
Simulatie en analyse van commerciële werklasten en computersystemen

Simulating and Analyzing Commercial Workloads and Computer Systems

Frederick Ryckbosch

Promotor: prof. dr. ir. L. Eeckhout
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2012 - 2013

ISBN 978-90-8578-597-2
NUR 980
Wettelijk depot: D/2013/10.500/30

Dankwoord

Het moeilijkste deel aan het schrijven van een doctoraat is het schrijven
van het dankwoord. Na jaren van zwoegen is het tijd om terug te kijken
en stil te staan bij de personen die dit werk mogelijk gemaakt hebben. Ik
zal proberen deze moeilijke taak tot een goed einde te brengen en niemand
over het hoofd te zien, daarom bedank ik ten eerste de persoon die dit nu
leest. Gewoon omdat je mijn scriptie leest, of je een goede collega of vriend
bent, je weet zelf wel waarom ik je bedank.

Daarnaast bedank ik mijn promotor prof. Lieven Eeckhout voor de on-
voorwaardelijke steun, het geven van inzichtvolle feedback en de hulp bij
het schrijven van artikels en deze scriptie. Ik had me geen betere begelei-
ding kunnen wensen, Lieven heeft me steeds goed bijgestaan en alle mo-
gelijkheden gegeven om dit onderzoek tot een goed einde te brengen.

Ten tweede bedank ik de leden van de examencommissie die deze scrip-
tie gelezen, verbeterd en in vraag gesteld hebben. De vele interessante vra-
gen hebben mijn blik op dit werk verruimd. I would like to thank Amer Diwan
especially, for hosting me during my internships at Google. It was an amazing ex-
perience being part of such an innovative and openminded company.

In het bijzonder gaat mijn dank uit naar Stijn Polfliet voor de jarenlange
samenwerking en vriendschap, bijna 10 jaar lang. En dat alles te wijten aan
het feit dat Polfliet en Ryckbosch na elkaar komen in het alfabet en we dus
veroordeeld waren tot het delen van een tafel tijdens het labo chemie in het
eerste jaar industrieël ingenieur.

Natuurlijk wil ik ook mijn andere collega’s bedanken en in het bijzon-
der mijn bureaugenoten Andy, Davy, Kristof, Max, Shoaib en Stijn voor
de mooie tijden, de niet-vergrendelde computers, de ingepakte bureau, de
Hello Kitty accessoires en zo meer.

Het Fonds Wetenschappelijk Onderzoek (FWO) voor het financieren
mijn onderzoek. Het Vlaamse Supercomputer Centrum voor het beschik-
baar stellen van rekenkracht en de hulp bij het opzetten van onze complexe
simulatieomgevingen.

Tenslotte wil ik ook mijn familie en vrienden bedanken. Eerst en vooral
mijn vriendin Els voor de steun, het geduld en het luisterend oor geduren-

i

ii

de de vele ups en downs die een doctoraatsonderzoek inhouden. Verder
wil ik mijn ouders bedanken. Zij hebben me de kans gegeven om te stude-
ren en hebben me steeds gesteund in alles wat ik deed. Als laatste bedank
ik mijn vrienden voor de nodige verstrooiing.

Frederick Ryckbosch
Gent, 9 mei 2013

Examencommissie

Prof. Rik Van de Walle, voorzitter
Decaan, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Koen De Bosschere, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Bart Dhoedt
Vakgroep INTEC, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Ph.D. Amer Diwan
Google Inc., Mountain View, CA
USA

Ph.D. Ayose Falcón
Intel Barcelona Research Center
Spain

Ph.D. Wim Heirman
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Ph.D. Sofie Van Hoecke
Vakgroep ELIT
Hogeschool West-Vlaanderen

iii

iv

Leescommissie

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Bart Dhoedt
Vakgroep INTEC, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Ph.D. Amer Diwan
Google Inc., Mountain View, CA
USA

Ph.D. Ayose Falcón
Intel Barcelona Research Center
Spain

Ph.D. Sofie Van Hoecke
Vakgroep ELIT
Hogeschool West-Vlaanderen

v

vi

Samenvatting

Gedurende de laatste jaren heeft er een grondige verschuiving plaats-
gevonden in het computergebruik. Terwijl vroeger de meeste werklasten
geı̈soleerde programma’s waren die uitvoerden op een desktopcomputer,
zien we nu een verschuiving naar online-applicaties die uitvoeren op ser-
vers in een datacenter en bekeken worden met draagbare computers (zo-
als laptops, tablet computers en smartphones). Complexe applicaties zo-
als tekstverwerking en rekenbladen kunnen nu uitgevoerd worden in een
Internet-browser zonder dat hiervoor nood is aan speciale software die
geı̈nstalleerd is op de client-machine. Dit maakt het mogelijk om deze ap-
plicaties op gelijk welk moment, vanaf gelijk welke machine te gebruiken.
Met de opkomst van het Internet zien we ook nieuwe soorten applicaties
verschijnen zoals sociaalnetwerksites, waarmee de gebruiker kan commu-
niceren met vrienden en familie. Er wordt verwacht dat het aantal verbon-
den gebruikers de komende jaren enkel zal stijgen, doordat Internetverbin-
dingen en -apparaten steeds goedkoper worden. Een groot aantal servers
is nodig om online-applicaties zoals Google of Facebook, met meer dan
honderd miljoen gebruikers per dag, draaiende te houden.

De prestatie van deze online-applicaties is van het grootste belang, maar
komt met een hoog prijskaartje doordat snelle servers duur zijn en veel
energie verbruiken. De totale kost van een server omvat de aankoopprijs,
de hoeveelheid energie die de server verbruikt tijdens zijn levensduur en
de extra energie nodig voor spanningconversies en koeling.

De energie-efficiëntie en prestatie van de applicatie hangt af van zowel
de software als de hardware. Computerwetenschappers gebruiken ver-
schillende instrumenten om deze metriek te bemeten tijdens de levensduur
van een server. Tijdens de ontwikkeling van een nieuw hardwareplatform,
maakt men gebruik van hardware-simulatoren om de ontwerpsruimte te
exploreren: verschillende ontwerpskeuzes zoals het aantal processorker-
nen, het type kern, de geheugenbandbreedte en de klokfrequentie worden
geëvalueerd om een goede afweging te maken tussen het vermogenver-
bruik enerzijds en de prestatie anderzijds. Profileringssoftware en vermo-
genmetingen worden gebruikt om de prestatie van een bestaande appli-
catie op bestaande hardware te bepalen. Indien de applicatie nog niet be-
schikbaar is, kan men gebruik maken van synthetische werklasten om voor

vii

viii

een brede waaier aan applicaties het optimale hardwareplatform te bepa-
len. Om de daadwerkelijke prestatie van een applicatie in een productie-
omgeving te meten wordt typisch gebruik gemaakt van profileringssoftwa-
re en traceringssoftware.

Tijdens de levensduur van de applicaties komen de volgende uitdagin-
gen naar boven.

1. De volgende uitdagingen komen voor tijdens het simuleren van groot-
schalige Internet-applicaties. Ten eerste bestaan deze applicaties uit
verschillende softwarecomponenten die uitvoeren op meerdere re-
kenknopen. Deze softwarecomponenten omvatten besturingssyste-
men, virtuele machines en de volledige applicatie software. Dit ver-
schilt sterk van traditionele benchmarks (zoals SPEC CPU) gebruikt
door computerarchitectuuronderzoekers. Ten tweede gebruiken de-
ze applicaties grote datasets, hierdoor kan het uren duren vooraleer
de applicatie in een stabiele staat komt. Om dit soort werklasten te
simuleren dient de simulator de volledige software stack te simule-
ren (inclusief het besturingssysteem) voor meerdere rekenknopen en
dient de simulator snel en accuraat te zijn. Cylcusgetrouwe simulato-
ren zijn niet geschikt voor dit soort werklasten aangezien deze 5 tot 6
grootordes trager zijn dan de werkelijke uitvoering.

2. Software heeft een grote impact op het vermogenverbruik van een
hardwareplatform. State-of-the-art werklasten zoals SPECpower ge-
bruiken een voorgedefinieerde set werklasten om de energie-efficiën-
tie van een computersysteem te bepalen. Het is echter mogelijk dat
de afweging tussen vermogenverbruik en prestatie verschillend is
voor een applicatie met andere karakteristieken. Synthetische werk-
lasten maken het mogelijk om een brede waaier aan applicaties te
benaderen, en geven inzicht in de energie-efficiëntie voor verschil-
lende werklasten. Daarnaast combineert SPECpower de prestatie en
het vermogenverbruik van een platform in één metriek voor energie-
efficiëntie, waardoor de informatie over de afweging tussen de twee
metrieken verloren gaat.

3. Een andere uiterst belangrijke metriek in grootschalige Internet-appli-
caties is de latentie die de eindgebruiker ervaart. Een groot deel van
deze latentie is bepaald door de verwerkingstijd in het datacenter en
de netwerkvertraging. Wij focussen in dit werk op de verwerkings-
tijd in het datacenter. De meeste grootschalige Internet-applicaties
hebben last van hoge latenties voor de traagste operaties. Deze la-
tenties zijn een complex en uitdagend probleem: ze komen niet vaak
voor (bijvoorbeeld in 1% van de gevallen) en worden vaak veroor-
zaakt door complexe interacties tussen verschillende componenten

ix

in de software stack, mogelijks verdeeld over meerdere rekenkno-
pen. Hierdoor is traditionele profileringssoftware niet geschikt om
deze problemen te analyseren.

Grootschalige Internet-applicaties stellen hoge eisen aan zowel softwa-
re als hardware. Zowel prestatie als energie-efficiëntie zijn van het grootste
belang tijdens de volledige levensduur van de applicatie. Dit omvat: (i) het
ontwerpen van nieuwe hardware, (ii) het evalueren van bestaande hardwa-
re en (iii) het uitvoeren van de applicatie in een productieomgeving voor
echte gebruikers. Tijdens elke van deze fasen beschikt men over allerhande
hulpmiddelen om de prestatie en het vermogenverbruik van deze syste-
men te bemeten en te analyseren. Deze thesis levert bijdragen aan elk van
deze fasen. Van prestatie-evaluatie in hardware simulatoren, over energie-
efficiëntiemetingen in testomgevingen tot het analyseren van hoge latenties
in productieomgevingen. We leveren de volgende bijdragen in deze thesis.

Accurate simulatie Idealiter wil een computerarchitect een volledig sys-
teem (inclusief volledige en ongewijzigde software) met hoge nauwkeurig-
heid in een redelijke tijdspanne simuleren. Dit is echter onmogelijk met
gedetailleerde cyclusgetrouwe simulatoren aangezien deze te traag zijn.
Daarom stellen we een simulatie voor op een hoger abstractieniveau, ge-
bruik makend van een analytisch model genaamd intervalanalyse. In dit
werk implementeren en integreren we dit interval-gebaseerde processor-
model in de COTSon simulatorinfrastructuur.

We valideren het processormodel ten opzichte van echte hardware ge-
bruik makend van een set micro-werklasten, meerdradige processor-inten-
sieve werklasten en server werklasten. Dit resulteert in een gevalideerde
simulatietechniek die zowel snel als accuraat is. Deze techniek maakt het
mogelijk om volledige x86-werklasten, inclusief besturingssysteem en ap-
plicatiesoftware, te simuleren in een redelijke tijdspanne.

Snelle simulatie met meerdere rekenknopen Terwijl onze eerste bijdra-
ge focust op nauwkeurige simulatie voor één machine, gaan we nu over
naar het simuleren van een grote omgeving met meerdere servers. Hier-
voor moet de simulatieomgeving schalen met het groot aantal servers en
tegelijkertijd een goede nauwkeurigheid en snelheid aan de dag leggen.

In dit werk stellen we VSim voor, een nieuwe simulatiemethodologie
voor het simuleren van systemen met meedere servers. VSim maakt ge-
bruik van virtualisatietechnologie en tijdsvertraging. Door de prestatie van
de processor, het netwerk en de harde schijven te controleren geeft VSim de
software de indruk dat het op het doelsysteem uitvoert. VSim kan meerde-
re doelsystemen per gastheersysteem simuleren en voorziet gedistribueer-
de simulatie over meerdere rekenknopen voor grootschalige simulaties.

x

Onze experimentele resultaten tonen de nauwkeurigheid van VSim aan:
de typische simulatiefout is kleiner dan 6% voor de processor, het netwerk
en de harde schijf. Realistische werklasten zoals de Lucene zoekmachine en
de Olio Web 2.0 werklast illustreren VSim’s bruikbaarheid. Onze huidige
omgeving is in staat om 5 doelsystemen per gastheersysteem te simuleren,
hetgeen we aantonen via een gevalstudie met een Hadoop werklast waarin
we 25 servers simuleren. Deze resultaten zijn bekomen met een vertraging
van één grootorde ten opzichte van de werkelijke uitvoering.

Energie-efficiëntie en -proportionaliteit van computer systemen Vervol-
gens migreren we van simulatieomgevingen naar testomgevingen met ech-
te hardware, om de energie-efficiëntie van bestaande systemen te evalue-
ren.

De focus op energie-efficiëntie heeft gezorgd voor de opkomst van een
aantal werklasten om het vermogenverbruik van computersystemen te eva-
lueren. EEMBC bracht EnergyBench uit, SPEC heeft SPECpower en ook
academici stelde verschillende werklasten voor, bijvoorbeeld JouleSort. Ge-
bruik makend van de beschikbare vermogen- en prestatiemetingen voor
een brede set van commerciële hardwareplatforms, analyseren we hoe de
energie-proportionaliteit geëvolueerd is gedurende de laatste drie jaar. Daar-
naast evalueren we hoe goed SPECpower energie-proportionaliteit kwan-
tificieert en bestuderen we hoeveel energie bespaard kan worden door ser-
vers meer energie-proportioneel te maken.

Een grote beperking van EnergyBench, SPECpower, JouleSort, enz. is
dat de resultaten afhankelijk zijn van de specifieke werklast, en dus wei-
nig inzicht geven tijdens het vergelijken van de energie-efficiëntie van twee
systemen. Hiervoor stellen we SWEEP (Synthetische Werklasten voor Ener-
gie-Efficiëntie en Prestatie-evaluatie) voor, een raamwerk dat synthetische
werklasten genereert met specifieke karakteristieken. We gebruiken SWEEP
om een brede waaier van synthetische werklasten te genereren met een
verschillende instructiemix, instructie-niveauparallellisme, geheugentoe-
gangspatronen en I/O-intensiteit. We gebruiken SWEEP om de energie-
efficiëntie van commerciële computersystemen te evalueren voor een grote
waaier aan werklasten en leren hoe de energie-efficiëntie gekoppeld is met
de werklastenkarakteristieken.

Daarnaast introduceren we het energieprestatiediagram, een nieuwe
methode om de afweging tussen energie en prestatie voor te stellen. Dit
diagram geeft meer inzicht dan de traditionele EDP en ED2P metrieken.

Analyseren van hoge latenties De laatste bijdrage gebruikt data van een
echte productieomgeving, bestaande uit traces afkomstig van server in een
datacenter dat echte klanten bedient.

Terwijl profileringssoftware van onschatbare waarde is voor het oplos-

xi

sen van prestatieproblemen die veel voorkomen, heeft ze weinig nut bij het
oplossen van prestatieproblemen die voorkomen in een heel klein deel van
de gevallen (bijvoorbeeld de 1% traagste operaties). Deze operaties heb-
ben een grote impact op de kost en gebruikerservaring van grootschalige
Internet-applicaties. Aangezien deze hoge latentie vaak veroorzaakt wor-
den door complexe interacties tussen verschillende softwarecomponenten,
is het nodig om fijnkorrelige traces te analyseren om de oorzaak van het
probleem te achterhalen.

Het analyseren van traces is een moeizame activiteit aangezien men
moet redeneren over lange aaneenschakelingen van gebeurtenissen en dit
vaak een diepe domeinkennis over de gebeurtenissen vergt. Om deze pro-
blemen te verhelpen stellen we TPA voor, een taal gebaseerd op temporele
logica, voor het analyseren van traces. Dit stelt een expert in staat zijn do-
meinkennis te noteren, waarna het systeem alle overeenkomstige gebeur-
tenissen zoekt en nuttige informatie extraheert over de gevonden gebeur-
tenissen. We tonen aan dat ons systeem schaalt en ons in staat stelt om
latentie-problemen op te sporen in een echte productieomgeving, namelijk
Google’s GMail.

xii

Summary

In recent years we have witnessed a profound shift in computing: com-
puter workloads are shifting from isolated programs running on a personal
computer to online applications running on servers in datacenters, acces-
sed by portable computers (like laptops, tablets or smartphones). Complex
applications like text processing or spreadsheets are now available through
the Internet and no longer require dedicated software to be installed on the
client machine, making it possible to use these applications at anytime and
anywhere. The Internet has also leveraged the rise of new types of appli-
cations such as social networks through which people connect and interact
with friends and family. In future years the number of connected users is
expected to grow, as devices and Internet connections are becoming chea-
per. Huge amounts of servers are required to serve Web applications like
Google or Facebook with hundreds of millions of daily users.

Performance is a primordial concern for a lot of online applications.
This quest for performance comes at a price however, as using fast power-
hungry servers can be very expensive. The total cost of ownership of a
server is defined by the purchase price, the amount of power the server
consumes and the additional power required to run the server, which in-
cludes power conversion and cooling.

The energy efficiency and performance of the application depends on
both software and hardware. Computer scientists and engineers use va-
rious tools to determine these metrics at the different stages of the life-
time of a server. During the development of a new hardware platform,
simulators are used to explore the design space: different design options
such as core count, core type, cache sizes, memory bandwidth, clock fre-
quency, etc. are evaluated to determine a good power versus performance
trade-off. While evaluating existing hardware, profilers and power mea-
surements are used to determine the performance of a given application.
In case the target application is not available, benchmarks are used to eva-
luate the hardware platform. Synthetic benchmarks can be used to cover
a wide range of applications, which enables evaluating existing hardware
for different kinds of target applications. On production systems, profiling
and tracing are typically used to measure the actual performance of the
application.

xiii

xiv

Throughout the lifetime of an application the following challenges ari-
se.

1. Simulating new hardware for large-scale Internet applications has a
number of hurdles. These applications consist of various software
components running on multiple nodes, and include complex soft-
ware stacks running commercial operating systems, virtual machi-
nes along with an entire application stack. These workloads are very
different from the traditional benchmarks (e.g., SPEC CPU) used by
computer architecture researchers. Because of the large data sets pro-
cessed by these applications, it can take hours before the application
reaches steady state behavior. To simulate these applications, a hard-
ware simulator has to be able to simulate an entire software stack
(including the operating system) for multiple nodes and be fast and
accurate. Typical cycle-accurate simulators introduce a slowdown of
at least 5 to 6 orders of magnitude compared to native execution, ma-
king them infeasible for simulating these applications.

2. The power consumed by a hardware platform highly depends on the
software running on the platform. State-of-the-art benchmarks like
SPECpower use a predefined workload to determine the energy ef-
ficiency of a platform. It is however possible that the trade-offs are
different for an application with different characteristics. Synthetic
benchmarks can be used to cover a broad spectrum of applications
and provide more insight into the energy efficiency of the system for
different types of benchmarks. SPECpower calculates a single metric
for energy efficiency, which combines both the execution time and
the energy usage. While there is a trade-off between these two me-
trics, SPEC provides an arbitrary metric that lumps these two metrics
together and does not show the performance versus energy trade-off.

3. Another key metric in large-scale Internet applications is the latency
perceived by the end user. This latency is determined by the proces-
sing time in the datacenter and the network latency. In this work, we
focus on the processing time in the datacenter. Most large-scale Inter-
net applications suffer from long-tail latencies. These latencies have
some challenging properties: they do not occur often (e.g., in 1% of
the cases) and are often caused by complex interactions between ma-
ny components in the software stack, possibly across multiple nodes.
Because of this, traditional profilers are inadequate for analyzing the-
se problems.

Running a modern online application places heavy requirements on
both software and hardware. Performance and energy efficiency are of gre-
at importance throughout the whole lifetime of the application, which in-
cludes: (i) designing new hardware, (ii) evaluating available hardware and

xv

(iii) running the application in production for real customers. During each
of these phases different tools are used to measure and analyze the perfor-
mance and energy usage of these systems. This thesis makes contributions
for each of these phases. From performance evaluation in hardware simu-
lators, over energy-efficiency measurements in test environments to long
latency analysis in production environments. More specifically, this dis-
sertation makes the following contributions.

Accurate Full-system Simulation Ideally, a computer architect would want
to simulate an entire system with high accuracy in a reasonable amount
of time while running complete and unmodified software stacks. Howe-
ver, common practice of detailed cycle-accurate processor simulation is be-
coming infeasible because of being too slow. We therefore propose CPU
timing simulation at a higher level of abstraction, and we present an ap-
proach for doing so, using an analytical model called interval analysis. We
implement and integrate this interval-based CPU timing model in the COT-
Son full-system simulation infrastructure.

We extensively validate the timing model against real hardware using a
set of micro-benchmarks, (multi-threaded) CPU-intensive benchmarks and
a server workload. The end result is a validated simulation approach that is
both accurate and fast, and in addition can run full-system x86 workloads,
including commercial operating systems and entire software stacks in an
affordable amount of time.

Fast Multi-Node Simulation While the first contribution focuses on accu-
rately simulating a single machine, we subsequently scale the simulation to
a high-end setup involving multiple servers. The simulation environment
therefore needs the ability to scale out to a large number of server nodes
while attaining good accuracy and reasonable simulation speeds.

We propose VSim, a novel simulation methodology for multi-server
systems. VSim leverages virtualization technology for simulating a target
system on a host system. VSim controls CPU, network and disk perfor-
mance on the host, and it gives the illusion to the software stack to run
on a target system through time dilation. VSim can simulate multiple tar-
gets per host and employs a distributed simulation scheme across multiple
hosts for simulations at scale.

Our experimental results demonstrate VSim’s accuracy: average errors
are below 6% for CPU, disk and network performance. Real-life worklo-
ads involving the Lucene search engine and the Olio Web 2.0 benchmark
illustrate VSim’s utility and accuracy (average error of 3.2%). Our current
setup can simulate up to five target servers per host, and we provide a
Hadoop workload case study in which we simulate 25 servers. These si-
mulation results are obtained at a simulation slowdown of one order of

xvi

magnitude compared to native hardware execution.

Computer System Energy Efficiency and Energy Proportionality We sub-
sequently migrate from simulation environments to test environments with
real hardware, and we more specifically evaluate the energy efficiency of
existing systems.

The focus on energy efficiency has led to a number of power bench-
marking methods recently. For example, EEMBC released EnergyBench
and SPEC released SPECpower to quantify a system’s energy efficiency; al-
so academics have proposed power benchmarks, such as JouleSort. Using
the power and performance number from a broad set of commercial ma-
chines, we analyze how energy-proportionality has evolved over the past
three years. We evaluate to what extent SPECpower quantifies energy-
proportionality, and we study how much total energy can be saved by ma-
king servers even more energy-proportional.

A major limitation for EnergyBench, SPECpower, JouleSort, etc. is that
they are tied to a specific benchmark, and hence, they provide limited in-
sight with respect to why one system may be more energy-efficient than
another. We propose therefore SWEEP (Synthetic Workloads for Energy Ef-
ficiency and Performance evaluation), a framework for generating synthe-
tic workloads with specific behavioral characteristics. We employ SWEEP
to generate a wide range of synthetic workloads while varying the instruc-
tion mix, ILP, memory access patterns, and I/O-intensiveness; and we use
SWEEP to evaluate the energy efficiency of commercial computer systems
across the workload space and learn about how the energy efficiency of a
computer system is tied to its workload’s characteristics.

We also present the Energy-Delay Diagram (EDD), a novel method for
visualizing energy efficiency. The EDD clearly illustrates the energy versus
performance trade-off, and provides more intuitive insight than the tradi-
tionally used EDP and ED2P metrics.

Analyzing Long-Tail Latencies The last contribution uses data from a
production environment, consisting of traces from servers in a datacenter
running Web applications with real-world traffic from customers.

While profiling is invaluable for debugging performance problems that
affect the common case, it is of little help in tracking performance problems
that affect the slowest 1% of the operations (i.e., long-tail latencies). For
Web service providers, these long-tail latencies affect both the cost of the
service and the user experience. Since interactions between operations are
often responsible for long-tail latency, we must analyze fine-grained traces
to investigate their cause.

Unfortunately, analyzing traces is difficult because one needs to rea-
son over long chains of events and because this reasoning often requires

xvii

significant domain knowledge about what the event sequences mean. We
therefore propose TPA, a language based on linear-temporal logic, for ana-
lyzing traces. Given these formulas, our system searches through traces
to find matches for these formulas and extracts relevant information from
the matches. We demonstrate that our system is scalable and enables us to
investigate long-tail performance problems in a real production environ-
ment, namely Google’s GMail service.

xviii

Contents

1 Introduction 1
1.1 Thesis topic . 2
1.2 Key challenges . 3

1.2.1 Evaluating new hardware 3
1.2.2 Evaluating existing hardware 3
1.2.3 Analyzing production systems 3

1.3 Contributions . 4
1.4 Overview . 7

2 Accurate Full-System Simulation 9
2.1 Introduction . 9
2.2 COTSon . 11
2.3 Interval simulation . 13
2.4 Accurate x86 CPU timing model 15

2.4.1 Modeling . 16
2.4.2 Validation against real hardware 17

2.5 Experimental setup . 19
2.6 Evaluation: accuracy versus speed 21
2.7 Case study: Server workload 25
2.8 Related work . 27
2.9 Conclusion . 28

3 Fast Multi-Node Simulation 29
3.1 Introduction . 29
3.2 VSim . 32

3.2.1 General concept . 32
3.2.2 CPU simulation . 35
3.2.3 Network simulation 38
3.2.4 Disk simulation . 38
3.2.5 Synchronizing across host servers 39
3.2.6 Strengths . 40
3.2.7 Limitations . 41

3.3 Experimental Setup . 41

xix

xx CONTENTS

3.3.1 VSim implementation and configuration 41
3.3.2 Hardware platforms 42
3.3.3 CPU benchmarks . 43

3.4 Evaluation . 43
3.4.1 CPU validation . 43
3.4.2 Network validation . 47
3.4.3 Disk validation . 49
3.4.4 Lucene indexing benchmark 49
3.4.5 Case study #1: Olio Web 2.0 51
3.4.6 Case study #2: 25-server Hadoop workload 52

3.5 Related Work . 53
3.6 Conclusion . 55

4 Trends in Computer System Energy Proportionality 57
4.1 Introduction . 57
4.2 Energy-proportionality of contemporary servers 58
4.3 SPECpower and energy-proportionality 61
4.4 Room for improvement . 62
4.5 Conclusion . 63

5 Evaluating Computer System Energy Efficiency 65
5.1 Introduction . 65
5.2 Prior work . 68

5.2.1 Power benchmarks . 68
5.2.2 Synthetic benchmarks 68
5.2.3 Energy efficiency metrics 69

5.3 SWEEP . 70
5.3.1 High-level overview 70
5.3.2 The SWEEP building blocks 71

5.4 Energy-Delay Diagram . 73
5.5 Experimental setup . 76
5.6 Real system evaluation . 77

5.6.1 CPU-intensive workloads 77
5.6.2 Memory-intensive workloads 79
5.6.3 I/O-intensive workloads 80

5.7 Real-life applications . 81
5.8 Conclusion . 83

6 Analyzing Long-Tail Latencies 85
6.1 Introduction . 85
6.2 Motivation . 86
6.3 Expressing formulas using temporal logic 87

6.3.1 Definitions: Traces, formulas, and events 87
6.3.2 Event formulas . 88

CONTENTS xxi

6.3.3 Trace formulas . 88
6.3.4 Variables . 90
6.3.5 Extended example . 90

6.4 Matching formulas . 91
6.4.1 Variable bindings . 92
6.4.2 Event formula . 92
6.4.3 And . 92
6.4.4 Or . 92
6.4.5 Not . 93
6.4.6 Basic Next . 93
6.4.7 Eventually . 93
6.4.8 Until . 93
6.4.9 Producing useful output from the matches 94

6.5 Implementation considerations 96
6.6 Results . 96

6.6.1 Methodology . 97
6.6.2 Generality . 97
6.6.3 Scalability: time . 100
6.6.4 Scalability: memory 102
6.6.5 Usefulness . 103

6.7 Related work . 105
6.7.1 Temporal logic . 105
6.7.2 Trace query languages 106
6.7.3 Other related work . 107

6.8 Conclusion . 107

7 Conclusion 109
7.1 Summary . 109

7.1.1 Architectural simulation 110
7.1.2 Energy efficiency and proportionality 111
7.1.3 Long-tail latency analysis 112

7.2 Future work . 113
7.2.1 Hardware simulation 113
7.2.2 Energy efficiency and proportionality 114
7.2.3 Analysis of production systems 115

xxii CONTENTS

List of Tables

2.1 Benchmarks used in this study. The rightmost column show
the number of instructions executed (in billions of instruc-
tions). 20

3.1 CPUs considered in the evaluation. 42
3.2 The SSD and HDD disks considered in the evaluation along

with their properties according to IOzone. 42
3.3 CPU benchmarks used in this study. 43

5.1 The Systems Under Test: a low-end and a high-end machine. 77

xxiii

xxiv LIST OF TABLES

List of Figures

2.1 COTSon’s architecture. 11
2.2 Interval analysis analyzes performance on an interval basis

determined by disruptive miss events. 13
2.3 Validation process using the micro-benchmarks and synthet-

ically generated kernels. 18
2.4 Validation of the interval-based CPU timing model using micro-

benchmarks. 22
2.5 Validation of the interval-based CPU timing model using a

suite of compute-intensive benchmarks from BioPerf, Medi-
aBench II, PARSEC, and SPECjbb2005. 23

2.6 Accuracy for three sampling strategies: (i) 1M warming and
100K instruction sampling units, (ii) 100K warming and 100K
instruction sampling units, and (iii) 100K warming and 10K
instruction sampling units; there are 100M instructions be-
tween the sampling units for all three strategies. 24

2.7 Speed versus accuracy trade-off: the Pareto front is formed
through the dashed line. A sampling strategy A-B means A
instructions for warming and B instructions for the sampling
unit. All sampling strategies assume 100M instructions be-
tween sampling units. 25

2.8 Response time for the nutch benchmark. 26
2.9 Throughput for the nutch benchmark. 26
2.10 Microarchitecture study varying the cache size for the nutch

benchmark. 26

3.1 Simulating one server in VSim. 33
3.2 Simulating multiple servers on a single host server in VSim. 34
3.3 Two approaches for CPU simulation. 36
3.4 Network simulation in VSim. 37
3.5 Disk simulation in VSim. 39
3.6 Validation of the CPU model of the Intel Atom target on the

AMD Opteron 2212 host. 44

xxv

xxvi LIST OF FIGURES

3.7 Validation of the CPU model of AMD Opteron 2350 target
on the AMD Opteron 2212 host. 45

3.8 Evaluating VSim scalability in terms of simulating multiple
targets per host. 46

3.9 CPU validation for multi-threaded workloads. 47
3.10 Network validation. 48
3.11 Disk HDD validation. 48
3.12 Disk SSD validation. 49
3.13 Lucene index building on 10,000 Wikipedia documents held

in memory, SSD and HDD. 50
3.14 A client-server setup with a client modeling multiple con-

current users querying the Lucene index stored on the server. 50
3.15 Comparing three datacenter configurations for the Olio Web

2.0 benchmark in terms of performance (vertical axis) and
cost (horizontal axis): (leftmost point) all servers run on Intel
Atom 330 nodes; (middle point) the Web server is run on
AMD Opteron 2350 and the file and database servers run on
Intel Atom 330; (rightmost point) all servers run on AMD
Opteron 2350 nodes. 52

3.16 Simulating up to 25 target servers running the Hadoop work-
load on 5 host servers. 53

4.1 Energy-Proportionality (EP) is defined as one minus Area A
divided by Area B. Top graph shows perfect energy-proportional
system (EP = 1); bottom graph shows a non-energy-proportional
system (EP = 0); and the middle graph shows a 50 percent
energy-proportional system (EP = 0.5). 59

4.2 Energy-Proportionality (EP) over time. 60
4.3 Energy-Proportionality (EP) versus SPECpower. 61
4.4 Power consumption as a function of CPU load for the systems-

under-test with the highest EP and SPECpower scores, re-
spectively. 62

5.1 High-level view on the SWEEP framework. 70
5.2 Energy-Delay Diagram. 73
5.3 Comparing machines’ energy efficiency using the EDD. . . . 75
5.4 Runtime power monitoring setup. 76
5.5 EDD for a CPU-intensive workload with varying inter-instruction

dependency distance (see legend). 78
5.6 EDD for memory-intensive, multi-threaded workloads. . . . 79
5.7 EDD for I/O-intensive workloads. 80
5.8 The EDD considering some of the PARSEC benchmarks. . . 82
5.9 The EDD considering the tar and gzip Linux tools. 82

LIST OF FIGURES xxvii

6.1 Events involved in RPC . 99
6.2 Scaling behavior for long traces. 101
6.3 Benefit of the optimizations in Section 6.5. Analysis times

normalized to left-most bar in graph. 102

xxviii LIST OF FIGURES

List of Abbreviations

AMD Advanced Micro Devices
CEP Complex event processing
CPU Central processing unit
DMA Direct memory access
DRAM Dynamic random-access memory
ED2P Energy delay squared product
EDD Energy delay diagram
EDP Energy delay product
EEMBC Embedded Microprocessor Benchmark Consortium
FPGA Field-programmable gate array
FTP File transfer protocol
GNU GNU’s not Unix!
HDD Hard disk drive
HPET High Precision Event Timer
HTML HyperText Markup Language
I/O Input/output
ILP Instruction-level parallelism
IP Internet protocol
IPC Instructions per clock cycle
ISA Instruction-set architecture
JRE Java runtime environment
JVM Java virtual machine
KIPS Thousands of instructions per second
L1 Level-1 Cache
L2 Level-2 Cache
L3 Level-3 Cache
LTL Linear temporal logic
MIPS Millions of instructions per second
MLP Memory-level parallelism
NIC Network interface card
OLTP Online transaction processing
OS Operating system
PARSEC Princeton Application Repository for Shared-Memory Computers

xxix

xxx CHAPTER 0. LIST OF ABBREVIATIONS

PDES Parallel Discrete-Event Simulation
PUE Power usage efficiency
QoS Quality of service
RISC Reduced instruction set computing
RMS Recognition, Mining and Synthesis
RPC Remote procedure call
SMT Simultaneous multithreading
SPEC Standard Performance Evaluation Corporation
SQL Structured query language
SSD Solid-state drive
SSE Streaming SIMD Extensions
SUT System under test
TCO Total cost of ownership
TDP Thermal design power
TLB Translation lookaside buffer
VM Virtual machine
VMM Virtual machine monitor
XML Extensible Markup Language

Chapter 1

Introduction

In recent years we have witnessed a profound shift in computing: com-
puter workloads are shifting from isolated programs running on a per-
sonal computer to online applications running on servers in datacenters,
accessed by portable computers (like laptops, tablets or smartphones).
Complex applications like text processing or spreadsheets are now avail-
able through the Internet and no longer require dedicated software to be
installed on the client machine, making it possible to use these applications
at anytime and anywhere. The Internet has also leveraged the rise of new
types of applications such as social networks through which people con-
nect and interact with friends and family. In future years the number of
connected users is expected to grow, as devices and Internet connections
are becoming cheaper. Huge amounts of servers are required to serve Web
applications like Google search or Facebook with hundreds of millions of
daily users. Barroso et al. [1] view this ensemble of servers as one big com-
puter: a warehouse-scale computer. This scale poses new challenges but
also provides new opportunities for optimization. Since the largest part of
the workload is running in a datacenter controlled by a single company,
optimizing both the datacenter software and hardware can have a huge
impact on the performance, energy efficiency and total cost of ownership.

