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                                        GENERAL INTRODUCTION 

ABSTRACT 

 
Attention-Deficit/Hyperactivity Disorder (ADHD) is a lifespan disorder that causes 

significant problems in social and academic life. In this chapter, we first give information 

about the general characteristics of ADHD and briefly explain the genetic, environmental 

and neurobiological factors implicated in the aetiology. We discuss the 

neuropsychological theories of ADHD with focusing on State Regulation and Delay 

Aversion models. We then explain the objective of the dissertation, which is to compare 

the State Regulation and Delay Aversion Models. Finally, we provide a summary of the 

chapters. 
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                WHAT IS ADHD? 

Attention Deficit/Hyperactivity Disorder (ADHD) is characterized by persistent 

and pervasive inattention and/or hyperactivity and impulsivity (DSM-IV-TR, American 

Psychiatric Association, 2000). The worldwide prevalence of ADHD is estimated to be 

around 5.29% making it one of the most prevalent psychiatric disorders (Polanczyk, De 

Lima, Horta, Biederman, & Rohde, 2007). ADHD causes significant disability in social and 

academic life. It is a major burden to individuals, families, clinical services and 

communities (Pelham, Foster, & Robb, 2007). In the long term, it increases the risk of 

delinquency, academic failure, job insecurity, substance use disorder and motor 

accidents (Harpin, 2005; Kessler et al., 2005).  

Numerous studies conducted to understand the aetiology of ADHD indicate that 

it is a complex and heterogeneous disorder in which several genetic, environmental and 

neurobiological factors might be involved (see Nigg, 2005 for a review). The heritability 

of ADHD is estimated to be 76% making it one of the most heritable psychiatric disorders 

(Faraone et al., 2005). The most commonly implicated genes in the pathophysiology are 

those encoding dopamine receptor subtypes (D4 and D5), enzymes involved in 

monoamine synthesis (dopamine hydroxylase), proteins involved in the structure of 

synapses (SNAP-25), and proteins involved in serotonergic transport (Faraone & Mick, 

2010). Although there is evidence for that certain variants of these genes increase the 

risk of ADHD, a meta-analysis of genetic studies showed that none of the known risk 

variants was significantly associated with the disorder suggesting that the contribution 

of individual genes to the aetiology must be small or other variants are involved (Neale 

et al., 2010).  

Environmental factors are also likely to be involved in the aetiology of ADHD. To 

date several pre and perinatal factors, childhood infections, and nutritional deficiencies 

have been implicated in the aetiology with strongest evidence being for maternal 

smoking and low birth weight (Cortese, 2012). However, it is questionable whether the 

link between these risk factors and ADHD is causal (Thapar, Cooper, Eyre, & Langley, 

2013). Besides these environmental effects, the interaction between environmental and 

genetic factors also seems to be important in the aetiology of ADHD. For instance, it has 

been shown that environmental factors might increase the risk due to genetic factors by 

affecting the expression of genes (Pennington et al., 2009). Such interactions have been 
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found between genes involved in dopaminergic and seratonergic transport and prenatal 

and perinatal risk factors (Nigg, Nikolas, & Burt, 2010). 

The research exploring the neurobiology of ADHD revealed that multiple types of 

deficits in the brain structure, function and chemistry might play a role in pathogenesis. 

Neuroimaging studies have shown altered structure and function in prefrontal areas 

involved in response inhibition, working memory, response organization, sustained 

attention as well as their connections with striatum, cerebellum and parietal areas 

(Arnsten & Rubia, 2012), impaired suppression of default mode brain network (Liddle et 

al., 2011) and altered sensitivity to rewards in nucleus accumbens and, orbitofrontal 

cortex (Scheres et al., 2007 and Cubillo et al, 2012). The most commonly implicated 

neurotransmitter in the pathology is dopamine. In vivo imaging studies with positron 

emission tomography (PET) showed that a reduction of dopamine in reward pathways 

was associated with symptoms of inattention and motivational deficits (Volkow et al., 

2009 and 2011). In addition, the efficacy of noradrenergic medications such as modafinil 

and atomoxetine in treatment suggests that noradrenergic deficits might also be 

involved (del Campo, Chamberlein, Sahakian, & Robbins, 2011).  

                 NEUROPSYCHOLOGICAL DEFICITS IN ADHD 

Earlier accounts postulated that the symptoms of ADHD arise due to deficits in 

executive functions involving response inhibition (Barkley, 1997). The disinhibition 

account of ADHD is based on the general observation that the children with ADHD have 

a problem with inhibiting or withholding their responses in socially inappropriate 

settings and it is supported by the evidence from experimental studies which showed 

that children with ADHD perform worse than typically developing children in tasks 

tapping inhibitory functions (Oosterlaan, Logan, & Sergeant, 1998). In addition to 

inhibition, the neuropsychological deficits in ADHD have been found to involve other 

executive domains such as sustained attention, planning, set shifting and working 

memory (Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005) suggesting a more global 

deficit in executive control.  

 Despite the strong evidence, the role of executive function deficits in ADHD has 

been questioned for a number of reasons. First, the meta-analyses have shown that the 
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effect sizes for group differences in executive functions are much smaller than the effect 

sizes for ADHD symptoms suggesting that the symptoms cannot be explained only with 

executive deficits (Willcutt et al., 2005). Second, only a subgroup of children with ADHD 

has executive deficits suggesting the pathophysiological heterogeneity within the 

disorder (Nigg, 2005). Third, children with ADHD have information processing deficits 

even in tasks which require little or no executive processing (Rommelse et al., 2007). 

Taken together, these observations suggest that executive functions deficits are neither 

necessary nor sufficient to make a diagnosis of ADHD (Willcutt et al., 2005) and basic 

processing deficits are likely to be involved in ADHD in addition to the executive deficits.  

Fixed or context-dependent deficits? 

It is known that the executive functions are not static processes but rather 

fluctuate from state to state. For instance, research in the 60s and 70s has shown that 

human information processing capacity is affected non-specifically from energetic 

resources such as arousal, activation and effort (Pribram & McGuinness, 1975). Arousal 

refers to phasic alertness for environmental stimuli and it affects the processing of the 

input. On the other hand, activation describes the tonic readiness to make a motor 

response. The arousal and activation are affected from a number of external and 

internal factors, such as availability of environmental stimulation, stress, sleep-wake 

cycle, noise, and, medications. (Sanders, 1983). Effort is a top-down process, which 

describes the cognitive capacities allocated to a particular task and the amount of effort 

allocation is determined by the motivational salience of the task. Arousal, activation and 

effort have been integrated into a basic information processing framework by Sanders 

resulting in the Cognitive-Energetic model (CEM) of information processing (1983). 

According to this model the basic steps in processing of a stimulus are encoding, feature 

extraction, response selection and response execution (see Figure 1). These basic steps 

are affected from the levels of arousal and activation. In suboptimal conditions, which 

induce over/under- arousal/activation, the effort can be employed as a compensatory 

mechanism to regulate the level of arousal and activation.  
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Figure 1. Cognitive Energetic Model of Sanders (1983). 

The State Regulation Deficit (SRD) model was built on the CEM. It postulates that 

the children with ADHD have a problem with regulating their energetic state (arousal, 

activation, and effort) when challenged to do in suboptimal conditions (Sergeant, 2005; 

van der Meere, Börger, & Wiersema, 2010). This model has been supported by evidence 

from studies which used event rate (ER) manipulation. The ER implies the presentation 

rate of stimuli in a task, which is determined by the inter-stimulus interval (ISI) and it 

affects the level of motor activation (Sanders, 1983; Sergeant, 2005). The studies that 

compared the performance of children with and without ADHD at different ERs have 

shown that the children with ADHD are differentially sensitive to ER manipulation in 

tasks tapping different cognitive functions (Chee, Logan, Schachar, Lindsay, & 

Wachsmuth, 1989; Conte, Kinsbourne, Swanson, Zirk, & Samuels, 1986; Scheres, 

Oosterlaan, & Sergeant, 2001; van der Meere, Stemerdink, & Gunning, 1995). The SR 

deficits at suboptimal ER conditions were also confirmed with electrophysiological 

studies, which showed that the children with ADHD have a problem with regulating the 

level of allocated effort (Wiersema, van der Meere, Antrop, & Roeyers, 2006; Wiersema, 

van der Meere, Roeyers, Van Coster, & Baeyens, 2006). According to the SRD model, a 

fast ER produces over-activation and a slow ER produces under-activation producing an 

inverted U pattern of performance curve for all individuals. As the children with ADHD 

have a deficit in regulating their level of activation, this inverted U pattern will be 

accentuated for them. This prediction of the SRD model could not be tested by previous 

studies which used only two ERs. 



CHAPTER 1 

 

 

 

6 

 The Delay Aversion (DAv) model explains the context dependent nature of 

neuropsychological deficits in ADHD from a motivational perspective. This model 

postulates that the core deficit in ADHD is at the dopaminergic reward processing 

pathways and that the signalling of future rewards in these pathways is impaired 

(Sonuga-Barke, Wiersema, Van der Meere, & Roeyers, 2010). This deficit has two main 

manifestations: First, children with ADHD prefer the immediately available rewards to 

the delayed ones producing impulsive drive for immediate rewards (IDIR). Second, when 

delay is imposed externally such as during a long and boring task, they display negative 

responses, become overactive and inattentive resulting in poor task performance. This 

model is supported by evidence from several studies. For instance, it has been shown 

that the children with ADHD have an increased preference for small sooner (SS) over 

large later (LL) rewards (Antrop et al., 2006; Bitsakou, Psychogiou, Thompson, & Sonuga-

Barke, 2009; Kuntsi, Oosterlaan, & Stevenson, 2001; Marco et al., 2009; Sonuga-Barke, 

Taylor, Sembi, & Smith, 1992; but see also Bidwell, Willcutt, Defries, & Pennington, 

2007; Scheres et al., 2006; Sjöwall, Roth, Lindqvist, & Thorell, 2012 for negative results). 

For non-choice settings, it has been shown that children with ADHD have inappropriate 

responses to unexpected delays and delay predicting cues (Bitsakou, Antrop, Wiersema, 

& Sonuga-Barke, 2006; Sonuga-Barke, Houwer, Ruiter, Ajzenstzen, & Holland, 2004) and 

show more activity during the delay periods (Antrop, Roeyers, Oost, & Buysse, 2000).  

 There have also been other models which tried to explain the symptoms of 

ADHD from a motivational point. The dynamic development theory (DDT) postulates 

that ADHD arises due to a hypofunctioning dopaminergic system. This deficit affects 

prefrontal circuits resulting in poor attention capacity and alters 

reinforcement/extinction processes producing impulsive choice and disinhibition 

(Sagvolden, Johansen, Aase, & Russell, 2005). According to dopamine transport deficit 

(DTD) model, the anticipatory firing of dopaminergic neurons for reward predicting cues 

is dysfunctional in ADHD, which results in altered reinforcement/extinction processes. 

Due to this deficit, individuals with ADHD have problems with regulating their behaviour 

according to environmental reinforcements (Tripp & Wickens, 2009). 
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         OBJECTIVES OF THE DISSERTATION 

The main objective of this dissertation is to compare two models (SRD and the 

DAv), which predict that the performance deficits in ADHD change from state to state. 

The aim of this comparison is to explore which model is more successful in explaining 

the context-dependent nature of neuropsychological deficits in ADHD. Another 

important question that needs to be answered is “Do the two models point to the same 

kind of neuropsychological deficit or do they describe different type of pathologies?  

ER sensitivity is accepted as the primary manifestation of the SR deficits. 

According to the SRD model, fast and slow ERs produce over- and under-activation, 

respectively in ADHD children. On the other hand, the DAv model postulates that the 

effects of ER are due to increased delay between stimuli at slow ERs (Sonuga-Barke et 

al., 2010). Therefore the models make different predictions for the effects of ER. The 

SRD model predicts deficits at both fast and slow ERs, while the DAv predicts that only 

slow ERs would cause performance deficits. We performed a meta-analysis of ER effects 

and also conducted our own ER study to compare the models for their predictions.  

As mentioned above, the SRD model postulates that the performance deficits in 

ADHD are at basic energetic levels and it predicts that the executive dysfunctions could 

be explained by basic deficits related to arousal and activation. According to the model, 

the performance deficits should be independent of the level of executive demands. To 

test this prediction, we disentangled the basic processing deficits from higher order 

deficits by analysing performance both in a task that require basic perceptual decision 

making and another task with executive demands.  

Another important prediction of the SRD model is about the effects of ER on 

performance. According to the model, the ER sensitivity in ADHD can be explained by a 

deficit in regulating the motor activation: children with ADHD become over-activated at 

fast ERs and under-activated at slow ERs (see Sergeant, 2005; van der Meere, 2002 and 

van der Meere, 2010 for reviews). We aimed to test this hypothesis by segregating the 

effects of ER on different information processing steps and exploring the effects of ER on 

motor processes. 

The SRD and DAv models also make different predictions for impulsive choice in 

ADHD. For instance, according to the DAv model, the SS reward preference in ADHD is 

due to the aversive nature of delay. On the other hand, the SRD model postulates that 
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children with ADHD choose SS option to reach an optimally stimulating environment 

(Sonuga-Barke et al., 2010). Therefore the SRD model predicts that providing neutral 

stimulation during delay would decrease SS preference, while the DAv model does not 

make any prediction. In the final chapter, we used these predictions to compare the 

models. 

OVERVIEW OF THE CHAPTERS 

Chapter 2. A Meta-Analytic Study of Event Rate Effects on Go/No-Go Performance in 

ADHD 

In this chapter, a meta-analytic synthesis of results from several studies that used 

a Go/No-Go task to compare the performance of children with and without ADHD is 

presented. The SRD and DAv models were compared for their predictions about the 

effect of ER on ADHD-related deficits. 

According to the SRD model, both very fast and very slow ERs should cause 

performance deficits in ADHD with producing an inverted U pattern of deficits. On the 

other hand, according to the DAv model, this deficit in adapting to a changing ER is due 

to increased perception of time passage at slow ER conditions (Sonuga-Barke et al., 

2010). Therefore the DAv model predicts greatest deficits at slow ERs producing a linear 

pattern. These differential predictions can be used to compare the two models. 

Chapter 3. Event rate effects on variability in ADHD 

The study presented in Chapter 1 had certain limitations due to the nature of the 

data available from previous studies. First, most of the previous studies included only 

two ERs and when they included three ERs, they did not cover the very fast and very 

slow presentation rates. Therefore, the number of ERs was not enough to test the 

quadratic relationship between ER and performance by the SRD model. Second, most of 

the previous studies only reported a non-specific measure of variability (standard 

deviation of reaction time-SDRT) which cannot separate the variability into specific 

components, namely Gaussian variability and variability due to extreme responses 
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(Tamm et al., 2012). To address these limitations a new study was designed in which 

four levels of ER covering both very fast and very slow presentation rates were included. 

The non-specific variability was disentangled into specific components using ex-Gaussian 

model. The SRD model predicts that children with ADHD will have lower performance at 

very fast and very slow presentation rates producing an inverted U pattern of deficits. 

On the other hand the DAv model predicts performance deficits only at very slow 

presentation rates.  

Chapter 4. Executive and non-executive deficits in ADHD: A diffusion model analysis 

In Chapter 4, the contribution of basic processing deficits to executive deficits in 

ADHD is explored. We analyzed the performance of children with and without ADHD 

with a simple two choice perceptual decision task and a task that requires conflict 

control.  

Although several studies have reported that ADHD is associated with deficits in 

executive function domains (Willcutt et al., 2005), there is also evidence for that the 

individuals with ADHD have performance deficits in tasks that require little or no 

executive processing and executive deficits can be explained by deficits at basic 

processing level (Rommelse et al., 2007; Van De Voorde, Roeyers, Verté, & Wiersema, 

2010). These studies suggest that the performance deficits in executive tasks may not be 

due to deficits in executive functions but can be explained by basic deficits at the level of 

feature extraction, motor execution and speed-accuracy trade-off (SATO). These basic 

information processing steps cannot be disentangled with the conventional performance 

measures such as mean reaction time (MRT) and accuracy. However sophisticated RT 

models such as the Ratcliff Diffusion model (DM) provides an alternative by estimating 

separate parameters for each processing step (Voss, Rothermund, & Voss, 2004).  

Chapter 5. Effects of event rate on ADHD information processing: The role of motor 

preparation 

 In this chapter a reanalysis of data from Chapter 3 is presented. The aim of the 

analysis is to test a prediction from the SRD model. The model postulates that children 

with ADHD cannot regulate the level of motor activation according to the non-optimal 
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ER conditions (Sergeant, 2005; van der Meere, 2002). Therefore, the model predicts that 

ER would primarily affect the motor preparation level and children with ADHD would be 

more sensitive to these effects due to a deficit at this level. Classical performance 

measures do not allow disentangling of different elements of information processing 

such as such as speed of information accumulation, speed-accuracy trade-off and motor 

preparation/execution. However the sophisticated models such as DM might help to 

identify the contribution of different steps in information processing to ER-related 

deficits in ADHD. 

Chapter 6. Effects of environmental stimulation on impulsive choice in ADHD: A “pink 

noise” study 

In this study a recent extension to the SRD model has been tested: Impulsive 

decision making in ADHD can be alleviated with increasing the arousal level via 

environmental stimulation (Sonuga-Barke et al., 2010). The children with and without 

ADHD completed tasks that measure impulsive choice. For arousal modification, pink 

noise, which is known to increase arousal level and improve performance in children 

with ADHD (Sanders, 1983; Söderlund, Sikström, & Smart, 2007), was used.  

To date, several studies have shown that the children with ADHD have a 

preference for SS over LL rewards (Antrop et al., 2006; Bitsakou et al., 2009; Kuntsi et al., 

2001; Marco et al., 2009; Sonuga-Barke et al., 1992), which is called impulsive drive for 

the immediate reward (IDIR). The DAv model explains this phenomenon with 

abnormalities in dopaminergic pathways which result in impaired signalling of future 

rewards (Sonuga-Barke et al., 2010). The SRD model explains the IDIR from a different 

perspective: The children with ADHD have a problem with regulating their arousal and 

activation. In under-aroused or activated states, they act on their environment to 

increase the level of arousal and activation resulting in hyperactivity and impulsive 

decision making. Therefore the preference for SS can be thought as a secondary 

adaptation to compensate for under-arousal or activation (Sonuga-Barke et al., 2010). 

From that point, the SRD makes the prediction that manipulations of arousal level during 

delay period might alleviate IDIR or SS preference. On the other hand, the DAv model 

predicts that the children with ADHD would have higher SS prefrence under both neutral 

and noise conditions.  
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Chapter 7. General Discussion 

In the last chapter, first a general overview of the empirical chapters will be 

presented with summarizing the predictions made and the results. After the overview, 

we will interpret the findings by recapitulating the goals of the thesis. Next, we will 

describe the potential limitations of the studies. The clinical and methodological 

implications of the work presented in this thesis will be discussed and objectives for 

future research will be suggested. In the last section, we will present the final 

conclusions.  

It is important to note that the chapters of the dissertation are actually papers 

that are already published, under review or submitted for publication. Therefore each 

chapter is a self-contained manuscript and there can be considerable overlap between 

chapters. 
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A META-ANALYTIC STUDY OF 

EVENT RATE EFFECTS ON 

GO/NO-GO PERFORMANCE 

IN ADHD1 

          ABSTRACT 

Background: According to the State Regulation Deficit (SRD) model event rate (ER) is an 

important determinant of performance of children with Attention-Deficit/Hyperactivity 

Disorder (ADHD). Fast ER is predicted to create over-activation and produce errors of 

commission while slow ER is thought to create under-activation marked by slow and 

variable reaction times (RT) and errors of omission. Method: To test these predictions, 

we conducted a systematic search of the literature to identify all reports of comparisons 

of ADHD and control individuals’ performance on Go/No-Go tasks published between 

2000 and 2011. In one analysis we included all trials with at least two event rates and 

calculated the difference between ER conditions. In a second analysis, we used meta-

regression to test for the moderating role of ER on ADHD vs. control differences seen 

across Go/No-Go studies. Results:  There was a significant and disproportionate slowing 

of reaction time in ADHD relative to controls on trials with slow event rates in both 

meta-analyses. For commission errors, the effect sizes were larger on trials with fast 

event rates. No ER effects were seen for RT variability.  There were also general effects 

of ADHD on performance for all variables which persisted after effects of ER were taken 

in account. Conclusions: The results provide support for the SRD model of ADHD by 

showing the differential effects of fast and slow ER.  The lack of an effect of ER on RT 

variability suggests that this behavioral characteristic may not be a marker of cognitive 

energetic effects in ADHD.  

 
1
Based on Metin, B., Roeyers, H., Wiersema, J. R., Van der Meere, J., & Sonuga-Barke, E. (2012). A Meta-

Analytic Study of Event Rate Effects on Go/No-Go Performance in Attention-Deficit/Hyperactivity 

Disorder. Biological Psychiatry, 72, 990–996. 
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INTRODUCTION 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a life-span disorder which 

causes significant academic, social and behavioral problems. In principle identifying the 

neuropsychological deficits in ADHD could stimulate therapeutic innovation by helping 

to identify new targets for novel treatments (Sonuga-Barke & Halperin, 2010).  

Identifying which deficits are implicated in ADHD is complicated by a number of factors.  

First, children with ADHD, as a group, perform poorly on a wide range of laboratory tasks 

even when they are designed to tap very different neuropsychological processes 

(Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005).  Indeed, it is increasingly clear that 

there is substantial pathophysiologic heterogeneity in the ADHD population in terms of 

the specific patterns of deficits implicated – some individuals display one type of 

neuropsychological profile while others show a different one (Willcutt et al., 2005).  For 

instance, while once thought of as the core deficit in ADHD, executive function deficits 

are reported in only a subset of individuals (Nigg, Willcutt, Doyle, & Sonuga-Barke, 

2005).  

Second, there is accumulating evidence for the context-dependent nature of 

deficits when they do occur - performance of an individual subject may vary from setting 

to setting as a function of the motivational and energetic state that they engender 

(Sonuga-Barke, Wiersema, van der Meere, & Roeyers, 2010).  For instance, performance 

on a wide range of cognitive tasks is affected in non-specific ways by the rate at which 

stimuli are presented (i.e., event rate (ER)), which is determined by inter-stimulus 

interval (ISI) (Sergeant, 2005; van der Meere, 2002). These ER effects have been 

observed on tasks of different sorts including go/no-go (van der Meere, Stemerdink, & 

Gunning, 1995), stop signal (Scheres, Oosterlaan, & Sergeant, 2001), vigilance (Chee, 

Schachar, Lindsay, & Wachsmuth, 1989) and associative learning (Conte, Kinsbourne, 

Swanson, Zirk, & Samuels, 1986) tasks. Such task non-specific ER effects have been 

explained in different ways. The most often invoked explanation is based on the 

cognitive energetic model of Sanders (1983). This extends the basic information 

processing framework by integrating concepts such as effort, arousal and activation so 

that task performance is influenced not only by cognitive capacities but also by 

environmentally-determined levels of activation and arousal and the extent to which 

variations in these can be managed to ensure optimal performance. The model predicts 
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an inverted-U shaped curve relating cognitive energetic factors to performance with 

both over and under activation (linked to fast and slow ERs) having potentially adverse 

effects if not effectively managed (Sergeant, 2005). The state regulation deficit (SRD) 

model of ADHD, builds on this perspective. It postulates that children with ADHD have 

problems with effectively allocating their effort to properly regulate activation states 

(van der Meere, Börger, & Wiersema, 2010).  Because cognitive energetic processes are 

general rather than task specific, the SRD predicts that ADHD children’s performance 

across a range of different tasks tapping a diversity of executive and non-executive 

processes will be adversely affected by either speeding up or slowing down the ER. More 

specifically the model predicts a pattern of ADHD-related under-activation and slow 

inattentive responding under slow ER, and fast impulsive responding, produced by over-

activation under fast ER conditions.  

An alternative explanation of ER effects on performance is provided by Delay 

Aversion model (Sonuga-Barke et al., 2010, Sonuga-Barke, Taylor, Sembi, & Smith, 1992). 

According to this model individuals with ADHD act on their environment to escape or 

avoid delay. In fixed delay situations this is said to be achieved by reallocating attention 

to more interesting stimuli that make time pass more quickly. Thus the DAv model 

predicts a pattern of task disengagement on longer trials with slower ER and longer 

inter-stimulus intervals (i.e., greater delay). As such it differs from the SRD model by 

predicting that performance of ADHD individuals will deteriorate in a linear fashion with 

longer intervals resulting in lower performance (i.e., adverse effects on slow but not fast 

ER trials). 

 To test predictions of the SRD model of ADHD we conducted a systematic 

review and meta-analyses of the effects of ER on performance on Go/No-Go (GNG) 

tasks. Our strategy was to focus on one task in order to optimize homogeneity. The GNG 

task was chosen as it has been used frequently with ADHD populations. In the GNG task 

participants are presented consecutively with a series of Go stimuli to which they have 

to make a simple choice response and then occasionally with an alternative No-Go 

stimulus to which they have to withhold their response. The task is well suited for 

testing the SRD model as it allows the estimation of variables in a range of performance 

domains: mean reaction time (MRT), errors of commission (EOC), errors of omission 

(EOO) and  response time variability (measured by standard deviation of reaction time-

SDRT). While the SRD model predicts general energetic, rather than cognitive process-



CHAPTER 2 

 

 

20 

specific effects, it makes some specific predictions with regard to different GNG 

performance parameters:  Compared to controls, ADHD children are predicted to 

experience over-activation in the fast ERs and under-activated in the slow ERs (Sergeant, 

2005; van der Meere, 2002). This over-activation will produce more impulsive EOC 

during fast ERs. On the other hand, under-activation during slow ERs will produce slower 

and more variable MRT and a greater number of errors of omission (EOO) typical of 

inattentive performance. Two types of meta-analyses were performed to test these 

predictions. First, we estimated the differential impact of ER on ADHD vs. control 

performance as a function of different ERs presented within the same studies. We then 

attempted to replicate these within-study effects by using meta-regression techniques 

to test the extent to which ER levels in different studies explained the between study 

heterogeneity of ADHD vs. control performance differences.  

        METHOD 

Search strategy 

We searched Medline databases for studies published between January 2000 and 

December 2011. For this purpose, we used combinations of the term ADHD with the 

following keywords (using AND): reaction time, accuracy, continuous performance test, 

Go/No-Go, inhibition, event rate and inter-stimulus interval. Records were then 

screened for initial eligibility on the basis of titles and abstracts. Potential records were 

then screened on the basis of full-text articles. At this stage we removed studies where 

GNG paradigms had less than 50% Go trials. There was no age restriction and studies 

conducted with adolescent or adult participants were also included. Studies which used 

a highly variable range of ISI (variability >1sec) and did not report the results for each ISI 

were excluded. Self-paced and cued tasks were also excluded. In order to maximize 

homogeneity, tasks with additional stimuli (e.g., cue or feedback) were excluded from 

analysis as these would provide extra stimulation for subjects and the “real” ISI is 

therefore difficult to determine. 
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Coding, calculation and synthesis of the effect sizes 

We undertook two analyses. Both analyses employed comprehensive Meta-

Analysis software (version 2.2.057, Biostat Inc., NJ, USA). In both analyses the outcome 

variables were the MRT, EOC and SDRT. Too few studies (N=5) reported inattentive 

errors of omission in the slow ER and so this outcome, which would provide a more 

direct assessment of inattentive errors, was not included in the analysis. When summary 

statistics were not reported, effect size (ES) was extracted from test statistics (e.g., t 

values, means and p values) using the appropriate formula. The other extracted 

variables were mean age of each group, ISI used, the percentage of males in the ADHD 

and the control group, percentage of Go and No-Go trials in the task, number of trials, 

co-morbidity and the medication status. ER (i.e., inter-stimulus interval) was defined as 

the time interval between the onsets of two consecutive stimuli.  

