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1.1. Viruses 

1.1.1. Pseudorabies virus  

1.1.1.1. Classification of pseudorabies virus 

Pseudorabies virus (PrV), also called Aujeszkyʼs disease virus or suid herpes virus 1 

(SHV-1), is a member of the Herpesviridae family. Herpesviruses have a 

double-stranded DNA genome, similar virion size (200 to 250 nm) and structure 

(capsid, tegument, and envelope). Based on the host range, replication cycle, genome 

content and organization, most herpesviruses can be subdivided into three subfamilies 

including the Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. 

Alphaherpesviruses are distinguished by the rapid lytic growth, neurotropism, latency 

in neurons and broad host range (Cohrs & Gilden, 2011; Mettenleiter, 2000; Roizman, 

2001). Besides PrV, several other animal pathogens are classified within this 

subfamily: equine herpesvirus 1 and 4 (EHV-1 and EHV-4), avian Marekʼs disease 

virus (MDV), bovine herpesvirus 1 and 5 (BoHV-1 and BoHV-5), canine herpesvirus 

1 (CHV-1) and feline herpesvirus 1 (FHV-1). By comparison of deduced amino acid 

sequences of homologous proteins, PrV was found to be most closely related to 

BoHV-1, EHV-1, and varicella-zoster virus (VZV) (Daikoku, 2000; McGeoch, 1987).  

1.1.1.2. Virion structure 

The mature virion or infectious viral particle consists of four morphologically distinct 

structures (as shown in Figure 1): a linear double-stranded DNA genome, a protective 

icosahedral capsid forming a nucleocapsid surrounding the DNA, a tegument in which 

the capsid is embedded and a lipid envelope surrounding the tegument.  
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Figure 1. Structure of a pseudorabies virion. (A) Electron microscopy view of a PrV particle. 
Adapted from (Enquist). (B) Schematic structure of a virion. A PrV viron contains a linear 
double-stranded DNA genome, a icosahedral capsid forming a nucleocapsid, a tegument in which the 
capsid is embedded and a lipid envelope surrounding the tegument.  

Alphaherpesvirus genomes have a partial colinear arrangement of genes encoding 

similar proteins in the function. Based on the overall arrangement of repeat sequences 

and unique regions, the herpesvirus genomes are divided into six classes, designated 

by the letters A to F. The genome of PrV belongs to the class D genomes of the 

herpesviruses. The PrV genome is constituted of a unique long (UL) segment and a 

unique short (US) region bracketed by inverted repeat sequences, an internal repeat 

sequence (IRS) and a terminal repeat sequence (TRS) (Ben-Porat T., 1985; Klupp et 

al., 2004). The genome contains 72 open reading frames (ORFs) which encode 70 

different proteins. These different genes are designated by a two letter code UL or US 

depending on its position in the genome unique regions, followed by a number. The 

number indicates the location of the gene within each specific region.   

Most of what is known about the PrV capsid is inferred from detailed studies of the 

prototypical HSV-1 virion. The major capsid protein (MCP or VP5) is encoded by 

UL19 and assembles into 162 capsomers arranged in a T=16 icosahedral lattice 

(Newcomb et al., 1999; Newcomb et al., 1993). The resulting capsid has a diameter 

of approximately 125 nm. The capsid, together with the enclosed genome forms the 

nucleocapsid. Each mature capsid contains 955 molecules of UL19(VP5), 900 

molecules of UL35(VP26), 640 molecules of UL18(VP23), 320 molecules of 

glycoproteins 
membrane 

genome  
capsid  

nucleocapsid 

tegument 

envelope 

A B 
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UL38(VP19C), and 12 molecules of UL6 (portal protein) (Homa & Brown, 1997).  

The space between the capsid and the envelope is filled with tegument, which consists 

of viral tegument proteins. At least fourteen tegument proteins have been identified 

(Guo et al., 2010). Tegument proteins are important during entry, priming the cell for 

virus replication (Mettenleiter, 2002). Following the fusion of the viral envelope with 

the plasma membrane, the tegument proteins enter the cell with the capsid and assist 

in taking over the metabolism of the host cell. The tegument is composed of two 

distinct structures: an inner layer that is associated with capsid proteins and an outer 

layer that interacts with the cytoplasmic domains of viral membrane proteins 

(Grunewald et al., 2003).  

The envelope derived from the cell membrane during assembly at trans-Golgi vesicles, 

is a bilayered phospholipid membrane. It contains 10 glycoproteins (gB, gC, gD, gE, 

gH, gI, gK, gL, gM, gN) and at least 2 nonglycosylated proteins (p(UL43), p(US9)). 

gB forms homodimers, and gE/gI, gH/gL and gM/gN form hetero-oligomers 

(Mettenleiter, 2000). The envelope glycoproteins play an important role in binding, 

internalization, envelopment, egress, cell-associated spread, induction of protective 

immunity and immune evasion. Different domains in both the extra- and 

intra-envelope regions are important for these functions. 

1.1.1.3. PrV entry into cells: ligands and receptors 

Binding of PrV to cells occurs primarily through an interaction of viral glycoprotein C 

(gC) with cell surface heparan sulphate. This was discovered by the observation that 

heparin, a soluble molecule resembling heparan sulphfate, inhibits the adsorption of 

PrV virions to their target cells (Mettenleiter et al., 1990). Glycoprotein gB is also 

involved in this binding step, albeit to a lesser extent (Nixdorf et al., 1999). The 

binding between gC and cellular heparan sulphate is efficient, however, not absolutely 

essential for the virus infection (Karger et al., 1995; Mettenleiter et al., 1990; Shukla 

& Spear, 2001). Following this binding, entry requires an interaction of viral gD with 

one or several cell surface co-receptors (Spear & Longnecker, 2003). These entry 

receptors that associate with alphaherpesvirus gD can be grouped into three classes: 
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herpesvirus entry mediator, a member of the tumor necrosis factors (TNF) receptor 

family; nectin-1 and nectin-2, members of the immunoglobulin superfamily; and 

specific sites in heparan sulphate generated by certain 3-O-sulfotransferases 

(Geraghty et al., 1998; Heldwein & Krummenacher, 2008; Montgomery et al., 1996; 

Shukla et al., 1999; Warner et al., 1998). Up till now, several PrV entry receptors, 

including herpesvirus entry mediator B (HevB, nectin 2), HveC (nectin-1) and HevD 

(CD155), have been identified, with nectin-1 being the most effective 

(Campadelli-Fiume et al., 2000; Geraghty et al., 1998; Mettenleiter, 2002; Nixdorf et 

al., 1999; Spear et al., 2000; Spear & Longnecker, 2003).  

Nectin-1 and nectin-2 belong to a subgroup of the immunoglobulin (Ig) superfamily, 

based on structural and sequence similarities. They share a similar structure which 

consists of an ectodomain region containing three immunoglobulim (Ig)-like domains, 

a single transmembrane region, and a cytoplasmic region. The three Ig-like domains 

consist of an N-terminal variable (V)-like domain and two constant (C)-like domains 

(Cocchi et al., 1998). The ectodomain region has the most efficient viral entry activity, 

independent of the transmembrane region or cytoplasmic tail. The gD-binding region 

of both nectin-1 and nectin-2 is localized to the V-like domain (Martinez & Spear, 

2001). CD155 is a single-pass transmembrane glycoprotein belonging to the 

immunoglobulin (Ig) superfamily of proteins, commonly known as Poliovirus 

Receptor (PVR) due to its involvement in the cellular poliovirus infection in primates. 

CD155 functions in the establishment of intercellular adherens junctions between 

epithelial cells. The extracellular portion of CD155 is composed of three Ig-like 

domains: an outermost V-like domain, followed by 2 C-like domains (Lange et al., 

2001). The homology between CD155 and nectin-1 is high, and their binding sites on 

gD may overlap (Fan et al., 2014).  

1.1.1.4. Pathogenesis of PrV infection 

PrV is the causative agent of Aujeszky’s disease. Most mammals, except higher 

primates, and some avian species are susceptible to PrV infection. The infection 

occurs naturally in swine species, but is lethal to susceptible non-swine species 



Chapter 1 

14 

 

(Kocan, 1990). In swine, the severity of the disease depends on strain, age and 

immunological status of the infected animal. Clinical symptoms range from fatal 

affliction of the central nervous system in young animals to mild respiratory problems 

including coughing, sneezing and pneumonia in older pigs. In pregnant sows, 

infection can cause reproductive failure, such as stillbirth, abortion and mummified 

fetuses (Kocan, 1990; Nauwynck et al., 2007; Pomeranz et al., 2005).  

The common portal of entry of PrV is the respiratory mucosa (Nauwynck et al., 2007). 

The replication kinetics and characteristics of PrV in the respiratory mucosa can be 

determined by different factors, such as virus strain, inoculation route, virus load in 

the inoculum, animal age and genetic and immunological status. In naïve pigs, PrV 

primarily targets the epithelial cells of the nasal mucosa. Within 24 h it subverts the 

basement membrane and afterwards infects all sorts of cells including fibrocytes, 

endothelial cells, and mononuclear cells in the lamina propria (Glorieux et al., 2009; 

Kritas et al., 1994). Replication in lower parts of the respiratory tract is restricted, 

except when the virus is administered via aerosol or intratracheal inoculation 

(Baskerville, 1971; Miry C., 1989). A similar “plaque-wise” spread is also found in 

tonsils and lungs (Nauwynck, 1997). Lung macrophages have also been identified as 

target cells (Iglesias et al., 1989). Between 2 and 5 days post inoculation, the virus 

spreads over the whole mucosa and further into the submucosa. Virus replication 

induces an enormous influx of phagocytes which inverse attack the infected regions. 

The resulting destruction causes respiratory signs, such as sneezing, coughing, nasal 

discharge and dyspnea. The virus becomes neutralized and inactivated from 6-7 days, 

and is completely eliminated in the nasal cavity from 13 days post inoculation.  

1.1.2. Swine influenza virus 

1.1.2.1. Classification of influenza virus 

Influenza viruses are enveloped, single stranded RNA viruses of the family 

Orthomyxoviridae. All members contain a segmented, negative-sense, single-stranded 

RNA genome. The influenza virus types are distinguished by differences in the 

antigenic properties of the internal nucleoprotein and matrix 1 (M1) proteins, the 
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number of gene segments, host range and morphological characteristics of the virion. 

Influenza A viruses are further classified into subtypes based on the antigenicity of 

their hemagglutinin (HA) and neuraminidase (NA) molecules. Up to date, 18 HA 

(H1-H18) and 10 NA subtypes (N1-N10) are identified (Tong et al., 2013).   

Type A influenza infects a wide variety of animals: pigs, horses, seals, whales, and 

many different kinds of birds. Type B influenza is confined to the human population, 

though one isolate of type B infection has been reported in harbor seals (Osterhaus et 

al., 2000). Influenza C viruses infect both humans and pigs, but do not infect birds. 

Due to its limited host range and lack of genetic diversity, this influenza virus 

infection does not cause pandemics (Kida, 1992) (Table 1). 

Table 1. Differences of influenza virus subtypes 

Differences among Influenza A, B and C viruses 

 
Influenza A Influenza B Influenza C 

Genetics 8 gene segments 8 gene segments 7 gene segments 

Structure 
10 viral proteins 

M2 unique 

11 viral proteins 

NB unique 

9 viral proteins 

HEF unique 

Host range 

Human, swine, 

equine, avian, 

marine mammals 

Human Human, swine 

Clinical features 

Mild to severe disease, 

large pandemic, 

significant mortality 

Mild to severe disease, 

no pandemic 
Mild disease 

HEF: hemagglutination, esterase and fusion activity; NB: membrane protein 

1.1.2.2. Virion structure 

The virion has spherical or filamentous forms with a diameter ranging between 80 and 

120 nm (Harris et al., 2006). The virion consists of three major components: an outer 
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envelope, the matrix and 8 internal ribonucleoproteins (RNPs) (Fig. 2). The envelope 

is a lipid bilayer derived from the host cell membrane during virus assembly. It 

consists of spike glycoproteins HA, NA and the ion-channel M2. HA is a homotrimer 

composed of three identical subunits, and each HA subunit consists of two 

disulfide-linked polypeptides. The HA is synthesized as a precursor protein (HA0) 

which is subsequently cleaved into HA1 and HA2 polypeptides, linked by disulfide 

bonds. Activation of HA0 cleavage can occur either extracellular by trypsin-like 

proteases after the virus has been released from the cell or intracellular by furin-like 

proteases in the trans-Golgi network (Bottcher-Friebertshauser et al., 2010; Zhirnov et 

al., 2002). Antigenic sites and sites for binding to cellular receptors are located in the 

globular head of the molecule. The viral NA is an enzyme that catalyzes the removal 

of terminal N-acetyl neuraminic acid (sialic acid, SA) from glycoproteins or 

proteoglycans. The NA spike has a mushroom-like shape. Electron micrographs of 

isolated neuraminidase “heads” are tetramers (Wrigley et al., 1973) and the stalk of 

the neuraminidase varies in length (Els et al., 1985; Mitnaul et al., 1996). As in HA, 

the antigenic sites and the enzyme active site are located in the mushroom-shaped 

head. The M2 protein is an integral membrane protein which is also present in a minor 

percentage on the viral envelope. Influenza type B virus does not possess the M2 ion 

channel (Ruigrok, 1998).   

Interior to the envelope is the matrix, also called M1 protein, associated with both the 

envelope and the RNPs. This protein forms frame structure to the virion and is 

important for virus assembly. The central core of the virion consists of eight 

nucleocapsid segments. Each nucleocapsid is composed of an RNA segment 

intimately associated with the viral nucleoprotein (NP), and three polymerase proteins 

PB1, PB2, and PA bound to one end. More recently, the novel influenza A virus 

protein PA-X was discovered. PA-X is a fusion protein that incorporates the 

N-terminal domain of PA (191 amino acids) with a short C-terminal domain (61 

amino acids) encoded by an overlapping ORF (‘X’) in segment 3 that is accessed by 

+1 ribosomal frameshifting (Jagger et al., 2012). Lastly, NS1 and NS2 (or nuclear 
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export protein NEP) which were once considered to be non-structural proteins, are 

present within virions. NS1 helps the viruses escape the anti-viral immune response of 

the host (Das et al., 2008; Min & Krug, 2006). NS2 mediates the nuclear export of 

virion RNAs by acting as an adaptor between viral ribonucleoprotein complexes and 

the nuclear export machinery of the cell (O'Neill et al., 1998). Two non-structural 

proteins have been identified: PB1-F2 and PB1-N40. The PB1-F2, which is not 

expressed by all influenza A viruses, may promote apoptosis of monocytes and other 

immune cells (Chen et al., 2001; Conenello et al., 2007).  

 

 

 

 

 

 

 

Figure 2. Schematic structure of an influenza A virion. Three viral surface proteins: haemagglutinin 
(HA), neuraminidase (NA) and M2, comprise the envelope. The matrix protein M1 associates inside 
the viral membrane. Eight negative-stranded RNA segments are packaged into the particle as 
ribonucleoproteins in complex with nucleocapsid protein (NP) and the viral polymerases PA, PB1 and 
PB2. Adapted from (Subbarao & Joseph, 2007). 

1.1.2.3. HA as determinant of receptor binding specificity 

The influenza viruses attach via the HA protein to sialylated glycan receptors to infect 

host cells. HA is a homotrimeric type I transmembrane protein with an ectodomain 

composed of a globular head and a stem region. Each HA subunit is composed of two 

disulfide bond-linked chains, HA1 and HA2, which are formed by proteolytic 

cleavage of the HA0 precursor. The binding activity of influenza viruses for different 

SA-Gal linkage types is mainly determined by the receptor binding site (RBS) which 

is located in the globular head of HA1. The amino acid residues making up this RBS 
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are in general located at similar amino acid positions, regardless the virus subtype. 

Receptor binding specificity is primarily distinguished by recognition of the terminal 

sialic acid and its linkage to the vicinal galactose of carbohydrates. Influenza viruses 

were first described in 1941 to be able to agglutinate and elute from red blood cells 

(Hirst, 1941). This ability was subsequently found to be sialic acid dependent by the 

treatment of the red blood cells with Vibrio cholerae neuraminidase (VCNA) 

(Gottschalk, 1957). Later on, by using red blood cells and cells expressing only a 

certain type of SA, the HA of human and animal influenza viruses are described to 

have different receptor specificity (Rogers & Paulson, 1983). Apart from 

hemagglutination assay with resialylated cells, receptor binding specificity of 

influenza viruses has also been studied by a solid-phase virus binding assay with 

sialo-glycoconjugates (Gambaryan & Matrosovich, 1992), a thin layer 

chromatography (TLC) virus overlay assay with sialo-glycoconjugates (Muthing & 

Unland, 1994), and by glycoarray analysis with synthetic and natural glycans (Stevens 

et al., 2006a; Stevens et al., 2006b). Overall, the HA of human influenza viruses 

attach to sialic acids that are α2,6 linked to galactose (Gambaryan et al., 1997; 

Matrosovich et al., 2000); pig influenza viruses either attach to both α2,3-SA and 

α2,6-SA, or exclusively to α2,6-SA (Rogers & Paulson, 1983), while avian influenza 

viruses have a preference for sialic acids that are linked to the galactose in an α2,3 

linkage (Nobusawa et al., 1991; Rogers & Paulson, 1983). These gross differences in 

receptor binding properties are important determinants of virus host range and cell 

and tissue tropism. Furthermore, the development of printed covalent glycan arrays by 

the Consortium for Functional Glycomics allows a clear differentiation of what sugar 

structures bind to a given lectin (Blixt et al., 2004). Binding assays which allow the 

investigation of hundreds of different sialylated glycan structures, have demonstrated 

that influenza virus receptor specificity also involves structural modifications of the 

sialic acid and overall glycan (Gambaryan et al., 2005; Stevens et al., 2006b). 

1.1.2.4. Influenza virus receptors 

Sialic acids (SA) are derivatives of neuraminic acid. Neuraminic acid is a negatively 
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charged nine-carbon sugar that contains a pyranose ring with a carboxylic group, an 

amino group and a glycerol tail. The N-acetyl derivative of neuraminic acid is shown 

in Figure 3. N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid 

(Neu5Gc) are the most prevalently terminal SAs found in mammals (Varki & Varki, 

2007). The latter are abundantly present in pig, horse, mouse and a number of bird 

species, but humans and some avian species like chicken or other poultry, do not 

contain Neu5Gc or only minor quantities (Chou et al., 1998; Muchmore et al., 1998; 

Schauer, 2009; Walther et al., 2013).  

 

Figure 3. Chemical structure of N-acetylneuraminic acid 

Lectin histochemistry is the most common method to determine the receptor 

distribution pattern in tissue sections. Plant derived lectins, such as Sambucus nigra 

agglutinin (SNA) and Maackia amurensis agglutinin (MAA), specifically recognize 

and bind α2,6-SA and α2,3-SA, respectively. There are two different isotypes of MAA: 

MAA-1 (also known as MAL or MAM) and MAA-2 (also known as MAH). MAA-1 

binds primarily to SAα2,3Galβ1-4GlcNAc that is found in N-glycans and O-glycans. 

MAA-2 preferentially binds to SAα2,3Galβ1-3GalNAc in O-glycans. An alternative 

method to study sialic acid receptors is determination of the pattern of viral 

attachment (PVA) by virus histochemistry (van Riel et al., 2007; van Riel et al., 2010). 

Besides sialic acids, the overall glycan structures, including the number of glycan 

branches, fucosylation, and the presence of N-acetyllactosamine repeats, can 

influence influenza virus receptor binding. This encouraged further elucidation of the 

glycome of the respiratory tissue of different influenza virus host species. A method 
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using high-performance liquid chromatography (HPLC) coupled with matrix-assisted 

laser desorption/ionization time-of-flight (MALDI-TOF-MS) has been developed to 

determine the precise N-glycan structures and quantitative analysis of those N-glycans. 

N-glycans derived from tissues of interest were enzymatically released, fluorescent 

labeled, separated according to charge, size and hydrophobicity, and structurally 

identified by a two-dimensional (size and hydrophobicity) HPLC mapping technique 

and MALDI-TOF mass spectrometry before and after exo-glycosidase digestion 

(Walther et al., 2013). 

Table 2. Sialic acid expression in different tissues of different species 

 
SA expression in tissues determined by lectin histochemistry 

 

Nasal 

mucosa 
Nasopharynx Trachea Bronchi Bronchiole 

Alveolar 

cells 
Intestine Colon 

H
um

an
 α2,3 +→+++ +→+++ +→+++ +→+++ +++ +++ ND ND 

α2,6 +++ +++ +→+++ +→+++ +→++ + ND ND 

Sw
in

e 

α2,3 -→++ -→++ -→++ -→++ -→++ 
+→ 

+++ 
ND ND 

α2,6 +++ +++ 
++→ 

+++ 

++→ 

+++ 
+++ 

+→ 

+++ 
ND ND 

C
hi

ck
en

 α2,3 ++ ++ + +++ +++ +++ +++ ++ 

α2,6 + + + ++ ++ ++ + + 

ND: not determined 

The expression pattern of α2,6-SA and α2,3-SA variants differs between animal 

species and different tissues and cell types within one species. An overview of the 

receptor distribution in different species and tissues is shown in Table 2. In humans, 

α2,6-SAs are expressed more abundantly in the upper respiratory tract compared to 

the lower respiratory tract, and α2,3-SAs are widely expressed in the respiratory tract 

of humans. Both α2,6-SAs and α2,3-SAs were found in ciliated epithelium, goblet 

cells and submucous glands in the bronchus as well as pneumocytes of the alveoli 
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(Nicholls et al., 2007). Pigs, though considered to be a “mixing vessel” of human and 

avian influenza viruses, possess similar sialic acid distribution to the human tissues 

(C., 1990; Ito et al., 1998; Nelli et al., 2010; Van Poucke et al., 2010). The α2,6-SAs 

were expressed dominantly along the porcine upper respiratory lining. There was a 

progressively increased expression in α2,3-SA from the bronchi down to the alveoli. 

The α2,3-SA receptors were more dominantly expressed in the epithelial lining of the 

lower respiratory tract (bronchioles and alveoli) (Nelli et al., 2010). Avian species 

have α2,3-SA and α2,6-SA in both the respiratory and intestinal tract, although there 

are differences in the abundance of these receptors between different species (Costa et 

al., 2012; Franca et al., 2013; Kimble et al., 2010). Both α-2,3 and α-2,6 receptors 

were present in the respiratory and intestinal tracts of the chicken, common quail, 

red-legged partridge, turkey, and golden pheasant. In ostriches, the expression of the 

receptor was basically restricted to α-2,3 in both the respiratory and intestinal tracts. 

1.1.2.5. Structure, function and role of neuraminidase 

The receptor-destroying activity of influenza virus was first observed by Hirst (Hirst, 

1941) and the substrate was identified by Gottschalk as N-acetylneuraminic acid, one 

of the sialic acids, thus designating the enzyme as neuraminidase (sialidase) 

(Gottschalk, 1957). Later on, neuraminidase “heads” released by pronase from a 

number of strains of H2N2 and H3N2 influenza virus were crystallized (Laver, 1978). 

