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Introduction

The main theme of this thesis is to study some algebraic structures related
to exceptional linear algebraic groups of relative rank 1 or 2. More precisely,
the goal of this thesis is to connect the Moufang world and the structurable
world, which seem to have been two isolated islands up to now.

Some history

Since the beginning of the 20th century mathematicians try to get hold on
linear algebraic groups. These are certain structures that arise in different
areas of mathematics and gave rise to the development of a lot of interesting
theories. The theory of linear algebraic groups is a very active area of
research, that contains a lot of open questions. Amongst others it is not clear
how certain forms of exceptional linear algebraic groups can be described
explicitly. From classification results we know they exist, but for certain
forms of exceptional linear algebraic groups no explicit description is known.

In order to get a deeper understanding of the isotropic linear algebraic
groups, Jacques Tits introduced the notion of a building, which is a geomet-
rical structure built up from the parabolics of the linear algebraic group. On
the other hand, these geometries can be defined axiomatically, giving rise to
a more general notion, where more examples occur.

If a spherical building arises from a linear algebraic group, then the linear
algebraic group has a natural action on its building. Therefore studying
buildings could be useful to get a better understanding of those groups.

In 1974, Jacques Tits published his lecture notes “Buildings of Spheri-
cal Type and Finite BN-Pairs” [Tit74], in which he classified all spherical
buildings of rank at least 3. The following quote is taken from loc. cit.:

The origin of the notions of buildings and BN-pairs lies in an
attempt to give a systematic procedure for the geometric inter-
pretation of the semi-simple Lie groups and, in particular, the
exceptional groups.
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viii Introduction

There is no hope to classify spherical buildings of rank two. For example,
the class of buildings of rank 2 contains the class of all projective planes,
and these are impossible to classify. This is why it is necessary to impose
an extra condition: the Moufang condition.

It is only 26 years later that Jacques Tits and Richard Weiss in [TW02]
finished the classification of spherical buildings of rank 2 satisfying the Mou-
fang property, also called Moufang polygons; see Chapter 2. There is no
doubt that the hardest part in the whole classification is precisely where
the quadrangles coming from exceptional linear algebraic groups of relative
rank 2 turn up. All the Moufang quadrangles can in turn be described
using an algebraic structure, that is well understood when the Moufang
polygon is coming from an (infinite dimensional) classical linear algebraic
group of rank 2. However the algebraic structure that determines Moufang
quadrangles of type E6, E7 and E8, has a very artificial coordinate-based
definition, that came up during the classification, containing (in the case of
E8) a 12-dimensional quadratic space, a 32-dimensional vector space, and
several maps between those spaces.

In fact, there had been several attempts to try to understand the struc-
ture of these exceptional quadrangles. For example, Tom De Medts in-
troduced the notion of quadrangular systems [DM05], a uniform algebraic
structure describing all Moufang quadrangles. From a different point of
view, Richard Weiss defined quadrangular algebras [Wei06b], which are a set
of algebraic data coordinatizing the exceptional Moufang quadrangles. If
we exclude the characteristic 2 case, then a quadrangular algebra is either
obtained from a pseudo-quadratic space, or it is the structure that coordi-
natizes Moufang quadrangles of type E6, E7 and E8.

Spherical Moufang buildings of rank one are called Moufang sets, as
they can be described without using any geometry only using a set and a
collection of groups that acts on this set; see Section 2.4. One is far from
giving a classification of Moufang sets, it is even not clear if it will be ever
possible to give such a classification. In view of this, it is of interest to find
descriptions of Moufang sets. In particular (and this is one of the main
motivations for studying Moufang sets) it is interesting to try to describe
Moufang sets obtained from exceptional linear algebraic groups of relative
rank one, and we hope that they will give new insights in the study of those
linear algebraic groups. As an example, we mention that the Kneser–Tits
problem for groups of type E66

8,2 has recently been solved using the theory
of Moufang quadrangles [PTW12], and for many of the exceptional groups
of relative rank one, the Kneser–Tits problem is still open.

In this thesis we take a new point of view towards these not-so-well-
understood-Moufang-objects. We apply the theory of structurable algebras
to give new interpretations of these Moufang structures. Structurable al-
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gebras (see Chapter 3) are certain non-associative algebras with involution,
this class of algebras contains, amongst others, Jordan algebras (with trivial
involution) and associative algebras with involution.

In order to provide explicit constructions of exceptional Lie algebras, sev-
eral authors (I.L. Kantor, B. Allison, J. Tits, J. Faulkner, W. Hein and many
others) have introduced various algebraic structures. In each case, the start-
ing point of those constructions is a non-associative binary or ternary alge-
bra, or a pair of them. One of the earliest is the Tits–Kantor–Koecher1 con-
struction of Lie algebras from Jordan algebras (see [Jac68, Section VIII.5]);
its main purpose was to provide models of Lie algebras of type E7.

Structurable algebras were introduced by Bruce Allison, he gives a very
successful generalization of the Tits–Kantor–Koecher construction starting
from structurable algebras. They provide a construction of all isotropic
simple Lie algebras in characteristic 0. Structurable algebras can only be
defined over fields of characteristic different from 2 and 3. If char(k) > 3, all
simple Lie algebras satisfying an additional (more technical) condition can
be obtained. Central simple structurable algebras have been classified (over
fields of characteristic bigger than five) and consist of six different classes.

New progress

In Chapters 4 and 5, we relate quadrangular algebras with structurable
algebras in various ways. Since quadrangular algebras of type E8 are the
most interesting and least understood case, we will focus on this case in this
introduction. A quadrangular algebra of type E8 is totally determined by a
so-called quadratic form of type E8. It is shown in Lemma 5.15 that such
an anisotropic quadratic form can be written as

q ∼ N ⊗ (〈〈s2, s3〉〉 ⊥ −〈〈s4s6, s5s6〉〉)

where N is the norm of a separable quadratic field extension E/k and
s2, . . . , s6 ∈ k such that s2s3s4s5s6 = −1. This quadratic form is thus
entirely determined by the field E and the two quaternion algebras2 Q1 =
(−s2,−s3)k and Q2 = (−s4s6,−s5s6)k.

Our starting point was the strong belief that since these algebraic data
determine the quadratic form of type E8 completely, there had to be some
nice algebraic structure, built from such a quadratic field extension and two
quaternion algebras, relating these data directly to the quadrangular algebra
itself.

1This construction is also referred to by various permutations of subsets of these three
names.

2However, this field and these quaternion algebras are not uniquely determined by the
quadratic form.
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Eventually, we found two different ways to achieve this. One could say
that the second one is more successful than the first, but nonetheless both
of them are interesting.

In Chapter 4 we identify the quadrangular algebra with the biquaternion
algebra Q1 ⊗k Q2 ‘twisted’ by the field E. More precisely, we prove that
each quadrangular algebra in characteristic different from 2 and 3 carries
the structure of a Freudenthal triple system in a very natural way.

Freudenthal triple systems are vector spaces equipped with a trilinear
symmetric map V × V × V → V and bilinear skew-symmetric map V ×
V → k, satisfying certain conditions. Initially, they were introduced as
56-dimensional structures that describe the minimal representation of a Lie
algebra of type E7, but the notion turned out to be interesting in a larger
generality.

For each simple Freudenthal triple system, there is a corresponding iso-
topy class of structurable algebras. We determine a ‘nice’ representative of
this class. In the E8-case, the structurable algebra that does the trick is the
one that is constructed from Q1⊗kQ2 using the Cayley-Dickson process for
structurable algebras w.r.t. the quadratic extension field E.

As subcases, we as well investigate what happens in the case of a pseudo-
quadratic quadrangular algebra and in the case of quadrangular algebras of
type E6 and E7.

In Chapter 5 we define two octonion algebras C1 and C2 by applying the
classical Cayley-Dickson process to Q1 and Q2, respectively, in both cases
using a parameter arising from the quadratic field extension E/k.

We then reconstruct the quadrangular algebra of type E8 with all its
maps from the bioctonion algebra C1 ⊗k C2 in characteristic different from
two. (When char(k) is not 3 either, then this bioctonion algebra is also
a structurable algebra.) We were inspired by the construction of J-ternary
algebras out of structurable algebras given in [ABG02]. A J-ternary algebra
is a module for a Jordan algebra J equipped with a triple product.

As a byproduct we obtain a uniform description in characteristic differ-
ent from 2 of all algebraic structures defining Moufang quadrangles. This
was already accomplished in general characteristic in [DM05] by the use of
quadrangular systems, but these are complicated algebraic structures con-
sisting of various vector spaces equipped with several maps, satisfying no
less than 24 axioms. Our description is more elegant, more algebraic, and
gives more insight into the structure.

In Chapter 6 we discuss a different kind of problem: the construction
of Moufang sets. As we mentioned before, these are Moufang spherical
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buildings of rank 1.

In [DMW06], Tom De Medts and Richard Weiss gave a construction
of a Moufang set starting from a Jordan division algebra, giving rise to
Moufang sets with abelian root groups. In [DMVM10], Tom De Medts
and Hendrik Van Maldeghem gave a construction of a Moufang set starting
from an octonion division algebra with standard involution, giving rise to
Moufang sets with non-abelian root groups; these are precisely the Moufang
sets corresponding to algebraic groups of type F4.

Both Jordan division algebras and octonion algebras with standard in-
volution are examples of structurable division algebras. The idea was that
it should be possible to generalize these constructions simultaneously to an
arbitrary structurable division algebra. We have succeeded in doing so, and
we explain and prove this construction in Chapter 6. With our construction
we obtain as good as all examples of Moufang sets over fields of character-
istic different from 2 and 3 that already have been explicitly described; but
we conjecture that our construction gives rise to Moufang sets coming from
linear algebraic groups of rank one that have not been described explicitly
before.

In Appendix A we give a technical construction that gives an alternative
approach to the construction of the structurable algebras in Chapter 4.

In Appendix B we give some more details on the computer programs
written in the computer algebra package Sage, that are used to prove two
results in this thesis (one of these calculations is only essential in charac-
teristic three). We do not include the actual program listings; these can
be found on my web page cage.ugent.be/~lboelaer (together with some
more technical details on how they are organized).

The material covered in Chapter 4 and Appendix A has been published
in [BDM13a]; the material covered in Chapter 5 will appear in [BDM13b].
Whereas most of the material in Chapters 4, 5 and 6 is new, most of the
material in Chapters 1, 2 and 3 is taken from the existing literature:

In Chapter 1 we give definitions to certain algebraic structures, which
are more or less well known. In Chapter 2 we welcome the reader in
the world of the Moufang polygons and Moufang sets. In Chapter 3 we
continue our journey to the world of the structurable algebras with some
special attention to Freudenthal triple systems and J-ternary algebras.

cage.ugent.be/~lboelaer
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Chapter 1

General preliminaries

We always assume that k is an arbitrary field
of characteristic different from 2.

With a k-algebra A, we mean that A is a k-vector space equipped with
a k-bilinear map A×A→ A, called the multiplication and usually denoted
by juxtaposition. We will almost always assume that an algebra is unital,
i.e. there exists an element 1 ∈ A such that 1a = a1 = a for all a ∈ A.

We stress that we do in general not assume that the multiplication is
commutative or associative. A good reference for general facts on non-
associative algebras is [Sch85].

In the preliminary parts of this thesis we introduce several kinds of al-
gebras: composition algebras in Section 1.3; Jordan algebras in Section 1.4;
Lie algebras in Section 1.5; structurable algebras in Chapter 3. We point
out that the quadrangular algebras defined in Section 2.2 are no algebras in
the above sense as they do not admit a multiplication.

When A is an algebraic structure with a zero (a group, a field, an alge-
bra), will often use the notation A∗ to denote the set of non-zero elements
of A.

In Section 1.1 we give some definitions concerning forms of degree 2, 3, 4
and their respective linearizations. In Section 1.2 we recall the definitions
of hermitian and skew-hermitian spaces and show that these are equivalent
notions.

1.1 Quadratic forms and forms of higher degree

Let V be a k-vector space. A quadratic form on V is a map q : V → k that
satisfies

1



2 Chapter 1. General preliminaries

• q(tv) = t2q(v) for all t ∈ k, v ∈ V ,
• the linearization f : V × V → k : (v, w) 7→ q(v + w) − q(v) − q(w) is
k-bilinear.

A quadratic form is anisotropic if q(v) 6= 0 for all v ∈ V \ {0}. A quadratic
form is non-degenerate if

{v ∈ V | f(v, V ) = 0} = {0}.

For definitions of concepts such as Witt-index, isometry (denoted by ∼=),
similarity (denoted by ∼) etc. we refer to [Lam05]. We will use notations
as introduced in [Lam05]; in particular, H will denote the hyperbolic plane,
i.e. a quadratic form isometric to 〈1,−1〉. We will later need the following
definitions concerning Pfister forms; see also [Lam05, Definition X.5.11].

Definition 1.1. An n-fold Pfister form is a quadratic form of dimension 2n

isometric to 〈〈a1, . . . , an〉〉 := ⊗ni=1〈1, ai〉 for some a1, . . . , an ∈ k.

Two n-fold Pfister forms q1, q2 are r-linked if there is an r-fold Pfister
form h such that q1 ∼= h⊗ q3 and q2 ∼= h⊗ q4 for some Pfister forms q3, q4.

The linkage number of q1 and q2 is the number r ∈ N such that q1 and
q2 are r-linked but not (r + 1)-linked.

Below we define forms of degree 3 or 4, they can be seen as a generaliza-
tion of the definition of a quadratic form. We also define the linearizations
of such forms.

Definition 1.2. Let V be a k-vector space and let m = 2, 3, 4. If V is finite
dimensional, a form of degree m is a map Q : V → k such that, relative
to some choice of basis for V , Q is induced by a homogeneous polynomial
(possible zero) of degree m in dimk V variables over k, and such that Q
extends uniquely to VK = V ⊗k K for every field extension K/k. (This
extension of Q will also be denoted by Q.)

If V is infinite dimensional, Q : V → k is a form of degree m if Q is a
form of degree m on every finite dimensional subspace of V .

Let Q be a form of degree m, we say that Q has a basepoint c ∈ V if
Q(c) = 1.

We define the linearizations of Q : V → k, a form of degree m. Let
x, y, z, u be arbitrary elements in V .

m = 2: Since char(k) 6= 2 we have |k| > 2, hence Q automatically extends
uniquely to VK for every field extension K/k.
The definition of a form of degree 2 is equivalent with the definition
of a quadratic form and f(x, y) = q(x + y) − q(x) − q(y) is its (full)
linearization1, it is symmetric and k-bilinear. Note that f(x, x) =
2q(x) and that q can be reconstructed when f is given.

1If λ is transcendental over k, q(x+ λy) = q(x) + λf(x, y) + λ2q(y).
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m = 3: In the case that |k| > 3, Q automatically extends uniquely to VK
for every field extension K/k.
Let λ be transcendental over k, we define the first linearization Q(x; y)
as follows

Q(x+ λy) = Q(x) + λQ(x; y) + λ2(. . . ) + λ3Q(y),

it is quadratic in x and k-linear in y. The full linearization is defined
as

Q(x, y, z) = Q(x+ z; y)−Q(x; y)−Q(z; y),

it is k-trilinear and symmetric in its 3 variables. We have Q(x, x, x) =
3!Q(x).

m = 4: In the case that |k| > 4, Q automatically extends uniquely to VK
for every field extension K/k.
Let λ be transcendental over k, we define the first linearization Q(x; y)
as follows

Q(x+ λy) = Q(x) + λQ(x; y) + λ2(. . . ) + λ3(. . . ) + λ4Q(y).

Q(x; y) is cubic in x and k-linear in y. The second linearization
Q(x; y, z) is defined by

Q(x+ λy; z) = Q(x; z) + λQ(x; y, z) + λ2(. . . ) + λ3Q(y; z).

Q(x; y, z) is quadratic in x and k-bilinear and symmetric in y and z.
The full linearization is defined by

Q(x, y, z, u) = Q(x+ u; y, z)−Q(x; y, z)−Q(u; y, z).

It is k-linear in its 4 variables and is symmetric.
We have that Q(x, x, x, x) = 4!Q(x).

If we assume that the characteristic of k is different from 2 and 3, we
have automatically that |k| > 4 and the second condition of the definition
of a form of degree 3 or 4 can be omitted. Furthermore, if char(k) 6= 2, 3 a
form of degree 2, 3 or 4 can be reconstructed from its full linearization.

We also point out that it is clear how to generalize the definition of a
form of degree m to maps of degree m taking values in a vector space W
instead, and we will in fact encounter this more general notion when we deal
with Freudenthal triple systems later.

Remark 1.3. There exist various approaches to the study of these forms of
higher degree. The most general approach, which makes sense for arbitrary
modules over rings, is the one by Norbert Roby [Rob63]. Another approach,
which is closer to ours, was taken by Robert W. Fitzgerald and Susanne
Pumplün; see, for example, [FP09].



4 Chapter 1. General preliminaries

1.2 Hermitian and skew-hermitian spaces

Definition 1.4. Let L be a unital associative k-algebra with an involution
σ, i.e. σ : L→ L is k-linear and (αβ)σ = βσασ for all α, β ∈ L.

(i) Let X be a right L-module, then h : X ×X → L is a skew-hermitian
form if
• h is bi-additive and h(x, yα) = h(x, y)α,
• h(x, y)σ = −h(y, x),

for all x, y ∈ X and all α ∈ L. We call X a skew-hermitian space2 . A
skew-hermitian form is non-degenerate if

{x ∈ X | h(x,X) = 0} = {0}.

(ii) Let W be a left L-module, then h : W ×W → L is a hermitian form if
• h is bi-additive and h(αv,w) = αh(v, w),
• h(v, w)σ = h(w, v),

for all v, w ∈ W and all α ∈ L. We call W a hermitian space. A
hermitian form is non-degenerate if

{x ∈W | h(x,W ) = 0} = {0}.

If L is an associative division k-algebra with non-trivial involution, then
skew-hermitian forms and hermitian forms are equivalent concepts. The
following construction is based on [TW02, 16.18].

Lemma 1.5. Let L be an associative division k-algebra with involution σ 6=
id. Let X be a skew-hermitian space over L with skew-hermitian form h.
Let 0 6= s ∈ L such that sσ = −s.

Define a new involution τ of L by vτ := svσs−1 and a new left scalar
multiplication v ◦ x := xvτ , for all v ∈ L, x ∈ X. Then X is a left L-module
w.r.t. ◦ and sh is a hermitian form w.r.t. τ and ◦.

Proof. Since σ 6= id, there exists an s ∈ L such that sσ = −s. We verify
that ◦ makes X into a left L module. Indeed, for all v, w ∈ L, x ∈ X, we
have

v ◦ (w ◦ x) = (xwτ )vτ = x(wτvτ ) = x(vw)τ = (vw) ◦ x.

Finally, it is easily checked that sh is a hermitian form:

sh(v ◦ x, y) = sh(xvτ , y) = s(svσs−1)σh(x, y) = vsh(x, y),

(sh(x, y))τ = −sh(x, y)σss−1 = sh(y, x),

for all x, y ∈ X and all v ∈ L. �

2Some authors have the convention that a space is only used for non-degenerate forms,
but we will not adopt this convention, thereby following [TW02].
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1.3 Composition algebras

A composition algebra is a unital k-algebra C equipped with a non-degenerate
quadratic form q : C → k that is multiplicative, i.e. q(xy) = q(x)q(y) for all
x, y ∈ C. This quadratic form q is called the norm form, its associated
bilinear form will be denoted by f . With the norm form we associate an
involution on C by defining

σ : C → C : x 7→ x := f(x, 1)1− x.

By a classical result (see for example [SV00, Theorem 1.6.2]) each com-
position algebra has dimension 1, 2, 4 or 8. We describe the structure of
each type of composition algebra and give the norm form and associated
involution.

(i) If dimk C = 1, then C = k, q(x) = x2 and the involution is trivial.
(ii) If dimk C = 2, then C/k is a quadratic étale extension of k: there

exists a ∈ k such that C = k[i]/(i2 − a) and the norm form is 〈〈−a〉〉.
Either C/k is a separable quadratic field extension and σ is the non-
trivial element of Gal(C/k), or C ∼= k ⊕ k and σ interchanges the two
components.

(iii) If dimk C = 4, then C/k is a quaternion algebra over k: there exist
a, b ∈ k such that C = k ⊕ ki ⊕ kj ⊕ k(ij) with multiplication defined
by

i2 = a, j2 = b, ij = −ji.

This quaternion algebra is denoted by (a, b)k. The norm form is equal
to 〈〈−a,−b〉〉, the involution fixes k and maps i 7→ −i, j 7→ −j.

(iv) If dimk C = 8, then C/k is an octonion algebra over k: there exist
a, b, c ∈ k such that C = Q⊕Qk where Q = (a, b)k and multiplication
is given by

(x1+x2k)(y1+y2k) = (x1y1+cy2x2)+(y2x1+x2y1)k for all xi, yi ∈ Q.

The norm form is equal to 〈〈−a,−b,−c〉〉 and the involution is given by
x1 + x2k = x1 − x2k. for all x1, x2 ∈ Q.

The construction of an octonion algebra from a pair of quaternion alge-
bras in (iv) is an example of the Cayley-Dickson doubling process for com-
position algebras; see, for example, [SV00, Sec. 1.5].

Remark 1.6. In each case, the norm form of a composition algebra is a
Pfister form (see Definition 1.1). The norm form is anisotropic when C
is a division algebra, and it is hyperbolic otherwise (i.e. when C is a split
algebra).

The similarity class of the norm form is completely determined by the al-
gebra structure of the composition algebra. It is a well known but somewhat
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deeper fact (see e.g. [SV00]) that the converse also holds, i.e. the composi-
tion algebra is determined up to isomorphism by the similarity class of the
norm.

Quaternion algebras are not commutative, but associative. Octonion
algebras are not commutative nor associative, but they are alternative:

Definition 1.7. A k-algebra A is called alternative if x(xy) = (xx)y and
(yx)x = y(xx) for all x, y ∈ A. It is known that each subalgebra of A
generated by two elements is associative; see, for example, [Sch85, Chapter
III].

In the lemma below we summarize some useful identities that hold in
each composition algebra.

Lemma 1.8 ([SV00, Lemma 1.3.2, 1.3.3 and 1.4.1]). Let C be an arbitrary
composition algebra with norm q, with associated bilinear form f , and invo-
lution denoted by x 7→ x. Then for all x, y, z ∈ C we have

(i) x2 − f(x, e)x+ q(x)e = 0;
(ii) f(xy, z) = f(y, xz), f(xy, z) = f(z, yx), f(xy, z) = f(yz, x);
(iii) C is alternative, and therefore each subalgebra generated by two ele-

ments is associative;
(iv) x(xy) = q(x)y, (xy)y = q(y)x;
(v) (zx)(yz) = z((xy)z), z(x(zy)) = (z(xz))y, x(z(yz)) = ((xz)y)z.

The identities in (v) are called the Moufang identities.

The Bruckfeld–Klein theorem states that each simple alternative algebra,
is either associative or an octonion algebra.

1.4 Jordan algebras

We only consider Jordan algebras over fields of characteristic different from
two. In characteristic equal to two, Jordan algebras come in a different
flavor; the definition does not involve a multiplication, only a quadratic
operator. Two good references to study the theory of Jordan algebras are
[McC04] and [Jac68]. Our construction of exceptional quadrangular algebras
in Chapter 5 uses the Peirce decomposition of a Jordan algebra. Below we
summarize the main properties of Peirce subspaces.

1.4.1 Definition and basic properties

Definition 1.9. Let k be a field of characteristic different from two. A
Jordan k-algebra J is a unital commutative k-algebra such that for all x, y ∈
J we have (x2y)x = x2(yx).
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We define the U -operator and its linearization for x, y, z ∈ J by

Uxy := 2x(xy)− x2y, Ux,zy := (Ux+z − Ux − Uz)y.

An element x ∈ J is invertible if and only if there exists a y ∈ J such that
xy = 1 and x2y = x; this condition is equivalent with Uxy = x, Uxy

2 = 1.
The element y is the inverse of x, and we denote it by x−1 := y.

A Jordan division algebra is a Jordan algebra J for which each element
in J \ {0} is invertible.

An element u ∈ J is invertible if and only if Uu is an invertible operator.
If this is the case, then u−1 = U−1u u, and for all x ∈ J we have u−1x =
U−1u (ux) and u(u−1x) = u−1(ux); see, for example, [McC04, Chapter II.6].

We describe the main examples of Jordan algebras and we refer to Chap-
ter II.3 and II.4 of [McC04] for more details.

Definition 1.10. (i) Special Jordan algebras
Let A be a unital k-associative algebra. The algebra A+ with product
x · y = 1

2(xy + yx) for all x, y ∈ A, is a Jordan k-algebra. For all
x, y ∈ A+, we have Uxy = xyx.
A Jordan algebra is special if it can be embedded in an algebra A+ for
some unital associative algebra A; otherwise it is called exceptional.

(ii) Jordan algebras of hermitian type
Let A be a unital associative k-algebra with involution . The Jordan
algebra of hermitian type H(A, ) = {x ∈ A | x = x} is a subalgebra
of A+.

(iii) Jordan algebras of quadratic form type
Let q : J → k be a quadratic form with basepoint c. We denote by f
the linearization of q. A Jordan algebra J of quadratic form type has
multiplication given by

x · y := 1
2(f(x, c)y + f(y, c)x− f(x, y)c)

for all x, y ∈ J .
We have Uxy = f(x, y)x − q(x)y for all x ∈ J , with x = f(x, c)c − x.
For all x ∈ J the identity x2−f(x, c)x+ q(x)c = 0 holds, which means
that J is of degree 2.

(iv) Cubic Jordan algebras
Let N : J → k be a cubic form (i.e. a form of degree 3; see Definition
1.2) with basepoint c such that its trace form T (x, y) = N(c;x)N(c; y)−
N(c, x, y) is non-degenerate. Define the map ] : J → J such that
T (x], y) = N(x; y) for all x, y ∈ J and define its linearization as
x × y = (x + y)] − x] − y]. If we have (x])] = N(x)c, then we say
that N is a non-degenerate admissible form.
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Let N : J → k be a non-degenerate admissible form. A cubic Jordan
algebra on J has multiplication given by

x · y = 1
2(x× y + T (x, c)y + T (y, c)x−N(x, y, c)c)

for all x, y ∈ J .
We have Uxy = T (x, y)x−x]×y for all x, y ∈ J and all elements x ∈ J
satisfy x3−T (x, c)x2+T (x], c)x−N(x)c = 0; therefore J has degree 3.
Conversely, each separable Jordan algebra of degree 3 can be given the
structure of a cubic Jordan algebra where the admissible form is the
generic norm of the Jordan algebra; see [KMRT98, 38.4].

All exceptional Jordan algebras are 27 dimensional cubic Jordan alge-
bras, called Albert algebras.

The previous list of examples describes each possible type of Jordan
algebras. Indeed, by [MZ88, Theorem 15.5], each central simple Jordan
algebra is either of type (ii) (where A is either central simple over a field or
A is central simple over a quadratic étale algebra where is an involution
of the second kind), or of type (iii) (for a non-degenerate quadratic form),
or it is an Albert algebra. See also [KMRT98, 37.2] for a good summary.

1.4.2 Peirce decomposition

Definition 1.11 ([McC04, II.8.1 and II.8.2 on p. 235]). Let J be a Jordan
k-algebra.

(i) An element e ∈ J is an idempotent if e2 = e. An idempotent is proper
if it is different from 0 and 1. If e is an idempotent, then 1− e is also
an idempotent. Two idempotents e, e′ are supplementary if e+ e′ = 1.
Observe that two supplementary idempotents are always orthogonal,
i.e. ee′ = 0.

(ii) Let e be a proper idempotent in J . The Peirce decomposition with
respect to e is defined as follows. For each i ∈ k, let

Ji = {x ∈ J | ex = ix};

then we have
J = J0 ⊕ J1/2 ⊕ J1;

in particular, J` = 0 if ` 6∈ {0, 12 , 1}. For a nondegenerate Jordan
algebra we have J0 6= 0 (see [McC04, II.10.1.2]). Let i ∈ {0, 1} and
j = 1− i; then

J2
i ⊆ Ji, JiJ1/2 ⊆ J1/2, J2

1/2
⊆ J0 + J1, JiJj = 0.

For all `,m ∈ {0, 12 , 1}, we have

UJmJ` ⊆ J2m−`.
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To construct quadrangular algebras in Chapter 5 we will use the following
two types of Jordan algebras that contain supplementary idempotents.

Definition 1.12 ([McC04, II.3.4 on p. 180]). Consider a quadratic form
q : V → k over k. Starting from the vector space V we construct a Jordan
algebra by adjoining two supplementary idempotents to V .

As a vector space, we define J by adjoining two copies of k to V :

J := ke0 ⊕ V ⊕ ke1.

We define the following multiplication:

(t1ei)(t2ej) = δijt1t2ei,

(tei)v = 1
2 tv,

vw = 1
2f(v, w)(e0 + e1), (1.1)

for all i, j ∈ {0, 1}, v, w ∈ V, t, t1, t2 ∈ k. This defines a Jordan algebra3 on
ke0 ⊕ V ⊕ ke1, called the reduced spin factor of the quadratic form q. We
say that J is of reduced spin type.

The unit of this Jordan algebra is e0 + e1, and for all v, w ∈ V we have

Uve0 = q(v)e1, Uve1 = q(v)e0, Uvw = f(v, w)v − q(v)w.

It is clear that e0 and e1 are supplementary idempotents and that we
have the following Peirce subspaces with respect to e1:

J0 = ke0, J1/2 = V, J1 = ke1.

Definition 1.13 ([McC04, Example II.3.2.4]). Let L be a skew field with
involution σ, define Lσ := Fixσ(L) and k := Z(L). The matrix algebra
M2(L) is associative with involution σT , where T denotes the transpose of
the matrix. Now let J be the Jordan k-algebra

J = H(M2(L), σT ) =

{[
α1 `σ

` α2

]
| α1, α2 ∈ Lσ, ` ∈ L

}
;

see Definition 1.10.(ii).

We define the supplementary idempotents e0 = [ 1 0
0 0 ] , e1 = [ 0 0

0 1 ] ∈ J .
With respect to e1, we have

J0 = Lσe0, J1 = Lσe1 and J1/2 =

{[
0 `σ

` 0

]
| ` ∈ L

}
.

3Notice that this is the same Jordan algebra as the Jordan algebra of the quadratic
form Q : ke0 ⊕ V ⊕ ke1 → k : t0e0 + v + t1e1 7→ t0t1 − q(v).
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We have

(α1ei)(α2ej) = δij
1
2(α1α2 + α2α1)ei,

(αe0)v = 1
2

[
0 α`σ

`α 0

]
,

(αe1)v = 1
2

[
0 `σα
α` 0

]
,

v1v2 = 1
2(`σ1 `2 + `σ2 `1)e0 + 1

2(`1`
σ
2 + `2`

σ
1 )e1,

for all i, j ∈ {0, 1}, v =

[
0 `σ

` 0

]
, v1 =

[
0 `σ1
`1 0

]
, v2 =

[
0 `σ2
`2 0

]
∈ J1/2,

α, α1, α2 ∈ Lσ. For the U -operators we find

Uv(αe0) = (`α`σ)e1, Uv(αe1) = (`σα`)e0, Uv1v2 =

[
0 `σ1 `2`

σ
1

`1`
σ
2 `1 0

]
.

Remark 1.14. If we consider the above definition in the case that (L, σ) is
a quadratic pair (see Definition 2.11 below), then k = Lσ. Now there exists
a non-degenerate anisotropic quadratic form q : L→ k : ` 7→ ``σ = `σ`, and
the Peirce subspaces J0, J1 of H(M2(L), σT ) are one-dimensional.

Define a quadratic formQ on J1/2 ⊆ H(M2(L), σT ) given byQ(

[
0 `σ

` 0

]
) =

q(`). By comparing the multiplication in Definition 1.13 above and the one
in Definition 1.12 we conclude that H(M2(L), σT ) is the reduced spin factor
of the quadratic space (J1/2, k,Q).

In the following proposition we use Osborn’s Capacity Two theorem to
show that the two families of Jordan algebras we discussed above can be
characterized in a unified way. The proof of this Proposition uses some
results and concepts of Jordan theory that we will not use in the remaining
part of this thesis.

Proposition 1.15. Let J be a non-degenerate Jordan k-algebra with sup-
plementary proper idempotents e0 and e1. Let J0, J1/2, J1 be the Peirce sub-

spaces of J with respect to e1. We assume that each element in J1/2 \ {0} is

invertible and that there exists u ∈ J1/2 such that u2 = 1.

• If dim(J0) = 1, then J is the reduced spin factor of some non-degenerate
anisotropic quadratic space with basepoint u.4

• If dim(J0) > 1, then J is isomorphic to H(M2(L), σT ) for some skew
field L with involution σ, such that (L, σ) is not a quadratic pair.

Proof. We will show that the assumptions imply that J is a simple nonde-
generate Jordan algebra of capacity 2; an algebra has capacity 2 if the unit

4Notice that H(M2(L), σT ) for (L, σ) a quadratic pair is included in this case.
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is the sum of two supplementary idempotents e0, e1 such that the Peirce
subspaces J0, J1 are division algebras.

Since u2 = 1 it follows from [McC04, II.6.1.10] that Uu is a Jordan
isomorphism5 of J such that (Uu)2 is the identity map. Since Uu(J1) ⊆ J0,
Uu is an isomorphism between J0 and J1. Therefore it is enough to show that
J0 is a division algebra. It follows from [McC04, II.6.1.2] that it is sufficient
to show that for each element t ∈ J0 \ {0} the operator Ut is surjective on
J0.

Let t, s ∈ J0 \ {0}; using [McC04, II.8.4.1] one can verify that Uts =
UuU2uts. We have 2ut ∈ J1/2 \ {0}: if 2ut = 0 it would follow that Uu(t) =

−u2t = −t which implies that t ∈ J0 ∩ J1 = {0}. It follows that U2ut is
invertible. Now let r ∈ J0; since U−12utUur ∈ J0 we have

r = Ut(U
−1
2utUur)

and hence Ut is surjective on J0.

This proves that J has capacity 2.

We now show that J is simple. From [McC04, II.20.2.4] a nondegenerate
algebra with capacity is simple if and only if its capacity is connected (i.e. if
and only if e0, e1 are connected [McC04, II.10.1.3]). In fact, e0, e1 are even
strongly connected since u ∈ J1/2 is an involution, i.e. u2 = 1.

We proved all the conditions necessary to apply Osborn’s Capacity Two
theorem; see [McC04, II.22.2.1 on p. 351]. This theorem states that a simple
nondegenerate Jordan algebra of capacity 2 belongs to exactly one of the
following three disjoint classes from which we can exclude the first:

(i) Full type M2(L)+, for a noncommutative skew field L. In this case,
let e0 be an arbitrary proper idempotent of M = M2(L), and let e1 =
1− e0. Then

J0 = e0Me0, J1 = e1Me1, J1/2 = e0Me1 ⊕ e1Me0,

and in particular each non-trivial element of e0Me1 ⊂ J1/2 is not in-

vertible (since its square is zero).
(ii) Hermitian type H(M2(L), σT ) with L a skew field with involution σ

such that (L, σ) is not a quadratic pair. In this case dim(J0) > 1.
(iii) Reduced spin factor of a non-degenerate quadratic space (k, V, q). Since

the unit of J is e0 + e1 and 1 = u2 = q(u)(e0 + e1) = q(u)1, u is a
basepoint of q.
Suppose there exists a v ∈ J1/2 \ {0} such that q(v) = 0; then it
would follow that vw = 0 for all w ∈ J1/2, which implies that v is not

invertible. Therefore q is anisotropic. In this case dim(J0) = 1. �

5This means that Uu(xy) = Uu(x)Uu(y) for all x, y ∈ J .
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1.5 Lie algebras and linear algebraic groups

Linear algebraic groups are affine varieties equipped with a compatible group
structure. They can be seen (in a non-intrinsic way) as subgroups of GLn(k),
i.e. the invertible n× n-matrices over a field k.

Semisimple connected linear algebraic groups can be divided into dif-
ferent classes, according to their Tits index, which is the Dynkin diagram
endowed with some “circled vertices” representing the distinguished orbits.
These Tits indices already contain a lot of information about the specific
linear algebraic group; for instance, the number of vertices of the diagram
is the absolute rank, and the number of distinguished orbits is the relative
rank. In Table 1.1 below we give a few examples of Tits indices.

Linear algebraic groups with Dynkin diagrams of type An, Bn, Cn, Dn

are classical, linear algebraic groups with Dynkin diagrams of type G2, F4,
E6, E7, E8 are exceptional. D4 is sometimes also considered as exceptional.

We do not go into more details concerning linear algebraic groups. Linear
algebraic groups are the main motivation for the mathematics done in this
thesis, but we only mention a few times the type or Tits index of a linear
algebraic group and do not rely on the theory of the linear algebraic groups.
We refer to [Tit66] and [Sel76a] for details on the classification.

As mentioned in the introduction linear algebraic groups give rise to
spherical buildings (see [Tit74]) and a linear algebraic group has a natural
action on its building. If the linear algebraic group has relative rank r,
its corresponding building has rank r. In this thesis we are interested in
spherical Moufang buildings of rank 1 and 2 (i.e. Moufang sets and Moufang
polygons) coming from exceptional linear algebraic groups. Therefore we list
all the exceptional Tits indices of relative rank 1 and 2 (see Table 1.1). For
further reference we will adopt the notation gXt

n,r for Tits indices introduced
in [Tit66], where X ∈ {A,B,C,D,G, F,E} is the type, n is the absolute
rank, r the relative rank and g, t ∈ N are some other invariants of the linear
algebraic group defined in [Tit66] (note that g is omitted from the notation
if g = 1).
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3,6D9
4,1

F 21
4,1

2E35
6,1

2E29
6,1

E78
7,1

E66
7,1

E48
7,1

E133
8,1

E91
8,1

G0
2,2

3,6D2
4,2

E28
6,2

E16
6,2

2E16′
6,2

2E16′′
6,2

E31
7,2

E78
8,2

E66
8,2

Table 1.1: Exceptional Tits indices of relative rank 1 and 2

We will only make explicit use of the following very basic concepts in the
theory of Lie algebras. We refer to [Jac62], for example, for more advanced
concepts concerning Lie algebras.

Definition 1.16. (i) A k-algebra L is a Lie algebra if the k-bilinear ‘mul-
tiplication’ (called the Lie bracket) L×L → L : (x, y) 7→ [x, y] satisfies
the following conditions for all x, y, z ∈ L:
• [x, x] = 0,
• [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

The first identity implies that [x, y] = −[y, x], the second identity is
called the Jacobi identity.

(ii) Let L and L′ be k-Lie algebras. A k-linear map ψ : L → L′ is a
morphism if ψ[x, y] = [ψx, ψy] for all x, y ∈ L.

(iii) Let L and L′ be k-Lie algebras. A k-linear map ψ : L → L′ is a
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derivation if ψ[x, y] = [ψx, y] + [x, ψy] for all x, y ∈ L. For each x ∈ L,
the map ad(x) : L → L : y 7→ [x, y] is an example of a derivation of L,
a so-called inner derivation.

(iv) A (Z-)graded Lie-algebra is a Lie algebra L together with a decompo-
sition into subvector spaces {Li | i ∈ Z} such that

L =
⊕
i∈Z
Li and [Li,Lj ] = Li+j for all i, j ∈ Z.

We call the grading a (2n + 1)-grading if Li = 0 for all i ∈ Z with
|i| > n.

(v) Let L and L′ be two graded Lie algebras. A morphism ψ : L → L′ is
a graded morphism if ψ(Li) ⊆ L′i for all i ∈ Z.

It is an important fact that any linear algebraic group gives rise to a
Lie algebra; see, for example, [Mil12a, Chapter XI]. In general, this relation
is not one-to-one, and not every Lie algebra can be obtained from a linear
algebraic group.

However when char(k) = 0, any semisimple Lie algebra (i.e. a Lie algebra
that is the direct sum of simple6 Lie algebras) is obtained from a semisimple
linear algebraic group (see [Mil12b, Theorem II.3.20]). From this point of
view we can say that a semisimple Lie algebra is of a certain type and has
a certain Tits index gXt

n,r. The relative rank of a semisimple Lie algebra is
then also the dimension of a maximal split toral subalgebra (see [Sel76b]).

The theory of Lie algebras in characteristic p > 0 gives rise to many
complications, compared to the theory in characteristic zero; see [Sel67].
However if a Lie algebra in characteristic p > 0 arises from a linear algebraic
group of type Xn, we will also say that this Lie algebra is of type Xn.

6A Lie algebra is simple if it does not contain any proper non-trivial two sided ideals.



Chapter 2

The Moufang world

In this chapter we give an overview of the theory of Moufang polygons and
Moufang sets. As we mentioned in the introduction, these are spherical
Moufang buildings of rank two and one, respectively.

In Section 2.1 we explain the concept of a Moufang polygon, which is
graph-theoretic. By Theorem 2.3, however, this notion reduces quickly to
some algebraic data.

In Section 2.2 we introduce the quadrangular algebras. These algebraic
structures characterize the Moufang quadrangles of type E6, E7 and E8. The
aim of Chapters 4 and 5 is to get a better understanding of the structure of
the exceptional quadrangular algebras.

In Section 2.3, we give an overview of all the classes of Moufang quad-
rangles that are defined over fields of characteristic different from 2.

In Section 2.4 we give some equivalent definitions of Moufang sets and
we describe many of the known classes of Moufang sets in characteristic
different from 2 and 3.

2.1 Definition and basic properties of Moufang
polygons

We only give a brief summary of the theory of Moufang polygons, and we
refer to [TW02] or to the survey article [DMVM03] for more details.

A generalized n-gon Γ is a connected bipartite graph with diameter n
and girth 2n, where n ≥ 2. If we do not want to specify the value of n,
then we call this a generalized polygon. We call a generalized polygon thick
if every vertex has at least 3 neighbors. A root in Γ is a (non-stammering)
path of length n in Γ. Observe that the two extremal vertices of such a path

15
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are always opposite, i.e. their distance is equal to the diameter n of Γ. An
apartment in Γ is a circuit of length 2n.

Let Γ be a thick generalized n-gon with n ≥ 3, and let α = (x0, . . . , xn)
be a root of Γ. The root group of α is the group of all automorphisms of Γ
fixing all neighbors of x1, . . . , xn−1; it is denoted by Uα.

A root group acts freely on the set of vertices incident with x0 but
different from x1. If Uα acts transitively on this set (and hence regularly),
then we say that α is a Moufang root. It turns out that α is a Moufang root
if and only if Uα acts regularly on the set of apartments through α.

Definition 2.1. A Moufang polygon is a thick generalized n-gon for which
every root is a Moufang root.

The group generated by all the root groups is called the little projective
group of Γ.

Moufang polygons have been classified by Jacques Tits and Richard
Weiss in [TW02]. Loosely speaking, the result is the following.

Theorem 2.2 ([TW02]). Let Γ be a Moufang n-gon. Then n ∈ {3, 4, 6, 8}.
Moreover, every Moufang polygon arises from an absolutely simple linear
algebraic group of relative rank 2, or from a corresponding classical group
or group of mixed type, or (when n = 8) from a Ree group of type 2F4.

With a classical group, we mean a form of a special linear group, of a
unitary group, of a symplectic group or of an orthogonal group, where in each
case we explicitly allow the possibility that the underlying vector space is
infinite-dimensional (in which case the group is not a linear algebraic group).
Mixed Moufang polygons are more exotic; they are related to groups which
are in some sense linear algebraic groups defined over a pair of fields k and
K in characteristic p where Kp ⊂ k ⊂ K and p is equal to 2 or 3. As we
will always work over fields of characteristic different from 2 and 3, we will
not be bothered by the Moufang polygons of mixed type.

In order to describe a Moufang polygon in terms of algebraic data, we
will use a sequence of root groups. Let (x1, . . . , xn, . . . , x2n−1, x0, x1) be an
apartment of Γ, and define the sequence

U1 = U(x1,...,xn+1), U2 = U(x2,...,xn+2), . . . , Un = U(xn,...,x0).

Theorem 2.3. Let Γ be a Moufang n-gon. The root groups U1, . . . , Un are
(up to order and isomorphism) independent of the choice and of the labeling
of the apartment.

Moreover, Γ is completely determined by the root groups U1, . . . , Un to-
gether with their commutator relations, which describe the commutators of
elements of two different root groups.
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Proof. See [TW02, Chapter 7]. �

More precisely, it is always the case that the commutator of an element of
Ui and an element of Uj (with i < j) belongs to the group 〈Ui+1, . . . , Uj−1〉.
In particular, it follows that for all 1 ≤ i ≤ n− 1,

[Ui, Ui+1] = 1.

For each type of Moufang polygons, we will describe an algebraic struc-
ture which will allow us to parametrize the root groups and describe the
commutator relations. Below we describe the Moufang triangles, hexagons
and octagons. In each case, we will mention, in view of Theorem 2.2, from
which type of algebraic, classical or mixed group the Moufang polygon arises;
for the notation of the Tits index of a linear algebraic group, we refer to
Table 1.1 on page 13.

In Section 2.3, we will describe the structure of the root groups of Mou-
fang quadrangles. In order to give this description we will need to introduce
quadrangular algebras, which we do in Section 2.2 below.

Moufang triangles Every Moufang triangle can be described in terms of
an alternative division algebra, i.e. an alternative algebra (see p. 6) such that
for each a ∈ A \ {0}, there is a (unique) element a−1 ∈ A \ {0} satisfying
the condition

a−1(ab) = b = (ba)a−1 for all b ∈ A.