End-user latency is a primordial concern for a lot of online applica-
tions. Research at Amazon [2], a popular online shop, has shown that an
increase in page load time of 100 ms decreases sales by 1%. Experiments at
Google [3], the online search engine, have shown that increasing the num-
ber of search results from 10 to 30 increased the latency by 500 ms and
caused a 20% drop in ad revenue. The performance of the application in
the datacenter defines a large portion of the end-user latency.

This quest for performance comes at a price however, as using fast
power-hungry servers can be very expensive. The total cost of ownership
of a server is defined by the purchase price, the amount of power the server

1

2 CHAPTER 1. INTRODUCTION

consumes and the additional power required to run the server, which in-
cludes power conversion and cooling. Additional cost factors of a datacen-
ter include facility, personnel, maintenance, etc. The power usage effective-
ness (PUE) metric [4] is defined as Total Facility Energy divided by the IT
Equipment Energy and abstracts the additional power into a factor on the
amount of power that the server consumes. In a state-of-the-art datacenter
facility, a PUE of 1.06 can be achieved [5]: this means that the additional
power is 6% on top of the power consumed by the servers. Designing the
most appropriate hardware for a specific application can lower the required
power, and thus reduce the total cost of ownership of the hardware.

The energy efficiency and performance of the application depends on
both software and hardware. Computer scientists use various tools to de-
termine these metrics at different stages during the lifetime of a server. Dur-
ing the development of a new hardware platform, simulators are used to
explore the design space: different design options such as core count, core
type, cache sizes, memory bandwidth, clock frequency, etc. are evaluated to
determine a good power versus performance trade-off. While evaluating
existing hardware, profilers and power measurements are used to deter-
mine the performance of a given application. In case the target application
is not available, benchmarks are used to evaluate the hardware platform.
Synthetic benchmarks can be used to cover a wide range of applications,
which enables evaluating existing hardware for different kinds of target
applications. On production systems, profiling and tracing are typically
used to measure the actual performance of the application.

1.1 Thesis topic

Running a modern online application places heavy requirements on both
software and hardware. Performance and energy efficiency are of great im-
portance throughout the whole lifetime of the application, which includes:
(i) designing new hardware, (ii) evaluating available hardware and (iii)
running the application in production for real customers. During each of
these phases different tools are used to measure and analyze the perfor-
mance and energy usage of these systems. This thesis makes contributions
for each of these phases: from performance evaluation in hardware simu-
lators, over energy-efficiency measurements in test environments to long
latency analysis in production environments. The remainder of this chap-
ter introduces the key challenges addressed and contributions made in this
thesis.

1.2. KEY CHALLENGES 3

1.2 Key challenges

1.2.1 Evaluating new hardware

Simulating new hardware for large-scale Internet applications faces a num-
ber of hurdles. These applications consist of various software components
running on multiple nodes, and include complex software stacks running
commercial operating systems, virtual machines along with an entire ap-
plication stack. These workloads are very different from the traditional
benchmarks (e.g., SPEC CPU) used by computer architecture researchers.
Because of complex applications layer caching and the large data sets
processed by these applications, it can take hours before the application
reaches steady-state behavior. To simulate these applications, a hardware
simulator has to be able to simulate an entire software stack (including
the operating system) for multiple nodes, be fast and accurate. Typical
cycle-accurate simulators introduce a slowdown of at least 5 to 6 orders
of magnitude compared to native execution, making them infeasible for
simulating these applications.

1.2.2 Evaluating existing hardware

The power consumed by a hardware platform highly depends on the soft-
ware running on the platform. State-of-the-art benchmarks like SPECpower
use a predefined set of benchmarks to determine the energy efficiency of
a platform. It is however possible that the trade-offs are different for an
application with different characteristics. Synthetic benchmarks can be
used to cover a broad spectrum of applications and provide more insight
into the energy efficiency of the system for different types of benchmarks.
SPECpower calculates a single metric for energy efficiency, which combines
both the execution time and the energy usage. While there is a trade-off
between these two metrics, SPEC provides an arbitrary metric that lumps
these two metrics together and not show the performance versus energy
trade-off.

1.2.3 Analyzing production systems

As mentioned before, another key metric in large-scale Internet applica-
tions is the latency perceived by the end user. This latency is determined
by the processing time in the datacenter and the network latency. In this
work, we focus on the processing time in the datacenter. Most large-scale
Internet applications suffer from long-tail latencies. These latencies have
some challenging properties: they do not occur often (e.g., in 1% of the
cases) and are often caused by complex interactions between many compo-

4 CHAPTER 1. INTRODUCTION

nents in the software stack, possibly across multiple nodes. Because of this,
traditional profilers are inadequate for analyzing these problems.

1.3 Contributions

This dissertations makes contributions in various fields: hardware simu-
lation, energy efficiency measurements and analyzing infrequent perfor-
mance problems.

Contribution 1: Accurate Full-system Simulation

Ideally, a computer architect would want to simulate an entire system with
high accuracy in a reasonable amount of time while running complete and
unmodified software stacks. However, common practice of detailed cycle-
accurate processor simulation is becoming infeasible because of being too
slow. We therefore propose CPU timing simulation at a higher level of
abstraction, and we present an approach for doing so, using an analyti-
cal model called interval analysis [6, 7]. We implement and integrate this
interval-based CPU timing model in the COTSon full-system simulation
infrastructure [8].

We extensively validate the timing model against real hardware using a
set of micro-benchmarks, (multi-threaded) CPU intensive benchmarks and
a server workload. The end result is a validated simulation approach that is
both accurate and fast, and in addition can run full-system x86 workloads,
including commercial operating systems and entire software stacks in an
affordable amount of time.

This work on accurate simulation has been published in:

Frederick Ryckbosch, Stijn Polfliet and Lieven Eeckhout, “Fast, Ac-
curate, and Validated Full-System Software Simulation of x86 Hard-
ware”, In IEEE Micro, Vol. 30, No. 3, 46-56, November 2010.

Contribution 2: Fast Multi-Node Simulation

While the first contribution focuses on accurately simulating a single ma-
chine, we subsequently scale the simulation to a high-end setup involving
multiple servers. The simulation environment therefore needs the ability to
scale out to a large number of server nodes while attaining good accuracy
and reasonable simulation speeds.

We propose VSim, a novel simulation methodology for multi-server
systems. VSim leverages virtualization technology for simulating a target

1.3. CONTRIBUTIONS 5

system on a host system. VSim controls CPU, network and disk perfor-
mance on the host, and it gives the illusion to the software stack to run
on a target system through time dilation. VSim can simulate multiple tar-
gets per host and employs a distributed simulation scheme across multiple
hosts for simulations at scale.

Our experimental results demonstrate VSim’s accuracy: average errors
are below 6% for CPU, disk and network performance. Real-life workloads
involving the Lucene search engine and the Olio Web 2.0 benchmark illus-
trate VSim’s utility and accuracy (average error of 3.2%). Our current setup
can simulate up to five target servers per host, and we provide a Hadoop
workload case study in which we simulate 25 servers. These simulation
results are obtained at a simulation slowdown of one order of magnitude
compared to native hardware execution.

This work on high-level simulation has been published in:

Frederick Ryckbosch, Stijn Polfliet and Lieven Eeckhout, “VSim: Sim-
ulating multi-server setups at near native hardware speed”, In ACM
Transactions on Architecture and Code Optimization, 52:1-52:20, January
2012.

Contribution 3: Computer System Energy Efficiency and Energy Propor-
tionality

We subsequently migrate from simulation environments to test environ-
ments with real hardware, and we more specifically evaluate the energy
efficiency of existing systems.

The focus on energy efficiency has led to a number of power bench-
marking methods recently. For example, EEMBC released EnergyBench [9]
and SPEC released SPECpower [10] to quantify a system’s energy effi-
ciency; also academics have proposed power benchmarks, such as Joule-
Sort [11]. Using the power and performance number from a broad set of
commercial machines, we analyze how energy-proportionality has evolved
over the past three years. We evaluate to what extent SPECpower quan-
tifies energy-proportionality, and we study how much total energy can be
saved by making servers even more energy-proportional.

A major limitation for EnergyBench, SPECpower, JouleSort, etc. is that
they are tied to a specific benchmark, and hence, they provide limited in-
sight with respect to why one system may be more energy-efficient than an-
other. We propose therefore SWEEP (Synthetic Workloads for Energy Effi-
ciency and Performance evaluation), a framework for generating synthetic
workloads with specific behavioral characteristics. We employ SWEEP to
generate a wide range of synthetic workloads while varying the instruc-
tion mix, ILP, memory access patterns, and I/O-intensiveness; and we use

6 CHAPTER 1. INTRODUCTION

SWEEP to evaluate the energy efficiency of commercial computer systems
across the workload space and learn about how the energy efficiency of a
computer system is tied to its workload’s characteristics.

We also present the Energy-Delay Diagram (EDD), a novel method for
visualizing energy efficiency. The EDD clearly illustrates the energy versus
performance trade-off, and provides more intuitive insight than the tradi-
tionally used EDP and ED2P metrics.

This work on a evaluating energy efficiency has been published in:

Frederick Ryckbosch, Stijn Polfliet and Lieven Eeckhout, “Trends in
Server Energy Proportionality”, In IEEE Computer 44(9), pages 69-72,
September 2011.

Kristof Du Bois, Tim Schaeps, Stijn Polfliet, Frederick Ryckbosch and
Lieven Eeckhout, “SWEEP: Evaluating Computer System Energy Ef-
ficiency using Synthetic Workloads”, In Proceedings of the 6th Interna-
tional Conference on High Performance and Embedded Architectures and
Compilers, pages 159-166, January 2011.

Contribution 4: Analyzing Long-Tail Latencies

The last contribution uses data from a production environment, consisting
of traces from servers in a datacenter running Web applications with real-
world traffic from customers.

While profiling is invaluable for debugging performance problems that
affect the common case, it is of little help in tracking performance problems
that affect the slowest 1% of the operations (i.e., long-tail latencies). For
Web service providers, these long-tail latencies affect both the cost of the
service and the user experience. Since interactions between operations are
often responsible for long-tail latency, we must analyze fine-grained traces
to investigate their cause.

Unfortunately, analyzing traces is difficult because one needs to rea-
son over long chains of events and because this reasoning often requires
significant domain knowledge about what the event sequences mean. We
therefore propose TPA, a language based on linear-temporal logic, for an-
alyzing traces. Given these formulas, our system searches through traces
to find matches for these formulas and extracts relevant information from
the matches. We demonstrate that our system is scalable and enables us to
investigate long-tail performance problems in a real production environ-
ment, namely Google’s GMail service.

This work on analyzing long-tail latencies is submitted to:

Frederick Ryckbosch and Amer Diwan, “Analyzing performance

1.4. OVERVIEW 7

traces using temporal formulas”, Submitted to the Journal of Software:
Practice and Experience, 2013.

1.4 Overview

The remainder of this dissertation is organized as follows.
We present an accurate full-system simulator in Chapter 2. We vali-

date this simulator against commercial hardware, explore accuracy versus
speed trade-offs, and show its use for real-life workloads.

In Chapter 3, we focus on simulating multi-node systems, using the
high-level VSim simulator. Disk and network are also simulated besides
the processor. After validating the simulation results, we discuss two case
studies with workloads running on tens of servers.

The energy proportionality of contemporary servers is analyzed in
Chapter 4. We extend upon this work for measuring energy efficiency of
commercial hardware in Chapter 5. We use synthetic benchmarks to emu-
late a wide range of applications and show that the energy efficiency for a
hardware platform very much depends on the software and its character-
istics.

Chapter 6 introduces the TPA language. This work was done during
an internship at Google, Inc. and was used to analyze performance traces
from the GMail production servers.

Chapter 7 concludes this dissertation with a summary of the work and
outlook towards future work.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Accurate Full-System
Simulation

This chapter presents a fast and accurate interval-based CPU timing model imple-
mented in the COTSon full-system simulation infrastructure. Validation against
real x86 hardware demonstrates the accuracy of the timing model. The end result
is a software simulator that faithfully simulates x86 hardware running complete
software stacks at a speed in the tens of MIPS range.

2.1 Introduction

Architectural simulation is a challenging problem in contemporary com-
puter architecture research and development, for two reasons. For one,
contemporary processors integrate billions of transistors on a single chip,
implement multiple cores along with on-chip peripherals, and are complex
pieces of engineering. In addition, modern software stacks are becoming
more and more complex as well, and include commercial operating sys-
tems, virtual machines along with an entire application stack, which is very
different from the workloads traditionally considered in computer architec-
ture research (e.g., SPEC CPU). Ideally, a computer architect would want to
simulate an entire system with high accuracy in a reasonable amount of
time while running complete and unmodified software stacks.

However, common practice of detailed cycle-accurate processor simu-
lation is becoming infeasible because of being too slow. Moreover, one may
argue that cycle-accurate simulation may not be called for in many prac-
tical studies. Many design trade-offs need to be made at the system level
for which the slow speed and high level of detail of cycle-accurate simula-
tion only gets in the way. We therefore propose CPU timing simulation at a
higher level of abstraction, and we present an approach for doing so, using

9

10 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

an analytical model called interval analysis [6, 7]. The analytical model is
mechanistic in nature — it is built on first principles starting from a deep
understanding of the system that is to be modeled — and analyzes a pro-
gram’s miss events (such as cache misses, tlb misses and branch mispre-
dictions) as well as its dependence structure to estimate CPU performance.
We implement and integrate this interval-based CPU timing model in the
COTSon full-system simulation infrastructure [8]. We extensively validate
the timing model against real hardware using a set of micro-benchmarks,
(multi-threaded) CPU-intensive benchmarks and a server workload. The
end result is a validated simulation approach that is both accurate and fast,
is relatively easy to implement, and in addition can run full-system x86
workloads, including commercial operating systems and entire software
stacks, and system devices such as network cards and disks in an afford-
able amount of time.

We make the following contributions in this work:

• We propose a validated interval-based analytical timing model for a
superscalar out-of-order x86 processor core and integrate this model
into HP Labs’ COTSon simulator. We describe the development and
validation process, which demonstrates that the interval-based CPU
timer is relatively easy to implement. The timing model consists of
around 1,500 lines of C code (including comments), and was written
in about 1 engineer-month. The validation and fine-tuning process
against real hardware took another 3 engineer-months.

• We validate the interval-based CPU timer against real hardware,
namely an AMD Opteron 2350 quad-core server processor [12], using
a set of micro-benchmarks and synthetic kernels. The average error
compared to real hardware is 9.8% for the micro-benchmarks, and
18.6% for a set of CPU-intensive benchmarks including SPECjbb2005,
H.264 video decoding and encoding, bio-informatics, and multi-
threaded PARSEC benchmarks. We obtain similarly accurate results
for a non-trivial Web 2.0 search engine server workload: 7.0% aver-
age error for response time and 12.7% for throughput across a range
of concurrent clients.

• We study the trade-off in speed versus accuracy when enabling sam-
pling in the COTSon simulator with the new interval-based CPU
timer. The end result is a full-system software simulator that faith-
fully simulates x86 hardware at a speed in the tens of MIPS range:
one particular sampling strategy achieves a speed of 37 MIPS and
an average error of 23.1% for the CPU-intensive workloads. Given
its high speeds, we believe our simulator may be useful to drive
software optimizations and hardware/software co-optimization.

2.2. COTSON 11

COTSon Node

SimNow

Disk
Timer

NIC
Timer

CPU
Timer

Network
mediator

COTSon Node

COTSon Node

Figure 2.1: COTSon’s architecture.

2.2 COTSon

COTSon [8] is an open-source simulator framework developed by HP Labs.
Its goal is to provide a fast evaluation vehicle for current and future com-
puting systems, covering both entire software stacks and hardware mod-
ules including processors and system devices such as network cards and
disks. COTSon targets cluster-level systems consisting of multiple mul-
ticore processor nodes interconnected through a network, i.e., it targets
both scale-up (i.e., multicore and manycore processor simulation) as well
as scale-out (i.e., simulation of a multinode cluster).

Figure 2.1 shows the organization of the COTSon simulator. COTSon
uses the AMD SimNow full-system simulator to functionally simulate each
node in the cluster. AMD’s SimNow can simulate x86 and x86 64 proces-
sors, and uses dynamic compilation and code caching techniques to speed
up simulation. SimNow is around 10× slower than native hardware exe-
cution, and is capable of booting a system with an unmodified operating
system and can execute any complex application. Each COTSon node fur-
ther consists of timing models for the disks, network card interface and the
CPU (i.e., processor and memory). The various COTSon nodes are inter-
connected through a network mediator.

The timing models in each COTSon node communicate with the func-
tional simulator through event queues. These event queues are either
synchronous (for communicating with the disk and network timing mod-
els) or asynchronous (for communicating with the CPU timing model).

12 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

Synchronous event queues need an immediate response from the tim-
ing model upon a request from the functional simulator. Asynchronous
event queues on the other hand decouple the generation of events by the
functional simulator and their processing by the timing models. Asyn-
chronous event queues implement a unique timing feedback mechanism
which periodically adjusts the speed of the functional simulator to re-
flect the timing estimates provided by the timing models. This is called
functional-directed simulation and approximates timing behavior more
accurately than purely trace-driven or functional-first simulation (while
being faster than timing-directed execution-driven simulation). Timing
feedback allows for better approximating time-dependent behavior (e.g.,
synchronization, OS scheduling, networking, etc.), which is important for
real-life workloads in terms of load balancing, quality-of-service, etc.

COTSon simulates multicore processors by serializing the functional
simulation of the various cores. Each core is allowed to run for some
fixed amount of time in the functional simulator, and when all cores have
reached the same point in time (the simulation window), COTSon sends
the various instruction streams to the timing models. Hence, it is the
functional simulator that determines functional behavior, not the timing
simulator; for example, the functional simulator determines which thread
acquires the lock for entering a critical section. The timing models then
determine the progress for each of the cores, which in turn adjust the speed
of the functional simulator through timing feedback; for example, if the
timing model determines that a core achieves an instruction throughput
(IPC) that is twice as high as for another core, the functional simulator
will simulate twice as many instructions for that one core compared to
the other in the next simulation window. The feedback mechanism aims
at limiting the divergence of the functional simulator with respect to the
timing simulator.

The open-source version of COTSon comes with two CPU timing mod-
els, timer0 and timer1, which are timing models for an in-order and
out-of-order processor, respectively. These CPU timing models are fairly
simple, and are primarily designed for tutorial purposes and not to pro-
vide realistic levels of accuracy. In particular, timer1 operates as follows.
It stalls the front-end pipeline upon an I-cache/TLB miss and branch mis-
prediction. Loads have priority over stores, and can be issued to memory
as long as there are memory ports available. There are many aspects that
this timer does not model. It does not model miss event overlaps, hard-
ware prefetching, break-up of macro-operations into micro-operations; nei-
ther does it model the impact of instruction execution latencies and inter-
instruction dependencies (i.e., the impact of the critical path is not mod-
eled). The average error compared to real hardware for timer1 for our
set of micro-benchmarks and CPU-intensive benchmarks equals 42.4% and

2.3. INTERVAL SIMULATION 13

branch misprediction

interval 2

long-latency load miss

t

d
is

p
a

tc
h

ra
te

interval 3interval 1

L1 I-cache miss

Figure 2.2: Interval analysis analyzes performance on an interval basis de-
termined by disruptive miss events.

31.8%, respectively. The interval-based CPU timing model, which we de-
scribe next, achieves substantially higher levels of accuracy. In this work,
we use the existing COTSon network and disk timers.

2.3 Interval simulation

The CPU timing model presented in this work is based on a recently pro-
posed analytical performance model for superscalar out-of-order proces-
sors, called interval analysis [6]. The model is mechanistic in nature which
means that it is built on first principles: the performance model is derived
in a bottom-up fashion, starting from a basic understanding of the mechan-
ics of a contemporary processor.

Interval analysis partitions a program’s execution time into intervals
separated by disruptive miss events such as cache misses, TLB misses,
branch mispredictions and serializing instructions. This is illustrated in
Figure 2.2, which shows the number of dispatched instructions on the ver-
tical axis versus time on the horizontal axis. Under optimal conditions,
i.e., in the absence of miss events, the processor sustains a level of perfor-
mance more-or-less equal to its pipeline front-end dispatch width — we re-
fer to dispatch as the point of entering the instructions from the front-end
pipeline into the reorder buffer and issue queues. However, miss events
disrupt the smooth streaming of instructions through the dispatch stage.
By dividing execution time into intervals, one can analyze the performance
behavior of the intervals individually. In particular, one can, based on the
type of interval (the miss event that terminates it), determine the perfor-
mance penalty per miss event:

• The penalty for an I-cache/TLB miss equals its miss delay.

• The penalty for a branch misprediction equals the branch resolu-
tion time (number of cycles between the branch entering the reorder
buffer and issue queue, and its resolution) plus the front-end pipeline
depth.

14 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

• The penalty per long-latency load miss (i.e., a last-level cache/TLB
load miss) is approximated by its miss delay (memory access time).
Multiple independent load misses may overlap their execution and
expose memory-level parallelism (MLP).

• The penalty for a serializing instruction equals the reorder buffer
drain time.

The smooth streaming of instructions between miss events, at a rate
close to the designed dispatch width, may not always be achieved. Low-
ILP applications may exhibit long chains of dependent instructions, L1 data
cache misses and long-latency functional unit instructions (divide, multi-
ply, floating-point operations, etc.), or store instructions, which may cause
a resource (e.g., reorder buffer, issue queue, physical register file, write
buffer, etc.) to fill up. A resource stall may thus cause dispatch to even-
tually stall for a number of cycles. This is modeled in interval modeling
through an ILP model that computes the critical path over a window of
instructions while keeping track of the inter-instruction dependencies and
instruction execution latencies. The intuition is that the window (reorder
buffer) cannot slide over the dynamic instruction stream any faster than
dictated by the critical path. The effective dispatch rate is then computed
through Little’s law (reorder buffer size divided by critical path length),
capped by the designed dispatch width.

Interval analysis also provides good insight into how miss events over-
lap with each other. For example, the penalty due to an I-cache miss that
follows a long-latency load miss is hidden underneath the long-latency
load penalty. Similarly, the penalty for a mispredicted branch that fol-
lows a long-latency load in the dynamic instruction stream on which it does
not depend, is completely hidden underneath the penalty due to the long-
latency load. If on the other hand, the mispredicted branch depends on the
long-latency load, then both penalties serialize.

By employing interval modeling, one can build architecture simulators
that model the target machine at a higher level of abstraction. Interval sim-
ulation was recently proposed by Genbrugge et al. [7]. The basic idea of
interval simulation is to replace the cycle-accurate core-level timing model
by the interval model. The core-level interval model then interacts with
the branch predictor and memory subsystem simulators to derive the miss
events and (possibly) their latencies. The interval model then estimates
how many cycles it takes to execute each interval. This includes analyzing
the amount of ILP to determine the effective dispatch rate between miss
events, as well as estimating how many cycles it takes to resolve a mis-
predicted branch and to drain the reorder buffer on a serializing instruc-
tion. Finally, the model also estimates the amount of overlap between miss
events in order to do an accurate accounting in terms of their penalties. In

2.4. ACCURATE X86 CPU TIMING MODEL 15

other words, the interval model estimates a core’s overall progress based
on timing estimates of each individual interval: the miss events are deter-
mined by simulating the branch predictor and memory subsystem — the
miss events determine the intervals — and the timing for each interval is
estimated through the interval model. The key benefits of interval simu-
lation are that it is easy to implement and runs substantially faster than
cycle-accurate simulation, while maintaining good accuracy. Genbrugge et
al. validated the interval simulator against the M5 simulator [13] which im-
plements the Alpha RISC ISA: they achieved an average error of 4.6% and
a 10× simulation speedup compared to detailed simulation while running
full-system multi-threaded workloads.

2.4 Accurate x86 CPU timing model

There are three major goals that we set ourselves to achieve in this work.

• Validation against real hardware. Although the earlier work described
in the previous section demonstrated the accuracy of interval model-
ing and simulation, its validation was done compared to an academic
simulator. This is a good first step, however, it is unclear how ac-
curate the model is against real hardware. Prior work in simulator
validation has shown that it is extremely difficult to validate an aca-
demic simulator against real hardware [14]. This raises the question
whether a model that has been validated against a simulator is close
to real hardware.

• Validation for the prevalent x86 ISA. The earlier work in interval mod-
eling and simulation — alike many other modeling and simulation
efforts in computer architecture — focus on a RISC ISA that is rel-
atively easy to handle, namely Alpha. The question can be raised
whether this is sufficient given the prevalence of the x86 (and x86 64)
ISAs in contemporary computer systems. Moreover, given that we
target the simulation infrastructure at simulating computer systems
running real and unmodified software stacks, x86 is the ISA of choice.

• Fast and accurate simulation environment for running unmodified com-
mercial workloads. Finally and foremost, we wanted an accurate, fast
and easy-to-implement simulator that can run unmodified commer-
cial full-system workloads at scale in an affordable amount of time.
Although the COTSon simulation infrastructure fulfills most of these
requirements — it is fast and can run unmodified complex workloads
— the available CPU timing models are simple tutorial models.

The key idea that initiated this work was to integrate the interval model
as a CPU timing model into the COTSon infrastructure. This would solve

16 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

all three of the above challenges. It enables validation for the x86 ISA; it
enables validation against real hardware (given the predominance of x86
hardware); and it would possibly improve the accuracy of the COTSon in-
frastructure. The end result of this project is that we achieved all three
goals: the interval model based CPU timing model significantly improves
the accuracy of the COTSon simulation infrastructure compared to real
hardware running complex x86 workloads.

2.4.1 Modeling

Because the interval model is relatively easy to implement — which is one
of its key assets — its integration in COTSon was done quickly. We im-
plemented the interval model as a novel CPU timing model in COTSon in
about one engineer-month. This includes the interval model itself along
with a number of particularities that relate to x86 architectures. Subse-
quently, validation was done against real hardware, which took another
three engineer-months. This validation process was done against an AMD
Opteron server system (see the experimental setup section for more details)
and revealed several opportunities for improving the model. Building a
validated interval-based CPU timing model took four engineer-months in
total.

Compared to the interval model proposed in earlier work [7], the novel
interval-based CPU timing model includes the following novel features.

• Micro-operations. The interval-based CPU timing model breaks x86
instructions (macro-operations) into RISC-like micro-operations; this
break-up is done in a generic way: an x86 instruction is broken up in
one or more load micro-ops, followed by an arithmetic operation and
one or more store micro-ops. Our current implementation does not
include macro-op nor micro-op fusion, although this could be added
easily.

• x86 disassembly. We had to integrate an x86 disassembler as part of the
novel CPU timing model to enable micro-op formation and to deter-
mine an instruction’s type as well as its input and output operands.
x86 disassembly also involves register assignment and dependence
analysis to create data dependencies between the micro-ops. Note
that the integration of a disassembler into the timing model is a result
of the fact that the COTSon simulator leverages AMD’s proprietary
SimNow functional simulator which does not expose the instruction
type and operands to COTSon — if SimNow would communicate
disassembly information to COTSon, there would be no need to inte-
grate a disassembler in the timing model.

2.4. ACCURATE X86 CPU TIMING MODEL 17

• Hardware prefetching. All modern high-end processors implement
some form of hardware prefetching in order to hide memory access
latencies. Prior versions of the interval simulator did not include
hardware prefetching though. On par with the AMD Opteron pro-
cessor [12] that we validate against, the novel interval-based CPU
timing model implements hardware prefetching at multiple levels of
the memory hierarchies, namely at the core-level L1 data cache —
called the core prefetcher — and at the L3 cache level — called the
DRAM prefetcher. The core prefetcher is instruction pointer based;
the DRAM prefetcher initiates prefetches based on the observed L3
cache access patterns. Both prefetchers are stride-based.

• Overlapping miss events. Interval analysis assumes that only off-chip
memory accesses, i.e., last-level L3 cache misses, cause the reorder
buffer to fill up and stall dispatch; other misses such as L2 misses that
hit in L3 are assumed to be hidden through out-of-order execution.
We found this to be an invalid assumption for the real hardware we
validated against. Therefore, we consider L3 hits as another source
of miss events and we apply the overlap algorithm to L3 hits accord-
ingly, i.e., dispatch is assumed to block on an L3 hit, and independent
miss events further down the dynamic instruction stream that make it
into the reorder buffer simultaneously with the L3 hit, may (partially)
overlap with this L3 hit.

• Latency tuning. Interval analysis uses instruction latencies to de-
termine the length of the critical data dependence path through the
program, which in its turn is important to determine the effective dis-
patch rate in the absence of miss events. Unfortunately, instruction
execution latencies are poorly documented. We therefore considered
synthetically generated kernels to determine instruction latencies.
We used this procedure for determining the latencies of a number
of instruction types, such as integer divide and multiply operations,
floating-point operations, SSE operations, etc.

2.4.2 Validation against real hardware

The validation process against real hardware revealed many opportuni-
ties for improving the interval-based CPU timing model. Figure 2.3 shows
the progress during the validation process. The vertical axis shows the
absolute error between the simulator and the real hardware for a set of
micro-benchmarks (details follow later). For each intermediate version of
the timing model we show the average absolute error (diamond) as well as
its standard deviation (error bar).

18 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

Bas
eli

ne
Core

 pr
efe

tch
ing

Cac
he

 la
ten

cie
s

Ove
rla

p a
lgo

rith
m fo

r L
3 m

iss
es

Im
pro

ve
d e

ffe
cti

ve
 di

sp
atc

h r
ate

 co
mpu

tat
ion

More
 ag

gre
ss

ive
 co

re
pre

fet
ch

ing

Adju
ste

d i
ns

tru
cti

on
 la

ten
cie

s

Im
pro

ve
d m

icr
o-o

p b
rea

k-u
p

More
 ac

cu
rat

e f
etc

h s
tal

l c
on

dit
ion

s
DRAM pr

efe
tch

ing

0%
10%
20%
30%
40%
50%
60%
70%
80%

A
bs

ol
ut

e
er

ro
r

Figure 2.3: Validation process using the micro-benchmarks and syntheti-
cally generated kernels.

1. Baseline This implementation is based on the original interval simu-
lation implementation, the most important change is the move from
the Alpha ISA to the x86 64 ISA. Which includes the break-up of x86
instructions into micro-operations.

2. Core prefetching In this step we add a core prefetcher: this prefetcher
is executed on every load, independent of whether they miss and hit
in the L1 data cache. The core prefetcher contains a number of stride-
based prefetchers, indexed by the instruction pointer of the instruc-
tion that does the load.

3. Cache latencies Adjusted the latencies of a cache access to 1 cycle for
the level 1 cache, 8 cycles for level 2 cache and 14 cycles for level 3
cache.

4. Overlap algorithm for L3 misses The original interval simulation work
looks at 2 levels of caching. Since we are validating against a pro-
cessor with 3 levels of caching, we add logic to take the overlapping
effects of the L3 into account. While the original model only looks at
MLP effects for main memory accesses, we also determine the MLP
effects for L3 accesses.

5. Improved effective dispatch rate computation The original model did not
take the instruction fetch into account as a possible bottleneck. In this
step we introduced a resource window that keeps track of the num-
ber of instructions that are fetched in each cycle. When not enough

2.5. EXPERIMENTAL SETUP 19

resources are available to execute the instruction fetch, it is postponed
to the next cycle, effectively modeling the instruction fetch as a possi-
ble bottleneck.

6. More aggressive core prefetching The core prefetcher now fetches the
next 4 addresses instead of only 1 address.

7. Adjusted instruction latencies After step 6, the average latency drops
to 11.5% but the mul microbenchmark still shows an error of 24.8%.
Since the mul microbenchmark is relatively simple, the error can
only be explained by an incorrect latency for the multiply instruc-
tion. After changing the latencies for the load, multiply and store
micro-operations, the error for the mul benchmark decreased at the
cost of an increase in error for the other benchmarks. We are however
confident that this is a step in the right direction, because we are now
able to model the mul microbenchmark with higher accuracy.

8. Improved micro-op break-up We improve the micro-op break-up by sep-
arating registers that are used for calculating memory addresses from
registers that are used to store data. Moreover we also seperate the
registers that contain memory addresses that are read from regis-
ters that contain memory addresses that are written. The read ad-
dresses are required before any calculation can start, while the write
addresses are required after the execution of the instruction. Before
this step the execution of an instruction was waiting for all mem-
ory addresses to become available, this means that now the execution
of the instruction can start before the destination memory address is
known.

9. More accurate fetch stall conditions In this step we make sure that an
instruction cannot be executed before it is fetched, this constrained
was not explicitly checked before.

10. DRAM prefetching In the last step, we added a second prefetcher at
the memory controller level: only the L3 cache misses are provided
to this prefetcher. This prefetcher is also a stride-based prefetcher.

The steps above brought the average error down to 9.8% with a max
error of 19.8% (see the rightmost point in the graph).

2.5 Experimental setup

Hardware platform. The hardware platform that we validate against is
an AMD Opteron 2350 quad-core processor machine [12]. It implements
AMD’s K10 microarchitecture in a 65 nm technology at 2 GHz; each core

20 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

Micro-benchmarks
bsearch Binary search through a sorted array 10.5
dijkstra Compute shortest path using Dijkstra’s algorithm 8.8
div Compute the sum of quotients 0.8
dl1 Compute the sum across an array that fits in L1 12.1
fp Chain of dependent floating-point operations 1.8
memory Compute sum across a large array that does not fit in L3 8.0
mul Compute sum of products 7.2
qsort Quicksort algorithm on an array of random values 3.9

Compute-intensive benchmarks: PARSEC, BioPerf, MediaBench 2, SPECjbb
blackscholes Option pricing with Black-Scholes PDE 1.5
bodytrack Body tracking of a person 4.5
freqmine Frequent itemset mining 1.9
ferret Content similarity search server 11.7
streamcluster Online clustering of an input stream 4.8
raytrace Real-time raytracing 1.9
swaptions Pricing of a portfolio of swaptions 4.1
blastn Identification of similar nucleotide sequences in a database 0.1
blastp Identification of similar protein sequences in a database 1.5
ce Finds structural similarities between pairs of proteins 10.9
h264dec H.264 video decoding 3.1
h264enc H.264 video encoding 6.1
specjbb2005 SPEC’s benchmark for evaluating the Java server 4.3

performance. The benchmark models a wholesale company,
with warehouses that serve a number of districts.
Customers initiate new orders or request the status
of existing orders.

Server workload
nutch Nutch is an open source web-search framework 100 - 200

which builds on Lucene Java, adding web-specifics, such as a
crawler, a link-graph database, parsers for HTML and other
document formats. It uses a client machine to generate
search requests to the Nutch webserver and measures
response time and throughput at the client side.

Table 2.1: Benchmarks used in this study. The rightmost column show the
number of instructions executed (in billions of instructions).

is a 3-wide superscalar out-of-order architecture with a 72-entry reorder
buffer. The L1 caches are 64 KB in size; further it implements a per-core
512 KB L2 cache, and a shared 2 MB L3 cache along with an on-chip mem-
ory controller.

We repeated our real hardware measurements 15 times and we report
average performance numbers along with its confidence intervals. The
measurements were done on an idle machine, and time was measured us-
ing the Linux time command.