Fig. 4A shows the three-dimensional (3D) structure of influenza A neuraminidase. The 

NA is a tetramer of 4 identical polypeptides partially stabilized by metal ions bound 

on the symmetry axis. Each polypeptide contains about 470 amino acids arranged in 

four domains, an N-terminal cytoplasmic sequence, followed by a 

membrane-anchoring transmembrane domain and a hypervariable stalk, connecting to 

a globular “head” domain that houses the enzyme active site (Fig. 4B). Sequences of 

neuraminidase from influenza A and B strains can differ by as much as 75%. 

Nevertheless, some residues scattered along the neuraminidase polypeptide are totally 

conserved among all strains. The structure of the NA globular head domain is 

remarkably conserved across subtypes. Additionally, it is recently reported that an 
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eight amino acid fragment in the NA active site is 100% conserved in all influenza A 

virus subtypes as well as in the NAs of influenza B strains (Doyle et al., 2013a; Doyle 

et al., 2013b). This amino acid sequence, “ILRTQESEC”, is located between residues 

222 and 230 (N2 numbering) in the enzymatic active site. When the linear 

neuraminidase polypeptide folded into its three-dimensional structure, these 

conserved residues all came together and clustered on the rim and walls of the pocket. 

These pockets were identified as the catalytic sites by soaking substrate (sialic acid) 

into neuraminidase crystals and solving the structure of the complex (Varghese et al., 

1983). There are 40–50 NA spikes per virion and these occur in clusters amidst 300–

400 hemagglutinin (HA) spikes on an average sized virion of diameter 120 nm. The 

highly conserved structure of NA active site makes it an ideal target for 

structure-based drug design. 

 

 

 

 

 

 

 

 

 

 

Figure 4. The structure of influenza A Virus NA is highly conserved. (A) 3D crystal structure of the 
globular head domain of the NA from A/Brevig Mission/1/1918 (H1N1) (PDB ID: 3B7E), shown as a 
tetramer. (B) Schematic of the NA protein showing the cytoplasmic, transmembrane, hypervariable 
stalk, and globular head domains, using amino acid residue numbering from the NA of A/Brevig 
Mission/1/1918 (H1N1). Adapted from (Wohlbold et al, 2014).  
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Substrate specificity assays showed that all influenza viruses had similar specificities 

for α2,3-linked sialic acid. Avian and early N2 human viruses showed marginal 

activities for α2,6-linked sialic acid. The swine and human viruses cleave α2,6-linked 

sialic acid more efficiently than the avian viruses, but the activity does not exceed the 

one that cleaves α2,3-linked sialic acid (Kobasa et al., 1999). NA is needed for the 

successful detachment of newly formed progeny virus particles from host cells 

(Wagner et al., 2000). Secondly, NA may promote virus entry into target cells during 

the initial stage of infection (Ohuchi et al., 2006). Moreover, the enzymatic activity of 

NA is considered to facilitate influenza virus infection by penetrating respiratory tract 

mucus and cleaving decoy receptors from the glycocalyx of epithelial cells (Cohen et 

al., 2013).  

1.1.2.6. Pathogenesis of SIV infection 

Up to 50% of the acute outbreaks of respiratory disease in pigs on commercial farms 

are caused by SIV or by a combination of SIV with bacteria (Loeffen et al., 1999). 

SIV infection is generally limited to the epithelial cells of the respiratory tract, 

especially the nasal mucosa, tonsils, trachea and lungs. The infection in the bronchi, 

bronchioles and alveoli is the most severe, and the virus load can reach up to 108 

mean tissue culture infectious dose (TCID50) per gram (Heinen et al., 2000; Van 

Reeth et al., 1999). The virus is shed via nasal secretions and transmitted through 

nasal virus shedding, pig-to-pig contact and aerosol formation (Van Gucht et al., 

2006). The disease spreads rapidly in a herd, whereas the virus can be cleared within 

1 week after infection (Van Reeth, 2007).  

All three virus subtypes (H1N1, H3N2, H1N2) can cause swine influenza, with no 

distinguishable differences in virulence between subtypes or strains. Morbidity is high 

but mortality is low. Only when immunological naïve pigs are infected, the animals 

display typical symptoms characterized as fever, anorexia, lethargy, nasal and ocular 

discharge, coughing, sneezing and dyspnea. This clinical appearance can be observed 

following both a natural infection and an experimental intratracheal inoculation with a 

high virus dose. The animals recover within 1 week after onset of the disease 
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(Kitikoon et al., 2006; Van Reeth, 2007). However, subclinical influenza virus 

infections occur frequently and pigs can be infected with one or more influenza virus 

subtypes without showing clinical signs (Maes et al., 2000; Olsen, 2006). 

1.2. Airway mucus and its contribution to innate immunity 

Epithelial surfaces including the respiratory, gastrointestinal and urogenital tracts in 

contact with the outer environment are protected by mucus layers. Although 

possessing common properties such as heterogeneous in the composition and 

viscoelastic, the airway mucus may have co-evolved with its host and obtained unique 

functions to exclude the host-specific pathogens.  

 

 

 

 

 

 

 

 

 

Figure 5. Schematic structure of respiratory mucosa. The apical epithelium is lined by a thin layer 
of airway surface liquid produced by goblet cells and submucosal gland mucous cells. The cilia of the 
epithelial cells reside in the periciliary fluid layer with the mucus on top. Interspersed between the 
ciliated epithelial cells are surface secretory (goblet) cells and submucosal glands. Adapted from 
(Bruce M. Koeppen). 

1.2.1. Airway mucus and its thickness 

Airway mucus is heterogeneous, viscoelastic biogel that lines the respiratory tract. 

The latter consists of the mucus (gel) layer, the periciliary fluid or sol layer, 
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epithelium, basement membrane and lamina propria from the lumen (Fig. 5). Together 

with the underlying periciliary fluid, the mucus layer forms the airway surface liquid 

(ASL). Mucus is the secretory production of the goblet cells as well as the 

submucosal glands, which are located between the spiral bands of smooth muscle and 

the cartilage plates. The gel layer contains a high concentration of oligomerized 

glycoproteins, and is therefore highly viscous and elastic. The periciliary fluid 

contains mainly non-oligomerized glycoproteins, thus it possesses lower viscosity and 

elasticity (Van der Schans, 2007). 

The thickness of the mucus varies strongly and is dependent on the species, location 

in the respiratory tract, methods of measurement and the presence of a pathologic 

condition. It is believed that the periciliary fluid layer has a depth equal to the length 

of the cilia, 5-10 µm (Derichs et al., 2011; Widdicombe et al., 1997). However, the 

mucus gel thickness is controversial. Due to technical limitation, differentiating gel 

and sol phases is practically impossible. Therefore, the thickness of gel and sol phases, 

which together forms the airway surface liquid, is normally taken together in one 

measurement. As summarized in Table 3, there is remarkable variability in the 

thickness of the airway surface liquid depending on species, locations and methods of 

measurement. Generally, the airway surface liquid in large airways is thicker than the 

one in small airways; the mucus under pathological conditions is thicker than that in 

healthy individuals; it is not correlated with the size of animals. For instance, the 

thickness of the airway surface liquid in healthy humans varies between 10 and 30 μm 

in the trachea and between 2 and 5 μm in the bronchi, while in cystic fibrosis patients, 

the mucus layer is much thicker, ranging between 10-55 μm (Button et al., 2008; 

Johnson, 2011). The airway surface liquid of the rapidly frozen bovine trachea was as 

thin as 20 µm measured by low temperature scanning electron microscopy (Wu et al., 

1998), whereas, the airway surface liquid of guinea pig trachea was more than 100 

µm thick after creating a small window in the trachea and scanning through the ASL 

with an electrode (Rahmoune & Shephard, 1995). 

1.2.2. Mucociliary beating and mucus transport  
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Mucociliary clearance is a critical host defense mechanism of the airways, which is an 

outcome of cilia beating in the mucus layer. Mucus traps inhaled particles and is 

transported by ciliated cells towards the pharynx where it gets swallowed. Upon 

arrival in the stomach, the pathogens become degraded by the low pH and enzymes. 

Effective mucociliary clearance requires both appropriate mucus production and 

coordinated ciliary beating. The mucus flow rate is influenced by the thickness of the 

periciliary fluid layer, frequency of the ciliary beating, airflow, inflammations and the 

viscoelasticity of the mucus.  

Table 3. Thickness of airway surface liquid in the trachea of different species 

Species Methods Thickness (µm) Reference(s) 

Sheep Light microscopy 33±5 (Seybold et al., 1990) 

Guinea pig 
Microelectrode 
manipulation 

87±51 
(Rahmoune & 

Shephard, 1995) 

Bovine 
Rapid 

freezing/electron 
microscopy 

23±6  (Wu et al., 1998) 

Mouse 
Confocal 

fluorescence 
microscopy 

45±5  
(Jayaraman et al., 

2001) 

Human 
Confocal 

fluorescence 
microscopy 

55±5  
(Jayaraman et al., 

2001) 

 

The thickness of the periciliary layer provides the critical distance that allows optimal 

ciliary contact with the mucus layer above. Under normal conditions, the cilia beat 

while completely immersed in periciliary fluid, with only the tips of the cilia coming 

in contact with the mucus blanket. If the serous fluid is too deep or too shallow, the 

mucociliary clearance rate will decrease (King et al., 1993). 

Airway mucus rheology also plays an important role in maintaining the mucociliary 
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clearance. The elasticity of mucus is important for clearance by cilia because it 

efficiently transmits energy, with little energy loss. An increased viscosity of the 

mucus results in energy loss, but is necessary for mucus to be displaced and either 

expectorated or swallowed. The ratio of viscosity to elasticity is an important 

determinant of mucociliary clearance. Increasing viscosity at constant elasticity can 

cause a decreased mucociliary clearance rate. A balance between these factors must be 

maintained for optimal mucociliary clearance (King, 1998).  

Another key determinant of the rate of mucociliary clearance is the ciliary beating 

amplitude and frequency that determine maximal velocity at the tips of the cilia, 

which is important for the maximal forward velocity of the mucous layer. The beating 

of groups of neighboring cilia is coordinated into “metachronal waves” as a result of a 

similarity in viscous forces experienced by the cilia at a given location. In principle, 

the faster the cilia beat, the higher the mucociliary clearance rate and the longer cilia 

are, the faster they clear mucus because they can generate greater forward velocities. 

The density or spacing between cilia probably also affect the mucociliary clearance 

rate because the greater the distance between the cilia, the more energy will be 

dissipated in the mucus, reducing the net forward velocity (King, 2005).  

Infections can impair the mucociliary clearance. It is recently reported that 

pneumococci infections cause severe lesions in the F-actin cytoskeleton that affect 

both the architecture and the mechanical stability of the ciliated respiratory epithelium. 

The disintegration of the epithelium together with weakened mechanical stability 

consequently causes turbulence in the mucus flow, resulting in a hampered 

mucociliary clearance (Fliegauf et al., 2013).  

Due to the mucocilary clearance, the mucus is renewed rapidly. In the healthy 

maxillary sinus, the mucus layer is renewed as fast as every 20 to 30 min. The nasal 

mucus is cleansed and replaced within 10 min, and lower respiratory mucus is 

transported up and out of the lungs at rates of ~100 μm/s, clearing the lungs within 

minutes to hours in humans (Cone, 2009). This rapid turnover adds to the protective 

features of the mucosa.  
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Figure 6. Schematic structure of mucin glycoproteins. (A) Polymeric mucins are exceedingly large 
molecules (up to 50 MDa in the molecular weight), consisting of up to 20 monomers. A mucin 
monomer has several glycosylated domains which are separated by non-glycosylated domains (yellow) 
containing approximately 10 cysteines out of 110 amino acids. Glycans (green) are O-linked via 
N-acetylgalactosamine (GalNAc) to the hydroxyl groups of serine or threonine residues of the mucin 
backbone (red). (B) A side chain oligosaccharide consists of 1 to 20 sugar monomers, which starts with 
GalNAc and mostly terminates with N-acetylneuraminic acids. (C) Chemical structure of a mucin side 
chain oligosaccharide marked in B. The terminal N-acetylneuraminic acid is α2,3- or α2,6-linked to 
Galactose (Gal). The linkages (red arrows) are the target sites of neuraminidase.  
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a) Mucins 

Heavily o-glycosylated glycoproteins, known as mucins, are the major component of 

mucus. Mucin content usually ranges between 2 and 5% by weight in healthy 

individuals for gastrointestinal, cervical, ocular, nasal, and lung mucus despite 

significant differences in glycosylation (Lai et al., 2009; Thornton et al., 2008). A 

mucin monomer has several ‘PTS’ (proline, threonine and serine) domains which are 

highly glycosylated with glycans covalently linked via N-acetylgalactosamine 

(GalNAc) to the hydroxyl groups of serine or threonine residues of the mucin 

backbone. The sugar chains, containing 1 to 20 sugar monomers, are mostly 

terminated with N-acetylneuramic acids (Rose & Voynow, 2006; Thornton et al., 2008) 

(Fig. 6A and B). The N-acetylneuraminic acids are attached to either galactose or 

N-acetylglucosamine units via α2,3- or α2,6-linkages, which can be catalyzed by 

neuraminidase (Fig. 6C). 

Seven mucin-encoding genes (Muc1, Muc2, Muc4, Muc5ac, Muc5b, Muc6 and 

Muc13) have been identified in the porcine respiratory tract, of which Muc1, Muc4 

and Muc13 encode membrane associated mucins (Kim et al., 2012a; Kim et al., 

2012b) and the rest express the secreted, gel-forming mucins. Membrane bound 

mucins consist of a large, heavily O-glycosylated extracelluar domain at the 

N-terminal, a single and short transmembrane domain and a C-terminal cytoplasmic 

domain (Constantinou et al., 2011). The extracelluar domain is often cleaved by 

proteolysis that allows it to be shed from the cell. Transmembrane mucins play 

important biological roles in cell signaling, through extracellular domain-mediated 

ligand binding or by interacting with receptors for growth and differentiation factors. 

Four secreted mucins are expressed in the pig airways: MUC2, MUC5AC, MUC5B 

and MUC6 (Kim et al., 2012a; Kim et al., 2012b). In general, the genes and 

corresponding proteins of secreted mucins are much larger than those of 

cell-associated mucins. Polymeric mucins isolated from airway secretions share a 

common macromolecular organization. These polymers consisting of between 2 and 

20 subunits, are polydisperse in mass (2-50 MDa) and length (0.5-10 μm) and have a 



Chapter 1 

30 

 

random-coil conformation in solution. Secreted mucins contain characteristic cysteine 

rich domains (also referred to as disulfide rich domain), which are involved in mucin 

oligomerization, a property essential for their mucus gel-forming ability (Cone, 2009). 

In the normal respiratory tract, the secreted mucins, MUC5AC and MUC5B, provide 

the major framework of the airways mucus gel and are determinants of mucus 

rheological properties. The two major sources of airway mucus are epithelial goblet 

cells that produce predominantly MUC5AC, and mucous cells of the submucosal 

glands that secrete MUC5B (Rose & Voynow, 2006; Thornton et al., 2008).  

b) Lipids 

The airway surface liquid contains neutral lipids, phospholipids and glycolipids. 

These lipids are located mainly in the surfactant layer between the periciliary fluid 

and the mucus gel layer (Kim et al., 1997; Nadziejko et al., 1993). These lipid 

molecules are associated with mucins prior to exocytosis, probably within the 

secretory granules. Several reports (Baseman et al., 1980; Bhaskar et al., 1986; 

Jacquot et al., 1992; Jozwiak et al., 1984) have demonstrated that phospholipids, 

glycosphingolipids, glycerides and sterols were associated to mucins isolated from 

supernatants of animal and human tracheal explants or airway epithelial cell cultures. 

The amount of lipids ranges from 5-15% of the dry material.  

c) Antimicrobial agents  

The respiratory tract mucosa plays an important role in innate immunity by 

constituting a physical barrier to microorganisms as well as by producing an array of 

defense effector molecules. In addition to their protective actions against invading 

microorganisms and the destructive effects of microbial and host proteinases on the 

epithelium, these defense effector molecules may regulate innate and adaptive 

immunity. The best studied antiviral molecules present in the airway secretions 

include defensins, secretory leukocyte protease inhibitor, lactoferrin, collectin and so 

on (Lillehoj & Kim, 2002; Tjabringa et al., 2005). 

Defensins are small (3 to 5 kDa in size) antimicrobial and antiviral proteins secreted 
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by neutrophils and epithelial cells. They have been extensively demonstrated to 

protect the skin and mucosal membranes of the respiratory, genitourinary and 

gastrointestinal tracts against microbial infections. Mammalian defensins can be 

classified into three subfamilies (α, β and θ-defensins) based on the arrangement of 

the canonical six cysteine motif and the disulfide bridges that stabilize the β sheet 

structure (Ganz, 2003; White et al., 1995). The α-defensins are produced by 

neutrophils, Paneth cells in the crypts of the small intestine and by epithelial cells of 

the female genital tract (Fang et al., 2003; Lundy et al., 2004; Muller et al., 2002). 

β-Defensins are secreted by epithelial cells, and they are expressed at high levels the 

respiratory tract (Harimurti et al., 2011; Hiratsuka et al., 1998; Yanagi et al., 2005). 

Up till now, only β-defensins have been identified in pigs (Sang et al., 2006; 

Veldhuizen et al., 2008). Defensins have a dual role in antiviral activity. One aspect of 

antiviral activity involves direct interaction with viral envelopes, and the other 

involves indirect antiviral activity through interactions with potential target cells. 

These defensin-cell interactions are complex and possibly mediated by interacting 

with cell-surface glycoproteins and/or interfering with cell-signaling pathways that 

are required for viral replication. 

Secretory leukocyte protease inhibitor is an abundant antimicrobial protein of the 

airway secretions and as such is thought to play an important role in protecting the 

hosts from microbes. The antimicrobial activity of the secretory leukocyte protease 

inhibitor has been shown to reside in the N-terminal domain of the protein (Doumas et 

al., 2005; Reviglio et al., 2007) and may be mediated via the cationic charge of 

secretory leukocyte protease inhibitor, which would allow it to disruptively interact 

with the microbial cell membrane. In addition, secretory leukocyte protease inhibitor 

can inhibit human immunodeficiency virus (HIV) replication in monocytes and it has 

recently been shown that secretory leukocyte protease inhibitor binds the annexin II 

protein on the surface of macrophages, an important cellular cofactor supporting HIV 

infections (Ma et al., 2004; Wahl et al., 1997). 

Lactoferrin, a member of the transferrin family, is one of the most abundant 
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antimicrobial proteins secreted into the airway lumen (Dubin et al., 2004). It is also 

present in milk, saliva, tears, seminal fluid, endocervix and vaginal secretions (Baker 

& Baker, 2004; Dubin et al., 2004; Kutta et al., 2008). Lactoferrin is an important 

host defense effector against pathogenic microorganisms and has also been shown to 

be capable of inhibiting replication of a wide range of viruses. Lactoferrin either 

directly binds to virus particles, as described for HCV (Iwasa et al., 2002), polio- and 

rotavirus (Superti et al., 1997; Superti et al., 2001), HSV (Fujihara & Hayashi, 1995; 

Jenssen et al., 2008) and HIV (Berkhout et al., 2002), or binds to the viral cellular 

receptor or co-receptors, thereby preventing the virus entry or replication. For 

instance, lactoferrin has been reported to bind HSPGs which tend to be used as 

primary receptor by many viruses.  

Surfactant protein D (SP-D) is a member of the collectin family of the mammalian 

C-type lectins present in the lining fluid of the respiratory tract (Grubor et al., 2006). 

There is increasing evidence that collectins are involved in innate host defense against 

various bacterial, fungal, and viral pathogens. Collectins form multimeric structures 

resembling C1q (the first component of the complement cascade), and consist of 

collagenous N-terminal domains and globular C-terminal, carbohydrate binding 

domains (Crouch et al., 2005; Lim et al., 1994). SP-D is produced primarily by 

alveolar type II cells in the alveolar level of the lung, and by tracheobronchial glands 

and nonciliated bronchiolar cells in the proximal lung (Schmiedl et al., 2009). SP-D 

binds to alveolar macrophages and increases macrophage association with 

gram-negative bacteria (Pikaar et al., 1995). In addition, SP-D forms a part of the 

defense against influenza virus (IAV) infection. It is recently shown that recombinant 

porcine SP-D has antiviral activities against a broad range of IAV strains mainly by 

preventing the virions from binding to their target cells in vitro (Hillaire et al., 2011), 

as well as by reducing viral replication and spread ex vivo (Hillaire et al., 2014). 

1.2.4. Mucus barrier to infection 

Airway mucus plays a crucial role in protecting the respiratory mucosa from diverse 

pathogens, noxious particles and inhaled gases. Some of this protection is 
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physical-mucus forms a highly glycosylated, crosslinked network that inhibits or 

delays via its viscosity the migration of pathogens. Some protection is 

chemical-mucins may bind to the traversing pathogens, thereby inhibiting their 

invasion. Moreover, mucus presents a vast array of antigenically active 

oligosaccharides that serve as recognition sites for surface receptors of bacteria and 

viruses. However, pathogens may have developed unique strategies to overcome the 

mucus barrier. As different types of mucus share similar mucin content and 

viscoelastic properties, they may exert resembling mechanisms to affect different 

pathogens including viruses, bacteria and parasites. Thus, interactions of bacteria and 

parasites, besides viruses, with the corresponding types of mucus they may contact, 

will be reviewed and discussed in this part. 

1.2.4.1. Viruses and mucus 

Most viruses initiate their infection at the mucosal surface of the respiratory tract, 

gastrointestinal tract, eye and/or cervical vagina which are coated by mucus. The 

interactions between virus and mucus have not been well demonstrated. Further, 

information about how respiratory viruses interact with the airway mucus is still 

lacking. Up till now, only a few data converning the virus interaction with human 

cervicovaginal mucus or porcine gastric mucins are available. It is reported that two 

capsid virus-like particles, human papillomavirus (55 nm) and Norwalk virus (38 nm) 

(Olmsted et al., 2001), diffused rapidly in human cervicovaginal mucus. In contrast, 

large, enveloped viruses such as herpes simplex virus (HSV) (Lai et al., 2010), and 

HIV (Shukair et al., 2013) were highly trapped in the cervicovaginal mucus. It is 

hypothesized that the small capsid viruses could drill their way through the mucus 

because of the neutral charge of viral capsids and probably also due to their size. On 

the other hand, another research group analyzed the mobility of human papillomavirus 

in reconstituted porcine gastric mucin solution, and found that the virus was severely 

hindered. They further discovered that the gastric mucin solution was able to protect 

an underlying cell layer from infection by human papillomavirus, Merkel cell 

polyomavirus, and a strain of influenza A virus (Lieleg et al., 2012). Due to the lack 
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of information, in-depth investigations will be needed in order to unravel mechanisms 

behind virus diffusion or immobilization in mucus.  

Mucins display many kinds of side chain glycans that are found on the cell surface. 

For instance, sialic acids, which are used by influenza viruses, reoviruses, 

adenoviruses, enteroviruses, and coronaviruses for binding, are present both at the 

epithelial surface and on mucins. Whereas, little information exists on whether and 

how viruses cope with the mucin carbohydrates to avoid attaching to the decoy 

receptors, and how this affects their pathogenicity.  

1.2.4.2. Bacteria and mucus 

The mucus layer and its components form part of the innate defense against pathogens, 

various kind of bacteria have evolved remarkable strategies to circumvent (or even 

subvert for their own advantage) this barrier.  

