
Analytische prestatieanalyse en -modellering
van superscalaire en meerdradige processors

Analytical Performance Analysis and Modeling
of Superscalar and Multi-Threaded Processors

Stijn Eyerman

Promotor: prof. dr. ir. L. Eeckhout
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2007 - 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55813766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISBN 978-90-8578-198-1
NUR 987
Wettelijk depot: D/2008/10.500/17

Voor ons lang verwachte wolletje,
zodat hij/zij fier mag zijn op zijn/haar papa.

Dankwoord

Dit werk is tot stand gekomen dankzij bijdragen van diverse personen
en instellingen. Graag wil ik al degene die hieraan hebben meegewerkt
van harte bedanken.

Als eerste wil ik in het bijzonder mijn promotor prof. Lieven Eeck-
hout bedanken. Het is dankzij zijn inbreng dat mijn doctoraatsonder-
zoek succesvol verlopen is, door het aanbrengen van nieuwe ideeën en
suggesties, maar vooral door zijn onbetaalbare hulp bij het schrijven
van artikels. Het is dankzij zijn ervaring dat ik erin geslaagd ben mijn
onderzoeksresultaten te mogen voorstellen op belangrijke internatio-
nale fora. Ik wil hem ook bedanken om mij in contact te brengen met
prof. Jim Smith.

I would also like to thank prof. Jim Smith. It is because of his many years’
experience and his willingness to cooperate with Lieven and me that I was able
to do the interesting research that is described in this thesis. I learned a lot from
him and his contribution to my research and publications was invaluable.

Verder wil ik ook prof. Koen De Bosschere bedanken. Dankzij hem
ben ik in contact gekomen met het onderzoek binnen de computerar-
chitectuur. Hij is ook altijd een goede hulp geweest bij het maken van
presentaties en het opstellen van verslagen en aanvragen. Hij is ook
samen met de andere professoren binnen de onderzoeksgroep PARIS
verantwoordelijk voor het creëren van een stimulerend onderzoekskli-
maat, door het voorzien in de gepaste infrastructuur en hun gewaar-
deerde inbreng en suggesties.

Ik wil ook al mijn bureaugenoten Veerle, Juan, Frederik, Luk, Ken-
neth en Filip bedanken voor de aangename werksfeer. Ik hoop dat ik
met enkele van hen nog enkele jaren mag samenwerken.

Ik bedank ook alle leden van mijn doctoraatscommissie voor hun
inspanning om dit werk te lezen en te beoordelen. I thank all members of
my PhD jury for their willingness to read and evaluate this thesis.

ii

Het Fonds voor Wetenschappelijk Onderzoek – Vlaanderen (FWO)
ben ik dankbaar voor het financieren van dit onderzoek onder de vorm
van een mandaat als aspirant.

De voorbije 3,5 jaar zouden natuurlijk niet zo voorspoedig verlopen
zijn zonder de onmisbare steun van het thuisfront. Dank aan mijn ou-
ders, broer, zus, schoonouders en schoonzus voor hun interesse in het
verloop van mijn onderzoek, ondanks het feit dat het niet altijd gemak-
kelijk uit te leggen was wat ik precies deed. Speciale dank gaat uit naar
mijn vrouw Evelien, die vooral de laatste weken voor het afwerken van
deze thesis het soms hard te verduren had met mij, op een moment dat
juist zij de meeste aandacht verdiende voor het nieuwe leven dat ze in
haar draagt.

Stijn Eyerman
Gent, 13 februari 2008

Examencommissie

Prof. Daniël De Zutter, voorzitter
Decaan Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Koen De Bosschere, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Tom Dhaene
Vakgroep INTEC, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Geert Deconinck
Vakgroep ESAT, Faculteit Ingenieurswetenschappen
Katholieke Universiteit Leuven

Prof. James E. Smith
Department of Electrical and Computer Engineering
University of Wisconsin–Madison, USA

Prof. Erik Hagersten
Department of Information Technology
Uppsala University, Sweden

Prof. Jan Van Campenhout
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

iv

Samenvatting

Omdat de huidige superscalaire processors zo complex zijn, is de pres-
tatieanalyse ervan een grote uitdaging. Een processor kan meerdere
instructies per klokcyclus uitvoeren, en de instructies kunnen in een
andere volgorde uitgevoerd worden dan beschreven door het statische
programma (out-of-order uitvoering). Daarnaast kunnen missers op-
treden binnen de verschillende trappen van de processorpijplijn: het
ophalen van instructies kan geblokkeerd worden door missers in de
instructiecache, foutieve sprongvoorspellingen veroorzaken het opha-
len van instructies langs een verkeerd pad, die dan uiteindelijk gean-
nuleerd moeten worden, en missers in de datacache kunnen de uit-
voeringstijd van geheugeninstructies drastisch verlengen. Bovendien
kunnen er tijdens de afhandeling van missers ook instructies uitge-
voerd worden en/of andere missers afgehandeld worden. De prestatie
van meerdradige processors is zelfs nog moeilijker te analyseren, om-
dat de programma’s of draden die tegelijkertijd op de processor uit-
gevoerd worden dicht met elkaar verweven zijn en elkaars prestatie
beı̈nvloeden. Daardoor is het moeilijk na te gaan welke factoren de
prestatie van de individuele draden bepalen.

Het resultaat is dat processorontwerpers geen intuı̈tief inzicht meer
hebben in hoe de prestatie van een programma dat uitgevoerd wordt
op een processor tot stand komt, en wat de impact op de prestatie is
van de verschillende missers die kunnen optreden binnen de proces-
sor. Daarom is men overgeschakeld op simulatie om de prestatie van
een processorontwerp te evalueren. Simulatie heeft als voordeel dat
het zeer flexibel is en dat de prestatiemetingen ervan zeer nauwkeurig
zijn. Het is echter een zeer tijdrovend proces, het simuleren van enkele
seconden van de uitvoering van een programma op een processor kan
uren of dagen in beslag nemen, zelfs met de snelste simulators op de
huidige snelste computers. Simulatie biedt ook een beperkt inzicht in
de factoren die de totale prestatie bepalen.

vi SAMENVATTING

Het gebrek aan inzicht bemoeilijkt ook het nauwkeurig opmeten
en analyseren van de prestatie tijdens de uitvoering. Prestatietellers
in hardware kunnen het voorkomen van verschillende gebeurtenissen
die een invloed hebben op de prestatie opmeten, maar ze kwantificeren
niet de exacte bijdrage van deze gebeurtenissen tot de totale prestatie.
Ze bieden daarom weinig inzicht in de prestatie van een programma in
uitvoering.

Om deze problemen te verhelpen stellen we in dit werk een analy-
tisch prestatiemodel voor superscalaire processors voor. Het model is
gebaseerd op intervalanalyse, dat de totale uitvoeringstijd van een pro-
gramma opdeelt in geı̈soleerde intervallen, afgebakend door missers.
Intervalanalyse brengt de volgende inzichten aan het licht over de pres-
tatiekost van de diverse missers:

• De kost voor een misser in de instructiecache is gelijk aan de tijd
nodig om de instructie op te halen uit het onderliggende cacheni-
veau. De kost van een I-TLB misser is de tijd nodig om de pagi-
natabel in het geheugen te consulteren.

• De kost voor een foutieve sprongvoorspelling bestaat uit de tijd no-
dig om alle instructies uit te voeren waarvan de sprong afhanke-
lijk is, plus de tijd nodig om de front-end pijplijn van de processor
opnieuw te vullen met instructies. De totale kost van een foutieve
sprongvoorspelling kan dus veel groter zijn dan het aantal pijp-
lijntrappen in de front-end van de processor, een vaak gemaakte
veronderstelling.

• Korte datacachemissers (missers die afgehandeld worden in een tus-
senliggend cacheniveau en niet het hoofdgeheugen moeten raad-
plegen) en instructies met een langere uitvoeringstijd (bv. vermenig-
vuldigingen en delingen) veroorzaken vaak geen prestatieverlies,
omdat hun latentie verborgen wordt door de out-of-order uitvoe-
ring. Enkel als ze op een lang afhankelijkheidspad liggen kunnen
ze het instructievenster doen opvullen en een klein prestatiever-
lies veroorzaken.

• Lange datacachemissers (waarvan de data uit het hoofdgeheugen
opgehaald moet worden) en D-TLB missers zorgen ervoor dat het
instructievenster volloopt met instructies, waardoor geen nieuwe
instructies meer kunnen gedispatched worden. Hoewel er door
de out-of-order uitvoering nog enkele instructies kunnen uitge-
voerd worden tijdens de afhandeling van de misser, kan de pres-

vii

tatiekost van een lange datacachemisser benaderd worden door
de toegangstijd naar het geheugen.

• Lange datacachemissers die dicht bij elkaar voorkomen in de dy-
namische instructiestroom, zodat ze samen binnen het instruc-
tievenster kunnen zitten, overlappen elkaar volledig als ze onaf-
hankelijk van elkaar zijn. Zo verbergen ze een deel van hun kost
(geheugenparallellisme). Overlappingen tussen lange datacache-
missers hebben daarom een belangrijke impact op de prestatie
van een processor.

Intervalanalyse geeft dus meer inzicht in hoe de prestatie van een
processor bepaald wordt. Die inzichten hebben we gebruikt om een
mechanistisch prestatiemodel voor superscalaire processors te ontwik-
kelen. Dit model kan de prestatie van de uitvoering van een program-
ma schatten zonder gedetailleerde simulaties. Dit wordt verkregen
door het aantal missers op te meten met behulp van snelle functionele
simulaties, en de prestatiekost van de verschillende missers te schatten.
De belangrijkste uitdagingen zijn het schatten van de kost van de fou-
tieve sprongvoorspellingen en het bepalen van de hoeveelheid geheu-
genparallellisme dat uitgebuit kan worden tijdens de uitvoering. We
hebben algoritmen ontwikkeld die beide karakteristieken nauwkeurig
en efficiënt kunnen schatten. De gemiddelde schattingsfout is 6,9%. We
demonstreren ook het nut van het mechanistisch model bij het ontwer-
pen van een processor door een studie van de optimale pijplijndiepte
en -breedte van een processor. Een interessant resultaat van deze studie
is het verband tussen optimale pijplijndiepte en de breedte van de pijp-
lijn, namelijk dat optimale pijplijndiepte omgekeerd evenredig is met
de vierkantswortel van de pijplijnbreedte.

Intervalanalyse was ook de basis voor het ontwikkelen van een pres-
tatietellerarchitectuur die de prestatie-impact van elk van de missers
opmeet. Deze informatie kan gebruikt worden om zogenaamde ‘cycle
component stacks’ op te bouwen. Deze stellen de verdeling van de tota-
le uitvoeringstijd voor in componenten die de prestatie-impact van elk
type misser kwantificeren. De prestatietellerarchitectuur omvat slechts
enkele honderden bits in de hardware en kan continu, en zonder de
prestatie te beı̈nvloeden, de prestatie van een programma in uitvoering
opmeten en analyseren. Vergeleken met simulatie bedraagt de maxima-
le fout per component 4% en de gemiddelde fout is 2,5%. Het nut van
nauwkeurige ‘cycle component stacks’ voor ontwerpers van compilers

viii SAMENVATTING

demonstreren we met een studie van de prestatie-impact van verschil-
lende compileroptimalisaties.

We hebben ook de prestatietellerarchitectuur uitgebreid naar meer-
dradige processors (SMT processors). Het belangrijkste probleem in
meerdradige processors is de onderlinge prestatiebeı̈nvloeding tussen
de draden, wat het moeilijk maakt om de prestatie van de individuele
draden te isoleren. Daarom ontwikkelden we een mechanisme dat in
staat is de cycle component stacks van elk van de individuele draden
te reconstrueren alsof ze geı̈soleerd op een ééndradige processor zou-
den uitvoeren. Daardoor kan het de voortgang van elk van de draden
nauwkeurig schatten, wat nuttig is voor systeemsoftware of -hardware
om in een bepaalde dienstverleningskwaliteit (bv. prestatiegarantie) te
voorzien op meerdradige processors.

Summary

Due to its complexity, analyzing the performance of a modern super-
scalar processor is a challenging task. The processor can execute multi-
ple instructions per cycle, and the instructions execute possibly out-of-
order. In addition, various miss events can happen at different stages
in the processor pipeline: the fetching of instructions can stall due to
instruction cache misses, branch mispredictions cause the fetching of
wrong-path instructions, which will eventually be flushed, and data
cache misses can drastically delay the execution of memory instruc-
tions. Furthermore, miss event handling can be overlapped with in-
struction execution and/or the handling of other miss events. Multi-
threaded processors (e.g., simultaneous multithreading (SMT) proces-
sors) are even more difficult to analyze, since the concurrently execut-
ing threads are closely interlaced and have an impact on each other’s
performance.

As such, it is difficult to get an intuitive understanding of the per-
formance of a program executing on a contemporary processor, and
get insight into how big the performance impact is of the various miss
events that can occur within the processor. Therefore, performance
evaluation in an experimental context has shifted towards simulation.
Simulation has the advantage that it is very flexible and that its overall
performance estimations are very accurate. It is however very time-
consuming, simulating a few seconds of real execution time can take
hours or days, even with the fastest simulators running on today’s
fastest computers. It also provides little insight into the factors that
determine overall performance.

The lack of insight also makes accurate on-line performance mon-
itoring more difficult. Hardware performance counters can measure
various events that have an impact on performance, but they do not
quantify the contribution of these events to overall performance. There-

x SUMMARY

fore, the insight they provide into the performance of a program exe-
cuting on a processor is limited.

To overcome these problems, we propose an analytical performance
model for superscalar processors. The model is based on interval analy-
sis, which divides total execution time into isolated intervals, delimited
by miss events. Interval behavior is observed most clearly in the dis-
patch behavior of a program executing on a processor. Dispatch has
an on/off behavior, which makes it easier to delimit intervals, and to
calculate the penalty of a miss event. Interval analysis reveals the fol-
lowing insights regarding the performance penalty of the various miss
events:

• The instruction cache miss penalty equals the time needed to fetch
the instruction from the appropriate level in the memory hier-
archy. The penalty of an I-TLB miss equals the time needed to
consult the page table in memory.

• The branch misprediction penalty consists of the branch resolution
time, i.e., the time needed to execute the dependency path lead-
ing to the mispredicted branch, plus the front-end pipeline refill
time. Due to the branch resolution time, the total branch mispre-
diction penalty can be much larger than the front-end pipeline
depth, which is often assumed to be the penalty of a branch mis-
prediction.

• Short data cache misses and medium-latency instructions typically do
not incur a performance penalty, because their latencies are hid-
den by out-of-order execution. Only if they are on long depen-
dency paths, they can cause the instruction window to fill up and
incur a small penalty.

• A long-latency load miss (L2 D-cache miss or D-TLB miss) causes
the instruction window to fill up completely and therefore stalls
the dispatch of new instructions. Although the out-of-order exe-
cution allows some instructions to execute while the load miss is
pending, the penalty of a long-latency load miss can be approxi-
mated by the memory access time.

• The penalties of long-latency load misses that can concurrently
reside within the instruction window and that are independent
of each other, completely overlap (memory-level parallelism or
MLP). Overlapping load misses therefore have a substantial im-
pact on processor performance.

xi

Using the insights provided by interval analysis, we develop a mech-
anistic performance model that is able to estimate the performance of
a program executing on a superscalar processor without the need for
detailed simulations. It does so by counting the number of miss events,
using fast functional simulation, and estimating the penalties of the
various miss events. The main challenges are the estimation of the
branch resolution time to calculate the branch misprediction penalty,
and the estimation of the MLP that is exploited during the execution.
We develop algorithms to estimate both characteristics in an efficient
and accurate way. The average overall performance estimation error is
6.9% for a baseline four-wide superscalar out-of-order processor. We
illustrate the use of the mechanistic model in processor design through
a study of optimal processor pipeline depth and width. This results in
an interesting relationship between optimal depth and width, namely
optimal pipeline depth is inversely proportional to the square root of
pipeline width.

Interval analysis also forms the basis for the development of a per-
formance counter architecture that measures the performance impact
of each of the miss events. This information can be used to construct
cycle component stacks, i.e., the decomposition of total execution time
into various cycle components that quantify the performance impact of
each type of miss event. The performance counter architecture incurs
only a few hundred bits of extra storage and continuously and uninva-
sively monitors the performance of a running program. The maximum
cycle component error compared to a simulation-based approach is 4%
and the average error is 2.5%. The value of accurate cycle component
stacks for compiler builders is shown through a study of the perfor-
mance impact of compiler optimizations.

We also extend the performance counter architecture to SMT pro-
cessors. The main problem in multi-threaded processors is the mutual
performance impact between the threads, which makes it difficult to
isolate the performance of the individual threads. We therefore develop
a mechanism that constructs the cycle component stacks of each of the
threads during SMT execution, as if they were executing on a single-
threaded processor. It can estimate the single-threaded progress of the
individual threads, which is useful for system software or hardware to
provide quality of service on multi-threaded processors.

xii SUMMARY

Contents

Nederlandse samenvatting v

English Summary ix

1 Introduction 1
1.1 Motivation . 1

1.1.1 Performance analysis at design time 3
1.1.2 Performance analysis at runtime 4

1.2 Thesis statement . 5
1.3 Contributions in this dissertation 5
1.4 Other research activities 8
1.5 Thesis outline . 10

2 Background 13
2.1 Processor architecture . 13

2.1.1 Superscalar out-of-order processors 13
2.1.2 Simultaneous multithreading processors 18

2.2 Performance evaluation techniques 19

3 Interval analysis 23
3.1 Dispatch versus fetch, issue and commit 24
3.2 Interval behavior . 26
3.3 Front-end miss events . 27

3.3.1 Instruction cache misses 27
3.3.2 Branch mispredictions 29

3.4 Back-end miss events . 32
3.4.1 Long data cache misses 32
3.4.2 Other resource stalls 38

3.5 Overlapping miss events 39
3.5.1 Overlaps between front-end miss events 39

xiv CONTENTS

3.5.2 Overlaps between front-end and back-end miss
events . 40

3.6 Inaccuracies of dispatch on/off behavior assumption . . 43
3.7 Summary . 44

4 Mechanistic performance model 47
4.1 ILP characterization and balanced design 48
4.2 Estimating performance 52

4.2.1 Inherent dispatch inefficiency 53
4.2.2 Estimating miss event penalties 55
4.2.3 Overall model . 63
4.2.4 Model validation 65

4.3 Comparison to other models 66
4.4 Application: pipeline depth and width study 69

4.4.1 Pipeline depth . 69
4.4.2 Pipeline width . 74
4.4.3 Optimal pipeline depth/width for balanced pro-

cessors . 75
4.5 Summary . 77

5 Cycle accounting in single-threaded processors 79
5.1 Performance counter architecture description 81

5.1.1 Front-end miss events 81
5.1.2 Back-end miss events 84
5.1.3 Overlaps between miss events 84

5.2 Other cycle accounting methods 86
5.3 Validation . 88

5.3.1 Instruction cache misses 88
5.3.2 Branch mispredictions 89
5.3.3 Short back-end misses 90
5.3.4 Long back-end misses 90
5.3.5 Overall accuracy 91

5.4 Related work . 96
5.5 The performance impact of compiler optimizations . . . 97

5.5.1 Experimental setup 98
5.5.2 Out-of-order processor performance 100
5.5.3 Compiler optimization analysis case studies . . . 103
5.5.4 Comparison with in-order processors 111

5.6 Summary . 114

6 Cycle accounting in SMT processors 115

CONTENTS xv

6.1 Cycle accounting in an SMT processor 116
6.1.1 No miss events . 118
6.1.2 Instruction cache misses 118
6.1.3 Branch mispredictions 119
6.1.4 Long-latency load misses 121
6.1.5 Other resource stalls 122
6.1.6 Stall and flush fetch policies 122

6.2 Implementation . 123
6.2.1 Front-end miss events 123
6.2.2 Back-end miss events 125

6.3 Experimental setup . 129
6.4 SMT cycle component stacks: evaluation 130

6.4.1 Cycle component prediction 130
6.4.2 Multiple fetch policies 132
6.4.3 Importance of MLP correction 134
6.4.4 Private versus shared caches and branch predictor 135
6.4.5 Per-thread progress prediction 137

6.5 Applications . 137
6.5.1 On-line SMT performance evaluation 138
6.5.2 Thread-progress aware fetch policies 139
6.5.3 Per-thread performance targets on an SMT pro-

cessor . 141
6.6 Related work . 145
6.7 Summary . 146

7 Conclusions and future work 149
7.1 Summary . 149
7.2 Future work . 151

A Simulation details 155
A.1 Single-threaded processor 155

A.1.1 Simulator . 155
A.1.2 Benchmarks . 155
A.1.3 Processor configuration 155

A.2 SMT processor . 159
A.2.1 Simulator . 159
A.2.2 Benchmarks . 159
A.2.3 Processor configuration 159

B Multi-program workload performance metrics 163

xvi CONTENTS

C SMT fetch policies 169
C.1 Base fetch policies . 169
C.2 Long-latency load aware fetch policies 170
C.3 MLP-aware fetch policy 171

C.3.1 MLP predictor . 171
C.3.2 Fetch policy . 173

C.4 Other fetch policies . 173

List of Tables

2.1 Processor parameter definitions, notations and baseline
values. 14

2.2 Comparing simulation and modeling techniques. 20

3.1 Overlaps between front-end and back-end miss events. . 43

4.1 Power law estimates of K(W) as a function of α and β. . 50

5.1 Benchmarks for the compiler optimization study. 98
5.2 Compiler optimization levels. 99
5.3 Positive effect of compiler optimizations. 106
5.4 Negative effect of compiler optimizations. 107

6.1 The two-thread workloads used in the evaluation. 129

A.1 Benchmarks, inputs and SimPoints (in billions of instruc-
tions skipped) for single-threaded simulations. 156

A.2 Baseline processor configuration. 157
A.3 Processor resource scaling as a function of pipeline depth. 157
A.4 Processor resource scaling as a function of processor width.158
A.5 Benchmarks, inputs and SimPoints (in billions of instruc-

tions skipped) for multi-threaded simulations. 160
A.6 The baseline SMT processor configuration. 161

xviii LIST OF TABLES

List of Figures

2.1 A generic superscalar out-of-order processor. 14

3.1 Fetch, dispatch, issue and commit behavior. 25
3.2 Interval definition. 26
3.3 Behavior of an instruction cache miss. 28
3.4 Interval timing of an instruction cache miss. 29
3.5 Average cycle penalty of an L1 instruction cache miss. . . 29
3.6 Behavior of a branch misprediction. 30
3.7 Interval timing of a branch misprediction. 31
3.8 Average penalty of a branch misprediction. 31
3.9 Behavior of a long-latency load miss. 33
3.10 Interval timing of a long-latency load miss. 34
3.11 Timing of two overlapping long latency load misses. . . . 35
3.12 Behavior of three overlapping load misses. 36
3.13 Average cycle penalty of a long data cache miss. 38
3.14 Average cycle penalty of a short data cache miss. 39
3.15 Overlap between a long data cache miss and a short in-

struction cache miss. 41
3.16 Overlap between a long data cache miss and a long in-

struction cache miss. 41
3.17 Overlap between a long data cache miss and an indepen-

dent branch misprediction. 42
3.18 Overlap between a long data cache miss and a depen-

dent branch misprediction. 42

4.1 Calculation of the critical dependency path. 49
4.2 Average critical dependency path K(W) as a function of

window size. 51
4.3 Average number of independent instructions I(W) as a

function of window size. 53

xx LIST OF FIGURES

4.4 The effective dispatch rate due to inherent dispatch inef-
ficiency. 54

4.5 The number of correct path instructions left in the issue
buffer when a mispredicted branch is executed. 57

4.6 Average branch misprediction penalty as a function of
branch misprediction rate. 59

4.7 Average branch resolution time versus average critical
path length. 60

4.8 Average branch misprediction penalty as a function of
average instruction latency. 60

4.9 Example of MLP calculation algorithm. 62
4.10 Comparing IPC predicted by the interval model versus

simulation. 67
4.11 Comparing the CPI stacks predicted by the interval model

versus simulation. 68
4.12 TPI components as a function of depth. 71
4.13 TPI components as a function of width. 74
4.14 Overall TPI as a function of depth and width. 76

5.1 Example cycle component stack for the twolf benchmark. 80
5.2 Front-end miss event table FMT. 82
5.3 Shared front-end miss event table sFMT. 84
5.4 The average penalty per L1 I-cache miss. 89
5.5 The average penalty per branch misprediction. 90
5.6 The average penalty per L1 D-cache miss. 91
5.7 The average penalty per L2 D-cache miss. 92
5.8 Normalized cycle stack validation. 94
5.9 Normalized cycle stack validation (continued). 95
5.10 Maximum cycle component errors. 96
5.11 Normalized execution time on a superscalar out-of-order

processor. 101
5.12 Performance improvement across the various compiler

settings partitioned by cycle component. 102
5.13 Normalized cycle distributions. 104
5.14 Normalized cycle distributions (continued). 105
5.15 Average normalized execution time on an in-order pro-

cessor. 112
5.16 Comparing overall performance improvement on an out-

of-order processor versus an in-order processor. 112

6.1 SMT processor execution in the absence of miss events. . 118

LIST OF FIGURES xxi

6.2 SMT processor execution in the presence of an I-cache/I-
TLB miss. 119

6.3 SMT processor execution in the presence of a branch mis-
prediction. 120

6.4 SMT processor execution in the presence of a long-latency
load miss. 121

6.5 Front-end miss event table FMT for SMT cycle accounting.124
6.6 Example of IFSC and IFWS operation. 126
6.7 Example of BMT operation. 128
6.8 SMT cycle component stacks for six example workloads. 131
6.9 Average absolute cycle component prediction error. . . . 133
6.10 Importance of MLP correction. 134
6.11 Private versus shared caches and branch predictor. 135
6.12 Per-thread progress prediction. 136
6.13 On-line SMT performance evaluation. 140
6.14 Comparing fetch policies. 142
6.15 Evaluating SMT performance targets. 143

B.1 Comparing STP, ANTT and fairness for a two-thread work-
load. 166

xxii LIST OF FIGURES

List of Abbreviations

ANTT Average Normalized Turnaround Time
BMT Back-end Miss Event Table
BTB Branch Target Buffer
CIC Committed Instructions Counter
CDIC Committed Dependent Instructions Counter
CISC Complex Instruction Set Computer
CMOS Complementary Metal Oxide Semiconductor
CMP Chip Multiprocessor
CPI Cycles Per Instruction
CPU Central Processing Unit
D-Cache Data Cache
DLP Dependent Load Pointer
DL1 Level 1 Data Cache
DL2 Level 2 Data Cache
D-TLB Data Translation Lookaside Buffer
ECL End of Cacheline
FMT Front-end Miss Event Table
I-Cache Instruction Cache
ICOUNT Instruction Count (fetch policy)
IFSC In-Flight Slots Counter
IFWS In-Flight Waiting Slots
ILP Instruction Level Parallelism
IL1 Level 1 Instruction Cache
IL2 Level 2 Instruction Cache
IPC Instructions Per Cycle
ISA Instruction Set Architecture
I-TLB Instruction Translation Lookaside Buffer
LSQ Load Store Queue
L1 Level 1 (cache)
L2 Level 2 (cache)
L3 Level 3 (cache)

xxiv LIST OF ABBREVIATIONS

MIPS Million Instructions Per Second
MLP Memory-Level Parallelism
ORB Output Register Bitmap
QoS Quality of Service
RAW Read After Write (dependency)
RISC Reduced Instruction Set Computer
ROB Reorder Buffer
sFMT shared Front-end Miss Event Table
SMT Simultaneous Multithreading
SOE Switch On Event
STP System Throughput
TLB Translation Lookaside Buffer
TPI Time Per Instruction
TPR Thread Progress Register
V-ROB Virtual Reorder Buffer
WAR Write After Read (dependency)
WAW Write After Write (dependency)
WB Write Buffer (stall)

Chapter 1

Introduction

The purpose of computing is
insight, not numbers.
Richard Hamming

1.1 Motivation

Processor architecture has undergone substantial enhancements over
the few decades of its history. Going from the early processors in
the 1950s, that ran at a few kilohertz, to today’s 4.7 gigahertz1 high-
performance computers, computer architects have come up with many
ideas to improve both the speed and the efficiency of the processor.
The driving force behind this evolution is the spectacular progress in
CMOS technology, allowing more and more, and increasingly faster
transistors being integrated on a single chip, as predicted by Moore’s
law. It is the task of a computer architect to translate these technological
advances into better performing computers.

Several major microarchitecture enhancements have become state-
of-the-art in commercial processor design. One of them is pipelin-
ing, allowing multiple instructions in the processor, each executing
a different phase of their computation. This reduces the complexity
of each phase compared to sequential non-pipelined processors, al-
lowing shorter cycle times and thus higher clock frequencies. Other
enhancements that boosted the efficiency of the processor are super-
scalar architectures that execute multiple instructions per cycle, and

1IBM POWER6 [61]

2 Introduction

out-of-order issue, that starts the execution of an instruction as soon as
its input data is available, instead of using the ordering enforced by the
programmer or compiler. Effective branch predictors were introduced
to speculatively execute instructions past not yet resolved indirect
and conditional branches. Multiple levels of cache memory and the
prefetching of shortly needed data try to overcome the memory gap.

While these enhancements meant a huge progress in processor per-
formance, they definitely did not simplify its design and analysis. In-
sight tends to be inversely proportional to complexity, and the details
of each individual part of the processor can overshadow the ability
to have an integrated view of the processor, which makes it difficult
to analyze the impact each part has on overall performance. In ad-
dition, to complicate matters even further, performance is very much
application-dependent. For example, the accuracy of a branch predic-
tor can be easily assessed by analyzing the outcome of all branches of
an application during its execution, but the performance impact of a
branch misprediction depends on both the sizing of other processor
parts and the application being executed. Likewise, an application can
be developed such that it has many independent instructions to effi-
ciently exploit the superscalarity of the processor, but if its memory
access behavior is problematic, there will be many cache misses and
the processor will not be able to exploit the program’s high instruction-
level parallelism (ILP).

The recent shift towards multi-threaded processors (e.g, simultane-
ous multithreading (SMT)) has even worsened the problem. By execut-
ing two or more threads simultaneously on one processor, performance
analysis gets even more complicated because of the complex interac-
tions between the threads. In an SMT processor, all threads compete
for the same resources, which has its impact on performance. For ex-
ample, if one thread occupies most of the available instruction window
entries, the other threads can have less in-flight instructions, which de-
grades their performance.

The complex interactions between processor architecture and ap-
plication characteristics, such as miss events (branch mispredictions,
cache misses, etc.) and ILP, make it difficult for computer architects to
build intuitive performance models, which are needed to gain insight,
and to estimate and evaluate the performance impact of innovations.
This has a substantial impact on the processor design process, where a
designer tries to find the best performing processor within a given set

1.1 Motivation 3

of design constraints, such as a maximum chip area and a maximum
power budget. The lack of insight also complicates performance analy-
sis at runtime, where users and system software (operating systems and
virtual machines) need to have an accurate and detailed view on which
aspects determine the performance of the running application(s). Con-
temporary approaches for analyzing performance at design time and
at run time are described in the next two sections, along with their lim-
itations.

1.1.1 Performance analysis at design time

Due to the lack of an intuitive but accurate performance model, perfor-
mance evaluation in computer architecture research and development
has shifted towards simulation. A software simulator models the pro-
cessor’s behavior, and performance is evaluated through the simula-
tion of some representative benchmarks.

Simulation has the main advantage that its performance results are
relatively accurate, depending on the degree of abstraction of the sim-
ulator. It is also very flexible (a parameterized simulator can simulate
a large range of processor architectures), and its development is much
cheaper than building hardware prototypes. However, it has two main
disadvantages: it is becoming too time-consuming and provides lim-
ited insight. Since a simulator has to execute thousands of instructions
in order to simulate one clock cycle of processor execution, it is much
slower than the execution on the real hardware: simulating a few sec-
onds of real execution time can take hours or days, even on today’s
fastest simulators running on today’s fastest machines. The more com-
plexity is added to the processor, the slower is the simulator. The more
instructions the benchmark executes dynamically, the longer it takes
to simulate the benchmark. The more benchmarks that are needed to
characterize the typical workload of the processor, the more simula-
tions need to be done. The larger the design space, the more design
points need to be evaluated to find a balanced processor architecture
configuration. Using simulation for designing processors becomes in-
feasible because it is too time-consuming.

Moreover, although a simulator can produce some interesting num-
bers, such as miss rates, resource utilization numbers as well as overall
performance estimates, it provides little or no insight into what the im-
pact is of the various processor architecture structures on performance

4 Introduction

and their mutual interaction. In addition, answering what-if questions
using a simulator is relatively hard, e.g., is a branch misprediction rate
of 10% more harmful than a 15% level-1 data cache miss rate, or vice
versa?

1.1.2 Performance analysis at runtime

The lack of insight also has an impact on on-line performance monitor-
ing tools. Such tools detect and count various events while an applica-
tion is executing on a processor, and present them to the user in order to
analyze the performance. This is useful for processor designers to val-
idate early stage design options on a hardware prototype. It also pro-
vides interesting information for software and compiler builders for an-
alyzing the performance of their applications on an existing processor.
Detailed performance information is also needed by system software
for making the correct decisions in order to meet preassigned perfor-
mance requirements or to optimize overall performance.

An intuitive way of analyzing and visualizing the performance of
a computer program running on a microprocessor, which goes back to
the early days of computing, are cycle component stacks (also called
“CPI stacks”, or breaking up overall CPI into “CPI adders”). These
stacks divide total execution time into distinct components, each re-
flecting the number of cycles spent in executing instructions, handling
cache misses, resolving branch mispredictions, etc. Current hardware
performance counters can count the number of dynamically executed
instructions, the number of miss events, and the number of resource
stalls, but they do not quantify the impact these numbers have on over-
all performance. This means that they are unable to construct accurate
cycle component stacks. They also do not take into account that miss
events can overlap on an out-of-order processor, which further compli-
cates accurate and unambiguous cycle accounting.

Performance analysis on multi-threaded processors is even more
challenging. Since concurrently executing threads are closely inter-
laced, it is difficult to separate the performance impact of miss events
on each of the individual threads and the impact they have on each
other. The lack of an intuitive performance model makes it impossible
to build performance counters that can perform accurate performance
analysis.

1.2 Thesis statement 5

1.2 Thesis statement

An analytical performance model helps to better understand the per-
formance of current superscalar out-of-order and multi-threaded pro-
cessors. In fact, in this dissertation, we show how an intuitive and
accurate mechanistic performance model can be built based on first
principles, i.e., by looking into the mechanisms in the processor that
have an impact on performance. This mechanistic model enables accu-
rate performance analysis at design time as well as at runtime.

First, it provides more insight into what factors have an impact on
the overall performance of a program executing on a processor, and
quantifies the impact of these factors. These insights are useful for pro-
cessor designers and users, to be able to reason about the possible per-
formance impact of new hardware innovations or program code opti-
mizations.

Second, an analytical model also enables faster performance esti-
mations compared to detailed simulations, because it can determine
performance using processor and program characteristics, without the
need to track the detailed behavior of the individual instructions. This
enables the processor designer to do fast design space exploration in
order to find the design that performs the best within its design con-
straints.

Third, a performance model can indicate how to construct mean-
ingful cycle component stacks. The model can be used as a guidance
to construct a hardware performance counter architecture that enables
the measurement of accurate cycle component stacks. By constructing a
performance counter architecture in a top-down manner, i.e., based on
a model instead of an ad hoc implementation, the actual performance
impact of different events within the microprocessor can be measured
more accurately.

1.3 Contributions in this dissertation

This work presents a new analytical performance model for superscalar
out-of-order and multi-threaded processors. This model can serve as a
basis for performance analysis and modeling tools. More specifically,
the contributions of this work are the following.

6 Introduction

Interval analysis

We propose an analytical performance model called interval analysis,
that is accurate as well as easy to understand. It is based on the obser-
vation that performance can be analyzed by considering the dispatch
behavior of a program executing on a processor. In the absence of miss
events, dispatch rate is (almost) always equal to the designed dispatch
width, and a miss event causes dispatch rate to fall to zero abruptly.
This provides a sharp delimiter for defining busy time (the processor
is doing useful work) and miss event penalties (the performance cost
of miss events). By doing so, interval analysis provides insight into the
performance impact of the various types of miss events.

A discussion of interval analysis applied to the better understand-
ing of the penalty of branch mispredictions has been published in:

• Stijn Eyerman, James E. Smith and Lieven Eeckhout. “Charac-
terizing the Branch Misprediction Penalty.” In Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE Computer Society. 2006. pp 48-58.

A more complete elaboration of interval analysis is published as a part
of the papers describing the other contributions.

A mechanistic performance model

Based on the insights provided by interval analysis, we develop a
mechanistic performance model. This is done by counting the miss
events using specialized cache and branch predictor simulators, and
estimating the penalty of each miss event. The penalties are estimated
based on the insights provided by interval analysis, using parame-
ters that describe the structure and sizing of the processor, and an
analysis of the program’s dependency and locality characteristics. It
differs from prior work in that it does not need detailed simulations
to determine empirical parameters or steady-state performance. It also
provides a new and more accurate way for calculating the branch mis-
prediction penalty, and it shows how interval behavior has an impact
on the dispatch inefficiency and the branch misprediction penalty. The
average estimation error is 6.9% for a baseline four-wide superscalar
out-of-order processor.

The model consists of equations that can be used for optimizing de-
signs without needing to evaluate every possible design point through

1.3 Contributions in this dissertation 7

simulation. This is illustrated through an optimal processor pipeline
depth versus width study, in which both pipelined and non-pipelined
cache and memory accesses are modeled. The impact of deepening and
widening the processor pipeline on each of the performance compo-
nents is quantified and a relationship between optimal pipeline depth
and width is deduced, namely optimal pipeline depth is inversely pro-
portional to the square root of pipeline width.

An extensive discussion of this performance estimation method is
described in:

• Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis and James E.
Smith. “Mechanistic Performance Modeling for Studying Re-
source Scaling in Superscalar Processors.” Submitted to ACM
Transactions on Computer Systems.

A hardware performance counter architecture for accurate cycle ac-
counting

Interval analysis can also be used as a basis for accurate performance
analysis. It divides total execution time into a base component where
useful work is done and different miss event penalties. This informa-
tion is very useful for hardware, software and compiler builders, since
it provides an intuitive representation of a program’s execution, reveal-
ing possible performance bottlenecks and optimization opportunities.
We have constructed a new hardware performance counter architec-
ture for superscalar out-of-order processors that is able to continuously
and uninvasively monitor performance, providing an accurate execu-
tion time division into its cycle components at any moment. The maxi-
mum cycle component error compared to a simulation-based approach
is 4% and the average error is 2.5%.

This work has been published in:

• Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis and James E.
Smith. “A Performance Counter Architecture for Computing Ac-
curate CPI Components.” In Proceedings of the Twelfth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM. 2006. pp 175-184.

• Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis and James E.
Smith. “A Top-Down Approach to Architecting CPI Component

8 Introduction

Performance Counters.” In IEEE Micro, Special Issue on Top Picks of
the 2006 Microarchitecture Conferences. IEEE Computer Society. Vol.
27. 2007. pp 84-93.

A case study demonstrating the use of this performance counter ar-
chitecture for studying the performance impact of compiler optimiza-
tions has been published in:

• Stijn Eyerman, Lieven Eeckhout and James E. Smith. “Studying
Compiler Optimizations on Superscalar Processors through In-
terval Analysis.” In Proceedings of the 2008 International Conference
on High Performance Embedded Architectures & Compilers (HiPEAC).
2008. pp 114-129.