Benchmarks. Table 2.1 lists the benchmarks used in this study. We make
a distinction between micro-benchmarks, compute-intensive benchmarks
and server benchmarks. The micro-benchmarks stress specific aspects
of the architecture such as floating-point units, divide, core prefetching,
DRAM prefetching, etc. The compute-intensive benchmarks is a set of
benchmarks taken from a variety of sources such as PARSEC [15], BioP-

2.6. EVALUATION: ACCURACY VERSUS SPEED 21

erf [16], MediaBench II [17] and SPECjbb2005; the PARSEC benchmarks
are multi-threaded and model Recognition, Mining and Synthesis (RMS)
workloads. This set of benchmarks covers classes of workloads such as
data analytics, presentation, multimedia, gaming, etc. which are likely can-
didates to run in (future) computer systems. Finally, the server benchmark
is a Web 2.0 search engine workload called Nutch: a client sends search re-
quests to the Nutch server and measures the response time and throughput
at the client side.

2.6 Evaluation: accuracy versus speed

The evaluation of the interval-based CPU timer within COTSon is done
in a number of steps. We first focus on accuracy, and consider the micro-
benchmarks and the compute-intensive benchmarks. Subsequently, we fo-
cus on the speed versus accuracy trade-off while employing sampling.

Accuracy: micro-benchmarks and CPU-intensive benchmarks. Fig-
ure 2.4 compares the relative error for the interval-based timer against
real hardware execution using the micro-benchmarks when reporting sim-
ulated time in seconds. The average absolute error equals 9.8%. The
interval-based CPU timer is also accurate for the compute-intensive bench-
marks, see Figure 2.5. The average absolute error for the interval-based
timer equals 18.6% (max error of 41%). As mentioned before, the PAR-
SEC benchmarks are multi-threaded workloads, and we run up to four
threads, because the AMD Opteron machine that we compare against is a
quad-core processor. As we increase core count, we also increase the num-
ber of threads that co-execute, and these co-executing threads affect each
other’s performance through synchronization as well as through shared re-
sources (e.g., L3 cache, off-chip bandwidth, main memory). Interval-based
CPU modeling captures these interactions well. Note though that AMD’s
SimNow serializes the functional simulation of cores, which may lead to
different behavior seen during functional simulation than what would be
seen in a timing-directed simulator or on real hardware, e.g., a spin lock
loop may be iterated a different number of times in COTSon than on real
hardware — this is especially a concern for workloads with high con-
tention locks. Functional-directed simulation as implemented in COTSon
addresses this concern to some extent. The error numbers reported here
include this inaccuracy. One solution may be to more tightly couple the
speed of the functional simulator on the one side and the timing simulator
on the other side, however, doing so without compromising simulation
speed too much is an orthogonal issue that falls outside the scope of this
work.

22 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

Figure 2.4: Validation of the interval-based CPU timing model using micro-
benchmarks.

2.6. EVALUATION: ACCURACY VERSUS SPEED 23

Fi
gu

re
2.

5:
V

al
id

at
io

n
of

th
e

in
te

rv
al

-b
as

ed
C

PU
ti

m
in

g
m

od
el

us
in

g
a

su
it

e
of

co
m

pu
te

-i
nt

en
si

ve
be

nc
hm

ar
ks

fr
om

Bi
oP

er
f,

M
ed

ia
Be

nc
h

II
,P

A
R

SE
C

,a
nd

SP
EC

jb
b2

00
5.

24 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

Figure 2.6: Accuracy for three sampling strategies: (i) 1M warming and
100K instruction sampling units, (ii) 100K warming and 100K instruction
sampling units, and (iii) 100K warming and 10K instruction sampling units;
there are 100M instructions between the sampling units for all three strate-
gies.

Sampling: trading off speed versus accuracy. Running complex full-
system workloads — which is our ultimate goal — requires that very long
running workloads can be simulated in a reasonable amount of time. Our
interval-based CPU timing model achieves 350 KIPS (which is 38% slower
than the COTSon CPU timer which runs at 570 KIPS). Although this is
a reasonable simulation speed, it is not fast enough to simulate complex
workloads in an affordable amount of time. A well-founded technique for
speeding up simulation is sampling [18–20]. The idea behind sampling is
to simulate only a small fraction of the entire dynamic instruction stream in
detail and then extrapolate, i.e., by taking small sampling units randomly
or periodically one can get an accurate picture of the entire execution.
Since only a small fraction is simulated in detail, substantial speedups
are obtained. Figure 2.6 shows the accuracy for three sampling scenarios
— we explored more strategies during our work but they are not shown
here to improve readability — (i) 1M warming and 100K instruction sam-
pling units, (ii) 100K warming and 100K instruction sampling units, and
(iii) 100K warming and 10K instruction sampling units; there are 100M
instructions between the sampling units for all three strategies. Accuracy
improves with increasing sampling unit size and more warming. The 1M
warming and 100K sampling unit scenario achieves an average error of
23.1% and a simulation speed of 37 MIPS. Figure 2.7 shows the trade-off in
accuracy versus speed, and considers a number of sampling strategies. We
find the 100K sampling strategy (with one sampling unit every 100M in-
structions and 1M instructions of warming) to be a good trade-off in speed
versus accuracy, and we use this sampling strategy further.

2.7. CASE STUDY: SERVER WORKLOAD 25

MIPS

Av
er

ag
e

ab
so

lu
te

 e
rro

r 100
k-10

k

1M-
10k

100
k-10

0k

1M-
100

k
10M

-100
k

100
k-1M1M-

1M

10M
-10k

10M
-1M

Figure 2.7: Speed versus accuracy trade-off: the Pareto front is formed
through the dashed line. A sampling strategy A-B means A instructions
for warming and B instructions for the sampling unit. All sampling strate-
gies assume 100M instructions between sampling units.

2.7 Case study: Server workload

We now consider a more complex server workload, namely a Web 2.0
search engine application that is based on the Nutch platform. Nutch is
open-source web-search software, built on Lucene Java while adding vari-
ous Web specifics such as crawling, HTML parsing, a link-graph database,
etc. Our benchmark consists of a server holding the search database and
a variable number of clients that submit requests to the server; the server
is run on one COTSon simulation node, and the clients are run on another
one. Figures 2.8 and 2.9 show the response time and throughput on the
client side, respectively, for both the real hardware and COTSon (which
uses the interval-based CPU timer). The simulation is within 7.0% and
12.7% on average for response time and throughput, respectively. It is in-
teresting to observe that throughput increases up to 100 concurrent clients
with only modest increase in response time. Throughput decreases dra-
matically past 140 clients, with a highly variable transition phase between
100 and 140 clients. Software simulation captures this trend very well.

The real power of software simulation is that it allows for exploring
the microarchitecture and its effect on overall performance. Figure 2.10
shows a case study in which we consider three L3 cache sizes: 1 MB, 8 MB
and 32 MB. The response time for the Nutch benchmark decreases with
increasing cache sizes, and 1 MB seems to be sufficient for limited levels of
concurrency, whereas an 8 MB cache is clearly beneficial for larger numbers
of concurrent clients, and a 32 MB cache brings no further improvement.

26 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

Figure 2.8: Response time for the nutch benchmark.

Figure 2.9: Throughput for the nutch benchmark.

Figure 2.10: Microarchitecture study varying the cache size for the nutch
benchmark.

2.8. RELATED WORK 27

2.8 Related work

Execution-driven simulation. Mauer et al. [21] present a useful taxon-
omy for execution-driven simulation. Functional-first simulation lets a
functional simulator feed a trace of instructions into a timing simula-
tor, which may lead to loss in accuracy along mispredicted paths and
when simulating multi-threaded workloads. In timing-directed simula-
tion, functional simulation is driven by the timing simulator, i.e., the tim-
ing simulator directs the functional simulator when to change architecture
state. Timing-first simulation lets the timing simulator run ahead with
the functional simulator as a checker. COTSon [8] implements a so-called
functional-directed simulation paradigm: the functional simulator can run
ahead of the timing simulator, however its speed is periodically adjusted
by the timing simulator — functional-directed simulation could be viewed
as middle ground between functional-first and timing-directed simulation.

FPGA-accelerated simulation. Various research groups are focusing on
FPGA-accelerated simulation [22]. An FPGA-accelerated simulator ex-
ploits fine-grain parallelism and achieves high simulation speeds on the
order of tens of MIPS. A limitation of FPGA acceleration is that it may ex-
pand simulator development time because it requires modeling the target
architecture in a hardware description language such as Verilog, VHDL or
Bluespec. The software simulation approach presented in this work falls
within the same speed range, while being much easier to develop — four
engineer-months for the validated CPU timing model within the COTSon
infrastructure.

Simulator validation. Simulator validation is a non-trivial and tedious
endeavor. Desikan et al. [14] validated the detailed cycle-level sim-alpha
simulator against the Alpha 21264 processor. They were able to improve
the simulator to be within 2% compared to the real hardware for a set of
micro-benchmarks. However, when running real SPEC CPU benchmarks,
the average error was around 20%. The interval-based CPU timer proposed
in this work is a simulation model at a much higher level of abstraction
compared to sim-alpha, yet it is equally accurate for the CPU-intensive
workloads.

Sampling. Wenisch et al. [23] propose Flex Points as a way to increase
simulator performance for multi-threaded commercial workloads. Flex
Points are full simulator checkpoints (containing microarchitectural state
in caches, branch predictors, etc.) for each region of the benchmark that
needs to be simulated. This eliminates the need for functional warming

28 CHAPTER 2. ACCURATE FULL-SYSTEM SIMULATION

between the regions of interest.
Falcón et al. [24] propose a dynamic sampling approach that uses de-

tailed simulation for a small portion of each phase of the simulated ap-
plication and uses virtualization to skip the remainder of the phase. Vir-
tualization statistics such as code cache invalidations and code exceptions
are used to identify phase changes. This allows the authors to detect phase
changes during fast forwarding and thus eliminates the need for a profiling
run. This technique significantly speeds up simulations while introducing
only a small error. This technique can be used in conjunction with our in-
terval simulator.

More recent work. After this paper was published, our group kept on
working on fast but accurate architectural simulation, which resulted in
the Sniper [25] simulator. Sniper is built on the Graphite parallel simulation
infrastructure [26] and uses a validated interval simulation model. Unlike
our work which focused on commercial workloads and systems, Sniper
is targeted towards high-performance scientific computing workloads and
systems.

2.9 Conclusion

Simulation is an invaluable tool for contemporary system design. This
chapter presented a fast, accurate and validated interval-based CPU tim-
ing model that was easily implemented and integrated in the COTSon full-
system simulation infrastructure. The validation was done against an AMD
Opteron machine and showed that the simulator is within 20% compared to
real hardware for a set of compute-intensive workloads; the simulator was
also shown to be accurate for a non-trivial server workload. The end result
is a full-system software simulator that can run unmodified x86 workloads
at a speed in the tens of MIPS range.

Chapter 3

Fast Multi-Node Simulation

Whereas the previous chapter focused on simulating a single server, we now
present VSim, a novel simulation methodology for multi-server systems. VSim
leverages virtualization technology for simulating a target system on a host sys-
tem. VSim controls CPU, network and disk performance on the host, and it gives
the illusion of running on the target system to the software stack through time
dilation. VSim can simulate multiple targets per host and employs a distributed
simulation scheme across multiple hosts for simulations at scale.

3.1 Introduction

Simulation is a vital tool in contemporary experimental research and de-
velopment, both in hardware and software design. Because simulation
is so widely used for different purposes, there exists a whole range of
simulation techniques. Emulation or functional simulation is at one end
of the spectrum and models the functional aspects of a computer system
only. The simplest form of emulation is interpretation in which the sim-
ulator interprets one instruction at a time [27]. Dynamic translation can
significantly speed up simulation by caching previously translated instruc-
tions [28, 29]. Emulation does not produce timing information, and is most
useful to determine whether a design is functionally correct. At the other
end of the spectrum, cycle-accurate simulation models both the timing and
the functional aspects of a computer system at a very high level of de-
tail [13, 23, 30, 31]. Hence, accuracy is excellent but simulation speed is
problematic — industry-grade simulators typically incur a slowdown of
at least 5 or 6 orders of magnitude compared to native hardware execution.

Simulating servers, multi-server setups and datacenters is particularly
challenging, for a number of reasons. For one, simulating user-level bench-
marks, such as SPEC CPU, is unlikely to be representative for server work-
loads. Instead, one needs the ability to simulate a complete software stack

29

30 CHAPTER 3. FAST MULTI-NODE SIMULATION

including the operating system, (process) virtual machines, middleware,
application software, etc. In addition and related to this, simulating a
multi-server setup not only involves modeling CPU performance but also
network and disk activity. Further, the simulation technique needs to be
scalable: it requires the ability to scale out and simulate a large number
of nodes, and, if the goal is to use simulation to make design decisions, it
is crucial that one can simulate a future target system on a contemporary
host. Moreover, a developer may not have (frequent) access to a large num-
ber of host servers to run simulations. This implies the ability to simulate
large target systems on smaller host systems. Finally, simulation speed is
obviously a key property. Cycle-accurate simulation is clearly not the ap-
propriate approach for simulating multi-server systems. Instead, we need
fast simulation techniques that produce meaningful performance data in
a reasonable amount of time. Although we want high simulation speed
we do not want to compromise on accuracy too much. The purpose of
simulation is to steer decision making, hence the simulation data does not
necessarily need to be cycle-accurate, yet it should be accurate enough to
make good design decisions.

This chapter proposes VSim, a novel full-system simulation method-
ology that leverages virtualization technology to simulate multi-server se-
tups. VSim consists of a system virtual machine that runs on a host server
and controls CPU, network and disk performance as perceived by the soft-
ware, i.e., the software is given the illusion to run on a target system with
performance properties that differ (significantly) from the host. Virtualiza-
tion also enables simulating multiple target servers per host by running tar-
get servers as guest virtual machines. Distributed simulation across multi-
ple hosts enables simulation at scale.

The key contribution made in VSim is to enable full-system simulation
(including CPU, disk and network) using time dilation: VSim filters timer
interrupts delivered to the guests, making the time perceived by the guest
(simulated time) a fraction of the physical time on the host (simulation time
or wall clock time). At the same time, VSim schedules the guests at native
hardware speed on the host. This not only enables simulating multiple
target servers per host but it also enables controlling the performance per-
ceived by the guests. For example, by scheduling a guest for a longer pe-
riod of time on the host, one can model a higher performance target server,
i.e., the simulated target server gets more work done per unit of (simu-
lated) time. Next to controlling CPU performance, VSim also controls net-
work and disk bandwidth and latency: all network and disk requests pass
through VSim which controls their bandwidth and latency in simulated
time.

Our prototype implementation in Oracle’s VirtualBox demonstrates the
potential of the technique. We provide results showing that VSim can accu-

3.1. INTRODUCTION 31

rately model CPU, network and disk performance. In particular, we model
both high-end (AMD Opteron) and low-end (Intel Atom) target CPUs on
a mid-scale host system with an average error of 2.0%; we model 1 Gbit
and 100 Mbit target networks with an average error of 4.9%; and we model
SSD (Solid State Drive) and HDD (Hard Disk Drive) disks with average
errors of 3.3% and 5.5%, respectively (all errors are calculated versus real
hardware). When put together, VSim can simulate complete computer sys-
tems running complete software stacks with good accuracy. We demon-
strate this through a client-server setup running the Lucene search engine
which involves simulating a client and a server running an operating sys-
tem, Java virtual machine, network protocol stack and disk I/O (average er-
ror of 3.2%). We also consider case studies involving more complex setups,
including the Olio Web 2.0 benchmark running a Web server, file server
and database server, as well as a 25-server Hadoop workload setup. VSim
achieves good accuracy while incurring a simulation slowdown of one or-
der of magnitude only compared to native hardware execution. Moreover,
VSim can simulate multiple target servers per host server (up to five target
servers per host server in our current setup with an average error below
5%).

Given that VSim can simulate large systems on smaller systems with
good accuracy at good speed while running complete software stacks, we
believe that VSim is a promising approach towards simulating systems at
scale. Moreover, VSim is complementary to other simulation paradigms,
i.e., whereas cycle-accurate simulation remains an important tool in the
computer designer’s toolbox for making detailed microarchitecture design
decisions, VSim is a more appropriate tool for making system-level de-
sign decisions in multi-server setups. Finally, both software developers
and system architects can benefit from VSim. Software developers can use
VSim to evaluate software optimizations and tune their software before de-
ployment on a target system. System architects can use VSim to evaluate
server design trade-offs and make system-level design decisions. Service
providers can potentially use VSim to find performance bottlenecks in ex-
isting systems: they can deploy an existing software stack on a VSim sim-
ulation model and then vary both hardware and software parameters to
identify performance issues.

This chapter is organized as follows. Section 3.2 presents and describes
the VSim simulation paradigm in detail. Section 3.3 then elaborates on the
experimental setup which we use to evaluate VSim in Section 3.4. Finally,
we describe related work (Section 3.5), and we conclude (Section 3.6).

32 CHAPTER 3. FAST MULTI-NODE SIMULATION

3.2 VSim

VSim models a target computer system by running a modified virtualiza-
tion layer on top of a host computer system. The virtualization layer gives
the illusion to the software stack to run on the target computer system.
The target computer system could be an existing or a future computer sys-
tem that runs a complete software stack. The simulation is done through a
virtualization layer, VSim, which is run on top of a host, and the target soft-
ware stack is run on top of the virtualization layer. The host system is likely
to be different from the target system, e.g., it is potentially smaller in size
(e.g., has fewer servers, fewer disks, etc.). VSim is a modified system vir-
tual machine that controls the performance observed by the software stack,
i.e., the software stack is given the illusion to run on the target system.

3.2.1 General concept

VSim is built on the notion of the timer interrupt. In order to understand
how this is done, we first briefly revisit the purpose of the timer interrupt in
a computer system. The hardware periodically generates timer interrupts
and the timer interrupt handler keeps track of time by counting the number
of timer interrupts. System software (operating system, hypervisor, virtual
machine monitor) uses the timer interrupts to drive the scheduling of pro-
cesses on the hardware. In other words, the software stack observes phys-
ical time, i.e., the software stack receives and handles all timer interrupts
delivered by the hardware.

The key idea of time dilation is to let VSim manipulate the timer inter-
rupt mechanism on the host system such that the software stack is given
the illusion to run on a different system, namely the target system. VSim
receives the timer interrupts and sees simulation time (i.e., physical time
on the host), and does the following three actions: (i) it limits the amount
of simulation time given to the software stack (i.e., it schedules the soft-
ware stack for only a fraction of the simulation time), (ii) it measures the
overhead due to virtualization, and (iii) it filters the timer interrupts given
to the software stack. Other timing sources for the operating system in the
host system, such as HPET and RDTSC, are dilated in the same way as
the timer interrupts. The combination of these actions makes the software
stack believe that it runs as fast as on the target system because it performs
the same amount of work over the same simulated time period.

Figure 3.1 illustrates this for simulating a single server. Whereas on
the target system the software stack receives all the physical timer inter-
rupts, on the simulated system, the software stack receives only a fraction
of the timer interrupts. In this example, VSim filters one out of two timer
interrupts and it schedules the target for a simulation window per simulation

3.2. VSIM 33

target system

physical time on target system

simulated system

simulation time =
physical time on host system

VSim

simulated time

simulation quantum
simulation window

run

virtualization overhead

sleep

Figure 3.1: Simulating one server in VSim.

34 CHAPTER 3. FAST MULTI-NODE SIMULATION

target system

physical time on target system

simulated system

simulation time =
physical time on host system

VSim

simulated time

server A

server B

server B

server A

Figure 3.2: Simulating multiple servers on a single host server in VSim.

quantum. In other words, VSim schedules the target on the host during the
simulation window and then puts the target to sleep until the next sim-
ulation quantum. VSim schedules the software stack on the host system
such that the simulated system gets as much work done on average per
unit of time as the target system: e.g., the physical target system gets a unit
of work done in 4 (physical) time units (see Figure 3.1 on the top) and the
simulated target system also gets a unit of work done in 4 (simulated) time
units (see Figure 3.1 at the bottom). When the software stack is scheduled
to run on the host machine it runs at the host’s native speed, but the time
progress given to the software stack is the simulated time, not the physical
time on the host machine. The virtualization layer also measures its own
overhead which it does not include when computing simulated time. The
slowdown during simulation is the ratio of the simulated time divided by
the simulation time, or 2× in this example.

We can employ this approach for simulating multiple target servers on
a single host server; Figure 3.2 illustrates this for two servers. Referring
back to Figure 3.1, because of the virtualization layer overhead, we cannot
run two target servers on a single host at a simulation slowdown of 2×

3.2. VSIM 35

compared to native target execution, i.e., we cannot schedule units of work
for both target systems within a simulation quantum. We therefore target a
simulation slowdown of 3× here in this example and filter one timer inter-
rupt every three physical timer interrupts, see Figure 3.2, i.e., we prolong
the simulation quantum.

These general concepts immediately illustrate the power of VSim. It
enables simulating multiple servers running complete software stacks at
high speed on a single server. By manipulating the simulated time, one
can model different server configurations and study its impact on overall
system performance. For example, one can model a faster CPU by filter-
ing out more timer interrupts (i.e., the software stack is given the illusion
that it gets more work done per unit of time); or, one can model different
network latency and bandwidth properties by controlling the latency and
bandwidth of the packets as they traverse the VSim virtualization layer; or,
one can model different disk configurations by controlling the latency and
bandwidth of disk accesses by the VSim virtualization layer. We now de-
scribe in more detail how we model CPU, network and disk performance
in VSim.

3.2.2 CPU simulation

Modeling CPU performance can be done following two approaches, see
also Figure 3.3. The first approach keeps the timer interrupt filtering con-
stant (e.g., VSim filters one out of two timer interrupts) and adjusts the
amount of work done per simulation quantum. The second approach,
which is dual to the first one, is to keep the amount of work done per simu-
lation quantum constant and to adjust the timer interrupt filtering by VSim.
In Figure 3.3, both approaches model a target system with a target perfor-
mance of 1.5 relative to the baseline system shown in Figure 3.1. Approach
#1 performs 6 units of work per 4 simulated time units, and approach #2
performs 4.5 units of work per 3 simulated time units.

Both approaches are in essence the same, however, we opt for approach
#1 in VSim because if one is to simulate a heterogeneous system consisting
of multiple servers with different relative speeds, approach #1 naturally
keeps simulated time synchronized among the simulated servers. In ap-
proach #1, heterogeneity is modeled by executing different units of work
per simulation quantum, i.e., VSim would execute more units of work per
simulation quantum for a high-performance server as compared to a less
powerful server. In approach #2 on the other hand, VSim would keep the
amount of work done constant per server per simulation quantum and
would filter out more timer interrupts for the high-end server than for the
low-end server. As a result, time would progress faster for the high-end
server than for the low-end server, and thus, time would diverge on the

36 CHAPTER 3. FAST MULTI-NODE SIMULATION

Approach #2 for CPU simulation

simulation time =
physical time on host system

VSim

simulated time
= variable

Approach #1 for CPU simulation

simulation time =
physical time on host system

VSim

simulated time
= fixed

variable
quantum

fixed
quantum

Figure 3.3: Two approaches for CPU simulation.

3.2. VSIM 37

target server A target server B

VSim VSim

control bandwidth
at sender side

control bandwidth and latency
at receiver side

target server C

VSim

target server D

VSim
target server E

VSim

Figure 3.4: Network simulation in VSim.

simulated servers, and a mechanism would need to be put in place to syn-
chronize time among the simulated servers. Approach #1 does not need
such a synchronization mechanism.

Our current implementation of VSim requires its users to specify the
speed of the target system relative to the host system. For example, if one
wants to simulate a particular workload on a target server that achieves
twice the performance of the host server, VSim will execute two units of
work per simulation quantum, following approach #1. The relative speed
between the target system and host system is workload-dependent. For
example, the relative performance difference between a high-end processor
and a low-end processor is likely to be different (i.e., smaller) for a memory-
intensive workload compared to a compute-intensive workload.

One potential avenue for future work could be to leverage performance
counters on the host and build performance models that estimate target
performance based on host performance counter values. This would elim-
inate the need for offline profiling to determine relative host/guest perfor-
mance, and it would enable accounting for an application’s time-varying
execution behavior.

38 CHAPTER 3. FAST MULTI-NODE SIMULATION

3.2.3 Network simulation

In order to be able to simulate a target network configuration on a host
network, one needs the ability to control network bandwidth and latency.
VSim does this by intercepting all network I/O and by manipulating band-
width and latency. Figure 3.4 illustrates this. At the sender side, VSim con-
trols the outgoing network bandwidth. This is done by keeping a buffer in
VSim that holds all the outgoing network packets and sends out the pack-
ets at the bandwidth of the target network link. At the receiver side, VSim
accepts all the incoming packets and holds them temporarily in a buffer.
VSim delivers the packets to the target software stack at the rate deter-
mined by the target NIC bandwidth. When to deliver the packets to the
target software stack is determined by the network latency. This is done
through a table lookup based on the packet’s sender IP address. Adjusting
the sender-to-receiver network latency enables modeling different network
topologies, e.g., different latencies need to be set for mesh, ring and tree
networks. Other network topologies and policies can be modeled as well,
including QoS-aware policies with specific bandwidth and latency proper-
ties between specific nodes in the network, and/or bandwidth and latency
properties that depend on packet priority.

3.2.4 Disk simulation

Figure 3.5 illustrates how we simulate disk I/O in VSim. On a target sys-
tem, the CPU sends the disk request. A DMA transfer is then initiated
to copy the data between disk and main memory, and the CPU resumes
doing useful work. In the simulated system, VSim intercepts the disk re-
quest, the DMA transfer is initiated and the CPU is stopped (i.e., VSim no
longer schedules units of work and simulated time is stopped for the target
CPU). When the DMA transfer is completed, the disk sends an interrupt
to the CPU, which is intercepted by VSim. The interrupt is held back by
VSim. VSim reschedules the target CPU which can then perform useful
work and advance simulated time. The amount of work done by the target
CPU (also the time during which the interrupt is held back) is determined
by the latency of the (simulated) disk operation. The disk operation latency
is determined by whether the disk operation is a read or write, the size of
the disk request (how many blocks need to be written or read), the offset
on the disk, and the disk status. VSim signals to the target CPU when the
disk operation has been completed, and delivers the interrupt.

The reason for stopping the CPU while sending the disk request to the
disk on the host, is to be able to simulate an SSD target disk on an HDD
host disk. An SSD disk features shorter latencies, hence, stopping the CPU
while the host disk fetches the data and rescheduling the CPU for a period

3.2. VSIM 39

CPU disk

CPU can do
useful work

CPU disk

CPU can do
useful work

VSim
disk request

int

int

int

CPU stops
doing useful

work

target system simulated system

disk request

Figure 3.5: Disk simulation in VSim.

of time equal to the access latency of the target disk is the only way one can
simulate a fast disk on a slow one.

Stopping the CPU upon a disk I/O request has its implications for
keeping the various simulated servers synchronized, i.e., simulated time
is stopped for CPUs that perform disk I/O while simulated time advances
for the other CPUs. Without appropriate counteractions, this would cause
simulated time to diverge across the simulated servers. VSim accounts
for this by keeping track of how long a CPU is stopped while performing
the physical disk access on the host server. At the end of the simulation
quantum, the CPUs that did not perform disk I/O are stopped to allow for
the CPUs that did perform disk I/O to catch up.

3.2.5 Synchronizing across host servers

So far, we were concerned with simulating multiple target servers on a sin-
gle host server, and we already dealt with the issue of synchronizing sim-
ulated time across the simulated target servers in this setting. However,
eventually, the goal is to simulate a multitude of target servers on a num-
ber of host servers. This brings in the difficulty of synchronizing simulated
time across the various host servers. This is the classical simulated time
synchronization problem in parallel discrete event simulation (PDES) [32].

40 CHAPTER 3. FAST MULTI-NODE SIMULATION

There exist a number of approaches for how to deal with this synchro-
nization problem in distributed simulation. One approach is to synchronize
at each simulation quantum [33], i.e., all the simulated servers (on the vari-
ous hosts) need to reach the end of the simulation quantum before simula-
tion is started for the next quantum. While this would yield high accuracy,
it is likely to have an impact on simulation speed which is bounded by the
slowest simulated server. At the opposite side of the spectrum, lax synchro-
nization does not synchronize between the simulated servers and lets all
simulated servers run freely. Between these two opposite ends of the spec-
trum one can imagine different policies [26,34,35], e.g., synchronize every n
simulation quanta, or track the delta in simulated time between the various
simulated servers and hold simulated servers for which this delta exceeds
a specified threshold. VSim currently implements lax synchronization, but
other synchronization mechanisms that balance simulation accuracy and
speed can be implemented as well.

3.2.6 Strengths

VSim has a number of strengths.

• VSim can simulate different multi-server architectures by varying
CPU, network and disk performance. The architecture parameters
that can be varied are the number of CPUs, CPU performance, net-
work bandwidth and latency, and disk latency. VSim can also be used
to model heterogeneous system architectures with different types of
CPUs, disks, and network topologies and configurations.

• VSim can simulate entire software stacks. VSim is implemented in a
system virtual machine — either a hosted virtual machine or a hyper-
visor — hence, it runs an unmodified operating system and a com-
plete application stack on top of it, including virtual machines, mid-
dleware, application servers, etc.

• VSim can simulate a large target system on a small host system,
i.e., VSim simulates multiple target servers on a single host server
through multiplexing.

• VSim exploits multi-threaded parallelism in the host server: simulat-
ing multiple target servers is parallelized on the host server by run-
ning each core of the target servers on the different cores and/or SMT
hardware threads on the host.

• VSim is a scalable simulation approach and allows for simulating
multi-server setups on a smaller number of host servers. In other
words, VSim is a distributed simulation approach and time is syn-
chronized across the various simulated servers.

3.3. EXPERIMENTAL SETUP 41

• VSim runs at near native hardware speed. Simulation speed is lim-
ited by the number of target servers one wants to simulate per host
server and the virtualization overhead. In our setup, the simulation
slowdown of VSim is limited to one order of magnitude (10×) rela-
tive to native hardware execution while being able to simulate up to
5 target machines per host machine.

3.2.7 Limitations

In spite of the important strengths mentioned above, VSim also has some
limitations.

• VSim’s scalability is limited by the amount of physical memory in the
simulation host. VSim needs to keep track of the memory state for all
the target servers that it simulates per host server. This limitation can
be overcome by adding more main memory to the host. Or, in addi-
tion, memory page sharing among the guests (the simulated servers)
can lower memory pressure on the host server [36].

• For a given workload, the performance of the guest server is modeled
as a fixed factor of the host platform’s performance. Determining rel-
ative guest/host performance is done offline. However, as mentioned
before, one could leverage performance counters on the host to pre-
dict target performance in an online fashion, which would also enable
modeling time-varying workload behavior; this is an interesting av-
enue for future work.

• Processor and memory subsystem performance is modeled as a single
performance factor. By using hardware performance counters and
an online performance model, as mentioned above, one could more
accurately determine the impact of CPU and memory performance;
again, we leave this for future work.

• VSim does not provide enough detail for performing detailed mi-
croarchitecture simulations. Instead, VSim’s key feature is to simulate
and provide insight in the scaling behavior of multi-server workloads
running on (potentially heterogeneous) multi-server setups.

3.3 Experimental Setup

3.3.1 VSim implementation and configuration

We implemented a VSim prototype in VirtualBox v3.1.2. VirtualBox is a
hosted system virtual machine — a hosted VM runs on top of an operating

42 CHAPTER 3. FAST MULTI-NODE SIMULATION

Intel Atom AMD Opteron 2212 AMD Operton 2350
Core type in-order out-of-order out-of-order
cores 2 2 4
Frequency 1.6 Ghz 2 Ghz 2 Ghz
L1 cache 56 KB private 128 KB private 128 KB private
L2 cache 512 KB private 1 MB private 512 KB private
L3 cache — — 2 MB shared

Table 3.1: CPUs considered in the evaluation.

HDD Western Digital Caviar Blue 500 GB, SATA 3 Gb/s
16 MB cache, 7200 rpm

IOzone: sequential read 29.6 MB/s, random read 0.6 MB/s
sequential write 27.6 MB/s, random write 0.3 MB/s

SSD Intel X25-M 80 GB, SATA 3 Gb/s
IOzone: sequential read 36.6 MB/s, random read 16.7 MB/s

sequential write 30 MB/s, random write 28.5 MB/s

Table 3.2: The SSD and HDD disks considered in the evaluation along with
their properties according to IOzone.

system in contrast to a hypervisor or virtual machine monitor which runs
on bare metal. We set the simulation window to 10 ms and the simulation
quantum to 100 ms in all of our experiments. We experimentally evaluated
different values for the simulation window and quantum, and we found
the above values to be effective. This setting yields a 10× simulation slow-
down compared to native hardware execution in all of our experiments.

3.3.2 Hardware platforms

We consider three CPUs: Intel Atom 330, AMD Opteron 2212 and AMD
Opteron 2350. These machines have vastly different properties as shown
in Table 3.1. The Intel Atom processor is a dual-core multi-threaded in-
order processor [37] whereas the AMD Opteron processors are multicore
out-of-order processors. The AMD Opteron machines both implement the
K10 microarchitecture [12] but their multicore architecture differs: the 2212
features two cores and private 1 MB L2 caches, and the 2350 features 4 cores
with private 512 KB L2 caches and a shared 2 MB L3 cache.

We consider two disk types in our evaluation, a hard disk drive (HDD)
and a solid state disk (SSD), see Table 3.2. The HDD and SSD differ substan-
tially in terms of their properties. We quantify the various disk parameters,
such as sequential read/write bandwidth and random read/write band-
width, using IOzone which is a filesystem I/O benchmark [38].

3.4. EVALUATION 43

Benchmark Suite Description
blackscholes PARSEC Option pricing with Black-Scholes PDE
blastp BioPerf Identification of similar protein sequences in a database
bodytrack PARSEC Body tracking of a person
ce BioPerf Finds structural similarities between pairs of proteins
ferret PARSEC Content similarity search server
freqmine PARSEC Frequent itemset mining
h264dec MediaBench II H.264 video decoding
h264enc MediaBench II H.264 video encoding
raytrace PARSEC Real-time raytracing
specjbb2005 SPECjbb Evaluates Java server performance.
streamcluster PARSEC Solves online clustering problem
swaptions PARSEC Pricing of a portfolio of swaptions

Table 3.3: CPU benchmarks used in this study.

3.3.3 CPU benchmarks

Table 3.3 lists the CPU benchmarks used in this study. They are taken from
a variety of sources such as PARSEC [15], BioPerf [16], MediaBench II [17]
and SPECjbb2005; the PARSEC benchmarks are multi-threaded and model
Recognition, Mining and Synthesis (RMS) workloads.

The target servers (as well as the simulated servers) run the Ubuntu 9.04
server operating system. The Java virtual machine involved in some of our
workloads is the Sun JRE6.

3.4 Evaluation

We now validate and evaluate VSim. This is done in a number of steps.
We first validate VSim against real hardware and we consider the various
subcomponents in isolation: CPU, network and disk. Subsequently, we put
it together and validate VSim for simulating a client-server setup including
CPU, network and disk. Finally, we demonstrate the utility of VSim for
exploring the system architecture of a multi-tier Web 2.0 server application
along with a 25-server Hadoop workload setup. For all of our experiments
we do 20 runs (both on hardware and within the VSim simulator), and we
report 99% confidence intervals.

3.4.1 CPU validation

We first focus on validating the CPU model in VSim. We consider two
target servers, the Intel Atom machine and the AMD Opteron 2350 server;
the host server in all of our experiments is the AMD Opteron 2212 with
HDD.

44 CHAPTER 3. FAST MULTI-NODE SIMULATION

bl
ac

ks
ch

ol
es

bl
as

tp

bo
d

yt
ra

ck ce

fe
rr

et

fr
eq

m
in

e

h2
6

4d
ec

h2
6

4e
nc

ra
yt

ra
ce

sp
ec

jb
b2

00
5

st
re

am
cl

us
te

r

sw
ap

tio
ns

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3 Target Intel Atom VSim
N

o
rm

al
iz

ed
 e

xe
cu

tio
n

 ti
m

e

Figure 3.6: Validation of the CPU model of the Intel Atom target on the
AMD Opteron 2212 host.