If A is such an alternative division algebra, then we define U1
∼= U2

∼=
U3
∼= (A,+); we denote the explicit isomorphisms from A to Ui by xi, and

we call this the parametrization of the groups Ui by (A,+). The commutator
relations are then given by

[x1(a), x3(b)] = x2(ab)

for all a, b ∈ A. Every Moufang triangle can be described in this fashion.

IfA is a finite-dimensional division algebra of degree d, then this Moufang
triangle arises from a linear algebraic group of absolute type A3d−1. If A
is infinite-dimensional, then the associated group is no longer an algebraic
group, but it can still be viewed as a classical group, namely PSL3(A). The
case where A is an octonion division algebra is exceptional; it arises from a
linear algebraic group of type E28

6,2.

Moufang hexagons Every Moufang hexagon can be described in terms
of an anisotropic cubic norm structure; this is essentially the same as a
(quadratic) Jordan division algebra of degree 3 (see Definition 1.10).
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We will not give a precise definition of these algebraic structures since we
will not need them explicitly, but we refer to [DMVM03, KMRT98, TW02]
instead. We will only mention that if J is such an anisotropic cubic norm
structure over a field k, then either J/k is a purely inseparable cubic exten-
sion, or dimk J ∈ {1, 3, 9, 27}.

If J is such an anisotropic cubic norm structure, then we define U1
∼=

U3
∼= U5

∼= (J,+) and U2
∼= U4

∼= U6
∼= (k,+). The commutator relations

can be expressed in terms of the norm, trace and Freudenthal cross product,
but their explicit form is not important for us; we refer to [DMVM03, TW02]
for more details.

The case where J = k gives rise to the so-called split Cayley hexagon,
which arises from a split linear algebraic group of type G2. If J is a cubic
separable extension field of k, then the corresponding Moufang hexagon is
the so-called twisted triality hexagon, which arises from a quasi-split linear
algebraic group of type 3D2

4,2 or 6D2
4,2. If J is a purely inseparable cubic

extension field of k, then the corresponding Moufang hexagon arises from
a group of mixed type G2. The next case is where J is a 9-dimensional
k-algebra. There are two cases to distinguish; either J is a central simple
cubic cyclic division algebra, or it is a twisted form of such an algebra,
arising from an involution of the second kind on such an algebra. The
resulting Moufang hexagon arises from a linear algebraic group of type E16

6,2

and 2E16′′
6,2 , respectively. Finally, if J is 27-dimensional over k, then it is an

Albert division algebra; the resulting Moufang hexagon arises from a linear
algebraic group of type E78

8,2.

Moufang octagons The Moufang octagons have a fairly simple structure
from an algebraic point of view. Every Moufang octagon can be described
from a commutative field k with char(k) = 2 equipped with a Tits endo-
morphism σ, i.e. an endomorphism such that (xσ)σ = x2 for all x ∈ k. The
root groups U1, U3, U5, U7 are parametrized by (k,+), and the root groups
U2, U4, U6, U8 are parametrized by the non-abelian group T with underlying
set k × k, and with group operation

(a, b) · (c, d) := (a+ c, b+ d+ aσc) for all a, b, c, d ∈ k.

The corresponding groups are Ree groups of type 2F4.

2.2 Quadrangular algebras

A quadrangular algebra is an algebraic structure that was constructed to
describe the exceptional Moufang quadrangles. For more information on
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quadrangular algebras, including the case where the characteristic is 2, we
refer to [Wei06b].

2.2.1 Definition and basic properties

We emphasize that we will only be dealing with quadrangular algebras over
fields of characteristic different from 2, in which case the structure of a
quadrangular algebra simplifies significantly; see Remark 2.5 below.

Definition 2.4. A quadrangular algebra, in characteristic different from 2,
is a 7-tuple (k, L, q, 1, X, ·, h), where

(i) k is a commutative field with char(k) 6= 2,
(ii) L is a k-vector space,
(iii) q is an anisotropic quadratic form from L to k,
(iv) 1 ∈ L is a basepoint for q, i.e. an element such that q(1) = 1,
(v) X is a non-trivial k-vector space,
(vi) (x, v) 7→ x · v is a map from X × L to X,
(vii) h is a map from X ×X to L,

satisfying the following axioms, where

f : L× L→ k : (x, y) 7→ f(x, y) := q(x+ y)− q(x)− q(y) ;

σ : L→ L : v 7→ f(1, v)1− v ;

v−1 := vσ/q(v) .

(A1) The map · is k-bilinear.
(A2) x · 1 = x for all x ∈ X.
(A3) (x · v) · v−1 = x for all x ∈ X and all v ∈ L \ {0}.

(B1) h is k-bilinear.
(B2) h(x, y · v) = h(y, x · v) + f(h(x, y), 1)v for all x, y ∈ X and all v ∈ L.
(B3) f(h(x · v, y), 1) = f(h(x, y), v) for all x, y ∈ X and all v ∈ L.

(C) θ(x, v) := 1
2h(x, x · v).

(D1) Let π(x) := θ(x, 1) for all x ∈ X, hence

π(x) = 1
2h(x, x).

Then x · θ(x, v) = (x · π(x)) · v for all x ∈ X and all v ∈ L.
(D2) For all x ∈ X \ {0} we have π(x) 6= 0.

Moreover, we define a map g : X ×X → k by

g(x, y) := 1
2f(h(x, y), 1)

for all x, y ∈ X.
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Remark 2.5. When one compares our definition of quadrangular algebras
with the general definition in [Wei06b, Definition 1.17] there are two dif-
ferences which are due to the fact that the definition simplifies when the
characteristic is different from 2.

(i) Our axiom (C) is a mere definition and not really an axiom. In
[Wei06b], this axiom (C) consists of 4 much more involved axioms,
which are only necessary in the characteristic 2 case (see [Wei06b, Re-
mark 4.8]). By defining θ(x, v) = 1

2h(x, x · v) we actually assume that
the quadrangular algebra is standard. Every quadrangular algebra is
equivalent to a standard quadrangular algebra (see [Wei06b, Proposi-
tion 4.2, 3.14 and 4.5].)

(ii) In [Wei06b], axiom (D2) has the seemingly weaker condition that
π(x) ≡ 0 (mod k) if and only if x = 0 (where k has been identi-
fied with its image under the map t 7→ t1 from k to L). We show that
this is equivalent to our axiom (D2).
Indeed, assume that this weaker version of (D2) holds. Applying (B2)
with x = y and v = 1, we get f(h(x, x), 1) = 0. If we suppose π(x) =
1
2h(x, x) ∈ k1, we have f(h(x, x), 1) = 2h(x, x) = 0 and it follows that
π(x) = 0, so x = 0.

A quadrangular algebra is a module for the Clifford algebra with base-
point of q:

Definition 2.6. (i) Let (k, V, q) be a quadratic space with basepoint ε.
Then the Clifford algebra of q with basepoint ε is defined as

C(q, ε) := T (V )/〈u⊗ uσ − q(u)1, ε− 1〉,

where T (V ) is the tensor algebra of V , and where σ is defined as in
Definition 2.4. It is not too hard to show that C(q, ε) ∼= C0(q), the even
Clifford algebra of q. The notion of a Clifford algebra with basepoint
was introduced by Jacobson and McCrimmon; see [TW02, Chapter 12]
for more details.

(ii) Since q is anisotropic, the axioms (A1)–(A3) of an arbitrary quadran-
gular algebra say precisely that X is a C(q, 1)-module, such that the
action of C(q, 1) on X is an extension of the action of L on X (see
[Wei06b, Proposition 2.22]).

(iii) A C(q, 1)-module X is irreducible if we have x · C(q, 1) = X for all
x ∈ X \ {0} .

We will use the following formulas in the sequel.

Theorem 2.7. Let Ω = (k, L, q, 1, X, ·, h, θ) be a quadrangular algebra, with
char(k) 6= 2. For all a, b ∈ X and all u, v ∈ L, we have:

(i) h(a, b) = −h(b, a)σ,
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(ii) f(h(a, b · v), 1) = f(h(a, b), vσ),

(iii) (a · u) · v = −(a · vσ) · uσ + af(u, vσ),

(iv) h(a · π(a), b) + θ(a, h(a, b)) = 0,

(v) θ(a · v, w) = θ(a,wσ)σq(v)− f(w, vσ)θ(a, v)σ + f(θ(a, v), wσ)vσ.

(vi) g(x · v, y · v) = g(x, y)q(v).

Proof. Identities (i)–(iii) are precisely [Wei06b, (3.6), (3.7) and (3.8)]. Iden-
tity (iv) is identity (e) in the proof of [TW02, (13.67)]; the proof holds
without any change in the pseudo-quadratic case as well. Identity (v) is
precisely axiom (C4) in [Wei06b, Definition 1.17], taking into account that
the map φ occurring in this axiom is trivial by [Wei06b, Proposition 4.5].
Identity (vi) is [Wei06b, Proposition 4.18]. �

In the following subsections we will describe two examples of quadran-
gular algebras. The following theorem tells us that these are all examples
in characteristic different from 2.

Theorem 2.8. A quadrangular algebra in characteristic not 2 is either ob-
tained from an anisotropic pseudo-quadratic space over a quadratic pair (see
Section 2.2.2), or it is of type E6, E7 or E8 (see Section 2.2.3).

Proof. Since the characteristic of k is not 2, it follows from [Wei06b, 2.3
and 2.4] that the quadrangular algebra is regular, i.e. f is non-degenerate.
(From [Wei06b, 3.14], it follows that it is also proper, i.e. σ 6= id). Now
it follows from [Wei06b, 3.2] that if the quadrangular algebra is not special
(i.e. not arising from a pseudo-quadratic space), then it is of type E6, E7

or E8. �

2.2.2 Pseudo-quadratic spaces

Below we give the definition of a pseudo-quadratic space in characteristic
different from 2. Just as for quadrangular algebras, this definition simplifies
significantly compared to the general definition given in [TW02, 11.16] for
arbitrary characteristic; see Remark 2.10 below.

The simplification could be compared to the fact that when one defines a
quadratic form in characteristic different from 2, it is actually enough to give
the bilinear form, since q(x) = 1

2f(x, x), whereas in general characteristic, a
quadratic form is not uniquely determined by its bilinear form.

Definition 2.9 ([Wei06b, Definition 1.16]). A pseudo-quadratic space over
a field of characteristic not 2 is a quintuple (L, σ,X, h, π) where

(i) L is a skew field of characteristic different from 2;
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(ii) σ is an involution of L, and we let

Lσ := {` ∈ L | `σ = `} = {`+ `σ | ` ∈ L};

(iii) X is a right vector space over L;
(iv) h : X ×X → L is a skew-hermitian form (see Definition 1.4.(i));
(v) π : X → L : x 7→ π(x) = 1

2h(x, x).

The pseudo-quadratic space is anisotropic if π(x) 6= 0 for all x ∈ X \ {0}.

In the following remark we explain why the definition of a pseudo-
quadratic space in [TW02, 11.16] reduces to the one given above if the
characteristic is different from 2.

Remark 2.10. Definition [TW02, 11.16] makes use of an involutory set in L
(see [TW02, 11.1]). In the case that the characteristic is different from 2,
however, any involutory set in L is equal to Lσ.

It follows from [TW02, 11.28] that in characteristic different from 2, a
pseudo-quadratic space as defined in [TW02, 11.16] is always isomorphic
to a pseudo-quadratic space for which π(x) = 1

2h(x, x). Therefore we can
assume this in our definition.

In the original definition of an anisotropic pseudo-quadratic space, one
should have that π(x) ∈ Lσ if and only if x = 0. But since π(x)σ =
1
2h(x, x)σ = −1

2h(x, x) = −π(x), we have π(x) ∈ Lσ if and only if π(x) = 0.

Not every pseudo-quadratic space is a quadrangular algebra; to be a
quadrangular algebra the skew field has to satisfy some additional properties.

Definition 2.11 ([Wei06b, Definition 1.12]). Let L be a skew field with
involution σ. We call (L, σ) a quadratic pair1, if k := Lσ is a field and if
either

(i) L/k is a separable quadratic field extension and σ is the generator of
the Galois group; or

(ii) L is a quaternion algebra over k and σ is the standard involution.

Define q(u) = uuσ; then (k, L, q, 1) is a pointed anisotropic non-degenerate
quadratic space.

A result of Dieudonné (see for example [Wei06b, Theorem 1.15]) says
that if σ is not trivial, then either L is generated by Lσ as a ring, or (L, σ)
is a quadratic pair (and in this case Lσ is a field). From this point of view,
quadratic pairs are an exceptional class of skew fields with involution.

1This notion, taken from [Wei06b, Definition 1.12], is quite different from the notion
of a quadratic pair as defined in the Book of Involutions [KMRT98], and has nothing to
do with the notion of a quadratic pair in (finite) group theory either.
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Lemma 2.12 ([Wei06b, Proposition 1.18]). Let (L, σ) be a quadratic pair
and (L, σ,X, h, π) an anisotropic pseudo-quadratic space such that X 6= 0.
Then (k, L, q, 1, X, scalar multiplication, h) is a quadrangular algebra.

2.2.3 Quadrangular algebras of type E6, E7 and E8

We give a concise overview of the structure of quadrangular algebras of type
E6, E7 and E8. More information can be found in [TW02, Chapter 12 and
13]. Some care is needed, since the map g in [Wei06b] is equal to −g in
[TW02]. We use the notation from [Wei06b].

Definition 2.13. A quadratic space (k, L, q) with basepoint is of type E6,
E7 or E8 if it is anisotropic and there exists a separable quadratic field
extension E/k, with norm denoted by N , such that:

E6 : there exist s2, s3 ∈ k∗ such that

(k, L, q) ∼= (k,E3, N ⊗ 〈1, s2, s3〉);

E7 : there exist s2, s3, s4 ∈ k∗ such that s2s3s4 /∈ N(E) and

(k, L, q) ∼= (k,E4, N ⊗ 〈1, s2, s3, s4〉);

E8 : there exist s2, s3, s4, s5, s6 ∈ k∗ such that −s2s3s4s5s6 ∈ N(E) and

(k, L, q) ∼= (k,E6, N ⊗ 〈1, s2, s3, s4, s5, s6〉).

We always assume that s2s3s4s5s6 = −1, which can be achieved by
rescaling the quadratic form if necessary.

A quadratic space of type E6, E7 or E8 is a quadratic space that is similar
to a quadratic space with basepoint of type E6, E7 or E8.

Lemma 2.14. If s2s3s4s5s6 = −1, then 〈1, s2, s3, s4, s5, s6〉 ⊥ H is similar
to 〈〈s2, s3〉〉 ⊥ −〈〈s4s6, s5s6〉〉.

Proof. Since tH ∼= H for t ∈ k∗, it follows that

s2s3(〈1, s2, s3, s4, s5, s6〉 ⊥ H) ∼= s2s3〈s3, s2, 1, s5, s4, s6〉 ⊥ H
∼= 〈s2, s3, s2s3, s2s3s5, s2s3s4, s2s3s6〉 ⊥ H
∼= 〈s2, s3, s2s3,−s4s6,−s5s6,−s4s5〉 ⊥ 〈1,−1〉
∼= 〈〈s2, s3〉〉 ⊥ −〈〈s4s6, s5s6〉〉. �

Let (k, L, q, 1, X, ·, h) be a quadrangular algebra of type E6, E7 or E8;
then (k, L, q) is a quadratic space of type E6, E7 or E8, respectively, with
basepoint denoted by 1. This quadratic space determines the quadrangular
algebra entirely up to isomorphism (see [Wei06b, Theorem 6.24]).
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As we are working in characteristic not 2, we can always assume that
E = k(γ) for some γ ∈ E with γ2 ∈ k.

The vector space X has k-dimension 8, 16 or 32, respectively. First
we explain how this space is constructed in the E8-case, which is the most
interesting case; afterwards we explain the E6- and E7-case, which we will
formally describe as vector subspaces of the E8-case.

These constructions are very technical and ad hoc. This is precisely what
we try to overcome in Chapters 4 and 5.

The quadrangular algebra of type E8 In order to construct a quad-
rangular algebra of type E8, we start with a quadratic space of type E8 with
basepoint.

We fix the anisotropic quadratic space

(k, L, q) = (k,E6, N ⊗ 〈1, s2, s3, s4, s5, s6〉)

with s2s3s4s5s6 = −1, as in Definition 2.13. If we consider L as a vector
space over E, then it has dimension 6, so we can fix a basis {v1, . . . , v6} of
L over E such that for all e1, . . . , e6 ∈ E,

q(
6∑
i=1

eivi) = N(e1) +
6∑
i=2

N(ei)si;

notice that v1 is a basepoint of q.

It follows that {v1, γv1, . . . , v6, γv6} is a basis of L over k. We define the
6-dimensional k-vector space Lk = kv1⊕· · ·⊕kv6 and denote by q|k : Lk → k
the restriction of q to Lk.

Next we consider the Clifford algebra with basepoint C(q|k, v1) (see Def-
inition 2.6). In C(q|k, v1), we have for all x, y ∈ C(q|k, v1) that (see [TW02,
(12.48)])

x y + y x = f(x, y)

where x = f(v1, x)v1−x is as in Definition 2.4. Let i 6= j ∈ {2, . . . , 6}; since
f(vi, vj) = 0 and f(v1, vi) = 0 we have

v1 = v1, vi = −vi,
v21 = 1, v2i = −q(vi) = −si, viv1 = v1vi, vivj = −vjvi. (2.1)

Notation 2.15. We define S as the set of all sequences of the interval [2, 6]
in ascending order, including the empty sequence, i.e.

S := {∅} ∪ {j1 . . . jp | 1 ≤ p ≤ 5 and j1 < · · · < jp ∈ [2, 6]}.
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We define the length of elements in S as len(∅) = 0 and len(j1 . . . jp) = p.
For each I ∈ S we denote its complement in [2, 6] with I ′ ∈ S. Now define

vI :=

{
v1 if I = ∅,
vj1vj2 . . . vjp ∈ C(q|k, v1) if I = j1j2 . . . jp,

and similarly

sI :=

{
1 ∈ k if I = ∅,
sj1sj2 . . . sjp ∈ k if I = j1j2 . . . jp.

It follows from (2.1) that for all I ∈ S, we have v2v3v4v5v6vI = ±sIvI′ .
We define the unique map sgn : S → {−1,+1} by

v2v3v4v5v6vI = sgn(I)sIvI′ .

By [TW02, 12.49], the set {vI | I ∈ S} is a basis of C(q|k, v1), and in
particular dimk C(q|k, v1) = 32.

Now we define X̃ := E ⊗k C(q|k, v1); this is a vector space of dimension
64 over k. We do not consider the E-vector space structure that X̃ has, but
we do denote ex := e ⊗ x for all e ∈ E and x ∈ C(q|k, v1). Consider the
k-subspace

M = Spank{evI − sgn(I)sIe
σvI′ | e ∈ E and I ∈ S such that len(I) ≤ 2};

this subspace has k-dimension 2 · 16 = 32.

We can now finally define the k-vector space X := X̃/M ; this space is
32-dimensional. In the vector space X all elements of the form evI with
e ∈ E and I ∈ S such that len(I) ≥ 3 can be substituted by elements in
{evI | e ∈ E, len(I) ≤ 2}. Therefore an arbitrary element x ∈ X can be
written as

x = e1v1 +
∑
i∈[2,6]

eivi +
∑

i<j∈[2,6]

eijvivj with eI ∈ E. (2.2)

The maps · : X×L→ X and h : X×X → L are defined explicitly using
these coordinates in [TW02, 13.6 and 13.19]. In the sequence we will not
need the exact definitions of these maps, but we will make use of identities
that these maps satisfy, given in Definition 2.4 and 2.7.

The structure (k, L, q, 1, X, ·, h) is a quadrangular algebra of type E8.
We implemented these algebraic structures in the computer algebra package
Sage; this implementation is very useful to verify if certain identities con-
cerning quadrangular algebras of type E8 hold. We refer to Appendix B for
more information concerning this implementation.
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The quadrangular algebra of type E6 and E7 We will always consider
the quadrangular algebras of type E6 and E7 as subspaces of quadrangular
algebras of type E8. Of course, not every quadratic form of type E6 or E7

over a given field extends to a quadratic form of type E8 over the same field
k, but it nevertheless makes sense to describe the structure of quadrangular
algebras of type E6 and E7 as substructures of a quadrangular algebra of
type E8, which can then be interpreted independently of the surrounding
E8-structure.

It is shown in [TW02, (12.37)] that if

(k,E6, N ⊗ 〈1, s2, s3, s4, s5, s6〉)

is a quadratic space of type E8, then (k,E4, N⊗〈1, s2, s3, s4〉) is a quadratic
space of type E7 and (k,E3, N ⊗ 〈1, s2, s3〉) is a quadratic space of type E6.
Below we explain what the vector space X and the maps · and h are in the
E6- and E7-case.

E7: Assume that (k, L, q) = (k,E4, N ⊗〈1, s2, s3, s4〉) for certain constants
s2, s3, s4 ∈ k such that s2s3s4 /∈ N(E). We let L have an E-basis
{v1, v2, v3, v4} such that for all e1, . . . , e4 ∈ E

q(
4∑
i=1

eivi) = N(e1) +
4∑
i=2

N(ei)si.

In this case X is defined as X := E⊗kC(q|k, v1), which has dimension
16. Each element of X can be written as

4∑
i=1

eivi + e5v2v3 + e6v2v4 + e7v3v4 + e8v2v3v4 for all ei ∈ E.

We will embed this X in the X of the E8 case as follows:

E7 E8

evi 7→ evi for all i ∈ {1, . . . , 4},
evivj 7→ evivj for all i < j ∈ {2, 3, 4},

ev2v3v4 7→ s2s3s4e
σv5v6.

With this identification the maps · and h on the X in the E7-case
are the restrictions of those maps in the E8-case (see [TW02, Remark
13.20]).

E6: Assume that (k, L, q) = (k,E3, N ⊗〈1, s2, s3〉) for constants s2, s3 ∈ k.
We let L have an E-basis {v1, v2, v3} such that for all e1, e2, e3 ∈ E

q(e1v1 + e2v2 + e3v3) = N(e1) +N(e2)s2 +N(e3)s3.
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In this case X is defined as X := E⊗kC(q|k, v1), which has dimension
8. Each element of X can be written as

e1v1 + e2v2 + e3v3 + e4v2v3 for all ei ∈ E.

We will embed this X in the X of the E8 case as follows:

E6 E8

evi 7→ evi for all i ∈ {1, 2, 3},
ev2v3 7→ ev2v3.

With this identification the maps · and h on the X in the E6-case
are the restrictions of those maps in the E8-case (see [TW02, Remark
13.20]).

The next Theorem shows that if (k, L, q, 1, X, ·, h) is a quadrangular
algebra of type E6, E7 or E8, then X is an irreducible C(q, 1)-module (see
Definition 2.6).

Theorem 2.16 ([Wei06b, 2.26]). Let (k, V, q) be a quadratic space of type
E6, E7 or E8 with basepoint 1 and let X be a right C(q, 1)-module. Then X
is an irreducible right C(q, 1)-module if and only if dimk(X) = 8, 16 or 32,
respectively.

2.3 Description of Moufang quadrangles

The classification of Moufang quadrangles as given by Tits and Weiss in
[TW02], distinguishes six different (non-disjoint) classes:

(1) Moufang quadrangles of quadratic form type;
(2) Moufang quadrangles of involutory type;
(3) Moufang quadrangles of pseudo-quadratic form type;
(4) Moufang quadrangles of type E6, E7 and E8;
(5) Moufang quadrangles of type F4;
(6) Moufang quadrangles of indifferent type.

Moufang quadrangles of type (5) and (6) only exist over fields of character-
istic 2 and arise from groups of mixed type; we exclude these classes from
further discussion. The other types of Moufang quadrangles arise from clas-
sical or algebraic groups. We mention below from which types of groups
they arise and use the notation for the Tits indices given in Table 1.1 on
page 13.

Remark 2.17. It is possible to define a single algebraic structure to describe
all possible Moufang quadrangles; this gives rise to the so-called quadran-
gular systems which have been introduced by Tom De Medts in [DM05].
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These structures, however, have some disadvantages from an algebraic point
of view; most notably, the definition does not mention an underlying field of
definition (although it is possible to construct such a field from the data),
and the axiom system looks very wild and complicated, with no less than
20 defining identities.

In Section 5.5, we give a more elegant algebraic structure that describes
all possible Moufang quadrangles in characteristic different from 2 in a uni-
fied way. This algebraic structure is a module for a certain type of Jordan
algebras.

Below we give the case by case description of Moufang quadrangles as is
given in [TW02].

Moufang quadrangles of quadratic form type Moufang quadrangles
of quadratic form type are determined by an anisotropic quadratic form
q : V → k, where V is an arbitrary (possibly infinite-dimensional) vector
space over some commutative field k. The bilinear map associated by q is
denoted by f .

The root groups U1 and U3 are parametrized by (k,+) and the root
groups U2 and U4 are parametrized by (V,+). We consider the isomorphisms
x1 : k → U1, x3 : k → U3, x2 : V → U2 and x4 : V → U4. The commutator
relations are given by

[x2(v), x4(w)−1] = x3(f(v, w))

[x1(t), x4(v)−1] = x2(tv)x3(tq(v))

[U1, U3] = 1

(2.3)

for all v, w ∈ V and t ∈ k.

If d = dimk V is finite, then these Moufang quadrangles arise from linear
algebraic groups; they are of absolute type B`+2 if d = 2`+ 1 is odd, and of
type D`+2 if d = 2` is even.

Moufang quadrangles of involutory type Moufang quadrangles of in-
volutory type are determined by a skew field L equipped2 with an involution
σ. The root groups U2 and U4 are parametrized by (L,+) and the root
groups U1 and U3 are parametrized by (Lσ,+). We consider the isomor-
phisms x1 : Lσ → U1, x3 : Lσ → U3, x2 : L → U2 and x4 : L → U4. The
commutator relations are given by

[x2(a), x4(b)
−1] = x3(a

σb+ bσa)

[x1(t), x4(a)−1] = x2(ta)x3(a
σta)

[U1, U3] = 1

(2.4)

2If char(L) = 2, some more data are required, but this is not relevant for our purposes.
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for all a, b ∈ L and t ∈ Lσ.

If L is finite-dimensional over its center, of degree d, then these Moufang
quadrangles arise from algebraic groups; they are outer forms of A4d−1 if
the involution is of the second kind, and they are (inner or outer forms) of
absolute type D2d if the involution is of the first kind.

Moufang quadrangles of pseudo-quadratic form type Moufang quad-
rangles of pseudo-quadratic form type are determined3 by an anisotropic
pseudo-quadratic space, (L, σ,X, h, π) (see Section 2.2.2) of possibly infinite
degree.

Let

T = {(v, a) ∈ X × L | π(v)− a ∈ Lσ} (2.5)

be a group with addition defined for all v, w ∈ X and a, b ∈ L by

(v, a) + (w, b) = (v + w, a+ b+ h(w, v)).

This group is in general non-abelian and has identity (0, 0) and inverse
−(v, a) = (−v,−aσ) (see Lemma [TW02, 11.24]).

The root groups U2 and U4 are parametrized by (L,+); the root groups
U1 and U3 are parametrized by T . We consider the isomorphisms x1 : T →
U1, x3 : T → U3, x2 : L → U2 and x4 : L → U4. The commutator relations
are given by

[x1(v, a), x3(w, b)
−1] = x2(h(v, w))

[x2(a), x4(b)
−1] = x3(0, a

σb+ bσa)

[x1(v, a), x4(b)
−1] = x2(ab)x3(vb, b

σab)

(2.6)

for all a, b ∈ L and v, w ∈ X.

If L is finite-dimensional over its center, of degree d, and X is finite-
dimensional over L, then these Moufang quadrangles arise from algebraic
groups. If the involution is of the second kind, they are outer forms of
absolute type A`. If the involution is of the first kind, they are of absolute
type C` or D`.

On several occasions the following equivalent description of these Mou-
fang quadrangles will be more useful.

We define the group S = X × Lσ with addition for all v, w ∈ X and
t, s ∈ Lσ by

(v, t) + (w, s) = (v + w, t+ s+ 1
2(h(w, v)− h(v, w))). (2.7)

3Again, the situation is slightly more complicated in characteristic 2, but we omit the
details. Notice that when the characteristic is not 2, the pseudo-quadratic form π is in
fact uniquely determined by the skew-hermitian form h.
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The map

ϕ : T → S : (v, a) 7→ (v,−π(v) + a) (2.8)

is a group isomorphism. Now we let U1 and U3 be parametrized by S
and U2 and U4 be parametrized by L; we consider the isomorphisms x′1 =
x1 ◦ ϕ−1 : S → U1, x

′
3 = x3 ◦ ϕ−1 : S → U3, x

′
2 = x2 : L → U2 and x′4 =

x4 : L→ U4. Using (2.6), we obtain the following commutator relations (we
denote x′i by xi)

[x1(v, t), x3(w, s)
−1] = x2(h(v, w))

[x2(a), x4(b)
−1] = x3(0, a

σb+ bσa)

[x1(v, t), x4(b)
−1] = x2(π(v)b+ tb)x3(vb, b

σtb)

(2.9)

for all t, s ∈ Lσ, a, b ∈ L and v, w ∈ X.

Moufang quadrangles of type E6, E7 and E8 Moufang quadrangles
of type E6, E7 and E8 are parametrized by a quadrangular algebra Ω =
(k, L, q, 1, X, ·, h) of type E6, E7 or E8, respectively.

Let S = X × k be a group with addition defined by

(v, t) + (w, s) = (v + w, t+ s+ g(w, v)), (2.10)

for all v, w ∈ X and t, s ∈ k; this group is in general non-abelian, with
identity (0, 0) and inverse −(v, t) = (−v,−t).

Now the root groups U1 and U3 are parametrized by S and the root
groups U2 and U4 are parametrized by L. We consider the isomorphisms
x1 : S → U1, x3 : S → U3, x2 : L → U2 and x4 : L → U4. The commutator
relations are given by

[x1(v, t), x3(w, s)
−1] = x2(h(v, w))

[x2(a), x4(b)
−1] = x3(0, f(a, b))

[x1(v, t), x4(b)
−1] = x2(θ(v, b) + tb)x3(vb, tq(v))

(2.11)

for all t, s ∈ k, a, b ∈ L and v, w ∈ X.

These Moufang quadrangles arise from linear algebraic groups of type
2E16′

6,2 , E31
7,2 and E66

8,2.

Remark 2.18. Applying the construction of the previous paragraph to an
arbitrary quadrangular algebra always gives rise to a Moufang quadrangle.
Indeed, assume that Ω is a quadrangular algebra (k, L, q, 1, X, ·, h) arising
from a pseudo-quadratic space. Then Lσ = k, f(a, b) = aσb+ bσa,

θ(v, b) = 1
2h(v, vb) = 1

2h(v, v)b = π(v)b,
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g(w, v) = 1
2f(h(w, v), 1) = 1

2(h(w, v) + h(w, v)σ) = 1
2(h(w, v)− h(v, w)),

for all a, b ∈ L and v, w ∈ X. Therefore the addition of the group S given in
(2.7) and the group S given in (2.10) coincide; also the commutator relations
given by (2.9) and (2.11) coincide. See also [Wei06b, Theorem 11.11].

2.4 Moufang sets

Moufang sets are precisely the Moufang spherical buildings of rank one.
They can be defined from a purely group theoretic view point: A Moufang
set is essentially a doubly transitive permutation group G such that the point
stabilizer contains a normal subgroup which is regular on the remaining
vertices. These regular normal subgroups are called the root groups, and
they are assumed to be conjugate and to generate G. A good reference to
learn about Moufang sets is [DMS09].

2.4.1 Definitions and basic properties

There are some equivalent definitions of the notion of a Moufang set. First
we give the standard definition:

Definition 2.19. Let X be a set (with |X| ≥ 3) and {Ux | x ∈ X} be a
collection of groups. The set (X, {Ux}x∈X) is a Moufang set if the following
two properties are satisfied:

(M1) For each x ∈ X, Ux is a subgroup of Sym(X), Ux fixes x and Ux acts
regularly on X \ {x}. We will always denote the action of Ux on X
from the right.

(M2) We demand that for all g ∈ Ux

Ugy := g−1Uyg = Uyg.

The little projective group is defined by G+ := 〈Ux | x ∈ X〉. The groups Ux
are called the root groups of the Moufang set.

Note that (M1) implies that G+ acts doubly transitively on X.

Moufang sets are essentially equivalent to saturated split BN-pairs and
to abstract rank one groups, a notion that was introduced by Franz Timmes-
feld. In Chapter 6 we will use the viewpoint of an abstract rank one group:

Definition 2.20. An abstract rank one group is a group G together with
a pair (A,B) of subgroups such that A,B ≤ G are distinct nilpotent sub-
groups, G = 〈A,B〉, for each a ∈ A∗ there exists an element b(a) ∈ B∗ such
that Ab(a) = Ba, and for each b ∈ B∗ there exists an element a(b) ∈ A∗ such
that Ba(b) = Ab.



32 Chapter 2. The Moufang world

We then say that G is an abstract rank one group with unipotent sub-
groups A and B.

The following lemma shows that the two previous definitions are essen-
tially equivalent.

Lemma 2.21. (i) Let (X, {Ux}x∈X) be a Moufang set with nilpotent root
groups, and choose two arbitrary elements 0,∞ ∈ X. Then G+ =
〈U0, U∞〉 is an abstract rank one group.

(ii) Let G = 〈A,B〉 be an abstract rank one group. Define

Y := {Ag | g ∈ G} = {Ab | b ∈ B} ∪ {B}
= {Bg | g ∈ G} = {Ba | a ∈ A} ∪ {A}.

For all x ∈ Y , define Ux := x ≤ G. Let y ∈ Y and h ∈ Ux ≤ G, define
(y)h := yh. Therefore

(Ag)h = Agh.

Then (Y, {Ux}x∈Y ) is a Moufang set with4 G+ ∼= G/Z(G).

Proof. (i) is proven in [DMS09, Prop. 2.2.2]. (ii) is proven by combining
[DMS09, Prop. 2.2.3] and [DMS09, Prop. 2.1.3], although it is not hard to
verify this directly without doing the detour over BN-pairs. �

We remark that it is an open problem whether there exist Moufang sets
with root groups that are not nilpotent. All known examples of Moufang sets
have root groups of nilpotency class at most three, i.e. [[[Ux, Ux], Ux], Ux] = 1
for all x ∈ X.

In the following construction we show how one can describe a Moufang
set using only one group U and a permutation of U∗. The advantage of this
description is that the only required data are a group and a permutation.
This should be compared with Definition 2.19, where one needs a set X and
a collection of subgroups of Sym(X), and with Definition 2.20, where one
needs to describe the ambient group G (and two of its subgroups).

Construction 2.22. Let M = (X, (Ux)x∈X) be an arbitrary Moufang set,
and let 0 6=∞ ∈ X be two arbitrary elements.

Define the set U := X \ {∞}. For each a ∈ U define the unique element
αa ∈ U∞ that maps 0 to a. It follows from axiom (M1) that U∞ = {αa |
a ∈ U}.

We give U the structure of a group by defining a+ b := aαb = 0αaαb for
all a, b ∈ U . It is clear that this is a (not necessarily commutative) group,
with neutral element α0, and with α−1a = α−a. It follows that U ∼= U∞.

4We embed Ux in Sym(Y ) via the conjugation action.
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Lemma 2.23. For each a ∈ U \ {0} there exists a unique permutation
µa ∈ U∗0αaU∗0 ⊆ G+ interchanging 0 and ∞.

Proof. Let γ1, γ2 ∈ U∗0 , and let µa = γ1αaγ2. We require 0µa = ∞ and
∞µa = 0. The condition that 0γ1αaγ2 =∞ is equivalent with aγ2 =∞ and
the condition ∞γ1αaγ2 = 0 is equivalent with ∞γ1 = −a.

By (M1), γ1 and γ2 exist and are uniquely determined. Therefore µa
exists and is uniquely determined. �

Fix an element e ∈ U \ {0} and define τ := µe, this is a permutation of
X \ {0,∞} = U∗ that interchanges 0 and ∞.

Since τ and αa are both in G+ for all a ∈ U , we have U τ∞ = U∞τ = U0

and Uαa0 = U0αa = Ua.

It follows that in order to describe the Moufang set M = (X, (Ux)x∈X),
it is sufficient to know of the group U with the permutation τ . Therefore
we denote the Moufang set M = (X, (Ux)x∈X) by M(U, τ).

Remark 2.24. A slight disadvantage of this description is that the per-
mutation τ is not uniquely determined by the Moufang set. However, it is
shown in [DMS09, Lemma 4.1.2] that M(U, τ) = M(U, µa) for all a ∈ U∗,
and in fact, the data

(
U, (µa)a∈U∗

)
is uniquely determined by the Moufang

set.

Remark 2.25. Starting from an arbitrary group U together with a per-
mutation τ of U∗, one can apply the previous construction the other way
around. However, the result is not always a Moufang set. We refer to
[DMS09, section 3] for the details of this construction, and for the condition
needed on U and τ in order to get a Moufang set. If it does, we denote this
Moufang set by M(U, τ).

The following lemma, which we will need in the following section and in
Chapter 6, is given in [DMS09, Prop. 4.1.1].

Lemma 2.26. For all a ∈ U∗, we have

µa = ατ(−a)τ−1αaα
τ
−(aτ−1).

Proof. It follows from U0 = U τ∞ that U0 = {ατa | a ∈ U}. Using the proof
of Lemma 2.23, we know that µa = γ1αaγ2 with γ1 = ατx and γ2 = ατy for
some x, y ∈ U∗ such that ∞γ1 = −a and aγ2 =∞.

We find that xτ = −a and aτ−1αy = 0. We conclude that x = (−a)τ−1

and y = −(aτ−1). �

The following concept plays an important role in the theory of Moufang
sets.
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Definition 2.27. Let M(U, τ) be a Moufang set, let a ∈ U∗. Define the
Hua-map ha = τµa ∈ Sym(X). It is clear that the map ha fixes 0 and ∞;
it can be shown that (b + c)ha = bha + cha for all b, c ∈ U ; see the second
paragraph of the proof of [DMS09, Theorem 3.5].

Define the Hua group

H = 〈ha | a ∈ U∗〉 = 〈µaµb | a, b ∈ U∗〉 ≤ Aut(U).

A Moufang set is called proper if H 6= 1. The non-proper Moufang
sets are precisely the ones for which the little projective group is sharply
2-transitive.

Now we introduce what it means for Moufang sets to be isomorphic.

Definition 2.28. Let M1 = (X1, {Ux}x∈X1) and M2 = (X2, {Uy}y∈X2) be
two Moufang sets. We say that M1 and M2 are isomorphic if there exists a
bijection ϕ : X1 → X2 such that the induced map Sym(X1) → Sym(X2) :
g 7→ ϕ−1gϕ maps each root group Ux isomorphically to the corresponding
root group Uxϕ.

We call ϕ an isomorphism from M1 to M2.

Next we translate the definition of isomorphic Moufang sets into a more
useful criteria.

Lemma 2.29. (i) Let M1 = M(U1, τ1) and M2 = M(U2, τ2) be two Mou-
fang sets. Then M1 and M2 are isomorphic if and only if there exists
a group isomorphism ϕ : U1 → U2 such that τ2h = ϕ−1τ1ϕ for some
element h ∈ H2, the Hua group of M2.

(ii) Let M1 and M2 be two Moufang sets with corresponding abstract rank
one groups G1 = 〈A1, B1〉 and G2 = 〈A2, B2〉. Then M1 and M2 are
isomorphic if and only if there exists a group isomorphism ϕ : G1 → G2

such that A1.ϕ = A2 and B1.ϕ = B2.

Proof. (i) First assume that M1 = (X1, {Ux}x∈X1) = M(U1, τ1) and M2 =
(X2, {Uy}y∈X2) = M(U2, τ2) are isomorphic with isomorphism ϕ :
X1 → X2. We follow Construction 2.22 and choose two elements
01,∞1 ∈ X1 and fix 02 = 01.ϕ,∞2 =∞1.ϕ ∈ X2. Since the little pro-
jective group of M2 acts 2-transitively on X2, this is equivalent with
choosing 02,∞2 ∈ X2 arbitrary.
It is clear that for all a ∈ U∗1 , αϕa = ϕ−1αaϕ = αa.ϕ ∈ U∞2 ; therefore
µϕa = µa.ϕ. Now the restriction ϕ : U1 = X1\{∞1} → U2 = X2\{∞2}
is a group isomorphism, since for all a, b ∈ U1

(a+ b).ϕ = (aαb).ϕ = a.ϕαϕb = a.ϕαb.ϕ = a.ϕ+ b.ϕ.
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Now suppose that τ1 = µe1 and τ2 = µe2 for e1 ∈ U∗1 and e2 ∈ U∗2 , then

τϕ1 = µe1.ϕ = τ2µ
−1
e2 µe1.ϕ = τ2µ−e2µe1.ϕ.

This proves the claim since by definition, µ−e2µe1.ϕ ∈ H2.

Conversely, assume that there exists a group isomorphism ϕ : U1 → U2

and that τϕ1 = τ2h for some h ∈ H2. Notice that for i = 1, 2 it follows
from Construction 2.22 that

U∞i = {αa | a ∈ Ui}, U0i = U τi∞i
, Ua = Uαa0i

, Uh0i = U0i

for all a ∈ Ui.
First extend ϕ : X1 → X2 to a bijection of sets by defining∞1.ϕ =∞2.
Now

bαϕa = (b.ϕ−1 + a).ϕ = b+ a.ϕ = bαa.ϕ

for all a ∈ U1 and b ∈ U2, since ϕ is a group morphism. It follows that
αϕa = αa.ϕ, so in particular Uϕ∞1 = U∞2 , and therefore

Uϕ01 = U τ1ϕ∞1
= U

ϕτϕ1∞1 = U τ2h∞2
= U02

and
Uϕa = Uαaϕ01

= Uϕα
ϕ
a

01
= U

αa.ϕ
02

= Ua.ϕ.

It is now clear that ϕ induces group isomorphisms between correspond-
ing root groups.

(ii) This is clear from Lemma 2.21. �

2.4.2 Examples of Moufang sets

Moufang sets are far from being classified. Each linear algebraic group of
relative rank one gives rise to a Moufang set. However, only for a few
Moufang sets obtained from exceptional linear algebraic groups, an explicit
construction was known. Below we give the construction of Moufang sets of
type E78

7,1, F
21
4,1 and E66

7,1. Recently, a construction of Moufang sets of type
2E29

6,1 has been given in [Cal13].

Below we give a description of most of the known Moufang sets in char-
acteristic5 different from 2 and 3. If the characteristic is equal to 2 or 3,
certain more complicated structures of mixed type arise. In view of Theo-
rem 2.2, it is a cautious conjecture to assume that in characteristic different
from 2 and 3 all Moufang sets are obtained from linear algebraic groups or
from infinite dimensional classical groups.

5There is no well-defined notion (yet) of the characteristic of a Moufang set, but what
we mean is that the root groups have no elements of order 2 or 3. In all known examples,
however, there is a certain underlying field, and this condition is then equivalent to the
fact that this field has characteristic unequal to 2 or 3.
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2.4.2.1 Moufang sets from Jordan algebras

Let J be a Jordan division algebra (see Definition 1.9). Define U to be the
additive group of J , considered as vector space. Define for each x ∈ J \ {0}
the permutation x.τ = −x−1. Then M(U, τ) is a Moufang set.

In this case the Hua-map ha coincides with Ua, the U -operator in the
Jordan algebra. Therefore the Hua subgroup is equal to 〈Ua | a ∈ J \ {0}〉,
which is known as the inner structure group of J and is known to play an
important role in the theory of Jordan algebras.

The group U is abelian. All known examples of proper Moufang sets
with abelian rout groups can be described in this fashion. Below we give a
few examples.

Example 2.30. (i) Let J = A+ for some associative division k-algebra
A. The inverse in J is the same as the inverse in A. Therefore
M((A,+), x 7→ −x−1) is a Moufang set. If A = k, the little projective
group of the Moufang set is PSL2(k).

(ii) Let J be of quadratic form type with quadratic form q : J → k
with basepoint. It follows from [McC04, Theorem II.6.1.6] that x−1 =
x/q(x) for all x ∈ J , therefore M(J, x 7→ −x/q(x)) is a Moufang set.

If the Jordan algebra is exceptional, the corresponding Moufang set arises
from a linear algebraic group of type E78

7,1. In all the other cases the Moufang
set arises from a classical group.

2.4.2.2 Moufang sets of skew-hermitian type

Let (L, σ,X, h, π) be an anisotropic pseudo-quadratic space. Define the
group T ⊂ X × L as in (2.5) on page 29 and the involution (v, a).τ =
(−va−1,−a−1) for all (v, a) ∈ T ∗. Then M(T, τ) is a Moufang set of skew-
hermitian type.

We know that the group T is isomorphic to the group S = X × Lσ (see
(2.7)) by the isomorphism ϕ defined in (2.8). We determine a permutation
τ ′ of S∗ such that M(T, τ) is isomorphic to M(S, τ ′). It follows from Lemma
2.29 that τ ′ = ϕ−1τϕ will give rise to isomorphic Moufang sets:

(v, t).τ ′ =
(
−v(π(v) + t)−1, −(π(v) + t)−1

)
.ϕ

=
(
−v(π(v) + t)−1, −π(v(π(v) + t)−1)− (π(v) + t)−1

)
=
(
−v(π(v) + t)−1, −(−π(v) + t)−1t(π(v) + t)−1

)
. (2.12)
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2.4.2.3 Moufang sets of type F4

Let C be a division composition k-algebra with norm N(a) = aa and trace
T (a) = a+ a, define

U := {(a, b) ∈ C × C | N(a) + T (b) = 0}

with addition
(a, b) + (c, d) := (a+ c, b+ d− ca),

and the permutation τ on U∗ by

(a, b).τ := (−ab−1, b−1).

