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SCOPE AND OBJECTIVES 

 

Due to their sessile lifestyle, plants are permanently exposed to a variety of adverse environmental 

conditions leading to the accumulation of reactive oxygen species (ROS). Although initially considered 

as harmful byproducts of aerobic metabolism reacting in high concentrations with all cellular 

components, ROS are generally accepted as key signaling molecules that coordinate a broad range of 

environmental and developmental processes.  

At the beginning of my Ph.D., significant progress has been made in the description of oxidative stress-

dependent gene expression, but the regulation of the complex ROS signal transduction network remains 

largely unknown. The functional analysis of proteins that are encoded by genes that rapidly respond to 

ROS can therefore give novel insights into the early signaling steps triggered by a sudden increase in 

intracellular ROS. During adverse environmental conditions, the regulation of dynamic protein 

trafficking is an important intracellular signaling strategy to elicit a fast defense response. The aim of this 

project was to identify and characterize proteins that relocalize during oxidative stress. Therefore, we 

first made a comprehensive inventory of hydrogen peroxide (H2O2)-induced genes by comparing H2O2-

related expression data sets and selected in a well-considered manner 85 candidate genes for further 

functional studies. We focussed our selection on genes encoding transcription factors and proteins of 

unknown function. To identify proteins with a potential dynamic behaviour during oxidative stress, we 

employed two medium-throughput localization screens of green fluorescent protein (GFP)-tagged 

proteins by transient expression in Nicotiana benthamiana and by stable expression in transgenic 

Arabidopsis thaliana lines. Transgenic Arabidopsis plants with perturbed levels of interesting candidate 

genes were assayed for altered tolerance to abiotic and biotic stress. The identification of proteins that 

dynamically relocalize during stress conditions, together with a detailed understanding of the 

mechanisms behind the identified oxidative stress-induced relocalizations, will provide a better 

understanding of stress response signaling.  
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ABSTRACT 

 

The regulation of signal transduction is highly dynamic over time and space and involves active 

trafficking of signaling components. Adverse environmental conditions influence the spatiotemporal 

dynamics of proteins in which the tightly regulated production of reactive oxygen species (ROS) at 

different subcellular compartments plays a key role. During biotic and abiotic stresses, oxidative stress-

induced protein relocalizations are an important intracellular signaling strategy that neither requires 

transcription nor translation steps, allowing a fast initiation of the stress response. Several mechanisms 

that affect protein subcellular trafficking under oxidative stress have been described. Together with the 

understanding of the tight regulation of ROS homeostasis, abiotic stress-triggered relocalizations of 

signal transduction components can provide more insights into how ROS are perceived, transduced and 

how they eventually activate the appropriate response. 
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INTRODUCTION 

 

Although reactive oxygen species (ROS) were initially considered as toxic byproducts of aerobic 

metabolism, it is now generally accepted that ROS are key signaling molecules (Apel and Hirt, 2004). 

ROS are continuously produced at sites with a high metabolic rate or intense electron flow, such as 

mitochondria, chloroplasts and peroxisomes, by the excitation or incomplete reduction of molecular 

dioxygen (O2) (Box 1). To control steady-state levels of ROS, plants have evolved a complex gene 

network encoding both ROS-producing and ROS-scavenging enzymes. The different components of 

this antioxidant system are diversified in their scavenging capacity not only in terms of specificity and 

affinity towards the different ROS species, but also by their distinct subcellular location in the vicinity of 

ROS production sites (Mittler et al., 2004). Hence, the fine-tuned balance between ROS production and 

ROS-scavenging enabled plants to highly control ROS levels and to use ROS as signaling molecules in 

the control and regulation of different biological processes, such as defense responses and cell death 

(Apel and Hirt, 2004; Gadjev et al., 2006; Van Breusegem and Dat, 2006). During abiotic stress 

conditions, ROS homeostasis is perturbed leading to a sudden increase in intracellular ROS which can 

cause significant cellular damage at high concentrations, but can initiate defense responses by controlling 

gene expression at low concentrations (Suzuki et al., 2011a). Importantly, the subcellular location of ROS 

signals is tightly controlled and limited to certain subcellular compartments (i.e. cytosol, chloroplasts, 

mitochondria and peroxisomes) or areas (apoplast) by both compartment-specific non-enzymatic 

antioxidants and by the ROS gene network enzymes, making ROS accumulation highly specific but also 

very complex (Mittler et al., 2011). Previous studies have illustrated that the chemical identity of ROS, 

the signal intensity and their subcellular production sites greatly influence the type of response (Gadjev et 

al., 2006; Gechev et al., 2006). The generation of mutants lacking important compartment-specific ROS-

scavenging enzymes, the identification of the conditional fluorescent (flu) mutant and treatments with 

ROS-generating agents have tremendously increased our knowledge about ROS-specific signaling 

(Gadjev et al., 2006).  

There has been much debate on how a ROS signal can be specific for a certain stimulus (Mittler 

et al., 2011). One possible explanation is that each cellular (sub)compartment could have its own set of 

receptors that directly perceive stress-induced ROS that, in turn, can convey the signal through other 

signaling networks, such as protein kinase networks, calcium signaling networks, metabolic pathways and 

redox responses, to initiate an appropriate response (Mittler et al., 2011). The identification of a true 

sensor for ROS signal transduction would be of great importance for the ROS signaling research 

community, but remains largely elusive. However, different components of the ROS signaling network 

have been identified, including kinases, phosphatases and ROS-responsive transcription factors. ROS 
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might interact selectively with specific target molecules, such as redox-sensitive proteins/transcription 

factors that thereby sense and translate the elevated ROS levels into a transcriptional response (Apel and 

Hirt, 2004). In addition, oxidized peptides generated from the proteolytic breakdown of oxidatively 

damaged proteins are proposed to act as secondary ROS signaling molecules generated in a 

compartment-specific manner by different types of ROS (Møller and Sweetlove, 2010). Moreover, 

oxidative stress can affect the subcellular distribution of proteins. Oxidative stress-triggered 

relocalizations can ensure a rapid adaptive response to environmental stimuli as this does not require 

transcription and/or translation.  

Here, we focus on the dynamic behavior of proteins during abiotic stress. First, we discuss 

several mechanisms that affect protein subcellular trafficking under oxidative stress. Next, we focus on 

the currently known relocalizations during abiotic stress conditions such as low and high temperature 

stresses, high salinity stress and hypoxia. A detailed understanding of stress-triggered relocalizations 

could enhance the knowledge of how ROS are perceived, transduced and how they initiate an 

appropriate response. 

 

 

Box 1. Generation of different ROS 

ROS are either formed by transfer of electrons or energy to ground state triplet molecular dioxygen (O2) and are easily 

converted from one type into another (Halliwell, 2006). The first reduction step of O2 leads to the formation of 

superoxide (O2●-) or hydroperoxide (HO2●-) 

radicals (Figure 1). Further reduction leads to 

the production of hydrogen peroxide (H2O2), a 

relatively stable molecule that can freely diffuse 

between subcellular compartments and even 

neighboring cells (Henzler and Steudle, 2000; 

Bienert et al., 2006). O2●- can either be 

spontaneously converted to H2O2 or enzymatically by superoxide dismutase (SOD). In the presence of transition metals 

such as copper and iron, H2O2 can give rise to the highly reactive hydroxyl radicals (OH●) through the so-called Haber-

Weiss mechanism (Kehrer, 2000). OH● are considered as the most toxic ROS because of their extreme reactivity with 

virtually all biological molecules, such as nucleic acids, proteins and lipids (Halliwell, 2006). Consequently, cells do not 

possess an enzymatic detoxification mechanism against these radicals. When an electron of O2 is elevated to a higher 

energy orbital leading to spin reversal, the highly reactive singlet oxygen (1O2) is produced (Laloi et al., 2006). This energy 

transfer predominantly occurs with photo-excited triple-state chlorophyll (Chl) that is formed though insufficient energy 

dissipation during photosynthesis (Laloi et al., 2006). When 1O2 is not rapidly quenched by β-carotene, α-tocopherol or 

plastoquinone, it can virtually damage all components of the photosynthetic machinery, in particular photosystem (PS) I 

and II. 

 

     Figure 1. Generation of ROS by excitation or reduction of molecular dioxygen.
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Dynamic behavior of proteins during oxidative stress in plants 

 

The regulation of signal transduction is highly dynamic over time and space in which protein trafficking 

can play an important role. Protein transport can be categorized into two classes: non-mediated and 

mediated transport. While non-mediated transport is merely simple diffusion, mediated transport can 

either be facilitated transport (diffusion from high to low concentration) or active transport (against the 

concentration gradient) which is often guided through interacting proteins (Miyawaki, 2011).  

Developmental and/or environmental (biotic and abiotic) stimuli actively influence the 

spatiotemporal dynamics of proteins to trigger an appropriate response. An important aspect of 

oxidative stress-triggered protein relocalizations is the subcellular localization of the protein where the 

oxidative stress is initially sensed. Each subcellular compartment generates its own specific set of ROS 

molecules each with different molecular properties that could give rise to different protein modifications 

(Box 2). Several mechanisms have been described for oxidative stress-regulated protein relocalizations 

such as (i) redox-based relocalizations, (ii) phosphorylation-dependent trafficking by ROS-activated 

kinases, (iii) stress-induced release of membrane-anchored transcription factors, (iv) sequestration and 

stress-triggered release and (v) relocalizations mediated by a nuclear retention factor (Figure 3).  

 

Redox-based relocalizations 

The redox status of cytosolic proteins can be reversibly or irreversibly modified by intracellular ROS 

that, in turn, can dynamically affect the protein’s subcellular localization and function. These oxidative 

modifications predominantly occur when proteins are in close proximity with the ROS production site. 

The most common and best studied redox modification is oxidation of cysteine residues that might 

further lead to other redox-based post-translational modifications, such as disulphide formation that can 

trigger conformational changes in the protein. For instance, redox modifications can initiate 

mono/multimerization as is the case for the redox-regulated dynamic subcellular localization of NPR1 

(NONEXPRESSOR OF PATHOGENESIS-RELATED (PR) GENES1), the master regulator of 

salicylic acid (SA)-dependent defense gene expression (Dong, 2004). During normal conditions, 

disulphide-linked oligomers of NPR1 are localized in the cytosol. During pathogen infection, SA levels 

increase leading to the thioredoxin-mediated NPR1 disulphide reduction that results in the release of 

NPR1 monomers that are redirected to the nucleus to regulate defense gene expression (Dong, 2004). 
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Box 2. Subcellular ROS-producing and ROS-scavenging sites. 

In plants, ROS are continuously produced throughout the cell particularly at sites with a high metabolic rate or intense 

electron flow such as the peroxisomes, the chloroplasts and the mitochondria (Dat et al., 2000; Figure 2). Abiotic stress 

conditions, such as high light, drought, low and high temperature, perturb the equilibrium between ROS production and 

ROS-scavenging leading to a rapid accumulation of ROS (Suzuki et al., 2011a). In chloroplasts, reduced components of 

the photosynthetic machinery, such as triplet Chl, the electron transport chain (ETC), PSI and PSII, are major production 

sites of ROS, in particular O2●-, 1O2, and H2O2 (Asada, 2006). When the ETC is overloaded, a part of the electron flow is 

diverted from Ferredoxin (Fd) to O2 (Mehler reaction) leading to the formation of O2●- that is readily converted to H2O2 

by SOD. In turn, H2O2 is detoxified by ascorbate peroxidase (APX) with ascorbate (AsA) as electron donor. AsA is first 

oxidized to the monodehydroascorbate radical (MDA●) and to dehydroascorbate (DHA) before it is recycled in the 

Halliwell-Asada pathway which involves monodehydroascorbate reductase (MDHAR), Fd, dehydroascorbate reductase 

(DHAR), glutathione reductase (GR) and the non-enzymatic antioxidants glutathione (GSH [reduced] and GSSG 

[oxidized]). The highly toxic 1O2 molecules are formed from energy transfer between O2 and triple-state Chl in PSII (Laloi 

et al., 2006; Box 1). Other major ROS production sites are the peroxisomes, where H2O2 accumulates during 

photorespiration, a process that is tightly linked with photosynthesis (del Río et al., 2006). During low CO2 availability, the 

oxygenase activity of the chloroplastic ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) is increased leading to 

the release of glycolate that is transported to the peroxisomes to become oxidized by glycolate oxidase thereby producing 

large amounts of H2O2 that are readily scavenged by catalase (CAT) (del Río et al., 2006). In mitochondria, the 

respiratory ETC is a major ROS source, in particular O2●- and H2O2 (Møller, 2001). Mitochondrial ROS producing sites 

are NADH dehydrogenases, ubiquinone radicals and complex I and III. Other important ROS (O2●, H2O2)-generating 

sites are the plasma membrane (PM) and the apoplast by the presence of NAD(P)H oxidases and peroxidases, 

respectively (Sagi and Fluhr, 2006). H2O2 can freely diffuse from the different subcompartments into the cytosol which is 

further facilitated by specialized aquaporins, called peroxyporins. Cytosolic H2O2 is scavenged by various peroxidases or 

may be transported into the vacuole (Gould et al., 2002; Bienert et al., 2006). Elevated levels of ROS induces several 

signaling cascades including 

mitogen-activated protein 

kinases (MAPK) cascades, 

Ca2+ and hormone signaling 

pathways and activates 

redox-sensitive transcription 

factors, leading to stress-

responsive gene expression. 

 

 

 

 

 Figure 2. Subcellular ROS production

sites. Adapted from Gechev et al.,

2006. See text for explanation.  
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Phosphorylation-dependent trafficking during oxidative stress  

The mitogen-activated protein kinase (MAPK) cascade is a well known ROS-activated signaling network 

that triggers dynamic protein trafficking by protein phosphorylation. The plant MAPK cascades usually 

consist of a MAPK kinase kinase (MAPKKK) that phosphorylates and activates a MAPKK which then, 

in turn, phosphorylates a MAPK. These MAPK cascades have been shown to be involved in a number 

of biotic and abiotic stress responses and include the ROS-responsive MEKK1, MPK4 and MPK6 

(Mittler et al., 2011). The activation of MAPK by phosphorylation is often accompanied by relocalization 

to the nucleus where they are involved in controlling gene expression (Treisman, 1996; Ligterink et al., 

1997; Cobb and Goldsmith, 2000; Ahlfors et al., 2004). For instance during ozone stress, AtMPK3 and 

AtMPK6 are activated by phosphorylation by a still unknown MAPKK and subsequently translocated to 

the nucleus where they activate ozone-responsive genes (Ahlfors et al., 2004). 

 

Stress-induced release of membrane-anchored transcription factors 

Another area that has seen much progress in recent years is the dynamic trafficking of membrane-

anchored transcription factors. During incoming environmental stimuli, these transcription factors are 

proteolytically activated and retargeted to the nucleus to control defense responses (reviewed by Seo et 

al., 2008). A genome-wide screen identified 85 membrane-anchored transcription factors in Arabidopsis 

thaliana comprising members of all major transcription factor families (Kim et al., 2010). Several bZIP 

(basic leucine zipper) and NAC (NAM, ATAF and CUC2) transcription factors anchored by a 

transmembrane domain to respectively the endoplasmatic reticulum (ER) membrane or plasma 

membrane have been shown to be proteolytically activated and subsequently imported into the nucleus 

upon abiotic stress stimuli (reviewed by Seo et al., 2008; see also further). In plants, membrane-anchored 

transcription factors seem to be activated by a regulated intramembrane proteolysis (RIP) mechanism 

that is governed by site-1 proteases (S1P and S2P), calpain proteases or metalloproteases (Seo et al., 

2008). 

 

Sequestration and stress-triggered release 

Another strategy is the sequestration of proteins by interaction with other proteins that are modified 

during oxidative stress. An interesting example is the interaction of WRKY40 with the magnesium-

protoporphyrin IX chelatase H subunit (CHLH/ABAR), a chloroplast-localized intracellular abscisic 

acid (ABA) receptor that also plays a key role in mediating plastid-to-nucleus retrograde signaling (Shang 

et al., 2010). Interestingly, ABAR is an outer chloroplast envelope-localized transmembrane protein with 

both its N- and C-terminus exposed to the cytosol. Under normal physiological concentrations of ABA, 

WRKY40 is present in the nucleus where it represses ABA-responsive genes, such as ABI5. Upon 
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increasing ABA concentrations, WRKY40 translocates by an unknown mechanism from the nucleus to 

the cytosol where it interacts with the C-terminus of ABAR at the chloroplast periphery (Shang et al., 

2010). Similar is the cytosolic retention of AtbZIP10 by interacting with LSD1 (LESION 

SIMULATING DISEASE RESISTANCE1) that is involved in the regulation of basal defense and cell 

death during pathogen infection (Kaminaka et al., 2006). LSD1 is a cytosolic plant-specific Zinc Finger 

(ZF) protein that is a negative regulator of programmed cell death (Dietrich et al., 1994; Jabs et al., 1996; 

Dietrich et al., 1997; Mateo et al., 2004). AtbZIP10 actively shuttles between the nucleus and the cytosol 

presumably mediated by the nuclear export factor EXPORTIN1 (AtXPO1). In the absence of 

endogenous or environmental signals, LSD1 retains AtbZIP10 in the cytosol by interacting with its C-

terminal domain that likely blocks the nuclear localization signal (NLS). After perception of a ROS-

derived signal, AtbZIP10 dissociates from LSD1 and translocates to the nucleus to induce hypersensitive 

response- and basal defense-related gene expression (Kaminaka et al., 2006). 

 

Relocalization mediated by a nuclear retention factor 

Several reports have described the redistribution of proteins mediated by a stress-induced interaction 

with a nuclear retention factor. In tomato (Lycopersicon esculentum), heat stress triggers the interaction of 

LpHSFA2 with LpHSFA1a that guides LpHSFA2 to the nucleus to induce heat stress-responsive genes 

(Scharf et al., 1998; Heerklotz et al., 2001; see further). In Arabidopsis, a ROF1-HSP90.1 complex 

relocalizes to the nucleus by the heat stress-induced interaction with AtHSFA2 (Meiri and Breiman, 

2009; see further). Another interesting example is the tobacco stress-induced1 (Tsi1)-interacting protein1 

(Tsip1), a DnaJ-type ZF protein that cooperatively enhances the transcriptional activity of Tsi1, an 

EREBP/AP2-type transcription factor (Ham et al., 2006). Tsip1 is associated with the outer chloroplast 

surface that is mediated by the presence of an N-terminal chloroplast transit peptide. Upon treatment 

with SA, Tsip1 dissociates from the chloroplasts by an unknown mechanism and is released into the 

cytosol where it forms a protein complex with Tsi1. Subsequently, this protein complex is redirected to 

the nucleus by Tsi1-mediated nuclear translocation. Once in the nucleus, Tsip1 functions as a 

transcriptional enhancer of Tsi1 to activate stress-responsive genes (Ham et al., 2006)  
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Figure 3. Mechanisms of known oxidative stress-induced relocalizations. 

Proteins in their ‘native’ subcellular localization are indicated in light purple. Proteins that redistribute to another 

compartment by an oxidative stress-triggered relocalization mechanism are indicated in dark purple. The different 

mechanisms are indicated by capital letters. (A) Oxidative stress-induced monomerization. Proteins are organized in 

oligomers that dissociate into monomers by protein oxidation during oxidative stress. These monomers are subsequently 

imported into the nucleus. (B) ROS-induced phosphorylation cascades. A ROS-activated kinase directly (or indirectly 

through another kinase) phosphorylates a target protein leading to a conformational change that results in the retargeting 

of the protein. (C, F) During abiotic stress conditions such as cold and high salinity, dormant plasma membrane-

associated (C) or ER-anchored (F) transcription factors are activated by their release from the membrane (via regulated 

intramembrane proteolysis (RIP)) into to cytosol and subsequently redirected to the nucleus. (D) Oxidative stress-

induced release of sequestered proteins. During normal conditions, proteins are retained in the cytosol by interaction 

with membrane-associated proteins or cytosolic proteins. During oxidative stress, this interaction is abolished leading to 

the redistribution to another subcellular compartment directed by a targeting signal. (E) Oxidative stress-induced 

sequestration from the nucleus to the chloroplast periphery by binding to a chloroplast envelope protein. ABA, abscisic 

acid; CW, cell wall; ER, endoplasmatic reticulum; OS, osmotic stress; ROS, reactive oxygen species. 
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Abiotic stress-triggered relocalizations 

 

Heat stress 

High temperature stress (HS) is the best documented abiotic stress that triggers protein relocalizations. 

The heat stress response (HSR) is a well conserved defense mechanism that is characterized by the 

production of heat shock proteins (HSPs) that act as molecular chaperones to prevent the denaturation 

and aggregation of proteins, a major consequence of thermal denaturation. HSPs are also involved in the 

refolding, intracellular distribution and degradation of many proteins (Sun et al., 2002). HSPs are 

classified according to their molecular weight into different families, such as HSP100, HSP90, HSP70, 

HSP60 and the small HSPs (sHSPs; 12-43 kDa; Baniwal et al., 2004). In plants, sHSPs are found in many 

subcellular compartments: nucleus and cytosol, ER, chloroplasts, mitochondria and peroxisomes (Scharf 

et al., 2001; Ma et al., 2006). Cytosolic plant sHSPs are characterized by the formation of highly ordered 

chaperone complexes. At normal temperatures, sHSPs form homo-oligomers of 200 to 350 kDa (Lee et 

al., 1995; Helm et al., 1997). During HS, these oligomers dissociate leading to the exposition of their 

hydrophobic binding sites that govern the interaction with denatured substrates (Bova et al., 1997; Lee et 

al., 1997; Ehrnsperger et al., 1999; Haslbeck et al., 1999). Subsequently, these complexes are further 

reassembled into a larger complex that, in turn, can lead to the formation of large cytosolic 

multichaperone complexes, called heat stress granules (HSGs) that are unique to plants (Nover et al., 

1983, 1989; Kirschner et al., 2000).  

In plants, the HSR is regulated by a complex network of HS transcription factors (HSFs; Kotak 

et al., 2007) in which the dynamic subcellular distribution of HSFs and HSF-interacting proteins play a 

key role. HSFs are comprised of a conserved N-terminal DNA-binding domain that interacts with highly 

conserved heat shock elements (HSE) in the promoters of HS-inducible genes, an oligomerization 

domain with an adjacent NLS, and a C-terminal activation motif. In most cases, HSFs also contain a 

strong nuclear export signal (NES), indicating that their subcellular localization is regulated by 

nucleocytoplasmic partitioning (Heerklotz et al., 2001). An important step in the activation of HSFs in 

response to stress is the formation of homo- or heterotrimers influencing their subcellular distribution. 

The balance between nuclear import and export together with the trimerization of a large variety of 

HSFs leads to a complex HSR response. For instance in tomato, the onset of an appropriate HSR is 

mediated by the interaction of two key HSFs, LpHSFA1a and LpHSFA2, and is dependent on the 

intracellular redistribution of both proteins. LpHSFA1a, also considered as the master regulator of the 

HSR in tomato (Mishra et al., 2002), is constitutively expressed and is predominantly cytosolic at normal 

temperatures, due to an efficient nuclear export and a masked NLS. During HS, LpHSFA2 is rapidly 

synthesized upon LpHSFA1a-dependent expression. LpHSFA2 fails to be imported into the nucleus by 
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itself, presumably by the presence of a strong NES. During HS, LpHSFA2 forms a hetero-oligomeric 

complex with LpHSFA1a that acts as a nuclear retention factor and guides LpHSFA2 into the nucleus to 

function as a transcriptional activator (Scharf et al., 1998; Heerklotz et al., 2001). During recovery, 

LpHSFA2 is repressed and redirected to the cytosol through interaction of its C-terminal activator 

domain with HSP17.4-CII (Port et al., 2004). Prolongation of the HS leads to the incorporation of 

LpHSFA2, together with HSP17 and other cytosolic sHSPs, into cytosolic HSGs (Scharf et al., 1998; 

Bharti et al., 2000).  

Within the 21 HSFs present in Arabidopsis, no master HSF has been identified; the HS-triggered 

production of AtHSFA2 is nor dependent on AtHSF1a or AtHSF1b (Busch et al., 2005) and neither is 

the HS-induced nuclear localization of AtHSFA2 (Kotak et al., 2004). Several HS-induced relocalizations 

that are dependent on interaction with HSFs have been described in Arabidopsis (Meiri and Breiman, 

2009; Hsu et al., 2010). For example ROF1, also known as AtFKBP62 (FK506-binding protein), is a 

peptidyl prolyl cis/trans isomerase with chaperone activity that relocalizes during HS. Under normal 

conditions, ROF1 binds to HSP90.1 in the cytosol. Upon HS, AtHSF2A is synthesized, together with 

other proteins such as ROF1, HSP90.1, sHSPs and ROF2 (see further). In the first stages of HS 

recovery, AtHSFA2 interacts with HSP90.1 that forms, together with ROF1, a complex that is 

subsequently targeted to the nucleus mediated by the HS-induced nuclear translocation of AtHSF2A. 

Possibly, the interaction between ROF1-HSP90.1 and AtHSFA2 stabilizes AtHSFA2 to ensure high 

levels of AtHSFA2-dependent synthesis of sHSPs during the recovery from HS (Meiri and Breiman, 

2009). Only one year later, it was found that ROF2 (AtFKBP65), a ROF1 homologue that is produced 

during HS, also associates with the ROF1-HSP90.1-AtHSFA2 complex via a heterodimeric interaction 

with ROF1 (Meiri et al., 2010). Interestingly, ROF2 also relocalizes to the nucleus, but only during the 

recovery period where it abrogates the transcriptional activity of AtHSFA2. Meiri and coworkers 

proposed that ROF2 acts as a sensor for the accumulation of sHSPs by a negative feedback regulatory 

mechanism that inhibits AtHSFA2 activity (Meiri et al., 2010). Another HSF-binding protein, AtHSBP, 

was identified as a negative regulator of HSR that is translocated from the cytosol to the nucleus during 

HS (Hsu et al., 2010). At normal temperatures, AtHSBP is predominantly cytosolic, whereas faint 

fluorescent nuclei appeared after one hour of HS. After one hour of recovery, a clear nucleocytosolic 

localization was observed, while after two hours of recovery, AtHSBP was again exclusively cytosolic, 

which is concomitant with the attenuation of HSR (Hsu et al., 2010). AtHSBP interacts with itself and 

with the trimerization domain of HSFs that is presumably governed by its C-terminal coiled-coil region. 

Further studies are necessary to unravel the mechanism of the HS-induced AtHSBP relocalization (Hsu 

et al., 2010). Another HS-induced relocalization was demonstrated for MBF1c (MULTIPROTEIN 

BRIDGING FACTOR1c), a highly conserved protein that is induced upon both biotic and abiotic 
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stresses such as heat, salinity and drought, and functions as a key transcriptional regulator of 

thermotolerance in Arabidopsis (Suzuki et al., 2008). At normal conditions, MBF1c is a cytosolic protein 

but relocalizes rapidly to nuclei upon HS to regulates a novel HSR regulon (Suzuki et al., 2008; Suzuki et 

al., 2011b). 

 

Cold stress 

The physical status of the plasma membrane is in close relation with cold perception and signaling 

(Murata and Los, 1997; Örvar et al., 2000; Browse and Xin, 2001; Vígh et al., 2007). Recently, a link 

between cold stress and the induction of the pathogen defense response governed by the relocalization 

of a membrane-tethered NAC transcription factor has been demonstrated (Seo et al., 2010a). During 

cold stress, the dormant plasma membrane–anchored NTL6 (NTM1 (NAC WITH 

TRANSMEMBRANE MOTIF1)-LIKE6) is cleaved by a metalloprotease upon cold-induced changes in 

membrane fluidity (Seo et al., 2010a; Seo et al., 2010b). In turn, the transcriptionally active form is 

released into the cytosol and subsequently redirected to the nucleus where it binds consensus sequences 

in the promoters of several of cold-inducible PR genes to confer a cold-induced resistance that might be 

important against (psychrophilic) pathogens that are capable of growing and reproducing at cold 

temperatures. Accordingly, overexpression of the transcriptionally active form of NTL6 leads to an 

enhanced pathogen resistance (Seo et al., 2010a; Seo et al., 2010b).  

OXIDATIVE STRESS2 (OXS2) was originally identified in an Arabidopsis expression library 

screen in yeast (Saccharomyces cerevisiae) to discover genes that confer oxidative stress tolerance (Blanvillain 

et al., 2011). OXS2 belongs to the ZF family with one C2H2 and two C3H ZFs, in addition to two ankyrin 

repeat motifs, and is regulated by several abiotic stress treatments, such as cold, salt, ABA and osmotic 

stress. While OXS2 is cytosolic under normal conditions, it relocalized to the nucleus upon treatment 

with cold, ABA or leptomycin B - a covalent inhibitor of AtXPO1 (Kudo et al., 1998). Due to the 

absence of a NLS and because deletions in the ankyrin motifs reduced nuclear accumulation, it is 

postulated that the ankyrin motifs play a role in the stress-induced relocalization of OXS2 by interacting 

with a yet unidentified carrier protein (Blanvillain et al., 2011). The authors suggest a dual function of 

OXS2 that is dependent on its subcellular localization; while the cytosolic localization of OXS2 during 

normal growth conditions promotes vegetative growth by a yet unknown mechanism, the oxidative 

stress-induced nuclear accumulation of OXS2 leads to the activation of a defense response. When stress 

conditions are sustained this response may trigger reproduction through the activation of the floral 

integrator genes (Blanvillain et al., 2011). 

Another example of a cold stress-induced nucleocytoplasmatic partitioning is in the case of 

HOS1 (HIGH EXPRESSION OF OSMOTIC RESPONSIVE1), a C3HC4-type RING finger protein 
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that was originally identified as a negative regulator of cold signaling pathways (Ishitani et al., 1998; Lee et 

al., 1999). hos1 mutants are characterized by a high induction of cold-responsive marker genes, such as 

RD29A, COR47, COR15A, KIN1 and ADH (Ishitani et al., 1998). Although the hos1 mutation decreases 

freezing tolerance in non-acclimated plants, no significant differences were obvious after cold 

acclimation. Moreover, hos1 mutants display a constitutive vernalization response (Ishitani et al., 1998) 

that was linked to the reduced threshold induction of cold stress-responsive genes. In addition, hos1 

mutants have decreased expression levels of FLC (FLOWERING LOCUS C) that correlated with the 

early flowering phenotype. At normal growth temperatures, HOS1 is located in the cytosol, while during 

cold stress HOS1 is completely redirected to the nucleus by a yet unknown mechanism. When plants are 

subsequently returned to normal growth temperatures, HOS1-GFP fluorescence disappeared (Lee et al., 

2001). Later, it was found that HOS1 functions as an E3 ligase that is required for the cold stress-

induced ubiquitination and, thus, degradation of ICE1 (INDUCER OF CBF (C-REPEAT (CRT)-

BINDING FACTOR) EXPRESSION1), a transcription factor that controls the induction of CBF3 

(Dong et al., 2006). 

 

Salt stress 

Salt stress can be subdivided into either osmotic stress or ionic stress by the perturbation of ion 

homeostasis leading to an increase of toxic Na+ ions and a decrease in essential ions such as K+ (Munns 

and Tester, 2008). Numerous salt stress-induced relocalizations acting through different mechanisms 

have been reported. Interestingly, many of these relocalizations involve membrane proteins. One of the 

most important pathways to cope with high salinity stress is the salt-overly-sensitive (SOS) pathway that 

is responsible for Na+ homeostasis in plants (Zhu, 2002). SOS1, a plasma membrane-localized Na+/H+ 

antiporter, functions in the extrusion of intracellular Na+ and is essential for plant salt tolerance (Shi et 

al., 2000). Upon salt and oxidative stress, SOS1 interacts through its cytosolic tail with RCD1 

(RADICAL-INDUCED CELL DEATH1), an important transcriptional regulator of oxidative stress 

responses (Katiyar-Agarwal et al., 2006). While RCD1 is a nuclear protein under normal conditions, 

RCD1 is partially sequestered to the cytosol through interaction with SOS1 during stress (Katiyar-

Agarwal et al., 2006). The mechanism behind this nucleus-to-cytoplasm relocalization of RCD1 is yet 

unknown.  

 Another interesting example of a salt stress-triggered relocalization is in the case of NTL8, a 

membrane-bound NAC transcription factor that regulates gibberellic acid (GA)-mediated salt signaling 

during seed germination (Kim et al., 2008). Under normal conditions, inactive NTL8 is bound with a C-

terminal transmembrane domain to the plasma membrane. During salt stress, NTL8 is processed by a 

yet unknown protease thereby releasing the active form of NTL8 into the cytosol. From there, NTL8 is 
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redirected to the nucleus by NLS-mediated import to control nuclear gene expression that reduces GA-

stimulated seed germination (Kim et al., 2008). Furthermore, it was also shown that NTL8 could play a 

role in the regulation of salt-responsive flowering (Kim et al., 2007). 

 Salt stress is not only sensed at the plasma membrane, but also at the ER by the generation of an 

ER stress response. During conditions that inhibit normal protein folding and secretion, misfolded or 

unfolded proteins accumulate in the ER that, in turn, activate the unfolded protein response signaling 

pathway (Urade, 2007, 2009; Liu and Howell, 2010b). In Arabidopsis, the ER stress signal is transduced 

by ER-bound transcription factors that are activated by proteolytic cleavage and which are redirected to 

the nucleus under environmental stress conditions. AtbZIP17, an ER-localized membrane-bound bZIP 

transcription factor, was the first protein reported with an ER stress-induced relocalization caused by salt 

stress (Liu et al., 2007b). During salt stress, improperly folded proteins accumulate leading to the 

retargeting of AtbZIP17 to the Golgi apparatus where it is cleaved by site-1 protease (AtS1P; Liu et al., 

2008). Subsequently, AtbZIP17 is released into the cytosol, from where it relocates to the nucleus. 

Besides salt stress, other environmental conditions such as pathogen attack, drought and heat stress can 

lead to ER stress-triggered relocalizations of ER-bound transcription factors such as AtbZIP28 (Liu et 

al., 2007a; Liu and Howell, 2010a; Gao et al., 2008) and AtbZIP60 (Iwata et al., 2008).  

 Besides membrane-to-nucleus relocalizations, several examples are known of salt stress-induced 

nucleocytoplasmic partitioning of proteins. For instance, AtbZIP24 acts as a negative transcriptional 

regulator of the salt stress acclimation response and is regulated by nucleocytoplasmic partitioning (Yang 

et al., 2009). During control conditions, AtbZIP24 homodimers are present in both the cytosol and the 

nucleus. However in salt-stressed plants, cytoplasmic AtbZIP24 levels were decreased whereas the 

amount of nuclear AtbZIP24 had increased (Yang et al., 2009). 

Several examples exist of osmotic stress-induced relocalizations. For instance, polyethylene 

glycol (PEG) treatment, that induces osmotic stress, triggers the proteolytic cleavage of NTL9, a plasma 

membrane-anchored NAC transcription factor, thereby releasing a transcriptionally active form into the 

cytosol that is subsequently imported in the nucleus to regulate leaf senescence (Yoon et al., 2008). 

Another important example is the stress-induced dynamic redistribution of aquaporins that facilitate the 

diffusion of water across biological membranes. In Mesembryanthemum crystallinum (Iceplant) cells, 

mannitol-induced osmotic stress leads to the redistribution of a tonoplast intrinsic protein (TIP) 

subfamily aquaporin to a putative endosomal compartment, possibly to maintain the osmotic balance of 

the cytosol (Vera-Estrella et al., 2004). In Arabidopsis, the plasma membrane intrinsic protein (PIP)-type 

aquaporins (PIP1;2 and PIP2;1) are internalized upon salt treatment (Boursiac et al., 2005). In addition, 

the Arabidopsis vacuolar TIP1;1 relocalizes upon salt stress to vacuolar invaginations possibly to affect 

the tonoplast water uptake capacity (Boursiac et al., 2005; Li et al., 2011). Later, it was found that also 
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treatment with SA and H2O2 markedly induced the intracellular accumulation of PIPs (Boursiac et al., 

2008a) through protein phosphorylation (Boursiac et al., 2008b). 

 

Hypoxia 

Prolonged flooding alters the physicochemical properties of the soil, including the availability of O2. 

During hypoxic conditions, the reduction in available O2 becomes a limiting factor for ATP production 

through oxidative phosphorylation, depleting thus the ATP pool (Dat et al., 2004). One strategy to cope 

with hypoxia is to suppress major energy-consuming processes. For instance, hypoxia induces the 

inhibition of protein synthesis through a block in gene translation. The DEAD box protein eIF4a-III, a 

putative anchor protein of the exon junction complex that is involved in mRNA biogenesis, is an 

ATPase that in response to hypoxia relocalizes from the nucleoplasm to the nucleolus and to splicing 

speckles (Koroleva et al., 2009). This relocalization results from the inhibition of respiration whereby the 

depletion of ATP is sensed by eIF4A-III: because ATP binding provokes a conformational change that 

provides a binding site for mRNA ribonucleotides, ATP deficiency impairs mRNA binding that, in turn, 

might be a signal for mRNA storage in nuclear speckles (Koroleva et al., 2009). 
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CONCLUSION AND PERSPECTIVES 

 

Although significant progress has been made in the description of oxidative stress-dependent gene 

expression, the regulation of the complex ROS signaling transduction network remains largely unknown. 

Protein activation and trafficking play an important role in rendering signal transduction highly dynamic 

over time and space. During adverse environmental conditions, the regulation of dynamic protein 

trafficking is key to stress signaling involving post-translational modifications. Therefore, the 

identification of oxidative stress-induced post-translationally modified proteins could provide novel 

candidates for stress-triggered relocalization studies. However, proteomic studies to identify ROS-

modified proteins remain scarce, are often gel-based, lack sensitivity and do not reflect the whole 

proteome. With the current development of the combined fractional diagonal chromatography™ 

(COFRADIC™) technology (Gevaert et al., 2002), differential proteome studies can be performed to 

identify oxidative stress-induced proteins. Moreover, post-translational protein modifications that occur 

during oxidative stress conditions, such as tyrosine nitration (Ghesquière et al., 2009; Ghesquière et al., 

2011a) and methionine oxidation (Ghesquière et al., 2011b) can be studied on a proteome-wide basis. 

Although redox regulation and ROS metabolism in the different subcellular compartments are tightly 

interconnected (e.g. the chloroplasts and the mitochondria), different types of abiotic stresses seem to 

affect certain subcellular compartments more which, in turn, produce compartment-specific ROS. Thus, 

the mechanism of an abiotic stress-induced relocalization is often correlated with the type of abiotic 

stress and the subcellular compartment. Moreover, extensive cross-talk between divergent ROS signals 

from different organelles takes place in the cytosol (Suzuki et al., 2011a) making it an important site 

where oxidative stress-triggered protein relocalizations initiate. Future integration of ROS-modified 

protein datasets with subcellular localization studies and the visualization of compartment-specific ROS 

(see below) will provide a comprehensive view on the protein modifications and/or relocalizations that 

occur during stress.  

Importantly, identifying novel oxidative stress-induced relocalizations is experimentally 

demanding and requires a detailed understanding of several parameters, such as the physicochemical 

properties of the protein of interest, its subcellular localization during non-stressed conditions 

(membrane-bound vs. non-membrane-bound, organellar vs. cytosolic), the potential interactors, the 

spatiotemporal dynamics of both the protein of interest and ROS, and the involved abiotic stress 

pathway. In addition, protein relocalization experiments often require rigorous optimization steps to 

determine the correct timing and the exact abiotic stress stimulus.  

To increase our knowledge about the complex timing and location of abiotic stress-triggered 

ROS production, several tools can be used to quantify real-time changes in ROS levels in vivo (Swanson 
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et al., 2011). Although several techniques, such as two-photon fluorescence microscopy, matrix-assisted 

laser desorption/ionization mass spectrometry (MALDI-MS) imaging, atomic force microscopy and 

optical tweezers force spectroscopy have been valuable tools for measuring the level of ROS in different 

organisms, their use in plants remains limited (Mittler et al., 2011). In plants, ROS imaging studies are 

predominantly based on using ROS-specific dyes, luciferase assays and redox-sensitive GFP (roGFP). 

The selective targeting of GFP-based biosensors using compartment-specific targeting sequences will 

allow to monitor ROS levels in a broad range of subcellular compartments (Swanson et al., 2011). 

Currently, protein relocalizations experiments are predominantly based on imaging of tagged proteins 

with a fluorescent fluorophore or measuring protein abundancies by western blot. However, more 

quantitative methods to easily determine the shift in protein distribution from one compartment to 

another are required.  

 

In conclusion, protein relocalization during oxidative stress is an important intracellular signaling strategy 

to deliver the ROS-derived signal from one location to another to ultimately elicit a fast defense 

response. A detailed understanding of oxidative stress-triggered relocalizations together with the tight 

spatiotemporal control of ROS levels at the different subcellular compartments under abiotic stress 

conditions will provide a better understanding of stress response signaling. 
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ABSTRACT 
 
The signal transduction mechanisms of the oxidative stress response in plants remain largely unexplored. 

Previously, increased levels of cellular hydrogen peroxide (H2O2) had been shown to drastically affect the 

plant transcriptome. Genome-wide transcriptome analyses allowed us to build a comprehensive 

inventory of H2O2-induced genes in plants. Here, the primary objective was to determine the subcellular 

localization of these genes and to assess potential trafficking during oxidative stress. After high-

throughput cloning in Gateway-derived vectors, the subcellular localization of 49 proteins fused to the 

green fluorescent protein (GFP) was identified in a transient assay in tobacco (Nicotiana benthamiana) by 

means of agro-infiltration and confirmed for a selection of genes in transgenic Arabidopsis thaliana plants. 

Whereas eight of the GFP-tagged proteins are exclusively localized in the nucleus, 23 reside both in the 

nucleus and cytosol, in which several classes of known transcription factors and proteins of unknown 

function can be recognized. In this study, the mapping of the subcellular localization of H2O2-induced 

proteins paves the way for future research to unravel the H2O2 responses in plants. Furthermore, the 

effect of increased H2O2 levels on the subcellular localization of a subset of proteins was assessed. 
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INTRODUCTION 

 

Because of their sessile lifestyle, plants are permanently exposed to adverse environmental conditions 

that promote the accumulation of reactive oxygen species (ROS). These harmful by-products of aerobic 

metabolism react with all cellular components. Accordingly, ROS are considered toxic molecules that 

cause irreparable cellular damage (Gechev et al., 2006). ROS levels are highly balanced and tightly 

coordinated by a network of at least 152 genes encoding both ROS-producing and ROS-scavenging 

enzymes (Mittler et al., 2004). By controlling the ROS toxicity, plants have been able to use ROS as 

signaling molecules to coordinate a broad range of environmental and developmental processes. For 

instance, ROS play a major role during growth and development by triggering cell division and cell 

death, and are also involved in the signal transduction during the response against biotic and abiotic 

factors (Apel and Hirt, 2004; Van Breusegem and Dat, 2006). Although the signaling function of ROS is 

now generally accepted, little is known on how these signals are perceived, transmitted and how they 

finally provoke a specific response. Because many enzymatic components of the antioxidant system of 

plants are well characterized, perturbation of this scavenging system is an excellent strategy to investigate 

ROS signaling (Gadjev et al., 2006). As peroxisomal catalases are major scavengers of H2O2, reduction of 

their levels allows in planta modulation of the H2O2 concentration. Under photorespiration-promoting 

conditions, such as high light (HL), the subcellular production of ROS is substantially elevated and 

scavenged readily by a variety of antioxidant systems. In contrast, catalase-deficient plants accumulate 

photorespiratory H2O2, which, in turn, leads to an elaborate transcriptional response (Vandenabeele et 

al., 2003; Vandenabeele et al., 2004; Vanderauwera et al., 2005). Previous studies with the catalase-

deficient model system (Dat et al., 2001) and analysis of four independent genome-wide expression 

studies in Arabidopsis thaliana and Nicotiana tabacum have led to an inventory of genes that are responsive 

to elevated levels of photorespiratory H2O2 in leaves (Vandenabeele et al., 2003; Vandenabeele et al., 

2004; Vanderauwera et al., 2005; Vanderauwera et al., 2011; Hoeberichts et al., unpublished results). The 

functional analysis of proteins that are encoded by genes that rapidly respond to H2O2 can give novel 

insights into the early signaling steps triggered by an abrupt increase in H2O2 availability.  

