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Voorwoord 

Via mijn master thesis kwam ik terecht in het labo Oxidatieve stress en Celdood van het ‘Plant 

Systems Biology’ departement. Mijn begeleider Olivier wist al snel zijn enthousiasme voor 

wetenschappelijk onderzoek op mij over te zetten. Na een leerrijk jaar in een gezellige groep 

werd mijn interesse voor het onderzoek naar stresstolerantie in planten tot leven gebracht. Toen 

ik in 2007 ik het voorstel kreeg om een doctoraat te starten in dezelfde onderzoeksgroep, was de 

keuze dus snel gemaakt. Vaak lees je in het voorwoord dat de promovendus blij is dat er eindelijk 

een einde gekomen is aan jaren van zwoegen en afzien. Zelf heb ik dit echter niet zo ervaren. Het 

uitvoeren van het onderzoek en het schrijven van dit proefschrift heb ik met veel plezier gedaan. 

Als ik opnieuw zou mogen beginnen, zou ik zonder enige twijfel dezelfde keuze maken. 

Een doctoraatsonderzoek doe je niet alleen. Daarom wil ik graag een aantal mensen bedanken die 

me gestimuleerd hebben gedurende deze vijf jaar en me de kansen en ruimte geboden hebben om 

dit doel na te streven. Vooreerst wil ik mijn promoter Prof. Frank Van Breusegem bedanken om 

mij de kans te geven dit doctoraat te starten. Frank, van harte bedankt voor het vertrouwen dat je 

in mij gesteld hebt, de steun en de wetenschappelijke input gedurende deze vijf jaar. Daarnaast 

wil ik je ook bedanken voor de ruimte die je mij gegeven hebt om zelf dingen te ontdekken en 

keuzes te maken. Ook wil ik mijn co-promoter Prof. Monica Höfte bedanken. Hoewel er niet veel 

tijd was om veel pathogeen-experimenten uit te voeren, ben ik blij dat het biotische stress aspect 

kon geïntegreerd worden in dit werk.  

Verder wil ik een speciaal woord van dank uiten aan de voormalige en huidige leden van de 

Oxidatieve stress en Celdood groep: Annelies, Aurine, Bert, Brigitte, Cezary, Davy, Debbie, 

Frank, Jenny, Jordi, Katrien V.D.K., Katrien C., Korneel, Lorin, Liana, Michaël, Nick, Olivier, 

Pavel, Pelle, Salma, Sandy, Silke, Simon, Stijn, Tim, Tine, Vanesa, Vesko & Weronika. Jullie 

hebben in het bijzonder bijgedragen aan mijn werkplezier en –prestaties. Bedankt voor jullie 

betrokkenheid in het onderzoek, de aangename sfeer en de leuke momenten. Annelies, bedankt 

voor de goede samenwerking in Hoofdstuk 4. Bedankt voor je vriendschap, je steun en de leuke 

pauzes waarin we even konden ontsnappen aan de experimentele tegenslagen om er dan weer met 

positieve moed tegenaan te gaan. In het bijzonder wil ik ook Brigitte en Debbie bedanken voor de 

hoogstaande technische bijstand die ongetwijfeld een heel grote bijdrage tot dit werk geleverd 

heeft. Cezary, bedankt voor de nuttige discussies en de samenwerking. Aurine, bedankt voor het  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

advies bij de ChIP experimenten. Pavel en Simon, bedankt voor het helpen nalezen van de thesis. 

Bert, bedankt voor je goede bijdrage in dit werk tijdens zowel je master project als je master 

thesis.  

Bedankt aan alle collega’s in PSB. In het bijzonder wil ik Vanessa en Klaas van de 

Bioinformatica groep bedanken. Vanessa, bedankt voor de samenwerking in Hoofdstuk 5 en voor 

je enthousiasme, interesse en steun in dit werk. Klaas, bedankt om mij op weg te helpen in het 

prille begin van dit project met cis-regulatorische element analyses, die ongetwijfeld een 

belangrijk startpunt waren voor Hoofdstuk 2. Ook Maria van de ‘Hormonal Crosstalk’ groep wil 

ik bedanken voor het advies bij de ChIP experimenten. Barbara, bedankt dat ik steeds met de 

Y1H ‘struggles’ bij jou terecht kon. Verder wil ik nog de mensen van ICT, Martine, Jackie, 

Kristof, Wilson, Nancy, Nino, Nico, Miguel, Dirk, Karel, Carine, Els, An & Agnieszka bedanken 

voor de logistieke ondersteuning, waar heel het departement op kan vertrouwen.  

Ook een speciaal woord van dank aan onze Australische collega’s: Prof. Jim Whelan, Olivier, 

Simon, Monika, Sofia, Aneta, … voor de goede samenwerking. Jim, bedankt voor de kans om 

twee maanden onderzoek te mogen verrichten in Perth en voor de goede ontvangst in je 

onderzoeksgroep. Bedankt voor deze hele leuke ervaring! Bedankt, Sandra, mijn ‘housemate’ in 

Perth om me wegwijs te maken en voor de leuke momenten.  

Ook wil ik een woord van dank richten aan de leden van de jury voor het lezen van de thesis en 

de bevorderlijke suggesties. Ook dank aan de voorzitter van de doctoraatsjury Prof. Ann 

Depicker.  

Tot slot, maar niet het minst belangrijk, wil ik mijn vrienden en familie bedanken. Aan mijn 
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SCOPE AND OBJECTIVES 

Due to their sessile lifestyle, plants are continuously exposed to adverse environmental conditions 

that negatively influence growth and productivity. Environmental stresses, including 

perturbations in water availability, temperature, soil composition and light intensities as well as 

pathogen assaults are responsible for major crop yield losses worldwide. With the rapidly 

growing world population and expected climate change, sufficient food has to be produced on 

less arable land. Therefore, one of the major objectives of plant biotechnology is the development 

of high-yielding crop plants that can resist adverse environmental conditions. For these reasons, 

understanding the molecular mechanisms underlying plant adaptation to stress is of primary 

importance.  

 Upon the perception of stress by the cell, an intracellular signal transduction cascade is 

activated that transmits the signal to the nucleus, where one or more transcription factors are 

activated that alter the expression of stress responsive genes. Due to the multigene nature of 

abiotic stress tolerance, manipulation of upstream signaling components including transcription 

factors is a powerful tool for developing tolerant plants as they tend to control multiple stress 

responsive genes. During the last years, several transcription factors have been identified that can 

enhance stress tolerance by manipulating their expression in transgenic plants.  

 A recently emerging concept concerns the role of mitochondria in intracellular signal 

transduction to the nucleus to alter gene expression, a process named mitochondrial retrograde 

regulation (MRR). Several stresses alter or perturb mitochondrial function, and in turn, 

dysfunctional mitochondria initiate and contribute to the stress response through MRR. At the 

beginning of this Ph.D. project, no protein signaling components of plant MRR had been 

discovered. Therefore, the main aim of this project was to identify transcription factors involved 

in MRR and evaluate their contribution to the stress response in plants. 

 In a second part of the Ph.D. work, we aimed to provide a better understanding of control 

mechanisms of abiotic stress tolerance through reverse engineering of gene regulatory networks. 

Several experimental studies have contributed to our understanding of the mechanisms of the 

stress response, but the global regulatory mechanisms are far from clear from these individual 

studies. Therefore, we reconstructed a model of the abiotic stress regulatory network from abiotic 

stress-related gene expression data using the reverse-engineering algorithm LeMoNe. Altogether,  
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the identification of key players together with a detailed understanding of the complex regulatory 

mechanisms of the stress response, will contribute to the development of stress tolerant crops.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 

Mitochondrial retrograde regulation
in plants

Inge De Clercq and Frank Van Breusegem
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Introduction 

Compartmentalization of the eukaryotic cell into different organelles requires a more complex 

regulation of cellular function compared to prokaryotes, where all cellular processes happen 

within the same compartment. In addition, mitochondria, and in photosynthetic organisms 

chloroplasts, contain their own genome. However, these organellar genomes are small and 

encode only a few proteins. Most organellar proteins (93-99%) are encoded in the nucleus, 

synthesized in the cytosol and then imported into the organelles (Woodson and Chory, 2008). 

Thus, compartmentalization of the genome requires coordinated gene expression to maintain 

organellar as well as whole-cellular function. These genome coordination mechanisms include 

both anterograde (nucleus to organelle) and retrograde (organelle to nucleus) regulation (Figure 

1.1). Anterograde regulation controls the flow of proteins and information from the nucleus to the 

organelles (mitochondria or chloroplasts) to coordinate organellar gene expression. Retrograde 

signaling transmits signals from the organelles to regulate nuclear gene expression.  

 

 

 

  

 

 

Among the plant retrograde signaling pathways, chloroplast retrograde regulation (CRR) has 

been most extensively studied (Woodson and Chory, 2008). Genomes Uncoupled (GUN) proteins 

and the ABSCISIC ACID INSENSITIVE (ABI4) transcription factor have been identified as 

regulators of CRR during chloroplast biogenesis, termed ‘biogenic control’ (Koussevitzky et al., 

Figure 1.1. An overview of genome coordination 

between the nucleus and intracellular organelles 

(mitochondria and chloroplasts) in plants.   

Environmental signals, including stress, and 

endogenous signals, such as hormones, affect the 

expression of nuclear genes that encode organellar 

proteins. This process will, in turn, affect organelle 

function and gene expression through anterograde 

mechanisms. Chloroplasts and mitochondria are also 

able to sense environmental stimuli that can affect 

their functional activities. By means of retrograde 

signals, organelles communicate these received 

stimuli and their functional status to the nucleus, 

which leads to altered nuclear gene expression.  

From Woodson and Chory (2008).  
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2007; Pogson et al., 2008). GUN proteins are divergent types of proteins with functions ranging 

from chlorophyll metabolism to chloroplast gene expression. Moreover, in mature chloroplasts, 

the communication with the nucleus is necessary to keep chloroplast functioning at optimal levels 

(named ‘operational control’) according to endogenous (e.g. fluxes in metabolites) and 

environmental (e.g. fluctuating light) changes (Pogson et al., 2008). The most important signals 

during these responses are likely to be reactive oxygen species (ROS) and redox changes. In 

addition to the role of CRR in regulating chloroplastic processes, it is apparent that chloroplasts 

play an important role in the adaptation to stresses. Chloroplastic metabolic processes are readily 

perturbed by and act as a sensor of stress conditions to coordinate the nuclear-encoded adaptive 

stress response (Fernandez and Strand, 2008).  

This chapter is focused on plant mitochondrial retrograde regulation, which is further 

referred to as MRR. The general process of MRR is conserved across eukaryotes as it has been 

reported in yeast, plants, animals and human (Butow and Avadhani, 2004; Rhoads and Subbaiah, 

2007). However, the molecular signaling mechanisms as well as the specific functions of MRR 

appear not to be conserved across species. In yeast, MRR is mainly directed towards 

readjustment of (mitochondrial) metabolism in nutrient depletion scenarios (Liu and Butow, 

2006). MRR in animals is an important factor in various diseases associated with mitochondrial 

dysfunction (Butow and Avadhani, 2004). In contrast to yeast and animals, relatively little is 

known about the signaling mechanisms of plant MRR. Similar as in other systems, MRR in 

plants is important for coordination of nuclear and mitochondrial genome expression during 

development, as mitochondrial biogenesis is largely dependent on nuclear gene expression 

(Millar et al., 2008). Moreover, changing environmental conditions (e.g. abiotic and biotic 

stresses) cause perturbation in the mitochondrial function. Although relatively little is known 

about the specific consequences of mitochondrial dysfunction in plants, there is increasing 

evidence that mitochondria can act as sensors of adverse environmental conditions and contribute 

to the overall stress response by altering stress responsive nuclear gene expression (Rhoads and 

Subbaiah, 2007). To what extent mitochondria and MRR contribute to stress responsive gene 

expression and whether they act as general stress sensors or contribute to specific stress 

responses, are subjects of ongoing studies. 

MRR in plants has been mainly studied in mitochondrial mutants and in response to 

chemical disruption of mitochondrial function. Mitochondrial alternative oxidase (AOX) was the 
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first gene shown to be retrograde regulated (Vanlerberghe and McIntosh, 1994), and due to its 

general responsiveness to various mitochondrial perturbations, its induction is used as a model 

for plant MRR studies. The importance of ROS has been shown in at least some MRR pathways. 

In addition, calcium, changes in metabolite levels and redox and energy status are likely 

candidates. However, no protein signaling components, such as transcription factors, kinases and 

phosphatases have been identified, except for the recent discovery of the involvement of the 

ABI4 transcription factor and Cyclin-Dependent Kinase E1 (CDKE;1) (Giraud et al., 2009; Ng et 

al., 2013).  

 

The role of mitochondria in the cell 

The primary role of the mitochondria is energy production by synthesis of adenosine triphosphate 

(ATP) through oxidative phosphorylation (Millar et al., 2011). This is mediated by the 

mitochondrial electron transport chain (mtETC) that consists of four large protein complexes 

(Complex I, II, III and IV) interacting with each other via the small lipid ubiquinone (UQ) and 

the small protein cytochrome c in the inner mitochondrial membrane (Figure 1.2A). The mtETC 

oxidizes high-energy organic compounds (nicotinamide adenine dinucleotide [NADH] and flavin 

adenine dinucleotide [FADH2]) and subsequently transfers electrons to reduce oxygen to water. 

This electron transfer is coupled to pumping of protons to create a proton gradient across the 

inner mitochondrial membrane, which is utilized by ATP synthase for the production of ATP. 

The high-energy compounds are provided by the tricarboxylic acid (TCA) cycle that oxidizes 

organic acids derived from degradation of sugars, fatty acids and proteins. Besides energy 

production, the mitochondria provide biosynthesis precursors such as amino acids and are 

involved in vitamin biosynthesis, cellular calcium homeostasis and programmed cell death (Lam 

et al., 2001; Nicholls and Chalmers, 2004; Rebeille et al., 2007).  

 The plant mtETC is more complex compared to most other eukaryotes as it contains 

additional components (Figure 1.2B). In addition to Complex IV (cytochrome c oxidase), plants 

contain a second terminal oxidase, called the alternative oxidase (AOX). AOX accepts electrons 

from UQ and directly transfers them to oxygen, thereby circumventing Complex III and IV, 

without translocating protons. Another group of additional components are the alternative NADH 

dehydrogenases that function alongside Complex I, the “usual” NADH dehydrogenase, without 

proton pumping. AOX and the alternative NADH dehydrogenases together with UQ can form a 
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complete respiratory chain, called the alternative respiratory pathway that does not contribute to 

the proton gradient and ATP synthesis. The most likely function of the alternative respiration is 

preventing ROS production by removing electrons from the normal cytochrome respiratory 

pathway when it is over-reduced (Moller, 2001; Rhoads et al., 2006). This can be critical when 

the cytochrome pathway is impaired by metabolic changes or by biotic and abiotic stresses. 

Accordingly, AOX and alternative NADH dehydrogenase functions are induced when the mtETC 

is inhibited. 

 AOX is encoded by a small multigene family of three to five members in several plant 

species that have different developmental, tissue-specific and stress-responsive expression 

characteristics (Finnegan et al., 1997; Considine et al., 2001; Clifton et al., 2006). The AOX 

family can be divided in two subfamilies: AOX1, which is present in both monocot and dicot 

plants, and AOX2, which is only present in dicots (Considine et al., 2002). These subfamilies 

contain a variable number of members in different plant species. Arabidopsis thaliana contains 

four AOX1 members (AOX1a, AOX1b, AOX1c and AOX1d) and one AOX2 member (AOX2) 

(Clifton et al., 2006). Among the Arabidopsis AOX members, AOX1a is predominantly 

expressed both under basal and induction conditions (Clifton et al., 2005; Clifton et al., 2006). As 

will be discussed below, the expression of AOX1a is increased through MRR when mitochondrial 

function is altered or inhibited (Zarkovic et al., 2005). 

 

MRR induction upon mitochondrial perturbation 

The best studied plant MRR system is the response of the nuclear gene AOX to mitochondrial 

perturbations. The regulation of AOX is therefore used as a model for the investigation of MRR. 

Mitochondrial perturbations used for the study of MRR can be classified into four different 

categories: 1) chemical inhibition of mitochondrial function; 2) mutations or transgene expression 

that cause mitochondrial dysfunction; 3) mitochondrial perturbation caused by abiotic stress (see 

below); and 4) mitochondrial perturbation caused by biotic stress (see below).   
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Figure 1.2. Overview of the components involved in the “standard” and alternative reactions of mitochondrial 

electron transport. 

(A) Overview of the “standard” cytochrome pathway. Electrons pass from Complex I (NADH dehydrogenase) and II 

(succinate dehydrogenase) to the electron carrier ubiquinone (UQ). Via Complex III (ubiquinol-cytochrome bc1 

reductase) and cytochrome c (cyt c), O2 is ultimately reduced to H2O at the level of complex IV (cytochrome c 

oxidase). The ATP synthase complex catalyzes the formation of ATP driven by the proton gradient resulting from 

electron transfer. 

(B) Overview of the alternative respiratory pathway consisting of non-proton-pumping alternative oxidase (AOX) as 

well as alternative NADH dehydrogenases (NDs) on either the external (NDex) or internal (NDin) side of the inner 

mitochondrial membrane. Electrons are passed from the alternative NDs to UQ and directly to AOX reducing O2 to 

H2O. Uncoupling proteins (UCPs) are able to dissipate the proton electrochemical gradient over the inner 

mitochondrial membrane. 

From Keunen et al. (2011). 

 

 

Chemical perturbation of mitochondrial function  

Several chemicals that specifically target complexes of the mtETC have been extensively used to 

study the effects of mitochondrial perturbation. Antimycin A (AA), an inhibitor of mitochondrial 

Complex III, as well as Complex I and IV inhibition by rotenone and cyanide, respectively, 

induces AOX expression (Vanlerberghe and McIntosh, 1994; Chivasa and Carr, 1998; Clifton et 
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al., 2005; Ho et al., 2008; Xu et al., 2012). Oligomycin inhibits mitochondrial ATP synthase and 

also results in elevated AOX transcript levels. When the mtETC is inhibited, electron flow is 

disrupted leading to electron leakage to oxygen and production of ROS (Maxwell et al., 1999; 

Moller, 2001). Therefore, induction of the alternative respiration could serve to alleviate ROS 

production from mtETC inhibition (Maxwell et al., 1999). Moreover, inhibition of aconitase in 

the TCA cycle by monofluoroacetate (MFA) also induces AOX, but was not associated with 

increased mitochondrial ROS production (Vanlerberghe and McLntosh, 1996; Umbach et al., 

2012). Besides AOX induction studies, whole genome transcriptome analyses have been 

performed upon pharmacological disruption of mitochondrial function (Clifton et al., 2005; 

Umbach et al., 2012). These studies revealed that specific types of mitochondrial dysfunction 

cause specific changes in the transcriptome that are partially overlapping (Schwarzlander et al., 

2012; Umbach et al., 2012). These data suggest the existence of specific MRR pathways in 

response to specific mitochondrial perturbations. 

 

Mutants with mitochondrial dysfunction  

Several mitochondrial and nuclear mutants that affect mitochondrial function and exhibit altered 

nuclear gene expression have been discovered (Rhoads, 2011). One such family of mutants is the 

maize non-chromosomal stripe (ncs) mutants. These NCS mutants contain mutated mitochondrial 

DNA (mtDNA) resulting in defects in the mtETC, such as decreased complex I levels (ncs2 

mutant) and decreased complex IV levels (ncs5 and ncs6 mutants) (Newton et al., 1990; 

Marienfeld and Newton, 1994). Each NCS mutation causes a unique pattern of induction of 

maize AOX genes (Karpova et al., 2002). Interestingly, chemical inhibitors of mtETC complexes 

that correspond to each mutation cause induction of the same AOX genes. Thus, in both the ncs2 

mutant and upon rotenone treatment, the maize AOX2 gene is induced and in ncs6 and from 

cyanide, AOX3 is induced. This suggests that alteration of AOX gene expression in these mutants 

is a result of MRR from specific mitochondrial dysfunction rather than from an altered metabolic 

shift in stable mutants and might serve as a compensatory mechanism for the disrupted mtETC. 

Another mitochondrial mutant, the tobacco cytoplasmic male sterility II (CMSII) that lacks 

functional complex I and transgenic tobacco and Arabidopsis plants expressing a mutant form of 

subunit 9 of ATP synthase (ATP9) also display altered nuclear gene expression (Gomez-Casati et 

al., 2002; Dutilleul et al., 2003). In addition, several nuclear mutations resulting in defective 
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mitochondria that alter nuclear gene expression have been described (Kushnir et al., 2001; Kuhn 

et al., 2009; Shedge et al., 2010; Gleason et al., 2011; Kuhn et al., 2011). How the status of the 

mitochondria is conveyed to the nucleus in these mutants, whether through direct MRR or via 

secondary means such as shifted metabolism and/or altered redox status is currently unclear 

because the mutant plants are in an altered steady state. 

 

Function of MRR in biogenesis of mitochondria in plants 

Mitochondria are semi-autonomous organelles that have a genome and contain a complete gene 

expression machinery. However, the vast majority of mitochondrial proteins are encoded in the 

nucleus and imported into mitochondria from the cytosol (Gray et al., 2001; Burger et al., 2003). 

Moreover, components of the respiratory chain and mitochondrial ribosomes are multiprotein 

complexes composed of nuclear- and mitochondrial-encoded subunits. This implies the existence 

of mechanisms that coordinate the nuclear and mitochondrial gene expression through both 

anterograde and retrograde regulation. Nevertheless, these mechanisms of genome expression 

coordination are largely unknown. 

 Evidence for the involvement MRR in mitochondrial biogenesis comes from the 

observation that upon rotenone treatment, nuclear transcripts encoding proteins involved in 

mitochondrial chaperone activity, protein degradation, respiratory chain assembly, and division 

were induced (Lister et al., 2004). In another example, transgenic Arabidopsis expressing a 

mutant form of ATP9 have an increased expression of nuclear-encoded Complex I genes 

(Gomez-Casati et al., 2002). Many dual targeted proteins (nuclear-organellar) are RNA and/or 

DNA binding proteins and are therefore good candidates for coordinating the expression of 

nuclear and organellar genomes (Krause et al., 2012). Pentatricopeptide repeat (PPR) proteins are 

involved in organellar post-transcriptional regulation (Schmitz-Linneweber and Small, 2008). 

Among them, PNM1 (for PPR protein localized to the nucleus and mitochondria 1) was recently 

shown to be dual localized to the nucleus and mitochondria in Arabidopsis (Hammani et al., 

2011b; Hammani et al., 2011a). In mitochondria, PNM1 is associated with polysomes and may 

play a role in translation. In the nucleus it binds a member of the TEOSINTE 

BRANCHED1/CYCLOIDEA/PCF1 (TCP) transcription factor family that is known to control 

the expression of nuclear genes encoding mitochondrial proteins (Giraud et al., 2010). 

Furthermore, it was shown that the full length PNM1 containing both a mitochondrial targeting 
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signal and a nuclear localization signal is preferentially localized to mitochondria and that nuclear 

localization is only achieved when the MTS is absent. This indicates that it is first translocated to 

the mitochondria and subsequently released for nuclear localization. For these reasons, PNM1 

likely serves as a retrograde signaling molecule for the fine-tuning of nuclear gene expression 

required for mitochondrial biogenesis. 

  

Function of MRR in the stress response in plants 

Several studies have indicated that mitochondria are an important target during environmental 

stresses. Perturbation of mitochondrial function alters the expression of stress responsive genes 

and affects plant stress tolerance. These observations indicate that plant mitochondria may 

function as sensors of stresses and initiate or contribute to the overall response to a given stress 

through MRR (Jones, 2000; Rhoads and Subbaiah, 2007). This may include both responses to 

abiotic stresses and biotic stresses.  

MRR in response to abiotic stresses  

One of the major and common effects of abiotic stress on plants is a disturbance of cellular 

metabolism leading to the production of ROS. Mitochondrial processes are directly inhibited by 

the resulting oxidative damage. For example, mitochondria are the main target for oxidative 

damage resulting from drought stress, as evidenced by higher contents of oxidatively modified 

proteins in mitochondria compared to other organelles (Bartoli et al., 2004). Metal stress causes 

mtETC dysfunction and over-reduction, thereby increasing mitochondrial ROS (mtROS) 

production  (Keunen et al., 2011). However, it is not clear whether the mtETC inhibition is the 

result of cytosolic oxidative stress or the consequence of metals entering the mitochondria 

(Keunen et al., 2011). Other abiotic stresses such as high salt concentrations, cold and phosphate 

limitation have also been shown to impair mitochondrial respiration and increase mtROS 

production (Hernández et al., 1993; Prasad et al., 1994; Parsons et al., 1999). The elevated 

mtROS levels can further damage mitochondria but can also serve as signaling molecules (see 

below). The resulting mitochondrial oxidative stress upon these various abiotic stress treatments 

is associated with the activation of mechanisms to avoid (by the action of AOX) or detoxify (by 

mitochondrial antioxidants) stress-induced mtROS and maintain the functioning of the 

mitochondria (Hernández et al., 1993; Prasad et al., 1994; Parsons et al., 1999; Keunen et al., 
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2011). Thus, MRR might be involved in the protection of mitochondria against oxidative stress 

induced by abiotic stresses. However, AOX does not only play a role to reduce the production of 

ROS in the mitochondria, but appears to have a broad role in determining the whole cell redox 

balance (Giraud et al., 2008). 

 Several studies have indicated that mitochondrial perturbation does not only regulate 

genes to maintain mitochondrial homeostasis during stress, but also steers the stress response at 

the whole cell level, regulating genes associated with any cellular location and function 

(Schwarzlander et al., 2012; Umbach et al., 2012). Arabidopsis mutants defective in 

mitochondrial prohibitin 3 (phb3) are more resistant to high salinity stress and display induction 

of stress-responsive genes encoding mitochondrial proteins, including AOX1a, as well as non-

mitochondrial proteins, that are possibly involved in cellular hormone homeostasis and/or growth 

regulation during stress (Van Aken et al., 2007; Van Aken et al., 2010). In another study, an 

Arabidopsis mutant with defective mitochondrial complex I was isolated in a screen for impaired 

cold stress-responsive gene expression, implicating mitochondrial retrograde regulation of the 

cold stress response (Lee et al., 2002). Another complex I mutant in tobacco mediates antioxidant 

alterations at the whole cell level to maintain the cellular redox balance which is associated with 

higher tolerance to ozone and Tobacco mosaic virus (Dutilleul et al., 2003). Moreover, different 

tobacco respiratory mutants commonly induce a specific set of cytosolic and mitochondrial heat 

shock proteins (Kuzmin et al., 2004). In addition, several other mitochondrial mutants have been 

reported to alter the stress response (Meyer et al., 2009; Shedge et al., 2010). Besides mutants, 

chemical perturbations of mitochondrial function also appear to mimic stress responses. Cyanide 

(inhibitor of the terminal cytochrome c oxidase) preacclimates plants to salt, osmotic and cold 

stress probably by activating AOX (Xu et al., 2012). Respiratory inhibitors induce the expression 

of hypoxic genes (Nie and Hill, 1997) and hypoxia stimulates the release of calcium from the 

mitochondria, indicating calcium-mediated MRR is involved in the low oxygen response (see 

below) (Subbaiah et al., 1994, 1998; Bailey-Serres and Chang, 2005). To further address the 

relationship between MRR and stress responsive gene expression, whole transcriptomes of 

chemical mitochondrial disruption were compared to that of several abiotic and biotic stress 

treatments (Umbach et al., 2012).  Overall, a strong correlation was observed with ozone, UV 

(Umbach et al., 2012) and metal stress and H2O2-mediated oxidative stress (Yu et al., 2001). On 

the other hand, mitochondrial perturbation transcriptomes were more strongly correlated with 
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biotic stress-related expression changes and were enriched for oxidative stress- and biotic stress-

related proteins (Schwarzlander et al., 2012; Umbach et al., 2012). Taken together, these 

observations suggest a role for mitochondria in sensing stress and the contribution of MRR to the 

overall response to (specific) abiotic stresses.  

 

MRR in response to biotic stresses 

When plants are attacked by pathogens, they induce local and systemic defenses and/or 

programmed cell death at the site of infection (hypersensitive response, HR) to limit pathogen 

spread (Dangl and Jones, 2001; Lam et al., 2001). Defense and HR responses are mediated by 

several signaling molecules, such as salicylic acid (SA), nitric oxide (NO), and ROS (Alvarez, 

2000; Laloi et al., 2004; Wendehenne et al., 2004). Although several studies have indicated the 

importance of plant mitochondria, including MRR, during pathogen attack, the precise roles and 

mechanisms have not yet been elucidated (Amirsadeghi et al., 2007; Rhoads and Subbaiah, 2007; 

Rhoads, 2011). Several biotic stress factors disrupt mitochondrial function and induce nuclear 

gene expression, including the MRR model gene AOX. For instance, SA can inhibit the mtETC 

and induce AOX expression in tobacco (Norman et al., 2004). Some genes induced by SA are also 

induced by AA while others are not, indicating common (likely mediated by ROS resulting from 

mtETC inhibition) and distinct pathways (Norman et al., 2004). In addition, several toxins 

produced by plant pathogens (called elicitors) have been shown to disrupt mitochondrial function 

and induce nuclear gene expression (Rhoads and Subbaiah, 2007). Harpins are elicitors produced 

by bacterial pathogens, including Pseudomonas syringae, that induce a HR. Exogenously applied 

harpin elicits a rapid HR-like cell death that was associated with an early ROS burst from the 

mitochondria, and decreased mitochondrial membrane potential and ATP levels (Krause and 

Durner, 2004). Moreover, harpins induce expression of AOX, genes encoding small heat shock 

proteins and genes encoding plant defense proteins, which is likely through MRR (Desikan et al., 

1998; Krause and Durner, 2004). Thus, biotic stress-mediated mitochondrial perturbation, 

including increased mtROS production, appears to initiate HR-mediated programmed cell death 

and mediate expression of nuclear defense genes via MRR. However, the induction of AOX 

during HR is unexpected as it might dampen programmed cell death by preventing excess ROS 

production (Vanlerberghe et al., 2002). Indeed, increased AOX expression leads to a reduction in 

lesion size during HR (Ordog et al., 2002). It is postulated that AOX plays a role in orchestrating 



Mitochondrial retrograde regulation 

17 

 

whole-cellular ROS levels and fine-tuning the balance between defense and programmed cell 

death, that might depend on a certain threshold level of cellular ROS. Finally, another indication 

for the involvement of MRR in the biotic stress response is that inhibition of mitochondrial 

function (pharmacologically or by mutations) causes a transcriptome response similar to that of 

pathogen attack (Maxwell et al., 2002; Schwarzlander et al., 2012; Umbach et al., 2012). 

 

Regulatory components of plant MRR 

Reactive oxygen species 

Reactive oxygen species are produced as byproducts of aerobic metabolism in various subcellular 

compartments (chloroplasts, mitochondria, and peroxisomes) and can act both as damaging 

agents and as signaling molecules (Dat et al., 2000; Apel and Hirt, 2004). Upon disturbance of 

cellular metabolism by adverse external conditions, ROS production is increased. In the 

mitochondria, ROS are mainly produced at Complex I and III following inhibition of the mtETC 

(Maxwell et al., 1999; Moller, 2001). This results in superoxide anion (O2
-
) accumulation that is 

subsequently dismutated to H2O2 (Moller, 2001). For example, chemical inhibition of respiratory 

Complex III by AA treatment specifically increases mtROS levels in cultured tobacco cells 

(Maxwell et al., 1999; Rhoads and Subbaiah, 2007). In addition, several physiological stresses, 

such as cold, salt stress, and phosphate starvation, cause oxidative damage in the cell and perturb 

the mtETC resulting in increased mtROS production (Hernández et al., 1993; Prasad et al., 1994; 

Parsons et al., 1999). Evidence for the importance of mtROS in transmitting the signal of 

mitochondrial perturbation to the nucleus came from the finding that antioxidants impair AA-

mediated induction of AOX transcript (Maxwell et al., 1999; Vanlerberghe et al., 2002). 

However, mtROS is likely not required for all MRR induced by mitochondrial perturbation. A 

ROS-independent MRR pathway was suggested based on the ability of MFA-mediated inhibition 

of the TCA cycle, causing an increase in citrate levels (Vanlerberghe and McLntosh, 1996), as 

well as exogenously added citrate, isocitrate, malate, or 2-oxoglutarate to induce AOX transcript 

without a dramatic increase in ROS (Djajanegara et al., 2002; Gray et al., 2004; Umbach et al., 

2012). Thus, metabolic changes such as TCA cycle intermediates could be the underlying signals 

of ROS-independent MRR.  
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 As discussed above, mitochondrial perturbation is a source of ROS production but is also 

the result of increased cellular ROS levels during oxidative stress. Oxidative stress caused by 

exogenous hydrogen peroxide (H2O2) treatment has been shown to inhibit mitochondrial function 

by degradation of protein components of the mtETC and the TCA cycle (Sweetlove et al., 2002). 

Thus, oxidative stress resulting from external biotic and abiotic stress conditions could be the 

cause of MRR induction of the stress response. Comparison of the transcriptome response to 

specific chemical disruptions of mitochondrial function and non-specific oxidative stresses that 

act throughout the cell by exogenous ROS treatments, revealed overlapping but distinct responses 

(Rhoads and Subbaiah, 2007). These differences could be attributed to the specific types or 

combinations of ROS or the specific mitochondrial localization of ROS production by these 

chemical treatments (Laloi et al., 2004; Gadjev et al., 2006). Therefore, plant cells must be able 

to detect changes in mtROS levels independently from ROS produced in other subcellular 

compartments. 

 Although ROS are likely involved in MRR, it is not clear how this signal is transmitted to 

the nucleus. ROS-specific transcriptome fingerprints, however, are suggestive of local detection 

mechanisms present inside or in close proximity to the mitochondria (Gadjev et al., 2006). This 

could be mediated by secondary messengers formed locally by the interaction of ROS with 

specific molecules (Rhoads et al., 2006; Moller and Sweetlove, 2010). For example, lipid 

peroxides have been implicated in MRR as their levels increase in Arabidopsis cells upon AA-

treatment (Winger et al., 2005) and have been shown to act as signaling molecules in animals 

(Tang et al., 2002). In addition, it is suggested that oxidized peptides derived from oxidatively 

damaged mitochondrial proteins could be specific ROS messengers (Sweetlove et al., 2002; 

Moller and Sweetlove, 2010). In turn, lipid peroxides and oxidized peptides might interact with 

other signaling components, such as kinases and transcription factors to transmit the ROS signal 

to the nucleus (Tang et al., 2002; Haynes et al., 2010). Although no protein kinases involved in 

MRR have been identified to date, kinases that are modulated by ROS or mitochondrial 

dysfunction (Takahashi et al., 2003; Pitzschke and Hirt, 2006) are particularly interesting 

candidates. Alternatively, ROS themselves could participate in signaling pathways. Several 

studies suggest that ROS such as H2O2 and superoxide can leave the mitochondria via 

permeability transition pores upon mitochondrial dysfunction (Maxwell et al., 2002; Yao et al., 

2002; Han et al., 2003).  
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Redox and metabolite signals 

Adverse environmental conditions alter the cellular metabolic state and thus the redox balance, 

which in turn is used by the plant as an environmental sensor to induce an appropriate defense 

response (Vanacker et al., 2000). Mitochondria can alter the cellular redox state because: 1) of 

redox metabolism in the TCA cycle; 2) of the redox state of and ROS production from the 

mtETC; and 3) they contain the glutathione-ascorbate cycle (Jimenez et al., 1997; Dutilleul et al., 

2003; Rhoads and Subbaiah, 2007). 1) The TCA cycle reduces NAD(P) to NAD(P)H and 

therefore impacts the NAD(P)/NAD(P)H ratio. For this reason, it is possible that MFA-mediated 

MRR, that appears to act independently of ROS, is mediated by redox signals from inhibition 

TCA cycle metabolism. 2) Although ROS themselves can act as signaling molecules, they might 

also indirectly mediate signaling through changes in the cellular redox status (Foyer and Noctor, 

2003). For instance, oxidative stress can increase the NADP/NADPH ratio as NADPH is required 

as electron donor for H2O2 detoxification in the glutathione-ascorbate cycle (Sweetlove and 

Foyer, 2004; Foyer and Noctor, 2005). 3) It is becoming increasingly clear that antioxidants 

themselves can fulfill signaling roles (Foyer and Noctor, 2005). For example, glutathione and 

ascorbate appear to be key molecules in redox signaling and mediate various stress responses in 

plants (Kocsy et al., 2001; Pastori et al., 2003; Gomez et al., 2004). Interestingly, ascorbate 

synthesis is dependent on the respiratory chain and is affected upon treatment with the respiratory 

inhibitors AA and cyanide (Bartoli et al., 2000). However, experimental evidence for the 

involvement of redox signaling in plant MRR is currently lacking. Besides redox changes, 

changes metabolite levels itself (e.g. of the TCA cycle) and altered energy status (e.g. ATP/ADP 

ratio) are also potential stimuli to trigger mitochondrial signaling (reviewed in Schwarzländer and 

Finkermeier, 2013).  

 

Calcium 

Mitochondria play an important role in cellular calcium storage and homeostasis (Nicholls and 

Chalmers, 2004). The release of Ca
2+

 from intracellular stores or the apoplast in the cytosol 

contributes to various signaling pathways involved in development and the stress response 

(Berridge et al., 1998; Stael et al., 2012). Multiple studies in mammalian cells have shown the 

role of calcium as a signaling component in MRR (reviewed in Butow and Avadhani (2004)). 
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The increased cytosolic Ca
2+

 concentrations upon mitochondrial dysfunction are attributed to the 

lack of Ca
2+

 uptake by dysfunctional mitochondria (due to disruption of mitochondrial membrane 

potential) and/or reduced efflux due to decreased ATP levels (Biswas et al., 1999; Amuthan et al., 

2002). In plants, the involvement of calcium in MRR has been implicated by the observation that 

AA-directed AOX transcript induction is partially inhibited by a ruthenium red, an inhibitor of 

Ca
2+

 efflux from the mitochondria and other internal stores (Vanlerberghe et al., 2002). In 

addition, hypoxia causes an increase in cytosolic calcium that originates from the mitochondria 

and addition of ruthenium red suppresses hypoxia-responsive gene expression (Subbaiah et al., 

1994, 1998; Bailey-Serres and Chang, 2005). Altered cytosolic and mitochondrial Ca
2+

 levels 

have also been observed during other environmental stress conditions, such as cold, osmotic and 

oxidative stress and showed stress-specific signatures (Logan and Knight, 2003; Loro et al., 

2012).  

How the mitochondria-induced changes in cellular Ca
2+

 signatures are directed to the 

nucleus to alter gene expression in plants is currently not clear. It is likely that commonly known 

calcium detector proteins are involved, including calcium-dependent protein kinases, 

calmodulins, and calcineurin B-like proteins (Luan et al., 2002; Sanders et al., 2002). In 

mammalian cells, calcineurin and several protein kinases arbitrate Ca
2+

-mediated activation of 

transcription factors during MRR (Luo et al., 1997; Biswas et al., 1999; Amuthan et al., 2002; 

Arnould et al., 2002). Another possibility is that Ca
2+

 itself may propagate to the nucleus to affect 

gene expression. This is indicated by the observation that increases in nuclear Ca
2+

 accompany 

the cytosolic Ca
2+

 rise during hypoxia (Subbaiah et al., 1998). Distinct nuclear calcium signatures 

have also been observed upon various other stress stimuli (Pauly et al., 2001; Xiong et al., 2004). 

Moreover, it has been observed that altered nuclear calcium concentrations can affect nuclear 

gene expression, for example by modulating transcription factor DNA binding and transcriptional 

activity (Hardingham et al., 1997; Kim et al., 2009).   

 

Protein signaling components 

Protein regulatory components of plant MRR are only recently beginning to be discovered in 

contrast to the more extensively studied yeast and animal MRR pathways. The best studied 

retrograde pathway is the yeast RTG pathway that is mediated by the heterodimeric basis helix-

loop-helix/leucine zipper transcription factors RTG1 and RTG3 and a cascade of cytoplasmic 
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regulators that control their nuclear translocation (through dephosphorylation) and subsequent 

activation (Liao and Butow, 1993; Sekito et al., 2000; Liu and Butow, 2006). In animals, one of 

the best studied MRR pathways involves the release and nuclear translocation of NFκB (Nuclear 

Factor kappa-light-chain-enhancer of activated B cells) dimers through calcineurin-mediated 

inactivation (dephosphorylation) of inhibitory IκBβ (inhibitor of nuclear factor-κβ) proteins 

following increased cytosolic Ca
2+

 levels (Biswas et al., 2003; Biswas et al., 2008). However, 

several other (RTG/NFκB-independent) MRR pathways have been described in yeast and 

animals (Butow and Avadhani, 2004; Jones et al., 2012).  

The first evidence for the involvement of proteins in plant MRR signaling came from 

Zarkovic et al. (2005). They identified genetic mutants with impaired AOX1a induction in 

response to AA and MFA. However, the corresponding proteins have not been identified so far. 

Other approaches to identify MRR protein components relied on identifying cis-regulatory 

elements in the AOX1a promoter. Promoter activity studies indicated that AA- and MFA-

mediated expression of AOX1a is directed at the promoter level (Dojcinovic et al., 2005; 

Zarkovic et al., 2005). Dojcinovic et al. (2005) identified a 93-bp region (bases -406 to -313) in 

the AOX1a promoter, that is critical for MRR. Most of this 93-bp “MRR region” is important for 

AA and MFA-mediated induction, indicating complex regulation involving multiple transcription 

factor – cis-regulatory element interactions. Although the identity of the DNA-binding proteins 

was not discovered in this study, the MRR region was shown to be bound in vitro by Arabidopsis 

proteins from whole cell extracts and this interaction was favored under oxidative conditions. 

Analysis of the presence of known cis-regulatory elements revealed putative basic leucine zipper 

(bZIP), WRKY, and DNA-binding with one finger (Dof) binding sites, suggesting a role for 

bZIP, WRKY and Dof transcription factors in MRR. An alternative study identified several 

abscisic acid response elements in the AOX1a promoter, lying outside the 93-bp MRR region (Ho 

et al., 2008). Among them is the B element that represses the promoter under normal conditions 

and allows derepression upon rotenone-mediated mitochondrial perturbation. This led to the 

identification of the first transcription factor mediating MRR, as ABI4 acts as a repressor of the 

AOX1a promoter activity under normal conditions by binding the B element and allows 

derepression during MRR (Giraud et al., 2009). A recent genomewide transcriptome analysis of 

AA and MFA treatment revealed enrichment of several signaling-related genes that were affected 

in the same way by both inhibitors, including calcium signaling components, WRKY, and NO 
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APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-

SHAPED COTYLEDON (NAC) domain transcription factors, indicating these are candidates to 

be involved in common MRR signaling (Umbach et al., 2012). Moreover, the protein kinase 

CDKE;1 was identified in a genetic screen as a positive regulator of AOX1a during AA treatment 

(Ng et al., 2013). Finally, two other kinases were identified that are activated upon mitochondrial 

perturbation. The potential involvement of these kinases in MRR is further supported by the 

observation that their activation as well as AOX mRNA induction was suppressed by bongkrekic 

acid, an inhibitor of the opening of the mitochondrial permeability transition pores (Takahashi et 

al., 2003). However, this pathway needs further investigation.   

 

 

Figure 1.3. Potential signaling pathways in plant MRR.  

Potential signals include mitochondrial reactive oxygen species (mtROS), mitochondrial calcium (mtCa
2+

), altered 

redox and energy status and metabolite levels originating in the mitochondria, and protein components such as 

kinases, phosphatases (PPases), and transcription factors (TFs). See text for further details. mtETC, mitochondrial 

electron transport chain; TCA cycle, tricarboxylic acid cycle; PCD, programmed cell death. 

Adapted from Rhoads and Subbaiah (2007). 

 

Multiple MRR pathways 

Several lines of evidence indicate the existence of multiple MRR pathways in plants. First, 

different mitochondrial perturbations cause distinct changes in the nuclear gene expression 

patterns. For example, temporal AOX1a transcript accumulation patterns vary depending on 

different respiratory or ATP synthesis inhibitors in Arabidopsis (Saishoa et al., 2001). Different 

AOX genes are induced depending on the mitochondrial defect in maize mitochondrial DNA 

mutants (Karpova et al., 2002). Moreover, genomewide expression profiling upon respiratory 
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(AA) and TCA cycle (MFA) inhibition revealed distinct but overlapping expression patterns, 

suggesting the operation of both common and distinct signaling pathways between the two 

treatments (Rhoads and Subbaiah, 2007; Umbach et al., 2012). Secondly, one of the isolated 

genetic mutants with impaired AOX1a induction by AA still exhibits induction by MFA, again 

indicating that these two perturbations initiate partially overlapping MRR pathways (Zarkovic et 

al., 2005). Thirdly, several studies suggest the existence of both ROS-dependent and ROS-

independent MRR pathways. AA-mediated AOX induction is dependent on ROS, whereas AOX 

induction upon MFA and citrate treatment is not associated with detectible increases in ROS 

(Djajanegara et al., 2002; Gray et al., 2004; Umbach et al., 2012). Moreover, citrate-mediated 

AOX induction is inhibited by a protein kinase inhibitor, but not the induction by AA 

(Djajanegara et al., 2002). To conclude, these observations suggest the existence of multiple, 

partially overlapping MRR pathways that steer specific gene expression changes in response to 

specific types of mitochondrial dysfunction.  

 

Crosstalk of MRR with other organellar signaling pathways 

 

Mitochondria and chloroplasts are tightly connected through metabolism, energy and redox status 

(Raghavendra and Padmasree, 2003; van Lis and Atteia, 2004; Noguchi and Yoshida, 2008), and 

thus cannot be regarded as isolated compartments. For instance, photosynthesis provides 

substrates for mitochondrial respiration (O2 and malate), but depends itself on mitochondrial 

products (CO2 and ATP in the dark). Moreover, mitochondrial respiration protects chloroplasts 

against photoinhibition by dissipating excess redox equivalents from the chloroplasts. Crosstalk 

between mitochondria and chloroplasts has been deduced from genetic studies. For example, in 

the tobacco CMSII mutant, which lacks mitochondrial Complex I, the rate of photosynthesis is 

decreased (Sabar et al., 2000). In the barley albostrians mutant, the absence of chloroplast 

activity in an otherwise fully differentiated leaf tissue leads to an increase in mitochondrial gene 

copy number and elevated level of mitochondrial transcripts (Hedtke et al., 1999). Other studies 

suggest that mitochondrion-chloroplast crosstalk might affect retrograde regulation from either 

organelle (Woodson and Chory, 2008). The maize ncs6 mutant with dysfunctional mtETC has 

decreased nuclear photosynthetic gene expression (Jiao et al., 2005). In the other direction, in 

mutant barley cells that lack chloroplast ribosomes, the nuclear-encoded mitochondrial RNA 
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polymerase is upregulated (Emanuel et al., 2004). However, it remains to be determined whether 

mitochondria and chloroplasts directly signal to each other or whether retrograde regulation from 

one of the organelles modulates the anterograde control of the other. The interactions between 

mitochondria and chloroplasts are further supported by the observation that nuclear 

photosynthetic genes are downregulated in a double Arabidopsis mutant that lacks both a 

chloroplast and a mitochondrial isoform of prolyl-tRNA, while each mutation alone does not 

result in this phenotype (Pesaresi et al., 2006). Moreover, there is recent evidence that retrograde 

signals from both organelles might interact, as the ABI4 transcription factor is involved in both 

chloroplast and mitochondrial retrograde regulation of nuclear gene expression (Koussevitzky et 

al., 2007; Giraud et al., 2009).  

Close physical associations between the mitochondria and the endoplasmic reticulum 

(ER) have been observed in yeast and animal systems (Copeland and Dalton, 1959; Achleitner et 

al., 1999). A major function of these associations is the transfer of Ca
2+

 between these two 

organelles, thereby mediating Ca
2+

 homeostasis and interorganellar signaling (Hayashi et al., 

2009; Elbaz and Schuldiner, 2011). It was recently shown that Ca
2+

-mediated ER-mitochondria 

crosstalk is important for AOX1a induction in Arabidopsis during salt stress conditions, 

indicating it might be involved in plant MRR (Vanderauwera et al., 2012). Moreover, the ER also 

signals to the nucleus during the so-called unfolded protein response or UPR, which is an 

evolutionarily conserved transcriptional response to maintain ER homeostasis upon accumulation 

of unfolded proteins (Urade, 2007). Vanderauwera et al. (2012) suggest the involvement of the 

UPR in the Ca
2+

-mediated AOX1a induction by regulating the activity of an ER Ca
2+

 pump. This 

points to a link between ER-to-nucleus communication and MRR.  

 

Conclusion 

When plants experience environmental stresses, they alter gene expression to allow cellular 

adjustments and adaption to the changed conditions. Stress conditions also involve perturbation 

of mitochondrial activity. It is becoming increasingly evident that mitochondria can sense abiotic 

and biotic stresses and subsequently alter nuclear gene expression through MRR, thereby 

contributing to the stress response. MRR in plants is likely composed of several distinct signaling 

pathways. In contrast to the more extensively studied yeast and animal MRR pathways, plant 

MRR mechanisms and components are still poorly understood. ROS, calcium, metabolic, energy, 
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and redox changes are likely signaling components of plant MRR. However, except for the recent 

discovery of the ABI4 transcription factor and the CDKE;1 kinase, no protein signaling 

components have been identified. Moreover, increasing evidence suggests that MRR overlaps 

with other signaling pathways such as retrograde regulation from the chloroplasts. Thus, further 

research is necessary to elucidate plant MRR signaling mechanisms, its interaction with other 

signaling pathways and its role in the stress response. 
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ABSTRACT 

 

Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the 

expression of responsive genes. This mitochondria-to-nucleus communication is often referred to 

as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are 

likely candidates for MRR, the protein signaling components in plants remain largely unknown. 

Through meta-analysis of transcriptome data, we detected a set of genes that are common and 

robust targets of MRR and used them as a bait to identify transcriptional regulators of MRR. In 

the upstream regions of these mitochondrial dysfunction regulon (MDR) genes, a cis-regulatory 

element, the mitochondrial dysfunction motif (MDM) was found that is necessary and sufficient 

for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid 

analysis and electrophoretic mobility shift assays revealed that five transmembrane domain 

containing NAC transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and 

ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 is 

strongly regulated by various mitochondrial and environmental stress conditions at the transcript 

level and has expression characteristics similar to those of the MDR, hence pointing to its 

importance in MRR. By means of a detailed in planta functional analysis, ANAC013 was shown 

to mediate MRR-induced expression of the MDR genes by direct interaction with the MDM cis-

regulatory element and triggers an increased oxidative stress tolerance. In conclusion, we 

characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana. 

 

 

 

 

 

 

 

 

 

A modified version of this chapter is in preparation for resubmission in The Plant Cell. 
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INTRODUCTION 

 

Plants are regularly exposed to adverse environmental conditions, such as drought, extreme 

temperatures, lack of nutrients, and pathogen assaults. These factors negatively affect plant 

growth and development and are responsible for major yield losses in agriculture (Bray et al., 

2000). At the cellular level, the functioning of organelles, such as chloroplasts and mitochondria, 

is perturbed by these environmental stresses (Huner et al., 1998; Taylor et al., 2002) and, in 

response, feedback mechanisms are triggered that steer changes in nuclear gene expression to 

sustain and/or restore the organellar and at large, cellular function (Rhoads and Subbaiah, 2007; 

Piñas Fernández and Strand, 2008). Mitochondria-to-nucleus signaling is referred to as 

mitochondrial retrograde regulation (MRR) that is a key event in eukaryotic cells during various 

stress situations (Butow and Avadhani, 2004). 

 The best studied mitochondrial retrograde pathway is the yeast (Saccharomyces 

cerevisiae) retrograde (RTG) pathway, mainly regarding its role in metabolic compensation of 

mitochondrial dysfunction in ageing and nutrient depletion scenarios. Mitochondrial dysfunction 

provokes a cascade of cytosolic events that activates heterodimeric RTG transcription factors 

through their nuclear translocation (Liao and Butow, 1993; Liu and Butow, 2006). A related 

pathway, comprising the central stress-mediating transcription factor NF-κB, has been identified 

in mammals (Biswas et al., 1999; Srinivasan et al., 2010). Similarly to the RTG pathway, the NF-

κB retrograde system stimulates the glycolysis-derived ATP production under impaired 

mitochondrial respiration (Jazwinski and Kriete, 2012), but is much more complex with 

alternative and specialized functions during innate immune responses (Hayden et al., 2006), 

reflecting the higher metabolic intricacy. Other (RTG/NF-κB-independent) retrograde pathways 

have been reported in yeast and mammals that trigger various responses to specific mitochondrial 

defects (Epstein et al., 2001; Jones et al., 2012). 

 Research on MRR in plants has been centered mainly on the induction of components of 

the alternative respiratory chain, more specifically, the ALTERNATIVE OXIDASE (AOX) gene, in 

response to mitochondrial perturbation (Dojcinovic et al., 2005; Zarkovic et al., 2005). AOX is 

induced by various treatments with chemical inhibitors and mutations that disrupt the 

mitochondrial function at the respiratory chain level (mitochondrial electron transport chain 

[mtETC]) or the tricarboxylic acid (TCA) cycle. Therefore, AOX is used as a marker for the MRR 
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response in plants and specifically AOX1a in Arabidopsis thaliana (Vanlerberghe and McIntosh, 

1996; Clifton et al., 2005; Rhoads and Subbaiah, 2007) that is also induced by various external 

stress treatments that might indirectly target mitochondrial function (Van Aken et al., 2009). A 

common component of various stresses that might result from mtETC inhibition is an increase in 

mitochondrial reactive oxygen species (mtROS) (Prasad et al., 1994; Maxwell et al., 1999). 

Induction of AOX serves to lower ROS formation from the impaired respiratory chain (Maxwell 

et al., 1999; Cvetkovska and Vanlerberghe, 2012). In addition to their damaging effects, mtROS 

probably act as MRR-triggering signaling molecules (Vanlerberghe et al., 2002; Rhoads et al., 

2006). Calcium originating from the mitochondria might also be an MRR signal (Subbaiah et al., 

1998), as seen in mammalian cells (Butow and Avadhani, 2004), as well as changes in 

mitochondrial redox changes and metabolites (Schwarzländer and Finkemeier, 2013). 

 To date, one protein has been shown to play a role in MRR in plants, namely ABSCISIC 

ACID INSENSITIVE4 (ABI4) that represses the basal expression of the Arabidopsis AOX1a 

gene, thereby allowing derepression by MRR (Giraud et al., 2009), and is also a common 

component of multiple chloroplast retrograde pathways (Koussevitzky et al., 2007). Although the 

effect of mitochondrial dysfunction on nuclear gene expression has been elucidated in several 

studies (Schwarzländer et al., 2012), the current understanding of the underlying regulatory 

mechanisms in plants is still limited. Although the Arabidopsis AOX1a promoter had been used 

to search for cis-regulatory elements involved in MRR and to isolate loss-of-function mutants 

impaired in its retrograde induction, the corresponding regulatory proteins have not been 

identified yet, except for the negative regulatory protein ABI4 (Dojcinovic et al., 2005; Zarkovic 

et al., 2005; Ho et al., 2008; Giraud et al., 2009). 

 Here, we followed a bottom-up approach to discover unknown regulatory components of 

MRR. Among the Arabidopsis gene promoters that are common and robust responsive targets of 

mitochondrial dysfunction, a cis-regulatory element was identified. This promoter element was 

necessary and sufficient to drive MRR-mediated gene expression and revealed the regulatory role 

of a transcription factor of the NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION 

ACTIVATION FACTOR/CUP-SHAPED COTYLEDON (NAC) family in the plant MRR. 
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RESULTS 

 

Identification of a cis-regulatory motif in the promoters of MRR-regulated genes 

 

To identify transcriptional regulators of MRR, we looked for shared cis-regulatory elements in 

the promoters of MRR-regulated genes. To select these genes, we assembled a compendium of 

12 publicly available and microarray-derived transcriptome data sets that encompassed 22 

perturbation experiments in which mitochondrial function was impaired by short-term treatments 

with respiratory inhibitors or by genetic mutation of mitochondrial proteins (oligomycin and 

rotenone (Clifton et al., 2005); 35S:AOX1a and aox1a (NCBI GEO database; Edgar et al., 2002, 

accession GSE4113); 35S:PHB3, 35S:PHB4; phb3 and phb4 (Van Aken et al., 2007); aox1a 

(Giraud et al., 2008); ndufs4 and ndufa1 (Meyer et al., 2009); rpoTmp (Kühn et al., 2009); msh1 

recA3 (Shedge et al., 2010); mia40 (Carrie et al., 2010); dsr1 (Gleason et al., 2011); rug4 (Kühn 

et al., 2011); and 35S:TIM23-2 and tim23-2 (Wang et al., 2012)) (Figure 2.1). For experimental 

details of the individual microarray studies see Supplemental Table 2.1. In this meta-analysis, 34 

nuclear transcripts were up-regulated significantly (P value <0.01 and log2-fold >1) in five or 

more of the 22 conditions, hence representing a robust set of general mitochondrial stress-

responsive genes. In these 34 genes, we assessed the presence of shared sequence elements 

within the first 1-kb upstream region. By various de novo motif discovery algorithms (Bailey and 

Elkan, 1994; Linhart et al., 2008; Thomas-Chollier et al., 2011), a common motif with the 

consensus sequence CTTGNNNNNCA[AC]G was identified with the corresponding position 

weight matrix shown in Figure 2.2A. This cis-regulatory motif occurred at least once in 24 out of 

the 34 genes (Supplemental Table 2.2) and the consensus was significantly enriched in this gene 

set compared to the genome (16.6-fold, hypergeometric P value 1.31E-18). As we hypothesized 

that this motif is a cis-regulatory element for transcriptional regulation in response to 

mitochondrial dysfunction, it was designated as mitochondrial dysfunction motif (MDM). 

