
 

   
 
 

1

 
 

 

 

Virulence factors of Helicobacter suis with emphasis 

on γ-glutamyl transpeptidase 
 

Guangzhi Zhang 

 
Thesis submitted in fulfillment of the requirements for the degree of Doctor in Veterinary 

Sciences (PhD), Faculty of Veterinary Medicine, Ghent University, April 2015 

 

 

Promoters: 

Prof. dr. Freddy Haesebrouck 

Dr. Bram Flahou 

 

 
 

            Department of Pathology, Bacteriology and Avian Diseases 

Faculty of Veterinary Medicine, Ghent University



 

2 

 



 
 

 
                3 

Table of Contents 

Table of Contents .................................................................................................................................................. 3 

List of Abbreviations ............................................................................................................................................ 5 

Chapter 1 General Introduction .......................................................................................................................... 9 
1. Helicobacter suis: the bacterium ............................................................................................................... 10 

1.1 Characterization of Helicobacter suis ................................................................................................ 10 
1.2 Phylogeny and genome of H. suis ....................................................................................................... 11 

2. Virulence factors of gastric helicobacters involved in colonization, induction of cell death and 
immune regulation ......................................................................................................................................... 12 
3. Helicobacter suis infection in humans and pigs ........................................................................................ 17 

3.1 Nomenclature of gastric non-Helicobacter pylori helicobacters (NHPH) ........................................ 17 
3.2 H. suis infection in pigs........................................................................................................................ 18 

3.2.1 The anatomy and physiology of the stomach ............................................................................. 18 
3.2.2 Prevalence of H. suis infection in pigs ........................................................................................ 21 
3.2.3 Clinical role of H. suis infection in porcine gastric pathology.................................................. 21 

3.3 The prevalence and clinical significance of H. suis infection in humans ........................................ 22 
4. Helicobacter-induced gastric inflammation .............................................................................................. 24 

4.1 The innate immune response against gastric Helicobacter infection ............................................... 24 
4.2 The adaptive immune response against gastric Helicobacter infection ........................................... 25 

5. Helicobacter and the gastric epithelium ................................................................................................... 29 
5.1 Parietal cells and gastric acid secretion ............................................................................................. 29 
5.2 The importance of amino acids in maintaining stomach health ...................................................... 33 
5.3 Interaction of H. suis and other gastric helicobacters with host epithelial cells ............................. 36 

6. References ................................................................................................................................................... 38 

Chapter 2 Scientific Aims ................................................................................................................................... 55 

Chapter 3 Experimental Studies ........................................................................................................................ 59 
Study 1: Effects of Helicobacter suis γ-glutamyl transpeptidase on lymphocytes: modulation by 
glutamine and glutathione supplementation and outer membrane vesicles as a putative delivery route 
of the enzyme .................................................................................................................................................. 61 
Study 2: Role of γ-glutamyltranspeptidase in the pathogenesis of Helicobacter suis and Helicobacter 
pylori infections ............................................................................................................................................... 93 
Study 3: Pig parietal cells: isolation, culture and cellular dysfunction induced by Helicobacter suis 
infection ......................................................................................................................................................... 129 

Chapter 4 General Discussion .......................................................................................................................... 151 

Chapter 5 Summary ......................................................................................................................................... 169 

Chapter 6 Samenvatting ................................................................................................................................... 175 

Curriculum Vitae .............................................................................................................................................. 181 

Bibliography ...................................................................................................................................................... 183 

Acknowledgements............................................................................................................................................ 187 



 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   
 
 

5

List of Abbreviations 

 

 

 

 

 

 

 

 

 

List of Abbreviations



 

6 

 List of Abbreviations 

AA Amino acids 

AP1 Activator protein 1 

Arg Arginine 

ATP Adenosine triphosphate 

BabA Blood group antigen-binding adhesion 

CagA Cytotoxin-associated gene A 

cagPAI cag pathogenicity island 

cAMP Adenosine 3’,5’-cyclic monophosphate 

CCK Cholecystokinin  

CLRs C-type lectin receptors 

CaSRs Calcium-sensing receptor 

DCs Dendritic cells 

EAA Essential amino acid 

ECL Enterochromaffin-like  

Foxp3 Forkhead/winged helix transcription factor 3 

GGT γ-glutamyl transpeptidase 

GI Gastrointestinal 

Gln Glutamine 

Glu Glutamate 

GSH Glutathione 

GPCRs G protein-coupled receptors 

HCl Hydrochloric acid 

H+/K+ ATPase  Hydrogen potassium ATPase 

HpaA H. pylori adhesion A 

IHC Immunohistochemistry 

Ig Immunoglobulin 

IFN Interferon 

IL Interleukin 

LPS Lipopolysaccharide 



 

   
 
 

7

 List of Abbreviations 

MALT Mucosa-associated lymphoid tissue 

MAPK Mitogen-activated protein kinases  

mGluRs Metabotropic glutamate receptors  

MyD88 Myeloid differentiation primary response gene 88                 

NEAA Non-essential amino acid 

NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B   

  cells 

NHPH Non-Helicobacter pylori helicobacters 

NLRs NOD-like receptors 

NOD  Nucleotide binding oligomerization domain containing  

  protein 

NO Nitric oxide 

OMP Outer member protein  

OMV Outer membrane vesicles 

PAMPs Pathogen-associated molecular patterns 

PRRs Pattern recognition receptors 

RLRs RIG-like receptors 

ROS Reactive oxygen species 

rRNA Ribosomal RNA 

SabA  Sialic acid–binding adhesion 

Th T helper 

TIRAP TIR-containing adaptor protein 

TGF-β  Transforming growth factor-β 

TLRs Toll-like receptors 

TRAM TRIF-related adaptor molecule 

Tregs Regulatory T cells  

T4SS Type IV secretion system 

VacA Vacuolating cytotoxin



  

8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   
 
 

9

 General Introduction 

 

 

 

 

 

 

 

Chapter 1  

General Introduction 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

10 

 General Introduction 

1. Helicobacter suis: the bacterium 
 
1.1 Characterization of Helicobacter suis 
 

In 1990, the first description of large, spiral-shaped bacteria in the mucus layer of lumen 

and antral pits of pig stomachs was made (Mendes et al., 1990; Queiroz et al., 1990). Initially, 

“Gastrospirillum suis” was proposed as a name, but further characterization showed that this 

organism in fact belonged to the genus Helicobacter (De Groote et al., 1999). A new name, 

‘Candidatus Helicobacter suis’ was then proposed. Despite numerous attempts worldwide, the 

first successful in vitro Helicobacter (H.) suis isolate was only obtained in 2008 from the 

stomach of slaughterhouse pigs (Baele et al., 2008).  

H. suis is a Gram-negative bacterium, and has a typical spiral-shaped morphology with 

up to six turns. This bacterium is ~2.3-6.7 μm long and ~0.9-1.2 μm wide and it is highly 

motile by means of 4-10 flagella at both ends of the cells (Baele et al., 2008) (Figure 1). 

 
 
Figure 1. Transmission electron microscopy images of H. suis in vitro and in vivo (Adapted from Baele et 
al., 2008 and Flahou et al., 2012). (A) An in vitro cultured H. suis bacterium exhibiting bipolar flagellae. (B) 
Spiral-shaped H. suis bacteria adhering to the gastric epithelium in the stomach of an experimentally infected 
BALB/c mouse. 
 

For primary isolation and culture, specific conditions are required (Baele et al., 2008). 

In general, the bacteria are grown on biphasic Brucella agar plates with a pH of 5 and 

supplemented with 20% fetal calf serum, 5 mg/L amphotericin B, and Vitox supplement 

under microaerobic conditions (37°C; 85% N2, 10% CO2, 5% O2). Plates should be checked 

every 2 days. If growth is unsufficient, as assessed by light microscopic examination, 

Brucella broth supplemented with 20% fetal calf serum is added to keep the plates moist 

(Flahou et al., 2012). If sufficient bacteria are present (at least 2 x 107 bacteria/ml, but 

preferably more), the H. suis containing broth can be divided onto 2-4 fresh agar plates. Very 

recently, a new method was established to acquire pure cultures of H. suis by growing 
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bacteria as individual colonies on 1% brucella agar plates, after which they are purified and 

enriched by conventional biphasic subculture as described above (Liang et al., 2014). 

 

1.2 Phylogeny and genome of H. suis 

 

The differentiation of H. suis from other gastric Helicobacter species has been done in 

previous studies by means of sequencing of part of the 16S and 23S ribosomal RNA encoding 

genes, genes encoding for the urease A and B subunits, the gyrB and hsp60 genes. This 

resulted in the valid description of this bacterium as a distinct Helicobacter species (Baele et 

al., 2008). Its relationship to closely related gastric Helicobacter species is depicted in figure 

2. 

 
Figure 2. Phylogenetic network of Helicobacter species based on partial ureAB gene sequences. The 
network was built with SplitsTree4 (version 4.11.3) by the Neighbor-Net method. A clear distinction can be 
made between H. suis, H. heilmannii, H. bizzozeronii, H. salomonis, H. felis, H. cynogastricus, H. baculiformis, 
H. pylori and a putative new Helicobacter taxon/species present in great apes and humans (shown in black), 
putatively named ‘Candidatus H. homininae’. HabGorCAR: clone from a habituated gorilla, Central African 
Republic; HabChimpUg: clone from a habituated chimpanzee, Uganda; UnhabChimpGuinea: clone from an 
unhabituated chimpanzee, Guinea-Bissau (Flahou et al., 2014). 

 

In 2011, a draft whole-genome sequence was published for H. suis strains HS1 and HS5 

(Vermoote et al., 2011). Genome analysis showed that homologs of genes essential for gastric 

colonization of H. pylori were present in the H. suis genome, e.g. H. pylori adhesin A (HpaA) 

and H. pylori porins related gene B (HorB). In addition, other genes associated with 
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colonization and virulence of H. pylori and other bacteria were also shown to be present in the 

H. suis genome, including γ-glutamyl transpeptidase (GGT), urease encoding genes, 

neutrophil-activating protein (napA) and flavodoxin. However, homologs of some important 

virulent genes for H. pylori, such as the vacA gene, encoding the vacuolating cytotoxin A and 

most of the genes present in the cag pathogenicity island, were shown to be absent or non-

functional in H. suis (Vermoote et al., 2011). 

 

2 Virulence factors of gastric helicobacters involved in colonization, induction of cell 

death and immune regulation 

 

Complex mechanisms, through the intervention of a large scale of bacterial factors, 

promote persistent colonization by gastric helicobacters, induce cell death of epithelial cells 

and other gastric cell types, regulate or evade the host immune response, and finally establish 

a long-term chronic infection in the host. A brief review of these mechanisms involving 

virulence factors of gastric helicobacters, will be given below. 

 

Flagellar mobility and acid neutralization 

The stomachs of animals and humans are characterized by a low pH as well as a 

constant secretion and shedding of the mucous layer, which is a challenging environment for 

most bacteria (Spohn et al., 2001). Helicobacter possesses the ability to swim to the epithelial 

surface of the stomach with the assistance of highly mobile flagella and the presence of urease 

activity, neutralizing the acidity and decreasing the viscoelastic properties of gastric mucins 

(Salama et al., 2013). In addition, the extraordinary mobility of gastric Helicobacter species 

in viscous substances is hypothesized to be due to the helical cell shape and the polarity 

(Lertsethtakarn et al., 2011). Urease is a cytoplasmic protein, which is also found on the 

surface of stationary-phase bacteria probably due to lysis of a subpopulation (De Reuse et al., 

2005, Marcus et al., 2011). The enzyme hydrolyzes urea to produce ammonia and carbon 

dioxide to neutralize the secreted acid. A sustained urease production is necessary to establish 

a pH-neutral microenvironment around the bacteria (Yoshiyama et al., 2000). The urease 

enzyme complex consists of 2 subunits, Ure A and Ure B, as well as accessory proteins 

including Ure E, F, G, H and urea channel UreI (Mobley et al., 1995, Akada et al., 2000). 

Both flagella and urease activity are indispensable for Helicobacter colonization, and 

Helicobacter strains lacking genes of the urease complex or flagellar apparatus are in general 

not capable of persistently colonizing the host stomach (Eaton et al., 1991, Tsuda et al., 1994, 
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Andrutis et al., 1997). Whole-genome sequencing of H. suis has revealed that most known 

virulence factors from H. pylori involved in acid acclimation and bacterial mobility are also 

present in H. suis (Vermoote et al., 2011). Thus, similar effects of these virulence 

determinants can be assumed to play a role in bacterial colonization of the stomach. 

 

Adhesion to the gastric epithelial surface 

Under the drive of flagella and protection of a pH-neutral microenvironment conferred 

by urease activity, H. pylori can move through and penetrate the viscous mucous layer and 

adhere to gastric epithelial cells by several specific adhesins (Testerman et al., 2001, 

Andersen, 2007). Most of the adhesins are members of the large outer member protein family 

(OMP) of H. pylori (Odenbreit, 2005), and the blood group antigen-binding adhesin (BabA) 

and the sialic acid–binding adhesin (SabA) are the best-characterized adhesins associated with 

the adherence of H. pylori to gastric mucosa (Ilver et al., 1998, Mahdavi et al., 2002). These 

factors facilitate adherence to the fucosylated ABH/ Lewis b (Leb) blood group antigens and 

to the inflammation-associated sialyl-Lewis x (sLex) of gastric epithelium, respectively, and 

also favour bacterial colonization in H. pylori-infected patients (Mahdavi et al., 2002, Rad et 

al., 2002, Aspholm-Hurtig et al., 2004). Moreover, it has been shown that adherence-

associated lipoprotein A (alpA) and alpB are required for the adherence of H. pylori to human 

gastric tissue as well as for successful colonization of the guinea pig stomach (Odenbreit et al., 

1999, de Jonge et al., 2004). HpaA, another identified adhesin, is a surface-located lipoprotein 

expressed by almost all H. pylori strains, and it was demonstrated that HpaA is essential for 

colonization in a mouse model based on proteomic analysis and an in vivo study using a 

HpaA mutant strain (Otoole et al., 1995, Carlsohn et al., 2006). Additionally, HorB has been 

described as an adhesin, and insertional mutagenesis of the horB gene in H. pylori SS1 

exhibits a threefold reduced bacterial colonization capacity in the stomach of mice (Alm et al., 

2000, Snelling et al., 2007). Some H. pylori genes involved in bacterial adherence have been 

detected in the H. suis genome, such as HorB and HpaA homologs (Vermoote et al., 2011). 

Possibly, these proteins also contribute to the adherence of H. suis to the gastric epithelium. 

 

Oxidative stress detoxification 

H. pylori persists in the host stomach and bacterial infection induces a strong 

inflammatory response. Oxidative stress resistance is considered to be a crucial property that 

enables pathogenic bacteria to survive the toxic reactive oxygen species (ROS) released by 

the host (Wang et al., 2004). Inflammation-induced oxidative stress is often not capable to 
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efficiently eliminate H. pylori, which possesses antioxidant enzymes, biological repair 

systems, and other antioxidant factors (Wang et al., 2004, Wang et al., 2006). Two well-

studied bacterial oxidative stress resistance factors are catalase and superoxide dismutase 

(Wang et al., 2006), but several others have thus far been identified, including methionine 

sulphoxide reductase (Alamuri et al., 2004), NADPH quinone reductase (Wang et al., 2004), 

and proline utilization A flavoenzyme (Krishnan et al., 2006). Interestingly, it has been shown 

that H. pylori outer membrane vesicles (OMV) are also involved in bacterial oxidative stress 

resistance (Chitcholtan et al., 2008). Notably, homologs of genes from gastric helicobacters 

encoding factors responsible for oxidative stress resistance can be detected in the H. suis 

genome as well, including catalase, superoxide dismutase, and NADPH quinone reductase 

(Vermoote et al., 2011), indicating that H. suis possesses the necessary components to 

counteract oxidative stress. 

 

Virulence factors involved in induction of cell death and immune regulation 

An important mechanism through which H. pylori causes mucosal damage is the 

induction of cell death, including apoptosis and necrosis of the epithelial cell. Gastric 

epithelial cell death is considered to contribute to gastric ulcer formation, gastric atrophy and 

gastric cancer (Shirin et al., 1998, Xia et al., 2001). A series of virulence factors of H. pylori 

and NHPH involved in cell death have been identified since the isolation of H. pylori by 

Marshall and Warren in 1984 (Marshall et al., 1984, Covacci et al., 1999a, Radin et al., 2011, 

Salama et al., 2013). 

 

GGT 

GGT is one of the major virulence factors of gastric Helicbobacter species. Besides its 

presence in various bacterial species, membrane-bound GGT is also found in the eukaryotic 

cells, where it is mainly involved in catalyzation of GSH, as part of the GSH cycle 

(Yokoyama, H, 2007). GGT is expressed at relatively high levels in kidney, liver and brain 

tissue in humans. In addition, GGT in the serum serves as a marker of hepatic and biliary 

tract-associated diseases (Betro et al., 1973; Betro et al., 1973; Corti et al., 2010). 

H. pylori GGT, a secreted periplamic deamidase, is the first identified bacterial GGT 

enzyme playing a role in the establishment of infection in its host (Chevalier et al., 1999, 

Leduc et al., 2010). A number of studies have revealed that H. pylori GGT can induce 

apoptosis of gastric epithelial cells via a mitochondria-mediated pathway (Shibayama et al., 

2003, Kim et al., 2007a). In addition, it has been shown to be a pathogenic factor in the 
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development of peptic ulcer disease (Gerhard et al., 2005, Gong et al., 2010b). H. pylori GGT 

has been shown to exhibit hydrolysis activity with very high affinities for Gln and GSH. 

These two substrates can be hydrolysed to glutamate by the action of GGT, which can be 

further transported into H. pylori cells by a Na+-dependent reaction (Figure 3) (Shibayama et 

al., 2007, Rossi et al., 2012). Leduc and colleagues identified the transporter (GltS) 

responsible for the transportation of GSH- or Gln-derived glutamate into H. pylori (Leduc et 

al., 2010). Recent studies showed that GGT from H. suis, H. bilis, and H. pylori is in part 

responsible for inducing cell death including apoptosis or necrosis in human gastric epithelial 

cells or colon epithelial cells, and supplementation of gastric epithelial cells with GSH was 

shown to enhance the cell death-inducing effect of the enzyme, through the formation of pro-

oxidant glutathione degradation products (Flahou et al., 2011, Rossi et al., 2012, Javed et al., 

2013). 

 
 

Figure 3. Actions of GGT on glutathione and glutamine. 
Shown are GGT-mediated hydrolysis of glutathione and glutamine, with the formation of glutamate. 
 

Besides the cell death-inducing ability, H. pylori GGT has also been shown to play a 

role in extensive immune regulation. Several studies have revealed that H. pylori GGT is a 

vital immunosuppressive factor mediating the inhibition of T cell proliferation by induction of 

a cell cycle arrest in the G1 phase (Gerhard et al., 2005, Schmees et al., 2007). In addition, 

microRNA profiling of non-infected and infected human T cells revealed that H. pylori 

infection triggers miR-155 expression in vitro and in vivo, and the bacterial GGT was 

identified as a factor regulating this miR-155 expression in human lymphocytes, providing an 

evidence for the direct link between this enzyme and regulation of microRNA (Fassi Fehri et 

al., 2010). Recently, Oertli et al. demonstrated that H. pylori infection efficiently reprograms 
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murine DCs toward a tolerogenic phenotype and induces programming of regulatory T cells 

in vitro and in vivo with the critical contribution of two major virulence factors, including 

GGT (Oertli et al., 2013). This suggests that GGT can affect or impair the functional immune 

response both in a direct and indirect manner. 

 

VacA 

VacA is another key virulence factor secreted by H. pylori. It was first described by 

Leunk et al. for its cytotoxic activity (Leunk et al., 1988), and the first purification and 

characterization of this factor was done in 1992 (Cover et al., 1992). After secretion through a 

type V autotransport secretion system, the VacA toxin binds to host cells. Subsequently, it is 

internalized, leading to the induction of severe cytoplasmic vacuolation characterized by 

accumulation of large vesicles consisting of endosomes and lysosomes (Palframan et al., 

2012). The induction of vacuolation in host cells has been observed in primary gastric 

epithelial cells (Garner et al., 1996, Smoot et al., 1996) and gastric epithelial cell lines (de 

Bernard et al., 1997, Palframan et al., 2012). Besides its vacuole-inducing ability, it has been 

shown that this virulence factor shares a series of pathogenic features with GGT, such as 

conferring advantage for bacterial colonization in mice (McGovern et al., 2001, Salama et al., 

2001), inhibiting T cell proliferation (Sundrud et al., 2004, Schmees et al., 2007), inducing 

cell death of gastric epithelial cells (Kuck et al., 2001, Kim et al., 2007a), and facilitating 

induction of Tregs in naïve T cells by H. pylori (Oertli et al., 2013). Studies showed that 

purified VacA can impair mitochondrial membrane potential of gastric epithelial cells 

followed by a decrease in energy metabolism and glutathione metabolism (Kimura et al., 

1999, Kimura et al., 2001). It was further shown that the small H. pylori VacA subunit acts as 

a small pore-forming toxin, targeting to the mitochondrial inner membrane (Domańska et al., 

2010), and endoplasmic reticulum stress may contribute to H. pylori VacA-induced apoptosis 

of gastric epithelial cells (Akazawa et al., 2013). Genome analysis showed that a functional 

VacA is not present in H. suis (Vermoote et al., 2011). 

 

Cytotoxin-associated genes pathogenicity island (CagPAI) 

The CagPAI of H. pylori, a 40-kb genomic stretch, comprises about 27-31 genes 

depending on the clinical strain (Akopyants et al., 1998), and was most likely acquired by a 

horizontal DNA transfer event from an unknown non-Helicobacter source during the course 

of evolution (Censini et al., 1996b). Virulent H. pylori isolates often carry the CagPAI, 

encoding a Type IV secretion system (T4SS) that can translocate the CagA oncoprotein (but 
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also for instance peptidoglycan) into host cells (Censini et al., 1996a, Odenbreit et al., 2000, 

Viala et al., 2004). The CagA subsequently interacts with a large group of host proteins 

involved in host signal transduction pathways (Bourzac et al., 2005), which is associated with 

the development of peptic ulcer disease, gastric cancer, and other severe H. pylori-associated 

pathologies (Segal et al., 1997, Bourzac et al., 2005, Salama et al., 2013). Several 

components of CagPAI, such as CagF (Seydel et al., 2002), CagI (Wang et al., 2012), CagL 

(Shaffer et al., 2011), CagM (Ling et al., 2013), CagY (Wiedemann et al., 2009) have been 

characterized and shown to be required for the secretion and translocation of CagA.  

CagA and other components of the CagPAI have been implied in the regulation of the 

cell cycle and cell apoptosis. It has been shown that apoptosis of human monocytes induced 

by H. pylori strains is dependent on the functional expression of CagPAI (Galgani et al., 

2004). By contrast, the CagA has been described to enhance the ability of B lymphocytes to 

prevent apoptosis through phosphorylation of the pro-apoptotic protein Bad, which may 

contribute to the development of MALT lymphoma (Zhu et al., 2007, Lin et al., 2010). 

Furthermore, miRNA-155 also exerts anti-apoptotic effects on macrophages in a T4SS-

dependent manner to increase their resistance to apoptosis induced by DNA damage during H. 

pylori infection (Koch et al., 2012). In an experimental study in Mongolian gerbils, a CagA+ 

H. pylori strain was shown to facilitate host cell survival and to activate anti-apoptotic 

pathways to conquer self-renewal of the gastric epithelium (Mimuro et al., 2007). With 

regards to H. suis, genome analysis has shown that most members of the T4SS, including the 

CagA, are not present in the H. suis genome, except for homologs of CagE and CagX, 

indicating that this microorganism lacks a functional cag protein transporter secretion system 

(Vermoote et al., 2011). 

 

3. Helicobacter suis infection in humans and pigs 

 

3.1 Nomenclature of gastric non-Helicobacter pylori helicobacters (NHPH) 

In the first half of the 20th century, it was generally assumed that the stomach could not 

be inhabited by microbes, due to the acidity of the gastric environment. However, in 1984, it 

was reported by Marshall and Warren for the first time that human gastritis and gastric 

ulceration were caused by a thus far unidentified slightly curved bacterium (Marshall et al., 

1984). In 1989 this curved bacterium was named Helicobacter (H.) pylori (Goodwin et al., 

1989), and in subsequent years, it was shown that this bacterium could lead to the 

development of gastritis, peptic ulcer disease, gastric adenocarcinoma and mucosa-associated 
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lymphoid tissue (MALT) lymphoma in humans (Axon, 1999, Ernst et al., 2000). H. pylori, 

however, is not the only gastric Helicobacter species capable of colonizing the human gastric 

mucosa. Indeed, large spiral shaped non-H. pylori Helicobacter (NHPH) species have been 

detected on numerous occasions in human gastric biopsy samples (Lee et al., 1989, Heilmann 

et al., 1991, Svec et al., 2000, Trebesius et al., 2001, Van den Bulck et al., 2005, 

Haesebrouck et al., 2009). 

The nomenclature of this challenging group of bacteria has always been very confusing, 

in part because of the inability to cultivate these bacteria in vitro. They were originally named 

Gastrospirillum hominis (McNulty et al., 1989) and soon renamed as H. heilmannii 

(Heilmann et al., 1991). Further analysis of the 16S ribosomal RNA (rRNA) gene identified 

two different types of bacteria belonging to this “H. heilmannii” group: “H. heilmannii” type 

1 and “H. heilmannii” type 2. Subsequent morphological and genetic analysis proved that “H. 

heilmannii” type 1 was identical to Helicobacter suis, a bacterium colonizing the stomach of 

pigs and isolated for the first time in vitro in 2008 (De Groote et al., 1999, O'Rourke et al., 

2004c, Baele et al., 2008). This micro-organism was first designated as ‘Gastrospirillum suis’, 

then described as ‘Candidatus Helicobacter suis’ for almost 10 years until it was isolated 

successfully in vitro in 2008, resulting in the final valid description of Helicobacter suis as a 

species (Mendes et al., 1991, De Groote et al., 1999, Baele et al., 2008). “H. heilmannii” type 

2 does not represent one single Helicobacter species, but it represents various dog- and cat-

associated Helicobacter species including H. felis, H. bizzozeronii, H. salomonis, H. 

cynogastricus, H. baculiformis and the recently isolated H. heilmannii sensu stricto, which 

has been described to colonize the stomach of cats and dogs with a prevalence ranging from 

20% - 100%, depending on the study (Haesebrouck et al., 2009, Haesebrouck et al., 2011). 

Due to the very fastidious nature of the organism, in vitro culture of H. suis has 

remained unsuccessful, until in 2008, pure cultures of H. suis were obtained in the laboratory 

for the first time (Baele et al., 2008). To date, in vitro isolated strains of H. suis are only 

available in the research group of the candidate. 

  

3.2 H. suis infection in pigs 

3.2.1 The anatomy and physiology of the stomach 

The ancient Egyptians already recognized and described the gross anatomy of the 

stomach, and proposed that the stomach is responsible for the breakdown of food (Baron, 

1979). In 1823, hydrochloric acid (HCl) was identified as the acid responsible for digestion of 
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food in the stomach (Rosenfeld, 2003). The stomach linking the esophagus and small intestine, 

is the dilated part of the digestive tract, and its main functions are acidification and 

maceration of the food to the liquid state-chyme through the actions of proteolytic enzymes 

and HCl, and temporary storage until the contents are passed into the intestine (Dyce et al., 

2002). Both pigs and humans are monogastric species, and pig stomachs have a gastric 

diverticulum surmounting the fundus distinguishing them from other simple stomachs (Figure 

4) (Dyce et al., 2002). 

 
 
Figure 4. Anatomy of the porcine stomach. In the left panel, a closed pig stomach is depicted. When opened 
along the curvatura major, the 4 main stomach regions can be seen, each characterized by the presence of a 
typical epithelial layer: 1) pars oesophagea 2) cardiac gland zone 3) fundic gland zone/corpus 4) antrum/pyloric  
region. (Adapted partly from http://www.onemedicine.tuskegee.edu/DigestiveSystem/Stomach/Porcine_Shape.html) 
 

In general, the stomach consists of four regions: the cardiac gland zone, the fundic gland 

zone (corpus or body), the pyloric gland zone (antrum), and the pyloric region (Dyce et al., 

2002). The corpus and antrum can be distinguished by the transition from oblique rugae to a 

relatively flat mucosa, and the pylorus can be easily palpated, with a ring of muscle separating 

the stomach and the duodenum (Soybel, 2005). In the stomach of pigs, a characteristic small 

rectangular region around the oesophageal opening is composed of non-glandular keratinized 

epithelium resembling that of the oesophagus. This region is called the pars oesophagea 

(Krakowka et al., 2006) (Figure 4). 

As is typical for the digestive tract, the stomach comprises four main layers. From the 

innermost to the outermost, these four layers are the tunica mucosa, the tunica submucosa, the 

tunica muscularis, and the tunica serosa. The mucosal layer can be subdivided into 3 layers 

from the inside outwards: the lining epithelium, the underlying lamina propria, and the lamina 

muscularis mucosae (Figure 5). The epithelium of the stomach lining the gastric lumen is 

simple columnar epithelium, and its main function is secreting products essential for the 
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digestive process. Gastric glands can be found invaginating the lamina propria, which is a 

supporting layer of loose connective tissue. The lamina muscularis mucosae is a smooth 

muscle layer that separates the mucosa from the submucosa. The latter harbours blood vessels, 

nerve fibers, lymphatic structures and exocrine glands. Contractions of the outer muscle layer 

(tunica muscularis) cause a physical dissociation of the food bolus and are responsible for the 

emptying of the stomach.  

 
 

Functionally, the glandular gastric mucosa is divided into acid-secreting and non-acid 

secreting regions based on the ability to secrete acid. The region around the cardia contains 

cardiac glands secreting mucus and bicarbonate. The corpus harbors acid-secreting 

glands/units, and the antrum is composed of alkaline-secreting surface epithelium and 

endocrine gastrin-secreting G-cells and somatostatin-producing D-cells (Soybel, 2005). The 

gastric unit includes the gastric pit and gland, and the gland consists of a base and a neck (van 

den Brink et al., 2001). 