 Although little is known on how cells perceive ROS, different mechanisms are plausible, such as 

unidentified receptor proteins, direct inhibition of phosphatases by ROS, and redox-sensitive 

transcription factors (Apel and Hirt, 2004; Mittler et al., 2004). In general, the status of proteins with 

redox-sensitive amino acids, such as cysteines and methionines, can be oxidized or reduced during 

oxidative stress in a rapid and dose-dependent manner. Differential subcellular localization caused by 

redox regulation can be governed conceivably by various processes (Chapter 1). For instance, oxidative 

modification(s) can set off (i) conformational changes that, in turn, could expose a targeting sequence of 
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a different subcellular compartment; (ii) multimerization and/or monomerization (Kinkema et al., 2000) 

by which interacting proteins can be altered and sequester the targeting signals, leading to a differential 

localization of the target under oxidative stress conditions (Kaminaka et al., 2006; Katiyar-Agarwal et al., 

2006); (iii) activation or inhibition of modifying enzymes, such as kinases and phosphatases, which under 

oxidative stress modify the subcellular localization of their targets; and (iv) elicitation of membrane-

bound transcription factors by regulated intramembrane proteolysis (RIP), releasing dormant 

membrane-anchored transcription factors into the cytosol that subsequently enter the nucleus to regulate 

the expression of target genes (Seo et al., 2008). 

 Here, we provide a survey in which the subcellular localization of 49 H2O2-induced proteins was 

systematically determined and their potential subcellular trafficking was assessed during oxidative stress. 

 

 

RESULTS AND DISCUSSION 

 

Photorespiratory hydrogen peroxide-dependent gene expression 

First, we compared the available microarray data sets that profiled the Arabidopsis transcriptome during 

elevated photorespiratory H2O2 levels. Perturbation of catalase activities, by mutation or gene silencing, 

results in decreased H2O2-scavenging during HL stress or low CO2 availability in C3 plants (Willekens et 

al., 1997; Noctor et al., 2002). Catalase loss-of-function mutants are an ideal in planta model system to 

examine the consequences of increased levels of endogenous H2O2, because disturbance in H2O2 

homeostasis can be sustained over time, no invasive techniques are needed and physiologically relevant 

H2O2 levels are obtained (Dat et al., 2001). In three independent studies, the transcriptome of HL-

stressed transgenic Arabidopsis leaves perturbed in the most predominant catalase (CAT2) was assessed 

by three different microarray platforms: Affymetrix GeneChip ATH1, CATMA microarray v2 and 

Agilent Arabidopsis v3 oligonucleotide array. By monitoring different time points after HL exposure, the 

dynamics of the transcriptional response could be investigated (Table S1; Vanderauwera et al., 2005; 

Vanderauwera et al., 2011; Hoeberichts et al., unpublished results). These genome-wide transcriptome 

analyses allowed us to build a comprehensive inventory of H2O2-induced genes (HIGs) in Arabidopsis. 

To make a robust selection of HIGs for further functional studies, the induction of each transcript was 

studied in all three experiments. To understand the early signaling steps triggered by an abrupt change in 

H2O2 availability, we selected genes that responded within 1 to 8 h after shifting the catalase-deficient 

lines to higher irradiance. For a cross-platform comparison, a fold change-dependent threshold was used 

as selection criterion for differential gene expression (see Materials and Methods). A total of 783 

transcripts had a modified expression in response to elevated levels of photorespiratory H2O2 and were 
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designated HIGs. An assessment of overrepresented gene ontology (GO) terms within these 783 HIGs 

by means of the BiNGO tool (Maere et al., 2005) revealed that the majority of the genes were associated 

with stress responses (Table S3a). The most significant GO term was ‘response to stimulus’. Pairwise 

comparisons of the three data sets indicated that approximately 20% of the transcripts were induced in 

at least two experiments (Figure S1a). This intersection was significantly enriched in transcripts 

belonging to the ‘response to heat’ GO term (Table S3b), which is in accordance with the well-

established relationship between the oxidative and heat stress responses (Miller and Mittler, 2006). Many 

small heat shock proteins (sHSPs), together with other HSPs and heat shock factors (HSFs), are 

substantially up-regulated by photorespiratory H2O2. In fact, 11% of all heat shock-responsive genes are 

up-regulated by H2O2 in catalase-deficient plants (Vanderauwera et al., 2005). A total of 24 H2O2-

responsive genes are common for all three data sets and are enriched in genes belonging to the GO 

molecular function ‘oxidoreductase activity’ (Table S3c). 

 

Selection of hydrogen peroxide-induced proteins for localization study 

The subcellular localization is a key functional characteristic of eukaryotic proteins. To properly execute 

their biological functions, proteins must be targeted to or retained in the correct subcellular 

compartments or organelles in time or during a particular stimulus. To obtain a first indication of the 

subcellular localization, we used the publicly available and high-throughput in silico prediction program 

Proteome Analyst (PA). PA adopts features calculated with PSI-BLAST (Altschul et al., 1997) against the 

Swiss-Prot database and employs a Naive Bayes algorithm to assign a protein in different subcellular 

compartments: nucleus, cytosol, chloroplast, mitochondrion, endoplasmic reticulum (ER), Golgi 

apparatus, lysosome, peroxisome, vacuole and plasma membrane (Szafron et al., 2004). In silico prediction 

of subcellular localizations is an asset in the era of generating large-scale proteomic, transcriptomic and 

genomic data. However, it still remains a cumbersome task, especially in plants for which the nature or 

sequence characteristics of many targeting signals are largely elusive. 

 Of the 783 HIGs, PA assigned 483 proteins to a specific compartment of which the majority was 

predicted to reside in the nucleus (123) and cytosol (110) (Figure S1b). For 85 transcripts, we initiated an 

experimental validation of the subcellular location. The selection of these 85 transcripts was based on 

three criteria, namely, PA-based computational predictions, functional category and responsiveness 

towards various abiotic stresses. To focus on the most strongly H2O2-responsive transcripts of the 783 

HIGs, we retained only transcripts with at least a fivefold increase in expression (20% was induced at 

least 10-fold; Figure S2). We selected predominantly proteins that were (i) predicted to reside in the 

nucleus or cytosol and omitted chloroplastic or vacuolar predicted proteins (48) and (ii) categorized as 

(putative) transcription factors and/or nucleic acid-binding proteins and genes of unknown function 
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(Table S4). In addition, we assessed the responsiveness of the selected transcripts under abiotic stress 

conditions with the AtGenExpress abiotic stress time series (Kilian et al., 2007) and the UV-A and UV-B 

light series (Peschke and Kretsch, 2011), and retained only those transcripts that were induced by 

multiple abiotic stresses. In total, 85 transcripts were obtained by these consecutive selection steps and 

their abiotic stress response profiles and subcellular localization (both in silico and in vivo) are presented 

(Figure 1). 

 Because our future objective is to identify regulators within H2O2-dependent signaling networks, 

these proteins are primary candidates for possible shuttling between the nucleus and cytosol under 

oxidative stress conditions. When the co-expression patterns for the 85 HIGs were considered (based on 

pairwise correlation analyses with the AtGenExpress abiotic stress compendium) by means of the web 

tool CORNET, almost all genes were part of one or two tightly co-regulated networks (Figure S3). 

Besides providing insights into the co-expression networks based on transcriptome data, CORNET also 

integrates the protein interactome, localization data (both in silico and experimental) and functional 

information of Arabidopsis. 
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Figure 1. Hierarchical average linkage clustering of the response profiles of 85 HIGs to various abiotic stress conditions. 

In silico predicted subcellular localizations, AGI codes and annotations are indicated. Expression data were obtained with 

GENEVESTIGATOR (Zimmermann et al., 2004; Zimmermann et al., 2005) and clustered with GENESIS (Sturn et al., 

2002). HIG, H2O2-induced gene; NU, nucleus; CY, cytosol; NC, nucleus and cytosol; CL, chloroplast; PM, plasma 

membrane; NM, nucleus and plasma membrane; NP, nucleus and peroxisome; ER, endoplasmic reticulum; EX, extracellular; 

GA, Golgi apparatus; NF, not GFP fluorescent; UN, undetermined.  
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Subcellular localization of GFP-tagged hydrogen peroxide-induced proteins 

For these 85 H2O2-induced proteins, the aim was to fuse the open reading frames (ORFs) to GFP both 

at the N- and C-terminal ends under the control of the constitutive CaMV35S promoter with Gateway-

compatible plant transformation vectors (Karimi et al., 2007). We successfully obtained 52 GFP-ORF 

and 37 ORF-GFP fusion constructs that were subsequently used in a protein localization assay in abaxial 

epidermis cells of tobacco leaves via Agrobacterium-mediated transient expression. Both the simplicity of 

the Gateway cloning and the transient infiltration assay provided the desired throughput necessary for 

such screening. The subcellular localization could be rapidly determined in situ in photosynthetically 

active leaves, which corresponded to tissues in which the HIGs originally had been identified. This 

technique results in a high transformation frequency in comparison with mesophyll cell transfection or 

biolistic bombardment of cell cultures in Arabidopsis (Sparkes et al., 2006). 

 The subcellular localization for each construct was analysed 2 d after Agrobacterium infiltration in 

at least two independent transformation events. From 68 constructs in total, localization data were 

obtained for 49 different proteins, but for the remaining ones no detectable GFP signal was observed 

(11) or the construction of GFP fusions was unsuccessful (25). Whereas eight GFP-tagged proteins were 

exclusively located in the nucleus, 23 resided both in the nucleus and cytosol. As expected, nearly all 

nucleus-localized proteins were transcription factors or nucleic acid-binding proteins. An exclusively 

cytosolic localization was seen only for two sHSPs. Three proteins displayed a chloroplastic localization, 

including unexpectedly a petunia No Apical Meristem, Arabidopsis ATAF1/2 and CUC (NAC) 

transcription factor. Of six proteins present in the endomembrane compartment, two had distinct 

plasma membrane localizations. For seven proteins, the subcellular localization could not be assigned to 

a particular subcellular compartment (Table 1). Comparison between the in silico predictions and our 

experimental data revealed the strength of PA for nucleus-predicted proteins (Figure 2). Almost all 

members belonging to the functional category ‘transcription factor/nucleic acid-binding protein’ were 

predicted to be nuclear. These proteins show a nuclear or nucleocytosolic localization in vivo, thereby 

confirming the in silico nuclear predictions. In addition, the majority of the proteins with an unknown 

function predicted to be nuclear or cytosolic were also confirmed in vivo. However, it is important to 

keep in mind that the prediction of a subcellular localization of a protein cannot replace experimental 

data, because factors other than the presence of a targeting sequence can define its subcellular 

localization. For instance, interacting partners can sequester the protein to another subcellular 

compartment and some proteins have a dynamic localization depending on the plant’s developmental 

stage or environmental stimuli encountered (Chapter 1). Although fluorescent tagging of a protein can 

provide insights into the in vivo (dynamic) subcellular localization, some considerations have to be taken 

into account. Firstly, the position of the fluorescent tag can alter the location of the native protein. For 
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example, interactions with other proteins can be abrogated and misfolding can occur. Secondly, 

constitutive overproduction of the tagged protein can saturate interaction partners and organellar import 

machineries, leading to protein misfolding and aggregation. Thirdly, in contrast, transgenic production of 

fusion proteins under the control of the native promoter often generates a very weak signal that, in turn, 

might limit the throughput of the assay. Notwithstanding these considerations, the strategy used here 

allows a fast generation of data in a relatively small time frame. 

 The localizations of WRKY75, DREB2A, RHOMBOID-LIKE 14 (AtRBL14), SUFE2 and 

AtFes1A have recently been described and confirm our observations (Sakuma et al., 2006; Devaiah et al., 

2007; Murthy et al., 2007; Kmiec-Wisniewska et al., 2008; Zhang et al., 2010), whereas the localizations of 

CYTOKININ RESPONSE FACTOR6 (CRF6) and UPREGULATED BY OXIDATIVE STRESS 

(UPOX) differed from previously published localizations and will be discussed next. 

 To validate our findings of the transient expression assay, we produced stably transformed 

transgenic Arabidopsis plants to allow homologous gene expression and examination of different cell 

types. In addition, the overall impact of overproduction of the fusion proteins on plant development and 

the adaptability towards environmental stimuli can be assessed (see further). With the same constructs as 

those in the transient assay, stable transgenic Arabidopsis plants were obtained for 30 of the 49 proteins. 

At least two independent transgenic lines per construct were analyzed. Except for two proteins 

[HSP17.6B-CI (At2g29500) and HYPOXIA-RESPONSIVE ERF2 (HRE2; At2g47500)], the tobacco 

subcellular localization of all fusion proteins was confirmed in Arabidopsis (Figure 3 and Figures S4-S6). 
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Table 1. In vivo subcellular localizations. 

AGI code Protein description In vivo 
localization

N C PA  ATH1a CATMAb Agilentc

Transcription factors and DNA-binding proteins  
At1g32870 ANAC013 – NTL1 NC x  NU 2.45 2.57 1.48
At1g77450 ANAC032  NU x x NU 5.03 19.92
At3g10500  ANAC053 – NTL4  NC x - NU  10.43
At5g18270 ANAC087 NC x x NU 4.10 6.33
At5g63790  ANAC102  CL x* x NU 3.25 28.14
At1g10585 bHLH transcription factor NC x  NU 85.12 
At3g61630 CRF6  NC x x NU 1.96 2.18
At5g05410  DREB2A  NU x  NU 8.01 96.44
At1g22810 AtERF019 NC x  NU 24.15 271.18
At1g22985 AtERF069 (CRF7) NU x x NU 5.64 
At2g38250 Homeodomain-like superfamily protein NU x x NU 4.98 7.58
At2g47520 HRE2 NU x* x NU 12.99 
At3g47550  RING/FYVE/PHD Zinc Finger  NC x    6.74
At4g25380 Stress-associated protein 10 (SAP10) NC x x  132.39 
At2g23320  WRKY15 NU  x NU  16.35
At5g24110  WRKY30  NC x  NU 14.80 142.00
At5g13080 WRKY75  NU x  NU 5.69 
At3g46620  C3HC4-type RING finger family protein NC  x CY  7.17
Proteins of unknown function 
At3g02840  ARM repeat superfamily protein NC x  PM 3.43 48.52
At5g42380  Calmodulin-like 37 (CML37) NC x   7.61 74.86
At2g21640 UPOX UD - x  4.86 6.64
At1g26380 FAD-binding berberine family protein ER x* x  26.32 35.44
At4g39670 Glycolipid transfer protein (GLTP), ACDH11 NC x x  11.86 
At5g19230  Glycoprotein membrane precursor GPI- anchored UD x  PM  11.45
At1g33600  Leucine-rich repeat family protein UD x   3.97 10.45
At4g01390 MATH domain-containing protein NC x x NP -3.94 1.51
At3g07090 PPPDE putative thiol peptidase  NC x x CY 4.66 5.95
At3g18250 Putative membrane lipoprotein ER x   2.15 9.05 1.23
At3g17611 RHOMBOID-like protein 14 (RBL14) PM x  GA 8.36 3.55
At4g22530 SAM-dependent methyltransferase NC x x  12.73 
At4g01870 TolB protein-related UD x   43.38 
At5g05220 Unknown protein CL - x CY 6.35 
At1g05575 Unknown protein ER  x PM 7.92 
At1g05340 Unknown protein NC x  NU 7.34 
At2g25735  Unknown protein PM x -   17.76
At2g18680 Unknown protein  ER  x PM 5.21 
At1g28190 Unknown protein  NU x   3.01 50.46
At5g40690 Unknown protein  NC x x NU 7.86 
At2g41730 Unknown protein  NC x  NU 27.27 
At5g36925  Unknown protein  NC x      22.12
At1g56060 Unknown protein  UD x x  4.30 
At4g36500  Unknown protein  UD x - CY  13.34
At5g14730  Unknown protein  UD x  EX 23.18 144.77
Miscellaneous functions 
At1g71000  Chaperone DnaJ-domain superfamily protein NC x  CY 17.29 43.72
At3g09350 Fes1A NC x x  15.21 23.81 14.26
At2g29500  HSP17.6B-CI CY x - CY 3.93 173.87 60.17
At1g07400  HSP17.8-CI CY x - CY  69.55 13.28
At1g67810 SUFE2 CL x x CY 8.49 
At3g02800  Tyrosine phosphatase  NC  x CY 6.16  57.79

For 49 HIGs, the in vivo subcellular localization was determined. PA-predicted localization, availability of GFP constructs and 

fold changes in each H2O2-related experiment (ATH1, CATMA and Agilent) are indicated.  

HIG, H2O2-induced gene; NU, nucleus; CY, cytosol; NC, nucleus and cytosol; CL, chloroplasts; NP, nucleus and 

peroxisome; PM, plasma membrane; ER, endoplasmic reticulum; EX, extracellular; GA, Golgi apparatus; UD, undetermined. 

N, N-terminal GFP fusion; C, C-terminal GFP fusion; x, construct available; hyphen, no fluorescence; asterisk, differences in 

localization patterns (discussed in the text); FC, fold change; WT, wild type; HL, high light. 

a relative FC in cat2 mutant versus WT plants after 3 h of HL exposure (Vanderauwera et al., 2005). 

b relative FC in cat2 mutant versus WT plants after 8 h of HL irradiation (Hoeberichts et al., unpublished results). 

c relative FC in cat2 mutant versus WT plants after 1 h of HL irradiation (Vanderauwera et al., 2011). 
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NAC transcription factors are putative candidates for relocalization during oxidative stress 

In this survey, we analysed the subcellular location of 18 H2O2-responsive transcription factors and 

nucleic acid-binding proteins, such as WRKY, MYB, APETALA2 (AP2), NAC, HSF and basic helix-

loop-helix (bHLH; Figure S4). Seven fusion proteins from this category localized exclusively to the 

nucleus, 10 resided both in the nucleus and cytosol, and one localized unexpectedly in chloroplasts. In 

total, eight members of the NAC transcription factor family were induced by photorespiratory H2O2 

(Chapter 3), of which five were included in this study: ANAC013 (At1g32870), ANAC032 (At1g77450), 

ANAC053 (At3g10500), ANAC087 (At5g18270) and ANAC102 (At5g63790; Ooka et al., 2003; Figure 

3a-e; Figure S4a-f). Based on the presence of a putative nuclear localization signal (NLS) in their NAC 

domain, all were predicted by PA as nuclear. In vivo, only ANAC032 appeared to be exclusively nuclear 

(Figure 3a), while the GFP fluorescence for ANAC013, ANAC053, and ANAC087 was observed also in 

the cytosol, indicating they could be regulated by nucleocytoplasmic partitioning (Figure 3b-e). 

Figure 2. Comparison between in silico and in vivo 

localizations of 49 proteins. 

(a) Computational prediction of the subcellular 

localization and functional categorization of 49 

H2O2-induced proteins. Predictions were obtained 

with PA (Szafron et al., 2004) and functional 

categories were defined based on TAIR7 annotation. 

Numbers of genes in each category are indicated. 

(b) In vivo subcellular localization was determined by 

transient expression of N- and/C-terminal GFP 

fusions in tobacco by means of agro-infiltration. 

Numbers of proteins in each category are indicated. 

PA, Proteome Analyst; ER, endoplasmatic 

reticulum. 
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Figure 3. Experimentally determined subcellular localizations of H2O2-induced proteins discussed in text.  

Localizations determined with C-terminal GFP fusions are indicated with an asterisk. Bars, 10 µm. 

 

 

Both ANAC013 and ANAC053 had previously been identified as possible membrane-associated 

NAC proteins and were designated as NAC with transmembrane motif 1-like (NTL; Kim et al., 2007), 

NTL1 and NTL4, respectively. In response to incoming stimuli, membrane-anchored NTL proteins are 

released and hence activated by a controlled proteolytic cleavage mechanism, called RIP, which provides 

a rapid post-translational activation of these NAC proteins (Kim et al., 2008 - Chapter 1). Both NTL1 

and NTL4 displayed a nucleocytosolic localization in tobacco (Figure 3b-c), besides a vesicular pattern 

visible in the case of GFP-NTL4 (Figure 3c) and a putative ER localization in the case for GFP-NTL1 
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(Figure 3b and Figure 4a-d). Several studies have reported that overexpression of NTLs leads to 

premature proteolytic processing (Kim et al., 2007; Kim et al., 2008; Seo et al., 2010a; Seo et al., 2010b). 

The nucleocytosolic localizations of NTL1 and NTL4 may be caused by agro-infiltration which results in 

ROS accumulation and activation of a defense response (Pruss et al., 2008). In turn, this might lead to 

regulated proteolysis, thereby releasing NTL1 and NTL4 in the cytosol where they are directed to the 

nucleus by the presence of a NLS. Indeed, NTL4 was recently shown to be proteolytically activated 

during drought-induced leaf senescence to bind to the promoters of genes encoding ROS biosynthetic 

enzymes (Lee et al., 2012). 

To investigate whether GFP-NTL1 is proteolytically processed, we transiently expressed GFP-

NTL1 fusion constructs in N. benthamiana and subsequently detected GFP-tagged proteins in total leaf 

extracts by performing western blot analysis using a monoclonal anti-GFP antibody (Figure 4e). Two 

bands were detected with similar sizes as the full-size form of GFP-NTL1 (~83 kDa) and the processed 

form of GFP-NTL1 (GFP-NTL1 ∆C; ~65 kDa; Figure 4e). Next, we assessed whether NTL1 is 

processed in stable transgenic Arabidopsis GFP-NTL1OE lines. While several kanamycin-resistant 

primary transformants of GFP-NTL1 and GFP-NTL4 fusion constructs could be obtained of which 

several displayed developmental defects and delayed flowering (Figure 4f-g), none of them showed GFP 

fluorescence. However, we could detect the full-size GFP-NTL1 and a fully processed form (GFP-

NTL1 ∆C) by western blot analysis (Figure 4e). In addition, we detected a strong upper band with an 

estimated molecular mass of approximately 120 kDa that could represent a post-translationally modified 

(ubiquitinated or glycosylated) form - that has been reported for other NTLs (Seo et al., 2010a) - and a 

band between the full-size and the fully processed GFP-NTL1, that could represent an intermediary 

processed form (Figure 4e). Taken together, we could demonstrate that overexpression leads to 

proteolytic processing of GFP-NTL1 in which the C-terminal transmembrane domain is removed, 

resulting in the release of GFP-NTL1 ∆C into the cytosol that, in turn, is redirected to the nucleus by 

the presence of an NLS in its NAC domain (Ooka et al., 2003). Further experiments are necessary to 

determine the exact subcellular localization of NTL1 and to assess which developmental and/or 

environmental signal(s) trigger(s) the proteolytically activation of NTL1. 

Besides being H2O2-responsive, ANAC102 is also induced under hypoxic conditions (Klok et al., 

2002; Christianson et al., 2009). In the transient assay, the localization pattern of ANAC102 differed 

depending on the position of the GFP tag: when GFP was positioned at the N-terminus, it was mainly 

nucleocytosolic, although a cytoskeletal localization was apparent as well (Figure S4e), but ANAC102-

GFP proteins displayed an exclusively chloroplastic localization both in tobacco and in transgenic 

Arabidopsis plants (Figure 3e; Figure S4f; Chapter 3). Increasing evidence is available that nuclear 

regulators, such as transcription factors, are present in organelles like mitochondria and plastids (Krause 
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and Krupinska, 2009). Because the chloroplastic localization of ANAC102 was unexpected, we 

investigated whether ANAC102 could be released from the chloroplast by a certain stimulus (Chapter 3).  

 

 

 
Figure 4. Overexpression of GFP-tagged NTLs results in premature processing leading to a nucleocytosolic 

localization and developmental defects.  

(a-d) Localization of GFP-NTL1 and an mCherry-labeled ER marker (ER-rk; Nelson et al., 2007) in N. benthamiana. 

Pictures depict (a) GFP fluorescence, (b) mCherry fluorescence, (c) merged images from GFP and mCherry 

fluorescence and (d) bright-field image. Bars, 20 µm. 

(e) NTL1 processing. The GFP-NTL1 gene fusion constructs were transiently or stably expressed in tobacco or 

Arabidopsis transgenic lines, respectively. Different forms of GFP-NTL1 were immunologically detected using an 

anti-GFP antibody. In tobacco, we could detect the full-size GFP-NTL1 (F, ~83 kDa) and the fully processed form of 

GFP-NTL1 (∆C). Besides the full-size and the processed GFP-NTL1 forms, putatively post-translationally modified 

forms of GFP-NTL1 (PTM; ~120 kDa) and partially processed forms (indicated with an asterisk) were detected in two 

independent Arabidopsis transgenic lines (1 and 2). ∆C, fully processed form of GFP-NTL1; F, full-size GFP-NTL1; 

kDa, kilodalton; PTM, post-translationally modified GFP-NTL1; TR, transient expression; WT, wild type. 

(f) 50-days-old (1-month-old, top right corner image) primary transformant of GFP-NTL1 overexpression plant with a 

stunted growth and severe delayed flowering. 

(g) Images of wild type (left) and three independent transgenic lines overexpressing GFP-NTL4 with a bushy stature 

and loss of apical dominance. 
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AP2 transcription factors 

The AP2 transcription factor family is plant-specific and comprises approximately 145 genes that are 

characterized by the presence of a DNA-binding AP2/ERF domain of 60–70 amino acids (Gutterson 

and Reuber, 2004). In our analysis, five members of the AP2 superfamily were included: AtERF069 

(CRF7; At1g22985), AtERF071 (At2g47520), AtERF019 (At1g22810), DREB2A (At5g05410), and 

CRF6 (At3g61630; Figure S4). Both GFP fusions of AtERF069 (CRF7) localized to the nucleus and 

were excluded from the nucleolus (Figure 3f and Figure S4k). AtERF071, also known as HRE2, is 

induced under hypoxic conditions and involved in low oxygen signaling (Licausi et al., 2010). Upon 

transient expression in tobacco, GFP-AtERF071 localizes to the nucleus and cytosol and AtERF071-

GFP to the nucleus. In Arabidopsis, however, the N-terminal fusion protein displays an exclusively 

nuclear localization (Figure 3g). Discrepancies between localizations in tobacco and Arabidopsis might 

hint towards putative relocalizations during oxidative stress. To investigate the behavior of GFP-tagged 

AtERF071 during oxidative stress, a transient expression assay in Arabidopsis mesophyll protoplasts was 

used, but no nucleocytosolic partitioning occurred after the addition of 1.5 mM or 3 mM H2O2 (data not 

shown). This study also included CRF6. CRFs are a small subclass of AP2 domain-containing 

transcription factors and are characterized by their transcriptional regulation by cytokinins. Arabidopsis 

contains in total eight CRF proteins that all have a unique CRF domain (Rashotte and Goertzen, 2010). 

Interestingly, six members of the CRF family relocalize from the cytosol to the nucleus upon cytokinin 

treatment (Rashotte et al., 2006). Here, CRF6 has a clear nucleocytosolic localization (Figure 3h), which 

is in contrast with the previous observation that CRF6 is exclusively cytosolic (Rashotte et al., 2006). 

 
Hydrogen peroxide-inducible proteins of unknown function 

In total, we studied 25 proteins of unknown function and could assign them to chloroplasts (1), 

ER/plasma membrane (6), nucleus and cytosol (11) or to no specific compartment (7) (Table 1 and 

Figure S5). Despite the absence of a genuine N-terminal chloroplast transit peptide, the only protein 

with unknown function targeted to the chloroplasts is At5g05220 (Figure 3i), although it had been 

predicted as cytosolic by PA, illustrating the need to experimentally validate in silico predictions. Six 

proteins of unknown function have an ER and/or plasma membrane localization [At1g05575, 

At2g18680, At3g18250, At3g17611 (AtRBL14), At2g25735, and At1g26380] (Figure S5b-g). Transient 

expression of both At1g05575 and At2g18680 indicated an ER localization (Figure 3j-k), whereas 

ectopic overexpression of At2g18680-GFP in Arabidopsis also revealed a large granular localization. 

Because of the hydrophobic nature of this protein, this localization might be an artefact. Both GFP 

fusions of At3g18250 and AtRBL14 (At3g17611) in tobacco and Arabidopsis appeared in a perinuclear 

ring, which is characteristic for an ER localization (Figure 3l-m). AtRBL14 contains four helical 

transmembrane regions (characteristic for rhomboid-like proteins) and a Zinc Finger of the RANBP2-
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type. Our observations indicate a punctuate plasma membrane localization of AtRBL14. Because, 

rhomboid proteins are integral membrane serine proteases known to be involved in RIP, it would be 

interesting to identify substrates that are potentially cleaved by AtRBL14 under oxidative stress 

conditions. 

 Furthermore, 11 H2O2-induced proteins with unknown function displayed a nuclear or 

nucleocytosolic localization (Table 1 and Figure S5h-r), whereas seven fusion proteins (At1g33600, 

At5g19230, At1g56060, At4g36500, At5g14730, At4g01870 and At2g21640) could not be assigned to a 

specific subcellular localization (Figure S5s-z). The localization of At1g33600, a leucine-rich repeat-

containing protein, exhibited ER characteristics (Figure 3n). Another protein, At5g19230 is an unknown 

membrane glycophosphatidylinositol (GPI)-anchored protein (Borner et al., 2002; Borner et al., 2003) 

that contains an N-terminal secretory signal peptide and an hydrophobic C-terminal peptide necessary 

for GPI-anchoring in membranes. However, removal of this GPI-anchor by cleavage can result in a 

redistribution in the soluble compartment (Borner et al., 2002; Borner et al., 2003). Interestingly, the 

transient expression of GFP-At5g19230 in tobacco revealed a perinuclear ring, a vesicular pattern, some 

features of the tonoplast and a plasma membrane localization (Figure 3o). Presumably, the presence of 

the GFP tag at the N-terminus blocks the signal peptide for targeting to the secretory pathway leading to 

mistargeting, whereas the hydrophobic C-terminal GPI-anchoring site still allows the association with 

internal membranes resulting in this particular localization. For At1g56060, the localization differed 

depending on the position of the GFP tag. GFP-At1g56060 had a distinct granular pattern and plasma 

membrane localization (Figure S5t), whereas production of the C-terminal fusion protein resulted in 

fluorescence in the ER in some cells, but a clear plasma membrane localization in most cells (Figure 3p). 

Therefore, we assume that At1g56060 is located in the plasma membrane. The localization of GFP-

At4g36500 displayed ER features, such as the perinuclear ring and a reticular pattern (Figure 3q). 

At5g14730, one of the most highly induced HIGs of our data set, contains a domain of unknown 

function (DUF1645, IPR012442). The localization of the N-terminal GFP fusion again shows ER 

features (Figure 3r). However, it is very likely that the presence of GFP hampers efficient ER targeting. 

At4g01870 contains three domains: one N-terminal dipeptidyl peptidase IV (DPP IV) region domain, 

one WD-40 β-propeller repeat, and one TolB-related β-propeller domain. In tobacco, GFP-At4g01870 

again showed the characteristic perinuclear ring and a plasma membrane localization, but in Arabidopsis, 

only a plasma membrane localization was apparent (Figure 3s). UPOX (At2g21640) had previously been 

identified as a mitochondrial oxidative stress marker protein (Sweetlove et al., 2002; Gadjev et al., 2006; 

Giraud et al., 2008; Ho et al., 2008; Van Aken et al., 2009). In tobacco, UPOX-GFP localizes to punctate 

structures and to the nucleus and cytosol (Figure 3t), whereas in Arabidopsis, it has a nucleocytosolic 

localization. Further detailed studies are necessary to pinpoint the exact localization of these unknown 
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proteins. 

 
HIGs with miscellaneous functions 

Besides transcription factors and proteins of unknown function, some transcripts with miscellaneous 

functions were also included in our study because of their strong induction by photorespiratory H2O2 

(Table 1 and Figure S6). At3g02800-GFP, a phosphoprotein tyrosine phosphatase, localized to the 

nucleus and cytosol (Figure 3u). For SufE2 (At1g67810), which is involved in iron-sulphur metabolism, 

we could confirm the previously reported chloroplastic localization (Figure 3v; Murthy et al., 2007). 

Furthermore, we also determined the localization of 18 heat shock-responsive genes, including two 

sHSPs (HSP17.6B-CI and HSP17.8-CI), a DnaJ N-terminal domain-containing protein (AtDjC68) and 

AtFes1A (At3g09350). Both HSP17.6B-CI and HSP17.8-CI belong to the class I subfamily, suggesting a 

cytosolic localization (Miernyk, 2001). Interestingly, transient expression of GFP-HSP17.6B-CI in 

tobacco revealed, in addition to a cytosolic, also a granular localization (Figure 3w and Figure S6c). 

These granules resemble the well-known cytosolic heat stress granules (HSGs) formed under elevated 

temperatures into which sHSPs - together with other HSPs - are incorporated (Nakamoto and Vígh, 

2007). In non-stressed Arabidopsis transgenic plants generated with the same GFP construct, only a 

cytosolic localization was found (Figure S6d), suggesting that these HSGs might also be formed under 

other stress conditions, such upon accumulation of ROS that results from Agrobacterium infiltration 

(Pruss et al., 2008). In contrast to the suggested cytosolic localization of HSP17.8-CI (Miernyk, 2001), it 

was nucleocytosolic both in tobacco and Arabidopsis (Figure 3x). AtFes1A, an ortholog of the human 

HspBP-1 and yeast Fes1p, had recently been published as a high temperature-induced protein that 

interacts with HSP70 (Zhang et al., 2010). Transient expression in mesophyll protoplasts of AtFes1A-

GFP revealed a nucleocytosolic localization (Zhang et al., 2010), in agreement with our observations 

(Figure 3y). 

 

Localization to subnuclear structures 

The use of GFP fusion proteins also enables an in vivo localization to subcompartments. For instance, 

some proteins of our study localized to subnuclear structures (Figure 5). Besides a plasma membrane 

localization, At2g25735 showed a punctate, nuclear speckle-like pattern that is thought to be in involved 

in mRNA splicing. Moreover, the nuclear localization pattern of At2g25735 showed also a ring around 

the nucleolus, which is the site of rDNA transcription and ribosome biogenesis (Figure 5a). Because of 

the lack of evidence for a functional border between the nucleus and the nucleolus, nucleolar targeting is 

based on direct and indirect interactions with rDNA and its transcripts (Carmo-Fonseca et al., 2000). The 

nucleolar ring-like localization might be assigned to one of the three morphological components of the 

nucleolus (the fibrillar centres, the dense fibrillar component and the granular component; Pendle et al., 
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Figure 6. Oxidative stress-induced relocalization of AtDjC68. 

Top, Percentage of AtDjC68 transfected Arabidopsis mesophyll 

protoplasts in the absence (control) or presence of 1.5 mM H2O2. 

Data are means ± SEM (n = 2). In each biological repeat 

experiment, the subcellular localization of 80-100 GFP-positive 

protoplasts was assessed.  

Bottom, Subcellular localization of AtDjC68 in Arabidopsis 

mesophyll protoplasts. Before the addition of H2O2, a 

heterogeneous population with cytosolic or nucleocytosolic 

fluorescence was apparent (a,b). Ten hours after the addition of 1.5 

mM H2O2, protoplasts with an exclusively nuclear localization were 

present, whereas the population of protoplasts with a cytosolic 

localization decreased (c,d). (a,c) GFP fluorescence; (b,d) Merged 

image of GFP fluorescence and bright-field image. Bars, 20 μm. 

GFP, green fluorescent protein. 

2005). Both At1g28190 and At3g02840 displayed an increased accumulation in the nucleolus. In fact, the 

nucleolus is considered to play a role in multiple stress responses (Figure 5b-c; Shaw and Brown, 2004). 

 

 

  

 

 

AtDjC68, a DnaJ heat shock N-terminal domain-containing protein (At1g71000) localized in 

nuclear speckles in tobacco (Figure 5d). Transient expression of AtDj68 in Arabidopsis mesophyll 

protoplasts resulted in a nucleocytosolic localization, whereas the addition of 1.5 mM H2O2 resulted in 

an exclusively nuclear localization in almost 15% of the protoplasts (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Targeting to subnuclear structures in tobacco. 

(a) At2g25735, a protein of unknown function, showing both a plasma

membrane localization and a speckle-like pattern in the nucleus. Both

At1g28190 (b) and At3g02840 (c) displayed a nuclear localization with an

increased accumulation in the nucleolus. (d) AtDjC68, a DnaJ heat shock N-

terminal domain-containing protein (At1g71000), localized in nuclear speckles.

Bars, 5 μm. 



Chapter 2 

48 

CONCLUSION 

 

With this analysis, we provide a framework of subcellular localizations of oxidative stress-induced genes 

in plants that depicts the subcellular localization of 49 and 31 H2O2-induced proteins, determined by 

transient expression in tobacco and stable expression in transgenic Arabidopsis plants, respectively. 

Furthermore, we identified several proteins as putative candidates for relocalization under oxidative 

stress conditions. Future detailed investigation of these candidates will provide new insights into the 

dynamic trafficking during oxidative stress and in the overall ROS signaling cascade in plants. The 

integration of protein interaction data of these H2O2-induced proteins together with the subcellular 

localization data can provide additional information on the biological function of these proteins and 

their role in the overall response towards H2O2.  
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MATERIALS AND METHODS 

 

Microarray meta-analysis 

For the comparative analysis on transcriptional changes induced in catalase-deficient plants after HL 

exposure, we compiled the data of one in-house stored and two published H2O2-dependent microarray 

experiments that were generated with different platforms (for experimental details, see Table S1). A 

previous cross-platform comparison of Affymetrix ATH1, Agilent and Complete Arabidopsis 

Transcriptome MicroArray (CATMA) arrays revealed a comparable sensitivity and a fair agreement of 

signal intensities (Allemeersch et al., 2005). From the Affymetrix ATH1 data set, genes showing at least a 

threefold induction in CAT2HP1 plants after 3 h of HL exposure were selected (Vanderauwera et al., 

2005), whereas from the Agilent Arabidopsis V3 data set, genes showing a significant induction [two-way 

analysis of variance, interaction significance + genotype and treatment significance (P<0.001; Q<0.05), and 

threefold induction] in CAT2HP2 plants after 1 h of HL exposure were retained (Vanderauwera et al., 
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2011) and from the CATMA (v2.3, ArrayExpress accession n° A-MEXP-120) experiment, a data set was 

created of genes showing a significant induction [mixed model according to Wolfinger et al., 2001): 

interaction significance (P<0.001)] in CAT2HP1 plants after 8 h of HL irradiation (Hoeberichts et al., 

unpublished results). 

 

Subcellular localization predicted in silico with Proteome Analyst 

Protein sequences were downloaded from The Arabidopsis Information Resource (TAIR7; Rhee et al., 

2003; http://www.arabidopsis.org), converted to FASTA format and analyzed in Proteome Analyst 

(PA), a web-based tool for high-throughput prediction of protein features 

(http://www.cs.ualberta.ca/~bioinfo/PA; Szafron et al., 2004). 

 

Hydrogen peroxide-induced genes within different abiotic stresses 

Within the different tools of GENEVESTIGATOR, the Response Viewer was used to find the 

response profiles of individual H2O2-induced genes (designated HIGs) to various environmental stimuli 

(Zimmermann et al., 2004; Zimmermann et al., 2005). Out of the different conditions annotated, the 

AtGenExpress abiotic stress time series (Kilian et al., 2007) and AtGenExpress light treatments UV-A 

and UV-AB (Peschke and Kretsch, 2011) were selected. Expression values were median-centered across 

each gene and subjected to hierarchical average linkage clustering (Euclidian distance) using the GENESIS 

software (Sturn et al., 2002). 

 

BiNGO analysis 

Overrepresented gene ontology (GO) terms in the HIG data set were identified with the Biological 

Networks Gene Ontology (BiNGO) tool (Maere et al., 2005) in Cytoscape 2.6.0 (Shannon et al., 2003). 

The hypergeometric test was chosen at a significance value of 0.05 with the Benjamini and Hochberg 

false discovery rate correction for multiple testing (Benjamini and Yekutieli, 2001). 

 

CORNET analysis 

The online data mining tool CORrelation NETworks (CORNET; 

http://bioinformatics.psb.ugent.be/cornet; De Bodt et al., 2010) provides insights in co-expression 

networks with transcriptome data and integrates proteome data, localization data (both in silico and 

experimental) and functional data of Arabidopsis. Out of the different predefined data sets available, the 

AtGenExpress abiotic stress time series (Kilian et al., 2007) were used. With the co-expression tool, the 

Pearson correlation coefficient threshold was set >0.7 and pairwise correlation between HIGs was 

calculated. The output was visualized in Cytoscape 2.6.0 (Shannon et al., 2003). 
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Cloning of open reading frames 

Full-length open reading frames (with and without stop codon) were amplified by polymerase chain 

reaction (PCR) from first-strand cDNA of Arabidopsis thaliana (L.) Heynh. ecotype Columbia (Col-0), 

respectively, with gene-specific primers extended with the attB sites for Gateway cloning (Invitrogen 

Carlsbad, CA, USA) (Table S2). PCR reactions were run with high-fidelity Phusion DNA polymerase 

(Finnzymes OY, Espoo, Finland) and fragments were cloned into the Gateway entry vectors 

(Invitrogen) according to the manufacturer’s instructions. 

 

Generation of GFP-protein fusion constructs 

Constitutive promoter-driven expression clones were generated in the binary destination vectors 

pK7FWG2 and pK7WGF2 (Karimi et al., 2007), resulting in C- and N-terminal green fluorescent 

protein (GFP)-protein fusions, respectively, under the control of the cauliflower mosaic virus 35S 

(CaMV35S) promoter. All constructs were transferred into the Agrobacterium tumefaciens strain C58C1 

harboring the virulence plasmid MP90. The 35S promoter-driven GFP-fusion constructs for protoplast 

transfection were made by means of the high-copy plasmids p2FGW7 and p2GWF7, resulting in N- and 

C-terminal fusions, respectively (Karimi et al., 2007). 

 

Transient expression and stable genetic transformation 

All GFP protein fusion constructs were transiently expressed in leaf epidermal cells of 5-week-old wild-

type tobacco (Nicotiana benthamiana) by Agrobacterium tumefaciens–mediated leaf infiltration (Sparkes et al., 

2006). Arabidopsis mesophyll protoplasts were prepared and transfected according to Yoo et al., (2007). 

Protoplasts (1 x 105) were incubated in washing and incubation solution (0.5 M mannitol, 4 mM 2-(N-

morpholino)ethanesulfonic acid, pH 5.7, and 20 mM KCl) supplemented with 1.5 mM or 3 mM H2O2 at 

21°C (continuous light). To identify potential relocalizations, the subcellular localization of, in total three 

times, 100 protoplasts was assessed at different time points by laser scanning confocal microscopy. 

 For stable expression, the constructs were transformed into Arabidopsis Col-0 plants by 

Agrobacterium-mediated floral dip (Clough and Bent, 1998). Kanamycin-resistant plants were selected on 

half-strength (½) Murashige and Skoog (MS) medium (Duchefa Biochemie, Haarlem, The Netherlands), 

1% (w/v) sucrose, 0.7% (w/v) agar, pH 5.7 and 35 mg L-1 kanamycin (Sigma-Aldrich, St. Louis, MO, 

USA) at 21°C and 16-h light/8-h dark photoperiod. For each construct, 10 kanamycin-resistant 

3-week-old plants were analyzed for GFP fluorescence using laser scanning confocal microscopy. 

Homozygous lines with a single T-DNA locus were selected by segregation. 
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Confocal microscopy and image analysis 

The adaxial leaf epidermis was scanned by fluorescence microscopy with a confocal microscope 100M 

and software package LSM 510 version 3.2 (Zeiss, Jena, Germany), equipped with a 63x water corrected 

objective (numerical aperture 1.2). GFP fluorescence was imaged in a single channel setting with 488 nm 

for GFP excitation. 

 

Expression analysis 

Plants were grown in vitro on ½ MS medium (21°C, 16-h/8-h photoperiod) till stage 1.04 (4th true leaf 

1 mm in size; Boyes et al., 2001). For each transgenic line, 32 plants were pooled and crushed with liquid 

nitrogen. For the northern blot analysis, total RNA was prepared using TRI Reagent (MRC, USA) 

according to manufacturer’s instructions. For each sample, 8 μg RNA was mixed with 15 μL 100% 

DMSO, 3 μL 40% glyoxal and 3 μL 1 M sodium phosphate. After electrophoresis in 1% agarose gels, 

RNA was transferred overnight to a Hybond N+ membrane (https://www.roche-applied-science.com). 