First, mucins may serve as a primary target for bacteria to colonize. Mucin 

glycoproteins polymerize, forming a framework to which certain microbial 

populations can adhere. The best studied example of mucus-targeting bacterial 

adhesins is the mucus-binding protein, MUB, produced by Lactobacillus reuteri 

(Mackenzie et al., 2010). The MUB protein contains repeated functional domains, 

referred to as Mub domains, which are responsible for the protein’s adhesive 

properties. In addition, various carbohydrate moieties have been identified as 

receptors for Pseudomonas aeruginosa adhesion (Hazlett et al., 1993; Prince, 1992).   

Secondly, bacterial pathogens typically breach the mucus layer by employing mucus 

degradative enzymes, which destabilize the mucus as well as removing mucin decoy 

carbohydrates for bacterial adhesins. Mucinases (mucin degrading enzymes), 

sialidases, N-acetyl neuraminate lyases, glycosulfatases, and sialate o-acetylesterases 

are some of the mucinolytic enzymes produced by a broad spectrum of bacterial 

pathogens (Corfield et al., 1992; Haider et al., 1993; Homer et al., 1994). For 

example, Vibrio cholerae expresses haemagglutinin/protease (Hap) which has 

mucinolytic activity (Silva et al., 2003). The Hap mucinase was shown to detach the 

Vibrios from adhering to a mixed form of mucins consisting of MUC2, MUC3 and 
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MUC5AC serected by cultured HT29-18N2 cells (Benitez et al., 1997).  

Last but not least, chemotaxis and flagellar motility facilitates the pathogens to 

colonize and penetrate the mucus barrier. Flagellation is a shared characteristic of the 

majority of successful mucosal pathogens that are highly motile, such as 

Campylobacter jejuni and Helicobacter pylori. Motility, along with the corkscrew 

morphology of these bacteria, allows them to drill their way through the mucus layer 

to reach the epithelium. Indeed, Helicobacter pylori that have dysfunctional flagella 

show a clearly reduced ability to infect (Ottemann & Lowenthal, 2002). The elevation 

pH, which triggers the transition from gel to sol of gastric mucin has been shown to 

aid Helicobacter pylori to swim through the mucus (Celli et al., 2009).  

1.2.4.3. Parasites and mucus 

The heavily glycosylated mucins polymerize via disulphide bond formation, giving 

rise to the viscosity of mucus. Protozoan parasites interact with mucus, especially the 

major constituent mucins, in various ways: 

(1) The secreted mucins are likely to function as inhibitors for adhesins of parasites, 

as the mucins display many of the oligosaccharides that are found on the cell surface. 

Purified rat and human colonic mucins inhibit Entamoeba histolytica in vitro 

adherence to and lysis of colonic epithelial cells by binding to the amoebic galactose 

lectin (Chadee et al., 1987). Galactose and N-acetyl-D-galactosamine residues of 

mucins specifically and competitively inhibited amoebic binding to target cells via its 

heavy subunit Gal-lectin (Gottke et al., 1998). This may be due to the fact that the 

mucin preparations contain high amounts of saccharides typical of the O-linked 

carbohydrate side chains, such as N-acetyl-glucosamine, galactose, 

N-acetyl-galactosamine, fucose and sialic acid, which could bind to the surface lectin 

of Entamoeba histolytica. 

(2) Some parasites have been evolved to utilize the mucin glycans as for adhesion. 

Tritrichomonas foetus, and Entamoeba histolytica express a sialic acid-specific lectin 

which facilitate their adherence to host cells, as well as host mucins (Chadee et al., 

1987; Hicks et al., 2000). Lectin-mediated binding to mucus is one of the initial steps 
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in colonization. 

(3) Some parasites are able to degrade mucins to facilitate their passage through 

mucus barrier to reach the mucosal epithelium. Digestion of the mucus barrier by 

parasite enzymes such as glycosidases and sialidases would then allow adherence to 

the underlying epithelium. For instance, secreted E. histolytica cysteine proteinases 

degraded human colonic mucins, by depolymerizing the mucin polymeric network. 

The depolymerized mucins were then less effective in inhibiting amoebic adherence 

to target cells, probably due to loss of its viscous properties (Moncada et al., 2003; 

2005). 

(4) Mucins derivatives may be utilized by parasites as metabolic fuel. Carbohydrates 

derived from host epithelial cells, red blood cells, as well as on bacteria are the major 

energy source for parasites in the distal colon (Hicks et al., 2000). Glycan degradation 

of mucins is also likely to provide an important source of energy for the parasites. 

Specific concentrations of galactose-terminated glycoproteins, such as asialofetuin 

and mucin, can substitute for serum supplementation in culture medium and trigger 

the differentiation of the trophozoite to the cyst form (Coppi & Eichinger, 1999). 
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The mucosa of the respiratory tract is a common site for entry of many viruses. 

Concerning mucosal invasion, an explant model has been developed in our laboratory 

and it is demonstrated that alphaherpesviruses and influenza viruses behave 

differently in the respiratory mucosa. Pseudorabies virus (PrV), the causative agent of 

Aujeszky’s disease, easily invades the mucosa and submucosa for subsequent spread 

throughout the body. On the other hand, swine influenza virus (SIV), replicates almost 

exclusively in the epithelial cells in the respiratory tract. However, these explant 

models do not take into account the principle role of mucus which covers the mucosa 

and serves as the first barrier of host defense. Little is known about how respiratory 

viruses interact with the respiratory mucus. Unraveling the mechanism behind the 

penetration of viruses across the mucosal barriers has potentially significant 

implications for the development of novel antiviral strategies. The general goal of this 

doctoral research was to get a better understanding of the virus-respiratory mucus 

interaction. 

We first aimed to set up a virus tracking model using PrV, porcine respiratory mucus 

and single particle tracking, and to analyze the mobility of PrV particles in mucus 

(Chapter 3.1). Secondly, to determine if mucins are responsible for the inhibitory 

effects of mucus on virus migration, the distribution of two major types of mucins 

was examined, and the effect of mucin on PrV entry into target epithelial cells was 

studied ex vivo and in vitro (Chapter 3.2). Thirdly, as cold temperature is often 

associated with a higher incidence of respiratory viral infections, the effect of low 

temperature on the ability of PRV to overcome the mucus barrier was examined 

(Chapter 3.3). 

Despite the inhibitory activity of the respiratory mucus, the influenza virus is 

ultimately able to reach the susceptible epithelial cells. It has long been assumed that 

neuraminidase promotes the influenza virus access to target cells in the airway by 

mucus degradation. However, this concept is scarcely supported by experimental data. 

In the second part of this thesis, the mobility of swine influenza virus particles in 

mucus was examined by using single particle tracking and a virus in-capsule-mucus 
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penetration system. In addition, the role of neuraminidase in this virus-mucus 

interaction was studied by the use of a neuraminidase inhibitor and the addition of 

exogenous neuraminidase (Chapter 4). 
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3.1.1. Abstract  

Pseudorabies virus (PrV) initially replicates in the porcine upper respiratory tract. It 

easily invades the mucosae and submucosae for subsequent spread throughout the 

body via blood vessels and nervous system. In this context, PrV developed ingenious 

processes to overcome different barriers such as epithelial cells and the basement 

membrane. Another important but often overlooked barrier is the substantial mucus 

layer which coats the mucosae. However, little is known about how PrV particles 

interact with porcine respiratory mucus. We therefore measured the barrier properties 

of porcine tracheal respiratory mucus, and investigated the mobility of nanoparticles 

including PrV in this mucus. We developed an in vitro model utilizing single particle 

tracking microscopy. Firstly, the mucus pore size was evaluated with polyethylene 

glycol coupled (PEGylated) nanoparticles and atomic force microscope. Secondly, the 

mobility of PrV in porcine tracheal respiratory mucus was examined and compared 

with that of negative, positive and PEGylated nanoparticles. The pore size of porcine 

tracheal respiratory mucus ranged from 80 to 1500 nm, with an average diameter of 

455±240 nm. PrV (zeta potential: -31.8±1.5 mV) experienced a severe obstruction in 

porcine tracheal respiratory mucus, diffusing 59-fold more slowly than in water. 

Similarly, the highly negatively (-49.8±0.6 mV) and positively (36.7±1.1 mV) 

charged nanoparticles were significantly trapped. In contrast, the nearly neutral, 

hydrophilic PEGylated nanoparticles (-9.6±0.8 mV) diffused rapidly, with the 

majority of particles moving 50-fold faster than PrV. The mobility of the particles 

measured was found to be related but not correlated to their surface charge. 

Furthermore, PEGylated PrV (-13.8±0.9 mV) was observed to diffuse 13-fold faster 

than native PrV. These findings clearly show that the mobility of PrV was 

significantly hindered in porcine tracheal respiratory mucus, and that the obstruction 

of PrV was due to complex mucoadhesive interactions including charge interactions 

rather than size exclusion. 
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3.1.2. Introduction 

Herpesviruses are double-stranded DNA viruses with the potential to cause severe 

diseases in different species. Many members of the subfamily Alphaherpesvirinae 

initially replicate in the epithelial cells of the respiratory and/or genital mucosae 

(Murphy et al., 2003; Steukers et al., 2011). An important member is pseudorabies 

virus (PrV), the prototype veterinary alphaherpesvirus. PrV causes respiratory tract 

problems, nervous system disorders and abortions in pigs. After local replication in 

the epithelial cells, these viruses gain access to the connective tissue and find their 

way to blood vessels and nerve endings for spread throughout the host (Gibson et al., 

1992; Maeda et al., 1998; Nauwynck et al., 2007; Nauwynck, 1997). Different 

important barriers of the host try to hamper PrV invasion. Recently, it has been shown 

that in order to invade, different alphaherpesviruses including PrV use proper 

processes to pass an important barrier underneath the epithelium, the basement 

membrane (Glorieux et al., 2009; Steukers et al., 2011; Vandekerckhove et al., 2010). 

Importantly, prior to epithelial cell entry, a mucus layer that coats the epithelium and 

serves as the first line of defense, has to be overcome by the virus (Wittmann et al., 

1980).  

Mucus is a viscoelastic and adhesive gel that coats the non-keratinized epithelial 

surface of different mucosae. The thickness of the mucus layer varies among different 

types and species, ranging from several to more than 100 microns for the trachea of 

different animals (Sims & Horne, 1997; Varum et al., 2012; Verkman et al., 2003). 

Next to serving as a lubricant and assisting the adsorption of nutrients, the mucus 

layer acts as the body’s first barrier against microbial infections. The major 

component and property determinant are heavily glycosylated glycoproteins, known 

as mucins. The assembly of these mucins in fiber structures creates an entangled 

mucus meshwork (Lai et al., 2009c; Thornton et al., 2008). The mesh (pore) size sets 

a threshold beyond which particle diffusion is hindered: particles with diameters 

larger than this mesh size are rejected while smaller, minimally interactive particles 

should pass through the mucus. However, in addition to this size filtering mechanism, 
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mucus seems to use more sophisticated strategies to interact with the traversing 

particles, especially diverse viruses that attempt to invade the body through the 

mucosae. Olmsted et al. (Olmsted et al., 2001) reported that two capsid virus-like 

particles, human papillomavirus (diameter 55 nm) and Norwalk virus (38 nm), 

diffused rapidly in human cervicovaginal mucus, because of the neutral charge of 

viral capsids and probably also due to the size. It is hypothesized that small particles 

expose less hydrophobic patches, and are therefore limited in making polyvalent 

bonds with the hydrophobic domains distributed along the mucin fibers. However, 

Hida and colleagues described an even smaller capsid virus, adeno-associated virus 

serotype 5 (20 nm), to be highly trapped in human cystic fibrosis sputum of which the 

pore size ranged from 60 to 300 nm (Hida et al., 2011). To date, the motion of 

different viruses ranging from large enveloped viruses, such as herpes simplex virus 

(Lai et al., 2010) and human immunodeficiency virus (HIV) (Lai et al., 2009a), to 

small non-enveloped viruses, such as adenovirus (Hida et al., 2011), human 

papillomavirus and adeno-associated virus, have been investigated in mucus. 

However, these studies were limited to human cervicovaginal mucus and human 

cystic fibrosis sputum because none of the other types of mucus were readily 

available. Particularly, the interaction of aerosol respiratory viruses with healthy 

respiratory mucus has never been studied. Unraveling the mechanism behind the 

penetration of viruses across the mucosal barriers has potentially significant 

implications for the development of novel antiviral strategies. To achieve a better 

understanding in this matter, an in vitro model resembling the in vivo situation is 

needed. As PrV is commonly used as a good model for human alphaherpesviruses, it 

is highly interesting to investigate how PrV interacts with porcine respiratory mucus. 

Therefore, the main objectives of this study were to fully characterize the protective 

properties of porcine respiratory mucus, and to better understand the interactions 

between PrV and the mucus through which it invades in an attempt to unravel the 

mechanism of how PrV penetrates through porcine respiratory mucus.  

In order to measure the microstructure of porcine respiratory mucus, atomic force 
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microscopy (AFM), a high-resolution imaging technique, was used to visualize the 

surface of the mucus samples and to measure the pore size formed by the mucus 

elements. It enables to measure the forces acting between a sample and a fine tip, 

which is attached to the free end of a cantilever and brought very close to the surface. 

Attractive or repulsive forces resulting from interactions between the tip and the 

surface can lead to a deflection of the cantilever according to Hooke's law (Gadegaard, 

2006; Ramachandran et al., 2011). As such, a three-dimensional image of the sample 

surface can be obtained and the pore size can be measured with the line profiling 

feature of the AFM software. Additionally, the effective pore size of porcine tracheal 

respiratory mucus was further evaluated by analyzing the motion of polyethylene 

glycol (PEG) coupled, non-adhesive nanoparticles in function of particle size. Based 

on the theory that particle transport in heterogeneous environments is regulated by the 

local properties of the material, non-adhesive particles smaller than the effective mesh 

spacing (pore size) of the network are capable of diffusion because they tend to 

experience the lower viscosity of the interstitial space (Lai et al., 2009b; Lai et al., 

2009c).  

In this study, we have developed a model to study the virus-mucus interactions and 

demonstrated the mucoadhesive influence of porcine respiratory mucus on the 

mobility of PrV. We have implied single particle tracking (SPT) microscopy, which 

uses high speed video microscopy to track the diffusion of hundreds of particles 

simultaneously and analyzes the motion of particles. Particle trajectories are used to 

calculate time-averaged mean squared displacements (MSD) and to determine 

time-dependent diffusion coefficients, which are subsequently used to characterize 

individual particle transport modes (Suh et al., 2005). Utilizing the technique, we 

analyzed the microstructure of the porcine tracheal respiratory mucus, and detected 

the mobility of PrV and different charge modified nanoparticles in the mucus. 

3.1.3. Materials and methods 

3.1.3.1. Mucus sampling and preparation 
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Tracheal respiratory mucus was collected from porcine tracheas within 3 h after 

slaughter. Porcine tracheas were obtained with the permission of and collected from a 

local slaughterhouse (G. Van Landschoot & Zonen N.V., Adegem, Belgium) and 

stored on ice prior to mucus collection. The trachea was isolated and cut open 

longitudinally. Mucus was gently scraped with a spoon, collected with a syringe (1 ml, 

without needle), and stored at -70 °C until use. 

3.1.3.2. Atomic force microscopy 

Porcine tracheal respiratory mucus (100 µl) was evenly coated on glass (1 cm2) and 

was air-dried at room temperature, according to the protocol adapted from 

Broughton-Head et al. (Broughton-Head et al., 2007). Atomic force microscopy 

(AFM) images were obtained in ambient conditions in air using a multimode scanning 

probe microscope (Digital Instruments, Santa Barbara, CA, USA) equipped with a 

Nanoscope IIIa controller. 5 µm × 5 µm scans were recorded in tapping mode using a 

silicon cantilever (OTESPA, Veeco, CA, USA). Pore diameters were obtained using 

the line profiling feature of the AFM software (NanoScope software version 4.43r8, 

Veeco Instruments, USA). 

3.1.3.3. Preparation and characterization of nanoparticles 

Negatively charged, yellow-green fluorescent carboxylate-modified FluoSpheres® of 

different diameters, 100 nm, 200 nm and 500 nm, were purchased from Invitrogen 

(Merelbeke, Belgium). According to the protocol of Symens et al. (Symens et al., 

2011), positively charged nanoparticles were obtained as a result of amide formation 

between the carboxylate groups of the carboxylate modified FluoSpheres® and the 

primary amine group of N, N-dimethylethylenediamine. PEGylated nanoparticles 

were prepared by covalent modification of the surface carboxylate groups of 

carboxylate modified FluoSpheres® with methoxy-polyethylene glycol-amine 

(mPEGa, 2 kD, Creative PEGWorks, Winston Salem, USA.) as previously described 

(Forier et al., 2013). Particle size (diameter) and surface charge (zeta potential) were 

determined by dynamic light scattering and laser Doppler anemometry, respectively, 



Immobilization of PrV in mucus 

61 

 

using the Zetaziser Nano-ZS (Malvern, Worcestershire, UK).    

3.1.3.4. PEGylation of PrV 

The recombinant PrV Becker strain expressing green fluorescent protein fused to the 

VP26 capsid protein was a kind gift of Dr. Greg Smith (Northwestern University, 

Chicago, IL, USA). The PrV stock (108.0 TCID50/ml) was concentrated by 

ultracentrifugation at 80 000 g for 90 min at 4°C in a Type 35 rotor (Beckman, 

Fullerton, CA, USA). The pellet was resuspended in phosphate buffered saline (PBS: 

137 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl, 2 mM KH2PO4, pH 7.4), loaded upon 

a 30% sucrose cushion and followed by ultracentrifugation at 100 000 g for 3 h at 4°C 

in an SW41Ti rotor (Beckman, Fullerton, CA, USA). The virus pellet was 

resuspended in PBS to give an approximate concentration of 1010 TCID50/ml. 

Methoxy-polyethylene glycol activated by succinimidyl succinate (mPEG-NHS, 2 kD) 

(NANCOS, Huissen, Netherlands) was added to the virus suspension, giving a final 

concentration of 20 mg/ml. The coupling reaction was performed for 2 h at 25°C. 

Afterwards, unreacted mPEG-NHS and the byproducts were removed by buffer 

exchange over a centrifugal filter (50 K membrane, Millipore). The size and zeta (ζ) 

potential of the PEGylated PrV were measured with the Zetaziser Nano-ZS (Malvern) 

and the PEGylated PrV was preserved at 4°C until use.  

3.1.3.5. Real-time single particle tracking 

The trajectories of fluorescent particles in porcine tracheal respiratory mucus were 

recorded by a fast and sensitive electron-multiplying charge-coupled device (EMCCD) 

camera (Cascade II: 512; Roper Scientific, Tucson, AZ, USA) mounted on an inverted 

epifluorescence microscope (Nikon TE2000E, Nikon Belux, Brussels, Belgium) 

equipped with a 100× oil-immersion objective (Plan Apochromat, Nikon). Tracking 

experiments were performed in press-to-sealTM silicone isolators (20 mm diameter, 

0.5 mm deep, Invitrogen, Merelbeke, Belgium). Three microliters of virus suspension 

(1010 particles/ml) or nanoparticles (approximately 1010 particles/ml) were mixed with 

100 µl of porcine tracheal respiratory mucus by gentle stirring to avoid perturbation. 
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The movies were captured with the NIS Elements AR software (Nikon) at a temporal 

resolution of 46.2 ms for 5 s. The illumination time was 10 ms per frame. Trajectories 

of n ≥ 500 particles were analyzed for each experiment and at least three independent 

experiments were performed for each condition. Movies were analyzed with the 

Image Processing Software (IPS, in-house developed software) to extract x, y 

positional data over time. The time-averaged mean squared displacements (MSD) and 

apparent diffusion coefficient (Da) were calculated as a function of the time scale (t) 

for each particle.   

3.1.3.6. Data analysis 

Analysis of the movies was performed with custom made image processing software 

(Braeckmans et al., 2010). Individual particles were identified in each frame of a 

movie and their centroids were calculated. The trajectories of the particles were 

determined by a nearest neighbor algorithm. For each trajectory, the mean squared 

displacement (MSD) was calculated for the available time lags t (i.e. multiples of the 

time Δt between the images). The MSD versus t plots were analyzed by a weighted fit 

of the anomalous diffusion model (Qian et al., 1991; Saxton & Jacobson, 1997): MSD 

= Γt
α, with the transport coefficient Γ and the anomalous exponent α as free fitting 

parameters. The value of α is a measure for the mode of diffusion: for free diffusion α 

= 1 (Γ becomes equal to 4 times the diffusion coefficient), while α < 1 indicates 

hindered diffusion. The deviation of α from 1 is thus a measure for the anomaly of the 

diffusion. By analyzing the trajectories according to this anomalous diffusion model, 

distributions of the corresponding α-values can be obtained. Besides this, the apparent 

diffusion coefficient Da corresponding to the first time lag Δt was calculated 

according to the classical expression: Da = MSD/4Δt (Saxton & Jacobson, 1997). 

Note that in the case of free diffusion, Da reduces to the diffusion coefficient. 

Distributions of the apparent diffusion coefficient can be obtained by analyzing the 

trajectories of the particles. These distributions are further refined with a maximum 

entropy method (MEM) (Braeckmans et al., 2010). The MEM analysis improves the 

precision of the distributions, and removes features that are not statistically warranted 
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by the data. 

3.1.4. Results  

3.1.4.1. Microstructure of porcine tracheal respiratory mucus 

The porous nature of porcine tracheal respiratory mucus was visualized using Tapping 

Mode AFM. The color intensity shows the vertical profile of the sample surface, with 

light regions representing the highest points and the dark points representing the 

depressions and pores (Fig. 1A). Pore diameters were measured with the line profiling 

feature of the AFM software. Distribution of the pore diameters (n=500) obtained 

from three independent experiments illustrated that the pore size of the porcine 

tracheal respiratory mucus was highly various, ranging between 80 and 1500 nm. The 

average pore size was 455±240 nm in diameter, with 85% of the pores being larger 

than the diameter of PrV particles (Fig. 1B). To further evaluate the effective mesh 

spacing of porcine tracheal respiratory mucus, translocations of 100, 200, and 500 nm 

PEGylated muco-inert nanoparticles, were tracked and transport rates were analyzed. 

The MSD of the nanoparticles was fitted to the equation MSD = ΓΔt
α to obtain α, an 

indicator of the extent of particle impediment. After PEGylation, the nanoparticles 

were slightly enlarged in diameter due to the coverage with PEG. The nearly neutral 

surface charge suggested that the PEGylation of the particles was complete (Table 1). 