Zymogen (pepsinogen)-secreting chief cells lining the base of the gland unit can be 

found in the corpus region. The middle of the gastric gland is largely populated with the HCl-

secreting parietal cells, and parietal cells are still present at the neck, but give way to mucus 

neck cells. Near the opening of the gland into the gastric lumen, the mucosa is largely 

populated with lining epithelial cells. Enterochromaffin-like (ECL) cells located in the gastric 

gland beneath the epithelium express histidine decarboxylase, the enzyme that in turn leads to 

the conversion of histidine into histamine (Chen et al., 1994a, Schubert, 2002) (Figure 6). 
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3.2.2 Prevalence of H. suis infection in pigs 

Domesticated pigs are naturally prone to be colonized by H. suis, and this bacterium 

seems to have a worldwide distribution (Grasso et al., 1996, Foss et al., 2013). This tightly 

curved microorganism was first described to be present in the stomach of slaughtered pigs by 

Queiroz et al. (Queiroz et al., 1990). H. suis infection in pigs has been reported with varying 

prevalence rates, depending on diagnostic tools used, the geographic region, the age of the 

animals, etc. In general, reported prevalence rates range from ~9% to ~95%, and the incidence 

of H. suis infection increases with age. Indeed, very low incidences have been described 

before weaning, whereas it can be as high as 90% in slaughter pigs (Barbosa et al., 1995, 

Grasso et al., 1996, Park et al., 2004, Hellemans et al., 2007a). A recent report in the United 

States has shown that the incidence of H. suis exceeds 50% in several major pig-producing 

areas (Foss et al., 2013). 

 

3.2.3 Clinical role of H. suis infection in porcine gastric pathology 

H. suis infection has been reported to cause gastritis, which is mainly composed of 

infiltration with lymphocytes, plasmacytes and, to a lesser extent, granulocytes in the tunica 

mucosa or submucosa. Although this can be observed in all regions of the glandular stomach, 

the link between H. suis infection and the development of gastritis is the most obvious in the 

antrum. In addition to inflammation, infection with H. suis in pigs has also been described to 

cause gastric ulceration as well as other gastric pathological changes (Mendes et al., 1991, 

Barbosa et al., 1995, Hellemans et al., 2007b, De Bruyne et al., 2012). In 2012, De Bruyne et 

al. (2012) demonstrated for the first time under experimental conditions that pure in vitro 

cultures of H. suis do not only cause gastritis but also a notable reduction of the daily weight 

gain, which no doubt leads to substantial economic losses, although no exact data are 

available. 

In the pig stomach, the pars oesophagea, surrounding the esophageal opening, is 

covered by stratified squamous epithelium. Due to the lack of mucus-producing glands and 

the sodium bicarbonate buffering system, which are general features of the gastric glandular 

mucosa, the pars oesophagea is more prone to damage inflicted by the acidic content of the 

stomach and other risk factors (Embaye et al., 1990, Argenzio et al., 1996, Casagrande 

Proietti et al., 2010). Studies performed by several research groups have shown that pigs with 

lesions in the gastric pars oesophagea of the stomach are frequently colonized by H. suis 

(Barbosa et al., 1995, Queiroz et al., 1996, Cantet et al., 1999). Interestingly, Sapierzynski et 

al. showed that H. suis infection can increase the number of gastrin-producing G cells, 
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decrease the number of somatostatin-producing D cells and increase the ratio of G cells/D 

cells, thus possibly leading to the secretion of excessive amounts of HCl, which may be 

responsible for gastroesophageal ulceration in swine (Sapierzynski et al., 2007). In some 

studies, however, no obvious correlation was observed between the occurrence of ulcers and 

the presence of H. suis infection in the pig stomach (Cantet et al., 1999, Hellemans et al., 

2007c), although conflicting results have clearly been reported (Queiroz et al., 1996, Bedel et 

al., 1997, Roosendaal et al., 2000, Casagrande Proietti et al., 2010). Similar to H. pylori 

infection in humans, most likely only a small portion of individual animals with H. suis 

infection will develop gastric ulcers (Megraud et al., 1992, Cohen, 2000). The most plausible 

explanation may be that besides H. suis infection, a series of other factors may play a role, 

including nutritional conditions, stress, housing, management, changes in the environment, 

the presence of other bacteria, etc. (Queiroz et al., 1996, Choi et al., 2001, Appino et al., 

2006). It has been demonstrated that ensuring the stomach contains feed at all times 

(Friendship, 2003) and less fine grinding of the feed can avoid the occurrence and aggravation 

of lesions of the non-glandular pars oesophagea (Friendship et al., 2003). 

Infection of pigs with stomach homogenate from H. suis infected mice (Hellemans et al., 

2007c) or a pure in vitro cultured strain of H. suis (De Bruyne et al., 2012) can result in a 

decreased body weight gain ranging from 5% to 10%. In view of the high prevalence of H. 

suis infection in pigs along with its observed effects on animal health and welfare as well as 

production parameters, further research on the underlying mechanisms is needed.  

H. suis is the most predominant Helicobacter infection species in the pig stomach, 

although on rare occasions, other Helicobacter species have been reported in the pig stomach, 

including H. bilis, H. trogontum, H. pullorum, and H. pylori-like bacteria (Roosendaal et al., 

2000, Hanninen et al., 2003, Hanninen et al., 2005, Krakowka et al., 2005, Szeredi et al., 

2005).  

 

3.3 The prevalence and clinical significance of H. suis infection in humans 
 

H. pylori, colonizing more than half of the world’s population, is considered to be the 

most prevalent Helicobacter species persistently residing in the human stomach, and infection 

may cause gastritis, peptic ulcer disease, as well as the development of gastric 

adenocarcinoma and MALT lymphoma (Axon, 1999, Ernst et al., 2000, Wroblewski et al., 

2010, Salama et al., 2013). Besides H. pylori, lower incidences of gastric NHPH infection 

have been reported in human patients, with prevalences ranging in general from 0.08% to 2%. 
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Especially in developing countries, such as China and Thailand, higher prevalences up to 6% 

have been reported (Oliva et al., 1993, Stolte et al., 1997, Yali et al., 1998, Yang et al., 1998, 

Andersen, 2001, Singhal et al., 2005). Among all the NHPH species reported so far, H. suis is 

the most prevalent one in humans, responsible for about 1/3 of human NHPH infections (Van 

den Bulck et al., 2005). In this same study, H. felis, H. bizzozeronii, H. salomonis and H. 

heilmannii were detected in 8.9%, 2.4%, 11.4% and 7.3% of NHPH-infected humans, 

respectively. Remarkably, a very high prevalence rate has been reported in human patients 

diagnosed with Idiopathic Parkinsonism (Cantet et al., 1999, Roosendaal et al., 2000, Choi et 

al., 2001, Trebesius et al., 2001, Van den Bulck et al., 2005, Baele et al., 2009, Flahou et al., 

2010, Blaecher et al., 2013).  

Humans infected with an NHPH species have been described to suffer from 

gastrointestinal (GI) complaints, which may include dyspepsia, epigastric pain, acid reflux, 

etc. (McNulty et al., 1989, Hilzenrat et al., 1995, Singhal et al., 2005). Histopathologically, a 

chronic gastritis is often observed which is generally less severe compared to H. pylori-

induced gastritis, and some patients infected with NHPH bacteria may benefit from anti-H. 

pylori therapy (Oliva et al., 1993, Holck et al., 1997, Singhal et al., 2005, Joosten et al., 

2013c).  

Although NHPH infections are much less frequent in humans, it is of interest to note 

that the risk of developing gastric MALT lymphoma has been described to be higher for 

NHPH infection compared to H. pylori infection. A report from Stolte and colleagues 

described, in a period from 1988 to 1998, eight MALT lymphomas among 543 patients with 

H. heilmannii gastritis (1.47%) compared to 1745 MALT lymphomas among 263 680 patients 

with H. pylori gastritis (0.66%) (Stolte et al., 1997, Morgner et al., 2000b, Stolte et al., 2002, 

Joo et al., 2007a).    

Contrary to H. pylori’s predominate colonization in the human stomach and 

transmission from human to human, the natural reservoir of H. suis is the domesticated pig. 

Therefore, it can be speculated that direct and indirect contact with pigs and/or pig products 

are the main sources of infection. Indeed, Stolte et al. discovered that 70% of patients infected 

by “H. heilmannii” had frequent contact with one or more domestic animals or pets compared 

to only 37% in the healthy control population (Stolte et al., 1994, Meining et al., 1998). Foss 

et al. have found that H. suis spreads rapidly from infected pigs to adjacent groups of animals 

and they have identified H. suis DNA in the saliva from the infected pigs (Foss et al., 2013). 

In addition, De Cooman and colleagues have demonstrated viable H. suis bacteria in 2 out of 

50 retail pork samples, and viable H. suis bacteria were shown to persist for at least 48 hours 
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in experimentally contaminated pork (De Cooman et al., 2013a). Recently, these same authors 

reported a relatively high prevalence of H. suis on pork carcasses, thus providing new 

evidence for potential routes of transmission of H. suis from pigs to humans (De Cooman et 

al., 2014). However, the exact transmission route(s) between pigs and humans still need to be 

elucidated. 

 

4. Helicobacter-induced gastric inflammation 

 

It is estimated that H. pylori has co-evolved with its human host since before the major 

migrations of Homo sapiens about 50 000 – 100 000 years ago. Currently, H. pylori is a 

highly successful human pathogen colonizing more than 50% of the human population 

(Covacci et al., 1999b). Despite the development of an immune response, H. pylori can 

persist in the challenging stomach of humans and establish chronic infection for decades or 

even lifelong, thanks to some ingenious escape mechanisms suppressing and modulating the 

host defense (Ernst et al., 2000, Allison et al., 2010, Salama et al., 2013). In this section, the 

innate and adaptive host immune response induced by H. pylori will be briefly described as 

well as the recent progress in the field of H. suis. 

 

4.1 The innate immune response against gastric Helicobacter infection 

 

Both epithelial cells lining the GI tract and innate immune cells including macrophages, 

dendritic cells (DC) and neutrophils form the first barrier against foreign microorganisms 

encroaching the GI tract of the host. Epithelial innate immune cells express a series of 

receptors known as pattern recognition receptors (PRRs) (Kumar et al., 2013). PRRs can 

sense or recognize the conserved pathogen-derived molecular structures, the so-called 

pathogen-associated molecular patterns (PAMPs) of the invading pathogens (Ishii et al., 2008, 

Kumar et al., 2013). PAMPs produced by distinct microorganisms are generally unique, 

chemically diverse products with conserved motifs (Cullen et al., 2011), and can be 

recognized by at least 4 distinct varieties of PRRs identified to date: toll-like receptors (TLRs), 

C-type lectin receptors (CLRs), nucleotide binding oligomerization domain containing protein 

(NOD)-like receptors (NLRs) and RIG-like receptors (RLRs) (Muller et al., 2011). Each PRR 

triggers a distinct innate signalling pathway, and the combination between different signalling 

pathways determines the final adaptive immune response against the invading pathogen 

(Gringhuis et al., 2009). Previous studies have shown that H. suis infection induces an 
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increased infiltration of the gastric mucosa of mice and Mongolian gerbils with macrophages, 

neutrophils and DC (Flahou et al., 2010, Nobutani et al., 2010b). The innate immune response 

to invading microbes plays an important role in eliminating pathogens as well as further 

tailoring of pathogen-specific adaptive immunity, typically mediated by effective T and B 

cells (Pasare et al., 2004). 

 

4.2 The adaptive immune response against gastric Helicobacter infection 

 

In view of the fact that H. pylori persistently colonizes the human stomach, it can be 

anticipated that this pathogen can not only trigger and modulate the innate immune response, 

but also possesses mechanisms to deal with the robust adaptive immune response, to establish 

chronic infections in humans. Generally, the adaptive immune response against Helicobacter 

infection consists of the immunoregulatory effects of tolerant DC and the activation of T and 

B lymphocytes. 

 

DC 

DCs are highly specialized antigen-presenting cells and they serve as an important 

mediator linking the innate and adaptive immune response. DCs reside in the secondary 

lymphoid organs and peripheral tissues, including the gastric mucosa, and it has been shown 

that DCs are more prevalent and common in H. pylori infected patients compared to healthy 

subjects, and that H. pylori infection can induce the maturation of human DCs (Sarsfield et al., 

1996, Necchi et al., 2009, Bimczok et al., 2010, Sundquist et al., 2010, Shiu et al., 2013). 

This is also the case in experimentally infected mice with both acute and chronic gastritis after 

H. pylori infection (Kao et al., 2006, Kao et al., 2010, Flach et al., 2012) or H. felis infection 

(Drakes et al., 2006). It has been demonstrated that H. pylori immune evasion can be partly 

mediated by DCs by inducing the conversion of naïve T cells into regulatory T cells (Tregs), 

thus favouring a persistent H. pylori infection (Kao et al., 2010, Zhang et al., 2010, Hitzler et 

al., 2011). Also, in vivo depletion of Tregs in infected mice leads to increased gastric 

inflammation and decreased bacterial colonization (Rad et al., 2006). With regards to H. suis, 

it has been shown that lymphoid follicles induced by H. suis infection can indeed be regulated 

by local DC in the gastric mucosa of mice (Mimura et al., 2011). Moreover, GGT, also 

produced by H. suis, contributes critically to the tolerizing effect of H. pylori on murine DCs 

towards a tolerogenic phenotype in vivo and in vitro and it also induces Tregs with highly 
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suppressive properties (Oertli et al., 2013), which still needs to be explored for H. suis 

infection. 

 

Tregs  

In general, Tregs are a minor specialized population, comprising 5-10% of CD4+ T cells 

both in mice and humans, which also co-express CD25, the α-chain of the interleukin-2 

receptor (IL-2R) (Shevach, 2002). It has been shown that CD4+CD25+ Tregs exert their 

immuno-suppressive function through a variety of mechanisms. They play critical roles both 

in prevention of autoimmunity and in the control of tumor immunity and transplantation 

tolerance (Sakaguchi, 2002, Josefowicz et al., 2012b). Forkhead/winged helix transcription 

factor (Foxp3) is considered to be a unique marker of Tregs, and it is specifically required for 

the development and suppressive function of Tregs (Fontenot et al., 2003). Tregs have been 

shown to execute their suppressive function through cell-to-cell contact as well as secretion of 

the anti-inflammatory cytokine IL-10 and transforming growth factor-β (TGF-β) (Levings et 

al., 2002, Gondek et al., 2005). Notably, an increasing amount of reports have shown that 

elevated numbers of Tregs are found both in patients with H. pylori infection (Lundgren et al., 

2005, Kandulski et al., 2008, Iwaya et al., 2013) as well as in mice experimentally infected 

with H. pylori (Rad et al., 2006, Oertli et al., 2013), suggesting a significant role for Tregs in 

suppressing H. pylori induced inflammation and maintaining the chronic nature of the 

infection (Rad et al., 2006, Raghavan et al., 2012). A recent report has demonstrated that 

GGT from H. pylori promotes an efficient induction of Tregs in vivo (Oertli et al., 2013), and 

just recently the same group provided preclinical data proving that GGT can prevent allergen-

induced asthma (Engler et al., 2014). Interestingly, the suppressive cytokine IL-10, often 

produced by Tregs (Bazzoni et al., 2010), is significantly up-regulated in the stomach of mice 

experimentally infected with H. suis (Flahou et al., 2012). So most likely, Tregs are also 

involved in immune modulation in H. suis infected hosts. 

 

T helper cells 

Besides the involvement of DCs and Tregs in the adaptive immune response, gastric 

helicobacters harbour several key virulence factors that can directly or indirectly interfere 

with adaptive immune cells. Convincing evidence indicates that the vacuolating toxin (VacA) 

and GGT of H. pylori can impair the proliferation of human T cells, and the GGT of H. bilis 

has been shown to exhibit a similar inhibitory effect in a direct manner (Gebert et al., 2003, 

Sundrud et al., 2004, Schmees et al., 2007, Rossi et al., 2012). Moreover, recent data have 
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demonstrated that H. pylori can also modulate the T cell response in an indirect manner 

through the induction of Treg properties in naive T cells by H. pylori-experienced DCs 

depending on both VacA and GGT (Oertli et al., 2013). Despite the fact that the exact role of 

both secreted factors during the shaping of specific DC tolerance is still unclear (Salama et al., 

2013), the ability of induction of Tregs facilitated by VacA and GGT will undoubtedly affect 

the H. pylori specific memory T cell response. 

In general, based on cytokine expression patterns, most researchers support the notion 

that infection with H. pylori or its bacterial components triggers a T helper (Th)1 predominant 

immune response, as detected in gastric biopsies from patients (Bamford et al., 1998, Sommer 

et al., 1998), in experimental rodent models (Crabtree et al., 2004b, Flahou et al., 2012), in 

cell models in vitro (Hafsi et al., 2004, Amedei et al., 2006), in an experimental pig model 

(Kronsteiner et al., 2013) as well as in rhesus macaques (Mattapallil et al., 2000). 

Nevertheless, it has been occasionally reported that gastric mucosa from patients with H. 

pylori infection exhibits a mixed Th1-Th2 cytokine expression profile (Goll et al., 2007). 

A growing number of reports have shown that H. suis infection using bacteria from a 

pure culture or an inoculum prepared from pig, mouse or monkey stomach can trigger a T cell 

response in the stomach (Flahou et al., 2010, Nobutani et al., 2010b, Yamamoto et al., 2011). 

With regards to the type of T helper immune response, several reports have demonstrated that 

mice inoculated with homogenized pig or mouse stomach mucosa develop a Th1 predominant 

immune response, based on the measurement of IFN-γ secretion (Cinque et al., 2006, Mimura 

et al., 2011). Another report has shown that enhanced levels of IFN-γ and IL-10 were 

observed in mice upon infection with homogenates from mouse stomach, suggesting that a 

mixed Th1/Th2 immune response is involved in this process (Park et al., 2008). For the first 

time, Flahou and colleagues demonstrated that infection in Th2-prone BALB/c mice as well 

as Th1-prone C57BL/6 mice with pure in vitro isolated strains of H. suis results in a 

significant up-regulation of IL-4 and IL-10, however without a significant increase in IFN-γ 

expression, revealing that a Th2 predominant immune response is induced upon H. suis 

infection in this animal model (Flahou et al., 2012). It remains to be determined what causes 

the different outcome of these studies, but possibly, other micro-organisms present in the pig 

or mouse stomach homogenates used in the former studies may be involved. 

The Th17 lineage is defined as IL-23 or IL-21 induced, IL-17 producing CD4+ T 

effector cells, and this response is distinct from classically assigned Th1 and Th2 subsets 

(Harrington et al., 2005, Fantini et al., 2007). It has been shown that, besides a Th1 (or Th2)-

directed immune response, infection with Helicobacter, including H. suis, will also induce a 
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Th17 immune response in experimentally infected mice (Shi et al., 2010, Flahou et al., 2012) 

or infected human patients (Zhang et al., 2008, Pinchuk et al., 2013). At the ulcer site of 

human patients with H. pylori infection, there is a strong association between IL-17 

expression level and the number of infiltrating mononuclear cells and neutrophils (Mizuno et 

al., 2005). In addition, Shi and colleagues have demonstrated that the Th17/IL-17 pathway 

can modulate the Th1 immune response during H. pylori infection, supporting bacterial 

growth and contributing to the development of gastric pathology (Shi et al., 2010). In contrast, 

results from other research groups have shown that IL-17 secretion induced by H. pylori 

infection promotes gastric inflammation, and plays an important role in elimination of the 

bacteria during the acute infection stage (Luzza et al., 2000). Several virulence factors of H. 

pylori have been shown to be involved in the Th17-directed polarization of the immune 

response. CD4+ T cells stimulated by DCs pulsed with an H. pylori strain lacking the 

cytotoxin-associated gene A (CagA) show a decreased production of IL-17 (Kabir, 2011). In 

contrast, more recent data suggest that CagA is in part responsible for evading Th17-mediated 

clearance by modulating expression of B7-H2 (inducible co-stimulator ligand), thus 

contributing to the establishment of chronic H. pylori infection (Lina et al., 2013). Moreover, 

the urease β subunit is considered to be an important bacterial factor which can elicit a Th17 

response against H. pylori infection both in vivo and in vitro (Zhang et al., 2011). The urease 

enzyme is also a crucial virulence factor for H. suis (Vermoote et al., 2011, Vermoote et al., 

2012). Compared to wild-type H. pylori, both H. pylori Δggt and ΔvacA strains induce a 

relative higher Th17 immune response (Oertli et al., 2013). Collectively, conflicting reports 

have been described about the protective role or pathogenic significance of a Th17 response 

during H. pylori infection, and the exact role of Th17/IL-17 probably depends on the bacterial 

strain, infectious stage, and the experimental models used (Kabir, 2011). 

With regards to the gastric NHPH, relatively few studies are available about the 

possible involvement of a Th17 response. It has nevertheless been demonstrated that infection 

with H. felis (Obonyo et al., 2011, Ericksen et al., 2014) as well as H. suis (Flahou et al., 

2012) can induce a strong Th17-directed immune response. In addition, elevated levels of IL-

17 have been observed in immunized mice after H. suis challenge (Vermoote et al., 2012) and 

these elevated levels were shown to correlate with protection against H. suis challenge 

infection. 
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B cells 

Besides the involvement of T lymphocytes, DC and macrophages, increased numbers of 

B lymphocytes have also been observed in gastric biopsies from H. pylori infected individuals 

(Goll et al., 2005, Munoz et al., 2007). High levels of immunoglobulin (Ig)A, IgG and IgM 

are detected in patients with H. pylori infection or volunteers challenged with H. pylori 

(Rathbone et al., 1985, Mitchell et al., 1988, Perezperez et al., 1988, Nurgalieva et al., 2005), 

although there are contrary reports regarding the IgM antibody level, showing no differences 

between infected subjects and un-infected subjects (Perezperez et al., 1988). Possible reasons 

for these conflicting results may be the short life-span of the IgM response as well as variation 

in the age of the patients (Gold et al., 1997, Soares et al., 2005). Regarding H. suis, mice and 

Mongolian gerbils infected with pure cultures of H. suis show a clear mucosal/submucosal 

infiltration with B lymphocytes at 8 months post infection (Flahou et al., 2010) and often, 

these infiltrates are organized into lymphoid follicles containing large, irregular, 

hyperproliferative B cell-containing germinal centers. In another study, mice infected with an 

H. suis-containing inoculum derived from pig stomach also exhibited the development of 

lymphoid follicles and acquired immune responses characterized by the activation of B cells 

and T cells (Yamamoto et al., 2011). 

 

5. Helicobacter and the gastric epithelium 

 

5.1 Parietal cells and gastric acid secretion 

 

Parietal cells 

Secretion of HCl into the gastric lumen is mediated by the oxyntic (acid-secreting) cells, 

and these cells from the mammalian gastric mucosa are commonly called gastric parietal cells 

(Yao et al., 2003). Due to the massive secretion of H+ by parietal cells into the gastric lumen, 

the pH of pure gastric juice can reach values as low as 0.8, and this means that the proton 

gradient is 4 million times greater than that in the blood stream (Urushidani et al., 1997). Acid 

facilitates the activation of pepsinogen, the digestion of food and absorption of iron, calcium, 

and vitamin B-12, and it also controls bacterial overgrowth and enteric infection (Schubert et 

al., 1990). 

Gastric parietal cells originate from progenitor or stem cells located in the isthmus 

region of the gastric unit and they constitute highly specialized epithelial cells with several 

distinctive morphological characteristics (Schubert, 2002). The capacity to persistently and 
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abundantly secrete gastric acid is associated with morphological and functional characteristics 

of parietal cells. The H+, K+-ATPase of parietal cells is the proton pump composed of a 

catalytic subunit (α-subunit) and an accessory subunit (β-subunit). H+, K+-ATPase transports 

protons against a huge gradient into the gastric lumen in exchange for K+, which is an energy-

consuming process requiring a mass of adenosine triphosphate (ATP). Consistent with the 

high demand of ATP, parietal cells are known to have the highest density of mitochondria in 

the human body, with an occupation ratio of nearly 40% of the total cell volume (Duman et 

al., 2002, Kopic et al., 2010). Branching secretory canaliculi course through the cytoplasm 

and are connected by a common outlet to the cell’s luminal surface. Microvilli line the surface 

of the secretory canaliculi. The cytoplasm of unstimulated parietal cells contains numerous 

tubules and vesicles, which is called the tubulovesicular system (Ogata, 1997). 

In general, there are two typical stages for parietal cells: the resting state and stimulated stage. 

In the resting state, H+ K+ -ATPase is sequestered within cytoplasmic vesicles called 

tubulovesicles, and the low permeability of tubulovesicular membranes to KCl limits the 

turnover of the pump even though there is ample ATP around the enzyme (Figure 7, left). 

Parietal cells undergo a profound morphological conversion upon the activation of acid 

secretion. Activation of acid secretion is achieved by two concomitant functional changes, 

namely, tubulovesicles fuse with the apical secretory membrane thus recruiting functional 

pumps to the expanded microvillar surface and the apical membrane acquires a permeability 

to KCl (Figure 7, right) (Urushidani et al., 1997, Forte et al., 2010). It is estimated that the 

human stomach contains 1  109 parietal cells (with typically 70-90 parietal cell per fundic 

gland), comprising 80% of the corpus (Joseph et al., 2003), thus making it possible to deliver 

adequate amounts of HCl into the stomach whenever needed. 
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Figure 7. Schematic representation of parietal cells at rest and under stimulation stages. 

(a) Graphic representation describing the morphological changes in parietal cells upon stimulation by the release 
of histamine, or acetylcholine. In the resting state (left), the apical canaliculi extend into the cell, presenting short 
microvilli. Tubulovesicles containing H+/K+ ATPase (red) abound in the cytoplasmic space. In the stimulation 
stage (right), tubulovesicles are recruited at and fused with the apical membrane, greatly expanding the 
canalicular microvilli (red membrane) and putting H+/K+ ATPase pumps in position to power acid secretion. (b) 
Schematic representation of ion transport in resting and stimulated parietal cells. In the resting stage (left), the 
low permeability of tubulovesicular membranes to KCl limits the turnover of the pump even though there is 
ample ATP around the enzyme. In stimulation stage, tubulovesicles fuse with the apical secretory membrane 
thus recruiting functional pumps to the expanded microvillar surface and the apical membrane acquires a 
permeability to KCl, resulting in the transport of H+ into lumen. (Adapted from T. Urushidani and John G. Forte, 
1997; John G. Forte and Lixin Zhu, 2010) 
 

Gastric acid secretion 

Control of acid secretion by gastric parietal cells is achieved by a highly-regulated and 

complex interaction between endocrine, paracrine, autocrine and neuronal mediators that 

transmit stimulatory or inhibitory signals as well as neural regulation (Schubert et al., 2008). 

Triggering of acid secretion typically involves an initially increased level of 

intracellular calcium and/or adenosine 3’,5’-cyclic monophosphate (cAMP) followed by 

activation of a cAMP-dependent protein kinase cascade that triggers the translocation and 

insertion of the proton pump into the apical plasma membrane of parietal cells. Parietal cells, 

ECL cells, G cell and D cells are the most important cell types responsible for regulation and 

secretion of gastric acid. Histamine released by ECL cells can stimulate the parietal cell 

directly by binding to H2 receptors, coupled to activation of adenylate cyclase and generation 

of cAMP (Soll et al., 1979). Histamine release can also stimulate acid secretion indirectly by 
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binding to H3 receptors, coupled to inhibition of somatostatin leading to the stimulation of 

histamine secretion and acid secretion (Tari et al., 1997). Gastrin is produced by G cells 

located in the antrum of the stomach, and this hormone can also regulate the secretion and 

synthesis of histamine. Gastrin is considered to be the most important stimulator for acid 

secretion by ECL cells (Kidd et al., 1998, Barocelli et al., 2003). It was shown that gastrin 

stimulates the activation of cholecystokinin (CCK2 or CCKb) receptors on ECL cells leading 

to the release of histamine and a concurrent stimulation of gastric acid secretion (Tari et al., 

1997, Schubert et al., 2008). 

The excessive increase of HCl in the gastric lumen will in turn activate the process to 

attenuate the acidity via a pathway involving the release of somatostatin. Somatostatin 

produced by D-cells is the main inhibitor of acid secretion in the stomach. In the stomach, the 

inhibitory effect of somatostatin has been shown to be mediated by the somatostatin subtype 2 

receptor (SST2) (Zaki et al., 1996). A summary of the regulations of HCl secretion is shown 

in Figure 8 (Barocelli et al., 2003), indicating that the process of regulation of gastric acid 

secretion is in fact even more complicated than described above. 
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Figure 8. Diagram showing the interaction of acetylcholine, histamine, somatostatin and gastrin in the 
regulatory pathways involved in gastric acid secretion. Histamine (from Enterochromaffin-like cells), gastrin 
(from G cells), and acetylcholine (from postganglionic neurons) are the main stimulatants for acid secretion. 
Somatostatin (from D cells) can inhibit the acid secretion by blocking the release of histamine. Acetylcholine 
(M), histamine (H), somatostatin (SST), gastrin receptors (CCK) are indicated; − inhibitory signal; + stimulatory 
signal. (Adapted from Elisabetta Barocelli, Vigilio Ballabeni, 2003) 
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5.2 The importance of amino acids in maintaining stomach health 

 

Amino acids (AA) are defined as organic substances containing both amino and acid 

groups, and they are not only building blocks for tissue proteins and polypeptides but also key 

regulators of metabolic pathways in cells (Wu, 2009, Wu, 2013). In general, AA are classified 

as nutritionally essential or non-essential for humans and animals based on the nitrogen 

balance in animals. Essential AA (EAA) are AA that must be provided from the diet to meet 

optimal requirements, and non-essential AA (NEAA) are AA which can be synthesized de 

novo in sufficient quantity to meet optimal requirements of the body. It should be noted that 

the actual list of EAA differs from species to species, e.g. arginine is an EAA for rats and cats, 

but not for pigs. In addition, the nutritional importance also differs within the same species at 

different stages. Young animals, pregnant animals, and aging animals indeed have different 

needs compared to ‘normal’ adult animals (McDonald et al., 2011). Conditionally essential 

AA are AA that can be synthesized in adequate amounts by the organism under normal 

conditions, but which must be provided from the diet to meet optimal needs under special 

conditions, such as reproduction, malnutrition, and disease. A general classification of AA in 

mammals, poultry, and fish is summarized in Table 1. AA are generally stable in an aqueous 

solution at physiological conditions except for glutamine (Gln) and cysteine (Wu, 2009). 

Recent studies have revealed that AA play an important role during the modification of 

exocrine and endocrine secretion, modulation of protein digestion, metabolism and nutrient 

utilization, support of the epithelial barrier integrity and defense of the GI mucosa, all 

contributing to a healthy life of animals and humans (Kim et al., 2007b, Kitamura et al., 2012, 

San Gabriel et al., 2013). 
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Table 1. Classification of AA in animal and human nutrition. 
Classification of AA as nutritionally ‘‘essential’’ or ‘‘nonessential’’ or conditionally essential depends on 
species, age, physiological factors, environmental factors, and pathological states 
CEAA: conditionally essential AA, EAA: nutritionally essential AA, NEAA: nutritionally nonessential AA 
a Preweaning ruminants have qualitatively similar requirements for dietary AA to those for nonruminants. In 
postweaning ruminants, the microbial source of protein and AA is inadequate for supporting their maximal 
growth or milk production when the animals are fed roughage diets 
b For neonates (including human infants and piglets), adults under stress conditions (e.g., heat stress, burns, and 
infection), and breeding stocks (both males and females). Taurine (Tau) is a nutritionally essential AA for cats 
c Functional AA 
(Adapted from Guoyao Wu, 2013) 
 

Fundamental role of AA in the maintenance of GI health 

Several AA are an important fuel for both epithelial cells and leukocytes, e.g Gln, 

glutamate (Glu) and arginine (Arg). Gln is one of the most abundant AA in alimentary protein 

and also the most abundant extracellular AA in vivo (Newsholme et al., 2003). It is the 

precursor for glutathione (GSH), Glu, alanine, proline, and ornithine (Blachier et al., 2009), 

and it is of great importance for the intestinal metabolism and physiology (Wang et al., 2009). 

