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YEASTS 

 

Yeasts are unicellular microorganisms belonging to the kingdom of the fungi. They 

are widespread in nature and can be isolated from air, water and soil. Furthermore, plants 

are a preferred niche and several yeasts are commensally associated with animals and 

humans (1-3). 

 

 

Cellular organization 

Yeasts are eukaryotic cells with a diameter of 2-10 µm. The nucleus and other cell 

organelles are surrounded by membranes, which distinguishes yeasts from prokaryotes. 

The cytoplasmatic membrane and the cell wall form the barrier between the cytoplasm 

and the environment (Figure 1.1). The cytoplasmatic membrane consists of a 

phospholipid bilayer with sterols (principally ergosterol) and proteins, and forms an 

impermeable barrier for hydrophilic molecules. The sterols determine membrane 

rigidity, while the proteins are involved in signaling, anchoring of the cytoskeleton and 

transport of molecules across the cytoplasmatic membrane (4-6). 

 

 

 

 

Figure 1.1. Fungal cytoplasmatic membrane and cell wall (7). 
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The cell wall contains mainly polysaccharides, and to a lesser extent lipids and 

proteins. The most abundant polysaccharide is β-glucan, which consists of glucose 

monomers linked by β-1,3 and β-1,6 glycosidic bonds. Chitin, another polysaccharide 

consisting of β-1,4-linked N-acetylglucosamine units, is found in smaller amounts and is 

covalently bound to glucans. Mannans, consisting of α-1,2- and α-1,3-linked mannose 

monomers bound to an α-1,6-linked backbone, are also found. Together with 

mannoproteins, mainly localized at the outer surface, the cell wall forms a complex 

network, involved in cell protection, maintenance of shape and cellular interactions (5-

9). 

 

Growth forms 

The most common mode of vegetative reproduction in yeasts is budding. A 

daughter bud arises at the cell surface of the mother cell and starts growing. At the end 

of the cell cycle a septum is formed between both cells, which are subsequently 

separated. When the daughter cell remains attached to the mother cell, pseudohyphae 

are formed. These are chains of elongated and ellipsoid yeast cells attached to each 

other. Another mode of filamentous growth is the formation of true hyphae, long cells 

with parallel-sided walls and without constrictions between the cells (Figure 1.2). Both 

filamentous growth forms often show a branching pattern. The morphological switches 

of yeast cells are reversible and depend on the environmental conditions (10-12). 

 

 

 

Figure 1.2. Morphology of yeast (13). 
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Candida albicans 

Pathogenesis 

Candida species are human commensals found in the mouth, gastrointestinal 

tract and vagina. However, they are opportunistic human pathogens and can cause 

infections upon disturbance of the normal mucosal flora (e.g. after broad-spectrum 

antibacterial therapy) and immune dysfunction (e.g. HIV infection, chemotherapy) or 

underlying illness (e.g. diabetes) in patients. Most Candida infections are superficial and 

include vulvovaginal or oropharyngeal candidiasis (oral thrush), with C. albicans being 

the most common cause of disease (14, 15). The use of medical devices such as 

prostheses and catheters may increase the risk of Candida related infections and is often 

at the origin of nosocomial infections (16). When Candida cells penetrate and cross the 

epithelial barrier, they may enter the bloodstream and cause candidemia. This 

bloodstream infection is frequently associated with surgical interventions or with 

treatment of patients at an intensive care unit (17-20). Once Candida spp. enter the 

bloodstream, they may disseminate to the organs and cause life threatening invasive 

candidiasis (14, 15, 20). These infections show a high (and still increasing) global 

incidence, leading to an increased morbidity and a prolonged hospital stay, at an 

enormous financial cost for the society. In addition, invasive Candida infections are 

responsible for a high mortality rate, particularly among critically ill patients (18, 21-

23). 

 

Virulence 

The pathogenicity of C. albicans is attributed to a wide range of virulence factors. 

The first step in pathogenesis towards host cells is adherence. Adhesins, including the 

agglutinin-like sequence (ALS) proteins, Hwp1 and Eap1 are cell surface molecules 

involved in the adhesion to other cells and to biotic or abiotic surfaces. They all encode 

glycosylphosphatidylinositol cell wall proteins, covalently linked to β-1,6-glucans in the 

cell wall (3, 24). Among the eight members of the Als protein family, especially ALS3 

expression is important for adhesion (3, 25, 26). 

Contact of yeast cells with a surface triggers the yeast-to-hyphae switch, which is 

another important virulence factor of C. albicans. Hyphal formation is a critical step in 

the invasion of epithelial cells and contributes to damage of the host cells. Moreover, this 



 
6 

morphological switch is important for biofilm formation, which drastically increases the 

virulence of C. albicans. This topic will be discussed in more detail below. The invasion of 

epithelial cells is enhanced by the expression of invasins (Als3 and Ssa1), which induce 

endocytosis. Furthermore, three classes of degradative enzymes (proteases, 

phospholipases and lipases) are produced to facilitate active penetration into the host 

cells. This active penetration is also believed to be mediated by physical forces (3, 15, 26, 

27). 

Additionally, its metabolic flexibility as a reaction to the available nutrients, the 

regulation of environmental pH and the response to extracellular stresses allows C. 

albicans to survive in a broad range of conditions (3). 

Quorum sensing, communication between cells in a population regulated by 

signal molecules, is also associated with virulence (27, 28). In C. albicans, quorum 

sensing is reportedly regulated by the gene CHK1 (29). Two quorum sensing molecules 

with an opposite effect have been identified in C. albicans. Farnesol inhibits the yeast-to-

hyphae transition, while tyrosol promotes hyphae development. Initially, farnesol was a 

promising compound to treat invasive candidiasis, but as addition of endogenous 

farnesol increases the virulence of C. albicans, it needs to be considered as a virulence 

factor itself (27, 28). 

 

Immunology 

The first immune response to the human pathogen C. albicans is mediated by the 

innate immune system. Monocytes, macrophages and neutrophils contribute to this 

immune response by phagocytosis and immediate killing of the pathogen through 

oxidative (reactive oxygen species; ROS) and nonoxidative mechanisms (defensins, 

cationic peptides, iron sequestration). In a later stage, the adaptive immune system, 

mainly mediated by dendritic cells, is activated with the generation of T-cells, leading to 

a more specific immune response. These T-cells stimulate the protective immunity to 

Candida (Th1 and Th17), but may also temper or regulate the inflammatory response 

(Th2 and Treg, respectively). For C. albicans, being a human commensal, it is important 

to maintain a successful host-fungal interaction, which requires a balance between pro- 

and anti-inflammatory signals of the immune system (30-33). 
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Diagnosis 

Fast, sensitive and reliable diagnostic tests for invasive candidiasis are important 

for starting an adequate therapy. The culture of blood samples is often used to detect 

Candida spp. in the bloodstream and may be performed by a fully automated system. 

However, this method still lacks sensitivity and culture growth takes several days. The 

components of the cell wall of Candida spp. can be used as markers for invasive 

candidiasis. Particularly diagnostic marker tests for (1,3)-β-D-glucan show a very good 

sensitivity and specificity (34, 35). Molecular genetic methods, such as PCR, are useful 

for rapid detection of candidemia. However, these tests are not commercially available 

and do not distinguish between DNA from living and dead cells (34, 36). Recently, the 

combination of immunomagnetic separation (IMS) of cells followed by solid-phase 

cytometry, proved to be fast and sensitive (37). 

 

Other Candida species 

Besides C. albicans, several other Candida spp. have been identified as human 

pathogens, with C. glabrata, C. parapsilosis and C. tropicalis being the most frequently 

isolated species. Together, these four species cover about 90% of invasive Candida 

infections (21). 

C. glabrata is the second most common Candida species after C. albicans and its 

incidence is increasing over the last years. It has been identified in oral infections and on 

dentures in elderly patients, but it is also a significant cause of systemic infections. C. 

glabrata has a haploid genome, which makes it more closely related to Saccharomyces 

cerevisiae than the other medically important diploid Candida species. Futhermore, it 

does not exhibit polymorphism and has a lower virulence. C. glabrata is known to have a 

lower susceptibility to azoles. Therefore, the increase in azole use to treat fungal 

infections may have contributed to the increase of C. glabrata infections (14, 38, 39). 

C. parapsilosis is able to form pseudohyphae, unlike true hyphae, explaining its 

lower virulence compared to C. albicans. Nevertheless, it particularly causes nosocomial 

infections due to its ability to survive in the hospital environment, which is quite unique 

among Candida species. Additionally, C. parapsilosis is involved in different infections 

ranging from superficial infections to invasive candidiasis (14, 40, 41). 
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C. tropicalis has genetically the highest similarity to C. albicans and is able to form 

pseudohyphae. It is rarely isolated from oropharyngeal infections, but mainly causes 

disseminated infections in oncology patients (14, 42, 43). 

C. krusei, C. dubliniensis, C. guilliermondii, C. lusitaniae and C. rugosa are less 

frequently to rarely associated with human diseases. Of these species, C. dubliniensis is 

most closely related to C. albicans and also has the ability to grow as true hyphae. 

Although both species have a similar epidemiology, C. dubliniensis is rarely observed in 

invasive candidiasis (44). C. krusei is of particular importance due to its multidrug 

resistance pattern and consequently its potential to become an emerging pathogen (14, 

45).  

 

Saccharomyces cerevisiae 

The yeast S. cerevisiae is one of the most intensively studied microorganisms. The 

entire genome of S. cerevisiae has been sequenced and genetic manipulations can be 

performed easily. S. cerevisiae is widely used in the food industry for the production of 

beer, wine and bread. Furthermore, it plays an important role in the production of 

bioethanol and has certain applications in the chemical and pharmaceutical industry for 

the production of secondary metabolites (e.g. glycerol, propanediol, isoprenoids, organic 

acids). Metabolic engineering of S. cerevisiae or optimization of the growth conditions is 

often required to enable or enhance the production of these secondary metabolites (46-

49). S. cerevisiae is also used for its biosorption activities to detoxify wastewaters 

containing heavy metals (50). Because it is such a preferred organism for many 

fermentation-derived products, metabolic engineering projects are in continuous 

progress (46, 48).  

Over the years, S. cerevisiae has become a well established eukaryotic model 

organism for fundamental research. Many eukaryotic gene functions have been derived 

from yeast experiments and can be extended to other eukaryotes. Furthermore, S. 

cerevisiae is a useful model for studying human diseases (51, 52). 

Although S. cerevisiae is classified as GRAS (generally regarded as safe) by the U.S. 

Food and Drug Administration, there are case reports describing invasive 

Saccharomyces infections. These infections remain very rare, but an increased incidence 

has been noticed since 1990 especially in immunocompromised patients. Invasive 

Saccharomyces infections can be nosocomially acquired, but the portal of entry is mainly 
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digestive. A remarkably high association has been observed with the use of probiotic 

products containing S. boulardii (actually a specific strain of S. cerevisiae) (53). 
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BIOFILMS 

 

Biofilms are microbial communities of cells which are attached to a surface and 

embedded in an extracellular polymeric matrix (EPM) (54). It is widely accepted that a 

biofilm is a preferred and beneficial microbial life-style (55). The molecular mechanisms 

involved in C. albicans biofilm formation have been extensively studied, but not completely 

been elucidated. Biofilm formation is a complex phenomenon, regulated by several 

transcription factors, controlling a total network of target genes which comprise about 

15% of the genome (56).  

 

 

Biofilm formation in C. albicans 

C. albicans biofilm formation proceeds in distinct developmental phases (Figure 

1.3). The initial step is the adhesion of blastospores (yeast form of the cells) to a surface. 

Biotic surfaces, such as teeth, skin and mucosal membranes, but also abiotic surfaces 

such as prostheses, dentures and catheters can be colonized. Differences in chemical 

properties, hydrophobicity and surface roughness of these medical devices affect biofilm 

formation. Nevertheless, the formation of C. albicans biofilms has been observed on 

different materials, such as silicone, polyurethane and polyvinyl chloride. In vivo, a 

conditioning film on the biomaterials, created by the surrounding body fluids, masks the 

chemical characteristics of surfaces and may influence biofilm formation (16, 57-60). 

Several adhesins are involved in the cell-cell and cell-substrate adhesion, including Als1, 

Als3, Hwp1 and Eap1 (25, 61, 62). The latter is controlled by the transcription factor 

Efg1 and the first three are controlled by the transcription factors Bcr1 and Tec1. 

Mutant strains affected in all three transcription factors show severe defects in biofilm 

formation (56, 61). 

Shortly after adhesion, the yeast cells start growing and microcolonies are 

formed. Simultaneously, hyphal formation is induced. The transcription factors, Efg1, 

Tec1, Ndt80 and Brg1 are involved in filamentation. Deletion of EFG1 inhibits yeast-

hyphae transition. Hyphal formation contributes to the formation of a robust biofilm, but 

biofilm defects are not always due to the inability to form true hyphae (61-65). During 

the maturation of the biofilm, the amount of EPM increases, resulting in a complex three-
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dimensional structure of yeasts and filaments, covered by EPM. The EPM of biofilms is 

mainly composed of carbohydrates, with glucose being the most abundant 

monosaccharide. Some of the glucose in the matrix is present as β-1,3 glucan. Proteins 

and hexosamine are found in smaller amounts. Futhermore, the EPM contains 

extracellular DNA, which contributes to maintaining the structural integrity of mature C. 

albicans biofilms (66-69). The zinc-responsive transcription factor Zap1, is a regulator of 

the EPM production (61, 70). Recently, two glucan transferases (Bgl2 and Phr1) and a 

glucanase (Xog1) were found to be crucial for the transport of β-1,3 glucans to the 

matrix and for accumulation of the matrix biomass. These enzymes do not affect the 

glucan assembly of the cell wall and work independently of the transcription factor Zap1 

(71). The transcription factor Rob1 and the genes SUV3, NUP85, MDS3 and KEM1 are 

also known to play a role in biofilm development. However, their biochemical function 

could not be related to specific mechanisms required for biofilm formation (56, 72). 

 

 

 

 

Figure 1.3.  The different phases in fungal biofilm development (61). 

 

 

Finally, cells can detach from the biofilm, disperse in the environment and start 

colonization on a different location (55, 59, 62). The genes UME6, PES1 and NRG1 have 

previously been described to be involved in this process. Furthermore, it is suggested 

that dispersal could be induced in response to quorum sensing molecules (61, 62). 
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Clinical relevance of C. albicans biofilms 

Fungi often colonize biotic and abiotic surfaces to form biofilms. C. albicans is able 

to form biofilms on many medical devices, including vascular and urinary catheters, 

voice prostheses, endotracheal tubes, cardiac valves and pacemakers. The majority of 

Candida bloodstream infections (50 to 70%) is associated with biofilms on central 

venous catheters (73, 74). Dispersal of these sessile cells may lead to candidemia and 

systemic infections. These dispersed sessile cells show a specific phenotype with 

increased virulence compared to planktonic cells (75). Patients with diabetes mellitus or 

urinary catheterization have an increased risk for Candida bloodstream infections (76). 

Fungal biofilms are of high medical importance due to their increased resistance to 

antifungals (mechanisms of resistance are discussed below). Biofilm related Candida 

infections lead to a prolonged hospital stay, higher costs of antifungal therapy and a 

significantly higher mortality rate compared to non-biofilm related Candida infections 

(76, 77). The choice of initial antifungal therapy is crucial for the patient’s outcome and 

total cost. Patients receiving a highly active anti-biofilm therapy (echinocandins) need a 

shorter hospital stay and have reduced risk of death compared to patients that have 

been treated with azoles (76, 78). Furthermore, the colonization of medical devices 

often leads to their dysfunction. As antifungal treatment rarely achieves clinical cure, 

replacement of the infected medical device is often the only valuable solution, increasing 

the medical costs (16, 57, 79). 

 

Biofilm formation in S. cerevisiae 

Biofilm formation by S. cerevisiae is distinct from that by C. albicans. The main 

difference is the absence of dimorphism in S. cerevisiae, although the formation of 

pseudohyphae has been observed in diploid strains (80, 81). S. cerevisiae is able to 

adhere to different surfaces and to complete the initial steps of biofilm formation. 

Therefore, S. cerevisiae is a valuable model for fungal biofilm formation (82, 83). Cell-cell 

adhesion is regulated by all members of the flocculin gene family, including FLO1, FLO5, 

FLO9, FLO10 and FLO11. A first group of genes (FLO1, FLO5 and FLO9) encodes cell wall 

proteins which act as lectins, while FLO10 and FLO11 confer adhesion, including cell-

surface adhesion, by increasing cell surface hydrophobicity (84-86). Previous research 

showed that one FLO gene can compensate for the absence of another (87). Flo11 is also 
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known for inducing pseudohyphal growth in diploid strains (82, 83). The production of 

EPM, mainly containing mono- and polysaccharides, is also observed in a S. cerevisiae 

biofilm, resembling biofilm formation in pathogenic fungi (83, 88). Additionally, 

flocculation has important industrial applications. It is an easy and low cost method to 

separate yeast cells from their fermentation products (89). 

Two other genes (AGA1 and FIG2) encode cell wall adhesins in S. cerevisiae. They 

are not involved in biofilm formation, but are highly induced during mating (90, 91). 
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THERAPY 

 

The rise in fungal infections also increases the need for effective antifungal agents. 

Different classes of antifungals are available for treatment of superficial and systemic 

infections. The majority of antifungals interacts with the biosynthesis of ergosterol. 

Additionally, damage to the cytoplasmatic membrane, inhibition of DNA and RNA synthesis 

or alteration of the cell wall composition are modes of action of antifungals (Figure 1.4). 

 

 

 

Figure 1.4. Mechanisms of action of antifungals (92). 

 

 

Azoles  

Azoles interfere with the ergosterol biosynthesis by inhibiting the enzyme 

lanosterol 14α-demethylase. This leads to a decrease in the production of ergosterol, an 

important constituent of the cytoplasmatic membrane, and an increase of other sterols 

to toxic levels, resulting in an altered membrane permeability. Azoles have a fungistatic 

effect (92-94). 
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Figure 1.5. Chemical structures of main representatives of each class of antifungal drugs 

(95). 

 

 

Azole antifungals can be categorized into two groups: imidazoles and triazoles, 

having two and three nitrogen atoms in the heterocyclic ring, respectively. Miconazole, 

ketoconazole and clotrimazole are imidazoles and fluconazole (Figure 1.5), itraconazole, 

voriconazole and posaconazole are triazoles. Fluconazole is one of the most widely used 

azoles for the treatment of mucosal and systemic candidiasis and it has a high oral 

bioavailability. Toxic side effects are rare and the high aqueous solubility of this 

compound makes it an excellent drug for intravenous delivery. The MIC range of 

fluconazole for C. albicans strains varies between 0.25 and 8 µg/ml. The increased MIC 

values for C. glabrata strains (8 to 64 µg/ml) indicate its lower susceptibility to 

fluconazole, while C. krusei has intrinsic resistance to this antifungal (93). Voriconazole 
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is a chemical derivative of fluconazole, with enhanced potency. Its MIC range for Candida 

spp. (0.02 to 2 µg/ml) is lower compared to that of fluconazole. Additionally, 

voriconazole shows enhanced activity against C. glabrata and C. krusei (93). It has a good 

oral bioavailability and a cyclodextrin formulation increases the aqueous solubility of 

this compound, enabling intravenous administration. Itraconazole and posaconazole are 

only orally administered and exhibit a higher potency than fluconazole (96, 97). The MIC 

range of itraconazole against C. albicans strains is between 0.03 and 0.5 µg/ml and that 

of posaconazole is even lower with MIC values between 0.02 and 0.12 µg/ml. Similar to 

fluconazole, both antifungals show increased MICs for C. glabrata and C. krusei, ranging 

from 1 to 4 µg/ml and from 0.5 to 2 µg/ml, respectively (93).  