As demonstrated in Fig. 1C, most of 100 nm and 200 nm PEGylated nanoparticles 

diffused freely through mucus, whereas, part of the 500 nm PEGylated nanoparticles 

were subdiffusive. This partially hindered motion is also apparent from the bimodality 

of the distribution of diffusion coefficient for the 500 nm nanoparticles (Fig. 1D). 
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Table 1. Surface charge and size of the PEGylated nanoparticles 

Size ζ potential (mV) Diameter (nm)   

100 nm* -8.7±0.5 124.6±0.5 

200 nm* -9.6±0.8 232.6±2.4 

500 nm* -9.3±0.9 538.0±7.5 

*Provided by the manufacture 

 

Figure 1. Evaluation of the microstructure of porcine tracheal respiratory mucus. (A) AFM 
visualization (5 µm × 5 µm) of porcine tracheal respiratory mucus. (B) Pore size distribution of the 
porcine tracheal respiratory mucus as measured by AFM. Pore diameters were analyzed by the line 
profiling of the 3-D images. Three scans were performed for each sample, and three independent 
samples were measured. The dashed line indicates the average of pore diameters (n=500). (C) 
Transport modes of 100, 200 and 500 nm PEGylated nanoparticles indicated by α value. More than 
2000 trajectories from 3 independent experiments were tested to obtain α. (D) Distributions of the 
apparent diffusion coefficient of PEGylated nanoparticles. Trajectories of 10 steps were analyzed for 
each of the 2000 diffusion coefficients. Distributions were refined with MEM.  
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3.1.4.2. PrV was highly obstructed in porcine tracheal respiratory mucus 

The motion of PrV (245.7±11.5 nm) in porcine tracheal respiratory mucus or in water 

was investigated and compared with those of 200 nm PEGylated nanoparticles. PrV 

was greatly slowed down in mucus with respect to the PEGylated particles. At the 

time scale of 1 s, the ensemble mean squared displacement <MSD> of the PEGylated 

nanoparticles was 160-fold higher than that of PrV (Fig. 2A). Trajectories of 10 steps 

have been analyzed, from which a distribution of the apparent diffusion coefficients 

was obtained (Fig. 2B). This clearly demonstrates that PrV experienced a severe 

obstruction in porcine tracheal respiratory mucus, with the majority of virus particles 

diffusing 50-fold slower than PEGylated nanoparticles. Similarly, an average α value 

of 0.17 was observed for PrV compared to 0.86 for the 200 nm PEGylated 

nanoparticles. PEGylated nanoparticles thus freely diffused through the porcine 

tracheal respiratory mucus whereas PrV was significantly immobilized.  

Figure 2. Transport rates of PrV and 200 nm PEGylated nanoparticles in porcine tracheal 

respiratory mucus or in water. (A) Averaged ensemble mean squared displacements <MSD> of PrV 
and 200 nm PEGylated nanoparticles with respect to time scale. Error bars indicate standard errors of 
the mean. (B) Distributions of the apparent diffusion coefficient of PrV and 200 nm PEGylated 
nanoparticles. Trajectories of 10 steps were analyzed for each of the 2000 diffusion coefficients. 
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Distributions were refined with MEM. (C) Ratios of the average diffusion coefficients in mucus (Dm) to 
those in water (Dw). Three independent experiments were performed for each condition. Error bars 
indicate the standard deviation. The asterisk (*) indicates statistical significance (P < 0.005). 

3.1.4.3. Particle surface charge and particle mobility  

To determine the relationship between surface charge and particle mobility, the 

diffusion of strongly negatively and positively charged nanoparticles, the nearly 

neutral, hydrophilic PEGylated nanoparticles (200 nm) and PrV were measured in 

mucus. Indicated by the representative trajectories (Fig. 3B), the diffusive motion of 

the strongly charged nanoparticles and PrV was highly obstructed. In contrast, 

PEGylated nanoparticles were allowed to diffuse rapidly. PEGylated nanoparticles 

diffused 30-fold faster than PrV in mucus and more than 15 and 17-fold faster than 

the positive and negative nanoparticles, respectively (Fig. 3C). These data suggest that 

the surface charge was involved in the interactions between particles and the mucus 

environments, which further affected the particle mobility. However, PrV clearly 

diffused more slowly than the higher negatively charged nanoparticles implying that 

other types of interactions may also play a role in this case.  

3.1.4.4. PrV mobility was increased by PEGylation  

The PEGylated PrV was less adhesive to porcine tracheal respiratory mucus than the 

native PrV. After PEGylation, the diameter of PEGylated PrV was slightly greater 

than the uncoated virus. ζ potential analysis revealed that the surface charge was 

altered from -31.8±1.5 mV to -13.8±0.9 mV after PEGylation. The transport rate of 

PEGylated PrV was 11-fold higher than PrV (Table 2). Taken together, the mobility of 

PrV in porcine tracheal respiratory mucus was increased by coating uncharged, 

hydrophilic PEG onto its surface. 
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Figure 3. Particle surface charge and particle mobility. (A) ζ potentials for the particles measured 
with laser Doppler anemometry. (B) Representative trajectories of PrV and 200 nm nanoparticles with 
different surface charge modifications. The diffusions of negatively and positively charged 
nanoparticles and PrV were significantly suppressed; the PEGylated nanoparticles diffused rapidly. (C) 
Diffusion coefficient of the PrV and modified nanoparticles. Apparent diffusion coefficients Da were 
determined by particle tracking for ensembles of 2000 particles for each condition. Error bars indicate 
the standard error of the mean.   

Table 2. Diffusion comparison of PrV and PEGylated PrV 

Particles α Diameter (nm) ζ potential (mV) Da (µm2/s) Dm/Dw 

PrV 0.167 245.7±11.5 -31.8±1.5 0.023±0.061 0.017±0.004 

PEGylated PrV 0.591 269.4±16.3 -13.8±0.9 0.289±0.779 0.212±0.182 
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3.1.5. Discussion 

PrV, often used as a representative for alphaherpesviruses, initially infects the porcine 

upper respiratory tract. In order to unravel the invasion of PrV through the mucus 

layer, we have set up an in vitro model of porcine tracheal respiratory mucus and 

analyzed the mobility of PrV through it. 

In the first part, AFM was used to visualize and measure the pore diameter in porcine 

tracheal respiratory mucus. AFM has several advantages over electron microscopy. 

Firstly, analysis of the cantilever deflections enables the calculation of all three 

dimensions of the currently analyzed feature of the specimen, e.g. width, length and 

height. As a result, three-dimensional images are generated (Xie et al., 2009). 

Secondly, samples viewed by AFM do not require special treatments such as fixation 

and metal coating that would irreversibly change or damage the samples. Thirdly, 

when imaging a dried sample deposited on a glass surface instead of a hydrated 

sample, the mucus polymers are immobilized, and the resolution is improved 

(Broughton-Head et al., 2007; Manzenreiter et al., 2012). Using this technique, we 

demonstrated that the mesh size of porcine tracheal respiratory mucus was highly 

heterogeneous, ranging from 80 nm to 1500 nm. Furthermore, PEGylated 

nanoparticles are minimally interactive with mucus and therefore are an ideal 

approach to probe the mucus microscopic structure. The dense PEG shielding is able 

to provide nanoparticles with highly hydrophilic surface properties, resulting in less 

hydrophobic patches subjected to mucoadhesion as well as less capability of ionic 

bonding due to the nearly uncharged surface (PEG is nonionic at physiological pH 

values). The hindered motion of the 500 nm PEGylated nanoparticles suggested that 

these particles were probably obstructed by the mesh. This also fits the pore size 

estimation by AFM. Unlike mucus, the range of the pore size of the collagen-laminin 

network in the basement membrane is much smaller, approximately 50-100 nm 

(Abrams et al., 2000; LeBleu et al., 2007; Steukers et al., 2012). Only small particles 

are able to diffuse across such pores. Passage of microorganisms through this barrier 

often involves regulatory protease breakdown of the collagen-laminin network. Thus 
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the basement membrane clearly warrants a potent physical barrier against pathogenic 

invasion and passage of microorganisms. As the mucus pore size is tremendously 

heterogeneous, and most of the pores are larger than the diameter of viruses, it would 

be risky if the mucus exclusively relies on a size exclusion mechanism to repel the 

potentially invading viruses. Instead, alternative filtering mechanisms may be 

employed.  

In the second part, we analyzed the mobility of negative, positive and PEGylated 

nanoparticles in porcine tracheal respiratory mucus and compared this to the motion 

characteristics of PrV. Mucin content, governed by mucin secretion rates as well as 

the degree of mucus hydration, is a major determinant of mucus rheology. Small 

differences in the concentrations of mucins may be sufficient to cause significant 

changes in the mucus viscoelasticity (King, 1980; Lai et al., 2009c). Therefore, to 

retain the rheological properties of mucus, a small volume of PrV or nanoparticle 

suspension was mixed with porcine tracheal respiratory mucus. At the time scale of 1 

s, PrV (-31.8±1.5 mV, 245.7±11.5 nm) experienced a significant obstruction in 

porcine tracheal respiratory mucus, with approximately 96% of the population 

exhibiting subdiffusive transport. The slightly smaller PEGylated nanoparticles 

(9.6±0.8 mV, 232.6±2.4 nm) exhibited a 160-fold higher <MSD> than PrV at the time 

scale of 1 s (Fig. 2A). Our results indicate that the immobility of PrV in porcine 

tracheal respiratory mucus cannot be explained by a size filtering mechanism. Instead, 

a complex interplay of mucoadhesive interactions is proposed to fully explain this 

issue. Therefore, the mobility of positively charged and negatively charged 

nanoparticles, nearly neutral PEGylated nanoparticles and PrV was measured. The 

strongly charged nanoparticles and PrV were significantly trapped in porcine tracheal 

respiratory mucus, whereas relatively neutral PEGylated nanoparticles were diffusive, 

implying the role of electrostatic forces in the interactions between mucus and 

particles. Similarly, Lieleg et al. (Lieleg et al., 2009) analyzed the diffusions of 

amine-, carboxyl-terminated and PEGylated particles (1 µm) in extracellular matrix 

(ECM) purified from the Engelbreth-Holm-Swarm sarcoma of mice, and found that 
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the diffusion of charged particles was extremely suppressed compared to the neutral 

PEG modified particles, indicating particle mobility was related to the surface charge. 

Moreover, it is reported that the higher the surface potential of amine-terminated 

particles, the stronger the particle mobility was suppressed in porcine gastric mucin, 

and that a high salt concentration could increase the mobility of amine-terminated 

particles by shielding the surface of particles with counter ions (Lieleg et al., 2010). 

Our findings suggest that charged particles interacted with the mucin polymers via 

electrostatic forces, and these interactions may reduce particle mobility. Furthermore, 

the non-glycosylated protein regions may provide a sufficiently hydrophobic region 

for adequate particle-mucin interactions (Fig. 4). This is supported by an investigation 

of the translocation of modified polystyrene microspheres in gastrointestinal mucin, in 

which the least hydrophobic amidine-terminated microspheres were found to have the 

highest diffusion among the microspheres (Yang et al., 2012). In addition, the 

envelope of PrV and hydrophobic domains on its glycoproteins may be subjected to 

the hydrophobic cysteine-rich domains along mucin fibers, forming multiple 

low-affinity bonds. Although their low-affinity bonds have short half-lives and are 

easily broken by thermal energy (Cone, 2009), a great number of such bonds can keep 

virus particles attached to mucin fibers and entrap them. Lastly, hydrogen bonding 

appears to play a crucial role in mucoadhesion and disruption of hydrogen bonds can 

substantially reduce the adhesive strength of a mucoadhesive system. Previous studies 

showed that the addition of hydrogen bond breaking agents, such as urea and 

potassium thiocyanate (KCNS), to porcine gastric homogenized mucus resulted in a 

reduction in the elastic (G') and viscous (G") values (Mortazavi, 1995) and that 

amylose gel strength could be significantly reduced by the addition of urea (McGrane 

et al., 2004). Interestingly, mucins contain a high density of negatively charged 

glycoproteins that present both strong proton acceptor and donor functionalities which 

mediate hydrogen bonding (Khutoryanskiy, 2011). We thus hypothesize that sialic 

acid and sulphate residues on the oligosaccharide chains of the mucin glycoproteins 

(Fig. 4) are likely to form hydrogen bonds with the glycoproteins of entrapped PrV 
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particles. Therefore, investigating the influence of sialic acid and sulphate residues of 

porcine respiratory mucins on the mobility of PrV could help to further unravel the 

interplay between PrV particles and the mucus barrier. 

 

Figure 4. Schematic structure of mucin glycoproteins and their potential mucoadhesive elements 

In the third part, we modified the surface of PrV particles by PEGylation and 

measured the mobility of the resulting virus particles. Lysine, one of the most 

prevalent amino acids in proteins, is known as an ideal target for PEGylation. The 

NHS esters of mPEG-NHS react with the primary amine groups of lysine to form 

stable amide bonds. Lysine mediated PEGylation of adenoviruses (Croyle et al., 2000) 

and vesicular stomatitis virus G pseudotyped lentivirus vectors (Croyle et al., 2004) 

have been described to sufficiently shield the viral surface and to protect the viruses 

from immune responses. In our study, attachment of mPEG-NHS to the PrV surface 

significantly increased the mobility of the PEGylated PrV. After PEGylation, the virus 

still possessed a net surface charge of -13.8±0.9 mV (Table 2), thus implying that 

besides highly reduced charge-charge interactions, other important interactions may 

be abolished. The coverage of the surface of virus/nanoparticles with uncharged, 

hydrophilic PEG did not only neutralize the charges which mediates electrostatic 

interactions, but also shielded the hydrophobicity and capability of hydrogen bonding. 

Hence, PEGylation could turn the “active” PrV into more “inert” particles.  
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Alternatively, PrV may bind directly to specific components of the respiratory mucus. 

It is known for PrV that heparan sulfate acts as a cellular receptor for viral attachment 

and subsequent entry (Trybala et al., 1998; Trybala et al., 1996). In addition to the cell 

surface heparan sulfate, secretory heparan sulfate may be present as one of the major 

proteoglycans in the airway secretions (Emery et al., 1995; Hampson et al., 1984). 

These heparan sulfates in different forms might function as a “captor” for PrV. We 

thus conducted experiments using polyclonal antibodies (hyperimmune serum) to 

determine if the entrapment of PrV in the porcine tracheal respiratory mucus could be 

mediated by binding to heparan sulfate (data not shown). Although it is not known if 

the PrV glycoprotein C (gC) was fully blocked, we assume this glycoprotein, 

responsible for heparan sulfate binding, to be blocked by the polyclonal antibodies. 

However, the transport rate of the neutralized PrV was nearly the same as that of the 

natural virus, implying that other interactions rather than specific PrV-receptor 

binding may play a determinant role in such virus-mucus interactions. Furthermore, to 

determine if mucins may bind PrV, we performed immunofluorescent stainings using 

MUC5AC antibodies that recognize the protein backbone of the mucin glycoproteins 

and PrV gC monoclonal antibodies (data not shown). Attachment of PrV to the mucin 

network was observed, but no colocalization was seen, suggesting that the virus did 

not bind to the protein backbones of the mucins. Therefore, it would be interesting to 

investigate if the sugar side chains of mucins can be a target. 

Our findings have clearly shown that porcine tracheal respiratory mucus is able to act 

as a barrier against PrV infection. This might explain in part the pathogenesis of PrV, 

as no signs of viral replication are found in the trachea in vivo. Next to that, our 

laboratory used in vitro models of respiratory mucosae of different parts of the 

respiratory tract to study the invasion of different viruses through mucosal surfaces. 

When applying PrV on porcine tracheal mucosae, we found that PrV was able to 

strongly replicate in the epithelium and even to breach the basement membrane to 

infiltrate the host (Steukers et al., unpublished data). As these tissues were washed 

several times before inoculation with a virus, little mucus remained as a coating on 
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the surface. These latter findings put strength to our hypothesis that porcine tracheal 

respiratory mucus might be responsible for protection against PrV infection in the 

proximal trachea. It would therefore be highly interesting to analyze the barrier 

properties of porcine nasal respiratory mucus against PrV and compare this to the 

results presented in this study. A comparison can also be made with another 

alphaherpesvirus in bovine. Similar as for PrV, bovine herpesvirus 1 (BoHV-1) 

replicates in the upper respiratory tract. However, this is not limited to nasal mucosae 

as BoHV-1 strongly replicates in the proximal trachea as well. This is confirmed by a 

study performed in our lab by using bovine respiratory mucosal explant models which 

show that different upper respiratory tissues are susceptible to BoHV-1 infections 

(Steukers et al., 2011). Extrapolation of our hypothesis for PrV to BoHV-1, suggests 

that bovine tracheal respiratory mucus might not have similar protective 

characteristics as the porcine counterpart and that this might be a matter of virus-host 

co-evolution. Further investigation on this matter might provide us some crucial 

information on the invasion capacities of different alphaherpesviruses through the 

mucus barrier. Additionally, an important aspect of mucus is that the gel phase mucus 

is a discontinuous layer. This is due to the fact that the mucus does not flow evenly 

but preferentially concentrates along troughs or grooves (Agarwal et al., 1994). The 

thickness of rat tracheal mucus observed with light- and transmission electron 

microscopy ranged between 0.1 and 50 µm (Sims & Horne, 1997), indicating there 

were thin or even “bare” regions that may be more susceptible to viral insult. This 

might also explain why certain regions are more susceptible to PrV infection in the 

explant model. To fully illustrate this issue, further investigation will be needed. 

In the present study, we’ve setup an in vitro virus tracking model using single particle 

tracking, porcine respiratory tracheal mucus and PrV to analyze viral particle 

diffusion in mucus. It is noteworthy that the mucus used in this study was one time 

frozen and thawed. Storing mucus at -70 oC did not alter its mocoadhesive properties, 

based on the fact that the movement of both PrV and 200 nm PEGylated nanoparticles 

in thawed mucus were identical to the respective diffusion in fresh mucus (data not 
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shown). Therefore, this virus tracking model is highly reproducible and may be 

applicable to the study of a broad range of viruses with different kinds of mucus they 

may interact.  

In summary, we’ve found by using the particle tracking model that PrV was 

significantly trapped in porcine tracheal respiratory mucus, due to complex 

mucoadhesive interactions. Mucoadhesion may play a significant role in the host 

defense. This model may be a useful tool in revealing the invasion mechanisms of 

alphaherpesviruses and in providing some novel insights into the strategies of 

mucosal immunity. 
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3.2.1. Abstract  

Porcine respiratory mucus has been shown to block pseudorabies virus (PrV) 

movement. However, the mechanism on how the mucus prevents the virus from 

infecting mucosal surfaces is not well understood. Defining the innate antiviral 

activity found in the airway mucus may be important in view of preventative therapy 

for viral infection. The purpose of this study was to investigate the location of two 

major types of mucins, MUC5AC and MUC5B, in the respiratory tract and to 

determine their anti-PrV activities. First, the expression of MUC5AC and MUC5B in 

the porcine respiratory mucosa tissues, including nasal mucosa, trachea, bronchus and 

lung, was examined. Secondly, the mucin type that would account for the inhibition of 

the virus was identified. Lastly, the effect of O-glycans on the inhibitory activity of 

mucus was studied by the use of O-glycosidase. We describe here that both MUC5AC 

and MUC5B were widely expressed in the whole respiratory tract. MUC5AC was 

mainly expressed in the goblet cells of apical epithelium and MUC5B expression was 

mainly located in the submucosal glands. Moreover, the presence of MUC5AC was 

inversely related to the attachment and infection of PrV to/in porcine tracheal explant, 

indicating that MUC5AC played a major role in blocking PrV spread through mucus 

to the target cells of the epithelium. O-glycosidase treatment enhanced the infection of 

PrV in MUC5AC-producing cells, suggesting that O-glycans may mediate the mucin 

inhibitory effect on virus penetration. In summary, MUC5AC was shown to be a 

dominant mucin type in the porcine respiratory tract, and may function as a major 

contributor via its O-glycans to the inhibitory effects of airway mucus against PrV 

infection. 

3.2.2. Introduction  

Viruses constitute a main class of pathogens that cause swine diseases. PrV is one of 

the most important viruses in respiratory problems in field situations, except for large 

parts of Europe and the US that have eradicated the virus. During infection, the first 

barrier PrV encounters is the mucus layer, a major constituent of the innate immune 
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system. Mucus is a biopolymeric hydrogel that lines all moist mucosa of human and 

animals. One important function of mucus is to provide a physical barrier that 

prevents microbial pathogens from reaching the underlying epithelial cells. The 

protective functions of the mucus layer have been demonstrated in a number of 

studies. We previously found by single particle tracking (SPT) (Yang et al., 2012) that 

PrV is highly obstructed in porcine respiratory mucus determined. In line with this, 

native cervical mucus can trap various types of particles, including herpes simplex 

virus-1 (HSV-1) and human immunodeficiency virus-1 (HIV-1) (Lai et al., 2010; 

Shukair et al., 2013).  

Mucins, as the major component of mucus, may be responsible for the mucus 

inhibitory features. Indeed, isolated human salivary mucins directly interact with 

HIV-1 (Bergey et al., 1994; Habte et al., 2006) and have also been suggested to 

reduce HSV-1 infectivity at the early stage of infection (adsorption and penetration) 

(Bergey et al., 1993). In addition, purified gastric mucins have been described to 

inhibit the infectivity of various types of viruses, including human papillomavirus 

(HPV), Merkel cell polyomavirus (MCV), and influenza A virus (Lieleg et al., 2012). 

Moreover, isolated gastrointestinal mucins inhibit rotaviruses (Yolken et al., 1992) 

and noroviruses (Tian et al., 2005) and human breast milk mucins can impede 

poxvirus infection (Habte et al., 2007). Therefore, we hypothesize that PrV gets stuck 

in the mucus due to, at least to some extent, the interactions with mucins in the airway 

mucus.  

MUC5AC and MUC5B are the major gel-forming mucins of the human airway mucus, 

with only trace amounts of MUC2 (Kirkham et al., 2002). MUC5AC appears to be 

produced primarily by the goblet cells in the tracheobronchial surface epithelium, 

whereas MUC5B is secreted primarily by the submucosal glands (Kirkham et al., 

2002; Thornton et al., 2008). One plausible hypothesis is that one mucin type is more 

involved in mucociliary capture and clearance of pathogens and the other type is more 

involved in transport and expectoration by coughing. Kim et al. also revealed that the 

major mucin types of the porcine lower respiratory tract were MUC5AC and MUC5B, 
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while a high amount of MUC2 was also found, which is in contrast with the human 

counterpart (Kim et al., 2011; Kim et al., 2012). Up till now, data on mucin 

distribution along the pig respiratory tract are lacking. Thus in the present study, we 

examined the expression of MUC5AC and MUC5B in porcine tracheal mucosa by 

immunofluorescence staining and compared their distributions in nose, trachea, 

bronchus and lungs.  

O-glycosylation is a prominent feature of the mucin and is crucial to mucin structure 

and function. O-glycosylation is the chemical linkage formed between the sugar side 

chains and the hydroxyl group of serine or threonine residues of the mucin protein 

backbone (Cone, 2009; Thornton et al., 2008). These O-linked carbohydrate side 

chains, which can account for 50-80% of the mucin mass, are involved in specific 

ligand–receptor interactions, and might bind various small molecules and proteins. 

Certain O-glycans act as specific binding sites for a variety of viruses, bacteria, and 

parasites, and as recognition targets for bacterial toxins (Linden et al., 2008; Ricciuto 

et al., 2008). On the other hand, mucins can be regulated in terms of their 

glycosylation. Infection and the associated inflammation can induce changes in the 

extensive glycosylation pattern of mucins and sulfation, hence influencing their 

chemical and physical properties and thereby protecting them from the action of 

bacterial glycosidases (Jentoft, 1990). Thus we hypothesized that O-glycan could play 

a role in hindering the virus in the respiratory mucus. 