Cycle accounting in simultaneous multithreading processors

Simultaneous multithreading (SMT) processors are built to execute
multiple programs (or threads) simultaneously on a single processor
core. Because the concurrently executing threads share many of the
processor’s resources, it is difficult to isolate the performance of the in-
dividual threads and quantify the interaction between the co-executing
threads. We have extended the performance counter architecture for
single-threaded processors to SMT processors, providing an accurate
performance analysis for each of the individual threads. This new
performance counter architecture quantifies the performance impact
of miss events as well as the performance impact due to interactions
between co-executing threads. It is able to monitor the progress of each
of the individual threads during multi-threaded execution, in terms of
the number of cycles they would have executed on a single-threaded
processor. This cycle accounting architecture can be used to estab-
lish quality of service on an SMT processor, by providing per-thread
progress information to system software or by guiding a hardware im-
plemented policy to enforce a certain performance target to each of the
individual threads, irrespective of the co-executing threads.

1.4 Other research activities

Besides the contributions mentioned above, we also performed re-
search on the following topics—these research results are not described

1.4 Other research activities 9

in this dissertation, but we refer the interested reader to the respective
papers and to the appendices in this dissertation.

Processor design space exploration

We have explored and evaluated several single-objective and multi-
objective search algorithms in the context of processor design space ex-
ploration. We show how processor optimization can be done efficiently
by using a fast simulation technique (in casu statistical simulation) in
combination with a heuristic search algorithm. The optimum found
can then be further refined using a search algorithm needing less eval-
uation steps through detailed simulation.

This study is published in:

• Stijn Eyerman, Lieven Eeckhout and Koen De Bosschere. “Effi-
cient Design Space Exploration of High Performance Embedded
Out-of-Order Processors.” In Proceedings of Design, Automation
and Test in Europe (DATE). EDAA. 2006. pp 351-356.

A memory-level parallelism aware fetch policy for SMT processors

A fetch policy for an SMT processor decides each cycle from which
thread instructions should be fetched. It should be aware of the re-
source usage of each of the threads to make an intelligent decision. An
important parameter is the occurrence of long-latency load misses, be-
cause a long-latency load miss can cause the instruction window to
fill up with instructions of a single thread, thereby starving the other
threads. Prior work has overcome this by stalling threads experiencing
long-latency load misses and flushing instructions to free instruction
window entries, but the considerable performance impact of multiple
long-latency loads occurring in parallel (memory-level parallelism or
MLP) was neglected. We designed an MLP-aware fetch policy that pre-
vents threads from losing their available MLP, i.e., instructions are only
flushed if they do not reveal any MLP.

This work has been published in:

• Stijn Eyerman and Lieven Eeckhout. “A Memory-Level Paral-
lelism Aware Fetch Policy for SMT Processors.” In Proceedings
of the Thirteenth International Symposium on High-Performance Com-

10 Introduction

puter Architecture (HPCA). IEEE Computer Society. 2007. pp 240-
249.

• Stijn Eyerman and Lieven Eeckhout. “Memory-Level Parallelism
Aware Fetch Policies for Simultaneous Multithreading Proces-
sors.” Accepted under revision in ACM Transactions on Architec-
ture and Code Optimization.

Performance metrics for SMT processors

Meaningful performance metrics are crucial for evaluating and com-
paring different design options. For single-program performance, exe-
cution time is the metric of choice. For multi-program workloads, e.g.,
different programs executing on a multi-threaded processor, there is
no consensus on what metrics should be used. We advocate that per-
formance metrics for architects should be developed from system-level
objectives in a top-down fashion. We propose two multi-program per-
formance metrics, a system-oriented one (system throughput) and a
user-oriented metric (average normalized turnaround time). They are
both closely related to previously proposed metrics, but we provide a
system-level meaning to them.

This work is described in:

• Stijn Eyerman and Lieven Eeckhout. “System-Level Performance
Metrics for Multi-Program Workloads.” Accepted for IEEE Micro,
issue May/June 2008.

1.5 Thesis outline

This dissertation is outlined as follows. The next chapter will give an
overview of the microarchitecture of a superscalar out-of-order pro-
cessor and a simultaneous multithreading processor, as well as an
introduction to performance estimation and simulation. In Chapter 3,
interval analysis is introduced and explained in detail. Chapter 4
shows how to construct a mechanistic superscalar processor perfor-
mance model based on interval analysis. Chapter 5 uses these insights
to construct a new performance counter architecture that continuously
monitors and analyzes performance, by accurately measuring the per-
formance impact per miss event type. This architecture is subsequently
extended for simultaneous multithreading processors in Chapter 6,

1.5 Thesis outline 11

and it is shown how it can be used to enforce quality of service on these
processors. Finally, Chapter 7 summarizes the conclusions and gives
some suggestions for future work. Appendices B and C summarize the
work about performance metrics for multi-program workloads run-
ning on multi-threaded hardware and the MLP-aware fetch policy for
SMT processors, respectively.

12 Introduction

Chapter 2

Background

Computer architecture?
Is that about designing the box around a computer?

A person in my village,
asking about my research topic.

To provide some background information, this chapter revisits the
processor architecture of contemporary microprocessors as well as an
introduction to performance evaluation.

2.1 Processor architecture

In this section, a survey is given of the processor architectures that are
studied in this thesis: superscalar out-of-order processors and simulta-
neous multithreading processors.

2.1.1 Superscalar out-of-order processors

Current general-purpose high-performance processors are mostly based
on the paradigm of a superscalar out-of-order scheduling architecture
[84]. This architecture is designed to extract instruction-level paral-
lelism (ILP), by enabling each pipeline stage to handle multiple instruc-
tions per cycle, and by selecting independent instructions out of a large
window of instructions, irrespective of program order. By doing so,
the number of instructions executed per cycle (IPC) is pushed up, and
together with excessive pipelining to boost clock frequency, it is (one

14 Background

L1
I-cache

branch
predictor

fetch
buffer

decode pipeline

issue
buffer

reorder buffer
(instruction window)

physical
register

file

exec.
unit

exec.
unit

exec.
unit

load/
store
unit

L1 D-
cache L2

cache

to L1 I-cache

to main
memory

F D D

D

I

fetch unit

dispatch issue

commit

processor front-end processor back-end

R

W

front-end pipeline
depth cfe

Figure 2.1: A generic superscalar out-of-order processor.

Table 2.1: Processor parameter definitions, notations and baseline values.

Parameter Notation Baseline value

Fetch width F 8
Decode/dispatch width D 4
Front-end pipeline depth (cycles) cfe 5
Issue width I 4
Commit/retire width R 4
Instruction window/reorder buffer size W 128

of) the best performing processor architectures for general-purpose
use. Although simpler single-issue and/or in-order processors have
been used in application-specific systems as well as embedded systems
to save chip area and power consumption, more and more embedded
applications demand higher performance as well, which can only be
provided by more complex processor architectures.

A generic superscalar out-of-order processor is illustrated in Fig-
ure 2.1. Table 2.1 introduces some definitions and notations about the
sizing of processor structures that are used throughout the remainder
of this thesis. It also indicates the baseline values for these parameters
that reflect the processor configuration used in most of the experiments
reported in this thesis (for a more detailed report on the baseline pro-
cessor configuration, see Appendix A).

2.1 Processor architecture 15

The processor consists of two main parts: the front-end, which sup-
plies new instructions to the instruction window, and the back-end,
which executes instructions selected from the instruction window, and
which updates the architectural state of the processor. These parts are
discussed in the next two sections.

Processor front-end

The processor front-end has two main tasks: fetching instructions from
memory, and transforming (decoding) the packed instructions into a
more convenient format for further processing through the processor
pipeline. The fetch unit fetches instructions from the level-1 instruction
cache (L1 I-cache). The L1 I-cache is a cache of limited size that con-
tains recently fetched instructions. If an instruction is not available in
the instruction cache, an instruction cache miss occurs, and fetch is sus-
pended until the instruction is fetched from a lower level cache (level-2
(L2) or possibly level-3 (L3) cache) or main memory.

The number of instructions fetched per cycle, F , should be larger
than or equal to the width of the rest of the processor front-end pipeline.
An indication to make the fetch width larger than the rest of the front-
end pipeline is the fact that due to branches and a suboptimal instruc-
tion layout, a cacheline may not always contain enough useful instruc-
tions to support the processor’s front-end pipeline width. If the next
instruction to fetch is on another cacheline, instruction fetch is sus-
pended for this cycle, the cacheline is fetched from the instruction cache
in the next cycle, and instruction fetch can resume. To offset cycles
where fewer instructions than the width of the front-end pipeline can
be fetched, the fetch unit is designed to be wider, with a fetch buffer
to moderate the flow of instructions from the instruction cache into the
front-end pipeline.

The outcome of conditional branches and the target of indirect
jumps is unknown in the processor front-end—the outcome is not
known until their execution, which happens in the back-end. Waiting
for that would be too inefficient, so branch directions are predicted
using a branch predictor, and their targets using a branch target buffer
(BTB). Fetch continues at the predicted target. As with any predictor,
some predictions may be wrong. When a branch is executed and a mis-
prediction is discovered, the processor flushes all instructions along
the mispredicted path, and restarts fetching at the next correct-path

16 Background

instruction. The associated performance loss, i.e., the branch mispre-
diction penalty, will be discussed in the next chapter.

The decode pipeline extracts valuable information from the packed
instructions, e.g., the instruction’s type (e.g., addition, multiplication,
memory read/write, etc.), and its input and output registers. If the
implemented instruction set is of the CISC-type (complex instruction
set computer, e.g., the x86 instruction set), it also breaks up the complex
instructions into RISC-like (reduced instruction set computer) micro-
operations.

The decode pipeline also renames the input and output registers of
the instructions, such that all artificial dependencies—write-after-read
(WAR) and write-after-write (WAW)—are eliminated, while retaining
the real dependencies—read-after-write (RAW). Rename registers are
chosen from a physical register file, which contains at least as many
(but usually more) registers as there are architectural registers.

An important parameter of the front-end pipeline is its depth, cfe,
i.e., the number of cycles an instruction needs to traverse the front-end
pipeline. As will be shown in the next chapters, the front-end pipeline
depth has a considerable impact on the performance of a processor. The
entering of instructions from the front-end pipeline into the instruction
window is called dispatch. We will refer to D as the decode/dispatch
width throughout the thesis.

Processor back-end

At the heart of the out-of-order processor is the instruction window, con-
taining all in-flight instructions. The size of the instruction window
is one of the most important parameters of the processor: the more in-
structions in the instruction window, the more ILP can be extracted and
the better overall performance. The instructions in the instruction win-
dow can be divided in two parts: instructions that have been executed,
and instructions waiting for input data to be executed. The instruction
window has to keep track of the status of each instruction, and each
cycle, a number of instructions that are ready to execute (i.e., whose de-
pendencies are resolved) is being selected from the instruction window.
This enables out-of-order execution in a data-flow manner, i.e., instruc-
tions are executed when their input operands are available. Ready in-
structions are then issued to one of the multiple execution units, at most
I (issue width) instructions per cycle. For efficiency reasons, the in-

2.1 Processor architecture 17

struction window is often implemented using two separate structures:
the reorder buffer (ROB) holding the status of all in-flight instructions
and preserving program order to ensure precise interrupts, and the is-
sue buffer, containing only the not yet issued instructions.

Execution units perform the actual execution of the instruction, e.g.,
an addition, logical operation, multiplication, etc. Special execution
units are the load and store units. They look after the communication
with the data cache: loads read data, and stores write new data. Special
attention has to be paid to the correct ordering of loads and stores when
they (could) access the same memory location: a load to the same ad-
dress as a previous store should not be executed before that store. Sev-
eral optimizations can be implemented here, e.g., forwarding data from
a pending store to a load at the same memory location without access-
ing the data cache, and speculatively executing loads before prior stores
(load bypassing). As is the case for the instruction cache, the level-1
data cache (L1 D-cache) also contains a limited set of all program data,
i.e., the most recently addressed data and its neighboring data. Data
cache misses can substantially lengthen the execution latency of load
instructions, since they have to wait until the data is returned from the
lower level cache or memory.

The last pipeline stage is commit. Here, instructions leave the pro-
cessor and update the architectural state (architectural registers and
data stores in memory). This has to be done in program order to en-
sure precise interrupts. The oldest in-flight instruction—the one at the
head of the ROB—has to be committed first. If it is not yet executed, the
commit stage stalls. Unlike the issue stage, which starts the execution
of the instructions (possibly) out-of-order, the commit stage updates
the architectural state in-order.

The out-of-order scheduling paradigm is very well adopted in com-
mercial processors. Examples range from the Intel Pentium Pro (1995)
[77] up to the current Intel Core 2 [39]; from the IBM POWER1 (1990)
[40] up to the IBM POWER5 [83] (current POWER6 has re-shifted to in-
order execution to obtain higher clock frequencies while limiting power
consumption [61]); from the AMD K5 (1996) [15] up to the current AMD
K10.

18 Background

2.1.2 Simultaneous multithreading processors

There are two main reasons why a single-threaded processor is often
inefficiently used. Miss events (instruction and data cache misses, and
branch mispredictions) interrupt the supply of new instructions or de-
lay the execution of instructions, and in some cases applications display
not enough instruction-level parallelism to support the whole width of
the processor. Therefore a processor can be extended to support the si-
multaneous execution of multiple applications or threads [98]. Instruc-
tions of two different threads are per definition independent (except
for synchronisation and/or enforced ordering of memory accesses in
multi-threaded applications), and when one thread has a miss event,
the other threads usually can still fetch and execute instructions, keep-
ing the processor busy.

In order to support simultaneous multithreading (SMT) on a super-
scalar out-of-order processor, some extensions have to be implemented.
First, architectural state has to be stored for every thread. So we need
multiple program counters as well as storage for all architectural reg-
isters per thread. In practice, this usually means that the physical reg-
ister file has to be enlarged. Other structures can also be duplicated
for performance reasons, in particular those containing thread specific
information, such as the return address stack or the branch history reg-
ister. Second, each processor resource can now process instructions
from different threads, so not only are thread identifiers needed per
instruction, but each processor part should now make decisions on
what thread should be processed first. It should distribute the avail-
able bandwidth (e.g., fetch, dispatch, execution and commit bandwith)
among the threads. The most obvious example is the fetch unit, which
has to decide each cycle from which thread(s) to fetch instructions. Ap-
pendix C discusses fetch policies for SMT processors.

Another design option is to decide how storage resources are
shared. The instruction window for example can be partitioned, such
that each thread can only use a part of the entire window size. This
can however degrade efficiency: a thread needing more entries cannot
use the empty entries of another thread. Dynamically sharing these re-
sources can improve efficiency, but has the risk of one thread clogging
all resources, thereby starving other threads. Sharing predictors and
caches can also degrade performance. A cache line from one thread
can be evicted by a cache line of another thread, introducing extra
miss events for the first thread. Branch predictor entries can also be

2.2 Performance evaluation techniques 19

shared by branches of different threads, introducing additional branch
mispredictions due to contention.

Examples of commercial superscalar SMT processors are the Alpha
EV8 [19], the Intel Pentium 4 with Hyper-Threading Technology [5] and
the IBM POWER5 [83].

2.2 Performance evaluation techniques

Having discussed what contemporary processors look like, we now
discuss how these processors are being designed at the architectural
level. This will enable a better understanding of the true value of the
analytical model proposed in this thesis.

Accurate performance evaluation is a crucial part of computer ar-
chitecture research and design. It is only by comparing performance
results that the effectiveness and efficiency of an innovation can be as-
sessed. Inaccurate performance estimations can lead to wrong conclu-
sions by possibly favoring poor design options.

A widely used approach to obtain performance results is simula-
tion, i.e., using software that models the behavior of a processor under
design. The accuracy of a simulator is determined by its level of detail.
A detailed simulator produces very accurate performance results, up
to being cycle-accurate, but is very slow. To simulate one cycle of hard-
ware execution, a software simulator (which is essentially a sequen-
tial process, as opposed to hardware that can perform many operations
in parallel) requires the execution of thousands of instructions, which
slows it down extensively compared to real hardware execution. There-
fore, several simulation techniques have been developed, see Table 2.2.
Each simulation technique represents a different trade-off between de-
velopment time, accuracy and evaluation time.

Functional simulation only models the functional characteristics of an
instruction set. It simulates the instructions one by one, taking the in-
put operands and calculating the output values, but it does not model
the exact timing of the instructions entering and leaving the processor.
Therefore its accuracy in terms of performance estimation is poor, but
due to its low level of detail, it is very fast (e.g., 7 MIPS (million instruc-
tions per second) for sim-profile, a functional simulator of the widely
used SimpleScalar toolset [4]). Since only one functional simulator has
to be developed per instruction set architecture (ISA), it has a very long

20 Background

Table 2.2: Comparing simulation and modeling techniques.

Technique Development time Accuracy Evaluation time

Functional simulation Excellent Poor Good
Specialized cache and
predictor simulation Good Poor Good
Detailed simulation Poor Excellent Poor
Sampled simulation Poor Good to excellent Fair
Statistical simulation Good Good Very good
Analytical modeling Excellent Good Excellent

lifetime, which reduces its development cost. Functional simulation
is useful to generate instruction and address traces that can be used by
other simulation techniques. It can also be used to analyze the dynamic
characteristics of a program, e.g., instruction mix and inter-instruction
dependency characteristics, as we will do for computing some of the
input parameters to the performance model presented in Chapter 4.

Specialized cache and predictor simulation combines a functional simu-
lator with a cache or branch predictor simulator. The functional simula-
tor extracts instruction/data addresses or branch outcomes, and feeds
them into the specialized simulator. Performance is typically evaluated
in terms of miss rates, i.e., how many instructions miss in the instruc-
tion cache, how many memory instructions miss in the data cache or
how many branches are mispredicted. While these miss rates are esti-
mated quite well (although miss rates can also be dependent on exact
timing information and speculation), cache and branch predictor be-
havior is only a part of overall processor performance. Hence accuracy
is poor, but since they simulate small parts of the processor in isolation,
their evaluation time is good (4 to 5 MIPS for specialized simulators of
the SimpleScalar toolset [4]), and the development time is reasonable.

Detailed simulation models the whole microarchitecture of the pro-
cessor in detail. It is also often referred to as cycle-by-cycle simulation,
i.e., each cycle the operations performed by the processor are modeled
in detail. This is the most accurate way to obtain performance results
(from an architectural point of view, some abstractions are however still
made with respect to the circuit-level details). It can be trace-driven,
which means that the input is an instruction trace generated by a func-
tional simulator, or execution-driven, where functional simulation is
combined with timing simulation. The advantage of trace-driven sim-
ulation is that it can be done faster because it does not need to redo

2.2 Performance evaluation techniques 21

the functional simulation, but it needs to store large trace files and
cannot simulate instructions executing along speculative paths. The
main disadvantage of detailed simulation is that it is extremely slow
(0.3 MIPS for sim-outorder, a detailed execution-driven simulator of
the SimpleScalar toolset [4]). Even the fastest simulators running on
today’s fastest computers need several hours or days to simulate just a
few seconds of real execution time. Moreover, since a detailed simula-
tor has to model a very complex system, development time is long.

To overcome the huge evaluation time of detailed simulation while
retaining an acceptable level of accuracy, several simulation speedup
techniques have been proposed. Two main techniques are sampled
simulation and statistical simulation. The goal of sampled simulation
is to approximate the performance of the complete program by sim-
ulating only a small part of the program. If this part is representative
for the whole program, accurate performance estimations can be made
in much less time. To obtain accurate performance estimations, often
more than one sampling unit per program is needed. Examples are ran-
dom sampling [16], which randomly selects sampling units and uses
statistical techniques to estimate the accuracy; SMARTS [101], which
simulates small sampling units distributed periodically over the whole
program execution; and SimPoint [42], which first profiles the program
to find distinct execution phases, and than selects a sample such that
every phase (or the main phases) is represented. Performance estima-
tions are within a few percent of detailed simulation performance re-
sults, while the evaluation time is drastically reduced [102]. Since a
detailed simulator is still needed, the development time is not reduced.

Statistical simulation [22, 37, 75, 76] also strives at minimizing the
number of instructions to simulate, by building a synthetic program
that has almost the same statistical characteristics as the original pro-
gram, but that is several orders of magnitude smaller. This is done by
first measuring different characteristics (by using a specialized func-
tional simulator to obtain dependency information, cache and branch
predictor behavior, etc.), and then use Monte Carlo simulation to build
a small program trace with similar characteristics. Performance is es-
timated by simulating this synthetic trace. This technique yields good
accuracy while needing much less time to evaluate performance (the
functional simulations need to be done only once to enable the evalua-
tion of a large range of processor configurations). The simulator needed
to execute the synthetic trace is also less complex, because the synthetic
trace captures some microarchitectural information (e.g., cache misses

22 Background

and branch mispredictions). The development time is therefore smaller
compared to detailed simulation.

The performance model elaborated in this thesis can be situated
in the field of analytical modeling. Analytical modeling eliminates the
detailed simulation by replacing it with simple formulas that pro-
vide insight. The inputs of the model are similar to that of statistical
simulation—program dependency and locality characteristics (cache
miss rates and branch misprediction rates), obtained from specialized
functional simulation—but instead of building and simulating a syn-
thetic program, performance evaluation is done by evaluating some
mathematical formulas and algorithms, and is therefore extremely fast.
Accuracy remains good, as will be shown in Chapter 4, and much less
time is needed to develop an analytical model compared to develop-
ing a complex detailed simulator. Analytical modeling also provides
more insight than simulation into the performance impact of different
processor parts.

Chapter 3

Interval analysis

Divide et impera
(divide and rule)

Roman strategy to rule conquered nations

Analyzing the performance of a complex superscalar out-of-order
processor is not trivial. It can have several hundreds of in-flight in-
structions, executing out-of-order. Different kinds of miss events and
resource stalls can happen at different points in the processor pipeline,
and miss events can overlap with each other. Therefore, it is obvious
why a sufficiently detailed but still comprehensible model is difficult to
build.

This chapter describes an intuitive and accurate model, called in-
terval analysis, for analyzing superscalar processor performance. It is
based on the observation that in the absence of miss events, a con-
stant performance level is reached that is close to D instructions per
cycle, with D equal to the designed processor width. Miss events cause
performance to ramp down, leaving gaps in the constant performance
level. In that sense, miss events divide total execution time into distinct
intervals, and these intervals can then be studied in isolation. Using in-
terval analysis, the performance impact of different types of miss events
can be easily quantified, and a performance model can be developed.

In the first and second section we will define intervals by studying
the dispatch behavior. In the next sections, different miss events are
discussed and their performance impact is quantified.

24 Interval analysis

3.1 Dispatch versus fetch, issue and commit

To study processor performance in terms of instructions handled per
cycle, one can probe different points in the processor pipeline. Because
every (correct-path) instruction has to be fetched, dispatched, issued
and eventually committed, performance can be defined as the average
fetch rate (excluding wrong-path instructions) as well as the average
(correct-path instruction) dispatch, issue or commit rate, all resulting in
the same number. Figure 3.1 shows parts of the execution profile of gcc,
indicating the number of correct-path instructions handled per cycle
for fetch, dispatch, issue and commit (dispatch, issue and commit are
4-wide, fetch is 8-wide and the front-end pipeline consists of 5 stages;
see Appendix A for more details about the processor configuration).

In each graph the performance degradation due to miss events
can be easily noticed. The different stages in the processor pipeline
however respond differently to miss events. We now investigate
which profile is best suited for building an easy-to-understand per-
formance model that enables us to analyze the performance impact of
miss events.

In the fetch stage, peaks are alternated with dips introduced by
taken branches or instructions on different cache lines. These dips are
not caused by miss events, but are due to the fact that the fetch engine
is unable to fetch instructions from different cache lines in one cycle. To
provide a constant flow of instructions to the rest of the processor front-
end pipeline, these dips are offset by peaks, enabled by the fact that
the fetch width is larger than the width of the other front-end pipeline
stages. Only the larger parts where no instructions are fetched are due
to real miss events. The occurrence of dips and peaks makes it difficult
though to study performance at the fetch stage.

The dispatch stage shows an on/off behavior: performance goes up
immediately after the resolution of the previous miss and drops quickly
to zero after the next miss event. This makes it easy to define intervals
and analyze them.

Issue on the other hand displays a less regular behavior. This is
because the issuing of instructions is guided by the inter-instruction
dependencies. Instructions have to wait until the instructions they de-
pend on are executed. This makes the issue behavior harder to reason
about. For example, when a miss event occurs, there may still be some
unexecuted instructions in the instruction window, so issue can con-

3.1 Dispatch versus fetch, issue and commit 25

02468 024 024 024

F
e

tc
h

D
is

p
a

tc
h

Is
s

u
e

C
o

m
m

it

I-
c
a

c
h

e
m

is
s

b
ra

n
c
h

m
is

p
re

d
ic

ti
o

n

s
h

o
rt

(L
1

)
D

-c
a

c
h

e
m

is
s

lo
n

g
(L

2
)

D
-c

a
c
h

e
m

is
s

I-
c
a

c
h

e
m

is
s

ti
m

e
(c

y
c
le

s
)

ti
m

e
(c

y
c
le

s
)

ti
m

e
(c

y
c
le

s
)

ti
m

e
(c

y
c
le

s
)

Figure 3.1: Parts of the execution profile of gcc executing on a superscalar
processor in the fetch, dispatch, issue and commit stage.

26 Interval analysis

IPC

timebase penalty

interval 1

base penalty

interval 2

base penalty

interval 3

I-cache
miss

long D-
cache miss

branch
misprediction

Figure 3.2: Dispatch behavior as an on/off function and definition of intervals.

tinue until these instructions are all executed. This means that the gaps
in the issue rate introduced by miss events are less clear, making analy-
sis more difficult. Commit eventually keeps up with issue, so it shows
a similarly irregular behavior. Moreover, since commit is the very last
stage in the processor pipeline, it is difficult to detect front-end miss
event penalties, such as instruction cache misses.

We conclude that the dispatch stage shows the most regular be-
havior, which makes performance analysis easier, while being as accu-
rate as studying other pipeline stages. The next section shows how to
use dispatch behavior to construct a simple and accurate performance
model.

3.2 Interval behavior

By studying dispatch behavior, it is easy to calculate penalties because
performance is almost always either maximum or zero. Moreover, the
dispatch stage is somewhere in the middle of the processor pipeline,
close enough to both front-end and back-end miss events. In the follow-
ing, we idealize dispatch behavior as an on/off function, see Figure 3.2.
The inaccuracies introduced by this assumption will be discussed in
Section 3.6.

For each type of miss event, we observe similar behavior: a miss
event causes dispatch to stop, and when the miss event is resolved, dis-
patch resumes. An interval can now be defined as a slice of the total
execution time that starts with the resolution of a previous miss event
and ends just before the next miss event is resolved, see Figure 3.2.
An interval therefore basically consists of two parts: the part before
the miss event where performance is equal to D instructions per cy-

3.3 Front-end miss events 27

cle (with D the dispatch width), called the base part, and the part after
the miss event where performance is zero due to the miss event, called
the penalty. We define interval length as the number of (correct-path) in-
structions dispatched during the interval, while the term interval refers
to the complete execution time slice (base + penalty).

Although interval behavior is similar for each type of miss event,
the exact interval timing is dependent on the type of miss event. In the
next two sections, the interval timing of each type of miss event will be
discussed. The first section discusses front-end miss events (instruction
cache misses and branch mispredictions) and the second section talks
about back-end miss events (data cache misses and resource stalls).

3.3 Front-end miss events

Front-end miss events are miss events that occur before the dispatch
stage. They cause a temporary gap in the supply of (correct-path) in-
structions into the instruction window. There are two main types of
front-end miss events: instruction cache misses (and instruction TLB
misses) and branch mispredictions. Because they show different be-
havior, they are separately discussed in the next two sections.

3.3.1 Instruction cache misses and instruction TLB misses

When an instruction is not present in the level-1 (L1) instruction cache,
a lower level cache or even memory has to be accessed. This takes more
time than a hit in the instruction cache and the constant supply of in-
structions is interrupted, for a time equal to the access time of that level
in the memory hierarchy. The same happens when a virtual to physi-
cal page translation is not present in the instruction TLB, and has to be
looked up in memory. Because the interval behavior of I-cache misses
and I-TLB misses is similar, we consider instruction cache misses and
instruction TLB misses together in this section.

Figure 3.3 is a detail of Figure 3.1 that zooms in on an instruction
cache miss. When instruction fetch halts because of an instruction cache
miss (1), the fetch buffer and front-end (decode) pipeline will drain (2).
Then the dispatch of instructions will cease, causing issue and eventu-
ally commit to ramp down (3). When the miss is resolved, the fetch-
ing of instructions restarts, and the fetch buffer and front-end pipeline
refills (4). Dispatch restarts when the first new instruction has passed

28 Interval analysis

0

2

4

6

8

0

2

4

0

2

4

0

2

4

Fetch

Dispatch

Issue

Commit

I-cache miss

I-cache miss
resolved

�

�

�

�

�

front-end
drains

no new
instrs

new instrs

front-end
refills

Figure 3.3: Behavior of an instruction cache miss.

through the whole front-end pipeline, and then issue and commit ramp
up again (5).

The interval model of an instruction cache miss is displayed in Fig-
ure 3.4. As explained above, the penalty of a miss event equals the
time dispatch is zero. In the case of an instruction cache miss, dispatch
ramps down after the fetch buffer and front-end pipeline are drained,
and ramps up after the miss is resolved, and the fetch buffer and front-
end pipeline are refilled. Since the front-end pipeline drain and refill
times offset each other, the total penalty equals the miss delay.

So the penalty for an instruction cache miss only depends on the
cache or memory level that needs to be accessed, and is constant for all
misses to the same level. This is experimentally validated in Figure 3.5,
which shows the cycle penalty per L1 I-cache miss (and L2 cache hit)
for different benchmarks. The penalty per L1 instruction cache miss
is calculated as the extra number of cycles when simulating a real in-

3.3 Front-end miss events 29

IPC

time
base penalty

I-cache miss

front-end

drains

lower level
access time

front-end
refills

Figure 3.4: Interval timing of an instruction cache miss.

0

1

2

3

4

5

6

7

8

9

10

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

L
1

I-
c
a
c
h
e

m
is

s
p
e
n
a
lt
y

Figure 3.5: Average cycle penalty of an L1 instruction cache miss, assuming a
9-cycle L2 cache access time.

struction cache against a simulation with perfect cache behavior (all
cache accesses are assumed to be cache hits), divided by the number of
cache misses. The level 2 cache access time is assumed to be 9 cycles in
this experiment. The fetch buffer causes the penalty to be somewhere
between 8 and 9: if, at the moment of the cache miss, the fetch buffer
contains more instructions than the dispatch width, there are some in-
structions left that can be dispatched in the next cycle, and one cycle of
the I-cache miss penalty is hidden.

3.3.2 Branch mispredictions

A mispredicted branch does not stop the fetching of instructions explic-
itly, but guides instruction fetch in the wrong direction. The instruc-

30 Interval analysis

0

2

4

6

8

0

2

4

0

2

4

0

2

4

Fetch

Dispatch

Issue

Commit

branch misprediction

branch resolved

2nd branch
misprediction

�

�

�

� �

front-end
drains

flush wrong
instrs

redirect
fetch

front-end
refills

Figure 3.6: Behavior of a branch misprediction (the dotted line represents in-
structions along a mispredicted path).

tions fetched are along a wrong path, and will eventually be flushed.
In that context, a branch misprediction can be seen as an inhibitor of
fetching correct-path instructions, similar to an instruction cache miss.
Figure 3.6 (again a detail of Figure 3.1) shows the effect of a branch mis-
prediction at the fetch, decode, issue and commit stages. The dotted
line indicates the fact that instructions are still fetched, dispatched and
executed after a branch misprediction, but they are along a wrong path
(and therefore are never committed). The solid line shows the progress
of the correct-path instructions.

Similar to an instruction cache miss, the dispatch of useful instruc-
tions will cease after the correct-path instructions in the fetch buffer
and front-end pipeline are drained (1). The last correct-path instruc-
tion dispatched is the mispredicted branch itself. When the branch
is issued and executed (2), the misprediction is detected, wrong-path

3.3 Front-end miss events 31

IPC

time
base penalty

branch
misprediction

front-end

drains

front-end
refills

branch

resolution time

branch
dispatched branch

executed

Figure 3.7: Interval timing of a branch misprediction.

0

5

10

15

20

25

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
rb

ra
n
c
h

m
is

p
re

d
ic

ti
o
n

p
e
n
a
lt
y branch resolution time

front-end refill time

Figure 3.8: Average penalty of a branch misprediction.

instructions are flushed (3) and fetch restarts at the next correct-path
instruction (4). Then the fetch buffer and front-end pipeline are filled
with correct-path instructions and dispatch resumes (5).

Figure 3.7 depicts the interval timing of a branch misprediction. It
shows how the penalty of a branch misprediction, i.e., the time between
the dispatch of the branch and the dispatch of the next correct-path
instruction, consists of two parts: (i) the time needed to execute the
dependency path to the branch and the branch itself (the branch reso-
lution time), and (ii) the time needed to refill the front-end pipeline.

Figure 3.8 shows the average branch misprediction penalty for each
benchmark (calculated by comparing a simulation with perfect branch

32 Interval analysis

prediction to a simulation with a realistic branch predictor, as done for
determining the penalty per instruction cache miss in the previous sec-
tion). The front-end pipeline depth is assumed to be 5 stages in this
experiment. These results show that the actual branch misprediction
penalty can be much larger than the front-end pipeline depth, which is
often assumed to be the penalty of a branch misprediction. The penalty
also includes the time needed to execute the dependency path to the
branch. In the next chapter, we will explain how the branch resolution
time is affected by program characteristics, i.e., the interval length dis-
tribution, the average critical dependency path length and the average
instruction execution latency.

3.4 Back-end miss events

Back-end miss events are data cache or data TLB misses. Because they
occur in the back-end of the processor, they exhibit a completely differ-
ent behavior compared to front-end misses. In fact they only enforce
dispatch to ramp down if they cause a resource stall, i.e., a processor
component becomes full and accepts no new instructions. We make a
distinction between long data cache misses, i.e., data has to be fetched
from memory, which take long enough to always cause a penalty, and
short data cache misses and other resource stalls, which occasionally
incur short penalties [54].

3.4.1 Long data cache misses

Main memory is nowadays two orders of magnitude slower than the
processor core. Data cache misses that have to access memory take
hundreds of processor cycles. Stores that cause a data cache miss have
a limited performance impact, because they do not produce a result
needed by the processor, which means they can be buffered with-
out stalling the processor—only when the store buffer is full, a store
miss will cause the processor to stall, but this happens relatively in-
frequently. Load misses on the contrary have to wait the complete
memory access time in the processor before they can be finished and
committed.

An important difference compared to front-end misses, is that back-
end misses can overlap with each other. We will first discuss the in-

3.4 Back-end miss events 33

0

2

4

6

8

0

2

4

0

2

4

0

2

4

Fetch

Dispatch

Issue

Commit

long D-cache miss
blocks head of ROB

long D-cache miss

ROB full, no new instrs
can be dispatched

fetch buffer full

long D-cache miss
resolved, can commit
and leaves ROB

�

�

�

�

�

�

ROB fills ROB no
longer full

Figure 3.9: Behavior of a long-latency load miss.

terval behavior of one long-latency load miss in isolation, and subse-
quently treat overlapping load misses.

Isolated long-latency load miss

The impact of a long-latency load miss is shown in Figure 3.9 (taken
from the execution profile of gcc). A long-latency load miss (or a data
TLB load miss) is detected when it is issued (1) and the load has con-
sulted all the cache levels. Then it has to wait until the data returns from
memory. When all preceding instructions are finished and committed,
the load miss comes at the head of the ROB, and blocks the commit
stage until it is resolved (2). So commit will ramp down first, and since
instructions keep entering the ROB, it will fill up (3). At a certain point,
the ROB will be full, and no new instructions can be dispatched (4).

34 Interval analysis

IPC

time

fe
tc

h

penalty

lo
a
d

m
is

s

d
is

p
a
tc

h

is
s
u
e

ROB full

base

W/D

load resolution
time

memory access time

Figure 3.10: Interval timing of a long-latency load miss.

At that moment dispatch stops, which causes fetch to stall because the
front-end pipeline cannot be drained and also fills up. Instructions that
are independent of the load miss can still issue, but soon there will be
no such instructions available, and issue ramps down.

When the load miss returns from memory, it can finally commit (5),
and ROB entries are freed. New instructions can be dispatched from
the front-end, reactivating the fetch stage (6). Instructions that were
dependent on the load miss can now be issued and new instructions
enter the instruction window, so issue also ramps up.

To calculate the penalty, we should again look at how many cycles
dispatch is stalled. The discussion is now more complicated than for
front-end misses, see Figure 3.10. Dispatch stops when the ROB is full.
This happens when there are W (ROB size) instructions dispatched (in-
cluding the load miss) after having dispatched the load instruction that
caused the miss. This takes W/D cycles. Dispatch restarts when the
load miss returns from memory. This takes a number of cycles equal to
the memory latency (including the time to consult all cache levels) after
issuing the load. The time between the dispatch and issue of the load is
the resolution time, i.e., the time needed to execute all instructions the
load depends on after dispatching the load. So the total penalty of a
long latency load miss can be calculated as the resolution time plus the
memory latency minus W/D.

This means that the penalty of a long-latency load miss depends on
(i) the ROB size W and the dispatch width D—which is fixed for a cer-
tain processor; (ii) the main memory access latency—which is also ap-
proximately constant (there can however be some variance through bus

3.4 Back-end miss events 35

IPC

time
penalty

d
is

p
a

tc
h

m
is

s
1

is
s
u

e
m

is
s

1
ROB full

base

memory access time
d

is
p
a

tc
h

m
is

s
2

is
s
u

e
m

is
s

2

S/D S/D

S/D

miss 1
returns

miss 2
returns

S new instrs can
be dispatched

Figure 3.11: Timing of two overlapping long latency load misses.

contention and memory bank conflicts); and (iii) the resolution time of
the load. The latter depends on the number of instructions that need to
be executed before the load can issue, which is dependent on the appli-
cation running. However, considering that the main memory latency
is in the order of hundreds of cycles, and the resolution time is usu-
ally not more than about ten cycles, the impact of this variance is rather
small. For moderate ROB sizes, the W/D term is also rather small com-
pared to the memory latency. Furthermore, the W/D term and the load
resolution time have opposite signs in the penalty calculation, which
means that they partially offset each other. This lets us conclude that
the penalty for an isolated long data cache load miss is nearly constant,
and is approximately equal to the main memory access latency.

Overlapping long-latency load misses

When a load miss is dispatched, the dispatch of new instructions con-
tinues until the ROB is full. These new instructions can include another
long-latency load miss. If this long-latency load miss is independent of
the first miss, it will be issued, and its waiting time will start concur-
rently with the penalty of the first load miss (assuming that the memory
can handle multiple accesses in parallel1). So the penalties of the two
misses will overlap.

To quantify the amount of overlap, assume there are S instructions
(in the dynamic program trace) between the two load misses, which
means the second miss will be dispatched S/D cycles after the first, see

1This can be achieved by the use of miss status holding registers (MSHRs) and mem-
ory banks.

36 Interval analysis

0

2

4

6

8

0

2

4

0

2

4

0

2

4

Fetch

Dispatch

Issue

Commit

long D-cache miss

Figure 3.12: Behavior of three overlapping load misses.

Figure 3.11. If the resolution time of the two misses is almost equal,
the time between issuing the misses is also S/D. This means that the
data returning from memory also happens S/D cycles from each other.
If the first miss commits, S instructions can commit until we meet the
second miss at the head of the ROB, leaving space for the dispatch of S
new instructions. If the commit width is at least as large as the dispatch
width (which is usually the case), then these S new instructions can
be dispatched at the full width, needing S/D cycles, which is exactly
equal to the time until the second load miss returns from memory. So
by the time dispatch should stall because of the second load miss hitting
the head of the ROB, the second load miss commits and dispatch can
continue. The result is that the two misses completely overlap, i.e., the
penalty for the second miss is completely hidden under the penalty of
the first one. This can be generalized to three or more independent load
misses that can start their execution before the ROB is full, i.e., their
penalties completely overlap, and the total penalty equals the penalty
of one isolated load miss.