Eighteen of the 24 MDM-containing genes are part of the so-called mitochondrial dysfunction 

regulon (MDR) (Van Aken et al., 2007; Skirycz et al., 2010). Therefore, we hereafter refer to 

these 24 MDM-containing genes as the MDR genes (Supplemental Table 2.3). 

 



Mitochondrial retrograde regulation by a transmembrane NAC transcription factor 

 

39 
 

 

Figure 2.1. Schematic overview of the mitochondrial perturbation experiments used for the meta-analysis. 

Rotenone and Antimycin A (AA) are inhibitors of Complex I and Complex III of the mitochondrial electron 

transport chain (mtETC), respectively. Oligomycin inhibits mitochondrial ATP synthase. Aconitase of the 

tricarboxylic acid (TCA) cycle is inhibited by monofluoroacetate (MFA). Mutation of RUG3, that is required for 

splicing of a Complex I subunit mRNA, and mutation of Complex I subunits NDUFA1 and NDUFS4 results in 

reduced or absent levels of Complex I, respectively (Kühn et al., 2011; Meyer et al., 2009). dsr1 is mutated in a 

Complex II subunit (Gleason et al., 2010). TIM23-2 encodes a subunit of the mitochondrial inner membrane protein 

import complex TIM17:23, and its overexpression results in decreased Complex I levels (Wang et al., 2012). MSH1 

and RECA3 are involved in the recombination of the mitochondrial genome and their disruption results in extensive 

mitochondrial genome rearrangements (Shedge et al., 2010). Prohibitins (PHB) form complexes in the inner 

mitochondrial membrane and they are suggested to be important for mitochondrial biogenesis and/or function (Van 

Aken et al., 2010). Mutation of PHB3 results in altered mitochondrial morphology (Van Aken et al., 2007). 

 

 

The 24 MDM-containing MDR genes were among the most responsive and up-regulated genes 

with respect to the number of perturbation experiments and the response magnitude, implying 

they are common and robust targets of MRR (Figure 2.2B). Hierarchical clustering of the 34 

significantly up-regulated genes upon mitochondrial dysfunction revealed that the 24 MDR genes 

clustered in two groups with distinct transcriptional profiles: one that comprises genes affected 

by treatments and in mutants (cluster III) and one containing genes mainly affected in mutants 

and, to a much lesser extent, by treatments (cluster I). As evolutionary conservation is suggestive 

of functional importance (Freeling and Subramaniam, 2009), we investigated the biological 
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relevance of our candidate cis-regulatory element by examining its evolutionary conservation in 

six related dicot species (see Supplemental Methods online and Supplemental Table 2.4 online). 

Of the 24 MDR genes, nine had a significant evolutionarily conserved motif in at least two other 

species (Supplemental Table 2.2), suggesting a functional role of the motif in MRR. 

 

 

Figure 2.2 Identification of the MDM cis-regulatory element in MRR up-regulated genes. 

(A) Position weight matrix of MDM representing the occurrence in the 24 MDR promoters, showing the probability 

of nucleotide(s) at each position. The MDM consensus (CTTGNNNNNCA[AC]G) is underlined. 

(B) Hierarchical clustering of expression profiles of the 34 MRR-up-regulated genes (P <0.01, log2-fold change >1, 

in five or more mitochondrial dysfunction conditions). Color codes represent the actual log2-fold changes in 

transgenic or treated plants compared to wild-type or untreated plants, respectively. The MDR genes containing the 

cis-regulatory MDM in their 1-kb upstream sequence are indicated with a green bar. 
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MDM is a cis-regulatory element required for MRR-induced gene expression 

 

To assess the functionality of this cis-regulatory element in mediating MRR-induced gene 

expression, we studied the effect of its deletion on the promoter activity of AOX1a, which is a 

model gene for MRR studies (Rhoads and Subbaiah, 2007) and contains the MDM1[AOX1a] and 

MDM2[AOX1a]
 
sequences (Figure 2.3A). MDM deletions in the 1.5-kb AOX1a promoter were 

generated and fused to the luciferase (LUC) reporter gene. Three independent transgenic 

ProAOX1a-WT:LUC, ProAOX1a-ΔMDM1:LUC and ProAOX1a-ΔMDM2:LUC Arabidopsis 

plants were treated with antimycin A (AA), rotenone, monofluoroacetate (MFA) or hydrogen 

peroxide (H2O2) for 12 h and 24 h, prior to LUC activity measurements. AA and rotenone inhibit 

the mtETC and MFA the TCA cycle. H2O2 was included because components of the mtETC and 

TCA cycle are sensitive to oxidative stress (Sweetlove et al., 2002) and because H2O2 had been 

proposed as a signal within MRR (Vanlerberghe et al., 2002; Rhoads and Subbaiah, 2007). The 

absolute LUC signal in ProAOX1a-ΔMDM1:LUC and ProAOX1a-ΔMDM2:LUC was 

significantly lower than that of the ProAOX1a-WT-LUC plants after treatment with AA, 

rotenone, MFA, or H2O2 as well as the basal expression levels of the deletion constructs under 

nonstressed conditions (Figure 2.3Bi and 2.3Bii). 

 Additionally, we assessed the effect of the MDM deletions on the AOX1a promoter 

activity in PROHIBITIN 3-defective mutants (phb3) of Arabidopsis. Prohibitins play an 

important role in mitochondrial biogenesis and activity in plants (Ahn et al., 2006) and the 

Arabidopsis phb3 mutant has an altered mitochondrial morphology and strongly induces the 

MDR genes (Figure 2.2B) (Van Aken et al., 2007). Similarly to the chemical inhibition results, 

the activity of ProAOX1a-ΔMDM1 and ProAOX1a-ΔMDM2 was significantly lower than that of 

ProAOX1a-WT in phb3 mutants (Figure 2.3Biii). These results imply that a proficient ProAOX1a 

activity requires the contribution of both MDM1[AOX1a] and MDM2[AOX1a], either under control or 

mitochondrial stress conditions. 

 The effect of the MDM deletion was analyzed on the promoter activity of the UDP-

GLYCOSYL TRANSFERASE 74E2 (UGT74E2) gene that is responsive to mitochondrial 

dysfunction (Figure 2.2B), is one of the most strongly H2O2-responsive genes, and is induced by 

various abiotic stresses (Tognetti et al., 2010). The UGT74E2 promoter contains only one MDM 

consensus sequence (MDM[UGT74E2]; Figure 2.3A), thereby avoiding potential redundancy issues. 
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Under nonstressed conditions, the activity of ProUGT74E2-ΔMDM was slightly higher than that 

of ProUGT74E2-WT, but, after AA and MFA treatments, the absolute LUC activity of the 

deletion construct was significantly lower than that of the wild-type construct (Figure 2.3Ci and 

2.3Cii). After H2O2 treatment and in the phb3 mutant, but not after rotenone treatment, the MDM 

deletion resulted in significantly reduced UGT74E2 promoter activity, although to a lesser extent 

than after AA and MFA treatments (Figure 2.3Ci, 2.3Cii, and 2.3Ciii). These results indicate that 

MDM[UGT74E2] is necessary for UGT74E2 promoter activation under mitochondrial stress 

conditions, especially during mitochondrial perturbation mediated by AA and MFA. 

 

MDM is sufficient for MRR-mediated gene activation 

 

To evaluate to what extent the MDM is sufficient to direct MRR-induced gene expression, we 

assessed the activity of the 50-bp region at -377 to -328 from the AOX1a promoter containing 

both the MDM1[AOX1a] and MDM2[AOX1a] elements by gain-of-function experiments. Therefore, 

reporter plasmids with a six-tandem repeat of this ProAOX1a[-377, -328] fused to the minimal 

cauliflower mosaic virus (CaMV) 35S promoter (P35Smin) located upstream of the LUC reporter 

gene were stably transformed in Arabidopsis plants (Figure 2.3D). Three independent transgenic 

6xProAOX1a[-377, -328]-P35Smin:LUC plants were treated with AA, rotenone, MFA, or H2O2 

for 12 and 24 h, prior to the LUC activity measurements. All treatments activated the 

6xProAOX1a[-377, -328] (Figure 2.3Ei and 2.3Eii). After 12 h, the induction of the LUC gene 

was the highest by AA and H2O2 and by MFA after 24 h. To determine whether the MDM alone 

was sufficient to trigger the gene expression after mitochondrial perturbations, we built a similar 

reporter construct with a hexamer of the 23-bp AOX1a promoter sequence containing the 13 bp of 

MDM1[AOX1a] with neighboring 5 bp at each end (5’-TCCATCTTGGAGAGCAAGAAAAA-3’), 

hereafter designated 6xMDM1[AOX1a]. The MDM1[AOX1a] was chosen because its similarity was the 

highest to the position weight matrix representation of the MDM consensus motif (Figure 2.2A). 

Like 6xProAOX1a[-377, -328], the P35Smin:LUC reporter-driving 6xMDM1[AOX1a] construct 

was strongly activated by AA, rotenone, MFA, and H2O2. Similar constructs with base 

substitutions in the MDM1[AOX1a] sequence (5’-TCCATAAAAAAAGGGGGGAAAAA-3’ and 

designated 6xMDM1mut[AOX1a]) or lacking the MDM promoter fragment (designated P35Smin) 

did not display any increase in LUC expression after mitochondrial perturbations. Furthermore, 
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the responsiveness of MDM1[AOX1a] to mitochondrial dysfunction was confirmed in the phb3 

mutant (Figure 2.3Eiii). All together, these data indicate that the MDM is regulated by 

mitochondrial perturbations and is a regulatory unit sufficient to confer MRR-mediated gene 

expression. 

 

Figure 2.3. MDM is necessary and sufficient for MRR-mediated promoter activation. 
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Figure 2.3. MDM is necessary and sufficient for MRR-mediated promoter activation. (Continued). 

(A) Schematic overview of AOX1a and UGT74E2 promoter deletion constructs. MDM deletions were generated in 

the 1.5-kb promoters and fused in-frame to the LUC reporter gene.  

(B) Regulatory characteristics of the MDM elements from the AOX1a promoter tested by comparison of the LUC 

expression driven by the AOX1a promoter (ProAOX1a-WT) to the same promoter construct with deletion of either 

MDM1[AOX1a] (ProAOX1a-ΔMDM1) or MDM2[AOX1a] (ProAOX1a-ΔMDM2) in transgenic Arabidopsis plants. 

Promoter activities were analyzed after mock (Control), AA, rotenone, MFA, or H2O2 treatment for 12 h (i) or 24 h 

(ii), and in phb3 mutants (iii). Bars indicate average relative LUC activities from eight biological replicates ± SE. 

The relative luciferase activity of the first bar was arbitrarily set to 1. Per construct, data of three independent 

transgenic lines are shown. * indicates a significant difference at an overall significance level of 0.05, **0.01, and 

***0.001.  

(C) Regulatory characteristics of the MDM element from the UGT74E2 promoter tested by comparing the LUC 

expression driven by the UGT74E2 promoter (ProUGT74E2-WT) to the same promoter construct with deletion of 

MDM[UGT74E2] (ProUGT74E2-ΔMDM) under the same conditions as in panel B. 

(D) Schematic overview of gain-of-function promoter constructs containing hexamers of the AOX1a promoter 

regions cloned upstream of the minimal CaMV 35S promoter (P35Smin) driving transcription of the LUC gene.  

(E) Regulatory activity of the synthetic sequence containing six consecutive repeats of the 50-bp AOX1a promoter 

fragment, including two MDM elements (6xProAOX1a[-377,-328]) and one of the MDM sequence alone 

(6xMDM1[AOX1a]) in transgenic Arabidopsis plants. Constructs mutated in the MDM sequence (6xMDM1mut[AOX1a]) 

or without promoter fragment (P35Smin) were included as negative control. Average fold changes of LUC activity 

after 12 h (i) or 24 h (ii) of AA, rotenone, MFA, or H2O2 treatment relative to mock treatment are shown for three 

independent transgenic lines (± SE; n = 8 biological replicates). (iii) Average relative LUC activity of the synthetic 

sequences in phb3 mutants (± SE; n = 8 biological replicates). 

 

 

 

NAC transcription factors specifically bind to the MDM of several MDR promoters 

 

To identify transcriptional regulators that interact with the MDM, yeast one-hybrid (Y1H; see 

Chapter 3) screening was performed with the 6xProAOX1a[-377, -328] promoter fragment as 

bait against a cDNA expression library enriched for stress-responsive genes (Jaspers et al., 2009). 

In this effort, five NAC family transcription factors (Ooka et al., 2003; Olsen et al., 2005a) were 

found that bound to the AOX1a promoter fragment: ANAC013, ANAC016, ANAC017, 

ANAC053, and ANAC078 (Figure 2.4A). In addition, we demonstrated that these NAC 

transcription factors also interacted with a promoter fragment containing only the MDM element 

with 5-bp flanking sequence at each end (6xMDM1[AOX1a]). This interaction was completely 

abolished when base substitutions were introduced into the MDM sequence 

(6xMDM1mut[AOX1a]). These data indicate that the five NAC proteins specifically interact with 

MDM1[AOX1a] in the Y1H system and not with its 5’- or 3’-flanking ends.  
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To confirm the binding of the NAC transcription factors to the MDM, we performed 

electrophoretic mobility shift assays with five different MDR promoters. Radioactively labeled 

DNA probes containing 30- to 50-bp regions of the AOX1a, UGT74E2, UPREGULATED BY 

OXIDATIVE STRESS (UPOX), At5g09570, and At2g04050 promoters surrounding MDM were 

synthesized (Supplemental Table 2.5). Recombinant NAC-glutathione-S-transferase (GST) 

fusion proteins for ANAC013, ANAC017, ANAC053, and ANAC078 were successfully 

produced and purified in Escherichia coli. For the four tested NAC proteins, specific shifts with 

the AOX1a, UGT74E2, UPOX, At5g09570, and At2g04050 probes were observed that could be 

abolished with a non-labeled competitor against these probes, whereas the MDM-mutated labeled 

probes did not gave retardation complexes (Supplemental Figure 2.1). Hence, ANAC013, 

ANAC017, ANAC053, and ANAC078 bind specifically to promoter fragments carrying the 

MDM element from several MDR genes. 

 The five MDM-binding NAC transcription factors are all putative membrane-associated 

NAC proteins, containing a C-terminal transmembrane (TM) motif and designated NAC WITH 

TRANSMEMBRANE MOTIF 1-LIKE (NTL) (Kim et al., 2007, 2010b). NTL transcription 

factors are proteolytically cleaved at the membrane to release an active transcription factor that 

can enter the nucleus. As ANAC013 itself belongs to the MDR regulon, it displayed expression 

characteristics similar to those of genes that contain the MDM element in their promoters, 

including AOX1a (Pearson correlation coefficient 0.7, Figure 2.2B). This coexpression occurred 

not only under mitochondrial, but also under various environmental stress conditions 

(Supplemental Figure 2.2). Of the five isolated NTL genes, ANAC013 and, to a lesser extent, 

ANAC053, were transcriptionally regulated under mitochondrial dysfunction conditions (Figure 

2.4B), as also evidenced by their induction after AA treatments (Figure 2.4C), whereas 

ANAC016, ANAC078, and ANAC017 showed only minor transcriptional changes. 
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Figure 2.4. Binding of NAC transcription factors to the MDM. 

(A) Interaction of NAC transcription factors with the MDM in yeast as shown by Y1H assays. The promoter 

sequences of interest were fused to histidinol-phosphate aminotransferase imidazole acetol phosphate transaminase 

(HIS3). The interaction was positive upon growth on 20 mM 3-AT, a competitive inhibitor of HIS3, and was 

observed with synthetic sequences containing six consecutive repeats of the 50-bp AOX1a promoter fragment, 

including two MDM elements (6xProAOX1a[-377,-328]) and one of the MDM sequence alone (6xMDM1[AOX1a]), 

but was abolished when the MDM sequence was mutated (6xMDM1mut[AOX1a]). 

(B) and (C) Expression pattern of the isolated NAC transcription factors under mitochondrial dysfunction conditions. 

Expression data were obtained from publicly available microarray data (B) or from own qRT-PCR analyses of AA 

(50 μM) time series (± SE; n = 2 biological replicates) (C). 

 

 

ANAC013 binds and transactivates MDM in planta 

 

For a more detailed in planta functional analysis, we focused on ANAC013. By means of 

chromatin immunoprecipitation (ChIP), we examined whether ANAC013 was able to bind in 

Arabidopsis to 13 of the 24 MDR promoters that contained an MDM sequence with strong 

similarity to its position weight matrix representation (Figure 2.2A; Supplemental Figure 2.3) for 

further analysis. ChIP experiments were done on transgenic Arabidopsis seedlings 

overexpressing a green fluorescent protein (GFP)-tagged version of ANAC013 (35S:GFP-

ANAC013). The MDM-containing promoter regions of AOX1a, UPOX, At5g09570, At2g04050, 

At2g41730, HEAT SHOCK PROTEIN 23.5 (HSP23.5), CYTOKININ RESPONSE FACTOR 6 

(CRF6) relative to ACTIN2, CYCLIN-DEPENDENT KINASE A;1 (CDKA;1), and UBIQUITIN 10 

(UBQ10) were more than 10-fold enriched after precipitation with an anti-GFP antibody, with the 

strongest enrichment for AOX1a, UPOX, and At5g09570 (Figure 2.5A). The enrichment was 
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smaller (~ 9.5-fold, 7-fold, and 4-fold) for HYPOXIA RESPONSIVE ETHYLENE RESPONSE 

FACTOR 2 (HRE2), ATP-BINDING CASSETTE B4 (ABCB4), and SULFOTRANSFERASE (ST), 

respectively, and only minor (~ 2.5-fold, 2-fold, and 1.5-fold) for UGT74E2, At2g04070, and 

CYTOCHROME P450-FAMILY 81-SUBFAMILY D-POLYPEPTIDE 8 (CYP81D8), respectively. 

These results confirm the in vivo binding of ANAC013 to several MDR promoter regions. 

 To determine whether ANAC013 could transactivate a MDM-containing promoter 

fragment in planta, the 6xMDM1[AOX1a]-P35Smin:LUC, 6xMDM1mut[AOX1a]-P35Smin:LUC and 

P35Smin:LUC reporter constructs were transformed into Arabidopsis plants overexpressing 

ANAC013 (35S:ANAC013-6). On average, the 6xMDM1[AOX1a]-containing reporter constructs in 

35S:ANAC013-6 plants were 100-fold more transactivated by ANAC013 than in the wild-type 

background, whereas the mutated and control reporter constructs were not activated (Figure 

2.5B). 

 

 

 

Figure 2.5. Interaction of ANAC013 with the MDM from several MDR genes in Arabidopsis. 

(A) Interaction of ANAC013 with MDR promoters in planta as shown by ChIP. Enrichment of promoter fragments 

surrounding the MDM after ChIP on 35S:GFP-ANAC013 seedlings with anti-GFP antibody (GFP-IP) and without 

antibody (NO AB). ACTIN2, CDKA;1, and UBQ10 fragments were used as negative controls. Bars represent fold 

enrichment relative to the total genomic DNA from one biological sample. Similar data were obtained in at least one 

other biological repeat experiment. 

(B) Transactivation of the MDM from the AOX1a promoter by ANAC013 in Arabidopsis. ANAC013 activated the 

6xMDM1[AOX1a]-driven LUC reporter gene in ANAC013-overexpressing plants (35S:ANAC013-6) when compared to 

wild-type plants. The induction was abolished when the MDM was mutated (6xMDM1mut[AOX1a]) or in the absence 

of the promoter fragment (P35Smin). Bars indicate average relative LUC activities ± SE (n = 8 biological replicates). 
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ANAC013 mediates MRR-induced gene expression 

 

To assess the role of ANAC013 in MRR-mediated gene expression, we determined the level of 

MDR transcripts in ANAC013 gain-of-function plants (35S:ANAC013-6). For the above-

mentioned 13 MDR genes, including AOX1a, the transcript levels were induced in 

35S:ANAC013-6 and most strongly for At5g09570, At2g04050, and UPOX (Figure 2.6A). Next, 

the AA-mediated induction of the MDR genes in ANAC013 loss-of-function plants was tested. As 

no true loss-of-function T-DNA knockout mutants were available for ANAC013, transgenic lines 

were generated containing artificial ANAC013-targeting microRNA (miR) constructs. In these 

ANAC013-miR plants, the ANAC013 transcript levels were 67% lower than those of the wild 

type. ANAC013-miR and wild-type plants were either mock-treated or treated with AA for 3 or 6 

h. Analysis of the expression pattern of the 13 MDR genes revealed that under nonstressed 

conditions (mock treatment), the MDR expression levels were very low and did not significantly 

differ between ANAC013-miR and wild-type plants (Figure 2.6B). After 3 h of AA treatment, up-

regulation of the MDR transcripts in ANAC013-miR plants was slightly, albeit not significantly, 

lower than in the wild-type plants, but significantly reduced after 6 h of AA stress, except for 

AOX1a, CRF6, and CYP81D8, with the most dramatic effect on the At5g09570 and UPOX genes. 

All together, these data indicate that ANAC013, together with ANAC017 (Ng et al., unpublished 

results), are positive MRR regulators, necessary for AA-mediated induction of the MDR. 

To verify that the transcriptional enhancement of AOX1a and UPOX in 35S:ANAC013-6 

plants also resulted in increased protein production, their protein levels were examined by protein 

gel blot analysis on isolated mitochondria. Wild-type, 35S:ANAC013-6, and ANAC013-miR 

plants were either mock treated or treated with AA for 6 h. Under nonstressed conditions, the 

AOX1a and UPOX protein levels were very low in wild-type plants, but highly induced by 

ANAC013 overexpression, accumulating to levels higher than those detected in AA-treated wild-

type plants (Supplemental Figure 2.4). After treatment with AA, the AOX1a and UPOX protein 

levels were induced in wild-type plants and remained higher in 35S:ANAC013-6 than those in 

wild-type plants. In ANAC013-miR lines, the AOX1a and UPOX protein levels did not 

significantly differ from those of wild-type plants both under nonstressed and AA conditions.  
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Figure 2.6. MRR-mediated gene expression of the MDR regulated by ANAC013 in Arabidopsis. 

(A) ANAC013-overexpressing plants (35S:ANAC013-6) induce MDR gene expression under nonstressed conditions. 

Transcript abundance was analyzed with the Nanostring nCounter system, except for five genes (indicated with 

asterisk) for which the probes were not present on the CodSet en hence were analyzed with qRT-PCR. Bars represent 

average fold changes relative to wild-type (Col-0) plants from three biological replicates (± SE). Asterisk indicates 

significant differences to Col-0 (Student’s t test; * P<0.05, ** P<0.01, and *** P<0.001).  

(B) Failure of ANAC013-miR to fully induce MDR gene expression in response to AA-mediated mitochondrial 

perturbation. MDR transcript levels were analyzed in wild-type (Col-0) and ANAC013-miR plants that were either 

mock-treated (Control) or treated with AA for 3 h (3h AA) or 6 h (6h AA). Expression was analyzed by qRT-PCR 

and data are average expression values (± SE) obtained from three biological replicates. The transcript level of wild-

type (Col-0) under nonstressed conditions was arbitrarily set to 1. * indicates a significant difference between 

ANAC013-miR and Col-0 at an overall significance level of 0.05, **0.01, and ***0.001. 

 

ANAC013 autoregulates its promoter activity 

 

As the expression profile of ANAC013 was similar to that of its target MDR genes (Figure 2.2B; 

Supplemental Figure 2.2), we hypothesized that it could autoregulate its own expression. The 

ANAC013 promoter also contained the MDM cis-regulatory element (CTTGgagaaGAAG; 

Supplemental Table 2.2) that overlapped with two ANAC013 promoter elements shown 

previously to be required for UV-B induction of ANAC013 (Safrany et al., 2008). To examine the 

effect of ANAC013 on its own promoter activity, ProANAC013 fused to β-glucuronidase (GUS) 

constructs (ProANAC013:GUS) were transformed in 35S:ANAC013-6 plants. Whereas in wild-

type ProANAC013:GUS plants, GUS staining was visible only in the shoot apical meristem  

(Skirycz et al., 2010) and hydathodes of 2-week-old seedlings, the ANAC013 promoter activity 

was strongly induced throughout the whole plant in the 35S:ANAC013-6 background (Figure 
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2.7A). ChIP experiments on 35S:GFP-ANAC013 plants also revealed an enrichment of an 

ANAC013 promoter fragment surrounding the MDM (Supplemental Figure 2.3; Figure 2.7B). 

Hence, both results indicate that ANAC013 positively regulates its own promoter-mediated 

expression through binding with the MDM. 

 

 

 

ANAC013 colocalizes with the endoplasmic reticulum 

 

Overexpression of ANAC013 translationally fused to GFP had been shown previously to have a 

nucleocytosolic subcellular localization in transiently transformed tobacco (Nicotiana 

benthamiana) cells (Inzé et al., 2012). To further analyze the subcellular localization, we 

constructed stable transgenic 35S:GFP-ANAC013 Arabidopsis lines. However, none of the 

35S:GFP-ANAC013 lines showed any detectable GFP fluorescence. Also immune electron 

microscopy studies on these stable GFP fusion lines were unsuccessful, possibly due to the low 

GFP-ANAC013 protein abundance and consistent with the low protein stability potentially due to 

proteasomal degradation observed for other NTL transcription factors (Kim et al., 2006; Seo et 

al., 2008). Protein gel blot analysis of the 35S:GFP-ANAC013 lines with an anti-GFP antibody 

revealed weak GFP-ANAC013 protein levels and showed that the overproduced GFP-ANAC013 

was partially processed (Figure 2.8A). Based on their molecular mass, the cross-reactive protein 

Figure 2.7. Autoregulation of ANAC013 expression. 

(A) Activation by ANAC013 of its own promoter-driven 

GUS reporter gene in ANAC013-overexpressing plants. 

These results were confirmed in four independent 

transgenic lines, of which one is shown here.  

(B) Interaction of ANAC013 with its own promoter in 

planta, as shown by ChIP. Enrichment of the ANAC013 

promoter fragment surrounding the MDM and an ACTIN2 

fragment, as a negative control, after ChIP on 35S:GFP-

ANAC013 with anti-GFP antibody (GFP-IP) and no 

antibody (NO AB). Bars represent fold enrichment 

relative to the total genomic DNA from one biological 

sample. Similar data were obtained in another biological 

repeat experiment. 
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bands reflected most probably the full-length GFP-ANAC013 and the processed version lacking 

the C-terminal TM motif (Kim et al., 2010a), in agreement with the nucleocytosolic localization 

reported in Inzé et al. (2012).  

We analyzed the subcellular localization pattern of GFP-ANAC013 in more detail by 

Agrobacterium tumefaciens-mediated transient transformation of 35S:GFP-ANAC013 constructs 

in tobacco, hinting at an endoplasmic reticulum (ER) localization, in addition to a nuclear 

localization (Figure 2.8B). Comparison of the GFP-ANAC013 localization pattern to that of an 

ER marker indicated a putative ER localization for ANAC013 (Figure 2.8C). The GFP did not 

overlap with the mCherry labeled mitochondrial marker (data not shown). In another approach, 

epidermal cells of onion (Allium cepa) were transformed biolistically with C-terminal GFP 

fusions to the full-length ANAC013 (ANAC013-GFP), the full-length ANAC013 minus the TM 

domain (ANAC013ΔTM-GFP), and the isolated TM domain (TMANAC013-GFP) under the control 

of the 35S promoter. For the full-length and TM-deleted constructs, no GFP signal could be 

detected, whereas TMANAC013-GFP colocalized with the ER marker (Figure 2.8D), but not with 

mitochondrial and peroxisomal marker proteins (data not shown). Thus, these data indicate that 

ANAC013 is potentially targeted to the ER. 

 

 

 

 

Figure 2.8. ANAC013 localizes to the ER and the nucleus. 
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Figure 2.8. ANAC013 localizes to the ER and the nucleus. (Continued). 

(A) Overexpression of GFP-tagged ANAC013 in transgenic Arabidopsis plants (35S:GFP-ANAC013) resulting in 

premature processing. Different forms of GFP-ANAC013 were immunologically detected and most probably 

correspond to the full-length GFP-ANAC013 (F, ~86 kDa), the processed form without the C-terminal TM domain 

(ΔC, ~74 kDa), and a lower band that is probably a degradation product (*).  

(B) Localization of GFP-ANAC013 after transient transformation in tobacco epidermal cells. Besides a nuclear 

localization, GFP-ANAC013 co-localizes with the mCherry-labeled ER marker.  

(C) A magnified view of the ER-co-localization of GFP-ANAC013 in tobacco (i) and scatterplot displaying the 

signal intensity of GFP and mCherry for each pixel and showing substantial co-localization (ii).  

(D) Localization of the isolated TM domain of ANAC013 fused to GFP (TMANAC013-GFP) in onion epidermal cells. 

TMANAC013-GFP targeted to the ER, as confirmed by its co-localization with ER-RFP. 

 

 

ANAC013-overexpressing plants exhibit increased methyl viologen-mediated oxidative 

stress tolerance  

 

As the production of ROS is a common component of cellular stresses that might result from 

inhibition of mitochondrial function, we assessed the effect of alterations in ANAC013 expression 

on oxidative stress tolerance. Methyl viologen (MV) and AA that block chloroplast and 

mitochondrial electron transport, respectively, were used to increase cellular ROS levels. For the 

MV stress assays, wild-type, ANAC013-overexpressing (35S:ANAC013-4 and 35S:ANAC013-6) 

and miR (ANAC013-miR-3 and ANAC013-miR-5) plants were germinated and grown on 

Murashige and Skoog (MS) medium supplemented with 50 or 100 nM MV. Postgermination 

growth inhibition by MV was significantly lower for 35S:ANAC013-4 and 35S:ANAC013-6 than 

for wild-type seedlings (Figure 2.9A). When grown on 100 nM MV, wild-type plants showed a 

severely retarded development, whereas 35S:ANAC013 seedlings developed with milder 

symptoms. When grown on 50 nM MV, the rosette area of the overexpressing plants was visibly 

larger than that of wild-type plants. The fresh biomass of 35S:ANAC013 seedlings grown for 3 

weeks on 50 or 100 nM MV was approximately 3-fold higher than that of wild-type plants 

(Figure 2.9B). Furthermore, root growth was improved in 35S:ANAC013 seedlings at both MV 

concentrations tested (Figure 2.9C). The fresh weight and root length of ANAC013-miR seedlings 

were significantly lower than that of wild-type plants in the presence of MV. Furthermore, altered 

ANAC013 expression did not change the plant growth performance in the presence of externally 

applied H2O2 (see Methods). We are currently assaying the performance of 35S:ANAC013 and 

ANAC013-miR seedlings under mitochondrial stress conditions (AA, rotenone and MFA; see 
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Methods), and obtained preliminary results showing a better performance of 35S:ANAC013 in the 

presence of rotenone (Supplemental Figure 2.5). 

 To assess whether the MV resistance of ANAC013-overexpressing plants during 

postgermination and early development occurred also when plants were treated at a later 

developmental stage, 2-week-old seedlings grown on a nylon mesh on MS medium were 

transferred to 2-μM MV-containing medium. The MV stress tolerance was monitored by 

quantification of photosystem II (PSII) maximum efficiency (Fv’/Fm’) (Baker, 2008). Young 

leaves were examined for decrease in Fv’/Fm’ as an indication of stress sensitivity, because they 

were more affected by MV treatment than the older leaves. The maximum quantum efficiency of 

PSII was similar in transgenic and wild-type plants before transfer to MV, but after 7 days and 

later, the decrease in Fv’/Fm’ of the overexpressing plants was significantly lower, implying an 

increase in MV tolerance (Supplemental Figure 2.6). Furthermore, prolonged exposure to MV (6 

weeks) was fatal to wild-type plants, whereas overexpressing plants still remained partially green. 

These results show that ANAC013 positively affects tolerance to chloroplast-initiated oxidative 

stress and that this phenotype is most pronounced during the early developmental stages. Further 

experiments are required to reveal the effect of ANAC013 on tolerance to mitochondrial stress 

conditions.  

 

 

Figure 2.9. Increased MV tolerance of ANAC013-overexpressing plants. 

(A) Three-week-old wild-type (Col-0) and ANAC013-overexpressing seedlings germinated and grown on MS 

medium supplemented with 50 or 100 nM MV.  

(B) and (C) Fresh weight (B) and primary root length (C) of 3-week-old wild-type (Col-0), ANAC013-

overexpressing (35S:ANAC013-4 and 35S:ANAC013-6, respectively), and ANAC013-miR (ANAC013-miR-3 and 

ANAC013-miR-5, respectively) seedlings germinated and grown in the presence of 50 or 100 mM MV. Data 

represent average ± SE (n = 20 to 25 plants). 

 



Chapter 2 

54 

 

ANAC013 overexpression increases sensitivity to salt and osmotic stress 

Next, we assessed whether ANAC013 is involved in abiotic stress tolerance. 35S:ANAC013 and 

ANAC013-miR plants did not display any significant phenotype under UV, high light and heat 

stress (data not shown). However, 35S:ANAC013 seedlings were more sensitive to salt stress 

when germinated and grown on 100 mM NaCl (Figure 2.10A), showing severely stunted 

development. This phenotype was not completely penetrant, but consistent with the transgene 

expression levels of the overexpression lines (Figure 2.10B; 35S:ANAC013-4, 46-fold; and 

35S:ANAC013-6, 67-fold). However, when 3-day-old control grown 35S:ANAC013 seedlings 

were exposed to salt stress, no significant effect on seedling growth was observed compared to 

the wild-type situation (data not shown), indicating that ANAC013 functions in the stress 

response during early developmental stages. Similarly, ANAC013 overexpressing seedlings 

appeared more sensitive to mild osmotic stress when germinated and grown on 25 mM mannitol. 

By visual observation, 35S:ANAC013 showed a smaller rosette area compared to wild-type 

plants. After 3 weeks of growth on mannitol, 35S:ANAC013 leaves displayed increased rolling, 

whereas the wild-type leaves maintained stretched, indicating that the overexpression plants 

suffer more from water deficit (Figure 2.10A). Under more severe osmotic stress conditions (100 

and 150 mM mannitol), no phenotype was observed for the overexpression lines when compared 

to wild-type plants (data not shown).  

 

Figure 2.10. ANAC013 overexpressing plants are more sensitive to salt and mild osmotic stress.  

(A) Wild-type and ANAC013 overexpressing plants were germinated and grown on 100 mM NaCl and 25 mM 

mannitol, and pictures were taken after 2 and 3 weeks, respectively.  

(B) Percentage of seedlings with stunted growth under salt stress (n = 128 plants for wild type and n = 64 plants for 

35S:ANAC013). The data were statistically analyzed through binary logistic regression using the SPSS software, 

taking P value < 0.05 as significant.  



Mitochondrial retrograde regulation by a transmembrane NAC transcription factor 

 

55 
 

Altered ANAC013 levels affect sensitivity to the necrotrophic fungus Botrytis cinerea 

Besides its responsiveness to abiotic stress conditions, ANAC013 is induced after infection with 

various pathogens, such as the nectrotrophic fungus Botrytic cinerea and the hemibiotrophic 

bacterium Pseudomonas syringae (Zimmermann et al., 2004). To assess whether ANAC013 is 

involved in the biotic stress response, we tested the performance of transgenic lines with altered 

ANAC013 expression during B. cinerea infection. Both independent overexpressing lines showed 

substantially increased sensitivity to the fungus, as revealed by the increased lesion size (Figure 

2.11A). A slight reduction in lesion size was observed for the ANAC013 knockdown line. 

However, these results will need to be consolidated in a repeat experiment. Moreover, further 

experiments will be necessary to elucidate whether ANAC013 also affects resistance to 

biotrophic pathogens. In addition, another member of the MDR regulon, the BCS1 gene that was 

defined as one of the most widely stress-responsive mitochondrial proteins (Van Aken et al., 

2009) is strongly induced in various biotic stress-related microarray studies, such as B. cinerea, 

Blumeria graminis, Phytophthora parasitica, and P. syringae infection and treatment with 

bacterial elicitors, such as flagellin (Flg22) and harpinZ (HrpZ), and salicylic acid (Zimmermann 

et al., 2004). Consistent with these expression data hinting at a function of BCS1 in the response 

to biotrophic pathogens, elevated BCS1 expression increased resistance to P. syringae (Van 

Aken, unpublished results; data not shown). However, similarly to ANAC013, BCS1-

overexpressing plants displayed increased susceptibility to B. cinerea (Figure 2.11B). 

 

 

Figure 2.11. Altered ANAC013 and BCS1 levels affect sensitivity to Botrytis cinerea.  

(A) Disease severity of 35:ANAC013 and miR lines at 10 days post inoculation (dpi) assessed using a disease index 

score that takes into account the spreading of the lesions. Disease index was calculated on five leaves of 3-week-old 

plants and was evaluated using four scoring categories (0, resistant; 1, slightly spreading lesion; 2, moderately 

spreading lesion; 3, severely spreading lesion). Data represent means ± SE of seven different plants. Data were  

 



Chapter 2 

56 

 

Figure 2.11. Altered ANAC013 and BCS1 levels affect sensitivity to Botrytis cinerea. (Continued). 

statistically analyzed using one-way ANOVA and Duncan multiple comparison tests, taking P value < 0.05 as 

signficant. 

(B) Disease severity of 35S:BCS1 plants at 7 dpi (n = 7 plants) (i) and pictures of representative disease symptoms 

for each genotype (ii).  

 

DISCUSSION 

 

When eukaryotic cells are exposed to environmental stresses, mitochondrial function can be 

disturbed and transmit the stress-induced signals to the nucleus to activate a transcriptional 

defense response with the aim to restore cellular function, a process often designated MMR. In 

plants, MRR has been shown to be involved in signal transduction events during biotic and 

various abiotic stresses, such as cold, oxygen deprivation, heat, and heavy metals (Lee et al., 

2002; Bailey-Serres and Chang, 2005; Rhoads et al., 2005; Keunen et al., 2011). In contrast to 

yeast and mammalian systems, signal transducing proteins and transcriptional regulators of MRR 

in plants remain largely unknown. Here, we report on the discovery of a cis-regulatory motif in 

the promoters of genes that are under MRR control and on the identification of transcription 

factors that bind to this element, hereby steering mitochondrial retrograde-induced gene 

expression. 

 

The MDM cis-regulatory element steers mitochondrial retrograde-induced gene expression  

 

To identify cellular components of the mitochondrial retrograde signal transduction pathways in 

plants, we compiled a set of genes induced in response to perturbations of mitochondrial 

function, the MDR. By selecting genes that were significantly modified under multiple MRR-

related conditions, we wanted to avoid potential off-target effects of chemical inhibitors and 

acclimation responses in stable mutants. The MDR encompasses, in addition to well-established 

general mitochondrial stress markers, such as AOX1a and UPOX (Ho et al., 2008; Schwarzländer 

et al., 2012), several other mitochondrial proteins, transmembrane transporters, UDP-

glucosyltransferase, N-acetyltransferase, cytochrome P450, steroid sulfotranferase, and three 

transcription factors (Supplemental Table 2.3). Based on the MDR coexpression under 

mitochondrial dysfunction conditions, we aimed at identifying transcription factor-binding sites 

involved in MRR via the presence of common sequence motifs in the MDR promoters and 
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discovered an unknown DNA motif. This cis-regulatory motif is necessary and sufficient for 

mitochondrial stress-responsive gene expression during inhibition of the cytochrome respiratory 

pathway and TCA cycle, during oxidative stress, and in the mitochondria-defective phb3 mutant;  

hence, its designation as the MDM. Accordingly, the MDM element is present in the 93-bp 

promoter region of AOX1a that, upon deletion and mutation impairs induction by AA and MFA 

(Dojcinovic et al., 2005). However, further experiments will be needed to elucidate whether 

MDM exclusively regulates responses to mitochondrial stress conditions or whether it is also 

mediates transcriptional responses triggered by stresses that do not involve mitochondrial events, 

but rather signals originating from other subcellular compartments. As the MDR genes (except 

for At5g09570) also respond to various chloroplast perturbations (Van Aken and Whelan, 2012), 

it would be interesting to test whether these signals are also mediated via the MDM. The 

responsiveness of MDM to various pharmacological and genetic perturbations that act on 

different mitochondrial components has also been demonstrated for other promoter elements 

responsive to mitochondrial stress provoked by rotenone and H2O2 application (Ho et al., 2008). 

Different mitochondrial perturbations act via distinct, but overlapping, pathways (Zarkovic et al., 

2005; Ng et al., unpublished results), indicating a convergence of different MRR-transducing 

events at the promoter level or, more plausibly, more upstream by provoking the production 

and/or release of (a) common signal(s) shortly after triggering mitochondrial dysfunction. A 

perturbation in mtROS homeostasis is a common component of stress conditions as consequence 

of mitochondrial damage (Prasad et al., 1994; Maxwell et al., 1999). As ROS can act as signaling 

molecules in plant stress responses, they are potential candidates for the common signals 

produced upon mitochondrial dysfunction (Gechev et al., 2006; Rhoads et al., 2006). However, 

mtROS are probably not required for all plant MRR (Gray et al., 2004). Although the strong 

MDM responsiveness to H2O2 supports ROS as early MRR signals, we cannot exclude that 

external application of H2O2 in our experiments caused mitochondrial damage and dysfunction, 

such as inhibition of the cytochrome respiratory pathway and TCA cycle components (Sweetlove 

et al., 2002), thereby initiating MRR through another unidentified mechanism. 

 The MDM consensus sequence (CTTGNNNNNCA[AC]G) is also present in the 

promoters of other Arabidopsis genes that are not responsive to mitochondrial perturbations (data 

not shown). Therefore, additional factors might be required for its specificity, such as the 

flanking sequence, position in the promoter, or location within the chromatin. In this regard, the 
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spacer and the surrounding sequence of the MDM have some degree of conservation within the 

MDR, suggesting they account for specificity. Additionally, MDM preferentially occurs within 

400 bases of the translational start site, and this positional bias was also observed for the 

genomewide conserved occurrences (data not shown). Nine of the MDR promoters also contain a 

perfect G-box/ABA-RESPONSIVE ELEMENT (ABRE) (CACGTG; data not shown), although 

not adjacent to the MDM sequence. This G-box/ABRE from the AOX1a promoter was previously 

shown to have a role in MRR upon rotenone treatment (Ho et al., 2008). 

 

Transmembrane domain containing NAC transcription factors bind the MDM 

 

We identified five closely related NAC transcription factors that interact with the MDM cis-

regulatory element. Several NAC proteins have been reported to bind the so-called NAC-binding 

site (NACBS) CGT[GA] or its reverse complement [TC]ACG (Olsen et al., 2005b; Jensen et al., 

2010; Lee et al., 2012). NAC transcription factors bind DNA as dimers with two palindromically 

oriented NACBS repeats as preferred binding site (Olsen et al., 2005b), but with some degree of 

flexibility because a NAC dimer can bind to a high-affinity NACBS with one monomer and to a 

lower-affinity (suboptimal) binding site in a nonpalindromic sequence with a second monomer 

(Welner et al., 2012). Accordingly, the MDM contains the imperfect inverted-repeat structure 

CTTGN5CA[AC]G. Moreover, the flexibility in dimer binding might explain the degeneracy of 

the identified consensus. Furthermore, our data are in agreement with the previously determined 

recognition sequence of ANAC078, sharing the MDM core sequence CA[AC]G (Yabuta et al., 

2010) but slightly diverge from a reported binding site for ANAC053 (TACG[AC]CA) in the 

AtrbohC and AtrbohE gene promoters (Lee et al., 2012). 

  The MDM binding NAC proteins belong to the subclass of putative membrane-bound 

NTL transcription factors (Kim et al., 2007, 2010b) and represent a complete phylogenetic 

subgroup (NAC2) in this NTL family. Phylogenetic analysis of all Arabidopsis NAC domains 

revealed that the sequence similarity among the isolated NTL proteins was higher than that to 

other NAC subfamilies (Ooka et al., 2003; Kim et al., 2010b), reflecting their common DNA-

binding capacities to the MDM. 
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ANAC013 regulates MMR 

 

Previous functional studies indicated that ANAC078 regulates light stress-dependent flavonoid 

biosynthesis (Morishita et al., 2009). In transgenic Arabidopsis plants overexpressing ANAC053, 

ROS production and leaf senescence was promoted during drought stress (Lee et al., 2012). We 

showed that individual overexpression of ANAC013, ANAC053, and ANAC078 (Figure 2.6A; 

Supplemental Figure 2.7), or expression of a truncated ANAC017 form devoid of the TM domain 

(Ng et al., unpublished results) constitutively activates the MDR genes, regardless of stress 

conditions, hinting at functional redundancy in the MDR regulation. However, the distinct 

spatiotemporal expression patterns of the five NTL proteins (Figure 2.4B and 2.4C; Kim et al., 

2007) most probably suggest specialized subfunctionalization. From the five MDM-binding NTL 

proteins identified, ANAC013 is strongly controlled by MRR at the transcript level, and its 

transcript profile highly resembles the expression characteristics of the MDR genes under 

mitochondrial perturbation as well as during environmental stress conditions (Figure 2.2B; 

Supplemental Figure 2.2). In the ANAC013 knockdown transgenic plants, the MDR induction is 

reduced in response to the mitochondrial complex-III inhibitor AA. However, to some degree, 

these plants could still transduce the MRR signal for MDR induction, possibly due to the residual 

ANAC013 transcript masking the knock-down readout and/or partial redundancy with respect to 

other (MDM-binding) transcription factors, such as ANAC017 (Ng et al., unpublished results). 

For example, induction of AOX1a upon AA treatment was not significantly impaired in the 

ANAC013 knockdown plants, but was strongly reduced in the ANAC017 knockout. However, the 

most drastically affected transcript in the ANAC013 overexpression and knockdown plants, 

respectively, At5g09570 was recently defined as an MRR marker gene that uniquely responds to 

mitochondrial perturbations and no chloroplast perturbations in contrast to the other MDR genes, 

including AOX1a (Van Aken and Whelan, 2012). Taken together, our results indicate that 

ANAC013 positively regulates the MDR gene expression upon mitochondrial dysfunction by 

direct interaction with the MDM cis-regulatory element and, hence, can be considered as a 

signal-transducing component of MRR. Previously, transcriptional regulation of MRR had been 

suggested to be controlled by ABI4 that had been identified as a negative regulator of basal 

AOX1a expression, thereby allowing derepression by MRR initiated through respiratory 

complex-I inhibition (Giraud et al., 2009). To our knowledge, ANAC013, together with 
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ANAC017 (Ng et al., unpublished results), are the first identified transcriptional activators of 

MRR in plants. 

 Transmembrane transcription factors are anchored to intracellular membranes, from 

which they are, in response to various stresses released via proteolysis and subsequently 

translocated to the nucleus, allowing a prompt activation of the downstream transcriptional 

responses (Kim et al., 2007; Seo et al., 2008). Transient expression of GFP-tagged ANAC013 

suggests that ANAC013 is localized in the ER under nonstressed conditions (Figure 2.8). The ER 

represents a dynamical network throughout the cell, that is continuously rearranged, and 

physically associates at some points with the mitochondria, allowing local communication 

between the two organelles (Hayashi et al., 2009). This physical interaction could facilitate the 

proteolytic activation of ANAC013 by mitochondrial signals, such as ROS or calcium that have 

previously been implicated in MRR (Rhoads and Subbaiah, 2007; Vanderauwera et al., 2012). 

Moreover, ANAC013 is seemingly strongly regulated at the gene transcription level by 

mitochondrial perturbations, as revealed by its early and strong responsiveness and its very low 

expression levels in the absence of stress. In addition, DNA binding and gain-of-function studies 

(Figure 2.7) indicate that a potential posttranslational ANAC013 activation can initiate a positive 

feedback loop, autoamplifying its own transcription and driving the expression of its target genes. 

Moreover, ANAC017 and ANAC053 also contain the MDM cis-regulatory element in their 

promoter, indicative of regulatory interactions with other NTL proteins that are also involved in 

MRR regulation (Ng et al., unpublished results). 

 In accordance with the MRR function in stress signal transduction, overexpression of 

ANAC013 leads to a stress phenotype in transgenic Arabidopsis plants (Figure 2.9, 2.10 and 

2.11). The tolerance of ANAC013-overexpressing lines to MV-induced oxidative stress was 

enhanced (Figure 2.9), most probably due to the constitutive production of MDR proteins, among 

which AOX1a. The AOX1a function is best studied with respect to mitochondria-initiated 

oxidative stress responses (Maxwell et al., 1999; Umbach et al., 2005), but is not limited to 

mitochondrial stress responses as evidenced by its importance in chloroplast protection during 

oxidative stress-promoting conditions (Yoshida et al., 2007; Giraud et al., 2008). To reveal 

whether MV tolerance of ANAC013 overexpression lines could be attributed to increased AOX1a 

levels, AOX1a overexpression and knockout lines will be analyzed under MV stress conditions. 

Furthermore, the MDR is enriched for members of multigene families associated with 
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detoxification pathways (cytochrome P450 monooxygenase, N-acetyltransferase, 

glycosyltransferase, ATP-binding cassette [ABC] and multi antimicrobial extrusion protein 

transporters) (Manabe et al., 2007), together with two mitochondrial proteins (HSP23.5 and 

MITOCHONDRIAL GRPE1 [MGE1]) that might have chaperone-like activities (Visioli et al., 

1997; Hu et al., 2012). Other Arabidopsis genes that contain evolutionarily conserved MDM 

instances are also enriched for components of the alternative respiratory chain, proteins involved 

in multidrug/xenobiotic transport, mitochondrial HSPs and subunits of the 20S proteasome 

(Supplemental Tables 4 and 6). The potential involvement of the MDM in proteasome regulation 

is consistent with a previous report on ANAC078 regulating 20S and 26S proteasome levels 

(Yabuta et al., 2011). Thus, from these data and previous observations, we suggest that 

ANAC013 and the MDR integrate oxidative stress responses, xenobiotic stress resistance, and 

protein quality control. This coordinated response presumably allows the cell to prevent ROS 

formation, inactivate and eliminate the offending agent or toxic byproducts, and rapidly control 

and repair the damage under adverse conditions. On the other hand, ANAC013-overexpressing 

plants are more sensitive to the necrotrophic fungus B. cinerea (Figure 2.11). This could 

potentially be explained by the importance of ROS production in the mitochondria during 

pathogen attack, consistent with a previous report on the increased disease susceptibility of a 

mitochondrial mtETC mutant due to lowered mtROS production (Gleason et al., 2011). 

Mitochondrial ROS may contribute to plant defense by either directly acting against the pathogen 

or by acting as a signaling molecule in plant defenses (Amirsadeghi et al., 2007).  

 In yeast, a highly interconnected transcriptional network links the oxidative stress, 

multidrug resistance, protein degradation, and protein folding responses through the coordinated 

action of several transcription factors (Salin et al., 2008; Teixeira et al., 2008). Interestingly, one 

of them (Pleiotropic Drug Resistance Protein 3 [Pdr3]) is involved in a MRR response in which 

mitochondrial dysfunction triggers the expression of an ABC transporter involved in multidrug 

resistance (Hallstrom and Moye-Rowley, 2000; Traven et al., 2001; Devaux et al., 2002). 

Similarly to yeast, multidrug resistance transporter, mitochondrial chaperone, and oxidative stress 

genes are induced by mitochondrial dysfunction in mammalian cells (Martinus et al., 1996;  Park 

et al., 2004; Ferraresi et al., 2008), indicating that this process is conserved in eukaryotes. 

Furthermore, the basic leucine zipper (bZIP) transcription factor AP-1-like transcription factor 1 

(Yap1), which is a central node in the above-mentioned stress transcriptional network in yeast, is 
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redox-activated by the glutathione peroxidase 3 (Gpx3) in response to elevated H2O2 levels and 

xenobiotics (Delaunay et al., 2002; Azevedo et al., 2003). Although plants lack orthologs of 

Yap1-like transcription factors, a previously reported ANAC013-interacting protein, RADICAL-

INDUCED CELL DEATH1 (RCD1), was hypothesized to be the plant equivalent of Yap1 (Miao 

et al., 2006; Jaspers et al., 2009). RCD1 complemented the oxidative stress-sensitive phenotype 

of the Yap1-deficient yeast strain and interacted with the Arabidopsis GPX3 protein that 

functions in H2O2 sensing and signal transduction (Belles-Boix et al., 2000; Miao et al., 2006). A 

similar redox-sensing regulatory system in mammals contains the bZIP transcription factor 

Nuclear factor erythroid 2-Related Factor 2 (Nrf2) that mediates oxidative and xenobiotic stress 

responses (Kobayashi and Yamamoto, 2006). Unlike Yap1, Nrf2 does not directly senses the 

stress, but is activated by redox regulation of its interaction partner Kelch-like epichlorohydrin-

associated protein 1 (Keap1) (Itoh et al., 1999). Under unstressed conditions, Keap1 negatively 

regulates Nrf2 by proteosomal degradation and cytoplasmic sequestration, but, upon stimulation 

by oxidative or chemical stresses, Keap1 releases Nrf2 to escape proteosomal degradation and 

translocate to the nucleus (Kang et al., 2004; Kobayashi et al., 2004). Nrf2 induction and nuclear 

translocation have also been shown in response to an inhibitor of specific mitochondrial proteins 

(such as HSPs, and aconitase and α-ketoglutarate dehydrogenase of the TCA cycle), although this 

activation probably does not involve increased ROS levels, but rather ER stress signaling induced 

by dysfunctional mitochondria (Ho et al., 2005). Taking the above described similarities in yeast, 

plants, and mammals into account, we can hypothesize that the Arabidopsis MDR might be 

functionally equivalent to the above-mentioned yeast and mammalian oxidative and xenobiotic 

stress responses.  

 Besides its association with RCD1, ANAC013 also interacts with another member of the 

SIMILAR TO RCD-ONE (SRO) family, SRO5 (Jaspers et al., 2009). Interestingly, SRO5 has 

been suggested to function in mitochondria-nucleus communication, based on its reported 

localization in mitochondria or nucleus (Borsani et al., 2005; Jaspers et al., 2010). The interaction 

of RCD1 and SRO5 with transcription factors through the conserved RCD-SRO-TATA box 

binding protein (TBP)-associated factor 4 (TAF4) domain implies a role in the regulation of the 

transcription factor activity (Jaspers et al., 2009, 2010). As RCD1 is localized in the nucleus 

under nonstressed conditions and rcd1 mutants exhibit an elevated expression of ANAC013 

target genes, RCD1 might negatively affect the ANAC013 function in the nucleus in the absence 
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of stress (Jaspers et al., 2009). Similarly, RCD1 negatively regulates the stability of the 

DEHYDRATION-RESPONSE ELEMENT-BINDING PROTEIN 2A (DREB2A) transcription 

factor, but is rapidly degraded upon stress, promoting the proper DREB2A function under these 

conditions (Vainonen et al., 2012). Similar to ANAC013-overexpressing plants, rcd1 mutants 

display an increased MV tolerance and salt stress susceptibility (Fujibe et al., 2004; Katiyar-

Agarwal et al., 2006). RCD1 has also been reported to be necessary for proper meristem function, 

presumably by controlling the redox/ROS balance (Teotia and Lamb, 2011). ANAC013 and MDR 

genes are predominantly expressed in meristematic tissues (Skirycz et al., 2010) and the stress 

phenotype of ANAC013-overexpressing plants is the most pronounced when plants are stressed 

during early seedling development (Figure 2.9 and 2.10), suggesting that ANAC013 is important 

for the stress response in young tissues. Accordingly, maintenance of an optimal mitochondrial 

function has been postulated to be required for proper meristem development under stress 

conditions (Skirycz et al., 2010; Van Aken et al., 2010; Addendum), because energy is required 

by dividing cells and ROS can damage the mitochondrial function. 

 

METHODS 

 

Microarray analysis, motif detection, and evolutionary conservation analysis 

 

For the meta-analysis of the transcriptome data of the MRR compendium, raw CEL files 

(http://www.ncbi.nlm.nih.gov/geo/) were preprocessed per data set in Bioconductor 

(http://www.bioconductor.org/), comprising normalization by Robust Multi-array Average 

(RMA) with a custom Computer Document Format (CDF) based on The Arabidopsis Information 

Resource (TAIR10) and provided by Brainarray (TAIR10 genes –v14; 

brainarray.mbni.med.umich.edu). Differential gene expression was analyzed by the limma 

package, P values were adjusted for multiple hypothesis testing by the false discovery rate and 

the significance cut-off was stringently set at a corrected P value <0.01 and a log2-fold change 

>1. Genes that were up-regulated in five or more conditions, were hierarchically clustered after 

gene centering and scaling of the log2 expression ratios, with Euclidian distance as distance 

measure and average linkage. For the meta-analysis of the biotic and abiotic stress compendium, 
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the raw CEL files were obtained from the stress data set in CORNET (De Bodt et al., 2012) and 

preprocessed together in Bioconductor and clustered as described above.  