Small intestinal epithelial cells can utilize Gln from both the arterial circulation and intestinal 

lumen, whereas Glu is absorbed mainly from the intestinal lumen (Wu, 2009). Gln is 

considered a conditionally essential AA, which is known to support a proper intestinal 

mucosal metabolic function as well as a normal function of epithelial cells (DeMarco et al., 

1999, Reeds et al., 2001). Gln-supplemented parenteral nutrition has been shown to maintain 

the height of the intestinal villi, the thickness of the mucosa and intestinal wall in rats (Chen 

et al., 1994b). The integrity of the barrier function of the lining epithelium of the GI mucosa 

as well as the secretion of mucus are the first and fundamental lines of defense against acid 

and pathogenic organisms in the lumen. Lymphocytes (e.g. T and B lymphocytes) residing in 

the lamina propria or deeper layers of the mucosa are another important component of the 
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host defense against pathogens (Salama et al., 2013). Sufficient amounts of Gln have been 

shown to be essential for an intact proliferation capacity and normal function of T 

lymphocytes (Yaqoob et al., 1997). Indeed, it has been shown that dietary Gln 

supplementation results in higher mucosal densities of macrophages and intraepithelial 

lymphocytes in the ileum (Domeneghini et al., 2004) and that it significantly enhances the 

proliferative response of naive CD4+ T cells from piglets as well as the T lymphocyte 

response in surgical patients (O'Riordain et al., 1994, Johnson et al., 2006), which clearly 

stresses the importance of this amino acid in the maintenance of a normal immune response in 

the body. 

Glu, one of the most abundant intracellular AA with reported concentrations ranging 

from 2 to 20 mM, is the immediate product of Gln metabolism in most cells (Newsholme et 

al., 2003). Similar to Gln, Glu is also involved in a number of key functions of cells, 

including nutrient metabolism and oxidative defense in epithelium, lymphocytes, 

macrophages, and neutrophils. In these Glu/Gln-utilizing cells, the Glu-Gln pathways can not 

be replaced by other metabolic inputs due to their critical roles in maintaining cell function 

(Newsholme et al., 2003, Wu, 2009). 

Arg is the most abundant carrier of nitrogen in humans and animals containing four 

nitrogen atoms per molecule (Wu et al., 1999). It has been shown to be an EAA for the fetus 

and neonate and a CEAA for adults, especially under certain disease conditions (Wu et al., 

2000). Convincing evidence demonstrates that Arg plays a crucial role in reproduction, 

immune function and tissue integrity of the body (Wu et al., 2009). Furthermore, Arg can 

stimulate intestinal fluid secretion through a nitric oxide (NO) mediated mechanism, and NO 

plays an important role in supporting the integrity of the intestinal mucosal barrier (Alican et 

al., 1996). Beneficial effects of Arg have also been described in terms of its role in improving 

GI function and gastric ulcer healing, accelerating intestinal mucosal renewal, speeding up 

bacterial clearance, and reducing histological signs of bowel necrosis (Wang et al., 2009). A 

sufficient supply of Arg is also neccesary for lymphocyte proliferation and functional 

development, and dietary Arg supplementation enhances immune responses in various models 

of immunological challenge (Li et al., 2007). 

Besides Gln, Glu, and Arg, other AA, like aspartate, glycine and lysine are also 

hypothesized to possess the ability to influence a series of GI-related disorders in both 

animals and humans (Wang et al., 2009). 
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Regulatory role of AA in the GI system 

AA are not only the biosynthetic precursors of many biologically relevant small 

molecules and a metabolic fuel but they also modulate physiological functions in the GI tract 

(Shimizu, 2010). Monitoring the luminal content in the GI tract is of vital importance for 

adjusting the activities of the stomach. AA appear to function by binding to a chemical 

communication system in the GI such as G protein-coupled receptors (GPCRs) that serve as 

nutrient-sensing systems, leading to relevant signalling pathways (San Gabriel et al., 2013). 

So far, metabotropic glutamate receptors (mGluRs), GPRC6A, and calcium-sensing receptors 

(CaSRs) are the most relevant GPCRs in the GI tract (Busque et al., 2005, Nakamura et al., 

2010, San Gabriel et al., 2013). 

San Gabriel et al. revealed that mGluRs are located in the apical membrane of chief 

cells and possible also in the parietal cells, and both cell types are responsible for secretion (of 

pepsinogen and gastric acid, respectively) involved in regulation of gastric phase protein 

digestion (San Gabriel et al., 2007). A study by Uneyama et al. has shown that among the 20 

natural AA, only Glu evokes firing in the afferents of gastric branches of the vagus. The same 

group also demonstrated that an intrinsic cascade involving NO and serotonin (5-HT) 

mediates the electrophysiological response of afferents from the gastric branch of the vagus 

nerve, which is specifically activated in response to glutamate in the rat gastric mucosa 

(Uneyama et al., 2006). Molecular phenotyping has revealed that CaSRs, exposed to the 

luminal content, are expressed in G cells and a subpopulation of D cells in swine and men 

(Haid et al., 2012). Reports also showed that GPRC6A is expressed in different regions 

(mainly in the antrum) of the murine stomach. CaSRs and GPRC6A are considered to act as 

efficient physiological sensors to protein breakdown products influencing gastric secretion 

(Haid et al., 2011, San Gabriel et al., 2013). Other AA have also been shown to be involved 

in gastric acid secretion, as shown by studies revealing that intragastric administration of 

aromatic AA such as phenylalanine and tryptophan can facilitate acid secretion (Strunz et al., 

1978, Taylor et al., 1982). Considering the extensive and important role of AA sensoring on 

the physiological activities in the GI tract, it can be assumed that AA GPCRs are potential 

pharmaceutical targets for GI dysfunctions. 

 

5.3 Interaction of H. suis and other gastric helicobacters with host epithelial cells 

 

H. suis has been shown to actively cause apoptosis and necrosis of a human gastric 

epithelial cell line in vitro. This was accompanied by elevated levels of extracellular H2O2, 
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leading to lipid peroxidation. The GGT from H. suis was shown to be one of the main 

virulence factors responsible for this induction of epithelial cell death and the H. pylori GGT 

was shown to work in a very similar way (Flahou et al., 2011). 

Recent studies carried out by our research group as well as others have shown that H. 

suis interacts with host cells in a different way than the well-known H. pylori. Although some 

studies have reported that H. pylori can induce apoptosis of rat parietal cells, which was 

shown to be dependent on the activation of NF-κB and production of NO (Neu et al., 2002), 

the majority of H. pylori bacteria remain in the mucus layer of infected human patients, 

whereas only a small number adheres to the gastric epithelial (mucus-secreting) cells (Linden 

et al., 2008, Magalhaes et al., 2010). H. suis, on the other hand, is most often observed in the 

vicinity of or inside the canaliculi of acid-producing parietal cells in pigs, humans and 

experimentally infected mice and Mongolian gerbils, and these cells often show signs of 

degeneration, necrosis or apoptosis (Joo et al., 2007, Flahou et al., 2010). Besides H. suis, 

other NHPH such as H. felis, H. bizzozeronii and H. heilmannii s.s. have often been observed 

near or inside the canaliculi of parietal cells in experimentally infected rodents or naturally 

infected carnivores. An almost complete loss of parietal cells has been described in the 

stomach of H. felis infected Mongolian gerbils (De Bock et al., 2006, Joo et al., 2007, Flahou 

et al., 2010, Lanzoni et al., 2011). Currently, only little information is available on the direct 

interactions of H. suis with parietal cells in vivo and in vitro. 
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Helicobacter (H.) pylori is considered to be the primary aetiological agent causing 

gastritis, peptic ulcer disease, gastric adenocarcinoma and mucosa-associated lymphoid tissue 

(MALT) lymphoma in humans. Besides H. pylori, other non-H. pylori Helicobacter (NHPH) 

species also cause gastric disease in humans. This group of NHPH comprises several 

Helicobacter species naturally colonizing the stomach of various animal species. H. suis is a 

NHPH that colonizes the stomach of the majority of pigs, leading to the development of 

chronic gastritis, decreased daily weight gain and possibly also ulceration of the keratinized 

epithelium of the pars oesophagea. This bacterium is also the most prevalent gastric NHPH in 

humans. 

 

H. suis infection triggers the development of a chronic inflammatory response in the 

stomach of its hosts, however without an effective clearance. This indicates that H. suis 

possesses immune suppressing properties. For H. pylori, several virulence factors have been 

described to modulate the host immune response, including the H. pylori γ-glutamyl 

transpeptidase (GGT). A similar enzyme has been described to be present in H. suis, but it 

was unknown at the onset of these studies whether this enzyme also plays a role in the 

modulation of the host immune response by H. suis. The first aim of this thesis was to 

investigate a possible effect of H. suis GGT on the function of various lymphocyte subsets. In 

addition, we aimed at unravelling the mechanisms and modes of action involved. 

 

Besides effects on the function of lymphocytes in vitro, H. suis GGT has also been 

shown to induce death of gastric epithelial cells in vitro. No experiments have, however, 

attempted to determine the true relevance of GGT in the pathogenesis of H. suis infection in 

vivo. Therefore, the second aim of this thesis was to determine the role of this virulence 

factor in the pathogenesis of long-term H. suis infection, using wild-type and isogenic ggt 

mutant strains of H. suis. At the same time, we aimed at comparing its relative importance 

with that of the GGT of H. pylori by using wild-type and isogenic ggt mutant strains of H. 

pylori. Experiments were performed in mice and Mongolian gerbils, which are both 

considered excellent rodent models to investigate the pathogenesis of gastric Helicobacter 

infection. 

 

In experimentally infected mice and Mongolian gerbils, H. suis bacteria are often seen 

in close association with gastric acid-producing parietal cells, sometimes showing signs of 

necrosis. In addition, degeneration of parietal cells has been described in the stomach of 
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humans infected with gastric NHPH species. At the onset of this PhD study, little or no 

information was available on the interaction between H. suis and this cell type in pigs. Hence, 

the third aim of this thesis was to investigate the interactions between pig parietal cells and 

H. suis and to determine the direct effects of H. suis infection on the health and function of 

this cell type.
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Study 1: Effects of Helicobacter suis γ-glutamyl transpeptidase on 

lymphocytes: modulation by glutamine and glutathione supplementation 

and outer membrane vesicles as a putative delivery route of the enzyme 
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Abstract 

Helicobacter (H.) suis colonizes the stomach of the majority of pigs as well as a 

minority of humans worldwide. Infection causes chronic inflammation in the stomach of the 

host, however without an effective clearance of the bacteria. Currently, no information is 

available about possible mechanisms H. suis utilizes to interfere with the host immune 

response. This study describes the effect on various lymphocytes of the γ-glutamyl 

transpeptidase (GGT) from H. suis. Compared to whole cell lysate from wild-type H. suis, 

lysate from a H. suis ggt mutant strain showed a decrease of the capacity to inhibit Jurkat T 

cell proliferation. Incubation of Jurkat T cells with recombinantly expressed H. suis GGT 

resulted in an impaired proliferation, and cell death was shown to be involved. A similar but 

more pronounced inhibitory effect was also seen on primary murine CD4+ T cells, CD8+ T 

cells, and CD19+ B cells. Supplementation with known GGT substrates was able to modulate 

the observed effects. Glutamine restored normal proliferation of the cells, whereas 

supplementation with reduced glutathione strengthened the H. suis GGT-mediated inhibition 

of proliferation. H. suis GGT treatment abolished secretion of IL-4 and IL-17 by CD4+ T 

cells, without affecting secretion of IFN-γ. Finally, H. suis outer membrane vesicles (OMV) 

were identified as a possible delivery route of H. suis GGT to lymphocytes residing in the 

deeper mucosal layers. Thus far, this study is the first to report that the effects on lymphocytes 

of this enzyme, not only important for H. suis metabolism but also for that of other 

Helicobacter species, depend on the degradation of two specific substrates: glutamine and 

reduced glutatione. This will provide new insights into the pathogenic mechanisms of H. suis 

infection in particular and infection with gastric helicobacters in general. 
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Introduction 
Helicobacter pylori can cause gastritis, peptic ulcer disease, gastric adenocarcinoma and 

mucosa-associated lymphoid tissue (MALT) lymphoma in humans (Axon, 1999, Ernst et al., 

2000). It is, however, not the only bacterial pathogen capable of colonizing the human gastric 

mucosa. Indeed, gastric non-H. pylori helicobacters (NHPH) have also been detected in 

humans and these bacteria are capable of causing disease in both humans and animals (Lee et 

al., 1989, Solnick et al., 1993, Trebesius et al., 2001, O'Rourke et al., 2004b, Van den Bulck 

et al., 2005, Haesebrouck et al., 2009, Flahou et al., 2010, Suzuki et al., 2010, Joosten et al., 

2013d). H. suis has been shown to be the most prevalent gastric NHPH in humans (Flahou et 

al., 2010). Similar to H. pylori, H. suis generally causes a life-long infection, suggesting that 

the bacterium possesses immune suppressing properties. 

Lymphocyte responses are involved in a wide range of immunoregulatory activities, 

both in vivo and in vitro (Reinherz et al., 1980). So far, no information is available on the 

influence of H. suis virulence determinants on the function of lymphocytes. For H. pylori, 

several factors have been described having an effect on the host lymphocyte response, 

including the vacuolating cytotoxin (VacA) and H. pylori GGT (Schmees et al., 2007, Gong 

et al., 2010a, Beigier-Bompadre et al., 2011). The former is absent in H. suis (Vermoote et al., 

2011). The latter enzyme, synthesized as a precursor enzyme with a molecular weight (MW) 

of ~60 kDa, followed by processing into a large (~40 kDa ) and small (~20 kDa ) subunit 

(Flahou et al., 2011), is also produced by a number of other Helicobacter species, including H. 

suis, and the enzyme has been shown to play an important role during the metabolism of 

extracellular L-glutamine (L-Gln) and reduced glutathione (GSH) (Flahou et al., 2011, Rossi 

et al., 2012). Degradation of GSH, an important antioxidant, by GGT results in the 

development of extracellular oxygen radicals, leading to oxidative damage of epithelial cells, 

or inhibition of cellular proliferation (Perego et al., 1997, Shibayama et al., 2007, Flahou et 

al., 2011). In contrast, Gln, another substrate of GGT, is a major metabolic fuel for rapidly 

dividing cells, including enterocytes and immunologically challenged lymphocytes (Curthoys 

et al., 1995, Rhoads et al., 1997). In addition, regulation of L-Gln utilization seems to be an 

important component of T cell activation and the development of an immune response and 

Gln is also a key regulator of gene expression and cell signalling pathways (Johnson et al., 

2006, Carr et al., 2010). Currently, no information exists regarding a possible regulatory 

effect of L-Gln or GSH (supplementation) on the proliferation of lymphocytes affected by the 

GGT of gastric helicobacters. 
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It has been demonstrated that the GGT secreted from gastric helicobacters as well as 

other secreted factors such as the VacA from H. pylori can access the lymphocytes in the 

lamina propria. These secreted factors may affect the lymphocyte function in a direct and 

indirect manner, for instance by inflicting damage to epithelial cells, resulting in small 

epithelial defects (Rieder et al., 2005, Flahou et al., 2010, Flahou et al., 2011, Salama et al., 

2013). Interestingly, H. pylori outer membrane vesicles (OMV) have been shown to contain 

the H. pylori GGT (Olofsson et al., 2010) and they have been shown to be internalized by 

epithelial cells (Parker et al., 2010). In general, OMV are released by Gram-negative bacteria 

under natural conditions in vitro or in infected tissue in vivo, and they can act as a delivery 

vehicle of virulence factors to reach a distant target (Beveridge, 1999, Kuehn et al., 2005, 

Ellis et al., 2010b, Kulp et al., 2010). Thus far, no information is available on the formation of 

H. suis OMV, the content thereof, their internalization by epithelial cells and the putative 

delivery of bacterial components, such as the H. suis GGT, to the deeper mucosal layers.   

In the present study, Jurkat T cells as well as murine splenocyte subsets (CD4+ T cell, 

CD8+ T cell, CD19+ B cell) were used as cell models to investigate the immunosuppressive 

effect of H. suis GGT through the action on its substrates. AGS cells, intestinal porcine 

epithelial (IPEC-J2) cells, and human Caco-2 cells were used to investigate the putative 

translocation of GGT, present in H. suis OMV, across an epithelial cell monolayer.   

 

Materials and methods 

 
Animals 

For isolation of splenic lymphocytes, female specific-pathogen-free (SPF) 4-6-week-old 

BALB/c mice were purchased from Harlan NL (Horst, The Netherlands). Housing and 

euthanasia of experimental animals were approved by the Ethical Committee of the Faculty of 

Veterinary Medicine, Ghent University, Belgium (EC2012/156).  

 

Construction of a H. suis ggt isogenic mutant strain 

Deletion of H. suis ggt was introduced by allelic exchange using pBluescript II SK (+) 

phagemid vector (Agilent Technologies, California, USA) in which ~650 bp of the 5  –end 

and ~750 bp of the 3  –end of the target gene and the chloramphenicol resistance gene from 

pUOA14 (Wang et al., 1990, Rossi et al., 2012) were ligated through a PCR-mediated 
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strategy (Fischer et al., 2001, Huang et al., 2011). All primers used for PCR-mediated 

construction of the recombinant plasmid are shown in table 1. 

Table 1. Primers used for construction of a H. suis ggt isogenic mutant strain (HS5Δggt) 

 

The resultant plasmid was amplified in XL1-Blue MRF  E. coli (Agilent Technologies) 

and used as a suicide plasmid in H. suis strain HS5, isolated from the stomach of a sow. 

Transformation of H. suis strain HS5 was perfomed by electroporation as described for H. 

felis (Josenhans et al., 1999) with some modifications. Briefly, 1.5 μg suicide plasmid was 

used for electroporation. Then, the H. suis 5 ggt mutant strain (HS5Δggt) was first cultured 

for 2 days on biphasic Brucella culture plates without chloramphenicol, as described 

previously (Flahou et al., 2012a). Subsequently, bacteria were transferred onto biphasic 

Brucella culture plates supplemented with chloramphenicol (20 μg/mL) for 4 days, after 

which they were finally selected on biphasic Brucella plates supplemented with 

chloramphenicol (30 μg/mL) for 7-14 days. The site of recombination was verified by a GGT 

activity assay (Flahou et al., 2011), PCR and nucleotide sequencing. 

 

Recombinant expression and purification of H. suis γ-glutamyl transpeptidase 

The expression and subsequent purification of recombinant Helicobacter suis γ-

glutamyl transpeptidase (GGT) were performed as described previously (Flahou et al., 2011). 

Briefly, the enzyme was expressed in E. coli strain BL21-AITM. Subsequently, the protein was 

Primer name Sequence (5  - 3 ) Primer use 

pBlue linear Fwd 1 GGGGATCCACTAGTTCTAGAGCG Linearization of plasmid 

pBlue linear Rev1 CGGGCTGCAGGAATTCGATATCA
AG Linearization of plasmid 

HsGGT_flank_fusion1F 
CTTGATATCGAATTCCTGCAGCC
CGGAGGCGTTGCACAATAGCTTT
AGGG 

Amplification H. suis ggt and  
partial up- and downstream flanking 
genes 

HsGGT_flank_fusion1R 
GCCGCTCTAGAACTAGTGGATCC
CCATAAAACCAGTTAGGCTGGGC
AAAG 

Amplification H. suis ggt and  
partial up- and downstream flanking 
genes 

pBluelinear_Hsggtflank1F CCACGCAAGGAATTTTAAATGCA
AC 

Linearization of the recombinant 
plasmid 

pBluelinear_Hsggtflank1R GATCTCCTCAAATTTTAAAAAAT
ACGC 

Linearization of the recombinant 
plasmid 

Hschloram_fusion_1F 
GCGTATTTTTTAAAATTTGAGGA
GATCTATCAACAAATCGGAATTT
ACGG 

Amplification chloramphenicol 
resistance gene 

Hschloram_fusion_1R GCATTTAAAATTCCTTGCGTGGTT
ATTTATTCAGCAAGTCTTGTAA 

Amplification chloramphenicol 
resistance gene 

T7 prom3 TAATACGACTCACTATAGGG Sequencing 

M13R CAGGAAACAGCTATGAC Sequencing 
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purified to homogeneity by immobilized metal affinity chromatography (IMAC) on a Ni-

sepharos column (His GraviTrap; GE Healthcare Bio-Science AB, Uppsala, Sweden) and gel 

filtration using a SuperdexTM 75 gel filtration column (GE Healthcare Bio-Sciences AB). The 

purified protein was stored at -80°C until further use. 

 
Preparation of H. suis outer membrane vesicles (OMV) 

72-hour-old cultures of H. suis were harvested, and the bacteria were removed by 

centrifugation (12000  g, 15 minutes, 4 °C). The supernatant fluid was subjected to 

ultracentrifugation (200000  g, 2 hours, 4 °C) to recover the OMV. After two washing steps 

in Hank’s Balanced Salt Solution (HBSS), the OMV were stored at -70 °C until further use. 

The obtained OMV were visualized by a negative staining technique. Hereby a copper grid 

with formvar membrane was placed on top of a drop of OMV suspension for 10 seconds and 

counterstained with uranylacetate for 1 minute. After rinsing and drying the grids were 

analysed by Transmission Electron Microscopy (TEM). The presence of GGT activity in H. 

suis OMV was validated with a GGT activity assay as described previously (Flahou et al., 

2011). 

 

Cell cultures 

Jurkat E6.1 cells (Human leukaemic T cell line; ECACC; Salisbury, UK) were cultured 

in RPMI 1640 with 5% (v/v) heat-inactivated fetal bovine serum (FBS; HyClone, Logan, UT, 

USA), 2  millimolar (mM) L-Gln (Invitrogen, Carlsbad, CA, USA) and penicillin (50 

units/mL) and streptomycin (50 μg/mL) (Invitrogen) at 37°C with 5% CO2. 

CD4+ and CD8+ T cells, as well as CD19+ B lymphocytes were isolated from mouse 

spleens using EasySep™ Mouse CD4+ and CD8+ T cell, and CD19+ B cell Enrichment Kits 

(StemCell Technologies, Grenoble, France). Culture was performed in RPMI 1640 containing 

10% (v/v)  FBS, 1 mM L-Gln, 50 micromolar (μM) 2-mercaptoethanol (Sigma-Aldrich St. 

Louis, MO, USA), penicillin (50 units/mL) and streptomycin (50 μg/mL) at 37°C with 5% 

CO2. 

The culture conditions of AGS cells (a human gastric adenocarcinoma cell line), IPEC-

J2 cells, and Caco-2 cells have been described elsewhere (Flahou et al., 2011, Verbrugghe et 

al., 2011, Eeckhaut et al., 2013). Briefly, AGS cells were cultured in Ham’s F12 (Invitrogen; 

1 mM glutamine) supplemented with 10% (v/v) FBS, penicillin (50 units/mL) and 

streptomycin (50 μg/mL). IPEC-J2 cells were cultured in Dulbecco’s Modified Eagle’s 
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medium (DMEM; Gibco, Life Technologies, Paisley, Scotland) supplemented with 47% (v/v) 

Ham’s F12 medium (Gibco), 5% (v/v) FBS, 1% (v/v) insulin-transferrin-selenium-A 

supplement (ITS, Gibco), penicillin (50 units/mL), and streptomycin (50 μg/mL). Caco-2 

cells were cultured in DMEM (Gibco) supplemented with 10% (v/v) FBS, 1 mM glutamine, 

1% (v/v) non-essential amino acids (Gibco), penicillin (50 units/mL) and streptomycin (50 

μg/mL).  
 

Internalization of H. suis OMV by AGS, IPEC-J2 and Caco-2 cells 

AGS, IPEC-J2 and Caco-2 cells were used to examine the putative internalization of H. 

suis OMV. AGS cells labeled with green CellTrackerTM (Invitrogen) were incubated for 4 

hours with H. suis OMV labeled with red fluorescent Vybrant® DiD (Invitrogen). AGS cells 

were fixed with 4% paraformaldehyde for 15 minutes, washed 5 times extensively with HBSS 

and analysed by confocal laser scanning microscopy for uptake of H. suis OMV. IPEC-J2 and 

Caco-2 cells were labeled with red fluorescent CellTracker Red CMTPX (Invitrogen) and 

incubated for 8 hours with H. suis OMV labeled with green fluorescent Vybrant® DiO 

(Invitrogen). Subsequently, cells were fixed with 4% paraformaldehyde for 15 minutes, 

washed 5 times extensively with HBSS and analysed by confocal laser scanning microscopy 

for uptake of H. suis OMV. 

 

Translocation across a differentiated IPEC-J2 monolayer of active GGT present in H. 

suis OMV  

In order to examine the putative translocation ability of active H. suis GGT contained in 

H. suis OMV across an epithelial cell monolayer, a translocation assay was performed as 

described elsewhere (Verbrugghe et al., 2012). IPEC-J2 cells (1  104 cells/250 μl/insert) 

were seeded on the apical side of the Transwell® polycarbonate membrane inserts with a pore 

size of 3.0 μm and a membrane diameter of 6.5 mm (Corning Costar Corp., Cambridge, MA, 

USA), and the basolateral side was filled with 1 mL fresh culture medium.  Cell medium was 

refreshed every 2 to 3 days and cells were cultured for 3 to 4 weeks in order to allow 

differentiation to a complete monolayer as described elsewhere (Verbrugghe et al., 2012, 

Eeckhaut et al., 2013). When differentiated, 100 μg (based on the total protein content) H. 

suis OMV were added to the apical compartment. After incubation for up to 48 hours (37°C; 

5% CO2), the presence of GGT activity in the basolateral compartment was determined with a 

GGT activity assay (Flahou et al., 2011). The transepithelial electrical resistance (TEER) was 
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measured before and after the incubation with H. suis OMV to assess the barrier integrity of 

the differentiatedepithelial cell monolayer as described previously (Verbrugghe et al., 2012). 

 

Cell proliferation assays 

Jurkat T cells (4  104/well), CD4+ and CD8+ T, and CD19+ B lymphocytes (1.5  

105/well) were cultured in 24-well or 96-well flat-bottom cell-culture plates (Greiner Bio One, 

Frickenhausen, Germany) as described above. 

CD4+ and CD8+ T cells were stimulated by incubating the cells in wells of a microtiter 

plate that had been precoated with an anti-CD3 antibody (4 μg/mL and 8 μg/mL respectively, 

clone 145-2C11; eBioscience, Vienna, Austria) and in the presence of a soluble anti-CD28 

antibody (2 μg/mL, clone 37-51; eBioscience). CD19+ B cells were stimulated by F(ab’)2 

Goat anti-mouse IgM (12 μg/mL, Jackson Immunoresearch, West Grove PA, USA) and 

recombinant mouse IL-2 (100 U/mL, eBioscience). 

All cells were incubated in the presence or absence of whole-cell lysate from wild-type 

H. suis strain HS5 and mutant H. suis strain HS5Δggt, as well as different concentrations of 

recombinant H. suis GGT for 24 - 72 hours, depending on the experiment and cell type. 

Cellular proliferation was determined by incorporation of [3H]-thymidine (Amersham ICN, 

Bucks, UK). In brief, all cells were pulse-labeled with 1 μCi [3H]-thymidine during the final 

18 hours of experimental incubation, and then harvested onto glass fiber filters (Perkin-Elmer, 

Life Science, Brussels, Belgium). The incorporated radioactivity was detected using a β-

scintillation counter (Perkin-Elmer). 

 

Evaluation of cell death (apoptosis and necrosis) by flow cytometry 

Jurkat T cells (4  104/well) were treated with 2 μg/mL recombinant H. suis GGT for 24 

- 72 hours. Controls consisted of HBSS-treated Jurkat T cells. All samples were subjected to 

flow cytometric analysis (FCM) on a BD FACSCanto II flow cytometer with FACSDiva 

software (Becton Dickinson, Erembodegem, Belgium).  

Propidium iodide (PI) staining was used to detect loss of plasma membrane integrity as 

a marker for necrosis. Briefly, cells were washed with HBSS, incubated with 1 μg/mL PI in 

HBSS for 15 minutes on ice, followed by FCM analysis. Staining for activated caspase-3 was 

performed to detect apoptosis. Briefly, cells were washed with HBSS, fixed with 4% 

paraformaldehyde for 10 minutes, and permeabilized with 0.1% Triton X-100 in HBSS for 2 

minutes. Subsequently, cells were incubated with a primary rabbit antibody directed against 
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activated caspase-3 (R&D Systems Europe) for 1 hour at 37°C, followed by an Alexa Fluor 

488-conjugated goat anti-rabbit secondary antibody (Invitrogen). Cells treated with 0.5 μM 

staurosporine (Sigma-Aldrich) for 20 hours served as positive controls for apoptosis. 

 

Ammonia assay 
Two μg/ml H. suis GGT was added to HBSS supplemented with 2 mM L-Gln and 

incubated at 37°C for 2 hours, after which the concentration of released ammonia was 

determined by the Ammonia Assay Kit (Sigma-Aldrich) according to the manufacturer’s 

instructions.  

 

Supplementation of cell cultures with L-Gln and GSH  

Jurkat T cells (4  104/well) were incubated in medium supplemented with L-Gln (0 - 

10 mM; Sigma-Aldrich) or GSH (0 - 5 mM; Sigma-Aldrich) and treated with HBSS or 2 

μg/mL recombinant H. suis GGT for 48 or 72 hours. CD4+ and CD8+ T cells (1.2  105/well) 

were incubated in medium supplemented with L-Gln (0 - 5 mM) or GSH (0 - 2 mM) and 

treated with HBSS or 1 μg/mL recombinant H. suis GGT for 68 hours. Cellular proliferation 

was determined by [3H]-thymidine incorporation as mentioned above. 

 

Measurement of cytokine release 

CD4+ T cells (1.5  105/well), activated by CD3/CD28 mAbs, were incubated in 

medium supplemented with 0.1 μg/mL or 0.5 μg/mL recombinant H. suis GGT for 68 hours. 

Secretion levels of IFN-γ, IL-4, and IL-17A were determined in cell supernatant by enzyme-

linked immunosorbent assay (ELISA) (eBioscience).  

