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STRUCTURE  

This thesis gives an overview of the development of a gas chromatographic-

mass spectrometric (GC-MS) method for new generation antidepressants 

(ADs) and their metabolites. The structure of the manuscript is build up as if 

the reader is following the sample analysis.  

First a general overview of the ADs and the relevance of monitoring those 

compounds in clinical and forensic settings are given in chapter I, while 

chapter II gives an overview of the objectives of our research. 

Thereafter the method development for sample analysis is described. 

Chapter III describes the solid phase extraction development for different 

biological matrices such as plasma, blood, brain and hair tissue. Because a 

GC-MS configuration was applied, derivatization of the extracts was 

evaluated and optimized (chapter IV). After the sample preparation, the 

ADs and metabolites are separated and detected using gas chromatography-

mass spectrometry. The chromatographic and mass spectrometric 

parameters for three ionization modes (electron ionization, positive and 

negative ion chemical ionization) were optimized for each compound as 

described in chapter V.

Having established a GC-MS procedure for new generation ADs, this method 

was validated based on the FDA guidelines concerning stability, linearity, 

sensitivity, selectivity, precision, and accuracy. The validation procedure is 

described in chapter VI.

The applicability of the developed and validated method is evaluated in 

chapter VII and VIII. Chapter VII describes the usefulness of the 

developed method in a clinical setting by describing a project in which the 

antidepressant/metabolite plasma concentration will be linked to the 

metabolization capacity of the individual patient. Chapter VIII describes the 

application of the procedure to post-mortem cases with matrices such as 

whole blood, brain tissue and hair. 

A general conclusion is given in chapter IX.





Chapter I 

Introduction:
depression, 

use of antidepressants, 
and relevance of antidepressant monitoring 

Based on:
Wille SMR, Cooreman SG, Neels HM, Lambert WEE. Relevant issues in the 
monitoring and the toxicology of old and new antidepressants. Crit. Rev. Clin. 
Lab. Sci.  2008; 45 (1): 1-66 
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I.1. Foreword 

Depression is a chronic or recurrent mood disorder that affects both 

economic and social functions of about 121 million people worldwide. 

According to the World Health Organization, depression will be the second 

leading contributor to the global burden of disease, calculated for all ages and 

both sexes by the year 2020 [1-3]. This common mental disorder presents a 

highly variable set of symptoms such as depressed mood, loss of interest or 

pleasure, feelings of guilt or low self-esteem, disturbed sleep or appetite, low 

energy, and poor concentration. These problems lead to substantial 

impairments in an individual's ability to take care of his or her everyday 

responsibilities. At its worst, depression can lead to suicide, a tragic fatality 

associated with the loss of about 850 thousand lives every year. Depression 

can be subdivided in bipolar disorder (manic-depression), dysthymia, and 

major depression (unipolar depression). This introduction will focus on major 

depression, discussing the onset of depression and the treatment, including 

the action mechanisms, side-effects and toxicity of the new generation 

antidepressants (ADs). Moreover, the potential value of therapeutic drug 

monitoring (TDM) and toxicological assays for these drugs is discussed in 

relation to their mode of action, drug interactions, metabolism and 

pharmacokinetic properties. 

 

I.2. Onset of depression

Epidemiologic studies show that about 40-50% of the risk of depression is 

genetic. However, no specific genes or genetic abnormality have been 

identified to date with certainty. In addition, factors such as stress, emotional 

trauma, viral infections, and certain processes in brain development also 

have an influence on the etiology of depression [4]. The neural circuitry 

underlying depression is not yet fully understood. It is likely that several 

brain regions (prefrontal and cingulated cortex, hippocampus, striatum, 

amygdale and thalamus) mediate the diverse symptoms of depression. 

It seems that malfunction of the hypothalamic-pituitary-adrenal (HPA) axis 

plays an important role [5]. These malfunctions include an increased 
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corticotrophin-releasing hormone (CRH) level or an impaired cortisol negative 

feedback mechanism, stimulating the release of glucocorticoids from the 

adrenal cortex. This release of glycocorticoids leads to damage of the 

hippocampal neurons, resulting in impaired hippocampal function which 

contributes to some of the cognitive abnormalities of depression. 

 

The evidence that monoamine systems including serotonergic, noradrenergic 

and dopaminergic systems are crucial in the pathophysiology of depression 

was already known in the early 1950’s. Low serotonin activity and depletion 

of catecholamines in the central and peripheral nervous system was 

associated with depression. Therefore, several receptors and transporters of 

these monoamines became the target of medical treatment of depression.  

 

Neurotrophic factors such as the brain-derived neurotrophic factor (BDNF) 

play a role, as they regulate the neural growth and plasticity as well as the 

survival of adult neurons and glia. The up-regulation of the expression of 

BDNF by ADs could oppose the cell death pathway. 

On the other hand, the GABAergic system also seems to be critical as in 

depressed patients lower GABA levels are observed in the occipital cortex 

using magnetic resonance spectroscopy studies. In addition, the GABAergic 

system interacts with the serotonergic system, the noradrenergic system, the 

hypothalamic-pituitary-adrenal axis and neurotrophic factors.  

I.3. Action mechanisms of antidepressants 

 

Monoamine neurotransmitters such as dopamine, serotonin and 

noradrenaline play an important role in the onset and treatment of 

depression, as depression can be improved by compounds that increase 

synaptic concentrations of these neurotransmitters. These increased 

concentrations can be achieved by various mechanisms such as blocking 

neurotransmitter transport (reuptake) and neurotransmitter auto-receptors 

or by inhibiting the mitochondrial enzyme monoamine oxidase which is 

responsible for the oxidative deamination of endogenous and xenobiotic 

monoamines [6, 7]. Neurotransmitter transporters and certain receptors are 
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safety-mechanisms that prevent overstimulation of receptors in the synapse 

by either transporting monoamines back into the neuron or diminishing the 

nerve impulse to release more neurotransmitter. When these transporters 

and receptors are blocked, the negative feed-back mechanism of the neuron 

is stopped, leading to a higher concentration of monoamines in the synapse. 

These are the action mechanisms of the tricyclic (TCA) and new generation 

ADs. However, while TCAs block the transport and receptors of noradrenaline 

and serotonin as well as muscarin cholinergic, H1-histaminergic and �1-

adrenergic receptors, the new generation ADs work more selectively. 

Consequently, new generation ADs are subdivided on base of their selectivity 

for enhancing the synapse concentration of one or more neurotransmitters.  

 

The classic monoamine hypothesis discussed above does not explain why the 

AD drug therapy is associated with a delay of a few weeks before a clinical 

effect, even though the onset of increased synaptic monoamine 

concentrations happens directly [5, 6, 8]. Therefore, the current view is that 

chronic adaptations in the brain function rather than acute increases in 

synaptic monoamine concentrations lead to the therapeutic effects of ADs. 

Thus, while monoamine synapses are still considered the immediate target of 

AD drugs, more attention is paid to long-term changes in signal transduction 

systems and gene expression, due to chronic use of ADs. Recent theories 

postulate a number of mechanisms that could cause these long-term 

changes, including activation of transcription factors such as the cAMP/Ca2+-

responsive element binding protein (CREB), but also activation of 

neurotrophic pathways and increased hippocampal neurogenesis.  

 

I.3.1. Activation of transcription factors 

 

When a monoamine neurotransmitter binds on its respective receptors, a 

signal will be transmitted to the cell interior, mostly through a G-protein. 

Once a G-protein is activated, it can regulate the behaviour of potassium or 

calcium ion-channels or second messenger systems, which on their turn 

regulate kinases. These kinases phosphorylate transcription factors, 

controlling gene expression by binding to several short sequences of 
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deoxyribonucleic acid (DNA). This reaction results in activation or repression 

of the expression of certain genes [9].   

 

Figure I.1. Regulation of cAMP responsive element-binding protein (CREB) 

phosphorylation by ADs 

Most clinically effective ADs alter noradrenaline or 5-HT neurotransmitter levels by a 
variety of mechanisms. Cell-surface receptors can respond to these neurotransmitters 
by altering intracellular second messengers, such as cAMP and Ca2+, in addition to 
several kinases, such as cAMP-dependent protein kinase (PKA), Ca2+–CaM-dependent 
kinases (CaMK), mitogen-activated protein kinase (MEK), extracellular signal-regulated 
protein kinase (ERK) and several forms of ribosomal S6 kinase (RSK1–3). Kinases 
phosphorylate protein substrates such as the transcription factor CREB. CREB binds to 
a cAMP responsive element (CRE) in DNA to regulate gene expression. These CREB-
target genes might ultimately modulate behavior, endocrine or cellular changes 
associated with chronic AD treatment. Adapted from [10]. 
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There are 3 mechanisms (Figure I.1.) that will result in the phosphorylation 

of the transcription factor CREB, which will then bind to a cAMP- and calcium- 

responsive element (CRE) in DNA and will result in regulation of gene 

expression important for AD effects. CREB regulates genes for 

neurotransmitter synthetic enzymes such as tyrosine hydroxylase, which is 

the rate-limiting enzyme in the biosynthesis of catecholamines. In addition, 

CREB regulates  proteins involved in cell neurogenesis [10].  

 

The first mechanism activates adenylyl cyclase through G-protein stimulation, 

which leads to an increased production of cAMP, enabling the activation of 

cAMP-dependent protein kinase A (PKA). This protein kinase A will then 

translocate to the nucleus and will phosphorylate a specific serine residue in 

the CREB protein.  

 

The second mechanism is the activation of phospholipase C through �1-

adrenoceptors, leading to mobilization of Ca2+ and subsequent activation of 

Ca2+-calmodulin-dependent kinases, which in their turn also phosphorylate 

CREB.   

 

Another mechanism is started by neurotropic factors and cytokines that 

regulate certain receptors, influencing mitogen-activated protein kinase and 

intracellular signal-regulated protein kinase, which phosphorylate CREB 

through several forms of ribosomal S6 kinases (RSK1-3) [11-13].  

 

I.3.2.  Activation of neurotrophic pathways 

 

There have been reports indicating that chronic administration of ADs can 

prevent atrophy of neurons in the hippocampus caused by repeated stress by 

increasing the neurotrophic factor BDNF [10, 11, 14]. As BDNF binds to the 

tyrosine kinase B receptor (trkB) in the brain, an intracellular signalling 

cascade starts, which results in phosphorylation of CREB. In addition, a link 

between CREB and BDNF is suggested as enhanced CREB expression might 

lead to an upregulation of BDNF, because CREB would target the gene 

encoding for BDNF. On the other hand, BDNF would also induce neurogenesis 

[5, 9, 10]. 
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I.3.3.  Increasing neurogenesis 

 

Chronic AD treatment has shown to reverse the reduced hippocampal cell 

volume. This increased neurogenesis is observed in depressed humans using 

the Magnetic Resonance Imaging technique and in post-mortem studies. As a 

result, a hypothesis was postulated that the increasing neurogenesis could 

lead to the therapeutic effects of the ADs. The neurogenesis caused by ADs is 

possibly mediated through CREB, BDNF enhancement and the insulin-like 

growth factor, another neurotrophic factor.  

 

Although the regulation of CREB and BDNF may be important in the actions 

of AD treatment, a lot of research still has to be done in this field, as these 

reactions are probably not the only targets of ADs. Therefore, the action 

mechanisms of ADs still partly remain unclear [10].

I.4. Classification of antidepressants 

 

Before 1980, depression was treated using tricyclic antidepressants (TCAs) 

and monoamine oxidase inhibitors (MAOI). However, their side-effects, 

toxicity, and severe drug-drug interactions combined with an advanced 

understanding of the central nervous system have led to the introduction of 

several ‘new’ ADs [15, 16].  

 

Classes of these ADs are defined by their selectivity towards certain 

neurotransmitter transporters and receptors. The reuptake of serotonin and 

noradrenaline is selectively blocked by the Selective Serotonin Reuptake 

Inhibitors (SSRI) such as fluoxetine, fluvoxamine, sertraline, paroxetine, and 

citalopram, and the Selective Noradrenaline Reuptake Inhibitors (NARI) 

including reboxetine and viloxazine, respectively. The class of the Serotonin 

and Noradrenaline Reuptake Inhibitors (SNRI), however, combines the action 

mechanisms of the two previous classes by inhibiting the reuptake of both 

serotonin and noradrenaline, leading to dual-acting agents such as 

venlafaxine, milnacipran and duloxetine.  
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Table I.1. Classification of ADs based on their action mechanism, their 

influence on cytochrome P450 isoenzymes and on the neurotransmitter 

transporters and receptors  

TCAs (tricyclic AD), MAOI (mono amine oxidase inhibitors), SNRI (serotonin and 
noradrenaline reuptake inhibitors), SSRI (selective serotonin reuptake inhibitors), NARI 
(selective noradrenaline reuptake inhibitors), SARI (serotonin-antagonist and reuptake 
inhibitors), NaSSA (noradrenergic and specific serotonergic antidepressants), SSRE 
(selective serotonin reuptake enhancer), DRI (dopamine reuptake inhibitor). NA 
(noradrenaline), 5-HT (serotonin), DA (dopamine), H1 (histamine H1 receptor), MA 
(muscarinic acetylcholine receptor), �lpha1 (�1-adrenergic receptor), �lpha2 (�2-
adrenergic receptor). The ++++ means strong interaction with the transporters and 
receptors, + very low potency, to no potency at all. 
 
Antidepressants CYP isoenzymes Neurotransmitter Transporters and Receptors

CYP inhibition CYP metabolism Transporters Receptors
NA 5-HT DA H1 MA Alpha 1 Alpha 2 5HT

TCA
1. Amitriptyline          2D6, 2C19, 2C9, 1A2, 3A4 +++ ++++ + +++++ +++ +++ ++
2. Amoxapine +++ +++ + +++ + +++ ++
3. Clomipramine        2C19, 3A4, 2D6 +++ ++++ + +++ +++ +++
4. Dosulepin ++++ ++++
5. Doxepin                2D6, 2C19, 2C9, 1A2 +++ +++ +++++ ++ +++
6. Imipramine 2D6, 2C19, 1A2, 3A4 +++ ++++ + ++++ ++ ++
7. Maprotiline 2D6, 1A2 ++++ +
8. Melitracen ++++ ++++
9. Nortriptyline 2D6, 3A4 ++++
10. Opipramol
11. Trimipramine        ++ ++ ++ ++

MAOI
1. Moclobemide 2C9, 2D6,1A2 2C19
2. Phenelzine
3. Trancylcypromine

SNRI
1. Duloxetine 1A2, 2D6 +++ ++++ + + +
2. Milnacipran no inhibition ++++ ++++
3. Venlafaxine          Minimal: 2D6 2D6, 3A4 ++ ++++ +

SSRI
1. Citalopram Minimal: 2D6, 2C19,1A2 2C19, 2D6,3A4 ++++ + +
2. Fluoxetine            2D6, 2C9/19, 3A4 2D6, 2C + ++++ + + + +
3. Fluvoxamine   1A2, 2C19, 3A4,2C9 1A2,2D6 + ++++ +
4. Paroxetine 2D6 2D6 + ++++ + ++
5. Sertraline Minimal: 2D6, 2C, 3A4,1A2 2D6, 2C9, 2C19, 3A4 + ++++ ++ + +

NARI
1. Reboxetine Minimal: 2D6, 3A4 3A4 ++++ + + +
2. Viloxazine 3A4, 2C9,  2C19,1A2 ++++ +

SARI
1. Nefazodone 3A4 2D6, 3A4 ++++ +++ ++++
2. Trazodone            2D6, 1A2, 3A4 ++++ + +++ ++++

NaSSA
1. Mianserin 1A2, 2D6, 3A4 ++++ ++++
2. Mirtazapine        1A2, 2D6, 3A4 + + ++++ ++++

SSRE
1. Tianeptine 3A ++++

DRI
1. Bupropion 2D6 2B6 ++ +++  
 

Mirtazapine and mianserin are receptor antagonists which block the 

noradrenaline �2-auto- and hetero-receptors, as well as the 5-HT2/3 

receptors. However, mianserin, as in contrast to mirtazapine, has no indirect 

5-HT1a stimulating effect through �2-antagonism. Therefore mirtzapine is a 

Noradrenergic and Specific Serotonergic antidepressant (NaSSA), but this is 
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not clear for mianserin. Trazodone and nefazodone are Serotonin-2 

Antagonists and Reuptake Inhibitors (SARI), combining antagonism of 5-HT2 

with serotonin reuptake blockade [3, 11, 15-18]. Bupropion is a dopamine 

reuptake inhibitor (Table I.1.).  

 

I.5. Side-effects, drug-drug interactions and toxicity 

  

The differences in side-effects and drug-drug interaction profile of the ADs 

are the result of their specific pharmacokinetic properties, interaction with 

the cytochrome P450 isoenzymes (CYP 450), and their affinity for different 

neurotransmitter sites.  

 

The most relevant pharmacokinetic properties include the non-linear kinetics, 

half-life of the compound and its active metabolite (if relevant), as well as 

protein binding. Compounds that have non-linear kinetics (e.g. fluvoxamine) 

lead to disproportionate increases in drug plasma concentrations when using 

higher doses, resulting in a possible increase of side-effects. Due to the long 

half-life of compounds such as fluoxetine and especially of its active 

metabolite desmethylfluoxetine, attention should be paid to longer wash-out 

periods before starting other medication as drug-drug interactions could 

occur.  Protein binding interactions do not seem to be of great importance for 

ADs, probably because basic drugs bind to �1-acid glycoproteins rather than 

albumin and as a result do not displace drugs such as warfarin and digoxin 

that are tightly bound to albumin [19-21].  

 

A lot of drug-drug interactions occur through the inhibition of CYP 450. The 

isoenzymes that are inhibited by ADs and the ones that metabolize the 

antidepressant drugs are shown in Table I.1. When evaluating the clinical 

significance of a potential interaction, several factors must be considered. 

These factors include the potency and the concentration of drug and inhibitor 

or inducer at the enzyme active site, the saturation of the CYP enzyme 

involved, the extent of metabolism by the drug through this enzyme, the 

presence of active metabolites and the therapeutic window of the substrate, 

genetic polymorphism, the patient (elderly, liver impairment) and the 

probability of concurrent use [22]. As a result of the inhibition, caution is 
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advised using (co-)medication with narrow therapeutic windows such as 

tricyclic antidepressants, theophylline, phenytoin, tolbutamide, carba-

mazepine, terfenadine, astemizole, type 1C antiarrhythmics or antipsychotics 

[23].   

 

The differences in side-effects of ADs depend on their potency of interaction 

with different transporters and receptors (Table I.1.) such as the 

noradrenaline, serotonin and dopamine transporter and the histamine, 

muscarinic and adrenergic receptors [6]. Side-effects caused by affinity for 

the serotonin transporter are gastrointestinal disturbances and nausea (5-

HT3), sexual dysfunction (5-HT2), and extra pyramidal adverse effects [6, 

24]. In addition, coadministration of MAOI with ADs that block the serotonin 

transporter can cause the deadly serotonin syndrome [25].  Blockade of the 

noradrenaline transporter can result in hypertension, tremors and 

tachycardia, while blockade of the dopamine transporter leads to 

psychomotor activation and aggravation of psychosis. Other common side-

effects are sedation and weight gain caused by histamine H1 receptor 

blockade, and postural hypotension, dizziness, reflex tachycardia caused by 

blockade of �1-adrenergic receptors. As a result of muscarinic receptor 

binding, dry mouth, constipation, urinary retention, blurred vision, increased 

intra-ocular pressure, increased heart rate, disturbances in accommodation 

and hyperthermia occur [6, 21]. Cardiovascular symptoms are the most 

important side-effects seen for the TCAs and they are mediated by different 

mechanisms. Inhibition of �1-noradrenergic receptors causes orthostatic 

hypotension, dizziness and possibly reflex tachycardia, while the quinidine-

like effect (blockage of myocardial sodium channels) of the tricyclics is 

responsible for disturbances in conduction, which is reflected in changes in 

the electrocardiogram [26]. Hypertension and tachycardia may originate from 

the hyperadrenergic state which is induced by neurotransmitter reuptake 

inhibition. This may be followed by a period of catecholamine depletion, 

causing hypotension [26]. In therapeutic doses, most common cardiovascular 

effects include orthostatic hypotension and tachycardia, which may be more 

severe in elderly patients [27]. In overdose, cardiovascular effects may be 

life threatening [26, 28-30]. In patients with cardiovascular disease, the use 

of tricyclic antidepressants increases the risk of cardiac morbidity and sudden 



Chapter I: Introduction: depression, use of antidepressants, and relevance of antidepressant monitoring 

 

 

12 

cardiac death, particularly in the elderly patients [31-33]. Taking this into 

consideration, together with the growing evidence that personality [34] and 

depression may adversely affect cardiovascular health [32, 33, 35-37], 

several authors conclude that SSRIs may be a better alternative in depressed 

patients with concomitant cardiovascular disease [33, 35, 36, 38].  However, 

bleeding and cardiovascular effects seem to occur with SSRIs because of the 

serotonin effect on vascular smooth muscle. Therefore, there are also good 

reasons to believe that �-blockers such as propranolol and pindolol could 

interact with SSRI [39].  

 

Thus, while the new generation ADs are almost equipotent as TCAs, they 

have less life-threatening side-effects, such as cardiotoxicity and are safer in 

overdose. The most reported side-effects are neurological, psychiatric, and 

gastrointestinal side-effects [40]. Recently though, it has been suggested 

that there might be an association between suicidal thoughts and the use of 

SSRIs [41, 42]. However, more research is needed to support this 

hypothesis.  In addition, the FDA is also concerned about the use of SSRIs in 

children. Whittington et al. [43] concluded that risks could outweigh the 

benefits of SSRIs (except for fluoxetine) used  to treat depression in children 

and young people. SSRIs, though, seem rather safe when used during 

pregnancy and breastfeeding, although more research and clinical experience 

will be needed to confirm this finding [44, 45]. On the other hand, Sanz et al. 

published a database analysis in which they concluded that withdrawal 

syndromes or neonatal convulsions are seen for all SSRIs, but especially after 

paroxetine use [46]. This could be due to the affinity of paroxetine towards 

the muscarinic receptors in combination with non-linear kinetics and self-

limiting metabolism [46, 47]. In general, the SSRIs are the group of new 

generation ADs of which the side-effects are clearer, as this group is largely 

used and studied.  For other groups of new generation ADs, more studies and 

time will probably be necessary to get a full image of the side-effects that 

may occur and the severity of those effects.  
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I.6. Relevance of Therapeutic Drug Monitoring 

 

The basic principle underlying Therapeutic Drug Monitoring (TDM) is that the 

plasma drug-concentration is related to the drug-concentration at the effector 

site, producing a certain clinical response. Thus, TDM provides an indirect 

estimation of the concentration of ADs in the brain tissue in relation with a 

certain effect. TDM is used to avoid drug toxicity, to assess patient 

compliance, to enhance drug response, and to increase cost-efficiency. TDM 

can be a valid tool to optimize AD pharmacotherapy, but is underutilized in 

the field of psychiatry. Among clinicians there is still an under-appreciation of 

the degree of pharmacokinetic variability found in patients and how that 

might have an impact on the patient’s response to pharmacotherapy [48]. 

While TDM is used for TCAs as they have narrow therapeutic windows and 

can have severe side-effects, use of TDM will not become a standard 

procedure for new generation ADs as they have an unclear relationship 

between blood concentrations and therapeutic effects. Furthermore, 

therapeutic ranges of the new ADs seem quite broad, leading to the generally 

accepted notion of low toxicity. These compounds, however, also provide 

considerable adverse drug reactions and side-effects. Nowadays, psychiatric 

medication is prescribed in all imaginable combinations, increasing the 

possibility of drug-drug interactions [49]. Therefore, TDM could be of interest 

for monitoring patients with poor or ultrarapid metabolism by CYP 450 

isoenzymes, and patients that are co-medicated with inhibitors or inducers of 

those isoenzymes. In addition, the side-effects of the new generation ADs 

and their delayed therapeutic effect lead to poor patient compliance. As over 

40% of patients receiving psychotropic medications are non-compliant, 

monitoring of ADs use is crucial to provide an objective compliance check. 

For special patient populations such as children, adolescents, elderly and 

patients with liver and kidney impairment, TDM could provide valuable 

information for a cost-effective and more rational use of psychiatric drugs. 

 

Thus, although it is unlikely that TDM will become a standard procedure for 

all AD agents and all patients, it can surely optimize AD treatment for special 

patient populations, patients with poor or ultrarapid metabolism due to CYP 

450 isoenzymes or it can provide an alternative to a lengthy trial and error 
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dose titration process for patients with concomitant drug use. In addition, it 

can be used to monitor compliance [48-53]. In the future, advances in TDM 

will be made by increasing the knowledge of the brain and the influence of 

ADs on the brain, the genetic differences and the influences of those 

differences on plasma concentrations.  

I.7. Selection of antidepressants and relevant issues for TDM 

The ADs monitored in this work were selected based on their importance in 

the 7 major antidepressant markets (Japan, USA, France, United Kingdom, 

Italy, Spain, Germany) according to the Cognos Plus Study #11 [54] and on 

the AGNP-TDM Expert Group Consensus Guidelines [55]. 

Table I.2. Therapeutic and toxic range of several ADs and their active 

metabolites in plasma together with characteristics relevant for therapeutic 

drug monitoring 

1Information between brackets concerns the metabolite. ActMet: Active metabolite in 
plasma; Vd: distribution volume; Fb: Fraction bound; pKa: Dissociation constant; Log 
P: Partition coefficient (octanol/water); T1/2: half-life; Ther.C.: Therapeutic 
concentration range; Tox.C.: Toxic concentration; (L): Lethal concentration [56]. 
 
Compound Mw Vd (l/kg) Fb (%) pKa LogP T1/2 (h) Ther.C (µg/l) Tox.C. (µg/l)
Citalopram 324 12-16 50 9.5 3.74 25-40 20-200 (L)500

Fluoxetine 309 20-42 94.5 8.7 (9.37)1 4.05 96-144 (96-384)1 150-500 (100-500)1 1000 (900)1

Fluvoxamine 318 25 77 8.7 0.04 8-28 50-250 650
Maprotiline 277 23-70 90 10.5 4.5 20-70 75-250 300-800
Melitracen 291 7.05 10-100
Mianserin 264 10-29 90 7.1 3.36 6-40 15-70 500-5000
Mirtazapine 265 10-14 85 9.9 20-40 20-100 (50-300sum) 1000-2000
Paroxetine 329 3-28 95 3.95 12-40 10-75 350-400
Reboxetine 313 0.39-2.8 97 13-15 50-160
Sertraline 306 20 98 9.45 5.29 26 50-250 290/1600
Trazodone 372 0.9-1.5 90 6.7 3.2 4-7 500-2500 4000
Venlafaxine 277 4-12 30 9.24 (9.74)1 0.43 4 200-400 1000-1500
Viloxazine 237 0.5-1.5 85-90 8.1 1.8 2-5 5000-10000peak

ActMet
Desmethylcitalopram
Didesmethylcitalopram
Desmethylfluoxetine

m-Chlorophenylpiperazine
O-desmethylvenlafaxine

Desmethylmaprotliline

Desmethylmianserin
Desmethylmirtazapine

Desmethylsertraline

 

The Cognos Plus Study demonstrates that monoamine oxidase inhibitors and 

TCAs (8% European market share 2004) are less frequently prescribed than 

SSRIs and SNRIs. In addition, compounds such as nefazodone, duloxetine 

and milnacipran were not determined as they were not commercially 

available in Belgium, while the TCAs melitracen and maprotiline were 

monitored as they are readily prescribed in Belgium. In addition, the (active) 

metabolites were monitored as suggested by the AGNP-TDM Expert Group 
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Consensus Guidelines, as metabolite/compound ratios could provide more 

information on the relation between plasma concentration and therapeutic 

effects. A summary of relevant information concerning AD drug monitoring is 

given in Table I.2. The stability of the ADs will be discussed in chapter III and 

VI.

I.7.1. Citalopram  

 

1-[3-(Dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbo-
nitrile: mol. wt., 324.4; pKa, 9.5; usual dose, 20-60 mg/day (escitalopram : 10-20 
mg/day); therapeutic plasma concentration, 20 to 200 ng/ml; lethal concentration, 500 
ng/ml [56] ; plasma half-life, 33 h [25-40 h]; plasma protein binding, 50%; 
distribution volume, 12-16 l/kg [57, 58]. 
 

O
N

CH3

CH3

NC

F

*

Citalopram is a selective inhibitor of neuronal serotonin (5-

hydroxytryptamine) reuptake [40].  This antidepressant is the most selective 

serotonin reuptake inhibitor, but is less potent than paroxetine [40, 59]. 

Citalopram is a racemic mixture (S/R=1) with a blood or plasma ratio of the 

S/R form varing between 0.32 and 1.25. The S-enantiomer is 

pharmacologically active and accounts for 24 to 49% of the total plasma 

citalopram level, while the R-enantiomer appears to be pharmacologically 

inactive. Therefore, the S-enantiomer has been isolated and marketed in 

2002 as escitalopram [59, 60]. Escitalopram shows greater efficacy than 

citalopram using equivalent doses of the S-enantiomer in non-clinical and in 

controlled randomised clinical experiments. R-Citalopram appears to exert an 

allosteric effect on the 5-HT transporter protein and therefore counteracts the 

effect of escitalopram. This could explain the more favourable clinical efficacy 

of escitalopram, also in comparison to other comparator antidepressants 

[61]. Not only a higher efficacy, but also a higher response and faster onset 

of the drug, leading to faster symptom relief, is seen when using 
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escitalopram [60]. TDM could be of interest for patients with liver impairment 

and for elderly. Citalopram and also escitalopram have low potency for 

clinically important pharmacokinetic drug-drug interactions in comparison 

with other SSRI. This is the result of the low capacity of citalopram to inhibit 

CYP 450. Thus, citalopram is a good choice for patients who have a multidrug 

therapy [62]. 

 

I.7.1.1. Mechanism of action  

This selective inhibitor of serotonin reuptake has minimal affinity for �1-

adrenoreceptors and has low histamine H1-receptor blocking potency [40].   

I.7.1.2. Pharmacokinetics  

Citalopram is well absorbed following oral administration with a bioavailability 

of approximately 80%. Peak plasma levels of citalopram usually occur within 

2-4 hours [59]. After oral administration of doses between 20 and 60 

mg/day, plasma levels of racemic citalopram and desmethylcitalopram 

ranged between 9 to 200 ng/ml and 10 to 105 ng/ml, respectively [62]. 

When the enantiomers are measured separately, concentration ranges of 9-

106 ng/ml and 20-186 ng/ml are seen for S- and R-citalopram, while 4-38 

ng/ml  and 3-75 ng/ml are detected for S- and R- desmethylcitalopram [62]. 

However, there is considerable inter-individual variation in plasma 

concentrations which increases with dose, probably due to genetic factors 

[40, 63]. At steady-state, plasma concentrations of desmethylcitalopram and 

didesmethylcitalopram are one-half and one-tenth, respectively, of the parent 

drug level [64]. The steady-state plasma concentration of escitalopram is 19-

37 ng/ml after treatment with a dose of 10 mg/day [65].

Citalopram is metabolized in the liver by mono- and di-N-demethylation 

through CYP2C19, and 2D6, respectively. Citalopram and escitalopram are 

also metabolized by CYP3A4 to an important extent [66]. Other 

metabolization pathways include oxidative deamination, N-oxide formation 

and glucuronidation. The mono-desmethyl metabolite, desmethylcitalopram, 

has about 20 to 50% of the pharmacological activity of the parent drug, but 

does not contribute to the overall antidepressant activity of  citalopram as it 

has a poor blood-brain barrier penetration [67]. The metabolism of 

escitalopram is similar to that of citalopram. The elimination half-life is 35 
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hours for citalopram, 50 hours for desmethylcitalopram and 100 hours for 

didesmethylcitalopram [59]. The active S-enantiomer is more rapidly 

eliminated than the inactive R-enantiomer [62], probably because CYP2C19 is 

mainly implicated in the N-demethylation of the S-enantiomer rather than in 

that of R-citalopram. Moreover, 12% of a single dose is excreted in 24-hours 

urine, as well as an equal amount of desmethylcitalopram and minor 

quantities of other metabolites. However, about 65% of a dose is thought to 

be excreted via the faeces and small amounts of the drug are also excreted 

in breast milk [58]. On the other hand, escitalopram seems to be eliminated 

mainly in urine. Citalopram has a low plasma protein binding of about 50%.  

Thus, protein binding interactions do not seem to be of great importance 

[19]. 

 

I.7.1.3. Drug concentrations and clinical effects 

The therapeutic concentration for citalopram ranges from 20 to 200 ng/ml 

[56]. However, no therapeutic window has been set for citalopram.  Hiemke 

and Hartter stated that possible relationships between clinical outcome and 

serum concentrations might have been masked by the lack of stereospecific 

analysis [40].  In the dose range of 10-60 mg/day, citalopram shows linear 

pharmacokinetics for single as well as multiple-dose trials [64]. A lower initial 

dose should be considered for the elderly. This dose should not exceed 40 mg 

per day, because in elderly, for similar doses, average concentrations were 

23% higher and the half-life was 31% longer in comparison with the younger 

population. Barak et al. [68] report that citalopram-induced bradycardia is 

more prevalent among elderly. Moreover, patients with liver impairment or 

multiple co-administered medications should also be monitored. On the other 

hand, dose adjustment is not required for renal impaired patients. However, 

because there are no data on the pharmacokinetics of citalopram in patients 

with chronic or severe renal impairment, caution is advisable in this case [59, 

69]. Although citalopram is prescribed for children, FDA has not approved its 

use in children, as it may increase suicidal thoughts. In addition, Whittington 

et al. [43] reported an unfavourable risk-benefit balance for children as there 

is no evidence for efficacy, while the risk for suicide increased. Also for 

adults, one should monitor the worsening of depression and increased 

suicidal thinking [64]. On the other hand, citalopram did not seem to have an 
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increased effect on the rate of congenital birth defects as compared to those 

expected in the general population [45].   

 

I.7.1.4. Drug interactions, side-effects and toxicity 

Possible side-effects of citalopram include nausea and vomiting, increased 

sweating, headache, dry mouth, tremor, sedation, insomnia, mania, and 

sexual problems  [59]. According to Bezchlibnyk-Butler et al. [59] and the 

FDA [64], the major citalopram-drug interactions involve some TCAs such as 

imipramine, but also warfarine, carbamazepine, sumatriptan, metoprolol and 

cimetidine. However, these interactions do not seem to have any clinical 

consequences. Because citalopram is only a weak inhibitor of CYP1A2, 2D6 

and 2C19, the need for a decreased dose of drugs metabolized by those 

enzymes seems low [62]. As CYP3A4, 2D6 and 2C19 are involved in the 

metabolism of citalopram, potent inhibitors of these isoenzymes may 

decrease the clearance of citalopram. However, several reports [64] indicated 

that because citalopram is metabolized by multiple enzymes, inhibition of a 

single enzyme may not decrease citalopram clearance in an important way 

[64]. Patients should be cautioned for the risk of bleeding associated with the 

concomitant use of citalopram with NSAIDs, aspirin, or other drugs that 

affect coagulation [64]. Citalopram, though, should not be coadministered 

with a irreversible monoamine oxidase inhibitor as this can lead to the risk of 

serotonin syndrome [70]. In addition, after a MAOI treatment, a delay of 2 

weeks before taking citalopram or vice versa should be considered.

Citalopram is considered not to be of importance in fatal poisoning cases as 

Jonasson and Saldeen state that fatal blood concentrations range between 

2000 and 6200 ng/g and between 600-5200 ng/g in combination with other 

drugs [71]. However, according to the TIAFT-list the lethal concentration of 

citalopram is 500 ng/ml [56]. 

I.7.1.5. Analytical Methods 

Citalopram is determined with or without its metabolites using thin-layer 

chromatography, capillary electrophoresis [72], liquid chromatographic or 

gas chromatographic methods. Escitalopram can be determined in human 

plasma using LC-ESI-MS [73]. Moreover, several methods can separate the 

enantiomers by using a chiral stationary phase [74, 75]. Examples of these 
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chiral stationary phases used in liquid chromatography are Chiralcel OD [76], 

Chiral AGP [77] and Chirobiotic V [75]. Enantiomeric separation can also be 

achieved by using a chiral mobile phase additive such as beta-cyclodextrin 

[78]. Derivatization with a chiral reagent to form diastereoisomeric 

derivatives is not possible as citalopram is a tertiary amine that can not be 

derivatized [79]. 

In gas chromatography, NPD [80] and mass detectors [81, 82] are used.  In 

liquid chromatography, UV (absorption at 230 or 240 nm) [75, 83], DAD [84-

86], fluorescence [87-90], and mass detectors are applied. The LC-MS 

methods are utilized in both electrospray [73, 91, 92] and atmospheric 

pressure chemical ionization mode [93].   

Sample preparation mostly consists of a liquid-liquid extraction [73, 76, 84-

86, 88] after alkalinization, although recently a lot of solid phase extraction 

methods [76, 83, 87, 90, 92, 94, 95] are published. In addition, solid phase 

micro extraction (SPME) can be applied to extract citalopram from urine [82].  

 

I.7.2. Fluoxetine  
 

N-Methyl-3-[4-(trifluoromethyl)phenoxy]-3-phenylpropan-1-amine: mol. wt., 309.3; 
pKa, 8.7; usual dose, 20 mg/day for depression (and 60 mg/day for bulimia nervosa); 
max.dose, 80 mg/day; therapeutic concentration, 150 to 500 ng/ml for fluoxetine (100 
to 500 ng/ml for desmethylfluoxetine); plasma half-life, 4-6 days (4-16 for 
desmethylfluoxetine); plasma protein binding, 94.5%; distribution volume, 27 l/kg 
(20-42 l/kg); bioavailability 60% [56, 58]. 
 
 

O N
CH3

F3C

H

*

 

Fluoxetine is a selective inhibitor of neuronal serotonin reuptake and is 

approved by the FDA in 1987.  It has been used to treat several disorders 

such as major depression, panic, bulimia nervosa, obsessive-compulsive 

behaviour, and premenstrual dysphoric disorder [64]. This racemic drug 

consists of S- and R-fluoxetine (50/50), which are both clinically relevant 
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[76]. The S-enantiomer, however, is eliminated more slowly and is the 

predominant enantiomer present in plasma at steady state. In addition, S-

desmethylfluoxetine is also clinically relevant. TDM could be of interest for 

monitoring patients with liver impairment, with co-medication of drugs that 

either are metabolized by CYP2D6 or inhibit that enzyme, and for the elderly 

population. When using TDM, one has to be aware that changes in dose will 

not be fully reflected in plasma for several weeks, because of the long 

elimination half-lives of the parent drug and its major active metabolite. 

These long elimination half-lives, combined with the fact that fluoxetine 

inhibits its own metabolism are of great concern when using co-medication 

[64]. 

I.7.2.1. Mechanism of action 

Fluoxetine is a potent and selective inhibitor of serotonin reuptake in the 

synapse, with little effect on other monoamine reuptake mechanisms or other 

neurotransmitter receptors. Fluoxetine was shown to have only weak affinity 

for various receptor systems, namely opiate, serotonergic 5HT1, 

dopaminergic, �-adrenergic, �2-adrenergic, histaminergic, �1-adrenergic, 

muscarinic, and serotonergic 5HT2 receptors. 

I.7.2.2. Pharmacokinetics 

Fluoxetine is well absorbed following oral administration and peak plasma 

fluoxetine concentrations usually occur within 4-8 hours (range 1.5-12 

hours). After oral administration of a single 40-mg dose by healthy adults, 

peak plasma concentrations of approximately 15-55 ng/ml are obtained. 

However, there appears to be considerable inter-individual variation in 

plasma concentrations attained with a given dose. In addition, 

coadministration of fluoxetine and food, leads to a slower absorption rate but 

does not affect the overall extent of absorption of fluoxetine [76]. Following 

daily oral administration of the drug, steady-state plasma fluoxetine and 

desmethylfluoxetine concentrations generally are achieved within about 2-4 

weeks. Although, the onset of antidepressant activity of fluoxetine usually 

occurs within the first 1-3 weeks of therapy, optimum therapeutic effect 

usually requires 4 weeks or more of drug administration. Fluoxetine is 

extensively demethylated in the liver by CYP2C9, 2C19 and 2D6 to the 
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primary active metabolite desmethylfluoxetine. The elimination half-life of the 

parent drug is 4 to 6 days, but it is increased to 4-16 days for 

desmethylfluoxetine. The plasma half-life of fluoxetine exhibits considerable 

inter-individual variation, which may be related to genetic differences in the 

rate of N-demethylation of the drug in the liver. On the other hand, 

fluoxetine inhibits isoenzyme CYP2D6 and thus its own metabolism. Further 

metabolism can occur by O-dealkylation, producing p-trifluoromethylphenol 

and hippuric acid. The drug and its metabolites are mainly excreted in urine, 

but also in the faeces and in breast milk. Due to extensive tissue distribution, 

fluoxetine has a high distribution volume of 20-42 l/kg. Fluoxetine is highly 

bound to plasma proteins (up to 94.5%), including albumin and �1-acid 

glycoprotein. The extent of fluoxetine protein binding does not appear to be 

altered substantially in patients with hepatic cirrhosis or renal impairment, 

including those undergoing hemodialysis [76, 96]. 

 

I.7.2.3. Drug concentrations and clinical effects 

The therapeutic concentration for fluoxetine ranges from 150 to 500 ng/ml 

and from 100 to 500 ng/ml for desmethylfluoxetine [56]. However, no 

consistent relationship has been described between plasma fluoxetine 

concentrations and clinical response. In addition, a considerable inter-

individual variation in plasma concentrations attained with a given dose is 

observed. Because of the long half-life of fluoxetine and desmethylfluoxetine, 

a significant accumulation of these active compounds in chronic use, even 

when a fixed dose is used, is observed. Plasma concentrations of fluoxetine 

were higher than those predicted by single-dose studies, as fluoxetine’s 

metabolism is not proportional to dose. Desmethylfluoxetine, however, 

appears to have linear pharmacokinetics [64]. A lower or less frequent dose 

should be considered in patients with liver impairment, for elderly patients 

and patients using multiple co-administered medications, while this is not 

routinely necessary for renal impaired patients. Diabetic patients should be 

monitored as fluoxetine can improve glucose tolerance and/or hypoglycaemia 

[96]. Fluoxetine use should be avoided by pregnant women in the third 

trimester due to increased hemorrhagic tendency and nervousness in infants 

[97].  
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I.7.2.4. Drug interactions, side-effects and toxicity 

Possible side-effects of fluoxetine include allergic reactions, mania, weight 

loss, sexual problems, nausea, anxiety, and insomnia. Recently, several 

publications report the possibility of an increased risk for suicidal behaviour in 

patients treated with antidepressant medication. Serum levels of 1960 ng/ml 

fluoxetine (420 ng/ml desmethylfluoxetine) have been associated with 

seizures, while blood concentrations of 1300 to 6800 ng/ml fluoxetine and 

900 to 5000 mg/l for desmethylfluoxetine have been associated with 

fatalities.

According to Messiha [98], the major fluoxetine-drug interactions involve the 

amino acids L-dopa and L-tryptophan, anorexants, anticonvulsants, 

antidepressants, anxiolytics, calcium channel blockers, cyproheptadine, 

lithium salts, and drugs of abuse. Fluoxetine should not be coadministered 

with a monoamine oxidase inhibitor as this can lead to hyperthermia, 

convulsions and coma. In addition, after fluoxetine treatment, a delay of 5 

weeks before taking a MAOI should be considered, as fluoxetine and its 

metabolite have very long elimination half-lives. This washing out-period is 

also necessary for thioridazine, an antipsychotic used by schizophrenic 

patients. Thioridazine administration produces a dose-related prolongation of 

the QTc interval, which is associated with serious ventricular arrhythmias 

such as torsades de pointes-type arrhythmias and sudden death. This risk is 

expected to increase with fluoxetine-induced inhibition of thioridazine 

metabolism. The need for decreased dose of drugs metabolized by 

CYP2C9/19, 3A4 and 2D6 should be considered, as fluoxetine inhibits these 

enzymes. Consequently, co-medication with some antiarrhythmics, 

antipsychotics, �-blockers, and TCAs should be monitored [64, 96, 99, 100].  

 

I.7.2.5. Analytical Methods 

Fluoxetine is determined with or without its active metabolite using gas 

chromatographic, liquid chromatographic and micellar electrokinetic capillary 

chromatographic [101] methods. Some of these methods can separate the 

enantiomers of the compounds after derivatization with a chiral reagent 

[102] or by using a chiral stationary phase. Examples of these chiral 

stationary phases are hydrodex-beta-6-TBDM fused silica capillary columns 

used for GC purposes [103] or Chiralcel ODR, amylase-, beta-cyclodextrin-, 
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ovomucoid- and cellulose-based chiral columns [104-108] for liquid 

chromatography.  

In gas chromatography, NPD [103, 109-111], ECD [76] and mass detectors 

in electron ionization mode [102, 112, 113] are used. In liquid 

chromatography, UV (absorption 230 nm) [87, 105, 107, 114-119], DAD 

[85], fluorescence [108, 120-122] and mass detectors are applied. The LC-

MS methods are utilized in both electrospray ionization [76, 92, 123-126] 

and atmospheric pressure chemical ionization  mode [127].   

Sample preparation mostly consists of a liquid-liquid extraction after 

alkalinization [103, 107, 109, 116, 118, 122, 124, 127], although recently a 

lot of solid phase extraction methods are published. A large variety of 

sorbents such as apolar (C8), ion-exchange (SCX) and polymeric sorbents 

(Oasis HLB) [87, 92, 104, 111, 119, 121, 126] are used for extraction of 

fluoxetine and its metabolite from biological samples.  

Most methods allow quantitative determination in the lower ng/ml range 

(LOQ between 1-20 ng/ml), and are thus suitable for therapeutic drug 

monitoring purposes [76].      

  

I.7.3. Fluvoxamine 
 

5-Methoxy-1[4-(trifluoromethyl)phenyl]-1-pentanone-O-(2-aminoethyl)oxime: mol. 
wt., 318.3; pKa, 8.7; usual dose: 100-300 mg/day of fluvoxamine maleate (max. 200 
mg for children till 11 years old) [128]; therapeutic plasma concentration is 50-250 
ng/ml, while 650 ng/ml results in toxic effects [56]; plasma half-life, 8 – 28 h (mean: 
15 h); plasma protein binding, 77%; distribution volume, 25 l/kg [57, 58]. 
  

F3C

N
O

OCH3
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Fluvoxamine is a selective inhibitor of neuronal serotonin reuptake. The drug 

was introduced in 1983 and has been used to treat obsessive-compulsive 

disorder (only marked for this disorder in US) as well as depression, panic 

disorder, social phobia, post-traumatic stress disorder, eating disorders, and 

autism [40, 64, 129]. This compound does not have a chiral center, but the 

occurrence of a C=N double bound implies the existence of two isomers, E 
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(entgegen, trans) and Z (zusammen, cis) [130]. TDM could be of interest for 

monitoring patient compliance, patients with liver impairment and patients 

with co-medication of drugs that are metabolized by CYP1A2, 2C19 or 3A4 

[131]. 

 

I.7.3.1. Mechanism of action 

Fluvoxamine is a potent and selective inhibitor of serotonin reuptake in the 

synapse with little effect on other monoamine reuptake mechanisms or other 

neurotransmitter receptors, with the exception of �1-receptors [129]. These 

�1-receptors have a neuromodulatory role in the brain, which may result in a 

relevant response to anxiety, stress, depression, learning and cognitive 

processes, neuroprotection and antipsychotic activity [132]. 

 

I.7.3.2. Pharmacokinetics 

Fluvoxamine is almost completely absorbed after oral administration, but 

undergoes an extensive first pass metabolism, resulting in a bioavailability of 

about 53%. The time to reach maximum plasma concentration is about 5 

hours after a single dose of 100 to 300 mg. A dose proportionality study 

showed that patients treated with 100, 200 and 300 mg/day of fluvoxamine 

maleate during 10 days had fluvoxamine serum concentrations of 88, 283 

and 546 ng/ml, respectively [64]. However, there appears to be considerable 

inter-individual variation in plasma concentrations attained with a given dose. 

As a result, a therapeutic window has not yet been established. Steady-state 

concentrations could be attained within 1 week, due to the relatively short 

half-life of 8-28 h. Because fluvoxamine exhibits non-linear kinetics, 

increased dosages led to increased half-lives. Consequently, steady-state 

conditions may not always be reached before 10 days of continuous 

treatment [40]. Fluvoxamine is extensively metabolized in the liver, and less 

than 4% is excreted unmetabolized in urine. The main metabolic degradation 

in the liver consists of N-acetylation, oxidative deamination and 

demethylation, resulting in 11 inactive metabolites, of which 9 could be 

structurally identified [40, 130] with the main metabolite identified as the 5-

demethoxylated carboxylic acid [130]. Fluvoxamine is metabolized by the 

CYP isoenzymes CYP2D6 and 1A2, while the drug itself is a moderate 

inhibitor of CYP3A4, 2C9 and a potent inhibitor of 1A2, resulting in important 
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pharmacological interactions with other drugs [58, 100, 129]. On the other 

hand, fluvoxamine metabolism is increased in smokers [74]. Fluvoxamine has 

a distribution volume of 25 l/kg and a moderate plasma protein binding, 

mostly to albumin, of approximately 77%. Therefore, it makes drug 

interactions with restrictively protein-bound drugs unlikely to occur.  

 

I.7.3.3. Drug concentrations and clinical effects 

The therapeutic concentration for fluvoxamine in plasma ranges from 50 to 

250 ng/ml [56]. However, no consistent relationship has been described 

between plasma fluvoxamine concentrations and clinical response [133]. In 

addition, a considerable inter-individual and gender specific variation in 

plasma concentrations attained for a given dose is observed [67].

Perhaps the inhibition of CYP1A2 by oral contraceptive drugs is the reason of 

the gender specific variation in plasma concentrations of fluvoxamine [74]. 

Moreover, a 23%-reduction in plasma concentration is seen for smokers as 

compared to non-smokers because cigarette smoke induces CYP1A2 

metabolism [134].  

Fluvoxamine does not appear to have linear pharmacokinetics after repeated 

administration of therapeutic dosages [40, 129], but rather an U-shaped 

relationship between drug concentrations and therapeutic response, probably 

due to auto inhibition of fluvoxamine metabolism [135]. A lower or less 

frequent dose should be considered in patients with hepatic cirrhosis, as the 

area under the concentration-time curve and the half-life are significantly 

increased [136]. On the other hand, dose adjustment is not necessary for the 

elderly and renal impaired patients [19]. Moreover, breast feeding during 

fluvoxamine treatment is considered safe [45, 137], as the penetration into 

breast milk is relatively low, with a milk to plasma concentration ratio of 0.29 

[138].  

 

I.7.3.4. Drug interactions, side-effects and toxicity 

Possible side-effects of fluvoxamine are nausea, somnolence, asthenia, 

headache, dry mouth, and insomnia. It is associated with a low risk of 

suicidal behaviour, sexual dysfunction and withdrawal syndrome [129]. 

Although several fluvoxamine overdoses are reported, up to 12 g of the 

maleate salt were ingested without sequelae. According to the FDA [64] and 
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Perucca et al. [139], the major fluvoxamine-drug interactions involve the 

TCAs, MAOI, benzodiazepines, cardioactive drugs, carbamazepine, 

methadone, theophylline, warfarin, terfenadine, astemizole, cisapride and 

pimozide.

Fluvoxamine inhibits CYP isoenzymes such as CYP2D6, 2C19, 3A4, 1A2, and 

2C9. Consequently, co-medication with drugs that are metabolized by one or 

more of these enzymes such as TCAs, warfarin, theophylline, propranolol, 

benzodiazepines, thioridazine, and neuroleptics such as clozapine and 

haloperidol should be monitored [22, 23, 64, 79, 131, 134]. On the other 

hand, concomitant use of fluvoxamine with the previous described drugs 

could lead to improvement of the therapeutic effects of these drugs [40]. 

Fluvoxamine should not be coadministered with a monoamine oxidase 

inhibitor as this leads to hyperthermia, convulsions and coma. In addition, a 

delay of 2 weeks before taking a MAOI should be considered after 

fluvoxamine treatment and vice versa [129]. This washing-out period is also 

necessary for thioridazine, cisapride and pimozide administration as it 

produces a dose-related prolongation of the QTc interval, which is associated 

with serious ventricular arrhythmias, such as torsades de pointes-type 

arrhythmias, and sudden death.   

 

I.7.3.5. Analytical methods

Fluvoxamine is determined using gas chromatographic and liquid 

chromatographic methods in a variety of samples such as serum [91], 

plasma [85, 93], blood [140],  urine [82, 140, 141], brain tissue [142], 

breast-milk [143], amniotic and umbilical fluids [144].

Gas chromatography combined with detectors such as FID [145], NPD [94], 

ECD [76, 142] and MSD [39, 76, 82, 141] is used.  In liquid chromatography, 

the following detectors are applied: UV [76, 83, 84, 143, 144, 146-150], DAD 

[85, 86], fluorescence [76, 151, 152] and mass detectors in electrospray 

[91] as well as in atmospheric pressure chemical ionization mode [93]. When 

using UV detection, fluvoxamine gives a maximum absorption at 254 nm. 

Fluorescence detection of fluvoxamine was described after derivatization with 

dansylchloride [151] or 4-fluoro-7-nitro-2,1,3-benzoxadiazole [152]. 

Sample preparation mostly consists of a liquid-liquid extraction after 

alkalinization [76, 85, 86, 91, 93, 143, 151], although recently a lot of solid 
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phase extraction methods [76, 82, 83, 94, 95, 143, 145-148, 150, 153] are 

published. Moreover, methods using SPME [82, 153] and supported liquid 

membrane sample pre-treatment [154] are also utilized. Most methods allow 

quantitative determination in the lower ng/ml range (LOQ between 1.5-25 

ng/ml), and are thus suitable for therapeutic drug monitoring purposes [76]. 

 

I.7.4. Maprotiline  

 

N-Methyl-9,10 ethanoanthracene-9(10H)-propanamine: mol. wt., 277.4; pKa, 10.5; 

usual dose, 30-150 mg/day; toxic plasma concentration from 300-800 ng/ml; 

therapeutic concentration, 75-250 ng/ml (100-600) [56]; plasma half-life, 20-70 h 

(36-105); plasma protein binding, 90%; distribution volume, 23-70 l/kg (14-22) [57, 

58]. 

 

N
CH3

H

 

Maprotiline is a tetracyclic antidepressant, which is distinguished from 

conventional tricyclic antidepressants only by an ethylene bridge upon its 

molecular skeleton, creating a fourth ring [155]. It has been used in 

antidepressant therapy and has sedative as well as anti-aggressive 

properties. TDM could be of interest for monitoring patient compliance and 

when coadministration of CYP2D6 inhibitors and inducers occurs. 

 

I.7.4.1. Mechanism of action 

Maprotiline acts by blocking noradrenaline uptake and appears to have no 

influence on serotonin metabolism. In addition, the drug is a weak central 

acetylcholine antagonist [155].  
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I.7.4.2. Pharmacokinetics 

Maprotiline is slowly, but completely absorbed from the gastrointestinal tract. 

The drug undergoes an important first pass metabolism. Mean steady state 

plasma concentrations are reached in 1 week. After administration of daily 

doses of 50, 100 and 150 mg, maprotiline concentrations were respectively 

67, 143, and 216 ng/ml [155].

The main metabolic degradation pathway of the drug is demethylation via 

CYP2D6 and 1A2 [156], resulting in the active metabolite N-

desmethylmaprotiline. In addition, N-oxidation into maprotiline N-oxide and 

hydroxylation followed by conjugation also occur. The drug is excreted in 

urine and faeces, mainly as metabolites. In addition, maprotiline can be 

found in the cerebrospinal fluid, even as in breast milk.  

 

I.7.4.3. Drug concentrations and clinical effects 

For patients treated with maprotiline, the therapeutic range in plasma is 75-

250 ng/ml, although some authors report therapeutic ranges between 100-

600 ng/ml. The sum of the therapeutic serum concentrations for maprotiline 

and desmethylmaprotiline is 100-400 ng/ml [56]. However, there seems to 

be a wide inter-individual variation in blood levels, perhaps due to the 

difference in individual body weights and CYP2D6 metabolism [155]. 

Maprotiline is well tolerated by elderly patients and there appears to be no 

increase in the incidence and severity of side-effects as compared to younger 

patients [155]. In patients with hepatic or renal damage, the drug should be 

used with caution. Since the drug is excreted in breast milk, with a level over 

200 ng/ml in both breast milk and maternal blood after 5 days of treatment 

(50 mg, 3 times daily), the child should also be monitored during maprotiline 

therapy [155]. 

I.7.4.4. Drug interactions, side-effects and toxicity 

Adverse effects of maprotiline (drowsiness, dry mouth) are largely the same 

as for the tricyclic antidepressants, but there seems to be a higher incidence 

of skin rashes [155]. However, most of the side-effects of maprotiline are 

mild and usually disappear with continued treatment or after reduction in 

dosage. Uncommon side-effects such as hallucinatory episodes, hypomania 

or mania, development of grand mal seizures, increase in serum 
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transaminases and alkaline phosphatase, decreased bilirubin, as well as 

severe neutropenia can occur during maprotiline therapy [155]. 

Since maprotiline is metabolized by enzymes of the CYP 450 family, the most 

important being CYP2D6, any other substance influencing this enzyme can 

have an effect on the plasma concentrations of maprotiline [157]. Moreover, 

coadministration with MAOI should be avoided, because of the risk of 

hyperpyretic crisis, convulsions and death. A wash out period of two weeks 

should be respected when a MAOI is replaced with maprotiline. A serum 

concentration of 1000-5000 ng/ml can be lethal [56]. The characteristic 

symptoms of maprotiline overdosage are neuromuscular in nature (tremor, 

ataxia, muscular twitching), while respiratory depression, drowsiness, 

convulsions, vertigo, hallucinations, confusion, mydriasis and disturbances of 

consciousness are also common [155]. 

 

I.7.4.5. Analytical Methods 

Several methods for the analysis of maprotiline in biological samples have 

been published. Gas chromatography is used frequently in combination with a 

nitrogen-phosphorus detector [111, 158-160], but an MSD can also be used 

[95].  In addition, high pressure liquid chromatography is a frequently used 

method for the analysis of maprotiline, using UV [83, 161, 162] , DAD [163], 

as well as fluorescence detectors [164]. Moreover, Oztunc et al. described a 

TLC screening method using 7,7,8,8-tetracyanoquinodimethane as 

derivatization reagent to detect several antidepressants, including maprotiline 

[162], while Cakrt et al. published an isotachophoretic determination in 

combination with fluorimetric detection [165].