 For the de novo motif discovery, Multiple Expection-Maximization for Motif Elicitation 

(MEME) version 4.8.1 (Bailey and Elkan, 1994), Amadeus (Linhart et al., 2008) and the 

Regulatory Sequence Analysis Tools (RSAT)-spaced dyad tool (Thomas-Chollier et al., 2011) 

were used with default parameter settings. The MDM consensus CTTGNNNNNCA[AC]G was 

commonly identified by the three algorithms. MDM matches in the promoters of the input genes 

were defined based on the MEME output that provided motif occurrences significantly similar to 

the identified position weight matrix T[CGA]CTTG[GA][AC]GA[GAC]CAAG and, 

additionally, by mapping of the consensus sequence by means of DNA pattern (Thomas-Chollier 

et al., 2011). The position weight matrix of all MDM matches in the MDR promoters 

(Supplemental Table 2.2) was visualized by generating a sequence logo by means of WebLogo 3 

(http://weblogo.berkeley.edu/) (Crooks et al., 2004). 

 To evaluate the evolutionary conservation of an individual motif instance, for each 

Arabidopsis gene the orthologous genes from six other dicot species: A. lyrata, papaya (Carica 

papaya), soybean (Glycine max), apple tree (Malus domestica), black cottonwood (Populus 

trichocarpa), and common grape vine (Vitis vinifera) were retrieved with the PLAZA 2.0 

Integrative Orthology method that combines orthology information from phylogenetic trees, 

OrthoMCL families, and Best-Hits-and-Inparalogs families (Van Bel et al., 2012). Integrative 

orthologous genes supported by at least one orthology prediction method were retained for the 

conservation analysis. Based on the 1-kb orthologous upstream intergenic sequences, a test motif 

was mapped with DNA pattern (Thomas-Chollier et al., 2011) and the number of conserved motif 

matches was determined for each Arabidopsis gene (and its orthologs). Finally, the significance 

of the observed motif conservation per Arabidopsis gene was tested by random sampling of 1,000 

nonorthologous gene sets, maintaining the gene and species composition as observed in the real 

orthologous data set, and scoring the number of random gene sets with a similar or improved 

motif conservation level. As A. lyrata is closely related to A. thaliana, only genes with conserved 

motif matches in at least two other species (not including A. lyrata) and conservation P value 

<0.05 were defined as significant evolutionarily conserved. Gene Ontology (GO) enrichment was 

analyzed with the PLAZA Workbench (Van Bel et al., 2012). 
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Plant growth conditions and stress treatments 

 

Arabidopsis thaliana (L.) Heyhn. plants were grown on half-strength (½) MS medium (Duchefa) 

supplemented with 1% (w/v) sucrose, 0.75% (w/v) agar, and B5 vitamins, pH 5.7 at 21°C and 

100 μE m
-2

 s
-1

 light intensity in a 16-h/8-h light/dark photoperiod. Unless stated otherwise, 

seedlings were grown for 2 weeks until stage 1.04 (Boyes et al., 2001). For the AA induction 

experiments, seedlings were sprayed with 50 μM AA (Sigma-Aldrich) (with 0.1% (v/v) dimethyl 

sulfoxide (DMSO)) containing 0.01% (v/v) Tween 20, or with 0.1% (v/v) DMSO containing 

0.01% (v/v) Tween 20 (mock). For AA stress assays, plants were germinated and grown on ½MS 

medium supplemented with 10, 50 or 100 μM AA or grown for 2 weeks on standard ½MS, and 

subsequently sprayed with 50 μM AA. For rotenone and MFA stress assays, plants were grown 

on 10 and 50 μM rotenone or on 10 mM MFA, respectively. For the H2O2 stress assays, plants 

were germinated and grown on 1, 2, 4, and 8 mM H2O2 (Merck) or on 1, 2, 4, and 8 μM of 3-

amino-1,2,4-triazole (3-AT) (Acros Organics). The maximum efficiency of the PSII 

photochemistry (F’v/F’m) was determined with a PAM-2000 chlorophyll fluorometer and 

ImagingWin software application (Walz; Effeltrich, Germany) on light-adapted plants. Two or 

more independent experiments were carried out for all stress assays. 

 

Generation of transgenic Arabidopsis plants 

 

Overexpressing plants were generated by cloning the open reading frame of ANAC013, 

ANAC053, and ANAC078 into pK7WG2D (Supplemental Table 2.7) (Karimi et al., 2002). To 

generate artificial miR plants, ANAC013-specific sequences were identified with the Web 

MicroRNA Designer (WMD) (www.weigelworld.org). The miR precursors were constructed 

according to Schwab et al. (2006) and cloned into pK7WG2D. Constructs were transformed into 

Arabidopsis Columbia-0 (Col-0) by Agrobacterium-mediated floral dipping (Clough and Bent, 

1998).   
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Promoter-LUC constructs 

 

The 1.5-kb upstream region from the translational start site of AOX1a and UGT74E2 was cloned 

into the pDONRP4-P1r vector (Invitrogen). The MDM sequence was deleted according to the 

PCR-fusion/Gateway cloning procedure (Atanassov et al., 2009) (Supplemental Table 2.7). 

Promoter-LUC fusion constructs were created by recombining the above promoter plasmids with 

pEN-L1-LUC+-L2 into the destination vector pB7m24GW by means of the MultiSite Gateway 

technology (Invitrogen) (Karimi et al., 2005). 

 The artificial promoter constructs were synthesized by DNA2.0, provided in a pJ244 

vector backbone (6xP-AOX1a[-377,-328] and 6xMDM1[AOX1a]) or as an oligonucleotide 

(Invitrogen) (6xMDM1mut[AOX1a]), annealed by heating followed by gradual cooling, and 

subsequently cloned into pDONRP4-P1r. The -46 bp CaMV 35S minimal promoter (P35Smin) 

was synthesized as an oligonucleotide (Invitrogen) and subsequently cloned into pDONR221 and 

pDONRP4-P2. Promoter-LUC constructs were created by recombining the synthetic promoter 

plasmids (pEN-L4-promoter-R1), pEN-L1-P35Smin-L2, and pEN-R2-LUC
+
-L3 into the multisite 

destination vector pB7m34GW. The P35Smin:LUC reporter construct was generated by 

recombining pEN-L4-P35Smin-L2 and pEN-R2-LUC
+
-L3 into pB7m34GW (Karimi et al., 

2005).  

 

LUC assay 

 

Plants were grown for 10 days in a 96-well white CulturPlate-96 (PerkinElmer) as sample holder. 

Five seedlings were grown per well containing 150 μL of medium (½MS with 0.5% (w/v) 

sucrose). The promoter activity was detected in the T2 generation of promoter-LUC mutants. As 

stress treatments, AA (Sigma-Aldrich) was added at a final concentration of 50 μM (0.1% (v/v) 

DMSO), rotenone (Sigma-Aldrich) at 100 μM (0.1% (v/v) DMSO), MFA (Sigma-Aldrich) at 25 

mM, or H2O2 at 10 mM. Control plants were mock-treated with 0.1% (v/v) DMSO. After 12 or 

24 h of treatment, 100 μL luciferin (One Glo; Promega) was added to each well, followed by a 

10-min dark incubation. Luminescence was measured with a LUMIstar Galaxy luminometer 

(BMG labtechnologies, Offenburg, Germany). 
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Y1H screening 

 

Yeast strain YM4271 and destination vector pMW#2 were obtained from Dr. M. Walhout 

(University of Massachusetts Medical School, Worcester, MA, USA). Design of the yeast 

reporter strains and cDNA library screening were done as described (Deplancke et al., 2006). 

From the approximately 6x10
6
 screened transformants obtained from three independent cDNA 

library transformation experiments, 106 potential positives were selected to confirm their growth 

on 20 mM 3-AT. From the positive yeast clones, plasmids were isolated and retransformed in the 

reporter yeast strain for growth confirmation on 20 mM 3-AT. The pYESTrp2 empty vector 

containing only the transactivation domain was used as a negative control. 

 

Chromatin immunoprecipitation 

 

The ChIP experiments were done as described (Bowler et al., 2004; Berckmans et al., 2011) with 

minor modifications. 35S:GFP-ANAC013 plants were grown for 8 days and 1.5 g material of 

whole seedlings was harvested for crosslinking in 1% (v/v) formaldehyde. Chromatin was 

isolated and fragmented by sonication with a Bioruptor sonicator (Diagenode). The chromatin 

was precleared with 80 μl of Protein A Agarose/Salmon Sperm DNA (Millipore). Ten μL was 

used as INPUT, whereas the remainder was split into three samples, of which two were treated 

with 30 μL of anti-GFP antibody coupled to agarose beads (GFP-Trap_A; Chromotek) and the 

third one with no antibody. The samples were incubated overnight at 4°C and subsequently 

eluted from the beads. Proteins were de-cross-linked and DNA was purified by 

phenol/chloroform/isoamyl alcohol extraction and ethanol precipitation. qPCRs were analyzed on 

a LightCycler 480 apparatus (Roche Diagnostics) with the SYBR Green I Master kit (Roche 

Diagnostics) and each reaction was done in triplicate. ACTIN2, CDKA;1 and UBQ10 were used 

as negative controls. ChIP-qPCR data were normalized against the amount of chromatin used in 

the ChIP (INPUT) and were represented as %INPUT. For the quantitative PCR analysis, specific 

primers were designed for the MDM-containing promoter regions by means of primer-BLAST at 

the NCBI website (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Rozen and Skaletsky, 2000) 

and tested for amplification specificity by melt-curve analysis before use (see Supplemental 
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Table 2.7 online). Data were obtained from single experiments, but similar data were obtained in 

independent runs and with independent 35S:GFP-ANAC013 lines. 

 

Electrophoretic mobility shift assays 

Oligonucleotide probes of 30 to 50 bp (Supplemental Table 2.5) with wild-type or mutated MDM 

promoter sequences were annealed by heating at 99°C, followed by gradual cooling. Annealed 

probes were radiolabeled with 
32

P γ-ATP (PerkinElmer) and polynucleotide kinase (Roche) and 

purified with Sephadex G-25-radiolabeled DNA Quick Spin columns (Roche). ANAC013, 

ANAC016, ANAC017, ANAC053, and ANAC078 were cloned into the GST-tag expression vector 

pDEST15 (Invitrogen) and transformed into Escherichia coli Rosetta 2 (DE3) pLysS-competent 

expression cells. Proteins were produced in 500 mL of culture overnight with 0.2 mM isopropyl-

β-D-thio-galactoside at 18°C and shaking at 250 rpm. Cells were harvested, resuspended in 

extraction buffer (5× extraction buffer: 250 mM Tris-HCl (pH 8.5), 500 mM NaCl, 5 mM EDTA, 

1 mM dithiothreitol), and lysed by digestion with 1 mg/mL lysozyme and sonication. Lysate was 

clarified by centrifugation at 16,000×g for 20 min. The filtered lysate was incubated with 

glutathione-agarose beads for 1 h at 4°C (ThermoFisher) and washed with 10 volumes of 

extraction buffer containing the Complete EDTA-free protease inhibitor cocktail (Roche). 

Purified proteins were eluted with the extraction buffer containing 10 mM reduced glutathione. 

For gel shift assays, 20-μL reactions were setup with 4 μL 5× binding buffer (100 mM HEPES 

(pH 7.8), 0.5 M KCl, 5 mM MgCl2, 2.5 mM dithiothreitol, 5 mM EDTA, 0.25 mg/mL poly dI-

dC, 50% (v/v) glycerol), 1 fmol radiolabeled probe, 500 fmol unlabeled probe for competitor 

reactions, and 1.5 μg purified protein extract. Reactions were incubated for 20 min and separated 

on polyacrylamide gels (0.5× Tris/Borate/EDTA, 2.5% (v/v) glycerol, and 6 % (w/v) acrylamide) 

for 2 h at 200 V on a 16×20 cm
2
 Protean II gel system (Bio-Rad). Gels were dried on Whatman 

paper in a gel dryer, exposed overnight (or longer), and visualized with PhosphorImager 

detection plates. 

Quantitative reverse-transcription (qRT)-PCR 

 

Total RNA and first-strand cDNA were prepared with TRIzol Reagent (Invitrogen) and iScript 

cDNA Synthesis Kit (Bio-Rad), respectively according to the manufacturer’s instructions. As a 
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template in the subsequent PCR, 5 μL of a 1:8 diluted first-strand cDNA was run on the iCycler 

iQ (Bio-Rad) with the SYBR Green I Master kit (Roche Diagnostics) according to the 

manufacturer’s instructions. All individual reactions were done in triplicate. Primers were 

designed with the Universal ProbeLibrary Assay Design center ProbeFinder software (Roche; 

http://www.roche-applied-science.com/; Supplemental Table 2.7). For the expression analysis, 

values were normalized against ACTIN-RELATED PROTEIN 7 (ARP7), whereas two reference 

genes, ARP7 and At2g28390 (Czechowski et al., 2005), were used to normalize data from the 

ANAC013-miR experiments. The Δ cycle threshold method (Livak and Schmittgen, 2001) was 

applied for relative quantification of transcripts. 

 

Nanostring nCounter assays 

The raw nCounter data were rescaled by dividing each experiment by two factors: (i) the sum of 

the positive controls per experiment divided by the median of the sums of the positive controls 

over all experiments to correct for technical errors and (ii) the geometric mean of at least three 

stable household genes, selected by geNorm (Vandesompele et al., 2002), per experiment divided 

by the total geometric mean of these four household genes over all experiments to correct for 

differences in mRNA content of the samples. Transcripts differentially expressed between wild 

type and 35S:ANAC013-6 were identified through the DESeq package in R (Anders and Huber, 

2010), feeding the raw nCounter data and writing the above rescaling factors in the sizeFactors 

slot of the package. 

 

Promoter-GUS analysis 

The 1.5-kb upstream region of the translational start site of ANAC013 was amplified by PCR 

from Arabidopsis Col-0 genomic DNA with primers (Supplemental Table 2.7) and cloned into 

pBGWFS7 (Karimi et al., 2002), generating an in-frame GFP-GUS fusion. The construct was 

transformed into Arabidopsis wild-type (Col-0) and 35S:ANAC013-6 plants and GUS assays 

were performed as described (Beeckman and Engler, 1994). Samples were photographed with a 

stereomicroscope (Stemi SV11; Zeiss) or with a Nomarski differential interference contrast 

microscope (Olympus BX51; Leica). 
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UPOX antibody production 

For antibodies against UPOX, the full-length cDNA was cloned into pDEST15 with the Gateway 

technology (Invitrogen). GST-tagged recombinant proteins were expressed in BL21 (DE3) pLys 

cells. Proteins were purified with GST-Sepharose (Scientifix) and inoculated in rabbits with 

Freund’s Adjuvant according to the standard protocol (Cooper and Paterson, 2008). 

Protein gel blots 

For the ANAC013 processing analysis, total protein extracts were prepared from 35S:GFP-

ANAC013 seedlings by grinding leaf material in extraction buffer (phosphate buffered saline, 1% 

(v/v) Nonidet 40, 0.5% (w/v) deoxycholate, 0.1% (w/v) sodium dodecyl sulfate (SDS), 10% (v/v) 

glycerol), and a protease inhibitor cocktail (Complete, EDTA-free; Roche). Insoluble debris was 

removed by centrifugation at 20,800×g for 15 min at 4°C. Proteins (30 μg) were separated by 

10% SDS-polyacrylamide gel electrophoresis (PAGE), transferred to a polyvinylidene fluoride 

(PVDF) membrane (Immobilon P; Millipore), and immunodetected with anti-GFP monoclonal 

antibody (Clontech Laboratories) and Western Lightning Plus enhanced chemiluminescence 

(PerkinElmer). 

 For the analysis of AOX1a and UPOX protein levels, mitochondria were isolated as 

described previously (Lister et al., 2007) from wild-type, 35S:ANAC013-6, and ANAC013-miR 

seedlings that had been treated with 50 μM AA or mock-treated for 6 h. Twenty and 40 μg of 

purified mitochondria were separated on a 16% SDS-PAGE gel, transferred to Hybond-C extra 

nitrocellulose membranes (GE-Healthcare), and immunodetected with antibodies raised against 

AOX (Elthon et al., 1989), TOM40 (Carrie et al., 2009) and UPOX with the BM 

Chemiluminescence Western Blotting Kit (Roche) and visualized with the Image Quant RT ECL 

Imager (GE Healthcare). The band intensity was quantitated with Quantitiy One (Bio-Rad) 

imaging software with the pixel density set to 100 for the highest band detected and that of the 

remaining bands relative to it. The average and standard error of band intensities were calculated 

from three biological repeat experiments.  
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Determination of subcellular localization 

The localization in tobacco (Nicotiana benthamiana) was analyzed as described (Inzé et al., 

2012). For the localization analyses in epidermal cells of onion (Allium cepa), the full-length 

open reading frame (ORF), the ORF minus the TM domain, and isolated TM domain of 

ANAC013 was cloned in-frame with GFP by Gateway cloning (Invitrogen) as described (Carrie 

et al., 2009) (Supplemental Table 2.7). Constructs were transiently transformed into onion 

epidermal cells by biolistic transformation as described (Carrie et al., 2007). In addition to the 

GFP constructs, a series of organelle markers were employed, including an ER-targeted red 

fluorescent protein (RFP), a mitochondria-targeted mCherry, and a peroxisome-targeted RFP 

(Nelson et al., 2007). The fluorescent proteins were visualized with an BX61 fluorescence 

microscope (Olympus) with excitation wavelengths of 460/480 nm for GFP and 535/555 nm for 

RFP, whereas emission wavelengths were measured at 495/540 nm for GFP and 570/625 nm for 

RFP. Micrographs were captured and processed with the Cell imaging software as described 

(Carrie et al., 2007). 

Botrytis cinerea infections and disease scoring 

Botrytis cinerea strain Arabidopsis was grown on potato dextrose agar (PDA) for 10 days. On the 

day of infection, spores were washed from the plate with distilled water containing 0.01% 

Tween20. After filtration over nylon and centrifugation, spores were contained and the 

inoculation solution containing 5x10
5
 in ½ potato dextrose broth (PDB) was prepared. 

Arabidopsis plants were grown in vitro for 2 weeks on ½MS under long day conditions and 

subsequently transferred to soil and grown till the stage just before flowering. Four leaves per 

plant were infected by the drop (10 μL) inoculation method. Infected plants were kept at high 

humidity by means of transparent containers containing a bottom of water. Growth conditions 

during infection consisted of long day conditions and at room temperature. Symptoms were 

evaluated per plant at 7 days post inoculation (dpi) by calculating a disease index with four 

different scores (0, non-spreading lesion; 1, slightly spreading lesion; 2, moderately spreading 

lesion; 3, severely spreading lesion) using the formula [(0 × a) + (1 × b) + (2 × c) + (3 × d)/(a + b 

+ c + d)] × 100/3 where a, b, c, and d are the number of leaves examined with scores 0, 1, 2, and 

3, respectively (Curvers et al., 2010). For each transgenic line, leaves of 7 plants were scored (n = 
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7).  Data were statistically analyzed using one-way ANOVA and Duncan multiple comparison 

tests with the SPSS software. 

 

Accession Numbers 

 

Sequence data from this article can be found in the Arabidopsis Genome Initiative or 

GenBank/EMBL databases under the following accession numbers: ANAC013, At1g32870; 

ANAC016, At1g34180; ANAC017, At1g34190; ANAC053, At3g10500; ANAC078, 

At5g04410; PHB3, At5g40770; ABCB4, At2g47000; AOX1a, At3g22370; CRF6, At3g61630; 

CYP81D8, At4g37370; HRE2, At2g47520; HSP23.5, At5g51440; ST, At1g32870; UGT74E2, 

At1g05680; UPOX, At2g21640; MGE1, At5g55200; ACT2, At3g18780; CDKA;1, At3g48750; 

UBQ10, At4g05320; TOM40, At3g2000; GPX3, At2g43350; RCD1, At1g32230; SRO5, 

At5g62520; and DREB2A, AT5G05410. 
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SUPPLEMENTAL DATA 

 

 

Supplemental Figure 2.1. Binding of NAC 

transcription factors with the MDM in vitro as 

shown by electrophoretic mobility shift assays.  

Purified NAC-GST proteins interact with 

radioactively-labeled probes of promoter regions 

of UGT74E2, UPOX, AOX1a, At5g09570 and 

At2G04050 containing the MDM element. 

Interactions were abolished in the presence of 

excess unlabeled competitor probes or when the 

MDM sequence was mutated. 
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Supplemental Figure 2.2. Hierarchical clustering of the MRR up-regulated genes in the stress data set of CORNET, 

a compilation of biotic and abiotic stress conditions. Color codes in the heat map represent the actual log2-fold 

changes in treated plants relative to untreated plants. Conditions are indicated with a color code: cold (blue), heat 

(red), salt and osmotic (orange), drought (yellow), light and oxidative (white), chemical (purple), nutrient deprivation 

(brown), mechanical (black), pathogen (green), and other stresses and control conditions (white). The MDR genes 

containing the cis-regulatory MDM in their 1-kb upstream sequence are indicated with a green bar.  

(A) Heatmap showing all selected stress conditions.  

(B) Enlargement of a part of the heat map, indicated by a rectangle in panel A, containing the conditions under which 

the MDR genes are highly up-regulated and co-expressed. 
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Supplemental Figure 2.3. Schematic overview of the amplicons used in ChIP-qPCR analyses. The MDM (black 

box) and the amplicons used in ChIP analyses (purple box) are displayed in the 1-kb upstream intergenic regions of 

the MDR genes. 
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Supplemental Figure 2.4. Increase in AOX1a and UPOX protein abundance by ANAC013 overexpression.  

(A) Protein gel blot analysis of isolated mitochondria from wild-type (WT), 35S:ANAC013-6, and ANAC013-miR 

plants exposed to AA or mock-treated for 6 h. Mitochondrial proteins were detected with antibodies raised against 

AOX and UPOX, and against TRANSLOCASE OF THE OUTER MITOCHONDRIAL MEMBRANE 40 (TOM40) 

to show equal protein loading between the samples.  

(B) Quantified protein abundance. Bars represent average band intensities of three biological repeat experiments ± 

SE (Student’s t test; * P<0.05, ** P<0.01, and *** P<0.001). 
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Supplemental Figure 2.5. Phenotype of ANAC013-overexpressing plants in the presence of the mitochondrial 

complex I inhibitor, rotenone. Three-week-old wild-type (WT) and ANAC013-overexpressing seedlings germinated 

and grown on MS medium supplemented with or without 10 μM rotenone.  

 

 

 

 

 

Supplemental Figure 2.6. Increased photosynthetic performance of ANAC013-overexpressing plants after exposure 

to MV-mediated oxidative stress.  

(A) Maximum quantum efficiency of PSII (F’v/F’m) in leaves (left) and photos (right) of wild-type (Col-0) and 

35S:ANAC013 plants at different time points after transfer to 2 μM MV. The youngest leaves are the most affected 

by MV compared to the older leaves (arrows). d, days.  

(B) Quantification of F’v/F’m of youngest leaves in wild-type and 35S:ANAC013 plants. Data indicate average ± SE 

(n = 5 plants for 35S:ANAC013, n = 10 plants for Col-0). 
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Supplemental Figure 2.7. MDR gene expression regulated by ANAC053 and ANAC078 in Arabidopsis. 

(A) Accumulation of MDR transcripts in (weak; 4-fold) ANAC053-overexpressing (35S:ANAC053) plants. 

Transcript abundance was analyzed with the Nanostring nCounter system, except for four genes (indicated with 

asterisk) for which the probes were not present on the CodSet and, hence, were analyzed with qRT-PCR. Bars 

represent average fold changes relative to wild-type plants from three biological replicates (± SE).  

(B) Accumulation of MDR transcripts in ANAC078-overexpressing (35S:ANAC078; 57-fold) lines. Transcript 

abundance was analyzed with qRT-PCR. Bars represent average fold changes relative to wild-type plants ± SE (n = 2 

biological replicates). 
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Supplemental Table 2.1. Overview of MRR microarray data sets used in the meta-analysis 

[1], Clifton et al. (2005); [2], Van Aken et al. (2007); [3], Shedge et al. (2010); [4], Kühn et al. (2009); [5], Wang et 

al. (2012); [6], Kühn et al. (2011); [7], Meyer et al. (2009); [8], Giraud et al. (2008); [9], NCBI GEO database 

(Edgar et al., 2002), accession GSE4113; [10], Carrie et al. (2010); [11], Gleason et al.  (2011).  
 
Experiment Mitochondrial target Treatment Mutation Upa Downb Refer

ence 

Rotenone Inhibition of complex I 40 μM rotenone (3 h) - 430 391 [1] 

       

Oligomycin Inhibition ATP-synthase 0.125 μM oligomycin 

(3 h) 

- 677 

 

551 [1] 

  1.25 μM oligomycin 

(3 h) 

- 551 438  

       

Prohibitin Loss or overexpression of 

prohibitin 

- phb3 141 112 [2] 

 - phb4 2 0  

 - 35S:PHB3 17 50  

 - 35S:PHB4 22 2  

       

MSH1 and RECA3 Mitochondrial genome 

rearrangement 

- msh1 recA3 34 1 [3] 

       

RPOTmp Loss of mitochondrial 

RNA polymerase 

- rpoTmp-1 22 36 [4] 

rpoTmp-2 67 136 

       

TIM23-2 Loss or overexpression of 

translocase of the inner 

membrane subunit 23-2 

- tim23-2 3 0 [5] 

 - 35S:TIM23-2 70 26  

       

RUG3  Inhibition of complex I 

biogenesis 

- rug3-1 87 24 [6] 

rug3-2 214 111 

       

NDUFA1 and NDUFS4 Loss of complex I - ndufa1  98 48 [7] 

ndufs4 2 0 

       

AOX1a(1) Loss of alternative oxidase - aox1a-1  0 0 [8] 

aox1a-2  0 0 

       

AOX1a(2) Loss or overexpression of 

alternative oxidase 

 35S:AOX1a 

aox1a-3 

0 0 [9] 

       

MIA40 Loss of mitochondrial 

intermembrane assembly 

40 

 

- mia40 0 0 [10] 

       

DSR1 Loss of complex II 

subunit succinate 

dehydrogenase 1-1 

(SDH1-1) 

 

1 mM salicylic acid 

(40 minutes) 

dsr1 181 271 [11] 

a Total number of significantly (log2-fold >1; P < 0.01) up-regulated genes. 
b Total number of significantly (log2-fold <1; P < 0.01) down-regulated genes. 
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Supplemental Table 2.2. Presence ofthe MOM in the MDR gene set and its conservation in ortho logous genes of related dicot species. 

Conservation 

Gene Start• En db Strandc Sequence (5'-3')d Sequence P value Speciess 

ATIG05060 -151 - 139 - aacCTTGgagatCAAGgtt CTTGNNNNNCA(ACJG <0.001 *** Pt, Vv, Gm, Al 

-241 -229 + caaCTTGtcaag&AAGtaa 

-555 -543 + ggaCTTGgaagaCAAAagg 
UGT74E2 -1 86 -174 + catCTTGgtcgcCACGgaa CTTGNNNNNCA(ACJG 0.172 Al 

ATIG24095 -1 15 - 103 + ggaCTTGgagctCAAGcaa NA 

ANAC0/3 -143 - 131 ttcCTTGgagaaQAAGgtt CTTGNNNNNQA[AC]G 0.359 Al 

AT2G03130 -170 - 158 + ttgCTTGgagagCAAGttg CTTGNNNNNCA(ACJG 0.259 Al 
ST -202 -190 ttaCTTGaagagCACGtag CTTGNNNNNCACG 0.009 Gm,AI 

-1 22 -IlO + ttaCTTGtagaaCAAÇctt CTTGNNNNNCAAÇ 0.043* Pt, Cp 

AT2G04050 -4 13 -401 - ttaCTTGggaatCAAGttc CTTGNNNNNCA(ACJG 0.044 Al 

-354 -342 ataCTTGgggacCAAGttc 

AT2G04070 -746 -734 ttaCTTGggaatCAAGttc CTTGNNNNNCA(AC(G 0.038 Al 

-688 -676 acaCTTGgggatCACGttc 

UPOX -658 -646 ctcCTTGgagagCAAGtta CTTGNNNNNCA(ACJG 0.28 Al 
-968 -956 + aacCTTGatgaaQAAGgaa 

-569 -557 + gtgCTTGcagagAAAGata 

-532 -520 + gaaCTTGcagag&AAGcaa 

AT2G32020 -247 -235 + ttgilTGgcaacCAAGtaa ITTGNNNNNCA[AC)G 0.452 Al 

AT2G4/ 730 -127 - 115 atgCTTGtccagCAAGata CTTGNNNNNCA(ACJG <0.001 *** Pt, Cp, Vv, Gm, Al, Md 

-92 -80 - atgilTGgggtaCAAGaaa 

ABCB4 -551 -539 - tttCTTGacgaaCAAGctg CTTGNNNNNCA(ACJG 0.002** Pt, Gm, Al, Md 

HRE2 -154 - 142 ttgCTTGacgacCAA Gttc CTTGNNNNNCA(ACJG <0.001 *** Vv, Gm, Al, Md 

AOX!a -372 -360 + gctCTTGgcgacCACGcaa CTTGNNNNNCA(ACJG <0.001 *** Pt, Vv, Al, Md 

-345 -333 tttCTTGgagagCAAGatg 
OX/1 -167 - 155 - tgcCTTGccgggQAAGatt CTTGNNNNNQA[AC]G 0.03 1 Cp, Al 

-280 -268 agcCTTGtttaaAAAGtgt CTTGNNNNNAA[AC]G nd 

PHB4 -724 -712 taaCTTGgaaacCAAGtaa CTTGNNNNNCAAG 0.035* Pt, Vv 

-356 -344 - cttCTT AgagagCAAGatg 

BCSJ -806 -794 atcCTTGaacaaCACÇctt CTTGNNNNNCA[AC]Ç 0.246 Md 

CRF6 -574 -562 + ttgCTTGgagacCAAGcta CTTGNNNNNCA(ACJG <0.001 *** Pt, Cp, Al, Md 

-8 18 -806 ttgCTTGgagacCAAGtct 

CYP8JD8 -205 - 193 + tttCTTGaggaaCAA Ga ct CTTGNNNNNCA(ACJG nd 

AT5G09570 -222 -210 - cccCTTGcccgtCA CGttt CTTGNNNNNCACG 0.011 Al, Md 

-238 -226 + gggiTTGgagcgCAAGaaa 

AT5GI4730 -729 -717 attCTTGattgaCAAGttg CTTGNNNNNCA(ACJG nd 

- 180 -1 68 - ttaCTTGtgcagCAAGagg 
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Supplemental Table 2.2. Presence ofthe MDM in the MDR gene set and its conservation in orthologous genes of related dicot species. (Cantinued). 
AT5G43450 -306 -294 + ttcCTTGcacaaCACAaca CTTGNNNNNCA[AC]A nd 

- 155 - 143 + ttcCTTGcacaaCACAaca 
HSP23.5 - 189 -177 + ttaCTTGgagacCACGcag CTTGNNNNNCA[ACJG <0.00 1*** Pt,Cp,Vv,Gm,AI 
MGEI -1 28 -11 6 gttCTTGgggagQAAGcaa 

a. Upstream nucleotide position relative to the translational start codon ofthe respective gene. 
c Forward strand (+), reversestrand (-). 

d MDM sequence including 3-bp surrounding sequence. Capital letters represent the MDM consensus (CTTGNNNNNCA[AC]G) and nucleotides underlined 

differ from the consensus. 
c For each Arabidopsis gene containing the MDM consensus sequence (CTTGNNNNNCA[AC]G), indicated in bold, the conservation data for this sequence are 

displayed. If the consensus is not significantly conserved but a (mismatch) variant ofthe consensus (not in bold) is conserved, conservation data of the latter are 
displayed. 

r Sequences were defined as conserved if present in orthologs of at least two other species (not including Arabidapsis lyrata (Al)) with conservation P value less 

than 0.05, and are indicated with asterisk(* ?<0.05, ** P<O.O I , *** P<O.OO I ). nd, not detected. 
g Species containing the moti f in orthologues genes. Al, Arabidapsis lyrata; Cp: Carica papaya; Pt, Papulus trichacarpa; Md, Malus damestica; Gm, Glycine 

max; Vv, Vitis vinifera. 
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Supplemental Table 2.3. Functional annotations of the MDR genes. 

 

Gene ID Other 

name 

Description
a
 

AT1G05060   

AT1G05680  UGT74E2 Uridine diphosphate glycosyltransferase 74E2 | Encodes a UDP-glucosyltransferase, 

UGT74E2, that acts on IBA (indole-3-butyric acid) and affects auxin homeostasis. 

The transcript and protein levels of this enzyme are strongly induced by H2O2 and 

may allow integration of ROS (reactive oxygen species) and auxin signaling. This 

enzyme can also transfer glycosyl groups to several compounds related to the 

explosive TNT when this synthetic compound is taken up from the environment. 

AT1G24095  Putative thiol-disulfide oxidoreductase DCC 

AT1G32870 ANAC013  

AT2G03130  Ribosomal protein L12/ATP-dependent Clp protease adaptor protein ClpS family 

protein 

AT2G03760 ST Sulfotransferase 12 | Encodes a brassinosteroid sulfotransferase. In vitro 

experiements show that this enzyme has a preference for 24-epibrassinosteroids, 

particularly 24-epicathasterone, but does not act on castasterone and brassinolide. It 

is differentially expressed during development, being more abundant in young 

seedlings and actively growing cell cultures. Expression is induced in response to 

salicylic acid and methyl jasmonate and bacterial pathogens. 

AT2G04050   MATE efflux family protein 

AT2G04070  MATE efflux family protein 

AT2G21640 UPOX Encodes a protein of unknown function that is a marker for oxidative stress 

response. 

AT2G32020   Acyl-CoA N-acyltransferases (NAT) superfamily protein 

AT2G41730   

AT2G47000 ABCB4 ATP binding cassette subfamily B4 | Multidrug resistance P-glycoprotein 

(MDR/PGP) subfamily of ABC transporters. Functions in the basipetal redirection 

of auxin from the root tip. Exhibits apolar plasma membrane localization in the root 

cap and polar localization in tissues above. 

AT2G47520 HRE2 Integrase-type DNA-binding superfamily protein | encodes a member of the ERF 

(ethylene response factor) subfamily B-2 of ERF/AP2 transcription factor family. 

The protein contains one AP2 domain. There are 5 members in this subfamily 

including RAP2.2 AND RAP2.12. 

AT3G22370 AOX1a Alternative oxidase 1A | Encodes AOX1a, an isoform of alternative oxidase that is 

expressed in rosettes, flowers, and root. The alternative oxidase of plant 

mitochondria transfers electrons from the ubiquinone pool to oxygen without energy 

conservations. It is regulated through transcriptional control and by pyruvate. Plays 

a role in shoot acclimation to low temperature. Also is capable of ameliorating 

reactive oxygen species production when the cytochrome pathway is inhibited. 

AOX1a also functions as a marker for mitochondrial retrograde response. 

AT3G25250 OXI1 AGC (cAMP-dependent, cGMP-dependent and protein kinase C) kinase family 

protein | Arabidopsis protein kinase 

AT3G27280 PHB4 Part of protein complexes that are necessary for proficient mitochondrial function or 

biogenesis, thereby supporting cell division and differentiation in apical tissues 

AT3G50930 BCS1 Cytochrome BC1 synthesis 
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Supplemental Table 2.3. Functional annotations of the MDR genes. (Continued).  

AT3G61630 CRF6 Cytokinin response factor 6 | CRF6 encodes one of the six cytokinin response 

factors. CRF5 belongs to the AP2/ERF superfamily of the transcriptional factors. 

CRF proteins rapidly relocalize to the nucleus in response to cytokinin. Analysis of 

loos-of-function mutants revealed that the CRFs function redundantly to regulate 

the development of embryos, cotyledons and leaves. 

AT4G37370 CYP81D8 Cytochrome P450, family 81, subfamily D, polypeptide 8 | member of CYP81D 

AT5G09570  Cox19-like CHCH family protein 

AT5G14730   

AT5G43450  2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein | 

encodes a protein whose sequence is similar to ACC oxidase 

AT5G51440 HSP23.5 HSP20-like chaperones superfamily protein 

AT5G55200 MGE1 Co-chaperone GrpE family protein 
a
Gene functional annotations were obtained from TAIR10. 
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Supplemental Table 2.4. Arabidopsis genes containing conserved MDM motif instances. 

 

Gene ID Conserv-

ation P 

value
a
 

Species
b
 Other name Gene description 

AT1G02520 <0.001 Pt, Gm, Al, Md PGP11 P-glycoprotein 11 

AT1G02530 <0.001 Pt, Gm, Al, Md PGP12 P-glycoprotein 12 

AT1G05060 <0.001 Pt, Vv, Gm, Aly   

AT1G07510 <0.001 Pt, Gm, Al, Md FTSH10 FTSH protease 10 | encodes an FtsH protease that is 

localized to the mitochondrion 

AT1G10800 <0.001 Pt, Gm, Aly   

AT1G28470 <0.001 Pt, Vv, Gm, Aly SND3 NAC domain containing protein 10 

AT1G32030 <0.001 Cp, Md  Domain of unknown function (DUF313)  

AT1G49630 <0.001 Vv, Al, Md PREP2 Zinc metalloprotease pitrilysin subfamily A. Signal 

peptide degrading enzyme targeted to mitochondria 

and chloroplasts. Expressed in flower, leaf and root. 

Not expressed in silique and shoot. 

AT2G05360 <0.001 Pt, Md   

AT2G21830 <0.001 Cp, Al, Md  Cysteine/Histidine-rich C1 domain family protein 

AT2G23660 <0.001 Pt, Cp, Aly LBD10  

AT2G40370 <0.001 Pt, Vv, Gm, Aly LAC5 Laccase 5 | putative laccase, a member of laccase 

family of genes (17 members in Arabidopsis). 

AT2G41730 <0.001 Pt, Cp, Vv, Gm, Al, Md   

AT2G47520 <0.001 Vv, Gm, Al, Md HRE2 Integrase-type DNA-binding superfamily protein | 

encodes a member of the ERF (ethylene response 

factor) subfamily B-2 of ERF/AP2 transcription 

factor family. The protein contains one AP2 

domain. There are 5 members in this subfamily 

including RAP2.2 AND RAP2.12. 

AT3G01600 <0.001 Pt, Vv, Gm, Aly NAC044 NAC domain containing protein 44 

AT3G03700 <0.001 Pt, Cp, Vv, Al, Md  Plasma-membrane choline transporter family 

protein 

AT3G04440 <0.001 Pt, Cp, Vv, Al, Md  Plasma-membrane choline transporter family 

protein 

AT3G09690 <0.001 Pt, Al, Md   

AT3G11020 <0.001 Pt, Cp, Vv, Gm, Al, Md DREB2B DRE/CRT-binding protein 2B | encodes a member 

of the DREB subfamily A-2 of ERF/AP2 

transcription factor family (DREB2B). The protein 

contains one AP2 domain. There are eight members 

in this subfamily including DREB2A. 

AT3G22360 <0.001 Pt, Al, Md AOX1B Alternative oxidase 1B | encodes an alternative 

oxidase whose expression is limited to flowers and 

floral buds. 

AT3G22370 <0.001 Pt, Vv, Al, Md AOX1A Alternative oxidase 1A | Encodes AOX1a, an 

isoform of alternative oxidase that is expressed in 

rosettes, flowers, and root. The alternative oxidase 

of plant mitochondria transfers electrons from the 

ubiquinone pool to oxygen without energy 

conservations. It is regulated through 

transcriptional control and by pyruvate. Plays a role 

in shoot acclimation to low temperature. Also is 

capable of ameliorating reactive oxygen species 

production when the cytochrome pathway is 

inhibited. AOX1a also functions as a marker for 

mitochondrial retrograde response. 

AT3G22630 <0.001 Pt, Vv, Al, Md PRCGB 20S proteasome beta subunit D1 | Encodes 20S 

proteasome beta subunit PBD1 (PBD1). 

AT3G24780 <0.001 Pt, Cp, Vv, Gm, Al, Md  Uncharacterised conserved protein UCP015417, 

vWA 

AT3G24850 <0.001 Cp, Al, Md  Domain of unknown function (DUF313)  
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Supplemental Table 2.4. Arabidopsis genes containing conserved MDM motif instances. (Continued). 
AT3G27880 <0.001 Pt, Gm, Al, Md  Protein of unknown function (DUF1645) 

AT3G30210 <0.001 Pt, Gm, Aly MYB121 Myb domain protein 121 | Encodes a putative 

transcription factor, member of the R2R3 factor 

gene family (MYB121). 

AT3G59820 <0.001 Pt, Al, Md   

AT3G61630 <0.001 Pt, Cp, Al, Md CRF6 Cytokinin response factor 6 | CRF6 encodes one of 

the six cytokinin response factors. CRF5 belongs to 

the AP2/ERF superfamily of the transcriptional 

factors. CRF proteins rapidly relocalize to the 

nucleus in response to cytokinin. Analysis of loos-

of-function mutants revealed that the CRFs 

function redundantly to regulate the development of 

embryos, cotyledons and leaves. 

AT3G62260 <0.001 Vv, Gm, Md   

AT4G05020 <0.001 Pt, Gm, Al, Md NDB2 NAD(P)H dehydrogenase B2 (NDB2) 

AT4G14800 <0.001 Pt, Vv, Al, Md PBD2 Encodes 20S proteasome beta subunit PBD2 

(PBD2). 

AT4G18990 <0.001 Pt, Vv, Aly XTH29 Xyloglucan endotransglucosylase/hydrolase 29 

AT4G21490 <0.001 Pt, Gm, Al, Md NDB3 NAD(P)H dehydrogenase B3 

AT4G25200 <0.001 Pt, Cp, Vv, Gm, Aly HSP23.6-M Mitochondrion-localized small heat shock protein 

23.6 | AtHSP23.6-mito mRNA, nuclear gene 

encoding mitochondrial 

AT4G27110 <0.001 Pt, Cp, Vv, Al, Md COBL11 COBRA-like protein 11 precursor 

AT4G35460 <0.001 Vv, Al, Md NTRB NADPH-dependent thioredoxin reductase B | 

NADPH-dependent thioredoxin reductase 1 

(NTR1. Similar to E.coli NTR and has conserved 

NADPH binding domains. 

AT4G37030 <0.001 Cp, Vv, Gm, Md   

AT4G39740 <0.001 Vv, Gm, Al, Md HCC2 Thioredoxin superfamily protein 

AT5G02970 <0.001 Pt, Al, Md  α/β-Hydrolases superfamily protein 

AT5G05390 <0.001 Pt, Vv, Gm, Aly LAC12 Laccase 12 | putative laccase, a member of laccase 

family of genes (17 members in Arabidopsis). 

AT5G13210 <0.001 Pt, Cp, Vv, Gm, Al, Md  Uncharacterised conserved protein UCP015417, 

vWA 

AT5G17300 <0.001 Pt, Vv, Gm, Aly RVE1 Homeodomain-like superfamily protein | Myb-like 

transcription factor that regulates hypocotyl growth 

by regulating free auxin levels in a time-of-day 

specific manner. 

AT5G24050 <0.001 Cp, Al, Md  Domain of unknown function (DUF313)  

AT5G24640 <0.001 Pt, Cp, Vv, Gm, Al, Md   

AT5G37140 <0.001 Vv, Gm, Al, Md  P-loop containing nucleoside triphosphate 

hydrolases superfamily protein 

AT5G40690 <0.001 Pt, Cp, Vv, Gm, Al, Md   

AT5G43390 <0.001 Pt, Cp, Vv, Gm, Al, Md  Uncharacterized conserved protein UCP015417, 

vWA 

AT5G51430 <0.001 Cp, Al, Md EYE Conserved oligomeric Golgi complex component-

related / COG complex component-related | 

Encodes a protein that is homologous to Cog7, a 

subunit of the conserved oligomeric Golgi (COG) 

complex, which is required for the normal 

morphology and function of the Golgi apparatus. It 

is likely to be involved in transport or retention of 

Golgi-localized proteins and in maintenance of 

Golgi morphology. 

AT5G51440 <0.001 Pt, Cp, Vv, Gm, Aly HSP23.5-M HSP20-like chaperones superfamily protein 

AT5G52090 <0.001 Vv, Gm, Al, Md  P-loop containing nucleoside triphosphate 

hydrolases superfamily protein 
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Supplemental Table 2.4. Arabidopsis genes containing conserved MDM motif instances. (Continued). 
AT5G53290 <0.001 Pt, Al, Md CRF3 Cytokinin response factor 3 | encodes a member of 

the ERF (ethylene response factor) subfamily B-5 

of ERF/AP2 transcription factor family. The 

protein contains one AP2 domain. There are 7  

members in this subfamily. 

AT5G55490 <0.001 Pt, Cp, Vv, Gm, Al, Md GEX1 Gamete expressed protein 1 | Encodes a 

transmembrane domain containing protein that is 

expressed in pollen germ cells. 

AT1G05370 0.002 Cp, Al, Md  Sec14p-like phosphatidylinositol transfer family 

protein 

AT1G49900 0.002 Pt, Gm, Md  C2H2 type zinc finger transcription factor family 

AT2G47000 0.002 Pt, Gm, Al, Md PGP4 ATP binding cassette subfamily B4 | Multidrug 

resistance P-glycoprotein (MDR/PGP) subfamily of 

ABC transporters. Functions in the basipetal 

redirection of auxin from the root tip. Exhibits 

apolar plasma membrane localization in the root 

cap and polar localization in tissues above. 

AT5G16930 0.002 Pt, Al, Md  AAA-type ATPase family protein 

AT5G37160 0.002 Vv, Gm, Al, Md  P-loop containing nucleoside triphosphate 

hydrolases superfamily protein 

AT3G13080 0.003 Pt, Vv, Gm, Al, Md MRP3 Encodes an ATP-dependent MRP-like ABC 

transporter able to transport glutathione-conjugates 

as well as chlorophyll catabolites. The expression 

of this gene is upregulated by herbicide safeners 

such as benoxacor and fenclorim. 

AT5G24920 0.003 Pt, Md GDU5 Glutamine dumper 5 | Encodes a member of the 

GDU (glutamine dumper) family proteins involved 

in amino acid export: At4g31730 (GDU1), 

At4g25760 (GDU2), At5g57685 (GDU3), 

At2g24762 (GDU4), At5g24920 (GDU5), 

At3g30725 (GDU6) and At5g38770 (GDU7). 

AT1G06330 0.004 Pt, Vv, Aly  Heavy metal transport/detoxification superfamily 

protein  

AT5G09590 0.004 Cp, Gm, Aly MTHSC70-2 Mitochondrial HSO70 2 | heat shock protein 70 

(Hsc70-5); nuclear 

AT2G16060 0.005 Vv, Gm, Aly NSHB1 Hemoglobin 1 | Encodes a class 1 nonsymbiotic 

hemoglobin induced by low oxygen levels with 

very high oxygen affinity. It is not likely to be a 

hemoglobin transporter because of its extremely 

high affinity for oxygen. 

AT3G18610 0.005 Pt, Al, Md PARLL1 Nucleolin like 2 | Encodes ATNUC-L2 

(NUCLEOLIN LIKE 2). 

AT4G37910 0.005 Cp, Gm, Aly MTHSC70-1 Mitochondrial heat shock protein 70-1 

AT1G74870 0.006 Pt, Al, Md  RING/U-box superfamily protein 

AT5G38800 0.006 Pt, Al, Md BZIP43 Basic leucine-zipper 43 

AT3G28580 0.007 Pt, Vv, Md  P-loop containing nucleoside triphosphate 

hydrolases superfamily protein 

AT5G25840 0.007 Cp, Al, Md  Protein of unknown function (DUF1677) 

AT1G64930 0.009 Gm, Al, Md CYP89A7 Cytochrome P450, family 87, subfamily A, 

polypeptide 7 | member of CYP89A 

AT5G14980 0.009 Pt, Vvi  α/β-Hydrolases superfamily protein 

AT1G64900 0.01 Gm, Al, Md CYP89A2 Cytochrome P450, family 89, subfamily A, 

polypeptide 2 | Encodes cytochrome P450 

(CYP89A2). 

AT3G23570 0.013 Gm, Al, Md  α/β-Hydrolases superfamily protein 

AT2G37280 0.014 Pt, Cp, Vv, Gm, Md PDR5 Pleiotropic drug resistance 5 

AT2G29930 0.017 Gm, Al, Md   

AT2G31460 0.018 Cp, Md  Domain of unknown function (DUF313)  

AT1G09400 0.019 Gm, Al, Md  FMN-linked oxidoreductases superfamily protein 

AT1G48400 0.019 Cp, Al, Md  F-box/RNI-like/FBD-like domains-containing 

protein 
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Supplemental Table 2.4. Arabidopsis genes containing conserved MDM motif instances. (Continued). 
AT4G27740 0.021 Cp, Vvi  Yippee family putative zinc-binding protein 

AT2G07714 0.023 Vv, Al, Md  Transcription factor-related 

AT3G21180 0.044 Pt, Cp, Gm, Md ATACA9 Autoinhibited Ca(2+)-ATPase 9 | one of the type 

IIB calcium pump isoforms. encodes an 

autoinhibited Ca(2+)-ATPase that contains an N-

terminal calmodulin binding autoinhibitory domain. 
a
Evolutionary conservation of the MDM consensus (CTTGNNNNNCA[AC]G) was examined in six related dicot 

species. The MDM consensus was defined as conserved if present in orthologs of at least two other species (not 

including Arabidopsis lyrata (Aly)) with conservation P value less than 0.05. 
b
Species containing the MDM consensus in orthologues genes. Al, Arabidopsis lyrata; Cp, Carica papaya; Pt, 

Populus trichocarpa; Md, Malus domestica; Gm, Glycine max; Vv, Vitis vinifera. 

 

 

 

Supplemental Table 2.5. Probes used for electrophoretic mobility shift assays.  

Probe Sequence
a
 

AOX1a_MDM1+2_FWD CTAGCTCTTGGCGACCACGCAAGTATCTTCCATCTTGCTCTCCAAGAAAA 

AOX1a_MDM1+2_REV TTTTCTTGGAGAGCAAGATGGAAGATACTTGCGTGGTCGCCAAGAGCTAG 

AOX1a_MDM1+2_mut12_FWD CTAGCTGCTAGCGACTAGCGGAGTATCTTCCATGCTTCTCTCTCAGAAAA 

AOX1a_MDM1+2_mut12_REV TTTTCTGAGAGAGAAGCATGGAAGATACTCCGCTAGTCGCTAGCAGCTAG 

At2g04050_MDM_FWD GATTATACGAACTTGGTCCCCAAGTATATTTCTTG 

At2g04050_MDM_REV CAAGAAATATACTTGGGGACCAAGTTCGTATAATC 

At2g04050_MDM_mut_FWD GATTATACGAAGTACGTCCCTTCGTATATTTCTTG 

At2g04050_MDM_mut_REV CAAGAAATATACGAAGGGACGTACTTCGTATAATC 

UGT74E2_MDM_FWD GGTCACTGTTCCGCACATCTTGGTCGCCACGGAACATAGACAATTTTTGG 

UGT74E2_MDM_REV CCAAAAATTGTCTATGTTCCGTGGCGACCAAGATGTGCGGAACAGTGACC 

UGT74E2_MDM_mut_FWD GGTCACTGTTCCGCACATTGACGTCGCGCATGAACATAGACAATTTTTGG 

UGT74E2_MDM_mut_REV CCAAAAATTGTCTATGTTCATGCGCGACGTCAATGTGCGGAACAGTGACC 

UPOX_MDM_FWD GCGTTTAGTAACTTGCTCTCCAAGGAGATCTAGCTT 

UPOX_MDM_REV AAGCTAGATCTCCTTGGAGAGCAAGTTACTAAACGC 

UPOX_MDM_mut_FWD GCGTTTAGTAAGTTACTCTCTGACGAGATCTAGCTT 

UPOX_MDM_mut_REV AAGCTAGATCTCGTCAGAGAGTAACTTACTAAACGC 

At5g09570_MDM_FWD GTTTGGAGCGCAAGAAACGTGACGGGCAAGGGGAATATTCTCATCTAGAG 

At5g09570_MDM_REV CTCTAGATGAGAATATTCCCCTTGCCCGTCACGTTTCTTGCGCTCCAAAC 

At5g09570_MDM_mut_FWD GTTTGGAGCGCAAGAAATCGTACGGGTGCTGGGAATATTCTCATCTAGAG 

At5g09570_MDM_mut_REV CTCTAGATGAGAATATTCCCAGCACCCGTACGATTTCTTGCGCTCCAAAC 
a
MDM is underlined in the probe sequences. Mutations in MDM are indicated in bold. 
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Supplemental Table 2.6. Overrepresented Gene Ontology terms in the MDR gene set and in the gene set containing 

all Arabidopsis genes with conserved MDM motif instances. 

GO category GO enrichment 

GO label GO description P value Fold %  

MDR (24 genes) 

GO:0015238 Drug transmembrane transporter activity 0.0026 49.9 14 

GO:0042221 Response to chemical stimulus 0.0024 4.3 50 

GO:0051238 Sequestering of metal ion 0.0014 498.0 9 

GO:0050896 Response to stimulus 0.01 3.1 59 

GO:0015691 Cadmium ion transport 0.02 131,6 9 

 

All Arabidopsis genes with conserved MDM motif instances (80 genes)
a
 

GO:0008559 Xenobiotic-transporting ATPase activity 6.22E-5 165.4 5 

GO:0015239 Multidrug transporter activity 6.22E-5 165.4 5 

GO:0042910 Xenobiotic transporter activity 6.22E-5 165.4 5 

GO:0016682 Oxidoreductase activity, acting on diphenols and related 

substances as donors, oxygen as acceptor 

6.27E-5 58.9 6 

GO:0016887 ATPase activity 1.11E-4 8.3 15 

GO:0030554 Adenyl nucleotide binding 0.01 2.9 26 

GO:0009916 Alternative oxidase activity 0.01 147.0 3 

GO:0003677 DNA binding 0.02 2.7 24 

GO:0071365 Cellular response to auxin stimulus 5.15E-5 39.4 8 

GO:0010315 Auxin efflux 1.14E-4 190.0 5 

GO:0010038 Response to metal ion 7.51E-4 6.5 16 

GO:0010540 Basipetal auxin transport 9.22E-4 101.8 5 

GO:0042221 Response to chemical stimulus 0.0036 2.8 32 

GO:0046686 Response to cadmium ion 0.01 6.6 13 

GO:0007585 Respiratory gaseous exchange 0.02 147.0 3 

GO:0031930 Mitochondrial signaling pathway 0.02 147.0 3 

GO:0042991 Transcription factor import into nucleus 0.02 147.0 3 

GO:0045333 Cellular respiration 0.03 15.9 6 

GO:0044429 Mitochondrial part 3.19E-4 10.3 11 

GO:0031314 Extrinsic to mitochondrial inner membrane 0.0020 221.3 3 

GO:0048046 Apoplast 0.0041 6.9 11 

GO:0005739 Mitochondrion 0.01 3.6 18 

GO:0005759 Mitochondrial matrix 0.02 24.1 5 

GO:0031980 Mitochondrial lumen 0.02 24.1 5 
a
All Arabidopsis genes with significantly (P<0.05)  conserved instances of the MDM consensus 

CTTGNNNNNCA[AC]G  in at least two other dicot species (not including Arabidopsis lyrata). 

 

 

 

 

 

 

 

 

 

 

 

 



Mitochondrial retrograde regulation by a transmembrane NAC transcription factor 

 

89 
 

Supplemental Table 2.7. PCR primers used. 