To illustrate this effect, Figure 3.12 shows a part of the execution

3.4 Back-end miss events 37

profile of gcc where three long-latency load misses overlap. After the
first load miss returns from memory (indicated in the commit stage),
performance ramps up again, and there is almost no performance
degradation due to the following load misses. There is however a small
decline in performance between committing the second and third load
miss. This is due to the fact that these load misses arrived closely to-
gether, causing some (L2 to memory) bus contention. The result is that
the latency of the second load miss is somewhat larger (one cycle in
this example), which violates the assumption of a constant memory
penalty in the reasoning above. This performance decline is however
negligible compared to the memory access latency.

This means that all independent load misses that occur at most W
(ROB size) instructions after a load miss overlap with the first one, be-
cause they all enter the ROB before it is full and handle their latencies
in parallel. This effect is called memory-level parallelism (MLP) [14, 38].
MLP can be quantified as the average number of long-latency load
misses that are handled in parallel if there is at least one such miss out-
standing. Considering the previous reasoning—i.e., the fact that par-
allel load misses completely overlap—this can be simplified to the to-
tal number of load misses divided by the number of non-overlapping
misses. It gives an idea by how much the penalty of each load miss
is hidden through memory-level parallelism. If the MLP equals 1, all
load misses see their full penalty and no memory-level parallelism is
exposed. If it is greater than 1, on average MLP load misses overlap,
and the total penalty is shared between these load misses (e.g., an MLP
of 2 means that the penalty of an isolated load miss is shared between
on average 2 load misses, so the average penalty per load miss is half
the penalty of an isolated load miss).

Figure 3.13 depicts the average number of cycles per load miss (cal-
culated as the extra number of cycles of a simulation with a real L2
cache compared to a simulation with a perfect L2 cache, divided by the
number of long-latency load misses). It shows that for some bench-
marks the average load miss penalty is close to the memory access time
(250 cycles in this experiment) (e.g., mcf, perlbmk and vortex), but other
benchmarks expose much lower penalties due to a large degree of MLP
(e.g., crafty, eon and gzip).

38 Interval analysis

0

50

100

150

200

250

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

L
2

D
-c

a
c
h
e

p
e
n
a
lt
y

p
e
r

m
is

s

Figure 3.13: Average cycle penalty of a long data cache miss (memory access
latency is 250 cycles).

3.4.2 Other resource stalls

Short data cache misses, i.e., those that are handled by the second
level cache, also make a load waiting for data. This additional latency
is however rather short (at most some tens of cycles), and they usu-
ally are resolved before the ROB fills up and dispatch is stalled. This
means they incur no, or little, penalty because they are typically hid-
den through out-of-order execution. The same happens with other
medium-latency instructions, such as (floating-point) multiply and
divide instructions.

In some cases there is a long dependency path leading to the short
data cache miss or medium-latency instruction, which causes the reso-
lution time to be long. If the sum of the resolution time and the instruc-
tion’s execution latency is larger than the ROB fill time, the ROB will
fill up, ceasing dispatch for a few cycles. In that case, there is a small
penalty, but on average, the penalty of short data cache misses is very
small or negligible. This is confirmed in Figure 3.14, where the cycle
penalty per L1 data cache miss that is served by the L2 cache is illus-
trated (L2 cache access time is 9 cycles). Only for parser, twolf and vpr,
the penalty per miss is somewhat higher (but still much lower than the
L2 access time), due to the long dependency paths.

3.5 Overlapping miss events 39

0

1

2

3

4

5

6

7

8

9

10

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
rL

1
D

-c
a
c
h
e

p
e
n
a
lt
y

p
e
r

m
is

s

Figure 3.14: Average cycle penalty of a short data cache miss (L2 cache access
latency is 9 cycles).

3.5 Overlapping miss events

In the previous sections we have considered miss events in isolation.
In a real execution, miss events can come close to each other, and their
penalties can partially or completely overlap, which reduces the total
penalty seen by the processor. The previous section already discussed
overlapping long-latency load misses. We now discuss overlap effects
among different types of miss events. We make a distinction between
possible overlaps between two or more front-end misses, and front-end
miss events overlapping back-end miss events or vice versa.

3.5.1 Overlaps between front-end miss events

Instruction cache misses cannot overlap other front-end misses, be-
cause they interrupt the supply of new instructions, and front-end
miss events can only be caused by new instructions. In the case of
a branch misprediction, instruction fetch continues along the mispre-
dicted path. Along this path, instruction cache misses or new branch
mispredictions can occur, but after the detection of the misprediction,
these instructions are flushed and fetch is redirected to the correct path,
so these extra miss events have no direct impact on the total perfor-
mance. There can be an indirect impact on performance, especially
when the mispredicted path reconverges with the correct path (e.g, the
instructions after an if-then-else clause). In this case the instructions
along the mispredicted path will be re-executed on the correct path, and

40 Interval analysis

the first execution can serve as a (instruction and data) prefetcher for
the second execution. Ignoring these second-order effects, we can con-
clude that front-end misses along mispredicted paths can be ignored,
which means that there are no mutual overlaps between front-end miss
events.

3.5.2 Overlaps between front-end and back-end miss events

When dealing with a long-latency load miss, new instructions can still
be fetched for a while, and these new instructions can introduce front-
end misses. We now discuss possible overlaps between long-latency
load misses on the one hand, and instruction cache misses and branch
mispredictions on the other hand.

Overlaps between long-latency load misses and instruction cache
misses

The situation of a short instruction cache miss that occurs when a long-
latency load miss is pending is illustrated in Figure 3.15. When the
long-latency load miss issues (1), dispatch can still continue until the
ROB is full. If a short (L1) instruction cache miss occurs before the
ROB is full, it will cease dispatch (2) until the instruction has been
fetched from the L2 cache and the front-end pipeline has been refilled
(3). This takes much less time than the long-latency load miss, so dis-
patch restarts long before the load miss returns from memory. The ROB
will continue to fill up, and when it is full (4), dispatch stalls until the
load miss returns from memory (5). The penalty of the short instruc-
tion cache miss is thus completely overlapped by the long-latency load
miss, because the instructions cache miss is being resolved long before
the load miss returns.

In case of a long instruction cache miss (i.e., the instruction has to
be fetched from memory), the ROB will never fill up, because there
are no new instructions to enter the ROB during the whole latency of
the load miss (since the load miss and the instruction cache miss have
approximately equal latencies), see Figure 3.16. This means that the
penalty of the load miss is completely overlapped by the long-latency
instruction cache miss penalty.

3.5 Overlapping miss events 41

IPC

time

lo
a

d
m

is
s

d
is

p
a

tc
h

is
s
u

e
ROB full

memory access time

L1 I-cache
miss

L2 access
time

�

� �
�

�

front-
end drains

front-end
refills

Figure 3.15: Overlap between a long data cache miss and a short instruction
cache miss.

IPC

time

lo
a

d
m

is
s

d
is

p
a

tc
h

is
s
u

e

memory access time

memory access time

L2 I-cache
miss

front-
end drains

front-end
refills

Figure 3.16: Overlap between a long data cache miss and a long instruction
cache miss.

Overlaps between long-latency load misses and branch mispredic-
tions

When a branch misprediction occurs less than W instructions after the
dispatch of the long-latency load miss, two things can happen. If the
branch is independent of the load miss, it will be resolved before the load
miss returns, see Figure 3.17. This means the penalty of the branch mis-
prediction is completely overlapped by the penalty of the long-latency
load miss, similar to the overlap between a long-latency load miss and
a short instruction cache miss.

If a branch that is dependent on the long-latency load miss is mis-
predicted while handling the load miss, it will not be detected until
after the data returns from memory. This situation is depicted in Fig-
ure 3.18. The branch misprediction causes the dispatch of wrong-path
instructions (1). These instructions will also fill up the ROB (2). Af-
ter the load miss returns from memory (3), dependent instructions are

42 Interval analysis

IPC

time

lo
a
d

m
is

s
d
is

p
a
tc

h

is
s
u
e

ROB full

memory access time

branch mis-
prediction
dispatched

misprediction
detected

front-
end
refill

branch mispr.
penalty

Figure 3.17: Overlap between a long data cache miss and an independent
branch misprediction.

IPC

time

lo
a
d

m
is

s

d
is

p
a
tc

h

is
s
u
e

ROB full

memory access time

branch mis-
prediction
dispatched

misprediction
detected

front-end
refill

load miss penaltybranch mispr.
penalty (1)

branch mispr.
penalty (2)

�
� �

�
�

Figure 3.18: Overlap between a long data cache miss and a dependent branch
misprediction.

executed until the branch miss is detected (4). During this time, wrong-
path instructions keep on dispatching, because the branch mispredic-
tion is not yet detected. After the detection of the branch misprediction,
wrong-path instructions are flushed, and the front-end pipeline needs
to be refilled to restart dispatch (5). The total penalty is the gap indi-
cated by the solid line and includes the total load miss penalty (i.e., the
time the ROB is full) plus the total branch misprediction penalty (i.e.,
the time where wrong path instructions are dispatched, plus the front-
end pipeline refill time). The two penalties are thus serialized instead
of parallelized.

Impact of overlaps between front-end and back-end misses

Front-end misses that are overlapped by back-end misses can involve
difficulties for analyzing and estimating performance. In order to have

3.6 Inaccuracies of dispatch on/off behavior assumption 43

an accurate model these overlaps should be modeled, which compli-
cates the model. Table 3.1 shows the fraction of total execution time
where such overlaps occur, as a function of the ROB size. This is the
percentage of cycles where the penalties of instruction cache misses
and branch mispredictions are completely hidden under the penalty
of a long-latency load miss. It is an indication for the overestimation
of the execution time when assuming that no overlaps occur and all
penalties serialize. Overlaps occur more often as the ROB size enlarges
because more instructions can be fetched under the long-latency load
miss. This table also shows that for moderate ROB sizes, overlaps are
rather rare (less than 5.5% for a ROB of 256 instructions). This means
that in order to build an accurate model for realistic processor architec-
tures, neglecting these overlaps introduces only a small error.

Table 3.1: Percentage cycles for which front-end penalties are overlapped with
long back-end miss penalties for different ROB sizes.

Benchmark ROB 64 ROB 128 ROB 256 ROB 512 ROB 1024

bzip2 0.03% 0.07% 0.15% 0.29% 0.37%
crafty 0.13% 0.37% 0.75% 0.87% 0.80%
eon 0.00% 0.01% 0.02% 0.03% 0.03%
gap 0.36% 1.62% 5.40% 15.97% 18.80%
gcc 0.15% 0.31% 0.48% 0.65% 0.67%
gzip 0.00% 0.01% 0.03% 0.05% 0.08%
mcf 0.00% 0.00% 0.02% 0.06% 0.06%
parser 0.11% 0.31% 0.72% 1.39% 1.75%
perlbmk 0.02% 0.05% 1.77% 5.72% 13.73%
twolf 0.63% 1.64% 3.44% 4.50% 4.91%
vortex 0.30% 0.99% 1.87% 2.97% 3.78%
vpr 0.64% 1.65% 3.23% 4.92% 4.83%

3.6 Inaccuracies due to the dispatch on/off behav-
ior assumption

In the timing analysis above we always assumed that the dispatch rate
is an on/off process, i.e., the number of instructions dispatched per
cycle is either zero or equal to the designed dispatch width. As can be
seen from the gcc example (Figure 3.1), this is a good approximation,
but in some cases the dispatch rate is less than D instructions per cycle.
There are two possible reasons:

44 Interval analysis

1. Inherent dispatch inefficiency. Interval lengths are not always a mul-
tiple of the dispatch width. This means that in the last cycle of an
interval where instructions are dispatched, there are possibly less
than the available width instructions left to be dispatched until
the miss event occurs. This dispatch inefficiency is inherent, it is
caused by the occurrence of miss events and depends on the dis-
patch width of the processor—the larger the dispatch width, the
larger is the probability that the interval size is not a integer mul-
tiple of the dispatch width. The performance estimation method
elaborated in the next chapter takes these inefficiencies into ac-
count.

2. Fetch inefficiency. Due to taken branches, the fetch engine is not
always able to fill the fetch buffer with at least as many instruc-
tions as the dispatch width. In this case, fewer instructions can
enter the front-end pipeline and will eventually be dispatched.
This often occurs at the beginning of an interval, when the fetch
buffer is empty, and one of the first instructions is a taken branch
(or is at the end of a cacheline). However, in steady-state, a well
designed fetch buffer should always provide enough instructions
to sustain the designed dispatch width.

3.7 Summary

In this chapter, we have introduced interval analysis to analyze the per-
formance of out-of-order superscalar processors. It is based on study-
ing the dispatch behavior of a program executing on a processor, since
this stage shows an on/off behavior, which makes it intuitive to analyze
the performance impact of miss events. Using this approach, we can
divide total execution time into isolated intervals, delimited by miss
events. Each interval consists of a base part, where instructions are
dispatched at the full designed width, and a penalty part, where the
dispatch rate is zero due to the miss event.

The penalty of each type of miss event is composed differently.

• The instruction cache miss penalty equals the time needed to fetch
the instruction from the appropriate level in the memory hierar-
chy, i.e., the L2 cache access time for a L1 instruction cache miss
and the memory access time for a L2 miss. The penalty of an

3.7 Summary 45

I-TLB miss equals the time needed to consult the page table in
memory.

• The branch misprediction penalty consists of the branch resolution
time, i.e., the time needed to execute the dependency path leading
to the branch, plus the front-end refill time. Due to the branch res-
olution time, the total branch misprediction penalty can be much
larger than the front-end pipeline depth, which is often assumed
to be the penalty of a branch misprediction.

• The penalty of an (isolated) long-latency load miss is equal to the
load resolution time (the time between dispatching and issuing
the load miss) plus the memory access time minus W/D. Since
the memory access time is much larger than the other two terms,
the long-latency load miss penalty can be approximated by the
memory access time.

• Short data cache misses and medium-latency instructions usually do
not result in a performance penalty, because their latencies are
hidden by out-of-order execution. Only if they are on long de-
pendency paths, they can fill up the ROB and introduce a small
penalty.

We also discussed how long-latency load misses can be handled in
parallel, and showed that the penalties of two or more concurrent inde-
pendent long-latency load misses completely overlap with each other.
This phenomenon is called memory-level parallelism (MLP). MLP is de-
fined as the average number of long-latency load misses that are han-
dled in parallel, and quantifies how many load misses on average share
the penalty of one isolated long-latency load miss.

Overlaps between front-end and back-end of miss events are rather
infrequent for modest ROB sizes, but may need to be considered for
larger ROB sizes.

46 Interval analysis

Chapter 4

Mechanistic performance
model

The inside of a computer is as dumb as hell
but it goes like mad!
Richard Feynman

Interval analysis as discussed in the previous chapter describes the
cycle penalty of each miss event in an intuitive way. We now use these
insights to construct a performance estimation model. The model esti-
mates the number of cycles needed to execute an application by count-
ing the number of miss events and estimating the penalty of each miss
event. Adding the miss event penalties to the number of base cycles
(i.e., the number of cycles needed to dispatch all instructions of the
program) yields an estimation of the total cycle count. Performance
in terms of IPC (instructions per cycle) can then be calculated as the
number of instructions divided by the estimated cycle count.

This simple model assumes that only miss events introduce penal-
ties. This is the case in balanced processor designs, i.e., all processor
resources are sized such that the attained issue rate in the absence of
miss events is (almost) equal to the designed issue width. In the con-
text of out-of-order superscalar processors, this means that the instruc-
tion window (and its related structures, such as the issue buffer, the
physical register file, etc.) is large enough to provide each cycle at least
as many independent instructions as the processor’s issue width. A
method to characterize the available instruction-level parallelism (ILP)

48 Mechanistic performance model

in an application and how to scale processor resources to obtain a bal-
anced design is described in the Section 4.1.

Section 4.2 then shows how the performance model is built up, and
validates its accuracy in comparison to detailed simulation. Section 4.3
qualitatively compares the model to previously proposed methods for
modeling the performance of out-of-order architectures. Section 4.4
uses the model to study pipeline depth and width, and deduces an in-
teresting relationship between optimal pipeline depth and width, i.e.,
optimal pipeline depth and width are in opposition to each other: if
the pipeline width increases by a factor c, the optimal pipeline depth
decreases with a factor

√
c.

4.1 ILP characterization and balanced design

The discussion of interval analysis in the previous chapter assumed
that dispatch only degrades through miss events. In some cases how-
ever, the instruction window fills up without having a miss event. This
can happen if the amount of ILP that can be extracted from the instruc-
tion window is smaller than the dispatch width. This may cause the
instruction window to eventually fill up, which causes dispatch to de-
grade. In this case, the processor is unbalanced, meaning that the in-
struction window should be scaled up in order to provide more paral-
lelism, or, reversely, the processor is designed too wide for this instruc-
tion window size. In this section, we will describe an analytical method
to measure the available instruction-level parallelism in a program and
scale processor resources such that it is balanced.

Consider a window of W instructions and a given processor width
D. In order to have on average D independent instructions to execute
each cycle, a processor should be able to execute all instructions in the
window in W/D cycles (Little’s law). This implies that the critical de-
pendency path, i.e., the longest dependency path within the instruction
window, has to take at most W/D cycles to execute. Inverting this ar-
gumentation, we can say that a window W with a critical dependency
path that takes K cycles to execute, provides on average W/K inde-
pendent instructions each cycle, which means that it can support a bal-
anced processor width of W/K .

To characterize the available ILP in a program and provide data to
design a balanced processor, we should therefore study the critical de-
pendency path of that program within a certain window size. We have

4.1 ILP characterization and balanced design 49

0 1 0 1 2 0 3 4 0 1 5 6 0 10

0 1 1 1 2 2 3 4 4 4 5 6 6 66

0 0 1 2 0 3 4 0 1 5 6 0 0 21

0 0 1 2 2 3 4 4 4 5 6 6 6 66

0 1 2 0 3 4 0 1 5 6 0 0 1 72

0 1 2 2 3 4 4 4 5 6 6 6 6 76

path length
critical path length

path length
critical path length

path length
critical path length

Figure 4.1: Calculation of the critical dependency path.

developed an algorithm that measures the average critical dependency
path for all window sizes concurrently (from size 1 up to some maxi-
mum size W), using a sliding window that covers all possible windows
of consecutive instructions of the dynamic program trace.

To do this, we start with analyzing the first window of instructions
using a specialized functional simulator, see Figure 4.1. We keep track
of the (register and memory) dependencies between the instructions,
and calculate the length (in number of instructions) of the longest de-
pendency path in the window. This can be done by going through
the instructions in program order, initializing independent instructions
with a zero dependency path, and, for instructions that depend on
other instructions, adding one to the longest dependency path of all
instructions it depends on. The maximum dependency path seen so far
is retained, which is equal to the critical dependency path in the given
window.

By retaining the critical dependency path length from the head of
the window up to every instruction in the window (see Figure 4.1, in
the row indicated by critical dependency path length), we can deter-
mine the critical dependency path length of all window sizes between
1 and the maximum window size in one sweep. For example, the top
part of Figure 4.1 shows that the critical dependency path length for
window sizes 2 to 4 equals 1, for window sizes 5 and 6 the critical de-
pendency path consists of 2 instructions, for window size 7 the critical
path length equals 3, etc.

When the maximum window size is reached, we shift the window
one instruction, by removing the oldest instruction and all of its de-
pendency relations, and adding a new one, calculating the new depen-
dency relations for that instruction. Then we recalculate the depen-

50 Mechanistic performance model

Table 4.1: Power law estimates of K(W) as a function of α and β; benchmarks
are sorted by increasing β.

benchmark α β

vpr 1.40 1.31
perlbmk 1.55 1.33
parser 1.59 1.36
twolf 1.26 1.47
gap 1.34 1.50
bzip2 1.46 1.53
gzip 1.16 1.60
mcf 1.35 1.61
eon 1.51 1.66
vortex 1.44 1.67
gcc 1.67 1.68
crafty 1.06 1.79

dency paths for the new window. The complexity of this algorithm is
O(N ·W), with N the number of dynamic instructions of the program,
and W the maximum window size.

The average critical dependency path for window sizes up to 1K
instructions is shown in Figure 4.2. The graphs show approximately
a straight line on a log-log scale, indicating that there is a power law
between the window size W and the average critical dependency path
K, i.e.,

K(W) ∼= 1/α W 1/β .

The parameters α and β are program dependent, and can be found by
fitting the measurements to the power law, see Table 4.1.

Average critical path length has previously been used to character-
ize ILP by Michaud et al. [68]; there it is assumed that β = 2, i.e., a
square root relation between the window size and the available paral-
lelism. This is a rough approximation, as we observe β-values between
1.3 and 1.8, see Table 4.1. The higher the value of β, the shorter the
critical path, and the more ILP is present; β is thus a measure of the
inherent ILP in a program.

The minimum execution time of a window of instructions is the sum
of the execution latencies of all instructions along the critical path in
that window. To estimate the critical path length with non-unit exe-
cution latencies, we calculate the average instruction latency of all dy-
namically executed instructions. We do this by profiling the instruction

4.1 ILP characterization and balanced design 51

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

log2 (window size W)

lo
g

2
(c

ri
ti
c
a

l
p

a
th

le
n

g
th

)

bzip2 crafty

eon gap

gcc gzip

mcf parser

perlbmk twolf

vortex vpr

Figure 4.2: Average critical dependency path K(W) as a function of window
size.

type mix and by weighing the occurrence frequencies with the appro-
priate execution unit latencies. We then multiply the average instruc-
tion latency by the average critical path length. By doing so, a recalcu-
lation of the critical dependency paths and the instruction type mix is
not needed when the instruction execution latencies change. The av-
erage critical dependency path and instruction type mix are properties
of the application, while the execution unit latencies are dependent on
the microarchitecture. Keeping these apart enlarges the portability of
the model and minimizes the recalculation time when the instruction
execution latencies are changed.

So, the average minimum execution time of a window W can be
calculated as

�K(W) = �/α W 1/β,

with � the average instruction execution latency. This means that the
average number of independent instructions that can be found in an
instruction window of size W is

I(W) =
W

�/α W 1/β
= α/� W 1−1/β

52 Mechanistic performance model

(see Figure 4.3). Using the approximation β ≈ 2, we get

I(W) = α

√
W

�
,

which reflects the well-known square root relationship between win-
dow size and issue rate [68, 81, 100].

We can also invert the I(W) equation to get an expression that
shows how the balanced instruction window size relates to the pro-
cessor width: for a program with critical dependency path parameters
α and β, in order to be balanced, a processor with width D should
contain an instruction window of size

W (D) = (�D/α)β/(β−1).

This means that the balanced window size is proportional to the dis-
patch width and the average instruction execution latency. Using the
approximation β ≈ 2, we get

W (D) = (�D/α)2,

which means that the balanced window size scales quadratically with
both the dispatch width and the instruction execution latency. For β
between 1.3 and 1.8, the power of the above formula ranges from 2.3 to
4.3.

The fact that our model assumes a balanced processor seems lim-
iting, but from the critical path data we obtained, we can conclude
that even for programs that show the longest critical dependency paths
(e.g., vpr and perlbmk) a window of 1K instructions is sufficient to sup-
port a processor (issue) width of 8 (see Figure 4.3), which is wider than
most of the current general-purpose processors. For certain applica-
tions or execution phases of an application, this balance condition may
be violated, but the regular occurrence of miss events that drain the
instruction window prevents the error from being propagated.

4.2 Estimating performance

As described in the beginning of this chapter, performance can be esti-
mated by adding the miss event penalties to the base cycles. The latter
could be easily calculated as the number of instructions divided by the
dispatch width, but due to the fact that interval lengths are not always

4.2 Estimating performance 53

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

log2 (window size W)

lo
g

2
(I

P
C

)

bzip2 crafty

eon gap

gcc gzip

mcf parser

perlbmk twolf

vortex vpr

Figure 4.3: Average number of independent instructions I(W) as a function
of window size.

a multiple of the dispatch width, there is an inherent dispatch ineffi-
ciency, discussed in Section 4.2.1. In Section 4.2.2 it is shown how the
different miss penalties are estimated, and Section 4.2.3 discusses the
overall model. Section 4.2.4 then evaluates the accuracy of the overall
model.

4.2.1 Inherent dispatch inefficiency

As discussed in the previous chapter, in the last dispatch cycle less
than D instructions may be dispatched1. The reason is that the interval
length (i.e., the number of instructions in the interval) is not a multi-
ple of the dispatch width. The time needed to dispatch an interval of
Ni instructions is �Ni/D�, and the total base time for the entire pro-
gram execution is

∑m
i=1�Ni/D� (with m the number of intervals, which

equals the number of miss events), which is not equal to 1
D

∑m
i=1 Ni.

The additional number of cycles, introduced by the ceiling func-
tion, can be estimated as follows: assume that Ni mod D is uniformly
distributed, which means that �Ni/D�−Ni/D is uniformly distributed

1In the following, we ignore the impact of fetch inefficiencies at the beginning of an
interval, see Section 3.6.

54 Mechanistic performance model

0

0.5

1

1.5

2

2.5

3

3.5

4

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

e
ff

e
c
ti
v
e

d
is

p
a
tc

h
ra

te

Figure 4.4: The effective dispatch rate is lower than the maximum dispatch
rate of 4 because of interval behavior.

in {0, 1/D, 2/D, . . . , (D − 1)/D}. The mean of this distribution is D−1
2D ,

so

m∑
i=1

�Ni/D� ∼=
∑m

i=1 Ni

D
+ m

D − 1
2D

=
N

D
+ m

D − 1
2D

(with N the total dynamic instruction count).
The second term in the above formula can be considered as an in-

herent dispatch inefficiency. The effect of this dispatch inefficiency on
the average dispatch rate is illustrated in Figure 4.4, which shows the
effective dispatch rate

Deff =
D

1 + D−1
2

m
N

.

The effective dispatch rate is smaller than the maximum dispatch rate
of 4 because of the inherent dispatch inefficiency due to interval behav-
ior; the effective dispatch rate decreases with an increasing number of
miss events. The mcf benchmark for example has a large number of
miss events (one miss event every 13 instructions on average), mainly
due to long data cache misses, which results in an effective dispatch
rate of 3.6; the effective dispatch rate for the other benchmarks, which
have substantially fewer miss events, varies between 3.8 and 4.

4.2 Estimating performance 55

4.2.2 Estimating miss event penalties

Computing the number of miss events is done by using specialized
cache and branch predictor simulation. While some simulation is still
needed, it can be done much faster than detailed simulation, since we
only have to simulate one structure (in casu the branch predictor or
the cache hierarchy) instead of the full processor (see Chapter 2). Fur-
thermore, several predictor or cache sizes can be simulated simultane-
ously [92], and these simulations do not need to be redone when a pro-
cessor parameter not related to caches and/or branch predictors (e.g.,
pipeline depth) changes.

The subsequent sections discuss the penalty estimation of the vari-
ous miss event types in detail.

Instruction cache misses

The total penalty of instruction cache misses is the easiest to estimate.
Interval analysis showed that the penalty of an instruction cache miss
(or I-TLB miss) equals the miss delay. So, we just have to count the
number of misses that are served by the L2 cache and those served by
main memory, and multiply them by the access time of the L2 cache and
main memory, respectively. The effect of the fetch buffer potentially
offsetting one cycle of the penalty is considered a second-order effect
and is not accounted for.

Interval analysis shows that we should not count instruction cache
misses along mispredicted paths, but since a functional simulator does
not simulate instructions along wrong paths anyway, instruction cache
misses along these paths are not counted. Sometimes fetching instruc-
tions along mispredicted paths can prefetch instructions of the correct
path (particularly in the case of reconvergent paths), removing (part
of) the instruction cache miss penalty. This effect introduces a small
error in the model (the difference in the number of instruction cache
misses between functional and detailed simulation due to this effect
incurs on average an extra estimation error of 0.2% on overall perfor-
mance for the baseline configuration; the largest impact is observed for
the benchmark gap, where the estimation accuracy improves by 1.54%
if we eliminate the instruction cache misses prefetched by speculative
execution).

Instruction cache misses can also be overlapped by long-latency
loads, but this happens rarely, as shown in Section 3.5. In order to detect

56 Mechanistic performance model

such overlaps, instruction cache simulations should be done together
with data cache simulations, which violates the idea of simulating each
miss event in isolation, and improves accuracy only marginally (ac-
curacy improves with 0.01% on average if we consider only the non-
overlapped instruction cache misses compared to considering all in-
struction cache misses; the largest improvement due to this effect is
0.8%, and is again observed for gap).

Branch mispredictions

Branch misprediction penalties are a lot more difficult to estimate. As
described in the previous chapter, they consist of the (constant) front-
end pipeline depth and the (variable) branch resolution time. In or-
der to estimate the branch misprediction penalty accurately, we have
to estimate the branch resolution time for each branch misprediction
individually.

The branch resolution time is the time between the dispatch of the
branch and the execution of the branch, at which point in time the mis-
prediction is detected. This is the time needed to execute all instruc-
tions the branch depends on, i.e., the dependency path leading to the
mispredicted branch. Figure 4.5 shows the number of correct path in-
structions left in the issue buffer when a mispredicted branch is exe-
cuted. Most of the time, this number is zero, indicating that the branch
very often is the last instruction to execute. This means that the branch
is on the critical dependency path of the instructions in the instruction
window when the branch is dispatched. Therefore we can reuse the
average critical path function K(W) of Section 4.1, which provides the
average critical path length for a given window size. Multiplying it by
the average instruction latency � gives the estimated resolution time.
The only thing we need to know is the number of instructions residing
in the instruction window when the branch is being dispatched.

To estimate the latter, we use the average critical dependency func-
tion, in the derived form of the attainable issue width as a function of
the window size: I(W) = α/� ·W 1−1/β . This formula gives the average
number of instructions that can be issued when there are W instruc-
tions in the instruction window. To estimate the number of instructions
in the window when the branch is being dispatched, we use the fol-
lowing iterative algorithm, which models the entering and exiting of
instructions from the window:

4.2 Estimating performance 57

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

p
e
rc

e
n
ta

g
e

>5

5

4

3

2

1

0

Figure 4.5: The number of correct path instructions left in the issue buffer
when a mispredicted branch is executed.

1. The input of the algorithm is the I(W) function, the interval
length N (i.e., number of instructions between the previous miss
and the branch misprediction), and the processor width D. In the
beginning of the algorithm (i = 0), the number of instructions
in the window W0 is 0, and the number of instructions yet to be
dispatched N0 equals N . The total available size of the window
is W instructions.

2. As long as Ni ≥ D and Wi + D ≤W , dispatch D instructions into
the window: Wi+1 ←Wi +D, and Ni+1 ← Ni−D. If less instruc-
tions can be dispatched because there are not enough instructions
left (Ni < D) or the window is almost full (Wi+D > W), dispatch
the maximum possible number of instructions.

3. The number of instructions that can be issued and leave the win-
dow in the next cycle is on average min(I(Wi+1),D) (the issue
width is also bounded to D), so Wi+1 ←Wi+1−min(I(Wi+1),D).

4. If Ni+1 > 0, increment i and go to step 2, else stop and output the
window size Wi+1. The resolution time is estimated by �K(Wi+1).

This algorithm is like “filling a leaky bucket”, every cycle instruc-
tions enter and leave the window. In the beginning, more instructions
enter the window than there are instructions that can leave the window,

58 Mechanistic performance model

and the number of instructions in the window will grow. But as there
are more and more instructions in the window, more independent in-
structions can be found, and the “leakage” will be bigger. At a certain
point, the “leakage rate” is equal to the “filling rate” and steady state
is reached, meaning that the number of instructions in the window re-
mains roughly constant. If there are more than a certain amount of
instructions in the interval, the number of instructions in the window
will not grow anymore and the algorithm can be stopped prematurely.
This can also happen if the window size is too small, such that it be-
comes full before steady state is reached. From then on, the window
will always be full. This algorithm is similar to that used in [67, 68] to
study instruction fetch requirements.

This algorithm provides for a given application (with average crit-
ical path parameters α and β, and average instruction latency �) and
a given window size W , the branch resolution time as a function of
the interval length N . The average branch resolution time can then be
calculated by measuring the branch misprediction interval length dis-
tribution of the program, and taking the average of the resolution times
calculated by the algorithm, weighted by the occurrence probabilities
of the interval lengths.

Since the distribution of the interval lengths is an input parameter
to calculate the branch resolution time, we need to keep track of the
interval lengths of branch misprediction intervals. This can be done
during the simulation of the miss events. In the optimal case, interval
lengths should be measured between the previous miss event (cache
miss or branch misprediction) and the considered branch mispredic-
tion. We however decided to do the miss event simulations separately,
so we measure the interval lengths since the previous branch mispre-
diction. Like that, the branch predictor simulation results can be reused
if a cache parameter is changed. Because branch mispredictions tend to
occur in bursts, the extra error this incurs is very small (if we calculate
the branch misprediction interval lengths considering all miss events,
the average accuracy of the model improves with 0.05%; the largest ac-
curacy improvement is 1.36%, again for gap).

Interval analysis and the algorithm above also provide interesting
insights into the penalty of a branch misprediction. The following char-
acteristics have an impact on the resolution time [32]:

1. Interval length. The more instructions dispatched since the previ-
ous miss and thus the longer the interval, the longer the depen-

4.2 Estimating performance 59

0

5

10

15

20

25

30

35

40

0% 5% 10% 15% 20% 25% 30% 35% 40%

branch misprediction rate

b
ra

n
c
h

m
is

p
re

d
ic

ti
o
n

p
e
n
a
lt
y

bzip2 crafty

eon gap

gcc gzip

mcf parser

perlbmk twolf

vortex vpr

Figure 4.6: Average branch misprediction penalty as a function of branch mis-
prediction rate.

dency path can grow. Interval length is in its turn determined by
the number of miss events. Many miss events mean small inter-
vals, whereas few miss events increase the number of instructions
between the miss events. This means that the penalty for a branch
misprediction becomes larger when there are fewer miss events.
This is illustrated in Figure 4.6, showing the average branch mis-
prediction penalty as a function of the branch misprediction rate.
It shows how for most of the benchmarks the branch mispredic-
tion penalty decreases when the miss rate increases, especially
in the 0%-10% misprediction rate range. A special case is twolf,
where there is an increase in the penalty around a misprediction
rate of 15%. This is because the branch misprediction penalty de-
pends on the distribution of the interval lengths, and not only
on the average interval length (due to the fact that the penalty is
not linearly proportional to the interval length). Different branch
predictors can cause a competely different interval length distri-
bution, which means that an increased number of branch mispre-
dictions does not always incur a smaller branch penalty.

2. Instruction-level parallelism (ILP). If a program has high ILP, the de-
pendency paths are rather small and the resolution time is short.
Programs with less ILP have longer dependency paths and there-

60 Mechanistic performance model

4

5

6

7

8

9

10

11

12

2 4 6 8 10 12

critical path K(window size at start window drain)

a
v
e
ra

g
e

d
ra

in
ti
m

e

bzip2

crafty

eon

gap

gcc

gzip

mcf

parser

twolf

vortex

vpr

average critical path length

a
v
e
ra

g
e

b
ra

n
c
h

re
s
o
lu

ti
o
n

ti
m

e

Figure 4.7: Average branch resolution time versus average critical path length.

0

5

10

15

20

25

1 1.2 1.4 1.6 1.8 2 2.2

average instruction execution latency

b
ra

n
c
h

re
s
o
lu

ti
o
n

ti
m

e

bzip2

crafty

eon

gap

gcc

gzip

mcf

parser

perlbmk

twolf

vortex

vpr

Figure 4.8: Average branch misprediction penalty as a function of average
instruction latency.

fore larger branch misprediction penalties. This property is illus-
trated in Figure 4.7, which shows a strong correlation between the
average critical path length and the branch resolution time (cor-
relation coefficient of 0.85).

3. Average instruction latency. The execution time of a dependency
path not only depends on its size, but also on the latencies of the

4.2 Estimating performance 61

instructions that it consists of. The longer the average instruction
latency of a program, the larger the branch misprediction penalty.
This is illustrated in Figure 4.8. This figure is the result of a set of
experiments where we first set the latency of each functional unit
to 1 cycle—which means that the average instruction latency is
one cycle—and we then gradually increased the latencies of the
functional units (depending on its type). For all of these exper-
iments, we calculated the average instruction latency as well as
the average branch resolution time.

Long data cache misses

Interval analysis showed that the penalty of a long-latency load miss
equals the resolution time of the load plus the memory access latency
minus the time needed to fill the ROB, i.e., W/D (see Section 3.4.1).
Since the resolution time and the ROB fill time are in the same range
(a few tens of cycles), which is at least one order of magnitude smaller
than the memory access latency, and they have opposite signs in the
penalty calculation, we approximate the penalty of an isolated long-
latency load miss by the main memory access time.

As discussed in the previous chapter, long-latency loads overlap-
ping each other can have a large (positive) impact on performance.
Therefore we should also estimate the amount of overlap (MLP). As-
suming that the penalties of two or more independent long-latency
load misses that can reside together in the ROB completely overlap,
the MLP can be determined during cache simulation by stating that
a long-latency load that occurs less than W instructions from another
load miss and that is independent of that load miss, will be completely
overlapped by the first load miss. As such we can compute the number
of non-overlapped load misses. The total long-latency load penalty is
then estimated as the number of non-overlapped misses multiplied by
the main memory latency.

To determine the number of non-overlapped load misses efficiently,
we developed the following algorithm that computes the number of
non-overlapped misses for different ROB sizes (up to a maximum size)
in one sweep. It uses a specialized functional simulator, that is able to
detect register and memory dependencies and performs cache simula-
tion to detect long-latency load misses.

62 Mechanistic performance model

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10long-latency load miss

Figure 4.9: Example of MLP calculation algorithm. The maximum window
size in this example is 10 entries.
Top part. The window shifts until the first long-latency load miss appears at
the head. The first miss is never overlapped, as indicated by its bitmap (a
white box means that this miss is not overlapped for that window size, a filled
box means that it is overlapped for that window size). The second load miss
will overlap with the first if the ROB size is equal to or larger than 6 entries,
the bitmap is adapted to reflect this. The third load miss depends on the first
miss and will therefore never overlap with the first miss.
Middle part. The window shifts until the next long-latency load miss. This load
miss is overlapped if the ROB size is equal to or larger than 6, so we increment
the number of non-overlapped misses for ROB sizes 1 to 5. This also means
that it will only come at the head of the ROB if the ROB size is smaller than
6. This means that we should only look for overlaps within a window size
of 5 entries. Since the next load miss does not depend on this load miss, it
can overlap with the current load miss for ROB sizes 4 and 5. The last load
miss will not overlap with the miss at the head of the window, since for this
window size, the load miss at the head will be overlapped and will never hit
the head of the ROB.
Bottom part. The window keeps on shifting. The load miss at the head of the
window will be overlapped if the ROB size equals 4 or 5, so we increment the
number of non-overlapped misses for ROB sizes 1-3 and 6-10. Since the last
load miss is independent of the current load miss, it will be overlapped for
ROB sizes from 6 to 10.

4.2 Estimating performance 63

As in the critical path calculation algorithm, we start with consid-
ering the first window of maximum size, and determine all dependen-
cies and long-latency loads. We then shift the window until the first
long-latency load miss appears at the head of the window. All other
long-latency load misses that occur within that window and that are
independent of the miss at the head are marked as overlapped. To dif-
ferentiate between different ROB sizes, we keep a bitmap per load miss
of size equal to the maximum window size, that indicates for what win-
dow sizes this load miss is being overlapped. We refer to Figure 4.9 for
an illustrative example of the calculation of these bitmaps.