To investigate the interactions between PrV and porcine airway mucins in depth, we 

firstly examined the distribution of MUC5AC and MUC5B in the respiratory mucosa 

tissues. Secondly, the major mucin type that accounts for the resistance of mucus to 

PrV was identified. Lastly, the attribution of O-glycan to the inhibitory effect of 

mucin against PrV infection was studied. 

3.2.3. Materials and methods 

3.2.3.1. Tissues 

Mucosa tissues were isolated from the nasal septum, nasal conchae, trachea, bronchus 
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and lungs of six to eight-week-old piglets. The tissues were embedded in methyl 

cellulose and were frozen at -70 °C until use. 

3.2.3.2. Explants 

Immediately after euthanasia of six to eight-week-old piglets, the tracheas were 

isolated and dissected. The tissues were cut into 8 mm × 8 mm pieces. The explants 

were cultured on gauzes in an air-liquid interface manner, in DMEM/Fμsupplemented 

with 100 U/ml penicillin (Continental Pharma), 0.1 mg/ml streptomycin (Certa) and 1 

μg/ml gentamycin (Gibco) as previously described (Glorieux et al., 2007). 

3.2.3.3. Isolation and culture of primary trachea epithelial cells 

Porcine trachea epithelial cells were isolated and cultured as previously described 

(Ferrari et al., 2003). Briefly, the epithelium was stripped off the tracheal mucosa, and 

dissected into 1 cm2 pieces. After incubation with collagenase I at 37 °C for 2 h, the 

dissociated cells were obtained, and cultured in DMEM/F12 supplemented with 10% 

fetal calf serum (FCS, Gibco), 100 μg/ml of streptomycin and 100 units/ml of 

penicillin (Invitrogen). The cells were used at the second or third passage.  

3.2.3.4. Immunofluorescence staining of MUC5AC and MUC5B in respiratory 

tissues 

Cryosections (10 µm ) of nasal septum, nasal conchea, trachea, bronchus and the lung 

tissues were made, fixed in 4% paraformaldehyde (PF) for 20 min at 4 °C and 

permeabilized in 0.1% Triton X-100 for 10 min at room temperature. For the double 

immunofluorescence staining for MUC5AC and MUC5B, the sections were incubated 

with mouse anti-MUC5AC monoclonal IgG1 antibody (45M1, LifeSpan Biosciences, 

1:100) and rabbit anti-MUC5B polyclonal antibody (H-300, Santa Cruz 

Biotechnology, 1:100) for 1 h at 37 °C. After two washings with PBS (10 min/each), 

the sections were incubated for 1 h with goat anti-mouse IgG polyclonal antibody 

labeled with FITC (Molecular Probes, 1:200) for MUC5AC visualization and goat 

anti-rabbit IgG polyclonal antibodies conjugated with Texas Red (Molecular Probes, 

1:200) for MUC5B staining. During the last 10 minutes of incubation, Hoechst 33342 
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(Molecular Probes, 1:100) was added. The sections were then washed twice, mounted 

in glycerin-DABCO with coverslips.  

3.2.3.5. Immunofluorescence staining of MUC5AC and/or PrV 

For single immunofluorescence staining of MUC5AC, mouse anti-MUC5AC 

monoclonal IgG1 antibody (1:100) was used, followed by goat anti-mouse IgG 

polyclonal antibody labeled with FITC. To visualize PrV attachment or infection to/in 

explants, FITC conjugated swine polyclonal anti-PrV antibody was used. To 

determine if MUC5AC-producing cells were infected with PrV, double 

immunofluorescence staining was performed using mouse anti-MUC5AC monoclonal 

IgG1 antibody followed by Texas Red conjugated goat anti-mouse IgG polyclonal 

antibody for MUC5AC visualization, and FITC conjugated swine polyclonal anti-PrV 

antibodies for PrV staining.  

3.2.3.6. MUC5AC and PrV attachment to/infection in pig tracheal explant 

After 24 h adaptation at 37 °C, the apical surface of three tracheal explants was 

washed by pipetting up and down for 15 times, while other three tracheal explants 

were left unwashed. For both conditions, two explants were inoculated with PrV 

Becker, and at the same time the third explant was frozen. For inoculation, 20 μl of 

PrV (109 TCID50/ml) was pipetted (drop by drop) on top of the apical surface of the 

mucosa explants. After 1 h incubation at 37 °C, the explants were submerged into 1 

ml PBS and were pipetted up and down to remove the mucus-trapped or free viral 

particles. Afterwards, one explant was frozen in methyl cellulose (10%). The other 

was placed on the gauze again, and was cultured further for 24 h at 37 °C, followed by 

snap-freezing in methyl cellulose. For the detection of MUC5AC and PrV attachment 

to the mucosal surface, 10 sections (20 μm) were made with a trimming of 400 μm in 

between each section. To detect PrV plaques, 100 sections (20 μm) were continuously 

made with 1 mm trimming in between the first and second 50 sections. Three 

independent experiments were performed.  

3.2.3.7. Effect of O-glycosidase on PrV infection in MUC5AC
+
 trachea cells 
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To detect if O-glycan mediates the interaction between MUC5AC and PrV infection, 

the trachea epithelial cells were treated with different concentrations (0, 1, 5 and 25 

mU/ml) of O-glycosidase from Diplococcus pneumoniae (Roche) in the presence of 

neuraminidase (50 mU/ml) from Vibrio cholera (Roche), at 37 oC for 2 h, followed by 

inoculation with PrV Becker at m.o.i. 1 for 1 h. Seven hours post inoculation, the cells 

were fixed with 4% PF for 10 min and permeabilized with 0.1% Triton X-100 for 10 

min. Afterwards, double immunofluorescence staining was performed to detect single 

infected cells and MUC5AC-producing cells.  

3.2.4. Results  

3.2.4.1. Immunofluorescence location of MUC5AC and MUC5B in the 

respiratory tract 

The whole respiratory tract was found to express large amounts of MUC5AC and 

MUC5B. MUC5AC was shown to be mainly produced in the epithelial 

mucus-secreting cells (Table 1, Fig. 1B), while MUC5B was mainly expressed in the 

submucosal glands (Table 1, Fig. 1C). In general, the upper respiratory tract has a 

higher mucin expression than the lower respiratory tract (Table 1). In the nasal 

conchae and septum mucosa, over 15% of the epithelial cells were positive for 

MUC5AC staining. In the submucosal glands of these tissues, about 5 to 15% of the 

nasal glands produced MUC5B, compared to less than 5% submucosal glands of the 

trachea and bronchus.  

 

 

 

 

 



Chapter 3.2 

86 

 

 

 

 

 

 

Figure 1. Double immunofluorescence of MUC5AC and MUC5B in porcine trachea tissues. 

Representative microscopy images of MUC5AC and MUC5B expression in the porcine trachea. 
MUC5AC (red) is expressed mainly in superficial epithelium, and MUC5B (green) is almost 
exclusively expressed in submucosal glands.   

Table 1. Tissue location of MUC5AC and MUC5B in porcine respiratory tract 

 
Septum Conchea Trachea Bronchi Lung 

 
Ep SbG Ep SbG Ep SbG Ep SbG 

Bronchiole 
Ep 

Alveoli 
Ep 

MUC5AC +++ +/- +++ + ++ +/- ++ +/- +/- - 

MUC5B - ++ - +++ - + - + - - 

Ep: Epithelium; SbG: Submucosal gland  
Positive cells/glands account for: + 0-5%; ++ 5-15%; +++ 15-30%; ++++ >30% 

3.2.4.2. MUC5AC reduces PrV infection by blocking the access of virus to the 

mucosal epithelium 

As shown by immunofluorescence staining, MUC5AC content was strongly reduced 

by washing. In the “unwashed” explants, the MUC5AC formed a continuous layer 

upon most of the mucosal surface (Fig. 2A), while it was only sparsely located after 

flushing (Fig. 2B). Ten regions, as indicated by the representative confocal 

micrographs (Fig. 2A and B), were randomly selected from 10 sections; the 

percentage of MUC5AC positive region to the region of interest (ROI, 300 μm × 300 

μm) was calculated by ImageJ and 3 independent experiments were performed, 

Tracheal mucosa Apical epithelium 

50 µm 50 µm 150 µm 

Submucosal gland 

A B C 
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resulting in 30 measurements conducted. Totally, the MUC5AC presence on the 

mucosa epithelium was more than 2.5-fold reduced by flushing (Fig. 2C). Virus 

attaching to washed and unwashed explants was determined by immunofluorescence 

staining using FITC conjugated swine anti-PrV purified serum. For an image, PrV 

particles attached to the apical epithelium (20 µm thick and 100 μm long) were 

measured, and 10 images were examined. The total number of viral particles that 

attached to an epithelium surface of 2×104 µm 2 was calculated. At 1 h post inoculation, 

the number of PrV particles attached to apical epithelium of the unwashed explant, 

which was coated with mucus, was limited and sparsely located (Fig. 2D), whereas 

clearly more virions attached to the washed epithelium (Fig. 2E). Correspondingly, 

the number of PrV plaques formed in the washed explant was nearly 2-fold higher 

than that in the mock treated explant (Fig. 2I). Taken together, these findings indicate 

that MUC5AC indeed blocked the virions to get access to the target cells in the 

epithelium, resulting in significantly less virus infection in the explant. 
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Figure 2. Correlation between PrV infection and MUC5AC content. MUC5AC presence (green) on 
unwashed (A) and washed (B) tracheal explants. Binding of PrV particles (green) to the unwashed (D) 
and washed (E) tracheal explants. (C) Quantification of MUC5AC presence in washed and unwashed 
tracheal explants. (F) PrV binding to washed and unwashed explants measured with imageJ. A 
representative confocal micrograph of the plaques (green) formed by PrV infection in the unwashed (G) 
and washed (H) tracheal explants. Average number of plaques measured from three independent 
experiments (I). Error bar indicates standard deviation. The asterisks (** and *) indicate statistical 
significance (P<0.01, and P<0.05, respectively, by Student’s t-test). 

3.2.4.3. O-glycans contribute to the resistance of MUC5AC-producing cells to 

PrV infection 

O-glycosidase, also known as Endo-α-N-Acetylgalactosaminidase, catalyzes the 

removal of O-linked saccharides after the terminal sialic acids have been removed by 

neuraminidase from mucin glycoproteins. Treatment of the primary tracheal epithelial 

cells with O-glycosidase in the presence of neuraminidase is assumed to remove 

O-glycans from the secreted form of mucin 5AC as well as those that are still 
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associated with the cell membrane. Results show that in the mock control, 

approximately 10% of the primary cells were positive for MUC5AC (data not shown), 

and 16% of cells were infected with PrV. Cells infected with PrV were hardly positive 

for MUC5AC, with a ratio of 1 double positive cell out of 300 total cells counted, 

indicating that approximately 1 out of 30 MUC5AC+ cells was infected. Treatment of 

the epithelial cells with O-glycosidase resulted in a dose-dependent increase in PrV 

infection in MUC5AC-producing cells. Specifically, at the concentration of 1 mU/ml, 

the O-glycosidase was shown to increase the infection of MUC5AC positive cells by 

1.5-fold. At higher concentrations, the enzyme was able to enhance the infection of 

MUC5AC positive cells by several folds (Fig. 3). It should be noticed that infection 

was slightly increased while enhancing the concentration of O-glycosidase. These 

data suggest that O-glycan may mediate the inhibitory effect of MUC5AC with 

respect to blocking PrV entry into host cells. 

3.2.5. Discussion 

Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body 

and serves as the first line of defense against many pathogenic bacteria and viruses. 

The identification of critical components of native mucus that provide antiviral 

activity might bear an enormous potential for the discovery of new antiviral 

substances. Native mucus can trap various types of viral particles, including PrV, 

swine influenza virus H1N1, HSV-1 and HIV-1 (Lai et al., 2010; Lai et al., 2009; 

Yang et al., 2012; Yang et al., 2014). This effect is often referred to as “mucoadhesion” 

and is based on binding interactions between the mucin biopolymers and the diffusing 

particles. The major gel-forming units of mucus are mucins, large glycoproteins with 

glycans covalently linked via N-acetylgalactosamine (GalNAc) to the hydroxyl 

groups of serine or threonine residues of the mucin backbone. These carbohydrates 

can make up 80% of the mucin mass (Cone, 2009; Lillehoj & Kim, 2002). It appears 

that mucins might play a major role in the phenomenon of mucoadhesion. 
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Figure 3. Effect of O-glycosidase on PrV infection in MUC5AC-producing cells. (A) Primary 
trachea cells were infected with PrV at m.o.i. 1, and cultured for 24 h. Double immunofluorescence 
staining was performed to visualize PrV infected cells (green) and MUC5AC-producing cells (red). 
Double positive cells are pointed by white arrows. (B) Percentages of PrV infected MUC5AC+ and PrV 
infected MUC5AC- cells relative to the total trachea cells were determined. Error bar shows the 
standard deviation of three independent experiments. Significant differences are pointed out by the use 
of different letters (another letter means a statistical difference) (P<0.05).  
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Mucins form a heterogeneous family comprising monomeric mucins that may be 

secreted or tethered to cell surfaces and polymeric mucins that are secreted and form 

the scaffolding of mucus gels. Polymeric mucins, MUC2, MUC5AC, MUC5B, and 

MUC6, are normally expressed in the respiratory tract (Jeffery & Li, 1997; Lillehoj & 

Kim, 2002; Thornton et al., 2008). The mucin genes that encode structurally related 

mucin glycoproteins are evolutionarily conserved among different species and 

expression locations (Fahy & Dickey, 2010; Young et al., 2007). In the present study, 

MUC5AC and MUC5B were found to be widely expressed in the whole respiratory 

tract of the pig (Table 1). Although other types of mucins were not examined in this 

study, we assumed that MUC5AC and MUC5B are the major mucins found in the pig 

airway, due to the broad and strong expression. We found that MUC5AC was mainly 

expressed by the mucus-producing cells in the superficial epithelium, and MUC5B 

was almost exclusively expressed by the submucosal gland mucous cells (Fig 1). 

Hovenberg et al. reported that MUC5AC was the major mucin type of the healthy 

respiratory secretions in human (Hovenberg et al., 1996). Furthermore, a recent study 

demonstrated that MUC5AC acts as a protective barrier against a specific influenza 

strain infection, by using a transgenic mouse model that overexpressed MUC5AC. 

The transgenic mice challenged with A/PR8/34 H1N1 influenza virus gave 

significantly less infection than the normal mice (Ehre et al., 2012). Thus we next 

assessed the interactions between PrV and MUC5AC with tracheal explants and 

primary trachea epithelial cells. We found that, after 24 h adaptation at 37 oC, the 

explants were able to produce a continuous mucus layer consisting of MUC5AC (Fig. 

2A), while the secreted MUC5B overlaying the apical epithelium was highly 

region-dependent (data not shown). Consistently, the unwashed explant which was 

covered with a mucus layer was more resistant to the PrV infection than the washed 

explant. The amount of MUC5AC on top of the pig tracheal explant indeed was 

inversely related to the number of virus reaching and attaching to the epithelium (Fig. 

2). Moreover, MUC5AC-producing cells appeared largely resistant to PrV infection. 

Specifically, only 1 out of 30 MUC5AC positive cells was infected with PrV when the 
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primary epithelial cells were inoculated with PrV at m.o.i. 1. We assume that the 

MUC5AC positive cells, which comprised of approximately 10% the epithelial cells, 

may form an adherent mucin layer to prevent the virus from binding to the cells. 

Therefore, we suggest that MUC5AC may be a dominant type of pig airway mucins, 

and may contribute to the protection of the respiratory mucosa against PrV approach 

to epithelial cells. However, we have not performed immunofluorescence staining for 

other mucins such as MUC2, and contribution of other mucins to the inhibitory effects 

of the respiratory mucus cannot be excluded.  

Although it is not demonstrated in this study, MUC5B may also be important for 

airway defense. It is reported by Roy et al. that mouse MUC5B is required for 

mucociliary clearance, for controlling infections in the airways and for maintaining 

immune homeostasis in mouse lungs. MUC5B deficiency caused materials to 

accumulate in upper and lower mouse airway (Roy et al., 2014). In addition, a recent 

research suggests that the ratio of MUC5AC and MUC5B in the mucus gel can alter 

how the mucus is moved by cilia. The ratio of MUC5B to MUC5AC in the airway 

mucus of healthy individuals was 0.5, while in cystic fibrosis (CF) sputum the ratio 

increased to 2.4 (Henke et al., 2004). Moreover, MUC5B mucin has been previously 

described as the major mucin of sputum in patients with chronic obstructive 

pulmonary disease (COPD) (Kirkham et al., 2002). Therefore, MUC5B, produced in 

the submucosal gland, may contribute to virus clearance, especially in chronic 

infection. Taken together, our findings suggest that MUC5AC, owing to its production 

in the surface epithelium, is an acute-response mucin, whereas MUC5B, produced 

mainly in the glands, is involved in the response to more chronic insults. 

In the last part, using O-glycosidase, we demonstrated that O-glycosylated glycans 

contributed to the effects of mucins. Mucins contain up to 80% O-linked 

oligosaccharides by weight, and these sugars have been shown to be important for 

mucin activity. O-glycosidase specifically catalyzes the removal of O-linked glycans 

from mucin glycoproteins. Treatment of primary epithelial cells with O-glycosidase 

rendered the MUC5AC-producing cells more susceptible to PrV infection (Fig. 3). As 
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PrV has been shown to directly bind to the mucus, we assume that the O-linked 

oligosaccharides of MUC5AC may function as decoy receptors for the virus in this 

case. This strategy is also utilized by colonic mucins to block parasite invasion. Some 

parasites recognize and bind with high-affinity to galactose (Gal) and 

N-acetylgalactosamine residues on colonic mucins or surface receptors of host cells. 

Belley et al. showed that Gal and GalNAc sugar residues of purified colonic mucins 

competitively inhibit amoeba binding to host epithelium. These authors further 

demonstrated that treatment of LS 174T cells with the O-linked glycosylation 

inhibitor benzyl-α-GalNAc rendered the monolayer susceptible to amoebic attack  

(Belley et al., 1996). Furthermore, a recent study provides further evidence showing 

that O-glycans contribute to maintenance of barrier function on the apical surface by 

preventing clathrin-mediated endocytosis in human corneal keratinocytes 

(Guzman-Aranguez et al., 2012). Together, these studies highlight a critical role for 

O-linked oligosaccharide residues of mucin in inhibiting pathogen invasion.  

Given the wide range of viruses that are inhibited by different mucins, it is possible 

that mucins might be able to act as broad-spectrum antiviral agents. Thus it is crucial 

to regulate the synthesis and maintain the secretion of mucins. Factors, such as 

cytokines, environmental temperature and toxic gas, which can alter the mucin 

physiology, may be the targets of possible preventative therapy for viral infection 

(Davis & Dickey, 2008; Linden et al., 2008). In addition to regulation of their 

synthesis and release, mucins are regulated in terms of their glycosylation (Tian & 

Ten Hagen, 2009). Terminal sugars, because of their hydrophobicity or charge, are 

thought to contribute to or determine the physical and/or biological properties of 

mucins. Thus alterations in terminal glycosylation of mucins, which may occur in 

disease states, have the potential to alter the physical properties of mucins and the 

rheological properties of mucus. Altering mucin carbohydrates may block 

mechanisms that pathogens use to subvert the mucin barrier. Such changes in mucin 

glycosylation need to be considered as a component of innate and adaptive immune 

responses to mucosal infection.  
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3.3.1. Abstract 

Pseudorabies virus (PrV) uses the porcine upper respiratory tract as a primary portal 

for entry. During this process, the first barrier the virus encounters is the mucus layer, 

which lines the respiratory apical epithelium. PrV has been shown to be hindered in 

the porcine respiratory mucus in our previous studies. This finding fits with the fact 

that most PrV infections have a subclinical cause. Since most clinical outbreaks of 

PrV infection occur during winter season, the effect of low temperature on 

interactions of PrV with porcine respiratory mucus was investigated. First, the effect 

of temperature on the binding of PrV to porcine respiratory mucus was examined. 

Secondly, the virus penetration through the respiratory mucus was analyzed in the 

virus in-capsule-mucus penetration system at different temperatures. Furthermore, the 

effect of temperature on the ability of PrV to overcome the mucus barrier was studied 

in a well-established respiratory mucosa explant system (ex vivo) as well as in a 

culture system, where virus was first incubated with pig mucus or mucin solution (in 

vitro) and afterwards brought on top of the susceptible cells. The results showed that 

less virions were bound to the respiratory mucus at low temperature. In addition, the 

viral particles penetrated further with time in the mucus at 4 oC, which was not 

observed at 37 oC. The mucus almost did not prevent the virus from binding to the 

tracheal apical epithelium at 4 oC, but blocked 65% of the virions at 37 oC. Lastly, the 

percentage of PrV that overcame the mucus and caused infection in tracheal explants 

and swine testicular (ST) cells increased with decline of temperature. Taken together, 

these findings indicate that low temperature helps PrV to thwart the porcine 

respiratory mucus, which may shed new light on the interactions between exposure to 

cold, extent of virus replication during respiratory viral infections and severity of 

disease. 

3.3.2. Introduction  

Respiratory tract infections are the most common infections worldwide among 

humans and animals, and the cause of significant morbidity and a considerable 
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economic burden to health care. Seasonal outbreaks of respiratory tract viral 

infections are a common phenomenon, with peaks often being observed during winter 

time. Influenza outbreaks occur in human populations of the northern and southern 

hemispheres during their respective winters (Finkelman et al., 2007; Hope-Simpson, 

1981). Similarly, respiratory syncytial virus (RSV) infections in human show a clear 

seasonality with onset in late fall or early winter, a peak between mid December and 

early February, and season offset in late spring (Borchers et al., 2013; Gilca et al., 

2006). Several animal respiratory viruses also cause outbreaks which peak in winter. 

Bovine respiratory syncytial virus (BRSV) is one of the major pathogens involved in 

the bovine respiratory disease complex (BRDC), detrimentally impacting production 

and animal welfare in the cattle industry all over the world (Edwards, 2010; Griffin, 

1997; Snowder et al., 2006). Outbreaks of respiratory disease in cattle associated with 

BRSV peak in autumn and winter (Valarcher & Taylor, 2007; Van der Poel et al., 

1993). Aujeszky’s disease which is caused by PrV infection is a major contributor to 

winter porcine respiratory disease complex (PRDC) in growing pigs in regions where 

the virus is still circulating. Outbreaks of Aujeszky’s disease were commonly seen 

during the winter time between 1980s and 1990s in Europe before the eradication 

campaign was performed (Christensen, 1995; Jestin et al., 1990; Maes & Pensaert, 

1984). In spite of the eradication of Aujeszky's disease in Denmark, a single outbreak 

was recorded in December 1988 and another severe epizootic took place during the 

winter and spring of 1989/90 (Christensen et al., 1993). Later on, severe PrV 

outbreaks occurred in the winter of 2011/12 in several herds and the virus spread 

rapidly all over the area of northern China. Historically, swine influenza in the 

northern hemisphere is a disease that peaks in late fall and early winter months. 

European H1N1 swine influenza viruses emerged in January 1979 in Belgium 

(Pensaert et al., 1981), and in the winter of 1979/80, similar viruses appeared in 

Germany and France (Krumbholz et al., 2014). In the winter of 1989 and spring of 

1990, there were large outbreaks of respiratory disease in two swine herds in southern 

Japan. Such seasonal pattern diminished by the fact that respiratory viruses become 
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more and more enzootic due to the intensification of the swine production (such as 

larger farms and higher pig density).  