Validation

In these experiments we first run the benchmarks on the target processors
and the host processor, and we determine the performance of the target
processor relative to the host processor. All benchmarks run a single thread
for now; we consider multi-threaded runs later. We clustered the bench-
marks into three groups according to their relative performance. There are
three groups for the Intel Atom target: 60% performance relative to the
AMD Opteron 2212 host (or 40% worse performance on the Intel Atom
compared to the AMD Opteron 2212; this cluster includes ferret), 30% rela-
tive performance (includes blastp and swaptions), and 40% relative perfor-
mance (includes all the other benchmarks); similarly, there are three groups
for the AMD Opteron 2350 target: 170% relative performance (70% better
performance; includes ferret and streamcluster), 130% relative performance
(includes ce and SPECjbb), and 100% (same performance; includes all the
other benchmarks)1. We refer to these clusters as the ‘target Intel Atom’
and the ‘target AMD Opteron 2350’, respectively, as this is the target per-
formance VSim should model. We then run each of the benchmarks in
VSim on the host server, and we set the performance target according to the
above performance targets, e.g., the ferret benchmark is run at a 60% and

1Classifying benchmarks into three clusters introduces an average error of 7.6% and a
maximum error of 26.8% for blastp on the Intel Atom, and an average error of 5.3% and
a maximum error of 11.7% on the AMD Opteron 2350. These errors are a result of the
clustering, and not VSim.

3.4. EVALUATION 45

bl
ac

ks
ch

ol
es

bl
as

tp

bo
d

yt
ra

ck ce

fe
rr

et

fr
eq

m
in

e

h2
6

4d
ec

h2
6

4e
nc

ra
yt

ra
ce

sp
ec

jb
b2

00
5

st
re

am
cl

us
te

r

sw
ap

tio
ns

0.8

0.9

1

1.1

1.2

1.3 Target AMD Opteron VSim
N

o
rm

al
iz

ed
 e

xe
cu

tio
n

 ti
m

e

Figure 3.7: Validation of the CPU model of AMD Opteron 2350 target on
the AMD Opteron 2212 host.

170% performance target when simulating the Intel Atom and the AMD
Opteron 2350, respectively. We then report simulated time and compare
against the target performance numbers.

The results of this validation experiment are shown in Figures 3.6
and 3.7 for the Intel Atom and AMD Opteron 2350, respectively. These
graphs report normalized execution time for the two target platforms, and
the simulated execution time by VSim. The ideal target execution time
falls within the confidence intervals of the simulated execution times for all
benchmarks, with an average error of 2.85% and 1.20% for the Intel Atom
and AMD Opteron, respectively. These results demonstrate VSim’s ability
to accurately model CPU performance.

Scalability

The above experiments simulated a single target on a single host. We now
evaluate VSim’s scalability in terms of how many targets VSim can simu-
late on a single host with good accuracy. Figure 3.8 shows the average ex-
ecution time across all benchmarks when simulating multiple targets nor-
malized to simulating a single target, i.e., we run multiple copies of the
same target on a single host and compute the average execution time re-
ported by VSim across the targets; we then normalize against the execu-
tion time for a single target, and we then report the average across all of
the benchmarks. The error remains small (less than 5%) for an increasing

46 CHAPTER 3. FAST MULTI-NODE SIMULATION

1 Target 3 Targets 5 Targets 7 Targets
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Figure 3.8: Evaluating VSim scalability in terms of simulating multiple tar-
gets per host.

number of targets, up to 5 targets. The error increases to almost 20% for
7 targets. The reason for this increase is that VirtualBox (in which VSim is
currently implemented) is a hosted virtual machine. This implies that VSim
is not in control when it comes to scheduling the target server simulations;
instead, the underlying operating system is. As a result, the operating sys-
tem may dynamically change the order of the target simulations, and target
simulations may need to wait before being rescheduled. The waiting time
however is viewed by VSim as sleep time. Hence, the actual simulated
execution time may diverge from what is perceived by VSim, and hence
simulation errors are introduced. If VSim were in control of scheduling its
target simulations — e.g., if VSim were implemented in a hypervisor — it
is likely to expect that VSim will scale further beyond 5 targets per host.
The maximum number of simulated targets is 10 given the 10 ms simula-
tion window versus 100 ms simulation quantum settings, and can only be
achieved if VSim’s virtualization overhead is very small.

Multi-threaded workloads

Figure 3.9 shows results for the multi-threaded benchmarks in our bench-
mark suite, with each benchmark running four threads. We model the
AMD Opteron 2350 as the target on the AMD Opteron 2212 host. We con-
sider two versions of VSim here. The first version, called ‘VSim’ in Fig-
ure 3.9, does not synchronize the scheduling of the threads, i.e., this im-
plies that threads may be scheduled in subsequent simulation quanta. The
second version on the other hand, called ‘VSim + synchronization’ in Fig-
ure 3.9, synchronizes thread scheduling: it co-schedules the threads on sep-

3.4. EVALUATION 47

!"#$%

&'()*%+

,-,% ,-,. ,-%. ,-,% ,-/0

,-,+ ,-,1 ,-.1 ,-,. ,-1/

!"#$% %-.2 /-3+ 1-.1 /-.1 %.-+.

!"#$*4*"56789:6#;'<#:6 %-.2 /-30 1-3 /-.1 %.-%+

%-+ /-1 1-%2 /-+/ %.-.=

%-+= /-02 1-1= /-+/ %.-.3

%-+ /-+2 1-13 /-.0 %.-%/

&'()*+(%-+% /-3% 1-0+ /-.2 %.-/2

,-,+ ,-,= ,-/3 ,-,. ,-%+

,-%% ,-/. ,-1. ,-,2 ,-+%

%%-=2> %,-+=> %,-%1> 2-,0> /-2,>

,-)$*.#/(0 1())(2

?@A*BC<)9:6 % % % % %

!"#$ %-,. %-.2 %-,, %-,+ %-,%

!"#$*4*"56789:6#;'<#:6 %-%/ %-%, %-%, %-,2 %-,.

D99:9*E'9*BC<)9:6 ,-,+ ,-,. ,-%0 ,-,/ ,-,%

D99:9*E'9*!"#$,-,1 ,-%2 ,-/0 ,-,+ ,-,=

D99:9*E'9*!"#$*4*"56789:6#;'<#:6 ,-,2 ,-% ,-%% ,-,+ ,-,.

320('

44567-81

320('

44567-81

9.*:;":<-.(" 9-0=2)*:; 1)(>$#8()*=2)*:(

EF'7GH78:F)H E:I5<9'7G J)99)< J9)K$#6) 9'5<9'7) H<9)'$7FLH<)9 HM'C<#:6H

,-,,

,-/0

,-0,

,-10

%-,,

%-/0

%-0,

%-10

/-,, ?@A*BC<)9:6 !"#$!"#$*4*"56789:6#;'<#:6

N
:
9$
'
F#;
)
I
*)
O)
7L
<#:
6
*<
#$
)

4.23

Figure 3.9: CPU validation for multi-threaded workloads.

arate cores in the same simulation quantum. We observe good accuracy for
all benchmarks when co-scheduling the threads. When not synchronizing
thread scheduling, we observe large errors for one benchmark, streamclus-
ter, because of its lock-intensiveness: timing-sensitive behavior at a gran-
ularity smaller than the simulation quantum is unlikely to be accurately
modeled because a lock held by a thread upon the end of a simulation
window will be held until the next simulation quantum, which prevents
other contending threads from making progress. This problem is overcome
by co-scheduling lock-intensive threads, see the ‘VSim + synchronization’
bars in Figure 3.9.

3.4.2 Network validation

We now validate the network simulation approach in VSim. We consider
a 1 Gbit host network and model 1 Gbit and 100 Mbit target networks at a
simulation slowdown of 10×. The workload considered here is ftp which
transfers an 800 MB file between two servers. We report throughput in
Megabytes per second and validate the simulation results against real hard-
ware, see Figure 3.10. The throughput numbers reported by VSim very
closely match the throughput numbers obtained on real hardware for both
the 100 Mbit and 1 Gbit target networks: the real numbers fall within the
confidence interval obtained through simulation. We obtain an average
error of 4.4% and a maximum error of 15% for the 1 Gbit network, and an
average error of 3.6% and a maximum error of 6% for the 100 Mbit network.

48 CHAPTER 3. FAST MULTI-NODE SIMULATION

1GBit 100Mbit
0

20

40

60

80

100

120 Hardware VSim

T
hr

ou
gh

pu
t (

M
b/

s)

Figure 3.10: Network validation.

S
eq

ue
nt

ia
l

S
tr

id
e

2

S
tr

id
e

8

S
tr

id
e

64

R
a

nd
om

S
eq

ue
nt

ia
l

R
a

nd
om

0

10000

20000

30000

40000 HDD VSim

T
hr

ou
gh

pu
t (

K
B

/s
)

Read Write

Figure 3.11: Disk HDD validation.

3.4. EVALUATION 49

S
eq

ue
nt

ia
l

S
tr

id
e

2

S
tr

id
e

8

S
tr

id
e

64

R
a

nd
om

S
eq

ue
nt

ia
l

R
a

nd
om

0

10000

20000

30000

40000 SSD VSim

T
hr

ou
gh

pu
t (

K
B

/s
)

Read Write

Figure 3.12: Disk SSD validation.

3.4.3 Disk validation

Figures 3.11 and 3.12 validate the disk models in VSim for the HDD and
SSD, respectively, using the IOzone filesystem benchmark2; the HDD is the
host. We make a distinction between reading and writing the disk, and we
consider different disk access patterns: sequential, strided and random. Se-
quential access means accessing subsequent 4 KB blocks; strided access of
2 means accessing every other 4 KB block on disk; etc. VSim’s accuracy is
good: the real hardware measurements always fall within the confidence
intervals of the simulation. VSim is able to accurately model the disk la-
tency difference between HDD and SSD. We report an average error of 3%
and maximum error of 6% for SSD, and an average error of 5% and max-
imum error of 10.7% for HDD. SSD achieves higher disk bandwidth for
sequential reads, big strided reads (64 blocks), as well as random reads and
writes; HDD achieves a higher throughput for 2-strided reads compared to
SSD. VSim tracks these differences in disk throughput accurately compared
to real hardware.

3.4.4 Lucene indexing benchmark

Now that we have validated all of the VSim subcomponents, we are ready
to put everything together and evaluate VSim’s accuracy while considering
CPU, network and disk. We consider a text search engine written in Java,
called Lucene, and we consider two experiments. In the first experiment,

2http://www.iozone.org/

50 CHAPTER 3. FAST MULTI-NODE SIMULATION

Memory SSD HDD
0

5

10

15

20

25

30

35 Hardware VSim

E
xe

cu
tio

n
tim

e
(s

)

Figure 3.13: Lucene index building on 10,000 Wikipedia documents held in
memory, SSD and HDD.

Hardware VSim
0

200

400

600

800

1000

1200

Q
u
er
ie
s/
se
co
n
d

Figure 3.14: A client-server setup with a client modeling multiple concur-
rent users querying the Lucene index stored on the server.

3.4. EVALUATION 51

Lucene builds up an index for 10,000 Wikipedia documents and we com-
pare three scenarios: the Wikipedia documents are held in (i) main memory,
(ii) SSD and (iii) HDD. Figure 3.13 compares the simulated execution time
using VSim run on the AMD Opteron 2212 (the host, with HDD) — note
the entire system, including CPU, network and disk, is simulated — against
the execution time on the AMD Opteron 2350 (the target). We report an av-
erage error of 2.2% and a maximum error of 4.2%. The confidence intervals
for the simulation and real hardware execution times overlap.

In the second experiment we consider a client-server setup. The client
simulates a number of concurrent users sending queries to the Lucene in-
dex stored on the server. We use siege as a stress test on the client side; the
clients send requests to the server with zero think time. The client is run on
the AMD Opteron 2212 and the server is run on the AMD Opteron 2350;
further, the Lucene index is stored on HDD, and the client and server are
connected through a 1 Gbit network. VSim simulates the client and server
machines on a single host machine (the AMD Opteron 2212). Figure 3.14
compares VSim against the hardware experiment. Again, VSim is accu-
rate compared to real hardware as the confidence intervals overlap with an
average error of 4.2% (maximum error of 14%).

3.4.5 Case study #1: Olio Web 2.0

As a case study to illustrate VSim’s utility for driving multi-server setup
design decisions and optimizations, we consider the Olio benchmark —
which is also used in Cloudstone [39], a benchmark developed for evaluat-
ing Web 2.0 and cloud computing performance. Olio is a realistic Web 2.0
social-events application: a client (rain [40], a Markov-chain based work-
load generator) sends requests to the Web server which then interfaces with
a file server and a database server. We assume that each of the servers (Web
server, file server and database server) runs on a separate physical server.
We explore different trade-offs in performance versus cost while changing
on which CPU node each server is run. The total cost of ownership (TCO),
or cost for short, includes hardware purchasing cost and energy cost (both
empowering and cooling the servers) assuming a 3-year depreciation. We
consider three configurations, from left to right in Figure 3.15: (i) all servers
run on Intel Atom 330 nodes, (ii) the Web server is run on AMD Opteron
2350 and the file and database servers are run on Intel Atom nodes, and
(iii) all servers run on AMD Opteron 2350 nodes. We run the various tar-
get servers on a single host (the AMD Opteron 2212) at a 10× simulation
slowdown. The interesting observation is that the heterogeneous config-
uration (middle configuration) — Web server run on AMD Opteron 2350,
and the file and database servers run on Intel Atom 330 — yields the best
performance-cost trade-off for this particular workload. Its performance is

52 CHAPTER 3. FAST MULTI-NODE SIMULATION

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

Cost (Euro)

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
on

d)

Figure 3.15: Comparing three datacenter configurations for the Olio Web
2.0 benchmark in terms of performance (vertical axis) and cost (horizon-
tal axis): (leftmost point) all servers run on Intel Atom 330 nodes; (mid-
dle point) the Web server is run on AMD Opteron 2350 and the file and
database servers run on Intel Atom 330; (rightmost point) all servers run
on AMD Opteron 2350 nodes.

nearly as good as running all three servers on AMD Opteron 2350, yet its
cost is significantly lower and its performance is substantially better than
running all servers on Intel Atom. The reason is that the Web server caches
file and database requests using a memcached service, i.e., a memcached
service runs on the Web server and handles recently accessed files and
database records, and thereby reduces the load on the file and database
servers. As a result, less powerful server nodes for the file and database
servers achieve comparable overall system performance, yet their cost (and
energy consumption) is substantially lower.

3.4.6 Case study #2: 25-server Hadoop workload

Our second case study involves a Hadoop workload with a distributed
(MapReduce-style) version of word count on 100,000 Wikipedia docu-
ments. We use Apache Hadoop 0.20, the OpenJDK 6 JVM and the Ubuntu
10.04 server on the software side. Our target platform consists of 25 AMD
Opteron 2212 servers with HDD interconnected through 1 Gbit ethernet.
We simulate all target servers on five host servers at a slowdown of one
order of magnitude. Figure 3.16 shows the throughput as a function of
the number of target servers. The graph shows two curves: the simulated
curve with up to 25 target servers along with the real hardware curve up

3.5. RELATED WORK 53

1 5 10 15 20 25
0

50

100

150

200

250

300

350

400

Hadoop nodes

T
hr

ou
gh

pu
t (

do
c/

s)

Hardware VSim

Figure 3.16: Simulating up to 25 target servers running the Hadoop work-
load on 5 host servers.

to 5 servers. VSim achieves the same throughput as the real hardware —
we cannot validate beyond 5 target servers because we do not have access
to more than 5 target servers. We observe almost linear scaling, although
we observe a slightly sublinear scaling beyond 20 target servers. The key
message is that VSim can be used for studying scale-out behavior.

3.5 Related Work

The simulation approach most closely related to VSim probably is COTSon
(also used and improved upon in the previous chapter). COTSon [8] is an
open-source simulation framework developed by HP Labs. COTSon tar-
gets cluster-level systems consisting of multiple multicore processor nodes
connected through a network, i.e., it targets both scale-up (i.e., multicore
and manycore processor simulation) as well as scale-out (i.e., simulation of
a multinode cluster). COTSon uses the AMD SimNow full-system simula-
tor to functionally simulate each node in the cluster. Each COTSon node
further consists of timing models for the disks, network card interface and
the CPU (i.e., processor and memory). The various COTSon nodes are in-
terconnected through a network mediator. There is at least one key dif-
ference between VSim and COTSon. VSim models target performance by
moderating the amount of work done per simulation quantum for each
of the simulated targets. COTSon on the other hand uses a performance
model that is fed by a dynamic trace of instructions which is analyzed and
based on which performance is estimated. These differences lead to dif-
ferent trade-offs in the simulation space. VSim is faster (10× slowdown

54 CHAPTER 3. FAST MULTI-NODE SIMULATION

versus 50× for COTSon) and consumes much less memory (20 MB mem-
ory overhead for VSim versus 2 GB for COTSon), hence, VSim can simulate
both more targets per host and larger systems at higher speed compared
to COTSon — VSim is more scalable. A limitation of VSim is that it is tied
to the host server’s instruction-set architecture (ISA); this is not necessarily
the case for the COTSon approach which leverages functional simulation
rather than virtualization.

SimOS [41] was the first simulator achieving the high execution speeds
required to simulate a complete system including the operating system.
Binary translation was employed to achieve this high execution speed.
SimOS includes CPU, disk an network simulation making it suitable for
simulating networked systems. SimOS formed the foundation for the
VMware hypervisor; hardware vendors included special instructions to
speed up system virtualization. VSim uses hardware assistance in combi-
nation with time dilation to achieve high simulation speeds, and it enables
simulating multiple guests on a single host.

Open Cirrus [39] is an open cloud-computing research testbed that
was initiated by a collaborative group of researchers in both industry and
academia. Open Cirrus’ primary goal is to provide a distributed set of fed-
erated datacenters as a testbed for system-level cloud computing research:
it provides open-source software stacks and APIs, it enables systems-level
research, it provides experimental data sets and it allows for studying
application development for cloud computing.

Gupta et al. [42] propose time dilation for network simulation. Time di-
lation provides the illusion to an operating system and its applications that
time is passing at a rate different than physical time. They implement time
dilation in the Xen virtual machine by filtering delivered timer interrupts.
Gupta et al. use time dilation for simulating network devices only. VSim in
contrast models complete computer systems, including CPU, network and
disk activity through time dilation. Moreover, VSim enables running mul-
tiple target servers per host server — this was not explored in the Gupta et
al. paper — which is required for simulating scale-out scenarios.

An alternative approach to building simulators and testbeds is to build
high abstraction models. For example, Ranganathan and Leech [43] use uti-
lization traces from real deployments in conjunction with high-level mod-
els that correlate resource utilization to power and performance. Weisner
and Wenish [44] model datacenter workload behavior using queuing mod-
els.

3.6. CONCLUSION 55

3.6 Conclusion

Simulating multi-server systems is challenging. It requires the ability of
running complete software stacks, while modeling CPU, disk and network
activity. In addition, it needs good simulation speed and accuracy, while
being scalable. This chapter presented VSim, a novel simulation paradigm
which offers a unique trade-off in speed versus accuracy versus scalabil-
ity while being able to model complete systems — a promising approach
for simulating systems at scale. VSim leverages virtualization technology
to run multiple target servers as guests on a host, and manipulate CPU,
disk and network performance as observed by the guests through time di-
lation such that the software stacks are given the illusion to run on the
target system. The implementation of VSim in VirtualBox and the evalua-
tion presented in this chapter illustrate its accuracy: 2.0%, 4.4% and 4.9%
average error for modeling CPU, disk and network performance, respec-
tively; complete workloads (Lucene and Olio) involving CPU, disk and
network activity are shown to be accurately modeled in VSim (average er-
ror of 3.2%). These results are obtained at a simulation slowdown of one
order of magnitude only compared to native hardware speed, and our cur-
rent implementation can simulate up to five target servers per host. We
reported on two case studies illustrating how VSim can be used for making
design trade-offs and for exploring workload scaling behavior.

56 CHAPTER 3. FAST MULTI-NODE SIMULATION

Chapter 4

Trends in Computer System
Energy Proportionality

Having studied and developed simulation methodologies in the previous two chap-
ters, we now move to real hardware experiments and measurements with a specific
focus on energy-efficiency. This chapter analyzes trends in energy-proportionality
of contemporary servers. Using power/performance numbers from a broad set of
commercial machines, we analyze how energy-proportionality has evolved over
the past three years. We evaluate to what extent SPECpower quantifies energy-
proportionality, and we study how much total energy can be saved by making
servers even more energy-proportional.

4.1 Introduction

Energy efficiency has emerged as a major technology driver in servers and
datacenters today, as it impacts capital cost as well as operating expenses
for powering and cooling the servers. Energy-related costs have become an
important component in the total cost of ownership (TCO) of this class of
systems. In fact, Barroso and Hölzle [1] report that server capital cost dom-
inates overall TCO in a classical datacenter, with 69% of the monthly cost
being related to server purchase and maintenance. In contrast, a contempo-
rary datacenter with commodity-based lower-cost servers and/or higher
power prices is very different: the cost of all infrastructure and power to
host the datacenter is more than twice the purchase and maintenance cost.
They conclude that, with electricity and construction costs trending up,
datacenter facility costs (which are proportional to power consumption)
will become an increasingly larger part of the total cost. In other words,
increasingly, the total cost of a datacenter will be primarily a function of
the power it consumes, and the purchase and maintenance cost will matter
increasingly less. Besides cost considerations, improving energy efficiency

57

58 CHAPTER 4. COMPUTER SYSTEM ENERGY PROPORTIONALITY

is key to reduce carbon dioxide emissions by the IT industry, which should
eventually lead to ‘greener’ IT.

Improving a server’s energy efficiency is non-trivial and faces many
challenges. Peak power consumption, for one, affects capital cost for the
power distribution and supply units and cooling infrastructure. Also, high
power consumption leads to increased power density and high tempera-
ture which affects cooling costs and which may affect hardware reliability
and availability. Total energy consumption affects the operating expense
for powering the servers. Further, Fan et al. [45] report that the most com-
mon operating mode for servers is in the 10 to 50 percent range, i.e., servers
in large datacenters are rarely completely idle and seldom operate at or
near maximum utilization; instead, servers operate in the 10 to 50 percent
utilization range for the majority of the time. This insight motivated Bar-
roso and Hölzle [46] to make the case for energy-proportional servers, or
servers that consume energy proportional to their utilization level or load.
The key insight is that servers should not only be optimized for reducing
peak power consumption, but they should also be optimized for their most
common operating points at lower utilization levels.

In December 2007, SPEC released SPECpower ssj2008 [10], an industry-
standard benchmark that measures power and performance for servers.
SPECpower measures performance and power at different utilization levels
from which it computes an overall metric. SPECpower thus includes some
notion of energy-proportionality, however, it does not explicitly quantify
energy-proportionality.

In this chapter, we propose the Energy Proportionality (EP) metric to
quantify a server’s energy-proportionality. Using the EP metric on pub-
lished power and performance data, we evaluate how energy-proportionality
has evolved over time, we discuss how the EP metric relates to the estab-
lished SPECpower metric, and we quantify how much total energy can be
reduced by further improving servers’ energy-proportionality.

4.2 Energy-proportionality of contemporary servers

The concept of energy-proportionality can be easily explained through an
analogy. A car that is parked does not consume fuel. On the other hand,
when the engine is running, it does burn fuel, and it consumes even more
fuel when the car accelerates. However, when waiting at the traffic lights,
the engine also burns fuel, even if the car is not driving. The latter is an
example of a case where the car is not energy-proportional: it consumes
energy (i.e., fuel) although it does not make forward progress. Similarly, a
computer system consumes energy, i.e., the computer system is powered
on, although it does not do any useful work.

4.2. ENERGY-PROPORTIONALITY OF CONTEMPORARY SERVERS 59

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

!

$!

&!

(!

*!

#!!

#$!

#&!

#(!

#*!

$!!

$$!
,-./0

1.23.2

456789/:.

5
;
<
.
27
8
9
/
:
.
7=
>
/
??
@

Area B

Area A

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

!

$!

&!

(!

*!

#!!

#$!

#&!

#(!

#*!

$!!

$$!
,-./0

1.23.2

456789/:.

5
;
<
.
27
8
9
/
:
.
7=
>
/
??
@

Area B

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

!

$!

&!

(!

*!

#!!

#$!

#&!

#(!

#*!

$!!

$$!
,-./0

1.23.2

456789/:.

5
;
<
.
27
8
9
/
:
.
7=
>
/
??
@

Area B

Area A

EP = 1

EP = 0.5

EP = 0

Figure 4.1: Energy-Proportionality (EP) is defined as one minus Area A
divided by Area B. Top graph shows perfect energy-proportional system
(EP = 1); bottom graph shows a non-energy-proportional system (EP =
0); and the middle graph shows a 50 percent energy-proportional system
(EP = 0.5).

60 CHAPTER 4. COMPUTER SYSTEM ENERGY PROPORTIONALITY

!""#!""$!""% !"&" !"&&

"

"'&

"'!

"'(

"')

"'*

"'+

"'#

"'$

"'%

&

,
-
.
/0
1
23
/4
3
4
/5
64
-
7
865
1

" *"" &""" &*"" !""" !*"" (""" (*""

"

"'&

"'!

"'(

"')

"'*

"'+

"'#

"'$

"'%

&

9:,;34<./=>?4/.

,
-
.
/0
1
23
/4
3
4
/5
64
-
7
865
1

"@ &"@ !"@ ("@)"@ *"@ +"@ #"@ $"@ %"@ &""@

"

"'&

"'!

"'(

"')

"'*

"'+

"'#

"'$

"'%

&

A60.>5=9:,;=>?4/.

A60B.>5=,:

CD.78

;:E=F>70.

G
4
/H
7
86
I
.
D
=3
4
<
.
/=
F
>
7
0
.

Figure 4.2: Energy-Proportionality (EP) over time.

Ideally, an energy-proportional computer system would consume zero
power when completely idle, and would consume power proportional to
its utilization level when doing useful work, e.g., when the computer sys-
tem is operating at 30% of its peak performance, it should consume 30%
of its peak power. In practice though, power consumption is higher than
what the ideal scenario would suggest. Informed by the seminal paper on
energy-proportionality by Barroso and Hölzle [46], we define the Energy-
Proportionality (EP) of a server as one minus the integral of the relative
delta in power consumption with the ideal energy-proportional server,
across a range of utilization levels. Referring to Figure 4.1, EP is computed
as the area between the server’s power consumption and the ideal curve as
a function of utilization (area ‘A’ in Figure 4.1), divided by the area under
the ideal curve (area ‘B’ in Figure 4.1):

EP = 1− Area between server and ideal curve

Area under ideal curve
.

An EP of one means that the server consumes power proportional to its
load, see top graph in Figure 4.1. An EP of zero means that the server
consumes constant amount of power irrespective of its load, see bottom
graph in Figure 4.1. The middle graph in Figure 4.1 represents a server
with an EP of 0.5; this server consumes 50% of its peak power at zero load.
Intuitively, one could think of the EP metric as a quantitative metric for
how closely a server’s energy-proportionality approaches perfect scaling
under a range of server utilization levels.

Figure 4.2 quantifies energy-proportionality over time using the data
available on SPEC’s power website1, between the fourth quarter of 2007

1http://www.spec.org/power/

4.3. SPECPOWER AND ENERGY-PROPORTIONALITY 61!""#!""$!""% !"&" !"&&

"

"'&

"'!

"'(

"')

"'*

"'+

"'#

"'$

"'%

&

,
-
.
/0
1
23
/4
3
4
/5
64
-
7
865
1

" *"" &""" &*"" !""" !*"" (""" (*""

"

"'&

"'!

"'(

"')

"'*

"'+

"'#

"'$

"'%

&

9:,;34<./=>?4/.

,
-
.
/0
1
23
/4
3
4
/5
64
-
7
865
1

"@ &"@ !"@ ("@)"@ *"@ +"@ #"@ $"@ %"@ &""@

"

"'&

"'!

"'(

"')

"'*

"'+

"'#

"'$

"'%

&

A60.>5=9:,;=>?4/.

A60B.>5=,:

CD.78

;:E=F>70.

G
4
/H
7
86
I
.
D
=3
4
<
.
/=
F
>
7
0
.

Figure 4.3: Energy-Proportionality (EP) versus SPECpower.

and the first quarter of 2011, as of Jan 10, 2011; this includes 213 systems-
under-test in total from 20 vendors. It is encouraging to observe that
energy-proportionality has gradually increased over time. Whereas older
computer systems (around 2007) had an EP in the 30 to 40 percent range,
current systems have an EP in the 50 to 80 percent range; some systems
even have an EP close to 90 percent. Clearly, server manufacturers are
designing increasingly energy-proportional systems.

4.3 SPECpower and energy-proportionality

As mentioned above, SPEC released the SPECpower benchmark and re-
ports a server’s power efficiency using the SPECpower metric, which is
defined as the sum of the performance measured at each utilization level
divided by the sum of the average power at each utilization level (in inter-
vals of 10 percent), including active idle:

SPECpower ssj2008 =
∑

Performance∑
Power

.

Performance is measured as the number of transactions completed per sec-
ond over a fixed period of time. The benchmark starts its execution with a
calibration phase to determine the system’s maximum throughput. It then
measures performance (throughput) and power at each utilization level
starting at maximum load and decreasing in 10 percent increments.

Because SPECpower includes power and performance numbers at dif-
ferent utilization levels, one could argue that SPECpower already includes
some notion of energy-proportionality. So, why do we need yet another

62 CHAPTER 4. COMPUTER SYSTEM ENERGY PROPORTIONALITY

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

!

!,#

!,$

!,%

!,&

!,'

!,(

!,)

!,*

!,+

#

-./012345678429:;1

-./0123476

<=1>?

86@4A2>/1

B
:
;C
>
?.
D
1
=
4E
:
F
1
;4
A
2
>
/
1

Figure 4.4: Power consumption as a function of CPU load for the systems-
under-test with the highest EP and SPECpower scores, respectively.

metric to quantify energy-proportionality? Figure 4.3 plots the 213 systems-
under-test in terms of energy-proportionality (EP) versus the SPECpower
metric. We observe that SPECpower correlates well with EP, however,
the correlation is not perfect. A system with a high EP does not neces-
sarily imply a high SPECpower score, and vice versa. Hence, both met-
rics have their place. The key difference is that the EP metric focuses on
energy-proportionality only and quantifies how a server compares to the
ideal energy-proportional system, whereas SPECpower quantifies average
power and performance across different server load levels.

4.4 Room for improvement

The EP scores shown earlier demonstrate that energy-proportionality has
improved dramatically over time, however, there is yet a gap between con-
temporary servers and the ideal energy-proportional system. This triggers
the question of how much more energy (and cost) can be saved by mak-
ing servers even more energy-proportional. We consider two servers to
address this question: the server with the highest SPECpower score versus
the server with the highest EP score. Figure 4.4 shows power consump-
tion at different utilization levels for these two servers. Assuming that
servers operate in the 10 to 50 percent range most of the time [46] — in fact,
we make the assumption that server operation is uniformly distributed
between 10 and 50 percent — we derive how much total energy can be
saved by making the server more energy-proportional. For the server with
the highest EP score, increasing the machine’s energy-proportionality to its
ideal can potentially reduce total energy consumption by 34 percent. For

4.5. CONCLUSION 63

the server with the highest SPECpower score, total energy consumption
can be reduced by around 50 percent. We conclude that improving energy-
proportionality further may lead to important energy and cost savings.

Although it is hard to expect that we will ever be able to achieve 100
percent energy-proportionality — because there will always be some over-
head for keeping a server running — the question of how to improve a
system’s energy proportionality further remains a relevant and important
one. Barroso and Hölzle [46] report that the CPU accounts for 50 percent of
total system power at peak performance for a recent Google server. How-
ever, at lower utilization levels, the CPU accounts for less than 30 percent.
The remaining 70 percent of the total system power is consumed by DRAM,
hard drives, power supplies, etc. Looking at a large-scale datacenter, con-
siderable power is consumed in the building’s mechanical and electrical
infrastructure, such as chillers, computer room air conditioning, UPS sys-
tems, power distribution units, humidifiers, etc. This suggests that the CPU
is more energy-proportional than the other components in the system. In
other words, achieving energy-proportionality at the system level will re-
quire improvements across the entire system. Recent research is pursuing
this avenue of increasing energy proportionality in the CPU [47], the net-
work [48], and the disk [49]; others advocate for rapidly transitioning an en-
tire server between a high-performance active state and a near-zero-power
idle state in response to instantaneous changes in load [50].

Malladi et al. [51] show that the energy proportionality of the memory
subsystem can be improved by using mobile DRAM devices for datacenter
workloads. Their observation is that these workloads do not use high mem-
ory bandwidth but depend on memory capacity and latency. While the mo-
bile DRAM devices have lower peak bandwidth than DDR3, they perform
similar to DDR3 with regards to capacity and latency, making them a good
match for these workloads.

Wong et al. [52] extended our work on the energy-proportionality met-
ric with two new metrics: linear deviation and proportionality gap. They
show that energy proportionality improvements are not uniform across
various server utilization levels: the energy proportionality of even a
highly proportional server suffers significantly at non-zero but low uti-
lization levels. Using server-level heterogeneity, with an active low-power
node and a tightly-coupled high-performance compute node, they enable
two energy-efficient operating regions.

4.5 Conclusion

Energy proportionality is a key design target in contemporary servers and
datacenters. In this chapter, we quantified the energy proportionality of

64 CHAPTER 4. COMPUTER SYSTEM ENERGY PROPORTIONALITY

contemporary servers. We concluded that energy proportionality has im-
proved significantly over the past few years, from 30 to 40 percent in 2007
to 50 to 80 percent in 2011. Yet, substantial energy savings might be pos-
sible to achieve by further improving a server’s energy proportionality.
Closing the gap between today’s most energy-proportional system and
the ideal energy-proportional system could potentially lead to an energy
(and proportional cost) saving of 34 percent; and energy consumption can
be reduced by 50 percent for the machine with the highest SPEC score.
Although it is unlikely to expect that we will ever be able to build per-
fect energy-proportional servers, this analysis suggests that there is am-
ple room for reducing server energy consumption by further improving
energy-proportionality.

Chapter 5

Evaluating Computer System
Energy Efficiency

A significant limitation with SPECpower, as used in the previous chapter, is that
it quantifies energy efficiency for a single, specific workload. As we will see in this
chapter, a server’s energy efficiency is very much tied to its workload. This chapter
therefore proposes SWEEP, Synthetic Workloads for Energy Efficiency and Perfor-
mance evaluation, a framework for generating synthetic workloads with specific
behavioral characteristics. We employ SWEEP to generate a wide range of syn-
thetic workloads while varying the instruction mix, ILP, memory access patterns,
and I/O-intensiveness; and we use SWEEP to evaluate the energy efficiency of
commercial computer systems across the workload space and learn about how the
energy efficiency of a computer system is tied to its workload’s characteristics.

5.1 Introduction

Energy efficiency has emerged as a primary design concern across the en-
tire compute range, from low-end embedded systems to high-end servers
and datacenters. Embedded systems are typically battery-operated and
higher energy efficiency translates into greater user satisfaction through
extended battery autonomy. Improving energy efficiency in servers and
datacenters reduces the operational cost by reducing the electricity bill for
powering the servers as well as for cooling them down. Moreover, there is
an environmental concern as well. Improving the energy efficiency of com-
puter systems is key to reduce carbon dioxide emissions by the IT industry.