Common to these methods is the need for alkaline extraction from the 

biological medium prior to analysis [160, 162-164]. However, several solid 

phase extraction methods are also published [83, 95, 111, 161], while Ulrich 

and Zollinger described a SPME extraction of maprotiline from plasma 

samples [159].
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I.7.5. Melitracen 

 

mol. wt., 291; therapeutic plasma concentration from 10-100 ng/ml 

   

N
CH3

CH3

CH3 CH3

 
  

Melitracen is a not well documented tricyclic antidepressant that inhibits the 

reuptake of noradrenaline and serotonin. The side-effects are less intense in 

comparison with the other tricyclic antidepressants and is therefore still 

frequently prescribed. 

 

I.7.6. Mianserin 

 

1,2,3,4,10,14b-Hexahydro-2-methyldibenzo(c,f)-pyrazino(1,2-a)azepine: mol. wt., 
264.4; pKa, 7.1; usual dose, 30-90 mg/day; max.dose, 200 mg/day; therapeutic 
concentration, 15 to 70 ng/ml; plasma half-life, 6-40 h; plasma protein binding, 90%; 
distribution volume, 13 (10-29) l/kg [57, 58]. 
 

      

N

N
H3C

*

 

Mianserin is a noradrenergic and specific serotonergic antidepressant 

(NaSSA). Although the drug is not marketed in the USA, it is used to treat 

depression in most European countries. This compound is a racemic 

tetracyclic antidepressant, with the S-enantiomer being considered more 

potent [166]. TDM could be of interest for monitoring patient compliance.  
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I.7.6.1. Mechanism of action 

Mianserin enhances noradrenergic and serotonergic neurotransmission 

through antagonism of the central �2-adrenergic receptors and by a 

postsynaptic blockade of 5-HT2 receptors (not the 5-HT3 receptors).  

 

I.7.6.2. Pharmacokinetics 

Mianserin is well absorbed following oral administration, but it undergoes 

first-pass metabolism, resulting in a bioavailability of about 70%. After oral 

administration of 30 mg of mianserin, the plasma concentrations ranged 

between 3-13 ng/ml after 18 hours and 18-34 ng/ml at steady state. In 

addition, the concentration of desmethylmianserin ranged from 1-7 ng/ml 

and 3-24 ng/ml, respectively [167]. The active metabolite to parent drug 

ratio, desmethylmianserin/mianserin is about 0.3-0.4 [138,166]. Mianserin is 

metabolized by N-demethylation and 8-hydroxylation, to form the 

metabolites N-desmethylmianserin and 8-hydroxymianserin, respectively. N-

oxidation of the drug also occurs but does not form a biologically active 

metabolite. Mianserin is metabolized in the liver through CYP2D6, 1A2, and 

3A4 [166]. The mean plasma half-life of mianserin is 16 hours but the value 

is increased by age.  About 30 to 40% of a single dose is excreted in 24 

hours urine, mostly as metabolites, since only 5% unchanged drug is found 

in urine. Mianserin crosses the blood-brain barrier and the placenta, and is 

excreted in breast milk.  

I.7.6.3. Drug concentrations and clinical effects 

The therapeutic concentration for mianserin ranges from 15 to 70 ng/ml [56], 

while it ranges from 40-125 ng/ml for the sum of mianserin and its 

metabolite desmethylmianserin. Although the best clinical response was 

associated with a plasma concentration of less than 70 ng/ml, there seems to 

be no relationship between plasma concentrations and therapeutic response 

[138]. Mianserin, desmethylmianserin, and the sum of mianserin and its 

metabolite have significant linear kinetics [167].  Plasma concentrations of 

mianserin have been reported to increase significantly with age, in contrast 

with the metabolite concentrations that decreased, probably due to impaired 

demethylation in the elderly [138].  
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I.7.6.4. Drug interactions, side-effects and toxicity 

The most frequently reported side-effects are drowsiness, convulsions and 

sedation [168]. Serious side-effects are the occurrence of blood diseases 

such as agranulocytosis, granulocytopenia, leucopenia or pancytopenia [168].

According to Nawishy et al. [169], plasma levels of mianserin are significantly 

reduced in epileptic patients treated with phenytoin, phenobarbitone and 

carbamazepine. Eap et al. concluded that carbamazepine reduced the plasma 

concentration of mianserin as it is an inducer of CYP3A4, which is involved in 

the metabolism of mianserin [166].  

 

I.7.6.5. Analytical Methods 

Mianserin is determined with or without its metabolites using capillary 

electrophoresis [170] and liquid or gas chromatographic methods. Several 

methods can separate the enantiomers by using a chiral stationary phase 

[171].   

Nitrogen-phosphorus [94, 172] and MS detectors [95] are used in gas 

chromatography. In liquid chromatography, UV [173, 174], fluorescence 

[175], mass [176] and electrochemical [177] detectors are applied.  

Liquid-liquid extraction after alkalinization [170] or solid phase extraction is 

utilized as sample preparation [94, 95, 174, 177].  

 

I.7.7. Mirtazapine 
 

1,2,3,4,10,14b-Hexahydro-2-methylpyrazino(2,1-a)pyrido(2,3-c)(2)-benzazepine: mol. 
wt., 265.4; pKa, 7.1; usual dose, 15-45 mg/day; therapeutic concentration, 20 to 100 
ng/ml; plasma half-life, 20-40 h; plasma protein binding, 85%; distribution volume, 
10-14 l/kg [57, 58]. 
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Mirtazapine is a noradrenergic and specific serotonergic antidepressant 

(NaSSA). The drug has been used to treat depression with or without anxiety 
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symptoms and sleep disturbances [64, 178]. This compound is a racemate 

and the S(+)- as well as the R(-)- enantiomer are pharmacologically active 

[178]. TDM could be of interest for monitoring patient compliance and 

patients with liver impairment. 

 

I.7.7.1. Mechanism of action

Mirtazapine enhances noradrenergic and serotonergic neurotransmission 

through antagonism of the central �2-adrenergic receptors and by a 

postsynaptic blockade of 5-HT2 and 5-HT3 receptors [178]. It has a weak 

affinity for 5-HT1 receptors and very weak muscarinic anticholinergic and 

histamine antagonist properties [179]. 

 

I.7.7.2. Pharmacokinetics 

Mirtazapine is readily absorbed after oral administration, resulting in a 

bioavailability of 50% [180]. The time to reach maximum plasma 

concentration is about 2 hours and coadministration of food has minor effect 

on the rate, but not on the extent of absorption [180]. According to Timmer 

et al., the Cmax at steady state ranges from 55 to 89 ng/ml for healthy males 

receiving 30 mg mirtazapine per day [180]. Mirtazepine has a plasma half-

life from 20 to 40 hours, with an average of 37 hours in women, and 26 

hours in men, while steady-state concentrations could be attained within 5 

days [178]. In addition, mirtazapine has linear pharmacokinetics at dosages 

of 15-80 mg/day [180].

Mirtazapine is metabolized into its 8-hydroxy-metabolite by cytochrome 2D6 

and 1A2. CYP3A4, however, metabolizes mirtazapine into the active N-

desmethylmirtazapine and the inactive N-oxide. Moreover, conjugation of 

these metabolites also occurs. Although some metabolites have a 

pharmacological activity, they do not contribute significantly to the 

therapeutic effect, due to the low plasma concentrations. The drug is 

eliminated by excretion in urine and faeces in a few days after a single dose.  

 

I.7.7.3. Drug concentrations and clinical effects

The therapeutic concentration for mirtazapine ranges from 20 to 100 ng/ml 

[56]. According to Grasmäder et al. 30 ng/ml is the threshold plasma 

concentration, resulting in a response to mirtazapine treatment [181]. 
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Moreover, young males seem to need higher doses to reach the same plasma 

concentrations in comparison to female patients or elderly men.  However, 

because no consistent relationship has been described between plasma 

mirtazapine concentrations and effect, the significance of these gender and 

age specific variation in plasma concentrations attained for a given dose is 

still unknown [180]. A decreased oral clearance and increased peak-plasma 

concentration, as well as time to reach that concentration is seen in patients 

with moderate or severe renal failure in comparison with the healthy 

population [178]. Because hepatic clearance of mirtazapine is reduced in 

patients with cirrhosis or hepatic impairment, dosage adjustments should be 

performed with caution [178].   

I.7.7.4. Drug interactions, side-effects and toxicity 

The most common side-effects are somnolence [181], dizziness, dry mouth, 

increased appetite and body-weight gain [182]. According to the FDA [64], 

following side-effects can also occur: agranulocytosis, increase in plasma 

cholesterol and triglycerides, seizures, mania and sexual problems. The 

increase in cholesterol and triglycerides is probably due to the increased 

appetite. Side-effects such as mania, seizures and agranulocytosis are rather 

rare [179, 182]. In addition, sexual dysfunction is less frequently than when 

using an SSRI [183].

As mirtazapine is unlikely to inhibit CYPs, the drug-drug interaction profile is 

favourable [178]. Moreover, as it is metabolized by several enzymes, it is 

unlikely that its metabolism would be affected by coadministration of a 

CYP1A2, 2D6 or 3A4-inhibitor [182]. Although coadministration of cimetidine, 

paroxetine [184], fluoxetine, carbamazepine and amitriptyline [185] 

increases the steady-state plasma concentration of mirtazapine, this increase 

was not considered to be clinically relevant [180]. Patients should be 

cautioned, though, not to use other central nervous system depressants (e.g. 

ethanol or diazepam) in combination with mirtazapine [182]. Mirtazapine 

should not be coadministered with a monoamine oxidase inhibitor as this can 

lead to hyperthermia, convulsions and coma. In addition, a delay of 2 weeks 

before taking a MAOI should be considered after mirtazapine treatment and 

vice versa [64].  
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I.7.7.5. Analytical methods

Mirtazapine and its metabolites are determined using gas and liquid 

chromatographic methods, as well as capillary electrophoresis [186] in a 

variety of samples such as plasma [86, 186-194], serum [188, 189], post-

mortem blood [195] and urine [82, 196]. Some methods are able to separate 

the enantiomers using a chiral column [192, 193] or a chiral additive in the 

eluent such as carboxymethyl-beta-cyclodextrin [186].

Gas chromatography is used combined with an MSD [82, 195, 196].  In liquid 

chromatography, the following detectors are applied:  fluorescence detectors 

[188-190, 194], UV [187, 193, 197], DAD [85, 86] and mass spectrometric 

detectors [191, 192].  

Sample preparation mostly consists of a liquid-liquid extraction after 

alkalinization [85, 86, 187, 190-192, 195, 196]. Moreover, de Santana et al. 

published a method using liquid-phase microextraction (LPME) [193]. 

Recently, solid phase extraction [95, 194, 197] and solid phase 

microextraction methods [82] are also published.  

Most methods allow quantitative determination in the lower ng/ml range, and 

are thus suitable for therapeutic drug monitoring purposes. 

 
I.7.8. Paroxetine 
 

(3S-trans)-3-[(1,3-Benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)-piperidine : mol. 
wt., 329.4; pKa, 9.9; usual dose, 10  up to  60 mg/day (max. 40 mg/day for elderly 
and patients with kidney or hepatic impairment) [198]; therapeutic concentrations in 
serum from 10 to 75 ng/ml; toxic serum concentrations  from 350 to 400 ng/ml [56]; 
plasma half-life, 12-40 h; plasma protein binding, 95%; distribution volume, 3 - 28 
l/kg [57, 58]. 
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Paroxetine is a selective inhibitor of neuronal serotonin reuptake. The drug 

was approved in 1992 by the FDA and has been used to treat depression as 
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well as several disorders: panic, obsessive-compulsive disorder, 

posttraumatic stress, generalized and social anxiety [64, 199]. Paroxetine 

has the most clinical evidence supporting the use for anxiety of all SSRIs. 

This compound has two chiral centres, but it is used clinically as pure 3S, 4R-

isomer [19]. TDM could be of interest for monitoring patient compliance, 

patients with liver and kidney impairment or for the elderly population. In 

addition, patients with co-medication of drugs that are metabolized by 

CYP2D6 should also be monitored. 

 

I.7.8.1.  Mechanism of action 

Paroxetine is a potent and selective inhibitor of presynaptic serotonin 

reuptake and enhances serotonergic neurotransmission by prolonging 

serotonin activity at its postsynaptic receptors. It is a weak inhibitor of 

dopamine and noradrenaline transporters, while it displays some affinity for 

the muscarinic receptor, resulting in more anticholinergic symptoms such as 

dry mouth and constipation [20, 198, 200, 201].   

I.7.8.2.  Pharmacokinetics 

Paroxetine is well absorbed without being affected by presence of food or 

antacids. The absolute bioavailability of paroxetine, though, is about 50%, 

due to first pass metabolism [19]. The time to reach maximum plasma 

concentration is about 5 hours after a single dose of 30 mg, while steady-

state concentrations could be attained after 7 to 14 days in healthy 

volunteers administered 30 mg/day [198]. This dosage leads to an inter-

individual variation in the plasma concentration from less than 1 to more 

than 150 ng/ml [138].  In addition, Rasmussen and Brosen reported plasma 

concentrations of 1-188 ng/ml in patients treated with paroxetine in doses of 

20-60 mg/day [74]. As a result, a therapeutic window has not yet been 

established. Moreover, the small numbers of presently available studies do 

not suggest the existence of a plasma concentration-clinical response 

relationship for paroxetine [79]. 

Paroxetine is extensively metabolized after oral absorption, mainly by 

oxidation and demethylation, followed by conjugation. The CYP2D6 

isoenzyme mainly regulates the O-demethylenation, leading to a cathechol 

type metabolite [58], which is further O-methylated and conjugated with 
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glucuronic acid and sulphate. Thus, the extensive metabolism in the liver 

leads to inactive glucuronide and sulphate metabolites [201]. On the other 

hand, a not yet identified low-affinity enzyme also plays a role in the 

paroxetine metabolism [67]. This enzyme is the primary enzyme used by 

CYP2D6 poor metabolizers [134].  

The drug is widely distributed in the body, even in the central nervous 

system and in breast milk. Approximately 64% of a dose is excreted in urine, 

while the other 36% is excreted in the faeces. Less than 2% of a dose is 

excreted as the parent drug. Paroxetine has a high protein binding rate, 

leading to possible interactions with other high protein bound drugs [198].  

  

I.7.8.3.  Drug concentrations and clinical effects

The therapeutic concentration for paroxetine ranges from 10 to 75 ng/ml 

[56]. However, no consistent relationship has been described between 

plasma paroxetine concentrations and clinical response [201]. In addition, a

considerable inter-individual variation in plasma concentrations attained for a 

given dose is observed. Paroxetine does appear to have nonlinear 

pharmacokinetics after repeated administration of therapeutic doses [79, 

198, 201], probably due to saturation of CYP2D6 at higher paroxetine 

concentration, leading to further elimination by the lower affinity unidentified 

metabolite [100, 134]. A lower or less frequent dose should be considered in 

patients with hepatic cirrhosis, renal impairment and the elderly as the area 

under the concentration-time curve and the half-life are significantly 

increased [198]. Furthermore, paroxetine is not advised during the first three 

months of the pregnancy as it increases risk of birth defects, particularly 

heart defects [64]. In addition, withdrawal syndromes or neonatal 

convulsions are described for paroxetine during pregnancy [46, 47]. This 

could be due to the affinity of paroxetine towards the muscarinic receptors in 

combination with nonlinear kinetics, self-limiting metabolism and short half-

life. Moreover, breast feeding during paroxetine treatment is considered safe, 

although this view should be considered as preliminary due to the lack of 

data [137]. Spigset  and Hagg have calculated a milk/plasma ratio between 

0.4 and 1, resulting in a relative dose of 1 to 3% in the infant [137]. 
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I.7.8.4.  Drug interactions, side-effects and toxicity

Possible side-effects of paroxetine are nausea, sexual dysfunction, 

somnolence, asthenia, headache, constipation, dizziness, sweating, tremor 

and decreased appetite [198]. Toxic effects may occur with concentrations 

exceeding 400 ng/ml. Caution is advised when paroxetine is coadministered 

with drugs that are metabolized by CYP2D6. As a result, paroxetine AUC are 

increased by 50% or decreased by 28%, due to co-medication with 

cimetidine or phenytoin, respectively [201]. Moreover, paroxetine may lead 

to enhancement of plasma concentrations of TCAs such as desipramine [22], 

antipsychotics (e.g. perphenazine [22]), and antiarrhythmics [134, 201]. On 

the other hand, paroxetine leads to a decrease in analgesic efficacy of 

codeine, oxycodone and hydrocodone as it inhibits their metabolism, leading 

to less of their active metabolites [22].

Paroxetine should not be coadministered with a monoamine oxidase inhibitor 

as this can lead to hyperthermia, convulsions and coma. In addition, a delay 

of 2 weeks before taking an irreversible MAOI and 1 day after treatment with 

a reversible MAOI should be considered after paroxetine treatment and vice 

versa [198]. This washing out-period is also necessary for thioridazine 

administration as it produces a dose-related prolongation of the QTc interval, 

which is associated with serious ventricular arrhythmias, such as torsades de 

pointes-type arrhythmias, and sudden death.   

 

I.7.8.5.  Analytical methods

Paroxetine is determined in a variety of samples such as serum, plasma and 

whole blood [87, 111] by using gas chromatographic and liquid 

chromatographic methods, as well as micellar electrokinetic capillary 

chromatographic methods [140] and TLC [76, 92]. Gas chromatography is 

used, combined with detectors such as NPD [76, 80, 111], ECD [202] and 

MSD [113]. Paroxetine is derivatized with pentafluorobenzyl carbamate or 

heptafluorobutyric anhydride before injection onto a GC-MS in negative ion 

chemical ionization mode or on a GC-ECD configuration [202-204]. In liquid 

chromatography, the following detectors are applied: UV [87, 146, 148, 205, 

206], DAD [86], fluorescence [76, 80, 87, 151, 207, 208], coulometric 

detection [209], and mass detectors in electrospray [92, 210, 211] as well as 

in atmospheric pressure chemical ionization mode [93]. When using DAD, a 
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typical spectrum arises in acidic conditions with absorption at 233, 264, 270 

and 293 nm. On the other hand, paroxetine could be determined using 

fluorescence detection with or without dansylchloride derivatization [76]. 

Some methods can separate the enantiomers of the compound after using a 

chiral stationary phase such as Chiralcel OD columns [212]. 

Sample preparation mostly consists of a liquid-liquid extraction after 

alkalinization [76, 80, 202, 203, 206, 211, 213], although recently a lot of 

solid phase extraction methods [76, 87, 92, 95, 111, 148, 208] are 

published.  

Most methods allow quantitative determination in the lower ng/ml range 

(LOQ between 1-5 ng/ml), and are thus suitable for therapeutic drug 

monitoring purposes [76]. 

 

I.7.9. Reboxetine 
 

(R,S)-2-((RS)-�-(2 Ethoxyphenoxy))benzylmorpholine: mol. wt., 313.4; usual dose, 8 
mg/day; max.dose, 12 mg/day; therapeutic concentration, 50 to 160 ng/ml; plasma 
half-life, 13-15 h; plasma protein binding, 97%; distribution volume, 0.39-0.92 l/kg 
(1.9-2.8 l/kg) [57, 58]. 
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Reboxetine is a selective noradrenaline reuptake inhibitor (NARI) used in 

most European countries to treat depression. This compound is a 

antidepressant with two chiral centres, but only the (R,R)-(-) and the (S,S)-

(+)-enantiomer (the most potent enantiomer) exist in commercial products 

[214]. TDM could be of interest for monitoring patient compliance, patients 

with liver impairment or for the elderly.  In addition, monitoring patients who 

receive potent CYP3A inhibitors could be valuable [215]. However, it is a drug 

with a good tolerability and a low potency for drug-drug interactions. 
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I.7.9.1. Mechanism of action 

Reboxetine enhances noradrenergic neurotransmission through inhibition of 

the noradrenaline reuptake. It also has a very weak inhibition of serotonin 

reuptake, but no inhibition of dopamine reuptake [214]. Reboxetine has no 

monoamine oxidase A inhibitory properties, and has very little affinity for �-

adrenergic and muscarinic cholinergic receptors [16]. 

 

I.7.9.2. Pharmacokinetics

Reboxetine is rapidly and almost completely absorbed from the 

gastrointestinal tract. After oral administration of 4 mg of reboxetine, the 

plasma concentration achieved after about 2 hours was 111±28 ng/ml [215]. 

Peak plasma concentration may be increased in elderly and in patients with 

renal and hepatic impairment. Steady-state is achieved within 4 days after 

the start of administration [214]. In addition, reboxetine has significant linear 

kinetics through a dose of 5 mg [215]. Metabolism of reboxetine includes 

dealkylation, hydroxylation of the ethoxyphenoxy ring and morpholine ring 

oxidation, followed by conjugation [67, 214]. It is metabolized primarily in 

the liver through CYP3A4 [214, 215]. The mean plasma half-life of reboxetine 

ranges between 13-15 hours, but the value is increased by age and renal as 

well as hepatocellular dysfunction. The greatest part of a single dose is 

excreted in urine (about 77% in 5 days), which contains about 5% 

unchanged reboxetine, and at least 17 different metabolites. The rest of the 

drug is eliminated in the faeces. The drug has a high protein binding rate of 

97%, particularly to �1-acid glycoprotein. 

 

I.7.9.3. Drug concentrations and clinical effects 

The therapeutic concentration for reboxetine ranges from 50-160 ng/ml. 

While gender has no effect on reboxetine pharmacokinetics, plasma 

concentrations of the drug have been reported to increase significantly with 

age. Moreover, there appears to be a high degree of inter-subject variability 

of the pharmacokinetic parameters in the elderly. Therefore, the starting 

dose should be reduced by 50% and monitored in this population. Patients 

with mild or severe liver impairment should be monitored as the AUC values 

for reboxetine are substantially increased. Although reboxetine is cleared 

mainly via hepatic metabolism, the AUC and the half-life of reboxetine in 
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severe renal impaired patients are increased [215]. There are no data on 

effects of reboxetine exposure during pregnancy [45].  

 

I.7.9.4. Drug interactions, side-effects and toxicity 

The most frequently reported side-effects in short-term reboxetine trials are 

dry mouth, constipation, insomnia, increased sweating, tachycardia, vertigo, 

urinary hesitancy and/or retention, and impotence. Moreover, an increased 

heart rate was associated with reboxetine use, but the clinical significance of 

this finding is unknown [16, 216]. Occasional atrical and vertricular ectopic 

beats were also reported [217].

Reboxetine is a weak in vitro inhibitor of CYP2D6 and 3A4, but the inhibitory 

effect is unlikely to be relevant in vivo because it occurs at concentrations 

well above those achieved clinically [100, 218]. Therefore, drug interactions 

as seen for the SSRI are not common. Because CYP3A4 is involved in the 

metabolism of reboxetine, potent inhibitors of this isoenzyme such as 

ketoconazole may increase the plasma concentration of the drug [214, 215].

I.7.9.5. Analytical Methods

Reboxetine is determined with or without its metabolite O-

desmethylreboxetine using capillary electrophoresis, liquid chromatographic 

or gas chromatographic methods. While MS detectors [113] are used in gas 

chromatography, UV [83, 219, 220], fluorescence [219, 221, 222], and mass 

[91] detectors are applied in liquid chromatography. Several methods can 

separate the enantiomers of the compound using a chiral stationary phase 

such as Chiral CBH (cellobiohydrolase), Chiral AGP (�1-acid-glycoprotein) and 

ChiraGrom-2 [223]. Walters and Buist describe a method combining chiral 

derivatization and a chiral column to separate the enantiomers [221]. In 

addition, capillary electrophoresis is also used to separate reboxetine 

enantiomers [224].  

Solid phase extraction  is mostly used  as sample preparation technique [95, 

219, 221].  
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I.7.10.  Sertraline 
 

(1S,4S)-4-(3,4-Dichlorophenyl)-1,2,3,4-tetrahydro-N-methyl-1-naphtalenamine:  
mol. wt., 306.2 ; pKa, 9.48 � 0.04 (water); usual dose, 50 – 200 mg/day; toxic from 
290 ng/ml; therapeutic concentration, 50 to 250 ng/ml; plasma half-life, 26 h; plasma 
protein binding, 98%; distribution volume, 20 l/kg [57, 58]. 
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Sertraline is a selective inhibitor of neuronal serotonin reuptake. The drug 

has been used to treat depression as well as obsessive-compulsive disorder 

(also for children), panic disorder, post-traumatic stress, premenstrual 

dysphoric disorder and social anxiety disorder [64, 225]. This compound has 

two chiral centres, but the cis 1S, 4S-enantiomer is the most potent and is 

the one marketed as pharmaceutical form [40, 225]. TDM could be of interest 

for monitoring patient compliance, patients with liver impairment, elderly and 

patients with co-medication of drugs that are metabolized by CYP2D6.

 

I.7.10.1. Mechanism of action 

Sertraline is a potent and selective inhibitor of serotonin reuptake in the 

synapse with little effect on other monoamine reuptake mechanisms or other 

neurotransmitter receptors, with the exception of the dopamine transporter, 

which is not considered to be of therapeutic consequence [225].  

I.7.10.2. Pharmacokinetics

Sertraline is slowly absorbed from the gastrointestinal tract, resulting in a 

bioavailability greater than 44% [225].  The time to reach maximum plasma 

concentration is about 4-8 hours and coadministration of food increased peak 

plasma concentrations by approximately 25% [225]. Steady-state 
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concentrations could be attained within 1 week, due to the relatively short 

half-life of 26 h [226]. The therapeutic concentration for sertraline ranges 

from 50 to 250 ng/ml [56]. In addition, the plasma concentration of 

desmethylsertraline is higher than the parent drug concentration, with a ratio 

of sertraline/desmethylsertraline varying from 0.24 to 0.85 in patients after a 

dose of 100-300 mg/day [79].  However, there appears to be considerable 

inter-individual variation in steady state plasma concentrations (nearly 15-

fold) attained with a given dose [225].  

Sertraline is extensively metabolized in the liver, where it undergoes N-

demethylation to form desmethylsertraline. Both the parent drug and the N-

desmethylderivative are further metabolized by oxidative deamination, 

reduction, and hydroxylation followed by glucuronidation [58]. Sertraline is 

excreted in urine and faeces and is distributed in breast milk. Sertraline is 

metabolized by CYP2D6, 2C9, 2B6, 2C19 and 3A4 [225], while the drug itself 

is a moderate inhibitor of CYP2D6. 

 

I.7.10.3. Drug concentrations and clinical effects 

The therapeutic concentration for sertraline ranges from 50 to 250 ng/ml 

[56]. However, Goodnick describes that a concentration of 10 to 60 ng/ml 

may provide the maximal therapeutic benefit [138]. Therefore, there can be 

concluded that no consistent relationship has been described between plasma 

sertraline concentrations and clinical response. In addition, a considerable 

inter-individual and gender specific variation in plasma concentrations 

attained for a given dose is observed.

Sertraline appears to have linear pharmacokinetics at dosages of 50-200 

mg/day [226]. A decreased clearance and prolonged half-life of sertraline is 

seen in the elderly, suggesting a higher steady-state concentration achieved 

later during long-term administration. However, the clinical significance of 

these effects is still unknown [225]. A prolonged half-life of sertraline is also 

seen for patients with liver disease, while the pharmacokinetics of sertraline 

did not change after single dose in renal impaired patients. As no data have 

been reported after multiple doses or for patients with severe renal 

dysfunction, caution is recommended for these groups [225]. Moreover, 

several studies reported that plasma concentrations of young men tended to 
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be lower than for women, probably due to either differences in the tissue 

distribution or in the metabolism [40, 226].   

 

I.7.10.4. Drug interactions, side-effects and toxicity 

Possible side-effects of sertraline are nausea, decreased libido, tremor, 

tachycardia, headaches and dry mouth. Co-medication with drugs that are 

metabolized by CYP2D6 should be monitored, as sertraline is a mild to 

moderate inhibitor of that enzyme [79]. Sertraline also slightly inhibits 

CYP1A2, 3A4, 2C19 and 2C9, while in vitro desmethylsertraline seems to be a 

more potent inhibitor of CYP3A4, due to the long half-life of the metabolite. 

Therefore, the period for potential drug-drug interactions could be prolonged 

after sertraline treatment [131]. However, sertraline appears to have a 

favourable drug interaction profile in vivo as compared to the other SSRIs 

[22, 100].  Caution is advised when sertraline is coadministered with warfarin 

(prothrombin time should be monitored) and when using high dosages of 

sertraline in combination with a TCA or vice versa [225].

Sertraline should not be coadministered with a monoamine oxidase inhibitor 

as this can lead to hyperthermia, convulsions and coma. In addition, a delay 

of 2 weeks before taking a MAOI should be considered after fluvoxamine 

treatment and vice versa [64]. This washing out-period is also necessary for 

pimozide administration as it produces a dose-related prolongation of the QTc 

interval, which is associated with serious ventricular arrhythmias, such as 

torsades de pointes-type arrhythmias, and sudden death [64].  

 

I.7.10.5. Analytical methods 

Sertraline and its metabolite are determined using gas chromatographic, 

liquid chromatographic, as well as micellar electrokinetic capillary 

chromatographic methods [227]. Gas chromatography combined with 

detectors such as ECD [79], NPD [80], and MSD [76, 82, 113, 195, 228-230] 

is used. UV [83, 84, 143, 231], DAD [85, 86], and mass detectors [232, 233] 

are applied in liquid chromatographic methods.

Sample preparation mostly consists of a liquid-liquid extraction after 

alkalinization [76, 80, 84-86, 151, 195, 230] although recently numerous 

solid phase extraction methods [76, 83, 95, 143, 228, 231] are published. 

Moreover, methods using SPME [82] were also utilized. Most methods allow 
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quantitative determination in the lower ng/ml range (LOQ between 1-10 

ng/ml), and are thus suitable for therapeutic drug monitoring purposes [76]. 

 

I.7.11. Trazodone 

 

2-(3-(4-(3-Chlorophenyl)-1-piperazinyl)propyl)-1,2,4-triazolo (4,3-a)-pyridine-3 (2H) – 
one: mol. wt., 371.9; pKa, 6.7; usual dose, 100-300 mg/day; max.dose, 600 mg/day; 
therapeutic concentration, 500-2500 ng/ml ; plasma half-life, 4-7 h; plasma protein 
binding, 90%; distribution volume, 0.9-1.5 l/kg [57, 58]. 

 

N

N
N N N

O

Cl

 

Trazodone is a serotonin antagonist and reuptake inhibitor. The drug has 

been used to treat depression, while it improves anxiety [234] and insomnia 

[235].  

 

I.7.11.1. Mechanism of action 

Trazodone blocks the reuptake of serotonin and blocks 5-HT2a as well as 

noradrenaline �1-receptors. It blocks H1 and noradrenaline �2-receptors less 

potently, while it lacks anticholinergic activity [234, 236]. The active 

metabolite 1-(3-chlorophenyl)piperazine (m-cpp), has opposite activities, it 

releases serotonin and is a 5-HT2c and 5-HT1a receptor agonist [237]. These 

actions may contribute to the side-effects and action mechanism of trazodone 

[157] and are probably the reason why m-cpp is also encounterd in the drug 

scene. 

I.7.11.2. Pharmacokinetics

Trazodone is readily and almost completely absorbed after oral 

administration. The time to reach maximum plasma concentration is about 1-

2 hours and coadministration of food delays tmax and decreases Cmax [138]. 

Steady-state plasma levels of trazodone range from 490 to 1210 ng/ml, while 

concentrations of m-cpp range from 10 to 30 ng/ml [238, 239]. Trazodone 

undergoes extensive hepatic metabolism, mainly through hydroxylation, N-
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oxidation and N-dealkylation [157]. The two major metabolites are the 

pharmacologically active m-cpp, and beta-(3-oxo-s-triazolic(4,3-a)pyridin-2-

yl)propionic acid (TPA). These metabolites are further glucuronated. While m-

cpp is the major plasma metabolite, TPA (20%) is the main metabolite found 

in urine. Other urinary metabolites are p-hydroxytrazodone, and a 

dihydrodiol derivate (9%), even as their conjugation products. Trazodone is 

metabolized by CYP2D6, 1A2, and 3A4 [157]. 

I.7.11.3. Drug concentrations and clinical effects

The therapeutic concentration for trazodone ranges from 500-2500 ng/ml 

serum, while the toxic concentration is about 4000 ng/ml [56]. According to 

Otani et al., plasma concentrations of trazodone and m-cpp, after initial 

dosing, correlated well with those at steady state. However, there was a 

substantial accumulation of m-cpp due to the longer half-life of the 

metabolite [240]. Although there appears to be considerable inter-individual 

variation in trazodone metabolism and thus in steady state plasma 

concentrations attained with a given dose [157, 241], Mihara and Monteleone 

et al. have suggested a threshold plasma concentration of 714 ng/ml 

trazodone, necessary for a good antidepressant response [241, 242]. 

Trazodone appears to have linear pharmacokinetics. In addition, a

considerable age and gender specific variation in plasma concentrations 

attained for a given dose is observed. The plasma concentrations were higher 

in females and in older patients [243]. Moreover, the plasma concentration of 

trazodone is lower in smokers compared to non-smokers [244]. Breast 

feeding during trazodone treatment is considered safe, as there is a minimal 

penetration of trazodone into breast milk (milk/plasma ratio of 0.14) [138].  

I.7.11.4. Drug interactions, side-effects and toxicity 

Possible side-effects of trazodone are sedation, particularly at high doses, 

orthostatic hypotension, nausea, drowsiness, vertigo and sexual dysfunction 

[236, 245]. These dysfunctions include increased libido, spontaneous orgasm 

and priapism [234]. Several case reports illustrate cardiovascular adverse 

effects such as orthostatic hypotension, ventricular arrhythmias, cardiac 

conduction disturbances, exacerbation of ischemic attacks and torsades de 

pointes [238, 246]. Especially, for the elderly, the side-effects of trazodone 
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such as sedation, dizziness and cardiotoxic effects raise considerable 

concerns. Caution is advised when trazodone is coadministered with 

fluoxetine, as excessive sedation has been reported. Moreover,  trazodone in 

combination with other sedatives such as alcohol or other antidepressants 

should be observed carefully [245].

In addition, serotonin syndrome has been reported after coadministration 

with SSRIs, MAOI and TCAs [157, 238, 247, 248]. However, Prapotnik et al. 

did not observe drug interactions when trazodone was coadministered with 

fluoxetine or citalopram [243]. Trazodone should not be coadministered with 

a MAOI as this could lead to hyperthermia, convulsions and coma. Moreover, 

a few cases of warfarin-trazodone interactions have been reported [249]. 

Inhibitors of CYP2D6 (thioridazine) or CYP3A4 (ritonavir, ketonazole) increase 

the plasma concentration of trazodone in depressed patients [236, 250]. On 

the other hand, carbamazepine decreases trazodone plasma concentrations 

as it induces CYP3A4 [238]. Although trazodone has a low toxicity level, 

fatalities with blood concentrations around 9000 ng/ml and higher are 

observed in the literature, while noting the survival of patients even with 

significantly higher concentrations [238]. Most of the time, trazodone is 

coadministered with other drugs such as antidepressants, especially SSRIs 

and it is also used together with drugs of abuse [238, 251].   

 

I.7.11.5. Analytical methods 

Trazodone and m-cpp are determined using gas chromatographic and liquid 

chromatographic methods. Gas chromatography is mostly combined with an 

NPD [111, 252-254], but FID is also used [254]. Caccia et al. determined 

trazodone with a GC-NPD in plasma and brain tissues. They also analyzed m-

cpp after heptafluorobutyryl derivatization with ECD and MSD [253]. UV 

detectors [173, 255-259] and DAD [260] are applied in liquid 

chromatographic methods. Ohkubo et al. combined UV detection for 

trazodone with coulometric electrochemical detection of m-cpp [257]. In 

addition, Siek [261] reported a high-performance thin-layer chromatographic 

method combined with a Camag TLC scanner for fluorescence-reflectance 

measurements. Although trazodone can not be detected with immunological 

methods, the metabolite of trazodone can be responsible for false-positive 
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results for amphetamine using polyclonal antibody assays (EMIT 1, Triage 

panel) [262].

Sample preparation mostly consists of a liquid-liquid extraction after 

alkalinization [173, 253-256, 258-260], although recently solid phase 

extraction methods are also published [111, 257]. 

 

I.7.12. Venlafaxine 
 

1-(2-(Dimethylamino)-1-(4-methoxyphenyl]ethyl)cyclohexanol: mol. wt., 277.4; pKa, 
9.4; usual dose, 75 mg/day; max.dose, 375 mg/day ; therapeutic concentration, 250 
to 750 ng/ml for the sum parent drug and metabolites; toxic concentration, 1000-1500 
ng/ml; plasma half-life, 4 h; plasma protein binding, 30%; distribution volume, 6.8 
l/kg (4-12 l/kg )[57, 58]. 
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Venlafaxine is a selective noradrenaline and serotonin inhibitor (SNRI), 

introduced in 1993 to treat depression, generalized or social anxiety 

disorders. This compound exists as racemic antidepressant with both active 

R(+)- and S(-) – enantiomers [263]. TDM could be of interest for monitoring 

patient compliance and adjusting the dose for patients with liver and kidney 

impairment. However, it is a drug with a low potency for drug-drug 

interactions, due to its low protein binding as well as its weak inhibitory effect 

on the CYP 450 system. 

I.7.12.1. Mechanism of action

Venlafaxine enhances noradrenergic and serotonergic neurotransmission 

through inhibition of the noradrenaline and serotonin reuptake. The (-) 

enantiomer inhibits reuptake of both serotonin and noradrenaline, while the 

(+) enantiomer primarily inhibits serotonin reuptake. Venlafaxine also 

inhibits, to a lesser extent, dopamine reuptake. Venlafaxine has no 
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monoamine oxidase inhibitory properties, and has no affinity for histamine, 

�2 or �-adrenergic and muscarinic cholinergic receptors [263].  

 

I.7.12.2. Pharmacokinetics 

Venlafaxine is absorbed rapidly and almost complete (92%) after oral intake. 

The maximum plasma concentration is achieved after about 2 till 4 hours, 

while steady-state is achieved within 3 days of multidose therapy. In 

addition, venlafaxine and O-desmethylvenlafaxine have linear kinetics over 

the total daily dosage range of 75-450 mg. Venlafaxine is subject to an 

extensive first-pass metabolism in the liver. The main metabolite, O-

desmethylvenlafaxine, has a pharmacological activity similar to that of the 

parent drug. This metabolite, however, has a longer elimination half-life, 

being 10 hours instead of 4. Other minor metabolites such as N-

desmethylvenlafaxine and N,O-didesmethylvenlafaxine are also produced. 

Venlafaxine is metabolized primarily in the liver via  CYP2D6, but also by 

CYP3A4 to yield the N-desmethylmetabolite [264].  The mean plasma half-life 

of venlafaxine is 4 hours, but is increased in patients suffering from renal and 

hepatic impairment. Approximately 87% of a single dose venlafaxine is 

excreted in urine within 48 hours, containing about 5% unchanged 

venlafaxine, unconjugated and conjugated O-desmethylvenlafaxine 

(29/26%), and minor metabolites (27%).  

I.7.12.3. Drug concentrations and clinical effects

The therapeutic concentration for the sum of venlafaxine and its active 

metabolite O-desmethylvenlafaxine ranges from 250-750 ng/ml [56].  While 

gender has no effect on venlafaxine pharmacokinetics, plasma concentrations 

of the drug and its active metabolite have been reported to increase with age 

[264]. This observation might be due to a higher risk of drug interactions in 

the elderly (polypharmacy) and a physiologically age-related lower clearance 

[264]. However, no dosage adjustments are necessary in the elderly on the 

basis of age alone [265]. On the other hand, dosage of venlafaxine should be 

reduced (by 50%) for patients with moderate liver impairment as the hepatic 

clearance of both venlafaxine and O-desmethylvenlafaxine is decreased. In 

addition, the dosage should be reduced for renal impaired patients because of 
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the decreased venlafaxine renal clearance and the prolonged elimination half-

life of both the parent drug and its active metabolite [67, 263]. 

Reis et al. found a reduction in O-desmethyl- and N,O-didesmethyl-

venlafaxine plasma concentrations for smokers, compared to nonsmokers, 

indicating that CYP1A2 might have a role in the drug metabolism [264].  

Venlafaxine administration seems quite safe during pregnancy and 

breastfeeding. Although there are reports of more spontaneous abortions 

when using venlafaxine, it did not attain statistical significance in comparison 

with pregnant women taking SSRIs or non-teratogenic agents [45]. However, 

it should only be used if the benefits clearly outweigh the risks. 

 

I.7.12.4. Drug interactions, side-effects and toxicity

The most frequently reported side-effects of venlafaxine are nausea, 

headache, somnolence, dry mouth, insomnia, dizziness and sexual 

dysfunction. Moreover, a mild increased blood pressure was occasionally 

associated with venlafaxine use. This effect seems to be dose related and 

occurs most frequently at dosages of more than 300 mg per day.

Severe adverse arrhythmia is reported in several patients, which were all 

poor metabolizers of CYP2D6 and thus had the highest levels of venlafaxine 

in plasma [266]. Therefore, Kirchheiner et al. recommend 20% of the 

average venlafaxine dose for poor metabolizers. Although there is some 

concern about the influence of venlafaxine on the heart rate [267], some 

authors conclude that there is no direct effect on cardiac conduction and it is 

in fact a relatively safe choice of an antidepressant in people at risk of cardiac 

arrhythmias [268]. Venlafaxine has a low toxicity potential, despite the fact 

that there were 14 premarketing reports of overdose with venlafaxine, either 

alone or in combination with other drugs or alcohol.  Seizures and increased 

QT intervals were also reported, but all of the patients made full recovery 

[268]. According to the TIAFT reference list a serum concentration of 6600 

ng/ml is lethal [56]. 

Because venlafaxine is metabolized by CYP2D6, theoretically competitive 

inhibition by other drugs that are metabolized by this enzyme can occur. 

However, venlafaxine has a low affinity for inhibiting CYP2D6 and thus will 

not have a significant effect on the metabolism of other drugs, but other 

drugs (such as cimetidine) may rather affect the metabolism of venlafaxine 
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[263]. Moreover, as the drug has a low protein binding rate of 30%, drug 

interactions with high-protein bound drugs are not expected [263]. 

Venlafaxine, though, should not be coadministered with a monoamine 

oxidase inhibitor as this can lead to hyperthermia, convulsions and coma. 

While after venlafaxine treatment, a delay of 7 days before taking a MAOI 

should be considered, it is recommended that venlafaxine should not be used 

within 14 days of discontinuing treatment with an MAOI  [263].  Moreover, 

venlafaxine causes a 70% increase in the AUC of coadministered haloperidol 

[100], and a 30% decrease of alprazolam plasma concentration [268].  

 

I.7.12.5. Analytical Methods 

Venlafaxine is determined in biological matrices with or without its 

metabolites using electrokinetic capillary chromatographic techniques [140, 

269], liquid or gas chromatographic methods. NPD [270, 271] and MSD [82] 

are used in gas chromatography.  In liquid chromatography detectors such as 

UV [83, 84, 272-274], DAD [85, 86], fluorescence [275], and mass detectors 

[92, 276] are applied. In addition, Rudaz et al. described a capillary 

electrophoresis method that separates the enantiomers of the compound 

using gamma-cyclodextrin as chiral selector [269].  

Solid phase extraction [83, 92, 95, 276] or liquid-liquid extraction [84-86, 

272-275] are mostly used as sample preparation techniques, however, solid-

phase micro extraction techniques are also applied [82]. 

 

I.7.13. Viloxazine 

 
2-((2-Ethoxyphenoxy) methyl) morpholine: mol. wt., 237.3; pKa, 8.1;  usual dose, 
100-400 mg/day; max.dose, 400 mg/day; therapeutic concentration, 5000-10000 
ng/ml (peak plasma concentration); plasma half-life, 2-5 h; plasma protein binding, 
85-90%; distribution volume, 0.5-1.5 l/kg [57, 58]. 
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Viloxazine is a noradrenaline reuptake blocking antidepressant used to treat 

depression [138]. This compound is marketed as a racemate, but the (R)-(+) 

is less potent than the (S)-(-)-enantiomer [277]. Viloxazine has a good 

tolerability and a low potency for drug-drug interactions. 

 
I.7.13.1. Mechanism of action 

Viloxazine enhances noradrenergic neurotransmission through inhibition of 

the noradrenaline reuptake. It possibly also inhibits the reuptake of serotonin 

very weakly, but does not inhibit dopamine reuptake. In addition, the drug 

has no affinity for �-adrenergic and muscarinic cholinergic receptors [278]. 

I.7.13.2. Pharmacokinetics 

The mean plasma half-life of viloxazine ranges between 2-5 hours, while the 

drug exhibits linear pharmacokinetics [138]. It is rapidly and almost 

completely absorbed from the gastrointestinal tract. Viloxazine is metabolized 

through hydroxylation, eventually followed by conjugation. The greatest part 

of a single dose is excreted in urine (about 90% in 24 h), which contains 

about 12 to 15% unchanged viloxazine, and 3% as its hydroxy metabolites, 

while the rest is excreted as glucuronide conjugates of 5-hydroxyviloxazine or 

hydroxylated 5-oxo metabolite.   

 

I.7.13.3. Drug concentrations and clinical effects 

The peak plasma concentration for viloxazine ranges from 5-10 μg/ml [56]. 

Steady state plasma concentrations of the drug have been reported to 

increase significantly with age, however, this does not seem to have a clinical 

impact.  

 

I.7.13.4. Drug interactions, side-effects and toxicity 

The most frequently reported side-effects of viloxazine are nausea and 

vomiting [279], but also palpitation, anxiety, constipation and dryness of the 

mouth are reported [280, 281].

Drug-drug interactions reported with viloxazine include anticonvulsants such 

as carbamazepine and phenytoin. In addition, viloxazine decreases the 

clearance of theophylline. These drug-drug interactions are due to inhibition 

of CYP3A4, 2C9, 2C19 and 1A2 by viloxazine [138, 157]. 
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I.7.13.5. Analytical Methods 

Viloxazine is determined by using liquid chromatographic or gas 

chromatographic methods. While MSD [95], NPD [271, 282, 283], ECD or 

FID are used in gas chromatography, UV [284]/ DAD [85] are applied in 

liquid chromatography. 

Solid phase extraction [95, 271] or liquid-liquid extractions [282-284] are 

used as sample preparation techniques. 

I.8. Relevance of antidepressant analysis in forensic 
toxicology 

Although the new generation ADs have a low toxicity profile, analysis of 

forensic samples is of interest. Dispite the high suicide rate amoung 

depressed patients, acute intoxications with these new generation ADs in 

healthy individuals are rare and mostly concern very high concentrations, 

thus reflecting large intentional overdoses [39, 285, 286]. These highly 

prescribed ADs, however, are frequently coadministered with other legal or 

illegal drugs. Therefore, co-medication of these ADs can lead to synergy of 

adverse reactions and symptoms, a changed drug concentration due to 

inhibition or induction of CYP 450 isoenzymes, or result in a severe and 

possible life threatening interaction. The most common lethal intoxication 

observed for the new generation ADs is the serotonin syndrome. This 

serotonin syndrome leads to agitation, mental status change, diaphoresis, 

myoclonus, diarrhea, fever, hyperreflexia, tremor or incoordination and can 

eventually lead to death. The syndrome is caused by excessive serotonin 

levels that arise from an overdose of a serotonin reuptake inhibitor [287], but 

also by therapeutic amounts of multiple drugs with reuptake inhibition of 

serotonin, or by co-medication of a serotonin reuptake inhibitor and drugs 

that interfere with the metabolism of serotonin such as MAOI [70, 288-290]. 

Deaths due to serotonin syndrome may also occur due to the presence of 

predisposing factors, such as peripheral vascular disease, environmental 

hyperthermia, or seizure disorder [39].  

 

In forensics, different matrices are used to determine ADs as compared to 

TDM. Blood is the most relevant post-mortem matrix as it gives a direct link 



Chapter I: Introduction: depression, use of antidepressants, and relevance of antidepressant monitoring 

 

 

54 

between the compound concentration and the effect. Plasma can not be 

obtained in most of the post-mortem cases, as plasma has to be separated 

from the blood cells within 2 hours by centrifugation, thus before cell lysis 

occurs. Brain tissue also has advantages as it is an isolated compartment in 

which putrefaction is delayed. In addition, the metabolic activity is lower, 

resulting in a more prominent presence of the original compounds as 

compared to degradation products [291]. Urine and hair analysis is a 

complementary approach to ADs detection as it yields a picture of long-term 

exposure over a time window of several days to several months, respectively. 

In addition, hair samples can be stored at room temperature for long periods 

without degradation of the compounds inside [292-293]. 
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New generation antidepressants are highly prescribed drugs worldwide. 

Moreover, the use of antidepressant drugs will still increase as this mental 

disorder will become the second leading contributor to the global burden of 

disease, calculated for all ages and both sexes by the year 2020 according to 

the World Health Organization. As a result, analytical methods for the 

determination of new generation antidepressants gain more and more 

importance in the clinical and forensic field. 

The general aim of this thesis was to develop and validate a gas 

chromatographic-mass spectrometric method for the simultaneous 

identification and quantification of new generation antidepressants and their 

metabolites in biological matrices. This method must be sensitive and 

straightforward, in such a manner that application in a routine laboratory can 

be easily performed.  In addition, the method had to be useful for clinical as 

well as forensic applications. Therefore, the method was adapted for several 

matrices such as plasma, whole blood, brain tissue, and hair. 

A second aim was to evaluate the applicability of the developed method for 

therapeutic drug monitoring of depressed patients. Individually guided dosing 

of antidepressants is not routinely applied in psychiatric clinics, but can be 

interesting in special patient populations which do not seem to benefit from 

antidepressant therapy. For these patients, a preliminary study was set-up to 

determine the link between the antidepressant/metabolite ratio in plasma, 

the metabolization profile of the individual patient and the final outcome of 

the antidepressant therapy.  

The last aim of this thesis was to evaluate the usefulness of the gas 

chromatographic-mass spectrometric antidepressant determination method 

for forensic purposes. Although, new generation antidepressants are 

considered as less toxic (as compared to tricyclic antidepressants), they are 

often co-administered with other drugs which can result in interactions.  

Matrices such as blood and hair from forensic cases were analyzed to 

determine the antidepressant concentrations and the time of antidepressant 

use.  In addition, brain concentrations were also measured as the brain is the 

target of antidepressant treatment.  
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III.1. Introduction 
 

An important step in the development of an analytical method is the 

extraction of the compounds of interest from the biological matrix as this will 

have implications on the overall sensitivity and selectivity of the method. 

Sample preparation will not only lead to highly concentrated extracts, but can 

remove potential interfering matrix compounds, resulting in enhanced 

selectivity and a more reproducible method independent of variations in the 

sample matrix. Conventionally, liquid-liquid and solid-phase extraction 

methods (LLE and SPE) are chosen.  

 

In liquid-liquid extraction the objective is to transfer the desired solutes from 

one liquid solution to another nonmiscible liquid. Liquid-liquid extraction is 

still frequently used in analytical toxicology, especially for (urgent) screening 

purposes when analysis of a wide range of (unknown) compounds instead of 

a target analysis is aimed. In addition, development of a LLE procedure is 

less time-consuming. The standard procedure for extracting antidepressants 

(ADs) is based on a LLE after alkalinization (pH ±9) with potassium borate or 

hydroxide, sodium carbonate, or sodium hydroxide. A variety of organic 

solvents is used such as heptane-isoamylalcohol, n-butyl chloride, diethyl 

ether or n-heptane-ethylacetate [1-9]. Sometimes a back extraction under 

acidic conditions (HCl) is applied, followed by a direct injection on the HPLC 

system [5, 7]. For GC-purposes, the ADs are extracted as above followed by 

an additional extraction step into an organic solvent after alkalinization [4, 

6]. The back extraction technique leads to better removal of interfering 

compounds such as cholesterol, but for GC-MS the different extraction steps 

lead to loss of ADs, due to incomplete recovery. Thus, sensitivity is reduced 

and leads to detection problems for several ADs even in their therapeutic 

range. In addition, LLE is labourous, requires high-purity solvents and can 

result in the formation of emulsions with incomplete phase separation, the 

latter leading to impure extracts. Moreover, safe disposal of toxic solvents 

may be problematic and expensive [10].   

 

Solid phase extraction (SPE) extracts and concentrates analytes from a liquid 

matrix by partitioning these analytes between a solid and a liquid phase. SPE 

aims to remove interfering compounds and to concentrate the analytes, with 
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good recovery and reproducible results. In addition, it should facilitate the 

rapid and efficient simultaneous processing of multiple samples [11]. SPE 

also has disadvantages including the cost of SPE material and the labourous 

optimization of the procedure. A SPE procedure consists of four consecutive 

steps: column conditioning, sample loading, column washing and elution of 

the compounds. When developing such procedure, suitable sorbent material, 

washing and eluting solvents have to be selected, according to the 

characteristics of the analytes and the matrix, and of the purpose of the 

analysis (screening or target analysis).  

III.2. Experimental 

III.2.1. Reagents  

 

Venlafaxine.HCl and O-desmethylvenlafaxine maleate (ODMV) were kindly 

provided by Wyeth (New York, NY, USA). Mianserin.HCl, desmethyl-

mianserin.HCl (DMMia), mirtazapine and desmethylmirtazapine maleate 

(DMMir) were a gift from Organon (Oss, The Netherlands). Sertraline.HCl, 

desmethylsertraline maleate (DMSer) and reboxetine methanesulphonate 

were a gift from Pfizer (Groton, CT, USA). Citalopram.HBr, desmethyl-

citalopram.HCl (DMC), didesmethylcitalopram tartrate (DDMC), and 

melitracen.HCl were kindly provided by Lundbeck (Valby, Denmark). ACRAF 

(Roma, Italy) donated trazodone.HCl and its metabolite m-chlorophenyl-

piperazine.HCl (m-cpp), while paroxetine.HCl hemihydrate was donated by 

GlaxoSmithKline (Erembodegem, Belgium). Viloxazine.HCl was a kind gift 

from AstraZeneca (Brussels, Belgium). Novartis Pharma (Basel, Switzerland) 

donated maprotiline.HCl and desmethylmaprotiline (DMMap). Fluvoxamine 

maleate was donated by Solvay Pharmaceuticals (Weesp, The Netherlands). 

Fluoxetine.HCl and desmethylfluoxetine.HCl (DMFluox) were purchased from 

Sigma-Aldrich (Steinheim, Germany).  

 

Methanol, acetonitrile and water were all of HPLC-grade (Merck, Darmstadt, 

Germany). Ammonia-solution 25%, orthophosphoric acid (85%), NaOH (5 

M), glycine and sodium dihydrogen phosphate monohydrate were also from 

Merck. Formic acid was purchased from Riedel-de Haën (Seelze, Germany). 

Phosphate buffer (25 mM) pH 2.5 was made by adding approximately 6.7 g 
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of NaH2PO4.H2O to 2.7 l of HPLC-water and adjusting the pH by adding 

phosphoric acid. The phosphate buffer (25 mM) pH 6.5 was made by 

dissolving 2.8 g in 1 l of HPLC-grade water and adjusting the pH with 5 M 

NaOH. The glycine HCl-buffer was made by adding 4.1 ml 0.2 M HCl to 50 ml 

of 0.1-M glycine solution (0.75 g/100 ml) and then diluting with water till 100 

ml.  

 

Fluoxetine-d6 oxalate (Fd6), mianserin-d3 (Md3) and paroxetine-d6 maleate 

(Pd6) (100 μg/ml MeOH) were purchased from Promochem (Molsheim, 

France) and were used as internal standards. Toluene (Suprasolv quality, 

Merck, Darmstadt, Germany) and 1- (heptafluorobutyryl) imidazole (HFBI) 

(Fluka, Bornem, Belgium) were applied for derivatization. Vials, glass inserts 

and viton crimp-caps were purchased from Agilent technologies (Avondale, 

PA, USA).  

 

Blood was taken from healthy volunteers in dipotassium EDTA Vacutainers 

(Novolab, Geraardsbergen, Belgium). If plasma had to be obtained, the tubes 

were centrifuged at 1200 g for 10 minutes within 2 hours of the blood 

collection. After the plasma was removed, it was stored at -20°C. Drug-free 

hair was obtained from volunteers. Drug-free post-mortem brain tissue was 

obtained from the department of forensic medicine (Ghent University, 

Belgium).  

 

III.2.2. Stock solutions 

 

Stock solutions were prepared in methanol at a concentration of 1 mg/ml for 

each compound individually and stored at -20°C. Two mixtures of compounds 

were made due to the overlap of some compounds in the HPLC-method. 

Mixture 1 contained DMMir, ODMV, DMC, DDMC, reboxetine, paroxetine, 

maprotiline, fluoxetine, DMFluox and m-cpp. Mixture 2 contained 

mirtazapine, viloxazine, DMMia, citalopram, mianserin, fluvoxamine, DMSer, 

sertraline, melitracen, venlafaxine and trazodone. During the SPE 

development, a concentration of 1 μg/ml of each ADs was spiked in 1 ml 

HPLC-grade water.  
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For the protein binding disruption test, the same mixtures as for the SPE 

method development were used, but the compounds were spiked in 

therapeutic concentrations. A mixture of 100 ng DMMir, 150 ng ODMV, 30 ng 

DMC, 10 ng DDMC, 80 ng reboxetine, 75 ng paroxetine, 125 ng maprotiline, 

250 ng fluoxetine, 500 ng DMFluox and 10 ng m-cpp (mixture 1) or a 

mixture of 100 ng mirtazapine, 100 ng viloxazine, 20 ng DMMia, 100 ng 

citalopram, 35 ng mianserin, 125 ng fluvoxamine, 125 ng DMSer , 125 ng 

sertraline, 50 ng melitracen, 375 ng venlafaxine and 100 ng trazodone 

(mixture 2) was spiked to 1 ml of plasma by evaporating the mixtures at 

40°C with nitrogen and adding the plasma afterwards.  

 

For the GC-MS experiments, a standard mixture was obtained by mixing the 

individual primary stock solutions and by further diluting with methanol until 

a concentration of 0.05 – 0.125 mg/ml, depending on the therapeutic range 

of the compound. After preparation, it was stored protected from light at 

approximately -20°C. Further dilution of the standard mixture with methanol 

resulted in working solutions with concentrations of 0.1, 1 or 10 μg/ml. 