Initially, ketoconazole and miconazole were systemically administered, but 

toxicity limited their use. Miconazole and clotrimazole are available in topical 

formulations for treatment of mucosal candidiasis (93). 

 

Miconazole 

In contrast to the other azoles, miconazole (Figure 1.6) has fungicidal activity 

against Candida spp. cells in suspension but also in young and mature biofilms (98, 99). 

The MIC of Candida spp. for miconazole varies between 0.03 and 1 µg/ml, and is slightly 

higher for C. krusei (4 µg/ml) (99, 100). Previous experiments indicate that miconazole 

may disturb the cytoplasmatic membrane, causing leakage of essential compounds (101, 

102). Furthermore, an increase of the intracellular levels of ROS in Candida spp. has 

been observed upon miconazole treatment, contributing to its fungicidal effect (99, 103, 

104). It is likely that the ROS increase is preceded by changes in the actin cytoskeleton 

(105). Disruption of membrane rafts, enriched domains of sphingolipids and ergosterol 

in the cytoplasmatic membrane, leads to a decreased miconazole activity and also 

influences the miconazole-actin cytoskeleton stabilization and ROS accumulation. 

Probably, membrane rafts play a primary role in the action of miconazole by 

intracellular accumulation of the latter (106). 

Miconazole was initially administered intravenously to treat systemic fungal 

infections. Due to many adverse effects, partially related to the carrier solution, its use is 

nowadays limited to topical administration for treatment of mucosal infections (107-

109).  

 



 
17 

 

 

Figure 1.6. Chemical structure of miconazole (110). 

 

 

Polyenes 

Polyenes were the first class of antifungals to be widely used. They are produced 

by Streptomyces spp. and have fungicidal activity (93). Amphotericin B is the main 

compound within this class (Figure 1.5). It binds to ergosterol in the cytoplasmatic 

membrane, reducing the stability of the latter. Furthermore, pores are formed, leading to 

efflux of intracellular material and ultimately cell death (111). Recent data indicate that 

the ergosterol binding is the primary cause of its fungicidal activity (112). Additionally, 

treatment with amphotericin B is associated with the induction of oxidative stress (111, 

113). The MIC range of amphotericin B for Candida spp. varies between 0.04 and 5 

µg/ml. Due to its poor oral bioavailability, amphotericin B is only administered 

intravenously.  Taken together, amphotericin B is a very potent and broad-spectrum 

antifungal for treatment of invasive fungal infections (93, 111). However, its use has 

been limited due to nephrotoxicity. Lipid formulations of amphotericin B drastically 

reduce the toxic effects and these formulations can be used in higher doses (92, 114). No 

statistically significant differences were observed in the MIC between amphotericin B 

and its lipid formulations (115). Despite the widespread use of the lipid formulations of 

amphotericin B for treatment of candidemia and invasive candidiasis, resistance 

remains low (93). 

Nystatin, another polyene drug, is not gastro-intestinally absorbed and shows 

systemic toxicity. Therefore, its use has been restricted to topical applications. Similar to 

amphotericin B, liposomal formulations of nystatin increase the efficacy and reduce 

toxicity, allowing its use for treatment of systemic fungal infections (115). 
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Echinocandins 

Echinocandins are the most recent class of antifungal agents targeting a specific 

component of the fungal cells and not mammalian cells (92). By inhibiting the synthesis 

of β-1,3 glucan, which is an important constituent of the cell wall, they have a fungicidal 

activity against Candida species. Recent research showed that the fungicidal activity of 

caspofungin was caused by both apoptosis and necrosis. Cellular apoptosis was 

observed at subinhibitory concentrations (116). Caspofungin (Figure 1.5), micafungin 

and anidulafungin are only available for intravenous administration. The spectrum of 

these three drugs is very similar, showing MICs for Candida spp. between 0.03 and 1 

µg/ml. A remarkably lower susceptibility has been observed for C. parapsilosis with a 

MIC range between 2 and 4 µg/ml. The echinocandins exhibit a very low toxicity and are 

generally well tolerated. Their efficacy in the treatment of systemic Candida infections is 

similar to that of amphotericin B, but with fewer adverse effects (7, 93, 94, 117). 

 

Flucytosine 

Flucytosine is a fluorinated pyrimidine (Figure 1.5), originally synthesized as an 

anticancer drug, but also having antifungal properties. After fungal uptake of flucytosine, 

it is converted into 5-fluorodeoxyuridine monophosphate and 5-fluorouridine 

triphosphate. The former metabolite inhibits the DNA synthesis and the latter is 

incorporated into RNA, inhibiting protein synthesis. It is used in second- or third line 

therapy and is often administered in combination with amphotericin B to prevent a 

rapid emergence of resistance. The MICs of flucytosine for Candida spp.  are between 

0.06 and 1 µg/ml, but the MIC for C. krusei is higher (32 µg/ml) (93, 94, 118, 119). 

 

Allylamines 

Like azoles, allylamines interfere with the ergosterol biosynthesis but already at 

an early stage. They inhibit the epoxidation of squalene, leading to accumulation of this 

intermediate, which damages the fungal membrane. Simultaneously, there is a decrease 

of ergosterol. The allylamine terbinafine (Figure 1.5) has a fungistatic effect against C. 

albicans and is used in topical preparations (94, 110, 120, 121).  

 

 



 
19 

Antifungal treatment of biofilms 

The outcome of antifungal treatment of planktonic and sessile cells is generally 

different, as the latter show higher antifungal resistance (discussed below). While young 

biofilms are susceptible to fluconazole and miconazole (using a concentration of 256 

µg/ml), with miconazole showing the highest antifungal activity, mature biofilms show 

resistance to both azoles (98, 122). However, in very high concentrations (2000 µg/ml, 

exceeding 1000-fold the MIC for planktonic cells), miconazole is able to exert fungicidal 

activity against Candida spp. (99). Newer azole antifungals, such as voriconazole (256 

µg/ml)  and posaconazole (64 µg/ml) have no activity against Candida biofilms (123). 

Amphotericin B shows a concentration-dependent fungicidal activity against C. 

albicans biofilms, with more than 95% of the biofilm cells killed at concentrations of 8 to 

64 µg/ml. Unfortunately, these concentrations are well above the therapeutic ones 

(0.125 to 1 µg/ml). (122, 124) Lipid formulations of amphotericin B may overcome this 

problem as they exhibit inhibitory activities against biofilms with similar MICs as 

observed for planktonic cells (0.25 to 1 µg/ml) (125). The lipid formulations of 

amphotericin B have been proven to be useful for antifungal lock therapy, leading to a 

complete eradication of catheter-associated C. albicans biofilms (126).  

The concentration-dependent fungicidal activity of caspofungin against C. 

albicans biofilms is within its therapeutic concentration range (122, 124). C. albicans 

biofilm MICs range from 0.03 to 0.06 µg/ml (123). At a concentration of 2 µg/ml, 

caspofungin shows fungicidal activity against Candida spp. biofilms, independent of the 

stage of their development (127). As also other echinocandins (including anidulafungin) 

show similar activities against C. albicans biofilms at concentrations within the 

therapeutic range (0.03 to 0.5 µg/ml), this strongly suggests a class dependent 

phenomenon (123, 128, 129). 

Combination therapy is not recommended in clinical practice and is restricted to 

persistent candidemia originating from a biofilm-associated infection. Combinations of 

fluconazole or amphotericin B with caspofungin did not show a synergistic effect against 

C. albicans biofilms. In contrast, a synergistic effect was observed for the combination 

amphotericin B and posaconazole (130, 131). 
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RESISTANCE 

 

Resistance has been observed to antifungal drugs of all classes. A good 

understanding of the mechanisms is important as a basis to overcome fungal resistance. 

Planktonic and sessile cells have similar mechanisms of resistance, but biofilms exhibit 

some additional mechanisms to be discussed separately. Overall, resistance is a 

multifactorial, complex phenomenon. 

 

 

General mechanisms of resistance 

Mutations in the pathways where antifungals interfere is a mechanism described 

for azoles, polyenes, echinocandins and flucytosine. Furthermore, upregulation of the 

target gene and of efflux pumps has been observed for azole resistance. Figure 1.7 gives 

an overview of these mechanisms of resistance, which are discussed below in more 

detail. 

 

Efflux pumps 

Two types of efflux pumps are involved in azole resistance in Candida: the ATP 

binding cassette (ABC) transporters, including Cdr1 and Cdr2 (Candida drug resistance), 

and the major facilitator (MF) transporters including Mdr1 (multi drug resistance). 

These transporters actively remove azoles from the cytoplasm preventing inhibition of 

the ergosterol biosynthesis. The drug efflux by ABC transporters is ATP dependent, 

while MF transporters utilize the proton gradient across the cytoplasmatic membrane 

for drug efflux. Upregulation of the genes encoding these efflux pumps has been 

observed in fluconazole resistant clinical isolates. Further evidence of the involvement 

of efflux pumps in resistance was obtained from studies with mutants. Strains with 

disruptions in the genes encoding efflux pumps were hypersusceptible, whereas 

overexpression of these genes led to increased resistance. While ABC transporters are 

associated with resistance to all azoles, MF transporters appear to be selective for 

fluconazole (132-136). 
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Figure 1.7. Mechanisms of resistance to antifungal drugs in C. albicans. Proteins in red 

indicate mutations and proteins in green indicate overexpression (137). 

 

 

Overexpression of target gene 

The upregulation of ERG11 has been associated with azole resistance. In this way 

a complete saturation of lanosterol 14α-demethylase with azoles is avoided and the 

production of ergosterol can be maintained. Simultaneously with the upregulation of 

ERG11, genes located upstream (ERG1, ERG7, ERG9 and ERG10) or downstream (ERG2, 

ERG3 and ERG25) of ERG11 are also upregulated upon azole treatment. This indicates a 

global upregulation of the ergosterol biosynthetic pathway (138-140).  
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Mutations 

Resistance to polyenes is rather uncommon. However, a mutation in ERG3 or 

ERG6 in the ergosterol pathway has been associated with resistance to polyenes. These 

mutations lead to a decreased content of ergosterol in the cytoplasmatic membrane, and 

thus a reduced presence of the target of polyenes. The rigidity of the cytoplasmatic 

membrane is then maintained by other sterols (141, 142). 

Mutations in FUR1, encoding uracil phosphoribosyltransferase, or in FCA1, 

encoding cytosine deaminase, lead to a decrease of flucytosine metabolites which 

interfere with RNA and DNA synthesis. Consequently, the action of flucytosine is 

counteracted (119, 138).  

Resistance to echinocandins was obtained by the mutation of the gene FKS1, 

involved in the biosynthesis of β-1,3 glucan. Probably, this mutation leads to an altered 

drug binding, inhibiting the effect of echinocandins (138, 143). 

Erg11 is the target of azoles. Mutations in ERG11 result in reduced affinity for 

azoles, leading to resistance. Also, mutations in ERG3 contribute to resistance, as these 

will lead to accumulation of 14α-methylfecosterol, which can compensate for the 

depletion of ergosterol and the consequent growth inhibition (144, 145).  

 

Stress responses 

 Contact with antifungals or immune response factors and changes in the 

environment may induce general stress responses also contributing to resistance. The 

mitogen-activated protein kinase (MAPK) pathway is activated in response to different 

stresses and occupies a central position in the regulation of appropriate stress 

responses, thereby activating the high-osmolarity glycerol (HOG1) pathway, the protein 

kinase C cell wall integrity (MKC1) pathway and the C. albicans ERK-like kinase (CEK1) 

pathway. The first one is mainly activated upon osmotic or heavy metal stress, while the 

second one is particularly induced by cell wall stress. Additionally, both pathways are 

induced by oxidative stress and increase the level of antioxidants (137, 146, 147). The 

CEK1 pathway is involved in cell wall construction. 

 Besides this complex regulatory network, the protein calcineurin is activated 

upon several stresses, especially membrane stress. Calcineurin affects the transcription 

of other stress regulators, which leads to an increased tolerance to osmotic stress, to pH 
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changes and to certain antifungals. Calcineurin is stabilized by the heat-shock protein 90 

(Hsp90), which is also induced by the MAPK pathway (137). 

 

Biofilm specific mechanisms of resistance 

The general mechanisms of resistance discussed before are also observed in 

fungal biofilms. However, biofilms show an increased resistance to antifungals 

compared to planktonic cells. The architecture of biofilms and their cell density provide 

additional mechanisms of resistance that do not, or only to a lesser extent, occur in 

planktonic cells (Figure 1.8).  

 

 

 

Figure 1.8. Schematic overview of fungal biofilm resistance mechanisms (148). 
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Cell density 

It has been observed that increased biofilm resistance is a phase-dependent 

phenomenon, indicating that the high cell density of mature biofilms may play a role in 

resistance (149). At equal cell densities, planktonic cells show a similar resistance to 

antifungals as sessile cells. Additionally, dissociated biofilm cells at a low density 

(similar to that of planktonic cells), show a higher susceptibility to antifungals. These 

changes have been observed for different classes of antifungals (azoles, polyenes and 

echinocandins). It is possible that quorum sensing molecules are involved in the 

increased resistance of high density populations, although the effect of farnesol on the 

regulatory system of Chk1 does not seem to be a factor (150). In contrast, resuspended 

biofilm cells still show a resistant phenotype for fluconazole, but are less resistant than 

intact biofilms (151). 

 

Growth rate 

A change in growth rate of C. albicans biofilms did not influence the effect of 

amphotericin B treatment, indicating a minor role for growth rate in polyene resistance 

(68). Furthermore, it has been found that the metabolic activity increases during biofilm 

development, indicating that a lower metabolic activity is not associated with the 

increased resistance of a developing biofilm (152). However, as biofilms are 

heterogeneous structures, it is possible that they contain resistant subpopulations with 

a lower growth rate (153). 

 

Efflux pumps 

The role of efflux pumps in general resistance to antifungals has been discussed 

above. However, they also play a specific role in fungal biofilm resistance where they 

show a phase dependent involvement. Although CDR1, CDR2 and MDR1 are expressed 

during all phases of biofilm development, increased transcription levels of these genes 

were observed during the early phase. Young biofilms formed from strains with single, 

double or triple mutations in the CDR and MDR1 genes were hypersusceptible to azoles. 

This confirms that efflux pumps play a role in azole resistance at this biofilm stage. 

However, mature biofilms of these mutants showed a resistant azole phenotype, 
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indicating that efflux pumps do not contribute to azole resistance at later stages of 

biofilm development (149, 151).  

 

Extracellular polymeric matrix 

The production of EPM is a typical characteristic of biofilms. The amount of EPM 

produced depends on the growth conditions: biofilms grown under a dynamic flow 

produce more EPM than statically grown biofilms (66, 67, 154). However, the extent of 

matrix formation did not affect the susceptibility of biofilm cells to amphotericin B, 

flucytosine or fluconazole (154). The EPM does not inhibit the penetration of 

fluconazole, amphotericin B or flucytosine, indicating that this is not a major mechanism 

of resistance (155). However, another study showed that increased EPM production also 

increased resistance against amphotericin B. The contrast with previous findings is 

probably due to differences in the growth conditions (67). 

The most recent studies focus on the composition of the EPM and demonstrate a 

biofilm specific role in resistance for extracellular DNA and β-1,3 glucans in the EPM. 

Extracellular DNA contributes to the maintenance and stability of mature C. albicans 

biofilms. Treatment of these biofilms with DNase decreased the biomass and increased 

the susceptibility to amphotericin B (and to a lower extent to echinocandins), but not to 

fluconazole (67, 69, 156). The β-1,3 glucan synthesis by Fks1, is probably of high 

importance for the resistance of biofilms (157). Additionally, the glucan transferases 

Bgl2 and Phr1 and the glucanase Xog1 are crucial for β-1,3 glucan transport to the 

matrix and for the accumulation of the matrix biomass, which suggests a role in drug 

resistance (71). During biofilm development, an increase in β-1,3 glucan has been 

observed in the cell wall and the surrounding matrix, enhancing its ability to sequester 

antifungals (azoles, polyenes, echinocandins and flucytosine) and preventing them from 

reaching their target (73, 157-159). The presence of β-1,3 glucans also seems to hinder 

the penetration of the larger components of the immune system (160, 161). 

 

Persisters 

Persisters, defined as a subpopulation of cells that have entered into a dormant 

state are highly tolerant to antifungals. This dormant state is characterized by a 

transcriptional downregulation of genes involved in energy production, leading to slow 

or no growth. Persister cells probably play an important role in recalcitrant and 
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recurrent biofilm-related infections. They survive antifungal treatment and are 

protected by the EPM as this forms a barrier for the larger compounds of the immune 

system. After antifungal therapy, the surviving cells start growing again, causing a new 

infection (160, 162). Persister cells have been demonstrated in C. albicans biofilms upon 

amphotericin B treatment, exhibiting a biphasic killing pattern. Isolation and 

reinoculation of these persister cells results in the formation of a biofilm with a new 

subpopulation of persister cells, indicating that these C. albicans persisters are not 

mutants, but phenotypic variants of the wild type. C. albicans persister cells exclusively 

occur in biofilms. Their formation is not induced by drug treatment, but is triggered by 

adherence to a surface (163). 

The level of persister cells varies between Candida spp. and between C. albicans 

strains (164, 165). Persisters were not observed in C. glabrata and C. tropicalis biofilms 

upon amphotericin B treatment and were also absent in the widely used C. albicans 

laboratory strain SC5314 (164). However, miconazole treatment of the latter resulted in 

a persistent fraction (166). The levels of persister cells in Candida strains isolated from 

patients with long term oral Candida carriage were significantly higher than in Candida 

strains isolated from patients with transient carriage. However, these high-persister 

strains did not show an altered MIC compared to low-persister strains. Furthermore, the 

level of persistence within each strain was maintained when the persister cells were 

isolated and reinoculated. These data confirm that persisters are phenotypic variants, 

but suggest that an underlying genetic change determines the level of persistence (165). 
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AIMS 

 

Candida species are human commensals, but also opportunistic pathogens, 

causing infections in immunocompromised patients. They have the ability to colonize 

biotic and abiotic surfaces and form biofilms, which are highly resistant to commonly 

used antifungals. As fungal biofilm formation and resistance are an increasing medical 

problem, there is also a growing need for new and potent antifungals. 

Azoles are known for their fungistatic activity against Candida species. 

Miconazole is reportedly an exception within this class, as it was previously shown to 

have fungicidal activity (1-5). A first aim of this doctoral research was to investigate 

whether miconazole also has fungicidal activity against mature biofilms of Candida 

species and whether these biofilms showed resistance against this antifungal. 

The extensive research on fundamental aspects of fungal biofilm formation and 

resistance have led to new insights and has broadened our knowledge. However, due to 

the complexity of these processes, the mechanisms involved are not completely 

understood yet. If we want to discover new therapies for fungal biofilms and fight 

resistance against antifungals, fundamental research is important. For this reason, the 

second aim of this doctoral research was to unravel the molecular mechanisms involved 

in fungal biofilm formation and in the resistance to miconazole. Based on the results of 

the screening of a S. cerevisiae deletion mutant bank, genes identified to play a role in S. 

cerevisiae biofilm formation or resistance to miconazole were further examined in C. 

albicans. 
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ABSTRACT 

Although azole antifungals are considered to be fungistatic, miconazole has 

fungicidal activity against planktonic C albicans cells, presumably associated with the 

induction of ROS production. Only few data are available concerning the effect of 

miconazole against sessile C. albicans cells. In the present study, the fungicidal activity of 

miconazole against in vitro-grown mature Candida biofilms, and its relationship with the 

induction of ROS and ROS-dependent apoptosis were examined.  