Architects are well aware of the need for energy-efficient computer sys-
tems, and therefore, people have proposed benchmarks and benchmarking
methodologies for evaluating energy efficiency, which should ultimately
lead to more energy-efficient designs. The Embedded Microprocessor

65

66 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

Benchmarking Consortium (EEMBC) released EnergyBench which pro-
vides data on the amount of energy a processor consumes while running
a performance benchmark [9]. Recently, SPEC, the Standard Performance
Evaluation Corporation, launched SPECpower, a benchmark for evaluat-
ing the power and performance characteristics of computer servers [10].
Rivoire et al. [11] propose JouleSort, a sort benchmark aimed at evaluating
the energy efficiency of a wide range of computer systems from servers to
embedded systems.

Although these approaches offer valuable insight in the energy effi-
ciency of a computer system, they have limited flexibility. The benchmarks
are rigid and cannot be altered to reflect different workload behaviors.
In particular, EEMBC’s EnergyBench is tied to the EEMBC performance
benchmarks; the SPEC power benchmark is a Java server workload that
generates and completes a mix of transactions; JouleSort implements a sort
algorithm. These benchmarks are unable to explore the energy efficiency of
computer systems across the workload space. In other words, the numbers
produced by these approaches may be limited in scope — they are tied to
these specific workloads — and it is hard to generalize towards other types
of workloads, i.e., a computer system that is energy-efficient for the power
benchmark does not necessarily imply that it is energy-efficient for other
workloads.

This chapter proposes SWEEP (Synthetic Workloads for Energy Ef-
ficiency and Performance evaluation), a framework for generating syn-
thetic workloads with specific workload characteristics. SWEEP can gen-
erate compute-intensive workloads, memory-intensive workloads, I/O-
intensive workloads, and any mix thereof. In particular, SWEEP enables its
users to configure the workload’s characteristics by setting the ratio of inte-
ger versus floating-point instructions, the inter-instruction dependencies,
memory access patterns, disk I/O access patterns, etc. SWEEP provides a
unique opportunity to its users: it allows for exploring the energy efficiency
and performance of computer systems by ‘sweeping’ across the workload
space. Using SWEEP we generate a range of synthetic workloads with very
different characteristics and run these workloads on two real hardware sys-
tems, a low-end system (Intel Atom) as well as a high-end system (AMD
Quad-Core Opteron), and evaluate their energy efficiency across different
workload behaviors. A preliminary validation using the PARSEC bench-
marks and a number of I/O-intensive applications reveals that SWEEP can
generate workloads that exhibit a similar performance-energy trade-off as
real applications.

We make the following contributions in this work:

• We propose using synthetic workloads for evaluating the energy ef-
ficiency of computer systems. In contrast to current power bench-

5.1. INTRODUCTION 67

marking practice which uses specific benchmarks, this chapter pro-
poses a framework, called SWEEP, for generating synthetic work-
loads with workload characteristics of interest. SWEEP can generate
synthetic benchmarks that are compute-intensive, memory-intensive,
I/O-intensive, or any mix thereof. By varying the workload charac-
teristics, the SWEEP end user can sweep across the workload space
and gain insight in how energy efficiency and performance of a com-
puter system relates to workload characteristics.

• We propose the Energy-Delay Diagram (EDD), a novel visualization
method to summarize a computer system’s energy consumption and
performance relative to a reference machine. EDD clearly illustrates
the trade-off in performance versus energy, and provides more in-
sight than the traditional energy-delay-product (EDP) and energy-
delay-square-product (ED2P) metrics.

• Using a wide range of synthetic workloads with very different char-
acteristics, we evaluate the energy efficiency of two real hardware
systems, a low-end Intel Atom based machine and a high-end AMD
Quad-Core Opteron system. We conclude that for I/O-intensive
workloads the low-end machine tends to be more energy-efficient,
i.e., it consumes much less energy while achieving similar perfor-
mance; however, the opposite is true for compute-intensive work-
loads for which the high-end machine tends to be more energy-
efficient: performance is much better and it consumes less or similar
total energy. For memory-intensive workloads, there is a trade-off
between both.

This chapter is organized as follows. We first revisit prior work in Sec-
tion 5.2. Section 5.3 presents the SWEEP framework and discusses how
we generate a synthetic workload from an abstract workload model. Sec-
tion 5.4 proposes the Energy-Delay Diagram for evaluating a computer
system’s energy efficiency. After detailing our experimental setup (Sec-
tion 5.5), we then use the SWEEP framework to evaluate the energy effi-
ciency of two real hardware platforms using EDDs in Section 5.6. We com-
pare the energy efficiency characteristics of real-life applications and bench-
marks against the synthetic workloads and we conclude that the synthetic
workloads exhibit a performance versus energy trade-off that resembles
the real workloads (Section 5.7). Finally, we conclude in Section 5.8.

68 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

5.2 Prior work

5.2.1 Power benchmarks

Given the growing importance of energy efficiency, interest has grown in
power benchmarking methods. In the embedded domain for example,
EEMBC has released EnergyBench [9], a method for reporting processor
energy consumption when running embedded performance benchmarks.

For the server enterprise domain, SPEC recently released SPECpower [10]
which is a system-level, server-side Java workload that quantifies energy
efficiency under varying loads. SPECpower generates and completes a mix
of transactions and the reported throughput is the number of transactions
completed per second over a fixed period of time; the workload considers
11 levels of load. Energy efficiency is quantified as the average number of
transactions completed per unit of time per Watt.

Rivoire et al. [11] present JouleSort, a sort benchmark that reads its input
from a file and writes its output to a file on a non-volatile device. There are
three scale categories with 10GB, 100GB and 1TB records, and the bench-
mark aims at covering multiple domains, from embedded, to mobile, as
well as to the server domain. The energy efficiency metric is the total en-
ergy consumed by the sort benchmark.

SWEEP is very different in its approach. SWEEP generates synthetic
workloads with tunable workload characteristics, which allows for under-
standing the relationship between energy efficiency of a computer system
with respect to workload behavior. The prior power benchmarking propos-
als are tied to specific benchmarks; SWEEP on the other hand, can generate
a range of workload behaviors. Our results, which will be presented later
in this chapter, in fact indicate that whether one machine is more energy-
efficient compared to another machine is closely tied to its workload: for
one workload, system A may be more energy-efficient, whereas for another
workload, system B may be more energy-efficient. SWEEP can also be used
across multiple domains, from embedded to enterprise.

5.2.2 Synthetic benchmarks

Synthetic benchmarks such as Whetstone [53] and Dhrystone [54] are man-
ually crafted benchmarks that aimed at representing real workloads. Man-
ually building benchmarks though is both tedious and time-consuming.
Whetstone and Dhrystone have become less relevant as they no longer rep-
resent current workloads.

Statistical simulation [55] collects program characteristics from a pro-
gram execution and subsequently generates a synthetic trace from it which
is then simulated on a simple, statistical trace-driven processor simulator.

5.2. PRIOR WORK 69

The important advantage of statistical simulation is that the dynamic in-
struction count of a synthetic trace is several orders of magnitude smaller
than for today’s industry-standard benchmarks, making it a useful simu-
lation speedup technique for quickly identifying a region of interest in a
large design space during the processor design cycle.

Recent work proposed automated synthetic benchmark generation [56–
58] which builds on the statistical simulation approach but generates a syn-
thetic benchmark rather than a synthetic trace, which allows for running
the synthetic workload on an execution-driven simulator as well as on real
hardware. Joshi et al. [59] take the idea of synthetic benchmark generation
one step further and leverage the synthetic workload generation approach
to generate stressmarks or power viruses. They use a genetic algorithm to
search the workload space to identify those workload characteristics that
maximize average power consumption, peak power consumption, temper-
ature, dI/dt, etc.

This work in statistical simulation and synthetic workload generation
has traditionally focused on CPU-intensive workloads, and does not in-
clude memory-intensive and/or I/O-intensive behavior. SWEEP on the
other hand allows for generating synthetic I/O-intensive and memory-
intensive workloads.

Synthetic benchmarks have been developed to evaluate specific aspects
of a computer system. For example, the STREAM benchmark seeks at
quantifying a computer system’s sustainable memory bandwidth using
simple vector kernels [60]. IOzone [38] is a filesystem benchmark and
generates a variety of file operations. Vasudevan et al. [61] use a set of
micro-benchmarks to evaluate the energy efficiency of FAWN (Fast Array
of Wimpy Nodes) computing clusters. Gamut, formerly called sstress [62],
interleaves the execution of a compute-intensive loop with periods of idle-
ness to match a target CPU utilization, and it also offers possibilities for
generating memory-intensive and disk-intensive workloads. SWEEP can
generate more diverse workload behaviors in a more flexible way than
these specific synthetic (micro)benchmarks.

5.2.3 Energy efficiency metrics

Metrics are at the foundation of experimental research and development.
Adequate metrics are absolutely crucial to steer research and development
in the right direction. There exist a number of metrics for quantifying
a computer system’s energy efficiency. Two commonly used energy effi-
ciency metrics are energy-delay product (EDP) and energy-delay-square
product (ED2P) [63, 64]. A major limitation of these metrics is that they
combine energy consumption and performance in a single metric, which
complicates understanding because in many cases there is a trade-off in

70 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

Abstract
workload

model
SWEEP

Synthetic
benchmark

in C

C compilerExecutable
benchmark

Figure 5.1: High-level view on the SWEEP framework.

performance versus energy, and these metrics may not always capture this
trade-off in a comprehensive way, as we will discuss later in more detail.
We instead propose EDD, the energy-delay diagram, which visualizes en-
ergy consumption versus performance in an insightful way.

Rivoire et al. [11] use total energy consumption as their energy effi-
ciency metric. The winner is the system with the minimum total energy
use. While this may be adequate for some workloads, e.g., batch-style back-
ground and throughput processes, it is not for performance-critical and
latency-sensitive applications such as interactive applications, real-time ap-
plications, commercial applications (e.g., Web servers, OLTP), etc. Energy
usage by itself may be misleading as an energy-efficiency metric because it
does not account for the energy versus performance trade-off. For exam-
ple, a system that consumes marginally less energy than another system
while yielding substantially worse performance is still considered the win-
ner. The EDD instead captures the energy versus performance trade-off.

5.3 SWEEP

5.3.1 High-level overview

Figure 5.1 presents a high-level overview of the SWEEP framework. The
end user specifies a set of desired workload characteristics in the abstract
workload model from which the SWEEP framework then generates a syn-
thetic workload. The abstract workload is specified in XML format which
allows for easily configuring the synthetic workload. SWEEP’s output is
the synthetic workload, a C program, which is subsequently compiled and
run on a simulator or on real hardware.

The concept of the SWEEP framework is such that the workload gener-
ator considers a number of building blocks, with each building block repre-
senting a different type of behavior. In particular, there is a building block
to represent a linear sequence of code (a basic block), a loop, a thread, an
access sequence to a data structure in memory, an access sequence to a data

5.3. SWEEP 71

structure stored on disk. These building blocks can be configured at will in
terms of their length, their characteristics (e.g., instruction mix, amount of
ILP), memory reference locality, etc. For example, the basic block building
block specifies the number of instructions, their types and inter-instruction
dependencies; the loop building block specifies how many times the loop
needs to be iterated; an access sequence to memory specifies the data struc-
ture that is to be traversed (array, linked list, tree) and how it is to be tra-
versed.

The SWEEP framework is modular in the sense that it allows for com-
bining these building blocks at will. This allows for building a synthetic
workload of interest. For example, one could build a multi-threaded syn-
thetic workload with extensive locking in order to evaluate a particular
synchronization primitive. Or, one could build a workload with exten-
sive I/O operations in order to evaluate a system’s I/O performance. In
this work, we will use the framework to synthesize workloads that are
compute-intensive, memory-intensive or I/O-intensive for evaluating a
computer system’s energy efficiency across these three major classes of
workload behaviors.

5.3.2 The SWEEP building blocks

There are five building block types in total, which we briefly discuss now.

Basic block

The ‘basic block’ building block represents a linear sequence of instructions
and is an atomic unit of work. The basic block can be configured through
a number of parameters, such as the number of instructions in the basic
block, their types (integer or floating-point) and their inter-instruction de-
pendencies. The latter determines the amount of instruction-level paral-
lelism (ILP) in the program. The inter-instruction dependency distance is
defined as the number of dynamically executed instructions between writ-
ing a data value and reading it. Hence, a large inter-instruction depen-
dency distance implies high ILP, and a small dependency distance implies
low ILP.

An additional parameter specifies the probability for the basic block to
be executed. This is useful for generating conditional control flow in the
synthetic workload (e.g., if-then-else statement).

Loop

The ‘loop’ building block specifies that the enclosed building blocks need
to be iterated a number of times. The number of iterations is to be set by

72 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

the SWEEP end user. The loop building block can include other loop build-
ing blocks which allows for building nested loops of any depth. Also, it
can include basic blocks that the loop will iterate on, and if the basic blocks
have conditional execution probabilities associated with it, then the gener-
ator will generate conditional control flow within the loop (e.g., if-then-else
statements with a hard-to-predict branch within the loop).

Memory

The ‘memory’ building block specifies a memory-intensive program se-
quence. The main attribute specifies the data structure and its size that
is to be accessed; there are three options: an array, a linked list and a binary
tree. Also, there are a number of possible access patterns. For the array, one
can have a sequential, strided or random access pattern; for the linked list,
the only access pattern is to sequentially traverse the linked list; for the tree
data structure, the end user has the ability to select a breadth-first or depth-
first access pattern. These access patterns can be either reads or writes, and
are initiated within a loop.

Multi-threading

There are three building blocks related to multi-threaded execution. (1)
The ‘thread’ building block initiates a thread in the synthetic workload.
An attribute of the thread building block is whether the data structures ac-
cessed within the enclosed memory building blocks are private (access by
the given thread only) or global (accessed by all threads). (2) The ‘thread
group’ building block can be used inside the loop building block and al-
lows for initiating parallel work done by threads that join (barrier synchro-
nization) before proceeding to the next iteration. (3) The ‘mutex’ building
block specifies that the enclosed building blocks are part of a critical section
and thus need synchronization using locks.

Input/Output

Finally, the ‘I/O’ building block initiates reads and writes to a file stored on
disk. There are three attributes: (1) the size of the file, (2) the access pattern
(sequential, strided or random), and (3) whether the file is to be read or
written. In order to fully stress the disk, there is an option to eliminate the
buffering by the operating system and disk.

5.4. ENERGY-DELAY DIAGRAM 73

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

N
or

m
al

iz
ed

 E
ne

rg
y

(L
og

2)

Normalized Execution Time (Log2)

EDP

ED 2P

I

IIIII

IV
Reference more
energy-efficient

Target more
energy-efficient Trade-off

Trade-off

Figure 5.2: Energy-Delay Diagram.

5.4 Energy-Delay Diagram

As mentioned in the introduction, we use the SWEEP framework to gener-
ate different flavors of workload behaviors in order to evaluate a computer
system’s energy efficiency. Now, quantifying energy efficiency is by itself
a non-trivial issue. Traditionally, two metrics are being used for evaluat-
ing a computer system’s energy efficiency, namely energy-delay product
(EDP) and energy-delay-square product (ED2P). EDP is defined as the to-
tal energy consumed to execute a unit of work multiplied by the execution
time; ED2P is defined as energy multiplied by the square of the execution
time — hence, ED2P puts more emphasis on performance than EDP. EDP
and ED2P are appealing because they quantify energy efficiency by a single
number. However, evaluating a computer system’s energy efficiency by a
single metric may be misleading or at least it may complicate understand-
ing the energy versus performance trade-off.

The Energy-Delay Diagram (EDD) visualizes the energy versus perfor-
mance trade-off in an intuitive way, see Figure 5.2. The vertical axis shows
the logarithm of the ratio of the energy consumption on the target machine
relative to the reference machine:

y = log2

(
Energytarget

Energyreference

)
. (5.1)

74 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

The horizontal axis shows the logarithm of the ratio of the execution time
on the target machine relative to the reference machine:

x = log2

(
Timetarget

Timereference

)
. (5.2)

The origin of the EDD represents the reference machine. The first quadrant
(I) represents cases in which the reference machine is more energy-efficient
than the target machine, i.e., the reference machine consumes less energy
and execution time is shorter. The third quadrant (III) represents the op-
posite situation: the target machine is more energy-efficient than the ref-
erence machine, i.e., the target machine consumes less energy and yields
better performance. The second (II) and fourth (IV) quadrants represent
trade-offs. For example, in quadrant II, the reference machine yields bet-
ter performance at the cost of consuming more energy; in quadrant IV, we
have the dual situation: the target machine yields better performance at
the cost of consuming more energy. An important feature of the EDD is
that, because it uses the logarithm of the energy and performance ratios,
the EDP and ED2P metrics can be visualized as straight lines in the EDD.
The EDP line, which denotes points where the target and the reference ma-
chines are equally energy-efficient according to the EDP metric, is shown
as the anti-bisector in Figure 5.2; the ED2P line is shown as well.

The EDD visualizes the energy efficiency trade-off in an intuitive way.
For example, a target system that is equally energy-efficient as the refer-
ence machine according to the EDP metric will appear on the anti-bisector.
If the target system appears in quadrant II (on the EDP line), this means
that the target system consumes less energy at the cost of a proportional
loss in performance; if it appears in quadrant IV, this means that the target
system consumes more energy at the benefit of a proportional performance
gain. As another example, a target system appearing above the EDP line
in quadrant II, implies that the reference system is more energy-efficient
than the target system according to the EDP metric; however, the EDD
shows that there is a trade-off: the reference system consumes less energy,
but this comes at a performance hit (however, the performance hit is rela-
tively small compared to the reduction in energy). In other words, the EDD
clearly illustrates the trade-off in energy consumption versus performance.

Use case #1:
Comparing machines for a fixed workload. One possible use case for
EDDs is to visualize the energy and performance trade-off of computer
systems. For example, plotting different machines in the EDD enables a
quick and intuitive competitor analysis in terms of the energy efficiency of
computer systems for a given benchmark or a set of benchmarks. Figure 5.3
shows an illustrative EDD with four machines, A (the reference machine),

5.4. ENERGY-DELAY DIAGRAM 75

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

N
or

m
al

iz
ed

 E
ne

rg
y

(L
og

2)

Normalized Execution Time (Log2)

EDP

a

b

c

d

Figure 5.3: Comparing machines’ energy efficiency using the EDD.

B, C and D. Machine B achieves the same EDP as machine A as they lie on
the anti-bisector EDP line. Also, C and D achieve the same EDP as they
lie on a straight line parallel with the EDP line. This is a key feature of the
EDD: design points that achieve the same EDP lie on a straight line parallel
with the EDP line — this is a result of representing the logarithm of energy
and execution time on the vertical and horizontal axes.

In this same example, machine C is less energy-efficient than both A
and B: energy consumption is higher and performance is lower. Machine
D on the other hand represents a trade-off relative to A: D consumes less
energy than A at the cost of delivering worse performance.

Use case #2:
Comparing machines across workloads. Another use case, which we
will explore further in this chapter, is to consider two computer systems
(a reference and a target machine) and a range of workloads, and then
provide data points for each of the workloads in the EDD. This enables ex-
ploring whether the energy efficiency of one system compared to another
is subject to the workload. And given the SWEEP framework, this will
enable us to explore how energy efficiency of a computer system relates to
workload characteristics.

76 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

Logging machine

Oscilloscope

Probe

SUT

Figure 5.4: Runtime power monitoring setup.

5.5 Experimental setup

Figure 5.4 illustrates our runtime power monitoring setup. The probe (Tek-
tronix TCP 202) of an oscilloscope (Tektronix TDS 7104) is connected to the
power cord of the System Under Test (SUT). The probe measures the cur-
rent flowing through the power cord which enables measuring the total
power consumed by the SUT. The oscilloscope is connected to a logging
machine, which allows for post-processing the experiment data. This setup
is similar to the one used by others [65].

We consider two SUTs in our experiments, a low-end Intel Atom ma-
chine and a high-end AMD Quad-Core Opteron server, see Table 5.1. The
Intel Atom processor is a dual-core processor. Each core is an in-order SMT
core with two thread contexts. The cache hierarchy is private to each core.
The AMD Opteron is a quad-core processor. Each core is a superscalar out-
of-order core (without SMT). The L1 and L2 caches are private and the L3
cache is shared among the cores. Both machines have a comparable 7200
rpm hard disk. The Thermal Design Power (TDP) is very different: the
TDP for the Intel Atom is rated to be 8 Watt whereas the TDP for the AMD
Opteron is rated to be 95 Watt.

5.6. REAL SYSTEM EVALUATION 77

Low-end Intel Atom machine
CPU 1.6 GHz Intel Atom 330

2 cores, 2 SMT threads per core
56 KB private L1, 512 KB private L2
TDP: 8 Watt

Memory DDR2-800, 2 GB
Disk WD Scorpio Blue 7200 rpm
Power supply Antec Trio 550 (85% efficiency)

High-end AMD Quad-Core Opteron
CPU 2 GHz AMD Opteron 2350 Barcelona

4 cores
128 KB private L1, 512 KB private L2, 2 MB shared L3
TDP: 95 Watt

Memory DDR2-667, 4 GB
Disk Samsung SATA 7200 rpm
Power supply Antec EA 380D Green (80% efficiency)

Table 5.1: The Systems Under Test: a low-end and a high-end machine.

5.6 Real system evaluation

We now exploit the unique property offered by SWEEP to ‘sweep’ the
workload space and gain insight in how the energy efficiency of a computer
system is affected by the characteristics of its workload. We systematically
vary workload characteristics in the abstract workload, generate synthetic
workloads, and run these synthetics on both of our SUTs. In the EDDs to
follow, we consider the high-end AMD Opteron server as the reference ma-
chine. We organize the discussion along three major flavors of workload
types: CPU-intensive, memory-intensive and I/O-intensive workloads.

5.6.1 CPU-intensive workloads

The first synthetic workload that we generate is a compute-intensive work-
load. It involves a limited number of memory accesses (and all memory
accesses are cache hits), and performs no disk I/O. The workload consists
of floating-point operations and the workload characteristic that we vary
here is the inter-instruction dependency distance. An inter-instruction de-
pendency distance of one means that an instruction is dependent on the
instruction before it in the dynamic instruction stream. In other words, the
synthetic workload involves a long chain of dependent instructions, and
hence, there is no ILP. Increasing the inter-instruction dependency distance
increases the opportunities for exploiting ILP and hence, performance im-
proves.

78 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

N
or

m
al

iz
ed

 E
ne

rg
y

(L
og

2)

Normalized Execution Time (Log2)

EDP

ED 2P

1
2
3
4
5
6
7

15

Figure 5.5: EDD for a CPU-intensive workload with varying inter-
instruction dependency distance (see legend).

Figure 5.5 shows the EDD for the CPU-intensive workloads for a vary-
ing inter-instruction dependency distance (see the legend). A workload
with no or limited ILP (i.e., a short inter-instruction dependency distance
of 1 or 2) is more energy-efficiently run on the low-end machine than on
the high-end machine, according to both the EDP and ED2P metrics: the
points corresponding to an inter-instruction dependency distance of 1 and
2 lie under the EDP and ED2P lines. At higher degrees of ILP, the high-
end server is more energy-efficient: the points lie above the EDP and ED2P
lines. And for high degrees of ILP (inter-instruction dependency distance
of 7 and higher), the high-end machine clearly is the most energy-efficient
machine: it consumes less total energy and execution time is shorter. This
result can be explained by the fact that the high-end machine is a super-
scalar out-of-order processor which can better exploit the available ILP
than the low-end in-order processor can. Clearly, for the high-end proces-
sor and workloads with high levels of ILP, the shorter execution time out-
weighs the higher power consumption of the processor, which ultimately
leads to an overall reduction in the total amount of energy consumed. The
interesting observation is that compute-intensive, high-ILP workloads are
more energy-efficiently run on high-end processors, i.e., high-end proces-
sors yield better performance at lower total energy use.

5.6. REAL SYSTEM EVALUATION 79

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

N
or

m
al

iz
ed

 E
ne

rg
y

(L
og

2)

Normalized Execution Time (Log2)

EDP

ED 2P

1 Thread
2 Threads
4 Threads

Figure 5.6: EDD for memory-intensive, multi-threaded workloads.

5.6.2 Memory-intensive workloads

Our next experiment considers memory-intensive multi-threaded work-
loads. These workloads access a 150 MB binary tree, and each thread ac-
cesses a private tree. All threads perform a breadth-first tree search and
read all the values along the tree (over 85% of the instructions are loads).
The IPC (for a single thread) on the high-end AMD Opteron processor is
fairly low, namely 0.24. The reason is twofold: relatively high cache miss
rates in the L2 and L3 caches, and low branch prediction accuracy. Fig-
ure 5.6 shows that both machines are comparable in terms of their energy
efficiency according to the EDP metric (for one thread and two threads).
For four threads, the high-end quad-core processor is more energy-efficient
compared to the low-end dual-core (two-way SMT per core) processor. The
reason is the more aggressive memory hierarchy of the high-end processor
(more on-chip cache space and more memory bandwidth) along with the
fact that each thread on the high-end machine runs on a private core. On
the other hand, the low-end machine’s memory hierarchy is less aggressive,
and two SMT threads per core share many of the resources. The memory
system performance advantage of the high-end processor outweighs the
additional energy consumed by the additional cores. The important ob-
servation here is that there is a trade-off in energy versus performance for
memory-intensive workloads: the high-end processor yields better perfor-

80 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

N
or

m
al

iz
ed

 E
ne

rg
y

(L
og

2)

Normalized Execution Time (Log2)

EDP

ED 2P

Random read
Sequential read

Figure 5.7: EDD for I/O-intensive workloads.

mance at the cost of consuming more energy; the low-end processor on the
other hand consumes less total energy but performance is worse.

5.6.3 I/O-intensive workloads

For I/O-intensive workloads that read randomly or sequentially through
a 12GB file, the low-end processor tends to be more energy-efficient than
the high-end processor according to both the EDP and ED2P metrics, see
Figure 5.7. The low-end processor yields slightly less performance than the
high-end processor, however, it consumes much less energy. The reason is
that the processor is waiting for the disk to return while it is consuming
power, and since the high-end processor is consuming more power than
the low-end processor, the end result is that the low-end processor is more
energy-efficient for this type of workloads. This also explains why the low-
end processor is relatively more energy-efficient for the random read access
pattern than for the sequential read pattern, i.e., the random access patterns
introduces even more wait time for the processor than the sequential access
pattern does.

5.7. REAL-LIFE APPLICATIONS 81

5.7 Real-life applications

So far, we have considered synthetic workloads only. We now consider
real applications (both benchmarks and GNU programs) and we evaluate
whether the real applications lie in a region that is comparable to the region
covered by the synthetics. In other words, we want to do some preliminary
validation to gain confidence with respect to whether the synthetic work-
loads generate a performance versus energy trade-off that somehow relates
to real application behavior. It is not our intent to validate that SWEEP can
generate synthetic workloads that can serve as proxies for real-life appli-
cations, rather we want to evaluate whether the conclusions we obtained
in the previous section using synthetics hold true when considering real
applications.

Our first set of applications is taken from the multi-threaded PARSEC
benchmark suite [15]. We consider four benchmarks, freqmine, raytrace,
swaptions and streamcluster, see Figure 5.8; each benchmark runs four
threads. The high-end machine is clearly more energy-efficient than the
low-end machine for these benchmarks. Especially for streamcluster, the
high-end machine yields better performance and consumes less energy; for
swaptions, the high-end machine yields better performance at the same en-
ergy as the low-end machine. For the other benchmarks, freqmine and ray-
trace, there is a trade-off, however, the high-end machine is more energy-
efficient according to both the EDP and ED2P metrics. This result sug-
gests that the PARSEC benchmarks are primarily CPU-intensive, exhibit
substantial ILP and have limited memory requirements.

Our second set of applications comprises well-known GNU tools,
namely tar and gzip. The tar tool creates an archive and is I/O-intensive:
it reads a number of files and writes them in an archive, the tarfile. The
second tool combines tar with gzip: it tars a number of files and then com-
presses it in a gzipped tarfile. We consider two compression levels here:
1 and 5 (5 means higher compression than 1). Figure 5.9 shows the EDD
for the tar and gzip applications. Interestingly, the low-end machine is
more energy-efficient for the tar workload, whereas the high-end machine
is more energy-efficient for the tar+gzip workload. The reason for this dif-
ference is that the tar workload involves I/O operations almost exclusively,
whereas the tar+gzip workload also involves substantial CPU-intensive
operations during compression. This is further explained by the obser-
vation that the high-end machine is even more energy-efficient for gzip’s
CPU-intensive compression level 5 than for compression level 1.

82 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

N
or

m
al

iz
ed

 E
ne

rg
y

(L
og

2)

Normalized Execution Time (Log2)

EDP

ED 2P

FreqMine
RayTrace

Swaptions
StreamCluster

Figure 5.8: The EDD considering some of the PARSEC benchmarks.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

N
or

m
al

iz
ed

 E
ne

rg
y

(L
og

2)

Normalized Execution Time (Log2)

EDP

ED 2P

TAR
TAR+GZIP -1
TAR+GZIP -5

Figure 5.9: The EDD considering the tar and gzip Linux tools.

5.8. CONCLUSION 83

5.8 Conclusion

This chapter proposed SWEEP, a framework for generating synthetic
workloads with specific behavioral characteristics. SWEEP can generate
compute-intensive, memory-intensive and I/O-intensive workloads, and
any mix thereof. SWEEP enables novel capabilities to study a computer
system’s energy efficiency. Whereas prior work in power benchmarking is
tied to specific benchmarks, such as EnergyBench, SPECpower and Joule-
Sort, SWEEP enables sweeping the workload space and study how energy
efficiency is tied to the workload characteristics. We conclude that whether
one machine is more energy-efficient than another machine is very much
workload dependent. SWEEP is a useful tool to explore these trade-offs.

This chapter also presented the Energy-Delay Diagram (EDD), a novel
way of visualizing a machine’s energy efficiency relative to a reference ma-
chine. The EDD represents the trade-off in performance versus energy in a
more intuitive way than the traditionally used EDP and ED2P metrics do.
Throughout this chapter we have used EDD to visualize the performance
versus energy trade-off for real hardware platforms. However, these di-
agrams can also be used to visualize results from simulation. Using our
interval simulator in COTSon (Chapter 2) combined with the McPAT [66]
power model, we would be able to visualize the performance versus energy
trade-off for future hardware platforms.

We believe this work points towards an interesting avenue of future
work. The observation that some workloads are more energy-efficiently
run on one machine whereas other workloads are more energy-efficiently
run on another machine, suggests that heterogeneous datacenters may be
an energy-efficient solution. In a heterogeneous datacenter, workloads
would be steered dynamically towards the most energy-efficient server.
Given the trend towards cloud computing which suggests many different
workloads running in consolidated environments, there may be opportu-
nities for exploiting workload diversity in the datacenter for improving
overall energy efficiency and decreasing (operational) cost.

84 CHAPTER 5. COMPUTER SYSTEM ENERGY EFFICIENCY

Chapter 6

Analyzing Long-Tail Latencies

Having considered simulation and real hardware measurements in a test envi-
ronment, we now consider performance issues in a real-life production datacenter.
This chapter proposes TPA, a linear-temporal logic based language for tracking per-
formance problems that cause long-tail latencies in large online datacenter work-
loads. Since interactions between operations are often responsible for long-tail la-
tency, we must analyze fine-grained traces to investigate their cause. Given these
formulas, our system searches through traces to find matches for these formulas
and extracts relevant information from the matches.

6.1 Introduction

Web services, such as search, work on many user operations in parallel.
Thus, the time to service a user operation depends not just on the nature
of the operation but also on the availability of resources. For example, an
operation that normally takes 1 ms may take as long as 1 second if some
other operation is holding a resource (e.g., lock) that it needs. Indeed, this
contention for resources often causes the dreaded long-tail latency that af-
flicts web services. Long-tail latency directly affects capacity planning and
user experience for Web services [1]; thus, it is critical to understand and
improve. Unfortunately, to analyze long-tail latency we must reason over
fine-grained traces (i.e., timestamped sequence of events) which is laborious
and requires extensive domain knowledge. This chapter describes how to
use formulas in linear-temporal logic [67] extended with variables to ana-
lyze traces and thus reduce the manual labor involved in analyzing traces.

Reasoning with traces is difficult because we must reason across chains
of events where each event affects subsequent events. For example, let’s
suppose we wish to find how often a high-priority thread, e.g., H , waits for
a lock that a low-priority thread, e.g., L, holds (i.e., a priority inversion).
Given a kernel trace, we can readily find when H waits on a lock (it shows

85

86 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

up as system calls to futex in the Linux kernel trace1). To determine if H
was waiting for a lock held by L we must now reason across time to deter-
mine if L released the lock just before H acquired it. Using manual effort
and search tools we can do this reasoning for a few operations. However,
reasoning over a few operations does not tell us if the priority-inversion is
common or rare. Thus, we must do this reasoning over many long traces.

To enable such reasoning in our system (TPA), experts express their
knowledge in our extension to linear temporal logic (LTL). For example,
an expert can express the formula: (i) L acquires a lock at time t0; (ii) then,
H blocks on a call to futex at time t1; (iii) then, L eventually releases the lock
at time t2; (iv) then, L eventually issues a wakeup for other threads waiting
on the lock at time t3; (v) then, H eventually wakes up from waiting on the
lock at time t4. TPA matches this formula against traces and each match
produces a binding for the timestamps (i.e., the ti); we can use these times-
tamps to determine the lock holding time for thread L and the blocked time
for thread H .

The main contributions of this work are to show that (i) we can extract
useful and actionable information from performance traces using simple
LTL formulas; (ii) LTL is an intuitive notation for expressing patterns in
traces (i.e., the LTL formulas follow naturally from an understanding of the
sequence of events that we wish to match); and (iii) our implementation
scales to large traces.

The remainder of this chapter is organized as follows. Section 6.2 mo-
tivates the need for TPA. Section 6.3 describes our notation for expressing
formulas in LTL. Section 6.4 describes our algorithm for matching formulas
to traces. Section 6.5 describes optimizations to TPA. Section 6.6 evaluates
TPA. Section 6.7 reviews related work and Section 6.8 concludes.

6.2 Motivation

To enable performance (or other) debugging, many applications produce
traces in the form of logs. For example, an electronic banking service may
write out a log line whenever any of the following events happen:

1. RequestReceived[Timestamp=· · · , User=· · · , Id=· · ·]

2. GetAccountNumber[Timestamp=· · · , User=· · · , Id=· · ·]

3. GetBalance[Timestamp=· · · , User=· · · , Id=· · ·]

4. ResponseSent[Timestamp=· · · , User=· · · , Id=· · ·]
1Even this is non-trivial since the futex call is used in many ways, only some of which

indicate contention.

6.3. EXPRESSING FORMULAS USING TEMPORAL LOGIC 87

Each event has a name (e.g., “RequestReceived”) and three properties: a
timestamp, the user making the request, and a unique identifier for the
request.

A successful request produces the sequence of events (1, 2, 3, 4). An
unsuccessful request produces the sequence of events (1, 2, 4); i.e., a failing
request does not get the account balance. To quantify the time spent in suc-
cessful and unsuccessful requests, we must reason over sequence of events
using a state machine: different sequences mean different things.

Now, let’s suppose users may have many requests in flight at the same
time. A request that runs in isolation has different performance characteris-
tics from a request that runs in parallel with other requests. Thus, we wish
to further refine our timings into: (i) successful in isolation; (ii) successful
with others; (iii) unsuccessful in isolation; and (iv) unsuccessful with oth-
ers. This is difficult to calculate because we must reason over not just linear
sequences of events but also interactions between interleaved sequences.

For these examples, we could have obtained the data by modifying the
banking system either manually or using an semi-automated system, such
as DTrace [68] or aspect-oriented programming [69]. This would be inac-
ceptably slow in our environment: all production software must undergo a
thorough reviewing and testing process before it can be deployed and thus
we would have to wait for weeks or more to get the data we need.