The first analysis was restricted to those studies where ER was manipulated as a 

within-subject variable (i.e., had trials with two or more ER levels). We used these data 

to estimate the differential effect of ER on ADHD vs. control performance for the 

variables MRT, EOC and SDRT. The method proposed by Borenstein et al. (2009) was 

employed to compare different outcomes or time-points within a study.  First, the 

standard mean difference (SMD) between the groups at each ES is calculated using the 

recommended formula - mean of the ADHD group minus the mean of the control group 

divided by the pooled standard deviation.  Second, the ES for differential effect of ER on 

ADHD vs. control performance is calculated by subtracting the SMD of the group 

difference at SMDfast  from that at SMDslow and then variance of this synthetic ES was 

calculated using the formula V=V1+V2-2r√V1√V2, where V is the variance of the 

synthetic ES, V1 and V2 are the variance for the effect sizes for the two outcomes and r 

is the correlation between the outcomes. This is equivalent to calculating the ES for the 

group x event rate interaction and so we will refer to it as ESgroup x event rate. The ESfast,  

ESslow and ESgroup x event rate calculated for each study were then combined using a random 

effects model to give overall ES estimates.  One difficulty with this method is that it 

requires that the within-subject correlations between performance under the different 

conditions are known and these are often not reported. To deal with this issue we ran a 

sensitivity analysis based on the correlation in other studies to estimate a range of effect 

sizes and p values. 
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The second analysis adopted a different approach in order to utilize all GNG 

studies meeting our entry criteria even where only one ER was employed. First, we 

calculated the SMD for ADHD vs. control effects for each outcome in each individual 

study using the same formula as in the first analysis. The SMDs were then combined 

across studies using the random effects method. The Q and I2 statistics were calculated 

as an estimate of between-study heterogeneity in SMD. We then performed a meta-

regression to examine the independent effect of ER (as well as a number of other factors 

such as the difference between the percentage of the males within groups and age of 

the ADHD group) in predicting between study variation in ADHD vs. control SMDs on our 

three dependent variables. For the regression analysis, a random effects regression 

model was used assuming a heterogeneous distribution of effect sizes for the studies 

sharing the same predicted value. One difficulty with such a regression analysis is that 

more studies have used a fast or a moderate ER than a slow one. Thus there are fewer 

studies in the slow ER range which reduces our power to accurately estimate the effects 

of ER on performance. In order to address this point we maximized the number of 

studies with a slow ER by choosing data for the slowest ER condition when studies had 

more than one ER condition. We also conducted sensitivity analyses to explore whether 

the observed effects were dependent on the small numbers of studies with unusual age 

and gender composition. The first was related to age – and involved excluding all studies 

with a mean age above 11 (N=8). The rationale for choosing the age of 11 was to exclude 

studies conducted with adolescent populations and to explore whether the regression 

results were driven by effects in these samples of older participants. The second related 

to gender composition of samples; we excluded studies (N=7) with high difference for 

male percentage (>20) between clinical and control groups. In other sensitivity analyses 

we excluded studies (N=2) with a small number of trials (<50) and with fewer than 60% 

Go trials (N=3) to explore whether the regression results depended on confounding 

effects of studies with fewer number trials or lower percentage of Go trials. 
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  RESULTS 

 Figure 1 gives the PRISMA flow chart for the identification of studies according 

to our inclusion criteria. The number of studies excluded for each exclusion criterion are 

also summarized in the figure. A total of 30 studies met the entry criteria. Of those, 19 

studies had just one ER level and 11 studies manipulated ER as a within-subject variable. 

In each case ER was manipulated by block – with different ERs presented in separate test 

blocks (see Table 1 and 2 for study details and summary statistics).  

 

 

Figure 1. Prisma diagram for the flow of information through different phases of the 

review. 
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Table 1. Characteristics of the included studies 

Study  

ISI 

(sec) Agea 

%Maleb 

ADHD 

%Male 

Cont. 
No. 

Trialc %God Diagnosise IQf MSg 

Berlin et al. 
2000  

5.5 8.3 100 100 100 75 C/HI(ODD+ 

TS) 

>70 off 

Bistakou et 
al. 2008  

1.5 14.8 81 58 100 75 C(ODD) >70 >48 

Bistakou et 
al. 2008  

1.5 10.5h 83 76 100 75 C(ODD) >70 >48 

Borger & 
van der 
Meere 
2000 

2.3 

6.3 

10.1 100 100 300 

100 

80 - - off 

Desman et 
al. 2008  

3 10.3 100 100 40 50 C (CD) >80 >24 

Epstein et 
al. 2011  

1.5 

5.5 

8.1 72 66 120 

120 

90 C/A 
(ODD+CD) 

>80 off 

Groom et 
al. 2008  

2.25 15.6 93 42 304 80 C >70 >24 

Hervey et 
al. 2006  

1.25 

4.25 

10.7 77 77 120 

120 

90 C/A/HI 

(ODD+CD) 

- off 

Johnson et 
al. 2007  

1.4 11.4 84 72 225 88 C/A/HI 

(ODD+CD) 

>70 >24 

Kerns et al. 
2001  

1 9.4 76 76 150 50 C >70 >24 

Klein et al. 
2006  

2.5 10.5 86 82 300 85 C/A/HI(CD) - >12 

Koschack 
et  al. 2003  

2 11 91 60 50 50 C(CD) >80 >24 

Kooistra et 
al. 2009  

1.5 

7 

9.3 66 51 210 

60 

75 C/A - >24 

Kuntsi et 
al. 2009  

1.3 

8.3 

8.8 91 48 462 

72 

80 - >70 off 

McNally et 
al. 2010  

1.8 10.5 59 59 217 75 C/A/HI 

(ODD) 

>85 >24 

O’Brein et 
al. 2010  

1.8 10.2 53 53 ~267 75 C/A/HI 
(ODD) 

>80 >24 
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Raymaekers 
et al.  2007  

2 

8 

9.6 62 71 300 

75 

75 C/IA  

(ODD+CD) 

 

>85 >20 

Rovet & 
Hepworth 
2001  

1.2 

4.2 

9.8 70 47 40 

40 

90 - >75 >24 

Rubia et al. 
2007  

1.6 11.1 93 88 190 74 C >75 >24 

Ryan et al. 
2010  

1.5 10.9 80 50 216 75 C/A/HI 
(ODD) 

>70 >24 

Uebel et al. 
2010  

1.3 

8.3 

11.3 91 72 462 

72 

80 C - >48 

van der 
Meere et 
al.  2009  

2.15 

6.15 

8 59 47 300 

100 

80 C/HI - >36 

Van de 
Voorde et 
al. 2010a  

2.3 10.6 83 58 600 80 C/A/HI 

(ODD) 

>80 >24 

Van de 
Voorde et 
al. 2010b  

1.9 10.2 61 62 600 60 C/A (ODD) >80 >24 

Vaurio et 
al. 2009  

2.6 10.9 60 48 217 75 C/A/HI 

(ODD) 

>80 >24 

Wada et al. 
2000  

2 9 100 100 ~169 77.5 C/A/HI >90 off 

Wiersema 
et al. 2009  

1.3 29.3 56 57 ~508 75 - >80 >48 

Wiersema 
et al. 
2006a  

2.3 

8.3 

10.3 64 67 287 

80 

75 C(CD+ODD) - >24 

Wiersema 
et al. 
2006b  

2.3 

8.3 

32.1 100 100 287 

80 

75 - >80 >48 

Wodka et 
al. 2007  

1.8 11.6 62 52 217 75 C/A/HI 

(ODD) 

>85 >18 

Yang  et al. 
2011  

1.5 8.4 90 89 200 80 CD+ODD >75 off 



CHAPTER 2 

 

 

26 

a Mean age of the ADHD group. 
b % of males in the ADHD group. 
c Number of trials for each event rate condition. When the total trial number was not 

given, an approximate value was calculated from the task duration and event rate. 
d % of Go trials requiring a motor response. 
e Diagnosis according to DSM criteria (C, Combined; A, Inattentive; HI, Hyperactive-

Impulsive; CD, Conduct Disorder; ODD, Oppositional Defiant Disorder; TS, Tourette 

syndrome). 
f Lower cutoff for IQ. 
g Medicational status (hours refrained from drug; off, no medication). 
h The study included two independent subgroups based on age. 

Estimating the differential effect of ER using within-subject study data 

 Eleven studies provided data for the calculation of both SMDslow and SMDfast for 

MRT and EOC. Ten studies reported sufficient data for an analysis of SDRT. Based on the 

four studies from which we obtained the correlation coefficient (see Table 3), we 

imputed correlations ranging from 0.6-0.8, 0.4-0.7 and 0.6-0.8 for MRT, EOC and SDRT 

analyses respectively for the seven studies with unreported correlation.  The mean fast 

ER was 1.8 sec (1.25-2.3 sec) and the mean slow ER was 6.9 sec (4.25-8.3 sec).  For MRT, 

groups differed significantly at both slow and fast ER (SMDslow=0.56; CIs 0.36 to 0.76; 

SMDfast = 0.33; CIs 0.13 to 0.53). The forest plots for both analyses are given in Figure 2. 

ESgroup x event rate was significant (ES between 0.22 and 0.26, p value between 0.004 and 

0.003) with bigger SMDs between ADHD and control participants on slower ERs 

demonstrating a disproportionate slowing of RT in the ADHD group on those trials.  For 

EOC, again the groups differed significantly at both slow and fast ERs (SMDslow=0.37; CIs 

0.18 to 0.57; SMDfast = 0.57; CIs 0.37 to 0.76) (See Figure 3 for forest plots). ESgroup x event 

rate was significant (ES btw -0.17 and -0.18, p value btw 0.006 and 0.001) with bigger 

SMDs between ADHD and control participants on fast ER trials. For SDRT, the groups 

differed significantly at both slow and fast ER (SMDslow=0.75; CIs 0.48 to 1.03; 

SMDfast=0.85; CIs 0.63 to 1.08) (See Figure 4 for forest plots). ESgroup x event rate was not 

significant (p value btw 0.03 and 0.11). 
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Table 2. Summary statisticsa of the included studies 

Study  n MRT EOC SDRT 

Berlin et al. 2000  21 ADHD 

42 NC 

 13.71(5.76) 

11.04 (5.22) 

 

Bistakou et al. 
2008  

54 ADHD 

29 NC 

378 (108) 

359 (64) 

43.73 (20) 

28.2 (19) 

197 (169) 

118 (118) 

23 ADHD 

21 NC 

324 (123) 

314 (75) 

36.55(20) 

33.54|(17) 

150 (174) 

58 (19) 

Borger & van der 
Meere 2000 (fast)  

27 ADHD 

22 NC 

504 (109) 

428 (91) 

37.81(18.95) 

39.77(19.1) 

174.70  (55.78) 

149.41  (36.77)
   

Borger & van der 
Meere 2000 
(slow)  

27 ADHD 

22 NC 

652 (118) 

526 (118) 

31.63 (22.81) 

38.95 (23.06) 
  

243.52 (124.1) 
  

166.59  (74.18)
  

Desman et al. 
2008  

19 ADHD 

19 NC 

466.54(70.28) 

495.37 (122.63) 

3.11 (2.21) 

2.21 (2.1) 

96.39 (36.2) 

97 (44.75) 

Epstein et al. 2011 
(fast)   

104 ADHD 

47 NC 

463 (101) 

416 (105) 

10.9 (7.1) 

5.96 (7.07) 

205.6 (82.7) 

151.8 (82.4) 

Epstein et al. 2011 
(slow)  

104 ADHD 

47 NC 

801 (357) 

649 (393) 

11.23 (8.6) 

5.6 (8.9) 

452 (264) 

298 (267) 

Groom et al. 2008  27 ADHD 

36 NC 

312.61(16.48) 

313.3 (20.64) 

  

Hervey et al. 2006 
(fast)  

65 ADHD 

65 NC 

381 (58) 

365 (50) 

66.54 (18.78) 

60.9 (22.63) 

155 (36) 

126 (36) 

Hervey et al. 2006 
(slow)  

65 ADHD 

65 NC 

530 (123) 

466 (94) 

67.05 (22.02) 

64.23 (23.12) 

340 (196) 

211 (166) 

Johnson et al. 
2007  

63 ADHD 

29 NC 

456 (89) 

467 (114) 

3.75 (2.5) 

2.3 (1.6) 

 

Kerns et al. 2001  21 ADHD 

21 NC 

 tb=1.52  

Klein et al. 2006  57 ADHD 

53 HC 

427.2 (80.9) 

389.4 (53.9) 

19.5 (7.7) 

17.5 (7.4) 

174 (74.4) 

115 (43.2) 

Koschack et al. 
2003  

35 ADHD 

35 NC 

467 (94) 

492 (91) 

6.2 (5.2) 

5.2 (5.0) 

 

Kooistra et al. 
2009 (fast)  

47 ADHD 

39 NC 

446.13 (51.7) 

434.83 (54.03) 

24.26 (7.44) 

23.32 (8.49) 

129.91 (19.35) 

115.17 (17.88) 
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Kooistra et al. 
2009 (slow)  

47 ADHD 

39 NC 

514.35 (68.6) 

686.1 (74.98) 

5.65 (2.71) 

5.18 (3.1) 

132.43 (31.61) 

118.74 (23.65) 

Kuntsi et al. 2009 
(fast)  

58 ADHD 

1098 NC 

434.44 (71.95) 

420.86 (62.52) 

61.8 (14.48) 

50.86 (16.36) 

202.33 (69.04) 

159.64 (56.89) 

Kuntsi et al. 2009 
(slow)  

58 ADHD 

1098 NC 

616.13 (179.49) 

584.38 (129.02) 

64.36 (20.8) 

54.52 (23.12) 

311.04 
(232.44) 

219.26 
(143.83) 

McNally et al. 
2010  

56 ADHD 

45 NC 

 39.4d 

33 

0.39c,d 

0.32 

O’Brein et al. 
2010  

56 ADHD 

90 NC 

 43(19) 

35 (19)  

0.37 (0.17)c 

0.31 (0.15) 

Raymaekers et al. 
2007 (fast)  

24 ADHD 

28 NC 

565.18 (106.12) 

518.89 (82.87) 

15.66 (9.3) 

9.17 (7.8) 

198.78 (53.72) 

144.81 (48.1) 

Raymaekers et al.  
2007 (slow)  

24 ADHD 

28 NC 

755.76 (211.49) 

665.72 (108.16) 

2.95 (2.44) 

2.0 (2.58) 

262.79 (292.5) 

158.24 (89.25) 

 

Rovet & 
Hepworth 2001 
(fast)  

41  ADHD 

68  NC 

358.0  (81.3) 

363 (67.1) 

61.3 (24.7) 

49.5 (25) 

 

Rovet & 
Hepworth 2001 
(slow)  

41 ADHD 

68 NC 

514.7 (131.3) 

457.3 (96.2) 

67.0 (21.2) 

58.2 (28.9) 

 

Rubia et al. 2007  32 ADHD 

34 NC 

 28 (14) 

19 (15) 

 

Ryan et al. 2010  25 ADHD 

14 NC 

464.15 (177.52) 

463.98 (132.9) 

29 (22) 

24 (19) 

0.35 (0.13)c 

0.23 (0.07) 

Uebel et al. 2010 
(fast)  

205 ADHD 

53 NC 

430 (114.48) 

387 (72.8) 

50.3 (24.72) 

34.8 (18.92) 

183 (114.54) 

110 (72.8) 

Uebel et al. 2010 
(slow)  

205 ADHD 

53 NC 

651 (286.35) 

569 (182) 

49.6 (34.61) 

31.3 (26.21) 

292 (272.03) 

162 (174.72) 

van der Meere et 
al. 2009 (fast)  

26 ADHD 

60 NC 

614.62 (98.48) 

511.75 (83.92) 

 

60.05 (18.6) 

38.05 (16.15) 

331.46 (80.01) 

188.22 (63.78) 

van der Meere et 
al.  2009 (slow)  

26 ADHD 

60 NC 

965.85 (332.5) 

644.62 (137.64) 

58.45 (22.07) 

32.25 (22.15) 

819.88 
(433.68) 

224.08 
(102.16) 

Van de Voorde et 
al. 2010a  

40 ADHD 

19 NC 

497.32 (91.99) 

518.7 (98.9) 

38.77 (18.2) 

17.9 (10.9) 

174.12 (50.5) 

151.3 (51.2) 
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MRT, mean reaction time (msec); EOC, percent errors of commissions; SDRT, standard 

deviation of reaction time; ADHD, attention-deficit/hyperactivity disorder; NC, normal 

control. 
a Mean and (SD). 
b t test statistic. 
c Coefficient of variability. 
d Effect size is calculated from mean and p value. 

Table 3. Correlations between event rates.  

Study MRT EOC SDRT 

Borger & van der Meere, 2000  0.76 0.59 0.77 

Kooistra et al., 2010  0.81 0.48 0.64 

Raymaekers et al.,  2007  0.70 0.6 0.65 

van der Meere et al., 2009  0.69 0.72 0.75 

MRT, mean reaction time (msec); EOC, percent errors of commissions; 

SDRT, standard deviation of reaction time. 

Van de Voorde et 
al. 2010b  

31 ADHD 

16 NC 

517.6 (81.2) 

512.2 (72.2) 

35.13 (12.76) 

23.4 (9.1) 

179 (33.2) 

156.8 (33.7) 

Vaurio et al. 2009  57 ADHD 

83 NC 

401.55 (85.02) 

395.62 (109.47) 

38 (20) 

29 (19) 

0.35 (0.13)c 

0.28 (0.12)c 

Wada et al. 2000  17 ADHD 

19 NC 

523.76 (181.91) 

416.47 (79.92) 

33.41 (19.11) 

16.56 (9.85) 

221.41 
(103.29) 

109.31 (49.11) 

Wiersema et al. 
2009  

23 ADHD 

19 NC 

419 (45) 

406 (41) 

13 (6) 

11 (6.3) 

96.5 (19.8) 

88.2 (24) 

Wiersema et al. 
2006a (fast)  

22 ADHD 

15 NC 

535 (97)  

570 (88) 

37 (21) 

21 (15) 

193 (45) 

150 (39) 

Wiersema et al. 
2006a (slow)  

22 ADHD 

15 NC 

645 (116) 

607 (118) 

20 (14) 

20 (19) 

227 (81) 

168 (86) 

Wiersema et al. 
2006b (fast)  

19 ADHD 

19 NC 

432 (45) 

435(52) 

10.9 (7.1) 

6.8 (5.7) 

110 (39) 

91 (17) 

Wiersema et al. 
2006b (slow)  

19 ADHD 

19 NC 

510 (67) 

467 (65) 

7.4 (5.7) 

5.4 (6.3) 

121 (33) 

102 (31) 

Wodka et al. 2007  58 ADHD 

84 NC 

392.2 (63.9) 

405.1 (109.6) 

36.3 (20.3) 

27.9 (18.4) 

0.33 (0.14)c 

0.28 (0.13)c 

Yang et al. 2011  100 ADHD 

100 NC 

451.86 (136.72) 

448.38 (127.45) 

13.49(5.56) 

12.08 (5.18) 
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Figure 2. Forest plots of effect sizes for mean reaction time at fast (left) and slow event 

rate (right) conditions of the within-subject studies 

Figure 3. Forest plots of effect sizes for commission errors at fast (left) and slow event 

rate (right) conditions of the within-subject studies. 

 

Figure 4. Forest plots of effect sizes for reaction time variability at fast (left) and slow 

event rate (right) conditions of the within-subject studies. 

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 1.162 0.251 0.063 0.670 1.654 4.631 0.000

Borger and van der Meere 2000 (18) 0.743 0.297 0.088 0.161 1.324 2.502 0.012

Raymaekers 2007 (31) 0.491 0.282 0.080 -0.062 1.044 1.739 0.082

Epstein 2011 (20) 0.460 0.178 0.032 0.111 0.808 2.586 0.010

Uebel 2010 (35) 0.401 0.155 0.024 0.096 0.705 2.581 0.010

Hervey 2006 (22) 0.295 0.176 0.031 -0.050 0.641 1.676 0.094

Kuntsi 2009 (28) 0.216 0.142 0.020 -0.063 0.494 1.517 0.129

Kooistra 2010 (27) 0.214 0.221 0.049 -0.220 0.648 0.968 0.333

Wiersema 2006 (adult) (43) -0.062 0.325 0.105 -0.698 0.574 -0.190 0.849

Rovet and Hepworth 2001 (32) -0.069 0.198 0.039 -0.456 0.319 -0.348 0.728

Wiersema 2006 (42) -0.374 0.338 0.114 -1.036 0.287 -1.109 0.268

0.326 0.103 0.011 0.125 0.528 3.179 0.001

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 1.162 0.251 0.063 0.670 1.654 4.631 0.000

Borger and van der Meere 2000 (18) 0.743 0.297 0.088 0.161 1.324 2.502 0.012

Raymaekers 2007 (31) 0.491 0.282 0.080 -0.062 1.044 1.739 0.082

Epstein 2011 (20) 0.460 0.178 0.032 0.111 0.808 2.586 0.010

Uebel 2010 (35) 0.401 0.155 0.024 0.096 0.705 2.581 0.010

Hervey 2006 (22) 0.295 0.176 0.031 -0.050 0.641 1.676 0.094

Kuntsi 2009 (28) 0.216 0.142 0.020 -0.063 0.494 1.517 0.129

Kooistra 2010 (27) 0.214 0.221 0.049 -0.220 0.648 0.968 0.333

Wiersema 2006 (adult) (43) -0.062 0.325 0.105 -0.698 0.574 -0.190 0.849

Rovet and Hepworth 2001 (32) -0.069 0.198 0.039 -0.456 0.319 -0.348 0.728

Wiersema 2006 (42) -0.374 0.338 0.114 -1.036 0.287 -1.109 0.268

0.326 0.103 0.011 0.125 0.528 3.179 0.001

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 1.494 0.261 0.068 0.983 2.006 5.726 0.000

Borger and van der Meere 2000 (18) 1.074 0.307 0.094 0.472 1.675 3.496 0.000

Wiersema 2006 (adult) (43) 0.651 0.333 0.111 -0.001 1.304 1.957 0.050

Hervey 2006 (22) 0.585 0.179 0.032 0.234 0.936 3.263 0.001

Raymaekers 2007 (31) 0.549 0.283 0.080 -0.006 1.104 1.938 0.053

Rovet and Hepworth 2001 (32) 0.519 0.201 0.040 0.126 0.912 2.585 0.010

Epstein 2011 (20) 0.412 0.177 0.032 0.065 0.760 2.324 0.020

Kooistra 2010 (27) 0.395 0.221 0.049 -0.039 0.829 1.784 0.074

Wiersema 2006 (42) 0.325 0.337 0.114 -0.335 0.986 0.965 0.334

Uebel 2010 (35) 0.305 0.155 0.024 0.002 0.608 1.976 0.048

Kuntsi 2009 (28) 0.241 0.142 0.020 -0.038 0.519 1.695 0.090

0.556 0.102 0.010 0.355 0.756 5.434 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 1.494 0.261 0.068 0.983 2.006 5.726 0.000

Borger and van der Meere 2000 (18) 1.074 0.307 0.094 0.472 1.675 3.496 0.000

Wiersema 2006 (adult) (43) 0.651 0.333 0.111 -0.001 1.304 1.957 0.050

Hervey 2006 (22) 0.585 0.179 0.032 0.234 0.936 3.263 0.001

Raymaekers 2007 (31) 0.549 0.283 0.080 -0.006 1.104 1.938 0.053

Rovet and Hepworth 2001 (32) 0.519 0.201 0.040 0.126 0.912 2.585 0.010

Epstein 2011 (20) 0.412 0.177 0.032 0.065 0.760 2.324 0.020

Kooistra 2010 (27) 0.395 0.221 0.049 -0.039 0.829 1.784 0.074

Wiersema 2006 (42) 0.325 0.337 0.114 -0.335 0.986 0.965 0.334

Uebel 2010 (35) 0.305 0.155 0.024 0.002 0.608 1.976 0.048

Kuntsi 2009 (28) 0.241 0.142 0.020 -0.038 0.519 1.695 0.090

0.556 0.102 0.010 0.355 0.756 5.434 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 1.301 0.255 0.065 0.801 1.800 5.101 0.000

Wiersema 2006 (42) 0.850 0.349 0.122 0.165 1.534 2.434 0.015

Raymaekers 2007 (31) 0.761 0.288 0.083 0.197 1.326 2.643 0.008

Epstein 2011 (20) 0.697 0.180 0.033 0.343 1.050 3.864 0.000

Kuntsi 2009 (28) 0.672 0.143 0.020 0.392 0.952 4.706 0.000

Uebel 2010 (35) 0.655 0.157 0.025 0.348 0.963 4.177 0.000

Wiersema 2006 (adult) (43) 0.637 0.333 0.111 -0.015 1.289 1.915 0.056

Rovet and Hepworth 2001 (32) 0.474 0.200 0.040 0.082 0.867 2.368 0.018

Hervey 2006 (22) 0.271 0.176 0.031 -0.074 0.617 1.538 0.124

Kooistra 2010 (27) 0.119 0.219 0.048 -0.311 0.548 0.540 0.589

Borger and van der Meere 2000 (18) -0.103 0.287 0.083 -0.666 0.460 -0.359 0.720

0.566 0.101 0.010 0.369 0.763 5.627 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 1.301 0.255 0.065 0.801 1.800 5.101 0.000

Wiersema 2006 (42) 0.850 0.349 0.122 0.165 1.534 2.434 0.015

Raymaekers 2007 (31) 0.761 0.288 0.083 0.197 1.326 2.643 0.008

Epstein 2011 (20) 0.697 0.180 0.033 0.343 1.050 3.864 0.000

Kuntsi 2009 (28) 0.672 0.143 0.020 0.392 0.952 4.706 0.000

Uebel 2010 (35) 0.655 0.157 0.025 0.348 0.963 4.177 0.000

Wiersema 2006 (adult) (43) 0.637 0.333 0.111 -0.015 1.289 1.915 0.056

Rovet and Hepworth 2001 (32) 0.474 0.200 0.040 0.082 0.867 2.368 0.018

Hervey 2006 (22) 0.271 0.176 0.031 -0.074 0.617 1.538 0.124

Kooistra 2010 (27) 0.119 0.219 0.048 -0.311 0.548 0.540 0.589

Borger and van der Meere 2000 (18) -0.103 0.287 0.083 -0.666 0.460 -0.359 0.720

0.566 0.101 0.010 0.369 0.763 5.627 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 1.147 0.251 0.063 0.656 1.639 4.579 0.000

Epstein 2011 (20) 0.648 0.180 0.032 0.295 1.000 3.603 0.000

Uebel 2010 (35) 0.553 0.156 0.024 0.248 0.859 3.549 0.000

Kuntsi 2009 (28) 0.428 0.142 0.020 0.148 0.707 3.001 0.003

Raymaekers 2007 (31) 0.377 0.281 0.079 -0.173 0.928 1.345 0.179

Rovet and Hepworth 2001 (32) 0.335 0.199 0.040 -0.055 0.725 1.682 0.093

Wiersema 2006 (adult) (43) 0.333 0.327 0.107 -0.307 0.973 1.019 0.308

Kooistra 2010 (27) 0.161 0.220 0.048 -0.269 0.591 0.733 0.463

Hervey 2006 (22) 0.125 0.175 0.031 -0.219 0.469 0.712 0.477

Wiersema 2006 (42) 0.000 0.335 0.112 -0.656 0.656 0.000 1.000

Borger and van der Meere 2009 (18) -0.319 0.289 0.084 -0.886 0.247 -1.105 0.269

0.372 0.099 0.010 0.177 0.566 3.746 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 1.147 0.251 0.063 0.656 1.639 4.579 0.000

Epstein 2011 (20) 0.648 0.180 0.032 0.295 1.000 3.603 0.000

Uebel 2010 (35) 0.553 0.156 0.024 0.248 0.859 3.549 0.000

Kuntsi 2009 (28) 0.428 0.142 0.020 0.148 0.707 3.001 0.003

Raymaekers 2007 (31) 0.377 0.281 0.079 -0.173 0.928 1.345 0.179

Rovet and Hepworth 2001 (32) 0.335 0.199 0.040 -0.055 0.725 1.682 0.093

Wiersema 2006 (adult) (43) 0.333 0.327 0.107 -0.307 0.973 1.019 0.308

Kooistra 2010 (27) 0.161 0.220 0.048 -0.269 0.591 0.733 0.463

Hervey 2006 (22) 0.125 0.175 0.031 -0.219 0.469 0.712 0.477

Wiersema 2006 (42) 0.000 0.335 0.112 -0.656 0.656 0.000 1.000

Borger and van der Meere 2000 (18) -0.319 0.289 0.084 -0.886 0.247 -1.105 0.269

0.372 0.099 0.010 0.177 0.566 3.746 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis
Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 2.368 0.296 0.088 1.788 2.948 7.996 0.000