The effect of miconazole on mature biofilms formed by 10 C. albicans strains and 5 

strains from other Candida species was evaluated by plate counting and measuring the 

level of ROS induction. MIC tests were performed in the absence and presence of ascorbic 

acid, a quencher of ROS. The apoptotic population in C. albicans cells was determined using 

annexin-Cy3.  

Miconazole showed a significant fungicidal effect against all mature Candida biofilms 

tested and caused elevated ROS levels, both in planktonic and sessile cells. Addition of 

ascorbic acid drastically reduced these levels. While ROS quenching decreased the 

susceptibility to miconazole of planktonic cells of most Candida strains, no reduced 

fungicidal activity of miconazole against biofilms was observed. Miconazole did not cause a 

significant increase in apoptosis.  

ROS levels increased in all Candida biofilms upon addition of miconazole. However, 

ROS induction was not the only factor that underlies its fungicidal activity, as quenching of 

ROS did not lead to an enhanced survival of biofilm cells. ROS-induced apoptosis was not 

observed in C. albicans cells after miconazole treatment.  
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INTRODUCTION 

Candida species are frequently associated with nosocomial infections in 

immunocompromised hosts (1). Device-related infections caused by this organism often 

involve biofilm formation, a process in which planktonic yeast cells adhere to a biotic or 

abiotic surface, ultimately resulting in the formation of a complex three-dimensional 

structure of yeast cells, filaments and extracellular polymeric matrix (2, 3). There are 

profound differences between planktonic and sessile cells, including an increased tolerance 

of the latter towards antifungal agents (4).  

Azole antifungals are widely used to treat infections with Candida spp. These 

compounds inhibit the 14α-demethylation of lanosterol by interacting with cytochrome 

P450, a crucial enzyme in the ergosterol biosynthetic pathway. The resulting decrease in 

ergosterol levels and the accumulation of toxic sterol intermediates in the cytoplasmatic 

membrane lead to growth inhibition (5). Miconazole (an imidazole) has reportedly a higher 

in vitro activity against planktonic C. albicans cells than the more recently developed and 

presumably more active fluconazole (a triazole) (6-8). However, few data are available 

about the effect of miconazole against Candida biofilms. A fungicidal activity was observed 

for miconazole against C. albicans biofilms, but only against young (2–6 h) biofilms (9). 

Recent research has shown that the fungicidal activity of miconazole against planktonic C. 

albicans cells is related to the induction of ROS. Although the exact mechanism of this 

enhanced ROS accumulation is not completely understood, combined inhibition of catalase 

and peroxidase, as well as changes in the actin cytoskeleton, appear to be involved (7, 8). It 

is well known that antioxidants can act as a reductant for ROS. Antioxidative compounds 

are important for the prevention of peroxidation and free radical accumulation (10). 

Furthermore, ROS are inducers of apoptosis (11). Programmed cell death was observed in 

Saccharomyces cerevisiae exposed to different types of oxidative stress (12, 13). 

Hyperactivation of the RAS signalling pathway by stabilization of the actin cytoskeleton 

leads to an increase in cAMP, followed by the loss of the mitochondrial membrane potential 

and the accumulation of ROS, ultimately leading to apoptosis (14). Apoptosis is also 

induced in C. albicans upon treatment with low doses of H2O2, acetic acid or amphotericin B 

(15).  
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The aim of the present study was to investigate the activity of miconazole against 

Candida biofilms. To this end, the effect of miconazole and fluconazole against mature 

biofilms of 10 C. albicans strains and 5 strains belonging to other Candida species was 

compared. ROS levels were determined in miconazole-treated and untreated mature 

Candida biofilms to verify whether there is a correlation with the activity of miconazole. 

Finally, we investigated whether increased apoptosis contributes to the antimicrobial effect 

of miconazole.  
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MATERIALS AND METHODS 

Strains 

The following strains were used: C. albicans SC5314 (ATCC MYA-2876) (American 

Type Culture Collection, Teddington, UK); C. albicans ATCC 10231; C. albicans IHEM 10284 

(Institute of Hygiene and Epidemiology—Mycology Section, Brussels, Belgium); C. albicans 

IHEM 9559; C. albicans NCYC 1467 (National Collection of Yeast Cultures, Norwich, UK); C. 

albicans MUCL 29800 (Mycothèque de l'Université Catholique de Louvain, Louvain-la-

Neuve, Belgium); C. albicans MUCL 29903; C. albicans MUCL 29981; C. albicans MUCL 

29919; C. albicans MUCL 30112; C. dubliniensis IHEM 14280; C. glabrata MUCL 15664; C. 

krusei IHEM 1796; C. parapsilosis IHEM 3270; and C. tropicalis IHEM 4225. A stock culture 

of all these strains was kept in Microbank Tubes (Pro-Lab Diagnostics, Richmond Hill, ON, 

Canada) at −80°C. Cells were routinely transferred to Sabouraud dextrose agar (SDA) 

(Oxoid, Basingstoke, UK) plates or Sabouraud dextrose broth (SDB) (Oxoid) and incubated 

at 37°C for 24 h.  

 

Biofilm formation on silicone discs 

Candida biofilms were grown on sterile silicone discs (4 mm in thickness and 13 mm 

in diameter) in a 24-well microtitre plate (TPP, Trasadingen, Switzerland). Silicone sheets 

were prepared from a medical grade silicone rubber kit (Q7-4735; Dow Corning Corp., 

Midland, MN, USA), according to the manufacturer's instructions. The discs were punched 

from the sheets, washed in 2% RBS 35 detergent (Sigma–Aldrich, St Louis, MO, USA) and in 

MilliQ water (Millipore, Billerica, MA, USA), and autoclaved. Inoculum suspensions were 

prepared by incubating the cells in SDB for 16 h at 37°C. After removing the supernatant, 

the cells were washed three times with and finally resuspended in 1 mL of physiological 

saline (0.9% NaCl; Novolab, Geraardsbergen, Belgium) (PS). This inoculum was further 

diluted with yeast nitrogen base 0.1× (BD, Franklin Lakes, USA) (YNB) supplemented with 

5 mM glucose (Sigma–Aldrich) to yield an optical density of 0.07 at a wavelength of 600 nm. 

Then, 1 mL of a 1:100 dilution of the inoculum in YNB 0.1× was added to each well 

containing a silicone disc and the 24-well microtitre plates were incubated for 1 h at 37°C. 

Subsequently, the silicone discs were rinsed three times with 1 mL of PS to remove non-
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adherent cells and aseptically transferred to a new well. Following the addition of 1 mL of 

diluted YNB (0.004× with a final glucose concentration of 0.2 mM) to each well, the plates 

were further incubated for 24 h at 37°C.  

 

Biofilm formation in 96-well microtitre plates 

Candida biofilms were grown in round-bottomed 96-well microtitre plates (TPP), as 

described previously (16), with an adhesion phase of 1 h followed by a growth phase of 24 

h (both at 37°C in SDB).  

 

Treatment of biofilms with antifungal agents 

The silicone discs containing the mature biofilms were transferred to a new 24-well 

microtitre plate. Then, 1 mL of a solution of fluconazole (Diflucan, Pfizer, Brussels, Belgium) 

or miconazole nitrate (Certa, Braine–l'Alleud, Belgium) (final concentration 5 mM, 

corresponding to 1,531 mg/L for fluconazole and 2081 mg/L for miconazole) in phosphate 

buffered saline (PBS) with 2% dimethyl sulfoxide (Sigma–Aldrich) (DMSO) was added to 

the biofilms. Appropriate controls were also included. The plates were incubated at 37°C 

for 24 h. The silicone discs were subsequently washed three times with 1 mL PS. The 

number of cfu on each silicone disc was determined by pour plating. To this end, the 

silicone discs with biofilms were transferred to 10 mL of SDB and biofilm cells were 

removed from the silicone by three cycles of 30 s of sonication and 30 s of vortex mixing. 

With this procedure, all sessile cells were removed from the silicone discs and clumps of 

cells were broken apart (17). Serial 10-fold dilutions of the resulting cell suspension were 

made, and 1 mL of each dilution was plated and SDA was added, resulting in a lower limit of 

detection of 10 cfu per disc. Plates were incubated for 24 h at 37°C, after which the number 

of cfu per disc was calculated by counting colonies on the plates. For each strain and 

treatment, biofilms formed on at least three silicone discs in at least three independent 

experiments (n ≥ 9) were included.  
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Detection of ROS 

Mature biofilms formed in round-bottomed 96-well microtitre plates were rinsed 

with 100 µL of PS and treated for 24 h at 37°C with 100 µL of a miconazole suspension (5 

mM in PBS with 2% DMSO). Appropriate controls were included and incubated under 

identical conditions. ROS accumulation was measured in a fluorometric assay using 2,7-

dichlorofluorescein diacetate (DCFHDA) (Invitrogen, Carlsbad, CA, USA) (6). To this end, 

biofilms were incubated with 10 µM DCFHDA, simultaneously with the antifungal 

treatment. Fluorescence was measured after 24 h of incubation using a Wallac Victor 

Multilabel Counter (Perkin Elmer, Wellesley, MA, USA) (λex = 485 nm; λem = 535 nm). The 

values obtained were corrected for background fluorescence (measured in the absence of 

cells) and compared with those obtained with untreated biofilms. ROS levels were 

quantified in duplicate on at least three biofilms (n ≥ 6) for each strain. To determine 

whether fluorescence is generated in the extracellular environment or intracellularly, the 

entire content of the well (supernatant and biofilm) was removed and cells were separated 

from the supernatant by centrifugation. The fluorescence of the supernatant and of the 

resuspended sessile cells in PBS was measured separately, as described above.  

 

Influence of antioxidants on miconazole-treated biofilms 

A set of antioxidative compounds was used to investigate their possible protective 

effect against miconazole activity, including cysteine (0.025% w/v and 0.25% w/v) 

(Sigma–Aldrich), mannitol (10 and 100 mM) (Merck, Darmstadt, Germany), glutathione 

(1.5 and 15 mM) (Sigma–Aldrich), ascorbic acid (10 and 100 mM) (Merck) and 

pyrrolidinedithiocarbamate (PDTC) (10 µM and 1 mM) (Sigma–Aldrich). The level of ROS 

was determined in miconazole-treated biofilms using DCFHDA (10 µM) in the presence and 

absence of the antioxidants. The number of cfu on silicone discs of C. albicans SC5314 

treated with miconazole in combination with the selected antioxidative compounds was 

determined by plating in at least three independent experiments on at least three silicone 

discs for each condition (n ≥ 9).  
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Antifungal susceptibility assay 

The MIC of miconazole in the presence and absence of ascorbic acid (10 mM) was 

determined according to the protocol of the European Committee on Antimicrobial 

Susceptibility Testing (18). The medium used for these experiments was RPMI-1640 2× 

with l-glutamine and without sodium bicarbonate (Sigma–Aldrich), supplemented with 2% 

w/v glucose (Sigma–Aldrich) and buffered to pH 7.0 with MOPS (Sigma–Aldrich). Flat-

bottomed 96-well microtitre plates were inoculated with Candida to obtain 5×105 cells/mL 

in each well. After 24 h of incubation at 35°C, the absorbance was measured at a 

wavelength of 590 nm using a Wallac Victor microtitre plate reader (Perkin Elmer). 

DCFHDA (10 µM) was also added to each well and the absorbance measurement was 

immediately followed by a measurement of fluorescence (λex = 485 nm; λem = 535 nm).  

 

Detection of apoptosis 

To investigate a possible apoptosis-inducing effect of miconazole on C. albicans 

SC5314 biofilms, the Apoptosis Detection Kit Annexin V-CY3 (Sigma–Aldrich) was used. 

This test allows differentiation between living cells (green fluorescence), necrotic cells (red 

fluorescence) and apoptotic cells (green and red fluorescence). Biofilms were grown in 96-

well microtitre plates and treated with miconazole, as described above. Sessile cells were 

removed and diluted 1:10 in PBS, after which 50 µL was spotted on a microscope slide and 

left at room temperature, allowing the cells to be adsorbed to the slide. The adsorbed cells 

were carefully washed three times with binding buffer (supplied with the apoptosis kit), 

and treated with a mixture of 6-carboxyfluorescein diacetate (500 µM) and annexin V-Cy3 

conjugate (1 mg/L) for 10 min. Excess labelling agent was removed by washing the cells 

three times with binding buffer. C. albicans biofilms treated with acetic acid (60 and 300 

mM) and hydrogen peroxide (5 and 25 mM) were included as positive controls in this assay. 

Apoptosis in planktonic C. albicans SC5314 cells was also tested. Therefore, overnight 

cultures were treated with miconazole (10× MIC) for 24 h and compared with untreated 

planktonic cultures. The staining procedure was performed as described above for sessile 

cells. Results were observed using a fluorescence microscope (Olympus BX40, Olympus, 

Tokyo, Japan). For each condition, between 241 and 1174 cells were photographed, and co-

localization of the fluorescein and Cy3 fluorescence signal was quantified on a cell-per-cell 
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basis with an in-house-developed image-processing program based on Matlab to 

differentiate between living, necrotic and apoptotic cells. 

 

Statistical analysis 

Statistical analysis was performed using SPSS 16.0 software. The non-parametric 

Mann–Whitney test was used to compare the results.  
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RESULTS 

Effect of azoles on Candida biofilms 

 

 

 

Figure 3.1. Number of cfu (logarithmic) per silicone disc of Candida biofilms in the 

presence and absence of antifungals. Black bars, untreated mature biofilms; grey bars, 

mature biofilms treated with 5 mM fluconazole; white bars, mature biofilms treated with 5 

mM miconazole. Data presented are the mean and SEM of at least three independent 

experiments on at least three biofilms (n ≥ 9). Statistical analysis with the Mann–Whitney 

test indicated significant differences in biofilm biomass between miconazole-treated and 

untreated biofilms for all strains tested (P < 0.05), but not between fluconazole-treated and 

untreated biofilms. 

 

 

The effect of fluconazole and miconazole on Candida biofilms formed on silicone 

discs was determined for 15 strains (Figure 3.1). Untreated biofilms contained 105–106 

cfu/disc, depending on the strain tested. Treatment with fluconazole did not result in a 
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significant reduction in cfu. In contrast, treatment with miconazole resulted in a substantial 

reduction (ranging from 89.3% to 99.1%; P < 0.05) in the number of cfu recovered from the 

discs for all strains investigated. The lowest reductions were observed for C. parapsilosis 

IHEM 3270 (89.3%) and C. tropicalis IHEM 4225 (90.3%), and the highest reductions were 

observed for C. albicans MUCL 30112 (99.1%) and C. albicans IHEM 10284 (99.1%).  

Our results showed only a fungistatic effect for fluconazole, whereas miconazole 

showed fungicidal activity against Candida biofilms.  

 

ROS-accumulation in miconazole-treated biofilms 

Accumulation of ROS following treatment with miconazole was measured using 

DCFHDA. As the conversion of this dye depends on the number of metabolically active cells 

in the biofilm, results were normalized to the number of cfu/disc. Treatment with 

miconazole resulted in a significant increase in ROS accumulation for all strains 

investigated (P < 0.005) (Figure 3.2). No ROS accumulation could be observed for untreated 

C. dubliniensis IHEM 14280, C. glabrata MUCL 15664 and C. parapsilosis IHEM 3270 

biofilms. In contrast, all untreated C. albicans biofilms tested showed a basal ROS 

accumulation. A remarkably high fluorescence could be observed for C. albicans MUCL 

30112. The highest increases (> 100-fold) in ROS accumulation after miconazole treatment 

could be observed for C. albicans MUCL 29919, C. albicans IHEM 9559 and C. albicans MUCL 

29800. The lowest impact of miconazole treatment was detected for C. tropicalis IHEM 

4225 (2-fold increase) and C. albicans NCYC 1467 (7-fold increase). Measurements were 

also carried out separately in sessile C. albicans SC5314 cells and in the supernatant. The 

ROS-induced increase in fluorescence was only observed for the cells and not for the 

supernatant (data not shown), indicating an intracellular origin.  

In conclusion, miconazole caused a significant intracellular increase in ROS 

accumulation in all Candida strains investigated.  
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Figure 3.2. Accumulation of ROS expressed as fluorescence per 1000 cells in mature 

Candida biofilms in the presence and absence of miconazole. Black bars, untreated mature 

biofilms; grey bars, mature biofilms treated with 5 mM miconazole. Data presented are the 

mean and SEM of two independent experiments on at least three biofilms (n ≥ 6). Statistical 

analysis with the Mann–Whitney test indicated a significant difference (P < 0.05) in 

fluorescence between miconazole-treated and untreated biofilms. *Fluorescence below 

background level. 

 

 

Effect of antioxidants on miconazole-treated biofilms 

The effect of the addition of five compounds with antioxidative properties on 

miconazole-treated C. albicans SC5314 biofilms was investigated using DCFHDA (n ≥ 9 for 

each treatment). Only cysteine (0.25% w/v), glutathione (15 mM), PDTC (10 µM) and 

ascorbic acid (10 and 100 mM) significantly reduced (P < 0.05) miconazole-induced ROS 

accumulation (Figure 3.3). However, the addition of antioxidants to miconazole-treated 

biofilms did not result in a statistically significant increase in survival (Figure 3.3). Ascorbic 

acid (10 mM) was selected to further examine the effect of ROS quenchers on other 
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miconazole-treated Candida biofilms. The addition of ascorbic acid did not significantly 

increase the number of cfu on the silicone discs, but resulted in a reduction of ROS 

accumulation following treatment with miconazole for all strains tested (Table 3.1). This 

reduction was statistically significant (P < 0.05) when compared with biofilms treated with 

miconazole alone (n = 6 for each strain), except for C. albicans MUCL 29919 and C. glabrata 

MUCL 15664.  

Ascorbic acid reduced the miconazole-induced ROS accumulation in sessile cells, but 

did not cause an enhanced survival. 

 

 

 

Figure 3.3. Number of cfu of C. albicans SC5314 biofilms (left-hand y-axis) and ROS 

accumulation (right-hand y-axis) following treatment with miconazole in the absence or 

presence of antioxidants. Black bars, log cfu per silicone disc; grey bars, fluorescence. Data 

presented are the mean and SEM of at least three independent experiments on at least 

three biofilms (n ≥ 9). All treated biofilms showed a significant decrease (P < 0.05) in cfu 

compared with the control. Significant reductions (P < 0.05) in ROS accumulation 

compared with miconazole-treated biofilms are marked with an asterisk. 
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Table 3.1. Number of cfu of Candida biofilms treated with miconazole alone or in 

combination with ascorbic acid (10mM) and ROS accumulation after miconazole treatment 

and the addition of ascorbic acid (10 mM). Plate counts correspond to the mean + SEM of at 

least three independent experiments on at least three silicone disks (n > 9). There was no 

significant increase in cfu after the addition of ascorbic acid compared with miconazole-

treated biofilms without ascorbic acid. Fluorescence results correspond to the mean + SEM 

of two independent experiments on three biofilms (n = 6). Statistically significant 

reductions (P < 0.05) in ROS accumulation are marked with an asterisk. 