Then we continue shifting the window until the next long-latency
load miss is at the head. The corresponding bitmap of this load miss
now indicates for what window sizes this load miss is not overlapped
(those where the bits are zero), and the non-overlapped counters of that
window sizes are incremented. Then again the window is searched
for misses that overlap with the current load miss at the head of the
window, and the bitmaps are adapted. This continues until the slid-
ing window reaches the last instruction. The non-overlapped counters
now contain the number of non-overlapped long-latency load misses
per window size.

Short data cache misses

As explained in the previous chapter, short data cache misses incur no
or a small penalty. Therefore we do not account for explicit penalties
for short data cache misses in our model. However, they can have an
impact on the branch misprediction penalty. When a branch mispredic-
tion depends on a short data cache load miss, the resolution time of the
branch will be larger than if there was no miss. Therefore we also deter-
mine the number of short data cache misses (through specialized cache
simulation) and account for them in the average instruction latency �.

4.2.3 Overall model

The total execution time C , measured in cycles, can then be estimated
as:

64 Mechanistic performance model

C = N/D + ((D − 1)/2D)(miL1 + miL2 + mbr + m∗
dL2(W))+

miL1 ciL1 + miL2 cL2+
mbr (cbr + cfe)+

m∗
dL2(W) cL2.

(4.1)

with miL1, miL2, mbr, the number of L1 I-cache (IL1), L2 I-cache
(IL2) and branch misses, and m∗

dL2(W) the number of non-overlapped
L2 D-cache (DL2) misses for window size W . ciL1, cL2 is the latency
of an IL1 miss and a L2 miss, cfe is the front-end pipeline depth and
cbr is the average branch resolution time. To keep the above formula
simple, we did not include I-TLB and D-TLB misses, their contribution
is calculated similarly to the penalties of the IL2 and DL2 misses.

Model inputs

The inputs to the model can be divided in three categories: application-
related characteristics, processor configuration parameters and charac-
teristics dependent on both the application and the processor configu-
ration.

1. Application characteristics:

• The number of instructions N .

• The average critical dependency path K(W), to calculate the
branch resolution time cbr.

• The instruction mix, to calculate the average instruction la-
tency �.

2. Processor parameters:

• The dispatch width D.

• The ROB size W .

• The front-end pipeline depth cfe.

• The access time to the L2 cache ciL1 and main memory cL2.

• The execution unit latencies, to calculate the average instruc-
tion latency �.

3. Application and processor dependent characteristics:

4.2 Estimating performance 65

• The number of branch mispredictions mbr and the distribu-
tion of the number of instructions between the branch mis-
predictions (interval lengths) to calculate the branch resolu-
tion time.

• The number of IL1 (miL1), IL2 (miL2) and I-TLB misses.

• The number of DL1 misses, that together with the L2 access
time contributes to the average instruction latency2.

• The number of non-overlapped DL2 (m∗
dL2(W)) and D-TLB

misses.

4.2.4 Model validation

Figure 4.10 compares the performance in IPC of different benchmarks
on a 2-wide, 4-wide (baseline), 6-wide and 8-wide processor (see Ap-
pendix A) as obtained by detailed simulation with the results from
the model described above. Figure 4.11 breaks down overall CPI in
its (major) CPI components, for the baseline processor configuration.
We observe that the interval model tracks the performance differences
fairly well across benchmarks, processor configurations and CPI com-
ponents.

The average IPC difference with respect to simulation for the base-
line configuration is 6.9%. The largest differences are observed for
parser (21.3%), gzip (16.9%), vpr (12.1%) and perlbmk (8.6%). For gzip
and perlbmk, the cause of these differences is the difficulty in estimat-
ing the branch misprediction penalty, see Figure 4.11. This is due to
the fact that the average critical dependency path and the average in-
struction latency do not represent well the specific dependency paths
leading to mispredicted branches. For parser and vpr, the large error is
mainly caused by an overestimation of the amount of overlapping long-
latency loads. The cause is that for these benchmarks, the occurrence of
dependent branch mispredictions and long instruction cache misses of-
ten stops the dispatching of (correct-path) instructions under the long-
latency load miss, inhibiting the further exploitation of MLP. These ef-
fects are not taken into account in the MLP calculation algorithm (since
they would require a simulation of all miss events together).

2The average instruction latency � is then calculated as follows, with T the number
of instruction/execution unit types, ni the number of dynamic instructions of type i,
lati the latency of functional unit i, mdL1 the number of DL1 misses and cdL1 the access
time to the L2 cache: � = 1

N
(
PT

i=1 ni lati + mdL1 cdL1).

66 Mechanistic performance model

The average IPC errors of the 2, 6 and 8-wide configurations are
3.7%, 9.4% and 12.5%, respectively. The estimation error increases with
the width of the processor, this is mainly due to the fact that together
with the width, we also sized up the ROB size in order to keep the pro-
cessor configurations balanced (see Section 4.1 and Appendix A). This
larger ROB size causes more overlap effects that are not modeled: there
are more instructions dispatched under the long-latency load miss, i.e.,
the W/D term will be bigger than the load resolution time and has more
impact, and more instruction cache misses and branch mispredictions
may be overlapped by long-latency load misses (as indicated by Ta-
ble 3.1). The MLP calculation mechanism also becomes less accurate
as the window size grows, since more events that possibly inhibit the
exploitation of MLP (dependent branch mispredictions, long instruc-
tion cache misses, etc.) may happen under the long-latency load miss,
whereas the model assumes that the complete instruction window size
can be used to exploit MLP.

4.3 Comparison to other models

A number of researchers have looked at superscalar processor mod-
els [20, 23, 43, 48, 52, 53, 56, 62, 67, 68, 73, 74, 87, 93], but three pri-
mary efforts led us to the performance model as described here. First,
Michaud et al. [67, 68] focus on performance aspects of instruction de-
livery and modeled the instruction window and issue mechanisms.
They show a power law (roughly a square law) relationship between
the window size and the issue rate. This is in line with much earlier
work dating back to [81] and [100]. Second, Karkhanis and Smith [56]
extend this type of analysis to all types of miss events and build a
complete performance model, which includes a sustained steady state
performance rate punctuated with gaps that occur due to miss events.
Third, Taha and Wills [93, 94] break instruction processing into intervals
interrupted by branch mispredictions (which they call ‘macro blocks’),
but they do not model the interval behavior of instruction and data
cache misses.

The main difference with the model presented here is that they all
study issue behavior to build a model. As we have shown in the pre-
vious chapter, dispatch behavior provides a sharper delimiter of inter-
vals and requires no modeling of ramp-up and ramp-down issue be-
havior. In addition, the mechanistic model extends prior analytical su-

4.3 Comparison to other models 67

2-wide processor

0.0

0.4

0.8

1.2

1.6

2.0

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

IP
C

simulation

interval model

4-wide processor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

IP
C

simulation

interval model

6-wide processor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

IP
C

simulation

interval model

8-wide processor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

IP
C

simulation

interval model

Figure 4.10: Comparing IPC predicted by the interval model versus simula-
tion.

68 Mechanistic performance model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

s
im

m
o
d

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

C
P

I

L2 D-cache CPI

I-cache CPI

branch CPI

base CPI

19.0 18.9

Figure 4.11: Comparing the CPI stacks predicted by the interval model (‘mod’)
versus simulation (‘sim’) for the baseline 4-wide superscalar processor config-
uration.

perscalar processor modeling work in two major ways. First, interval
analysis exposes the impact of the interval behavior on overall perfor-
mance. This is reflected in how the interval model deals with (i) the dis-
patch inefficiency—more miss events and thus more intervals increase
the dispatch inefficiency—and (ii) the branch resolution time—longer
interval lengths result in longer branch resolution times. Second, our
mechanistic model estimates the branch resolution time using the aver-
age critical path length K(W) that characterizes a program’s inherent
ILP. No extensive detailed processor simulations are needed as done
in [56] and [94] for computing the IW characteristic.

Karkhanis and Smith [55] use the performance model described in
this chapter to study the automatic design of application-specific su-
perscalar processors, in combination with an energy estimation model.
They show that the performance model can be used to perform fast de-
sign space exploration, and that it is able to mark the Pareto-optimal
design points.

Another, more common, way of modeling superscalar processor
performance is by using empirical models [43, 48, 62]. These models
are based on parameterized equations or general functions, which are
trained using performance simulations of a number of processor con-
figurations. The fit equations or functions can then be used to estimate
the performance of other processor configurations. The model can be
based on simple intuitive equations [43], or use more general automat-
ically deduced equations or functions (e.g., regression theory [62] or

4.4 Application: pipeline depth and width study 69

neural networks [48]). The main advantage of this approach is that
the model is automatically generated, it does not need a detailed per-
formance model. The disadvantages of such models compared to a
mechanistic model are that (i) still a number of detailed simulations
are needed to train the model (which takes considerably more time
than the functional simulations to locate the miss events, needed for
the mechanistic model; this also means that a detailed simulator has to
exist or has to be developed in order to use these models, the mech-
anistic model only needs simpler functional simulators), (ii) the auto-
matically deduced equations provide little insight into the underlying
mechanisms that determine performance, and (iii) it gives no insight
for which processor configurations the model is valid.

Although developed independently, the equations in the mechanis-
tic performance model have a similar structure to those in the empiri-
cal model of Hartstein and Puzak [43]. Because the construction of the
Hartstein-Puzak model has intuitive appeal, we intentionally organize
the components of the interval model along similar lines in the next
section, where we will also compare this model to our model.

4.4 Application: pipeline depth and width study

We now use the mechanistic performance model to study the impact
of pipeline depth and width. In this section, we assume balanced pro-
cessor designs, which means that we should scale up the processor re-
sources as we deepen and/or widen the processor pipeline, see Sec-
tion 4.1. Appendix A shows how we scaled up different resources as
the processor pipeline becomes deeper and wider.

4.4.1 Pipeline depth

Although the optimum pipeline depth is a well-researched topic [21,
26, 44, 88, 90], the mechanistic model provides additional insights into
how pipelining affects individual microarchitecture components, and
in addition, provides the opportunity to study partial pipelining, which
other models do not include.

We first extend the mechanistic model by converting from clock cy-
cles to absolute time (say, in nanoseconds). To do so, we multiply the
estimated cycle counts by the absolute cycle time. We denote the cycle
time as tS = to + tp/p, with to the latch overhead for a given tech-

70 Mechanistic performance model

nology, tp the total logic delay of the processor, and p the number of
pipeline stages. As such, the total execution time then becomes, orga-
nizing the terms along the lines of the model proposed by Hartstein
and Puzak [43]:

T = [N/D + (D − 1)/2D)(miL1 + miL2 + mbr + m∗
dL2(W)](to + tp/p)+

miL1 ciL1 p/pb (fiL1 to + tp/p) + miL2 cL2 p/pb (fiL2 to + tp/p)+
mbr (cbr(p, D) + cfe) p/pb (to + tp/p)+

m∗
dL2(W) cL2 p/pb (fdL2 to + tp/p).

(4.2)

In this equation, pb is the number of pipeline stages in the baseline con-
figuration; the same holds for ciL1, cL2 and cfe. The pipeline factors f
(0 ≤ f ≤ 1) denote the degree to which the cache misses are pipelined;
f = 0 denotes non-pipelined cache misses and f = 1 denotes fully
pipelined cache misses. If all units are always fully pipelined (as is
sometimes assumed), then the f terms can be removed to simplify the
equations. Overall TPI (time per instruction) is then computed by di-
viding the above total execution time T by the total dynamic instruction
count N : TPI = T/N .

We now discuss how the four terms in the above equation are af-
fected by pipeline depth for balanced processor designs. We also re-
fer to Figure 4.12 which shows how the most various TPI components
are affected by pipeline depth, averaged across the SPEC CPU2000 in-
teger benchmarks. The top graph in Figure 4.12 assumes pipelined
cache misses, whereas the bottom graph assumes non-pipelined cache
misses. The indicated number of pipeline stages reflects the number of
front-end pipeline stages. To further demonstrate the accuracy of the
model as a function of pipeline depth, we also show the overall TPI
numbers obtained through simulation in the top graph.

Base TPI. The first term (base TPI) is where the performance ad-
vantage of pipelining appears. A higher clock frequency reduces the
absolute time for performing useful work.

I-cache TPI. The I-cache TPI terms remain constant in terms of cy-
cles (the p in the numerators and denominators cancel) but increase
linearly in actual time because of pipelining overhead, in case of (par-
tially or fully) pipelined cache misses, see top graph in Figure 4.12. In
case of non-pipelined cache misses, the I-cache terms remain constant
in absolute time, see bottom graph in Figure 4.12.

4.4 Application: pipeline depth and width study 71

pipelined cache misses

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25

#pipeline stages

T
P

I

base TPI
branch misprediction TPI
L1 I-cache TPI
L2 D-cache TPI
overall TPI
simulated overall TPI

non-pipelined cache misses

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25

#pipeline stages

T
P

I

base TPI

branch misprediction TPI

L1 I-cache TPI

L2 D-cache TPI

overall TPI

Figure 4.12: TPI components and overall TPI as a function of depth, assuming
pipelined cache misses (top graph) and non-pipelined cache misses (bottom
graph).

72 Mechanistic performance model

Branch misprediction TPI. The branch misprediction term can be bro-
ken up into two terms, one related to window drain (branch resolution
time) and another one related to refilling the front-end pipeline. The
pipeline refill term, mbr cfe p/pb (to + tp/p), increases with increasing
pipeline depth because of pipeline overhead. The window drain term,
mbr cbr(p,D) p/pb (to + tp/p), also increases with pipeline depth for two
reasons. First, in a balanced processor, the ROB accumulates more in-
structions when increasing pipeline depth, and by consequence, drain-
ing more instructions takes longer. Second, draining instructions with
a deeper pipeline also increases drain time (counted in cycles). In other
words, and in contrast to conventional wisdom, the impact of pipeline
depth on the branch misprediction penalty is variable and is larger than
its effect on the pipeline refill term; the branch resolution time also in-
creases with deeper pipelines. Figure 4.12 in its top graph further il-
lustrates this finding: if the pipeline refill term would be the only con-
tributing term, then the slopes for the branch misprediction TPI and
the I-cache TPI would be identical; however, the slope for the branch
misprediction TPI is much steeper than the slope for the I-cache TPI.

Long-latency back-end TPI. The long back-end D-cache TPI term is
affected by pipeline depth in two major ways. First, the cache miss
latency term may be partially pipelined or non-pipelined. Like the
I-cache TPI terms, if (partially) pipelined, this term increases in ac-
tual time because of pipelining overhead; if non-pipelined, this term
remains constant irrespective of pipeline depth. Second, the number
of non-overlapping long load misses m∗

dL2 may decrease with deeper
pipelines because of the larger ROB sizes for balanced processor de-
signs. In other words, more memory-level parallelism (MLP) gets ex-
posed. Figure 4.12 illustrates this very well. The bottom graph assum-
ing non-pipelined cache misses shows that the long-latency load TPI
decreases with pipeline depth because of increased MLP. The top graph
assuming pipelined cache misses shows that the increased MLP is off-
set by the increased pipelining overhead: initially the long-latency TPI
decreases and then increases with increased pipeline depth.

Pipelined versus non-pipelined cache misses. Another observation from
Figure 4.12 is that the optimum pipeline depth assuming non-pipelined
cache misses is larger than assuming pipelined cache misses. The
reason is that the I-cache miss TPI remains constant and the long-
latency load TPI decreases with deeper pipelines for non-pipelined
cache misses which makes the optimum pipeline depth shift towards
deeper pipelines.

4.4 Application: pipeline depth and width study 73

Comparison to prior work on pipeline depth.

Prior work on pipeline depth uses simulation [1, 46, 60, 88], or mod-
eling [21, 26, 43, 90]. Early studies [21, 26, 60] investigated the impact
of instruction dependencies, branching and pipelining overhead on op-
timal pipeline depth (for scalar and vector in-order processors). They
found the optimal pipeline stage depth is about 8 gate levels [60]. This
result was also found by more recent studies [1, 46, 88] on superscalar
out-of-order processors, which also study the impact of branch mispre-
dictions and cache misses (based on simulation).

The pipeline depth model closest to our model presented in this
study is the model by Hartstein and Puzak [43]. Hartstein and Puzak
divide the total execution time in busy time TBZ and non-busy time
TNBZ . The busy time refers to the time that the processor is doing use-
ful work, i.e., instructions are issued; the non-busy time refers to the
time that execution is stalled by miss events (called hazards by Hart-
stein and Puzak). Hartstein and Puzak derive that the total execution
time equals busy time plus non-busy time:

T = Ntotal/α (to + tp/p)+
NH γ (top + tp)

(4.3)

with NH the number of miss events; α and γ are empirically derived by
fitting the model versus simulation. Comparing Formula 4.3 against
Formula 4.2, we observe that the mechanistic interval model provides
more insight than the empirical model by Hartstein and Puzak. For
example, according to Hartstein and Puzak, the parameter α is not the
superscalar issue width, but the ‘actual degree of superscalar process-
ing’. The interval model shows that α in fact is the achieved dispatch
efficiency which is a function of processor width and the number of in-
tervals. Similarly, Hartstein and Puzak denote the parameter γ as the
fraction of the total pipeline delay stalled due to a miss event averaged
across all miss events. In other words, Hartstein and Puzak assume
that all miss event types affect performance the same way. The mech-
anistic model presented in this chapter on the other hand, factors out
the different types of miss events. An important consequence of sep-
arating miss event effects in the mechanistic model, is that it enables
modeling partial pipelining of cache misses which is impossible using
the empirical Hartstein and Puzak model.

74 Mechanistic performance model

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8

processor width

T
P

I

base TPI

branch misprediction TPI

L1 I-cache TPI

L2 D-cache TPI

overall TPI

simulated overall TPI

Figure 4.13: TPI components and overall TPI as a function of width.

4.4.2 Pipeline width

We now discuss how the various TPI components are affected by width.
The main performance advantage of increasing width D of superscalar
processing comes from the first term of Formula 4.2—doubling the pro-
cessor width halves the execution time for performing useful work.
This is also illustrated in Figure 4.13 which shows how the various
TPI components are affected by processor width, averaged across all
benchmarks. The second term that decreases with increasing width is
the long-latency load miss term. The number of non-overlapping long
back-end misses decreases with increasing widths, the reason being the
increased ROB size for balanced processor designs.

There are two terms that increase with increasing processor width:
the dispatch inefficiency term and the branch misprediction term. The
most significant term is the branch misprediction term which increases
because of an increased window drain time. Recall that for a balanced
processor design, the ROB accumulates more instructions with an in-
creased processor width and draining more instructions from the ROB
takes longer—the increased processor width does not help the drain
time because the ROB cannot be drained faster than the instructions’

4.4 Application: pipeline depth and width study 75

critical path length.

4.4.3 Optimal pipeline depth/width for balanced processors

Having discussed the effect of pipeline depth and width on over-
all performance separately, we now discuss the interaction between
pipeline depth and width. Figure 4.14 shows overall TPI as a func-
tion of pipeline depth for different processor widths. These graphs
clearly show that the optimum pipeline depth shifts towards shal-
lower pipelines for increasing processor widths. The reason for the
phenomenon is that the base TPI component decreases with increasing
width, while the miss event penalty components do not. This inverse
relationship between processor width and pipeline depth for optimal
performance can be theoretically derived by differentiating Formula 4.2
to p. Setting this equal to zero, and solving this equation to p yields
the optimal pipeline depth p∗. This results in the following equation,
assuming fully pipelined cache misses:

p∗ =

√
tptb
to

Ntotal

D + D−1
2D (miL1 + miL2 + mbr + m∗

dL2(W))
miL1 ciL1 + miL2 cL2 + mbr (cdr + cfe) + m∗

dL2(W) cL2
; (4.4)

or, assuming non-pipelined cache misses:

p∗ =

√
tptb
to

Ntotal

D + D−1
2D (miL1 + miL2 + mbr + m∗

dL2(W))
mbr (cdr + cfe)

. (4.5)

After eliminating the insignificant and irrelevant terms, the optimal
pipeline depth for a given processor width p∗ is approximately propor-
tional to the processor width D to the power −1/2 , i.e., p∗(D)

√
D

constant. Note that this relationship holds for both pipelined as well as
non-pipelined cache misses. In other words, when increasing the pro-
cessor width by a factor c, one must decrease the pipeline depth by a
factor

√
c in order to achieve the optimum depth for the given width.

Figure 4.14 validates this finding. For example, for the pipelined cache
miss case, the optimal pipeline depth for the 8-wide machine (9 stages)
is approximately a factor

√
2 smaller than the optimal pipeline depth

for the 4-wide machine (12 stages); and, the optimal depth for the 4-
wide machine is approximately a factor

√
2 smaller than the optimal

pipeline depth for the 2-wide machine (17 stages).

76 Mechanistic performance model

non-pipelined cache misses

0.45

0.55

0.65

0.75

0.85

0.95

1.05

5 10 15 20 25

#pipeline stages

T
P

I

D = 2

D = 4

D = 6

D = 8

pipelined cache misses

0.45

0.55

0.65

0.75

0.85

0.95

1.05

5 10 15 20 25

#pipeline stages

T
P

I

D = 2

D = 4

D = 6

D = 8

17 stages

12 stages

9 stages

10 stages

15 stages

17 stages

21 stages

Figure 4.14: Overall TPI as a function of depth and width, assuming pipelined
cache misses (top graph) and non-pipelined cache misses (bottom graph).

4.5 Summary 77

4.5 Summary

In this chapter, we developed a performance model based on the in-
sights provided by interval analysis. It estimates the performance of
an application running on a superscalar processor. It does so by first
counting the number of miss events (instruction cache misses, data
cache misses and branch mispredictions) through specialized func-
tional simulations. Then the penalties of the individual miss events are
estimated as follows:

• For instruction cache misses, the penalty equals the access time to
the lower level cache or main memory.

• The penalty of a branch misprediction consists of the front-end re-
fill time and the branch resolution time. The former is a configu-
ration parameter of the processor and is fixed. The latter is vari-
able and depends on application characteristics and the processor
configuration. We approximate the branch resolution time as the
window drain time, because when a branch is mispredicted, that
branch is often the last instruction to be executed. We developed
an algorithm to estimate the window drain time using the inter-
val size distribution, the average critical path length distribution
and the average instruction latency.

• The long-latency load miss penalty is approximated by the main
memory access time.

• We also take into account overlaps between long-latency load
misses, by calculating the number of independent long-latency
load misses that can be in-flight concurrently within the reorder
buffer.

• Since short data cache misses and medium-latency instructions
incur no or small penalties, we do not account for them in the
total execution time estimation. They are however important in
the calculation of the branch resolution time.

• We ignore overlaps between front-end and back-end misses, since
they are relatively infrequent.

In addition to the miss event penalties, we also need to estimate
the base cycles, i.e., the number of cycles where instructions are dis-
patched. This is done by dividing the total number of instructions by

78 Mechanistic performance model

the dispatch width. We also compensate for the inherent dispatch inef-
ficiency due the fact that interval sizes are not always a multiple of the
dispatch width.

The model can accurately estimate the performance of a range of
processor configurations (an average estimation error of 6.9% for the
baseline 4-wide superscalar out-of-order processor). It also gives in-
sight into the impact the various factors have on performance. We also
showed how it can be used in the processor design process to deter-
mine the optimal pipeline depth and width, both for pipelined and
non-pipelined cache misses. From the equations of the model, we also
derived the insight that the optimal pipeline depth is inversely propor-
tional to the square root of the processor width.

Chapter 5

Cycle accounting in
single-threaded processors

Think? Why think?
We have computers to do that for us.

Jean Rostand

Estimating performance is just one application of interval analysis.
As stated before, interval analysis also provides more insight into how
different miss events affect performance. In particular, it quantifies the
exact cycle penalty of each miss event. This can be used to do cycle
accounting: of all cycles a program needed to execute, how many cycles
have gone to doing actual work and how many cycles have been lost
due to the various miss events?

This chapter proposes a hardware performance counter architecture
to construct accurate cycle component stacks, driven by the insights
from interval analysis. These stacks break up the total number of cy-
cles into different cycle components, each reflecting the performance
impact of the various components that determine overall performance,
i.e., the cycles needed to execute the instructions (in the absence of miss
events) and the cycles needed to handle the different miss events. A
cycle component stack is a very intuitive way to visualize and analyze
processor performance [6, 25, 27] (often referred to as a “CPI stack” and
its components “CPI adders”).

Figure 5.1 shows an example of a cycle component stack for the twolf
benchmark. It reveals that of the 135 million cycles it needed to exe-
cute, 30 million were needed to execute the instructions in the absence

80 Cycle accounting in single-threaded processors

twolf

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

c
y
c
le

s

branch prediction

D-TLB

L2 D-cache

L1 D-cache

I-TLB

L2 I-cache

L1 I-cache

base

Figure 5.1: Example cycle component stack for the twolf benchmark.

of miss events (base component), and that the miss events that had the
greatest impact on performance were L2 D-cache misses (56 million cy-
cles), L1 I-cache misses (19 million cycles) and branch mispredictions
(17 million cycles).

Cycle component stacks can be very helpful to software and com-
piler builders to analyze overall performance and detect the perfor-
mance bottlenecks in the program. It can for example point out which
code optimizations can have the greatest impact (e.g., for the twolf ex-
ample, the performance can be improved by at most 41% through the
reduction of the number of L2 D-cache misses). An accurate perfor-
mance analysis at runtime is also useful for processor designers. If the
performance counter architecture is built into the first produced hard-
ware prototype, it can be used to validate assumptions made at the
early stage architectural design process, and to perform more experi-
ments on the new hardware, for which there was no time during archi-
tectural design (because in that design stage, we only have simulators
to evaluate performance, which are very time-consuming).

Cycle accounting on a superscalar out-of-order processor, however,
is more difficult than on an in-order processor, since there are more
possible overlap effects between instruction execution and miss events,
and between miss events mutually. Interval analysis enables us to iso-
late and quantify the performance impact of the various miss events.
Existing hardware performance counter architectures however are un-

5.1 Performance counter architecture description 81

able to measure the correct values needed for the model, so a new hard-
ware performance counter architecture has to be designed [29, 30]. The
new cycle accounting architecture will be described in Section 5.1. Pre-
viously proposed cycle accounting methods will be discussed in Sec-
tion 5.2, and the new performance counter architecture will be vali-
dated and compared to these other cycle accounting methods in Sec-
tion 5.3. Related work is discussed in Section 5.4. The last section of
this chapter illustrates the use of this counter architecture to study the
impact of compiler optimizations on performance.

5.1 Performance counter architecture for comput-
ing accurate cycle components

To compute accurate cycle components, we need a new performance
counter architecture that is able to accurately measure the penalties of
the individual miss events. For each type of miss event there is a global
counter that accumulates the cycle penalties of that type of miss event.
There are 8 global counters, for counting the lost cycles due to L1 in-
struction cache misses, L2 instruction cache misses, I-TLB misses, L1
data cache misses, L2 data cache misses, D-TLB misses, branch mispre-
dictions and other resource stalls. As discussed previously, there are
two main categories of miss events that each need a different approach:
front-end and back-end miss events.

5.1.1 Front-end miss events

Front-end miss events consist of instruction cache misses and branch
mispredictions. The penalty of an instruction cache miss equals the
number of cycles that is needed to fetch the instruction from the next
level in the memory hierarchy. The only thing to be aware of is not
to count instruction cache misses along mispredicted paths, because
they do not contribute to the total instruction cache miss penalty (see
Section 3.5.2). To account for that, we propose the front-end miss event
table (FMT), see Figure 5.2, which contains the number of cycles fetch
was stalled because of instruction cache misses per in-flight basic block.

Each entry of the FMT is identified by the ROB identifier of the
branch that ends the corresponding basic block, and contains counters
to count IL1, IL2 and I-TLB misses. Three pointers are needed: a fetch
tail pointer, a dispatch tail pointer and a dispatch head pointer. Initially

82 Cycle accounting in single-threaded processors

fetch tail

dispatch tail

dispatch head

n
u
m

b
e
r

o
u
ts

ta
n
d
in

g
b
ra

n
c
h
e
s

R
O
B

ID

br
an

ch
pe

na
lty

lo
ca

l L
1

I-c
ac

he

lo
ca

l L
2

I-c
ac

he

lo
ca

l I
-T

LB

Figure 5.2: Front-end miss event table FMT.

these three pointers all point to the first entry. Each cycle the fetch stage
is stalled due to an instruction cache miss, the corresponding counter
pointed to by the fetch tail pointer is incremented. By doing so, the
miss delay computed in the local counters corresponds to the actual
instruction cache miss penalty.

The fetching of a branch indicates the end of the current basic block.
Therefore the fetch tail pointer is incremented each time a branch is
fetched. When the branch dispatches, we know the identifier of the
ROB entry that contains the branch, and that identifier is written into
the ROB ID field of the entry pointed to by the dispatch tail pointer.
Then the dispatch tail pointer is also incremented. The entries between
the fetch and dispatch tail pointer thus correspond to basic blocks that
are fetched but not yet dispatched.

When a branch commits, it was not on a mispredicted path and so
are all instructions in the basic block preceding this branch. In that
case, the corresponding local instruction cache and I-TLB counters can
be added to the global counters. The dispatch head counter is incre-
mented, deallocating the committed entry. Upon the detection of a
branch misprediction, the corresponding entry is looked up via the
ROB ID. All subsequent entries are reset and the fetch and dispatch
tail pointers are placed at the entry following the mispredicted branch.
By doing so, instruction cache misses along mispredicted paths are not
counted.

Branch misprediction penalties are also measured using the FMT.
An extra ‘branch penalty’ field per entry counts the number of cycles

5.1 Performance counter architecture description 83

since the corresponding branch is dispatched. This can be done by in-
crementing the branch penalty field of each entry between the dispatch
head and tail pointer every cycle. If the branch turns out to be correctly
predicted, this value is not needed, but if it is mispredicted, it contains
the number of cycles between the dispatch of the branch and the detec-
tion of the misprediction, i.e., the branch resolution time. In that case,
the branch penalty counter is added to the global counter. From then
on, this global counter is incremented every cycle until new instructions
enter the ROB; this accounts for the front-end refill time.

Improved design

The FMT design needs a few hundred bits to store all local counters
for every in-flight basic block. This can be reduced by using one lo-
cal counter per instruction cache miss event in addition to the global
counters, instead of local counters per FMT entry. This design, called
the shared FMT or sFMT (see Figure 5.3), operates in a similar way as
the FMT: upon an instruction cache miss, the cycles are counted in the
local counter. We also keep track of the instructions that caused an
instruction cache miss by providing an I-cache miss bit in every ROB
entry (as done in the Intel Pentium 4 and IBM POWER5 for tracking
I-cache misses in the commit stage). When an instruction with that bit
set commits, we add the local counters to the global counters. The local
counters are reset, and so are the I-cache miss bits of all instructions in
the ROB. This has to be done because the local counters contain the to-
tal instruction cache miss penalties for all in-flight instructions. When
a branch misprediction is detected, the branch misprediction penalty is
calculated using the local branch penalty counter, as in the FMT case,
and the local instruction cache miss counters are reset to avoid counting
instruction cache misses along mispredicted paths.

This design can both overestimate and underestimate the instruc-
tion cache miss penalty. When an instruction cache miss is followed by
a mispredicted branch that in its turn is followed by another (wrong-
path) instruction cache miss, then there are two possibilities: (i) the first
instruction cache miss commits before the branch misprediction is de-
tected, or (ii) the misprediction is detected before the instruction cache
commits. In the first case, the penalty of the second wrong-path in-
struction cache miss will be added to the global counters. In the second
case, the local counters will be reset, and the penalty of the first cache
miss is not counted. This is however an infrequent situation, given that

84 Cycle accounting in single-threaded processors

fetch tail

dispatch tail

dispatch head

n
u

m
b

e
r

o
u

ts
ta

n
d

in
g

b
ra

n
c
h

e
s

R
O
B

ID

br
an

ch
pe

na
lty

lo
ca

l L
1

I-c
ac

he

lo
ca

l L
2

I-c
ac

he

lo
ca

l I
-T

LB

Figure 5.3: Shared front-end miss event table sFMT.

instruction cache misses and branch mispredictions typically occur in
bursts.

The total additional error the sFMT introduces will be quantified in
the validation section.

5.1.2 Back-end miss events

The penalty of a back-end miss event is equal to the time dispatch is
stalled because the ROB is full (see Section 3.4.1 on page 32). This can
be fairly simply implemented in the proposed hardware performance
counter architecture: increment the respective global counter each cycle
the ROB is full. The type of miss event (L1 D-cache, L2 D-cache or D-
TLB miss, or other resource stall (e.g., medium-latency functional unit))
that caused the ROB to fill up, can be found by looking at the instruction
blocking the head of the ROB. If it is waiting for data returning from a
lower level cache or memory, the corresponding cache miss counter
is incremented, and otherwise the cycle is counted as a resource stall.
Note that this naturally handles overlapping long-latency misses: only
the penalty of the first miss is counted, since overlapped misses do not
block the head of the ROB.

5.1.3 Overlaps between miss events

One thing we should be aware of is front-end misses overlapped by
back-end misses and vice-versa (see Section 3.5.2 on page 40). If we

5.1 Performance counter architecture description 85

would account cycles for both overlapping miss events, we would
double-count these cycles and the sum of all cycle components would
be larger than the total cycle count. Therefore we should attribute these
cycles to only one miss event. Which miss event to choose is of less im-
portance, since Table 3.1 illustrated the relative infrequency of these
overlaps.

We first consider instruction cache misses that are overlapped by
long-latency load misses. An instruction cache miss can only occur
when instructions can still be fetched, which means the ROB is not full,
in which case we do not account cycles to long-latency load misses. So
we never account a cycle to both instruction cache misses and long data
cache misses. Using this default behavior, we account the cycles where
the instruction cache miss is handled concurrently with the long data
cache miss to the instruction cache miss component. The remaining
penalty cycles, i.e., when dispatch is stalled due to the full ROB, are
then accounted to the long-latency load miss component.

If a long-latency back-end miss is followed by a branch mispredic-
tion before the ROB is full, then there is a possibility we count some cy-
cles twice: if, after dispatching some wrong-path instructions, the ROB
gets full, we count the following cycles as a back-end miss cycles, and,
in addition, each cycle we increment the branch penalty counter of the
local FMT entry, which will eventually be added to the global counter.
This means that we account these cycles both to the long-latency load
miss and the branch misprediction. Therefore we choose not to incre-
ment the branch penalty counter when the ROB is full. This means that
we account cycles to the branch misprediction as long as the ROB is
not full. If the branch misprediction was independent of the load miss
(see Figure 3.17), the number of cycles where the ROB is full before
the branch misprediction is detected will be zero or limited (because
the branch miss will be detected long before the load miss returns). If
the branch misprediction depends on the load miss (see Figure 3.18),
then this scheme accounts the penalty exactly as indicated by the fig-
ure, i.e., the cycles where wrong-path instructions are dispatched are
accounted to the branch misprediction, and the cycles the ROB is full
are accounted to the long-latency load miss.

86 Cycle accounting in single-threaded processors

5.2 Other cycle accounting methods

The question “Where have all the cycles gone?” is not new and many
researchers have tried to construct a cycle accounting method to accu-
rately assign cycle penalties to miss events. A widely used naive ap-
proach for computing the various components is to multiply the num-
ber of miss events of a given type by an average penalty per miss
event [2, 57, 64, 80, 103]. For example, the L2 data cache miss cycle
component is computed by multiplying the number of L2 misses with
the average memory access latency; the branch misprediction contribu-
tion is computed by multiplying the number of branch mispredictions
with an average branch misprediction penalty. We will refer to this ap-
proach as the naive approach in the validation section.

There are a number of pitfalls to the naive approach, however. First,
the average penalty for a given miss event may vary across programs,
and, in addition, the number of penalty cycles may not be obvious.
For example, interval analysis showed that the branch misprediction
penalty can be substantially larger than the front-end pipeline length—
taking the front-end pipeline length as an estimate for the branch mis-
prediction penalty leads to a significant underestimation of the real
branch misprediction penalty. Second, the naive approach does not
consider that some of the miss event penalties can be hidden through
out-of-order processing of independent instructions and miss events.
For example, as illustrated in Chapter 3, L1 data cache misses can be
hidden almost completely in a balanced, out-of-order superscalar pro-
cessor. Also, two or more long-latency loads may overlap with each
other. Not taking these overlapping miss events into account can give
highly skewed estimates of the cycle components. And finally, the
naive approach makes no distinction between miss events along mis-
predicted control flow paths and miss events along correct control flow
paths. A naive method may count events on both paths, leading to
inaccuracy.

To overcome the latter problem, some processors, such as the In-
tel Pentium 4 [89], feature a mechanism for obtaining non-speculative
event counts. This is achieved by implementing a tagging mechanism
that tags instructions as they flow through the pipeline, and the event
counters get updated only when the instruction reaches the commit
stage. If the instruction is not committed, i.e., the instruction is from
a misspeculated path, the event counter does not get updated. We will
refer to this approach as the naive non spec approach; this approach dif-

5.2 Other cycle accounting methods 87

fers from the naive approach in that it does not count miss events along
mispredicted paths.

In response to some of the above shortcomings, the designers of
the IBM POWER5 microprocessor implemented a dedicated hardware
performance counter mechanism with the goal of computing cycle
component stacks [65, 66]. To the best of our knowledge, the IBM
POWER5 is the only out-of-order processor implementing a dedicated
hardware performance counter architecture for measuring cycle com-
ponents. The IBM POWER5 has hardware performance counters that
can be programmed to count particular commit stall conditions such as
I-cache miss, branch misprediction, L2 D-cache miss, L1 D-cache miss,
etc. The general philosophy for the IBM POWER5 cycle accounting
mechanism is to inspect the commit stage of the pipeline, and if no
instructions can be committed in a given cycle, the appropriate commit
stall counter is incremented. As such, the commit stall counters count
the number of stall cycles for a given stall condition. There are two
primary conditions for a commit stall.

• First, the reorder buffer is empty. There are two possible causes
for this.

– An I-cache miss, or an I-TLB miss occurred, and the pipeline
stops feeding new instructions into the ROB. This causes the
ROB to drain, and, eventually, the ROB may become empty.
When the ROB is empty, the POWER5 mechanism starts
counting lost cycles in the I-cache completion stall counter
until instructions start entering the ROB again.

– A branch is mispredicted. When the mispredicted branch
gets resolved, the pipeline needs to be flushed and new in-
structions need to be fetched from the correct control flow
path. At that point in time, the ROB is empty until newly
fetched instructions have traversed the front-end pipeline to
reach the ROB. The POWER5 mechanism counts the num-
ber of cycles with an empty ROB in the branch misprediction
stall counter.

• The second reason for a commit stall is that the instruction at the
head of the ROB cannot be committed for some reason. The zero-
commit cycle can be attributed to one of the following.

– The instruction at the head of the ROB is stalled because of
a D-cache miss or a D-TLB miss. This causes the D-cache or

88 Cycle accounting in single-threaded processors

D-TLB commit stall counter to be incremented every cycle
until the memory operation is resolved.

– The instruction at the head of the ROB is an instruction with
latency greater than one cycle, such as a multiply, divide,
or a long latency floating-point operation, and the instruc-
tion has not yet completed. The long-latency commit stall
counter is incremented every cycle until the commit stage
can again make progress.

These three CPI stack building approaches, the two naive ap-
proaches and the more complex IBM POWER5 approach, are both built
in a bottom-up fashion by focusing on individual events that affect per-
formance, such as cache misses, without considering how to combine
individual counts into a comprehensive picture of cycle components.
Our approach in contrast is constructed top-down, by first developing
a performance model, i.e., interval analysis, and then designing a set
of performance counters that can accurately measure the penalties as
defined by the performance model. As the next section will show, this
leads to much more accurate cycle component stacks.