 

Statistical analysis 

All experiments were repeated at least 3 times with at least 3 replications for each 

treatment. Combined data from these experiments are used for statistical analysis, and all data 

were expressed as mean + SD. A Student t test was used for statistical analysis between two 

groups, and one-way ANOVA was performed for comparison of control cells with multiple 

treatments. For both statistical analyses methods, P values less than 0.05 were considered 

statistically significant. 
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Results 

 
H. suis OMV contain GGT activity and can be internalized by AGS, IPEC-J2, and 

Caco-2 cells 

Ultrastructural examination revealed that most OMV isolated from H. suis culture 

supernatant ranged from 20 - 200 nm in size (Figure 1). A GGT activity level up to 4.5 - 9.5 

mU/mg was detected in the OMV, confirming that GGT is one of the components of H. suis 

OMV.  

 
Figure 1. Ultrastructural examination of purified H. suis outer membrane vesicles (OMV). Shown are 
transmission electron microscopic images of H. suis OMV purified by repeated ultracentrifugation.   
 
 
 
 
 



  
 

   
 
 

71

 Study 1 

 
 

Figure 2. The uptake of H. suis OMV by AGS, IPEC-J2, and Caco-2 cells. AGS cells labeled with green 
CellTrackerTM were incubated for 4 hours with HBSS (Figure 2A) or H. suis OMV labeled with red fluorescent 
Vybrant® DiD (Figure 2B). IPEC-J2, and Caco-2 cells labeled with red fluorescent CellTracker Red CMTPX  
were incubated for 8 hours with HBSS (Figure 2C, 2E, respectively) or H. suis OMV labeled with green 
fluorescent Vybrant® DiO (Figure 2D, 2F, respectively). The visualization of OMV was done by confocal laser 
scanning microscopy (indicated by arrows). HBSS: Hank’s balanced salt solution; H. suis OMV: Helicobacter. 
suis outer membrane vesicles. 
 

In order to further examine if H. suis OMV carrying GGT can be internalized by gastric 

or intestinal epithelial cells, AGS, IPEC-J2, and Caco-2 cells were incubated with H. suis 

OMV for 4 hours or 8 hours. Our results reveal that H. suis OMV can be internalized by all 

three types of epithelial cell lines (Figure 2 A - F). 

 

Active H. suis GGT from H. suis OMV translocates across a differentiated IPEC-J2 cell 

monolayer 

After 3 - 4 weeks culture, a differentiated IPEC-J2 cell monolayer was established, 

indicated by a stable TEER value of approximately 2400 Ohm/insert. Compared to the IPEC-

J2 cells treated with HBSS, incubation of a differentiated IPEC-J2 cell monolayer with 100 

μg H. suis OMV for 48 hours resulted in the detection of higher GGT activity in the 

basolateral compartment (Figure 3, p=0.058) without disrupting the integrity of IPEC-J2 cell 

monolayer, as shown by a stable TEER: an average value of 2421 Ohm/insert was detected at 

the onset of the experiment and an average value of 2361 Ohm/insert was detected at the end 

of the experiment (p=0.72, Student t test). This translocation may constitute one of the routes 
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by which GGT from H. suis can access lymphocytes residing in the lamina propria underneath 

the lining epithelium.  

 

 
Figure 3. Translocation of active H. suis GGT through a differentiated IPEC-J2 cell monolayer. IPEC-J2 
cells were seeded on the insert (with a pore size of 3.0 μm and a membrane diameter of 6.5 mm) for 3 - 4 weeks 
until the cells were differentiated to a complete cell monolayer. The cells were treated with HBSS or 100 μg H. 
suis OMV for 48 hours, and the presence of GGT in the baselateral compartment was determined by a GGT 
activity assay as described before. Results are presented as the relative GGT activity level compared to control 
cells treated with HBSS. Shown are the mean values (± SD) of 3 independent experiments (n=9). Student t test 
was used for analysis of statistically significant difference. HBSS: Hank’s balanced salt solution; H. suis OMV: 
Helicobacter. suis outer membrane vesicles. 
 

Effect of H. suis whole-cell lysate on Jurkat T cells 

Cellular proliferation of Jurkat T cells was inhibited after incubation with whole cell 

lysate of wild-type H. suis strain HS5 for 48 or 72 hours in a dose-dependent manner (data not 

shown). Concentrations of 250 μg/mL of this lysate almost completely inhibited cellular 

proliferation of Jurkat T cells (Figure 4A). Compared to treatment with whole-cell lysate from 

wild-type H. suis strain HS5, treatment of Jurkat T cells with lysate (48 h; 62.5 to 250 μg/mL) 

from strain HS5 ggt resulted in a marked decrease (minus 15.3 - 49.3%) of the inhibitory 

effect on T cell proliferation (Figure 4A).  
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Figure 4. Effect of H. suis whole-cell lysate on cell proliferation and viability of Jurkat T cells. (A) Jurkat T 
cells were incubated in medium supplemented with whole-cell lysate (62.5 to 250 μg/mL) from wild-type H. suis 
strain HS5 and strain HS5Δggt for 48 hours, and cell proliferation levels are determined by cpm (counts per 
minute), as a measure of [3H]-thymidine uptake. Shown are the rates of proliferation inhibition, relative to Jurkat 
T cells treated with HBSS instead of whole-cell lysate. Both whole-cell lysate from H. suis strain HS5 and strain 
HS5Δggt induced a statistically significant inhibition of T cell proliferation, although this was far less 
pronounced for the mutant strain (one-way ANOVA). (B) Jurkat T cells were incubated in medium 
supplemented with whole-cell lysate (62.5 to 250 μg/mL) from H. suis strain HS5 and strain HS5Δggt for 48 
hours, and loss of plasma membrane integrity (as a marker for necrosis) was determined by PI staining. Both 
whole-cell lysate from H. suis strain HS5 and strain HS5Δggt induced a statistically significant increase of PI-
positive cells (one-way ANOVA), although this was far less pronounced for the mutant strain. Shown in A and B 
are the mean values (± SD) of 3 independent experiments (n=9). An * represents a statistically significant 
difference (p < 0.05) between HS lysate- and HS Δggt lysate-treated cells. Control: Jurkat T cell treated by 
Hank’s balanced salt solution. HS lysate: H. suis strain 5 lysate. HS Δggt lysate: H. suis strain HS5Δggt lysate. 
 

Inhibitory effect of H. suis GGT on Jurkat T cells and mouse splenocyte subsets  

Treatment of Jurkat T cells for 72 hours with up to 2 μg/mL recombinant H. suis GGT 

resulted in an inhibition of cellular proliferation (Figure 5A). Treatment for 48 hours showed 

similar results (data not shown). Further increasing the concentration of the enzyme, however, 

did not cause a significant increase of the inhibitory effect. Subsequently, we investigated the 
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effect of recombinant H. suis GGT on primary immune cells, including CD4+ and CD8+ T 

cells and CD19+ B lymphocytes. A concentration of 1 μg/mL recombinant H. suis GGT 

inhibited the proliferation of CD4+ and CD8+ T splenocytes by about 80% (Figure 5B) and the 

proliferation of the CD19+ B cells by more than 95% (Figure 5C). A concentration of 2 

μg/mL recombinant H. suis GGT almost completely inhibited the proliferation of all three 

lymphocyte subsets. 

 
Figure 5. Inhibitory effect of H. suis γ-glutamyl transpeptidase (GGT) on Jurkat T cells and mouse 
splenocyte subsets. (A) Jurkat T cells were incubated in medium supplemented with recombinant H. suis GGT 
(1 to 8 μg/mL) for 72 hours, and cell proliferation levels are determined by cpm (counts per minute), as a 
measure of [3H]-thymidine uptake. (B) CD4+ or CD8+ splenic T lymphocytes were purified, stimulated by 
CD3/CD28 mAbs, and incubated with recombinant H. suis GGT (0.1 μg/mL to 2 μg/mL) for 68 hours, resulting 
in a dose-dependent inhibition of proliferation. (C) CD19+ B splenocytes were purified, stimulated by anti-IgM 
(12 μg/mL) and recombinant mouse IL-2 (100 U/mL), followed by treatment with recombinant H. suis GGT (0.1 
μg/mL to 2 μg/mL) for 44 hours. Shown are the rates of proliferation inhibition, relative to stimulated 
splenocytes treated with HBSS instead of recombinant H. suis GGT. Shown are the mean values (± SD) of 3 
independent experiments or one representative experiment (out of 3 performed in total). An * represents a 
statistically significant difference (p < 0.05) compared to HBSS-treated control cells. HSGGT: recombinant H. 
suis GGT. 
 

The role of cell death (apoptosis and necrosis) during H. suis GGT-mediated inhibition 

of T cell proliferation 

Compared to treatment with whole-cell lysate from wild-type H. suis strain HS5, 

treatment of Jurkat T cells with lysate (48 h; 62.5 to 250 μg/mL) from strain HS5 ggt 

resulted in a considerably lower (1.3 - 19.6%) cell death-inducing capacity (Figure 4B). 
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Figure 6. Cell death analysis of Jurkat T cells treated with recombinant H. suis γ-glutamyl transpeptidase 
(GGT) evaluated by flow cytometry. Jurkat T cells were incubated in medium supplemented with 2 μg/mL 
recombinant H. suis GGT for 24, 48, or 72 hours and (A) cell apoptosis and (B) loss of plasma membrane 
integrity (as a marker for necrosis) were determined by staining for activated caspase-3 and PI staining, 
respectively. Jurkat T cells treated with 0.5 μM staurosporine for 20 hours served as positive control for 
apoptosis. Shown are the mean values (± SD) of one representative experiment (n=3) or 3 independent 
experiments (n=9). An * represents a statistically significant difference (p < 0.05) between HSGGT- and HBSS-
treated cells (Student t test). HBSS: Hank’s balanced salt solution; HSGGT: recombinant H. suis GGT; PI: 
propidium iodide. 
 

Compared to the HBSS-treated cells, incubating Jurkat T cells with 2 μg/mL 

recombinant H. suis GGT for 24, 48 or 72 hours resulted in an increase (+3 - 7%) of the 

number of active caspase-3 positive cells (Figure 6A). PI staining demonstrated a higher 

increase (+26%, compared to HBSS-treated cells) of the number of Jurkat T cells showing 

loss of plasma membrane integrity, as a marker for necrosis, after treatment with H. suis GGT 

for 72 hours (Figure 6B).  

 

Identification of catalytic activity of H. suis GGT on L-Gln 

L-Gln and reduced glutathione (GSH) are 2 putative substrates of H. suis GGT. In a 

previous report, we indeed showed that H. suis GGT catalyzes the degradation of GSH [9]. To 

investigate whether also L-Gln can serve as a substrate for H. suis GGT, 2 mM Gln was 

incubated in HBSS with or without 2 μg/mL H. suis GGT at 37°C. After 2 hours of 

incubation the concentration of ammonia was determined. Data showed that H. suis GGT 

indeed hydrolyses Gln in vitro, with the formation of ammonia as by-product (Figure 7). 

Compared to HBSS-treated Gln, 2 mM Gln treated with 2 μg/mL H. suis GGT released 5.3 

μg/mL ammonia after incubation for 2 hours, showing that >15% of Gln was degraded by 2 

μg/mL H. suis GGT under these conditions.  More than 70% of Gln was degraded by using a 



 

76 

 Study 1 

higher concentration of H. suis GGT (10 μg/mL), after incubation under the same conditions 

as described above (data not shown). 

 
Figure 7. Determination of catalytic activity of H. suis GGT on L-Gln. Two mM Gln was incubated with 
HBSS or 2 μg/mL H. suis GGT at 37°C for 2 hours, after which the concentration of released ammonia was 
determined using the Ammonia Assay Kit. The mean data (± SD) of one representative experiment are shown 
(n=3). An * represents a statistically significant difference (p < 0.05) compared to HBSS-treated L-Gln (Student 
t test). HSGGT: recombinant H. suis GGT; HBSS: Hank’s balanced salt solution. 
 

Modulation of H. suis GGT-mediated inhibition of lymphocyte proliferation by L-Gln 

and GSH  

To investigate the role of L-Gln and GSH, two important substrates of GGT, in the 

above described inhibition of lymphocyte proliferation, Jurkat T cells and stimulated CD4+  

or CD8+ T cells isolated from mice, were treated with a series of concentrations of L-Gln or 

GSH in the presence or absence of 1 or 2 μg/mL recombinant H. suis GGT. Data from HBSS-

treated control cells showed that the presence of L-Gln is essential for a normal proliferation 

of Jurkat T cells (Figure 8A). As described above, treatment of Jurkat T cells with 

recombinant H. suis GGT resulted in an inhibition of cellular proliferation. Interestingly, 

supplementation of 2 μg/mL H. suis GGT-treated Jurkat T cells with L-Gln was able to 

restore the normal proliferation rate of the cells, incubated for 72 hours (Figure 8A), in a dose 

(up to 10 mM L-Gln)-dependent manner. For primary CD4+ or CD8+ T lymphocytes isolated 

from mouse spleens, supplementation with L-Gln showed a similar effect (Figure 8B, 8C). 

Supplementation with 5 mM L-Gln was able to restore the cellular proliferation of 1 μg/mL 

recombinant H. suis GGT treated CD4+ and CD8+ T cells to normal levels after incubation for 

68 hours (Figures 8B, 8C). 
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Figure 8. The effect of L-Gln supplementation on H. suis γ-glutamyl transpeptidase (GGT)-treated Jurkat 
T cells and murine splenocytes. Jurkat T cells were incubated in medium supplemented with L-Gln (0 mM to 
10 mM) for 72 hours (A) in the presence or absence of 2 μg/mL recombinant H. suis GGT, followed by cell 
proliferation detection by determining [3H]-thymidine uptake. CD4+ T cells (B) or CD8+ T cells (C) activated by 
anti-CD3 and anti-CD28 mAbs, were supplemented with L-Gln (0 mM to 10 mM) for 68 hours in the presence 
or absence of 1 μg/mL recombinant H. suis GGT, followed by cell proliferation detection by measuring [3H]-
thymidine uptake. The mean data (± SD) of one representative experiment (out of 3 performed in total) are 
shown for A-C (n=3). * and # represent a statistically significant increase (p < 0.05 ) of cell proliferation by 
supplementing cells with a given L-Gln concentration, compared to HBSS- or H. suis GGT-treated cells, 
respectively, without L-Gln supplementation (0 mM L-Gln) (one-way ANOVA). An (a) indicates a higher 
proliferation rate of HBSS-treated cells, compared to H. suis GGT-treated cells for a given L-Gln concentration 
(Student t test). *, #, and (a): p < 0.05. kcpm: the number of counts per minute (x1000) determined by β-
scintillation counting, as a measure of cellular proliferation; HSGGT: recombinant H. suis GGT; CD3/CD28 
mAbs: anti-mouse CD3/CD28 monoclonal antibodies; Gln: L-glutamine; -HSGGT: treated without recombinant 
H. suis GGT; +HSGGT: treated with recombinant H. suis GGT. 
 

On the other hand, GSH supplementation induced a slightly higher stimulation of 

cellular proliferation of primary T splenocyte subsets (Figure 9B, P< 0.05), treated with 

HBSS (control cells). Interestingly and in contrast, supplementation of H. suis GGT-treated 

Jurkat T cells with GSH aggravated the inhibitory effect of H. suis GGT, both after 48 and 72 

hours of incubation (Figure 9A, P< 0.05). For CD4+ or CD8+ T cells, however, we did not 

observe similar effects (Figure 9B, 9C). 
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Figure 9. The effect of GSH supplementation on H. suis γ-glutamyl transpeptidase (GGT)-treated Jurkat 
T cells and murine splenocytes. Jurkat T cells were incubated in medium supplemented with GSH (0 mM to 2 
mM) for 72 hours (A) in the presence or absence of 2 μg/mL recombinant H. suis GGT, followed by cell 
proliferation detection by measuring [3H]-thymidine uptake. The mean data (± SD) of one representative 
experiment are shown (n=3). CD4+ T cells (B) or CD8+ T cells (C) activated by CD3/CD28 mAbs, were 
incubated in medium supplemented with GSH (0 mM to 2 mM) for 68 hours in the presence or absence of 
1μg/mL recombinant H. suis GGT, followed by cell proliferation detection by measuring [3H]-thymidine uptake, 
as shown by kcpm (counts per minute; x1000) values. Shown are the mean values (± SD) of 3 independent 
experiments (n=9). An * indicates a decrease of cell proliferation of H. suis GGT-treated cells supplemented by a 
given GSH concentration, compared to H. suis GGT treated cells without GSH supplementation (0 mM GSH) 
(one-way ANOVA). An # indicates an increase of cell proliferation of HBSS-treated cells supplemented by a 
given GSH concentration, compared to HBSS-treated cells without GSH supplementation (0 mM GSH) (one-
way ANOVA). An (a) indicates the relative increase of the difference of cell proliferation between HBSS-treated 
cells and H. suis GGT-treated cells at an indicated concentration of GSH, compared to 0 mM GSH-treated cells 
(Student t test). *, #, and (a): p < 0.05. kcpm: the number of counts per minute (x1000) determined by β-
scintillation counting, as a measure of cellular proliferation; HSGGT: recombinant H. suis GGT; CD3/CD28 
mAbs: anti-mouse CD3/CD28 monoclonal antibodies; GSH: reduced glutathione; -HSGGT: treated without 
recombinant H. suis GGT; +HSGGT: treated with recombinant H. suis GGT. 
 

Effects of H. suis GGT on T helper cytokine secretion by murine CD4+ T cells 

CD4+ T cells are known to play a pivotal role in the immune response directed against 

Helicobacter infection (Aebischer et al., 2000, Eaton et al., 2001, Akhiani et al., 2002). The 

results described above show that H. suis GGT inhibits the proliferation of this lymphocyte 

subset. We investigated whether this also implies a change in cytokine secretion by these cells. 

Murine CD4+ T cells were incubated with 0.1 μg/mL or 0.5 μg/mL recombinant H. suis GGT 
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for 68 hours. Enzyme-linked immunosorbent assay (ELISA) for IFN-γ, IL-4 and IL-17A 

performed on supernatant fluids of these cells revealed a significant suppression of IL-4 and 

IL-17A secretion, a Th2 and Th17 signature cytokine, respectively, in the presence of 0.5 

μg/mL recombinant H. suis GGT (Figure 10B, 10C, P< 0.05). For IFN-γ secretion by these 

same cell populations, however, no effects were observed upon treatment with H. suis GGT 

(Figure 10A).  

 
Figure 10. Influence of H. suis γ-glutamyl transpeptidase (GGT) on Th1, Th2, and Th17 type cytokine 
secretion by murine CD4+ T cells. IFN-γ (A), IL-4 (B), and IL-17A (C) secretion by CD4+ T cells activated by 
anti-CD3 and anti-CD28 mAbs was measured after 68 hours by enzyme-linked immunosorbent assay. Data 
represent mean ± SD of one representative experiment (n=4). * p < 0.05 (one-way ANOVA). NA: unstimulated 
CD4+ T cells in the absence of H. suis GGT; HBSS: stimulated CD4+ T cells in the absence of H. suis GGT; 
HSGGT: stimulated CD4+ T cells in the presence of recombinant H. suis GGT. 
 
 
Discussion 

To date, limited information is available on the virulence mechanisms of H. suis 

(Haesebrouck et al., 2009). The development, in 2008, of a method for in vitro isolation and 

culture of H. suis, facilitated research on the interactions between H. suis and its hosts (Baele 

et al., 2008). In a previous study, H. suis was shown to cause a chronic infection, leading to 

severe gastric lesions in mouse and Mongolian gerbil models of human gastric disease 

(Flahou et al., 2010). For H. pylori, inhibition of lymphocyte proliferation is considered to 

contribute to the immune evasion of H. pylori, enabling the bacterium to establish a chronic 

infection (Sundrud et al., 2004, Fischer et al., 2009). Several H. pylori factors have been 
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described to be involved in inhibition of T lymphocyte proliferation, including the H. pylori 

GGT (Sundrud et al., 2004, Schmees et al., 2007, Fischer et al., 2009, Beigier-Bompadre et 

al., 2011). Similarly, H. bilis GGT was reported to inhibit T cell proliferation at a similar 

level compared to H. pylori, and both H. bilis and H. pylori GGT possess a similar 

suppressive effect on gastric epithelial cell proliferation mediated by an apoptosis-

independent mechanism (Rossi et al., 2012). In a recent study, we identified part of the 

mechanism by which H. pylori and H. suis GGT cause gastric epithelial cell death (Flahou et 

al., 2011). An important role was attributed to the extracellular cell-independent formation of 

prooxidant metabolites through H. suis GGT-mediated degradation of GSH (Flahou et al., 

2011). In the present study, we investigated a potential effect of H. suis GGT on the 

proliferation of lymphocytes and more importantly demonstrated a possible role for 

degradation of its known substrates in this process.  

In the present study, recombinantly expressed H. suis GGT, as well as whole-cell lysate 

of wild type H. suis strain HS5 had an inhibitory effect on the proliferation of Jurkat T cells, 

whereas this effect was much lower when Jurkat T cells were incubated with whole-cell lysate 

of the isogenic H. suis ggt mutant strain HS5 ggt. Recombinantly expressed H. suis GGT 

also inhibited the proliferation of different subsets of primary mouse lymphocytes and these 

effects were more pronounced than those observed in Jurkat T cells, since in primary 

splenocytes, 0.1 μg/mL H. suis GGT already caused a detectable inhibitory effect. However, 

using different concentrations of whole-cell lysate from strain HS5 ggt did not completely 

abolish the inhibitory effect on Jurkat T cell proliferation, suggesting that other factors are 

also involved. Putative virulence factors of H. suis other than GGT contributing to the 

inhibition of lymphocyte proliferation need to be further investigated in future experiments. 

In Jurkat T cells, H. suis GGT-mediated inhibition of proliferation was correlated with 

an increase of both apoptosis and necrosis. Apparently, this is in contrast to what has been 

described for H. pylori GGT, which does not seem to induce apoptosis in Jurkat T cells, 

although it has to be mentioned that no other types of cell death were investigated in the study 

by Schmees et al. (Schmees et al., 2007). On the other hand, in a previous study, we 

demonstrated that H. suis GGT can induce death of gastric epithelial cells, both by 

necrosis/oncosis and apoptosis, depending on the amount of extracellular reactive oxygen 

species, generated by GSH degradation(Flahou et al., 2011). Most likely, these increased 

concentrations of reactive oxygen species in the extracellular environment are also involved 

in causing death of Jurkat T cells.  
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In the supernatant of a 24-hour-old to 48-hour-old H. suis culture (containing 1 - 4 x 108 

bacteria/mL with a viability of >99%), approximately 2 - 5 mU/mL GGT activity can be 

detected (Flahou et al., 2011).  Currently, no exact data are available on the colonization 

density of H. suis in human stomachs. Average numbers of H. suis colonizing the stomach of 

experimentally infected mice can reach approximately 108 - 109/g tissue (Flahou et al., 2012a) 

and 108/g tissue in the stomach of experimentally as well as naturally infected pigs, with 

colonization densities as high as 1010 - 1011/g tissue in some cases [unpublished results]. 

These values thus correspond in general to the numbers of bacteria per mL in in vitro cultures, 

as mentioned above. Extrapolation clearly shows that the amounts of H. suis lysate or GGT 

used in the current study most likely are similar to what can be expected to be present in vivo. 

Indeed, H. suis lysate (containing 25 mU GGT activity/mg total protein) (Flahou et al., 2011) 

was added to the Jurkat T cells at a final concentration of 62.5 to 250 μg/mL to reach a final 

concentration of 1.5 to 6.25 mU/mL GGT activity. Recombinant H. suis GGT (containing 8 

mU GGT activity/μg purified H. suis GGT) was added to Jurkat T cells and murine 

splenocyte subset cultures at a final concentration of 0.1 to 2 μg/mL to reach similar levels of 

GGT activity (0.8 to 16 mU/mL) in the supernatant fluid of the cells. 

As shown in the present and previous studies, L-Gln and GSH are two important 

substrates of GGT enzymes, including that of H. suis (Flahou et al., 2011, Hu et al., 2012, 

Rossi et al., 2012). The present report is the first one describing that the effects induced by H. 

suis GGT on the function of lymphocytes can be largely attributed to its catalytic activity on 

extracellular L-Gln and GSH. As GGT activity and function are considered to be conserved 

among the genus Helicobacter (Rossi et al., 2012), similar effects can be expected for GGT 

from other helicobacters.  

L-Gln is the most abundant free amino acid in the blood, and is in fact a major fuel for 

immune cells, especially lymphocytes (Calder, 1994, Grimble, 2001, Newsholme, 2001). 

Sufficient L-Gln is essential for both a complete proliferation capacity and normal immune 

functions of T lymphocytes (Yaqoob et al., 1997, Aledo, 2004). In addition, several reports 

indicate that L-Gln supplementation has a general protective effect on eukaryotic cells, 

especially lymphocytes (O'Riordain et al., 1994, Chang et al., 2002, Nakamura et al., 2002). 

Treatment of lymphocytes with H. suis GGT, as in the present study, causes a depletion of 

extracellular L-Gln, due to the deamidation of L-Gln to L-glutamate (L-Glu), with formation 

of ammonia as a by-product (Shibayama et al., 2007, Leduc et al., 2010). Results of the 

present in vitro study also show that supplementation of H. suis GGT-treated lymphocyte 

cultures with a series of concentrations of L-Gln strongly counterbalances the inhibitory effect 



 

82 

 Study 1 

of H. suis GGT, stressing the importance of this amino acid for the proliferation of 

lymphocytes.  

It has been extensively studied and accepted that the mammalian intestine can absorb 

and utilize L-Gln both from the bloodstream as well as the intestinal lumen (Windmueller et 

al., 1980, Wilde et al., 1991, Curthoys et al., 1995, Reeds et al., 2001, Wu, 2009). Little 

information is available on the L-Gln transport or utilization by epithelial cells or other cell 

types in the gastric mucosa (Hagen et al., 2009, Kaparakis et al., 2010). Transcripts from 

several amino acid transporter systems for L-Gln have been shown to be expressed in murine 

and human stomach tissue, including amino acid transporter systems N, A, and L (Wilde et al., 

1991, Hatanaka et al., 2000, Bode, 2001, Nakanishi et al., 2001, Kirchhoff et al., 2006). In 

any case, when Gln is partially delivered to lymphocytes from the gastrointestinal lumen, the 

link between Gln depletion and the GGT from H. suis (as well as other gastric Helicobacter 

species), is obvious, since the GGT can easily access the free Gln in the lumen. On the other 

hand, it is believed by many researchers that the GGT from gastric helicobacters as well as 

other secreted factors such as the VacA from H. pylori can access the lymphocytes in the 

lamina propria, in this way affecting the lymphocyte function in a direct and indirect manner. 

This can be achieved by inflicting damage to epithelial cells, causing local defects in the 

epithelial barrier (Rieder et al., 2005, Flahou et al., 2010, Flahou et al., 2011, Oertli et al., 

2013, Salama et al., 2013). In the present study, we have also provided data supporting our 

hypothesis that the active GGT enzyme from H. suis can cross a differentiated epithelial cell 

layer, in this way reaching the Gln (and GSH) provided to lymphocytes residing in the lamina 

propria. We were able to show that the active GGT is one of the components of OMV of H. 

suis, and that the OMV can be internalized, resulting in a translocation of the active H. suis 

GGT from the apical to the basolateral side of epithelial cells, enabling the GGT to locally 

access the nutrients (eg. Gln) provided from the arterial blood flow.  

In vivo, gastric helicobacters induce a deamidation of extracellular L-Gln to L-Glu, after 

which the latter can be taken up by the bacteria (Leduc et al., 2010), depriving host epithelial 

and immune cells from both amino acids (Salama et al., 2013). In the present study, no viable 

bacteria were used, capable of using extracellular L-Glu. Therefore, no depletion of L-Glu is 

instilled under the experimental conditions described in this study. In theory, L-Glu could 

thus serve as an alternative cellular fuel, replacing L-Gln, since both amino acids have been 

described to be able to serve as a cellular fuel for lymphocytes and gastrointestinal epithelial 

cells (Newsholme et al., 1999, Newsholme et al., 2003, Aledo, 2004, Blachier et al., 2009). 

The fact that L-Glu can not simply replace L-Gln with respect to cellular proliferation, most 
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likely depends on the wider array of functions of L-Gln. For instance, L-Gln, but not L-Glu, 

can be used for purine and pyrimidine synthesis (Blachier et al., 2009), and L-Gln is involved 

in regulation of protein turnover (Wu, 2009). Possibly, some relevant pathways mentioned 

above are also involved in T cell proliferation modulated by H. suis GGT and L-Gln. 

GSH, another substrate for H. suis GGT, is considered to be the most important free 

thiol in animal cells, playing an important role in antioxidant defense, nutrient metabolism, 

and regulation of cellular events (Paolicchi et al., 2002, Wu et al., 2004). However, several 

groups have also described pro-oxidative reactions associated with the metabolism of 

extracellular GSH, initiated by GGT, which may lead to the production of reactive oxygen 

species and lipid peroxidation, followed by cell death or inhibition of cellular proliferation 

(Perego et al., 1997, Maellaro et al., 2000, Paolicchi et al., 2002, Flahou et al., 2011). Large 

amounts of intracellular and extracellular GSH, indeed available in the stomach (Flahou et al., 

2011), may act as a substrate to GGT during H. suis infection. In the present study, we 

showed that supplementation with GSH could enhance the proliferation of untreated control 

Jurkat T cells and murine T lymphocytes to a certain extent. In sharp contrast, when 

supplementing GSH to H. suis GGT-treated Jurkat lymphocytes, this even aggravated H. suis 

GGT-induced inhibition of cell proliferation, possibly due to the pro-oxidative effect of GSH 

metabolites. However, supplementing GSH to H. suis GGT-treated primary mouse 

lymphocytes, caused no aggravation of H. suis GGT-induced inhibition of cell proliferation. 

Possibly, primary mouse lymphocytes are less sensitive to pro-oxidative products formed 

under the current experimental conditions, compared to the human-derived Jurkat cell line. 

Most likely, the balance between concentrations of the antioxidant GSH and its pro-oxidative 

degradation products is important. Further investigation in primary mouse lymphocytes, using 

different concentrations of H. suis GGT and/or GSH, will allow us to determine whether an 

effect similar to that seen in Jurkat cells occurs. 

IFN-γ, IL-4 and IL-17A are considered to be signature cytokines secreted by T helper 

(Th) 1, Th2 or Th17 cells, respectively (Zhou et al., 2009). In the present study, IFN-γ 

secretion by activated CD4+ T cells seems unaffected by H. suis GGT treatment, whereas H. 

suis GGT treatment did inhibit IL-4 and IL-17A secretion by activated CD4+ T cells, showing 

that the effects of H. suis GGT on the proliferation of CD4+ helper T lymphocytes also affect 

the functional secretion of cytokines involved in the maintenance of an immune response.  