 
PLATING 

MICONAZOLE 
(log cfu / silicone 

disk) 

PLATING 
MICONAZOLE + 
ASCORBIC ACID 

(log cfu / silicone 
disk) 

FLUORESCENCE 
(% compared to 

miconazole treatment 
without ascorbic acid) 

C. albicans 
SC5314 

3.89 + 0.20 4.13  + 0.41 10.4  + 2.3* 

C. albicans 
MUCL 29800 

3.82 + 0.31 2.00  + 0.02 32.2  + 7.7* 

C. albicans 
MUCL 29981 

4.20 + 0.38 2.99  + 0.20 30.7  + 4.2* 

C. albicans 
MUCL 29903 

4.22 + 0.20 3.47  + 0.04 60.3  + 14.1* 

C. albicans 
MUCL 30112 

3.08 + 0.27 2.53  + 0.31 17.9  + 5.6* 

C. albicans 
NCYC 1467 

4.05 + 0.12 4.16  + 0.21 25.0  + 5.9* 

C. albicans 
IHEM 10284 

3.32 + 0.19 3.19  + 0.27 47.6  + 5.5* 

C. albicans 
ATCC 10231 

3.40 + 0.19 2.89  + 0.32 33.4  + 2.5* 

C. albicans 
IHEM 9559 

3.78 + 0.08 3.28  + 0.15 11.5  + 3.9* 

C. albicans 
MUCL 29919 

3.75 + 0.14 3.80  + 0.19 81.7  + 16.9 

C. dubliniensis 
IHEM 14280 

4.03 + 0.08 3.90  + 0.21 23.3  + 2.3* 

C. glabrata 
MUCL 15664 

3.66 + 0.11 3.21  + 0.19 64.4  + 13.3 

C. krusei 
IHEM 1796 

4.14 + 0.19 2.73  + 0.16 20.3  + 4.5* 

C. parapsilosis 
IHEM 3270 

4.15 + 0.19 3.36  + 0.22 53.2  + 8.5* 

C. tropicalis 
IHEM 4225 

4.63 + 0.11 4.05  + 0.22 26.5  + 3.8* 



 

56 

Effect of ascorbic acid on the susceptibility of planktonic 

cells 

Miconazole also induced ROS accumulation in planktonic Candida cultures. Addition 

of ascorbic acid to planktonic cultures incubated with miconazole reduced ROS production 

(47.8% to 89.9% reduction) for all strains tested (data not shown). The MIC of miconazole 

increased 2- to 64-fold for most strains following the addition of ascorbic acid. This 

increase was not observed for two strains with an intermediate MIC (0.125 mg/L) (C. 

albicans IHEM 10284 and MUCL 29919) and for most strains with a high MIC (1.0 – 4.0 

mg/L) (C. glabrata MUCL 15664, C. krusei IHEM 1796 and C. parapsilosis IHEM 3270) 

(Table 3.2).  

For planktonic cells of most strains, the addition of ascorbic acid reduced the ROS 

accumulation and the susceptibility to miconazole.  

 

 

Table 3.2.  MIC of miconazole in the absence and presence of ascorbic acid. 

 
MIC miconazole 

(mg/L) 

MIC miconazole 
(mg/L) in the 

presence of 10 mM 
ascorbic acid 

Fold change 
in MIC 

C. albicans SC5314 0.063 0.250 4 
C. albicans MUCL 29800 0.031 0.125 4 
C. albicans MUCL 29981 0.031 2.000 64 
C. albicans MUCL 29903 0.063 0.250 4 
C. albicans MUCL 30112 0.063 0.500 8 
C. albicans NCYC 1467 0.063 0.500 8 
C. albicans IHEM 10284 0.125 0.125 1 
C. albicans ATCC 10231 0.125 0.250 2 
C. albicans IHEM 9559 0.125 0.250 2 
C. albicans MUCL 29919 0.125 0.125 1 
C. dubliniensis IHEM 14280 0.063 0.125 2 
C. glabrata MUCL 15664 1.000 1.000 1 
C. krusei IHEM 1796 4.000 4.000 1 
C. parapsilosis IHEM 3270 1.000 1.000 1 
C. tropicalis IHEM 4225 1.000 4.000 4 
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Apoptosis in miconazole-treated planktonic and sessile 

C. albicans cells 

To determine whether the effect of miconazole was due to increased apoptosis, we 

quantified the number of apoptotic cells in treated and untreated biofilms and planktonic 

cultures (Figure 3.4A and Figure 3.4B). Untreated planktonic C. albicans SC5314 cultures 

contained 14.0% ± 7.0% apoptotic cells, which was not significantly different (P = 0.83) 

from miconazole-treated cells (14.6% ± 4.5%). The number of necrotic cells in a planktonic 

culture treated with miconazole (13.2% ± 3.6%) was not significantly different (P = 0.41) 

from untreated planktonic cells (7.5% ± 2.3%). Untreated C. albicans SC5314 biofilms 

contained 9.7% ± 4.0% apoptotic cells. The number of apoptotic cells upon treatment of 

these biofilms with miconazole alone (14.4% ± 11.5%) or in combination with ascorbic 

acid (18.5% ± 6.5%) did not significantly increased (P = 0.40 and P = 0.19, respectively). In 

contrast, the fraction of necrotic cells increased significantly (P < 0.05) compared with the 

untreated biofilms (8.9% ± 3.7%) following treatment with miconazole alone (25.1% ± 

1.9%) or in combination with ascorbic acid (32.7% ± 8.6%). Low concentrations of acetic 

acid (60 mM) and hydrogen peroxide (5 mM) resulted in a significant increase (P < 0.05) in 

the fraction of apoptotic cells (34.6% ± 5.1% and 20.6% ± 5.2%, respectively). The 

hydrogen peroxide-treated biofilms also showed a significant increase in the amount of 

necrotic cells (26.1% ± 3.5%).  

Miconazole did not result in increased apoptosis in planktonic or in sessile Candida 

cells.  
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Figure 3.4A. C. albicans sessile cells stained with the Apoptosis Detection Kit Annexin V-

CY3. Picture A, untreated sessile C. albicans cells (green fluorescence). Picture B, untreated 

sessile C. albicans cells (red fluorescence). Picture C, miconazole-treated sessile C. albicans 

cells (green fluorescence). Picture D, miconazole-treated sessile C. albicans cells (red 

fluorescence). 

 

A B

C D
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Figure 3.4B. C. albicans sessile cells stained with the Apoptosis Detection Kit Annexin V-

CY3. Picture E, miconazole- and ascorbic acid-treated sessile C. albicans cells (green 

fluorescence). Picture F, miconazole- and ascorbic acid-treated sessile C. albicans cells (red 

fluorescence). Picture G, hydrogen peroxide-treated sessile C. albicans cells (green 

fluorescence). Picture H, hydrogen peroxide-treated sessile C. albicans cells (red 

fluorescence). 
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DISCUSSION 

In the present study, the antifungal activity of miconazole against Candida biofilms 

was investigated.  

Results from our study showed that miconazole, unlike fluconazole, has a 

pronounced antibiofilm effect against C. albicans and other Candida spp. It should be noted 

that the antifungal concentration used in our in vitro experiments (5 mM) was higher than 

the common therapeutic in vivo concentrations. However, this high concentration is 

achievable during antifungal lock therapy (19, 20) and allowed us to investigate the 

mechanism of action of miconazole.  

We observed that the accumulation of ROS was strongly increased in sessile Candida 

cells treated with miconazole, indicating that ROS may be responsible for the fungicidal 

effect. ROS are generally described as important inducers of apoptosis in yeasts (10), but 

ROS induced by treatment with miconazole did not cause an increase in programmed cell 

death in sessile C. albicans cells. The majority of cells killed by miconazole were necrotic.  

The addition of ascorbic acid to miconazole-treated Candida biofilms considerably 

reduced ROS accumulation for all strains. Surprisingly, this did not lead to a reduction of 

the fungicidal activity of miconazole. Sessile Candida cells are reportedly more tolerant to 

oxidative stress than their planktonic counterparts (21). This inherent tolerance may 

explain why several antioxidative compounds did not result in an additional protection. 

Furthermore, previous studies have shown that prior to the induction of ROS miconazole 

affects the organization of the actin cytoskeleton in yeasts (8). The coupling of 

mitochondria to the actin cytoskeleton might lead to an association of actin with channels 

in the mitochondrial membranes. The opening of these channels is followed by reduction of 

the membrane potential and, finally, the release of ROS into the cytoplasm (22). The 

targeting of the actin cytoskeleton by miconazole may have other effects, which are not 

counteracted by ascorbic acid. Alternatively, a yet unknown mechanism may contribute to 

the fungicidal activity of miconazole against sessile Candida cells.  

An increase in ROS accumulation caused by miconazole treatment was also 

observed in all planktonic Candida cultures tested, confirming previous observations in C. 

albicans (6, 7). The addition of ascorbic acid to miconazole-treated planktonic Candida cells 

reduced ROS induction for all strains. Furthermore, a simultaneous decrease in 
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susceptibility to miconazole was observed for most strains, which confirmed previous 

findings concerning the protective effect of antioxidants during miconazole treatment (6). 

However, we demonstrated that the protective effect of ascorbic acid was limited in the 

case of strains with intermediate to high MICs of miconazole.  

Our data suggest that miconazole may be useful for the treatment of biofilm-related 

Candida infections. We have also shown that ROS induction is probably not directly 

responsible for the reduction in the number of cfu. So far, the basis for the fungicidal 

activity of miconazole remains unclear and further investigations are needed. 
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ABSTRACT 

Infections related to fungal biofilms are difficult to treat due to the reduced 

susceptibility of sessile cells to most antifungal agents. Previous research has shown that 

1% - 10% of sessile Candida cells survive treatment with high doses of miconazole (a 

fungicidal imidazole) (Chapter 3). The aim of this study was to identify genes involved in 

fungal biofilm formation and to unravel the mechanisms of resistance of these biofilms 

to miconazole. To this end, a screening of a S. cerevisiae deletion mutant bank was 

carried out. Our results reveal that genes involved in peroxisomal transport and the 

biogenesis of the respiratory chain complex IV play an essential role in biofilm formation. 

On the other hand, genes involved in transcription and peroxisomal and mitochondrial 

organization seem to highly influence the susceptibility to miconazole of yeast biofilms. 

Additionally, our data confirm previous findings on genes involved in biofilm formation 

and in general stress responses. Our data for the first suggest the involvement of 

peroxisomes in biofilm formation and miconazole resistance in fungal biofilms. 
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INTRODUCTION 

Biofilms are microbial communities of cells attached to a surface and embedded 

in an EPM (1). Biofilms can be formed both on host tissues and artificial surfaces, 

including medical devices such as catheters and prostheses (2-4). Fungal biofilm related 

infections have increased in frequency and result in increased morbidity and mortality 

in immunocompromised patients (5, 6). One of the major fungal human pathogens is C. 

albicans. This opportunistic human commensal causes infections ranging from 

superficial mucous membrane infections to life-threatening systemic diseases. The 

increased resistance to antifungals of sessile compared to planktonic cells often 

prevents a successful therapy (7). Production of extracellular matrix, increased cell 

density, upregulation of efflux pumps, decreased growth rate, overexpression of drug 

targets and presence of persister cells are known to play a role in the resistance of 

sessile cells (7-16). 

Azoles are widely used to treat fungal infections. These antifungal compounds 

decrease the production of ergosterol by interacting with cytochrome P450 and 

inhibiting the 14α-demethylation of lanosterol. As ergosterol is an important constituent 

of the cytoplasmatic membrane, treatment with azole antifungals leads to growth 

inhibition (17). Besides this fungistatic mechanism of action, recent data indicate a 

fungicidal effect for miconazole (an imidazole) against Candida spp. cells in suspension 

and in young and mature biofilms (18, 19) (Chapter3). Accumulation of ROS appears to 

be involved in this process, although it is likely that other mechanisms also account for 

the fungicidal activity (20-22). Despite the observed fungicidal effect of miconazole on 

biofilms, 1% - 10% of the sessile C. albicans cells survive exposure to high levels of this 

antifungal agent (19) (Chapter 3). 

The aim of the present study is to identify genes involved in fungal biofilm 

formation and to unravel the mechanisms of resistance of these biofilms to miconazole. 

To this end, we screened a deletion mutant bank of S. cerevisiae for biofilm formation 

and miconazole susceptibility. Previous work indicated that S. cerevisiae forms biofilms 

and could be used as a model for fungal biofilm formation (23). Furthermore, the 

staining procedure used in this study has been optimized previously, and showed to be a 

reliable method to measure biofilm formation (24, 25). 
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MATERIALS AND METHODS 

Strains 

The strains used in this study are S. cerevisiae BY4741, the BY4741-derived 

haploid set of deletion mutants in non-essential genes from the EUROSCARF collection 

(n = 4,961), C. albicans SC5314, C. albicans  Δpex4/Δpex4 (26) and C. albicans 

Δpex8/Δpex8 (26). Stock cultures of these strains were kept at -80°C. Strains were 

cultured on SDA (Oxoid) at 37°C for at least 48 h. 

 

Screening 

Suspensions of S. cerevisiae BY4741 and BY4741-derived deletion mutants, 

containing approximately 107 cells/ml, were prepared in Yeast-Peptone-Dextrose (YPD) 

medium (BD). 100 µl of these cell suspensions were added to the wells (12 replicates 

per strain) of a U-bottomed 96-well microtitre plate (SPL Lifesciences, Pocheon, Korea) 

to initiate biofilm formation. After 1 h incubation at 37°C, the supernatant was removed 

and the wells were rinsed with 100 µl of PS to remove unattached cells. The microtitre 

plates were further incubated for 24 h at 37°C after addition of 100 µl YPD medium to 

each well. Subsequently, the supernatant was removed and the mature biofilms were 

rinsed with 100 µl PS before treatment with miconazole (1,000 µg/ml) (Certa). To this 

end, 100 µl of a miconazole suspension in PBS containing 2% DMSO (Sigma-Aldrich) was 

added to six biofilms of each strain and 100 µl of PBS containing 2% DMSO to the other 

six biofilms (control). After 24 h incubation at 37°C, the supernatant was removed and 

120 µl of a diluted resazurin solution (CellTiter-Blue 1:6 in PS) (Promega, Leiden, The 

Netherlands) was added to each well. Fluorescence was measured  after 2 h incubation 

in the dark at 37°C using an Envision microtitre plate reader (Perkin Elmer) (λex = 535 

nm; λem = 590 nm). As six mutants (HTL1, CDC26, ACB1, YDJ1, CDC40 and SAM37) were 

not able to grow at 37°C, the incubation temperature was lowered to 25°C for these 

strains. Two mutants (ADH1 and SDS23) failed to grow under the conditions of our study 

and were consequently not included. 

Mutants showing a significant difference in either biofilm formation or 

susceptibility to miconazole in the first screening, were retested at least once and the 

average result of all tests was calculated. 
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Calculations and statistical analysis 

For each deletion mutant, relative values for biofilm formation and susceptibility 

to miconazole were calculated. Biofilm formation, expressed as the average fluorescence 

of untreated biofilms (corrected for the blank) was compared between the wild type 

(WT) and each mutant. Values lower than 1 indicate decreased biofilm formation and 

values higher than 1 indicate increased biofilm formation compared to the WT. The 

susceptibility to miconazole, expressed as the ratio of the average fluorescence of 

miconazole-treated biofilms to untreated biofilms (both corrected for the blank) was 

compared between the WT and each mutant. Values lower than 1 indicate an increased 

susceptibility to miconazole and values higher than 1 indicate a decreased susceptibility 

to miconazole compared to the WT. Statistical analysis was performed using the non-

parametric Mann-Whitney U Test (SPSS Statistics 17.0 software). Results were 

considered significantly different when P < 0.01. 

 

Data processing 

For a general overview of the data, mutants with significant differences in biofilm 

formation or susceptibility to miconazole were grouped using the Gene Ontology Slim 

Mapper (27) according to the biological processes in which the deleted genes are 

involved. 

For a more in-depth analysis, genes knocked out in mutants that showed a 

significant difference in at least one phenotype were categorized using the Gene 

Ontology Term Finder (27), searching for significantly shared gene ontology (SSGO) 

terms (P < 0.01). The frequency of SSGO terms in our dataset was compared to that in 

the total genome of S. cerevisiae S288C. 

 

Detection of ROS 

Biofilms of S. cerevisiae and C. albicans were grown as described above. ROS 

accumulation was measured in a fluorometric assay using 2’,7’-dichlorofluorescein 

diacetate (DCFHDA) (Invitrogen) (20). To this end, biofilms were incubated with 10 µM 

DCFHDA, simultaneously with the antifungal treatment. Fluorescence was measured 

after 0 h and 6 h incubation using an Envision microtitre plate reader (Perkin Elmer) 

(λex = 485 nm; λem = 535 nm). Values obtained were corrected for background 
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fluorescence (measured in the absence of cells) and compared to those obtained with 

untreated WT biofilms. ROS levels were quantified in triplicate on six biofilms (n = 18) 

for each strain.  

 

Gene expression 

C. albicans biofilms were grown and treated as described above. Sessile cells were 

collected and cell disruption, RNA purification and DNase treatment were performed 

according to the manufacturers’ instructions (RiboPure-Yeast kit, Applied Biosystems, 

Carlsbad, CA). The iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA) was used for the 

reverse transcriptase reaction. To this end, 1 µl reverse transcriptase and 4 µl reaction 

mix were added to each tube (5 min at 25°C, 30 min at 42°C and 5 min at 85°C). A 

forward (FW) and a reverse (RV) primer were developed for the genes PEX4 (FW: 

TTGTTAGACCAACCCGAGCCAGAC ; RV: TTTGCTGCATCGATGTTCAACGGC), PEX8 (FW: 

AGCTTGGGTCCTCAAGGTAGAGC ; RV: ATTTGGGGTGCCCAGCAAGG), LSC2 (FW: 

CGTCAACATCTTTGGTGGTATTGT ; RV: TTGGTGGCAGCAATTAAACCT) and RPP2B (FW: 

TGCTTACTTATTGTTAGTTCAAGGTGGTA ; RV: CAACACCAACGGATTCCAATAAA) and 

their efficiency was calculated based on a standard curve and should be within the range 

of 90% to 110%. The specificity was tested by the determination of the melt curve of the 

amplified product and should show a unique dissociation peak. Real-time PCR (CFX96 

Real Time System, Bio-Rad) was performed using the Sso Advanced SYBR Green 

Supermix (Bio-Rad). The expression levels of the genes of interest were normalized 

using two stably expressed reference genes (LSC2 and RPP2B). Experiments were 

performed in triplicate and analyzed with the Bio-Rad CFX Manager software (Bio-Rad). 

 

  



 
72 

RESULTS AND DISCUSSION 

General overview 

A total of 4,961 haploid S. cerevisiae deletion mutants were screened for biofilm 

formation and susceptibility to miconazole (Figure 4.1). 341 mutants (6.9%) showed 

significant differences (P < 0.01) in biofilm formation compared to the WT. The majority 

(242 of 341 mutants) formed less biofilm as opposed to 99 mutants showing 

significantly increased biofilm formation. 387 mutants (7.8%) exhibited significantly 

different (P < 0.01) susceptibility to miconazole compared to the WT, 136 mutants being 

more susceptible and 251 mutants more resistant compared to the WT. 84 mutants 

showed both decreased biofilm formation and decreased susceptibility, 37 mutants 

showed decreased biofilm formation and increased susceptibility, 7 mutants showed 

increased biofilm formation and decreased susceptibility, and 18 mutants showed 

increased biofilm formation and increased susceptibility (Figure 4.1).  

 

 

 

Figure 4.1. Overview of screening of S. cerevisiae deletion mutant bank for biofilm 

formation and susceptibility to miconazole. 
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A decrease in biofilm formation was observed in the mutants of which the deleted 

genes are involved in mitochondrial organization, protein complex biogenesis and 

protein targeting. An increase in biofilm formation was observed mainly in the mutants 

of which the deleted genes are involved in transcription, cell wall organization and 

mitotic cell cycle (Table 4.1). Deletion of several genes involved in protein targeting, 

transcription and response to stress increased the susceptibility to miconazole, while 

deletion of several genes involved in mitochondrial organization and protein complex 

biogenesis led to increased resistance to miconazole. The deletion of several genes 

involved in lipid metabolism also affected miconazole susceptibility, with about half of 

the mutants showing increased susceptibility and about half showing decreased 

susceptibility (Table 4.1). 
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Table 4.1. Frequency of genes, categorized according their biological processes involved. 