Primary stock solutions of the internal standards (I.S.) fluoxetine-d6, 

mianserin-d3 and paroxetine-d6 were prepared in methanol at a concentration 

of 10 μg/ml and were stored protected from light at 4°C. Twenty μl of each 

I.S. solution were spiked to 1 ml of plasma.  

 

III.2.3. Mixer, sonicator, vacuum manifold, evaporator, and 

centrifuge 

 

An Ultra Turrax mixer IKA T18 basic (Staufen, Germany) was used to 

homogenize the tissue samples. Sonication of samples was done using a 

‘Brandson 1510’ (Brandson UL Transonics corporation, Danbury, CT, USA). A 

Visiprep TM Disposable liner vacuum manifold (Supelco, Bornem, Belgium) 

controlled the flow during the solid phase extraction procedure. Evaporation 

under nitrogen was conducted in a TurboVap LV evaporator from Zymark 

(Hopkinton, MA, USA). The centrifuge was a Mistral MSE 200 BRS 

(Drogenbos, Belgium).  
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III.2.4. High Pressure Liquid Chromatography (HPLC) 

 

A LaChrom Elite HPLC (Merck-Hitachi, Darmstadt, Germany), consisting of a 

L2100 micro-pump, a L2200 autosampler, a L2300 column oven and a L2450 

DAD, was used to monitor the SPE optimization and the protein binding 

disruption test. A LiChroCART 4-4 guard column combined with a C18 

endcapped Purospher Star (Merck, Darmstadt, Germany) LiChroCART 125-3 

(5 μm) column was used. The oven was set at 40 °C and the gradient run 

started at 85% phosphate buffer (25 mM, pH 2.5) and 15 % acetonitrile. At 

20 minutes the organic phase contribution was 40 %, and at 25 minutes 50 

%. From 25.1 until 35 minutes the column equilibrated under starting 

conditions. The flow rate of the mobile phase was held at 0.5 ml/min. The 

DAD measured from 210 till 380 nm and the chromatograms were integrated 

at 220 nm, except for mirtazapine and desmethylmirtazapine (300 nm). 

Aqueous solutions (wash solutions) were injected directly into the HPLC, 

while organic solvents (eluent) was evaporated to dryness under nitrogen at 

40 °C and redissolved in 0.5 ml of the acetonitrile (15 %)-phosphate buffer 

mixture. A 50-μl aliquot was injected on the HPLC-column. 

 

III.2.5. Gas chromatography – Mass spectrometry (GC-MS) 

 

A HP 6890 GC system was used, equipped with a HP 5973 mass selective 

detector, a HP 7683 split/splitless auto injector and a G1701DA Chem 

Station, version D.02.00 data processing unit (Agilent Technologies, 

Avondale, PA, USA).  

 

Chromatographic separation was achieved on a 30m x 0.25mm I.D., 0.25-μm 

J&W-5ms column from Agilent Technologies (Avondale, PA, USA). The initial 

column temperature was set at 90°C for 1 min, ramped at 50°C/min to 

180°C where it was held for 10 min, whereafter the temperature was ramped 

again at 10°C/min to 300°C. 

 

The pulsed splitless injection temperature was held at 300°C while purge 

time and injection pulse time were set at 1 and 1.5 min, respectively. 

Meanwhile, the injection pulse pressure was 170 kPa and 1 μl of the sample, 
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flow of 1.3 ml/min was used as carrier gas.  

 

The mass selective detector temperature conditions were 230°C for the EI-

source, 150°C for the quadrupole and 300°C for the transferline, whereas an 

electron voltage of 70 eV was used. The spectra were monitored in selected 

ion monitoring (SIM) mode for quantification (Table III.1.).  

 

Table III.1.  Monitored ions in SIM mode 

The use of internal standards fluoxetine-d6, mianserin-d3, paroxetine-d6 are indicated 
by 1, 2, and 3, respectively. 
 

Compounds M-ion  M-ion HFB
Quant ion 1 ion 2

Venlafaxine 2 277 259 58 259 121
m-cpp 1 196 392 392 166 394
Viloxazine 1 237 433 433 240 296
DMFluox 1 295 491 330 117 226
Fluvoxamine 1 318 514 258 240 514
ODMV 2 263 441 58 245
Fluoxetine 1 309 505 344 117 486
Fluoxetine-d6 315 511 350 123 492
Mianserin 2 264 264 264 193 220
Mianserin-d3 267 267 267 193 220
Mirtazapine 2 265 265 195 208 265
Melitracen 2 291 291 58 202 291
DMMia 2 250 446 446 193 249
DMSer 3 291 487 274 487 489
DMMir 2 251 447 447 250 195
Reboxetine 3 313 509 371 138 509
Citalopram 3 324 324 58 238 324
DMMap 3 263 459 431 191 459
Maprotiline 3 277 473 445 191 473
Sertraline 3 305 501 274 501 503
DDMC 3 296 492 238 208 474
DMC 3 310 506 238 208 488
Paroxetine 3 329 525 525 138 388
Paroxetine-d6 332 531 531 138 394
Trazodone 371 371 205 371 356

EI

 

For the GC-MS method the ADs had to be derivatized after SPE. Thus, after 

evaporation of the solid phase extracts under nitrogen at 40°C, 50 μl of HFBI 

was added and the sample was heated at 85°C for 30 min. Thereafter, 0.5 ml 

of HPLC-water and 2 ml of toluene were added. After vortexing and 

centrifuging the sample at 1121 g for 10 min, the toluene layer was 

transferred and evaporated at 40°C [12]. The evaporated extract was 

resolved in 50 μl of toluene. 

 
-86- 
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III.3. Solid phase extraction development 

 

The development of a solid phase extraction for new generation ADs is 

described in the first section of this chapter. In the second part, the 

developed method was optimized for different matrices. The method was 

developed by extracting AD spiked water samples, using a high pressure 

liquid chromatographic method with diode array detection (HPLC-DAD) as 

monitoring technique. The advantage of this monitoring technique is the 

ability to analyze aqueous phases without a drying or extraction step. In 

addition, no derivatization was necessary. Thus, the choice of sorbent, the 

conditioning step, loading step, washing and eluting step were optimized 

using HPLC. However, during the initial development procedure, we always 

considered the implications of our choice for the final gas chromatographic-

mass spectrometric (GC-MS) method.  

 

III.3.1. Choice of SPE sorbent 

 

There is a range of SPE sorbents, all with different kinds of interactions 

occurring between the analytes of interest and the active sites on the sorbent 

[10]. These interactions include both hydrophobic interactions such as Van 

Der Waals forces and hydrophilic interactions such as dipole-dipole, induced 

dipole-dipole, hydrogen bonding and �-� interaction. Other mechanisms 

include electrostatic attractions between charged groups on the compound 

and on the sorbent surface, as well as molecular recognition mechanisms 

[13]. The SPE sorbents that involve only one of the above interactions are 

reversed phase, normal phase, ion-exchange, immuno-affinity and 

molecularly imprinted polymers, while mixed modes combine several 

interaction mechanisms.  

 

The choice of the interaction mode depends on the demands of the method 

such as screening or target analysis, the aimed sensitivity, and final 

composition of the extract (organic or aqueous (GC versus HPLC)). Not only 

the chemical characteristics of the functional groups on the sorbent are 

relevant, but also the characteristics of the back-bones on which these 

functional groups are attached. These back-bones are either silica-or polymer 

based. The silica-based sorbents have a large variation of functional groups 
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available, are relatively inexpensive and are stable within a pH range of 

approximately 2 to 7.5. The polymer-sorbents (styrene-divinylbenzene) are 

more hydrophobic, more retentive and stable within a pH range of 0 to 14.  

 

The tested SPE sorbents were selected because of their potential interaction 

with the ADs. Four different categories of SPE sorbents were selected. The 

silica based apolar sorbents (reversed phase sorbents) are tested as they 

extract rather apolar compounds from polar matrices such as plasma, using 

hydrophobic interaction mechanisms. The apolar sorbents studied were Bond 

Elut C18 (200 mg tubes, Varian, Middelburg, The Netherlands), Empore HD C8 

(6 ml, 10 nm, Chrompack-Varian, Middelburg, The Netherlands) and RP-

select B Lichrolut (200 mg tubes, Merck, Darmstadt, Germany). Polymeric 

sorbents were of interest because of their combined polar and apolar 

properties. They do not always require a conditioning step and are able to 

extract analytes over a large polarity range. Therefore, they could lead to a 

better extraction of the more polar metabolites in combination with the ADs. 

The SPE-tubes Focus (50 mg, Varian), Strata X (200 mg, Phenomenex, 

Bester, Amstelveen, The Netherlands) and Oasis HLB (200 mg, Waters, 

Milford, MA, USA) were selected. Ion-exchange sorbents were selected as 

they focus on ionic interactions between the analytes of interest and the 

functional groups on the sorbent. Based on this mechanism, the positively 

charged ADs can be extracted from a biological matrix using a cation 

exchange sorbent. When using a cation exchange mode, the choice between 

a weak (carboxylic acid with pKa 4.8) or a strong cation exchanger (sulphonic 

acid with pKa <1) can be made. The strong and weak cation exchangers (200 

mg) from Phenomenex were evaluated as ion-exchange sorbents. Cerify 

Bond Elut (130 mg, Varian) and Strata XC (200 mg, Phenomenex) were two 

mixed modes combining cation-exchange properties with, respectively, a 

hydrophobic C8 phase or a styrene-divinylbenzene polymer.   

 

The choice of sorbent depends on the ability to have a selective, high and 

reproducible retention of the ADs. In addition, the ease of use in combination 

with the final chromatographic technique, thus GC-MS, is essential.
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Figure III.1.  Decision scheme for the SPE development 
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The decision scheme in Figure III.1. was used to select the best SPE sorbent 

for our purposes. The retention onto the SPE sorbents was examined first. 

Water samples, spiked with 1 μg/ml of each AD, were loaded onto the 

conditioned columns. Then 2 ml of HPLC-grade water was loaded to wash the 

column. The wash solution was collected and analyzed by HPLC. In addition, 

the compounds were eluted with methanol-2% formic acid or methanol-5% 

ammonia for the SCX and Strata XC phase. The eluent was analyzed to 
-89- 
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evaluate the retention onto the column. The eluent was evaporated under 

nitrogen at 40 °C and redissolved in 1 ml of the mobile phase (starting 

conditions) of the HPLC.  Fifty μl of this extract was injected onto the HPLC.  

 

All sorbents retained the ADs, however, two of the polymeric sorbents (Focus 

and Oasis HLB) also retained a lot of water, probably due to their hydrophilic 

character. This necessitates a longer drying step, especially if gas 

chromatography is used as the final analytical method, because derivatization 

requires moisture free extracts [11, 14]. Therefore, these two phases were 

not used for further experiments. Because all sorbents retained the ADs very 

well, the further selection of sorbents was done during the optimization of the 

loading, washing and eluting conditions. As shown in Figure III.1. several 

findings during optimization of the SPE method (discussed in paragraph 

III.3.2) lead to the conclusion that the strong-cation exchangers gave the 

best results. 

 

III.3.2. Choice of loading, washing and eluting conditions  

 

Before loading the sample onto a SPE sorbent, a conditioning step is 

necessary for reproducible interaction with the compounds. This conditioning 

step consists of solvation of the SPE sorbent with methanol and the same 

aqueous solution as in the loading step to ensure the same environment 

during sample load. Before conditioning, the final eluent was passed through 

the column, to elute possible contaminants of the column. Thus, the column 

was conditioned with 3 ml of eluent, 2 ml of methanol, followed by 3 ml 

aqueous solution. 

 

The loading conditions were optimized according to the SPE sorbent. When 

loading the samples on the silica based apolar phases, three different pH 

values were used. The ADs were spiked (1 μg/ml) in HPLC-grade water, in a 

water-formic acid mixture with pH 2.89 or a water-ammonia mixture with pH 

of 10.80. For the C18, C8 and RP Select B, a slight difference was observed in 

retention at different pH’s. Silica based apolair sorbents may still contain a 

limited number of unreacted or ‘free’ silanols. These silanols provide polar, 

acidic patches on the column surface capable of binding amines through 

hydrogen bonding and cation exchange mechanisms. Since the ionization of 
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the ADs depends on the loading conditions, interactions with these residual 

silanols may cause an enhanced retention. These secondary interactions 

could be interesting, but are not reproducible as the degree of endcapping, 

and thus the number of free silanol functions can change from batch to 

batch. When evaluating ion-exchange phases, the pH during the loading and 

eluting step is again very important. For these sorbents a phosphate buffer 

with pH 6.5 or 2.5 was used to load and retain the compounds onto the 

sorbent. The pH during the loading step should be two pH units lower than 

the pKa of the compounds and two pH units higher than the sorbent. At this 

pH, approximately 99% of the groups are charged. A loading pH of 6.5 or 2.5 

was chosen, according to the choice of a weak cation- (carboxyl pKa is 4.8) 

or a strong cation exchanger (sulphonic acid pKa < 1). Especially for 

trazodone and mirtazapine, a loading pH of 2.5 resulted to a better retention 

onto the strong cation exchanger (SCX). 

 

A wash step was introduced and optimized to elute as much as possible 

interfering matrix compounds, without eluting the ADs. Methanol/water 

(50/50, 70/30, 90/10, by vol.) and pure methanol were tested by washing 

with 5 ml after sample load. The washing solvent, as well as the elution 

solvent were analyzed. While pure methanol eluted several compounds 

(especially trazodone) from the C18, C8, RP Select B, WCX, Certify and Strata 

X sorbents, it did not elute any compound from the strong ion-exchangers. 

Certify is a mixed mode of C8 and a strong cation exchanger, however, 

methanol did elute ADs from the sorbent, perhaps because of the slightly 

lower bed mass and the higher contribution of apolar processes as compared 

to ion-exchange mechanisms. The WCX, in contrast to the strong cation 

exchangers, gave a slight elution of some compounds, probably because the 

ionic interaction of the sorbent with the ADs is weaker (Figure III.2.A). The 

use of pure organic solvents for washing is interesting as it shortens the 

drying time before elution and leads to clean and moisture free extracts.  

 

Several possibilities for eluting the compounds were also studied. 

Conditioning and loading of the samples were done as described above. After 

drying, two times 1.2 ml (5 bed volumes) of eluent were added, collected 

separately and analyzed. The tested eluting solvents were pure methanol, 

methanol-2% formic acid, methanol-2% ammonia and methanol-5% 
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ammonia. A fast, reproducible elution with a limited volume of solvent is the 

most interesting. Therefore, it is advantageous if elution happens with the 

first 1.2 ml of the eluent. Methanol-2% formic acid and methanol with 2% 

ammonia gave good results for most of the sorbents. For the strong cation 

exchangers 5% ammonia in methanol gave the highest elution within 5 

bedvolumes (Figure III.2.B). Methanol-acid and methanol-base work on the 

secondary interactions of the silica based phases. Under acidic conditions the 

silanol functions are not charged, while under basic conditions the ADs are 

not. For the strong cation exchangers acidic conditions were not successful, 

as even at low pH the sulphonic groups remain negatively charged.  

 

Figure III.2. Comparison of washing (A) and eluting (B) conditions for the 

SPE sorbents 
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III.3.3. Final SPE method of ADs spiked in water samples 

 

During the optimization of the loading, washing and eluting conditions, a final 

selection of the most useful SPE sorbent was made (Figure III.1.). 

Consequently, SPE tubes that retained water, SPE tubes that had 

irreproducible secondary interactions (silica based) and/or loss of compounds 

during the methanol wash were all left out for further investigation. Only the 

SCX and Strata XC sorbent were selected. Because the ‘new’ generation ADs 

have an amine-function a cation exchange mechanism was plausible.

Retention on both the SCX and Strata XC phases is based on this mechanism, 

but Strata XC being a mixed-mode phase combining ion-exchange and a 

styrene-divinylbenzene polymer, shows hydrophobic and aromatic 

interactions as well. Combining different interaction mechanisms can be 

interesting to extract a variety of compounds, but can also lead to co-

extraction of matrix compounds that are not of interest, leading to higher 

background in the final analysis.  

 

Table III.2. Recovery of ADs by a strong cation exchanger (SCX) or Strata XC 

from water samples as determined by HPLC-DAD  

 

Compound SCX Strata XC Compound SCX Strata XC Compound SCX Strata XC
Venlafaxine 105 100 Mianserin 91 81 Citalopram 90 82
m-cpp 115 105 Mirtazapine Maprotiline 92 78
Viloxazine 85 67 Melitracen 88 80 Sertraline 84 73
DMFluox 103 121 DMMia 87 75 DDMC 97 65
Fluvoxamine 93 87 DMSer 86 68 DMC 96 92
ODMV 108 94 DMMir Paroxetine 90 84
Fluoxetine 89 94 Reboxetine 98 96 Trazodone 83 81

Recovery %

 

The recoveries for both columns were high and comparable as demonstrated 

in Table III.2. However, the recoveries were slightly, but constantly lower 

using Strata XC as compared to SCX. This result was also confirmed when 

analyzing plasma samples (n=5) by GC-MS using the two SPE tubes as 

described in our publication about the development of this solid phase 

extraction [12]. Perhaps, the difference in recoveries can be explained due to 

the domination of the ion-exchange mechanism on the retention. When using 

a mixed-mode, the ion-exchange groups are less numerous. On the other 

hand, methanol is not a good disruptor of hydrophobic and dipolar 
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interactions [15]. Therefore, a small percentage of acetonitrile in the 

methanol-ammonia eluent would probably neutralize these non-ionic 

interactions during elution, leading to enhanced recovery yields for the Strata 

XC. 

 

Thus we decided to use the strong cation exchanger SCX for the further SPE 

procedure. It consisted of a conditioning step with 3 ml of eluent, 2 ml of 

methanol and 3 ml of phosphate buffer pH 2.5 followed the sample load. 

After a wash step (4 ml of methanol) using –20 kPa vacuum, the column was 

dried for 2 minutes at -50 kPa. Finally, the compounds were eluted with 2 ml 

of 5% ammonia in methanol. The solid phase tubes were again dried for 1 

minute using –50 kPa vacuum. 

 

Figure III.3. HPLC chromatogram of AD mixture 1 and 2 after SPE extraction 

from water using SCX

Mixture 1 contains in order of elution: ODMV, m-cpp, venlafaxine, DDMC, DMC, 
reboxetine, paroxetine, maprotiline, DMFluox, and fluoxetine. Mixture 2 contains in 
order of elution: viloxazine, trazodone, DMMia, citalopram, mianserin, fluvoxamine, 
DMSer, sertraline, and melitracen. 
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III.4. Optimization of the SPE procedure for extraction of ADs 

from biological matrices 

 

The developed SPE procedure was now optimized for biological matrices such 

as plasma, blood, brain tissue and hair samples, as the extraction of ADs 

from these matrices is of interest in the field of clinical toxicology (plasma) 

and forensic toxicology (blood, brain, hair).  

 

For plasma and blood, the developed SPE method had to be optimized due to 

their protein content. Most new generation ADs are highly bound to the 

plasma proteins, mainly to �1-glycoprotein and to a lesser extent to albumin 

and lipoproteins. ADs bind to �1-glycoprotein due to ionic interactions and 

their lipophilicity. Albumin preferably binds the hydrophobic and anionic 

compounds, thus less the positively charged ADs [16-20]. When using SPE as 

sample preparation, protein binding can lower the analyte recovery, as the 

active sites of the compounds that would normally interact with the sorbent 

are not available for this interaction. Another problem caused by protein 

binding is that proteins, as large molecules, prohibit penetration in the 

sorbent pores. As a result, the drug is carried through the sorbent bed by the 

protein instead of being retained [21]. 

 

For brain tissue, the sample preparation had to be adapted because of its 

solid nature. In addition, the lipophilic ADs are not easily extracted from the 

brain, as this matrix contains proteins and has a high lipid content.  

 

Hair samples also have a solid nature, and can not just pass the SPE sorbent. 

Moreover, ADs are incorporated in the hair structure during the process of 

keratinization,  preferentially in the cell membrane complex of the hair cortex 

containing proteins and a protein-lipid structure [22]. Thus, the ADs had to 

be extracted from the hair shafts prior to the SPE procedure. 

 

While the protein binding disruption in plasma was studied using an HPLC-

DAD system, the optimization of SPE for blood, brain and hair was done using 

a GC-MS configuration (paragraph III.2.5.). The recoveries for the different 

optimized methods were all obtained using the final GC-MS configuration. 
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III.4.1. SPE optimization for plasma samples 

 

Because most of the ADs are highly bound to plasma proteins, a disruption of 

this protein binding is necessary to obtain high recoveries from the SPE 

sorbent. There are several ways to disrupt the binding. Dilution in 

combination with a slow sorbent pass-through of the sample is used to 

decrease the protein binding of drugs. In addition, before loading onto the 

SPE sorbent bed a sonication or centrifugation step is often applied [23-27]. 

On the other hand, changes in protein binding depend on temperature, pH, 

protein content and molecules that compete for the same sites on the 

protein. Thus, change of pH or addition of salt can also modify the protein 

binding. Denaturation of the protein by adding organic solvents to the sample 

is another method used. The above mentioned protein binding disruption 

methods were tested. However, as an ion-exchange procedure is used, 

addition of salts was not tested as they could interact with the SPE sorbent, 

leading to lower recovery of the compounds of interest.  

 

Plasma samples (1 ml) were spiked with therapeutic concentrations of ADs 

and equilibrated overnight at 4°C, to simulate the protein binding. Afterwards 

the spiked plasma was submitted to SCX SPE-tubes after a deproteinization 

with different reagents. Standard mixtures were also analyzed as these 

represent 100% of free ADs. Acid (2% H3PO4), glycine-buffer, methanol and 

acetonitrile were tested for their capacity to break the protein bond. Dilution 

of the sample with phosphate buffer (pH 2.5; 25 mM) in combination with 

slow pass-through of the sample was also tested. The procedures for the 

acid/buffer and for the organic solvents involved addition of 3 ml of the 

substances to the plasma, and a vortex step followed by centrifugation for 10 

minutes at 1121 g. The glycine-buffer required an extra 10 minutes 

equilibration-stirring time before centrifugation. The top layer was then 

removed and, respectively, 4 to 6 ml of phosphate buffer was added to the 

acid/buffer top layer and the organic top layer. The diluting procedure was 

achieved by adding 4 ml of phosphate buffer buffer pH 2.5 to the plasma, a 

vortex and centrifugation step.  

 

When testing the different methods, it seemed that the organic solvents such 

as methanol and acetonitrile gave the worst results. Organic solvents lead to 
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a quick protein denaturation, but also to co-precipitation of the ADs and thus 

loss of these ADs. The glycine buffer and dilution method gave the best 

results (Figure III.4.).  

Figure III.4.  Comparison of protein binding disruption methods 

The average recovery of all ADs was calculated for the different protein binding 

disruption methods (n=5 for each method and each AD). The lowest and highest 

recovery value (for a specific AD) obtained for each method are indicated. 
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It was clear that a pH change of the sample led to a higher amount of 

unbound ADs. At pH 3 the proteins (iso-electric point of �1-glycoprotein: 

3.53) [28] will carry less negative charges than under physiological 

conditions, thus the ADs that are positively charged in those conditions, will 

show less ionic interactions [17].  In addition, at the iso-electric point there is 

no net charge and thus the solubility of the protein decreases, leading to a 

fractional protein precipitation. Not only the pH was of importance as a 

significant difference in ADs liberation was seen between the acid method 

and the glycine or dilution method when using an ANOVA-test (p<0.02, 

except for DMSer and DDMC). Glycine wil compete with ADs for the binding 

sites on the �1-glycoproteins. Dilution will change the equilibration status of 

bound and unbound ADs; thus will weaken the protein-drug binding. 

Moreover, dilution increases the time of eventual contact of the drugs with 

the adsorbent. Because of practical considerations, the method of choice for 

protein binding disruption was dilution of the plasma samples (1 ml) with 
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phosphate buffer pH 2.5 (4 ml, 25 mM) and a centrifugation step at 1200 g 

for 10 minutes. The sample was thereafter transferred to the SPE procedure. 

III.4.2. SPE optimization for blood samples 

 

For the blood samples, dilution of the sample with the phosphate buffer pH 

2.5 resulted in a disruption of the protein binding of the ADs and in an ideal 

loading pH for the SPE as for the plasma samples. However, in contrast to 

plasma samples, the diluted blood sample was not centrifuged as it leads to 

irreproducible and lower extraction efficiencies (Table III.3.).  

 

Table III.3. Differences in recovery after centrifugation or sonication of the 

diluted blood sample (n=6, *n=5) 

Low, 20 ng/ml; Mid, 200 ng/ml; High, 500 ng/ml 

 

compound
Low Mid High Low Mid High

Venlafaxine 38   (38) 99  (16) 99  (8) 51*   (21) 101  (14) 93    (7)
m-cpp 52  (46) 83  (5) 80  (21) 92    (14) 93    (9) 101  (7)
Viloxazine 76  (31) 87  (5) 79  (15) 91     (8) 97    (10) 105  (7)
DMFluox 71  (38) 64  (9) 62  (17) 93    (12) 93    (6) 100  (6)
Fluvoxamine 86  (22) 81  (6) 72  (16) 95    (13) 99    (18) 104  (9)
ODMV 82  (29) 62  (24) 100  (15) 95  (30) 103  (20)
Fluoxetine 42  (34) 62  (7) 64  (14) 80     (9) 89    (7) 100  (5)
Mianserin 73  (7) 75  (9) 75  (5) 87     (6) 99    (8) 104  (3)
Mirtazapine 89  (7) 84  (11) 84  (3) 79     (10) 98    (8) 99    (4)
Melitracen 62  (10) 75  (9) 63  (11) 80      (8) 100  (9) 101  (5)
DMMia 42  (14) 84  (11) 78  (16) 82     (16) 102  (13) 92    (7)
DMSer 54  (32) 34  (28) 51  (25) 94*   (15) 92    (11) 102  (5)
DMMir 67  (12) 116  (9) 97  (12) 83     (12) 103  (12) 94    (6)
Reboxetine 73  (14) 67  (13) 87  (16) 87     (12) 92    (8) 105  (7)
Citalopram 94  (17) 60  (13) 75  (9) 84     (21) 89    (14) 106  (13)
DMMap 66  (38) 48  (10) 60  (23) 91*   (14) 79    (23) 96    (14)
Maprotiline 44  (35) 51  (16) 67  (19) 83     (14) 76    (14) 96    (5)
Sertraline 25  (46) 30  (15) 30  (23) 73     (18) 82    (17) 93    (17)
DDMC 102  (38) 76  (6) 80  (13) 85     (15) 87    (19) 97    (10)
DMC 60  (37) 69  (6) 79  (17) 84     (15) 82    (13) 96    (5)
Paroxetine 42  (34) 59  (9) 67  (17) 92     (18) 81    (12) 95    (4)

Recovery (%) (RSD%) 
Blood centrifugated Blood sonicated

 

            

The separation of supernatant from the cell debris was not very clear and 

probably leads to these irreproducible results. Moreover, co-precipitation of 

ADs with the red blood cell fragments can lead to recovery loss, because ADs 

are bound to red blood cell membranes due to their amphiphilic character. 

ADs are also bound to proteins attached in the bilayer structure of this 

membrane [29, 30]. Thus, before the sample was transferred to the SPE 
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procedure, 1 ml of blood was diluted with 4 ml of a 25-mM phosphate buffer 

pH 2.5 and sonicated for 15 minutes. 

 

III.4.3. SPE optimization for brain samples 

 

For brain tissue, the sample preparation had to be adapted due to the lipid 

content of the brain and the lipophilic ADs (Table III.4.). Brain tissue (1 g) 

was spiked with 500 ng of each AD and was mixed after addition of 2 ml of 

acetonitrile, or a mixture of acetonitrile (2 ml) and 0.5 ml potassium 

carbonate buffer (1M pH 9.5). After centrifugation for 15 minutes at 1850 g, 

the top-layer was removed. The top-layer was then evaporated and 

redissolved in phosphate buffer (pH 2.5; 25 mM) or diluted with this buffer. 

After dilution of the acetonitrile phase with phosphate buffer, the pH was 6-7. 

Therefore, compounds such as mirtazapine, mianserin and Md3 with a pKa of 

about 7.05 will not be positively charged and thus not trapped by the cationic 

phase. The pH of the diluted sample was thus adapted to 2-3 with 

orthophosphoric acid before it was submitted to the SPE-procedure.  

 

Table III.4. indicates that extraction with acetonitrile is necessary to have 

high and reproducible extraction efficiencies. Acetonitrile disrupts the 

hydrophobic and dipolar interactions and extracts the ADs from the lipid rich 

matrix. An evaporation step of the acetonitrile phase seemed unnecessary 

and even led to a higher variation.  Therefore the acetonitrile phase could be 

diluted before SPE leading to a shorter analysis time. The potassium 

carbonate buffer in combination with acetonitrile lead to higher extraction 

efficiencies, especially for melitracen, desmethylmianserin, desmethyl-

mirtazapine, sertraline and desmethylsertraline.  

In conclusion, before the sample was transferred to the SPE procedure, 1 g of 

brain tissue was mixed with 2 ml of acetonitrile and 0.5 ml of potassium 

carbonate buffer (1M pH 9.5). After centrifugation, the top layer was diluted 

with 4 ml of 25-mM phosphate buffer pH 2.5. 

 

 



Chapter III: Sample preparation 

Table III.4. Differences in SPE recovery of ADs from brain tissue using a 

phosphate buffer (pH 2.5; 25 mM), acetonitrile (ACN) and phosphate buffer, 

ACN and evaporation, and ACN with a potassium carbonate buffer as sample 

pre-treatment 

 

                

compound buffer* ACN + buffer    ACN ACN + base
Venlafaxine 74  (11) 67  (6) 83  (21) 90  (18)
m-cpp 32  (42) 76  (3) 67  (15) 84  (6)
Viloxazine 61  (16) 80  (6) 63  (12) 83  (13)
DMFluox 8  (68) 60  (6) 39  (14) 75  (11)
Fluvoxamine 18  (49) 66 (5) 43  (7) 77 (10)
ODMV 73  (23)
Fluoxetine 8 (68) 71  (5) 47  (21) 70  (6)
Mianserin 13  (63) 71  (7) 66  (35) 90  (15)
Mirtazapine 42  (27) 67  (1) 65  (26) 78  (20)
Melitracen 17  (124) 49  (8) 63  (30) 100  (13)
DMMia 12  (99) 48  (10) 68  (30) 95  (6)
DMSer 4  (58) 36  (2) 21  (34) 71  (3)
DMMir 39  (70) 63  (6) 76  (26) 98  (9)
Reboxetine 33  (42) 86  (7) 44  (30) 70  (4)
Citalopram 35  (30) 66  (12) 36  (23) 62  (15)
DMMap 5  (63) 43  (14) 25  (28) 61  (20)
Maprotiline 6  (63) 56  (17) 37  (33) 66  (20)
Sertraline 4  (80) 47  (1) 45  (34) 107  (6)
DDMC 22  (35) 78  (5) 54  (18) 77  (15)
DMC 27  (33) 84  (4) 56  (23) 74  (10)
Paroxetine 5  (68) 58  (3) 31  (30) 60  (9)
  n=3
*n=5

Recovery (%) (RSD%)

 

III.4.4. SPE optimization for hair samples 

 

ADs have to be extracted from the solid hair strains before SPE. The most 

common procedures involve the use of methanol or aqueous acids, and 

solubilization of the hair by digestion of the hairshaft with aqueous sodium 

hydroxide or specific enzymes [22].  

 

Methanol is used together with sonication to liberate the drugs from the 

swelling hair through diffusion. While this method is very useful for neutral 

and lipophilic compounds, it seems that AD drugs are not easily liberated 

from hair with this method [31]. Extraction of basic drugs from hair using 

aqueous acids or buffer solutions is based on protonation. Digestion of the 

hair with sodium hydroxide leads to solubilization of the hair and to a high 

extraction efficiency for basic compounds. Enzymatic digestion by pronase 

and proteinase K can hydrolyze hair proteins and reduce disulfide bonds in 
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the hair. However, most of the time enzymatic extracts have a very high 

impurity level. Moreover, Couper et al. [31, 32] found that TCAs were better 

extracted using sodium hydroxide as compared to methanol, enzymatic 

digestion or an aqueous acid.  

 

Tuhe first concern before extracting ADs from hair is their stability in the 

extraction solutions. ADs were spiked in concentrations around 500 ng/ml in 

different extraction media. Stability in methanol was not determined at this 

point, as the ADs stock solutions in methanol (1 mg/ml) were stable for at 

least 3 months. The stability in sodium hydroxide at different concentrations, 

temperature and contact time was tested. Indeed, Uges and Conemans [1] 

described that most ADs (TCAs) are not stable under alkaline conditions in 

daylight. Several conditions were selected whereby the hair samples were 

fully dissolved. Temperature seemed critical for hair solubilization, and a 

higher temperature allowed a shorter contact time with the sodium 

hydroxide. The sodium hydroxide concentration varied from 0.25 to 1 M, the 

temperatures used were 55, 80 and 100°C, and the duration for 

solubilization, depending on the NaOH concentration and temperature ranged 

from 10 till 90 minutes. The stability of the compounds was also tested in a 

0.1-M HCl medium and in a phosphate buffer (pH 2.5, 25 mM) for 18 hours 

at 55°C. These conditions were chosen according to the extraction methods 

seen in literature [31]. 

 

Digesting hair (±20 mg) at 100°C during 10 minutes with 1 M NaOH gave 

good results and was preferred because of the short contact time. However, 

as depicted in Figure III.5., it is clear that some compounds are not stable in 

this alkaline medium under these conditions. Instability was observed for 

venlafaxine (30% loss), citalopram, DMC and DDMC (60-93% loss). No 

degradation was observed in acidic environment, except for fluvoxamine 

when 0.1 M HCl was used.  

 

Because of stability reasons it would be better to select the extraction with 

phosphate buffer. In addition, this method results in an easy sample handling 

as the extraction solution can be transferred to the SPE sorbent directly. 

However, according to Couper et al. [32] the extraction efficiency by an 

aqueous acid is about 50% as compared to the sodium hydroxide digestion 
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method. Indeed, when hair is solubilized, the matrix is totally destroyed and 

the analytes are liberated from the hair. Extraction with an aqueous acid or 

buffer will only recover the analytes in the outher layers and will not 

penetrate the core of the hair shaft. Because of sensitivity and stability issues 

the two procedures were necessary for post-mortem hair analysis. 

 

Figure III.5. Stability of ADs during extraction from hair samples (n=2) 

 

Stability of ADs 

0
20
40
60
80

100
120
140
160
180
200

m-cp
p

DMFluo
x

flu
vo

xa
mine

vilo
xa

zin
e

flu
ox

eti
ne

mian
se

rin
e

ve
nla

fax
ine

mirta
za

pin
e

meli
tra

ce
n

DMMia

DMMir

rebo
xe

tin
e

DMSer

se
rtra

lin
e

cit
alo

pram

DMMap

map
rot

ilin
e
DDMC

DMC

pa
rox

eti
ne

tra
zo

do
ne

Antidepressants

%
 R

ec
ov

er
y

55°C 1M  50' 80°C  0.25M  90' 80°C  1M  30' 100°C  1M  10'
100°C  0.25M  20'  HCl 0.1M phosphate buffer 

 

The final sample preparation for hair samples consisted of a wash step in 

HPLC-grade water for 5 minutes, and a rinse with 3 times 1 ml of methanol 

to remove possible external contamination and dirt from the surface of the 

hair. Thereafter, hair samples were cut in segments of approximately 2 cm. 

The hair segments were digested in a sodium hydroxide solution (1 M, 1 ml) 

for 10 minutes at 100°C. Before SPE, the samples were diluted with 

phosphate buffer and the pH was adapted to 2-3 with orthophosphoric acid. 

If compounds were not stable in the sodium hydroxide solution such as 

citalopram, DMC, DDMC and venlafaxine, hair segments were soaked in 4 ml 

of the phosphate buffer (pH 2.5; 25 mM) for 18 hours at 55°C and sonicated 

for 1 hour.   
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III.4.5. Recovery of ADs using SPE from plasma, blood, brain tissue 

 

The recovery for each analyte was determined at low (20 ng), medium (200 

ng) and high (500 ng) or super high (1000 ng) concentration. Therefore, 

standard working solutions were spiked in blank samples before (extraction 

samples) or after sample preparation (control samples). Each experiment 

was repeated six times. Outliers were eliminated when the obtained results 

deviated more than ± 3 standard deviations from the mean (*n=5). Since 

quantification was performed by the peak area ratios of the target analytes 

and the internal standard, the internal standards were always added after 

sample pre-treatment, before derivatization, and the resultant peak area 

ratios were compared. The recovery was expressed by its average and 

relative standard deviation (RSD).  

 

Recovery of ADs from hair is not determined as spiked samples do not reflect 

reality. Compounds are incorporated in the interior of the hair through 

diffusion from blood, sweat or sebum. When samples are spiked, the 

compounds are spiked onto the hair, and this would lead to false high 

recoveries. 

 

Table III.5. SPE recovery of ADs from plasma, blood and brain tissue (n=6) 

compound

Venlafaxine 104 (3) 95 (4) 95 (2) (21) 101 (14) 93 (7) 38  (19) 46  (17) 45*   (13)
m-cpp 91 (4) 92 (7) 96 (5) 92 (14) 93 (9) 101   (7) 85   (16) 99  (8) 80  (9)
DMFluox  107*  (12) 91 (7)   91* (5) 93  (12) 93  (6) 100  (6)     82      (12) 79   (5) 69 10)
Viloxazine 104  (14) 96 (5) 92 (5) 91  (8) 97 (10) 105  (7) 58    (7) 62  (4) 56*   (8)
Fluvoxamine 102 (2) 104 (8) 97  (18) 95 (13) 99  (18) 104  (9)     44      (16) 43   (7) 35*    (10)
Fluoxetine 98 (12) 94 (2) 96  (2) 80 (9) 89 (7) 100  (5) 75   (8) 71   (5) 73     (6)
Mianserin 95 (4) 94 (3) 94   (3) 87  (6) 99   (8) 104  (3) 81   (11) 80   (5) 81   (7)
Mirtazapine 95 (6) 92 (3) 93   (3) 79  (10) 98  (8) 99  (4) 77   (11) 78     (7) 85    (5)
Melitracen 101 (5) 93  (3) 93   (3) 80    (8) 100  (9) 101 (5) 75   (13) 83    (6) 80*     (8)
DMMia 101  (4) 98 (4) 91   (2) 82   (16) 102  (13) 92   (7) 70    (9) 81    (10) 78*      (15)
DMSer 98 (11) 88 (7) 104  (10)    94* 15) 92 (11) 102   (5) 77    (6) 70    (11) 76     (6)
DMMir 99  (4) 95  (2) 92   (3) 83  (12) 103   (12) 94   (6) 74   (12) 78     (8) 78   (11)
Reboxetine 99  (3) 97 (3) 95    (1) 87    (12) 92   (8) 105   (7) 51   (18) 60     (8) 59*    (4)
Citalopram 88 (8) 87  (9) 94    (5) 84   (21) 89  (14) 106   (13) 61   (16) 73    (5) 78*     (4)
Maprotiline   72* (14) 88 (3) 90   (6) 83   (14) 76   (14) 96     (5) 54   (12) 59    (8) 81      (6)
DMMap 92 (15) 86  (5) 86    (6)    91*  (14) 79    (23) 96   (14) 51    (15) 57  (10) 78    (4)
Sertraline 82 (6) 89 (11) 96   (5) 73    (18) 82    (17) 93   (17) 90    (16) 73    (3) 82*      (11)
DDMC    94*  (11) 85  (7) 88    (6) 85    (15) 87   (19) 97   (10) 69    (10) 69  (5) 74      (8)
DMC 80 (13) 88 (4) 90   (5) 84    (15) 82   (13) 96   (5) 66    (4) 69   (3) 68*      (4)
Paroxetine 94  (11) 91 (2) 95    (2) 92    (18) 81   (12) 95    (4) 72  (11) 73    (7) 80    (6)
*n=5

Brain
Mid High S.High

Recovery (%) (RSD%) 

Low 
           51*  

Mid HighLow Mid High
Plasma Blood

 

Table III.5. indicates high, reproducible and concentration independent 

recoveries ranging from 82-105% for all ADs from plasma. The recoveries for 

ODMV and trazodone are not shown in this table as they are not reproducible 

using GC-MS as detection technique, due to an irreproducible derivatization 
-103- 
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(chapter IV) and problematic chromatography (chapter V), respectively. The 

SCX extraction leads to reproducible and high recovery from blood for most 

compounds if no centrifugation step is included (Table III.3.). Recoveries 

from blood range between 73-106 %, except for venlafaxine (51%). The 

recoveries from blood samples are comparable to these from plasma.

 

ADs recoveries from plasma and blood were determined at low (20 ng/ml), 

mid (200 ng/ml) and high (500 ng/ml) concentrations, while brain tissue 

recoveries were determined at mid, high and super high concentration (1000 

ng/g). This was chosen as brain concentrations found in literature were much 

higher than blood or plasma concentrations [33-35]. The extraction 

efficiencies for brain tissue are slightly lower than for plasma and blood. 

Especially venlafaxine and fluvoxamine gave low extraction efficiencies. 

However, recovery of the ADs from brain tissue is reproducible.  

 

III.5. Conclusion 

 

A solid phase extraction using a strong cation exchanger was developed for 

the new generation ADs and their metabolites. The final SPE procedure 

conditioned the sorbent with 3 ml of eluent, 2 ml of methanol and 3 ml of 

phosphate buffer pH 2.5 followed by the sample load. After a wash step (4 ml 

of methanol) using –20 kPa vacuum, the column was dryed for 2 minutes at -

50 kPa. Finally, the compounds were eluted with 2 ml of 5% ammonia in 

methanol. The solid phase tubes were again dried for 1 minute using –50 kPa 

vacuum.  

 

The sample treatment before the load procedure onto the SPE sorbent was 

optimized for several biological matrices such as plasma, blood, and brain 

tissue as they have a different protein and lipid content. The samples were 

always diluted with 4 ml of the 25-mM phosphate buffer pH 2.5 and the pH 

was adapted with orthophosphoric acid if necessary, before loading onto the 

strong cation exchanger. In addition, plasma was centrifuged at 1200 g for 

10 minutes, while blood was sonicated for 15 minutes. Brain tissue had to be 

treated by an acetonitrile/K2CO3 (2/0.5 ml/g) mixture before dilution with the 

buffer, due to the lipophilic matrix. Solubilization of the hair was necessary 

before SPE extraction. 1M NaOH at 100°C during 10 minutes was used for 
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this purpose. For instable compounds such as venlafaxine, citalopram and its 

metabolites, hair was extracted using phosphate buffer (pH 2.5; 25mM) 

during 18 hours at 55°C and sonication for 1 hour.

 

Figure III.6. Sample preparation scheme
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When these procedures were followed as indicatied in Figure III.6., the 

recoveries for the ADs from the different matrices were high and 

reproducible.  
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IV.1. Introduction 

Derivatization is a common sample preparation technique before gas 

chromatographic analysis. This reaction modifies the chemical functionality of 

a compound to increase its volatility and stability. In addition, it reduces 

analyte adsorption onto the column, leading to less tailing and thus an 

improved peak shape. Furthermore, it can improve detector response by 

adding specific functional groups onto the compounds and it can facilitate the 

separation of the compounds-of-interest from other substances present in the 

extract. The choice of derivatizing reagent depends on the functional groups 

of the compounds-of-interest and the demands of the user [1, 2].  

 

Gas chromatographic analysis of free (underivatized) amines such as ADs is 

generally unsatisfactory due to adsorption and decomposition of the analytes 

on the column. These effects increase from tertiary to secondary amines and 

are the worst for primary amines. Therefore, the predominant reason for 

derivatization of the ADs is the improvement of their chromatographic 

characteristics by decreasing their polarity. The antidepressants (ADs) 

monitored in this work can be chemically classified as ADs containing an 

alcohol, a primary, secondary or tertiary amine. These ADs, except for the 

tertiary amine group, contain active hydrogens which can be derivatized 

(Figure IV.1.)  

 

The three most applied derivatization reactions are silylation, alkylation and 

acylation.  

Silylation replaces active hydrogens by a silyl group and reduces the polarity 

and hydrogen bonding of the compound. However, the excess of 

derivatization product will also be injected onto the gas chromatographic 

system which leads to contamination of the whole system and in-situ 

derivatization of all injected compounds. In addition, silicium dioxide deposits 

in the ion source can affect the mass selective detector [3, 4]. Therefore, a 

gas chromatographic system reserved only for silylated samples is necessary 

and this was not an option in the laboratory.  
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Figure IV.1. Structures of ADs with indication of the replaced hydrogen 

functions during derivatization (italic functions)

Bold functions are those that are demethylated in the metabolization process. The 
arrow indicates the N-dealkylation of the piperazinyl nitrogen resulting in the formation 
of m-chlorophenylpiperazine. 1: Venlafaxine, 2: Fluvoxamine, 3: Sertraline, 4: 
Maprotiline, 5: Trazodone, 6: Citalopram, 7: Paroxetine, 8: Viloxazine, 9: Fluoxetine, 
10: Reboxetine, 11: Mirtazapine, 12: Mianserin, 13: Melitracen. 
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The acylation reaction converts compounds that contain active hydrogens 

(NH, OH, SH groups) into amides, esters or thioesters through the action of 

an activated carboxylic acid. Besides advantages such as decreased polarity, 

OH
N

O
CH3

CH3

CH3

F3C

N
O

O CH3

NH2

NH

Cl

Cl

CH3

N
H

CH3

N N
N

N
N

O

Cl

O
CN

N

F

CH3

CH3

F3C

O N
H

CH3

N

N
CH3

CH3O
O

O
NH

N
N

N
CH3

N
H

F

O

O

O

N
H

O
O

O CH3

CH3 CH3

N
CH3

CH3

1 2 3

54

76

1098

1211

13



Chapter IV: Derivatization 

- 113 - 

increased volatility and stability, another advantage of acylation can be the 

increased sensitivity of the derivative with electron capture or negative ion 

chemical ionization mass detection due to the combination of halogen atoms 

and the carbonyl group. Moreover, acylation benefits the formation of 

fragmentation-directing derivatives for gas chromatographic-mass 

spectrometric analysis. Therefore, the acylation reaction was chosen as most 

promising derivatization reaction for the monitored ADs.  

 

The two acylation reactions tested were the acetylation reaction, using acetic 

anhydride and pyridine, and heptafluorobutyrylation. Derivatization with 

acetic anhydride was the first choice, as this reagent is largely used in 

systematic toxicological analysis [5-8]. However, when negative ion chemical 

ionization became an option during the research period, 1-(heptafluoro-

butyryl) imidazole (HFBI) and heptafluorobutyric anhydride (HFBA) became 

first choice because of detection and sensitivity issues [1, 2].  

 

Pentafluorobenzyl chloroformate was another interesting option as it 

contained fluorine atoms which would increase sensitivity in negative ion 

chemical ionization mode such as for the HFB-reagents, but in addition, it is 

directly applicable in an aqueous environment and it could derivatize tertiary 

amines [9]. However, as our aim was to analyze ADs and their demethylated 

metabolites pentafluorobenzyl chloroformate could not be applied. No 

difference would be observed between the derivatized parent compound and 

its demethylated metabolite as the reagent rather replaces the hydrogen 

atom than the methyl group on the nitrogen-function in the metabolite 

structure.  

 

Thus acetic anhydride (acetylation), heptafluorobutyric anhydride and hepta-

fluorobutyryl imidazole (heptafluorobutyrylation) were used as derivatization 

reagents and their respective optimized derivatization procedures for the ADs 

are discussed in this chapter. 
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IV.2. Experimental   

 

IV.2.1. Reagents 

  

ADs standards used during optimization of the derivatization were the same 

as described in chapter III (III.2.1.). Pyridine, acetic anhydride, and 

heptafluorobutyric anhydride (HFBA) were purchased from Sigma-Aldrich 

(Steinheim, Germany), while 1-(heptafluorobutyryl) imidazole (HFBI) was 

purchased at Pierce (Perbio, Erembodegem, Belgium). Promochem 

(Molsheim, France) delivered mianserin-d3 (100 μg/ml MeOH). Water (HPLC-

grade), ammonia-solution 25%, triethylamine and toluene (Suprasolv) were 

purchased from Merck (Darmstadt, Germany).  

 

IV.2.2. Preparation of standard solutions  

 

Primary stock solutions of each individual AD were prepared in methanol at a 

concentration of 1 mg/ml and stored at -20°C. A standard mixture 0.1 mg/ml 

was obtained by mixing these individual primary stock solutions.  

 

Depending on the type of experiment, the ADs concentrations were chosen. 

For determination of spectra primary stock solutions were used. For 

comparison of the different derivatization reagents, 40 ng on-column was 

used to detect underivatized compounds in scan mode. For comparison of 

HFB-reagents, 4 ng was injected onto the column and monitored in selected 

ion monitoring mode.  

When validating the final derivatization procedure, a standard mixture was 

obtained by mixing the individual primary ADs stock solutions and by further 

diluting with methanol until a concentration of 0.05-0.125 mg/ml, depending 

on the therapeutic range of the compound. After preparation, it was stored 

protected from light at approximately -20°C. Further dilution of the standard 

mixture with methanol resulted in working solutions with concentrations of 

0.1, 1 or 10 μg/ml. 
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IV.2.3. Instrumentation  

 

All experiments were carried out on a HP 6890 GC system, equipped with a 

HP 5973 mass selective detector and a G1701DA Chem Station, version 

D.02.00 data processing unit (Agilent Technologies, Avondale, PA, USA). The 

first experimental set-up contained a HP 7683 on-column auto injector. Later 

on the injector was changed to a HP 7683 split/splitless auto injector due to 

practical considerations as described in chapter V.  

 

Evaporation under nitrogen was conducted in a TurboVap LV evaporator from 

Zymark (Hopkinton, MA, USA). The heater was a multi-block from Lab-line 

(Tiel, The Netherlands).  

 

IV.2.4. Gas chromatographic parameters 

 

Chromatographic separation was achieved on a 30m x 0.25mm I.D., 0.25-μm 

J&W-5ms column from Agilent Technologies (Avondale, PA, USA). The start 

condition of the column temperature was set depending on the injector type 

and injection solvent (chapter V.3.). For the on-column (methanol) and 

split/splitless injector (toluene), a starting temperature of 50 °C for 1 min or 

90 °C for 1 min was applied, respectively. Thereafter the temperature of the 

column was ramped at 50°C/min to 180°C where it was held for 10 min, 

whereafter the temperature was ramped again at 10°C/min to 300°C. 

Ultrapure helium at a constant flow of 1.3 ml/min was used as carrier gas. 

 

When the split/splitless auto injector was used, the pulsed splitless injection 

temperature was held at 300°C, the purge time and pulse activation time 

were set at 1 and 1.5 min, respectively. Meanwhile, the injection pulse 

pressure was 170 kPa. 

 

For each injection type 1 μl of the sample, redissolved in 50 μl toluene or 

methanol, was injected. While toluene was used as injection solvent during 

the further development and validation of the GC-MS method (chapter V), 

methanol was used as redissolving and injection solvent for determination of 

several spectra in the beginning of our research. 
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IV.2.5. Mass spectrometric parameters 

 

The mass selective detector temperature conditions were 230°C for the EI-

source, 150°C for the quadrupole and 300°C for the transferline, whereas an 

electron voltage of 70 eV was used. The mass selective detector was used in 

scan mode for optimization of the derivatization reactions. When comparing 

the heptafluorobutyrylation reagents and validating the final derivatization 

method, the mass selective detector was used in selected ion monitoring 

mode as described in chapter III (III.2.5. Table III.1.) 

IV.3. Acetylation  

IV.3.1. Optimization of acetylation reaction 

 

The acetylation procedure was not optimized for ADs. The chosen acetylation 

conditions were already successfully applied in our laboratory for 

benzodiazepines and were tested for ADs [10,11]. The evaporated 

methanolic AD stock-solution was acetylated with a mixture of 200 μl of 

acetic anhydride and 200 μl of pyridine. The derivatization occurred at room 

temperature after 30 minutes.  

 

IV.3.2 Acetylation reaction with antidepressants 

 

Acetylation occurs for alcohols, secondary and primairy amines, but not for 

tertiary amines. The alcohol and amine functions react with acetic anhydride, 

and this reaction is catalyzed by pyridine that acts as an acceptor for the 

acidic byproduct formed during the reaction. This reaction is a result of an 

nucleophilic mechanism, leading to a carbonyl addition intermediate followed 

by elimination of acetic acid (byproduct) and resulting in the acetylated AD 

[1]. The reaction scheme is depicted in Figure IV.2. After derivatization the 

moleculair mass gain is 42 amu, as a free hydrogen atom is replaced by an 

acetylgroup. 
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Figure IV.2. Acetylation reaction scheme 
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IV.3.2.1. ADs containing an alcohol function 

Venlafaxine and its metabolite O-desmethylvenlafaxine (ODMV) are the only 

monitored compounds that contain at least one alcohol function. The 

structure of venlafaxine containing one hydroxyl-function is shown in Figure 

IV.3.A. Venlafaxine is demethylated to its metabolite ODMV which then 

contains 2 alcohol functions that can possibly be derivatized.  

After the acetylation procedure, two peaks were detected in the 

chromatograms of both acetylated venlafaxine and its metabolite ODMV.  

Figure IV.3. gives the example of venlafaxine. When studying the spectra 

before and after derivatization, a mass gain of 42 amu is observed for one of 

the two peaks in the chromatogram (B) after derivatization. Therefore, 

successful acetylation of the alcohol function could be concluded. However, 

for the other peak a loss of 18 amu is observed and dehydration of the 

molecule is suspected (C).  

ODMV acetylation occurs in the same way as its parent compound. Maurer et 

al. [5] describe an acetylation reaction for ODMV as for venlafaxine, but on 

the demethylated oxygen atom (underlined), leaving the other alcohol 

function underivatized. The second ODMV-peak after derivatization is the 

acetylated compound without the aliphatic alcohol, as this function is 

dehydrated.  

- 117 - 
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Acetylation of venlafaxine and ODMV does not lead to one derivative, 

resulting in the problem of possibly irreproducible quantitative results. This 

effect should be kept in mind during validation of the method.   

 

Figure IV.3. Derivatization of venlafaxine with acetic anhydride 

Chromatogram and corresponding mass spectra of underivatized venlafaxine (A, black 
trace) and venlafaxine after acetylation (red trace): derivatized (B) and dehydrated (C)  
 

 

- 118 - 

 

Abundance

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

40 60 80 100 120 140 160 180 200 220 240 260 280
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

m/z-->

Abundance

58

134

91 119 17942 77 148 162103 202 219 232190 257 277

N
OH

MeO

  A 
  B 

      
C 

A 

8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000
220000
240000

Time-->



Chapter IV: Derivatization 

 B  
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IV.3.2.2. ADs containing a primary amine function 

Fluvoxamine is the only AD that contains a primary amine function. However, 

the demethylated metabolites of sertraline, maprotiline and fluoxetine, and 

the didesmethylated metabolite of citalopram also contain a primary amine 

function. During acetylation of these compounds one of the free hydrogen 

atoms on the nitrogen atom acts as leaving group.  

After the acetylation procedure, the retention times of the peaks are 

increased and spectra have a molecular ion mass gain of 42 amu (Table 

IV.1.). This leads to the conclusion that primary amines are easily derivatized 

with acetic anhydride and pyridine.  
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Figure IV.4. Derivatization of fluvoxamine with acetic anhydride  

A: mass spectrum underivatized; B: derivatized 
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that looses a fluorine atom (loss of 19 amu) resulting in the monitored ion of 

299 amu in stead of 318 amu. 

 

IV.3.2.3. ADs containing secondary amine functions 

Figure IV.5. Derivatization of secondary amines with acetic anhydride with 

spectra before (A) and after (B) derivatization. Viloxazine is given as an 

example        
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addition, several metabolites also contain a secondary amine function, 

leading to a free and thus replacable hydrogen atom: desmethylcitalopram, 

desmethylmirtazapine, desmethylmianserin and m-cpp.  

As demonstrated in Table IV.1. a mass gain of 42 amu is seen for these 

compounds, concluding that the derivatization reaction is successful. Figure 

IV.5. demonstrates the acetylation of viloxazine as an example. 

 

IV.3.2.4. Tertiary amines 

Several ADs contain tertiary amine functions that can not be derivatized 

using acetic anhydride and pyridine. These ADs are citalopram, mirtazapine, 

mianserin, melitracen and trazodone. Spectra before and after derivatization 

are identical for these compounds (Figure IV.6.), therefore we can conclude 

that the compounds are stable during the derivatization conditions. This is 

important in forensic analysis as the content of the sample is unknown and 

every sample will be analyzed identically and thus will undergo the 

derivatization reaction.  

Figure IV.6. Mass spectrum of mianserin after passing the derivatization 

procedure 
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IV.3.3. Conclusion 

 

Most ADs and their metabolites can be derivatized using pyridine and acetic 

anhydride at room temperature after 30 minutes as demonstrated in Table 

IV.1. This derivatization procedure results in a much better peak shape, 

leading to an enhanced sensitivity.  

 

ADs containing tertiary amines in their structure can not be derivatized, but 

their peak shape is already satisfactory as tertiary amines show less 

adsorption onto the analytical column.  

 

Acetylation of venlafaxine and its metabolite ODMV results in two 

derivatization products; an acetylated and a dehydrated product, which can 

lead to irreproducible quantitative results. 

 

Table IV.1. Retention time (tr) and molecular ion of each AD before and after 

acetylation 

  

ADs M+-ion theor. tr M+-ion monitored tr M+-ion monitored
min. amu min. amu

Alcohols
Venlafaxine 277.41 16.4 277 12.6 259 (-H2O)

17.3 319 (AC)
ODMV 263.38 18.9 263 16.5 287 (AC-H2O)

19.1 305 (AC)

Primary amines
Fluvoxamine 318.34 11.2 299 18.9 360
DMFluox 295.30 9.6 295 19.7 327
DMMap 263.38 19.6 263 24.3 305
DMSer 292.20 20.1 292 24.1 334
DDMC 296.34 20.9 296 25.4 338

Secondary amines
Fluoxetine 309.33 10.2 309 19.0 351
Maprotiline 277.41 19.9 277 24.2 319
Paroxetine 329.37 22.8 329 25.9 371
Reboxetine 313.40 21.0 313 23.6 355
Sertraline 306.23 20.3 306 24.3 348
Viloxazine 237.30 10.4 237 18.6 279
DMC 310.37 21.0 310 25.3 352
DMMia 250.34 19.2 250 23.3 292
DMMir 251.33 19.9 251 23.9 293
m-cpp 196.70 7.7 196 17.9 238

Tertiary amines
Citalopram 324.40 20.7 324 20.7 324
Melitracen 291.44 19.3 291 19.3 291
Mianserin 264.37 18.2 264 18.2 264
Mirtazapine 265.36 18.9 265 18.9 265
Trazodone 371.87 29.8 371 29.8 371

Before derivatization After acetylation
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IV.4. Heptafluorobutyrylation 

For the heptafluorobutyrylation two reagents, 1-(heptafluorobutyryl) 

imidazole (HFBI) and heptafluorobutyric anhydride (HFBA), were tested. 