Subsequently, the RNA was cross-linked to the membrane using a UV cross-linker. After a pre-

hybridization step, the membrane was hybridized overnight with full-length cDNA probe generated by 

PCR from cDNA clones using the DIG probe synthesis kit (Roche). After washing at high-stringency (2 

x 5’ at 2 x SSC, 0.1% SDS followed by 2 x 15’ at 0.2 x SSC, 0.1% SDS at 68°C), membranes were 

visualized with chemiluminescence using an anti-DIG antibody. As a loading control, rRNA was 

visualized by methylene blue staining of membranes, using standard methods. 

For the western blot analysis, total protein extracts were prepared by grinding leaf material 

(100 mg) in 200 μL of extraction buffer (100 mM HEPES (pH 7.5), 1 mM EDTA, 10 mM β-

mercaptoethanol and 1 mM phenylmethanesulfonylfluoride) and a protease inhibitor cocktail 

(COMPLETE; Roche). Insoluble debris was removed by centrifugation at 20800 x g for 15 min at 4°C. 

Protein concentrations were determined with the Bradford method (Zor and Selinger, 1996). Proteins 

(10 μg) were separated on a 12.5% SDS PAGE gel, transferred to a P membrane (Millipore, 

http://www.millipore.com/) and immunodetected with the Living Colors A.v. Monoclonal antibody 

(JL-8; Clontech Laboratories; http://www.clontech.com/) by means of the Western Lightning kit (GE-

Healthcare; http://gehealthcare.com/). 
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ADDENDUM 

 

Phenotypic and expression analyses of Arabidopsis lines overexpressing GFP-tagged hydrogen 

peroxide-induced genes 

Stable expression of GFP-tagged HIGs not only allowed us to consolidate the subcellular localizations, 

but also permitted us to assess the impact on plant growth and development. In total, 60 fusion 

constructs (both N- and C-terminal), that were functional in the primary screen in N. benthamiana, were 

introduced into Arabidopsis wild-type plants. Per construct, at least 10 kanamycin-resistant primary 

transformants were analyzed for GFP fluorescence using confocal laser scanning microscopy. In total, 

GFP-positive transgenic lines were obtained for 34 constructs, representing 30 different proteins 

(Table 2). 

 

 

Table 2. Overview of the transgenic Arabidopsis lines expressing HIGs. 

AGI code Protein description In vivo 
localization 

Generation Phenotype 

At2g21640 UPOX UD T3  
At5g42380 Calmodulin-like 37 (CML37) NC T1  
At5g13080 WRKY75 NU T1  
At2g29500 HSP17.6B-CI CY T3  
At1g07400 HSP17.8-CI CY T2  
At3g02800 Tyrosine phoshatase NC T3 bigger rosettes when grown in vitro 
At5g36925 Unknown protein NC T3 bushy stature, dark curled leaves 
At3g47550 RING/FYVE/PHD zinc finger NC T3 premature death 
At5g24110 WRKY30 NC T3 curled leaves 
At1g05340 Unknown protein NC T1  
At1g10585 bHLH transcription factor NC T2  
At1g22810 AtERF019 NC T1 smaller, died prematurely 
At1g22985 AtERF069 NU T3 smaller 
At1g22985* AtERF069 NU T3 smaller 
At1g26380 FAD-binding berberine family protein ER T2  
At1g26380* FAD-binding berberine family protein ER T2  
At1g56060 Unknown protein UD T3 smaller, delayed flowering 
At1g77450 ANAC032 NU T3  
At2g18680 Unknown protein ER T2  
At2g18680* Unknown Protein ER T1  
At2g38250 Homeodomain-like superfamily protein NU T1  
At2g41730 Unknown protein NC T2  
At2g47520 HRE2 NU T2  
At3g07090 PPPDE putative thiol peptidase NC T2  
At3g18250 Putative membrane lipoprotein ER T2  
At3g61630 CRF6 NC T3 darker plants, seedless siliques 
At4g01390 MATH domain-containing protein NC T3 severe defects at seedling stage 
At4g01870 TolB protein-related UD T2  
At4g39670 ACDH110 NC T1  
At3g17611 RHOMBOID-like protein 14 (RBL14) ER T2  
At5g40690 Unknown protein NC T1 abnormal leave shape, smaller plants 
At4g22530 SAM-dependent methyltransferase NC T2  
At4g22530* SAM-dependent methyltransferase NC T2  
At5g63790 ANAC102 CL T3  

 

For 30 HIGs, GFP-positive transgenic Arabidopsis lines were obtained. The in vivo localization, generation and 

observed phenotypes are indicated. C-terminal GFP fusion constructs are indicated with an asterisk and constructs 

for which homozygous transgenic lines are available are indicated in bold. HIG, H2O2-induced gene; NU, nucleus; 

CY, cytosol; NC, nucleus and cytosol; CL, chloroplasts; ER, endoplasmic reticulum; UD, undetermined. 
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 Within these GFP fusion transgenics, eleven of them showed phenotypic abnormalities ranging 

from improved or decreased growth, delayed flowering, aberrant leaf morphology to severe 

developmental defects or even premature death (Table 2 and Figure 7). For instance, overexpression of 

GFP-At5g36925, a peptide of unknown function, led to a bushy stature with thick contorted leaves 

(Figure 7a – Chapter 5). Overexpression of an N-terminal fusion of At3g47550, encoding a 

RING/FYVE/PHD Zinc Finger family protein, resulted in premature death (Figure 7b and Figure 8d). 

Although GFP-At3g47550 transcripts were detected with northern blot analysis (Figure 8b), GFP-

At3g47750 was not detected by western blot analysis (Figure 8c), indicating that the observed phenotype 

could be a loss-of-function phenotype. In fact, constitutive and strong expression of GFP-tagged 

proteins often results in gene-silencing or protein aggregation that often leads to protein degradation (de 

Folter et al., 2007; Miyawaki, 2011). Several independent overexpression lines of GFP-WRKY30 had 

curled leaves (Figure 7b and Figure 8d) and accumulated processed forms of GFP-WRKY30 (Figure 8c). 

Several GFP fusion transgenic lines were visibly smaller in comparison to wild-type plants. For example, 

GFP-AtERF019 overexpression lines were significantly smaller and died prematurely. In the case of 

GFP-At1g56060, a protein of unknown function, the phenotype was dependent on the degree of 

expression (Figure 7e,f). While strong overexpression lines of GFP-At1g56060 were markedly smaller 

than wild type (Figure 7e and Figure 8), plants of the weak overexpression line (Figure 7f and Figure 8) 

seemed at first comparable to wild-type plants but were later significantly darker and developed serrated 

leaves (Figure 7f). As GFP-At1g56060 was localized in granules (see above) that could represent GFP 

aggregates (Miyawaki, 2011), this phenotype could be the result of the formation of non-functional 

protein complexes. In the case of CRF6, we obtained several independent stable overexpression 

transgenic lines of both N- and C-terminal fusions with seedless siliques (Figure 7g,h). In fact, double 

mutants of both crf5 and crf6 showed a similar phenotype (Rashotte and Goertzen, 2010). As CRFs form 

homo- or heterodimers (Rashotte and Goertzen, 2010), the overexpression of a GFP-tagged version of 

CRF6 could result in a dominant negative effect by sequestering both CRF6 and CRF5. A drastic 

phenotype was seen in several independent overexpression lines of GFP-At4g01390: seedlings had a 

short swollen root and hypocotyls, and thick amorphous cotyledons that often retained the seed coat. 
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Figure 7. Phenotypes of transgenic Arabidopsis plants overexpressing GFP fusion 

constructs.  

(a) 50-days-old GFP-At5g36925OE plant (T1). (b) 2-week-old homozygous transgenic line 

expressing a C-terminal GFP fusion construct of At3g47550, encoding a 

RING/FYVE/PHD ZF family protein, displaying premature death. (c) 1-month-old wild 

type (left) and three primary transformants overexpressing GFP-WRKY30. (d) 1-month-old 

wild type (left) and a GFP-AtERF019OE line (T1). (e,f) 2-week-old independent homozygous 

lines with strong (e) or weak (f) expression of an N-terminal GFP fusion of At1g56060, a 

protein of unknown function. (g) 1-month-old wild type (left) and a primary transformant 

with weak CRF6-GFP expression. (h) From left to right: wild type, two primary 

transformants harboring the GFP-CRF6 construct and one the CRF6-GFP construct. (i,j) 12-

days-old homozygous transgenic plant overexpressing an N-terminal GFP fusion of a 

MATH domain containing protein (At4g01390). Images were taken with stereomicroscope 

(i) or a stereomicroscope equipped for epifluorescence imaging (j). 
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Figure 8. Expression and phenotypic analyses of homozygous Arabidopsis lines expressing GFP fusion constructs. 

(a) Overview of the homozygous lines used in this expression analyses. The length of the fusion construct and the molecular 

weight are indicated. Bp, base bairs; kDa, kilodalton. 

(b) Northern blot analysis. Total RNA was extracted from 2-week-old seedlings and mRNA was detected using gene-specific 

probes. 

(c) Detection of GFP-tagged proteins by western blot analysis using a monoclonal anti-GFP antibody. Full-size GFP-tagged 

proteins are indicated by an arrowhead. 

(d) Images of 2-week-old of representative homozygous plants expressing GFP fusion constructs. 
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SUPPORTING INFORMATION 

 

Supplemental Figures S1-6 and Tables S1-4 are available from the online version of this article 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2011.02323.x/suppinfo). 

 

 

 
Figure S1. Microarray comparison and in silico prediction of the subcellular localization of 783 HIGs. 

(a) Venn diagram showing the distribution of 783 HIGs within the three microarray experiments (Affymetrix, CATMA, and 

Agilent). Numbers of genes induced within each experiment are indicated in parentheses. In total, 24 genes (3%) were 

positively regulated in all experiments, whereas 158 transcripts (20%) accumulated in at least two experiments.  

(b) In silico prediction of the subcellular localization of 783 HIGs by Proteome Analyst (PA; 

http://www.cs.ualberta.ca/~bioinfo/PA/; Szafron et al., 2004). The different subcellular localization sites are indicated 

together with the number of proteins predicted to reside within that subcellular compartment. Proteins predicted to reside in 

two or more subcellular compartments are grouped in ‘combination’, with the exception of the nucleocytosolic localized 

proteins that are presented separately. Most proteins are predicted to reside in the nucleus, cytosol or plasma membrane. 

Entries without a significant in silico prediction were not included. 
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Figure S2. Distribution in transcriptional induction towards photorespiratory H2O2 of the 85 selected HIGs. 

Genes were first categorised according to their functional annotation. For each gene, the strongest response towards 

photorespiratory H2O2 was plotted in terms of peak fold change in gene expression on the y-axis. Three genes were induced 

by photorespiratory H2O2 more than 250-fold: 342-fold, 271-fold, and 561-fold for AtHSP17.6-CI (At1g53540), AtERF019 

(At1g22810), and a gene of unknown function (At3g46280), respectively. For 49 HIGs, the protein localizations were 

determined (indicated in bold). 
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Figure S3. Co-expression analysis of 85 HIGs during abiotic stress with CORNET. 

The co-expression network was based on pair-wise correlation analyses with the 

AtGenExpress abiotic stress compendium by means of web tool CORNET. Nearly 

all genes were part of one or two tightly co-regulated networks. 
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Figure S4. In vivo localization of transcription factors and nucleic acid-binding proteins in N. benthamiana. 

Localizations determined with C-terminal GFP fusions are indicated with an asterisk. Bars, 10 µm. 
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Figure S5. In vivo localizations of proteins of unknown function in N. benthamiana.  

Localizations determined with C-terminal GFP fusions are indicated with an asterisk. Bars, 10 µm. 
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Figure S6. In vivo localization of proteins with miscellaneous functions in N. benthamiana and A. thaliana (At). 

Localizations determined with C-terminal GFP fusions are indicated with an asterisk. Bars, 10 µm. 

 

 

 
 

Table S1. Overview of the three independent genome-wide microarray experiments included in the comparative analysis. 

Microarray 
Platform 

Microarray Type # Probes CAT-deficient 
line 

Residual 
CAT 
activity 

HL treatment 
µmol.m-2.s-1 

Time 
points (h) 

Source 

Affymetrix ATH1 GeneChip 22,763 probe 
sets 

CAT2HP1 20% 2000 0, 3, 8 Vanderauwera 
et al., 2005 

CATMA CATMA v2.3 22,072 GSTs CAT2HP1 20% 2000 0, 1, 8 Hoeberichts et 
al.,  

Agilent Arabidopsis v3 Oligo array 40,000 features CAT2HP2 7% 1000 0, 1 Vanderauwera 
et al., 2011 

For each experiment, details on the experimental parameters and microarray platform are listed. CAT, catalase; CATMA, 

Complete Arabidopsis Transcriptome MicroArray; GST, Gene specific tag. 

 

 

 

Table S2. Primers for ORF amplification and subsequent cloning in pDONR221. 

See online version of this article (http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2011.02323.x/suppinfo) and from 

the attached CD with Supporting Information, Chapter 2. 
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Table S3 Overview of the overrepresented GO terms of the HIG data set. 

The BiNGO overrepresentation analysis software was used to identify enriched GO categories in the HIG data set compared 

to all other GO-annotated genes in the Arabidopsis genome. GO categories with a P-value ≤0.05 were considered to be 

enriched in the HIG data set. 

 
(a) Top 20 of overrepresented GO terms (p<0.05) in the 783 HIGs data set.  
 

GO-ID Description p-value corr. p-value # selected # total frequency
Biological Process 

50896 response to stimulus 2.47E-24 1.15E-21 125 1755 7.1 
6950 response to stress 9.10E-19 2.12E-16 64 665 9.6 
6951 response to heat 2.44E-16 3.78E-14 21 73 28.8 

42221 response to chemical stimulus 4.78E-16 5.56E-14 65 775 8.4 
9404 toxin metabolism 4.16E-13 3.22E-11 15 45 33.3 
9407 toxin catabolism 4.16E-13 3.22E-11 15 45 33.3 
9636 response to toxin 5.48E-13 3.64E-11 16 54 29.6 
9266 response to temperature stimulus 1.15E-11 6.71E-10 26 190 13.7 
9628 response to abiotic stimulus 2.32E-09 1.20E-07 40 513 7.8 

19748 secondary metabolism 5.09E-08 2.37E-06 25 261 9.6 
16567 protein ubiquitination 1.17E-07 4.94E-06 13 76 17.1 
32446 protein modification by small protein conjugation 3.93E-07 1.52E-05 13 84 15.5 
9611 response to wounding 7.61E-07 2.72E-05 12 75 16.0 
6800 oxygen and reactive oxygen species metabolism 8.25E-07 2.74E-05 17 152 11.2 
9605 response to external stimulus 3.49E-05 9.59E-04 14 143 9.8 
6979 response to oxidative stress 3.49E-05 9.59E-04 14 143 9.8 
6512 ubiquitin cycle 3.50E-05 9.59E-04 13 125 10.4 
9719 response to endogenous stimulus 6.16E-05 1.59E-03 33 584 5.7 
7582 physiological process 1.09E-04 2.66E-03 285 8922 3.2 
6118 electron transport 2.53E-04 5.87E-03 20 304 6.6 

Molecular Function 
16491 oxidoreductase activity 3.57E-11 1.25E-08 61 914 6.7 
3824 catalytic activity 2.16E-09 3.79E-07 228 6139 3.7 
4842 ubiquitin-protein ligase activity 4.05E-06 3.89E-04 15 138 10.9 

19787 small conjugating protein ligase activity 4.43E-06 3.89E-04 15 139 10.8 
16881 acid-amino acid ligase activity 6.30E-06 4.42E-04 15 143 10.5 
5516 calmodulin binding 2.32E-05 1.36E-03 11 89 12.4 

16879 ligase activity, forming carbon-nitrogen bonds 3.76E-05 1.89E-03 15 166 9.0 
16629 12-oxophytodienoate reductase activity 1.78E-04 6.94E-03 3 5 60.0 
9916 alternative oxidase activity 1.78E-04 6.94E-03 3 5 60.0 

16740 transferase activity 3.55E-04 1.25E-02 84 2192 3.8 
9055 electron carrier activity 4.10E-04 1.31E-02 10 103 9.7 
4364 glutathione transferase activity 5.99E-04 1.75E-02 3 7 42.9 

16682 oxidoreductase activity, acting on diphenols and related 
substances as donors, oxygen as acceptor 

9.39E-04 2.54E-02 3 8 37.5 

8270 zinc ion binding 1.11E-03 2.79E-02 34 729 4.7 
16679 oxidoreductase activity, acting on diphenols and related 

substances as donors 
1.38E-03 3.23E-02 4 19 21.1 

8194 UDP-glycosyltransferase activity 1.53E-03 3.37E-02 10 122 8.2 
15036 disulfide oxidoreductase activity 1.87E-03 3.78E-02 8 85 9.4 
9973 adenylyl-sulfate reductase activity 2.07E-03 3.78E-02 2 3 66.7 
3700 transcription factor activity 2.13E-03 3.78E-02 48 1178 4.1 

46872 metal ion binding 2.33E-03 3.78E-02 44 1061 4.1 

 
 
(b) Overrepresented GO terms (p< 0.05) in the overlap (158) of 783 HIGs data set. 
 

GO-ID Description p-value corr. p-value # selected # total frequency
Biological Process 

6951 response to heat 2.47E-18 4.29E-16 14 73 19.18 
9266 response to temperature stimulus 1.25E-13 7.83E-12 15 190 7.89 
6950 response to stress 1.35E-13 7.83E-12 24 665 3.61 

50896 response to stimulus 2.72E-11 1.19E-09 34 1755 1.94 
9628 response to abiotic stimulus 1.87E-08 6.50E-07 16 513 3.12 

42221 response to chemical stimulus 1.97E-07 5.71E-06 18 775 2.32 
6979 response to oxidative stress 1.16E-06 2.88E-05 8 143 5.59 
6800 oxygen and reactive oxygen species metabolism 1.83E-06 3.99E-05 8 152 5.26 
6118 electron transport 2.61E-04 5.04E-03 8 304 2.63 

Molecular Function      
9055 electron carrier activity 2.24E-04 2.46E-02 5 103 4.85 

16491 oxidoreductase activity 3.52E-04 2.46E-02 14 914 1.53 
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(c) Overrepresented GO terms (p< 0.05) in the 24 common genes of the 783 data set. 
 

GO-ID Description p-value corr. p-value # selected # total frequency
Biological Process      

6951 response to heat 3.69E-13 2.59E-11 7 73 9.6 
6950 response to stress 1.47E-10 5.14E-09 10 665 1.5 
9266 response to temperature stimulus 3.37E-10 7.87E-09 7 190 3.7 

50896 response to stimulus 8.50E-09 1.49E-07 12 1755 0.7 
9628 response to abiotic stimulus 3.16E-07 4.43E-06 7 513 1.4 

43335 protein unfolding 9.63E-04 9.63E-03 1 1 100.0 
15692 lead ion transport 9.63E-04 9.63E-03 1 1 100.0 
46685 response to arsenic 1.93E-03 1.68E-02 1 2 50.0 
10262 somatic embryogenesis 2.89E-03 2.25E-02 1 3 33.3 
30001 metal ion transport 5.88E-03 4.12E-02 2 120 1.7 
1666 response to hypoxia 7.68E-03 4.89E-02 1 8 12.5 

Molecular Function      
16667 oxidoreductase activity, acting on sulfur group of donors 1.53E-04 7.04E-03 2 24 8.3 
45174 glutathione dehydrogenase (ascorbate) activity 2.31E-03 2.36E-02 1 3 33.3 
16672 oxidoreductase activity, acting on sulfur group of donors. 

quinone or similar compound as acceptor 
2.31E-03 2.36E-02 1 3 33.3 

9973 adenylyl-sulfate reductase activity 2.31E-03 2.36E-02 1 3 33.3 
15038 glutathione disulfide oxidoreductase activity 3.08E-03 2.36E-02 1 4 25.0 
15037 peptide disulfide oxidoreductase activity 3.08E-03 2.36E-02 1 4 25.0 

 
 
(d) Overrepresented GO terms (p< 0.05) in the 85 HIGs data set. 
 

GO-ID Description p-value corr p-value # selected # total frequency 
Biological Process  

6951 response to heat 9.77E-08 5.18E-06 6 73 8.2 
9266 response to temperature stimulus 2.62E-05 6.94E-04 6 190 3.2 

10286 heat acclimation 2.59E-04 4.13E-03 2 8 25.0 
45449 regulation of transcription 3.71E-04 4.13E-03 11 1064 1.0 
19219 regulation of nucleobase, nucleoside, nucleotide and 

nucleic acid metabolism 
3.89E-04 4.13E-03 11 1070 1.0 

31323 regulation of cellular metabolism 4.96E-04 4.23E-03 11 1101 1.0 
19222 regulation of metabolism 5.59E-04 4.23E-03 11 1117 1.0 
6350 transcription 6.39E-04 4.23E-03 11 1135 1.0 
6950 response to stress 9.66E-04 5.32E-03 8 665 1.2 

51244 regulation of cellular physiological process 1.05E-03 5.32E-03 11 1205 0.9 
50794 regulation of cellular process 1.10E-03 5.32E-03 11 1213 0.9 
50791 regulation of physiological process 1.38E-03 6.09E-03 11 1247 0.9 
9873 ethylene mediated signaling pathway 1.71E-03 6.99E-03 2 20 10.0 
6355 regulation of transcription. DNA-dependent 2.10E-03 7.97E-03 7 585 1.2 
6351 transcription. DNA-dependent 2.61E-03 8.73E-03 7 608 1.2 

32774 RNA biosynthesis 2.64E-03 8.73E-03 7 609 1.1 
50789 regulation of biological process 3.22E-03 1.00E-02 11 1389 0.8 

160 two-component signal transduction system 
(phosphorelay) 

4.11E-03 1.21E-02 2 31 6.5 

9628 response to abiotic stimulus 4.93E-03 1.38E-02 6 513 1.2 
6979 response to oxidative stress 9.81E-03 2.60E-02 3 143 2.1 
6800 oxygen and reactive oxygen species metabolism 1.16E-02 2.92E-02 3 152 2.0 

50896 response to stimulus 1.75E-02 4.22E-02 11 1755 0.6 
Molecular Function      

3700 transcription factor activity 3.25E-12 7.79E-11 22 1178 1.9 
3677 DNA binding 2.59E-11 3.11E-10 24 1600 1.5 

30528 transcription regulator activity 6.18E-11 4.94E-10 22 1370 1.6 
3676 nucleic acid binding 5.37E-09 3.22E-08 25 2259 1.1 
5488 binding 1.01E-06 4.87E-06 34 5061 0.7 
8270 zinc ion binding 3.89E-04 1.56E-03 9 729 1.2 

43169 cation binding 9.35E-04 3.20E-03 10 999 1.0 
46914 transition metal ion binding 1.30E-03 3.53E-03 9 864 1.0 
46872 metal ion binding 1.47E-03 3.53E-03 10 1061 0.9 
43167 ion binding 1.47E-03 3.53E-03 10 1061 0.9 
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Table S4. Overview of the 85 selected HIGs. 
AGI code Description PA in vivo 

localization 
ATH1a CATMAb AGILENTc

Calcium ion-binding 
At5g42380  CML37  NC 7.61 2.24 74.86
At5g40690 unknown protein NU NC 7.86 2.39 2.57 
Enzymatic activity 
At3g25250  AGC2-1 PM  11.60 4.97 90.18
At4g22530 embryo-abundant protein-related  NC 12.73 9.60 39.41 
At1g26380 FAD-binding berberine family protein  ER 26.32 1.99 35.44
At1g67810 SUFE2 CY CL 8.49 3.32 64.18 
At3g02800  Tyrosine phosphatase CY NC 6.16 2.76 57.79
At3g07090 unknown protein CY NC 4.66 5.95 2.58 
Glycolipid transport 
At4g39670 similar to ACD11  NC 11.86 3.13 73.65 
Heat shock protein-binding 
At1g71000  AtDJC68 CY NC 17.29 13.65 43.72
At3g09350 Fes1A  NC 15.21 23.81 14.26
At3g46230 HSP17.4  CY  3.26 560.93 34.46 
At2g29500  HSP17.6B-CI CY CY 3.93 173.87 60.17
At1g53540  HSP17.6C-CI (AA 1-156) CY  2.84   342.92
At1g07400 HSP17.8-CI CY CY 2.87 69.55 13.28
At4g12400  stress-inducible protein   10.17 45.48 13.61
RNA metabolism 
At1g66500 Pre-mRNA cleavage complex II NU  3.60  1.05 
Transcription factor and DNA-binding proteins 
At1g32870 ANAC013 NU NU 2.45 2.57 1.48
At1g77450 ANAC032 NU NU 5.03   19.92
At3g10500  ANAC053 NU NC 2.05 2.25 10.43
At3g29035  ANAC059 NU -   1.37 26.84
At5g18270 ANAC087 NU NC 4.10 6.33 2.48 
At5g63790  ANAC102  NU CL 3.25   28.14
At2g44840 AtERF013 NU  -6.42 -4.35 6.79
At1g22810 AtERF019 NU NC 24.15 4.51 271.18
At2g40350 AtERF047 (DREB2B) NU  4.04   1.54 
At2g47520 AtERF071 NU NU 12.99 7.00 2.13 
At3g23230 AtERF098 NU  10.30 -1.05 212.09
At5g61600 AtERF104 NU - -2.95 -1.30 19.67
At2g26150 AtHSFA2 NU  27.64 60.68 9.97
At4g18880 AtHSFA4A NU  1.88 1.67 18.79
At1g10585 bHLH DNA-binding superfamily protein NU NC 85.12   20.22 
At3g61630 CRF6 NU NC 1.96 2.18 -1.09 
At1g22985 CRF7 NU NU 5.64 4.70 1.45 
At5g05410 DREB2A NU NU 8.01 1.77 96.44
At4g25380 SAP10  NC 132.39 6.10 5.85 
At2g38250 Trihelix transcription factor GT-3b NU NU 4.98 2.14 7.58
At2g23320 WRKY15 NU NU 2.50 2.49 16.35
At5g24110 WRKY30 NU NC 14.80 1.98 142.00
At1g62300 WRKY6 NU  7.60 3.30 46.58 
At5g13080 WRKY75 NU NU 5.69 4.52 5.84 
At2g37430 ZAT11 NU -   2.23 127.52
At5g04340 ZAT6 NU - 1.73   21.76
Proteins of unknown function 
At2g26530  AR781 NU  1.03 1.38 20.69
At3g02840  ARM repeat superfamily protein PM NC 3.43 1.33 48.52
At1g33600  LRR family protein  UD 3.97 2.49 10.45
At5g63130 Octicosapeptide/Phox/Bem1p (PB1) domain-containing 

protein 
NC - 1.95 1.70 8.06

At4g00670 Remorin family protein NU, PM  -6.70 -1.20 1.62
At4g01870 TolB protein-related  UD 43.38 26.81 69.88 
At4g01390 TRAF-like family protein NP NC -3.94  1.51
At5g19230 Uncharacterized GPI-anchored protein PM UD   1.42 11.45
At1g05340 Unknown protein NU NC 7.34   1.00 
At1g05575 Unknown protein PM ER 7.92   5.64 
At1g19020 Unknown protein  - 9.22 8.21 33.12
At1g23710 Unknown protein NU  1.57 1.19 9.60

At1g56060 Unknown protein  UD 4.30   2.53 
At1g76600 Unknown protein  - 5.69 1.70 113.84
At2g18680 Unknown protein PM ER 5.21   9.66 
At2g21640 Unknown protein  UD 4.86 6.64 1.26 
At2g25735 Unknown protein  PM 1.33 -1.13 17.76
At2g40000 Unknown protein   -1.24 -1.26 24.45
At2g41730 Unknown protein NC NC 27.27   2.78 
At3g18250 Unknown protein  ER 2.15 9.05 1.23
At3g46220 Unknown protein EX  -1.27 560.93 -1.19 
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Table S4. Overview of the 85 selected HIGs. (Continued). 
AGI code Description PA in vivo 

localization
ATH1a CATMAb AGILENTc

Proteins of unknown function 
At4g21920 Unknown protein NU    1.06 81.12 
At4g36500 Unknown protein CY UD 1.20 8.48 13.34 
At4g37290 Unknown protein  - 8.26 4.34 15.75 
At5g05220 Unknown protein CY CL 6.35 2.43 33.78 
At5g10695 Unknown protein CY - 6.30   43.53 
At5g12930 Unknown protein   13.38 8.56 8.47 
At5g14730 Unknown protein ER, EX UD 23.18 2.59 144.77 
At5g36925 Unknown protein  NC     22.12 
At5g64230 Unknown protein   8.07 7.69 3.88 
At1g20310 Unknown protein NU - 1.04 -1.59 27.20 
At1g28190 Unknown protein  NU 3.01   50.46 
Zinc ion-binding       
At3g17611 RHOMBOID-like protein 14 (AtRBL14) GA PM 8.36 6.60 3.55 
At4g26580 RING/U-box superfamily protein NU   1.45 11.00 
At1g14200 RING/U-box superfamily protein CY  6.54 3.25 25.68 
At5g43420 RING/U-box superfamily protein    2.15 18.94 
At3g55980 SALT-INDUCIBLE ZINC FINGER1 (AtSZF1) CY  -1.55 1.58 20.84 
At2g40140 SALT-INDUCIBLE ZINC FINGER2 (AtSZF2) CY  1.13 1.46 13.47 
At3g28210 SAP12   57.61 30.36 61.94 
At2g41835 ZF (C2H2-type, AN1-like) family protein  -   14.70 
At3g46620 ZF (C3HC4-type RING finger) family protein CY NC 1.32 1.49 7.17 
At3g47550 ZF (C3HC4-type RING finger) family protein  NC 1.92 2.23 6.74 

For 85 HIGs, the in silico subcellular localization was predicted by Proteome Analyst (PA; Szafron et al., 2004) and the in vivo 

subcellular localization was determined for 49 HIGs. For each gene, the AGI code, gene description and the fold changes in 

each H2O2-related experiment (ATH1, CATMA and AGILENT) are indicated. FC, fold changes; HIG, H2O2-induced gene; 

HL, high light; WT, wild type. NU, nucleus; CY, cytosol; NC, nucleus and cytosol; CL, chloroplasts; NP, nucleus and 

peroxisomes; PM, plasma membrane; ER, endoplasmatic reticulum; EX, extracellular; GA, golgi apparatus; UD, 

undetermined. Hyphen, no fluorescence. Significant values are indicated in bold. 

a relative FC in cat2 mutant versus WT plants after 3 h of HL exposure (Vanderauwera et al., 2005). 

b relative FC in cat2 mutant versus WT plants after 8 h of HL irradiation (Hoeberichts et al., unpublished results). 

c relative FC in cat2 mutant versus WT plants after 1 h of HL irradiation (Vanderauwera et al., 2011). 

  



Chapter 2 

66 

REFERENCES 

 

Allemeersch, J., Durinck, S., Vanderhaeghen, R., Alard, P., Maes, R., Seeuws, K., Bogaert, T., Coddens, K., 

Deschouwer, K., Van Hummelen, P., Vuylsteke, M., Moreau, Y., Kwekkeboom, J., Wijfjes, A.H.M., May, 

S., Beynon, J., Hilson, P. and Kuiper, M.T.R. (2005) Benchmarking the CATMA microarray. A novel tool for 

Arabidopsis transcriptome analysis. Plant Physiol., 137, 588-601. 

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped 

BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389-3402. 

Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant 

Biol., 55, 373-399. 

Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. Ann. 

Stat., 29, 1165-1188. 

Borner, G.H.H., Lilley, K.S., Stevens, T.J. and Dupree, P. (2003) Identification of glycosylphosphatidylinositol-anchored 

proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol., 132, 568-577. 

Borner, G.H.H., Sherrier, D.J., Stevens, T.J., Arkin, I.T. and Dupree, P. (2002) Prediction of 

glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. Plant Physiol., 129, 486-499. 

Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R. and Gorlach, J. (2001) Growth 

stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell, 

13, 1499-1510. 

Carmo-Fonseca, M., Mendes-Soares, L. and Campos, I. (2000) To be or not to be in the nucleolus. Nat. Cell Biol., 2, 107-

112. 

Christianson, J.A., Wilson, I.W., Llewellyn, D.J. and Dennis, E.S. (2009) The low-oxygen-induced NAC domain 

transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment. Plant Physiol., 

149, 1724-1738. 

Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis 

thaliana. Plant J., 16, 735-743. 

Dat, J.F., Inzé, D. and van Breusegem, F. (2001) Catalase-deficient tobacco plants: tools for in planta studies on the role of 

hydrogen peroxide. Redox Rep., 6, 37-42. 

De Bodt, S., Carvajal, D., Hollunder, J., Van den Cruyce, J., Movahedi, S. and Inzé, D. (2010) CORNET: a user-

friendly tool for data mining and integration. Plant Physiol., 152, 1167-1179. 

de Folter, S., Urbanus, S., van Zuijlen, L., Kaufmann, K. and Angenent, G. (2007) Tagging of MADS domain proteins 

for chromatin immunoprecipitation. BMC Plant Biol., 7, 47. 

Devaiah, B.N., Karthikeyan, A.S. and Raghothama, K.G. (2007) WRKY75 transcription factor is a modulator of 

phosphate acquisition and root development in Arabidopsis. Plant Physiol., 143, 1789-1801. 

Gadjev, I., Vanderauwera, S., Gechev, T.S., Laloi, C., Minkov, I.N., Shulaev, V., Apel, K., Inzé, D., Mittler, R. and 

Van Breusegem, F. (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in 

Arabidopsis. Plant Physiol., 141, 436-445. 

Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I. and Laloi, C. (2006) Reactive oxygen species as signals that 

modulate plant stress responses and programmed cell death. BioEssays, 28, 1-11. 

Giraud, E., Ho, L.H.M., Clifton, R., Carroll, A., Estavillo, G., Tan, Y.-F., Howell, K.A., Ivanova, A., Pogson, B.J., 

Millar, A.H. and Whelan, J. (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute 



A subcellular compendium of hydrogen peroxide-induced proteins 

67 

sensitivity to combined light and drought stress. Plant Physiol., 147, 595-610. 

Gutterson, N. and Reuber, T.L. (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. 

Opin. Plant Biol., 7, 465-471. 

Ho, L.H.M., Giraud, E., Uggalla, V., Lister, R., Clifton, R., Glen, A., Thirkettle-Watts, D., Van Aken, O. and 

Whelan, J. (2008) Identification of regulatory pathways controlling gene expression of stress-responsive 

mitochondrial proteins in Arabidopsis. Plant Physiol., 147, 1858-1873. 

Kaminaka, H., Nake, C., Epple, P., Dittgen, J., Schutze, K., Chaban, C., Holt, B.F., Merkle, T., Schafer, E., Harter, 

K. and Dangl, J.L. (2006) bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis 

following infection. EMBO J., 25, 4400-4411. 

Karimi, M., Bleys, A., Vanderhaeghen, R. and Hilson, P. (2007) Building blocks for plant gene assembly. Plant Physiol., 

145, 1183-1191. 

Katiyar-Agarwal, S., Zhu, J., Kim, K., Agarwal, M., Fu, X., Huang, A. and Zhu, J.-K. (2006) The plasma membrane 

Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc. Natl. 

Acad. Sci. USA, 103, 18816-18821. 

Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J. 

and Harter, K. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data 

analysis of UV-B light, drought and cold stress responses. Plant J., 50, 347-363. 

Kim, S.-G., Kim, S.-Y. and Park, C.-M. (2007) A membrane-associated NAC transcription factor regulates salt-responsive 

flowering via FLOWERING LOCUS in Arabidopsis. Planta, 226, 647-654. 

Kim, S.-G., Lee, A.-K., Yoon, H.-K. and Park, C.-M. (2008) A membrane-bound NAC transcription factor NTL8 

regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J., 55, 77-88. 

Kinkema, M., Fan, W. and Dong, X. (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. 

Plant Cell, 12, 2339-2350. 

Klok, E.J., Wilson, I.W., Wilson, D., Chapman, S.C., Ewing, R.M., Somerville, S.C., Peacock, W.J., Dolferus, R. and 

Dennis, E.S. (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell, 

14, 2481-2494. 

Kmiec-Wisniewska, B., Krumpe, K., Urantowka, A., Sakamoto, W., Pratje, E. and Janska, H. (2008) Plant 

mitochondrial rhomboid, AtRBL12, has different substrate specificity from its yeast counterpart. Plant Mol. Biol., 68, 

159-171. 

Krause, K. and Krupinska, K. (2009) Nuclear regulators with a second home in organelles. Trends Plant Sci., 14, 194-199. 

Lee, S., Seo, P.J., Lee, H.-J. and Park, C.-M. (2012) A NAC transcription factor NTL4 promotes reactive oxygen species 

production during drought-induced leaf senescence in Arabidopsis. Plant J., in press, DOI 10.1111/j.1365-

1313X.2012.04932.x. 

Licausi, F., Van Dongen, J.T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P. and Perata, P. (2010) HRE1 

and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant 

J., 62, 302-315. 

Maere, S., Heymans, K. and Kuiper, M. (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of Gene 

Ontology categories in Biological Networks. Bioinformatics, 21, 3448-3449. 

Miernyk, J.A. (2001) The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones. 

Cell Stress Chaperones, 6, 209-218. 

Miller, G. and Mittler, R. (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? 



Chapter 2 

68 

Ann. Botany, 98, 279-288. 

Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. (2004) Reactive oxygen gene network of plants. 

Trends Plant Sci., 9, 490-498. 

Miyawaki, A. (2011) Proteins on the move: insights gained from fluorescent protein technologies. Nat. Rev. Mol. Cell Biol., 12, 

656-668. 

Murthy, N.M.U., Ollagnier-de-Choudens, S., Sanakis, Y., Abdel-Ghany, S.E., Rousset, C., Ye, H., Fontecave, M., 

Pilon-Smits, E.A.H. and Pilon, M. (2007) Characterization of Arabidopsis thaliana SufE2 and SufE3. J. Biol. Chem., 

282, 18254-18264. 

Nakamoto, H. and Vígh, L. (2007) The small heat shock proteins and their clients. Cell. Mol. Life Sci., 64, 294-306. 

Nelson, B.K., Cai, X. and Nebenfuhr, A. (2007) A multicolored set of in vivo organelle markers for co-localization studies 

in Arabidopsis and other plants. Plant J., 51, 1126-1136. 

Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L. and Foyer, C.H. (2002) Drought and oxidative load in 

the leaves of C3 plants: a predominant role for photorespiration? Ann. Botany, 89, 841-850. 

Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, 

P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K. and Kikuchi, S. (2003) 

Comprehensive Analysis of NAC Family Genes in Oryza sativa and Arabidopsis thaliana. DNA Res., 10, 239-247. 

Pendle, A.F., Clark, G.P., Boon, R., Lewandowska, D., Lam, Y.W., Andersen, J., Mann, M., Lamond, A.I., Brown, 

J.W.S. and Shaw, P.J. (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. 

Mol. Cell. Biol., 16, 260-269. 

Peschke, F. and Kretsch, T. (2011) Genome-wide analysis of light-dependent transcript accumulation patterns during early 

stages of Arabidopsis seedling deetiolation. Plant Physiol., 155, 1353-1366. 

Pruss, G.J., Nester, E.W. and Vance, V. (2008) Infiltration with Agrobacterium tumefaciens induces host defense and 

development-dependent responses in the infiltrated zone. Mol. Plant Microbe Interact., 21, 1528-1538. 

Rashotte, A. and Goertzen, L. (2010) The CRF domain defines Cytokinin Response Factor proteins in plants. BMC Plant 

Biol., 10, 74. 

Rashotte, A.M., Mason, M.G., Hutchison, C.E., Ferreira, F.J., Schaller, G.E. and Kieber, J.J. (2006) A subset of 

Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc. 

Natl. Acad. Sci. USA, 103, 11081-11085. 

Rhee, S.Y., Beavis, W., Berardini, T.Z., Chen, G., Dixon, D., Doyle, A., Garcia-Hernandez, M., Huala, E., Lander, 

G., Montoya, M., Miller, N., Mueller, L.A., Mundodi, S., Reiser, L., Tacklind, J., Weems, D.C., Wu, Y., Xu, 

I., Yoo, D., Yoon, J. and Zhang, P. (2003) The Arabidopsis Information Resource (TAIR): a model organism 

database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic 

Acids Res., 31, 224-228. 

Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) 

Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. 

Plant Cell, 18, 1292-1309. 

Seo, P.J., Kim, M.J., Park, J.-Y., Kim, S.-Y., Jeon, J., Lee, Y.-H., Kim, J. and Park, C.-M. (2010a) Cold activation of a 

plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J., 

61, 661-671. 

Seo, P.J., Kim, M.J., Song, J.-S., Kim, Y.-S., Kim, H.-J. and Park, C.-M. (2010b) Proteolytic processing of an Arabidopsis 

membrane-bound NAC transcription factor is triggered by cold-induced changes in membrane fluidity. Biochem. J., 



A subcellular compendium of hydrogen peroxide-induced proteins 

69 

427, 359-367. 

Seo, P.J., Kim, S.-G. and Park, C.-M. (2008) Membrane-bound transcription factors in plants. Trends Plant Sci., 13, 550-556. 

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, 

T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction metworks. Genome 

Res., 13, 2498-2504. 

Shaw, P.J. and Brown, J.W.S. (2004) Plant nuclear bodies. Curr. Opin. Plant Biol., 7, 614-620. 

Sparkes, I.A., Runions, J., Kearns, A. and Hawes, C. (2006) Rapid, transient expression of fluorescent fusion proteins in 

tobacco plants and generation of stably transformed plants. Nature Protoc., 1, 2019-2025. 

Sturn, A., Quackenbush, J. and Trajanoski, Z. (2002) Genesis: cluster analysis of microarray data. Bioinformatics, 18, 207-

208. 

Sweetlove, L.J., Heazlewood, J.L., Herald, V., Holtzapffel, R., Day, D.A., Leaver, C.J. and Millar, A.H. (2002) The 

impact of oxidative stress on Arabidopsis mitochondria. Plant J., 32, 891-904. 

Szafron, D., Lu, P., Greiner, R., Wishart, D.S., Poulin, B., Eisner, R., Lu, Z., Anvik, J., Macdonell, C., Fyshe, A. and 

Meeuwis, D. (2004) Proteome Analyst: custom predictions with explanations in a web-based tool for high-

throughput proteome annotations. Nucleic Acids Res., 32, W365-W371. 

Van Aken, O., Zhang, B., Carrie, C., Uggalla, V., Paynter, E., Giraud, E. and Whelan, J. (2009) Defining the 

mitochondrial stress response in Arabidopsis thaliana. Mol. Plant, 2, 1310-1324. 

Van Breusegem, F. and Dat, J.F. (2006) Reactive oxygen species in plant cell death. Plant Physiol., 141, 384-390. 

Vandenabeele, S., Van Der Kelen, K., Dat, J., Gadjev, I., Boonefaes, T., Morsa, S., Rottiers, P., Slooten, L., Van 

Montagu, M., Zabeau, M., Inzé, D. and Van Breusegem, F. (2003) A comprehensive analysis of hydrogen 

peroxide-induced gene expression in tobacco. Proc. Natl. Acad. Sci. USA, 100, 16113-16118. 

Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., Seidlitz, H.K., Zabeau, M., 

Van Montagu, M., Inzé, D. and Van Breusegem, F. (2004) Catalase deficiency drastically affects gene 

expression induced by high light in Arabidopsis thaliana. Plant J., 39, 45-58. 

Vanderauwera, S., Suzuki, N., Miller, G., van de Cotte, B., Morsa, S., Ravanat, J.-L., Hegie, A., Triantaphylidès, C., 

Shulaev, V., Van Montagu, M.C.E., Van Breusegem, F. and Mittler, R. (2011) Extranuclear protection of 

chromosomal DNA from oxidative stress. Proc. Natl. Acad. Sci. USA, 108, 1711-1716. 

Vanderauwera, S., Zimmermann, P., Rombauts, S., Vandenabeele, S., Langebartels, C., Gruissem, W., Inzé, D. and 

Van Breusegem, F. (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis 

reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol., 139, 806-821. 

Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzé, D. and Van 

Camp, W. (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J., 16, 

4806-4816. 

Wolfinger, R.D., Gibson, G., Wolfinger, E.D., Bennett, L., Hamadeh, H., Bushel, P., Afshari, C. and Paules, R.S. 

(2001) Assessing gene significance from cDNA microarray expression data via mixed models. J. Comput. Biol., 8, 625-

637. 

Yoo, S.-D., Cho, Y.-H. and Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene 

expression analysis. Nature Protoc., 2, 1565-1572. 