The corresponding mutants showed a significantly different phenotype in biofilm 

formation or miconazole susceptibility compared to the WT. 
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Validation of screening 

A total of 917 mutants (18.5 %) was retested following the first screening 

because of a significant difference (P < 0.01) in biofilm formation or miconazole 

susceptibility compared to the WT. The results for 819 of these 917 retested mutants 

(89.3%) confirmed the previously observed significant differences (including 237 

mutants that showed a significantly different phenotype at a lower level of significance; 

P < 0.05). Overall, these data indicate a good repeatability of our method and confirm the 

validity of our screening. 

As a second measure of the validity of our screening, we compared our results 

with results previously obtained with selected C. albicans mutants. Deletion of SUN4, 

encoding a cell wall protein related to glucanases, led to decreased biofilm formation in 

S. cerevisiae. It was previously demonstrated that its ortholog in C. albicans, SUN41, is 

required for biofilm formation (28, 29). Similarly, our data show that SUV3 is required 

for biofilm development in S. cerevisiae, as was previously also reported for C. albicans 

(30). 

Deletion of LCB4, a gene involved in sphingolipid biosynthesis, increased 

susceptibility to miconazole. We have previously shown that a heterozygous LCB4/lcb4 

C. albicans deletion mutant was also hypersusceptible to miconazole (25) (Chapter 5). 

In addition, our experiments identified several genes involved in general and 

azole specific resistance in C. albicans biofilms. Deletion of ergosterol biosynthesis genes 

(ERG2, ERG4, ERG24 and ERG28) increased the susceptibility to miconazole, probably 

due to a decreased level of ergosterol, an important constituent of the cytoplasmatic 

membrane. The failure of adapting the sterol composition of the cytoplasmatic 

membrane as a mechanism to inhibit the penetration of miconazole in these mutants 

may also contribute to the observed phenotype. Induction of ROS production has been 

observed in planktonic and sessile Candida cells after miconazole treatment (19, 22) 

(Chapter 3). This increased ROS production was preceded by changes in the actin 

cytoskeleton (21) and may contribute to the fungicidal action of miconazole. We 

identified three genes (SIT4, VPS1 and END3) that were involved in the organization of 

the actin cytoskeleton and which appear to play a role in the resistance to miconazole. 

Furthermore, superoxide dismutases are important for ROS detoxification and their 

protective effect against miconazole-induced cell death in C. albicans biofilms was 

observed previously (31). Also, in the present study a deletion of SOD1, encoding a zinc-
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copper superoxide dismutase, led to increased susceptibility to miconazole. Deletion of 

MXR1 resulted in a similar phenotype. The latter gene encodes methionine sulfoxide 

reductase, and is known for its antioxidative capacities leading to increased survival of 

cells (32, 33). Trehalose, a disaccharide, is also known for its protective effect against 

ROS. Deletion of TPS2, encoding trehalose-6-phosphate phosphatase, leads to a decrease 

of trehalose levels and the accumulation of trehalose-6-phosphate to toxic levels (34, 35). 

Data from the present study suggest that TPS2 is also involved in resistance of yeast 

biofilms to miconazole. 

 

Mutants showing decreased biofilm formation 

The SSGO terms of the mutants with decreased biofilm formation could be 

divided in 10 categories (Figure 4.2). The growth rate of several mutants within these 

categories was determined (Table 4.2). As only a minority of mutants showed a 

significant increase in doubling time (2 of 15), we may conclude that there is no major 

link between growth rate and biofilm formation, and that an affected metabolic activity 

in the mutants is not directly involved in decreased biofilm formation. 

 

Table 4.2. Doubling times of mutants with lower biofilm formation. Significantly 

(P < 0.05) increased doubling times compared to the WT are marked with an asterisk. 

 
Doubling time 

(minutes) 
STDEV 

(minutes) 
P-value 

WT 137 22 
 

∆atg11 125 26 0.481 

∆coq1 154 7 0.056 

∆coq4 142 12 0.421 

∆coq5 163 * 9 0.027 

∆csg2 110 4 0.035 

∆fis1 131 17 0.687 

∆pex1 181 72 0.205 

∆pex10 170 48 0.057 

∆pex12 159 27 0.101 

∆pex13 201 * 70 0.009 

∆pex5 157 43 0.257 

∆pex6 164 51 0.301 

∆slt2 203 113 0.365 

∆vps15 134 16 0.850 

∆ydc1 113 4 0.035 
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Compared with the overall prevalence in the genome, genes involved in 

peroxisomal transport were overrepresented among the mutants showing decreased 

biofilm formation (10-fold more compared to the total genome). Pex1, Pex5, Pex6, Pex10, 

Pex12 and Pex13 are involved in the peroxisomal matrix protein import, and deletion of 

the corresponding genes led to decreased biofilm formation. Pex5 is the receptor which 

binds to the peroxisomal proteins in the cytosol. A set of peroxins, including the ones 

mentioned before, are anchored in the peroxisomal membrane and are involved in the 

binding of the receptor-protein complex, its dissociation, the uptake of the peroxisomal 

protein and the release of the Pex5 receptor into the cytosol (36). Furthermore, Pex3, of 

which the deficiency also led to decreased biofilm formation in S. cerevisiae, is required 

for the proper localization of peroxisomal membrane proteins (37). So far, a link 

between biofilm formation and the activity of peroxisomes has not been described. 

Peroxisomes are organelles with a single membrane in which β-oxidation of fatty acids 

takes place (38, 39). They also contain antioxidative systems to neutralize ROS produced 

during metabolism (40). As β-oxidation in yeast cells exclusively takes place in 

peroxisomes (38, 39), it is not surprising that mutations in peroxins may lead to a 

disordered balance in lipid composition and may therefore change the composition of 

cellular membranes. Differences in the distribution of lipids between planktonic and 

sessile cells have been described previously. Furthermore, lipids are important for 

adhesion and play a critical role in the formation of biofilms (41, 42). 
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Figure 4.2. Frequency of SSGO terms of the mutants with decreased biofilm formation in 

the results database compared to the overall frequency in the S. cerevisiae genome. 

 

 

Many mutants in which genes involved in mitochondrial organization are deleted, 

showed significantly decreased biofilm formation. Particularly genes involved in the 

biogenesis of the respiratory chain complex IV (PET54, PET100, PET122, COX12, COX14, 

COX16, COX20 and MSS51) were overrepresented in this group (8-fold more prevalent 

than in the total genome). Complex IV, or cytochrome c oxidase, is the final enzyme in 

the electron transport chain, creating the proton gradient necessary for ATP production. 

Mutants in which PET54, PET100 or PET122 are deleted are known to form so called 

‘petite’ colonies. Petite mutants often arise spontaneously during growth. The partial or 

complete loss of mitochondrial DNA leads to a lower growth rate and the formation of 

small colonies (43). It is likely that the reduced growth rate of these mutants is 

responsible for the decreased biofilm formation. COX12 plays a role in the assembly of 

complex IV, but does not seem to be required for its function (44). For this reason, the 

mechanism by which COX12 influences the biofilm formation remains unclear. The 

deletion of COX14, COX16 and MSS51 leads to a defect in respiratory growth; the function 

of COX16 is unknown (45). The decreased ATP production in these mutants is likely to 
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result in a lack of energy for the formation of a dense biofilm, although other 

mechanisms may decrease biofilm formation.  

In S. cerevisiae the flocculin gene family, including FLO1, FLO5, FLO9, FLO10 and 

FLO11, encodes cell wall proteins which are important for cell-cell adhesion. The latter 

gene is also involved in cell-surface adhesion. A first group of Flo proteins (encoded by 

FLO1, FLO5 and FLO9) acts as lectins, while Flo10 and Flo11 confer adhesion by 

increased cell surface hydrophobicity. (46-48). S. cerevisiae strain BY4741 used in the 

present study, a derivative of S288C, expresses low levels of FLO11, and therefore has 

reduced biofilm forming capacity (49). Nevertheless, confocal laser scanning microscopy 

images of the biofilms in our study showed a biofilm-like morphology and washing with 

PS did not affect this structure (Figure 4.3). The flocculin mutants did not show a change 

in biofilm formation compared to the WT under the conditions of our study, supporting 

the idea that one FLO gene can compensate for the absence of another (50). 

The transcriptional network controlling biofilm formation has been extensively 

studied in C. albicans and consists of six regulators: Tec1, Efg1, Ndt80, Rob1, Brg1 and 

Bcr1 (51). However, there are differences in the controlled target genes (Tec1 and Efg1) 

or differences in the function (Ndt80) between the orthologs in C. albicans and S. 

cerevisiae. For Rob1 and Brg1, the regulatory function is only detectable in species 

closely related to C. albicans. Finally, Bcr1 orthologs have not been found in S. cerevisiae 

(51). None of the S. cerevisiae orthologs of these C. albicans genes seems to be involved 

in biofilm formation.  
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Figure 4.3. Confocal laser scanning microscopy images of S. cerevisiae BY4741 WT (A) 

and S. cerevisiae BY4741 ΔFLO11 (B). 

A 
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Mutants showing increased biofilm formation 

Only 99 mutants showed a significantly increased biofilm formation and no SSGO 

terms could be detected within this category, indicating the involvement of a broad 

variation of biological processes. Furthermore, 25% of the deleted genes were 

associated with unknown biological processes. We hypothesise that the deletion of 

genes leading to increased biofilm formation disturbs the global metabolic balance and 

that other pathways compensate as reaction. This idea is also supported by the presence 

of a relatively high number of genes involved in transcription within this group of 99 

mutants. Their deletion influences a variety of other cellular metabolic pathways and, 

probably, a combination of factors is responsible for the observed phenotype. 

 

Mutants showing increased susceptibility to miconazole 

The SSGO terms of the mutants with increased susceptibility to miconazole could 

be divided in 12 categories (Figure 4.4). Compared with the overall prevalence in the 

genome, we observed that genes involved in regulation of transcription by glucose were 

overrepresented among the mutants showing increased susceptibility to miconazole 

(18-fold more compared to the total genome). Although only five genes are clustered in 

this group (NRG2, TUP1, VPS36, SNF8 and GCR1), they seem to be highly involved in the 

resistance to miconazole. As all of these genes regulate the expression of several other 

genes involved in various pathways, it is likely that a combination of factors account for 

the increased susceptibility to miconazole. Tup1, a general repressor forming a complex 

with Ssn6, regulates the expression of over 300 genes involved in metabolic processes, 

transport, meiosis, cell wall organization, stress responses and transcription (52-54). 

Gcr1 is a transcriptional activator that coordinates the expression of several glycolytic 

enzymes (55, 56). Nrg2 is known to repress a large number of stress responsive genes. 

However, Nrg1 (a paralog of Nrg2) is more important for this regulation. Furthermore, 

genes involved in mitochondrial organization, carbon and nitrogen signaling, cell wall 

organization, mating and transcription are also known to be Nrg-repressed (57). Finally, 

SNF8 and VPS36 derepress the transcription of SUC2, encoding a sucrose hydrolyzing 

enzyme (58). Vps36 and Snf8 are both components of the ESCRT-II (endosomal sorting 

complex required for transport) complex, which is involved in protein sorting and the 

biogenesis of multivesicular bodies. This complex also regulates the formation of ESCRT-
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III (59-61). Interestingly, defects in the ESCRT machinery lead to the accumulation of 

receptors and transporters in the cytoplasmatic membrane (62), which possibly results 

in an enhanced uptake of miconazole and a consequent increase in susceptibility.  

 

 

Figure 4.4. Frequency of SSGO terms of the mutants with increased susceptibility to 

miconazole in the results database compared to the overall frequency in the S. cerevisiae 

genome. 

 

 

A second cluster of genes overrepresented among hypersusceptible mutants 

(seven fold more prevalent than in the total genome) was involved in peroxisomal 

organization: PEX2, PEX4, PEX8, PEX34, VPS1, VPS15, SLT2, FIS1 and ATG11. Three of 

these genes (PEX2, PEX4 and PEX8) have a function in the peroxisomal matrix protein 

import machinery (36), which was also found to be involved in biofilm formation. VPS15, 

SLT2 and ATG11 are involved in the degradation of peroxisomes. Their corresponding 

mutants are deficient in pexophagy (63, 64). In contrast, VPS1, FIS1 and PEX34 are 

involved in determining the number of peroxisomes per cell (65, 66). It seems 

contradictory that genes involved on one hand in the degradation of peroxisomes and on 
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the other hand in the development of peroxisomes play a role in the resistance to 

miconazole. However, this probably indicates that a balanced level of peroxisomes is 

crucial for sessile cells. A low number of peroxisomes may disturb the lipid 

housekeeping and the antioxidative capacities of the cells. A decrease in the degradation 

of peroxisomes is known to induce intracellular protein aggregation and this affects the 

catalase activity and consequently increases ROS levels (67, 68). As the induction of ROS 

has previously been linked to the fungicidal activity of miconazole (19, 22), this may 

contribute to the hypersusceptibility of these peroxisomal mutants. Furthermore, it is 

possible that strains affected in peroxisome functioning show an altered sphingolipid 

composition which consequently influences the susceptibility to miconazole (Chapter 5). 

Additional experiments showed a possible effect of altered antioxidative 

capacities for strains affected in their peroxisome functioning, as all S. cerevisiae mutants 

within this category showed increased ROS-levels upon miconazole treatment compared 

to the WT, ranging from a 1.5 to 6.5 fold increase (Figure 4.5). Similar to S. cerevisiae, 

mutant biofilms of C. albicans Δpex4/Δpex4 and Δpex8/Δpex8 were hypersusceptible to 

miconazole compared to the WT (relative values of 0.65 and 0.48, respectively). In 

contrast, no decrease in the MIC for miconazole was observed for both strains compared 

to the WT, suggesting that the hypersusceptibility of both strains is biofilm specific. 

Biofilms of both mutants also showed an increased ROS-level upon miconazole 

treatment, which was more pronounced for C. albicans Δpex8/Δpex8 (three-fold increase 

compared to WT) than for C. albicans Δpex4/Δpex4 (two-fold increase compared to WT). 

Miconazole treatment of C. albicans WT biofilms led to a two-fold overexpression of the 

genes PEX4 and PEX8 compared to untreated biofilms. The susceptibility to fluconazole 

(included as negative control) of the biofilms of both C. albicans mutants was similar to 

that of the C. albicans WT (relative values of 1.02 for C. albicans Δpex4/Δpex4 and 1.15 

for C. albicans Δpex8/Δpex8), and fluconazole treatment did not induce ROS. Taken 

together, these additional experiments confirm the biofilm specific importance of 

peroxisomes in miconazole resistance of S. cerevisiae and C. albicans biofilms.  
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Figure 4.5. ROS-production in S. cerevisiae biofilms after miconazole treatment. The 

results were compared to untreated WT biofilms. Experiments were performed in 

triplicate on six biofilms. Error bars represent the standard error of the mean. 

 

 

Mutants showing decreased susceptibility to miconazole  

Within the large group of mutants (251) with decreased susceptibility to 

miconazole, only two categories with SSGO terms could be distinguished; i.e. genes 

involved in mitochondrial respiratory chain complex assembly and in 

posttranscriptional regulation of gene expression, respectively (Figure 4.6). This 

indicates that the majority of the genes in this group play a role in a broad range of 

different biological processes. The genes involved in the assembly of the mitochondrial 

respiratory chain complex (CBP6, MZM1, EMI1, COX12, COX14, COX16, COX19, COA6 and 

CBP3) were seven times more prevalent among the mutants showing decreased 

miconazole susceptibility than in the total S. cerevisiae genome. Genes belonging to this 

category play a role in the production of ATP under aerobic conditions. Their deletion 

may lead to decreased ATP levels, and as a result a dormant state of the cells. Probably 

this mechanism is important for making these mutants more resistant to miconazole, as 
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observed in previous research (12, 69-71). However, it is possible that also other 

mechanisms are responsible for the observed phenotype. The second category of genes, 

of which deletion led to decreased susceptibility to miconazole, is involved in 

posttranscriptional regulation and therefore affecting the expression of many other 

genes. Two main groups may be distinguished: genes related to mitochondrial 

organization (CBP6, CBS2, ICP55, COX14 and ATP25) and genes related to ribosomal 

organization (RPS9B, RPL31A and ASC1). As they have a global regulatory effect, it is not 

clear which mechanisms exactly contribute to the observed decrease in susceptibility to 

miconazole. 

 

 

 

Figure 4.6. Frequency of SSGO terms of the mutants with decreased susceptibility to 

miconazole in the results database compared to the overall frequency in the S. cerevisiae 

genome. 

 

 

Mutants affected in biofilm formation and miconazole 

susceptibility 

146 mutants were affected both in biofilm formation and miconazole 

susceptibility. SSGO terms could not be defined for all mutants within each combination 

(Figure 4.7). Most mutants affected in both phenotypes were found to exhibit decreased 

biofilm formation and increased resistance (84 mutants). This is not completely 

unexpected, as genes involved in mitochondrial organization in this group were highly 

represented (4-fold more prevalent than in the total genome) and it is likely that a lower 
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ATP level both decreases biofilm formation and increases resistance by inducing 

dormancy. A second significantly overrepresented group of mutants with decreased 

biofilm formation and increased resistance to miconazole have defects in 

posttranscriptional regulation of gene expression. Our results also reveal that genes 

involved in peroxisomal organization play an important role both in the formation of 

biofilms and the resistance to miconazole, although they do not have significantly shared 

genes for this biological process: biofilm formation is regulated mainly by genes related 

to peroxisomal transport, while the resistance of sessile cells to miconazole is 

particularly induced by genes involved in the general peroxisomal organization.  

 

 

 

Figure 4.7. Frequency of SSGO terms in the results database compared to the overall 

frequency in the S. cerevisiae genome for mutants with decreased biofilm formation and 

increased susceptibility to miconazole (A), for mutants with decreased biofilm formation 

and decreased susceptibility to miconazole (B) and for mutants with increased biofilm 

formation and increased susceptibility to miconazole (C). 
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Within the group of 18 mutants with increased biofilm formation and increased 

susceptibility to miconazole, transfer RNA (tRNA) wobble uridine modification is a SSGO 

term represented by SIT4, IKI3 and TRM9. These modifications play an important role in 

the folding and stability of tRNA. Furthermore, they are necessary for an accurate and 

efficient translation and they have recently been linked to the control of gene expression 

in response to stress (72, 73).  

Finally, we found two SSGO terms for mutants with decreased biofilm formation 

and increased susceptibility, i.e. the biosynthesis of ubiquinone, a component of the 

electron transport chain, important for ATP production by respiration, and the assembly 

of proteasomes, protein complexes responsible for the degradation of unneeded or 

damaged proteins. As many other genes involved in mitochondrial organization showed 

decreased biofilm formation, probably due to a dormant state induced by lower ATP 

production, it is very likely that a decrease in ubiquinone may also contribute to this 

phenomenon. In contrast to our previous hypothesis that this dormant state leads to 

increased resistance, deletion of four genes (COQ1, COQ4, COQ5 and COQ8) in the 

ubiquinone biosynthetic pathway increases the susceptibility to miconazole. The anti-

oxidative property of the reduced form of ubiquinone (74-76) may be important for the 

latter phenomenon as a decrease in ubiquinone may diminish the protection against 

miconazole-induced ROS. Also, proteasomes are involved in the response to oxidative 

stress (77). Deletion of the genes involved in proteasome assembly (UMP1, PRE9, NAS2, 

IRC25 and POC4) may impair the proteasome activity in the mutants and may 

consequently contribute to the hypersusceptibility to miconazole. Inactivation of 

proteasomes has previously been shown to decrease the growth rate of C. albicans and 

to inhibit its biofilm formation (78). 
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CONCLUSION 

A large number of genes was found to be involved in biofilm formation and drug 

resistance in S. cerevisiae, indicating the complexity of both processes. The validity of the 

screening was confirmed by the identification of genes previously observed to be 

involved in biofilm formation and drug resistance in C. albicans. Peroxisomal transport 

and mitochondrial organization appear to be important for yeast biofilm formation. 