Primer Sequence 

Cloning 

Promoters 

attB4_ProUGT74E2_FWD GGGGACAACTTTGTATAGAAAAGTTGATTTCACCCATGATATACTGTC 

attB1r_ProUGT74E2_REV GGGGACTGCTTTTTTGTACAAACTTGTTTCTCCTTCTTTTTAATCTTGTG 

ProUGT74E2_ΔMDM_FWD CGGTCACTGTTCCGCACATGAACATAGACAATTTTTGG 

ProUGT74E2_ΔMDM_REV CCAAAAATTGTCTATGTTCATGTGCGGAACAGTGACCG 

attB4_ProAOX1a_FWD ATAGAAAAGTTGATCTGAAGAGCTTCTAGC 

attB1r_ProAOX1a_REV TGTACAAACTTGTGTTTCAAATCGGAAAAAGTG 

ProAOX1a_ΔMDM1_FWD GCGACCACGCAAGTATCTTCCATAAAAATCTACACCGGCTTTAAATTTAC 

ProAOX1a_ΔMDM1_REV GTAAATTTAAAGCCGGTGTAGATTTTTATGGAAGATACTTGCGTGGTCGC 

ProAOX1a_ΔMDM2_FWD GACCAATAAGAATCTAGCTCAAGTATCTTCCATCTTGC 

ProAOX1a_ΔMDM2_REV GCAAGATGGAAGATACTTGAGCTAGATTCTTATTGGTC 

attB1_ProANAC013_FWD AAAAAGCAGGCTGTAAATTTTTCAGATGAAAGTATT 

attB2_ProANAC013_REV AGAAAGCTGGGTCACTTTTTTCTCTCTCGTTATC 

 

Electrophoretic mobility shift assays and biolistic transformations 
ANAC013_FWD GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGACTTGTCGGTTGAGAACGG 

ANAC013_NOSTOP_REV GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCACCTCCGGATCCCCATAACAAAGGCCTCCCTGAAC 

ANAC013_ΔTM_NOSTOP_REV GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCACCTCCGGATCCTTTGTTCTTCTTCTTCTTCTTATC 

ANAC013_TM_FWD GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGCTGGAATCCATTCCTGCAAAGCC 

ANAC013_ΔTM_REV GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCACCTCCGGATCCTCATTTGTTCTTCTTCTTCTTCTTATC 

ANAC017_FWD GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGCGGATTCTTCACCCGA  

ANAC017_short_REV GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCACCTCCGGATCMTCTGTTTCTAATACCCTTCTTTGC 

ANAC053_FWD GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGGTCGTGGCTCAGTAACATC 

ANAC053_ΔTM_REV GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCACCTCCGGATCCTCATGCTGAACTATTCCCTGATTTT 

ANAC078_FWD GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGGTCGTGGCTCAGTGACGTC 

ANAC078_ΔTM_REV GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCACCTCCGGATCCTCATCTTGTCGCCGTAATTCCTGTCT 

 

Overexpressing and -miR lines 
ANAC013_35S_FWD AAAAAGCAGGCTCCACCATGGACTTGTCGGTTGAGAA 

ANAC013_35S_REV AGAAAGCTGGGTCTCACCATAACAAAGGCCTCC 

ANAC053_35S_FWD AAAAAGCAGGCTCCACCATGGGTCGTGGCTCAGTAAC 

ANAC053_35S_REV AGAAAGCTGGGTCTCACCTGGAAGAGACCAAAATG 

ANAC078_35S_FWD AAAAAGCAGGCTCCACCATGGGTCGTGGCTCAGTG 

ANAC078_35S_REV AGAAAGCTGGGTCTTACCGAGCAGACACCATG 

ANAC013-I miR-s gaTGTAACGGTAAGTCCGTCGTTtctctcttttgtattcc 

ANAC013-II miR-a gaAACGACGGACTTACCGTTACAtcaaagagaatcaatga 

ANAC013-III miR*s gaAAAGACGGACTTAGCGTTACTtcacaggtcgtgatatg 

ANAC013-IV miR*a gaAGTAACGCTAAGTCCGTCTTTtctacatatatattcct 

 

qRT-PCR 
ANAC013_RT_FWD ACCAGACAGATAAACAATGGATCA 

ANAC013_RT_REV CAGAAGGAACAGGGTTTAGGAA 

ANAC016_RT_L ATTCACTTCACAGTCAACAGGTG 

ANAC016_RT_R GCTGATGAGAACTGGCTCCT 

ANAC017_RT_L CATTTGCTTCACCCTCATCA 

ANAC017_RT_R CCTTGGGCATTCACACTCAT 

ANAC053_RT_155_L GCAACAGAGTTTGAGCCAGA 

ANAC053_RT_155_R GCAGGAATAGCACCCAACAT 

ANAC078_RT_L CGATATTGATGACATTGACGAGA 

ANAC078_RT_R CTTGATTCCCCATGACAATAGTT 

ABCB4_RT_FWD CAAAGTCTCCAAAGTTGCTCTG 

ABCB4_RT_REV CTCGCTGCTTGTCTCTCTCC 

AOX1a_RT_FWD TGGTTGTTCGTGCTGACG 

AOX1a_RT_REV CACGACCTTGGTAGTGAATATCAG 

ARP7_RT_FWD ACTCTTCCTGATGGACAGGTG 

ARP7_RT_REV CTCAACGATTCCATGCTCCT 

at2g04050_RT_FWD CCACAATGGTGAGCTCCAG 

at2g04050_RT_REV CACCCGCTAACCCAAACA 

at2g04070_RT_FWD CTCCAGCTCTCCGGTGTC 

at2g04070_RT_REV GTGAACCCACTAACCCAAACA 

AT2G28390_FWD AACTCTATGCAGCATTTGATCCACT 

AT2G28390_REV TGATTGCATATCTTTATCGCCATC 

at2g41730_RT_FWD GTCACCAAGGCATCGTAAGG 

at2g41730_RT_REV AAAGCTGGTGGTGAATCGAG 
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Supplemental Table 2.7. PCR primers used. (Continued). 
at5g09570_RT_FWD GAAACCGTTGTTTCTCAGGTTC 

at5g09570_RT_REV CCAAAATGGTTGACGCAAT 

CRF6_RT_FWD TGGCTTGGGACTTTTGTCA 

CRF6_RT_REV GAGATGAATCGCGGCTCTA 

CYP81D8_RT_L CGTCTTTCTCGGAACTTTTCA 

CYP81D8_RT_R AACACCGTCTCCGTAGTAACG 

HRE2_RT_FWD GAAGCGTAAACCCGTCTCAGT 

HRE2_RT_REV AATCTCCGCTGCCCATTT 

HSP23.5_RT_FWD TCAAACCGACATGTTTCTCG 

HSP23.5_RT_REV AAGCTTCTCGTTGGAGTAAACG 

ST_RT_FWD GGTCACCAATCCACACCTTC  

ST_RT_REV CGAAATCTGGGGACTCGTAG  

UGT74E2_RT_FWD TAACTTCTTCCACACTTCTCATAATCT 

UGT74E2_RT_REV ACAACAAAAACTAGAGTCAGTAACAAC 

UPOX_RT_FWD TTCAAAAACACCATGGACAAGA 

UPOX_RT_REV GCCTCAATTTGCTTCTCTGC 

 

ChIP-qPCR 
ABCB4_ChIP_FWD ACGCCAATTGTGCTATGGTTACA 

ABCB4_ChIP_REV TCTTGACGAACAAGCTGTGACTTG 

ANAC013_ChIP_FWD CGTGTCGTCTCTGTAAGCCAAACCT 

ANAC013_ChIP_REV TCCGTTCTCAACCGACAAGTCCATC 

AOX1a_ChIP_FWD AGCTCTTGGCGACCACGCAA 

AOX1a_ChIP_REV CCCTTGTGGTCATGAGAGAGACT 

AT2g04050_ChIP_FWD GTGAGTCACGTGTTTGCACTGTGT 

AT2g04050_ChIP_REV GTGGACGTTGTGGTCAACAGTCAT 

AT2G04070_ChIP_FWD CAGCCTCAGCTGCACGTTTGA 

AT2G04070_ChIP_REV ACGTCGTCGTCAACACTCAACA 

AT2G41730_ChIP_FWD TGCCGACAAAAACAAAAGGTAGACA 

AT2G41730_ChIP_REV TGGGGCTTACTAAATATGTTTGGGG 

AT5G09570_ChIP_FWD AGCGCAAGAAACGTGACGGG 

AT5G09570_ChIP_REV GCGGTGAAGACCACGGGAAGA 

CRF6_ChIP_FWD TAGCCGGCGCGTGTAGCAAA 

CRF6_ChIP_REV GTTACCGTACCGAAAGTAGAGCCAA 

CYP81D8_ChIP_FWD TGTTGAACACGTGGAGGGCATT 

CYP81D8_ChIP_REV GCAGTTTTGGAAACTTTTGTGGGGT 

HRE2_ChIP_FWD ACTTGGTCGTCAAGCAAAAACAGC 

HRE2_ChIP_REV ACGCTTCCAACTCCAAACTAGAACA 

HSP23.5_ChIP_FWD GCCCCAAAGTGATGGGCCG 

HSP23.5_ChIP_FWD AGCTGCTAGAGGCTAGAGAGTCG 

ST_ChIP_FWD AGGTTGTTGACTTGTTGTGATGGAC 

ST_ChIP_REV GGTGGTGAAATGGTCAACACATCCT 

UGT74E2_ChIP_FWD GACCTCGGTCACTGTTCCGCA 

UGT74E2_ChIP_REV ACTACGGCTTTGGTGGGGGA 

UPOX_ChIP_FWD ACGCTGCGTTTAGTAACTTGCTC 

UPOX_ChIP_REV GCAAGCACAAGGACGACG 

ACTIN2_ChIP_FWD ACTACGAGCAGGAGATGGAAACCT 

ACTIN2_ChIP_REV GCAGCTTCCATTCCCACAAACGAG 

CDKA1_ChIP_FWD CTTACTCTCAATTAGTCAATCCCC 

CDKA1_ChIP_REV GATGTAGTGTCAGTGAGACTAGC 

UBQ10_ChIP_FWD CTATTGCTTCACCGCCTTAGC 

UBQ10_ChIP_REV GATCACGGTAGAGAGAATTGAGAG 
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SUPPLEMENTAL METHODS 

 

Statistical analyses 

 

Analysis of wild-type and MDM-deleted promoter activities 

Log10-transformed luminescence values were analyzed according to the following model: 

    ijklikjikjijiijkl GLCGLCGCGy   **  

Where yijkl is the log10-transformed luminescence value of biological repeat l of independent 

transgenic line k of genotype i under condition j. μ represents an overall mean, G is the main 

genotype effect, C is the main condition effect, G*C is the interaction effect between genotype 

and condition, L is the random effect for the independent transgenic line nested under genotype, 

C*L is the random interaction term between condition and independent transgenic line, and ε is 

the error term. Lk(Gi), Cj*Lk(Gi), and εijkl were all assumed to be normally distributed random 

variables with zero means and variance components σ
2

L(G) , σ
2

C*L(G), and σ
2

ε, respectively. These 

random effects were assumed to be independent with each other. For the random effects, those 

models with the lowest Akaike's Information Criterion values were chosen. Significance of the 

fixed interaction term was tested with a Wald test. Residual analysis was performed to verify the 

model assumptions. Post hoc comparisons were corrected for multiple testing with Bonferroni. 

Within each condition, two-sided comparisons were made between the genotypes (promoter 

deletion line and wild-type line). All analyses were performed with the mixed model procedure in 

SAS Enterprise Guide 5.1 (SAS Institute Inc., 2012, Cary, North Carolina). 

 

Transcript profiling of wild-type and 35S:ANAC013-6 lines under nonstressed conditions 

Prior to the analysis, average expression values were taken of the three qRT-PCR technical 

repeats. To the expression values that also contained values between 0 and 1, the value 1 was 

added prior to transformation (Osborne, 2010). Significant differences in log2 expression values 

between the 35S:ANAC013-6 and the wild type were assessed with a two-sample t test for each 

gene. Equality of variance was assessed with the Folded F-statistic. In the case of equal 

variances, the pooled method was used, in the case of unequal variances the Welch-

Sattherthwaite method was used. The analyses were performed with the t test procedure in SAS 

Enterprise Guide 5.1 (SAS Institute Inc., 2012, Cary, North Carolina). 
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Transcript profiling of wild-type and ANAC013-miR lines under nonstressed and AA stress 

conditions 

The log2-transformed average values of the three technical repeats (see above) were further 

analyzed according to following general linear model for each gene separately: 

ijkjijiijk CGCGy   *  

Where yijk is the log2-transformed expression value of biological repeat k of genotype i under 

condition j. μ represents an overall mean, G is the main genotype effect, C is the main condition 

effect, G*C is the interaction term between genotype and condition and ε is the error term. εijk 

was assumed to be a normally distributed random variable with zero mean and variance 

component σ
2

ε. Residual analysis was performed to verify the model assumptions. For each 

condition, two-sided comparisons were made between the two genotypes (wild type (Col-0) and 

ANAC013-miR). The analyses were performed with the glm procedure in SAS Enterprise Guide 

5.1 (SAS Institute Inc., 2012, Cary, North Carolina). 
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ADDENDUM 

The MDR is potentially required for maintenance of mitochondrial function and cell 

proliferation under stress in young developing leaves 

The complete version of this chapter has been published in Plant Physiology, 152: 226-244, January 2010 by 

Skirycz, A., De Bodt, S., Obata, T., De Clercq, I., Claeys, H., De Rycke, R., Andriankaja, M., Van Aken, O., 

Van Breusgem, F., Fernie, A.R., and Inzé, D.  under the title “Developmental stage specificity and the role of 

mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress”. 

I.D.C. selected the genes, generated the transgenic promoter:GUS Arabidopsis lines and performed the 

spatiotemporal analysis of the MDR expression by means of histochemical GUS assays. 

 

 

The MDR is specifically induced in proliferating tissues during mild osmotic stress 

When subjected to adverse environmental conditions, plants induce numerous adaptation 

responses to minimize the harmful effects, such as the production of protective proteins or 

antioxidants. Another important adaptation mechanism is the reprogramming of growth. After the 

onset of stress, growth rates decrease rapidly, followed by growth recovery and adaptation to the 

new condition (Skirycz and Inze, 2010). These growth changes allow plants to save and 

redistribute resources that can become limited.  

To gain insight into the process of growth adaptation during stress, a mild osmotic stress 

assay was developed in which plants were germinated and grown on 25 mM of mannitol, that 

decreases the water potential of the growth medium. In this experimental setup, plant growth was 

reduced (50% reduced leaf size) (Figure 2.12A and 2.12B), but other stress parameters such as 

seed germination, leaf morphology and the operating efficiency of photosystem II (PSII) were not 

affected (data not shown). To identify the mechanisms underlying the 50% reduction in the final 

leaf size, the third leaf that initiates and subsequently develops under stress conditions was used 

for kinematic analysis. Early during development, cell number and cell size were reduced by the 

stress, but cell division and expansion rates reached that of nonstressed plants within a few days 

of leaf initiation (Figure 2.12C and 2.12D).  
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Figure 2.12. Mild osmotic stress experimental setup.  

(A) Plants at 22 days after stratification (DAS) grown in the absence (left) or presence (right) of 25 mM mannitol. 

(B) Leaf area calculation at 22 DAS grown on 0 and 25 mM mannitol.  

(C) and (D) Kinematic analysis of leaf 3 from plants grown with or without 25 mM mannitol, showing leaf area, cell 

number and cell size (C) and relative leaf growth rate (RLGR), relative cell division rate and relative cell expansion 

rate (D). 

 

To investigate the molecular basis of the growth adaptation, the transcriptional response to mild 

osmotic stress was analyzed during different developmental stages: exclusively proliferating leaf 

primordia (P) and expanding (E) and mature (M) leaves (Figure 2.13A). Mild osmotic stress 

significantly altered the transcriptome, with hundreds of transcripts affected exclusively in one 

leaf stage and only very few genes that were differentially expressed across the three stages 

(Figure 2.13B). Overall, the stress response in P and E leaves was more similar, while in fully 

grown M leaves it was more distinct, especially when compared with P leaves. 

Among the 170 genes that were induced by mannitol exclusively in the P leaves 

(Supplemental Table 2.7), 13 of the MDR (mitochondrial dysfunction regulon) genes were among 

the most strongly up-regulated genes (Figure 2.14A). To confirm these changes and to provide 

further spatial resolution, promoter:GUS reporter lines were constructed for eight of the 13 MDR 

genes (At2g03760 [ST], At2g04050, At3g61630 [CRF6], At2g21640 [UPOX], At4g37370 

[CYP81D8], At2g41730, At5g51440 [HSP23.5] and At1g32870 [ANAC013]). The obtained GUS 
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staining agreed very well with the microarray data, confirming induction for seven out of the 

eight genes in the P or P and E leaves (Figure 2.14B and 2.14C). At the spatial level, GUS 

induction was not just observed in fully P leaves but also in leaves that were partially P (i.e. that 

had already started to differentiate at their tip). Moreover, this analysis allowed the response of 

other leaves to be studied. Induction was not restricted to leaf 3 but could be observed in young 

leaves throughout plant development.  

 

 

 

 

 

 

 

Alternative respiration is important for cell division under stress conditions 

 

As transcripts of the mitochondrial dysfunction regulon (MDR) were affected in the proliferating 

(P) leaves, the mitochondria of the shoot apical meristem (SAM) and P leaves were examined for 

phenotypic changes by means of transmission electron microscopy. A significant difference in 

the SAM sections of the mannitol-grown seedlings was the presence of large mitochondria. In 

addition, in both SAM and P leaf sections, mitochondria were rounder, which could be expressed 

as increased circularity index (Figure 2.15A and 2.15B).  

 

Figure 2.13 Transcript changes by mild 

osmotic stress during different developmental 

stages. 

(A) Experimental setup. Schematic 

representation of Arabidopsis leaf 

development. Proliferating (P) cells, red; 

expanding (E) cells, green; and mature (M) 

cells, white. The scale bar only applies to the 

leaves, not the representation of the shoot 

apical meristem. Leaf 3 initiates at 

approximately 5 days after stratification 

(DAS); all cells proliferate at 9 DAS, expand 

exclusively around 15 DAS, and approach 

maturity at 22 DAS, both under control and 

stress conditions. Samples for transcript 

profiling analysis were dissected at 9, 15 and 

22 DAS. 

(B) Venn diagram grouping of genes 

differentially regulated by osmotic stress in P, 

E and M leaves. 
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Figure 2.14. The MDR is induced by mild osmotic stress in young, proliferating leaves. 

(A) Log2-fold change of MDR genes in long-term mannitol experiments measured in P, E and M leaves. Arrows 

indicate genes used for promoter:GUS analysis; green, orange, and red arrows indicate expression validated by GUS 

staining in two independent GUS lines, in one of two independent GUS lines, and not validated, respectively. 

(B) Promoter:GUS analysis to score the activation of eight MDR promoters in leaves of mannitol-grown plants. GUS 

staining was assessed in proliferating, expanding and mature leaf 3 from 9-, 15- and 22-DAS-old-plants, 

respectively. In addition to leaf 3, leaves 1 and 2 from 9-DAS-old plants were used to score staining at the 

proliferating stage. Induction of the MDR genes in proliferating leaves was confirmed, except for At2g41730. For 

CYP81D8, induction was also observed in expanding leaf 3 (see panel D).  

(C) Representative photos are presented. 25, mannitol; 0, control. 

(D) Photographs of 15-DAS-old plants of the ProCYP81D8:GUS line. The arrows mark the young leaves. The red 

dots indicate the expanding leaf 3.  
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Among the MDR genes, the alternative oxidase AOX1a gene was strongly induced in the P 

leaves, together with the alternative NADH dehydrogenases NDB4 and NDB2 that are also part of 

the alternative respiratory chain (Van Aken et al., 2009). Alternative oxidases bypass the normal 

mitochondrial electron transport chain (mtETC) by transferring electrons directly to oxygen and 

are mainly employed under stress conditions that impair the mtETC, thereby preventing mtROS 

formation. Moreover, together with alternative NADH dehydrogenases, alternative oxidase 

provides a path to recycle cytosolic NAD
+
, supporting glycolysis and ATP synthesis via substrate 

phosphorylation, or to recycle NAD
+
 required for the tricarboxylic acid (TCA) cycle and, hence, 

nucleotide and amino acid synthesis, respectively (Fernie et al., 2004). To determine whether the 

alternative respiration plays a role in growth adaptation, the growth of AOX1a-overexpressing 

plants (35S:AOX1a) was measured under normal and mild osmotic stress (25 mM mannitol) 

conditions. Leaf areas (of leaf number 3) were recorded daily between 9 and 23 days after 

stratification (DAS), and the obtained data were used to calculate the percentage of reduction of 

leaf area caused by the stress. Under nonstressed conditions, the leaf area of 35S:AOX1a plants 

was reduced by 20% during the early developmental stages, but caught up with wild-type plants 

by 19 DAS (Figure 2.15C). However, during stress, growth of 35S:AOX1a plants was less 

reduced very early during leaf development (Figure 2.15D). 
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Figure 2.15. Importance of alternative respiration in P leaves during stress.  

(A) Transmission electron micrographs of control- and mannitol-grown plants (P leaf 3 and SAM) were used to 

calculate area and circularity of mitochondria. Data are means ± SE of 40 to 60 mitochondria.  

(B) Transmission electron micrographs of SAM from control- and mannitol-grown seedlings. Arrows point to 

mitochondria clusters.  

(C) and (D) Leaf area measured for leaf 3 dissected from wild-type (Col-0) and 35S:AOX1a seedlings grown without 

or with 25 mM mannitol from 9 DAS until 23 DAS. Obtained data were used to calculate percentage reduction under 

control conditions (C) and stress conditions (D). Data are means ± SE of eight to 10 leaves.  

 

 

Taken together, we observed the induction of the mitochondrial dysfunction regulon as well as an 

altered mitochondrial morphology in proliferating leaves during stress. This, together with the 

decreased stress-mediated growth inhibition of 35S:AOX1a plants during early development 

support the role of the alternative respiration in maintenance of mitochondrial function and cell 

division rates in young leaves during stress. As energy, nucleotides and amino acids are 

indispensable for cell division and ROS can cause serious damage to replicating DNA, alternative 

respiration would certainly be of central importance for growth maintenance in proliferating 

leaves under stress. Smaller and larger rosettes of 35S:AOX1a and aox1a (data not shown) under 
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control conditions, respectively, indicate that the mtETC is a preferable energy source under 

favorable conditions and alternative oxidation under stress conditions. Although the function of 

the alternative oxidase in the stress response is becoming increasingly clear (Fiorani et al., 2005; 

Giraud et al., 2008), further experiments will be needed to elucidate the function of the other 

MDR genes during adverse conditions. 

 

 

METHODS 

 

Plant growth 

 

Seedlings of Arabidopsis (Arabidopsis thaliana ecotype Columbia-0 [Col-0]) were grown in vitro in half-strength 

Murashige and Skoog (1962) medium supplemented with 1% sucrose under a 16-h-day (110 μmol m
−2

 s
−1

) and 8-h-

night regime. Before autoclaving, 25 mM mannitol (Sigma) was added to the agar medium. 

 

Growth analysis 

Leaf 3 was harvested daily from 9 to 22 DAS from eight to 10 plants in three independent experiments. After 

clearing with 70% ethanol, leaves were mounted in lactic acid on microscope slides. Epidermal cells (40–100 cells) 

were drawn for four leaves with a DMLB microscope (Leica) fitted with a drawing tubus and a differential 

interference contrast objective, while leaves were photographed under a binocular. Photographs of leaves and 

drawings were used to measure the leaf area and the cell size, respectively, with the ImageJ software. Leaf area and 

cell size were subsequently used to calculate cell numbers. Means of leaf area, cell size, and cell number were 

transformed logarithmically and locally fitted to a quadratic function of which the first derivative was taken as the 

relative growth rate (De Veylder et al., 2001). Mean values of the three biological experiments were used for 

statistical analysis. 

Sampling for profiling analysis 

Leaf 3 was harvested from plants at 9, 15, and 22 DAS. All samples were from three independent experiments and 

from multiple plates within the experiment. Complete harvest was done in growth chambers starting at 2 h into the 

day and took less than 15 min. As leaf initiation and developmental timing were not affected, samples were 

harvested simultaneously from both control and mannitol-treated plants. Because of their small size, leaves from 

plants at 9 DAS were dissected under a binocular microscope. Briefly, whole seedlings were harvested in an excess 

of RNAlater solution (Ambion) and, after overnight in 4°C, dissected on the cooling plate using the binocular 

microscope with precision microscissors. Dissected leaves were transferred to a new tube, frozen in liquid nitrogen, 
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and ground with a Retsch machine and 3-mm metal balls. Microarray analysis, qRT-PCR confirmation, and 

metabolite measurements were carried out on material harvested from separate experiments. 

RNA extraction 

RNA was extracted with Trizol according to the manufacturer's protocol (Invitrogen) and 4 μg of glycogen as carrier 

during the precipitation step. RNA samples were subjected to DNA digestion (Roche) and subsequently to the 

RNeasy clean-up kit (Qiagen). 

ATH1 expression profiling and data analysis 

RNA samples (three biological replicates for each treatment and stage) were hybridized to single Affymetrix ATH1 

genome arrays at the Flanders Institute for Biotechnology Microarray Facility in Leuven, Belgium. Expression data 

were processed with Robust Multichip Average background correction, normalization, summarization, and 

BioConductor (Irizarry et al., 2003a; Irizarry et al., 2003b; Gentleman et al., 2004). An alternative cdf (tinesath1cdf) 

was used, in which each probe is uniquely assigned to one transcript (Casneuf et al., 2007); 

http://www.bioconductor.org/packages/release/data/experiment/html/tinesath1cdf.html). BioConductor package 

Limma was used to identify differentially expressed genes (Smyth, 2004). A factorial design (mannitol treatment 25–

0 mm and developmental stage P-E-M) was applied to analyze the data. For comparisons of interest, moderated t 

statistics with the eBayes method were used, and P values were corrected for multiple testing (for each contrast 

separately using topTable) (Hochberg and Benjamini, 1990). In addition, we applied a more stringent correction for 

multiple testing across genes and across contrasts with decideTest. Importantly, lists of significant genes obtained 

with both methods were very similar, leading to identical conclusions. Besides the moderated t statistics for each 

pairwise contrast, we calculated global F statistics to identify the genes that were affected in at least one contrast. 

Two-fold changes in expression (only for 0–0 mm comparisons) and decideTest (global) cutoffs of less than 0.05 

were used to delineate gene lists of interest. Further subsets of these differentially expressed gene lists were 

identified and subjected to overrepresentation analysis. 

GUS staining 

Whole plantlets were harvested after 9, 15, and 22 d and incubated in 90% acetone (4°C) for 30 min, washed in 100 

mM Tris-HCl/50 mM NaCl (pH 7.0), and subsequently incubated in 5-bromo-4-chloro-3-indolyl-β-glucuronide (X-

gluc) buffer (100 mM Tris-HCl/50 mM NaCl buffer [pH 7.0], 2 mM K3[Fe(CN)6], and 4 mM X-gluc) at 37°C for 2.5 

h. Seedlings were washed in 100 mM Tris-HCl/50 mM NaCl (pH 7.0) and cleared overnight in 90% lactic acid. 

Samples were photographed under a differential interference contrast microscope (Leica). 

Transmission electron microscopy 

Young leaves and SAM of 9-DAS seedlings were excised, immersed in a fixative solution of 2% paraformaldehyde 

and 2.5% glutaraldehyde, and postfixed in 1% OsO4 with 1.5% K3Fe(CN)6 in 0.1 m Na-cacodylate buffer (pH 7.2) 

for 1 h under vacuum infiltration at room temperature and 4 h of rotation at room temperature, followed by overnight 
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fixation at 4°C. After washing three times for 20 min with the buffer, samples were dehydrated through a graded 

ethanol series, including a bulk staining with 2% uranyl acetate at the 50% ethanol step, followed by embedding in 

Spurr's resin. Ultrathin sections of a gold interference color were cut with an ultramicrotome (Leica EM UC6), 

poststained with uranyl acetate and lead citrate (Leica EM AC20), collected on formvar-coated copper slot grids, and 

viewed with a transmission electron microscope (1010; JEOL). 

Transgenic Lines and Mutants 

Seeds of 35S:AOX1a lines were kindly provided by Prof. James E. Siedow (Duke University; Fiorani et al., 2005). 

For generation of promoter:GFP-GUS lines, genomic DNA was isolated from Arabidopsis (Col-0) with DNeasy 

plant kits (Qiagen) according to the manufacturer's instructions. The 1.5-kb genomic regions (or the intergenic region 

in the case of nearby coding sequences) upstream of the specific start codon were amplified by PCR with the 

Platinum Taq High Fidelity DNA polymerase (Invitrogen) and the forward and reverse primers (Supplemental Table 

2.8). The PCR products were cloned into pDONR221 and cloned by recombination to pBGWFS7, generating a 

transcriptional GFP-GUS fusion. The constructs were transformed into Arabidopsis Col-0 by Agrobacterium 

tumefaciens-mediated floral dipping. Transformants with the bar resistance gene were selected by spraying with 40 

mg L
−1

 Pestanal (glufosinate ammonium; Sigma-Aldrich). Transformants with a single insertion locus, and 

subsequently homozygous lines, were selected by segregation analysis on MS medium containing 5 mg L
−1

 

glufosinate ammonium. All analyses were performed with nonsegregating homozygous T3 transgenic lines. aox1a 

mutants were obtained from the Arabidopsis Seed Stock Center (N584897). 
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SUPPLEMENTAL DATA 

Supplemental Table 2.7. Genes specifically up-regulated by mild osmotic stress in proliferating leaves.  

P, proliferating leaves; 25, 25 mM mannitol; 0, control condition; FC, fold change; FDR, false discovery rate. 

Gene IDa Other name 

Log2 FC 

P25-P0 FDR P value Gene description 
     

AT3G22370 AOX1a 2,57 4,22E-06 ATAOX1A, AOX1A | AOX1A (alternative oxidase 1A); alternative 

oxidase  

AT2G41230 ORS1 2,45 1,01E-03 similar to ARL (ARGOS-LIKE) [Arabidopsis thaliana] 
(TAIR:AT2G44080) 

AT2G41730  2,34 2,81E-04  

AT3G10930  2,28 2,40E-10  

AT1G65490  2,27 1,19E-06  

AT2G47520 HRE2 2,11 2,04E-04 AP2 domain-containing transcription factor, putative  

AT2G21640 UPOX 2,11 2,53E-04  

AT5G09570  2,04 2,26E-04  

AT1G05680 UGT74E2 1,81 6,41E-03 UDP-glucoronosyl/UDP-glucosyl transferase family protein  

AT3G14990  1,76 7,09E-04 4-methyl-5(b-hydroxyethyl)-thiazole monophosphate biosynthesis 

protein, putative  

AT5G51440 HSP23.5 1,70 1,93E-02 23.5 kDa mitochondrial small heat shock protein (HSP23.5-M)  

AT4G35110  1,66 4,20E-06  

AT2G44080 ARL 1,61 1,55E-03 ARL | ARL (ARGOS-LIKE)  

AT1G22890  1,57 2,70E-05  

AT2G04050  1,54 8,97E-04 MATE efflux family protein  

AT5G52760  1,52 3,56E-03 heavy-metal-associated domain-containing protein  

AT4G23270  1,50 5,31E-04 protein kinase family protein  

AT5G64905 PROPEP3 1,49 7,40E-03 PROPEP3 | PROPEP3 (Elicitor peptide 3 precursor)  

AT3G51920 CAM9 1,47 4,15E-09 CAM9 | CAM9 (CALMODULIN 9); calcium ion binding  

AT5G13330 RAP2.6L 1,33 5,31E-04 RAP2.6L | RAP2.6L (related to AP2 6L); DNA binding / 

transcription factor  
AT5G44580  1,30 7,53E-04  

AT3G29970  1,29 4,22E-04 germination protein-related  

AT2G03760 ST 1,25 2,10E-03 RAR047, ST | ST (steroid sulfotransferase); sulfotransferase  

AT2G47000 ABCB4 1,13 4,47E-03 PGP4 | PGP4 (P-GLYCOPROTEIN 4, P-GLYCOPROTEIN4); 

ATPase, coupled to transmembrane movement of substances / 

xenobiotic-transporting ATPase  
AT3G23250 MYB15 1,13 5,48E-06 MYB15, AtY19, AtMYB15 | AtMYB15/AtY19/MYB15 (myb 

domain protein 15); DNA binding / transcription factor  

AT4G28460  1,09 5,73E-04  

AT2G43610  1,08 3,45E-03 glycoside hydrolase family 19 protein  

AT2G16060 GLB1 1,06 3,61E-02 ARATH GLB1, GLB1, NSHB1, ATGLB1, AHB1 | AHB1 

(ARABIDOPSIS HEMOGLOBIN 1)  

AT5G17330 GAD1 1,00 5,68E-02 GAD1, GAD | GAD (Glutamate decarboxylase 1); calmodulin 

binding  

AT1G36180  0,99 1,82E-02  

ATMG01370 0,97 6,70E-03 ORF111D | Identical to Hypothetical mitochondrial protein 
AtMg01370 (ORF111d) [Arabidopsis Thaliana] (GB:P92565)  

AT2G28820  0,97 5,61E-03 structural constituent of ribosome  

AT1G32870 ANAC013 0,96 1,09E-03 ANAC013 | ANAC013 (Arabidopsis NAC domain containing 
protein 13); transcription factor  

AT3G54150  0,96 1,12E-04 embryo-abundant protein-related  

AT4G18170 WRKY28 0,95 1,50E-02 ATWRKY28, WRKY28 | WRKY28 (WRKY DNA-binding protein 
28); transcription factor  

AT2G20800 NDB4 0,93 2,25E-02 NDB4 | NDB4 (NAD(P)H DEHYDROGENASE B4); NADH 
dehydrogenase  
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Supplemental Table 2.7. Genes specifically up-regulated by mild osmotic stress in proliferating leaves. (Continued). 

     

AT2G22470 AGP2 0,92 7,09E-04 ATAGP2, AGP2 | AGP2 (ARABINOGALACTAN-PROTEIN 2)  

AT1G31580 ECS1 0,91 8,37E-05 CXC750, ECS1 | ECS1  

AT5G24280  0,90 8,11E-03 ATP binding  

AT4G13510 ATAMT1 0,90 6,85E-04 ATAMT1, ATAMT1;1, AMT1;1 | AMT1;1 (AMMONIUM 
TRANSPORT 1); ammonium transporter  

AT1G63840  0,89 7,92E-03 zinc finger (C3HC4-type RING finger) family protein  

AT4G05020 NDB2 0,87 7,92E-03 NDB2 | NDB2 (NAD(P)H DEHYDROGENASE B2); disulfide 
oxidoreductase  

AT4G36040  0,86 8,98E-03 DNAJ heat shock N-terminal domain-containing protein (J11)  

AT5G04340  0,85 5,61E-03 C2H2 | C2H2; nucleic acid binding / transcription factor/ zinc ion 

binding  
AT2G03130  0,85 3,94E-02 ribosomal protein L12 family protein  

AT2G26650 AKT1 0,84 6,24E-03 AKT1 | AKT1 (ARABIDOPSIS K TRANSPORTER 1); cyclic 

nucleotide binding / inward rectifier potassium channel  

AT3G61630 CRF6 0,83 3,00E-02 CRF6 | CRF6 (CYTOKININ RESPONSE FACTOR 6); DNA 

binding / transcription factor  

AT5G53550 YSL3 0,82 1,82E-02 YSL3 | YSL3 (YELLOW STRIPE LIKE 3); oligopeptide transporter  

AT2G32190  0,81 5,23E-04  

AT1G71697 ATCK1 0,79 4,76E-04 CK, ATCK1 | ATCK1 (CHOLINE KINASE)  

AT1G26930  0,78 3,23E-02 kelch repeat-containing F-box family protein  

AT2G15480 UGT73B5 0,78 4,66E-02 UGT73B5 | UGT73B5 (UDP-glucosyl transferase 73B5); UDP-

glycosyltransferase/ transferase, transferring glycosyl groups  

AT1G23390  0,77 1,49E-02 kelch repeat-containing F-box family protein  

AT3G60520  0,76 1,31E-02 zinc ion binding  

ATCG00590 ORF31 0,74 6,18E-03 ORF31 | similar to cytochrome b6/f complex subunit VI [Gossypium 

hirsutum] (GB:YP_538953); contains InterPro domain Cytochrome 

B6-F complex subunit VI; (InterPro:IPR007802)  

AT5G65640 BHLH093 0,74 3,53E-02 BHLH093 | BHLH093 (BETA HLH PROTEIN 93); DNA binding / 

transcription factor  

AT1G01560 ATMPK11 0,74 8,11E-03 ATMPK11 | ATMPK11 (Arabidopsis thaliana MAP kinase 11); 

MAP kinase/ kinase  

AT2G36460  0,73 1,22E-02 fructose-bisphosphate aldolase, putative  

AT4G28290  0,72 1,46E-03  

AT1G04310 ERS2 0,71 3,13E-02 ERS2 | ERS2 (ETHYLENE RESPONSE SENSOR 2); receptor  

AT5G47220 ERF2 0,71 3,00E-02 ATERF2, ATERF-2, ERF2 | ATERF-2/ATERF2/ERF2 

(ETHYLENE RESPONSE FACTOR 2); DNA binding / 

transcription factor/ transcriptional activator  
AT2G33710  0,71 2,47E-02 AP2 domain-containing transcription factor family protein  

AT1G21010  0,70 1,61E-02  

AT2G30140  0,70 5,39E-02 UDP-glucoronosyl/UDP-glucosyl transferase family protein  

AT1G53345  0,69 1,00E-03  

AT5G14780 FDH 0,69 4,37E-02 FDH | FDH (FORMATE DEHYDROGENASE); NAD binding / 

cofactor binding / oxidoreductase, acting on the CH-OH group of 

donors, NAD or NADP as acceptor  
AT1G70410  0,68 3,79E-03 carbonic anhydrase, putative / carbonate dehydratase, putative  

AT5G05140  0,68 7,24E-02 transcription elongation factor-related  

AT1G13260 RAV1 0,67 4,52E-02 RAV1 | RAV1 (Related to ABI3/VP1 1); DNA binding / 

transcription factor  

AT1G24090  0,66 5,49E-02 RNase H domain-containing protein  

AT1G58420  0,65 2,36E-03  

AT4G23880  0,64 3,07E-03  

AT3G02840  0,64 1,11E-02 immediate-early fungal elicitor family protein  

AT1G71040  0,64 6,57E-03 multi-copper oxidase type I family protein  

AT1G11330  0,64 1,19E-02 S-locus lectin protein kinase family protein  
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AT5G38310  0,64 1,29E-02  

AT4G30530  0,64 7,92E-03 defense-related protein, putative  

AT2G39980  0,64 7,58E-02 transferase family protein  

AT2G45170 ATG8E 0,64 6,13E-02 ATG8E, AtATG8e | AtATG8e (AUTOPHAGY 8E); microtubule 
binding  

AT5G53870  0,63 8,62E-02 plastocyanin-like domain-containing protein  

ATCG00130 ATPF 0,63 5,74E-02 ATPF | ATPase F subunit.  

AT4G39260 CCR1 0,63 7,24E-02 GR-RBP8, ATGRP8, CCR1 | ATGRP8/GR-RBP8 (COLD, 

CIRCADIAN RHYTHM, AND RNA BINDING 1, GLYCINE-
RICH PROTEIN 8); RNA binding  

AT2G22970 SCPL11 0,62 9,17E-02 SCPL11 | SCPL11; serine carboxypeptidase  

AT4G02450  0,62 3,80E-02 glycine-rich protein  

AT1G11260 STP1 0,61 5,34E-02 STP1 | STP1 (SUGAR TRANSPORTER 1); carbohydrate 

transporter/ sugar porter  

AT3G59080  0,60 3,92E-02 aspartyl protease family protein  

AT1G51805  0,60 8,11E-03 leucine-rich repeat protein kinase, putative  

AT2G21660 CRR2 0,60 2,50E-02 GR-RBP7, CCR2, ATGRP7 | ATGRP7 (COLD, CIRCADIAN 

RHYTHM, AND RNA BINDING 2); RNA binding / double-
stranded DNA binding / single-stranded DNA binding  

AT3G57330  0,59 8,11E-03 calcium-transporting ATPase, plasma membrane-type, putative / 

Ca2+-ATPase, putative (ACA11)  

AT1G76040 CPK29 0,59 7,00E-02 CPK29 | CPK29 (calcium-dependent protein kinase 29); calcium- 

and calmodulin-dependent protein kinase/ kinase  

AT5G45510  0,58 7,92E-03 leucine-rich repeat family protein  

AT2G41010 ATCAMBP25 0,57 2,50E-02 ATCAMBP25 | ATCAMBP25 (ARABIDOPSIS THALIANA 

CALMODULIN (CAM)-BINDING PROTEIN OF 25 KDA); 
calmodulin binding  

AT1G32170 XTR4 0,57 1,34E-02 XTR4 | XTR4 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 

4); hydrolase, acting on glycosyl bonds  

AT1G10140  0,57 3,44E-02  

ATMG00060 NAD5 0,57 7,05E-02 NAD5, NAD5C | Mitochondrial NADH dehydrogenase subunit 5. 

The gene is trans-spliced from the three different pre-cursors, 
NAD5a, NAD5b and NAD5c.  

AT4G39640 GGT1 0,56 1,01E-03 GGT1 | GGT1; gamma-glutamyltransferase/ glutathione gamma-

glutamylcysteinyltransferase  

AT1G67470  0,56 4,34E-02 protein kinase family protein  

AT3G15420  0,56 8,44E-04  

AT1G66970  0,56 4,97E-03 glycerophosphoryl diester phosphodiesterase family protein  

AT2G15490 UGT73B4 0,56 2,36E-03 UGT73B4 | UGT73B4; UDP-glycosyltransferase/ transferase, 

transferring glycosyl groups  

AT5G59820 ZAT12 0,56 4,77E-02 ZAT12, RHL41 | RHL41 (RESPONSIVE TO HIGH LIGHT 41); 

nucleic acid binding / transcription factor/ zinc ion binding  

AT4G28390 AAC3 0,55 3,53E-02 ATAAC3, AAC3 | AAC3 (ADP/ATP CARRIER 3); ATP:ADP 

antiporter/ binding  

AT3G10720  0,55 6,24E-03 pectinesterase, putative  

AT1G09415 NIMIN-3 0,55 8,92E-02 NIMIN-3 | NIMIN-3 (NIM1-INTERACTING 3)  

AT1G74490  0,54 1,06E-02 protein kinase, putative  

AT5G63690  0,54 4,03E-02  

AT4G28703  0,54 6,33E-02  

AT5G03240 UBQ3 0,54 6,15E-02 UBQ3 | UBQ3 (POLYUBIQUITIN 3); protein binding  

AT1G55850 CSLE1 0,54 6,49E-02 CSLE1, ATCSLE1 | ATCSLE1 (Cellulose synthase-like E1); 

cellulose synthase/ transferase, transferring glycosyl groups  

AT5G58120  0,54 2,89E-02 disease resistance protein (TIR-NBS-LRR class), putative  
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AT2G22300  0,53 5,77E-02 ethylene-responsive calmodulin-binding protein, putative (SR1)  

AT1G13330  0,53 5,31E-04  

AT5G09790 ATXR5 0,53 5,39E-03 ATXR5 | ATXR5 (Trithorax- related protein 5); DNA binding  

     

AT1G56220  0,53 9,55E-02 dormancy/auxin associated family protein  

AT3G25600  0,53 7,05E-02 calmodulin, putative  

AT1G49500  0,53 5,90E-02  

AT5G44290  0,52 6,83E-03 protein kinase family protein  

AT3G02550 LBD41 0,51 9,07E-02 LBD41 | LOB domain protein 41 / lateral organ boundaries domain 

protein 41 (LBD41)  

AT1G22280  0,50 1,72E-02 protein phosphatase 2C, putative / PP2C, putative  

AT2G40940 ERS1 0,50 4,94E-02 ERS, ERS1 | ERS1 (ETHYLENE RESPONSE SENSOR 1); receptor  

AT5G61010 ATEXO70E2 0,49 6,44E-02 ATEXO70E2 | ATEXO70E2 (EXOCYST SUBUNIT EXO70 

FAMILY PROTEIN E2); protein binding  

AT1G67100 LBD40 0,49 5,49E-02 LBD40 | LOB domain protein 40 / lateral organ boundaries domain 

protein 40 (LBD40)  

AT3G27220  0,49 4,21E-02 kelch repeat-containing protein  

AT1G51700 ADOF1 0,49 5,71E-03 ADOF1 | ADOF1 (Arabidopsis dof zinc finger protein 1); DNA 

binding / transcription factor  

AT4G16990  0,48 4,52E-02 disease resistance protein (TIR-NBS class), putative  

AT2G45290  0,48 2,20E-03 transketolase, putative  

ATMG00650 NADL4 0,48 1,93E-02 NAD4L | Encodes NADH dehydrogenase subunit 4L.  

AT1G68300  0,48 1,77E-02 universal stress protein (USP) family protein  

AT4G13850 GR-RBP2 0,48 8,48E-02 GR-RBP2, ATGRP2 | ATGRP2 (GLYCINE-RICH RNA-BINDING 

PROTEIN 2); RNA binding / double-stranded DNA binding / single-

stranded DNA binding  
AT2G01750 ATMAP70-3 0,48 4,52E-02 ATMAP70-3 | ATMAP70-3 (microtubule-associated proteins 70-3); 

microtubule binding  

AT2G22770 NAI1 0,47 4,36E-02 NAI1 | NAI1; DNA binding / transcription factor  

AT2G15580  0,47 6,13E-02 zinc finger (C3HC4-type RING finger) family protein  

AT4G18120 AML3 0,47 2,53E-02 AML3 | AML3 (ARABIDOPSIS MEI2-LIKE); RNA binding  

AT5G03380  0,46 9,50E-02 heavy-metal-associated domain-containing protein  

AT2G47730 GST6 0,46 2,19E-02 GST6, ATGSTF5, GSTF8, ATGSTF8 | ATGSTF8 

(GLUTATHIONE S-TRANSFERASE 8); glutathione transferase  

AT1G55920 SAT5 0,46 9,48E-02 SAT5, SAT1, AtSerat2;1 | AtSerat2;1 (SERINE 

ACETYLTRANSFERASE 1)  

AT2G37430  0,46 9,13E-02 zinc finger (C2H2 type) family protein (ZAT11)  

AT5G54940  0,44 4,37E-02 eukaryotic translation initiation factor SUI1, putative  

AT5G56980  0,44 7,97E-02  

AT2G39725  0,44 7,28E-02 complex 1 family protein / LVR family protein  

AT2G43330 ATINT1 0,43 4,63E-03 ATINT1 | ATINT1 (INOSITOL TRANSPORTER 1); carbohydrate 
transporter/ sugar porter  

AT4G11600 ATGPX6 0,43 8,91E-02 PHGPX, LSC803, ATGPX6 | ATGPX6 (GLUTATHIONE 
PEROXIDASE 6); glutathione peroxidase  

AT1G66200 ATGSR2 0,43 6,10E-02 ATGSR2 | ATGSR2 (Arabidopsis thaliana glutamine synthase clone 
R2); glutamate-ammonia ligase  

AT2G40270  0,42 6,75E-02 protein kinase family protein  

AT5G61560  0,41 7,40E-02 protein kinase family protein  

AT1G08570  0,41 5,68E-02 thioredoxin family protein  

AT1G63980  0,41 3,57E-02 D111/G-patch domain-containing protein  

AT3G27870  0,40 8,59E-02 haloacid dehalogenase-like hydrolase family protein  

AT2G37970  0,40 2,79E-02 SOUL heme-binding family protein  
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AT1G27090  0,40 9,55E-02 glycine-rich protein  

AT1G11950  0,40 1,67E-02 transcription factor jumonji (jmjC) domain-containing protein  

AT5G66500  0,40 2,08E-02 pentatricopeptide (PPR) repeat-containing protein  

AT5G21090  0,39 3,65E-02 leucine-rich repeat protein, putative  

AT5G54170  0,39 2,33E-02 similar to CP5 [Arabidopsis thaliana] (TAIR:AT1G64720); similar 
to putative nodule membrane protein [Medicago sativa] 

(GB:AAL57201); contains InterPro domain Lipid-binding START; 

(InterPro:IPR002913)  
AT4G26120  0,39 8,15E-02 ankyrin repeat family protein / BTB/POZ domain-containing protein  

AT2G43350 ATGPX3 0,39 4,90E-02 ATGPX3 | ATGPX3 (GLUTATHIONE PEROXIDASE 3); 

glutathione peroxidase  

AT5G04930  0,37 7,05E-02 ALA1 | ALA1 (AMINOPHOSPHOLIPID ATPASE1); ATPase, 

coupled to transmembrane movement of ions, phosphorylative 

mechanism  
AT3G57360  0,36 9,51E-02  

AT3G26300 CYP71B34 0,36 7,05E-02 CYP71B34 | CYP71B34 (cytochrome P450, family 71, subfamily B, 

polypeptide 34); oxygen binding  

AT2G30990  0,35 9,51E-02  

AT1G78890  0,35 2,40E-02  

AT3G11460  0,35 4,52E-02 pentatricopeptide (PPR) repeat-containing protein  

AT2G47720  0,33 4,92E-02 similar to AtATG18a (Arabidopsis thaliana homolog of yeast 

autophagy 18 (ATG18) a) [Arabidopsis thaliana] 

(TAIR:AT3G62770.2); contains domain WIPI-RELATED 
(PTHR11227:SF1); contains domain WD-REPEAT PROTEIN 

INTERACTING WITH PHOSPHOINOSIDES (WIPI)-RELATED 

(PTHR11227)  
AT1G71060  0,32 8,31E-02 pentatricopeptide (PPR) repeat-containing protein  

AT1G02305  0,32 6,83E-02 cathepsin B-like cysteine protease, putative  

AT1G64720 CP5 0,32 4,12E-02 CP5 | CP5  

AT1G19680  0,32 3,94E-02 protein binding / zinc ion binding  

AT4G31950 CYP82C3 0,32 9,17E-02 CYP82C3 | CYP82C3 (cytochrome P450, family 82, subfamily C, 

polypeptide 3); oxygen binding  

AT2G47960  0,30 8,29E-02  

AT4G31080   0,29 9,16E-02   

a
Genes of the MDR are underlined. Genes in bold encode mitochondrial proteins. 
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Supplemental Table 2.8. Primers used for cloning of the MDR promoters. 

Primer Sequence 

AT2G21640_FW AAAAAGCAGGCTTGAGAAAAAGATTTAGGCAAGA 

AT2G21640_RV AGAAAGCTGGGTCTGAAAACAGAAAGAAATCTCA 

AT2G04050_FW AAAAAGCAGGCTTTAAAGGTTCACCCGACTCT 

AT2G04050_RV AGAAAGCTGGGTTGTTGTCCTTCCTAATGTTGA 

AT2G41730_FW AAAAAGCAGGCTCAAAGTTAAACATCAAAGCAAAG 

AT2G41730_RV AGAAAGCTGGGTGTTTGCTTATTTTGATTTGAGAC 

AT2G03760_FW AAAAAGCAGGCTACTTAGTTCTCAATTTCTTGAG 

AT2G03760_RV AGAAAGCTGGGTTGTTGAGACTTGAGAGATCG 

AT5G51440_FW AAAAAGCAGGCTCGATGATGATGTTGAAGAGAAG 

AT5G51440_RV AGAAAGCTGGGTTTTTGGAAAGAGAAGAAGCTTA 

AT4G37370_FW AAAAAGCAGGCTCACATTGTAATTTGTACGTGAA 

AT4G37370_RV AGAAAGCTGGGTGTTTTAGATCTATTTTGGTGAG 

AT1G32870_FW AAAAAGCAGGCTGTAAATTTTTCAGATGAAAGTATT 

AT1G32870_RV AGAAAGCTGGGTCACTTTTTTCTCTCTCGTTATC 

AT3G61630_FW AAAAAGCAGGCTGAAATCCAGTTACAAAATAGGT 

AT3G61630_RV AGAAAGCTGGGTAGAGAGAGAGAGAGAGAGG 
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ABSTRACT 

 

To identify transcriptional regulators of plant mitochondrial retrograde regulation, a set of 

Arabidopsis thaliana genes that respond to multiple mitochondrial perturbation conditions was 

assembled, referred to as the mitochondrial dysfunction regulon (MDR; Chapter 2). Using a 

large-scale pairwise yeast one-hybrid screening approach against the REGIA transcription factor 

collection, 50 transcription factors (TF) were identified that bind to one or more of the MDR 

promoters. These TFs represent different transcription factor families, with the strongest 

enrichment for the APETALA2-ETHYLENE-RESPONSE ELEMENT BINDING PROTEIN 

(AP2-EREBP) and the NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION 

ACTIVATION FACTOR/CUP-SHAPED COTYLEDON (NAC) family. Gene ontology 

enrichment analysis showed overrepresentation of the “response to stress” GO term and 16 of the 

isolated TFs have been previously characterized to have a function in the stress response. 

Moreover, meta-analysis showed that several of the isolated TFs have an expression pattern 

similar to that of the MDR genes during stress conditions, indicating they could be candidate 

regulators of the MDR. However, further experiments will be required to assess the biological 

relevance of these novel regulatory interactions in planta.  
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INTRODUCTION 

 

Several studies have indicated that mitochondrial function is disturbed under adverse 

environmental conditions, and, in turn, alteration of mitochondrial function can affect plant stress 

tolerance (Giraud et al., 2008; Meyer et al., 2009; Shedge et al., 2010; Van Aken et al., 2010). 

One of the major effects of stress on plants is a disturbance of cellular metabolism that leads to 

the production of reactive oxygen species (ROS) (Dat et al., 2000). Mitochondrial processes are 

directly inhibited by the resulting oxidative damage (Sweetlove et al., 2002). Therefore, it is not 

surprising that a large part of plant stress responses is sensed in mitochondria, triggering 

retrograde feedback mechanisms to the nucleus to activate a defense response. Although it is 

known that mitochondria are involved in mediating and executing stress responses in plants, very 

little is understood about how this is regulated (Rhoads and Subbaiah, 2007). Likely signals that 

transmit the information to the nucleus are thought to be ROS and calcium originating from the 

mitochondria and mitochondrial redox and metabolic changes (Subbaiah et al., 1998; Rhoads et 

al., 2006; Schwarzlander and Finkemeier, 2013). In a typical signal transduction pathway, 

receptor proteins perceive the signal and activate a regulatory cascade that transmits the 

information to the nucleus. At the end of the pathway, one or more transcription factors are 

activated and cause altered expression of stress-responsive genes. These genes can be involved in 

further amplifying the stress response (e.g. secondary transcription factors) or in executing 

defense functions. So far, only one transcription factor has been reported that is involved in 

stress-related mitochondrial retrograde regulation (MRR) (Giraud et al., 2009). This illustrates 

our lack of knowledge about the underlying regulatory processes, and the need for further 

original research.   

Transcription factors are key regulators of spatiotemporal and stimulus-induced gene 

expression by binding to specific cis-regulatory elements in their target gene promoters and 

thereby activate or repress transcription. To understand how differential gene expression is 

regulated, it is important to identify transcription factor-DNA interactions and to model these 

interactions into transcriptional regulatory networks. Different methods have been developed to 

study protein-DNA interactions (PDIs), such as DNAse footprinting and chromatin 

immunoprecipitation (ChIP) (Walhout, 2006). However, these methods require the prior 

knowledge of the TF identity. The yeast one-hybrid (Y1H) system is a powerful assay that allows 
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the identification of transcriptional regulators binding to a DNA sequence of interest in a cell-

based assay (Li and Herskowitz, 1993). In this approach, the DNA bait, representing a full-length 

or a shorter promoter fragment (e.g. containing a particular cis-regulatory element) is cloned 

upstream of a reporter gene and integrated into the yeast genomic DNA. The second component 

of the Y1H system is the library that expresses prey proteins fused to a constitutive 

transcriptional activation domain. If the prey protein interacts with the DNA bait, the reporter 

gene is activated.  A high-throughput version of the Y1H system compatible with the Gateway 

cloning technique was developed by Deplancke et al., 2004. In this system, two reporter genes 

are used: the auxotrophic reporter Histidin3 (HIS3) allowing for nutritional selection on medium 

lacking histidin and the color producing marker LacZ encoding the β-galactosidase enzyme. 

Using two reporter systems allows the minimization of the uncertainty of the results of one 

particular assay and serves to decrease false positive results. 

To identify transcriptional regulators of plant mitochondrial retrograde regulation (MRR), 

we assembled a set of Arabidopsis genes whose expression significantly changed in multiple 

mitochondrial perturbation studies, referred to as the mitochondrial dysfunction regulon (MDR; 

Chapter 2). In a previous approach (Chapter 2), the co-expression of the MDR genes was 

exploited to identify a common cis-regulatory element, and led to the identification of five related 

NAC transcription factors involved in MRR. However, we hypothesized that other transcriptional 

regulators might be involved in the MDR regulation as 1) the MDR genes are regulated under a 

multitude of stress conditions (Chapter 2; Supplemental Figure 3.3; Zimmermann et al., 2003) 

and are therefore likely to be regulated by multiple transcription factors (Walther et al., 2007); 2) 

genes with a strong co-expression pattern are mostly commonly regulated by multiple TFs (Yu et 

al., 2003); and 3) gene regulation in eukaryotes is complex and cooperatively regulated by 

multiple transcription factors simultaneously (Wray et al., 2003). Here, we aimed at identifying 

unknown transcriptional regulators of the MDR, without any prior knowledge on cis-regulatory 

elements, by Y1H screening of their full promoter sequences. This approach revealed several 

candidate (MRR) transcriptional regulators of the MDR. However, further experiments will be 

needed to assess the biological relevance of these novel regulatory interactions in planta.   
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RESULTS  

 

Identification of transcriptional regulators of the MDR by Y1H screening 

 

Promoter sequences (2-kb intergenic regions upstream of the translational start codon) were 

successfully cloned for 12 MDR genes (AOX1a, At2g04070, At2g41730, At5g09570, HSP23.5, 

NDB4, ST, UGT74E2 and UPOX; Chapter 2) and six additional genes (At2g04040, At5g62480 

and UGT73C6) that are also targets of MRR (Van Aken et al., 2007), but did not meet the 

stringent selection criteria for general MRR responsiveness in Chapter 2. Promoter:HIS3 and 

promoter:LacZ reporter constructs were integrated into the genome of the YM4271 yeast strain. 

For each promoter, yeast clones with low self-activation of the HIS3 and LacZ reporter genes 

were searched and the concentration of 3-aminotriazole (3-AT) necessary to abolish background 

HIS3 expression was determined. Except for the UGT74E2 and AOX1a promoters, yeast clones 

with low self-activation of the reporter genes could be selected. However, as AOX1a is a model 

gene for MRR studies and UGT74E2 has an important role in drought tolerance in Arabidopsis, 

they were included for Y1H screening analyses.  

First, Y1H screening was performed with a cDNA library obtained from Arabidopsis cell 

suspension cultures. However, screening of several promoters did not yield any proteins 

annotated as transcriptional regulators, except for four LATERAL ORGAN BOUNDARIES 

transcription factors (LBD4, LBD17, LBD18 and LBD19), of which two (LBD4 and LBD19) 

had been previously marked as possibly unspecific interactors in the Y1H system (Dr. B. 