5.3 Validation

The counter architecture described above is by construction able to ex-
actly compute the miss event penalties as defined by interval analysis
(considering the initial FMT design). The first part in this validation
section compares the individual miss event penalties to the penalties
assumed by other methods. The second part will evaluate the overall
accuracy compared to simulation. The processor configuration consid-
ered is the baseline configuration (see Appendix A).

5.3.1 Instruction cache misses

Figure 5.4 shows the individual penalty per L1 instruction cache miss
for our cycle accounting architecture compared to the other discussed
methods (we did not include a bar for the naive non spec approach, be-
cause the individual penalties are equal to the naive approach; they dif-
fer only in the number of instruction cache misses considered). This fig-
ure shows that the naive method computes the instruction cache miss
penalty in an accurate way: the penalty of an instruction cache miss

5.3 Validation 89

0

1

2

3

4

5

6

7

8

9

10
b

z
ip

2

c
ra

ft
y

e
o

n

g
a

p

g
c
c

g
z
ip

m
c
f

p
a

rs
e

r

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

L
1

I-
c
a

c
h

e
m

is
s

p
e

n
a

lt
y

proposed counter arch. naive approach IBM POWER5

Figure 5.4: The average penalty per L1 I-cache miss.

is equal to the access latency of the appropriate cache level. The IBM
POWER5 model in contrast only counts the number of cycles commit
is stalled due to the ROB being empty after an instruction cache miss.
Looking back at Figure 3.3 (page 28), this assumption is a substantial
underestimation of the actual penalty. The time needed to drain the
instruction window is not counted in the IBM POWER5 mechanism,
whereas it is an important part of the instruction cache miss penalty.
Note that if the drain time takes longer than the miss latency (in case a
largely filled ROB needs to be drained and there is low ILP or a signifi-
cant fraction of long-latency instructions), the IBM POWER5 approach
will not ascribe any penalty cycles to the instruction cache miss.

5.3.2 Branch mispredictions

The average cycle penalty for a branch misprediction is illustrated
in Figure 5.5. Remember that the penalty of a branch misprediction
consists of the branch resolution time and the front-end refill time. It
is therefore substantially larger than the front-end pipeline length as
assumed by the naive approach. The penalty estimation of the IBM
POWER5 approach is even worse, because the number of cycles the
commit stage is stalled due to an empty ROB after a branch mispredic-
tion is usually smaller than the front-end refill time.

90 Cycle accounting in single-threaded processors

0

5

10

15

20

25
b

z
ip

2

c
ra

ft
y

e
o

n

g
a

p

g
c
c

g
z
ip

m
c
f

p
a

rs
e

r

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

b
ra

n
c
h

m
is

p
re

d
ic

ti
o

n
p

e
n

a
lt
y

proposed counter arch. naive approach IBM POWER5

Figure 5.5: The average penalty per branch misprediction.

5.3.3 Short back-end misses

Short back-end misses (L1 data cache misses and medium-latency func-
tional units) rarely show a penalty. This is because dispatch is only
stalled when the ROB is filled up completely, which does not occur of-
ten on short misses. The naive approach, penalizing each L1 data cache
miss as the full access time to the L2 cache, largely overestimates the
penalty, see Figure 5.6. The IBM POWER5 mechanism performs better
by only counting the number of cycles commit is stalled due to short
back-end misses. It starts counting when the miss is at the head of the
ROB, which is however earlier than what interval analysis defines as
the penalty, namely only the number of cycles the ROB is actually full.
Therefore the IBM POWER5 approach still overestimates the impact of
short back-end misses.

5.3.4 Long back-end misses

Figure 5.7 shows the average penalty per long-latency load miss. In-
terval analysis showed that the penalty of an isolated long latency
load miss is approximately equal to the main memory latency, but that
several long-latency load misses can overlap, reducing the average
penalty. The naive approach does not take into account these overlaps

5.3 Validation 91

0

1

2

3

4

5

6

7

8

9

10
b

z
ip

2

c
ra

ft
y

e
o

n

g
a

p

g
c
c

g
z
ip

m
c
f

p
a

rs
e

r

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

L
1

D
-c

a
c
h

e
p

e
n

a
lt
y

p
e

r
m

is
s

proposed counter arch. naive approach IBM POWER5

Figure 5.6: The average penalty per L1 D-cache miss.

and therefore overestimates the total penalty. The IBM POWER5 mech-
anism naturally handles these overlap effects, as does our performance
counter architecture, by only looking at the first load miss that hits the
head of the ROB. The slight overestimation in the IBM POWER5 ap-
proach due to not waiting until the ROB is completely full is negligible
compared to the full penalty.

To summarize we can say that instruction cache miss penalties are
accurately measured by the naive method, but not by the IBM POWER5
approach; that back-end miss penalties are well estimated by the IBM
POWER5 method, but not by the naive approach; and that both ap-
proaches fail to characterize the penalty of a mispredicted branch accu-
rately.

5.3.5 Overall accuracy

This section evaluates the overall accuracy of the proposed hardware
performance counter architecture. We compare our two hardware im-
plementations, FMT and sFMT, against the IBM POWER5 mechanism,
the naive and naive non spec approaches and two simulation-based
cycle stacks.

92 Cycle accounting in single-threaded processors

0

50

100

150

200

250

300
b

z
ip

2

c
ra

ft
y

e
o

n

g
a

p

g
c
c

g
z
ip

m
c
f

p
a

rs
e

r

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

L
2

D
-c

a
c
h

e
p

e
n

a
lt
y

p
e

r
m

is
s

proposed counter arch. naive approach IBM POWER5

Figure 5.7: The average penalty per L2 D-cache miss.

The simulation-based cycle stacks will serve as a reference for com-
parison. We use two simulation-based stacks because of the difficulty in
defining what a standard ‘correct’ cycle stack should look like. In par-
ticular, there will be cycles that could reasonably be ascribed to more
than one miss event. Hence, if we evaluate cycle stack values in one
sequence, we may get different numbers than if they are evaluated in
a different sequence. To account for this effect, two simulation-based
cycle stacks are generated as follows. We first run a simulation assum-
ing perfect branch prediction and perfect caches, i.e., all branches are
correctly predicted and all cache accesses are L1 cache hits. This yields
the number of cycles for the base cycle component. We subsequently
run a simulation with a real L1 data cache. The additional cycles over
the first run (which assumes a perfect L1 data cache) gives the cycle
component due to L1 data cache misses. The next simulation run as-
sumes a real L1 data cache and a real branch predictor; this computes
the branch misprediction cycle component. For computing the remain-
ing cycle components, we consider two sequences. The first sequence
is the following: L1 I-cache, L2 I-cache, I-TLB, L2 D-cache and D-TLB;
the second sequence, called the ‘inverse order’, first computes the L2
D-cache and D-TLB components and then computes the L1 I-cache, L2
I-cache and I-TLB CPI components. Our simulation results show that
the sequence in which the cycle components are computed only has a

5.3 Validation 93

small effect on the overall results. This follows from the small percent-
ages of cycles that process overlapping front-end and back-end miss
event penalties, as previously shown in Table 3.1.

Figures 5.8 and 5.9 show normalized cycle stacks for the SPECint
2000 benchmarks for the simulation-based approach, the naive and
naive non spec approach, the IBM POWER5 approach, and the pro-
posed FMT and sFMT approaches. Figure 5.10 summarizes these cycle
stacks by showing the maximum cycle component errors for the vari-
ous cycle stack building methods.

Figures 5.8 and 5.9 show that the naive approach results in cycle
stacks that are highly inaccurate (and not even meaningful) for some
of the benchmarks. The sum of the miss event counts times the miss
penalties is larger than the total cycle count; this causes the base cycle
component, which is the total cycle count minus the miss event cycle
count, to be negative. This is the case for a number of benchmarks,
such as gap, gcc, mcf, twolf and vpr, with gcc being the most notable
example. The reason why the naive approach fails in building accu-
rate cycle stacks is that the naive approach does not adequately deal
with overlapped long back-end misses, does not accurately compute
the branch misprediction penalty, and in addition, it counts I-cache
(and I-TLB) misses along mispredicted paths. However, for bench-
marks that have very few overlapped back-end misses and very few
I-cache misses along mispredicted paths, the naive approach can be
fairly accurate, see for example eon and perlbmk. The naive non spec
approach, which does not count miss events along mispredicted paths,
is more accurate than the naive approach, however, the cycle stacks are
still not very accurate compared to the simulation-based cycle stacks.

The IBM POWER5 approach clearly is an improvement compared
to the naive approaches. For the benchmarks where the naive ap-
proaches resulted in a negative base component, the IBM POWER5
mechanism succeeds in producing meaningful cycle stacks. However,
compared to the simulation-based cycle stacks, the IBM POWER5 cy-
cle stacks are still inaccurate, see for example crafty, eon, gap, gzip,
perlbmk and vortex. The reason the IBM POWER5 approach falls short
is that the IBM POWER5 mechanism underestimates the I-cache miss
penalty as well as the branch misprediction penalty.

The FMT and sFMT cycle stacks track the simulation-based cycle
stacks very closely. Whereas both the naive and IBM POWER5 mech-
anisms show high errors for several benchmarks, the FMT and sFMT

94 Cycle accounting in single-threaded processors

bzip2

0%

20%

40%

60%

80%

100%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

crafty

0%

20%

40%

60%

80%

100%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

eon

0%

20%

40%

60%

80%

100%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

gap

-20%

0%

20%

40%

60%

80%

100%

120%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

gcc

-75%

-50%

-25%

0%

25%

50%

75%

100%

125%

150%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

gzip

0%

20%

40%

60%

80%

100%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

Figure 5.8: Normalized cycle stacks for the SPECint2000 benchmarks: the
simulation-based approach, the inverse order simulation-based approach, the
naive approach, the naive non spec approach, the IBM POWER5 approach
and the FMT and sFMT approaches.

5.3 Validation 95

mcf

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

parser

0%

20%

40%

60%

80%

100%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

perlbmk

0%

20%

40%

60%

80%

100%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

twolf

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

140%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

vortex

0%

20%

40%

60%

80%

100%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

vpr

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

140%

si
m

si
m

in
v

na
iv
e

na
iv
e_

no
n_

sp
ec

P
O
W

E
R
5

FM
T

sF
M

T

bpred

D-TLB

L2 D$

L1 D$

I-TLB

L2 I$

L1 I$

base

Figure 5.9: Normalized cycle stacks for the SPECint2000 benchmarks (contin-
ued)

96 Cycle accounting in single-threaded processors

0%

10%

20%

30%

40%

50%

60%

70%

b
z
ip

2

c
ra

ft
y

e
o

n

g
a

p

g
c
c

g
z
ip

m
c
f

p
a

rs
e

r

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

a
v
g

m
a

x
C

P
I
c
o

m
p

o
n

e
n

t
e

rr
o

r

naive

naive non spec

IBM POWER5

FMT

sFMT

Figure 5.10: Maximum cycle component error for the naive approaches, the
IBM POWER5 approach, FMT and sFMT compared to the simulation-based
cycle stacks.

architectures show significantly lower errors for all benchmarks. All
maximum cycle component errors are less than 4%, see Figure 5.10.
The average error for FMT and sFMT is 2.5% and 2.7%, respectively.

5.4 Related work

The Intel Itanium processor family provides a rich set of hardware per-
formance counters for computing cycle component stacks [47]. These
hardware performance monitors effectively compute the number of
lost cycles under various stall conditions such as branch mispredic-
tions, cache misses, etc. The Digital Continuous Profiling Infrastructure
(DCPI) [3] is another example of a hardware performance monitoring
tool for an in-order architecture. Computing cycle component stacks
for in-order architectures, however, is relatively easy compared to com-
puting cycle component stacks on out-of-order architectures.

Besides the IBM POWER5 mechanism, other hardware profiling
mechanisms have been proposed in the recent past for out-of-order ar-
chitectures. However, the goal for those methods is quite different from
ours. Our goal is to build simple and easy-to-understand cycle compo-
nent stacks, whereas the goal for the other approaches is detailed per-

5.5 The performance impact of compiler optimizations 97

instruction profiling. For example, the ProfileMe framework [18] ran-
domly samples individual instructions and collects cycle-level informa-
tion on a per-instruction basis. Collecting aggregate cycle component
stacks can be done using the ProfileMe framework by profiling many
randomly sampled instructions and by aggregating all of their individ-
ual latency information. An inherent limitation with this approach is
that per-instruction profiling does not allow for modeling overlap ef-
fects. The ProfileMe framework partially addresses this issue by pro-
filing two potentially concurrent instructions. Shotgun profiling [35]
tries to model overlap effects between multiple instructions by collect-
ing miss event information within hot spots using specialized hardware
performance counters. A post mortem analysis then determines, based
on a simple processor model, the amount of overlaps and interactions
between instructions within these hot spots. Per-instruction profiling
has the inherent limitation of relying on (i) sampling which may intro-
duce inaccuracy, (ii) per-instruction information for computing overlap
effects, and (iii) interrupts for communicating miss event information
from hardware to software which may lead to overhead and/or pertur-
bation issues.

5.5 Application: studying the performance impact
of compiler optimizations

To illustrate the value of being able to construct accurate cycle compo-
nent stacks, we will show their use in studying the performance impact
of compiler optimizations [31]. An optimizing compiler implements a
large number of individual optimizations which not only interact with
the microarchitecture, but also interact with each other. These inter-
actions can be constructive (improved performance), destructive (lost
performance), or neutral. Furthermore, whether there is performance
gain or loss often depends on the particular program being optimized
and executed.

In practice, the only way that the performance gain (or loss) for
a given compiler optimization can be determined is by running op-
timized programs on the hardware and timing them. This method,
while useful, does not provide insight regarding the underlying causes
for performance gain/loss. Therefore we will use the proposed hard-
ware performance counter architecture for constructing cycle compo-
nent stacks to study the impact compiler optimizations have on perfor-

98 Cycle accounting in single-threaded processors

Table 5.1: The SPEC CPU2000 C benchmarks, their inputs and the dynamic in-
struction count when compiled using the -O3 optimization flag (in millions).

benchmark input dyn. I-cnt (M)

bzip2 lgred.program 2,102
crafty lgred 781
gap lgred 672
gcc lgred.cp-decl.i 4,576
gzip lgred.graphic 1,682
mcf lgred 659
parser lgred 3,944
perlbmk lgred.makerand 1,943
twolf lgred 1,236
vortex lgred 1,256
vpr lgred route 643
ammp lgred 1,344
art lgred 2,038
equake lgred 817
mesa lgred 1,691

mance. By doing so, we gain insight into the underlying mechanisms
by which compiler optimizations affect out-of-order processor perfor-
mance. We also compare the results to the performance impact of the
same compiler optimizations on an in-order processor.

5.5.1 Experimental setup

For this study, we selected the C benchmarks from the SPEC CPU2000
benchmark suite, see Table 5.1. Because we want to run all the bench-
marks to completion for all the compiler optimizations, we use the
lgred inputs provided by MinneSPEC [59]. The dynamic instruction
count of the lgred input varies between several hundreds of millions
of instructions and a number of billions of instructions.

All the benchmarks were compiled using gcc v4.1.1 (dated May
2006) on an Alpha 21264 processor machine. We chose the gcc com-
piler because, in contrast to the native Compaq cc compiler, it comes
with a rich set of compiler flags that can be set individually. This en-
ables us to consider a wide range of optimization levels. The 22 op-
timization levels considered in this study are given in Table 5.2. This
ordering of optimization settings is inspired by gcc’s -O1, -O2 and
-O3 optimization levels; the compiler optimizations are applied on top

5.5 The performance impact of compiler optimizations 99

Table 5.2: Compiler optimization levels considered in this study.

Abbreviation Description

base base optimization level: -O1 -fnotree-ccp -fno-tree-dce
-fno-tree-dominator-opts -fno-tree-dse
-fno-tree-ter -fno-tree-lrs -fno-tree-sra
-fno-tree-copyrename-fno-tree-fre -fno-tree-ch
-fno-cprop-registers -fno-merge-constants
-fno-loop-optimize -fno-if-conversion
-fno-if-conversion2 -fno-unit-at-a-time

basic tree opt basic optimizations on intermediate SSA code tree

const prop/elim merge identical constants across compilation units
constant propagation and copy elimination

loop opt loop optimizations: move constant expressions out of loop and
simplify exit test conditions

if-conversion if-conversion: convert control dependencies to data dependencies
using predicated execution through conditional move instructions

O1 optimization flag -O1

O2 -fnoO2 -O2 with all individual -O2 optimization flags disabled

CSE apply common subexpression elimination

BB reorder reorder basic blocks in order to reduce the number of taken branches
and improve code locality

strength red strength reduction optimization and elimination of iteration variables

recursion opt optimize sibling and tail recursive function calls

instruction reorder instructions to eliminate stalls due to required data being
scheduling unavailable; includes scheduling instructions across basic blocks and

is specific for target platform on which the compiler runs

strict aliasing assumes that an object of one type never resides at the same address
as an object of a different type, unless the types are almost the same

alignment align the start of branch targets, loops and functions to a power-of-two
boundary

adv tree opt advanced intermediate code tree optimizations

O2 optimization flag -O2

aggr loop opt perform more aggressive loop optimizations

inlining integrate simple functions into their callers

O3 optimization flag -O3

loop unroll unroll loops whose number of iterations can be determined
at compile time or upon entry to the loop

software pipelining modulo scheduling

FDO feedback-directed optimization using edge couts

100 Cycle accounting in single-threaded processors

of each other to progressively evolve from the base optimization level
to the most advanced optimization level. The reason for working with
these optimization levels is to keep the number of optimization com-
binations at a tractable number while exploring a wide enough range
of optimization levels—the number of possible optimization settings
by setting individual flags is obviously huge and impractical to do. We
believe the particular ordering of optimization levels does not affect the
overall conclusions from this study.

We simulated all the binaries on the SimpleScalar simulator aug-
mented with the cycle accounting performance counter architecture,
using the baseline processor configuration in Appendix A. We also
simulated them on a similar in-order configuration. Cycle accounting
on an in-order processor is much more simple than on an out-of-order
processor. Since an in-order processor has no instruction window, we
focus on issue instead of dispatch to perform cycle accounting. When
no instruction can be issued in a particular cycle, the mechanism in-
crements the count of the appropriate cycle component. For example,
when the next instruction to issue stalls for a register to be produced by
an L2 miss, the cycle is assigned to the L2 D-cache miss cycle compo-
nent. Similarly, if no instructions are available in the pipeline to issue
because of a branch misprediction, the cycle is assigned to the branch
misprediction cycle component. Since misspeculated instructions are
never issued (the branch will be resolved first, due to the in-order exe-
cution), we do not have to take into account misses along mispredicted
paths, and the branch penalty only consists of the front-end refill time.

5.5.2 Out-of-order processor performance

Before discussing the impact of compiler optimizations on out-of-order
processor performance in great detail on a number of case studies, we
first present and discuss some general findings.

Figure 5.11 shows the average normalized execution time for the se-
quence of optimizations used in this study. The horizontal axis shows
the various optimization levels; the vertical axis shows the normalized
execution time (averaged across all benchmarks) compared to the base
optimization setting. On average, over the set of benchmarks and the
set of optimization settings considered in this study, performance im-
proves by 15.1% compared to the base optimization level. (Note that
our base optimization setting already includes a number of optimiza-

5.5 The performance impact of compiler optimizations 101

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

O

a
v
g

n
o
rm

a
liz

e
d

e
x
e
c
u
ti
o
n

ti
m

e

Figure 5.11: Averaged normalized execution time on a superscalar out-of-
order processor.

tions, and results in 40% better performance than the -O0 compiler set-
ting.) Some benchmarks, such as ammp and mesa observe no or almost
no performance improvement. Other benchmarks benefit substantially,
such as mcf (19%), equake (23%) and art (over 40%).

Figure 5.12 summarizes the total performance improvement for the
individual cycle components. This graph divides the total 15.1% per-
formance improvement by the contributions in each of the cycle com-
ponents.

The MLP and branch penalty components are no explicit cycle stack
components, but in order to make the analysis more interesting, we
split up the L2 D-cache miss and D-TLB miss component improve-
ments into (i) the improvement due to a decrease in the number of miss
events, and (ii) the improvement due to an increase in the exploited
memory-level parallelism. We do so by also counting the decrease (or
increase) of the number of miss events, and comparing them with the
cycle component improvement. The part of the cycle component im-
provement that is proportional to the decrease of the number of miss
events is accounted to the ‘no/ L2 D-cache’ and ‘no/ D-TLB miss’ com-
ponent, and the remaining part is accounted to the ‘MLP’ component.

Likewise, we split up the branch misprediction cycle component
into a component that indicates the improvement due to the decrease of
the number of branch mispredictions, and a component that indicates
the improvement due to the decrease in the average branch mispredic-
tion penalty (i.e., due to a smaller branch resolution time). Again, this

102 Cycle accounting in single-threaded processors

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

16%

c
y
c
le

c
o
m

p
o
n
e
n
t

d
e
c
re

a
s
e

resource stall

branch penalty

no/ branch misses

MLP

no/ D-TLB misses

no/ L2 D-cache

L1 D-cache

I-TLB

L2 I-cache

L1 I-cache

base

Figure 5.12: Overall performance improvement on an out-of-order processor
across the various compiler settings partitioned by cycle component.

is done by dividing the total branch misprediction cycle component im-
provement into a part that is proportional to the decrease of the number
of branch mispredictions, and the remaining part, that is due to smaller
branch misprediction penalties.

The ‘resource stall’ component reflects the performance improve-
ment in the number of cycles the processor is stalled in the absence of
miss events, i.e., for the out-of-order processor, when the ROB fills in
the absence of miss events (due to very long critical dependency paths),
and for the in-order processor, when the next instruction cannot issue
because it depends on an instruction that is not yet completed and that
is not experiencing a miss event

There are a number of interesting insights to be gained from the
above analysis concerning the impact of compiler optimizations on out-
of-order processor performance.

First, compiler optimizations reduce the dynamic instruction count
and improve the base cycle component. Figure 5.12 shows that an ab-
solute 6.6% performance improvement (or 43.9% of the total improve-
ment) comes from reducing the base cycle component. As such, we

5.5 The performance impact of compiler optimizations 103

conclude that reducing the dynamic instruction count, which has been
a traditional objective for optimization dating back to sequential (non-
pipelined) processors, is still an important optimization criterion for
today’s out-of-order processors.

Compiler optimizations that aim at improving the critical path of
inter-operation dependencies only improve the branch misprediction
penalty. This is a key new insight from interval analysis: the critical
path of inter-operation dependencies is only visible through the branch
misprediction penalty and by consequence, optimizations targeted at
reducing chains of dependent instructions only affect the branch res-
olution time; on a balanced processor, inter-operation dependencies
not residing on the critical path leading to a mispredicted branch can
be effectively hidden by out-of-order execution. Note that optimiza-
tions targeting the inter-operation critical path may also improve the
‘resource stall’ cycle component; in practice though, the performance
improvement due to this effect is negligible (less than 0.2% on aver-
age). Figure 5.12 shows the improvement in the branch resolution time
across the optimization settings; this is a 1.2% absolute improvement
or a 7.8% relative improvement.

Finally, compiler optimizations significantly affect the number of
miss events and their overlap behavior. According to Figure 5.12, 9.6%
of the total performance improvement comes from a reduced number
of branch mispredictions, and 16.7% of the total performance improve-
ment comes from improved L1 I-cache behavior. 19.5% of total per-
formance improvement is due to improved memory-level parallelism
(MLP). In other words, compiler optimizations that bring L2 cache miss
loads closer to each other in the dynamic instruction stream improve
performance substantially by increasing the amount of MLP.

5.5.3 Compiler optimization analysis case studies

We now present some case studies illustrating the power of interval
analysis for gaining insight into how compiler optimizations affect out-
of-order processor performance. Figure 5.13 and 5.14 show normalized
cycle distributions for individual benchmarks—we selected the bench-
marks that are affected most by the compiler optimizations. These bars
are computed as follows. For all compiler optimization settings, we
compute the cycle counts for each of the nine cycle components: base,
L1 I-cache, L2 I-cache, I-TLB, L1 D-cache, L2 D-cache, D-TLB, branch

104 Cycle accounting in single-threaded processors

art

0.0

0.2

0.4

0.6

0.8

1.0

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

O

n
o
rm

a
liz

e
d

c
y
c
le

d
is

tr
ib

u
ti
o
n other

bpred

DTLB

DL2

DL1

ITLB

IL2

IL1

base

crafty

0.0

0.2

0.4

0.6

0.8

1.0

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

O

n
o
rm

a
liz

e
d

c
y
c
le

d
is

tr
ib

u
ti
o
n other

bpred

DTLB

DL2

DL1

ITLB

IL2

IL1

base

equake

0.0

0.2

0.4

0.6

0.8

1.0

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

O

n
o
rm

a
liz

e
d

c
y
c
le

d
is

tr
ib

u
ti
o
n other

bpred

DTLB

DL2

DL1

ITLB

IL2

IL1

base

bzip2

0.0

0.2

0.4

0.6

0.8

1.0

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

O

n
o
rm

a
liz

e
d

c
y
c
le

d
is

tr
ib

u
ti
o
n other

bpred

DTLB

DL2

DL1

ITLB

IL2

IL1

base

Figure 5.13: Normalized cycle distributions for the out-of-order processor for
art, bzip2, crafty and equake.

5.5 The performance impact of compiler optimizations 105

mcf

0.0

0.2

0.4

0.6

0.8

1.0

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

O

n
o
rm

a
liz

e
d

c
y
c
le

d
is

tr
ib

u
ti
o
n other

bpred

DTLB

DL2

DL1

ITLB

IL2

IL1

base

perlbmk

0.0

0.2

0.4

0.6

0.8

1.0

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

O

n
o
rm

a
liz

e
d

c
y
c
le

d
is

tr
ib

u
ti
o
n other

bpred

DTLB

DL2

DL1

ITLB

IL2

IL1

base

twolf

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

O

n
o
rm

a
liz

e
d

c
y
c
le

d
is

tr
ib

u
ti
o
n other

bpred

DTLB

DL2

DL1

ITLB

IL2

IL1

base

vpr

0.0

0.2

0.4

0.6

0.8

1.0

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

O

n
o
rm

a
liz

e
d

c
y
c
le

d
is

tr
ib

u
ti
o
n other

bpred

DTLB

DL2

DL1

ITLB

IL2

IL1

base

Figure 5.14: Normalized cycle distributions for the out-of-order processor for
mcf, perlbmk, twolf and vpr.

106 Cycle accounting in single-threaded processors

Ta
b

le
5.

3:
T

he
nu

m
be

r
of

be
nc

hm
ar

ks
(o

ut
of

15
)f

or
w

hi
ch

a
gi

ve
n

co
m

pi
le

r
op

ti
m

iz
at

io
n

ha
s

an
po

si
ti

ve
(m

or
e

th
an

0.
1%

)
ef

fe
ct

on
th

e
va

ri
ou

s
cy

cl
e

co
m

po
ne

nt
s,

th
e

nu
m

be
r

of
re

ti
re

d
in

st
ru

ct
io

ns
,t

he
nu

m
be

r
lo

ng
ba

ck
-e

nd
m

is
se

s
an

d
th

ei
r

M
L

P,
an

d
th

e
nu

m
be

r
of

br
an

ch
m

is
pr

ed
ic

ti
on

s
an

d
th

ei
r

pe
na

lt
ie

s.
N

um
be

rs
la

rg
er

th
an

or
eq

ua
lt

o
9

ar
e

sh
ow

n
in

bo
ld

.

cy
cl

e
co

m
po

ne
nt

s
#i

ns
ns

D
L

2
an

d
D

T
L

B
m

is
se

s
br

m
is

pr
ed

s
op

ti
m

iz
at

io
n

to
ta

l
ba

se
IL

1
IL

2
IT

L
B

D
L

1
D

L
2

D
T

L
B

bp
re

d
ot

he
r

#D
L

2
#D

T
L

B
M

L
P

#b
m

p
pe

n
ba

si
c

tr
ee

op
t

11
14

5
0

0
2

6
2

11
0

14
3

0
5

11
3

cs
tp

ro
p/

el
im

6
2

1
0

0
1

0
0

8
0

7
0

0
1

4
4

lo
op

op
t

12
12

3
0

0
3

3
0

8
8

13
3

0
3

3
9

if
-c

on
ve

rs
io

n
7

1
3

0
0

1
6

1
10

1
1

2
0

6
8

5
O

1
9

10
4

0
0

2
2

0
3

1
11

1
0

2
3

5
O

2
-f

no
O

2
5

0
3

0
0

2
2

1
8

1
0

1
0

1
5

6
C

SE
6

5
3

0
0

2
1

1
8

2
9

1
1

1
6

6
B

B
re

or
d

er
in

g
10

10
6

0
0

2
2

0
4

1
11

2
1

0
6

1
st

re
ng

th
re

d
4

3
1

0
0

0
1

1
3

0
2

1
0

1
2

1
re

cu
rs

io
n

op
t

7
4

4
0

0
0

3
0

4
0

6
3

0
0

4
3

in
sn

sc
he

d
ul

in
g

5
1

2
0

0
4

3
1

10
4

0
1

0
3

5
10

st
ri

ct
al

ia
si

ng
8

11
2

0
0

5
3

1
6

3
11

1
1

5
0

10
al

ig
nm

en
t

5
3

2
0

0
0

3
1

5
0

4
2

0
2

4
2

ad
v

tr
ee

op
t

6
3

3
0

0
2

4
2

4
3

5
1

2
3

3
5

O
2

9
7

4
0

0
0

2
0

6
0

7
3

0
2

4
4

ag
gr

lo
op

op
t

7
2

3
0

0
1

2
0

4
1

3
1

0
1

4
0

in
lin

in
g

12
10

3
0

0
0

7
1

9
1

12
4

1
4

7
4

O
3

5
2

2
0

0
0

1
0

3
0

2
0

0
1

3
1

lo
op

un
ro

lli
ng

9
11

1
0

0
3

4
0

7
2

12
0

0
5

3
6

so
ft

w
ar

e
pi

pe
lin

in
g

3
1

2
0

0
1

1
0

1
1

0
1

1
0

4
0

FD
O

8
7

3
1

0
2

3
1

6
1

10
5

2
1

7
5

5.5 The performance impact of compiler optimizations 107

Ta
b

le
5.

4:
T

he
nu

m
be

r
of

be
nc

hm
ar

ks
(o

ut
of

15
)

fo
r

w
hi

ch
a

gi
ve

n
co

m
pi

le
r

op
ti

m
iz

at
io

n
ha

s
a

ne
ga

ti
ve

(m
or

e
th

an
0.

1%
)

ef
fe

ct
on

th
e

va
ri

ou
s

cy
cl

e
co

m
po

ne
nt

s,
th

e
nu

m
be

r
of

re
ti

re
d

in
st

ru
ct

io
ns

,
th

e
nu

m
be

r
of

lo
ng

ba
ck

-e
nd

m
is

se
s

an
d

th
ei

r
M

L
P,

an
d

th
e

nu
m

be
r

of
br

an
ch

m
is

pr
ed

ic
ti

on
s

an
d

th
ei

r
pe

na
lt

ie
s.

N
um

be
rs

la
rg

er
th

an
or

eq
ua

lt
o

9
ar

e
sh

ow
n

in
bo

ld
.

cy
cl

e
co

m
po

ne
nt

s
#i

ns
ns

D
L

2
an

d
D

T
L

B
m

is
se

s
br

m
is

pr
ed

s
op

ti
m

iz
at

io
n

to
ta

l
ba

se
IL

1
IL

2
IT

L
B

D
L

1
D

L
2

D
T

L
B

bp
re

d
ot

he
r

#D
L

2
#D

T
L

B
M

L
P

#b
m

p
pe

n
ba

si
c

tr
ee

op
t

4
0

1
0

0
2

3
0

3
5

1
2

1
4

1
10

cs
tp

ro
p/

el
im

6
1

4
0

0
0

2
1

2
0

0
2

0
2

3
2

lo
op

op
t

1
1

2
0

0
1

3
1

4
0

0
2

1
2

6
3

if
-c

on
ve

rs
io

n
6

7
3

0
0

2
1

1
1

1
11

1
0

2
2

4
O

1
4

1
1

0
0

1
3

2
7

2
0

3
1

3
5

4
O

2
-f

no
O

2
8

11
3

0
0

0
3

0
3

0
13

1
0

2
4

1
C

SE
6

6
3

0
0

1
0

1
3

1
4

1
0

1
5

4
B

B
re

or
d

er
in

g
2

1
0

0
0

1
3

2
8

2
2

1
1

4
5

11
st

re
ng

th
re

d
3

1
1

0
0

0
1

0
1

0
1

0
0

1
0

0
re

cu
rs

io
n

op
t

2
1

1
0

0
0

2
1

4
0

0
1

0
2

4
3

in
sn

sc
he

d
ul

in
g

8
10

4
0

0
1

5
0

1
1

11
3

1
1

3
1

st
ri

ct
al

ia
si

ng
4

0
2

0
0

0
3

1
2

1
0

3
0

1
6

2
al

ig
nm

en
t

4
1

4
0

0
2

2
0

3
1

0
2

0
2

3
2

ad
v

tr
ee

op
t

7
3

3
0

0
0

2
1

7
0

4
2

0
2

6
2

O
2

3
1

2
0

0
1

3
1

1
0

2
3

0
1

3
3

ag
gr

lo
op

op
t

2
0

1
0

0
1

1
0

1
0

0
1

0
0

1
2

in
lin

in
g

1
2

2
2

0
3

0
1

4
1

1
1

1
0

3
5

O
3

4
1

3
0

0
0

2
0

1
1

1
2

0
0

1
2

lo
op

un
ro

lli
ng

5
1

6
2

0
1

1
0

3
1

1
3

0
1

5
2

so
ft

w
ar

e
pi

pe
lin

in
g

3
1

2
0

0
0

1
1

2
0

1
1

0
2

3
4

FD
O

6
4

2
0

0
2

3
0

5
2

3
0

0
6

5
7

108 Cycle accounting in single-threaded processors

misprediction and other resource stalls. Once these cycle counts are
computed we then normalize the cycle components for all optimiza-
tion settings to the total cycle count for the base optimization setting.

During the analysis presented in the next discussion we will also
refer to Tables 5.3 and 5.4 which show the number of benchmarks for
which a given compiler optimization results in a positive or negative
effect, respectively, on the various cycle components. These tables also
show the number of benchmarks for which the dynamic instruction
count is significantly affected by the various compiler optimizations;
likewise for the number of long back-end misses and their amount
of MLP as well as for the number of branch mispredictions and their
penalty. We do not show average performance improvement num-
bers in these tables because outliers make the interpretation difficult;
instead, we treat outliers in the following discussion.

Basic loop optimizations. Basic loop optimizations move constant
expressions out of the loop and simplify loop exit conditions. Most
benchmarks benefit from these loop optimizations; the reasons for
improved performance include a smaller dynamic instruction count
which reduces the base cycle component. A second reason is that
the simplified loop exit conditions result in a reduced branch mispre-
diction penalty. Two benchmarks that benefit significantly from loop
optimizations are perlbmk (6.7% improvement) and art (5.9% improve-
ment). The reason for these improvements is different for the two
benchmarks. For perlbmk, the reason is a reduced L1 I-cache compo-
nent and a reduced branch misprediction component. The reduced
L1 I-cache component is due to fewer L1 I-cache misses. The branch
misprediction cycle component is reduced mainly because of a reduced
branch misprediction penalty—the number of branch mispredictions is
not affected very much. In other words, the loop optimizations reduce
the critical path leading to the mispredicted branch so that the branch
gets resolved earlier. For art on the other hand, the major cycle reduc-
tion is observed in the L2 D-cache cycle component. The reason being
an increased number of overlapping L2 D-cache misses: the number
of L2 D-cache misses remains the same, but the reduced code foot-
print brings the L2 D-cache misses closer to each other in the dynamic
instruction stream which results in more memory-level parallelism.

5.5 The performance impact of compiler optimizations 109

If-conversion. The goal of if-conversion is to eliminate hard-to-predict
branches through predicated execution. The potential drawback of
if-conversion is that more instructions need to be executed because
instructions along multiple control flow paths need to be executed and
part of these will be useless. Executing more instructions reflects itself
in a larger base cycle component. In addition, more instructions need to
be fetched; we observe that this also increases the number of L1 I-cache
misses for several benchmarks (see for example twolf). Approximately
half the benchmarks benefit from if-conversion; for these benchmarks,
the reduction in the number of branch mispredictions outweights the
increased number of instructions that need to be executed. For the
other half of the benchmarks, the main reason for the decreased perfor-
mance is the increased number of dynamically executed instructions.

An interesting benchmark to consider more closely is vpr: its base,
resource stall and L1 D-cache cycle components increase by 4.5%, 9.6%
and 3.9%, respectively. This analysis shows that if-conversion adds
to the already very long critical path in vpr—vpr executes a tight loop
with loop-carried dependencies which results in very long dependence
chains. If-conversion adds to the critical path because registers may
need to be copied using conditional move instructions at the reconver-
gence point. Because of this very long critical path in vpr, issue is unable
to keep up with dispatch which causes the reorder buffer to fill up. In
other words, the reorder buffer is unable to hide the instruction laten-
cies and dependencies through out-of-order execution, which results in
increased base, L1 D-cache and resource stall cycle components.

Basic block reordering. These compiler optimizations try to mini-
mize the number of taken branches and improve code locality by re-
ordering basic blocks. This is mainly reflected in a decrease in the num-
ber of instruction cache misses for some benchmarks (e.g., for crafty and
perlbmk). These optimizations also look for branch conditions that are
subsumed by previous branch conditions, and eliminates these super-
fluous branches. This results in a smaller dynamic instruction count for
11 out of 15 benchmarks, see Table 5.3.

Instruction scheduling. Instruction scheduling tends to increase the
dynamic instruction count which, in its turn, increases the base cycle
component. This observation was also made by Valluri and Govin-
darajan [99]. The reason for the increased dynamic instruction count is

110 Cycle accounting in single-threaded processors

that spill code is added during the scheduling process by the compiler.
Note also that instruction scheduling reduces the branch misprediction
penalty for 10 out of 15 benchmarks, see Table 5.3, i.e., the critical path
leading to the mispredicted branch is shortened through the improved
instruction scheduling. Unfortunately, this does not compensate for the
increased dynamic instruction count resulting in a net performance de-
crease for most of the benchmarks.

Strict aliasing. The assumption that references to different object
types never access the same address allows for more aggressive schedul-
ing of memory operations—this is a safe optimization as long as the C
program complies with the ISO C99 standard1. This results in sig-
nificant performance improvements for a number of benchmarks,
see for example art (16.2%). Strict aliasing reduces the number of
non-overlapping L2 D-cache misses by 11.5% for art while keeping
the total number of L2 D-cache misses almost unchanged; in other
words, memory-level parallelism is increased. Another example is
bzip2, where the greatest part of the 7.5% improvement is caused by
a reduced number of dynamic instructions (base component). This is
because the strict aliasing assumption allows the compiler to find more
constant expressions, which can then be moved out of loops.

Inlining. Function inlining is beneficial for most of the benchmarks
because of a reduced dynamic instruction count and a reduced num-
ber of branch mispredictions, i.e., a smaller number of return address
mispredictions. An interesting observation is to be made related to mcf
which shows an 8% performance improvement through inlining. The
cycle component plot given in Figure 5.14 shows that the reason for the
performance improvement is twofold: a reduced dynamic instruction
count and a reduced number of (non-overlapping) L2 D-cache and D-
TLB misses. The main contributor seems to be the reduced number of
non-overlapping L2 D-cache misses. Function inlining eliminates the
overhead of the function call which reduces the dynamic instruction
count. In addition, the caller can now be optimized more aggressively
by including the inlined function in the optimization scope. The end re-
sult is that load operations can be scheduled closer to each other which
results in improved memory-level parallelism.

1The current standard for Programming Language C is ISO/IEC 9899:1999, pub-
lished 1999-12-01.