Zhang, J.-X., Wang, C., Yang, C.-Y., Wang, J.-Y., Chen, L., Bao, X.-M., Zhao, Y.-X., Zhang, H. and Liu, J. (2010) 

The role of arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic stress tolerance. Plant J., 62, 539-548. 

Zimmermann, P., Hennig, L. and Gruissem, W. (2005) Gene-expression analysis and network discovery using 



Chapter 2 

70 

Genevestigator. Trends Plant Sci., 10, 407-409. 

Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W. (2004) GENEVESTIGATOR. Arabidopsis 

microarray database and analysis toolbox. Plant Physiol., 136, 2621-2632. 

 

 



 

 

3 

 
Oxidative stress-induced retrograde 

relocalization of a chloroplastic NAC 
transcription factor 

 
Annelies Inzé, Inge De Clercq, Sandy Vanderauwera, Brigitte van de Cotte,  

Riet De Rycke and Frank Van Breusegem 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

AUTHOR CONTRIBUTIONS 

A.I wrote the manuscript with help of S.V., I.D.C. and F.V.B. A.I. produced the GFP transgenic lines, designed, performed 

and analyzed the subcellular (re)localization and processing experiments. I.D.C designed, performed and analyzed the yeast 

one-hybrid experiments, qRT-PCR experiments on the ANAC102 target genes and the stress assays. S.V. produced the 

ANAC102OE and ANAC102KO lines. B.v.d.C. performed the chloroplast fractionation experiments. 



Oxidative stress-induced retrograde relocalization of a chloroplastic NAC transcription factor 

73 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

Due to their sessile lifestyle, plants are continuously exposed to adverse environmental conditions that 

affect plant growth and development. To cope with these stress conditions, plants have developed 

complex signal transduction mechanisms to tightly regulate an appropriate stress response. In addition, 

abiotic and biotic stress conditions perturb the reactive oxygen species (ROS) homeostasis leading to a 

fast release of ROS that play a key role in stress signaling. Many components of the ROS signaling 

network have been identified including ROS-responsive transcription factors belonging to several major 

transcription factor families. Within these, several NAC transcription factors were identified. Here, we 

present the involvement of the hydrogen peroxide (H2O2)-induced NAC transcription factor ANAC102 

in regulating several stress-responsive genes during chloroplast-derived oxidative stress conditions. 

During normal conditions, ANAC102 is localized in the chloroplasts. However, perturbation of the 

chloroplastic redox balance leads to the intercompartimental relocalization of ANAC102 from the 

chloroplast to the nucleus where it regulates several oxidative stress-related genes. Moreover, transgenic 

plants with enhanced or decreased ANAC102 expression displayed an altered growth response when 

grown under oxidative stress conditions. Our results indicate that ANAC102 could play an important 

role during chloroplast retrograde signaling by controlling the stress response. 
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INTRODUCTION 

 

Adverse environmental conditions are the major causing agents of global crop losses world-wide 

(http://faostat.fao.org/). Therefore, a detailed understanding of the mechanisms how plants respond 

and adapt to abiotic and biotic stress conditions is prerequisite to develop sustainable solutions to 

increase crop yield, including the development of stress-tolerant transgenic crops. Plant adaptation to 

adverse environmental conditions is mediated by a wide variety of mechanisms of which mutual players, 

including kinases and transcription factors, are involved in complex gene regulatory networks (Fujita et 

al., 2006). Common to many stress responses is the accumulation of reactive oxygen species (ROS; Apel 

and Hirt, 2004). Several ROS-responsive transcription factors have been identified, including members 

of the AP2-EREBP, bHLH, HSF, MYB, WRKY, Zinc Finger (ZF) and NAC transcription factor 

families (op den Camp et al., 2003; Vandenabeele et al., 2003; Gechev et al., 2004; Vandenabeele et al., 

2004; Vanderauwera et al., 2005; Gadjev et al., 2006; Vanderauwera et al., 2011).  

The NAC domain protein family is one of the largest plant-specific transcription factor families 

with 105 members in Arabidopsis thaliana (ANACs; Ooka et al., 2003). NAC family proteins are 

characterized by the presence of an N-terminal NAC (petunia NO APICAL MERISTEM (NAM) and 

Arabidopsis ATAF1, ATAF2, and CUP-SHAPED COTYLEDON 2 (CUC2)) domain and a variable C-

terminal transcriptional activation region (Souer et al., 1996; Aida et al., 1997; Lu et al., 2007; Jensen et al., 

2010). The NAC domain is comprised of five subdomains A to E of which the highly conserved 

subdomains C and D are thought to be involved in DNA-binding whereas the divergent B and E 

subdomains may account for the functional diversity seen amongst NACs (Ooka et al., 2003). Based on 

similarities in NAC domain structures, NAC family proteins are further classified into several subfamilies 

(Ooka et al., 2003). NAC proteins have been shown to be involved in developmental programs (Souer et 

al., 1996; Xie et al., 2000; Mitsuda et al., 2005) and the response to biotic and abiotic stresses (Collinge 

and Boller, 2001; Fujita et al., 2004; Tran et al., 2004; Delessert et al., 2005; He et al., 2005; Kim et al., 

2008; Yoon et al., 2008). For instance, four Arabidopsis NAC genes (ANAC019, ANAC055, ANAC072 

(also known as RESPONSIVE TO DESSICATION 26 (RD26)) and ATAF1) are involved in the 

response to drought stress and modulating their expression levels increased tolerance to drought (Fujita 

et al., 2004; Tran et al., 2004; Lu et al., 2007; Tran et al., 2007). NAC transcription factors are under the 

complex control of different regulatory mechanisms including transcriptional regulation, post-

transcriptional control such as microRNA-mediated cleavage of mRNAs and phloem long-distance 

transport; post-translational regulation by regulated intramembrane proteolytic cleavage of membrane 

anchored NACs, nucleocytoplasmic partitioning and modifications with N-acetyl glucosamine (Olsen et 

al., 2005). 
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ANAC102 (At5g63790) belongs to the ATAF subfamily that includes ATAF1 (ANAC002), 

ATAF2 (ANAC081) and ANAC032 (Ooka et al., 2003). ATAF1 and ATAF2 negatively regulate 

responses to drought and wounding, respectively (Delessert et al., 2005; Lu et al., 2007). ANAC102 was 

previously identified as an important regulator of seed germination during flooding stress (Christianson 

et al., 2009). While ANAC102 overexpression lines germinated comparable to wild-type plants during 

both normal and hypoxic conditions, ANAC102 knock-out lines had an impaired germination after 

hypoxia treatment (Christianson et al., 2009). 

 

Here, we report the intercompartimental relocalization of a hydrogen peroxide (H2O2)-responsive NAC 

transcription factor (ANAC102) from the chloroplasts to the nucleus during chloroplast-derived 

oxidative stress conditions. Perturbation of intracellular ROS homeostasis leads to the release of 

ANAC102 from the chloroplasts into the cytoplasm where it is redirected to the nucleus to regulate 

several oxidative stress-related genes. Under oxidative stress conditions, overexpression of ANAC102 

leads to the partial repression of these target genes, leading to a decreased tolerance towards oxidative 

stress conditions. 

 

 

RESULTS 

 

Identification of NAC transcription factors induced by hydrogen peroxide 

Previously, we made a comprehensive inventory of more than 700 photorespiratory H2O2-induced genes 

(HIGs) by comparing several microarray data sets that profiled the Arabidopsis transcriptome during 

elevated photorespiratory H2O2 levels (Vanderauwera et al., 2005; Vanderauwera et al., 2011; Inzé et al., 

2012; Chapter 2). The perturbation of catalase activity, that results in a decreased antioxidant capacity of 

the cell, together with high light (HL) stress, low CO2 availability and day length leads to the 

accumulation of photorespiratory H2O2 (Willekens et al., 1997; Noctor et al., 2002; Queval et al., 2007; 

Queval et al., 2011). Within the 783 HIGs, 73 genes encode transcription factors that belong to the AP2-

EREBP (13), bHLH (4), HSF (7), MYB (4), WRKY (10), ZF (12) and NAC (8) transcription factor 

families (Table S1). Within these eight H2O2-induced NACs, all members of the ATAF subfamily are 

present. All H2O2-induced NAC transcription factors were constitutively induced in plants lacking 

catalase (cat2) when grown under normal conditions (Table 1). Plants with decreased levels of cytosolic 

ascorbate peroxidase (apx1), a key regulator of H2O2 levels and H2O2 signaling in plants (Asada, 1999; 

Apel and Hirt, 2004; Davletova et al., 2005), also accumulated higher transcript levels of these NAC 

transcription factors after 1 h of HL irradiance compared to wild-type plants (Vanderauwera et al., 2011; 
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Table 1). Moreover, direct application of 10 mM H2O2 to wild-type seedlings led to a significant 

induction of these NAC transcription factors (Denecker et al., unpublished results).  

 

 

Table 1. Overview of H2O2-induced NAC transcription factors. 

AGI code 

 

Annotation 

 

ATH1a CATMAb AGILENTc H2O2 

cat2 vs WT 

(0 h) 

cat2 vs WT 

(1 h) 

apx1 vs WT 

(1 h) 

additiond 

At1g01720  ATAF1/ANAC002   4.48 9.60 3.60 6.19 

At5g08790  ATAF2/ANAC081   2.78 37.00 13.35  

At1g32870  ANAC013 2.45 2.57 1.68 1.48 1.60 12.84 

At1g77450  ANAC032 5.03  7.52 19.92 8.52 11.46 

At3g10500  ANAC053   2.01 10.43 5.83 4.36 

At3g29035 ANAC059   1.72 22.84 1.49  

At5g18270 ANAC087  6.33    13.86 

At5g63790  ANAC102 3.25  5.31 28.14 11.48 7.62 

For each gene, the AGI code, annotation and the fold changes in the different H2O2-related transcript profiling studies (ATH1, CATMA, 

AGILENT and H2O2 addition experiment) are presented. FC, fold changes; WT, wild type. 

a relative FC in cat2 mutant versus WT plants after 3 h of HL exposure (Vanderauwera et al., 2005).  

b relative FC of cat2 mutant versus WT plants after 8 h of HL irradiation (Hoeberichts et al., unpublished results). 

c relative FC in mutant (cat2 or apx1) versus WT plants (Vanderauwera et al., 2011). 

d relative FC in H2O2-treated WT seedlings versus mock-treated plants after 24 h of treatment (Denecker et al., unpublished results). 

 

 

Transcriptional regulation of ANAC102 during abiotic stress  

We assessed the responsiveness of ANAC102 under diverse abiotic stress conditions with the 

AtGenExpress abiotic stress time series (Kilian et al., 2007) using the Response Viewer tool of 

GENEVESTIGATOR (Zimmermann et al., 2004). ANAC102 is induced by cold-, osmotic-, drought-, 

salt-, oxidative- and wounding stresses, but is down-regulated by heat stress (Table 2). 

 

 

Table 2. Meta-analysis of the ANAC102 expression profile towards abiotic 

stresses. 

Expression data were obtained with GENEVESTIGATOR (Zimmermann et al., 

2004; Zimmermann et al., 2005) using the AtGenExpress abiotic stress time series 

(Kilian et al., 2007). Values represent signal intensity ratios between treated and 

untreated samples. E, early; L, late; G, green tissues; R, root tissues. 

 

 

 

Stress Time point/ 
tissue 

Signal ratio 

cold E 1.29 
 L 2.72 

heat G 0.60 
 R 0.89 

osmotic E 2.92 
 L 2.53 

drought E 2.68 
 L 1.32 

salt E 5.63 
 L 11.28 

oxidative E 0.68 
 L 2.51 

wounding E 2.71 
 L 2.11 
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The transcriptional regulation of ANAC102 was further investigated by searching for known 

regulatory elements within the 1.5 kb promoter region using the Arabidopsis Gene Regulatory 

Information Server (AGRIS; http://arabidopsis.med.ohio-state.edu/) and the Plant cis-acting regulatory 

DNA elements (PLACE) database, (http://www.dna.affrc.go.jp/PLACE/; Higo et al., 1999). 

Interestingly, we found several cis-elements involved in abiotic stress regulation (Figure 1). Several W-

box elements [TYTGACY] (Eulgem et al., 2000) were found of which two are located in close proximity 

of the open reading frame of ANAC102. Several elements involved in drought-responsive gene 

expression were found, including two abscisic acid (ABA)-responsive elements (ABRE) [YACGTGKC] 

(Guiltinan et al., 1990; Mundy et al., 1990), two MYB2 elements [YAACKG] and six MYC [CANNTG] 

consensus recognition sites (Abe et al., 1997). In accordance with the role of ANAC102 during hypoxia 

(Christianson et al., 2009), we identified three anaerobic response consensus elements ANAERO1 

[AAACAAA], ANAERO2 [AGCAGC], ANAERO3 [TCATCAC] that are involved in hypoxia 

regulation (Mohanty et al., 2005). Moreover, several light-response elements were found including two 

closely positioned HD-ZIP2-AtATHB2 elements [TAATMATTA] (Ohgishi et al., 2001), three G-boxes 

[CACGTG] (Giuliano et al., 1988), and SORLIP1 [GCCACR] and SORLIP 2 [TGGGCC] elements 

(Hudson and Quail, 2003).  

 

 

 
 

Figure 1. Abiotic stress-related cis-elements present in the promoter of ANAC102. 

Abiotic stress-related cis-elements were found within the 1.5 kb upstream promoter region using the 

Arabidopsis Gene Regulatory Information Server (AGRIS; http://arabidopsis.med.ohio-state.edu/) and the 

Plant cis-acting regulatory DNA elements (PLACE) database (http://www.dna.affrc.go.jp/PLACE/; Higo et 

al., 1999). The different motifs were visualized with the DNA pattern tool of the Regulatory Sequence 

Analysis Tools (RSAT; http://rsat.ulb.ac.be/rsat; van Helden, 2003). 

 

 

To obtain more insight in the biological function of ANAC102, we searched for genes that are 

co-expressed during abiotic stress with ANAC102 with the web tool CORNET (CORrelation 

NETworks; De Bodt et al., 2010; https://cornet.psb.ugent.be/main/). Many of the co-expressed genes 

of ANAC102 are transcription factors that play an important role in the abiotic stress response, such as 

ANAC032, ATAF1, AZF2, CZF1, DREB2A, WRKY6, ZAT6 (Figure S1; Robatzek and Somssich, 
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2002; Sakamoto et al., 2004; Vogel et al., 2005; Sakuma et al., 2006a; Sakuma et al., 2006b; Lu et al., 2007; 

Chen et al., 2009; Kasajima et al., 2010).  

 

Taken together, ANAC102 is transcriptionally regulated by H2O2 and several abiotic stress treatments 

and has a similar expression pattern as important transcriptional regulators of abiotic stress responses, 

indicating that ANAC102 could function in abiotic stress signaling. 

 

Identification of organellar NAC transcription factors 

In a previous subcellular localization study of H2O2-induced proteins, we demonstrated that ANAC102-

GFP localizes to the chloroplasts (Inzé et al., 2012 - Chapter 2). ANAC102 encodes a 312 amino acid 

protein with an N-terminal conserved NAC domain (50-208 amino acids) containing a predicted 

bipartite nuclear localization signal (NLS; Kikuchi et al., 2000; Figure 2a,b). Protein sequence alignment 

of ANAC102 with its closest homolog ATAF2 showed a high degree of sequence identity (> 78%), 

particularly in the five subelements of the NAC domain (Figure 2a). Interestingly, the N-terminal region 

of ANAC102 (43 amino acids) is completely absent in ATAF2 and contains a predicted chloroplast 

transit peptide (cTP; Emanuelsson et al., 2007; Figure 2a).  

Next, we constructed a homology-based three-dimensional model of ANAC102 with the 

Protein/Homology/analogy Recognition Engine (PHYRE2.0, intensive mode) web server that uses 

template-based homology modeling to construct structural predictions (Bennett-Lovsey et al., 2008; 

Kelley and Sternberg, 2009). As expected, ANAC102 showed a high degree of structural homology with 

the NAC domain of ANAC (ABA-responsive NAC (ANAC019); Protein Data Bank codes 1UT4 and 

1UT7; Ernst et al., 2004; Figure 2c). Almost half of the residues of the predicted ANAC102 protein 

structure were modeled with a high confidence level (> 90%; indicated in red) and mainly comprised the 

NAC domain fold that is characterized by a twisted 7-stranded β-sheet (half-barrel; Figure 2c and Figure 

S2). The C-terminus of ANAC102 was predicted as highly disordered and was therefore also designated 

as NORS region (NO Regular Structure; Figure 2b,c). The C-termini of NAC transcription factors are 

often highly disordered and predominantly function as a flexible transcriptional activation domain 

(Jensen et al., 2010). 

Because an organellar localization of a nuclear-encoded transcription factor is unexpected, we 

assessed whether other members of the Arabidopsis NAC transcription factor family have predicted 

organellar targeting sequences by using the in silico prediction program TargetP (Emanuelsson et al., 

2007). For eleven NAC proteins, the presence of an N-terminal cTP or mitochondrial import sequence 

(mTP) was predicted (Table 3). In accordance, ANAC050 was previously identified in an in silico-based 

screening of Arabidopsis and rice (Oryza sativa) transcription factors with putative cTPs and mTPs 
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(Schwacke et al., 2007). Moreover, a putative cTP was identified in a rice NAC transcription factor, 

ONAC071 (Os03g59730) that belongs to the same subfamily as ANAC102 (Schwacke et al., 2007).  

 

 

 
Figure 2. Structural features of ANAC102. 

(a) Protein sequence alignment between ANAC102 and its closest Arabidopsis homolog ATAF2. The five subdomains (A-E) 

of the NAC domain are indicated with lines above the sequence and the putative bipartite NLS as described by Kikuchi et al., 

2000 is indicated by two boxes. ‘*’ indicates that residues in that column are identical. ‘:’ indicates conserved substitutions. ‘.’ 

indicates semi-conserved substitutions. cTP; chloroplast transit peptide; NLS, nuclear localization signal.  
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Figure 2. Structural features of ANAC102. (Continued). 

(b) Schematic representation of the different domains present in ANAC102. ANAC102 has two putative redox-sensitive 

cysteines (indicated in yellow) and a C-terminal NORS region. DNA BD, DNA binding domain; NAC, NAC domain; NORS, 

NO Regular Secondary Structure region. 

(c) Tertiary structure ab initio model of ANAC102 predicted by PHYRE 2.0 (intensive mode; Bennett-Lovsey et al., 2008; 

Kelley and Sternberg, 2009) and based on structural homology with the conserved NAC domain of ANAC (Protein Data 

Bank code 1UT7; Ernst et al., 2004). The model is color-coded by confidence level (red, high; blue, low). The highly 

disordered NORS region is indicated.  

 

 

Table 3. Overview of NAC transcription factors with predicted targeting sequences. 

AGI code Description Length Score Predicted 

localization 

Predicted 

cleavage 

site 

cTP mTP SP other 

At1g25580 ANAC008 449 0.568 0.369 0.050 0.830 chloroplastic 41 

At1g64100 PPR* 806 0.655 0.065 0.034 0.552 chloroplastic 53 

At3g10480 ANAC050 447 0.397 0.205 0.216 0.197 chloroplastic 23 

At3g56530 ANAC064 319 0.506 0.462 0.015 0.137 chloroplastic 48 

At5g63790 ANAC102 312 0.628 0.038 0.060 0.529 chloroplastic 32 

At1g03490 ANAC06 281 0.040 0.685 0.072 0.311 mitochondrial 30 

At1g56010 ANAC021/22 257 0.046 0.712 0.013 0.533 mitochondrial 109 

At2g33480 ANAC041 268 0.050 0.749 0.030 0.394 mitochondrial 75 

At3g01600 ANAC044 370 0.036 0.305 0.221 0.201 mitochondrial 120 

At5g14490 ANAC085 350 0.064 0.658 0.046 0.395 mitochondrial 29 

At5g41090 ANAC095 212 0.035 0.833 0.054 0.291 mitochondrial 79 

The final scores for the presence of a chloroplast transit peptide (cTP), mitochondrial targeting peptide 

(mTP), signal peptide for targeting to the secretory pathway (SP) and signals for targeting to another 

location (other) according to the prediction of TargetP (Emanuelsson et al., 2007) are indicated. The 

predicted subcellular localizations, based on the final scores, are listed together with the predicted 

presequence length. At1g64100 (indicated with an asterisk) is a pentatricopeptide repeat (PPR)-

containing protein that has a C-terminal NAC domain but was not included in the classification by 

Ooka et al. (2003). 

 
 

To experimentally determine the subcellular localization of ANAC102, we fused the open 

reading frame (ORF) of ANAC102 in frame with the ORF of green fluorescent protein (GFP) both at 

the N- and C-terminus and placed it under the control of the constitutive cauliflower mosaic virus 35S 

(CaMV35S) promoter (Figure 3a). While transient expression of the N-terminal GFP fusion of 

ANAC102 in the leaf epidermis of N. benthamiana led to both a nucleocytosolic and a putative 

cytoskeletal localization, ANAC102-GFP colocalized with the red fluorescence of the chloroplasts and 

was also present in the nucleus (Figure S3; Inzé et al., 2012; Chapter 2). Next, we assessed the subcellular 

localization in leaf epidermis cells of at least two independent transgenic Arabidopsis plants. While no 
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GFP-positive primary transformants overexpressing GFP-ANAC102 could be obtained, the nuclear and 

chloroplastic localization of ANAC102-GFP could be confirmed in several independent ANAC102-

GFPOE plants (Figure 3b). Within the chloroplasts, GFP fluorescence was not evenly distributed but 

appeared in speckles. Because overexpression of a GFP-tagged protein could lead to protein 

mistargeting, we made transgenic plants expressing the N- and C-terminal GFP fusion construct under 

the transcriptional control of the native ANAC102 promoter (promANAC102:GFP-ANAC102 and 

promANAC102:ANAC102-GFP) in both a wild-type and cat2 mutant background (Vandenabeele et al., 

2004; Figure 3a). Unfortunately in the wild-type background, no GFP fluorescence was observed for 

both constructs and this was probably due to the low expression of ANAC102 in leaves during normal 

growth conditions. Because ANAC102 transcript levels are constitutively increased in leaves of cat2 

mutants (Table 1), a strong GFP fluorescence in the promANAC102:ANAC102-GFP (cat2) lines was 

observed (Figure 3b). While overexpression of ANAC102-GFP resulted in both a nuclear and a 

chloroplastic localization, native expression of ANAC102-GFP led to an exclusive chloroplastic 

localization in the cat2 mutant (Figure 3b). Moreover, native expression of GFP-ANAC102 showed no 

GFP fluorescence. Positioning of GFP at the N-terminus of ANAC102 presumably shields the cTP and, 

therefore, the observed cytoskeletal localization in GFP-ANAC102OE plants probably resulted from 

blockage of the cTP, leading to mistargeting of ANAC102. 

To further consolidate the chloroplastic localization and determine the suborganellar location of 

ANAC102, we isolated intact chloroplasts from leaves of both ANAC102-GFPOE and 

promANAC102:ANAC102-GFP lines. Subsequently, chloroplasts were lysed in a hypotonic medium and 

chloroplast thylakoids were separated from the stroma fraction by centrifugation. GFP-tagged proteins 

were detected by western blot analysis using a monoclonal anti-GFP antibody. Preliminary results 

indicated that ANAC102-GFP is present in intact chloroplasts, consolidating our GFP localization data 

(Figure 3c). Within the chloroplast, ANAC102-GFP was mainly found in the thylakoid fraction.  
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Figure 3. ANAC102 is targeted to the chloroplasts. 

(a) Constructs used to determine the subcellular localization of ANAC102.  

(b) ANAC102-GFP localizes to chloroplasts. Subcellular localization of ANAC102-GFP in stable 

transgenic Arabidopsis wild-type and cat2 lines. Bars, 20 µm. GFP, green fluorescent protein; Merged, 

overlay of GFP and chlorophyll (red) fluorescence images.  

(c) Suborganellar localization of ANAC102-GFP. Intact chloroplasts were isolated from leaves of 

ANAC102-GFPOE (A) and promANAC102:ANAC102-GFP (B) lines and fractionated into stromal and 

thylakoid fractions. Fifteen micrograms of each fraction was separated by SDS-PAGE, and protein gel 

blot analysis was performed using a monoclonal anti-GFP antibody. 

 

 

Next, the targeting properties of the different domains of ANAC102 were assessed by making 

GFP-tagged truncated versions of ANAC102 (Figure 4a). First, to functionally validate the targeting 

properties of the predicted cTP, a construct was made in which the N-terminal domain of ANAC102 (1-

43 amino acids), that includes the predicted cTP sequence, was translationally fused with GFP 
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(cTPANAC102-GFP) and placed under the constitutive promoter CaMV35S (Figure 4a; Karimi et al., 2007). 

This construct was transiently expressed in leaf epidermis cells of Nicotiana benthamiana by means of agro-

infiltration (Sparkes et al., 2006). While transient expression of full length ANAC102-GFP resulted in a 

nuclear and chloroplastic localization, cTPANAC102-GFP displayed a nucleocytosolic localization (Figure 

4b). On the other hand, ANAC102-GFP proteins that lack this N-terminal domain (Δ cTP ANAC102-

GFP) displayed an exclusive nuclear localization (Figure 4b).  

 

 

 

Figure 4. Deletion constructs of ANAC102-GFP. 

(a) Schematic representation of the full length and deletion constructs. 

(b) Transient expression of the deletion constructs in leaf epidermis cells of N. benthamiana. Similar results were obtained with 

independent experiments. cTP, chloroplast transit peptide; Merged, overlay of GFP and chlorophyll (red) fluorescence 

images; NORS; NO Regular Secondary Structure region. Bars, 10 µm. 
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Functionality of ANAC102-GFP 

Previously, overexpression of a nuclear form of ANAC102 has been shown to modulate the expression 

of 221 genes (113 up-regulated, 98 down-regulated; cut-off 1.5-fold, P-value ≤ 0.05; Christianson et al., 

2009). To determine whether ANAC102-GFP is functional as a transcription factor, we assessed the 

expression of several ANAC102OE-modulated genes in ANAC102-GFPOE plants. Therefore, we 

performed quantitative real-time (qRT)-PCR analyses on RNA extracted from 2-week-old wild-type and 

ANAC102-GFPOE plants. Of the six strongest up-regulated genes in ANAC102OE plants (Christianson et 

al., 2009), five genes (BGLU11, AtTDX1, ADH1, UGT74E2 and ABCC10), that nearly all contained the 

consensus NAC-binding site in their promoter regions (Christianson et al., 2009), had also a higher 

expression (> 1.5-fold) in our ANAC102-GFPOE plants compared to wild-type plants (Figure 5). These 

results indicate that that GFP-tagging of ANAC102 does not interfere with its transcriptional activity. 

 

 

 

Figure 5. qRT-PCR analysis of selected 

ANAC102OE-modulated genes in ANAC102-

GFPOE plants. Relative mRNA transcript levels 

were monitored in 2-week-old Arabidopsis 

wild-type and ANAC12-GFPOE plants. Data 

presented are fold changes expressed relative to 

wild type and normalized to ACTIN 

RELATED PROTEIN7 (ARP7). Error bars 

represent ± SE (n=3). The relative expression 

ratios of the selected genes in the ANAC102OE 

plants reported in Christianson et al., (2009) are 

indicated below the graph. 

 

 

Relocalization of ANAC102 during oxidative stress conditions 

The chloroplastic localization of ANAC102 is at first sight contradictory with its role to regulate nuclear 

gene expression. Therefore, we hypothesized that ANAC102 proteins might redistribute to the nucleus 

under a certain stimulus. Oxidative stress-induced subcellular relocalizations of proteins have been 

reported for a number of proteins (Chapter 1). Therefore, we assessed whether the subcellular 

localization of ANAC102 changes during oxidative stress conditions. Together with the mitochondria 

and peroxisomes, chloroplasts are the major ROS production sites. To increase ROS levels in the 

chloroplasts, we used the herbicide methyl viologen (MV, 1,1’-dimethyl-4,4’-bipyridinium dichloride), 
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also known as paraquat. MV is a redox-active compound that in light accelerates the generation of 

superoxide radicals (O2
●-) and H2O2 in chloroplasts (Yabuta et al., 2004; Figure 6a). 

PromANAC102:ANAC102-GFP lines (cat2) were grown in vitro for two weeks on half-strength (½) MS on 

nylon mesh and were subsequently transferred to plates containing 50 µM MV. Whereas ANAC102-

GFP colocalized exclusively with chloroplasts prior to MV treatment, GFP fluorescence was also 

observed in nuclei after 6 h of MV treatment (Figure 6b).  

 

 

 

Figure 6. ANAC102 relocalization from the chloroplasts to the nucleus during MV treatment. 

(a) Schematic representation of the mode of action of MV. MV disrupts the photosynthetic electron transport chain and 

inhibits the conversion of NADP+ to NADPH leading to the accumulation of free electrons. The electron acceptance of 

molecular oxygen (O2) leads to the formation of superoxide radicals (O2●-) which are converted by superoxide dismutase into 

hydrogen peroxide (H2O2) molecules. H2O2 can freely diffuse between subcellular compartments and is readily scavenged by 

peroxisomal catalases. Enzymes are indicated in bold. 
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Figure 6. ANAC102 relocalization from the chloroplasts to the nucleus during MV treatment. (Continued). 

(b) ANAC102 relocalization upon MV treatment in cat2 mutants. In non-stressed conditions, ANAC102-GFP was exclusively 

localized to chloroplasts. After 6 h of MV treatment, ANAC102-GFP was localized both to chloroplasts and nuclei (indicated 

with an arrow). Similar results were obtained with independent experiments. Merged, merged images of GFP and chlorophyll 

fluorescence images. 

 

 

Next, we assessed whether ANAC102 is proteolytically processed upon relocalization. Therefore, 

we treated ANAC102-GFPOE and promANAC102:ANAC102-GFP (cat2) plants with 50 µM MV as 

described above and immunodetected GFP-tagged proteins with an anti-GFP antibody. We used GFPOE 

plants as a positive control for GFP signal. Both in the ANAC102-GFPOE and the 

promANAC102:ANAC102-GFP lines, the full length ANAC102-GFP (~63 kDa) and a band that 

corresponds in size with ANAC102-GFP without the N-terminal cTP (Δ cTP ANAC102-GFP; 

~58 kDA) were detected (Figure 7). Moreover in ANAC102-GFPOE lines, additional cleavage products 

of ANAC102-GFP were detected (~45 and ~30 kDa) irrespective of the MV treatment (Figure 7a). 

Because overexpression leads to a nuclear localization, the cleavage of a C-terminal region of 

approximately 18 kDa could be necessary for release from the chloroplasts. Unfortunately, we could not 

detect the presence of these cleavage products in the promANAC102:ANAC102-GFP lines (Figure 7b) and, 

thus, could not directly link the relocalization with the MV-induced processing of ANAC102. 

 

 

 

Figure 7. Processing of ANAC102.  

ANAC102-GFPOE (a) and promANAC102:ANAC102-

GFP (cat2; b) lines were grown till stage 1.04 on ½

MS agar plates and treated with 50 µM MV. Fifteen

micrograms of protein were separated by SDS

PAGE, and protein gel blot analyses were

performed with a monoclonal anti-GFP antibody.

The full length (FL) ANAC102-GFP (63 kDa), the

ANAC102-GFP without cTP (Δ cTP ANAC102-

GFP; 58 kDa) are indicated by an arrow. F, free

GFP. 
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Table 4. Expression ratios of the target genes of ANAC102 after 

MV treatment. 

The MV-induced oxidative stress response of the selected genes 

were obtained from the AtGenExpress abiotic stress time series 

(Kilian et al., 2007) with the GENEVESTIGATOR Meta profile 

analysis tool (Zimmermann et al., 2004). Values present signal 

ratios. 

ANAC102 overexpression leads to the partial repression of oxidative-stress related genes and an 

increased sensitivity towards oxidative stress 

By using a yeast one-hybrid approach, ANAC102 was identified to bind the promoters of several nuclear 

oxidative stress-regulated genes (De Clercq et al., unpublished results), including two ANAC102OE-

modulated genes (Christianson et al., 2009). ANAC102 binds to the promoters of ALTERNATIVE 

OXIDASE1a (AOX1a), DETOXIFICATION1 (AtTDX1), two UDP-GLYCOSYL TRANSFERASES 

(UGT74E2 and UGT73C6), SULFOTRANSFERASE1 (AtST1), ATP-BINDING CASSETTE B4 

(ATPGP4), SMALL HEAT SHOCK PROTEIN23.5 (sHSP23.5) and a gene of unknown function 

(At2g41730). These genes are significantly up-regulated by MV-induced oxidative stress (Zimmermann et 

al., 2004; Table 4) 

 

 

 

 

 

Next, we assessed whether the expression of these putative target genes is modulated by 

ANAC102 overexpression during normal and oxidative stress conditions. Therefore, we generated 

constitutive overexpression lines with the CaMV35S promoter. Two independent homozygous 

transgenic lines (ANAC102OE1 and ANAC102OE2) with elevated ANAC102 transcript levels (35-fold 

and 143-fold, respectively; assayed with qRT-PCR analyses) were selected. Wild-type and mutant 

ANAC102 transgenic lines were germinated and grown on nylon mesh on ½ MS agar plates till 

developmental stage 1.04 (4th true leaf 1 mm in size). Then, the plants were transferred to ½ MS agar 

plates supplemented with 50 µM MV. We followed the expression of five target genes of ANAC102 

(AOX1a, AtDTX1, AtST1, UGT73C6 and UGT74E2) in time by performing qRT-PCR analyses on 

RNA extracted from control and MV-treated wild-type and ANAC102OE plants. These putative 

ANAC102 target genes were significantly induced by MV treatment in wild-type plants (Figure 8a). In 

contrast, the induction of these genes by MV was significantly reduced in the ANAC102OE lines 

compared to wild-type plants, indicating that ANAC102 could function as a transcriptional repressor of 

these genes under oxidative stress conditions (Figure 8a). 

AGI code Description Expression ratio 

after MV treatment

At3g22370 AOX1a 1.96 
At2g04040 AtDTX1 3.19 
At1g05680 UGT74E2 12.78 
At2g36790 UGT73C6 3.71 
At2g03760 AtST1 5.64 
At2g47000 AtPGP4 6.81 
At5g51440 sHSP23.5 11.44 
At2g41730 Unknown protein 8.86 
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As ANAC102 overexpression resulted in the partial repression of AOX1a, AtDTX1, AtST1, 

UGT73C6 and UGT74E2 under oxidative stress, we assayed the performance of the ANAC102OE and a 

ANAC102KO line under these conditions. A transgenic line with decreased ANAC102 transcript levels 

was obtained by selecting a T-DNA insertion mutant from the SALK collection with a T-DNA in the 

coding region of ANAC102 (Alonso et al., 2003). Homozygous plants from the Arabidopsis T-DNA 

insertion mutant SALK_030702C, in which the T-DNA was inserted into the second exon of the 

ANAC102 gene, showed 6.5% residual ANAC102 transcript levels. First, we tested the performance of 

the overexpression lines during MV treatment. Therefore, plants were germinated and grown on nylon 

mesh on ½ MS agar plates under normal growth conditions. After two weeks, plants were transferred to 

½ MS agar plates supplemented with 2 µM MV and the rosette leaves were compared throughout the 

treatment. After one week of MV treatment, ANAC102OE plants were larger and seemed to have lower 

anthocyanin pigmentation (Figure 8b). However when the MV treatment was prolonged to five weeks, 

ANAC102OE plants had completely died, while the wild-type plants remained green with visible higher 

anthocyanin pigmentation (Figure 8b).  

Next, we determined the performance of the ANAC102OE and ANAC102KO lines under 

photorespiration-promoting conditions with a bioassay in which the production of photorespiratory 

H2O2 is increased by restricting gas exchange within the plates (Mühlenbock et al., unpublished results; 

see Experimental Procedures). While the strongest ANAC102 overexpression line (ANAC102OE2) was 

more susceptible to oxidative stress, the ANAC102KO plants showed an increased performance (Figure 

8c). In addition, we monitored the photochemical performance, an early indicator of stress, of the 

ANAC102OE and ANAC102KO plants under these conditions by measuring the maximum quantum 

efficiency of photosystem II (PSII) under light adapted conditions (Fv’/Fm’; Badger et al., 2009). 

Accordingly, the photochemical performance of the ANAC102KO plants was increased, while a 

reduction was seen in the ANAC102OE lines (Figure S4).  
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Figure 8. Phenotype of ANAC102OE and ANAC102KO plants under oxidative stress conditions. 

(a) Expression profile of the ANAC102 target genes during MV treatment in wild-type plants and two independent 

ANAC102OE lines. Values are expressed relative to mock-treated wild type and are normalized against ARP7. Data represent 

average ± SE (n = 3). Similar results were obtained with an independent experiment. 

(b) Phenotype of the ANAC102OE lines during MV treatment. 2-week-old wild-type and transgenic ANAC102OE plants 

grown under control conditions were transferred to plates containing 2 µM MV. Left: one week after transfer. Right: five 

weeks after transfer.  

(c) Phenotype of 6-week-old ANAC102OE (left) and ANAC102KO (right) lines under three weeks of photorespiration-

promoting conditions. WT, wild type. 
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DISCUSSION 

 

NAC transcription factors belong to one of the largest plant-specific transcription factor families, with 

75 and 105 members in rice and Arabidopsis, respectively (Ooka et al., 2003) and have been shown to 

play a role in both embryonic, floral and vegetative developmental processes as well as in stress signaling 

in both model plants and agronomical important crops (Olsen et al., 2005). Previous transcriptome 

analyses allowed us to identify eight NAC transcription factors, including all members of the ATAF 

subfamily, whose expression is tightly regulated by H2O2 (Vanderauwera et al., 2005; Vanderauwera et al., 

2011; Inzé et al., 2012; Denecker et al., unpublished results; Hoeberichts et al., unpublished results).  

 

ANAC102 is transcriptionally regulated by abiotic stresses 

ATAF subfamily NACs are transcriptionally regulated by a variety of biotic and abiotic stress conditions 

and have been shown to play a role in multiple stress responses (Christianson et al., 2010). Besides the 

induction by cold, drought and salinity stress, ANAC102 transcript levels were increased by oxidative 

and wounding stress and decreased by heat stress (Zimmermann et al., 2004). Most NAC genes that are 

induced by cold stress are repressed by heat stress and vice versa (Jensen et al., 2010). The regulation of 

ANAC102 expression by abiotic stresses might be linked with the prevalence of several abiotic stress-

related cis-elements in its promoter region such as W-box elements, the drought-responsive elements 

ABRE (Guiltinan et al., 1990; Mundy et al., 1990), MYB2 and MYC motifs (Abe et al., 1997), anaerobic 

response consensus sequences (Mohanty et al., 2005) and several light-responsive elements (Giuliano et 

al., 1988; Ohgishi et al., 2001; Hudson and Quail, 2003). Previously, ANAC102 was also identified as 

being significantly up-regulated by a combination of cold and light treatment (Soitamo et al., 2008). The 

combination of cold and light is thought to modulate the photosynthetic machinery and the chloroplast 

redox status (Soitamo et al., 2008). Transcription factors induced by this treatment are likely to regulate 

cold-/light-responsive genes. In total, 237 genes showed a differential gene expression in response to the 

cold and light treatment of which approximately one third are targeted to the chloroplasts (Soitamo et al., 

2008). These data indicate that ANAC102 might play a role in the transcriptional control of stress-

responsive genes during abiotic stresses.  

 

ANAC102 is a regulator of nuclear gene expression and is located in the chloroplasts 

In our subcellular localization study of H2O2-induced proteins we demonstrated that ANAC102 localizes 

to the chloroplasts (Inzé et al., 2012 - Chapter 2). Increasing evidence arises of regulators of nuclear gene 

expression that are present in organelles such as mitochondria and chloroplasts (Wagner and 

Pfannschmidt, 2006; Schwacke et al., 2007; Krause and Krupinska, 2009). In Arabidopsis, we found five 
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NAC domain-containing proteins with a predicted chloroplastic localization and six putative 

mitochondrial NACs. The chloroplastic localization of ANAC102 was confirmed by expression of GFP 

fusion constructs in stable transgenic Arabidopsis plants. Strong overexpression resulted in a dual 

targeting of ANAC102 to the chloroplasts and the nucleus, demonstrating that both the cTP and the 

NLS are functional. Interestingly, expression of ANAC102-GFP constructs under the control of the 

endogenous ANAC102 promoter resulted in an exclusive chloroplastic localization, demonstrating 

hierarchical dominance of the cTP over the NLS. Furthermore, preliminary fractionation experiments of 

the different subcompartments of the chloroplasts showed that ANAC102 is predominantly associated 

with the thylakoids. Further experiments are necessary to confirm these results. Unfortunately, immune-

electron microscopy experiments to determine the precise localization of ANAC102 within the 

chloroplast failed. Although we could not demonstrate the targeting properties and exact nature of the 

predicted cTP directly, deletion of the N-terminal sequence of ANAC102 containing the cTP resulted in 

an exclusive nuclear localization. These results indirectly demonstrate that the N-terminal region harbors 

information for chloroplast import although other regions of ANAC102 might also be important. In 

fact, efficient translocation of a native protein with a chloroplast import sequence does not necessarily 

mean that only the transit peptide is required as signals often shorter than 60 amino acids are not 

sufficient for the transport of a protein into the chloroplasts (Bionda et al., 2010).  

Nuclear regulators with an organellar localization must at one point, either by a developmental 

stimulus or during a stress response, be released from the organelle into the cytoplasm where they are 

redirected to the nucleus to control nuclear gene expression. In yeast and mammalian cells, several 

reports of development- and environment-induced protein relocalizations from organelles to the nucleus 

have been described (Susin et al., 1999; Cregan et al., 2002; Ruchalski et al., 2006). In cat2 mutant lines 

expressing native levels of ANAC102-GFP, we could trigger the relocalization of ANAC102-GFP from 

the chloroplasts to the nucleus by using MV, a redox-active compound that leads to the formation of 

chloroplast-localized ROS, including H2O2. Because of its relative stability, H2O2 can easily migrate from 

the chloroplasts to adjacent compartments (Henzler and Steudle, 2000; Bienert et al., 2006). The lack of 

the H2O2-scavenging enzyme catalase, that plays a crucial role in maintaining low levels of 

photorespiratory H2O2 in the peroxisomes (Mhamdi et al., 2010) but also acts as a sink for intracellular 

H2O2 (Willekens et al., 1997), might further perturb ROS homeostasis and enhance ROS-induced 

changes in the cellular redox state. Several cleavage products of ANAC102-GFP were observed by 

western blot analysis in ANAC102-GFPOE lines that contain ANAC102 both in the chloroplasts and the 

nucleus. This could indicate that processing might play a role in the release of ANAC102 from the 

chloroplasts. Although the exact nature of the cleavage products is not known, it is tempting to speculate 

from the band size that the C-terminal disordered region (18 kDa), that includes the transactivation 
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domain, is removed. Unfortunately, we could not detect these cleavage products in the native GFP 

expression lines and can therefore not rule out the possibility that the observed cleavage products are the 

result of ANAC102-GFP overexpression. Additional experiments are necessary to address and clarify 

this issue. In this aspect, the development of an ANAC102-specific antibody is crucial. Antibodies raised 

against full length ANAC102 were produced, but lacked specificity presumably by the presence of the 

conserved NAC domain. Therefore, the more divergent C-terminal domain could be used to produce 

more specific antibodies. In addition, determining the exact nature of the cleavage products observed in 

the overexpression lines by amino acid sequencing could provide more insight in the proteolytic 

processing of ANAC102 and could give a first indication which potential proteases could be involved.  

During abiotic stress, a defense response is initiated through the complex regulation of 

transcription, including both transcriptional activation and repression. By using a yeast one-hybrid 

approach, ANAC102 was identified to bind several promoter regions of nuclear oxidative stress-

regulated genes (De Clercq et al., unpublished results), including several ANAC102OE-induced genes 

(Christianson et al., 2009). Furthermore, the induction of several of these target genes by MV is 

dampened by ANAC102 overexpression. These results indicate that ANAC102 might function as a 

transcriptional repressor during oxidative stress conditions (De Clercq et al., unpublished results). 