It is shown in [DMVM10] that M(U, τ) is a Moufang set. When C is an
octonion algebra, this Moufang set is of type F 21

4,1; in all other cases it comes
from a classical linear algebraic group. In [Cal13], it is shown that the Hua
maps are given by the formula

(x, y).h(a,b) =
(
(ab−1)((ba−1)(xb)), (ba−1)((ay)b)

)
for all (a, b), (x, y) ∈ U such that a 6= 0. If a = 0, we have (x, y).h(0,b) =
(xb,−byb).

Let t ∈ k; then (2t1,−2t21) ∈ U , and

(x, y).h(2t1,−2t21) = (−2t2x, 4t4y), (2.13)

for all (x, y) ∈ U .

In Chapter 6, we will make use of the following isomorphic description
of this Moufang set. Let U ′ = {(a, b) ∈ C × C | N(a) + T (b) = 0} with
addition

(a, b) + (c, d) := (a+ c, b+ d− ac)

and permutation
(a, b).τ ′ := (2b−1a, 4b−1).

It is easy to verify that M(U, τ) is isomorphic to M(U ′, τ ′) with isomorphism
ϕ : U → U ′ : (a, b) → (a, b), making use of (2.13) for t = 1. The under-
lying reason for this isomorphism is the fact that a composition algebra is
isomorphic with its opposite algebra.

2.4.2.4 Moufang sets obtained from Moufang polygons

To each Moufang polygon, one can associate two different Moufang sets (for
Moufang triangles, there is only one). The Moufang sets are described by
considering the local structure of the Moufang polygon. Below, we describe
to what types of Moufang sets the Moufang polygons give rise.
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Let Γ be a Moufang n-gon, fix two opposite vertices a0, an ∈ Γ. Since
the girth of Γ is 2n, each neighbor of a0 uniquely determines a root with
extremal vertices a0 and an. Let X be the set of neighbors of a0, thus X is
in one-to-one correspondence with the set of roots with extremal vertices a0
and an.

Let x ∈ X and let α be the corresponding root; we will denote the root
group Uα by Ux. Now (X, (Ux)x∈X) is a Moufang set. Indeed:

(M1): Let x ∈ X. It follows from the definition of a Moufang polygon that
the root group Ux stabilizes x and acts regularly on X \ {x}.

(M2): For x, y ∈ X, let g ∈ Ux. Since g ∈ Aut(Γ) that fixes a0 and an, it is
clear that if α is a root with extremal vertices a0 and an, α.g is also a
root with extremal vertices a0 and an. It follows that Ugy = Uy.g.

Actually, this is a special case of the fact that the residue at a vertex of
a Moufang spherical building of rank n is a Moufang spherical building of
rank n − 1, see [AB08, Prop 7.32]. In the above procedure we described a
rank one residue of the Moufang polygon.

We will describe the resulting Moufang set as M(U , τ). We start by
fixing some notations.

By Theorem 2.3 all apartments are equivalent, so we fix an apartment

Σ = (b1, b2, . . . , bn, . . . , b2n−1, b0, b1)

and define the sequence of root groups as in Theorem 2.3:

U1 = U(b1,...,bn+1), U2 = U(b2,...,bn+2), . . . , Un = U(bn,...,b0). (2.14)

We will also make use of the following root groups:

U0 = U(b0,...,bn), Un+1 = U(bn+1,...,b1). (2.15)

By the classification of Moufang polygons, we know that these root
groups are parametrized by an algebraic structure. If n = 3, U1

∼= U2
∼=

U3
∼= (A,+) for A an alternative division ring. If n > 3, U1

∼= U3
∼= . . . ∼=

Un−1 ∼= (A,+) and U2
∼= U4

∼= . . . ∼= Un ∼= (B,+) for some algebraic struc-
tures A and B which we do not specify for the moment.

We fix two opposite vertices a0 and an in the apartment Σ. If n > 3, the
isomorphism class of the Moufang set we will obtain depends on this choice.

If necessary we change the labeling of the apartment such that either
a0 = b1 and an = bn+1, or a0 = b0 and an = bn. In the first case the root
groups of the resulting Moufang set will be conjugate to U1

∼= (A,+); in the
second case the root groups of the resulting Moufang set will be conjugate
to Un ∼= (B,+).
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We follow Construction 2.22 to describe the Moufang set as M(U , τ).

As before, let X denote the set of neighbors of a0. We fix two vertices
0,∞ ∈ X ∩ Σ such that in the first case 0 := b0,∞ := b2 and in the
second case 0 := b1,∞ := b2n−2. In the terminology of (2.14) and (2.15),
it follows that U0 := Ub0 = Un+1, U∞ := Ub2 = U1 and U0 = Ub1 = U0,
U∞ := Ub2n−2 = Un, respectively6.

We define U = X \ {∞}; this is as a group isomorphic to U∞ with
isomorphism

U → U∞ : u 7→ αu.

We have U ∼= U∞ = U1
∼= (A,+) or U ∼= U∞ = Un ∼= (B,+) respectively,

so we will identify U with A or B, respectively. As in [TW02, p. 163], we
parametrize the root groups U1, . . . , Un by fixing isomorphisms xi from A
or B to Ui.

Let i = 1 or i = n respectively. For each u ∈ U , we have αu ∈ U∞ = Ui.
It follows that there exists a unique a ∈ A or a ∈ B such that αu = xi(a).
We define γ : U → A (or B) such that αu = xi(γ(u)). We show that γ is a
group isomorphism:

xi(γ(u+ v)) = αu+v = αuαv = xi(γ(u))xi(γ(v)) = xi(γ(u) + γ(v)),

for all u, v ∈ U . From now on we will simply say that U = A or B respec-
tively, implicitly making use of the isomorphism γ.

To determine the permutation τ of U , we can make use of calculations
done in [TW02, Chapter 32]. Although the result is written in the language
of Moufang quadrangles, we can easily deduce the permutation τ . In [TW02,
Chapter 32] the µ-maps are calculated; these maps are defined in Theorem
[TW02, 6.1]. When we translate this theorem to our terminology for i = a0,
we obtain the following:

Lemma 2.31 ([TW02, 6.1]). There exist unique functions κ, λ : U∗∞ → U∗0
such that 0gλ(g) =∞ and ∞κ(g)g = 0 for all g ∈ U∗∞. The product

µ(g) = κ(g).g.λ(g)

fixes a0 and an and reflects the apartment. This implies that 0 and ∞ are
interchanged by µ(g).

Let a ∈ U∗, and consider the corresponding map µa ∈ U∗0αaU∗0 defined
in Lemma 2.23. It follows from the uniqueness of this µ-map that

µa = µ(αa) = µ(xi(a)).

6Observe that we distinguish between U0 defined in the beginning of this section and
U0 defined in (2.15).
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Let i = 1 or i = n. In each case, we define the permutation τ = µei =
µ(xi(ei)) where we choose e1 ∈ A∗ ∼= U∗1 and en ∈ B∗ ∼= U∗n as in [TW02,
Fig. 5 on p. 354].

Note that we have U0 = Un+1
∼= U∞ = U1

∼= A or U0 = U0
∼= U∞ =

Un ∼= B, respectively. We have to choose a certain parametrization of U0.
As in [TW02, p. 354], we define

xn+1(a) := x1(a)τ = ατa for all types of Γ;

x0(b) := xn(b)τ = ατ
b

if Γ is of quadratic form type or of type E6, E7, E8,

x0(b) := xn(b)τ = ατb for the remaining types of Γ.

It follows from Lemma 2.26 and the above parametrizations that

µa = µ(x1(a)) = xn+1((−a)τ−1)x1(a)xn+1(−(aτ−1)), (2.16)

µb = µ(xn(b)) = x0((−b)τ−1)xn(b)x0(−(bτ−1)), (2.17)

or µb = µ(xn(b)) = x0((−b)τ−1)xn(b)x0(−(bτ−1)). (2.18)

In [TW02, Chapter 32], thee µ-maps have been calculated, and we can
therefore describe the τ of the Moufang set. As usual, we only describe the
cases that appear in characteristic not 2 and 3.

(1) In the case of Moufang triangles, the root groups are parametrized by
an alternative division algebra A. Then for all t ∈ A \ {0}, we have

µ(x1(t)) = x4(t
−1)x1(t)x4(t

−1).

Therefore by (2.16), U = (A,+) and t.τ = −t−1. If A is associative, this
is given in Example 2.30.(i). If A is an octonion algebra, its norm N
makes A into a quadratic space with basepoint. Since x−1 = x/N(x),
this Moufang set is described in Example 2.30.(ii).

(2) In the case of Moufang hexagons, the root group U1 is parametrized by
an anisotropic cubic norm structure J . For each a ∈ J \ {0}, we define
a−1 := a]/N(a). We have

µ(x1(a)) = x7(a
−1)x1(a)x7(a

−1).

Therefore by (2.16), U = (J,+) and a.τ = −a−1.
In the case that J is a cubic Jordan division algebra, it is shown in
[McC04, Theorem II.6.1.6] that a−1 is the Jordan inverse of a; therefore
we obtain a Moufang set as in Section 2.4.2.1.
The root group U1 is parametrized by the field k; we have

µ(x6(t)) = x0(t
−1)x6(t)x0(t

−1),

for all t ∈ k \ {0}. Therefore by (2.17), U = (k,+) and t.τ = −t−1, this
Moufang set is described in Example 2.30.(i).
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(3) In the case of Moufang quadrangles of quadratic form type, the root
group U4 is parametrized by a vector space V equipped with an aniso-
tropic quadratic form q. We have

µ(x4(v)) = x0(v/q(v))x4(v)x0(v/q(v)),

for all v ∈ V \ {0}. Therefore by (2.18), U = V and v.τ = −v/q(v), this
Moufang set is described in Example 2.30.(ii).
The root group U1 is parametrized by the field k; we have

µ(x1(t)) = x5(t
−1)x1(t)x5(t

−1),

for all t ∈ k \ {0}. The obtained Moufang set is described in Example
2.30.(i).

(4) In the case of Moufang quadrangles of involutory type, we let L be a
skew field. The root group U4 is parametrized by the additive group of
L; we have

µ(x4(u)) = x0(u
−1)x4(u)x0(u

−1),

for all u ∈ L \ {0}. Therefore by (2.17), U = (L,+) and u.τ = −u−1,
this Moufang set is described in Example 2.30.(i). The root group U1 is
parametrized by the additive group of Lσ; we have

µ(x1(a)) = x5(a
−1)x1(a)x5(a

−1),

for all a ∈ Lσ \ {0}. Therefore by (2.16), U = (Lσ,+) and a.τ = −a−1.
(5) In the case of Moufang quadrangles of pseudo-quadratic form type, we

let (L, σ,X, h, π) be an anisotropic pseudo-quadratic space. The root
group U4 is parametrized by the additive group of L; we have

µ(x4(u)) = x0(u
−1)x4(u)x0(u

−1),

for all u ∈ L \ {0}. Therefore this Moufang set is described in Example
2.30.(i).
The root group U1 is parametrized by T defined in (2.5); we have

µ(x1(v, a)) = x5(va
−σ, a−σ)x1(v, a)x5(−va−1, a−σ),

for all (v, a) ∈ T\{(0, 0)}. Therefore by (2.16), (v, a).τ−1 = (va−1,−a−1).
It follows that (v, a).τ = (−va−1,−a−1), thus this Moufang set coincides
with the one of skew-hermitian form type described in Section 2.4.2.2.

(6) In the case of Moufang quadrangles of type E6, E7 or E8, we let Ω =
(k, L, q, 1, X, ·, h, θ) be a quadrangular algebra of type E6, E7 or E8 with
characteristic different from 2.
The root group U1 is parametrized by X × k with addition given by
(2.10) on page 30. For all (x, t) ∈ X × k \ {(0, 0)}, we have
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µ(x1(x, t)) =

x5

(x · π(x) + tx

q(π(x)) + t2
,

t

q(π(x)) + t2

)
x1(x, t)x5

(x · π(x)− tx
q(π(x)) + t2

,
t

q(π(x)) + t2

)
.

(2.19)

Therefore by (2.16),

(x, t).τ−1 =
(−x · π(x) + tx

q(π(x)) + t2
,

−t
q(π(x)) + t2

)
.

One can verify using some identities in [TW02, (13.56) and (b) on p.
118] that

(x, t).τ =
(x · π(x)− tx
q(π(x)) + t2

,
−t

q(π(x)) + t2

)
. (2.20)

When the Moufang quadrangle is of type E8, this Moufang set is ob-
tained from a linear algebraic group of type E66

7,1. When the Moufang
quadrangle is of type E6 and E7, it is shown in [DM06] that this Moufang
set is isomorphic to a Moufang set of skew-hermitian type.
The root group U4 is parametrized by L; we have

µ(x4(v)) = x0(v/q(v))x4(v)x0(v/q(v)),

for all v ∈ L \ {0}. Just as in (3) we find that this is a Moufang set of
quadratic form type.

Remark 2.32. In the case when we consider a quadrangular algebra Ω =
(k, L, q, 1, X, ·, h, θ) that is a pseudo-quadratic space (see Remark 2.18), the
permutation τ in (2.12) coincides with the one in (2.20). Indeed, this is
clear when we rewrite (2.12) using the facts that Lσ = k and q(π(v)) =
π(v)σπ(v) = −π(v)π(v) ∈ k. We then find for all (v, t) ∈ X × k \ {(0, 0)}
that

(v, t).τ ′ =
(
−v(π(v) + t)−1, −(−π(v) + t)−1t(π(v) + t)−1

)
=
(
−v(−π(v) + t)(−π(v) + t)−1(π(v) + t)−1,

− t(−π(v) + t)−1(π(v) + t)−1
)

=
( vπ(v)− tv
q(π(v)) + t2

,
−t

q(π(v)) + t2

)
.



Chapter 3

The structurable world

Structurable algebras have been introduced by Bruce Allison in 1978. The
main motivation was to construct exceptional Lie algebras, by generalizing
the Tits–Kantor–Koecher construction, which constructs Lie algebras from
Jordan algebras.

Unfortunately, there is no good single source to get familiar with the
theory of structurable algebras, but instead, this material is spread out over
more than 10 articles written by Bruce Allison, John Faulkner and some
coauthors. In this chapter we tried to write an introduction to the theory of
structurable algebras, in such a way that this should give the reader enough
feeling with structurable algebras to find his way through this thesis. Of
course, we gave more attention to topics we will need, so this should not be
seen as a complete introduction to structurable algebras. We do not include
any proofs, but we tried to give precise references to where the proofs can
be found.

In Sections 3.1 and 3.2 we discuss some basic notions and notations. In
Section 3.3 we discuss the classification of structurable algebras and give the
main examples of structurable algebras. The structurable algebras discussed
in Section 3.3.4 will play a leading role in Chapter 4; the ones in Section
3.3.5 play a leading role in Chapter 5.

In Section 3.4 we discuss the Tits–Kantor–Koecher construction of Lie
algebras. In Section 3.5 we discuss the notion of an isotopy between struc-
turable algebras, this turns out to be the right notion of ‘equivalent’ struc-
turable algebras. In Section 3.6 we go a bit further back in history and
discuss some aspects of Freudenthal triple systems, and their relation with
structurable algebras. In Section 3.7 we give the definition of J-ternary al-
gebras. They are an early attempt of Bruce Allison to define a model to
describe all isotropic Lie algebras.

43
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3.1 Definitions and basic properties of structurable
algebras

Structurable algebras are algebras equipped with an involution and triple
product. This triple product is in some sense of more importance than the
multiplication of the algebra. Structurable algebras can only be defined over
fields of characteristic different from 2 and 3.

Definition 3.1. A structurable algebra over a field k of characteristic not 2
or 3 is a finite-dimensional, unital k-algebra with involution1 (A, )̄ such that

[Vx,y, Vz,w] =V{x,y,z},w − Vz,{y,x,w} (3.1)

for x, y, z, w ∈ A where Vx,yz := {x, y, z} := (xy)z + (zy)x− (zx)y.

For all x, y, z ∈ A, we write Ux,yz := Vx,zy and Uxy := Ux,xy. We
will refer to the maps Vx,y ∈ Endk(A) as V -operators, and to the maps
Ux,y ∈ Endk(A) and Ux ∈ Endk(A) as U -operators.

Structurable algebras are not necessarily associative nor commutative;
they are generalizations of both associative algebras with involution and
Jordan algebras. In particular structurable algebras with identity involution
are exactly the Jordan algebras, see Section 3.3.2.

In [All79] and [All78], a structurable algebra is defined as an algebra
with involution which satisfies

[Tz, Vx,y] =VTzx,y − Vx,Tzy (3.2)

for all x, y, z ∈ A with Tx := Vx,1. The equivalence of (3.1) and (3.2) follows
from [All79, Corollary 5.(v)].

As usual, the commutator and the associator are defined as

[x, y] = xy − yx, [x, y, z] = (xy)z − x(yz),

for all x, y, z ∈ A. For each x ∈ A, we define the operator Lx : A → A by

Lx(y) := xy.

Let (A, )̄ be a structurable algebra; then A = H⊕ S for

H = {h ∈ A | h = h} and S = {s ∈ A | s = −s}.

The dimension of S is called the skew-dimension of A; we sometimes call ele-
ments of S skew-hermitian elements or briefly skew-elements. Skew-elements
tend to behave ‘nicer’ than arbitrary elements of the structurable algebra.

1An involution is a k-linear map of order 2 such that xy = y x.
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A structurable algebra (A, )̄ is skew-alternative, i.e.

[s, x, y] = −[x, s, y] = [x, y, s], ∀s ∈ S, ∀x, y ∈ A, (3.3)

see [All78, Prop. 1]. This implies that for all s, t ∈ S and x ∈ A

[s, s, x] = [x, s, s] = [s, x, s] = 0, (3.4)

s[t, s, x] = −[s, ts, x], [x, s, t]s = −[x, st, s]. (3.5)

The identities (3.5) are weak versions of two of the Moufang identities (see
Lemma 1.8(v)). The following map is of crucial importance in the study of
structurable algebras:

ψ : A×A → S : (x, y) 7→ xy − yx.

We list some identities. For all x, y ∈ A and s ∈ S, we have

Ux,y − Uy,x = Lψ(x,y), (3.6)

Vx,sy − Vy,sx = −Lψ(x,y)Ls, (3.7)

sψ(x, y)s = −ψ(sx, sy), (3.8)

LsUx,yLs = −Usx,sy. (3.9)

Identity (3.6) follows from the definition of the U -operator; (3.7) is
proven in [All79, Lemma 2]; (3.8) is [AH81, Lemma 11.2], writing this out
yields s(xy)s − s(yx)s = (sx)(ys) − (sy)(xs), which is a weak form of the
first classical Moufang identity; (3.9) is [AH81, Prop. 11.3].

A structurable algebra (A, ) is simple if its only ideals2 are {0} and A;
(A, ) is central if its center

Z(A, ) = Z(A) ∩H
= {c ∈ A | [c,A] = [c,A,A] = [A, c,A] = [A,A, c] = 0} ∩ H

is equal to k1.

We quote some interesting results that give a structure theory for struc-
turable algebras. The radical of A is the largest solvable3 ideal of A. A
structurable algebra is semisimple if its radical is zero.

If char(k) 6= 2, 3, 5, a semisimple structurable algebra is the direct sum
of simple structurable algebras (see [Smi92, Section 2] for the general case;
[Sch85, Section 2] for the characteristic zero case). If char(k) = 0, [Sch85,
Theorem 10] states that if A is a structurable algebra with radical R, there
exists a semisimple structurable subalgebra B ≤ A such that A = B ⊕R.

2An ideal of A is a two-sided ideal stabilized by .
3An ideal I is solvable if there exists a k ∈ N such that I2

k

= 1.
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3.2 Conjugate invertibility in structurable alge-
bras

For structurable algebras there is a notion of invertibility that generalizes
the invertibility in Jordan algebras.

Definition 3.2. Let (A, ) be a structurable algebra. An element u ∈ A is
said to be conjugate invertible if there exists an element û ∈ A such that

Vu,û = id, or equivalently Vû,u = id. (3.10)

If u is conjugate invertible, then the element û is uniquely determined, and
is called the conjugate inverse of u. For long expressions we will denote

u∧ := û = û.

If u is conjugate invertible, the operator Uu is invertible and we have

û = U−1u u. (3.11)

All the above facts are proven in [AH81, Sec. 6].

If each element in A\{0} is conjugate invertible, A is called a conjugate
division algebra or a structurable division algebra.

If A is an associative algebra with involution and u ∈ A is invertible,
then û = u−1; this motivates the term “conjugate inverse”.

For skew-elements, a more elegant criterion for conjugate invertibility
exists: an element s ∈ S is conjugate invertible if and only if Ls is invertible.
If s ∈ S is conjugate invertible, we have

ŝ = −L−1s 1 ∈ S, (3.12)

LŝLs = LsLŝ = −id. (3.13)

All those facts are proven in [AH81, Prop 11.1]. Note that sŝ = ŝs = −1.

The following formula (see [All86a, Prop 2.6]) allows to determine the
conjugate inverse of any invertible element, if one can determine the conju-
gate inverse of any invertible skew-element. Let u ∈ A and s ∈ S be both
conjugate invertible; then ψ(u, Uu(su)) is conjugate invertible and

û = 2
(
ψ(u, Uu(su))

)∧
Uu(su). (3.14)

An interesting article that provides a criterion for invertibility of elements
is [AF92]. The authors define the conjugate norm of a structurable algebra
as the exact denominator of the conjugate inversion map. If A is either
a Jordan algebra or an alternative algebra with involution, the conjugate
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norm is given by the generic norm of A. An element x ∈ A is conjugate
invertible if and only if N(x) 6= 0, where N denotes the conjugate norm of
A. The conjugate degree of a structurable algebra is defined as the degree
of the conjugate norm.

In the following section we will give some criteria for invertibility of
elements in some specific examples of structurable algebras.

3.3 Examples of structurable algebras

Central simple structurable algebras over fields of characteristic different
from 2, 3 and 5 are classified; they consist of six (non-disjoint) classes:

(1) central simple associative algebras with involution,
(2) central simple Jordan algebras,
(3) structurable algebras constructed from a non-degenerate hermitian form

over a central simple associative algebra with involution,
(4) simple structurable algebras of skew-dimension 1,
(5) forms of the tensor product of two composition algebras,
(6) an exceptional 35-dimensional case, which can be constructed from an

octonion algebra.

When the characteristic is zero the classification was carried out by Alli-
son in [All78], but in this paper class (6) was overlooked. The classification
was completed and generalized to fields of characteristic different from 2, 3, 5
by Smirnov in [Smi92].

Below we describe classes (1)-(5) and give some specific properties of
each class. Since we do not need it, we do not describe class (6) but refer to
[Smi90] and [AF93].

Although we defined structurable algebras to be finite dimensional alge-
bras, the examples (1), (2), (3) can of course also be defined in the infinite
dimensional case.

3.3.1 Associative algebras with involution

Let (A, ) be an associative algebra with involution. It is proven in [All78,
Example 8.i] or in [Sch85, p. 411] that A is a structurable algebra. An
element of A is conjugate invertible if and only if it is invertible in the usual
associative sense4 (see [All86b, p. 142]). If u ∈ A is invertible, it is clear
that Vu,u−1 = id, therefore û = u−1.

4An element u in an associative algebra is invertible if there exists an u−1 ∈ A such
that uu−1 = u−1u = 1.
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3.3.2 Jordan algebras

Let A be a Jordan algebra and let = id. In this case the V -operator of
structurable algebras is equal to the V -operator of Jordan algebras defined as
Vx,yz := Ux,zy = (Lxy + [Lx, Ly])z (see Definition 1.9); the defining identity
of structurable algebras is a known identity in the theory of Jordan algebras,
see for example formula (FFV)’ of [McC04, p. 202].

In particular, each structurable algebras with trivial involution (equiv-
alently with skew-dimension zero) is a Jordan algebra; this is verified in
[All78, p.135, Remark (ii)]).

Let u ∈ A be invertible; then Vu,u−1 = Luu−1 + [Lu, Lu−1 ] = id. On the
other hand, if u is conjugate invertible, then Uu is invertible and hence u
is invertible. Therefore an element is conjugate invertible if and only if it
is invertible in the usual Jordan sense and the conjugate inverse is equal to
the Jordan inverse.

3.3.3 Hermitian structurable algebras

This class of structurable algebras is constructed from a hermitian space.

Definition 3.3. Let (E, )̄ be a unital associative algebra with involution
over a field k. Let W be a unital left E-module, and let h : W ×W → E be
a hermitian form (see Definition 1.4.(ii)).

It is proven in [All78, Sec. 8.(iii)] that E ⊕W is a structurable algebra
with the following involution and multiplication:

e+ w = e+ w,

(e1 + w1)(e2 + w2) = (e1e2 + h(w2, w1)) + (e2w1 + e1w2),

for all e, e1, e2 ∈ E and all w,w1, w2 ∈W .

It is clear that S = {e ∈ E | e = −e}. After some calculations we find
that

ψ(e1 + w1, e2 + w2) = (e1e2 − e2e1)− (h(w1, w2)− h(w1, w2)), (3.15)

Ve1+w1,e2+w2(e3 + w3) =

(e1e2 + h(w1, w2))e3 + (e1e2 + h(w1, w2))w3

+ (e3e2 + h(w3, w2))e1 + (e3e2 + h(w3, w2))w1

+ (−e3e1 + h(w3, w1))e2 + (e3e1 − h(w3, w1))w2,
(3.16)

for all e1, e2, e3 ∈ E, w1, w2, w3 ∈W .
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[All86b, Prop. 4.1] states that the structurable algebra E ⊕W is cen-
tral simple if and only if E is central simple, h is non-degenerate and
dim(E) dim(W ) 6= 1. Furthermore it states that e + w ∈ E ⊕W is con-
jugate invertible if and only if ee − h(w,w) is invertible in E; if e + w is
conjugate invertible the conjugate inverse is given by

ê+ w = (ee− h(w,w))−1(e− w). (3.17)

Therefore A = E ⊕W is a conjugate division algebra if and only if E is a
division algebra and if for all 0 6= w ∈ W we have h(w,w) 6= 0, 1. If s ∈ S
is conjugate invertible, then ŝ = −s−1.

Notice that the decomposition of A in the disjoint sum of E and W is
not uniquely defined. We want to be able to define a structurable algebra
on the hermitian space W , and not only on the bigger space E ⊕W .

Remark 3.4. (i) On the structurable algebra A = E ⊕W we can define
various hermitian spaces. Let A be an E-module by defining

e1 · (e2 + w) = e1e2 + e1w

for all e1, e2 ∈ E, w ∈W . Then for all choices of t1, t2 ∈ k, the map

H : A×A → E : (e1 + w1, e2 + w2) 7→ t1e1e2 + t2h(w1, w2)

is a hermitian form on A.
(ii) Assume now that E is a skew field with involution and that X is a left

E-module equipped with a hermitian form H : X ×X → E such that
H(x, x) 6= 0 for all 0 6= x ∈ X. We will define a structurable algebra
on X. Fix 0 6= ξ ∈ X. We embed E into X by identifying it with Eξ,
and we define the orthogonal complement in X of Eξ by

(Eξ)⊥ = {x ∈ X | h(ξ, x) = 0};

it follows that X = (Eξ) ⊕ (Eξ)⊥. We make Eξ into a skew field by
defining

(aξ)(bξ) = (ab)ξ, aξ = aξ

for all a, b ∈ E. We define an action of Eξ on (Eξ)⊥ by (aξ)x = ax
for all a ∈ E and x ∈ (Eξ)⊥. We now restrict our hermitian form H
to (Eξ)⊥ by defining

h : (Eξ)⊥ × (Eξ)⊥ → Eξ : (x, y) 7→ h(x, y)ξ.

Using the hermitian form h, the hermitian space X = (Eξ) ⊕ (Eξ)⊥

becomes a structurable algebra with the involution and multiplication
given by

eξ + x = eξ + x,
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(e1ξ + x1)(e2ξ + x2) = (e1e2 + h(x2, x1))ξ + (e2x1 + e1x2).

This construction depends on the choice of ξ. We believe that different
choices for ξ give rise to isotopic structurable algebras, but we were
not (yet) able to prove this.

(iii) The constructions given in (i) and in (ii) are inverses of each other, in
the following sense. When we start withA equipped with the hermitian
form H with t1 = t2 = 1 from (i), and apply (ii) with ξ = 1 ∈ E, we
obtain exactly the structurable algebra A. Conversely, when we start
with a hermitian space X equipped with a hermitian form H as in
(ii), we see that H(e1ξ + x1, e2ξ + x2)ξ = e1H(ξ, ξ)e2ξ + h(x1, x2) is a
hermitian form given in (i) if h(ξ, ξ) ∈ k.

3.3.4 Structurable algebras of skew-dimension one

Structurable algebras of skew-dimension one are, among the structurable
algebras, closest to Jordan algebras. In [All90] and [AF84], this type of
structurable algebras has been studied. We give some useful results ob-
tained in those articles. Structurable algebras of skew-dimension one have
an interesting connection with Freudenthal triple systems; see Section 3.6.

In this section A is a structurable algebra of skew-dimension one. We
fix a non-zero element s0 ∈ S, so S = ks0. By [AF84, Lemma 2.1], s20 = µ1
for some µ ∈ k∗, therefore s0(s0x) = (xs0)s0 = µx; it is also shown that a
simple structurable algebra of skew-dimension one is always central.

If A is simple, then the bilinear map ψ is non-degenerate (see [AF84,
Lemma 2.2]). Define the quartic form ν : A → k given by

ν(x) =
1

6µ
ψ(x, Ux(s0x))s0, (3.18)

by identifying k1 with k. It is easy to see that ν(1) = 1 and that ν is
independent of the choice of s0. This map plays the role of the norm of A.

By [AF84, Prop. 2.11], an element x ∈ A is conjugate invertible if and
only if ν(x) 6= 0. When this is the case, we have

x̂ = − 1

3µν(x)
s0Ux(s0x). (3.19)

We will now discuss an important class of structurable algebras of skew-
dimension one, which we will call structurable matrix algebras. The multi-
plication of these algebras is similar to the multiplication of split octonions
when represented by Zorn matrices.

Definition 3.5. Let J be a Jordan algebra over a field k, let T : J ×J → k
be a symmetric bilinear form, let × : J × J → J be a symmetric bilinear
map, and let N : J → k be a cubic form such that one of the following holds:
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(i) J is a cubic Jordan algebra with a non-degenerate admissible form N
with basepoint 1 and trace form T and × as in Definition 1.10(iv).

(ii) J is a Jordan algebra of a non-degenerate quadratic form q with base-
point 1, and T is the linearization of q. In this case, N and × are the
zero maps.

(iii) J = 0, N = 0, T = 0 and × = 0. In this case, J is not unital.

We define the structurable matrix algebras as follows. Fix a constant
η ∈ k, and define

A =

{(
k1 j1
j2 k2

) ∣∣∣ k1, k2 ∈ k, j1, j2 ∈ J} .
Define the involution and multiplication as follows:(

k1 j1
j2 k2

)
=

(
k2 j1
j2 k1

)
,

(
k1 j1
j2 k2

)(
k′1 j′1
j′2 k′2

)
=

(
k1k
′
1 + ηT (j1, j

′
2) k1j

′
1 + k′2j1 + η(j2 × j′2)

k′1j2 + k2j
′
2 + j1 × j′1 k2k

′
2 + ηT (j2, j

′
1)

)
,

for all k1, k2, k
′
1, k
′
2 ∈ k, j1, j2, j

′
1, j
′
2 ∈ J . We denote this structurable matrix

algebra by M(J, η). It is proven in [All78, Sec 8.v] and [AF84, Sec 4] that
M(J, η) is a simple structurable algebra.

The following proposition explains the importance of structurable matrix
algebras.

Proposition 3.6 ([AF84, Prop. 4.5]). Let A be a structurable algebra of
skew-dimension one with s20 = µ1. Then A is isomorphic to a structurable
matrix algebra M(J, η) if and only if µ is a square in k.

It follows that all structurable algebras of skew-dimension one are forms
of structurable matrix algebras, which can always be split by a field extension
of degree at most 2.

The algebras in classes (1) and (3) on page 47 have skew-dimension 1 if
and only if the associative algebra with involution has skew-dimension 1.

It follows by combining Proposition 4.4 and Theorem 4.11 of [All90] that
A is a form of a structurable matrix algebra with N = 0 if and only if A
is isomorphic to a structurable algebra of a non-degenerate hermitian form
over a 2-dimensional composition algebra; in this case the conjugate degree
of the algebra is equal to 2.

In all the other cases the conjugate degree of A is 4 and the quartic form
ν defined in (3.18) is the conjugate norm of A.

It is an open problem to determine explicitly all structurable algebras of
skew-dimension one. Examples of structurable algebras of skew-dimension
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one that are not isomorphic to structurable matrix algebras can be obtained
by applying a Cayley–Dickson process to a certain class of Jordan algebras.

In [AF84, p. 200] it is shown how this procedure can be seen as a gen-
eralization of the classical Cayley–Dickson process to construct composition
algebras.

The Cayley–Dickson process for structurable algebras We will now
briefly explain the Cayley–Dickson process, and refer to [AF84] for more
details. In order to obtain a structurable algebra, one needs to start from a
Jordan algebra equipped with a Jordan norm of degree 4.

Definition 3.7. Let J be a Jordan algebra over k. A form Q : J → k of
degree 4 is a Jordan norm of degree 4 if:

(i) 1 ∈ J is a basepoint of Q, i.e. Q(1) = 1;
(ii) Q(Ujj

′) = Q(j)2Q(j′) for all j, j′ ∈ J⊗kK for all field extensions K/k;
(iii) The trace form

T : J × J → k : (j, j′) 7→ Q(1; j)Q(1; j′)−Q(1; j, j′)

is a k-bilinear non-degenerate form.

The main examples of Jordan algebras with a Jordan norm of degree
4 are separable Jordan algebras of degree 4 with their generic norm and
separable Jordan algebras of degree 2 with the square of their generic norm.
In [All90, Prop. 5.1] Jordan norms of degree 4 are classified.

If J is a separable Jordan algebra of degree 4, it is shown in [AF84,
Theorem 5.4] that one can give the space J0 = {x ∈ J | T (x, 1) = 0}
the structure of a separable Jordan algebra of degree 3 and thus of a cubic
Jordan algebra.

Definition 3.8. Let J be a Jordan algebra with Q a Jordan norm of degree
4 with trace T . Consider the k-linear bijection θ on J given by

bθ = −b+ 1
2T (b, 1)1,

for all b ∈ J ; observe that θ2 = 1.

Let µ ∈ k∗, and define the algebra CD(J,Q, µ) := J ⊕ s0J , with multi-
plication and involution given by

(j1 + s0j
′
1)(j2 + s0j

′
2) = j1j2 + µ(j′1j

′θ
2 )

θ
+ s0

(
jθ1j
′
2 + (j′θ1 j

θ
2)θ),

j + s0j′ = j − s0j′θ,

for all j1, j
′
1, j2, j

′
2, j, j

′ ∈ J . By [AF84, Theorem 6.6], this is a simple struc-
turable algebra with skew-dimension one and S = ks0.
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Since (ts0)
2 = t2µ, it follows from Proposition 3.6 that the structurable

algebra CD(J,Q, µ) is isomorphic to a structurable matrix algebra if and
only if µ is a square in k.

This procedure can be used to construct central simple structurable di-
vision algebras of skew-dimension one.

Lemma 3.9 ([AF84, Theorem 7.1]). Let J be a Jordan division k-algebra
with Jordan norm of degree 4. Define the field E = k(ξ) with ξ transcen-
dental over k, let J ′ = J ⊗k E and let Q′ be the extension of Q to J ′. Then
CD(J ′, Q′, ξ) is a central simple structurable division algebra over k.

3.3.5 Forms of the tensor product of two composition alge-
bras

For the first part of this section we allow the characteristic of k to be equal
to 3, but we still demand that it is different from 2.

Let C1 and C2 be two composition algebras over k (possibly of differ-
ent dimension) with involution σ1 and σ2, respectively. We denote m1 :=
dimk(C1) and m2 := dimk(C2). If A = C1 ⊗k C2, we say that A is an
(m1,m2)-product algebra. We let A be equipped with the involution

= σ := σ1 ⊗ σ2.

If char(k) 6= 2, 3, it is proven in [All78, Sec 8.(iv)] that (A, ) is a structurable
algebra.

Definition 3.10. A k-algebra A is a form of the tensor product of two com-
position algebras, if there exists a field extension E/k and two composition
algebras C1, C2 over E such that A⊗k E ∼= C1 ⊗E C2.

The article [All88] gives a lot of information on this type of algebras.
This article assumes that the base field has characteristic zero, but several
results remain valid in general characteristic different from 2.

Lemma 3.11 ([All88, Th. 2.1] and [AF92, Prop. 7.9]). If A is a form of
the tensor product of two composition algebras, then either A is isomorphic
to the tensor product of two composition algebras defined over k, or in the
case that dimE(C1) = dimE(C2) > 1 we can choose E such that it has degree
2 over k.

If A is a form of the tensor product of two composition algebras of
the same dimension m such that A is itself not isomorphic to the tensor
product of two composition algebras, then A can be constructed from one
composition algebra C of dimension m over a quadratic field extension E/k
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using the corestriction functor; see [All88, p. 671] for the precise construction
and the proof that this algebra is structurable in characteristic different from
2 and 3. In this case, A is called a twisted (m,m)-product algebra.

By [All88, Prop. 2.2], the (m1,m2)-product algebras and the twisted
(m,m)-product algebras are central simple, except for (m1,m2) = (2, 2) and
(m,m) = (2, 2). Each (twisted) (m1,m2)-product algebra for m1,m2 ≤ 4 is
associative and each (8, 1)- or (8, 2)-product algebra is alternative (see p. 6).

In this thesis we will only make use of (m1,m2)-product algebras and not
of twisted (m,m)-product algebras. Therefore we only give the following def-
initions and properties in the case where A = C1⊗kC2; these definitions and
properties can be analogously defined for twisted (m,m)-product algebras
(see [All88, Sec. 3]). We will need these properties in fields of characteristic
different from 2, but sometimes equal to 3. In this case A is strictly speaking
not a structurable algebra.

Let C1 and C2 be two composition algebras with involution σ1 and σ2
and norm form q1 and q2, respectively. Let Si be the set of skew-elements
in Ci, i.e.

Si = {x ∈ Ci | xσi = −x}.

Let C1⊗kC2 be a (m1,m2)-product algebra equipped with the involution
= σ := σ1 ⊗ σ2. It follows that the set of skew-elements in C1 ⊗k C2 is

equal to

S = {x ∈ C1 ⊗k C2 | x := xσ = −x} = (S1 ⊗ 1)⊕ (1⊗ S2);

observe that dimk S = dimk C1 + dimk C2 − 2.

Definition 3.12. (i) We will associate a quadratic form qA to C1 ⊗k C2,
called the Albert form, by setting

qA : S → k : (s1 ⊗ 1) + (1⊗ s2) 7→ q1(s1)− q2(s2)

for all s1 ∈ S1 and s2 ∈ S2. We have qA ⊥ H = q1 ⊥ (−1)q2 and when
we denote q′i = qi|Si for the pure part of the Pfister form qi, we have
qA = q′1 ⊥ 〈−1〉q′2.

(ii) For each s = s1 ⊗ 1 + 1⊗ s2 ∈ S, we define

(s1 ⊗ 1 + 1⊗ s2)\ = s1 ⊗ 1− 1⊗ s2.

(iii) Let s ∈ S such that qA(s) 6= 0. Then we say that s is invertible and
define the inverse of s by

s−1 := − 1

qA(s)
s\.
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The Albert form was introduced by Abraham A. Albert in the case where
C1 and C2 are both quaternion algebras.

Tensor products of two composition algebras are far from being asso-
ciative or alternative, but (as usual) the skew-elements behave more nicely
than arbitrary elements:

Lemma 3.13. For all x ∈ C1 ⊗k C2, s1, s2, s ∈ S, we have

(i) s1(s2s1) = (s1s2)s1;
(ii) (s1s2s1)x = s1(s2(s1x));
(iii) If s is invertible then s(s−1x) = s−1(sx) = x.

Proof. These identities can be easily verified using Lemma 1.8. �

In the case that both C1 and C2 are quaternion algebras, C1 ⊗k C2 is
associative; Albert proved that C1⊗kC2 is a division algebra if and only if its
Albert form is anisotropic (see [Lam05, Theorem III.4.8].) It is not obvious
to generalize this result to arbitrary composition algebras. The proof of the
following theorem makes use of the Lie algebra associated to the structurable
algebra constructed in section 3.4.

Theorem 3.14 ([All86b, Theorem 5.1] ). Let char(k) = 0 and A a (twisted)
(8,m2)-product algebra. Then A is a conjugate division algebra if and only
if the Albert form on S is anisotropic.

It seems plausible that this result can be generalized to arbitrary fields
of characteristic different from 2 and 3. However the method followed in the
proof of the above theorem can not be generalized.

Note that it follows from Lemma 3.13.(iii) and (3.12) that s ∈ S is
invertible (equivalent with qA(s) 6= 0) if and only if s is conjugate invertible,
in which case ŝ = −s−1. Therefore it is clear that if C1⊗k C2 is a conjugate
division algebra, qA has to be anisotropic and C1 and C2 are (conjugate)
division algebras.

The following theorem is useful in the case that A is an (8, 1)- or (8, 2)-
algebra, since then A is alternative.

Theorem 3.15 ([All86a, Cor. 3.7]). Let A be an alternative algebra with
involution over a field of characteristic different from 2 and 3. Then A is a
conjugate division algebra if and only if A is a division algebra, i.e. for all
0 6= x ∈ A there exists an x−1 ∈ A such that xx−1 = x−1x = 1.

If C1 ⊗k C2 is a conjugate division algebra, then by Definition 3.12(iii)
we do have an nice expression to determine the conjugate inverse of skew-
elements. Formula (3.14) can be used to give an expression for the conjugate
inverse of an arbitrary element of C1 ⊗k C2.
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Lemma 3.16. Let char(k) 6= 2, 3. Let A = C1 ⊗k C2 with C1 an octonion
k-algebra. Suppose that qA is anisotropic.

• If dimk(C2) = 2, 4, then A is a conjugate division algebra.
• If dimk(C2) = 8 and if for all 0 6= x ∈ A there exists an s ∈ S such

that ψ(x, Ux(sx)) 6= 0 then A is a conjugate division algebra.

Proof. Since q1 ⊥ −q2 = qA ⊥ H, it follows from the fact that qA is aniso-
tropic that q1 and q2 are both anisotropic, therefore C1 and C2 are division
algebras. Furthermore all skew-elements different from 0 are conjugate in-
vertible.

• If dimk(C2) = 2, C1 ⊗k C2 is alternative. By [All86a, Theorem 3.4],
an element x ∈ A is conjugate invertible if and only if xx is invertible.
Therefore we only have to check invertibility for elements in H. Let
t1⊗ 1 + s⊗ e ∈ H; then

(t1⊗ 1 + s⊗ e)(t1⊗ 1− s⊗ e) = (t2 −N(s)N(e))1.

Since qa is anisotropic, we have N(s−1) 6= N(e), thus t2 6= N(e)N(s);
hence we constructed an inverse for each element in H.
• If dimk(C2) = 4, [AF92, Theorem 8.7] implies that x ∈ A is con-

jugate invertible if there exists an s0 = 1 ⊗ s2 ∈ S \ {0} such that
qA(ψ(x, xs0)) 6= 0. Since qA is anisotropic, x ∈ A is conjugate invert-
ible if there exists an s0 = 1⊗ s2 ∈ S \ {0} such that ψ(x, xs0) 6= 0.
Below we indicate how one can show that for all x ∈ A \ {0} there
exists an s0 = 1⊗ s2 ∈ S \ {0} such that ψ(x, xs0) 6= 0. It follows that
A is a conjugate division algebra.
We take x ∈ A arbitrary and assume that ψ(x, xs0) = 0 for all s0 =
1⊗ s2 ∈ S. Since s0 ∈ 1⊗C2 and C2 is associative, s0 associates with
all elements in C1 ⊗k C2. Therefore

ψ(x, xs0) = x(xs0)− (xs0)x = −2x(s0x).

Let {1, i, j, ij} be a basis of C2; then each element in C1 ⊗k C2 can be
written as x1 ⊗ 1 + x2 ⊗ i + x3 ⊗ j + x4 ⊗ ij for some x1, . . . , x4 ∈ C1.
By expanding the equality x(s0x) = 0 for s0 = 1⊗ i and for s0 = 1⊗ j,
one can show that x = 0 using the fact that qA is anisotropic.
• If dimk(C2) = 8, [AF92, Theorem 9.6] implies that x ∈ A is conjugate

invertible if there exists a conjugate invertible element s ∈ S such that
qA(ψ(x, Ux(sx))) 6= 0. �

Remark 3.17. (i) In [AF92], it is shown that the conjugate degree (i.e.
the degree of the conjugate norm) of a (twisted) (8,m)-product algebra
is given by 2, 4, 4 or 8 for m = 1, 2, 4, 8 respectively.
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(ii) In an entirely different context the authors of [HT98] study Albert
forms of the (twisted) tensor product of two octonion algebras. In
[HT98, Theorem 2.1] it is mentioned that every anisotropic 14-dimen-
sional quadratic form with trivial discriminant and Clifford invariant,
is the Albert form of a twisted tensor product of two octonion algebras.
Furthermore it is shown that there exist quadratic forms that are the
Albert form of a twisted tensor product of two octonion algebras, but
that are not similar to the Albert form of a non-twisted tensor product
of two octonion algebras. These are certain quadratic forms over fields
that do not satisfy condition D(14).
It follows from Example (5) on page 64 below that there exists a twisted
tensor product of two octonion algebras that is not isotopic to the
tensor product of two composition algebras.