5.5 The performance impact of compiler optimizations 111

Loop unrolling. Loop unrolling improves performance for 9 out of
15 benchmarks. The most important factor is the decrease of the base
component. Loop unrolling can reduce the number of executed instruc-
tions by combining instructions in the unrolled loop body (e.g., itera-
tion counters can be incremented once per unrolled loop). Another case
is the performance improvement of 14% for art. The reason here is the
improved memory-level parallelism, i.e., due to a larger degree of free-
dom to schedule memory operations in the unrolled loop body, more
L2 D-cache misses can overlap resulting in a smaller penalty per miss
and an improved overall performance.

5.5.4 Comparison with in-order processors

Having discussed the impact of compiler optimizations on out-of-order
processor performance, it is interesting to compare against the impact
these compiler optimizations have on in-order processor performance.
Figure 5.15 shows the average normalized cycle counts on a superscalar
in-order processor. Performance improves by 17.5% on average com-
pared to the base optimization level2. The most striking observation
to be made when comparing the in-order graph (Figure 5.15) against
the out-of-order graph (Figure 5.11) is that instruction scheduling im-
proves performance on the in-order processor whereas on the out-of-
order processor, it degrades performance. The reason is that on in-
order architectures, the improved instruction schedule outweights the
additional spill code that may be generated for accommodating the im-
proved instruction schedule. On an out-of-order processor, the addi-
tional spill code only adds overhead through an increased base cycle
component.

To better understand the impact of compiler optimizations on out-
of-order versus in-order processor performance we now compare in-
order processor cycle components against out-of-order processor cycle
components, see Figure 5.16. To facilitate the discussion, we make the
following distinction in cycle components. The first group of cycle com-
ponents is affected by the dynamic instruction count and the critical
path of inter-operation dependencies; these are the base, resource stall,
and branch misprediction penalty cycle components. We observe from

2Note that this is a relative number, compared to the cycle count for the base opti-
mization level on an in-order processor. In absolute terms, the cycle count on the out-
of-order processor is on average approximately 2 times smaller than on the in-order
processor.

112 Cycle accounting in single-threaded processors

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

ba
se

tre
e

op
t

co
ns

t p
ro

p/
elim

ba
si
c
lo
op

opt

if-
co

nv
ers

io
n

O
1

O
2

-fn
oO

2
C
S
E

B
B

re
or

de
r

st
re

ng
th

re
d

re
cu

rs
io
n

op
t

in
sn

sc
he

du
lin

g

st
ric

t a
lia

si
ng

al
ig
nm

ent

ad
v
tre

e
op

t
O
2

ag
gr

lo
op

op
t

in
lin

in
g

O
3

lo
op

unr
ol
lin

g

so
ftw

are
pi
pe

lin
in

g
FD

Oa
v
g

n
o
rm

a
liz

e
d

e
x
e
c
u
ti
o
n

ti
m

e

Figure 5.15: Average normalized execution time on a superscalar in-order pro-
cessor.

0%

1%

2%

3%

4%
5%

6%

7%

8%

9%

10%

11%

12%

13%

14%
15%

16%

17%

18%

19%

out-of-order in-order

c
y
c
le

c
o
m

p
o
n
e
n
t

d
e
c
re

a
s
e

resource stall

branch penalty

no/ branch misses

MLP

no/ D-TLB misses

no/ L2 D-cache

L1 D-cache

I-TLB

L2 I-cache

L1 I-cache

base

Figure 5.16: Comparing overall performance improvement on an out-of-order
processor versus an in-order processor.

5.5 The performance impact of compiler optimizations 113

Figure 5.16 that these cycle components are affected more by the com-
piler optimizations for the in-order processor than for the out-of-order
processor: 14.6% versus 8.0%. The second group of cycle components
are related to the L1 and L2 cache and TLB miss events and the num-
ber of branch mispredictions. This second group of cycle components,
related to the occurrence of miss events, is affected more for the out-of-
order processor: this is only 2.3% for the in-order processor versus 7%
for the out-of-order processor. In other words, most of the performance
gain through compiler optimizations on an in-order processor comes
from reducing the dynamic instruction count and shortening the criti-
cal path of inter-operation dependencies. On an out-of-order processor,
the dynamic instruction count and the critical path are also important
factors affecting overall performance, however, about half of the total
performance speedup comes from secondary effects related to I-cache,
long-latency D-cache and branch misprediction behavior.

There are three reasons that support these observations. First, out-
of-order execution hides part of the inter-operation dependencies and
latencies which reduces the impact of critical path optimizations. In
particular, in a balanced out-of-order processor, the critical path of
inter-operation dependencies is only visible on a branch mispredic-
tion. Second, the base and resource stall cycle components are more
significant for an in-order processor than for an out-of-order processor;
this makes the miss event cycle components relatively less significant
for an in-order processor than for an out-of-order processor. As such,
an improvement to these miss event cycle components results in a
smaller impact on overall performance for in-order processors. Third,
scheduling instructions can have a bigger impact on memory-level par-
allelism on an out-of-order processor than on an in-order processor. A
good static instruction schedule will place independent long-latency D-
cache and D-TLB misses closer to each other in the dynamic instruction
stream. An out-of-order processor will be able to exploit the available
MLP at run time in case the independent long-latency loads appear
within a ROB size from each other in the dynamic instruction stream.
An in-order processor on the other hand, may not be able to get to the
independent long-latency loads because of the processor stalling on the
first instruction that depends on the first long-latency load.

114 Cycle accounting in single-threaded processors

5.6 Summary

In this chapter, we presented a new hardware performance counter ar-
chitecture that is able to do accurate cycle accounting (i.e., building
cycle component stacks) on a single-threaded superscalar out-of-order
processor. The performance counter architecture is developed in a top-
down fashion, based on interval analysis, and is demonstrated to be far
more accurate than previously proposed bottom-up approaches (i.e.,
starting from existing ad hoc performance counter architectures).

The performance counter architecture uses a front-end miss event
table (FMT) to calculate the penalties for the front-end miss events. The
FMT measures the instruction cache miss penalties and eliminates in-
struction cache miss penalties along mispredicted paths. It also keeps
track of the branch resolution time of all pending branches, in order
to calculate the branch misprediction penalty in case the branch turns
out to be mispredicted. Back-end miss event penalties are measured
when the ROB is full, as indicated by interval analysis. The resulting
cycle component stacks closely track simulation-based cycle compo-
nent stacks, and are far more accurate than previously proposed mech-
anisms.

The ability of building accurate cycle component stacks has many
possible applications in the development of hardware and software.
We elaborated one such application, namely the use of cycle compo-
nent stacks to study the performance impact of compiler optimizations
in detail. This resulted in three main conclusions: (i) reducing the
dynamic instruction count remains an important optimization crite-
rion for contemporary out-of-order processors, (ii) critical dependency
path optimizations have less impact on an out-of-order processor than
on an in-order processor, since they only affect the branch mispredic-
tion penalty, and (iii) the reduction of miss events and exploitation of
memory-level parallelism is more important for out-of-order proces-
sors than for in-order processors.

Chapter 6

Cycle accounting in SMT
processors

Computers are like Old Testament gods:
lots of rules and no mercy.

Joseph Campbell

Simultaneous multithreading (SMT) enables a more efficient use of
a processor by allowing multiple threads to run concurrently. When
one thread experiences a miss event, other threads can still execute in-
structions, i.e., the performance gaps introduced by miss events (see
interval analysis) are filled up with the execution of instructions from
other threads, keeping the processor busy. Furthermore, the additional
thread-level parallelism provides more independent instructions when
the instruction-level parallelism in one thread is lower than the proces-
sor width.

There are however some pitfalls. In a simultaneous multithreading
processor, many resources are shared and threads interact with each
other intensively, which has an impact on the performance of the in-
dividual threads. Shared resources can be split up into two different
types:

1. Processor core resources, such as fetch bandwidth, instruction
window entries, execution units, register file entries, etc. If
one thread is allowed to fetch instructions each cycle, the other
threads may starve because they did not get their fair share of
the fetch bandwidth. Likewise, if one thread occupies most of

116 Cycle accounting in SMT processors

the instruction window entries, the other threads can make less
progress because less ILP can be extracted.

2. Predictors and caches. Branch predictor entries and cache lines
can be shared by different threads, leading to more conflict
misses.

The consequence is that the performance of an individual thread de-
pends on the co-executing threads or programs, and performance guar-
antees cannot be enforced. One thread can push aside all other threads,
monopolize all resources and prevent other threads from making any
forward progress.

While some fetch policies for SMT processors (see Appendix C) pro-
vide a notion of fairness by preventing starving threads and by bal-
ancing the performance degradation between the threads, they cannot
isolate the performance of the individual threads. Another problem is
that current operating systems consider an n-context SMT as an n-core
multiprocessor. When different threads are co-scheduled, it is assumed
that all threads make equal progress. This is mostly not the case, since
the sharing of resources has a substantial impact on the performance of
the individual threads. We therefore need a method to determine the
actual progress of each of the individual threads during SMT execution.

In this chapter we develop a counter architecture for SMT pro-
cessors to estimate the progress of individual threads relative to their
single-threaded performance, while they are executing on an SMT pro-
cessor in conjunction with other threads. It is based on the insights
provided by interval analysis applied to SMT processor execution. The
estimation of the single-threaded progress of the individual threads can
then be used by system software or hardware to provide a better quality
of service on SMT processors, because it measures the actual progress
of each of the co-executing threads. Based on the per-thread progress
information, we design a new fetch policy that enforces absolute fair-
ness between threads (i.e., equalizing the performance degradation
of each of the threads) or enables performance targets for individual
threads (e.g., targetting at a thread reaching 75% of its single-threaded
performance, irrespectively of the other co-executing threads).

6.1 Cycle accounting in an SMT processor

Cycle accounting in SMT processors is more complex than in single-
threaded processors. The total execution time of an individual thread

6.1 Cycle accounting in an SMT processor 117

consists of (i) cycles where instructions of the thread are executed, (ii)
cycles needed to handle the miss events caused by the thread, and (iii)
cycles lost due to the co-execution with other threads. To distinguish
between those effects, we divide total execution time into three main
per-thread cycle components:

• Base cycle component. The processor consumes cycles doing
computation work for the given thread.

• Miss event cycle component. The processor consumes cycles
handling miss events caused by the given thread such as cache
misses, TLB misses, and branch mispredictions.

• Waiting cycle component. The processor consumes cycles for an-
other thread, and therefore cannot make progress for the given
thread.

The two first cycle components are equivalent to the base and miss cy-
cle components of the single-threaded cycle accounting method as de-
scribed in the previous chapter, whereas the third component is specif-
ically introduced by the multi-threading.

We define the per-thread virtual execution time as the sum of base
and miss event cycle components, i.e., this is the thread’s (estimated)
total execution time in case the thread would be executed in single-
threaded mode. The cycle stack minus the waiting cycle component
thus represents an estimate of the single-thread cycle stack. The waiting
cycle component quantifies by how much the given thread gets slowed
down because of resource sharing in the SMT processor. We initially as-
sume caches and branch predictors to be statically partitioned between
the threads such that the threads do not interfere with each other in
these structures. By doing so, we consider the proposed counter ar-
chitecture in isolation, without interfering effects due to shared caches
and predictors. However, we will also validate our proposed counter
architecture considering fully shared branch predictors and caches.

We now discuss the general mechanisms of per-thread cycle ac-
counting on SMT processors; Section 6.2 then describes its implemen-
tation as a counter architecture. We thereby build on the primary ob-
servation from the interval model as described in Chapter 3, namely
superscalar processor performance can be analyzed in terms of its dis-
patch behavior, which defines the penalties due to miss events. To be
able to handle SMT processors that dispatch instructions from multi-
ple threads per cycle, we count dispatch slots instead of cycles (i.e., in a

118 Cycle accounting in SMT processors

Figure 6.1: SMT processor execution in the absence of miss events.

4-wide dispatch processor, there are 4 dispatch slots per cycle). Cycle
components are computed from dispatch slots by dividing the number
of dispatch slots by the dispatch width.

6.1.1 No miss events

We first describe SMT performance without any miss events. Figure 6.1
shows the progress for two threads co-executing on an SMT processor
in the absence of any miss events. We assume a two-thread proces-
sor and a round-robin fetch policy for the purpose of illustration; this
does not affect the generality of the formulation though, i.e., the de-
scription can be trivially extended to more than two threads and other
fetch policies. Each square in the figure represents a dispatch slot. In
cycle x, 4 instructions are dispatched from thread A; these slots are ac-
counted as base dispatch slots. Thread B on the other hand, cannot make
progress; thread B therefore gets 4 waiting dispatch slots accounted. In
cycle x + 1, thread B gets 4 base slots and thread A gets 4 waiting slots,
etc. Per-thread performance compared to single-thread performance
halves because of SMT execution.

6.1.2 Instruction cache misses

In the event of an L1/L2 I-cache miss or I-TLB miss, as is the case for
thread A in Figure 6.2, the processor will no longer be able to dispatch

6.1 Cycle accounting in an SMT processor 119

Figure 6.2: SMT processor execution in the presence of an I-cache/I-TLB miss.

instructions for thread A during a number of cycles equal to the miss
delay. As in the single-threaded case, the miss delay equals the access
time to the next level in the memory hierarchy, and the penalty slots are
to be accounted as miss event slots.

The other thread, thread B in the example, will be able to dispatch
instructions into the pipeline at a rate of 4 instructions per clock cycle.
As a result, thread B benefits from the I-cache miss in thread A, i.e.,
there are no more waiting dispatch slots for thread B under the I-cache
miss of thread A—this is where the benefit from SMT execution comes
from: thread B can dispatch instructions while the I-cache miss is being
resolved for thread A.

6.1.3 Branch mispredictions

Figure 6.3 illustrates what happens upon a branch misprediction for
thread A. When thread A dispatches a mispredicted branch, instruc-
tions along the incorrect control flow path will enter the processor back-
end until the branch gets resolved and new instructions along the cor-
rect control flow path enter the pipeline. The penalty for the mispre-
dicted branch equals the time between the mispredicted branch be-
ing dispatched and correct path instructions being dispatched after the
branch resolution, as is the case under single-threaded execution: these
dispatch slots are to be counted as miss event slots. These miss event

120 Cycle accounting in SMT processors

Figure 6.3: SMT processor execution in the presence of a branch mispredic-
tion.

slots include the branch resolution time plus the front-end pipeline
depth.

The branch resolution time can be affected by the other threads,
it can be smaller or longer under SMT execution than under single-
threaded execution. The branch resolution time can be slightly smaller
due to the fact that in an SMT context in general there are less in-flight
instructions per thread compared to single-threaded execution, which
shortens the critical path length. It can also be somewhat larger due
to execution slots taken by the other threads, slowing down the exe-
cution of the dependency path. However, the branch resolution time
is mainly dependent on the critical dependency path leading to the
branch, meaning that this impact is limited. Using the same branch
misprediction penalty definition for multi-threaded performance anal-
ysis as in the single-threaded case is a good approximation, which is
supported by the results in the evaluation section.

Underneath the penalty for a mispredicted branch, the other thread(s)
will continue dispatching instructions; i.e., the performance of thread
B is unaffected by the mispredicted branch for thread A, see Figure 6.3.

6.1 Cycle accounting in an SMT processor 121

Figure 6.4: SMT processor execution in the presence of a long-latency load
miss.

6.1.4 Long-latency load misses

The situation gets more complicated when estimating the penalty due
to long-latency loads. Recall that the penalty for a long-latency load
under single-threaded execution is the time between the ROB filling
up and the miss returning from memory. The key problem now is to
estimate when the ROB would fill up under single-threaded execution,
during the SMT execution.

We solve this by keeping track of all the base and waiting dispatch
slots since the oldest instruction in the reorder buffer for the given
thread. The point in time where the number of ‘in-flight’ base and wait-
ing slots—called the single-thread virtual ROB (V-ROB) size—equals
the SMT processor’s ROB size, signals the point where the ROB would
get exhausted under single-threaded execution if this many instruc-
tions were dispatched. This assumes that the waiting slots could be
used to dispatch instructions from that thread in single-threaded exe-
cution. This is illustrated in the example given in Figure 6.4 in which
the 16-entry ROB gets virtually exhausted by thread A under single-
threaded execution after four cycles. Once this point of V-ROB exhaus-
tion is reached, we start counting miss event slots, i.e., long-latency
load miss event dispatch slots.

122 Cycle accounting in SMT processors

Since it is possible that the (real) ROB is not yet full when the V-
ROB is exhausted, the thread experiencing the long-latency load miss
can still dispatch instructions when its V-ROB is full. In that case, we
do increment the long-latency load miss component counter, since in
single-threaded mode the ROB will be full at that time, but we also in-
crement the number of base dispatch slots and decrement the number
of waiting dispatch slots. This is done to ensure that the base compo-
nent is equal to the number of dispatched instructions. This operation
has no impact on the V-ROB size, since waiting slots are exchanged for
dispatch slots, and the V-ROB includes both.

Depending on the fetch policy, a long-latency load miss in one
thread can eventually cause the ROB to fill up completely and in that
case, the other thread(s) (whose V-ROB is not full) are accounted wait-
ing slots, see thread B in the example given in Figure 6.4.

In the above description, we make one implicit assumption: we as-
sume that memory-level parallelism is unaffected by single-threaded
versus SMT execution, i.e., the amount of MLP under single-threaded
execution is the same as under SMT execution. This is an inaccurate
assumption because a single-threaded execution would allocate all the
ROB resources and therefore expose more MLP than an SMT execu-
tion, where the ROB is shared between the threads. To counter this in-
accurate assumption, we introduce an MLP correction mechanism (see
Section 6.2.2) that estimates the amount of MLP under single-threaded
execution. The ratio of the SMT MLP and single-threaded MLP then
serves as a correction factor for the long-latency load miss event slots.

6.1.5 Other resource stalls

Other resource stalls due to long-latency functional units (divide, mul-
tiply, etc.), short data cache misses, store buffer stalls, etc., are ac-
counted as miss event slots following the approach for the long-latency
loads, i.e., a miss event slot is accounted in case a thread’s V-ROB size
equals the processor’s ROB size.

6.1.6 Stall and flush fetch policies

Some SMT fetch policies stall and/or flush threads to prevent threads
from clogging resources (e.g., the flush policy of Tullsen and Brown [96]
and the MLP-aware flush policy by Eyerman and Eeckhout [28], see

6.2 Implementation 123

also Appendix C). In case a thread is stalled by the fetch policy, sub-
sequent dispatch slots are counted as waiting dispatch slots, since in
single-threaded mode these slots could have been used to dispatch in-
structions. When the V-ROB size (that keeps on growing because of
the increasing number of waiting slots) equals the machine’s ROB size,
miss event slots are accounted—this is the point in time where single-
threaded execution would fill up the ROB.

In case a thread is (partially) flushed, the number of flushed in-
structions is subtracted from the base slots counter and added to the
waiting slots counter. Flushing instructions has the same result as not
having dispatched these instructions, which means that the cycles dur-
ing which the flushed instructions were dispatched are now similar to
waiting cycles. Note that the V-ROB size is unaffected by this operation.

6.2 Implementation

We now provide a functional description of how to implement the cy-
cle accounting mechanism just described into a hardware performance
counter architecture. The counter architecture consists of a set of global
counters for counting per-thread base, miss event, and waiting dispatch
slots. We have miss event cycle counters for L1 I-cache, L2 I-cache, L3
I-cache, I-TLB, branch misprediction, L1 D-cache, L2 D-cache, L3 D-
cache, D-TLB misses, and other resource stalls such as end-of-cacheline
(ECL)1, write buffer stall (WB), empty dispatch slots because of no-ops,
and ‘others’ (which accounts for the remaining resource stalls, such
as the ROB filling up due to long dependency paths). In addition,
the counter architecture requires additional hardware structures which
we describe next; we again make a distinction between front-end miss
events and back-end miss events.

6.2.1 Front-end miss events

To count front-end miss events, we reuse the FMT design as described
in the previous chapter. The single adaptation we have to make is to

1Since the SMTSIM simulator, which we used in this study, has no fetch buffer, it
frequently occurs that fewer instructions than the available width can be dispatched
due to taken branches and instructions on different cache lines. If for example only 3
out of 4 instructions can be dispatched due to this effect, we account one dispatch slot
to the ‘ECL’ component.

124 Cycle accounting in SMT processors

fetch tail

dispatch tail

dispatch head

n
u
m

b
e
r

o
u
ts

ta
n
d
in

g
b
ra

n
c
h
e
s

R
O
B

ID

ba
se

sl
ot

s

lo
ca

l L
1

I-c
ac

he

lo
ca

l L
2

I-c
ac

he

lo
ca

l I
-T

LB

w
ai
tin

g
sl
ot

s

lo
ca

l L
3

I-c
ac

he

Figure 6.5: Front-end miss event table FMT for SMT cycle accounting.

add counters to differentiate between base and waiting dispatch slots.
Each row in the FMT corresponds to an outstanding branch, and counts
the number of base, waiting, and miss event (L1 I-cache, L2 I-cache, L3
I-cache and I-TLB) slots prior to this branch, see Figure 6.5. We need
one FMT per supported thread context. To save space in the FMT, we
decided to eliminate the branch penalty counter, since the branch res-
olution time can also be found by adding all base, waiting and miss
event slots of all rows past the mispredicted branch. When dispatching
an instruction, we increment the base cycle counter in the FMT-entry
pointed to by the dispatch tail pointer. When an instruction is dis-
patched for another thread, we increment the waiting cycle counter in
the absence of a miss event, and increment the miss event cycle counter
in case of a miss event. When committing a branch, the counters of the
associated row are added to the respective global counters, and the row
is de-allocated.

When resolving a mispredicted branch, the base, waiting and miss
event counts of all the subsequent rows are added to the global branch
misprediction miss event counter—this is the number of dispatch slots
since the mispredicted branch was dispatched, i.e., the branch resolu-
tion time—and all dispatch slots hereafter are counted as miss event
slots until correct-path instructions are being dispatched; in addition,
the subsequent rows are de-allocated.

The hardware cost for the FMT is limited, and requires c ·n · b bits in
total, with c the number of counters per row, n the number of bits per
counter, and b the number of outstanding branches in the processor.

6.2 Implementation 125

This is 6 · 10 · 16 = 960 bits in our implementation.

6.2.2 Back-end miss events

For computing the back-end miss event cycles, we need three addi-
tional hardware structures.

First, we keep track of the per-thread V-ROB occupancy using a per-
thread In-Flight Slots Counter (IFSC), which counts the ‘in-flight’ base
and waiting slots. In addition, we maintain an In-Flight Waiting Slots
(IFWS) per ROB entry. When dispatching an instruction we initial-
ize the ROB entry’s IFWS to zero, and increment the IFSC; the other
threads, in the absence of a miss event, increment their IFSCs, as well
as the IFWSs pointed to by their ROB tails. When committing an in-
struction, we decrement the IFSC for the given thread (i.e., there is one
dispatch slot less in-flight), and subtract the associated IFWS from the
IFSC (i.e., we subtract the waiting slots). We refer to Figure 6.6 for an il-
lustrative example. By doing so, the IFSC counts the per-thread V-ROB
occupancy. When the V-ROB occupancy equals the processor’s ROB
size—the point in time where the single-threaded execution would fill
up the ROB—we start counting long-latency miss event slots and other
resource stalls as described above.

Second, we need to compute the per-thread MLP under SMT exe-
cution. The average number of outstanding long-latency load misses is
measured using two counters. The first counter counts the number of
cycles for which at least one long-latency load is outstanding; the sec-
ond counter counts the number of outstanding long-latency loads. The
second counter divided by the first yields the average MLP under SMT
execution.

Third, we need to estimate the amount of MLP under single-
threaded execution. To this end, we introduce a back-end miss event
table (BMT) per thread. The BMT has as many rows as the processor
supports outstanding long-latency loads, and operates as follows. A
BMT row is allocated when committing a long-latency load, and for
each committed instruction we update all allocated rows, as described
below. Each BMT row holds:

(i) A Committed Instructions Counter (CIC) counting the number of
instructions committed after the given load miss: this counter is
initialized upon the row’s allocation and is incremented for each
committed instruction.

126 Cycle accounting in SMT processors

ROB tail
thread A

IFWS

AB AAA BBB

reorder buffer IFSC

A

B0

ROB tail
thread B

1220110

8

7

thread id

dispatch A
dispatch A
dispatch B

(no miss events)

ROB tail
thread A

AB AAA BBB

reorder buffer IFSC

A

B0

ROB tail
thread B

1220112

11

10

AAB
00 1

ROB head
thread A

ROB head
thread B

ROB head
thread A

ROB head
thread B

commit A
commit B

ROB tail
thread A

AAA BBB

reorder buffer IFSC

A

B

ROB tail
thread B

120112

10

7

AAB
00 1

ROB head
thread A

ROB head
thread B

IFWS

thread id

IFWS

thread id

Figure 6.6: Example of IFSC and IFWS operation.
The top part indicates the initial situation: thread A and B each have 4 in-flight
instructions; thread A has 4 in-flight waiting slots (sum of the IFWSs belong-
ing to thread A) and thread B has 3 in-flight waiting slots, which yields a
V-ROB occupancy of 8 for thread A and 7 for thread B, indicated in the corre-
sponding IFSCs. Dispatching an instruction of thread A causes the allocation
of a new ROB entry with IFWS set to zero, and an increment of the IFWS
pointed to by the ROB tail of thread B (in the absence of miss events).
The middle part shows the situation after dispatching two instructions for
thread A and one for thread B. The V-ROB occupancies are increased by 3
slots (2 base and 1 waiting for A, and 1 base and 2 waiting for B).
The bottom part depicts the situation after committing one instruction of each
thread. The IFSC of thread A is decreased by 1 (1 instruction and 0 IFWS), and
the IFSC of thread B is decreased by 3 (1 instruction and 2 IFWS).

6.2 Implementation 127

(ii) An Output Register Bitmap (ORB) representing all the architectural
registers written by the load and its dependent instructions. The
ORB is initialized with the output register of the long-latency
load, i.e., a ‘1’ is written at the corresponding bit position, and
all the other bits are zeroed. In case a committed instruction de-
pends on a prior long-latency load—this is done by comparing
the load’s ORB with the instruction’s input registers—the load’s
ORB is updated with a ‘1’ at the bit position corresponding to
the committed instruction’s output register. In case a committed
instruction does not depend on the prior long-latency load, a ‘0’
is written at the bit position corresponding to the committed in-
struction’s output register.

(iii) A Committed Dependent Instructions Counter (CDIC) that counts
the number of instructions committed that depend on the long-
latency load through RAW dependencies—this is computed
through the ORBs.

(iv) A Dependent Load Pointer (DLP) to the long-latency load that the
load depends upon, if applicable—this is also computed using
the ORB.

Dispatch would stall in single-threaded execution when the CIC for
the long-latency load at the BMT head equals the ROB size, or its
CDIC equals the issue buffer size: either the ROB fills up or the issue
buffer fills up, respectively. We then count the amount of MLP un-
der single-threaded execution by counting the number of independent
long-latency loads in the BMT—this is done by walking the table from
head to tail, and counting the long-latency loads that do not depend
(using the DLP) on the long-latency load at the BMT head. We subse-
quently deallocate the entry that initiated the MLP calculation (with a
CIC equal to the ROB size or a CDIC equal to the issue buffer size) and
all entries that overlap with this long-latency load (i.e., the indepen-
dent load misses). We have to deallocate these entries, because these
load misses will not make it to the head of the ROB in single-threaded
execution, so no MLP has to be calculated for them. An example of the
operation of the BMT is depicted in Figure 6.7.

The ratio of the MLP under SMT execution with the MLP under
single-threaded execution then yields a correction factor for the long-
latency load miss cycle component, i.e., dividing the long-latency load

128 Cycle accounting in SMT processors

CIC ORBCIC CDIC DLP

13

9

4

00101100

01001001

10000010

7

6

2 1

add R1,R2,R3

sub R0,R6,R5

ld (R2),R1

CIC ORBCIC CDIC DLP

16

12

7

01111000

00011001

10000110

9

7

3 1

long-latency load miss

1 01000000 1 1

Figure 6.7: Example of BMT operation.
Initially, there are three outstanding load misses. The CICs indicate the num-
ber of instructions committed after the load miss (the load miss itself in-
cluded), the ORBs indicate the registers this load miss produces (from R0 to
R7), the CDICs show the number of dependent instructions committed after
this load miss, and the DLPs show the dependencies between the load misses
(load 3 depends on load 1).
After committing the three instructions shown (the rightmost operands are the
destination operands), the BMT of this thread has changed as depicted in the
bottom part. 3 instructions have been committed, so the CICs are increased
by 3. The first and third instruction depend on the first load, so its CDIC is
increased by 2 (and similar for the other CDICs). The ORBs are adapted as de-
scribed in the text. The third instruction is a long-latency load miss, so a new
entry is allocated, and the ORB is initialized with the output register (R1). If
the ROB size equals 16 or the issue buffer size equals 9, we should now calcu-
late the MLP for the first load. The MLP equals 2 (first load itself and second
load), because the third and fourth load depend on the first. Then the first two
entries can be deallocated.

6.3 Experimental setup 129

vortex-parser swim-perlbmk
crafty-twolf galgel-twolf
facerec-crafty fma3d-twolf
vpr-sixtrack apsi-art
vortex-gcc gzip-wupwise
gcc-gap apsi-twolf
apsi-mesa mgrid-vortex
mcf-swim swim-twolf
mcf-galgel swim-eon
wupwise-ammp swim-facerec
swim-galgel parser-wupwise
lucas-fma3d vpr-mcf
mesa-galgel equake-perlbmk
galgel-fma3d applu-vortex
applu-swim art-mgrid
mcf-equake equake-art
applu-galgel parser-ammp
swim-mesa facerec-mcf

Table 6.1: The two-thread workloads used in the evaluation.

miss cycle component with this ratio provides an estimate of the long-
latency load miss cycle component under single-threaded execution.

The hardware cost for the back-end miss event counter architecture
is limited: (i) an IFWS element of a couple bits is needed per ROB
entry; (ii) the IFSCs require �log2 ROB� bits per thread; (iii) the SMT
MLP estimator requires two counters per thread; (iv) the BMT requires
n(2 log2 ROB+log2 n+64) bits in total, with n the maximum number of
outstanding long-latency loads, 2 log2 ROB bits for the CIC and CDIC
counters, log2 n bits for the DLP, and 64 bits for the ORB (assuming
64 architectural registers); assuming 16 outstanding long-latency loads
and a 256-entry ROB, the BMT incurs 1344 bits of storage.

6.3 Experimental setup

The processor model being simulated is a 4-wide superscalar out-of-
order SMT processor, the configuration is described in Appendix A
(in the SMT processor section). We use 36 randomly selected two-
thread workloads, see Table 6.1, however, most two-thread workloads
are memory-intensive in order to stress our cycle accounting architec-
ture, i.e., we found the largest errors to appear for memory-intensive
workloads. We fast-forward each benchmark until the beginning of a

130 Cycle accounting in SMT processors

200 million instruction early SimPoint is reached, see Appendix A. The
default fetch policy is ICOUNT 2.4 [97] which allows up to four instruc-
tions from up to two threads to be fetched per cycle.

Our experimental setup was chosen in such a way to stress and
evaluate our proposed counter architecture in isolation without inter-
fering effects due to cache and branch predictor sharing. Therefore we
assume fair sharing and performance isolation in the memory hierar-
chy and branch predictor as proposed in prior work [34, 49, 50, 58, 69,
71, 72]. To mimic a fair sharing substrate, we assume a partitioned
memory hierarchy and branch predictor in all of our measurements
(unless mentioned otherwise), and evaluate the inaccuracy this intro-
duces compared to a shared memory hierarchy and branch predictor
(see Section 6.4.4).

6.4 SMT cycle component stacks: evaluation

We now evaluate the accuracy of the per-thread cycle component stacks
computed using the proposed counter architecture under SMT exe-
cution, called the SMT cycle component stacks, by comparing them
against the cycle component stacks computed under single-threaded
execution, called the ST cycle component stacks. This is done as fol-
lows. We run each two-thread workload for 400 million instructions,
compute the per-thread cycle component stacks as described in the pre-
vious sections, and record the number of instructions executed so far
for each thread. We then run each thread in single-threaded mode for
as many instructions as it ran under SMT execution, and compute the
single-threaded cycle component stacks following the single-threaded
cycle accounting mechanism described in the previous chapter.

6.4.1 Cycle component prediction

Figure 6.8 compares the SMT cycle component stacks against the
ST cycle component stacks for six example workloads assuming the
ICOUNT fetch policy and dynamic resource partitioning (i.e., resources
are fully shared between the threads, and resources are allocated on
demand); these example workloads were chosen to represent an inter-
esting sample of average workloads and a few extreme cases with the
largest errors observed. Each graph shows the two ST cycle component
stacks on the left and the two SMT cycle component stacks on the right;

6.4 SMT cycle component stacks: evaluation 131

vortex-parser

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vortex parser vortex parser

single threaded multi threaded

n
o
rm

a
liz

e
d

c
y
c
le

s

waiting

nops

other

WB

DTLB

L3 D$

L2 D$

L1 D$

bpred

ECL

ITLB

L3 I$

L2 I$

L1 I$

base

mcf-swim

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mcf swim mcf swim

single threaded multi threaded

n
o
rm

a
liz

e
d

c
y
c
le

s

waiting

nops

other

WB

DTLB

L3 D$

L2 D$

L1 D$

bpred

ECL

ITLB

L3 I$

L2 I$

L1 I$

base

wupwise-ammp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wupwise ammp wupwise ammp

single threaded multi threaded

n
o
rm

a
liz

e
d

c
y
c
le

s

waiting

nops

other

WB

DTLB

L3 D$

L2 D$

L1 D$

bpred

ECL

ITLB

L3 I$

L2 I$

L1 I$

base

swim-mesa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

swim mesa swim mesa

single threaded multi threaded

n
o
rm

a
liz

e
d

c
y
c
le

s

waiting

nops

other

WB

DTLB

L3 D$

L2 D$

L1 D$

bpred

ECL

ITLB

L3 I$

L2 I$

L1 I$

base

apsi-art

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

apsi art apsi art

single threaded multi threaded

n
o
rm

a
liz

e
d

c
y
c
le

s

waiting

nops

other

WB

DTLB

L3 D$

L2 D$

L1 D$

bpred

ECL

ITLB

L3 I$

L2 I$

L1 I$

base

equake-perlbmk

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

equake perlbmk equake perlbmk

single threaded multi threaded

n
o
rm

a
liz

e
d

c
y
c
le

s

waiting

nops

other

WB

DTLB

L3 D$

L2 D$

L1 D$

bpred

ECL

ITLB

L3 I$

L2 I$

L1 I$

base

Figure 6.8: Evaluating SMT cycle component stacks versus single-threaded
cycle component stacks for six example workloads assuming dynamic re-
source partitioning and the ICOUNT fetch policy.

132 Cycle accounting in SMT processors

the cycle component stacks are normalized to the SMT cycle com-
ponent stacks. The workloads wupwise-ammp and equake-perlbmk
show an almost perfectly predicted single-threaded cycle stack. The
per-component prediction error is no larger than a few percent. The
largest branch misprediction cycle component prediction error (6.1%)
is observed for parser when co-executed with vortex. The reason for
the inaccuracy is that the branch resolution time is underestimated: the
critical path to the mispredicted branch tends to be smaller because
there are fewer critical path instructions in the instruction window by
the time the mispredicted branch is dispatched under SMT execution
than under single-threaded execution. The largest ‘other’ cycle com-
ponent error (10.7%) is observed for art when co-run with apsi. For
the swim-mesa and mcf-swim workloads, the largest error appears for
the long-latency (L3 D-cache) miss component for swim (7.6%) and
mcf (12.8%, the largest error observed), respectively. From a detailed
analysis we found the reason to be twofold: (i) the single-threaded
MLP estimate tends to be an overestimation because it does not ac-
count for MLP limiters such as branch mispredictions between two
long-latency loads that depend on the first long-latency load, and long-
latency I-cache misses intervening two long-latency loads; and (ii) the
SMT MLP calculation may be inaccurate because it also counts MLP
along mispredicted paths.

6.4.2 Multiple fetch policies

To further assess the accuracy of the cycle accounting architecture
across all workloads and multiple fetch policies, Figure 6.9 shows the
average absolute cycle component prediction error, weighted by the
contribution of this component to total execution time, for six resource
sharing policies:

(i) Static partitioning (each thread can occupy at most half of the
ROB, issue buffers and physical registers) and the round-robin
fetch policy (instructions are fetched from another thread each
cycle).

(ii) Static partitioning and the ICOUNT fetch policy [97] (fetch pri-
ority is given to the thread having the least instructions in the
processor front-end pipeline and issue buffers).

6.4 SMT cycle component stacks: evaluation 133

0%

1%

2%

3%

4%

5%

6%
b

a
se

L
1
 I
$

L
2
 I
$

L
3
 I
$

IT
L

B

E
C

L

b
p
re

d

L
1
 D

$

L
2
 D

$

L
3
 D

$

D
T

L
B

W
B

o
th

e
r

e
rr

o
r

 static :: round-robin

 static :: ICOUNT

 dynamic :: round-robin

 dynamic :: ICOUNT

 dynamic :: FLUSH

 dynamic :: FLUSH MLP

Figure 6.9: The average absolute cycle component prediction error across all
workloads and six SMT processor fetch policies.

(iii) Dynamic partitioning (all resources are fully shared) and round-
robin.

(iv) Dynamic partitioning and ICOUNT.

(v) Dynamic partitioning and flush [96] (when a thread encounters a
long-latency load miss, all instructions of this thread are flushed,
and the thread is fetch stalled until the data returns from mem-
ory).

(vi) Dynamic partitioning and MLP-aware flush [28] (when a thread
encounters a long-latency load miss, its MLP potential is pre-
dicted and the instructions that do not contribute to MLP ex-
ploitation are flushed, see Appendix C).

Figure 6.9 shows that the cycle accounting architecture is accurate
across multiple SMT fetch policies with average absolute cycle compo-
nent prediction errors of a few percent. The largest error (no more than
5% on average) is observed for the long-latency load (L3) cycle com-
ponent; as mentioned before, the reason is the difficulty in estimating
single-threaded MLP as well as computing MLP under SMT execution.

134 Cycle accounting in SMT processors

0%

5%

10%

15%

20%

25%

30%

s
ta

ti
c

::

ro
u
n
d
-r

o
b
in

s
ta

ti
c

::

IC
O

U
N

T

d
y
n
a
m

ic
::

ro
u
n
d
-r

o
b
in

d
y
n
a
m

ic
::

IC
O

U
N

T

d
y
n
a
m

ic
::

F
L
U

S
H

d
y
n
a
m

ic
::

F
L
U

S
H

M
L
P

a
v
e
ra

g
e

a
b
s
o
lu

te
e
rr

o
r

fo
r

L
3

D
-c

a
c
h
e

C
P

I
c
o
m

p
o
n
e
n
t

w/o MLP correction

w/ MLP correction

Figure 6.10: The average absolute L3 D-cache cycle component prediction er-
ror across all workloads for six fetch policies with and without MLP correc-
tion.

6.4.3 Importance of MLP correction

Figure 6.10 illustrates the importance of MLP correction for estimating
the long-latency load (L3) cycle component: the average absolute pre-
diction error is shown for the L3 D-cache cycle component for the six
SMT fetch policies, both with and without MLP correction—the other
cycle components are not affected by MLP correction. The average er-
ror drops below 5% across all fetch policies with MLP correction. With-
out MLP correction, the average error is typically higher and can be as
high as 26.5% for the flush policy. The reason for the high error with-
out MLP correction is the discrepancy in exploitable MLP under single-
threaded execution versus SMT execution: a thread in single-threaded
execution gets the entire ROB for exposing MLP, whereas a thread in
an SMT processor typically does not. This is magnified in the flush pol-
icy, which flushes a thread that experiences a long-latency load, i.e., the
flushed thread does not get to expose MLP, which explains the high er-
ror without MLP correction. The MLP correction mechanism corrects
the observed MLP under SMT execution with the estimated MLP under
single-threaded execution.

