCTGTTCTTTTATTTTTCGTATGTAGCAATTTT  
 
VL52  TTTATTAATTTACTACTTTTTTAATCTTTAATCTTGTTG 
K1093  TTTATTAATTTACTACTTTTTTAATCTTTAATCTTGTTG 
Wallone Despa TTTATTAATTTACTACTTTTTTAATCTTTAATCTTGTTG 
nr.5  TTTATTAATTTACTACTTTTTTAATCTTTAATCTTGTTG 
Pi531291  TTTATTAATTTACTACTTTTTTAATCTTTAATCTTGTTG 
Ames23224  TTTATTAATTTACTACTTTTTTAATCTTTAATCTTGTTG 
Ames26033  TTTATTAATTTACTACTTTTTTAATCTTTAATCTTGTTG 
Ames22531  TTTATTAATTTACTACTTTTTTAATCTTTAATCTTGTTG 
Ames22532         TTTATTAATTTACTACTTTTTTAATCTTTAATCTTGTTG 

Supplemental Fig. 6-3 Alignment of the complete ndhF amplicon sequences (579 bp) of the 
9 Cichorium species. Three SNPs (grey) were detected: SNPs at 91bp and 357 bp 
discriminated the endives (‘Wallone Despa’, ‘nr.5’) from the others species. The SNP at 278 
bp discriminated the industrial chicory plasmotypes (‘VL52’, ‘K1093’) from the endive and 
wild type plasmotypes (‘Pi531291’, ‘Ames23224’, ‘Ames26033’, ‘Ames22531’, 
‘Ames22532’). Three primer pairs for HRM analysis are depicted above the sequences 
(arrows). 
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                    ------------trnL-trnF-3F----------  
  ---------------trnL-trnF-F-------------                                 
VL52  GGTTCAAGTCCCTCTATCCCCAAAAAGACCATTTGGCTCCCTAATTCTTT----------------------- 
K1093  GGTTCAAGTCCCTCTATCCCCAAAAAGACCATTTGGCTCCCTAATTCTTT----------------------- 
Wallone Despa GGTTCAAGTCCCTCTATCCCCAAAAAGACCATTTGGCTCCCTAATTCTTTCCTAATTCTTT 
nr.5  GGTTCAAGTCCCTCTATCCCCAAAAAGACCATTTGGCTCCCTAATTCTTTCCTAATTCTTT  
Pi531291  GGTTCAAGTCCCTCTATCCCCAAAAAGACCATTTGGCTCCCTAATTCTTT----------------------- 
Ames23224  GGTTCAAGTCCCTCTATCCCCAAAAAGACCATTTGGCTCCCTAATTCTTT----------------------- 
Ames26033  GGTTCAAGTCCCTCTATCCCCAAAAAGACCATTTGGCTCCCTAATTCTTT----------------------- 
Ames22531  GGTTCAAGTCCCTCTATCCCCAAAAAGACCATTTGGCTCCCTAATTCTTT----------------------- 
Ames22532  GGTTCAAGTCCCTCTATCCCCAAAAAGACCATTTGGCTCCCTAATTCTTT----------------------- 
                                                           
             
                                           -----------trnL-trnF-4/5F--------  
                                   -----------trnL-trnF-3R-------------  
                                      -----------trnL-trnF-1F------------  
VL52  ATAGTATCCTTTTTTTTTATCCTTTTTCGTTAGCGGCTCAAAACTCCTTATCTTTCTCA 
K1093  ATAGTATCCTTTTTTTTTATCCTTTTTCGTTAGCGGCTCAAAACTCCTTATCTTTCTCA  
Wallone Despa ATAGTATCCTTTTTTTT--ATCCTTTTTCGTTAGCGGCTCAAAACTCCTTATCTTTCTCA 
nr.5  ATAGTATCCTTTTTTTT--ATCCTTTTTCGTTAGCGGCTCAAAACTCCTTATCTTTCTCA  
Pi531291  ATAGTATCCTTTTTTTT--ATCCTTTTTCGTTAGCGGCTCAAAACTCCTTATCTTTCTCA 
Ames23224  ATAGTATCCTTTTTTTT--ATCCTTTTTCGTTAGCGGCTCAAAACTCCTTATCTTTCTCA  
Ames26033  ATAGTATCCTTTTTTTT--ATCCTTTTTCGTTAGCGGCTCAAAACTCCTTATCTTTCTCA 
Ames22531  ATAGTATCCTTTTTTTT--ATCCTTTTTCGTTAGCGGCTCAAAACTCCTTATCTTTCTCA 
Ames22532  ATAGTATCCTTTTTTTT--ATCCTTTTTCGTTAGCGGCTCAAAACTCCTTATCTTTCTCA 
                                      