3.4 Construction of Lie algebras from structurable
algebras

In order to describe the construction of Lie algebras from a structurable
algebra, we need to introduce some more concepts; we give a brief summary
of [All79]. The ring End(A) denotes the k-linear maps from A to A. For
each A ∈ End(A), we define new k-linear maps

Aε = A− L
A(1)+A(1)

,

Aδ = A+R
A(1)

.

One can verify that

V ε
x,y = −Vy,x, (3.20)

V δ
x,y(s) = −ψ(x, sy), (3.21)

for all x, y ∈ A and s ∈ S. Define the Lie subalgebra Strl(A, ) of End(A)
as5

Strl(A, ) = {A ∈ End(A) | [A, Vx,y] = VAx,y + Vx,Aεy}. (3.22)

It follows from the definition of structurable algebras that Vx,y ∈ Strl(A, ),
so we can define the Lie subalgebra

Instrl(A, ) = Span{Vx,y | x, y ∈ A}.

The Lie subalgebra Instrl(A, ) is even an ideal of Strl(A, ). Notice that
for all s, t ∈ S, we have LsLt ∈ Instrl(A), since it follows from (3.3) that

LsLt = 1
2(Vst,1 − Vs,t) = 1

2(V1,ts − Vs,t). (3.23)

5This definition follows from [All78, Cor. 5].
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It follows from skew-alternativity and the definition of δ and ε that

(LrLt)
ε = −LtLr, (3.24)

(LrLt)
δ(s) = s(tr) + r(ts) (3.25)

for all r, t, s ∈ S. For all A ∈ Strl(A, ) we have a version of triality for
endomorphisms:

A(sx) = Aδ(s)x+ sAε(x) for all x ∈ A, s ∈ S. (3.26)

By [All79, Lemma 1], we have for all A ∈ Strl(A, ) and x, y ∈ A that

Aδψ(x, y) = ψ(Ax, y) + ψ(x,Ay). (3.27)

For all A ∈ Strl(A, ), the map A 7→ Aε is a Lie algebra automorphism of
Strl(A, ) of order 2; the map A 7→ Aδ|S is a Lie algebra homomorphism of
Strl(A, ) into Endk(S).

It follows that A⊕ S is a Strl(A, )-module under the action A(x, s) =
(Ax,Aδs) for all A ∈ Strl(A, ) and (x, s) ∈ A⊕ S.

Definition 3.18. Consider two copies A+ and A− of A with corresponding
isomorphisms A → A+ : x 7→ x+ and A → A− : x 7→ x−, and let S+ ⊂ A+

and S− ⊂ A− be the corresponding subspaces of skew-elements. Define as
a vector space

K(A) = S− ⊕A− ⊕ Instrl(A)⊕A+ ⊕ S+.

As in [All79, par. 3], we define a Lie algebra onK(A) as the unique extension
of the Lie algebra on Instrl(A):

• [Instrl,K(A)]

[Va,b, Va′,b′ ] = V{a,b,a′},b′ − Va′,{b,a,b′}∈ Instrl(A),

[Va,b, x+] := (Va,bx)+ ∈ A+, [Va,b, y−] := (V ε
a,by)− ∈ A−

= (−Vb,ay)− ∈ A−,
[Va,b, s+] := (V δ

a,bs)+ ∈ S+ [Va,b, t−] := (V εδ
a,bt)− ∈ S−

= −ψ(a, sb)+ ∈ S+, = ψ(b, ta)− ∈ S−,

• [S±,A±]

[s+, x+] := 0, [t−, y−] := 0,

[s+, y−] := (sy)+ ∈ A+, [t−, x+] := (tx)− ∈ A−,

• [A±,A±]

[x+, y−] := Vx,y ∈ Instrl(A),
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[x+, x
′
+] := ψ(x, x′)+ ∈ S+, [y−, y

′
−] := ψ(y, y′)− ∈ S−

• [S±,S±]

[s+, s
′
+] := 0, [t−, t

′
−] := 0,

[s+, t−] := LsLt ∈ Instrl(A).

for all x, x′, y, y′ ∈ A, s, s′, t, t′ ∈ S, Va,b, Va′,b′ ∈ Instrl(A).

From the definition of the Lie bracket we clearly see that the Lie algebra
K(A) has a 5-grading given by K(A)j = 0 for all |j| > 2 and

K(A)−2 = S−, K(A)−1 = A−, K(A)0 = Instrl(A),

K(A)1 = A+, K(A)2 = S+.

In the case where A is a Jordan algebra, we have S = 0, and thus the
Lie algebra K(A) has a 3-grading; in this case K(A) is exactly the Tits–
Kantor–Koecher construction of a Lie algebra from a Jordan algebra (see
for example [Jac68, Section VIII.5]).

It is proven in [All79, par 5] that the structurable algebra A is simple
if and only if K(A) is a simple Lie algebra; A is central if and only if
K(A) is central. The following strong result motivates the construction of
structurable algebras.

Theorem 3.19 ([All79, Theorem 4 and 10]). Let L be a simple Lie algebra
over a field k of characteristic different from 2, 3 and 5. We define the
following condition on L:

(?) L contains an sl2-triple6 {e, f, h}, such that L is the direct sum of an
arbitrary number of irreducible sl2-modules over this triple of highest
weight 0, 2, or 4.

Then L ∼= K(A) for some simple structurable algebra A if and only if L
satisfies (?).

In the case that char(k) = 0 the condition (?) on L is fulfilled if and
only if L is isotropic, i.e. contains a non-trivial split toral subalgebra (see
[Sel76b]).

The above theorem can also be formulated for non-simple Lie algebras,
using a Lie algebra that contains K(A).

If we start from a simple structurable algebra A, the Lie algebra K(A)
is simple. If char(k) = 0, it follows that K(A) can be obtained from a
semisimple linear algebraic group.

6A triple {e, f, h} is called an sl2-triple if [e, f ] = h, [h, e] = 2e, [h, f ] = −2f ; such a
triple spans an sl2 Lie subalgebra.
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Theorem 3.20 ([All86b, Theorem 3.1]). Let char(k) = 0, and let A be a
central simple structurable algebra. Then K(A, ) has relative rank 1 if and
only if A is a conjugate division algebra.

Moreover, each central simple Lie algebra of relative rank 1 can be ob-
tained in this way.

Below we give an overview of which types of simple Lie algebras are
obtained starting from central simple structurable algebras. In the case
that char(k) = 0, we mention, in view of the previous theorem, the Tits
index (see Table 1.1 on page 13) when the structurable algebra is division.
If char(k) 6= 0, it can be shown that these Lie algebras are also obtained
from linear algebraic groups, by passing to the algebraic closure of k. We
do not go into detail about the classical types that are obtained.

(1) If A is an associative algebra, then the corresponding Lie algebra is
classical.

(2) Let A be a central simple Jordan algebra. In view of the remark after
Definition 1.10, we have 3 classes of Jordan algebras. Only if the Jordan
algebra is an exceptional Jordan algebra, K(A) is not classical; it is
then of type E7. If J is an exceptional Jordan division algebra, it can
be verified that the corresponding Lie algebra has index E78

7,1.
(3) If A is a structurable algebra arising from a hermitian form, then the

corresponding algebra is classical.
(4) Let A be of skew-dimension 1, thus A is a form of the algebra M(J, η)

for several possibilities of the Jordan algebra J given in Definition 3.5.
If N = 0, A is isomorphic to a structurable algebra of hermitian form
type; K(A) is classical. So assume that N 6= 0, and J is a Jordan
algebra of a non-degenerate cubic norm as in Definition 1.10.(iv). It
follows from [Jac68, Theorem V.4,V.8 and V.9] that J has one of the
following dimensions:

dimk(J) type of K(A)

1 G2

3 D4

6 F4

9 E6

15 E7

27 E8

The algebra of type G2 is split (with Tits index G0
2,2,) if and only if A

is a structurable matrix algebra.
In Lemma 3.9 there is given a construction of structurable division alge-
bras of skew-dimension one; one has to apply the Cayley-Dickson process
to a central simple Jordan division algebra of degree 4. Let char(k) = 0;
in the case that the Jordan division algebra has dimension 10, 16 or
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28, the index of K(A) is 2E35
6,1, E

66
7,1 or E133

8,1 , respectively (see [AF84,
Example 7.2]), where A is constructed from J as in Lemma 3.9.

(5) When C1, C2 are composition algebras, the Lie algebra K(C1 ⊗k C2)
coincides with the Lie algebra constructed from C1 and C2 using Tits’
second Lie algebra construction, which is visualized in Freudenthal’s
magic square (see [All88, p. 672]).
In the case where A is a non-associative (twisted) product algebra, we
have

(twisted) (i, j)-product algebra type of K(A)

(8, 1) F4

(8, 2) E6

(8, 4) E7

(8, 8) E8

If char(k) = 0, it is shown in [All88, Theorem 6.22] that if the algebras
in the above list are conjugate division algebras, K(A) has index F 21

4,1,
2E29

6,1, E
48
7,1 or E91

8,1, respectively.
(6) The exceptional 35-dimensional structurable algebras give rise to split

Lie algebras of type E7; see [AF93].

3.5 Isotopies of structurable algebras

Although isomorphisms of structurable algebras are well defined, it turns
out that it is better to allow the unit element 1 to be mapped to a different
element. This idea is encapsulated in the notion of an isotopy.

Definition 3.21 ([AH81, par. 8]). Two structurable algebras (A, )̄ and
(A′, )̄ over a field k are isotopic if there exists a k-vector space isomorphism
ψ : A → A′ such that there exists a χ ∈ Endk(A,A′) such that

ψ(Vx,yz) = Vψ(x),χ(y)ψ(z) ∀x, y, z ∈ A.

The map ψ is then called an isotopy between (A, )̄ and (A′, )̄. The map
χ is entirely determined by the map ψ; we call χ the inverse dual of ψ and
denote χ := ψ̂.

Then χ is again an isotopy, with inverse dual ψ. Therefore
ˆ̂
ψ = ψ.

Isotopy defines an equivalence relation on structurable algebras.

If ψ maps the identity ofA to the identity ofA′, then ψ is an isomorphism
of structurable algebras.

[AF84, Lemma 1.20] states that if A and A′ are isotopic, then A is
(central) simple if and only if A′ is (central) simple.

The following theorem indicates why isotopies are the right definition of
“equivalent” structurable algebras.
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Theorem 3.22 ([AH81, Prop. 12.3]). Two structurable algebras A and A′
are isotopic if and only if K(A) and K(A′) are graded-isomorphic graded
Lie algebras.

From [AH81, Prop. 11.3] it follows that,

Ls{x, y, z} = {Lsx, Lŝy, Lsz} (3.28)

for all x, y, z ∈ A and s ∈ S conjugate invertible. Therefore Ls is an isotopy
with L̂s = Lŝ. Let u ∈ A be conjugate invertible and let α be an isotopy;
then by [AH81, Prop. 8.2],

α̂u = α̂û, (3.29)

and in particular if s ∈ S is conjugate invertible, then

ŝu = ŝû. (3.30)

If (A′, )̄ is isotopic to (A, )̄, there exists a conjugate invertible u ∈ A
such that (A′, )̄ is isomorphic to a certain isotope of (A, )̄, denoted by
(A, )̄〈u〉, which we describe below.

Construction 3.23. Let u ∈ A be a conjugate invertible element. We give
the definition of the u-conjugate isotope A〈u〉 of A following the approach
in [All86a, p 364]; see [AH81, Par. 7] for the original definition.

The algebra A〈u〉 will be a structurable algebra with underlying vector
space A. Its involution is defined by

τ 〈u〉x = x̄〈u〉 = 2x− {x, u, û} = x− ψ(x, û)u. (3.31)

We have τ 〈u〉
2

= id, and we define S〈u〉 and H〈u〉 as the (−1)- and 1-eigen-
space, respectively, for τ 〈u〉. Then

A = S〈u〉 ⊕H〈u〉;

moreover, one can show that S〈u〉 = Su.

Next, we define the operator Pu given by

Pux = 1
3Uu(2τ 〈u〉 + id)x =

1

3
Uu(5x− 2Vx,uû). (3.32)

This operator is invertible and has the following nice properties:

PuPû = PûPu = id, (3.33)

Puû = u, (3.34)

Pu(su) = −1

3
Uu(su) for all s ∈ S, (3.35)
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Pu{x, y, z} = {Pux, Pûy, Puz} for all x, y, z ∈ A. (3.36)

This last identity says that Pu is an isotopy on A with P̂u = Pû.

Finally, if x, y ∈ A we can write x = su + a where s ∈ S and a ∈ H〈u〉,
and we define

x〈u〉y = (su+ a)〈u〉y = sPuy + Va,uy. (3.37)

This defines a product on the vector space A. Then 1〈u〉 = û is a unit
for the product and τ 〈u〉 is an involution for this product. We denote the
algebra with this product and involution τ 〈u〉 by A〈u〉; this algebra is again
structurable.

The V -operator of the algebra A〈u〉 is given by

V 〈u〉x,y z = {x, y, z}〈u〉 = {x, Puy, z}, (3.38)

for all x, y, z ∈ A. We denote by L
〈u〉
x the left multiplication with x in A〈u〉

and by ψ〈u〉(x, y) := L
〈u〉
x y〈u〉 − L〈u〉y x〈u〉. When we summarize Construction

3.23, we have

1〈u〉 = û, (3.39)

S〈u〉 = Su, (3.40)

ψ〈u〉(x, y) = ψ(x, y)u, (3.41)

L〈u〉su = LsPu, (3.42)

for all x, y ∈ A, s ∈ S.

Let x be conjugate invertible in A. It follows from the identity V
〈u〉
x,Pûx̂

=

Vx,x̂ = id that x is also conjugate invertible in A〈u〉, with

x̂〈u〉 = Pûx̂ (3.43)

where ̂〈u〉 denotes the conjugate inverse in A〈u〉.
We give an overview of some interesting facts about isotopies for the

different classes of central simple algebras.

(1) Let A be an associative algebra with involution. It is proven in [All86a]
that two associative algebras are isotopic if and only if they are isomor-
phic. If u ∈ A is invertible, Pu = Luu.

(2) Let A be a Jordan algebra. It follows from (3.31) and (3.37) that two
Jordan algebras are isotopic as Jordan algebras (see [Jac68, Section 12])
if and only if they are isotopic as structurable algebras. If u ∈ A is
invertible, Pu = Uu.
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(4) Let A be of skew-dimension 1. In [All90], various interesting properties
of the isotope (A, )〈u〉 for u ∈ k1⊕ ks0 are shown.

(5) If char(k) = 0, [All88, Theorem 5.4] states that two structurable algebras
that are forms of an (m1,m2)-product algebra are isotopic if and only
if their respective Albert forms are similar.
In [All86a] it is proven that two alternative algebras are isotopic if and
only if they are isomorphic, in this case Pu = Luu for invertible u ∈ A.

(6) Two exceptional 35-dimensional structurable algebras are always iso-
topic; see [AF93].

3.6 Freudenthal triple systems and structurable
algebras

Freudenthal triple systems were studied by Freudenthal, Meyberg and Brown.
The motivation was to introduce an axiomatic approach to the study of the
algebraic structure of the 56-dimensional representation of Lie algebras of
type E7.

The following definitions are taken from [Fer72], where more details can
be found.

Definition 3.24. A Freudenthal triple system (V, b, t) is a vector space V
over a field k of characteristic not 2 or 3, endowed with a trilinear symmetric
product

t : V × V × V → V : (x, y, z) 7→ t(x, y, z) =: xyz

and a skew-symmetric bilinear form

b : V × V → k : (x, y) 7→ b(x, y) =: 〈x, y〉

such that

(i) the map (x, y, z, w) 7→ 〈x, yzw〉 is a nonzero symmetric 4-linear form;
(ii) (xxx)xy = 〈y, x〉xxx+ 〈y, xxx〉x ∀x, y ∈ V .

When it is clear which triple product and skew-symmetric form are consid-
ered, we do not explicitly mention b and t, but we use juxtaposition and
〈., .〉 instead.

Definition 3.25. Two Freudenthal triple systems (V, b, t), (V ′, b′, t′) over a
field k are similar if there exists a k-vector space isomorphism ψ : V → V ′

and λ ∈ k∗ such that

t′(ψ(x), ψ(y), ψ(z)) = λψ(t(x, y, z)).

In [Fer72, Lemma 6.6] it is proven that this condition is equivalent with{
b′(ψ(x), ψ(y)) = λb(x, y) and

b′(ψ(x), t′(ψ(x), ψ(x), ψ(x))) = λ2b(x, t(x, x, x)).
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The map ψ is then called a similarity with multiplier λ. We say that two
Freudenthal triple systems are isometric if they are similar with λ = 1; in
this case ψ is called an isometry.

Definition 3.26. Let V be a Freudenthal triple system.

(i) An element u ∈ V \ {0} is called strictly regular if uV V ⊆ ku.
(ii) A pair of strictly regular elements u1, u2 is called supplementary if
〈u1, u2〉 = 1.

(iii) V is called reduced if it contains a strictly regular element.
(iv) V is called simple if it does not contain a proper ideal, i.e. a subspace

I 6= 0, V such that IV V ⊆ I. By [Fer72, Theorem 2.1], a Freudenthal
triple system is simple if and only if the skew-symmetric bilinear form
is non-degenerate.

The main example of Freudenthal triple systems are given in the follow-
ing theorem.

Theorem 3.27 ([AF84, Proposition 2.8]). Let (A, )̄ be a simple structurable
algebra of skew-dimension one and let 0 6= s0 ∈ S. The following bilinear
form and triple product give A the structure of a simple Freudenthal triple
system:

〈x, y〉1 = ψ(x, y)s0,

yzw = 2{y, s0z, w} − 〈z, w〉y − 〈z, y〉w − 〈y, w〉z,

for all x, y, z, w ∈ A.

Remark 3.28. (i) Let s0, s
′
0 ∈ S \{0}, then s′0 = λs0 for some λ ∈ k. Let

(A, t, b) and (A, t′, b′) be the Freudenthal triple systems constructed in
Theorem 3.27 by starting from s0 and s′0, respectively. It is clear
that the identity is a similarity between (A, t, b) and (A, t′, b′) with
multiplier λ.

(ii) Let ν be the norm on A defined in (3.18). Then it is clear that

ν(x) =
1

12µ
〈x, xxx〉

for all x ∈ A.
(iii) Applying the above formulas on a structurable matrix algebra with

s0 =
(
1 0
0 −1

)
gives the Freudenthal triple system with bilinear product〈(

k1 j1
j2 k2

)
,

(
k′1 j′1
j′2 k′2

)〉
= k1k

′
2 − k2k′1 + ηT (j1, j

′
2)− ηT (j2, j

′
1),

and with conjugate norm
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ν

(
k1 j1
j2 k2

)
= 4k1ηN(j1) + 4k2η

2N(j2)− 4η2T (j]1, j
]
2)

+
(
ηT (j1, j2)− k1k2

)2
.

Definition 3.29. Let A be a simple structurable algebra of skew-dimension
one with s0 ∈ S \ {0}. We call the Freudenthal triple system obtained in
Theorem 3.27 the Freudenthal triple system associated to A.

If the element s0 ∈ S \{0} is not specified, the Freudenthal triple system
associated to A is only determined up to similarity.

Moreover one can show that each simple Freudenthal triple system can
be obtained from a structurable algebra of skew-dimension one. On a struc-
turable algebra we have the notion of isotopy; on a Freudenthal triple system
we have the notion of similarity. The notions of isotopy and similarity coin-
cide:

Theorem 3.30 ([Gar01]). (i) Let (V, t, b) be a simple Freudenthal triple
system. There exists a simple structurable algebra A of skew-dimension
one, such that (V, t, b) is isometric to the Freudenthal triple system
associated to A.

(ii) Let A and A′ be structurable algebras of skew-dimension one. Con-
sider the associated Freudenthal triple systems. Then A and A′ are
similar as Freudenthal triple systems if and only if they are isotopic as
structurable algebras.

Proof. See [Gar01, Lemma 4.15] and [Gar01, Proposition 4.11], respectively.
All Freudenthal triple systems that are considered in [Gar01] are 56-dimen-
sional, but the proofs of these theorems remain valid in arbitrary dimen-
sion. �

In [Fer72, Theorem 5.1], it is shown that a Freudenthal triple system is
associated to an isotope of a structurable matrix algebra if and only if the
Freudenthal triple system is reduced. Given a reduced simple Freudenthal
triple system (V, t, b), the proof of [Fer72, Theorem 5.1] gives an explicit
construction of a structurable matrix algebra that has (V, t, b) as associ-
ated Freudenthal triple system. We apply this explicit construction in Ap-
pendix A.

We mention a few results for later use.

Lemma 3.31. If the map x 7→ 〈x, xxx〉 is anisotropic, then the Freudenthal
triple system is not reduced and simple.

Proof. Suppose u ∈ V is strictly regular, then uuu = su for some s ∈ k, so

〈u, uuu〉 = s〈u, u〉 = 0.
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This implies that u = 0, so the Freudenthal triple system is not reduced. It
is clearly simple, since 〈x, xxx〉 6= 0 for x 6= 0. �

Lemma 3.32 ([Fer72, Corollary 3.4]). A simple Freudenthal triple system
V is reduced if and only there exists x ∈ V such that 〈x, xxx〉 = 12t2 for
t ∈ k∗. If this is the case, then

u1 =
1

2
x+

1

12t
xxx, u2 = − 1

2t
x+

1

12t2
xxx

is a pair of supplementary strictly regular elements.

3.7 J-ternary algebras

J-ternary algebras have been introduced by Allison in [All76]; they are
ternary algebras that are a module for a Jordan algebra. Just like struc-
turable algebras, they can be used to construct exceptional Lie algebras,
using a generalization of the Tits–Kantor–Koecher construction.

Definition 3.33. Let char(k) 6= 2, 3, let J be a Jordan k-algebra. Let X be
a k-vector space equipped with a k-bilinear map • : J ×X → X such that

(j1j2) • x = 1
2(j1 • (j2 • x) + j2 • (j1 • x)) and 1 • x = x, (3.44)

for all j1, j2 ∈ J, x ∈ X.
Let (( , )) : X×X → J be a skew-symmetric k-bilinear map, and (( , , )) :

X×X×X → X a k-trilinear product. Then X is a J-ternary algebra if the
following axioms hold for all j ∈ J , x, y, z, v, w ∈ X:

(JT1) j ((x, y)) = 1
2 ((j • x, y)) + 1

2 ((x, j • y))

(JT2) j • ((x, y, z)) = ((j • x, y, z))− ((x, j • y, z)) + ((x, y, j • z))
(JT3) ((x, y, z)) = ((z, y, x))− ((x, z)) • y
(JT4) ((x, y, z)) = ((y, x, z)) + ((x, y)) • z
(JT5) ((((x, y, z)) , w)) + ((z, ((x, y, w)))) = ((x, ((z, w)) • y))

(JT6) ((x, y, ((z, w, v)))) = ((((x, y, z)) , w, v)) + ((z, ((y, x, w)) , v)) + ((z, w, ((x, y, v)))).

As we show below every structurable algebra with at least one invertible
skew-element can be given the structure of a J-ternary algebra. From this
point of view J-ternary algebras can be seen as an early version of struc-
turable algebras. Below, we elaborate the proof of [ABG02, Remark 6.7].
We thank Bruce Allison for providing us a sketch of this proof.
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Theorem 3.34. Let (A, ) be a structurable algebra such that there exists
an s ∈ S that is conjugate invertible. Then J := LSLs ⊂ Endk(A)+ is a
Jordan algebra. Define

LtLs • x := LtLsx = t(sx), ((x, y)) = Lψ(x,y)Ls and ((x, y, z)) = −Vx,syz

for all t ∈ S, x, y, z ∈ A. Then A is a J-ternary algebra.

Proof. Fix an invertible s ∈ S and let r, t ∈ S, x, y, z, v, w ∈ A be arbitrary.
The algebra Endk(A)+ is a Jordan algebra; we show that J = LSLs =
{LtLs | t ∈ S} is a Jordan subalgebra. It follows from the first identity of
(3.5) that LrLtLr = L(rt)r = Lr(tr); by linearizing this expression and since
Ls is invertible it follows that

1
2((Lt1Ls)(Lt2Ls) + (Lt2Ls)(Lt1Ls)) = L1

2 ((t1s)t2+(t2s)t1)
Ls

= L1
2 (t1(st2)+t2(st1))

Ls. (3.45)

Since id = L−ŝLs, it follows that J = LSLs is a Jordan subalgebra of
Endk(A)+. It is immediately clear that • satisfies (3.44). Let j = LtLs ∈ J ,
we verify the remaining axioms:

(JT1) We expand (3.27) for A = LtLs ∈ Instrl(A, ) using (3.25) and (3.45):

t(sψ(x, y)) + ψ(x, y)(st) = ψ(t(sx), y) + ψ(x, t(sy))

⇐⇒ Lt(sψ(x,y))+ψ(x,y)(st)Ls = Lψ(t(sx),y)Ls + Lψ(x,t(sy))Ls

⇐⇒ LtLsLψ(x,y)Ls + Lψ(x,y)LsLtLs = Lψ(t(sx),y)Ls + Lψ(x,t(sy))Ls.

(JT2) We expand (3.22) for A = LsLt ∈ Strl(A, ) using (3.24):

LtLsVx,syz − Vx,syLtLsz = VLtLsx,syz + Vx,−LsLtsyz.

(JT3) It is clear from the definition of the V -operator that Vx,syz−Vz,syx =
Lψ(x,z)Lsy.

(JT4) This follows immediately from (3.7).

(JT5) We expand (3.27) for A = Vx,sy using (3.21):

V δ
x,syψ(z, w) = ψ(Vx,syz, w) + ψ(z, Vx,syw)

⇐⇒ −ψ(x, ψ(z, w)(sy)) = ψ(Vx,syz, w) + ψ(z, Vx,syw).

(JT6) We expand (3.22) for A = Vx,sy using (3.20) and (3.9):

Vx,sy(Vz,swv)− Vz,sw(Vx,syv) = VVx,syz,swv + Vz,−Vsy,xswv

⇐⇒ Vx,sy(Vz,swv)− Vz,sw(Vx,syv) = VVx,syz,swv + Vz,sVy,sxwv.

�



Chapter 4

Structurable algebras on
quadrangular algebras

The purpose of this and of the next chapter is to get a better understanding
of the structure of exceptional quadrangular algebras. In this chapter, we
essentially capture the rank-one structure of quadrangular algebras.

In Section 4.1 we will show that there lives a Freudenthal triple system
on each quadrangular algebra in a natural way. By Theorem 3.30, we know
there exists a family of isotopic structurable algebras of skew-dimension
one associated to this Freudenthal triple system. We give some interesting
properties of such structurable algebras in Section 4.2; these properties give
a new interpretation of some rank-one aspects of the quadrangular algebra
(see Theorem 4.7).

More specifically, in Section 4.3 we give a structurable algebra of hermi-
tian type that has an isometric Freudenthal triple system as a quadrangular
algebra of pseudo-quadratic type. In Section 4.4 we show the following re-
sult:

Theorem 4.1. Let Ω be a quadrangular algebra of type E6, E7 or E8 over k,
with char(k) 6= 2, 3. Let A be one of the following associative division alge-
bras:

(i) A is a quaternion algebra Q if Ω is of type E6;
(ii) A is a tensor product Q⊗k L with Q a quaternion algebra and L/k a

quadratic field extension, if Ω is of type E7;
(iii) A is a biquaternion algebra Q1 ⊗k Q2 if Ω is of type E8.

We define the structurable algebra A = CD
(
A+,Nrd, c

)
of skew-dimension

one (see p. 52) for some c ∈ k. Then the Freudenthal triple system asso-
ciated to A (see Definition 3.29) is similar to the Freudenthal triple system
given in Theorem 4.2 starting from Ω.

69
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We will give more precise statements below; in particular, we will ex-
plicitly construct the algebra A and the constant c in each case. The proof
of this theorem gives rise to lengthy computations for which we use the
computer algebra package Sage. In [Wei06a] it is shown that quadrangular
algebras of type E6 and E7 carry the structure of pseudo-quadratic spaces;
in Section 4.4.2 we point out that this is compatible from the viewpoint of
Freudenthal triple systems and structurable algebras.

Originally, we came up with a family of structurable algebras with Freuden-
thal triple system isometric to the one in Theorem 4.2 by going through the
proofs of Theorem 3.30.(i) and [Fer72, Theorem 5.1] in a very explicit way.
This technical approach is given in Appendix A.

4.1 Quadrangular algebras are Freudenthal triple
systems

We show that each quadrangular algebra (k, L, q, 1, X, ·, h, θ) (see Defini-
tion 2.4) defined over a field of characteristic not 2 or 3 can be given the
structure of a Freudenthal triple system. Notice that the definition of this
Freudenthal triple system only uses the maps g, x 7→ x · π(x) and q ◦ π,
which already appear in the description of the Moufang set obtained from
a quadrangular algebra on page 42. In this sense, the Freudenthal triple
system only captures rank-one information of the Moufang quadrangle and
not the structure imposed by the commutator relations.

By the definition π(x) = 1
2h(x, x) and the maps h : X × X → L and

· : X × L → X are k-bilinear. Since q is a quadratic form, the map X →
k : x 7→ q(π(x)) is a form of degree 4 (see Section 1.1). Strictly speaking,
the map X → X : x 7→ x · π(x) is not a form of degree 3 since its image
is not the base field. However x 7→ ξi(x · π(x)) is a form of degree 3 for
each 1 ≤ i ≤ dimkX, where ξi : X → k denotes the projection on the i-th
coordinate. In this way we can as well speak of the linearization of the map
x 7→ x · π(x).

Theorem 4.2. Let (k, L, q, 1, X, ·, h, θ) be a quadrangular algebra over a
field k with char(k) 6= 2, 3. Then X is a Freudenthal triple system with
triple product

t(x, y, z) := 1
2(x(h(y, z)+h(z, y))+y(h(x, z)+h(z, x))+z(h(x, y)+h(y, x)))

and skew symmetric bilinear form 〈x, y〉 := g(x, y), for all x, y, z ∈ X. This
Freudenthal triple system is simple and not reduced.

Furthermore we have that the map t is the linearization of x 7→ x · π(x)
and (x, y, z, w) 7→ 〈x, t(y, z, w)〉 is the linearization of x 7→ −1

2q(π(x)).

In particular, t(x, x, x) = 6x · π(x) and 〈x, t(x, x, x)〉 = −12q(π(x)).
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Proof. It is clear that the triple product is symmetric and trilinear. It follows
from Theorem 2.7.(i) and the fact that f(xσ, 1) = f(x, 1) that g is skew
symmetric and bilinear, and that 〈x, t(y, z, w)〉 is linear in its four variables.
Since π(x) = 1

2h(x, x) we have that t(x, x, x) = 6x · π(x), so t(x, y, z) is
the linearization of x · π(x). To prove the first axiom of Definition 3.24 we
expand 〈x, t(y, z, w)〉, and we find

〈x, t(y, z, w)〉
= 1

2f(h(x, t(y, z, w)), 1)

= 1
4

(
f(h(x,w(h(y, z) + h(z, y))), 1) + f(h(x, y(h(w, z) + h(z, w))), 1)

+ f(h(x, z(h(w, y) + h(y, w))), 1)
)

= 1
4

(
f(h(x,w), h(y, z) + h(z, y)) + f(h(x, y), h(w, z) + h(z, w))

+ f(h(x, z), h(w, y) + h(y, w))
)

= −1
4

(
f(h(x,w), h(y, z) + h(z, y)) + f(h(x, y), h(w, z) + h(z, w))

+ f(h(x, z), h(w, y) + h(y, w))
)
.

Therefore 〈x, t(y, z, w)〉 is indeed symmetric and linear in its four variables.
When we put x = y = z = w, this expression equals −12q(π(x)). Thus it
is the linearization of −1

2q(π(x)). This map is non-zero since both q and π
are anisotropic.

In order to establish the second axiom of Definition 3.24, we show that

t(x · π(x), x, y) = 1
2

(
f(h(y, x), 1)x · π(x) + f(h(y, x · π(x)), 1)x

)
. (4.1)

We expand the left side of this identity, and we get

t(x·π(x), x, y) = 1
2

(
x·π(x)

(
h(x, y)+h(y, x)

)
+x
(
h(x·π(x), y)+h(y, x·π(x))

))
+ y
(
h(x, x · π(x)) + h(x · π(x), x)

)
.

It follows from Theorem 2.7(iv) that the third term is zero. To reduce the
two other terms we use

h(y, z) + h(z, y) = h(y, z)− h(y, z) = 2h(y, z)− f(h(y, z), 1) 1,

and we get

t(x · π(x), x, y) = 1
2

(
2x · π(x)h(x, y)− x · π(x)f(h(x, y), 1)

+ 2xh(x · π(x), y)− xf(h(x · π(x), y), 1)
)

= x
(
θ(x, h(x, y)) + h(x · π(x), y)

)
+ 1

2

(
x · π(x)f(h(y, x), 1) + xf(h(y, x · π(x)), 1)

)
,
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where we have used (D1). It follows from Theorem 2.7(iv) that the first
term is zero, establishing (4.1).

As 〈x, t(x, x, x)〉 = −12q(π(x)) is anisotropic it follows from Lemma 3.31
that the Freudenthal triple system we obtained is simple and not reduced.

�

Next we show that the triple product t behaves well with respect to the
C(q, 1)-module structure on X defined in Definition 2.6.

Lemma 4.3. For x, y, z ∈ X and v ∈ L \ {0} we have that

t(x, y, z) · v =
t(x · v, y · v, z · v)

q(v)
.

Proof. It is enough to show that this identity holds for x = y = z, since the
general result then follows by linearizing. Thus we have to show that

(x · π(x)) · v =
(x · v) · π(x · v)

q(v)
.

This follows from [Wei06a, Theorem 3.18], since (x · π(x))v = xθ(x, v); the
map φ occurring in that formula is identically zero for fields of characteristic
not 2. (In loc. cit., only quadrangular algebras of type E6, E7 and E8 are
considered, but this proof is also valid for pseudo-quadratic spaces.) �

Two quadrangular algebras are isotopic if and only if they describe the
same Moufang quadrangle. For a precise definition and some properties,
we refer to [Wei06b, Chapter 8]. In the following lemma we observe that
when we construct two Freudenthal triple systems starting from two isotopic
quadrangular algebras, we end up with similar Freudenthal triple systems.

Lemma 4.4. Let Ω = (k, L, q, 1, X, ·, h, θ) and Ω′ = (k, L′, q′, 1′, X ′, ·′, h′, θ′)
be two isotopic quadrangular algebras. Let (X, t, b) and (X ′, t′, b′) be the
respective Freudenthal triple systems constructed as in Theorem 4.2. Then
(X, t, b) and (X ′, t′, b′) are similar.

Proof. If Ω and Ω′ are isotopic, then Ω′ is isomorphic to the isotope Ωu for
some u ∈ L; we denote the corresponding isomorphisms from Lu to L′ and
from Xu to X ′ by α and ψ, respectively. We use the following formulas from
[Wei06b, Proposition 8.1]:

1′ = α(u),

θ′(ψ(x), α(v)) = q(u)−1θ(x, v),

ψ(x) ·′ α(v) = (xv)u−1,
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for all x ∈ X and all v ∈ L. It follows that

ψ(x) ·′ π′(ψ(x)) = ψ(x) ·′ θ′(ψ(x), 1′) = q(u)−1(xθ(x, u))u−1

= q(u)−1
(
(x · π(x))u

)
u−1 = q(u)−1x · π(x).

By linearizing this expression we obtain that the Freudenthal triple systems
are similar with similarity ψ and multiplier q(u)−1. �

Remark 4.5. We do not know whether the converse also holds, in other
words, whether the fact that the Freudenthal triple systems are similar im-
plies that the quadrangular algebras are isotopic.

4.2 Structurable algebras on general quadrangular
algebras

From Theorem 3.30 we know that there exist structurable algebras of skew-
dimension one whose associated Freudenthal triple system is similar to the
Freudenthal triple system as in Theorem 4.2. In the following lemma we
give some interesting properties of such structurable algebras.

Lemma 4.6. Let Ω = (k, L, q, 1, X, ·, h, θ) be a quadrangular algebra with
char(k) 6= 2, 3 equipped with the Freudenthal triple system (X, t, 〈., .〉) as in
Theorem 4.2.

Let A be a simple structurable algebra of skew-dimension one such that
its associated Freudenthal triple system is similar to (X, t, 〈., .〉). We choose
s0 ∈ S in such a way that the multiplier of the similarity is equal to one. Let
χ : A → X denote the isometry. Then A satisfies the following properties:

(i) Each simple structurable algebra whose associated Freudenthal triple
system is similar to (X, t, 〈., .〉) is isotopic to A.

(ii) Let ν be the norm on A defined in (3.18), then

ν(a) = − 1

µ
q(π(χ(a)))

for all a ∈ A, where s20 = µ1.
(iii) We have that

χ
(
Ua(s0a)

)
= 3χ(a) · π(χ(a)) and ψ(a, b)s0 = g(χ(a), χ(b))1

for all a, b ∈ A.
(iv) For all 0 6= u ∈ A the conjugate inverse is given by

û = s0
1

q(π(χ(u)))
)χ−1(χ(u) · π(χ(u))).
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(v) The V -operator of A is compatible with the C(q, 1)-module structure of
X. Indeed, if for all a ∈ A and v ∈ L we denote a�v := χ−1(χ(a)·v) ∈
A, then

(Va,s0b c)� v =
1

q(v)
Va�v, s0(b�v) (c� v).

(vi) A is a central simple division algebra.

Proof. By Remark 3.28.(i) we can choose s0 ∈ S such that the similarity
has multiplier one.

(i) This follows from Theorem 3.30.ii.
(ii) Remark 3.28.(ii) states that ν(a) = 1

12µ〈a, aaa〉 for all a ∈ A.
In Theorem 4.2 it is shown that 〈x, t(x, x, x)〉 = −12q(π(x)) for all
x ∈ X. It follows from Definition 3.25 that

ν(a) =
1

12µ
〈χ(a), t(χ(a), χ(a), χ(a)〉 = − 1

µ
q(π(χ(a))).

(iii) By Theorem 3.27 Ua(s0a) = 1
2aaa and 〈a, b〉1 = ψ(a, b)s0. Since χ is

an isometry of Freudenthal triple systems we have that

χ(Ua(s0a)) =
1

2
t(χ(a), χ(a), χ(a)) = 3χ(a) · π(χ(a)),

ψ(a, b)s0 = 〈χ(a), χ(b)〉1 = g(χ(a), χ(b))1.

(iv) The formula follows immediately from (ii), (iii) above and (3.19).
(v) Using Theorem 4.3 and 2.7.(vi) we have

Va�v, s0(b�v) (c� v) =
1

2

(
t(a� v, b� v, c� v) + 〈b� v, c� v〉(a� v)

+ 〈b� v, a� v〉(c� v) + 〈a� v, c� v〉(b� v)
)

=
q(v)

2
χ−1

(
t(χ(a), χ(b), χ(c)) · v + 〈χ(b), χ(c)〉(χ(a) · v)

+ 〈χ(b), χ(a)〉(χ(c) · v) + 〈χ(a), χ(c)〉(χ(b) · v)
)

=
q(v)

2

(
t(a, b, c)� v + 〈b, c〉(a� v) + 〈b, a〉(c� v) + 〈a, c〉(b� v)

)
= q(v)(Va, s0b c)� v.

(vi) It follows from Definition 2.4 that the map q ◦ π is anisotropic, we
conclude from (ii) that ν is anisotropic. This implies that A is a
conjugate division algebra (see Section 3.3.4). A is central since each
simple algebra of skew-dimension one is central. �

In the following theorem we give the quadrangular algebra X itself the
structure of a structurable algebra. Doing so, we obtain some nice identifi-
cations of expressions defined in quadrangular algebras and in structurable
algebras.
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Theorem 4.7. Let A be an algebra as in Theorem 4.6 above with χ : A → X
the isometry. We give X itself the structure of a structurable algebra by
defining the following multiplication and involution

x ? y := χ(χ−1(x)χ−1(y)), x := χ(χ−1(x)),

for all x, y ∈ X. Define 1 = χ−1(1) ∈ X, let 0 6= s0 ∈ S ⊆ X and µ1 = s20.

Hence X is a central simple structurable division algebra of skew-dimension
one, let ν denote the norm of this structurable algebra. We have the follow-
ing nice expressions for q ◦ π, x · π(x) and g:

ν(x) = − 1

µ
q(π(x)), Ux(s0 ? x) = 3x · π(x), ψ(x, y)s0 = g(x, y)1,

for all x, y ∈ X. We have that the V -operator is compatible with the C(q, 1)-
module structure of X:

(Vx,s0?y z) · v =
1

q(v)
Vx·v, s0?(y·v) (z · v),

for all x, y, z ∈ X, v ∈ L. Consider the Moufang set on X × k and τ given
by 2.20, let 0 6= x ∈ X then

(x, 0).τ = (
1

µ
s0 ? x̂, 0).

Proof. All the claims follow immediately from the previous lemma if we let
the isometry χ be the identity map X → X. For the last claim, use the fact
that s0 ? (s0 ? y) = µy for all y ∈ X. �

In Section 2.4.2.4 we showed that each Moufang quadrangle gives rise to
two Moufang sets. When the coordinatizing structure of the root groups is
one of the following: a Jordan division algebra, a skew field or an anisotropic
quadratic form space; the permutation τ is given by considering the inverse.
In the previous theorem we showed that in the case of a quadrangular algebra
(x, 0).τ = ( 1

µs0 ? x̂, 0); therefore also in this case, τ acts as the inverse on X.

4.3 Structurable algebras on pseudo-quadratic
spaces

We take a closer look at Lemma 4.6 in the case that the quadrangular alge-
bra is obtained from a pseudo-quadratic space (L, σ,X, h, π) as in Lemma
2.12. In particular we will give an example of a structurable algebra A of
hermitian type and skew-dimension one such that the Freudenthal triple
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system obtained in Theorem 4.2 is associated to A in the sense of Definition
3.29.

Structurable algebras of hermitian type are constructed from hermitian
forms. Since h is a skew-hermitian form, we need to apply Lemma 1.5 to
have a hermitian form at our disposal. Then we apply Remark 3.4.(ii) to
make X into a structurable algebra, if we would just apply the procedure in
Definition 3.3 we would obtain a structurable algebra on L⊕X.

Theorem 4.8. Let (L, σ) be a quadratic pair and (L, σ,X, h, π) be an an-
isotropic pseudo-quadratic space with X 6= 0. Choose an element 0 6= s ∈ L
such that sσ = −s and an element 0 6= ξ ∈ X. Since X = (ξL) ⊕ (ξL)⊥,
each element in X can be written in a unique way as ξv + x for v ∈ L and
x ∈ (ξL)⊥.

The following involution and multiplication define a structurable algebra
on X:

ξv + x = ξ(svσs−1) + x,

(ξv + x) · (ξu+ y) = ξ
(
uv + sh(x, y)

)
+
(
xu+ y(svσs−1)

)
, (4.2)

for all u, v ∈ L and all x, y ∈ (ξL)⊥. This structurable algebra is simple and
has skew-dimension one.

When we fix s = h(ξ, ξ), the Freudenthal triple system associated to the
structurable algebra X is similar to the Freudenthal triple system obtained by
Theorem 4.2. For other choices of ξ we obtain isotopic structurable algebras.

Proof. Let 0 6= s ∈ L such that sσ = −s, as in Lemma 1.5 we define
an involution for all v ∈ L by vτ = svσs−1, a left scalar multiplication
v ◦ x := xvτ and we consider the hermitian form sh.

Now we apply Remark 3.4.(ii). Let 0 6= ξ ∈ X on the hermitian space
X with hermitian form sh. Then

(ξL)⊥ = (L ◦ ξ)⊥ = {x ∈ X | sh(x, ξ) = 0} = {x ∈ X | h(x, ξ) = 0}.

We obtain the following involution and multiplication:

ξv + x = vτ ◦ ξ + x = v ◦ ξ + x = ξvτ + x = ξ(svσs−1) + x,

(ξv + x)(ξu+ y) = (vτ ◦ ξ + x)(uτ ◦ ξ + y)

= (vτuτ + sh(y, x)) ◦ ξ + (uτ ◦ x+ v ◦ y)

= ξ
(
uv + sh(x, y)

)
+
(
xu+ y(svσs−1)

)
,

for all u, v ∈ L and all x, y ∈ (ξL)⊥. We denote this structurable algebra
by Ah. Since sh is non-degenerate and L is central simple, it follows from
Section 3.3.3 that Ah is simple.
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The skew-elements of ¯ are given by S = {v ∈ L | svσs−1 = −v}, since
L is either a quaternion algebra or a quadratic field extension of k we have

svσs−1 = −v ⇐⇒ svσ = −vs
⇐⇒ vs = (vs)σ

⇐⇒ vs ∈ FixL(σ) = k.

It follows that dimk S = 1; since s ∈ S, we conclude that S = ks.