Berckmans, personal communication) (Berckmans, 2011). Next, the promoters were screened 

against the REGIA transcription factor (TF) library containing prey clones of 1394 Arabidopsis 

TFs (Paz-Ares, 2002). An overview of the identified potential interactors obtained by screening a 

pool of all the REGIA TF plasmids is depicted in Supplemental Table 3.1. The predominant TFs 

that were isolated were the HOMEOBOX PROTEIN 22 (ATHB22) and the NO APICAL 

MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED 

COTYLEDON (NAC) domain-containing protein AT3G12910. As they were identified with all 

promoters tested, we marked them as possibly unspecific interactors (see later). Other potential 

interactors were isolated with low frequency (mostly once) and, except for the ETHYLENE 

REPONSE FACTOR protein AT5G43410, we did not retrieve any common interactors of the 
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different MDR promoters. To overcome the technical difficulties presented by the abundance of 

ATHB22 and AT3G12910 and to address the specificity of the interactions, high-throughput 

pairwise interaction tests were performed with the individual REGIA TF clones, further referred 

to as matrix assays. The UGT74E2, UPOX and ST promoters were tested for interactions with the 

1394 TFs individually on 15 individual plates in the 96-well format (see Methods). After 

confirmation by retransformation of the reporter yeast strain, all identified interactors were 

further tested against eight other MDR promoters (Table 3.1; Figure 3.1). In addition, to test the 

specificity of TFs that interacted with many or all MDR promoters tested, the promoters of three 

cell cycle genes (E2Fa, DEL1 and CYC3;2) were included as a negative control (Berckmans et 

al., 2011a; Berckmans et al., 2011b) (data not shown). The matrix screens yielded 50 TFs, 

including a total of 172 potential PDIs (Table 3.1; Figure 3.1). Although several PDIs obtained 

from the pooled screens could be confirmed in these matrix assays, many were not confirmed. 

Moreover, many new interactors were found with the individual matrix screening assays, 

indicating a higher coverage of this system compared to the pooled screens. The interactors 

represented different TF families, with the strongest enrichment for the APETALE2-

ETHYLENE-RESPONSE ELEMENT BINDING PROTEIN (AP2-EREBP) family (Nakano et 

al., 2006), mainly DEHYDRATION RESPONSIVE ELEMENT BINDING (DREB) subfamily 

members (Sakuma et al., 2002) (Supplemental Figure 3.1), and the NAC family (Ooka et al., 

2003) (Supplemental Figure 3.2). Moreover, several TFs were isolated that bound multiple MDR 

promoters, indicating potentially common MDR regulators. Several interactors, including 

ATHB22 and AT5G43410 were found to bind to the three cell cycle promoters (data not shown), 

suggesting they might unspecifically interact with the reporter vectors (e.g. the minimal 

promoter) in the Y1H system.  
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Table 3.1. Identification of transcription factors that interact with MDR promoters by means of the Y1H matrix screening assay. (Continued). 

AT3G1102Q• DREB2B AP2/EREBP I 1+1 ++ ++ + ++ ++ ++ ++ ++ 
(DREB) 

AT3G16280 
AP2/EREBP I + I I 1+1 ++ 
(DREB) 

AT1G7373Q• EIL3/SLIM1 EIL 
I + + I NA NA NA NA NA NA NA NA 

AT4G28610 AT4G28610 GARP-G2-Iike 

AT5G15150 ATHB3 horneebox 

AT5G65310 ATHB5 horneebox 

AT4G36740 ATHB40 horneebox 

AT5G53980 ATHB52 horneebox 

AT4G31690 ABI3-VP1 
[ + I 

AT3G11580 AB13-VP1 
NA NA NA NA NA NA NA NA NA NA I ++ I 

AT4G33280 AB13-VP1 I + I I ++ __{~1 

AT5G67190 DEAR2 
AP2/EREBP 
(DREB) 

AT3G17609 HYH bZIP 
NA I + I 

AT1G48000 MYB112 MYB L <+l (t ) + I 

AT5G07580 
AP2/EREBP I + I I + 
(ERF) 

AT5G65130 AP2/EREBP NA I + + I I + I I + + 
(DREB) 

I + + ' 
AT1G0203Q• C2H2 

+ J NA NA NA NA NA NA NA NA 

AT1G2773Q• ZAT10 C2H2 
+ + + + 

AT5G6745o• AZF1 C2H2 
++ + + NA NA NA NA NA NA NA NA 

AT4G25490 DREB1B 
AP2/EREBP I + I NA NA NA NA NA NA NA NA 
(DREB) 

AT4G25470 DREB1C AP2/EREBP 
(DREB) 

AT4G25480 DREB1A 
AP2/EREBP 
(DREB) 

AT5G51990 DREB1D AP2/EREBP I + + + + ++ + ++ + 1+1 + ++ 
(DREB) 
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Figure 3.1. Network representation of the identified TF-promoter interactions. The network was constructed using 

the Cytoscape spring-embedded layout algorithm (Shannon et al., 2003). Promoters are indicated by rectangles and 

TFs by circles. The color code of the TFs represents the TF family: NAC (red), homeobox (green), AP2-EREBP 

(blue), and other (grey). Within the AP2-EREBP family, the ERF subfamily (pale blue) and the DREB (dark blue) 

are distinguished. 

 

DISCUSSION 

 

To identify transcriptional regulators of plant mitochondrial retrograde regulation, a Y1H 

screening approach was employed using MRR target genes (MDR genes) as a bait. As the Y1H 

system might yield false positive interactions, the biological significance of the identified PDIs 

needs to be further assessed in planta. Gene Ontology (GO) enrichment analysis of the 50 

isolated TFs showed overrepresentation of the “response to stress” GO term (GO:0006950; 3-

fold, P < 0.05). In addition, inspection of the literature revealed that 16 of the 50 identified TFs 

have a role in the stress response. DREB proteins are major TFs required for cold-inducible and 

osmotic stress-inducible gene expression (Nakashima et al., 2009). The DREB1A, DREB1B and 
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DREB1C transcription factors, which only bind to one or two out of the 11 MDR promoters 

tested, are known to mediate cold responsive gene expression (Liu et al., 1998). On the other 

hand, DREB1D, that appears to bind all MDR promoter tested, mediates osmotic stress 

responsive genes expression (Haake et al., 2002), corresponding with the expression pattern of 

the MDR genes that are induced by osmotic, but not by cold stress. DREB2A and DREB2B are 

also induced by osmotic stress and not by cold stress, and overexpression of the constitutively 

active DREB2A induces drought tolerance in Arabidopsis (Liu et al., 1998; Sakuma et al., 2006). 

Similarly to the previously identified MDR regulator, ANAC013 (Chapter 2), DREB2A and 

DREB2B proteins interact with RADICAL-INDUCED CELL DEATH1 (RCD1), that is 

suggested to play a role in the regulation of TF activities (Belles-Boix et al., 2000; Jaspers et al., 

2009; Vainonen et al., 2012). Likewise the MDR and ANAC013 expression patterns, DREB2B, 

together with another isolated TF, the ERF gene At2g33710, is specifically induced in 

proliferating leaves by stress (Skirycz et al., 2010) (Chapter 2, Addendum). Another DREB2-

related protein identified in the Y1H screens, DREB19 has been shown recently to mediate 

increased drought and salt stress tolerance in Arabidopsis (Krishnaswamy et al., 2011). Among 

the isolated ERF family proteins, RELATED TO AP2.5 (RAP2.5) and RAP2.6 have been 

demonstrated to act as a transcriptional repressor and transactivator, respectively, in the abscisic 

acid (ABA)-dependent salt stress response (Yang et al., 2005; Zhu et al., 2010; Krishnaswamy et 

al., 2011). RAP2.12 mediates hypoxia-responsive gene expression, consistent with the MDR co-

expression under low oxygen conditions. Interestingly, RAP2.12 belongs to the ERF family 

subgroup containing the HYPOXIA RESPONSIVE ERF2 (HRE2) of the MDR, that has also 

been implicated in the hypoxia response (Licausi et al., 2011a; Licausi et al., 2011b; Bailey-

Serres et al., 2012). ANAC102, that binds multiple MDR promoters in yeast, is important for seed 

germination during low oxygen stress and regulates the expression of five MDR genes among 

which AOX1a, At2g04040, and At2g41730 (Christianson et al., 2009). The NAC transcription 

factors ATAF1 and ORS1 have been implicated in multiple stress responses. Moreover, 

consistent with the binding results in yeast, the At2g41730 gene is up-regulated by ORS1 

overexpression in Arabidopsis (Wu et al., 2009; Balazadeh et al., 2011). Furthermore, the ZAT10 

and AZF2 Cys2/His2-type zinc finger proteins containing an associated amphiphilic repression 

(EAR) domain and the BASIC-LEUCINE ZIPPER bZIP30 are also involved in stress responsive 
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gene expression (Mittler et al., 2006; Rossel et al., 2007; Kodaira et al., 2011; Kouno and Ezaki, 

2012).  

For several TF families, members with closely related DNA binding domains were 

isolated in the Y1H screens. For example, the DREB1A, DREB1B, DREB1C and DREB1D 

DNA binding domains cluster in the phylogenetic analysis (Nakano et al., 2006). Moreover, the 

DREB1A, DREB1B and DREB1C genes lie in tandem in the genome and thus might have 

originated from recent gene duplications (Medina et al., 1999). Similarly to our results, 

DREB1A, DREB2B and DREB1D were commonly isolated in an Y1H screen of the stress 

responsive RD29A promoter, indicating they have similar DNA sequence preference (Mitsuda et 

al., 2010). Furthermore, we isolated three other closely related DREB proteins (DREB2A, 

DREB2B and DREB19) and three closely related BASIC LEUCINE ZIPPER DOMEIN (bZIP) 

proteins (bZIP29, bZIP30 and bZIP59). Although the similarity in DNA binding domain explains 

their similar binding capacities in the Y1H system, this does not necessarily indicate they all bind 

genuinely in planta. For example, if the TF is not expressed where and/or when the promoter is 

active, it is likely not a true regulator in planta. To prioritize candidate MDR regulators, the 

expression characteristics of the TFs were compared to that of the MDR genes (Supplemental 

Figure 3.3). As the MDR is mainly active under stress conditions, we clustered the identified TF 

and MDR genes under a number of perturbation conditions using the GENEVESTIGATOR 

hierarchical clustering tool (Zimmermann et al., 2004). At2g33710 and DREB19 as well as the 

previously identified ANAC013 and ANAC078 (Chapter 2) clustered together with the MDR 

genes, indicating they are potential MDR regulators. Moreover, DREB2A, ATAF1, ANAC102, 

ZAT10, RAP2.5, RAP2.6 and MYB112 also showed an expression pattern similar to that of the 

MDR genes, but under a smaller number of perturbation conditions compared to At2g33710 and 

DREB19. Moreover, At2g33710, DREB19, ATAF1 and ZAT10 are induced upon multiple 

mitochondrial perturbations, such as antimycin A (AA), rotenone, and oligomycin treatment as 

well as external H2O2 application (Ng et al., 2012, unpublished results; Clifton et al., 2012; our 

unpublished results). In addition, DREB2A is induced by AA, H2O2 and in the mitochondrial 

complex I deficient rug3 mutant (Kühn et al., 2011). RAP2.5 is induced by AA and H2O2, but 

down-regulated upon rotenone and oligomycin treatment, and RAP2.6 is down-regulated in the 

prohibitin deficient mutant phb3 (Van Aken et al., 2007). However, other isolated TFs that do not 

appear to be co-expressed with the MDR should not be excluded as candidate regulators, as TFs 
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often show low expression variation and are regulated at the post-transcriptional level. To 

conclude, we identified several candidate MDR regulators, but further experiments, such as ChIP 

will be indispensable to confirm these novel regulatory interactions in planta. 

 

METHODS 

 

Y1H screening 

Yeast strain YM4271 and destination vectors pMW#2 and pMW#3 were obtained from Dr. M. 

Walhout (University of Massachusetts Medical School, Worcester, MA, USA). The REGIA 

collection was provided by Dr. Franziska Turck (Max Planck Institute for Plant Breeding 

Research, Köln, Germany). Y1H library screening was performed as described in detail in 

Deplancke et al. (2006). For the matrix assays (individual prey transformations), the same 

approach was scaled down to the 96-well plate format (Vermeirssen et al., 2007). Prey plasmid 

transformations were performed by combining 20 µL of competent yeast cell suspension, 100 ng 

plasmid, and 100 µL Tris-EDTA(TE)/lithium acetate/polyethyleneglycol per well. After heat 

shock (20 min at 30°C), plates were centrifuged (for 10 s) and supernatant was removed. Yeast 

cells were resuspended in 20 µL TE of which 5 µL was spotted on selective medium (SD-His-

Ura-Trp; Clontech) and grown for 2-3 days at 30°C. Yeast transformants were freshly regrown 

on selective medium for 1-2 days at 30°C and subsequently transferred to selective medium 

containing 3-AT (at a concentration at which self-activation is minimal) and onto a nitrocellulose 

filter (Hybond-N; Amersham Biosciences) that has been placed on top of a non-selective YPD 

(Clontech) plate by means of the replicate plating technique (Deplancke et al., 2006). The 3-AT 

plates were replica-cleaned to remove excess yeast cells and yeast growth was monitored during 

3-10 days after transfer. The YPD plate was incubated overnight at 30°C and subsequently used 

for the β-galactosidase assay (Deplancke et al., 2006).  

 

Hierarchical clustering of gene expression profiles 

The expression of the 50 identified TFs and the 28 MDR genes (Chapter 2 and Van Aken et al. 

(2007)) was analyzed using the GENEVESTIGATOR meta-analysis tool (Zimmermann et al., 

2004) under a selection of conditions related to stress, biotic stress, temperature, hormone, 
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elicitor, chemical, nutrient, light intensity and light quality (1091 conditions and 3360 samples in 

total). Pearson correlation coefficient was used to hierarchically cluster together genes and 

conditions with similar behavior. 
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SUPPLEMENTAL DATA 

   

 

 

Supplemental Figure 3.1. Schematic overview of the identified regulatory interactions with NAC family 

transcription factors.  

Promoters are indicated by white rectangles and transcription factors by ovals. The color of the transcription factor 

node represents the NAC subgroup based on phylogenetic classification of NAC domains according to Ooka et al. 

(2003): ATAF subfamily (blue), NAM subfamily (red), and other subfamilies (grey). The line width of the edges 

represents the relative strength of the interaction in the Y1H system: positive for both HIS3 and LacZ (thick line); 

only positive for HIS3 (thin line). Interactions based on the activation of the LacZ reporter gene only were not 

reported here.  
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Supplemental Figure 3.2. Schematic overview of the identified regulatory interactions with AP2/EREBP domain 

transcription factors.  

Promoters are indicated by white rectangles and transcription factors by ovals. The color of the transcription factor 

node represents the AP2/EREBP subgroup based on phylogenetic classification of AP2/EREBP domains according 

to Nakano et al. (2006): group III (red), group IV (blue), group X (purple) and other (grey). The line width of the 

edges represents the relative strength of the interaction in the Y1H system: positive for both HIS3 and LacZ (thick 

line); only positive for HIS3 (thin line). Interactions based on the activation of the LacZ reporter gene only were not 

reported here.  
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Supplemental Figure 3.3. Comparison of 

the expression profiles of the identified 

transcription factors with that of the MDR 

genes under different stress-related 

conditions.  The meta-analysis  was 

performed using the 

GENEVESTIGATOR hierarchical 

clustering tool under 1091 perturbation 

conditions (Zimmermann et al., 2004). 

Only a part of the heat map, containing the 

conditions under which the MDR genes 

are commonly up-regulated is displayed 

here. The cluster containing the MDR 

genes is indicated with a purple box and 

includes two isolated TFs (DREB19 and 

At2g33710) that are indicated in yellow. A 

second gene cluster that is closely related 

to the MDR gene cluster and includes 

eight identified TFs is marked with a 

dashed box. 
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Supplemental Table 3.1. Overview of the promoters screened and the identified transcription factors by means of 

Y1H screening with a pool of the REGIA TF clones.  

Interactions that were confirmed (HIS3 positive or positive for both HIS3 and LacZ) in the Y1H matrix assays are 

indicated in bold underline. Interactions that were only confirmed by weak HIS3 activation are indicated in bold and 

not underline. Possible sticky interactors, as evidences by binding all promoters tested, including negative control 

promoter:reporter constructs, are indicated with an asterisk and were excluded for sequencing analysis in further 

screens after PCR detection with specific primers.  

Gene ID Other name Family HIS3 activation LacZ activation Hits 

ST (At2g03760) 

AT2G36610* ATHB22 homeobox ++ 
 

9 

AT3G12910* 
 

NAC + 
 

8 

AT3G62340 WRKY68 WRKY + 
 

1 

AT4G01580 
 

ABI3-VP1 + 
 

1 

AT3G18960 
 

ABI3-VP1 + 
 

1 

AT4G36740 ATHB40 homeobox +++ 
 

1 

AT4G31610 REM1 ABI3-VP1 + 
 

1 

AT5G43410 
 

AP2-EREBP (ERF) ++ 
 

1 

AT1G69780 ATHB13 homeobox + 
 

1 

AT4G31690 
 

ABI3-VP1 + + 1 

AT2G38340 DREB19 AP2-EREBP (DREB) + + 1 

AT5G07580 
 

AP2-EREBP (ERF) + 
 

1 

AT1G43160 RAP2.6 AP2-EREBP (DREB) +++ + 1 

      
UGT73C6 (At2g36790) 

AT2G36610* ATHB22 homeobox + 
 

4 

AT3G12910* 
 

NAC ++ 
 

4 

AT4G16430 
 

bHLH +++ 
 

1 

AT2G31370 
 

bZIP ++ + 1 

AT1G04370 ATERF14 AP2-EREBP (ERF) ++ 
 

1 

AT4G28140 
 

AP2-EREBP (DREB) +++ 
 

1 

AT2G24430 ANAC038/39 NAC + +++ 1 

      UPOX (At2g21640) 

AT3G12910* 
 

NAC ++ + 3 

AT2G36610* ATHB22 homeobox + 
 

1 

AT3G54340 AP3 MADS +++ 
 

1 

      UGT74E2 (At1g05680) 

AT2G36610* ATHB22 homeobox +++ ++ 2 

AT2G16770 BZIP23 bZIP ++ 
 

2 

AT4G25480 DREB1A AP2-EREBP (DREB) ++ 
 

2 

AT5G02840 LCL1 MYB-related +++ + 2 

AT3G12910* 
 

NAC +++ 
 

1 

AT2G43220 
 

- ++ 
 

1 

AT3G47640 PYE bHLH ++ 
 

1 

AT4G11070 WRKY41 WRKY + 
 

1 

AT4G30935 WRKY32 WRKY ++ ++ 1 

AT3G10580 
 

homeobox + + 1 

AT3G15210 ATERF4 AP2-EREBP (ERF) +++ ++ 1 

AT4G31610 REM1 ABI3-VP1 + + 1 

AT3G05200 ATL6 - + 
 

1 

AT5G65310 ATHB5 homeobox +++ ++ 1 

AT3G60490 
 

AP2-EREBP (DREB) ++ 
 

1 

AT1G12630 
 

AP2-EREBP (DREB) ++ ++ 1 

AT1G50640 ATERF3 AP2-EREBP (ERF) ++ 
 

1 
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Supplemental Table 3.1. Overview of the promoters screened and the identified transcription factors by means of 

Y1H screening with a pool of the REGIA TF clones. (Continued). 

AT5G43410 
 

AP2-EREBP (ERF) +++ ++ 1 

AT3G21880 
 

C2C2-CO-like ++ 
 

1 

AT1G53910 RAP2.12 AP2-EREBP (ERF) +++ ++ 1 

AT4G39070 
 

C2C2-CO-like ++ 
 

1 

AT2G33480 ANAC041 NAC +++ 
 

1 

AT2G47890 
 

C2C2-CO-like +++ 
 

1 

AT3G04730 IAA16 AUX/IAA +++ ++ 1 

AT5G49448 CPUORF4 - +++ + 1 

AT5G49450 BZIP1 bZIP + 
 

1 

AT3G01220 ATHB20 homeobox +++ 
 

1 

AT2G33710 
 

AP2-EREBP (ERF) +++ + 1 

AT1G01520 ASG4 MYB-related +++ + 1 

AT5G60910 AGL8 MADS +++ + 1 

AT1G72210 
 

bHLH +++ + 1 

AT5G58900 
 

MYB ++ + 1 

AT3G49760 BZIP5 bZIP +++ + 1 

AT1G69490 ANAC029 NAC +++ + 1 

AT5G51990 DREB1D AP2-EREBP (DREB) ++ + 1 

AT1G26260 CIB5 bHLH ++ 
 

1 

AT3G46070 
 

C2H2 (+) +++ 1 

AT2G24430 ANAC038/39 NAC (+) +++ 1 

      At2g04040 

AT3G12910* 
 

NAC ++ 
 

10 

AT2G36610* ATHB22 homeobox ++ 
 

5 

AT5G43410 
 

AP2-EREBP (ERF) ++ 
 

2 

AT2G38300 
 

GARP-G2-like ++ 
 

1 

AT4G37730 BZIP7 bZIP +++ 
 

1 

AT1G49130  
 

C2C2-CO-like +++ 
 

1 

AT4G33280  
 

ABI3-VP1 +++ + 1 

      At5g62480 

AT4G14540 NF-YB3 CCAAT +++ 
 

1 

AT1G75510 
 

- +++ 
 

1 

     
1 

At2g04070 

at1g16490 ATMYB58 MYB + 
 

1 

at3g61910 ANAC066 NAC + 
 

1 

      
At5g09570 

at5g60200 TMO6 C2C2--Dof + 
 

3 

at3g11580 
 

ABI3-VP1 + 
 

2 

at3g11020 DREB2B AP2-EREBP (DREB) + 
 

1 

at3g14180 ASIL2 Trihelix + 
 

1 

      
HSP23.5 (At5g51440) 

at2g18160 BZIP2 bZIP + 
 

1 

      AOX1a (At3g22370) 

at4g39250 ATRL1 MYB-related + 
 

1 

at2g13570 NF-YB7 CCAAT + 
 

1 

at3g06740 GATA15 C2C2-GATA + 
 

1 
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Supplemental Table 3.1. Overview of the promoters screened and the identified transcription factors by means of 

Y1H screening with a pool of the REGIA TF clones. (Continued). 
 
at5g53980 ATHB52 homeobox + 

 
1 

at2g01060   GARP-G2-lile +   1 

 

 

 

Supplemental Table 3.2. Primers used for promoter cloning. 

Primer Sequence 

AttB4F_P-UPOX ATAGAAAAGTTGACAACATTGATCATACGAGATCAAAAAGG 

AttB1r_P-UPOX TGTACAAACTTGACGCTGAAAACAGAAAGAAATCTCATGAA 

AttB4F_P-UGT73C6 ATAGAAAAGTTGTGATAATTAGTGTAACTTTCACATACTCGA 

AttB1r_P-UGT73C6 TGTACAAACTTGGCGGACGATGCAACTTTAGTAAGAACC 

AttB4F_P-At2g04040 ATAGAAAAGTTGGAAGACAAGACTCGCGTATTTGTA 

AttB1r_P-At2g04040 TGTACAAACTTGCCGTGTTTAACGTTGAAGGCCTTTCCCTTT 

AttB4F_P-ST ATAGAAAAGTTGAATGAATCTGCTTTACCAACTTAGTTC 

AttB1r_P-ST TGTACAAACTTGCGTTGTTGAGACTTGAGAGATCG 

AttB4F_P-At2g04070 ATAGAAAAGTTGGTCATAAAGGTTGTTCCTAAGAGCTATCTCAAAGT 

AttB1r_P-At2g04070 TGTACAAACTTGCGTTGTTTTAGGTTGTTAATTTTTTTTTTGTCC 

AttB4F_P-NDB4 ATAGAAAAGTTGCTATTTCATAAATTGAACCTTAATTAAAGACATC 

AttB1r_P-NDB4 TGTACAAACTTGGTGGTTGATGATTTCTCAAACCTCAGAT 

AttB4F_P-UGT74E2 GGGGACAACTTTGTATAGAAAAGTTGGATTTCACCCATGATATACTG 

AttB1r_P-UGT74E2 GGGGACTGCTTTTTTGTACAAACTTGTTTCTCCTTCTTTTTAATCTTGT 

AttB4F_P-AOX1a ATAGAAAAGTTGATCTGAAGAGCTTCTAGC 

AttB1r_P-AOX1a TGTACAAACTTGTGTTTCAAATCGGAAAAAGTG 

AttB4F_P-At2g41730 ATAGAAAAGTTGATCAACCGATTGATCAATTGG 

AttB1r_P-At2g41730 TGTACAAACTTGGTTTGCTTATTTTGATTTGAG 

AttB4F_P-HSP23.5 ATAGAAAAGTTGGTAAAATCGATCTAAACCGACTTTCAAAT 

AttB1r_P-HSP23.5 TGTACAAACTTGGATTTTTGGAAAGAGAAGAAGCTTAGAAT 

AttB4F_P-At5g09570 ATAGAAAAGTTGGTCTGGAAGTGGAGGATTATTTTCTAC 

AttB1r_P-At5g09570 TGTACAAACTTGGTGTTTGAATTTCAGATGTTGAAGTGTTAAG 

AttB4F_P-At5g62480 ATAGAAAAGTTGTATTAGCTTTCTCTGTTTGTGTTTTGG 

AttB1r_P-At5g62480 TGTACAAACTTGCGATTTTTTTATTCTTCTTTAGACTTGAGAGTATT 
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ABSTRACT 

 

Due to their sessile lifestyle, plants can not evade fluctuating environmental conditions. To cope 

with these stresses, plants have evolved robust adaptation methods driven by extensive 

transcriptional reprogramming. As stress responses are energetically costly, they are tightly 

regulated through complex signal transduction pathways. It is becoming increasingly evident that 

subcellular organelles such as mitochondria and chloroplasts are involved in stress signal 

transduction. During adverse environmental conditions, the functioning of these organelles is 

rapidly perturbed. Therefore, they are considered as sensors of stress conditions that 

communicate to the nucleus to initiate an appropriate defense response, in a process termed 

retrograde regulation. However, retrograde regulation mechanisms and components of plants are 

still poorly understood. Here, we present the involvement of the Arabidopsis thaliana NAC 

transcription factor ANAC102 in the stress response during chloroplast-derived oxidative stress 

conditions. During normal conditions, ANAC102 is localized to the chloroplasts. However, upon 

increasing ROS production in the chloroplasts, ANAC102 relocalizes to the nucleus to alter 

oxidative stress-responsive gene expression. Moreover, altered ANAC102 levels affect plant 

oxidative stress tolerance. Our results indicate that ANAC102 could play an important role in 

chloroplast retrograde regulation of the stress response. 
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INTRODUCTION 

 

Plant cells contain three genetic compartments (nucleus, chloroplast and mitochondrion) with the 

nucleus carrying the largest part of genomic information. This genetic compartmentalization 

requires communication to coordinate their activities during the organelles’ development and 

function. This communication includes both anterograde (nucleus to organelle) and retrograde 

(organelle to nucleus) signals. Anterograde mechanisms mediate gene expression in organelles in 

response to endogenous and environmental stimuli that are perceived in the nucleus. Retrograde 

regulation transmits signals that originate in the mitochondria or the chloroplasts to regulate 

nuclear gene expression, and is further referred to as mitochondrial retrograde regulation (MRR; 

Chapter 1) and chloroplast retrograde regulation (CRR), respectively. 

One important function of chloroplast retrograde regulation is to coordinate the 

biosynthesis of photosynthetic and metabolic protein complexes manufactured in the chloroplast 

with those subunits encoded in the nucleus, for instance during chloroplast biogenesis (Pogson et 

al., 2008). Furthermore, CRR has been shown to be important in modulating chloroplast 

functioning at optimal levels in accordance to fluxes in metabolites and changes in environmental 

conditions. For example, during fluctuating light conditions, the expression of photosynthesis-

related genes is modulated to maximize photosynthesis and decrease ROS production due to 

photo-inhibition (Anderson et al., 1995). In addition to the vital role in regulating chloroplastic 

processes, it is also becoming clear that CRR plays a significant role in the plants’ adaptive 

response to stresses (Fernandez and Strand, 2008). Metabolic processes in the chloroplast, 

especially the photosynthetic reactions, are extremely sensitive to stress. The chloroplasts could 

therefore act as sensors of changes in the environment and coordinate the nuclear-encoded 

adaptive stress response. The involvement of chloroplasts in the stress response has been mainly 

studied under conditions of excess light. When light energy exceeds the limit that plants can use 

for photosynthesis, excitation pressure and consequently ROS production increases in the 

chloroplast, and leads to induction of antioxidant gene expression and adjustment of 

photosynthetic machinery to reduce light harvesting (Klenell et al., 2005; Rossel et al., 2007; 

Woodson and Chory, 2008). Cold stress also targets chloroplast function by damaging the 

thylakoid membrane and slowing down photosynthesis (Crosatti et al., 2012), resulting in 

increased excitation pressure and ROS production and CRR has been shown to mediate cold 



Retrograde relocalization of a chloroplastic NAC transcription factor 

 

145 

 

acclimation responses (Heidarvand and Maali Amiri, 2010). Moreover, it is becoming 

increasingly evident that CRR is also important during defense responses to pathogens 

(Padmanabhan and Dinesh-Kumar, 2010; Nomura et al., 2012). Chloroplast-derived singlet 

oxygen (
1
O2), hydrogen peroxide (H2O2), and oleic acids have been shown to regulate defense-

related and salicylic acid responsive genes (Danon et al., 2005; Jiang et al., 2009; Maruta et al., 

2012).  

Although the CRR pathways are mechanistically not well understood, several signals 

have been reported that trigger retrograde signaling from chloroplasts: photosynthetic redox 

signals, reactive oxygen species (ROS), intermediates of chlorophyll biosynthesis and plastid 

gene expression-dependent signals (Figure 4.1) (Fernandez and Strand, 2008). In addition, 

several chloroplastic protein components have been described that can generate the retrograde 

signals, such as the GENOMES UNCOUPLED1 (GUN1), EXECUTER1 and EXECUTER2 

(EX1 and EX2), and STATE TRANSITION7 (STN7). Furthermore, the nuclear transcription 

factor ABSCISIC ACID INSENSITIVE4 (ABI4) was identified as a nuclear component of CRR, 

repressing light induction of photosynthetic genes when the chloroplast function is impaired 

(Figure 4.1) (Koussevitzky et al., 2007). However, the signaling cascades that relay these 

chloroplast signals to the nucleus remain unclear.  

 

 

Figure 4.1. Chloroplast retrograde signaling pathways in plants.  
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Figure 4.1. Chloroplast retrograde signaling pathways in plants. (Continued). 

Four different pathways are displayed (a-d). a)  Reactive oxygen species (ROS) accumulate during exposure to stress 

or excess light. Singlet oxygen (
1
O2) accumulation in the chloroplast is mediated to the nucleus via the chloroplastic 

proteins EXECUTER1 and EXECUTER2 and activates genes involved in programmed cell death. Hydrogen 

peroxide (H2O2) is more stable, can migrate from the chloroplasts and induce an acclimatory response. The crosstalk 

between 
1
O2 and H2O2-mediated signaling might contribute to the fine-tuning of the stress response and set the 

threshold for cell death or resistance.  b) Redox signals are mediated through the reduction state of plastoquinone 

(PQ) or via elements on the reducing site of photosystem I (PSI) and are involved in modulating metabolism in 

response to fluctuating light conditions. The chloroplastic protein kinase STATE TRANSITION7 (STN7) 

participates in the transfer of the redox signal to the nucleus. c and d) Signals from the accumulation of chlorophyll 

biosynthesis intermediates (Mg-protoporphyrin IX) and inhibition of plastid gene expression (PGE) are mainly 

involved in genome coordination. These two pathways converge in the chloroplast at the chloroplastic GENOMES 

UNCOUPLED1 (GUN1) protein. In response to the GUN1-derived signal, the transcription factor ABSCISIC ACID 

INSENSITIVE4 (ABI4) prevents binding of factors required for light-induced expression of nuclear-encoded 

photosynthesis genes.  

LHCB, gene encoding photosystem II chlorophyll a/b-binding protein.  

From Woodson and Chory (2008). 

 

Important candidates for mediating CRR are proteins that can move from the chloroplast to the 

nucleus (Krause et al., 2012). Proteins can be sequestered in the chloroplast before they act as 

transcriptional regulators in the nucleus. Their storage and release from chloroplasts and their 

subsequent translocation to the nucleus could allow a fast response to plastid perturbations upon 

certain triggers (Krause et al., 2012). Evidence for this was recently provided by the identification 

of the chloroplast envelope-bound plant homeodomain (PHD) transcription factor PHD TYPE 

TRANSCRIPTION FACTOR WITH TRANSMEMBRANE DOMAINS (PTM) that is, upon 

perturbation of chloroplastic function, proteolytically cleaved and released to the nucleus (Sun et 

al., 2011). PTM mediates CRR-mediated down-regulation of nuclear photosynthetic genes by 

activating ABI4 transcription in a manner associated with histone modifications. Another protein 

candidate for mediating chloroplast to nucleus communication is Whirly1 that has been shown to 

move from the chloroplast to the nucleus to effect the expression of pathogenesis-related genes 

(Isemer et al., 2012).  

In this study, we aimed at characterizing the Arabidopsis NO APICAL 

MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED 

COTYLEDON (NAC) family transcription factor ANAC102 that was previously identified as a 

putative MDR (mitochondrial dysfunction regulon; Chapter 2) regulator by means of Y1H 

screening (Chapter 3). ANAC102 is induced upon various stress conditions, thereby showing 

substantial co-expression with the MDR. Interestingly, ANAC102 was shown to localize to the 
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chloroplasts (Marshall et al., 2012), indicating it could be a candidate regulator of organelle 

(chloroplast)-mediated stress signal transduction. We showed that upon increasing chloroplastic 

ROS production, ANAC102 relocalizes to the nucleus to repress MDR gene expression. 

Moreover, altered ANAC102 levels affect plant tolerance towards oxidative stress conditions. 

Thus, we characterized ANAC102 as a candidate regulator of chloroplast retrograde regulation of 

the stress response.   

 

RESULTS 

 

ANAC102 interacts with MDR promoters in the yeast one-hybrid system 

 

In Chapter 3, we aimed at identifying regulators of target genes of mitochondrial retrograde 

regulation, referred to as the mitochondrial dysfunction regulon genes (MDR). Therefore, we 

screened the MDR promoters for interacting transcription factors using the Y1H system. In a 

high-throughput Y1H matrix screening assay against the REGIA transcription factor (TF) library 

(Paz-Ares, 2002), the NAC family transcription factor ANAC102 was identified (Chapter 3). 

ANAC102 interacts with the UPREGULATED BY OXIDATIVE STRESS (UPOX), UDP-

GLYCOSYL TRANSFERASE 74E2 (UGT74E2), ALTERNATIVE OXIDASE 1a (AOX1a), 

UGT73E2, DETOXIFICATION1 (AtDTX1), SULFOTRANSFERASE (ST), ATP-BINDING 

CASSETTE B4 (ABCB4), NAD(P)H DEHYDROGENASE B4 (NDB4), and At2g41730 

promoters, as evidenced by induction of the Histidin3 (HIS3) reporter construct. Induction of the 

β-galactosidase (LacZ) reporter gene was only observed with the UGT74E2 and At2g04040 

promoters, but not with the other MDR promoters tested. The Y1H interaction data for three of 

the MDR promoters (AOX1a, UPOX and UGT74E2) are displayed in Figure 4.2. To confirm the 

interactions in planta, chromatin immunoprecipitation (ChIP) experiments were performed on 

transgenic Arabidopsis seedlings overexpressing a green fluorescent protein (GFP)-tagged 

version of ANAC102 (ANAC102-GFP
OE

). Preliminary ChIP data show enrichment of UGT74E2 

and At2g04040 promoter fragments after precipitation with the anti-GFP antibody, relative to 

ACTIN2 (data not shown). Although repeat experiments are necessary to confirm these ChIP 

results and to assess the interaction with other MDR promoters, these data indicate that 

ANAC102 is a potential regulator of the MDR in Arabidopsis. 
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Figure 4.2. ANAC102 binds the MDR promoters in the yeast one-hybrid system.  

ANAC102 interacts with the AOX1a, UPOX, and UGT74E2 promoters as shown by the Y1H assay. Yeast reporter 

strains containing ANAC102 fused to the GAL4 activation domain (ANAC102-AD) induce the HIS3 reporter 

constructs compared to yeast cells containing only the AD (AD-only), as revealed by growth on 3-aminotriazole (3-

AT), a competitive inhibitor of HIS3. Induction of the LacZ reporter gene was only observed with the UGT74E2 

promoter, as revealed by the β-galactosidase assay (X-gal), but not with the AOX1a and UPOX promoters (data not 

shown).  

 

 

 

ANAC102 localizes to the chloroplasts 

 

It was previously demonstrated that ANAC102 potentially localizes to the chloroplasts (Marshall 

et al., 2012). In this study, the open reading frame (ORF) of ANAC102 was fused in frame with  

GFP both at the N- or C-terminus and placed under the control of the constitutive cauliflower 

mosaic virus 35S (CaMV35S) promoter (Figure 4.3a). While transient expression of the N-

terminal GFP fusion of ANAC102 (GFP-ANAC102) in the leaf epidermis of Nicotiana 

benthamiana led to both a nucleocytosolic and a putative cytoskeletal localization, the C-terminal 

ANAC102-GFP fusion colocalized with the autofluorescence of the chloroplasts and was also 

present in the nucleus (Marshall et al., 2012). Next, the subcellular localization was assessed in 

leaf epidermis cells of at least two independent transgenic Arabidopsis plants. While no GFP-

positive primary transformants overexpressing GFP-ANAC102 could be obtained, the nuclear and 

chloroplastic localization of ANAC102-GFP could be confirmed in several independent 

ANAC102-GFP
OE

 plants (Figure 4.3b). Within the chloroplasts, GFP fluorescence was not evenly 

distributed but appeared in speckles. 
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Because overexpression of a GFP-tagged protein could lead to protein mistargeting, 

transgenic plants expressing the N- and C-terminal GFP fusion construct under the transcriptional 

control of the native ANAC102 promoter were constructed (promANAC102:GFP-ANAC102 and 

promANAC102:ANAC102-GFP) (Figure 4.3a). Unfortunately, no GFP fluorescence was observed 

for both constructs and this was probably due to the low expression of ANAC102 in leaves during 

normal growth conditions. Because ANAC102 transcript levels are constitutively increased in 

leaves of catalase2-deficient mutants (cat2) that have decreased hydrogen peroxide (H2O2) 

scavenging capacity (Vandenabeele et al., 2004; Vanderauwera et al., 2005; Vanderauwera et al., 

2011), the promANAC102:ANAC102-GFP constructs were transformed in the cat2 mutant 

background, resulting in a strong GFP fluorescence (Figure 4.3b). While overexpression of 

ANAC102-GFP resulted in both a nuclear and a chloroplastic localization, native expression of 

ANAC102-GFP led to an exclusive chloroplastic localization in the cat2 mutant (Figure 4.3b). 

Moreover, native expression of GFP-ANAC102 showed no GFP fluorescence in cat2. In 

accordance with the putative chloroplastic localization, ANAC102 contains a predicted 

chloroplast transit peptide (cTP) at its N-terminus (Figure 4.3c) (Emanuelsson et al., 2007). 

Positioning of GFP at the N-terminus of ANAC102 presumably shields the cTP and, therefore, 

the observed cytoskeletal localization in GFP-ANAC102
OE

 plants probably resulted from 

blockage of the cTP, leading to mistargeting of ANAC102. 

To further consolidate the chloroplastic localization and determine the suborganellar 

location of ANAC102, intact chloroplasts were isolated from leaves of both ANAC102-GFP
OE

 

and promANAC102:ANAC102-GFP lines. Subsequently, chloroplasts were lysed in a hypotonic 

medium and chloroplast thylakoids were separated from the stroma fraction by centrifugation. 

GFP-tagged proteins were detected by protein gel blot analysis using a monoclonal anti-GFP 

antibody. Preliminary results indicated that ANAC102-GFP is present in intact chloroplasts, 

consolidating the GFP localization data (Figure 4.3d). Within the chloroplast, ANAC102-GFP 

was mainly found in the thylakoid fraction.  
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Figure 4.3. ANAC102 is targeted to the chloroplasts. 

(a) Constructs used to determine the subcellular localization of ANAC102. 

(b) ANAC102-GFP localizes to the chloroplasts. Subcellular localization of ANAC102-GFP in stable transgenic 

Arabidopsis wild-type and cat2 lines. Bars, 20 µm. GFP, green fluorescent protein; Merged, overlay of GFP and 

chlorophyll (red) fluorescence images.  
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Figure 4.3. ANAC102 is targeted to the chloroplasts.(Continued). 

(c) Schematic representation of the different domains present in ANAC102. ANAC102 encodes a 312 amino acid 

protein with a conserved NAC domain (50-208 amino acids). The NAC domain contains the DNA binding domain 

(BD) and a predicted bipartite nuclear localization signal (indicated in yellow) (Kikuchi et al., 2000). The N-terminal 

region contains a predicted chloroplast transit peptide (cTP) (Emanuelsson et al., 2007). 

(d) Suborganellar localization of ANAC102-GFP. Intact chloroplasts were isolated from leaves of ANAC102-GFP
OE

 

and promANAC102:ANAC102-GFP plants and fractionated into stromal and thylakoid fractions. Fifteen micrograms of 

each fraction was separated by SDS-PAGE, and protein gel blot analysis was performed using a monoclonal anti-

GFP antibody. 

 

 

Next, the targeting properties of the different domains of ANAC102 were assessed by making 

GFP-tagged truncated versions of ANAC102 (Figure 4.4a). First, to functionally validate the 

targeting properties of the predicted cTP, a construct was made in which the N-terminal domain 

of ANAC102 (1-43 amino acids), that includes the predicted cTP sequence, was fused in frame 

with GFP (cTPANAC102-GFP) and placed under the constitutive promoter CaMV35S (Figure 4.4a). 

While transient expression of full length ANAC102-GFP in N. benthamiana resulted in a nuclear 

and chloroplastic localization, cTPANAC102-GFP displayed a nucleocytosolic localization (Figure 

4.4b). On the other hand, ANAC102-GFP proteins that lack this N-terminal domain (Δ cTP 

ANAC102- GFP) displayed an exclusive nuclear localization (Figure 4.4b). 
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Figure 4.4. Deletion constructs of ANAC102-GFP. 

(a) Schematic representation of the full-length and deletion constructs.   

(b) Transient expression of the deletion constructs in leaf epidermal cells of N. benthamiana. Similar results were 

obtained with independent experiments. cTP, chloroplast transit peptide; merged, overlay of GFP and chlorophyll 

(red) fluorescence images. Bars, 10 µm. 

 

 

Relocalization of ANAC102 during oxidative stress conditions 

 

The chloroplastic localization of ANAC102 is at first sight contradictory with its role to regulate 

nuclear gene expression. Therefore, we hypothesized that ANAC102 proteins might redistribute 

to the nucleus under a certain stimulus. Oxidative stress-induced subcellular relocalization has 

been reported for a number of proteins (Ahlfors et al., 2004; Kaminaka et al., 2006). Therefore, 
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we assessed whether the subcellular localization of ANAC102 changes during oxidative stress 

conditions. Together with the mitochondria and peroxisomes, chloroplasts are the major ROS 

production sites. To increase ROS levels in the chloroplasts, we used the herbicide methyl 

viologen (MV, 1,1’-dimethyl-4,4’-bipyridinium dichloride), also known as paraquat. MV is a 

redox-active compound that in light accelerates the generation of superoxide radicals (O2
•-
) and 

H2O2 in chloroplasts (Mehler, 1951) (Figure 4.5a). PromANAC102:ANAC102-GFP lines (cat2) were 

grown in vitro for two weeks on half-strength (½) MS on nylon mesh and were subsequently 

transferred to ½MS containing 50 μM MV. Whereas ANAC102-GFP colocalized exclusively 

with chloroplasts prior to MV treatment, GFP fluorescence was also observed in nuclei after 6 h 

of MV treatment (Figure 4.5b). 

 

 

 

Figure 4.5. ANAC102 relocalization from the chloroplasts to the nucleus by MV. 
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Figure 4.5. ANAC102 relocalization from the chloroplasts to the nucleus by MV. (Continued) 

(a) Schematic representation of the mode of action of MV in the light. MV accepts electrons (e
-
) from photosystem I 

and transfers them to molecular oxygen (O2). This leads to the formation of superoxide radicals (O2
•-
) and 

regenerates oxidized MV, again available to accept electrons from photosystem I and start the cycle again. O2
•-
 is 

converted to H2O2 by superoxide dismutase. H2O2 can freely diffuse between subcellular compartments and is 

scavenged by peroxisomal catalases. Enzymes are indicated in bold.  

(b) ANAC102 relocalizes to the nucleus upon MV treatment in cat2 mutants. Under non-stressed conditions, 

ANAC102-GFP was exclusively localized to the chloroplasts. After 6 h of MV treatment, ANAC102-GFP was 

localized both to the chloroplasts and the nuclei (indicated with an arrow). Similar results were obtained in 

independent experiments. Merged, merged images of GFP and chlorophyll fluorescence images.  

 

 

Next, we assessed whether ANAC102 is proteolytically processed upon MV treatment. 

Therefore, we treated ANAC102-GFP
OE

 and promANAC102:ANAC102-GFP (cat2) plants with 50 

μM MV as described above and visualized GFP-tagged proteins on a protein gel blot with anti-

GFP antibody. Both in the ANAC102-GFP
OE

 and the promANAC102:ANAC102-GFP lines, the full 

length ANAC102-GFP (~63 kDa) and a band that corresponds in size with ANAC102-GFP 

without the N-terminal cTP (Δ cTP ANAC102-GFP; ~58 kDa) were detected (Figure 4.6). 

Moreover in ANAC102-GFP
OE 

lines, additional cleavage products of ANAC102-GFP were 

detected (~45 and ~30 kDa) irrespective of the MV treatment (Figure 4.6a). Because 

overexpression leads to a nuclear localization, the cleavage of a C-terminal region of 

approximately 18 kDa could be necessary for release from the chloroplasts. Unfortunately, we 

could not detect the presence of these cleavage products in the promANAC102:ANAC102-GFP lines 

upon MV treatment (Figure 4.6b) and, thus, could not directly link the relocalization with the 

MV-induced processing of ANAC102. 
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Altered ANAC102 levels affect oxidative stress tolerance 

 

As ANAC102 likely relocalizes from the chloroplast to the nucleus during oxidative stress, we 

assayed the effect of altered ANAC102 levels on plant stress tolerance under those conditions. 

Therefore, we generated transgenic Arabidopsis lines overexpressing ANAC102 under the control 

of the CAMV35S promoter. Two independent homozygous overexpression lines (ANAC102
OE1

 

and ANAC102
OE2

) with elevated ANAC102 transcript levels (35-fold and 143-fold, respectively; 

assayed with qRT-PCR analyses) were selected. The T-DNA insertion mutant SALK_030702, in 

which a T-DNA was inserted into the second exon of the ANAC102 gene, was obtained from the 

SALK collection (Alonso and Stepanova, 2003). Homozygous mutants of this line had 6.5% 

residual ANAC102 transcript levels. Two-week-old control grown wild-type and ANAC102 

mutant plants were transferred to ½MS agar plates supplemented with 1 or 2 µM MV and rosette 

growth was visually monitored throughout the treatment. After one week of MV treatment, the 

rosette area of the strongest overexpression line (ANAC102
OE2

) was larger and seemed to have 

lower anthocyanin pigmentation (Figure 4.7). However, when the MV treatment was prolonged 

to five weeks, plants of both overexpression lines (ANAC102
OE1

 and ANAC102
OE2

) had 

completely died, while the wild-type plants remained green with visibly high anthocyanin 

pigmentation (Figure 4.7).  

Figure 4.6. Processing of ANAC102.  

ANAC102-GFP
OE

 (a) and 

promANAC102:ANAC102-GFP (cat2; b) lines 

were grown for 2 weeks on ½MS agar plates 

and subsequently treated with 50 μM MV. 

Fifteen micrograms of protein were separated 

by SDS-PAGE, and protein gel blot analyses 

were performed with a monoclonal anti-GFP 

antibody. The full-length (FL) ANAC102-GFP 

(63 kDa), the ANAC102-GFP without cTP (Δ 

cTP ANAC102-GFP; 58 kDa) are indicated by 

an arrow. GFP
OE 

plants were used as a positive 

control for GFP signal. F, free GFP. 
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Figure 4.7. ANAC102 overexpression lines are more sensitive to MV-mediated oxidative stress. 

Phenotype of the ANAC102
OE

 lines during 2 µM MV treatment. Two-week-old wild-type (WT) and ANAC102
OE

 

lines (OE1 and OE2) grown under control conditions (0 d) were transferred to 2 µM MV-containing ½MS medium 

and rosette growth was monitored until 5 weeks after transfer.  

 

 

Next, we assessed whether alterations in ANAC102 expression levels also affect tolerance to 

other oxidative stress-related conditions. First, the performance of ANAC102
OE

 and ANAC102
KO 

plants was assayed during conditions of increased photorespiration, that promotes the 

intracellular generation of H2O2. Therefore, a bioassay was used in which photorespiration in the 

peroxisomes is increased by restricting gas exchange within Petri plates (Mühlenbock et al., 

unpublished results; Vanderauwera et al., 2012; see Methods). Whereas the strongest ANAC102 

overexpression line (ANAC102
OE2

) was visibly more susceptible to photorespiratory H2O2, the 

ANAC102
KO

 plants showed an increased performance (Figure 4.8). These observations were 

confirmed by measurements of the photosynthetic performance (Figure 4.8). In a second assay, 

postgermination growth and early development of ANAC102 mutant lines under oxidative stress 
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was examined by germinating and growing the plants on ½MS medium containing the herbicide 

3-amino-1,2,4-triazole (3-AT), an inhibitor of the peroxisomal H2O2 scavenger catalase (Gechev 

et al., 2005). Under low (1 µM) 3-AT concentration, ANAC102 overexpression seedlings showed 

an increased rosette area, indicating they have a better growth performance under these mild 

oxidative stress conditions (Supplemental Figure 4.1ai). However, under severe (2 – 8 µM) 3-AT 

stress, ANAC102
KO

 had an increased performance as evidenced by a larger rosette area (under 2 

µM 3-AT) and less chlorophyll loss (under 2 and 8 µM 3-AT), as assessed by visual observation 

(Supplemental Figure 4.1aii). In a third assay, tolerance to exogenously applied H2O2 was 

assessed by germinating and growing plants on medium supplemented with H2O2. Whereas no 

visible phenotype was observed for the overexpression lines, ANAC102
KO

 seedlings had a better 

performance on mild (1 – 2 mM) H2O2 concentrations (Supplemental Figure 4.1b). When grown 

on 1 mM H2O2, the rosette area of ANAC102
KO

 seedlings was visibly larger than that of wild-type 

plants. When grown on 2 mM H2O2, wild-type plants showed a retarded development and 

chlorophyll loss, whereas knockout seedlings developed with milder symptoms. To conclude, 

these data indicate that ANAC102 overexpression increases sensitivity to oxidative stress, 

possibly by inhibiting the stress response and the concomitant growth reduction, whereas reduced 

ANAC102 levels lead to higher tolerance. Morover, the impaired stress-induced growth reduction 

of ANAC102 overexpressing plants appears to increase yield and performance of plants under 

very mild stress conditions.  
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Figure 4.8. Altered ANAC102 levels affect tolerance to photorespiratory H2O2 stress.  

(a) Wild-type (WT), ANAC102
OE

 (OE1 and OE2), and ANAC102
KO

 (KO) plants were grown for 2 weeks under 

control conditions and subsequently subjected to photorespiratory H2O2 stress conditions for 5 weeks.  

(b) Photosystem II maximum efficiency (Fv’/Fm’) of WT, ANAC102
OE

 (OE1 and OE2), and ANAC102
KO

 (KO) 

plants subjected to photorespiratory H2O2 stress conditions for 3 weeks. 

 

 

ANAC102 represses oxidative stress-mediated induction of the MDR genes 

 

We previously showed that ANAC102 binds the promoters of several MDR genes in the Y1H 

system, indicating it could regulate the MDR in planta. Gene expression analysis using 

GENEVESTIGATOR (Zimmermann et al., 2004) revealed that the MDR genes as well as 

ANAC102 are strongly up-regulated by MV-induced oxidative stress (Figure 4.9a). To further 

assess the spatiotemporal expression pattern of ANAC102 upon MV treatment, transgenic 

Arabidopsis plants were generated in which the ANAC102 promoter was transcriptionally fused 

to GUS. Under nonstressed conditions, GUS staining was observed in parts of the root system, 
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cotyledons and faintly in older leaves of two-week-old seedlings (Figure 4.9b), similar to results 

obtained in Christianson et al. (2009). However, ANAC102 promoter activity was increased in the 

aerial tissues following MV exposure, with the strongest induction after 6 h and 9 h of treatment 

(Figure 4.9b).  

To examine the role of ANAC102 in regulating MDR gene expression, we assessed the 

effect of altered ANAC102 levels on MDR transcript levels during normal and oxidative stress 

conditions. Wild-type and mutant ANAC102 transgenic lines were germinated and grown for 2 

weeks on ½MS and subsequently transferred to ½MS supplemented with 50 µM MV, as 

described above. We followed the expression of five MDR genes (AOX1a, AtDTX1, ST, 

UGT73E2, and UGT74E2) in time in mock- and MV-treated wild-type and ANAC102 mutant 

plants. These five genes were strongly induced upon MV treatment in wild-type plants (Figure 

4.9c). However, the induction was partially abolished in ANAC102
OE

 lines compared to wild-type 

plants, indicating that ANAC102 could function as a transcriptional repressor of these genes 

under oxidative stress conditions (Figure 4.9c). In ANAC102
KO

 plants, the MDR transcript levels 

were not altered when compared to the wild-type situation under both nonstressed and oxidative 

stress conditions (data not shown).  

 

 

Figure 4.9. ANAC102 overexpression partially represses oxidative stress-induced MDR gene expression. 
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Figure 4.9. ANAC102 overexpression partially represses oxidative stress-induced MDR gene expression. 

(Continued). 

(a) ANAC102 and its target MDR genes are induced after MV treatment. Expression ratios of MV treatment relative 

to mock treatment in green tissue were obtained from the AtGenExpress abiotic time series (Kilian et al., 2007) with 

the GENEVESTIGATOR meta-analysis tool (Zimmermann et al., 2004).  

(b) Spatiotemporal expression pattern of ANAC102 during MV treatment visualized by histochemical GUS staining.  

(c) Expression profile of AOX1a, AtDTX1, ST, UGT73E2, and UGT74E2 during MV treatment in wild-type (WT) 

plants and two independent ANAC102
OE

 lines (OE1 and OE2). Values are expressed relative to the 6 h-mock-treated 

wild-type (indicated by time point 0). Data represent average ± SE (n = 3 qRT-PCR technical repeats). Similar 

results were obtained in a biological repeat experiment.  

 

 

 

DISCUSSION 

 

Adverse environmental conditions such as drought, heat stress and pathogen assaults negatively 

affect plant growth and development. Upon exposure to stress, plants regulate a variety of genes 

with the aim to enable them to adapt to these stresses. Complex transcriptional regulatory 

networks are involved in regulating stress-mediated gene expression, involving both 

transcriptional activation and repression to ensure the tight regulation of the stress response 

(Yamaguchi-Shinozaki and Shinozaki, 2006). Several transcription factor families, such as 

AP2/EREBP, NAC, WRKY, bZIP, MYB, and bHLH have been found to control downstream 

gene expression in various stress signal transduction pathways.  

 The NAC family is one of the largest plant-specific transcription factor families with 

more than 100 members in Arabidopsis (Ooka et al., 2003) and has been implicated in a wide 

range of developmental processes, and pathogen defense and abiotic stress responses (Olsen et 

al., 2005a). The NAC proteins are characterized by the presence of a conserved N-terminal NAC 

domain that contains five subdomains involved in DNA binding, nuclear localization and the 

formation of homo- or heterodimers with other NAC proteins (Xie et al., 2000; Duval et al., 

2002; Ernst et al., 2004). Based on similarities in the NAC domain amino acid sequences, NAC 

proteins are classified into 18 subfamilies (Ooka et al., 2003). In contrast to the N-terminal NAC 

domain, the C-terminal regions of NAC proteins are highly divergent (Ooka et al., 2003) and 

mediate the transcriptional activity (Xie et al., 2000; Jensen et al., 2010). 

 ANAC102 belongs to the ATAF subfamily of the NAC transcription factor family that 

includes the Arabidopsis ATAF1 (ANAC002), ATAF2 (ANAC081) and ANAC032 (Ooka et al., 
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2003). Genes encoding these ATAF subfamily members show some degree of co-expression as 

they are commonly expressed in root tissue, in old leaves and during salt stress (Jensen et al., 

2010). Besides the induction by salt stress, ANAC102 transcript levels are increased by osmotic, 

cold, UV-B and oxidative stress and pathogen infection, but decreased by heat stress 

(Zimmermann et al., 2004). Most NAC genes shown to be induced by cold are repressed by heat 

and vice versa (Jensen et al., 2010). Moreover, ANAC102 and ATAF2 are induced by a 

combination of cold and light treatment that affects the photosynthetic machinery and chloroplast 

redox status (Soitamo et al., 2008). ATAF1 negatively regulates drought and biotic stress 

responsive gene expression (Lu et al., 2007; Wang et al., 2009b). ATAF2 functions as a repressor 

or activator of pathogenesis related genes, depending on the growth conditions (Delessert et al., 

2005; Wang et al., 2009a). ANAC102 was recently characterized to mediate hypoxia resistance 

of seeds (Christianson et al., 2009). 