6.4 SMT cycle component stacks: evaluation 135

0%

1%

2%

3%

4%

5%

6%

7%

b
a

se

L
1
 I
$

L
2
 I
$

L
3
 I
$

IT
L

B

E
C

L

b
p
re

d

L
1
 D

$

L
2
 D

$

L
3
 D

$

D
T

L
B

W
B

o
th

e
r

a
ve

ra
g

e
 a

b
so

lu
te

 e
rr

o
r

 private caches and branch predictor

 shared caches and branch predictor

Figure 6.11: Average absolute cycle component prediction error assuming pri-
vate versus shared caches and branch predictor, assuming dynamic resource
partitioning and the ICOUNT fetch policy.

6.4.4 Private versus shared caches and branch predictor

In the results just presented, we assumed a partitioned memory hier-
archy and branch predictor (performance isolation). A shared memory
hierarchy and branch predictor (without performance isolation guar-
antees) may introduce additional conflict misses when co-executing
threads compete for a shared resource. Figure 6.11 compares the av-
erage absolute error per cycle component compared to single-threaded
execution assuming a partitioned versus a shared memory hierarchy
and branch predictor. As expected, the errors tend to be higher as-
suming shared resources. The inaccuracy introduced through resource
sharing could be addressed by estimating the number of additional
conflict misses introduced through resource sharing as done by [12],
or by guaranteeing a fair sharing mechanism as proposed by [34, 71,
69, 58, 49, 72, 50]. Although the error tends to be low for our setup,
improving the accuracy of the cycle accounting architecture when ap-
plied to an SMT processor without performance isolation guarantees
in the memory hierarchy and branch predictor is an interesting avenue
for future work.

136 Cycle accounting in SMT processors

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

vortex

parser

crafty

twolf

facerec

crafty

vpr

sixtrack

vortex

gcc

gcc

gap

apsi

mesa

mcf

swim

wupwise

ammp

swim

galgel

mcf

galgel

lucas

fma3d

mesa

galgel

galgel

fma3d

applu

swim

mcf

equake

applu

galgel

swim

mesa

CPI

e
s
ti
m

a
te

d
e
x
e
c
u
ti
o
n

ti
m

e

s
in

g
le

-
th

re
a
d
e
d

e
x
e
c
u
ti
o
n

ti
m

e

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

swim

perlbmk

galgel

twolf

fma3d

twolf

apsi

art

gzip

wupwise

apsi

twolf

mgrid

vortex

swim

twolf

swim

eon

swim

facerec

parser

wupwise

vpr

mcf

equake

perlbmk

applu

vortex

art

mgrid

equake

art

parser

ammp

facerec

mcf

CPI

e
s
ti
m

a
te

d
e
x
e
c
u
ti
o
n

ti
m

e

s
in

g
le

-
th

re
a
d
e
d

e
x
e
c
u
ti
o
n

ti
m

e

Figure 6.12: The estimated single-threaded virtual execution time (predicted
through the cycle accounting architecture during SMT execution) versus the
measured execution time under single-threaded execution, assuming dy-
namic resource partitioning and the ICOUNT fetch policy.

6.5 Applications 137

6.4.5 Per-thread progress prediction

So far, we were concerned with estimating cycle components. Adding
the base cycle component with the miss event cycle components yields
an estimation for the overall virtual cycle count under single-threaded
execution, and dividing it by the number of instructions executed
yields the estimated virtual single-threaded CPI. In Figure 6.12, the vir-
tual single-threaded CPI prediction computed by the cycle accounting
architecture during multi-threaded execution is compared against the
CPI obtained from single-threaded execution, assuming ICOUNT and
dynamic resource partitioning. These graphs show that the estimated
execution time correlates well with the measured single-threaded ex-
ecution time: the average absolute prediction error equals 6.8%. We
observe similar results for the other resource sharing policies: static
partitioning and round-robin (5.4%), static partitioning and ICOUNT
(5.9%), dynamic partitioning and round-robin (6.5%), flush (7.2%) and
MLP-aware flush (6.3%). These results demonstrate that the cycle ac-
counting architecture can be used to assess per-thread progress. In
particular, the cycle accounting architecture reports the number of cy-
cles ‘consumed’ by each thread; this is the number of cycles the thread
would execute in single-threaded mode, its virtual execution time.
This is an abstraction consistent with the notion of timeslices in system
software [91]: e.g., a thread consuming 75% of a timeslice’s execution
cycles for four timeslices on an SMT processor corresponds to consum-
ing three timeslices on a single-threaded processor.

The cycle accounting method can thus be used by system software
in order to have a more accurate view of the progress of each of the
threads. Instead of assigning the complete CPU time to all of the con-
currently executing threads, it can assign the correct single-threaded
progress. With this information, system software may be able to pro-
vide a better quality of service to the SMT processor users, e.g., it can
more accurately enforce priorities, and measure the number of cycles
a thread has consumed, to provide a fair bill to users of a cycle-selling
data center consisting of SMT machines.

6.5 Applications

The next three sections show how the cycle accounting performance
counter architecture can be used to provide more quality of service on

138 Cycle accounting in SMT processors

an SMT processor. The next section shows how it can be used to mon-
itor the performance of a running SMT machine. Section 6.5.2 uses the
cycle accounting performance counters to drive a new SMT fetch pol-
icy that is able to provide more inter-thread fairness, and the last ap-
plication is a fetch policy that enforces per-thread absolute or relative
performance targets on an SMT processor. The applications discussed
here are mainly hardware solutions, but as discussed earlier, the cycle
accounting method can also be useful as an input to system software
(operating systems and virtual machines) to improve quality of service
guarantees to the users.

6.5.1 On-line SMT performance evaluation

For assessing the performance of an SMT processor running multi-
program workloads, we need appropriate metrics. Appendix B dis-
cusses performance metrics for multi-program workloads, and con-
cludes that metrics should have a system-level meaning. The pro-
posed metrics are system throughput (STP, equivalent to the previ-
ously proposed weighted speedup metric [85]), and average normal-
ized turnaround time (ANTT, equivalent to the reciprocal of the hmean
metric [63]). We also consider the fairness metric proposed in [36], since
it has some intuitive appeal.

STP =
n∑

i=1

IPCMT
i

IPCST
i

(6.1)

ANTT =
1
n

n∑
i=1

IPCST
i

IPCMT
i

(6.2)

fairness = mini,j

(
IPCMT

i /IPCST
i

IPCMT
j /IPCST

j

)
(6.3)

with n the number of threads, IPCST
i the single-threaded IPC of thread

i and IPCMT
i the IPC of thread i in the multi-threaded execution. STP

and fairness are higher-is-better metrics, while ANTT is a lower-is-
better metric.

These metrics are all computed using the single-threaded IPC of the
individual threads. This means that in order to quantify the perfor-
mance of an SMT processor, a single-threaded execution or simulation
has to be done. In a research and development context, this can be

6.5 Applications 139

justifiable, but to monitor the performance of an operational running
machine, it is infeasible. Since the cycle accounting method described
above provides single-threaded performance while running in multi-
threaded mode, it can be used as an on-line monitoring mechanism. It
can continuously and uninvasively report per-thread progress as well
as overall system performance to the operating system and users. This
information can be used to trigger compensations (e.g., changing the
job schedule) when SMT performance is degrading.

Figure 6.13 shows the STP, ANTT and fairness values measured
with the cycle accounting architecture compared to using post-execution
single-threaded executions/simulations. For most of the workloads,
the cycle accounting architecture is able to estimate performance met-
rics quite well, the average absolute error is 4.2% for the STP estimates,
4.6% for the ANTT estimates, and 7.9% for the fairness estimates. How-
ever, some show larger differences compared to the real values. The
largest errors are observed in the fairness estimation, and are due to the
fact that in some combinations, single-threaded IPC is underestimated
for one thread and overestimated for the other (e.g., mcf-swim, mcf-
equake, and equake-art; see also Figure 6.12). These effects strengthen
each other, resulting in a worse estimate.

6.5.2 Thread-progress aware fetch policies

Optimizing SMT performance incurs a delicate balance between sys-
tem throughput and per-thread performance, i.e., an SMT processor
should be fair and should not starve threads while maximizing system
throughput. The cycle accounting architecture presented in this chap-
ter enables leveraging on-line fairness computation and per-thread
progress indicators as the key enabler for a new class of thread-progress
aware SMT fetch policies. For example, the goal of the fetch policy
could be to have absolute fairness, i.e., the threads have equal single-
threaded progress. This can be done by giving priority to threads that
have made the least single-threaded progress. We propose three fetch
policies along this line:

• Waiting-Priority gives higher fetch priority to a thread with a
larger number of waiting cycles (and thus a lower number of
base plus miss event cycles). By doing so, we strive at achieving
equal progress for all threads.

140 Cycle accounting in SMT processors

(a)

(b)

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

v
o
rt

e
x
-p

a
rs

e
r

c
ra

ft
y
-t

w
o
lf

fa
c
e
re

c
-c

ra
ft
y

v
p
r-

s
ix

tr
a
c
k

v
o
rt

e
x
-g

c
c

g
c
c
-g

a
p

a
p
s
i-
m

e
s
a

m
c
f-

s
w

im

w
u
p
w

is
e
-a

m
m

p

s
w

im
-g

a
lg

e
l

m
c
f-

g
a
lg

e
l

lu
c
a
s
-f

m
a
3
d

m
e
s
a
-g

a
lg

e
l

g
a
lg

e
l-
fm

a
3
d

a
p
p
lu

-s
w

im

m
c
f-

e
q
u
a
k
e

a
p
p
lu

-g
a
lg

e
l

s
w

im
-m

e
s
a

s
w

im
-p

e
rl
b
m

k

g
a
lg

e
l-
tw

o
lf

fm
a
3
d
-t

w
o
lf

a
p
s
i-
a
rt

g
z
ip

-w
u
p
w

is
e

a
p
s
i-
tw

o
lf

m
g
ri
d
-v

o
rt

e
x

s
w

im
-t

w
o
lf

s
w

im
-e

o
n

s
w

im
-f

a
c
e
re

c

p
a
rs

e
r-

w
u
p
w

is
e

v
p
r-

m
c
f

e
q
u
a
k
e
-p

e
rl
b
m

k

a
p
p
lu

-v
o
rt

e
x

a
rt

-m
g
ri
d

e
q
u
a
k
e
-a

rt

p
a
rs

e
r-

a
m

m
p

fa
c
e
re

c
-m

c
f

estimated STP

real STP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

v
o
rt

e
x
-p

a
rs

e
r

c
ra

ft
y
-t

w
o
lf

fa
c
e
re

c
-c

ra
ft
y

v
p
r-

s
ix

tr
a
c
k

v
o
rt

e
x
-g

c
c

g
c
c
-g

a
p

a
p
s
i-
m

e
s
a

m
c
f-

s
w

im

w
u
p
w

is
e
-a

m
m

p

s
w

im
-g

a
lg

e
l

m
c
f-

g
a
lg

e
l

lu
c
a
s
-f

m
a
3
d

m
e
s
a
-g

a
lg

e
l

g
a
lg

e
l-
fm

a
3
d

a
p
p
lu

-s
w

im

m
c
f-

e
q
u
a
k
e

a
p
p
lu

-g
a
lg

e
l

s
w

im
-m

e
s
a

s
w

im
-p

e
rl
b
m

k

g
a
lg

e
l-
tw

o
lf

fm
a
3
d
-t

w
o
lf

a
p
s
i-
a
rt

g
z
ip

-w
u
p
w

is
e

a
p
s
i-
tw

o
lf

m
g
ri
d
-v

o
rt

e
x

s
w

im
-t

w
o
lf

s
w

im
-e

o
n

s
w

im
-f

a
c
e
re

c

p
a
rs

e
r-

w
u
p
w

is
e

v
p
r-

m
c
f

e
q
u
a
k
e
-p

e
rl
b
m

k

a
p
p
lu

-v
o
rt

e
x

a
rt

-m
g
ri
d

e
q
u
a
k
e
-a

rt

p
a
rs

e
r-

a
m

m
p

fa
c
e
re

c
-m

c
f

estimated ANTT

real ANTT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v
o
rt

e
x
-p

a
rs

e
r

c
ra

ft
y
-t

w
o
lf

fa
c
e
re

c
-c

ra
ft
y

v
p
r-

s
ix

tr
a
c
k

v
o
rt

e
x
-g

c
c

g
c
c
-g

a
p

a
p
s
i-
m

e
s
a

m
c
f-

s
w

im

w
u
p
w

is
e
-a

m
m

p

s
w

im
-g

a
lg

e
l

m
c
f-

g
a
lg

e
l

lu
c
a
s
-f

m
a
3
d

m
e
s
a
-g

a
lg

e
l

g
a
lg

e
l-
fm

a
3
d

a
p
p
lu

-s
w

im

m
c
f-

e
q
u
a
k
e

a
p
p
lu

-g
a
lg

e
l

s
w

im
-m

e
s
a

s
w

im
-p

e
rl
b
m

k

g
a
lg

e
l-
tw

o
lf

fm
a
3
d
-t

w
o
lf

a
p
s
i-
a
rt

g
z
ip

-w
u
p
w

is
e

a
p
s
i-
tw

o
lf

m
g
ri
d
-v

o
rt

e
x

s
w

im
-t

w
o
lf

s
w

im
-e

o
n

s
w

im
-f

a
c
e
re

c

p
a
rs

e
r-

w
u
p
w

is
e

v
p
r-

m
c
f

e
q
u
a
k
e
-p

e
rl
b
m

k

a
p
p
lu

-v
o
rt

e
x

a
rt

-m
g
ri
d

e
q
u
a
k
e
-a

rt

p
a
rs

e
r-

a
m

m
p

fa
c
e
re

c
-m

c
f

estimated fairness

real fairness

Figure 6.13: STP (a), ANTT (b) and fairness (c) values, predicted by the cycle
accounting architecture, compared to the real values (calculated using post-
execution single-threaded simulations), assuming dynamic resource partition-
ing and the ICOUNT fetch policy.

6.5 Applications 141

• Waiting-Priority-Stall includes Waiting-Priority, and when the
single-threaded V-ROB gets exhausted, the thread is stalled.

• Waiting-Priority-Flush includes Waiting-Priority-Stall, and when
dispatch stalls, the thread with the largest single-threaded V-ROB
is flushed for half the difference in V-ROB instructions with the
smallest V-ROB thread.

The latter two policies strive at improving throughput while guaran-
teeing fairness; this is done by preventing a thread from clogging re-
sources and, if it does clog resources, de-allocate part of the clogged
resources.

Figure 6.14 compares these thread-progress aware fetch policies
against the six other fetch policies considered in this chapter in terms
of fairness, STP and ANTT; these are average numbers across all work-
loads. According to the results presented in Figure 6.14, dynamic
partitioning in combination with round-robin performs worst in terms
of fairness, STP and ANTT (which is a lower-is-better metric, in con-
trast with to fairness and STP). The reason is that a thread experiencing
a long-latency load may clog all the resources thereby preventing the
other thread from making forward progress. The ICOUNT mechanism
strives at balancing the resources in the front-end pipeline and issue
queue to both threads, and improves all metrics. Static partitioning
has a slightly higher STP than ICOUNT and dynamic partitioning at
the expense of being less fair; this is in line with the observation made
by Raasch and Reinhardt [79]. The thread-progress aware fetch poli-
cies achieve the highest fairness, and the Waiting-Priority-Flush policy
achieves an STP comparable to the best non thread-progress aware
fetch policies, and the lowest ANTT of all policies.

6.5.3 Per-thread performance targets on an SMT processor

Leveraging a thread-progress aware fetch policy, we can control the
progress of the threads co-executing on an SMT processor and iso-
late per-thread performance on an SMT processor. In other words,
we can control the relative progress of the co-executing threads, e.g.,
one thread should make twice as much progress as another thread.
Or, we can isolate the performance of one thread and achieve a given
performance target irrespective of the other threads that happen to be
running concurrently, while utilizing left-over instruction bandwidth
to optimize system throughput.

142 Cycle accounting in SMT processors

0

0.5

1

1.5

2

2.5

Fairness STP ANTT

static :: round-robin

static :: ICOUNT

dynamic :: round-robin

dynamic :: ICOUNT

dynamic :: FLUSH

dynamic :: FLUSH MLP

Waiting-Priority

Waiting-Priority-Stall

Waiting-Priority-Flush

Figure 6.14: Comparing previously proposed fetch policies against the pro-
posed thread-progress aware fetch policies in terms of fairness, STP and
ANTT.

To this end, we introduce Thread Progress Registers (TPRs), set by sys-
tem software, that determine the fraction of the total execution cycles
that should be devoted to each thread. The sum of all TPRs should not
be larger than one, but may be lower. For example in a two-thread sys-
tem, a TPR configuration of 75%–25% means that thread 1 and thread
2 should get at least 75% and 25% of the total execution cycles, respec-
tively; the additional instruction bandwidth due to overlap effects dur-
ing SMT execution can be distributed among both threads for improv-
ing system throughput. (A 50%–50% TPR configuration corresponds to
a fair fetch policy, as described in the previous section.) A TPR config-
uration of 75%–NA (i.e., no TPR is set for thread 2) targets at thread 1
getting 75% of the total execution cycles, and the left-over instruction
bandwidth is devoted to thread 2. Note that the meaning of the TPRs
is consistent with the general understanding of timeslices in system
software for managing thread priorities, QoS and performance isola-
tion. For example, a 75%–25% TPR configuration could be realized in a
single-threaded processor system through time multiplexing by giving
75% of the timeslices to thread 1 and 25% of the timeslices to thread 2.
An SMT processor with a thread-progress aware fetch policy and TPRs
can provide this same abstraction to system software while achieving
significantly better system throughput.

A thread-progress aware fetch policy with TPRs operates as follows.

6.5 Applications 143

(a) TPR1 = 75% :: TPR2 = 25%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

v
o
rt

e
x
-p

a
rs

e
r

c
ra

ft
y
-t

w
o
lf

fa
c
e
re

c
-c

ra
ft
y

v
p
r-

s
ix

tr
a
c
k

v
o
rt

e
x
-g

c
c

g
c
c
-g

a
p

a
p
s
i-
m

e
s
a

m
c
f-

s
w

im

w
u
p
w

is
e
-a

m
m

p

s
w

im
-g

a
lg

e
l

m
c
f-

g
a
lg

e
l

lu
c
a
s
-f

m
a
3
d

m
e
s
a
-g

a
lg

e
l

g
a
lg

e
l-
fm

a
3
d

a
p
p
lu

-s
w

im

m
c
f-

e
q
u
a
k
e

a
p
p
lu

-g
a
lg

e
l

s
w

im
-m

e
s
a

s
w

im
-p

e
rl
b
m

k

g
a
lg

e
l-
tw

o
lf

fm
a
3
d
-t

w
o
lf

a
p
s
i-
a
rt

g
z
ip

-w
u
p
w

is
e

a
p
s
i-
tw

o
lf

m
g
ri
d
-v

o
rt

e
x

s
w

im
-t

w
o
lf

s
w

im
-e

o
n

s
w

im
-f

a
c
e
re

c

p
a
rs

e
r-

w
u
p
w

is
e

v
p
r-

m
c
f

e
q
u
a
k
e
-p

e
rl
b
m

k

a
p
p
lu

-v
o
rt

e
x

a
rt

-m
g
ri
d

e
q
u
a
k
e
-a

rt

p
a
rs

e
r-

a
m

m
p

fa
c
e
re

c
-m

c
f

th
re

a
d

p
ro

g
re

s
s

re
la

ti
v
e

to

s
in

g
le

-t
h
re

a
d
e
d

e
x
e
c
u
ti
o
n

thread 1 thread 2

(b) TPR1 = 75% :: TPR2 = NA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

v
o
rt

e
x
-p

a
rs

e
r

c
ra

ft
y
-t

w
o
lf

fa
c
e
re

c
-c

ra
ft
y

v
p
r-

s
ix

tr
a
c
k

v
o
rt

e
x
-g

c
c

g
c
c
-g

a
p

a
p
s
i-
m

e
s
a

m
c
f-

s
w

im

w
u
p
w

is
e
-a

m
m

p

s
w

im
-g

a
lg

e
l

m
c
f-

g
a
lg

e
l

lu
c
a
s
-f

m
a
3
d

m
e
s
a
-g

a
lg

e
l

g
a
lg

e
l-
fm

a
3
d

a
p
p
lu

-s
w

im

m
c
f-

e
q
u
a
k
e

a
p
p
lu

-g
a
lg

e
l

s
w

im
-m

e
s
a

s
w

im
-p

e
rl
b
m

k

g
a
lg

e
l-
tw

o
lf

fm
a
3
d
-t

w
o
lf

a
p
s
i-
a
rt

g
z
ip

-w
u
p
w

is
e

a
p
s
i-
tw

o
lf

m
g
ri
d
-v

o
rt

e
x

s
w

im
-t

w
o
lf

s
w

im
-e

o
n

s
w

im
-f

a
c
e
re

c

p
a
rs

e
r-

w
u
p
w

is
e

v
p
r-

m
c
f

e
q
u
a
k
e
-p

e
rl
b
m

k

a
p
p
lu

-v
o
rt

e
x

a
rt

-m
g
ri
d

e
q
u
a
k
e
-a

rt

p
a
rs

e
r-

a
m

m
p

fa
c
e
re

c
-m

c
f

th
re

a
d

p
ro

g
re

s
s

re
la

ti
v
e

to

s
in

g
le

-t
h
re

a
d
e
d

e
x
e
c
u
ti
o
n

thread 1 thread 2

(c) TPR1 = 100% :: TPR2 = NA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

v
o
rt

e
x
-p

a
rs

e
r

c
ra

ft
y
-t

w
o
lf

fa
c
e
re

c
-c

ra
ft
y

v
p
r-

s
ix

tr
a
c
k

v
o
rt

e
x
-g

c
c

g
c
c
-g

a
p

a
p
s
i-
m

e
s
a

m
c
f-

s
w

im

w
u
p
w

is
e
-a

m
m

p

s
w

im
-g

a
lg

e
l

m
c
f-

g
a
lg

e
l

lu
c
a
s
-f

m
a
3
d

m
e
s
a
-g

a
lg

e
l

g
a
lg

e
l-
fm

a
3
d

a
p
p
lu

-s
w

im

m
c
f-

e
q
u
a
k
e

a
p
p
lu

-g
a
lg

e
l

s
w

im
-m

e
s
a

s
w

im
-p

e
rl
b
m

k

g
a
lg

e
l-
tw

o
lf

fm
a
3
d
-t

w
o
lf

a
p
s
i-
a
rt

g
z
ip

-w
u
p
w

is
e

a
p
s
i-
tw

o
lf

m
g
ri
d
-v

o
rt

e
x

s
w

im
-t

w
o
lf

s
w

im
-e

o
n

s
w

im
-f

a
c
e
re

c

p
a
rs

e
r-

w
u
p
w

is
e

v
p
r-

m
c
f

e
q
u
a
k
e
-p

e
rl
b
m

k

a
p
p
lu

-v
o
rt

e
x

a
rt

-m
g
ri
d

e
q
u
a
k
e
-a

rt

p
a
rs

e
r-

a
m

m
p

fa
c
e
re

c
-m

c
f

th
re

a
d

p
ro

g
re

s
s

re
la

ti
v
e

to

s
in

g
le

-t
h
re

a
d
e
d

e
x
e
c
u
ti
o
n

thread 1 thread 2

Figure 6.15: Evaluating SMT performance targets under three scenarios: (a)
TPR1 = 75% and TPR2 = 25%, (b) TPR1 = 75% and TPR2 = NA, and (c)
TPR1 = 100% and TPR2 = NA.

144 Cycle accounting in SMT processors

For each thread i, the hardware thread priority controller computes the
relative progress indicator Pi:

Pi = (Cbase,i + Cmiss event,i)− Ctotal TPRi,

with Ctotal the total cycle count, TPRi the thread’s TPR, and Cbase,i +
Cmiss event,i the thread’s base plus miss event cycle count (the thread’s
virtual execution time). The fetch policy then gives priority to the
thread with the lowest Pi at run time, i.e., the thread that is lagging
behind its target performance the most. A special case is included in
the thread priority controller if one of the TPRs is not-applicable (NA):
a thread with TPR �= NA is given priority as long as its Pi is negative;
any left-over dispatch slots are given to the other threads with the NA
TPR.

This policy for controlling per-thread performance is evaluated in
Figure 6.15. We consider three scenarios on a two-thread SMT proces-
sor, assuming the Waiting-Priority-Flush policy: (a) TPR1 = 75% and
TPR2 = 25%; (b) TPR1 = 75% and TPR2 = NA; and (c) TPR1 =
100% and TPR2 = NA. For all (or most) of the threads, the fetch pol-
icy is able to reach per-thread performance close to or above its TPR: in
case (a), the two threads achieve a performance above the 75% and 25%
thresholds, respectively; in cases (b) and (c), most of the TPR1 threads
achieve performance above the 75% threshold and close to the 100%
threshold, respectively. The left-over computation bandwidth above
the TPR thresholds is distributed across both threads, see case (a), or is
consumed by the other thread, see cases (b) and (c); the excess compu-
tation bandwidth improves system throughput on SMT processor not
realizable through time multiplexing tasks on single-threaded proces-
sors.

The main cause of certain threads not reaching the TPR threshold in
Figure 6.15(b) (only 3 threads out of the 36 two-thread combinations) is
the delay of the MLP correcting mechanism. The single-threaded MLP
is calculated at the commit stage when a number of instructions equal
to the ROB size are committed after the load miss commits. This is
some time after the occurrence of the long-latency load miss, and in the
mean time, single-threaded execution time is overestimated, resulting
in a higher Pi and thus a lower priority. In many cases (except for the
TPR = 100% case), this is compensated by giving the thread a higher
priority after the MLP correction, but in some cases, there is not enough
time left to fully compensate for this MLP correction delay.

6.6 Related work 145

6.6 Related work

SMT processors. There is no prior work that proposes a per-thread
cycle accounting architecture for SMT processors, however, several ap-
proaches have been proposed for managing QoS in SMT processors.

Cazorla et al. [9, 11] target QoS in SMT processors through resource
allocation. They propose a system that samples single-threaded IPC,
and dynamically adjusts the resources to achieve a pre-set percentage
of the single-threaded IPC. The main difference with the cycle account-
ing architecture proposed in this chapter is that enforcing performance
targets is one of the possible applications of the counter architecture.
Cazorla et al.’s approach cannot compute per-thread virtual execution
time as does our counter architecture. Regarding the QoS-aware fetch
policies, there are three key differences between this work and ours: (i)
Cazorla et al.’s approach requires a sampling phase (5% of the time)
during which single-threaded IPC is measured while suspending co-
executing threads whereas we compute single-threaded progress on
the fly without run time overhead, (ii) Cazorla et al.’s approach incurs
tuning overhead for finding the right resource allocation for achieving
a pre-set target performance, and (iii) Cazorla et al.’s approach uses
the single-threaded IPC of samples that are taken thousands of instruc-
tions earlier, while we estimate the instantaneous single-threaded IPC.
The feedback loop in our approach is therefore much shorter than in
the approach of Cazorla et al.

Cota-Robles [17] describes an SMT processor architecture that com-
bines OS priorities with thread efficiency heuristics (outstanding in-
struction counts, number of outstanding branches, number of data
cache misses) to provide a dynamic priority for each thread sched-
uled on the SMT processor. The key difference with our work is that
the cycle accounting architecture proposed in this chapter enables a
per-thread progress indicator as input to the fetch policy rather than a
thread efficiency heuristic which is an indirect progress indicator.

Snavely et al. [86] study symbiotic job scheduling on SMT proces-
sors that strive at maximizing system throughput while satisfying job
priorities. Jain et al. [51] study symbiotic job scheduling of soft real-
time applications on SMT processors. Fedorova et al. [33] find that non-
work-conserving scheduling, i.e., running fewer threads than the SMT
processor allows, can improve system performance; they use a simple
analytical model to find cases when a non-work-conserving policy is

146 Cycle accounting in SMT processors

beneficial.

SOE processors. Gabor et al. [36] propose fairness enforcement based
on a cycle accounting mechanism for coarse-grain switch-on-event
(SOE) multi-threaded processors. The cycle accounting architecture es-
timates single-thread performance for each of the threads had each of
them been executed alone, while they are running in SOE multithread-
ing. Our work concerns with cycle accounting for SMT processors
rather than SOE processors, which poses a number of additional chal-
lenges because of the tighter interactions between co-executing threads
on an SMT processor.

CMP platforms. A significant body of recent work has been done
on QoS management in CMP-based computer systems. Unmanaged
shared resources such as caches, off-chip bandwidth and the memory
system, can affect per-thread and system performance in unpredictable
ways and may starve threads. Various researchers have proposed soft-
ware solutions [34] and hardware solutions for managing shared cache
storage [49, 58], shared cache storage and memory bandwidth [50, 72],
and CMP memory systems [69, 71].

6.7 Summary

This chapter presented a cycle accounting method for SMT processors
that is able to estimate the single-threaded progress of each of the in-
dividual threads during multi-threaded execution. It is based on the
insights provided by interval analysis and the single-threaded cycle ac-
counting method of the previous chapter. The main extension needed
was the ability to measure the impact of the interactions between the
threads due to the sharing of resources. This has led to a new type
of cycle component in addition to the base and the miss event penalty
components, namely the ‘waiting’ component. This component reflects
the amount of time a thread cannot make progress because of the fact
that the processor is doing computation work for another thread.

The calculation of the impact of shared resources turned out to be
relatively straightforward for front-end resource sharing (fetch and dis-
patch bandwidth), but is more complex for shared back-end resources
(reorder buffer). In order to determine the per-thread penalty of back-

6.7 Summary 147

end miss events (which has to be equal to the penalty they would have
observed when they were executed on a single-threaded processor), we
need to keep track of the ‘virtual ROB’ (V-ROB) occupancy of each of
the threads, i.e., the number of in-flight dispatch and waiting slots. The
cycle accounting architecture then counts back-end miss event penal-
ties as soon as the V-ROB occupancy equals the actual ROB size. We
also have to compensate for the loss of memory-level parallelism due
to the fact that threads usually cannot occupy all ROB entries to expose
the maximum MLP.

The end result is a cycle accounting architecture that is able to re-
construct single-threaded cycle component stacks for each of the indi-
vidual threads that are executing concurrently on an SMT processor. By
subtracting the waiting component of the total cycle count, the single-
threaded progress (its virtual single-threaded execution time) of the co-
executing threads can be estimated, which provides valuable informa-
tion to enforce quality of service for SMT processors. We showed how it
can be used to do on-line performance monitoring of SMT processors,
to enable thread-progress aware fetch policies, and to enforce perfor-
mance targets on SMT processors.

148 Cycle accounting in SMT processors

Chapter 7

Conclusions and future work

The real danger is not that computers will begin to think like men,
but that men will begin to think like computers.

Sydney J. Harris

7.1 Summary

Performance analysis of contemporary complex processor architec-
tures is a challenging task. Performance improving techniques such
as pipelining, superscalarity, out-of-order execution, speculative ex-
ecution and caching have boosted processor performance, but make
it more difficult to attain intuitive insight into their performance im-
pact. Therefore, performance evaluation in an experimental context has
shifted towards simulation. Simulation provides accurate performance
results, but is highly time-consuming and also gives no fundamental
insight into the performance of a program running on a processor.
This lack of insight is also reflected in on-line performance monitoring
tools. Existing hardware performance counters can measure various
events that have an impact on processor performance, but they fail to
accurately quantify this impact.

In this work we showed that by studying the dispatch behavior of
a program executing on a processor, a sufficiently detailed but intuitive
performance model can be deduced, called interval analysis. This model
reveals some interesting insights:

• In the absence of miss events, a balanced processor achieves a per-
formance level equal to the designed processor (dispatch) width.

150 Conclusions and future work

• The performance impact of an instruction cache miss equals the
time needed to access the appropriate cache level or memory. The
penalty for an I-TLB miss equals the time needed to consult the
page table in memory.

• The penalty of a branch mispredictions consists of the branch
resolution time, i.e., the time needed to execute the instructions
the branch depends on, plus the front-end refill time. Due to
the branch resolution time, the branch misprediction penalty can
be much larger than the front-end pipeline depth. The branch
resolution time depends on the interval length distribution (i.e.,
the distribution of the number of instruction between the miss
events), the available ILP and the average instruction execution
latency. In balanced processors, branch mispredictions are the
only case where the critical dependency path of an application
affects performance.

• Short back-end misses (L1 data cache misses) and medium-
latency functional units (multiply, divide) usually show no or
little performance impact, because they are hidden through out-
of-order execution in a balanced processor design.

• Long-latency back-end misses incur a penalty because they cause
the exhaustion of instruction window entries. Their penalty can
be approximated by the memory access time, but overlaps be-
tween independent long-latency load misses (memory-level par-
allelism or MLP) can substantially lower the individual penalty
of long-latency load misses.

Using the insights provided by interval analysis, we developed a
mechanistic performance model, that approximates total performance
without doing extensive simulations, and that provides more insight
into the performance impact of miss events (cache misses and branch
mispredictions). This is done by estimating the execution time in the
absence of miss events and by approximating the penalties of each of
the miss events. The input for the model are application-dependent
characteristics (such as average critical dependency path length and
instruction mix), processor parameters (e.g., dispatch width and in-
struction execution latencies), and program locality behavior (branch
predictor accuracy and cache miss rates), which depends on both the
application and the processor configuration. The model has a perfor-
mance estimation error of 6.9% for a four-wide baseline processor. Ap-

7.2 Future work 151

plying the model to a study of the processor pipeline depth and width
has yielded an interesting relationship between optimal pipeline depth
and width, i.e., if the pipeline width increases by a factor c, the optimal
pipeline depth decreases with a factor

√
c.

Interval analysis also provides the needed insights needed to design
a hardware performance counter architecture that quantifies the impact
of miss events by decomposing total execution time into base and miss
event components. We have shown that this can be done in a limited
chip area budget, and that it yields far more accurate cycle component
stacks than previously proposed cycle accounting methods. The use-
fulness of accurate cycle component stacks for software designers (pro-
grammers and compiler builders) is illustrated by a study of the per-
formance impact of compiler optimizations. This study confirms and
quantifies some well-known facts, but also reveals some interesting in-
sights, such as the fact that instruction scheduling is less important and
can be even harmful for out-of-order processors compared to in-order
processors, while avoiding miss events and exploiting MLP has more
performance impact on out-of-order processors.

Finally, interval analysis also provides insight into how to do accu-
rate cycle accounting in SMT processors. The main problem in multi-
threaded processors is the mutual performance impact of the threads,
which makes it difficult to isolate the performance of the individual
threads while they are co-running on an SMT processor. Therefore,
we developed a counter architecture that estimates the single-threaded
progress of the individual threads. It reconstructs the cycle component
stacks of each of the threads as if they were executing on a single-
threaded processor. Being able to estimate single-threaded progress
during multi-threaded execution yields a far more accurate view of the
actual progress of each of the individual threads, which is useful for
system software or hardware to provide quality of service on SMT pro-
cessors. Using this performance counter architecture, we developed a
fetch policy that is able to enforce performance targets for individual
threads, irrespectively of the co-executing threads.

7.2 Future work

In this thesis, we developed performance estimation and analysis tools
that illustrate both the simplicity and power of interval analysis. How-

152 Conclusions and future work

ever, more research can be conducted to fully expand the capabilities of
the analytical performance model.

Improving the applicability of the mechanistic model

The mechanistic model does not model some mechanisms present in
contemporary processors, such as hardware prefetching. It should be
studied how to model the performance impact of these mechanisms
and how to integrate them into the existing model.

The mechanistic model can also be used to evaluate the perfor-
mance impact of new microarchitectural techniques, without the need
for detailed simulations. Using interval analysis, the performance im-
pact of these new techniques can be modeled and integrated into the
overall model. For example, the performance impact of runahead exe-
cution [70] can be assessed by estimating the gain in MLP it provides,
and estimating the penalty of re-executing some instructions.

Improving the accuracy of the SMT cycle accounting architecture

The main limitation of the proposed cycle accounting architecture for
SMT processors is that it is less accurate when we assume shared
branch predictors and caches. Augmenting the counter architecture
with an estimator of the number of additional conflict misses through
sharing will improve its accuracy when no fair sharing is guaranteed.

Dynamic performance optimization using the cycle accounting archi-
tectures

Both the cycle accounting architectures for single-threaded processors
and SMT processors provide valuable performance-related information
while the application(s) is (are) running. This information can be used
by system software or dynamic compilers to perform at runtime per-
formance optimization. Using the on-line measured cycle component
stacks, a dynamic compiler can detect the main performance inhibitors
of a frequently executed method, and apply specific code optimizations
directed at reducing the largest cycle components. The cycle account-
ing architectures may also provide valuable information for operating
systems and (system) virtual machines to support the distribution of
the available resources among the tasks, in order to maximize system

7.2 Future work 153

throughput and/or to minimize the turnaround time of the individual
tasks.

Analytical performance models for multi-threaded and multi-core
processors

Interval analysis as elaborated in Chapter 3 is an intuitive way to ana-
lyze the performance of single-threaded processors. As shown in Chap-
ter 6, its base mechanisms can also be used to study multi-threaded pro-
cessor performance. Currently, we only used it to develop a cycle ac-
counting architecture for SMT processors, but it would be interesting to
use it as a basis to develop a performance estimation model for multi-
threaded processors (SMT and switch-on-event), as we have done in
Chapter 4 for single-threaded processors.

The mechanistic performance model for single-threaded processors
can also be integrated in an analytical performance model for chip mul-
tiprocessors (CMPs). Since it already provides an abstraction of the ex-
ecution of the individual instructions on a single processor core, it can
be used to model the performance of each of the processor cores the
CMP consists of. By developing models to characterize cache sharing,
cache coherence traffic, shared off-chip bandwith, etc., the overall per-
formance of the CMP can be modeled and estimated.

154 Conclusions and future work

Appendix A

Simulation details

A.1 Single-threaded processor

A.1.1 Simulator

For all single-threaded processor simulations we used SimpleScalar
v3.0 with the Alpha instruction set [7].

A.1.2 Benchmarks

We use the SPEC CPU 2000 benchmark suite (see www.spec.org). The
binaries of these were taken from the SimpleScalar website. Unless
mentioned otherwise, a single 100 million instruction SimPoint [82, 78]
is used to do the evaluations. The benchmarks, along with their inputs
and SimPoints are represented in Table A.1.

A.1.3 Processor configuration

Unless mentioned otherwise, the baseline processor configuration is
that presented in Table A.2.

For the processor depth and width studies in Section 4.4, we
changed some of the processor parameters as function of the depth
and width, see Table A.3 and Table A.4, respectively.

156 Simulation details

Table A.1: Benchmarks, inputs and SimPoints (in billions of instructions
skipped) for single-threaded simulations.

Benchmark input SimPoint

bzip2 program 0.9B
crafty ref 0B
eon rushmeier 1.8B
gap ref 209.4B
gcc 166 9.9B
gzip graphic 0.3B
mcf ref 31.6B
parser ref 1.6B
perlbmk makerand 1B
twolf ref 3.1B
vortex ref2 5.9B
vpr route 7.1B

ammp ref 212.9B
applu ref 1.7B
apsi ref 4.5B
art ref-110 6.6B
equake ref 19.3B
facerec ref 13.5B
fma3d ref 29.7B
galgel ref 314.9B
lucas ref 3.4B
mesa ref 8.8B
mgrid ref 0.5B
sixtrack ref 8.1B
swim ref 0.4B
wupwise ref 58.3B

A.1 Single-threaded processor 157

Table A.2: Baseline processor configuration.

parameter value

ROB 128 entries

LSQ 64 entries

processor width decode, dispatch, issue and commit 4 wide
fetch 8 wide

fetch buffer 8 entries

latencies load (2), mul (3), div (20)

L1 I-cache 8KB direct-mapped
L1 D-cache 16KB 4-way set-assoc
L2 cache unified, 1MB 8-way set-assoc, 9 cycles
main memory 250 cycle access time

branch predictor hybrid bimodal/gshare predictor
front-end pipeline 5 stages

Table A.3: Processor resource scaling as a function of pipeline depth.