Now take s = h(ξ, ξ) ∈ L; we have s = −s. We will determine the tri-
linear map of the Freudenthal triple system associated to Ah (see Definition
3.29) for s0 = −1

2s
−1. Let y = ξv + x ∈ (ξL)⊕ (ξL)⊥ be arbitrary. Then

2Vy, s0y y = 2(2(y · s0 · y)y − (y · y) · (s0 · y)) (4.3)

= 3
(
ξv(−vσs−1v + h(x, x)) + x(−vσs−1v + h(x, x))

)
(4.4)

= 3
(
(ξv + x)((s−1v)σh(ξ, ξ)(s−1v) + h(x, x))

)
(4.5)

= 6(ξv + x)π(ξs−1v + x), (4.6)

where equation (4.3) follows from the definition of the V -operator of a struc-
turable algebra; (4.4) follows after a straightforward calculation using the
multiplication on Ah defined by (4.2).

Let ψ be the vector space automorphism

ψ : Ah → Ah : ξv + x 7→ ξsv + x;

then by applying (4.6) with y replaced by ψ(y) = ξs−1v + x, we get

2Vψ(y), s0ψ(y) ψ(y) = 12
(
(ξsv + x)π(ξv + x)

)
= 6ψ

(
(ξv + x)π(ξv + x)

)
= ψ

(
6yπ(y)

)
.

Therefore ψ is a isometry from the Freudenthal triple system given by
Theorem 3.27 and the Freudenthal triple system given in Theorem 4.2. It
follows from Theorem 3.30 that the algebras obtained from different elements
ξ ∈ X are isotopic. �

4.4 Structurable algebras on quadrangular alge-
bras of type E6, E7 and E8

Now we take a closer look at Lemma 4.6 in the case that the quadrangular
algebra is of type E6, E7 or E8.
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4.4.1 The quadrangular algebra of type E8

Let Ω = (k, L, q, 1, X, ·, h) be a quadrangular algebra of type E8 over k, we
described its structure in Section 2.2.3. We start by associating a biquater-
nion algebra to Xk.

By definition q = N⊗〈1, s2, s3, s4, s5, s6〉 with N the norm of a quadratic
separable field extension E = k[γ]/(γ2 − c). We denote the elements of the
set S (see Notation 2.15) of length less or equal to 2 and different from ϕ by

I = {2, 3, 4, 5, 6, 23, 24, 25, 26, 34, 35, 36, 45, 46, 56}

Remember that each element of X is of the form given in (2.2). We start
by investigating the set

Xk :=
{
t1v1 +

∑
i∈I

tivi | t1, . . . , t56 ∈ k
}
6 X.

This is a 16-dimensional vector space over k. Define as in Section 2.2.3
Lk = kv1⊕ · · · ⊕ kv6 6 L and denote the restriction of the quadratic form q
to Lk by q|k : Lk → k. By construction Xk is isomorphic as a vector space
to C(q|k, 1)/Mk, where Mk is the submodule

Mk = Spank{vI − sgn(I)sIv
′
I | I ∈ ∅ ∪ I} = (v2v3v4v5v6 − 1)C(q|k, 1).

of C(q|k, 1). Since vivj = −vjvi ∈ C(q|k, 1) for i 6= j ∈ {2, . . . , 5}, the
element v2v3v4v5v6 is in the center of C(q|k, 1); therefore Mk is a two-sided
ideal of C(q|k, 1).

Theorem 4.9. We consider Xk = C(q|k, 1)/Mk as an associative algebra,
endowed with the multiplication induced by the Clifford algebra with base-
point. Then Xk is isomorphic to a biquaternion algebra, as an algebra.

In particular, Xk
∼= Q1 ⊗k Q2 for the quaternion k-algebras Q1 :=

(−s2,−s3)k and Q2 := (−s46,−s56)k and Q1 ⊗k Q2 is a division algebra.

Proof. The multiplication on Xk = C(q|k, 1)/Mk is induced by the multipli-
cation in the Clifford algebra C(q|k, 1) by reducing the result modulo Mk.
We define the two quaternion algebras over k with the following generators:

Q1 := (−s2,−s3)k = 〈`,m | `2 = −s2,m2 = −s3, `m = −m`〉,
Q2 := (−s46,−s56)k = 〈n, r | n2 = −s46, r2 = −s56, nr = −nr〉.

In order to construct an isomorphism ψ : Q1 ⊗k Q2 → Xk, we have to de-
scribe two isomorphisms ψi : Qi → Xk for i ∈ {1, 2}, such that the images
ψ1(Q1) and ψ2(Q2) commute elementwise, and together generate Xk. We
can achieve this by the choice

ψ1(`) = v2, ψ1(m) = v3, ψ1(`m) = v23,
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ψ2(n) = v46, ψ2(r) = v56, ψ2(nr) = s6v45.

Observe that the subspaces 〈1, v2, v3, v23〉 and 〈1, v46, v56, v45〉 do indeed com-
mute elementwise, and together they generate Xk.

It follows from Lemma 2.14 that the Albert form qA of Q1⊗kQ2 is similar
to 〈1, s2, s3, s4, s5, s6〉; since q is of type E8 and therefore anisotropic, qA is
anisotropic and Q1 ⊗k Q2 is division. �

We can summarize the isomorphism ψ : Q1⊗kQ2 → Xk in the following
table:

⊗ 1 n r nr

1 v1 v46 v56 s6v45
` v2 −s246v35 s256v34 s2456v36
m v3 s346v25 −s356v24 −s3456v26
`m v23 −s2346v5 s2356v4 −v6

(4.7)

Remark 4.10. The construction of the biquaternion algebra depends on
the similarity class of q and on the norm splitting for q, and in fact, this
biquaternion algebra is not an invariant of the quadrangular algebra.

The algebra Q1⊗kQ2 has dimension 16, whereas the structurable algebra
we want to construct should have dimension 32. We will apply the Cayley-
Dickson process on the Jordan algebra (Q1 ⊗k Q2)

+, see Definition 3.8.

We start with the central simple biquaternion algebra equipped with the
reduced norm Nrd.

Lemma 4.11. Let Q1⊗k Q2 be a biquaternion algebra over a field k. Then
the reduced norm Nrd is a Jordan norm of degree 4 of the Jordan algebra
(Q1 ⊗k Q2)

+.

Proof. The central simple algebra Q1⊗kQ2 has degree 4, so its reduced norm
is indeed a form of degree 4 with basepoint 1; and the trace form is bilinear
nondegenerate. Since the Jordan algebra arises from a biquaternion algebra,
we have Ujj

′ = jj′j, and it follows that Nrd(Ujj
′) = Nrd(j)2 Nrd(j′). �

In order to apply the Cayley–Dickson construction to (Q1 ⊗ Q2)
+, we

have to determine the trace map T associated to Nrd explicitly. Since T is
bilinear, it suffices to compute its value for elements of the form a ⊗ b in
Q1 ⊗Q2. It turns out that

T (a⊗ b, a′ ⊗ b′) = Trd(a, a′) Trd(b, b′) ∀a, a′ ∈ Q1, b, b
′ ∈ Q2,
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where Trd is the reduced trace. For a = a1 + a2` + a3m + a4`m ∈ Q1,
b = b1 + b2n+ b3r + b4nr ∈ Q2, we have that T (a⊗ b, 1⊗ 1) = 4a1b1, as in
Definition 3.8 we define

(a⊗ b)θ = −a⊗ b+ 2a1b1(1⊗ 1). (4.8)

The following theorem gives us the E8-case of Theorem 4.1.

Theorem 4.12. Let Q1 = (−s2,−s3)k and Q2 = (−s46,−s56)k. The
Freudenthal triple system associated to CD

(
(Q1 ⊗ Q2)

+,Nrd, γ2
)

is simi-
lar to the Freudenthal triple system (X, t, 〈., .〉) defined in Theorem 4.2.

Proof. Since (Q1 ⊗k Q2)
+ ∼= Xk as vector spaces, the structurable algebra

CD
(
(Q1 ⊗k Q2)

+,Nrd, γ2
)

is as a vector space isomorphic to Xk ⊕ s0Xk.

We use the isomorphism ψ : Q1 ⊗k Q2 → Xk defined in (4.7) to define a
k-vector space isomorphism χ

CD
(
(Q1 ⊗k Q2)

+,Nrd, γ2
)
→ X

(t1 1⊗ 1 + x1) + s0(t2 1⊗ 1 + x2) 7→ (t1 − γt2)v1 + ψ(x1) + γψ(x2)

for all t1, t2 ∈ k and for all x1, x2 ∈ Q1 ⊗k Q2 such that T (x1, 1 ⊗ 1) =
T (x2, 1⊗ 1) = 0.

For the Freudenthal triple system in Theorem 4.2 we have that t(x, x, x) =
6x·π(x) for x ∈ X; for the Freudenthal triple system associated to CD

(
(Q1⊗

Q2)
+,Nrd, γ2

)
we have t(x, x, x) = Ux(s0x). We implemented the nec-

essary algebraic structures into the program [Sea11] to show that for all
x ∈ CD

(
(Q1 ⊗k Q2)

+,Nrd, γ2
)

3χ(x)π(χ(x)) = χ
(
Ux(s0x)

)
, (4.9)

this implies that the Freudenthal triple systems are similar. Verifying the
above identity is done by calculating the left and right-hand side and veri-
fying that they are equal, for more details see Appendix B. �

Remark 4.13. (i) The structurable algebra described above, consisting
of a twisted Jordan algebra of a biquaternion algebra, is defined up to
isotopy by the quadrangular algebra; in particular its isotopy class is
determined by the quadratic form of type E8.

(ii) The map − 1
γ2
q◦π can be seen as the norm on the quadrangular algebra

X. Using [AF84, Proposition 6.7] and Theorem 4.7, we find an elegant
expression for q ◦ π on Xk:

q(π(x)) = −γ2ν(z) = N(γ) Nrd(z)

for all x ∈ Xk, where x = ψ(z) for z ∈ Q1 ⊗k Q2.



4.4. Structurable alg’s on quadrangular alg’s of type Ek 81

(iii) In Chapter 6, we will see more generally how we can construct a Mou-
fang set from any structurable division algebra, and in particular, we
will recover the non-abelian Moufang set which is the residue of a
Moufang quadrangle of type E8; see Lemma 6.31.

4.4.2 The pseudo-quadratic spaces on E6 and E7

Now assume that Ω = (k, L, q, 1, X, ·, h, θ) is a quadrangular algebra of type
E6 or E7. On page 26 we explained that quadrangular algebras of type E6

and E7 are subspaces of the quadrangular algebra of type E8.

It follows from Theorem 4.9 that in the E6-case Xk is isomorphic to Q1,
and in the E7-case Xk is isomorphic to Q1⊗k k(r). Therefore it follows from
Theorem 4.12 that in the E6-case and E7-case the Freudenthal triple systems
associated to CD(Q+

1 ,Nrd, γ2), CD
(
(Q1⊗k k(r))+,Nrd, γ2

)
respectively, are

similar to the Freudenthal triple system defined in Theorem 4.2; this proves
the E6- and E7-case of Theorem 4.1.

Whereas for quadrangular algebras of type E8 the Moufang set defined
by (2.20) is of type E7, in the case of E6 and E7 we have that the Moufang
set defined by (2.20) is classical. We show that this fact is also visible at
the level of the structurable algebras.

Indeed, in [Wei06a] it is shown that X can be made into a 4-dimensional
vector space over E or over the quaternion algebra D = (E/k, s2s3s4), re-
spectively; moreover, there is, in both cases, an anisotropic pseudo-quadratic
form on this vector space X, denoted by Q̂, with the property that

x · π(x) = x ∗ Q̂(x) (4.10)

for all x ∈ X. (We have used the symbol ∗ to denote the scalar multiplication
of X over E or D, respectively.) We refer to [Wei06a, Definition 3.6, and
Theorems 5.3 and 5.4] for more details.

Equation (4.10) exactly implies that the Freudenthal triple system cor-
responding to the pseudo-quadratic form space X is similar to the Freuden-
thal triple system of X as a quadrangular algebra of type E6 or E7. From
Lemma 4.6 it follows that structurable algebras associated to those Freuden-
thal triple systems are isotopic.

It is also interesting to note that it is shown in [Wei06a, Theorem 5.12]
that

q(π(x)) = N(Q̂(x)) (4.11)

for all x ∈ X; both sides of this expression are, up to a constant, equal to
the conjugate norm of a structurable algebra defined in Theorem 4.7 related
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to the respective Freudenthal triple systems. Identity (4.11) could as well
be proven by combining these two remarks.

We conclude that our result in Theorem 4.7 is a kind of generalization of
the construction of the pseudo-quadratic spaces on the quadrangular algebra
of type E6 and E7 in [Wei06a].



Chapter 5

A coordinate-free
construction of quadrangular
algebras

In this chapter we give a coordinate-free construction of quadrangular al-
gebras in characteristic different from two. The most interesting case is of
course the one of the quadrangular algebras of type E6, E7 and E8; we can
summarize their construction as follows:

Construction 5.1. Let char(k) 6= 2. We start with a quadratic space
(k, V, q) of type E6, E7 or E8 with basepoint (see also Definition 2.13).

By Theorem 5.14 below, there exist an octonion division algebra C1 and
a division composition algebra C2 of dimension 2, 4 or 8, respectively such
that C1 and C2 contain an isomorphic quadratic field extension, but no
isomorphic quaternion algebra, and such that q is similar to the anisotropic
part of the Albert form, qA, of C1 ⊗k C2. It follows that there exist i1 ∈ C1

and i2 ∈ C2 such that i21 = i22 = a ∈ k \ {k2}.
We define a subspace V of the skew-elements of C1 ⊗k C2 of dimension

6, 8 or 12, respectively, as1

V := 〈i1 ⊗ 1, 1⊗ i2〉⊥.

We choose an arbitrary u ∈ V \ {0} and define the quadratic form

Q :=
1

qA(u)
qA|V ;

this form has basepoint u and is similar to the quadratic form of type E6, E7

or E8 we started with.

1The orthogonal complement is taken w.r.t. the bilinear form associated to the Albert
form; this quadratic form is defined on the skew-elements of C1 ⊗k C2.

83



84 Chapter 5. A construction of quadrangular algebras

We then define the subspace X0 of C1 ⊗k C2 of dimension 8, 16 or 32 as

X0 :=
〈(
a x⊗ y + i1x⊗ i2y

)
| x ∈ C1, y ∈ C2

〉
.

Next, we define a suitable element r ∈ S as in Definition 5.19(iii) below, and
we define the bilinear map X0 × L0 → X0 as

x · v = v(r(u(rx))),

and the bilinear map h : X0 ×X0 → V as

h(x, y) = (u(rx))y − y((xr)u).

In Theorem 5.23 we prove that the 7-tuple (k, V,Q, u,X0, ·, h) is a quad-
rangular algebra of type E6, E7 or E8, respectively. It follows that this is
the structure described in [TW02, Chapter 13] giving rise to the Moufang
quadrangles of type E6, E7 and E8, and hence to the corresponding rank
two forms of exceptional linear algebraic groups of type E6, E7 and E8.

For the idea behind Theorem 5.14 we are indebted to Skip Garibaldi. We
have inspired our construction on several properties of J-ternary algebras
(see Definition 3.33) and a construction of J-ternary algebras from the tensor
product of composition algebras given in [ABG02]. It is not clear at all how
to generalize the theory of J-ternary algebras to fields of characteristic 2
and 3.

In the theory of quadrangular algebras fields of characteristic 3 play no
special role (but those of characteristic 2 behave differently). Therefore we
want our construction of quadrangular algebras to work in characteristic 3
in the same way as in characteristic not 2 and 3. We extended the methods
used in [ABG02] to work also over fields of characteristic equal to 3. The side
effect is that this gives rise to lenghty computations; we need the computer
algebra package Sage to verify these.

In Section 5.1 we define special J-modules over fields of characteristic
different from two, where J is a Jordan algebra. In Section 5.2 we show
that special J-modules satisfying some conditions give rise to quadrangular
algebras (see Theorem 5.6). We also show that a J-ternary algebra is a spe-
cial J-module that satisfies these conditions if the characteristic is different
from 3.

In Section 5.3 we make the method in Theorem 5.6 more explicit by
giving the construction of the quadrangular algebras of pseudo-quadratic
form type. In Section 5.4 we elaborate Construction 5.1.

In Section 5.5 we give a uniform description of all of the 4 classes of
Moufang quadrangles, over fields of characteristic different from 2, starting
from a special J-module by extending the construction given in Theorem
5.6.
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5.1 Special J-modules

In this section we let k be a field of characteristic different from 2. In the
next lemma we introduce a module for Jordan algebras.

Lemma 5.2. Let J be a Jordan k-algebra and let X be a k-vector space.
Let • : J ×X → X be a k-bilinear map such that 1 • x = x for all x ∈ X.
Then the following identities are equivalent

Ujj
′ • x = j • (j′ • (j • x)),

(jj′) • x = 1
2(j • (j′ • x) + j′ • (j • x)),

(5.1)

for all j, j′ ∈ J , x ∈ X.

Proof. We first assume that the first identity holds. Since Uj1 = j2, we have
j2 • x = j • (j • x). Linearizing this expression gives us the second identity.

Now we assume that the second identity holds, we have

Ujj
′ • x = (2j(jj′)− j2j′) • x

= 1
2(2j • ((jj′) • x) + 2(jj′) • (j • x)

− j2 • (j′ • x)− j′ • (j2 • x))

= 1
2(j2 • (j′ • x) + j′ • (j2 • x) + 2j • (j′ • (j • x))

− j2 • (j′ • x)− j′ • (j2 • x))

= j • (j′ • (j • x)). �

Definition 5.3 ([ABG02, 3.12]). Let J be a Jordan k-algebra and let X be
a k-vector space, let • : J ×X → X be a k-bilinear map such that 1 • x = x
for all x ∈ X. We call X a special J-module if the equivalent identities (5.1)
are satisfied.

As in the definition of a J-ternary algebra, we equip a special J-module
with a skew-symmetric form that satisfies (JT1) of Definition 3.33.

Lemma 5.4. Let X be a special J-module and let ((·, ·)) : X ×X → J be a
k-bilinear skew-symmetric form. Then the following identities are equivalent

Uj ((x, y)) = ((j • x, j • y)) ,

j ((x, y)) = 1
2(((j • x, y)) + ((x, j • y))),

(5.2)

for all j ∈ J , x, y ∈ X.

Proof. The second identity follows immediately from the first identity since
for all j, j′ ∈ J we have Uj+1j

′ − Ujj′ − U1j
′ = 2jj′.
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Now we assume that the second identity holds. Then we have for all
j ∈ J , x, y ∈ X that

Uj ((x, y)) = 2j(j ((x, y)))− j2 ((x, y))

= 1
2

(
((j • (j • x), y)) + ((x, j • (j • y))) + 2 ((j • x, j • y))

)
− 1

2

(((
j2 • x, y

))
+
((
x, j2 • y

)))
The first identity follows since j • (j • x) = j2 • x. �

In the following lemma we consider the Peirce decomposition of special
J-modules; we took this material from [ABG02, 6.61], there it is elaborated
(without proof) for J-ternary algebras in characteristic 0.

Lemma 5.5. Let J be a Jordan k-algebra with supplementary proper idem-
potents e0 and e1. Let J0, J1/2, J1 be the Peirce subspaces of J with respect

to e1 (see Definition 1.11). Let X be a special J-module and define

X0 := {x ∈ X | e0 • x = x} = {x ∈ X | e1 • x = 0},
X1 := {x ∈ X | e0 • x = 0} = {x ∈ X | e1 • x = x}.

Then

(i) We have e0 •X = X0, e1 •X = X1 and X = X0 ⊕X1.
(ii) For i ∈ {0, 1} and j = 1− i we have

Ji •Xi ⊆ Xi, Ji •Xj = 0, J1/2 •Xi ⊆ Xj . (5.3)

(iii) Let ((·, ·)) : X × X → J be a skew-symmetric bilinear form satisfying
(5.2), then

((Xi, Xi)) ⊆ Ji, ((Xi, Xj)) ⊆ J1/2 (5.4)

for i ∈ {0, 1} and j = 1− i.
(iv) Assume there exists an element u ∈ J1/2 such that u2 = 1. The map

X0 → X1 : x 7→ u • x

is a vector space isomorphism, called the connecting morphism.

Proof. (i) Let i ∈ {0, 1}, we have ei • (ei • x) = (eiei) • x = ei • x for
all x ∈ X, therefore ei • X = Xi. Since (e0 + e1) • x = x, we have
X = X0 ⊕X1.

(ii) This follows by evaluating

e1 • (j • x) = 2(e1j) • x− j • (e1 • x)

for all the combinations of j ∈ J0, J1 or J1/2 and x ∈ X0 or X1; making
use of the fact that X = X0 ⊕X1.

(iii) This follows from evaluating e1 ((x, y)) = 1
2(((e1 • x, y)) + ((x, e1 • y))) for

x, y ∈ X0 or X1.
(iv) It follows from (ii) that u • x ∈ X1 if and only if x ∈ X0. Since u • (u •

x) = (uu) • x = x the connecting morphism is an isomorphism. �
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5.2 Construction of general quadrangular algebras

In the following theorem we consider a special J-module in the case where
J is a reduced spin factor (see Definition 1.12). These structures give rise
to quadrangular algebras.

Theorem 5.6. Let char(k) 6= 2.

Let J be the reduced spin factor of the non-degenerate anisotropic quadratic
space (k, V, q) with basepoint u: J = ke0 ⊕ V ⊕ ke1.

Let X be a non-trivial special J-module equipped with a bilinear skew-
symmetric form ((·, ·)) : X ×X → J satisfying (5.2).

Define X0 = {x ∈ X | e0 • x = x} as in Lemma 5.5, assume that the
following holds:

∀x ∈ X0, v ∈ V : ((v • x, x)) • x = v • (u • (((u • x, x)) • x)), (5.5)

∀x ∈ X0 \ {0} : ((u • x, x)) 6= 0. (5.6)

We define

· : X0 × V → X0 : x · v = v • (u • x)

h : X0 ×X0 → V : (x, y) 7→ ((u • x, y)) .

Then (k, V, q, u,X0, ·, h) is a quadrangular algebra.

Proof. Notice that e0, e1 ∈ J are supplementary proper idempotents and
that u ∈ J1/2 such that u2 = q(u)1 = 1. Thus we can apply Lemma 5.5 with

J0 = ke0, J1/2 = V , J1 = ke1. It follows from (5.3) and (5.4) that the maps
· and h are well defined.

To start we show that Uu(v) = vσ for all v ∈ J1/2 with σ as in Definition
2.4:

Uu(v) = 2u(uv)− v
= u(f(u, v)1)− v
= f(u, v)u− v = vσ.

We verify that all the axioms of a quadrangular algebra given in Defini-
tion 2.4 hold.

(A1) This follows from bi-linearity of •.
(A2) Let x ∈ X0, then x · u = u • (u • x) = u2 • x = 1 • x = x.
(A3) Let x ∈ X0 and v ∈ J1/2, then

(x · v) · vσ = Uu(v) • (u • (v • (u • x)))
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= u • (v • (v • (u • x)))

= 1
2f(v, v) u • (1 • (u • x))

= q(v)x.

(B1) This follows by from bilinearity of ((., .)).
(B2) Let x, y ∈ X0 and v ∈ J1/2, then by applying consecutively (1.1); (5.2);

(A2) and (5.1) we find

h(x, y · v) = h(y, x · v) + f(h(x, y), u)v

⇐⇒ ((u • x, v • (u • y))) = ((u • y, v • (u • x))) + f(((u • x, y)) , u)v

⇐⇒ ((u • x, v • (u • y)))

+ ((v • (u • x), u • y)) = 2(((u • x, y))u)v

⇐⇒ 2v ((u • x, u • y)) = (((u • x, u • y)) + ((x, y)))v

⇐⇒ vUu ((x, y)) = ((x, y)) v

From (5.4) we know that ((x, y)) = te0 for some t ∈ k. It follows from
Definition 1.12 that

vUu(te0) = v(te1) = 1
2 tv = (te0)v.

(B3) Let x, y ∈ X0 and v ∈ J1/2, then by applying consecutively (1.1); (5.2)
we find

f(h(x · v, y), u) = f(h(x, y), v)

⇐⇒ f(((u • (v • (u • x)), y)) , u) = f(((u • x, y)) , v)

⇐⇒ ((u • (v • (u • x)), y))u = ((u • x, y)) v

⇐⇒ ((u • (v • (u • x)), u • y))

+ ((v • (u • x), y)) = ((u • x, v • y)) + ((v • (u • x), y))

⇐⇒ ((u • (v • (u • x)), u • y)) = ((u • x, v • y))

Since Uu = σ on J1/2 is an involution, by (5.2) this is equivalent to

⇐⇒ ((v • (u • x), y)) = ((x, u • (v • y)))

⇐⇒ ((v • (u • x), v • (v • y))) = q(v) ((u • (u • x), u • (v • y)))

the last equivalence follows from (1.1). From (5.4) we know that
((u • x, v • y)) = te1 for some t ∈ k. The last equation reduces to

Uv(te1) = q(v)Uu(te1)

This holds since Uv(e1) = q(v)e0 and Uu(e1) = e0 by Definition 1.12.
(C) θ(x, v) := 1

2 ((u • x, v • (u • x))).
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(D1) Let x ∈ X0 and v ∈ J1/2. Since f is non-degenerate, we have V =

ku⊕ u⊥. Now

x · h(x, x · v) = (x · h(x, x)) · v
⇐⇒ ((u • x, v • (u • x))) • (u • x) = v • (u • (((u • x, x)) • (u • x)))

Since this expression is linear in v and trivial for v ∈ ku, we can assume
v ∈ u⊥ and thus f(u, v) = uv = 0 and hence u • (v • x) = −v • (u • x).
In this case we continue as follows:

⇐⇒ − ((u • x, u • (v • x))) • (u • x) = v • (Uu ((u • x, x)) • x)

⇐⇒ Uu ((x, v • x)) • (u • x) = −v • (((x, u • x)) • x)

⇐⇒ u • (((x, v • x)) • x) = −v • (((x, u • x)) • x)

⇐⇒ ((x, v • x)) • x = −u • (v • (((x, u • x)) • x))

⇐⇒ ((x, v • x)) • x = v • (u • (((x, u • x)) • x)).

This is exactly (5.5).
(D2) This is assumption (5.6). �

For the remaining part of this section we assume that char(k) 6= 2, 3. In
the following theorem we prove that an arbitrary ‘anisotropic’ non-trivial
J-ternary algebra(see Definition 3.33), where J is a reduced spin factor,
satisfies the assumptions of Theorem 5.6. It follows that we can construct
quadrangular algebras from J-ternary algebras.

Theorem 5.7. Let char(k) 6= 2, 3. Let J be the reduced spin factor of the
non-degenerate anisotropic quadratic space (k, V, q) with basepoint u. Let X
be a non-trivial J-ternary algebra such that ((u • x, x)) 6= 0 for all x ∈ X0\{0},
here X0 is defined as in Lemma 5.5.

Then X0 satisfies (5.5). Therefore (k, V, q, u,X0, ·, h) is a quadrangular
algebra, with · and h as in Theorem 5.6.

Proof. Let i ∈ {0, 1}, we will first show that for all x ∈ Xi and v ∈ J1/2

v • ((x, x, x)) = 3 ((v • x, x)) • x = 3 ((v • x, x, x)) =
3

2
((x, x, v • x)) . (5.7)

From (JT2) we find that e1 • ((x, v • x, x)) = t ((x, v • x, x)) with t = −1 if
i = 0 and t = 2 if i = −1, therefore

((x, v • x, x)) = 0.

Using (JT3) and (JT4) respectively we get

((x, v • x))•x = ((v • x, x, x))−((x, x, v • x)) and ((x, v • x))•x = − ((v • x, x, x)) .
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Combining these equations, we obtain

((x, x, v • x)) = 2 ((v • x, x, x)) = 2 ((v • x, x)) • x.

From (JT2) we have

v • ((x, x, x)) = ((v • x, x, x)) + ((x, x, v • x)) .

Combining the two last formulas proves (5.7). Since char(k) 6= 3, it
follows from (5.7) that (5.5) is equivalent with

v • ((x, x, x)) = v • (u • (u • ((x, x, x)))).

Since this last equation holds we have proved that (5.5) holds. It follows
from Definition 3.33 that X is a special J-module that satisfies (5.2). Since
we assume that (5.6), we can apply Theorem 5.6. �

Remark 5.8. (i) We give an alternative characterization of an ‘aniso-
tropic’ J-ternary algebra. We show that for all x ∈ X0, ((u • x, x)) =
0 ⇐⇒ ((x, x, x)) = 0.
First remark that if v • x = 0 we have v = 0 or x = 0: it follows from
v • x = 0 that v • (v • x) = q(v)x = 0, since q is anisotropic we have
v = 0 or x = 0. Now we have

((u • x, x)) = 0

⇐⇒ ((u • x, x)) • x = 0

⇐⇒ u • ((x, x, x)) = 0 by (5.7)

⇐⇒ ((x, x, x)) = 0.

(ii) In the previous theorem we have to demand that ((x, x, x)) 6= 0 for
all x ∈ X0 \ {0}, because there exist J-ternary algebras which fulfill
all the requirements but where ((x, x, x)) = 0 for some x 6= 0 ∈ X0.
For example, consider [ABG02, Example 6.81] with the zero skew-
hermitian form. Examples like this we clearly want to avoid.

5.3 Construction of pseudo-quadratic spaces

Let k be a field of characteristic not 2.

We rely on the example [ABG02, 6.81] to obtain a quadrangular algebra
of pseudo-quadratic form type using Theorem 5.6. In combination with
Section 5.4 this will show that all quadrangular algebras of characteristic
not 2 can be obtained using the construction in Theorem 5.6.

Let (k, L, q, u,X, ·, h) be a quadrangular algebra that is obtained from
a pseudo-quadratic space (L, σ,X, h, π) (see Theorem 2.12). It follows that
q : L→ k : ` 7→ ``σ is a quadratic form.
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Definition 5.9. (i) Define J = H(M2(L), σT ) (see Definition 1.13 and
Remark 1.14); this Jordan algebra is a reduced spin factor of the
quadratic form

Q : J1/2 → k :

[
0 `σ

` 0

]
7→ q(`).

As before we define e0 =

[
1 0
0 0

]
, e1 =

[
0 0
0 1

]
, u =

[
0 1
1 0

]
∈ J : u is a

basepoint of Q.
(ii) Define X̃ = X2, the 1× 2 row vectors over X.
(iii) We define the action of J on X̃ as2 j • x := xj ∈ X̃ for j ∈ J, x ∈ X̃.
(iv) Define ψ : X̃ × X̃ →M2(L) : ψ([x1, x2], [y1, y2]) :=

[
h(xi, yj)

]
, now we

define the skew-symmetric bilinear map X̃ × X̃ → J

(([x1, x2], [y1, y2])) := ψ([x1, x2], [y1, y2])− ψ([y1, y2], [x1, x2])

=

[
h(x1, y1)− h(y1, x1) h(x1, y2)− h(y1, x2)
−h(y2, x1) + h(x2, y1) h(x2, y2)− h(y2, x2)

]
.

With respect to e1 we have

X̃0 = {[x, 0] | x ∈ X}, X̃1 = {[0, x] | x ∈ X}.

Lemma 5.10. The space X̃ is a non-trivial special J-module with skew-
symmetric bilinear form ((·, ·)) that satisfies (5.2), (5.5) and (5.6) hold as
well.

Under the identifications

J1/2
∼= L : `↔

[
0 `σ

` 0

]
and X̃0

∼= X : [x, 0]↔ x,

the quadrangular algebra defined in Theorem 5.6 is exactly the quadrangular
algebra we started with.

Proof. Verifying that X̃ is a special J-module and satisfies (5.2) requires
some straightforward calculations. We will verify (5.5) and (5.6).

Define v =

[
0 `σ

` 0

]
∈ J1/2, x̃ = [x, 0] ∈ X̃0. Notice that u • x̃ = [0, x] ∈

X1, and

((u • x̃, x̃)) =

[
0 −h(x, x)

h(x, x) 0

]
.

Hence ((u • x̃, x̃)) is equal to 0 if and only if h(x, x) = 0. It follows from the
anisotropity of the pseudo-quadratic space that π(x) = 1

2h(x, x) is aniso-
tropic (see Remark 2.5.(ii)), so (5.6) holds.

2On the right hand side the usual matrix multiplication is used.
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Condition (5.5) holds since

((v • x̃, x̃))• x̃ = [0,−xh(x, x)lσ] = v • [−xh(x, x), 0] = v • (u• (((u • x̃, x̃))• x̃)).

From Theorem 5.6 we conclude that (k, J1/2, Q, u, X̃0, ·, h̃) is a quadran-
gular algebra with

[x, 0] ·
[
0 `σ

` 0

]
= [0, x · `],

h̃([x, 0], [y, 0]) = ((u • [x, 0], [y, 0])) =

[
0 −h(y, x)

h(x, y) 0

]
. �

5.4 Construction of quadrangular algebras of type
E6, E7, E8

Let k be a field of characteristic not 2.

In this section we work with quadrangular algebras of type E6, E7, E8.
In Section 2.2.3 we described the structure of the vector spaces X,L and the
maps · and h defined in [TW02]. In this section we give a new coordinate-
free construction of the X, L, · and h starting from the tensor product of
composition algebras.

5.4.1 A characterization of quadratic forms of type E6, E7, E8

Let C1 and C2 be division composition algebras, in Definition 3.12 we in-
troduced the Albert form on S ⊂ C1 ⊗C2. The case where the Albert form
has Witt index one will give rise a new characterization of quadratic forms
of type E6, E7 and E8. In the following lemma we give three equivalent
characterizations of the fact that the Witt index of qA is equal to one.

Lemma 5.11. Let C1 be an octonion division algebra with norm q1 and let
C2 be a separable quadratic field extension, quaternion division algebra or
an octonion division algebra, with norm q2. The following are equivalent:

(i) C1 and C2 contain isomorphic separable quadratic field extensions, but
C1 and C2 do not contain isomorphic quaternion algebras.

(ii) The linkage number3 of q1 and q2 is one, i.e. q1 and q2 are 1-linked
but not 2-linked.

(iii) The Witt index of the Albert form qA of C1 ⊗k C2 is equal to one.

Proof. Since the Witt index of qA is one less than the Witt index of q1 ⊥ −q2,
the equivalence of (ii) and (iii) is given by a result of Elman–Lam (see for
example [Lam05, Theorem X.5.13]).

3see Definition 1.1.



5.4. Construction of quadrangular algebras of type Ek 93

The following observations follow from [SV00, Prop. 1.5.1]. Let C be a
composition algebra over k with norm q.

If dim(C) = 4 or 8: C contains a separable extension field isomorphic to
k(i)/(i2 − a) with a ∈ k if and only if there exists a Pfister form ϕ, of
dimension 2 or 4 respectively, such that q ∼= 〈〈−a〉〉 ⊗ ϕ.

If dim(C) = 8: C contains a quaternion algebra isomorphic to (a, b)k with
a, b ∈ k if and only if q ∼= 〈〈−a,−b,−c〉〉 for some c ∈ k.

From this it follows immediately that (i) and (ii) are equivalent. �

Definition 5.12. We define the linkage number of C1 and C2 as the linkage
number of their norm forms q1 and q2. Hence C1 and C2 have linkage number
one if one of the three equivalent conditions of Lemma 5.11 is satisfied.

Remark 5.13. Suppose that C1 and C2 have linkage number one. No-
tice that it is possible that C1 and C2 contain more than one isomorphic
separable quadratic field extension up to isomorphism.

The following theorem gives a new way to describe quadratic forms of
type E6, E7 and E8 (see Definition 2.13). This illuminating observation was
made by Skip Garibaldi.

Theorem 5.14. Let q be an anisotropic form over k of dimension 6, 8 or
12. Then q is of type E6, E7 or E8 respectively if and only if there exist
an octonion division algebra C1 and a division composition algebra C2, of
dimension 2, 4 or 8 respectively, that have linkage number one such that q
is similar to the anisotropic part of the Albert form of C1 ⊗k C2.

The ‘only if’-direction of this theorem is proved in the following, more
technical, lemma.

Lemma 5.15. We consider a quadratic form q of type E6, E7 or E8. Let N
denote the norm of a separable quadratic field extension E = k(x)/(x2 − a)
for a /∈ k2;

(i) If q = N ⊗ 〈1, s2, s3〉 of type E6, define

C1 = (a,−s2,−s3)k and C2 = E.

(ii) If q = N ⊗ 〈1, s2, s3, s4〉 of type E7, define

C1 = (a,−s2,−s3)k and C2 = (a, s2s3s4)k.

(iii) If q = N ⊗ 〈1, s2, s3, s4, s5, s6〉 of type E8, define

C1 = (a,−s2,−s3)k and C2 = (a,−s4s6,−s5s6)k.
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Then q is similar to the anisotropic part of the Albert form of C1⊗k C2 and
C1 and C2 are division algebras that have linkage number 1.

Proof. Denote the norm form of C1 by q1, the norm form of C2 by q2 and
the Albert form of C1⊗k C2 by qA. In the case that q is of type E8 we have
q1 = N ⊗ 〈〈s2, s3〉〉 and q2 = N ⊗ 〈〈s4s6, s5s6〉〉; the following identity follows
by multiplying the quadratic forms in Lemma 2.14 by N .

q ⊥ 2H ∼ qA ⊥ H ∼ q1 ⊥ −q2, (5.8)

The above formula holds as well in the cases E6 and E7, the verification can
be done in a similar way as in the E8-case.

Note that q is anisotropic. Therefore q1 ⊥ −q2 has Witt index 2; it
follows that q1 and q2 are anisotropic and both C1 and C2 are division
algebras. It follows from (5.8) that qA has Witt index 1, and now Lemma
5.11 implies that C1 and C2 have linkage number 1. �

Proof of Theorem 5.14. The ‘only if’-direction is proven in the Lemma above.
The ‘if’-direction follows in a similar way. We elaborate the case where C1

and C2 are octonion division algebras.

Since C1 and C2 contain an isomorphic field extension, by [SV00, Prop.
1.5.1] we can assume that C1 = (a, b1, c1)k and C2 = (a, b2, c2)k for some
a, b1, b2, c1, c2 ∈ k. We denote the Albert form of C1 ⊗k C2 by qA.

Define N := 〈〈−a〉〉, this is anisotropic since C1 is division. By going
through the computation in Lemma 2.14 from bottom to top with

s2 := −b1, s3 := −c1, s4 :=
1

b1c1c2
, s5 :=

1

b1c1b2
, s6 := −b1b2c1c2

we find that qA is similar to N ⊗ 〈1, s2, s3, s4, s5, s6〉 ⊥ H. Since the Witt
index of qA is one, N⊗〈1, s2, s3, s4, s5, s6〉 is the anisotropic part of qA; since
s2s3s4s5s6 = −1 it is of type E8. �

5.4.2 The construction

In order to construct quadrangular algebras of type E6, E7 and E8 we follow
Example 6.82 in [ABG02] closely. In loc. cit. a J-ternary algebra is con-
structed out of the structurable algebra C1 ⊗k C2 in characteristic zero as
in Theorem 3.34, but this restriction is not necessary. Below, we elaborate
this Example 6.82 in [ABG02] in full detail in arbitrary characteristic.

First we give a intuitive motivation of the approach we will be following
in our construction.
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Remark 5.16. Let C1 be an octonion division algebra and C2 a separable
quadratic field extension, quaternion division algebra or octonion division
algebra and assume that C1 and C2 have linkage number one.

The dimension of C1 ⊗k C2 is 16, 32 or 64, respectively. The space
of skew-elements is S = S1 ⊗ 1 + 1 ⊗ S2 and has dimension 8, 10 or 14,
respectively. Let (k, L, q, 1, X̃, ·, h) be a quadrangular algebra of type E6,
E7 or E8, respectively. We summarize some dimensions:

E6 E7 E8

dimk S 8 10 14
dimk L 6 8 12

dimk(C1 ⊗k C2) 16 32 64

dimk X̃ 8 16 32

We see that in all three cases dimk S = dimk L+ 2 and dimk(C1⊗C2) =
2 dimk X̃.

In Theorem 5.6 we considered some objects the dimensions of which
behave similarly: Let J be a Jordan algebra of reduced spin type with
basepoint and let X be a special J-module. Then dimk(J) = dimJ1/2 + 2
and dimkX = 2 dimkX0.

From Lemma 5.15, the Albert form from S to k can be written as the sum
of a hyperbolic plane and a quadratic form of type E6, E7 or E8, respectively.
Note that a hyperbolic plane is two-dimensional.

In the following pages, we will give S the structure of a reduced spin
factor of a quadratic form of type E6, E7 or E8, respectively, and identify
J1/2 with L. Then we will give C1 ⊗ C2 the structure of a special J-module

equipped with a bilinear skew-hermitian form, and identify (C1⊗C2)0 with
X̃.

We start by fixing some notation.

Notation 5.17. (i) We fix a basis for the composition algebras C1 and
C2 that have linkage number 1. We let C1 be the octonion division
algebra

C1 = 〈1, i1, j1, i1j1,k1, i1k1, j1k1, (i1j1)k1〉.
If C2 is a separable quadratic field extension, we define C2 = 〈1, i2〉. In
the case C2 is a quaternion division algebra we define C2 = 〈1, i2, j2, i2j2〉.
In the case C2 is an octonion division algebra we define

C2 = 〈1, i2, j2, i2j2,k2, i2k2, j2k2, (i2j2)k2〉.

Since C1 and C2 have linkage number 1, we can choose these bases in
such a way that

i21 = i22 =: a ∈ K.
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(ii) From now on we denote S1, S2 and S for the set of skew-elements of
C1, C2 and C1 ⊗k C2, respectively.

(iii) We denote the Albert form of C1⊗kC2 by qA : S → k and its associated
bilinear form by fA.

(iv) Let V := 〈i1 ⊗ 1, 1 ⊗ i2〉⊥ denote the orthogonal complement of the
subspace 〈i1⊗1, 1⊗i2〉 of S with respect to the non-degenerate bilinear
form fA.

We want to make S into a Jordan algebra of reduced spin type. In
particular it should contain supplementary proper idempotents e0 and e1
and an element u ∈ J1/2 such that u2 is the identity. It will become clear
that the elements constructed in the following lemma will be the ones we
need.

Lemma 5.18. Let u ∈ V \ {0} be arbitrary. Then up to order and up to
scalars, there exists a unique pair (e0, e1) of elements in S such that

qA(e0) = qA(e1) = 0,

fA(e0, V ) = fA(e1, V ) = 0, fA(e0, e1) = −qA(u) 6= 0.

Explicitly, there exists an element λ ∈ k such that (λe0, λ
−1e1) is equal to(

i1 ⊗ 1 + 1⊗ i2,
qA(u)

4a
(i1 ⊗ 1− 1⊗ i2)

)
.

Proof. Since qA has Witt index one, qA is anisotropic on V = 〈i1⊗1, 1⊗i2〉⊥.
Hence qA(u) 6= 0.

We demand that e0, e1 are isotropic elements in V ⊥ = 〈i1⊗1, 1⊗i2〉. This
implies that they are of the form λ(i1⊗1±1⊗ i2). Since fA(e0, e1) should be
different from 0 we can take without loss of generality e0 = λ0(i1⊗1+1⊗ i2)
and e1 = λ1(i1 ⊗ 1 − 1 ⊗ i2) for some λ0, λ1 ∈ k \ {0}. Now we determine
the scalars λ0, λ1, such that fA(e0, e1) = −qA(u). We have

fA(λ0(i1 ⊗ 1 + 1⊗ i2), λ1(i1 ⊗ 1− 1⊗ i2)) = λ0λ1(−4a).

So we find that λ1 = qA(u)
4aλ0

. �

Since dimS = dimV + 2, we want to make V into a quadratic space.
If we want that u.u = 1 in the Jordan algebra of reduced spin type we will
define, the element u should be the basepoint of the quadratic form that
determines the reduced spin factor. In the following definition we define a
Jordan algebra on S; in Lemma 5.20 we will show that this Jordan algebra
has a natural interpretation in the endomorphism ring of C1 ⊗k C2.
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Definition 5.19. Let u ∈ V \ {0} and

e0 = i1 ⊗ 1 + 1⊗ i2, e1 =
qA(u)

4a
(i1 ⊗ 1− 1⊗ i2).

(i) We define a quadratic form on the vector space V ,

Q :=
1

qA(u)
qA|V .

We denote the corresponding bilinear form by F .
It follows from Theorem 5.14 that (k, V,Q) is a quadratic space of type
E6, E7 or E8, respectively, with basepoint u.

(ii) We have S = ke0 ⊕ V ⊕ ke1, we define the Jordan multiplication as in
Definition 1.12:

(t1ei).(t2ej) = δijt1t2ei,

(tei).v = 1
2 tv,

v.w = 1
2F (v, w)(e0 + e1),

for all i, j ∈ {0, 1}, v, w ∈ V, t, t1, t2 ∈ k. We denote this Jordan algebra
by J , this is the reduced spin factor of (k, V,Q).

(iii) As qA(e0 + e1) = fA(e0, e1) = −qA(u) 6= 0, e0 + e1 is invertible and we
define

r := (e0 + e1)
−1 = − 1

qA(e0 + e1)
(e0 + e1)

\ ∈ S,

where the inverse and \ is as in Definition 3.12. Notice that e0 + e1
is the identity in the Jordan algebra J on S, the definition of r has
nothing to do with the inverse in J .

(iv) Let s ∈ S, define Ls ∈ Endk(C1⊗kC2) as Lsx := sx for all x ∈ C1⊗kC2.

Consider the Jordan algebra of the associative algebra Endk(C1⊗k C2),
denoted by Endk(C1⊗k C2)

+. We show that the algebra of reduced spin type
we defined above, is isomorphic to a Jordan subalgebra of Endk(C1⊗k C2)

+.
The following lemma is given in [ABG02, Example 6.82] without proof; for
completeness we include it here. In the case that char(k) 6= 2, 3 part of the
lemma follows as well from the proof of Theorem 3.34.