Because our first GC-MS configuration was equipped with a cold on-column 

injector, HFBI was used. This derivatization reagent results in the formation 

of the non aggressive byproduct imidazole, while the acid HFBA can result in 

column damage. However, later on, the injector in our GC-MS system was 

changed to a split/splitless configuration and the HFBA reagent was re-

evaluated. 

 

IV.4.1. Optimization of HFBI reaction 

 

IV.4.1.1. Experimental 

The derivatization step was optimized in duration, temperature and quantity 

of HFBI. Derivatization parameters such as temperature were changed from 

45-105°C and duration from 15-60 minutes. Quantities of HFBI were varied 

from 20 till 200 μl. In addition, an extraction was optimized using toluene 

and water to remove excess of the HFBI derivatization reagent and by-

products. The ratio of water/toluene was varied from 0.5/1 till 0.5/2. These 

parameters were optimized through peak height and area, variation and 

completeness of the reaction.  

Twenty μl of a 0.1-mg/ml ADs mix was evaporated to dryness and 

derivatized under different conditions. Before injection of the samples, 

mianserin-d3 (200 ng / 50 μl) was added, as this I.S. can be analyzed 

without derivatization.  

 

IV.4.1.2. Results

For derivatization of the analytes of interest with HFBI, addition of 20 μl of 

reagent resulted in a complete reaction. No significant difference (T-test 

p>0.05) was seen between the different amounts of HFBI. However, because 

a 50-μl volume ensured adequate moistening of the reaction vial, this 

amount of HFBI was chosen.  

The reaction at 85°C during 30 minutes gave the highest yield with an 

acceptable variation. Although, there was no significant difference in 
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temperature, 85°C was necessary to get a complete derivatization of 

sertraline.  

The duration of the derivatization did not affect the procedure significantly. 

Therefore, 30 minutes were selected as this resulted in the least variation for 

an acceptable derivatization reaction time.  

 

Usually, the excess of derivatization reagent and byproducts are removed 

after derivatization, as they can damage the GC-column. Due to the inert 

imidazole byproduct of HFBI, damage of the column is minimized, however, 

the injection needle can still be clogged. Moreover, when using NICI-MS 

detection, the excess of reagent must be eliminated to minimize detector 

noise and to obtain adequate sensitivity. Evaporation of the excess of HFBI 

was not an option as it led to crystallization of the derivatization product. 

Therefore, a simple extraction step was applied, resulting in the transfer of 

the derivatized compounds in the toluene layer, while the excess of reagent 

and byproducts remain in the aqueous phase. When 2 ml of toluene and 0.5 

ml of water were used, the underivatized compounds were extracted more 

efficiently into the toluene layer. The toluene phase was evaporated with 

nitrogen at 40°C and the extract was redissolved in 50 μl of toluene.  

 

Figure IV.7. Optimization of HFBI derivatization (n=3) 

Errorflags indicate ± one standard deviation 
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IV.4.2. Optimization of HFBA reaction  

 

IV.4.2.1. Experimental 

The derivatization step was optimized in duration, temperature and quantity 

of HFBA. Derivatization parameters such as temperature were changed from 

45-105°C and duration from 15-60 minutes. HFBA was diluted with 

chloroform or toluene in concentrations of 10-50%. These parameters were 

optimized through peak height and area, variation and completeness of 

reaction.  

Twenty μl of a 0.1-mg/ml ADs mix was evaporated to dryness and 

derivatized under different conditions. Before injection of the samples, 

mianserin-d3 was added, as this I.S. can be analyzed without derivatization.  

 

IV.4.2.2. Results

Heptafluorobutyric anhydride was dissolved in chloroform or mixed with 

toluene at percentages varying from 10-50%. Chloroform and toluene were 

chosen, respectively because ADs and the HFBA solution are easily dissolved 

in chloroform, while HFB-derivatives are highly soluble in toluene. In 

addition, due to the derivatization temperature, a low percentage of HFBA 

can be dissolved in the toluene fraction. As depicted in Figure IV.7. a mix of 

10% HFBA in toluene (total volume of 100 μl) resulted in the best 

derivatization results. The percentage of HFBA can be kept low. This is an 

advantage as the anhydride can damage the column and can lead to higher 

background especially when the mass analyzer is used in negative ion 

chemical ionization mode.  

A derivatization temperature of 105 °C was selected as this resulted in the 

highest reaction yield. Although higher variation was seen at this 

temperature, 105 °C was necessary for the derivatization reactions of 

venlafaxine and its metabolite. Heptafluorobutyrylation reactions with amines 

generally proceed at low temperature, while hydroxyl derivatizations are 

slower and thus heat is recommended [1]. However, the reaction yield for 

venlafaxine and ODMV was still not complete and in addition, dehydration 

products were noticed (IV.4.3.1.).  

The ADs were derivatized during 5 minutes as this resulted in the best signal 

with the least variation for most compounds. No significant difference in 
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signal was seen between 5 and 15 minutes of reaction time (T-test: p=0.36). 

After longer reaction times some compounds showed a decrease in signal, 

possibly due to degradation.  

The excess of derivatization reagent was evaporated by nitrogen at 40°C and 

the extract was redissolved in 50 μl of toluene. 

 

Figure IV.8. Optimization of HFBA derivatization (n=3) 

Errorflags indicate ± one standard deviation 
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IV.4.3. Heptafluorobutyrylation of antidepressants 

 

The acylation reaction with both HFBI and HFBA replaces a labile hydrogen 

atom attached to the nitrogen atom, for a less polar, stable group. HFB-

acylation occurs for alcohols, secondary and primairy amines, but not for 

tertiary amines. The alcohol and amine functions react with heptafluoro-

butyrylimidazole and heptafluorobutyric anhydride, forming a carbonyl 

addition intermediate and finally resulting in heptafluorobutyrylated ADs and 

their respective byproducts, the neutral imidazole or heptafluorobutyric acid. 

The reaction scheme is depicted in Figure IV.9. After derivatization the 

molecular mass gain is 196 amu, as a free hydrogen atom is replaced by a 

heptafluorobutyryl-group. 
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Figure IV.9. Heptafluorobutyrylation reaction scheme 
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IV.4.3.1. ADs containing an alcohol function 

Although HFB-reagents can derivatize alcohol functions, a dehydration of 

tertiary alcohols such as in venlafaxine and its metabolite ODMV is observed 

[2]. This reaction eliminates possible hydrogen bridges, thus leading to a 

better peak shape of the derivatized analyte. The rate of the dehydration 

reaction depends on the type of HFB-reagent and on the temperature during 

each derivatization reaction.   

 

Figure IV. 10. shows the chromatograms of venlafaxine after HFBI and HFBA 

derivatization. When using HFBI one peak arises in the chromatogram and 

the spectrum demonstrates a loss of 18 amu, thus loss of water. No HFB-

venlafaxine was observed. After HFBA derivatization, the dehydration product 
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was also observed, but in combination with a large underivatized venlafaxine 

peak. Again, no HFB-venlafaxine was observed, leading to the conclusion that 

venlafaxine can not be heptafluorobutyrylated. In addition, the dehydration 

seems to result in a higher reaction yield when using HFBI. The spectra of 

underivatized and dehydrated venlafaxine were already shown in Figure 

IV.3., as heptafluorobutyrylation and acetylation result in the same 

dehydrated venlafaxine peak.  

 

Figure IV.10. Derivatization of venlafaxine with heptafluorobutyrylimidazole 

(red trace) and heptafluorobutyric anhydride at 105 °C (black trace) 

A, underivatized venlafaxine; B, dehydrated venlafaxine 
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For ODMV a similar dehydration reaction as for venlafaxine was observed. In 

addition, for both reagents a HFB-derivative could be suspected, however, 

due to pronounced fragmentation of the compound in electron ionization 

mode the spectra were difficult to interprete. During the further optimization 

of our GC-MS method, the formation of both the HFB-derivative and its 

dehydrated form was confirmed in the PICI mode. However, heptafluoro-

butyrylation of ODMV led to irreproducible derivatization results. Moreover, 

for the HFBI reagent the dehydrated underivatized ODMV reaction seemed to 

be favourable, while the HFBA derivatization led to the derivatized 

dehydrated ODMV molecule.  However this reaction was uncomplete.  
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IV.4.3.2. ADs containing a primary amine function 

Primary amines such as fluvoxamine and the metabolites desmethyl-

maprotiline, as well as desmethylsertraline are all heptafluorobutyrylated as 

observed in the spectra by a mass gain of 196 and a retention time shift. The 

mass spectrum of HFB-fluvoxamine is shown in Figure IV. 11., while the 

spectrum of underivatized fluvoxamine was already shown in Figure IV.4.A.   

  

Figure IV.11. Spectrum of heptafluorobutyrylated fluvoxamine 
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Didesmethylcitalopram is also heptafluorobutyrylated, however, a mass gain 

of 178 amu is observed instead of 196 amu. This phenomenon is due to 

water loss after the tetrahydrofurane-ring opening during fragmentation in 

the ion source.  

Derivatization of desmethylfluoxetine with HFB-reagents probably leads to 

HFB-desmethylfluoxetine, but this reaction can not be confirmed using the 

spectra before and after derivatization as a mass gain of only 35 amu is 

noticed. The derivatized molecule is fragmented very easily and therefore the 

molecular ion is not detected (Table IV.2.). 
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The derivatization reaction was successful for all secondary amines, as a 

mass gain of 196 amu was observed in the spectra after derivatization. 
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Figure IV.12. gives the spectrum of HFB-viloxazine as an example 

(underivatized viloxazine is shown in Figure IV.5.A). As demonstrated by this 

example, it is clear that heptafluorobutyrylation can increase the selectivity 

through more abundant higher m/z-fragments as compared to underivatized 

or acetylated viloxazine. 

 

Figure IV.12. Derivatization with HFB-reagents of the secondary amines. 

Spectrum of heptafluorobutyrylated viloxazine 
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IV.4.3.4. Tertiary amines 

Tertiary amines such as citalopram, mirtazapine, mianserin, melitracen and 

trazodone are not derivatized through heptafluorobutyrylation. Spectra 

before and after derivatization are identical for these compounds. The 

compounds showed no degradation under HFB-derivatization conditions.  

IV.4.4. Conclusion 

 

Most ADs and their metabolites can be heptafluorobutyrylated using 50 μl of 

HFBI at 85 °C during 30 minutes or 10% HFBA in toluene (100 μl) at 105 °C 

during 5 minutes. Heptafluorobutyrylation leads to a better peak shape for 
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The improved peak shape results in higher sensitivity, while the mass gain 

can result in higher selectivity.   

 

While primary and secondary amines are derivatized, ADs containing tertiary 

amines can not be derivatized, but their peak shape is satisfactory as tertiary 

amines show less adsorption onto the analytical column.  

 

Venlafaxine and its metabolite ODMV both contain an alcohol function and 

result in different derivatization yields when using HFBA or HFBI. Both 

reagents lead to dehydration of venlafaxine. ODMV is dehydrated 

simultaneously with a heptafluorobutyrylation of the phenolic function. 

However, when applying the HFBI reagent, non-derivatized but dehydrated 

ODMV is also observed and is even the main derivatization product. 

 

Table IV.2. Retention time (tr) and molecular ion of each AD before and after 

heptafluorobutyrylation 

 

ADs M+-ion theor. tr M+-ion monitored tr M+-ion monitored
min. amu min. amu

Alcohols
Venlafaxine 277.41 16.4 277 12.6 259 (-H2O)

ODMV 263.38 18.9 263 10.3 441 (HFB-H2O) 

14.6 245 (-H2O)

Primary amines
Fluvoxamine 318.34 11.2 299 14.9 514
DMFluox 295.30 9.6 295 14.5 330
DMMap 263.38 19.6 263 21.2 459
DMSer 292.20 20.1 292 20.6 487
DDMC 296.34 20.9 296 22.7 474

Secondary amines
Fluoxetine 309.33 10.2 309 15.9 486
Maprotiline 277.41 19.9 277 21.9 473
m-cpp 196.70 7.7 196 13.1 392
Paroxetine 329.37 22.8 329 23.2 525
Reboxetine 313.40 21.0 313 20.7 509
Sertraline 306.23 20.3 306 21.9 501
Viloxazine 237.30 10.4 237 14.5 433
DMC 310.37 21.0 310 22.7 506
DMMia 250.34 19.2 250 20.2 446
DMMir 251.33 19.9 251 20.6 447

Tertiary amines
Citalopram 324.40 20.7 324 20.7 324
Melitracen 291.44 19.3 291 19.3 291
Mianserin 264.37 18.2 264 18.2 264
Mirtazapine 265.36 18.9 265 18.9 265
Trazodone 371.87 29.8 371 29.8 371

Before derivatization After Heptafluorobutyrylation
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IV.5. Choice of acylation procedure 

IV.5.1. Acetylation versus heptafluorobutyrylation 

 

When comparing the three optimized acylation procedures, the acetylation 

procedure was not selected because of three reasons.  

 

The first reason is the option of NICI monitoring. HFBI or HFBA are excellent 

derivatization agents for NICI as they contain seven fluorine atoms, resulting 

in detectability of the derivatized ADs when using this highly sensitive 

ionization mode. When HFB-derivatization is used, only one sample 

preparation would be necessary to analyze the ADs in the 3 ionization modes, 

namely electron ionization, positive and negative ion chemical ionization.  

 

The second reason is the volatility of the heptafluorobutyryl-derivatives. HFB- 

acylation was chosen as derivatization reaction in EI as it leads to a 

quantitative formation of stable derivatives, which are more volatile than 

their acetylated forms, resulting in a considerable shorter retention time 

(Table IV.1. and IV.2.). Moreover, HFB-derivatization leads to enhanced 

sensitivity as seen in Figure IV.13.   

Figure IV. 13. Comparison of an underivatized (black trace), acetylated (red 

trace) and heptafluorobutyrylated (green trace) ADs mix (40 ng on-column). 
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The final reason was the difference in mass gain after acetylation (42 amu) 

and heptafluorobutyrylation (196 amu). The shift of the main fragment ions 

to high mass ranges, mostly results in a lower background when analyzing 

biological samples. High-mass ions have greater diagnostic value, since they 

are more specific than low-mass ions, which can be easily affected by 

interference from the fragment ions of contaminants and/or column bleeding 

[12]. Thus a higher mass gain leads to more selectivity. 

 

IV.5.2. Heptafluorobutyrylimidazole versus heptafluorobutyric an-

hydride 

 

IV.5.2.1. Experimental 

The optimized derivatization HFB-procedures were compared by 

derivatization of ADs mixtures containing 200 ng of each AD. Mianserin-d3 

was used as I.S. (200 ng) and was added before injection (before 

evaporating and redissolving the sample). The samples were evaporated 

under nitrogen and redissolved in 50 μl of toluene. The extracts were 

analyzed in EI in SIM mode after injection of 1 μl. 

 

IV.5.2.2. Results 

When evaluating both optimized derivatization procedures, the ratio between 

the peak area of the ADs and the I.S. as well as the variation on this ratio 

were compared (Figure IV.14.). A T-test was performed and a significant 

difference (p�0.05) with higher ratios for the HFBA derivatization was seen 

for ODMV, sertraline, desmethylsertraline, fluvoxamine and desmethyl-

maprotiline. For the other ADs, the ratio was higher with HFBI derivatization 

or not significantly different as compared to HFBA derivatization. Especially 

for the non-derivatized tertiary ADs, HFBA derivatization conditions resulted 

in a decreased signal. This decrease is observed for mianserin, mirtazapine, 

melitracen, and citalopram and will lead to sensitivity problems for the 

determination of those compounds at low therapeutic concentrations.   
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Figure IV.14. Comparison of the optimized HFBA and HFBI derivatization 

procedures (n = 5) 

Error bars indicate ± one standard deviation 
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Because the I.S. mianserin-d3 is also a tertiary amine, the ratio ADs versus 

I.S. will lead to a different conclusion than plotting absolute peak areas 

(Figure IV.14.). A possible cause of the decreased sensitivity for tertiary 

amines could be a decreased solubility, due to the acidic environment of the 

HFBA derivatization, which leads to the formation of quaternary amines that 

are much less soluble in organic phases. In addition, some of the acidic 

derivatization product may still remain in the extract, leading to degradation 

of the column film or activity in the injector or possible instability of the ADs. 

Therefore, addition of triethylamine during derivatization with HFBA was 
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tested to increase the reaction yield and to neutralize the acidic byproduct. 

For mianserin and mirtazapine slighty better results were observed, however, 

triethylamine was not used as it led to problems during evaporation of the 

HFBA extract.  Addition of ammonia (5% in methanol) also resulted in higher 

areas for the tertiary amines. However, the yield of derivatized ADs was 

lower, probably due to methanol decreasing the stability of the derivatives. 

 

Another difference between HFBA and HFBI is the way the excess of reagent 

is removed. Moreover, both derivatization reagents produce byproducts that 

need to be removed before injection onto the column. The acidic byproduct of 

HFBA is aggressive for the column phase. However, the byproduct and the 

excess of reagent can be evaporated under nitrogen after derivatization, 

leading to a shorter and less labour intensive derivatization. The HFBI by-

product is the neutral imidazole and is not aggressive for the column. It is, 

however, still better to remove this byproduct and left-over HFBI to increase 

the sensitivity by diminishing analytical noise especially under NICI 

conditions. For this procedure, an extraction step with 0.5 ml of water and 2 

ml of toluene is necessary, whereby the toluene is evaporated and the 

extract is redissolved in 50 μl of toluene before injection onto the analytical 

column (1 μl). This efficient clean-up procedure is, however, more time 

demanding. In addition, although the derivatives are stable in case of 

amines, they are susceptible to hydrolysis in the case of alcohols. Because of 

this extraction step, a difference in reaction yield is observed for the 

derivatization rate of ODMV when using HFBA or HFBI. 

 

IV.5.3. Conclusion 

 

HFB acylation was chosen instead of acetylation because it leads to a 

quantitative formation of stable derivatives, which are more volatile than 

acetyl-derivatives, resulting in a considerable shorter retention time. In 

addition, heptafluorobutyrylation increases sensitivity in NICI mode and 

results in one sample preparation for the 3 ionization modes used in GC-MS.  

 

Both heptafluorobutyrylation reagents have their pros and cons: HFBA leads 

to a shorter procedure, while HFBI does not result a decreased signal for ADs 
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containing a tertiary amine. Because we wanted to screen and quantitate as 

much ADs as possible in one run, HFBI derivatization was chosen, despite the 

longer procedure and the pronounced hydrolysis of ODMV. 

 

IV.6. Final derivatization procedure  

 

The final derivatization procedure was as follows: after evaporation of the 

solid phase extracts under nitrogen at 40°C, 50 μl of HFBI was added and the 

sample was heated at 85°C for 30 min. Thereafter, 0.5 ml of HPLC-grade 

water and 2 ml of toluene were added. After vortexing and centrifuging the 

sample at 1121 g for 10 min, the toluene layer was removed and evaporated 

at 40°C.  

IV.7. Validation of final derivatization procedure  

 

Intra- and inter batch precision, and linearity of the derivatization reaction as 

well as stability of the HFB-derivatives were evaluated as these parameters 

are important for a successful derivatization.  

 

IV.7.1. Precision 

 

IV.7.1.1. Experimental 

Precision was evaluated at three different levels, i.e. 0.2-0.4 (low), 2-4 

(medium), and 5-15 ng/μl (high), depending on the compound. Mianserin-d3 

(4 ng/μl) was used as internal standard and was added before injection. 

Intra- and inter batch precision was assessed by five determinations per 

concentration in one day or on five separate days, respectively, and was 

measured using RSD.  

 

IV.7.1.2. Results 

The precision of the derivatization reaction is acceptable for most 

compounds. The intra- and inter batch precision of ODMV after derivatization 

is not acceptable for the low concentration. While citalopram has a rather 

high intra batch variation, the inter batch variation fulfilled the limit of 15% 
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RSD. The inter batch precision of fluvoxamine and desmethylsertraline was 

also slightly elevated.  

 

Table IV.3.  Precision data of the HFB-derivatization procedure (n=5) 

Low Mid High Low Mid High Low Mid High
Venlafaxine 0.4 4 10 8 4 2 5 6 7
m-cpp 0.4 4 10 14 13 4 12 9 5
Viloxazine 0.2 2 5 8 7 3 14 7 3
ODMV 0.4 4 10 17 10 13 25 9 6
DMFluox 0.5 5 15 2 4 3 11 5 3
Fluvoxamine 0.5 5 15 4 5 3 17 5 3
Fluoxetine 0.5 5 15 3 5 3 8 6 4
Mianserin 0.4 4 10 4 4 3 6 4 3
Mirtazapine 0.4 4 10 2 5 6 9 5 9
Melitracen 0.2 2 5 6 3 2 5 4 3
DMMia 0.4 4 10 1 5 3 9 5 3
DMSer 0.4 4 10 4 5 3 6 18 3
DMMir 0.4 4 10 3 5 3 7 7 3
Reboxetine 0.2 2 5 4 5 3 5 5 4
Citalopram 0.4 4 10 16 3 5 14 6 4
DMMap 0.25 2.5 6 3 4 5 4 4 5
Maprotiline 0.25 2.5 6 2 5 3 7 4 3
Sertraline 0.5 5 15 2 6 3 12 4 3
DDMC 0.2 2 5 7 5 2 12 7 3
DMC 0.2 2 5 14 7 5 9 5 3
Paroxetine 0.2 2 5 4 5 2 16 4 3

Concentration on-column (ng/µl) Intra batch precision Inter batch precision
Precision (% RSD)

 
IV.7.2. Linearity 

 

IV.7.2.1. Experimental 

The linearity of the derivatization reaction was determined by analyzing 

samples ranging from ± 0.2 till ± 10 ng/μl of the individual ADs. Mianserin-d3 

(4 ng/μl) was used as internal standard and was added before injection. The 

slope, the range for the intercept and the coefficient of determination were 

evaluated. 

 

IV.7.2.2. Results

Overall the derivatization reaction is quantitative, leading to linear responses. 

For ODMV and mirtazapine the reaction is not linear as seen by their 

coefficient of determination 0.968 and 0.954, respectively. Mirtazapine is a 

tertiary amine and is not derivatized, perhaps the extraction step in toluene 

leads to the non-linearity. However, this is not seen for other tertiary 

compounds such as mianserin and citalopram. ODMV is dehydrated; perhaps 
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this reaction depends on the concentration of the metabolite. During 

validation of the method in different matrices ODMV derivatization led to 

irreproducible results as already discussed before.  

 

Table IV.4.  Linearity data of the HFB-derivatization procedure (n=5) 

 

best fit cv% min max R2

Venlafaxine 0.02602 7 -0.1492 0.1071 0.997
m-cpp 0.00440 6 -0.0207 0.0051 0.997
Viloxazine 0.00124 4 -0.0032 0.0085 0.998
ODMV 0.01090 5 -0.2346 0.0171 0.968
DMFluox 0.00480 4 -0.0023 0.0079 0.998
Fluvoxamine 0.00466 4 -0.0340 -0.00004 0.998
Fluoxetine 0.01096 5 0.0492 0.0800 0.998
Mianserin 0.00512 4 0.0249 0.0462 0.998
Mirtazapine 0.01080 11 0.3748 0.4974 0.954
Melitracen 0.01494 5 0.0175 0.1232 0.997
DMMia 0.00402 4 0.0088 0.0300 0.998
DMSer 0.00964 4 -0.0621 0.0814 0.993
DMMir 0.00250 3 0.0060 0.0413 0.996
Reboxetine 0.00320 5 0.0112 0.0269 0.999
Citalopram 0.01986 4 -0.0049 0.0997 0.997
DMMap 0.01088 6 0.0138 0.0903 0.999
Maprotiline 0.00568 4 0.0397 0.0761 0.998
Sertraline 0.00502 5 -0.0538 0.0198 0.996
DDMC 0.01412 5 -0.0984 -0.0275 0.997
DMC 0.01366 3 0.0030 0.0489 0.999
Paroxetine 0.00120 6 -0.0036 0.0074 0.998

 Slope Y-intercept Coeficient of determination
Linearity

 

 

IV.7.3. Stability of the derivatives 

 

IV.7.3.1. Experimental 

The stability of the HFB-derivatives was evaluated by analyzing a sample at 

low and at high concentration directly after derivatization (day 0) and leaving 

that sample in the autosampler tray for four days. The peak area of the 

compounds was analyzed and compared each day. No internal standard was 

used as this could compensate for losses, leading to erroneous conclusions. 

 

IV.7.3.2. Results

At low concentration, it seems that the derivatized extracts are concentrated 

during their stay in the autosampler tray.  On day 1 a loss of 5 and 34% is 

observed for HFB-didesmethylcitalopram and dehydrated ODMV. The loss of 

didesmethylcitalopram is acceptable, but not the loss of ODMV (Figure 

IV.15.A). 
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A loss is observed for underivatized mirtazapine after 2 days. All other 

compounds and HFB-derivatives are stable for 4 days in the autosampler 

(loss below 13%). The concentration of ODMV and desmethylcitalopram 

seems to increase after several days. The only explanation that could be 

given is that degradation products of other compounds interfere in the 

measurement of those two compounds (Figure IV.15.B). 

In conclusion, it seems that the HFB-derivatives are stable at least for 24 

hours at room temperature for most compounds. The dehydrated ODMV is 

demonstrated to be unstable. In addition, it is susceptable to wrongful 

quantitation due to degradation products of other ADs. 

 

Figure IV.15. Stability of heptafluorobutyrylated ADs at low and high 

concentration  
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IV.8. Conclusion  

 
In this chapter we selected the best derivatization procedure for the new 

generation ADs. It is, however, clear that every derivatization reaction has its 

pros and cons and the final choice of reagent and procedure depends on the 

demands of the analyst. 

 

Structural information of the ADs led to the conclusion that acylation was a 

promising technique, leading to an improvement of peak shape for most ADs. 

The choice of acylation reagent was less straightforward.  

 

Acylation using acetic anhydride and pyridine resulted in a good 

derivatization for all ADs containing primary or secondary amines.  However, 

as a single sample preparation for three possible ionization modes including 

negative ion chemical ionization was required, it was not reached.  

Heptafluorobutyrylation was an option to avoid this drawback of acetylation. 

This reaction results in high sensitivity when using negative ion chemical 

ionization due to the addition of the seven fluorine atoms in combination with 
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the carbonylgroup after derivatization. Moreover, heptafluorobutyrylation led 

to more volatile derivatives, leading to a shorter analysis time. 

 

Heptafluorobutyrylimidazole and heptafluorobutyric anhydride were 

compared as heptafluorobutyrylation reagents.  Although HFBI led to a longer 

derivatization procedure and a clean-up step including water and toluene was 

necessary, this procedure was selected. The main reason was the loss of 

tertiary amines during the HFBA procedure due to solubility problems, leading 

to losses in sensitivity for citalopram, meltiracen, mianserin, and mirtazapine.  

However, it is clear that depending on the specific ADs and needs of the 

analyst, both heptafluorobutyryl reagents have their specific benefits. We 

selected HFBI as derivatization reagent for our further method development, 

because derivatization of most compounds is reproducible and resulted in 

stable derivatives. Moreover, a linear response was observed. Only the 

reaction of ODMV was characterized by various reaction products, instability 

and non-linearity.  
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V.1. Introduction 

Over the years, several chromatographic methods have been developed for 

the determination of antidepressants (ADs) in biological matrices. A lot of 

determination methods describe the analysis of one single or a mixture of a 

few ADs. Moreover, several multi-analysis methods are described in the 

literature. Chapter I gives an overview of these methods including capillary 

electrophoresis [1, 2], high performance liquid chromatography with UV [3-

6], fluorescence [7, 8] or mass spectrometric detection [9-12], as well as gas 

chromatography combined with nitrogen-phosphorus [13, 14] or mass 

detection (GC-MS) [15-18].  

Our aim was to develop a quantitative multi-ADs method for the new 

generation ADs and their metabolites in biological materials. The ADs 

monitored in this work were selected based on their importance in the 7 

major AD markets (Japan, USA, France, United Kingdom, Italy, Spain, 

Germany) according to the Cognos Plus Study #11 [19]. In addition, the 

(active) metabolites were monitored as suggested by the AGNP-TDM Expert 

Group Consensus Guidelines [20], as metabolite/compound ratios could 

provide more information on the relation between plasma concentration and 

therapeutic effects. In conclusion, a quantitative chromatographic method 

was developed for citalopram, fluoxetine, fluvoxamine, maprotiline, 

melitracen, mianserin, mirtazapine, paroxetine, reboxetine, sertraline, 

trazodone, viloxazine, and venlafaxine and their metabolites (desmethyl-

citalopram, didesmethylcitalopram, desmethylfluoxetine, desmethyl-

maprotiline, desmethylmianserin, desmethylmirtazapine, desmethyl-

sertraline, m-chlorophenylpiperazine, and O-desmethylvenlafaxine). 

The method of choice was a gas chromatographic-mass spectrometric 

method, as it is sensitive and selective, providing the best separation power 

for compounds that are volatile under GC conditions. The major success of 

the application of modern GC in clinical and forensic toxicology is firstly due 

to the very high efficiencies of separation which can be achieved with 

capillary columns, secondly to the high sensitivity of the detection and finally 

to the precision and accuracy of the data from quantitative analyses of very 
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complex mixtures. In contrast, LC-MS methods have the great advantage 

that no derivatization is needed, leading to shorter sample preparation times 

and thus higher-throughput. However, the absence of ion suppression effect 

observed in LC-MS, availability, high separation power and comparative low 

cost of the equipment still make GC-MS instruments very attractive in many 

laboratories.  

In this chapter, the choice of sample introduction, the parameters for the 

separation on the analytical column and the detector conditions will be 

discussed (Figure V.1.). All of these optimized parameters will result in a GC-

MS method for ADs that will be evaluated and validated in chapter VI. For 

validation, internal standards will be used and therefore, the choice of the 

internal standards will also be discussed in this chapter.

Figure V.1.  The gas chromatographic system  

1, the gas supply; 2, the injector; 3, the oven containing the column; 4, the mass 
selective detector. 

                     

  1 

2

4
3

V.2. Experimental 

V.2.1. Reagents  

ADs standards used during optimization of the gas chromatographic-mass 

spectrometric method were the same as described in chapter III (III.2.1.). 
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Fluoxetine-d6 oxalate (Fd6), mianserin-d3 (Md3) and paroxetine-d6 maleate 

(Pd6) (100 μg/ml MeOH) were purchased from Promochem (Molsheim, 

France) and were used as internal standards. Toluene (Suprasolv quality, 

Merck, Darmstadt, Germany) and 1-(heptafluorobutyryl) imidazole (HFBI) 

(Fluka, Bornem, Belgium) were applied for derivatization. Vials, glass inserts 

and viton crimp-caps were purchased from Agilent technologies (Avondale, 

PA, USA).  

V.2.2. Stock solutions 

Stock solutions were prepared in methanol at a concentration of 1 mg/ml for 

each compound individually and stored at -20°C. These stock solutions were 

further diluted with methanol to working solutions of 0.1 mg/ml. For 

detection of mass spectra 20 μl of this solution was derivatized and 

redissolved in 50 μl of toluene of which 1 μl was injected. 

The stock solutions were also used to prepare a standard mixture by mixing 

the individual primary stock solutions and by further diluting with methanol 

until a concentration of 0.05 – 0.125 mg/ml was obtained, depending on the 

therapeutic range of the compound. After preparation, it was stored 

protected from light at approximately -20°C. This mixture was used to 

optimize the gas chromatographic parameters. Twenty μl of this mixture was 

derivatized and redissolved in 50 μl of toluene of which 1 μl was injected. 

V.2.3. Equipment

A HP 6890 GC system was used, equipped with a HP 5973 mass-selective 

detector, and a G1701DA Chem Station, version D.02.00 data processing unit 

(Agilent Technologies, Avondale, PA, USA). The mass selective detector was 

used in scan to determine the injection conditions, the separation parameters 

and the mass spectra.  

Evaporation under nitrogen was conducted in a TurboVap LV evaporator from 

Zymark (Hopkinton, MA, USA). The heater was a multi-block from Lab-line 

(Tiel, The Netherlands).  
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V.3. Gas chromatographic parameters 

V.3.1. Sample introduction 

V.3.1.1. Cold on-column versus split/splitless injection 

A very important step in gas chromatography is the introduction of the 

sample onto the capillary column. There are two basic types of injectors for 

capillary columns: vaporization (Figure V.2.A) and cold-on column (Figure 

V.2.B) [21].  

Vaporization injectors include split and splitless injectors and are the most 

common injector types. All vaporization injectors function basically in the 

same manner. A syringe is used to pierce the septum and introduce the 

sample into the vaporization chamber. This vaporization chamber contains a 

heated glass liner in which the volatile components of the sample are rapidly 

vaporized due to the high temperature. A carrier gas line supplies carrier gas 

to the interior of the injector body and usually enters near the top of the 

injector. This carrier gas mixes with the sample vapours and the vaporized 

volatiles are introduced into the column by the movement of the carrier gas.  

Figure V.2.  Schematic overview of vaporization (A) and cold on-column 

injectors 

A. Split/Splitless injector
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The difference between a split and splitless injector is the amount of sample 

introduced onto the column. While splitless injectors do not split the sample, 

introducting most of the vaporized sample onto the column, split injectors 

split the vaporized sample into two unequal portions with the smaller fraction 

going to the column and the larger fraction being discarded through the split 

outlet. The discarded fraction is determined by the split ratio. Split injectors 

are used for highly concentrated samples (0.1-10 μg/μl), because only a 

limited amount of sample finally reaches the column, preventing column 

overloading. Splitless injectors are, on the contrary, suitable for trace level 

analyses, as no portion of the sample is discarded, resulting in introduction of 

most of the volatiles onto the column [21, 22]. 

The cold on-column injector eliminates the vaporization proces as it injects 

the sample directly onto the capillary column. The injector is usually kept at 

ambient temperature since immediate sample vaporization is not required.  

The characteristics of a cold on-column injector make it ideal for high boiling 

point compounds as they are directly injected onto the column and are not 

vaporized. In addition, this injection technique is ideal for heat sensitive 

compounds. However, as the whole sample is introduced onto the column, 

non-volatile compounds can result in pronounced column contamination [21, 

23]. 

Our first GC configuration contained a cold on-column injector. Although this 

injector resulted in highly reproducible results, it was not robust due to the 

use of a retention gap. The retention gap was necessary to enlarge the 

lifetime of the analytical column and it was connected to the analytical 

column by a press-fit connection. These connections can result in small 

airleaks if not installed properly or after several injections. In addition, 

matrices such as plasma, whole blood and brain tissue are dirty matrices 

leading to column contamination and thus a high maintenance level of the GC 

configuration. The major field of application of vaporization injectors, 

however, is the analysis of ‘dirty’ samples, because the involatile material is 

deposited inside the injector and not on the column as with cold-on column 

injectors [22]. Therefore, the injector type was changed to a vaporization 

injector. The splitless mode was preferred because of sensitivity issues as 

concentrations of picograms or nanograms per injection volume (1 μl) would 

be monitored. 
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V.3.1.2. Splitless injection optimization 

Choice of injection solvent 

Methanol was used as injection solvent in the beginning of our research as a 

lot of compounds of interest in clinical and forensic applications are easily 

dissolved in this rather polar solvent. Later on, toluene was used for several 

reasons.

First of all, the HFB-derivatives are very soluble in toluene. Secondly, the 

vapour volume generated by methanol is much higher as compared to 

toluene. This vapour volume should be taken into account when optimizing 

the sample introduction as a high vapour volume can lead to backflush of the 

vaporized sample in the injector. This backflush leads to loss of the sample 

and possible injector contamination. According to Grob [22],  the volumes of 

undiluted vapour generated by 1 μl of toluene or methanol, calculated for an 

injector at 250 °C and a carrier gas inlet pressure of 28 kPa are respectively, 

260 and 750 μl. As a result of this large difference in vapour volume, a larger 

volume of the sample redissolved in toluene can be injected as compared to 

methanol before the effect of backflush occurs. In addition, injection of 1 μl 

of toluene leads to a short and homogeneous flooded zone onto the apolar 

stationary phase, while injection of polar solvents leads to a poor wettability 

of the column, thus formation of droplets and a long and inhomogeneous 

flooded zone, which can result in peak broadening or distortion [24]. Finally, 

the boiling point of toluene is 110.6 instead of 64.7 °C, which leads to higher 

possible starting column temperatures when using a cold on-column or 

splitless injection technique, resulting in a shorter analysis time. 

Choice of inlet liner 

A splitless single tapered (taper down) inlet liner (4 mm I.D.) containing 

deactivated glass wool was chosen.  While glass wool can lead to adsorption 

of some compounds, it has several advantages. If dirty samples such as 

plasma, blood and brain tissue extracts are injected, non-evaporating 

material is retained on the glass wool and will not be transferred to the 

column. In addition, deposition of the sample liquid onto the wool prevents 

wild movement through the vaporizing chamber during the vaporization of 

the sample. 
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Injection temperature 

The injector temperature should be high enough to evaporate the compounds 

instantly without any degradation. Excessively low injector temperatures may 

cause incomplete vaporization of the sample, especially for high boiling 

compounds, leading to broad or tailing peaks and discrimination [21, 25].

The injection temperature was varied from 200 till 300 °C for the injection of 

an extracted sample (40 ng/μl for each AD; n=3).  

As depicted in Figure V.3., 200 °C was adequate for full vaporization of most 

compounds. However, for the high boiling compounds, such as trazodone, 

300 °C resulted in a faster evaporation and thus a better sample transfer 

onto the column. Therefore, an injection temperature of 300 °C was chosen 

for our final analysis.

Figure V.3.  Influence of injection temperature on sample transfer onto the 

column. Errorbars indicate ± one standard deviation
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Inlet Pressure  

The inlet pressure during injection is important for a rapid transfer of the 

vaporized sample into the column. A rapid sample transfer results in a high 

efficiency and less sample backflush. According to Grob [22], the vapour plug 

in the liner is steadily growing during sample transfer as a result of diffusion. 

At low gas flow rates, this broadening is more pronounced than the transfer 

to the column. This effect leads to incomplete sample transfer and broad 
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peaks. High carrier gas flows create a rapid sample transfer and a short initial 

sample band onto the column leading to narrow peaks. Therefore, it would be 

interesting to use high carrier gas flows. However, a continuous high carrier 

gas flow will result in high carrier gas linear velocities and thus reduced 

resolution. As a result, the carrier gas pressure is increased during injection, 

and thereafter reduced to an ideal gas flow during separation of the sample 

compounds on the column. This short pressure increase during injection is 

called pulsed injection [21].  

Pulsed splitless injections with very high flow rates improve sample transfer 

dramatically, however, because column flow rates are much less for a gas 

chromatograph with mass spectrometric detection, the improvements with 

pulsed injection are less drastic for these GC-MS configurations [22, 26]. The 

pulsed splitless injection also leads to a shorter residence time in the liner, 

leading to less time for adsorption onto the active sites in the injector and 

less time for degradation of the analytes. 

Pulsed splitless injection can also result in less matrix-induced response 

enhancement. Erney et al. [27] and Poole [28] describe the increase of 

sample transfer from hot vaporizing injectors because of matrix compounds 

as these reduce the thermal stress and mask active sites in the injector 

responsible for adsorption and decomposition of the monitored analytes. This 

is a problem that mostly occurs for thermally labile compounds and 

compounds that are predisposed to adsorb on surfaces encountered by the 

sample during its transfer to the column. Because pulsed splitless injection 

leads to shorter contact time between sample and active sites in the injector 

this matrix enhancement is reduced. In contrast, Grob [22] describes a 

response decrease due to the matrix and residual ‘dirt’ in the injector 

because of evaporation problems. It is thus clear that the matrix-effect in the 

vaporization injector is not straightforward and a pulsed injection will not 

always diminish these problems. Therefore, all our sample calibration will 

occur in the same matrix as the actual samples and the pulsed splitless 

injection was mainly used to provide rapid sample transfer to the column and 

thus lead to sharper peaks in the chromatogram.  

For the optimization of the inlet pressure, a mixture of ADs (40 ng/μl) was 

extracted from plasma and derivatized before injection at various inlet 

pressures from 10.7 (1.3 ml/min He flow) to 30 psi. When comparing the 
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areas at different inlet pressures, an increase of compound transfer onto the 

column is seen for the high boiling compounds as demonstrated in Figure 

V.4. An inlet pressure of 25 psi was selected as this led to less discrimination 

of the high boiling points and to a smaller variation as compared to 30 psi. 

Figure V.4.  Influence of inlet pressure during splitless injection

Errorbars indicate ± one standard deviation

Inlet pressure

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

10,7 20 25 30

pressure (psi)

ar
ea

mean venlafaxine mianserin trazodone

Purge activation time 

During splitless injection, purge and split valves are closed, to ensure that 

the sample mixed with carrier gas will flow into the column. After a certain 

time, the valves are opened and the carrier gas flow that previously flowed 

into the column, will now be swept out of the injector through the slit line. 

The purge activation time, the time whereafter the purge of the splitless 

injector is opened, needs to be chosen carefully as a short purge activation 

time will lead to sample loss, while too long purge activation can result in an 

increased solvent front, a higher ratio of compound degradation and 

adsorption. The best purge activation time depends on the carrier gas flow 

rate and the volatility of the sample compounds. Typical purge activation 

times are 15-90 seconds [21, 22].  

The purge activation and splitless activation time was optimized. ADs (40 ng/ 

μl) were injected after sample preparation with a purge activation time of 

0.5-1.5 minutes. These conditions were chosen by calculating the theoretical 
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purge activation time. The purge activation time should occur when at least 

1.5 volumes of carrier gas have swept the injector. The sweep rate of the 

liner is calculated by deviding the liner volume (1.01 cm3) through the 

column flow rate (2.6 ml/min during injection). The sweep rate is 0.39 

minutes or 23 seconds, thus as a result the purge activation time should be 

at least 35 seconds [21]. A purge activation time of 1 minute was selected 

experimentally, because no gain in peak area was observed after 1.5 minutes 

(Figure V.5.).   

Figure V.5.  Influence of purge activation time during splitless injection (n=3) 

Errorbars indicate ± one standard deviation
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Pulse time 

The pulse time is a parameter that must be optimized when applying a 

pulsed splitless injection type. It is the time whereafter the inlet pressure is 

dropped to the carrier gas pressure necessary for the separation step. During 

injection the pressure is high to ensure almost complete and fast sample 

transfer onto the column. However, this inlet pressure will create a too high 

linear velocity and thus less resolution. Therefore a time is set at which the 

pressure is decreased.  

The pulse time should be 0.1 to 0.5 minutes longer then the purge activation 

time [29]. Therefore, a pulse time of 1.1 and 1.5 minutes was tested during 

the injection of a mixture of ADs (40 ng/μl).  
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Especially for the high boiling compounds an increase in signal was observed 

if the inlet pressure stayed high for 1.5 minutes.  As a result, the pulse time 

was set for that period. 

Figure V.6.  Influence of pulse time during splitless injection (n=3) 

Errorbars indicate ± one standard deviation
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V.3.2. Chromatographic separation

The chromatographic separation of the ADs mixture occurs on a capillary 

column residing in an oven whose temperature is controlled. The vaporized 

compounds move through the column at the same rate as the carrier gas. 

However, as the column wall is coated with a thin film of polymeric material 

(stationary phase) compounds will react in a different way with this film, 

resulting in a slowed down movement of the compounds. This retention onto 

the column will be different for each compound due to their differences in 

chemical structures and physical properties. In addition, the length and 

diameter of the column, the chemical structure and amount of stationary 

phase, the column temperature all will affect the compound retention. As 

result each compound will leave the column at a different time and will be 

measured separately by the detector. 
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V.3.2.1. Column  choice 

The 5% phenylmethylpolysiloxane phase was applied as it is the most 

common general purpose column which is used a lot in clinical and forensic 

routine laboratories. Non-polar stationary phases are preferable to use, 

because they have higher maximum temperatures, are more durable, and 

result in less column bleed. The 5% phenylmethylpolysiloxane phase will 

interact with the ADs through strong dispersion interaction and a weak 

hydrogen bonding interaction. Dispersion is the primary separation 

mechanism and it is related to the intermolecular attraction between the 

compound and stationary phase. The polarization property of the compound 

and its solubility in the stationary phase plays a major role in this type of 

interaction. This interaction can be related to the vapour pressure of the 

compound, or simplified to the boiling points of compounds: the higher the 

boiling point of a compound, the more retention onto the column. Due to the 

5% of phenyl groups onto the methylpolysiloxane backbone, hydrogen 

bonding can also occur with the ADs containing amine functions.  

The capillary column dimensions selected were the standard dimensions. A 

column length of 30 meter results in a good resolution and acceptable 

retention times. The column has a diameter of 0.25 mm, which is the largest 

diameter that can be applied for GC-MS systems because the mass 

spectrometer has a maximum pumping capacity of 1-2 ml/min carrier gas. 

Carrier gas volumes of columns with inner diameters of 0.32 mm or greater 

exceed this flow rate. Columns with internal diameters smaller than 0.25 mm 

result in higher efficiency and resolution, however, the column capacity will 

decrease. A 0.25-mm ID column was chosen as this column still has an 

acceptable efficiency and resolution, but also has a higher capacity range 

[21, 30]. The film thickness of the stationary phase is 0.25 μm, resulting in a 

high efficiency, an acceptable capacity and acceptable column bleed. Thinner 

column films whould result in higher efficiencies and shorter retention times, 

however, slightly thicker films shield compounds from active sites on the 

surface of the tubing, reducing peak tailing [21]. 

In conclusion, a “common” column was used due to practical considerations 

in a routine forensic and clinical laboratory. This column was a 30 m x 0.25 

mm I.D. x 0.25 μm film 5% phenylmethylpolysiloxane column (5-MS J&W 

column from Agilent technologies, Avondale, PA, USA). On this column 



Chapter V: Gas chromatographic-mass spectrometric method development 

- 159 - 

several analyses can be performed without a column switch. This reduces the 

number of columns needed, and thus reduces complexity and cost. Of course 

some dimensions could be better to create a higher throughput 

(filmthickness, I.D., column length). However, the column that was chosen 

provides acceptable retention, separation and peak shape. 

V.3.2.2. Choice of carrier gas and flow rate 

Helium was provided as carrier gas for the GC-MS configurations in our 

laboratory. A constant helium flow rate was prefered over a constant 

pressure of the carrier gas during analysis due to the sensitivity of mass 

selective detectors to flow changes. A constant flow helps to establish a 

constant pressure in the mass ion source, thereby normalizing ion 

fragmentation patterns across the range of column temperatures [31].   

The flow rate was chosen according to the Van Deemter curve and the speed 

of analysis. The recommended average linear velocity of helium in our 

analytical column (30 m, 0.25 μm film, 0.25 mm I.D.) ranges from 30-40 

cm/sec [21]. Therefore, the flow rate was varied from 0.7-1.6 ml/min. A flow 

of 0.7 results in a linear velocity of 31 cm/sec for our analytical column, 

which is near the minimum of the Van Deemter curve, leading to the best 

separation power. A flow of 1.6 ml/min results in a linear velocity of 47 

cm/sec and leads to shorter retention times onto the column, but results in 

less resolution.  Finally, a constant flow rate of 1.3 ml/min was chosen as this 

resulted in an acceptable separation for most compounds and an exceptable 

analysis time for the late eluting compounds such as trazodone. 

V.3.2.3. Optimization of temperature program 

In common practical gas chromatographic separations using splitless 

injection as sample introduction, the sample is introduced at a column 

temperature below the boiling point of the solvent. Under these conditions, 

the injected vaporized sample will condense and form a liquid droplet on the 

column, which then forms a flooded zone that is short and homogeneous. As 

the column temperature is increased, the solvent starts to evaporate from 

the front of the flooded zone. Eventually, only a small droplet of solvent 

remains at the end of the flooded zone which traps the highly volatile 

compounds. When the solvent and highly volatile solutes have started their 
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chromatographic process, the moderately volatile and high-boiling 

compounds are distributed over the length of the original flooded zone. They 

are dissolved in the stationary phase as long as the column temperature is 

low. As the column temperature is increased, they will evaporate, and 

chromatography will start over the length of the flooded zone. The length of 

this zone will determine the initial band width: short flooded zones mean 

small initial bands and no broadening. Long and inhomogeneous zones mean 

large initial bands and peak broadening. For an effective solvent effect of the 

low-boiling compounds, the initial oven temperature should be at least 20 °C 

lower than the boiling point of the solvent. For effective thermal focusing of 

high-boiling compounds, the initial oven temperature should be at least 80 °C 

lower than the elution temperature of the solutes [24].  

In our case, an initial column temperature of 90 °C was chosen to create a 

small flooded zone after injection of 1 μl of toluene, as this temperature is 

20°C lower than the boiling point of toluene.  In addition, most compounds 

start to elute at about 180 °C, and this is 90 °C higher than the starting 

conditions, resulting in a thermal focusing effect of these compounds. 

The dependence of GC retention on vapour pressure means that mixtures 

containing compounds with a wide range of boiling points cannot be 

separated satisfactory in an isothermal run. The more volatile components 

may be well enough resolved, but the higher boiling materials will only be 

eluted with long retention times and very broad peaks [30]. Due to the 

choice of the temperature gradient the analysis time was reduced and a 

better peak shape and detection was observed for the late eluting compounds 

such as paroxetine and trazodone [32]. Several temperature gradients were 

applied for the ADs mixture and the final temperature program was as 

follows: the initial column temperature was set at 90 °C for 1 min, ramped at 

50 °C/min to 180 °C where it was held for 10 min, whereafter the 

temperature was ramped again at 10 °C/min to 300 °C (5’). However, 

chromatographic problems were observed for trazodone during further 

analysis and therefore the run-time during validation was shortend by cooling 

the column down directly after it reached the temperature of 300 °C. 

Trazodone did not elute in a reproducible way from the column (sometimes it 

eluted, sometimes not) probably due to adsorption onto the liner, inlet seal, 

and onto the aging column.  
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Figure V. 7. Chromatographic separation of 13 new generation ADs and 8 of 

their metabolites 

Compounds indicated in red are not fully separated.  Compounds in order of elution are 
venlafaxine, m-cpp, norfluoxetine, viloxazine, fluvoxamine, fluoxetine, mianserin, 
mirtazapine, melitracen, DMMia, DMMir, reboxetine, DMSer, DMMap maprotiline, 
sertraline, DDMC, DMC, paroxetine, and trazodone 
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Figure V.7. shows the compounds in order of their retention times. Not all 

compounds are base-line separated. Viloxazine and desmethylfluoxetine 

coelute, while desmethylsertraline, desmethylmirtazapine, reboxetine and 

citalopram elute very close to each other. Maprotiline and sertraline also have 

a slight overlap. Although a base-line separation is still state of the art, due 
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to the selectivity of the mass spectrometer it is not necessary. The monitored 

ions for each ADs are specific and different from the overlapping compounds. 

Therefore, the separation problems do not result in identification or 

quantification problems. In addition, when analyzing ‘real’ samples, the 

problem of co-eluting peaks will be rather rare. 

V.3.3. Internal standard choice 

Choosing the appropriate internal standard is an important aspect to achieve 

acceptable method performance. Ideally, isotopically labelled internal 

standards for all analytes should be used, but only fluoxetine-d6 oxalate, 

maprotiline-d3, mianserin-d3, and paroxetine-d6 maleate were commercially 

available during our method development period. However, before a 

deuterated analogue can be used as internal standard, the mass spectrum 

must be evaluated for ‘cross’ contribution. Due to ionization, the deuterated 

I.S. can produce the same fragment ions as the parent compound, leading to 

wrongful quantification.  

Table V.1. Choice of internal standard 

Fluoxetine-d 6 Mianserin-d 3 Paroxetine-d 6

Fluoxetine Mianserin Paroxetine 
DMFluox DMMia 

Mirtazapine 
DMMi
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Maprotiline-d3 was not useful as it fragmented easily in EI-mode to the ion 

with m/z 445, which was the molecular and quantifier ion of maprotiline. 
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Therefore, only 3 I.S.s were used for the validation process. The I.S.s used, 

were selected on structural analogy (deuterated versus their cold products), 

retention time, and on base of the response ratio of the compound versus 

I.S. and its variation. In addition, for the metabolites always the same I.S. 

was used as for the parent compound.  A concentration of 200 ng/ml of each 

I.S. was chosen as this concentration was in the mid range of the monitored 

therapeutic window. 

V.3.4. Conclusion: gas chromatographic method 

During optimization of the gas chromatographic method a lot of attention was 

paid to the sample introduction. Splitless vaporization injection was chosen 

due to sensitivity and robustness concerns. However, as incomplete sample 

transfer from the injector liner to the column, discrimination, and poor peak 

focussing on the top of the column are the most widely observed problems in 

splitless injections, this injection type was evaluated concerning inlet 

temperature, purge activation time and inlet pressure to ensure minimal 

negative effects. In order to accelerate and maximize the sample transfer, a 

pulsed splitless injection was selected in which the high inlet pressure was 

used to increase the mass transfer to the column and to reduce the band 

spreading. In addition, an initial oven temperature was selected 20 °C lower 

than the boiling point of the solvent, resulting in accelerated sample transfer 

due to the vacuum created upon recondensation of the solvent in the column 

and a better peak shape due to solvent trapping. The discrimination of high 

boiling compounds was diminished due to optimization of the injection 

temperature, the purge activation time and an increase in inlet pressure. 

The separation occurred on a non-polar 5% phenylmethylpolysiloxane column 

with general purpose dimensions to avoid GC-MS downtime due to column 

switching in the forensic or clinical routine laboratory. Although not all 

compounds were base-line separated, the choice of column and temperature 

program resulted in adequate separation and an acceptable retention time for 

most compounds. Although a lot of parameters were optimized for high 

boiling point compounds such as trazodone, this compound did not lead to 
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reproducible chromatographic results. Trazodone demonstrates adsorption 

probably onto an older column, a ‘dirty’ liner and probably onto the inlet seal. 

Therefore, this compound was not monitored during validation. 

The final gas chromatographic method conditions were as follows: the pulsed 

splitless injection temperature was held at 300 °C, while purge time and 

injection pulse time were set at 1 and 1.5 min, respectively. Meanwhile, the 

injection pulse pressure was 25 psi and 1 μl of the sample, redissolved in 50 

μl of toluene, was injected. Ultrapure Helium with a constant flow of 1.3 

ml/min was used as carrier gas. Chromatographic separation was achieved 

on a 30 m x 0.25 mm i.d., 0.25-μm J&W-5ms column from Agilent 

Technologies (Avondale, PA, USA). The initial column temperature was set at 

90 °C for 1 min, ramped at 50 °C/min to 180 °C where it was held for 10 

min, whereafter the temperature was ramped again at 10 °C/min to 300°C. 

The separation of the ADs and their active metabolites was achieved in 24.8 

minutes. 

V.4. Mass spectrometric parameters 

Once the compounds are separated on the GC capillary column, the 

vaporized compounds leave the column and enter the mass selective detector 

(MSD). The mass analyzer will ionize the sample, filter the ions and finally 

detect the ions. The mass analyzer consists of three essential parts: the ion 

source, the quadrupole and the detector (Figure V.8.).  

The sample molecules will first enter the ion source, which is the part of the 

analyzer where sample molecules are ionized and fragmented. There are 

different types of ion sources as vaporized sample compounds can be ionized 

and fragmented using electron ionization or chemical ionization. An ion 

source that operates by electron ionization (EI) will ionize and fragment 

sample molecules through high energy electrons (70 eV) emitted by a 

filament. In the chemical ionization (CI) modes the energy of the 

fragmentation reaction is diminished by adding a reaction gas such as 

methane (133 Pa) into the ion source. This reagent gas is ionized in electron 

ionization to the primary ions CH4
+. and CH3

+. These primary ions react with 
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the excess of methane to give secondary ions which will then react with the 

sample molecules [33]. Thus in chemical ionization modes bimolecular 

processes are used to generate analyte ions and involve the transfer of an 

electron, a proton or other charged species between the reactants. After the 

ionization step in EI or CI, the voltage on the repeller will then push the ions 

through several electrostatic lenses that will lead the ions in a thight beam 

towards the mass filter (Figure V.9.).  

Electron ionization is the traditional method as toxicological libraries use this 

70 eV EI mode. However, EI mass spectra suffer from frequent absence of 

the molecular ion due to extensive fragmentation. Chemical ionization is a 

softer ionization technique and often results in highly abundant quasi-

molecular ions.

Figure V.8. Mass analyzer consisting of an ion source, quadrupole mass filter, 

detector and heaters (adapted from Agilent Technologies) 
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Figure V.9. Disassembly of an EI ion source (adapted from Agilent 

technologies) 

Positive ion 
fragments to 

mass filter 
Electrons (70 ev)

Sample molecules from 
GC column 

The mass filter, which is a quadrupole in our GC-MS configuration, filters and 

separates ions according to their mass-to-charge ratio (m/z). The quadrupole 

consists of four hyperbolic surfaces creating a complex electric field 

necessary for mass selection. The mass filter can work in scan mode, 

monitoring a whole range of m/z values, or in selected ion monitoring (SIM) 

mode, whereby only a few selected m/z values are measured (Figure V.10.).  

Once the fragments pass the quadrupole, they reach the detector which 

consists of a high energy conversion dynode coupled to an electron 

multiplier. The high energy dynode attracts the positive ions and when a 

positive ion hits the dynode, electrons are emitted. These electrons are 

attracted to the positive electron multiplier horn, in which they cascade 

through, liberating more and more electrons as they go. At the end of the 

horn, the current generated by the electrons is carried towards a signal 

amplifier board and towards the data processor (Figure V.10.). 
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Figure V. 10. Fragment selection through mass filter and detection  

1: quadrupole mass filter; 2: high energy dynode; 3: electron multiplier 
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V.4.1. Optimization of mass selective detector parameters 

The mass parameters for the electron ionization mode (EI) were not 

optimized, as the ‘traditional’ conditions in which the spectra of the 

commercially available libraries were obtained were chosen. In EI, the mass-

selective detector temperature conditions were 230 °C for the EI-source, 150 

°C for the quadrupole and 300 °C for the transferline, whereas an electron 

voltage of 70 eV was used. 