The reasons for the higher incidence of respiratory viral infections in winter remain 

controversial. Low temperature has been suggested to be causally linked to the winter 

peak respiratory infections (Makinen et al., 2009; Malcolm et al., 2001). Laboratory 

and clinical evidence in humans suggests that inhalation of cold air, cooling of the 

body surface and/or cold stress cause pathophysiological responses, increasing 

susceptibility to respiratory infections (Eccles, 2002). In addition, an experimental 

study with an animal model demonstrated that cold temperatures are favorable to the 

spread of influenza (Lowen et al., 2007). It is also assumed that cold temperatures per 

se could account for the increased susceptibility of respiratory tract viral infections 

(Mourtzoukou & Falagas, 2007). However, the mechanisms behind these phenomena 

remain unclear.  

During infection, the first barrier the virus encounters is the mucus layer, a crucial 

constituent of the innate immune system. Mucus is a biopolymer-based hydrogel that 

lines all moist mucosa of humans and animals. The protective functions of mucus 

have been described in a number of studies. We previously described that PrV was 

highly inhibited by the respiratory mucus in its mobility (Yang et al., 2012). Other 

viruses such as human immunodeficiency virus (HIV), herpes simplex virus (HSV), 

human papilloma virus and influenza virus have also been found to be blocked by 

mucus or mucin reconstituted mucus (Lai et al., 2009; Lai et al., 2010; Lieleg et al., 

2012; Shukair et al., 2013; Yang et al., 2014). Although these viruses are highly 

immobilized or blocked in mucus experimentally, they eventually succeed in infecting 

the host. The behavior of virus in mucus may thus be dependent on certain host 

factors or mucus defects. Provided that most respiratory diseases are seasonal and 

most have a higher incidence during winter season, the effect of temperature on the 

interaction between PrV and airway mucus was investigated in this study. 

3.3.3. Materials and methods 
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3.3.3.1. Tissues and explants 

Immediately after euthanasia of six-week-old piglets, the tracheas were isolated and 

dissected. The tissues were cut into 8 mm × 8 mm pieces. The explants were cultured 

on gauzes in an air-liquid interface manner, in DMEM/F12 supplemented with 100 

U/ml penicillin (Continental Pharma), 0.1 mg/ml streptomycin (Certa) and 1 μg/ml 

gentamycin (Gibco), according to a protocol adapted from Glorieux (Glorieux et al., 

2007). 

3.3.3.2. Porcine respiratory mucus and mucin solution 

Porcine respiratory mucus was collected from pig tracheas and was stored as 

previously described (Yang et al., 2012). Type III porcine gastric mucin lyophilized 

powder (Sigma) was dissolved in MEM at the concentration of 4% (w/v), buffer 

calibrated to pH 7, and the mucin solution was kept overnight at 4 oC for 

reconstitution.  

3.3.3.3. Immunofluorescence staining 

For mucin staining, the sections were incubated with mouse anti-MUC5AC 

monoclonal IgG1 antibody (45M1, LifeSpan Biosciences, 1:100) for 1 h at 37 °C. 

After two washings with PBS (10 min/each), the sections were incubated for 1 h with 

goat anti-mouse IgG polyclonal antibody labeled with FITC. For PrV visualization, 

the sections were incubated with FITC conjugated swine anti-PrV purified serum. The 

sections were then washed 2 times, mounted in glycerin-DABCO with coverslips.  

3.3.3.4. Effects of temperature on PrV binding to porcine respiratory mucus 

Mucus cyrosections (20 µm) were made, and incubated with 30 μl suspension 

containing 106 TCID50 semi-purified PrV at 4, 18 and 37 oC. At 0.5, 1 and 2 h post 

inoculation, the mucus cryosections were washed twice to remove unbound virions. 

The sections were then fixed with 4% paraformaldehyde (PF) for 20 min, followed by 

permeabilization in 0.1% Triton X-100 for 10 min. Immunofluorescence staining was 

performed using FITC conjugated swine anti-PrV purified serum. Fluorescence 

images were acquired on randomly selected regions with a confocal microscope 
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system, and bound virions on the mucus were calculated with ImageJ. 

3.3.3.5. Effect of temperature on PrV penetration through porcine respiratory 

mucus 

The penetration of PrV through porcine respiratory mucus was analyzed with a virus 

trakcing model, so as referred to in-capsule-mucus penetration system (Fig. 1). Briefly, 

a gelatin capsule was filled up with 150 µl of pig mucus, and kept at 4, 18 and 37 oC 

for 10 min. Afterwards, 8 µl of semi-purified PrV were brought onto the mucus 

surface. The virus together with the mucus and gelatin capsule was embedded in 

methyl cellulose and snap-frozen in a bath containing dry ice with ethanol 

immediately after addition (designated as 2 min) or at 30 min post virus addition at 

the corresponding temperatures. Cryosections were made and immunofluorescence 

staining was performed to visualize PrV and mucins, and the virus penetration depths 

at different temperatures were measured from mucus surface to the deepest point of 

the viral signal as shown by yellow arrows. 

3.3.3.6. Effect of temperature on the interaction between respiratory mucus and 

PrV attachment to/infection in tracheal explant 

The effect of temperature on the ability of PrV to overcome the porcine respiratory 

mucus was analyzed with respect to the virus attachment to and infection in tracheal 

explants. After adaptation at 37 °C for 24 h to retrieve the mucus layer, twelve 

tracheal explants were divided into three groups for three different temperatures (4, 18 

and 37 °C ). For each group, before inoculation, two explants were washed to remove 

the mucus by gently pipetting up and down for 15 times, and the other two explants 

were left unwashed. Afterwards, the four tracheal explants (two washed and two 

unwashed) were kept at 4, 18 or 37 °C, for 10 min, and were then inoculated with 

107.3 TCID50 PrV Becker in 20 μl suspension, as previously described in Chapter 3.2, 

at the corresponding temperatures. One hour after inoculation, the explants were 

washed by gently pipetting up and down for 15 times. Hereafter, two explants (one 

washed and one unwashed) were then immediately embedded and frozen in methyl 
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cellulose for attachment analysis, while the other two were further cultured for 24 h 

before snap-freezing for infection assay. For the detection of PrV attachment to the 

mucosal surface, 10 sections (20 μm) were made with a trimming of 400 μm between 

each section. To detect PrV plaques in the tissues, 100 serial sections (20 μm) were 

made with 1 mm trimming between the first and second 50 sections. Three 

independent experiments were performed. 

3.3.3.7. Effect of temperature on recovery of PrV from mucus in vitro 

To detect if PrV may be released from mucus to infect the host cells, porcine 

respiratory mucus and porcine gastric mucin solution were tested for the interaction 

with PrV infection in swine testicle (ST) cells at different temperatures. The pig 

mucus and mucin solution were placed at 4, 18 and 37 °C for 10 min. Meanwhile, 

PrV Becker was diluted to 104.3 TCID50/ml, and was aliquoted and kept at 4, 18 and 

37 °C for 10 min. The virus suspension was mixed with an equal volume of pig 

mucus and mucin solution, respectively, resulting in 104 TCID50/ml PrV in 50% (v/v) 

of pig mucus or 2% (w/v) of mucin solution. The mixtures were further incubated at 

the corresponding temperatures for 30 min before being inoculated to ST cells. The 

virus incubated with MEM at different temperatures was used as mock controls. 

Afterwards, 50 μl of mixture were inoculated to previously equilibrated ST cells in 

96-well plates at the above temperatures. One hour post inoculation, the inoculum was 

removed and the cells were overlaid with medium containing carboxymethylcellulose 

(CMC) (1%) and cultured at 37 °C for 24 h. Subsequently, the overlay medium was 

removed, and cells were washed and were then fixed with 4% PF. Afterwards, an 

immunoperoxidase monolayer assay (IPMA) was performed as previously described 

(Ficinska et al., 2005) to determine the number of PrV plaques. 
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Figure 1. Schematic procedure of virus in-capsule-mucus penetration system. (1) 150 µl of mucus 
were brought at the bottom of a gelatin capsule. (2) 8 µl of PrV suspension were added on top of the 
surface of the mucus. (3) Mucus together with virus was embedded and snap-frozen. (4) Cryosections 
were made vertically to the mucus surface. (5) Immunofluorescence staining was performed to 
visualize the Muc5AC (representing the mucus) and viral particles. (6) Penetration depth (shown by 
yellow arrows) was measured from the surface of mucus to the furthest point of the viral signal. 

3.3.4. Results 

3.3.4.1. Thermo-dependent PrV binding to porcine respiratory mucus 

Virions bound to the mucus cryosections were visualized by immunofluorescence 

staining to PrV using FITC conjugated swine anti-PrV purified serum. The virus 

bound to 5 mucus cryosections was analyzed, 2 images (360 μm × 360 μm) were 

taken for each section and in total 10 images were obtained for each condition. The 

average number of virions attached to an approximate region of 1.3×105 μm2 was 

calculated. In general, the number of virions bound to the pig mucus increased with 

time and temperature (Fig. 2). At 30 min post inoculation, the virions bound to mucus 

at 37 oC and 18 oC were almost 5 and 2-fold more than those at 4 oC, respectively. At 

2 h post inoculation, when the virus attachment was assumed to be complete, the 

number of virions bound to the mucus at 37 oC was the highest among the 

temperatures measured (Fig. 2). Taken together, the attachment of PrV to porcine 

respiratory mucus was thermo-dependent, and it indicates that low temperature may 

allow the virus to detach from the respiratory mucus. 
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Figure 2. Effect of temperature on PrV binding to porcine respiratory mucus. PrV was inoculated 
to mucus cryosections at 4, 18 and 37 oC. At 0.5, 1 and 2 h post inoculation, the bound virions, together 
with mucus cryosections, were fixed and immunofluorescence staining was performed to visualize PrV. 
The virion attachment was analyzed with ImageJ. Error bars show the standard deviation of three 
independent experiments. The P value shows the statistical significance of the difference between 
particles attached to the mucus cryosections at 18 and 37 oC and those at 4 oC at the same time point 
(by Student’s t-test). 

3.3.4.2. PrV penetrates the porcine respiratory mucus at low temperature 

The depth of PrV penetration was visualized by double immunofluorescence staining 

for both MUC5AC and virions. The distance from the surface down to the deepest 

point of virus translocation was measured and designated as the depth of virus 

penetration. Immediately after virus addition, the virions rapidly entered the mucus 

layer and reached a depth of 35 μm within 2 min, due to a passive diffusion effect (Fig. 

3). At 30 min post virus addition, the virions did not spread further in the mucus at 37 
oC, while the penetration was increased at lower temperature (Fig. 3). At 4 oC, the 

virions penetrated 12 μm further 30 min after addition onto the mucus surface, which 

indicates that low temperature indeed allows PrV particles to penetrate deeper through 

the porcine respiratory mucus. 
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Figure 3. Effect of temperature on PrV penetration through the porcine respiratory mucus. Three 
experiments were performed. The error bars show the standard deviation. The P value shows statistical 
significance of the difference between penetration depths at 2 and 30 min at a certain temperature (by 
Student’s t-test). 

3.3.4.3. Temperature-dependent inhibition of PrV attachment to/infection in 

tracheal explant by respiratory mucus 

The inhibition of mucins on PrV infection in porcine tracheal explants was 

temperature dependent. After the washing steps, the presence or absence of mucin 

above the apical face of the epithelium was confirmed by immunofluorescence 

staining for MUC5AC (Chapter 3.2). Virions attached to washed and unwashed 

explants were determined by immunofluorescence staining using FITC conjugated 

swine anti-PrV purified serum. Ten images were acquired by confocal microscopy 

from 10 sections. For each image, PrV particles attached to the apical epithelium (20 

µm thick and 100 μm long) were measured. The total number of virions that attached 

to a region of 2×104 μm2 of the apical epithelium was calculated and represents the 

capability of PrV to overcome the mucus layer. As shown in Fig. 4A, although more 

virions bound to the explants without a mucus layer at 37 oC than at 4 oC, the number 

of virions that bound to mucus coated explants was inversely lower. Only 35% of the 

virions overcame the porcine tracheal mucus and attached to the apical epithelium at 

37 oC, while in contrast, the mucus almost did not prevent the virus from binding to 

the apical epithelium at 4 oC (Fig. 4B). Concerning PrV infections, the plaques 
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formed in the mucus-coated explants remained similar at different temperatures, while 

plaque number increased from 4 to 37 oC (Fig. 4C). The relative infection, determined 

by percentage of PrV plaques formed in the mucus coated explants related to that 

formed in washed explants, declined gradually with rise of temperature (Fig. 4D), 

suggesting that low temperature indeed allowed more virions to overcome the 

respiratory mucus for subsequent invasion.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of temperature on pig mucus blocking PrV attachment to/infection in tracheal 

explant. (A) The number viral particles attached to unwashed and washed explants at 4 and 37 oC. (B) 
Relative viral attachment to tracheal explant. The percentage of viral particles attached to unwashed 
explant was relative to that attached to the washed explant. (C) The number of PrV plaques formed in 
the unwashed explant and washed explants at different temperatures. (D) The percentage of viral 
plaques formed in unwashed explant was relative to that formed in washed explant. Three experiments 
were performed and error bar represents the standard deviation. P value (by Student’s t-test) shows the 
statistical significance of the difference of viral attachment or infection between the unwashed and 
washed explant at the respective temperature. 
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3.3.4.4. Thermo-dependent mucus blocking of PrV infection in vitro 

Both native pig mucus and reconstituted mucin solution exhibited thermo-dependent 

inhibition of PrV infection in ST cells. Before being inoculated to ST cells, the virus 

was preincubated with pig mucus and mucin solution, respectively, at 4, 18, and 37 oC 

for 30 min. Twenty-four hours post inoculation, PrV plaque forming units (PFU) were 

determined by IPMA. Both the native mucus and mucin solution showed inhibition to 

PrV infection in ST cells. The mock treated virus caused an increased number of 

plaques with the rise of temperature, but the mucus/mucin incubated virus formed 

similar numbers of plaques. The remained PrV infectivity was determined as the 

percentage of PrV plaques formed by mucus or mucin incubated virus relative to the 

ones formed by mock controls. The virions released from both pig mucus and mucin 

solution decreased with rise of the temperature (Fig. 5). Additionally, the pig mucus 

showed higher inhibition on PrV infection compared to the mucin solution at all 

temperatures. These findings not only further confirm that low temperature helped 

PrV to penetrate the pig mucus, but also imply a major but not exclusive contribution 

of mucins to the inhibitory effect of the whole mucus.  

 

 

 

 

 

Figure 5. Effect of temperature on mucus/mucin blocking PrV infection in ST cells. (A) Absolute 
number of plaque forming units released from incubation with pig mucus, mucin solution and mock at 
4, 18 and 37 oC was determined as PFU. (B) Percentage of PrV infection relative to mock control of 
respective temperature. Error bars show the standard deviation of three independent measurements. The 
P value (by Student’s t-test) shows statistical significance of difference between infection formed by 
mucus/mucin treated virus and that by mock treated virus at the respective temperature. 
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3.3.5. Discussion  

Mucus is a porous biopolymer matrix that coats all wet epithelia of the human and 

animal body and serves as the first line of defense against pathogenic bacteria and 

viruses. In many cases, the hosts rely on the innate immune system to repel viral 

infections. A crucial part of the innate immune system is constituted by mucus, which 

provides a physical barrier to prevent microbial pathogens from reaching the 

underlying epithelial cells.  

A large number of studies have shown that different types of mucus, such as airway 

mucus, cervical mucus and porcine gastric mucus, can trap under physiological 

conditions various types of viruses, including PrV, HSV-1, HIV-1, human papilloma 

virus type 16 (HPV-16), and influenza H1N1 virus (Lai et al., 2009; Lai et al., 2010; 

Lieleg et al., 2012; Shukair et al., 2013; Yang et al., 2012; Yang et al., 2014). These 

viruses get obstructed in mucus probably not due to physical hindrance as the pore 

size of the above mucus was mostly larger than the virus particles. It is assumed that 

virus may overcome the mucus layer when there are physiological or pathological 

changes of the host mucosa or defects in the mucus. For instance, HIV is entrapped in 

acidic, healthy cervicovaginal mucus, whereas it moves freely in neutralized mucus 

which is present during bacteriovaginosis (Lai et al., 2009). It has been shown that 

high salt concentrations increase particle mobility in the mucin hydrogel (Lieleg et al., 

2010). This may be due to the fact that the strength of the attractive or repulsive 

forces between virus particles and the hydrogel depends on the salt content. As the 

respiratory tract is subjected to changes of the environmental temperature, respiratory 

viruses may have evolved to use (misuse) this effect to overcome the mucus layer. 

Our findings support the latter view.  

In the present study, we demonstrate that the inhibitory effect of the mucus on PrV 

invasion is temperature dependent. PrV attached more efficiently to pig mucus 

cryosections at high temperature compared to low temperature. Consistently, PrV was 

not able to penetrate the porcine respiratory mucus at body temperature, while at 4 oC, 

the virus seemed to move through the mucus. At 30 min post virus addition, the virus 
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spread averagely 12 μm further. Thus, we suggest that low temperature allows PrV to 

move through the porcine respiratory mucus. In the next experiment, we were able to 

confirm that low temperature helped the virus to overcome the mucus barrier and 

eventually cause more infection. The inhibitory effect of mucus concerning PrV 

attachment and infection was studied by maintaining a mucus layer on top of the 

apical epithelium of tracheal explants, using explants that were not coated by mucus 

as a mock control. We found that the mucus layer inhibited the majority of the virions 

to reach the apical epithelium at 37 oC, which is in contrast to the minimal effect of 

mucus at 4 oC (Fig. 4A and B). Decreasing the temperature seemed to increase the 

relative PrV attachment and infection to/in porcine tracheal explants. These data 

suggest that cooling of mucosal surface may increase virus moving through or 

releasing from mucus, thereby facilitate viral infection and spread in the respiratory 

tract.  

From a virological point of view, the virus may be bound to decoy receptors which 

exist in the mucus. It is known for PrV that the virions bind to heparan sulfate via gC 

glycoprotein for viral attachment, which is followed by a stable interaction between 

gD and its cellular receptor. Up till now, heparan sulphate, nectin-1, nectin-2 and 

CD155 were described as receptors for PrV (Campadelli-Fiume et al., 2000; Nixdorf 

et al., 1999; Spear et al., 2000; Spear & Longnecker, 2003). These PrV receptors, 

except the secretory heparan sulfate (Emery et al., 1995), have not been found in the 

airway secretions. Moreover, our previous data were not able to correlate the 

immobilization of PrV in the pig mucus to virus-heparan sulphate interaction (Yang et 

al., 2012). Therefore, the direct binding of PrV to mucus cryosections indicates that 

this attachment was probably not due to specific virus-receptor binding. Instead, we 

assume that mucins here may play an important role in this process via their sticky 

glycans. These intermolecular mucus-protein interactions are non-covalent and 

increase with temperature in a manner characteristic of an entropically driven reaction 

(Snary et al., 1973). Thus lowering temperature may allow release of PrV, which 

otherwise have been trapped in the mucus constitution. Additionally, our study is in 
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agreement with a recent report which demonstrated that low temperature favors the 

influenza virus transmission in ferret (Lowen et al., 2007). Therefore, the effects of 

lower temperature on virus penetration through mucus may be a generic phenomenon.  

The relationship between exposure to cold and increased respiratory infections may 

be based on a complex interaction, and many efforts have been made in order to 

clarify the mechanisms behind this association. It was first proposed by Mudd and 

Grant that chilling of the body surface could predispose to viral infection of the 

airway by causing vasoconstriction in the mucous membranes lining the airway, as 

cooling of the skin caused a pronounced ischaemia of the nasal mucosal surface that 

was measured via thermistor (Mudd & Grant, 1919). Some available data also suggest 

that exposure to cold environment increases the risk of respiratory infections 

(Makinen et al., 2009; Tseng et al., 2013). Some other factors, such as host 

physiological susceptibility (Dowell, 2001), immune function (Brenner et al., 1999), 

and crowding behavior (Lofgren et al., 2007) may also be the causal links between 

cold temperature and higher incidence of respiratory viral infection.  

To our best knowledge, it is the first demonstration which is able to directly link the 

increased viral susceptibility of the respiratory tract with the functionality of airway 

mucus. The results demonstrated in this study may not be practically applied to pig 

farming as the temperature is normally maintained thanks to the refinement of pig 

housing. However, the model setup in the present study may benefit the investigation 

of the seasonality of human viral infections, such as human influenza and respiratory 

syncytial virus infection. Furthermore, this study may provide a scientific indication 

for maintaining the environmental temperature at a higher level and preventing the 

adverse effects of cold air, during the period of low environmental temperatures.  
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4.1. Abstract 

Swine influenza virus (SIV) has a strong tropism for pig respiratory mucosa, which 

consists of a mucus layer, epithelium, basement membrane and lamina propria. Sialic 

acids present on the epithelial surface have long been considered to be determinants 

of influenza virus tropism. However, mucus which is also rich in sialic acids may 

serve as the first barrier of selection. It was investigated how influenza virus interacts 

with the mucus to infect epithelial cells. Two techniques were applied to track SIV 

H1N1 in porcine mucus. The microscopic diffusion of SIV particles in the mucus was 

analyzed by single particle tracking (SPT), and the macroscopic penetration of SIV 

through mucus was studied by a virus in-capsule-mucus penetration system, followed 

by visualizing the translocation of the virions with time by immunofluorescence 

staining. Furthermore, the effects of neuraminidase on SIV getting through or binding 

to the mucus were studied by using zanamivir, a neuraminidase inhibitor (NAI), and 

Arthrobacter ureafaciens neuraminidase. The distribution of the diffusion coefficient 

shows that 70% of SIV particles were entrapped, while the rest diffused freely in the 

mucus. Additionally, SIV penetrated the porcine mucus with time, reaching a depth of 

65 µm at 30 min post virus addition, 2 fold of that at 2 min. Both the microscopic 

diffusion and macroscopic penetration were largely diminished by NAI, while they 

were clearly increased by addition of exogenous neuraminidase. Moreover, the 

exogenous neuraminidase sufficiently prevented the binding of SIV to mucus which 

was inversely enhanced by effect of NAI. These findings clearly show that the 

neuraminidase helps SIV move through the mucus, which is important for the virus to 

reach and infect epithelial cells and eventually become shed into the lumen of the 

respiratory tract. 

4.2. Introduction 

Pigs are naturally susceptible to three subtypes of influenza A viruses: H1N1, H3N2 

and H1N2, all of which have a strong tropism for the pig respiratory tract mucosa 

(Crisci et al., 2013; Medina & Garcia-Sastre, 2011; Webster et al., 1992). Swine 
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influenza virus particles are transmitted by direct contact and through the air in large 

droplets or as aerosols (Crisci et al., 2013; Tellier, 2009; Torremorell et al., 2012). 