Additionally, genes involved in transcription, peroxisomal and mitochondrial 

organization influence the susceptibility to miconazole. Peroxisomes were also found to 

be important for miconazole resistance in the human pathogen C. albicans and this may 

offer perspectives for the treatment of fungal biofilm-related infections. However, a 

considerable number of genes identified in the present study is associated with 

unknown biological processes, requiring further research. 
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CHAPTER 5 

PHYTOSPHINGOSINE-1-PHOSPHATE IS A 

SIGNALING MOLECULE INVOLVED IN 

MICONAZOLE RESISTANCE IN SESSILE 

CANDIDA ALBICANS CELLS 
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ABSTRACT 

Previous research has shown that 1% to 10% of sessile Candida albicans cells 

survive treatment with high doses of miconazole (a fungicidal imidazole) (Chapter 3). In 

the present study, we investigated the involvement of sphingolipid biosynthetic 

intermediates in this survival. We observed that the LCB4 gene, coding for the enzyme that 

catalyzes the phosphorylation of dihydrosphingosine and phytosphingosine, is important 

in governing the miconazole resistance of sessile S. cerevisiae and C. albicans cells. The 

addition of 10 nM phytosphingosine-1-phosphate (PHS-1-P) drastically reduced the 

intracellular miconazole concentration and significantly increased the miconazole 

resistance of a hypersusceptible C. albicans heterozygous LCB4/lcb4 mutant, indicating a 

protective effect of PHS-1-P against miconazole-induced cell death in sessile cells. At this 

concentration of PHS-1-P, we did not observe any effect on the fluidity of the cytoplasmatic 

membrane. The protective effect of PHS-1-P was not observed when the efflux pumps were 

inhibited or when tested in a mutant without functional efflux systems. Also, the addition of 

PHS-1-P during miconazole treatment increased the expression levels of genes coding for 

efflux pumps, leading to the hypothesis that PHS-1-P acts as a signaling molecule and 

enhances the efflux of miconazole in sessile C. albicans cells. 

  



 

98 

INTRODUCTION 

Candida albicans is a fungal pathogen that frequently causes nosocomial infections 

in immunocompromised hosts. The adhesion of the cells to biotic or abiotic surfaces results 

in the formation of a complex three-dimensional biofilm consisting of yeast cells and 

filaments embedded in a self-produced exopolymeric matrix. These sessile cells show 

increased antifungal resistance compared to planktonic cells, resulting in recurrent 

infections that are very difficult to treat. Therefore, there is an urgent need to unravel the 

molecular mechanisms of resistance of biofilms to find new and effective therapies (1-4). 

Azoles are widely used to treat Candida infections. These antifungal compounds 

decrease the production of ergosterol by interacting with cytochrome P450 and inhibiting 

the 14α-demethylation of lanosterol. As ergosterol is an important constituent of the 

cytoplasmatic membrane, treatment with azole antifungals leads to growth inhibition (5). 

Besides this fungistatic mechanism of action, recent data indicate a fungicidal effect of 

miconazole (an imidazole) against Candida species cells in suspension and in young and 

mature biofilms (6, 7) (Chapter 3). The accumulation of ROS appears to be involved in this 

process, although it is likely that other mechanisms are also involved in the fungicidal 

activity (8-10). Despite the observed fungicidal activity of miconazole also against biofilms, 

1% to 10% of sessile C. albicans cells survive exposure to high levels of this antifungal 

agent (7) (Chapter 3). 

Previous research has shown that membrane rafts, which are tightly packed 

domains of sphingolipids and sterols, and both the sphingolipid and ergosterol contents of 

the membrane are critical factors in the mode of action of miconazole against yeast cells 

(11). However, possible mechanisms of miconazole resistance related to membrane rafts 

and, more specifically, sphingolipids have not been investigated with C. albicans biofilm 

cells. Sphingolipids are characterized by their typical long-chain amino-alcohol backbone, 

which can be phosphorylated or form more complex structures after acylation with fatty 

acids (ceramides) and the further addition of sugar residues (12). Sphingolipids are 

incorporated into different cellular membranes, including the cytoplasmatic membrane. 

Because of their physicochemical properties, sphingolipids are involved in a broad range of 

biological functions, including intracellular transport, cell-cell interactions, and molecular 
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sorting (13). Membrane rafts are involved in cell signaling, the sorting of membrane-bound 

proteins, and the maintenance of polarity during mating (14-16). 

The aim of the present study was to investigate the role of sphingolipids in the 

resistance of sessile C. albicans cells to miconazole. 
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MATERIALS AND METHODS 

Strains 

The strains used in this study are listed in Table 5.1. A stock culture of all these 

strains was kept at −80°C. Cells were transferred onto SDA (Oxoid) plates and incubated at 

37°C for 48 h. 

 

 

Table 5.1. List of strains used in this study. 
Species Strain Description Source or 

reference 
C. albicans SC5314 (ATCC 

MYA-2876) 
Wild Type American Type 

Culture Collection 
C. albicans  LCB4/Δlcb4::his3 (17) 
C. albicans DSY1050 Δcdr1::hisG/ Δcdr1::hisG; 

Δcdr2::hisG/ Δcdr2::hisG; 
Δmdr1::hisG-URA3-hisG/ 

Δmdr1::hisG 

D. Sanglard 

S. cerevisiae BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 
ura3Δ0 

EUROSCARF 

S. cerevisiae YOR171c BY4741, ∆lcb4::KanMX4 EUROSCARF 
S. cerevisiae YLR260w BY4741, ∆lcb5::KanMX4 EUROSCARF 
S. cerevisiae YDR294c BY4741, ∆dpl1::KanMX4 EUROSCARF 
S. cerevisiae YKR053c BY4741, ∆ysr3::KanMX4 EUROSCARF 
S. cerevisiae YJL134w BY4741, ∆lcb3::KanMX4 EUROSCARF 
S. cerevisiae YDR297w BY4741, ∆sur2::KanMX4 EUROSCARF 
S. cerevisiae YHL003c BY4741, ∆lag1::KanMX4 EUROSCARF 
S. cerevisiae YKL008c BY4741, ∆lac1::KanMX4 EUROSCARF 
S. cerevisiae YPL087w BY4741, ∆ydc1::KanMX4 EUROSCARF 
S. cerevisiae YBR183w BY4741, ∆ypc1::KanMX4 EUROSCARF 
S. cerevisiae YMR272c BY4741, ∆scs7::KanMX4 EUROSCARF 
S. cerevisiae YPL057c BY4741, ∆sur1::KanMX4 EUROSCARF 
S. cerevisiae YBR036c BY4741, ∆csg2::KanMX4 EUROSCARF 
S. cerevisiae YBR161w BY4741, ∆csh1::KanMX4 EUROSCARF 
S. cerevisiae YDR072c BY4741, ∆ipt1::KanMX4 EUROSCARF 
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Determination of miconazole susceptibility of S. 

cerevisiae deletion mutants 

Suspensions of S. cerevisiae BY4741 and BY4741-derived deletion mutants, 

containing approximately 107 cells/ml, were prepared in YPD medium (BD). Biofilms were 

grown in round-bottomed 96-well microtitre plates (SPL Lifesciences) containing 100 μl 

cell suspension per well (12 replicates per strain). After 1 h of incubation at 37°C, the 

supernatant was removed, and the wells were rinsed with 100 μl of PS to remove 

unattached cells. The microtitre plates were further incubated for 24 h at 37°C after the 

addition of 100 μl YPD medium to each well. Subsequently, the mature biofilms were rinsed 

with 100 μl PS before treatment with miconazole (1,000 μg/ml) (Certa). To this end, 100 μl 

of a miconazole suspension in PBS containing 2% DMSO (Sigma-Aldrich) was added to six 

biofilms of each strain, and 100 μl of PBS containing 2% DMSO was added to the other six 

biofilms (control). After 24 h of incubation at 37°C, the supernatant was removed, and 120 

μl of a diluted resazurin solution (CellTiter-Blue at a 1:6 dilution in PS) (Promega) was 

added to each well. Fluorescence was measured (λex = 535 nm; λem = 590 nm) after 2 h of 

incubation at 37°C using an Envision microtitre plate reader (Perkin-Elmer). For each 

deletion mutant, a relative value for susceptibility to miconazole was calculated. To this 

end, the ratios of the average fluorescence of miconazole-treated biofilms to that of 

untreated biofilms (both corrected for the blank) were compared between the WT and 

each mutant. 

 

Analysis of gene expression in sessile C. albicans cells 

C. albicans biofilms were grown on silicone disks in 24-well microtitre plates and 

treated with miconazole and phytosphingosine-1-phosphate (PHS-1-P) or miconazole 

alone, as described previously (7). Biofilm cells were collected and washed with 

physiological saline. Untreated sessile C. albicans cells were used as a control. Cell 

disruption, RNA purification, and DNase treatment were performed according to the 

manufacturer's instructions (RiboPure-Yeast kit; Applied Biosystems, Carlsbad, CA). The 

isolated RNA was concentrated with an Amicon Ultra filter (Millipore) and subsequently 

diluted with diethyl pyrocarbonate (DEPC)-treated water until a final volume of 15 μl was 
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reached. The iScript cDNA synthesis kit (Bio-Rad, Hercules, CA) was used for the reverse 

transcriptase (RT) reaction. To this end, 1 μl reverse transcriptase and 4 μl reaction mix 

were added to each tube (5 min at 25°C, 30 min at 42°C, and 5 min at 85°C). A forward 

primer and a reverse primer were developed for the LCB1, LCB2, LCB3, LCB4, KSR1, SUR2, 

LAG1, YDC1, HSX11, DPL1, SCS7, AUR1, IPT1, MIT1, CDR1, CDR2, MDR1, RIP, and LSC2 genes 

(Table 5.2) and their efficiency was calculated based on a standard curve and should be 

within the range of 90% to 110%. The specificity was tested by the determination of the 

melt curve of the amplified product and should show a unique dissociation peak. Real-time 

PCR (CFX96 Real Time system; Bio-Rad) was performed by using iQ SYBR green Supermix 

(Bio-Rad). The expression levels of the genes of interest were normalized using two stably 

expressed reference genes (RIP and LSC2). Experiments were performed as five 

independent biological repeats, each consisting of six technical repeats, and analyzed with 

Bio-Rad CFX Manager software (Bio-Rad). 
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Table 5.2. Sequences and concentrations of the primers used for expression analysis of 

genes involved in sphingolipid biosynthesis in C. albicans SC5314. 

GENE FUNCTION PRIMER SEQUENCE (5' => 3') CONCENTRATION 

LCB1 
serine C-

palmitoyltransferase 
forward ACAAGACGGCAGTGAACCTTGCT 300 nM 

reverse CACCCACACCGGCCGATCTAA 300 nM 

LCB2 
serine C-

palmitoyltransferase 
forward TGACGAGTGCACGTGCCAGA 600 nM 

reverse ACCAGGAACTTTACATCCACCAGCA 600 nM 

LCB3 
sphingosine-1-phosphate 

phosphatase 
forward CCACGATCGCCACCTTTGCAT 600 nM 

reverse TGGCCAGGTGAGACGAGGGAA 600 nM 

LCB4 sphingosine kinase 
forward GTGGCCCGGAAATACCCCCTT 600 nM 

reverse CGCCATGCGGGTTTATCAATACCAA 600 nM 

KSR1 
3-ketosphinganine 

reductase 
forward GGCTACTCGCAATATGCCCCCAT 50 nM 

reverse CCCAGGGAAAACACATGTGACACGA 50 nM 

SUR2 ceramide hydroxylase 
forward CGAGGGTACTTTCACAGCCCACT 100 nM 

reverse CAACAACCGGCACAATCAAGGCA 100 nM 

LAG1 
sphingosine N-
acyltransferase 

forward CATTTCACTTGGATGGGATTGGCTGTT 100 nM 

reverse AATGGACCGGTAATGGGAGATTCCAAA 100 nM 

YDC1 dihydroceramidase 

forward GGAAGGACACGGATGGTGGCA 300 nM 

reverse AACAACAGGCAACCCCCATATCCA 300 nM 

HSX11 
ceramide 

glucosyltransferase  

forward GCAAAATACCCAACAGTTGATGCCCAA 100 nM 

reverse GGCATGAACGAACCCCTTTGCT 100 nM 

DPL1 
sphinganine-1-

phosphate aldolase  

forward CGGTTCAGTCTGTTTAGCAAGAGATA 100 nM 

reverse ATTTGAGATGACACCGTAGAACTAACA 100 nM 

SCS7 
fatty acid alpha-

hydroxylase  

forward TCAGAGCCCCATTACTGCGTTGA 600 nM 

reverse CCGTGCAAAAGAAAGTGGAGAGCA 600 nM 

AUR1 
inositol 

phosphoceramide 
synthase  

forward CCATGGAGGAGCAGCTGGGAA 600 nM 

reverse TTGGGCCACCGACGGCATTA 600 nM 

IPT1 
inositol phosphoryl 

transferase 
forward CCCCAATGCTGCACCTTGGTTT 600 nM 

reverse TCCACTCGAATTAATCCAGCGGCATA 600 nM 

MIT1 
inositolphosphoceramide 

mannose transferase 
forward TCAACGTAATTGGTTGGTGCCGTACAT 600 nM 

reverse CCGCACTTTCCCAGCTTCAGGA 600 nM 

CDR1 
multidrug transporter of 

ATP-binding cassette 
superfamily 

forward CAGCAACCATGGGTCAATTATG 300 nM 

reverse GTAGCCAAATTGGCAGCATTATC 300 nM 

CDR2 
multidrug transporter of 

ATP-binding cassette 
superfamily 

forward GATTCAAGCCATTCTTTCTACTGGAT 300 nM 

reverse AGTAACCAATTCTCTAGGTGCACAAG 300 nM 

MDR1 
multidrug transporter of 

major facilitator 
superfamily 

forward TTCCGTGTTGGGTTTCATCA 300 nM 

reverse TGGTCCGTTCAAGTAAAACAAAACT 300 nM 

RIP 
ubiquinol cytochrome c-

reductase 
forward TGTCACGGTTCCCATTATGATATTT 300 nM 

reverse TGGAATTTCCAAGTTCAATGGA 300 nM 

LSC2 succinate-CoA ligase 
forward CGTCAACATCTTTGGTGGTATTGT 600 nM 

reverse TTGGTGGCAGCAATTAAACCT 600 nM 

http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=50291
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=50291
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=71633
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=8120
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=8120
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=8117
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=8117
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=80132
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=80132
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=45140
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=45140
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=45140
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Determination of susceptibility of sessile C. albicans 

cells to miconazole  

Biofilms of C. albicans WT strain SC5314, the LCB4/lcb4 mutant, and DSY1050 (in 

which CDR1, CDR2, and MDR1 are inactivated) (18) were grown in 96-well microtitre plates 

and treated with miconazole as described above. The biofilm susceptibility to miconazole 

was also determined in the presence of the sphingolipid biosynthetic intermediate 

dihydrosphingosine-1-phosphate (DHS-1-P) (10 nM and 100 nM) (Sigma-Aldrich) or PHS-

1-P (10 nM and 100 nM) (Avanti Polar Lipids, Alabaster, AL), the oxidative phosphorylation 

inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) (5 μM) (Sigma-Aldrich), 

and/or the serine palmitoyltransferase (LCB1) inhibitor myriocin (10 μM) (Sigma-Aldrich). 

Susceptibility to miconazole was evaluated with the resazurin-based cell viability assay as 

described above. 

 

Pyrene lateral diffusion assay 

Lateral diffusion was measured by the excimerization of pyrene. This small molecule 

can bind to the long-chain fatty acids of the cytoplasmatic membrane. Excited pyrene 

monomers are able to form a complex with unexcited pyrene molecules, leading to the 

formation of pyrene dimers, which emit fluorescence at a higher wavelength (19, 20). 

Biofilms of C. albicans WT strain SC5314 and the LCB4/lcb4 mutant were grown in a 96-

well microtitre plate and treated as described above, with and without the addition of 

sphingolipid biosynthetic intermediates (DHS-1-P or PHS-1-P). For each experimental 

condition, the cells of six biofilms were collected and were resuspended in 10 ml PBS with 

0.25% formaldehyde. The cell suspensions were centrifuged (4 min at 5,000 rpm), washed 

twice with PBS containing 0.25% formaldehyde, and further diluted until an absorption of 

0.25 at 450 nm was reached. One milliliter of these suspensions was incubated with pyrene 

(final concentration, 10 μM; Sigma-Aldrich) for 20 min at 37°C. The cells were washed to 

remove excess pyrene and resuspended in 1 ml PBS. Aliquots of 200 μl were added to the 

wells of a black 96-well microtitre plate (Perkin-Elmer), and the fluorescence was 

measured (λex = 340 nm; λem = 380 nm and 480 nm). The ratio of pyrene dimers to pyrene 
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monomers (fluorescence at 480 nm divided by fluorescence at 380 nm) was calculated for 

each condition and is directly proportional to the membrane fluidity. 

 

Determination of intracellular miconazole concentrations 

Biofilms of C. albicans WT strain SC5314 and the LCB4/lcb4 mutant were grown in a 

96-well microtitre plate and treated as described above, with and without the addition of 

PHS-1-P. For each experimental condition, the cells of six biofilms were collected, rinsed 

three times with physiological saline to remove extracellular miconazole, and finally 

resuspended in a mixture of 70% acetonitrile–30% PBS. Glass beads were added to the cell 

suspensions, and the cells were subsequently lysed by shaking with a Precellys24 

instrument (Bertin Technologies, Montigny-le-Bretonneux, France) for 20 s at 6,000 rpm. 

The cell lysate was transferred into a new tube to adjust the concentration of acetonitrile to 

30%, and trifluoroacetic acid was added to 0.1%. The tubes were centrifuged for 30 min at 

13,000 rpm, after which the intracellular miconazole concentration was determined by 

using high-performance liquid chromatography (HPLC), as described previously (11). 

 

Statistical analysis 

Statistical analysis was performed by using the nonparametric Mann-Whitney U test 

(SPSS Statistics 17.0 software). 
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RESULTS 

Determination of the miconazole susceptibility of S. 

cerevisiae deletion mutants 

 
 

 
 
Figure 5.1. Relative susceptibilities of S. cerevisiae BY4741 deletion mutants to miconazole 

compared to the susceptibility of the WT. The values are the means of data from six 

replicates. Error bars represent standard errors of the means. Significant differences (P < 

0.05) are marked with asterisks. 

 

 

The susceptibility of biofilms of S. cerevisiae mutants affected in genes involved in 

sphingolipid biosynthesis to miconazole was investigated and was compared to that of the 

WT (Figure 5.1). Seven mutants (Δlcb5, Δysr3, Δlag1, Δlac1, Δydc1, Δypc1, and Δscs7) did 

not show an altered susceptibility. Sessile Δlcb4 cells, deficient in the phosphorylation of 

dihydrosphingosine and phytosphingosine, were hypersusceptible to miconazole, while 
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sessile Δlcb3 cells, deficient in the dephosphorylation of DHS-1-P and PHS-1-P, and sessile 

Δdpl1 cells, deficient in the breakdown of DHS-1-P and PHS-1-P, were more resistant to 

miconazole than the WT. The deletion of SUR1, CSG2, or CSH1, involved in the 

mannosylation of inositol-phosphorylceramide; the deletion of IPT1, encoding 

inositolphosphotransferase; and the deletion of SUR2, encoding dihydrosphingosine 

hydroxylase, resulted in an increased resistance of sessile cells of the corresponding 

mutants to miconazole. 