In summary, H. suis GGT was found to inhibit the proliferation of lymphocytes, making 

it the first discovery of a virulence factor of H. suis that affects the functions of immune cells. 

Cell death plays an important role in this process. Supplementation of H. suis GGT-treated 
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lymphocytes with L-Gln or GSH was able to modulate the observed inhibitory effect, 

however in opposite ways. L-Gln was able to restore the normal proliferation of the cells 

whereas supplementation with reduced glutathione (GSH) aggravated the inhibition of 

lymphocyte proliferation induced by H. suis GGT. In addition, we demonstrated that the 

inhibition of T cell proliferation by H. suis GGT is not identical for different lymphocyte 

subsets, and that H. suis GGT also affects the cytokine secretion of CD4+ lymphocytes. 

Finally, we have generated data supporting our hypothesis that the uptake and processing of H. 

suis OMV by epithelial cells may result in the delivery of active H. suis GGT to lymphocytes 

residing in the deeper mucosal layers. The above described findings may explain part of the 

mechanisms by which H. suis establishes a chronic infection in its preferred niche. 
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Abstract 

 
Helicobacter (H.) suis can colonize the stomach of pigs as well as humans, causing chronic 

gastritis and other gastric pathological changes including gastric ulceration and mucosa-

associated lymphoid tissue (MALT) lymphoma. Recently, a virulence factor of H. suis, γ-

glutamyl transpeptidase (GGT), has been demonstrated to play an important role in the 

induction of human gastric epithelial cell death and modulation of lymphocyte proliferation 

depending on glutamine and glutathione catabolism. In the present study, the relevance of 

GGT in the pathogenesis of H. suis infection was studied in mouse and Mongolian gerbil 

models. In addition, the relative importance of H. suis GGT was compared with that of the H. 

pylori GGT. A significant and different contribution of the GGT of H. suis and H. pylori was 

seen in terms of bacterial colonization, inflammation and the evoked immune response. In 

contrast to H. pylori ggt strains, H. suis ggt strains were capable of colonizing the stomach 

at levels comparable to WT strains, although they induced significantly less overall gastric 

inflammation in mice. This was characterized by lower numbers of T and B cells, and a lower 

level of epithelial cell proliferation. In general, compared to WT strain infection, ggt mutant 

strains of H. suis triggered lower levels of Th1 and Th17 signature cytokine expression. A 

pronounced upregulation of B-lymphocyte chemoattractant CXCL13 was observed, both in 

animals infected with WT and ggt mutant strains of H. suis. Interestingly, H. suis GGT was 

shown to affect the glutamine metabolism of gastric epithelium through downregulation of the 

glutamine transporter ASCT2. 
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Introduction 

 
Helicobacter (H.) pylori is a Gram-negative bacterium that colonizes the stomach of more 

than half of the world’s population. Infection with this bacterium can cause gastritis, peptic 

ulcer disease, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) 

lymphoma (Parsonnet et al., 1991, Huang et al., 1998, Ernst et al., 2000). Besides H. pylori, 

non-H. pylori helicobacters (NHPH) have also been detected in the stomach of humans and 

these bacteria cause similar gastric diseases. The risk of developing gastric MALT lymphoma 

is higher during NHPH infection compared to infection with H. pylori (Lee et al., 1989, 

Trebesius et al., 2001, O'Rourke et al., 2004, Haesebrouck et al., 2009, Flahou et al., 2010, 

Joosten et al., 2013b). H. suis is the most prevalent gastric NHPH in humans. Pigs are the 

natural host of this bacterium, with prevalences reaching 90% or more (Hellemans et al., 2007) 

and most likely, pigs and possibly also pork are the main sources of human H. suis infection 

(Van den Bulck et al., 2005, Flahou et al., 2010, De Cooman et al., 2013, De Cooman et al., 

2014).  

H. suis infection seems to persist for life, at least in pigs and rodents used as models for 

human infections (Yamamoto et al., 2014). In pigs, infection causes development of gastritis 

and a decrease in body weight gain. Moreover, the bacterium seems to play a role in the 

development of ulceration of the non-glandular pars oesophagea (De Bruyne et al., 2012). In 

mice and Mongolian gerbil models of human gastric disease, experimental H. suis infection 

causes severe gastric pathology (O'Rourke et al., 2003, Rogers et al., 2004, Flahou et al., 

2010), including gastritis, parietal cell necrosis and the development of gastric MALT 

lymphoma-like lesions, resembling the lesions observed in H. suis-infected humans. 

Previous studies have shown that this bacterium lacks a homologue for several virulence 

factors of H. pylori, such as the cytotoxin associated genes pathogenicity island (cagPAI) and 

the vacuolating cytotoxin (VacA) (Vermoote et al., 2011). We were, however, capable of 

identifying the γ-glutamyl transpeptidase (GGT) as an important virulence factor of H. suis. 

This enzyme has been described to cause gastric epithelial cell damage (Flahou et al., 2011) 

and modulation of lymphocyte proliferation (Zhang et al., 2013) through the interaction of the 

enzyme with two of its substrates, L-glutamine and reduced glutathione, making it the first 

identified and investigated H. suis virulence determinant. 

The role of GGT during H. pylori infection in vivo has been investigated in mice. Conflicting 

conclusions have been drawn regarding the importance of GGT for colonization. Some groups 
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have concluded that H. pylori GGT is required for persistent infection in mice (Chevalier et 

al., 1999), while others have made contrary conclusions (McGovern et al., 2001). In addition, 

there is accumulating evidence that Helicobacter GGT is a crucial virulence factor involved in 

immune evasion and immune tolerance (Schmees et al., 2007, Oertli et al., 2013, Salama et 

al., 2013).  

Currently, it is unknown if and how H. suis GGT influences the course of H. suis infection in 

vivo. The aim of the present study was to extend our previous in vitro findings with H. suis 

GGT, and to study the role of this virulence factor in the pathogenesis of H. suis infection in 

vivo. At the same time, we aimed at comparing its relative importance with that of the GGT of 

H. pylori. The current experiments were performed in BALB/c mice and outbred Mongolian 

gerbils, since these animal models have indeed been shown to be valuable tools to investigate 

the role of Helicobacter species in gastric pathology. Typically, in Mongolian gerbils, a more 

rapid and severe development of gastric lesions can be observed compared to mice 

(Wiedemann et al., 2009, Flahou et al., 2010, Joosten et al., 2013a). 

 

Material and methods 

 
Animal and bacterial strains 

Sixty 4-week-old, female specific-pathogen-free (SPF) BALB/c mice were purchased from 

Harlan NL (Horst, The Netherlands). Twenty-five 4-week-old, female SPF outbred 

Mongolian gerbils (Crl:MON) were obtained from Charles River Laboratories (Lille, France).  

For H. suis infection in mice and Mongolian gerbils, strain HS5cLP was used. This strain has 

been isolated in 2008 from the stomach of a slaughterhouse pig (Baele et al., 2008). For 

experimental H. pylori infection in Mongolian gerbils, strain PMSS1 (Flahou et al., 2012) 

was used, since this strain has no history of in vivo adaptation in mice, in contrast to the 

mouse-adapted strain SS1. In BALB/c mice, H. pylori strain SS1 (Flahou et al., 2012) was 

used, since strain PMSS1 has previously been demonstrated not to be able to colonize the 

stomach of BALB/c mice (Flahou et al., 2012). 

 

Construction of isogenic ggt mutant strains of H. suis and H. pylori 

An isogenic H. suis ggt mutant strain (HS5cLPΔggt) was prepared as described previously 

(Zhang et al., 2013). The isogenic ggt mutant strain of H. pylori was obtained using the same 

strategy as for creation of the H. suis isogenic ggt mutant, except that a kanamycin resistance 
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cassette was used instead of a chloramphenicol resistance cassette (Zhang et al., 2013). Very 

briefly, deletion of ggt in H. pylori SS1 and PMSS1 was introduced by allelic exchange using 

pBluescript II SK (+) phagemid vector (Agilent Technologies, California, USA) in which 

~440 bp of the 5  –end and ~430 bp of the 3  –end of the target gene and the kanamycin 

resistance cassette from plasmid pKD4 (Van Parys et al., 2012) were ligated through a PCR-

mediated strategy with 2 cycles of inverse PCR and fusion PCR (Zhang et al., 2013). All 

primers used for PCR-mediated construction of the recombinant plasmids are shown in Table 

1. The resultant plasmid was amplified in XL1-Blue MRF  E. coli (Agilent Technologies) and 

used as a suicide plasmid in H. pylori SS1 and PMSS1 (a kind gift from Sara Lindén and 

Anne Muller, respectively). H. pylori SS1 ggt mutant (SS1Δggt) and H. pylori PMSS1 ggt 

mutant (PMSS1Δggt) were obtained by electrotransformation (Ferrero et al., 1992) or natural 

transformation (Wang et al., 1993) as described previously. Finally, bacteria were selected on 

columbia agar plates (Oxoid, Basingstoke, UK) with Vitox supplement (Oxoid), 5% (v/v) 

defibrinated sheep blood (E&O Laboratories Ltd, Bonnybridge, UK), and kanamycin (25 

μg/ml). The plates were incubated for 5-9 days. The isogenic ggt mutants were verified by a 

GGT activity assay (Flahou et al., 2011), PCR and nucleotide sequencing. 

Table 1 Primers used for construction of the H. pylori ggt isogenic mutant strains. 

 

Culture conditions of bacterial strains 

Wild-type (WT) H. suis strain HS5cLP was grown for 48 hours as described previously 

(Flahou et al., 2012). HS5cLPΔggt bacteria were grown under the same conditions as strain 

Primer name Sequence (5 - 3 ) Primer use 
pBlue linear Fwd 1 GGGGATCCACTAGTTCTAGAGCG Linearization of plasmid 

pBlue linear Rev1 CGGGCTGCAGGAATTCGATATCAAG Linearization of plasmid 

HpGGT-flank_fusion1F CTTGATATCGAATTCCTGCAGCCCGT
AACCGGTAAAATCAACACGGACGC 

Amplification H. pylori ggt and 
partial up- and downstream 
flanking genes 

HpGGT-flank_fusion1R CGCTCTAGAACTAGTGGATCCCCGC
GCTCTTATAAAAAGAAGCCGC 

Amplification H. pylori ggt and 
partial up- and downstream 
flanking genes 

pBluelinear_Hpggtflank1F CCAAGGAAAGAATTTTAATCCTATTT
AG 

Linearization of the recombinant 
plasmid 

pBluelinear_Hpggtflank1R CTGTTTTCCTTTCAATCAACAATAAT
C 

Linearization of the recombinant 
plasmid 

Hpkana_fusion_1F ATTATTGTTGATTGAAAGGAAAACA
GATGATTGAACAAGATGGATTGC 

Amplification kanamycin 
resistance gene 

Hpkana_fusion_1R CTAAATAGGATTAAAATTCTTTCCTT
GGTCAGAAGAACTCGTCAAGAAG 

Amplification kanamycin 
resistance gene 

T7 prom3 TAATACGACTCACTATAGGG Sequencing 

M13R CAGGAAACAGCTATGAC Sequencing 
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HS5cLP, except that the cultivation plates were supplemented with chloramphenicol (30 

μg/ml) as described previously (Zhang et al., 2013). 

WT H. pylori strains SS1 and PMSS1 were grown on Columbia agar plates containing 5% 

(v/v) defibrinated sheep blood for 48-72 hours at 37°C under microaerobic conditions as 

described previously (Flahou et al., 2012). Subsequently, colonies were picked up and 

cultured in Brucella broth supplemented with Vitox (Oxoid) and 5% fetal calf serum 

(HyClone) on a rotational shaker under microaerobic conditions (16 hours, 125 rpm). 

SS1Δggt and PMSS1Δggt strains were cultured under the same conditions as the 

corresponding WT strains on plates supplemented with kanamycin (25 μg/ml). 

 

Experimental design 

Upon arrival, sixty BALB/C mice and twenty-five Mongolian gerbils were divided into 5 

groups, and the animals were allowed to acclimate to the new environment for 1 week. 

Animals were inoculated intragastrically 3 times at 48 hours intervals. Animals from group 1 

and 2 (both mice and Mongolian gerbils) were inoculated with Brucella broth containing 

8×107 viable bacteria of strains HS5cLP and HS5cLP ggt, respectively. Animals in group 3 

and 4 were inoculated with Brucella broth containing 3 × 108 viable bacteria of strains SS1 

and SS1 ggt (mice) or 1 × 109 viable bacteria of strains PMSS1 and PMSS1 ggt (gerbils). 

Animals in the fifth group were inoculated with Brucella broth and served as uninfected 

controls. For mice, at 4 weeks, 9 weeks and 6 months p.i., 4 animals from each group were 

euthanized by cervical dislocation under isoflurane anaesthesia. For Mongolian gerbils, all 

animals were sacrificed at 9 weeks p.i.. The stomachs of the animals were resected for further 

processing as described previously (Flahou et al., 2012, Joosten et al., 2013a). 

Animal experiments were approved by the Ethical Committee of the Faculty of Veterinary 

Medicine, Ghent University, Belgium (EC2013/29). 

 

Histopathological examination and immunohistochemistry (IHC) 

Three longitudinal strips of gastric tissue from mice and Mongolian gerbils were cut from the 

oesophagus to the duodenum along the greater curvature. Tissue was fixed in 4% phosphate 

buffered formaldehyde, processed by standard methods and embedded in paraffin for light 

microscopy. Five serial sections of 5 μm were cut. The first section was stained with 

haematoxylin/eosin (H&E) to score the degree of gastritis according to the Updated Sydney 

System with some modifications (Stolte et al., 2001). After deparaffinization and rehydration 

for the remaining sections, heat-induced antigen retrieval was performed in citrate buffer 
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(pH=6.0). In order to block endogenous peroxidase activity and non-specific reactions, all the 

slides were incubated with 3% H2O2 in methanol (5 min) and 30% goat serum (30 min), 

respectively. For the differentiation between T and B lymphocytes, CD3 and CD20 antigens 

were stained on sections two and three, using a polyclonal rabbit anti-CD3 antibody (1/100; 

DakoCytomation, Glostrup, Denmark) and a polyclonal rabbit anti-CD20 antibody (1/25; 

Thermo Scientific, Fremont, USA), respectively. These sections were further processed with 

Envision+System-HPR (DAB) (DakoCytomation) for use with the rabbit primary antibodies. 

On the fourth and fifth sections, epithelial cell proliferation and the number of parietal cells 

were determined by IHC staining, using a mouse monoclonal anti-Ki67 antibody (1/25; 

Menarini Diagnostics, Zaventem, Belgium) and mouse monoclonal anti-hydrogen potassium 

ATPase β-subunit (H+/K+ ATPase) antibody (1/25000; Abcam Ltd, Cambridge, UK), 

respectively. Subsequent visualization was done with Envision+System-HPR (DAB) 

(DakoCytomation) for use with the mouse primary antibodies. Quantification of T cells, B 

cells and epithelial cells were performed as described previously (Flahou et al., 2010). Briefly, 

the numbers of cells belonging to defined cell populations (T cells, B cells, and epithelial cells) 

were determined by counting the positive cells in five randomly chosen High Power Fields 

(magnification: × 400), both in the antrum and corpus region. 

In order to assess the possible development of pseudopyloric metaplasia induced by 

Helicobacter infection, alcian blue-periodic acid-schiff stain staining (AB/PAS) was 

performed. 

 

Quantification of colonizing bacteria in the stomach of mice and Mongolian gerbils 

Strips of gastric tissue containing all regions for mice and separate pieces (antrum and corpus) 

for Mongolian gerbils were stored in 0.5 mL RNAlater solution (Ambion, Austin, TE, USA) 

at -70 °C until RNA and DNA extraction. Quantitative Real-Time PCR (qRT-PCR) was used 

to determine the number of colonizing bacteria in the gastric tissue as described previously 

(Flahou et al., 2012, Blaecher et al., 2013). 

 

RNA extraction and reverse transcription 

qRT-PCR was used to determine gene expression in the gastric tissue from mice and 

Mongolian gerbils. Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. The concentration of RNA was 

measured using a NanoDrop spectrophotometer (Isogen Life Science, PW De Meern, Utrecht, 

The Netherlands). The purity of the RNA was evaluated with the Experion automated 
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electrophoresis system using StdSens RNA chips (Bio-Rad, Hercules CA, USA). The RNA 

concentration from all samples was adjusted to 1 μg/μL and cDNA was synthesized 

immediately after RNA purification using the iScript™ cDNA Synthesis Kit (Bio-Rad). 

 

Design and validation of primers and determination of gene expression  

The housekeeping genes H2afz, PPIA and HPRT were included as reference genes for mice 

(Flahou et al., 2012). For Mongolian gerbils, a set of reference genes was tested based on the 

fact that they are extensively used in other animal species. Primers were designed based on 

the conserved regions of ACTB, β-actin, RPS18, GAPDH, HPRT1, SDHA and UBC complete 

or partial coding sequences available for humans, pigs, mice and rats. 

 
Table 2 List of genes and primers used for qRT-PCR in Mongolian gerbils. 
 
Genes Primer Sequence (5 - 3 ) References 

Foxp3 
sense GCCCCTMGTCATGGTGGCA  

This study antisense CCGGGCCTTGAGGGAGAAGA 

CXCL13 
sense GAATGGCTGCCCCAAAACTGAA 

This study antisense TCACTGGAGCTTGGGGAGTTGAA 

GAPDH 
sense AACGGGAAGCTCACTGGCATG 

This study antisense CTGCTTCACCACCTTCTTGATGTCA 

HPRT1 
sense GCCCCAAAATGGTTAAGGTTGCA 

This study antisense TCAAGGGCATATCCAACAACAAAC 

RPS18 
sense CGAGTACTCAACACCAACATCGATGG 

This study antisense ATGTCTGCTTTCCTCAACACCACATG 

IL-1β 
sense GGCAGGTGGTATCGCTCATC (Sugimoto et 

al., 2009) antisense CACCTTGGATTTGACTTCTA 

IFN-γ 
sense CCATGAACGCTACACACTGCATC (Crabtree et al., 

2004) antisense GAAGTAGAAAGAGACAATCTGG 

IL-5 
sense AGAGAAGTGTGGCGAGGAGAGACG (Joosten et al., 

2013a) antisense ACAGGGCAATCCCTTCATCGG 

IL-6 
sense GAGGTGAAGGATCCAGGTCA (Sugimoto et 

al., 2011) antisense GAGGAATGTCCTCAGCTTGG 

IL-10 
sense GGTTGCCAAGCCTTATCAGA (Joosten et al., 

2013a) antisense GCTGCATTCTGAGGGTCTTC 

IL-17 
sense AGCTCCAGAGGCCCTCGGAC (Sugimoto et 

al., 2009) antisense AGGACCAGGATCTCTTGCTG 

ATP4b 
sense GGGGGTAACCTTGAGACCTGATG (Joosten et al., 

2013a) antisense AAGAAGTACCTTTCCGACGTGCAG 
 
β-actin 

sense TCCTCCCTGGAGAAGAGCTA  
(Sugimoto et 

al., 2011) 
antisense CCAGACAGCACTGTGTTGGC 

 

The mRNA expression levels of various cytokines (IFN-γ, IL-4, IL-5, IL-17, IL-1β, IL-

6, IL-10), previously shown to be differentially expressed during H. suis infection, as well as 

other genes (Foxp3, CXCL13, ASCT2, ATP4a, and ATP4b) were quantified using SYBR 
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Green based RT-PCR with iQTM SYBR Green Supermix. Reactions were performed using a 

CFX96 RT PCR System in a C1000 Thermal Cycler (Bio-Rad) as described previously 

(Flahou et al., 2012). All reactions were performed in 12 μL volumes containing 0.05 μL of 

each primer (1.25 pmol/ μL), 6 μL iQTM SYBR Green Supermix, 3.9 μL HPLC water and 2 

μL cDNA. The experimental program consisted of 95°C for 15 min, followed by 40 cycles of 

denaturation at 95°C for 20 s, annealing at 60°C for 30s, and extension at 72°C for 30s. The 

threshold cycle values (Ct) were normalized to the geometric means of the reference genes 

and the normalized mRNA levels of all target genes were calculated using the method of 

2−ΔΔCt (Livak et al., 2001).  

Due to the unavailability of gene information for Forkhead/winged helix transcription 

factor (Foxp3) and the chemokine CXC ligand 13 (CXCL13) from Mongolian gerbils, 

primers were designed based on the conserved regions of Foxp3 and CXCL13 complete or 

partial coding sequences available for humans, pigs, mice and rats with the same strategy as 

described above. 

The mRNA expression levels of Foxp3 and CXCL13 were determined using the same 

method as described above. Sequence information of all the primers for mice and for 

Mongolian gerbils is shown in Tables 2-3. 

Table 3 List of genes and primers used for qRT-PCR in mice. 
 
 

           

 

 

 

 

 

 

 

 

 

 

Gene Primer Sequence (5 - 3 ) Reference 
IL-1β sense GGGCCTCAA AGGAAAGAATC (Flahou et 

al., 2012) antisense TACCAGTTGGGGAACTCTGC 

IFN-γ sense GCGTCATTGAATCACACCTG (Flahou et 
al., 2012) antisense TGAGCTCATTGAATGCTTGG 

IL-4 sense ACTCTTTCGGGCTTTTCGAT (Flahou et 
al., 2012) antisense AAAAATTCATAAGTTAAAGCATGGTG 

IL-10 sense ATCGATTTCTCCCCTGTGAA (Flahou et 
al., 2012) antisense CACACTGCAGGTGTTTTAGCTT 

IL-17 sense TTTAACTCCCTTGGCGCAAAA (Flahou et 
al., 2012) antisense CTTTCCCTCCGCATTGACAC 

Foxp3 sense GCCCCTMGTCATGGTGGCA This study 
antisense CCGGGCCTTGAGGGAGAAGA 

CXCL13 sense CTCTCCAGGCCACGGTATT (Lee et al., 
2009) antisense TAACCATTTGGCACGAGGAT 

ATP4a sense TGCTGCTATCTGCCTCATTG (Jain et al., 
2006) antisense GTGCTCTTGAACTCCTGGTAG 

ATP4b sense AACAGAATTGTCAAGTTCCTC (Jain et al., 
2006) antisense AGACTGAAGGTGCCATTG 

HPRT sense CAGGCCAGACTTTGTTGGAT (Flahou et 
al., 2012) antisense TTGCGCTCATCTTAGGCTTT 

PPIA sense AGCATACAGGTCCTGGCATC (Flahou et 
al., 2012) antisense TTCACCTTCCCAAAGACCAC 

H2afz sense CGTATCACCCCTCGTCACTT (Flahou et 
al., 2012) antisense TCAGCGATTTGTGGATGTGT 
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Statistical analysis 

Differences in colonization capacity were analyzed using a non-parametric Mann-Whitney U 

test. Differences in lymphocytic infiltration, cytokine expression and IHC analysis were 

assessed with one-way ANOVA followed by a Bonferroni post hoc test. Statistical analyses 

were performed using SPSS Statistics 20 software (IBM). Pair-wise comparisons were done 

for each individual time-point and on pooled data using time as stratification factor. P values 

less than 0.05 were considered statistically significant. All data are expressed as mean + SD. 

All the figures were created using GraphPad Prism5 software (GraphPad Software Inc., San 

Diego, CA). 
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Results 
 

Colonization density 

All control animals were negative for Helicobacter. Results of infected animals showed that 

WT H. suis can persistently colonize the mouse stomach with colonization levels as high as 

5.42  104 (  1.46  104) bacteria/mg gastric tissue even at 6 months p.i. (Figure 1C). H. 

pylori strain SS1 was shown to colonize the mouse stomach at a much lower bacterial density, 

being 1.68  103 (  1.73  103) bacteria/mg tissue at 6 months p.i. (Figure 1C, p<0.05).  

 
 
Figure 1 Correlation between bacterial colonization capacity and inflammation score in the stomach of 
mice and Mongolian gerbils. 
The colonization capacity is shown as log10 values of H. suis or H. pylori per mg tissue, determined with qRT-
PCR in the corpus of mice (Figure 1A-1C) and antrum of Mongolian gerbils (Figure 1D). 0, no infiltration with 
mononuclear and/or polymorphonuclear cells; 1, very mild diffuse infiltration with mononuclear and/or 
polymorphonuclear cells or the presence of one small (20-50 cells) aggregate of inflammatory cells; 2, mild 
diffuse infiltration with mononuclear and/or polymorphonuclear cells or the presence of one small (50-200 cells) 
aggregate of inflammatory cells; 3, moderate diffuse infiltration with mononuclear and/or polymorphonuclear 
cells and/or the presence of 2-4 inflammatory aggregates; 4, marked diffuse infiltration with mononuclear and/or 
polymorphonuclear cells and/or the presence of at least five inflammatory aggregates. HS vs. HSm: Colonization: 
p > 0.05; Inflammation: p < 0.05. SS1 vs. SS1m: Colonization: p < 0.05; Inflammation: p < 0.05. PMSS1 vs. 
PMSS1m: Colonization: p > 0.05; Inflammation: p < 0.05. HS: animals infected with WT H. suis srain HS5cLP; 
HSm: animals infected with H. suis strain HS5cLPΔggt; SS1: animals infected with WT H. pylori SS1; SS1m: 
animals infected with H. pylori SS1Δggt; PMSS1: animals infected with WT H. pylori PMSS1; PMSS1m: 
animals infected with H. pylori PMSS1Δggt. 
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Interestingly, H. suis strain HS5cLP ggt was able to colonize the corpus of the stomach of 

the mice to a similar extent as the WT strain, and this was observed for all timepoints (Figure 

1A-1C). In contrast, H. pylori strain SS1Δggt was shown to have an impaired colonization 

capacity in mice at all three timepoints (Figure 1A-C, p<0.05). Similar colonization data were 

demonstrated in the antrum of Helicobacter infected-mice at all three timepoints (data not 

shown). 

Both the HS5cLP and HS5cLP ggt strain successfully colonized the antrum and corpus of the 

stomach of Mongolian gerbils, although colonization rates were much lower in the corpus 

compared to the antrum. No statistically significant differences were observed between both 

strains (Figure 1D, p>0.05). H. pylori strain PMSS1Δggt was able to colonize the antrum and 

corpus of the stomach at similar levels compared to PMSS1 (Figure 1D, p>0.05), although 2 

out of 5 Mongolian gerbils were negative for the presence of PMSS1Δggt in the corpus of the 

stomach (data not shown). 

 

Infection-induced inflammation 
All control mice and gerbils showed normal gastric histomorphology at all timepoints. The 

correlation between inflammation scores and bacterial colonization is displayed in Figure 1. 

Compared to mice with WT strain infection, infection with H. suis strain HS5cLP ggt 

generally induced significantly less overall inflammation both in the antrum (p<0.01) and 

corpus (p<0.01), whereas only in the corpus region (p<0.01), infection with H. pylori strain 

SS1 ggt induced less inflammation, compared to that seen in WT strain infected mice. At 6 

months p.i., the corpus region in 2 out of 4 mice with HS5cLP infection contained large 

lymphoid aggregates or lymphoid follicles accompanied by destruction of the normal mucosal 

architecture (Figure 2A), which was not observed in animals from other groups. 
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For Mongolian gerbils, infection with HS5cLP or PMSS1 induced severe antrum-dominant 

gastritis with formation of lymphocytic aggregates in the lamina propria and/or sub-mucosa of 

the stomach (Figure 1D, Figure 2E, 2G). No significant differences were observed between 

the WT and mutant strain of H. suis with respect to the inflammatory response induced in 

gerbils, although all animals infected with strain HS5cLP showed inflammation in the corpus 

region, whereas this was only the case for some animals infected with HS5cLP ggt (Figure 

1D, Figure 2E-2F). In one gerbil infected with H. suis strain HS5cLP, a pronounced 

inflammatory response was observed, in which more than 65% of the area in the lamina 

propria and submucosa of the antrum was densely infiltrated with inflammatory cells, fused 

lymphoid aggregates and lymphoid follicles (Additional file 1). 

Inflammation induced by H. pylori strain PMSS1Δggt in the antrum of gerbils was less severe 

compared to that seen in WT infected animals (p<0.05) (Figure 1D, Figure 2G-2H). 
 

Inflammatory cell infiltration 

In general, an increase in T cell numbers was observed in the corpus (Figure 3A, p<0.05) of 

mice infected with H. suis strain HS5cLP and H. pylori strain SS1 at all three timepoints. 

Compared to the mice infected with WT H. suis, HS5cLP ggt induced a lower T cell 

response in the corpus at 6 months p.i. (p<0.01). H. pylori strain SS1Δggt induced a reduced 

T cell response in the corpus region (p<0.01) compared to WT infected animals, at both 9 

weeks and 6 months p.i. (Figure 3A). Similar results were observed in the antrum of mice 

(data not shown). 

An increase in B cell numbers was observed in the corpus mucosa of mice infected with strain 

HS5cLP (p<0.01) and SS1 (p<0.01) at 6 months p.i. (Figure 3B). Compared to the WT H. suis 

infected mice, HS5cLP ggt induced a lower B cell response in the corpus region of mice at 6 

months p.i. (p<0.05) and a similar reduction was observed in SS1Δggt infected mice (p<0.01) 

(Figure 3B). 
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Figure 3 Quantitative analysis of defined cell populations with immunohistochemistry. 
(A-B) Shown are the average (  SD) numbers of cells/ High Power Field, including T cells (CD3-positive) and B 
cells (CD20-positive) in the corpus of the stomach of mice. (C-D) Shown are the average (  SD) numbers of 
epithelial cells in five randomly chosen microscopic fields at the level of the gastric pits in the stomach from 
mice and Mongolian gerbils. An * represents a statistically significant difference (p < 0.05) between infected and 
control groups. An a represents a statistically significant difference (p < 0.05) between WT Helicobacter 
infected groups and isogenic ggt mutant infected groups. Ctr: animals from control group; HS: animals infected 
with WT H. suis strain HS5cLP; HSm: animals infected with H. suis strain HS5cLPΔggt; SS1: animals infected 
with WT H. pylori SS1; SS1m: animals infected with H. pylori SS1Δggt; PMSS1: animals infected with WT H. 
pylori PMSS1; PMSS1m: animals infected with H. pylori PMSS1Δggt; WT: wild-type; 3w: 3 weeks post 
infection; 9w: 9 weeks post infection; 6m: 6 months post infection. 
 