Borger and van der Meere 2000 (18) 0.734 0.297 0.088 0.153 1.315 2.474 0.013

Wiersema 2006 (42) 0.711 0.345 0.119 0.035 1.386 2.061 0.039

Hervey 2006 (22) 0.710 0.181 0.033 0.356 1.065 3.928 0.000

Kuntsi 2009 (28) 0.615 0.143 0.020 0.335 0.895 4.309 0.000

Wiersema 2006 (adult) (43) 0.594 0.332 0.110 -0.056 1.243 1.790 0.073

Epstein 2011 (20) 0.581 0.179 0.032 0.231 0.932 3.249 0.001

Uebel 2010 (35) 0.509 0.156 0.024 0.204 0.814 3.273 0.001

Raymaekers 2007 (31) 0.500 0.282 0.080 -0.053 1.054 1.771 0.077

Kooistra 2010 (27) 0.484 0.222 0.049 0.048 0.919 2.177 0.030

0.753 0.140 0.019 0.480 1.027 5.397 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 2.368 0.296 0.088 1.788 2.948 7.996 0.000

Borger and van der Meere 2000 (18) 0.734 0.297 0.088 0.153 1.315 2.474 0.013

Wiersema 2006 (42) 0.711 0.345 0.119 0.035 1.386 2.061 0.039

Hervey 2006 (22) 0.710 0.181 0.033 0.356 1.065 3.928 0.000

Kuntsi 2009 (28) 0.615 0.143 0.020 0.335 0.895 4.309 0.000

Wiersema 2006 (adult) (43) 0.594 0.332 0.110 -0.056 1.243 1.790 0.073

Epstein 2011 (20) 0.581 0.179 0.032 0.231 0.932 3.249 0.001

Uebel 2010 (35) 0.509 0.156 0.024 0.204 0.814 3.273 0.001

Raymaekers 2007 (31) 0.500 0.282 0.080 -0.053 1.054 1.771 0.077

Kooistra 2010 (27) 0.484 0.222 0.049 0.048 0.919 2.177 0.030

0.753 0.140 0.019 0.480 1.027 5.397 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 2.076 0.283 0.080 1.521 2.631 7.329 0.000

Wiersema 2006 (42) 1.007 0.355 0.126 0.312 1.702 2.839 0.005

Raymaekers 2007 (31) 0.886 0.291 0.085 0.315 1.457 3.040 0.002

Hervey 2006 (22) 0.806 0.182 0.033 0.448 1.163 4.415 0.000

Kooistra 2010 (27) 0.788 0.229 0.053 0.339 1.237 3.438 0.001

Kuntsi 2009 (28) 0.742 0.143 0.020 0.462 1.022 5.197 0.000

Uebel 2010 (35) 0.680 0.157 0.025 0.372 0.987 4.334 0.000

Epstein 2011 (20) 0.651 0.180 0.032 0.299 1.003 3.622 0.000

Wiersema 2006 (adult) (43) 0.632 0.332 0.111 -0.020 1.283 1.900 0.057

Borger and van der Meere  2000 (18) 0.525 0.292 0.085 -0.048 1.097 1.796 0.073

0.851 0.114 0.013 0.627 1.075 7.447 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis

Study name Statistics for each study Std diff in means and 95% CI

Std diff Standard Lower Upper 
in means error Variance limit limit Z-Value p-Value

van der Meere 2009 (36) 2.076 0.283 0.080 1.521 2.631 7.329 0.000

Wiersema 2006 (42) 1.007 0.355 0.126 0.312 1.702 2.839 0.005

Raymaekers 2007 (31) 0.886 0.291 0.085 0.315 1.457 3.040 0.002

Hervey 2006 (22) 0.806 0.182 0.033 0.448 1.163 4.415 0.000

Kooistra 2010 (27) 0.788 0.229 0.053 0.339 1.237 3.438 0.001

Kuntsi 2009 (28) 0.742 0.143 0.020 0.462 1.022 5.197 0.000

Uebel 2010 (35) 0.680 0.157 0.025 0.372 0.987 4.334 0.000

Epstein 2011 (20) 0.651 0.180 0.032 0.299 1.003 3.622 0.000

Wiersema 2006 (adult) (43) 0.632 0.332 0.111 -0.020 1.283 1.900 0.057

Borger and van der Meere  2000 (18) 0.525 0.292 0.085 -0.048 1.097 1.796 0.073

0.851 0.114 0.013 0.627 1.075 7.447 0.000

-2.00 -1.00 0.00 1.00 2.00

Favours A Favours B

Meta Analysis

Meta Analysis
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Estimating the differential effect of ER using between study data 

 Twenty-five studies contributed to the MRT, 29 to the EOC and 22 to the SDRT 

analysis. One study contributed two independent data sets to each analysis: one 

comparing a pediatric ADHD group and the other an adolescent group along with 

separate age matched control groups (Bitsakou, Psychogiou, Thompson, & Sonuga-

Barke, 2008). There was a significant between group effect overall - slower MRT was 

seen for ADHD samples (SMD= 0.28 (95% CIs 0.14 to 0.43). There was significant 

between-study heterogeneity (Q(25)=67.15, p<0.001, I2=62.77).  Variation in SMD 

between studies was significantly predicted by ER (z=2.88, p=0.004) and age (ES 

decreasing with increasing age, z=-2.43, p=0.02). However heterogeneity was still 

significant after including ER and age in the model (Q(24)=52.91, p=0.001; Q(20)=56.93, 

p<0.001 respectively). Figure 5 plots the MRT SMD as a function of ER. There was a 

significant overall group difference for EOC (SMD= 0.44, 95% CIs 0.34 to 0.54). There was 

also significant heterogeneity (Q(29)=46.07, p=0.02, I2=37.05). ER and age did not 

account for a significant proportion of the between-group SMD variance between 

studies (z=-0.65 p=0.51, z=-0.61, p=0.54 respectively). For SDRT, the group effect 

(SMD=0.66; 95% CIs 0.51 to 0.81) was highly significant. The between-study ES 

heterogeneity was also significant (Q(22)=54.07, p<0.001, I2=59.32). ER was not a 

predictor of between-group SMDs (z=0.4, p=0.69) However there was an inverse 

relationship between age and SMDs (z=-2.29, p=0.02).  
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Figure 5. Scatter plot for regression of ISI (inter-stimulus interval) on effect size for mean 

reaction time. 

Sensitivity analyses 

For MRT, restricting analyses to studies with participants under the age of 11 

years and to studies with a small difference in gender composition had no effect on the 

results (z=2.14, p=0.03; z=2.5, p=0.01 respectively). For EOC the same restrictions did 

not change the results either (for age restriction z=-0.92 p=0.35; for gender restriction 

z=-0.4, p=0.68). The sensitivity analyses for number of trials and % of Go trials were also 

not significant for none of the variables 

   DISCUSSION 

Consistent with the predictions of the SRD model, GNG performance in ADHD 

was differentially affected by ER. First, both analyses found an impact of ER on the SMD 

between ADHD and control participants for MRT in the predicted direction: There was a 

disproportionate slowing of ADHD responding with reducing ERs. From an SRD 

perspective this effect is regarded as being due to under-activation in people with ADHD 

brought about by a failure to adjust their activation level according to the demands of 

long and boring tasks (Sergeant, 2005; van der Meere, 2002).  The second prediction – of 

a disproportionate increase in EOCs under fast ER condition in ADHD relative to controls 
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– was also supported by the within-subject analysis. However, this effect was weaker 

than for the MRT and the slope, although in the right direction, was not significant in the 

between-study meta-regression. This might be explained by the greater power in within-

subject analysis due to taking into account the correlation between measurements. 

From the SRD perspective this increase in impulsive errors is due to the failure to 

moderate an over-activated state induced by the fast ERs (Sergeant, 2000; Sergeant, 

2005; van der Meere, 2002). Slower responding in slow ERs and more errors in the fast 

ERs is also consistent with a possible role altered response strategy in ADHD. A complete 

speed-accuracy trade-off (SATO) analysis requires access to trial-by-trial data which was 

not available in our case but future studies could examine contribution of these factors 

to the state regulation deficits. However, a provisional analysis of SATO based on 

averaged data for each study found no relationship between error rates and MRT. 

Despite these positive findings implicating the effect of ER in ADHD performance, 

it is also clear that ER is not the sole determinant of ADHD-related deficits on GNG tasks. 

Both analyses found strong effects of group not accounted for only by ER: ADHD children 

had longer MRTs and made more EOCs on both high and low ER trials. This conclusion is 

supported by the meta-regression analysis of between-subject design studies where ER 

accounted for only a proportion of the between-study heterogeneity. Across all 

variables, a substantial proportion of the ADHD group differences were not due to ER 

manipulations. Thus the current results are in line with previous research which found 

that although motivational and energetic factors, such as reward, can have substantial 

effect on ADHD performance, they rarely fully alleviate deficits – this could be due either 

to a common partial response or alternatively normalization in only a sub-group of 

individuals with ADHD (Epstein et al., 2011, Kuntsi, Wood, van der Meere, & Asherson, 

2009).  If this latter case were true it would provide further evidence of 

neuropsychological heterogeneity in ADHD. 

The negative result for SDRT is also worthy of further discussion given that 

response variability has been suggested to be a particularly important marker of state 

regulation problems in ADHD in the past (Leth-Steensen, Elbaz, & Douglas, 2000). There 

are at least two possible explanations for the lack of an ADHD-specific effect of ER on 

this outcome. First, SDRT may not be a sufficiently sensitive measure of the energetic 

processes. For instance, increased variability in ADHD could be related to a number of 

different putative cognitive processes (Epstein et al., 2011) such as motor timing (Rubia, 
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2001), top-down executive control (Bellgrove, Hester, & Garavan, 2004), impaired 

suppression of default mode network (Sonuga-Barke & Castellanos, 2007) and 

attentional lapses (Leth-Steensen et al., 2000). Second, it has been suggested that 

response variability represents a non-specific finding which is seen in multiple types of 

disorders (Kuntsi et al., 2009). In this view SDRT, although associated with ADHD, may 

not be related to ADHD-specific processes but be a more general marker of 

psychopathology (Geurts et al., 2008).  However, this objection may also hold for MRT 

and EOCs. Thus, exploring the specificity of these outcomes for ER effects and finding 

more specific measures of state regulation deficits could be the aim of future studies. 

Can other models explain the ER effects in the data? The Delay aversion model 

(DAv) (Sonuga-Barke et al., 2010, Sonuga-Barke et al., 1992) also makes predictions with 

regard to ER effects. In this model ADHD behavior is motivated by the escape or 

avoidance of delay. When there are options with different delay outcomes, individuals 

with ADHD will choose the least delayed option all else being equal – producing 

impulsive choice (Marco et al., 2009). When no choice exists and delay is to some extent 

imposed (as is the case in the GNG paradigms included in the current meta-analysis), 

then individuals with ADHD are predicted to engage in patterns of off-task inattentive 

behaviors that have been shown to reduce the subjective experience of delay. The 

performance corollary of such behavior are higher errors of omission and long and 

variable RTs when the length of delay between stimuli increases. From a different point 

of view, one might argue that slower RT and higher variability in ADHD on slow ER trials 

are due to attentional lapses (Leth-Steensen et al., 2000) linked to increased 

interference from the so-called default mode brain network (Sonuga-Barke & 

Castellanos, 2007).  The finding of longer RTs on slow ER trials is consistent with both of 

these models. However, neither DAv nor default mode network model make specific 

predictions about EOC and certainly would not predict a disproportionate increase of 

EOC on fast ER trials as found in the current study. Thus, these models do not offer a 

parsimonious explanations of ER effects seen in this study. At the same time ADHD is not 

a neuropsychologically homogeneous condition. Therefore it is quite possible that the 

association between ER and performance is multi-factorially determined with different 

patterns of deficits linked to SRD, DAv and the default mode interference, leading to 

problems attending on slow ER trials. The large SMD between ADHD and controls for the 

MRT effects compared to the EOC effects would be consistent with this.  



META-ANAYSIS OF EVENT RATE EFEFCTS IN ADHD 

 

 

35 

While interpreting these results one needs to take into account of a number of 

limitations of the current analysis. First, the aim was to identify the effect of ER on 

performance and a number of studies have been excluded as they did not report ER 

explicitly or used a highly variable presentation rate. Therefore the summary effect sizes 

calculated do not represent all the studies published and should be evaluated carefully. 

Second, while between study variance can be explained partially by ER and age other 

factors such as task setup, instructions, severity of ADHD symptoms, diagnostic criteria 

and scales are likely to be important. The analysis of such factors is not within the scope 

of this study given the limited information available in specific papers relating to these 

factors. Although we could not analyze the specific factors that may cause this 

heterogeneity we took account of it by using a random effects model which assumes 

that the true effect size varies from study to study. 

There is potentially a number of clinical implications of the results. First, they 

may help us design more appropriate ways of delivering information in the classroom: 

the slower the information is presented, the more sluggish the ADHD children may 

become. On the other hand, a fast teaching style and presentation of abundant stimuli 

may induce an over-activated impulsive response style. Therefore the content of the 

lecture and the environment could be adapted to tailor the stimulation level to an 

optimal level. This may require increased use of information and communication 

technology to promote active and personalized learning. Second, it may be possible to 

train individuals with ADHD to cope with a broader range of ER settings through 

methods like neurofeedback and cognitive training that can improve management of 

their energetic resources. Third, they can highlight the potential of targeting brain 

systems related to energetic factors – for instance noradrenaline pathways originating in 

the locus ceruleus (LC) is likely to be the main neurochemical system involved in 

regulating the arousal state (Ashton-Jones, Rajkowski, & Cohen, 1999). The interplay 

between the LC and cerebral cortex mediates adaptation to the changing environmental 

conditions such as changing ER. A methodological implication of our findings relates to 

choosing the optimal GNG task design for the future studies. Given the apparent context 

dependent nature of task performance in ADHD – studies of cognitive test performance 

in ADHD should, as a matter of course, include a range of ERs that cover the full range of 

the values explored here. We would recommend at least a fast condition (ISI  ≤ 2 sec) to 



CHAPTER 2 

 

 

36 

capture errors of commission and a slow condition (ISI  ≥ 6 sec ) to induce low and 

variable inattentive responses. 

In summary, the SRD model provides the most parsimonious explanation of the 

differential ER effects on the GNG performance of ADHD and control participants – more 

EOC on fast ER trials and longer RTs on slow ER trials. However, the finding that group 

differences exist over and above those related to ER and the possibility that other 

deficits could account for these differences highlight the neuropsychological 

heterogeneity in ADHD.  Therefore, future studies should aim to develop theories of 

ADHD which could better explain this sort of neuropsychological heterogeneity by 

modeling the presence of different deficits in different individuals in the ADHD 

population (Fair, Bathula, Nikolas, & Nigg, 2012). 
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EVENT RATE EFFECTS ON 

VARIABILITY IN ATTENTION-
DEFICIT/HYPERACTIVITY 

DISORDER 
 

 

ABSTACT 

Background: There are a number of competing models of increased reaction time 

variability (RTvar) in Attention-Deficit/Hyperactivity Disorder (ADHD). Event rate (ER) 

manipulation during task performance provides a way to test between these accounts. 

For instance, the State Regulation Deficit model predicts an “inverted U” ER-RTvar 

relationship with higher RTvar on both fast and slow ER trials; while the Delay Aversion 

model predicts a linear ER-RTvar relationship with higher RTvar on slow ER trials only. In 

this study we tested these predictions by employing an ex-Gaussian decomposition of 

RTvar into sigma (Gaussian variability) and tau (variability due to slow responses). 

Method: Twenty-nine controls and 25 children with ADHD (age range: 8-12 years) 

completed a simple computer-based Go/No-Go task under four different ER conditions (1, 

2, 4 and 8 sec). Results: For sigma children with ADHD showed an accentuated “inverted 

U” pattern of ER-RTvar with significant group differences only at the slowest and fastest 

ERs. Tau was significantly greater for ADHD, but this effect was unaffected by ER. 

Conclusions: Our results provide compelling evidence for state regulation deficits in 

ADHD by showing that children with ADHD have an increased sigma on fast and slow ERs. 

These results were not predicted by the Delay Aversion model. In contrast, tau was not 

affected by ER suggesting that this parameter may not be sensitive to state regulation 

problems.  
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INTRODUCTION 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent childhood disorder 

which often persists into adulthood. It is characterized by symptoms of inattention 

and/or hyperactivity-impulsivity which lead to substantial social and academic 

impairment (DSM-IV-TR, American Psychiatric Association, 2000). ADHD is associated 

with deficits on tasks tapping a wide range of specific cognitive processes such as 

response inhibition, planning, vigilance and working memory (see Nigg, 2005; Rubia, 

2011; Sonuga-Barke, Sergeant, Nigg, & Willcutt, 2008; Willcutt, Doyle, Nigg, Faraone, & 

Pennington, 2005 for reviews). At the same time ADHD also seem to be affected by 

increased levels of intra-individual variability independent of tasks. Studies have 

consistently reported that reaction time variability (RTvar) is elevated for individuals 

with ADHD although the neuropsychological basis of this finding is not understood (see 

Tamm et al., 2012 for a review).  

There are a number of competing neuropsychological models of RTvar in ADHD. 

The Cognitive Energetic model extends the basic information processing framework by 

integrating energetic concepts such as effort, arousal and activation. This model assumes 

that task performance is influenced not only by cognitive capacities but also by 

environmentally-determined levels of arousal/activation and the extent to which 

variations in these factors can be managed to ensure optimal performance. According to 

this model RTvar is an important indicator of arousal/activation as it reflects between-

trial variation in energetic resources (Sanders, 1983). Building on this, the State 

Regulation Deficit model suggests that children with ADHD have difficulty in properly 

regulating their energetic state (arousal/activation) when challenged to do so in sub-

optimal settings. This failure leads to abnormally high RTvar. Crucially, the energetic state 

can be manipulated by changing the rate at which information is presented during tasks 

leading to sub-optimal states under both fast and slow event rate (ER) conditions 

(Sergeant, 2005; van der Meere, Börger, & Wiersema, 2010). More specifically, the State 

Regulation Deficit model predicts that performance of individuals with ADHD would 

deteriorate at ER extremes (very fast or very slow ERs): Fast ERs lead to over-
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arousal/activation which is predicted to result in ADHD-related fast/impulsive errors; 

while slow ERs lead to under-arousal/activation and produce slow responding marked by 

RT slowing. Within this account RTvar is implicated in two ways. First, sub-optimal 

performance under both fast and slow ERs is expected to manifest as greater Gaussian 

variability reflecting the variable response style at ER extremes. The ER-RTvar relationship 

for this type of variability is predicted to follow an accentuated “inverted U” function in 

ADHD. Second, it has been shown that ADHD is associated with increased attentional 

lapses leading to greater variability due to occasional slow responses (Leth-Steensen, 

Elbaz, & Douglas, 2000). According to the State Regulation Deficit model these slow 

responses are expected to increase at slow ERs where more effort for attentional control 

is needed.  

The Delay Aversion hypothesis provides an alternative model of ER effects on 

ADHD performance (Sonuga-Barke, Wiersema, van der Meere, & Roeyers, 2010). 

According to this model, individuals with ADHD are motivated to escape or avoid delay. In 

choice situations this is achieved through impulsive choices (Marco et al, 2009; Sonuga-

Barke, Taylor, Sembi, & Smith, 1992). In non-choice settings, where delay cannot be 

actually reduced, delay aversion is expressed as attempts to modify the perception of the 

passage of time during the delay so its aversive properties lessen (Sonuga-Barke et al., 

2010). The Delay Aversion model postulates that under these conditions individuals with 

ADHD will act on their environment to either access (through attentional strategies often 

leading to off-task or “inattentive” behavior) or create (through activity) additional 

environmental stimulation to alter time perception and that the tendency to do this will 

increase with the length of the delay to be tolerated. This leads to the prediction that 

levels of attention and performance should deteriorate linearly as a function of the length 

of the delay experienced – and while this would be the case for all individuals, the rate of 

performance decrement would be greater in individuals with ADHD than in controls. 

Therefore, in contrast to the State Regulation Deficit model the Delay Aversion model 

predicts a heightened linear ER-RTvar relationship in ADHD with increased RTvar under 

slow ER conditions – effects that should be related to both Gaussian variability and 

variability due to occasional slow responses.  

 To date, several studies have found increased sensitivity to ER changes in the 

performance of individuals with ADHD on different tasks, such as Go/No-Go (GNG) (van 

de Meere, Stemerdink, & Gunning, 1995), stop signal (Scheres, Oosterlaan, & Sergeant, 
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2001), vigilance (Chee, Logan, Schachar, Lindsay, & Wachsmuth, 1989) and associative 

learning (Conte, Kinsbourne, Swanson, Zirk, & Samuels, 1986) tasks. However, these 

studies have often not been equipped to test between the different neuropsychological 

accounts because (i) they do not have a sufficient number of ER levels to give power to 

model the “inverted U” function predicted by the State Regulation Deficit model and/or 

(ii) they have used non-specific variability measures such as standard deviation of 

reaction time (SDRT) and so cannot distinguish effects of Gaussian variability due to slow 

responses (Castellanos et al, 2005; Metin, Roeyers, Wiersema, van der Meere, & Sonuga-

Barke, 2012, Tamm et al., 2012). A recent meta-analysis of GNG studies comparing slow 

and fast ERs confirmed, that consistent with the State Regulation Deficit model, 

individuals with ADHD made more impulsive errors on tasks with fast ERs and produced 

longer RTs on tasks with slow ERs (Metin et al., 2012). However, this meta-analysis did 

not show any significant effect of ER on SDRT although no attempt was made to model 

Gaussian variability and variability due to slow responses separately. Due to the non-

specific nature of SDRT, it has been suggested that future studies should use more 

specific variability measures that can disentangle different components of general 

variability (Tamm et al., 2012). This can be achieved by employing the ex-Gaussian model 

(Matzke & Wagenmaekers, 2009) which differentiates a number of RT components (mu, 

sigma, tau) which better describe the RT distribution and in particular its rightward 

skewed nature. The mu and sigma parameters correspond to the mean and standard 

deviation (SD) of the normal component of the RT distribution (with sigma equating to 

Gaussian variability) and they represent the fast component of the RT distributions. The 

tau parameter represents the exponential component of the RTvar and is an estimate of 

the degree of skewness or the positive tail of the RT distribution (which can be equated to 

occasional long RTs). Thus, mean RT depends on mu and tau and SD is decomposed into 

sigma and tau. 

Previous research with the ex-Gaussian model has shown that individuals with 

ADHD differ from controls in terms of both tau (Buzy, Medoff, Schweitzer, 2009; Epstein 

et al., 2011; Hervey et al, 2006; Leth-Steensen, et al., 2000; Vaurio, Simmonds, Mostofsky, 

2009) and sigma (Buzy, et al., 2009; Gooch, Snowling, & Hulme, 2012; Hervey et al, 2006; 

Vaurio et al., 2009). Two of these studies also used ER manipulations. Hervey et al. (2006) 

used 1, 2 and 4 sec interstimulus intervals (ISI) and reported that groups differed in all ex-

Gaussian parameters (for mu control > ADHD and for sigma and tau ADHD > control) with 
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the greatest group difference in tau. In addition, the group difference in tau increased as 

a function of ER. There was no evidence for the predicted exacerbated “inverted U” 

function in ADHD with sigma. Epstein et al. (2011) used 1, 3 and 5 sec ISIs and found that 

the ADHD group had greater tau and that tau increased as ER slowed. The interaction 

between group and ER for tau was significant in only one of the several tasks used. Group 

differences for mu and sigma were not significant in this study. Although both mu and 

sigma increased as ER slowed, there was no interaction between group and ER. Together 

these studies provide evidence for both increased tau and sigma RTvar in ADHD although 

the effects of ER on different variability components are not entirely consistent and the 

evidence for an “inverted U” pattern is lacking. This may be because the longest ISI used 

in these studies was 5 sec which does not produce a very slow ER and/or only three ERs 

were used which may limit the power for detecting linear or quadratic interactions 

between group and ER.  

In the current study, we analyzed RTvar under four ER level conditions covering 

very fast to very slow presentation rates (1, 2, 4 and 8 sec). This gave sufficient degrees of 

freedom to effectively model the quadratic function as predicted by the State Regulation 

Deficit model on RTvar. We also employed an ex-Gaussian decomposition of RT 

distributions to allow us to distinguish RTvar associated with occasional long RTs in slow 

ER conditions (tau) and Gaussian RTvar in slow and fast ER conditions (sigma). Our aim 

was to test the predictions of two different models. The State Regulation Deficit model 

predicts increased sigma at both fast and slow ERs while the Delay Aversion model 

predicts increased Gausian RTvar exclusively at slow ER conditions. For tau the 

predictions of increased RTvar on slow ER trials is the same for both models.  

 

  METHOD 

 

The study was approved by the Ethics Committee of Ghent University, Faculty of 

Psychology and Educational Sciences. Written informed consent was taken from all 

parents and their children participating in the study. 
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Participants 

Twenty-five children with ADHD and 29 controls between the age of 8 to 12 years 

were tested. The ADHD and the control groups did not differ in age and gender 

composition. All children were screened for ADHD, oppositional defiant disorder (ODD) 

and conduct disorder (CD) with the parent version of the Disruptive Behavior Disorder 

Scale (DBD) (Pelham, Gnagy, Greenslade, & Milch, 1992). The demographic information 

and the symptom scores on the DBD scale can be found in Table 1. To exclude Autism 

Spectrum Disorder, the Social Communication Scale (SCQ) (Rutter, Bailey, & Lord, 2003) 

and the Social Responsiveness Scales (SRS) (Constantino & Gruber, 2005) were 

administered to both clinical and control groups. However, none of the children were 

excluded due to clinical scores on these scales. 

The children in the control group were recruited from local schools and scout 

camps. Children with ADHD were recruited from the community and formal diagnosis by 

a clinician was required. The ADHD, ODD and CD diagnoses were ascertained by a DSM-IV 

oriented parent interview (disruptive behavior module of the Diagnostic Interview 

Schedule for Children, DISC-IV) (Shaffer, Fisher, Lucas, Dulcan, & Schwab-Stone, 2000) 

administered by an experienced clinical psychologist. Fourteen children were classified as 

ADHD-combined type, 8 children as inattentive type and 3 children as hyperactive-

impulsive type. Eight children received an ODD diagnosis and 3 had a CD diagnosis. All 

children had a total IQ (TIQ) score above 75. TIQ was assessed by the short version of the 

Wechsler Intelligence Scale for Children – 3rd edition (WISC-III) (Grégoire, 2005). The 

children in the ADHD group had lower TIQ scores than the controls but this difference did 

not reach statistical significance (F(1,52) = 3.35, p = 0.07). The summary statistics for TIQ 

can be found in Table 1.  
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Table 1. The characteristics of the ADHD and control group and the scores for comorbid 

symptoms. 

 ADHD (N = 25) Control (N = 29) 

Age in monthsa 122.4 (19.1) 123.8 (17.7) 

Male:Female 16:9 14:15 

TIQa 103.6 (13.5) 109.8 (11.2) 

HIab 14.78 (1.79) 10.69 (1.05) 

IAabc 14.76 (1.81) 10.5 (1.18) 

ODDabc 13.04 (1.95) 10.88 (1.14) 

CDabd 12.0 (2.02) 10.77 (0.99) 

 

Note: a Means and standard deviations (SD), b Measured by Disruptive Behavior Disorders 

Scale, cp<0.0001, dp < 0.05, TIQ = total Intelligence Quotient, HI=Hyperactivity/Impulsivity, 

IA = Inattention, ODD = Oppositional Defiant Disorder, CD = Conduct Disorder. 

Experimental Task 

All children completed a GNG task programmed using E-prime software (version 

2). The stimuli were an upright triangle (Go stimulus) and an inverted triangle (No-Go 

stimulus). The stimuli were chosen based on a pilot study during which the performance 

of healthy controls on different tasks was compared across a range of levels of perceptual 

difficulty. The children were told to respond to every upright triangle and to withhold 

responding to every inverted triangle. Both speed and accuracy were equally emphasized 

in the instructions. The order of Go and No-Go stimuli was pseudo-randomized (a No-Go 

stimulus was always followed by a Go stimulus and maximum four Go stimuli were 

presented consecutively) with 72% Go and 28% No-Go stimuli. The duration of stimulus 

presentation was 300 msec. The task was preceded by a 2 minutes practice session. This 

was followed by 4 blocks of trials presented in a random order; each block had a different 
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inter-stimulus interval (ISI: ERs of 1, 2, 4 and 8 sec). The children were allowed to have 

small breaks between the sessions. 

The duration of each condition was about 10 minutes in total. The 1 sec condition 

contained 560 stimuli, the 2 sec condition 280, the 4 sec condition 140 and the 8 sec 

condition 70. All responses up to 1 sec from stimulus onset were recorded for the fastest 

condition. For the other conditions, the cutoff for recording was 2 sec.  