During the transmission from pig to pig, the virus first encounters mucus, the first 

barrier of the respiratory tract. After overcoming this barrier, the virus reaches the 

target cells in the mucosal epithelium. Influenza virus infects host cells by binding to 

cellular receptors via one of the major viral glycoproteins, hemagglutinin (HA). HA 

binds to sialic acids (SA) on the cell surface and mediates the subsequent membrane 

fusion leading to virus entry (Ramos & Fernandez-Sesma, 2012). Neuraminidase (NA) 

catalyzes the removal of terminal sialic acids on the cellular surface to release the 

progeny virus (Colman, 1994). It is well documented that the NA functions at the 

releasing stage of the virus replication (Itamura, 1997; Seto & Chang, 1969; Shtyrya 

et al., 2009), while little is known if NA plays a role during the virus entry into host 

cells and even less on if it helps the virus overcome the mucus layer. 

Mucus consists of a complex mixture of mucous glycoproteins (mucins), proteins, 

proteases and protease inhibitors, lipids and water (Lillehoj & Kim, 2002; Thornton et 

al., 2008). Mucins, the major component of mucus, are highly o-glycosylated with 

glycans covalently linked via N-acetylgalactosamine (GalNAc) to the hydroxyl 

groups of serine or threonine residues of the mucin backbone (Cone, 2009; Thornton 

et al., 2008). Most of the sugar chains of mucin monomers are terminated with sialic 

acid, which is also known to be the cellular receptor of influenza viruses. It is 

hypothesized that influenza viruses bind to these extracellular receptors, get entrapped 

in the mucus and then are removed by ciliary clearance (Fazekas De, 1952; Linden et 

al., 2008; Matrosovich & Klenk, 2003). Several studies have shown that interaction of 

influenza virus with mucus results in competitive inhibition of the virus. Roberts et al. 

(Roberts et al., 2011) showed that pre-incubation of human H3N2 virus strain 

A/Victoria/3/75 with ferret nasal washes containing mucus clearly reduced the virus 

infectivity, and this inhibition was correlated to competitive binding of the virus with 

alpha 2,3 and 2,6 linked sialic acids (α2,3- and α2,6-SA) present in the mucus 

secretions. The protective effect of the mucus barrier was confirmed by a recent study 
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using a transgenic mouse model that overexpressed SA α2-3 Gal rich Muc5AC. 

Transgenic mice challenged with A/PR8/34 H1N1, which preferentially binds 

α2,3-SA showed significant less infection than the normal mice (Ehre et al., 2012). 

These studies suggest that mucus or mucins block the influenza virus infection by 

competitively inhibiting HA-mediated cell adsorption.  

Despite this inhibitory function of the mucus, the virus is ultimately able to reach the 

susceptible epithelial cells. It has long been assumed that NA promotes virus access to 

target cells in the airway by mucus degradation. However, this concept is scarcely 

supported by experimental data. Cohen et al. (Cohen et al., 2013) incubated 

A/PR/8/34 H1N1 and A/Aichi/2/68 H3N2 virus with human salivary mucins which 

were previously coated on magnetic beads, and after extensive washings, detected the 

remaining Neu5AC on the mucins. They showed that these human influenza viruses 

had cleaved away 40-60% of Neu5AC content of the mucins by their viral 

neuraminidase. The effective cleavage may allow the efficient release of virus from 

the mucus. This contrasts with the findings of Ehre et al. (Ehre et al., 2012) who 

demonstrated a strong protection of Muc5AC up-regulated mice against A/PR/8/34 

H1N1 virus infection. Hence, the purified human salivary mucins may not fully 

reflect the natural mucus as these mucins had been highly modified after attaching to 

magnetic beads. Unraveling the mechanism behind the penetration of viruses across 

the mucosal barriers has potentially significant implications for the development of 

novel antiviral strategies. Therefore, an in vitro model resembling the in vivo situation 

is needed and the interactions of influenza virus with natural mucus should be studied 

in depth. In the present study, we aimed to address the following questions:  

(1) Is the virus entrapped or able to penetrate through the native respiratory mucus? 

(2) Can viral neuraminidase use mucin sialic acids as substrates and catalyze their 

cleavage?  

(3) Is this cleavage sufficient to liberate the virions and allow them to penetrate 

through the mucus layer?  

To this purpose, we applied swine influenza virus to a model we previously set up 
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using porcine respiratory mucus, pseudorabies virus (PrV) and single particle tracking 

(SPT) (Yang et al., 2012). In addition, the penetration of SIV was studied by the use 

of a mucus layer on which an appropriate amount of virus particles was added. The 

microscopic diffusion and macroscopic translocation were evaluated. Next, the effects 

of neuraminidase on the virus mobility in mucus were examined.  

4.3. Materials and methods 

4.3.1. Mucus sample collection 

Tracheas were collected from 6-month-old pigs which were negative for swine 

influenza A viruses as shown by a Hemagglutination Inhibition (HI) test. Using of 

tracheas from euthanized animals was approved by the Ethical and Animal Welfare 

Committee of the Faculty of Veterinary Medicine of Ghent University. Two days 

before euthanization, the pigs were treated intramuscularly with ceftiofur (Naxcel, 

Pfizer-1 ml/20 kg body weight) to clear the respiratory tract from possible bacterial 

infections. The tracheas were dissected and the mucus was gently scraped with a 

spoon, collected with a syringe, and the mucus samples were stored separately at 

-70 °C until use. These samples were negative for neuraminidase determined by NA 

assay using fluorescent NA substrate (4-methylumbelliferyl-N-acetylneuraminic acid 

[MU-NANA]).  

4.3.2. Fluorescence lectin staining of α2,3- and α2,6-SA in mucus 

Freshly collected mucus was filled in a gelatin capsule (2.3 cm × 0.8 cm), snap-frozen 

in methyl cellulose (Fluka) using a bath containing dry ice with ethanol. Cryosections 

of 20 µm were made with a trimming interval of 400 µm between each section. The 

mucus cryosections were blocked in 1% (w/v) bovine serum albumin for 1 h, 

followed by incubation with biotin conjugated Sambucus nigra lectin (SNA-I) (EY 

laboratory, CA, USA; 1:100) that recognizes SAα2,6-Gal/GalNAc for 1 h, at room 

temperature. After 2 washings in phosphate buffered saline (PBS), the sections were 

incubated with Streptavidin-Texas Red (Invitrogen, 1:200) and FITC labeled Maackia 

amurensis lectin (MAA) (EY laboratory, CA, USA; 1:25) that recognizes SAα2,3-Gal 
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for 1 h, at room temperature. Afterwards, the cryosections were washed, and mounted 

in 90% glycerin containing 2.5% 1,4-diazobicyclo-(2,2,2)-octane (DABCO). Images 

of the fluorescence staining were acquired using a confocal microscope (Leica TCS 

SP2 Laser scanning spectral confocal system, Leica microsystems GmbH) and the 

fluorescence signal was analyzed with ImageJ. The coverage of either SA was 

calculated by ratio of fluorescence signal to the region of interest (ROI).  

4.3.3. Cells and virus 

Madin Darby Canine Kidney (MDCK) cells were maintained in Minimum Essential 

Medium (MEM, Gibco) supplemented with 10% fetal calf serum (Gibco), 100 μg/ml 

of streptomycin and 100 units/ml of penicillin (Invitrogen). The avian-like H1N1 

swine influenza virus Sw/Belgium/1/98 was used at the third passage on MDCK cells. 

The virus was propagated in MDCK cells in MEM supplemented with 5 μg/ml trypsin 

(Gibco), 100 μg/ml of streptomycin and 100 units/ml of penicillin (Gibco).   

4.3.4. Purification of SIV 

Confluent MDCK cells were inoculated with SIV at a multiplicity of infection (m.o.i) 

of 0.01 in MEM. Twenty hours post inoculation, the supernatant was harvested. The 

cellular debris was removed by ultracentrifugation at 7 000 ×g for 20 min at 4 °C in a 

Type 35 rotor (Beckman, Fullerton, CA, USA) and the suspension was clarified by 

filtration with a 0.45 μm filter (Millipore). Afterwards, the virus was pelleted at 75 

000 ×g for 2 h at 4 °C  in a type 35 rotor. Following resuspension in PBS (1/100 of the 

original volume), the virus suspension was brought on a discontinuous OptiPrep 

(Sigma) gradient containing 10-30% (w/v) of iodixanol and centrifuged at 100 000 ×g 

for 3 h at 4 °C in an SW41Ti rotor (Beckman, Fullerton, CA, USA). The visible 

opalescent virus bands at the interfaces were harvested separately. The buffer was 

exchanged with HNE (5 mM HEPES, 150 mM NaCl, 0.1 mM EDTA, pH 7.4) buffer 

by the use of a 50 kDa filter device (Millipore).  

4.3.5. Verification of the viral purity by lipophilic labeling and 

immunofluorescence staining of SIV antigens 
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To verify the purity of the virus from each band, double staining was performed by 

using 3,3′-Dioctadecyloxacarbocyanine perchlorate (Dio) and hyperimmune swine 

serum directed to influenza Sw/Belgium/1/98 virus, followed by Texas 

Red-conjugated goat anti-swine IgG antibody. Hyperimmune swine serum was diluted 

(1:50) and mixed with the virus suspension (1:1, v/v). After 2 h incubation on ice, 

Texas Red-conjugated goat anti-swine IgG secondary antibody (1:50, Invitrogen) was 

added and incubated further on ice for 2 h. Afterwards, the resulting mixture 

containing virus, hyperimmune serum, and secondary antibody was equilibrated to 

room temperature. Dio solution (1 mM in DMSO) was mixed with virus suspension 

(1:100, v/v) by fierce vortexing, followed by incubation at room temperature for 20 

min. The resulting suspension was ultracentrifuged at 100 000 ×g for 1.5 h in a type 

35 rotor to remove the free antibodies and dyes. After resuspension in PBS, the 

virions were clarified by a further ultracentrifugation at 100 000 ×g for 1.5 h. The 

staining was analyzed with confocal microscope by randomly selecting 10 regions. 

The ratio of viral antigen positive particles (virions) versus Dio positive particles was 

calculated, which is referred to as the degree of viral purity. 

4.3.6. Characteristic analysis of the Dio-labeled SIV 

The band containing the most purified virus was obtained and the buffer was 

exchanged with HNE buffer. After incubation with Dio solution as previously 

described, the virus suspension was filtered by the use of a Sephadex G-50 column 

(GE Healthcare, Belgium) to remove unbound dye. The unlabeled virus that was 

eluted through the Sephadex G-50 column was used as negative control. Dio is a 

lipophilic dye which integrates into the lipid components of the viral envelope. To 

determine that the integration of the Dio dye into the viral envelope does not change 

the biophysical properties of the virus, the size and surface charge (zeta potential) of 

the labeled and unlabeled virions were measured by dynamic light scattering and laser 

Doppler anemometry as previously described (Yang et al., 2012). Infectivity and 

hemagglutination activity of the Dio-labeled viral particles were tested by virus 

titration and HA assay as previously described (De Vleeschauwer et al., 2009). The 
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NA enzymatic activity was determined according to the protocol adapted from Adamo 

et al. (Adamo et al., 2009). Briefly, 25 μl of fluorescent NA substrate 

(4-methylumbelliferyl-N-acetylneuraminic acid [MU-NANA], 100 µM in PBS, pH 

7.4) was added to 25 µl of each sample containing 16 HA units. After 1 h incubation 

at 37 °C, reactions were stopped with 0.1 M glycine (pH 10.7) in 25% ethanol. 

Controls and standards were run in parallel, and the fluorescence was measured on a 

Victor V (Perkin Elmer, Waltham, MA) at an excitation of 360 nm and an emission of 

430 nm for 0.1 s per well. 

4.3.7. Microscopic diffusion of SIV in mucus determined by SPT 

The trajectories of fluorescent viral particles in porcine tracheal respiratory mucus 

were recorded by a fast and sensitive electron-multiplying charge-coupled device 

(EMCCD) camera (Cascade II: 512; Roper Scientific, Tucson, AZ, USA) mounted on 

an inverted epifluorescence microscope (Nikon TE2000E, Nikon Belux, Brussels, 

Belgium) equipped with a 100x oil-immersion objective (Plan Apochromat, Nikon). 

Tracking experiments were performed in press-to-seal silicone isolators (20 mm 

diameter, 0.5 mm deep, Invitrogen, Merelbeke, Belgium). Our previous study shows 

that PrV was highly immobilized while 100 nm PGEylated beads were diffusive in 

porcine respiratory mucus, hence GFP-PrV was used as a negative control and the 

latter was used as a positive control (Yang et al., 2012). GFP-PrV was semi-purified 

according to the previous protocol (Yang et al., 2012). Three microliters of SIV (108.5 

TCID50/ml) or PrV (108.5 TCID50/ml) suspension or 100 nm PEGylated beads 

(approximately 1010 particles/ml) were mixed with 100 µl of porcine tracheal 

respiratory mucus by gentle stirring. To determine if NA would affect SIV diffusion, 

the virus was added to the mucus with or without the presence of 0.02 µM zanamivir 

(Sigma) or 10 mU/ml Arthrobacter ureafaciens neuraminidase (Roche Applied 

Science). The mixture was placed in a custom made glass chamber. The samples were 

incubated at 37°C for 10 min on the microscope using a stage-top incubator (Tokai 

Hit, Fujinomiya, Japan) before SPT measurement. Movies were captured with the 

EMCCD camera at a temporal resolution of 33 ms for 5 s and analyzed with the NIS 
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Elements AR software (Nikon). The illumination time was 30 ms per frame. 

Trajectories of n ≥ 500 particles were analyzed for each experiment and three 

independent experiments were performed for each condition. Movies were analyzed 

with the Image Processing Software (IPS, in-house developed software) (Braeckmans 

K, 2010) to extract x, y positional data over time. The apparent diffusion coefficient 

(Da) was calculated as a function of the time scale (t) for each particle. Analysis of 

the movies was performed with IPS. The centroids of individual particles were 

identified in each frame of a movie. Based on the positions of the centroids, the 

trajectories of the particles can be determined by a nearest neighbor algorithm. The 

apparent diffusion coefficient Da corresponding to the first time lag Δt was calculated 

according to the classical formula: Da = MSD/4Δt (Saxton & Jacobson, 1997). 

Afterwards, the distribution of diffusion coefficient of the particles was obtained by 

maximum entropy method (MEM) analysis (Braeckmans et al., 2010).  

4.3.8. Penetration of SIV in porcine respiratory mucus 

SIV penetration was performed in a virus in-capsule-mucus penetration system as 

previously described (Chapter 3.3). Briefly, mucus sample (150 μl) was added to a 

gelatin capsule to create a mucus “layer” at the bottom. Afterwards, eight microliter of 

virus suspension containing approximately 106.5 TCID50 purified SIV were brought in 

the form of 5 droplets onto the surface of the mucus. Immediately, 10 min and 30 min 

after virus addition, the capsules were snap-frozen in methyl cellulose using a bath 

containing dry ice with ethanol. Due to a delay of freezing process, the time point 

“immediately after addition” was designated as 2 min. To determine if the NA would 

influence the SIV penetration, the virus was added with or without the presence of 0.1 

µM Zanamivir (Sigma) or 50 mU/ml Arthrobacter ureafaciens neuraminidase onto 

the mucus, followed by snap-freezing at 30 min post virus addition. Cryosections of 

12 μm were made with a trimming interval of 400 μm between each section. Double 

immunofluorescence staining was performed using mouse anti-Muc5AC IgG1 (45M1, 

LifeSpan Biosciences, 1:100) and mouse anti-NP IgG2a (HB-65, ATCC, 1:50) 

monoclonal antibodies, followed by Texas Red conjugated goat anti-mouse IgG1 and 
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Alexa Fluor 488 conjugated goat anti-mouse IgG2a secondary antibodies (Invitrogen), 

respectively. Ten sections were made for each condition, then 10 images were taken, 

and finally translocations of the virions was measured from the top of the mucus layer 

until the deepest point of the viral signal.  

4.3.9. Effects of NA on SIV binding to porcine respiratory mucus 

Mucus cryosections (12 µm) were made, and incubated with 30 µl suspension 

containing 106 TCID50 SIV in the presence or absence of 0.1 µM zanamivir or 50 

mU/ml Arthrobacter ureafaciens neuraminidase at 37°C, for 1 h. The sections were 

then fixed with 4% paraformaldehyde for 20 min, followed permeabilization in 0.1% 

(v/v) Triton X-100 for 10 min. Immunofluorescence staining was performed using a 

mouse IgG antibody to SIV NP, followed by Goat anti-mouse IgG antibody 

conjugated with FITC to visualize the virions. Fluorescence images were acquired on 

randomly selected regions with a confocal microscope, and the bound virions on the 

mucus were calculated with ImageJ.  

4.4. Results  

4.4.1. SAs distribution in porcine respiratory mucus 

Five sections were examined for each mucus sample for the semi-quantification of 

α2,3- and α2,6-SA coverage in the mucus. For each section, 2 images were taken and 

thus 10 images were obtained for each sample. As shown in Fig. 1, the mucus 

consisted of mixed and heterogeneous α2,3- and α2,6-SA. The SA coverage was 

calculated by the ratio of the pixels of positive signal to the total pixels measured. The 

α2,6-SA covered over 50% the region of interest (ROI), while merely 11% of the 

region was constituted by α2,3-SA.  
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Figure 1. Expression of α2,3- and α2,6-SA on porcine respiratory mucus determined by 

fluorescence lectin staining. (A) Representative confocal microscopy images. Green color shows 
α2,3-SA staining and red color represents α2,6-SA staining. The scale bars indicate 50 µm. (B) 
Semi-quantification of the sialic acids. Three independent mucus samples were analyzed and error bars 
indicate the standard deviation. The asterisks (**) indicate statistical significance (P<0.01, Student’s 
t-test). 

4.4.2. SIV purity assessed by double staining 

After ultracentrifugation over a discontinuous OptiPrep gradient containing 10% to 30% 

of iodixanol, three visible opalescent bands were collected, named Band 1, Band 2 

and Band 3, respectively, from top to bottom (Fig. 2B). The purity of virus from each 

band was assessed by confocal microscopy following Dio lipophilic dye labeling and 

SIV immunofluorescence staining. As Dio integrates into the lipophilic components 

of virus and cellular debris, Dio staining was used as a total-particle assessment. The 

red color visualized the viral particles, and the green color represented Dio-labeled 

particles (Fig. 2A). The percentage of double positive particles versus Dio positive 

particles represents the virus purity in a ratio extent. Consequently, the highest viral 

purity (over 0.9 for the ratio of double positive particles/Dio positive particles) was 

found in Band 2 (Fig. 2C). Therefore, the virus preparation from Band 2 was used for 

** 
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further analysis.  

4.4.3. Characterization of Dio-labeled SIV 

After incubation with 10 μM Dio dye at room temperature, followed by elution in a 

Sepharose G-50 column, the labeled and unlabeled SIV were analyzed for different 

characteristics. The results show that the hemagglutination activity and infectivity 

were not altered by labeling. The neuraminidase activity of Dio-labeled SIV was 91% 

of that of unlabeled SIV. Measured by dynamic light scattering and laser Doppler 

anemometry, the size and surface charge of the labeled virions were not significantly 

altered (Table 1).  

 
Figure 2. Purity of SIV determined by Dio labeling and immunofluorescence staining. (A) 
Confocal microscopy of the double staining of the virus preparations. Green represents Dio labeled 
particles; viral antigens are shown in red. Merged signals represent virus particles which are also 
labeled with Dio. (B) Bands form in the discontinuous iodixanol gradient separation. Three bands were 
identified, named Band 1, Band 2 and Band 3 from up downwards. (C) Ratio of double positive 
particles versus Dio positive particles for the particles from three different bands. Three independent 
experiments were performed and error bars indicate the standard deviation.  
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Table 1. Characteristics of SIV and Dio-labeled SIV 

 
Zeta potential 

(mV) 
Diameter 

(nm) 
Infectivity   

(TCID50 lg/ml) 
HA titer 

NA activity 
(RFU*) 

SIV -24.2±3.8 101.8±2.9 8.7±0.43 256 34017±3250 

Dio-Labeled 
SIV 

-28.1±5.1 113.5±2.5 8.5±0.23 256 30950±4172 

*RFU= Relative Fluorescence Units 

 
Figure 3. Diffusion coefficient of SIV in mucus and comparison with PrV and 100 nm PEGylated 

beads. (A) Distributions of the apparent diffusion coefficient of SIV, PrV and 100 nm PEGylated beads 
in porcine respiratory mucus. Trajectories of 8 steps were analyzed for each of the 1500 diffusion 
coefficients. Distributions were refined with MEM. Dashed line indicates the boundary of mobile and 
immobile diffusion. (B) Average diffusion coefficient of SIV, PrV and 100 nm PEGylated beads. Data 
were obtained from three independent experiments, and error bars indicate the standard deviation. The 
asterisks (**) indicate statistical significance (P<0.01, by Student’s t-test). 

4.4.4. SIV was partially diffusive in porcine respiratory mucus 

The motion of SIV in porcine respiratory mucus was investigated and compared with 

the diffusion of PrV and 100 nm PEGylated beads. Trajectories of 8 steps were 

analyzed, from which a distribution of the apparent diffusion coefficients was 

obtained. Similar to our previous data, PrV was highly hindered in the porcine 

respiratory mucus, while the 100 nm PEGylated beads diffused freely. The 
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distribution of diffusion coefficient clearly demonstrated that, compared to one 

immobile fraction for PrV or a mobile fraction for the 100 nm beads, SIV experienced 

two diffusion patterns in porcine respiratory mucus, with 70% of viral particles being 

trapped while the rest of particles moving rapidly (Fig. 3A). The average diffusion 

coefficient of SIV in mucus was 11-fold higher than that of PrV (Fig. 3B). The similar 

size 100 nm PEGylated beads are muco-inert which indicates that these particles did 

not interact with any type of the mucus moieties. Thus to the opposite, the viral 

particles were immobilized probably due to binding interactions with the mucus. 

These data suggest that binding and releasing effects were present in the interactions 

of SIV with porcine respiratory mucus.  

 
Figure 4. Penetration of SIV through porcine respiratory mucus. (A) Confocal microscopic 
analysis of the virus penetration. Representative confocal photomicrographs of the penetration of SIV 
at 2, 10 and 30 min post virus addition. Mucin 5AC and SIV antigens were visualized by red and green 
color, respectively. (B) Penetration depths of SIV with time. Hundred and twenty measurements were 
obtained from three independent mucus samples. (C) Average penetration depth of SIV at 2, 10 and 30 
min post virus addition. Three independent experiments were performed. Error bars indicate the 
standard deviation. The asterisk (*) indicates statistical significance (P<0.05, by Student’s t-test).  



Neuraminidase in SIV penetration through mucus 

129 

 

4.4.5. Penetration of SIV through the mucus layer 

The depth of SIV penetration could be visualized by double immunofluorescence 

staining of the MUC5AC and SIV nucleoprotein (NP). The distance from the surface 

down to the deepest point of virus translocation was measured and designated as the 

depth of virus penetration. Three independent experiments were performed and in 

total 120 measurements were conducted. Distribution of the penetration depth for 

each condition was eventually obtained. Immediately after virus addition, the virions 

rapidly entered the mucus layer and reached a depth of 31 µm within 2 min, due to a 

passive diffusion effect (Fig. 4A). Incubated at 37°C, the virions spread further in the 

mucus with time. The distribution of penetration depth shows that the majority of SIV 

particles travelled 10 µm further in the mucus from 2 until 10 min after virus addition 

and reached a depth of up to 180 µm at 30 min after addition (Fig. 4A). Similarly to 

the microscopic diffusion, the distribution of SIV penetration clearly shows two 

fractions at 30 min after virus addition (Fig. 4B). About 65% of the viral particles 

penetrated at 30 min more than 2-fold further than 2 min post virus addition (Fig. 4B). 