For the chemical ionization modes another ion source was used and 

parameters such as temperature of the source and quadrupole were 

optimized. The manufacture guidelines were followed and the abundances of 

the quasi-molecular ions were compared. The mass selective detector 

temperature conditions in positive ion chemical ionization (PICI) were as in 

EI, except for the ion source temperature, which was 250 °C. The methane 

reagent gas entered the ion source at a constant flow of 1 ml/min. For the 

MSD conditions in negative ion chemical ionization (NICI) special attention 

was paid to optimize ion source temperature and ion focus potential as these 

parameters have the most effect on the abundance of the molecular ions in 
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NICI mode [34]. For NICI-mode the transferline was kept at 280 °C, the ion 

source at 150 °C and the quadrupole at 106 °C, with an electron energy of 

170 eV. The electron emission (100 μA) was optimized to give best peak 

intensity, as this parameter is compound specific. Methane was used as 

reagent gas with a flow of 2 ml/min.  

Parameters for the repeller, ion focus and entrance lens were not optimized, 

but adapted as indicated by the weekly tuning reports. 

V.4.2. Spectra of the derivatized ADs after electron ionization 

The result of the impact of the high-energy electron beam onto molecules in 

vapour fase results in a spectrum of positive ions separated on the basis of 

mass/charge (m/z). The positive fragment ions in combination with the 

molecular ion will be plotted against their abundance and these spectra 

exhibit a characteristic pattern for each specific compound. The spectra 

obtained in the electron ionization (EI) mode give structural information and 

it is the traditional ionization technique applied in chromatographic methods 

for comprehensive screening procedures in clinical and forensic toxicology. 

Because of the robustness of the system, ionization occurs very precise, 

allowing identification of unknown compounds by comparison of their mass 

spectrum with a large collection of reference mass spectra in commercially 

available libraries.  

In this paragraph, the spectra for the different (heptafluorobutyrylated) ADs 

obtained in EI are shown. The spectra were obtained in scan mode, and the 

selected fragments (V.4.5., Table V.1.) for the selected ion mode will be 

discussed. 

V.4.2.1. Venlafaxine and O-desmethylvenlafaxine 

The fragments selected for venlafaxine were m/z 259, the molecular ion of 

the dehydrated venlafaxine molecule, 121 and 58. The last two fragments are 

not specific as demonstrated in Figure V. 11.  The fragment with m/z 58 was 

chosen as quantifier due to its high abundance. HFBI derivatization of O-

demethylvenlafaxine leads to a dehydrated product and a derivatized 
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dehydrated product. Both of these products are severly fragmented in EI, 

especially to the highly abundant m/z 58 ion that is typical for dimethylated 

tertiary amines. 

Figure V.11. Spectra and fragmentation pattern of venlafaxine (A) and O-

desmetylvenlafaxine (B) after HFB-derivatization 

- 169 - 

A

B

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 2500

200000

400000

600000

800000

1000000

1200000

1400000

m/z-->

Abundance

58

10777 91 157145131120 186 20067 171 245226214

60 80 100 120 140 160 180 200 220 240 260
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

m/z-->

Abundance

 58

12191 214159 17114177 200102 185 259131

N

MeO

N
CH2

CH2

MeO

N

MeO

OH

m/z = 259

. +

+

m/z = 277 m/z = 58

+

m/z = 121

N

OH

OH
N
CH2

N

OH
m/z = 263

+

m/z = 58
m/z = 245

+.



Chapter V: Gas chromatographic-mass spectrometric method development 

- 170 - 

V.4.2.2. Viloxazine 

Heptafluorobutyrylated viloxazine has a high abundant molecular ion at m/z 

433 even when using EI. Fragment m/z 296 is formed by a heterolytic 

cleavage of the O-C binding indicated by the red trace in Figure V.12. The 

fragment m/z 240 is probably a result of two homolytical cleavages 

(demonstrated by the green trace) due to the oxygen and nitrogen 

heteroatoms in the ringstructure, finally resulting in a positive charge on the 

nitrogen atom. 

Figure V.12. Spectrum and fragmentation pattern of HFB-viloxazine
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V.4.2.3. Fluvoxamine

Figure V.13. Spectra and fragmentation pattern of HFB-fluvoxamine 
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For heptafluorobutyryl-fluvoxamine the molecular ion m/z 514 was selected 

because of the selectivity. In addition, the fragments 258 and 240 were 

chosen based on their m/z values and for the abundance of the two 

fragments. Both fragment ions, m/z 258 and 240, were formed by a 

heterolytic cleavage as indicated in Figure V.13. Ion m/z 240 is not that 

specific as it consists largely of the HFB-function, thus a lot of derivatized 

products could lead to such a fragment. However, ions m/z 226 (fragment 

240 amu – CH2) and ion 198 (HFB) are also related to the derivatization 

product. No selectivity problems, however, occurred during validation of this 

method with the selected ions for fluvoxamine.  In addition, according to the 

NCCLS-guidelines [35], one of the selected ions may originate from the 

derivatization product. 

V.4.2.4. Fluoxetine, fluoxetine-d6 and desmethylfluoxetine 

For heptafluorobutyrylated fluoxetine, the m/z 344 fragment was chosen as 

quantification ion because it has a relative high abundance and is more 

specific than ion m/z 240 or 117. The molecular ion is only seen in low 

abundance. Ion m/z 344 is a result of a heterolytic cleavage, in which a pair 

of electrons ‘moves’ together towards the charged oxygen atom. The 117 

amu fragment is achieved by a McLafferty rearrangement followed by a 

heterolytic cleavage leaving the charge on the carbon after the cleavage of 

the C-O bound (Figure V.14. A). Fragment m/z 117 was preferred over 240 

as it gave more structural information, as fragment m/z 240 mostly 

contained the HFB-part. In addition, ion m/z 117 resulted in a higher 

abundance. The fragmentation pattern of derivatized fluoxetine-d6 results in 

the same fragments but with 6 amu difference due to the deuterated 

functions. Fragmentation of desmethylfluoxetine occurs in the same manner 

as for its parent compound. 



Chapter V: Gas chromatographic-mass spectrometric method development 

Figure V.14. Spectra and fragmentation patterns of heptafluorobutyrylated 

fluoxetine (A), fluoxetine-d6 (B) and desmethylfluoxetine (C) 
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V.4.2.5. Mianserin, mianserin-d3 and desmethylmianserin 

Mianserin and deuterated mianserin have the same fragment ions, only their 

molecular ion has a difference of 3 amu due to the deuterium atoms. 

Fragment m/z 193 and 220 are products of heterolytic and homolytical 

cleavages due to the nitrogen atoms. In the spectrum of desmethylmianserin 

ion m/z 193 is also the base peak. However, the derivatized metabolite has a 

highly abundant molecular ion of m/z 446 and is fragmented to ion m/z 249 

(Figure V.15) 
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Figure V.15. Spectra and fragmentation patterns of mianserin (A), mianserin-

d3 (B) and HFB-desmethylmianserin (C) 
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C
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V.4.2.6. Mirtazapine and desmethylmirtazapine 

Figure V.16. Spectra and fragmentation patterns of mirtazapine (A), and 

HFB-desmethylmirtazapine (B) 
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B

Mirtazapine is not derivatized and the molecular ion is cleary observed in its 

EI spectrum. Fragments m/z 195 and 208 are observed due to heterolytic 

cleavages next to the nitrogen atoms and homolytic cleavage of the ß-bound 

of the nitrogen atoms. Desmethylmirtazapine is derivatized with HFBI and the 
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fragmentation pattern is also determined by cleavage of the ring structure 

due to the N-atoms.  

V.4.2.7. Melitracen

Melitracen is extensively fragmented in EI to the unspecific ion m/z 58. 

Figure V.17. Spectrum and fragmentation pattern of melitracen 
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V.4.2.8. Reboxetine

For HFB-reboxetine the molecular ion of 509 amu was selected as well as 

fragment m/z 371, due to its selectivity and relative high abundance, and 

m/z 138. Fragment 91 amu was not selected as this ion represents a 

tropylium ion and is not specific. Fragment m/z 371 was obtained from a 

heterolytic cleavage as indicated in Figure V.18, while fragment m/z 138 was 

obtained after a rearrangement of a H-atom. 
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Figure V.18. Spectra and fragmentation pattern of HFB-reboxetine 
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V.4.2.9. Citalopram, desmethylcitalopram and didesmethylcitalopram

Citalopram was highly fragmented to ion 58 amu, which is common for 

dimethyl tertiary amines. In addition, due to C-C cleavage next to the O-

heteroatom a stable 238 amu fragment is formed. This fragment is also 

noticed in the spectra of desmethyl- and didesmethylcitalopram. In addition, 

for the metabolites of citalopram a loss of 18 amu, thus water, was observed 

in the spectra.  
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Figure V.19. Spectra and fragmentation patterns of citalopram (A), and its 

heptafluorobutyrylated metabolites desmethylcitalopram (B) and dides-

methylcitalopram (C) 
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C

V.4.2.10. Maprotiline and desmethylmaprotiline

Maprotiline was monitored by the low abundance molecular ion, the m/z 445 

fragment, which is a result of a retro-Diels-Alder rearrangement and a m/z 

191 fragment resulting from the rearrangement and a homolytic cleavage of 

the ß-bond from the 3-ring complex. For desmethylmaprotiline the same 

fragmentation pattern occurs. 
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Figure V.20. Spectra and fragmentation patterns of HFB-maprotiline (A) and 

HFB-desmethylmaprotiline (B)
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V.4.2.11. Sertraline and desmethylsertraline

Sertraline contains two chlorine atoms and therefore isotopes were 

monitored, viz. m/z 501 and 503. The most specific high abundant ion was 

m/z 274 and is a result of a McLafferty rearrangement. For 

desmethylsertraline, the same fragmentation pattern and isotopes were 

monitored (m/z 274, 487, 489) 

Figure V.21. Spectra and fragmentation patterns of derivatized sertraline (A) 

and desmethylsertraline (B)
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V.4.2.12. Paroxetine and paroxetine-d6

The fragmentation of paroxetine and paroxetine-d6 occurs in the same way. 

Fragments m/z 388 and 394 are products of a heterolytic cleavage next to 

the O atom. The m/z 138 fragment is a result of a ß-bond cleavage next to 

the substituted aromatic ring. 

Figure V.22. Spectra and fragmentation patterns of derivatized paroxetine 

(A) and paroxetine-d6 (B)
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B

V.4.2.13. Trazodone and m-chlorophenylpiperazine 

Ionization and fragmentation of trazodone and its heptafluorobutyrylated 

metabolite occur through heterolytical and homolytical cleavage due to the 

nitrogen atoms in the piperazine ring. For trazodone, the ‘ion-cluster’ around 

the base peak of 205 amu is caused by several fragments as indicated in 

Figure V.23. Fragment 207 amu probably results from fragment m/z 209 by 

loss of 2 hydrogen atoms in the piperazine ring to ensure stability. Because 

of the chlorine atom, isotope peaks can occur, however, the fragmentation 
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pattern that would result in a fragment with the chlorine atom and a m/z 205 

(207) was not found. 

Figure V.23. Spectra and fragmentation patterns of trazodone (A) and HFB-

m-chlorophenylpiperazine (B)
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V.4.3. Spectra of the derivatized ADs after positive ion chemical ionization  

Electron ionization led to extensive fragmentation of several ADs. Therefore, 

positive ion chemical ionization (PICI) was applied as this ionization 

technique leads to less fragmentation and often gives molecular mass 

information. For this reason, PICI could provide more selectivity. 

Figure V.24. Positive ion chemical ionization reaction using methane gas [36] 

Formation of major reagent gas ions when using methane gas 
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Addition

C2H5
+ + M � [M— C2H5]+         m/z = M+29 

C3H5
+ + M � [M— C3H5]+           m/z = M+41 

Methane is used as reagent gas in our chemical ionization MSD configuration. 

At first, the methane gas is ionized through electron ionization due to 

electrons emerging from the filaments of the ion source. This electron impact 

reaction combined with ion-molecule reactions results in the creation of 
- 188 - 
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several reagent gas ions (CH5
+ and C2H5

+). To ensure a high reaction yield 

and reproducible ionization condition, the pressure in the CI-ion source is set 

at about 133 Pa. The last step of the ionization process is the reaction of the 

reagent gas ions with the sample molecules, resulting in stable sample ions 

(Figure V.24.).  

For a reaction to occur between a reactant ion and a sample molecule, the 

reaction must be exothermic. The more exothermic a reaction is, the more 

fragmentation will occur. There are three types of interaction between the 

methane reagent gas ions and the sample molecules in the ion source: 

proton transfer, hydride abstraction, and addition.  

Proton transfer occurs if the proton affinity of the analyte is greater than that 

of the reagent gas. In that case, the protonated reagent gas will transfer its 

proton onto the analyte, forming a positively charged analyte ion with an 

additional weight of 1 amu. Because methane has a low proton affinity (127 

kcal/mol) most of the analytes will have a higher proton affinity and the 

proton transfer reaction will be exothermic.  

During the formation of reagent ions, various reactant ions can be formed 

that have high hydride-ion affinities. If the hydride-ion affinity of a reactant 

ion is higher than the hydride-ion affinity of the ion formed, then the analyte 

will loose a H-. This process is called hydride abstraction and usually occurs 

for saturated hydrocarbons when using methane gas.

However, for many analytes, proton-transfer and hydride-abstraction 

chemical ionization reactions are not thermodynamically favourable. In these 

cases, reagent gas ions are often reactive enough to combine with the 

analyte molecules by condensation or association. These reactions are the 

addition reactions (Figure V.24.).

In this paragraph, the spectra for the different (heptafluorobutyrylated) ADs 

obtained in PICI with methane gas are shown. The spectra were obtained in 

scan mode, and the fragments chosen for the selected ion mode will be 

discussed. 
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V.4.3.1. Venlafaxine and O-desmethylvenlafaxine

Dehydrated venlafaxine (A) and O-desmethylvenlafaxine (B indicated in red) 

are ionized in the same way.  Protonation, hydride abstraction and addition of 

C2H5
+ result in ions with m/z 260 (246), 258 (244) and 288 (274), 

respectively. The same reactions are also observed for heptafluoro-

butyrylated O-desmethylvenlafaxine (C indicated in green), leading to ions 

with m/z 442, 440, and 470. 

Figure V. 25. PICI spectrum and fragmentation of venlafaxine (A, black trace) 

and dehydrated O-desmethylvenlafaxine (B, red) and heptafluorobutyrylated 

ODMV (C, green) 
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V.4.3.2. Viloxazine

Although PICI is a soft ionization technique, viloxazine is still fragmented to 

ion m/z 296 as with EI. In addition, a fragment m/z 414 is noticed which 

demonstrates the loss of a fluorine atom from the derivatization moiety. In 

addition to these fragmentation reactions, the protonation of the viloxazine 

molecule is also observed. 

Figure V. 26. PICI spectrum and fragmentation of HFB-viloxazine 

OO FF F
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V.4.3.3. Fluvoxamine

Heptafluorobutyrylated fluvoxamine is fragmentated to m/z 258 and m/z 

495, respectively, due to heterolytic cleavage of the N-O bound and a C-F 

bound. Due to a protonation reaction the quasi-molecular ion m/z 515 is 

formed.
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Figure V. 27. PICI spectrum and fragmentation of HFB-fluvoxamine 

+
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V.4.3.4. Fluoxetine, fluoxetine-d6 and desmethylfluoxetine

Even in PICI, the molecular ion of heptafluorobutyrylated fluoxetine, 

fluoxetine-d6 and desmethylfluoxetine is not observed. The addition of C2H5
+

is thermodynamically favourable and leads to m/z 534 and 540 for fluoxetine 

and fluoxetine-d6, respectively. Other reactions are fragmentation reactions 

as in EI. These reactions are heterolytical cleavages. 
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Figure V. 28. PICI spectra and fragmentation patterns of heptafluoro-

butyrylated fluoxetine (A), fluoxetine-d6 (B) and desmethylfluoxetine (C)  
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V.4.3.5. Mianserin, mianserin-d3 and desmethylmianserin 

Figure V. 29. PICI spectra and fragmentation patterns of mianserin (A), 

mianserin-d3 (B) and HFB-desmethylmianserin (C)  
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For analytes such as mianserin, PICI leads to a proton transfer and addition 

reaction, and not to severe fragmentation. The reagent gas ions C2H5
+ and 

C3H5
+ are added to the mianserin and deuterated mianserin molecule. For 

heptafluorobutyrylated desmethylmianserin protonation and addition also 

occurs. In addition, fragmentation with a loss of a fluorine atom is also 

observed resulting in an ion with m/z 427. 

V.4.3.6. Mirtazapine and desmethylmirtazapine

For mirtazapine and desmethylmirtazapine the same reactions are noticed as 

for mianserin and desmethylmianserin due to their structural analogy.  

Figure V. 30. PICI spectra and fragmentation patterns of mirtazapine (A), and 

HFB-desmethylmirtazapine (B)  

+
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V.4.3.7. Melitracen

Melitracen undergoes protonation, addition and hydride abstraction resulting 

in ions with m/z 292, 320 and 290, respectively.  
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Figure V. 31. PICI spectrum and fragmentation of melitracen 
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V.4.3.8. Reboxetine 

Reboxetine is fragmentated in PICI to ion m/z 372 and 490 due to heterolytic 

cleavage of the bound next to a heteroatom. For ion m/z 372 the heterolytic 

cleavage is followed by a loss of water. In addition to these fragments, the 

protonated quasi-molecular ion 510 amu is also noticed with acceptable 

abundance in the mass spectrum. 
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Figure V. 32. PICI spectrum and fragmentation of HFB-reboxetine 

+
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V.4.3.9. Citalopram, desmethylcitalopram and didesmethylcitalopram

Ionization in positive ion chemical ionization mode of citalopram occurs by 

protonation, addition of C2H5
+ reagent gas ion and abstraction of a fluorine 

atom. Desmethylcitalopram and didesmethylcitalopram ionize through 

protonation and addition. Moreover, loss of water (-18 amu) and protonation 

result in fragment ions with m/z 489 and 475.  
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Figure V. 33. PICI spectra and fragmentations of citalopram (A), HFB-

desmethylcitalopram (B) and HFB-didesmethylcitalopram (C) 
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V.4.3.10. Maprotiline and desmethylmaprotiline

Ionization of heptafluorobutyrylated maprotiline and its metabolite are a 

result of protonation, and losses of fluorine atoms as indicated in Figure V.34. 

For HFB-desmethylmaprotiline, a fragment of m/z 431 is observed due to a 

retro-Diels-Alder rearrangement. 

Figure V. 34. PICI spectra and fragmentations of heptaflurobutyrylated 

maprotiline (A) and desmethylmaprotiline (B)  
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V.4.3.11. Sertraline and desmethylsertraline

Sertraline and desmethylsertraline are still fragmented in positive ion 

chemical ionization mode. In PICI the most abundant fragment is the same 

as for EI, however, the fragment is protonated leading to an m/z-value of 

275. The fragment m/z 277 is due to the isotopes of the chlorine atoms on 

the structure. The calculated molecular weight of HFB-sertraline and HFB-

desmethylsertraline is 502 and 488, respectively. Therefore ions m/z 501 and 

487 are the quasi-molecular ions after hydride extraction.  

Figure V. 35. PICI spectra and fragmentations of heptafluorobutyrylated 

sertraline (A) and desmethylsertraline (B)  
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V.4.3.12. Paroxetine and paroxetine-d6

Protonation and addition of paroxetine during positive ion chemical ionization 

leads to ion m/z 526 and 554. Loss of 19 amu due to loss of a fluorine atom 

results in ion m/z 506. These reactions also occur for paroxetine-d6, resulting 

in ions with 6 amu more than nondeuterated paroxetine. 

Figure V. 36. PICI spectra and fragmentation patterns of heptafluoro-

butyrylated paroxetine (A) and paroxetine-d6 (B)
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V.4.3.13. Trazodone and m-chlorophenylpiperazine 

Ionization of trazodone occurs through protonation, addition and 

fragmentation.  Fragmentation occurs at the C-Cl bound, resulting in a loss of 

a chlorine atom (Figure V.37). Heptafluorobutyrylated m-chlorophenyl-

piperazine is protonated and fragmented by loss of fluorine atoms.   

Figure V. 37. PICI spectra and fragmentations of trazodone (A) and HFB-m-

cpp (B)
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V.4.4. Spectra of the derivatized ADs after negative ion chemical ionization 

Negative ion chemical ionization (NICI) is a soft ionization technique and 

therefore it leads to less fragmentation as compared to EI. In addition, NICI 

can improve sensitivity compared to PICI or EI with a factor 10 to 1000 times 

depending on the number of electronegative moieties, either present in their 

original structure or obtained after derivatization [37, 38]. Because most of 

the ADs were derivatized with heptafluorobutyrylimidazole, NICI was 

validated as ionization technique to improve the detection limit. 

Negative ion chemical ionization occurs in the same chemical ionization 

source as in the PICI mode. In the CI plasma, both positive and negative ions 

are formed simultaneously. The negative quasi-molecular ions that are 

formed are detected because the MSD is operating with reversed polarity of 
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all the analyzer voltages, thus extracting negative ions from the source and 

not the positive ions as in PICI or EI.  

Figure V.38. Negative ion chemical ionization reaction using methane gas 

Formation of reagent gas ions when using methane gas 

CH4 + e-
(230 eV)  � CH4

+. + 2 e-
(thermal)

Formation of sample ions 

Electron capture: 

MX + e-
(thermal 0-2 eV) � MX.-

Dissociative electron capture: 

MX + e-
(thermal 0-15 eV) � M. + X-

Ion pair formation 

MX + e-
(thermal) � M+ + X- + e-

The reagent gas, methane in our case, is bombarded with high energy 

electrons from a filament. As a result, lower energy electrons called thermal 

electrons are produced and these electrons are then captured by the sample 

analytes. There are several chemical mechanisms for negative ion chemical 

ionization. The three most common mechanisms are electron capture, 

dissociative electron capture, and ion pair formation. The electron capture 

reaction is the primary mechanism in negative ion chemical ionization. When 

the sample molecule fragments or dissociates afer the electron capture 

reaction, the reaction is called dissociative electron capture. The dissociative 

electron capture reaction leads to a lower quasi-molecular ion and sensitivity 

as compared to the electron capture reaction. Ion pair formation seems 

similar to dissociative electron capture, however, the electron is not captured 

by the created fragments. During ion pair formation, the molecule fragments 

in such way that the electrons are distributed unevenly and positive as well 

as negative ions are generated. Another unwanted reaction can occur during 

NICI: ion-molecule reactions. These reactions compete with the electron 
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capture reactions, resulting in decreased sensitivity. Ion-molecule reactions 

are a result of traces of water, oxygen or other contaminants that are ionized 

by electrons from the filament and react with the sample molecules through 

addition. 

In the following paragraph, the spectra for the different (heptafluoro-

butyrylated) ADs obtained in NICI with methane gas are discussed. The 

spectra were obtained in scan mode, and the fragments chosen for the 

selected ion mode will be discussed.  

V.4.4.1. Venlafaxine and O-desmethylvenlafaxine 

Dehydrated venlafaxine and O-demethylvenlafaxine are not detected in NICI 

mode as they do not contain the highly electronegative moiety containing 7 

fluorine atoms after the heptafluorobutyrylimidazole derivatization 

(IV.4.3.1.). ODMV can be derivatized, however, this derivatization reaction is 

irreproducible as discussed in chapter IV. The spectrum of derivatized ODMV 

in NICI mode shows extensive fragmentation to the heptafluorobutyryl-

reagent fragment (Figure V.39.). 

Figure V.39. NICI spectrum and fragmentation of HFB-ODMV  
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V.4.4.2. Viloxazine

Heptafluorobutyrylated viloxazine shows a very low abundant molecular ion 

in NICI. Several losses of 20 amu are observed resulting in fragments with 

m/z 413, 393 and 373. These losses indicate a loss of hydrogen and a 

fluorine atom. 

Figure V. 40. NICI spectrum and fragmentation of HFB-viloxazine 
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V.4.4.3. Fluvoxamine

Figure V. 41. NICI spectrum and fragmentation of HFB-fluvoxamine 
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No electron capture reaction is observed for fluvoxamine in NICI mode. 

Dissociative electron capture reactions result in ions with m/z 494 (loss of 

HF), 256 and 237. The last two ions demonstrate fragmentation even in the 

‘soft’ NICI ionization technique. 

V.4.4.4. Fluoxetine, fluoxetine-d6 and desmethylfluoxetine 

The molecular ion of fluoxetine, fluoxetine-d6 and desmethylfluoxetine is 

observed and is a result of the electron capture reaction during negative 

ionization. For fluoxetine and fluoxetine-d6 two times a loss of HF is observed 

in addition to the molecular ion.  For desmethylfluoxetine, again, a loss of HF 

is observed together with a fragment m/z 329. 
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Figure V. 42. NICI spectra and fragmentations of heptafluorobutyrylated 

fluoxetine (A), fluoxetine-d6 (B) and desmethylfluoxetine (C) 
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V.4.4.5. Mianserin, mianserin-d3 and desmethylmianserin 

Mianserin and mianserin-d3 are not derivatized and are not detected in NICI 

mode.  Desmethylmianserin demonstrates losses of 20 amu, thus loss of HF. 

Figure V. 43. NICI spectra and fragmentation of HFB-desmethylmianserin  
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V.4.4.6. Mirtazapine and desmethylmirtazapine 

Mirtazapine is not derivatized and is thus not detected in NICI mode. 

Desmethylmirtazazpine shows the same ionization pattern as desmethyl-

mianserin as it is a structural analogue. 

Figure V. 44. NICI spectrum and fragmentation of HFB-desmethylmirtazapine  
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V.4.4.7. Melitracen

Melitracen is a tertiary amine that is not derivatized and thus not detected in 

NICI mode.

V.4.4.8. Reboxetine

The molecular ion of heptafluorobutyrylated reboxetine is not detected in the 

spectrum of reboxetine. Losses of 20 amu due to loss of HF can be observed 

in the spectrum and ion m/z 489 is chosen as this fragment results in the 

highest m/z ratio and is the most abundant ion in the spectrum.  Reboxetine 

is still fragmented in NICI mode, and therefore two fragments with m/z 296 

and 312 are chosen because of their structural information. 

Figure V. 45. NICI spectrum and fragmentation of HFB-reboxetine 
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V.4.4.9. Citalopram, desmethylcitalopram and didesmethylcitalopram

Although citalopram contains one fluorine atom in its underivatized structure, 

its electron affinity is too low for the molecule to be detected in NICI mode. 

The derivatized metabolites of citalopram, however, can be detected.  

Figure V. 46. NICI spectra and fragmentations of HFB-desmethyl- (A) and 

didesmethylcitalopram (B) 
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B

For didesmethylcitalopram a clear negative molecular ion (482 amu) is 

detected as a result of electron capture. The molecular ion of 

desmethylcitalopram (506 amu) is less abundant, and this metabolite is more 

stable after a loss of HF. For the two metabolites of citalopram the 

dissociative electron capture reaction during negative ion chemical ionization 

leads to most of the fragment ions in the spectra. 
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V.4.4.10. Maprotiline and desmethylmaprotiline

Dissociative electron capture is the dominant reaction type occurring during 

negative ion chemical ionization of maprotiline and desmethylmaprotiline as 

indicated in Figure V.47. 

Figure V. 47. NICI spectra and fragmentations of HFB-maprotiline (A) and 

HFB-desmethylmaprotiline (B) 
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V.4.4.11. Sertraline and desmethylsertraline

Heptafluorobutyrylated sertraline demonstrates losses of HF and leads to ions 

with m/z 501, 481, 461, 441 as the highest abundant ions. Negative 

ionization of the HFB-derivative of the desmethylsertraline also results in a 

loss of HF (m/z 467). In addition a loss of one chlorine atom in combination 

with a fluorine atom can be suspected (Figure V.48). 
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Figure V. 48. NICI spectra and fragmentations of heptafluororbutyrylated 

sertraline (A) and desmethylsertraline (B) 
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V.4.4.12. Paroxetine and paroxetine-d6

Dissociative electron capture is the dominant reaction type occurring during 

negative ion chemical ionization of paroxetine and paroxetine-d6 as indicated 

in Figure V.49. 
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Figure V. 49. NICI spectra and fragmentation patterns of HFB-paroxetine (A) 

and HFB-paroxetine-d6 (B) 
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V.4.4.13. Trazodone and m-chlorophenylpiperazine

Trazodone is not detected in NICI mode as this tertiary amine can not be 

derivatized using heptafluorobutyrylimidazole. The metabolite of trazodone, 

m-chlorophenylpiperazine, can be heptafluorobutyrylated and demonstrates 

losses of 20 amu due to loss of HF fragments. 

Figure V. 50. NICI spectrum and fragmentation of of HFB-m-cpp 
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V.4.5. Conclusion: mass spectrometric detection 

The enormous benefit of a mass analyzer is the identification of compounds 

not only on basis of their retention time, but in combination with the spectra 

of the compounds. Fragment masses can be selected which allow the 

detection and determination of the corresponding compounds undisturbed by 

the presence of other species within the mixture to be analyzed, even without 

complete separation.  

The mass analyzer can be used in scan or in SIM (selected ion monitoring) 

mode. In scan mode a whole range of mass to charge ratios are detected, 

while in SIM only specific m/z ratios are monitored. Because low 

concentrations (ng/ml range) of ADs had to be monitored, SIM should be 

used as this method results in high sensitivity as compared to scan mode. 

When working in SIM mode, the relative ion abundance ratios of three ions 

can be used to identify a compound. The selection of the monitored ions 

depends on their abundance and their selectivity. In general, ions of higher 

abundance are selected due to their greater reproducibility and lower limit of 

detection. The selected ions must be diagnostic of the structure of the 

compound to increase method selectivity. Structurally significant ions should 

be selected over ions that have greater abundance but are not diagnostic. If 

sufficiently abundant, the molecular ion should be selected as this ion gives a 
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lot of information concerning the detected compound. Sometimes ions from 

the derivatization moiety are monitored, but only one of the three selected 

ions should be originating from this group. The spectra of each AD were 

discussed in the previous paragraph (V.4.) and the monitored ions for each 

compound are summarized in Table V. 1. 

Table V.1. Selected ions for each antidepressant in electron and positive or 

negative ion chemical ionization 

( ), Relative intensity %; 1,2,3, numbers indicate the I.S. used for this compound 
(respectively, fluoxetine-d6, mianserin-d3, paroxetine-d6)

Compounds Time window M-ion  M-ion HFB EI PICI NICI
(min.) Quant ion 1 ion 2 Quant ion 1 ion 2 Quant ion 1 ion 2

ODMV 2 (HFB) 6.00 - 14.00 263 441 58 440 (0.1) 441 (0.02) 442  440   (46)   470 (44) 197 440 (0.02) 441 (0.005)
Venlafaxine 2 277 259 58 259  (0.38) 121  (2.9) 260  258   (56)   288 (10) not detected
m-cpp 1 196 392 392 166  (64) 394 (34) 393  395   (33) 373 (9.6) 332 372 (21) 352 (48)
Viloxazine 1 14.00-15.50 237 433 433 240  (112) 296 (82) 434  296   (63)   414 (10) 413 393 (24) 373 (20)
DMFluox 1 295 491 330 117  (337) 226 (0.20) 330  358   (6.6)   117 (36) 471 491 (29) 329 (39)
Fluvoxamine 1 318 514 258 240  (93) 514 (1.9) 495  258   (304)   515 (65) 256 237 (11) 494 (1.6)
ODMV 2 (-H2O) 263 441 58 245 (1.2) 246 244   (53) 274  (5.5) not detected
Fluoxetine 1 15.50 - 17.00 309 505 344 117 (197) 486 (0.23) 344  486   (3.2)  534 (4.0) 485 505 (2.4) 465 (7.1)
Fluoxetine-d6 315 511 350 123 (200) 492 (0.27) 350  492   (4.8)  540 (5.6) 491 511 (1.9) 471 (7.7)
Mianserin 2 17.00 - 18.50 264 264 264 193 (166) 220 (43) 265  293   (18)  305 (2.4) not detected
Mianserin-d3 267 267 267 193 (245) 220 (58) 268  296   (19)  308 (3.8) not detected
Mirtazapine 2 18.50 - 19.50 265 265 195 208 (16) 265 (6.2) 266  264   (31)   294 (17) not detected
Melitracen 2 291 291 58 202 (7.8) 291 (0.10) 292  290   (45)   320 (20) not detected
DMMia 2 19.50 - 21.00 250 446 446 193 (57) 249 (72) 447  427   (7.4)   475 (14) 386 406 (20) 446 (4.3)
DMSer 3 291 487 274 487 (9.9) 489 (6.8) 275  277   (67) 487 (1.1) 487 467 (24) 433 (35)
DMMir 2 251 447 447 250 (123) 195 (81) 448  428   (7.3)   476 (13) 407 387 (68) 447 (13)
Reboxetine 3 313 509 371 138 (21) 509 (2.2) 372  510   (6.6) 490 (5.3) 296 489 (83) 312 (18)
Citalopram 3 21.00 -21.30 324 324 58 238 (6.4) 324 (4.6) 325  305   (10)   353 (22) not detected
DMMap 3 263 459 431 191 (93) 459 (0.90) 460  382   (56)   431 (10) 439 459 (5.9) 401 (28)
Maprotiline 3 21.30 - 22.05 277 473 445 191 (77) 473 (0.80) 474  454   (11)   396 (37) 453 473 (3.3) 433 (11)
Sertraline 3 305 501 274 501 (32) 503 (22) 275  277   (66)  501 (3.0) 441 481 (20) 501 (4.1)
DDMC 3 22.05 - 23.00 296 492 238 208 (8.5) 474 (1.5) 475  521   (20) 493 (4.0) 492 472 (43) 452 (2.6)
DMC 3 310 506 238 208 (7.2) 488 (1.4) 489  507   (5.7)   535 (21) 486 466 (27) 506 (6.2)
Paroxetine 3 23.00 - 24.80 329 525 525 138 (186) 388 (25) 526  506   (15)  554 (17) 485 465 (45) 505 (45)
Paroxetine-d6 332 531 531 138 (164) 394 (27) 532  512   (16)  560 (18) 490 470 (89) 510 (27)
Trazodone 24.80 - 31.00 371 371 205 371 (4.9) 356 (10) 372 400   (23) 336 (36) not detected

Electron ionization is the traditional ionization method and results in 

compound specific fragments. However, for compounds such as citalopram, 

melitracen, venlafaxine, and ODMV, the extreme fragmentation results in the 

aspecific high abundance quantifier ion at m/z 58 and inherent loss of 

specificity. The chemical ionization mass spectra are characterized by less 

fragmentation. When applying positive ion chemical ionization, the quasi-

molecular MH+ ion, due to the proton affinity of the compound will be 

monitored in most cases. Moreover, addition reactions are constantly 

monitored in the spectra of the ADs. Although the ‘softer’ positive ion 

chemical ionization mode is used, some compounds such as fluoxetine still 

fragment easily. According to the NCCLS guidelines [35], the ion derived 

from the intact molecule or an ion closely related to the molecular species 

- 230 - 
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should be monitored. Therefore protonated molecular ions and ions created 

through addition were first choice for our SIM method. When using negative 

ion chemical ionization, compounds that are not derivatized such as 

venlafaxine, citalopram, melitracen, mianserin, mirtazapine and trazodone 

are not detected. Although, some of these compounds contain 

electronegative moieties, they are still not detected as one or two 

heteroatoms do not result in sufficient electron affinity for NICI-detectability. 

For the derivatized ADs, the electron capture reaction does not occur in a 

high abundance. The dissociative electron capture reaction, however, leads to 

high abundant fragment ions for which in most cases a constant loss of HF-

fragments is observed. Some compounds are still fragmented and result in 

the same fragment-ions as in EI.  

The final mass-spectral determination occurred in SIM mode in different time 

frames as indicated in Table V.1. Within each time frame, several ions were 

monitored at a dwell time of at least 30 msec to ensure enough monitoring 

cycles per minute for a good peak shape. Because detection of ADs is based 

on the ratio of the selected ions (Table V.1.) attention must be paid to the 

variation of these ion ratios. Since the ionization process of the chemical 

ionization is based on the kinetics of chemical reactions, the reproducibility of 

ion-relative abundances in chemical ionization is somewhat lower than for EI. 

Therefore, ion ratios compared to a standard run in the same batch should be 

within 25% variation and not within 20% as for EI.  

V.5. Conclusion 

A GC-MS method for the simultaneous determination of ‘new’ ADs 

(venlafaxine, viloxazine, fluvoxamine, fluoxetine, mianserin, mirtazapine, 

melitracen, reboxetine, citalopram, maprotiline, sertraline, and paroxetine) 

and their active metabolites was developed. The metabolite of venlafaxine, 

O-desmethylvenlafaxine, was not included in the analyzed mixture due to 

derivatization problems discussed in chapter IV. In addition, fragmentation in 

all three ionization modes led to aspecific fragment ions or very low abundant 

(quasi)molecular ions. Because of irreproducible chromatographic results for 

trazodone this compound was not analyzed as this would lead to problems 

during quantification.   
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The final gaschromatographic-mass spectrometric method conditions were as 

follows: the pulsed splitless injection temperature was held at 300°C, while 

purge time and injection pulse time were set at 1 and 1.5 min, respectively. 

Meanwhile, the injection pulse pressure was 25 psi and 1 μl of the sample, 

redissolved in 50 μl of toluene, was injected. Ultrapure Helium with a 

constant flow of 1.3 ml/min was used as carrier gas. Chromatographic 

separation was achieved on a 30m x 0.25mm i.d., 0.25-μm J&W-5ms column 

from Agilent Technologies (Avondale, PA, USA). The initial column 

temperature was set at 90°C for 1 min, ramped at 50°C/min to 180°C where 

it was held for 10 min, whereafter the temperature was ramped again at 

10°C/min to 300°C. The separation of the ADs and their active metabolites 

was achieved in 24.8 minutes. Identification and quantification were based on 

selected ion monitoring in electron (EI) and chemical ionization (CI) modes. 

For each AD the most specific and high abundance ions were selected in the 

three ionization modes.   
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VI.1. Introduction  

Depression is a chronic or recurrent mood disorder that affects economic and 

social functions of about 121 million people worldwide, and can eventually 

lead to suicidal behaviour. According to the World Health Organization, 

depression will be the second leading contributor to the global burden of 

disease, calculated for all ages and both sexes by the year 2020 [1, 2]. 

Therefore, the prescription rate of antidepressants (ADs) will increase, 

resulting in a growing interest for determination methods in the clinical and 

forensic field. Detection and quantification of ADs in plasma is a valid tool to 

optimize AD pharmacotherapy for special patient populations and for 

monitoring patient compliance [3-8]. Analytical methods for the detection of 

ADs in blood and tissues are of interest in the field of forensic toxicology as 

they are often involved in intoxications [9-14]. Validation of these methods is 

necessary to demonstrate the validity of the assay’s performance and to be 

sure that the obtained results are reliable. 

 

The ADs that we monitored are the ‘new’ generation ADs as these are the 

most prescribed AD drugs in the seven major markets (Japan, USA, France, 

United Kingdom, Italy, Spain, Germany) nowadays, according to the Cognos 

Plus Study 11 [15]. The ‘new’ generation ADs include the Selective Serotonin 

Reuptake Inhibitors (SSRIs: fluoxetine, fluvoxamine, sertraline, paroxetine 

and citalopram), the Selective Noradrenaline Reuptake Inhibitors (reboxetine 

and viloxazine), the Serotonin and Noradrenaline Reuptake Inhibitors 

(venlafaxine), the Noradrenergic and Specific Serotonergic ADs (mirtazapine 

and mianserin), and the Serotonin-2 antagonists and Reuptake Inhibitors 

such as trazodone [16-21]. These ADs are monitored in combination with 

their (active) metabolites as the latter can also contribute to the overall 

therapeutic and toxic effect. In addition, metabolites can give extra 

information about the time of ingestion, the metabolic capacity, and 

compliance. These metabolites, i.e. desmethylmirtazapine, O-desmethyl-

venlafaxine, m-chlorophenylpiperazine, desmethylcitalopram, didesmethyl-

citalopram, desmethylmianserin, desmethylfluoxetine, desmethylsertraline, 

desmethylmaprotiline, were chosen according to the AGNP-TDM expert group 

consensus guidelines [22]. 
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Over the years, several chromatographic methods have been developed for 

the determination of these ADs in biological matrices. These methods include 

capillary electrophoresis [23, 24], high performance liquid chromatography 

with ultra-violet (UV) [25-28], fluorescence [29, 30] or mass spectrometric 

detection [31-33], as well as gas chromatography combined with nitrogen-

phosphorus [34, 35] or mass detection (GC-MS) [12, 36-38]. In clinical 

toxicology, GC-MS is still the method of choice as it is sensitive and selective, 

providing the best separation power for compounds that are volatile under 

GC conditions. Electron ionization (EI) is the traditional method for 

comprehensive screening procedures, allowing identification of unknown 

compounds by comparison of their mass spectrum with a large collection of 

reference mass spectra in commercially available libraries. In addition, EI 

leads to a number of fragment ions providing additional structural 

information. However, due to the extensive fragmentation of some ADs in the 

EI-mode, the positive ion chemical ionization mode (PICI) provides more 

selectivity as this technique often gives molecular mass information. Negative 

ion chemical ionization (NICI) can improve sensitivity as compared to PICI or 

EI for the determination of compounds with electronegative moieties, either 

present in their original structure or obtained after derivatization [39, 40]. In 

this chapter a comparison between EI mode and the chemical ionization 

modes (CI, both PICI and NICI) was made during validation of the developed 

GC-MS method for the simultaneous quantification of most new generation 

ADs and their metabolites in plasma. Moreover, the same GC-MS method was 

validated for blood and brain tissue in PICI mode for post-mortem 

investigation purposes.  

VI.2. Experimental 

 

VI.2.1. Reagents  

 

Venlafaxine.HCl was provided by Wyeth (New York, NY, USA). Organon (Oss, 

The Netherlands) donated mianserin.HCl, desmethylmianserin.HCl, 

mirtazapine, and desmethylmirtazapine maleate, while sertraline.HCl, 

desmethylsertraline maleate, and reboxetine methanesulphonate were a gift 

from Pfizer (Groton, CT, USA). Lundbeck (Valby, Denmark) offered 
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citalopram.HBr, desmethylcitalopram.HCl, didesmethylcitalopram tartrate 

hydrate (DDMC), and melitracen.HCl. ACRAF (Roma, Italy) provided 

trazodone.HCl and its metabolite m-chlorophenylpiperazine.HCl, whereas 

paroxetine.HCl hemi-hydrate was donated by GlaxoSmithKline 

(Erembodegem, Belgium) and viloxazine.HCl by AstraZeneca (Brussels, 

Belgium). Fluvoxamine maleate and maprotiline.HCl were provided by Solvay 

Pharmaceuticals (Weesp, The Netherlands) and Novartis Pharma (Basel, 

Switzerland), respectively. Fluoxetine.HCl, desmethylfluoxetine.HCl and 1-

(heptafluorobutyryl) imidazole (HFBI) were purchased from Sigma-Aldrich 

(Steinheim, Germany). Promochem (Molsheim, France) delivered fluoxetine-

d6 oxalate, mianserin-d3, maprotiline-d3 and paroxetine-d6 maleate (100 

μg/ml in MeOH). The following reagents were purchased from Merck 

(Darmstadt, Germany): ammonia-solution 25%, orthophosphoric acid (85%), 

sodium dihydrogenium phosphate monohydrate, methanol and water (HPLC 

grade), and toluene (Suprasolv).  

 

The strong cation exchanger (Strata SCX with 200 mg sorbent mass) was 

obtained from Phenomenex (Bester, Amstelveen, The Netherlands). Vials, 

glass inserts and viton crimp-caps were purchased from Agilent technologies 

(Avondale, PA, USA).  

 

Drug-free blood and hair were obtained from healthy volunteers. EDTA 

plasma was harvested from the blood within 2 hours after a 10-min 

centrifugation period at 1200 g. Drug-free post-mortem brain tissue samples 

were obtained from the department of forensic medicine (Ghent University, 

Belgium). 

VI.2.2. Preparation of standard solutions and calibrators  

 

Primary stock solutions of each individual AD were prepared in methanol at a 

concentration of 1 mg/ml and stored at -20°C. A standard mixture was 

obtained by mixing these individual primary stock solutions and by further 

diluting with methanol to a concentration of 0.05 – 0.125 mg/ml, depending 

on the therapeutic range of the compound. After preparation, it was stored 

protected from light at approximately -20°C. Further dilution of the standard 
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mixture with methanol resulted in working solutions with concentrations of 

0.1, 1 or 10 μg/ml. For the preparation of sample calibrators, 20 to 100 μl of 

a working solution were spiked to 1 ml of plasma or blood to have a 

concentration range from 10 till 500 ng/ml. For NICI mode only 250 μl of the 

1 ml spiked plasma was used. When spiking brain tissue (1 g), a 50-μl 

Hamilton injection needle was used to introduce the compounds directly into 

the tissue. A concentration range from 50 to 1000 ng/g was used for brain 

tissue samples.  

 

Samples were equilibrated at 4°C overnight. Primary stock solutions of the 

internal standards (I.S.) fluoxetine-d6, mianserin-d3 and paroxetine-d6 were 

prepared in methanol at a concentration of 10 μg/ml and were stored 

protected from light at 4°C. Twenty μl of each I.S. solution were spiked to 1 

ml of plasma, blood or 1 g of brain tissue.  

 

VI.2.3. Instrumentation 

 

All experiments were carried out on a HP 6890 GC system, equipped with a 

HP 5973 mass-selective detector, a HP 7683 split/splitless auto injector and a 

G1701DA Chem Station, version D.02.00 data processing unit (Agilent 

Technologies, Avondale, PA, USA).  

 

An Ultra Turrax mixer IKA T18 basic (Staufen, Germany) was used to 

homogenize the tissue samples. Sonication was done using a ‘Brandson 1510’ 

(Brandson UL Transonics corporation, Danbury, CT, USA). A Visiprep TM 

Disposable liner vacuum manifold (Supelco, Bornem, Belgium) controlled the 

flow during the solid phase extraction. Evaporation under nitrogen was 

conducted in a TurboVap LV evaporator from Zymark (Hopkinton, MA, USA). 

The heater was a multi-block from Lab-line (Tiel, The Netherlands).  

 

VI.2.4. Sample preparation  

 

A short résumé of the sample preparation is given in this paragraph. The 

optimization of the sample preparation is described in chapter III, and the 

sample preparation according to each matrix is schematically presented in 
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Figure III.6. (chapter III, p 105). The derivatization procedure is described in 

detail in chapter IV. I.S.s (200 ng in EI, PICI and 50 ng in NICI / ml plasma) 

were added to the samples. Thereafter, samples were prepared for the 

loading step onto the SPE tube according to the matrix. Plasma samples were 

diluted with 4 ml of phosphate buffer (pH 2.5; 25 mM), centrifuged and 

submitted to the solid phase extraction procedure (SPE). Blood samples were 

also diluted with the phosphate buffer, sonicated for 15 minutes and 

transferred to the SPE without centrifugation. Brain tissue was mixed after 

addition of 2 ml of acetonitrile and 0.5 ml of potassium carbonate buffer (1M 

pH 9.5) and centrifuged for 15 minutes at 1850 g. The top-layer was 

removed and diluted with phosphate buffer (pH 2.5; 25 mM). The pH of the 

diluted sample was adapted to 2-3 with orthophosphoric acid before it was 

submitted to the SPE-procedure. Hair samples were washed in HPLC-water (5 

minutes), and rinsed 3 times with 1 ml of methanol. Thereafter, they were 

cut in segments of approximately 2 cm. The hair fragments were digested in 

a sodium hydroxide solution (1M, 1 ml) for 10 minutes at 100°C or they were 

soaked in 4 ml of phosphate buffer (pH 2.5; 25 mM) for 18 hours at 55°C 

and sonicated for 1 hour. Then the samples were diluted with phosphate 

buffer and the pH was adapted to 2-3 with orthophosphoric acid if necessary.  

 

The SPE procedure consisted of conditioning the strong cation exchanger with 

3 ml of the final eluting solvent, 2 ml of methanol and 3 ml of phosphate 

buffer, followed by loading of the sample. Then, a wash step with 4 times 1 

ml of methanol followed using –20 kPa vacuum. After 2 minutes drying time 

at -50 kPa, the compounds were eluted with 2 ml of 5% ammonia in 

methanol. Finally, a vacuum of -50 kPa was used during 1 minute to collect 

all the eluting solvent.  

 

After evaporation of the solid phase extracts under nitrogen at 40°C, 50 μl of 

HFBI was added and the sample was heated at 85°C for 30 min. Thereafter, 

0.5 ml of HPLC-grade water and 2 ml of toluene were added. After vortexing 

and centrifuging the sample at 1121 g for 5 min, the toluene layer was 

transferred and evaporated at 40°C [41]. The residue was dissolved in 50 μl 

of toluene.   
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VI.2.5. Gas chromatographic parameters 

 

The pulsed splitless injection temperature was held at 300°C, while purge 

time and injection pulse time were set at 1 and 1.5 min, respectively. 

Meanwhile, the injection pulse pressure was 170 kPa and 1 μl of the sample, 

redissolved in 50 μl toluene, was injected. Chromatographic separation was 

achieved on a 30m x 0.25mm ID, 0.25-μm J&W-5ms column from Agilent 

Technologies (Avondale, PA, USA). The initial column temperature was set at 

90°C for 1 min, ramped at 50°C/min to 180°C where it was held for 10 min, 

whereafter the temperature was ramped again at 10°C/min to 300°C. 

Ultrapure helium with a constant flow of 1.3 ml/min was used as carrier gas. 

 

VI.2.6. Mass spectrometric parameters 

 

In EI mode, the mass selective detector temperature conditions were 230°C 

for the EI-source, 150°C for the quadrupole and 300°C for the transferline, 

whereas an electron voltage of 70 eV was used. The mass parameters for the 

electron ionization mode were not optimized, as the ‘traditional’ conditions in 

which the spectra of the commercially available libraries were obtained were 

chosen.  

The mass selective detector temperature conditions in PICI were as in EI, 

except for the ion source temperature (PICI/NICI source), which was 250°C, 

and the electron energy (140 eV). Ion source temperature and ion focus 

potential have the highest effect on the abundance of the molecular ions in 

NICI mode [42]. These parameters were optimized according to Agilent’s 

guidelines and weekly tuning parameters. For NICI-mode the transferline was 

kept at 280°C, the ion source at 150°C and the quadrupole at 106°C, with an 

electron energy of 170 eV. The electron emission (100 μA) was optimized to 

give best peak intensity, as this parameter is compound specific. Methane 

was used as reagent gas with a flow of 1 and 2 ml/min for PICI and NICI, 

respectively. The spectra were monitored in selected ion monitoring (SIM) 

mode for quantification (Table VI.1.). 
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Table VI.1. Quantifier and qualifier ions of the ADs in electron and chemical 

ionization mode 

Relative intensity of ions as compared to the quantifier ion are shown between 
brackets. I.S.: 1 (Fluoxetine-d6); 2 (Mianserin-d3); 3 (Paroxetine-d6) 

Compounds Time window M-ion  M-ion HFB
(min.) Quant ion 1 ion 2 Quant ion 1 ion 2 Quant ion 1 ion 2

Venlafaxine 2 6.00 - 14.00 277 259 58 259  (0.38) 121  (2.9) 260  258   (56)   288 (10) not detected
m-cpp 1 196 392 392 166  (64) 394 (34) 393  395   (33) 373 (9.6) 332 372 (21) 352 (48)
Viloxazine 1 14.00-15.50 237 433 433 240  (112) 296 (82) 434  296   (63)   414 (10) 413 393 (24) 373 (20)
DMFluox 1 295 491 330 117  (337) 226 (0.20) 330  358   (6.6)   117 (36) 471 491 (29) 329 (39)
Fluvoxamine 1 318 514 258 240  (93) 514 (1.9) 495  258   (304)   515 (65) 256 237 (11) 494 (1.6)
Fluoxetine 1 15.50 - 17.00 309 505 344 117 (197) 486 (0.23) 344  486   (3.2)  534 (4.0) 485 505 (2.4) 465 (7.1)
Fluoxetine-d6 315 511 350 123 (200) 492 (0.27) 350  492   (4.8)  540 (5.6) 491 511 (1.9) 471 (7.7)
Mianserin 2 17.00 - 18.50 264 264 264 193 (166) 220 (43) 265  293   (18)  305 (2.4) not detected
Mianserin-d3 267 267 267 193 (245) 220 (58) 268  296   (19)  308 (3.8) not detected
Mirtazapine 2 18.50 - 19.50 265 265 195 208 (16) 265 (6.2) 266  264   (31)   294 (17) not detected
Melitracen 2 291 291 58 202 (7.8) 291 (0.10) 292  290   (45)   320 (20) not detected
DMMia 2 19.50 - 21.00 250 446 446 193 (57) 249 (72) 447  427   (7.4)   475 (14) 386 406 (20) 446 (4.3)
DMSer 3 291 487 274 487 (9.9) 489 (6.8) 275  277   (67) 487 (1.1) 487 467 (24) 433 (35)
DMMir 2 251 447 447 250 (123) 195 (81) 448  428   (7.3)   476 (13) 407 387 (68) 447 (13)
Reboxetine 3 313 509 371 138 (21) 509 (2.2) 372  510   (6.6) 490 (5.3) 296 489 (83) 312 (18)
Citalopram 3 21.00 -21.30 324 324 58 238 (6.4) 324 (4.6) 325  305   (10)   353 (22) not detected
DMMap 3 263 459 431 191 (93) 459 (0.90) 460  382   (56)   431 (10) 439 459 (5.9) 401 (28)
Maprotiline 3 21.30 - 22.05 277 473 445 191 (77) 473 (0.80) 474  454   (11)   396 (37) 453 473 (3.3) 433 (11)
Sertraline 3 305 501 274 501 (32) 503 (22) 275  277   (66)  501 (3.0) 441 481 (20) 501 (4.1)
DDMC 3 22.05 - 23.00 296 492 238 208 (8.5) 474 (1.5) 475  521   (20) 493 (4.0) 492 472 (43) 452 (2.6)
DMC 3 310 506 238 208 (7.2) 488 (1.4) 489  507   (5.7)   535 (21) 486 466 (27) 506 (6.2)
Paroxetine 3 23.00 - 24.80 329 525 525 138 (186) 388 (25) 526  506   (15)  554 (17) 485 465 (45) 505 (45)
Paroxetine-d6 332 531 531 138 (164) 394 (27) 532  512   (16)  560 (18) 490 470 (89) 510 (27)

EI PICI NICI

VI.3. Method Validation 

 

The developed GC-MS method was validated in plasma, blood and brain 

tissue based on the FDA guidelines [43]. Bioanalytical method validation 

includes all of the procedures that demonstrate that a particular method used 

for quantitative measurement of analytes in a given biological matrix is 

reliable and reproducible for the intended use. The fundamental parameters 

for validation include accuracy, precision, selectivity, sensitivity, 

reproducibility, linearity and stability. In plasma, validation parameters such 

as stability and recovery were evaluated only in EI mode, while parameters 

such as sensitivity, selectivity, linearity, intra and inter batch precision, and 

accuracy were analyzed and compared in the three ionization modes (EI, 

PICI, NICI). Validation parameters were re-evaluated for blood and brain 

tissue, while only selectivity was checked for hair samples. The validation 

parameters for the post-mortem matrices, (whole blood, brain tissue and 

hair) were obtained using the PICI mode.

 

 

 

- 243 - 



Chapter VI: Validation 

- 244 - 

VI.3.1. Stability 

 
VI.3.1.1. Experimental 

Stability of compounds or their derivatives is very important during method 

validation. Compounds should be stable in their matrix to allow correct 

analytical data and interpretation of the results. In addition, compounds 

should be stable during sample handling (stable at certain temperatures, in 

the solvents used,…) and finally if derivatization occurs, the derivatized 

compounds should be stable during the analytical run. Therefore, the analyte 

stability determinations comprised of stock solution stability, stability of the 

compounds in their matrix and stability of the heptafluorobutyryl-derivatives. 

Stability of ADs in plasma, blood and brain tissue was determined as long-

term stability (2 months, -20°C), short-term stability (4 hours, room 

temperature), and freeze-thaw cycle stability (3 cycles). The stability of HFB-

derivatives was checked after a period of 14 days at -20°C and after 24 

hours at room temperature in the autosampler.  

For all stability determinations, except for the autosampler stability, the 

concentrations of the analytes were calculated from daily calibration curves 

and an acceptance interval of 85-115% was applied for the ratio of the mean 

stability sample concentration versus the mean control concentration. 

Moreover, an acceptance interval of 80-120% of the control sample means 

was applied for the 90% confidence interval of the stability samples. All 

analyte stability determinations and storage stability tests of the derivatized 

extracts were determined at low, mid and high concentrations, except for the 

long-term stability (low and high), with 6 repetitions for plasma and 5 

repetitions for blood and brain tissue. Controls and stability samples were 

prepared at the same time and analyzed before and after treatment.  

Autosampler stability of the derivatives was evaluated at low and high 

concentration over a period of 24 hours. Ten samples of each concentration 

were extracted and derivatized. Thereafter, the extracts obtained at each 

concentration were pooled and redivided in 10 aliquots to be transferred to 

10 autosampler vials, leaving each vial reinjected after 4 hours and 8 

minutes under the conditions of a regular analytical run. The absolute peak 

areas corresponding to each compound were plotted at each concentration 

versus injection time. The slopes of the obtained curves were determined 
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whereby a negative slope would indicate instability. The concentration at time 

zero as well as after 24 hours was calculated from these curves. The 

percentage loss was determined from these results.   

 
VI.3.1.2. Results and discussion  

Stock solutions in methanol (1 mg/ml) are stable for at least 3 months. In 

addition, these new ADs seem to be stable in blood and plasma samples 

[44]. According to our experiments (Table VI.2.), long-term instability was 

seen for venlafaxine, melitracen and citalopram at low and high and for 

sertraline at high concentrations in plasma. However, short-term stability was 

no problem as the ADs were stable in plasma after 4 hours at room 

temperature, because the ratio of the mean stability sample concentrations 

versus mean control concentrations as well as their 90% confidence interval 

(CI) fulfilled the acceptance criteria. The freeze-thaw stability for most 

compounds also fulfilled the acceptance criteria, except for maprotiline, 

desmethylmaprotiline and sertraline who showed a decrease in concentration 

at the low level (70-77%, 90% CI 61-81%). Overall, the stability of 

compounds in plasma is acceptable.  