Moreover, the light-harvesting chlorophyll a/b binding proteins 1.1a and 2.4 are down-regulated in 

ANAC102OE plants (Christianson et al., 2009; Vanderauwera, personal communication). The expression 

of Lhcb genes, coding for light-harvesting proteins of PSII, are frequently down-regulated in photo-

oxidized plants (Fey et al., 2005). Most NAC transcription factors operate as transcriptional activators 

such as NAC1, AtNAM and ANAC019 (Xie et al., 2000; Duval et al., 2002; Fujita et al., 2004; Tran et al., 

2004). However, increasing evidence emerges that NAC transcription factors can also function as 

transcriptional repressors. For instance, a calmodulin (CaM)-binding NAC protein (CBNAC) was 

identified that functions as a CaM-regulated repressor (Kim et al., 2007). Moreover, VASCULAR-

RELATED NAC-DOMAIN (VND)-INTERACTING 2 (VNI2), that regulates xylem cell specification, 

can act both as an active or passive repressor (Yamaguchi et al., 2010). It would be interesting to 

determine whether the C-terminal transactivational domain of ANAC102 is cleaved off during oxidative 

stress. In this case, ANAC102 would still be able to bind its nuclear target genes but cannot activate 

them anymore. 

Transgenic ANAC102OE lines showed enhanced sensitivity under oxidative stress conditions, 

whereas ANAC102KO lines were more resistant. At first, ANAC102OE plants seemed to have an 

improved growth response with lower anthocyanin pigmentation. During biotic and abiotic stress 

conditions, anthocyanins and other flavonoids accumulate and are thought to function as antioxidants 

that scavenge stress-derived ROS (Vanderauwera et al., 2005; Hernández et al., 2009). As ANAC102OE 
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plants initially keep growing and seem to accumulate less anthocyanins during oxidative stress 

conditions, they could have a repressed or reduced stress response. Prolongation of severe stress 

conditions further leads to severe intracellular damage and eventually leads to cell death in the 

ANAC102 overexpression lines while the wild type still seems to cope with the stress (De Clercq et al., 

unpublished results). Because constitutive activation of the stress response is energetically expensive and 

often related with a growth reduction, plants have evolved several mechanisms, including transcriptional 

repressors, to tightly control the expression of stress-responsive genes. For instance, RAP2.1 tightly 

controls the expression of stress-related genes during cold and drought (Dong and Liu, 2010).  

 

Future prospects: ANAC102, a novel plastidial signal involved in chloroplast retrograde 

signaling? 

The presence of nuclear regulators in organelles could be an important strategy for interorganellar 

communication. During plant cell evolution, the plastid genome size was strongly reduced, either by loss 

of organellar genes or by gene transfer to the nucleus (Martin and Herrmann, 1998). Therefore, plastids 

are semi-autonomous and are strongly dependent on nuclear gene expression (Stern et al., 1997; Barkan 

and Goldschmidt-Clermont, 2000), requiring a strong communication from the nucleus to the 

chloroplasts, also called anterograde signaling, and a flow of information backwards (chloroplasts-to-

nucleus), known as retrograde signaling. During adverse environmental conditions, such as fluctuating 

illumination and limiting CO2 fixation by low temperature, salinity, low nutrient, and water availability, 

the homeostasis of photosynthetic processes is disturbed (Fey et al., 2005). Therefore, chloroplasts are 

often seen as sensors of adverse environmental conditions that communicate back to the nucleus to 

initiate an appropriate response. Although chloroplast retrograde signaling has been studied for decades, 

the process is still poorly understood. Recent studies have indicated that the production of ROS and the 

redox status of the components of the electron transport chain play an important role in chloroplast 

retrograde signaling (Pfannschmidt, 2010). 

Here, we provide the first evidence for the retrograde relocalization of a chloroplastic NAC 

transcription factor that negatively regulates the expression of oxidative stress-related genes during 

chloroplast-derived oxidative stress conditions. Although the mechanism of relocalization is not resolved 

yet, different scenarios are plausible (Figure 9). The perturbed chloroplastic redox state could modify 

ANAC102 directly or indirectly by changing an unidentified NAC-binding protein that, in turn, binds or 

alters ANAC102. ANAC102 has two closely positioned cysteines that could indicate for redox-sensitive 

regulation. The oxidation of redox-sensitive transcription factors could lead to a conformational change 

that can affect the subcellular localization (Sun and Oberley, 1996 – Chapter 1). The interaction of NAC 

transcription factors with other proteins is often governed by their C-terminal transcription regulatory 
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domain that frequently has a high degree of flexibility and lacks the ability to form an ordered three-

dimensional structure (Jensen et al., 2010). Once modified, ANAC102 has to cross the chloroplast 

membrane(s). Several translocation mechanisms are plausible, such as transport by vesicles, trafficking 

by envelope transporters, stromule tip shedding and close intercompartimental contacts (Krause and 

Krupinska, 2009). In addition, severe oxidative stress could disrupt the chloroplast structure. However, 

preliminary electron microscopy experiments showed that the chloroplast ultrastructure was not affected 

at the same time and conditions of relocalization (data not shown). After the stress-induced release of 

ANAC102 into the cytoplasm, ANAC102 is imported into the nucleus where it represses stress-

responsive gene expression. Interestingly, ANAC102 negatively regulates the expression of AOX1a, a 

well-known reporter gene used in mitochondrial retrograde signaling studies (Zarkovic et al., 2005). 

Moreover, ABI4 – a known plastidial retrograde signal – is also involved in the regulation of AOX1a 

suggesting that retrograde signaling from both organelles might converge at some point (Giraud et al., 

2009). 

 

 

 
Figure 9. Possible mechanisms of ANAC102 relocalization. 

During MV treatment, the conversion of NADP+ to NADPH is inhibited, leading to the accumulation of O2●- that 

subsequently gives rise to other ROS. In our experiments, the cellular oxidative strain is further enhanced by the lack of the 

peroxisomal H2O2-scavenging enzyme catalase that acts as sink of intracellular H2O2. The accumulation of ROS can directly 

(a) or indirectly (b) modify ANAC102 either by oxidation or by modifying an interacting protein, respectively.  
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Figure 9. Possible mechanisms of ANAC102 relocalization. (Continued). 

Once altered, the release of ANAC102 into the cytoplasm can occur through different mechanisms: (A) vesicle–mediated 

release, (B) transporters, (C) stromule tip shedding and (D) close intercompartimental contacts (Krause and Krupinska, 2009). 

After the release into the cytoplasm, ANAC102 is redirected to the nucleus where it regulates the expression of stress 

response genes. 

 

 

EXPERIMENTAL PROCEDURES 

 

Plant growth conditions and treatments 

For in vitro experiments, A. thaliana (L.) Heynh ecotype Columbia (Col-0) plants (wild type) were grown 

until stage 1.04 (unless stated otherwise; 4th true leaf 1 mm in size; Boyes et al., 2001) on half-strength 

(½) Murashige and Skoog (MS) medium (Duchefa Biochemie; http://www.duchefa.com/), 1% (w/v) 

sucrose, 0.7% (w/v) agar, pH 5.7 at 21°C and under a 16-h light/8-h dark photoperiod, 150 μmol m-2s-1 

light intensity and 50% relative humidity. For the ANAC102 relocalization and processing experiments, 

wild-type and mutant seeds were sown and germinated on nylon mesh on ½ MS plates. At stage 1.04, 

plants were transferred to ½ MS plates containing 50 µM MV. For the ANAC102 processing 

experiments, a pool of 32 plants was harvested at each time point. Two independent experiments were 

carried out (independent sets of plants sown and treated on different dates). For the qRT-PCR analyses 

of the ANAC102 targets, wild type, ANAC102 overexpression and knock-out lines were treated with 

the same conditions as the relocalization experiment. At each time point, three biological repeats of six 

plants were harvested. For the MV stress assay, 2-week-old mesh-grown plants were transferred to ½ 

MS plates supplemented with 2 µM MV. The stress assays were performed with two biological repeats. 

For the photorespiration-promoting conditions, plants were grown under control conditions for two 

weeks. Then, the petri plates were sealed with parafilm to restrict gas exchange. Photosynthetic 

efficiency of PSII was determined by measuring the light-adapted maximum quantum yield of PSII 

(Fv’/Fm’) with the IMAGING-PAM M-Series Chlorophyll Fluorescence System (WALZ; Effeltrich, 

Germany; http://www.walz.com/).  

 

Transcriptional regulation of ANAC102 

Within the different tools of GENEVESTIGATOR, the Response Viewer was used to find the 

response profile of ANAC102 to abiotic environmental stimuli (Zimmermann et al., 2004; Zimmermann 

et al., 2005). Out of the different conditions annotated, the AtGenExpress abiotic stress time series 

(Kilian et al., 2007) was selected. 
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CORNET analysis 

The online data mining tool CORrelation NETworks (CORNET; 

http://bioinformatics.psb.ugent.be/cornet/; De Bodt et al., 2010) provides insights in co-expression 

networks with transcriptome data and integrates proteome data, localization data (both in silico and 

experimental), and functional data of Arabidopsis. Out of the different predefined data sets available, the 

abiotic stress compendium was used. With the co-expression tool, the Pearson correlation coefficient 

threshold was set > 0.7 and co-expressed genes were identified. The output was visualized in Cytoscape 

2.6.0 (Shannon et al., 2003). 

 

In silico prediction of putative targeting sequences in the NAC transcription factor family 

Protein sequences of the Arabidopsis NAC transcription factor family were retrieved from the Plant 

Transcription Factor DataBase (PlnTFDB 3.0; http://plntfdb.bio.uni-potsdam.de/v3.0/; Pérez-

Rodríguez et al., 2010). For the prediction of the targeting signals, sequences were submitted in the 

TargetP 1.1 prediction server (Emanuelsson et al., 2007). 

 

Cloning of open reading frames and promoters 

The full length open reading frame (with and without stop codon), the sequence encoding the putative 

chloroplast targeting peptide (cTP), the ORF without the cTP, the ORF without the C-terminal region 

and the promoter of ANAC102 were amplified by polymerase chain reaction (PCR) from first-strand 

cDNA and genomic DNA of A. thaliana (L.) Heynh. ecotype Columbia (Col-0), respectively, with 

gene/promoter-specific primers extended with the attB sites for Gateway cloning (Invitrogen Carlsbad, 

CA, USA; Table S2). PCR reactions were run with high-fidelity Phusion DNA polymerase (Finnzymes 

OY, Espoo, Finland) and fragments were cloned into the Gateway entry vectors (Invitrogen) according 

to the manufacturer’s instructions. 

 

Generation of transgenic Arabidopsis plants 

GFP fusion overexpression plants - Constitutive promoter-driven expression clones were generated with the 

binary destination vectors pK7FWG2 and pK7WGF2 (Karimi et al., 2007), resulting in C- and N-

terminal GFP protein fusions, respectively, under the control of the cauliflower mosaic virus 35S 

(CaMV35S) promoter.  

Endogenous promoter-driven translational fusions were created with the MultiSite Gateway technology 

(Invitrogen)  that combined the ANAC102 ORF and GFP fragments downstream of the endogenous 

promoter in the pK7m34GW destination vector (Karimi et al., 2007).  
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Overexpression plants – A constitutive promoter-driven expression construct was generated in the binary 

destination vector pK7WG2D (Karimi et al., 2007).  

All constructs were transferred into the Agrobacterium tumefaciens strain C58C1 harboring the virulence 

plasmid MP90. 

Loss-of-function plants – Homozygous plants were selected from the SALK_030702C T-DNA insertion 

line by genomic PCR with gene-specific and T-DNA-specific primers. The expression level of 

ANAC102 was determined by qRT-PCR. 

 

Transient expression and stable genetic transformation 

All GFP-protein fusion constructs were transiently expressed in leaf epidermal cells of 5-week-old wild-

type tobacco (Nicotiana benthamiana) by A. tumefaciens–mediated leaf infiltration (Sparkes et al., 2006). For 

stable expression, the constructs were transformed into wild-type or catalase-deficient plants (CAT2HP2 

(cat2); 7% residual catalase activity; Vandenabeele et al., 2004) by Agrobacterium-mediated floral dip 

(Clough and Bent, 1998). Kanamycin-resistant plants were selected on ½ MS medium (Duchefa 

Biochemie, Haarlem, The Netherlands), 1% (w/v) sucrose, 0.7% (w/v) agar, pH 5.7 and 35 mg.L-1 

kanamycin (Sigma-Aldrich, St. Louis, MO, USA) at 21°C and 16-h light/8-h dark photoperiod. 

Homozygous lines with a single T-DNA locus were selected by segregation. 

 

Chloroplast fractionation experiments 

Chloroplasts were isolated and fractionated into stroma and thylakoids from 3.4 g leaves of 4-week-old 

A. thaliana (wild type, ANAC102-GFPOE and promANAC102:ANAC102-GFP) plants according to the 

method described by Lamkemeyer et al., 2006. 

 

qRT-PCR experiments 

RNA isolation, cDNA synthesis and qRT-PCR analyses were carried out as described by Vanderauwera 

et al. (2007) with specific primers. Primers were designed with the Universal ProbeLibrary Assay Design 

center ProbeFinder software (Roche; https://www.roche-applied-science.com/; Table S2).  

 

Protein extraction and western blot analysis 

Total protein extracts were prepared by grinding leaf material (100 mg) in 200 μL extraction buffer 

(100 mM HEPES (pH 7.5), 1 mM EDTA, 10 mM β-mercaptoethanol and 1 mM 

phenylmethanesulfonylfluoride) and a protease inhibitor cocktail (COMPLETE; Roche). Insoluble 

debris was removed by centrifugation at 20800 x g for 15 min at 4°C. Protein concentrations were 

determined with the Bradford method (Zor and Selinger, 1996). Proteins (15 μg) were separated on a 
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12.5% SDS PAGE gel, transferred to a P membrane (Millipore; http://www.millipore.com/) and 

immunodetected with the Living Colors A.v. Monoclonal antibody (JL-8; Clontech Laboratories; 

http://www.clontech.com/) for the detection of GFP-tagged proteins by means of the Western 

Lightning kit (GE-Healthcare; http://www.gehealthcare.com/). 

 

Fluorescence microscopy 

For fluorescence microscopy, a confocal microscope 100M with software package LSM 510 version 3.2 

was used (Zeiss; http://www.zeiss.com/), equipped with a 63x water-corrected objective (numerical 

aperture 1.2) to scan the leaf epidermis and underlying cell layers. GFP fluorescence was imaged in a 

single channel setting with 488 nm for GFP excitation. 

 

Accession numbers 

Sequence information of the genes mentioned in this article can be found at The Arabidopsis 

Information Resource (TAIR; http://www.arabidopsis.org) under the following accession numbers: 

ANAC102 (At5g63790), ATAF2 (ANAC081; At5g08790), ANAC (ANAC019; At1g52890), BGLU11 

(At1g02850), AtTDX1 (At2g04040), UGT74F2 (At2g43820), EXP10 (At1g26770), ABCC10 

(At3g59140), AOX1a (At3g22370), UGT74E2 (At1g05680), UGT73C6 (At2g36790), AtST1 

(At2g03760) and ARP7 (At3g60830). 
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SUPPORTING INFORMATION 

 

 

Figure S1. Co-expression analysis of ANAC102 during abiotic stresses using CORNET. 

The co-expression network was based on correlation analysis of ANAC102 with 30 other genes 

with a high correlation coefficient > 0.7 with the AtGenExpress abiotic stress compendium by 

means of the web tool CORNET (De Bodt et al., 2010; https://cornet.psb.ugent.be/main/). 

Node colors indicate predicted subcellular localization: dark green, nucleus; light green, 

mitochondria; pink, plastids; blue, chloroplasts; yellow, golgi; red, extracellular.  

 

 

 

 

Figure S2. Homology-based secondary structure prediction of ANAC102. 

The ANAC019 homology-based secondary structure prediction of ANAC102 by PHYRE (Protein Homology/analogY 

Recognition Engine; Bennett-Lovsey et al., 2008; Kelley and Sternberg, 2009) is depicted. 
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Figure S3. Transient expression of GFP-tagged fusions of ANAC102 in leaf epidermis cells of N. benthamiana. 

(a-b) Transient overexpression of GFP-ANAC102 results in a cytoskeletal localization. 

(c-f) Overexpression of ANAC102-GFP in N. benthamiana leaf epidermis cells leads to a nuclear and chloroplastic 

localization. (a,c) GFP fluorescence; (d) chlorophyll fluorescence; (e) merged GFP and chlorophyll fluorescence; (b,f) 

bright-field images. Scale bars, 10 µm. 

 

 

 

 

Figure S4. Photochemical performance of ANAC102OE and ANACKO lines under photorespiratory promoting-

conditions. 

Maximum quantum efficiency of PSII under light adapted conditions (F’v/F’m) in leaves of 3-week-old (left) 

ANAC02OE lines and (right) ANAC102KO plants after 8 d of photorespiration promoting conditions. 
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Table S1. Transcription factors induced by photorespiratory H2O2. 

AGI code Description ATH1a CATMAb AGILENTc

APETALA2 (AP2) and Ethylene-Responsive Element Binding protein (EREBP) family 
At1g22810 AtERF019 24.15  271.18 
At1g22985 CYTOKININ RESPONSE FACTOR7 (CRF7) 5.64   
At1g71520 AtERF020   8.00 
At2g40350 AtERF047 (DREB2B) 4.04   
At2g44840 AtERF013   6.79 
At2g47520 AtERF071 12.99   
At3g23230 AtERF098 10.30  212.09 
At3g61630 CRF6 1.96 2.18 -1.09 
At5g05410 DREB2A 8.01  96.44 
At5g47230 AtERF05   11.50 
At5g51190 AtERF105   6.91 
At5g61590 AtERF107   3.78 
At5g61600 AtERF104   19.67 

basic helix-loop-helix (bHLH) family 
At1g10585 bHLH DNA-binding superfamily protein 85.12   
At2g46970 PHYTOCHROME INTERACTING FACTOR 3-LIKE1 (PIL1)  1.15  
At3g47640 POPEYE (PYE)   3.02 
At5g46830 NACL-INDUCILE GENE1 (AtNIG1)  2.06  

Basic region/leucine zipper motif (bZIP) family 
At1g06850 AtbZIP52   1.80  
At3g62420 AtbZIP53    6.29 
At5g28770 AtbZIP63    5.36 
At5g49450 AtbZIP1    3.95 

Zinc Finger (ZF) transcription factors 
At2g47890 ZF protein CONSTANS-LIKE13 (COL13)   4.88 
At5g39660 CYCLING DOF FACTOR2 (CDF2)   6.28 
At1g27730 ZAT10   12.82 
At2g37430 ZAT11   127.52 
At2g41835 ZF (C2H2-type, AN1-like) domain-containing stress associated protein 11   14.70 
At3g45260 ZF protein (C2H2-like)   4.52 
At5g04340 ZAT6   21.76 
At5g43170 ZF PROTEIN3 (ZF3)   15.55 
At5g59820 ZAT12 3.27  28.47 
At2g25900 TANDEM ZF PROTEIN1 (AtTZF1)   6.03 
At2g40140 SALT-INDUCIBLE ZF2 (AtSZF2)   13.47 
At3g55980 SALT-INDUCIBLE ZF1 (AtSZF1)   20.84 

Heat shock transcription factor(HSF) family 
At1g67970 AtHSFA8   3.78 
At2g26150 AtHSFA2 27.64 60.68 9.97 
At3g51910 AtHSFA7a 28.77   
At4g11660 AtHSFB2b 4.38   
At4g18880 AtHSFA4a   18.79 
At4g36990 AtHSFB1   5.70 
At5g62020 AtHSFB2a  3.08 5.56 

MYB and MYB-related proteins 
At2g46410 CAPRICE (CPC)   3.18 
At3g50060 AtMYB77   7.07 
At5g17300 REVEILLE1 (RVE1)   4.62 
At5g37260 CIRCADIAN1 (CIR1)   4.36 

NAC 
At1g01720 ATAF1   9.60 
At1g32870 ANAC013 2.45 2.57 1.48 
At1g77450 ANAC032 5.03  19.92 
At3g10500 ANAC053   10.43 
At3g29035 ANAC059   26.84 
At5g08790 ATAF2   36.99 
At5g18270 ANAC087 4.10 6.33  
At5g63790 ANAC102 3.25  28.14 

WRKY 
At1g62300 WRKY6 7.68  46.59 
At2g23320 WRKY15   16.35 
At2g46400 WRKY46   6.36 
At3g04670 WRKY39 3.02  4.62 
At4g01250 WRKY22   5.49 
At4g31550 WRKY11   10.77 
At5g13080 WRKY75 5.70   
At5g24110 WRKY30 14.85  142.61 
At5g28650 WRKY74   4.14 
At5g49520 WRKY48 6.13   
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Table S1. Transcription factors induced by photorespiratory H2O2. (Continued). 

AGI code Description ATH1a CATMAb AGILENTc

Others     
At1g07520 SCARECROW-LIKE PROTEIN 31 (AtSCL31)   4.12 
At2g29060 AtSCL33   3.75 
At2g32250 FAR1-RELATED SEQUENCE2 (FRS2) 3.69   
At3g24500 MULTIPROTEIN BRIDGING FACTOR1C (AtMBF1C) 6.98 8.70  
At2g38250 Trihelix transcription factor GT-3b 4.98  7.58 
At4g17900 PLATZ transcription factor family protein 3.08  14.61 
At4g19660 NON-EXPRESSOR OF PATHOGENES RELATED GENES4 (NPR4)   5.10 
At4g37610 BTB/POZ AND TAZ DOMAIN PROTEIN5 (BT5)   21.64 
At5g46910 Jumonji (Jmj) family protein    6.33 
At5g47370 Homeobox-leucine zipper protein (HAT2)  3.70  
At5g59990 CCT motif family protein   6.15 
For each gene, the AGI code, gene description and the fold changes in the different H2O2-related transcript profiling studies (ATH1, CATMA and 

AGILENT) are presented. FC, fold changes; WT, wild type. 

a relative FC in cat2 mutant versus WT plants after 3 h of HL exposure (Vanderauwera et al., 2005).  

b relative FC of cat2 mutant versus WT plants after 8 h of HL irradiation (Hoeberichts et al., unpublished results). 

c relative FC in cat2 mutant versus WT plants after 1 h of HL exposure (Vanderauwera et al., 2011). 

 

 

Table S2. Primers used. 
Primers Sequence 
attB4F-Pat5g63790 GGGGACAACTTTGTATAGAAAAGTTGGAGATTCTACAACTGAATTACCAAAATGCCCC 
attB1rR-Pat5g63790 GGGGACTGCTTTTTTGTACAAACTTGTGGAGCTTTTATAAACGAAGGGGAGG 
attB2rF-At5g63790 GGGGACAGCTTTCTTGTACAAAGTGGGAATGGACTTTGCTCTCTTCTCCTCG 
attB3R-At5g63790 GGGGACAACTTTGTATAATAAAGTTGTTTACCCTTGAGGAGCAAAATTCCAATTC 
attB4F-Pat5g63790 GGGGACAACTTTGTATAGAAAAGTTGGAAAGACTTGGACCCAACACAGC 
attB1rR-Pat5g63790 GGGGACTGCTTTTTTGTACAAACTTGTGGAGCTTTTATAAACGAAGGG 
At1g02850_PL_FW  TCTTTGGCTCTGGCACATC  
At1g02850_PL_RV  GTTCTCCCATCTTCGTCAGC  
At1g77120_PL_FW   GGGAAGCTAAGGGACAAACA 
At1g77120_PL_RV  CACATGATCTCCTGGCTGAA  
At2g43820_PL_FW  CTTCCTGTGGGTGGTCAGAT  
At2g43820_PL_RV   TGTCTCAAGAAACCCTGATGG 
At1g26770_PL_FW  AACGCTCACGCCACTTTT  
At1g26770_PL_RV  TTACCATATCCACAAGCACCAC  
At3g59140_PL_FW   GTTGTTGGTTACACATCAAGTGG 
At3g59140_PL_RV  GATTTCTCCATCTGACATCAACA  
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ABSTRACT 

 

As plants are continuously exposed by phytopathogenic microorganisms, they evolved both preformed 

and inducible defense barriers to resist microbial infection. An important evolutionary component of the 

innate immune system of plants is the production of antimicrobial peptides (AMPs). These small, 

hydrophobic and predominantly cationic peptides are hallmarked for their broad-spectrum antimicrobial 

activity. In plants, AMPs are classified into several families, such as plant defensins, lipid-transfer 

proteins, hevein- and knottin-type peptides, cyclotides, snakins, maize (Zea mays) basic peptide 1, and 

polyprotein precursor AMPs from both Macadamia integrifolia and Impatiens balsamina. Besides their 

antimicrobial action, other biological roles have been reported such as protein inhibition, redox 

regulation, ion channel inhibition, zinc tolerance mediation and developmental roles. Moreover, 

increasing evidence has shown that they could play a role in abiotic stress tolerance. First, this review 

gives a general overview of AMPs and their mode of action. Then, we focus on the classification of plant 

AMPs and their biological roles and discuss how they could be implemented in novel strategies to 

combat plant diseases. 
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GENERAL INTRODUCTION 

 

Mechanisms of attack and defense against microbial pathogens in plants 

Plants are continuously exposed to a wide range of phytopathogenic microorganisms that use diverse 

strategies to attack their host. Therefore, to resist pathogen invasion, plant immunity is comprised of 

complex and efficient preformed and inducible defense mechanisms (Jones and Dangl, 2006). Pathogens 

must avoid or overcome multiple morphological barriers, secondary metabolites and antimicrobial 

proteins to successfully invade plant tissues. First, they have to protrude preformed structural barriers 

such as the epidermis cuticle layer and the rigid cell wall and circumvent chemical barriers (VanEtten et 

al., 1994; Osbourn, 1996). Once contact has been made, both pathogen-derived elicitors (called 

pathogen-associated molecular patterns or PAMPs) and endogenous plant molecules liberated during 

pathogen invasion (called danger-associated molecules or DAMPs) accumulate that, in turn, trigger a 

second line of defenses including the production of reactive oxygen species (ROS; Jabs et al., 1997; 

Alvarez et al., 1998; Kawano, 2003), the reinforcement and lignification of the cell wall (Brisson et al., 

1994; Caño-Delgado et al., 2003), the activation of several protein kinase pathways (Scheel, 1998; Zhang 

and Klessig, 2001) and the production of a range of signaling intermediates (Kunkel and Brooks, 2002). 

Subsequently, these events are followed by the onset of a hypersensitive response in which cells undergo 

programmed cell death (Lam et al., 2001; Greenberg and Yao, 2004), or by the release of antimicrobial 

compounds such as phytoalexins (Darvill and Albersheim, 1984) and pathogenesis-related (PR) proteins 

(> 100 amino acids) and small peptides (< 100 amino acids; Van Loon et al., 2006). In addition, plants 

may be further protected systemically against unrelated pathogens via systemic acquired resistance (SAR; 

Ross, 1961; Durrant and Dong, 2004).  

 

Overview on antimicrobial peptides 

Antimicrobial peptides (AMPs) are an evolutionary conserved component of innate immune systems 

found throughout all kingdoms ranging from bacteria, invertebrates, plants and vertebrates and are 

hallmarked for their broad-spectrum antimicrobial activity (Broekaert et al., 1997; Ganz and Lehrer, 

1998; García-Olmedo et al., 1998; Otvos, 2000; Zasloff, 2002). Accordingly, the production of AMPs has 

been an effective defense strategy throughout evolution. Due to the pressure imposed upon them by 

competition amongst pathogens, AMPs are rapidly evolving molecules and, thus, highly diverse in 

sequence. Consequently, the classification of AMPs is difficult and predominantly based on secondary 

structure, comprising four major groups: β-sheet, α-helical, loop and extended peptides (Figure 1; 

Brogden, 2005). The number of AMPs is continuously increasing and is compiled in the Antimicrobial 

Peptide Database (Wang and Wang, 2004; http://aps.unmc.edu/AP/main.php/).  
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Figure 1. Structural classes of AMPs.  

(a) Linear α-helical peptides (e.g. SMAP29 [PDB code 1fry]), (b,c) peptides containing cysteine residues 

that form disulfide bonds (e.g. (b) Human β-defensin 3 [PDB code 1k6] and (c) Protegrin 1 [PDB code 

1pg1]), (d) extended peptides enriched with specific amino acids (e.g. Indolicidin [PDB code 1qxq]; 

From Brogden, 2005). 

 

 

AMPs are small (< 50 amino acids), cationic (positive net charge at physiological pH) and 

hydrophobic peptides usually enriched in one or two amino acids, often proline, glycine, histidine, 

arginine, tryptophan, or cysteine (Cys; Boman, 2003; Bulet et al., 2004). The majority of AMPs have 

multiple Cys residues that enable disulfide bond formation, making the peptide structure compact and 

remarkably stable against adverse biochemical conditions and protease degradation. Whereas the 

positions of these Cys residues are highly conserved, the intervening amino acid sequences vary 

extremely. In general, AMPs are often expressed as preproprotein precursors in which the predomain is 

the signal peptide and is positioned at the N-terminus, the prodomain is often anionic necessary for 

neutralizing the highly cationic mature domain and ensuring that the AMP is inactive when it is still 

intracellular. These precursor domains are released by proteolytic processing after insertion into the 

lumen of the endoplasmatic reticulum (ER; predomain) and after secretion into the extracellular space 

(prodomain). 

 

Mode of action 

The antimicrobial activity of AMPs is predominantly based on the ability to disrupt the pathogen’s 

membrane via both specific and non-specific electrostatic and hydrophobic interactions (Shai, 2002; 

Thevissen et al., 2003). However, increasing evidence has demonstrated that the activity of AMPs can 

also be based on more targeted mechanisms through interactions with microbe-specific lipid receptors 

(Wilmes et al., 2011). Besides their action on membranes, AMPs can operate through binding 

intracellular targets resulting in the inhibition of multiple processes, such as nucleic acid and/or protein 

synthesis, chaperone-assisted protein folding, enzymatic activity, cytoplasmic membrane septum 

formation and cell wall synthesis (Nicolas, 2009; Figure 2). 
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Prerequisite for the antimicrobial action of AMPs is the peptide’s amphipathic structure that is 

defined by clusters of hydrophobic and basic amino acids spatially organized in discrete sectors of the 

peptide. This facilitates the interaction and insertion of the peptide into the anionic cell walls and 

phospholipid membranes of microorganisms. Some peptides adopt only an amphipathic structure upon 

reaching the target’s membrane, e.g. the linear peptides cecropin and magainin, others have already a 

preformed rigid amphipathic structure that is stabilized by Cys residues (e.g. defensins). All AMPs 

interact with membranes and can be divided into two mechanistic classes: (I) membrane disruptive 

(barrel-stave, toroidal, carpet, micellar aggregate and Shai-Matsuzaki-Huang models) and (II) non-

membrane disruptive (intracellular targets; see below).  

 

 

 
Figure 2. General overview of the antimicrobial action of AMPs. 

First, (a) AMPs (red) interact with the outer cell envelope by electrostatic interactions. After binding to the 

membrane surface (b), the AMP is inserted into the lipid bilayer of the microbial membrane (c). Depending on the 

properties of the AMP, the AMP can translocate into the bilayer thereby entering the microbial cytosol (non-

disruptive AMP) or permeabilize the membrane (e) (disruptive AMP; see further). Internalized AMPs can bind to 

DNA, RNA, and/or proteins, and disrupt DNA replication, RNA synthesis, or enzyme activity, depending on the 

peptide (f). Other modes of AMP action are disruption of cell wall synthesis, cell architecture, or cell 

morphology (g). Microorganisms can detect the presence of AMPs (h) leading to altered gene expression and 

protein activities (i). Adapted from Marcos et al., 2008. 
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Throughout evolution, AMPs took advantage of the main differences between the composition 

of microbial membranes and multicellular organisms. For instance in bacteria, the composition of the 

outer membrane of Gram-negative and Gram-positive bacteria greatly differs. Whereas in Gram-

negative bacteria the outer membrane consists of anionic molecules such as phospholipids and 

lipopolysaccharides, the membrane of Gram-positive bacteria is mainly characterized by the asymmetric 

distribution of acidic polysaccharides (teichoic acids). As a result, the membranes of both Gram-negative 

and Gram-positive bacteria have a net negative charge. On the contrary, mammalian membranes are 

predominantly enriched with zwitterionic phospholipids (Giuliani et al., 2007). In addition, the presence 

of cholesterol – a major constituent of mammalian membranes – reduces the fluidity necessary for 

efficiently disrupting the membrane by AMPs. 

 

I. Membrane disruptive AMPs 

The molecular mechanisms behind membrane permeabilization and disruption depend on multiple 

factors such as the nature of the peptide (e.g. α-helical peptides versus defensins), the membrane lipid 

composition, the peptide concentration and the environmental condition (Bechinger and Lohner, 2006). 

Although several membrane permeabilization models have been proposed, no consensus has been made 

in the field. 

 

Barrel-stave model. Although this model has been proposed several decades ago, convincing 

evidence has only been shown for a few peptides (Ehrenstein and Lecar, 1977; Christensen et al., 1988; 

Duclohier et al., 1989; Westerhoff et al., 1989; Matsuzaki et al., 1991). This model is based on the 

perpendicular insertion and aggregation of individual peptides or peptide complexes, also called ‘staves’, 

in a ‘barrel-like’ ring inside the hydrophobic area of the membrane, leading to the formation of a 

transmembrane pore or channel with a cylindrical structure. In this barrel, the hydrophobic surfaces of 

α-helical or β-sheet peptides are faced outward - toward the hydrophobic core of the membrane - and 

the hydrophilic stretches of the peptides line the inner surface of the pore. Only a few transmembrane 

pores are required to permeabilize the target membrane (Shai, 2002). 

 

Toroidal pore model. This model is also based on the formation of transmembrane helical bundles 

in a barrel-stave organization. However, these transmembrane pores are lined by both overlapping 

peptides and membrane phospholipid head groups. These negatively charged membrane phospholipid 

head groups reduce the repulsive forces of the cationic portions of the peptides thereby stabilizing the 

transmembrane pore structure. In contrast, this displaces the polar head groups of the target membrane 

thereby straining the membrane curvature (Yeamn and Yount, 2003). 
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Carpet model. In this model, positively charged peptides (in monomeric or oligomeric form) bind 

to acidic phospholipid-rich regions of lipid bilayers mainly via electrostatic interactions. This leads to the 

formation of high density clusters covering the bilayer and eventually to a ‘peptide carpet’ on the 

membrane. Subsequently, the peptides reorient themselves by facing their hydrophobic portions towards 

the membrane lipid core and the hydrophilic sides towards the phospholipid head groups. As a result, 

these high density clusters significantly strain the membrane bilayer curvature. Once a critical peptide 

density has been reached, the membrane eventually disrupts leading to cell death. 

 

Micellar aggregate or ‘detergent-like’ model. This model is based on the intercalation of peptides into 

the membrane bilayer. Subsequently, these inserted peptides cluster together forming unstructured 

aggregates and this, in turn, allows the formation of transient intramembrane spanning pores (Bechinger 

and Lohner, 2006). 

 

Shai-Matsuzaki-Huang model. A general model was proposed that explains the activity of most 

AMPs (Zasloff, 2002). The Shai-Matsuzaki-Huang (SMH) model is a compilation of the mechanisms 

described above (Matsuzaki, 1999; Shai, 1999; Yang et al., 2000) and proposes the interaction of AMPs 

with the target membrane, followed by the displacement of membrane phospholipids and, thus, altering 

the membrane structure and, in some cases, leading to the uptake of the peptide in the interior of the cell 

(Figure 3). 

 

II. Non-membrane disruptive AMPs: intracellular targets 

Increasing evidence indicates that the antimicrobial action of some AMPs can also be based on the 

interaction with intracellular targets by crossing membranes in a non-destructive manner (Joliot and 

Prochiantz, 2004; Henriques et al., 2006). Once entered the microbial cytoplasm, the AMP may interact 

with nucleic acids and/or cellular proteins and inhibit synthesis of these molecules (Brogden, 2005; 

Gifford et al., 2005; see further). 
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Figure 3. SMH model of membrane permeabilization.  

Upon interaction with membrane phospholipids (blue, hydrophilic head group; 

black, hydrophobic acyl sidechains), the unstructured AMP adopts an 

amphipathic, α-helical conformation (blue part, hydrophilic side; red part, 

hydrophobic part). Depending on the peptide’s nature, peptide concentration 

and membrane lipid composition, a toroidal pore (A) or a barrel-stave pore (B) 

can be formed. Alternatively, the plasma membrane can be irreversibly disrupted 

(C). Pore formation can be followed by translocation of the peptide from the 

outer leaflet to the inner leaflet of the membrane. SMH, Shai-Matsuzaki-Huang. 

From Theis and Stahl, 2004. 

 

 

ANTIMICROBIAL PEPTIDES IN PLANTS 

 

Introduction 

AMPs are widespread throughout the plant kingdom and are classified into thionins (Fernandez De 

Caleya et al., 1972; Bohlmann and Broekaert, 1994; Epple et al., 1997), plant defensins (Terras et al., 1992; 

Broekaert et al., 1995; Broekaert et al., 1997; Lay et al., 2003; Lay and Anderson, 2005), lipid-transfer 

proteins (Molina et al., 1993; Cammue et al., 1995; Kader, 1996), cyclotides (Craik and Conibear, 2011), 

snakins, hevein- and knottin-like peptides (Broekaert et al., 1992; Cammue et al., 1992; Shao et al., 1999; 

Van Damme et al., 1999) and polyprotein precursor AMPs from both Macadamia integrifolia (Marcus et al., 

1997; McManus et al., 1999) and Impatiens balsamina (Tailor et al., 1997; Patel et al., 1998; Figure 4).  
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In addition, several AMPs do not belong to these classes (Guo et al., 2009; Lin and Ng, 2009). The 

PhytAMP database contains general information about the physicochemical and biological properties of 

plant AMPs showing antibacterial (33%), antifungal (51%), antiviral (10%), anti-yeast (2%), insecticidal 

(3%) and ion channel-blocking activities (1%) (Hammami et al., 2009). Currently, 271 plant AMPs are 

present in this database and includes cyclotides (76), defensins (55), hevein-like (14), impatiens (4), 

knottins (4), lipid-transfer proteins (45), shepherins (2), snakins (20), thionins (43), vicilin-like (6), MBP-1 

(18) and β-barellin (19) isolated from a wide variety of species including members of the Amaranthaceae, 

Andropogoneae, Brassicaceae, Oryzeae, Santalaceae, Spermacoceae, Triticaceae, Vicieae and Violaceae 

families (Figure 4). As expected, the majority has a net charge varying from 0 to +10 and the average net 

charge of all plant AMPs is +4.6 (Hammami et al., 2009). The majority of plant AMP families are plant-

specific, such as thionin, lipid-transfer protein, cyclotide and snakin families. Most plant AMPs have an 

even number (typically 4, 6 or 8) and linear arrangement of Cys residues necessary for intramolecular 

disulfide bridges formation in class-specific three-dimensional folds (Broekaert et al., 1997). 

 

 

 

Figure 4. Unrooted phylogenetic tree of plant AMPs compiled in the PhytAMP database 

(http://phytamp.pfba-lab.org; Hammami et al., 2009). α-helices and β-sheets are shown in red and 

purple, respectively. From Hammami et al., 2009. 
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Plant AMPs are predominantly expressed in peripheral tissues as a front-line in defense and are 

often specifically regulated by both biotic and abiotic stresses (Broekaert et al., 1997). Most members 

have antimicrobial activities in vitro and several examples are reported of transgenic plants expressing 

AMPs that have an increased tolerance against a broad-spectrum of bacterial and fungal pathogens (see 

further; Broekaert et al., 1997). 

 

Classification 

 

Thionins 

Thionins are small (~5 kDa), basic peptides that were first isolated from cereals (Bohlmann et al., 1988). 

They have a characteristic three-dimensional folding pattern that is stabilized by six to eight disulfide 

bridges and contains two antiparallel α-helices and an antiparallel double-stranded β-sheet. So far, 

around 100 individual thionin sequences have been identified in more than 15 different plant species, 

including both monocots and dicots (Stec, 2006) and have been subdivided into five different classes 

(Bohlmann and Apel, 1991). In Arabidopsis thaliana, six thionins were found (Sels et al., 2008). Hitherto, 

only one study showed an active role for plant thionins in plant defense (Epple et al., 1997). 

Thionins are toxic to different biological systems such as bacteria, fungi, cultured mammalian 

cells, whole animals, and insect larva (Stec, 2006). Thionins are predominantly present in the vacuolar 

compartment (Broekaert et al., 1997), though targeting to the cell wall was also reported (Iwai et al., 

2002). Thionins are synthesized as non-toxic preproproteins (Ponz et al., 1983) that are activated upon 

pathogen attack by proteolytic processing thereby releasing the mature toxic thionin domain (Stevens et 

al., 1996; Thevissen et al., 1996; Romero et al., 1997). Interestingly, the acidic prodomain of thionins is 

often better conserved than the mature domain itself, indicating that it might play an important role. 

First, the net charge of the prodomain is correlated with the charge of the mature domain. For instance, 

a highly basic mature peptide is neutralized by the presence of an acidic prodomain, whereas a neutral 

and hydrophobic domain is linked to a neutral prodomain (Schrader-Fischer and Apel, 1994). Therefore, 

it is postulated that both domains interact with each other. This prodomain may act as a transient 

intramolecular chaperone by assisting the folding of the mature domain.  
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Plant defensins (γ-thionins) 

Plant defensins are small (5-7 kDa), basic (pI~9) AMPs with eight strictly conserved disulfide-

linked Cys residues and are found ubiquitously throughout the plant kingdom. The first plant defensins 

were isolated from wheat (Triticum aestivum) and barley (Hordeum vulgare) grains and were initially thought 

to be a novel type belonging to the thionin family because of their similar size and number of cysteines. 

Accordingly, they were called ‘γ-thionins’ (Carrasco et al., 1981; Colilla et al., 1990; Mendez et al., 1990). 

However, it was later found that thionins and γ-thionins are structurally unrelated to each other (Bruix et 

al., 1993). As a matter of fact, γ-thionins showed structural and functional similarities with insect 

defensins and mammalian β-defensins and were consequently named ‘plant defensins’ (PDFs; Terras et 

al., 1995). PDFs can have different effects on fungal growth and are therefore categorized into two 

groups: the morphogenic and non-morphogenic defensins. Whereas morphogenic defensins inhibit 

fungal growth and morphologically alter the fungal hyphae, such as branching, swelling and shortening, 

non-morphogenic defensins reduce hyphal elongation without causing any morphological perturbations 

(Broekaert et al., 1995; Thomma et al., 2002). In Arabidopsis, 15 putative PDFs were identified and 

classified into three subfamilies, called AtPDF1- (7), AtPDF2- (2), AtPDF3-family (6) (Thomma et al., 

2002). Three AtPDF genes were purified so far, namely AtPDF1.1, AtPDF1.2 and AtPDF1.3 and 

showed in vitro antifungal activities (Terras et al., 1993; Penninckx et al., 1996; Sels et al., 2008). 

PDFs are characterized by their small and globular three-dimensional structure that consists of a 

structural motif composed of disulfide bonds, called the Cys-stabilized α-helix β-sheet motif (CSαβ; e.g. 

RS-AFP1; Bruix et al., 1993; Bloch et al., 1998; Fant et al., 1998; Fant et al., 1999; Almeida et al., 2002). 

Some defensin genes are strictly developmentally regulated (Epple et al., 1997), whereas others are 

regulated by biotic and abiotic environmental stimuli (Kragh et al., 1995; Broekaert et al., 1997). In 

contrast to thionins, the majority of PDFs have an N-terminal signal peptide for targeting to the 

extracellular space (predomain) and lack the prodomain. However, some PDFs isolated from tobacco 

(Nicotiana tabacum; Gu et al., 1992) and tomato (Lycopersicon esculentum; Milligan and Gasser, 1995) are 

produced as preproproteins with the propeptide located at the C-terminus (Lay and Anderson, 2005). 