Procedure 

All children completed the GNG task before the IQ test. The children completed 

the computer testing in a quiet room together with an experimenter sitting outside of 

their sight. The diagnostic interview of the parents of children with ADHD took place in 

another room with an experienced clinical psychologist. Seventeen children with ADHD 

were on stimulant medication. They were asked to discontinue their treatment at least 24 

hours before the start of the experiment. All children received 15 euro compensation for 

participation in the study. 

Analysis 

All RT analyses were performed on data of correct Go trials. To eliminate the 

premature anticipated responses, we used a low cutoff of 100 msec. For ex-Gaussian 

modeling the RTSYS (Heathcote, 1996) program was used. When the ex-Gaussian model 

does not fit the RT distribution, the program reports the parameter estimates as missing 

values. In our sample this happened for four subjects (two children with ADHD and two 

controls). The ex-Gaussian parameters (mu, sigma and tau) were allowed to vary between 

ER conditions for each subject. As there were fewer responses available in the 8 sec 

condition and this could potentially affect the reliability of the parameter estimates 

(Heathcote,1996), we also performed supportive analyses with combining data across 

participants (Vincent averaging) to confirm the initial results. The statistical analysis was 

completed using SPSS (version 19.0). For each parameter an univariate repeated-

measures ANOVA was performed with ER level (1, 2 , 4 and 8 sec) as the within subject 

variable and group (ADHD versus controls) as the between subject variable. The specific 

predictions relating to the nature of the interactions (linear, quadratic, etc.) were tested 
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using trend analysis and follow-up univariate F-tests explored which ERs were responsible 

for the group differences.  

 RESULTS 

Table 2 reports summary statistics and the results of statistical comparisons for all 

parameters as a function of group and ER. The analyses of conventional performance 

measures revealed that the ADHD group had longer RTs than controls and the group 

difference increased as ER slowed. The groups did not differ in omission and commission 

errors and the interactions between group and ER were not significant for these variables.  

For mu there was no group effect. There was an effect of ER: mu increased in a 

linear fashion as a function of increasing ER (Figure 1). The interaction between group and 

ER approached significance (F(1,48) = 3, p = 0.09), with the group difference for mu 

increasing as ER slowed. This interaction became significant when 2, 4 and 8 sec 

conditions were analyzed separately (F(1,48) = 5.33, p = 0.03). Sigma was overall greater 

in the ADHD group. There was an effect of ER on sigma following a significant quadratic 

trend across ERs (Figure 2). As predicted, there was a significant quadratic interaction 

between group and ER with group effects seen at the 1 sec (F(1,48) = 6.28, p = 0.02) and 8 

sec (F(1,48) = 5.02, p = 0.03) conditions, but not in the 2 sec (F(1,48) = 0.8, p = 0.38) and 4 

sec (F(1,48) = 1.78, p = 0.19) conditions. For tau, there was a significant group effect with 

the ADHD group having greater tau. There was an overall increase in tau as a function of 

ER with the slow ERs producing greater tau. However, this effect appeared to be driven 

by reduced tau in the 1 sec condition (Figure 3) which probably resulted from the 

necessary imposition of a high cutoff. The interaction between group and ER was not 

significant. The results of the Vincent averaged data (Figure 4) confirmed the results of 

the first analysis with the difference in the tau parameter remaining stable across 

different ERs and the ADHD group showing an accentuated inverted U pattern for sigma.  
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Figure 1. Mu parameter for the ADHD and control group in each event rate condition 

(Error bars: standard error (SE) of the mean). 

 

 

Figure 2. Sigma parameter for the ADHD and control group in each event rate condition 

(Error bars: SE of the mean). 
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Figure 3. Tau parameter for the ADHD and control group in each event rate condition 

(Error bars: SE of the mean). 

Table 2. Means and Standard Deviations (SD) for the variables at each event rate 

condition. 

Variable                Event Rate               ANOVA ES 

 1 sec 2 sec 4 sec 8 sec Group ERb Group x 

ER 

 

MRT 

(msec) 

    F(1,52) 

7.35* 

F(1,52) 

168.93** 

F(1,52) 

6.06* 

0.77 

   ADHD 438.7 

(86.2) 

521.0 

(111.3) 

619.3 

(169.6) 

715.5 

(205.7) 

    

   Control 395.9 

(76.5) 

456.9 

(96.1) 

521.0 

(125.8) 

585.5 

(119.9) 

    

EOC (%)     F(1,52) 

2.47 

F(1,52) 

3.11 

F(1,52) 

0.03 

0.42 

   ADHD 45.1 

(17.0) 

43.6 

(18.2) 

42.5 

(25.0) 

39.2 

(24.6) 

    

    Control 38.2 

(14.6) 

34.6 

(19.3) 

33.1 

(21.7) 

33.4 

(23.0) 
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Note: MRT = Mean Reaction Time, EOC = Errors of Commission, EOO = Errors of Omission, SDRT = 

Standard Deviation of Reaction Time, ER = Event Rate, effect size (ES) is Cohen’s d for the group 

effect, bER and interaction analyses have been performed with the use of appropriate contrasts 

(linear or quadratic), *p < 0.05, **p < 0.001. 

EOO (%) F(1,52) 

3.77 

F(1,52) 

21.62** 

F(1,52) 

1.15 

0.53 

   ADHD 13.4  

(8.5) 

6.8  

(7.8) 

5.6  

(7.6) 

7.8  

(8.3) 

    

   Control 8.0  

(9.7) 

4.1  

(4.1) 

3.6 

 (5.1) 

5.2  

(7.7) 

    

SDRT     F(1,52) 

10.47* 

F(1,52) 

34.08** 

F(1,52) 

0.02 

0.92 

   ADHD 167.5 

(38.4) 

234.4 

(90.9) 

222.6 

(76.0) 

234.7 

(91.5) 

    

   Control 133.2 

(37.0) 

170.8 

(57.1) 

170.0 

(66.9) 

194.0 

(79.4) 

    

Mu     F(1,48) 

1.1 

F(1,48) 

113.7** 

F(1,48) 

3.0 

0.3 

   ADHD 305.2 

(102.8) 

312.1 

(80.6) 

421.5 

(158.5) 

515.6 

(196.6) 

    

   Control 288.7 

(83.2) 

315.8 

(82.9) 

382.9 

(98.5) 

444.2 

(110.4) 

    

Sigma     F(1,48) 

4.94* 

F(1,48) 

21.03** 

F(1,48) 

5.5* 

 

0.63 

   ADHD 96.5 

(49.4) 

65.7 

(35.6) 

84.9 

(61.3) 

112.2 

(72.0) 

    

   Control 66.9 

(33.8) 

57.5 

(29.4) 

65.4 

(41.5) 

74.7 

(44.8) 

    

Tau     F(1,48) 

13.31** 

F(1,48) 

15.5** 

F(1,48) 

1.58 

 

1.04 

   ADHD 127.7 

(42.1) 

196.1 

(67.5) 

196.0 

(84.3) 

188.9 

(90.5) 

    

   Control 109.4 

(34.9) 

141.7 

(48.9) 

141.8 

(54.5) 

141. 

(60.7) 
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Figure 4. Vincent Histograms for each group at each condition and the estimated model 

parameters. 
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DISCUSSION 

In this study, we tested the predictions regarding the effects of ER on RTvar in 

ADHD derived from the State Regulation Deficit and Delay Aversion models, using ex-

Gaussian decompositions of RT distributions. ADHD individuals differed from controls on 

RTvar parameters of the ex-Gaussian model (greater sigma and tau). The findings suggest 

that higher RTvar in ADHD is caused by two mechanisms: (i) reaction times which result in 

higher Gaussian variability; (ii) occasional slow responses which create elongated tails in 

RT distributions. When the case control differences for each parameter are evaluated 

together with the ER effects and the predictions made by different models, important 

conclusions can be drawn about the validity of these models in explaining the elevated 

variability in ADHD. 

For sigma, the results were in striking conformity with the predictions of the State 

Regulation Deficit model. In particular, while for all subjects the effect of ER on sigma 

followed an “inverted U” function, this was accentuated for the ADHD group – with 

significantly greater sigma on the very short and very long ER trials but no difference on 

the moderate ER trials. This suggests that the ADHD group might have problems with 

regulating their energetic state at very fast and very slow ERs which lead to a higher 

variability at these sub-optimal settings. Previous ER studies did not report this effect 

relating ADHD to sigma (Epstein et al., 2011; Hervey et al, 2006). This might be due to the 

broader range of ERs used in the current study – group effects were only significant at 

very fast (1 sec) and very slow (8 sec) ERs and previous studies did not cover these ERs.  

The mu effects were also generally consistent with previous studies – mu increases 

as ER slows. This increase was most pronounced in the ADHD group especially when only 

2, 4 and 8 sec conditions were analyzed. This finding is congruent with a general slowing 

of RTs in ADHD on trials with slower ERs (Metin et al., 2012); however, it also indicates 

that the RT slowing is prominent after 2 sec.  

While our findings regarding tau are consistent with previous reports of greater 

tau in ADHD in general, these effects were not affected by ER. This appears 

counterintuitive from a number of perspectives. First, the tau component is often 

suggested to be a marker of attentional lapses in ADHD which is postulated to be due to 

impaired regulation of energetic resources (Leth-Steensen et al, 2000). Therefore, one 

might expect that tau will be affected by ER manipulations. However, the assumption that 
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tau is a good index of attentional lapses is questionable and it has also been argued that 

the nature of these periodic long RTs in ADHD remains unknown (Epstein et al, 2011). 

One of the previous ER studies reported that tau increased disproportionately as a 

function of ER in children with ADHD (Hervey et al., 2006). However, this study did not 

use a filter for slow RTs. In slow ER conditions there is a longer interval between stimuli 

for collection of RTs. On the other hand, for fast ERs an obligated high cutoff is applied 

due to the short ISI. This allows collection of outlier RTs exclusively at slow conditions and 

elongation of the tail of the RT distribution. Given that children with ADHD are more 

prone to make accidental button presses between stimuli due to hyperactivity, the tau 

parameter may be found to be disproportionately elevated in the ADHD group at slow ER 

conditions if no high cutoff is applied. In our study, analyzing the data within the 2 sec 

window, which is expected to contain all stimulus-related button presses in a simple GNG 

task, showed that the tail of the RT distribution is not affected by ER. Therefore, our 

results suggest that tau may not be a sensitive marker of attentional lapses that arise 

during slow ERs. Second, it has also been claimed that ADHD performance is negatively 

affected in a non-task specific way by interference from the default-mode network (DMN) 

brain areas (Sonuga-Barke & Castellanos, 2007). This interference may result in occasional 

slow RTs and thereby an increase in tau. From the State Regulation point of view, one 

might expect greater interference in slow ER settings where more effort is needed to 

suppress the DMN activity. However, it is again not certain whether the tau parameter is 

sensitive or specific enough to illustrate DMN interference. Interestingly, one study 

reported that DMN suppression deficits in ADHD correlate not only to tau but also to 

sigma, suggesting that tau is not a specific indicator of these deficits (Fassbender et al., 

2009).  

The Delay Aversion model predicts greater task disengagement in slow ER 

conditions which would lead to higher RTvar only on slow ER trials. Therefore, it would 

predict a linear pattern with variability increasing as ER slows. However, the current 

results provide little support for the predictions of the Delay Aversion model on ADHD 

variability. While both models predict greater variability on slow ER trials, our finding of 

increased sigma on fast ER trials is completely counter to the Delay Aversion model 

predictions and seems to provide a telling test between the models.  

Another account proposes that increased RTvar in ADHD is due to altered timing 

(Toplak, Rucklidge, Hetherington, John, & Tannock, 2003). To date several studies have 
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confirmed that individuals with ADHD have timing problems (Barkley, Murphy, & Bush, 

2001; Rommelse, Oosterlaan, Buitelaar, Faraone, & Sergeant , 2007; Rubia, Halari, 

Christakou, & Taylor, 2009; Rubia, Noorloos, Smith, Gunning, & Sergeant, 2003; Smith, 

Taylor, Rogers, Newman, & Rubia, 2002; Sonuga-Barke, Saxton, & Hall, 1998; Toplak et al., 

2003). It has been argued that for individuals with ADHD the passage of time is 

subjectively longer and more intolerable. In addition, they have impulsive timing of motor 

behavior and decreased temporal foresight which creates a preference of small 

immediate gains (Rubia et al., 2003). Although, not explicitly stated previously, one might 

expect ER to have an impact on temporal processing deficits in ADHD. This is because 

longer intervals will be perceived as more intolerable and will place greater demands on 

the timing abilities of individuals thereby exacerbating deficits in ADHD. Thus for this 

model a linear ER-RTvar relationship is predicted with increased RTvar during slow ERs 

and there is no reason to predict differences between Gaussian and exponential 

components (van der Meere, Shalev, Börger, & Wiersema, 2009). However, our findings 

indicate an “inverted U” shaped effect for sigma which cannot be explained by the time 

perception deficit model. 

The current study had a number of strengths. First, we used the ex-Gaussian 

model which successfully describes RT distributions (Matzke & Wagenmaekers, 2009). 

Second, the task contained sufficient ER levels to model quadratic interactions and the 

range of ERs was wide enough to cover very fast and very slow ERs. A limitation of the 

current study could be the lower number of trials in the 8 sec condition. In our study we 

tried to ensure that the conditions had equal durations to avoid any effect of time-on-task 

on group differences. Therefore, having more trials in the slowest ER condition would 

make the task much too long for the children. In a previous study, Vincent averaging was 

used which allows accurate parameter estimation even when the conditions had fewer 

trials (Leth-Steensen et al., 2000). We also used the same method and this analysis 

confirmed the initial analyses. 

 

To summarize, our results show that elevated RTvar in ADHD is caused by both 

fast and slow RTs and the findings can be best explained by the State Regulation Deficit 

model which predicts that children with ADHD have problems with adapting their 

energetic state to changing ER – with both fast and slow ERs creating greater sigma. In 

addition, the groups differed significantly for slow responses represented by the tau 
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parameter which is thought to represent attentional lapses. However, the effect of ER on 

tau was not significant. This finding suggests that the attentional lapses hypothesis may 

not be a satisfying explanation for greater tau in ADHD. 

Key Points 

 Performance of ADHD children is affected by the rate at which information is 

presented. 

 Inconsistent and variable responding is common in ADHD and a potentially 

important treatment target. 

 Both of these effects have been explained in terms of a State regulation deficit 

model although previous studies have not been able to show the inverted U 

function linking event rate to response variability predicted by this model - more 

variability at both very fast and very slow event rates. 

 This study which had four different event rates on reaction time on a response 

inhibition task found the predicted inverted U function when Gaussian variability 

(i.e., sigma) but not variability due to slow responses (tau) was considered. 

 These results support the State Regulation Deficit model and also highlight the 

clinical potential of manipulating cognitive energetic variables in the environment 

as part of the management of ADHD. 
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EXECUTIVE AND NON-EXECUTIVE 
DEFICITS IN ADHD: A DIFFUSION 
MODEL ANALYSIS1 

ABSTRACT 

Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is associated with 

performance deficits across a broad range of tasks. While individual tasks are designed 

to tap specific cognitive functions (e.g., memory, inhibition, planning, etc.) these deficits 

could also reflect general effects related to either inefficient or impulsive information 

processing or both. These two components cannot be isolated from each other on the 

basis of classical analysis in which mean reaction time (RT) and mean accuracy are 

handled separately. Method: Seventy children with a diagnosis of combined type ADHD 

and 50 healthy controls (between 6 and 17 years) performed two tasks: a simple 2 

choice reaction time (2-CRT) task and a conflict control task (CCT) which required higher 

levels of executive control. RT and errors were analyzed using the Ratcliff Diffusion 

Model which divides decisional time into separate estimates of information processing 

efficiency (called drift rate) and speed accuracy trade-off  (SATO, called boundary). The 

model also provides an estimate of general non-decisional time. Results: Results were 

the same for both tasks independent of executive load. ADHD was associated with lower 

drift rate and less non-decisional time. The groups did not differ in terms of boundary 

parameter estimates. Conclusions: RT and accuracy performance in ADHD appears to 

                                                 
1
 Based on Metin, B., Roeyers, H., Wiersema, J. R., Van der Meere, J.J., Thompson, M., & Sonuga-Barke, E. 

(In press).ADHD Performance Reflects Inefficient But Not Impulsive Information Processing: A Diffusion 

Model Analysis. Neurospychology. 
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reflect inefficient rather than impulsive information processing; an effect independent 

of executive function load. The results are consistent with models in which basic 

information processing deficits make an important contribution to the ADHD cognitive 

phenotype. 



                                                                                            DIFFUSION MODEL ANALYSIS OF ADHD PERFORMANCE 

 

67 

INTRODUCTION 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a life span disorder that is 

characterized by persistent and pervasive hyperactivity, impulsivity and/or inattention 

together with a significant degree of functional impairment (DSM-IV-TR, American 

Psychiatric Association, 2000). It has been characterized as an executive function 

disorder caused by deficits in higher order self-regulatory functions such as inhibitory 

control, working memory, planning and behavioral flexibility (Barkley, 1997; Doyle, 

2006; Halperin & Schulz, 2006).  It has been argued that deficits in inhibitory control are 

at the roots of executive dysfunction in ADHD (Barkley, 1997) – whereby affected 

individuals have a reduced ability to withhold or suppress inappropriate responses when 

required to, leading to more errors of commission on laboratory paradigms such as the 

Stop Signal Task (Oosterlaan, Logan, & Sergeant, 1998), Go/No-Go task (Iaboni, Douglas, 

& Baker, 1995; Rubia, Smith, & Taylor, 2007; Wodka et al., 2007) and the Continuous 

Performance Test (Losier, McGrath, & Klein, 1996).  

Although there is a large body of evidence showing that ADHD children make 

more errors (both of commission and omission) than controls on these sorts of tasks 

(Willcutt et al., 2005) the view that ADHD is primarily a disorder of inhibitory-based 

executive control has been challenged in at least two ways. First, it now seems clear that 

only a proportion of ADHD children have deficits on tasks measuring executive 

dysfunction – for many non-executive deficits play a role in their condition (Nigg, 2005; 

Sonuga-Barke, Wiersema, van der Meere, & Roeyers, 2010; Willcutt et al., 2005). 

Second, there is evidence showing that even when ADHD children do perform poorly on 

executive inhibitory control tasks, these effects may be accounted for by more basic 

information processing deficits. Indeed, individuals with ADHD do show performance 

deficits on tasks with very low executive or inhibitory loads (Van De Voorde, Roeyers, 

Verté, & Wiersema, 2010). Furthermore, when researchers have compared performance 

deficits under varying conditions of inhibitory control load and those where no such 

control is required, they have often found little or no evidence for a specific inhibitory 

control deficit (Rommelse et al., 2007; Van De Voorde et al., 2010). In addition, studies 

of event-related brain potentials on inhibitory control tasks are consistent with the idea 



CHAPTER 4 

 

 

68 

that poor performance of ADHD children on those tasks are due to early response 

preparatory rather than later inhibitory components (Banaschewski et al., 2004). 

What kind of information processing deficit might be responsible for the 

increased error rates observed when ADHD children perform these laboratory tasks if 

not a deficit in higher order executive control? One possibility is that individuals with 

ADHD are less efficient in the general accumulation of information needed to make 

response decisions on laboratory tasks and that such deficits occur, by and large, 

irrespective of task demands (i.e., they have reduced information processing efficiency). 

A second possibility is that although as efficient as controls they are less willing, or able, 

to spend time in the information gathering phase before responding – they trade 

response speed for accuracy. This could be described as an impulsive rather than an 

inefficient information processing style. On the face of it, despite impulsivity being a 

core component of the ADHD clinical phenotype, and evidence of impulsive choice on 

laboratory tasks (Marco et al., 2009; Sonuga-Barke, 1994), existing evidence from RT 

tasks is against this second account as a general explanation of ADHD task performance 

deficits. This is because individuals with ADHD tend to be slow-inaccurate, rather than 

fast-inaccurate responders on fast-paced laboratory information processing tasks (van 

der Meere, Stemerdink, & Gunning, 1995; Van der Meere, Marzocchi, & De Meo, 2005; 

see van der Meere, 2002 for a review). Furthermore, Sergeant and Scholten (1985) 

found no evidence that ADHD children’s fast responses could explain their decreased 

levels of accuracy – there was no evidence of speed accuracy trade-off (SATO). 

Analyses to date however, have largely been constrained by the use of traditional 

models which deal with errors and RT separately and cannot disentangle general 

estimates of processing efficiency (speed of information take-up) and the impulsive 

information processing style associated with SATO from each other and from non-

decisional components such as stimulus encoding and motor organization. The Ratcliff 

Diffusion Model (RDM), an empirically validated model of cognitive processes involved 

in two choice decisions (Ratcliff, 1978; Rattcliff & McKoon, 2008; Voss, Rothermund, & 

Voss, 2004), offers an alternative to classical RT and error analysis, by providing separate 

estimates of different components of information processing on the basis of a combined 

analysis of RTs and errors. It has the potential to allow inferences about the processes 

implicated in ADHD and in particular allows us to disentangle the role of processing 

inefficiency and impulsive processing style in ADHD deficits. Crucially, this can be 
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achieved under single experimental conditions without the need to manipulate tasks 

parameters or instructions. The RDM assumes that RT is made up of separate decisional 

and non-decisional components. The non-decisional component (Ter) represents the 

extra-decisional processes such as encoding and motor execution. It has a standard 

deviation (st) representing the variability of this parameter. The decision time is the time 

interval for the noisy information accumulation process (drift), beginning from the 

starting point (z), to reach the upper or lower boundary. The steepness of the drift (drift 

rate-v) represents the rate of accumulation of information (i.e., processing efficiency) 

and shows the quality of the stimulus or the efficiency of information processing. The 

drift rate and the starting point also have standard deviations (sv and sz). The boundary 

(a) represents the threshold of accumulated information for a response to be committed 

reflecting the SATO or the degree of impulsive information processing style. The higher 

this boundary is set, the longer it will take for the drift vector to hit the upper boundary 

but the responses will be more accurate. A graphic representation of the RDM 

parameters can be found in Figure 1. RDM has been widely used in experimental 

psychology to explore the effects of various factors on task performance such as age 

(Rattcliff, Thapar, & McKoon, 2004), practice (Dutilh, Vandekerckhove, Tuerlinckx, & 

Wagenmakers, 2009), task interference (Boywitt & Rummel, 2012), and sleep 

deprivation (Rattcliff & van Dongen, 2009). It has also demonstrated a beneficial role in 

understanding clinical disorders (White, Ratcliff, Vasey, & McKoon, 2010).  

The RDM was first used to examine ADHD information processing by Mulder et 

al. (2010). The researchers compared the ability of individuals with ADHD to adjust SATO 

(i.e., the boundary parameter) by testing them under two different instructional 

conditions in which either speed or accuracy was emphasized. They used a perceptual 

decision making task in which they equated the drift rate across participants by 

adjusting the stimulus difficulty for each subject in order to isolate case-control 

differences in the boundary parameter. They did not find a group difference in boundary 

parameter (or drift rate) per se, but they did find that children with ADHD, compared to 

controls, were less able to adjust their boundary condition to the instructional demands 

– they had higher boundaries when speed was emphasized but lower boundaries when 

accuracy was emphasized. Their conclusion was that basic cognitive processes such as 

perceptual decision making are affected by problems with optimization of SATO which 
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they argue contradicts accounts in which ADHD is seen as the result of higher order 

processing deficits. 

 

Figure 1. Graphical representation of the diffusion model parameters and reaction time 

distributions for correct (R=1) and error (R=0) responses. v=Mean drift rate. Ter=Non-

decision time. a=Boundary between two responses. z=starting point of the diffusion 

process 

In the current study, the RDM was employed for a different purpose. In contrast 

to the design of the Mulder et al. study (2010), the drift rate and the boundary were 

both allowed to vary between groups so that we could test the relative contribution of 

deficits in general information processing efficiency (impaired accumulation of 

information) and impulsive information processing style (indicated by a lower boundary 

parameter). To examine whether the degree of executive control load affects the 

differences between groups on these parameters, we used both a simple two choice RT 

task (2-CRT), which requires minimal executive control, and a conflict control task (CCT), 

which required considerable levels of inhibitory control. We predicted that ADHD 

children will differ from controls primarily in terms of information processing efficiency 

(i.e., a lower drift rate). Furthermore, we predicted that these general information 
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processing effects would occur irrespective of task specific executive requirements. On 

the basis of the Mulder et al. study (2010) and the early studies using traditional 

analytical approaches, we did not predict that the boundary would differ significantly 

between the groups (i.e., ADHD would not show a more impulsive information 

processing style). 

METHOD 

Participants 

Seventy children and adolescents with a diagnosis of combined type ADHD and 

50 non-clinical controls from the Southampton arm of International Multi-centre ADHD 

Genetics (IMAGE) study took part in this study. Inclusion criteria were an estimated full 

IQ of at least 70, age range between 6 and 17 years, and no apparent other major 

mental health problems, such as autism, epilepsy, brain disorders, or known genetic 

disorders, such as Down’s or Fragile X syndrome. The ADHD group consisted of 60 boys 

and 10 girls (mean age=12.1 years, SD=2.3), and the control group 33 boys and 17 girls 

(mean age=12.2 years, SD=2.3). The age difference between groups was not significant 

(t(118)=.12, p=.9). The ADHD group had a significantly lower IQ than the control group 

(t(118)=2.97, p=.004). The data analyzed here have already been published in a study 

exploring the effects of ADHD on inhibitory control (Bitsakou, Psychogiou, Thompson, & 

Sonuga-Barke, 2008). Results showed that children with ADHD made more errors of 

commission than controls and these effects were independent of IQ and basic 

processing speed. 

Diagnostic criteria 

The full assessment battery for the IMAGE study included a wide range of 

measures; Conners parent and teacher rating scales (Conners, 1996), Social 

Communication Questionnaire (SCQ; Berument et al., 1999), parent and teacher 

versions of the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997) and 

Parental Account of Childhood Symptoms (PACS; Taylor, Sandberg, Thorley, & Giles, 

1991). PACS is a semi-structured clinical interview developed to provide an objective 
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measure of behavior. A trained interviewer administered the PACS with parents, who 

were asked for detailed descriptions of the child’s typical behavior in a range of specified 

situations. Inter-rater reliability was high with product-moment correlations for pairs of 

interviewers ranging from .79 to .96 (Brookes et al., 2006). The hyperactivity subscale 

was made up of attention span, restlessness, fidgetiness, and activity level, with other 

subscales covering defiant, emotional and other comorbid disorders including 

oppositional defiant disorder (ODD) and autistic spectrum disorder (ASD). A 

standardized algorithm was applied to the PACS to derive each of the 18 DSM-IV ADHD 

items. These were combined with items that were scored 2 (pretty much true) or 3 (very 

much true) in the teacher-rated Conners’ ADHD subscales to generate the total number 

of hyperactive-impulsive and inattentive symptoms of the DSM-IV symptom list. Normal 

control children were included in the study if they scored below the clinical cut-off of 5 

on the hyperactivity-impulsivity subscale of the SDQ, rated both by parents and 

teachers. Moreover, none of the normal control children had any diagnosed mental 

disorder according to parental reports.  

Tasks  

2-Choice Reaction Time Task (2-CRT):  This task was selected because it requires only a 

simple perceptual decision based on the direction indicated by arrows on the computer 

screen and therefore involves little executive or inhibitory control (Hogan et al., 2005; 

Bitsakou et al., 2008). Green arrows either pointing to the left or to the right were 

presented on a computer screen. Participants had to press the mouse buttons indicating 

the direction of the arrow. 100 stimuli were presented, half requiring left and half 

requiring a right button press. The inter-stimulus interval was 1500 msec and the 

stimulus duration was 100 msec. Both speed and accuracy were equally emphasized in 

the instructions. 

Conflict Control Task (CCT): This task is also referred to as a modified Stroop task (Hogan 

et al., 2005; Bitsakou et al., 2008) because it requires participants to occasionally 

suppress a dominant tendency to respond in the direction indicated and to respond in 

the opposite direction, with these conflict trials being indicated by a change in the 

arrows color. Performance on this task is correlated with standard tasks of inhibitory 
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control such as the Stop Signal Paradigm (Bitsakou et al., 2008). In the congruent trials 

the same green arrows as in the 2-CRT were presented and participants had to press the 

button indicating the direction of the arrow. In the incongruent trials, red arrows were 

presented and the participants were asked to respond in the opposite direction of these 

arrows. In total, 100 trials were presented, of which 25% were incongruent. The 

presentation timings were the same as for the 2-CRT. Both speed and accuracy were 

equally emphasized in the instructions.  