As observed in Table VI.2., the short-term and freeze-thaw stability of ADs at 

low concentration was better in plasma than in blood. Compounds such as m-

cpp, viloxazine, desmethyfluoxetine, melitracen, desmethylsertraline, 

reboxetine, citalopram, desmethylmaprotiline and maprotiline did not fulfil 

the acceptance criteria; however, this instability was not seen for medium 

and high ADs concentrations in blood.  For long-term storage, an instability 

was observed for venlafaxine and sertraline (low and high concentrations) 

and for melitracen and citalopram (low concentration). Thus the same 

compounds show a decrease in concentration in plasma and blood after long-

term storage. 

In brain tissue, freeze-thaw instability was seen for m-cpp and citalopram, 

while short-term instability was only seen for m-cpp. ADs at low 

concentrations are not stable in brain tissue after long-term storage.  At high 

concentrations, only m-cpp showed significant losses.  

Overall, the stability of ADs is acceptable in plasma and blood. However, 

long-term instability for citalopram, venlafaxine, sertraline and melitracen is 

problematic if samples have to be stored for long period. In brain tissue, the 
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stability is dependent on the spiked concentration, and especially the long-

term storage led to degradation. 

 

Table VI.2. Stability data of ADs and their HFB-derivatives in plasma, blood 

and brain tissue 

% IV, percentage of initial value; 90%CI, 90 percent confidence interval 

 

% IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI
Venlafaxine 16 15-18 58 36-80 13 13-14 75 72-79 107 103-110
m-cpp 96 87-104 88 86-99 46 15-77 90 88-93 93 89-97 64 60-67
Viloxazine 96 93-99 86 77-95 94 91-97 92 91-92 88 84-92
DMFluox 87 83-90 90 85-96 86 83-89 100 99-100 99 97-100
Fluvoxamine 98 95-100 127 121-135 96 93-99 104 103-105 110 105-114
Fluoxetine 111 107-114 98 94-101 18 13-22 90 86-93 91 91-92 91 90-92
Mianserin 96 93-99 99 94-105 88 85-90 91 90-91 90 89-91
Mirtazapine 91 88-95 94 79-109 37 33-41 74 72-76 90 89-91 86 83-89
Melitracen 15 14-15 43 32-55 13 12-13 89 87-91 91 87-95
DMMia 116 113-118 97 92-102 101 99-102 77 71-82 83 73-93
DMSer 86 76-95 105 97-113 115 87-143 87 83-92 103 98-108 97 96-98
DMMir 129 124-135 80 71-88 102 100-104 78 73-82 83 77-89
Reboxetine 101 99-104 96 95-98 89 88-90 90 87-94 116 108-123
Citalopram 22 21-23 23 12754 11 10-11 95 91-99 115 92-137
DMMap 89 86-93 131 123-139 45 35-55 103 99-106 110 105-114 111 104-118
Maprotiline 113 109-117 102 99-105 47 33-60 99 98-101 94 92-97 100 95-105
Sertraline 131 117-144 82 77-87 124 79-169 77 75-80 65 58-73 158 130-185
DDMC 94 91-97 94 89-98 89 86-92 108 102-114 99 90-109
DMC 97 95-98 103 93-112 85 85-86 91 88-95 92 88-96
Paroxetine 86 80-92 108 104-112 12 7-17 94 93-96 91 89-92 85 83-86

Long-term stability
Stability

plasma blood brain
Medium concentration High concentrationLow concentration

plasma blood brainbrain plasma blood

 
 

% IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI
Venlafaxine 117 113-121 129 107-151 165 89-241 102 98-105 106 95-117 98 91-105 98 96-101 93 84-101 101 88-113
m-cpp 94 90-97 87 78-96 55 51-58 97 93-101 92 90-94 98 88-108 95 92-99 102 100-104 74 53-95
Viloxazine 98 95-101 70 63-77 93 90-95 97 95-99 94 93-95 88 85-91 99 98-99 106 104-108 94 91-97
DMFluox 89 85-93 77 65-88 94 83-105 109 101-117 96 93-99 85 81-89 104 99-110 112 111-113 113 105-122
Fluvoxamine 85 82-88 94 86-102 113 108-119 108 98-118 99 94-104 92 87-97 106 99-112 111 109-112 126 121-132
Fluoxetine 103 100-106 99 97-102 95 88-101 100 98-102 101 100-102 103 102-104 102 99-106 101 100-102 101 93-95
Mianserin 105 102-107 107 97-117 92 85-98 99 96-103 103 101-105 98 94-101 101 100-102 100 99-101 94 95-101
Mirtazapine 103 101-106 96 91-101 112 107-117 101 98-104 104 100-107 91 88-94 98 97-100 99 98-100 98 80-96
Melitracen 112 108-117 77 74-80 149 140-159 98 95-101 102 97-106 85 76-94 97 95-99 99 98-100 88 80-98
DMMia 116 113-120 158 123-194 81 76-86 103 100-105 106 101-110 87 76-99 95 93-97 92 87-97 89 92-116
DMSer 104 100-108 79 74-84 88 82-94 102 96-108 92 90-96 109 100-119 96 85-102 112 109-115 104 88-105
DMMir 115 110-119 134 105-162 91 84-98 105 102-107 107 101-112 92 81-102 96 94-98 94 87-101 97 94-114
Reboxetine 102 99-105 58 52-64 153 133-173 96 94-99 96 93-98 128 123-134 102 99-106 105 103-107 104 94-114
Citalopram 92 87-97 67 56-78 179 145-213 94 88-99 95 89-102 94 82-106 99 94-104 109 103-114 87 80-93
DMMap 90 87-92 66 59-73 100 96-103 107 101-113 92 89-95 112 101-123 99 96-103 110 106-114 118 97-139
Maprotiline 103 102-105 80 76-83 94 89-99 97 95-99 93 92-94 105 96-113 97 95-99 99 98-100 96 89-103
Sertraline 94 85-104 118 100-135 135 129-141 86 82-90 111 104-117 114 101-126 131 124-137 81 76-86 124 111-137
DDMC 90 87-92 158 137-179 178 153-202 106 100-113 95 92-98 107 100-114 95 92-99 109 107-112 113 107-120
DMC 105 102-109 88 82-93 113 105-121 93 92-94 99 97-101 100 96-105 97 96-99 99 98-101 102 93-112
Paroxetine 100 98-102 94 93-96 103 102-105 100 97-102 98 97-99 100 99-101 101 101-102 101 100-102 93 92-94

blood brainplasma blood brain plasma

Short-term stability
Low concentration

blood brainplasma
Medium concentration High concentration

 
 

% IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI
Venlafaxine 113 110-115 104 82-125 165 118-212 106 102-109 95 85-105 103 95-112 103 98-108 103 99-106 93 88-97
m-cpp 111 105-118 83 78-89 67 55-79 103 98-108 93 87-99 99 82-115 102 95-108 108 105-112 61 55-67
Viloxazine 103 102-105 70 60-79 101 79-123 100 97-103 92 86-99 90 86-95 96 95-98 112 110-114 97 95-98
DMFluox 96 86-107 80 70-90 94 90-98 93 88-99 97 92-102 86 83-89 101 98-105 118 115-121 108 101-114
Fluvoxamine 96 85-107 98 74-122 98 91-105 95 88-101 100 94-106 94 90-98 103 98-108 116 113-119 121 117-124
Fluoxetine 97 96-99 99 98-100 100 95-105 99 94-104 102 100-105 101 100-102 97 93-101 103 102-103 105 100-109
Mianserin 104 98-110 108 98-119 99 95-103 102 97-108 107 104-109 96 95-98 102 95-110 102 101-102 96 94-99
Mirtazapine 98 91-104 97 92-101 99 84-115 108 102-114 101 95-107 87 83-91 100 93-107 101 100-102 99 97-101
Melitracen 96 91-101 79 74-83 135 124-147 105 101-108 96 87-106 82 79-85 102 97-106 101 98-105 97 95-99
DMMia 105 101-109 114 93-136 85 78-92 109 105-113 97 88-106 109 98-119 103 98-108 97 94-99 110 106-114
DMSer 101 87-115 85 79-92 108 97-119 86 82-91 101 97-105 111 106-117 95 87-103 117 115-119 92 93-101
DMMir 105 102-108 104 79-130 86 77-85 110 103-116 98 88-108 104 95-113 108 100-115 99 97-102 111 108-114
Reboxetine 109 106-112 63 55-70 128 105-152 102 99-106 100 93-107 132 118-145 97 95-99 110 109-112 101 93-108
Citalopram 103 99-108 80 70-89 103 71-135 100 94-105 97 90-105 83 77-90 95 91-98 113 110-117 76 71-81
DMMap 70 61-79 70 64-75 97 92-101 94 91-97 96 93-99 100 94-106 103 100-106 112 108-116 89 82-63
Maprotiline 78 74-82 80 70-90 98 91-105 110 94-126 97 93-101 101 96-106 96 92-101 100 98-102 86 83-89
Sertraline 73 63-82 119 112-126 159 134-184 138 126-150 102 89-114 105 96-113 95 89-101 79 72-86 114 102-126
DDMC 106 98-114 147 120-174 128 113-143 101 96-106 100 96-103 95 89-101 101 98-104 114 111-117 96 89-103
DMC 86 82-90 91 78-105 98 90-105 99 98-100 104 100-108 100 98-101 95 94-96 102 100-104 108 104-112
Paroxetine 92 88-96 90 86-93 104 100-108 98 94-102 101 99-103 102 101-102 95 91-99 104 102-105 95 93-97

plasma blood brainplasma blood brain

Freeze-thaw stability
Medium concentration High concentration

brain
Low concentration

plasma blood
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% IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI % IV 90% CI
Venlafaxine 113 110-116 104 101-107 96 95-97
m-cpp 133 130-138 111 105-106 106 102-110
Viloxazine 117 114-120 113 111-115 106 104-108
DMFluox 91 85-98 102 95-110 94 90-98
Fluvoxamine 94 89-99 100 92-109 95 92-98
Fluoxetine 114 111-116 106 104-108 100 96-103
Mianserin 106 101-111 103 99-107 99 96-101
Mirtazapine 109 106-111 107 104-110 96 94-98
Melitracen 104 99-109 102 99-106 95 94-96
DMMia 111 105-117 114 111-118 105 104-106
DMSer 96 85-107 110 103-117 108 102-114
DMMir 114 110-119 118 114-121 109 106-111
Reboxetine 109 106-112 103 100-105 96 95-96
Citalopram 125 119-130 95 92-99 82 80-83
DMMap 94 87-101 103 96-109 101 94-105
Maprotiline 117 111-123 110 107-112 105 103-108
Sertraline 110 96-124 80 77-84 78 75-81
DDMC 95 90-100 113 108-118 98 94-102
DMC 118 112-123 101 99-103 99 98-100
Paroxetine 107 100-113 103 100-106 99 97-101

plasma blood brain plasma plasma blood brainblood brain

Freeze stability HFB-derivatives
Low concentration High concentrationMedium concentration

 

The autosampler stability overnight of the analytes at high concentrations 

showed tolerable losses (less than 11%) after 24 hours, except for DMMap 

(16%) (Figure VI.1.). At low concentration, the resulting positive slopes for 

all compounds indicated a concentration effect of the extract due to 

evaporation during analysis. This concentration effect masked the stability 

results. Special Viton caps and glass inserts were used to prevent the 

evaporation of toluene, but still a concentration effect was observed, this was 

more pronounced for low concentration extracts according to Raoult’s law (Pi 

(vapour pressure of solvent with added solute) = xi (mole fraction).Pi* 

(vapour pressure of pure solvent). The higher the amount of solute that is 

added to a pure solvent, the more the vapour pressure of that solvent will be 

depressed. During this experiment no internal standards were used, however, 

internal standards will compensate for this concentration effect when 

analyzing real samples.  

The derivatives were also preserved at -20°C, to check if derivatized extracts 

could be analyzed after 2 weeks.  This is of interest, when the ion source has 

to be switched from EI to PICI and NICI mode. No degradation of the 

derivates was observed even after 2 weeks of storage at -20°C, except for 

sertraline (mid and high) (Table VI.2.) 
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Figure VI.1. Autosampler stability at low and high therapeutic AD 

concentration  

% IV, percentage of initial value 
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Venlafaxine y = 133.63x + 293263 167 Venlafaxine y = -680x + 13960186 93
DMFluox y = 18.944x + 86151 133 DMFluox y = -198x + 4165379 93
Viloxazine y = 6.8955x + 30501 133 Viloxazine y = -89x + 1486308 91
Fluvoxamine y = 8.1224x + 33332 136 Fluvoxamine y = -95x + 1873421 93
Fluoxetine y = 18.293x + 106066 125 Fluoxetine y = -238x + 4531469 92
Mianserin y = 36.887x + 98957 155 Mianserin y = -239x + 4453838 92
Mirtazapine y = 92.967x + 208715 166 Mirtazapine y = -546x + 9644458 92
Melitracen y = 66.024x + 136504 171 Melitracen y = -527x + 7909464 90
DMMia y = 23.82x + 101287 135 DMMia y = -310x + 4732498 90
DMMir y = 16.303x + 67311 136 DMMir y = -201x + 3142142 91
Reboxetine y = 12.764x + 72432 126 Reboxetine y = -198x + 3427683 91
DMSer y = 18.807x + 98952 128 DMSer y = -266x + 4105396 90
Citalopram y = 110.85x + 138287 218 Citalopram y = -736x + 10346314 90
Maprotiline y = 20.035x + 122051 247 Maprotiline y = -360x + 4885553 89
DMMap y = 17.919x + 94866 128 DMMap y = -404x + 3720341 84
Sertraline y = 5.5116x + 46215 118 Sertraline y = -127x + 1798923 90
DDMC y = 57.253x + 124531 168 DDMC y = -339x + 7330348 93
DMC y = 52.103x + 197707 139 DMC y = -579x + 8820070 90
Paroxetine y = 5.6402x + 37896 122 Paroxetine y = -79x + 1430291 92  
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VI.3.2. Recovery 

 
VI.3.2.1. Experimental 

The recovery for each analyte was determined at low, medium and high 

concentration (n=6). Therefore, standard working solutions were spiked in 

blank matrix samples before (extraction samples) or after sample preparation 

(control samples). Since quantification was performed by the peak area ratios 

of the target analytes and the internal standard, the internal standards were 

always added after sample pretreatment, before derivatization, and the 

resulting peak area ratios were compared. The recovery was expressed by its 

average and relative standard deviation (RSD). 

 

VI.3.2.2. Results and discussion 

The SCX extraction leads to reproducible and high recovery from blood for 

most compounds if no centrifugation step is included (Table VI.3.) and range 

between 73-106 %, except for venlafaxine (51%). The recoveries from blood 

samples are comparable to the recovery from plasma.  

 

Table VI.3.  Recovery of ADs from plasma, blood and brain tissue 
 

compound

Venlafaxine 104 (3) 95 (4) 95 (2) (21) 101 (14) 93 (7) 38  (19) 46  (17) 45*   (13)
m-cpp 91 (4) 92 (7) 96 (5) 92 (14) 93 (9) 101   (7) 85   (16) 99  (8) 80  (9)
DMFluox  107*  (12) 91 (7)   91* (5) 93  (12) 93  (6) 100  (6)     82      (12) 79   (5) 69 10)
Viloxazine 104  (14) 96 (5) 92 (5) 91  (8) 97 (10) 105  (7) 58    (7) 62  (4) 56*   (8)
Fluvoxamine 102 (2) 104 (8) 97  (18) 95 (13) 99  (18) 104  (9)     44      (16) 43   (7) 35*    (10)
Fluoxetine 98 (12) 94 (2) 96  (2) 80 (9) 89 (7) 100  (5) 75   (8) 71   (5) 73     (6)
Mianserin 95 (4) 94 (3) 94   (3) 87  (6) 99   (8) 104  (3) 81   (11) 80   (5) 81   (7)
Mirtazapine 95 (6) 92 (3) 93   (3) 79  (10) 98  (8) 99  (4) 77   (11) 78     (7) 85    (5)
Melitracen 101 (5) 93  (3) 93   (3) 80    (8) 100  (9) 101 (5) 75   (13) 83    (6) 80*     (8)
DMMia 101  (4) 98 (4) 91   (2) 82   (16) 102  (13) 92   (7) 70    (9) 81    (10) 78*      (15)
DMSer 98 (11) 88 (7) 104  (10)    94* 15) 92 (11) 102   (5) 77    (6) 70    (11) 76     (6)
DMMir 99  (4) 95  (2) 92   (3) 83  (12) 103   (12) 94   (6) 74   (12) 78     (8) 78   (11)
Reboxetine 99  (3) 97 (3) 95    (1) 87    (12) 92   (8) 105   (7) 51   (18) 60     (8) 59*    (4)
Citalopram 88 (8) 87  (9) 94    (5) 84   (21) 89  (14) 106   (13) 61   (16) 73    (5) 78*     (4)
Maprotiline   72* (14) 88 (3) 90   (6) 83   (14) 76   (14) 96     (5) 54   (12) 59    (8) 81      (6)
DMMap 92 (15) 86  (5) 86    (6)    91*  (14) 79    (23) 96   (14) 51    (15) 57  (10) 78    (4)
Sertraline 82 (6) 89 (11) 96   (5) 73    (18) 82    (17) 93   (17) 90    (16) 73    (3) 82*      (11)
DDMC    94*  (11) 85  (7) 88    (6) 85    (15) 87   (19) 97   (10) 69    (10) 69  (5) 74      (8)
DMC 80 (13) 88 (4) 90   (5) 84    (15) 82   (13) 96   (5) 66    (4) 69   (3) 68*      (4)
Paroxetine 94  (11) 91 (2) 95    (2) 92    (18) 81   (12) 95    (4) 72  (11) 73    (7) 80    (6)
*n=5

Recovery (%) (RSD%) 

Low 
           51*  

Mid HighLow Mid High
Plasma Blood Brain

Mid High S.High

ADs recoveries from plasma and blood are determined at low (20 ng/ml), mid 

(200 ng/ml) and high (500 ng/ml) concentrations, while brain tissue 

recoveries were determined at mid, high and super high concentration (1000 

ng/g). This super high level was chosen as brain concentrations found in 

literature were much higher than blood or plasma concentrations [45-47]. 
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The extraction efficiencies for brain tissue are slightly lower than for plasma 

and blood. Especially venlafaxine and fluvoxamine gave low extraction 

efficiencies. However, recovery of the ADs from brain tissue is reproducible. 

Recovery of ADs from hair is not determined as spiked samples do not reflect 

reality. Compounds are incorporated in the interior of the hair through 

diffusion from blood, sweat or sebum. When samples are spiked, the 

compounds are spiked onto the hair and this would lead to false high 

recoveries. 

 

VI.3.3. Selectivity 

 
VI.3.3.1. Experimental 

Selectivity, defined as the ability to differentiate and quantify the analyte in 

the presence of other components in the sample, was evaluated by analyzing 

blank plasma samples of 10 different individuals to observe possible co-

eluting interferences in EI, PICI, and NICI. Blank samples of whole blood 

were obtained from five healthy volunteers. For brain tissue three individuals 

were tested at six different locations, i.e. cerebellum, the brain stem, the 

frontal, temporal, parietal, and occipital lobe. These locations were selected 

as the structure of the lobes, cerebellum and brain stem differ from each 

other. Two blank hair samples were also checked. The selectivity of the post-

mortem matrices was analyzed in PICI mode only.

In addition, zero samples (I.S. spiked to blank plasma) were analyzed to 

check for absence of analyte ions in the peak of the I.S. 

 
VI.3.3.2. Results and discussion 

Ten blank plasma samples were checked for interferences and thus selectivity 

of the method. In EI, a lot of endogenous compounds are seen in the 

chromatogram, but most of them are chromatographically separated and 

they do not interfere with quantification. However, only 10 blank samples 

were screened for interferences, and these are most likely to occur for 

compounds with the ion m/z 58 as quantifier ion as this ion is very unspecific. 

The CI-techniques have more selectivity; however, in PICI an interference 

was seen for venlafaxine in plasma, blood and brain tissue. In NICI, no 

interferences were detected.  
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Figure VI.2. Overlays of blank chromatograms with a trace of a low 

concentration mixture (20 ng / 200 ng for brain tissue) in plasma (A), whole 

blood (B), brain tissue (C). For hair samples (D) blanks in the 2 extraction 

modes are shown.

Aa, plasma in PICI; Ab, plasma in NICI; Ac plasma in EI. D; full line: blank hair using 
sodium hydroxide; dotted line, blank hair using phosphate buffer. Chromatograms are 
set to the same scale to compare in selectivity and sensitivity, except for Ac. Total ion 
currents of all monitored ions in SIM are shown in the chromatograms. 1, venlafaxine; 
2, m-chlorophenylpiperazine; 3, desmethylfluoxetine; 4, viloxazine; 5, fluvoxamine, 6, 
fluoxetine, 7, fluoxetine-d6, 8, mianserin,  9, mianserin-d3; 10, mirtazapine, 11, 
melitracen, 12, desmethylmianserine, 13, desmethylsertraline; 14, desmethyl-
mirtazapine; 15, reboxetine; 16, citalopram; 17, desmethylmaprotiline; 18, 
maprotiline; 19, sertraline; 20, didesmethylcitalopram; 21, desmethylcitalopram; 22, 
paroxetine; 23, paroxetine-d6 

A 
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Zero-plasma samples spiked with each I.S. separately were analyzed for 

analyte ions. The fragmentation patterns of the deuterated standard were 

checked for the molecular ion of their non-deuterated analogues. The spectra 

of fluoxetine-d6, paroxetine-d6 and mianserin-d3 contained respectively 0.75, 

0.26 and 1.88 % of the quantifier ion of their non-deuterated analogue in EI 

mode. In PICI mode, the fluoxetine-d6 spectrum contained 0.4% of the 

quasi-molecular ion of fluoxetine, while the paroxetine-d6 spectrum contained 

0.2% of its non-deuterated form. These low percentages of non-deuterated 

forms did not interfere with the quantification. However, mianserin-d3 

fragmentation led to a relative high abundant quasi-molecular ion of 

mianserin (9.8%), which was demonstrated by the positive intercept of the 

calibration curve for mianserin. In NICI mode, mianserin-d3 is not detected 

as it contains no electronegative moieties. Fluoxetine-d6 and paroxetine-d6 

fragmentation resulted in 0.02 and 0.06 % of their non-deuterated analogue 

in their spectrum, respectively. 

 

VI.3.4. Linearity 

 
VI.3.4.1. Experimental 

Quantification was based on target ion/I.S. ratios (Table VI.1.). Therefore, 

seven-point curves for plasma, whole blood or hair and 6 point-curves for 

brain tissue were constructed using internal standardization. Calibration 
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ranged from the sub therapeutic (10 ng/ml) till high therapeutic 

concentration (500 ng/ml) of the individual ADs in plasma and blood. For 

brain tissue, calibration ranged from 50 till 1000 ng/g. Calibrator samples 

were fortified blank matrix samples and were treated in a way similar to the 

unknowns. Hair samples were quantitated using a calibration curve from pure 

standards ranging from 10 till 500 ng/ml.  

The weighting factor and regression type were applied to the data of plasma 

samples through the least percentage relative error (%RE), which is the 

regressed concentration minus the nominal standard concentration divided by 

the nominal standard concentration. The sum of the squares of the %RE of 

all data points for a given curve estimation was calculated, in order to 

facilitate comparison [48, 49].  

 
VII.3.4.2. Results and discussion 

For determination of the most appropriate calibration curve, both calibration 

curve equation type (linear versus quadratic) and weighting factor were 

considered. Primarily, data heteroscedasticity was shown for all analytes by a 

F-test on the lowest and the highest concentration level, at the 99% 

confidence level. Secondly, the most appropriate calibration curve equation 

was determined by calculating the percent relative error at each calibrator 

level and for each compound.  

The %RE is the percent deviation of the experimental value calculated with 

the Chemstation software from the nominal value. At each of the 7 calibrator 

levels, three %RE values were obtained, originating from the experiment 

being performed in triplicate. All %RE values were converted into positive 

values if necessary and the sum of the squares of the 3 values was calculated 

for each calibrator. These 3 values were summed up for all compounds at all 

levels, and this final sum for each calibrator type is shown in Table VI.4. The 

calibration type with the lowest value is considered to be the best fit for our 

data.  
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Table VI.4. Sum of % Relative Error for each type of calibration curve in the 

different ionization modes 

 

EI PICI NICI
linear 5069 46907 23323
linear, 1/x 3305 17680 6662
linear, 1/x2 3153 11335 4561

quadratic / 21324 15299
quadratic, 1/x / 7274 4629
quadratic, 1/x2 / 4909 3695

Ionization modeCalibration curve
Sum % Relative Error

 

A linear curve with a 1/x2-weighting factor was applied for the EI results. For 

PICI and NICI, a second-order polynomial function with a weighting factor of 

1/x2 provided better equations and resulted in least sum of residual squares. 

Especially for PICI, a large difference was seen in the sum of residual 

squares. Small deviations from linearity caused by curvature are often 

noticed for data obtained by chromatographic analysis. Nevertheless, 

traditionally, linear curves are more commonly used as compared to 

quadratic curves. This is mainly because of the level of complexity of the 

latter, especially from a historical point of view, as the appropriate software 

to perform the complicated calculation was not available. Nowadays, most 

analytical software includes the option of quadratic calibration and statistical 

software is more accessible. Thus, quadratic calibration curves provide a tool 

to account for curvature and can provide higher quality data when used 

appropriately. In addition, Kirkup and Mulholland conclude that a slight 

curvature in calibration data is often noticed and the choice of calibration 

curves depends upon the analyst’s requirements and desired constraints 

about quantities as the prediction interval for estimated analyte 

concentrations [49]. Although the deviations from linearity for most 

compounds are small in PICI and NICI, as can be derived from the low 

quadratic term representing the bending of the curve (Table VI.5.), quadratic 

regression resulted in a lower %RE. In NICI, quadratic regression resulted in 

better inter batch precision and accuracy for highly concentrated samples.  In 
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EI, no curvature is detected as seen in Figure VI.3., and therefore the 

simplest approach, thus the linear regression was chosen. 

Figure VI.3. Representative calibration curves in EI, PICI and NICI for 

desmethylmirtazapine  

Each curve has a weighting factor of 1/x2 
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It seems that the slight curvature in the calibration data is dependent on the 

type of ionization. Chaler et al. also described polynomial calibration data for 

the chemical ionization modes and these data seem to depend on the type of 

mass spectrometer, i.e. differences in ion source construction (such as path 

length of the ion source), the eventual contamination of the ion source, and 

tuning parameters [50]. Moreover, variations in CI mass spectra resulting 

from changes in sample concentration and from co-eluting electron capturing 

agents have been observed [42, 51]. These variations are not caused by 

increased pressure in the source while the compounds pass through, but 

probably because of an increase in the residence time of ions within the 

source due to electronegative compounds. Rudewicz et al. [51] state that 

under the conditions of high pressure and high electron current, positive ions 

and negative particles diffuse together at the ambipolar diffusion rate (to the 

source walls). When electron capturing compounds enter the source, the 

rapidly moving electrons are converted into much more slowly moving 

negative ions, thus decreasing the ambipolar diffusion rate and increasing the 

residence time of ions within the source. This enhances positive reagent ion 

abundance and an increase in the extent of conversion of reactant ions to 

sample ions. Perhaps, this phenomenon could explain the non-linear 

response seen in CI mode as HFBI-derivatized sample compounds and 

endogenous compounds are strong electronegative substances.  

Finally, for assessment of the correct weighting factor the strategy reported 

by Almeida and co-workers [48] was followed. The choice of the weighting 

factor was based on the sum of all %RE values. After comparison of 1/x and 

1/x2 weighted regressions, 1/x2 was chosen because it resulted in improved 

calibration results.  

Best fit calibration curves and the variations are indicated in Table VI.5. While 

EI calibration curves are stable for at least one week and show less variation, 

daily calibration curves for chemical ionization modes are suggested as 

differences in source contamination can lead to different results.  
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Table VI.5. Calibration curve data obtained in plasma (EI, PICI and NICI 

mode; n=7), blood and brain tissue (PICI mode; n=5) 

Linearity Electron Ionization
plasma linear curve 1/x2

best fit 95% CI CV% best fit
Venlafaxine 0.019479   0.018763 - 0.020194 5 0.027357 0.007274 - 0.047441
m-cpp 0.004428   0.004213 - 0.004643 7 -0.001340 -0.011150 - 0.008464
Viloxazine 0.003513   0.003382 - 0.003646 5 0.0010533 -0.000827 - 0.002934
DMFluoxetine 0.004072   0.003781 - 0.004363 10 0.004882 -0.001530 - 0.011296
Fluvoxamine 0.001666   0.001493 - 0.001840 14 -0.000121 -0.003096 - 0.002853
Fluoxetine 0.005009   0.004940 - 0.005077 2 0.010610 0.005668 - 0.015552
Mianserin 0.004731   0.004610 - 0.004851 3 0.018086 0.016214 - 0.019957
Mirtazapine 0.014250   0.014049 - 0.014451 2 0.019407 0.007985 - 0.030829
Melitracen 0.021836   0.021469 - 0.022202 2 0.008699 -0.008410 - 0.004479
DMMia 0.006421   0.006186 - 0.006657 5 0.011116 0.006672 - 0.023142
DMSer 0.006643   0.006308  -0.006978 7 0.012372 -0.000543 - 0.017786
DMMir 0.003883   0.003757 - 0.004009 4 0.005640 0.001475 - 0.009831
Reboxetine 0.011757   0.011574 - 0.011940 2 0.005197 0.001367 - 0.009067
Citalopram 0.016250   0.015027 - 0.017473 10 0.030432 -0.057140 - -0.012050
DMMap 0.009857   0.009153 - 0.010561 10 0.009317 0.006165 - 0.019969
Maprotiline 0.014071   0.013691 - 0.014451 4 0.010312 0.011314 - 0.026592
Sertraline 0.002588   0.002342 - 0.002833 13 0.006739 -0.004163 - 0.005821
DDMC 0.01630   0.0151060 - 0.17540 10 0.016748 -0.013366 - 0.011448
DMC 0.032779   0.032313 - 0.033244 2 0.028201 -0.013220 - 0.028559
Paroxetine 0.005024   0.004945 - 0.005102 2 0.002290 0.004639 - 0.008032

Slope y-intercept
95% CI

0.994
0.996

0.993
0.994
0.989
0.991

0.993
0.992
0.996
0.991

0.994
0.996
0.995
0.992

0.992
0.993
0.992
0.995

C of determination
R2

0.990
0.987

 
Linearity Positive Chemical Ionization
plasma quadratic curve 1/x2

best fit best fit best fit
Venlafaxine 0.00000124   0.00000108 - 0.0000139 0.000350  0.000301 - 0.000399 0.001622 0.000183 - 0.003062
m-cpp 0.00000599   0.00000540 - 0.00000658 0.002810  0.002615 - 0.003005 0.004799 -0.002278 - 0.011876
Viloxazine 0.00000755   0.00000672 - 0.00000839 0.001280  0.001155 - 0.001405 0.000354 0.000268 - 0.000976
DMFluoxetine 0.00000338   0.00000276 - 0.00000401 0.001863  0.001618 - 0.002108 -0.000720 -0.004651 - 0.003212
Fluvoxamine 0.00000029   0.00000023 - 0.00000036 0.000132  0.000109 - 0.000155 0.000107 -0.000281 - 0.000495
Fluoxetine 0.00000560   0.00000512 - 0.00000608 0.004262  0.004090 - 0.004435 0.010023 0.005497 - 0.014549
Mianserin 0.00000091   0.00000051 - 0.00000130 0.004821  0.004630 - 0.005012 0.094671 0.089759 - 0.099584
Mirtazapine 0.00000309   0.00000287 - 0.00000332 0.001851  0.001753 - 0.001949 -0.004877 -0.006333 - -0.003421
Melitracen 0.00000181   0.00000164 - 0.00000198 0.000345  0.000322 - 0.000368 0.000310 0.000193 - 0.000426
DMMia 0.00000532   0.00000456 - 0.00000608 0.002545  0.002308 - 0.002782 -0.002524 -0.005076 - 0.000028
DMSer 0.00000415   0.00000300 - 0.00000531 0.003621  0.003165 - 0.004077 0.003413 -0.003691 - 0.010516
DMMir 0.00000586   0.00000494 - 0.00000678 0.002836  0.002529 - 0.003144 -0.012370 -0.016769 - -0.007971
Reboxetine 0.00000796   0.00000573 - 0.00001019 0.004611  0.004327 - 0.004894 -0.005180 -0.006864 - -0.003496
Citalopram 0.00000974   0.00000879 - 0.00001068 0.003192  0.002840 - 0.003544 -0.011306 -0.015282 - -0.007330
DMMap 0.00000187   0.00000102 - 0.00000272 0.002013  0.001790 - 0.002236 0.000678 -0.000771 - 0.002126
Maprotiline 0.00000485   0.00000425 - 0.00000545 0.002860  0.001881 - 0.003839 -0.002086 -0.003656 - -0.000515
Sertraline 0.00000179   0.00000146 - 0.00000212 0.001966  0.001610 -0.002323 0.002327 -0.003762 - 0.008416
DDMC 0.00000362   0.00000253 - 0.00000470 0.000730  0.000593 - 0.000867 0.002276 0.000893 - 0.001899
DMC 0.00000653   0.00000596 - 0.00000710 0.000796  0.000728 - 0.000863 0.001396 0.000675 - 0.003876
Paroxetine 0.00000625   0.00000486 - 0.00000765 0.004128  0.003996 - 0.004260 0.004914 0.003462 - 0.006367

blood quadratic curve 1/x2

linear term 
best fit best fit best fit

Venlafaxine 0.00000103 0.00000093 - 0.00000113 0.000319 0.002002
m-cpp 0.00000866 0.00000632 - 0.00001099 0.005981 0.005188
Viloxazine 0.00001303 0.00001000 - 0.00001605 0.002719 -0.001006
DMFluoxetine 0.00000669 0.00000495 - 0.00000843 0.003852 -0.027780
Fluvoxamine 0.00000140 0.00000097 - 0.00000183 0.000463 0.004456
Fluoxetine 0.00000742 0.00000725 - 0.00000758 0.005361 0.012036
Mianserin 0.00000345 0.00000292 - 0.00000397 0.008010 0.094540
Mirtazapine 0.00000467 0.00000426 - 0.00000507 0.001804 -0.004271 -0.006270 - -0.002270
Melitracen 0.00000188 0.00000173 - 0.00000203 0.000372 0.000429 0.000235 - 0.000622
DMMia 0.00000455 0.00000417 - 0.00000492 0.002424 0.000273 -0.00128 - 0.001823
DMSer 0.00000946 0.00000446 - 0.00001446 0.011540 -0.000324 0.033720 - 0.033071
DMMir 0.00000573 0.00000464 - 0.00000681 0.002898 -0.009352 -0.015360 - -0.003340
Reboxetine 0.00000957 0.00000660 - 0.00001253 0.006910 0.008584 0.000886 - 0.016283
Citalopram 0.00001299 0.00000987 - 0.00001611 0.006000 -0.021860 -0.025960 - -0.017760
DMMap 0.00001179 0.00000840 - 0.00001517 0.008950 -0.001574 -0.011080 - 0.007928
Maprotiline 0.00000826 0.00000756 - 0.00000896 0.005222 0.003592 0.000290 - 0.007479
Sertraline -0.00000022 0.00000090 - 0.00000045 0.001708  0.001398 - 0.002017 0.010198 0.005693 - 0.014702
DDMC 0.00004633 0.00002980 - 0.00006286 0.006266 0.020052 0.001870 - 0.041978
DMC 0.00000469 0.00000384 - 0.00000554 0.001603 0.004016 0.003204 - 0.004828
Paroxetine 0.00001082 0.00000963 - 0.00001200 0.005560 0.005766 0.003255 - 0.008277

brain quadratic curve 1/x2

linear term 
best fit best fit best fit

Venlafaxine 0.00000042 0.000609 0.032960
m-cpp 0.00000288 0.008320 0.056070
Viloxazine 0.00001150 0.008520 -0.043620
DMFluoxetine 0.00000220 0.005503 -0.077520
Fluvoxamine 0.00000050 0.008020 -0.012876
Fluoxetine 0.00000235 0.006700 0.054920
Mianserin 0.00000071 0.008860 0.186140
Mirtazapine 0.00000074 0.003870 -0.036960
Melitracen 0.00000155 0.001565 0.004534
DMMia 0.00000053 0.011500 -0.101060
DMSer 0.00000641 0.005388 0.046900
DMMir 0.00000186 0.006671 -0.078248
Reboxetine -0.00000089 0.009475 0.099175
Citalopram -0.00000243 0.015560 -0.039100
DMMap -0.00000138 0.008380 -0.304200
Maprotiline 0.00000103 0.005790 0.012388
Sertraline 0.00000511 0.004626 0.137914
DDMC 0.00001924 0.003069 0.088974
DMC 0.00001098 0.002382 0.047000
Paroxetine 0.00000471 0.006440 0.018180

y-intercept

quadratic term 

quadratic term 

y-intercept

95% CI
linear term 

95% CI
y-intercept

95% CI
quadratic term 

-0.006630 - 0.015545
0.007663 - 0.016409
0.088443 - 0.100637

0.001985 - 0.002779

0,005567 - 0.006013

0.013387 - 0.017733

0.005749 - 0.007594

0.010078 - 0.012922

0.003448 - 0.004292

0.006330 - 0.007070

0.994
0.006230 - 0.006650 0.997

0.035464 - 0.058536
0.011024 - 0.025336

0.995
0.983

0.001658 - 0.004480 0.996
0.002931 - 0.006321

0.010343 - 0.014433
0.053785 - 0.222043
0.036594 - 0.141354

0.008009 -0,008751 0.994
-0.401209 - 0.323009
-0.047738 - -0.013102

0.009037 - 0.009913 0.991
-0.190940 - 0.034445
0.078130 - 0.120220

0.004925 - 0.005851 0.992
 -0.233092 - 0.030972
0.020888 - 0.072912

0.001388 - 0.001742 0.994
-0.057910 - -0.016010
-0.001701 - 0.010769

0.008351 - 0.009369 0.996
0.030333 - 0.079507
0.110836 - 0.261444

0.004466 - 0.006540 -0.106269 - -0.048771 0.997
0.000599 - 0.001005 0.996-0.022395 - -0.003357

0.007644 - 0.008996 0.984
0.007662 - 0.009378 0.989-0.061838 - -0.025402

-0.007817 - 0.119957

95% CI 95% CI R2

0.000273 - 0.000944 0.018082 - 0.047838 0.990
95% CI

0.00000018 - 0.00000067

0.994

C of determination

0.998

0.995

0.992

0.990

0.988

0.989
0.957
0.995
0.995

0.995
0.981
0.976
0.975

C of determination

0.986
0.986
0.996
0.991
0.986
0.992
0.995
0.993

R2

0.993
0.983
0.985

0.989
0.996
0.994
0.995

0.989
0.981
0.987
0.988

0.993
0.991
0.996
0.995

0.989
0.994
0.994
0.990

0.988
0.991
0.992
0.990

C of determination
R2

0.001089 - 0.002916
-0.011320 - 0.021699

-0.072980 - 0.017421

95% CI
0.000288 - 0.000350

0.003193 - 0.004511
0.002173 - 0.003265

95% CI

-0.005990 - 0.003983

0.000324 - 0.000420
0.001948 - 0.002900

0.002031 - 0.003765

0.000260 - 0.000667
0.005129 - 0.005593
0.007907 - 0.008113
0.001658 - 0.001950

95% CI

0.004532 - 0.008000
0.001422 - 0.001784
0.005494 - 0.005626

0.005037 - 0.006925

0.006756 - 0.007064
0.005002 - 0.006998
0.008548 - 0.009352

0.007503 - 0.015577

0.004956 - 0.005488

0.00000115 - 0.00000461
0.00000970 - 0.00001239
0.00000192 - 0.00000248
0.00000042 - 0.00000058
0.00000166 - 0.00000304
0.00000028 - 0.00000115
0.00000032 - 0.00000116
0.00000121 - 0.00000190
-0.00000093 - 0.00000200
0.00000554 - 0.00000727
0.00000087 - 0.00000285

-0.00000150 - -0.00000028
-0.00000435 - -0.00000051
-0.00000227 - -0.00000050
0.00000032 - 0.00000174
0.00000361 - 0.00000661
0.00001491 - 0.00002357
0.00001002 - 0.00001194
0.00000393 - 0.00000548
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Linearity Negative Chemical Ionization
plasma quadratic curve 1/x2

best fit best fit best fit
m-cpp 0.00000147 0.0034  0.002967 - 0.003833 0.000465 -0.000629 - 0.001559
Viloxazine 0.00000199 0.000755  0.000718 - 0.000792 0.000298 0.000041 - 0.000554
DMFluoxetine 0.00000051 0.0010  0.000896 - 0.001133 0.000760 0.000148 - 0.001372
Fluvoxamine 0.00000036 0.0044  0.004062 - 0.004732 0.001318 -0.000498 - 0.003134
Fluoxetine 0.00000068 0.0042  0.003917 - 0.004483 0.045971 0.001915 - 0.007279
DMMia 0.00000364 0.001106  0.001050 - 0.001161 0.000211 -0.000185 - 0.000607
DMSer 0.00002343 0.023086  0.020551 - 0.025620 0.015154 -0.000808 - 0.031117
DMMir 0.00000271 0.000514  0.000484 - 0.000544 0.000196 -0.000048 - 0.000441
Reboxetine 0.00000700 0.002714  0.002430 - 0.002998 0.001684 0.000267 - 0.003101
DMMap 0.00000274 0.001682  0.001508 - 0.001856 0.000369 -0.000165 - 0.000902
Maprotiline 0.00001386 0.005251   0.005017 - 0.005486 0.002071 -0.000108 - 0.004249
Sertraline 0.00000392 0.002794  0.002552 - 0.003036 0.005209 0.002161 - 0.008256
DDMC 0.00008010 0.036670  0.024920 - 0.048420 -0.005964 -0.018890 - 0.006963
DMC 0.00002294 0.014074   0.012949 - 0.015200 0.001354 -0.001767 - 0.004475
Paroxetine 0.00000583 0.005757  0.005406 - 0.006108 0.001710 0.000559 - 0.002862

quadratic term linear term y-intercept

0.992

0.988
0.973
0.987
0.992

0.989
0.990
0.986
0.987

0.992
0.989
0.996
0.991

R2

0.990
0.991

C of determination
95% CI

  0.00000343 - 0.00000384
  0.00001349 - 0.00003337
  0.00000250 - 0.00000292

  0.00000067 - 0.00000227
  0.00000191 - 0.00000207
  0.00000039 - 0.00000064
  -0.00000021 - 0.00000093

  0.00005262 - 0.00010757
  0.00002040 - 0.00002548
  0.00000493 - 0.00000674

95% CI95% CI

  0.00000606 - 0.00000794
  0.00000207 - 0.00000342
  0.00001266 - 0.00001506
  0.00000223 - 0.00000561

  0.00000345 - 0.00000446

 

VI.3.5. Sensitivity 

 

VI.3.5.1. Experimental 

The sensitivity of the method was evaluated by determining the limit of 

quantification (LOQ).  LOQ was defined as the lowest standard, spiked to the 

matrix, with a signal-to-noise ratio � 10, an acceptable precision (RSD less 

than 20%) and accuracy (80-120%). This parameter was evaluated in SIM 

total ion mode (quantifier and qualifiers monitored). Six or five repetitions 

were applied in plasma and post-mortem samples (blood and brain), 

respectively. 

 
VI.3.5.2. Results and discussion 

All LOQs indicated in Table VI.6. gave a S/N > than 10. In addition, the 

precision and accuracy were also determined for these concentrations in 

plasma, blood and brain tissue. The LOQs in plasma ranged from 5 till 12.5 

ng/ml, however, for mianserin and sertraline the accuracy did not meet the 

criteria and therefore the LOQs should be 20 and 25 ng/ml. The LOQs of all 

ADs show that the sensitivity even for subtherapeutic concentrations is 

adequate when monitoring plasma concentrations. The LOQ value for the 

compounds in PICI is not better than in EI, because in addition to the quasi-

molecular ions, only low abundance fragment ions are created, leading to a 

loss in sensitivity as the qualifiers are not detected anymore. NICI is much 

more sensitive as compared to EI and PICI.  The sample loaded on the SPE-

tubes was downsized from 1 ml to 250 μl, because of the enhanced 

sensitivity of the system. This can be an advantage in clinical analysis where 

sample volume can be a limiting factor. The sensitivity for plasma samples is, 

however, worse than for pure standards, probably due to derivatization of 

endogenous molecules, increasing the background signal. While the 
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concentrations shown in Table VI.6. for NICI mode gave a S/N> 10 and an 

acceptable intra batch precision and accuracy, the inter batch precision 

results for most compounds did not fulfil the <20% variation criterion. A LOQ 

of  2.5-6.25 ng/ml depending on the compound would give better inter batch 

precision results. 

Table VI.6. Limit of quantification in plasma, blood and brain tissue 
 * n-1 
 

Blood (ng/ml) Brain (ng/g) Blood (ng/ml) Brain (ng/g)
compound EI PICI NICI PICI PICI EI (n=6)  PICI (n=6) NICI (n=6)  PICI (n=5)  PICI (n=5)
venlafaxine 10 10 20 50 92 93* 109 85
m-cpp 10 10 2 10 50 101 101* 85 107 103
viloxazine 5 5 1 5 25 98 101 90 115 102
DMFluox 12.5 12.5 2.5 12.5 62.5 100 97 104 109 101
fluvoxamine 12.5 12.5 2.5 12.5 62.5 91 86* 86 105 101
fluoxetine 12.5 12.5 2.5 12.5 62.5 94 98 97 111 98
mianserin 10 10 20 50 131 134 79 99
mirtazapine 10 10 10 50 92 100 110 103
melitracen 5 5 10 25 104 95 110 100
DMMia 10 10 2 20 50 89 93 95 98 99
DMSer 10 10 2 10 50 91 104* 112 75 100
DMMir 10 10 2 20 50 117 118 101 96 107
reboxetine 5 5 1 5 25 92 99 81 111 96
citalopram 10 10 10 50 103 104 101 81
DMMap 6 6 1.2 6 30 113 102 105 114 104
maprotiline 6 6 1.2 6 30 89 99 112 108 97
sertraline 12.5 12.5 2.5 25 62.5 108 103 85 117 100
DDMC 5 5 1 10 25 135 118 80 83 100
DMC 5 5 1 5 25 95 79 83 113 102
paroxetine 5 5 1 5 25 101 100 97 106 99

Blood (ng/ml) Brain (ng/g) Blood (ng/ml) Brain (ng/g)
compound EI (n=5) PICI (n=5) NICI (n=5) PICI (n=5) PICI EI (n=6)  PICI (n=6)  NICI (n=6) PICI (n=5) PICI (n=5)
venlafaxine 9 13  15 15 17 23* 14 3
m-cpp 7 13 7 14 10 20 16* 33 3 2
viloxazine 4 9 9 12 15 7 8 25 9 3
DMFluox 5 4 5 8 11 15 19 28 6 1
fluvoxamine 5 7 6 10 10 19 17 27 3 2
fluoxetine 1 4 7 3 3 9 8 24 1 0.5
mianserin 10 4 2 4 12 11 10 2
mirtazapine 7 10 12 9 8 9 7 1
melitracen 4 18 8 17 9 19 14 3
DMMia 11 10 4 14 21 19 15 20 6 2
DMSer 6 6 7 11 17 12 22* 22 4 2
DMMir 9 8 5 22 12 9 14 25 9 3
reboxetine 2 4 13 9 27 14 14 35 3 16
citalopram 11 8 13 23 17 5 3 4
DMMap 4 6 10 14 13 1 33 11 4 6
maprotiline 2 6 4 14 8 9 18 40 4 7
sertraline 8 14 13 11 15 27 37 26 16 8
DDMC 8 16 2 18 6 18 30 20 9 6
DMC 3 9 4 16 7 19 32 43 5 5
paroxetine 2 2 4 11 4 13 16 12 3 1

LOQ 
Accuracy (%)

Intra batch precision (RSD%)
Plasma (ng/ml)

Inter batch precision (RSD%)

Plasma (ng/ml)
Spiked concentration

Plasma (ng/ml)

Plasma (ng/ml)

 

While the LOQs in blood are higher for some compounds than in plasma, 

sensitivity, even for subtherapeutic concentrations, is adequate for most 

compounds. For brain tissue, citalopram and reboxetine demonstrated a 

variation in precision at the LOQ level above 20% at the indicated spiked 

concentrations (25-62.5 ng/g). However, the concentration in brain tissue is 
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usually much higher in patients with therapeutic drug levels in blood, thus 

sensitivity for most compounds will not be a problem. LOQ was not checked 

for hair samples as spiking onto hair does not reflect the incorporation in the 

hair structure. 

VI.3.6. Precision 

 

VI.3.6.1. Experimental 

Precision was evaluated over the linear dynamic range at three different 

levels, i.e. 20 (low), 200 (medium), and 500 ng (high) for 1 ml plasma and 

blood. For brain tissue the concentrations were 200, 500 and 1000 ng/g. 

Intra and inter batch precision in plasma was assessed by six determinations 

per concentration in one day or on six separate days, respectively, and was 

measured using RSD. For the post-mortem matrices, 5 repetitions for intra 

and inter batch precision were performed. 

 

VI.3.6.2. Results and discussion 

The intra batch precision in plasma of all compounds fulfilled the acceptance 

criteria for all concentrations in EI as well as CI modes. For inter batch 

precision, venlafaxine gave bad results in PICI, possibly due to interference 

of a co-eluting peak. m-Chlorophenylpiperazine showed a high variation at 

low concentration, but fulfilled the criteria at medium and high concentrations 

in EI and CI modes. The inter batch precision for sertraline and DDMC was 

not acceptable over the total concentration range in NICI mode.  

In blood, the intra and inter batch precision was acceptable for all 

compounds, however, the inter batch variation for sertraline is rather high. 

Intra batch precision for brain tissue samples was acceptable, except the 

intra batch precision for citalopram at low concentration. 
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Table VI.7. Precision data  
*n-1

Plasma Low Mid High 
EI  PICI NICI EI  PICI NICI EI  PICI NICI EI  PICI NICI EI  PICI NICI EI  PICI NICI

Venlafaxine 20 200 500 3 7 5 8 1 8 14 30 5 24 9 4
m-cpp 20 200 500 3 6 6 7 7 10 6 4 3 18 31 14 9 11 15 11 10 17
Viloxazine 10 100 250 3 5 6 3 2 9 3 2 8 10 11 13 6 5 7 5 4 6
DMFluox 25 250 625 11 11 11 12 11 11 6 4 10 12 10 13 14 14 11 10 14 12
Fluvoxamine 25 250 625 10 11 11 14 13 14 5 4 9 12 12 14 12 12 9 9 14* 12
Fluoxetine 25 250 625 4 3 3 4 4 5 5 4 3 7 6 8 5 6 5 2 4 6
Mianserin 20 200 500 4 5 5 5 3 3 6 5 6 8 3 5
Mirtazapine 20 200 500 4 3 5 3 3 2 6 7 7 7 2 3
Melitracen 10 100 250 7 10 5 6 1 4 5 11 4 10 2 4
DMMia 20 200 500 8 6 4 4 3 11 1 2 8 13 9 11 7 7 9 5 6 6
DMSer 20 200 500 7 12 13 9 12 11 8 7 4 10 15* 12 6 26 15 15 7* 17
DMMir 20 200 500 6 6 2 4 4 10 2 2 11 14 7 11 8 9 8 5 4 10
Reboxetine 10 100 250 4 4 5 3 5 6 1 4 8 7 8* 16 5 6 6 3 5 7
Citalopram 20 200 500 11 7 8 4 3 4 10 13 8 14* 7 5
DMMap 12 125 300 3 11 7 8 12 7 5 6 7 12 12 9 12 15 13 11 12* 15
Maprotiline 12 125 300 5 7 3 3 6 3 3 4 5 8 9 8 7 9 4 4 6 7
Sertraline 25 250 625 8 10 10 7 10 7 7 8 9 13 10* 31 12 15* 33 12 14* 38
DDMC 10 100 250 7 10 11 9 12 9 5 9 8 14 10 43 9 10* 37 8 11* 52
DMC 10 100 250 7 9 7 2 3 4 1 3 3 12 9 8 5 7 6 4 3 7
Paroxetine 10 100 250 6 7 3 4 4 8 2 3 6 11 5 12 5 7 7 1 4 5

Blood Low Mid High 

Venlafaxine 20 200 500
m-cpp 20 200 500
Viloxazine 10 100 250
DMFluox 25 250 625
Fluvoxamine 25 250 625
Fluoxetine 25 250 625
Mianserin 20 200 500
Mirtazapine 20 200 500
Melitracen 10 100 250
DMMia 20 200 500
DMSer 20 200 500
DMMir 20 200 500
Reboxetine 10 100 250
Citalopram 20 200 500
DMMap 12 125 300
Maprotiline 12 125 300
Sertraline 25 250 625
DDMC 10 100 250
DMC 10 100 250
Paroxetine 10 100 250

Brain Low Mid High 

Venlafaxine 200 500 1000
m-cpp 200 500 1000
Viloxazine 100 250 500
DMFluox 250 625 1250
Fluvoxamine 250 625 1250
Fluoxetine 250 625 1250
Mianserin 200 500 1000
Mirtazapine 200 500 1000
Melitracen 100 250 500
DMMia 200 500 1000
DMSer 200 500 1000
DMMir 200 500 1000
Reboxetine 100 250 500
Citalopram 200 500 1000
DMMap 125 300 600
Maprotiline 125 300 600
Sertraline 250 625 1250
DDMC 100 250 500
DMC 100 250 500
Paroxetine 100 250 500

Precision

9

9

8

Mid (n=6)

Intra batch (RSD%)
High (n=5)

High (n=6)

Low (n=5)
PICI

6
14

10

11
7

8

11 9 8

4

1315 10

2
11
1

7

13

10

7

12

11
18

7

10

9

112

8

6

9

9

5

Low (n=5)
Intra batch (RSD%)

15 7

1
2

PICI

6

2
2

5
1
1
3

3

4

2

10

16

10

3

8

5
3

13

9

3
49

5
1
3

1

5

6
1911

3

8
22

8

11

Inter batch (RSD%)

5
1

High (n=5)
PICIPICIPICI

14 14

14

6
12

Mid (n=5)

3
2

1
2
3

14

Spiked concentration (ng/ml)

Spiked concentration (ng/ml)

Mid (n=5)
PICI

13

14

4
9

Inter batch (RSD%)
Low (n=6) Mid (n=6)

3

4
5

0.5

12
3

6

Spiked concentration (ng/g)

6

3

8

12

4
9

High (n=6)

11

4

13

Low (n=5)

2
2
4
8

14

High (n=5) Low (n=5)

22

8

5

Inter batch (RSD%)

7

Intra batch (RSD%)

3
12

Mid (n=5) High (n=5)
PICI PICI PICI PICI PICI PICI

Low (n=5) Mid (n=5)

14 1
10 15 7 4 7 3

5 1
13 15
6 13 11 2

9 5

3 8 9 11

10 1
7 7 8 6

13 1
3 1

5 4
4 3

11 5 7 4
7 10

3 6 5 6

3 6
14 3 13 2

5 3
2 4

13 2
8 10
9 3 12 12

14 6

11 7 12 15

4 3
12 11 12 10

9 7
10 3

6 2
16 13
4 8 14 12

15 4

4 2 9 7

3 0.5
6 7 15 7

7 1
10 3

6 1
15 13
14 11 10 5

12 4

13 12 2 5 14

 

VI.3.7. Accuracy 

 
VI.3.7.1. Experimental 

Accuracy was evaluated with separately prepared individual primary stock 

solutions, mixtures and working solutions of all standards. It was calculated 

over the linear dynamic range at three different concentration levels, i.e. low, 

medium, and high. The analyte concentrations were calculated from daily 
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calibration curves and the accuracy was calculated by the ratio of this 

calculated concentration versus the spiked concentration. 

 
VI.3.7.2. Results and discussion 

The low concentrations were underestimated for most of the compounds in 

EI, PICI and NICI mode in plasma. While didesmethylcitalopram was 

overestimated in plasma at mid and high concentrations in EI and PICI mode, 

it was underestimated in NICI mode. However, an acceptable accuracy was 

seen for most compounds in all three matrices and ionization modes (Table 

VI.8.).  

In blood, the low concentrations were again underestimated. This 

phenomenon was not seen in brain tissue. Maybe the underestimated values 

for the low concentration samples in plasma and blood are due to the surface 

of the laboratory glassware, which is slightly acidic and can adsorb ADs as 

they are amines. Therefore, silanized glassware could be used or a small 

amount of an alcohol such as butanol (1%) could be added to the 

redissolving solvent to reduce this adsorption by competition for the 

adsorptive sites on the glass surface. 