Interestingly, the majority of the N-terminal signal peptides of PDFs are quite acidic. Therefore, the 

signal peptide could be bifunctional: trafficking to the secretory pathway and neutralizing the basic 

mature peptide. Although numerous biological activities of PDFs were demonstrated in vitro, including 

inhibition of α-amylases (Bloch and Richardson, 1991; Zhang et al., 1997), protein translation (Colilla et 

al., 1990; Mendez et al., 1990) and proteases (Wijaya et al., 2000; Melo et al., 2002), ion channel-blocking, 

antibacterial and antifungal activities (Carvalho and Gomes, 2009), the precise in vivo mode of action of 

PDFs remains unclear.  
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Hevein- and knottin-type AMPs 

Hevein is the most predominant peptide (43 amino acids) in the latex of rubber trees (Hevea sp.) and 

shows homology to the Cys-rich chitin-binding domain present in different types of chitin-binding 

proteins (Archer et al., 1969; Walujono et al., 1975). Although hevein has rather weak antifungal 

properties (Van Parijs et al., 1991), much more potent homologs have been found in the seeds of 

Amaranthus caudatus (Broekaert et al., 1992), Amaranthus retroflexus (Lipkin et al., 2005) and Pharbitis nil 

(Koo et al., 1998), the leaves of Beta vulgaris (Nielsen et al., 1997) and Sambucus nigra fruits (Van Damme et 

al., 1999) and are called ‘hevein-type AMPs’. Hevein and hevein-type peptides have an N-terminal signal 

peptide and a C-terminal propeptide that shows homology to PR-4 from tobacco and has eight disulfide-

linked cysteines that form four disulfide bridges. On the other hand, the amaranth hevein-like peptides 

originate from a similar precursor but their prodomains are shorter and thus they have only six Cys 

residues. Both hevein and hevein-like peptides are secreted into the apoplast. 

Knottins or cystine-knot miniproteins are a large family found in many species with a variety of 

biological functions such as inhibitory, antimicrobial, insecticidal, cytotoxic, anti-HIV or hormone-like 

activities (Chiche et al., 2004). An overview is given in the KNOTTIN database 

(http://knottin.cds.cnrs.fr/; Gracy et al., 2008). Knottins consist of approximately 30 amino acids and 

share a highly stable and compact knotted tertiary scaffold that is formed and stabilized by a 

characteristic pattern of disulfide bonds, called the ‘knottin fold’. 

 Both hevein- and knottin-type peptides have a similar antimicrobial spectrum and inhibit a 

broad range of phytopathogenic fungi and Gram-positive bacteria (Broekaert et al., 1992; Cammue et al., 

1995). 

 

Cyclotides 

Cyclotides are Cys-rich circular peptides ranging from 28 to 37 amino acids and are exclusively found in 

plants, specifically in the Rubiaceae, Violaceae, Cucurbitaceae and Fabaceae families (Camarero, 2011; 

http://www.cyclotide.com/). Various biological functions have been reported such as antimicrobial, 

insecticidal, antihelmintic, cytotoxic, antitumor, antiviral, protease inhibition and uterotonic effects 

(Gran et al., 2000; Avrutina et al., 2005; Daly et al., 2009). Cyclotides have a unique three-dimensional fold 

typified by a head-to-tail cyclized peptide backbone with a cyclic Cys-knot topology. Due to this cyclic 

and rigid framework, cyclotides are extremely resistant to thermal and chemical denaturation and 

enzymatic degradation (Colgrave and Craik, 2004). In fact, these properties make cyclotides promising 

candidates for pharmaceutical and agricultural applications (Garcia and Camarero, 2010; Jagadish and 

Camarero, 2010). Unfortunately, several attempts to express cyclotides in transgenic Arabidopsis and 

tobacco plants failed (Saska et al., 2007; Gillon et al., 2008). Recently, cyclotides have been isolated from 
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Clitoria ternatea, a member of the Fabaceae family of which many species (e.g. peas and beans) are of 

great economic importance. This could open new possibilities to express cyclotides in a genetically 

modified legume crop (Poth et al., 2011). 

 

Lipid-transfer proteins 

Lipid-transfer proteins (LTPs) are basic (~pI 9), small proteins (9-10 kDa) that were originally identified 

for their ability to facilitate lipid shuttling between membranes in vitro. However, it was later shown that 

LTPs are secreted (Sterk et al., 1991) and, thus, located in the extracellular space, thereby ruling out the 

putative role in lipid transfer (Segura et al., 1993; Pyee and Kolattukudy, 1995). Hitherto, numerous LTPs 

were identified in both mono- and dicotyledonous species including barley, grapevine (Vitis vinifera), 

wheat, A. thaliana, spinach (Spinacia oleracea) and onion (Allium cepa; Sels et al., 2008). The Arabidopsis 

LTP family consists of 15 members that are all regulated by developmental and environmental cues 

(Arondel et al., 2000; Sels et al., 2008). 

Plant LTPs are synthesized as precursors with an N-terminal signal peptide and a mature LTP 

domain containing eight conserved Cys residues forming four disulfide bridges at the C-terminus. The 

tertiary structure of plant LTPs is comprised of four α-helices and is classified as an all-α-type structure. 

These four α-helices are connected by flexible loops that form a hydrophobic cavity that can 

accommodate lipids (Shin et al., 1995). Many biological functions have been attributed to plant LTPs 

such as a role in cutin synthesis (Pyee et al., 1994), β-oxidation (Tsuboi et al., 1992), defense signaling 

(Buhot et al., 2001; Maldonado et al., 2002) and response (Molina et al., 1993; Kristensen et al., 2000; 

Girault et al., 2008). As plant LTP expression is induced upon pathogen infection, they were classified as 

PR peptides (Sels et al., 2008). Several plant LTPs have been reported to exert both antifungal and 

antibacterial activities (Molina et al., 1993; Cammue et al., 1995). Their antimicrobial action could be 

linked to the ability of plant LTPs to bind biological membranes together with their high isoelectric 

point by acting as membrane-permeabilizing agents (Kader, 1996).  

 

Four-Cys AMPs 

Four-Cys AMPs are a group of small basic peptides in which the number and distribution of Cys 

residues show no structural homology with other plant AMPs. Members of this group are MPB-1, 

Ib-AMPs and EcAMP1. 

MPB-1 was first isolated from maize seeds as a 33 residue AMP (3.7 kDa) with four disulfide-

linked cysteines (Duvick et al., 1992) that are organized in two CXXXC segments. MBP-1 showed 

inhibitory activities against both gram-positive (Clavibacter michiganense) and gram-negative (Escherichia coli) 

bacteria and several fungi (Duvick et al., 1992). 



Plant antimicrobial peptides 

125 

Recently, an antifungal peptide EcAMP1 of 37 amino acids was isolated from the kernels of 

barnyard grass (Echinochloa crus-galli) with an unusual four-Cys motif (Nolde et al., 2011) that is also 

present in MBP-1, MiAMP2 from Macadamia integrifolia, and the trypsin inhibitors BWI-2b from 

buckwheat and VhTI from Veronica hederefolia. Moreover, EcAMP1 showed a 67% sequence identity with 

MPB-1. EcAMP1 adopts a disulfide-stabilized α-helical hairpin structure that is unprecedented among 

naturally occurring AMPs. EcAMP1 exhibits high antifungal activities against Fusarium sp. by inhibiting 

hyphal elongation without disrupting the fungal membrane (Nolde et al., 2011). 

The Ib-AMP family consists out of four small basic peptides (20 amino acids) isolated from the 

seeds of Impatiens balsamina that contain four Cys residues that are linked by two disulfide bridges (Tailor 

et al., 1997). These peptides are closely related to each other but lack homology with other AMPs. 

Interestingly, all four Ib-AMP peptides are produced from one 333 amino acid translation product 

encoded by one gene. This multipeptide precursor has an N-terminal signal peptide for targeting to the 

secretory pathway. Within this translation product, all Ib-AMPs are each time flanked by moderately 

conserved anionic prodomains that likely function in neutralizing the highly basic mature Ib-AMP 

peptides. Both antibacterial and antifungal activities against a number of species have been demonstrated 

in vitro for all four Ib-AMPs (Tailor et al., 1997). 

 

Snakins 

Snakins include small AMPs (< 11 kDa) that are characterized by the presence of twelve Cys residues 

and are expressed as preproproteins. The first purified snakins, StN1 and StN2, were isolated from the 

tubers of potato (Solanum tuberosum) and showed antimicrobial activity against a number of important 

pathogens in vitro (Segura et al., 1999; Berrocal-Lobo et al., 2002). StSN1 and StSN2 are similar with 

members of the GAST and GASA family from tomato and Arabidopsis, respectively. Consequently, 

they were classified into a novel snakin/GASA family (Berrocal-Lobo et al., 2002). This further led to the 

identification of additional homologs in a wide range of species including mono- and dicotyledonous 

plants (Shi et al., 1992; Ben-Nissan and Weiss, 1996; Kotilainen et al., 1999; Furukawa et al., 2006). 

Snakins have been shown to play a role in cell division, cell elongation, cell growth, transitioning to 

flower, signaling pathways and defense (Aubert et al., 1998; Kotilainen et al., 1999; Segura et al., 1999; 

Berrocal-Lobo et al., 2002; Ben-Nissan et al., 2004; de la Fuente et al., 2006; Furukawa et al., 2006; Roxrud 

et al., 2007). 
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Other biological roles of AMPs in plants 

 

Protein inhibitors 

Besides their antimicrobial activity, many AMPs have been shown to exert protein-inhibitory activities 

(Broekaert et al., 1997; Lay and Anderson, 2005). For instance, several plant AMPs have been shown to 

inhibit animal α-amylase activity, including members of the PDF (Bloch and Richardson, 1991), LTP 

(Campos and Richardson, 1984) and the knottin-type families (Chagolla-Lopez et al., 1994). As α-

amylases are the major digestive enzymes in the gut of herbivores, plant AMPs could be involved in the 

defense against herbivores (Shade et al., 1994). Interestingly, PDFs that exhibit α-amylase activity seemed 

to have no antifungal or antibacterial activities and vice versa (Osborn et al., 1995). Other plant AMPs 

were shown to inhibit serine proteases (Wijaya et al., 2000; Melo et al., 2002; Chiche et al., 2004) and 

protein translation (Colilla et al., 1990; Mendez et al., 1990). Purothionins are able to inhibit the 

enzymatic activity of ribonucleotide reductase, interfere with DNA synthesis and irreversibly inactivate 

β-glucuronidase (Johnson et al., 1987; Diaz et al., 1992). 

 

Redox regulation  

SPD1, a defensin isolated from sweet potato (Ipomoea batatas), was shown to regenerate both 

monodehydroascorbate and dehydroascorbate to ascorbic acid in the presence of glutathione. 

Accordingly, it was proposed that SPD1 regulates the redox status of ascorbic acid (Huang et al., 2008). 

Purothionins have been shown to influence the redox potential of thioredoxins and are also known to 

activate chloroplast fructose-1,6-bisphosphatase by promoting disulfide bond formation (Wada and 

Buchanan, 1981; Johnson et al., 1987). This has led to the development of the commercial product 

Corystein™ (TaKaRa Co) that is used as an oxidizing/reducing agent catalyzing the formation of correct 

disulfide bonds in proteins. 

 

Ion channel inhibitors 

Two γ-zeathionins (defensin family) isolated from maize were shown to block the conductance of 

voltage-gated sodium channels in animal cells (Kushmerick et al., 1998). Interestingly, these peptides 

showed structural similarities with µ-conotoxins, a class of neurotoxic Cys-rich peptide amides that block 

muscle-type sodium channels (Ohizumi et al., 1986). Moreover, a plant defensin, called Medicago sativa 

Defensin1 (MsDef1), was shown to selectively block the mammalian L-type Ca2+ channel in a similar 

way as KP4, a viral encoded killer toxin from the corn smut fungus Ustilago maydis (Spelbrink et al., 2004). 
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Metal physiology 

In a screen to determine novel components involved in the zinc (Zn) tolerance of the hyper-

accumulating plant Arabidopsis halleri, several cDNAs encoding PDFs were identified (AhPDFs; Mirouze 

et al., 2006). These defensins are constitutively present in the shoots of A. halleri and accumulate in 

response to Zn stress. Overexpression of one of these AhPDFs in transgenic A. thaliana plants resulted 

in an increased Zn tolerance compared to wild-type plants. Because these PDF genes have a much 

higher basal expression level in A. halleri as in A. thaliana and a strong response to Zn treatment, these 

defensins could play a role in the Zn tolerance of A. halleri. Two main hypotheses for the mechanisms 

behind this Zn tolerance were proposed: AhPDFs could act as Zn-chelating agents or as ion channel-

blocking agents (Mirouze et al., 2006). 

 

Development 

Several studies have shown the involvement of defensins in plant development. For instance in Brassica, 

interaction between a defensin-like peptide secreted from pollen with the cognate S-locus receptor 

kinase on the stigma activates a self-incompatibility response that prevents self-fertilization (Takayama et 

al., 2001). Silencing of DEF2, a defensin highly expressed in immature flower buds of tomato, leads to 

the retardation of meiosis resulting in pollen viability defects. During later stages of flower development, 

inactivation of DEF2 is required for survival and development of pollen grains (Stotz et al., 2009). 

 

Abiotic stress tolerance 

Increasing evidence indicates that plant AMPs play a role in abiotic stress responses. First, the 

expression of many PR genes, including plant AMPs, is modulated by abiotic stress, such as drought 

stress, low and high temperature stress, high light stress and high salinity stress (Hon et al., 1995; 

Broekaert et al., 2000; Zeier et al., 2004; Van Loon et al., 2006; Seo et al., 2008). For instance, PDFs are 

responsive towards abiotic stresses, including cold (Koike et al., 2002), drought (Do et al., 2004), metal 

stress (Mirouze et al., 2006; see above) and nutrient starvation (Armengaud et al., 2004). Moreover, 

several reports have shown that the overexpression of antimicrobial genes conferred not only tolerance 

to pathogenic microorganisms, but also to environmental stresses. For instance, the antimicrobial 

protein gene CaAMP1, isolated from Capsicum annuum, is induced by abscisic acid (ABA), high salinity, 

drought and low temperature stress (Lee and Hwang, 2009). Constitutive expression of CaAMP1 in 

transgenic Arabidopsis plants leads to an enhanced tolerance towards ABA, high salinity and drought 

stress, and is linked to an earlier induction of the AtRD29A gene that is involved in drought, low 

temperature, high salinity and ABA responses (Shinozaki and Yamaguchi-Shinozaki, 1997; Ishitani et al., 

1998; Piao et al., 2001; Narusaka et al., 2003; Lee and Hwang, 2009). Several reports have shown that 
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LTP and LTP-like proteins are involved in the acclimation to several environmental conditions, such as 

cold, salt stress and drought stress (Kader, 1996). In addition, overexpression of an antimicrobial gene 

can lead an enhanced tolerance towards oxidative stress. For instance, rice plants that overexpress cecropin 

A, a plant codon-optimized synthetic gene from the Cecropia moth (Hyalophora cecropia; Table 1), showed 

an increased tolerance towards hydrogen peroxide that is correlated with an increased expression of 

ROS-scavenging enzymes (Campo et al., 2008). 

 

AMPs are promising candidates for novel applications in plant disease control 

Plant diseases caused by phytopathogenic microorganisms are responsible for major reductions in food 

quality and safety (http://faostat.fao.org/). This leads to enormous losses of both cultivated and stored 

crops and is thus a major hurdle in effective food distribution world-wide. Several agricultural practices 

were developed to protect crops, such as irrigation, crop rotation, fertilizers, chemical pesticides and 

resistant cultivars obtained by conventional breeding. Nevertheless, in an era of massive monocultures, 

decreasing arable land area and an exponentially growing world population, these practices will be 

insufficient to maintain the global food and feed demand (http://faostat.fao.org/). The extensive usage 

of agrochemicals, that often have a narrow mode of action, has led to the strong development of 

resistant phytopathogens. In addition, agrochemicals can have long-term repercussions on the 

environment. Crossbreeding of resistant cultivars is difficult because suitable genetical sources 

containing specific disease resistance genes are limited or in some cases not known yet. Hence, more 

efficient and durable strategies need to be developed to control plant diseases. In this respect, genetic 

engineering provides an opportunity to introduce genes conferring resistance to phytopathogenic 

organisms of agronomical important crop cultivars. In general, candidate genes must confer a durable 

resistance to a broad-spectrum of pathogens while being safe for all other organisms, including the crop 

itself, and the animals and humans that consume them (van der Biezen, 2001). 

Antimicrobial genes of both plant and non-plant origin have been used to generate disease-

resistant plants (Brogue et al., 1991; Lorito et al., 1998). However, introducing a single antimicrobial gene 

(e.g. chitinase, β-1-3-glucanase) often leads to a limited level of disease resistance and a narrow spectrum 

of protection. In contrast, AMPs have been proposed as promising candidates for use in agriculture 

because of their small size, broad-spectrum activity with a high affinity for microbial membranes, high 

resistance against proteolysis, rapid antibacterial and antifungal action, limited immunogenicity and a 

mode of action that is difficult to develop resistance against (Table 1; Jaynes et al., 1987; Casteels et al., 

1989; Rao, 1995; van der Biezen, 2001; Bulet et al., 2004; Montesinos, 2007; Marcos et al., 2008). 

AMPs can be applied in crop protection through different ways. First, plant diseases can be 

controlled through the administration of synthetic peptides. Because the activity of AMPs greatly 
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depends on the microenvironment where the interaction between the peptide, the pathogen and the 

plant tissue takes place, extensive studies have to be carried out to ensure the peptide remains active in 

situ (Marcos et al., 2008). When using peptides at a large-scale, the production needs to be cost-effective 

and is therefore often based on recombinant expression systems with micro-organisms and even 

transgenic plants (molecular farming; Zhang et al., 1998; Lee et al., 2002; Nandi et al., 2005). The 

application of synthetic peptides could be used in the combat against postharvest diseases as an 

additional postharvest additive (López-García et al., 2000; Liu et al., 2007a; Liu et al., 2007b). Next, AMPs 

could be combined with microorganisms in a process called biological control, an alternative disease-

control method using natural enemies of phytopathogens. Yeast strains that occur naturally on the 

surfaces of fruits or vegetables have been proposed as biocontrol agents of postharvest diseases (Chalutz 

and Wilson, 1990; Jeffries and Jeger, 1990; Droby et al., 1991; Janisiewicz, 1991; Smilanick et al., 1993; 

Jones and Prusky, 2002). For instance, the expression of an antifungal peptide in Saccharomyces cerevisiae 

led to the efficient growth inhibition of the tomato fruit fungal pathogen Colletotrichum coccodes, a major 

causing agent of postharvest diseases (Jones and Prusky, 2002).  

Another strategy is the overexpression of transgenes encoding natural or synthetic AMPs and has 

been successful in the protection of plants against diseases caused by a variety of bacterial and fungal 

phytopathogens (Table 1; Carmona et al., 1993; Molina and García-Olmedo, 1997; Zhang et al., 1998; 

Gao et al., 2000; Oldach et al., 2001; Takase et al., 2005). To efficiently improve crop disease resistance by 

AMP overexpression, a detailed understanding of the target, host and AMP is prerequisite and can limit 

potential drawbacks, such as species specificity of the peptides, partial resistance, biotoxicity, reduced 

fitness, peptide instability and poor bioavailability. One strategy to improve disease resistance is to 

combine multiple AMPs with complementary modes of action and host spectra. For instance, AMPs 

acting at different infection stages of a phytopathogen can be combined to increase resistance against 

resilient disease-causing microbes. This can be established by co-expression (Xing et al., 2006), chimeric 

hybridization (Osusky et al., 2000) or the expression of polyprotein precursor constructs of multiple 

AMPs (François et al., 2002; François et al., 2004). An efficient strategy to minimize the potential 

instability (e.g. by post-translational degradation) and, thus, to increase the bioavailability of the peptide, 

is targeting the peptide to another subcellular compartment, preferentially where protease activity is 

presumed to be lower (Sharma et al., 2000; Li et al., 2001; Coca et al., 2006). Constitutive overexpression 

can also decrease the stability of the AMP. For instance, overexpression of Cys-rich peptides (i.e. 

thionins) can lead to aspecific binding to other cellular components, possibly through disulfide linkage, 

thereby limiting the in vivo peptide availability and activity (Piñeiro et al., 1995; Banzet et al., 2002). In 

turn, these aspecific interactions can have pleotropic effects often leading to morphological 

perturbations (Banzet et al., 2002). In respect of this, the expression of AMPs via the chloroplast genome 



Chapter 4 

130 

offers several advantages in terms of protein stability and toxicity. Compartmentalization of AMPs in the 

chloroplasts, that has predominantly neutral membrane lipids, allows the storage of a high amounts of 

AMPs because of to the high copy number associated with chloroplast expression and prevents pollen-

mediated escape of transgenes (DeGray et al., 2001). Another disadvantage of the constitutive 

overexpression of a disease resistance protein is the promotion of co-evolution of resistant 

phytopathogens. Therefore, the generation of plants expressing AMPs on-demand by using synthetic or 

native inducible promoters activated upon pathogen attack is preferred.  

The detailed knowledge of the biophysical and structural properties of these natural peptides 

could serve as a basis for the rational design of less toxic non-natural bioactive AMPs. Recent advances 

in the synthesis of peptides, peptide collections and libraries, allows to asses if rationally designed 

peptide modifications, additions or deletions have an impact on the specificity, the toxicity against plant 

and animal cells, the stability and the action spectrum. Different strategies are employed to design novel 

AMPs such as the modification of the sequence of natural AMPs, fusion of fragments of natural AMPs 

and peptide cyclization of synthetic peptides (Marcos et al., 2008). 

Although the benefits of using AMPs in plant protection have been repeatedly demonstrated, 

several remarks about biosafety have to be kept in mind. The expression of a transgene could affect the 

host gene expression. Therefore, extensive studies have to be carried to address if the expression of an 

antimicrobial gene affects the natural inducible plant defense responses. Several studies have 

demonstrated that overexpression of an antimicrobial gene perturbed nuclear gene expression and 

implied an altered immune status (Campo et al., 2008; Distefano et al., 2008; Rahnamaeian et al., 2009; 

Rahnamaeian and Vilcinskas, 2011). For instance, overexpression of cecropin A in rice altered the 

expression of genes involved in the protection against oxidative stress, processes of synthesis, folding 

and stabilization of proteins that enter the secretory pathway, translational machinery and genes 

encoding components of the vesicle-associated transport machinery (Campo et al., 2008). Another 

important remark regarding biosafety of using AMPs in crop protection is the effect on the mutualistic 

interaction between plants and beneficial symbionts. These plant-microbe interactions often lead to an 

increased fitness by supporting water and mineral uptake as well increasing disease resistance (Bonfante 

and Genre, 2008). Therefore, a detailed understanding of the mode of action and specificity of the AMP 

is essential for the application in transgenic crops. 
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Table 1. Overview of AMP expression in transgenic plants (Adapted from Rahnamaeian and Vilcinskas, 2011). 

Origin Source AMP Host Pathogens Efficacy  Reference 
Insects Heliothis verescens Heliomicin Tobacco Cercospora nicotianae Significant 

decrease in 
disease 

symptoms 

Banzet et al., 2002

Drosophila 
melanogaster 

Drosomycin 

Sarcotoxin IA Tobacco Pseudomonas syringae pv. tabaci Significant 
decrease in 

disease 
symptoms 

Ohshima et al., 
1999 Erwinia carotovora ssp. carotovora 

Mtk  Barley Blumeria graminis 60% decreased 
colony formation 

Rahnamaeian and 
Vilcinskas, 2011 

Fusarium graminearum 80% decrease in 
fungal biomass 

Rahnamaeian et 
al., 2009 

Podisus 
maculiventris 

Thanatin Rice Magnaporthe oryzae 50% decrease in 
disease indexa 

Imamura et al., 
2010 

Hyalophora cecropia Attacin Apple Erwinia amylovora 50% reduction in 
lesion length 

Ko et al., 2000 

Cecropin A Rice Magnaporthe grisea Significant 
reduction in 
lesion size 

Coca et al., 2006 
Xanthomonas oryzae 

Cecropin B Rice Magnaporthe grisea ~85% reduction 
in lesion 

diameter; ~55% 
increase plant 

survival 

Sharma et al., 
2000 

Xanthomonas oryzae Significant 
decreased lesion 

growth 
Arabidopsis Pseudomonas syringae pv. tomato  100-fold 

reduction in in 
planta 

proliferation 

Oard and Karki, 
2006 

Fusarium oxysporum Qualitatively 
significant 
decrease in 

disease 
symptoms 

Galleria mellonella Gallerimycin Tobacco Erysiphe cichoracearum 45-66% 
inhibition of 

spore 
germination 

Langen et al., 
2006 

Sclerotinia minor Visible reduction 
in lesion size 

Arthropods Tachypleus 
tridentatus 

Tachyplesin I Potato  Erwinia carotovora Slight reduced rot 
in tubers 

Allefs et al., 1996 

Mytilus edulis 
chilensis 

mussel defensin Tobacco Pseudomonas syringae pv. syringae Visible reduction 
disease 

symptoms 

Arenas et al., 
2006 

Amphibians Xenopus leavis Magainin-2 Tobacco Pseudomonas syringae pv. tabaci Leaf extracts 
inhibited 96% 

growth 

DeGray et al., 
2001 

Aspergillus flavus, Fusarium 
monoliforme, Verticiliium dahliae 

Leaf extracts 
inhibited > 95% 

growth 
Colletotrichum destructivum Significant visual 

resistance 
Grapevine Uncinula necator Significant 

reduction in 
disease 

symptoms 

Vidal et al., 2006 
Agrobacterium vitis 

Rana esculenta Esculentin-1 Tobacco Pseudomonas aeruginosa Significant 
reduction in 
lesion size 

Ponti et al., 2003 
Pseudomonas syringae pv. tabaci 

Mammals Homo sapiens hBD-2 Arabidopsis  Botrytis cinerea Significant 
reduction in 
percentage 

decayed leaves 

Aerts et al., 2007 

Plants Raphanus sativus RsAFP2 Tobacco 
Tomato 

Alternaria longipes 8-fold (~85%) 
reduction in 

lesion diameter 

Terras et al., 1995 

Medicago sativa alfAFP Potato Verticillium dahliae 6-fold (~80%) 
reduction in in 
planta pathogen 

proliferation 

Gao et al., 2000 
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Table 1. Overview of AMP expression in transgenic plants (Adapted from Rahnamaeian and Vilcinskas, 2011). (Continued). 

Origin Source AMP Host Pathogens Efficacy Reference 
Plants Picea abies Spi1 Tobacco Erwinia carotovora Limited bacterial 

growth 
Elfstrand et al., 
2001 

Pisum sativum DRR206 Canola 
Tobacco 

Leptosphaeria maculans  Significant 
reduction in 

symptom 
development 

Wang et al., 
1999 

Brassica campestris BSD1 Tobacco Phytophthora parasitica var. 
nicotianae 

Qualitatively 
enhanced 
disease 

resistance 

Park et al., 2002 

Wasabi japonica WT1 Rice Magnaporthe grisea 50% reduction 
in lesion size 

Kanzaki et al., 
2002 

Dahlia merckii Dm-AMP1 Eggplant Botrytis cinerea 36-100% 
reduction in 

necrotic lesion 
size 

Turrini et al., 
2004 

Mirabilis jalapa Mj-AMP1 Papaya Verticillium albo-atrum 60% reduction 
in mycelial 

growth 

 
Zhu et al., 2007 

Phytophtora palmivora 60% reduction 
in in planta 
pathogen 

proliferation; 
~55% reduction 

in lesion 
diameter 

Tomato Alternaria solani Qualitatively 
significant 

reduction in 
disease 

symptoms 

Schaefer et al., 
2005 

Pharbitis nil PnAMP-h2 Tobacco Phytophthora parasitica 80% reduced 
wilting 

Koo et al., 2002 

Allium cepa AcAMP1 Rice Magnaporthe grisea  86% decrease in 
disease leaf area 

Patkar and 
Chattoo, 2006 

Rhizoctonia solani 67% decreased 
infection 

Xanthomonas oryzae 82% reduction 
in average 
length of 

diseased leaf 
area 

Brassica juncea BjD Tobacco 
Peanut 

Fusarium monoliforme Qualitatively 
significant 

reduction in 
disease 

symptoms 

Swathi 
Anuradha et al., 
2008 

Phytophthora parasitica var. 
nicotianae 

Phaeosariopsis personata ~90% reduction 
in lesion 

frequency 
Cercospora arachidicola 

Solanum chacoense Snakin1 (Sn1) Potato Rhizoctonia solani 30-60% 
increased 

survival rates 

Almasia et al., 
2008 

Erwinia carotovora 46-88% lesion 
reduction 

Hordeum vulgare α-thionin Tobacco Pseudomonas syringae pv. tabaci Significant 
reduction in 

necrotic lesion 
percentage 

Carmona et al., 
1993 Pseudomonas syringae pv. syringae 

Stellaria media SmAMP1 
SmAMP2 

Arabidopsis Bipolaris sorokiniana Increased 
seedling survival 

rate 

Shukurov et al., 
2011 Tobacco Thieviopsis basicola 

Viruses UMV4 virus KP4 Maize Ustilago maydis Qualitatively 
significant 

reduction in 
disease 

symptoms 

Allen et al., 2011
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Table 1. Overview of AMP expression in transgenic plants (Adapted from Rahnamaeian and Vilcinskas, 2011). (Continued). 

Origin Source AMP Host Pathogens Efficacy Reference 
Fungi Apergillus giganteus AFP Rice Magnaporthe grisea Qualitatively 

significant 
reduction in 

disease 
symptoms 

Moreno et al., 
2005 
Coca et al., 2004 

Ag-scFv Wheat Fusarium asiaticum Significant 
increase in grain 

weights 

Li et al., 2008 

Synthetic Xenopus leavis' 
magainin 2 

Shiva-1 Tobacco Pseudomonas solanacearum Qualitatively 
significant 

reduction in 
disease 

symptoms 

Jaynes et al., 
1993 

Potato Erwinia carotovora Yi et al., 2004 
Pauwlonia 
tomentosa 

PWB Phytoplasma Du et al., 2005 

Anthurium Xanthomonas axonopodis pv. 
dieffenbachiae  

Significant 
reduction in 

disease severity 

Kuehnle et al., 
2004 

Myp30 Tobacco Peronospora tabacina 16% reduction 
in lesion 
diameter 

Li et al., 2001 

Erwinia carotovora 40% increased 
survival rate 

Magainin-like ESF12 Poplar Septoria musiva 77% reduction 
of necrotic area 

Liang et al., 
2002 

Hyalophora 
cecropia's cecropin 
SB3 

MB-39 Tobacco Pseudomonas syringae pv. tabaci Qualitatively 
significant; 10-

fold reduction in 
in planta 

pathogen 
proliferation 

Huang et al., 
1997 

Apple  Erwinia amylovara 3-fold increased 
resistance 

Liu et al., 2001 

Cecropin analogue SB-37 Potato  Erwinia carotovora Reduced 
severity of 

disease 
symptoms 

Arce et al., 1999 

Hyalophora 
cecropia's cecropin A 
- Xenopus leavis' 
melittin hybrids 

MrsA1 Potato  Fusarium solani Qualitatively 
significant 
increased 
resistance 

Osusky et al., 
2000 Phytophthora cactorum 

Erwinia carotovora 

D4E1 Tobacco Colletotrichum destructivum ~35% reduction 
in anthracnose 

severity 

Cary et al., 2000 

Poplar Agrobacterium tumefaciens Reduced 
severity of 

disease 
symptoms 

Mentag et al., 
2003 Xanthomonas populi pv. populi 

Cotton Fusarium verticillioides 40% reduction 
in growth of 

pre-germinated 
conidia 

Rajasekaran et 
al., 2005 

Verticillium dahliae 40-75% 
reduction in 

growth of pre-
germinated 

conidia 
Thielaviopsis basicola 25% reduction 

in disease 
symptoms 

Aspergillus flavus 50-75% growth 
reduction 

MSI-99 Tobacco Sclerotinia sclerotiorum 40-70% 
reduction in 

lesion diameter 

Chakrabarti et 
al., 2003 
 
 
 
 
 
 
 
 
 
DeGray et al., 
2001 

Alternaria alternata 80% reduction 
in lesion 
diameter 

Botrytis cinerea 40-70% 
reduction in 

lesion diameter 
Colletotrichum destructivum Qualitative 

reduction in 
disease 

symptoms 

Pseudomonsas syringae pv. tabaci 
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Table 1. Overview of AMP expression in transgenic plants (Adapted from Rahnamaeian and Vilcinskas, 2011). (Continued). 

Origin Source AMP Host Pathogens Efficacy Reference 
Synthetic Hyalophora cecropia's 

cecropin A - Xenopus 
leavis' melittin 
hybrids 

MSI-99 Grapevine Uncinula necator ~40% reduction 
in disease 
symptoms 

Vidal et al., 
2006 

Agrobacterium vitis Significant 
reduction in 

grown gall size 
Banana Fusarium oxysporum f. sp. cubense Qualitatively 

significant 
reduction in 

disease 
symptoms 

Chakrabarti et 
al., 2003 

Mycospaerella musicola 40% reduction in 
lesion area 

Tomato Pseudomonas syringae pv. tomato Significant 
reduction in 

disease severity 

Alan et al., 
2004 

CEMA Tobacco Fusarium solani Qualitatively 
significant 

reduction in 
disease 

symptoms 

Yevtushenko 
et al., 2005 

Phyllomedusa 
bicolor's dermaspetin 
B1 

MsrA2 Potato Phytophthora erythroseptica 91-94% 
reduction in 

infection area 

Osusky et al., 
2005 

Phytophthora infestans Qualitatively 
significant 

reduction in 
disease 

symptoms 

Fusarium solani 
Pythium paroecandrum 
Pythium splendens 
Rhizoctonia solani 
Erwinia carotovora 50-86% 

reduction in 
bacterial growth 

Tobacco bacteria, fungi, oomycetes Qualitatively 
significant 

reduction in 
disease 

symptoms 

Yevtushenko 
and Misra, 
2007 

Synthetic 
neurodisruptive 
peptides 

ACHE-I-7,1 Potato  Globodera pallida 61% reduction in 
nematodes per 

root system 

Liu et al., 2005 

Bovine neutrophils' 
indolicidine 

Rev4 Tobacco Peronospora tabacina Up to 34% 
increase in 

biomass yieldb 

Xing et al., 
2006 Erwinia carotovora ssp. carotovora 

Arabidopsis Pseudomonas syringae pv. maculicola Significant 
reduction in 
disease index 

Bovine indolicidine/ 
Xenopus leavis' 
magainin 2 

Rev4 and Myp-30 
coexpression 

Arabidopsis Pseudomonas syringae pv. maculicola Significant 
reduction in 
disease index 

Peronospora parasitica 

Variants of 
indolicidin 

10R, 11R Tobacco Erwinia carotovora ssp. carotovora Qualitatively 
significant 

reduction in 
disease 

symptoms 

Bhargava et al., 
2007b 

Botrytis cinerea 
Verticilium sp. 
TMV 

Variant of 
polyphemusin from 
Limulus polyphemus 

PV5 Tobacco Erwinia carotovora Qualitatively 
significant 

reduction in 
disease 

symptoms 

Bhargava et al., 
2007a Botrytis cinerea 

Verticilium sp. 
Fusarium oxysporum 
TMV 

 

a The disease index represents the mean disease severity (1= light to 5=severe). 

b Field trials  
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CONCLUDING REMARKS AND PERSPECTIVES 

 

AMPs are an important evolutionary conserved part of innate immunity found throughout all kingdoms, 

including plants. These highly diverse peptides are characterized by their small size and amphipathic 

structure by clustered cationic and hydrophobic amino acid residues, that is prerequisite for their 

antimicrobial activity.  

Plant diseases lead to major annual crop losses around the world. To meet the world’s future 

needs in food and feed production, the development of novel and more sustainable agricultural practices 

for crop protection are necessary. The application of AMPs is a promising strategy for plant disease 

control. A thorough knowledge of the biochemical and structural properties of natural AMPs together 

with the mode of action is prerequisite for their application and determines the durability and efficacy. 

Several aspects need to be examined in detail, such as the activity under physiological conditions, 

selectivity and synergistic effects. Most membrane permeabilization studies were carried out with 

artificial phospholipid membranes and may not represent the actual situation. Therefore, the 

development of novel assays using membranes of different pathogens is crucial. In addition, AMPs 

acting on intracellular targets are promising candidates for future research. High-throughput 

identification of novel synthetic AMPs is currently accomplished by using synthetic combinatorial 

peptide libraries and allows – together with the knowledge-based design of peptide analogs – the 

development of improved peptides with enhanced stability, selectivity and activity and together with 

reduced nonspecific toxicity. Currently, the research on mammalian AMPs greatly extends plant AMP 

research. Hence, future research using a systems biology approach will further identify novel AMPs that, 

in turn, will give more insights in the mode of actions and the roles of AMPs in disease resistance. 

Furthermore, other biological roles of AMPs are still poorly understood, including their role in abiotic 

stress tolerance. 
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ABSTRACT 

 

Plants have developed a variety of mechanisms to cope with abiotic and biotic stresses. In a previous 

localization study of hydrogen peroxide-induced proteins, two peptides with an unknown function 

(designated ARACIN1 and ARACIN2) have been identified. Although these peptides are highly similar, 

they are differentially regulated by several abiotic stresses, during Botrytis cinerea infection or after 

treatment with benzothiadiazole and methyl jasmonate. In the genome of Arabidopsis thaliana, these 

paralogous genes are positioned in tandem within a gene cluster of pathogen defense-related genes. 

ARACINS encode small, cationic and hydrophobic peptides and share several features with 

antimicrobial peptides. Their genes are expressed in peripheral cell layers prone to pathogen entry and 

are lineage-specific to the Brassicaceae family. Transgenic Arabidopsis plants that ectopically expressed 

ARACIN1 were significantly better protected against infections with two agronomically and 

economically important necrotrophic fungi, Botrytis cinerea and Alternaria brassicicola. In addition, in vitro 

bioassays demonstrated that both ARACIN peptides had a direct antifungal effect against these 

pathogens. 
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A modified version of this chapter will be submitted to Plant Physiology by Inzé, A., Mathys, J., van de Cotte, B., 

Cammue, B. and Van Breusegem, F. under the title “ARACIN1 and ARACIN2, two novel Brassicaceae-specific 

peptides exhibiting antifungal activities against necrotrophic fungal pathogens in Arabidopsis thaliana” 
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INTRODUCTION 

 

During biotic and abiotic stresses, the cellular metabolic status is perturbed producing a variety of 

reactive oxygen species (ROS) as a consequence (Van Breusegem et al., 2008; Mittler et al., 2011). Besides 

being toxic byproducts of aerobic metabolism, ROS and, more particularly, hydrogen peroxide (H2O2), 

are considered as signaling molecules that trigger signal transduction pathways involved in defense 

responses and cell death (Apel and Hirt, 2004; Gadjev et al., 2006; Van Breusegem and Dat, 2006). 

Transcriptome analyses revealed an important enrichment of ROS-responsive genes during biotic and 

abiotic stresses, including many pathogen defense-related genes such as the pathogenesis-related (PR) 

genes (Broekaert et al., 2000; Apel and Hirt, 2004; Torres and Dangl, 2005; Torres et al., 2006; van Loon 

et al., 2006). Amongst them, antimicrobial peptides (AMPs) are considered to play a key role in plant 

defense, acting both as permanent and inducible defense barriers (García-Olmedo et al., 1998).  

Plant AMPs are small (12 to 50 amino acids), cationic, hydrophobic and secreted peptides that 

are widespread throughout the plant kingdom and include plant defensins, lipid-transfer proteins, 

hevein- and knottin-type peptides, cyclotides, snakins, maize (Zea mays) basic peptide 1, and polyprotein 

precursor AMPs from both Macadamia integrifolia and Impatiens balsamina (Broekaert et al., 1995; García-

Olmedo et al., 1998; Theis and Stahl, 2004; Sels et al., 2008 – Chapter 4). Due to their amphipathic 

nature, AMPs are able to permeabilize the pathogen’s membrane by both specific and non-specific 

electrostatic and hydrophobic interactions with cell surface groups (Shai, 2002; Thevissen et al., 2003; 

Aerts et al., 2008). However, increasing evidence shows that the antimicrobial action of some AMPs can 

be based on more targeted mechanisms, including the interaction with microbe-specific lipid receptors 

(Wilmes et al., 2011). In addition, other biological roles of AMPs have been identified, such as protein 

inhibition (Broekaert et al., 1997; Lay and Anderson, 2005), redox regulation (Huang et al., 2008), ion 

channel inhibition (Kushmerick et al., 1998; Spelbrink et al., 2004) and development (Takayama et al., 

2001; Stotz et al., 2009 – Chapter 4). 

Overproduction of AMPs has been proposed as a promising strategy to increase disease 

resistance in transgenic plants thanks to their small size, broad-spectrum activity by targeting the 

pathogen’s membrane, and a mode of action that is difficult to develop resistance against (Bulet et al., 

2004; Marcos et al., 2008 – Chapter 4). Overexpression of the radish (Raphanus sativus) antifungal peptide 

RSAFP2 in transgenic tobacco (Nicotiana tabacum) plants increased resistance against the fungus 

Alternaria longipes (Terras et al., 1995). Overexpression of an alfalfa (Medicago sativa) defensin (alfAFP) in 

transgenic potato (Solanum tuberosum) provided high levels of field resistance against Verticillium dahliae, 

the casual agent of the agronomically important ‘early dying disease’ (Gao et al., 2000). A more advanced 

and durable approach is to engineer transgenic plants that synthesize chimeras of two or more AMPs 
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with different modes of action to develop a broad-spectrum resistance. For example, overproduction of 

a chimeric cleavable polyprotein precursor containing the mature domains of the plant defensins 

DmAMP1 (Dahlia merckii AMP1) and RsAFP2 resulted in the efficient release of both bioactive 

antifungal peptides (François et al., 2002; François et al., 2004). 

 AMP overexpression can also confer enhanced tolerance to abiotic stresses (Mirouze et al., 2006; 

Lee and Hwang, 2009). For instance, overexpression of the CaAMP1 (Capsicum annuum AMP1) gene in 

Arabidopsis thaliana increased not only resistance against both bacterial and fungal pathogens, but also 

tolerance to high salt and drought stresses (Lee et al., 2008; Lee and Hwang, 2009). Another example 

demonstrating the involvement of AMPs in abiotic stress is the zinc stress tolerance in transgenic A. 

thaliana lines obtained by overexpression of PDF genes of Arabidopsis halleri (Mirouze et al., 2006). 

 

Here, we characterized two Arabidopsis peptides, designated ARACIN1 and ARACIN2, that are 

transcriptionally regulated by both biotic and abiotic stresses and share many characteristics with AMPs. 

We demonstrate their antifungal activities in vitro against the broad host necrotrophic plant fungus 

Botrytis cinerea, the causing agent of gray mold disease, and Alternaria brassicicola, which causes black spot 

disease on members of the Brassicaceae family (Neergaard and Andersen, 1945; Braverman, 1971; 

Lawrence et al., 2008). Furthermore, overexpression of ARACIN1 in planta significantly improved 

resistance against both pathogens. 

 

 

RESULTS 

 

Stress and hormone responsiveness of ARACIN1 and ARACIN2 

Previously, we compiled a comprehensive list of H2O2-responsive genes by using catalase-deficient 

Arabidopsis plants exposed to high light (HL) irradiation. Reduced catalase levels together with HL 

exposure leads to the accumulation of photorespiratory H2O2 that, in turn, affected the expression of 

more than 700 genes (Vanderauwera et al., 2005; Vanderauwera et al., 2011; Inzé et al., 2012 – Chapter 2). 

ARACIN1 (At5g36925), a peptide of unknown function, was previously identified as nucleocytosolic in 

a subcellular localization study of H2O2-induced proteins (Inzé et al., 2012 – Chapter 2). The expression 

of ARACIN1 and the highly similar paralog ARACIN2 (At5g36920; see below) was induced by 

increased levels of photorespiratory H2O2 (22-fold and 1.35-fold, respectively). 

Due to the absence of representative probe sets on the Affymetrix ATH1 microarray platform, 

the array-derived expression data on both genes were rather scarce and limited to publicly available data 

sets that had been obtained from Agilent Arabidopsis V3 arrays and diverse tiling array platforms. From 
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these data sets, we could deduce a down-regulation of ARACIN1 by abscisic acid and heat stress (Zeller 

et al., 2009) and an up-regulation in response to Agrobacterium tumefaciens infection (Ditt et al., 2006). To 

complement these array-based abiotic stress-related data, we performed a detailed expression analysis 

with quantitative PCR on RNA from salt-, cold- and heat-stressed plants (see Materials and Methods). 

Transcripts of ARACIN1 were transiently up-regulated by both salt (3.32-fold; see Materials and 

Methods) and cold stress (5.92-fold after 13 h; Figure 1a), whereas ARACIN2 expression remained 

unaffected. During heat stress, transcripts of ARACIN1 were substantially down-regulated after 6 and 

12 h at 37°C, whereas ARACIN2 was up-regulated (Figure 1b). 