For Mongolian gerbils, an exact quantification of T and B lymphocytes was not performed 

since the inflammation was characterized by a marked diffuse infiltration with large numbers 

of lymphocytes and large inflammatory aggregates. Histopathological analysis showed a 

pronounced increase of T cell numbers as well as lymphocytic aggregates and follicles in the 

lamina propria and tunica submucosa in all groups (Figure 4A-4D), although this was most 

pronounced in the antrum of both WT and mutant H. suis infected animals (Figure 4A-4B). T 

cell infiltration levels induced by PMSS1Δggt infection were lower compared to that seen in 

WT H. pylori infected animals (Figure 4C-4D). 
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WT and mutant strains of H. suis induced similar levels of B cell infiltration, mainly in the 

centre of lymphocytic aggregates/follicles in the antrum (Figure 4E-4F). WT H. pylori 

induced mild B cell infiltration in the antrum of gerbils, whereas animals with PMSS1Δggt 

infection did not show an obvious B cell infiltration (Figure 4G-4H). A marked proliferation 

of B cells in germinal centers was observed in gerbils infected with H. suis strains HS5cLP 

(Additional file 4A) and HS5cLP ggt (Additional file 4B) but not in H. pylori infected 

animals. 

 

Epithelial cell-related changes 

For mice, IHC staining did not reveal a clear decrease of the number of parietal cells in the 

stomach, except for mice infected with H. suis strain HS5cLP for 6 months (p<0.05). For 

Mongolian gerbils, a clear loss of parietal cells was only observed in the transition zone 

between corpus and antrum in H. suis strain HS5cLP (Additional file 2B) and HS5cLP ggt 

(Additional file 2C) infected animals, but not in H. pylori PMSS1 or PMSS1 ggt infected 

animals (Additional file 2D and 2E). 
Data on gastric epithelial cell proliferation in the corpus region are summarized in Figure 3C-

3D. Compared to control mice, an increased epithelial cell proliferation was seen in the 

corpus (Figure 3C, p<0.05) of HS5cLP infected mice at all timepoints, and a similar increase 

was observed for SS1 infected mice (Figure 3C, p<0.05). In general, mice infected with H. 

suis and H. pylori strains mutated for the GGT revealed somewhat lower epithelial cell 

proliferation rates compared to WT strain infected mice (Figure 4C), which was, however, not 

statistically significant. Compared to WT strain infected Mongolian gerbils, both 

HS5cLP ggt (p<0.05) and PMSS1 ggt (p<0.01) infected animals revealed a significantly 

lower level of epithelial cell proliferation in the antrum (Figure 3D). 

AB/PAS staining showed that H. suis infection triggered the development of pseudopyloric 

metaplasia to a varying degree in the corpus region of mice at 6 months p.i. (Additional file 

3B-3C). Compared to WT H. suis infection, infection with HS5cLP ggt in general led to less 

obvious regions affected by pseudopyloric metaplasia. Infection with WT H. pylori also 

induced pseudopyloric metaplasia to a varying degree in the corpus region of mice at 6 

months p.i. (Additional file 3D), whereas strain SS1Δggt did not (Additional file 3E). 

 

 

 



 

 
 
110 

 Study 2 

Cytokine secretion in response to bacterial infection 

 

Data on gene expression levels are presented in Figure 5-6. 

Primers for housekeeping genes of Mongolian gerbils were chosen based on the specificity 

and amplification efficiency of the primers, and stable expression levels of the genes. β-actin, 

RPS18, GAPDH and HPRT1 were included as the final reference genes for qRT-PCR 

performed in gerbils. 

 

IFN-γ and IL-1β 

In general, only H. pylori strain SS1 infection induced a significant up-regulation of the Th1 

signature cytokine IFN-γ in mice (Figure 5A, p<0.05). WT and mutant strains of H. suis 

(p<0.01) and H. pylori (p<0.01) induced a pronounced upregulation of IFN-γ expression in 

the antrum of infected Mongolian gerbils (Figure 5C), and no significant differences were 

observed between WT infected- and mutant infected animals. 

No significant differences of IL-1β expression were observed between groups (data not 

shown). In Mongolian gerbils, similarly increased expression levels of IL-1β were seen in 

animals infected with WT and mutant strains of H. suis (data not shown). 

 

IL-4, IL-5, IL-6, IL-10 

In general, compared to control mice, the expression of anti-inflammatory IL-10 was 

upregulated in H. suis strain HS5cLP and HS5cLP ggt infected mice (Figure 5A, p<0.01). A 

very similar expression pattern was observed for Foxp3 (Figure 5B, p<0.01), an important cell 

marker of CD4+/CD25+ regulatory T cells (Tregs), which are one of the most important cell 

types secreting IL-10 (Josefowicz et al., 2012). 

In Mongolian gerbils, a clear increase of IL-10 expression, compared to control animals, was 

demonstrated both in the antrum of gerbils infected with strain HS5cLP (p<0.01) and strain 

HS5cLP ggt (Figure 5C, p<0.01). Compared to control animals, no significant changes of IL-

10 and Foxp3 expression levels were observed in animals infected with H. pylori (Figure 5A, 

5C). 

Compared to control animals, an upregulation of IL-6 expression was only demonstrated in 

gerbils with HS5cLP and HS5cLP ggt infection, but no difference was observed between 

both groups (data not shown). No significant differences in expression between control 

animals and infected animals could be demonstrated for IL-4 and IL-5 (data not shown). 
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Figure 5 Cytokine expression patterns in the stomach of mice and Mongolian gerbils infected with H. suis 
and H. pylori. 
Shown are the mean fold changes of mRNA expression in infected mice (A-B) and gerbils (C) for IFN-γ, IL-10, 
Foxp3, IL-17, CXCL13. The mean fold changes in the relevant uninfected control groups is equal to 1. An * 
indicates a statistically significant difference (p < 0.05) between infected and control groups. An a indicates a 
statistically significant difference (p < 0.05) between WT Helicobacter infected groups and isogenic ggt mutant 
infected groups. HS: animals infected with WT H. suis strain HS5cLP; HSm: animals infected with H. suis strain 
HS5cLPΔggt; SS1: animals infected with WT H. pylori SS1; SS1m: animals infected with H. pylori SS1Δggt; 
PMSS1: animals infected with H. pylori PMSS1; PMSS1m: animals infected with H. pylori PMSS1Δggt; WT: 
wild-type; 3w: 3 weeks post infection; 9w: 9 weeks post infection; 6m: 6 months post infection. 
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IL-17 

IL-17 is a Th17 response signature cytokine. A notable increase of IL-17 expression was 

generally observed in mice infected with WT H. suis (Figure 5B, p<0.05). Similar expression 

levels were observed for HS5cLP ggt infected mice (Figure 5B, p<0.05). 

In Mongolian gerbils, both WT and mutant H. suis and H. pylori infection generally induced 

increased levels of IL-17 expression (Figure 5C, p<0.01). These levels were lower in 

HS5cLP ggt and PMSS1 ggt infected gerbils compared to WT infected animals, which was, 

however, not statistically significant (Figure 5C, p>0.05). 

 

CXCL13  

CXCL13 plays an important role during the B-cell homing to follicles in lymph nodes and 

spleen and formation of gastric lymphoid follicles (Ansel et al., 2000), and it is involved in 

the pathogenesis of Helicobacter infection (Ansel et al., 2000, Yamamoto et al., 2014). In 

general, infection with both HS5cLP and HS5cLP ggt induced a marked upregulation of 

CXCL13 in mice (Figure 5B, p<0.01). Moreover, an even higher increase of CXCL13 

expression levels was observed in the antrum of gerbils infected with H. suis strains HS5cLP 

and HS5cLP ggt compared to control gerbils (Figure 5C, p<0.01). No statistically significant 

differences of CXCL13 expression levels were observed between HS5cLP and HS5cLP ggt 

infected animals (Figure 5B-5C). 

 

Changes in expression of epithelial cell-related factors in the stomach 

The H+/K+ ATPase is responsible for gastric acid secretion by parietal cells (Chow et al., 

1995). Compared to uninfected control mice, a clear decrease of Atp4a (Figure 6A, p<0.05) 

and Atp4b (p<0.05, data not shown) mRNA expression levels was detected in the stomach of 

HS5cLP and SS1 infected mice at 9 weeks p.i.. In addition, a statistically higher expression of 

Atp4a (Figure 6A, p<0.05) and Atp4b (p<0.05, data not shown) was observed in HS5cLP ggt 

infected mice compared to WT infected animals. 

ASCT2 is an important glutamine transporter for the growth of epithelial cells and other cell 

types (McGivan et al., 2007). Compared to control animals, infection with H. suis strain 

HS5cLP resulted in a downregulation of ASCT2 expression in mice at 9 weeks p.i. (Figure 

6B, p<0.05), and infection with H. suis strain HS5cLP ggt revealed significantly higher 

ASCT2 expression levels compared to WT H. suis infection (Figure 6B, p<0.05). Similar 
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results were observed in H. pylori infected mice, without being statistically significant (Figure 

6, p>0.05). 

 
Figure 6 Expression of epithelial cell-associated factors. 
Shown are the mean fold changes of mRNA expression in infected mice for ATP4a (A) and ASCT2 (B). The 
mean fold changes in the relevant uninfected control groups is equal to 1. An * indicates a statistically significant 
difference (p < 0.05) between infected and control groups. An a indicates a statistically significant difference (p 
< 0.05) between WT Helicobacter infected groups and isogenic ggt mutant infected groups. HS: animals 
infected with WT H. suis strain HS5cLP; HSm: animals infected with H. suis strain HS5cLPΔggt; SS1: animals 
infected with WT H. pylori SS1; SS1m: animals infected with H. pylori SS1Δggt; PMSS1: animals infected with 
H. pylori PMSS1; PMSS1m: animals infected with H. pylori PMSS1Δggt; WT: wild-type; 3w: 3 weeks post 
infection; 9w: 9 weeks post infection; 6m: 6 months post infection. 
 

Discussion 

 
Although, in the present study, H. suis strain HS5cLPΔggt was shown to be able to colonize 

the stomach of mice at similar levels compared to WT H. suis, it induced significantly less 

overall inflammation in both corpus and antrum. This suggests that the H. suis GGT is 

involved in the induction and regulation of the inflammatory response, without being an 

essential factor for colonization. However, in Mongolian gerbils, H. suis strain HS5cLPΔggt 

was shown to induce only a slightly milder inflammatory response compared to the WT H. 

suis strain. This implies that, besides GGT, H. suis harbours other virulence factors or 

bacterial components, involved in the generation and modulation of the host immune response. 

In a previous study performed in vitro, lysate from HS5cLPΔggt indeed was shown to still 

have an effect on the proliferation and function of T lymphocytes, further suggesting the 

presence of hitherto unidentified factors in H. suis that can modulate the host immune and 

inflammatory response (Zhang et al., 2013). These factors remain to be investigated in the 

future. 

Interestingly and in contrast to what we observed for H. suis lacking GGT, H. pylori strains 

SS1Δggt and PMSS1Δggt failed to persistently colonize the stomach of mice and gerbils, 
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highlighting the different relative contributions of H. pylori GGT and H. suis GGT to the 

colonization ability in these rodent models. In any case, data from the current study as well as 

previous studies on the H. pylori GGT show that the H. pylori GGT confers a benefit to H. 

pylori in terms of its colonization capacity, at least in mice and gerbils, whereas the H. suis 

GGT mainly affects the inflammatory response evoked during H. suis infection without 

having a notable impact on the levels of bacterial colonization. Since H. suis lacks several 

other virulence determinants of H. pylori, such as VacA, the role of H. suis GGT in inducing 

or shaping the host immune response appears to be relatively important. 

Our study reveals that H. suis infection induces a Th17 response in mice, without a significant 

upregulation of Th1 cytokines such as IFN-γ. This confirms the results of a previous study in 

which both Th1- and Th2- prone mouse strains were used (Flahou et al., 2012). However, the 

use of Mongolian gerbils in the present study demonstrated that H. suis infection can induce a 

marked upregulation of IFN-γ expression in this animal model, which is accompanied by a 

more pronounced gastritis compared to that seen in mice. For H. pylori, it has been 

demonstrated that infection induces the expression of IFN-γ in both mice and gerbils, which 

plays a pivotal role in promoting mucosal inflammation. This in turn contributes to more 

pronounced gastric mucosal damage (Smythies et al., 2000). Thus, the higher levels of IFN-γ 

expression in gerbils infected with H. suis most likely contribute to the more pronounced 

inflammation observed in this animal model compared to that in mice. 

IL-10 is considered an important anti-inflammatory cytokine, which is mainly produced by 

regulatory T cells and dendritic cells (Eaton et al., 2001), and this cytokine has been described 

to be upregulated in WT H. suis infected mice (Flahou et al., 2012). In the present study, we 

observed a similar expression pattern for IL-10 and Foxp3 in mice. This may indicate that the 

secretion of IL-10 mainly occurs through Tregs in the stomach, which needs to be confirmed 

in future studies. It may be postulated that the higher levels of IL-10 expression in 

HS5cLPΔggt infected mice are partially responsible for the attenuated inflammatory response, 

when compared to WT-infected animals. Previously published data from in vitro experiments 

have shown that H. pylori GGT suppresses IL-10 secretion by activated human CD4+ T cells 

(Beigier-Bompadre et al., 2011), which is supported by our findings. The enzyme has, 

however, also been described to reprogram DC towards a tolerogenic phenotype, which was 

shown to depend upon increased secretion of IL-10 (Engler et al., 2014). 

A pronounced upregulation of CXCL13 expression levels was observed in H. suis-infected 

animals, which was shown to be independent of the presence of H. suis GGT. Interestingly, a 

similar upregulation was completely absent in H. pylori-infected animals. Possibly, however, 
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a longer experimental period (e.g. 12-18 months) may induce upregulation of CXCL13 

expression in the stomach of these animals as well. CXCL13, also named B-cell-attracting 

chemokine-1 or B-lymphocyte chemoattractant, is a CXC subtype member of the chemokine 

superfamily (Gunn et al., 1998), and it may play a pivotal role in various immune and 

inflammatory conditions as well as H. pylori-associated gastritis in humans (Galamb et al., 

2008, Nakashima et al., 2011). It has been shown that the expression of CXCL13 is 

significantly upregulated in gastric MALT lymphoma in both humans (Mazzucchelli et al., 

1999) and mice (Nobutani et al., 2010). The pronounced upregulation of CXCL13 as well as 

the presence of a clear proliferation of B-cells in germinal centers in the present study seems 

to be in line with the higher risk to develop gastric MALT lymphoma in humans infected with 

NHPH compared to H. pylori infected patients (Stolte et al., 1997, Morgner et al., 2000, Joo 

et al., 2007, Haesebrouck et al., 2009). A recent report showed that the formation of gastric 

lymphoid follicles after challenge with gastric mucosal homogenate from a monkey 

harbouring H. suis was efficiently suppressed by the administration of anti-CXCL13 

antibodies (Yamamoto et al., 2014). Taken together, this shows that CXCL13 might be one of 

the key cytokines involved in the development of gastric MALT lymphoma associated with 

H. suis infection. 

In previous experiments we have shown that H. suis GGT inhibits the proliferation of 

lymphocytes in vitro through the interaction with glutamine (Zhang et al., 2013). This seems 

contradictory to the results of the present in vivo study showing that animals infected with H. 

suis strain HS5cLPΔggt exhibited a lower lymphocytic infiltration rate in the gastric mucosa. 

Besides lymphocytes, however, H. suis and its GGT also target gastric mucosal epithelial 

cells (Flahou et al., 2011). The uncontrolled loss of epithelial cells by cell death, e.g. necrosis, 

also triggers the influx of inflammatory cells, in turn promoting the further development of 

inflammation. In line with some of our previous studies (Flahou et al., 2010), H. suis infection 

indeed affected the function of gastric acid secreting parietal cells, as shown by the decreased 

expression levels of Atp4a and Atp4b, and the mutant work demonstrated that H. suis GGT 

indeed plays a role. In addition, the present study indicates that the epithelial 

(hyper)proliferation observed in WT H. suis infected mice is more pronounced than in 

HS5cLPΔggt infected mice. This suggests that H. suis lacking GGT causes less damage to the 

epithelium compared to WT bacteria. Probably, this also has an implication on the subsequent 

development of inflammation in the presence of a more or less damaged epithelium. However, 

it remains to be determined whether the impact of the H. suis GGT on the health of gastric 
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epithelial cells is stronger compared to its direct effects on lymphocytes residing in the deeper 

tissue layers, including the inhibitory effect on their proliferation. 

As mentioned above, infection with H. suis strain HS5cLP in mice induced a clear 

downregulation of Atp4a and Atp4b expression levels in the stomach at 9 weeks and 6 months 

p.i., and such an effect was not observed in the HS5cLPΔggt infected animals, showing that H. 

suis GGT contributes to alterations in gastric acid secretion by parietal cells. Previous reports 

have shown that H. suis is often observed near or inside the canaliculi of parietal cells in the 

stomach of mice, and colonization of H. suis is also closely linked with necrosis of parietal 

cells in mice and Mongolian gerbils (Flahou et al., 2010). Besides the direct effect of H. suis 

GGT on the acid secretion by parietal cells, altered expression levels of IL-1β may also affect 

the acid production through multiple pathways (Wallace et al., 1991, Beales et al., 1998), 

including a decreased histamine release from enterochromaffin-like cells (Prinz et al., 1997). 

The impaired gastric acid secretion and subsequent development of mucous metaplasia 

observed in the present study, may lead to the development of gastric atrophy, 

hypochlorhydria and gastric cancer (Correa, 1992, Kapadia, 2003). 

For the first time, we were able to show an effect of H. suis GGT on the glutamine 

metabolism of gastric epithelial cells. This amino acid, targeted by the enzymatic activity of H. 

suis GGT (Zhang et al., 2013), is a major fuel for rapidly dividing cells, including enterocytes, 

macrophages and lymphocytes (Rhoads et al., 1997, Wu, 2009). It is supportive in improving 

digestion, absorption, and retention of nutrients through affecting tissue anabolism, stress, and 

immunity, and it also plays an important role in animal nutrition and health. WT H. suis 

infection was shown to cause a significant downregulation of ASCT2 mRNA in mice, while 

HS5cLPΔggt did not show this effect. This suggests that glutamine depletion catalysed by 

GGT activity at the level of the gastric mucosa resulted in the downregulation of glutamine 

transporter ASCT2. ASCT2 is a Na+-dependent, broad-scope neutral amino acid transporter 

(Kekuda et al., 1996, Utsunomiya-Tate et al., 1996), which is essential for glutamine uptake 

by fast growing epithelial cells and tumor cells (Bode et al., 2002, McGivan et al., 2007, 

Wang et al., 2014), and ASCT2 expression levels depend on glutamine availability (Bungard 

et al., 2004). 

In summary, our data show that H. suis GGT is not an essential factor for colonization in mice 

and gerbils, whereas it is involved in the induction of an inflammatory response. This differs 

to what has been described for the H. pylori GGT. In addition, we demonstrated that H. suis 

infection causes a considerable increase of IFN-γ expression levels in Mongolian gerbils, 

which differs from the situation in mice, where H. suis infection is not accompanied by 
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increased expression of this Th1 signature cytokine. This Th1 response was shown to be 

attenuated in the absence of H. suis GGT. CXCL13 expression levels were shown to be 

upregulated during H. suis infection, in contrast to what we observed for H. pylori infection, 

and this was shown not to depend on the presence of H. suis GGT. WT H. suis infection was 

shown to suppress expression levels of Atp4a and Atp4b, involved in gastric acid secretion, 

and to suppress expression levels of the glutamine transporter ASCT2. These effects on the 

gastric epithelium were clearly related to the presence of H. suis GGT. 
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Addit ional files 

 

 

Additional file 1: H&E staining of the stomach section from a Helicobacter suis infected Mongolian gerbil. 
The vast majority of the antrum of the stomach from this WT H. suis-infected animal was densely infiltrated 
with inflammatory cells, fused lymphoid aggregates and lymphoid follicles. Original magnification: 25×. 
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Additional file 2: Immunohistochemical staining of the hydrogen potassium ATPase of parietal cells in the 
stomach mucosa of Mongolian gerbils. 
Moderate numbers of parietal cells (brown) are present at the transition zone between the corpus and antrum of 
the stomach of control Mongolian gerbils (A). A clear loss of parietal cells is observed in the transition zone 
between the corpus and antrum of the stomach from Mongolian gerbils infected with WT H. suis strain HS5cLP 
(B) or H. suis strain HS5cLPΔggt (C) at 9 weeks post inoculation. No clear change of parietal cell numbers is 
seen in the transition zone between the corpus and antrum of the stomach from Mongolian gerbils infected with 
WT H. pylori PMSS1 (D) or H. pylori PMSS1Δggt (E) at 9 weeks post inoculation. WT: wild-type. Original 
magnification: 100 . 
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Additional file 3: Determination of mucous metaplasia in the stomach from Helicobacter-infected mice. 
An AB/PAS staining was applied to determine the presence of pseudopyloric metaplasia (arrows) in the 
stomachs of control mice (A), WT H. suis infected mice (B), H. suisΔggt infected mice (C), WT H. pylori 
infected mice (D), and H. pyloriΔggt infected mice (E) at 6 months post infection. WT: wild-type; AB/PAS: 
alcial blue-periodic acid-Schiff stain. Original magnification: 100 . 
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Additional file 4: Proliferation of B cells in germinal centers. 
Representative micrographs of a Ki67 staining of the stomach from a WT H. suis infected (A) and H. suisΔggt 
infected gerbil (B) are shown. Proliferating germinal centers were observed in animals from both groups, but 
mainly in WT H. suis infected animals. WT: wild-type. Original magnification: 50  and 200 . 
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Abstract 

The stomach of the majority of pigs is colonized by Helicobacer (H.) suis, which is also 

the most prevalent gastric non-H. pylori Helicobacter (NHPH) species in humans. It is 

associated with chronic gastritis, gastric ulceration and other gastric pathological changes in 

both hosts. Parietal cells are highly specialized, terminally differentiated epithelial cells 

responsible for gastric acid secretion and regulation. Dysfunction of these cells is closely 

associated with gastric pathology and disease. Here we describe a method for isolation and 

culture of responsive parietal cells from slaughterhouse pigs. In addition, we investigated the 

interactions between H. suis and parietal cells both in H. suis-infected pigs, as well as in our 

in vitro parietal cell model. A close interaction of H. suis and parietal cells was observed in 

the fundic region of stomachs from H. suis positive pigs. The bacterium was shown to be able 

to directly interfere with cultured pig parietal cells, causing a significant impairment of cell 

viability. Transcriptional levels of Atp4a, essential for gastric acid secretion, showed a trend 

towards an up-regulation in H. suis positive pigs compared to H. suis-negative pigs. In 

addition, sonic hedgehog, an important factor involved in gastric epithelial differentiation, 

gastric mucosal repair, and stomach homeostasis, was also significantly up-regulated in H. 

suis positive pigs. In conclusion, this study describes a successful approach for the isolation 

and culture of pig parietal cells. The results indicate that H. suis affects the viability and 

function of this cell type. 
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Introduction 

Helicobacter (H.) suis is a Gram-negative bacterium with a typical spiral-shaped 

morphology, which frequently colonizes the stomach of pigs as well as a minority of humans 

(Grasso et al., 1996, Hellemans et al., 2007, Joosten et al., 2013). Indeed, gastric non-H. 

pylori helicobacters (NHPH) are found in 0.2-6% of gastric biopsies, depending on the study 

(Haesebrouck et al., 2009), and H. suis is considered to be the most prevalent NHPH in 

humans (De Groote et al., 2005, Haesebrouck et al., 2009, Joosten et al., 2013). In humans, 

infection with H. suis has been described to cause gastritis, gastric ulceration, as well as 

gastric mucosa-associated lymphoid tissue (MALT) lymphoma and sporadically gastric 

adenocarcinoma (Morgner et al., 1995, Debongnie et al., 1998, Morgner et al., 2000). In 

naturally infected or experimentally infected pigs, H. suis infection has been shown to cause 

gastritis, reduced daily weight gain and other gastric pathological changes (Park et al., 2000, 

De Bruyne et al., 2012). 

The gastric mucosa is composed of various cell types. Parietal (oxyntic) cells are 

abundant in the fundic gland region. They are responsible for the secretion of gastric acid and 

play a vital role in the maintenance of the normal structure and function of the gastric mucosa 

(Yao et al., 2003). In some species, including humans, pigs, rabbits and cats, parietal cells can 

also secrete intrinsic factor which plays an important role in the absorption of vitamins and 

other nutrients by the small intestine (Chew, 1994). Hydrogen potassium ATPase (H+/K+ 

ATPase) is the proton pump composed of a catalytic subunit (α-subunit) and an accessory 

subunit (β-subunit) in parietal cells, and it mediates secretion of acid into the gastric lumen 

(Yao et al., 2003). Various studies have shown that atrophic gastritis induced by H. pylori 

infection is characterized by the dysfunction or loss of parietal cells (Nozaki et al., 2008, Saha 

et al., 2010). While H. pylori is mainly observed in the mucus layer or close to mucus-

producing cells, H. suis is often observed near or even inside the canaliculi of parietal cells in 

experimentally infected Mongolian gerbils and mice. Similar observations have been made in 

humans (Joo et al., 2007). Both in rodent models and humans, these parietal cells can show 

signs of degeneration (Joo et al., 2007, Flahou et al., 2010). 

Besides H+/K+ ATPase, sonic hedgehog (Shh) is another identified factor playing an 

important role in the regulation of gastric acid secretion, as well as maturation and 

differentiation of gastric epithelial cells and fundic glands in mice and humans under normal 

conditions (Ramalho-Santos et al., 2000, van den Brink et al., 2001). It has also been 

described to play a role in the pathogenesis of H. pylori infection and even in the development 
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of gastric cancer (Nielsen et al., 2004, Katoh et al., 2005). Currently, no information is 

available on potential effects of H. suis infection on the expression of Shh.  

To date, there is no report illustrating the interactions between H. suis and parietal cells 

in pigs. Therefore, the aim of this study was to examine the direct effects of H. suis on porcine 

parietal cells, both using a newly developed in vitro parietal cell culture method and tissues 

from H. suis-infected pigs. 

 

Materials and methods 

 

Collection of pig stomachs  

All pig stomachs were collected from 6-month-old slaughter pigs, brought to the 

laboratory immediately, and kept at 4  for further use. 

 

Isolation and culture of primary pig parietal cells 

Pig stomachs were opened, and washed successively several times with water (37°C) 

and phosphate buffered saline (PBS; 37°C). The mucus was removed using a glass slide, and 

the fundic region of the stomach was collected and kept in ice-cold PBS. The mucosa was 

separated gently from the underlying tunica submucosa and tunica muscularis, using the sharp 

side of a scalpel, and minced into small fragments. After washing the minced mucosa several 

times with PBS (37°C) and minimal essential medium-glutamax (37°C) (MEM; Invitrogen, 

Carlsbad, CA, USA), it was placed in MEM supplemented with dispase (1 mg/ml, Invitrogen) 

and BSA (5 mg/ml). This mixture was transferred to a tissue culture flask, and the tissue was 

digested at 37  for 25 min on a rotational shaker. The digestion was stopped by three-fold 

dilution with MEM, and the sample was subjected to centrifugation at 200 g for 10 min. The 

supernatant was discarded and the tissue was placed in MEM supplemented with collagenase 

type 1 (2.5 mg/ml, Invitrogen) and BSA (5 mg/ml) and incubated for another 50 min under 

the same conditions as described above. The resulting mixture was filtered through a 150 μm 

metal sieve, and centrifuged at 200 g for 10 min. The supernatant was removed carefully. The 

remaining cells were washed with MEM, and then filtered using a 70 μm and 40 μm cell 

strainer for 2 times each. The cell suspension was washed 2 times in MEM, and further 

purified using an OptiPrep™ gradient (Sigma-Aldrich St. Louis, MO, USA) according to the 

procedure described by Chew and Brown (Chew et al., 1986). The purified cells were washed 

in MEM and incubated in cell culture flasks containing medium A (DMEM/F12 (Sigma-
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Aldrich) supplemented with 20 mM Hepes, 0.2% BSA, 10 mM glucose, 8 nM EGF (Sigma-

Aldrich), 1× Insulin, Transferrin, Selenium Solution (ITS) (Invitrogen), 1% penicillin-

streptomycin, 50 μg/mL amphotericin B and 25 μg/mL gentamicin (Invitrogen)) for 40 min to 

kill most contaminating bacteria and fungi. Subsequently, the cells were washed in 

DMEM/F12 supplemented with 0.2% BSA, 10 mM glucose, and incubated in medium A 

without amphotericin B in 24-well flat-bottom cell-culture plates (Greiner Bio-One, 

Frickenhausen, Germany) containing Matrigel-coated glass coverslips (circular diameter 12 

mm; Thermo Scientific, Leicestershire, UK). To coat these coverslips, Matrigel basement 

membrane (Corning B.V. Life Sciences, Amsterdam, LJ, Netherlands) was thawed on ice for 

at least 12 h. Subsequently, the glass coverslips were coated with Matrigel basement 

membrane, diluted six times in ice-cold sterile water, and left to dry in a laminar air flow over 

night. 

 

Activation of parietal cells and visualization of gastric acid secretion 

Twelve hours after seeding of parietal cells on coverslips, the medium was replaced by 

fresh medium. In order to stimulate cells to secrete HCl, they were incubated in medium 

supplemented with histamine (400 μM; Sigma-Aldrich) and 3-isobutyl-1-methylxanthine 

(IBMX) (30 μM; Sigma). Control cells were held in a resting state by administering 

cimetidine (100 μM; Sigma-Aldrich). After 30 min of incubation at 37 , cells were 

incubated in medium A (without amphotericin B) supplemented with 2 μM LysoSensor™ 

Yellow/Blue DND-160 (Invitrogen) and 2 μM Cell Tracker Red CMTPX (Invitrogen) at 37  

for 30 min. Subsequently, cells were washed 3 times, immediately mounted in a small volume 

of PBS (50% glycerol, v/v) on glass slides at room temperature, and analyzed using a 

confocal microscope within 30 min. 

 

Preparation of H. suis and bacterial lysate 

H. suis strain HS5cLP was grown on Brucella agar (BD, Franklin Lakes, NJ, USA) 

plates with a pH of 5 and supplemented with 20% fetal calf serum (HyClone), 5 mg/L 

amphotericin B (Fungizone; Bristol-Myers Squibb, Epernon, France), Campylobacter 

selective supplement (Oxoid, Basingstoke, UK) and Vitox supplement (Oxoid) under 

microaerobic and biphasic conditions (37°C; 85% N2, 10% CO2, 5% O2) as described 

elsewhere (Flahou et al., 2012). This strain was isolated in 2008 from the stomach of a 
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slaughterhouse pig (Baele et al., 2008). Bacterial lysate was prepared as described previously 

(Flahou et al., 2011). 

 

Treatment of parietal cells and determination of cell viability 

Parietal cells were cultured as described above in fresh medium without antibiotics. 