 
Table VI.8.  Accuracy data 
*n-1 
 

Low Mid High Low Mid High 
EI  PICI NICI EI  PICI NICI EI  PICI NICI

Venlafaxine 20 200 500 81 76 98 102 106 97
m-cpp 20 200 500 88* 101 83 106 110 92 114 108 108
Viloxazine 10 100 250 85 85 75 105 106 85 110 102 91
DMFluox 25 250 625 89 83 84 104 107* 98 105 99 100
Fluvoxamine 25 250 625 84 78 80 107 92 93 107 107* 100
Fluoxetine 25 250 625 82 83 89 93 93 95 99 98 101
Mianserin 20 200 500 112 114* 127 128 135 132
Mirtazapine 20 200 500 82 76 89 93 94 90
Melitracen 10 100 250 87 82 101 96 105 98
DMMia 20 200 500 86 81 83 99 99 88 103 101 94
DMSer 20 200 500 88* 77* 90 101* 86 108 99 98* 98
DMMir 20 200 500 103 91 86 107 107 87 113 107 93
Reboxetine 10 100 250 83 76* 77 98 100 90 104 99 91
Citalopram 20 200 500 77 76 98 96* 105 85
DMMap 12 125 300 116* 87 81 112 108 100 106 108 89
Maprotiline 12 125 300 84 79 82 89 90 100 94 90* 101
Sertraline 25 250 625 91* 94* 94 99 94* 85 123 115* 94
DDMC 10 100 250 116 113 55 138 125* 64 139 128* 54
DMC 10 100 250 86* 81 80 97 88 92 99 95 96
Paroxetine 10 100 250 93 89 81 97 99 89 105 104 93

Plasma 
Spiked concentration (ng/ml) (n=7; NICI n=6)
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Low Mid High 

Venlafaxine 20 200 500
m-cpp 20 200 500
Viloxazine 10 100 250
DMFluox 25 250 625
Fluvoxamine 25 250 625
Fluoxetine 25 250 625
Mianserin 20 200 500
Mirtazapine 20 200 500
Melitracen 10 100 250
DMMia 20 200 500
DMSer 20 200 500
DMMir 20 200 500
Reboxetine 10 100 250
Citalopram 20 200 500
DMMap 12 125 300
Maprotiline 12 125 300
Sertraline 25 250 625
DDMC 10 100 250
DMC 10 100 250
Paroxetine 10 100 250

Blood
Spiked concentration (ng/ml)

High 
 PICIPICI  PICI

Low Mid 

71 102 95
109 106 101

78 102 94

83 104 94

86 99 98
79 98 95
92
110
98

96

99
100
105

103
91

93

97
75 95

83

109

103
101

101

79

82
97

109
110

85
109
107

100 98

117

96

99

95
100
98

83 99 94

(n=5)

74 103 94

75 96

 

Low Mid High 

Venlafaxine 200 500 1000
m-cpp 200 500 1000
Viloxazine 100 250 500
DMFluox 250 625 1200
Fluvoxamine 250 625 1200
Fluoxetine 250 625 1200
Mianserin 200 500 1000
Mirtazapine 200 500 1000
Melitracen 100 250 500
DMMia 200 500 1000
DMSer 200 500 1000
DMMir 200 500 1000
Reboxetine 100 250 500
Citalopram 200 500 1000
DMMap 125 300 600
Maprotiline 125 300 600
Sertraline 250 625 1200
DDMC 100 250 500
DMC 100 250 500
Paroxetine 100 250 500

Brain
Spiked concentration (ng/g) (n=5)

Low Mid High 
PICI  PICI  PICI
97 104 100
86 96 96
88 101 99
92 95 99
93 102 98
90 96 99
94 101 97
87 94 97
94 104 102
89 105 100
91 100 95
90 98 101
92 100 101
93 105 100
94 106 97
91 104 98
105 104 99
115 105 111
108 105 108
89 98 99  

 

VI.4. Conclusion  

A gas chromatographic-mass spectrometric method (GC-MS) for the 

simultaneous determination of the ‘new’ ADs (mirtazapine, viloxazine, 

venlafaxine, trazodone, citalopram, mianserin, reboxetine, fluoxetine, 

fluvoxamine, sertraline, maprotiline, melitracen, paroxetine) and their active 

metabolites (desmethylmirtazapine, O-desmethylvenlafaxine, m-chloro-
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phenylpiperazine, desmethylcitalopram, didesmethylcitalopram, desmethyl-

mianserin, desmethylfluoxetine, desmethylsertraline, desmethylmaprotiline) 

is validated in plasma, blood and brain tissue using different ionization 

modes.  

 

Sample preparation consisted of a strong cation exchange mechanism and 

derivatization with heptafluorobutyrylimidazole. The GC separation was 

performed in 24.8 minutes. Identification and quantification were based on 

selected ion monitoring in electron and chemical ionization modes. Calibration 

by linear and quadratic regression for electron and chemical ionization, 

respectively, utilized deuterated internal standards and a weighting factor 

1/x2. Limits of quantitation were established between 5-12.5 ng/ml in EI and 

positive ion chemical ionization (PICI), and 1-6.25 ng/ml in negative ion 

chemical ionization (NICI) for plasma. For blood the limit of quantification 

ranged from 5-20 ng/ml in PICI, while the limit of quantification in brain 

tissue ranged from 25-62.5 ng/g.  

 

During validation stability, sensitivity, precision, accuracy, recovery, linearity 

and selectivity were evaluated for each ionization mode and were 

demonstrated to be acceptable for most compounds. While it is clear that not 

all compounds can be quantitated either due to irreproducible validation 

results and chromatographic problems (trazodone) or due to derivatization 

problems (O-desmethylvenlafaxine), this method can quantitate most new 

ADs in the therapeutic range in plasma in different ionization modes, and in 

blood and brain tissue.   

 

Electron ionization is the traditional method for comprehensive screening 

procedures due to the easy library search mechanism. This ionization, 

however, leads to high fragmentation of citalopram, melitracen, and 

venlafaxine, resulting in the aspecific high abundance quantifier ion at m/z 58 

and inherent loss of specificity, especially for demanding matrices such as 

post-mortem blood and brain tissue. Chemical ionization (CI) is a ‘softer’ 

ionization technique, thus providing more selectivity through molecular mass 

information. However, due to less fragmentation, the qualifier ions had low 

abundancy, leading to loss of sensitivity. NICI leads to improved sensitivity 
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due to heptafluorobutyrylimidazole derivatization, allowing smaller sample 

volumes. However, efficient sample preparation stays necessary because of 

detectable derivatized endogenous compounds. On the other hand, 

underivatized tertiary amines such as citalopram, melitracen, mianserin, and 

mirtazapine are not detected.  

 

Chemical ionization modes can surely provide advantages, however, the 

system is less robust and harder to optimize. The presence of impurities in 

the reagent gas, radical species in the ion source plasma (formed by trace 

amounts of oxygen, water or chlorinated solvents), air leaks and interactions 

with the ion source walls can lead to variations in spectra and thus difficulties 

during analysis. In addition, in routine clinical analysis, changing the EI and 

CI source can be time consuming.  Therefore, EI is still the ionization mode of 

choice in clinical analysis due to time concerns. For routine toxicological 

analyses, PICI mode can be of interest when highly fragmented compounds 

such as citalopram, venlafaxine and melitracen have to be monitored, but 

interferences are still seen for venlafaxine. While the NICI mode leads to loss 

of information because it does not detect the underivatized tertiary amine 

ADs, it leads to remarkably enhanced sensitivity for the derivatized ADs. This 

could be very interesting in clinical analysis and TDM of samples from 

children where often only a limited amount of sample is available. 
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VII.1. Foreword 

This chapter describes a preliminary study concerning personalized anti-

depressant (AD) treatment. So far most compelling evidence in 

pharmacogenetics of ADs has been gathered for an effect of CYP2D6 

polymorphisms (i.e. variations in a specific metabolic enzyme) on AD drug 

plasma levels [1]. Therefore, in this study, therapeutic drug monitoring 

(TDM) is combined with CYP2D6 genotyping (GEN) to ensure a good medical 

treatment. Despite the low toxicity of ADs, physicians must be aware that 

depression is a chronic disease leading to a long period of drug intake. In 

addition, these patients mostly use a whole range of drugs, which increases 

the risk of adverse effects. There are no clear guidelines to get an optimized 

therapy, especially because a lot of factors (environmental, genetic) will 

influence the final outcome. Nowadays, AD treatment is largely based on trial 

and error combined with the experience of the physician. At first, we wanted 

to link the genotype of a large group of depressed patients with their plasma 

concentration and effects; however, it was hard to gather enough patients for 

a significant large scale study. Moreover, blood samples are not taken on a 

routine base in psychiatric clinics. Therefore, as an example of the TDM-GEN 

procedure, we will discuss a case report in which a healthy volunteer showed 

adverse effects after intake of a single dose of mianserin (30 mg/day). In 

addition, the TDM-GEN procedure that would be used for depressed patients 

will be described. 

VII.2. Introduction 
 

In spite of the enormous progress in the knowledge of depression and the 

design of ADs during the past decades, treatment of depression is far from 

being optimal. There is a delayed time of onset of clinical improvement, 

remission rates are high and a significant number of patients, about 30-50 

%, have an insufficient response or do not respond at all. In addition, side- 

effects are often noticed and about 40 % of all patients are non-compliant, 

probably largely due to these side-effects [1-8]. 

 

In the psychiatric clinic, depression is treated with ‘optimal doses’ of ADs that 

are defined through population-based dose-effect relationships, thus doses 
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are based on the average plasma levels of the drug obtained in the 

population at a certain dosage. However, a large inter-individual variability 

between dose, plasma concentrations and final effects are observed during 

treatment with ADs. Variability of the ADs plasma concentrations is 

determined by different factors such as environmental (e.g. compliance, co-

medication, diet, smoking habit) and physiological factors (e.g. age, sex, liver 

disease, impared kidney function), as wel as by genetic variability of 

pharmacokinetic (metabolism) or pharmacodynamic (transporters, targets) 

parameters  (Figure VII.1.) [1, 4, 5, 8-10].  

 

One of the most important factors of the inter-individual variability of AD 

plasma concentrations and effects is the metabolism of ADs due to 

cytochrome P450 isoenzymes. Especially CYP2D6 is of interest, as this 

enzyme (partially) metabolizes about 25 % of all drugs. Polymorphisms (i.e. 

variations) in the genetic sequence may result in a lack of this enzyme (gene 

deletion), a partially functional enzyme (mutation of a single nucleotide) or a 

high amount of active enzyme (gene amplification) and thus lead to 

differences in drug metabolism. Based on these genetic variations, different 

patient groups can be distinguished from poor (PM) to ultrarapid (UM) 

metabolizers. For these patients the ‘optimal average dose’ used in clinical 

practice can lead to problems. For poor metabolizers, a lot of side-effects 

may occur as high ADs plasma concentrations are reached because of the 

slower rate of metabolism. Ultrarapid metabolizers, on the other hand, often 

do not respond to AD treatment, because their high rate of metabolism leads 

to subtherapeutic concentrations [11]. 

 

In the clinical field, therapeutic drug monitoring (TDM) is known to be a valid 

tool to optimize pharmacotherapy as it enables the clinician to adjust the 

dosage of drugs according to the pharmacokinetic characteristics of the 

individual patient. The usefulness of TDM for the new generation ADs is, 

however, under discussion because of the low toxicity profile, the large 

therapeutic window and the poor plasma concentration-effect relationship. In 

addition, dose adjustments based on TDM can only occur at steady-state of 

the drug, thus only after a couple of weeks of treatment, and these first 

weeks of treatment are crucial for patient compliance [12, 13]. As a result, 
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for optimal and rational use of ADs, all factors of variability should be 

considered and if possible monitored during (a problematic) therapy. As the 

variability of the ADs plasma concentrations is due to environmental factors, 

underlying diseases as well as genetic variables, TDM combined with 

pharmacogenetics (TDM-GEN) and qualitative diagnostic tests could give a 

better idea of the individual patient’s response to a drug and can finally result 

in a personalized medicine [5]. 

 

Figure VII.1.  Schematic overview of the drug route towards site of action, 

with indication of factors influencing drug plasma concentration and effect 

A, after drug intake, plasma concentrations for one dose differ due to compliance, 
environmental, physiological and genetic factors. The genetic variability for CYP2D6 
metabolism is indicated. B, for one plasma concentration, a different brain 
concentration can occur due to genetic variation of the transport system. C, variations 
also occur in receptors, transporters, and biosynthesis enzymes resulting in a different 
effect. Adapted from [10, 14]. 
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VII.2.1. Patient information and qualitative diagnostic tests 

 

The diagnosis of depression is done by depression rating scales as no 

objective parameters such as plasma concentration of certain markers can 

indicate the state of the depression. The three most popular rating scales are 

the Hamilton Depression Rating Scale (HAM-D), the Montgomery and Asberg 

Depression Rating Scale (MADRS) and the American Psychiatric Association 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). 

The HAM-D is a multiple choice questionnaire originally published in 1960 by 

Max Hamilton, which rates the severity of symptoms observed in depression 

such as low mood, insomnia, agitation, anxiety and weight-loss. The total 

scores range between 0-52 and are interpreted as follows: 0-7 = normal 

/not-depressed; 8-13 = possibly/mildly depressed mood; 14-15 moderately 

depressed; 19-27 severely depressed; > 27 very severely depressed [15]. 

The MADRS is a commonly used scale to determine the severity of depression 

in elderly patients without dementia. It rates the severity of depression by 

observing symptoms such as low mood, insomnia, appetite, concentration 

problems, agitation, negative and suicidal thoughts. A score of 20 leads to 

the conclusion of a slightly depressed mood, while a score higher than 30 

means a severely depressed state of the patient.  

The DSM rating scale was first published in 1952 by the American Psychiatric 

Association and the last revision DSM-IV was published in 1994. This 

publication is a categorical classification system of 297 mental health 

disorders into five levels. The first level (axis 1) includes clinical disorders, 

including major mental disorders, as well as developmental and learning 

disorders. This is the category in which depression is situated. Depression is 

categorized as a recurrent or single episode mental disorder and is 

subdivided in mild, moderate, or severe depression with or without psychotic 

features [16].  

 

The results of these qualitative diagnostics should be linked to quantitative 

TDM results to link the state of the patient to the obtained plasma 

concentrations [16]. In addition, information concerning the patient’s 

physiology, habits (e.g. smoking, diet), co-medication, comorbidity and 

genetic parameters should be obtained to get as much information as 
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possible to ensure a good interpretation of the TDM-GEN results in order to 

finally result in an individualized and adequate therapy without side-effects.  

 

VII.2.2. Therapeutic drug monitoring 

 

Therapeutic drug monitoring of ADs in plasma is the only way to estimate the 

brain concentration and thus the concentration at the effector-site of the 

drugs. However, as discussed above, there is a large variability in AD plasma 

concentrations and it is difficult to link a plasma concentration to an effect 

due to inter-individual variations as a result of environmental, physiological 

and genetic factors [5]. Therefore, the interdisciplinary TDM group of the 

Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie 

(AGNP) has worked out consensus guidelines to assist psychiatrists and 

laboratories to optimize the use of TDM of psychotropic drugs. Five research-

based levels of recommendation were defined with regard to routine 

monitoring of plasma concentrations of 65 psychoactive drugs. For new 

generation ADs, TDM is recommended or useful to detect non-compliance, for 

patients with a lack of clinical response or adverse effects at recommended 

doses, and when interactions are suspected. Moreover, for special patient 

groups such as children, adolescents, pregnant women and elderly, 

monitoring could be of interest because of variations in pharmacokinetic 

behaviour. As ADs can be used chronically, monitoring can be used to 

prevent relapse or recurrence [2, 13].  

 

TDM is only useful if therapeutic windows are postulated, to link plasma 

concentrations to effects. Both TIAFT [17] and the AGNP-group [13] have 

proposed therapeutic windows for several ADs and these were already 

discussed in chapter I of this thesis. During TDM, high plasma concentrations 

can indicate adverse effects and toxicity due to poor metabolism or 

interactions, while low plasma concentrations could lead to a suspicion of 

ultrarapid metabolism or non-compliance. TDM demonstrates the effect of all 

possible pharmacokinetic variables, and can result in dose adjustments, but it 

does not show the underlying problem such as genetic variations or co-

medication. However, there are also reports that demonstrate the usefulness 

of TDM for phenotyping purposes. Through the plasma concentration ratio of 
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an AD and its metabolite, the pharmacokinetic phenotype of an individual can 

be measured. Van der Weide et al. [12] and Veefkind et al. [18] have 

demonstrated a difference in metabolic ratio between the phenotypes for 

venlafaxine, and used these data to optimize AD therapy. Based on these 

studies, individuals can be classified as poor, intermediate, extensive and 

ultrarapid metabolizers. The reseach group of Kirchheiner even went a step 

further and gave dose recommendations for extensive, intermediate and poor 

metabolizers of CYP2D6 for 16 ADs based on their plasma concentrations [8, 

19]. Figure VII.2. demonstrates that dose adjustments for citalopram and 

sertraline will not be necessary for the different CYP 2D6 phenotypes, while 

the importance of personalized AD treatment increases from trazodone, 

mianserin, venlafaxine, paroxetine to maprotiline treatment [19]. It is 

therefore clear, that TDM of ADs can be of interest to determine the patient’s 

phenotype and to adjust AD dosages based on their plasma concentrations. 

 

Figure VII.2. Dose adjustment of ADs according to their CYP2D6 phenotype 

[19] 
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VII.2.3. Genetic variability 

 

Genetic factors are believed to play a major role in the variation of treatment 

response and the incidence of adverse effects to medication. Genetic 

variability occurs in enzymes playing a role in drug metabolism, at the target 

sites [8, 9, 20, 21] and in transport proteins located in the intestinal mucosa 

and in the blood-brain barrier, such as P-glycoprotein [8, 21-24].  

 

During the past 30 years, a lot of research has been done concerning 

cytochrome P450 isoenzymes polymorphisms. Especially polymorphisms of 

CYP2D6, encoding the debrisoquine hydroxylase enzyme, are of high clinical 

relevance for the metabolism and thus plasma concentration of ADs [9]. The 

CYP2D6 gene is located on chromosome 22, and over 70 functionally 

different alleles have been reported for this enzyme. However, only 15 

encode an enzyme with ‘abnormal’ functionality [1]. The differences are due 

to gene deletion, gene duplication or mutations and result in defective, 

qualitatively altered, diminished or enhanced rates of drug metabolism [9]. 

In general, four phenotypes can be identified: poor metabolizers (PM), 

lacking the functional enzyme; intermediate metabolizers (IM), who are 

heterozygous for one deficient allele or carry two alleles that cause reduced 

activity; extensive metabolizers (EM), who have two normal alleles; and 

ultrarapid metabolizers (UM), who have multiple gene copies [11]. The 

distribution of these four phenotypes is different for different ethnic groups 

(Figure VII.3.). Although the incidence of PM or UM is not so high, readily 35-

50 million people in Europe are expected to exhibit problems during therapy 

with a CYP2D6 substrate [9]. However, it is clear that the extent of these 

potential problems largely depends on the relative contribution of the 

respective CYP enzyme to the total elimination of the drug and the 

therapeutic index of the drug [19]. 
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Figure VII.3. Ethnic variability in the frequency of CYP2D6 polymorphism 

Adapted from [9]. Red trace indicates frequency of poor metabolizers, black trace the 

ultrarapid metabolizers 
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The number of known CYP2D6 gene variants is growing. However, 

genotyping for only the 6 most common defective alleles will predict the 

CYP2D6 phenotype (poor, ultrarapid or normal metabolism) with about 95-

99% certainty [9, 25]. Therefore, CYP2D6*3, *4, *5, *6, *7, *8, and CYP2D6 

duplications were monitored in our CYP genotyping assays (Figure VII.4.). 

 

There are different mechanisms that lead to total loss of function. Several 

alleles have single base pair mutations or small insertions and deletions that 

interrupt the reading frame or that interfere with correct splicing, ultimately 

leading to prematurely terminated protein products (CYP2D6*3, *4, *6, *8). 

CYP2D6*7, on the other hand, encodes a full-length but non-functional 

protein, while CYP2D6*5 refers to CYP2D6 gene deletion. Poor metabolizers 

are homozygous for one of these alleles or heterozygous for 2 of these non-

functional alleles. Ultrarapid metabolizers are detected by determining alleles 

with increased function, thus gene duplications. Patients having at least one 

decreased or normal functioning allele are intermediate or extensive 

metabolizers, and their metabolization patterns are not clinically relevant for 

AD therapy [4, 26]. 
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Figure VII.4. Structure of functional and non-functional CYP2D6 alleles and 

their influence on final protein activity  

Adapted form [9, 26]. The 9 exons are indicated by numbered boxes with DNA 

polymorphisms indicated on top (del deletion, ins insertion). Predicted amino acid 

changes and translation termination (ter) codons are indicated below. Frequencies of 

variation in the Caucasian population are indicated in red. 
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VII.3. Experimental 

VII.3.1. Patient selection 
 

The TDM-GEN method described in this chapter can be used for any 

depressed patient treated with a novel AD that is metabolized by CYP2D6 

(Table VII.1.). In this preliminary study, we will focus on mianserin and 

therefore, a 30 mg dose of Lerivon® was administered to a healty volunteer. 

This volunteer gave an informed consent for the study, which was supervised 

by a medical doctor. Lerivon® was purchased from a local pharmacist by the 

research group. 

 

Table VII.1. List of ADs that are (partially) metabolized by CYP2D6, their 

influence on CYP 450, transporters and receptors (summary of chapter I) 

 
Antidepressants

CYP metabolism CYP inhibition Receptors
NA 5-HT DA P-glycoprotein H1 MA Alpha 1 Alpha 2 5HT

Citalopram 2C19, 2D6,3A4 (Minimal: 2D6, 2C19,1A2) ++++ substrate + +
Fluoxetine            2D6, 2C 2D6, 2C9/19, 3A4 + ++++ inhibitor + + + +
Fluvoxamine   1A2,2D6 1A2, 2C19, 3A4,2C9 + ++++ substrate/inhibitor +
Maprotiline 2D6, 1A2 ++++ +
Mianserin 1A2, 2D6, 3A4 ++++ ++++
Mirtazapine        1A2, 2D6, 3A4 no effects + + ++++ ++++
Paroxetine 2D6 2D6 + ++++ + substrate/inhibitor ++
Sertraline 2D6, 2C9, 2C19, 3A4 Minimal: 2D6, 2C, 3A4,1A2 + ++++ ++ inhibitor + +
Trazodone            2D6, 1A2, 3A4 ++++ inducer + +++ ++++
Venlafaxine          2D6, 3A4 Minimal: 2D6 ++ ++++ + substrate/inhibitor

Transporters
CYP isoenzymes Neurotransmitter Transporters and Receptors
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VII.3.2. Therapeutic drug monitoring 

 

TDM is based on trough steady-state plasma concentrations, and therefore 

blood should be collected at least 5 drug intakes after changes of dose. As 

the average half-life of mianserin is about 16 hours, this implies that blood 

should be collected after at least 4 days of therapy. In clinical practice, the 

appropriate sampling time for most psychoactive drugs is one week after 

stable daily dosing. In addition, TDM blood samples should be taken at 

minimum steady-state concentrations, just before intake of the daily dose or 

at least 12-17 hours after the last dosage [2].  

 

For our preliminary study, 5 ml of blood was drawn into an EDTA tube 15 

hours after intake of the daily dose (30 mg mianserin). The blood samples 

were centrifuged within two hours at 1200 g for 10 minutes. The harvested 

plasma was stored at -20 °C before analysis with the GC-MS method with 

electron ionization as described in chapter VI (VI.2.). 

 
VII.3.3. Determination of genetic variability 
 

The method development for CYP2D6 genotyping was done in the Laboratory 

of Molecular Biology at ‘Erasmus ziekenhuis Antwerpen’ by Ph. Liesbeth 

Daniels, under the supervision of Prof. Dr. Hugo Neels, whom we both 

gratefully acknowledge.  

 

DNA was extracted from whole blood collected in EDTA-tubes. First, strong 

detergents were added to distroy the cell membrane and to inactivate the 

nucleases of the blood cells. This was followed by repeated extractions with 

phenol, resulting in discharge of the denaturated proteins and nucleic acids. 

Ethanol is added to precipitate and separate the smaller molecules from the 

nucleic acids, and to separate DNA from RNA due to differences in solubility. 

In addition, during the extraction, specific enzymes were used to discharge 

unwanted nucleic acids such as RNA. 

 

After extraction of DNA, specific fragments of the double stranded DNA 

molecule were amplified by polymerase chain reactions (PCR), as only these 
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fragments are of interest. PCRs are in fact copying reactions of single DNA 

strands using thermal cycle programs. First, the double stranded DNA is 

denatured into two single strands at a relatively high temperature. 

Thereafter, at lower temperatures, primers will anneal to complementary, 

specific and defined sequences on each of the two single DNA strands. These 

primers are extended (elongation reaction) with nucleotides complementary 

to the single stranded DNA template by a DNA polymerase, resulting in a 

copy of the desired sequence. For each step of the copying reaction 

(annealing and elongation step), specific temperatures are used. After 

making the first copy, the temperature increases again to obtain single DNA 

strands and the procedure is started all over. As a result, another copy of the 

input DNA strand but also of the short copy made in the first round of 

synthesis is made and these reactions finally lead to a logarithmic 

amplification of the desired DNA sequence. These amplification reactions are 

checked by analyzing the amplified sequences with gelelectrophoresis using 

ethidiumbromide, a DNA intercalating UV-active compound, as detection 

reagent. 

 

The PCR reaction used for the determination of CYP2D6 polymorphisms in 

this thesis is the Real-Time PCR in combination with melting curve analysis, 

using a LightCycler.  A classical PCR reaction is used for pre-amplification of a 

1654 bp fragment of the CYP2D6 gene for analysis of polymorphisms 

*3,*4,*6,*7 and *8. This PCR reaction occurs before the actual Real-Time 

PCR to circumvent interferences due to the highly homologous CYP2D7 and 

CYP2D8 pseudogenes [26]. The difference between Real-Time PCR and 

ordinary PCR reactions is that the former enables detection and quantification 

of the DNA amplification in ‘real time’ due to fluorescent dyes on 

hybridization probes that bind to a specific sequence. For each DNA 

fragment, two hybridization probes are used that will bind on specific 

sequences next to each other. One probe will be excited in the LightCycler 

and will transfer energy (FRET, fluorescence resonance energy transfer) to 

the other (acceptor) probe. This acceptor probe will also be excitated, leading 

to fluorescence detection. 
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Figure VII. 5. PCR reaction in combination with melting curve analysis 

A, PCR reaction: denaturation of the double stranded DNA, annealing of primers and 
elongation step by the DNA polymerase are shown; B, hybridization probes anneal at 
specific sequences, the donor probe excites the acceptor probe, which leads to 
fluorescence. A melting curve is constructed by measuring fluorescence with increasing 
temperatures. At a certain point (the melting point) the probes will be denatured and 
loose their fluorescence. Based on [27]. 
 

 
 

The final detection of the different CYP2D6 polymorphisms was done by 

melting curve analysis after the Real-Time PCR. A melting curve is obtained 

by increasing the temperature, which results in disruption of the double 

stranded DNA and loss of hybridization probe binding, thus loss in 

fluorescence. DNA strands are linked by hydrogen bonds with weaker bonds 

between the nucleotides adenine and thymine, 2 hydrogen bonds, than 

between guanine and cytosine (3 hydrogen bonds). As a result, differences in 

the melting profile will occur for the different polymorphisms of CYP2D6 

(Figure VII.5.B.).  

 

Another reaction used for the determination of CYP2D6 polymorphisms is the 

sequencing reaction. This reaction determines the nucleotide order (guanine, 
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cytosine, thymine and adenine) of a specific DNA fragment. The sequencing 

reaction can be compared with a classical PCR, thus a single stranded DNA is 

used as template, primers anneal to initiate the reaction, DNA polymerase 

will elongate the primers with nucleotides, etc. However, dideoxynucleotides 

labeled with different dyes, exciting at a different wavelength, are also added 

during the PCR. These dideoxynucleotides will terminate the DNA strand 

elongation as they lack a 3’-OH group required for the formation of a 

phosphodiester bond between two nucleotides during elongation, resulting in 

DNA fragments that vary in length. All the produced DNA fragments will then 

be separated based on their length, and because the four kinds of 

dideoxynucleotides are labelled with a different fluorescent molecule, the 

sequence of the DNA fragment is obtained (Figure VII.6.) 

 

Figure VII.6. DNA sequencing 

Adapted from [28]. 

        
 

 

VII.3.3.1. DNA extraction from EDTA-blood samples  

DNA was extracted from the EDTA-supplemented blood with a QiAmp DNA 

Blood Mini Kit (QIAGEN, Venlo, The Netherlands). Two hundred μl of blood 

sample was added to 20 μl QIAGEN protease in a 1.5-ml eppendorf tube. 

Thereafter, 200 μl lysis-buffer was added, vortexed for 15 seconds and then 

incubated for 10 minutes at 56 °C. After incubation, 200 μl of ethanol (96-
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100 %) was added and mixed. The final mixture was loaded onto a QIAamp 

spin column and this column was centrifuged for 1 minute at 3585 g. The 

spin column was thereafter washed; first with 500 μl AW1 buffer and then 

with AW2 buffer. After both washing steps the column was centrifuged and 

the wash solutions were disposed off. Finally, the DNA was eluted from the 

spin column by adding 200 μl of elution buffer. The elution buffer was allowed 

to soak the phase during 5 minutes at room temperature before collection of 

the eluate through centrifugation of the tube at 3585 g during 1 minute. This 

eluate was stored at 4°C. 

 

VII.3.3.2. Pre-amplification of a 1654 bp DNA fragment of cytochrome 2D6  

For gene deletion and duplication, purified DNA obtained in VII.3.3.1 was 

used for the Real-Time polymerase chain reactions. For the analysis of alleles 

*3,*4,*6,*7, and *8, a 1654 bp pre-amplified fragment of CYP2D6 was used 

as template. The GeneAmp PCR (Applied Biosystems, Toronto, Canada) 

equipment was used for pre-amplification of this fragment. 

 

Table VII.2. Primers and probes used for determination of CYP2D6 

duplication, deletion, and allelic variations [29-31] 
 

        

Site
Primer

1654bp-F 3076
1654bp-R 4702

Del-F 17307
Del-R -3518

Dup-F -595
Dup-R 13524

*3 primer-F 4100
*3 primer-R 4560

*4 primer-F 3283
*4 primer-R 3533

Probe

Reb Sens -2272 / 15062
Reb Anch -2298 / 15035

*3 Sens 3460
*3 Anch 3436

*4 Sens 3319
*4 Anch 3291

*6 Sens 4161
*6 Anch 4135

5'-CCTCGGTCACCCACTGCTCCAGC-Fluorescein-3'
5'-LCRed640-CTTCTTGCCCAGGCCCAAGTTGC-phosphate-3'

5'-TCCCAGGTCATCCGTGCTCA-Fluorescein-3'
5'-LCRed670-TTAGCAGCTCATCCAGCTGGGTCAG-phosphate-3'

5'-CGACCCCTTACCCGCATCTCCC-Fluorescein-3'
5'-LCRed640-CCCCAAGACGCCCCTTT-phosphate-3'

5'-TGCTGCCTCCCACTCTGCAGTGCTC-Fluorescein-3'
5'-LCRed640-ATGGCTGCTCAGTTGGACCCACGCT-phosphate-3'

5'-TGGCTGGCAAGGTCCTACG-3'
5'-TGGGCTCACGCTGCACATT-3'

5'-AGAGGCGCTTCTCCGTGTC-3'
5'-CAGGTGAGGGAGGCGATCA-3'

5'-CACGTGCAGGGCACCTAGAT-3'

5'-ACCGGGCACCTGTACTCCTCA-3'

5'-CCCTCAGCCTCGTCACCTCAC-3'

Sequence

5'-GCATGAGCTAAGGCACCCAGAC-3'

5'-CAAGGTGGATGCACAAAGAGT-3'
5'-ACACTCCTTCTTGCCTCCTAT-3'
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The 1654 bp fragment was amplified using the 1654bp forward (F) and 

reverse (R) primers (Table VII.2.) at a concentration of 0.25 and 0.5 μM, 

respectively. For the amplification, AmpliTaq Gold Polymerase (1.5 U, Applied 

Biosystems), deoxynucleotide triphosphates (0.3 mM), magnesium chloride 

(1.7 mM), PCR gold buffer and DNA (125 ng) were added and mixed together 

with the primer to get a final volume of 50 μl. The thermal cycler programme 

started at 95 °C for 3 min. Thereafter, 35 cycles of 30 sec at 95 °C, 30 sec at 

62 °C, and 1:30 min at 72 °C were applied for amplification of the 1654 bp 

fragment. The final elongation occurred for 6 min at 72 °C. The amplified 

fragment was stored at 4 °C. 

 

VII.3.3.3. Confirmation of the amplification reaction 

The correct amplification of the 1654 bp fragment was confirmed by gel 

electrophoresis. PCR products were resolved by a 0.8 % agarose gel and 

ethidiumbromide staining. The 0.8 % agarose gel was obtained by adding 2.4 

g of agarose to 300 ml 1 x Tris-EDTA buffer. This solution was heated, mixed 

and stored in a hot water bath at 56 °C for at least 15 minutes. Thereafter, 

10 μl ethidiumbromide was added to the mixture and the gel could be 

poured. A DNA ladder (1 kb) was resolved on the gel simultaneously with the 

PCR products.

 

VII.3.3.4. Real-Time PCR reactions in the LightCycler 

A LightCycler system from Roche (Brussels, Belgium) was used to determine 

gene deletion and duplication or allelic variations by using Real-Time PCR and 

melting-curve analysis. In this paragraph, the primers, hybridization probes, 

content of the reaction mixtures, as well as PCR cycle and melting curve 

conditions are described. 

The primers (Del-F/Del-R; Dup-F/Dup-R) for the gene deletion and 

duplication were obtained from Eurogentec S.A. (Seraing, Belgium) and their 

sequences are indicated in Table VII.2. Detection of the DNA fragments was 

realized by using one common pair of hybridization probes (Rep Sens and 

Rep Anch), both corresponding to sequences in the second half of the large 

direct repeats immediately downstream of CYP2D6 and CYP2D7. The reaction 

mixtures for gene deletion and duplication were prepared separately. The 

Expand Long Template PCR System enzyme mixture and its buffer (1.3 U, 
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Roche) were used in a final volume of 20 μl for both reactions. 

Deoxynucleotide triphosphates (0.3 mM) and 125 ng of DNA were also added 

to the mixture. The concentration of the forward primers was always 0.5 μM, 

while the concentration of the reverse primers was 0.5 or 1 μM for 

duplication and deletion, respectively. The concentration of the hybridization 

probes was 0.2 μM for forward and 0.4 μM for reverse probes. The following 

amplification program was used: 2 minutes at 95 °C, followed by 32 cycles, 

each comprising 10 sec at 95°C and 133 sec at 68°C. Before melting curve 

analysis, a final elongation at 68 °C occurred for 7 minutes. The melting 

curve analysis started at 55 °C and finished at 78 °C with a ramp speed of 

1.2 °C/sec [29]. 

Two pairs of primers, purchased from Eurogentec S.A., were used for the 

detection of CYP2D6*3,*4, and *6 (Table VII.2.). One pair (*3 primers) was 

used for the determination of *3, while the other pair (*4 primers) were used 

for *4, and *6. For each allelic variation, different hybridization probes (Tib 

MolBiol, Berlin, Germany) were used (Table VII.2.). The reaction mixtures for 

*3 and for *4 - *6 were separately prepared as different primers and probes 

are necessary for these reactions. The LC480 genotyping master kit from 

Roche was used in a final volume of 20 μl for both reactions. The 

concentration of primers and hybridization probes was always 0.5 μM and 0.2 

μM, respectively. Five μl of a 1/400 dilution of the 1654 bp fragment of 

CYP2D6, obtained as described in VII.3.3.2, was added to this mixture. The 

following cycle program was used: 5 minutes at 95 °C, followed by 30 

amplification cycles for the *3 analysis and 35 cycles for the *4 - *6 reaction.  

Each amplification cycle comprised 5 sec at 95°C, 10 sec at 60 °C (*3) or 65 

°C (*4 - *6), and 2:12 minutes at 72 °C. Thereafter, melting curve analysis 

started at 95 °C for 1 min., then 60 °C for 20 seconds and finally a 

temperature gradient from 40 to 75 °C with a ramp speed of 1.5 °C/sec [30].  

 

VII.3.3.5. Sequencing 

If the result of the Real-Time PCR and melting curve analysis were not 

straightforward or for analysis of the *7 and *8 allelic variations, sequencing 

was applied. First, the amplified 1654 bp fragment (VII.3.3.2.) was purified 

with a QIAquick PCR purification Kit (Westburg, Leusden, The Netherlands). 

Thus, 50 μl of the PCR fragment is mixed with 250 μl of PB-buffer and 
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vortexed. This mixture was transferred to a QIAquick spin column, which 

thereafter was centrifuged at 3595 g during 1 minute. The eluent was 

transferred to the waste and the spin column was washed with 750 μl 

washing buffer and centrifuged. Finally, the purified DNA fragment was eluted 

in an eppendorf tube with 30 μl of elution buffer and a centrifugation step of 

1 min at 3595 g. 

This purified DNA fragment was then diluted 1/10 and used for the 

sequencing reaction. Two μl of the diluted sample was added to 1 μl of primer 

(*3 or *4 F/R Table VII.2.) and 17 μl of a sequencing mix to obtain a reaction 

volume of 20 μl. The sequencing mix used for the cycle reaction was 

prepared as follows: 4 μl of a ready reaction mix (Big Dye Terminator 

Sequencing kit, Applied Biosystems) and 2 μl of a sequencing buffer were 

added to 11 μl of HPLC-water.  

The next step in the sequencing reaction is a purification step, leading to a 

loss of excess of reagents by the use of a DyeEx Spin Kit (Westburg). The 

DyeEx Spin column has to be prepared by centrifugation at 3595 g for 3 

minutes before the cycle sequencing reaction mix (20 μl) is added to the gel 

surface of the spin column. Thereafter, the eluate is collected through 

centrifugation (3 minutes, 3595 g) and devided over the cups of the reaction 

plate. The reaction plate was heated at 96 °C until full evaporation of the 

sample. The extract was then redissolved in 20 μl of deionized formamide 

and heated again at 96 °C for 3 minutes. After this clean-up step, the DNA 

can finally be sequenced by the ABI PRISM 310 Genetic Analyzer (Applied 

biosystems). 

 

VII.3.3.6. Quality control 

During the analysis of CYP2D6 polymorphisms, positive and negative controls 

were also analyzed as quality control. For the negative control water was 

analyzed in the same way as the samples. The positive controls CYP2D6*3, 

*4, and *6 were obtained from ParagonDX (Morrisville, USA), while DNA 

obtained from a patient positive for gene duplication was applied as positive 

control for the gene duplication reaction. 
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VII.4. Case Report 

VII.4.1. Patient information and qualitative diagnostic tests 

 

Figure VII.7.  Patient information sheet 

 

Antidepressant TDM: Patient information   25  march 2008

Patient    X

Antidepressant therapy  Lerivon (mianserin 30 mg/day) 
Therapy duration   1 day 
Last administration   22:30   24 march 
Blood draw    13:30   25 march 

Psyiological factors 

Gender     female 

Co morbidity (e.g. liver, kidney) / 

Environmental factors 

Diet     / 

Co-medication   Desorelle 20 mg 

Qualitative Test 

HAM-D score    / 

Side-effects, complaints  OVERDOSE: seizures, unsteady walk, unconsciousness 

CYP 2D6 phenotype   intermediate metabolism

TDM result    9 ng/ml mianserin 
     5 ng/ml desmethylmianserin

Results interpretation:   Stop mianserin medication:  
intermediate metabolism and drug interaction

 

                  
The patient information sheet of the volunteer is shown in Figure VII.7. This 

volunteer was a young female without depression symptoms. She had no 

liver or kidney impairment, and the only co-medication was an oral 

contraceptive. The HAM-D score was not taken as the volunteer was not 

depressed. A dose of 30 mg was administered as mianserin dosages range 

from 30-90 mg per day for depressed patients. Nine hours after the intake of 

30 mg of mianserin, severe adverse reactions were noticed. Although this 

dose is a normal daily dosage of depressed patients, overdose symptoms 
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such as queasiness, dizziness, unsteady walking, and finally seizures and 

unconsciousness were observed. A blood sample was drawn 15 hours after 

the drug intake for monitoring purposes. Due to the severe adverse 

reactions, intake of mianserin was immediately stopped. 

 

VII.4.2. Therapeutic drug monitoring 

 

A blood sample drawn 15 hours after a single adiminstration of 30 mg 

mianserin was analyzed with the developed GC-MS method. However, 

because of the low plasma concentrations in the sample, extrapolation was 

necessary and resulted in a semi-quantitative analysis. A plasma 

concentration of 9 ng/ml mianserin and 5 ng/ml desmethylmianserin was 

observed.  

 

According to TIAFT [17], the therapeutic window ranges from 15-70 ng/ml 

mianserin in steady state conditions. Otani et al. [32] monitored the plasma 

concentration after 18 hours of a single mianserin (30 mg) intake and 

concluded that the concentrations ranged from 3-13 ng/ml for mianserin and 

1-7 ng/ml for desmethylmianserin. In this study, however, plasma 

concentrations were not linked to an effect and in addition, differences in 

metabolism and thus differences in plasma concentrations for poor versus 

rapid metabolisers were not discussed. Therefore, although the results 

obtained from the current case are situated in this range, the plasma 

concentration of this case cannot be interpreted unambiguously. In addition, 

interpretation of the plasma concentration – effect relationship is even harder 

as desmethylmianserin retains pharmacological properties indicative of 

antidepressant activity. The metabolite is slightly less potent than the parent 

compound as a noradrenaline uptake inhibitor and antagonist at pre-synaptic 

adrenoreceptors, but is more active as a serotonin uptake inhibitor [33]. The 

side-effects observed in this case report, such as queasiness and dizziness, 

would be a result of 5HT3- and �1-receptors blockage, however, mianserin 

blocks 5HT2- and �2-receptors quite selectively according to recent 

knowledge and literature (chapter I; I.4-I.5.-I.7.6.).  
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From this case report, we can conclude that a dose of 30 mg mianserin can 

result in a mianserin plasma concentration of about 9 ng/ml 15 hours after 

intake and that this concentration was determined after adverse reactions 

indicative of overdose. 

 

Figure VII.8. Chromatogram of the plasma sample obtained from a volunteer 

taking 30 mg of mianserin 
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VII.4.3. Determination of CYP2D6 polymorphisms 

 

Mianserin is metabolized by CYP1A2, CYP2D6 and CYP3A4. However, only 

CYP2D6 polymorphisms (duplication, deletion, *3, *4, *6, *7 and *8) were 

determined as these variations were monitored in the Laboratorium of our 

co-workers (Molecular Biology, Erasmus Ziekenhuis, Antwerp). Duplication, 

deletion, *3,*4 and *6 were determined using Real-Time PCR. In addition, 

for duplication and deletion, the DNA fragments were separated and detected 

using gelelectrophoresis. Sequencing reactions were done to check *7 and *8 

and to confirm the Real-Time PCR results of *3, *4 and *6. 

 

The volunteer was homozygous wildtype (no polymorphisms) for the 

CYP2D6*3 and *6 variations (Figure VII.9.) as the melting peak of the 

subject overlapped with that of the wildtype control. For *4, however, the 

Ion 267.00 (266.70 to 267.70): 08032814.D\data.ms

                      Mianserin  
 
 
 
 
 
 
                      Mianserin-d3 
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melting peaks of the Real-Time PCR demonstrated that the subject was 

heterozygous for the *4 variation as two peaks were observed, one 

corresponding with the wildtype and one with the *4 variant (Figure VII.9.B). 

This result was confirmed by sequencing of the 1654 bp fragment as both a 

guanine and adenine were identified on the 1934 position (Figure VII.9.C). 

Sequencing also confirmed that the volunteer was homozygous wildtype for 

the *6, *7 and *8 variations. 

 

Figure VII. 9. Real-Time PCR and melting curve analysis of CYP2D6*3 (A), 

*4, *6 (B) and sequencing result for CYP2D6*4 (C). 
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C 

 

Figure VII.10. shows the ethidiumbromide-stained gel for analysis of CYP2D6

deletion and duplication. While in the controls for CYP2D6 duplication and 

deletion, 3.5 and 3.2 kbp fragments were amplified, respectively, no bands 

corresponding to these sizes were observed for the volunteer. This result was 

confirmed by using Real-Time PCR and melting curve analysis (results not 

shown). 

 

Figure VII.10. Gelelectrophoresis of gene deletion and duplication fragments 

of CYP2D6 
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Determination of deletion, duplication, *3, *4, *6, *7, and *8 led to the 

conclusion that the volunteer has at least one non-functional allelic (*4) 

variant for CYP2D6. The prevalence of non-functional allelic variants for 

CYP2D6 was found to be 20.7% in a healthy Dutch population according to 

Tamminga et al. [34]. In addition, the most frequently observed null allele 

was CYP2D6*4, which accounted for 89% of all null alleles.  

 

Determination of the phenotype of CYP2D6 through the determined genotype 

results is described in Table VII.3. Because the volunteer has at least one 

non-functional allele, the phenotype of the subject likely corresponds to an 

intermediate metabolizer [25, 35]. 

 

Table VII.3. Genotype translation into phenotype 

 

*
gene-activity 0 (non-active allel) = *3 - 8; *11 - 16; *19 - 21; *38, *40, *42
gene-activity 0.5 (decreased activity allel)= *9, *10, *17, *29, *36, *41
gene-activity 1 (active allel)= *1, *2, *33, *35

Gene-activity*
ultrarapid

extensive

intermediate

1- nX1 (gene duplication)
Phenotype

poor

1-1
1-0.5

1-0
0.5-0.5
0.5-0

0-0

 
 

VII.4.4. TDM-GEN discussion for the case report 

 

The volunteer appears to be an intermediate metabolizer of CYP2D6 

substrates as determined by the Real-Time PCR method in combination with 

melting curve analysis, gelelectrophoresis and sequencing. According to 

Kirchheiner et al. [19], the therapy of this phenotype would benefit with a 

slightly lower dose (90%), thus a dose of 27 mg. However, normal dosages 

should not lead to severe adverse reactions. In addition, Mihara et al. [36] 

conclude that 30 mg is the ideal dose for intermediate metabolizers, while it 
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was suboptimal for normal metabolizers. As a result, the intermediate 

metabolism of CYP2D6 substrates by the volunteer is not likely to be the 

underlying cause of the overdose reaction that occurred in the case report. 

However, Otani et al. [32] calculates the required dose of mianserin after 18 

hours of a single intake of 30 mg of mianserin through the sum of mianserin 

and desmethylmianserin plasma concentrations. For the case report, Otani et 

al. would suggest a dose of 20 mg/day. 

 

Mianserin is not only metabolized by CYP2D6. The study of Mihara et al. [36] 

suggests that the CYP2D6 enzyme plays a major role in metabolization of the 

S-mianserin enantiomer, while metabolization of the R-enantiomer is 

catalyzed by CYP1A2 and CYP3A4. Moreover, while for CYP2D6 genetic 

determinants prevail over environmental factors such as smoking, use of oral 

contraceptive steroids or caffeine consumption [37, 38], CYP1A2 is inhibited 

by oral contraceptives [37, 39]. In case of inhibition of an enzyme, extensive 

or intermediate metabolizers may be converted to poor metabolizers of 

substrates of that particulary enzyme [6]. Thus, in the case report, mianserin 

metabolization by CYP2D6 is slower due to the genetic variation CYP2D6*4, 

while the other metabolization route via CYP1A2 is possibly inhibited by the 

intake of Desorelle®, an oral contraceptive, possibly leading to slightly 

elevated plasma concentrations and finally to the severe side-effects. 

 

When analyzing the blood samples, plasma concentrations of about 9 ng/ml 

mianserin and 5 ng/ml desmethylmianserin were found. As already 

mentioned, comparison of these results with the ones obtained by Otani et al. 

[32] reveals that these can be considered as normal therapeutic 

concentrations. However, the plasma concentration for mianserin after one 

intake of 30 mg ranged from 3-13 and no indication of metabolism rate was 

suggested. Moreover, we must be aware that the mianserin in our case 

report was measured after 15 hours of intake and no toxic symptoms were 

observed at that point of time. The mianserin plasma concentrations 

observed in our case are not extremely high, and no reports have been found 

that linked such plasma concentrations with the observed side-effects. 
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In this case, the developed TDM-GEN does not provide an answer with 

respect to the cause of the adverse reactions. Probably it will be the result of 

the co-medication and the genetic variations in the metabolism of mianserin, 

combined with (genetic) variability of the targets in the brain and the 

serotonin transporter. Variability in the P-glycoprotein transporter is probably 

not so important in the case of mianserin, as for mirtazapine, a structural 

analogue, no variations in concentrations due to P-glycoprotein poly-

morphism were observed [1, 40].  

VII.5. Conclusion 

 

The applicability of the developed TDM-GEN method is demonstrated in this 

chapter and it is clear that this method may support the therapy of a subset 

of psychiatric patients with new generation ADs, especially patients suffering 

from side-effects or not responding to therapy or special patient populations 

such as the elderly, children, patients with liver and kidney impairment, or 

patients with a lot of co-medication.  

 

Retrospective genotyping can explain many cases of non-response or adverse 

drug reactions in patients treated with CYP2D6 substrates. However, the 

genotyping of patients is probably of most interest when therapy is started. 

The advantage of genotyping is that it needs to be performed only once in a 

lifetime for each patient. The genotype and its resulting phenotype, together 

with the information concerning the patient’s depressed state, co-medication 

and co-morbidity can lead to a more rational choice of AD therapy and 

necessary dose. Once therapy is started, TDM can be used to monitor 

compliance and to link plasma concentrations to the clinical effect and side-

effects in the patient (Figure VII.11). 

 

However, the interpretation of results obtained from the developed TDM-GEN 

method still needs to overcome some problems and more research has to be 

done before personalized AD treatment will be state of the art.  

 

First of all, dose recommendations based on differences in pharmacokinetics 

are not automatically helpful for prediction of treatment response, since 



Chapter VII: Therapeutic drug monitoring and pharmacogenetics of antidepressants 

300 

correlation between plasma concentrations and efficacy is very poor in AD 

therapy. Therefore, more research should be done concerning the link 

between dose, plasma concentration, brain concentration and effect, and 

between plasma concentrations and genetic, environmental and physiological 

factors. 

 

Figure VII.11. TDM-GEN procedure in clinical practice. 

Adapted from [8, 19]. 
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Secondly, it needs to be kept in mind that determination of CYP2D6 genotype 

and phenotype will definitely not always result in a straightforward answer 
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concerning the final pharmacokinetic effects. The pharmacokinetic effects of 

the polymorphous isoenzyme finally depends on several factors such as the 

importance of that specific enzyme for the metabolism of the ADs, and the 

potency of the AD and its metabolite [4]. In addition, the enzyme can be 

induced by co-administered drugs and variations in other CYP enzymes that 

partially metabolize the substrate can also influence the pharmacokinetic 

effects. Moreover, due to the complexity of drug response, single mutations 

in one gene, such as the CYP2D6, are unlikely to cause the observed 

variability in response. Therefore, more information should be obtained 

concerning polymorphisms of other CYP isoenzymes, metabolizing enzymes 

(UGT), variations in transporters (P-gp, MRP2) and targets.  

 

Finally, the developed TDM-GEN method should be applied to a large group of 

psychiatric patients to determine its value, to link plasma concentration ratios 

of ADs and their metabolites to a phenotype and, if possible, to their (side-) 

effects. Eventually, dose adjustments for each phenotype could be postulated 

for the new generation ADs. 
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VIII.1. Introduction 

In forensic toxicology, analysis of a wide range of unknown compounds is 

aimed, to situate the cause of death. Although the new generation ADs have 

a low toxicity profile, they are often screened in forensic cases. Acute 

intoxications with new generation ADs are rare and frequently follow an 

intentional ingestion of a huge amount of these substances [1-9]. These 

highly prescribed drugs, however, are frequently used together with other 

legal or illegal drugs and can result in synergy of symptoms. In addition, drug 

interactions can lead to adjusted drug concentrations due to inhibition of 

cytochrome P450 isoenzymes. Furthermore severe, life-threatening 

interactions such as the serotonin syndrome have been described [10-13]. 

The new generation ADs are often used by drug addicts under a methadone 

maintained treatment because of their safety profile [14, 15], thus ADs can 

be detected in these overdoses as well. Therefore, analytical methods for the 

detection of ADs in blood and tissues are of interest in the field of forensic 

toxicology as they are often involved in various kinds of intoxications [3, 6-9, 

16]. 

VIII.1.1. Urine and blood analysis  

Urine gives an indication of the history of drug use, while blood is the main 

post-mortem matrix as it gives a direct link between the compound 

concentration and the effect. However, interpretation of the blood 

concentrations in post-mortem cases is not always straightforward. Several 

problems have to be addressed such as changed concentrations due to post-

mortem redistribution, blood loss and trauma, stability of ADs, genetic factors 

influencing metabolism, and place of blood sampling (femoral, cardial). In 

addition, for the interpretation of the AD blood concentrations, reference 

values in of plasma or serum are used [17]. However, it is clear that whole 

blood AD concentrations can slightly differ from their plasma concentration 

due to binding of amphiphilic ADs onto the red blood cell membranes. 

Moreover, ADs are also stored in the cytoplasm of the red blood cells. 

Partitioning of drugs into red blood cells, however, depends on their protein 

binding, as only free drugs can enter the cell, and on the structure of the 
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compound [18, 19]. Therefore, the difference between blood and plasma 

concentrations will not differ a lot for the highly plasmabound ADs. Although 

TIAFT has good reference values of ADs in serum, Reis et al. [20] determined 

the femoral toxic blood concentrations for several ADs. In this study, 8591 

post-mortem cases were analyzed, however, only a few percentages of these 

cases, involved intoxications with a single AD. This study gives an idea about 

toxic ADs concentrations in blood. One must keep in mind, though, that the 

described concentrations are not cut-off levels for toxicity of ADs. The 

comparison of the serum concentrations (TIAFT) and concentrations in whole 

blood as described by Reis et al. [20] is shown in Table VIII.1.  In addition, 

other parameters such as post-mortem interval (stability issues) and post-

mortem redistribution, thus place of blood collection, can make the 

interpretation even harder. 

Table VIII.1. Toxic and lethal blood concentrations

AD: antidepressant; Met.: metabolite; % Intox: percentage of post-mortem cases in 
which only one AD caused the intoxication; TIAFT: toxic or lethal (L) ADs 
concentrations in serum described by The International Association of Forensic 
Toxicologists; * case report; REIS: range of lethal ADs concentrations in blood 
according to Reis et al. [20]. 

            

AD Met. %  Intox TIAFT (µg/ml) REIS (µg/g)
Serum Blood

Citalopram 2 L 0.5 1.5-27 / mean 6.5
DMC 0.2-1.3 / mean 0.5
DDMC

Fluoxetine 3 1.5-2 1.5-6.1 / mean 2.2
DMFluox  0.4 / L 0.9-5 0.4-1.2 / mean 0.5

Fluvoxamine 3 0.65 5.4-16
Maprotiline 11 0.3-0.8 / L 1-5 2.3-16 / mean 5.1

DMMap sum 0.75-1
Melitracen 
Mianserin 1 0.5-5 1.6-8.6 / mean 2.8

DMMia sum 0.3-0.5 /L 2 1.4-1.9 / mean 1.5
Mirtazapine 1 1-4.3 / mean 2.3

DMMir sum 1 0.2-2.5 / mean 0.7
Paroxetine 1 0.3 1.2-4.2 / mean 2.2
Reboxetine
Sertraline 1 0.29* ; 1.6* 1.1-2.5 / mean 1.4

DMSer 0.4-3 / mean 1.6
Trazodone 4 / L 12-15

m-cpp
Venlafaxine 3 6.7-95 / mean 31

ODMV sum 1-1.5 / L 6.6* 1.3-12 / mean 2.9
Viloxazine 

 308 



Chapter VIII: Monitoring of antidepressants in forensic toxicology 

VIII.1.2. Brain tissue  

In forensics, brain tissue has several advantages over blood as it is an 

isolated compartment in which putrefaction can be delayed. In addition, the 

metabolic activity is lower, resulting in a more prominent presence of the 

original compounds as compared to degradation products [21]. Lipophilic 

compounds such as ADs are easily passed through the blood-brain barrier by 

passive diffusion. The final drug uptake into the brain, however, depends on 

a variety of factors such as lipophilicity, protein binding and molecular weight 

of the compound, but also on the blood-brain barrier and the affinity of each 

AD for efflux transport systems such as P-glycoprotein. Venlafaxine and 

paroxetine are known to be exported from the brain through this P-

glycoprotein, which shows genetic variability [22]. The final AD concentration 

in brain will thus depend on a range of factors. Once the ADs are located in 

the brain, they will bind in disitinct brain regions containing different amounts 

of noradrenaline, serotonin and dopamine neurons (Fig.VIII.1) [23].  

Figure VIII.1. Noradrenaline (norepinephrine) and serotonin pathways 

indicated in the brain [23].
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Since concentration of drugs of abuse found in the brain better reflect drug 

concentration at their site of action, brain specimens could be useful in the 

determination of the role of ADs and other drugs in the cause of death. In 

order to analyze brain specimens in routine forensic analysis, a 

comprehensive database with reliable reference values concerning ADs 

concentrations and their effects should be created. However, literature data 

concerning brain concentrations of new generation ADs are scarce. Martin 

and Pounder [24] describe two cases of trazodone intoxication in combination 

with alcohol. The blood concentrations were respectively 14.4 and 15.5 

μg/ml, while the brain concentrations were 48.6 and 20.9 μg/g. Wenzel et al. 

[2] observed a mirtazapine overdosage in combination with sertraline, and 

amitriptyline. A femoral blood concentration of 1.03 μg/ml mirtazapine and 

0.88 μg/ml sertraline was detected in combination with a brain concentration 

of 0.56 μg/g for mirtazapine, 4.95 μg/g for desmethylmirtazapine and 2.57 

μg/g for sertraline. Bolo et al. [25] did not analyze post-mortem cases, but 

used Fluorine Magnetic Resonance Spectroscopy (F19 MRS) to analyze steady-

state brain concentration in depressed patients. Patients with a plasma 

concentration of 0.356 ± 0.099 μg/ml fluvoxamine and 0.534 ± 0.309 μg/ml 

fluoxetine demonstrated a steady-state brain concentration of 3.816 ± 1.59 

and 4.017 ± 2.163 μg/g, respecitively. Renshaw et al. [26] also used F19 MRS 

to determine fluoxetine brain levels. Their conclusion was that brain 

concentrations of fluoxetine and desmethylfluoxetine were 2.6 times higher 

than their plasma concentrations, this in contrast with the above mentioned 

study of Bolo et al. [25] in which the ratio was 10.  

It is clear that more study is definetely needed before a link between AD 

brain concentrations and their effect will be established. However, brain 

tissue is of interest in forensic investigation as the detection window of ADs 

will be longer due to the isolation of the matrix. Moreover, determination of 

ADs drug concentrations in brain tissue can also be helpful in ADs research. 

The main principle of TDM is to monitor a blood or plasma concentration, to 

estimate the drug concentration at the site of action [27]. However, as the 

final action site of ADs is the brain, brain concentrations can lead to a better 

understanding of ADs effects. More information could help solving questions 

such as the unclear blood concentration-effect relationship, the action 
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mechanisms of the ADs, and the delayed therapeutic effect of ADs. Other 

questions about the regional distribution, and possible accumulation of these 

drugs in the brain could also be studied.   

VIII.1.3. Hair  

Hair analysis is a complementary approach for the detection of ADs as it 

yields a picture of long-term (chronic) exposure over a time window. This 

time window depends on the length of the hair, with each 0.6 to 1.4 cm of 

hair describing the use per month. In addition, the sample can be stored at 

room temperature for a long time without degradation [28, 29].  