Parameter depth 1x depth 2x depth 3x depth 4x depth 5x

ROB 128 256 384 512 640

LSQ 64 128 192 256 320

latencies:
integer 1 2 3 4 5
load 2 4 6 8 10
mul 3 6 9 12 15
div 20 40 60 80 100

L2 cache
access time 9 18 27 36 45

main memory
access time 250 500 750 1000 1250

front-end
pipeline depth 5 10 15 20 25

158 Simulation details

Table A.4: Processor resource scaling as a function of processor width.

Parameter width 2 width 4 width 6 width 8

ROB 64 128 256 512

LSQ 32 64 128 256

fetch width and
fetch buffer size 4 8 12 16

dispatch, issue and
commit width 2 4 6 8

A.2 SMT processor 159

A.2 SMT processor

A.2.1 Simulator

We used the SMTSIM simulator version 2.0 alpha [95] to do the SMT
processor simulations. We added a write buffer to the simulator’s pro-
cessor model: store operations leave the reorder buffer upon commit
and wait in the write buffer for writing to the memory subsystem; com-
mit blocks in case the write buffer is full and we want to commit a store.

A.2.2 Benchmarks

We use the SPEC CPU2000 benchmarks with reference inputs, see Ta-
ble A.5. These benchmarks are compiled for the Alpha ISA using the
Compaq C compiler (cc) version V6.3-025 with the -O4 optimization
option. For all of these benchmarks we select 200M instruction (early)
simulation points using the SimPoint tool [82, 78].

A.2.3 Processor configuration

Unless mentioned otherwise, the baseline processor configuration is
that presented in Table A.6.

160 Simulation details

Table A.5: Benchmarks, inputs and SimPoints (in billions of instructions
skipped) for multi-threaded simulations.

Benchmark input SimPoint

bzip2 graphic 4B
crafty ref 2.2B
eon chair 11.6B
gap ref 24.6B
gcc 166 0B
gzip program 27.2B
mcf ref 14B
parser ref 11.8B
perlbmk makerand 0.4B
twolf ref 42B
vortex ref1 13.4B
vpr place 33.4B

ammp ref 2.8B
applu ref 1.6B
apsi ref 5B
art ref 110 0.4B
equake ref 21.4B
facerec ref 0B
fma3d ref 24.8B
galgel ref 4B
lucas ref 3.4B
mesa ref 2.6B
mgrid ref 18.4B
sixtrack ref 8.4B
swim ref 1B
wupwise ref 4.4B

A.2 SMT processor 161

Table A.6: The baseline SMT processor configuration.

parameter value

fetch policy ICOUNT 2.4

(shared) reorder buffer size 256 entries
instruction queues 96 entries in both IQ and FQ
rename registers 200 integer and 200 floating-point

processor width 4 instructions per cycle
functional units 4 int ALUs, 2 ld/st units and 2 FP units

front-end pipeline 11 cycles
branch predictor 2K-entry gshare
branch target buffer 256 entries, 4-way set associative

write buffer 24 entries
L1 instruction cache 64KB, 2-way, 64-byte lines
L1 data cache 64KB, 2-way, 64-byte lines
unified L2 cache 512KB, 8-way, 64-byte lines
unified L3 cache 4MB, 16-way, 64-byte lines
instruction/data TLB 128/512 entries, fully-assoc, 8KB pages
cache hierarchy latencies L2 (11), L3 (35), MEM (350)

162 Simulation details

Appendix B

Multi-program workload
performance metrics

Performance metrics are at the foundation of experimental computer
science and engineering. Researchers and engineers use quantitative
metrics for assessing the performance of their novel research ideas and
engineering progress: needless to say that adequate metrics are of pri-
mary importance, whereas inappropriate metrics may drive research
and development in a wrong or unfruitful direction.

For single-threaded processors, the sole performance metric is the
execution time of a program. The faster a processor can execute a pro-
gram, the better is its performance. Performance is often reported in
terms of IPC, instructions executed per cycle, or in its reciprocal form
as CPI (cycles per instruction). IPC can be easily measured by dividing
the number of instructions executed by the number of cycles needed to
execute these instructions.

IPC values are application-dependent. A program that accesses a
big chunk of memory in an unpredictable way has more cache misses
and will have a lower IPC than a program that accesses less data
and/or has a more regular memory access pattern. Therefore IPC
should always be reported together with the application used to mea-
sure it. To compare processors, people have developed benchmark ap-
plications, e.g., the SPEC benchmark suite [45], the MiBench suite [41],
and many others.

IPC can also be used in the context of multi-programmed work-
loads, i.e., multiple programs executing on a multi-threaded processor

164 Multi-program workload performance metrics

(e.g., an SMT processor or switch-on-event processor). It is calculated
by adding up the number of instructions executed for all threads, and
dividing this by the number of cycles needed to execute these instruc-
tions. This is typically referred to as IPC throughput: the average num-
ber of instructions that the processor can execute per cycle, irrespective
of the performance of the individual threads. This is a direct translation
of the single-threaded IPC and was commonly used in the past, but it
has some main drawbacks.

The first obvious drawback is that it does not take into account the
performance degradation of the individual threads. A high through-
put value does not mean that the performance of each of the individual
threads is maximized. Optimizing IPC throughput can cause proces-
sors to prefer fast executing threads (with a high single-threaded IPC)
above slower threads. This results in an unfair schedule.

A second, less obvious, drawback is that IPC throughput does not
measure the efficiency of multi-threading. Since single-threaded IPC is
application dependent, summing up these IPC values yields a perfor-
mance metric that is also very application dependent: co-executing two
slow threads will always give lower IPC throughput values than co-
executing two fast threads, irrespectively of how efficient the threads
are co-executed. Instead of considering the number of instructions ex-
ecuted per cycle, the efficiency of multi-threaded processors should be
expressed in terms of ‘threads per cycle’: how many progress do each
of the concurrently executing threads make, irrespective of the single-
threaded IPC of the threads. This definition is equivalent to system
throughput in a system software context, i.e., how many jobs are fin-
ished per time unit.

To calculate system throughput (STP), consider a situation where
n threads are executing simultaneously on a multi-threaded processor,
for a timeslice of CMT cycles. During this timeslice, each thread has
executed Ii instructions (i = 1, 2, . . . , n). To execute the same number
of instructions on a single-threaded processor, each thread would have
needed CST

i cycles. So, during CMT cycles, the total single-threaded
progress of all threads equals

∑n
i=1 CST

i . System throughput can thus
be calculated as:

STP =
∑n

i=1 CST
i

CMT
(B.1)

If system throughput is equal to one, then the multi-threaded pro-
cessor’s performance is equal to time sharing on a single-threaded pro-

165

cessor: each thread gets a delimited time slice of total time, and all slices
sum up to the total time. This means multi-threading adds no efficiency
to the processor. If it is larger than one, multi-threading outperforms
time sharing. The maximum value is n, indicating that all threads run
at their full single-threaded speed, meaning that the n-context multi-
threading processor performs as good as n single-threaded processors
running concurrently. Theoretically, the value of system throughput
is between 1 and n, but sharing branch predictors and caches can in-
troduce extra conflict misses compared to single-threaded execution,
which can cause the system throughput value to be less than one.

Since performance metrics for multi-threaded processors are often
expressed in terms of the IPCs of the individual threads, we convert the
above formula to IPC values instead of cycles.

STP =
n∑

i=1

CST
i

CMT
=

n∑
i=1

Ii/C
MT

Ii/CST
i

=
n∑

i=1

IPCMT
i

IPCST
i

(B.2)

This yields an expression that is equal to the weighted speedup metric,
proposed in [85]. While it was introduced as a metric that has intuitive
appeal, but with no founded system level meaning, we now found that
it expresses system level throughput.

System throughput however still does not take into account explic-
itly the performance degradation of the individual threads. A multi-
threaded execution where one thread yields 0.9 of its single-threaded
execution performance and the other one 0.5 is less fair than when both
threads show a performance degradation of 0.7, although they have the
same system throughput value of 1.4. A metric that is more meaningful
for end users is average normalized turnaround time (ANTT) (which is
a lower-is-better metric, in contrast to system throughput):

ANTT =
1
n

n∑
i=1

CMT

CST
i

=
1
n

n∑
i=1

IPCST
i

IPCMT
i

(B.3)

ANTT reflects the average degradation of the turnaround time of a
thread (i.e., the time needed to complete a job) compared to its single-
threaded turnaround time. Applied to the example above, the ANTT
of the first example is 1.6, and 1.4 for the second example.

STP and ANTT are hence performance metrics for multi-threaded
processors that have a system-level meaning. Though they are very
closely related, STP reflects the efficiency of a multi-threaded proces-
sors, which is a system-oriented point of view, whereas ANTT reflects a

166 Multi-program workload performance metrics

certain quality of service given to the end user. Balancing these metrics
is more an economic decision than a pure performance related matter.
For example, a data center—consisting of multi-threaded processors—
that ‘sells’ computing cycles to their users can make more profit by op-
timizing system throughput (since more ‘single-threaded cycles’ are ex-
ecuted during one ‘multi-threaded cycle’), or provide a better service to
costumers by minimizing the average turnaround time degradation.

Two other metrics have been proposed in literature. One of them is
fairness [36], which is defined as:

fairness = mini,j

(
IPCMT

i /IPCST
i

IPCMT
j /IPCST

j

)
(B.4)

= mini,j

(
CST

i /CMT

CST
j /CMT

)
= mini,j

(
CST

i

CST
j

)
(B.5)

The goal of this metric is clear: optimizing it will strive at equal per-
formance degradation for each thread. It is used as a counterbalance
for throughput to ensure every thread has a fair share of the overall
performance.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

thread 1

th
re

a
d

2

fairness=1

fairness=0.5

STP=1

STP=1.5

STP=1.8

ANTT=2

ANTT=1.5

ANTT=1.2

Figure B.1: Comparing STP, ANTT and fairness for a two-thread workload.

Figure B.1 graphically compares the STP, ANTT and fairness met-
rics for a two-thread workload. The axes show the relative progress

167

of each of the threads (i.e., CST
i /CMT or IPCMT

i /IPCST
i), and the

lines show the points where a certain metric equals a certain value
(see legend). The upper-right corner is the optimal point: both threads
progress at their single-threaded speed. At that point fairness is 1, STP
is 2 and ANTT equals 1. This graph shows that system throughput
and fairness are almost independent of each other. Together, they re-
flect two base requirements of a multi-threaded processor, i.e., a multi-
threaded processor should have good throughput and should be fair.
ANTT on the contrary is a combined metric, balancing throughput and
fairness, which can be explained by its user-oriented nature: it min-
imizes turnaround time (which is throughput-related) for all threads
(which includes a notion of fairness).

Another widely used metric is hmean [63]. It resulted from the in-
sight that weighted speedup does not harm unfair schedules. So, in-
stead of summing all the speedup terms as done for weighted speedup,
a harmonic mean of the speedups is taken, because the harmonic mean
tends to stress lower values. When one thread has low performance
and the other threads have higher performance, the harmonic mean
will give more weight to the low value, penalizing unfair schedules.
Hmean is calculated as

hmean =
n∑n

i=1 IPCST
i /IPCMT

i

=
n∑n

i=1 CMT/CST
i

(B.6)

Following this definition, hmean is the reciprocal of ANTT. As such,
although hmean was designed as an artificial metric with no physi-
cal meaning, it is in fact the reciprocal of the average turnaround time
degradation (which has a system level meaning). Hmean can therefore
be used as a higher-is-better metric that corresponds to ANTT, but rela-
tive gains in hmean are meaningless. Improvements should always be
reported in terms of ANTT reduction.

168 Multi-program workload performance metrics

Appendix C

SMT fetch policies

Balancing throughput and fairness in an SMT context is done by im-
plementing an efficient fetch policy. Each cycle the policy decides from
which thread(s) instructions should be fetched in order to maximize
throughput and not favor a single thread too much. Ever since the
introduction of SMT in computer architecture research, people have
acknowledged the importance of a fetch policy and many researchers
have tried to optimize it [8, 10, 24, 96, 97]. Section C.1 discusses round-
robin and ICOUNT, which are base fetch policies that have been pro-
posed at the introduction of SMT. Section C.2 discusses fetch policies
that improve the base policies in the case of a thread experiencing
a long-latency load miss. Section C.3 then describes our proposed
memory-level parallelism aware fetch policy. Finally, Section C.4 dis-
cusses some other proposed fetch policies and resource partitioning
mechanisms.

C.1 Base fetch policies

A simple policy that at first sight seems to be fair by construction is
round-robin [97]. That is, the fetch engine fetches instructions from
a new thread each cycle, and when all threads have had their turn,
it restarts from the first one. The number of instructions injected in
the processor is equally distributed among all threads, which seems a
fair starting point. But threads behave differently depending on inter-
instruction dependencies, instruction execution latencies and the num-
ber of miss events they cause. A slow thread (with many miss events)

170 SMT fetch policies

can execute less instructions per cycle than a fast thread, so when an
equal number of instructions is fetched, the instruction window will
fill up with instructions from the slow thread, while the fast thread con-
sumes its instructions faster. This leaves increasingly less resources for
the fast thread, which results in an unbalanced situation.

Therefore, Tullsen et al. [97] proposed a fetch policy named ICOUNT,
that takes into account the number of in-flight instructions of each
thread. A per-thread counter is incremented when an instruction of
that thread is fetched, and decremented when an instruction is issued.
By doing so, it contains the number of instructions of that thread in
the front-end pipeline and the issue buffer. A thread with the lowest
counter value is given higher priority to fetch instructions. This bal-
ances the front-end resource utilization of each thread, giving more
fetch priority to fast threads. This is in line with the multi-threaded
performance metrics: a fast thread should get more instructions not
to degrade its performance too much relative to single-threaded per-
formance, while slow threads, that already have a low single-threaded
performance, are penalized less when fewer instructions are fetched.

C.2 Long-latency load aware fetch policies

There is however one case where ICOUNT falls short. When one thread
encounters a long-latency load miss (that has to access main memory,
or a TLB miss that has to consult the page table in memory), the reorder
buffer will fill up with instructions of that thread because the load miss
cannot commit. When the ROB fills up, the issue buffer will also fill
with instructions dependent on the load miss, and ICOUNT will give
this thread a low fetch priority. This is good, because the thread cannot
make any progress due to the load miss, so it is useless to fetch more
instructions for that thread. But since the other thread(s) can encounter
instruction cache misses or taken branches that prevent a thread from
using the full fetch width, there are still cycles where the long-latency
thread is the only thread left from which instructions can be fetched,
and the ROB will continue to fill with instructions from that thread.
This eventually leads to a situation where one thread occupies most of
the ROB entries without making progress, causing the other threads to
slow down.

To overcome this problem, Tullsen and Brown [96] propose to take
extra measures when a long-latency load miss is detected. They pro-

C.3 MLP-aware fetch policy 171

pose to stall the fetching of instructions of a thread experiencing a long-
latency load miss. The thread remains stalled as long as the load miss
is waiting for data. Furthermore, instructions already fetched after the
load miss can be flushed (which can be a lot, since it takes a while
to detect a long-latency load miss: first all instructions it depends on
have to execute (load resolution time) and then all intermediate cache
levels have to be consulted). The flushing of instructions frees even
more resources for the other threads and therefore performs better, but
it needs extra hardware for taking checkpoints to restore architectural
state when the load miss returns. Cazorla et al. [8] try to avoid flush-
ing by predicting long-latency load misses at the fetch stage and fetch
stall threads when a long-latency miss is predicted. This avoids fetch-
ing instructions after the long-latency load miss, and makes a flushing
mechanism unnecessary.

C.3 MLP-aware fetch policy

The long-latency load aware fetch policies discussed in the previous
section, however, do not take into account the importance of memory-
level parallelism. When a thread showing a long-latency load miss is
fetch stalled and instructions following the load miss are flushed, the
possible MLP cannot be exploited. This delays the long-latency load
misses that could have been handled in parallel until after the load
miss returns, which introduces substantial performance degradation
compared to single-threaded execution. Threads having a lot of MLP
potential are therefore severely delayed compared to single-threaded
execution, worsening SMT performance.

Therefore, we develop an MLP-aware fetch policy [28] that balances
the freeing of resources and the preservation of MLP in case a long-
latency load miss is detected. To this purpose, we design an MLP pre-
dictor, presented in the next section. Section C.3.2 deals with the use of
this predictor in an MLP-aware fetch policy.

C.3.1 MLP predictor

The purpose of an MLP predictor is to predict whether a certain long-
latency load miss will expose MLP, i.e., if it is followed by other inde-
pendent long-latency load misses within the instruction window size.
To ease the design of the fetch policy, we decided not to predict the

172 SMT fetch policies

actual MLP, i.e., the number of parallel independent long latency load
misses, but the MLP distance, which is defined as the number of in-
structions that need to be fetched after the current load miss, in order
to exploit the maximum MLP within the window size.

The predictor is a simple last value predictor, indexed by the in-
struction address of the load miss, which means that the predicted MLP
distance is equal to the previously observed MLP distance of the load
miss. The difficult part is how to update the predictor. In order to de-
tect the maximum MLP of a thread, the ROB needs to be filled with
instructions of that thread, which has an important performance im-
pact for the other threads. Moreover, when the MLP of a certain static
load enlarges, e.g., when it first showed no MLP and later on exposes
some MLP, the maximum MLP cannot be detected, since the predictor
steers the fetch policy by stalling the fetch of new instructions after the
predicted distance.

The solution is to use a shift register per thread that contains the
long-latency load miss history of the most recent instructions. A zero
is shifted in if the last instruction was not a long-latency load miss, and
a one if it was. If a one hits the head of the shift register, then the MLP
distance can be obtained by looking at the position of the most recently
inserted one. By also retaining the instruction addresses of the load
misses, the predictor table can be indexed and updated.

We decided to put the shift registers at the commit stage for three
reasons. First, at commit, the instruction is finished and it is known if it
caused a long-latency load miss or not, which is not the case at for ex-
ample dispatch. Second, instructions along mispredicted paths never
commit, so MLP along mispredicted paths is not calculated (which
should not, since at the next occurrence of this load miss, the branch
may be correctly predicted). And third, since the MLP distance will be
needed by the fetch engine to decide how many instructions should be
fetched, it has to reflect the number of instructions between load misses
as they appear in program order. Since commit handles instructions in-
order, the number of instructions committed between two load misses
is equal to their mutual distance in program order (in contrast to for
example the issue stage that is out-of-order: the number of instructions
issued between the issuing of two load misses is usually not equal to
their mutual distance in the dynamic instruction trace).

C.4 Other fetch policies 173

C.3.2 Fetch policy

The fetch policy is now very intuitive: if a long-latency load is detected,
the MLP distance is predicted and the number of instructions already
fetched after the load miss is determined. If this number of instructions
is larger than the MLP distance, then a number of instructions have
to be flushed such that the remaining number of instructions equals
the MLP distance. If too few instructions are fetched, fetching should
continue until the predicted MLP distance is reached. If the appropriate
number of instructions are flushed or fetched, the thread is fetch stalled
(i.e., no instructions of that thread are fetched anymore) until the load
miss returns. The MLP predictor can also be used in combination with
a load miss predictor, avoiding the need of a flush mechanism.

Since an MLP-intensive thread still holds a number of resources
(ROB entries) for a long time, the predicted MLP distance should be
limited to ensure a fair share of the resources for the other threads. We
decided to limit the MLP distance to the total ROB size divided by the
number of threads. This can be done by limiting the size of the shift
registers. We also evaluated the policy with smaller and larger shift
registers, but dividing the ROB size equally among the threads turned
out to be optimal.

C.4 Other fetch policies and resource partitioning
mechanisms

Besides the fetch policies discussed earlier in this appendix, other fetch
policies have been proposed as well. However these fetch policies do
not address the long-latency load problem and are orthogonal to our
MLP-aware fetch policy. For example, El-Moursy and Albonesi [24]
propose to give fewer resources to threads that experience many data
cache misses. They propose two schemes, namely data miss gating
(DG) and predictive data miss gating (PDG). DG drives the fetching
based on the number of observed L1 data cache misses, i.e., by counting
the number of L1 data cache misses in the execute stage of the pipeline.
The more L1 data cache misses observed, the fewer resources the thread
can allocate. PDG strives at overcoming the delay between observing
the L1 data cache miss and the actual fetch gating in the DG scheme
by predicting L1 data cache misses in the frontend pipeline stages. An-
other scheme by Cazorla et al. [10] proposes to monitor the dynamic

174 SMT fetch policies

usage of resources by each thread and strives at giving a fair share of
the available resources to all the threads. The input to their scheme
consists of various usage counters for the number of instructions in the
instruction queues, the number of allocated physical registers and the
number of observed L1 data cache misses. Choi and Yeung [13] go one
step further and use a learning-based resource partitioning policy.

Bibliography

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock
rate versus IPC: The end of the road for conventional microarchi-
tectures. In Proceedings of the 27th Annual International Symposium
on Computer Architecture (ISCA), pages 248–259, June 2000.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs
on a modern processor: Where does time go? In Proceedings of the
25th Very Large Database Conference, 1999.

[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Hen-
zinger, S. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Wald-
spurger, and W. E. Weihl. Continuous profiling: Where have
all the cycles gone? ACM Transactions on Computer Systems,
15(4):357–390, November 1997.

[4] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastruc-
ture for computer system modeling. IEEE Computer, 35(2):59–67,
February 2002.

[5] D. Boggs, A Baktha, J. Hawkins, D.T. Marr, J.A. Miller, P. Roussel,
R. Singhal, B. Toll, and K.S. Venkatraman. The microarchitecture
of the Intel Pentium 4 processor on 90nm technology. Intel Tech-
nology Journal, 8(1):1–17, 2004.

[6] P. Bose and T. M. Conte. Performance analysis and its impact on
design. IEEE Computer, 31(5):41–49, May 1998.

[7] D. C. Burger and T. M. Austin. The SimpleScalar Tool
Set. Computer Architecture News, 1997. See also
http://www.simplescalar.com for more information.

[8] F. J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero. Optimiz-
ing long-latency-load-aware fetch policies for SMT processors.

176 BIBLIOGRAPHY

International Journal of High Performance Computing and Network-
ing (IJHPCN), 2(1):45–54, 2004.

[9] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernández,
A. Ramirez, and M. Valero. Predictable performance in SMT pro-
cessors: Synergy between the OS and SMTs. IEEE Transactions on
Computers, 55(7):785–799, July 2006.

[10] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez. Dynam-
ically controlled resource allocation in SMT processors. In Pro-
ceedings of the 37th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 171–182, December 2004.

[11] F. J. Cazorla, A. Ramirez, M. Valero, P. M. W. Knijnenburg,
R. Sakellariou, and E. Fernández. QoS for high-performance SMT
processors in embedded systems. IEEE Micro, 24(4):24–31, July
2004.

[12] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip-multiprocessor architecture.
In Proceedings of the Eleventh International Symposium on High Per-
formance Computer Architecture (HPCA), pages 340–351, February
2005.

[13] S. Choi and D. Yeung. Learning-based SMT processor resource
distribution via hill-climbing. In Proceedings of the 33rd Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 239–
250, June 2006.

[14] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimiza-
tions for exploiting memory-level parallelism. In Proceedings of
the 31st Annual International Symposium on Computer Architecture
(ISCA), pages 76–87, June 2004.

[15] D. Christie. Developing the AMD-K5 architecture. IEEE Micro,
16(2):16–27, 1996.

[16] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state
loss for effective trace sampling of superscalar processors. In Pro-
ceedings of the International Conference on Computer Design (ICCD),
pages 468–477, October 1996.

[17] E. Cota-Robles. Priority Based Simultaneous Multi-Threading, De-
cember 2003. United States Patent No. 6,658,447 B2.

BIBLIOGRAPHY 177

[18] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Chrysos. ProfileMe: Hardware support for instruction-level
profiling on out-of-order processors. In Proceedings of the 30th An-
nual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), December 1997.

[19] K. Diefendorff. Compaq chooses SMT for Alpha. Microprocessor
Report, 13(16), 1999.

[20] P. K. Dubey, G. B. Adams III, and M. J. Flynn. Instruction window
size trade-offs and characterization of program parallelism. IEEE
Transactions on Computers, 43(4):431–442, April 1994.

[21] P. K. Dubey and M. J. Flynn. Optimal pipelining. Journal of Parallel
and Distributed Computing, 8(1):10–19, January 1990.

[22] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De Bosschere, and L. K.
John. Control flow modeling in statistical simulation for accurate
and efficient processor design studies. In Proceedings of the 31st
Annual International Symposium on Computer Architecture (ISCA),
pages 350–361, June 2004.

[23] L. Eeckhout and K. De Bosschere. Hybrid analytical-statistical
modeling for efficiently exploring architecture and workload de-
sign spaces. In Proceedings of the 2001 International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 25–
34, September 2001.

[24] A. El-Moursy and D. H. Albonesi. Front-end policies for im-
proved issue efficiency in SMT processors. In Proceedings of the
9th International Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 31–40, February 2003.

[25] P. G. Emma. Understanding some simple processor-performance
limits. IBM Journal of Research and Development, 41(3):215–232,
May 1997.

[26] P. G. Emma and E. S. Davidson. Characterization of branch and
data dependencies in programs for evaluating pipeline perfor-
mance. IEEE Transactions on Computers, 36(7):859–875, July 1987.

[27] P. G. Emma, J. W. Knightand J. H. Pomerence, T. R. Puzak, and
R. N. Rechtschaffen. Simulation and analysis of a pipeline proces-

178 BIBLIOGRAPHY

sor. In Proceedings of the 21st Winter Simulation Conference, pages
1047–1057, 1989.

[28] S. Eyerman and L. Eeckhout. A memory-level parallelism aware
fetch policy for SMT processors. In Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA),
pages 240–249, February 2007.

[29] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A perfor-
mance counter architecture for computing accurate CPI compo-
nents. In Proceedings of The Twelfth International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pages 175–184, October 2006.

[30] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A
top-down approach to architecting CPI component performance
counters. IEEE Micro, 17(1):84–93, January 2007.

[31] S. Eyerman and L.Eeckhout. Studying compiler optimizations on
superscalar processors through interval analysis. In Proceedings of
the 2008 International Conference on High Performance Embedded Ar-
chitectures and Compilers (HiPEAC), pages 114–129, January 2008.

[32] S. Eyerman, James E. Smith, and L. Eeckhout. Characterizing the
branch misprediction penalty. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 48–
58, March 2006.

[33] A. Fedorova, M. Seltzer, and M. D. Smith. A non-work-
conserving operating system scheduler for SMT processors. In
Proceedings of the Workshop on the Interaction between Operating
Systems and Computer Architecture (WIOSCA), in conjunction with
ISCA, pages 134–145, June 2006.

[34] A. Fedorova, M. Seltzer, and M. D. Smith. Improving perfor-
mance isolation on chip multiprocessors via an operating system
scheduler. In Proceedings of the International Conference on Paral-
lel Architectures and Compilation Techniques (PACT), pages 25–38,
September 2007.

[35] B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn. Interaction
cost and shotgun profiling. ACM Transactions on Architecture and
Code Optimization, 1(3):272–304, September 2004.

BIBLIOGRAPHY 179

[36] R. Gabor, S. Weiss, and A. Mendelson. Fairness enforcement in
switch on event multithreading. ACM Transactions on Architecture
and Code Optimization (TACO), 4(3):34, September 2007.

[37] D. Genbrugge and L. Eeckhout. Memory data flow modeling in
statistical simulation for the efficient exploration of microproces-
sor design spaces. IEEE Transactions on Computers, 57(1):41–54,
January 2008.

[38] A. Glew. MLP yes! ILP no! In ASPLOS Wild and Crazy Idea
Session, October 1998.

[39] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem. Introduc-
tion to Intel Core Duo processor architecture. Intel Technology
Journal, 10(2):89–98, 2006.

[40] G. F. Grohoski. Machine organization of the IBM RISC Sys-
tem/6000 processor. IBM Journal of Research and Development,
36(1):37–58, 1990.

[41] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the IEEE 4th Annual
Workshop on Workload Characterization (WWC), December 2001.

[42] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0:
Faster and more flexible program analysis. Journal of Instruction-
Level Parallelism, 7, September 2005.

[43] A. Hartstein and T. R. Puzak. The optimal pipeline depth for
a microprocessor. In Proceedings of the 29th Annual International
Symposium on Computer Architecture (ISCA), pages 7–13, May
2002.

[44] A. Hartstein and T. R. Puzak. Optimum power/performance
pipeline depth. In Proceedings of the 36th Annual International Sym-
posium on Microarchitecture (MICRO), pages 117–126, December
2003.

[45] J. L. Henning. SPEC CPU2000: Measuring CPU performance in
the new millennium. IEEE Computer, 33(7):28–35, July 2000.

[46] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keck-
ler, and P. Shivakumar. The optimal logic depth per pipeline stage

180 BIBLIOGRAPHY

is 6 to 8 FO4 inverter delays. In Proceedings of the 29th Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 14–
24, June 2002.

[47] Intel. Intel Itanium 2 Processor Reference Manual for Software Devel-
opment and Optimization, May 2004. 251110-003.

[48] E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caru-
ana. Efficiently exploring architectural design spaces via predic-
tive modeling. In Proceedings of the Twelfth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 195–206, October 2006.

[49] R. Iyer. CQoS: A framework for enabling QoS in shared caches
of CMP platforms. In Proceedings of the International Conference on
Supercomputing (ICS), pages 257–266, June 2004.

[50] R. Iyer, L. Zhao, F. Guo amd R. Illikkal, S. Makineni, D. Newell,
Y. Solihin, L. Hsu, and S. Reinhardt. QoS policies and architecture
for cache/memory in CMP platforms. In Proceedings of the ACM
SIGMETRICS International Conference on Measurement and Model-
ing of Computer Systems, pages 25–36, June 2007.

[51] R. Jain, C. J. Hughes, and S. V. Adve. Soft real-time scheduling on
simultaneous multithreaded processors. In Proceedings of the 23rd
IEEE International Real-Time Systems Symposium, pages 134–145,
December 2002.

[52] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Construc-
tion and use of linear regression models for processor perfor-
mance analysis. In Proceedings of the 12th International Symposium
on High-Performance Computer Architecture (HPCA), pages 99–108,
February 2006.

[53] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A predictive
performance model for superscalar processors. In Proceedings of
the 39th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 161–170, December 2006.

[54] T. Karkhanis and J. E. Smith. A day in the life of a data cache miss.
In Proceedings of the 2nd Annual Workshop on Memory Performance
Issues (WMPI) held in conjunction with ISCA, May 2002.

BIBLIOGRAPHY 181

[55] T. Karkhanis and J. E. Smith. Automated design of application
specific superscalar processors: An analytical approach. In Pro-
ceedings of the 34th Annual International Symposium on Computer
Architecture (ISCA), pages 402–411, June 2007.

[56] T. S. Karkhanis and J. E. Smith. A first-order superscalar proces-
sor model. In Proceedings of the 31st Annual International Sympo-
sium on Computer Architecture (ISCA), pages 338–349, June 2004.

[57] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E.
Baker. Performance characterization of a quad Pentium Pro SMP
using OLTP workloads. In Proceedings of the 25th International
Symposium on Computer Architecture (ISCA), June 1998.

[58] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and par-
titioning in a chip multiprocessor architecture. In Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT)), pages 111–122, September 2004.

[59] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC
benchmark workload for simulation-based computer architec-
ture research. Computer Architecture Letters, 1(2):10–13, June 2002.

[60] S. Kunkel and J. E. Smith. Optimal pipelining in supercomput-
ers. In Proceedings of the 13th Annual International Symposium on
Computer Architecture (ISCA), pages 404–411, June 1986.

[61] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM
POWER6 microarchitecture. IBM Journal of Research and Develop-
ment, 51(6):639–662, 2007.

[62] B. Lee and D. Brooks. Accurate and efficient regression model-
ing for microarchitectural performance and power prediction. In
Proceedings of the Twelfth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), pages 185–194, October 2006.

[63] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput
and fairness in SMT processors. In Proceedings of the IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 164–171, November 2001.

182 BIBLIOGRAPHY

[64] Y. Luo, J. Rubio, L. K. John, P. Seshadri, and A. Mericas. Bench-
marking internet servers on superscalar machines. IEEE Com-
puter, 36(2):34–40, February 2003.

[65] A. Mericas. POWER5 performance measurement and character-
ization. Tutorial at the IEEE International Symposium on Work-
load Characterization, October 2005.

[66] A. Mericas. Performance monitoring on the POWER5 micropro-
cessor. In L. K. John and L. Eeckhout, editors, Performance Evalu-
ation and Benchmarking, pages 247–266. CRC Press, 2006.

[67] P. Michaud, A. Seznec, and S. Jourdan. Exploring instruction-
fetch bandwidth requirement in wide-issue superscalar proces-
sors. In Proceedings of the 1999 International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 2–10, Oc-
tober 1999.

[68] P. Michaud, A. Seznec, and S. Jourdan. An exploration of instruc-
tion fetch requirement in out-of-order superscalar processors. In-
ternal Journal on Parallel Programming, 29(1), February 2001.

[69] O. Mutlu and T. Moscibroda. Stall-time fair memory ac-
cess scheduling for chip multiprocessors. In Proceedings of the
IEEE/ACM International Symposium on Microarchitecture (MICRO),
December 2007.

[70] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead exe-
cution: An alternative to very large instruction windows for out-
of-order processors. In Proceedings of the 9th International Sym-
posium on High-Performance Computer Architecture (HPCA), pages
129–140, February 2003.

[71] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queu-
ing memory systems. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 208–222, Decem-
ber 2006.

[72] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In
Proceedings of the International Symposium on Computer Architecture
(ISCA), pages 57–68, June 2007.

[73] D. B. Noonburg and J. P. Shen. Theoretical modeling of super-
scalar processor performance. In Proceedings of the 27th Annual

BIBLIOGRAPHY 183

International Symposium on Microarchitecture (MICRO), pages 52–
62, November 1994.

[74] D. B. Noonburg and J. P. Shen. A framework for statistical mod-
eling of superscalar processor performance. In Proceedings of the
Third International Symposium on High-Performance Computer Ar-
chitecture (HPCA), pages 298–309, February 1997.

[75] S. Nussbaum and J. E. Smith. Modeling superscalar proces-
sors via statistical simulation. In Proceedings of the 2001 Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 15–24, September 2001.

[76] M. Oskin, F. T. Chong, and M. Farrens. HLS: Combining statisti-
cal and symbolic simulation to guide microprocessor design. In
Proceedings of the 27th Annual International Symposium on Computer
Architecture (ISCA), pages 71–82, June 2000.

[77] D.B. Papworth. Tuning the Pentium Pro microarchitecture. IEEE
Micro, 16(2):8–15, 1996.

[78] E. Perelman, G. Hamerly, and B. Calder. Picking statistically
valid and early simulation points. In Proceedings of the 12th Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 244–256, September 2003.

[79] S. E. Raasch and S. K. Reinhardt. The impact of resource partition-
ing on SMT processors. In Proceedings of the 12th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
pages 15–26, September 2003.

[80] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso.
Performance of database workloads on shared-memory systems
with out-of-order processors. In Proceedings of the Eighth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), October 1998.

[81] E. M. Riseman and C. C. Foster. The inhibition of potential par-
allelism by conditional jumps. IEEE Transactions on Computers,
C-21(12):1405–1411, December 1972.

[82] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat-
ically characterizing large scale program behavior. In Proceed-

184 BIBLIOGRAPHY

ings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 45–
57, October 2002.

[83] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B.
Joyner. POWER5 system microarchitecture. IBM Journal of Re-
search and Development, 49(4-5):505–522, 2005.

[84] J. E. Smith and G. S. Sohi. The microarchitecture of superscalar
processors. Proceedings of the IEEE, 83(12):1609–1624, December
1995.

[85] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for si-
multaneous multithreading processor. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Lan-
guages and Ooperating Systems (ASPLOS), pages 234–244, Novem-
ber 2000.

[86] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic jobschedul-
ing with priorities for a simultaneous multithreading processor.
In Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 66–76, June
2002.

[87] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A. Wood.
Analytic evaluation of shared-memory systems with ILP proces-
sors. In Proceedings of the 25th Annual International Symposium on
Computer Architecture (ISCA), pages 380–391, June 1998.

[88] E. Sprangle and D. Carmean. Increasing processor performance
by implementing deeper pipelines. In Proceedings of the 29th
Annual International Symposium on Computer Architecture (ISCA),
pages 25–34, May 2002.

[89] B. Sprunt. Pentium 4 performance-monitoring features. IEEE
Micro, 22(4):72–82, July 2002.

[90] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, R. N.
Strenski, and P. G. Emma. Optimizing pipelines for power and
performance. In Proceedings of the 35th Annual International Sym-
posium on Microarchitecture (MICRO), pages 333–344, December
2002.

BIBLIOGRAPHY 185

[91] W. Stallings. Operating Systems: Internals and Design Principles.
Prentice Hall, fifth edition, 2005.

[92] R. A. Sugumar and S. G. Abraham. Efficient simulation of caches
under optimal replacement with applications to miss characteri-
zation. In Proceedings of the 1993 ACM Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), pages 24–35,
1993.

[93] T. M. Taha and D. S. Wills. An instruction throughput model of
superscalar processors. In Proceedings of the 14th IEEE Interna-
tional Workshop on Rapid System Prototyping (RSP), pages 156–163,
June 2003.

[94] T. M. Taha and D. S. Wills. An instruction throughput model
of superscalar processors. IEEE Transactions on Computers,
57(3):389–403, march 2008.

[95] D. Tullsen. Simulation and modeling of a simultaneous multi-
threading processor. In Proceedings of the 22nd Annual Computer
Measurement Group Conference, December 1996.

[96] D. M. Tullsen and J. A. Brown. Handling long-latency loads in
a simultaneous multithreading processor. In Proceedings of the
34th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 318–327, December 2001.

[97] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm. Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor. In Pro-
ceedings of the 23rd Annual International Symposium on Computer
Architecture (ISCA), pages 191–202, May 1996.

[98] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous mul-
tithreading: Maximizing on-chip parallelism. In Proceedings of
the 22nd Annual International Symposium on Computer Architecture
(ISCA), pages 392–403, June 1995.

[99] M. G. Valluri and R. Govindarajan. Evaluating register alloca-
tion and instruction scheduling techniques in out-of-order issue
processors. In Proceedings of the 8th International Conference on Par-
allel Architectures and Compilation Techniques (PACT), pages 78–83,
October 1999.

186 BIBLIOGRAPHY

[100] D. W. Wall. Limits of instruction-level parallelism. In Proceed-
ings of the fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-IV),
pages 176–188, April 1991.

[101] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe.
SMARTS: Accelerating microarchitecture simulation via rigorous
statistical sampling. In Proceedings of the Annual International Sym-
posium on Computer Architecture (ISCA), pages 84–95, June 2003.

[102] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins.
Characterizing and comparing prevailing simulation techniques.
In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), pages 266–277, February 2005.

[103] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance
analysis using the MIPS R10000 performance counters. In Pro-
ceedings of the 1996 ACM/IEEE Conference on Supercomputing, Jan-
uary 1996.

	titelpg_recto_verso_Eyerman.pdf
	franse_pg_recto_Eyerman.pdf
	franse_pg_verso_Eyerman.pdf

	dr.ps