 

 

 

Figure 1. Transcriptional regulation of ARACIN1 and ARACIN2. 

Relative abundance of ARACIN1 and ARACIN2 transcripts after cold stress (a), heat stress (b), Botrytis infection (c), BTH 

treatment (d) and MeJA treatment (e) represented as fold change relative to wild-type/unstressed or mock-treated values and 

normalized against ARP7 or EF1-α (see Materials and Methods). Data are the means ± SE (n=2-3). ARACIN1 and 

ARACIN2 transcript levels are respectively represented by black bars/lines and grey bars/dotted lines. Bc loc and Bc sys, 

local and systemic B. cinerea infection, respectively; ND, not detected. 
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To investigate the transcriptional regulation of ARACIN1 and ARACIN2 during biotic stress, 

we assessed their transcript levels after infection with the necrotrophic fungus B. cinerea. Therefore, 

4-week-old Arabidopsis plants were inoculated with B. cinerea B05-10 and systemic and local leaves were 

collected 48 h post-inoculation. Only ARACIN2 was strongly induced (16.8-fold) in locally infected 

leaves and both genes were induced in systemic leaves (Figure 1c). Further, we assessed their 

responsiveness towards the defense hormones salicylic acid (SA) and methyl jasmonate (MeJA). Plants 

were treated with benzothiadiazole (BTH), that has an analogous effect to SA and activates the plant’s 

natural defense mechanisms (Lawton et al., 1996), and with MeJA. After 24 h, the expression of 

ARACIN1 was 7-fold higher in BTH-treated plants than in mock-treated plants and decreased to 3-fold 

after 72 h (Figure 1d). In contrast, the expression of ARACIN2 was not affected by BTH (Figure 1d). 

The MeJA-response of ARACIN1 was biphasic: after 4 h, the expression of ARACIN1 increased 

almost 3-fold and reached its first maximum after 8 h, returned to basal levels after 12 h and reached a 

second maximum after 24 h (Figure 1e). Again, the expression of ARACIN2 remained unaffected.  

 

Distinct spatial expression of ARACIN1 and ARACIN2 promoters 

Expression characteristics were further explored by GUS histochemical staining of transgenic plants 

containing promoter-GUS fusions in which the ARACIN1/ARACIN2 promoters (intergenic regions; 

1343 bp and 841 bp, respectively) were transcriptionally fused to GUS (Karimi et al., 2007; see Materials 

and Methods). Similar results were obtained with two independent transgenic lines. The expression 

patterns of ARACIN1 and ARACIN2 were spatially distinct. The expression of promARACIN1:GUS was 

mainly detected in young developing leaves (Figure 2a), hydathodes (Figure 2b), immature flowers 

(Figure 2c) and elongating pollen tubes (Figure 2d), whereas abundant expression levels of 

promARACIN2:GUS occurred in young and mature trichomes, stomatal guard cells, hydathodes, the shoot 

apical meristem, leaf primordia and the hypocotyl (Figure 2e), and emerging lateral roots (Figure 2f). In 

flowers, promARACIN2:GUS expression was found in the anther-filament junction region, female 

gametophytes (Figure 2g,h) and the stigma (Figure 2g). 
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ARACINS are Brassicaceae-specific paralogs 

ARACIN1 and ARACIN2 are positioned in tandem on the complement strand of chromosome 5 and 

are organized in two exons separated by one intron (The Arabidopsis Information resource (TAIR); 

http://www.arabidopsis.org/; Figure 3a). The open reading frames (ORFs) of ARACIN1 and 

ARACIN2 are short (192 and 249 nucleotides, respectively), share 80% coding sequence (CDS) identity 

(Figure 3b) and encode peptides of 76 (8.2 kDa) and 82 amino acids (8.9 kDa), respectively (Figure 3c). 

The current genome annotation (TAIR10) indicated a 57-nucleotide difference in the length of 

the CDS between ARACIN1 and ARACIN2, with ARACIN1 being shorter at the 5’ side (Figure 3b). 

Within the upstream region adjacent to the start codon of ARACIN1, a sequence was found that was 

highly similar to the first 54 nucleotides of the CDS of ARACIN2. Because of this high level of identity 

and the presence of a start codon preceded by an adequate Kozak consensus sequence, we assumed a 

misannotation (Figure 3b). To determine the exact mRNA length of ARACIN1, a 5’ rapid amplification 

of cDNA ends (RACE) with gene-specific primers was done. As expected, RACE fragments were 

obtained that contained this similar region, strengthening our assumption that this upstream sequence 

probably is part of the CDS (Figure S1). 

Next, we assessed the presence of ARACIN1 and ARACIN2 in other plant genomes by using 

the PLAZA comparative genomics tool (Proost et al., 2009; http://bioinformatics.psb.ugent.be/plaza/) 

Figure 2. Tissue- and cell-specific expression of ARACIN1 and 

ARACIN2 visualized by histochemical GUS staining.  

(a-d) promARACIN1:GUS expression was mainly found in young 

developing leaves (a), hydathodes (b, indicated by an arrow), young 

developing flowers (c) and in the pollen tube (d). 

(e-h) promARACIN2:GUS displayed a strong expression in leaf trichomes, 

stomata, hydathodes, the shoot apical meristem, leaf primordia, the 

hypocotyl (e) and emerging lateral roots (f). In flowers, promARACIN2:GUS 

expression was found in the junction region between anther and filament 

(g, indicated by an arrow), female gametophytes (g, h) and the stigma (g). 
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and by blasting the Brassica rapa (turnip) genome using the Brassica Database (BRAD; 

http://brassicadb.org/brad/index.php/). PLAZA 2.5 integrates structural and functional annotations of 

25 species: 13 dicots, 5 monocots, 2 (club-)mosses and 5 algae. Comparative analysis revealed orthologs 

of ARACIN1 and ARACIN2 in Arabidopsis lyrata (Al7g33690 and Al7g33670, respectively; Figure S2a) 

and B. rapa (Figure S2b). Interestingly, multiple protein sequence alignments clearly showed that the 

ARACIN1 ortholog Al7g33690 contained this additional sequence, again supporting our hypothesis that 

the annotation of Arabidopsis ARACIN1 was incorrect (Figure S2a).  

 

 

 
Figure 3. Sequence characteristics of ARACIN1 and ARACIN2. 

(a) Genomic position and gene organization of ARACIN1 and ARACIN2. The 5’ region upstream region of ARACIN1 that 

has a high sequence identity with the 5’ CDS of ARACIN2, is depicted by a black box.  

(b) Sequence analysis revealing a 54-nucleotide sequence upstream of the annotated start codon (asterisk) of ARACIN1 that is 

highly similar to the 5’ CDS of ARACIN2.  

(c) Sequence alignment of the translated full length ARACIN1 with the protein sequence of ARACIN2. The predicted signal 

peptide (SignalP 3.0; Emanuelsson et al., 2007), the first methionine according to the TAIR annotation (asterisk), the 

prodomain and the highly converved C-terminal domain (see further) are indicated. Identical and similar residues are shaded 

black and grey, respectively. Sequence data were retrieved from The Arabidopsis Information Resource (TAIR10; 

http://www.arabidopsis.org/). CDS, coding sequence. 
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ARACIN1 and ARACIN2 are targeted to the ER 

Previously, we demonstrated that the N-terminal green fluorescent protein (GFP) fusion of ARACIN1 

without the similar upstream sequence (designated Δ ARACIN1) localizes to the nucleus and cytosol 

(Inzé et al., 2012 – Chapter 2). Constitutive overexpression of this GFP-tagged nucleosolic version of 

ARACIN1 led to a drastic phenotype characterized by a severe loss in apical dominance resulting in a 

small bushy stature, thick and contorted leaves and a delayed flowering time (Figure S3a-d).  

In silico prediction with SignalP3.0 (Emanuelsson et al., 2007) deduced the presence of a signal 

peptide in ARACIN2 for targeting to the endoplasmic reticulum (ER; Figure 3c), whereas Δ ARACIN1 

was predicted as cytosolic. However, addition of the 5’ similar sequence (see above) to the CDS of 

ARACIN1 led to the formation of an intact N-terminal signal peptide (Figure 3c).  

To determine the subcellular localization of full length ARACIN1 and ARACIN2, their ORFs 

were fused in frame with GFP at the C-terminus and placed under control of the constitutive cauliflower 

mosaic virus 35S (CaMV35S) promoter (Figure 4a). The subcellular localization was assessed in at least 

two independent and stable transgenic Arabidopsis plants. As expected, the addition of the 5’ similar 

sequence altered the subcellular localization of ARACIN1 (Figure 4b): Both localization patterns of 

ARACIN1-GFP (Figure 4b, panels 1-2) and ARACIN2-GFP (Figure 4b, panels 3-4) showed 

characteristic features of the ER such as a reticular pattern and the perinuclear ring, indicating that both 

ARACIN1 and ARACIN2 are presumably targeted to the ER. Both peptides contained no ER retention 

signals, suggesting they are probably secreted into the extracellular matrix. Interestingly, while the 

expression of the nucleocytosolic-targeted GFP- ∆ ARACIN1 drastically perturbed normal growth and 

development (Figure S3a-d), constitutive ER-localized ARACIN1-GFP overexpression plants looked 

phenotypically similar to the wild type (data not shown). Mistargeting of ARACIN1 could perturb the 

cellular homeostasis which, in turn, could lead to pleiotropic defects in normal growth and development. 

In the case of ARACIN2-GFP overexpression, only one GFP-positive transgenic Arabidopsis line could 

be obtained. Strikingly, this line showed a similar phenotype as the GFP-∆ ARACIN1OE (Figure S3e-f) 

and ARACIN2OE lines (see further). 

 

ARACINS share several characteristics with AMPs 

Both ARACINS share some key structural characteristics with AMPs. First, ARACIN1 and ARACIN2 

are small (8.2 and 8.9 kDa), hydrophobic (39% and 40% total hydrophobic ratios) and cationic (+4 and 

+2 total net charge) peptides. These features are prerequisite for the antimicrobial activity of AMPs that 

is mainly based on their ability to disturb the pathogen’s membrane via electrostatic and hydrophobic 

interactions (Shai, 2002; Thevissen et al., 2003). Like nearly all AMPs, ARACIN1 and ARACIN2 have a 

defined exon/intron structure, with the first exon encoding the signal peptide for targeting to the 
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secretory pathway and the second exon coding for the mature peptide (Silverstein et al., 2005; Figures 3a 

and 4b). 

AMPs are often produced as prepropeptides in which the predomain functions as a signal 

peptide that is removed during secretion. The prodomain is often acidic and thought to neutralize and, 

thus, inactivate the basic mature peptide when it is still intracellular. Once secreted, this propeptide is 

proteolytically removed, thereby activating the mature peptide (García-Olmedo et al., 1998 – Chapter 4). 

As the C-terminal regions of both ARACIN peptides were highly conserved (Figure 3c), they could 

represent the mature domains necessary for antimicrobial activities. The putative prodomains of 

ARACIN1 and ARACIN2, that are flanked by their predomain (signal peptide) and mature domain, are 

acidic (pI 5.96 and 3.42, respectively) and, thus, these regions could function in the neutralization of the 

cationic mature domain (pI 8.96 and 9.38, respectively). The biochemical properties of these putatively 

different forms are given in Table 1.  

 

 

Table 1. Peptide characteristics of the putatively different forms of ARACIN1 and ARACIN2. 
Name  Sequence  Length 

(AA) 
Molecular 

weight 
(kDa) 

Hydrophobic 
ratio 

Net 
charge 

pI 

preproARACIN1 MAMKTSHVLLLCLMFVIGFVEARRSDTGPDIS
TPPSGSCGASIAEFNSSQILAKRAPPCRRPRL
QNSEDVTHTTLP 

76 8.2 39% +4 8.66 

proARACIN1 RRSDTGPDISTPPSGSCGASIAEFNSSQILAKR
APPCRRPRLQNSEDVTHTTLP 

54 5.7 25% +3 8.95 

mARACIN1 GSCGASIAEFNSSQILAKRAPPCRRPRLQNSE
DVTHTTLP 

40 4.2 32% +3 8.96 

preproARACIN2 MAMKNTSHVLLLSLLLCLMFVIGLVEASIPDD
DMGPAIYTPPSGSCGAPISKYDFQVLAKRPPP
CRRPRLENTEDVTHTTRP 

82 8.9 40% +2 6.70 

proARACIN2 SIPDDDMGPAIYTPPSGSCGAPISKYDFQVLA
KRPPPCRRPRLENTEDVTHTTRP 

55 5.9 25% +1 6.49 

mARACIN2 GSCGAPISKYDFQVLAKRPPPCRRPRLENTE
DVTHTTRP 

39 4.3 25% +4 9.38 

The total hydrophobic ratio, total net charge and isoelectric point (pI) of the putative different forms of ARACIN1 and 

ARACIN2 were calculated with the peptide predictor tool of the Antimicrobial Peptide Database (ADP; 

http://aps.unmc.edu/AP/main.php/; Wang and Wang, 2004). The sequence length and molecular weight are indicated in 

number of amino acids (AA) and in kDa, respectively. The predicted signal peptide (SignalP 3.0; Emanuelsson et al., 2007) 

is underlined and the sequence of the putative mature peptide is indicated in bold. kDa, kilodalton. 
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To assess whether ARACINs are processed in vivo, we immunodetected GFP-tagged peptides in 

two independent transgenic Arabidopsis ARACIN1-GFPOE and ARACIN2-GFPOE plants (Figure 4c). In 

the case of ARACIN1-GFP, the anti-GFP antibody recognized four protein bands that correspond in 

size with the putative preproARACIN1-GFP (~35 kDa), the proARACIN1-GFP (~30 kDa), the mature 

ARACIN1-GFP (~31 kDa) and free GFP (~27 kDa). This was also the case for ARACIN2-GFP. The 

mature ARACIN1 and ARACIN2 domains had an estimated size of approximately 4 kDa, of which the 

size is similar to that of the conserved C-terminal region (Figure 4c and Table 1). 

 

 

 

Figure 4. Subcellular targeting and processing of ARACIN1 and ARACIN2. 

(a) Schematic representations of the expressed GFP-tagged peptides with their putative prepropeptide structure 

used to determine the subcellular localization and processing of ARACIN1 and ARACIN2 in transgenic 

Arabidopsis lines. The 5’ upstream similar sequence of ARACIN1, that is part of the N-terminal signal peptide 

(pre-domain), is indicated in grey. The first methionine (M) of ARACIN1 according to the TAIR10 annotation 

(The Arabidopsis Information Resource; http://www.arabidopsis.org/) is indicated with an asterisk.  

(b) Subcellular localizations of the GFP-tagged ARACIN peptides in 2-week-old Arabidopsis transgenic 

ARACIN1-GFPOE (panels 1-2) and ARACIN2-GFPOE (panels 3-4) lines. GFP fluorescence (1,3) and bright-

field images (2,4) are depicted. Scale bars, 10 µm. 
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Figure 4. Subcellular targeting and processing of ARACIN1 and ARACIN2. (Continued). 

(c) Western blot analysis of leaf extracts of 2-week-old independent (1,2) and stable transgenic ARACIN1-

GFPOE (above), ARACIN2-GFPOE (below) and GFPOE lines using an anti-GFP antibody. The different forms 

(prepro, pro and mature (m)) are indicated. GFP, green fluorescent protein; kDa, kilodalton. 

 

 

Secondary structure prediction with the Protein/Homology/analogY Recognition Engine 

(PHYRE) web server (Bennett-Lovsey et al., 2008; Kelley and Sternberg, 2009), that uses template-based 

homology modeling to construct structural predictions, revealed the presence of two α-helices at the 

C-terminus of ARACIN1 (Figure S4a) and α and β contents in ARACIN2 (Figure S4c). Moreover, 

homology-based three-dimensional models of ARACIN1 and ARACIN2 were constructed with 

PHYRE2.0 (intensive mode; Figure S4d,e). Although no structural matches with a high confidence level 

could be detected, most predictions had a fold occurring in proteins with a putative defense role. 

ARACIN1 showed an approximately 42% similarity (best hit; confidence level of 11%) with the 48 

amino acid residue neurotoxin-I of sea anemone (Stichodactyla heliantus; Structural Classification of 

Proteins (SCOP) code d2sh1a; Protein Data Bank (PDB) code 2SH1; Fogh et al., 1990; Wilcox et al., 

1993) that belongs to the defensin superfamily (Figure S4b,d). Surprisingly, matches with ARACIN2 

were predominantly protease inhibitors (data not shown). 

 

Overexpression of ARACIN1 and ARACIN2 perturbs the expression of defense-related genes 

To assess the effect of ARACIN overexpression on plant development, we made constitutive 

overexpression lines with the CaMV35S promoter. Northern blot analysis revealed that several 

independent transgenic lines contained elevated levels of the ARACIN1/ARACIN2 transcripts 

(Figure 5a). Whereas all ARACIN1OE lines were phenotypically similar to untransformed wild-type 

plants, overexpression of ARACIN2 drastically affected growth and development (Figure 5b). After 

normal seed germination and cotyledon expansion, ARACIN2OE plants showed a severely retarded 

growth, curled dark leaves and delayed flowering (Figure 5b), resembling the observed phenotype of the 

ARACIN2-GFPOE line (Figure S3e-f). As constitutive expression of a defense gene often perturbs the 

expression of other defense-related genes (Eckardt, 2007), we assessed the expression of the SA-

responsive marker genes, PR-1 and PR-5 and the MeJA-responsive marker genes PDF1.2a, THI2.1 and 

THI2.2 in the ARACIN1OE and ARACIN2OE lines. Quantitative reverse-transcription (qRT)-PCR 

analyses showed that ARACIN overexpression led to a distinct response of these marker genes. In 

almost all overexpression lines, PDF1.2a, PR-1 and PR-5 were up-regulated, whereas THI2.1 and THI2.2 

were down-regulated (Figure 5c, panels 1-4).  
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Figure 5. Expression analysis and phenotypes of the ARACINOE lines. 

(a) Northern blot analysis of the ARACIN1OE and ARACIN2OE lines.  

(b) Representative images of the ARACIN1OE and ARACIN2OE lines. (left) 1-month-old wild-type, one ARACIN1OE (A) and 

two ARACIN2OE (B,C) lines. (middle) 4-week-old wild-type and two independent ARACIN2OE lines. (right) Enlarged image 

of a 4-week-old ARACIN2OE2 plant. 
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Figure 5. Expression analysis and phenotypes of the ARACINOE lines. (Continued). 

(c) Relative abundance of ARACIN1, ARACIN2, PR-1, PR-5, PDF1.2a, THI2.1 and THI2.2 transcripts in two independent 

homozygous ARACIN1OE (panels 1-2) and ARACIN2OE (panels 3-4) lines. ARP7 was used as an internal control and 

transcript abundance was normalized to the wild type. Values represent means ± SE (n=3). 

 

 

ARACIN1 overexpression leads to a decreased sensitivity upon A. brassicicola and B. cinerea 

infections 

To assess the effect of increased ARACIN levels on symptom development during fungal infection, we 

performed disease assays with the two necrotrophic pathogens A. brassicicola and B. cinerea. Because of 

the drastic phenotype of the ARACIN2OE lines, no accurate scoring of disease symptoms was possible. 

Therefore, homozygous ARACIN1OE plants from three independent transgenic events (Figure 5a) were 

assayed with A. brassicicola and B. cinerea B05-10 by drop inoculation (5x105 spores mL-1) of 4-week-old 

Arabidopsis plants. Compared to the wild type, ARACIN1OE lines had an increased resistance 

phenotype after inoculation with A. brassicicola. A drastic reduction of disease symptoms was visible four 

days after infection: the mean lesion size on leaves of the ARACIN1OE overexpression lines was 50% 

smaller than that on wild-type leaves (Figure 6). Moreover, a statistically significant reduction in Botrytis 

lesion size was observed in the ARACIN1OE lines (Figure 6). 

 

 

 
Figure 6. Decreased sensitivity upon A. brassicicola and B. cinerea infection by overexpression of 

ARACIN1. 
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Figure 6. Decreased sensitivity upon A. brassicicola and B. cinerea infection by overexpression of 

ARACIN1. (Continued). 

Lesion sizes on leaves of wild-type plants and three independent ARACIN1OE lines measured several 

days after inoculation with A. brassicicola and B. cinerea B05-10. Data presented are the means of at least 

50 lesions. Error bars represent 95% confidence intervals (n=~50). For each assay, the average lesion 

diameter of wild-type and mutant plants were compared with a Student’s t-test (*, p < 0.05; **, p < 0.01; 

***, p < 0.001). The disease assays were done in duplicate, with similar results. 

 

 

In vitro antifungal activity against A. brassicicola and B. cinerea 

Next, we assessed the potential antifungal activity of ARACIN1 and ARACIN2 by an in vitro antifungal 

bioassay. Both propeptide and mature forms of ARACIN1 and ARACIN2 (Table 1) were produced by 

chemical synthesis (see Materials and Methods) and tested against A. brassicicola, B. cinerea B05-10 and 

B. cinerea Korea by means of a microtiter broth dilution assay (Figure 7 and Figure S5). Whereas 

proARACIN1 displayed no statistically significant inhibitory activities (data not shown), the mature form 

of ARACIN1 (mARACIN1) efficiently inhibited the growth of A. brassicicola starting at a concentration 

of 1 µg mL-1, with a 50% growth inhibitory concentration (IC50) value of 5.46 ± 0.57 µg mL-1. Moreover, 

the growth of the strains B05-10 and Korea of B. cinerea was almost completely inhibited at a 

concentration of 10 µg mL-1 mARACIN1 (95.7% and 94%, respectively) with IC50 values of 

3.05 ± 0.25 µg mL-1 and 2.03 ± 0.44 µg mL-1, respectively. In the case of ARACIN2, proARACIN2 

showed a statistically significant antifungal effect starting from 5 µg mL-1 (36.7% growth inhibition) 

against A. brassicicola (IC50 value 11.32 ± 1.28 µg mL-1), and against the B. cinerea B05-10 and Korea 

strains at a higher concentration of 20 µg mL-1 (62% and 64.8% growth inhibition, respectively). As 

expected, the antifungal activity of ARACIN2 was dramatically increased when the acidic prodomain 

was not present: the IC50 value of mARACIN2 against A. brassicicola was significantly lower 

(1.55 ± 0.11 µg mL-1; 86% reduction). Likewise, the antifungal activity of mARACIN2 against B. cinerea 

B05-10 and Korea was remarkably increased in comparison with proARACIN2 (Figure 7). 
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Figure 7. Inhibitory effects of mARACIN1, proARACIN2 and mARACIN2 on the growth of A. brassicicola, B. cinerea Korea 

and B. cinerea B05-10.  

The data is represented as a mean ± SE (n=2). The antifungal assays were done in duplicate, with similar results. 

 

 

DISCUSSION 
 
Here, we have identified two novel cationic and hydrophobic peptides that share many characteristics 

with AMPs. Detailed expression analyses showed that the ARACIN genes are differentially regulated by 

abiotic and biotic stress conditions. It is well known that abiotic stresses, such as HL, high salinity, 

drought, low and high temperature, or wounding, can also modulate the expression of biotic defense-

related genes, including plant AMPs (Hon et al., 1995; Broekaert et al., 2000; Zeier et al., 2004; van Loon 

et al., 2006; Seo et al., 2008 – Chapter 4). ARACIN1 and ARACIN2 are induced by photorespiratory 

H2O2, a signaling molecule produced during abiotic and biotic stresses (Fujita et al., 2006). Interestingly, 

ARACIN1 is significantly induced by cold stress. The induction of plant AMPs during cold acclimation 

has been reported previously in winter cereals that can confer disease resistance in addition to freezing 

tolerance (Nakajima and Abe, 1996; Gaudet et al., 1999). ARACIN1 and ARACIN2 have an opposite 

response during heat stress: while ARACIN2 is slightly up-regulated, ARACIN1 is significantly down-

regulated. ARACIN1 and ARACIN2 are both induced in systemic leaves upon infection with the 

necrotrophic pathogen B. cinerea. Interestingly, the expression of ARACIN2 - which remained 

unaffected during abiotic stresses - is highly induced in local infected leaves. We further demonstrated 

that BTH and MeJA play a role in the activation of ARACIN1 expression, whereas ARACIN2 

transcript levels were not altered by these chemicals. In addition, the cell- and tissue-specific expression 

patterns of both genes are quite distinct. The differential transcriptional regulation of the ARACIN 
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genes could be attributed to their divergent promoters that have a low incidence and small overlap of cis-

regulatory elements and, thus, these genes are probably under the control of different transcriptional 

regulators. Duplicated genes (i.e. paralogs) are only retained in the genome when they have acquired 

different or complementary functions (Tiffin and Moeller, 2006). Therefore, paralogs have often 

different expression patterns due to changes in the regulatory elements of their promoter region (Force 

et al., 1999; Altschmied et al., 2002; Prince and Pickett, 2002). Analysis of the 5’ sequence upstream of the 

ARACIN1 CDS for cis-acting regulatory elements revealed one putative MYC2-binding site (a 

CACATG sequence located at 849 nucleotides upstream of the ARACIN1 start codon) that is absent in 

the ARACIN2 promoter. MYC2 differentially regulates JA-responsive pathogen defense (including 

PDF1.2a) and wound response genes (Lorenzo et al., 2004). Whereas the promoter of ARACIN1 

contains four clustered W-box elements (-255, -227, -208, and -149), the promoter of ARACIN2 has 

only two dispersed W-box elements (-718 and -246). These W-box elements are bound with high affinity 

by WRKY transcription factors known to be involved in SA signaling and plant immunity (Pandey and 

Somssich, 2009). The presence of multiple MYC2 and W-box elements in the promoter of ARACIN1 

could explain its upregulation by MeJA and BTH. 

Recently, 1789 Brassicaceae-specific genes (including the ARACIN genes) have been identified 

by a step-wise BLAST filtering approach and are characterized by their short peptide length (77 amino 

acids), few introns, low GC content, unknown function, few paralogs, enrichment for secretory peptides 

and increased evolutionary rates. Remarkably, these Brassicaceae-specific genes are enriched for 

defensin-like genes and other cysteine-rich peptides, such as defensins and thionins. These defensin-like 

genes show higher frequencies of tandem duplications, the major mechanism for the generation of 

lineage-specific genes. Furthermore, these genes are often responsive to biotic and abiotic stimuli 

(Donoghue et al., 2011). 

Both ARACINs share similarities in molecular properties, genome organization, precursor 

organization, spatial expression and function with plant AMPs. First, ARACIN1 and ARACIN2 encode 

small, cationic and hydrophobic peptides and are expressed in peripheral cell layers, such as stomata, 

hydathodes and roots tissues, representing the primary entry points for pathogens. In addition, both 

genes are expressed in reproductive tissues that are known to be enriched in AMPs (Jones-Rhoades et al., 

2007; Punwani et al., 2007). As pollen are often coated with bacterial and fungal spores, AMPs are 

suggested to protect the female gametophyte during the fertilization phase (Cordts et al., 2001). In 

addition, an alternative role for plant AMPs has been demonstrated in Torenia fournieri, in which secreted 

defensin-like cysteine-rich polypeptides act as pollen tube attractants (Okuda et al., 2009). In this respect, 

it is interesting to note that ARACIN1 and ARACIN2 are expressed in the pollen tube and in the 

female gametophyte, respectively. 
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Within the Arabidopsis genome, both genes are positioned in tandem and are flanked by 

pathogen defense-related genes. The gene encoding a disease resistance protein belonging to the 

Toll/Interleukin1 receptor-nucleotide-binding site-leucine-rich repeat (TIR-NBS-LRR) class is 

positioned upstream of ARACIN1 and a thionin gene (THI2.2) is positioned downstream of 

ARACIN2. NBS-LRR resistance genes are part of a large multigene family that might be involved in the 

first line detection of pathogens (McHale et al., 2006). Defense-related genes are often positioned in gene 

clusters allowing a coordinated expression when plant defense is activated (Eckardt, 2007). Moreover, 

genes that are up-regulated during biotic stress, including cysteine-rich AMPs, expanded largely by 

tandem duplications (Silverstein et al., 2005; Hanada et al., 2008). ARACIN1 and ARACIN2 share the 

same exon/intron structure as AMPs in which the first exon encodes the signal peptide and the second a 

charged mature peptide (Silverstein et al., 2005). Both ARACIN1 and ARACIN2 contain functional 

signal peptides and are targeted to the ER. Since both peptides lack ER retention signals, they are 

presumably targeted to the extracellular space, concomitant with their antifungal activity during fungal 

infection. As the fluorescent properties of GFP are lost in the apoplast due to an acidic pH, we could 

not directly imply that the ARACIN-GFP peptides are secreted into the extracellular matrix. Therefore, 

additional experiments are necessary to determine their exact localization. To circumvent the problems 

associated with the detection of GFP-tagged proteins in the apoplastic space, fusions with the yellow 

fluorescent protein (YFP) Venus, a pH-insensitive variant of GFP, will enable the detection of both 

ARACIN-GFP peptides in the extracellular environment. In addition, immunodetection of GFP-tagged 

ARACIN peptides in extracellular protein extracts isolated from GFP-tagged ARACIN overexpression 

plants could be decisive whether the ARACIN peptides are secreted into the apoplastic space. We could 

further demonstrate that ARACIN1 and ARACIN2 are produced as prepropeptides, which is often the 

case for AMPs (García-Olmedo et al., 1998 – Chapter 4). The basic mature domain is frequently 

preceded by an anionic prodomain that might function in the neutralization and, thus, inactivation of the 

mature peptide when it is still intracellular. Once secreted, this prodomain is proteolytically removed 

from the mature domain. Although the exact cleavage sites and hence the lengths of the mature domains 

of the ARACIN peptides have not been determined yet, we demonstrated that both ARACIN peptides 

are cleaved into a smaller peptide of approximately 4 kDa, possibly corresponding to the highly 

conserved basic C-terminal region that represents the mature peptide. The sequence between the signal 

peptide and the mature domain is acidic and could function as a neutralizing prodomain. The exact 

nature of the different domains of both ARACINS needs to be determined by amino acid sequencing of 

the bands observed in the ARACIN1-GFP and ARACIN2-GFP overexpression lines. 

Homology-based structure modeling (PHYRE; Bennett-Lovsey et al., 2008; Kelley and Sternberg, 

2009) predicted the secondary and tertiary structure of both ARACIN peptides. Although the 
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confidence level of the structural matches was low, many of them have a putative role in defense. AMPs 

are rapidly evolving molecules due to pressure imposed by competition among phytopathogens 

(Silverstein et al., 2005). In other words, the sequence conservation between AMPs is rather limited and, 

therefore, may explain why only structural matches were retrieved with a low confidence level. 

Nevertheless, ARACIN1 matched best with neurotoxin-I of sea anemone that belongs to the defensin 

superfamily and acts on neuronal voltage-gated sodium channels of Crustaceae (Fogh et al., 1990; Wilcox 

et al., 1993). In contrast with ARACIN1, ARACIN2 retrieved predominantly matches with protease 

inhibitors. Several examples are known of AMPs with a protease-inhibitory activity (Kim et al., 2009 – 

Chapter 4). In response to pathogen attack, plants secrete inhibitory peptides that inactivate the 

proteinases produced by phytopathogenic microorganisms (Ryan, 1990). Several structural categories are 

recognized within AMPs: (i) linear peptides that form α-helices in contact with membranes; (ii) disulfide 

bridge-stabilized peptides with mainly β-structural elements; and (iii) linear non-helical forming peptides 

usually with a high occurrence of certain amino acids, often proline, glycine, histidine, arginine, 

tryptophan or cysteine (Zasloff, 2002; Boman, 2003). As both ARACIN1 and ARACIN2 lack the 

characteristic multiple cysteine residues necessary for the stabilization of the typical three-dimensional 

fold of many AMPs, they are probably linear. In other eukaryotes, various examples are known of AMPs 

without or with few cysteine residues (Boman, 2003). 

We further assessed the potential of both ARACIN peptides to protect plants against 

necrotrophic pathogens. Transgenic Arabidopsis plants with constitutive ARACIN1 overexpression 

displayed an enhanced resistance against the necrotrophs A. brassicicola and B. cinerea. Although 

A. brassicicola is considered an incompatible fungal pathogen of Arabidopsis, the molecular basis behind 

the restriction of the A. brassicicola infection is of great interest. An incompatible 

Arabidopsis - A. brassicicola interaction triggers a strong systemic response inducing the up-regulation of 

the defense genes PR-1 and PDF1.2a (Penninckx et al., 1996). The current knowledge about the 

molecular mechanisms underlying the interaction between A. brassicicola and members of the 

Brassicaceae family remains rather limited. Several studies have identified important players of the 

incompatible interaction of the Arabidopsis - Alternaria pathosystem, including antimicrobial compounds 

(Thomma et al., 1999; Schenk et al., 2003; Oh et al., 2005; Schuhegger et al., 2006; Nafisi et al., 2007). In 

addition, in vitro antifungal bioassays with chemically synthesized mARACIN1, proARACIN2 and 

mARACIN2 revealed their antifungal activities against A. brassicicola, B. cinerea B05-10 and 

B. cinerea Korea. Moreover, we demonstrated that the removal of the prodomains of ARACIN1 and 

ARACIN2 significantly improved their antifungal activity against these pathogens and, thus, we might 

have identified the minimal domains necessary for their antimicrobial activity. 
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Particularly prominent were the drastic phenotypes of the ARACIN2OE lines. It is well known 

that constitutive expression of defense-related genes can be autotoxic and/or energetically costly, often 

leading to a decrease in fitness-relevant processes such as growth and reproduction (Bolton, 2009). 

Indeed in both ARACIN1OE and ARACIN2OE plants, the SA-dependent expression of PR-1, PR-5 and 

the MeJA marker gene PDF1.2a was up-regulated, and the expression of THI2.1 and THI2.2 was down-

regulated. Because antimicrobial activities of PR-1 and PR-5 against many pathogens have been shown 

previously (Fritig et al., 1998; Coca et al., 2000; Shatters et al., 2006), the enhanced resistance of the 

ARACIN1OE line could also be due to a signaling effect (Ryan et al., 2007), although a clear direct 

antifungal activity of mARACIN1 has been shown in vitro.  

 Several examples are known where AMP overexpression conferred enhanced tolerance to abiotic 

stresses (Mirouze et al., 2006; Lee and Hwang, 2009). As ARACIN1 is transcriptionally regulated by 

abiotic stresses, we assessed whether the ARACIN1OE lines displayed an improved tolerance against salt 

stress (50 and 100 mM NaCl) and oxidative stress (2 µM methyl viologen). However, no statistical 

significant differences (scored by measuring root growth and leaf area) were found (data not shown). 

In conclusion, we characterized two novel Brassicaceae-specific peptides displaying antifungal 

activities against necrotrophic pathogens. In planta modulation of ARACIN1 expression levels enhances 

the resistance against these pathogens. Both ARACIN1 and ARACIN2 share many characteristics with 

AMPs, but are structurally unrelated to known plant AMPs. As plant diseases caused by A. brassicicola 

and B. cinerea infections result in major crop losses, the usage of ARACIN peptides in transgenic 

Brassicaceae species could be an alternative strategy to improve disease resistance. 
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MATERIALS AND METHODS 

 

Plant growth conditions and treatments 

For in vitro experiments, Arabidopsis thaliana (L.) Heynh ecotype Columbia (Col-0) plants (wild type) were, 

unless stated otherwise, grown until stage 1.04 (4th leaf 1 mm in size; Boyes et al., 2001) on half-strength 

(½) Murashige and Skoog (MS) medium (Duchefa Biochemie; http://www.duchefa.com/), 1% (w/v) 

sucrose, 0.7% (w/v) agar, pH 5.7 at 21°C and under a 16-h light/8-h dark photoperiod, 150 μmol m-2s-1 

light intensity and 50% relative humidity. The HL treatment was done according to experimental details 

described by Vanderauwera et al. (2011). For the salt stress experiment, plants were grown for two weeks 

on regular medium or on medium containing 50 mM NaCl. For the cold stress treatment, 3-week-old 

plants were transferred to 4°C in a controlled environment chamber (Weiss technik; 

http://www.weiss-gallenkamp.com/) and a pool of ten plants was harvested at each time point, whereas 

for the heat stress experiment, plants were transferred to a thermostat cabinet (Lovibond; 

http://www.lovibond.com/) at 37°C and three pools of 35 plants were harvested at each time point. For 

the BTH treatment, plants were sprayed with 350 μM BTH (BION® 50 WG, a gift from Syngenta Agro 

S.A. Spain) or with water (mock), whereas for the MeJA treatment, plants were sprayed with 100 μM 

MeJA containing 0.001% (v/v) Triton X-100 or with 0.001% (v/v) Triton X-100 in water (mock). A 

pool of 32 plants was harvested at each time point for each treatment. Two independent experiments 

were carried out for all treatments (independent sets of plants sown and treated on different dates). 

 

5’ rapid amplification of cDNA ends (RACE) 

Total RNA was extracted from wild-type plants with TRI Reagent (Molecular Research Center; 

http://www.mrcgene.com/). 5’ RACE-ready cDNA was made with the supplied Smart II oligo and 

Powerscript reverse-transcriptase (BD SMART™ RACE cDNA Amplification Kit; BD Biosciences; 

http://www.bdbiosciences.com/) and the reaction was run with the gene-specific primers (Table S1) 

and the supplied universal primer mix. Nested PCR reaction products were gel-purified with the 

Nucleospin gel extraction kit (Macherey and Nagel; http://www.mn-net.com/) and sequenced after 

cloning into the pENTR/D-TOPO vector (Invitrogen; http://www.invitrogen.com/). 

 

Production of transgenic lines 

Full-length ORFs (with and without stop codon) were PCR-amplified from first-strand cDNA of wild-

type plants with the high-fidelity Phusion DNA polymerase (Finnzymes OY; http://www.finnzymes.fi/) 

with gene-specific primers extended with attB sites for subsequent Gateway cloning into pDONR221 

(Invitrogen; Table S1). GFP fusions were constructed within the binary destination vector pK7FWG2 
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(Karimi et al., 2007), resulting in a C-terminal GFP fusion under the control of the CaMV35S promoter. 

Overexpression clones were generated within the binary destination vector pK7WG2 (Karimi et al., 

2007). To obtain promoter-GUS fusion constructs, the intergenic regions of ARACIN1 (1343 bp) and 

ARACIN2 (841 bp) were PCR-amplified from genomic DNA with promoter-specific primers extended 

with attB sites for subsequent Gateway cloning (Table S1). PCR fragments were cloned into Gateway 

entry vectors and subcloned into the binary destination vector pKGWFS7 (Karimi et al., 2007). All 

constructs were transformed to the A. tumefaciens strain C58C1 harboring the virulence plasmid MP90. 

Arabidopsis wild-type plants were transformed via A. tumefaciens floral dip (Clough and Bent, 1998). 

Homozygous lines with a single T-DNA locus were selected via segregation analysis and transgene 

expression was monitored via Northern analysis and qRT-PCR analysis for the overexpression lines, 

GFP fluorescence for the GFP fusion lines or GUS staining for the promoter-GUS lines. 

 

Fluorescence microscopy 

For fluorescence microscopy, a confocal microscope 100M with software package LSM 510 version 3.2 

was used (Zeiss; http://www.zeiss.com/), equipped with a 63x water-corrected objective (numerical 

aperture 1.2) to scan the leaf epidermis and underlying cell layers. GFP fluorescence was imaged in a 

single channel setting with 488 nm for GFP excitation. 

 

Promoter GUS analyses 

Transgenic 2-week-old seedlings grown in vitro on ½ MS plates or organs from mature plants grown in 

soil were harvested and incubated overnight in 90% acetone at 4°C. Acetone was removed and samples 

were washed with NT buffer (100 mM Tris, 50 mM NaCl and pH 7.0). Next, the NT buffer was 

replaced with a ferricyanide solution (0.2 mM ferricyanide in NT buffer) and samples were incubated in 

the dark at 37°C for at least 1 h. Afterwards, the ferricyanide solution was replaced with the GUS-

staining solution containing 0.02 mM 5-bromo-4-chloro-3-indolyl-D-glucuronide in ferricyanide 

solution. Samples were placed in the dark at 37°C and incubated for 6 h or overnight and were stored in 

100% lactic acid. Samples were photographed with a stereomicroscope (Stemi SV11; Zeiss) or with a 

Nomarski differential interference contrast microscope BX51 (Olympus; http://www.olympus.com/). 

 

qRT-PCR analyses 

For the abiotic stress expression analyses, RNA isolation, cDNA synthesis and qRT-PCR analyses were 

carried out as described in Vanderauwera et al., 2007 with gene-specific primers (Table S1). For ARACIN1 

and ARACIN2, gene-specific primers were designed with the Beacon Designer™ software 

(PremierBiosoft; http://www.premierbiosoft.com/; Table S1). For the genes PR-1, PR-5, PDF1.2a, 
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THI2.1, THI2.2 and ARP7, primers were designed with the Universal ProbeLibrary Assay Design center 

ProbeFinder software (Roche; https://www.roche-applied-science.com/; Table S1). ARP7 was used as a 

reference gene. For the qRT-PCR analyses on B. cinerea-infected leaves, RNA extraction, DNase 

treatment, cDNA synthesis and qRT-PCR experiments were done as described by Mirouze et al., 2006. 

EF1-α was used as a reference gene. 

 

Protein extraction and western blot analyses 

Total protein extracts were prepared by grinding leaf material (100 mg) in 200 μL extraction buffer 

(100 mM HEPES (pH 7.5), 1 mM EDTA, 10 mM β-mercaptoethanol and 1 mM 

phenylmethanesulfonylfluoride) and a protease inhibitor cocktail (COMPLETE; Roche). Insoluble 

debris was removed by centrifugation at 20800 x g for 15 min at 4°C. Protein concentrations were 

determined with the Bradford method (Zor and Selinger, 1996). Proteins (10 μg) were separated on a 

12.5% SDS PAGE gel, transferred to a P membrane (Millipore, http://www.millipore.com/) and 

immunodetected with the Living Colors A.v. Monoclonal antibody (JL-8; Clontech Laboratories; 

http://www.clontech.com/) by means of the Western Lightning kit (GE-Healthcare; 

http://gehealthcare.com/). 

 

Disease assays 

Mutant and wild-type Arabidopsis plants were grown in soil (DCM “Zaai- en stekgrond”; De Ceuster 

Meststoffen N.V.; http://www.dcm.com/) in a growth chamber with at 21°C/18°C day/night time 

temperature, 75% relative humidity under a 12 h light/12 h dark photoperiod with a light intensity of 

approximately 120 µmol m2s-1. 4-week-old plants were inoculated with A. brassicicola strain MUCL20297 

(Mycothèque Université Catholique de Louvain, Louvain-la-neuve, Belgium) or B. cinerea B05-10. To this 

end, a 2x107 spores mL-1 solution of the pathogen was diluted in ½ (12 g L-1) potato dextrose broth 

(PDB) in water to a final concentration of 5x105 spores mL-1. After spotting 5 µL of the diluted spore 

solution on two leaves per plant, the plants were placed in a humid chamber. 

For the Botrytis infection expression analyes, eight leaves from noninoculated plants (control) 

and eight leaves from systemical or local infected leaves of inoculated plants were collected 48 h post 

infection. For each treatment, four replicas were harvested and frozen in liquid nitrogen. 

For the disease assay, symptoms were scored by measuring and calculating the average diameters of the 

necrotic lesions on various days after pathogen inoculation (dpi). This disease assay was repeated twice 

with an average of 220 plants per assay. For each assay, the average lesion diameter on leaves of 

wild-type and mutant plants were compared with a Student’s t-test. 
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In vitro antifungal activity assays 

Chemically synthesized proARACIN1, mARACIN1, proARACIN2, mARACIN2 peptides were 

purchased (>98% purity) from Genscript (http://www.genscript.com/). Stock solutions of 

2x107 spores mL-1 of A. brassicicola, B. cinerea B05-10 and B. cinerea Korea were diluted in ½ PDB to a 

final concentration of 2x104 spores mL-1. After addition of 196-µL aliquots of these spore dilutions to 

4 µL of 2-fold dilution series of proARACIN1, mARACIN1, proARACIN2 and mARACIN2 in DMSO 

(starting from a 100 µg mL-1 stock solution) in microtiter plates, the plates were incubated at 23°C for 

48 h. DMSO was used as a negative control. Fungal growth was evaluated both microscopically and by 

measuring the OD600. Each fungus was tested in duplicate in the microtiter plates and each assay was 

repeated twice. For each assay, the average background corrected OD600 of each dilution and the DMSO 

control were compared with a Student’s t-test. Dose-response curves were calculated to obtain IC50 

values. To this end, average background-corrected ODs were converted to percent inhibition, whereas 

doses were log transformed. Then, either the four parameter logistic model or a simple linear model was 

fitted to the data using the drc package in R (R Development Core Team, 2011). The choice of the 

model was determined by the shape of the dose-response curve. 
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SUPPLEMENTARY MATERIAL 

 

 

 

 

Figure S1. Alignment of the CDS of ARACIN1 with a representative fragment obtained by 5’ 

RACE analysis.  