Procedure 

Children with ADHD were off-medication for at least 48 hours before testing. The 

testing also included a Go/No-Go task and a Stop Signal Task, the results of which are 

reported in the original study (Bitsakou et al., 2008). During the children’s 

neuropsychological testing, the PACS was administered to the parents. No PACS 

interview was taken from the healthy control children. Full testing took between 120 

and 150 minutes and children were allowed to have small breaks during the testing 

period. The experimenter remained with each child throughout the task. At the end of 

the session all children received a £5 voucher for their participation. The study had 

approval from the local NHS ethics committee and written informed consent was 

obtained from the participants and the parents. 

Analysis 

Fast-dm software (Voss & Voss, 2007) was used to estimate the parameters of 

the RDM and evaluate goodness-of-fit. The program uses Partial Differential Equation 

(PDE) method to estimate model parameters and Kolmogorov-Smirnov (KS) statistics to 

evaluate model fit. Because there was only one condition in the 2-CRT task this analysis 

was straightforward. As the CCT consisted of two conditions (congruent and 

incongruent) we allowed drift rate and non-decision time to vary between conditions 

because of increased stimulus complexity and motor conflict in the incongruent 

condition compared to the congruent condition. The other parameters of the RDM, 

including boundary, were kept constant between conditions. The upper threshold in the 

model represented the correct responses and the lower threshold, incorrect responses. 
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When the data is coded this way, the participants can not have a response bias towards 

one of the boundaries (i.e., upper correct vs. lower incorrect). Therefore, we fixed the 

bias parameter (i.e., the starting point for the diffusion process) to a value half-way 

between the upper and lower boundary thresholds (z=0.5) (see also Mulder et al., 2010; 

supplementary material). Fixing the parameter in this way is also useful for preventing 

errors in bias estimates which could result from low number of error trials (i.e., <10) in 

some datasets (A. Voss, personal communication, June 8, 2012). To eliminate the 

anticipated button presses we excluded responses faster than 100msec. No upper cutoff 

was applied to exclude slow responses as the inter-stimulus interval was 1500 msec and 

any response slower than this was not possible. The second reason for not excluding 

slow responses at a stricter threshold than 1500msec is that this can potentially 

eliminate slow responses that are commonly observed and of interest in ADHD (Geurts 

et al., 2008). The participants with >10% outliers were eliminated. 

RESULTS 

Statistical analysis of the data was completed using SPSS (version 19.0) statistical 

software. Seven participants were eliminated from the analysis due to a high percentage 

of outliers.  

Accuracy and RT analysis (Table 1) 

Table 1 presents the mean RT (MRT) and accuracy data. One-way ANOVA with 

group (ADHD vs. control) as a between-subject factor was used to explore group 

differences in RT, accuracy and model parameters on the 2-CRT task. The ADHD group 

was significantly less accurate than the control group (F(1,111)=19.82, p<.001, d=.85). 

There was no difference in MRT between groups (F(1,111)=.22, p=.88, d=.09). The CCT 

data was analyzed using a repeated measures ANOVA with group as a between-subject 

and executive load (congruent vs. incongruent) as a within-subject factor. In this task, 

responses were slower in the incongruent condition than the congruent condition 

(F(1,110)=255.19, p<.001). There was no group difference for MRT (F(1,110)=.53, p=.47, 

d=.14). The group by congruency interaction was not significant (F(1,110)=1.9, p=.17). 

More errors were made in the incongruent compared to the congruent condition 
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(F1,110)=145.03, p<.001) and the ADHD group was less accurate in both the congruent 

and incongruent conditions (F(1,110)=31.86, p<.001, d=1.08). The group by congruency 

interaction for accuracy was not significant (F(1,110)=2.3, p=.13). 

Table 1. Task performance for ADHD and control groups in the 2-CRT task and the CCT. 

Measure ADHD 

Mean (SD)   

Control 

Mean (SD) 

2-CRT (n=65) 
 

(n=48) 
 

Error percent (%) 26 (13) 15 (12) 

MRT (msec) 

 

377 (68) 375 (78) 

CCT (n=64) (n=48) 

Error percent  

  Cong. Trial (%) 

  Incong. Trial (%) 

 

21 (10) 

37 (16) 

 

10 (8) 

23 (17) 

   

MRT Cong. (msec) 

MRT Incong.(msec) 

476 (105) 

582 (117) 

482 (105) 

607 (147) 

Note. 2-CRT= Two choice reaction time task. CCT= Conflict Control Task. 

ADHD=Attention-Deficit/Hyperactivity Disorder. MRT=Mean Reaction Time. 

Cong.=Congruent. Incong.=Incongruent. 
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Table 2. Estimated model parameters for each group in the 2-CRT task and the CCT. 

Measure ADHD       

  Mean (SD) 

Control  

Mean (SD) 

2-CRT (n=65) (n=48) 
 

a           0.92 (0.2)       0.89 (0.25) 

v           1.96 (1.21)       3.28 (1.56) 

Ter 

 

          0.2 (0.06)       0.25 (0.07) 

CCT            (n=64)         (n=48) 

a           1.06 (0.2)       1.05 (0.22) 

v 

  Congruent 

  Incongruent 

     

           1.74 (0.77)     

           1.09 (1.06) 

 

 

      2.77 (1.1) 

      2.28 (1.54) 

Ter 

  Congruent 

  Incongruent 

       

           0.25 (0.09) 

           0.32 (0.13) 

 

        0.31 (0.07)    

        0.42 (0.11) 

Note. 2-CRT= Two choice reaction time task. CCT= Conflict Control Task. 

ADHD=Attention-Deficit/Hyperactivity Disorder. v= Drift rate. Ter=Non-decision time. 

a=Boundary.  

Diffusion Model Analysis 

Parameter estimates for ADHD and control group derived from RDM analyses are 

presented in Table 2 for 2-CRT task and CCT. The KS statistic did not indicate misfit for 
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any participant’s data. This confirms that assumptions made for the different conditions 

within the task described the RT distributions well. 

2-CRT 

  On the 2-CRT, the parameter estimates of drift rate (F(1,111)=25.79, p<.001, 

d=.97) and non-decision time (F(1,111)=20.53, p<.001, d=.86) were lower for individuals 

with ADHD than controls (Table 2). There was no difference between groups for 

boundary parameter (F(1,111)=.57, p=.45, d=.14).  

CCT 

As with the 2-CRT, children with ADHD had a lower drift rate than controls 

(F(1,110)=33.82, p<.001, d=1.11). There was also a main effect of condition with higher 

drift rate on congruent trials (F(1,110)=34.03, p<.001). The interaction between group 

and condition was not significant (F(1,110)=.72, p=.4). To see the contribution of task 

type on group differences, the 2-CRT and CCT tasks were also analyzed together with a 

2x3 ANOVA with group as a between subject factor and condition (2-CRT, CCT-congruent 

and CCT-incongruent) as a within subject factor (Greenhouse-Geisser correction was 

used for violation of the sphericity assumption). This analysis also produced similar 

results. The drift rates decreased substantially in the CCT compared to the 2-CRT task 

(F(1.86, 204.2)=34.81, p<.001; 2-CRT> CCT-congruent > CCT-incongruent).  However, the 

highly significant group difference (F(1,110)=38.27, p<.001) was not affected by task or 

condition, which is indicated by a non-significant interaction between group and 

condition (F(1.86, 204.2)=.75, p=.46). For non-decision time, there was a significant 

effect of group (F(1,110)=17.98, p<.001, d=.81) with children with ADHD having smaller 

non-decision time than controls. For both groups, non-decision time was greater in the 

incongruent compared to the congruent condition (F(1,110)=165.64, p<.001). A 

significant interaction effect demonstrated that this shift was less marked in the ADHD 

than control individuals (F(1,110)=11.04, p=.001).  The follow-up tests showed that the 

groups already differed in the congruent condition (F(1,110)=13.93, p<.001, d=.71) but 

this difference became more prominent in the incongruent condition (F(1,110)=18.58, 

p<.001, d=.82). The groups did not differ in boundary parameter (F(1,110)=.04, p=.84, 

d=.04). 
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We also tested correlations between the RDM parameter estimates across the 

two tasks in order to examine the extent to which the parameters tapped similar 

components in the executive and non-executive tasks. There were strong and significant 

correlations between the RDM parameter estimates for the two tasks. For boundary the 

correlation between 2-CRT and CCT was .4 (df=110, p<.001). The coefficients were .58 

and .60 for correlations between the drift rate in the 2-CRT and the drift rates in the 

congruent and incongruent conditions of the CCT respectively (df=110, p<.001). For non-

decision time they were .57 and .58 (df=110, p<.001).  The differences between the 

correlation coefficients calculated by Fischer’s z test were not significant when these 

were computed separately for the two groups. The correlations for the boundary were 

0.34 for the ADHD group and 0.47 for the control group.  The drift rate correlations were 

.52 and .56 for the ADHD group. The same correlations were .44 and .49 for the control 

group. The non-decision time correlations were .45 and .41 for the ADHD group and .61 

and .65 for the control group.  

DISCUSSION 

The aim of the current study was to explore the basis of performance deficits in 

ADHD on two tasks: one simple RT task with low levels of executive demands (2-CRT) 

and one more demanding task with a high executive control load (CCT). There were two 

questions: First, ‘Do the ADHD-related deficits reflect information processing inefficiency 

or impulsive information processing?’ Second, ‘Does the relative contribution of these 

components of information processing to ADHD vary as a function of executive load?’ 

The Diffusion Model Analysis (DMA) did not provide evidence for an impulsive 

information processing in the participants with ADHD on both tasks – the groups had 

similar boundary parameter estimates – suggesting that ADHD participants were no 

more willing than controls to trade accuracy for speed than controls. This result is 

consistent with older studies that did not find an ADHD-related SATO difference 

(Sergeant & Scholten, 1985; van der Meere, Gunning, & Stemerdink, 1996) and also with 

the previous study using DMA (Mulder et al., 2010).  On the other hand, impulsivity is 

one of the main characteristic of ADHD and there is strong and consistent evidence 

suggesting that ADHD participants have an impulsive decision making style on tasks 
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requiring the processing of complex stimuli over longer periods of time such as the 

Matching Familiar Figures Task where participants have to select a target figure from a 

set of 5 foils (Sonuga-Barke et al., 1994) or on tasks where choice between small 

immediate and larger delayed rewards are available (Marco et al., 2009). On these tasks 

ADHD participants tend to either respond prematurely and make more incorrect 

decisions or choose the small reward. Reconciling these two set of contrasting results 

depends on understanding that such tasks engage very different cognitive processes 

from those employed in reaction time tasks such as the 2-CRT and CCT. These extended 

tasks, for instance, may provide delay averse responses, whereby ADHD individuals act 

to avoid extended periods of delay or secure rewards sooner rather than later. Such 

factors are unlikely to affect performance on RT tasks as the delays are typically already 

very short. It should also be noted that our findings do not mean that the individuals 

with ADHD were not more impulsive than the controls. On the contrary, it can only be 

concluded that increased impulsivity may not be the cause of ADHD-related 

performance deficits in all types of tasks. 

In contrast, we did find strong and consistent evidence for group differences in 

drift rate showing that ADHD individuals were less efficient in terms of information 

accumulation. The drift rate-related group differences were remarkably similar for both 

tasks – that is processing efficiency deficits appeared to play an equally important role in 

those tasks with little or no executive load and those that required a high degree of 

inhibitory control. Furthermore, the high correlations between drift rate estimates in the 

two tasks suggest that variation in performance on two tasks may be determined, in 

part, by common effects of basic processes determining efficient information uptake 

and processing.  

These findings suggesting information accumulation problems in both tasks are 

consistent with the idea that the non-executive deficits contribute to task performance 

in ADHD. Indeed, findings are consistent with previous research reporting an inaccurate 

response style in ADHD which was independent of the degree of executive load 

(Rommelse et al., 2007; Van De Voorde et al. , 2010). The implication of these findings 

for ADHD pathogenesis is that they suggest the contribution of general deficits in 

information accumulation processes which could disrupt performance both in executive 

and non-executive tasks. 
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We also found significant group differences for non-decision time. We made no 

specific predictions in relation to this parameter as its interpretation is not 

straightforward because it is thought to equate to a combination of processes including 

encoding and motor organization. Since this parameter encompasses all extra-decisional 

processes, it does not relate specifically to performance measured by accuracy. 

Therefore, even though the ADHD group had overall smaller estimates of non-decision 

time and less slowing of non-decision time in the incongruent condition, this was not 

reflected in a performance deficit or an adaptation problem. One possibility, based on 

previous research, is that this difference may be linked to deficits in motor preparation 

rather than stimulus encoding in ADHD (Sergeant & van der Meere, 1990a; Sergeant & 

van der Meere, 1990b). In these studies motor preparation was less efficient in ADHD 

and this has been shown to be particularly evident during tasks with slow event rates. 

This finding was supported by electrophysiological studies showing that other indices of 

response preparation such as lateralized readiness potential and contingent negative 

variation (Banaschewski et al., 2004; Bourassa et al., 1998; Steger, Imhof, Steinhause, & 

Brandeis, 2000) and heart rate deceleration were reduced in ADHD (Börger & van der 

Meere, 2000). However, for now, it is not clear whether the faster non-decision time 

represents a deficit in motor organization since the performance of the ADHD group is 

not negatively affected by the difference in this parameter. It should also be kept in 

mind that faster non-decision times could still be linked to processes other than motor 

preparation (e.g., encoding time), since non-decisional time is a non-specific component 

which includes all extra-decisional processes. More research is needed to explore the 

replicability and the neuropsychological basis of shorter non-decision time in ADHD. 

 This is the second study using the RDM with individuals with ADHD. Neither 

study found evidence for an impulsive information processing style in ADHD (i.e., no 

difference in boundary estimates overall). However the two studies had very different 

goals. The goal of the Mulder et al. study (2010) was to explore the extent to which 

individuals with ADHD were able to adjust their SATO style to conform to different types 

of instructions – they found they were not able to do so. In order to investigate this the 

drift rate was fixed (by adapting difficulty levels). This meant that the role of general 

processing efficiency could not be investigated. In contrast, our goal was to compare the 

separate contribution of drift rate and boundary to ADHD performance. Future research 

could combine these two approaches to elaborate more clearly the effect of stimulus 
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complexity and adaptation of information processing style in ADHD by using multiple 

speed-accuracy instructions and levels of stimulus difficulty to better disentangle the 

SATO effects from efficiency of information processing. 

 It is important to acknowledge that the current results do not rule out a role 

for executive deficits in ADHD – in fact the lower drift rate on the CCT could still, in 

principle, represent problems with executive functions since the drift rate could be 

linked to any process involved in producing evidence from the stimulus including higher-

order cognitive functions (Rattcliff & van Dongen, 2009). However, by comparing the 

contribution of drift rate on executive and non-executive tasks and therefore by showing 

a very similar contribution of these parameters in both tasks, the current results further 

challenge those accounts of ADHD that see the condition as solely the result of executive 

dysfunction. 

The strengths of the current study include the large and well characterized 

sample and the use of executive and non-executive tasks. There were however also a 

number of limitations. First, one might argue that the tasks contained only a moderate 

number of trials and the CCT particularly contained a small number of incongruent trials 

relative to congruent trials which could potentially reduce the reliability of the 

parameter estimation. We tried to overcome this by fixing the bias parameter which 

ensured that this parameter was not affected by the low number of error trials. 

Furthermore, it has been shown that the fast-dm program can make fast and accurate 

parameter estimations with far fewer trials than needed by other programs (Voss & 

Voss, 2007).  In addition, the consistency of the results across two tasks also indicates 

that the precision of the parameter estimation was high in the analysis of both tasks. 

Second, there may be some constraints in terms of model selection. Fast-dm does not 

enable comparison of the fit of different models. Therefore we made empirical 

assumptions for modeling the CCT. The fit of different models for a task with different 

complexity levels could be compared with other programs enabling model comparison 

(Vandekerckhove & Tuerlinckx, 2008).  Third, although we had a large sample of ADHD 

and typically developing children, the lack of a significant difference for the boundary 

parameter, which represents SATO, could still be due a type II error. For medium (d= .5) 

to large (d= .8) effect sizes the power of the study was very high (.75 to .99). However 

for a small sized effect (d=.2) the power was only .18. Therefore the non-significant 

results for the boundary parameter should be evaluated carefully and more studies are 



CHAPTER 4 

 

 

82 

needed to determine whether or not there is a difference between ADHD and typically 

developing children in terms of SATO. 

In more general terms the DMA has clear advantages over the conventional 

RT/accuracy analyses. In this study, for instance, the RT analysis revealed no difference 

between groups because the slower drift rate was offset by faster non-decision time in 

the ADHD group. The DMA, however, allowed us to disentangle these different 

components. Furthermore, it was not evident in the conventional analyses whether the 

lower accuracy was due to lower drift rate or altered boundary conditions but the DMA 

enabled us to distinguish the relative contributions of SATO and processing efficiency to 

the general inaccuracy in the ADHD group. The accuracy analysis already demonstrated 

that stimulus complexity did not affect the control and ADHD group differentially. The 

DMA confirms this finding by showing that the deficit in information accumulation rate 

is not affected by stimulus complexity or executive demands. 

In summary the current results show highly significant and consistent differences 

between groups in the efficiency of information processing in both a non-executive and 

an executive task while providing no evidence for the role of impulsive decision making 

in ADHD-related task performance deficits. These effects need to be replicated in 

different populations and to be explored in a broader range of tasks – especially in tasks 

that examine response to more complex stimuli and long term decision tasks as well as 

under different instructional conditions and with varying task parameters. Finally, our 

findings indicate that sophisticated models such as RDM could provide us with a more 

extensive understanding of the neuropsychological deficits in clinical disorders in terms 

of individual elements of information processing than would be possible with the 

classical accuracy and RT analyses. 
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EFFECTS OF EVENT RATE ON 
ADHD INFORMATION 
PROCESSING: THE ROLE OF 
MOTOR PREPARATION 

ABSTRACT 

Background: It has been shown that the individuals with ADHD are differentially 

sensitive to ER although the neuropsychological basis of these effects is not well 

understood. A recent Go/No-Go study was consistent with the state regulation deficit 

model which postulates that ER effects on performance were due to disrupted 

regulation of activation during motor preparation at ER extremes (very fast and very 

slow). Here we use a Diffusion Model (DM) analysis to test this motor activation 

hypothesis more fully. Methods: We tested 25 children with ADHD and 29 typically 

developing children with a simple Go/No-Go task with four different ERs (1, 2, 4, 8 sec). 

The task performance was analyzed using a DM which estimates separate parameters 

for information processing efficiency (i.e., drift rate), motor preparation/encoding (i.e., 

non-decision time) and speed-accuracy trade-off (i.e., boundary). Results: The ADHD 

group had lower processing efficiency (drift rate) and was more cautious (higher 

boundary) than controls. Slowing of ER, in general reduced processing efficiency. As 

predicted by the state regulation deficit model, the interaction between ADHD and ER 

was limited to non-decisional time reflecting over-activation in the fast ER, and under-

activation in the slow ER condition.  Conclusions: This data is consistent with recent DM 

analyses which suggest that ADHD individuals have deficits in basic information 

processing reflected in lower efficiency. In contrast, the finding that they were more 

cautious in their response style seems at odds with the notion of cognitive impulsiveness 

as a core element of ADHD information processing. There was no evidence that deficits 

in processing efficiency or increased caution in ADHD were linked to disturbed state 

regulation processes, however the non-decision time findings are consistent with the 

idea that children with ADHD have a problem with regulating motor activation at ER 

extremes. 
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INTRODUCTION 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent childhood disorder 

which often persists into adulthood. It is characterized by symptoms of inattention 

and/or hyperactivity-impulsivity which lead to substantial social and academic 

impairment (DSM-IV-TR, American Psychiatric Association, 2000). ADHD is associated 

with deficits in a range of cognitive processes such as response inhibition, planning, 

vigilance and working memory (see Sonuga-Barke, Sergeant, Nigg, & Willcutt, 2008; 

Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005 for reviews). There is also 

accumulating evidence that these deficits are influenced by context - performance of an 

individual may vary from setting to setting as a function of the motivational and 

energetic states that they engender (Sonuga-Barke, Wiersema, van der Meere, & 

Roeyers, 2010). For instance, performance on a wide range of cognitive tasks is affected 

in non-specific ways by the rate at which stimuli are presented (i.e., event rate (ER; 

Sergeant, 2005; van der Meere, 2002). 

The state regulation deficit (SRD) model proposes that these ER effects occur 

because children with ADHD have difficulty in properly regulating their energetical state 

when challenged to do so in sub-optimal settings or states – such as under extremely 

fast or slow ERs. This is postulated to be linked to activation processes and disrupted 

effort allocation, especially during the motor preparation states of information 

processing. It leads to the prediction that, relative to controls, ADHD children’s 

performance would deteriorate at ER extremes (very fast or very slow ERs; van der 

Meere, Börger, & Wiersema, 2010) because of over-activation at fast ERs and under-

activation at slow ERs. To date, several studies have provided robust evidence for the 

impact of ER on ADHD-related deficits in information processing tasks as predicted by 

the SRD model (Chee, Logan, Schachar, Lindsay, & Wachsmuth, 1989; Conte, 

Kinsbourne, Swanson, Zirk, & Samuels, 1986; Metin, Roeyers, Wiersema, van der Meere, 

& Sonuga-Barke, 2012; Scheres, Oosterlaan, & Sergeant, 2001; van der Meere, 

Stemerdink, & Gunning, 1995). A meta-analysis of Go/No-Go (GNG) studies comparing 

the ADHD-related deficits at slow and fast ERs showed that, consistent with the SRD 

model, ADHD individuals make more impulsive errors on tasks with fast ERs (over-
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activation) and have longer RTs (under-activation) on tasks with slow ERs (Metin et al., 

2012). Electrophysiological and fMRI studies have also confirmed that children with 

ADHD have a deficit in adjusting the allocation of effort according to suboptimal ER 

conditions (Wiersema, van der Meere, Antrop, & Roeyers, 2006; Wiersema, van der 

Meere, Roeyers, Van Coster, & Baeyens, 2006), problems with motor preparation at 

slow ERs (Börger and van der Meere, 2000) and show hypo-activation in fronto-striatal 

networks at slow ERs (Kooistra et al., 2010).  

In order to further test the predictions of the SRD model we recently examined 

reaction time (RT) variability in ADHD and control children across four ER levels on a 

Go/No-Go (GNG) task. We employed the ex-Gaussian model (Matzke & Wagenmaekers, 

2009) which differentiates a number of RT components (mu, sigma, tau). These 

components better describe the RT distribution and in particular its rightward skewed 

nature than the classical mean reaction time (RT) and variability measures. The mu and 

sigma parameters correspond to the mean and standard deviation (SD) of the normal 

component of the RT distribution (with sigma equating to Gaussian variability). The tau 

parameter represents the exponential component of the variability and is an estimate of 

the degree of skewness or the positive tail of the RT distribution (which can be equated 

to occasional long RTs). The key finding in this study was that in keeping with the SRD 

model children with ADHD had greater sigma at very fast and very slow ER conditions. 

Despite the consistency of the finding with the predictions of the SRD model it remains 

to be confirmed that these effects at ER extremes were in fact related to poor regulation 

of activation during the motor preparation phase of information processing after the 

decision to respond has been made. It is also possible that they were due to deficits 

during prior states of information processing (e.g., information extraction). 

In this paper we explore this question by using the Diffusion Model (DM) to 

reanalyze the data from the original ER study. DM is a validated model of decision 

making (Ratcliff, 1978; Rattcliff & McKoon, 2008; Voss, Rothermund, & Voss, 2004) and 

offers another alternative to the classical performance measures and ex-Gaussian 

analysis by providing separate estimates of different components of information 

processing on the basis of a combined analysis of RTs and errors. It has the potential to 

allow inferences about the processes implicated in ADHD performance and in particular 

allows us to disentangle the role of processing inefficiency (drift), impulsive processing 

style or speed accuracy trade off (boundary) and crucially for the current analysis, non-



CHAPTER 5 

 

 

90 

decisional processes such as motor response preparation in ADHD deficits. The DM 

assumes that RT is made up of separate decisional and non-decisional components. The 

non-decisional component (Ter) represents encoding and motor execution processes. 

The decision time is the time interval for the information accumulation process (drift), 

beginning from the starting point (z), to reach the boundary. The steepness of the drift 

(drift rate-v) represents the speed of accumulation of information (i.e., processing 

efficiency). The boundary (a) represents the threshold of accumulated information for a 

response to be committed reflecting the speed-accuracy trade-off (SATO) or the degree 

of impulsive information processing style. The higher this boundary is set, the longer it 

will take for the drift vector to hit the upper boundary but the responses will be more 

accurate.  

The DM has been used to examine ADHD information processing recently. 

Mulder et al. (2010) compared the ability of individuals with ADHD to adjust SATO (i.e., 

the boundary parameter) by testing them under two different instructional conditions in 

which either speed or accuracy was emphasized. They used a perceptual decision 

making task in which they equated the drift rate across participants by adjusting the 

stimulus difficulty for each subject in order to isolate case-control differences in the 

boundary parameter. They did not find a group difference in boundary parameter (or 

drift rate) per se, but they did find that children with ADHD, compared to controls, were 

less able to adjust their boundary condition to the instructional demands – they had 

higher boundaries when speed was emphasized but lower boundaries when accuracy 

was emphasized. Other studies have given a rather consistent picture. Three of them 

found that children with ADHD have lower information processing efficiency (lower drift 

rate) than typically developing children (Karalunas, Huang-Pollock, & Nigg, 2012; 

Karalunas & Huang-Pollock, 2013; Metin et al, 2013) and  two studies reported faster 

non-decision times (Karalunas & Huang-Pollock, 2013, Metin et al, 2013). The finding 

relating to non-decisional time might be difficult to interpret because the non-decision 

time encompasses both stimulus preprocessing (encoding) and post-decisional motor 

processes. However the previous studies reported that ADHD is associated with deficits 

at the motor preparatory level rather than at the encoding level (Sergeant, 2005; 

Sergeant & Scholten, 1985; Sergeant & van der Meere, 1990; van der Meere, van Baal, & 

Sergeant, 1989). In addition the electrophysiological studies also confirmed these motor 

preparatory deficits by showing that indices of response preparation such as lateralized 
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readiness potential and contingent negative variation (Banaschewski et al., 2004; 

Bourassa et al., 1998; Steger, Imhof, Steinhause, & Brandeis, 2000) and heart rate 

deceleration were reduced in ADHD (Börger & van der Meere, 2000). Therefore, when 

evaluated in the light of previous studies, shorter non-decision time is more likely to 

indicate a difficulty in adjusting motor preparation for the ADHD children. Contrary to 

what one might expect from the observation of impulsivity in ADHD, no study reported 

lower boundary for ADHD children.  

For this study, we make the following predictions. First, the ADHD children will 

have lower drift rates than the controls, but there will be no difference in boundary. 

Previous studies have indicated that the ER has its locus at the motor preparatory level 

(Sanders, 1983; Sergeant, 2005) and we therefore predicted that the ER manipulation 

will principally affect the non-decision time. In line with the SRD model we predict that 

ER will have a differential effect on ADHD outcomes in terms of non-decisional time 

reflecting problems with activation during the motor preparation stage of processing. 

More specifically we predict over-activation in the fast ER and under-activation in the 

slow ER for the ADHD group.  

METHODS AND MATERIALS 

The study was approved by the Ethics Committee of Ghent University, 

Faculty of Psychology and Educational Sciences. Written informed consent was 

taken from all parents and their children participating in the study. 

Participants 

25 children with ADHD and 29 controls between the ages of 8 to 12 years 

were tested. The ADHD and the control groups did not differ in age and gender 

composition. All children were screened for ADHD, oppositional defiant disorder 

(ODD) and conduct disorder (CD) with the parent version of the Disruptive 

Behavior Disorder Scale (DBD) (Pelham, Gnagy, Greenslade, & Milch, 1992). The 

demographic information and the symptom scores on the DBD scale can be found 

in Table 1. To exclude Autism Spectrum Disorder, the Social Communication Scale 

(SCQ) (Rutter, Bailey, & Lord, 2003) and the Social Responsiveness Scales (SRS) 

(Constantino & Gruber, 2005) were administered to both clinical and control 
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groups. However, none of the children were excluded due to clinical scores on 

these scales. 

Table 1. The characteristics of the ADHD and control group and the scores for 

comorbid symptoms. 