Unfortunately, getting the data by analyzing these traces is difficult
since we must reason across many long and interleaved sequences of
events. Before developing TPA, we used off-the-shelf tools, such as reg-
ular expression matchers, but found them lacking for two main reasons:
(i) they are inconvenient for finding all interleaved instances of a pattern
(but can often find a single instance); and (ii) require significant coding for
expressing complex patterns (e.g., ResponseSent must occur within 10 ms of
RequestReceived). The remainder of this chapter describes TPA and shows
that it enables us to compactly express patterns and match them efficiently
against traces.

6.3 Expressing formulas using temporal logic

Our goal with this work was not to design a new language but to use an
existing well-known notation for solving our concrete problems. Conse-
quently, our language is a minimal extension to LTL.

6.3.1 Definitions: Traces, formulas, and events

A trace is a sequence of timestamped events in time order. For example,
(eiei+1 · · · ej) is a trace whose events are ei, ei+1, · · · , ej and ei occurs before

88 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

ei+1 which in turn occurs before ei+2 and so on. Each event has a time-
stamp2 and optional attributes. Each attribute is a key-value pair; where
key is the name of the attribute and value is either a string or an integer
value.3 For example

syscall[Timestamp=10, name=”write”]

is an event with name ”syscall” at time 10 and has the attribute ”name”
with value ”write” (similarly to EBBA [70]). A formula is a pattern that TPA

can match against traces.

6.3.2 Event formulas

Event formulas match a single event:

• e: Matches any event with name e.

• e[a1 = v1, a2 = v2, · · ·]: Matches events with (i) name e and (ii) at-
tribute a1 having value v1, a2 having value v2, and so on. A matching
event must have the specified attributes but it may have additional
attributes.

In addition to = which matches attributes exactly, we support the fol-
lowing operators: (6=) for attributes of type integer or string, and (>), (≥),
(<), and (≤) for integer attributes. We support a special event name “*”
which matches all event names, this enables us to match attributes without
matching a specific event name.

We can combine formulas using boolean operators, And (∧), Or (∨), and
Not (¬).

6.3.3 Trace formulas

Trace formulas match a sequence of events (i.e., traces). For example, let’s
describe the formula for the unsuccessful case in Example 1 (Section 6.2):

The first event for User u and Id i is RequestReceived, and
the next event for u and i is GetAccountNumber, and
the next event for u and i is ResponseSent

2For most of our traces, “timestamp” is in microseconds since epoch. However, TPA
does not care what time base we use; for example, we could use an incrementing counter
as a timestamp.

3These are the only types of attributes that we needed; it is trivial to extend our system
for other types of values.

6.3. EXPRESSING FORMULAS USING TEMPORAL LOGIC 89

Intuitively, this formula contains three (sub-)formulas for matching the
three events of the sequence, connected by And, and sequenced by the tem-
poral operator Next. A given trace may contain numerous interleaved re-
quests; to find all such instances, we must match the above formula to all
points of a trace. Consequently, we define the temporal operators in terms
of subtraces.

An event formula matches a subtrace if it matches the first event in the
subtrace. In addition, we support the following three LTL operators:

1. #f (read as Next f) matches a subtrace (eiei+1 · · · ej) if f matches
(ei+1 · · · ej). For example “#syscall” matches a subtrace whose sec-
ond event has the name “syscall” and the first event can be any event,
including “syscall”.

2. 3f (read as Eventually f) matches a subtrace (ei · · · ej) if f matches
the full subtrace or any suffix of the subtrace (i.e., (ei+n · · · ej) where
n is a non-negative number and i + n ≤ j). For example “3syscall”
matches a subtrace that has an event with name “syscall” somewhere
in the subtrace.

3. f U g (read as f Until g), where f is an event formula (i.e., f needs
only a single event to match) and g is any formula, matches a subtrace
(ei · · · ej) if we can split the subtrace into two parts (a) (ei · · · ek) and
(b) (ek+1 · · · ej) such that (i) f matches every suffix of (a) but g does
not match any suffix of (a); and (ii) g matches (b). (a) may be empty
and f may or may not match (b). For example: “E1 U E2” matches
the subtraces (E1, E1, E2) and (E2). We restrict f to an event formula
(and not a temporal formula) because it must reduce to true or false
for every event in (a).

In addition to the above three temporal operators, we find a constrained
variation of # to be indispensable: “#[a1 = v1, · · ·]f” matches a subtrace
(eiei+1 · · · ej) if f matches the first event in the subtrace (ei+1 · · · ej) that
has attributes a1, · · · with corresponding values v1, · · · . Constrained # is
not a primitive LTL operator: we can express it using the basic # and U as
follows:

#[a1=v1, · · ·] f = #(¬*[a1=v1, · · ·] U (*[a1=v1, · · ·] ∧f)

Intuitively, to express the constrained Next, we skip any events that do not
have the matching attributes (¬*[a1=v1, · · ·]) until we find the first event
that matches (*[a1=v1, · · ·]). At that matching event, f should also match.

90 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

6.3.4 Variables

Let’s try to write a formula that matches “all lock operations with their
corresponding unlock operations”:

lock[pid=102] ∧#[pid=102] unlock

This formula matches the lock/unlock pattern for process-id 102. The #
finds the first event after the lock for the process-id 102 and makes sure
that it is an unlock. To generalize such formulas, we allow the “values” in
the constraints to be variables; we bind the variables when we match the
formula; each variable must have a single binding which the user specifies
using “→”. Using this, we can write our pattern as:

lock[pid→P] ∧#[pid=P] unlock

Using→ instead of = binds the pid of the lock event to P . We can now use
P elsewhere in the formula to mean the bound value. A formula can only
use bound variables.

6.3.5 Extended example

We now give an extended example to show how the different operators
work together. This example is based on the following real world situa-
tion: the C++ mutex implementation at Google uses a queue to hold all
threads waiting on the mutex. If a thread needs to block on a mutex, it
must put itself on the mutex’s “waiting” queue; a spin-lock guards access
to this queue. If the thread cannot get the spin lock after a few iterations
of spinning, it goes to sleep for k nanoseconds using a call to nanosleep;
on wakeup it tries to acquire the spin lock again. The worst manifestation
of this situation is when the thread holding the mutex cannot access the
waiting queue to find which threads to wake up when releasing the mutex;
thus, the thread’s inability to acquire the spinlock results in a longer hold-
ing time for the mutex which further aggravates contention. The mutex im-
plementers did not expect this situation to ever happen and consequently
did not include instrumentation to count its occurrences. Section 6.6.5 uses
TPA to show that it happens surprisingly frequently. Given a kernel trace
for a thread, we can express this situation intuitively as:

1. The thread is executing in user space, and next
2. The thread calls nanosleep, and next
3. The kernel preempts our thread and gives the CPU to another thread

(i.e., context switch), and next

6.4. MATCHING FORMULAS 91

4. The kernel gives the CPU back to our thread (i.e., another context
switch) and, next

5. The thread wakes up from nanosleep, and next
6. The thread continues executing in user space, and next
7. The thread calls futex to release the lock, and next
8. The thread calls sched wakeup to wake up the waiting threads.

Our actual formula closely mirrors the above intuition:

RunInUserSpace[thread id→t]
∧ #[thread id=t] (syscall[name=”nanosleep”]
∧ #[thread id=t] (preempt
∧ #[thread id=t] (resume
∧ #[thread id=t] (syscall[name=”nanosleep”]
∧ #[thread id=t] (RunInUserSpace
∧ #[thread id=t] (syscall[name=”futex”]
∧ #[thread id=t] sched wakeup))))))

This formula uses the constrained next to make sure that all events in
the sequence are from the same thread; between these events the trace may
contain concurrent events for other threads. Specifically, it uses a variable
(t) to hold the thread id for a thread and the constrained next skips over
events for threads other than t.

6.4 Matching formulas

Prior work has mostly used LTL for verifying systems [71, 72]: i.e., the goal
is to determine if a given LTL formula is satisfiable. In contrast, we wish to
(i) determine whether or not a particular formula matches a particular trace;
and (ii) extract information from the matches.

A formula reduces to true when it matches a trace. A formula that has
not yet reduced to true or false is pending; i.e., it needs to see additional
events before it reduces to true or false. We match one or more formulas in
a single traversal of the trace.

A given formula may match at many points in a trace; thus we create
formula instances for each possible match. Each instance records everything
that it needs, including its environment, to determine a successful or unsuc-
cessful match. While traversing a trace, we create a new instance for each
formula at each event in the trace. We match all pending instances (includ-
ing the ones just created) to each following event in the trace. Matching
a formula instance to an event may reduce the instance to true, false, or a
pending state. Once an instance reduces to the true or false state, it stays in

92 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

that state no matter what further events we match it to. We now give the
reduction rules for each construct.

6.4.1 Variable bindings

Many formulas contain sub-formulas; e.g., the formula f ∧ g has two sub-
formulas (f and g) which in turn may have sub-formulas of their own. A
sub-formula instance can use the variable bindings in its parent instance to
do its matching. When a sub-formula reduces to true, its bindings become
part of its parent’s binding; after this point other sub-formulas of the parent
can also use these bindings.

6.4.2 Event formula

An event formula instance, such as “event1[attr=3]” reduces to true if it
matches the first event of the subtrace and false otherwise. Furthermore, on
reducing to true, the match produces an environment that gives the values
for all bound variables. For example, matching the formula, “event1[attr
→A]”, against the event “event1[attr=3]” produces an environment that
binds “A” to 3.

6.4.3 And

We match f ∧ g to an event by first matching f and then g to the event. If f
(g) reduces to true, its environment becomes part of the environment of the
parent And and is therefore available when matching g (f). If both (either)
of f and g reduce to true (false), f ∧ g reduces to true (false). Otherwise,
f ∧ g reduces to the ∧ of the reduced f and g. If and when f ∧ g reduces
to true, its environment contains the bindings for all variables that f and g
bind. It is an error to bind the same variable multiple times.

6.4.4 Or

We match f ∨ g to an event by first matching f and then g to the event. If
f (g) reduces to true, f ∨ g reduces to true with the environment from f
(g). If neither f nor g reduce to true, f ∨ g reduces to the ∨ of the reduced
f and g. Because ∨ is short-circuit (i.e., it stops as soon as f or g reduce
to true) the ∨ will end up with the environment from either f or from g.
Consequently, f ∨ g may bind different variables depending on which of
f or g reduces to true first.

6.4. MATCHING FORMULAS 93

6.4.5 Not

We match ¬f to an event by matching f to the event. If f reduces to false
(true), ¬f reduces to true (false). Otherwise, ¬f reduces to the ¬ of the
reduced f . ¬f never produces a variable environment.

6.4.6 Basic Next

Recall that “#f” matches a subtrace (eiei+1 · · · ej) if f matches (ei+1 · · · ej).
Thus, when we first match an instance of “#f” to an event, “#f” reduces
to f . We then match f against subsequent events; if f reduces to true, it
produces an environment with the variables that f binds.

6.4.7 Eventually

Every time we match an instance of 3f to an event, we create a new in-
stance of f . Then we match all instances of f (including ones created on
earlier match attempts of 3f) in order of creation to the event. As soon as
one of the f instances reduces to true, the Eventually immediately reduces
to true. Consequently, on a reduction to true, Eventually gets the environ-
ment from the f that reduced to true. Eventually reduces to false only if
we reach the end of the trace and none of the f instances evaluated to true.
Since this can be expensive for long traces, users can optionally specify a
limit (similar to Brzoska’s metric [73]). If an Eventually with limit L remains
pending even after seeing L events, it reduces to false.

For example, consider matching “3(#F)” against the trace “E E F”.
When we match the Eventually against the first E, we create an instance of
“#F” and apply it to the first E. Since this is the first event to which we are
applying this instance of “#F”, it reduces to a pending F. When we match
the Eventually against the second E, we create another instance of “#F” and
attempt to match the two instances to the second “E”. The first instance
reduces to false (because E 6= F) while the second reduces to a pending F.
Finally, when we match the Eventually against the F, we create yet another
instance (so now we have one false instance of “#F”, one pending instance
of F, and one pending instance of “#F”). We match the two pending in-
stances against F and the first one reduces to true and thus the Eventually
reduces to true.

6.4.8 Until

Every time we match f U g to an event, we create a new instance of g
as long as f has matched all previous events or if there were no previous
events. If any of the g instances reduces to true, Until reduces to true with

94 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

the environment from the first g that reduces to true. If all of the g instances
reduce to false, the Until reduces to false.

For example, consider matching “E U (#G)” against the trace “E F G”.
When we match the Until against the E, we create a new instance of “#G”
and match it against the E; the “#G” instance reduces to a pending “G”.
When we match the Until against F, we again create another instance of
“#G” because the previous events so far (i.e., just E) have all matched the
formula E. The first instance (which is a pending “G”) reduces to false. The
second instance (a newly created “#G”) reduces to a pending “G”. When
we match the Until against G, this time we do not create a new instance of
“#G” because the previous event was not E. However, when we apply the
pending instance of the “#G”, it reduces to true and thus the Until reduces
to true.

6.4.9 Producing useful output from the matches

As described so far, matching a formula to a trace produces an environ-
ment. This section describe how we extract information from an environ-
ment.

Simple queries

To extract output in a form that is useful to the user, we wrap a formula
into a query:

x1, · · · , xn : f

A query associates a sequence of expressions (x1, · · · , xn) with a formula
(f). For each successful match of the formula, we produce a row in a CSV

output file which contains one column for each expression.4 For example,
consider our example from Section 6.2:

R, T1, T2, T3, TotalTime = T3 - T1:
RequestReceived[Timestamp→T1, Id→R]
∧ #[Id = R] (GetBalance[Timestamp→T2, Id = R]
∧ #[Id = R] (ResponseSent[Timestamp→T3, Id = R]))

For each successful match of the above formula in a trace, we produce a
row with five columns: for R, T1, T2, T3, and TotalTime (which is T3 - T1).

4The U∗ extension extends this slightly (described below)

6.4. MATCHING FORMULAS 95

Queries with loops

The above queries extract the values of bound variables from a fixed num-
ber of events. This section introduces two extensions that effectively add a
loop to the Until operator.

First, we observe that the until operator (U) stops matching as soon as
it reduces to true. Sometimes we need to find all occurrences. For example,
let’s suppose a process, as part of its work, needs to start many threads and
we suspect that there may be undue delay between the start of the process
and the start of one of the threads. The following pattern finds the delay
for the first thread:

Pid, Tid, delay = T2-T1 :
StartProcess[Id→Pid, Timestamp→T1] ∧
(¬EndProcess[Id=Pid]
U StartThread[Id = Pid, TaskId→Tid, Timestamp→T2]

To find the delay for all threads, we replace U with U∗ . U∗ behaves the
same as U except that it captures the current continuation every time we
match its instance to an event. If the match reduces to true, we propagate
that (as for the normal U) to the parent formula and resume the continu-
ation starting with the next event (i.e., the continuation pretends that U∗
did not reduce to true and continues matching at the next event). In the
context of our example, while U would have produced only a single out-
put row (for one Tid), U∗ produces many rows, one for each distinct Tid
that the process starts.

Second, while U∗ outputs one row for each match, sometimes we want
to aggregate all the matches. We can easily do this by processing the output
from U∗ ; however, since this is a common idiom we directly support it.
For example, let’s suppose that an operation acquires and releases locks
multiple times during its execution and we want to determine the total
lock holding time across all the acquisitions. For this usage we support a
Query-Until operator.

A Query-Until specifies a subquery that repeatedly matches until the
“Until” formula matches. Specifically, {Q} U U is a query expression such
that: (i) Q binds a single variable with the value of an aggregation expres-
sion (e.g., Sum, Min, Max, or Mean)); (ii) we evaluate Q on every event
while updating the aggregated variable until U matches. When U matches,
the Query-Until reduces to true with its environment containing only the
variable that Q binds. E.g.,

LockHoldingTime:
RequestReceived[Id→R] ∧

96 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

({LockHoldingTime = Sum(T2 - T1) :
AcquireLock[Timestamp→T1, Id = R] ∧
(3ReleaseLock[Timestamp→T2, Id = R])}
U (#ResponseSent[Id = R]))

The query part of the Query-Until accumulates the lock holding times
in the variable LockHoldingTime until the next event is a ResponseSent. On
a match of the query, LockHoldingTime contains the total lock holding time
from any number of lock acquisitions and releases.

6.5 Implementation considerations

Since the 3 and U create new instances of formulas at each event, our
naive implementation could not analyze many of our larger traces: with
each new event in the trace we would end up with additional formula in-
stances which would have to be matched against subsequent events.

To avoid this cost, we maintain maps from combinations of attribute
values to the formula instances that are waiting for those values. Thus, for
example, if our formula is:

· · · #[A = a] · · · #[A = x, B = y] · · ·

we would have two maps, one for the attribute “A” and one for the
pair of attributes “(A, B)”. The first one maps values of “A” to formulas
waiting on that value; the second one maps values of the pair “(A, B)” to
the formulas waiting on that value. When we encounter an event, we look
at its set of attributes and find all the maps that may be relevant to the
event. For example, if our event is E[Timestamp=1, A=10, B=20], both the
“A” and the “(A, B)” maps are relevant. We then use the attribute values in
the event to look up the maps and thus readily find the formula instances
that are possibly waiting for our event.

6.6 Results

TPA originated from a real need: when debugging performance problems
at Google we had to reason over many different kinds of traces (kernel, file
system, etc.). Reasoning over these traces was slow, error prone, and labo-
rious. We would use standard Unix tools to search for relevant events in
the traces and manually reason over the chain of events. In some cases we
wrote Python code to implement formulas but that was inflexible: devel-
oping formulas often requires exploration and iterative refinement which
was inconvenient in Python because the formulas were one or two orders of

6.6. RESULTS 97

magnitude larger than their TPA counterparts. TPA enabled us to develop
formulas iteratively and intuitively. We now evaluate TPA with respect to
generality (Section 6.6.2), scalability (Sections 6.6.3 and 6.6.4), and useful-
ness (Section 6.6.5).

6.6.1 Methodology

We evaluated TPA on real production traces from computers in Google dat-
acenters; these computers concurrently run multiple services and each ser-
vice concurrently handles tens to thousands of user requests per second.
We analyzed these traces on a desktop workstation (with four Intel Xeon
cores running at 2.7 GHz and with 8 GB of memory).

TPA is implemented in about 5000 lines of Java code. This code parses
formulas from an input file and matches these formulas against an input
trace in a single pass. At each event in the trace, TPA instantiates formulas
as needed and matches the instantiated formulas against the event. The
implementation directly follows from the descriptions in Sections 6.4 and
6.5.

6.6.2 Generality

TPA analyzes traces that are in a source-agnostic binary format. We have
straightforward converters from many different kinds of traces to this for-
mat; thus we can readily use TPA to analyze traces from diverse sources.
This section describes our experience in analyzing traces from three differ-
ent sources: (i) kernel traces record every transition in and out of the kernel
along with high level events that enable us to tie kernel events to RPCs; (ii)
user request logs which contain events at each stage of processing a user re-
quest to GMail; and (iii) file system traces record the start and end of each
file system and disk operation.

Since kernel traces generate a million or more events per second, a naive
implementation could perturb the underlying system. Google’s implemen-
tation is carefully crafted to collect these traces in an in-memory buffer with
less than a 3% overhead. The size of the buffer limits the size of the trace
that we can collect; at the default size, we can collect about 20 seconds be-
fore the buffer fills up. If we are exploring rare events, we may collect 20
second traces from many computers and analyze all of them with TPA to
make sure we get enough instances of our long-tail event.

The difficulty and labor involved in manually analyzing these traces
makes them ideal candidates for TPA: once an expert specifies the formu-
las, TPA can do the hard work of matching the formulas against traces.
These formulas encode persistent knowledge about particular performance
phenomena. For example, let’s suppose we (the experts) develop formulas

98 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

to quantify a particular performance problem observable in kernel traces
from machines running GMail. Others can use these formulas to check for
the same problem in their systems and we can use these formulas over time
to make sure that our performance problems do not recur.

We developed formulas for our traces while tracking specific perfor-
mance problems in Google services. All formulas, except for one, use two
or more temporal operators (#, 3, or U); thus, if we did not have TPA

we would have had to manually implement state machines to match these
sequences. We now describe the process of developing one of our simplest
and one of our most complex formulas.

The first example calculates the type, size, and duration of each file sys-
tem operation:

Duration=T2-T1, Op, Bytes :
fs enter[Timestamp→T1, op→Op, pid→Pid]
∧3fs exit[Timestamp→T2, ret→Bytes, pid=Pid]

fs enter marks the start of a file-system request and fs exit marks its end.
Since the enter and exit must be in the same process and multiple of these
requests cannot be pending from the same process, this formula uses the
process id (Pid) to associate the fs exit with its fs use. The return value of
the fs exit gives the number of bytes that the operation read or wrote.

The second formula, calculates the duration between an RPC request
arriving on a socket and the end of the RPC. The RPC mechanism works
as follows (Figure 6.1): (a) the epoll wait detects that some data has arrived
for one or more RPCs; (b) recvfrom system call reads the data; (c) start rpc
marks the starting of RPC processing by the application; (d) sendto system
call sends the response for the RPC; and (e) end rpc marks the end of the
RPC in user space. Existing Google tools measure and quantify the dura-
tion between start rpc and end rpc (i.e., the “Application duration”): these
timestamps are easy to gather and analyze because they are the two ends of
application-specific RPC processing. However, this duration ignores many
of the costs of the RPC, namely the time between the epoll wait and the
start rpc. We do not yet have a way of directly measuring “Actual dura-
tion” because (i) part of the RPC processing happens in the kernel, part
in an RPC library, and part in the user application; (ii) at the time of the
epoll wait and recvfrom we do not know what RPC we are processing: it is
only after we have looked at the received data we know the identity of the
RPC. Thus, the pattern we are about to describe sheds light onto a delay
that we have no other way of measuring at Google.

When we start writing this pattern, we run into the same issue dis-
cussed above: with many RPCs arriving per second on a computer, how do
we know that a given recvfrom is for our RPC or if it is for some unrelated

6.6. RESULTS 99

Tpa is implemented in about 5000 lines of Java code. This
code parses formulas from an input file and matches these
formulas against an input trace in a single pass. At each
event in the trace, Tpa instantiates formulas as needed and
matches the instantiated formulas against the event. The
implementation directly follows from the descriptions in Sec-
tions 4 and 5.

6.2 Generality
Tpa analyzes traces that are in a source-agnostic binary
format. We have straightforward converters from many dif-
ferent kinds of traces to this format; thus we can readily
use Tpa to analyze traces from diverse sources. This sec-
tion describes our experience in analyzing traces from three
different sources: (i) kernel traces record every transition in
and out of the kernel along with high level events that enable
us to tie kernel events to RPCs; (ii) user request logs which
contain events at each stage of processing a user request to
Service; and (iii) file system traces record the start and end
of each file system and disk operation.

Since kernel traces generate a million or more events per sec-
ond, a naive implementation could perturb the underlying
system. Company ’s implementation is carefully crafted to
collect these traces in an in-memory buffer with less than a
3% overhead. The size of the buffer limits the size of the
trace that we can collect; at the default size, we can collect
about 20 seconds before the buffer fills up. If we are explor-
ing rare events, we may collect 20 second traces from many
computers and analyze all of them with Tpa to make sure
we get enough instances of our long-tail event.

The difficulty and labor involved in manually analyzing these
traces makes them ideal candidates for Tpa: once an expert
specifies the formulas, Tpa can do the hard work of matching
the formulas against traces. These formulas encode persis-
tent knowledge about particular performance phenomena.
For example, let’s suppose we (the experts) develop formu-
las to quantify a particular performance problem observable
in kernel traces from machines running Service. Others can
use these formulas to check for the same problem in their
systems and we can use these formulas over time to make
sure that our performance problems do not recur.

We developed formulas for our traces while tracking specific
performance problems in Company services. All formulas,
except for one, use two or more temporal operators (�, �,
or U); thus, if we did not have Tpa we would have had
to manually implement state machines to match these se-
quences. We now describe the process of developing one of
our simplest and one of our most complex formulas.

The first example calculates the type, size, and duration of
each file system operation:

Duration=T2-T1, Op, Bytes :
fs enter[Timestamp →T1, op →Op, pid →Pid]
∧�fs exit[Timestamp →T2, ret →Bytes, pid=Pid]

fs enter marks the start of a file-system request and fs exit
marks its end. Since the enter and exit must be in the same
process and multiple of these requests cannot be pending
from the same process, this formula uses the process id (Pid)

sendtorecvfromepoll

start_rpc end_rpc

Application duration

Actual duration

Figure 1: Events involved in RPC

to associate the fs exit with its fs use. The return value of
the fs exit gives the number of bytes that the operation read
or wrote.

The second formula, calculates the duration between an
RPC request arriving on a socket and the end of the RPC.
The RPC mechanism works as follows (Figure 1): (a) the
epoll wait detects that some data has arrived for one or more
RPCs; (b) recvfrom system call reads the data; (c) start rpc
marks the starting of RPC processing by the application;
(d) sendto system call sends the response for the RPC; and
(e) end rpc marks the end of the RPC in user space. Ex-
isting Company tools measure and quantify the duration
between start rpc and end rpc (i.e., the “Application du-
ration”): these timestamps are easy to gather and analyze
because they are the two ends of application-specific RPC
processing. However, this duration ignores many of the costs
of the RPC, namely the time between the epoll wait and the
start rpc. We do not yet have a way of directly measuring
“Actual duration” because (i) part of the RPC processing
happens in the kernel, part in an RPC library, and part in
the user application; (ii) at the time of the epoll wait and
recvfrom we do not know what RPC we are processing: it
is only after we have looked at the received data we know
the identity of the RPC. Thus, the pattern we are about to
describe sheds light onto a delay that we have no other way
of measuring at Company.

When we start writing this pattern, we run into the same
issue discussed above: with many RPCs arriving per second
on a computer, how do we know that a given recvfrom is for
our RPC or if it is for some unrelated RPC? Our main in-
sight for addressing this is to recognize that the socket that
sendto writes to is the same socket that recvfrom must have
read from (this is a property of Company ’s RPC implemen-
tation). Fortunately, our kernel traces record the socket for
the recvfrom and sendto in the arg1 attribute of the event.
Thus we arrive at the following formula:

syscall[name=”recvfrom”, arg1 →Sid]
∧(�(¬syscall[name=”recvfrom”, arg1=Sid]

U (start rpc[RpcId →Rid] ∧�syscall[name=”sendto”, RpcId=Rid, arg1=Sid])))

To extend our formula to also include the epoll wait we as-
sume that the latest epoll wait before the recvfrom is the
one that notices that data has arrived for the RPC (this is
an optimistic assumption though likely to be true given our
knowledge of the implementation). We get the formula:

syscall[name=”epoll wait”, ret > 0, Timestamp →T1]
∧(�(¬syscall[name=”epoll wait”, ret>0]

Figure 6.1: Events involved in RPC

RPC? Our main insight for addressing this is to recognize that the socket
that sendto writes to is the same socket that recvfrom must have read from
(this is a property of Google’s RPC implementation). Fortunately, our ker-
nel traces record the socket for the recvfrom and sendto in the arg1 attribute
of the event. Thus we arrive at the following formula:

syscall[name=”recvfrom”, arg1→Sid]
∧(#(¬syscall[name=”recvfrom”, arg1=Sid]

U (start rpc[RpcId→Rid] ∧
3syscall[name=”sendto”, RpcId=Rid, arg1=Sid])))

To extend our formula to also include the epoll wait we assume that the lat-
est epoll wait before the recvfrom is the one that notices that data has arrived
for the RPC (this is an optimistic assumption though likely to be true given
our knowledge of the implementation). We get the formula:

syscall[name=”epoll wait”, ret > 0, Timestamp→T1]
∧(#(¬syscall[name=”epoll wait”, ret>0]
U (syscall[name=”recvfrom”, arg1→Sid]
∧(#(¬syscall[name=”recvfrom”, arg1=Sid]
U (start rpc[RpcId→Rid, Timestamp→T3]
∧3syscall[name=”sendto”, RpcId=Rid, arg1=Sid]))))))

The epoll wait returns a value greater than zero if it finds data waiting on
a socket; thus our formula looks specifically for such an epoll wait. Our
formula handles the situation where an RPC with a large request requires
multiple calls to recvfrom.

Using the environment for a match of this formula, we can readily
calculate “Total Time”. Finally, we notice an additional complexity: a
given epoll wait call may notice that there is data not only on one socket
but on many sockets; thus a given epoll wait may be part of the match

100 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

for many different RPCs. We handle this using a U∗ instead of U for
“ U (syscall[name=”recvfrom”, arg1→Sid]”.

In summary, we have found that TPA is useful for analyzing at least
three kinds of traces. Given an in-depth knowledge of a trace’s events, TPA

formulas follow intuitively and directly from this knowledge.

6.6.3 Scalability: time

Figure 6.2 shows how the TPA scales with long traces. Since the kernel
traces were our longest traces and had the most complex formulas, Fig-
ure 6.2 shows the performance of four of formulas a one billion event ker-
nel trace: (i) w computes delay while RPC processing is blocked because a
thread is not available; (ii) b computes time spent blocked on a lock; (iii) c
computes time spent executing on a CPU (i.e., doing real work); and (iv) e
is the epoll wait pattern from Section 6.6.2. The performance of our other
formulas lies between w and e and thus we omit them to avoid clutter in
the graph. A point (x, y) with symbol f says that TPA processed y events
per second for formula f when TPA was x events into the trace; thus lower
means slower. To increase the generality of our results we evaluated the
scalability of each formula on two additional traces of length 6M events
and got results comparable to those in Figure 6.2.

From Figure 6.2 we observe that the number of events processed per
second for each formula remains largely and surprisingly constant. Even
though it is easy to produce a formula that does not scale to a large trace
(e.g., a formula with an Eventually that never reduces to true will require as
many instances as the number of events in the trace) this does not happen
in practice: most Eventually in correct formulas reduce to true in a small
number of events and thus the pathological situation does not occur. To
guard against poor scalability, users have the option of specifying limits
for temporal operators (Section 6.4.7)

6.6. RESULTS 101

c c c c c c c c c ccccccccccc c cccccccc c ccccccccc ccccccccc c cccccccc c ccccccccc

ccccccccc c cccccccc c ccccccccc c cccccccc c cccccccc c ccccccccc c ccc ccccc c ccccccccc ccccccccc c ccccccccc ccccccccc c cccccccc
c ccccccccc c cccccccc c ccccccccc ccccccccc c ccccccccc ccccccc cc c ccc ccccc c ccc ccccc c c cccccccc c ccccccccc c cccccccc c ccccccccc c cccccccc c cccccccc c ccccc cccc c cccccc cc c ccccccccc c cccc cccc c ccccccccc c ccc ccccc c ccccccccc ccccc ccc c c ccccccccc cccc ccccc c cccccccc c c cccccc cc c cccccc ccc cccccc ccc c cccccc cc c cccccc ccc c cccccccc c ccccccccc ccccccccc c ccccccccc ccccccc cc c ccccccc cc ccccccccc c ccc ccc c cc c ccccc cccc c ccccccccc ccccc cc cc c ccc ccccc c c cccc ccccc ccc cc ccc c cccc cc cc c c c cccc cccc c ccccc ccc c cc ccc ccc c c ccccccc cc cccccc cc cc ccc cccccc cccc ccc cc c cccc c cc c c ccccc cccc c ccccccc cc ccc c ccc ccc ccccc ccc c c ccccc cc cc c c c cccc ccc ccccccc c c c cc cc cc ccc cccc ccc cc c ccccccccc c cccc ccccc ccccccccc c ccccccc cc ccccc cccc c c ccc ccccc ccccccccc c ccccccc cc ccccccccc c cccccccc c cc cccccc c c cccccc cc c ccccccccc c cccccc cc c ccccc cc cc c cccccccc

c ccccccccc ccccccccc c ccc cccccc ccc cccccc c ccccccccc ccccccccc c cc ccc cccc cc ccccccc c ccccc cccc c cccccccc c ccccc cccc ccccccccc c cccccccc

0e
+0

0
2e

+0
8

4e
+0

8
6e

+0
8

8e
+0

8
1e

+0
9

050000100000150000200000250000

Tra
ce

 le
ng

th
(in

 ev
en

ts)

Processed events/sec

eee ee eee ee e ee eee eee e ee ee ee eee e ee ee e eee eee e eeee e eee eee ee ee e eee ee eeee ee eee ee eee ee eee e e e e ee ee eee e eee e ee ee ee e ee e ee ee e e e e eee eee ee ee eee e e ee ee e e eee ee ee e ee ee ee e eee ee ee ee ee eee eeeee ee ee e ee e e ee ee ee ee e ee ee eee ee e eee ee eee e ee eee eeeee ee eee ee e e ee e eee ee eee e ee ee ee e ee eee ee e e ee e ee e ee ee e e eee e e ee ee e e eee e eee e ee eee e e eee ee eee ee e eee eeee e eeee e ee eeee e eee ee eee e ee eee e eeee ee eee ee ee ee e eeee e eeee ee e ee e ee e e ee eee e e ee ee e e ee ee eee e ee ee ee e eee ee eee e ee eee e eee ee e eeee eee ee e ee e ee eee e ee eee e eeee ee eee eeee ee e eee ee ee ee ee eeee e eee ee ee e eee eee e eeee e e eeee e e eee e eee ee eee e e eeee eee ee ee eee ee ee ee e eee e e eee e ee ee ee e eee ee eee e e ee ee ee eee e e ee ee eee ee e eee ee eee e ee eee e eeee ee ee e ee ee ee e eee ee eee e ee ee ee eeee e e eee ee e e ee e eee ee e eee ee ee ee e eee ee eee e ee eee ee eee ee ee e e eee ee ee ee ee eeee ee ee ee eeee ee eee ee e e ee e eee ee e ee e ee ee ee e ee eee eee e e ee ee eeeee e e eee e e ee ee e eee ee eee e ee eee e ee ee ee eee e ee e ee e eee e e eee e ee eeee eeee ee ee e e eee ee eee ee e e ee e ee ee ee e eee ee eee e e e eee eee e e e e ee e ee ee ee e eee ee eee e ee e eee eeee ee ee eee ee ee e e ee ee e ee e ee eeee e ee e ee eee ee ee ee e ee ee e e eee e e ee ee e eee ee eee e ee e e ee eeee ee eee e ee e ee e eee e e e ee e ee e e ee e eee ee eee e ee eee ee eee ee eee ee ee ee e eeee e eee e ee ee ee e eee ee ee e eee e ee e eee ee e eee e eee ee e ee e ee eee e ee eee e e eee ee ee e ee ee ee e eee ee eee e ee eeee eeee ee ee e ee e e ee e ee eee e ee e ee ee ee e ee e ee ee e e ee eee e eeee ee eee ee e e ee e eee ee eee e ee ee ee eeee ee eee e ee e ee e ee ee e eee eeeee ee e eee ee eee e ee eee eeeee ee eee e e ee ee eeee e e eee e ee ee ee e ee e ee eee ee e e ee eee ee e e eee e eee ee e eee ee eeee ee eeee eeee ee ee e eee e ee e eeee e ee ee ee e eee e eee ee eee e ee eee eeeee ee eee ee e e ee e eee ee e ee e ee ee ee e eee ee eee e ee eee eee ee ee eee ee e e ee e eee ee eee e ee eeee e ee e ee eee e ee e ee e eeee ee eee ee ee ee e eee ee eee e ee eeee eeee ee eee eee e ee e ee eee e ee eee ee ee e eee e e eee e ee eee eeeee ee eee e e ee ee e e ee ee eeee ee eeee eeee ee eee eee e ee e eee ee e ee ee eee ee e eee ee eee e ee eee ee e ee e e eee eee e ee ee eee e eee e ee ee ee e eee ee eee e ee e ee eee ee e e eee ee ee ee e eee ee e ee e ee eeee e ee e e

bb bb bbb
bbbbb

b bbb b b bbbb b b bbb b bbbb b bb bb bbb bb b bb bb b bb b b b bbb b b bbb b b bbb b bb
bb b bbbb b bb bb b bbbb b bbb b b b

bb b b bbb bb b bb b b bbb b bbbb b bbbb b bbb bb bbb b b bbb b b bb b b b b
bb bbb b b bbb bb bbbbb bbb bb b bbb b bbbb bb bbb b

bbbb b bb bb b bb b bb bbbb b bbb b b bbb b bbbb b bbbb b bb bb bb bbb b bbbb b b bb b b bb bb bbbb b b bbb b bb bb b bbbb bb bbb b bb bb b bbb bb bbb b bbbb bb bbb b bbb bb bb bb b bb bb b bbb b b bbb b b bbb bb bbb bbbb bb bbbb bbb bb b bbbb b bbb b b bbb b b bbb b b bbb bb bbb bbb bb b bbbb b bbb bb bb bb b b
bb b bbb b b bb bb b bb bb b bb bb b bb bb bbbb b bbbb b b b

bb bb b bbb bbbb bbb bb b bb b b bbbb b b bbb b bbbb b b bbb bb bbb b bb bb b bb bb b b bbb b bb b b b bbb b b b
bb bb b bb bb bbb b bb bb b b bbb b bbbb b bbb b bb

www ww
w wwww

w w www www w www
w www w wwww

www w ww wwww ww w w wwwwww w www ww ww
w ww www

w wwww www ww w ww w ww
w w ww ww www

ww w w
ww ww w www www ww wwww wwww w

ww w ww
ww ww

ww wwww
ww wwwww w

www wwwww w
w ww ww w w w www w w w w

wwww w w
wwww w

w w www w www
ww ww w

wwww www w ww ww www
wwww

w www ww w
w w www w

www www w w w
ww w w ww w ww ww w ww w w www w w

w www
w w ww

w ww w w
w www w w w ww wwwww

w ww www
w w ww w ww

w w www w ww ww www
w www w w

w ww w www w ww w ww ww wwww
wwww

ww w ww www w ww wwwww
w www ww w www www ww ww www w w

w w w www w ww ww w ww w ww
wwww w

w ww w wwww wwww w
www w

www wwww
w ww w ww ww w www www ww www

w www ww

F
ig

u
re

2:
S
ca

li
n
g

b
eh

av
io

r
fo

r
lo

n
g

tr
ac

es

U(
sy

sc
al

l[n
am

e=
”r

ec
vf

ro
m

”,
ar

g1
→S

id
]

∧(�
(¬s

ys
ca

ll[
na

m
e=

”r
ec

vf
ro

m
”,

ar
g1

=
Si

d]
U(

st
ar

t
rp

c[
R

pc
Id
→R

id
,T

im
es

ta
m

p
→T

3]
∧�s

ys
ca

ll[
na

m
e=

”s
en

dt
o”

,R
pc

Id
=

R
id

,a
rg

1=
Si

d]
))

))
))

T
he

ep
ol

l
w
ai

t
re

tu
rn

s
a

va
lu

e
gr

ea
te

r
th

an
ze

ro
if

it
fin

ds
da

ta
w

ai
ti

ng
on

a
so

ck
et

;t
hu

s
ou

r
fo

rm
ul

a
lo

ok
s

sp
ec

ifi
ca

lly
fo

r
su

ch
an

ep
ol

l
w
ai

t.
O

ur
fo

rm
ul

a
ha

nd
le

s
th

e
si

tu
at

io
n

w
he

re
an

R
P

C
w

it
h

a
la

rg
e

re
qu

es
t

re
qu

ir
es

m
ul

ti
pl

e
ca

lls
to

re
cv

fr
om

.