Lemma 5.20. Let s1, s2 ∈ S, we have

1

2
(Ls1LrLs2Lr + Ls2LrLs1Lr) = Ls1.s2Lr,

where s1.s2 denotes the multiplication in the algebra J defined in Definition
5.19.(ii).

Therefore LSLr is a Jordan subalgebra of Endk(C1 ⊗k C2)
+ isomorphic

to J .
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Proof. We will make use of [All86b, Proposition 3.3 (3.8)]. In [All86b] only
characteristic 0 is considered; however this proposition can be generalized
to characteristic different from 2 without any adjustments. The proof of
this proposition uses basic identities of octonions (see Lemma 1.8) and the
identity s1(s2(s1x)) = (s1s2s1)x for x ∈ C1 ⊗k C2 (see Lemma 3.13).

Linearizing [All86b, Prop 3.3 (3.8)] gives

Ls1L(e0+e1)\Ls2 + Ls2L(e0+e1)\Ls1

= −fA(s1, e0 + e1)Ls2 − fA(s2, e0 + e1)Ls1 + fA(s1, s2)Le0+e1 .

Since r = (e0 + e1)
−1 = − 1

qA(e0+e1)
(e0 + e1)

\ = 1
qA(u)

(e0 + e1)
\, we find

that

1

2
(Ls1LrLs2Lr + Ls2LrLs1Lr)

=
1

2qA(u)
(−fA(s1, e0+e1)Ls2Lr−fA(s2, e0+e1)Ls1Lr+fA(s1, s2)Le0+e1Lr).

It follows from u ∈ V = 〈e0, e1〉⊥, qA(e0) = qA(e1) = 0, fA(e0, e1) =
−qA(u), that for i, j ∈ {0, 1} and for all v, w ∈ V

1
2(LeiLrLejLr + LejLrLeiLr) = δijLeiLr,
1
2(LeiLrLvLr + LvLrLeiLr) = 1

2LvLr,

1
2(LvLrLwLr + LwLrLvLr) =

fA(v, w)

2qA(u)
Le0+e1Lr.

This is exactly the multiplication of J . �

In order to define an action of J on C1 ⊗k C2, we use the isomorphism
of the previous Lemma.

Definition 5.21. We define the bilinear action

• : S × (C1 ⊗k C2)→ C1 ⊗k C2 : (s, x) 7→ LsLrx = s(rx).

We define the skew-symmetric bilinear map

((., .)) : (C1 ⊗k C2)× (C1 ⊗k C2)→ S : (x, y) 7→ ψ(x, y) = xy − yx.

Remark 5.22. (i) After some computation we find

e0 • (x1 ⊗ x2) = 1
2

(
x1 ⊗ x2 +

1

a
i1x1 ⊗ i2x2

)
,

e1 • (x1 ⊗ x2) = 1
2

(
x1 ⊗ x2 −

1

a
i1x1 ⊗ i2x2

)
,

for all x1 ∈ C1, x2 ∈ C2. Note that this is independent of the choice of
the basepoint u.
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(ii) For all x1, y1 ∈ C1, x2, y2 ∈ C2 we have,

((x1 ⊗ x2, y1 ⊗ y2)) = f2(x2, y2)ψ(x1, y1)⊗ 1 + 1⊗ f1(x1, y1)ψ(x2, y2).

In the following theorem we show that when applying Theorem 5.6 with
X = C1⊗kC2 and J , • and ((., .)) as above, we obtain indeed a quadrangular
algebra of type E6, E7 or E8. In the proof we make a distinction between
the cases char(k) 6= 2 and char(k) 6= 2, 3.

When char(k) 6= 2, 3, C1 ⊗k C2 is a structurable algebra, thus we can
apply known results from the theory of structurable algebras.

If char(k) = 3 we can not make use of the theory of structurable algebras.
Therefore we prove this in a direct way only making use of identities in
octonions. Regrettably, this gives rise to lengthy computations and for one
particular identity we had to rely on the computer algebra software [Sea11].
This proof does not use the fact that the characteristic is equal to 3, but
only that it is different from 2.

Theorem 5.23. Let char(k) 6= 2. Let e0, e1, u ∈ S be as in Lemma 5.18, let
the quadratic form Q of type E6, E7, E8 and the reduced spin factor J be as
in Definition 5.19. Let X := C1 ⊗k C2, let • and ((., .)) be defined as above.

Then X is a special J-module and ((., .)) satisfies (5.2). Conditions (5.5)
and (5.6) of Theorem 5.6 are satisfied. As in Theorem 5.6 we define

· : X0 × V → X0 : x · v = v • (u • x)

h : X0 ×X0 → V : (x, y) 7→ ((u • x, y)) .

Then (k, V,Q, u,X0, ·, h) is a quadrangular algebra of type E6, E7, E8.

Proof. We have from Lemma 3.13 that (e0 + e1) • x = x for all x ∈ X. The
fact that X is a special J-module now follows from Lemma 5.20. It follows
from Theorem 2.8 that if (k, V,Q, u,X0, ·, h) is a quadrangular algebra, it
has to be of type E6, E7, E8 due to the dimension of V .

char(k) 6= 2, 3

Since C1⊗kC2 is a structurable algebra, it is a J-ternary algebra by Theorem
3.34. Notice that J , • and the skew-symmetric bilinear map defined above
are identical to the ones used in Theorem 3.34. By applying Theorem 5.7
we find that (5.2) and (5.5) are satisfied.

For the proof of (5.6) we refer to the general characteristic case below.
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char(k) 6= 2

We first verify that the second identity of (5.2) holds, this takes a rather
lengthy but straightforward computation:

Since the condition is linear in x and y, one can choose x = x1 ⊗ x2 and
y = y1 ⊗ y2 for x1, y1 ∈ C1, x2, y2 ∈ C2. Let s = s1 ⊗ 1 + 1 ⊗ s2 ∈ S and
denote r = r1 ⊗ 1 + 1⊗ r2, instead of using its definition with coordinates.
Using Remark 5.22.(ii) it is not hard to show that the following identities
hold for i ∈ {1, 2}
• fi(si, ψ(xi, yi)) = −2fi(sixi, yi),
• ψ(sixi, yi) + ψ(siyi, xi) = 2sifi(xi, yi),
• fi(si(rixi), yi) + fi(si(riyi), xi) = −fi(si, ri)fi(xi, yi).

Using these identities, (5.2) can be simplified to

ψ(si(rixi), yi)− ψ(si(riyi), xi)

= −fi(ri, ψ(xi, yi))si + fi(si, ψ(xi, yi))ri − fi(si, ri)ψ(xi, yi),

and this identity can be checked using Lemma 1.8, especially the Moufang
identities (v).

We were not able to verify (5.5) by hand. The problem is that (5.5) has
degree 3 in x, so we can not assume that x is of the form e0 • (x1⊗ x2). We
did a computation based on a coordinatization of X, we used the software
[Sea11] to do the symbolic computations:

Now x is an arbitrary element in X0 = e0 • X, therefore x is a sum
of elements of the form a x1 ⊗ x2 + i1x1 ⊗ i2x2 (see Remark 5.22). We
implemented octonions and the tensor product of two octonions in Sage in
a symbolic way (see Appendix B), and we verified that (5.5) holds.

The only fact that remains to be verified is (5.6). In fact, this is exactly
axiom (D2) and in the proof of Theorem 5.6 the condition (5.6) is not used
to prove any of the other axioms. Since we already know that the axioms A-
B-C-D1 are true, we will use these to prove ((u • x, x)) 6= 0 for all x ∈ X0\{0}.

First we show that

there exists an x ∈ X0 such that ((u • x, x)) 6= 0. (5.9)

Let x = e0 • (x1 ⊗ x2) ∈ X0, u = s1 ⊗ 1 + 1⊗ s2 ∈ V , with some calculation
using Lemma 1.8, Remark 5.22 and the coordinate expression for r we find
that

((u • x, x)) =
1

4a
(q2(x2)ψ(s1x1, i1x1)⊗ 1 + 1⊗ q1(x1)ψ(s2x2, i2x2)).

Since C1 and C2 are division algebras, it is enough to show that for
all y ∈ C1 \ {0} we have ψ(s1y, i1y) 6= 0. We assume that y 6= 0 and
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ψ(s1y, i1y) = 0 and deduce a contradiction.

ψ(s1y, i1y) = 0

⇒ (s1y)(yi1)− (i1y)(ys1) = 0

⇒ 2(s1y)(yi1) = f1(i1y, s1y)1 since yz + zy = f1(y, z)1

⇒ s1y = 1
2f1(i1y, s1y)(yi1)

−1 since yi1 6= 0

⇒ s1y = −f1(i1y, s1y)

2q1(yi1)
i1y since y−1 =

1

q1(y)
y

⇒ s1 = −f1(i1y, s1y)

2q1(yi1)
i1.

This is a contradiction since s1 ⊥ i1.

The rest of the proof is inspired by the proof given in [TW02, Theorem
13.47].

We fix an arbitrary x 6= 0 ∈ X0, notice that we no longer assume that x
has the form e0 • (x1 ⊗ x2). We suppose that ((u • x, x)) = 0 and aim to get
a contradiction. It follows 4 from (5.5) that ((v • x, x)) = 0 for all v ∈ V .

We first show that there exists an element y ∈ X0 such that ((u • x, y)) 6=
0. Suppose that ((u • x,X0)) = 0. It follows from (B2) that for all y ∈ X0, v ∈
V

((u • x, v • (u • y))) = ((u • y, v • (u • x)))

= − ((v • (u • x), u • y))

= −Uu ((u • (v • (u • x)), y))

Therefore ((u • (x · v), X0)) = 0 and by repeating this procedure we obtain

((u • (x · C(Q, u)), X0)) = 0.

From Definition 2.6.(ii) and Theorem 2.16 it follows that X0 is an irreducible
C(Q, u)-module, therefore we obtain ((u •X0, X0)) = 0. This contradicts
(5.9).

From now on we assume that y ∈ X0 is such that ((u • x, y)) 6= 0. Next
we show that

(x · ((u • x, y))) · v = x · ((u • x, y · v)) . (5.10)

Since this identity is trivial for u = v, we assume v ⊥ u. Then (5.10) is
equivalent to

⇐⇒ v • u • ((u • x, y)) • u • x = ((u • x, v • u • y)) • u • x
4 Since qA is anisotropic on V : v • x = 0 ⇐⇒ v • v • x = qA(v)x = 0 ⇐⇒ v = 0 or

x = 0.
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⇐⇒ v • Uu ((u • x, y)) • x = − ((u • x, u • v • y)) • u • x
⇐⇒ v • ((x, u • y)) • x = −Uu ((x, v • y)) • u • x
⇐⇒ v • ((x, u • y)) • x = −u • ((x, v • y)) • x
⇐⇒ v • u • ((u • y, x)) • x = ((v • y, x)) • x. (5.11)

We consider (5.5) for y+ tx for a parameter t ∈ k, we compare the terms
that have degree one in t using the assumption that ((v • x, x)) = 0 for all
v ∈ V , and we get

((v • x, y)) • x+ ((v • y, x)) • x = v • u • (((u • x, y)) + ((u • y, x))) • x
⇐⇒ 2 ((v • y, x)) • x+ 2(v ((x, y))) • x = 2v • u • (((u • y, x)) + (u ((x, y)))) • x
⇐⇒ ((v • y, x)) • x = v • u • ((u • y, x)) • x,

since v ((x, y)) ∈ J1 and x ∈ X0. This proves (5.11).

From (5.10) we have (x · ((u • x, y))) · V ⊆ x · V ; since ((u • x, y)) 6= 0, the
dimension of those two vector spaces is equal and we find that

(x · ((u • x, y))) · V = x · ((u • x, y · V )) = x · V. (5.12)

For arbitrary w ∈ V it follows from (5.10) that

(x · ((u • x, y · w))) · v = x · ((u • x, (y · w) · v)) ∈ x · V.

From (5.12) we find that (x · V ) · V = x · V and hence

x · C(q, u) = x · V 6= X0

contradicting the irreducibility of X0. This finishes the proof of Theorem
5.23. �

The previous theorem completes the proof of Construction 5.1, therefore
we have, in characteristic not 2, a new coordinate-free definition of the
various maps introduced in [TW02, Chapter 13].

Remark 5.24. The map g : X0×X0 → k : (x, y) 7→ 1
2f(h(y, x), 1) takes an

elegant expression. Indeed,

g(x, y)e0 = 1
2f(((u • y, x)) , u)e0

= (((u • y, x))u)e0

= 1
2(((y, x)) + ((u • y, u • x)))e0.

Since ((y, x)) ∈ ke0 and ((u • y, u • x)) ∈ ke1, we conclude that g(x, y)e0 =
1
2 ((y, x)). When we identify k and ke0, we have

g(x, y) = 1
2 ((y, x)) .
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Remark 5.25. Let (k, L, q, 1, X, ·, h) be a quadrangular algebra of type E8.
In the previous chapter in Theorem 4.12 we identified X with CD((Q1 ⊗k
Q2)

+,Nrd, γ2). In the Theorem above we identified X with (C1 ⊗ C2)0.

CD((Q1 ⊗k Q2)
+,Nrd, γ2) is describing the rank one structure (i.e. the

Moufang set) related to the Moufang quadrangle, whereas (C1 ⊗ C2)0 de-
scribes the entire Moufang quadrangle. However we are not yet aware of a
direct way of relating these two structurable algebras.

Remark 5.26. The reader might wonder what will happen if we apply our
construction in the case that both C1 and C2 are composition algebras of
dimension 2 or 4 with linkage number 1. In the three different cases that
arise in this way, we get the following dimensions for the different relevant
vector spaces.

E ⊗ E E ⊗Q Q1 ⊗Q2

dimk S 2 4 6
dimk L 0 2 4

dimk(C1 ⊗k C2) 4 8 16
dimkX0 2 4 8

In the first case, the vector space L is trivial, so our construction no longer
applies (we cannot find an element u ∈ V \ {0} needed in Definition 5.19).

In the two other cases we can apply Theorem 5.23 to obtain a quad-
rangular algebra. It follows from the dimensions of L that the obtained
quadrangular algebras are of pseudo-quadratic form type.

5.5 Construction of arbitrary Moufang quadran-
gles from special Jordan modules

We will show that each type of Moufang quadrangle in characteristic not 2
can be described in a unified way from a special J-module. We generalize
the procedure that we used in Theorem 5.6 to obtain quadrangular algebras.
In order to obtain all Moufang quadrangles we allow the Jordan algebra in
Theorem 5.6 to have dim(J0) > 1 and we allow the special J-module to be
the trivial module.

In Section 2.3 we have written the case by case description of Moufang
quadrangles from [TW02].

Construction 5.27. Let J be a non-degenerate Jordan algebra that con-
tains supplementary proper idempotents e0 and e1. Let J0, J1/2, J1 be the
Peirce subspaces of J with respect to e1. We assume that each element in
J1/2 \ {0} is invertible and that there exists u ∈ J1/2 such that u2 = 1.
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Let X be a special J-module equipped with a skew-symmetric bilinear
form ((·, ·)) : X ×X → J .

• Define the abelian group V := (J1/2,+).

• Define the (not necessary abelian) group W := X0 × J0 with addition

[a1, t1]� [a2, t2] = [a1 + a2, t1 + t2 + 1
2 ((a2, a1))].

Notice that the inverse is �[a, t] = [−a,−t].
Let U1 and U3 be two groups isomorphic to W , and let U2 and U4 be

two groups isomorphic to V . Denote the corresponding isomorphisms by

x1 : W → U1 : [a, t] 7→ x1(a, t) ;
x2 : V → U2 : v 7→ x2(v) ;
x3 : W → U3 : [a, t] 7→ x3(a, t) ;
x4 : V → U4 : v 7→ x4(v) ;

we say that U1 and U3 are parametrized by W and that U2 and U4 are
parametrized by V .

Now, we implicitly define the group U+ = 〈U1, U2, U3, U4〉 by the follow-
ing commutator relations:

[x1(a1, t1), x3(a2, t2)
−1] = x2

(
((u • a1, a2))

)
,

[x2(v1), x4(v2)
−1] = x3

(
0, 2(v1v2)e0

)
,

[x1(a, t), x4(v)−1] = x2
(
1
2 ((u • a, v • (u • a))) + 2(Uut)v

)
x3
(
v • (u • a), UvUut

)
,

[Ui, Ui+1] = 1 ∀i ∈ {1, 2, 3} ,

for all [a, t], [a1, t1], [a2, t2] ∈W and all v, v1, v2 ∈ V .

It follows from Lemma 1.15 that J is either of reduced spin type or
of type H(M2(L), σT ). For each of these two cases, we will distinguish
between the zero special J-module and a non-zero J-module. Case by case,
we will show that in this way the root groups U1, U2, U3, U4 and commutator
relations given above coincide with the description given in Section 2.3 of
the Moufang quadrangles in characteristic not 2.

Remark 5.28. In Remark 2.17 we discussed quadrangular systems. These
are structures that as well describe in a unified way all Moufang quadran-
gles (including characteristic 2.) We believe it should be possible to start
with Construction 5.27, impose a few more axioms that look like the ones
in Theorem 5.6 and prove all the axioms defining a quadrangular system.
However the verifications of the axioms that use the map κ, this is a kind
of “multiplicative inverse” in the group W , get very complicated.
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Moufang quadrangles of quadratic form type Let J be a reduced
spin factor of an anisotropic, non-degenerate quadratic space (k, V, q) with
basepoint u. Let X be the zero module over J .

Remember that J0 = ke0, J1/2 = V, J1 = ke1.

• Define the abelian group V = (J1/2,+).

• Define the group W = X0 × J0 = {[0, te0]|t ∈ k} ∼= k with addition
[0, t1e0]� [0, t2e0] = [0, (t1 + t2)e0]. Therefore W is isomorphic to the
additive group of k with corresponding isomorphismW ∼= k : [0, te0]↔
t. So we will write x1(t) := x1(0, te0) and x3(t) := x3(0, te0).

Let U1 and U3 be parametrized by W and U2 and U4 be parametrized by
V . Let t, t1, t2 ∈ k, v, v1, v2 ∈ V ; using the formulas for the multiplication
and the U -operator in a Jordan algebra of reduced spin type (see Definition
1.12) we find for the commutator relations

[x1(t1), x3(t2)
−1] = [x1(0, t1e0), x3(0, t2e0)

−1] = x2
(
0) = 1 ,

[x2(v1), x4(v2)
−1] = x3

(
0, f(v1, v2)e0

)
= x3

(
f(v1, v2)

)
,

[x1(t), x4(v)−1] = [x1(0, te0), x4(v)−1] = x2
(
2(Uute0)v

)
x3
(
0, UvUute0

)
= x2

(
2(te1)v

)
x3
(
0, Uvte1

)
= x2

(
tv
)
x3
(
0, q(v)te0

)
= x2

(
tv
)
x3
(
q(v)t

)
,

[Ui, Ui+1] = 1 ∀i ∈ {1, 2, 3} .

We obtain exactly the same description as in (2.3).

Moufang quadrangles of involutory type Let L be a skew field with
involution σ. Let J = H(M2(L), σT ) (see Definition 1.13) and let X be the
zero module. Remember that with idempotents e0 = [ 1 0

0 0 ] , e1 = [ 0 0
0 1 ] ∈ J ,

we have

J0 = Lσe0, J1 = Lσe1 and J1/2 =

{[
0 `σ

` 0

]
| ` ∈ L

}
.

• Define the abelian group V = (J1/2,+) ∼= (L,+) with isomorphism[
0 `σ

` 0

]
↔ `.

We will write x2(

[
0 `σ

` 0

]
) = x2(`) and x4(

[
0 `σ

` 0

]
) = x4(`).

• Define the group W = X0×J0 = {[0, αe0]|α ∈ Lσ} ∼= Lσ with addition
[0, α1e0]�[0, α2e0] = [0, (α1+α2)e0]. Therefore W is isomorphic to the
additive group of Lσ, we use the isomorphism W ∼= Lσ : [0, αe0]↔ α.
We will write x1(0, αe0) = x1(α) and x3(0, αe0) = x3(α).
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Let U1 and U3 be parametrized by W and U2 and U4 be parametrized by
V . Let α, α1, α2 ∈ Lσ and consider the following elements of V

v =

[
0 `σ

` 0

]
, v1 =

[
0 `σ1
`1 0

]
, v2 =

[
0 `σ2
`2 0

]
∈ J1/2,

using the formulas for the multiplication and the U -operator inH(M2(L), σT ),
we find for the commutator relations:

[x1(α1), x3(α2)
−1] = [x1(0, α1e0), x3(0, α2e0)

−1] = x2
(
0) = 1 ,

[x2(`1), x4(`2)
−1] = [x2(v1), x4(v2)

−1]

= x3
(
0, ((`σ1 `2 + `σ2 `1)e0 + (`1`

σ
2 + `2`

σ
1 )e1)e0

)
= x3

(
0, (`σ1 `2 + `σ2 `1)e0

)
= x3

(
`σ1 `2 + `σ2 `1

)
,

[x1(α), x4(`)
−1] = [x1(0, `e0), x4(v)−1] = x2

(
2(Uuαe0)v

)
x3
(
0, UvUuαe0

)
= x2

(
2(αe1)v

)
x3
(
0, Uvαe1

)
= x2

([
0 `σα
α` 0

])
x3
(
0, `σα`e0

)
= x2

(
α`
)
x3
(
`σα`

)
,

[Ui, Ui+1] = 1 ∀i ∈ {1, 2, 3} .

This is exactly (2.4).

Moufang quadrangles of pseudo-quadratic type These are obtained
in similar fashion as the quadrangular algebras in Section 5.3, but here we
start from an arbitrary skew field with involution instead of starting from a
quadratic pair. We repeat part of the setup from Section 5.3.

Let L be a skew field with involution σ. Let (L, σ,X, h, π) be a pseudo-
quadratic space, so π(a) = 1

2h(a, a) for all a ∈ X.

Let J = H(M2(L), σT ) and let X̃ = X2, the 1 × 2 row vectors over X.
For the action of J on X̃, for j ∈ J, a ∈ X̃ we have j • a = aj ∈ X̃.

As before we define e0 =

[
1 0
0 0

]
, e1 =

[
0 0
0 1

]
, u =

[
0 1
1 0

]
∈ J . We have

X̃0 = {[a, 0] | a ∈ X}, X̃1 = {[0, a] | a ∈ X}.
We define the skew-symmetric bilinear map X̃ × X̃ → J as

(([a1, a2], [b1, b2])) =

[
h(a1, b1)− h(b1, a1) h(a1, b2)− h(b1, a2)
−h(b2, a1) + h(a2, b1) h(a2, b2)− h(b2, a2)

]
.

• Define the abelian group V = (J1/2,+) ∼= (L,+) with isomorphism[
0 `σ

` 0

]
↔ `.

We will write x2(

[
0 `σ

` 0

]
) = x2(`) and x4(

[
0 `σ

` 0

]
) = x4(`).
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• Define the group W = X̃0 × J0 ∼= X ×Lσ, when we identify J0 ∼= Lσ :
αe0 ↔ α and is X̃0

∼= X : [a, 0]↔ a,5 we get the addition

[a1, α1]� [a2, α2] = [a1 + a2, α1 + α2 + 1
2(h(a2, a1)− h(a1, a2))].

We will write x1(a, α) := x1([a, 0], αe0) and x3(a, α) := x3([a, 0], αe0).

For the commutator relations we obtain

[x1(a1, α1), x3(a2, α2)
−1] = x2

(
h(a1, a2)

)
,

[x2(`1), x4(`2)
−1] = x3

(
0, `σ1 `2 + `σ2 `1) ,

[x1(a, α), x4(`)
−1] = x2

(
θ(a, `) + α`

)
x3
(
a`, `σα`

)
= x2

(
π(a)`+ α`

)
x3
(
a`, `σα`

)
,

[Ui, Ui+1] = 1 ∀i ∈ {1, 2, 3} ,

for all [a, t], [a1, t1], [a2, t2] ∈W and all `, `1, `2 ∈ L.

This is exactly (2.9).

Moufang quadrangles of type E6, E7, E8 This case was actually already
handled in Theorem 5.23, since from quadrangular algebras one can define
the root groups and commutator relations of the corresponding Moufang
quadrangles. Now we quickly verify that we get indeed the right commutator
relations using Construction 5.27.

Let J be a reduced spin factor of an anisotropic, non-degenerate quadratic
space (k, V, q) with basepoint u, letX = C1⊗kC2 and let the skew-symmetric
form ((., .)) be as in Section 5.4.

Quadrangular algebras of type E6, E7 and E8 are entirely determined by
the similarity class of their quadratic space. It follows that the quadrangular
algebras we constructed in Theorem 5.23 are identical to the ones in [TW02,
Chapter 13]. Therefore we have that the following maps coincide with the
maps defined in [TW02, Chapter 13]:

a · v = v • (u • a), h(a, b) = ((u • a, b)) , g(a, b)e0 = 1
2 ((b, a)) .

Now define

• the abelian group V = (J1/2,+);

• the group W = X0×J0 ∼= X0×k with addition [a1, t1e0]� [a2, t2e0] =
[a1 + a2, t1e0 + t2e0 + 1

2 ((a2, a1))]. When we identify J0 ∼= k : te0 ↔ t,
we get

[a1, t1]� [a2, t2] = [a1 + a2, t1 + t2 + g(a1, a2)].

We will write x1(a, t) := x1(a, te0) and x3(a, t) := x3(a, te0).

5 We have to denote elements of X̃ and of W both by [., .], from now on we only will

make use of elements in X̃0 and not those contained in X in general. We use the notation
[., .] exclusively for elements of W from now on.
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Let U1 and U3 be parametrized by W and U2 and U4 be parametrized by V .
Let t, t1, t2 ∈ k, v, v1, v2 ∈ V ; we find the following commutator relations:

[x1(a1, t1), x3(a2, t2)
−1] = x2

(
((u • a1, a2))

)
= x2

(
h(a1, a2)

)
,

[x2(v1), x4(v2)
−1] = x3

(
0, f(v1, v2)e0

)
= x3

(
0, f(v1, v2)

)
,

[x1(a, t), x4(v)−1] = [x1(a, te0), x4(v)−1]

= x2
(
1
2 ((u • a, a · v)) + 2(te1)v

)
x3
(
a · v, Uvte1

)
= x2

(
θ(a, v) + tv

)
x3
(
a · v, q(v)t

)
,

[Ui, Ui+1] = 1 ∀i ∈ {1, 2, 3} .

We obtain exactly the same description as in (2.11).



Chapter 6

A construction of Moufang
sets from structurable
division algebras

In this chapter we will show how every structurable division algebra A gives
rise to a Moufang set. It was known since some time that every Jordan divi-
sion algebra gives rise to a Moufang set with abelian root groups [DMW06].
We were inspired by this result and by the known examples of Moufang sets
with non-abelian root groups, in particular those of type F4 (see Section
2.4.2.3) and those arising as residues of exceptional Moufang quadrangles
(see Section 2.4.2.4). It turns out that each of these cases arises from a
specific type of structurable algebra. Indeed, every Jordan division algebra
is also a structurable algebra (with trivial involution); the Moufang sets of
type F4 arise from an octonion division algebra with standard involution;
and the residues of exceptional Moufang quadrangles arise from structurable
algebras as described in Chapter 4.

The Moufang sets we obtain have root groups of nilpotency class 2 (i.e.
[[Ux, Ux], Ux] = 1). Notice that the theory of structurable algebras forces us
to omit fields of characteristic 2 and 3. Furthermore we have to assume that
the characteristic of the field is different from 5.

The structure of the Lie algebra corresponding to A convinced us that
the root group U of the corresponding Moufang set M(U, τ) had to have
underlying set A× S. On the other hand, the permutation τ should act as
some kind of inverse on A×S such that (x, 0).τ = (−x̂, 0). If A is a Jordan
algebra, then S = 0 and we obtain indeed the Moufang set described in
Section 2.4.2.1.

For a long time we were trying to find out how to define in a good way
the inverse of an element in A×S, until we found out that in [AF99], Bruce

109
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Allison and John Faulkner already introduced such a notion, namely one-
invertibility. Even more, they prove a property of one-invertible elements
which turns out to be essential for our construction of a Moufang set.

In Section 6.1 we define one-invertibility of elements in A×S. In Section
6.2 we show that if A is a structurable division algebra each element in
(x, s) ∈ A×S \{(0, 0)} is one-invertible. We are indebted to John Faulkner
for providing the main idea of how to prove this.

In Section 6.3 we give the description of the exact construction of the
Moufang sets and determine the group U and permutation τ ; see Theorem
6.25 for the main result. We also give an elegant expression for the Hua-
maps. In Section 6.4 we show that we obtain all the examples of Moufang
sets described in Section 2.4.2 using our new construction; but we conjec-
ture that our construction gives rise to Moufang sets coming from linear
algebraic groups of rank one that have not been described explicitly before,
see Conjecture 6.28.

In this chapter we always assume that k is a field of characteristic dif-
ferent from 2, 3 and 5.

6.1 One-invertibility in A× S

In [AF99] the notion of n-invertibility for Kantor pairs is introduced. Kantor
pairs are generalizations of Jordan pairs; an example of a Kantor pair is a
pair of structurable algebras.

Since we will only apply the results of [AF99] in the context of a pair of
structurable algebras, we only explain the necessary terminology and results
of [AF99] in this context. This makes the exposition less technical, and in
Remark 6.3 we explain why our point of view is the same as in [AF99].

Let A be an arbitrary structurable k-algebra. In Section 3.4 we described
the 5-graded Lie algebra K(A) constructed from A. In [AF99] an isomorphic
Lie algebra is used, doing this will make the formulas for one-invertibility
more elegant.

Definition 6.1. Let A be a structurable algebra.

(i) Consider two copies A+ and A− of A with corresponding isomorphisms
A → A+ : x 7→ x+ and A → A− : x 7→ x−, and let S+ ⊂ A+ and
S− ⊂ A− be the corresponding subspaces of skew-elements. We define
the Lie algebra

K ′(A) = S− ⊕A− ⊕ Instrl(A)⊕A+ ⊕ S+,

with Lie bracket given by
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• [Instrl,K ′(A)]

[Va,b, Va′,b′ ] = V{a,b,a′},b′ − Va′,{b,a,b′}∈ Instrl(A),

[Va,b, x+] := (Va,bx)+ ∈ A+, [Va,b, y−] := (V ε
a,by)− ∈ A−

= (−Vb,ay)− ∈ A−,
[Va,b, s+] := (V δ

a,bs)+ ∈ S+ [Va,b, t−] := (V εδ
a,bt)− ∈ S−

= −ψ(a, sb)+ ∈ S+, = ψ(b, ta)− ∈ S−,

• [S±,A±]

[s+, x+] := 0, [t−, y−] := 0,

[s+, y−] := (sy)+ ∈ A+, [t−, x+] := (tx)− ∈ A−,

• [A±,A±]

[x+, y−] := −2Vx,y ∈ Instrl(A),

[x+, x
′
+] := −2ψ(x, x′)+ ∈ S+, [y−, y

′
−] := −2ψ(y, y′)− ∈ S−

• [S±,S±]

[s+, s
′
+] := 0, [t−, t

′
−] := 0,

[s+, t−] := LsLt ∈ Instrl(A).

for all x, x′, y, y′ ∈ A, s, s′, t, t′ ∈ S, Va,b, Va′,b′ ∈ Instrl(A). The Lie
algebra K ′(A) has a 5-grading with K ′(A)0 = Instrl(A), K ′(A)±1 =
A± and K ′(A)±2 = S±.

(ii) We define the grading derivation ζ ∈ Endk(K
′(A)) as the k-linear map

ζ(xi) = ixi for all xi ∈ K ′(A)i with i ∈ [−2, 2]. It is clear that ζ is
indeed a derivation of Lie algebra K ′(A).

(iii) In the sequel it is convenient to consider ζ as an element of the Lie
algebra, we define

G := S− ⊕A− ⊕ (Instrl(A) + kζ)⊕A+ ⊕ S+

with the same Lie bracket as K ′(A) and with [ζ, xi] = ζ(xi) = ixi for
all xi ∈ K ′(A)i with i ∈ [−2, 2]. It follows that also G has a 5-grading
with

G0 = K ′(A)0 + kζ = Instrl(A) + kζ,

G±1 = K ′(A)±1 = A±,
G±2 = K ′(A)±2 = S±.
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Remark 6.2. Notice that the only difference between K(A) and K ′(A) is
in the bracket of [A±,A±]. It is straightforward to verify that the following
map is a Lie algebra isomorphism:

K(A)→ K ′(A)

Instrl(A)→ Instrl(A) : Va,b 7→ Va,b,

A1 → A1 : x 7→ x,

A−1 → A−1 : y 7→ −1

2
y,

A2 → A2 : s 7→ −2s,

A−2 → A−2 : t 7→ −1

2
t,

It is clear that K ′(A) is an ideal of G and that [G,G] = K ′(A).

The Lie algebra G we defined here, is the same algebra as the one in
[AF99] in the case the considered Kantor pair is a pair of structurable al-
gebras. In the following remark we give an overview of the construction in
[AF99], and indicate why the two Lie algebras are identical.

Remark 6.3. [This remark uses definitions not mentioned in this thesis.]
A Kantor pair is a pair of vector spaces (K+,K−) with a triple product
{·, ·, ·} : Kσ × K−σ × Kσ → Kσ for all σ ∈ {−1, 1} that satisfies the two
conditions (KP 1) and (KP 2) in [AF99].

Let A be a structurable algebra and let A+, A− be two isomorphic
copies of A, then the pair (A+,A−) with triple product {x, y, z} := 2Vx,yz
for x, z ∈ Aσ and y ∈ A−σ is a Kantor pair.

In [AF99, Theorem 7] it is shown that this gives rise to a sign-graded
Lie triple system L(A) = A+ ⊕ A−. Notice that for this Lie triple system,
we define [x, y, z] = −{x, y, z} = −2Vx,yz for x, z ∈ Aσ and y ∈ A−σ.

In [AF99, p. 532] the Lie algebra G(L(A)) is defined, which is called
the standard graded embedding of L(A). If we identify Ls ∈ G(L(A))±2
with s ∈ G±2 and represent the elements of G(L(A))0 with their action on
G(L(A))1, the algebras G(L(A)) and G are identical. This can be verified
making use of Ka,b = 2Lψ(a,b) and [AF99, identity (KP 2)]. This Lie algebra
G(L(A)) is described more explicitly in [AF99, p. 535].

We will define some subgroups of Endk(G). In [AF99] the action of
Endk(G) on G is denoted on the left, whereas we need an action on the right
in order to be compatible with the conventions in the theory of Moufang
sets. This is why some formulas differ slightly from [AF99].
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Definition 6.4. Let σ ∈ {−1,+1}, x ∈ Gσ, s ∈ G2σ; we define

eσ(x, s) = exp(ad(x+ s)) =
4∑
i=0

1

i!
(ad(x+ s))i ∈ Endk(G).

Define the set

Uσ = {eσ(x, s) | x ∈ Gσ, s ∈ G2σ}.

The following lemma shows that Uσ is in fact a subgroup of Aut(G).
We will explicitly need the assumption that char(k) 6= 5 in part (i). This
condition was omitted in the proof in [AF99]; we thank Ottmar Loos for
bringing this to our attention. We include a correct proof of (i) below.

Lemma 6.5 ([AF99, Theorem 8]). Let σ ∈ {−1,+1}, we have the following
properties for all x, y ∈ Gσ and s, t ∈ G2σ:

(i) eσ(x, s) is an automorphism of the Lie algebra G,
i.e. [a, b].eσ(x, s) = [a.eσ(x, s), b.eσ(x, s)] for all a, b ∈ G.

(ii) eσ(x, s)eσ(y, t) = eσ(x+ y, s+ t+ ψ(x, y)),
(iii) eσ(x, s)−1 = eσ(−x,−s).
(iv) The map eσ : Gσ × G2σ → Uσ : (x, s) 7→ eσ(x, s) is a bijection.

Idea of proof. (i) Let x ∈ Gσ and s ∈ G2σ, and let

D0 = id, Di =
1

i!
ad(x+s)i for all 0 < i ≤ 6, and Di = 0 for all i > 6.

(Notice that also for i = 5 or 6, we haveDi = 0, but we will nevertheless
need the explicit formula later.)
Thus eσ(x, s) =

∑∞
i=0Di. To show that eσ(x, s) is an automorphism,

it suffices by degree considerations to show that

[u, v].Dn =
∑
i+j=n

[u.Di, v.Dj ] (6.1)

for all u, v ∈ G and for all n ≥ 0.
If n > 4, Dn = 0. If n > 6,

∑
i+j=n[u.Di, v.Dj ] = 0 by degree

considerations. Indeed, notice that for i+ j = n, either Di or Dj is 0
unless n = 7 and {i, j} = {3, 4} or n = 8 and i = j = 4; but also in
these cases,

[u.D3, v.D4] + [u.D4, v.D3] ∈ [Gσ + G2σ,G2σ] + [G2σ,Gσ + G2σ] = 0;

[u.D4, v.D4] ∈ [G2σ,G2σ] = 0.

It remains to show (6.1) for all 1 ≤ n ≤ 6. Notice that (6.1) is trivial
for n = 0, and follows from the fact that D1 is a derivation for n = 1.
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We proceed by induction on n < 6, and notice that the condition on
char(k) ensures that we can divide by n+ 1:

[u, v].Dn+1

= ([u, v].Dn).
ad(x+ s)

n+ 1
=
∑
i+j=n

[u.Di, v.Dj ].
ad(x+ s)

n+ 1

=
1

n+ 1

∑
i+j=n

(
(i+ 1)[u.Di+1, v.Dj ] + (j + 1)[u.Di, v.Dj+1]

)
=

1

n+ 1

(
(n+ 1)[u.Dn+1, v.D0] + (n+ 1)[u.D0, v.Dn+1]

+
∑

i+j=n,j≥1
(i+ j + 1)[u.Di+1, v.Dj ]

)
=

∑
i+j=n+1

[u.Di, v.Dj ].

(ii) The Campbell-Baker-Hausdorff theorem for an arbitrary Lie algebra
over a field of characteristic 0 states that

exp(ad a) ◦ exp(ad b) = exp(ad(a+ b+
1

2
[a, b]− 1

12
[[a, b], a] + . . . )),

for all a, b in this Lie algebra. In our case a = x + s and b = y +
t, 1

2 [a, b] = −ψ(x, y) and all terms beyond [a, b] are zero by degree
considerations. The −ψ(x, y) becomes ψ(x, y) since we work with the
action on the right.
Some work is needed to prove that Campbell-Baker-Hausdorff theorem
can be reformulated to hold over fields of characteristic different from
2 and 3.

(iii) This is an easy consequence of (ii).
(iv) The injectivity follows from the fact that ζ.eσ(x, s) = ζ−σx−2σs. �

Definition 6.6. (i) The elementary group of the structurable algebra A
is defined as

G := 〈U+, U−〉 ≤ Aut(G).

(ii) We define the subset1 H− of G as the set of homomorphisms that
reverse the gradation of G, i.e.

H− := {h ∈ G | ζ.h = −ζ}
= {h ∈ G | Gi.h = G−i for all i ∈ {−2,−1, 0, 1, 2}}.

(iii) Define ϕ ∈ Endk(G), which reverses the gradation of G, as

G0 → G0 : Va,b 7→ −Vb,a,
1In [AF99] H+ is defined as the automorphisms in G that preserve the gradation of G.
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ζ 7→ −ζ,
A1 → A−1 : x 7→ x,

A−1 → A1 : x 7→ x,

A2 → A−2 : s 7→ s,

A−2 → A2 : s 7→ s.

In Theorem 6.20 we will show that if all elements in A × S are one-
invertible, the group G = 〈U+, U−〉 is an abstract rank one group.

Lemma 6.7. Let σ ∈ {−1,+1} and (x, s) ∈ Gσ × G2σ.

(i) For all h ∈ H−, we have eσ(x, s)h = e−σ(x.h, s.h) and Uσ
h = U−σ.

(ii) We have ϕ ∈ Aut(G), eσ(x, s)ϕ = e−σ(x, s) and H−
ϕ = H−.

Proof. (i) Let σ ∈ {−1,+1}. For all h ∈ H−, for all (x, s) ∈ Gσ × G2σ we
find

a. ad(x+ s)h = a.(h−1 ad(x+ s)h) = a. ad(x.h+ s.h),

for all a ∈ G, since h is an automorphism of G. As (x.h, s.h) ∈ G−σ ×
G−2σ we have that eσ(x, s)h = e−σ(x.h, s.h). Since h is an isomorphism,
we conclude that Uσ

h = U−σ.
(ii) Using the definition of the Lie bracket of G one can easily verify that

ϕ ∈ Autk(G). In order to verify that [s, t].ϕ = [s.ϕ, t.ϕ] for s ∈ G2 and
t ∈ G−2, one should make use of identity (3.23).
Since ad(x+ s)ϕ = ad(x.ϕ+ s.ϕ), we have eσ(x, s)ϕ = e−σ(x, s).
Now Gi.ϕ−1hϕ = G−i.hϕ = Gi.ϕ = G−i; since it is clear that Gϕ = G
we have that Hϕ

− = H−. �

It is not clear that the homomorphism ϕ is actually contained in H−,
this will be shown in Lemma 6.23.

From now on we will use the following convention, which will allow us
to consider one-invertibility of an element in A× S.

Notation 6.8. Let (x, s) ∈ A× S. As A+ and A− are copies of A and S−
and S+ copies of S, we can write eσ(x, s) without causing any confusion:

If we write e+(x, s) we consider (x, s) as an element of A+×S+, whereas
if we write e−(x, s) we consider (x, s) as an element of A− × S−.

Now we have enough background information to give the definition of
one-invertibility.

Definition 6.9. (i) Let (x, s) ∈ A×S. We say that (x, s) is one-invertible
if there exist (y, t), (z, r) ∈ A× S such that

e−(z, r)e+(x, s)e−(y, t) ∈ H−.
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Using Lemma 6.7.(ii), we see that this condition is equivalent with

e+(z, r)e−(x, s)e+(y, t) ∈ H−.

(ii) If (x, s) is one-invertible, we say that (x, s) has left 2 inverse (y, t) and
right inverse (z, r). [AF99, Lemma 11] states that the left and right
inverses are unique.

(iii) Let (x, s) ∈ A×S be one-invertible with right inverse (z, r), define the
linear map P(x,s) : A → A given by

P(x,s)a = Ux(a+
2

3
ψ(z, a)x) + s(a+ 2ψ(z, a)x) for alla ∈ A.

In [AF99, Section 5] n-invertibility for an n-tuple in

(Gσ × G2σ)× (G−σ × G−2σ)× · · · × (G(−1)n−1σ × G(−1)n−12σ)

is defined in a similar way.

The following theorem gives us a very useful characterization of one-
invertibility.

Theorem 6.10 ([AF99, Theorem 13]). (i) An element (x, s) ∈ A × S is
one-invertible if and only if there exists (u, t) ∈ A× S such that

Vx,u = id + LsLt,

su = −1

3
Ux(tx),

ψ(x, s(tx)) = 0.

(6.2)

This system of equations has either no solutions or exactly one solu-
tion.

(ii) Let (x, s) ∈ A×S be one-invertible with (u, t) the solution of the system
of equations (6.2). Then the left inverse of (x, s) is (u− tx, t) and its
right inverse is (u+ tx, t).

(iii) Let (x, s) ∈ A×S be one-invertible with (u, t) the solution of the system
of equations (6.2). For σ ∈ {−1, 1} denote

hσ := e−σ(u+ tx, t)eσ(x, s)e−σ(u− tx, t) ∈ H−.

Then hσ|Gσ = P(u−tx,t) = P(u+tx,t) and hσ|G−σ = P(x,s).

Proof. We transfer [AF99, Theorem 13] to our setup using Remark 6.3.

2Note that the action of G is on the right.
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It is shown in the proof in [AF99] that (x, s) ∈ Gσ×G2σ is one-invertible
if and only if there exist (u, t) ∈ G−σ × G−2σ such that

2[s, t] + [x, u] + 2σζ = 0,

[s, u]− 1

6
[x, [x, [x, t]]] = 0,

−1

3
[x, [x, [s, t]]] = 0,

(6.3)

and that in this case the left inverse of (x, s) is (u − tx, t) and the right
inverse is (u+ tx, t).

The last two equations of (6.3) immediately give the last two equations
of (6.2).

The first equation needs a bit more explanation. It states 2[s, t]+[x, u]+
2σζ = 0, by identifying G(L(A)) and G we made the convention in Remark
6.3, that we would represent elements of G(L(A))0 with their action on A+.
Let w ∈ A+, if σ = +1 we get

ad(2[s, t] + [x, u] + 2σζ)(w) = 2LsLtw − 2Vx,uw + 2w = 0,

and if σ = −1, we get

ad(2[s, t] + [x, u] + 2σζ)(w) = −2LtLsw + 2Vu,xw − 2w = 0.

Thus we have two conditions Vx,u = id + LsLt and Vu,x = id + LtLs.
These two identities are equivalent when we consider x, u ∈ A and s, t ∈ S,
since V ε

u,x = idε + (LtLs)
ε gives −Vx,u = −id − LsLt with ε as defined on

page 57.

In [AF99] those equations are not necessarily equivalent since one con-
siders Kantor pairs. In [AF99] the identity that should be satisfied is given
by Vx,u = 2(id + LsLt); notice that the difference with the first equation of
(6.2) is caused by the fact that the V -operator in [AF99] is the double of
the V -operator of the structurable algebra

Since the left and right inverses of an one-invertible element are uniquely
determined, the system of equations (6.2) has either no solutions or it has
a unique solution. �

The following lemma shows that one-invertibility in A× S is a general-
ization of conjugate invertibility in A.