 We previously identified five closely related transmembrane domain-containing (NAC 

WITH TRANSMEMBRANE MOTIF 1-LIKE [NTL]) NAC transcription factors as positive 

regulators of the mitochondrial dysfunction regulon (MDR) genes during mitochondrial 

retrograde regulation (Chapter 2). By means of Y1H screening (Chapter 3), several other 

candidate TFs that bind to the MDR promoters were identified. Among them, ANAC102 shows 

substantial co-expression with the MDR. Interestingly, ANAC102 is localized to the chloroplasts 

under nonstressed conditions, indicating it could mediate chloroplast signals to regulate MDR 

gene expression. We showed that upon chloroplast-initiated oxidative stress, ANAC102 

relocalizes to the nucleus and represses MDR gene expression. Moreover, altered ANAC102 

levels affect plant tolerance towards oxidative stress conditions. Thus, we characterized 

ANAC102 as a potential signaling component of chloroplast retrograde regulation of the stress 

response.  

 

ANAC102 is located to the chloroplasts and relocalizes to the nucleus during oxidative 

stress 

 

ANAC102 translationally fused to GFP (ANAC102-GFP) was previously demonstrated to 

localize to the chloroplasts (Marshall et al., 2012). Strong overexpression of ANAC102-GFP 

resulted in a dual targeting to the chloroplasts and the nucleus, indicating that ANAC102 harbors 
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both a functional chloroplast transit peptide (cTP) and nuclear localization signal (NLS). 

Interestingly, expression of ANAC102-GFP under the control of its native promoter resulted in an 

exclusive chloroplastic localization, indicating hierarchical dominance of the cTP over the NLS. 

Furthermore, deletion of the N-terminal end of ANAC102 containing the predicted cTP resulted 

in an exclusive nuclear localization, indicating that this region is important for chloroplast import. 

However, this N-terminal region alone did not localize to the chloroplast, indicating that other 

regions of ANAC102 might also be important for chloroplast import. 

The existence of nuclear regulators of gene expression that are also targeted to an 

organelle (mitochondria or chloroplast) is becoming increasingly evident in plants (Krause and 

Krupinska, 2009; Krause et al., 2012). Storage or sequestration of nuclear regulators in organelles 

is a way to control gene expression. Upon specific environmental and developmental stimuli that 

are perceived in the organelle, the release of the prefabricated inactive transcription factor and 

subsequent translocation to the nucleus allows rapid transcriptional responses. However, for most 

organelle-targeted nuclear regulators, their release from the organelle has not been studied so far. 

We could trigger relocalization of ANAC102-GFP from the chloroplasts to the nucleus in cat2 

mutant lines expressing native levels of ANAC102-GFP by using MV, a redox active compound 

that leads to the formation of O2
•-
 and H2O2 in the chloroplasts. Because of its relative stability, 

H2O2 can easily migrate from the chloroplasts to adjacent compartments (Bienert et al., 2006; 

Mubarakshina et al., 2010). The lack of the H2O2-scavenging enzyme catalase, that plays a 

crucial role in maintaining low levels of photorespiratory H2O2 in the peroxisomes (Mhamdi et 

al., 2010), but also acts as a sink for intracellular H2O2 (Willekens et al., 1997), might further 

perturb ROS homeostasis and enhance ROS-induced changes in the cellular redox state. Several 

cleavage products of ANAC102-GFP were observed by protein gel blot analysis of ANAC102-

GFP
OE

 lines that contain ANAC102-GFP in both the chloroplasts and the nucleus. This could 

indicate that proteolytic processing might play a role in the release of ANAC102 from the 

chloroplasts. Unfortunately, we could not detect these cleavage products in the native GFP 

expression lines (under both control and MV conditions) and can therefore not rule out the 

possibility that the observed cleavage products are the result of ANAC102-GFP overexpression. 

On the other hand, it is also possible that the nuclear isoform has the same size as the chloroplast 

protein, as was observed for the dual targeted Whirly1 protein (Grabowski et al., 2008). Upon 

import into the chloroplasts, the N-terminal target peptide is cleaved off, and the resulting mature 
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protein is released from chloroplasts and accumulates in the nucleus (Krause et al., 2005; Isemer 

et al., 2012). Additional experiments are necessary to clarify these issues. It will be necessary to 

confirm that, after MV treatment, the nuclear-localized ANAC102-GFP originates from the 

chloroplast and is not the result of increased MV-mediated ANAC102-GFP expression or 

alternative processing. Photoactivation of chloroplast-localized ANAC102 fusion proteins to a 

photoactivatable 4.(PA) variant of GFP (ANAC102-PA-GFP) (Patterson and Lippincott-

Schwartz, 2002) prior to MV treatment will allow tracking of their intracellular dynamics. 

Moreover, the development of an ANAC102-specific antibody is crucial. Antibodies raised 

against the full-length ANAC102 were produced, but lacked specificity presumably by the 

presence of the conserved NAC domain. Therefore, the more divergent C-terminal domain could 

be used to produce more specific antibodies.  

 Although we provide the first evidence for the relocalization of a chloroplastic NAC 

transcription factor upon chloroplast-initiated oxidative stress, the mechanism of relocalization is 

still unclear. The perturbed chloroplastic redox state could modify ANAC102 directly or 

indirectly by changing an unidentified NAC-binding protein that, in turn, binds or alters 

ANAC102. ANAC102 has two closely positioned cysteine residues that could serve as a redox 

sensor (Heine et al., 2004; Liu et al., 2005). Once modified, ANAC102 has to cross the 

chloroplast membrane(s). Several translocation mechanisms are plausible, such as transport by 

vesicles, trafficking by envelope transporters, stromule tip shedding and close 

intercompartimental contacts (Krause and Krupinska, 2009; Krause et al., 2012). Moreover, 

oxidative stress can change the permeability of membranes (Arpagaus et al., 2002; Krause et al., 

2012) and/or disrupt the chloroplast structure. However, preliminary electron microscopy 

experiments showed that the chloroplast ultrastructure was not affected at the same times and 

conditions of relocalization (data not shown).  

  

ANAC102 is a regulator of nuclear gene expression and affects oxidative stress tolerance 

 

It was previously shown that altered ANAC102 levels affect nuclear gene expression in 

Arabidopsis, more specifically, during the low oxygen stress response (Christianson et al., 2009). 

A NAC domain consensus binding site was overrepresented in the promoters of the differentially 

expressed genes, indicating that ANAC102 directly regulates nuclear gene expression by binding 
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the promoters of its target genes. Here, we demonstrated that ANAC102 binds the promoters of 

the MDR genes in the Y1H system and preliminary ChIP experiments confirmed these 

observations in planta. The MDR genes were previously identified as general targets of 

mitochondrial retrograde regulation (Chapter 2). However, gene expression analysis using 

GENEVESTIGATOR revealed that besides mitochondria-dependent stimuli, the MDR is also 

induced under specific chloroplast dysfunction conditions, such as treatment with inhibitors of 

photosystem II or carotenoid biosynthesis, but not by inhibitors of chloroplast protein synthesis 

(Supplemental Figure 4.2) (Zimmermann et al., 2004). Moreover, several MDR genes are 

amongst the most strongly induced genes in the SAL1-PAP chloroplast retrograde pathway, that 

is involved in high light and drought stress signaling (Estavillo et al., 2011). In addition, the MDR 

is strongly up-regulated by MV treatment that initiates ROS production in the chloroplast 

(Zimmermann et al., 2004; Kilian et al., 2007; Figure 4.9). These observations indicate that the 

MDR is regulated by retrograde signals from both the mitochondria and the chloroplasts. 

Moreover, ANAC102 itself is upregulated by both chloroplast and mitochondrial perturbations 

(Van Aken and Whelan, 2012). In this regard, a recent study indicated that retrograde signals 

from both organelles might interact to affect nuclear gene expression, as ABI4, a well known 

chloroplast retrograde regulator, was shown to be involved in mitochondrial retrograde regulation 

as well (Giraud et al., 2009). On the other hand, it has been suggested that crosstalk between the 

mitochondria and the chloroplasts (likely through redox active molecules and/or ROS) or indirect 

effects of perturbation of one organelle on the other could affect retrograde signaling from either 

organelle (Woodson and Chory, 2008; Schwarzlander et al., 2012). Taken together, these 

observations indicate that mitochondrial and chloroplast retrograde regulation are connected 

processes.  

MV-mediated induction of the MDR is dampened by ANAC102 overexpression, 

indicating that ANAC102 acts as a transcriptional repressor during these conditions. Moreover, 

genes encoding the light-harvesting chlorophyll a/b binding proteins LIGHT-HARVESTING 

CHLOROPHYLL B-BINDING 2 (LHCB2:4) and EARLY LIGHT-INDUCIBLE PROTEIN2 

(ELIP2) that are down- and up-regulated, respectively, upon chloroplast perturbation, are 

changed in the same direction in ANAC102
OE 

(Nott et al., 2006; Christianson et al., 2009). In 

addition, expression of ABI4 is reduced in ANAC102
KO

 under low oxygen stress (Christianson et 

al., 2009). These data strongly indicate that ANAC102 has a role in mediating chloroplast signals 
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to regulate nuclear gene expression. However, further experiments integrating relocalization 

experiments and gene expression analysis upon various chemical treatments that inhibit 

chloroplast function are required to clarify the role of ANAC102 in chloroplast retrograde 

regulation. Moreover, it would be interesting to test the effect of altered ANAC102 levels on the 

expression of CRR target genes, such as LHCB2:4 and ELIP2, during these conditions.  

As ANAC102 is synergistically and antagonistically involved in the low oxygen response, 

and the consensus NAC binding site is enriched in both the ANAC102
OE

 induced and repressed 

genes, it was suggested that ANAC102 could function both as an activator and a repressor (Olsen 

et al., 2005b; Christianson et al., 2009). Most NAC proteins characterized so far are 

transcriptional activators (Tran et al., 2004). However, increasing evidence emerges that NAC 

transcription factors can also function as transcriptional repressors. For instance, the calmodulin 

(CaM)-binding NAC protein CBNAC functions as a CaM-mediated repressor (Kim et al., 2007). 

Moreover, the VASCULAR-RELATED NAC-DOMAIN (VND)-INTERACTING 2 (VNI2) 

contains both an activator and a repressor domain, and as a result, acts either as an activator or 

repressor depending on the cellular conditions and the cis-acting elements (Yang et al., 2011). 

Interestingly, ATAF2, the closest homolog of ANAC102 has also been shown to function as a 

repressor or activator, depening on the growht conditions (Delessert et al., 2005; Wang et al., 

2009b). As the MDR gene expression is positively regulated by NTL NAC transcription factors 

through the MDM NAC binding site (Chapter 2), it is possible that ANAC102 could occupy the 

MDM under certain conditions, thereby preventing binding and transcriptional activation by the 

NTLs. However, we did not observe an interaction of ANAC102 with the MDM cis-regulatory 

element in the Y1H assay (data not shown). Further detailed ChIP experiments will be needed to 

reveal the ANAC102 binding site in the MDR promoters.  

Altered ANAC102 levels affect tolerance to oxidative stress conditions. As the MDR, 

including AOX1a, has previously been implicated in oxidative stress tolerance (Chapter 2), 

failure of MDR induction in ANAC102
OE

 plants could be responsible for the observed phenotype. 

ANAC102
OE

 plants showed reduced growth retardation and anthocyanin accumulation compared 

to wild-type plants during early stages of MV treatment. Plants frequently reduce growth as part 

of the adaptive stress response to save energy and resources (Skirycz and Inze, 2010), and 

induction of the non-energy conserving alternative respiration has been implicated in this 

response (Sieger et al., 2005). In addition, a protective role for anthocyanins has been suggested 
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as scavengers of ROS (Zhang et al., 2011) and they commonly accumulate during various stress 

responses (Chalker-Scott, 1999). Moreover, prolongation of the severe MV stress resulted in 

completely bleached ANAC102
OE

 seedlings, indicating accelerated cell death, whereas the wild-

type plants seemed to cope with the stress and remained partially green. In this regard, AOX has 

been implicated as a “survival protein” by reducing ROS production and thereby dampening 

programmed cell death (PCD) induction during stress (Robson and Vanlerberghe, 2002; Van 

Aken et al., 2009). Thus, ANAC102
OE

 appears to have an impaired stress response. To reveal 

whether altered AOX1a levels are responsible for the observed phenotype (impaired growth 

retardation and accelerated cell death), AOX1a OE and KO plants will be analyzed under MV 

stress conditions.  

A constitutive activation of the stress response would be energetically costly, and the 

reallocation of resources towards defense decreases plant overall fitness (Heil and Baldwin, 

2002). Therefore, plants need a tight control of the defense response involving both 

transcriptional activation and repression mechanisms (Kazan, 2006). In this regard, RAP2.1 was 

characterized as a repressor that is induced upon stress and negatively regulates the DREB-

mediated cold and drought stress response by binding the DRE cis-regulatory element (Dong and 

Liu, 2010). We suggest that ANAC102 might be important for fine-tuning the stress response. 

Whereas under severe stress conditions, the reduced growth retardation of ANAC102 

overexpression plants decreases survival rate, this results in increased yield under very mild 

stress conditions. Thus, ANAC102 might be involved in the switch between growth and the stress 

response under adverse conditions, as was previously suggested for the AOX1a protein function 

(Sieger et al., 2005). Genomewide identification of ANAC102 target genes using inducible 

overexpression constructs as well as chromatin immunoprecipitation and determining ROS levels 

in ANAC102 overexpression lines will provide further insight into the function of ANAC102 in 

the stress response. 
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METHODS 

 

Plant growth conditions and stress treatments 

 

A. thaliana (L.) Heynh ecotype Columbia (Col-0) plants (wild type) were grown until stage 1.04 

(unless stated otherwise; 4th true leaf 1 mm in size) (Boyes et al., 2001) on half-strength (½) 

Murashige and Skoog (MS) medium (Duchefa Biochemie; http://www.duchefa.com/), 1% (w/v) 

sucrose, 0.7% (w/v) agar, pH 5.7 at 21°C and under a 16-h light/8-h dark photoperiod, 150 μmol 

m
-2

s
-1

 light intensity and 50% relative humidity. For the ANAC102 relocalization and processing 

experiments, wild-type and mutant seeds were sown and germinated on nylon mesh on ½MS 

plates. At stage 1.04, plants were transferred to ½MS plates containing 50 μM MV. For the 

ANAC102 processing experiments, a pool of 32 plants was harvested at each time point. Two 

independent experiments were carried out (independent sets of plants sown and treated on 

different dates). For the qRT-PCR analyses of the MDR genes, wild-type, ANAC102 

overexpression and knock-out lines were treated under the same conditions as the relocalization 

experiment. At each time point, three biological samples of six plants were harvested. For the 

MV stress assay, 2-week-old mesh-grown plants were transferred to ½MS plates supplemented 

with 2 μM MV. For the photorespiration-promoting conditions, plants were grown under control 

conditions for two weeks. Then, the petri plates were sealed with parafilm to restrict gas 

exchange. For the H2O2 stress assays, plants were germinated and grown on ½MS medium 

supplemented with 1, 2, 4 or 8 mM H2O2 (Merck) or supplemented with 1, 2, 4, or 8 µM 3-AT 

(Acros Organics). The stress assays were performed with at least two biological repeats. The PSII 

maximum efficiency (Fv’/Fm’) was determined with a PAM-2000 chlorophyll fluorometer and 

ImagingWin software application (Walz; Effeltrich, Germany) on light-adapted plants. 

 

Cloning of open reading frames and promoters 

 

The full-length open reading frame (with and without stop codon), the sequence encoding the 

putative chloroplast targeting peptide (cTP), the ORF without the cTP, the ORF without the C-

terminal region and the promoter of ANAC102 were amplified by polymerase chain reaction 

(PCR) from first-strand cDNA and genomic DNA of A. thaliana (L.) Heynh. ecotype Columbia 
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(Col-0), respectively, with gene/promoter-specific primers extended with the attB sites for 

Gateway cloning (Invitrogen Carlsbad, CA, USA; Supplemental Table 4.1). PCR reactions were 

run with high-fidelity Phusion DNA polymerase (Finnzymes OY, Espoo, Finland) and fragments 

were cloned into the Gateway entry vectors (Invitrogen) according to the manufacturer’s 

instructions. 

 

Generation of transgenic Arabidopsis plants 

 

GFP fusion plants - Constitutive promoter-driven expression clones were generated with the 

binary destination vectors pK7FWG2 and pK7WGF2 (Karimi et al., 2007), resulting in C- and 

Nterminal GFP protein fusions, respectively, under the control of the cauliflower mosaic virus 

35S (CaMV35S) promoter. Endogenous promoter-driven translational fusions were created with 

the MultiSite Gateway technology (Invitrogen) that combined the ANAC102 ORF and GFP 

fragments downstream of the endogenous promoter in the pK7m34GW destination vector 

(Karimi et al., 2007). 

Overexpression plants – A constitutive promoter-driven expression construct was generated in 

the binary destination vector pK7WG2D (Karimi et al., 2007). 

All constructs were transferred into the Agrobacterium tumefaciens strain C58C1 harboring the 

virulence plasmid MP90. 

Loss-of-function plants – Homozygous plants were selected from the SALK_030702C T-DNA 

insertion line by genomic PCR with gene-specific and T-DNA-specific primers. The expression 

level of ANAC102 was determined by qRT-PCR. 

 

Transient expression and stable genetic transformation 

 

All GFP-protein fusion constructs were transiently expressed in leaf epidermal cells of 5-week-

old wild-type tobacco (Nicotiana benthamiana) by A. tumefaciens–mediated leaf infiltration 

(Sparkes et al., 2006). For stable expression, the constructs were transformed into wild-type or 

catalase-deficient plants (CAT2HP2 (cat2); 7% residual catalase activity) (Vandenabeele et al., 

2004) by Agrobacterium-mediated floral dip (Clough and Bent, 1998). Kanamycin-resistant 

plants were selected on ½MS medium (Duchefa Biochemie, Haarlem, The Netherlands), 1% 
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(w/v) sucrose, 0.7% (w/v) agar, pH 5.7 and 35 mg.L-1 kanamycin (Sigma-Aldrich, St. Louis, 

MO, USA) at 21°C and 16-h light/8-h dark photoperiod. Homozygous lines with a single T-DNA 

locus were selected by segregation analysis. 

 

Chloroplast fractionation experiments 

 

Chloroplasts were isolated and fractionated into stroma and thylakoids from 3.4 g leaves of 4-

week-old A. thaliana (wild type, ANAC102-GFPOE and promANAC102:ANAC102-GFP) plants 

according to the method described by (Lamkemeyer et al., 2006). 

 

Y1H screening 

 

Yeast strain YM4271 and destination vectors pMW#2 and pMW#3 were obtained from Dr. M. 

Walhout (University of Massachusetts Medical School, Worcester, MA, USA). The REGIA 

collection was provided by Dr. Franziska Turck (Max Planck Institute for Plant Breeding 

Research, Köln, Germany). Design of the yeast reporter strains was done as described in detail 

(Deplancke et al., 2006). Primers used for cloning of the promoters are displayed in Supplemental 

Table 4.1. For the screening of the REGIA collection, the 1394 prey plasmids were individually 

transformed in the reporter yeast strains by means of a high-throughput transformation system in 

the 96-well format (Deplancke et al., 2006; Vermeirssen et al., 2007). Twenty microliter of 

competent yeast cell suspension, 100 ng plasmid, and 100 µL Tris-EDTA(TE)/lithium 

acetate/polyethyleneglycol were combined per well. After heat shock (20 min at 30°C), plates 

were centrifuged (for 10 s) and supernatant was removed. Yeast cells were resuspended in 20 µL 

TE of which 5 µL was spotted on selective (SD-His-Ura-Trp; Clontech) medium, on SD-His-

Ura-Trp containing the appropriate concentration of 3-AT (Acros Organics) to minimize self-

activation, and on a nitrocellulose filter (Hybond-N; Amersham Biosciences) that has been placed 

on top of a non-selective YPD (Clontech) plate. Growth on 3-AT was monitored during 3-10 

days after transfer. The YPD plate was incubated overnight at 30°C and subsequently used for the 

β-galactosidase assay (Deplancke et al., 2006).  
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Chromatin immunoprecipitation 

 

The ChIP experiments were done as described (Bowler et al., 2004; Berckmans et al., 2011) 

(Chapter 2). For the quantitative PCR analysis, specific primers were designed for the UGT74E2 

and AtDTX1 promoter regions by means of primer-BLAST at the NCBI website 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Rozen and Skaletsky, 2000) and tested for 

amplification specificity by melt-curve analysis before use.  

 

qRT-PCR experiments 

 

Total RNA and first-strand cDNA were prepared with TRIzol Reagent (Invitrogen) and iScript 

cDNA Synthesis Kit (Bio-Rad), respectively according to the manufacturer’s instructions. As a 

template in the subsequent PCR, 5 μL of a 1:8 diluted first-strand cDNA was run on the iCycler 

iQ (Bio-Rad) with the SYBR Green I Master kit (Roche Diagnostics) according to the 

manufacturer’s instructions. All individual reactions were done in triplicate. Primers were 

designed with the Universal ProbeLibrary Assay Design center ProbeFinder software (Roche; 

http://www.roche-applied-science.com/; Supplemental Table 4.1). For the expression analysis, 

values were normalized against ACTIN-RELATED PROTEIN 7 (ARP7). The Δ cycle threshold 

method (Livak and Schmittgen, 2001) was applied for relative quantification of transcripts. 

 

Promoter-GUS analysis 

 

The 1.5-kb upstream region of the translational start site of ANAC0102 was amplified by PCR 

from Arabidopsis Col-0 genomic DNA with primers (Supplemental Table 4.1) and cloned into 

pKGWFS7 (Karimi et al., 2002), generating an in-frame GFP-GUS fusion. The construct was 

transformed into Arabidopsis wild-type (Col-0). GUS assays were performed as described 

(Beeckman and Engler, 1994).  
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Protein extraction and western blot analysis 

 

Total protein extracts were prepared by grinding leaf material (100 mg) in 200 μL extraction 

buffer (100 mM HEPES (pH 7.5), 1 mM EDTA, 10 mM β-mercaptoethanol and 1 mM 

phenylmethanesulfonylfluoride) and a protease inhibitor cocktail (COMPLETE; Roche). 

Insoluble debris was removed by centrifugation at 20800 x g for 15 min at 4°C. Protein 

concentrations were determined with the Bradford method (Zor and Selinger, 1996). Proteins (15 

μg) were separated on a 12.5% SDS PAGE gel, transferred to a P membrane (Millipore; 

http://www.millipore.com/) and immunodetected with the Living Colors A.v. Monoclonal 

antibody (JL-8; Clontech Laboratories; http://www.clontech.com/) for the detection of GFP-

tagged proteins by means of the Western Lightning kit (GE-Healthcare; 

http://www.gehealthcare.com/). 

 

Fluorescence microscopy 

 

For fluorescence microscopy, a confocal microscope 100M with software package LSM 510 

version 3.2 was used (Zeiss; http://www.zeiss.com/), equipped with a 63x water-corrected 

objective (numerical aperture 1.2) to scan the leaf epidermis and underlying cell layers. GFP 

fluorescence was imaged in a single channel setting with 488 nm for GFP excitation. 

 

 

Accession numbers 

 

Sequence information of the genes mentioned in this article can be found at The Arabidopsis 

Information Resource (TAIR; http://www.arabidopsis.org) under the following accession 

numbers: ANAC102 (At5g63790), ABCB4 (At2g47000), AOX1a (At3g22370), AtTDX1 

(At2g04040), NDB4 (At2g20800), ST (At2g03760), UGT74E2 (At1g05680), UGT73C6 

(At2g36790), UPOX (At2g21640), and ARP7 (At3g60830).  
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SUPPLEMENTAL DATA 

 

 

Supplemental Figure 4.1. Altered ANAC102 levels affect tolerance to 3-AT and H2O2-mediated oxidative stress.  

(a) Phenotype of ANAC102
OE

 and ANAC102
KO

 under 3-AT-mediated oxidative stress. Wild-type (WT), ANAC102
OE

 

(OE), and ANAC102
KO

 (KO) plants were germinated and grown on ½MS medium supplemented with different 

concentration of 3-AT. ANAC102
OE

 have an increased rosette area under mild (1 μM) 3-AT stress compared to that 

of wild-type plants (i). However, under severe (2 and 8 μM) 3-AT stress conditions, ANAC102
KO

 have a better 

performance as evidenced by an increased rosette area and less chlorophyll loss (ii).  

(b) ANAC102
KO

 increases tolerance to externally applied H2O2.  

 

 

 

 

 

 

Supplemental Figure 4.2. Expression 

profile of ANAC102 and its target MDR 

genes during chloroplast perturbation. Color 

codes represent log2-fold changes in 

transgenic or treated plants compared to 

wild-type or untreated plants, respectively. 

Norflurazone blocks carotenoid 

biosynthesis, lincomycin is an inhibitor of 

chloroplast protein synthesis, and N-octyl-3-

nitro-2,4,6-trihydroxybenzamide (PNO8) 

inhibits photosystem II. The cluster was 

made using the GENEVESTIGATOR 

hierarchical clustering tool (Zimmermann et 

al., 2004). 
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Supplemental Table 4.1. Primers used. 

Primers Sequence 

Promoter cloning  

AttB4F-PAt5g63790 GGGGACAACTTTGTATAGAAAAGTTGGAGATTCTACAACTGAATTACCAAAATGCCCC 

AttB1rR-PAt5g63790 GGGGACTGCTTTTTTGTACAAACTTGTGGAGCTTTTATAAACGAAGGGGAGG 

AttB2rF-At5g63790 GGGGACAGCTTTCTTGTACAAAGTGGGAATGGACTTTGCTCTCTTCTCCTCG 

AttB3R-At5g63790 GGGGACAACTTTGTATAATAAAGTTGTTTACCCTTGAGGAGCAAAATTCCAATTC 

AttB4F-PAt5g63790 GGGGACAACTTTGTATAGAAAAGTTGGAAAGACTTGGACCCAACACAGC 

AttB1rR-PAt5g63790 GGGGACTGCTTTTTTGTACAAACTTGTGGAGCTTTTATAAACGAAGGG 

AttB4F_P-UPOX ATAGAAAAGTTGACAACATTGATCATACGAGATCAAAAAGG 

AttB1r_P-UPOX TGTACAAACTTGACGCTGAAAACAGAAAGAAATCTCATGAA 

AttB4F_P-UGT73C6 ATAGAAAAGTTGTGATAATTAGTGTAACTTTCACATACTCGA 

AttB1r_P-UGT73C6 TGTACAAACTTGGCGGACGATGCAACTTTAGTAAGAACC 

AttB4F_P-AtDTX1 ATAGAAAAGTTGGAAGACAAGACTCGCGTATTTGTA 

AttB1r_P-AtDTX1 TGTACAAACTTGCCGTGTTTAACGTTGAAGGCCTTTCCCTTT 

AttB4F_P-ST ATAGAAAAGTTGAATGAATCTGCTTTACCAACTTAGTTC 

AttB1r_P-ST TGTACAAACTTGCGTTGTTGAGACTTGAGAGATCG 

AttB4F_P-ABCB4 ATAGAAAAGTTGGAGTTTAAATTAATAGAAATTAAATATTTATGTG 

AttB1r_P-ABCB4 TGTACAAACTTGCGGTAGAGTTTCACAGATACC 

AttB4F_P-NDB4 ATAGAAAAGTTGCTATTTCATAAATTGAACCTTAATTAAAGACATC 

AttB1r_P-NDB4 TGTACAAACTTGGTGGTTGATGATTTCTCAAACCTCAGAT 

AttB4F_P-UGT74E2 GGGGACAACTTTGTATAGAAAAGTTGGATTTCACCCATGATATACTG 

AttB1r_P-UGT74E2 GGGGACTGCTTTTTTGTACAAACTTGTTTCTCCTTCTTTTTAATCTTGT 

AttB4F_P-AOX1a ATAGAAAAGTTGATCTGAAGAGCTTCTAGC 

AttB1r_P-AOX1a TGTACAAACTTGTGTTTCAAATCGGAAAAAGTG 

AttB4F_P-At2g41730 ATAGAAAAGTTGATCAACCGATTGATCAATTGG 

AttB1r_P-At2g41730 TGTACAAACTTGGTTTGCTTATTTTGATTTGAG 

qRT-PCR analysis  

AOX1a_RT_FWD TGGTTGTTCGTGCTGACG 

AOX1a_RT_REV CACGACCTTGGTAGTGAATATCAG 

ST_RT_FWD GGTCACCAATCCACACCTTC  

ST_RT_REV CGAAATCTGGGGACTCGTAG  

UGT74E2_RT_FWD TAACTTCTTCCACACTTCTCATAATCT 

UGT74E2_RT_REV ACAACAAAAACTAGAGTCAGTAACAAC 

AtDTX1_RT_FWD CATCAGCTGCAATGATTTGTCT 

AtDTX1_RT_REV GAACAGAGGTCTCGAGTTTCG 

UGT73C6_RT_FWD TGCCGAGGTTAAAGAGGTCA 

UGT73C6_RT_REV TCCACCAACACTCCTATCTTCTC 

ARP7_RT_FWD ACTCTTCCTGATGGACAGGTG 

ARP7_RT_REV CTCAACGATTCCATGCTCCT 
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ABSTRACT 

Plants respond to changing environments by fine-tuned extensive reprogramming of their 

transcriptome. In order to elucidate the complex molecular mechanisms of these adaptation 

responses, we reverse-engineered a model of the abiotic stress transcriptional regulatory networks 

in Arabidopsis thaliana. We used the LeMoNe algorithm to extract gene co-expression modules 

and their predicted regulators from abiotic stress-related gene expression data. First, based on 

biological evidence from external datasets (GO, Aracyc metabolic pathway, protein-protein 

interactions), we found that LeMoNe inferred functionally coherent modules. Together, the 

modules spanned a wide variety of functions including various abiotic stress and pathogen 

responses, as well as, more general cellular functions (such as translation, photosynthesis, and 

cell cycle). Secondly, many predicted regulators are related to similar biological processes as 

their target modules. To further evaluate the predictive value of LeMoNe for regulator-target 

gene interactions, we compared the identified network model to regulator-target relationships 

inferred from a set of publicly available microarray experiments on mutant genotypes not 

included in the original dataset. However, the predictive power was overall low. Next, we 

evaluated the performance of LeMoNe in predicting novel regulatory interactions for seven 

transcription factors that were predicted to target one or multiple stress response modules. By 

analyzing gain- and loss-of-function mutants of these predicted regulators, we found indeed 

significant changes in expression for several of the predicted target genes, indicating LeMoNe 

prioritizes true regulatory interactions. Topological analysis of the experimentally obtained 

abiotic stress response subnetwork revealed a potentially highly connected and hierarchical 

structure. To conclude, we believe that the obtained results can be utilized to predict the functions 

of uncharacterized genes and to understand the transcriptional regulatory mechanisms of the 

abiotic stress response. 
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INTRODUCTION 

When plants are exposed to adverse environmental conditions, they respond a.o. by 

transcriptional reprogramming to adapt metabolism and physiology to the new stress-related 

context. Differential gene expression during stress is a tightly controlled process, regulated 

through multiple interconnecting signaling pathways (Nakashima et al., 2009). To date, 

transcriptome studies of plants exposed to a variety of stress conditions are abundantly available, 

but the underlying regulatory mechanisms are largely unknown. One of the current challenges in 

plant biology is to shed light on the regulatory networks involved in conferring stress responses.  

Most gene expression regulation occurs at the level of transcription by binding of 

transcription factors to cis-regulatory elements in the upstream regulatory regions of their target 

genes. Therefore, transcriptional regulatory networks that map interactions between regulatory 

proteins and target genes are used to study differential gene expression at a systems level (Carrera 

et al., 2009). Genes that are under the control of one or more shared transcription factors (co-

regulated) tend to have similar patterns in expression profiles (co-expressed). Consequently, co-

expressed genes incline to share functional relationships and their expression is more likely to be 

controlled by the same regulators (Yu et al., 2003). Moreover, it is generally assumed that 

regulatory proteins are themselves often regulated at the transcriptional level, so that their 

expression patterns provide information about their activity level. Therefore, transcription factor 

expression activities are often well correlated to the expression behavior of their coordinated 

target genes (e.g. Carrere et al., 2009). Based on these assumptions, networks of co-expressed 

genes and their regulators are constructed through reverse-engineering of gene expression 

profiles. These networks are consequently used to generate hypotheses on the functionalities of 

genes of unknown function and to construct comprehensive blueprints of the regulatory 

mechanisms of gene expression within a cell or organism (Carrera et al., 2009; Lee et al., 2010).  

Different methods have been developed over the past years for the reconstruction of 

transcriptional regulatory networks (reviewed in Gardner and Faith, 2005; Bansal et al., 2007). 

Basically, two classes of methods exist to infer transcriptional regulatory networks from gene 

expression data. First, direct methods construct a network of individual regulator-target 

interactions based on the pairwise correlation between the expression profile of a transcription 

factor and its putative target genes. The context likelihood of relatedness (CLR) algorithm is such 

a direct method that scores these interactions based on the mutual information of their expression 
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profiles as compared to an interaction specific background distribution (Faith et al., 2007). 

Secondly, module-based methods assume a modular structure of the transcriptional regulatory 

network, with genes regulated by the same regulators (regulons) organized in co-expression 

modules (Segal et al., 2003). Module networks have the advantage over pairwise networks as 

they additionally provide functional information about the regulatory interaction through the 

module context. A variety of clustering methods have been developed, such as hierarchical 

clustering (Eisen et al., 1998), k-means clustering (Tavazoie et al., 1999) and self-organizing 

maps (Tamayo et al., 1999).    

 The module-based algorithm, LeMoNe (learning module networks) uses probabilistic 

optimization techniques for gene clustering (Michoel et al., 2007; Joshi et al., 2009). The 

algorithm uses a two-step procedure in which the genes are first partitioned into co-expression 

modules using a Gibbs sampling method. In this approach, the assignment of each gene to the 

module is iteratively updated and, at the same time, within each module, the conditions are 

clustered until a stationary state is reached (Figure 5.1). Secondly, regulators are assigned to the 

modules based on how well they explain the condition-dependent expression behavior of the 

module using a fuzzy decision tree (Figure 5.1). To obtain a statistically robust solution of co-

expressed genes and their candidate regulators, the gene clustering and regulatory program are 

run multiple times, followed by extracting an ensemble solution from these local optima (Joshi et 

al., 2008). The algorithm ranks the predicted regulators by providing weights to the assigned 

regulators, taking into account the differential expression of the regulator across the different 

condition clusters, but not their absolute value. As a regulator can be assigned to more than one 

module, the entire module set can be assembled in a so-called module network. It has been shown 

previously that LeMoNe successfully predicts functional relationships and transcription 

regulatory interactions for Escherichia coli, Saccharomyces cerevisiae and Caenorhabditis 

elegans (Michoel et al., 2009; Vermeirssen et al., 2009). 

In this study, we used LeMoNe to infer transcriptional regulatory networks for 

Arabidopsis thaliana based on abiotic stress-related transcriptome data. We verified the co-

expression modules for functional coherence using external datasets. In addition, many modules 

were enriched for cis-regulatory elements, indicating co-regulation of the genes. Next, we 

compared the predicted regulatory interactions with known regulatory interactions obtained from 

publicly available microarray studies of genetic perturbations. Furthermore, we experimentally 
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demonstrated the value of LeMoNe to predict novel target genes for seven abiotic stress-related 

transcription factors. Overall, we demonstrate that LeMoNe predicts functional modules of co-

regulated genes and prioritizes true regulatory interactions. However, despite these valuable 

predictions, LeMoNe still yields false negative and positive regulatory interactions, pleading for 

future integration of other, non-transcriptomic data types and combination of predictions from 

different algorithms to create a more robust regulatory network.  

 

RESULTS 

Construction of an Arabidopsis transcriptional regulatory network from abiotic stress-

related transcriptome data 

We assembled a compendium of Arabidopsis gene expression microarray data that includes 283 

different control or perturbation conditions from 48 studies of abiotic stress treatments, hormone 

treatments, and genetic perturbations of abiotic stress regulators (Supplemental Table 5.1). The 

LeMoNe algorithm was used to construct co-expression modules and their regulation program. 

First, we determined the most valid co-expression network by running LeMoNe both on the 

absolute expression values and on the ratio expression values derived by dividing experiment 

Figure 5.1. Overview of the module network 

algorithm and evaluation procedure. The 

procedure takes as  input a data set of gene 

expression profiles and a set of regulator genes. 

The method itself (dotted box) is an iterative 

approach that determines the assignment of 

genes into modules and the regulation program 

for each module. For the regulation program, the 

experiment conditions are  partitioned and linked 

in a hierarchical decision tree. For each split in 

this tree, a candidate regulator is found whose 

expression is significantly different on both sides 

of the split. Thus the assigned regulators explain 

the experiment partitions. In a post-processing 

phase, modules are tested for enrichment of gene 

annotations and cis-regulatory elements. From 

Segal et al. (2003).  
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over control, corresponding to, respectively, 283 and 199 different conditions used for clustering. 

In addition, we applied two different probability cutoffs for the partitioning of the genes in 

modules: at least cluster together in 25% or 50% of the local optima module cluster solutions, 

further referred to as qopt25 and qopt50 solutions, respectively (see Methods) (Joshi et al., 2008). 

The qopt50 threshold has a higher stringency and results in more but in general smaller-sized 

modules compared to qopt25. Hence, we obtained a total of four output solutions: absolute-

qopt25, absolute-qopt50, ratio-qopt25, and ratio-qopt50, containing a total number of 244, 638, 

380, and 998 modules with an average number of 26, 12, 18, and 8 genes per module, 

respectively. To select the most optimal solution, we estimated the biological relevance of the 

various clustering options by implementing Gene Ontology (GO), Aracyc metabolic pathway and 

cis-regulatory element enrichment analysis, literature research, as well as the presence of physical 

protein-protein interactions within the modules (Zhang et al., 2005; De Bodt et al., 2012). We 

found that the ratio-qopt25 solution outperforms the other solutions in terms of functional 

coherence (data not shown). In this output, a total of 6710 genes is clustered in 380 modules. The 

modules contain an average of 18 genes, ranging from three up to 246 genes. Hence, the ratio-

qopt25 solution was further used for in silico and experimental validation and hypothesis 

generation.  

 To compare the LeMoNe-predicted regulatory interactions with that from another reverse-

engineering method, the CLR algorithm was run on the same microarray dataset. In contrast to 

the module-based LeMoNe algorithm, CLR infers pairwise regulator-target gene interactions 

(Faith et al., 2007). CLR deduced a total of 114,183 regulator-target gene interactions from our 

abiotic stress microarray compendium of which 7400 overlap with LeMoNe predictions. 

 

Functional coherence  

Since genes gathered in one module are co-expressed across varied conditions, a certain degree of 

functional coherence amongst them is expected. We assessed the functional coherence through 

GO enrichment analysis (see Methods). We found that 183 out of the 380 modules were 

significantly enriched for at least one GO biological process (GO-BP) term (Supplemental Table 

5.2). Together, the modules spanned a wide variety of functions, including translation, 

photosynthesis, various metabolic pathways, cell cycle-related processes, and various stress 

responses including pathogen response. Thirty-six modules were enriched for the “response to 
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stress” GO-BP annotation (GO:0006950). To obtain an overview of the different stress functions, 

we categorized these 36 modules according to the descendant GO-BP categories of the “response 

to stress” GO-BP (Figure 5.2). Several modules with a role in the stress response will be 

discussed in the next subsections. In addition, 49 modules are enriched for a specific Aracyc 

metabolic pathway (Zhang et al., 2005) and 52 modules contain at least one gene pair that 

physically interacts at the protein level (De Bodt et al., 2012) (see Methods). Thus, based on in 

silico validation using external datasets, we conclude that LeMoNe infers functionally coherent 

modules.  

 

 

 

Figure 5.2. Overview of GO biological processes (GO-BP) related to the stress response in which modules were 

predicted to be involved. Only GO-BP terms that are direct descendants of the GO-BP “response to stress” are 

displayed. The numbers between brackets indicate the number of modules annotated with the GO-BP. Modules with 

multiple GO-BP annotations can be present in different GO-BP categories.  

 

 

 

Regulatory coherence 

Transcription factors coordinately steer gene expression through the binding with shared cis-

regulatory elements in their target gene promoters and, as a consequence, genes targeted by the 

same transcription factor(s) tend to be co-expressed (Yu et al., 2003). Co-expressed genes are 

hence more likely to share transcriptional regulators (co-regulated) and contain common cis-

regulatory motifs in their promoters. We analyzed the modules for enrichment of known cis-
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regulatory elements and compared the overrepresented motifs with the module function and the 

function and putative binding site(s) of the predicted regulators.  

  The promoters (1-kb sequences upstream of the translation initiation codon) were 

searched for known cis-regulatory motifs listed in the PLACE and AGRIS databases (Higo et al., 

1999; Davuluri et al., 2003). The occurrence of these motifs in each module were compared with 

the frequencies among all promoters in the genome and the hypergeometric P value was 

calculated and corrected for multiple testing using the false discovery rate (FDR) (Benjamini and 

Hochberg, 1995). We considered motifs with P values lower than 0.05 that are present in at least 

50% of the genes within a module and more than 1.5 times enriched in the module compared to 

the genome to be significantly overrepresented (Supplemental Table 5.3). Eighty-six modules (or 

22.6%) contain at least one enriched motif. We found that 30 modules are enriched for more than 

one motif. These modules are mostly involved in “general” cellular functions like translational 

activity, photosynthesis, and circadian rhythm, indicating that these processes are coordinately 

regulated at the transcriptional level. Interestingly, several motifs such as the UP1/2ATMSDN, 

SITEIIATCYC, I BOX, and ABRE are present in multiple modules, similar to results obtained in 

a previous study that predicted functional co-expression modules and cis-regulatory elements 

from Arabidopsis gene expression data (Ruan et al., 2011), indicating these motifs might be 

involved in regulating multiple processes. For 67 out of the 86 modules containing an 

overrepresented cis-regulatory element, this could be associated with the function of the modules 

and/or predicted regulators using GO enrichment data, literature information, and expression data 

from the GENEVESTIGATOR meta-analysis tool (Zimmermann et al., 2004) and these results 

are summarized in Supplemental Table 5.3. Among these 67 modules, 36 had a (potential) role 

related to the abiotic or biotic stress response (Supplemental Table 5.3), of which some 

representative examples are displayed in Table 5.1 and discussed in the next subsections. 

Three modules (44, 730, and 827; Table 5.1) are enriched for the drought-responsive 

element (DRE) that mediates transcriptional regulation in response to cold, drought and high 

salinity stress in an abscisic acid (ABA)-independent manner (Yamaguchi-Shinozaki and 

Shinozaki, 1994). These modules are significantly co-expressed during cold (module 44 and 

730), and salt and drought stress (module 730 and 827). Interestingly, LeMoNe predicted DREB 

family transcription factors for the three modules, indicating these could be direct regulators of 
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the module genes. These DREB transcription factors were previously not functionally associated 

with the predicted module genes. 

The ABA-responsive element (ABRE) was identified in 23 modules (Supplemental Table 

5.3). Among them, we found the modules 62, 77, 94, 100, 120, 133, 150, 155, 884, and 1081 up-

regulated by ABA and drought stress to variable degrees, according to the function of the ABRE 

in ABA-dependent drought stress responsive gene expression (Table 5.1). Interestingly, these 

modules share regulators like RESPONSIVE TO DESICCATION 26 (RD26) and 

ARABIDOPSIS THALIANA HOMEOBOX 7 (ATHB-7) and ATHB-12 which are involved in 

the ABA-dependent drought stress response (Soderman et al., 1996; Fujita et al., 2004; Valdes et 

al., 2012), indicating these modules might be co-regulated. However, LeMoNe did not predict the 

ABRE-BINDING FACTORS (AREB/ABF) or other BASIC LEUCINE ZIPPER (bZIP) family 

members for any of these ABRE containing modules (Choi et al., 2000; Uno et al., 2000). This 

could be explained by the fact that ABFs are, in addition to transcriptional regulation by ABA, 

also posttranslationally activated by ABA (Furihata et al., 2006). However, the CLR algorithm 

that infers pairwise regulator-target gene interactions predicted ABF3 and the G-BOX BINDING 

FACTOR 3 (GBF3) as regulators for most of the genes of modules 62, 94, 100, 133, 150, 884, 

and 1081 in addition to RD26, ATHB-7 and ATHB-12 (Lu et al., 1996). This illustrates the 

partial complementarity of LeMoNe and CLR, as well as, the better performance of CLR in 

making true predictions for a higher number of regulators compared to LeMoNe recovering a 

higher number of known targets for fewer regulators (Michoel et al., 2009). Moreover, several 

genes of modules 77, 100, 133, 150, and 1081 are down-regulated in a triple homolog abf3 

mutant (Yoshida et al., 2010), indicating ABF3 is potentially a direct regulator of and co-

regulates these modules by interacting with the ABRE.  

 Module 56 is enriched for genes involved in the unfolded protein response (UPR) and is 

enriched for the UPR cis-regulatory element (see below). Module 108 and 53 are potentially 

involved in the nutrient deprivation response. Module 108 is enriched for the binding site of the 

PHOSPHATE STARVATION RESPONSE 1, a master transcriptional activator of the phosphate 

(Pi) starvation response (Rubio et al., 2001). Expression analysis using GENEVESTIGATOR 

(Zimmermann et al., 2004; Misson et al., 2005) revealed that the genes in this module are indeed 

induced upon Pi starvation, a condition that was not present in our microarray compendium, and 

included several enzymes involved in phosphate metabolism, such as purple acid-phosphatases 
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which have been implicated in the Pi starvation response (Tran et al., 2010). Module 53 contains 

the sugar-repressive element (SRE) and its genes are induced by sugar deprivation and repressed 

upon high sugar concentrations (Zimmermann et al., 2004; Usadel et al., 2008), indicating that its 

genes could be involved in the sugar starvation response. The evening element (EE), that is 

necessary for circadian control of gene expression is enriched in modules 30 and 168 that are 

involved in circadian rhythm and the cold stress response (see below). Interestingly, it has been 

shown that the circadian clock interacts with cold response signaling (see below) (Espinoza et al., 

2008).  

Three modules enriched for the MYB transcription factor binding site are involved in 

secondary metabolism: synthesis of the defense-related glucosinolates (module 111 en 122) and 

flavonoid biosynthesis (module 76; see below), processes that have been shown before to be 

regulated by several MYB family members. For module 111, LeMoNe and CLR predicted, 

respectively, the MYB28 and MYB34 transcription factors, that were previously shown to 

regulate glucosinolate biosynthesis genes (Celenza et al., 2005; Gigolashvili et al., 2007). 

However, for module 122, no MYB family member was predicted as regulator. In addition, eight 

modules are enriched for the W box, the DNA binding site of WRKY transcription factors (TF). 

The genes of these modules are involved in the defense response and/or are responsive to various 

pathogen infections (Zimmermann et al., 2004), in agreement with the function of several WRKY 

TFs in the biotic stress response (Pandey and Somssich, 2009). For three of these modules, 

LeMoNe predicted WRKY6 or WRKY75 that are known to regulate defense-related genes 

(Robatzek and Somssich, 2002; Encinas-Villarejo et al., 2009). In addition, CLR predicted two 

other as yet uncharacterized WRKY TFs (WRKY15 and WRKY28) (see Table 5.1), that could be 

novel candidate regulators of the defense response. The ETHYLENE REPONSE FACTOR 

(ERF) binding site, named the GCC box, is enriched in two modules (192 and 197) of which 

module 197 contains several genes involved in the defense response (mainly chitinases). Several 

ERF family members have been shown to control the expression of defense genes (McGrath et 

al., 2005) and an as yet unstudied ERF gene is predicted as regulator for module 192. 

Furthermore, four modules (35, 41, 58, and 137) are enriched for the CGCG box, a binding site 

for calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways 

in plants (Yang and Poovaiah, 2002). Although the specific function of this DNA motif is not 
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clear at this stage, the modules appear to be involved in stress signaling and/or defense response, 

based on GO enrichment analysis and published gene functional data.   

To conclude, we found several modules enriched for a cis-regulatory element and, in most 

cases, the function of the element could be associated with the function of the module and/or with 

the potential binding site of the LeMoNe and/or CLR predicted regulators. The presence of 

common cis-regulatory elements within the modules does not only indicate co-regulation of the 

module genes but also provides an additional means to predict the corresponding direct 

regulators.  

 

 

Table 5.1. Representative modules with a significantly overrepresented cis-regulatory element that are (potentially) 

involved in the stress response. 

The function of the module and/or regulator(s) is displayed if it corresponds to the function of the motif (column 6 

and 7, respectively). In column 8 is depicted whether the putative binding site of the predicted regulators corresponds 

to the motif.  %, percentage of genes in the module that contain the motif. 

DRE, drought-responsive element; ABRE, ABA-responsive element; UPR, unfolded protein response; PHR1, 

phosphate starvation response 1; SRE, sugar-repressive element; EE, evening element. [1], Dong and Liu (2010); [2], 

Tsutsui et al. (2009); [3], Valdes et al. (2012); [4], Li et al. (2008); [5], Grossniklaus et al. (1998); [6], Mauch-Mani 

and Flors (2009); [7], Fujita et al. (2004); [8], Kodaira et al. (2011); [9], Rawat et al. (2011); [10], Para et al. (2007); 

[11], Gigolashvili et al. (2007); [12], Encinas-Villarejo et al. (2009); [13], Robatzek and Somssich (2002); [14], 

Gigolashvili et al. (2007); [15], Ren et al. (2000). 

 Motif   M P value % Module function 

Regulator(s
) involved 
in the same 
function as 
the motif 

Regulator(s) with 
binding site 
corresponding to 
the motif 

Ref. 

DRE RCCGAC 44 8.1E-07 64 responsive to cold RAP2.1 RAP2.1 (DREB) [1] 

 TGGCCGAC 730 8.1E-04 50 responsive to cold, drought, 
salt 

CEJ1 CEJ1 (DREB)  [2] 

 AGCCGACCA 827 2.1E-03 68 responsive to cold, drought, 
salt 

 AT4G28140, 
AT2G20880 
(DREB) 

 

         

ABRE ACGTGKC 62 1.5E-04 50 ABA and drought response ATHB-12, 
RD26, 
ATHB-7 

 [3] 

 CACGTGG 77 2.2E-05 50 seed and embryo 
development, hyperosmotic 
response 

ATHB-7, 
NF-YA5; 
MEA 

 [3] [4] [5] 

 CACGTG 94 5.2E-04 56 responsive to ABA, drought, 
salt 

ATAF1, 
RD26, AZF2 

 [6] [7] [8] 

 ACGTGTC 100 1.0E-03 53 ABA and drought response RD26, 
ATHB-7 

 [7] [3] 
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Table 5.1. Representative modules with a significantly overrepresented cis-regulatory element that are (potentially) 

involved in the stress response. (Continued). 

 CACGTG 133 9.9E-06 70 responsive to ABA and drought RD26  [7] 

         

 ACGTGTC 150 1.1E-04 73 ABA and drought response ATHB-7, 
ATHB-12 

 [3] 

 MACGYGB 155 8.5E-03 100 responsive to ABA, drought, 
salt 

   

 ATACGTGT 884 2.5E-02 60 responsive to ABA, drought, 
salt 

ATHB-7  [3] 

 ACGTGTC 108
1 

2.0E-02 71 ABA and drought response RD26, 
ATHB-12 

 [7] [3] 

         

UPR 
element 

CCN12CCACG 56 2.4E-07 50 unfolded protein response    

         

PHR1-
binding 
site 

GNATATNC 108 9.7E-05 73 responsive to phosphate 
starvation 

   

         

SRE TTATCC 53 7.9E-04 73 carbohydrate deprivation 
response; sugar metabolism 

   

         

EE AAAATATCT 168 1.6E-07 69 circadian regulation, light and 
cold response 

APPR5  [9] 

 AAAATATCT 30 6.8E-15 57 starch catabolism, response to 
cold, circadian rhythm 

APRR3  [10] 

         

MYB CACCAACC 111 3.7E-03 50 glucosinolate biosynthesis MYB28 MYB28 [11] 

 ACCWWCC 122 7.1E-05 92 tryptophan and glucosinolate 
biosynthesis, response to 
wounding 

   

 ACCTACC 76 9.7E-06 50 flavonoid biosynthesis    

         

W box TTGACT 15 1.5E-04 78 defense response  WRKY15  

 TTGACT 28 4.3E-03 79 defense response    

 TTGACT 33 9.6E-03 72 defense response    

 TTTGACY 50 5.9E-03 78 responsive to pathogen 
infection 

WRKY75 WRKY75 [12] 

 TTGACT 70 1.8E-04 86 defense response  WRKY15  

 TTGACT 80 1.2E-03 85 defense response WRKY6 WRKY6, WRKY28 [13] 

 TTTGACY 99 1.9E-06 72 responsive to pathogen 
infection 

WRKY6 WRKY6 [13] 

 TTTGACY 128 4.3E-02 81 defense response  WRKY15, WRKY30  

         

GCC box GCCGCC 192 4.2E-02 100   ERF15  

 GCCGCC 197 2.9E-03 100 defense response    

CGCG box VCGCGB 35 1.E-08 69 stress signaling and 

transcriptional regulation 

AZF2, 

MYB28 

  [8] [14] 

  VCGCGB 41 7.E-11 76 defense response TIP   [15] 
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Table 5.1. Representative modules with a significantly overrepresented cis-regulatory element that are (potentially) 

involved in the stress response. (Continued). 

  VCGCGB 58 9.E-09 75 response to biotic stress, 

defense response 

      

  VCGCGB 137 3.E-03 60 - TIP   [15] 

 

 

LeMoNe recovers a small part of the true biological regulatory network 

 

To further evaluate the predictive power of LeMoNe for regulatory interactions in plants, we 

searched the literature for microarray expression data resulting from genetic perturbation 

(overexpression or knockout) of stress regulators in Arabidopsis and could retrieve a total of 48 

studies. We considered a gene to be a true target of a TF (direct or indirect) if that gene is 

significantly mis-regulated by genetic perturbation of that TF. The lists of differentially expressed 

genes were directly obtained from the statistical analyses that were performed in the respective 

publications, and resulted in a total of 12,040 true regulatory interactions between 56 regulators 

and 6678 genes. For the predicted regulator-target gene interactions, we considered three types of 

relations: direct regulatory interactions between a regulator and its target module (regulator → 

module), indirect regulatory interactions encompassing an intermediary regulator that regulates a 

second module (regulator → module → module), and co-expression interactions for which 

regulator and target are present in the same module (module → module). For 42 out of the 56 

regulators, no overlap was found between the predicted and true regulatory interactions, 

indicating a low coverage of LeMoNe in the prediction of differentially expressed genes from 

genetic perturbations. For the remaining 14 regulators, we found at least one differentially 

expressed gene predicted as a target (Table 5.2). Again, we observed an overall low coverage in 

predicting genes that are mis-regulated, as for most datasets less than 1% and for only two 

datasets more than 10% of the differential genes were predicted. However, many of the 

differentially expressed genes might be the result of secondary effects in stable mutants and are 

therefore no regulatory targets of the regulator. This might partially account for the high number 

of false negative predictions. In contrast, the number of false positive predictions was relatively 

lower, indicating that LeMoNe predicts regulatory interactions with a relatively high quality but 

low sensitivity.  
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As gene expression profiles often measure indirect regulator-gene interactions, we 

assessed the LeMoNe predictions with a set of direct TF-DNA interactions obtained from large-

scale yeast one-hybrid (Y1H) analyses, containing a total of 172 interactions between 50 TFs and 

11 target genes (Chapter 3). No overlap was found between the two datasets, indicating that 

LeMoNe does not prioritize direct regulatory interactions, in agreement with previous studies 

(Vermeirssen et al., 2009). Nevertheless, these Y1H data have not been validated in planta, thus 

they could include false positive regulatory interactions. 

 

Table 5.2. Comparison of LeMoNe predicted regulatory interactions with experimentally-derived regulatory 

interactions resulting from genetic perturbation of stress regulators in Arabidopsis. Three types of predicted 

regulatory interactions were considered: direct regulatory interactions (regulator → module); indirect regulatory 

interactions (regulator → module → module); and co-expression (module → module). The percentage of predicted 

interactions (only direct and co-expression) that were experimentally validated (column 10) and the percentage of 

differential genes resulting from genetic perturbation that were predicted by LeMoNe (only direct and co-expression)  

(column 11) were calculated per regulator. Dir, direct regulatory interactions; Ind, indirect regulatory interactions; 

Co, co-expression. Asterisk indicates a multiple knockout mutant. [1], Tran et al. (2007); [2], Tran et al. (2004); [3], 

Fujita et al. (2004); [4], Jensen et al. (2008); [5], Sakuma et al. (2006); [6], Suzuki et al. (2011); [7], Brodersen et al. 