U
si

ng
th

e
en

vi
ro

nm
en

t
fo

r
a

m
at

ch
of

th
is

fo
rm

ul
a,

w
e

ca
n

re
ad

ily
ca

lc
ul

at
e

“T
ot

al
T

im
e”

.
F
in

al
ly

,
w

e
no

ti
ce

an
ad

di
-

ti
on

al
co

m
pl

ex
it
y:

a
gi

ve
n

ep
ol

l
w
ai

t
ca

ll
m

ay
no

ti
ce

th
at

th
er

e
is

da
ta

no
t

on
ly

on
on

e
so

ck
et

bu
t

on
m

an
y

so
ck

et
s;

th
us

a
gi

ve
n

ep
ol

l
w
ai

t
m

ay
be

pa
rt

of
th

e
m

at
ch

fo
r

m
an

y
di

ffe
re

nt
R

P
C

s.
W

e
ha

nd
le

th
is

us
in

g
a
U∗

in
st

ea
d

of
Uf

or
“
U(

sy
sc

al
l[n

am
e=

”r
ec

vf
ro

m
”,

ar
g1
→S

id
]”
.

In
su

m
m

ar
y,

w
e

ha
ve

fo
un

d
th

at
T

pa
is

us
ef

ul
fo

r
an

al
yz

in
g

at
le

as
t

th
re

e
ki

nd
s

of
tr

ac
es

.
G

iv
en

an
in

-d
ep

th
kn

ow
le

dg
e

of
a

tr
ac

e’
s

ev
en

ts
,
T

pa
fo

rm
ul

as
fo

llo
w

in
tu

it
iv

el
y

an
d

di
-

re
ct

ly
fr

om
th

is
kn

ow
le

dg
e.

6.3
Sc

ala
bi

lit
y:

tim
e

F
ig

ur
e

2
sh

ow
s

ho
w

th
e

T
pa

sc
al

es
w

it
h

lo
ng

tr
ac

es
.

Si
nc

e
th

e
ke

rn
el

tr
ac

es
w

er
e

ou
r

lo
ng

es
t

tr
ac

es
an

d
ha

d
th

e
m

os
t

co
m

pl
ex

fo
rm

ul
as

,F
ig

ur
e

2
sh

ow
s
th

e
pe

rf
or

m
an

ce
of

fo
ur

of
fo

rm
ul

as
a

on
e

bi
lli

on
ev

en
t
ke

rn
el

tr
ac

e:
(i
)
w

co
m

pu
te

s
de

-
la

y
w

hi
le

R
P

C
pr

oc
es

si
ng

is
bl

oc
ke

d
be

ca
us

e
a

th
re

ad
is

no
t

av
ai

la
bl

e;
(i

i)
b

co
m

pu
te

s
ti
m

e
sp

en
t

bl
oc

ke
d

on
a

lo
ck

;(
iii

)
c

co
m

pu
te

s
ti

m
e

sp
en

t
ex

ec
ut

in
g

on
a

C
P

U
(i

.e
.,

do
in

g
re

al
w

or
k)

;a
nd

(i
v)

e
is

th
e

ep
ol

l
w

ai
t

pa
tt

er
n

fr
om

Se
ct

io
n

6.
2.

T
he

pe
rf

or
m

an
ce

of
ou

r
ot

he
r

fo
rm

ul
as

lie
s

be
tw

ee
n

w
an

d
e

an
d

th
us

w
e

om
it

th
em

to
av

oi
d

cl
ut

te
r

in
th

e
gr

ap
h.

A
po

in
t

(x
,y

)
w

it
h

sy
m

bo
lf

sa
ys

th
at

T
pa

pr
oc

es
se

d
y

ev
en

ts
pe

r
se

co
nd

fo
r

fo
rm

ul
a

f
w

he
n

T
pa

w
as

x
ev

en
ts

in
to

th
e

tr
ac

e;
th

us
lo

w
er

m
ea

ns
sl

ow
er

.
T
o

in
cr

ea
se

th
e

ge
ne

ra
lit

y
of

ou
r

re
su

lt
s

w
e

ev
al

ua
te

d
th

e
sc

al
ab

ili
ty

of
ea

ch
fo

rm
ul

a
on

tw
o

ad
di

ti
on

al
tr

ac
es

of
le

ng
th

6M
ev

en
ts

an
d

go
t

re
su

lt
s

co
m

pa
ra

bl
e

to
th

os
e

in
F
ig

ur
e

2.

Fr
om

F
ig

ur
e

2
w

e
ob

se
rv

e
th

at
th

e
nu

m
be

r
of

ev
en

ts
pr

o-
ce

ss
ed

pe
r

se
co

nd
fo

r
ea

ch
fo

rm
ul

a
re

m
ai

ns
la

rg
el

y
an

d
su

r-
pr

is
in

gl
y

co
ns

ta
nt

.
E

ve
n

th
ou

gh
it

is
ea

sy
to

pr
od

uc
e

a
fo

rm
ul

a
th

at
do

es
no

t
sc

al
e

to
a

la
rg

e
tr

ac
e

(e
.g

.,
a

fo
rm

ul
a

w
it
h

an
E
ve

nt
ua

lly
th

at
ne

ve
r

re
du

ce
s

to
tr

ue
w

ill
re

qu
ir

e

0
1

8

Nu
mb

er
of

tem
po

ral
 op

era
tor

s

Normalized analysis time − log scale

1251050

Tp
a

Tp
a w

ith
ou

t o
pti

mi
za

tio
ns

F
ig

u
re

3:
B

en
efi

t
of

th
e

op
ti
m

iz
at

io
n
s

in
S
ec

ti
on

5.
A

n
al

ys
is

ti
m

es
n
or

m
al

iz
ed

to
le

ft
-m

os
t
b
ar

in
gr

ap
h
.

as
m

an
y

in
st

an
ce

s
as

th
e

nu
m

be
r

of
ev

en
ts

in
th

e
tr

ac
e)

th
is

do
es

no
t

ha
pp

en
in

pr
ac

ti
ce

:
m

os
t
E
ve

nt
ua

lly
in

co
rr

ec
t

fo
r-

m
ul

as
re

du
ce

to
tr

ue
in

a
sm

al
l
nu

m
be

r
of

ev
en

ts
an

d
th

us
th

e
pa

th
ol

og
ic

al
si

tu
at

io
n

do
es

no
t

oc
cu

r.
T
o

gu
ar

d
ag

ai
ns

t
po

or
sc

al
ab

ili
ty

,
us

er
s

ha
ve

th
e

op
ti

on
of

sp
ec

ify
in

g
lim

it
s

fo
r

te
m

po
ra

lo
pe

ra
to

rs
(S

ec
ti

on
4.

7)

F
ig

ur
e

2
sh

ow
s

th
e

sc
al

in
g

be
ha

vi
or

fo
r

in
di

vi
du

al
fo

rm
u-

la
s;

ho
w

ev
er

,
T

pa
ca

n
m

at
ch

m
ul

ti
pl

e
fo

rm
ul

as
in

a
si

ng
le

tr
av

er
sa

lo
ft

he
tr

ac
e.

Fo
r
a

9
m

ill
io

n
ev

en
t
tr

ac
e,

m
at

ch
in

g
7

fo
rm

ul
as

(i
nc

lu
di

ng
th

e
on

es
in

F
ig

ur
e

2)
ba

ck
to

ba
ck

ta
ke

s
72

5
se

co
nd

s;
m

at
ch

in
g

th
em

al
l

in
a

si
ng

le
tr

ac
e

tr
av

er
sa

l
ta

ke
s

39
9

se
co

nd
s.

F
ig

ur
e

3
co

m
pa

re
s

th
e

an
al

ys
is

ti
m

e
of

T
pa

w
it
h

an
d

w
it
h-

ou
t
th

e
te

ch
ni

qu
e

in
Se

ct
io

n
5

on
th

re
e

fo
rm

ul
as

:
(i
)
0:

a
fo

r-
m

ul
a

th
at

m
at

ch
es

a
si

ng
le

ev
en

t;
(i

i)
1:

a
fo

rm
ul

a
w

it
h

on
e

te
m

po
ra

l
op

er
at

or
;

an
d

(i
ii)

8:
a

fo
rm

ul
a

w
it

h
8

te
m

po
ra

l
op

er
at

or
s

(t
he

ep
ol

l
w

ai
t

fo
rm

ul
a

fr
om

Se
ct

io
n

6.
2)

.
W

e
se

e
th

at
as

ar
e

fo
rm

ul
as

be
co

m
e

m
or

e
co

m
pl

ex
(i

.e
.,

ha
ve

m
or

e
te

m
po

ra
l
op

er
at

or
s)

ou
r

op
ti

m
iz

at
io

n
be

co
m

es
in

cr
ea

si
ng

ly
im

po
rt

an
t.

In
su

m
m

ar
y

T
pa

sc
al

es
at

le
as

t
to

tr
ac

es
th

at
ar

e
1B

ev
en

ts
.

6.4
Sc

ala
bi

lit
y:

m
em

or
y

B
y

de
fa

ul
t,

T
pa

ru
ns

w
it

h
a

m
ax

im
um

Ja
va

he
ap

si
ze

of
2G

on
a

32
-b

it
Ja

va
JV

M
.

T
o

se
e

if
T

pa
co

ul
d

ru
n

in
le

ss
m

em
or

y,
w

e
an

al
yz

ed
a

9M
ev

en
t

ke
rn

el
tr

ac
e

re
pe

at
ed

ly
us

in
g

th
e

fo
rm

ul
as

in
F
ig

ur
e

2.
Fo

r
ea

ch
ex

pe
ri

m
en

t
w

e
ha

lv
ed

th
e

si
ze

of
th

e
m

ax
im

um
Ja

va
he

ap
(u

si
ng

th
e“

-X
m

x”
fla

g)
to

fin
d

th
e

si
ze

at
w

hi
ch

th
e

an
al

ys
is

ti
m

e
de

gr
ad

es
.

W
e

fo
un

d
th

at
th

e
an

al
ys

is
ti

m
e

w
as

un
ch

an
ge

d
fo

r
he

ap
si

ze
s
do

w
n

to
12

8M
bu

t
de

gr
ad

ed
si

gn
ifi

ca
nt

ly
fo

r
64

M
.T

hu
s

ev
en

th
e

ch
ea

pe
st

la
pt

op
or

de
sk

to
p

co
m

pu
te

r
to

da
y

ha
s

en
ou

gh
m

em
or

y
to

an
al

yz
e

tr
ac

es
th

at
ar

e
m

ill
io

ns
of

ev
en

ts
.

6.5
Us

efu
ln

es
s

T
he

go
al

of
T

pa
is

to
he

lp
in

un
de

rs
ta

nd
in

g
pe

rf
or

m
an

ce
;i

n
so

m
e

ca
se

s,
th

is
un

de
rs

ta
nd

in
g

m
ay

im
m

ed
ia

te
ly

en
ab

le
us

to
im

pr
ov

e
pe

rf
or

m
an

ce
w

hi
le

in
ot

he
r

ca
se

s
it

m
ay

si
m

pl
y

po
in

t
us

to
co

m
po

ne
nt

s
th

at
ar

e
w

or
th

in
ve

st
ig

at
in

g.
T

he
fo

llo
w

in
g

ca
se

st
ud

ie
s

ill
us

tr
at

e
th

e
ra

ng
e

of
pe

rf
or

m
an

ce

Tr
ac

e
le

ng
th

 (i
n

ev
en

ts
)

0e
+0

8
2e

+0
8

4e
+0

8
6e

+0
8

8e
+0

8
1e

+0
9

Processed events/sec

050000100000150000200000250000

Fi
gu

re
6.

2:
Sc

al
in

g
be

ha
vi

or
fo

r
lo

ng
tr

ac
es

.

102 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

c
c

c

c
c
cc
ccc

c

ccc
ccc
ccc
cccc
ccc
ccc
ccc
cccc
cc

ccc
cccc
cc
cccc
cccc
cc
ccc
cccc
cc

cccc
cccc
c
c
ccc
ccc
ccc
ccc
ccc
ccc

cccc
cccc
c
c
cc
cccc
ccc
ccc
cccc
cc
ccccc
ccc
cc
ccc
cccc
cc

ccc
ccccc
c
c
ccc
cccc
cc
ccc
cccc
cc
ccccc
ccc
cc
ccc
cccc
cc
cccc
cccc
c
c
cccc
cccc
c

cc
cccc
ccc
c
cc
ccccc
cc

ccc
ccccc
c
ccccc
ccccc
cccc
ccccccccc

cccc
cc
ccc
cccc
cc

ccc
cccc
ccc
ccc
cccc
cc

ccc
cccc
ccc
ccc
cccc
cc
ccc
cccc
cc
cccc
cccc
cc
cccc
cccc
c
cccc
ccc
ccc
ccc
cccc
cc
ccc
cccc
ccc
ccc
cccc
cc

cccc
cccccc

ccc
cccc
cc

ccc
ccc
ccc
ccc
cccc
ccc
ccc
ccccc
c
ccccc
ccccc

cc
ccc
ccc
c
cccc
cccc
cc
ccc
cccc
cc
cccc
cccccc

ccc
cccc
cc

cccc
ccc
ccc
ccc
cccc
cc

ccc
ccc
c
c
c
cccc
ccccc
c

cccc
cccc
c
ccccc
ccc
cc
cccc
cccccccccccc

c
ccc
cccc
cc
ccc
ccccccc

c
ccc
ccc
ccc
ccc

cccc
ccccc
ccc
cc
cc
cc
cccc
cccc
ccc
cc
cccc
cc
c
c
cc
cc
c
ccccccc

ccc
c
c
c

cc
ccccc
ccc
cccc
cccc
c

ccc
ccc
ccc
ccc
cccc
c
cc
c
cc
cc
ccc
cc

cc
cc
ccc
c
c
cc
cccc
c
c
cc

cccc
cc
ccc
cccc
ccccc
c
ccccc
ccccc
ccc
cccccccccccc

ccccccc
ccc
cccc

cc
cccc
cccc
ccc
cc
cccc

ccc
cccc
cc
c
cccc
cccc
c

cccc
ccc
ccc
ccc
cc
cccc

ccc
cccc
cc
c
ccc
ccc
ccc

cc
cccc
ccc
cccc
cccc
cc

ccc
ccc
ccc
cccc
cccc
cc
ccc
ccc
ccc
cccc
cccc
cc
ccc
ccccc
c
cccc
cccc
cc
cccc
cccc
c

ccccc
ccc
c
c
cccc
ccc
cc

cc
cc
cccc
c
c
cc
cccc
ccc

cccc
cccc
c
ccccc
ccc
cc

ccc
ccc
cccc
ccc
ccc
ccc
cc
cccc
cccc
cccc
cccc
c

ccc
ccc
cccc
cc
cccc
cc

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

Trace length (in events)

Pr
oc

es
se

d
ev

en
ts

/s
ec

e
eeeeee
ee
eeeeeeeee
eeeeeee
e
ee
eeeee
eeeeeee
eeeeeeeeeeeeeeee

eeee
e
eee
eeeeeeeeeeeeeeeeeeeeeee

e
eeee
eeee
eeeeeee
eee
ee
e
e
e
eeeeeeeeeeeeeeee

eeeeeee
eeeeeeeeeeeeeeee

eeee
e
e
e
e
ee
eeeeeeeeeeeeee

eeeeeee
eee
e
eeeeeeeee
eeeeeee
eeeeeeeeeee

eeeeeeeeee
e
e
eeee
eeeeeeeeeeeeeeee

eee
e
ee
e
e
eeeeeee
eeeeeeeeeeeeeeee

eeee
eee
e
eeeeeee
eeeeeeee
e
eeeeeee
e
eeeeeeeeeeeee

eeeeee
e
e
e
ee
eeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee
eeeeeeeeeeee

e
e
eeeeeee
eeeeeeeee

ee
e
eeee
e
ee
eeee
e
eeeeeeeeeeeeeeeeee

eeeee
eeeeeeee
eeeeeeeeeeeeeeeee

eeeeee
eeeeeeeeeeeeeeee

eee
eeeee
eeeeeeeeeeeeeeeeeeeeeeeeeee

e
e
e
ee
eee
ee
eeeeeeeeee

eeeeeee
eeeeeeeee

eeeeeee
eee
eeee
e
eeeeeeeeee

e
eeeee
eeeeeee
e
eee
e
eee
eeeeeee
eeeeeeeeeeeeeeee

eeeeeeeee
eeeeeee
eeeeeeee
eeeeeeeeeeeeeeeeeeeeeee

ee
ee
eee
e
eeeeeee
eeeeeeee
e
eeeeeee
e
e
eeeeeeeeeeeeee

eeee
e
eee
eeeeeee
eeeeeeeeeeeeeeeeeee

eeee
e
eeeeeee
e
ee
eeeeeeeeeeeee

eeeeee
e
ee
eeeeeeeeeeeeeeee

eeeeee
eeeeeeee
eeeeeeee
e
e
eeeeee
eeeeeee
eeeeeeeeeeeeeeee

eeee
e
e
e
e
eeeeeeeeeeeeeeeeeeeeeee

eeeeeeee
eeeeeee
eeeeeeeee

eeeeeeeeeeeeeeee
eeeeeee
eee
eeeeee
eeeeeeeeeeeeeeeeeeeeee

eeee
eeeee
eeeeeee
eeeeeeeee

eeeeeeeeeeeeeee
eeeeeee
eeeeeeee
eeeeeee
eeeeeeeee

eeeeeee
eeeeeeeee

eeeeeeeeee
eeeee
eeeeeeeeeeeeeeeeeeee

eee
eee
eeee
e
eeeeeee
eeeeeeee
e
eeeeeee
eeeeeeeee

eeeeeeeeeee
e
eee
eeeeeee
e
eeeeeeee
eeeeeee
e
ee
eeee
e
eeeeeeeee

e
eeeee
e
eeeeeeeeeee

eee
ee
eeeeeeeeeeeeeee

eeeeeee
eeeeeeeeeeeeeeee

eeee
eeeee
eeeeeeeeeeeeeee

eeeeeee
e
eeeeeeee
eeeeeee
e
ee
eeee
ee
eeeeee
eeeeeeeeee

eeeeee
eeeeeee
e
eeeeeeeeeeeeeeee

eeeeeee
eeeeeeeeeeeeeeee

eeee
e
e
e
ee
eeeeee
eeeeeeeeee

eeeeee
eeeeeeeeeeeeeeee

eeee
eee
e
eeeeeeeeeeee

eee
ee
eeeeee
e
eeeeeeee
eeeeeeeeee

eeee
e
eeeeeeeeeeee

eeee
eeeeeee
eeee
eee
ee
eeeeeeeeeeeeeeee

eeeeee
eeeeeeeeeeeeeeee

eeee
eeee
eeeeeee
e
eeeeeeee
eeeeeee
eeeeeeeee

eeeeeeeeeeeee
e
ee
eeeeee
eeeeeeeeeeeeeeee

eeeeee
e
ee
eeeeee
e
eeeeeeeee
eeeeee
eeeeeeeee

eeeeeeeeeee
e
eee
eeeeee
e
e
eeee
eeee
eeeeeee
eeeeeeeee

eeeeeee
eee
eee

b

b
bbbbbbbbb

bbbbbbbbbb
bbbbb

bbbbb
bbbbb

b
bb
bbbbbbbbbb

bbbbb
bbbbb

bbbbbbbbbbb
bbbbb

bbbbb
bbbbb

bbbbbbbbb
bbbbb

bbbbb
bbbb

bbbbbb
bbbbbbbbb

b
bbb

bbbbbb
bbbb

bbbbbbbbbbbbbb
bbbbb

bbbbbbbbbbb
bb
bb
bb
bbb

bbbbbb
bbbbb

bbb
bbbbbbbbb

b
bbbbbb

bb
b
bbbbbbbbbbbbbbbb

bbbbbbbbbb
bbb

b
b
b
bbbb

bbb
b
bbbbb

b
bbbbb

b
bbb

bbbbbbbbbb
b
bbbb

bbbbbbbbbbbbbbbbbbbbbbb
bbbbbb

bbbb
bbbb

b
bb
bbbb

b
bbbb

b
b
bb
b
b
bb
bbbbbbbbb

b
bbbbbb

bbbbbbbbbb
b
bbb

b
b
bbbb

bbbbbbbbbbbbbbb
bbbb

bbbbbbbbbbbbbbb
bb
b
bbbbbbb

b
bb
bbbbb

bbbbbbbbbbb
bb
b
bb
b

b
bbb

bbbbbbbb
bbbbb

bbbbb
bbbbbb

b

b
bbb

bbbbbbbbbb
bbbb

bbbb
bbbbbb

bbbbbbbbbb
bbbb

bbbbbb
bbbbb

bbb
bbbbbbbbbb

w

wwwwwwwwwwww
wwwwwwwwwwww

wwwwwww
wwwwwwww

wwwwwwww
wwwwww

wwwwwwwwwwwwwww
w
wwww

www
wwwwww

w
wwwwwwwwwwwwwwww

ww
ww
www

ww
ww
w
wwwwwwwwwwwwwwwwwwwww

ww
wwwwwww

ww
wwwwww

wwwww
w
w

wwwwwwww
wwww

w
wwwwwwwwwwwwwwww

ww
w
www

w
www

w
w
wwww

wwwwwwwwwwwwwwwwwwwwwww
wwwwwww

ww
wwwwwwww

wwwwwwwwwwwwwwwwwwwwwwww
www

w
w
w

w
wwwww

w
wwwwwww

wwwwww
w
www

w

wwwwwwww
wwwwww

wwww
ww
w
wwwww

wwwwwwwwwwwwwwww
ww
w
w
w
wwwww

w
w
w
w
ww

w
w
w
ww
wwwwww

wwwwwwww
www

w
w
w
www

wwwwwwwwwwwwwww
ww
w
wwwwwwww

w
wwwwwwww

ww
w
ww
wwwwwwwww

wwwwwwwwww

Figure 2: Scaling behavior for long traces

U (syscall[name=”recvfrom”, arg1 →Sid]
∧(�(¬syscall[name=”recvfrom”, arg1=Sid]
U (start rpc[RpcId →Rid, Timestamp →T3]
∧�syscall[name=”sendto”, RpcId=Rid, arg1=Sid]))))))

The epoll wait returns a value greater than zero if it finds
data waiting on a socket; thus our formula looks specifically
for such an epoll wait. Our formula handles the situation
where an RPC with a large request requires multiple calls
to recvfrom.

Using the environment for a match of this formula, we can
readily calculate “Total Time”. Finally, we notice an addi-
tional complexity: a given epoll wait call may notice that
there is data not only on one socket but on many sockets;
thus a given epoll wait may be part of the match for many
different RPCs. We handle this using a U∗ instead of U for
“ U (syscall[name=”recvfrom”, arg1 →Sid]”.

In summary, we have found that Tpa is useful for analyzing
at least three kinds of traces. Given an in-depth knowledge
of a trace’s events, Tpa formulas follow intuitively and di-
rectly from this knowledge.

6.3 Scalability: time
Figure 2 shows how the Tpa scales with long traces. Since
the kernel traces were our longest traces and had the most
complex formulas, Figure 2 shows the performance of four of
formulas a one billion event kernel trace: (i) w computes de-
lay while RPC processing is blocked because a thread is not
available; (ii) b computes time spent blocked on a lock; (iii)
c computes time spent executing on a CPU (i.e., doing real
work); and (iv) e is the epoll wait pattern from Section 6.2.
The performance of our other formulas lies between w and
e and thus we omit them to avoid clutter in the graph. A
point (x, y) with symbol f says that Tpa processed y events
per second for formula f when Tpa was x events into the
trace; thus lower means slower. To increase the generality
of our results we evaluated the scalability of each formula
on two additional traces of length 6M events and got results
comparable to those in Figure 2.

From Figure 2 we observe that the number of events pro-
cessed per second for each formula remains largely and sur-
prisingly constant. Even though it is easy to produce a
formula that does not scale to a large trace (e.g., a formula
with an Eventually that never reduces to true will require

0 1 8

Number of temporal operators

N
or

m
al

ize
d

an
al

ys
is

 ti
m

e
−

lo
g

sc
al

e

1
2

5
10

50

Tpa
Tpa without optimizations

Figure 3: Benefit of the optimizations in Section 5.
Analysis times normalized to left-most bar in graph.

as many instances as the number of events in the trace) this
does not happen in practice: most Eventually in correct for-
mulas reduce to true in a small number of events and thus
the pathological situation does not occur. To guard against
poor scalability, users have the option of specifying limits
for temporal operators (Section 4.7)

Figure 2 shows the scaling behavior for individual formu-
las; however, Tpa can match multiple formulas in a single
traversal of the trace. For a 9 million event trace, matching 7
formulas (including the ones in Figure 2) back to back takes
725 seconds; matching them all in a single trace traversal
takes 399 seconds.

Figure 3 compares the analysis time of Tpa with and with-
out the technique in Section 5 on three formulas: (i) 0: a for-
mula that matches a single event; (ii) 1: a formula with one
temporal operator; and (iii) 8: a formula with 8 temporal
operators (the epoll wait formula from Section 6.2). We see
that as are formulas become more complex (i.e., have more
temporal operators) our optimization becomes increasingly
important.

In summary Tpa scales at least to traces that are 1B events.

6.4 Scalability: memory
By default, Tpa runs with a maximum Java heap size of
2G on a 32-bit Java JVM. To see if Tpa could run in less
memory, we analyzed a 9M event kernel trace repeatedly
using the formulas in Figure 2. For each experiment we
halved the size of the maximum Java heap (using the“-Xmx”
flag) to find the size at which the analysis time degrades.

We found that the analysis time was unchanged for heap
sizes down to 128M but degraded significantly for 64M. Thus
even the cheapest laptop or desktop computer today has
enough memory to analyze traces that are millions of events.

6.5 Usefulness
The goal of Tpa is to help in understanding performance; in
some cases, this understanding may immediately enable us
to improve performance while in other cases it may simply
point us to components that are worth investigating. The
following case studies illustrate the range of performance

Figure 6.3: Benefit of the optimizations in Section 6.5. Analysis times nor-
malized to left-most bar in graph.

Figure 6.2 shows the scaling behavior for individual formulas; however,
TPA can match multiple formulas in a single traversal of the trace. For a 9
million event trace, matching 7 formulas (including the ones in Figure 6.2)
back to back takes 725 seconds; matching them all in a single trace traversal
takes 399 seconds.

Figure 6.3 compares the analysis time of TPA with and without the tech-
nique in Section 6.5 on three formulas: (i) 0: a formula that matches a single
event; (ii) 1: a formula with one temporal operator; and (iii) 8: a formula
with 8 temporal operators (the epoll wait formula from Section 6.6.2). We
see that as are formulas become more complex (i.e., have more temporal
operators) our optimization becomes increasingly important.

In summary, TPA scales at least to traces that are 1B events.

6.6.4 Scalability: memory

By default, TPA runs with a maximum Java heap size of 2 Gb on a 32-bit
Java JVM. To see if TPA could run in less memory, we analyzed a 9 M event
kernel trace repeatedly using the formulas in Figure 6.2. For each experi-
ment we halved the size of the maximum Java heap (using the “-Xmx” flag)
to find the size at which the analysis time degrades.

We found that the analysis time was unchanged for heap sizes down
to 128 MB but degraded significantly for 64 MB. Thus even the cheapest
laptop or desktop computer today has enough memory to analyze traces
that are millions of events.

6.6. RESULTS 103

6.6.5 Usefulness

The goal of TPA is to help in understanding performance; in some cases,
this understanding may immediately enable us to improve performance
while in other cases it may simply point us to components that are worth in-
vestigating. The following case studies illustrate the range of performance
problems for which we have used TPA.

Scenario 1: How rare is an event?

Performance anomalies are everywhere. Indeed, every time we visualize a
new trace our first reaction is usually: “what is this odd behavior?”. Even
the experts in the system that produced the trace are often surprised by the
gap between what they expect to see and what actually happens.

While we could attempt to track down every anomaly that we see, it is
usually not worthwhile to do so: many anomalies are rare and thus time
spent tracking them down will yield little benefit. Thus, we need a way to
separate the anomalies that are frequent and must be studied from anoma-
lies that are too rare to be worth an investigation. We have frequently used
TPA for such analysis.

The example in Section 6.3.5 illustrates such a use of the TPA. While
looking at data from a stress test we encountered a situation where there
was significant contention on the spin lock for the waiting queue. This sit-
uation was believed to be extremely rare and thus not worth optimizing.
That we saw an instance of it in a trace from a stress test was perhaps not
too surprising. Thus, to see if this actually happened in practice we wrote
the formula in Section 6.3.5 and applied it to 4 traces taken from real pro-
duction load (i.e., not stress test). We found that this situation happened
between 2 and 10 times per second per computer (each trace from a single
computer) and each time it occurred it delayed the operation by several
milliseconds.

Thus, TPA enabled us to quantify this problem as rare (about 0.1% of
the lock acquisitions and releases suffer from it) but still more than what the
designers expected. Without TPA we would have had to resort to searching
and manual labor; for example there were more than 4000 calls to nanosleep
in one trace and only 8 of them were relevant to our situation.

Scenario 2: Where does all the time go?

There are many possible situations that contribute to long tail latency for an
RPC: the RPC may be doing too much work, it may be waiting on a lock, it
may be waiting for a CPU, it may be waiting in a queue behind other RPCs,
it may be waiting on a disk access, etc. For a single RPC we can, with some

104 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

manual labor using an appropriately powerful visualization, determine the
breakdown to account for 100% of the time for an RPC. However, we really
want to know this breakdown for not a single RPC but a large number of
RPCs so that we can make informed decisions on what to optimize next.

To do this, we can write formulas; one for each component of a break-
down. In addition, we can write a formula that quantifies the total latency
of each RPC. We can now use TPA with these formulas to determine if the
components largely account for the total latency; if they do not, then we
know that we have not accounted for all the components of latency and
must write new formulas.

We wrote eight formulas to break the time spent in a no-SQL server [74]
RPC and found that three of the formulas dominated. The three that dom-
inated were: Cpu (i.e., time doing actual work on behalf of the RPC ac-
counted for nearly 50% of the latency), Waiting for Thread (i.e., when the
RPC work is on a queue waiting for a thread to pull it off and work on it ac-
counted for about 30% of the latency), and Blocked (i.e., waiting to acquire
a lock or waiting for a callee RPC to finish accounted for about 20% of the
latency). On average, doing actual work actually consumed less than half
of the overall time for the RPC. Moreover, the distribution was skewed: for
example, Waiting for Thread was bi-modal: it was tiny for most RPCs but
was the dominant contributor of latency for some RPCs.

Thus, TPA revealed a possible cause of long-tail latency in the no-
SQL system; this and other follow-up investigations led to changes in the
threading model for the system.

Scenario 3: What is the true cost of an operation?

Concurrent code often uses thread pools [75]. Intuitively, a service submits
tasks to the thread pool; if the pool has an available thread, it wakes up
the thread and gives it the task to work on. If it does not have an avail-
able thread, it may create a new thread or queue up the task for the next
thread that becomes available. If we over-provision the number of threads,
the thread pool always has an available sleeping thread for each incoming
task; if we under-provision the number of threads, most incoming tasks
will have to wait on a queue before a thread picks it up.

While profiling a component of GMail, we noticed that threads going
to sleep (while waiting for work) and threads waking up (when a new task
arrives) was contributing significantly to the latency. The code that accom-
plishes this uses the futex system call to both go to sleep and to wake up a
sleeping thread. Unfortunately it is not easy to measure the cost of the two
uses of futex for two reasons: (i) when a thread uses futex to wait for work,
the operating system will often context switch to another thread; thus, we
need to differentiate the time spent in futex from the time the thread was

6.7. RELATED WORK 105

context-switched out; (ii) the two uses of futex are distinguishable by the se-
quence of events: the thread that waits for work will have a context switch
during the futex call while the thread that wakes up another thread will
have a sched wakeup event during the futex call.