 ADHD (N = 25) Control (N = 29) 

Age in monthsa 122.4 (19.1) 123.8 (17.7) 

Male:Female 16:9 14:15 

TIQa 103.6 (13.5) 109.8 (11.2) 

HIab 14.78 (1.79) 10.69 (1.05) 

IAabc 14.76 (1.81) 10.5 (1.18) 

ODDabc 13.04 (1.95) 10.88 (1.14) 

CDabd 12.0 (2.02) 10.77 (0.99) 

 

Note: a Means and standard deviations (SD), b Measured by Disruptive Behavior 

Disorders Scale, c p < 0.0001, d p < 0.05, TIQ = total Intelligence Quotient, HI = 

Hyperactivity/Impulsivity, IA = Inattention, ODD = Oppositional Defiant Disorder, 

CD = Conduct Disorder. 

The children in the control group were recruited from local schools and 

scout camps. Children with ADHD were recruited from the community and a 

formal diagnosis by a clinician was required. The ADHD, ODD and CD diagnoses 

were ascertained by a DSM-IV oriented parent interview (disruptive behavior 

module of the Diagnostic Interview Schedule for Children, DISC-IV) (Shaffer, Fisher, 

Lucas, Dulcan, & Schwab-Stone, 2000) administered by an experienced clinical 

psychologist. 14 children were classified as ADHD-combined type, 8 children as 

inattentive type and 3 children as hyperactive-impulsive type. Eight children 
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received an ODD diagnosis and 3 others had a CD diagnosis. All children had a total 

IQ (TIQ) score above 75. TIQ was assessed by the short version of the Wechsler 

Intelligence Scale for Children – 3rd edition (WISC-III) (Grégoire, 2005). The 

children in the ADHD group had lower TIQ scores than the controls but this 

difference did not reach statistical significance (F(1,52) = 3.35, p = 0.07). The 

summary statistics for TIQ can be found in Table 1.  

Experimental Task 

All children completed a GNG task programmed using E-prime software 

(version 2). The stimuli were an upright triangle (Go stimulus) and an inverted 

triangle (No-Go stimulus). The stimuli were chosen based on a pilot study during 

which the performance of healthy controls on different tasks was compared across 

a range of levels of perceptual difficulty. The children were told to respond to 

every upright triangle and to withhold responding to every inverted triangle. Both 

speed and accuracy were equally emphasized in the instructions. The order of Go 

and No-Go stimuli was pseudo-randomized (a No-Go stimulus was always followed 

by a Go stimulus and maximum four Go stimuli were presented consecutively) 

with 72% Go and 28% No-Go stimuli. The duration of stimulus presentation was 

300 msec. The task was preceded by a 2 minutes practice session. This was 

followed by 4 blocks of trials presented in a random order; each block had a 

different inter-stimulus interval (ISIs of 1, 2, 4 and 8 sec). The children were 

allowed to have small breaks between the sessions. 

The duration of each condition was about 10 minutes in total. The 1 sec 

condition contained 560 stimuli, the 2 sec condition 280, the 4 sec condition 140 

and the 8 sec condition 70. All responses up to 1 sec from stimulus onset were 

recorded for the fastest condition. For the other conditions, the cutoff for 

recording was 2 sec.  

Procedure 

All children completed the GNG task before the IQ test. The children 

completed the computer testing in a quiet room together with an experimenter 

sitting outside of their sight. The diagnostic interview of the parents of children 

with ADHD took place in another room with an experienced clinical psychologist. 

Seventeen children with ADHD were on stimulant medication. They were asked to 
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discontinue their treatment at least 24 hours before the start of the experiment. 

All children received 15 euro compensation for their participation in the study. 

 

 

Analysis 

Fast-dm software (Voss & Voss, 2007) was used to estimate the parameters of 

the DM and evaluate goodness-of-fit. The program uses Partial Differential Equation 

(PDE) method to estimate model parameters and Kolmogorov-Smirnov (KS) statistics to 

evaluate model fit. The DM is a model for two choice RT tasks and it assumes two 

response boundaries. In a GNG task, although the decision process also involves two 

boundaries (Go and No-Go), the information is only available for the Go boundary. 

Therefore we adapted the model to fit the single boundary diffusion process: We 

assumed that for Go stimuli, a response is executed when the drift vector hits the upper 

Go boundary (see Figure 1). As the responses for the lower boundary are not available, 

we fixed the starting point to avoid any error due to incorrect bias estimation. Therefore 

our modified model retained all parameters of the Ratcliff Diffusion Model except for 

the starting point (z). This adaptation has been successfully used previously (Domenech 

& Dreher, 2010) to explore the neurobiological basis of decision making in a GNG task 

with functional neuroimaging. The authors also confirmed that the adapted model 

estimated the parameters of the original diffusion process reliably. As the task consisted 

of four conditions with different ERs, the drift rate, non-decision time and the boundary 

parameters were allowed to vary between conditions. To eliminate the anticipated 

button presses we excluded responses faster than 100msec. No upper cutoff was 

applied to exclude slow responses as the responses were recorded maximum up to 2 sec 

and this produced a natural upper cut-off.  

RESULTS 

Table 2 reports summary statistics and the results of statistical comparisons for 

all DM parameters as a function of group and ER. The analyses of conventional 

performance measures revealed that the ADHD group had slower RTs than controls and 

the group difference increased as ER slowed. Although the children with ADHD had 
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higher rates of omission and commission errors than controls, these differences did not 

reach significance. The ER effect on commission errors was not significant however the 

fastest and the slowest ERs produced greater percentage of omission errors for both 

groups.  

 

 

Figure 1. Graphical representation of the single-boundary diffusion model with 

parameters and reaction time distributions for Go trials. v=Mean drift rate. Ter=Non-

decision time. a=Boundary. 

Diffusion Model Analysis 

Parameter estimates for ADHD and control groups derived from DM analyses are 

presented in Table 2 as well as the results of statistical comparisons. The KS statistic 

indicated misfit for only two participants’ data confirming that the assumptions made 

for the different conditions within the task described the RT distributions well. These 

three participants were excluded from the statistical analysis.  

The children with ADHD had significantly lower drift rates than the controls. The 

drift rate decreased as the ER slowed however the groups were not differentially 

affected from ER (Figure 2). The boundary parameter was greater in the ADHD group 

(Figure 3). The fastest and the slowest ER conditions produced lower boundary indicated 

by a quadratic trend however there was no interaction between group and ER for 

boundary. For non-decision time, there was no group difference although ER had a very 
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strong effect - with the non-decision times increasing linearly as the ER slowed. The 

children with ADHD had shorter non-decision times at fast ERs and slower non-decision 

times at slow ERs (Figure 4) and the interaction between group and ER was significant 

with linear contrasts.  

Table 2. Means and Standard Deviations (SD) for the variables at each event rate 

condition. 

Variable                     Event Rate                     ANOVA ES 

 1 sec 2 sec 4 sec 8 sec Group ERb Group

x 

ER 

 

MRT 

(msec) 

    F(1,52) 

7.35* 

F(1,52) 

168.9** 

F(1,52) 

6.06* 

0.77 

   ADHD 438.7 

(86.2) 

521.0 

(111.3) 

619.3 

(169.6) 

715.5 

(205.7) 

    

   Control 395.9 

(76.5) 

456.9 

(96.1) 

521.0 

(125.8) 

585.5 

(119.9) 

    

EOC (%)     F(1,52) 

2.47 

F(1,52) 

3.11 

F(1,52) 

0.03 

0.42 

   ADHD 45.1 

(17.0) 

43.6 

(18.2) 

42.5 

(25.0) 

39.2 

(24.6) 

    

   Control 38.2 

(14.6) 

34.6 

(19.3) 

33.1 

(21.7) 

33.4 

(23.0) 

    

EOO (%)     F(1,52) 

3.77 

F(1,52) 

21.62** 

F(1,52) 

1.15 

0.53 

   ADHD 13.4 

(8.5) 

6.8  

(7.8) 

5.6 

(7.6) 

7.8 

(8.3) 

    

   Control 8.0 

(9.7) 

4.1  

(4.1) 

3.6 

(5.1) 

5.2 

(7.7) 
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Note: MRT = Mean Reaction Time, EOC = Errors of Commission, EOO = Errors of 

Omission, SDRT = Standard Deviation of Reaction Time, ER = Event Rate, ES=effect size is 

Cohen’s d for the Group effect, bER and interaction analyses have been performed with 

the use of linear contrasts, *p < 0.05, **p < 0.001. 

 

 

SDRT F(1,52) 

10.47* 

F(1,52) 

34.08** 

F(1,52) 

0.02 

0.92 

   ADHD 167.5 

(38.4) 

234.4 

(90.9) 

222.6 

(76.0) 

234.7 

(91.5) 

    

   Control 133.2 

(37.0) 

170.8 

(57.1) 

170.0 

(66.9) 

194.0 

(79.4) 

    

 

v (drift rate) 

    

F(1,50) 

8.82* 

 

F(1,50) 

46.27** 

 

F(1,50) 

0.007 

 

0.83 

   ADHD 3.43 

(0.72) 

3.25 

(0.66) 

3.1 

(0.73) 

2.56 

(0.77) 

    

   Control 4.04 

(0.96) 

3.7 

(0.75) 

3.56 

(0.83) 

3.14 

(0.85) 

    

a (boundary)    F(1,50) 

9.86* 

F(1,50) 

11.77* 

F(1,50) 

2.26 

0.87 

   ADHD 1.77 

(0.24) 

1.84 

(0.31) 

1.79 

(0.31) 

1.66 

(0.31) 

    

   Control 1.59 

(0.23) 

1.6 

(0.25) 

1.55 

(0.29) 

1.48 

(0.29) 

    

Ter (non-decision time)   F(1,50) 

0.12 

F(1,50) 

161.0** 

F(1,50) 

5.06* 

0.1 

   ADHD 0.17 

(0.05) 

0.19 

(0.06) 

0.30 

(0.11) 

0.41 

(0.14) 

    

   Control 0.18 

(0.06) 

0.22 

(0.06) 

0.30 

(0.08) 

0.35 

(0.11) 
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Figure 2. The effect of event rate on drift rate for each group. Error bars=Standard error 
of the mean. 

 

Figure 3. The effect of event rate boundary for each group. Error bars=Standard error of 
the mean. 
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Figure 4. The effect of event rate on non-decision time for each group. Error bars = 
Standard error of the mean. 

DISCUSSION 

In this study we explored the neuropsychological basis of ER effects on 

performance of children with and without ADHD using a DM adapted to the GNG task. 

Based on previous studies, we predicted that the ADHD group would have slower drift 

rates and we predicted no difference in boundary parameter.  In addition, we predicted 

that the ER would affect the non-decision time, which includes the motor preparation 

step, with the ADHD group being more sensitive to this effect. This is because the SRD 

model postulates that the ER affects the motor preparation level and the ADHD group 

has a regulatory deficit at this level with fast ER effects producing over-activation and 

the slow ERs producing under-activation.  

  As predicted, the ER manipulation exerted its greatest effect on non-decision 

time with increased non-decision times at slow ERs. In addition, although there was no 

group difference for non-decision time, there was a significant interaction between 

group and ER with the ADHD children having shorter non-decision times at fast and 

longer non-decision times at slow ERs. As mentioned before, the non-decision time 

comprises both encoding and motor preparation steps. Therefore the ER and the 

interaction effects may involve both of these steps. However, evidence from previous 

research suggests that the ER primarily affects the level of motor activation and there is 
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no evidence that encoding is affected by ER manipulation (Sanders, 1983; Sergeant, 

2005). Therefore our findings are more likely to indicate that children with ADHD have 

over-activation at fast ERs and under-activation at slow ERs. 

The speed of information processing was highest at fast ERs and decreased as ER 

slowed. This finding shows that the under-activation at slower ERs also affects the speed 

of information uptake. We also found that the children with ADHD had lower drift rates 

than controls. Together with the current study there have been a number of DM studies 

which consistently showed that the individuals with ADHD have a slow and sluggish 

information processing style (Karalunas et al., 2012; Karalunas & Huang-Pollock, 2013; 

Metin et al, 2013) but the group difference in drift rate was not affected by ER. On the 

other hand the group difference in drift rate was not affected by ER. This finding 

suggests that the slower information processing in ADHD may not be sensitive to ER 

manipulation. However other types of energetic manipulations such as reward or 

stimulant drugs might increase the speed of information processing and the effects of 

such factors on drift rate in ADHD are to be explored by future studies. 

For boundary, we observed that the fastest and slowest conditions (1 sec and 8 

sec ISI) produced the lowest boundary for both ADHD and control children. It is 

important to note that these conditions also produced the highest rates of omission 

errors. Therefore the lower boundary at fastest and slowest conditions may be the 

results of a compensatory strategy by which the participants aimed to alleviate higher 

rates of omissions. We also observed that the children with ADHD had greater boundary 

parameters than controls suggesting a problem with regulating the SATO. Increased 

cautiousness in ADHD appears counterintuitive because impulsivity is one of the main 

characteristics of ADHD and therefore one might predict that the boundary would be 

lower for the ADHD group reflecting an impulsive decision making style. However both 

our study and the previous studies which used DM (Karalunas et al., 2012; Karalunas & 

Huang-Pollock, 2013; Metin et al, 2013; Mulder et al., 2010) indicate that children with 

ADHD are in fact not more impulsive in speeded RT tasks but that they have a deficit in 

regulating the SATO according to the context (Mulder et al.,2010). 

While analyzing the same dataset with an ex-Gaussian model (Metin et al., 

submitted for publication), we found that mu increased as a function of ER. In the 

current study we found the same pattern for the non-decision time parameter of the 

DM suggesting that the mu parameter is related to non-decisional and probably the 
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motor execution part of the information processing framework. Using the ex-Gaussian 

model we also found an inverted U pattern for the sigma parameter which was 

accentuated for the ADHD group. This pattern was not observed in the current analysis 

for any DM parameter. This is probably due to the fact that the Gaussian variability, 

sigma, only weakly affects the DM parameters (Matzke & Wagenmakers, 2009). It is 

more likely that sigma is related to the effort pool (Metin et al., submitted). An increase 

in Sigma at very fast and very slow ERs might indicate that more effort is needed to 

regulate the level of arousal and activation with the ADHD group being less efficient in 

effort allocation and thus having greater sigma at these conditions. This hypothesis 

needs to be explored by more objective measures of effort such as event related 

potentials.   

Finally, it is also noteworthy that neither drift rate nor boundary differences were 

affected from ER. These negative findings indicate that individuals with ADHD show 

deficits at different information processing stages and not all these deficits are related 

to state regulation problems. Neuropsychologically, ADHD is a heterogeneous condition 

(Nigg, Willcutt, Doyle, & Sonuga-Barke, 2005) and a single model may not be sufficient 

to explain the whole spectrum of neuropsychological dysfunctions. Therefore the future 

theoretical model of ADHD should take into account the casual heterogeneity and 

presence of separate etiological pathways (Kuntsi et al., 2010). 
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EFFECTS OF ENVIRONMENTAL                  
STIMULATION ON IMPULSIVE 
CHOICE IN ADHD: A “PINK NOISE” 
STUDY 1 

ABSTRACT 

Background: The preference for sooner smaller over larger later rewards is a prominent 

manifestation of impulsivity in ADHD. According to the State Regulation Deficit (SRD) 

model, this impulsive choice is the result of impaired regulation of arousal level and can 

be alleviated by adding environmental stimulation to increase levels of arousal. Method: 

In order to test this prediction we studied the effects of adding background “pink noise” 

on impulsive choice using both a classical and new adjusting choice delay task in a 

sample of 25 children with ADHD and 28 controls. Results: Children with ADHD made 

more impulsive choices than controls. Adding noise did not reduce impulsive choice in 

ADHD. Conclusion: The findings add to the existing evidence on impulsive choice in 

ADHD but no evidence is found for the SRD model’s explanation of this behavioral style. 

Alternative explanations for impulsive choice in ADHD are discussed.  
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INTRODUCTION 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a lifespan disorder 

characterized by symptoms of inattention and/or hyperactivity-impulsivity (DSM-IV-TR, 

American Psychiatric Association, 2000). These symptoms can lead to substantial deficits 

in social and academic functioning. The State Regulation Deficit (SRD) model postulates 

that these symptoms and deficits occur because of problems with regulating energetic 

factors such as stimulus-related phasic alertness (arousal) and tonic readiness to 

respond (motor activation) in response to the changing requirements of environmental 

settings (Sergeant, 2005; van der Meere, 2002). The model is based upon the cognitive 

energetic framework of Sanders (1983) which incorporates concepts such as effort, 

arousal and activation into the basic information processing framework so that task 

performance is predicted to be influenced not only by cognitive capacity but also by 

environmentally-determined levels of arousal and activation and the extent to which 

variations in these energetic factors can be managed to ensure optimal performance.  

The SRD model has typically been invoked to explain the effect of manipulating 

contextual factors on information processing performance. For instance, there is a well – 

established effect of event rate (ER) on performance (Sergeant, 2005; van der Meere, 

2002). Several studies have shown that individuals with ADHD are more vulnerable to ER 

manipulations than their peers across a range of tasks involving different cognitive 

processes (Chee, Logan, Schachar, Lindsay, & Wachsmuth, 1989; Conte, Kinsbourne, 

Swanson, Zirk, & Samuels, 1986; Metin, Roeyers, Wiersema, van der Meere, & Sonuga-

Barke, 2012; Scheres, Oosterlaan, & Sergeant, 2001; van der Meere, Stemerdink, & 

Gunning, 1995; see van der Meere, 2002 and van der Meere, Börger, & Wiersema, 2010 

for reviews). According to the SRD model a fast ER is predicted to lead to over-activation 

and fast, impulsive responses; while slow responses and inattentive errors are predicted 

under slow ER because of under-activation (Metin et al., 2012). In one study non-optimal 

states were also induced by stimulant medication which normally improves performance 

under slow ERs but seemed to trigger more errors when combined with a fast ER (van 

der Meere, Shalev, Börger, & Wiersema, 2009). This finding has been interpreted as the 

result of the combination of two putative stimulating factors (fast ER and medication). 

The effect of external energetic factors on information processing performance 

in ADHD has been well studied. In contrast, there have been no studies of their effects 
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on performance on tasks requiring little or no information processing. For instance, 

children with ADHD prefer smaller sooner (SS) over larger later (LL) rewards more than 

typically developing children on simple choice tasks (Antrop et al., 2006; Bitsakou, 

Psychogiou, Thompson, & Sonuga-Barke, 2009; Kuntsi, Oosterlaan, & Stevenson, 2001; 

Marco et al., 2009; Sonuga-Barke, Taylor, Sembi, & Smith, 1992). Typically this has been 

explained as either the result of (i) an impulsive drive for immediate reward (IDIR; Marco 

et al., 2009); (ii) heightened discounting of delayed rewards (Demurie, Roeyers, Baeyens, 

& Sonuga-Barke, 2012); (iii) an aversion for delay (Sonuga-Barke, Sergeant, Nigg, & 

Willcutt, 2008) or (iv) a breakdown in inhibitory-based executive processes (Barkley, 

1997).  

Sonuga-Barke and colleagues recently extended the SRD model to explain 

impulsive choice in ADHD (Sonuga-Barke, Wiersema, van der Meere, & Roeyers, 2010). 

According to this extension of the SRD account, impulsive choice in ADHD results from 

impaired regulation of energetic state created during delay periods. As a consequence, 

children with ADHD are predicted to avoid low arousing or activating contexts (i.e., long 

delays) by seeking immediate stimulation or more frequent rewards in the environment 

(i.e., by choosing SS over LL; Sonuga-Barke et al., 2010). A key prediction of the SRD 

model is that if arousal or activation is experimentally increased during delay periods to 

more optimal or acceptable levels, impulsive choices should reduce – children with 

ADHD will then tend to choose relatively more LL over SS outcomes.  

In order to test this prediction we examined if adding extrinsic random 

environmental noise (in this case “pink noise”) during delay affects SS over LL preference 

in children with ADHD. There is good evidence that adding environmental stimulation in 

this way modifies arousal level. For instance, a high intensity noise level has been used 

successfully in several studies to improve attention capacity and selectivity (Baker & 

Holding, 1993; Davies & Jones, 1975; Hockey, 1970; Söderlund, Sikström, Loftesnes, & 

Sonuga-Barke, 2010; Söderlund, Sikström, & Smart, 2007; see Davies, 1968 and Sanders, 

1983 for reviews) and it has been shown that high intensity noise affects autonomic 

indices of arousal such as heart rate and skin conductance (Davies, 1968; Hanson, 

Schellekens, Veldman, & Mulder, 1993). Furthermore, these effects appear to follow an 

inverted-U shaped curve: Noise increases performance when the subject is in an under-

aroused state but addition of noise to an over-aroused state disturbs performance 

(Davies, 1968; Sanders, 1983). The beneficial effect of noise has also been confirmed in 
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children with ADHD. Söderlund and colleagues demonstrated that the memory 

performance of children with attention problems improved under noise conditions while 

the performance of controls got worse (Söderlund et al., 2007, 2010).  

Although no studies have examined the effects of adding random noise on ADHD 

children’s impulsive choice, one study has explored the effects of adding visual 

stimulation. In this study it was shown that presenting cartoons during delay 

differentially reduced impulsive choice in ADHD relative to typically developing controls 

(i.e., decreased preference for SS rewards in children with ADHD; Antrop et al., 2006). 

These results may be interpreted as a positive effect of environmental stimulation as 

predicted by the SRD model. They can also be explained by a decrease in the perception 

of the passage of time brought about by the “non-temporal” stimulation employed (i.e., 

watching absorbing cartoons will reduce the perception of the length of the delay 

period). Therefore, “pink noise”, which would appear to be neutral with regard to time 

perception (not absorbing or interesting), provides a specific test of the SRD predictions.  

In this study we measured impulsive choice by using two separate paradigms. 

First, we used a standard choice delay task (CDT) during which the children had to 

choose between SS and LL rewards (Sonuga-Barke et al., 1992). Second, in or to examine 

the generalization of the effects of ADHD and noise across tasks we supplemented the 

original measure with an adjusting choice delay task (A-CDT). In this task the delay for LL 

was adjusted on each trail, either up or down depending on the choices of the preceding 

trials, to find the point of delay indifference between SS and LL options. We predicted 

that children with ADHD would make more impulsive choices on both tasks (i.e., 

choosing SS more than LL relative to controls and have a lower point of delay 

indifference). In line with the SRD model, we predicted that adding “pink noise” would 

reduce impulsive choice in children with ADHD by increasing their preference for LL and 

increasing the point of delay indifference in the direction of that displayed by typically 

developing controls. 
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METHOD 

Ethics approval was received from the Ethical Committee of Ghent University, 

Faculty of Psychology and Educational Sciences. All children and parents gave written 

informed consent before participating in the study.  

Participants 

Twenty-five children with ADHD and 28 typically developing controls were 

recruited for the study. All children were between 8 and 12 years old and had a total IQ 

(TIQ) above 80. TIQ was assessed by the short form of the Wechsler Intelligence Scale 

for Children – 3rd edition (WISC-III; Grégoire, 2005). The groups did not differ in mean 

age (F(1,51) = .95, p = .33) and TIQ (F(1,51) = 1.1, p = .3). There were significantly more 

boys in the ADHD than the control group (χ2(1, N = 53) = 4.77, p = .03). Detailed 

information for TIQ, age and gender composition can be found in Table 1. The children 

did not have a history of hearing loss or a neuropsychiatric condition other than ADHD. 

The children in the control group were recruited from local schools and scout 

camps. All children were screened with the Disruptive Behaviour Scale (DBD; Pelham, 

Gnagy, Greenslade, & Milch, 1992) for ADHD, Oppositional Defiant Disorder (ODD) and 

Conduct Disorder (CD). To exclude Autistic Spectrum Disorders the Social 

Communication Scale (SCQ; Rutter, Bailey, & Lord, 2003) and Social Responsiveness 

Scale (SRS; Constantino & Gruber, 2005) were administered to both groups. The DBD 

scores for ODD and CD can be found in Table 1. Children with ADHD were recruited from 

the community and an official diagnosis by a clinician was required. The ADHD, ODD and 

CD diagnoses were ascertained by a DSM-IV oriented parent interview (behavior module 

of the Diagnostic Interview Schedule for Children, DISC-IV; Shaffer, Fischer, Lucas, 

Dulcan, & Schwab-Stone, 2000) administered by an experienced clinical psychologist. 

Seventeen children were classified as ADHD-combined type, 6 children as inattentive 

type and 2 children as hyperactive-impulsive type. In addition, 10 children received ODD 

diagnosis and one had CD diagnosis. The children using stimulant medications were 

instructed to discontinue their medication 24 hours before testing.  
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Table 1. The characteristics of the ADHD and control group and the scores for comorbid 

symptoms 

Measure Group 

ADHD (N = 25) Control (N = 28) 

Age in monthsa 122.1 (14.5) 126.2 (15.9) 

Male:Female 22:3 16:12 

TIQa 107.4 (10.7) 110.5 (11.3) 

ODDb 

   Mean and SD        

   Rangec 

 

12.7 (1.8) 

10-16 

 

10.7 (.98) 

10-13 

CDb 

    Mean and SD 

     Rangec     

 

11.7 (2.3) 

10-19 

 

11.1 (1.1) 

10-14 

Note: aMeans and standard deviations (SD), bMeasured by Disruptive Behavior Disorders 

Scale, cRange of standard scores, TIQ = total IQ, ODD = Oppositional Defiant Disorder, CD 

= Conduct Disorder. 

Procedure 

The children were tested in a quiet room. During testing an experimenter sat out 

of sight of the child. The CDT was always completed first and the A-CDT second. The 

children were told that they would only receive the money that they collected during 

the tasks and the maximum amount that they could earn in the experiment was 12 euro. 

However, regardless of the points earned during the tasks, all children received 15 euro. 

This was accomplished by using a computerized head or tails game after the 

experimental sessions which always ended with a win. Children were tested for IQ after 

the choice tasks. Meanwhile the parents of the children with ADHD were interviewed in 

another room.  
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Tasks 

Two different tasks measuring impulsive choice were programmed using E-prime 

software (version 2.0). In both tasks the children chose repeatedly between SS and LL 

rewards. At the start of each trial in both tasks the children saw two coins on the 

computer screen (5 cent and 10 cent). They were told that if they chose 5 cent, they 

would receive it immediately; but for the 10 cent reward they would have to wait for a 

while. The waiting time was displayed under the coins. The coins were displayed on the 

screen until the children made a response. Immediately after the response the delay 

period started during which a fixation cross was displayed. The duration of delay was 

always 2 sec for SS rewarded. The delay to the LL reward varied across task. At the end 

of each trial participants were shown the amount that they had earned on that trial (i.e., 

5 or 10 cent), the total amount of money earned up to that point and the number of 

remaining trials. This information remained on the screen until the children made a 

response. There was no post-reward delay period and each new trial followed 

immediately after the reward was delivered in the previous trial. In both tasks the noise 

and no-noise trials were blocked and blocks were randomized at the individual level for 

each participant. The participants were allowed to take a break between the two tasks. 

 

CDT: Children chose between fixed SS (5 cent after 2 sec) and LL (10 cent after 30 sec)  

options. The task consisted of a total of 40 trials (20 under noise and 20 without noise). 

The dependent variable was the percentage of LL choices.  

 

A-CDT: In this task the same 5 and 10 cent rewards were used for the SS and the LL 

option respectively. The delay for SS was always 2 sec (as in the CDT). Initially, the delay 

for LL was set to 9 sec and adjusted either up or down at the end of each trial as a 

function of the choice made in that trial. If the child chose SS the delay to LL was 

reduced, while if the child chose LL the delay to that reward was increased. The 

increases or decreases in delay were exponential based on the power of 1.3 but were 

rounded to an integer. The delay for LL decreased until 1.33 (2.86) and increased up to 

1.313 (39.4) sec. The task consisted of 80 trials. The dependent variable was the adjusted 

mean delay for a LL reward, reflecting the point of delay indifference between the SS 
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and LL option. The children completed two sessions of 20 trials under noise and two 

sessions of 20 trials in the neutral condition.  

“Pink Noise” 

 Standard whole ear headphones were used to deliver 80 dB “pink noise” during 

the noise sessions. This choice of noise level was made because the same level was 

previously shown to improve performance of children with ADHD (Söderlund et al., 

2007, 2010). “Pink noise” differs from true “white noise” in that the very high 

frequencies are trimmed to make it less aversive especially at higher intensity levels. The 

noise level was calibrated regularly throughout the study by using professional sound 

intensity meters implanted to an artificial head. 