(2006); [8], Sonderby et al. (2010); [9], Osakabe et al. (2010); [10], Vanderauwera et al. (2012); [11], Ogawa et al. 

(2007); [12], Rashotte et al. (2006). 

  Total # differential genes  
Total # 
predictions Validated predictions  

Regulator 
Gen. 
pert. Treatment 

# differential 
genes Dir Co Dir Co Ind 

% of 
pred-

ictions  

% of 
diff. 

genes Reference 

AHK1 KO drought down 190 
 

16 
 

1 
 

6.3 0.5 [1] 

ANAC019 OE 
 

up 145 56 0 1  8 1.8 0.7 [2] 

ANAC055 OE 
 

up 160 112 27 1  1 0.7 0.6 [2] 

ANAC072 OE 
 

up 20 38 
 

2  2 13.2 0.6 [3] 

 
OE 

 
down 38 

   
 3   [2] 

 
OE 

 
up 262 

  
3  9   [2] 

ATAF1 KO pathogen up 341 25 
 

1  
 

4.0 0.3 [4] 

DREB2A OE 
 

up 483 19 9 1 3 32 21.4 0.6 [5] 

 
KO heat down 49 

   
2 3   

 
MBF1c KO heat down 36 66 

 
4  2 6.1 11.1 [6] 

MPK4 KO 
 

up 111 5 
  

4 12 80.0 3.6 [7] 

MYB28 KO 
 

down 210 47 
 

8  
 

31.9 2.0 [8] 

 
OE 

 
up 191 

  
7  

 
  

 
RPK1 KO 

 
down 39 

 
27 

 
1 

 
3.7 2.6 [9] 

WRKY15 OE 
 

down 750 56 59 
 

16 42 29.6 0.1 [10] 

 
OE salt down 363 

   
5 14   

 

 
OE salt up 134 

  
2  1   

 

 
OE 

 
up 598 

  
9 2 1   

 
ZFHD1 

   
981 

 
56 

 
3 9 5.4 0.3 [1] 

HSFA2 OE 
 

up 37 62 
 

13  
 

21.0 35.1 [11] 

CRF6 KO*   down 180 29 
  

 1 0.0 0.0 [12] 
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LeMoNe predicts novel regulatory interactions 

Next, we evaluated the performance of LeMoNe in predicting new TF-target gene interactions by 

analyzing gain- and loss-of-function mutants of predicted regulators for altered expression of 

their module genes. Based on their expression landscape, the overrepresentation of cis-regulatory 

elements, GO information and published data, we selected modules with a function related to the 

abiotic stress response (data not shown). The NAM, ATAF AND CUC 13 (ANAC013), 

ANAC053, ANAC032, ETHYLENE-RESPONSE FACTOR6 (ERF6), RELATED TO AP2 1 

(RAP2.1), RAP2.6L, and WRKY6 transcription factors were a.o. assigned as highly-ranked 

regulators to one or more of these selected abiotic stress-related modules. Interestingly, 

ANAC013, ANAC053, and WRKY6 and RAP2.1 and ANAC032 share one or more target 

modules, indicating interwoven transcriptional regulation of these modules by these TFs. We 

generated and retrieved gain- and loss-of-function lines for these seven TFs (with the exception 

of a RAP2.1 overexpression line) (see Methods). Within the target modules of these seven TFs, 

we selected a total of 73 genes for expression analysis of the TF mutants, together with ten non-

predicted, stress-regulated target genes as a negative control, the seven TFs themselves to reveal 

potential cross-regulation and ten housekeeping genes for normalization. For all the TF target 

modules, a significant expression correlation was observed under salt stress conditions. 

Therefore, we chose to carry out the downstream perturbational studies under salt stress 

condition. We first performed a molecular phenotypic analysis using different salt concentrations 

and a time-course analysis of the response to salt stress to select specific parameters for the 

expression analysis (see Methods). qRT-PCR analysis revealed that a 12 h treatment with 150 

mM NaCl induced the TF genes (Figure 5.3) and several target genes (data not shown).  
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The seven TFs were predicted by LeMoNe as positive regulators of their target modules. 

Therefore, we analyzed the knockout/down lines under salt stress conditions to reveal whether 

stress-mediated gene induction is impaired by reduced or absent levels of the TFs. On the other 

hand, the transcriptome of overexpression lines was examined under nonstressed conditions to 

see whether the TFs can constitutively activate the target genes in the absence of stress. As 

WRKY6 has been reported to act both as an activator and a repressor (Robatzek and Somssich, 

2002; Chen et al., 2009; Kasajima et al., 2010), its overexpression line was additionally examined 

under stress conditions. The nCounter Analysis System (NanoString Technologies) (Geiss et al., 

2008) was used to measure the expression levels of the predicted target and control genes in the 

TF mutants. In total, we obtained 114 differential genes by overexpression and only 14 upon 

knockout/down of the transcription factors, indicating potential redundancy. Moreover, there was 

no overlap between the overexpression and loss-of-function network, indicating that 

overexpression and knockout reveal different parts of the biological regulatory network. Except 

for the RAP2.1 targets, all experimentally identified target genes appeared to be positively 

regulated by the TFs (induced and repressed upon TF overexpression and knockout, 

respectively), consistent with the reported transcriptional activator function for ANAC013, 

ANAC053, RAP2.6L, and WRKY6 (Chapter 2; Lee et al., 2012; Krishnaswamy et al., 2011; 

Robatzek et al., 2002). RAP2.1 acts as a negative regulator of the stress response (Dong and Liu, 

Figure 5.3. Expression pattern of the seven selected transcription factors under salt stress 

conditions.  

Wild-type Arabidopsis plants were grown for 2 weeks under standard conditions and 

subsequently transferred to medium supplemented with 150 mM NaCl for 12 hours. 

Expression was analyzed by qRT-PCR. Bars represent average fold changes of salt treated 

versus untreated from two biological replicates (± SE).  
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2010) and, consequently, we found for the RAP2.1 knockdown lines a stronger stress-mediated 

induction of its target genes compared to the wild-type situation. The positive expression 

correlation in LeMoNe between RAP2.1 and its target genes could be explained by the fact that 

RAP2.1 acts as a negative subregulon of the DREB activators: DREB TFs mediate stress 

induction of their target genes and, at the same time, induce RAP2.1 to dampen the induction of 

the DREB target genes as well as its own expression by a negative feedback loop (Dong and Liu, 

2010). Thus, RAP2.1 and its target genes are subject to the same transcriptional control, which 

likely explains their similar expression behavior.  

To evaluate the predictive power of LeMoNe, we calculated precision, recall and F-

measure values for each of the seven TFs. Precision is defined as the fraction of predicted targets 

that are correct whereas recall is defined as the fraction of true targets that were predicted by the 

model. As precision and recall are necessarily negatively correlated, the F value provides the 

absolute efficiency by measuring the balance between these two parameters. Depending on the 

TF, we observed different predictive performance measures of LeMoNe with respect to recall and 

precision (Table 5.3). The best predictions were obtained for ANAC013 (F-measure 0.51), with a 

relatively low number of false positive and false negative target gene predictions. The second-

best predictions were observed for ERF6 (F-measure 0.32), for which all ten predicted targets are 

confirmed (precision 1), but with a low coverage of the true targets (recall 0.21). Thus, this 

illustrates the ability of LeMoNe to reveal regulatory interactions that have not yet been 

validated. However, for several of the TFs tested, LeMoNe still predicts a relatively high number 

of false positive and/or false negative regulatory interactions. 

 

 

 

 

  
Predicted 

targets 

True 
targets 

(OE) 

True 
targets 

(KO) 

Predicted 
true 

targets Precision Recall 
F-

measure 

ANAC013 34 48 0 21 0.62 0.44 0.51 

ANAC032 19 1 0 0 0 0 0 

ANAC053 19 1 0 1 0.05 1 0.10 

ERF6 10 48 0 10 1 0.21 0.34 

RAP2.1 17 NA 6 2 0.12 0.33 0.17 

RAP2.6L 23 2 1 3 0.13 1 0.23 

WRKY6 21 14 7 3 0.14 0.14 0.14 

Table 5.3. Performance of LeMoNe in predicting novel regulatory interactions.  

For seven transcription factors, the predicted target genes were compared with the 

true target genes obtained from expression analysis of the TF overexpression (OE) 

and knockout (KO) lines. The predictive performance  was evaluated by 

calculating the precision, recall, and F-measure.   
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To analyze the structure of the obtained transcriptional regulatory network, we visualized the 

experimentally derived TF-target gene interactions in a network using Cytoscape (Shannon et al., 

2003) (Figure 5.4). The constructed model includes a total of 128 regulatory interactions between 

the seven TFs and 73 unique target genes. The network is highly connected as three TFs target 

21-48% of the 100 genes measured and 31 target genes are regulated by at least two TFs. This 

could indicate the coordinate direct regulation of the target genes by multiple TFs at the promoter 

level. On the other hand, indirect effects may account for the large number of regulators we 

observe per target. ANAC013 and ERF6 regulate, respectively, five and three of the other studied 

TFs (ANAC053, ERF6, WRKY6, RAP2.1, and ANAC032 by ANAC013; and ANAC053, RAP2.6L, 

and ANAC013 by ERF6) and also modulate the expression of several of these TFs target genes, 

pointing to a hierarchical structure of the transcriptional regulatory network in which ANAC013 

and ERF6 are master regulators. Judged by the number of target genes, including TF genes, and 

the magnitude of the response (data not shown), the most influential TF in the network appears to 

be ANAC013 (Figure 5.4). The consensus ANAC013 binding site is present in 13 (of which 10 

predicted) out of the 48 true target gene promoters, among which eight were experimentally 

confirmed to be bound by the ANAC013 protein in chromatin immunoprecipitation (ChIP) 

experiments (Chapter 2). This indicates that LeMoNe predicted both direct and indirect 

ANAC013 targets and the latter could be indirectly regulated through the TFs that are up-

regulated by ANAC013. Among the 48 ERF6 true target genes, only five (of which 2 predicted) 

contain the GCC box (GCCGCC), indicating that most identified targets are indirectly regulated 

by ERF6. RAP2.6L, RAP2.1, ANAC053, and ANAC032 appear to be more specific regulators, 

affecting the expression of only 1-6% of the tested genes. The W box (TTTGAC[C/T]) is present, 

although not significantly enriched, in 10 (among which the three predicted true targets) of the 

WRKY6 true targets. The DRE element (RCCGAC) is present in four out of the six RAP2.1 true 

target genes, consistent with the enrichment of the DRE motif in the predicted RAP2.1 target 

modules. Thus, we conclude that LeMoNe correctly predicts target genes of which several are 

(potentially) direct targets and others are possibly indirectly regulated. Analysis of the structure 

of the experimentally obtained regulatory network reveals a potential hierarchical organization 

including several layers of transcriptional control. However, care has to be taken in the 

interpretation of the obtained regulatory model as only 93 target genes were studied and 

transcriptional analysis of TF overexpression and knockout might disclose false positive (e.g. due 
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to secondary effects in stable mutants) and false negative (e.g. due redundancy of among TFs) 

regulatory interactions. Many ANAC053 target genes might have been missed in our analysis 

because of the weak transgene expression in its overexpression line. Moreover, regulatory 

interactions inferred from expression data are often indirect, involving several hidden, 

intermediate regulators (Joshi et al., 2010). Therefore, testing whether the TF directly targets its 

differentially expressed genes using the yeast one-hybrid or ChIP technology will provide more 

insight into the underlying biological network.  
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Figure 5.4. Transcriptional regulatory network 

consisting of experimentally-derived regulatory 

interactions. Each transcription factor is connected to 

the genes that are differentially expressed after 

overexpression or deletion of the transcription factor. 

The network was constructed using Cytoscape 2.2 

(Shannon et al., 2003). 

Red diamonds, transcription factors; white circles, 

target genes. Regulatory interactions are depicted as 

grey dashed lines; blue solid lines, regulatory 

interactions that were also predicted by LeMoNe. 
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LeMoNe prioritizes biologically relevant regulators  

As the co-expression modules and their regulatory program were constructed from abiotic stress-

related expression data, we first assessed whether LeMoNe prioritized regulators involved in the 

abiotic stress response. Therefore, we examined regulators that were assigned to multiple 

modules (Table 5.4). Fifteen regulators were predicted to regulate five or more modules. Among 

these 15 predicted master regulators, ten are known to have a role the abiotic and/or biotic stress 

response, based on published experimental evidence. In addition, four transcription factors were 

identified in yeast one-hybrid screens for transcription factors binding to stress-responsive 

promoters in Chapter 2 and 3. Hence, LeMoNe prioritized abiotic stress regulators as master 

regulators.  

Table 5.4. Transcription factors with the most regulatory effects (highest outgoing connectivity).  

Fifteen transcription factors regulate at least five modules. TFs indicated in bold have a function in the stress 

response. TFs that were identified in yeast one-hybrid (Y1H) screens for transcription factors binding to stress-

responsive promoters (see Chapter 2 and 3) are indicated in column 5.  

TF 
Outgoing 
connectivity Name Function Y1H Reference 

AT2G26150 7 ATHSFA2 heat stress  Ogawa et al. (2007) 

AT2G46680 7 ATHB-7 ABA and drought stress  Valdes et al. (2012) 

AT4G36540 7 BEE2 brassinosteroid signaling  Friedrichsen et al. (2002) 

AT1G32870 6 ANAC013 oxidative stress + Chapter 2 

AT3G11020 6 DREB2B homolog of DREB2A, drought-responsive gene 
expression 

+ Nakashima et al. (2000) 

AT3G22780 6 TSO1 meristem organization  Song et al. (2000) 

AT3G30260 6 AGL79 -   

AT3G49530 6 ANAC062/NTM1 biotic and abiotic stress  Li et al. (2010) 

AT5G22290 6 ANAC089 antioxidant defense  Klein et al. (2012) 

AT1G48000 5 MYB112 - +  

AT1G62300 5 WRKY6 nutrient starvation; defense response  Robatzek and Somssich 
(2002); Chen et al. (2009); 
Kasajima et al. (2010) 

AT3G10500 5 ANAC053 drought stress and senescence + Lee et al. (2012) 

AT3G19580 5 AZF2 osmotic stress response  Kodaira et al. (2011) 

AT3G24500 5 MBF1c biotic, heat and osmotic stress Suzuki et al. (2005) 

AT4G01460 5 bHLH -     

 

In the previous section, we selected seven transcription factors that were predicted to target one 

or multiple abiotic stress-related modules and hence might have an important role during stress. 

Indeed, for five of them, a function in the abiotic stress response was recently demonstrated: 

RAP2.6L increases salt and drought stress tolerance (Krishnaswamy et al., 2011); WRKY6 

affects plant performance under nutrient deprivation conditions (Chen et al., 2009; Kasajima et 
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al., 2010); RAP2.1 is important for the tight control of the cold and drought stress response by 

repressing DRE-mediated gene expression (Dong and Liu, 2010); ANAC053 negatively affects 

drought tolerance (Lee et al., 2012); and ANAC013 overexpression plants show increased 

oxidative stress tolerance but are more sensitive to salt stress (Chapter 2). In addition, ERF6 was 

recently shown to be involved in the pathogen defense response (Moffat et al., 2012).  

As ANAC032 had not yet been characterized, we analyzed whether altered ANAC032 

levels affect tolerance to osmotic and salt stress, conditions under which its target module genes 

are most prominently up-regulated. Therefore, transgenic Arabidopsis plants were generated that 

constitutively expressed ANAC032 under the control of the CAMV35S promoter. Two 

independent ANAC032 overexpression (ANAC032-OE) lines with high transgene expression were 

selected using qRT-PCR for further analysis. An ANAC032 knockout line (KO) was obtained 

from the ABRC collection (see methods). Interestingly, ANAC032-OE displayed increased plant 

biomass under osmotic stress conditions (Figure 5.5). However, no significant phenotype was 

observed under salt stress conditions (data not shown). Hence, we conclude that LeMoNe 

prioritizes biologically relevant regulators in its regulation program.  

 

 

 

Figure 5.5. Osmotic stress resistance phenotype of ANAC032 overexpression plants.  

(A) Wild-type and ANAC032 overexpression (ANAC032-OE) plants grown on normal MS medium (Control) and on 

MS medium supplemented with 75 mM mannitol. 

(B) and (C) Rosette area and shoot fresh biomass of wild-type, ANAC032-OE and ANAC032 knockout (KO) plants 

under control and mannitol stress conditions. Data represent average (n = 25 plants for control conditions, n = 75 

plants for mannitol stress conditions) ± SE (Student’s t test; * P<0.05, ** P<0.01, and *** P<0.001). 
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Examples of functionally coherent modules related to the stress response 

Iron deficiency response 

In plants, iron is essential for many important metabolic processes and excessive concentrations 

lead to the formation of reactive oxygen species (ROS) (Ravet and Pilon, 2012). Therefore, iron 

homeostasis is tightly regulated and involves both the control of uptake from the rhizosphere and 

the internal mobilization from intracellular stores. Despite the absence of a significant GO 

enrichment, expression analysis using GENEVESTIGATOR revealed that the genes of module 

129 (eight genes) are specifically and strongly up-regulated during iron deficiency (Zimmermann 

et al., 2004), a condition that was not present in our microarray compendium. Two genes in the 

module have been implicated in Fe homeostasis: FERRIC REDUCTASE-OXIDASE (FRO3) 

encodes an iron reductase; and OLIGO PEPTIDE TRANSPORTER (OPT3) is involved in long-

distance iron transport (Stacey et al., 2008) (Figure 5.6).  

The top regulator of the module, BASIC HELIX-LOOP-HELIX 39 (bHLH039) is a 

binding partner of the IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) 

bHLH transcription factor that is known as a master regulator of the iron deficiency response 

(Colangelo and Guerinot, 2004; Yuan et al., 2008). Overexpression of either of the two bHLH 

proteins did not result in mis-regulation of two tested Fe deficiency responsive genes (Jakoby et 

al., 2004; Yuan et al., 2008). However, overexpression of both bHLH039 and FIT was sufficient 

to constitutively activate these genes, indicating they function together in the transcriptional 

regulation of the Fe deficiency response possibly by forming a functional heterodimer. The 

second-best predicted regulator, POPEYE (PYE) is a bHLH family member that is important for 

Fe mobilization within the plant and, consequently, pye mutants are more sensitive to low Fe 

availability (Long et al., 2010). PYE regulates the expression of the eight module genes, of which 

FRO3 is a direct target, as evidenced by ChIP analysis. Although PYE was predicted by LeMoNe 

as a positive regulator of module 129, the module genes are more strongly up-regulated in pye 

mutants compared to wild-type plants under Fe deficiency conditions, indicating that PYE 

functions as a repressor. In agreement with the regulation by bHLH TFs, the E-box (CACGTG) is 

enriched among the module gene promoters (5-fold; P value < 0.05) and present in six out of the 

eight genes (Meshi and Iwabuchi, 1995; Chaudhary and Skinner, 1999). Moreover, the module 

gene BRUTUS (BTS), a putative E3 ligase protein with metal ion binding and DNA binding 
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domains, is known to negatively regulate the iron deficiency response (Long et al., 2010). Due to 

the fact that PYE and BTS commonly interact with two members of the bHLH family but do not 

interact with each other and due to the opposite phenotypes of the pye and bts mutants under Fe 

deprivation, it was suggested that their simultaneous presence in the cell ensures the balanced 

expression of iron homeostasis genes (Long et al., 2010; Ivanov et al., 2012). Thus, BTS that is 

present as a gene in the module could actually regulate the module. To conclude, the genes in 

module 129 are likely regulated through a complex network of bHLH and other regulatory 

proteins, of which two (bHLH039 and PYE) were predicted as regulators and one (BTS) is 

present in the module itself.  

 

 

Figure 5.6. LeMoNe module 129 with module genes (bottom) and predicted regulators (top) involved in the iron 

deficiency response. Yellow, up-regulated genes; blue, down-regulated genes; red vertical lines partition condition 

clusters.  

 

 

Cold acclimation 

Module 30 (42 genes) is GO enriched for starch metabolism, response to temperature stimulus, 

and circadian rhythm. The genes in the module are up-regulated during cold and high light stress 

and, to a lesser extent, by high salt and drought conditions. Among the nine genes annotated to be 

involved in starch metabolism, seven mediate starch degradation. Starch is stored during the day 

inside chloroplasts and broken down to soluble sugars (maltose and glucose) when energy is 

needed e.g. during the night. In addition, levels of soluble sugars also increase during cold stress, 

and this was suggested to be due to increased expression of starch degradation enzymes (Kaplan 

and Guy, 2004; Lu and Sharkey, 2006). Soluble sugars such as maltose can protect proteins and 

the photosynthetic electron transport chain under freezing stress most likely by acting as 

compatible solutes (Kaplan and Guy, 2004). In accordance with the importance of starch 
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degradation in cold/freezing tolerance, a mutant in the starch degradation enzyme STARCH 

EXCESS1 (SEX1), that is a member of module 30, showed impaired freezing tolerance (Yano et 

al., 2005). Moreover, the protein GLYCINE-RICH RNA-BINDING PROTEIN 7 (GRP7) in 

module 30 functions as an RNA chaperone in the post-transcriptional regulation of the cold stress 

response (Kim et al., 2007; Kim et al., 2008).    

According to the circadian rhythm GO enrichment, the genes in the module are modulated 

by the circadian clock (Zimmermann et al., 2004; Dalchau et al., 2010) and 24 of the module 

genes contain the Evening Element (EE), a DNA regulatory element that has a role in circadian-

regulation of gene expression and induces peak expression in the evening (Harmer et al., 2000). 

Interestingly, the EE has been shown previously to be required for cold-regulated gene 

expression and was suggested to integrate cold- and clock-regulated transcription (Mikkelsen and 

Thomashow, 2009). The circadian clock and cold acclimation are intimately linked in plants: cold 

affects the expression of clock genes and the clock regulates the cold response pathway 

(Bieniawska et al., 2008; Espinoza et al., 2008). Moreover, genes encoding starch metabolizing 

enzymes show diurnal changes in expression, peaking at the end of the day (Smith et al., 2004) 

and maltose shows strong night specific accumulation during cold acclimation (Espinoza et al., 

2010). Altogether, this indicates that module 30 is potentially involved in a diurnal-regulated cold 

stress response, possibly by activating cold acclimation when temperatures decrease during the 

night. 

Several MYB transcription factors have been identified to mediate clock-regulated gene 

expression by binding the EE element (Harmer and Kay, 2005; Gong et al., 2008), but none of 

them was predicted by LeMoNe as a regulator of the module. However, the second-best predicted 

regulator, PSEUDO-RESPONSE REGULATOR3 (PRR3) binds and modulates the stability of 

another PRR protein TIMING OF CAB EXPRESSION1 (TOC1) (Para et al., 2007), that directly 

or indirectly (by inhibiting a repressor) regulates expression of the CIRCADIAN CLOCK 

ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) MYB transcription 

factors and other MYB(-related) TFs (Alabadi et al., 2001; Pruneda-Paz et al., 2009; Huang et al., 

2012). CCA1 and LHY are known to bind the EE element in the promoters of clock-regulated 

genes (Gong et al., 2008) and thus could be direct regulators of the genes in the module, although 

experimental evidence is lacking. Thus, although LeMoNe did not predict direct regulator(s) of 

the module genes, we could infer a potential regulatory path consisting of physical interactions 
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(protein-protein and protein-DNA) that might connect the predicted regulator to the module 

genes. Interestingly, LHY and TOC1 were, in addition to PPR3, predicted by CLR as regulators 

of respectively 23 and 12 genes of the module. This again demonstrates that CLR is a “regulator-

centric” approach, predicting a higher number of true regulators compared to LeMoNe (Michoel 

et al., 2009).  

 

Unfolded protein response 

Module 56 (18 genes) is GO enriched for response to endoplasmic reticulum (ER) stress. Stresses 

that disrupt the ER function lead to accumulation of unfolded or misfolded proteins in the ER, a 

condition known as ER stress. Cells adapt to this stress by activating a signal transduction 

pathway, called the unfolded protein response (UPR) to synthesize more ER-associated 

chaperones and degradation machinery components (ERAD) in an attempt to restore ER 

homeostasis and function. Accordingly, module 56 contains 12 genes involved in protein folding, 

such as protein disulfide isomerases (PDIL), calnexins, calreticulins, and heat shock proteins; two 

UDP-glucose/UDP-galactose transporters involved in the re-glucosylation of unfolded 

glycoproteins in the ER (Reyes et al., 2006; Reyes et al., 2010); and a translocation-related 

protein that might translocate unfolded proteins to the cytosol for degradation (Pilon et al., 1997) 

(Figure 5.7). In addition, 13 module genes were previously reported in a transcriptomic study to 

be induced upon various treatments with chemicals that cause protein misfolding in the ER 

(Martinez and Chrispeels, 2003), conditions that were not present in our microarray compendium. 

However, the expression profile of the genes in module 56 shows a strong up-regulation by heat, 

UV, and oxidative stress and upon salicylic acid application. The UPR has been implicated in 

various abiotic and biotic stress responses as mutants in ER stress signaling components have 

altered resistance to these adverse conditions (Moreno and Orellana, 2011). Moreover, the UPR 

plays an essential role in the salicylic acid-mediated production of pathogenesis-related (PR) 

proteins in the ER during plant immune responses (Moreno et al., 2012). The predicted regulators 

of the module have not yet been characterized. However, ten of the module genes are regulated 

by bZIP28 under ER stress conditions (Liu and Howell, 2010) and the bZIP28 binding site (ER 

stress-responsive element I [ERSE-I]) is enriched among the module promoters (present in 9 

genes), indicating that bZIP28 directly regulates several of the module genes. Although bZIP28 
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was not predicted as a regulator, these data indicate that LeMoNe correctly clusters co-regulated 

genes. 

 

 

Figure 5.7. LeMoNe module 56 with module genes (bottom) and predicted regulators (top) involved in the unfolded 

protein response. Yellow, up-regulated genes; blue, down-regulated genes; red vertical lines partition condition 

clusters. 

 

Flavonoid biosynthesis 

Flavonoids are secondary metabolites that serve as flower pigments, phytoalexins, signaling 

molecules, and UV-B protectants (Iwashina, 2003). Flavonoid biosynthesis is part of a larger 

phenylpropanoid pathway, which produces a range of secondary metabolites from the aromatic 

amino acid phenylalanine. The flavonoid pathway starts with the general phenylpropanoid 

pathway and subsequently consists of 1) the early biosynthetic genes, which are common to 

different flavonoid subpathways and are induced prior to 2) the late biosynthesis genes (Figure 

5.8) (Shirley et al., 1995; Pelletier and Shirley, 1996; Pelletier et al., 1997; Winkel-Shirley, 

2001). The best characterized subpathways are those leading to flavonol and anthocyanin 

synthesis. LeMoNe inferred three modules (177, 76 and 134) that are each related to a specific 

part of the flavonoid biosynthesis pathway (Figure 5.8). First, module 177 (six genes) contains 

two enzymes of the general phenylpropanoid biosynthesis pathway: PHE AMMONIA LYASE 1 

(PAL1) and PAL2. Secondly, the proteins CHALCONE ISOMERASE (CHS), CHALCONE 

ISOMERASE (CHI), FLAVANONE 3-HYDROXYLASE (F3H), FLAVONOID 3’-
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HYDROXYLASE (F3’H), and FLAVONOL SYNTHASE (FLS) in module 76 (16 genes) 

represent the complete early flavonoid pathway that results in basic flavonols. In addition, 

module 76 contains two glycosyltransferases that generate functional flavonol glycosides having 

antioxidant activity and strong UV absorbance properties. However, other module genes have not 

been characterized yet or are involved in other parts of the pathway, such as an anthocyanidin 

glycosyltransferase (UGT78D2) and the 4-COUMARATE-COA LIGASE 3 (4CL3) that 

mediates the last step of the general phenylpropanoid pathway. Thirdly, module 134 contains five 

genes that are involved in the anthocyanin branch from the flavonoid pathway (Tohge et al., 

2005) (Figure 5.9). The expression profile of the genes in modules 177, 76, and 134 shows an 

overall up-regulation during high light, UV radiation, and oxidative stress consistent with the 

function of flavonols and anthocyanins as antioxidants and to prevent photoinhibition and 

photodamage through the absorption of excess light (Chalker-Scott, 1999).   

Enzymes of the flavonoid pathway are largely regulated at the transcriptional level and 

different transcription factor regulons correspond to distinct subpathways (Hichri et al., 2011). 

First, the general phenylpropanoid pathway is regulated by the MYB4 transcription factor (Jin et 

al., 2000). Despite MYB4 was not predicted as a regulator of module 177, another 

uncharacterized MYB family member was proposed, indicating this could be a novel regulator of 

phenylpropanoid biosynthesis. Secondly, the early flavonoid biosynthesis enzymes are regulated 

by three MYB transcription factors (MYB11, MYB12, and MYB111) (Stracke et al., 2007). 

Correspondingly, a MYB binding site is enriched in module 76 and nine genes are down-

regulated in the triple mutant myb11 myb12 myb111, of which one gene was indicated to be a 

direct target by protoplast co-transfection assays (Stracke et al., 2007). However, these MYB TFs 

were not predicted as regulators by LeMoNe. The predicted top regulator is the bZIP 

transcription factor ELONGATED HYPOCOTYL5-HOMOLOG (HYH), a homolog of HY5. 

HY5 has been shown to regulate the MYB12 gene in response to light and UV-B radiation and 

hy5 mutants have altered expression of 10 genes in module 76, indicating HY5 indirectly 

regulates these genes through MYB12 (Stracke et al., 2010). As HYH is partially or completely 

redundant with its homolog HY5 with respect to the UV-B-mediated transcriptional response 

(Brown and Jenkins, 2008), it is possible that HYH is also an indirect regulator of the module 

genes by regulating MYB12. In addition to HYH, CLR predicted MYB12 and HY5 as regulators 

for respectively six and five out of the 16 genes in this module. Thirdly, MYB/bHLH/WD-repeat 
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transcription factor complexes specifically regulate the anthocyanin branch (Gonzalez et al., 

2008) and one of these MYB TFs, PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) 

was predicted as a regulator of module 134. All five genes of module 134 are strongly up-

regulated by PAP1 overexpression (Tohge et al., 2005). In addition, three genes (FDR, GST12, 

and UGT75C1) are down-regulated in a multiple knock-down mutant of PAP1 and related MYB 

TFs and are likely direct PAP1 targets, as revealed by protoplast co-transfection assays (Gonzalez 

et al., 2008). In addition to PAP1, CLR predicted PAP2 and TRANSPARENT TEST8 (TT8), that 

are also involved in anthocyanin biosynthesis, for all five genes of module 134 (Gonzalez et al., 

2008). 

 

 

 

Figure 5.8. Schematic overview of the flavonoid biosynthesis pathway yielding flavonols and anthocyanins.  

The flavonoid biosynthesis pathway starts with the general phenylpropanoid pathway and subsequently consists of 

early and late divisions, leading to the production of specific flavonoids (flavonol and anthocyanin are shown here). 

LeMoNe modules 177, 76, and 134 that represent three different subpathways are indicated. Adapted from Gonzales 

et al., 2008. 
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Figure 5.9. LeMoNe module 134 with module genes (bottom) and predicted regulators (top) involved anthocyanin 

biosynthesis. Yellow, up-regulated genes; blue, down-regulated genes; red vertical lines partition condition clusters.  

 

 

DISCUSSION 

 

In this study, we have used the LeMoNe algorithm for identifying gene co-expression modules 

and their regulators from abiotic stress-related gene expression profiles. Previous studies have 

demonstrated that co-expression data can be used to predict functional and co-regulation 

relationships between genes (Eisen et al., 1998; Yu et al., 2003). First, using GO and Aracyc 

metabolic pathway enrichment and/or the presence of physical protein-protein interactions as a 

measure of the functional coherence, we found biological evidence for 53% of the modules. 

Together, the modules spanned a wide variety of functions including various abiotic stress and 

pathogen responses, as well as, more general cellular functions related to translation, 

photosynthesis, specific metabolic pathways, and cell cycle processes. Secondly, for about a 

quarter of the co-expression modules, we observed potential co-regulation of the genes, as 

evidenced by the overrepresentation of one or more cis-regulatory motifs in their promoters. The 

actual number of modules with overrepresented motifs might in fact be higher, as many cis-

elements have not yet been identified or might not be significantly enriched in the modules due to 

their short and degenerate nature. In addition, based on literature evidence, we found that several 

modules contain genes that share a regulator, whether or not this regulator was predicted by 

LeMoNe. To conclude, we demonstrated that LeMoNe infers functionally and regulatory 

coherent modules. 

Although it has been widely shown that co-expression can be used to infer functional 

and/or co-regulation relationships between genes, the prediction of regulator-target gene relations 

from expression information is still challenging. Many studies have inferred transcriptional 
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regulatory networks from expression data, but so far they have largely not been validated (Amit 

et al., 2009; Nero et al., 2009). We found that many predicted regulators are related to similar 

biological processes as their target modules. To further evaluate the predictive power of LeMoNe 

for regulatory interactions, we compared the identified network model to regulator-target 

relationships inferred from a set of publicly available microarray experiments on mutant 

genotypes not included in the original dataset. We found an overall low coverage in predicting 

regulatory interactions, probably due to the fact that many of these regulators are not significantly 

regulated at the transcript level. The regulation of many transcription factors is post-

transcriptionally through dimerization, co-factor binding, post-translational modifications, and 

subcellular localization and/or sequestration and this cannot be recovered from gene expression 

data (Lee et al., 2006). In addition, expression profiling of regulator mutants reveals many non-

regulatory target genes, that change due to secondary effects (Joshi et al., 2010), which could also 

account for the high number of false negative predictions.  

As a proof of concept, we have used the identified transcriptional regulatory network to 

predict novel regulatory interactions. For seven TFs that were predicted to regulate one or more 

stress-related modules, we experimentally assessed the predictions by analyzing TF mutants and 

showed that, depending on the TF tested, the expression of several predicted target genes indeed 

changed. The overall higher coverage compared to that of the previous regulatory network 

derived from public microarray data, could be attributed to the fact that these seven selected 

transcription factors are significantly regulated at the transcriptional level, as they were predicted 

by LeMoNe as regulators of abiotic stress-regulated modules. The predictive performance was 

the best for ANAC013 targets, with a relatively low number of false positive and negative 

predictions. This could be explained by the fact that ANAC013 is strongly regulated at the 

transcript level and, in addition, autoregulates its own transcription (Chapter 2), resulting in a 

high expression correlation with its target genes. Similarly, in S. cerevisiae and E. coli regulatory 

networks, a large fraction of the regulators for which true targets could be predicted by LeMoNe 

are autoregulators (Michoel et al., 2009). The seven studied TFs were predicted by LeMoNe as 

positive regulators of their target modules. Accordingly, for all of them except RAP2.1, their 

target genes appear to be positively regulated, being induced or repressed by TF overexpression 

or knockout, respectively. RAP2.1, that has been reported previously as a repressor of the stress 

response (Dong and Liu, 2010) also negatively regulates the stress-induction of its target genes in 
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our experiments. The positive expression correlation between RAP2.1 and its target genes could 

be explained by the fact that they are under the same or similar regulatory control: both RAP2.1 

and its target genes are up-regulated by DREB transcription factors and under the negative 

regulation of RAP2.1 itself (Dong and Liu, 2010). Furthermore, from the analysis of TF binding 

sites in the true predicted target genes, we assume that LeMoNe predicted both direct and indirect 

regulatory interactions for these seven TFs. The prediction of indirect regulatory interactions is 

not surprising as these are often measured from expression data (Balaji et al., 2008; Joshi et al., 

2010). We conclude that LeMoNe prioritizes true regulatory interactions and this is mainly true 

for transcription factors that are largely regulated at the transcriptional level. 

Analysis of the topology of the experimentally obtained regulatory network suggests a 

high connectivity and potential hierarchical structure, in agreement with results from a previous 

study that inferred an Arabidopsis transcriptional regulatory network of the stress response 

(Carrera et al., 2009). This high control could be indicative of the robust transcriptional 

regulation of these genes during stress and could explain why single knockout of the TFs hardly 

affected target gene expression. ANAC013 was revealed as a potential master regulator of the 

obtained subnetwork, with a major role in the regulation of stress responsive genes, potentially 

through activating a cascade of intermediary transcription factors. However, as transcriptome 

analyses of TF mutants, especially overexpression lines, reveals many indirect target genes as 

well as genes that change due to secondary effects (e.g. altered physiology of the cell), care 

should be taken in the interpretation of the proposed network (Balaji et al., 2008; Joshi et al., 

2010). To gain a better understanding of the underlying true biological network, evaluation of the 

identified regulatory interactions using the ChIP or Y1H technology will be necessary.  

We have used a reverse engineered model of the Arabidopsis abiotic stress response 

transcriptional regulatory networks to predict unknown regulatory interactions with some 

promising results that reveal insight into abiotic stress-mediated transcriptional regulation. We 

conclude that predicted gene regulatory networks can be a powerful tool in understanding 

transcriptional regulatory mechanisms, especially when integrated with experimental validation. 

In the future, integration of other data types such as posttranscriptional and posttranslational 

regulation and physical (protein-DNA and protein-protein) interactions will enable the creation of 

a more robust network that more accurately reflects the underlying biological network. In 

addition, as different predictive methods, such as LeMoNe and CLR, infer complementary 
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information, it will be useful to combine their predictions. To conclude, we believe that the 

obtained results can be utilized to predict the functions of uncharacterized genes and to 

understand the transcriptional regulatory mechanisms of the abiotic stress response. 

 

METHODS 

 

Microarray compendium 

Affymetrix ATH1 expression profile data were assembled from three sources: the Gene 

Expression Omnibus (GEO), ArrayExpress from the European Bioinformatics Institute database 

and the Nottingham Arabidopsis Stock Centre microarray (NASC) (Edgar et al., 2002; Craigon et 

al., 2004; Parkinson et al., 2009). We gathered expression data (CEL files) for 45 experimental 

series, representing in total 642 individual arrays and 283 different experimental conditions, 

including controls (Supplemental Table 5.1). The data were preprocessed in Bioconductor, R 

(http://www.bioconductor.org/). Through the robust multi-array average (RMA) method, a 

background-adjusted, quantile normalized and summarized log-transformed expression value was 

obtained for each probe set. Next, replicate conditions were summarized and both absolute 

expression values and ratio expression values derived by dividing experiment over control were 

obtained. In order to limit data inclusion from off-target hybridization, we used a custom A. 

thaliana cdf file, that consists of 19 937 probe sets of at least eight probes, each targeting to its 

transcript with perfect sequence identity and not aligning to any other gene’s transcript with zero 

or one mismatches (Casneuf et al., 2007). For LeMoNe and CLR analysis, we removed 6087 

genes for which the ratio hardly (standard deviation lower than 0.25) changed in any of the 

conditions, in order to identify regulation programs for different types of abiotic stresses and not 

the general abiotic stress response. Hence, we obtained an Arabidopsis transcript abundances 

profile compendium consisting of average expression values for 13850 genes in 283 (absolute 

expression values) and 199 (ratio expression values) conditions, respectively. 

 

LeMoNe analysis 

We ran 20 independent Gibbs sampler LeMoNe 

(http://bioinformatics.psb.ugent.be/software/details/LeMoNe) runs, generating 20 local optima 
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module clusters solutions, from which an ensemble-averaged solution of coexpression modules 

was created. We varied the ensemble clustering parameter qopt (i.e. at least cluster together in 5 

out of the 20 runs _ qopt25, at least cluster together in 10 out of the 20 runs _ qopt5, with a 

higher stringency leading to smaller size modules) to create the modules. For the regulator list, 

We selected 1340 transcription factors based on the presence on the ATH1 array and the presence 

in the database Plant TFDB v2.0, Peking University, China (Zhang et al., 2011). Next, LeMoNe 

predicted a ranked list of weighted regulators for each module, based on an ensemble of 10 

regulatory program trees with maximum three levels per module built using significant 

experiment sets found from 10 different experiment partitions and significant regulators sampled 

from 100 candidate regulator-split value pairs for each split between significant experiment 

clusters (Joshi et al., 2009). The weight of a regulator is the sum of split scores over the different 

regulatory programs (10), for each regulator sampled (100) and for each level in the tree (3) 

taking into account the proportion of conditions covered. The split score (0-1) of a regulator 

indicates how well the expression-split value of the regulator explains the partition in conditions 

in the module. We only considered regulators having a weight of 10 or higher (the top 2% of all 

regulators assigned).  

 

CLR analysis 

CLR was applied to the same microarray compendium (http://gardnerlab.bu.edu/clr.html) 

providing mutual information z-scores for target gene interactions. We used a cut-off for the z-

score at 5 (p-value < 3.10
-7

) and only retained at most the 10 best regulators for each gene.  

 

Functional analysis on gene modules 

Each module was analyzed for GO Biological Process enrichment with BiNGO using a gene-

based custom annotation file for Arabidopsis (created from annotation and ontology files 

downloaded from www.geneontology.org on 18/10/2011), the whole annotation as a reference set 

(24453 Arabidopsis genes have a Biological Process annotation) and Benjamini and Hochberg 

False Discovery Rate multiple hypothesis testing correction with a confidence level of 95% (ref. 

Bingo). In a similar manner, each module was assessed for AraCyc 8.0 metabolic pathway 

enrichment (2095 Arabidopsis genes are annotated with a specific metabolic pathway). We kept 

http://gardnerlab.bu.edu/clr.html
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the significant GO or AraCyc enrichment only if more than one gene in the module had the GO 

Biological Process or Aracyc metabolic pathway annotation. Through 32955 experimental 

protein-protein interactions present in the CORNET database (De Bodt et al., 2012), we also 

calculated for each module the percentage of genes in the module that shared protein-protein 

interactions.  

Cis-regulatory motifs 

Known cis-regulatory motifs from the PLACE and AGRIS databases (Higo et al., 1999; Davuluri 

et al., 2003) present in the promoters, defined as 1-kb upstream of translation start sites or in the 

intergenic region if the adjacent upstream gene is located within a smaller distance, of all 

Arabidopsis genes were obtained from the ATCOECIS resource 

(http://bioinformatics.psb.ugent.be/ATCOECIS/) (Vandepoele et al., 2009). Cis-regulatory motif 

enrichment was calculated for each module using hypergeometric enrichment and Bonferroni 

multiple hypothesis testing correction with a confidence level of 95%. In addition, cis-regulatory 

motif enrichment in a module was only considered 1) when the motif is present in at least 50% of 

the genes and is more than 1.5 times enriched in the module compared to the genome, or 2) is 

more than 100 times enriched and is present in at least 20% of the genes in the module, and in 

both cases the motif should be present in more than one gene.  

 

Cloning of open reading frames  

The full-length open reading frames were amplified by polymerase chain reaction (PCR) from 

first-strand cDNA of A. thaliana (L.) Heynh. ecotype Columbia (Col-0) with gene-specific 

primers extended with the attB sites for Gateway cloning (Invitrogen Carlsbad, CA, USA; 

Supplemental Table 5.4). PCR reactions were run with high-fidelity Phusion DNA polymerase 

(Finnzymes OY, Espoo, Finland) and fragments were cloned into the Gateway entry vectors 

(Invitrogen) according to the manufacturer’s instructions. 

Generation of transgenic Arabidopsis plants 

Overexpression plants – A constitutive promoter-driven expression construct was generated in 

the binary destination vector pK7WG2D (Karimi et al., 2007). Transgene expression levels were 

determined by qRT-PCR. 
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MicroRNA lines - ANAC013-specific sequences were identified with the Web MicroRNA 

Designer (WMD) (www.weigelworld.org). The miR precursors were constructed according to 

Schwab et al. (2006) (Supplemental Table 5.4) and cloned into pK7WG2D. 

Constructs were transformed into Arabidopsis Columbia-0 (Col-0) by Agrobacterium-mediated 

floral dipping (Clough and Bent, 1998).  Homozygous lines with a single T-DNA locus were 

selected via segregation analysis and transgene expression was monitored via qRT-PCR analysis.  

Loss-of-function plants – We obtained T-DNA insertion mutants (Supplemental Table 5.5) from 

the ABRC at Ohio State University. Homozygous plants were selected by genomic PCR with 

gene-specific and T-DNA-specific primers. The expression level of the genes was determined by 

qRT-PCR. 

Plant growth conditions and stress treatments 

A. thaliana (L.) Heynh ecotype Columbia (Col-0) plants (wild type) were grown until stage 1.04  

(Boyes et al., 2001) on half-strength (½) Murashige and Skoog (MS) medium (Duchefa 

Biochemie; http://www.duchefa.com/), 1% (w/v) sucrose, 0.75% (w/v) agar, pH 5.7 at 21°C and 

under a 16-h light/8-h dark photoperiod, 150 μmol m
-2

s
-1

 light intensity and 50% relative 

humidity. For the optimization of the salt stress conditions, seeds were either directly sown and 

germinated on ½MS medium supplemented with 25, 50, and 75 mM NaCl or grown on a nylon 

mesh on ½MS for 2 weeks and subsequently transferred to ½MS supplemented with 100 or 150 

mM NaCl for different periods (6, 12, 24h). For the Nanostring nCounter experiments, a 

combination of wild-type and three transgenic lines were grown for 2 weeks on a nylon mesh on 

a ½MS plate and subsequently transferred to ½MS supplemented with 150 mM NaCl. Twelve 

hours after transfer, three biological samples of 5 – 10 plants were harvested. For the mannitol 

stress assays, wild-type and transgenic plants were sown and germinated on ½MS supplemented 

with 75 mM mannitol.   

RNA extraction and qRT-PCR 

Total RNA and first-strand cDNA were prepared with TRIzol Reagent (Invitrogen) and iScript 

cDNA Synthesis Kit (Bio-Rad), respectively according to the manufacturer’s instructions. As a 

template in the subsequent PCR, 5 μL of a 1:8 diluted first-strand cDNA was run on the iCycler 
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iQ (Bio-Rad) with the SYBR Green I Master kit (Roche Diagnostics) according to the 

manufacturer’s instructions. All individual reactions were done in triplicate. Primers were 

designed with the Universal ProbeLibrary Assay Design center ProbeFinder software (Roche; 

http://www.roche-applied-science.com/; Supplemental Table 5.4). For the expression analysis, 

values were normalized against ACTIN-RELATED PROTEIN 7 (ARP7). The Δ cycle threshold 

method (Livak and Schmittgen, 2001) was applied for relative quantification of transcripts. 

Nanostring nCounter data analysis 

The raw nCounter data were rescaled by dividing per experiment by two factors: 1) the sum of 

the positive controls per experiment divided by the median of the sums of the positive controls 

over all experiments, in order to correct for technical errors, 2) the geometric mean of the 3 most 

stable household genes, selected by geNorm (Vandesompele et al., 2002), per experiment divided 

by the total geometric mean of these 3 household genes over all experiments, in order to correct 

for differences in mRNA content of the samples. We identified the differential expression 

analysis between wild-type and perturbed transcription factor plants using the DESeq package for 

count data in Bioconductor, R using an adjusted P value cut-off of 0.1 (Anders and Huber, 2010). 

The raw nCounter data were fed into the package and the above rescaling factors were written in 

the sizeFactors slot of the CountDataSet object for the package DESeq. We compared the 

replicate perturbed transcription factor plants against the wild-type plants that were together with 

the former on the same plates. We applied a local fit for the estimation of the dispersions using 

the method “per-condition”. 

 

Accession numbers 

 

ANAC013, At1g32870; ANAC053, At3g10500; ANAC032, At1g77450; ERF6, At4g17490; 

RAP2.1, At1g46768; RAP2.6L; At5g13330; WRKY6, At1g62300; RD26, At4g27410; ATHB-7, 

At2g46680; ATHB-12, At3g61890; ABF3, At4g34000; GBF3, At2g46270; MYB28, At5g61420; 

MYB34, At5g60890; FRO3, At1g23020; WRKY75, At5g13080; WRKY15, At2g23320; 

WRKY28, At4g18170; OPT3, At4g16370; bHLH039, At3g56980; PYE, At3g47640; BTS, 

At3g18290; SEX1, At1g10760; GRP7, At2g21660; PPR3 At5g60100; PAL1, At2g37040; PAL2, 

At3g53260; CHS, At5g13930; CHI, At5g05270; F3H, At3g51240; F3’H, At5g07990; FLS, 
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At5g08640; UGT78D2, At5g17050; 4CL3, At1g65060; HYH, At3g17609; PAP1, At1g56650; 

FDR, At5g42800; GST12, At5g17220; UGT75C1, At4g14090.  
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SUPPLEMENTAL DATA 

 

Supplemental Table 5.1.   The compendium of 45 series of stress-related microarray experiments containing a total 

of 642 arrays in 283 conditions.  

For each experiment is given a brief description; the database in which the experiment has been published with the 

corresponding database ID; the respective publication, if available. Series 45 actually contains different experiments 

which were carried out by different groups, as indicated.       

Study Description Database ID Reference 
1 Effects of anoxia and sucrose on seedling growth GEO GSE2133 Loreti et al., 2005 

2 Dynamics of mRNA abundance and translation in response to short 
and prolonged hypoxia and reoxygenation 

GEO GSE9719 Branco-Price et al. 

3 Global expression profiling of wild type and transgenic Arabidopsis 
plants in response to water stress 

GEO GSE10670 Perera et al., 2008 

4 Transcription profiling of Arabidopsis dor mutant and wild-type plants 
in response to drought stress. 

GEO GSE10643 Zhang et al., 2008 

5 Transcription profiling of SALK_084897 or SAIL_303_D08 Arabidopsis 
plants grown under normal conditions or with moderate light and 
drought treatment applied 

ArrayExpress E-ATMX-32 Giraud et al., 2008 

6 AtGenExpress: Light treatments TAIR ME00345  

7 Carbon fixation (endogenous sugar) and light-dependent gene 
expression 

GEO GSE3423 Bläsing et al., 2005 

8 Genome-wide gene expression analysis reveals a critical role for CRY1 
in the Response of Arabidopsis to High Irradiance 

GEO GSE7743 Kleine et al., 2007 

9 Hydrogen peroxide stress and Zat12 over-expression in Arabidopsis. GEO GSE5530  

10 AtGenExpress: Effect of ibuprofen, salicylic acid and daminozide on 
seedlings 

TAIR ME00364  

11 The effects of the sfr2, sfr3 and sfr6 mutations on lyotropic stress 
responses 

GEO GSE6177  

12 Genome-wide transcriptome analysis of Arabidopsis and siz1-3 
response to drought stress 

GEO GSE6583 Catala et al., 2007 

13 Over-expression of MBF1c enhances stress tolerance GEO GSE5539  

14 WTv.AOXantisense GEO GSE2406 Umbach et al., 2005 

15 Response to CBF2 expression GEO GSE5536  

16 Transcription profiling of heat stress response in Arabidopsis wild 
type and hsf1x3 double knockout mutant lines 

ArrayExpress E-MEXP-98 Busch et al., 2005 

17 ICE1 regulation of the Arabidopsis Cold-Responsive Transcriptome GEO GSE3326 Lee et al., 2005 

18 Expression data from thylakoidal ascorbate peroxidase overexpressor 
Arabidopsis thaliana (Col) rosette leaves 

GEO GSE10812 Laloi et al., 2007 

19 A polyadenylation factor subunit implicated in regulating oxidative 
stress responses in Arabidopsis thaliana 

GEO GSE7211  

20 NFYA5, a CCAAT binding transcription factor important for drought 
resistance in Arabidopsis 

GEO GSE12029 Li et al., 2008 

21 Gene expression in wild-type and transgenic plants overexpressing 
rice OsTOP6A1 gene 

GEO GSE6812 Jain et al., 2008 

22 STA1, a stress-upregulated nuclear protein, is required for pre-mRNA 
splicing, mRNA turnover and stress tolerance 

GEO GSE4662 Lee et al., 2006 

23 Transcription profiling of Arabidopsis seedlings treated with the 
herbicide methyl viologen 

ArrayExpress E-ATMX-28 Scarpeci et al., 2008 

24 Transcription profiling of Arabidopsis distal leaves directly exposed to 
and shaded from high light levels 

ArrayExpress E-ATMX-19 Rossel et al., 2007 

25 Transcription profiling of Arabidopsis wild type and SAL1 mutant 
plants grown under normal conditions 

ArrayExpress E-MEXP-1495 Wilson et al., 2009 

26 Transcription profiling of Arabidopsis wild type, cop1-4, hy5-1 mutant 
seedlings exposed to polychromatic radiation 

ArrayExpress E-MEXP-557 Oravecz et al., 2006 

27 The effect of overexpression of Zat10 in Arabidopsis leaf tissue ArrayExpress E-ATMX-20 Rossel et al., 2007 

28 Transcription profiling of Arabidopsis wild type, AtMYB44 knock-out 
and AtMYB44 over-expressing plants treated with NaCl 

ArrayExpress E-ATMX-30 Jung et al., 2008 

29 Transcription profiling of Arabidopsis treated with sugars (glucose, 
mannose) and abcissic acid 

ArrayExpress E-MEXP-475 Li et al., 2006 
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Supplemental Table 5.1.   The compendium of 45 series of stress-related microarray experiments containing a 

total of 642 arrays in 283 conditions. (Continued). 

30 Transcription profiling of Arabidopsis thaliana response to ozone ArrayExpress E-MEXP-342  

31 catalase2 knockout    

32 CATALASE2 knockdown + high light stress    

33 low CO2    

34 Mitochondrial type-I prohibitins of Arabidopsis thaliana are required 
for supporting proficient meristem development. 

- - Van Aken et al., 
2007 

35 Perturbation of indole-3-butyric acid homeostasis by the UDP-
glucosyltransferase UGT74E2 modulates Arabidopsis architecture and 
water stress tolerance. 

- - Tognetti et al., 2010 

36 Expression patterns of genes induced by sugar accumulation during 
early leaf senescence 

NASC/NascArrays NASCARRAYS-
136 

Pourtau et al., 2006 

37 Functional Genomics of Ozone Stress in Arabidopsis. GEO GSE5722  

38 AtGenExpress: ABA time course in wildtype seedlings TAIR ME00333  

39 AtGenExpress: Effect of auxin inhibitors on seedlings TAIR ME00358  

40 AtGenExpress: IAA time course in wildtype seedlings TAIR ME00336  

41 AtGenExpress: Methyl Jasmonate time course in wildtype seedlings TAIR ME00337  

42 Experiment: AtGenExpress: ACC time course in wildtype seedlings TAIR ME00334  

43 AtGenExpress: Effect of ethylene inhibitors on seedlings TAIR ME00360  

44 AtGenExpress: Brassinolide time course in wildtype and det2-1 
mutant seedlings 

TAIR ME00335  

45 AtGenExpress: tissue comparison, abiotic treatment   TAIR   

 AtGenExpress: Cold stress time course TAIR ME00325  

 AtGenExpress: Osmotic stress time course TAIR ME00327  

 AtGenExpress: Salt stress time course TAIR ME00328  

 AtGenExpress: Drought stress time course TAIR ME00338  

 AtGenExpress: Genotoxic stress time course TAIR ME00326  

 AtGenExpress: Oxidative stress time course TAIR ME00340  

 AtGenExpress: UV-B stress time course TAIR ME00329  

 AtGenExpress: Heat stress time course TAIR ME00339  
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Supplemental Table 5.2. Overview of the modules with a significant GO enrichment.  

Only the most significant GO biological process term is displayed.  

Module # genes 
# genes 

with GO P value GO-ID   GO Description 

1 62 58 2.80E-87 6412 
 

translation 

2 70 20 1.81E-09 10467 
 

gene expression 

3 71 30 3.79E-27 6412 
 

translation 

4 74 4 4.52E-04 16116 
 

carotenoid metabolic process 

5 56 5 1.81E-07 42775 
 

mitochondrial ATP synthesis coupled electron transport 

6 69 11 2.52E-15 7018 
 

microtubule-based movement 

7 111 2 4.16E-02 19348 
 

dolichol metabolic process 

8 63 12 3.60E-06 16070 
 

RNA metabolic process 

9 181 7 1.06E-08 9773 
 

photosynthetic electron transport in photosystem I 

10 134 14 5.35E-08 6511 
 

ubiquitin-dependent protein catabolic process 

11 71 63 2.03E-91 6412 
 

translation 

12 68 5 3.05E-02 48580 
 

regulation of post-embryonic development 

13 51 6 5.88E-04 10016 
 

shoot morphogenesis 

14 45 15 2.65E-11 6412 
 

translation 

15 55 13 3.51E-05 6468 
 

protein amino acid phosphorylation 

16 46 2 3.91E-02 7155 
 

cell adhesion 

17 36 23 1.11E-39 15979 
 

photosynthesis 

18 67 10 1.50E-06 16051 
 

carbohydrate biosynthetic process 

19 54 4 1.15E-04 9062 
 

fatty acid catabolic process 

20 52 2 2.21E-02 10304 
 

PSII associated light-harvesting complex II catabolic process 

22 42 9 1.51E-04 6412 
 

translation 

27 84 2 1.23E-03 45337 
 

farnesyl diphosphate biosynthetic process 

28 37 7 3.80E-05 45087 
 

innate immune response 

29 32 11 4.25E-08 44248 
 

cellular catabolic process 

30 37 9 1.80E-15 5982 
 

starch metabolic process 

32 218 65 3.36E-33 10467 
 

gene expression 

33 55 13 3.59E-15 10200 
 

response to chitin 

34 23 4 2.12E-02 6979 
 

response to oxidative stress 

35 36 2 2.76E-02 43193 
 

positive regulation of gene-specific transcription 

36 22 3 1.15E-02 6073 
 

cellular glucan metabolic process 

37 28 5 1.56E-04 9698 
 

phenylpropanoid metabolic process 

38 21 12 1.22E-21 6260 
 

DNA replication 

39 33 4 1.63E-03 9642 
 

response to light intensity 

40 22 11 3.80E-17 15979 
 

photosynthesis 

41 38 7 4.94E-02 6468 
 

protein amino acid phosphorylation 

43 38 4 3.67E-02 9755 
 

hormone-mediated signaling pathway 

45 24 2 2.80E-02 32318 
 

regulation of Ras GTPase activity 

46 35 7 2.04E-07 7167 
 

enzyme linked receptor protein signaling pathway 

47 101 7 3.62E-02 16192 
 

vesicle-mediated transport 

48 17 5 1.58E-04 6979 
 

response to oxidative stress 

49 30 7 7.46E-09 6260 
 

DNA replication 

50 19 3 8.57E-04 9404 
 

toxin metabolic process 

51 34 17 1.40E-03 65007 
 

biological regulation 

52 27 5 9.27E-04 6457 
 

protein folding 

55 17 2 1.64E-04 10623 
 

developmental programmed cell death 

56 15 6 1.16E-14 34976 
 

response to endoplasmic reticulum stress 

57 21 3 4.82E-08 80003 
 

thalianol metabolic process 

58 32 13 4.85E-19 10200 
 

response to chitin 

59 81 4 1.63E-03 43085 
 

positive regulation of catalytic activity 

60 17 15 2.26E-36 6334 
 

nucleosome assembly 

61 22 7 8.81E-08 6631 
 

fatty acid metabolic process 

62 33 5 1.59E-03 9414 
 

response to water deprivation 
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Supplemental Table 5.2. Overview of the modules with a significant GO enrichment. (Continued). 