The hair shaft germinates from the papilla in the highly vascularized hair 

follicles embedded in the dermis of the skin. The hair shafts consists of an 

outer cuticle, an inner medulla and a central cortex and is composed of lipids, 

trace elements, polysaccharides, water and fibrous proteins, as well as 

keratinocytes and melanocytes (pigment), both generated from the basal 

membrane of the hair follicles. Drugs are incorporated in the hair by passive 

diffusion from blood capillaries into the growing hair cells, before final 

keratinization of the hair follicle. Besides incorporation from blood during the 

germination stage of the hair, ADs can also be incorporated from surrounding 

tissues or from sebum and sweat during further growth of the hair. Several 

factors influence the drug incorporation; the melanin content (pigmentation 

of the hair), as well as the lipophilicity and the basicity of the drug. Because 

the intracellular pH of keratinocytes is more acidic than plasma, ADs are 

trapped into the keratinocytes and thus in the hairstructure. First non-ionized 

AD molecules will diffuse across the cell membrane because of their lipophilic 

characteristics; thereafter they will partially ionize and form ionic interactions 

with the keratinocytes (isoelectric point ± 6). In addition, melanocytes have 

a pH of 3-5, and will also trap the charged AD. Uncharged AD will bind to 

melanin in the melanocytes (Figure VIII.2.) through ionic and Van der Waals 

interactions. Binding to melanin and is an important mechanism, as 

concentration of basic drugs is ten times higher in pigmented hair.  
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Figure VIII.2. Structure of the hair shaft and the incorporation mechanisms  

1-4 are the incorporation mechanisms of drugs in hair: 1, incorporation from blood; 2, 
sebum; 3, sweat, 4; delayed incorporation from surrounding tissues. Adapted from 
[29]. 

3, 4 
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Few articles deal with the extraction of new generation ADs from hair. Smyth 

et al. [30] described an LC-MS method for determination of sertraline and 

paroxetine in hair. The obtained concentrations were 1.9 ng sertraline / mg 

and 0.25 ng paroxetine / mg. Another LC-MS method for maprotiline, 

citalopram and their metabolites was optimized by Müller et al. [31]. A hair 

1

blood                ADH+��AD  (pH=7) AD
��
ADH+

(pH <5) 
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sample analyzed from a suicide case after a maprotiline overdose contained 

3.1 ng maprotiline per milligram hair. The hair sample containing citalopram 

was obtained from a depressed patient in therapy during the past 4 months. 

In the latter hair sample, concentrations of 1107 ng/mg in the first segment 

of 2 cm and 557 ng/mg in the second segment (2 cm) were obtained for 

citalopram. One case of mianserin detection in hair using a GC-MS was 

described by Couper et al. [32], this case represented a concentration of 9.2 

ng/mg hair. Pragst et al. [33] analyzed maprotiline in hair and were the only 

authors that linked the hair concentration with plasma concentrations. A hair 

concentration of 1.4 till 40 (with a mean of 7.4) ng/mg maprotiline was 

found, while the plasma concentration varied from 0.05 till 0.24 (with a mean 

of 0.14). However, they concluded that ‘there is no way to estimate the daily 

dose or steady state plasma concentration from the hair concentration or to 

conclude, whether the drug really was taken every day or the prescribed 

dose was taken.’

Interpretation of the ADs concentrations in hair are very difficult, due to 

variations in hair growth (depending on race, sex, age and state of health 

[29]), but also due to differences in sampling place, possible external hair 

contamination, cosmetic hair treatment, and individual hair pigmentation 

[34]. Moreover, the link between blood/plasma and hair concentration is not 

yet described. This link is difficult to establish because of variations in drug 

metabolism, but also because the lack of knowledge concerning drug 

incorporation tendency into the hair. Therefore, more research should be 

done, regarding the link between hair and plasma concentration. Untill then, 

the different segments of the hair can only give an idea of the time of 

consumption of several ADs.

VIII.2. Experimental 

VIII.2.1. Samples and reagents 

The case report samples were obtained from the department of forensic 

medicine (Ghent University, Belgium). The reagents necessary for sample 

preparation are described in Chapter III. The derivatization reagent 1-
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(heptafluorobutyryl) imidazole (HFBI) was purchased from Sigma-Aldrich 

(Steinheim, Germany). Promochem (Molsheim, France) delivered the internal 

standards fluoxetine-d6 (Fd6) oxalate, mianserin-d3 (Md3) and paroxetine-d6

maleate (Pd6) (100 μg/ml in MeOH). Vials, glass inserts and viton crimp caps 

were purchased from Agilent technologies (Avondale, PA, USA).  

VIII.2.2. High Pressure Liquid Chromatography (HPLC) 

A LaChrom HPLC (Merck-Hitachi, Darmstadt, Germany), consisting of a 

L1700 pump, a L7200 autosampler, a L7360 column oven and a L7455 DAD 

was used. A PurospherStar RP-8 endcapped 4 x 4 mm guard column 

combined with a C8 endcapped PurospherStar (Merck, Darmstadt, Germany) 

LiChroCART 125 mm – 4 mm I.D. (5 μm) column was used for the analysis of 

trazodone and m-cpp using a HPLC-DAD configuration. The gradient run 

started at 95% A (860 ml of water / 40 ml of phosphate buffer 250 mM, pH 

2.3 / 100 ml of methanol) and 5% B (40 ml of phosphate buffer / 210 ml of 

water/ 750 ml of methanol). At 8 minutes, the B phase contribution was 

25%, and at 16 minutes 55%. Then, during 8 minutes the gradient switched 

to 95% B. After 5 minutes, the run was switched to the starting conditions 

and equilibrated for 12 minutes before the next injection. The DAD measured 

from 220 till 350 nm and chromatograms were integrated at 230 nm. This 

method was used for analysis of trazodone and m-cpp, with a total run time 

of 30 minutes and m-cpp and trazodone eluting, respectively, at 11.25 and 

15.16 minutes. 

VIII.2.3. Gas Chromatography – Mass Spectrometry (GC-MS) 

Chromatographic separation was achieved on a 30m x 0.25mm i.d., 0.25-μm 

J&W-5ms column from Agilent Technologies (Avondale, PA, USA). The initial 

column temperature was set at 90°C for 1 min, ramped at 50°C/min to 

180°C where it was held for 10 min, whereafter the temperature was ramped 

again at 10°C/min to 300°C.  

The pulsed splitless injection temperature was held at 300°C, while purge 

time and injection pulse time were set at 1 and 1.5 min, respectively. 
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Meanwhile, the injection pulse pressure was 25 psi and 1 μl of the sample, 

resolved in 50 μl toluene, was injected. The separation of the derivatized ADs 

and their active metabolites was achieved in 24.8 minutes. The helium flow 

was constantly delivered at 1.3 ml/min during analysis. 

The mass selective detector temperature conditions were 250°C for the 

source, 150°C for the quadrupole and 300°C for the transferline. Methane 

was used as reagent gas in PICI mode with a flow of 1 ml/min. The spectra 

were monitored in selected ion monitoring (SIM) mode for quantification 

(Table VIII.2.). This method was validated for plasma, blood, and brain tissue 

and is discussed in detail in chapters V and VI. 

Table VIII.2. Ions monitored in PICI SIM 

                       

Compounds M-ion  M-ion HFB PICI
Quant ion 1 ion 2

Venlafaxine 2 277 259 260  258   (56)   288 (10)
m-cpp 1 196 392 393  395   (33) 373 (9.6)
Viloxazine 1 237 433 434  296   (63)   414 (10)
DMFluox 1 295 491 330  358   (6.6)   117 (36)
Fluvoxamine 1 318 514 495  258   (304)   515 (65)
ODMV 2 (-H2O) 263 441 246 244   (53) 274  (5.5)
Fluoxetine 1 309 505 344  486   (3.2)  534 (4.0)
Fluoxetine-d6 315 511 350  492   (4.8)  540 (5.6)
Mianserin 2 264 264 265  293   (18)  305 (2.4)
Mianserin-d3 267 267 268  296   (19)  308 (3.8)
Mirtazapine 2 265 265 266  264   (31)   294 (17)
Melitracen 2 291 291 292  290   (45)   320 (20)
DMMia 2 250 446 447  427   (7.4)   475 (14)
DMSer 3 291 487 275  277   (67) 487 (1.1)
DMMir 2 251 447 448  428   (7.3)   476 (13)
Reboxetine 3 313 509 372  510   (6.6) 490 (5.3)
Citalopram 3 324 324 325  305   (10)   353 (22)
DMMap 3 263 459 460  382   (56)   431 (10)
Maprotiline 3 277 473 474  454   (11)   396 (37)
Sertraline 3 305 501 275  277   (66)  501 (3.0)
DDMC 3 296 492 475  521   (20) 493 (4.0)
DMC 3 310 506 489  507   (5.7)   535 (21)
Paroxetine 3 329 525 526  506   (15)  554 (17)
Paroxetine-d6 332 531 532  512   (16)  560 (18)

Relative intensity % between brackets
IS: 1 (fluoxetine-d6); 2 (mianserin-d3); 3 (paroxetine-d6)

VIII.3. Case reports 

Five post-mortem cases are discussed to demonstrate the usefulness of the 

optimized and validated GC-MS method in forensic toxicology. Urine, stomach 

content and blood were screened using our laboratory systematic 

toxicological screening (STA) system to situate each case. Matrices such as 

whole blood, brain tissue and hair were thereafter analyzed using our 
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developed GC-MS method. Femoral blood was obtained, while six different 

locations were analyzed in the brain tissue, i.e. frontal, parietal, temporal and 

occipital lobe, the cerebellum and the brainstem. Hair samples were sampled 

at the vertex site of the head and cut into segments of approximately 2 cm 

after a wash to eliminate external contamination. However, for case 1 and 2 

there was not enough blood to perform the GC-MS analysis. Hair samples 

were only available for case 3 and 4.  

ADs were extracted from these matrices by an optimized solid phase 

extraction as discussed in Chapter III. The optimization and validation of the 

GC-MS method was extensively discussed in chapters V and VI. The GC-MS 

method with electron ionization is the preferred technique for drug analysis in 

forensics allowing identification of unknown compounds by comparison of 

their mass spectrum with a large collection of reference mass spectra in 

commercially available libraries. However, due to the extensive 

fragmentation of several ADs in the EI-mode, the positive ion chemical 

ionization mode (PICI) was chosen to evaluate the post-mortem cases as this 

technique provides more selectivity in complex matrices such as brain tissue. 

Trazodone and its metabolite m-chlorophenylpiperazine were analyzed using 

a HPLC-DAD method due to chromatographic problems of trazodone in the 

GC-MS analysis.  

Table VIII.3. Summary of the AD concentrations found in blood, brain and 

hair for the different cases 

nd, not detected; italic, concentration < LOQ 

Case 1 4 5
Sex male female male male female
Age 39 40 27 43 92
Brain weight (g) 1400 1220 1550 1700 1135
Cause of death hanging respiratory depression respiratory depression arrhythmias and respiratory depression sudden cardiac death

Compound Ser / DMSer Fluox / DMF Fluox / DMF Traz / mcpp Ser / DMSer Traz / mcpp Cit / DMC Cit/DMC
Blood conc. (ng/ml) 600 / nd 1640 / nd 93 / 185 nd 191 / 104 14 /18
Brain conc.  (ng/g) Temporal lobe 11781 / 4336 127 / 63 4454 /3762 75 / 26 1466 / 3624 492 / 112 53 / 64 27 /24

Parietal lobe 9684 / 2909 306 / 159 4611 / 3800 85 / 50 1924 / 4517 119 / nd 95 / 59 187/43
Occipital lobe 10858 / 3294 135 / 76 4673 / 4228 115 / 34 2008  / 4280 661 / 138 251 / 72 148/43
Frontal lobe 8544  / 2893 63 / 49 4979 / 4312 90 / 21 1750 / 4392 556 / 139 196 / 54 30 /22

Stem 9297 / 1955 106 / 68 4822 / 4515 82 / nd 1671 / 3172 77 / nd 174 / 62 107/35
Cerebellum 11002 / 3391 18  / nd 3656 / 2556 108 / 24 993 / 2319 85 / nd 162 / 55 125/31

Hair conc.    (ng/mg) segment 1 - / - 0.6 / 0.5 2.5 / 1.9
segment 2 / 0.4 0.8 / 1.4 - / -
segment 3 / 0.8 1.6 / 2.6

2 3
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VIII.3.1. Case 1 

A 39-year old male committed suicide by hanging. After screening, sertraline 

(600 ng/ml) was found in blood in combination with caffeine and cotinine. 

After analysis of the urine and stomach contents using HPLC-DAD, a 

concentration of 2600 and 1100 ng/ml was measured, respectively.  

According to The International Association of Forensic Toxicologists [17], the 

therapeutic range of sertraline in plasma ranges from 50-250 ng/ml, but 

therapeutic concentrations of 500 ng/ml are also observed. Toxic 

concentrations vary between 290 and 1600 ng/ml. The observed sertraline 

concentration in this case is above the therapeutic range and could lead to 

side-effects, but is not the cause of death. Because of the urine and stomach 

contents concentration, we can suggest a regular intake of sertraline and in 

addition, a recent intake before the patient’s death. Thus, probably a peak 

steady-state concentration is observed in this case. 

Sertraline concentrations were determined in six different locations in the 

brain. While sertraline binds on specific binding sites in the brain to create an 

effect, it is clear that in this case it is homogeneously distributed over the 

brain tissue as shown in Table VIII.3.  In this case, the brain concentration of 

sertraline is 17 times higher than the plasma concentration. Bolo et al. [25] 

examined the brain/plasma concentration relationship for other SSRI’s 

(fluoxetine and fluvoxamine) in vivo through 19F magnetic resonance 

spectroscopy. They concluded that the steady-state brain concentration of an 

SSRI is about 10 times higher than its plasma concentration. This ratio is 

compatible with the reported distribution volumes of the compounds, 

indicating a considerable uptake of the SSRI into tissue spaces. We must 

point out, however, that because of the amphiphilic character of ADs a 

comparison between brain/blood and brain/plasma ratios is not 

straightforward as ADs bind to the membranes of red blood cells [18, 19].  

In the brain tissue, a small amount of fluoxetine and desmethylfluoxetine was 

also determined, while these compounds were not detected in blood. This 

leads to the conclusion that fluoxetine was administered for a certain time in 



Chapter VIII: Monitoring of antidepressants in forensic toxicology 

the past, explaining the lower concentration in the brain tissue. 

Unfortunately, no hair samples were provided in this case. 

Figure VIII.3. GC-MS chromatogram of the six different brain tissue samples 

(frontal, temporal, parietal, and occipital lobe, cerebellum and stem) in case 

1

Sertraline and desmethylsertraline can be observed in high concentrations. In the 
enlargement, fluoxetine, desmethylfluoxetine and the internal standard Fd6 (200 ng) 
can be detected 
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VIII.3.2. Case 2 

The cause of death in this case was a polydrug intoxication, namely a 

combination of bromazepam (160 ng/ml), lorazepam (50 ng/ml), morphine 

(38 ng/ml), acetaminophen (1430 ng/ml), ethanol (1.36 g/l), clotiapine (600 

ng/ml) and fluoxetine (1640 ng/ml).  Due to the combined presence of these 

products in the blood, central nervous system suppression occurred, with a 

resultant lethal cardio-respiratory depression. The urinary level of fluoxetine 

was 4750 ng/ml, while in the stomach contents fluoxetine reached the level 

of 260 ng/ml. Fluoxetine and desmethylfluoxetine were homogenously 

distributed in the brain with a mean concentration of 4532 and 3862 ng/g, 

respectively.  

The fluoxetine blood concentration is toxic, but not lethal, as the therapeutic 

concentration ranges between 100 and 450 ng/ml, while toxic concentrations 

range from 1500 to 2000 ng/ml [17]. According to Bolo et al. [25], the 

steady-state brain concentration of the sum of fluoxetine and its active 

metabolite desmethylfluoxetine ranges from 1800 to 6000 ng/g, and is lower 

than the sum of 8394 ng/g in this case. In addition, the brain concentration 

of desmethylfluoxetine is almost as high as the fluoxetine concentration 

which might be explained by the elimination half-life difference, 4 to 6 days 

for the parent drug and 4-16 days for the metabolite [35]. The brain/blood 

fluoxetine ratio of 2.8 in our case is comparable to the brain/plasma 

correlation of 2.6 for the sum of fluoxetine and desmethylfluoxetine found by 

Renshaw et al. [26].  However, the ratio is much lower than the ratio of 10 

described by Bolo et al. [25]. This ratio is compatible with the reported 

distribution volumes of the compounds, indicating a considerable uptake of 

the SSRI into tissue compartments. However, as ADs can bind to red blood 

cell membranes due to their amphiphilic character [18, 19], it is clear that 

the comparison between brain/blood and brain/plasma results is not obvious. 

VIII.3.3. Case 3  

The cause of death of this person was a polydrug intoxication, in which high 

morphine levels were found and thus this decease did in fact not immediately 
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relate to the ADs concentrations, but was due to a suppression of the central 

nervous system, with cardio-respiratory depression caused by high amounts 

of opiates (2.4 μg/ml) in the blood. Sertraline and desmethylsertraline 

(DMSer) were found in blood at a level of 93 and 185 ng/ml, respectively. 

The mean brain concentration was 1635 ng/g for sertraline and 3717 ng/g for 

DMSer. Trazodone and m-cpp were also detected in brain tissue. The 

quantification of these compounds occurred using HPLC-DAD. A mean 

concentration of 93 and 31 ng/g was found for trazodone and m-cpp, 

respectively. In urine, a trazodone concentration of 142.7 ng/ml was 

monitored, while trazodone was not detected in blood. 

In addition, hair samples were analyzed for this case. A hair sample with a 

length of 5.5 cm was taken from the vertex and cut into 2 fragments of 2 cm 

and one of 1.5 cm, giving a time window of approximately 2 months per 

segment. The first fragment, thus closest to the scalp (20 mg) contained 0.6 

ng sertraline / mg and 0.5 ng DMSer / mg. The second fragment (61.2 mg) 

contained 0.8 ng sertraline / mg, 1.4 ng DMSer / mg and 0.4 ng mcpp / mg. 

The third fragment contained 1.6, 2.6, and 0.8 ng/mg of sertraline, DMSer, 

and m-cpp, respectively.  

According to The International Association of Forensic Toxicologists [17], the 

therapeutic range of sertraline in plasma ranges from 50-250 ng/ml, but 

therapeutic concentrations of 500 ng/ml are also observed. Toxic 

concentrations vary between 290 and 1600 ng/ml. The observed sertraline 

concentration in this case is thus within the lower therapeutic range. 

Sertraline was not present in urine nor in the stomach contents and 

therefore, a non-compliance of the prescribed therapy must be suspected. 

Sertraline concentrations were determined in 6 different locations in the 

brain. While sertraline binds on specific binding sites in the brain to create an 

effect, it is clear that in this case it is homogeneously distributed over the 

brain tissue as shown in Table VIII.3. Calculation of the brain/blood sertraline 

ratio   provided a value of 17.6. This value is higher, but in the range of the 

proposed ratio of 10 for SSRI’s by Bolo et al. [25]. The ratio of 

sertraline/DMSer in hair is 1.2 in the first segment, while it was 0.5 and 0.6 

for segment 2 and 3, maybe due to stability issues. It is clear from the hair 
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and urine analysis, that there was a regular but not daily intake of sertraline 

during the past six months. 

Figure VIII.4. GC-MS chromatograms obtained from a blood (A), brain tissue 

(B) and hair extract (C) for case 3 

DMSer, desmethylsertraline; m-cpp, m-chlorophenylpiperazine; Fd6, deuterated 
fluoxetine internal standard; Md3, deuterated mianserin internal standard; Pd6,
deuterated paroxetine internal standard 

A
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The level of trazodone in brain tissue was 200 to 500 times lower than 

concentrations found by Martin and Pounder [24]. These authors described 

intoxications in which about 700 mg of trazodone was ingested, leading to a 

blood level of 15 000 ng/ml and a urine level of 20 000 ng/ml.  In our case, 

however, neither trazodone nor its metabolite was found in blood. The 

urinary concentration of trazodone, and the presence of its metabolite m-cpp 

in hair leads to the conclusion that trazodone was administered at a more 

postponed point in time, explaining the lower concentration in the brain 

tissue. This case demonstrates that ADs can still be determined in brain 

tissue, even when they are no longer present in blood, providing information 

about the treatment and administration of AD drugs before death.  

VIII.3.4. Case 4  

In this case large amounts of cocaine (3.43 μg/ml), amphetamine (4.5 

μg/ml) and morphine (167 ng/ml) were found in blood which could induce 

death due to cardiac arrhythmias (cfr. stimulants) and/or respiratory 

depression (cfr. opiates). Other compounds found in blood were ethanol 

(0.22 g/l), acetaminophen (1.23 μg/ml), and caffeine (2.6 μg/ml). The urine 

contained other drugs such as citalopram (5.38 μg/ml), ibuprofen (218 

ng/ml), fentanyl (5.6 ng/ml), trazodone metabolites (6.95 μg/ml) and 

benzodiazepines (1.8 μg/ml). The stomach contents contained morphine 

 322 
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(5.56 μg/ml), cocaine (500 μg/ml), trazodone (115 μg/ml), citalopram (1.12 

μg/ml), alprazolam (236 ng/ml), acetaminophen (19.4 μg/ml) and caffeine 

(0.6 μg/ml). This drug addict had used illegal substances (such as cocaine, 

amphetamines, and heroin), in combination with ethanol and the ADs, 

trazodone and citalopram. 

Trazodone and m-cpp were detected in brain tissue although they were not 

found in blood. A mean concentration of 332 ng/g was found for trazodone, 

while a mean of 130 ng/g was found for m-cpp in the frontal, occipital and 

temporal lobe. Citalopram and its demethylated metabolite were found in 

brain tissue with a mean concentration of 155 and 61 ng/g, respectively. 

Blood concentrations as determined by GC-MS were 194 and 104 ng/ml, 

respectively.   

Dark brown hair with a length of 6 cm was taken from the vertex and cut into 

2 fragments of 3 cm because of the limited amount available. The first 

fragment (closest to the scalp; 23.2 mg) contained 2.5 ng citalopram / mg 

and 1.9 ng DMC / mg. The second fragment (27.3 mg) did not contain any 

AD.  

ADs use in illegal polydrug abuse (such as cocaine, heroin) is often found. 

Drug addicts under methadone treatment are often depressed and treated 

with the low toxic new generation ADs [14, 15]. As trazodone and citalopram 

were found in the stomach contents, it can be presumed that the drugs were 

ingested in the hours prior to death leading to an incomplete absorption of 

the substances. Trazodone was not found in blood, however, it was detected 

in combination with its metabolite m-cpp in brain tissue and its metabolites 

were found in urine. Therefore, occasional use of trazodone by this subject is 

suspected.

Citalopram was detected in blood, brain, urine and stomach contents. The 

presence of citalopram in the brain could be due to rapid migration and 

storage in this compartment or rather be an indication of previously 

consumed citalopram. Moreover, the brain/blood ratio is quite low (0.8) as 

compared to case 5, which could be explained by the recent and irregular 
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intake in drug addict, while for case 5 a steady-state AD therapy was 

presumed. The DMC/Citalopram ratio ranges from 0.3-1.2 with a mean of 

0.51, with the highest ratio observed in the temporal lobe. The 

DMC/Citalopram ratio is comparable to case 5.

Referring to the citalopram concentrations substantiated in the hair 

fragments, we can conclude that the use of citalopram occurred during the 

past 3 months. 

VIII.3.5. Case 5  

A 92-year old lady died suddenly and unexpectedly during admission in 

hospital. As her death was unforeseen, a forensic autopsy was ordered. This 

old-age woman was known to be depressive and tired of her life; therefore 

she received an AD.  In urine, 315 ng/ml citalopram was detected, while 114 

ng/ml caffeine was measured during screening of the post-mortem blood 

sample. Analysis of the blood sample with the GC-MS method resulted in a 

citalopram concentration of 14.1 ng/ml and a desmethylcitalopram (DMC) 

concentration of 18.3 ng/ml. The mean brain concentration was 104 ng 

citalopram/g.  

The blood levels of citalopram and its metabolite desmethylcitalopram are 

subtherapeutic as therapeutic concentrations range from 20 till 200 ng/ml 

[17]. The brain concentrations of these substances were sampling-

dependent, with the highest concentrations in the parietal and occipital lobe, 

and in the cerebellum. The DMC/citalopram ratio ranged from 0.3 till 0.9 with 

a mean of 0.45. The highest ratio is seen in the temporal lobe. The same 

ratio is seen in case 4 were DMC/Citalopram ranged from 0.3-1.2 with a 

mean of 0.51 and again the highest ratio is observed in the temporal lobe. 

Referring to the brain/blood ratio of 7, it can be concluded that citalopram 

penetrates the brain rather easily. In addition, it can be presumed by these 

data that the detection of citalopram and his metabolite might still be 

possible when these substances are below limit of quantitation in blood.  



Chapter VIII: Monitoring of antidepressants in forensic toxicology 

 325 

VIII.4. Conclusion

The developed solid phase extraction and GC-MS method in PICI mode for 

the simultaneous determination of several new generation ADs and their 

active metabolites in brain tissue was validated and tested on post-mortem 

samples. Several ADs were detected and quantified in six brain regions. 

Although ADs are selectively bound to receptors located in specific brain 

regions, it was clear that the ADs spread rather homogeneously over the 

total brain content in most cases. It cannot be excluded that this distribution 

is also increased due to post-mortem redistribution of the ADs, following 

liberation from their binding sites. Therefore, in post-mortem analysis, a 

detailed location of a brain sample is in fact of no importance for the 

quantitative result as shown by the case reports. However, more case reports 

with different types of antidepressants should be analyzed in the future to 

confirm this finding. 

A possible advantage of post-mortem toxicological brain analysis is that ADs 

can still be determined in brain tissue, even when they are no longer present 

in blood, providing information about the treatment and administration of AD 

drugs in those cases. However, as described in chapter VI long term stability 

of low concentrations of ADs is lower as compared to their stability in blood 

or plasma. 

The link between blood levels and the drug-concentration at the effector site 

(the brain) for a specific clinical response is of importance. For 2 cases, a 

brain/blood ratio of approximately 17 was seen for sertraline.  However, due 

to the small number of cases, this link could not be determined. In addition, 

variables such as P-glycoprotein polymorphism, interval between the last 

time of ingestion and death, treatment period, and patient compliance could 

alter the brain/blood ratio.  

The quantitative results from hair samples are hard to interpret as the link 

between incorporation in the hair and blood level / effect is not known. In 

addition, incorporation of the ADs in hair also depends on the type of hair 

pigmentation and physical state.  
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However, hair analysis can give more information of the long-term exposure 

of ADs. While blood is still the preferred matrix to link concentration and 

effect, analysis of brain tissue and hair can provide additional information. 

These matrices are certainly of interest to investigate decayed corpses, or to 

have a longer detection window. Especially, hair samples give information on 

the consumption pattern of the ADs in the past.  
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According to the World Health Organization, depression will be the second 

leading contributor to the global burden of disease, calculated for all ages and 

both sexes by the year 2020. Therefore, the prescription rate of 

antidepressants will increase, resulting in a growing interest for 

determination methods in the clinical and forensic field. As a result, in this 

thesis, a gas chromatographic-mass spectrometric method for the 

determination of thirteen new generation antidepressants and their 

metabolites was developed, validated and applied in clinical as well as 

forensic settings. 

The major part of this work is the optimization of the analytical aspects of the 

method. Because the method had a broad range of possible applications, this 

thesis reflects possible pros en cons during the different stages in the 

development and optimization of the method. Antidepressants were extracted 

using solid phase extraction from different matrixes such as plasma, whole 

blood, brain and hair tissues for clinical or forensic applications. The mass 

spectrometric conditions, especially conditions concerning ionization, were 

thoroughly investigated. While the traditional electron ionization mode is 

most useful in clinical settings, it is clear that positive ion chemical ionization 

has its benefits for demanding matrices in forensic settings, while negative 

ion chemical ionization can lead to extreme sensitivities if necessary. After 

the optimization of the gas chromatographic-mass spectrometric method, it 

was validated based on the FDA guidelines to ensure good quantification 

results. Finally, the usefulness of the method was demonstrated by a 

preliminary study concerning monitoring of antidepressants in combination 

with CYP2D6 genotyping and by analyzing five post-mortem cases. 

Although it is clear that not all antidepressants and their metabolites are 

adequately quantified with this method, we are sure that this thesis can be a 

helpful guideline to develop a specific method for a specific antidepressant in 

a specific setting.  In addition, it is clear that this method is able to determine 

antidepressants in different forensic matrices, leading to more information 

concerning the case. However, in the future, more research should be 

performed concerning the relationship between antidepressant blood and 

brain concentrations and the final effect, before interpretation of brain 
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antidepressant concentrations can be straightforward. Moreover, it is also 

clear that this method has its purpose in psychiatric clinics as demonstrated 

by the preliminary study combining the gas chromatographic-mass 

spectrometric method to determine antidepressant plasma concentrations 

and the genotyping of the antidepressant metabolizing enzyme CYP2D6. 

However, we sincerely hope that in the near future, the TDM-GEN method, as 

described in chapter VII, will be applied in a large scale psychiatric clinic, to 

evaluate its use.   







SUMMARY

This work describes the optimization, validation and application of a gas 

chromatographic-mass spectrometric method for the quantification of new 

generation antidepressants and their active metabolites in plasma, blood, 

brain tissue and hair samples. 

In chapter I an overview is given of the published literature concerning the 

new generation antidepressants. This introduction discusses the onset of 

depression and the treatment, including the action mechanisms, side-effects 

and toxicity of antidepressants in general. Moreover, the potential values of 

therapeutic drug monitoring and toxicological assays for these drugs are 

discussed in relation to their mode of action, drug interactions, metabolism 

and pharmacokinetic properties. We must not forget that depression affects 

both economic and social functions of about 121 million people worldwide, 

leading to substantial impairment in an individual’s ability to take care of his 

or her everyday responsibilities and at its worst can lead to suicide. Although 

the serious progress in antidepressant drug therapy, there still are a number 

of problems such as non-responding therapy, poor patient compliance and 

serious side-effects. Therefore, development of analytical methods to monitor 

plasma concentration during antidepressant therapy, to investigate forensic 

cases or to do fundamental research concerning their site of action is of 

interest. 

This work focuses on the development of an analytical method for the 

quantification of new generation antidepressants and their metabolites. The 

monitored antidepressants were selected based on their importance in the 

seven major antidepressant markets (Japan, USA, France, United Kingdom, 

Italy, Spain, Germany) according to the Cognos Plus Study #11 and on the 

AGNP-TDM Expert Group Consensus Guidelines. The following anti-

depressants and metabolites were monitored: citalopram, fluoxetine, 

fluvoxamine, maprotiline, melitracen, mianserin, mirtazapine, paroxetine, 

reboxetine, sertraline, trazodone, venlafaxine, viloxazine, desmethyl-

citalopram, didesmethylcitalopram, desmethylfluoxetine, desmethyl-

maprotiline, desmethylmianserin, desmethylmirtazapine, desmethyl-

sertraline, m-chlorophenylpiperazine, and O-desmethylvenlafaxine.  



Chapter II summarizes the objectives of this work. These objectives were 

first of all the development of a quantitative GC-MS method for the new 

generation antidepressants, secondly its applicability in clinical as well as 

forensic settings. 

The analytical development of the gas chromatographic-mass spectrometric 

method was the core of the research subject. The analytical development was 

discussed in chapters III, IV, and V.  

A very important step in the development of an analytical method is the 

extraction of the compounds of interest from the biological matrix as this will 

have implications on the overall sensitivity and selectivity of the method. 

Therefore, extraction of antidepressants using a solid phase extraction (SPE) 

was throughout discussed in chapter III. The SPE was developed by 

extracting antidepressant spiked water samples, using a high pressure liquid 

chromatographic method with diode array detection as monitoring technique. 

Thereafter, the developed SPE procedure was optimized, using the final gas 

chromatographic method, for biological matrices such as plasma, blood, brain 

tissue and hair samples, as the extraction of antidepressants from these 

matrices is of interest in the field of clinical and forensic toxicology. During 

this optimization factors such as matrix consistence, lipophilicity, protein 

content and stability were considered to obtain an optimal SPE method for 

each matrix, finally resulting in high and reproducible antidepressant 

extraction recoveries. 

In chapter IV, derivatization of antidepressants was discussed. 

Derivatization is a common sample preparation technique before gas 

chromatographic analysis to improve the volatility, peak shape and detector 

response of the analyte. Different acylation reagents and procedures were 

compared in this chapter. Heptafluorobutyrylation of antidepressants and 

their metabolites using heptafluorobutyrylimidazole was finally chosen as this 

led to a reproducible derivatization with good peak shapes for most 

antidepressants. In addition, heptafluorobutyrylation led to a single sample 

preparation for the three possible ionization modes, with a highly sensitive 

analysis using negative ion chemical ionization because this type of 

derivatization led to the addition of the seven fluorine-atoms in combination 

with the carbonyl group after derivatization of the antidepressants. Finally, 



heptafluorobutyrylation also led to more volatile derivatives, resulting in a 

shorter analysis time. 

Gas chromatographic and mass spectrometric parameters were optimized in 

chapter V. The separation of the 13 antidepressants and their active 

metabolites occurred on a non-polar 5% phenylmethyl-polysiloxane column 

with general purpose dimensions to avoid GC-MS downtime due to column 

switching in the forensic or clinical routine laboratory. During optimization of 

the gas chromatographic method most attention was paid to the sample 

introduction. Splitless vaporization injection was chosen due to sensitivity and 

robustness concerns. However, as incomplete sample transfer from the 

injector liner to the column, discrimination, and poor peak focussing on the 

top of the column are the most widely observed problems in splitless 

injections, this injection type was evaluated concerning inlet temperature, 

purge activation time and inlet pressure to ensure minimal negative effects. 

In order to accelerate and maximize the sample transfer, a pulsed splitless 

injection was selected in which the high inlet pressure was used to increase 

the mass transfer to the column and to reduce the band spreading. The 

discrimination of high boiling compounds was diminished due to optimization 

of the injector temperature, column temperature, the purge activation time 

and an increase in inlet pressure during injection.  

For the mass spectrometric conditions, optimization and comparison of 

different ionization modes was of most interest. The second part of chapter V 

therefore describes the comparison of electron, positive and negative ion 

chemical ionization and discusses the fragmentation patterns of the 

antidepressants and their metabolites in these ionization modes. Electron 

ionization is still the traditional method for comprehensive screening 

procedures due to the easy library search mechanism. This ionization, 

however, leads to high fragmentation of citalopram, melitracen, venlafaxine, 

and O-desmethylvenlafaxine, resulting in the aspecific high abundance 

quantifier ion at m/z 58 and inherent loss of specificity, especially for 

demanding matrices such as post-mortem blood and brain tissue. Chemical 

ionization is a ‘softer’ ionization technique, thus providing more selectivity 

through molecular mass information. Negative ion chemical ionization leads 

to improved sensitivity due to heptafluorobutyrylimidazole derivatization, 

allowing smaller sample volumes. This could be very interesting in clinical 

analysis and TDM of samples from children where often only a limited amount 



of sample is available. On the other hand, underivatized tertiary amines such 

as citalopram, melitracen, mianserin, and mirtazapine are not detected.Thus 

every ionization method has its specific pros and cons and this chapter tries 

to give a guideline for the choice of ionization modes and parameters to 

obtain the ideal conditions for a specific antidepressant in a specific setting.

In chapter VI the developed GC-MS method for the 13 new generation 

antidepressants and their metabolites was validated in plasma using different 

ionization modes according to the FDA guidelines. For blood and brain tissue 

samples, validation occurred in positive ion chemical ionization mode 

according to the same guidelines. During validation stability, sensitivity, 

precision, accuracy, recovery, linearity and selectivity were evaluated. 

Identification and quantification were based on selected ion monitoring in 

electron and chemical ionization modes. Calibration by linear and quadratic 

regression for electron and chemical ionization, respectively, utilized 

deuterated internal standards and a weighting factor 1/x2. Limits of 

quantitation were established between 5-12.5 ng/ml in electron and positive 

ion chemical ionization, and 1-6.5 ng/ml in negative ion chemical ionization 

for plasma. For blood the limit of quantification ranged from 5-20 ng/ml, 

while the limit of quantification in brain tissue ranged from 25-62.5 ng/g.

Accuracy, precision and stability were within the limits set by the guidelines 

(less than 15 % deviation from target value, less than 15 % relative standard 

deviation, except at the quantification limit where deviation and RSD of 20 % 

is allowed) for each ionization mode and for most compounds. While it is 

clear that not all compounds can be quantified either due to irreproducible 

validation results and chromatographic problems (trazodone) or due to 

derivatization problems (O-desmethylvenlafaxine), this method can quantify 

most new antidepressants in the therapeutic range in plasma in different 

ionization modes, and in blood and brain tissue.   

After the development and validation of the GC-MS method for the new 

generation antidepressants and their metabolites, the method was evaluated 

for its usefulness for clinical and forensic toxicological analyses, as described 

in chapter VII and VIII. 

Chapter VII describes a preliminary study concerning personalized anti-

depressant treatment. In this study, the developed GC-MS method with 



electron ionization is combined with CYP2D6 genotyping to ensure a good 

medical treatment. Although the low toxicity of antidepressants, physicians 

must be aware that depression is a chronic disease leading to a long period of 

drug intake, in addition, these patients mostly use a whole range of drugs, 

which increases the risk of adverse effects. Finally, a large variety in 

therapeutic plasma concentrations due to environmental, physiological and 

genetic factors occur with antidepressant treatment and identical plasma 

concentrations often result in different responses to treatment. So far the 

most of compelling evidence in pharmacogenetics of antidepressants is for an 

effect of CYP2D6 polymorphisms on antidepressant drug plasma levels, 

therefore this enzyme was monitored in combination with plasma 

concentration measurement. A case report was applied to demonstrate the 

usefulness of the developed GC-MS method and to demonstrate the 

possibilities of this method in a realistic clinical setting. It also demonstrates 

that the developed methods work and can be applied. The genotyping of 

patients is probably of most interest when therapy is started. The phenotype, 

together with the information concerning the patients depressed state, co-

medication and comorbidity can lead to a rational choice of antidepressant 

therapy and necessary dose. Once therapy is started, TDM can be used to 

monitor compliance, and to link plasma concentrations with the clinical effect 

and side-effects of the patient. However, more research has to be done 

before personalized AD treatment will be state of the art. First of all, dose 

recommendations based on differences in pharmacokinetics are not 

automatically helpful for prediction of treatment response, since correlation 

between plasma concentrations and efficacy is very poor in antidepressant 

therapy. Secondly, due to the complexity of drug response, single mutations 

in one gene, such as the CYP2D6, are unlikely to cause the continuous 

variability in response. As result, more information should be obtained 

concerning polymorphisms of other CYP isoenzymes, variations in targets and 

transporters. In addition, the proposed method should be evaluated on a 

large scale population. 

In Chapter VIII the developed GC-MS method using positive ion chemical 

ionization is used to quantification of the new generation antidepressants in 

whole blood, brain tissue and hair samples for interpretation of post-mortem 

cases. Several antidepressants such as fluoxetine, sertraline and citalopram 

were detected and quantified in different brain regions. Although 



antidepressants are selectively bound to receptors located in specific brain 

regions, it was clear that the antidepressants spread rather homogeneously 

over the total brain content in most cases. Therefore, in post-mortem 

analysis, a detailed location of a brain sample is in fact of no importance for 

the quantitative result. Analysis of the post-mortem cases also led to the 

conclusion that a possible advantage of post-mortem toxicological brain 

analysis is the longer detection window of antidepressants in brain tissue as 

compared to blood. Because the link between blood levels and the drug-

concentration at the effector site (the brain) for a specific clinical response is 

of importance, blood levels and brain levels were compared in the five cases. 

For 2 cases, a brain/blood ratio of approximately 17 was seen for sertraline.  

However, due to the small number of cases, this link could not be 

determined. In addition, variables such as P-glycoprotein polymorphism, 

interval between the last time of ingestion and death, treatment period, and 

patient compliance could alter the brain/blood ratio. Hair samples were also 

analyzed, especially to confirm the use of antidepressants for a longer period 

and thus the results of the brain tissue. The quantitative results from hair 

samples, however, are hard to interpret as the link between incorporation in 

the hair and blood level / effect is not known. In addition, incorporation of 

the ADs in hair also depends on the type of hair pigmentation and physical 

state.

Finally, in chapter IX a general conclusion is given. It is clear that the major 

part of this work is the optimization of the analytical aspects of the method. 

Because the method has a broad range of possible applications, we hope this 

thesis can be a guideline for the use of GC-MS analyses for a specific 

antidepressant in a specific setting. In addition, this work describes the 

usefulness of the developed GC-MS method for forensic and clinical 

applications. However, we sincerely hope that in the near future, the 

developed method will be applied in a large scale forensic or psychiatric 

clinical setting for further development and evaluation.   



SAMENVATTING

Dit doctoraatswerk beschrijft de optimalisatie, validatie en applicatie van een 

gaschromatografische massaspectrometrische methode voor de bepaling van 

nieuwe generatie antidepressiva en hun actieve metabolieten in plasma, 

bloed, hersenweefsel en haar. 

In het eerste hoofdstuk wordt een overzicht gegeven van de reeds 

gepubliceerde literatuur omtrent de nieuwe generatie antidepressiva. Deze 

introductie behandelt de oorzaken van depressie, de mogelijke 

behandelingen, evenals actiemechanismen, mogelijke nevenwerkingen en 

toxiciteit van de nieuwe generatie antidepressiva. Daarenboven wordt het 

belang van antidepressiva plasma spiegel bepaling en van toxicologische 

analyses voor deze groep geneesmiddelen geargumenteerd. Depressie is 

immers een ernstige psychische stoornis die het economische en sociale 

leven van 121 miljoen mensen aantast en kan leiden tot zelfdoding. Ondanks 

de enorm toegenomen kennis over depressie en de behandelingswijzen zijn 

er nog heel wat problemen gedurende de medicamenteuze behandeling van 

depressies zoals slechte therapietrouw, een groot aantal niet-effectieve 

behandelingen en ernstige bijwerkingen. 

Ons onderzoek is voornamelijk gericht op de ontwikkeling van een 

analytische methode voor de kwantificatie van nieuwe generatie 

antidepressiva en hun metabolieten. De antidepressiva waarvoor we in dit 

werk een bepalingsmethode zullen optimaliseren zijn gekozen op basis van 

hun belang in de zeven landen met het grootste verkoopscijfer van 

antidepressiva volgens het Cognos Plus Study #11 en het AGNP-TDM Expert 

Group rapport (Japan, Verenigde Staten, Frankrijk, Verenigd Koninkrijk, 

Italië, Spanje en Duitsland). De finale selectie omvat citalopam, fluoxetine, 

fluvoxamine, maprotiline, melitraceen, mianserine, mirtazapine, paroxetine, 

reboxetine, sertraline, trazodone, venlafaxine, viloxazine, desmethyl-

citalopram, didesmethylcitalopram, desmethyfluoxetine, desmethyl-

maprotiline, desmethylmianserine, desmethylmirtazapine, desmethyl-

sertraline, m-chlorophenylpiperazine en O-desmethylvenlafaxine.  

Hoofdstuk II vat de beoogde objectieven voor deze scriptie samen. Eerst en 

vooral werd de ontwikkeling van een kwantitatieve GC-MS methode voor 



nieuwe generatie antidepressiva en hun metabolieten beoogd. Daarnaast 

moest deze methode zijn nut bewijzen voor zowel forensische als klinische 

toepassingen. 

De analytiek is dus de kern van het onderzoek. De optimalisatie van de 

analytische methode werd besproken in hoofdstukken III, IV en V. 

Eén van de belangrijkste stappen in de ontwikkeling van een analytische 

methode is de extractie van de componenten die moeten bepaald worden 

vanuit de biologische matrix. Deze extractiestap zal een invloed hebben op 

de finale gevoeligheid en selectiviteit van de detectiemethode. Daarom wordt 

de extractie van de antidepressiva via een vaste fase extractie procedure 

uitvoerig besproken in hoofdstuk III. Eerst werd de keuze van vaste fase, 

evenals de was- en elutiestap van de extractieprocedure geoptimaliseerd 

door waterstalen waaraan antidepressiva werden toegevoegd te analyseren 

via vloeistofchromatografie met diode-array detectie. Nadien werd deze 

geoptimaliseerde vaste fase extractiemethode aangepast voor matrices zoals 

plasma, volbloed, hersenweefsel en haarstalen. Er moest vooral rekening 

gehouden worden met de consistentie, de lipofiliciteit, de proteïnen- 

concentratie van het staal en ook met de stabiliteit van de componenten 

gedurende de extractieprocedure om een aangepaste extractiemethode te 

bekomen voor iedere matrix. Finaal werd voor iedere matrix een 

reproduceerbaar en hoog extractierendement bekomen.  

In hoofdstuk IV wordt een ander deel van de staalvoorbereiding 

beschreven, namelijk de derivatisatieprocedure. Derivatisatie wordt gebruikt 

om de vluchtigheid, de piekvorm en de detectorrespons van een component 

te verbeteren. Verschillende acyleringsreacties en producten worden 

vergeleken in dit hoofdstuk. Finaal werd gekozen voor heptafluorobutyrylatie 

van de antidepressiva en hun metabolieten via het derivatisatiereagens 

heptafluorobutyryl imidazol omdat dit product resulteerde in een 

reproduceerbare reactie met goede piekvormen voor de meeste 

antidepressiva. Daarenboven kon men via deze derivatisatiereactie zeven 

fluor-atomen in combinatie met een carbonyl groep toevoegen aan de 

structuur van de antidepressiva om zo een hogere gevoeligheid te bekomen 

in de negatieve chemische ionisatiemodus. Heptafluorobutyrylatie resulteerde 

ook in vluchtige derivaten en dus een kortere analysetijd. 



Gaschromatografische massaspectrometrische parameters worden 

geoptimaliseerd in hoofdstuk V. De scheiding van de componenten 

gebeurde op een niet-polaire 5% phenylmethylpolysiloxaan kolom met 

algemene kolomdimensies om kolomwisselingen in forensische en klinische 

laboratoria tot een minimum te beperken. Gedurende de optimalisatie van de 

methode werd heel wat aandacht besteed aan de staal- introductie op de 

kolom. Er werd voor de ‘splitless vaporization’ injectie- techniek geopteerd 

omdat deze robuuste techniek de nodige gevoeligheid kon verzekeren. Toch 

werd deze injectietechniek geoptimaliseerd qua injectietemperatuur, 

inlaatdruk en kolomtemperatuur. Deze optimalisatie was nodig aangezien er 

een incomplete staaltransfer naar de kolom, discriminatie van hoogkokende 

componenten en een slechte piekvorm kan ontstaan bij ‘splitless’ injecties. 

Het finale resultaat was een ‘pulsed splitless’ injectie waarbij de inlaatdruk 

tijdens de injectie, dus voor een korte periode, verhoogd wordt.  

Na de scheiding van de antidepressiva op de kolom worden deze 

gedetecteerd door een massaspectrometer. De condities van deze detector 

en de verschillende ionisatietechnieken worden beschreven in het tweede 

deel van hoofdstuk V. De fragmentatiepatronen van alle antidepressiva onder 

de verschillende ionisatiecondities worden eveneens besproken. Electron-

ionisatie is nog steeds de traditionele ionisatietechniek omdat het resulteert 

in reproduceerbare spectra die kunnen opgezocht worden in commerciële 

spectrabibliotheken. Deze ionisatietechniek leidt echter wel tot een zeer 

sterke fragmentatie van componenten zoals citalopram, melitraceen, 

venlafaxine en O-desmethylvenlafaxine. Dit extreme fragmentatieproces zal 

leiden tot aspecifieke fragment ionen zoals m/z 58 en dus resulteren in een 

verlies aan selectiviteit vooral in matrices zoals volbloed en hersenweefsel. 

Chemische ionisatie kan dit probleem verhelpen omdat het een zachtere 

ionisatie techniek is en dus resulteert in minder fragmentatie. Hierdoor wordt 

er meer selectiviteit verkregen via informatie omtrent het moleculair gewicht. 

De positieve chemische ionisatietechniek boet wel wat in qua gevoeligheid 

doordat minder hoog abundante fragmentionen gevormd worden. Negatieve 

chemische ionisatie daarentegen resulteert in een enorme gevoeligheid door 

de heptafluorobutyryl imidazol derivatisatie. Het grote voordeel van deze 

enorme gevoeligheid is de mogelijkheid om een kleinere hoeveelheid staal te 

analyseren. Dit voordeel kan zeker benut worden voor analyses bij kinderen, 

waar meestal een beperkte hoeveelheid bloed afgenomen wordt. Het is wel 



zo dat ongederivatiseerde componenten, zoals de tertiaire amines citalopram, 

melitraceen, mianserine en mirtazapine, niet gedetecteerd worden in deze 

ionisatiemode. 

In hoofdstuk VI wordt de geoptimaliseerde GC-MS methode voor de 13 

nieuwe generatie antidepressiva en hun metabolieten gevalideerd in plasma, 

bloed en hersenweefsel in de verschillende ionisatiemethodes. Hiervoor wordt 

de FDA regelgeving gevolgd. Tijdens de validatie procedure werden de 

stabiliteit, gevoeligheid, precisie, accuraatheid, extractierendement, lineariteit 

en selectiviteit geëvalueerd. Identificatie en kwantificatie van componenten 

was gebaseerd op het monitoren van enkele specifieke fragmentionen na 

electron- en chemische ionisatie. Calibratie gebeurde via een lineaire of 

kwadratische regressiecurve, respectievelijk voor electron- en chemische 

ionisatie. Gedeutereerde interne standaarden en een wegingsfactor van 1/x2

werden steeds toegepast. Kwantificatie limieten voor de antidepressiva in 

plasma werden vastgezet tussen 5-12,5 ng/ml voor electron en positieve 

chemische ionisatie, terwijl ze tussen 1-2,5 ng/ml lagen voor negatieve 

chemische ionisatie. De kwantificatie limieten verhoogden naar 5-20 en 25-

62,5 ng/ml voor positieve chemische ionisatie in bloed en hersenweefsel. 

Accuraatheid, precisie, en stabiliteit waren voor de meeste componenten 

binnen de limieten vastgesteld door de FDA: niet meer dan 15% verschil met 

de doelwaarde, minder dan 15% variatie, tenzij voor de kwantificatie limiet 

waarbij een verschil van 20% aanvaard wordt. De meeste antidepressiva en 

hun metabolieten voldoen aan deze criteria en kunnen dus adequaat 

gekwantificeerd worden via deze methode. Enkel trazodone en O-

desmethylvenlafaxine kunnen niet gekwantificeerd worden omwille van 

chromatografische- of derivatisatieproblemen.  

Deze gevalideerde methode werd geïmplementeerd in forensische en 

klinische toepassingen. 

Hoofdstuk VII beschrijft een preliminaire studie waarbij de gevalideerde 

GC-MS methode met electron ionisatie wordt gekoppeld aan een cytochroom 

2D6 bepaling om zo de antidepressivatherapie te optimaliseren. Ondanks de 

lage toxiciteit van de huidige generatie antidepressiva, moeten de 

behandelende artsen er zich van bewust zijn dat depressie een chronische 

ziekte is waarbij medicatie heel lang nodig is. Daarenboven worden deze 



patiënten met een waaier aan geneesmiddelen behandeld wat kan leiden tot 

neveneffecten en interacties. Momenteel is er een groeiende interesse naar 

de variabiliteit in plasmaspiegels en het finaal effect in relatie tot 

fysiologische, genetische en omgevingsfactoren. De meest bestudeerde factor 

is het effect van de cytochroom 2D6 polymorfismen op de antidepressiva-

plasmaconcentraties. Daarom zal deze genotypering gekoppeld worden aan 

de ontwikkelde GC-MS methode. Een casus werd besproken in dit hoofdstuk 

om de haalbaarheid en bruikbaarheid van deze methodes te demonstreren in 

een reële klinische omgeving. Genotypering van de patiënt gebeurt best 

voordat een therapie ingesteld wordt. De informatie omtrent het fenotype 

kan dan tezamen met informatie rond co-medicatie en co-morbiditeit 

resulteren in een rationele keuze van therapie en dosering. Eens de therapie 

is opgestart kan het bepalen van plasmaspiegels informatie bezorgen rond 

therapietrouw en kan er een link gelengd worden tussen plasmaconcentraties 

en effect. Aan de andere kant zal er meer onderzoek moeten gebeuren om 

een goed beeld te krijgen over de relatie tussen doseringen, 

plasmaconcentraties en effect om zo een optimale gepersonaliseerde therapie 

mogelijk te maken. Daarnaast zal vooral de genotyperingsmethode verder 

geoptimaliseerd moeten worden aangezien niet alleen het CYP 2D6 enzyme 

polymorfisme verantwoordelijk is voor de variaties in plasmaconcentraties, 

maar een hele waaier aan polymorfismen van enzymes en 

geneesmiddelentransporters. 

Een tweede toepassingsgebied van de ontwikkelde methode, in casu het 

forensische luik, wordt beschreven in hoofdstuk VIII. De GC-MS methode 

werd gebruikt in positive chemische ionisatiemode om antidepressiva op te 

sporen in volbloed, hersenweefsel en haarstalen in vijf post-mortem 

casussen. Een aantal antidepressiva waaronder fluoxetine, citalopram en 

sertraline werden gekwantificeerd in verschillende hersen-regionen. Hieruit 

bleek dat locatie van staalname geen belang heeft bij antidepressiva analyse 

en dat de detecteerbaarheid van antidepressiva langer is in hersenweefsel 

dan in bloed. We hadden graag een verband kunnen aantonen tussen bloed- 

en hersenconcentraties om zo vat te krijgen op het verband tussen 

bloedconcentraties en effect. Door het kleine aantal casussen was dit echter 

onmogelijk. Daarenboven kunnen variabelen zoals P-glycoproteïne poly-

morfisme, het tijdsinterval tussen inname en dood, therapieperiode en 

therapietrouw aanleiding geven tot een andere hersen/bloed concentratie- 



ratio. Haar werd ook geanalyseerd om een idee te hebben over therapietrouw 

en om de resultaten in het hersenweefsel te confirmeren.  

Tenslotte wordt in hoofdstuk IX een algemene conclusie gegeven. Het is 

duidelijk dat de kern van het onderzoek de ontwikkeling en validatie van een 

GC-MS methode voor nieuwe generatie antidepressiva en hun metabolieten 

inhield. Daarnaast werd het nut van deze methode aangetoond door een 

klinische en forensische toepassing. Laten we hopen dat de door ons 

geoptimaliseerde methode in de nabije toekomst in grootschaligere 

forensische en klinische studies verder zal geëvalueerd worden en zal leiden 

tot nieuwe inzichten voor antidepressiva therapieën. 
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Issues Series in IATDMCT Newsletter. 

Referee 

Referee of several publications for Journal of Chromatography A and B, 
Analytical and Bioanalytical Chemistry, Clinical Chemistry and Laboratory 
Medicine, Journal of Pharmaceutical and Biomedical Analysis and Journal of 
Separation Science. 

Congress Presentations 

2008: Oral presentation at the 46th meeting of The International 
Association of Forensic Toxicologists (TIAFT), Martinique, 
French West Indies, June 2-8, 2008 
Quantification of new generation antidepressants using a gas 
chromatographic-mass spectrometric method. Applications in 
clinical toxicology (Sarah M.R. Wille, Paul Van hee, Hugo M. 
Neels, Carlos H. Van Peteghem, Willy E. E. Lambert)

Oral presentation at the BLT scientific meeting, Brussels, 
March 11, 2008
Case reports: determination of new generation 
antidepressants in human post-mortem blood, brain tissue 
and hair using a gas chromatographic-mass spectrometric 
method in positive chemical ionization mode (Sarah M.R. 
Wille, Els A. De Letter, Michel. H.A. Piette, Lien K. Van 
Overschelde, Carlos H. Van Peteghem, Willy E.E. Lambert) 

Poster presentation  at the 46th meeting of The International 
Association of Forensic Toxicologists (TIAFT), Martinique, 
French West Indies, June 2-8, 2008 
Determination of new generation antidepressants in human 
post-mortem blood, brain tissue and hair using a gas 
chromatographic-mass spectrometric method in positive 
chemical ionization mode (Sarah M.R. Wille, Els A. De Letter, 
Michel H.A. Piette, Lien K. Van Overschelde, Carlos H. Van 
Peteghem, Willy E.E. Lambert)

2007:  Oral Presentation at the 10th International Congress of 
Therapeutic Drug Monitoring and Clincal Toxicology, Nice, 
France, Sept 9-14, 2007 
Validation and comparison of a gas chromatographic-mass 
spectrometric method in electron ionization (EI) and positive 
chemical ionization mode (PICI) for the simultaneous 
determination of 13 antidepressants and their active 
metabolites in plasma (Sarah M.R. Wille, Carlos H. Van 
Peteghem and Willy E.E. Lambert) 



Poster Presentation at the Joint Meeting of International 
Council on Alcohol, Drugs, and Traffic Safety (ICADTS), The 
International Association of Forensic Toxicologists (TIAFT), 
and the 8th Ignition Interlock Symposium (IIS), Seattle, 
Washington, USA, Aug. 26-30, 2007. 
Validation of a GC-MS method for the simultaneous 
determination of 12 antidepressants and their active 
metabolites in plasma and application to whole blood, and 
brain tissue. (Sarah M. Wille, Carlos H. Van Peteghem, Willy 
E. Lambert) 

2005: Oral Presentation at the 43  International Meeting of the 
International Association of Forensic Toxicologists (TIAFT)

th

,
Seoul, Korea, Aug 29-Sept 2, 2005. 
Development of a solid phase extraction for 13 ‘new’ 
generation antidepressants and their active metabolites for 
gas chromatographic-mass spectrometric analysis (Sarah 
M.R. Wille, Kristof E. Maudens, Carlos H. Van Peteghem and 
Willy E.E. Lambert) 

2004:  Poster Presentation at the FBI Laboratory Symposium on 
Forensic Toxicology and Joint Meeting of the Society of 
Forensic Toxicologists (SOFT) & The International Association 
of Forensic Toxicologists (TIAFT), Washington, District of 
Columbia, USA, Aug. 29-Sept 4, 2004. 
Phenmetrazine or Ephedrine?  Fooled by library search (Sarah 
M. Wille, Carlos H. Van Peteghem, Willy E. Lambert) 

Memberships 

TIAFT       (The International Association of Forensic Toxicologists) 

BLT          (The Toxicological Society of Belgium and Luxembourg) 

IATDMCT (International Association of Therapeutic Drug Monitoring and 

Clinical Toxicology) 
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