Analysis  

The statistical analyses was conducted using SPSS statistical software (version 

19). The results were analyzed within a single 2 x 2 x 2 ANOVA with noise (“pink noise” 

versus no noise) and task (CDT vs. A-CDT) as within-subject factors and group (ADHD vs. 

control) as a between subject factor.  

                                                                                   RESULTS 

LL preference on the CDT and mean adjusting delay on the A-CDT were strongly 

correlated (r = .8 and r = .74 for noise and no-noise conditions respectively). The effect 

of TIQ and comorbid symptoms (ODD/CD) were explored using correlation analyses, 

however they were not correlated with performance on either task (r < .3 and p > .05 for 

all dependent variables). For the CDT, age correlated with LL preference in the no-noise 

session (r = .32, p = .02), however the correlation was not significant for the noise 

session (r = .22, p = .11). For the A-CDT, age correlated significantly with the mean 

adjusting delay in the noise session (r = .30, p = .02). The correlations for the no-noise 

session of this task was not significant (r = .22, p = .11). The inclusion of age as a 

covariate did not change the results of the analyses presented below. 

 

The summary statistics for task performance can be found in Table 2. The 

children with ADHD preferred the LL option less than controls (F(1,51)=8.33, p=.006; 
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effect size Cohen’s d = .79). There was no effect of noise on LL preference (F(1,51)=.09, 

p=.77) and the interaction between group and noise was not significant (F(1,51)=.07, 

p=.79).The interaction between group and task approached significance (F(1,51)=3.55, 

p=.07) with greater group difference at A-CDT task (the effects sizes were .72 vs .87 for 

CDT and A-CDT respectively). There was no interaction between noise and task 

(F(1,51)=.05, p=.82) and no three way interaction between noise, task and group 

(F(1,51)=.89, p=.35). 

Table 2. The performancea of the ADHD and control group on both tasks. 

Measure Condition 

Noise No-Noise 

CDT (% LL preference)   

       ADHD 44.2 (28.6) 43.2 (25.9) 

       Control 61.3 (29.9) 64 (30.8) 

A-CDT (Mean Adjusting Delayb)   

      ADHD 12.1 (9.9) 13.2 (9.5) 

      Control 22 (12.8) 21.4 (12.1) 

Note: aMeans and standard deviations (SD) for each dependent variable, bseconds, CDT = 

Choice Delay Task, A-CDT = Adjusting Choice Delay Task, LL= Large Later reward. 

DISCUSSION 

In this study, we used two different tasks to test the extension of the SRD model 

of ADHD performance proposed by Sonuga-Barke and colleagues (2010): the prediction 

that impulsive choice (preference for SS over LL) in ADHD would be reduced by 

increasing arousal during delay by adding “pink noise”. There were a number of findings 

of note.  

First, as seen in many previous studies children with ADHD chose SS over LL 

options more often than controls (Antrop et al., 2006; Bitsakou et al., 2009; Kuntsi et al., 

2001; Marco et al., 2009; Sonuga-Barke et al., 1992; see also Bidwell, Willcutt, Defries, & 

Pennington, 2007; Scheres et al., 2006; Sjöwall, Roth, Lindqvist, & Thorell, 2012; for 

negative results) with case control effect sizes similar to those reported in previous 
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reviews (Sonuga-Barke et al., 2008). This finding is consistent with a number of 

theoretical models. For instance, the Delay Aversion (DAv) model, as recently extended 

(Marco et al., 2009, Sonuga-Barke et al., 2010), postulates that inefficient neural 

signaling of delayed rewards in dopamine-modulated neural circuits leads to an 

impulsive drive for immediate rewards (IDIR), which over time creates negative affect in 

response to delay-rich settings (Sonuga-Barke et al., 2010). In choice settings, such as 

those presented in the current study, these two components (i.e., IDIR and delay 

aversion) produce impulsive choice of SS over LL options (Marco et al., 2009). Because a 

post-reward delay period was not included in our tasks the relative importance of delay 

aversion and IDIR could not be estimated. Interestingly, performance on the two tasks 

was correlated but the effect size in the A-CDT was higher than for the classical CDT. This 

suggests that the A-CDT will be a useful addition to neuropsychological batteries 

assessing reward related performance in ADHD.  

Second, there was no beneficial effect of adding “pink noise” in the ADHD group 

in terms of reducing impulsive choice or increasing preference for LL options. This 

suggests that while in principle the SRD model can explain SS over LL preference as an 

expression of seeking optimally/acceptably arousing settings (Sonuga-Barke et al., 2010), 

the current results are not consistent with such an account – adding “pink noise” which 

should increase arousal levels during delay did not reduce SS preferences. However, it 

should be noted that the cognitive energetic model (Sanders, 1983) and the SRD model 

(Sergeant, 2005; van der Meere, 2002) postulate that there are two main energetic 

factors which influence cognitive performance: (i) arousal, which is related to stimulus 

related alertness and (ii) activation, which is related to tonic motor readiness to 

respond. Hence, it cannot be excluded that SS preference in ADHD may be related to 

activation instead of arousal, which would imply that children with ADHD try to increase 

their motor activation to a desirable state by choosing the more frequent stimulus (i.e., 

SS reward). Future research should evaluate whether or not this is the case. 

Third, there are a number of additional implications of this negative result. 

Several studies have provided robust evidence for the impact of cognitive energetic 

factors on ADHD-related deficits in information processing tasks as predicted by the SRD 

model (Chee et al.,1989; Conte et al., 1986; Epstein et al., 2011; Kuntsi, Wood, van der 

Meere, & Asherson, 2009; Metin et al., 2012; Scheres et al., 2001; van der Meere, et al., 

1995, 2009). Findings from electrophysiological studies have also supported the SRD 
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model by showing that children with ADHD have a deficit in adjusting the allocated 

effort in suboptimal settings (Wiersema, van der Meere, Antrop, & Roeyers, 2006; 

Wiersema, van der Meere, Roeyers, Van Coster, & Baeyens, 2006). Furthermore it has 

been shown that “pink noise” itself improve information processing performance in 

ADHD (Söderlund et al., 2010). Given this, it may be the case that cognitive (i.e., tasks 

with a major information processing demand) and non-cognitive performance in ADHD 

(i.e., as in simple reward choice tasks used in the current study) are mediated by 

different neuropsychological systems – a view consistent with recent models 

highlighting the pathophysiological heterogeneity in ADHD (Kuntsi et al., 2010; Sonuga-

Barke et al., 2010). Arousal regulation mainly involves the noradrenergic system 

(Berridge & Waterhouse, 2003). The noradrenergic neurons originating from the locus 

coeruleus are distributed to the entire brain and their activation level determines the 

arousal state of the organism (Aston-Jones, Rajkowski, & Cohen, 1999). On the other 

hand, delay discounting is mainly associated with dopamine and serotonin systems 

(Cardinal, 2006; Gregorios-Pippas et al., 2009). The ventral striatum, which receives 

extensive dopaminergic input from the ventral tegmentum, is involved in coding delayed 

reward. Our findings suggest that these two systems may be independently involved in 

ADHD pathogenesis. In terms of its impact on reward related choice performance, 

extrinsic stimulation may need to be of a particular kind to have an effect. For instance, 

the DAv model, like the SRD model, predicts that environmental stimulation during delay 

periods should reduce impulsive choice. However, the DAv model specifies a different 

mechanism (i.e., environmental stimulation increases the perception of the passage of 

time and so reduces delay aversion) and makes a different prediction (i.e., only so called 

non-temporal stimulation that is interesting and engaging will reduce impulsive choice). 

This effect was seen in the study of Antrop and colleagues (2006) where presenting 

cartoons during delay normalized impulsive response style. 

The current study had many strengths but there were also some limitations. First, 

there was no direct physiological measure of arousal and so we could not confirm that 

“pink noise” had the predicted effects on arousal. However, previous studies have 

confirmed such arousing effect of noise by using both behavioral (Davies, 1968) and 

electrophysiological measures (Hanson et al., 1993). Second, only one level of “pink 

noise” was used and if there is an inverted-U shaped relationship between noise level 

and performance, as predicted by certain accounts (Söderlund, 2007), it is possible that 
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the noise level was not optimal in this context – either being too low to increase arousal 

or to high leading to over-arousal. Third, we did not include an alternative noise 

comparison condition which would allow a direct test of the importance of the non-

temporal component of environmental stimuli.  

In summary, our results confirm that children with ADHD make more impulsive 

choices than typically developing children. We did not find any beneficial effect of 

adding “pink noise” during delay as predicted by models which explain impulsive 

behavior in ADHD with impaired regulation of arousal. It is possible that impaired 

arousal regulation and delay aversion make independent contributions to the 

neuropsychological spectrum of ADHD.  
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GENERAL DISCUSSION 

ABSTRACT  

The aim of this doctoral dissertation was to compare two competing models (State 

Regulation Deficit and Delay Aversion) of Attention-Deficit/Hyperactivity Disorder 

(ADHD) based on their predictions for task performance and impulsive choice. In this 

final chapter we will give an integrated overview of the empirical chapters with 

recapitulating the goals of the dissertation. Then, we will discuss the implications of the 

results for the existing neuropsychological theories of ADHD and clinical practice. We 

will also describe the limitations of the studies and suggest objectives for future 

research. 
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              OVERVIEW OF THE CHAPTERS 

The main goal of this dissertation was to compare State Regulation Deficit (SRD) 

and Delay Aversion (DAv) models, both of which predict that the performance deficits of 

individuals with ADHD depend on the environmental and motivational context. The SRD 

model focuses on arousal, activation, and effort and it postulates that individuals with 

ADHD have a problem with regulating their arousal and activation levels via allocation of 

necessary effort required to compensate at sub-optimal settings. The sensitivity of 

children with ADHD to event rate (ER) manipulation, which affects the level of activation, 

has been accepted as the hallmark manifestation of the SRD model (for reviews see 

Sergeant, 2005; van der Meere, 2002). In contrast, the DAv model postulates that the 

primary deficit arises from the negative affective state induced by delay, which leads to 

a reduced tolerance for future rewards under some conditions. The increased 

preference of ADHD children for small sooner (SS) over large later (LL) rewards has been 

accepted as the hallmark manifestation of the DAv model (Sonuga-Barke, Wiersema, van 

der Meere, & Roeyers, 2010). In order to compare these two models we used the 

hallmark manifestations of the two models and explored whether these manifestations 

are related to one construct but not to the other – whether ER effects can be explained 

by DAv or whether impulsive choice can be explained by SRD.  

In Chapter 2, the SRD and DAv models were compared on their predictions for ER 

effects on Go/No-Go performance in a meta-analytic study. The SRD model predicted 

that the ADHD group would have performance deficits both at fast and slow ERs due to 

over and under-activation, respectively. On the other hand the DAv model predicted 

deficits only at slow ERs due to longer delay between stimuli. The results showed that 

the ADHD group made more commission errors at fast ERs and had slower reaction 

times (RTs) at slow ERs confirming the predictions of the SRD model. The effects at the 

fast event rate could not be explained by the DAv model. That being said, it is important 

to note that ER effects cannot explain all deficits in ADHD highlighting the complex 

pathophysiology of the disorder. For instance, although the magnitude of the case-

control effect size (ES) for the standard deviation of reaction time (SDRT) was large, the 

ESs were not affected by ER suggesting that SDRT was a non-specific marker of SR 

deficits. 
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In Chapter 3, we addressed two major limitations of the studies included in the 

meta-analysis by conducting our own experiment on ER and performance in ADHD. First, 

most of the studies included only two ERs and when they included three, the range of 

ERs did not cover very fast and very slow presentation rates. The second issue raised by 

the meta-analysed studies was related to the measure of reaction time variability. 

According to the SRD model, variability is a primary manifestation of energetic processes 

(Sanders, 1983). However we did not find an effect of ER on variability in the meta-

analysis. One possible explanation for this negative finding is that most of the previous 

studies reported a non-specific index of variability (SDRT) which cannot differentiate 

between the Gaussian variability and the variability caused by occasional slow responses 

– perhaps linked to attentional lapses. In this study we used a Go/No-Go task with four 

different ERs covering both very fast and very slow presentation rates. In addition we 

segregated the non-specific response time variability into Gaussian variability (sigma) 

and variability due to slow responses (tau). The SRD model predicted that the sigma 

would be greater for the ADHD group at ER extremes and the tau parameter, which 

represented the attentional lapses, would increase linearly with a greater increase for 

the ADHD group. The DAv model predicted that that the deficits would manifest only at 

slow ERs. The results partially confirmed the predictions of the SRD model, with the 

ADHD group having a greater sigma in the 1 sec and 8 sec conditions. However, against 

the predictions of the SRD model, the ER effect on tau was not significant. 

Important theories of ADHD postulate that executive dysfunction is the core 

deficit in ADHD (Barkley, 1997). However, these accounts were challenged by more 

recent studies that showed that executive dysfunction was neither necessary nor 

sufficient for ADHD (Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005). According to 

the SRD model, ADHD children have a problem with regulating the levels of activation 

and arousal. As these energetic resources affect the basic and executive tasks equally, 

the performance deficits in ADHD should be the same in tasks with and without 

executive demands. In Chapter 4, we aimed to explore the relative contribution of basic 

processing deficits to executive dysfunction. We compared the performance of children 

with ADHD in two types of tasks: a task that requires executive control and a basic 

perceptual decision making task. As impulsivity is one of the main characteristics of 

ADHD, one might expect a fast but inaccurate response style in neuropsychological tasks. 

However, previous studies showed that children with ADHD have a slow-inaccurate 
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response style (see van der Meere, 2002 for a review), suggesting problems with 

information uptake. To explore the contribution of impulsivity and speed of information 

processing to ADHD-related deficits, we disentangled the basic elements of cognitive 

processing with a diffusion model (DM) that can estimate separate parameters for 

different elements, such as speed-accuracy trade-off (boundary), accumulation of 

information (drift rate), motor preparation, and encoding (non-decision time). We found 

that regardless of the executive demand, ADHD information processing was 

characterized by slow processing speed (lower drift rate). We did not find a difference in 

decision boundary, suggesting that the children with ADHD were no more willing than 

controls to terminate decision processes prematurely. In addition, the ADHD group had 

shorter non-decision times in both tasks.  

The shorter non-decision time in ADHD suggests deficits at the encoding or 

motor preparation level. However older studies suggested that the children with ADHD 

have deficits at motor preparation level and the encoding is intact in ADHD (van der 

Meere, van Baal, & Sergeant, 1989). According to the SRD model, motor preparation 

deficit also makes the children with ADHD more sensitive to ER (Sergeant, 2005; van der 

Meere, 2002). The model predicts that fast and slow ERs produce over and under-

activation respectively. In Chapter 5, we re-analyzed the data presented in Chapter 3 

with a DM adapted to a Go/No-Go task to test this hypothesis. From the SRD model, we 

predicted that the ER would affect primarily the non-decision time, which includes the 

motor preparation process, and that the ADHD group would be more sensitive to ER 

effects on non-decision time due to deficits at the motor preparation level. The results 

indicated that the ER affected both the accumulation of information (drift rate), motor 

preparation (non-decision time) and speed-accuracy trade-off (SATO). Consistent with 

the predictions of the SRD model the ADHD group had shorter non-decision times at fast 

ERs and longer non-decision times at slow ERs. In addition, the ADHD children had 

slower drift rates and greater boundaries, but these group differences were not affected 

by ER. 

In Chapter 6, we tested to what extent poor regulation of arousal state can 

explain impulsive choice in ADHD. According to the revised SRD model proposed by 

Sonuga-Barke and colleagues (2010), impulsive choice in ADHD is the results of an 

attempt to optimize the energetic level. Children with ADHD choose the immediate 

rewards in an attempt to reach what is for them an optimally stimulating environment – 
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and they require more stimulation than controls. Therefore the model predicts that the 

pink noise which increases the level of arousal would alleviate the impulsive choice 

(Sanders, 1983; Sonuga-Barke et al., 2010). In contrast, the DAv model made no specific 

predictions for the noise effect as it did not alter the perception of delay. The results 

were consistent with the DAv model with noise having no effect on impulsive choice in 

both children with and without ADHD. The results were inconsistent with the SRD model. 

The pink noise, which increased the arousal state, did not affect impulsive choice.  

Is it deficient state regulation or delay aversion? 

A summary of the Chapters is presented in Table 1 together with the predictions 

of the models. The first two studies presented in Chapter 2 and 3 indicated that the ER 

effects can best be explained by the SRD model, which predicts an inverted U pattern of 

deficits with fast ERs producing over-activation and slow ERs producing under-activation. 

In Chapter 2, we observed that the performance corollary of over-activation at fast ERs 

was a greater percentage of commission errors and the under-activation at slow ERs 

produced slower RTs. Similarly in Chapter 3, an inverted U pattern of deficits was 

observed for the sigma parameter and this finding can be best explained by the SRD 

model rather than by the DAv model. In Chapter 4 and 5, we did not aim to compare the 

SRD and DAv models head to head, but rather tested specific predictions of the SRD 

model about the effects of executive demands and ER. Consistent with the SRD model, 

the DM analysis in Chapter 4 showed that ADHD information processing was 

characterized by slower information uptake, regardless of the executive demands. In 

addition, in both Chapter 4 and 5 we found deficits related to motor preparation 

confirming the SRD model predictions. In Chapter 6, we tried to explain a primary 

manifestation of DAv in ADHD (the increased SS reward preference) with deficits 

involving the other important energetic pool, namely the arousal. However, the results 

showed that modification of arousal level with noise did not affect the impulsive choice. 

These findings together indicate that SR and DAv models cannot explain the 

manifestations of each other, and therefore they describe independent deficits. The 

children with ADHD appear to be affected by both types of deficits. The SR deficits make 

them more sensitive to the environmental factors which affect primarily the behavioural 

activation while the DAv deficits produce impulsivity. 
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Table 1. The summary of the Chapters with the models’ predictions and findings. 

 

Study SRD prediction DAv prediction Finding 

Meta-analysis of ER 

effects (Chapter 2) 

Impulsive errors at 

fast ERs, slower RTs at 

slow ERs 

Deficits only at slow 

ERs 

In favour of SRD 

model, but ER cannot 

explain all deficits 

 

Effects of ER on RT 

variability (Chapter 3) 

Greater sigma at fast 

and slow ERs, greater 

tau at slow ERs 

Greater variability 

only at slow ERs 

Sigma findings in 

favour of SRD model, 

but no effect of ER on 

tau 

 

Contribution of basic 

processing deficits to 

executive dysfunction 

(Chapter 4) 

Slow and inefficient 

processing speed, no 

effect of executive 

load 

- Confirming the SRD 

model (Slower drifts 

in ADHD group), no 

effect of executive 

load to deficits 

 

Effects of ER on 

ADHD-related deficits 

(Chapter 5) 

ER affects motor 

preparation. ADHD 

group more sensitive 

to ER effects 

- Consistent with SRD 

predictions for motor 

preparation. Other 

type of deficits not 

affected by ER. 

 

Effects on Pink noise 

on impulsive choice 

(Chapter 6) 

Pink noise reduces 

impulsive decision 

making 

No effect of pink 

noise. 

In favour of DAv 

model 

 

ER=Event Rate, RT=Reaction Time 
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Implications of the findings for SRD and DAv theories 

The SRD model explains the ER effects in terms of deficits at the motor activation 

stage and effort allocation (Sergeant, 2005; van der Meere, 2002). Our results in Chapter 

5 support these predictions by showing that the differential effect of ER mainly relates 

to the extra-decisional (motor preparation) part of the information processing 

framework while the deficits involving the decisional components are largely not 

affected by ER manipulation. According to the model, the suboptimal conditions such as 

very fast and very slow ERs, cause deficits by producing over and under-activation 

respectively. Previous studies were not able to disentangle the decisional and extra-

decisional stages of the information processing. However newer methods such as DM 

enabled us to explore the individual contributions of different stages and to better 

localize the locus of SR deficits. A recently introduced model (Neuroenergetics Mass 

Action Model, NEMA) proposes that the ADHD-related deficits occur due to inadequate 

neuronal metabolic supplies (Killeen, Russell, & Sergeant, 2013). The model postulates 

that attention fluctuates between attentive and inattentive states and individuals with 

ADHD have insufficient neuronal energy to maintain the attentive state. Therefore, in 

the slow ERs, which further increase the probability of attentional lapses, the 

performance deficits become accentuated. From a Cognitive-Energetic perspective 

(Sanders, 1983), it is plausible that slow ERs produce more attentional lapses. However 

in Chapter 3, we did not find an effect of ER on tau, which was once proposed to be an 

index of attentional lapses (Leth-Steensen, Elbaz, & Douglas, 2000). We concluded that 

tau may not be a sensitive index of attentional lapses. According to the NEMA, both the 

probability of a lapse and time required to recover from a lapse are important 

determinants of performance deficits and the model estimates separate parameters for 

these constructs. These parameters may provide more sensitive measures for the effect 

of attention lapses and the cognitive-energetic models could further be developed by 

integrating the hypotheses related to motor preparation, cognitive effort and 

attentional lapses. 

According to a recent extension of the SRD model the greater SS preference in 

the ADHD group could be a secondary adaptation to SR deficits: The children with ADHD 

try to increase their energetic level to a desired stage by choosing the immediately 

available reward (Sonuga-Barke et al., 2010). Our results in Chapter 6 showed that this 
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may not be the case. The increased SS reward preference appears to be independent of 

arousal level. This increased SS preference has been explained by an aversion for delay 

(Sonuga-Barke et al., 2010), impulsive drive for the immediate reward (IDIR) (Marco et 

al., 2009), or steeper delay discounting curves (Demurie, Roeyers, Baeyens, & Sonuga-

Barke, 2010). According to the IDIR hypothesis, increased SS preference is the result of a 

primary impulsive drive for immediate reward. On the other hand, according to the DAv 

model the impulsive choice occurs not only due to IDIR but also due to a general 

aversion for the delay or a negative affect that develops over-time for delay-rich settings. 

The DAv model could be improved further by exploring the relative contributions of 

impulsive drive, delay discounting, and the general aversion for delay to impulsivity in 

ADHD.  

Another important implication of the findings for the DAv model could be about 

its predictions for the ER effects. Although we did not find evidence supporting these 

predictions, the experimental setting might also have affected the results. The DAv 

model makes an important distinction between choice and non-choice settings (Sonuga-

Barke et al., 2010). In choice settings, children with ADHD tend to choose the option 

with shortest delay. In non-choice settings, where delay is externally imposed, they 

show frustration and increased distractibility. In that sense, the Go/No-Go task that we 

used to test these predictions is actually a non-choice setting with different ER 

conditions having equal durations. Therefore the models’ prediction for the effect of 

delay length may hold true, especially for the choice settings where the participants 

could manipulate the task duration. 

Contribution of basic processing deficits to executive dysfunction in ADHD 

The study presented in Chapter 4 showed that information processing of children 

with ADHD is characterized by slow and inefficient information accumulation, and this 

inefficient processing style did not differ between executive and non-executive tasks. 

The children with ADHD had lower drift rates in both a simple choice reaction time task 

and a task that requires conflict control. This finding is consistent with the previous 

studies that reported that the children with ADHD are impaired even on tasks that 

require little or no higher-order processing (Rommelse et al., 2007; Van de Voorde, 

Roeyers, Verté, & Wiersema, 2010). Consequently, while the results do not completely 
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exclude the role of executive dysfunction in pathophysiology of ADHD, they are 

compatible with the SRD model which suggests that basic processing deficits involving 

arousal, activation or effort could explain a big proportion of executive function deficits 

in ADHD. In addition, we found no group difference for the boundary parameter which 

reflects the degree of cautiousness. This finding appears counterintuitive because 

impulsivity is one of the main characteristics of ADHD and one might predict an “acting 

without thinking” style based on greater impulsivity. The diffusion model (DM) studies 

conducted so far with children with ADHD also revealed similar results for the boundary 

parameter (Karalunas, Huang-Pollock, & Nigg, 2012; Karalunas & Huang-Pollock, 2013; 

Mulder et al., 2010). The DM analysis presented in Chapter 6 showed that individuals 

with ADHD had even greater boundary estimates, suggesting a more cautious decision 

making style. Taken together, these studies altogether suggest that impulsivity may not 

be a key determinant of ADHD performance in speeded reaction time tasks.  

The role of neuropsychological heterogeneity 

In addition to SR and DAv related deficits we also observed deficits that cannot 

be explained by both models. For instance, the results presented in Chapter 2 suggest 

that although both the effect sizes (ES) for commission errors and mean reaction time is 

affected from the ER, there are still residual deficits that cannot be corrected with 

energetic manipulation. Furthermore, the magnitude of the group difference for the 

SDRT was large, but there was no effect of ER on ESs. Similarly in Chapter 3, we observed 

that the ER affected the mu and the sigma parameters, but there was no effect of ER on 

tau. In Chapter 6, the results of the DM analysis showed that the children with ADHD 

were affected at a number of information processing steps and not all of these deficits 

were related to SR problems. These results altogether suggest that the neuropsychology 

of ADHD is complex and a single model or construct may not be sufficient to explain the 

whole spectrum of neuropsychological deficits. Our findings are therefore consistent 

with the models that suggest the presence of multiple pathways in ADHD (Kuntsi et al., 

2010; Sonuga-Barke, 2003). 

Besides this complexity in the neuropsychology of ADHD, there is also substantial 

variation among individuals with ADHD: An individual showing one type of deficit may 

not be showing another one (Dalen, Sonuga-Barke, Hall, & Remington, 2004; Kuntsi et 
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al., 2010; Solanto et al., 2001; see Sonuga-Barke, 2003; Sonuga-Barke et al., 2010 for 

reviews). For instance, it is estimated that only 35% to 50% of individuals with ADHD are 

impaired in response inhibition, which may also be the case for other types of deficits 

such as SRDs and DAv (Nigg, Willcutt, Doyle, & Sonuga-Barke, 2005). In this thesis, we 

also showed that individuals with ADHD are affected from multiple types of deficits and 

these deficits might vary among individuals. Our results therefore support the role of 

heterogeneity in ADHD. Future theoretical models of ADHD should acknowledge that 

individuals with ADHD are not homogeneous in terms of neuropsychological deficits. 

LIMITATIONS 

There are a number of limitations in this dissertation to note. First, in Chapter 3 

we showed that the ADHD group had higher Gaussian variability at very fast and very-

slow presentation rates. Although this is a very valuable finding, which confirms the 

predictions of the SRD model, the cognitive corollary of sigma is not certain. We 

analysed the data further with the DM (Chapter 6) but this inverted U pattern was not 

observed for any of the model parameters. We concluded that sigma might be related 

to effort allocation. However the DM does not have a separate parameter estimate for 

the cognitive effort. Therefore, the cognitive basis of sigma variability has not been 

determined. 

Second, our ADHD sample contained children from all three DSM-IV subtypes 

(combined, inattentive and hyperactive/impulsive) and also many participants had 

comorbid oppositional defiant disorder. It is possible that the subtypes and comorbid 

disorders affect SR and DAv profiles, creating mixed results for some performance 

measures. The neurocognitive profiles of different clinical subtypes could not be 

determined due to moderate sample sizes. In addition to the effect of clinical subtypes 

the neuropsychological heterogeneity could have affected the results. As stated above, 

there are multiple types of deficits involved in ADHD and it is possible that only a 

subgroup of individuals is affected by a certain type of deficit. For instance, the lack of 

ER effect on all performance measures might indicate a partial response in only a 

subgroup of individuals. The contribution of neuropsychological heterogeneity could 

also not be addressed in our studies. 
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Third, energetic factors encompass arousal, activation, and effort, and we could 

not evaluate the effect of all factors on ADHD performance in a single study. In Chapter 

6, we evaluated the effect of arousal on impulsive choice and we did not find an effect. 

However, arousal is not the only energetic factor. It is possible that the increased SS 

reward preference in ADHD might be exclusively due to motor activation, which is not 

affected by pink noise. Therefore, the findings in Chapter 6 may not be easily compared 

to those in Chapters 2 and 3 because the ER findings indicate that the regulation of 

activation stage is impaired in ADHD. Similarly, the deficits in information accumulation 

and SATO observed in Chapter 5 were not sensitive to ER manipulations. However, these 

deficits could be affected by other types of manipulations, such as reward which affects 

the effort pool, and noise, which affects arousal. These issues have not been addressed 

in our studies due to the single type of manipulation employed. 

Fourth, in Chapter 6, the effect of pink noise on impulsive decisions were tested. 