Parietal cells were inoculated with viable H. suis at a multiplicity of infection (MOI) of 100 or 

200 or with whole bacterial lysate at a final concentration of 100 μg/ml or 200 μg/ml in 24-

well plates. For the first 4 hours, incubation was done under microaerobic conditions, after 

which the cells were transferred to normal conditions (5% CO2) for another 20 h. Parietal cell 

viability was determined using the neutral red (3-amino-7-dimethylamino-2-methyl-phenazine 

hydrochloride) uptake assay as described previously with some minor modifications 

(Verbrugghe et al., 2012). Briefly, 400 μL of pre-warmed neutral red solution (33 μg/mL in 

DMEM without phenol red) was added to each well and the plate was incubated at 37°C for 3 

h. The cells were then washed twice with Hank’s buffered salt solution (HBSS) with Ca2+ and 

Mg2+ (Gibco, Life Technologies, Paisley, Scotland). Two hundred μL of extracting solution 

(ethanol/ water/acetic acid, 50/49/1 (v/v/v)) was added to each well to release the dye, and the 

plate was shaken for another 30 min. The absorbance was then read at 540 nm with a 

microplate ELISA reader (Multiscan MS, Thermo Labsystems, Helsinki, Finland). The 

percentage of viable cells was estimated using the following formula: 

% cell viability = 100 × (a-b) / (c-b) 

(with a = OD540 derived from the wells incubated with live bacteria or lysate, b = OD540 

derived from blank wells, c = OD540 derived from untreated control wells). 

 

Indirect immunofluorescent staining 

Cultured parietal cells treated as described above were fixed with 4% paraformaldehyde 

in PBS for 15 min at room temperature. After fixation, the cells were washed three times with 

PBS, and permeabilized with 0.3% Triton X-100 in PBS (2% BSA) for 20 min followed by 

incubation in PBS (2% BSA) for another 30 min. The cells were washed 3 times with PBS. 

Subsequently, cells were incubated with a primary mouse monoclonal anti- H+/K+ ATPase β-

subunit antibody (1/200; Abcam Ltd, Cambridge, UK) and a polyclonal rabbit anti-

Helicobacter pylori antibody (1/320; Dako, Glostrup, Denmark) for 1 h at 37°C, followed by 

an Alexa Fluor 633-conjugated goat anti-mouse secondary antibody (1/200; Invitrogen) and 

Alexa Fluor 488-conjugated goat anti rabbit IgG (1/100; Invitrogen) for 1 h at 37°C. All 

antibodies were diluted in PBS and the cells were washed 5 times after incubation with the 
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primary and secondary antibodies. DAPI (0.5 μg/mL; Sigma) was used to counterstain the 

nuclei for 15 min and the cells were rinsed 5 times in PBS. Stained cells were mounted in 

ProLong 
® Gold antifade reagent medium (Invitrogen) and imaged by an Olympus BX61 

fluorescence micro-scope (Olympus Belgium N.V.). 

 

Immunohistochemical and immunofluorescent staining of pig gastric tissue slides 

Stomachs from slaughterhouse pigs were opened along the greater curvature. For 

detection of H. suis colonization, a small piece of tissue from the fundic region of the stomach 

was collected, followed by DNA extraction and H. suis-specific Quantitative Real-Time PCR 

(qRT-PCR) as described previously (Blaecher et al., 2013). 

Gastric samples from the fundic gland zone were fixed in 10% phosphate-buffered 

formalin, processed by routine methods and embedded in paraffin. Consecutive sections of 5 

μm were cut, and immunohistochemical staining for the identification and visualization of 

parietal cells was performed with these sections as described previously (Flahou et al., 2010). 

Immunofluorescent staining was also perfomed to visualize co-localization of parietal cells 

and H. suis. Briefly, 5 μm formaldehyde-fixed tissue sections were deparaffinized in xylene 

and rehydrated in graded ethanol. Sections were boiled in antigen retrieval solution (850W, 

1.5 min; 300W, 10 min) and washed respectively for 15 min in water and 5 min in PBS. 

Sections were permeabilized with 0.3% TritonX-100 in PBS (2% goat serum) for 15 min, and 

incubated in PBS (10% goat serum) for 45 min. Tissue sections were incubated with a 

primary mouse monoclonal anti- H+/K+ ATPase β-subunit antibody (1/3125; Abcam) and a 

polyclonal rabbit anti-Helicobacter pylori (1/320; Dako) antibody overnight at 4 °C. After 

washing with PBS, sections were incubated for 1 h with secondary Alexa Fluor 633 goat anti-

mouse IgG (1/100; Invitrogen) and Alexa Fluor 488 goat anti rabbit IgG (1/100; Invitrogen). 

DAPI (0.5 μg/mL) was used to counterstain the nuclei. Tissue sections were washed 

extensively with PBS, mounted in ProLong 
® Gold antifade reagent medium and examined by 

fluorescence or confocal microscopy. 

 

RNA extraction, reverse transcription and qRT-PCR 

qRT-PCR was used to compare gene expression levels of gastric tissue from the H. suis 

negative pigs (n=15) and H. suis positive pigs (n=15). RNA was extracted and cDNA was 

prepared as described previously (Flahou et al., 2012). Total RNA was extracted using the 

RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

The concentration of RNA was measured using a NanoDrop spectrophotometer (Isogen Life 
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Science, PW De Meern, Utrecht, The Netherlands). The purity of the RNA was evaluated 

with the Experion automated electrophoresis system using StdSens RNA chips (Bio-Rad, 

Hercules CA, USA). The RNA concentration from all samples was adjusted to 1 μg/μL and 

cDNA was synthesized immediately using the iScript™ cDNA Synthesis Kit (Bio-Rad). 

The housekeeping genes ACTB, Cyc-5 and HPRT were included as reference genes 

(Bosschem et al., unpublished data). Primers for Atp4a were referenced elsewhere (Bosi et al., 

2006), and primers for Shh were designed based on the conserved complete or partial coding 

sequences of Shh available for humans, pigs, mice and rats. The mRNA expression levels of 

reference genes and target genes were quantified using SYBR Green based RT-PCR with 

iQTM SYBR Green Supermix. Reactions were performed using a CFX96 RT PCR System in a 

C1000 Thermal Cycler (Bio-Rad). qRT-PCR was performed as described elsewhere (Flahou 

et al., 2012). Sequence information of the primers was shown in Table 1. 

 

Table 1 primers used in qRT-PCR 

Gene Primer Sequence (5 - 3 ) Reference 

Atp4a 
sense GCATATGAGAAGGCCGAGAG 

Bosi et al., 2006 
antisense TGGCCGTGAAGTAGTCAGTG 

sonic hedgehog 
sense TGACCCCTTTAGCCTACAAGCA 

This study  
antisense TGGGGGTGAGTTCCTTAAATCG 

 

Results 

 

Activation of parietal cells and stimulation of gastric acid secretion 

Cultured parietal cells responded to stimulation with histamine/IBMX, as shown by the 

presence of more and bigger vacuoles under the light microscope (data not shown). In order to 

confirm the secretion of gastric acid by parietal cells after stimulation, a fluorescent acidic pH 

indicator, LysoSensor, was loaded both to resting and stimulated parietal cells. 
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Figure 1 Acid secretion by parietal cells. 
LysoSensor™ Yellow/Blue DND-160 was used to monitor the acid secretion by live parietal cells incubated 
either by Cim or His/IBMX. Cell Tracker Red CMTPX was used to track all live cells. Some apical vacuoles of 
parietal cells in resting stage revealed several small areas with weak yellow fluorescence, indicating basal acid 
secretion (A). Parietal cell treated with His/IBMX showed an expansion of apical vacuoles, as shown by much 
bigger zones with strong yellow fluorescence, indicating the continuous secretion of acid (B). Cim: Cimitidine; 
His: histamine; IBMX: 3-isobutyl-1-methylxanthine 
 

An accumulation of LysoSensor was observed in the stimulated parietal cells, 

characterized by a predominantly strong yellow fluorescence (Figure 1B). Parietal cells in 

resting stage also showed several small areas with weak yellow fluorescence, indicating that 

vacuoles in parietal cells had a basal acid production (Figure 1A). Upon the stimulation by 

histamine/IBMX, an increase in the fluorescence intensity of LysoSensor in the vacuoles was 

observed and the size of the vacuoles was increased as well (Figure 1B), indicating the 

enhancement of gastric acid secretion. 

 

H. suis bacteria interact with cultured parietal cells 

Immunofluorescence staining showed adhesion of H. suis to parietal cells after 

incubation of cells with H. suis at an MOI of 10 or 100:1 for 6 h (Figure 2). Longer 

incubation times (12 hour) and a higher MOI (200) exhibited similar results (data not shown). 
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Figure 2 The presence of H. suis near or inside the cultured parietal cells. 
Cultured parietal cells were inoculated with live H. suis at an MOI of 10 for 6 h, and a close relationship between 
H. suis (green) and parietal cells (red) could be observed. Nucleic acid was stained by DAPI (blue). 
Representative fluorescence micrographs were shown. Scale bars, 50 μm. MOI: multiplicity of infection. 
 

Cell viability assay 

 
Figure 3 Effect of H. suis on parietal cell viability. 
Parietal cells were treated with live H. suis (MOI: 100:1, 200:1) or whole bacterial lysate (100 μg/ml, 200 μg/ml), 
and control cells were treated with HBSS. After 24 h, cell viability was determined by a neutral red assay. 
Results of one representative experiment (out of 3 performed in total) are shown (n=5). An * represents a 
statistically significant difference between bacteria or lysate treated cells and HBSS treated cells (Student t test, 
p<0.05). MOI: multiplicity of infection; HBSS: Hank’s buffered salt solution. 
 

A neutral red assay was used to determine the effect of live H. suis bacteria and whole 

cell lysate of H. suis on parietal cell viability. Parietal cells were treated with live bacteria or 

bacterial lysate for 24 h. Compared to untreated control cells, a significant decrease of cell 

viability was observed in live bacteria-treated cells (MOI:100, 200) and lysate-treated cells 

(200 μg/ml) (Figure 3, p<0.05), confirming that both live bacteria and lysate affect parietal 

cell viability in vitro. 

 

Interaction between H. suis and pig parietal cells in vivo 
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Figure 4 Co-localization of H. suis and pig parietal cells in the stomach of slaughterhouse pigs. 
Shown are representative immunohistochemical (A) and fluorescent micrographs (B) of H. suis bacteria near or 
within the parietal cells in the fundic region of the stomach from slaughterhouse pigs. IHC staining (A) showed 
that H. suis bacteria (black arrows) were observed next to parietal cells, sometimes showing signs of 
degeneration (right panel) (brown). Immunofluorescence staining (B) revealed that a substantial number of H. 
suis bacteria (green, white arrows) are in close association or even inside the parietal cell (canaliculi) (red). 
Nuclei are stained with DAPI (blue). IHC: immunohistochemistry. 
 

IHC staining did not reveal a clear change of parietal cell numbers in the stomach of H 

suis-infected pigs compared to H. suis-negative pigs (data not shown). However, a close 

relationship between parietal cells and H. suis was observed in the fundic region of the pig 

stomach (Figure 4A), and some H. suis bacteria stuck to the debris of parietal cells (Figure 4A, 

right panel). In order to further investigate the co-localization of parietal cells and H. suis, a 

double immunofluorescence staining for H+/K+ ATPase and H. suis was performed. The 

majority of the bacteria were observed in the vicinity of or inside the canaliculi or cytoplasm 

of parietal cells (Figure 4B). 
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qRT-PCR 

Transcriptional changes of crucial genes involved in parietal cell function and gastric 

epithelial cell homeostasis were determined using qRT-PCR. Results showed that a tendency 

towards an up-regulation of Atp4a was observed in H. suis positive pigs compared to negative 

animals (Figure 5, p=0.14). Compared to H. suis negative pigs, a significant up-regulation of 

Shh was observed in H. suis-infected slaughter pigs (Figure 5, p=0.012). 

 
Figure 5 mRNA expression analysis Shown are the mean fold changes (±SD) of mRNA expression in H. suis 
positive pigs (n=15) for Atp4a and Sonic HH, compared to that in H. suis negative pigs (n=15). An * indicates a 
statistically significant difference (Student t test, p < 0.05) between H. suis positive pigs (H. suis-) and H. suis 
negative pigs (H. suis+). Sonic HH: sonic hedgehog. 
 

 

Discussion 

 

Pig stomachs are frequently inhabited by H. suis, a zoonotic bacterium, raising concerns 

regarding animal welfare, economic interests, public health and food safety (Haesebrouck et 

al., 2009, De Bruyne et al., 2012, De Cooman et al., 2013). H. suis infection can cause a 

decreased body weight gain and gastritis in pigs (De Bruyne et al., 2012), and chronic 

gastritis, peptic ulceration and the development of MALT lymphoma-like lesions in humans 

and rodent models of human gastric disease (Morgner et al., 2000, O'Rourke et al., 2004, 

Flahou et al., 2010). In the latter, a close association between H. suis and parietal cells has 

been observed and these cells can show signs of degeneration or malfunction (Flahou et al., 
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2010). In previous studies, it has been described that malfunction of acid secretion by parietal 

cells is closely associated with the development of gastritis (Chu et al., 2012), indicating that 

the function of parietal cells might be influenced by gastritis. On the other hand, a direct 

effect of H. suis on the health and function of parietal cells might also be involved. At the 

onset of this study, very little information was available on the interactions between H. suis 

and parietal cells in its natural host, the pig. 

In the present study, we explored and described an effective method for isolation and 

culture of pig parietal cells. This cell type is highly specialized and differentiated, requiring a 

specific approach. Our method was based on previously described methods for the isolation of 

rabbit parietal cells, and to a lesser extent on those described for dogs, rats and mice (Mihi et 

al., 2013). At first, we used the protocols described for isolation of rabbit parietal cells, 

however without a great deal of success. Compared to rabbit stomach mucosa, it is more 

difficult to separate the pig stomach mucosa from the deeper layers, enzymatic digestion is 

less efficient, and the mucosa is covered by a thick layer of mucus, all of which give rise to 

some obstacles during the initial isolation of parietal cell. Some reagents that have previously 

been shown to be useful for the removal of mucus, including N-acetylcysteine and DTT 

(Risack et al., 1978, Alemka et al., 2010), did not contribute a lot to successful parietal cell 

isolation in the current study. In addition, some studies have shown that the use of EDTA can 

disrupt tight junctions between gastric epithelial cells, further facilitating the release of 

parietal cells from the gastric glands. In our study, however, the administration of EDTA did 

not exhibit beneficial effects. In view of the existing difficulties, we have optimized some 

steps that appeared to be essential for isolation of pig parietal cells. These include an adequate 

removal of mucus by scraping, separating the mucosa in small pieces from the underlying 

tissue using a sharp blade and taking care to minimize the presence of submucosa and other 

connective tissues. Finally, using a combination of dispase and collagenase also proved to 

contribute to the release of parietal cells from the mucosa. Several matrices were tested for 

their ability to stimulate adhesion of parietal cells to coverslips, including fibronectin, 

collagen type I, collagen type IV, gelatine and Matrigel. The latter was shown to provide the 

best results. In general, the majority of the cultured parietal cells existed in the form of single 

cells or small cellular clumps, and they were shown to remain viable under the described 

conditions for up to 5 days with a purity of ~80%. 

In the present study, histological analysis of the stomachs of H. suis-infected pigs at 

slaughter age, revealed that H. suis bacteria are often observed in close vicinity of parietal 

cells and they even can be observed inside the canaliculi of parietal cells, which reveals a 
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direct interaction of H. suis and parietal cells in situ. In addition, a considerable number of H. 

suis bacteria were found near or possibly inside the isolated parietal cells, which further 

confirmed the direct interplay between this bacterium and parietal cells in vivo and in vitro. 

Longer times of incubation of H. suis with isolated parietal cells showed similar results, and 

the most plausible explanation for this may be that a longer incubation time decreases the 

bacterial viability due to the improper medium and gas environment for this fastidious 

bacterium, requiring vigorous culture conditions. Future experiments should attempt to 

identify the involvement of possible adhesins. 

Immunohistochemical and immunofluorescent analysis revealed that H. suis infection 

did not greatly affect parietal cell numbers in the stomach of naturally infected pigs. We were, 

nevertheless, able to show for the first time a direct effect of H. suis on the viability of 

cultured parietal cells. This confirms previous findings, showing that long-term H. suis 

infection can induce necrosis of parietal cells in the stomach of experimentally infected mice 

and Mongolian gerbils (Flahou et al., 2010) and that swollen and degenerated parietal cells 

are found in NHPH-infected patients with chronic gastritis (Joo et al., 2007). Additional 

experiments, using wild-type and Δggt strains of H. suis, showed that the γ-glutamyl 

transpeptidase of H. suis, which has been described to cause death of human gastric epithelial 

cells in vitro, does not seem to play an important role in affecting the viability of pig parietal 

cells (data not shown). Future experiments should aim to characterize the mechanisms 

involved. For H. pylori, it has been shown that infection can induce apoptosis of cultured rat 

parietal cells in a nuclear factor-κB and nitric oxide dependent manner (Neu et al., 2002).  

Other gastric Helicobacter species, including H. pylori and H. felis, have been described 

to cause massive parietal cell loss in rodent models, leading to the deregulation of gastric 

morphology and the development of intestinal metaplasia (De Bock et al., 2006, Murakami et 

al., 2013). Most likely, the development of gastritis in the corpus region, which is more 

pronounced compared to H. suis infection in these same animal models, contributes largely to 

this massive loss of parietal cells. Indeed, Feldman et al., have demonstrated a positive 

correlation between the severity of H. pylori-related corpus gastritis and the degree of 

reduction in acid secretion function of parietal cells (Feldman et al., 1996), and other reports 

have shown that the development of chronic gastritis in patients with H. pylori infection is 

associated with or causes the loss of parietal cells (El-Omar et al., 2000, Correa, 2005, Oh et 

al., 2006). 

Besides an effect on the viability of parietal cells, H. suis may also affect the normal 

function and homeostasis of parietal cells in particular and the gastric epithelium in general. 
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In the present study, mRNA expression levels of Atp4a, part of the proton pump, showed a 

trend towards being higher in H. suis positive pigs, which may be somewhat surprising, since 

other studies have shown that H. pylori infection can inhibit acid secretion through down-

regulation of the expression of H+/K+ ATPase, resulting in hypochlorhydria (Saha et al., 2008, 

Saha et al., 2010, Smolka et al., 2012). However, yet another group of studies have described 

that H. pylori infection can in fact also cause hyperchlorhydria (Smith et al., 1990, 

Malfertheiner, 2011), depending on the distribution of bacteria within the stomach, the 

infection stage, the profile of cytokines produced by the local epithelial cells or immune cells, 

and the pattern of gastritis (Jaup, 2001, Chu et al., 2012). Therefore, the effect of H. suis 

infection on the dynamic changes of expression of H+/K+ ATPase as well as the function of 

parietal cells in the pig stomach needs to be further explored in future experimental studies. 

Interestingly, significantly elevated expression levels of Shh were demonstrated in H. 

suis positive animals compared to animals free of H. suis, suggesting that H. suis infection 

affects the Shh signalling pathway. Sonic, India, and Desert hedgehog are important members 

of the Hedgehog family, playing an essential role during regulation of differentiation and 

growth of many tissues and cells (Hui et al., 2011). In the stomach of mammals, and 

especially in the stomachs of mice and humans, Shh has been described to serve as an 

important regulator in the differentiation of gastric epithelium and immune cells as well as 

gastric gland morphogenesis (van den Brink et al., 2001, Lowrey et al., 2002). An exclusive 

expression of Shh is detected in the parietal cells located at the gland-pit boundary in the 

human stomach, which has been proven to be co-localized with ATPase (van den Brink et al., 

2001, Zavros et al., 2008). H. pylori infection has been described to induce an overexpression 

of Shh in mice during the early stage of infection and Shh may have a progressive role in the 

development of gastric cancer (Shiotani et al., 2008, Schumacher et al., 2012, Marwaha et al., 

2014). In addition, other studies have provided evidence that gastrin and gastric acid can 

stimulate the expression of Shh, while Shh in turn is also important for maintaining acid 

secretion, suggesting a feedback mechanism between gastric acid and Shh expression (Zavros 

et al., 2007, El-Zaatari et al., 2010). It is also worth noting that Shh signalling is crucial for 

macrophage infiltration in the stomach (Schumacher et al., 2012). Indeed, higher numbers of 

macrophages have been detected in the fundic region of the stomach from BALB/c mice 

during the initial stages of H. suis infection (Flahou et al., 2010). 

In summary, an effective method for the isolation and culture of pig parietal cells was 

established. Direct interactions between H. suis and parietal cells were investigated using this 

in vitro cell model as well as in vivo in the stomach of pigs at slaughter age. H. suis was 
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shown to interfere with parietal cells, by directly affecting their viability in vitro. H. suis 

infection may induce abnormal mRNA expression levels of Atp4a, responsible for acid 

production and regulation. In addition, H. suis infection was shown to induce a marked up-

regulation of transcriptional levels of Shh, a critical factor involved in gastric organogenesis, 

glandular differentiation, and gastric homeostasis. 
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Helicobacter (H.) suis, a zoonotic microorganism generally colonizing the stomach of 

more than 60% of the pigs in most herds, causes various gastric diseases in pigs and humans 

(Haesebrouck et al., 2009, Liu et al., 2014). For a long time, the fastidious nature and 

unavailability of in vitro isolated strains have hampered the study of the pathogenesis of H. 

suis infection. Our research group was the first to successfully isolate this bacterium from the 

stomach of pigs, eliminating the main obstacle and opening new doors to perform research on 

this bacterium (Baele et al., 2008). To our knowledge, our research group is currently the only 

one world-wide performing studies using in vitro isolated strains of H. suis. For the moment, 

all available isolates originate from pigs and as far as we know, no pure culture of H. suis are 

available from humans (Baele et al., 2008, Yamamoto et al., 2011, Liu et al., 2014, 

Yamamoto et al., 2014). 

 

Several studies have shown that H. suis can persistently inhabit the host stomach 

causing chronic inflammation and other gastric diseases. The infection is often not cleared, 

despite vigorous innate and adaptive immune responses (Flahou et al., 2010). In experimental 

study 1, we described the inhibitory effect of a H. suis virulence factor, γ-glutamyl 

transpeptidase (GGT), on the proliferation and normal function of lymphocytes from humans 

and mice, and we further demonstrated that glutamine (Gln) and glutathione (GSH) play an 

active and important role in the regulation of this effect on T lymphocytes in vitro. H. suis 

GGT was shown to impair T lymphocyte proliferation through deprivation of extracellular 

Gln, and hydrolysis of GSH (an important antioxidant) by the H. suis GGT resulted in the 

enhancement of the inhibitory effect of the enzyme. Besides glucose, certain amino acids (AA) 

are primary nutrients, important for the proper function and maintenance of eukaryotic cells. 

These amino acids include Gln, the most abundant free AA in the blood, and also an abundant 

AA in gut, skeletal muscle, kidney, fetal fluid and milk (Goldberg et al., 1978, Wu et al., 

1994, Stumvoll et al., 1999, Kwon et al., 2003). Gln is considered a conditionally essential 

AA, playing an important role in the normal function and cell cycle of several cell types, 

including lymphocytes (Yaqoob et al., 1997, Newsholme, 2001). GSH is an important 

antioxidant for cells in the body of humans and animals, and also in plants (Wu et al., 2004). 

It is generally accepted that Gln and GSH have significant beneficial roles on the metabolism, 

function, and health of cells of the gastrointestinal (GI) tract as well as the regulation of 

cellular events (Wu et al., 2004, Wustner et al., 2014). Our in vitro data show that Gln can 

restore lymphocyte proliferation impaired by H. suis GGT, with the production of Glutamate 

(Glu). Glu can be taken up by H. pylori, playing an important role in maintaining the biomass 
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and function of H. pylori (Schilling et al., 2002), which may also be true for H. suis 

(Vermoote et al., 2011). Possibly, the conversion of Gln to Glu, followed by the consumption 

of Glu by the bacteria may contribute to the aggravation of gastric pathology in hosts infected 

with Helicobacter, since Glu can be taken up and oxidized by epithelial cells and is of great 

importance for the metabolism of the epithelium in the GI tract (Wu, 2009). 

Although in the current studies, we did not investigate in detail the modulatory effect of 

Gln on the function of lymphocytes in the stomach of hosts infected with H. suis, it was 

shown by others that dietary Gln supplementation can temper gastric inflammation in the 

stomach of H. suis-infected animals (De Bruyne et al., 2013), indicating the potential 

application of Gln supplementation in clinical patients with Helicobacter infection. Besides 

GGT from H. pylori and H. suis, the H. bilis GGT has also been shown to mediate Gln 

depletion, leading to reactive oxygen species (ROS)-mediated activation of several 

inflammatory pathways and subsequent IL-8 secretion in colon cancer cells upon H. bilis 

infection (Javed et al., 2013). Very recently, beneficial effects of Gln as well as GSH were 

observed in human PBMC treated by GGT from H. pylori (Wustner et al., 2014), which 

partly differs from our study in which Gln and GSH supplementation were shown to have a 

different modulatory effect on lymphocyte proliferation inhibition caused by H. suis GGT. 

Indeed, we observed that Gln restored normal proliferation of the lymphocytes, whereas 

supplementation with GSH (2mM) strengthened the H. suis GGT-mediated inhibition of 

proliferation. Wustner and colleagues further demonstrated that H. pylori GGT-mediated Gln 

deprivation in the gastric mucosa may suppress the function of T cells infiltrating the stomach 

of infected individuals through down-regulation of interferon regulatory factor 4 (IRF4), an 

important transcription factor for metabolic adaptation of T-lymphocytes, thereby favouring 

the bacterial persistence at the site of infection in the stomach (Wustner et al., 2014). 

H. pylori infection has been shown to trigger miRNA-155 expression in a GGT 

dependent manner in vivo and in vitro (Fehri et al., 2010, Oertli et al., 2011). miRNAs are 

non-protein coding, ~22 nucleotide RNAs that induce translational repression and/or 

degradation of their mRNA targets (Lim et al., 2005). Accumulating evidence indicates that 

miRNAs are involved in important biological processes related to apoptosis, proliferation, 

differentiation, metastasis, angiogenesis and the immune response, with a special role in the 

development of various cancers (Lu et al., 2005, Spizzo et al., 2009, Wang et al., 2010). In 

addition, the induction of miRNAs has been observed in a variety of lymphomas, including 

gastric MALT lymphoma in Helicobacter infected patients, which highlights their potential 

role in gastric tumorigenesis (Garzon et al., 2008, Spizzo et al., 2009, Liu et al., 2010, Craig 
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et al., 2011). To date, no report is available on the possible regulation of the immune response 

by H. suis through miRNAs. Further experiments should be performed to 

investigate/determine this. 

Results described in experimental study 1 showed that H. suis efficiently sheds outer 

membrane vesicles (OMV) harbouring the GGT. Some factors of these OMV, including GGT, 

were shown to be able to traverse a tight epithelial cell monolayer, without apparently 

affecting its integrity, providing a novel route through which H. suis may reach and affect 

cells residing in the lamina propria of the host stomach, including lymphocytes. OMV 

produced by Gram-negative bacteria contain numerous bacterial wall components and 

periplasmic constituents, including potential virulence factors (Mashburn-Warren et al., 2008). 

Series of reports have indicated that OMV can be internalized by cells through endocytosis or 

membrane fusion (Amano et al., 2010, Ellis et al., 2010a). In our study, the other components 

of H. suis OMV, besides GGT, were not examined. Studies have demonstrated that H. pylori 

OMV harbour urease, GGT, cholesterol, the vacuolating cytotoxin (VacA), the cytotoxin-

associated gene A (CagA), the blood group antigen-binding adhesin (BabA), the sialic acid–

binding adhesin (SabA), and several other proteins/molecules (Mashburn-Warren et al., 2008, 

Parker et al., 2012). Based on the available genome information of H. suis, urease subunits 

and cholesterol are most likely also constituents of H. suis OMV (Vermoote et al., 2011). In 

view of the fact that they act as long-distance delivery vehicles and contain potential bacterial 

surface products and antigens (e.g. GGT and urease), H. suis OMV may have an attractive 

potential for further application in vaccination studies. Indeed, vaccination with a combination 

of GGT and UreB has been shown to have a protective effect on subsequent H. suis challenge 

in mice (Vermoote et al., 2013). For a number of pathogens, including enterohemorrhagic E. 

coli, Vibrio cholerae, and H. pylori, it has in fact been shown that immunization with OMV 

can elicit a significant systemic and mucosal immune response, and confer protection against 

bacterial challenge in experimental animal models as well as in humans, as shown by 

preclinical studies (Keenan et al., 2003, Oster et al., 2007, Chen et al., 2010, Bishop et al., 

2012, Choi et al., 2014). 

Besides its clear role in the pathogenesis of H. suis infection, the H. suis GGT may also 

prove to be useful for certain clinical applications. Besides its potential use in vaccination, as 

described above, preclinical data described by Oertli and colleagues have shown that H. pylori 

infection reprograms dendritic cells towards a tolerogenic phenotype, inducing regulatory T 

cells (Tregs) with highly suppressive activity in models of allergen-induced asthma (Oertli et 

al., 2013). They further demonstrated that H. pylori GGT is one of the most important factors 
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involved, further confirmed by the fact that a purified form of GGT can be administered to 

prevent asthma (Engler et al., 2014). These intriguing data provide the first report about the 

exploitation of this immunomodulatory factor from helicobacters as a potential therapeutic 

approach in asthma prevention. 

 

In addition to the in vitro studies described in experimental study 1, we investigated, in 

experimental study 2, the role of H. suis GGT in the pathogenesis of infection in rodent 

models, using an isogenic ggt mutant strain of H. suis. In this same study, H. pylori and 

corresponding isogenic ggt mutant strains were included as a reference. It should be pointed 

out that the screening of a suitable Helicobacter strain, successfully and persistently 

colonizing the stomach of a certain host, is of great importance for a correct scientific 

understanding of its pathogenesis (Wirth et al., 1998). Therefore, a preliminary experiment 

was performed to select a suitable H. pylori strain for use in the Mongolian gerbil model. 

Although Wiedemann et al. showed that H. pylori strain B8 successfully adapted to life in the 

gerbil stomach, by several subculturing steps in vivo starting from the B128 parent strain 

(Wiedemann et al., 2009), our preliminary experiment revealed that this strain was not 

capable of colonizing the animals used in our study. This also highlights the importance of 

animal selection, since the animals we used were obtained from a commercial breeder, 

whereas Wiedemann and colleagues used their own breed of animals. 