Lemma 6.11. (i) Let x ∈ A. Then (x, 0) ∈ A × S is one-invertible if
and only if x is conjugate invertible in A. The left and right inverse
of (x, 0) is given by (x̂, 0).
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(ii) Let s ∈ S. Then (0, s) ∈ A × S is one-invertible if and only if s is
conjugate invertible in A. The left and right inverse of (0, s) is given
by (0, ŝ).

Proof. (i) If we want to determine the one-invertibility of (x, 0), the sys-
tem of equations (6.2) reduces to

Vx,u = id,

0 = −1

3
Uxtx,

0 = 0.

From the first equation it follows that this system of equations can
only have a solution if x is conjugate invertible. In this case, by (3.10),
u = x̂ and t = 0 is the solution.

(ii) If we want to determine the one-invertibility of (0, s), the system of
equations (6.2) reduces to

0 = id + LsLt,

su = 0,

0 = 0.

From the first equation it follows that this system of equations can
only have a solution if s is conjugate invertible. In this case, by (3.13),
u = 0 and t = ŝ is the solution. �

The map P(x,s) defined in Definition 6.9 is a generalization of the map
Px on the structurable algebra A defined in (3.32); indeed using (3.6) we
obtain

P(x,0)a = Ux(a+
2

3
ψ(x̂, a)x) = Ux(a+

2

3
(Vx̂,xa− Va,xx̂))

=
1

3
Ux(5a− 2Va,xx̂) = Pxa.

6.2 Structurable division algebras are
one-invertible

It follows from Lemma 6.11 that if A is a structurable algebra such that
each element in A×S\(0, 0) is one-invertible, then A is a conjugate division
algebra. In Theorem 6.18 we show that the converse is true as well. If A is
a conjugate division algebra, we show that each element in A× S \ (0, 0) is
one-invertible, and we determine the left and right inverse.

We start by showing that (1, s) ∈ A × S is always one-invertible if A is
conjugate division.
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Lemma 6.12 (J. Faulkner). Let A be a structurable division algebra, let
s 6= 0 ∈ S. We have that s+ ŝ 6= 0 and

u := −ŝ(ŝ+ ŝ) = 1̂− s2, t := ŝ+ ŝ

is the solution of

V1,u = id + LsLt,

su = −1

3
U1t,

ψ(1, st) = 0.

(6.4)

By Theorem 6.10, (1, s) is one-invertible.

Proof. It follows from (3.30) and (3.13) that −ŝ(ŝ+ ŝ) = 1̂− s2. It follows
from (3.13) that s+ ŝ = 0 if and only if s2 = 1.

We suppose that s2 = 1 and deduce a contradiction. Define a = 1 + s,
it follows from (3.3) that LsLs = Ls2 = id, therefore (xa)a = (xa)a = 0 for
all x ∈ A. Since a 6= 0, it is conjugate invertible, we find that

a = Va,âa = 2(aâ)a− (aa)â = 2(aâ)a

and
a = Vâ,aa = (âa)a+ (aa)â− (aâ)a = −(aâ)a,

a contradiction. It follows that s+ ŝ 6= 0. Next we will prove the following

identity for t = ŝ+ ŝ

Lst = LsLt = LtLs. (6.5)

By (3.13) and the fact that L2
s = Ls2 we have [Ls, Ls+ŝ] = 0, therefore

[Ls,−L−1s+ŝ] = [Ls, Lt] = 0. Hence [s, t] = [Ls, Lt](1) = 0 and from (3.3) it
follows that for all y ∈ A

2(Lst − LsLt)y = 2[s, t, y] = [s, t, y]− [t, s, y]

= (L[s,t] − [Ls, Lt])y = 0,

and (6.5) follows. Now we can verify that u = −ŝ(ŝ+ ŝ) and t = ŝ+ ŝ are
solutions of (6.4).

(1) Since the conjugate inverse of a skew-element is again a skew-element
and ŝ and t commute, we have u = u; hence V1,u = Lu. From (6.5) it
follows that id +LsLt = id +LtLs = L1+st, the first equation of (6.4) is
satisfied since

1 + st = −(s+ ŝ)t+ st = −ŝt = u.

(2) We have 1
3U1t = −t = LsLŝt = −su.
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(3) We have ψ(1, st) = st− st = ts− st = 0 by (6.5). �

From now on let A be a conjugate division algebra and let (x, s) ∈ A×S
with x 6= 0 and s 6= 0. Our aim is to determine the solution of (6.2). It

follows from (3.39) that x = ̂̂x is the unity in the structurable algebra A〈x̂〉,
an isotope of A described in Construction 3.23. From the previous lemma we
know that (x, s) is one-invertible in the algebra A〈x̂〉. We will show that this
implies that (x, s) is one-invertible in A. We are indebted to John Faulkner
for bringing this method to our attention.

Definition 6.13. Let (x, s) ∈ A× S, define

αx : A → A〈x̂〉 : y 7→ y,

note that αx(1) is not the unit in A〈x̂〉, but that x is the unit. The map αx
is an isotopy (see Definition 3.21) with α̂x = Px. Indeed using (3.38) we get

αx{x, y, z} = {αxx, α̂xy, αxz}〈x̂〉 ⇐⇒ {x, y, z} = {x, Px̂Pxy, z}.

which holds by (3.33).

We need to determine a map from S onto S〈x̂〉 = Sx̂ that is compatible
with αx and α̂x.

Definition 6.14. Let x ∈ A, define the k-linear map

qx : S → S : s 7→ 1

6
ψ(x, Ux(sx))

Define the k-linear maps

βx : S 7→ S〈x̂〉 : s 7→ sx̂,

β̂x : S 7→ S〈x̂〉 : s 7→ qx(s)x̂.

Lemma 6.15. Let A be a structurable division algebra. Then for all 0 6=
x ∈ A and 0 6= s ∈ S, we have

(i) qx(s)x̂ = Px(sx) = −1
3Uxsx = 1

2ψ(Pxs, Px1)x̂.

(ii) (qx)−1 = qx̂, hence β̂ is a bijection.

(iii) q̂x(s) = qx̂(ŝ).
(iv) We have for all y ∈ A and s ∈ S that

αx(Lsy) = L
〈x̂〉
βx(s)

α̂xy and α̂x(Lsy) = L
〈x̂〉
β̂x(s)

αxy.

Proof. (i) (3.35) states that indeed Px(sx) = −1
3Ux(sx). It follows from

(3.14) that Uxsx = −1
2ψ(x, Uxsx)x̂.
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Combining (3.36) and (3.6) gives for all u, y, z ∈ A

PuLψ(y,z) = Lψ(Puy,Puz)Pû, (6.6)

by (3.34) we have

1
2ψ(Pxs, Px1)x̂ = 1

2(Px(ψ(s, 1)x)) = Px(sx).

(ii) We show that qx̂(qx(s))x = sx, which implies that qx̂ ◦ qx = id. Simi-
larly one shows that qx ◦ qx̂ = id.
Using (i) we find

qx̂(qx(s))x = Px̂(qx(s)x̂) = Px̂(Px(sx)) = sx.

(iii) By (3.30) and (3.29)

(̂qx(s))x = ̂(qx(s)x̂) = P̂x(sx) = Px̂(ŝx̂) = qx̂(ŝ)x,

it follows that q̂x(s) = qx̂(ŝ).
(iv) The first equality follows by (3.42):

L
〈x̂〉
βx(s)

α̂xy = L
〈x̂〉
sx̂ Pxy = LsPx̂Pxy = Lsy.

The second equality follows by (i), (3.42) and (6.6):

L
〈x̂〉
β̂x(s)

αxy = L
〈x̂〉
1
2ψ(Pxs,Px1)x̂

y = L1
2ψ(Pxs,Px1)

Px̂y

= Px(L1
2ψ(s,1)

y) = PxLsy. �

Lemma 6.16. Let (x, s) ∈ A × S \ {0, 0} and (u, t) ∈ A × S \ {0, 0}.
Then (u, t) is the solution of the equations (6.2) w.r.t. (x, s) in A if and
only if (α̂xu, β̂xt) ∈ A〈x̂〉 × S〈x̂〉 is the solution of the equations (6.2) w.r.t.
(αxx, βxs) in A〈x̂〉.

Proof. Let (x, s) ∈ A×S \{0, 0} and denote α := αx, α̂ := α̂x, β := βx, β̂ :=
β̂x. Suppose that the following equations hold in A

Vx,u = id + LsLt,

su = −1

3
Uxtx,

ψ(x, s(tx)) = 0.

Applying the isotopy α we obtain using Lemma 6.15 that

V
〈x̂〉
αx,α̂uα = α+ L

〈x̂〉
βs L

〈x̂〉
β̂t
α,
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L
〈x̂〉
βs α̂u = −1

3
U 〈x̂〉αx L

〈x̂〉
β̂t
αx,

β(ψ(x, s(tx))) = 0.

We determine what βψ(x, s(tx)) is in terms of the multiplication of A〈x̂〉.
By (3.41), we have

βψ(x, s(tx)) = ψ(x, s(tx))x̂ = ψ〈x̂〉(αx, αs(tx)) = ψ〈x̂〉(αx,L
〈x̂〉
βs L

〈x̂〉
β̂t
αx).

Since α, α̂, β, β̂ are bijections we conclude that (u, t) is the solution of the
equations for (x, s) in A if and only if (α̂u, β̂t) is the solution of the equations
for (αx, βs) in A〈x̂〉. �

Remark 6.17. Define the Lie algebra G〈x̂〉 as the Lie algebra obtained by
applying Definition 6.1 to A〈x̂〉. Define the graded bijection γx : G → G〈x̂〉

given by γx : Gi → G〈x̂〉i for i ∈ [−2, 2] such that

γx|G1 = αx, γx|G−1 = α̂x,

γx|G2 = βx, γx|G−2 = β̂x,

γx(Va,b) = V
〈x̂〉
a,Pxb

, γx(ζ) = ζ.

= Va,b

Using (3.41), (3.42), (6.6) and Lemma 6.15.(iii), one can verify that γx is
a Lie algebra isomorphism. One could use this fact to prove Lemma 6.16,
but to prove this lemma we needed to verify less identities than one needs
to verify to show that γx is an isomorphism.

In [AH81, Section 12] it is shown that each isomorphism of K(A) and
K(A′) can be obtained in a similar way from an isotopy between A and A′.

We can now prove the main theorem of this section.

Theorem 6.18. Let A be a structurable division algebra, and let 0 6= x ∈ A
and 0 6= s ∈ S. Then (x, s) is one-invertible. The solution of the system of
equations (6.2) is

u =
(
x− s(qx̂(s)x)

)∧
= −ŝ

(
(qx̂(s) + ŝ)∧x̂

)
and t =

(
s+ qx(ŝ)

)∧
,

where the expressions of which the conjugate inverse is taken are different
from zero.

Proof. Let 0 6= x ∈ A and 0 6= s ∈ S and denote α := αx, α̂ := α̂x, β :=
βx, β̂ := β̂x. We have (αx, βs) = (x, sx̂). Now x = ̂̂x = 1〈x̂〉, by (3.39). We
can apply Lemma 6.12 to find the solution of the equations (6.2) for (x, sx̂)
in A〈x̂〉. We use Lemma 6.16 to translate this solution back to A.
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In Lemma 6.12 we found that for (1, s) we have that u = −Lŝt = 1̂− s2
and t = ŝ+ ŝ. It also follows from this lemma that the expressions of which
the conjugate inverses are considered, are never zero.

In A〈x̂〉 we have that β̂(t) is equal to, by (3.43), Lemma 6.15.(i) and
(3.30)

β̂(t) =
(
β(s) + (β(s))∧〈x̂〉

)∧〈x̂〉
= Px(

(
sx̂+ Px(ŝx̂)

)∧
)

= Px(
(
sx̂+ Px(ŝx)

)∧
)

= Px(
(
sx̂+ qx(ŝ)x̂

)∧
)

= Px(
(
s+ qx(ŝ)

)∧
x)

= qx(
(
s+ qx(ŝ)

)∧
)x̂.

It follows that t =
(
s + qx(ŝ)

)∧
. In order to determine α̂x(u) in A〈x̂〉 we

simplify,

L
〈x̂〉
βs

2
αx = L

〈x̂〉
sx̂

2
x = L

〈x̂〉
sx̂ sPx̂x = L

〈x̂〉
sx̂ sx̂ = sPx̂(sx̂) = s(qx̂(s)x).

Now we have that

α̂(u) =
(
αx− L〈x̂〉βs

2
αx
)∧〈x̂〉

= Px(
(
x− L〈x̂〉sx̂

2
x
)∧

) = Px(
(
x− s(qx̂(s)x)

)∧
),

therefore

u =
(
x− s(qx̂(s)x)

)∧
=
(
− s(ŝx)− s(qx̂(s)x)

)∧
= −ŝ(

(
qx̂(s) + ŝ

)∧
x̂). �

Combining Theorem 6.10, Lemma 6.11 and the previous theorem, we
obtain an expression for the left and right inverses of elements in A× S:

Corollary 6.19. Let A be a structurable division algebra. Then all elements
in A× S \ {(0, 0)} are one-invertible. Let 0 6= x ∈ A and 0 6= s ∈ S,

• The left and right inverse of (x, 0) is (x̂, 0).
• The left and right inverse of (0, s) is (0, ŝ).
• The right inverse of (x, s) is

(−ŝ
(
(qx̂(s) + ŝ)∧x̂

)
+
(
s+ qx(ŝ)

)∧
x,
(
s+ qx(ŝ)

)∧
),

the left inverse of (x, s) is

(−ŝ
(
(qx̂(s) + ŝ)∧x̂

)
−
(
s+ qx(ŝ)

)∧
x,
(
s+ qx(ŝ)

)∧
).

6.3 The construction of Moufang sets

In Section 2.4 we introduced several concepts from the theory of Moufang
sets. We start by proving that structurable division algebras give rise to
abstract rank one groups; we use the terminology introduced in Section 6.1.



124 Chapter 6. Moufang sets from structurable division alg’s

Theorem 6.20. Let A be a structurable division algebra over a field k of
characteristic different from 2, 3 and 5. Then the elementary group G of A
is an abstract rank one group with unipotent subgroups U+ and U−.

Proof. By definition G = 〈U+, U−〉; U+ and U− are nilpotent subgroups (of
nilpotency class 2), since by Lemma 6.5 we have that

[[eσ(x, s), eσ(y, t)], eσ(z, r)] = [eσ(0, 2ψ(x, y)), eσ(z, r)] = 0

for all x, y, z ∈ A, s, t, r ∈ S.

Let (x, s) ∈ A×S \ {(0, 0)}, let σ = ±1, denote a = eσ(x, s) ∈ Uσ \ {0}.
By Corollary 6.19 (x, s) is one-invertible; thus by Definition 6.9 there exist
unique elements y, z ∈ A, t ∈ S such that

h := e−σ(z, t)eσ(x, s)e−σ(y, t) ∈ H−. (6.7)

Define b(a) := e−σ(−y,−t) = h−1e−σ(z, t)a. Then using Lemma 6.7.(i) we
obtain

U b(a)σ = U
e−σ(z,t)a
−σ = (U−σ)a.

This proves the condition in Definition 2.20. �

Applying Lemma 2.21 to the abstract rank one group of the previous
theorem, gives us a Moufang set M. We will use Construction 2.22 to bring
this Moufang set in the form M(U , τ) with τ a permutation of U∗ . The
groups U+ and U− are root groups of the Moufang set we constructed. We
define an addition on A× S, such that A× S is a group isomorphic to U+

and U−.

Definition 6.21. Let U := A×S be the (non-abelian) group with addition

(x, s) + (y, t) = (x+ y, s+ t+ ψ(x, y)).

In particular, U ∼= U+
∼= U−. We will also write 0 for (0, 0) ∈ U , and we will

use the notation U∗ for U \ {0}.
For each element u = (x, s) ∈ U , we set

e+(u) = e+(x, s) and e−(u) = e−(x, s).

Construction 6.22. (i) Let G = 〈U+, U−〉 be the abstract rank one
group from Theorem 6.20. The set Y of the Moufang set M obtained
from Lemma 2.21 is given by

Y = {(U−)e+(u) | u ∈ U} ∪ {U+}.

We identify Y with X = U ∪ {∞} by identifying

(U−)e+(u) ←→ u
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U+ ←→∞.

The action of elements in G = 〈U+, U−〉 on Y is given by conjugation,
and this induces an equivariant action of G on X = U ∪ {∞}. We
denote

U∞ :=∞ = U+ and U0 := 0 = U−.

(ii) Let a ∈ U , then the unique element in U∞ that maps 0 7→ a is given
by αa = e+(a), indeed e+(a) ∈ U∞ and

(0)e+(a) = (U−)e+(0)e+(a) = (U−)e+(a) = a.

It follows that for all a, b ∈ U we have a + b = aαb and U ∼= U∞ =
{αa | a ∈ U}.

(iii) For each u = (x, s) ∈ U∗, we define µu to be the unique element in the
double coset U0αuU0 interchanging the elements 0 and ∞ of X (see
Lemma 2.23). By (6.7) and Lemma 6.7.(i), we have

µu = µ(x,s) = e−(z, t) e+(x, s) e−(y, t) ∈ H−, (6.8)

where (y, t) = (u − tx, t) and (z, t) = (u + tx, t) are the left and right
inverse of (x, s), respectively.

(iv) Let e = (1, 0) ∈ U∗, we define τ = µe. We have that U0 = U τ∞.

As in (ii) define αu = e+(u) for each u ∈ U , then

U∞ = {αu | u ∈ U} and U0 = {ατu | u ∈ U}.

We still need to describe explicitly the action of τ on U∗. First we determine
the explicit action of τ on the Lie algebra G.

Lemma 6.23. The automorphism τ = µ(1,0) ∈ H− is equal to the“gradation
flipping” automorphism ϕ defined in Definition 6.6.

This implies that τ is an involution and that for each u ∈ U , we have
e−(u) = e+(u)τ .

Proof. We first observe that the left and right inverse of e = (1, 0) are both
equal to e = (1, 0) again, and hence

τ = µ(1,0) = e−(1, 0) e+(1, 0) e−(1, 0) ∈ H−.

Since τ ∈ H−, we have that ζ.τ = −ζ. We now verify that τ maps every
element x ∈ G± to the corresponding element x ∈ G∓.

Indeed, by Theorem 6.10.(iii), we know that τ |G+ = P(1,0) and τ |G− =
P(1,0), which we can compute explicitly. We get for all a ∈ G±

P(1,0)a = U1(a+ 2
3ψ(1, a)1) = U1(a+ 2

3(a− a)1)



126 Chapter 6. Moufang sets from structurable division alg’s

= 1
3U1(a+ 2a) = 1

3(2(a+ 2a)− (a+ 2a)) = a ∈ G∓.

Since τ is an automorphism of G, we find for all s ∈ G±2 that

s.τ = 1
2ψ(s, 1).τ = −1

4 [s, 1].τ = −1
4 [s.τ, 1.τ ] = 1

2ψ(s, 1) = s ∈ G∓2,

and for all a ∈ G+, b ∈ G− that

Va,b.τ = −1
2 [a, b].τ = −1

2 [a.τ, b.τ ] = 1
2 [b, a] = −Vb,a.

We conclude that τ = ϕ, which is clearly an involution. Since τ ∈ H−, it
follows from Lemma 6.7.(i) that

e+(x, s)τ = e−(x.τ, s.τ) = e−(x, s)

for all (x, s) ∈ U . �

We can now determine the action of τ on U∗ using Lemma 2.26.

Theorem 6.24. The map τ = µ(1,0) maps each element (x, s) ∈ U∗ to
(−y,−t), where (y, t) is the left inverse of (x, s).

Proof. Let u = (x, s) ∈ U∗ be arbitrary. By (6.8) and Lemma 6.23, we have

µu = µ(x,s) = ατ(z,t) α(x,s) α
τ
(y,t).

On the other hand, it follows from Lemma 2.26 that

µu = ατ(−u)τ−1 αu α
τ
−(uτ−1).

By the uniqueness of the µ-maps (see Lemma 2.23), the last terms are equal

(x, s).τ−1 = (−y,−t).

The lemma follows since τ is an involution. �

Now we can prove the main theorem of this section:

Theorem 6.25. Let A be a structurable division algebra over a field of
characteristic different from 2, 3 and 5. Define the group U := A × S with
addition

(x, s) + (y, t) = (x+ y, s+ t+ ψ(x, y)).

Define qx : S → S : s 7→ 1
6ψ(x, Ux(sx)) and define the permutation τ of

U∗ for all 0 6= x ∈ A and 0 6= s ∈ S

(x, 0) 7→ (−x̂, 0),

(0, s) 7→ (0,−ŝ),
(x, s) 7→ ( ŝ

(
(qx̂(s) + ŝ)∧x̂

)
+
(
s+ qx(ŝ)

)∧
x, −

(
s+ qx(ŝ)

)∧
).

Then M(U , τ) is a Moufang set.
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Proof. Using Corollary 6.19, we find the explicit form of the left inverses of
(x, s), those describe τ using Theorem 6.24.

We started from the Moufang set M obtained from the abstract rank one
group in Theorem 6.20 and described U and τ such that M(U , τ) is equal to
M. Therefore U and τ give rise to a Moufang set. �

Remark 6.26. Let A and A′ be isotopic structurable algebras, by Theorem
3.22 the Lie algebras K(A) and K(A′) are graded isomorphic. It follows
from Lemma 2.29 and Theorem 6.20 that the Moufang sets constructed by
Theorem 6.25 from A and A′ are isomorphic.

It is not clear to us whether the fact that the Moufang sets obtained
from A and A′ are isomorphic implies that A and A′ are isotopic.

We will determine the Hua maps, defined in Definition 2.27, of the Mou-
fang set obtained in the previous theorem. We get a (surprisingly) elegant
expression.

Theorem 6.27. Let M(U , τ) be as in Theorem 6.25. Then for all (x, s) ∈ U∗
and (a, r) ∈ U

(a, r).h(x,s) = (P(x,s)a, qx(r) + ψ(x, s(rx))− s(rs))
= (P(x,s)a,

1
2ψ(P(x,s)r, P(x,s)1)).

Proof. Let (x, s) ∈ U∗ and (a, r) ∈ U , let (z, t) denote the right inverse of
(x, s) and let (y, t) denote the left inverse of (x, s).

By definition h(x,s) = τµ(x,s) ∈ Aut(G) and h(x,s) preservers the grada-
tion of G. Hence we have

e+(a, r)h(x,s) = e+(a.h(x,s), r.h(x,s)).

By Lemma 6.23 we find

e+(a, r)h(x,s) = e−(a, r)µ(x,s) = e+(a.µ(x,s), r.µ(x,s)).

Combining the last two equalities, we find that

(a.r).h(x,s) = (a.µ(x,s), r.µ(x,s)), (6.9)

in the right hand side expression we have to consider a ∈ G−, r ∈ G−2 and
x ∈ G+, s ∈ G+2.

By Construction 6.22.(iii) have µ(x,s) = e−(z, t)e+(x, s)e−(y, t). By The-
orem 6.10.(iii), we have that µ(x,s)|G− = P(x,s). Hence in (6.9) we find
a.µ(x,s) = P(x,s)a. Since µ(x,s) is a Lie algebra morphism we have that

r.µ(x,s) = 1
2 [r, 1].µ(x,s) = 1

2 [r.µ(x,s), 1.µ(x,s)] = 1
2ψ(P(x,s)r, P(x,s)1).
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Using the theory developed in [AF99], we can obtain an equivalent formula.

In the proof of [AF99, Theorem 12] it shown that for h = µ(x,s) =
e−(z, t)e+(x, s)e−(y, t) there holds that h|G−2 = ε2e+(x, s)|G−2 , where ε2
denotes the projection G → G−2. In the proof of [AF99, Theorem 13] it is
shown that3

ε2e+(x, s)|G−2 = 1
24(ad(x))4 + 1

2(ad(x))2 ad(s) + 1
2(ad(s))2.

Using the definition of the Lie bracket of G we find for (6.9)

r.µ(x,s) = 1
6ψ(x, Ux(rx)) + ψ(x, s(rx))− s(rs). �

6.4 Examples

We believe that the construction of Moufang sets in Theorem 6.25 will give
rise to descriptions of Moufang sets from linear algebraic groups that have
not been described explicitly before. We were not able to prove this yet, but
we formulate the following conjecture. For the notations of the Tits index
see Table 1.1 on page 13.

Conjecture 6.28. Let A be a central simple structurable division algebra
over a field of characteristic different from 2,3 and 5, such that K(A) is
a Lie algebra of type gXt

n,1. Then the Moufang set constructed in Theorem
6.25 starting from A is isomorphic to the Moufang set obtained from a linear
algebraic group of type gXt

n,1.

In this section we show that we can obtain all Moufang sets described in
Section 2.4.2 using Theorem 6.25. These examples confirm the above con-
jecture, see especially Lemma 6.30 and 6.31 for two examples of exceptional
Moufang sets.

If this conjecture is true, Theorem 3.19 ought to imply that we can
give an explicit construction of the Moufang set obtained from any linear
algebraic group of relative rank one in characteristic different from 2 and
3. We hope that this might give a clue to prove that any Moufang set in
characteristic different from 2 and 3 is obtained from a linear algebraic group
or from a classical group. This fact is true for Moufang buildings of rank
greater than one, see for example Theorem 2.2.

Below, we apply Theorem 6.25 to several central simple structurable
division algebras. We show that in the case that the structurable algebra
is a Jordan algebra, associative, of hermitian type or equal to an octonion
algebra, the described Moufang set is isomorphic to a Moufang set described

3This can be easily verified out of the definition of e+(x, s).
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in Section 2.4.2. We show also that certain structurable algebras of skew-
dimension one give rise to Moufang sets described in Section 2.4.2.

First we show that in the case that s2 ∈ k1 and qx(s) ∈ ks the formulas
for the calculation of the τ -map in Theorem 6.25 simplify significantly.

Lemma 6.29. Let A be a structurable division algebra such that n(s) :=
ss = −s2 is a quadratic form on S and such that qx = ν(x)id for all x ∈ A
for some form ν of degree 4 on A.

Let 0 6= x ∈ A and 0 6= s ∈ S, then the solution of the system of equations
(6.2) given in Theorem 6.18 simplifies to

u =
1

n(s) + ν(x)
ν(x)x̂, t =

1

n(s) + ν(x)
s,

Hence

(x, s).τ =
( −1

n(s) + ν(x)
(−ν(x)x̂+ sx), − 1

n(s) + ν(x)
s
)
,

for all (x, s) ∈ A× S \ {(0, 0)}.

Proof. First we notice that in the above formula (x, 0).τ = (−x̂, 0) and
(0, s).τ = (0, s−1 = −ŝ) which is equivalent with the τ in Theorem 6.25.
From now on assume that 0 6= x and 0 6= s. We first calculate t:

t = (s+ qx(ŝ))∧ = (s+ ν(x)ŝ)∧

=
(
(n(s) + ν(x))ŝ

)∧
= (n(s) + ν(x))−1s

To calculate u, note that n(ŝ) = −(ŝ)2 = −(s2)∧ = n(s)−1; by Lemma
6.15.(iii) we have ν(x̂) = ν(x)−1 since

ν(x̂)s = qx̂(s) = q̂x(ŝ) = ν̂(x)ŝ = ν(x)−1s.

We find

u = −ŝ
(
(qx̂(s) + ŝ)∧x̂

)
= −ŝ

(
((ν(x)−1 + n(s)−1)s)∧x̂

)
= (ν(x)−1 + n(s)−1)−1n(ŝ)x̂

=
(ν(x) + n(s)

ν(x)n(s)

)−1
n(s)−1x̂

= (ν(x) + n(s))−1ν(x)x̂.

The left inverse of (x, s) is (u − tx, t), by Theorem 6.24 τ maps (x, s) on
(−y,−t) = (−u+ tx,−t). �
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Jordan algebras Let the structurable division algebra A = J be a Jordan
algebra, by Example 3.3.2 we know that this is a Jordan division algebra
with x̂ = x−1, where x−1 is the Jordan inverse in J .

In this case S = 0, and by Theorem 6.25 U is the additive group of J
and x.τ = −x̂ = −x−1 for x ∈ U∗. Thus our new construction of Moufang
sets generalizes the one given in Example 2.4.2.1.

If A is an exceptional Jordan algebra, the Lie algebra K(A) is of type
E78

7,1 (see (2) on page 60). On the other hand we already know that the
Moufang set obtained from an exceptional Jordan algebra is also of type
E78

7,1 (see Section 2.4.2.1). This confirms Conjecture 6.28.

Octonion algebras Let A be an octonion division algebra (or a lower
dimensional division composition algebra), in this case we can apply Lemma
6.29. It is indeed clear that n(s) = −s2 ∈ k is a quadratic form, and when
evaluating qx

qx(s)x̂ = −1
3Ux(sx) = −1

3(2x(sx))x− (x x)(sx)

= N(x)sx = N(x)2(sx)(xx)−1 = N(x)2sx−1 = N(x)2sx̂,

we find that qx = N(x)2id and ν(x) = N(x)2. By applying Lemma 6.29
using that x̂ = x−1 we find

u =
1

N(x)2 − s2
N(x)2x̂, t =

1

N(x)2 − s2
s,

=
1

N(x)2 − s2
N(x)(xx)x−1,

=
1

N(x)2 − s2
N(x)x.

Therefore

(x, s).τ =
( 1

N(x)2 − s2
(−N(x)x+ sx), − 1

N(x)2 − s2
s
)
.

Lemma 6.30. Let A be an octonion division algebra (or a lower dimensional
division composition algebra). Then the Moufang set M(U, τ) for U = A×S
with addition

(x, s) + (y, t) = (x+ y, s+ t+ ψ(x, y))

and

(x, s).τ =

(
1

N(x)2 − s2
(−N(x)x+ sx),− 1

N(x)2 − s2
s

)
is isomorphic to the Moufang set described in Section 2.4.2.3. If A is an
octonion algebra, this Moufang set is of type F 21

4,1.
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Proof. We use the second description of the Moufang set given in Section
2.4.2.3, thus U ′ = {(a, b) ∈ A × A | N(a) + T (b) = 0} with addition
(a, b) + (c, d) = (a+ c, b+ d− ac) and (a, b).τ ′ = (2b−1a, 4b−1).

We have that U = A× S and consider the following bijection:

ϕ : U ′ → U

(a, b) 7→
[a

2
,− b

2
−N

(a
2

)]
(2a, 2(−b−N(a)))←[ [a, b]

Indeed, if N(a) + T (b) = 0 then T
(
−1

2(b+ N(a)
2 )
)

= −1
2(T (b) +N(a)) = 0;

Conversely, if T (b) = 0, then T (2(−b−N(a))) = −4N(a) = −N(2a).

We verify that ϕ is a group morphism, indeed for all (a, b), (c, d) ∈ U ,

([a, b].ϕ−1 + [c, d].ϕ−1).ϕ = ((2a, 2(−b−N(a))) + (2c, 2(−d−N(c)))).ϕ

= ((2a+ 2c,−2b− 2d− 2(N(a) +N(c))− 4ac)).ϕ

= [a+ c, b+ d+N(a) +N(c) + 2ac−N(a+ c)]

= [a+ c, b+ d

+N(a) +N(c) + 2ac−N(a)−N(c)− ac− ca]

= [a+ c, b+ d+ ψ(a, c)] = [a, b] + [c, d].

We verify that τ = τ ′ϕ, for all [a, b] ∈ U \ {0} we have

[a, b].ϕ−1τ ′ϕ = (2a, 2(−b−N(a))).τ ′ϕ

= (2(−b−N(a))−1a, 2(−b−N(a))−1).ϕ

=
[
−(b+N(a))−1a, (b+N(a))−1 −N((b+N(a))−1a)

]
=

[
1

N(a)2 − b2
(−N(a) + b)a,

1

N(a)2 − b2
(−b+N(a)−N(a))

]
=

[
1

N(a)2 − b2
(−N(a) + b)a,− 1

N(a)2 − b2
b

]
= [a, b].τ.

It follows from Lemma 2.29 that these two Moufang sets are isomorphic. �

If A is an octonion division algebra, the Lie algebra K(A) is of type F 21
4,1

(see (5) on page 60). This confirms Conjecture 6.28.

Structurable algebras of skew-dimension 1 Let A be a structurable
division algebra of skew-dimension 1, let 0 6= s0 ∈ S with s20 = µ. Then
n(αs0) = α2µ for α ∈ k, hence n is a quadratic form on S. We have

qx(αs0) =
1

6
ψ(x, Ux(αs0x))
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= α
1

6µ
ψ(x, Ux(s0x))s0s0 = ν(x)αs0,

here ν(x) denotes the conjugate norm defined in (3.18) on page 50. It follows
that we can apply Lemma 6.29. Since S = ks0,

(x, αs0).τ

=
( 1

ν(x)− α2µ
(−ν(x)

−1

3µν(x)
s0Ux(s0x) + αs0x), − 1

ν(x)− α2µ
αs0
)

=
( 1

ν(x)− α2µ
(

1

3µ
s0Ux(s0x) + αs0x), − 1

ν(x)− α2µ
αs0
)

It follows from Definition 6.9.(iii) and Theorem 6.27 that

(a, r).h(0,−s0/µ) = (−s0a/µ,−s0(rs0)/µ2) = (−s0a/µ,−r/µ).

We evaluate τ ′ = τh(0,s0)

(x, αs0).τ
′ =

(
− 1

ν(x)µ− α2µ2
(
1

3
Ux(s0x) + αµx),

1

ν(x)µ− α2µ2
αs0
)
.

(6.10)

It follows from Lemma 2.29 that M(U, τ) and M(U, τ ′) are isomorphic

From now on we focus on structurable algebras described in Theorem
4.7.

Lemma 6.31. Let (k, L, q, 1, X, ·, h, θ) be a quadrangular algebra in char-
acteristic not 2 and 3 and let A = X be the structurable algebra of skew-
dimension 1 described in Theorem 4.7.

Then the Moufang set M(A × ks0, τ ′) described above is isomorphic to
the Moufang set obtained from Moufang quadrangles of type E6, E7 and E8

described on page 42. It follows that in the E8-case this Moufang set is of
type E66

7,1.

Proof. In this case (6.10) becomes

(x, αs0).τ
′ =

( 1

q(π(x)) + α2µ2
(x · π(x) + αµx), − 1

q(π(x)) + α2µ2
αs0
)

We use Lemma 2.29 to define an isomorphism of the two Moufang sets.
We define a the bijection ϕ : X × k → X × ks0 : (x, t) 7→ (x,− t

µs0). We
verify this is a group morphism:

((x1, t1) + (x2, t2)).ϕ = (x1 + x2, t1 + t2 + g(x2, x1)).ϕ
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= (x1 + x2,−
1

µ
(t1 + t2 + ψ(x2, x1)s0)s0)

= (x1 + x2,−
1

µ
(t1 + t2)s0 + ψ(x1, x2))

= (x1, t1).ϕ+ (x2, t2).ϕ.

We determine τ ′ϕ, let (x, t) ∈ X × k \ {(0, 0}

(x, t).τ ′ϕ = (x,− t
µ
s0).τ

′ϕ−1

=
( 1

q(π(x)) + t2
(x · π(x)− tx),

1

q(π(x)) + t2
t

µ
s0
)
.ϕ−1

=
( 1

q(π(x)) + t2
(x · π(x)− tx), − 1

q(π(x)) + t2
t
)
,

this is indeed identical to the τ in (2.20). �

We have that as a structurable algebra X is isotopic to CD((Q1 ⊗k
Q2)

+,Nrd, γ2) by Theorem 4.12 and Lemma 4.6. Since (Q1 ⊗k Q2)
+ is a

16-dimensional division Jordan algebra of degree 4, it follows from (4) on
page 60 that the Tits–Kantor–Koecher process on X yields a Lie algebra of
type E66

7,1. This fact confirms Conjecture 6.28.

Structurable algebras of hermitian type Let A = E ⊕W be a struc-
turable division algebra of hermitian type, see Section 3.3.3.. This implies
that E be an associative division algebra with involution and that W is
a left E-module equipped with a hermitian form h, such that h(x, x) 6= 0, 1
for all 0 6= x ∈W .

For the sake of readability, we introduce the notation

δe+w = ee− h(w,w) ∈ H(E),

for all e ∈ E and w ∈W . Hence by (3.17) ê+ w = δe+w(e− w) and

δx̂ = δ−1x

for all 0 6= x = e+ w ∈ A. Using formulas (3.15) and (3.16), it is a straight
forward calculation to verify that

q(e+w)(s) = δe+wsδe+w ∈ S,

for all e ∈ E, w ∈W and s ∈ S(E), where qx is defined in Definition 6.14.

Now we apply Theorem 6.25. It follows that U = A×S(E) with addition

(e1 + w1, s1) + (e2 + w2, s2)
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=
(
e1 + e2 + w1 + w2, s1 + s2 + e1e2 − e2e1 + h(w2, w1)− h(w1, w2)

)
.

(6.11)

For all 0 6= x ∈ A, 0 6= s ∈ S we have that (x, s).τ = (−u + tx,−t) where
(u, t) is as in Theorem 6.18. We simplify the expressions for u and t using
the associativity of E and the identity (a+ b)−1a(a− b)−1 = (a− ba−1b)−1:

t = (s+ qe+w(ŝ))∧

= (s+ δe+ws−1δe+w)
−1

= (−s+ δe+ws
−1δe+w)−1

= (δe+w + s)−1s(δe+w − s)−1.

Evaluating tx gives

t(e+ w) = (δe+w + s)−1s(δe+w − s)−1e− (δe+w + s)−1s(δe+w − s)−1w.

The expression for u simplifies to

u = −ŝ
(
(ŝ+ qê+w(s))∧(ê+ w)

)
= s−1

(
(s−1 − δ−1e+wsδ−1e+w)−1δ−1e+w(e− w)

)
= s−1

(
(s−1 − δ−1e+wsδ−1e+w)−1δ−1e+we+ (s−1 − δ−1e+wsδ−1e+w)−1δ−1e+ww

)
= s−1(s−1 − δ−1e+wsδ−1e+w)−1δ−1e+we− s−1(s−1 − δ−1e+wsδ−1e+w)−1δ−1e+ww

= (δe+w + s)−1δe+w(δe+w − s)−1e− (δe+w + s)−1δe+w(δe+w − s)−1w.

Therefore

(e+ w, s).τ =
(
−(s+ δe+w)−1e+ (s+ δe+w)−1w,

(s+ δe+w)−1s(s− δe+w)−1
)

(6.12)

Notice that (e + w, 0).τ = (−δ−1e+w(e + w), 0) = (−ê+ w, 0) and (0, s).τ =
(0, s−1), which is equivalent with the τ in Theorem 6.25.

Therefore formula (6.12) is valid for all (e+ w, s) ∈ A× S \ {(0, 0)}.

Lemma 6.32. The Moufang set we obtained above is isomorphic to a Mou-
fang set of skew-hermitian type defined in Section 2.4.2.2.

Proof. We start with an anisotropic pseudo-quadratic space (L, σ,X, h, π)
with corresponding Moufang set M(U ′, τ ′) as in Section 2.4.2.2. We make
X into a structurable algebra of hermitian type by applying Lemma 1.5 and
Remark 3.4.(ii) successively. This obtained hermitian structurable algebra
will have Moufang set M(U = A× S, τ) with τ as in (6.12). We show that
those two Moufang sets are isomorphic. It follows from Remark 3.4.(iii) that
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any Moufang set from a hermitian structurable algebra is isomorphic to a
Moufang set of skew-hermitian type.

Notice that since for 0 6= x ∈ X, h(x, x)σ = −h(x, x) 6= 0, the involution
σ 6= id. Fix for the rest of this proof

0 6= ξ ∈ X and s0 := −2h(ξ, ξ)−1 ∈ S(L).

Define for all e ∈ L the involution eς := s0e
σs−10 . Notice that eσ = e if

and only if (s0e)
ς = −s0e, which implies that Lσ → Sς(L) : e 7→ s0e is a

bijection.

We let X be a left L-module for the scalar multiplication e ◦ x = xeς ,
now s0h : X ×X → L is a hermitian form with respect to the involution ς.

We have that X = E ⊕W for W := (L ◦ ξ)⊥ and E := L ◦ ξ which is an
associative algebra (e1 ◦ ξ)(e2 ◦ ξ) = e1e2 ◦ ξ with involution (e ◦ ξ)ς = eς ◦ ξ.

We let W be a left E-module for (e ◦ ξ) ◦ w = e ◦ w and define the
hermitian form

H(w1, w2) = 1
2s0h(w1, w2) ◦ ξ,

for all w1, w2 ∈W . In this way X becomes a structurable algebra of hermi-
tian type.

Notice that for x1 = e1 ◦ ξ + w1 and x2 = e2 ◦ ξ + w2, we have

h(x1, x2) ◦ ξ =
(
h(e1 ◦ ξ, e2 ◦ ξ) + h(w1, w2)

)
◦ ξ

=
(
eςσ1 h(ξ, ξ)eς2 + 2s−10 H(w1, w2)

)
◦ ξ

=
(
s−10 e1s0(−2s−10 )eς2 + 2s−10 H(w1, w2)

)
◦ ξ

= −2s−10

(
e1e

ς
2 −H(w1, w2)

)
◦ ξ. (6.13)

When we work with the structurable algebra obtained from the hermitian
form H, we obtain by (6.13) that

δe◦ξ+w ◦ ξ = eeς ◦ ξ −H(w,w) = −s0π(e ◦ ξ + w) ◦ ξ.

Since we started from an anisotropic pseudo-hermitian space, the pseudo-
quadratic form π is anisotropic. Therefore δe◦ξ+w 6= 0 for e◦ ξ+w 6= 0, thus
the obtained structurable algebra is division.

Now we define the bijection

ϕ : X × Lσ → E ⊕W × S(E)

(x, a) 7→ (x = e ◦ ξ + w, s0a ◦ ξ).

It follows from (6.13) after an easy verification that ϕ((x1, a1) + (x2, a2)) =
ϕ(x1, a1) + ϕ(x2, a2) for all x1, x2 ∈ X, a1, a2 ∈ Lσ, where the addition in
the left side is (2.7) and the addition in the right side is (6.11).
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We will show that ϕ−1τ ′ϕ = τh(0,s0), then it follows from Lemma 2.29
that the two Moufang sets are isomorphic.

It follows from Theorem 6.27 that

(e◦ξ+w, a◦ξ).τh(0,s0) =
(
−s0(a◦ξ+δe◦ξ+w)−1e◦ξ−s0(a◦ξ+δe◦ξ+w)−1w,

− s0(a ◦ ξ + δe◦ξ+w)−1(a ◦ ξ)(a ◦ ξ − δe◦ξ+w)−1s0
)

(6.14)

We find that

(e ◦ ξ + w, a ◦ ξ).ϕ−1τϕ =
(
−(e ◦ ξ + w)(−s−10 δe◦ξ+w ◦ ξ + s−10 a ◦ ξ)−1,

− s0(s−10 δe◦ξ+w ◦ ξ + s−10 a ◦ ξ)−1(s−10 a ◦ ξ)(−s−10 δe◦ξ+w ◦ ξ + s−10 a ◦ ξ)−1)
=
(
−s0(a+ δe◦ξ+w)−1e ◦ ξ − s0(a+ δe◦ξ+w)−1w,

− s0(a ◦ ξ + δe◦ξ+w)−1(a ◦ ξ)(a ◦ ξ − δe◦ξ+w)−1s0
)

which is exactly (6.14). �

Associative algebras with involution Let A be an associative algebra
with involution. A can be seen as structurable algebra of hermitian type with
the zero hermitian space. It follows from Lemma 6.32 that the Moufang set
constructed in Theorem 6.25 is isomorphic to Moufang set of skew-hermitian
type.

In order to obtain an associative algebra in the proof of Lemma 6.32,
one has to start with the 1-dimensional skew-hermitian space h : E × E →
E : (e, e′) 7→ ete′ for some element t ∈ S(E).



Appendix A

Explicit construction of a
structurable algebra
associated to a quadrangular
algebra

Let Ω = (k, L, q, 1, X, ·, h, θ) be a quadrangular algebra with char(k) 6= 2, 3.
Let (X, t, 〈., .〉) be the Freudenthal triple system constructed in Theorem
4.2 from Ω. In Sections 4.3 and 4.4 we defined structurable algebras whose
associated Freudenthal triple system is isometric to (X, t, 〈., .〉).

In this appendix we take another point of view towards these structurable
algebras. We start with the Freudenthal triple system (X, t, 〈., .〉) and con-
struct in a very explicit way a family of isotopic structurable algebras whose
associated Freudenthal triple system is isometric to (X, t, 〈., .〉).

We achieve this by going through the constructions in the proof of [Fer72,
Theorem 5.1] and [Gar01, Lemma 4.15] in a very explicit way; we proceed
in 3 steps:

Step 1. We tensor the simple Freudenthal triple system X with a quadratic
field extension ∆ such that it becomes reduced.

Step 2. We apply the proof of [Fer72, Theorem 5.1] to construct a struc-
turable matrix algebra that is isometric to X ⊗k ∆.

Step 3. We use the methods from [Gar01, Lemma 4.15] to apply Galois
descent and find a structurable algebra that is isometric to X.

137
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A.1 The construction

Construction A.1. Let Ω = (k, L, q, 1, X, ·, h, θ) be a quadrangular algebra
with char(k) 6= 2, 3, and consider X as a simple non-reduced Freudenthal
triple system as in Theorem 4.2.

Step 1: Extending scalars to make X reduced.

To reduce X we use Lemma 3.32. For all x ∈ X, we have 〈x, t(x, x, x)〉 =
12(−q(π(x))). Since X is not reduced, −q(π(x)) is never a square in k.