A methodological limitation of this study was that we could only use one noise level that 

was commonly used in previous studies (Söderlund, Sikstrom. Loftesnes, & Sonuga-

Barke, 2010; Söderlund, Sikstrom, & Smart, 2007). However, according to certain 

accounts, there might be an inverted U relationship between noise intensity and 

performance (Söderlund et al., 2007) and this hypothesis could not be tested in our 

study. It is possible that a different intensity level of noise could have produced different 

effects on behaviour. For future studies, we recommend using more than one intensity 

level.  

             METHODOLOGICAL IMPLICATIONS 

Traditionally, the neuropsychological deficits in ADHD have been evaluated with 

conventional performance measures, such as mean reaction time (MRT), error rate, and 

SDRT. However, the research presented in this dissertation showed that these measures 

are not sensitive enough to capture all aspects of neuropsychological deficits. For 

instance, in Chapter 2 we did not observe an effect of ER on SDRT. As indicated in 

previous reviews, the SDRT is a non-specific measure of central tendency and greater 

SDRT is also observed in other neuropsychological disorders (Tamm et al., 2012). 

Therefore we disentangled the non-specific variability into more specific components 
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using the ex-Gaussian model. This analysis (Chapter 3) showed that although the ADHD 

group has both greater Gaussian variability and extreme slow responses that increases 

the rightward skew of the reaction time distributions, the SR deficits were most obvious 

when Gaussian variability was analysed. Therefore, it can be concluded that the ex-

Gaussian model provides a more sensitive measure for ADHD-related 

neuropsychological deficits.  

The second methodological implication of the experiments is about the use of 

DM in ADHD research. The DM offers a clear advantage over the conventional 

performance measures by estimating separate parameters for different steps in 

information processing. In Chapters 5 and 6, two DM analyses were presented which 

showed that ADHD information processing is characterized by slower information 

accumulation (slower drifts) and problems with adjusting motor preparation. In addition, 

the findings from Chapter 6 showed that children with ADHD might have problems with 

adjusting the SATO. These findings would not be evident from the conventional MRT, 

error rate, and SDRT analyses. In summary, it can be concluded that both the ex-

Gaussian and diffusion models provide a more sensitive analysis of neuropsychological 

deficits than the conventional performance measures. 

Our results might also have important implications for future ER studies. Previous 

ER studies used generally two ERs, which did not allow for testing of linear and quadratic 

types of interactions. In Chapter 3, we used four ERs which made it possible to compare 

two different hypotheses for the effect of ER on performance. Furthermore, the results 

showed that the quadratic trend for the sigma variability would not be evident without 

1 sec and 8 sec conditions. For future studies, it is recommendable to include at least 

three ERs with 1 sec and 8 sec conditions to detect ADHD versus control differences, 

especially for the variability measures. 

CLINICAL IMPLICATIONS 

Our results have clearly indicated that the performance of individuals with ADHD 

depends on how the information is presented (i.e., event rate) and the changes involving 

the presentation rate could alleviate some, if not all, aspects of ADHD-related deficits. 

For instance, in Chapter 2 we showed that a fast presentation rate triggers inhibition 



GENERAL DISCUSSION 

 

135 

errors in children with ADHD and makes inhibition deficits more prominent. On the 

other hand a slow presentation rate produces a slow and sluggish response style in 

children with ADHD. Similarly in Chapter 3, the results indicated that a very fast and a 

very slow presentation rate triggered variable responses in children with ADHD, 

suggesting a problem with regulating behaviour at suboptimal conditions. These results 

might have important implications for the rehabilitation of individuals with ADHD and 

adjustment of classroom settings for optimal performance. It is apparent that both very 

fast and very slow presentation rates would cause performance deficits in individuals 

with ADHD. In addition, it is not known what an optimal presentation rate is and an 

optimal rate for one task may not be optimal for another. Nevertheless, the pace of 

teaching can be adjusted on an individual basis, which may require increased use of 

digital technologies which may optimize the speed of information delivery for each 

individual. Furthermore, the findings could also be used in the psychoeducational 

interventions for families. Providing detailed information about the context dependent 

nature of neuropsychological deficits and using strategies to manipulate these deficits 

could improve parenting skills.  

The findings might also have important implications for the neuropsychological 

testing of children with ADHD. Currently several neuropsychological tests are being used 

for evaluation of children with ADHD. However, these tests lack diagnostic sensitivity 

and specificity (Pineda et al., 2007). One possible explanation for this limitation is that 

these instruments primarily focus on executive functions and do not evaluate SR and 

DAv deficits. Integration of measures tapping these deficits to the batteries could 

increase their clinical utility. Another factor that limits the utility of these instruments 

could be the current diagnostic nosology that does not take into account the 

neuropsychological differences between children with ADHD. For instance, a subgroup 

of individuals with ADHD might have predominantly executive function deficits while 

another subgroup having predominantly SR deficits and these subgroups might differ in 

their clinical profiles (Nigg, et al., 2005). The existence of such subtypes has not been 

confirmed yet. However, further clinical might explore the existence of these 

neuropsychological subtypes.  
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FUTURE DIRECTIONS 

What brain networks are related to SRDs and DAv in ADHD?   

An important goal of future studies could be isolating the neurobiological 

correlates of SRD and DAv in ADHD. The DAv model suggests that the core deficit in 

ADHD is the impaired signalling of future rewards in dopaminergic reward pathways, 

which include ventral tegmental area (VTA), nucleus accumbens (NAcc) and 

orbitofrontal cortex (OFC). The frustration for the delays may be related to altered 

function in amygdale, which is involved in coding of the emotional aspects of the delay 

(Sonuga-Barke et al., 2010). Previous studies showed that the NAcc is hypoactivated for 

future rewards (Scheres, Milham, Knutson, & Castellanos, 2007) and increasing delays 

produce amygdala, orbitofrontal cortex, ventral striatum, and insula hyper-activations in 

ADHD children (Lemiere et al., 2012; Plichta et al., 2009). These studies indicate that two 

types of deficits involved in delay aversion: impaired reward signalling and altered 

emotional processing of delays. Future studies could try to identify the relative 

contribution of these two deficits to the pathophysiology of ADHD.  

The neurobiological basis of the SR deficits has been less extensively studied than 

DAv. Electrophysiological studies showed that children with ADHD have a deficit in 

allocating necessary effort in suboptimal settings (Wiersema, van der Meere, Antrop, & 

Roeyers, 2006; Wiersema, van der Meere, Roeyers, Van Coster, & Baeyens, 2006) which 

is indicated by smaller p3 amplitudes at slow ER settings. The neurobiological basis of p3 

and effort needs is not known. However there is evidence for that they may be linked to 

locus ceruleus (LC) activity (Nieuwenhuis, Aston-Jones, & Cohen, 2005). The LC is the 

noradrenergic centre located at the rostral brainstem, and animal studies also indicate 

that it is primarily involved in regulation of arousal state (Aston-Jones, Rajkowski, & 

Cohen, 1999). Based on this evidence LC appears to be a candidate region for SR deficits. 

Activity in the LC could be measured directly by functional neuroimaging. Another way 

to measure LC activity is the measurement of pupil size, which tracks the changes in LC 

(Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010). Future studies could investigate the 

role of LC in SR deficits by measuring LC activity with functional neuroimaging and pupil 

size measurement during ER tasks. From the SRD model, one might predict hypo-
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activations in LC during a slow ER task, and hyper-activation during a fast ER task 

reflecting the poor regulation of behaviour state. 

The study presented in Chapter 3 showed that the children with ADHD had 

greater Gaussian variability (sigma) at ER extremes. While this finding indicates a 

problem with regulating performance in sub-optimal conditions and is consistent with 

deficient state regulation, the neurobiological basis needs to be determined. Similarly, 

both our two DM studies and the previous studies which used the same method 

consistently found that ADHD is associated with slower drift rates in both executive and 

non-executive tasks, indicating slower information processing regardless of the level of 

processing load. In Chapter 6, we also found that children with ADHD have greater 

decision boundaries indicating SATO deficits. The neurobiological basis of these deficits 

is to be explored by studies which could combine diffusion and ex-Gaussian model 

analyses with functional neuroimaging. 

Can neuro-pharmacology elucidate further the SRD effects? 

Another important topic for future studies is the neuropsychological mechanism 

of action of stimulant medications. The stimulants used in the treatment of ADHD 

increase the dopamine and noradrenaline levels in the central nervous system and they 

are effective in reducing symptoms and improving cognitive performance (Engert & 

Pruessner, 2008). However, it is not certain via which neuropsychological mechanisms 

that these beneficial effects occur. According to the DAv model, the stimulants improve 

signalling of future rewards by increasing phasic dopamine and reduce perception of 

time during the task (Sonuga-Barke et al., 2010). On the other hand, the SRD model 

postulates that the stimulants act by increasing the activation level (van der Meere, 

Shalev, Börger, & Wiersema, 2009). Therefore, it would predict that at under-activated 

states (such as slow ERs) the stimulants would improve performance. However at fast-

ERs the performance would deteriorate due to a combination of two activating factors 

(a fast ER and stimulant). This prediction of the SRD model could be explored in 

randomized controlled trials.    
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More research on heterogeneity and neuropsychological subtypes 

Finally, the results of the research presented in this dissertation consistently 

showed that the neuropsychological spectrum of ADHD is complex with several types of 

deficits involved. It is possible that multiple neuropsychological subtypes exist within the 

ADHD population that differ in their clinical profiles. It is also possible that these 

different subtypes could benefit from different treatment strategies. Recently, a study 

attempted to classify a large group of children with and without ADHD according to their 

executive function profiles (Fair, Bathula, Nikolas, & Nigg, 2012). The results suggest the 

presence of distinct subtypes within the ADHD and control populations. Future studies 

could expand this work by exploring subtypes that have predominantly SR or DAv 

deficits.  

    FINAL CONCLUSIONS 

The main goal of this dissertation was to compare two models of ADHD: the SRD 

and the DAv models. The five studies presented in this dissertation indicated that the SR 

deficits and DAv are mediated by independent neuropsychological mechanisms, 

implicating the involvement of separate neural systems: one regulating the level of 

arousal/activation and the other reward and delay processing. In addition, using the DM 

we tested the predictions of the SRD model for the role of non-executive processing and 

motor preparation deficits in ADHD. The results showed that ADHD information 

processing is characterized by slow and inefficient information processing together with 

difficulties in adjusting the level of motor preparation and speed-accuracy trade-off. As 

predicted by the SRD model, the executive deficits made little contributions to these 

basic deficits. Future studies could aim to identify the neurobiological basis of these 

basic processing deficits by targeting the neural systems implicated in the regulation of 

arousal and activation. Lastly, we observed that individuals with ADHD have multiple 

types of neuropsychological deficits suggesting that the aetiology of ADHD is complex 

and any single model may not be sufficient to explain the whole spectrum of deficits. 

Furthermore, individuals with ADHD could be affected by different types of 

neuropsychological deficits, implicating the role of casual heterogeneity.  Large scale 
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studies are needed to identify the neuropsychological subtypes and clinical differences 

between these subtypes.   
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“Attention Deficit/Hyperactivity Disorder” (ADHD), in het Nederlands 

“aandachtstekortstoornis met hyperactiviteit”, is één van de meest voorkomende 

psychiatrische stoornissen. ADHD is een ontwikkelingsstoornis die gekenmerkt wordt 

door ernstige en persisterende symptomen van onoplettendheid, impulsiviteit en/of 

hyperactiviteit;  en leidt tot significante beperkingen in beroepsmatig, schools of sociaal 

functioneren (Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR), 

American Psychiatric Association, 2000).   

Tot op heden is de etiologie van ADHD nog niet volledig begrepen en bestaan er 

verschillende neuropsychologische theorieën ter verklaring van de symptomen van 

ADHD. Lange tijd werd verondersteld dat de symptomen van ADHD het gevolg zijn van 

een primair tekort in executief functioneren zoals inhibitie, planning, werkgeheugen en 

“set shifting” (voor een overzicht: zie Barkley, 1997; Castellanos & Tannock, 2002). 

Recent onderzoek heeft echter aangetoond dat executieve verklaringsmodellen 

onvoldoende de symptomen van ADHD kunnen verklaren (Willcutt et al., 2005). 

Bovendien suggereren recentere neuropsychologische theorieën dat tekortkomingen in 

executief functioneren bij kinderen met ADHD niet statisch zijn; het al dan niet optreden 

van zwakkere prestaties zou namelijk afhangen van de situationele en motivationele 

context. Huidig proefschrift focust op twee vooraanstaande neuropsychologische 

modellen die het dynamische karakter van ADHD benadrukken en in het bijzonder de rol 

van contextuele factoren: het toestandsregulatiemodel (State Regulation Deficit model 

(SRD); van der Meere, 2002) en het “Delay Aversion” model (DAv; Sonuga-Barke, 

Wiersema, van der Meere, & Roeyers, 2010). 

Het toestandsregulatiemodel stelt dat prestaties afhankelijk zijn van energetische 

processen zoals arousal, activatie en effort (Sanders, 1983). Volgens dit model hebben 

kinderen met ADHD moeilijkheden met het aanpassen van hun energetische interne 

toestand aan de veranderende eisen uit de omgeving (van der Meere, 2002). Onderzoek 

heeft aangetoond dat omgevingsfactoren, zoals het manipuleren van de snelheid 

waarmee informatie wordt aangeboden tijdens een taak, een invloed heeft op de 

interne toestand. Meer concreet zou een snelle stimulusaanbieding leiden tot een 
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overactieve toestand en een trage stimulusaanbieding tot een onderactieve toestand. 

Kinderen met ADHD zouden er niet in slagen om deze sub-optimale toestanden te 

reguleren, namelijk een onderactieve toestand op te krikken en een overactieve 

toestand te temperen, waardoor ze zwakke prestaties behalen. Het 

toestandsregulatiemodel veronderstelt aldus een omgekeerde U relatie tussen de 

interne toestand en taakprestaties. Aangezien kinderen met ADHD problemen hebben 

met het reguleren van hun interne toestand, zou deze omgekeerde U functie bij hen 

uitdrukkelijker tot uiting komen in vergelijking met typisch ontwikkelende kinderen. 

Onderzoek waarbij de snelheid van stimulusaanbieding werd gemanipuleerd, 

ondersteunt de voorspellingen van het toestandsregulatiemodel (voor een overzicht zie: 

Sergant, 2005; van der Meere 2002; Sonuga-Barke et al., 2010). 

Het “Delay Aversion model” stelt dat prestaties van kinderen met ADHD 

hoofdzakelijk worden beïnvloed door intolerantie voor uitstel. Kinderen met ADHD 

zouden zwakker presteren dan typisch ontwikkelende kinderen in uitgestelde situaties. 

Volgens dit model is het primair tekort dat aan de grondslag ligt van de symptomen van 

ADHD een verstoorde codering van toekomstige beloningen. Na verloop van tijd zou dit 

primaire tekort leiden tot het ontwikkelen van negatief affect ten aanzien van situaties 

waar men moet wachten (Sonuga-Barke et al., 2010). Onderzoek ondersteunt de 

voorspellingen van dit model. Meer bepaald stelde men vast dat kinderen met ADHD 

een sterke voorkeur hebben voor kleine onmiddellijke beloningen boven grotere 

uitgestelde beloningen. Bovendien lijken kinderen met ADHD gefrustreerd te zijn 

wanneer een wachttijd extern wordt opgelegd (Marco et al., 2009).  

 

Het Doel van het Proefschrift en een Samenvatting van de Bevindingen 

Het hoofddoel van dit proefschrift is het vergelijken van de voorspellingen van 

het toestandsregulatiemodel en het “Delay Aversion” model. Beide modellen 

voorspellen dat zwakkere prestaties bij kinderen met ADHD afhankelijk zijn van de 

situationele en motivationele context. Om beide modellen te vergelijken, baseerden we 

ons op de kernvoorspellingen van deze twee theorieën: manipulatie van de snelheid van 

stimulusaanbieding (toestandsregulatiemodel) en de voorkeur voor kleine onmiddellijke 

beloningen (“Delay Aversion” model). Er werd nagegaan in welke mate deze 
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manifestaties gerelateerd zijn aan de veronderstelde theorieën. Meer specifiek werd 

onderzocht of de effecten van manipulatie van de snelheid van stimulusaanbieding ook 

verklaard kunnen worden door het “Delay Aversion” model en of de impulsieve 

beloningskeuze verklaard kan worden door het toestandsregulatiemodel. In het eerste 

inleidende hoofdstuk van dit proefschrift wordt de achterliggende rationale voor deze 

onderzoeksvragen gedetailleerd weergegeven. 

In het tweede hoofdstuk worden aan de hand van een meta-analyse de 

voorspellingen van beide modellen nagegaan. Ons baserend op de beschikbare 

literatuur verzamelden we de studies, gepubliceerd tussen 2000 en 2011, waarin gebruik 

werd gemaakt van een Go/No-Go taak bij kinderen met en zonder ADHD. De 

taakprestaties van kinderen met ADHD werden vergeleken met die van typisch 

ontwikkelende kinderen. Daarenboven werd de invloed van snelle en trage 

stimulusaanbiedingen onderzocht. Het toestandsregulatiemodel voorspelt dat een 

snelle stimulusaanbieding leidt tot een overactieve toestand en een trage 

stimulusaanbieding tot een onderactieve toestand; beide situaties zouden leiden tot 

zwakkere prestaties bij kinderen met ADHD. In tegenstelling tot het 

toestandsregulatiemodel, voorspelt het “Delay Aversion” model dat zwakkere prestaties 

bij kinderen met ADHD enkel zouden optreden bij een trage stimulusaanbieding 

aangezien dergelijke situatie geassocieerd wordt met uitstel. De resultaten van de meta-

analyse ondersteunden de voorspellingen van het toestandsregulatiemodel; kinderen 

met ADHD presteerden zwakker dan typisch ontwikkelende kinderen bij zowel snelle als 

trage stimulusaanbiedingen. Meer specifiek maakten kinderen met ADHD meer 

commissiefouten bij een snelle stimulusaanbieding en reageerden ze trager bij een trage 

stimulusaanbieding. De variabiliteit van de reactietijd werd niet beïnvloed door 

manipulatie van de snelheid van stimulusaanbieding.  

In het derde hoofdstuk onderzoeken we nader het effect van de snelheid van 

stimulusaanbieding op de variabiliteit van de reactietijd. Kinderen met ADHD en typisch 

ontwikkelende kinderen maakten een Go/No-Go taak met vier verschillende snelheden 

van stimulusaanbieding waarbij zowel snelle als trage stimulusaanbiedingen werden 

opgenomen. Door gebruik te maken van het ex-Gaussian model werd de niet-specifieke 

variabiliteit van de reactietijd opgesplitst in Gaussian variabiliteit (sigma) en variabiliteit 

te wijten aan trage reacties (tau). Het toestandsregulatiemodel voorspelt een grotere 

sigma bij snelle en trage stimulusaanbiedingen bij kinderen met ADHD. Wat betreft tau, 
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wat een dwaling in aandacht weerspiegelt, voorspelt het toestandsregulatiemodel enkel 

zwakkere prestaties bij trage stimulusaanbiedingen. Het “Delay Aversion” model 

daarentegen voorspelt dat kinderen met ADHD enkel zwakker zouden presteren bij 

trage stimulusaanbiedingen en dit voor alle parameters (sigma en tau). In tegenstelling 

tot de bevindingen van het tweede hoofdstuk, toonden deze resultaten dat er wel een 

effect is van de snelheid van stimulusaanbieding op de variabiliteit van de reactietijd bij 

kinderen met ADHD. Meer concreet vertoonden kinderen met ADHD in vergelijking met 

typisch ontwikkelende kinderen een grotere sigma tijdens heel snelle en heel trage 

stimulusaanbiedingen, wat de voorspellingen van het toestandsregulatiemodel 

ondersteunt. Met betrekking tot tau werd er echter geen effect van de snelheid van 

stimulusaanbieding vastgesteld. 

In het vierde hoofdstuk worden de voorspellingen van het 

toestandsregulatiemodel verder onderzocht. Volgens het toestandsregulatiemodel zijn 

zwakke prestaties bij kinderen met ADHD hoofdzakelijk te wijten aan een gebrekkige 

regulatie van de interne toestand (arousal/activatie) en niet aan executieve tekorten. 

Het model veronderstelt bijgevolg dat prestaties van kinderen met ADHD niet beïnvloed 

worden door executieve taakvereisten. We gingen deze voorspelling na door het 

analyseren van de prestaties van kinderen met ADHD en typisch ontwikkelende kinderen 

op twee taken; een eenvoudige twee-keuze perceptuele beslissingstaak en een taak die 

conflictcontrole vereist. Door gebruik te maken van het “Diffusion Model” werden 

verscheidene cognitieve basisprocessen nader onderzocht. Meer concreet stellen 

analyses volgens het “Diffusion Model” ons in staat om afzonderlijke parameters voor 

de verschillende cognitieve processen in kaart te brengen zoals “speed-accuracy trade-

off” (SATO), accumulatie van informatie (“drift rate”), motorische voorbereiding en 

encodering (niet-beslissingstijd). We stelden vast dat, onafhankelijk van de executieve 

vereisten, de informatieverwerking van kinderen met ADHD gekarakteriseerd werd door 

een trage verwerkingssnelheid (lage “drift rate”). Voorts vonden we geen verschillen 

tussen kinderen met en zonder ADHD met betrekking tot de beslissingsgrens (SATO); dit 

suggereert dat kinderen met ADHD hun beslissingsproces niet vroegtijdig beëindigen. 

Daarenboven stelden we vast dat kinderen met ADHD een kortere niet-beslissingstijd 

vertoonden in beide taken. Overeenkomstig de voorspellingen van het 

toestandsregulatiemodel, is deze kortere niet-beslissingstijd waarschijnlijk gerelateerd 
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aan tekortkomingen in motorische voorbereiding en activatie en niet aan moeilijkheden 

met encoderen.  

In het vijfde hoofdstuk wordt dieper ingegaan op de kortere niet-beslissingstijd 

bij kinderen met ADHD. In principe weerspiegelt een korte niet-beslissingstijd zowel 

moeilijkheden met motorische voorbereiding als met encoderen. Vroeger onderzoek 

suggereert echter dat kinderen met ADHD enkel moeilijkheden hebben met motorische 

voorbereiding en activatie; de encoderingprocessen zouden vlot verlopen (van der 

Meere, van Baal, & Sergeant, 1989). De vaststelling dat kinderen met ADHD gevoelig zijn 

voor de snelheid van stimulusaanbieding ondersteunt deze hypothese. Volgens het 

toestandsregulatiemodel beïnvloedt het manipuleren van de snelheid van 

stimulusaanbieding immers de motorische voorbereiding en activatie. Snelle en trage 

stimulusaanbiedingen leiden respectievelijk tot een over- en onderactieve toestand; en 

kinderen met ADHD hebben moeite om hun interne toestand te reguleren wat onder 

andere leidt tot problemen met motorische voorbereiding (Sergeant, 2005; van der 

Meere, 2002). Deze hypothese werd nader onderzocht. Meer concreet werden de 

taakprestaties uit het derde hoofdstuk opnieuw geanalyseerd door gebruik te maken 

van het “Diffusion Model”, aangepast voor het analyseren van prestaties op een Go/No-

Go taak. Op basis van het toestandsregulatiemodel voorspelden we dat het manipuleren 

van de snelheid van stimulusaanbieding hoofdzakelijk de niet-beslissingstijd, wat onder 

meer motorische voorbereiding inhoudt, zou beïnvloeden. Daarnaast voorspelden we 

dat kinderen met ADHD in vergelijking met typisch ontwikkelende kinderen gevoeliger 

zouden zijn voor de effecten van de snelheid van stimulusaanbieding op de niet-

beslissingstijd aangezien kinderen met ADHD moeilijkheden hebben met het reguleren 

van hun activatieniveau en bijgevolg ook met motorische voorbereiding. De resultaten 

toonden dat de snelheid van stimulusaanbieding de verschillende parameters van het 

“Diffusion Model” beïnvloedt: “speed-accuracy trade-off” (SATO), accumulatie van 

informatie (“drift rate”) en motorische voorbereiding en encoderen (niet-beslissingstijd). 

In lijn met de voorspellingen van het toestandsregulatiemodel hadden kinderen met 

ADHD een kortere niet-beslissingstijd bij snelle stimulusaanbiedingen en een langere 

niet-beslissingstijd bij trage stimulusaanbiedingen dan typisch ontwikkelende kinderen. 

Deze bevindingen ondersteunen de hypothese dat de afwijkende niet-beslissingstijd bij 

kinderen met ADHD waarschijnlijk gerelateerd is aan tekortkomingen in motorische 

voorbereiding en activatie en niet aan moeilijkheden met encoderen. Verder stelden we 
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vast dat kinderen met ADHD een tragere verwerkingssnelheid (lagere “drift rate”) en 

grotere beslissingsgrens (SATO) hadden; deze groepsverschillen werden echter niet 

beïnvloed door manipulatie van de snelheid van stimulusaanbieding. 

In het zesde hoofdstuk wordt nagegaan of de impulsieve beloningskeuze zoals 

vooropgesteld door het “Delay Aversion” model eveneens kan verklaard worden vanuit 

het toestandsregulatiemodel. Sonuga-Barke en collega’s (2010) stellen in hun herziene 

uitwerking van het toestandsregulatiemodel dat impulsief keuzegedrag van kinderen 

met ADHD gezien kan worden als een poging om hun energetische toestand te 

optimaliseren. Meer bepaald zouden kinderen met ADHD kiezen voor onmiddellijke 

beloningen zodat een voor hen optimale stimulerende omgeving wordt bekomen. In 

functie van het bereiken van een optimale interne toestand, zouden kinderen met ADHD 

meer omgevingsstimulatie nodig hebben dan typisch ontwikkelende kinderen. Op basis 

van deze veronderstellingen voorspelt het toestandsregulatiemodel dat het luisteren 

naar roze ruis, hetgeen het arousalniveau verhoogt, leidt tot minder impulsieve keuzes 

bij kinderen met ADHD. Het “Delay Aversion” model maakt echter geen specifieke 

voorspellingen omtrent het effect van roze ruis op impulsief keuzegedrag van kinderen 

met ADHD. Om de voorspelling van het toestandsregulatie te toetsen maakten kinderen 

met ADHD en typisch ontwikkelende kinderen twee taken waar impulsief keuzegedrag 

kon worden nagegaan. Roze ruis werd in deze studie gebruikt om de interne toestand 

(arousalniveau) op te krikken. De resultaten toonden dat roze ruis geen effect had op 

het impulsief keuzegedrag van kinderen met ADHD. Deze bevindingen kunnen dus het 

best begrepen worden vanuit het “Delay Aversion” model.  

 

CONCLUSIE 

De vijf studies die beschreven worden in dit proefschrift wijzen er op dat 

toestandsregulatieproblemen en aversie voor uitstel gemedieerd worden door 

onafhankelijke neuropsychologische mechanismen. Dit impliceert de betrokkenheid van 

afzonderlijke neurale systemen: één dat instaat voor de regulering van de interne 

toestand (arousal/activatie) en één dat instaat voor belonings- en uitstelprocessen. 

Daarnaast onderzochten we aan de hand van “Diffusion Model” analyses de 

voorspellingen van het toestandsregulatiemodel met betrekking tot de rol van niet-
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executieve processen en tekorten in motorische voorbereiding bij prestaties van 

kinderen met ADHD. De resultaten toonden dat de informatieverwerking van kinderen 

met ADHD gekarakteriseerd wordt door trage en inefficiënte 

informatieverwerkingsprocessen die gepaard gaan met moeilijkheden in het reguleren 

van de interne toestand en het aanpassen van het niveau van motorische voorbereiding 

en de “speed-accuracy trade-off” (SATO). Overeenkomstig de voorspellingen van het 

toestandsregulatiemodel worden deze tekortkomingen weinig tot niet beïnvloed door 

executieve moeilijkheden. Toekomstige studies zou de neurobiologische basis van de 

vastgestelde moeilijkheden in informatieverwerking bij kinderen met ADHD nader 

kunnen onderzoeken door de neurale systemen die betrokken zijn bij de regulatie van 

arousal en activatie in kaart te brengen. Tot slot stelden we vast dat ADHD gekenmerkt 

wordt door verschillende vormen van neuropsychologische tekorten. Dit suggereert dat 

de etiologie van ADHD complex is en dat één neuropsychologisch model op zich 

ontoereikend is om de volledige waaier aan tekortkomingen te verklaren. Verder is het 

mogelijk dat er bij verschillende kinderen met ADHD verschillende neuropsychologische 

tekorten aanwezig zijn, wat een causale heterogeniteit impliceert. Grootschalige studies 

zijn nodig om neuropsychologische subtypes van ADHD en klinische verschillen tussen 

deze subtypes te identificeren. 
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