Fortunately both of these sequences are easy to recognize using formu-
las in TPA. This study resulted in an effort to tune the thread pool for GMail
and to improve the cost of putting a thread to sleep and waking it up. These
efforts have already yielded a 5% improvement in latency for one compo-
nent of GMail.

6.7 Related work

There is much prior work on extracting rich information from program
runs (e.g., DTrace or AOP [68, 69]); however, most of these approaches re-
quire us to add instrumentation to programs. For example, DTrace inserts
probes and actions into the system under investigation. This is not feasi-
ble in our production setting: the time to add new instrumentation, get it
reviewed and deployed, and finally to collect data from it takes weeks and
is thus inconvenient for exploration. Moreover, this instrumentation may
itself perturb the system. Therefore it is critical to mine information we
already collect whenever possible.

6.7.1 Temporal logic

The main contribution of this work is not a new language but a novel use
of an existing language: LTL. Thus, our contributions are in how we use
and implement the language rather than a language design.

Unlike TPA which focuses on extracting performance information from
traces, prior work (with the exception of Finkbeiner et al. [76]) focuses on
system verification [71, 72, 77–85] or debugging [86]. Thus, none of these
prior systems add variables to LTL which are crucial for extracting perfor-
mance data from traces.

Finkbeiner et al. [76] is the closest work to this work: they also note that
one could use LTL to analyze program traces to compute “experiments”
(properties at particular events in the trace) and “aggregate statistics”. This
is a theoretical paper and the concepts are similar to many of the concepts
in our work. However, unlike our work, they do not introduce a notion
of variable bindings (which are key to reasoning over sequences of events),
describe optimizations necessary for scaling to realistic traces, or apply LTL

to solving real world performance problems.
Prior work uses two broad techniques for reasoning over formulas in

temporal logic. The tableau method is useful for determining whether or

106 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

not a formula is satisfiable [87]; in contrast, we wish to determine if a for-
mula matches a particular trace. The automata method converts LTL for-
mulas into automata and uses it to extract information from traces (e.g.,
Finkbeiner et al. use an algebraic alternating automata [76]). TPA’s imple-
mentation strategy is similar to using an automata except that because of
the use of variables we also need to maintain environments as we match
formulas against traces.

6.7.2 Trace query languages

We use our extended LTL as a domain-specific language for analyzing per-
formance traces. Thus, while there is much prior work in analyzing traces
none of the prior work focuses on performance traces; thus the idioms they
support are inconvenient for our needs.

Many systems in the Complex Event Processing community (CEP) de-
scribe event matching languages [88–92]). Unlike our work, which focuses
on analyzing performance traces, these papers focus on RFID-based in-
ventory management, financial services, click stream analysis, and health
systems. Consequently, our language is intended to be convenient at ex-
pressing idioms in performance traces (e.g., by supporting the constrained
Next operator). CEP languages decouple the event sequence matching
and the attribute matching by using the following construct: EVENT <se-
quence>WHERE <attribute matching>. Our performance traces require a lot
of attribute matching (e.g. we need to match a lock acquisition with a lock
release from the same thread). By using variable binding and describing
both event and attributes match at the same time, our formulas are signif-
icantly more compact for our needs. In addition, unlike the CEP literature
that introduces many new operators, we preferred to restrict ourselves as
much as possible to a well-known and understood notation: LTL. In this
way we hope to end up with a notation that is easy to understand and
reason with.

PQL [93] and PTQL [94] use an SQL-like syntax to perform queries on
a event trace. PQL targets finding application errors and security flaws,
while PTQL targets debugging and profiling. Both systems target Java pro-
grams and their events are high-level Java events such as method invo-
cations, allocations, and field accesses. While SQL notation is familiar to
programmers, it is not convenient for expressing complex temporal inter-
actions between events. For example, PTQL cannot conveniently express
simple sequences such as “Thread A invokes M, and next Thread A invokes
B or C” because there is no convenient way of saying: between these two
events in thread A there must be no other events for thread A.

KOJAK [95] uses the same parallelism to analyze traces as the origi-
nal run that produced the traces. Unlike TPA, they use a general-purpose

6.8. CONCLUSION 107

language for matching patterns against traces. While general-purpose lan-
guages can express any pattern that TPA can express, their implementations
of patterns are one to two orders of magnitude larger (in our experience)
than in TPA and consequently less convenient for exploration.

6.7.3 Other related work

Altman et al. [96] show that for large-scale applications, performance prob-
lems often emerge as idle time. Their methodology to identify the root
cause of idleness in programs uses sampling of the execution state of a
Java Virtual Machine. By inspecting the stack they classify the idle time
into categories such as locking contention, garbage collection, and resource
constraints. One of the usage scenarios for TPA is also as an “idle-time
classifier” (Section 6.6.5). However, unlike our work that operates on fine-
grained traces, Altman et al. is limited to sampling in Java Virtual Ma-
chines.

Xu et al. [97] use data mining techniques to detect performance anoma-
lies using the applications’ source code and console logs. The purpose of
this tool is to automatically detect performance anomalies by reading the
log file one line at a time. This approach does not detect complex interac-
tions that require reasoning across several log entries.

6.8 Conclusion

For large-scale applications the slowest 1% operations (i.e., the long-tail la-
tency) cannot be ignore as “outliers”. The latency of the slowest operations
affects capacity planning (and thus costs) and for services that serve hun-
dreds of millions of users, there are, by definition, many user requests daily
that are in the slowest 1%.

To analyze long-tail latency, we need to analyze traces. However, ana-
lyzing traces is difficult and laborious: one must reason through long se-
quences of events to find the cause of a performance problem. This chapter
describes and evaluates a system, TPA, that, given domain knowledge en-
coded as formulas, can analyze large traces. Thus, TPA can alleviate much
of the manual effort in analyzing traces.

We show that TPA scales to large traces: even for our most complex
formula, TPA can analyze more than 50000 events per second using only
128M of memory. We demonstrate the usefulness of TPA by presenting
three case studies, two of which have directly contributed to improving the
performance of Google services.

108 CHAPTER 6. ANALYZING LONG-TAIL LATENCIES

Chapter 7

Conclusion

This dissertation investigated several challenges regarding commercial computing
platforms and real-life workloads. In this chapter, we first summarize these chal-
lenges and then detail the conclusions that can be drawn from this research work.
In addition, we highlight interesting research topics that could be investigated fur-
ther in the future.

7.1 Summary

The rise of cloud computing, where most storage and compute power is
located in the datacenter, comes with a number of challenges and opportu-
nities. A major challenge is to provide a satisfying experience to the user.
This is obviously closely coupled with the performance of the application
in the datacenter. Studies have shown that users do not tolerate long laten-
cies and leave the website, which leads to user drop-out and means a loss
in users and thus a loss in revenue. For complex applications, we typically
see a latency distribution with a long tail: the performance of most requests
is located around the average latency, but there is a small percentage of
long latencies, for example the slowest 1% of requests takes 10 times longer
than the average request. While profilers and hardware simulators can help
with improving the average latency by measuring the performance of the
software and testing the performance on future hardware platforms, they
are of little help for the long tail latencies. Only a small number of requests
suffer from these problems that are often caused by complex interactions in
various layers of the execution stack spanning both software and hardware.

Besides these challenges there are also major opportunities in cloud
computing. One of the major costs in datacenters is power usage. This in-
cludes the power consumed by the IT infrastructure (e.g., servers, network
devices, etc.) and power for cooling and power transformations. Where
datacenters used to be power-hungry buildings with large cooling installa-

109

110 CHAPTER 7. CONCLUSION

tions, companies are nowadays pushing towards free cooling by designing
the building from the ground up and building in areas with a favorable
climate. Large-scale Web applications like Google, Amazon or Facebook
build their own custom-designed datacenters with the purpose of lowering
the cost. In this work we focus on the energy efficiency of the computing
hardware, as this is a the core of the power usage: lower power used by the
IT infrastructure means less cooling and less power transformations. Thus
optimizing the energy efficiency of the server has a very large impact on
the energy efficiency of the whole application and datacenter.

In the following subsections, we briefly highlight the major findings
and contributions of this work to the performance and energy efficiency of
commercial computing platforms.

7.1.1 Architectural simulation

Simulating future hardware platforms using an architectural simulator
gives us insight in the performance of the application on a hardware plat-
form before building it. Various tradeoffs can be researched: such as the
performance versus the energy efficiency of an application on that specific
hardware platform.

Architectural simulators come in different flavors, as there is a tradeoff
between speed and accuracy. Cycle-accurate simulators model the hard-
ware in a great level of detail and simulate the behavior of each component
at every cycle. This makes them the most accurate simulators but also very
slow. Complex applications with large amounts of data can take a long
time to reach a phase of stable performance. In particular, it can take hours
before a software cache is properly warmed up. Cycle-accurate simulation
cannot be used to simulate the workload as a whole, as it is simply too slow.

Interval simulation is a technique that abstracts away most hardware
components into an analytical model, making it faster but less accurate
than cycle-accurate simulation. Prior work in interval simulation was vali-
dated against a cycle-accurate simulator, but not against real hardware. In
this work, we validate interval simulation against real hardware, namely
an AMD Opteron 2350 quad-core server processor. The average error com-
pared to real hardware is 9.8% for the micro-benchmarks, and 18.6% for a
set of CPU-intensive benchmarks including SPECjbb2005, H.264 video de-
coding and encoding, bio-informatics, and multi-threaded PARSEC bench-
marks. We obtain similarly accurate results for a non-trivial Web 2.0 search
engine server workload: 7.0% average error for response time and 12.7%
for throughput across a range of concurrent clients. We also study the
trade-off in speed versus accuracy when enabling sampled simulation. The
end result is a full-system software simulator that faithfully simulates x86
hardware at a speed in the tens of MIPS range: one particular sampling

7.1. SUMMARY 111

strategy achieves a speed of 37 MIPS and an average error of 23.1% for a
set of CPU-intensive workloads.

VSim takes the speed versus accuracy tradeoff one step further: VSim
models the target processor as a fixed performance ratio to the host pro-
cessor. This is clearly less accurate than interval simulation, but enables
very fast multi-node simulation. VSim is a novel full-system simulation
methodology that leverages virtualization technology to simulate multi-
server setups. VSim consists of a system virtual machine that runs on a
host server and controls CPU, network and disk performance as perceived
by software, i.e., the software is given the illusion to run on a target system
with performance properties that differ (significantly) from the host but
mimic the target system. Virtualization also enables simulating multiple
target servers per host by running target servers as guest virtual machines.
Distributed simulation across multiple hosts enables simulation at scale.
The implementation of VSim in VirtualBox and the evaluation presented in
Chapter 3 illustrate its accuracy: 2.0%, 4.4% and 4.9% average error against
the modeled CPU, disk and network performance, respectively; complete
workloads (Lucene and Olio) involving CPU, disk and network activity
are shown to be accurately modeled in VSim (average error of 3.2%). These
results are obtained at a simulation slowdown of one order of magnitude
only compared to native hardware speed, and our current implementation
can simulate up to five target servers per host.

7.1.2 Energy efficiency and proportionality

Recently, SPEC launched SPECpower, a benchmark for evaluating the
power and performance characteristics of computer servers [10]. Rivoire et
al. [11] propose JouleSort, a sort benchmark aimed at evaluating the energy
efficiency of a wide range of computer systems from servers to embedded
systems.

Using the results provided by SPEC for SPECpower, we analyze how
energy-proportionality has evolved over the past three years on a broad
set of contemporary servers. We evaluate how well the SPECpower score
quantifies energy-proportionality and how much energy can be saved
by making servers more energy-proportional. We conclude that energy
proportionality has improved significantly over the past few years, from
30 to 40 percent in 2007 to 50 to 80 percent in 2011. Yet, substantial en-
ergy savings might be possible to achieve by further improving a server’s
energy proportionality. Closing the gap between today’s most energy-
proportional system and the ideal energy-proportional system could po-
tentially lead to an energy (and proportional cost) saving of 34 percent.

Although SPECpower and alike benchmarks offer valuable insight in
the energy efficiency of a computer system, they have limited flexibility.

112 CHAPTER 7. CONCLUSION

The benchmarks are rigid and cannot be altered to reflect different work-
load behaviors. In particular, EEMBC’s EnergyBench is tied to the EEMBC
performance benchmarks; the SPEC power benchmark is a Java server
workload that generates and completes a mix of transactions; JouleSort
implements a sort algorithm. These benchmarks are unable to explore
the energy efficiency of computer systems across the workload space. In
other words, the numbers produced by these approaches may be limited
in scope (they are tied to these specific workloads) and it is hard to gen-
eralize towards other types of workloads, i.e., a computer system that is
energy-efficient for the power benchmark does not necessarily imply that
it is energy-efficient for other workloads.

We therefore propose SWEEP, a framework for generating synthetic
workloads with specific workload characteristics in order to generate
compute-intensive workloads, memory-intensive workloads, I/O-intensive
workloads, and any mix thereof. In particular, SWEEP enables its users
to configure the workload’s characteristics by setting the ratio of inte-
ger versus floating-point instructions, the inter-instruction dependencies,
memory access patterns, disk I/O access patterns, etc. SWEEP provides
a unique opportunity to its users: it allows for exploring the energy ef-
ficiency and performance of computer systems by ‘sweeping’ across the
workload space.

Using SWEEP we generate a range of synthetic workloads with very
different characteristics and run these workloads on two real hardware sys-
tems, a low-end system (Intel Atom) as well as a high-end system (AMD
Quad-Core Opteron), and evaluate their energy efficiency across differ-
ent workload behaviors. We conclude that whether one machine is more
energy-efficient than another machine is very much workload dependent.

To visualize a machine’s energy efficiency relative to a reference ma-
chine, we propose the Energy-Delay Diagram (EDD). The EDD represents
the trade-off in performance versus energy in a more intuitive way than the
traditionally used EDP and ED2P metrics do.

7.1.3 Long-tail latency analysis

Long-tail latencies are often caused by complex interactions between var-
ious layers of the execution stack, and not in the least part by contention
on resources (e.g., locks). To analyze long-tail latency we must reason over
fine-grained traces (i.e., timestamped sequence of events) which is labori-
ous and requires extensive domain knowledge. Reasoning with traces is
difficult because we must reason across chains of events where each event
affects subsequent events. For example, let’s suppose we wish to find how
often a high-priority thread, e.g., H , waits for a lock that a low-priority
thread, e.g., L, holds (i.e., this is a case of priority inversion). Given a ker-

7.2. FUTURE WORK 113

nel trace, we can readily find when H waits on a lock (it shows up as system
calls to futex in the Linux kernel trace). To determine if H was waiting for a
lock held by L we must now reason across time to determine if L released
the lock just before H acquired it. Using manual effort and search tools we
can do this reasoning for a few operations only. However, reasoning over a
few operations does not tell us if the priority-inversion is common or rare.
Thus, we must do this reasoning over many long traces.

We therefore propose TPA, a language based on linear-temporal logic
extended with variables to analyze traces and thus reduce the manual labor
involved in analyzing traces. We show that TPA scales to large traces: even
for our most complex formula, TPA can analyze more than 50,000 events
per second using only 128 MB of memory. We demonstrate the usefulness
of TPA by presenting three case studies, two of which have directly con-
tributed to improving the performance of Google services.

7.2 Future work

To conclude this dissertation we elaborate on some future research direc-
tions in hardware simulation and analysis of performance on production
systems.

7.2.1 Hardware simulation

Chapter 3 introduced VSim, a novel simulation technique based on hardware-
assisted virtualization. The major limitation of our current simulation ap-
proach is the CPU model: the performance of the guest CPU is modeled
as a fixed factor of the host platforms CPU. In reality, however, the per-
formance factor is defined by the workload and varies over time during
the execution. Depending on the workload’s characteristics and phase
behavior, the performance factor might change in time. For this work we
calculated a fixed performance factor for each workload.

Multiple strategies could be developed to cope with this problem. For
one, we could use performance counters to measure the workloads charac-
teristics while running the simulation. These characteristics could be used
to determine the performance factor of the next simulation quantum. Syn-
thetic benchmarks could be used to automatically generate the CPU model.
Running the synthetic benchmarks on both the target and host system gives
us performance factors for a wide range of applications, from which we can
generate a CPU model.

On the other hand, we could use a detailed simulator (this could be a
cycle-accurate or interval simulator) to determine the performance model.
By checkpointing the architectural state in VSim and transferring that state

114 CHAPTER 7. CONCLUSION

to the simulator, we would be able to determine the performance factor for
that workload. We could then use VSim to simulate the workload faster
and at a larger scale. This way we combine the accuracy of a detailed sim-
ulator with the speed and scalability of VSim.

A second hurdle in simulating multiple targets on one host is the mem-
ory usage of the simulator. The naive approach is allocating all memory
required for each target on the host. This requires a host with a tremen-
dous amount of memory and yields a very expensive simulation machine.
Modern hypervisors have techniques to share pages with the same con-
tent across different virtual machines. VSim is based on VirtualBox, the
page sharing feature is implemented in a newer version of the hypervisor.
An interesting avenue for future work is to port VSim to the latest version
of the hypervisor and analyze the reduction of memory usage that can be
achieved by using same page sharing. The benefits of this technique will
obviously vary a lot across different benchmarks. One can imagine that
this yields good results when the targets are all running the same work-
load on the same input data, for instance a cluster of Web servers serving
the same application. For map-reduce like workloads, where a set of data
is distributed across a set of nodes, the results will probably be less impres-
sive. Further research could give us more insight in the behavior of these
techniques and the impact on the simulation of clusters.

7.2.2 Energy efficiency and proportionality

Chapter 4 showed that there is a trend to more energy-proportional com-
puters. Especially the CPU has come a long way, thanks to innovations like
clock gating and aggressive power management, the CPU no longer con-
sumes a large amount of power while idle. For modern processors the idle
power is only a few Watt, while the TDP can go up to 100 Watt. Nowadays
the idle power consumers are the motherboard, memory, disks and other
peripherals. This leaves ample room for further research, both on the hard-
ware and software side. Software innovations include optimizing the use
of available low-power states according to the type of application (back-
ground or interactive application) to achieve more energy proportionality.
Improving the power management in hardware by making resurrection
from low-power states faster, would make it easier to use these states effec-
tively.

In Chapter 5 we measured the energy efficiency of a set of benchmarks
and concluded that the most energy-efficient platform for a particular
workload depends on its characteristics. In reality we would have a set
of workloads and a set of machines, and want to minimize the amount
of energy consumed while delivering the results within the deadline. For
interactive jobs this deadline can be very strict, in order to serve customers

7.2. FUTURE WORK 115

as fast as possible. For background jobs this deadline can be more relaxed.
To determine the appropriate platform for each of the workloads, a full

exploration — running all workloads on all available platforms — might
not be feasible. A potential avenue for future work is estimating the appro-
priate platform while running the benchmark on a single platform. This
could be achieved as follows. The first phase is generating a model of the
execution time and energy usage for each type of application on each plat-
form. A set of predefined benchmarks could be used to model a wide range
of applications. By executing these benchmarks on the available platforms
while measuring performance counters, one could build a model that maps
the application characteristics (based on the performance counter values)
onto the performance metrics (execution time and energy usage). In pro-
duction, a workload would get scheduled on any available platform. While
running the workload we measure its characteristics using hardware per-
formance counters and use the model to check whether this platform is ap-
propriate for this workload or whether the workload should be migrated.
This data can then be used to schedule future jobs for the same workload
on the appropriate platform.

7.2.3 Analysis of production systems

The TPA language is very powerful: it enables an expert to encode his/her
knowledge into formulas that can be used to search for certain behaviors in
a trace or set of traces of events. When a formula is matched in a trace, the
matcher shows where the formula was matched. For future work we could
implement a visualizer that shows the events that are involved in a pattern
match. This would enable a performance expert to get even better insight
in the exact behavior of the trace.

This visualizer could also be used in a more interactive way as follows.
First the performance analyst points to interesting events and interactions
between events. In the meanwhile, a TPA pattern is generated in the back-
ground. Then all occurrences of the pattern are automatically searched in
the trace. This enables the performance analyst to iteratively create pat-
terns and immediately check for occurrences of that pattern. TPA would
then serve as the backend for searching and analyzing large traces.

At the moment TPA is primarily used to analyze kernel traces and RPC
traces, as shown in Chapter 6. TPA is however not limited to these types of
traces and can be used to match a sequence of events in any type of trace.
Even an instruction stream can be viewed as a trace of events and TPA
could be used to find certain sequences of instructions that cause perfor-
mance problems at the microarchitectural level. TPA could be integrated
with the interval simulator of Chapter 2 to achieve this goal.

116 CHAPTER 7. CONCLUSION

Bibliography

[1] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines. Synthesis Lectures on
Computer Architecture. Morgan and Claypool Publishers, 2009.

[2] R. Kohavi and R. Longbotham. Online experiments: Lessons learned.
IEEE Computer, 40:85–87, September 2007.

[3] M. Mayer. What google knows. In Web 2.0 summit, 2006.

[4] C. Belady. The green grid datacenter power efficiency metrics: Pue
and dcie. http://www.thegreengrid.org/Global/Content/white-
papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-
and-DCiE, 2007.

[5] Google. Efficiency: How we do it.
http://www.google.com/about/datacenters/efficiency/internal/.

[6] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A mechanis-
tic performance model for superscalar out-of-order processors. ACM
Transactions on Computer Systems (TOCS), 27(2), May 2009.

[7] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation:
Raising the level of abstraction in architectural simulation. In Pro-
ceedings of the International Symposium on High-Performance Computer
Architecture (HPCA), pages 307–318, January 2010.

[8] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega.
COTSon: Infrastructure for full system simulation. SIGOPS Operating
System Review, 43(1):52–61, January 2009.

[9] Energybench v1.0 power/energy benchmarks.
http://www.eembc.org/benchmark/power sl.php.

[10] K.-D. Lange. Identifying shades of green: The SPECpower bench-
marks. IEEE Computer, 42(3):95–97, March 2009.

117

118 BIBLIOGRAPHY

[11] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. JouleSort:
A balanced energy-efficiency benchmark. In Proceedings of the SIG-
MOD International Conference on Management of Data, pages 365–374,
June 2007.

[12] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The AMD
Opteron processor for multiprocessor servers. IEEE Micro, 23(2):66–76,
March 2007.

[13] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt. The M5 simulator: Modeling networked systems.
IEEE Micro, 26(4):52–60, 2006.

[14] R. Desikan, D. Burger, and S. W. Keckler. Measuring experimental
error in microprocessor simulation. In Proceedings of the 28th Annual
International Symposium on Computer Architecture (ISCA), pages 266–
277, July 2001.

[15] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings
of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 72–81, October 2008.

[16] D. A. Bader, Y. Li, T. Li, and V. Sachdeva. BioPerf: A benchmark suite
to evaluate high-performance computer architecture on bioinformat-
ics applications. In Proceedings of the 2005 IEEE International Symposium
on Workload Characterization (IISWC), pages 163–173, October 2005.

[17] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems. In Proceedings of the 30th Annual IEEE/ACM Symposium on
Microarchitecture (MICRO), pages 330–335, December 1997.

[18] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss
for effective trace sampling of superscalar processors. In Proceedings of
the International Conference on Computer Design (ICCD), pages 468–477,
October 1996.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 45–57, October 2002.

[20] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling. In Proceedings of the Annual International Symposium on Computer
Architecture (ISCA), pages 84–95, June 2003.

BIBLIOGRAPHY 119

[21] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system timing-first sim-
ulation. In Proceedings of the 2002 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 108–116, June
2002.

[22] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J. C.
Hoe, D. Chiou, and K. Asanovic. RAMP: Research accelerator for mul-
tiple processors. IEEE Micro, 27(2):46–57, March 2007.

[23] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe. SimFlex: Statistical sampling of computer system sim-
ulation. IEEE Micro, 26(4):18–31, July 2006.

[24] Ayose Falcón, Paolo Faraboschi, and Daniel Ortega. Combining simu-
lation and virtualization through dynamic sampling. In IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software, pages
72–83, April 2007.

[25] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core sim-
ulations. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1 –12, November 2011.

[26] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal. Graphite: A distributed parallel
simulator for multicores. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA), pages 295–306, Jan-
uary 2010.

[27] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure
for computer system modeling. IEEE Computer, 35(2):59–67, February
2002.

[28] B. Cmelik and D. Keppel. SHADE: A fast instruction-set simulator for
execution profiling. In Proceedings of the 1994 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems, pages 128–
137, May 1994.

[29] E. Witchell and M. Rosenblum. Embra: Fast and flexible machine sim-
ulation. In Proceedings of the ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, pages 68–79, June 1996.

[30] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan.
Asim: A performance model framework. IEEE Computer, 35(2):68–76,
February 2002.

120 BIBLIOGRAPHY

[31] M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset.
ACM SIGARCH Computer Architecture News, 33(4):92–99, November
2005.

[32] R. M. Fujimoto. Parallel discrete event simulation. Communications of
the ACM, 33(10):30–53, October 1990.

[33] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and
D. A. Wood. The wisconsin wind tunnel: Virtual prototyping of par-
allel computers. In Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 48–60, May 1993.

[34] J. Chen, M. Annavaram, and M. Dubois. SlackSim: A platform for
parallel simulation of CMPs on CMPs. ACM SIGARCH Computer Ar-
chitecture News, 37(2):20–29, May 2009.

[35] A. Falcón, P. Faraboschi, and D. Ortega. An adaptive synchronization
technique for parallel simulation of networked clusters. In Proceedings
of the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 22–31, April 2008.

[36] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. Difference engine: Harnessing memory
redundancy in virtual machines. In Proceedings of the 8th USENIX Sym-
posium on Operating System Design and Implementation (OSDI), pages
309–322, December 2008.

[37] T. R. Halfhill. Intel’s tiny Atom. Microprocessor Report, 22:1–13, April
2008.

[38] W. D. Norcott. IOzone filesystem benchmark.
http://www.iozone.org/.

[39] A. Avetisyan, R. Campbell, I. Gupta, M. Heath, S. Ko, G. Ganger,
M. Kozuch, D. OHallaron, M. Kunze, T. Kwan, K. Lai, M. Lyons,
D. Milojicic, H. Y. Lee, Y. C. Soh, N. K. Ming, J. Y. Luke, and H. H. Nam-
goong. Open cirrus: A global cloud computing testbed. IEEE Com-
puter, 43(4):42–50, April 2010.

[40] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox, and D. A. Patterson.
Rain: A workload generation toolkit for cloud computing applica-
tions. Technical Report UCB/EECS-2010-14, Electrical Engineering
and Computer Sciences, University of California at Berkeley, Febru-
ary 2010.

BIBLIOGRAPHY 121

[41] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the
SimOS machine simulator to study complex computer systems. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 7(1):78–
103, January 1997.

[42] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M.
Voelker. To infinity and beyond: Time-warped network emulation. In
Proceedings of the International Symposium on Networked Systems Design
and Implementation (NSDI), pages 87–100, May 2006.

[43] P. Ranganathan and P. Leech. Simulating complex enterprise work-
loads using utilization traces. In Proceedings of the Workshop on Com-
puter Architecture Evaluation using Commercial Workloads (CAECW),
February 2007.

[44] D. Weisner and T. F. Wenisch. Stochastic queuing simulation for data
center workloads. In Proceedings of the Workshop on Exascale Evaluation
and Research Techniques (EXERT), March 2010.

[45] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a
warehouse-sized computer. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA), pages 13–23, June 2007.

[46] L. A. Barroso and U. Hölzle. The case for energy-proportional systems.
IEEE Computer, 40:33–37, December 2007.

[47] Y. Watanabe, J. D. Davis, and D. A. Wood. WIDGET: Wisconsin decou-
pled grid execution tiles. In Proceedings of the International Symposium
on Computer Architecture (ISCA), pages 2–13, June 2010.

[48] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy
proportional datacenter networks. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages 338–347, June 2010.

[49] J. Guerra, W. Belluomini, J. Glider, K. Gupta, and H. Pucha. Energy
proportionality for storage: Impact and feasibility. In Proceedings of the
SOSP Workshop of Hot Topics in Storage and File Systems (HotStorage),
pages 35–39, October 2009.

[50] D. Meisner, B. T. Gold, and T. Wenisch. PowerNap: Eliminating server
idle power. In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating ystems (ASP-
LOS), pages 205–216, March 2009.

[51] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi,
and M. Horowitz. Towards energy-proportional datacenter memory
with mobile dram. In Proceedings of the 39th Annual International Sym-
posium on Computer Architecture, pages 37–48, June 2012.

122 BIBLIOGRAPHY

[52] D. Wong and M. Annavaram. Scaling the energy proportionality
wall through server-level heterogeneity. In Proceedings of the 45th
IEEE/ACM International Symposium on Microarchitecture (MICRO), De-
cember 2012.

[53] H. J. Curnow and B. A. Wichmann. A synthetic benchmark. The Com-
puter Journal, 19(1):43–49, 1976.

[54] R. P. Weicker. Dhrystone: A synthetic systems programming bench-
mark. Communications of the ACM, 27(10):1013–1030, October 1984.

[55] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De Bosschere. Statisti-
cal simulation: Adding efficiency to the computer designer’s toolbox.
IEEE Micro, 23(5):26–38, Sept/Oct 2003.

[56] R. Bell, Jr. and L. K. John. Improved automatic testcase synthesis for
performance model validation. In Proceedings of the 19th ACM Interna-
tional Conference on Supercomputing (ICS), pages 111–120, June 2005.

[57] C. Hsieh and M. Pedram. Micro-processor power estimation using
profile-driven program synthesis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(11):1080–1089, November
1998.

[58] A. M. Joshi, L. Eeckhout, R. Bell, Jr., and L. K. John. Distilling the
essence of proprietary workloads into miniature benchmarks. ACM
Transactions on Architecture and Code Optimization (TACO), 5(2), August
2008.

[59] A. M. Joshi, L. Eeckhout, L. K. John, and C. Isen. Automated mi-
croprocessor stressmark generation. In Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA), pages
229–239, February 2008.

[60] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high
performance computers. http://www.cs.virginia.edu/stream/. Uni-
versity of Virginia.

[61] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin, and
I. Moraru. Energy-efficient cluster computing with FAWN: Workloads
and implications. In Proceedings of the First International Conference on
Energy-Efficient Computing and Networking (e-Energy), April 2010.

[62] J. Moore, J. Chase, K. Farkas, and P. Ranganathan. Data center work-
load monitoring, analysis and emulation. In Proceedings of the Eighth
Workshop on Computer Architecture Evaluation using Commercial Work-
loads (CAECW), held in conjunction with HPCA, February 2005.

BIBLIOGRAPHY 123

[63] D. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuk-
tosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook.
Power-aware microarchitecture: Design and modeling challenges for
next-generation microprocessors. IEEE Micro, 20(6):26–44, Novem-
ber/December 2000.

[64] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose
microprocessors. IEEE Journal of Solid-State Circuits, 31(9):1277–1284,
September 1996.

[65] C. Isci and M. Martonosi. Runtime power monitoring in high-end
processors: Methodology and empirical data. In Proceedings of the 36th
Annual International Symposium on Microarchitecture (MICRO), pages
93–104, December 2003.

[66] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 469–480, December 2009.

[67] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pages 46–57, Oc-
tober 1977.

[68] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instru-
mentation of production systems. In Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference, ATEC, pages 15–28, 2004.

[69] G. Kiczales. Aspect-oriented programming. ACM Comput. Surv.,
28(4es):154, 1996.

[70] P. C. Bates. Debugging heterogeneous distributed systems using
event-based models of behavior. ACM Trans. Comput. Syst., 13:1–31,
February 1995.

[71] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for ltl
and tltl. ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, September
2011.

[72] D. Giannakopoulou and K. Havelund. Automata-based verification
of temporal properties on running programs. In Proceedings of the 16th
IEEE international conference on Automated software engineering, ASE ’01,
pages 412–416, 2001.

[73] C. Brzoska. Temporal logic programming with metric and past oper-
ators. In Proceedings of the Workshop on Executable Modal and Temporal
Logics, pages 21–39, 1995.

124 BIBLIOGRAPHY

[74] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed
storage system for structured data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume 7,
OSDI ’06, pages 15–15, 2006.

[75] http://en.wikipedia.org/wiki/Thread pool pattern.

[76] B. Finkbeiner, S. Sankaranarayanan, and H. B. Sipma. Collecting statis-
tics over runtime executions. In In Proceedings of Runtime Verification
(RV02) [1, pages 36–55, 2002.

[77] H. T. De Beer and B. F. Van Dongen. Process mining and verification
of properties: An approach based on temporal logic. In On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM
Confederated International Conferences, CoopIS, DOA, and ODBASE 2005,
volume 3760 of Lecture Notes in Computer Science, pages 130–147, 2005.

[78] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of
Programs, Workshop, pages 52–71, 1982.

[79] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8:244–263, April 1986.

[80] C. Ghezzi, D. Mandrioli, and A. Morzenti. Trio: A logic language for
executable specifications of real-time systems. J. Syst. Softw., 12:107–
123, May 1990.

[81] G. S. Goldszmidt, S. Yemini, and S. Katz. High-level language debug-
ging for concurrent programs. ACM Trans. Comput. Syst., 8:311–336,
November 1990.

[82] R. T. Hailpern. Verifying Concurrent Processes Using Temporal Logic.
1982.

[83] B. Moszkowski. A temporal logic for multilevel reasoning about hard-
ware. Computer, 18:10–19, February 1985.

[84] K. Trentelman and M. Huisman. Extending jml specifications with
temporal logic. In Proceedings of the 9th International Conference on Alge-
braic Methodology and Software Technology, AMAST ’02, pages 334–348,
2002.

[85] A. Viswanathan, A. Hussain, J. Mirkovic, S. Schwab, and J. Wro-
clawski. A semantic framework for data analysis in networked sys-
tems. In Proceedings of the 8th USENIX conference on Networked systems
design and implementation, NSDI’11, pages 10–10, March 2011.

BIBLIOGRAPHY 125

[86] M. Frey and A. Weininger. Using temporal logic specifications to de-
bug parallel programs. Microprocess. Microprogram., 39:97–100, Decem-
ber 1993.

[87] P. Wolper. The tableau method for temporal logic: An overview.
Logique et Analyse, 28(110-111):119–136, 1985.

[88] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent streaming
through time: A vision for event stream processing. In CIDR, pages
363–374. www.cidrdb.org, 2007.

[89] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda,
M. Riedewald, M. Thatte, and W. White. Cayuga: a high-performance
event processing engine. In Proceedings of the 2007 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’07, pages 1100–
1102, June 2007.

[90] G. Cugola and A. Margara. Tesla: a formally defined event specifica-
tion language. In Proceedings of the Fourth ACM International Conference
on Distributed Event-Based Systems, DEBS ’10, pages 50–61, July 2010.

[91] Y. Mei and S. Madden. Zstream: a cost-based query processor for
adaptively detecting composite events. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’09,
pages 193–206, June 2009.

[92] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event pro-
cessing over streams. In Proceedings of the 2006 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’06, pages 407–418,
June 2006.

[93] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and
security flaws using pql: a program query language. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA ’05, pages 365–383,
October 2005.

[94] S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over
program traces. In Proceedings of the 20th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications,
OOPSLA ’05, pages 385–402, October 2005.

[95] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalable parallel
trace-based performance analysis. In Proceedings of the 13th European
PVM/MPI User’s Group conference on Recent advances in parallel virtual
machine and message passing interface, EuroPVM/MPI’06, pages 303–
312, September 2006.

126 BIBLIOGRAPHY

[96] E. Altman, M. Arnold, S. Fink, and N. Mitchell. Performance analy-
sis of idle programs. In Proceedings of the ACM international conference
on Object oriented programming systems languages and applications, OOP-
SLA ’10, pages 739–753, October 2010.

[97] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting
large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP
’09, pages 117–132, October 2009.