We fix an arbitrary a ∈ X∗ and define δ :=
√
−q(π(a)) in the algebraic

closure of k, so that ∆ = k(δ) is a quadratic field extension of k; let ι be the
non-trivial element of Gal(∆/k).

We now linearly extend the trilinear product and the bilinear form on
X to X ⊗k ∆. This makes X ⊗k ∆ into a Freudenthal triple system. By
our choice of ∆, the Freudenthal triple system X ⊗k ∆ is reduced. By
Lemma 3.32 and Theorem 4.2,

u′1 = 1
2

(
a+

aπ(a)

δ

)
, u′2 = 1

2δ

(
−a+

aπ(a)

δ

)
form a supplementary pair of strictly regular elements.

Step 2: Construction of a structurable matrix algebra isometric to X ⊗k ∆.

We point out that if we say that a structurable matrix algebra M(J, η) is
isometric to X ⊗K ∆, we mean that the Freudenthal triple system M(J, η),
defined by the formulas for 〈., .〉 and ν in Remark 3.28.(iii), is isometric to
the Freudenthal triple system X ⊗K ∆.

In order to construct a structurable matrix algebra that is isometric to
X ⊗K ∆, we have to construct a Jordan algebra over ∆. We proceed as
in [Fer72], but we slightly modify the construction which is presented there.
We only give the necessary ingredients, referring the reader to loc. cit. for
more details.

For ε ∈ {1,−1}, we let

Mε := {x ∈ X ⊗K ∆ | t(u′1, u′2, x) = εx}.

As in loc. cit., we will define a Jordan algebra on the vector space M1. This
Jordan algebra will be constructed either from a quadratic form or from an
admissible cubic form.

If the expression g(u′1, yπ(y)) is identically zero for y ∈ M1, then there
is a quadratic form Q on M1 making M1 into a Jordan algebra; in this case
we define N = 0 and λ = 1.
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On the other hand, if there exists an e ∈M1 such that g(u′1, eπ(e)) 6= 0,
then

N(x) :=
g(u′1, xπ(x))

g(u′1, eπ(e))

is an admissible cubic form on M1 with basepoint e, making M1 into a
Jordan algebra, and we let

λ := 1
2g(u′1, eπ(e)) ∈ ∆.

It is shown in loc. cit. that in both cases, X ⊗K ∆ is isometric to the
structurable matrix algebra M(M1, λ) (as defined in Example 3.3.4). How-
ever, we prefer to slightly modify the construction so that X ⊗K ∆ becomes
isometric to M(M1, 1). One obvious way to do this is to redefine the pair of
strictly regular elements as u1 = λ−1u′1 and u2 = λu′2, so that

u1 =
1

2λ

(
a+

aπ(a)

δ

)
, u2 =

λ

2δ

(
−a+

aπ(a)

δ

)
;

then X ⊗K ∆ will indeed be isometric to M(M1, 1). Note that the spaces
Mε are unchanged by replacing u′1 and u′2 by u1 and u2, respectively.

In loc. cit. it is shown that X ⊗K ∆ = ∆u1 ⊕ ∆u2 ⊕M1 ⊕M−1, and
that there exists an isomorphism t : M1 →M−1. This allows us to explicitly
write down the isometry ψ between X ⊗K ∆ and M(M1, 1):

ψ : ∆u1 ⊕∆u2 ⊕M1 ⊕M−1 →
(

∆ M1

M1 ∆

)
:

d1u1 + d2u2 + j1 + t(j2) 7→
(
d1 j1
j2 d2

)
,

for all d1, d2 ∈ ∆ and all j1, j2 ∈ M1. So we obtain a structurable algebra
M(M1, 1) that is defined over ∆ and isometric to X ⊗K ∆.

Step 3: Galois descent.

Our next step is to apply Galois descent to obtain a structurable algebra
over k isometric to X. We follow the ideas of [Gar01, Lemma 4.15], but we
use a more explicit approach in order to obtain exact formulas.

Let η̃ be the extension of ι to X ⊗K ∆ given by

η̃(x⊗ d) := x⊗ ι(d).

Since the fixed point set of η̃ in X ⊗K ∆ is X, we determine how this map
acts on M(M1, 1). As η̃(t(x, y, z)) = t(η̃(x), η̃(y), η̃(z)), the map η̃ is an
isometry of the Freudenthal triple system. We have η̃(u1) = −δ

N(λ)u2, and it

follows from η̃(u1u2x) = −u1u2η̃(x) that x ∈M±1 if and only if η̃(x) ∈M∓1.
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The explicit formula for η̃ is given by

η̃(d1u1 + d2u2 + j1 + t(j2))

= ι(d1)
−δ
N(λ)

u2 + ι(d2)
N(λ)

δ
u1 + η̃(j1) + η̃(t(j2))

= ι(d2)
N(λ)

δ
u1 + ι(d1)

−δ
N(λ)

u2 + η̃(t(j2)) + t(t−1(η̃(j1))),

for all d1, d2 ∈ ∆ and all j1, j2 ∈ M1. Since η̃(t(j2)), t
−1(η̃(j1)) ∈ M1, we

can translate this into matrix notation using ψ, and we get

η̃ :

(
d1 j1

j2 d2

)
7→

(
N(λ)
δ ι(d2) η̃(t(j2))

t−1(η̃(j1))
−δ
N(λ) ι(d1)

)
.

We denote the Freudenthal triple system on A := M(M1, 1) from Ex-
ample 3.3.4 by (A, b, t); it follows that η̃ is an isometry of (A, b, t). It is
important to note, however, that η̃ is in general not an algebra automor-
phism of A, and the fixed points of η̃ in A do not form a structurable
algebra.

Following [Gar01], consider the structurable algebra A′ := M(M1,
δ

N(λ));

denote the corresponding Freudenthal triple system by (A′, b′, t′). We now
modify this Freudenthal triple system once more. Let

s′0 =
N(λ)

δ

(
1 0
0 −1

)
,

and consider the Freudenthal triple system associated to A′ with respect
to s′0 as in Definition 3.29. Then we obtain the Freudenthal triple system
(A′, b′′, t′′), where

b′′ =
N(λ)

δ
b′ and t′′ =

N(λ)

δ
t′ .

The map

f̃ : A → A′ :
(
d1 j1
j2 d2

)
7→

(
δ

N(λ)d1 j1

j2 d2

)
is an isometry from (A, b, t) to (A′, b′′, t′′). Now consider the map π̃ :=
f̃ η̃f̃−1 : A′ → A′, which is explicitly given by

π̃ :

(
d1 j1
j2 d2

)
7→
(

ι(d2) η̃(t(j2))
t−1(η̃(j1)) ι(d1)

)
.

It is now obvious that π̃ is an isometry of (A′, b′′, t′′). Using some properties
of norm similarities of Jordan algebras, one can show that π̃ is, in fact, an
algebra automorphism of A′.
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It follows that A′π̃, the fixed points of A′ under π̃, is a structurable
algebra. Considered as Freudenthal triple systems, A′π̃ andAη̃ are isometric.
Since Aη̃ is in turn isometric to X, the map

τ := f̃ ◦ ψ : X → A′π̃

is an isometry.

We now use this isometry to make X into a structurable algebra isomor-
phic to A′π̃, by defining the following multiplication and involution:

x ? y := τ−1(τ(x)τ(y)) and x := τ−1(τ(x))

for all x, y ∈ X, where the multiplication and involution in the right hand
sides are as in Definition 3.5 applied on A′.

We will denote this structurable algebra by

X = X(Ω, a, λ) ,

where Ω is the quadrangular algebra we started from, and where a ∈ X∗

and λ ∈ ∆ are as in Step 1 and Step 2, respectively.

[End of Construction A.1]

We can now explicitly write down the structurable algebra X in terms
of the original quadrangular algebra.

Theorem A.2. Let X = X(Ω, a, λ) be as above. Let

1 :=
1

2δ

(
λσ
(
a+

aπ(a)

δ

)
+ λ
(
−a+

aπ(a)

δ

))
,

s0 :=
N(λ)

2δ2

(
λσ
(
a+

aπ(a)

δ

)
− λ

(
−a+

aπ(a)

δ

))
,

µ :=
N(λ)2

δ2
.

Then X is a structurable algebra with zero element 0 ∈ X and identity ele-
ment 1 ∈ X; X has skew-dimension one, and the subspace S of skew-sym-
metric elements is generated by s0, with s20 = µ. The subspace H of sym-
metric elements is

H = {x ∈ X | x = x} = {`1 + j + η̃(j) | ` ∈ k, j ∈M1}.

Moreover, for all x, y, z ∈ X, we have

Vx, s0?y z = 1
2

(
xh(y, z) + yh(x, z) + zh(y, x)

)
,

(x ? y − y ? x) ? s0 = g(x, y)1,
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ν(x) = − δ2

N(λ)2
q(π(x)),

where ν is the norm of X (see (3.18)). If we make other choices for a′ ∈ X∗
and λ′ ∈ ∆, then the structurable algebras X(Ω, a, λ) and X(Ω, a′, λ′) are
isotopic.

Proof. By definition, the isometry τ is an isomorphism from the structurable
algebra X to the structurable algebra A′π̃, which is known to be of skew-
dimension one. In particular, the zero element and the identity element of X
are equal to 0 = τ−1(0) and 1 := τ−1 ( 1 0

0 1 ), respectively. Moreover, X has
skew-dimension one, and the set S of skew-symmetric elements is generated
by s0 := τ−1(s′0). We now perform some explicit calculations.

Notice that all elements in A′π̃ are of the form(
d j

t−1(η̃(j)) ι(d)

)
for some d ∈ ∆ and j ∈M1. We compute τ−1 := ψ−1 ◦ f̃−1 : A′π̃ → X:(

d j
t−1(η̃(j)) ι(d)

)
f̃−1

7−−→
(

N(λ)
δ d j

t−1(η̃(j)) ι(d)

)
∈ Aη̃

ψ−1

7−−→ N(λ)

δ
du1 + ι(d)u2 + j + η̃(j) ∈ X.

Now we can determine

1 = τ−1
(

1 0
0 1

)
=
N(λ)

δ
u1 + u2

=
1

2δ

(
λσ
(
x+

xπ(x)

δ

)
+ λ
(
−x+

xπ(x)

δ

))
,

s0 = τ−1

(
N(λ)
δ 0

0 −N(λ)
δ

)
=
N(λ)2

δ2
u1 −

N(λ)

δ
u2

=
N(λ)

2δ2

(
λσ
(
x+

xπ(x)

δ

)
− λ
(
−x+

xπ(x)

δ

))
,

s0 ? s0 = τ−1(s′0s
′
0) = τ−1

(
N(λ)2

δ2

(
1 0
0 1

))
=
N(λ)2

δ2
1.

We determine how the involution of the structurable algebra A′ acts on X.
We have x = τ−1(τ(x)), therefore

N(λ)

δ
du1 + ι(d)u2 + j + η̃(j) = τ−1

((
d j

t−1(η̃(j)) ι(d)

))
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= τ−1
((

ι(d) j
t−1(η̃(j)) d

))
=
N(λ)

δ
ι(d)u1 + du2 + j + η̃(j).

Since 1 = N(λ)
δ u1 +u2, it follows that each element in the k-vector subspace

{`1 + j + η̃(j) | ` ∈ k, j ∈M1} is fixed by the involution. Since

{`1 + j + η̃(j) | ` ∈ k, j ∈M1} ⊕ ks0 = X,

we conclude that H = {`1 + j + η̃(j) | ` ∈ k, j ∈M1}.
By the definition of ? and x 7→ x, we have

Vx, s0?y z = τ−1
(
Vτ(x), s′0τ(y) τ(z)

)
.

It follows from Theorem 3.27 that

Vx, s0?y z = τ−1
(
1
2(τ(x)τ(y)τ(z)) + 〈τ(y), τ(z)〉τ(x)

+ 〈τ(y), τ(x)〉τ(z) + 〈τ(x), τ(z)〉τ(y)
)
.

Since τ is an isometry we have

Vx, s0?y z

= 1
2(xyz + 〈y, z〉x+ 〈y, x〉z + 〈x, z〉y)

= 1
2

(
1
2

(
x(h(y, z) + h(z, y)) + y(h(x, z) + h(z, x)) + z(h(x, y) + h(y, x))

)
+ g(y, z)x+ g(y, x)z + g(x, z)y

)
= 1

2(xh(y, z) + yh(x, z) + zh(y, x)),

where the last step follows from

h(y, z) + h(z, y) = h(y, z)− h(y, z)

= 2h(y, z)− f(h(y, z), 1)1 = 2
(
h(y, z)− g(y, z)1

)
.

Again it follows from Theorem 3.27 and Theorem 4.2 that

(x ? y − y ? x) ? s0 = τ−1
((
τ(x)τ(y)− τ(y)τ(x)

)
s′0

)
= τ−1

(
〈τ(x), τ(y)〉1

)
= 〈x, y〉1 = g(x, y)1;

ν(x) =
1

12µ
〈x, t(x, x, x)〉 = − δ2

N(λ)2
q(π(x)).

Finally, if we make other choices for a′ ∈ X∗ and λ′ ∈ ∆, then the struc-
turable algebras X(Ω, a, λ) and X(Ω, a′, λ′) are, by construction, isometric
as Freudenthal triple systems to the Freudenthal triple system X. It follows
from Lemma 3.30.(ii) that they are isotopic. �
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In the case of quadrangular algebras of type E6, E7 and E8, we can
actually take λ = 1, in which case the formulas of Theorem A.2 look nicer;
see Lemma A.3 below. In the following section we show that the structurable
algebras described in Theorem 4.1 are isomorphic to a structurable algebra
described in the theorem above.

We do not know whether we can always take λ = 1 in the pseudo-
quadratic case. We have that the structurable algebra described in Theorem
4.8 is isotopic to the class of structurable algebras we described in the above
theorem, but we do not know if it belongs to this class.

A.2 Structurable algebras on quadrangular alge-
bras of type E6, E7 and E8

In this section we consider quadrangular algebras of type E6, E7 and E8. We
show that the structurable algebra obtained in Theorem A.2 is isomorphic to
CD((Q1⊗kQ2)

+,Nrd, γ2) for a “nice” choice of a and e. The following rather
technical lemma will assure that we can choose the structurable algebra X
obtained in Theorem A.2 in a nice way.

Lemma A.3. Let Ω be a quadrangular algebra of type E8. When applying
Theorem A.2 with a = −v1/γ, we can always choose e in such a way that
λ = 1. For those choices we have that 1 = v1, s0 = −γv1 and µ = γ2.

Proof. Recall that γ ∈ E \ k and γ2 ∈ k. For a = −v1/γ we have that
q(π(a)) = − 1

γ2
and aπ(a) = v1

γ2
. So δ = 1

γ , and hence ∆ = k(δ) = E. We

point out that in X ⊗K ∆, the element 1 ⊗ δ is not equal to 1
γ ⊗ 1. For

instance, we have

aπ(a)

δ
=
v1
γ2
⊗ γ 6= v1

γ
⊗ 1 = −a.

If we assume that λ = 1 using the formulas in Theorem A.2, we obtain
1 = v1, s0 = −γv1, µ = γ2. In order to prove that we can always find an e
such that λ = 1, we will do some explicit calculations.

We have

u′1 = 1
2

(
−v1
γ
⊗ 1 + v1 ⊗

1

γ

)
, u′2 =

1

2

(v1
γ
⊗ γ + v1 ⊗ 1

)
.

We determine explicitly the subspaces M1 and M−1. One can calculate that
for all x =

∑
I∈I tIvI ∈ X,

u′1u
′
2(x⊗ 1) = x/γ ⊗ γ, u′1u

′
2(x⊗ γ) = γx⊗ 1, (A.1)
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and for all x = t1v1 ∈ X,

u′1u
′
2(x⊗ 1) = 2(x/γ ⊗ γ), u′1u

′
2(x⊗ γ) = 2(γx⊗ 1). (A.2)

We find that

M1 =
{
γx⊗ 1 + x⊗ γ

∣∣∣ x =
∑
I∈I

tIvI with tI ∈ E
}
,

M−1 =
{
γx⊗ 1− x⊗ γ

∣∣∣ x =
∑
I∈I

tIvI with tI ∈ E
}
.

(A.3)

Following an idea of Richard Weiss, we introduce the following notation:
let i, j, k, l,m denote five different indices in {2, . . . , 6}, then βijkl = ±1 is
defined by vijvkl = βijklsisjskslvm.

Next we need an expression for g(u′1, eπ(e)) for an arbitrary e ∈ M1.
(Recall that g is now a map from (X ⊗K ∆)× (X ⊗K ∆) to ∆.)

So let x =
∑

2≤i≤6 tivi+
∑

2≤i<j≤6 tijvij ∈ X for ti, tij ∈ E, and consider
the expression

ρ(x) :=
∑

ij/kl/m

βijkltmtijtkl ∈ E = ∆,

where the summation runs over all partitions of {2, . . . , 6} into two sets of
two elements and one set of one element.

Since in the E6-case no such partition with non-zero coefficients exists,
ρ(x) is identically 0 in this case.

Take e = γx ⊗ 1 + x ⊗ γ ∈ M1; we wrote a computer program in Sage
[Sea11] that shows that (see Appendix B)

g(u′1, eπ(e)) = 16γ4ρ(x) ∈ ∆. (A.4)

In the E6-case, this expression is identically 0, so λ = 1 by definition. In
the E7- and the E8-case, we look for an e ∈ M1 such that g(u′1, eπ(e)) = 2,
so 8γ4ρ(x) should be equal to 1. This is indeed the case for

x = 1
2γ2

(v2 + γv34 + γv56),

since β3456 = 1. �

In Theorem 4.9 we showed that Xk is isomorphic to a biquaternion al-
gebra. We now show that with the above choices of a and e the struc-
turable algebra X we obtained in Theorem A.2 is isomorphic to CD((Q1⊗k
Q2)

+,Nrd, γ2).
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Theorem A.4. Let Ω be a quadrangular algebra of type E8. We choose
a = −v1/γ, and we let e be as in Lemma A.3, such that λ = 1.

The structurable algebra X defined in Theorem A.2 is isomorphic to
A = CD(

(
(−s2,−s3)k ⊗k (−s46,−s56)k

)+
,Nrd, γ2).

Proof. In the proof of Theorem 4.12 we defined a vector space isomorphism
χ : A → X such that 3χ(x)π(χ(x)) = χ(Ux(s0x)) for all x ∈ A. It follows
from Theorem A.2 that in the structurable algebra X, we have Ux(s0 ?x) =
3xπ(x) for all x ∈ X. It follows that χ is an similarity of the associated
Freudenthal triple systems of A and X. It is easy to see that χ is an isotopy
from A to X.

It follows from Lemma A.3 that the identity of X is v1. Since χ(1⊗1) =
v1, it follows from Definition 3.21 that χ is an isomorphism of structurable
algebras. �

It is as well possible to prove the above theorem without making use of
Theorem 4.12. This can be achieved by determining the multiplication of
X explicitly.

Lemma A.5. Let ◦ denote the multiplication of the Jordan algebra

(Xk)
+ ∼=

(
(−s2,−s3)k ⊗k (−s46,−s56)k

)+
.

We choose a = −v1/γ, and we let e be as in Lemma A.3, such that λ = 1.
Then the multiplication of the structurable algebra X obtained in Theo-
rem A.2, which we will denote by ?, is given by

Av1 ? Bv1 = AB v1

Av1 ? BvI = AσB vI

AvI ? Bv1 = AB vI

AvI ? BvI = AσB (vI ◦ vI) = (−sI)AσB v1
AvI ? BvJ = AσBσ (vI ◦ vJ)

for all A,B ∈ E and all I 6= J ∈ I. The involution of X is given by

Av1 = Aσv1, AvI = AvI

for all A ∈ E and all I ∈ I.

Proof. By Lemma A.3, we have 1 = v1, s0 = −γv1 and µ = γ2. We know
that s0 ? s0 = µ1, so γv1 ? γv1 = γ2v1. Since v1 is the identity of ?, we have
Av1 ? Bv1 = ABv1 for all A,B ∈ E.

Since X has skew-dimension one, it follows from the definition of s0 that

S = {x ∈ X | x = −x} = ks0 = kγv1.
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From Theorem A.2 we have

H = {x ∈ X | x = x} = {`1 + j + η̃(j) | ` ∈ k, j ∈M1}.

It follows from equation (A.3) that every j ∈M1 is of the form γx⊗1+x⊗γ
for some x ∈

⊕
I∈I EvI . Then η̃(j) = γx⊗ 1− x⊗ γ ∈M−1. It follows that

{j + η̃(j) | j ∈M1} = {2γx⊗ 1 | x ∈
⊕
I∈I

EvI} =
⊕
I∈I

EvI .

Therefore
H = kv1 ⊕

⊕
I∈I

EvI .

It follows that we have for A ∈ E that

Av1 = Aσv1, AvI = AvI for all I ∈ I.

For all x ∈ H and y ∈ X, we have

Vx,1 y = (x ? 1) ? y + (y ? 1) ? x− (y ? x) ? 1 = x ? y.

It now follows from Theorem A.2 that

x ? y = Vx, s0? 1
µ
s0
y = − 1

2γ2

(
xh(γv1, y) + (γv1)h(x, y) + yh(x, γv1)

)
. (A.5)

Now we can compute x ? y for all different values that can occur, using the
formulas from [TW02, (13.6) and (13.19)]. Let i, j, k, l be distinct indices in
{2, 3, 4, 5, 6}; then one can verify the following multiplication table:

x y x ? y

Avi Bv1 ABvi
Avi Bvi −siAσBv1
Avi Bvk 0
Avi Bvik 0
Avi Bvkl 2AσBσvivkl
Avij Bv1 ABvij
Avij Bvij −sisjAσBv1
Avij Bvik 0
Avij Bvkl 2AσBσvijvkl

Observe that this multiplication coincides with the Jordan multiplication in
(Xk)

+ if A,B are restricted to k.

Note that the formula (A.5) is not valid for x = γv1 ∈ S; this case is
obtained by

Av1 ? BvI = BvI ? Av1 = AσBvI . �

Let χ : A → X be the vector space morphism defined in the proof of
Theorem 4.12. It is straightforward to verify that χ(xy) = χ(x) ? χ(y) and
χ(x) = χ(x) for all x, y ∈ A. Therefore χ is an isomorphism between A and
X.
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Implementations in Sage

We relied on symbolic calculations in the computer algebra package Sage
[Sea11] at two points of this thesis:

• A computation that shows that the Freudenthal triple systems in The-
orem 4.12 are similar.

• A computation that verifies identity (5.5) in order to prove Theorem
5.23. Note that this computation is only essential when the character-
istic of the field is equal to 3.

Sage is also used once in Appendix A in the proof of the technical
Lemma A.3.

In particular Sage played a big role in the coming into being of the
material in Chapter 4 and Appendix A. It was very useful to be able to
verify if a certain complicated identity in a quadrangular algebra of type E8

could be true before trying to prove it.

Since the program listings itself are long and not very interesting to read
as literature, we do not display it here. The interested reader can download
it at cage.ugent.be/~lboelaer. We hope that one day it will be of use
to someone who wants to verify identities in a quadrangular algebra of type
E8, in octonions or in the tensor product of two quaternions or octonions.

Sage is an open-source mathematics system available for download on
www.sagemath.org, it is an alternative to Magma, Maple, Matlab etc. Sage
is much better equipped to perform computations in algebraic structures
than any of those programs. Another advantage is that Sage is based on
the Python programming language (see www.python.org), which makes it
convenient to write own programs in Sage. The codes I wrote should be
readable for people who know some basics of Python.

All the objects we have to implement are vector spaces over an arbi-
trary field of characteristic different from 2 (and 3), these vector spaces are
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equipped with various multiplication and various mappings.

While vector spaces are implemented in Sage, we are using our own
(very basic) implementation. The alternative was to adapt the source code
of vector spaces to our purposes, which would have been very advanced
programming.

However it is impossible to implement the concept of ‘a general field’ in
Sage. In the following remark we explain how we implemented the following:

Let k be a field of characteristic different from 2 (and 3) with t1, . . . , tn ∈ k.

Remark. We define the ring of multinomial polynomials R = Q[t1, . . . , tn]
and then take the fraction field k of R. These concepts are very well imple-
mented in Sage. Since we only do basic computations, we will only make
use of the addition and multiplication in k. Therefore it does not matter
that the field we are using has actually a very specific form instead of being
a random field.

Since t1, . . . , tn are transcendental elements of k/Q, we can consider
t1, . . . , tn as arbitrary elements in the field k.

As in our computations we will never divide with integers other than 2
(and 3), it does not matter that the field k that we use for our calculations
has actually characteristic 0.

The problem with this approach is that doing extended computations in
Q(t1, . . . , tn) can give rise to long computation times when n is big. However
all our verifications can be done in a very reasonable time (less than 10
minutes on a ‘good’ computer).

For more experimental long calculations one can assign random (not too
large) values in Q to t1, . . . , tn, this reduces the computation time signifi-
cantly. Actually once an identity is valid for a few very random values for
t1, . . . , tn, it has to be true in general. However this is not a mathematically
sound argument.

Below we give an overview of all the different files that can be downloaded
at cage.ugent.be/~lboelaer. We indicate which algebraic structures are
exactly implemented and how we verified that the codes are free of errors,
or at least do not contain any essential mathematical mistakes. For more
technical explanations on how the codes are build up and should be used,
we refer to the comments inside the codes itself.

Implementation of the quadrangular algebra of type E8 In Section
2.2.3 we introduced the structure of the quadrangular algebra (k, L, q, 1, X, ·, h)
of type E8, this implementation is given in
implementation_quad_alg_E8.sage.

cage.ugent.be/~lboelaer
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The base field k should be the fraction field of Q[s2, . . . , s5, t1, . . . , tn]
where t1, . . . , tn are not specified and after defining s6 = −(s2 . . . s5)

−1 we
assume that s2, . . . , s6 are as in Definition 2.13.

We implemented the field E (see Definition 2.13) as a 2-dimensional
vector space over k equipped with the multiplication. The generator of this
field is denoted by γ and is chosen in such a way that γ2 = c ∈ k. E is
equipped with the standard involution and the norm.

We implemented the quadratic form space L as a 6-dimensional vector
space over E, equipped with the quadratic form of type E8 and its lineariza-
tion. Actually L is only a vector space over k, but it is convenient to consider
it as a vector space over E. As well we implemented the standard involution
on L. In the code L is denoted by L0, as in [TW02].

The vector space X is implemented as a 16-dimensional vector space
over E. In the code X is denoted by X0 as in [TW02].

Finally, we implemented the crucial maps · : X × L→ X (called qemap

in the code1) and h : X × X → L. For the exact definitions we refer to
[TW02, 13.6 and 13.19]. Both maps are k-bilinear, therefore it is sufficient
to define (evI) · (e′vi) and h(evI , e

′vI′) for all e, e′ ∈ E, i ∈ {1, . . . , 6} and
I, I ′ ∈ 1 ∪ I. One has to distinguish between a lot of different cases for
the relative positions of the elements i, I, I ′, the details can be found in the
code.

The definitions of · and h make use of the multiplication on Xk =
C(q|k, 1)/Mk induced by the Clifford algebra C(q, 1) (see Theorem 4.9).
To implement this we make use of the following functions, following an idea
of Richard Weiss. Let {i, j, k, l,m} = {2, . . . , 6} and define

αij = ±1 such that vivj = −αijvij or equivalently vijvj = αijsjvi. It
follows from (2.1) that αij = 1 if i > j and αij = −1 if i < j.

δlmk = ±1 such that vlmvk = δlmkslmkvij . In the case that l < m < k it is
clear from (2.1) that

v23456vlvmvk = −(−1)l+m+kslmkvij .

It follows that δlmk = −(−1)l+m+k if k < l,m or k > l,m and that
δlmk = (−1)l+m+k in all other cases.

βijlm = ±1 such that vijvlm = βijlmsijlmvk. It follows from the previous
definition that βijlm = δijk.

As well, we implemented the maps g : X ×X → k and π : X → L.

There is a risk of making small mistakes with big consequences in im-
plementing the maps · and h. We verified that · satisfies the characterizing
properties [TW02, 13.7] and that the map h satisfies [TW02, 13.15], these

1This name comes from the fact that the map · is called a (q, ε)-map in [TW02].
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properties even define h uniquely. Therefore we can be sure that the code
is correct. The interested reader can run these tests by executing
tests_of_implementation_quad_alg_E8.sage. Note that it is necessary
to execute implementation_quad_alg_E8.sage first.

Implementation of a biquaternion algebra and the Cayley-Dickson
process A quaternion algebra is already implemented in Sage. The tensor
product of two quaternion algebras is not implemented, therefore we made
this implementation ourselves.
In implementation_QxQ_and_CayleyDickson.sage the following objects
are implemented:

A biquaternion algebra Q1 ⊗k Q2 as a 16-dimensional vector space over
k. We implemented the usual associative multiplication (denoted by *) and
also the Jordan multiplication. Furthermore we implemented the standard
involution of the biquaternion algebra, the Albert quadratic form on the
skew-elements and the bijection θ of order 2 defined in (4.8).

Then we implemented the Cayley-Dickson structurable algebra as in Def-
inition 3.8 starting from the associative biquaternion algebra equipped with
Jordan multiplication and θ. Elements of this structurable algebra consist
of two elements of the biquaternion algebra. We also implemented the V -
and the U -operators.

To make sure there are no mistakes in the implementation we verified
some characterizing properties of the implemented structures. We verify
that the multiplication on the biquaternion algebra is indeed associative,
that the standard involution is indeed an involution and that Jordan(x, y) =
(x ∗ y + y ∗ x)/2.

We verified if the multiplication and involution of the Cayley-Dickson
structurable algebra do indeed satisfy (3.2), this calculation requires a cou-
ple of minutes. The interested reader can run these tests by executing
tests_of_implementation_QxQ_and_CayleyDickson.sage. Note that it is
necessary to execute implementation_QxQ_and_CayleyDickson.sage first.

The proof of Theorem 4.12 and Lemma A.3
First run implementation_QxQ_and_CayleyDickson.sage and
implementation_quad_alg_E8.sage.

In proof_theorem_4_12.sage we defined the quadrangular algebra of
type E8, the quaternion algebras Q1 = (−s2,−s3)k, Q2 = (−s4s6,−s5s6)
and Q1 ⊗k Q2. We implemented the isomorphism ψ from Lemma 4.9 using
table (4.7). Then we defined the map χ : CD → X defined in Theorem 4.12
and we verified (4.9).

In proof_lemma_A_4.sage we implemented the tensor product X ⊗k E.
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We implemented the addition in X ⊗k E and multiplication with elements
in k. Furthermore we defined the triple product of the Freudenthal triple
system on X (see Theorem 4.2). We extended this triple product to the
Freudenthal triple system X ⊗k E as in Step 1 of Construction A.1; we
also extended the skew-symmetric map g to the Freudenthal triple system
X ⊗k E. We defined u′1 and u′2 as in Lemma A.3. We verify that (A.1) and
(A.2) hold. We implemented the partition over which the summation runs
in the definition of ρ(x). Then we verified formula (A.4).

Implementation of an octonion algebra Contrary to quaternion alge-
bras, octonion algebras are not implemented in Sage.
In implementation_octonion.sage we implemented octonions as an 8-
dimensional vector space equipped with a multiplication as in Section 1.3
and the standard involution. Also we implemented the norm and the inverse.

In tests_of_implementation_octonion.sage we verified that the norm
is multiplicative, that the multiplication is alternative but not associative.
This implies that the implemented multiplication gives us an octonion alge-
bra.

Implementation of a bioctonion algebra
In implementation_OxO.sage we implemented a bioctonion algebra O1 ⊗k
O2 as a 64-dimensional vector space over k. We implemented the multiplica-
tion and the standard involution. We also implemented the Albert quadratic
form on skew-elements and the inverse of skew-elements.

In tests_of_implementation_OxO.sage we verify if the implemented
involution is indeed an involution and if the characterizing properties of
skew-elements given in Lemma 3.13 hold. To verify that we implemented
a structurable algebra, we need to verify identity (3.2). Verifying this for
symbolic elements gives rise to very long computation times. However veri-
fying it for random elements with coefficients in Q is possible in a couple of
minutes.

The proof of Theorem 5.23 First run implementation_octonion.sage

and implementation_OxO.sage. In proof_of_theorem_5_22.sage we ver-
ify identity (5.5) with the setup of Theorem 5.23.

Notice that if we prove formula (5.5) in C1 ⊗k C2 where C1 and C2 are
composition algebras of dimension 8, it is automatically valid for composi-
tion algebras of lower dimensions. It is likely that it is easier to find a proof
of (5.5) without using Sage in these lower dimensional cases.

Let O1 and O2 be octonion algebras with linkage number one with bases
as in Notation 5.17.(i). We let u ∈ V be a symbolic element and define
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e0, e1, r ∈ S as in Definition 5.19. We verify that Lemma 5.18 holds. Then
we define • and ((., .)) as in Definition 5.21. We verify the computation in
Remark 5.22.(i).

Since x ∈ X0 should be an arbitrary element, we construct a base of X0

that is efficient to do computations with. We know that X0 = e0 • X is
32-dimensional and that

e0 • (i1x⊗ y) = e0 • (x⊗ i2y),

for all x ∈ O1 and y ∈ O2.

Let B2 be the base of O2 given in Notation 5.17.(i), it follows that the
following set is a base of X0

{
⋃
y∈B2

{e0 • (1⊗ y), e0 • (j1 ⊗ y), e0 • (k1 ⊗ y), e0 • (j1k1 ⊗ y)}}.

Since it is not efficient to let Sage calculate with fractions, we multiply each
of the above base elements by 2a. We use this basis to represent a symbolic
element of X0 and are able to verify (5.5).

Notice that we never divide by 3 or any other integer, we only divide by
qA(u) which will always be different from 0. Therefore this computation is
especially valid in characteristic 3.
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Dutch summary
Nederlandstalige samenvatting

Het hoofdthema van dit proefschrift is het bestuderen van verscheidene al-
gebräısche structuren die gerelateerd zijn aan lineaire algebräısche groepen
van relatieve rang 1 of 2. In het bijzonder, verbinden we de Moufang wereld
en de structureerbare wereld, deze twee werelden waren gëısoleerde eilanden
tot nu toe.

Al sinds het begin van de 20ste eeuw proberen wiskundigen vat te krijgen
op lineaire algebräısche groepen. Dit zijn structuren die in verscheidene
deelgebieden van de wiskunde opduiken en reeds aanleiding gaven tot het
ontwikkelen van heel wat interessante theorieën. De theorie van de lineaire
algebräısche groepen is een heel actief onderzoeksgebied met nog veel open
vragen. Zo is het ondermeer niet duidelijk hoe men bepaalde exceptionele
lineaire algebräısche groepen expliciet kan construeren. Uit classificatie-
resultaten weet men dat deze bestaan, maar van bepaalde vormen bestaat
er geen expliciete beschrijving.

Jacques Tits introduceerde in 1974 bepaalde geometrische structuren die
‘gebouwen’ genoemd worden. Vanuit iedere isotrope lineaire algebräısche
groep kan een gebouw opgebouwd worden en de lineaire algebräısche groep
heeft dan een natuurlijke actie op het gebouw in kwestie. Het bestuderen
van gebouwen kan dus nuttig zijn om lineaire algebräısche groepen beter te
begrijpen. Een voorbeeld hiervan is het feit dat het Kneser-Tits probleem
voor groepen van type E66

8,2 recent is opgelost, zie [PTW12].

Tits classificeerde alle sferische gebouwen van rang groter of gelijk aan
3; hij toonde aan dat elk dergelijk gebouw afkomstig is van een lineaire
algebräısche groep, een gemixte groep, of een klassieke groep.

Moufang veelhoeken zijn sferische Moufang gebouwen van rang 2. Deze

155



156 Appendix C. Dutch summary

werden geclassificeerd in [TW02] in 2002, en opnieuw bleek dat elk dergelijk
gebouw afkomstig is van een lineaire algebräısche groep van relatieve rang
2, een gemixte groep, of een klassieke groep.

We definiëren Moufang veelhoeken in Sectie 2.1; hoewel deze definitie van
meetkundige aard is, blijkt al snel dat Moufang veelhoeken gekarakteriseerd
worden door bepaalde algebräısche structuren. In de meeste gevallen zijn
dit gekende algebräısche structuren. Maar in het geval dat komt van de
exceptionele groepen van type E6, E7 en E8 weergegeven door de Tits-
indices

2E6 : E7 : E8 :

bekomt men een zeer artificiële op coördinaten gebaseerde definitie van een
ongekende algebräısche structuur. Deze bevat (in het E8-geval) een 12-
dimensionale kwadratische ruimte, een 32-dimensionale vectorruimte en ver-
scheidene afbeeldingen ertussen. In [Wei06b] geeft Weiss een axiomatische
aanpak van deze structuren en noemt ze vierhoekige algebra’s van type E6,
E7 en E8 (zie Sectie 2.2). Hoofdstukken 4 en 5 hebben tot doel om een
natuurlijkere interpretatie te geven aan deze vierkantige algebras.

Moufang verzamelingen zijn sferische Moufang gebouwen van rang 1.
Men kan Moufang verzamelingen construeren uit lineaire algebräısche groe-
pen van relatieve rang 1. Moufang verzamelingen kunnen beschreven wor-
den zonder gebruik te maken van meetkunde; ze worden beschreven door
een verzameling X en een aantal deelgroepen van Sym(X) (zie Sectie 2.4).
Moufang verzamelingen zijn niet geclassificeerd en het is ook niet duidelijk
of dit mogelijk is. In karakteristiek verschillend van 2 en 3, ziet de situatie
er misschien hoopvoller uit. In Hoofdstuk 6 geven we een nieuwe uniforme
beschrijving van vermoedelijk alle gekende Moufang verzamelingen in ka-
rakteristiek verschillend van 2 en 3.

In dit proefschrift belichten we een nieuwe invalshoek ten opzichte van
deze niet-zo-goed-begrepen Moufang structuren. We passen de theorie van
de structureerbare algebra’s toe.

Structureerbare algebra’s zijn bepaalde niet-associatieve algebra’s met
involutie, de definitie is gegeven in Hoofdstuk 3. Het zijn veralgemeningen
van Jordan algebra’s met triviale involutie en van associatieve algebra’s met
involutie. Men kan structureerbare algebra’s enkel definiëren over velden
van karakteristiek verschillend van 2 en 3. Ze werden ingevoerd door Bruce
Allison in 1978 met als doel om een expliciete constructie te geven van excep-
tionele Lie algebra’s. Allison zijn aanpak blijkt te werken: met behulp van
een structureerbare algebra kan men iedere isotrope Lie algebra beschrijven
over velden van karakteristiek 0. Hij doet dit door de Tits–Kantor–Koecher
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constructie die vanuit Jordan algebra’s bepaalde Lie algebra’s maakt, te
veralgemenen.

We geven hieronder de verscheidene hoofdresultaten uit dit proefschrift
weer:

In Hoofdstuk 4 tonen we aan dat iedere vierhoekige algebra op een na-
tuurlijke manier aanleiding geeft tot een Freudenthal triple systeem. Dit zijn
vectorruimtes uitgerust met een bilineaire vorm en een trilineair produkt;
zij werden gëıntroduceerd om Lie algebra’s van type E7 beter te begrijpen.
We verzijzen naar Sectie 3.6 voor de exacte definitie van Freudenthal triple
systems.

Ieder Freudenthal triple systeem is geassocieerd aan een welbepaalde
structureerbare algebra van scheve dimensie 1. In de volgende stelling geven
we de expliciete vorm van zo een structureerbare algebra:

Stelling C.1 (Theorem 4.12). Zij Ω een vierhoekige algebra van type E6,
E7 of E8 over k met karakteristiek verschillend van 2 en 3. Zij A een
delingsalgebra als volgt:

• A is een quaternionenalgebra Q als Ω van type E6 is;
• A is een tensorproduct Q ⊗k L met Q een quaternionenalgebra en L

een kwadratische velduitbreiding, als Ω van type E7 is;
• A is een biquaternionenalgebra Q1 ⊗k Q2 als Ω van type E8 is.

Dan heeft de structureerbare algebra CD(A+,Nrd, c) hetzelfde1 Freudenthal
triple systeem als het Freudenthal triple systeem dat op natuurlijke manier
aan Ω geassocieerd is.

In Hoofdstuk 5 geven we een alternatieve beschrijving van vierhoekige
algebra’s. We geven deze beschrijving hier enkel in het geval van vierhoekige
algebra’s van type E6, E7 en E8.

Kwadratische vormen van type E6, E7 en E8 bepalen hun respectieve
vierhoekige algebra’s volledig. De volgende karakterisatie van dit type kwa-
dratische vormen was cruciaal:

Een kwadratische vorm is van type E6, E7 of E8 als en slechts als ze
gelijkvormig is aan het anisotrope deel van de Albert vorm van C1⊗kC2 voor
een bepaalde octonen delingsalgebra C1 en een compositie delingsalgebra C2

van graad 2, 4 of 8 die (op isomorfie na) een kwadratisch deelveld gemeen
hebben maar geen quaternionen deelalgebra gemeen hebben.

We definiëren de involutie x1 ⊗ x2 = x1 ⊗ x2 op C1 ⊗k C2. We noteren
met S1 de scheve elementen van C1 en met S2 de scheve elementen van C2.
De scheve elementen van C1 ⊗k C2 zijn gegeven door S = S1 ⊗ 1 + 1⊗ S2.

1op isometrie na
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Zij (k, L, q, 1, X, ·, h) een vierhoekige algebra van type E6, E7 of E8. We
zetten de dimensies van de verscheidene vectorruimten eens op een rijtje:

E6 E7 E8

dimk S 8 10 14
dimk L 6 8 12

dimk(C1 ⊗k C2) 16 32 64
dimkX 8 16 32

We bemerken dat er in de drie gevallen geldt dat dimk S = dimk L+2 en
dimk(C1 ⊗k C2) = 2 dimkX. Gëınspireerd op dit feit en de correspondentie
van de kwadratische vormen vonden we volgende expliciete beschrijving van
vierhoekige algebra’s van type E6, E7 of E8. Dit geeft een alternatief voor
de ad-hoc definitie die gegeven wordt in [TW02].

Stelling C.2 (Theorem 5.23). Zij (k, L, q, 1, X, ·, h) een vierhoekige algebra
van type E6, E7 of E8 over een veld k met karakteristiek verschillend van 2.
In het bijzonder is (k, L, q) een kwadratische ruimte is van type E6, E7 of
E8 met een basispunt 1. Zij C1 en C2 compositie algebra’s zoals hierboven,
zodanig dat q gelijkvormig is aan de Albert vorm van C1 ⊗k C2. Dus er
bestaan een i1 ∈ C1 en een i2 ∈ C2 zodanig dat i21 = i22 = a ∈ k.

We definiëren een deelruimte V van de scheve elementen S van C1⊗kC2

als2

V := 〈i1 ⊗ 1, 1⊗ i2〉⊥.

De vectorruimte V heeft k-dimensie 6, 8 of 12, respectievelijk. We kiezen
een willekeurig element u ∈ V \ {0} en definiëren de kwadratische vorm

Q :=
1

qA(u)
qA|V ;

deze vorm heeft als basispunt u en is van respectievelijk type E6, E7 of E8.

Nu definiëren we de deelruimte X0 van C1 ⊗ C2 als

X0 :=
〈(
ax⊗ y + i1x⊗ i2y

)
| x ∈ C1, y ∈ C2

〉
.

Deze vectorruimte heeft dimensie 8, 16 of 32 respectievelijk. Vervolgens
definiëren we een bepaald element r ∈ S zoals in Definitie 5.19(iii) en we
definiëren de bilineaire afbeelding X0 × L0 → X0 als

x · v = v(r(u(rx)))

en de bilineaire afbeelding h : X0 ×X0 → V als

h(x, y) = (u(rx))y − y((xr)u).

2We beschouwen het orthogonaal complement t.o.v. de bilineaire vorm geassocieerd
aan de Albert vorm.
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Dan is (k, V,Q, u,X0, ·, h) een vierhoekige algebra van type respectievelijk
E6, E7 of E8.

We vermelden dat deze constructie gebaseerd is op J-ternaire algebra’s
gëıntroduceerd door Bruce Allison in [All76].

In Hoofdstuk 6 geven we een constructie van Moufang verzamelingen
vertrekkende van structureerbare delingsalgebra’s. Deze constructie is een
veralgemening van de constructie van Moufang verzameling uit Jordan de-
lingsalgebra’s beschreven in [DMW06].

Stelling C.3 (Theorem 6.25). Zij A een structureerbare delingsalgebra over
een veld van karakteristiek verschillend van 2,3 of 5. Definieer de groep
U := A× S met optelling

(x, s) + (y, t) = (x+ y, s+ t+ xy − yx).

Definieer de afbeelding qx : S → S : s 7→ 1
6xUx(sx) − Ux(sx)x en de

permutatie τ van U \ {0} voor alle 0 6= x ∈ A en 0 6= s ∈ S

(x, 0) 7→ (−x̂, 0),

(0, s) 7→ (0,−ŝ),
(x, s) 7→ ( ŝ

(
(qx̂(s) + ŝ)∧x̂

)
+
(
s+ qx(ŝ)

)∧
x, −

(
s+ qx(ŝ)

)∧
).

Dan is M(U , τ) een Moufang verzameling.

Deze behoorlijk ingewikkelde formule is gebaseerd op het één-inverse
van elementen van A × S. Het concept van een één-inverse van elementen
van A × S is ingevoerd in [AF99] in de context van Kantor paren, als een
veralgemening van het toegevoegd inverse in een structureerbare algebra.
Het bleek dat we precies dit concept nodig hadden voor onze constructie
van Moufang verzamelingen.
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