 
VL52  TTCACTACTCTTTATACAAATGGATCCGCGCGGAAATGCTGTTTTCTTATCACATGTGAT  
K1093  TTCACTACTCTTTATACAAATGGATCCGCGCGGAAATGCTGTTTTCTTATCACATGTGAT 
Wallone Despa TTCACTACTCTTTATACAAATGGATCCGCGCGGAAATGCTGTTCTCTTATCACATGTGAT 
nr.5  TTCACTACTCTTTATACAAATGGATCCGCGCGGAAATGCTGTTCTCTTATCACATGTGAT 
Pi531291  TTCACTACTCTTTATACAAATGGATCCGCGCGGAAATGCTGTTCTCTTATCACATGTGAT 
Ames23224  TTCACTACTCTTTATACAAATGGATCCGCGCGGAAATGCTGTTCTCTTATCACATGTGAT 
Ames26033  TTCACTACTCTTTATACAAATGGATCCGCGCGGAAATGCTGTTCTCTTATCACATGTGAT 
Ames22531  TTCACTACTCTTTATACAAATGGATCCGCGCGGAAATGCTGTTCTCTTATCACATGTGAT 
Ames22532  TTCACTACTCTTTATACAAATGGATCCGCGCGGAAATGCTGTTCTCTTATCACATGTGAT 
 
 
                               --------- trnL-trnF-4R--------------  
                                              ------------ trnL-trnF-1/5R-------  
VL52  ATATACGATACATGTACAAATGAACATCTTTGAGCAAGGAATCCCCATTTGAATGATTCA  
K1093  ATATACGATACATGTACAAATGAACATCTTTGAGCAAGGAATCCCCATTTGAATGATTCA 
Wallone Despa ATATACGATACATGTACAAATGAACATCTTTGAGCAAGGAATCCCCATTTGAATGATTCA 
nr.5  ATATACGATACATGTACAAATGAACATCTTTGAGCAAGGAATCCCCATTTGAATGATTCA 
Pi531291  ATATACGATACATGTACAAATGAACATCTTTGAGCAAGGAATCCCCATTTGAATGATTCA 
Ames23224  ATATACGATACATGTACAAATGAACATCTTTGAGCAAGGAATCCCCATTTGAATGATTCA 
Ames26033  ATATACGATACATGTACAAATGAACATCTTTGAGCAAGGAATCCCCATTTGAATGATTCA 
Ames22531  ATATACGATACATGTACAAATGAACATCTTTGAGCAAGGAATCCCCATTTGAATGATTCA 
Ames22532  ATATACGATACATGTACAAATGAACATCTTTGAGCAAGGAATCCCCATTTGAATGATTCA 
 