 

Expression of genes involved in sphingolipid 

biosynthesis in sessile C. albicans cells 

The expression levels of all genes involved in sphingolipid biosynthesis in sessile C. 

albicans cells after miconazole treatment were determined and compared with those in 

untreated sessile C. albicans cells (Figure 5.2 and Table 5.3). Four genes, KSR1, YDC1, LCB4, 

and DPL1, were significantly (P < 0.05) upregulated after miconazole treatment. The 

highest upregulation was observed for LCB4 (3.1-fold). DPL1 (2.2-fold upregulated) is 

involved in the breakdown of DHS-1-P and PHS-1-P. KSR1 (2.3-fold upregulated) and YDC1 

(2.1-fold upregulated) are involved in the formation of dihydrosphingosine and 

phytosphingosine, respectively. 
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Figure 5.2. Sphingolipid biosynthesis pathway in C. albicans. Genes with significantly 

increased expression levels (P < 0.05) after miconazole treatment of sessile cells compared 

to untreated sessile cells are underlined. CoA, coenzyme A. MIP2C, mannosyl-diinositol-

phosphorylceramide. 
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Table 5.3. Fold changes in expression levels of genes involved in sphingolipid biosynthesis 

in sessile C. albicans cells after miconazole treatment compared to untreated cells. Data 

presented are the means of data from five independent experiments. Genes with 

significantly different expression levels (P < 0.05) are marked with asterisks. 

Gene 
Average fold 

change 
SEM 

AUR1 0.6 0.1 

DPL1 2.2* 0.7 

HSX11 1.1 0.2 

IPT1 1.4 0.2 

KSR1 2.3* 0.3 

LAG1 1.1 0.2 

LCB1 1.3 0.2 

LCB2 0.8 0.2 

LCB3 1.8 0.3 

LCB4 3.1* 0.8 

MIT1 0.6 0.1 

SCS7 0.8 0.2 

SUR2 0.5 0.1 

YDC1 2.1* 0.3 

 

 

Determination of the susceptibility of sessile C. albicans 

cells to miconazole 

In line with the observed miconazole hypersusceptibility of sessile S. cerevisiae 

Δlcb4 cells, sessile cells of the heterozygous C. albicans LCB4/lcb4 mutant were also 

hypersusceptible to miconazole (Figure 5.3). The addition of DHS-1-P (final concentrations, 

10 nM and 100 nM) during biofilm growth and miconazole treatment did not significantly 

alter the susceptibilities of the WT and the LCB4/lcb4 mutant. In contrast, the LCB4/lcb4 

mutant showed significantly increased resistance (P < 0.05) to miconazole after the 

addition of PHS-1-P (final concentrations, 10 nM and 100 nM) during biofilm growth and 

miconazole treatment. This effect was not dose dependent, and an optimal effect was 

obtained at 10 nM. A similar but less explicit change in susceptibility to miconazole was 

obtained for the WT after the supplementation of the medium with PHS-1-P. As a control, 

we tested the effect of PHS-1-P in combination with the LCB1 inhibitor myriocin, which 
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blocks the first step of sphingolipid biosynthesis (21). The significantly increased 

susceptibility of WT strain SC5314 to miconazole after the addition of 10 μM myriocin 

decreased again in combination with PHS-1-P (10 nM). 

When CCCP (5 μM) was added simultaneously with PHS-1-P (10 nM), no changes in 

the susceptibility to miconazole were observed for the WT and the LCB4/lcb4 mutant, 

compared to the conditions without PHS-1-P. The application of only CCCP did not 

influence the susceptibilities of the WT and the LCB4/lcb4 mutant to miconazole. The 

addition of PHS-1-P (10 nM) during biofilm growth and miconazole treatment of the triple 

mutant strain DSY1050 also did not alter the miconazole resistance. 

 

 

 

Figure 5.3. Relative miconazole susceptibilities of WT strain SC5314, the LCB4/lcb4 

mutant, and DSY1050 after the addition of dihydrosphingosine-1-phospate (DHS-1-P), 

phytosphingosine-1-phosphate (PHS-1-P), carbonyl cyanide m-chlorophenylhydrazone 

(CCCP), and myriocin (or combinations thereof). Values marked with asterisk are 

significantly different from the values of the corresponding strain without the addition of 

the sphingolipid intermediate. Data presented are the means and standard errors of the 

means from three independent experiments with six biofilms. 
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Pyrene lateral diffusion assay 

The relative fluidities of the cytoplasmatic membrane were similar in untreated 

sessile C. albicans cells of the WT and the LCB4/lcb4 mutant (1.39 ± 0.11 and 1.58 ± 0.19, 

respectively). Treatment with miconazole resulted in a significant decrease (P < 0.05) in 

membrane fluidity for both strains (1.04 ± 0.06 for the WT and 0.88 ± 0.13 for the 

LCB4/lcb4 mutant). This decrease was more pronounced for the LCB4/lcb4 mutant than for 

the WT. The addition of PHS-1-P during biofilm growth and miconazole treatment 

significantly (P < 0.05) increased the fluidity of the cytoplasmatic membrane of WT cells 

(1.22 ± 0.05) but did not affect the membrane fluidity of LCB4/lcb4 mutant cells (0.86 ± 

0.11). 

 

Intracellular miconazole concentrations 

The intracellular miconazole concentration after 24 h of treatment was significantly 

higher (P < 0.05) in sessile LCB4/lcb4 mutant cells than in sessile WT cells (2.1 μg/1,000 

cells and 1.5 μg/1,000 cells, respectively) (Table 5.4). The addition of PHS-1-P (to a final 

concentration of 10 nM) significantly decreased (P < 0.05) the intracellular miconazole 

concentration to 0.6 μg/1,000 cells in sessile LCB4/lcb4 mutant cells, while only a slight 

decrease was observed for WT sessile cells (1.3 μg/1,000 cells, P = 0.12). The addition of 

CCCP during miconazole treatment (in the presence of 10 nM PHS-1-P) significantly 

increased (P < 0.05) the intracellular miconazole concentrations in sessile cells of the WT 

and the LCB4/lcb4 mutant (1.8 μg/1,000 cells for both strains). 
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Table 5.4. Intracellular miconazole concentrations in cells of C. albicans WT strain SC5314 

and the LCB4/lcb4 mutant with the addition of 10 nM PHS-1-P and/or 5 μM CCCP. The 

results are the means and standard deviations of data from at least four replicates.  

Condition 
Mean intracellular miconazole concentration (µg/1000 cells) + SD 

Without CCCP With CCCP 

WT SC5314 cells 1.5 + 0.2 1.6 + 0.1 

WT SC5314 cells + PHS-1-P 1.3 + 0.1 1.8 + 0.1 

LCB4/ΔLCB4 cells 2.1 + 0.5(1) 2.1 + 0.4 

LCB4/ΔLCB4 cells + PHS-1-P 0.6 + 0.1(2) 1.8 + 0.1(3) 
(1)Significantly different compared to WT. 

(2)Significantly different compared to the LCB4/ΔLCB4 mutant without PHS-1-P. 

3)Significantly different compared to the LCB4/ΔLCB4 mutant with PHS-1-P and without 

CCCP. 

 

 

Expression of genes coding for efflux pumps in sessile C. 

albicans cells 

The expression levels of CDR1, CDR2, and MDR1 in sessile C. albicans cells after 

treatment with miconazole and PHS-1-P were determined and compared with those in 

sessile C. albicans cells treated with miconazole alone. All three genes were highly 

upregulated (132-fold for CDR1, 29-fold for CDR2, and 22-fold for MDR1) due to the 

addition of PHS-1-P during miconazole treatment. The expression levels of CDR1 and CDR2 

in untreated sessile LCB4/lcb4 mutant cells were not significantly different compared with 

those in untreated sessile WT cells (2.3-fold with P = 0.101 and 1.2-fold with P = 0.297, 

respectively). The expression level of MDR1 in untreated sessile LCB4/lcb4 mutant cells 

was significantly higher compared with those in untreated sessile WT cells (2.9-fold, P = 

0.025). 
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DISCUSSION 

We previously observed that 1% to 10% of cells in a C. albicans biofilm survived 

treatment with high doses of miconazole (7) (Chapter 3). Other studies have suggested a 

role for sphingolipids in governing miconazole resistance in planktonic yeast cultures (11, 

22), and in the present study, we focused on the role of sphingolipid biosynthesis in the 

molecular mechanisms underlying the resistance of C. albicans biofilms to miconazole. 

The screening of S. cerevisiae deletion mutants affected in sphingolipid biosynthesis 

revealed the involvement of LCB4 in governing resistance to miconazole, as biofilms of the 

corresponding deletion mutant showed an increased susceptibility to miconazole. LCB4 

encodes a sphingosine kinase which is involved in the phosphorylation of 

dihydrosphingosine and phytosphingosine (23). The increased transcription of LCB4 in 

miconazole-treated sessile C. albicans cells confirmed its involvement in miconazole 

resistance. Furthermore, a significant upregulation was observed for the KSR1 and YDC1 

genes, which encode enzymes involved in the formation of dihydrosphingosine and 

phytosphingosine, respectively. Increased levels of DHS-1-P and PHS-1-P are known to play 

a role in mediating resistance to heat stress (24), probably due to the induction of TPS2 

transcription and trehalose accumulation (25). In contrast, a rapid intracellular 

accumulation of DHS-1-P and PHS-1-P results in a reduced growth rate and may even be 

lethal for cells (26, 27). The observed overexpression of DPL1, involved in the breakdown 

of DHS-1-P and PHS-1-P to a long-chain aldehyde and ethanolamine phosphate, is probably 

necessary to maintain balanced levels of DHS-1-P and PHS-1-P. 

DHS-1-P and PHS-1-P seem to be important for resistance to miconazole. To 

elucidate their role, experiments were performed using a heterozygous C. albicans 

LCB4/lcb4 mutant. Sessile cells of this LCB4/lcb4 mutant were hypersusceptible to 

miconazole compared to the WT. We also observed a higher intracellular miconazole 

concentration in treated sessile cells of the LCB4/lcb4 mutant than in sessile WT cells. The 

addition of PHS-1-P (10 nM) during biofilm growth and miconazole treatment significantly 

increased the resistance of the LCB4/lcb4 mutant to miconazole (similar to that of the WT 

without the addition of PHS-1-P) and drastically reduced the intracellular miconazole 

levels, clearly pointing to a protective effect of PHS-1-P against the action of miconazole. 

The intracellular miconazole concentration in sessile WT cells was not altered by the 
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addition of PHS-1-P. However, a slightly increased resistance to miconazole was observed 

in the presence of PHS-1-P. When we inhibited LCB1 by adding myriocin, a similar increase 

in resistance was noted upon the addition of PHS-1-P, confirming the protective effect of 

the latter against miconazole. In contrast, DHS-1-P has no protective effect against 

miconazole treatment in sessile C. albicans cells, as the susceptibility to miconazole was 

unchanged when this sphingolipid intermediate was added to cells of the WT and the 

LCB4/lcb4 mutant. 

To investigate whether PHS-1-P has a direct or indirect effect on the structure of the 

cytoplasmatic membrane of sessile C. albicans cells, resulting in altered miconazole uptake, 

the fluidity of the cytoplasmatic membrane was measured by using a pyrene lateral 

diffusion assay. The membrane fluidities of untreated sessile cells of the WT and the 

LCB4/lcb4 mutant did not differ. A more rigid structure of the cytoplasmatic membranes of 

both strains after treatment with miconazole was noticed. Changes in the composition of 

the cytoplasmatic membrane due to stress situations were described previously (28). The 

addition of PHS-1-P to sessile cells of the LCB4/lcb4 mutant had neither a direct nor an 

indirect effect on the fluidity of the cytoplasmatic membrane, indicating that changes in 

membrane fluidity are not responsible for this protective effect. Previous research has 

shown that several cellular processes are regulated by sphingolipid long-chain bases. In S. 

cerevisiae, sphingolipid long-chain bases are thought to activate the protein kinase Pkh1 

and Pkh2, leading to an activation of downstream pathways playing a role in actin 

cytoskeleton dynamics, the regulation of transcription and translation, stress resistance, 

and cell growth (29). Still, more research is needed to understand the exact regulatory 

mechanisms and the connections to other metabolic pathways (30). Knowledge of the role 

of sphingolipids in fungal pathogens like C. albicans is even more limited. Pasrija et al. (22) 

found previously that the disruption of certain sphingolipid biosynthetic genes in C. 

albicans, with the exception of Δipt1, leads to a mislocalization of efflux pumps and an 

increased susceptibility to drugs. The role of PHS-1-P in efflux pumps was investigated by 

chemically inhibiting these pumps (using CCCP) and by studying a triple mutant in which 

all these efflux pumps were inactivated. The addition of the oxidative phosphorylation 

inhibitor CCCP (31, 32) significantly increased the intracellular miconazole levels for both 

the WT and the LCB4/lcb4 mutant and counteracted the protective effect of PHS-1-P. 

Similarly, the addition of PHS-1-P did not increase the resistance to miconazole in the triple 
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efflux pump mutant. Furthermore, the expression of the genes coding for efflux pumps in C. 

albicans SC5314 was highly upregulated when PHS-1-P was added during miconazole 

treatment. These data indicate that PHS-1-P directly or indirectly acts on efflux pumps in 

miconazole-treated sessile C. albicans cells. 

In conclusion, a protective effect of PHS-1-P against miconazole-treated C. albicans 

biofilms was observed. As the structure of the cytoplasmatic membrane remained 

unaffected, it is likely that PHS-1-P acts as a signaling molecule and that it enhances the 

export of miconazole. The regulatory mechanism involved in this process remains unclear 

so far. 
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MICONAZOLE: REVIVAL OF AN OLD DRUG? 

The story of miconazole started in 1969, when researchers of Janssen 

Pharmaceutica developed this promising broad-spectrum antifungal drug. Due to the 

low gastrointestinal absorbance of miconazole, related to its highly lipophilic character, 

intravenous administration was required for successful treatment of invasive 

candidiasis (1). However, toxicity, partially due to the carrier solution of the intravenous 

formulation, restricted its use for treatment of systemic infections (2). In contrast, the 

lipophilic properties of miconazole make it very suitable for topical preparations (Table 

6.1).  

 

 

Table 6.1. Overview of topical preparations containing miconazole available in Belgium 

(3). 

Product Use Dosage form Concentration 

Gyno-Daktarin vaginal vaginal capsule 
200 mg or 1200 

mg/capsule 

Gyno-Daktarin vaginal cream 20 mg/g 

Daktarin-Cilag oral gel 20 mg/g 

Loramyc oral muco-adhesive tablet 50 mg/tablet 

Tibozole oral muco-adhesive tablet 10 mg/tablet 

Daktarin-Consumer cutaneous cream 20 mg/g 

Daktarin-Consumer cutaneous powder 20 mg/g 

Daktarin-Consumer cutaneous powder spray 20 mg/g 

Daktarin-Consumer cutaneous tincture 20 mg/ml 

Daktozin 
(combination with zinc oxide) 

cutaneous paste 2.5 mg/g 

Daktacort 
(combination with hydrocortisone) 

cutaneous cream 20 mg/g 

Acneplus 
(combination with 
benzoylperoxide) 

cutaneous cream 20 mg/g 

 

 

The discovery of triazole antifungals during the nineties was very important 

because they showed a potent fungistatic activity and because they had a very low 

toxicity profile compared to all other available antifungals at that time (4). Despite the 

great success of azoles against Candida spp., resistant clinical isolates appeared. 

Furthermore, biofilm-related infections became increasingly important and these sessile 
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cells showed a very high resistance to azoles. Consequently, the search for new 

fungicidal antifungals continued, and the echinocandins were introduced in 2001 (4). 

However, the extensive experience gained with ‘older’ antifungal drugs (like 

miconazole), may contribute to developing new treatments of biofilms. In this regard, 

the reintroduction of miconazole may be an attractive alternative in the battle against 

fungal biofilms and associated resistance. 

 

In a first study (Chapter 3), we show that miconazole possesses fungicidal activity 

against mature biofilms of various C. albicans strains and strains belonging to other 

Candida spp., including C. glabrata, C. parapsilosis and C. tropicalis. As these four Candida 

spp. are the leading cause of candidiasis, our results indicate a promising broad-

spectrum activity of miconazole in the treatment of biofilm-related infections. Although 

we observed a drastic increase in the production of ROS when Candida biofilms were 

treated with miconazole, this is probably not the main cause for its fungicidal activity. 

The in vitro concentrations of miconazole used in our studies can never be 

achieved in vivo for treatment of biofilm-related candidemia or invasive candidiasis. 

Many biofilm-related infections are caused by colonization of medical devices, such as 

catheters. This often leads to the necessity to replace the medical device, thereby 

increasing the medical costs and patients’ discomfort (5). A valuable alternative may be 

found in antifungal lock therapy (ALT). This offers the possibility to use very high drug 

concentrations to sterilize the catheter and avoid further biofilm dissemination. Due to 

limited clinical data, this method is not yet used on a large scale to eradicate Candida 

biofilms from catheters. However, ALT with amphotericin B and echinocandins seems 

promising (6). Based on our data, miconazole could have potential for ALT, and it would 

be useful to include this antifungal in future ALT studies. 

The concentration of miconazole in topical formulations for treatment of 

superficial infections is often higher than the one used in our study (Table 6.1). The 

concentration of miconazole in the available creams, gels and powders for topical 

administration (oral, vaginal and cutaneous) is 20 mg/g in Belgium. Single unit doses for 

vaginal candidiasis contain 200 or 1200 mg miconazole (3). In this way it is possible to 

reach very high local concentrations of miconazole. Based on our results, this should 

lead to an efficient killing of the Candida cells, even when present in a biofilm. A recently 

developed new delivery system for miconazole demonstrates the continued interest in 



 
123 

the fungicidal properties of this substance (7). Mucoadhesive tablets for treatment of 

oropharyngeal candidiasis have been developed and are sufficiently dosed (10 mg or 50 

mg) for treatment of Candida biofilms. These tablets have no improved action compared 

to the oral gels, but are user-friendly, as the administration of only a single daily dose is 

required. 

It is likely that the fungicidal activity of miconazole against Candida biofilms can 

be further improved in combination with other compounds. Similar tests have been 

performed already in vitro with other antifungals, but not specifically with miconazole. 

Glucanases may enhance the penetration of miconazole within the biofilm to increase its 

local concentration. Furthermore, it would be interesting to investigate whether the 

combination of miconazole with an antifungal of another class would result in an 

additional or synergistic effect. However, combinations of antifungals are not a 

preferred treatment strategy and are reserved for persistent candidemia originating 

from a biofilm-related infection (8). Since resistance to antifungals is an increasing 

clinical problem, it would be useful to have reliable data on combination therapy with 

miconazole. 

 

THE FORMATION AND RESISTANCE OF 

FUNGAL BIOFILMS 

Notwithstanding the fungicidal activity of miconazole against Candida spp. 

biofilms, we noticed a resistant fraction (1% - 10%) of sessile cells that were able to 

survive a high dose of miconazole (Chapter 3). To improve antifungal therapy, it is 

important to obtain more insights in the mechanisms of resistance. To this end, we used 

a S. cerevisiae deletion mutant bank (Chapter 4). Simultaneously, we investigated the 

mechanisms contributing to biofilm formation in S. cerevisiae. 

 

The results of the screening highlighted the multi-factorial complexity of biofilm 

formation and resistance, which is consistent with many previous observations (9, 10) 

(Table 6.2). An in depth analysis of the results revealed that two major biological 

processes play an important role in S. cerevisiae biofilm formation and the susceptibility 
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to miconazole, i.e. the organization of two types of organelles, the mitochondria and the 

peroxisomes. 

 

 

Table 6.2. Comparison between results of our screening study with previous 

observations. 