The CDS of ARACIN1 extends up to 54 nucleotides at the 5’ side of the start codon annotated by 

TAIR10 (indicated by an asterisk). The 5’ UTR obtained by 5’RACE is 29 nucleotides long. Similar 

results were obtained with several independent 5’ RACE fragments. CDS, coding sequence; RACE, 

Rapid Amplification of cDNA ends; UTR, untranslated region. 
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Figure S2. Presence of ARACIN1 and ARACIN2 in other members of the Brassicaceae family. 

(a) Multiple protein sequence alignment of ARACIN1 and ARACIN2 with the A. lyrata orthologs (Al7g33690 and Al7g33670, 

respectively) identified with the PLAZA comparative genomics tool (Proost et al., 2009). Identical and similar residues are 

shaded black and grey, respectively.  

(b) Multiple sequence alignments of ARACIN1 and ARACIN2 with the B. rapa orthologs identified using the Brassica 

Database (BRAD; http://brassicadb.org/brad/index.php/). 
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Figure S3. Several independent GFP-positive transgenic lines that 

constitutively express GFP-∆ ARACIN1 or ARACIN2-GFP and displayed 

severe abnormal morphologies.  

(a) 2-week-old primary GFP-∆ ARACIN1OE transformant with a callus-

like morphology. 

(b,c) primary GFP-∆ ARACIN1OE transformant (b, 50-day-old; c, 94-day-

old) with bushy stature, thick contorted leaves and seedless siliques.  

(c) 3-week-old primary GFP- ∆ ARACIN1OE line displaying a loss in apical 

dominance and curled leaves. 

(e,f) Unique GFP-positive ARACIN2-GFPOE plant with severe 

developmental defects. 
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Figure S4. Secondary and tertiary structure predictions of ARACIN peptides. 

(a) Secondary structure prediction of ARACIN1 by PHYRE (Protein Homology/analogY Recognition Engine; Bennet-

Lovsey et al., 2008; Kelley and Sternberg, 2009). 

(b) Alignment of ARACIN1 and the 48 amino acid residue neurotoxin-I from Stichodactyla heliantus (Fogh et al., 1990; Wilcox et 

al., 1993). 

(c) PHYRE secondary structure prediction of ARACIN2. 

(d) Tertiary structure ab initio model of ARACIN1 predicted by PHYRE 2.0 (intensive mode). The experimental determined 

tertiary structure of neurotoxin-I is depicted (Protein Data Bank (PDB) code 2SH1; Fogh et al., 1990; Wilcox et al., 1993). 

(e) Tertiary structure ab initio model of ARACIN2. 
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Figure S5. Antifungal activities of mARACIN1, proARACIN2 and mARACIN2 

against A. brassicicola, B. cinerea B05-10 and B. cinerea Korea.  

Pictures were taken 3 dpi. 
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Table S1. PCR primers used 
Primer Sequence 

At5g36925-TAIR-FW  GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTTTGTGATTGGTTTTGTAGAAGCTAG 

At5g36925-RV GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAAGGAAGTGTAGTGTGGGTCAC 

At5g36925-NO-STOP-RV GGGGACCACTTTGTACAAGAAAGCTGGGTCAGGAAGTGTAGTGTGGGTCACATCTTC 

PAt5g36925-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTAACTTATTTGCAGGGAAC 

PAt5g36925-RV GGGGACCACTTTGTACAAGAAAGCTGGGTCCAAACAAAGCAGAAGAAC 

PAt5g36925-SIM-RV GGGGACCACTTTGTACAAGAAAGCTGGGTCTGGCTCTTCTTATCTCAAG 

PAt5g36920-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAACTAGAAATGTTTCAAGAAG 

PAt5g36920-RV GGGGACCACTTTGTACAAGAAAGCTGGGTCTGGCTCTTCTATCTTAAATAAC 

At5g36925-5UTR-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGATGAAGACATCAC 

At5g36920-FW GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGATGAAGAATACATCAC 

At5g36920-RV GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAAGGTCGTGTAGTATGGGTC 

At5g36920-NO-STOP-RV GGGGACCACTTTGTACAAGAAAGCTGGGTCAGGTCGTGTAGTATGGGTCAC 

At5g36925-FW-SyBr GTAGAAGCTAGAAGATCAGATAC 

At5g36925-RV-SyBr TCAAGGAAGTGTAGTGTGG 

At5g36920-FW-SyBr CTAAGTCTTCTGCTTTGCCTGATG 

At5g36920-RV-SyBr CGTCTACATGGTGGTGGTCTC 

PR-1-At2g14610-PL-FW   TGATCCTCGTGGGAATTATGT 

PR-1-At2g14610-PL-RV   TGCATGATCACATCATTACTTCAT 

PR-5-At1g75040-PL-FW   GACTGTGGCGGTCTAAGATGT 

PR-5-At1g75040-PL-RV  TGAATTCAGCCAGAGTGACG  

THI2.1-At1g72260-PL-FW  CTGGTCATGGCACAAGTTCA  

THI2.1-At1g72260-PL-RV  GCCATTTCTAGCTTGGTTGG  

THI2.2-At5g36910-PL-FW  TGACCACTCTCCAAAACTTTGAC  

THI2.2-At5g36910-PL-RV   CTTTTAACTGCGGCGGTAGA 

PDF1.2-At5g44420-PL-FW  GTTCTCTTTGCTGCTTTCGAC  

PDF1.2-At5g44420-PL-RV   GCAAACCCCTGACCATGT 

At5g36925-GSP1  TCAAGGAAGTGTAGTGTGGGTCACATCT  

At5g36925-NGSP1  TCTGAGTTTTGGAGTCGAGGACGTC  

At5g36925-GSP2  CAGGATCATGTGGAGCTTCAATTGC  

At5g36925-NGSP2  CAATTCATCACAAATACTAGCCAAGAGAGC  

NUP-TOPO   CACCAAGCAGTGGTATCAACGCAGAGT 

EF1-α-At1g07920-FW TGAGCACGCTCTTCTTGCTTTCA 

EF1-α-At1g07920-RV GGTGGTGGCATCCATCTTGTTACA 
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PART I: Protein subcellular trafficking during the oxidative stress response in 
plants 

 

 

Oxidative stress-triggered relocalizations, an effective strategy to initiate a fast stress response 

Although significant progress has been made in the description of oxidative stress-dependent gene 

expression (Desikan et al., 2001; op den Camp et al., 2003; Vandenabeele et al., 2003; Vandenabeele et al., 

2004; Vanderauwera et al., 2005; Gadjev et al., 2006; Vanderauwera et al., 2011), we are currently facing 

the challenge to unwire the complex network of ROS signal transduction mechanisms (Mittler et al., 

2011; Suzuki et al., 2011). The accumulation of ROS leads to an upregulation of genes encoding proteins 

involved in transcription and translation, proteolysis, enzyme reactions such as oxidation and reduction 

and the defense response against abiotic and biotic factors. The functional analysis of proteins encoded 

by genes that rapidly respond to ROS, in particular genes encoding for transcription factors, can provide 

novel insights into the early signaling steps triggered by a sudden rise in intracellular ROS.  

Protein activation and trafficking are important in rendering signal transduction highly dynamic 

over time and space and are actively influenced by diverse environmental stimuli to rapidly initiate an 

appropriate defense response. A central event during environmental stress conditions is the 

accumulation of ROS that is commonly referred to as oxidative stress. Several mechanisms have been 

described for oxidative stress-induced protein relocalizations, such as redox-based relocalizations, 

phosphorylation-dependent trafficking by ROS-activated kinases, stress-induced release of membrane-

anchored transcription factors, sequestration and stress-triggered release, and relocalizations mediated by 

a nuclear retention factor. Specifically for temperature stresses, salinity and hypoxia, several subcellular 

dynamic protein distributions have been identified that often involved membrane-anchored protein 

release and nucleocytoplasmic partitioning. Together with the insights in the tight spatiotemporal control 

of ROS homeostasis, the identification and characterization of stress-triggered relocalizations of signal 

transduction components will therefore provide a better understanding of signaling mechanisms that 

allow plants to cope with adverse environmental conditions. 

Comparison of several genome-wide hydrogen peroxide (H2O2)-dependent gene expression 

studies in Arabidopsis thaliana enabled us to build a comprehensive inventory of 783 H2O2-induced genes 

from which 85 candidate genes were selected for further functional analyses. In this work, a subcellular 

localization map of 49 H2O2-induced proteins was built by using a medium-throughput in vivo 

localization assay. In a first screen using a transient expression system in Nicotiana benthamiana, the 

functionality and subcellular localization of a substantial amount of protein GFP fusion constructs were 

determined. Eight GFP-tagged proteins were exclusively localized in the nucleus, whereas 23 resided in 
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both the nucleus and cytosol. Nuclear proteins were, as expected, nearly all transcription factors or 

nucleic acid-binding proteins, while nucleocytosolic proteins involved both transcription factors and 

proteins of unknown function. For two small HSPs, an exclusively cytosolic localization was observed. 

Three proteins displayed a chloroplastic localization, including unexpectedly a NAC transcription factor 

(see further). Of six proteins present in the endomembrane compartment, two displayed distinct plasma 

membrane localizations. To subsequently verify the findings of the transient expression assay, stably 

transformed transgenic Arabidopsis plants for 30 of the 49 proteins were generated and examined. Except 

for two proteins (HSP17.6BCI and HRE2), all tobacco subcellular localizations of the GFP fusion 

proteins were confirmed in Arabidopsis.  

Because abiotic stress-triggered relocalizations can be directly assessed in situ in stable transgenic 

plants, the obtained transgenic Arabidopsis plants harboring the GFP fusion reporters provided us 

immediately the tools for such analyses. Moreover, H2O2-induced protein trafficking can be studied by 

direct addition of H2O2 to Arabidopsis mesophyll protoplasts that are derived from these stable 

transgenic plants. Arabidopsis protoplasts are particularly suited for relocalization experiments as they 

allow quantitative and simultaneous testing of different concentrations and stimuli. In addition, the 

overall impact of overproduction of the GFP fusion proteins on plant development and the 

performance towards environmental stimuli could also be assessed in the transgenic plants: for eleven 

proteins, overexpression substantially affected normal growth and development.  

The identification of proteins that relocalize upon oxidative stress is experimentally demanding 

and often requires a detailed understanding of the physicochemical properties of the protein of interest, 

its subcellular localization during non-stressed conditions, the potential interactors, the spatiotemporal 

dynamics of both the protein of interest and ROS, and the involved abiotic stress pathway. Interesting 

candidates for studying relocalizations are the nucleocytosolic-localized transcription factors, such as 

ANAC013, ANAC053 and ANAC087 that might be regulated by nucleocytoplasmic partitioning during 

stress. Furthermore, both ANAC013 and ANAC053 were previously designated as putative membrane-

associated NAC transcription factors (NTL1 and NTL4, respectively), which are known to be activated 

and released by proteolytic cleavage in response to incoming stimuli (Kim et al., 2007). Whereas NTL4 

displayed a vesicular localization pattern, NTL1 appeared to be associated with ER membranes. 

Interestingly, our results demonstrate that GFP-NTL1 overexpression leads to proteolytic processing, 

possibly explaining its nucleocytosolic localization. Besides the nucleocytosolic-localized transcription 

factors, ANAC102 that localized exclusively to the chloroplasts is another interesting candidate to study 

stress-induced relocalization (see further).  

Besides our focus on proteins with a subcellular localization that was not expected from their 

putative function (e.g. a transcription factor with nuclear target genes that is localized in chloroplasts), 
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we also analyzed some proteins for which the localizations differed in N. benthamiana and Arabidopsis. 

For instance AtDjC68, a DnaJ heat shock N-terminal domain-containing protein localized in nuclear 

speckles in tobacco. In Arabidopsis mesophyll protoplasts, AtDjC68 displayed a nucleocytosolic 

localization that upon H2O2 addition resulted in an exclusively nuclear localization in ~15% of the 

protoplasts. 

Because H2O2-induced gene expression might be the result from the action of proteins that 

change their localization upon oxidative stress, one could argue that the selected H2O2-induced genes are 

not ideal candidates for identifying stress-dependent relocalizations. However, our results show that 

starting from ROS transcriptome datasets, proteins with a dynamic relocalization during oxidative stress 

can be identified. In fact, genes that are rapidly induced by stresses often play a role in stress signaling, 

presumably by mediating a positive feedback loop (Yamaguchi-Shinozaki and Shinozaki, 2006). The 

redox status of proteins can be reversibly or irreversibly modified by intracellular ROS that, in turn, can 

dynamically affect the subcellular localization and function of the protein. The identification of signal 

transducers with a dynamic localization after modification by ROS might be important candidates for 

ROS perception. However, proteomic studies of ROS-modified proteins remain scarce and are often 

gel-based, lack sensitivity and do not reflect the whole proteome. The recent advent of shotgun-oriented 

proteomics, that are able capture and quantify large portions of the proteome with high sensitivity, will 

greatly enhance the identification of ROS-modified proteins. Subsequent, integration of ROS-dependent 

transcriptome, proteome and (re)localisome datasets will provide a systems biology view on the complex 

regulation of the ROS signaling network. In turn, the integrated knowledge of the underlying molecular 

mechanisms of ROS signaling can be exploited to genetically engineer and improve stress tolerance in 

plants. 

 

 

The oxidative stress-induced chloroplast-to-nucleus relocalization of ANAC102: a novel 

mechanism in chloroplast retrograde signaling? 

During fluctuating environmental conditions, caused by for example variation in light intensity and 

quality, temperature, salinity, low nutrient status and water availability, the homeostasis of the 

photosynthetic machinery is rapidly perturbed leading to the enhanced production of ROS. Therefore, 

chloroplasts are considered sensors of adverse environmental conditions that communicate back to the 

nucleus to initiate an appropriate response. Although chloroplast retrograde signaling has been 

extensively studied for many years, the process still remains poorly understood (Pfannschmidt, 2010). 

Because several transcription factors that regulate nuclear gene expression are found in chloroplasts, the 

question was raised whether these factors are effectively released upon chloroplast dysfunction to 
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control nuclear gene expression. Our work provides evidence for the first chloroplast-to-nucleus 

relocalization of a NAC transcription factor (ANAC102) during chloroplast-derived oxidative stress 

conditions. Under non-stressed conditions, ANAC102 is localized in the chloroplasts. However, 

perturbation of the chloroplastic redox balance by methyl viologen (MV) provoked the 

intercompartimental relocalization of ANAC102 from the chloroplast to the nucleus where it regulates 

several oxidative stress-related genes. Moreover, transgenic plants with perturbed ANAC102 expression 

displayed an altered growth response upon oxidative stress, indicating that ANAC102 might play an 

important role during chloroplast retrograde signaling by tightly controlling the stress response. 

Because the existence of interorganellar protein relocalizations in plants is highly debated and 

controversial in the field of retrograde signaling, more experimental work is needed to support the 

occurrence of chloroplast-to-nucleus protein trafficking. At first, the relocalization should be confirmed 

and quantified by independent techniques. Intracellular protein dynamics can be followed by tracking a 

photoactivatable (PA) variant of GFP (PA-GFP; Patterson and Lippincott-Schwartz, 2002). 

Photoactivation of chloroplastic ANAC102-PA-GFP protein fusions prior to MV treatment will allow 

determining whether, after MV treatment, the nuclear-localized ANAC102 GFP fusions originate from 

the chloroplasts. In addition, transgenic lines expressing fusion proteins with smaller epitope tags should 

be produced to confirm the relocalization in isolated nuclei and chloroplasts before and after MV 

treatment. To exclude potential effects of the tags on protein localization, antibodies that specifically 

recognize ANAC102 will be required to prove whether ANAC102 is proteolytically processed during its 

relocalization. Furthermore, truncated versions of ANAC102 will determine which sequences/domains 

are necessary for chloroplast import, relocalization and transcriptional activity. In-depth chloroplast 

fractionation experiments together with in vitro chloroplast import assays will clarify the exact localization 

of ANAC102. Also the potential ROS modification of the two closely positioned cysteines of ANAC102 

and the effect it might have on the relocalization is worthwhile to investigate further. To understand the 

ANAC102 relocalization mechanism, it might be crucial to identify its interacting partners. 

Unfortunately, tandem affinity purification (TAP) experiments in which ANAC102 was expressed with a 

C-terminal double affinity tag (TAP tag) in a light-grown Arabidopsis cell suspension culture failed. 

Therefore, several strategies to increase the success rate of the TAP experiments should be employed, 

such as repositioning of the TAP-tag and optimizing relocalization conditions by addition of MV to the 

cell cultures. 

 Although ANAC102 was shown to bind several promoter regions of oxidative stress-related 

genes in the nucleus, the demonstration of the transcriptional activity of ANAC102 in planta is currently 

lacking. Because only a few targets of ANAC102 are known, the use of inducible ANAC102 

overexpression constructs as well as chromatin immunoprecipitation experiments combined with next-
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generation sequencing (ChIP-Seq) could identify additional in vivo target genes of ANAC102. 

Furthermore, transient expression assays using Arabidopsis mesophyll protoplasts will indicate whether 

ANAC102 could transcriptionally repress a reporter gene driven by the promoter fragments identified in 

the ChIP assay. 

Additional experiments are prerequisite to critically assess whether ANAC102 can be positioned 

in the chloroplast retrograde signaling pathway. If ANAC102 functions as a true plastidial retrograde 

signal, it should repress nuclear-encoded photosynthetic genes when plastid function is impaired. 

Accordingly, the expression of genes encoding the light-harvesting chlorophyll a/b binding proteins 1.1 

and 2.4 is down-regulated in ANAC102 overexpression plants (Christianson et al., 2009). Because Lhcb 

genes, considered as marker transcripts for chloroplast-retrograde signaling, are frequently repressed in 

photo-oxidized plants (Fey et al., 2005), it is necessary to demonstrate that nuclear accumulation of 

ANAC102 correlates with changes in Lhcb expression during genetic defects or treatments that impair 

plastid function. Integration of relocalization experiments, gene expression analysis and chemical 

treatments with norflurazon that causes strong photo-oxidation in the chloroplasts (Reiß et al., 1983; 

Oelmüller et al., 1986), DCMU (3-(3’,4’-dichlorophenyl) 1, 1’-dimethyl urea) and DBMIB (2,5-dibromo-

3-methyl-6-isopropyl-p-benzoquinone) that inhibit photosynthetic electron transport (Escoubas et al., 

1995), together with the genome uncoupled (gun) mutants that constitutively express Lhcb genes even during 

chloroplast dysfunction (Susek et al., 1993) and the conditional flu mutant which can be used to 

specifically induce the accumulation of singlet oxygen (1O2) within the plastids (op den Camp et al., 

2003), will clarify the origin of the redox signal that triggers the relocalization of ANAC102. 

 Taken together, our results provide the first evidence for the possible intercompartimental 

retrograde relocalization of ANAC102 from the chloroplast to the nucleus where it regulates the 

expression of oxidative stress-responsive genes. However, further extensive experimental evidence is 

needed to support the current hypothesis that ANAC102 functions in chloroplast retrograde signaling. 
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PART II: Identification of two novel hydrogen peroxide-induced peptides 

involved in innate immunity  

 

 

Due to their sessile nature, plants are continuously exposed to various environmental stress conditions 

and therefore have developed a variety of defense mechanisms. One of the most important responses in 

plant defense against pathogens is the rapid and transient production of ROS, including H2O2, that is 

termed the oxidative burst (Torres, 2010). Several functions have been assigned to the pathogen-induced 

production of ROS, such as the direct toxic effect on pathogens due to their high reactivity, cell wall 

cross-linking and a signaling function by mediating defense gene activation through interacting with 

redox-sensitive transcription factors and other defense signaling components such as phosphorylation 

cascades (Kovtun et al., 2000; Mou et al., 2003) or by generating lipid derivatives (Montillet et al., 2005) 

and phytoalexins (Thoma et al., 2003). Furthermore, ROS play an important role in the hypersensitive 

response in which cells undergo programmed cell death to limit the spread of the pathogen (Lam et al., 

2001; Greenberg and Yao, 2004). 

 It is becoming increasingly clear that there is extensive crosstalk between biotic and abiotic stress 

signaling in which ROS and hormone signaling pathways play key roles (Fujita et al., 2006). Previous 

transcriptome analyses revealed an important enrichment of ROS-responsive genes during biotic and 

abiotic stresses, including many pathogen defense-related genes, such as the pathogenesis-related (PR) 

genes (Broekaert et al., 2000; Apel and Hirt, 2004; Torres and Dangl, 2005; Torres et al., 2006; van Loon 

et al., 2006). Amongst them, antimicrobial peptides (AMPs) are an evolutionary conserved component of 

innate immune systems found throughout all kingdoms ranging from bacteria, invertebrates, plants and 

vertebrates (Broekaert et al., 1997; Ganz and Lehrer, 1998; García-Olmedo et al., 1998; Otvos, 2000; 

Zasloff, 2002). Although AMPs are hallmarked for their broad-spectrum antimicrobial activity and are 

considered to play a key role during plant defense by acting as both permanent and inducible defense 

barriers, evidence is increasing that plant AMPs also play a role in the abiotic stress response.  

 Our work identified two novel Arabidopsis H2O2-induced peptides, designated ARACIN1 and 

ARACIN2, that are transcriptionally regulated by both biotic and abiotic stress conditions and share 

many characteristics with AMPs but are structurally unrelated to known plant AMPs. ARACIN1 and 

ARACIN2 are lineage-specific to the Brassicaceae family and are active against the necrotrophic fungi 

Alternaria brassicicola and Botrytis cinerea both in vitro and in planta. As many AMPs, ARACIN1 and 

ARACIN2 are potentially expressed as prepropeptides in which the N-terminal propeptide functions as 

a signal peptide for targeting to the secretory pathway, the propeptide acts as a neutralizing domain and 

the mature domain is necessary for antimicrobial activity. The validate this hypothesis, the exact nature 
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of the different domains needs to be determined by for instance amino acid sequencing of the GFP-

tagged processed forms of ARACIN1 and ARACIN2. In addition, overexpression of deletion constructs 

can give more insights in the minimal domain necessary for antimicrobial activity. To further 

demonstrate their role in plant defense, it is crucial to determine the activity spectra of ARACIN1 and 

ARACIN2 against biotrophic and necrotrophic fungal, bacterial and viral pathogens. Moreover, gene 

expression analysis of both ARACIN1 and ARACIN2 in hormone signaling mutants will identify by 

which signaling pathways their expression is regulated. To determine the in planta concentration of the 

different forms of ARACIN1 and ARACIN2 before and during pathogen infection, the development of 

peptide-specific antibodies will be essential.  

 In-depth functional characterization of both ARACINS will open perspectives to use them as an 

alternative strategy to improve disease resistance. In collaboration with the group of Dr. Van 

Lijsebettens, transgenic corn (Zea mays) lines overexpressing ARACIN1 are currently generated by the 

in-house maize transformation platform. Once available, these transgenic lines will first be tested against 

the pathogenic corn smut fungus (Ustilago maydis) in collaboration with the laboratorium of Prof. Dr. 

Cammue. As ARACINS are Brassicaceae-specific, the potential to improve resistance in the agronomical 

important oilseed rape (Brassica napus) will be assessed. Alternatively, ARACIN peptides could be 

expressed in biocontrol organisms to combat postharvest diseases. 
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SUMMARY 

 

Although reactive oxygen species (ROS) were initially considered as toxic byproducts of aerobic 

metabolism, it is now generally accepted that ROS also act as key signaling molecules. Over the last 

years, significant progress has been made in the description of oxidative stress-dependent gene 

expression and the current challenge is to unravel the complex network of ROS signal transduction 

mechanisms. The functional analysis of proteins encoded by genes that rapidly respond to ROS can 

therefore provide novel insights into the early signaling steps triggered by a sudden increase of 

intracellular ROS. In this aspect, the dynamic trafficking of proteins during stress is an important 

regulatory mechanism to render ROS signaling highly flexible to initiate a fast defense response. 

Hitherto, several mechanisms are known of oxidative stress-triggered protein dynamic trafficking 

(Chapter 1), such as redox-based relocalizations, phosphorylation-dependent trafficking by ROS-

activated kinases, stress-induced release of membrane-anchored transcription factors, sequestration and 

stress-triggered release, and relocalizations mediated by a nuclear retention factor. Several protein 

relocalizations during abiotic stress conditions have been reported, in particular as a consequence of low 

and high temperature stresses, high salinity stress and hypoxia. An important aspect of oxidative-stress 

triggered relocalizations is the subcellular compartment where the stress is initially sensed. Different 

types of abiotic stresses seem to affect certain subcellular compartments more which, in turn, produce 

compartment-specific ROS. Thus, the mechanism of an abiotic stress-induced relocalization is often 

correlated with the type of abiotic stress and the subcellular compartment. Together with the insights in 

the tight spatiotemporal control of ROS homeostasis, the identification and characterization of stress-

triggered relocalizations of signal transduction components will therefore provide a better understanding 

of signaling mechanisms that allow plants to cope with adverse environmental conditions (Chapter 1). 

The aim of this project was to identify and characterize proteins that relocalize during oxidative 

stress. Therefore, we first made a comprehensive list of 783 hydrogen peroxide (H2O2)-induced proteins 

by comparing three available microarray data sets that profiled the Arabidopsis transcriptome during 

elevated photorespiratory H2O2 levels (Chapter 2). In these independent studies, the transcriptome of 

catalase-deficient plants exposed to high light stress was assessed. Catalase is the major H2O2 scavenging 

enzyme and a reduction of catalase activity renders plants hypersensitive to excess photorespiratory 

H2O2 produced by high light exposure. From this inventory, a well-considered selection of 85 H2O2-

induced genes for further functional studies was made by implementing consecutive selection criteria 

such as a rapid induction towards photorespiratory H2O2, the in silico subcellular prediction, the 

functional category and the responsiveness towards abiotic stresses. In chapter 2, a subcellular 

localization map of 49 H2O2-induced proteins was built by using a medium-throughput in vivo 
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localization assay. In a first screen using a transient expression system in Nicotiana benthamiana (tobacco), 

the functionality and subcellular localization of a substantial amount of protein GFP fusion constructs 

was determined. Eight GFP-tagged proteins were exclusively localized in the nucleus, whereas 23 resided 

in both the nucleus and cytosol. Nuclear proteins were, as expected, nearly all transcription factors or 

nucleic acid-binding proteins, while nucleocytosolic proteins included both transcription factors and 

proteins of unknown function. For two small HSPs, an exclusively cytosolic localization was observed. 

Three proteins displayed a chloroplastic localization, including unexpectedly a NAC transcription factor. 

Of the six proteins present in the endomembrane compartment, two displayed distinct plasma 

membrane localizations. To subsequently verify the findings of the transient expression assay, stably 

transformed transgenic Arabidopsis plants for 30 of the 49 proteins were generated and examined. Except 

for two proteins, all subcellular localizations of the GFP fusion proteins originally observed in tobacco 

were confirmed in Arabidopsis. Abiotic stress-triggered relocalizations could be directly assessed in situ 

in stable transgenic plants harboring the GFP fusion reporters In addition, the overall impact of 

overproduction of the GFP fusion proteins on plant development and the performance towards 

environmental stimuli could also be assessed in the transgenic plants: for eleven proteins, overexpression 

substantially affected normal growth and development.  

In chapter 2, interesting candidates for studying relocalizations were found of which most are 

nucleocytosolic-localized transcription factors, such as ANAC013, ANAC053 and ANAC087 that might 

be regulated by nucleocytoplasmic partitioning during stress. Furthermore, both ANAC013 and 

ANAC053 were previously designated as putative membrane-associated NAC transcription factors 

(NTL1 and NTL4, respectively), which are known to be activated and released by proteolytic cleavage in 

response to incoming stimuli. Besides their nucleocytosolic localization, the localization of NTL4 

displayed a vesicular pattern and NTL1 appeared to be associated with ER membranes. Interestingly, 

our results demonstrate that GFP-NTL1 overexpression leads to proteolytic processing, possibly 

explaining its nucleocytosolic localization. Proteins for which the localizations differed in N. benthamiana 

and Arabidopsis were also analyzed. For instance AtDjC68, a DnaJ heat shock N-terminal domain-

containing protein localized in nuclear speckles in tobacco. In Arabidopsis mesophyll protoplasts, 

AtDjC68 displayed a nucleocytosolic localization that upon H2O2 addition resulted in an exclusively 

nuclear localization in ~15% of the protoplasts. 

Another interesting candidate for relocalization studies was ANAC102, a NAC transcription 

factor that regulates nuclear gene expression and was found in the chloroplasts. In chapter 3, we 

assessed whether ANAC102 is effectively released during oxidative stress to control nuclear gene 

expression. During adverse environmental conditions, the homeostasis of the photosynthetic machinery 

is rapidly perturbed leading to the enhanced production of ROS. Therefore, chloroplasts are considered 
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as sensors of adverse environmental conditions that communicate back to the nucleus to initiate an 

appropriate response. By using methyl viologen, a redox active compound that induces ROS in the 

chloroplasts, we could provoke the intercompartimental relocalization of ANAC102 from the 

chloroplasts to the nucleus where it regulates several oxidative stress-related genes. Moreover, transgenic 

plants with perturbed ANAC102 expression displayed an altered growth response upon oxidative stress, 

indicating that ANAC102 might play an important role during chloroplast retrograde signaling by tightly 

controlling the stress response. Because the existence of interorganellar protein relocalizations in plants 

is highly debated and controversial in the field of retrograde signaling, more experimental work is needed 

to support the occurrence of the chloroplast-to-nucleus protein trafficking of ANAC102. 

 Because there is extensive crosstalk between biotic and abiotic stress signaling in which ROS, 

together with hormones, play a key role, many ROS-responsive genes are common for biotic and abiotic 

stresses, including many pathogen defense-related genes, such as the pathogenesis-related (PR) genes. In 

chapter 5, we identified two novel Arabidopsis peptides, designated ARACIN1 and ARACIN2, that are 

induced by photorespiratory H2O2 and are transcriptionally regulated by both biotic and abiotic stresses. 

These peptides share many characteristics with antimicrobial peptides (AMPs) but are structurally 

unrelated to known AMPs. ARACIN1 and ARACIN2 are lineage-specific to the Brassicaceae family 

with members in Arabidopsis thaliana, A. lyrata and Brassica rapa. In collaboration with the laboratory of 

Prof. Dr. Cammue, we demonstrated their role as antifungal peptides by performing both in soil disease 

assays on transgenic ARACIN1 overexpression plants and in vitro antifungal bioassays. These results 

demonstrated that overexpression of ARACIN1 significantly enhances resistance against the 

necrotrophic fungi Botrytis cinerea and Alternaria brassicicola and that chemically synthesized ARACIN 

peptides show in vitro antifungal activity against these pathogens. Moreover, we could demonstrate that 

these peptides are expressed as prepropeptides in which the predomain functions as a signal peptide and 

the acidic prodomain functions in neutralizing the cationic mature domain. In-depth functional 

characterization of both ARACINS will open perspectives to use them as an alternative strategy to 

improve disease resistance. In collaboration with the group of Dr. Van Lijsebettens, transgenic corn (Zea 

mays) lines overexpressing ARACIN1 are currently generated by the in-house maize transformation 

platform. Once available, these transgenic lines will first be tested against the pathogenic corn smut 

fungus (Ustilago maydis) in collaboration with the laboratory of Prof. Dr. Cammue.  

 AMPs are a highly diverse class of peptides and are considered as an evolutionary conserved 

component of innate immune systems found throughout all kingdoms ranging from bacteria, 

invertebrates, plants and vertebrates. In chapter 4, we focus on the classification and the biological roles 

of AMPs in plants. Besides the antimicrobial activity, AMPs can have other role in plants such as protein 

inhibition, redox regulation, ion channel inhibition, metal physiology, development and roles in abiotic 
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stress tolerance. AMPs are also promising candidates for novel applications in plant disease control 

through genetic engineering of crops or expressing them in biocontrol agents to combat postharvest 

diseases. 
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SAMENVATTING 

 

Hoewel vrije zuurstof radicalen (VZR) jarenlang beschouwd werden als schadelijke nevenproducten van 

het aeroob metabolisme, is hun signaalfunctie tijdens diverse biologische ontwikkelingsprocessen en 

omgevingsstimuli nu algemeen geaccepteerd. De laatste jaren is er grote vooruitgang geboekt in het 

identificeren van genen met een differentiële expressie tijdens oxidatieve stress. De uitdaging is 

momenteel om het complexe netwerk van de signaaltransductie mechanismen van de oxidatieve stress 

respons te ontrafelen. De functionele analyse van eiwitten die gecodeerd worden door genen die een 

vroege respons vertonen bij verhoogde VZR niveaus, kunnen nieuwe inzichten verschaffen in de vroege 

signalisatie mechanismen die aangezet worden door een plotse accumulatie van intracellulaire VZR. Een 

belangrijk regulatorisch mechanisme om een flexibele VZR signalisatie en dus een snelle transcriptionele 

respons te verzekeren, zijn eiwitten die tijdens stress een dynamische subcellulaire lokalisatie vertonen. 

Tot op heden zijn er verschillende mechanismen gekend van oxidatieve stress-geïnduceerde eiwit 

relokalisaties (Hoofdstuk 1), zoals redox-afhankelijke relokalisaties, fosforylatie-afhankelijke 

relokalisaties gemedieerd door VZR-geactiveerde kinasen, stress-geïnduceerde vrijstelling van 

membraanverankerde transcriptiefactoren, retentie en stress-geïnduceerde vrijlating, en translocaties 

gemedieerd door nucleaire retentiefactoren. Verscheidene abiotische stress-geïnduceerde eiwit 

relokalisaties zijn reeds beschreven, in bijzonder als gevolg van koude- of hittestress, zoutstress en 

hypoxia. Een belangrijk aspect van oxidatieve stress-geïnduceerde relokalisaties is het subcellulair 

compartiment waarin deze stress initieel waargenomen wordt. Verschillende types van abiotische stress 

lijken bepaalde subcellulaire compartimenten meer te treffen wat vervolgens resulteert in een verhoogde 

productie van VZR in deze specifieke subcellulaire compartimenten. Het mechanisme van een abiotische 

stress-geïnduceerde relokalisatie is bijgevolg frequent gecorreleerd met het type van abiotische stress en 

het subcellulair compartiment. De kennis van stress-geïnduceerde relokalisaties van signaaltransductie 

componenten zullen samen met de inzichten in de strikte ruimtelijk-temporele controle van VZR 

homeostase nieuwe inzichten verschaffen in de signalisatie mechanismen van de stress respons in 

planten (Hoofdstuk 1). 

 Het doel van dit project was de identificatie en karakterisatie van eiwitten die gedurende 

oxidatieve stress relokaliseren. Hiervoor werd eerst een uitgebreide inventaris van 783 waterstofperoxide 

(H2O2)-geïnduceerde eiwitten samengesteld door een vergelijkende studie te maken van drie beschikbare 

genoomwijde genexpressie studies die het Arabidopsis transcriptoom gedurende verhoogde niveaus van 

H2O2 profileerden. In deze studies werd het transcriptoom geanalyseerd van catalase-deficiënte planten 

die geëxposeerd werden aan hoge lichtintensiteit. Catalase is het voornaamste H2O2 antioxidant enzym 

dat fotorespiratorische H2O2 verwijdert. Verlaagde niveaus van catalase-activiteit gecombineerd met 
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hoog licht behandeling resulteert door de accumulatie van fotorespiratorisch H2O2 in overgevoelige 

planten. Voor verdere functionele analyse hebben we vervolgens uit deze inventaris van H2O2-

geïnduceerde genen een goed overwogen selectie gemaakt van 85 genen op basis van volgende criteria: 

vroege inductie door fotorespiratorisch H2O2, de in silico voorspelde subcellulaire lokalisatie, de 

functionele categorie en de responsiviteit bij verscheidene abiotische stress condities. In hoofdstuk 2 

werd vervolgens een subcellulaire lokalisatie map opgebouwd van 49 H2O2-geïnduceerde eiwitten door 

gebruik te maken van een medium-throughput in vivo lokalisatie assay. Vooreerst werd door middel van 

een transiënt expressiesysteem in Nicotiana benthamiana (tabak) de functionaliteit en de subcellulaire 

lokalisatie bepaald van een substantieel aantal ‘green fluorescent protein’ (GFP) fusieconstructen. Terwijl 

acht fusies een exclusieve nucleaire lokalisatie vertoonden, lokaliseerden 23 eiwitten zowel in de nucleus 

als in het cytosol. Zoals verwacht waren bijna alle nucleaire eiwitten transcriptiefactoren of 

nucleïnezuurbindende eiwitten, terwijl zowel transcriptiefactoren als eiwitten met een ongekende functie 

behoorden tot de nucleocytosolische eiwitten. Een exclusieve cytosolische lokalisatie werd enkel 

waargenomen voor twee kleine hitteschok-eiwitten (sHSP’s). Drie eiwitten lokaliseerden in de 

chloroplast waaronder onverwacht een NAC transcriptiefactor. In het endomembraan compartiment 

werden zes H2O2-geïnduceerde eiwitten gevonden waarvan twee een plasmamembraan lokalisatie 

vertoonden. Om de resultaten van het transiënt expressiesysteem in tabak te verifiëren werd voor 30 van 

de 49 eiwitten stabiel getransformeerde transgene Arabidopsis lijnen gegenereerd en bestudeerd. Alle in 

tabak bepaalde subcellulaire lokalisaties werden met uitzondering van twee eiwitten herbevestigd in 

Arabidopsis. Abiotische stress-geïnduceerde relokalisaties kunnen vervolgens in deze transgene lijnen 

nagegaan worden. Daarenboven kan de globale impact van overproductie van de GFP fusie eiwitten 

worden bepaald in deze lijnen: in het geval van 11 eiwitten werd de normale groei en ontwikkeling 

substantieel beïnvloed door de overexpressie van het fusieconstruct. 

 In hoofdstuk 2 werden verscheidene interessante kandidaat eiwitten geïdentificeerd die 

mogelijks betrokken zijn in stress-geïnduceerde relokalisaties waaronder voornamelijk de 

nucleocytosolische gelokaliseerde transcriptiefactoren ANAC013, ANAC053 en ANAC087. Bovendien 

werden ANAC013 en ANAC053 reeds geïdentificeerd als mogelijke membraangeassocieerde NAC 

transcriptiefactoren (respectievelijk NTL1 en NTL4 genaamd) die gekend zijn om geactiveerd te worden 

door stimulus-geïnduceerde intramembranaire proteolyse. Terwijl de lokalisatie van NTL4 een vesiculair 

patroon vertoonde, bleek NTL1 vermoedelijk geassocieerd te zijn met het endoplasmatisch reticulum 

(ER). GFP-NTL1 overexpressielijnen vertoonden bovendien een vroegtijdig proteolytische verknipping 

van NTL1 wat vermoedelijk de nucleocytosolische lokalisatie verklaart. Eiwitten met een verschillende 

lokalisatie in tabak en Arabidopsis werden eveneens in meer detail bestudeerd. Bijvoorbeeld AtDjC68, 

een DnaJ hitteschok N-terminaal domeinbevattend eiwit, lokaliseerde in tabak in zogenaamde nucleaire 
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‘speckles’. Daartegenover vertoonde AtDjC68 in Arabidopsis mesofiel protoplasten een 

nucleocytosolische lokalisatie dat door toevoeging van H2O2 in een exclusieve nucleaire lokalisatie 

resulteerde bij ongeveer 15% van de protoplasten. Een andere interessante kandidaat voor relokalisatie 

was ANAC102, een NAC transcriptiefactor die lokaliseert in de chloroplasten en tevens nucleaire 

genexpressie reguleert (Hoofdstuk 3). Tijdens fluctuerende omgevingsstimuli wordt het evenwicht van 

de componenten van de fotosynthetische elektronentransportketen zeer snel verstoord wat resulteert in 

een verhoogde productie van VZR in de chloroplasten. Daarom worden chloroplasten beschouwd als 

sensoren van ongunstige omgevingsomstandigheden die op hun beurt informatie terugsturen naar de 

nucleus om een geschikte respons te initiëren (retrograde signalisatie). Door behandeling met 

methylviologeen, een redox-actieve molecule dat VZR induceert in de chloroplasten, konden we de 

intercompartimentele relokalisatie van ANAC102 van de chloroplast naar de nucleus aantonen. 

Bovendien vertoonden transgene planten met verstoorde expressieniveaus van ANAC102 een 

veranderde groeirespons tijdens oxidatieve stress. Dit toont mogelijks aan dat ANAC102 een belangrijke 

rol zou kunnen spelen in een chloroplast retrograde signalisatie pathway die betrokken is in de strikte 

regulatie van de stress respons. Doordat in het onderzoeksgebied van retrograde signalisatie de 

relokalisatie van een transcriptiefactor van een organel naar de nucleus in planten erg controversieel is, 

zijn additionele experimenten cruciaal om deze relokalisatie van ANAC102 te bevestigen. 

 Aangezien er een extensieve interactie is tussen biotische en abiotische signalisatienetwerken en 

VZR hierbij een belangrijke rol spelen, zijn vele VZR-responsieve genen gemeenschappelijk voor de 

biotische en abiotische stress respons waaronder vele pathogeen defensie-gerelateerde genen. In 

hoofdstuk 5 werden twee Arabidopsis peptiden, genaamd ARACIN1 en ARACIN2, geïdentificeerd die 

geïnduceerd worden door fotorespiratorisch H2O2 alsook door zowel biotische als abiotische stress 

condities. Hoewel deze peptiden vele karakteristieken gemeenschappelijk hebben met antimicrobiële 

peptiden (AMP’s), vertonen ze geen structurele gelijkenissen met gekende AMP’s. ARACIN1 en 

ARACIN2 behoren specifiek tot de Brassicaceae familie en zijn aanwezig in Arabidopsis thaliana, A. lyrata 

en Brassica rapa. In samenwerking met het laboratorium van Prof. Dr. Cammue hebben we de antifungale 

rol van deze peptiden kunnen aantonen zowel in planta als in vitro. Transgene ARACIN1OE lijnen 

vertoonden een significant verhoogde resistentie tegen de necrotrofe schimmels Alternaria brassicicola en 

Botrytis cinerea. Daarenboven werd een directe antifungale rol van deze ARACIN peptiden tegen beide 

pathogenen met in vitro bioassays aangetoond. Tevens werd bewezen dat deze peptiden geëxpresseerd 

worden als prepropeptiden waarbij het prodomein als signaalpeptide fungeert en het zure prodomain 

functioneert in de neutralisatie van het basische matuur domein. Een gedetailleerde functionele 

karakterisatie van beide ARACINS zal perspectieven openen om deze peptiden te gebruiken om de 

resistentie van planten tegen ziekten te verbeteren. In samenwerking met de groep van Dr. van 
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Lijsebettens worden momenteel transgene maïs lijnen ontwikkeld die ARACIN1 tot overexpressie 

brengen. Zodra deze lijnen beschikbaar zijn, zullen deze in samenwerking met het laboratorium van 

Prof. Dr. Cammue getest worden tegen de builenbrand (Ustilago maydis), een brandschimmel dat maïs 

aantast.  

 AMP’s zijn een zeer diverse groep van peptiden en worden beschouwd als een evolutionair 

geconserveerde component van de aangeboren immuniteit in alle levende systemen gaande van 

bacteriën, invertebraten, planten en vertebraten. In hoofdstuk 4 bespreken we de classificatie en de 

biologische rol van AMP’s in planten. Naast de antimicrobiële activiteit zijn andere functies van AMP’s 

beschreven zoals eiwitinhibitie, redox-regulatie, inhibitie van ionen transporters, een rol in 

metaalfysiologie, en in ontwikkelingsprocessen en abiotische stress tolerantie. AMP’s zijn veelbelovende 

kandidaten voor nieuwe toepassingen in de controle van plantenziekten. Deze peptiden kunnen tot 

expressie gebracht worden in gewassen of biocontrole micro-organismen als alternatieve strategie om 

plantenziekten te bestrijden. 
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