                                                                      ---trnL-trnF-2F-- 
VL52  CGATCGAGATTTTTATTCATACTGAAACTTACAAAGTTGTTCTTTTGACAAATTATAGGC  
K1093  CGATCGAGATTTTTATTCATACTGAAACTTACAAAGTTGTTCTTTTGACAAATTATAGGC 
Wallone Despa CGATCGAGATTTTTATTCATACTGAAACTTACAAAGTTGTTCTTTTGACAAATTATAGGC 
nr.5  CGATCGAGATTTTTATTCATACTGAAACTTACAAAGTTGTTCTTTTGACAAATTATAGGC 
Pi531291  CGATCGAGATTTTTATTCATACTGAAACTTACAAAGTTGTTCTTTTGACAAATTATAGGC 
Ames23224  CGATCGAGATTTTTATTCATACTGAAACTTACAAAGTTGTTCTTTTGACAAATTATAGGC 
Ames26033  CGATCGAGATTTTTATTCATACTGAAACTTACAAAGTTGTTCTTTTGACAAATTATAGGC 
Ames22531  CGATCGAGATTTTTATTCATACTGAAACTTACAAAGTTGTTCTTTTGACAAATTATAGGC 
Ames22532  CGATCGAGATTTTTATTCATACTGAAACTTACAAAGTTGTTCTTTTGACAAATTATAGGC 
 
  -----------------  
VL52  CCGGGATGAG-------TTGTAATACCCTTTCAATTGACATAGACCCAAGTTCTCTAGTAAAAT 
K1093  CCGGGATGAG-------TTGTAATACCCTTTCAATTGACATAGACCCAAGTTCTCTAGTAAAAT  
Wallone Despa CCGGGATGAGGCTTTGTAATACCCTTTCAATTGACATAGACCCAAGTTCTCTAGTAAAAT             
nr.5  CCGGGATGAGGCTTTGTAATACCCTTTCAATTGACATAGACCCAAGTTCTCTAGTAAAAT 
Pi531291  CCGGGATGAGGCTTTGTAATACCCTTTCAATTGACATAGACCCAAGTTCTCTAGTAAAAT 
Ames23224  CCGGGATGAGGCTTTGTAATACCCTTTCAATTGACATAGACCCAAGTTCTCTAGTAAAAT 
Ames26033  CCGGGATGAGGCTTTGTAATACCCTTTCAATTGACATAGACCCAAGTTCTCTAGTAAAAT 
Ames22531  CCGGGATGAGGCTTTGTAATACCCTTTCAATTGACATAGACCCAAGTTCTCTAGTAAAAT 
Ames22532  CCGGGATGAGGCTTTGTAATACCCTTTCAATTGACATAGACCCAAGTTCTCTAGTAAAAT 
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                    ---------- trnL-trnF-2R----------------  
                                           ----------- trnL-trnF-R-------------  
VL52  AAAAATGAGGATGAGACATGAAGAATAGTCGGGATAGCTCAGCTGGTAG  
K1093  AAAAATGAGGATGAGACATGAAGAATAGTCGGGATAGCTCAGCTGGTAG 
Wallone Despa AAAAATGAGGATGAGACATGAAGAATAGTCGGGATAGCTCAGCTGGTAG 
nr.5   AAAAATGAGGATGAGACATGAAGAATAGTCGGGATAGCTCAGCTGGTAG 
Pi531291  AAAAATGAGGATGAGACATGAAGAATAGTCGGGATAGCTCAGCTGGTAG  
Ames23224  AAAAATGAGGATGAGACATGAAGAATAGTCGGGATAGCTCAGCTGGTAG 
Ames26033  AAAAATGAGGATGAGACATGAAGAATAGTCGGGATAGCTCAGCTGGTAG 
Ames22531  AAAAATGAGGATGAGACATGAAGAATAGTCGGGATAGCTCAGCTGGTAG 
Ames22532  AAAAATGAGGATGAGACATGAAGAATAGTCGGGATAGCTCAGCTGGTAG 
 
 
Supplemental Fig. 6-4 Alignment of the complete trnL-trnF amplicon sequences (395 bp) of 
the 9 Cichorium species. Three INDELs (triangles) and one SNP (grey) were detected. The 
SNP at 153 bp discriminated the industrial chicory plasmotypes (‘VL52’, ‘K1093’) from the 
endive (‘Wallone Despa’, ‘nr.5’) and the wild type plasmotypes (‘Pi531291’, ‘Ames23224’, 
‘Ames26033’, ‘Ames22531’, ‘Ames22532’). Six primer pairs for HRM analysis are depicted 
above the sequences (arrows). 
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