The isogenic ggt mutant of H. suis we created is, to our knowledge, the first gene 

knockout mutant strain worldwide for this fastidious microorganism. For construction of a 

recombinant suicide plasmid, conventional gene cloning methods sometimes are time-

consuming with a low efficiency, high costs, and other disadvantages. These obstacles were 

also encountered at the beginning of our studies. Therefore, we used a modified and efficient 

PCR-based strategy for generation of the plasmid construct. This method only requires 

conventional PCR, inverse PCR, and fusion PCR. Several recombinant plasmids have been 

constructed successfully and rapidly using this technique described in experimental study 1, 

resulting in 3 ggt isogenic mutants, including a H. suis isogenic ggt mutant strain and two H. 

pylori isogenic ggt mutant strains. Gene disruption or deletion requires homologous 

recombination at the target locus of the genome in microorganisms, and the size of the 

homologous arms can influence the efficiency of homologous recombination. The size of the 

homologous arms of a suicide plasmid for successful gene disruption in microorganisms 

varies from ~40 to ~1000 bp, depending on the specific microbe (Bahler et al., 1998, Nelson 

et al., 2003, Gong et al., 2010a, Rossi et al., 2012). For most reported Helicobacter isogenic 
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mutants, homologous arms of these suicide plasmids were mainly between 400 and 1000 bp, 

which is also the case for our study. Collectively, this PCR-based cloning strategy can greatly 

facilitate the generation of recombinant suicide plasmids and other kinds of recombinant 

plasmids with less expense within a minimal period of time, without using traditional 

restriction enzymes and ligases, and with an unrestricted choice of the insertion site. 

For the creation of the H. suis mutant, three H. suis strains isolated and kept in our lab were 

used. Only for strain HS5cLP, however, we successfully obtained an isogenic ggt mutant. 

Most likely, the biphasic culture conditions play a role, since we previously showed that a 

high density of viable bacteria (> 1-5 x 107 viable bacteria/ml) is necessary to maintain the 

cultures and to enable subculture. Possibly, strain HS5cLP is more resistant to the shock 

induced by electroporation, enabling sufficient bacteria to survive, take up the plasmid and 

start growing. Recently, however, we developed a method to purify single H. suis colonies 

from solid 1% agar plates (Liang et al., 2015). This may facilitate the generation of H. suis 

mutants in the future.  

In Mongolian gerbils used for the experiments described in experimental study 2, 

increased expression levels of IFN-γ, a T helper (Th) 1 cytokine, were detected and this was 

shown not to depend on the presence of GGT. This involvement of IFN-γ clearly differs from 

the immune response evoked in mice infected with pure in vitro isolated strains of H. suis. 

Both in BALB/c and C57BL/6 mice, H. suis infection has indeed been shown to trigger a 

Th2-directed response, rather than a Th1 cytokine response (Flahou et al., 2012a). This in turn 

contrasts with several other studies (Cinque et al., 2006, Mimura et al., 2011), showing an up-

regulation of IFN-γ expression in H. suis-infected mice. The most likely reasons for the 

seemingly contradictory results from our group and others, may be that the latter inoculate the 

animals with stomach homogenate obtained from pigs or cynomolgus monkeys, which not 

only contains H. suis, but also other microorganisms and molecules present in tissue, which 

may also affect the ultimate immune response of the host. Another possible reason may be 

that H. suis strains associated with monkeys may differ from that in pigs. 

The fact that MALT lymphoma(-like lesions) are observed in H. suis-infected 

Mongolian gerbils showing a Th1-predominant immune response in part contrasts with the 

point of view generally held by many researchers that a Th2 response, rather than a Th1-

predominant response, is associated with the development of low grade B-cell MALT 

lymphoma (Greiner et al., 1997, Knorr et al., 1999, Flahou et al., 2012a, Joosten et al., 

2013a). Recently, Yang et al. reported that infection with mucosal homogenate from a H. 

suis-infected cynomolgus monkey induced a significant up-regulation of IFN-γ expression in 
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mice, and IFN-γ-producing follicular B cells were shown to trigger the expression of 

CXCL13, contributing to the formation of gastric lymphoid follicles, which may further 

evolve to the development of gastric MALT lymphoma (Yang et al., 2014). In line with these 

findings, our present study revealed that H. suis infection in mice and Mongolian gerbils 

induces a substantial up-regulation of CXCL13, an identified B lymphocyte chemo-attractant 

crucial for the formation of lymphoid follicles and the development of gastric MALT 

lymphoma (Mazzucchelli et al., 1999, Ansel et al., 2000, Yamamoto et al., 2014). As 

mentioned above, only in Mongolian gerbils, this was accompanied by increased expression 

of IFN-γ. Evidence provided by other researchers has shown that several signalling pathways, 

including those involving Nuclear Factor-κB (NF-κB), tumor necrosis factors-α (TNF- α), and 

protein kinase C, may contribute to the final induction of CXCL13 (Suto et al., 2009). It is 

worth noting that, in our study, H. pylori infection did not show a significant up-regulation of 

CXCL13, neither in mice nor gerbils. Therefore, we conclude that experimental H. suis 

infection studies performed in Mongolian gerbils are a good model to investigate the 

formation of gastric MALT lymphoma and the underlying molecular mechanisms. 

 

Previous studies have revealed that experimental H. suis infection in mice and 

Mongolian gerbils can induce necrosis of parietal cells (Flahou et al., 2010). In order to 

investigate the interactions between H. suis and parietal cells in the natural host, the pig, we 

developed a method for parietal cell isolation and culture, which is described in experimental 

study 3. A preliminary exploration was done determining the direct effects of H. suis on the 

function and viability of this important cell type in the stomach. Cultured parietal cells, 

responsive to secretagogue, could be maintained in vitro in good health for at least 3 days. 

Further immunohistochemical and immunofluorescent analysis showed that H. suis is 

frequently observed in the vicinity of or inside of canaliculi of parietal cell in the fundic 

region of the stomach from slaughterhouse pigs and also in cultured parietal cells in vitro, 

providing evidence for a direct interaction between H. suis and parietal cells. Residing in the 

deep gastric gland or canaliculi of parietal cells is supposed to be a potential mechanism 

through which gastric helicobacters evade the immune response or eradication therapy 

(Taniguchi et al., 1995, Tagkalidis et al., 2002). This remarkable co-localization may, 

however, affect parietal cell function on the short term and alter gastric physiology on the 

long term. 

Currently, the exact mechanisms are still unknown on how H. suis can target parietal 

cells after having moved through a thick and viscous mucus layer. The mucus layer in the 
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stomach is the first line of defense against pathogenic microorganisms (Atuma et al., 2001). H. 

suis is tightly coiled with up to 6 turns, and as many as 10 flagella are present at both ends of 

the cell. Most H. pylori bacteria have been described to inhabit the mucus layer, mainly 

through adherence to mucins using bacterial adhesins (Linden et al., 2002). Adhesins similar 

to porins related gene B (HorB) and H. pylori adhesin A (HpaA) are also encoded by H. suis 

(Vermoote et al., 2011). These flagella and potential adhesins may endow this bacterium with 

the possibility to move through the thick mucus layer to reach the epithelium (Salama et al., 

2013). 

Besides the mucus layer, the integrity of the lining epithelium is another vital line of 

defense against pathogenic microorganisms in the gastric lumen (Laine et al., 2008). Some of 

the main components of the epithelial paracellular barrier are tight junctions (TJ) and 

adherens junctions (Farquhar et al., 1963). Claudins are required to form the TJ strands 

(Powell, 1981, Tsukita et al., 2001) and E-cadherin is one of the main components of 

adherens junctions. The destruction of cellular junctions can promote the development of 

gastric disease, including gastritis and gastric cancer (Srivastava et al., 2007, Laine et al., 

2008). Several studies have demonstrated that H. pylori infection or oral administration of 

hydrochloric acid can depress or disrupt the expression of several claudin members of 

epithelial TJ, e.g. claudin 2, 4, 5, 7 and 18, and increase the gastric permeability in vitro and 

in vivo (Fedwick et al., 2005, Lapointe et al., 2010, Hayashi et al., 2012, Song et al., 2013, 

Wroblewski et al., 2014). It is likely that H. suis infection in pigs and humans may also affect 

tight and adherens junctions in the stomach, for instance by inducing loss of epithelial cells, 

as demonstrated in experimental study 3, or by directly targeting junctional proteins. Indeed, 

H. suis possesses a homologue of the H. pylori HtrA, a serine protease which has been shown 

to degrade E-cadherin (Weydig et al., 2007). These potential mechanisms need to be 

investigated in the future. 

As described in experimental study 3, a significant up-regulation of sonic hedgehog 

(Shh) was observed in the stomach of H. suis positive pigs. The Hedgehog signaling pathways 

play a crucial role during the embryogenesis, maintenance of adult tissue homeostasis, stem 

cell differentiation, tissue repair during chronic inflammation, and carcinogenesis (Pasca di 

Magliano et al., 2003, Katoh et al., 2005, Lees et al., 2005). In the stomach, Shh is expressed 

by the epithelium and mainly by parietal cells (van den Brink et al., 2001), but the expression 

of Shh can also be observed in cells at the level of the gastric pit (Suzuki et al., 2005), 

suggesting that it is not only a short-, but also a long-distance regulator. Studies revealed that 

Shh is closely associated with the pathogenesis of H. pylori infection in vivo and in vitro (Kim 
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et al., 2010, Schumacher et al., 2012). Furthermore, it has been shown that frequent activation 

of the Shh pathway is consistently observed in gastric adenocarcinoma, but also other types of 

GI cancer (Katoh et al., 2005, Ma et al., 2005, El-Zaatari et al., 2013), and may contribute to 

the survival and proliferation of tumor cells (Ma et al., 2005, Singh et al., 2010, Yoo et al., 

2011). Inhibition of the Shh pathway, for instance through blocking of patched family 

proteins PTCH1 and PTCH2, the receptors of Shh, or through other mechanisms, resulted in 

depressed cell proliferation and increased cell apoptosis of gastric cancer cells (Ma et al., 

2005, Yan et al., 2013), predicting that the Shh signalling cascade may serve as a therapeutic 

target for gastric cancer in humans, one of the most common forms of human cancer 

worldwide. 

In this thesis, the precise mechanism behind the regulation of parietal cell expression 

levels of Shh and Atp4A (the α-subunit of H+/K+-ATPase responsible for gastric acid 

secretion) during H. suis infection was not investigated. EI-Zaatari and colleagues showed 

that H. felis infection in mice can activate the expression of Shh and also its target factor Gli-1, 

an anti-apoptotic factor possessing the ability to potentiate the malignant phenotype (El-

Zaatari et al., 2007). Very recently, another research group provided evidence that Shh is a 

target gene of transcription factor NF-κB, and H. pylori was shown to induce Shh expression 

in parietal cells via activation of NF-κB signaling (Schumacher et al., 2014). Indeed, it was 

shown that NF-κB contributes to the constitutive expression of Shh mRNA in pancreatic 

cancer cells, and the same group further showed that inflammatory cytokines, e.g. interleukin-

1β, TNF-α, and lipopolysaccharide can activate the Shh pathway using the same cell model 

(Nakashima et al., 2006). Possibly, these pathways also mediate the regulation of Shh during 

H. suis infection, which needs to be explored in future experiments. Since, in parietal cells, 

Shh co-localizes with H+/K+-ATPase and can enhance the expression of Atp4A (El-Zaatari et 

al., 2010), it is possible that the increased levels of Atp4A in H. suis positive slaughterhouse 

pigs (approximately 6 months old) are a direct consequence of the elevated level of Shh. On 

the other hand, however, a significant downregulation of Atp4A was demonstrated in mice 

infected with H. suis for 9 weeks. We therefore hypothesize that the effects may depend on 

the animal model or alternatively, that H. suis infection exhibits dynamic effects on the 

function of parietal cells at different stages of the infection.  

 

In future studies, the effects of GGT on the function of immune cells (T lymphocytes, 

but also, for instance, DC) residing in the gastric mucosa, as well as the causal relationship 

between the levels of GGT expression and the immune response in vivo should be explored. 
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Investigating the relevant pathways involved in the induction of CXCL13 during H. suis 

infection can be of great importance for understanding the molecular mechanisms behind the 

development of MALT lymphoma. It may also be worth investigating the possible 

involvement of and modulation of the immune response by miRNAs in hosts suffering from 

H. suis infection. This future research may, in the end, also identify potential novel 

therapeutic targets. 

In addition, the in-depth molecular mechanisms illustrating the effect of H. suis 

infection on the function of parietal cells should be further investigated at the level of mRNA 

and proteins using several approaches, including microarray or proteomics analysis. A better 

insight into the pathways and mechanisms regulating the acid secretion by parietal cells 

during Helicbacter infection should lead to an improved management of humans and animals 

with gastric disease and disorders. 

The main findings of this thesis, as well as some hypotheses and future perspectives of 

our studies are summarized in Figure 1. 
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Figure 1. Schematic representation of the identified and possible roles of H. suis and its GGT in T cell 
dysfunction and impaired epithelial health. 
(A) H. suis GGT was shown to inhibit the proliferation of T lymphocytes, and cell death was involved. Two main 
substrates of this enzyme, Gln and GSH, were shown to be involved in the modulation of T lymphocyte 
proliferation, however in an opposite way. Gln and Glu deprivation by GGT affects the normal T cell function, 
whereas degradation of GSH by GGT affects the function of lymphocytes through the production of ROS. (B) H. 
suis and its GGT were shown to affect proliferation of the gastric epithelium, a close interaction between H. suis 
and parietal cells was demonstrated in the fundic region of pigs. Degradation of GSH by GGT impairs the gastric 
epithelium through the production of ROS. H. suis was shown to be able to directly interfere with cultured pig 
parietal cells, causing a significant impairment in cell viability. In addition, transcriptional levels of Atp4A and 
sonic hedgehog were shown to be affected by H. suis infection in slaughterhouse pigs. Clearly, more work has to 
be done to further elucidate the pathogenesis of H. suis infection and the role H. suis GGT plays. 
● GGT/outer membrane vesicles; GGT: gamma-glutamyl transpeptidase; DC: dendritic cell; Gln: glutamine; Glu: 
glutamate. 
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Gastric helicobacters can cause severe gastric diseases, both in humans and animals. In 

humans, the most prevalent and best-studied gastric Helicobacter species is H. pylori. Besides 

H. pylori, human patients suffering from gastric disease can be infected with non-H. pylori 

Helicobacter species, of which H. suis has been described to be the most prevalent one. H. 

suis is a zoonotic microorganism that is mainly found in pigs, with a prevalence of more than 

60% of pigs in most herds and causing reduction in body weight gain, chronic gastritis and 

other gastric pathologies including gastric ulceration and mucosa-associated lymphoid tissue 

(MALT) lymphoma. Initially, little information was available on this microorganism, mainly 

due to its fastidious nature, hampering isolation and cultivation under laboratory conditions. 

The first successful in vitro isolation of H. suis from porcine stomachs was done in 2008, 

opening new doors for in-depth studies on the bacteria-host interactions and pathogenesis of 

H. suis infection in pigs and humans. 

Similar to H. pylori, H. suis often persistently colonizes the stomach of its hosts, 

eliciting chronic inflammation, development of gastric MALT lymphoma and disruption of 

gastric epithelial cell homeostasis. The pronounced host immune response is not capable of 

clearing the infection. At the onset of these studies, no information was available on possible 

mechanisms through which H. suis interferes with the host immune response, leading to 

persistent infection in the stomach. In addition, little was known on the interactions between 

H. suis and the gastric acid-secreting epithelium and the role certain bacterial virulence 

determinants play in this process. 

 

In our first study, we describe the effect of γ-glutamyl transpeptidase (GGT), a crucial 

virulence factor from H. suis, on various lymphocyte subsets, including human Jurkat T cells, 

as well as primary murine T (CD4+ and CD8+ ) and B (CD20+ ) lymphocytes. The H. suis 

GGT was shown to inhibit the proliferation of these lymphocytes and eventually cause cell 

death. Two main substrates of this enzyme, glutamine (Gln) and reduced glutathione (GSH), 

were shown to be involved in the modulation of T lymphocyte proliferation, however in an 

opposite way. Gln supplementation restored normal proliferation rates of the lymphocytes, 

whereas supplementation with GSH aggravated the inhibition of cell proliferation induced by 

pure H. suis GGT. Furthermore, lysate from a wild-type (WT) H. suis strain exhibited a 

stronger inhibitory effect on Jurkat T cell proliferation compared to lysate from an isogenic H. 

suis ggt mutant strain. Finally, H. suis outer membrane vesicles, capable of being internalized 

by cells of a confluent epithelial monolayer, were identified as a possible delivery route for H. 

suis GGT to lymphocytes residing in the deeper mucosal layers. In conclusion, this study 
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described the effects of H. suis GGT on the function of lymphocytes as well as the 

modulatory actions of Gln and GSH during this process, providing new insights into the 

pathogenic mechanisms of H. suis infection in particular and infection with gastric 

helicobacters in general. 

 

In order to extend our previous in vitro findings and to gain more insight into the role of 

the GGT in the pathogenesis of H. suis infection, we performed experimental infection studies 

in rodent models of gastric disease using WT and H. suis isogenic ggt mutant strains. A 

comparison between the pathogenic role of GGT from H. suis and H. pylori was also 

performed in the same study. The results are described in our second experimental study. H. 

pylori strains SS1Δggt (for mice) and PMSS1Δggt (for Mongolian gerbils) were obtained 

from WT H. pylori strain SS1 or strain PMSS1 using similar techniques as were used for 

creation of the H. suis isogenic ggt mutant strain (HS5cLPΔggt). Mice and Mongolian gerbils 

were inoculated with H. suis, H. pylori and their corresponding isogenic ggt mutants. At 4 

weeks, 9 weeks, and 6 months post infection (pi), four mice from each group were euthanized, 

and the stomachs were processed for further qRT-PCR analysis and histopathological 

examination. At 9 weeks pi, gerbils were euthanized and gastric tissues were analyzed in a 

similar way. 

All uninfected mice and gerbils were negative for Helicobacter colonization, and 

showed normal gastric histomorphology at all time-points. In contrast to H. pylori ggt strains, 

showing a severely impaired colonization capacity, H. suis ggt strains were capable of 

colonizing the stomach at levels comparable to WT strains, although they induced 

significantly less overall gastric inflammation in mice. Similarly, infection with isogenic H. 

pylori ggt mutant strains induced a significantly lower level of inflammation, compared to 

infection with WT H. pylori strains. Immunohistochemical staining revealed lower numbers 

of T and B lymphocytes, and generally a lower level of epithelial cell proliferation in 

HS5cLPΔggt and SS1Δggt infected animals, compared to WT infected animals. Furthermore, 

compared to uninfected gerbils, a clear loss of parietal cells was only observed in the 

transition zone between corpus and antrum of the stomach from animals with H. suis infection. 

In contrast to mice, increased IFN-γ expression levels were observed in H. suis-infected 

gerbils. In general, compared to WT strain infection, ggt mutant strains of H. suis triggered 

lower levels of Th1, Th2 and Th17 signature cytokine expression. In contrast to H. pylori 

infection, a pronounced up-regulation of B-lymphocyte chemoattractant CXCL13 was 

observed, both in animals infected with WT and ggt mutant strains of H. suis. Interestingly, 
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the H. suis GGT was shown to affect the function of the epithelium, as shown by reduced 

expression levels of Atp4A and Atp4B, responsible for gastric acid secretion, only in WT 

Helicobacter-infected animals. In addition, H. suis GGT was associated with down-regulation 

of the glutamine transporter ASCT2. 

 

Parietal cells in the fundic region of the stomach are highly specialized and programmed 

to secrete large amounts of hydrochloric acid into the gastric lumen. Gastric Helicobacter 

infection can cause dysfunction of parietal cells and imbalance of acid secretion, and it was 

previously shown that H. suis infection in mice and Mongolian gerbils induced necrosis of 

parietal cells. At the onset of this thesis, no reports had been published that illustrate the 

interactions between H. suis and parietal cells in pigs, the natural host of this bacterium. 

Therefore, the aim of our third experimental study was to examine the direct effects of H. 

suis on pig parietal cells, both using a newly developed in vitro parietal cell culture method 

and tissues from H. suis-infected pigs. 

A method for isolation and culture of parietal cells from pig stomach was established, 

paving the way for in vitro experimental studies on the interaction between parietal cells and 

H. suis. A close interaction between H. suis and parietal cells was demonstrated using 

immunohistochemistry staining and immunofluorescent staining in the fundic region from H. 

suis positive pigs. H. suis was shown to be able to directly interfere with cultured pig parietal 

cells, causing a significant impairment in cell viability. Transcriptional levels of Atp4A, the 

proton pump in parietal cells essential for gastric acid secretion, showed a trend towards an 

up-regulation in H. suis positive pigs compared to H. suis negative pigs. In addition, sonic 

hedgehog, an important factor involved in gastric epithelial differentiation, gastric mucosal 

repair, and stomach homeostasis, was significantly up-regulated in H. suis positive pigs. To 

our knowledge, this is the first description of the effect of H. suis on pig parietal cells in vivo 

and in vitro. 

 

In conclusion, this thesis demonstrated the effects of H. suis GGT on the proliferation 

and function of lymphocytes in vitro. We further showed that the observed effects depend in 

part on and can be modulated by the interaction of the enzyme with 2 important substrates, 

Gln and GSH. Subsequently, experimental infection studies in mice and Mongolian gerbils 

using WT and isogenic ggt mutant strains of H. suis confirmed that this enzyme affects the 

host immune response as well as the health of the gastric epithelium. Finally, we 

demonstrated an association of H. suis for pig parietal cells, which are responsible for 
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secretion of gastric acid, and H. suis was shown to affect the viability and function of this cell 

type. 
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Gastrale helicobacters veroorzaken ernstige maagaandoeningen bij mensen en dieren. De best 

bestudeerde en meest voorkomende Helicobacter soort bij mensen is Helicobacter pylori. 

Mensen met maagaandoeningen kunnen echter ook geïnfecteerd zijn met andere 

helicobacters. Van deze zogenaamde “niet-H. pylori helicobacters”, is H. suis de meest 

voorkomende soort bij mensen. H. suis is een zoönotisch micro-organisme dat voornamelijk 

teruggevonden wordt bij varkens. Bij deze diersoort is tot 90% van de dieren geïnfecteerd en 

een infectie kan leiden tot een daling van de gemiddelde gewichtsaanzet, chronische 

maagontsteking en andere maagaandoeningen. Doordat deze bacterie specifieke 

groeiomstandigheden vereist, vormden isolatie en cultivatie onder 

laboratoriumomstandigheden steeds een grote uitdaging. In 2008 werd H. suis voor de eerste 

keer succesvol geïsoleerd uit de maag van een varken. Dit maakte nieuwe studies mogelijk 

met als doel een beter inzicht te bekomen in de bacterie-gastheer interacties en pathogenese 

van H. suis infecties.    

Zoals beschreven voor H. pylori, is H. suis ook in staat de maag blijvend te koloniseren. Vaak 

wordt een chronische ontstekingsreactie waargenomen, met een verstoorde homeostase van 

het maagepitheel en een mogelijke ontwikkeling van “Mucosa Associated Lymphoid Tissue 

(MALT)”-lymfomen tot gevolg. Het afweersysteem van de gastheer is vaak niet in staat om 

deze ziekteverwekker te elimineren. Bij de start van dit onderzoek was er nog niet veel 

informatie beschikbaar over de onderliggende mechanismen die H. suis in staat stellen om aan 

het afweersysteem van de gastheer te ontsnappen. Er was ook weinig gekend over de 

mogelijke interacties van deze bacterie met het maagepitheel, en in het bijzonder de zuur-

secreterende epitheelcellen van de maag. Ook over de virulentiefactoren van H. suis die een 

rol in dit proces kunnen spelen, waren geen gegevens beschikbaar.  

In een eerste studie werd het effect van ɣ-glutamyltranspeptidase (GGT), een belangrijke 

virulentiefactor van H. suis, nagegaan op humane Jurkat T-cellen en op primaire muis T- 

(CD4+ en CD8+) en B- (CD20+) cellen. Dit H. suis GGT was in staat om de proliferatie van 

lymfocyten te inhiberen en celdood te veroorzaken. Twee belangrijke substraten voor dit 

enzym zijn glutamine (Gln) en gereduceerd glutathion (GSH). Beide substraten bleken 

betrokken te zijn in de modulatie van de proliferatie van T-cellen door het H. suis GGT. Door 

Gln te supplementeren aan het cultuurmedium werd de proliferatie van de lymfocyten 

hersteld. Wanneer echter GSH toegevoegd werd aan het cultuurmedium werd het inhiberend 

effect van het H. suis GGT nog versterkt. Bacterieel lysaat van een wild-type H. suis stam 
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vertoonde een groter inhiberend effect op Jurkat T-cellen in vergelijking met lysaat van een 

isogene H. suis GGT mutant.  

H. suis produceert buitenste membraan vesikels, die opgenomen kunnen worden door 

epitheelcellen. Deze vesikels werden geïdentificeerd als een mogelijke aanleveringsroute om 

het H. suis GGT tot bij de lymfocyten te brengen in de diepere lagen van de mucosa.  

De effecten van H. suis GGT op lymfocyten in vitro werden in hoofdstuk 1 beschreven. 

Gegevens ontbraken echter nog over het belang van het H. suis GGT tijdens een in vivo H. 

suis infectie. Om dit te onderzoeken, werd een experimentele studie uitgevoerd in een muis- 

en een Mongoolse gerbilmodel. Hierbij werd gebruik gemaakt van een wild-type H. suis stam 

en een deletiemutant waarin het ggt gen ontbreekt. In deze studie werd ook het relatieve 

belang van het GGT in de pathogenese van een H. suis en H. pylori infectie onderzocht. De 

resultaten zijn beschreven in onze tweede studie. H. pylori stam SS1Δggt (muismodel) en 

PMSS1Δggt (Mongoolse gerbilmodel) werden met succes aangemaakt vertrekkende van de 

wild-type H. pylori stammen SS1 en PMSS1. De techniek die hiervoor gebruikt werd, is heel 

gelijkaardig aan de techniek die gebruikt werd voor het aanmaken van een isogene H. suis ggt 

mutant (HS5cLPΔggt). Muizen en gerbils werden geïnoculeerd met H. suis, H. pylori of één 

van de isogene ggt mutanten. Vier weken, 9 weken en 6 maanden na de inoculatie werden 4 

muizen van elke groep geëuthanaseerd. De stalen van de maag werden geanalyseerd door 

middel van qRT-PCR en histopathologisch onderzoek. Negen weken na inoculatie werden de 

gerbils geëuthanaseerd, waarbij de maagstalen op dezelfde manier werden verwerkt als de 

stalen van de muizen. 

Op geen enkel tijdstip werd Helicobacter DNA aangetoond bij de controledieren en deze 

dieren vertoonden ook geen afwijkingen in de maag bij histopathologisch onderzoek. De H. 

pyloriΔggt stammen vertoonden een sterk verminderde capaciteit om de maag van muizen te 

koloniseren en er waren, in vergelijking met dieren geïnfecteerd met de wild-type stam, 

duidelijk minder ontstekingscellen aanwezig. De H. suisΔggt stam daarentegen, was in staat 

de maag in dezelfde mate te koloniseren als de wild-type stam en de ontstekingsreactie 

veroorzaakt door deze mutant in het muismodel, was ook minder uitgesproken. 

Immunohistochemische kleuring toonde aan dat er naast een daling van het aantal T- en B-

lymfocyten, ook minder profilerende epitheelcellen aanwezig waren bij deze dieren, in 

vergelijking met de dieren die geïnoculeerd waren met de wild-type stam. Een verlies aan 
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pariëtale cellen ter hoogte van de overgang tussen het antrum en het corpus van de maag werd 

enkel waargenomen bij gerbils die geïnoculeerd waren met de H. suis stammen. 

Bij de met H. suis geïnfecteerde gerbils werd, in tegenstelling tot bij muizen, een verhoogde 

expressie van INF-ɣ waargenomen. Over het algemeen werd een lagere expressie van Th1, 

Th2 en Th17 cytokines waargenomen bij dieren geïnoculeerd met de H. suis ggt mutant, in 

vergelijking met de wild-type stam. In tegenstelling tot infectie met H. pylori, veroorzaakte H. 

suis infectie, zowel met de wild-type stam als de ggt mutant, een uitgesproken expressie van 

CXCL13, een chemoattractant voor B-lymfocyten. Er werd bovendien aangetoond dat het H. 

suis GGT een rol speelt bij de daling in expressie van Atp4a en Atp4b, verantwoordelijk voor 

de zuursecretie, en een daling van de expressie van glutamine transporter ASCT2. Dit wijst er 

duidelijk op dat het GGT van H. suis het glutamine metabolisme van het maagepitheel 

beïnvloedt.  

De pariëtale cellen in de fundusklieren van de maag zijn gespecialiseerde cellen die 

geprogrammeerd zijn om grote hoeveelheden zoutzuur te secreteren in het maaglumen. Een 

gastrale Helicobacter infectie kan dysfunctie van deze pariëtale cellen en een verstoorde 

balans van de zuursecretie veroorzaken. Het is reeds vroeger aangetoond dat een H. suis 

infectie in muizen en Mongoolse gerbils necrose van pariëtale cellen induceert. Bij aanvang 

van dit doctoraatsonderzoek waren er nog geen studies gepubliceerd die een interactie 

beschrijven tussen H. suis en pariëtale cellen uit de maag van varkens, de natuurlijke gastheer 

van deze bacterie.  

De doelstelling van de derde studie was om de directe effecten van H. suis op pariëtale cellen 

van varkens na te gaan. Eerst werd een methode ontwikkeld voor de isolatie en het in cultuur 

brengen van pariëtale cellen uit varkensmagen, wat het mogelijk maakt om deze cellen te 

gebruiken voor in vitro studies. Een interactie tussen H. suis en pariëtale cellen werd 

aangetoond door middel van immunohistochemie en immunofluorescente kleuring van de 

fundusklieren van met H. suis-geïnfecteerde varkens. Eenzelfde interactie werd gezien tussen 

H. suis en in vitro geïsoleerde pariëtalen cellen, die bovendien een verminderde leefbaarheid 

vertoonden. Het transcriptie niveau van ATP4a, de protonpomp van pariëtale cellen die 

essentieel is voor de maagzuursecretie, vertoonde verrassend genoeg een verhoogde expressie 

bij met H. suis geïnfecteerde varkens, net als het ‘Sonic hedgehog’ eiwit. Dit is een 

belangrijke factor die betrokken is in differentiatie van het maagepitheel en in het herstel en 

de homeostase van de maagmucosa.  
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Samengevat hebben we in deze thesis duidelijk de effecten van H. suis GGT aangetoond op 

de proliferatie en functie van lymfocyten in vitro. Verder konden we aantonen dat deze 

effecten gedeeltelijk afhankelijk zijn van en gestuurd kunnen worden door de interactie van 

dit enzym met 2 belangrijke substraten, Gln en GSH. Experimentele infectiestudies bij 

muizen en Mongoolse gerbils bevestigden dat het GGT de immuunrespons van de gastheer 

beïnvloedt, alsook de gezondheid van het maagepitheel. Tot slot toonden we een duidelijk 

tropisme van H. suis aan voor de pariëtale cellen uit de maag van varkens en we konden 

waarnemen dat H. suis de viabiliteit en functie van dit celtype aantast. 
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