Our study 
Function 

     Previously observed 

Gene Changed phenotype Organism Reference 

SUN4 biofilm formation cell wall organization C. albicans (SUN41) (11, 12) 

SUV3 biofilm formation helicase C. albicans (SUV3) (13) 

LCB4 
miconazole 

susceptibility 
sphingolipid 
biosynthesis 

C. albicans (LCB4) (14) 

ERG2 
miconazole 

susceptibility 
ergosterol biosynthesis C. albicans (ERG2) (15) 

ERG4 
miconazole 

susceptibility 
ergosterol biosynthesis C. albicans (ERG4) (15, 16) 

ERG24 
miconazole 

susceptibility 
ergosterol biosynthesis C. albicans (ERG24) (17) 

VPS1 
miconazole 

susceptibility 
actin cytoskeleton 

organization 
S. cerevisiae (VPS1) (18) 

SOD1 
miconazole 

susceptibility 
superoxide dismutase C. albicans (SOD4, SOD5) (19) 

MXR1 
miconazole 

susceptibility 
methionine sulfoxide 

reductase 
S. cerevisiae (MXR1) (20) 

TPS2 
miconazole 

susceptibility 
trehalose biosynthesis C. albicans (TPS1, TPS2) (21, 22) 

 

 

The production of ATP is dependent on functional mitochondria. An increase in 

cellular metabolic activity during biofilm development was previously reported (23), 

indicating that biofilm formation is an energy dependent process. When genes involved 

in mitochondrial organization are affected, this probably leads to an ATP depletion 

which slows down or counters biofilm formation. This means that colonization of a 

substrate by yeast cells and the further development into a dense biofilm may depend 

on functional mitochondria. However, this does not open new perspectives for 

treatment, as mitochondrial inhibitors are not specific for yeast cells, and will likely 

interfere with human mitochondria, leading to toxic side effects. Furthermore, our study 

shows that mutants affected in genes in mitochondrial organization also exhibit a 

miconazole resistant phenotype, probably by mimicking a dormant state. In this way, it 
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is possible that mitochondrial inhibitors would enhance the resistance of yeast biofilms 

to miconazole. 

The peroxisomes carry out the β-oxidation of fatty acids and have mechanisms to 

detoxify toxic oxygen radicals formed during this process (24). Consequently, a 

decreased activity of peroxisomes may lead to the accumulation of long chain fatty acids 

and an increase of intracellular ROS-levels. As long chain fatty acids are known to have a 

signaling function and are part of the cytoplasmatic membrane (25) and as elevated 

ROS-levels may have a fungicidal effect (26), it is not unexpected that biofilm formation 

and susceptibility to miconazole are influenced by changes in the activity of 

peroxisomes. However, a direct connection between peroxisomal activity and the 

phenotypes we have studied has never been made. Strains affected in the peroxisomal 

matrix protein import showed decreased biofilm formation, whereas those affected in 

general peroxisomal organization showed a hypersusceptible phenotype to miconazole. 

Decreasing the peroxisomal activity would possibly increase the impact of miconazole 

treatment on yeast biofilms. Furthermore, the possibility of peroxisomes themselves as 

antifungal target should be considered. The first obstacle for this is oviously the 

similarity between yeast and human peroxisomes, which has consequences for the 

selectivity of molecules that would interfere with the activity of peroxisomes. Several 

genetic defects in human peroxisomes cause very severe disorders, which constitutes a 

second obstacle for the concept of peroxisomes as antifungal target. The prognosis for 

newborns with the Zellweger syndrome, being the most severe human peroxisomal 

disorder, is bad, as these children do not survive the first year. Other variants of 

peroxisomal disorders have a slightly better prognosis, but can also not be cured (27). 

Both the lack of specificity and the severe effects of deficient peroxisomes in humans, do 

not make peroxisomes a very attractive antifungal target at first sight. However, there 

are good reasons to further investigate the possibility of targeting fungal peroxisomes. 

In yeast cells, β-oxidation of fatty acids exclusively takes place in peroxisomes, while in 

human cells this also occurs in mitochondria (28). So, it is likely that the impact of 

molecules interfering with the peroxisomal activity on human cells would be lower than 

on yeast cells, as the latter have no alternative pathway for β-oxidation of fatty acids. 

Furthermore, our screening revealed the involvement of several peroxisomal genes in 

resistance to miconazole, that have not (yet) been associated with human peroxisomal 



 
126 

disorders. Possibly, the selective inhibition of these genes could result in a decreased 

resistance to miconazole without affecting the functionality of human peroxisomes.  

It is possible that the observed miconazole hypersusceptibility of strains affected 

in peroxisome functioning is related to changes in the intracellular lipid composition, 

consequently leading to an altered signaling. A direct connection between the signaling 

function of intermediates in the sphingolipid pathway and the susceptibility to 

miconazole has been demonstrated (Chapter 5). Phytospingosine-1-phosphate seemed 

to be crucial in the resistance to miconazole as it acts as a signaling molecule enhancing 

the export of miconazole. There are similarities between the sphingolipid metabolism in 

yeast and human cells, but the part that plays a role in miconazole resistance is yeast 

specific (29). This offers interesting perspectives, as interference with this part of the 

pathway would theoretically not affect the human sphingolipid metabolism. Compounds 

inhibiting the production of phytosphingosine-1-phosphate, or increasing its 

degradation, may possibly enhance the fungicidal activity of miconazole against Candida 

biofilms.  

 

THE BATTLE CONTINUES 

Researchers continuously try to find new drugs or to improve existing ones to 

treat and beat microorganisms. Once a potent therapy has been developed, we know 

with near certainty that sooner or later microorganisms will develop resistance. At that 

moment it is crucial to have knowledge based on fundamental research to find new ways 

to overcome this resistance. This doctoral research has revealed the fungicidal capacities 

of miconazole against mature Candida biofilms, but has also unraveled the mechanisms 

of resistance of yeast biofilms to miconazole. This information will be useful for a battle 

that will certainly continue in the future. 
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SUMMARY 

 

The interest in fungal biofilm formation and in the resistance of fungal biofilms 

against antimicrobial agents has increased due to the expanding problem of biofilm-

related infections. In this doctoral research the activity of miconazole against biofilms of 

Candida species has been investigated. Furthermore, we have focused on the molecular 

mechanisms involved in fungal biofilm formation and in resistance to miconazole. 

 

Although azole antifungals are considered fungistatic, miconazole has fungicidal 

activity against planktonic C. albicans cells, presumably associated with the induction of 

reactive oxygen species (ROS) production. Only few data are available concerning the 

effect of miconazole against sessile C. albicans cells. The effect of miconazole on mature 

biofilms formed by 10 C. albicans strains and 5 strains from other Candida species has 

been evaluated (Chapter 3). Miconazole showed a significant fungicidal effect against all 

mature Candida biofilms tested and caused elevated ROS levels, both in planktonic and 

sessile cells. Addition of ascorbic acid drastically reduced these levels. While ROS 

quenching decreased the susceptibility to miconazole of planktonic cells of most Candida 

strains, no reduced fungicidal activity of miconazole against biofilms was observed, 

indicating that ROS induction was not the only factor underlying its fungicidal activity. 

Miconazole did not cause a significant increase in apoptosis.  

 

Notwithstanding the fungicidal activity of miconazole against Candida spp. 

biofilms, we noticed that a resistant fraction (1% - 10%) of sessile cells was able to 

survive a high dose of miconazole. We further investigated the molecular mechanisms 

involved in fungal biofilm formation and unraveled the mechanisms of resistance to 

miconazole. To this end, a screening of a Saccharomyces cerevisiae deletion mutant bank 

was carried out (Chapter 4). The results revealed that genes involved in peroxisomal 

transport and the biogenesis of the respiratory chain complex IV play an essential role in 

biofilm formation. On the other hand, genes involved in transcription and peroxisomal 

and mitochondrial organization influence the susceptibility to miconazole of yeast 

biofilms. Additionally, our data confirm previous findings on genes involved in biofilm 

formation and in general stress responses. 
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Based on the results of the screening of the S. cerevisiae deletion mutant bank, the 

role of sphingolipid biosynthetic intermediates in the resistance to miconazole was 

investigated (Chapter 5). We found that the LCB4 gene, coding for the enzyme that 

catalyzes the phosphorylation of dihydrosphingosine and phytosphingosine, is 

important in governing the miconazole resistance of sessile S. cerevisiae and C. albicans 

cells. The addition of 10 nM phytosphingosine-1-phosphate (PHS-1-P) drastically 

reduced the intracellular miconazole concentration and significantly increased the 

miconazole resistance of a hypersusceptible C. albicans heterozygous LCB4/lcb4 mutant, 

indicating a protective effect of PHS-1-P against miconazole-induced cell death in sessile 

cells. At this concentration of PHS-1-P, we did not observe any effect on the fluidity of 

the cytoplasmatic membrane. The protective effect of PHS-1-P was not observed when 

the efflux pumps were inhibited or when tested in a mutant without functional efflux 

systems. Also, the addition of PHS-1-P during miconazole treatment increased the 

expression levels of genes coding for efflux pumps, leading to the hypothesis that PHS-1-

P acts as a signaling molecule and enhances the efflux of miconazole from sessile C. 

albicans cells. 
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SAMENVATTING 

 

De interesse in biofilmvorming door fungi en de resistentie van biofilms tegen 

antimycotica is toegenomen door de groeiende problematiek omtrent biofilm-

gerelateerde infecties. In deze dissertatie werd de activiteit van miconazol tegen 

Candida biofilms onderzocht. Er werd ook aandacht besteed aan de moleculaire 

mechanismen die betrokken zijn bij de biofilmvorming van fungi en de resistentie tegen 

miconazol. 

 

Azolen werken fungistatisch, maar miconazol vertoont een fungicide werking 

tegen planktonische C. albicans cellen. Die is vermoedelijk gekoppeld aan een toename 

van de productie van zuurstofradicalen. Slechts weinig gegevens zijn beschikbaar over 

het effect van miconazol op C. albicans biofilmcellen. Het effect van miconazol op mature 

biofilms werd onderzocht op 10 C. albicans stammen en op 5 stammen van andere 

Candida species (hoofdstuk 3). Miconazol vertoonde een significant fungicide werking 

tegen alle geteste mature Candida biofilms en veroorzaakte een toename van 

zuurstofradicalen, zowel in planktonische als sessiele cellen. De toevoeging van 

ascorbinezuur zorgde voor een drastische reductie van de hoeveelheid 

zuurstofradicalen. In tegenstelling tot planktonische cellen, waarbij een daling van de 

miconazol gevoeligheid van de meeste Candida stammen optrad, bleef de fungicide 

werking van miconazol ten opzichte van biofilms behouden. Dit toont aan dat de 

inductie van zuurstofradicalen niet de enige factor is die bijdraagt tot de fungicide 

werking van miconazol tegen biofilms. Op basis van onze resultaten kon worden 

uitgesloten dat miconazol apoptose induceert. 

 

Ondanks de fungicide werking van miconazol tegen biofilms van diverse Candida 

species, bleek een resistente fractie (1% - 10%) van biofilmcellen in staat om de 

blootstelling aan een hoge concentratie miconazol te overleven. Hierop werden de 

moleculaire mechanismen onderzocht die betrokken zijn bij de vorming van biofilms en 

hun resistentie tegen miconazol. Hiertoe werd een Saccharomyces cerevisiae 

deletiemutanten bank gescreend (hoofdstuk 4). De resultaten toonden aan dat genen 

betrokken bij peroxisomaal transport en de biogenese van complex IV van de 
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elektronen-transportketen een essentiële rol spelen in biofilmvorming. Anderzijds 

beïnvloeden genen betrokken bij de transcriptie en genen betrokken bij de organisatie 

van peroxisomen en mitochondriën de gevoeligheid van biofilms voor miconazol. De 

resultaten vertoonden bovendien overeenstemming met eerdere bevindingen omtrent 

genen die geassocieerd zijn met biofilmvorming en de respons op algemene stress. 

 

Op basis van de resultaten van de screening van de S. cerevisiae deletiemutanten, 

werd de invloed op miconazol resistentie van intermediairen van de sfingolipiden 

biosynthese verder onderzocht (hoofdstuk 5). Het gen LCB4, dat codeert voor het 

enzyme dat dihydrosfingosine en fytosfingosine fosforyleert, bleek belangrijk te zijn 

voor miconazol resistentie van S. cerevisiae en C. albicans biofilms. De toevoeging van 10 

nM fytosfingosine-1-fosfaat (FS-1-F) zorgde voor een sterke afname van de 

intracellulaire miconazol concentraties en voor een significante stijging van de 

miconazol gevoeligheid van een hypergevoelige heterozygote LCB4/lcb4 C. albicans 

mutant. Dit toont aan dat het FS-1-F biofilmcellen beschermt tegen de fungicide werking 

van miconazol. Bij deze concentratie FS-1-F werd geen verandering waargenomen in de 

stabiliteit van het cytoplasmatisch membraan. De beschermende werking van FS-1-F 

werd niet waargenomen wanneer de effluxpompen geïnhibeerd werden, noch bij 

mutanten waarbij alle effluxpompen werden uitgeschakeld. De toevoeging van FS-1-F 

tijdens de miconazol behandeling zorgde bovendien voor een overexpressie van genen 

die coderen voor effluxpompen. FS-1-F fungeert waarschijnlijk als een signaalmolecule 

die de efflux van miconazol bevordert in C. albicans biofilmcellen. 
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de kritische blik die je hierop wierp.  

 

Professor Nelis, u heeft mij voor het eerst laten kennis maken met de wereld van 

de microbiologie met uw inspirerende lessen. Het feit dat ik mijn thesis tijdens de 

opleiding van zowel apotheker als industrie-apotheker mocht volbrengen op uw labo, 

heeft mijn passie voor microbiologie alleen maar verder aangewakkerd. Bedankt voor 

uw continue interesse in mijn onderzoek, uw scherpe taalkundige blik op mijn 

publicaties en uitspraaktips tijdens mijn presentaties.  

 



 
146 

Evelien, Inne en Petra, zonder jullie uitmuntende werkijver bij de screening van 

de mutanten had dit doctoraat nooit de finale vorm gehad zoals die hier nu ligt. Bedankt 

voor jullie inzet en interesse in mijn onderzoek. Evelien, het was een fijne evolutie om 

jou te zien groeien van een leergierige studente tot een collega die nog intenser bij mijn 

onderzoek werd betrokken. Inne, jouw enthousiasme om meer betrokken te zijn in het 

onderzoek op ons labo was groot en zorgde dan ook voor een aangename 

samenwerking. Petra, jij was voor mij dé referentie als ik technische hulp nodig had, van 

het allerkleinste vijsje tot een graveertoestel, je had het allemaal. 

Ik heb de kans gehad om met vele studenten samen te werken en op die manier 

ook kennis te maken met culinaire specialiteiten uit diverse Europese landen. Anneleen, 

Lies, Ewelina, Valentina, Bruno, Joyce, Inge, Karina, Evelien, Paloma, Alicia en 

Jolien, bedankt om elk jullie steentje bij te dragen tot mijn onderzoek. 

Steven, bureaumaatje en squashpartner, jij bent er keer op keer in geslaagd om 

op je eigen onnavolgbare manier voor een vrolijke sfeer te zorgen op het labo. Al die 

jaren hebben we lief en leed gedeeld met elkaar, wat geleid heeft tot een mooie 

vriendschap. Bedankt voor al jouw steun tijdens het onderzoek en de laatste maanden 

tijdens het finaliseren van mijn doctoraat. Met een beetje spijt in het hart zal ik ‘ons kot’ 

netjes(!) achterlaten, maar niet zonder een mooie verzameling herinneringen mee te 

nemen.  

Gilles en Lies, jullie ken ik al sinds onze ‘studententijd’. Door onze thesis te 

maken op het labo hebben we mekaar beter leren kennen en ietwat toevallig zijn we ook 

alle drie in een doctoraat gerold op datzelfde labo en goeie collega’s geworden. Bedankt 

voor de aangename tijd die ik met jullie kon doorbrengen en de uitwisseling van 

wetenschappelijke kennis. 

Nele, met z’n tweeën hebben wij heel wat uren gespendeerd aan de 

voorbereidingen voor het practicum. Het was soms een heus gepuzzel en onze wanorde 

was niet altijd een voordeel, maar we slaagden er telkens opnieuw in om het tot een 

goed einde te brengen. Bedankt voor de leuke samenwerking. 

Anne-Sophie, met het hart op je tong wist je meermaals absurde, maar steeds 

grappige gesprekken te introduceren. Bedankt om met jouw spontaneïteit voor een 

nuchtere ontspanning te zorgen tussen al het werken door. 



 
147 

Ilse, je bent ongeveer halfweg mijn doctoraat het labo komen versterken. 

Bedankt voor het delen van je wetenschappelijke kennis als post-doc en de interesse in 

de vooruitgang van mijn onderzoek. 

Heleen, jij wist onder alle omstandigheden je rust te bewaren op het labo. 

Bedankt voor je fijn gezelschap op het labo en bemoedigende woorden tijdens het 

werken aan mijn doctoraat. 

Sarah, mijn opvolgster voor de routine activiteiten en practicum organisatie. Met 

jouw precisie en inzet weet ik zeker dat dit in goede handen is. Bedankt voor de leuke 

tijd dat ik met jou mocht samenwerken waarbij vooral jouw enthousiasme opviel. 

Rosina, jouw administratieve hulp was onmisbaar gedurende de voorbije jaren. 

Bedankt voor de organisatie en de telkens warme aankleding van onze labo-

kerstfeestjes. 

Andrea, Annelien en Freija, met jullie heb ik slechts een korte periode kunnen 

samenwerken, maar jullie zullen zeker ook nog jullie stempel drukken op het labo. 

Bedankt voor jullie interesse en steun de afgelopen maanden. 

Elke, Heleen en Kristof, jullie zijn al een tijdje weg op ons labo, maar hebben mij 

vooral tijdens de eerste jaren van mijn doctoraat heel wat kennis en praktische tips 

bijgebracht, waarvoor dank. Heleen, dankzij jouw uitstekende begeleiding tijdens mijn 

thesis, heb ik de fijne kneepjes van qPCR geleerd en die zijn mij in de daarop volgende 

jaren nog dikwijls van pas gekomen. 

Karin, Bruno, Anna en Gilmer, het was leuk om met jullie samen te werken 

gedurende de hele periode van mijn doctoraat. Jullie expertise vormde een perfecte 

complementaire aanvulling bij mijn experimenten. Bedankt voor jullie 

wetenschappelijke inbreng. 

Herman, bedankt dat je me hebt geholpen bij het maken van de siliconevellen. Je 

zorgde steeds voor een warme ontvangst en het was fascinerend hoe je kon vertellen 

over ‘jouw’ Limburg. 

 



 
148 

Moeke en vake, jullie hebben mij steeds alle kansen gegeven om te worden tot 

wie ik nu ben. Jullie stonden steeds klaar om te helpen waar mogelijk zodat ik meer tijd 

had om me te focussen op m’n werk tijdens drukkere periodes. Ik kan jullie niet genoeg 

bedanken voor jullie onvoorwaardelijke steun die ik gekregen heb tijdens mijn studies 

en doctoraat. 

 

Sofie, sjoeke, het was fijn dat ik de afgelopen jaren mijn onderzoek ook kon delen 

met jou. Het deed deugd om te weten dat jij steeds volledig achter mij stond en me wist 

te kalmeren op de momenten dat de stress al eens toesloeg of als ik wat stoom moest 
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Ukkie 2. Bedankt voor al jouw steun, lieve woorden en warme knuffels! 

Lieve Pepijn, je bent nog wat klein om dit te kunnen lezen, maar ik wou je toch 

nog even zeggen dat je met je vrolijk en speels karaktertje mij meer dan eens deed 

beseffen wat belangrijk is in het leven. 
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