64 31 8 1.75E-02 23052 
 

signaling 

65 25 11 7.18E-16 15979 
 

photosynthesis 

68 77 9 7.55E-07 15979 
 

photosynthesis 

69 13 4 5.49E-09 10584 
 

pollen exine formation 

70 34 14 1.36E-08 6468 
 

protein amino acid phosphorylation 

71 19 10 3.79E-15 9611 
 

response to wounding 

72 24 7 4.16E-06 6259 
 

DNA metabolic process 

73 23 7 3.09E-03 5975 
 

carbohydrate metabolic process 

76 15 8 3.30E-16 9813 
 

flavonoid biosynthetic process 

77 21 5 3.02E-03 48316 
 

seed development 

80 32 4 7.27E-03 10200 
 

response to chitin 

81 21 8 7.24E-11 9408 
 

response to heat 

82 13 3 1.13E-03 6073 
 

cellular glucan metabolic process 

84 45 11 7.93E-09 46394 
 

carboxylic acid biosynthetic process 

85 14 3 3.89E-02 9617 
 

response to bacterium 

86 11 6 4.35E-14 16144 
 

S-glycoside biosynthetic process 

88 31 3 2.05E-03 18193 
 

peptidyl-amino acid modification 

89 22 3 2.33E-03 9738 
 

abscisic acid mediated signaling pathway 

90 20 3 3.34E-04 9404 
 

toxin metabolic process 

94 21 7 7.06E-04 9725 
 

response to hormone stimulus 

95 50 5 1.96E-02 30001 
 

metal ion transport 

98 14 13 1.67E-26 9408 
 

response to heat 

100 16 9 4.40E-13 9414 
 

response to water deprivation 

104 13 3 9.02E-06 6949 
 

syncytium formation 

105 157 3 3.73E-02 10020 
 

chloroplast fission 

106 9 3 2.16E-06 10212 
 

response to ionizing radiation 

107 13 2 4.01E-02 6869 
 

lipid transport 

108 7 2 2.60E-03 16036 
 

cellular response to phosphate starvation 

110 35 4 1.74E-05 15995 
 

chlorophyll biosynthetic process 

111 7 6 2.97E-10 6790 
 

sulfur metabolic process 

112 7 3 1.33E-05 45333 
 

cellular respiration 

113 26 5 1.14E-04 10200 
 

response to chitin 

115 10 3 1.52E-06 103 
 

sulfate assimilation 

116 18 3 9.48E-05 16072 
 

rRNA metabolic process 

119 10 8 4.97E-13 6457 
 

protein folding 

120 9 6 2.50E-10 10876 
 

lipid localization 

121 29 5 1.12E-02 9793 
 

embryonic development ending in seed dormancy 

122 10 5 2.98E-10 9073 
 

aromatic amino acid family biosynthetic process 

123 6 6 5.69E-08 34645 
 

cellular macromolecule biosynthetic process 

125 26 2 4.00E-03 6743 
 

ubiquinone metabolic process 

130 37 2 1.44E-03 6552 
 

leucine catabolic process 

134 4 2 3.73E-05 9718 
 

anthocyanin biosynthetic process 

135 12 3 5.32E-05 9853 
 

photorespiration 

139 23 3 2.86E-02 9698 
 

phenylpropanoid metabolic process 

140 7 2 1.46E-03 9404 
 

toxin metabolic process 

142 31 6 3.09E-06 9751 
 

response to salicylic acid stimulus 

145 4 4 3.32E-09 45454 
 

cell redox homeostasis 

146 5 3 3.88E-05 9408 
 

response to heat 

147 6 2 7.41E-04 9834 
 

secondary cell wall biogenesis 

149 5 4 3.82E-06 6091 
 

generation of precursor metabolites and energy 

150 11 4 9.34E-05 9414 
 

response to water deprivation 

152 6 2 3.02E-05 48571 
 

long-day photoperiodism 

153 7 2 3.21E-02 6631 
 

fatty acid metabolic process 

154 15 4 3.75E-04 9611 
 

response to wounding 

155 8 4 1.91E-05 9611 
 

response to wounding 

156 5 2 2.73E-02 9408 
 

response to heat 
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Supplemental Table 5.2. Overview of the modules with a significant GO enrichment. (Continued).  

159 8 4 1.02E-05 9408 
 

response to heat 

160 3 3 1.39E-07 71368 
 

cellular response to cytokinin stimulus 

161 63 16 6.12E-10 6412 
 

translation 

163 5 2 9.84E-05 10311 
 

lateral root formation 

166 5 3 1.24E-04 10876 
 

lipid localization 

168 15 2 4.56E-04 48586 
 

regulation of long-day photoperiodism, flowering 

169 6 3 1.92E-02 6952 
 

defense response 

172 11 5 4.87E-03 6796 
 

phosphate metabolic process 

173 5 4 5.40E-03 6950 
 

response to stress 

177 6 3 7.19E-04 9698 
 

phenylpropanoid metabolic process 

181 10 3 5.02E-03 9611 
 

response to wounding 

185 3 2 3.42E-03 9733 
 

response to auxin stimulus 

186 4 3 9.91E-03 9725 
 

response to hormone stimulus 

188 5 4 1.41E-10 6568 
 

tryptophan metabolic process 

189 3 3 2.23E-06 6869 
 

lipid transport 

190 4 2 2.58E-03 6073 
 

cellular glucan metabolic process 

196 2 2 3.45E-03 46686 
 

response to cadmium ion 

197 4 2 8.71E-03 9814 
 

defense response, incompatible interaction 

199 15 2 8.17E-03 9738 
 

abscisic acid mediated signaling pathway 

200 3 3 1.78E-02 50896 
 

response to stimulus 

203 5 3 1.20E-02 9725 
 

response to hormone stimulus 

208 8 4 1.83E-04 9733 
 

response to auxin stimulus 

210 17 2 2.08E-02 9404 
 

toxin metabolic process 

214 3 2 2.24E-03 9408 
 

response to heat 

217 3 2 3.73E-04 10193 
 

response to ozone 

224 4 3 2.99E-02 9628 
 

response to abiotic stimulus 

226 3 2 5.48E-06 10039 
 

response to iron ion 

234 4 2 3.45E-02 9639 
 

response to red or far red light 

235 3 2 1.37E-02 9737 
 

response to abscisic acid stimulus 

246 2 2 1.29E-05 19758 
 

glycosinolate biosynthetic process 

247 5 2 4.47E-02 9908 
 

flower development 

254 3 2 4.06E-02 31323 
 

regulation of cellular metabolic process 

255 3 3 3.29E-02 50896 
 

response to stimulus 

266 2 2 1.38E-03 9611 
 

response to wounding 

268 3 2 3.42E-03 9733 
 

response to auxin stimulus 

274 3 2 1.26E-03 6260 
 

DNA replication 

277 7 2 4.37E-02 9414 
 

response to water deprivation 

289 3 2 4.42E-02 9628 
 

response to abiotic stimulus 

290 3 2 1.59E-02 9056 
 

catabolic process 

311 3 3 1.14E-03 5975 
 

carbohydrate metabolic process 

320 6 2 3.10E-02 46686 
 

response to cadmium ion 

327 3 3 1.43E-02 6950 
 

response to stress 

330 9 2 4.20E-02 50832 
 

defense response to fungus 

340 4 3 9.78E-06 6915 
 

apoptosis 

670 3 2 9.73E-05 6949 
 

syncytium formation 

719 3 2 3.17E-02 45449 
 

regulation of transcription 

827 2 2 1.18E-02 6355 
 

regulation of transcription, DNA-dependent 

833 3 3 5.60E-03 6464 
 

protein modification process 

862 2 2 1.99E-03 51707 
 

response to other organism 

876 3 2 3.51E-02 51707 
 

response to other organism 

939 3 2 4.15E-03 43632 
 

modification-dependent macromolecule catabolic process 

1081 7 2 7.20E-04 9788 
 

negative regulation of abscisic acid mediated signaling 
pathway 

1217 4 2 8.45E-03 10200 
 

response to chitin 

1223 4 2 3.80E-02 6396 
 

RNA processing 

1267 5 5 1.42E-03 44267 
 

cellular protein metabolic process 
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Supplemental Table 5.2. Overview of the modules with a significant GO enrichment. (Continued). 

1408 3 2 3.21E-03 9611 
 

response to wounding 

1429 3 2 2.39E-02 9628 
 

response to abiotic stimulus 

1491 4 2 1.85E-02 32787 
 

monocarboxylic acid metabolic process 

1526 4 2 1.94E-02 42398 
 

cellular amino acid derivative biosynthetic process 

1563 3 2 3.95E-02 45449 
 

regulation of transcription 

1583 6 3 1.82E-02 6952 
 

defense response 

1616 3 2 2.61E-02 45449 
 

regulation of transcription 

1656 3 2 6.39E-04 15698 
 

inorganic anion transport 

1733 2 2 5.47E-05 38 
 

very-long-chain fatty acid metabolic process 

2030 5 2 1.73E-02 6281 
 

DNA repair 

2053 3 2 3.06E-02 6810 
 

transport 

2196 3 3 7.92E-04 6468 
 

protein amino acid phosphorylation 

2341 3 2 4.77E-02 44281 
 

small molecule metabolic process 

2596 3 2 2.04E-02 16070   RNA metabolic process 
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Supplemental Table 5.3. LeMoNe modules containing a significantly overrepresented cis-regulatory element.  

The function of the module and/or regulator(s) is displayed if it corresponds to the function of the motif (column 7 

and 8, respectively). Modules indicated in bold have a function related to the stress response. Members of 

transcription factor families with (potential) binding sites corresponding to the motif are displayed in column 9.  %, 

percentage of genes in the module that contain the motif; E, fold enrichment; P value, FDR corrected hypergeometric 

P value. 

M Motif Name of motif % E P value Module function 

Regulator(s) 
with similar 
function 

Regulator(s) 
with 
corresponding 
binding site 

1 AAACCCTA AAACCCTAUP2ATM
SD 

87 4.46 6.6E-28 translation   

 AAACCCTAA TELOBOXATEEF1AA
1;AAACCCTAA 

58 4.67 4.6E-15     

 TGGGCY SITEIIATCYTC 87 2.37 7.7E-14     

 GGGCC SORLIP2AT;GGGCC 81 2.66 1.0E-13     

 GGCCCAWWW UP1ATMSD 53 3.61 4.6E-10     

2 AAACCCTA AAACCCTAUP2ATM
SD 

69 3.56 6.1E-21 gene expression; ribosome 
biogenesis 

  

 AAACCCTAA TELOBOXATEEF1AA
1;AAACCCTAA 

53 4.26 6.7E-17     

 GGGCC SORLIP2AT;GGGCC 56 1.86 1.5E-04     

 TGGGCY SITEIIATCYTC 62 1.70 4.0E-04     

3 GATAAGR IBOXCORENT 54 2.27 5.7E-06 translation; photosynthesis   

 GATAAG IBOX;GATAAG 66 1.84 3.4E-05     

 TGGGCY SITEIIATCYTC 64 1.73 7.5E-04     

 GGGCC SORLIP2AT;GGGCC 55 1.83 1.9E-03     

 TTATCC SREATMSD 57 1.62 3.2E-02     

5 TGGGCY SITEIIATCYTC 67 1.82 3.6E-04 mitochondrial respiration   

 GGGCC SORLIP2AT;GGGCC 54 1.78 2.2E-02     

6 AACGG MYBCOREATCYCB1 93 1.86 1.7E-13 cell cycle, microtubuli-based 
movement 

  

 YAACKG MYB2CONSENSUSA
T 

89 1.60 1.1E-07     

 AWTTCAAA ERELEE4 64 1.92 1.7E-05     

11 AAACCCTA AAACCCTAUP2ATM
SD 

83 4.26 2.9E-28 translation   

 GGCCCAWWW UP1ATMSD 63 4.30 2.9E-18     

 GGGCC SORLIP2AT;GGGCC 83 2.74 1.3E-17     

 TGGGCY SITEIIATCYTC 87 2.38 3.5E-16     

14 AAACCCTA AAACCCTAUP2ATM
SD 

52 2.65 1.9E-05 translation   

 GGGCC SORLIP2AT;GGGCC 59 1.94 2.4E-03     

15 TTGACT TTGACT 78 1.70 1.5E-04 defense response  WRKY15 

 TTTGACY WBBOXPCWRKY1 63 1.80 3.3E-03     

17 GATAAGR IBOXCORENT 71 2.97 7.5E-08 photosynthesis GLK2  

 ACGTGKC ACGTABREMOTIFA2
OSEM 

54 3.72 1.2E-06     

 GATAAG IBOX;GATAAG 78 2.17 1.2E-05     

 GCCAC SORLIP1AT 80 2.00 4.5E-05     

18 CCGAC LTRECOREATCOR15 60 1.76 7.1E-04     

20 ACGTG ABRELATERD1 77 1.54 9.6E-03 chloroplast localized proteins COP1  

22 AAACCCTA AAACCCTAUP2ATM
SD 

77 3.94 8.2E-18 translation   

 AAACCCTAA TELOBOXATEEF1AA
1;AAACCCTAA 

61 4.89 4.6E-15     

 TGGGCY SITEIIATCYTC 63 1.70 2.0E-02     
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Supplemental Table 5.3. LeMoNe modules containing a significantly overrepresented cis-regulatory element. 

(Continued).  

23 GATAAG IBOX;GATAAG 62 1.73 2.5E-02     

24 TTATCC SREATMSD 72 2.07 6.0E-05 carbohydrate metabolism   

 GATAAG IBOX;GATAAG 70 1.95 5.5E-04     

 GATAAGR IBOXCORENT 53 2.24 3.8E-03     

28 TTGACT TTGACT 79 1.71 4.3E-03 defense response   

30 AAAATATCT EVENINGAT;AAAAT
ATCT 

57 8.04 6.8E-15 starch catabolism, response to 
cold, circadian rhythm 

APRR3  

33 MACGYGB ABRERATCAL 62 1.91 5.5E-04     

 TTGACT TTGACT 72 1.57 9.6E-03 defense response   

35 VCGCGB CGCGBOXAT 69 3.95 1.0E-11 stress signalling and 
transcriptional regulation 

AZF2, MYB28  

 MACGYGB ABRERATCAL 62 1.91 1.2E-02     

 RYCGAC CBFHV 67 1.79 1.6E-02     

38 WTTSSCSS E2FCONSENSUS 87 3.41 2.3E-07 DNA replication   

 GGGCC SORLIP2AT;GGGCC 74 2.44 4.7E-03     

 TGGGCY SITEIIATCYTC 78 2.13 1.3E-02     

39 ACGTGKC ACGTABREMOTIFA2
OSEM 

54 3.75 5.6E-06 response to light intensitiy; 
chlorophyll biosynthesis 

GLK2  

41 VCGCGB CGCGBOXAT 76 4.37 3.2E-14 defense response TIP  

 MACGYGB ABRERATCAL 62 1.90 2.5E-02     

44 RCCGAC DRECRTCOREAT 64 3.19 8.1E-07 responsive to cold  RAP2.1 RAP2.1 (DREB) 

 RYCGAC CBFHV 79 2.14 2.4E-05     

 CCGAC LTRECOREATCOR15 74 2.18 1.0E-04     

49 WTTSSCSS E2FCONSENSUS 77 3.01 1.6E-06 cell cycle; DNA replication   

50 TTTGACY WBBOXPCWRKY1 78 2.25 5.9E-03 responsive to pathogen 
infection 

WRKY75 WRKY75 

 KCACGW RHERPATEXPA7 87 1.89 1.4E-02     

52 GGGCC SORLIP2AT;GGGCC 66 2.16 2.6E-02     

53 TATCCA TATCCAOSAMY 81 2.16 2.0E-05 carbohydrate depriviation 
response; carbohydrate 
metabolism 

  

 TATCCAY TATCCAYMOTIFOSR
AMY3D 

59 2.87 8.9E-05     

 TTATCC SREATMSD 73 2.09 7.9E-04     

 GATAAG IBOX;GATAAG 73 2.03 1.4E-03     

56 CCNNNNNNNN
NNNNCCACG 

UPRMOTIFIIAT 50 16.09 2.4E-07 unfolded protein response   

 CACGTG CACGTGMOTIF;CAC
GTG 

67 4.53 2.0E-04     

 CACGTGG IRO2OS 50 6.94 3.4E-04     

 ACGTGKC ACGTABREMOTIFA2
OSEM 

61 4.24 1.6E-03     

 TGACGT TGACGTVMAMY 67 3.38 4.7E-03     

 ACGTG ABRELATERD1 94 1.90 1.7E-02     

 MACGYGB ABRERATCAL 78 2.39 2.7E-02     

57 ACGTG ABRELATERD1 96 1.93 3.4E-04     

 CATGCA RYREPEATBNNAPA 71 2.73 1.3E-03     

58 VCGCGB CGCGBOXAT 75 4.30 1.5E-11 defense response   

 MACGYGB ABRERATCAL 78 2.39 8.6E-06     

 TTGACC ELRECOREPCRP1;TT
GACC 

61 1.98 4.6E-02     

60 VCGCGB CGCGBOXAT 65 3.71 4.5E-03     

 TGACGT TGACGTVMAMY 65 3.28 1.5E-02     
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Supplemental Table 5.3. LeMoNe modules containing a significantly overrepresented cis-regulatory element. 

(Continued). 

62 ACGTGKC ACGTABREMOTIFA2
OSEM 

50 3.47 1.5E-04 ABA and drought response ATHB12, 
RD26, ATHB7 

 

 MACGYGB ABRERATCAL 67 2.05 9.0E-03     

66 YAACKG MYB2CONSENSUSA
T 

100 1.79 3.6E-03     

 AACGG MYBCOREATCYCB1 95 1.89 8.9E-03     

67 AAACCCTA AAACCCTAUP2ATM
SD 

65 3.38 1.3E-09     

68 GATAAGR IBOXCORENT 50 2.13 8.4E-06 photosynthesis   

 TTATCC SREATMSD 61 1.76 6.7E-05     

 GATAAG IBOX;GATAAG 59 1.65 1.4E-03     

 TATCCA TATCCAOSAMY 57 1.52 3.3E-02     

70 TTGACT TTGACT 86 1.87 1.8E-04 defense response  WRKY15 

71 CACGTG CACGTGMOTIF;CAC
GTG 

62 4.20 2.4E-04     

 MACGYGB ABRERATCAL 81 2.49 1.8E-03     

 ACGTG ABRELATERD1 90 1.82 2.5E-02     

 ACACNNG DPBFCOREDCDC3 95 1.68 2.8E-02     

76 ACCTACC ACCTACC 50 13.28 9.7E-06 flavonoid biosynthesis   

 ACCWWCC BOXLCOREDCPAL 75 3.59 1.4E-03     

 CCWACC MYBPZM 75 2.68 3.3E-02     

77 ACGTGTC GADOWNAT 73 8.28 1.3E-10 seed and embryo 
development, hyperosmotic 
response 

ATHB-7, NF-
YA5; MEA 

 

 ACGTGKC ACGTABREMOTIFA2
OSEM 

77 5.36 1.6E-08     

 CACGTGG IRO2OS 50 6.94 2.2E-05     

 ACGTG ABRELATERD1 100 2.01 5.4E-05     

 ACACGTG ACACGTG 50 5.12 4.8E-04     

 CACGTG CACGTGMOTIF;CAC
GTG 

59 4.01 5.0E-04     

 MACGYGB ABRERATCAL 82 2.51 7.0E-04     

 ACACNNG DPBFCOREDCDC3 95 1.68 1.7E-02     

80 TTGACT TTGACT 85 1.85 1.2E-03 defense response WRKY6 WRKY6, 
WRKY28 

 TTGACC ELRECOREPCRP1;TT
GACC 

70 2.26 1.4E-03     

 TTTGACY WBBOXPCWRKY1 70 2.00 1.2E-02     

86 MACGYGB ABRERATCAL 91 2.79 2.2E-02     

90 TGACGT TGACGTVMAMY 70 3.55 3.5E-04 carbohydrate metabolism   

94 CACGTG CACGTGMOTIF;CAC
GTG 

56 3.80 5.2E-04 responsive to ABA, drought, 
salt 

ATAF1, RD26, 
AZF2 

 

 ACGTGKC ACGTABREMOTIFA2
OSEM 

52 3.61 2.9E-03     

 TATCCA TATCCAOSAMY 76 2.03 2.7E-02     

95 TTGACT TTGACT 72 1.56 3.8E-02     

99 TTTGACY WBBOXPCWRKY1 72 2.06 1.9E-06 responsive to pathogen 
infection 

WRKY6 WRKY6 

 TTGACT TTGACT 75 1.63 1.4E-03     

100 ACGTGKC ACGTABREMOTIFA2
OSEM 

65 4.49 7.6E-04 ABA and drought response RD26, ATHB-7  

 ACGTGTC GADOWNAT 53 6.03 1.0E-03     

 ACACGTG ACACGTG 53 5.42 2.4E-03     

 MACGYGB ABRERATCAL 82 2.53 8.9E-03     

 RYCGAC CBFHV 82 2.21 4.7E-02     

108 GNATATNC P1BS 100 6.02 9.7E-05 responsive to phosphate 
starvation 
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Supplemental Table 5.3. LeMoNe modules containing a significantly overrepresented cis-regulatory element. 

(Continued). 

110 GATAAGR IBOXCORENT 67 2.84 4.5E-07 chlorophyll biosynthesis  AT1G19000 
(MYB) 

 GATAAG IBOX;GATAAG 70 1.94 1.9E-03     

111 CACCAACC CACCAACC 50 21.23 3.7E-03 glucosinolate biosynthesis MYB28 MYB28 

 AACGTG T/GBOXATPIN2 88 4.24 2.0E-02     

112 AGCGGG BS1EGCCR 57 13.60 1.7E-02     

 VCGCGB CGCGBOXAT 86 4.91 2.9E-02     

116 AAACCCTA AAACCCTAUP2ATM
SD 

94 4.84 2.8E-09 RNA processing; ribosome 
biogenesis 

  

 AAACCCTAA TELOBOXATEEF1AA
1;AAACCCTAA 

83 6.71 3.2E-09     

119 AAACCCTA AAACCCTAUP2ATM
SD 

82 4.19 3.1E-03     

120 ACACGTG ACACGTG 78 7.96 4.9E-04 lipid localization; seed 
germination 

  

 CATGCAY RYREPEATLEGUMIN
BOX 

89 5.59 6.1E-04     

 CATGCA RYREPEATBNNAPA 100 3.86 1.0E-03     

 CACGTG CACGTGMOTIF;CAC
GTG 

78 5.28 7.9E-03     

 CATGCAT RYREPEATGMGY2 67 5.67 3.1E-02     

121 MACGYGB ABRERATCAL 67 2.05 1.7E-02 seed development MEA  

122 ACCWWCC BOXLCOREDCPAL 92 4.38 7.1E-05 tryptophan and glucosinolate 
biosynthesis, response to 
wounding 

  

 ACCAACC ACCAACC 58 6.42 5.9E-03     

123 GTCGAC CRTDREHVCBF2 67 11.26 2.3E-02     

125 GCCAC SORLIP1AT 82 2.04 1.8E-03 response to light SPA1 
(SUPPRESSOR 
OF PHYA-105 
1) 

 

 AGCCAC AGCCAC 54 3.26 1.9E-03     

128 TTTGACY WBBOXPCWRKY1 81 2.34 4.3E-02 defense response MYB15 WRKY15, 
WRKY30 

129 ACGTGKC ACGTABREMOTIFA2
OSEM 

88 6.07 2.1E-03     

 GACGTGGC GACGTGGC 50 25.34 2.2E-03     

 TGACGTGG HEXAT;TGACGTGG 50 17.29 1.0E-02     

 ACGTGGC BOXIIPCCHS 63 8.62 2.1E-02     

 MACGYGB ABRERATCAL 100 3.07 2.9E-02     

 CACGTG CACGTGMOTIF;CAC
GTG 

75 5.09 5.0E-02     

133 ACGTGTC GADOWNAT 60 6.83 3.7E-06 responsive to ABA and drought RD26  

 CACGTG CACGTGMOTIF;CAC
GTG 

70 4.75 9.9E-06     

 ACACGTG ACACGTG 60 6.14 1.2E-05     

 ACGTGKC ACGTABREMOTIFA2
OSEM 

65 4.51 9.2E-05     

135 ACGTGTC GADOWNAT 62 7.00 6.6E-04 photosynthesis; 
photorespiration 

 GBF6 (bZIP) 

 ACGTGKC ACGTABREMOTIFA2
OSEM 

69 4.80 2.4E-03     

 ACACGTG ACACGTG 54 5.51 1.9E-02     

137 VCGCGB CGCGBOXAT 60 3.44 6.2E-05   TIP  

145 TACGTGGC TACGTGGC;TACGTG
GC 

75 48.50 2.1E-03 redox homeostasis  bZIP34 
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Supplemental Table 5.3. LeMoNe modules containing a significantly overrepresented cis-regulatory element. 

(Continued). 

         

150 ACGTGTC GADOWNAT 73 8.28 1.1E-04 ABA and drought response ATHB-7, 
ATHB-12 

 

 ACGTGKC ACGTABREMOTIFA2
OSEM 

82 5.67 2.6E-04     

 ACACGTG ACACGTG 64 6.52 4.6E-03     

152 ACGTGKC ACGTABREMOTIFA2
OSEM 

100 6.93 1.7E-03 circadian regulation CCA1, PIL6  

 AGCCAC AGCCAC 100 6.09 3.8E-03     

 CACGTGTC CACGTGTC 67 14.54 1.2E-02     

153 MACCWAMC MYBPLANT 100 3.61 2.4E-02     

154 ACGTG ABRELATERD1 90 1.82 2.5E-02     

155 MACGYGB ABRERATCAL 100 3.07 8.5E-03 responsive to ABA, drought, 
salt 

  

161 AAACCCTA AAACCCTAUP2ATM
SD 

50 2.56 7.8E-06 translation; gene expression   

 TGGGCY SITEIIATCYTC 62 1.69 7.0E-03     

168 AAAATATCT EVENINGAT;AAAAT
ATCT 

69 9.68 1.6E-07 circadian regulation, light and 
cold response 

APPR5  

192 GCCGCC GCCCORE;GCCGCC 100 15.18 4.2E-02 responsive to pathogen 
infection 

 ORA59 (ERF), 
ERF15 

197 GCCGCC GCCCORE;GCCGCC 100 15.18 2.9E-03 defense response   

 AGCCGCC AGCBOXNPGLB 75 34.98 5.9E-03     

234 TACGTGGA TACGTGGA 75 44.73 3.0E-03 light response; regulation of 
photosynthesis genes 

LZF1 (Light 
regulated 
Zinc Finger 1) 

 

241 GCGTNNNNNN
NACGC 

VOZATVPP 100 214.17 1.3E-05     

274 TYTCCCGCC E2FAT 67 59.81 4.5E-02 DNA replication   

730 TGGCCGAC TGGCCGAC 50 84.40 8.1E-04 responsive to cold, drought, 
salt 

CEJ1 CEJ1 (DREB)  

827 AGCCGACCA AGCCGACCA 67 316.16 2.1E-03 responsive to cold, drought, 
salt 

 AT4G28140,AT2
G20880 (DREB) 

 TGGACGG CMSRE1IBSPOA 100 38.68 2.8E-03     

 CCATACATT S2FSORPL21 67 81.46 3.2E-02     

884 ATACGTGT ZDNAFORMINGATC
AB1;ATACGTGT 

60 24.44 2.5E-02 responsive to ABA, drought, 
salt 

ATHB-7  

1081 ACGTGTC GADOWNAT 71 8.13 2.0E-02 ABA and drought response RD26, 
ATHB12 

 

1621 CTAACCA MYBATRD22;CTAAC
CA 

71 6.70 4.7E-02     

1917 TAGTGGAT NRRBNEXTA 100 33.70 3.7E-03     

2196 GCGGCAAA E2FBNTRNR 67 73.77 3.9E-02       
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Supplemental Table 5.4. Primers used. 

Primer Sequence 

ANAC013-ORF_FWD AAAAAGCAGGCTCCACCATGGACTTGTCGGTTGAGAA 

ANAC013-ORF_REV AGAAAGCTGGGTCTCACCATAACAAAGGCCTCC 

ANAC053-ORF_FWD AAAAAGCAGGCTCCACCATGGGTCGTGGCTCAGTAAC 

ANAC053-ORF_REV AGAAAGCTGGGTCTCACCTGGAAGAGACCAAAATG 

ANAC032-ORF_FWD AAAAAAGCAGGC TCCACCATGATGAAATCTGGGGCTGATTTGC 

ANAC032-ORF_REV AGAAAGCTGGGTCTCAGAAAGTTCCCTGCCTAACC 

ERF6-ORF_FWD GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTACACCAAACGAAG 

ERF6-ORF_REV GGGGACCACTTTGTACAAGAAAGCTGGGTATCAAACAACGGTCAATTGTG 

ANAC013-I miR-s gaTGTAACGGTAAGTCCGTCGTTtctctcttttgtattcc 

ANAC013-II miR-a gaAACGACGGACTTACCGTTACAtcaaagagaatcaatga 

ANAC013-III miR*s gaAAAGACGGACTTAGCGTTACTtcacaggtcgtgatatg 

ANAC013-IV miR*a gaAGTAACGCTAAGTCCGTCTTTtctacatatatattcct 

 

 

Supplemental Table 5.5. T-DNA insertion lines. 

 Gene KO line 

ANAC053 SALK_009578C 

ANAC032 SALK_012253 

ERF6 SALK_030723 

RAP2.1 SALK_092889C 

RAP2.6L SALK_051006C 
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GENERAL CONCLUSION AND FUTURE PERSPECTIVES 

 

Plants are not able to evade fluctuating changes in the environment and have therefore evolved 

robust methods to cope with environmental stresses. Differential gene expression is an important 

driving force in the stress response and is a highly tuned process regulated through multiple 

highly interconnected signaling pathways. We are currently facing the challenge to unwire the 

complex regulatory networks of the plant stress response.   

 

Retrograde regulation of the stress response in plants 

 

During adverse environmental conditions, the functioning of subcellular organelles including 

mitochondria and chloroplasts is rapidly perturbed. Mitochondria and chloroplasts are therefore 

considered as stress sensors that communicate to the nucleus to activate an appropriate defense 

response, in a process termed retrograde regulation. In contrast to other eukaryotes, such as yeast 

and animals, plant retrograde mechanisms and components are only beginning to be understood. 

Although several signaling components of plant chloroplast retrograde regulation (CRR) have 

been discovered, almost nothing was known about the regulatory mechanisms of plant 

mitochondrial retrograde regulation (MRR) at the beginning of this Ph.D. project. The main aim 

of this research work was to identify protein signaling components, more specifically 

transcription factors involved in MRR. 

 We applied a bottom-up approach in which MRR target genes were used as a bait to 

identify transcriptional regulators of MRR by means of the yeast one-hybrid method. Therefore, 

we first compiled a set of genes that are robust targets of mitochondrial dysfunction, named the 

mitochondrial dysfunction regulon (MDR). Besides their general responsiveness to mitochondrial 

perturbation, the MDR genes showed a similar expression behavior during various exogenous 

stress cues that could indirectly target mitochondrial function, hinting at their co-regulation. 

Within the MDR promoters, a common novel cis-regulatory element was discovered that is 

necessary and sufficient for MRR-mediated gene expression, named the mitochondrial 

dysfunction motif (MDM). Yeast one-hybrid screening revealed five closely related NAC family 

transcription factors (ANAC013, ANAC016, ANAC017, ANAC053 and ANAC078) binding the 

MDM, which was confirmed independently by electrophoretic mobility shift assays and, for 
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ANAC013, by chromatin immunoprecipitation. Our results showed that ANAC013 is necessary 

for full MRR-mediated MDR gene induction. Interestingly, parallel research identified ANAC017 

in genetic screen for mutants with impaired MRR responsiveness (Ng et al., 2012, unpublished 

results). As individual overexpression of the NAC transcription factors commonly induces the 

MDR genes in planta, it is likely that, in addition to ANAC013 and ANAC017, the other three 

isolated NAC transcription factors also steer MRR gene expression. However, further 

experiments will be needed to confirm this. Despite the seemingly redundancy in target, MDR 

gene expression, it is possible that, based on their distinct spatiotemporal and stimulus-specific 

expression patterns, these factors act in an additive manner, mediating different aspects of MRR. 

The five MDM-binding NAC transcription factors were previously designated as putative 

membrane-associated due to the presence of a transmembrane motif (Kim et al., 2007). Stimulus-

induced release of prefabricated inactive transcription factors, including membrane sequestered 

transcription factors provides a rapid means to initiate an appropriate transcriptional response 

upon abrupt environmental changes (Seo et al., 2008). Thus, it is likely that mitochondrial 

retrograde regulation involves the release and activation of these putative transmembrane NAC 

transcription factors upon mitochondrial triggers. Surprisingly, ANAC013 as well as ANAC017 

appear to be associated with endoplasmic reticulum (ER) membranes (Ng et al., 2012, 

unpublished results). However, these data need confirmation with independent techniques, such 

as immunodetection with a specific antibody against the NAC proteins and cell fractionation 

experiments. It has been shown in mammalian cells that the ER can physically associate at some 

points with the mitochondria, which is important for local communication between the two 

organelles, likely through calcium signals (Pizzo and Pozzan, 2007; Kornmann and Walter, 

2010). In that regard, it is interesting to note that ANAC017 also colocalizes with F-actin of the 

cytoskeleton (Ng et al., 2012; unpublished results), which mediates the motility of both the 

mitochondria and the ER and has been implicated in tethering the two organelles (de Brito and 

Scorrano, 2008; Kornmann et al., 2011). In addition, mitochondrial calcium fluxes have been 

associated with the MDR induction and this appears to involve calcium crosstalk with the ER 

(Vanderauwera et al., 2012). Although these observations shed some light on plant MRR signal 

transduction mechanisms, including the cytosolic storage and release of transcription factors, 

further research is necessary to unravel the pathway in detail. Therefore, the proteolytic activation 

and concomitant nuclear relocalization of the cytosolic sequestered NAC transcription factors 
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upon mitochondrial perturbation first needs to be confirmed through processing analysis using 

protein gel blots and GFP fusion or immunogold labeling localization experiments. Furthermore, 

integration of mitochondrial perturbation treatments with ROS scavengers, (mitochondrial) 

calcium channel blockers or protease inhibitors in these relocalization and processing 

experiments together with the identification of protein interaction partners will help to understand 

the mechanisms underlying activation of these NAC transcription factors.  

The general process of mitochondria-to-nucleus communication is conserved among 

eukaryotes, but the signaling mechanisms and components as well as the specific functions 

appear not to be conserved across eukaryotic species (Liu and Butow, 2006; Rhoads, 2011). This 

might reflect the different metabolic complexity as well as the different kind of “stresses” species 

encounter, such as nutrient deprivation in yeast and mitochondrial diseases in animals. Due to 

their sessile lifestyle, plants have evolved a battery of complex adaptation responses to 

environmental stresses. This is reflected by their higher number of genes encoding transcription 

factors, compared to other eukaryotes, including plant specific transcription factor families, 

which together may provide a tight control of stress responsive gene expression (Riechmann et 

al., 2000; Chen et al., 2002). We identified transcription factors of the plant specific NAC family 

as regulators of mitochondrial retrograde regulation of the plant stress response. Although the 

signaling mechanisms are divergent, this NAC-mediated retrograde regulation of the MDR 

appears to be functionally equivalent to the yeast and animal MRR-mediated oxidative stress and 

detoxification response, indicating some basic/general features of MRR are conserved. 

Differences of plant MRR compared to that of other (heterotrophic) eukaryotes might indeed be 

expected, due to the altered metabolic flexibility of plant mitochondria, containing the alternative 

respiratory pathway, and their metabolic interactions with chloroplasts. For example, the 

alternative respiratory pathway can alleviate photo-oxidative damage in the chloroplasts by 

efficiently dissipating excess reducing equivalents (Yoshida et al., 2006, 2007). Similarly, 

ANAC013 increases tolerance to chloroplast-initiated oxidative stress (by methyl viologen; MV), 

likely through MRR regulation of the MDR, including the alternative oxidase (AOX). However, 

as the strongest phenotypic effects of altered ANAC013 levels were observed after MV treatment 

(compared to mitochondrial stress treatments) and the MDR genes are also responsive to various 

chloroplast perturbations (Van Aken and Whelan, 2012), we can not exclude that ANAC013 and 

the MDM motif also mediate chloroplast signals to the nucleus. As mitochondria and chloroplast 
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functions are tightly connected, it is reasonable to assume that overlapping/interacting 

mechanisms of retrograde regulation exists, as was shown for the ABI4 transcription factor that 

mediates both MRR and CRR (Giraud et al., 2009; Rhoads, 2011). 

Besides the five MDM element-binding NAC transcription factors, we provide a list of 

other, candidate MRR regulators, that bind the MDR promoters in the yeast one-hybrid system 

via other, yet unknown cis-regulatory elements. However, further experiments will be needed to 

confirm these novel regulatory interactions in planta (e.g. by chromatin immunoprecipitation) 

and to assess the potential role of these factors in MRR or other intracellular stress signaling 

pathways. Particularly interesting amongst these identified transcription factors is ANAC102 that 

is localized to the chloroplasts, suggesting it could mediate chloroplast signals to regulate MDR 

gene expression. Several transcription factors that regulate nuclear gene expression are found in 

the chloroplasts and they are suggested to allow a fast transcriptional response to changes in 

chloroplast-localized processes upon certain environmental triggers (Krause et al., 2012). 

However, except for the recently reported WHIRLY1 and PTM protein relocalization (Sun et al., 

2011; Isemer et al., 2012), the release of these transcription factors from chloroplasts and 

concomitant translocation to the nucleus has not been studied so far. In this work, we provide 

preliminary evidence for the translocation of ANAC102 from the chloroplasts to the nucleus to 

regulate MDR gene expression upon chloroplast-initiated oxidative stress induced by MV. This 

indicates that ANAC102 mediates chloroplast retrograde regulation of the MDR. However, this 

relocalization needs confirmation by independent techniques, for example by protein gel blot 

analysis of isolated nuclei and chloroplasts before and after MV treatment. Moreover, it will be 

necessary to confirm that, after MV treatment, the nuclear-localized ANAC102 originates from 

the chloroplast and is not the result of increased MV-mediated ANAC102 expression or 

alternative processing. In contrast to ANAC013, ANAC102 appears to repress MDR gene 

expression by a yet unknown mechanism (active or passive repression) and renders plants more 

sensitive to MV-mediated oxidative stress. This is apparent from the altered growth response and 

accelerated cell death phenotype of ANAC102 overexpression lines during oxidative stress, 

indicative of an impaired stress response. The contrasting stress phenotypes resulting from 

ANAC013 and ANAC102 overexpression (resistance versus accelerated cell death), respectively, 

could also be explained by the elevated and impaired induction of the AOX gene in these lines. 

AOX has been implicated as a “survival protein” by dampening programmed cell death (PCD) 
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induction during stress, likely through determining cellular ROS levels and antioxidant defense 

responses (Robson and Vanlerberghe, 2002; Amirsadeghi et al., 2006; Giraud et al., 2008; Van 

Aken et al., 2009). AOX might thus significantly impact the stress response including the 

decision to initiate PCD or attempt to recover. It is therefore not surprising that AOX and the 

other MDR genes are under several levels of control, potentially regulated by various organelle 

signaling pathways and involving both transcriptional activation and repression. Moreover, the 

complexity of organelle-to-nucleus regulation has been strengthened by the observation that 

retrograde signals from both mitochondria and chloroplast interact through the ABI4 transcription 

factor (Giraud et al., 2009). Another possibility is that retrograde regulation from the chloroplast 

and/or mitochondrion is influenced by chloroplast-mitochondrial crosstalk (Woodson and Chory, 

2008). Therefore, the exact signals that trigger ANAC102 as well as ANAC013 relocalization 

and concomitant altered MDR gene expression remain to be determined using mutants or 

treatments that specifically impair chloroplast or mitochondrial function. Moreover, genomewide 

identification of ANAC102 and ANAC013 target genes using inducible overexpression 

constructs as well as chromatin immunoprecipitation combined with genome-tiling microarrays 

(ChIP-chip) or by next-generation sequencing (ChIP-seq) will reveal the contribution of these 

organelle signaling pathways to the response of plants to environmental stresses. 
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Figure 6.1. Scheme summarizing the results obtained in this thesis concerning organelle-to-nucleus signaling by 

NAC transcription factors.  

Upon mitochondrial perturbation, ANAC013 positively regulates MDR (for mitochondrial dysfunction regulon) gene 

expression by binding the MDM (for mitochondrial dysfunction motif) cis-regulatory element, thereby increasing 

organelle-initiated oxidative stress tolerance. ANAC013 contains a transmembrane domain and is anchored to the 

endoplasmic reticulum (ER) under normal conditions. Therefore, we hypothesize that upon mitochondrial triggers, 

ANAC013 is proteolytically released from the ER and translocated to the nucleus to mediate MRR-induced gene 

expression. ANAC102, on the other hand, is a negative regulator of the MDR during chloroplast perturbation 

conditions. Under normal conditions, ANAC102 is targeted to the chloroplasts. Preliminary data revealed the 

potential relocalization of ANAC102 from the chloroplasts to the nucleus upon chloroplast perturbation, indicating it 

is a candidate regulator of chloroplast-to-nucleus signaling to fine-tune the oxidative stress response. 
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Reverse engineering of regulatory networks of the abiotic stress response 

 

Plants continually adapt to changing conditions by altering gene expression patterns that are fine-

tuned through complex networks of signal transduction pathways (Nakashima et al., 2009). In the 

recent years, many experimental data have been generated to elucidate the regulatory 

mechanisms of the stress response. Large-scale mutant analyses/screens have identified many 

players in the stress response and genome-wide expression profiling studies revealed 

transcriptional responses to various stress conditions. Therefore, the organization of these 

molecular data to reconstruct the gene regulatory networks is one of the central tasks in systems 

biology. To date, most gene regulatory networks are reverse-engineered by meta-analysis of 

microarray data, as they provide important information about the cells transcriptional response 

and they are one of the most abundant sources of data.  

 We used the LeMoNe algorithm to infer transcriptional regulatory networks from abiotic 

stress-related gene expression profiles (Michoel et al., 2007). LeMoNe groups genes in modules 

and predicts their regulators, based on similarity in gene expression profiles (co-expression). We 

obtained functionally coherent modules of co-regulated genes and predicted regulators related to 

similar biological functions as their target modules. In agreement with previous studies (Yu et al., 

2003), we found that gene expression data provide much better support for functional and co-

regulation relationships than for regulator-target gene relations. The predictive coverage for 

known regulatory interactions inferred from publicly available microarray studies of genetic 

perturbations was overall low for our identified network. Thus, regulatory predictions from 

expression data appear to reveal only a small part of the underlying true biological network. This 

could be explained by the fact that these predictions rely on the assumption that regulators are 

themselves transcriptionally regulated, so that their expression profiles provide information about 

their activity level. However, for many transcription factors, the major mode of regulation is 

probably post-transcriptional (Lee et al., 2006). Next, we experimentally assessed the 

performance of LeMoNe in predicting novel regulations. Overexpression or inhibition of 

transcription factors that were predicted to regulate abiotic stress-related modules revealed that, 

depending on the perturbed transcription factor, expression of several genes in the target modules 

indeed changed significantly. Overall, the true/correct regulatory predictions are likely to 

correspond to the fraction of transcription factors that are mostly transcriptionally regulated and 
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are subject to only minor post-transcriptional regulation. In agreement, we observed the best 

predictive performance for the ANAC013 transcription factor, that is strongly regulated at the 

transcriptional level and, in addition, autoregulates its own transcription. We conclude that the 

prediction of regulatory networks from gene expression data can provide valuable information for 

at least part of the regulatory network.  

Transcription factor activity is regulated at multiple levels, such as post-translational 

modification (e.g. (de)phosphorylation), dimerization and co-factor binding, subcellular 

localization and/or sequestration, which can not be recovered from expression data. In the future, 

co-expression data should be simultaneously combined with other data types, such as physical 

interactions (protein-protein, protein-DNA), post-transcriptional and post-translational 

modifications to generate an integrated network (Tan et al., 2008). Indeed, it has been shown in 

yeast, plants and mammalian cells that combining diverse data types enhances the predictive 

power of the gene network compared to using expression data alone (Hartemink et al., 2002; Tan 

et al., 2008; Zhu et al., 2008; Huttenhower et al., 2009; Kourmpetis et al., 2011; Heyndrickx and 

Vandepoele, 2012). Moreover, different algorithms recover largely distinct parts of the 

underlying regulatory network and optimal results will be obtained by integrating the predictions 

of various methods (Michoel et al., 2009). 

LeMoNe prioritizes biologically relevant regulators, as most predicted master regulators 

(regulators that were assigned to multiple modules) have been shown previously to have a 

function in the stress response, among which ANAC013. In agreement, ANAC013 was revealed 

as a top regulator of our experimentally-derived abiotic stress subnetwork (see above), likely 

through the regulation of several downstream transcription factors. These observations further 

corroborate the importance of mitochondrial retrograde regulation in the stress response. Hence, 

our predicted regulatory network can be a valuable source for the identification of gene 

candidates for the development of stress-tolerant crops. To conclude, our predicted model of the 

abiotic stress response provides a powerful starting point as both a hypothesis generator and as a 

descriptive tool to explain stress-mediated gene expression changes.  
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SUMMARY 

Plants have evolved robust adaptation mechanisms to cope with continually changing 

environmental conditions. Differential gene expression is an important driving force in the stress 

response and is a highly tuned through multiple highly interconnected signaling pathways. 

Unraveling the molecular mechanisms of how plants sense, transduce and adapt to stresses are of 

primary importance for the development of stress tolerant crops.  

 A recently emerging concept concerns the role of mitochondria and chloroplasts as 

sensors of adverse conditions that communicate to the nucleus to activate an appropriate defense 

response in a process termed retrograde regulation. Despite their recognized importance in stress 

signal transduction, plant retrograde mechanisms are still poorly understood. Although several 

signaling components of plant chloroplast retrograde regulation (CRR) have been discovered, 

almost nothing was known about the mechanisms of plant mitochondrial retrograde regulation 

(MRR) at the beginning of this Ph.D. project (Chapter 1).  

 In this work, we aimed at identifying regulators involved in plant MRR. Therefore, we 

applied a bottom-up approach using MRR target genes as a bait to identify transcription factors 

involved in MRR by means of the yeast one-hybrid method. We first compiled a set of robust 

MRR target genes in Arabidopsis thaliana through a meta-analysis of transcriptome data of 

mitochondrial perturbations. In the upstream regions of these MRR target genes, a cis-regulatory 

element was discovered that is necessary and sufficient for gene expression upon various 

mitochondrial perturbations, named the mitochondrial dysfunction motif (MDM) (Chapter 2). 

Five transmembrane domain-containing NAC transcription factors (ANAC013, ANAC016, 

ANAC017, ANAC053 and ANAC078) bind the MDM cis-regulatory element. We further 

demonstrated that ANAC013 mediates MRR-induced gene expression by binding the MDM and 

alters plant stress tolerance. ANAC013 appears to be associated with endoplasmic reticulum (ER) 

membranes under nonstressed conditions. Although experimental evidence is currently lacking, 

we hypothesize that upon certain mitochondrial triggers, ANAC013 is proteolytically released 

from the ER and translocated to the nucleus to mediate MRR-responsive gene expression. 

In addition to the MDM-binding NAC transcription factors, we provide a set of other, 

candidate MRR regulators that bind the MRR target gene promoters in the yeast one-hybrid 

system (Chapter 3). However, further experiments in planta are necessary to assess these novel 

regulatory interactions and evaluate the potential role of these transcription factors in MRR or 
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other intracellular stress signalling pathways. Moreover, this approach also led to the 

identification of a transcription factor (ANAC102) that is potentially involved in chloroplast 

retrograde regulation of the stress response (Chapter 4). ANAC102 is localized in the 

chloroplasts under nonstressed conditions. Upon chloroplast-initiated oxidative stress conditions, 

preliminary results show the translocation of ANAC102 to the nucleus where it alters gene 

expression. However, ANAC102 appears to repress stress responsive gene expression and 

negatively affects plant stress tolerance, indicating it might be involved in the fine-tuning of the 

stress response. To conclude, we identified one of the first transcription factors involved in MRR 

as well as a potential CRR regulator that is activated through retrograde relocalization from 

chloroplast to the nucleus.  

 In a second part of the Ph.D. project, we reverse-engineered a model of the Arabidopsis 

abiotic stress transcriptional regulatory networks (Chapter 5). Therefore, we used the LeMoNe 

algorithm to extract gene co-expression modules and their predicted regulators from abiotic 

stress-related gene expression data. We showed that LeMoNe infers functionally coherent 

modules of co-regulated genes and predicts regulators involved in the same biological functions 

as their target gene modules. Comparison of the predicted regulator-target gene interactions with 

known regulatory interactions obtained from publicly-available genetic perturbation studies 

revealed that the predictive coverage of the “complete” biological regulatory network is rather 

low. This might be attributed to the fact that many transcription factors are regulated at the post-

transcriptional level and, thus, their activity is not apparent from gene expression data alone. In 

addition, we experimentally tested the regulatory predictions for seven abiotic stress-related 

transcription factors and found that several of their predicted target genes indeed changed 

significantly in the transcription factor gain- or loss-of-function lines. Overall, the correctly 

predicted regulatory interactions are likely to correspond to the fraction of transcription factors 

that are significantly regulated at the transcriptional level. We conclude that inferring regulatory 

networks from gene expression data provides valuable information for at least part of the 

underlying true biological network. However, integration of other, non-transcriptomic data types 

and combining predictions from different algorithms will be needed to create a more robust 

regulatory network. 
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SAMENVATTING 

 

Planten hebben doorheen de evolutie robuuste adaptatiemechanismen ontwikkeld om te kunnen 

omgaan met de voortdurend schommelende omgevingsomstandigheden. Het begrijpen van de 

moleculaire mechanismen waarmee planten de omgeving waarnemen en deze signalen omzetten 

in adaptatiereacties is belangrijk voor de ontwikkeling van transgene gewassen die beter bestand 

zijn tegen dergelijke ongunstige omstandigheden. 

 Recente bevindingen tonen aan dat subcellulaire organellen zoals de mitochondriën en 

chloroplasten een belangrijke rol spelen in het waarnemen van de stress en daaropvolgend 

communiceren met de nucleus om een verdedigingsreactie te activeren. De communicatie van 

organellen naar de nucleus om genexpressie aan te sturen wordt retrograde regulatie genoemd. 

Desondanks het geweten is dat retrograde regulatie een belangrijke rol speelt in 

stresssignaaltransductie in planten, zijn de onderliggende mechanismen slechts beperkt ontrafeld. 

Hoewel er reeds een aantal signaaltransductiecomponenten van de chloroplast-retrograde-

regulatie (CRR) bekend zijn, was er bij de aanvang van dit doctoraatsproject nauwelijks iets 

geweten over de mitochondriale retrograde-regulatie (MRR) mechanismen in planten 

(Hoofdstuk 1).  

 Dit werk had als doelstelling om regulatoren betrokken in plant MRR te identificeren. Om 

dit te bewerkstelligen werd een “bottum-up” benadering gehanteerd, waarin MRR-doelgenen 

gebruikt werden om transcriptiefactoren betrokken in MRR te identificeren door gebruik te 

maken van de yeast one-hybrid methode. Hiervoor werd eerst een lijst van genen samengesteld 

die robuust gereguleerd worden door verstoring van de mitochondriale functie in Arabidopsis 

thaliana. In deze groep van genen werd een nieuw cis-regulatorisch element gevonden dat 

noodzakelijk en voldoende is voor MRR-geïnduceerde genexpressie en daarom het 

mitochondriaal dysfunctie motief (MDM) genoemd werd (Hoofdstuk 2). Vijf NAC 

transcriptiefactoren met een transmembraandomein (ANAC013, ANAC016, ANAC017, 

ANAC053 en ANAC078) binden op dit MDM cis-regulatorisch element. We tonen verder aan 

dat ANAC013 MRR-geïnduceerde genexpressie reguleert in planta door het binden op het MDM 

en tevens stresstolerantie van de plant beïnvloedt. ANAC013 is geassocieerd met het 

endoplasmatisch reticulum (ER) onder controleomstandigheden. Hoewel experimenteel bewijs op 

dit moment ontbreekt, veronderstellen we dat volgende op signalen afkomstig van de 
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mitochondriën, ANAC013 vrijgegeven wordt van de ER membranen en zich verplaatst naar de 

nucleus om genexpressie aan te sturen.  

Naast deze MDM-bindende NAC transcriptiefactoren, identificeerden we een reeks 

andere mogelijke MRR regulatoren, die de MRR-doelgenpromoteren binden in het yeast one-

hybrid systeem (Hoofdstuk 3). Verdere experimenten in planta zijn echter noodzakelijk om deze 

potentiële regulatorische interacties te valideren en om de mogelijke rol van deze 

transcriptiefactoren na te gaan in MRR of andere subcellulaire stresssignaaltransductie pathways. 

Deze benadering leidde bovendien tot de identificatie van een transcriptiefactor (ANAC102) die 

mogelijk betrokken is in chloroplast retrograde regulatie van de stress respons (Hoofdstuk 4). 

ANAC102 is aanwezig in de chloroplasten onder controleomstandigheden. Preliminaire 

resultaten tonen de verplaatsing van ANAC102 van de chloroplast naar de nucleus aan tijdens 

oxidatieve stressomstandigheden geïnitieerd in de chloroplasten. ANAC102 blijkt stress-

geïnduceerde genexpressie te inhiberen en heeft een negatief effect op de stresstolerantie van de 

plant. Dit duidt erop dat ANAC102 betrokken is de nauwgezette controle van de stressrespons. 

Dus, in dit deel van het doctoraatsproject werden één van de eerste transcriptiefactoren betrokken 

in MRR geïdentificeerd alsook een mogelijke CRR regulator die geactiveerd wordt door 

retrograde-geïnduceerde verplaatsing van de chloroplasten naar de nucleus.  

In een tweede deel van dit doctoraatswerk, werd regulatorisch netwerken van de 

abiotische stress respons in Arabidopsis gemodelleerd (Hoofdstuk 5). Het LeMoNe algoritme 

werd gebruikt om modules met co-geëxpresseerde genen en hun regulatoren te voorspellen op 

basis van abiotische stress-gerelateerde genexpressiedata. We tonen aan dat LeMoNe functioneel 

coherente modules afleidt, bestaande uit co-gereguleerde genen, alsook regulatoren voorspelt met 

functies gelijkaardig aan die van hun doelmodules. Het vergelijken van de voorspelde regulator-

doelgen interacties met gekende regulatorische interacties afgeleid van beschikbare genetische 

perturbatiestudies, toonde aan dat LeMoNe slechts een klein deel van het “volledige” biologische 

netwerk voorspelt. Dit is mogelijk te wijten aan het feit dat veel regulatoren gereguleerd worden 

op post-transcriptioneel niveau, en dus hun activiteit niet blijkt uit hun expressieprofiel. 

Daarnaast hebben we voor zeven abiotische stress-gerelateerde transcriptiefactoren de voorspelde 

regulaties experimenteel getest. De expressie van verschillende voorspelde doelgenen veranderde 

inderdaad significant door overexpressie of het uitschakelen van de transcriptiefactor. De correct 

voorspelde regulaties komen waarschijnlijk overeen met de fractie van de transcriptiefactoren die 
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significant gereguleerd worden op transcriptioneel niveau. We besluiten dat het modelleren van 

netwerken op basis van genexpressiedata waardevolle informatie kan geven over tenminste een 

deel van het onderliggende biologische netwerk. Om meer robuuste netwerken te maken zal het 

belangrijk zijn om in de toekomst andere datatypes te integreren en de voorspellingen van 

verschillende algoritmen te combineren.  
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