The average depth of virus penetration at 30 min was significantly higher than that of 

earlier time points (Fig. 4C), suggesting that the SIV virions were able to actively 

penetrate the mucus layer. 

4.4.6. Neuraminidase mediated the diffusion and penetration of SIV in 

respiratory mucus 

Movies were captured with SPT software, and the SIV microscopic diffusion in 

mucus in the presence or absence of zanamivir or exogenous neuraminidase was 

analyzed with IPS. As shown in Fig. 5A, the mobile fraction of SIV diffusion was 

severely diminished by NAI treatment, while it was elevated by the addition of 

Arthrobacter ureafaciens neuraminidase. Approximately 55% of the mobile viral 

particles (with Da larger than 0.2 μm2/s) became stuck by the effect of zanamivir 

whereas the exogenous neuraminidase increased the mobile particles by 

approximately 15% (Fig. 5B). Consistently, the presence of zanamivir in virus 

suspension almost completely inhibited the SIV macroscopic penetration which 
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contrasts the further penetration by the effect of exogenous neuraminidase (Fig. 5C). 

The average penetration of mock treated SIV was significantly higher than that of 

NAI treated virus, while the rise of average penetration from mock to neuraminidase 

treated virus was also significant (Fig. 5D). These data imply that neuraminidase 

helped SIV penetrate through the porcine respiratory mucus. 

4.4.7. Effects of NA on SIV binding to the porcine respiratory mucus 

Virus attaching to the mucus cryosections was visualized by immunofluorescence 

staining to the SIV NP. The virus binding to 5 mucus cryosections was analyzed, 2 

images were taken for each section and in total 10 images were obtained for virions 

quantification. The number of virions that attached to a mucus region of 105 µm 2 was 

calculated. Three independent experiments were performed. The representative 

confocal photomicrographs show that zanamivir clearly enhanced the attachment of 

SIV to the mucus. In contrast, the exogenous neuraminidase depleted the virus 

binding to the mucus by 2-fold (Fig. 6). These data clearly demonstrated that NA was 

able to release the SIV particles which may have been bound by interaction of HA 

with mucins, moving the virions through the mucus. 
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Figure 5. Effects of NAI and Arthrobacter ureafaciens neuraminidase (AUNA) on microscopic 

diffusion and macroscopic penetration of SIV in porcine respiratory mucus. (A) Distribution of 
diffusion coefficient of NAI, AUNA and mock treated SIV in mucus. 1500 trajectories were analyzed. 
Distributions were refined with MEM. (B) Proportion of mobile fraction (Da >0.2 μm2/s) of NAI, 
AUNA and mock treated SIV in mucus. Error bars represent the standard deviation from three 
independent experiments. The asterisks (**) indicate statistical significance (P<0.01, by Student’s t-test) 
(C) Distribution of the penetration depth of NAI, AUNA and mock treated SIV through mucus at 30 
min post virus addition. Hundred and twenty measurements were performed on three independent 
mucus samples. (D) Average penetration depth of NAI, AUNA and mock treated SIV through mucus at 
30 min post virus addition. Three independent samples were performed, and error bars indicate the 
standard deviation. The asterisks (** and *) indicate statistical significance (P<0.01, and P<0.05, 
respectively, by Student’s t-test).  
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Figure 6. Effects of NA on SIV binding to porcine respiratory mucus shown by confocal 

microscopy. (A) Virions (white) bound to mucus cryosections in the presence or absence (Mock) of 
Zanamivir (NAI) or Arthrobacter ureafaciens neuraminidase (AUNA). (B) Quantification of viral 
particles bound to mucus (per 105 µm 2). The error bars indicate the standard deviation from 3 
independent experiments. The asterisks (** and *) show the significance difference (P<0.01, and 
P<0.05 by Student’s t-test). 

4.5. Discussion 

Influenza viruses are highly contagious and readily spread by aerosol transmission. 

The mucus is the first barrier for the small aerosol droplets to settle and overcome. In 

the present study, we applied SPT technique and a custom made virus 

in-capsule-mucus penetration system to visualize the microscopic diffusion and 

macroscopic penetration of SIV in porcine respiratory mucus.   

SPT is a unique model for rigorous analysis of virus-mucus interactions from the 

mobility point of view. The virus in-capsule-mucus penetration system allows the 

visualization of virus penetration in mucus layer thereby mimicking the natural 

conditions. By the use of these models, we were able to track the diffusion of SIV in 

natural respiratory mucus. In the SPT assay, there were two fractions based on the 

virus diffusion coefficient, a mobile and an immobile fraction. The ability of SIV to 
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detach from mucus was attributed to the NA activities, as inhibiting NA by the use of 

zanamivir significantly suppressed the liberation of the virus from the mucus network 

(Fig. 5A, 5B). This is also in line with a previous report by Matrosovich et al. 

(Matrosovich et al., 2004), which describes that blocking of the NA activities by 

oseltamivir efficiently inhibited influenza A viruses from infecting the differentiated 

human airway epithelium cultures which were probably covered by mucin secretions. 

Furthermore, exogenous neuraminidase was shown to promote both the microscopic 

diffusion and macroscopic penetration detected by the SPT and virus 

in-capsule-mucus penetration system (Fig. 5). This does not only confirm the 

beneficial effect of neuraminidase on releasing SIV from respiratory mucus, but also 

highlights bidirectional synergistic interactions between influenza virus and bacterial 

infections. The influenza virus predisposition to secondary bacterial infections has 

been thoroughly studied (Peltola et al., 2005; Pittet et al., 2010), however, little 

information exists regarding the impact of bacterial neuraminidase on influenza virus 

entry and transmission, and further research is needed.  

Neuraminidase was indicated to play a role in the SIV releasing from mucus, however, 

two fractions of viral motion in the mucus lead to a discussion of the way that the 

virus binds to the mucus. Mucins are the major constitute of mucus and are highly 

decorated by glycans terminated by sialic acids, thus they are likely to be attributed to 

the immobilization of SIV in porcine respiratory mucus. Mucins may play direct and 

indirect roles in host defense distinct from their ability to form adhesion decoys. In 

addition to mucins, the aqueous mucus layer consists of a great number of host 

defense agents including lysozyme, lactoferrin, secretory IgA (sIgA), collectins, 

defensins, cathelicidins, histatins and surfactant proteins (Schicht et al., 2013; 

Tjabringa et al., 2005; Vareille et al., 2011). These molecules may function by binding 

the virions in a receptor-independent pattern. It has been shown that surfactant protein 

D (SP-D) binds via a carbohydrate recognition domain in a Ca2+-dependent manner to 

N-linked high-mannose carbohydrates present on the HA and NA of the influenza 

viruses (Hartshorn et al., 1994). In addition, sIgA is retained at high concentrations in 
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mucus where it can efficiently trap the pathogens. Last but not least, defensins are of 

great interest with respect to respiratory viral infection. Human defensins have been 

shown to bind several types of viruses and inhibit the entry of the viruses to target 

cells (Daher et al., 1986; Doss et al., 2009). These components may be retained in 

mucus by direct binding with mucins or by the biophysical properties of mucus and 

thus become part of the gel network and provide an immobilized reservoir of 

protective effectors. Alternatively, it is possible that the viral particles that were 

immobilized in the mucus were actually incomplete or defective virions or became 

inactive while being prepared. The production of defective particles has been reported 

for influenza A viruses (Brooke et al., 2013; Nayak et al., 2009). However, the 

approach of distinguishing active and inactive virions in an entity has not been readily 

achieved, and will be further examined.  

While vaccination remains the primary option for the prevention and control of 

influenza, anti-influenza virus drugs are considered as a complementary approach, as 

vaccine production may not be rapidly achieved. Our findings provide experimental 

evidence for the essential role of NA in influenza virus penetration through the 

respiratory mucus. Blocking the NA activities clearly suppressed the movement of 

virus in mucus (Fig. 5), illustrating that NA played a role in removing the sialic acids 

on mucins, which may enable the virus to gain access to the cellular receptors. This 

suggests the usefulness of neuraminidase inhibitors as prophylactic treatment for 

influenza. On the other hand, preventative treatment with oseltamivir (Tamiflu) failed 

to protect the lung from virus replication or inflammation in an in vivo influenza 

infection study in pigs despite reduced clinical symptoms and virus shedding 

(Duerrwald et al., 2013). This highlights the complexity of the in vivo situation and 

the minimal benefits neuraminidase inhibitors may have.  

The ability of an influenza virus passing through the mucus may serve as a 

determinant for influenza virus transmission in addition to efficient virus attachment, 

high potential of replication and low infectious dose required (Sorrell et al., 2011; 

Tellier, 2009; Yassine et al., 2010). Combining the study of Cohen et al. (Cohen et al., 
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2013), it can be noticed that human influenza viruses could bind and be released from 

human salivary mucins but not from porcine submaxillary mucins, whereas, swine 

influenza virus was able to escape from porcine airway mucus, suggesting there may 

be different interactions between different influenza viruses and the mucus of 

different species. A balance of binding to and releasing from the mucin sialic acids, 

which is determined by the functional balance of HA and NA, may influence how 

efficiently the virus avoids sticking to mucus. Fluorescence lectin staining on mucus 

cryosection showed that both α2,3- and α2,6-SA were present in the porcine 

respiratory mucus, with distinct predominance for the latter (Fig. 1). The binding 

profile of the SIV strain was not investigated in this study, however, it has been well 

documented that swine influenza virus isolates, especially those with the avian-like 

H1 and H3 hemagglutinins showed receptor specificity for both α2,3- and 

α2,6-sialylated glycans (Bradley et al., 2011; Chen et al., 2011; Gambaryan et al., 

2005). Probably the mucus provides sufficient amount of receptors for SIV binding. 

The binding of SIV via HA to the porcine respiratory mucus was proved in the present 

study, and the amount of viral or exogenous NA indeed modulated the extent of viral 

binding to and releasing from the porcine mucus (Fig. 6). Concerning the releasing 

effect, NA which mediates the process also has a substrate preference. It was 

demonstrated that NA of human and swine influenza viruses have a preferential 

specificity for α2,3-SA although they cleave both linked sialylated glycans (Couceiro 

& Baum, 1994; Kobasa et al., 1999). Therefore, we assume that the sialic acids in 

respiratory mucus secretions may exert an effect on influenza virus transmission.   

Since the majority of viral particles were incapable of penetrating through the mucus 

layer, why do influenza viruses invade the respiratory tract of the animals after all 

(Crisci et al., 2013; Thacker & Janke, 2008; Webster et al., 1992)? Based on our 

experimental findings and present literature, we propose several strategies that 

influenza viruses may use to overcome the mucus barrier and find their way to 

establish infection:  

(1) Production of enzymes that aid the virus movement through the mucus. 
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Influenza virus binds to and uses sialic acid-containing molecules as receptors. It is 

because of this capability that influenza virus has evolved a second viral surface 

protein, neuraminidase, as a receptor-destroying enzyme that cleaves sialic acid, 

allowing the virus to be released after binding to sialic acid-containing molecules that 

do not lead to viral infection. A similar strategy is utilized by many other microbes, 

such as E. histolytica (Frederick & Petri, 2005; Leitch et al., 1988), Vibrio cholerae 

(Silva et al., 2003), Helicobacter pylori (Celli et al., 2009), reovirus (Bisaillon et al., 

1999) and coronavirus (Schwegmann-Wessels & Herrler, 2006), to subvert or avoid 

the mucus barrier. The production of enzymes, including mucinase, sialidase, 

glycosidase, elastase, and hydrolase, which are capable of degrading mucin core 

proteins and mucin carbohydrates facilitates microbes to swim through the mucus 

layer. Furthermore, the enzymes that the microbes produce may also facilitate the 

invasion of other pathogens. In women with bacterial vaginosis, the overgrowth of 

anaerobic gram-negative bacteria that produce sialidase, glycosidases and other 

mucin-degrading enzymes causes a breakdown in the barrier properties of 

cervicovaginal mucus, thereby destroying the mucus gel and helping other sexually 

transmitted pathogens such as human immunodeficiency virus (HIV) to invade 

(Olmsted et al., 2003).  

(2) The use of abundant and ubiquitous molecules as receptors. Although there 

may be a risk of binding to decoy receptors, the use of abundant and ubiquitous 

molecules as receptors provides the apparent advantage to the virus for allowing 

infection of multiple cell types and species. This can result in a low minimal 

infectious dose for initial infection. Based on the data of diffusion and penetration, the 

effects of the mucus network that virions encounter are so extreme that only a part of 

the particles can escape and reach susceptible target cells ultimately. Thus the viruses 

which require lower minimal infectious doses for the same tissues may gain higher 

chance to establish an infection.  

(3) Spread via aerosol. The slow settle of aerosols in the air can cause prolonged 

contact of the virus with the respiratory tract which benefits the virus penetration 
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through the mucus layer. Furthermore, aerosol droplets can travel much more 

efficiently to the lower respiratory tract and the mucociliary apparatus may need a 

longer time to transport and exclude the virions out of the respiratory tract, which 

increases the chance of these viruses to penetrate through the mucus layer and reach 

the target cells eventually.  

The issues if SIV is able to penetrate through the porcine respiratory mucus and if the 

neuraminidase contributes to move the virus through the mucus layer have been 

addressed. However, the ability of the viral neuraminidase to cleave sialic acid from 

mucus has not been investigated due to technical limitation. The viscous property 

impedes the separation of the free sialic acids from the mucus even if they would have 

been cleaved by the viral neuraminidase. Investigating the role of influenza virus 

neuraminidase in the cleavage of sialic acid from mucus may shed some light on 

unravelling the mechanism of influenza pneumonia. Hence the effect of influenza 

virus neuraminidase on mucus needs to be studied. 
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Pseudorabies virus (PrV) and swine influenza virus (SIV) are two important porcine 

viruses which both primarily replicate in the respiratory mucosa (Glorieux et al., 2007; 

Nauwynck et al., 2007; Van Reeth, 2007), however with different patterns. PrV 

primarily targets the epithelial cells of nasal mucosa and rapidly traverses the 

basement membrane (Glorieux et al., 2009; Kritas et al., 1994). Between 2 and 5 days 

post inoculation, virus spreads over the whole mucosa and further into the submucosa. 

In contrast, SIV infection is generally limited to the epithelial cells of the whole 

respiratory tract. The infection is very efficient in the lower respiratory tract, and the 

virus load can reach high levels (Heinen et al., 2000; Van Reeth et al., 1999). The 

primary mean of transmission of PrV among swine herds is direct contact between 

infected and susceptible pigs, whereas SIV is shed via nasal secretions and is 

efficiently transmitted via air (Van Gucht et al., 2006). SIV is cleared within 1 week 

after infection (Van Reeth, 2007), whereas PrV may replicate for 10-14 days 

(Nauwynck et al., 2007; Nauwynck, 1997). Hence a fast and intensive infection of the 

mucosal epithelium is crucial for SIV. In order to invade the host mucosa, both viruses 

may have evolved different mechanisms to reach and infect the respiratory tract.  

5.1. Significance of virus mobility in mucus  

The first barrier for a respiratory virus to encounter is the mucus layer. Together with 

the submucosal glands, epithelial mucus-producing cells secrete high molecular 

weight mucins, which comprise the respiratory mucus and maintain the biochemical 

and biophysical properties of mucus (Turner & Jones, 2009). In order to study 

virus-mucus interactions, we first set up a model using single particle tracking, which 

was used to study the mobility of particles in solution. The path travelled by each 

particle over time was recorded and the mean squared displacement and diffusion 

coefficient of the particles through the mucus gel were calculated (Braeckmans K, 

2010) (Chapter 3.1). Both PrV and SIV were found with single particle tracking to be 

immobilized in the porcine respiratory mucus, though the extent of hindrance was 

different. PrV experienced a significant obstruction in porcine tracheal respiratory 
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mucus, with approximately 96% of the viral particles being entrapped (Chapter 3.1). 

Seventy percent of the SIV virions, which were previously assumed to move freely in 

respiratory mucus, were entrapped (Chapter 4). Two major mechanisms may prevent 

particles from diffusing through mucus. Particles can adhere to mucus constituents or 

they can be hindered by the size of the mesh spacing between the mucin fibers. 

Measured with different sized polyethylene glycol coupled (PEGylated) nanoparticles 

and atomic force microscope, the pore size of porcine tracheal respiratory mucus 

ranged from 80 to 1500 nm, with an average diameter of 455 nm. Therefore, these 

viruses were entrapped in mucus due to adhesive interactions rather than size 

exclusion.  

The hindrance of these viruses was also confirmed by the penetration depth measured 

in a virus-capsule-mucus penetration system. PrV was almost completely trapped in 

the porcine respiratory mucus shown by this model (Chapter 3.3). On the other hand, 

some SIV particles remained stuck in mucus, while the rest were able to penetrate 

further with time (Chapter 4). These findings further demonstrate that the porcine 

respiratory mucus almost completely blocked PrV entry, while it seemed only to delay 

SIV from reaching the epithelial cells.  

It should be noted that strongly charged (positively or negatively) nanoparticles also 

showed a hindered motion similar to PrV which is negatively charged. Neutral 

PEGylated nanoparticles diffused freely in mucus (Chapter 3.1). Similarly, Lieleg et 

al. analyzed the diffusion of amine-, carboxyl-terminated and PEGylated particles (1 

µm) in extracellular matrix (ECM) purified from the Engelbreth-Holm-Swarm 

sarcoma of mice, and found that the diffusion of charged particles was extremely 

suppressed compared to the neutral PEG modified particles (Lieleg et al., 2009). The 

net surface charge of SIV was also found to be negative. Thus we hypothesize that the 

obstruction of PrV and SIV in the porcine respiratory mucus was at least partly due to 

charge interactions. As influenza virus is known to bind to negative sialic acids (SAs) 

via the pocket of the globular head of HA1 (Skehel & Wiley, 2000; Stevens et al., 

2006), immobility of SIV in the porcine mucus may involve more complicated 
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interactions. Immobilization is likely responsible for the majority of the inhibitory 

activity of mucus against a virus. Hindering the virus in mucus can prevent it from 

reaching the target cells in the epithelium.  

Movement in mucus may be a prerequisite for a virus to invade the mucus coated 

mucosa. PrV was almost completely immobilized in mucus, while SIV moved 

partially through mucus. Movement allows virus to penetrate through the respiratory 

mucus, as well to become released into the lumen after infection. In summary, PrV 

remains trapped in porcine respiratory mucus. PrV particles are mostly immobilized, 

and the particles may be bound to mucin fibers via interactions with mucin glycans 

(Fig. 1A and B). PrV has difficulties in crossing the mucus layer, which may explain 

why most infections occur subclinically (Martinez-Lopez et al., 2009; Newby et al., 

2002). It may depend on defects of mucus to be able to subvert the protective mucus 

barrier. On the other hand, SIV is partially moving in the mucus. Despite having 

chance of binding to SAs which are abundantly present in mucin glycans, the SIV 

particles are much more actively diffusing in the respiratory mucus. The NA of SIV 

constantly clips away the SAs that may be or may have been bound to the virus, thus 

helping the virus to drill through the respiratory mucus (Fig. 2A). The easy approach 

of influenza viruses to the target epithelial cells, may aid to explain why they may 

cause high morbidity during influenza virus outbreaks.  
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Figure 1. Schematic interactions of PrV with porcine respiratory mucus and the effect of 

temperature. (A) At body temperature (37 oC), PrV quickly enters after encountering the respiratory 
mucus due to passive concentration-dependent diffusion. PrV is highly trapped in mucus and remains 
trapped with time. (B) The immobilization may be mediated by binding of PrV to mucin (especially 
MUC5AC) glycans via charge interactions as the following process: (1) the PrV virion encounters and 
quickly binds to a mucin glycan; (2) the binding becomes stronger by involving more virus-mucin 
glycan interactions; (3) the attachment remains overtime. (C) At cold temperature (4 oC), PrV quickly 
enters after encountering the respiratory mucus due to passive concentration-dependent diffusion. PrV 
is partially diffusive, with some particles penetrating through the mucus layer. (D) The interactions may 
occur as follows: (1) the virion encounters a mucin glycan, while binding does not occur; (2) binding 
may occur when optimal interaction is achieved; (3) the virus may then be detached due to the weak 
bonding between the virus and glycan(s) at low temperature.  
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Figure 2. Schematic interactions of SIV with porcine respiratory mucus and the effect of NA. SIV 
quickly enters after encountering the respiratory mucus due to passive concentration-dependent 
diffusion. (A) SIV is partially diffusive, with particles being immobilized or moving variably. Some 
particles remain immobilized in mucus, and some have overcome the mucus layer and are approaching 
to the target epithelial cells. Interactions of a SIV virion with mucins may occur as follows: (1) the 
virion encounters and quickly binds to a mucin glycan, probably via SA; (2) NA functions to cleave the 
SA linkage; (3) the virion is released from the mucin glycan. (B) In the presence of NA inhibitor, SIV is 
mostly trapped in mucus, which may occur in the following process: (1) the virion meets with and 
quickly binds to a mucin glycan via SA; (2) the binding becomes more tightly by involving more 
virus-mucin interactions; (3) no NA functioning, hence the virion remained attached to the mucins. (C) 
In the presence exogenous NA, the SIV penetration increases, with more virions penetrating further 
into the mucus layer. More virions may have overcome the mucus layer and are approaching to the 
target cells. The interactions may occur as follows: the virion meets with a mucin glycan, but does not 
bind to it because the SA has been cleaved by the exogenous NA; (2) the virion avoids attaching to 
mucin glycans; (3) the virion moves freely.   

5.2. Binding of PrV and SIV to porcine respiratory mucus 

Immobilization of virus in mucus may be the result of virus binding to specific 

component(s) of mucus. Both PrV and SIV were indeed found to bind to the mucus 

cryosections (Chapter 3.3 and Chapter 4). Mucins, the major component of mucus, 

may play a crucial role in this reaction.  

A B C 



General discussion 

147 

 

It was demonstrated in this thesis that mucin glycans seem to bind PrV, thereby 

entrapping the virus in the porcine respiratory mucus. It is known for PrV that the 

virions bind to heparan sulfate via glycoprotein C (gC) for viral attachment, which is 

followed by a stable interaction between gD and its cellular receptor (Spear et al., 

2000; Trybala et al., 1998). Up till now, heparan sulphate, nectin-1, nectin-2 and 

CD155 were described as receptors for PrV (Campadelli-Fiume et al., 2000; Nixdorf 

et al., 1999; Spear et al., 2000; Spear & Longnecker, 2003). These PrV receptors, 

except the secretory heparan sulphate (Emery et al., 1995), have not been identified in 

the airway secretions. However, we were not able to correlate the immobilization of 

PrV in the pig mucus to virus-heparan sulphate interaction by using anti-PrV 

antibodies (Chapter 3.1). Therefore, we hypothesize that PrV may not bind to mucus 

via virus-receptor interactions. Instead, we assume that mucins could play an 

important role in adhering PrV via their sticky glycans (Fig. 1B). The inverse 

correlation between the presence of the dominant respiratory mucin, MUC5AC, and 

PrV infection in both tracheal explant and primary epithelial cells may support this 

assumption (Chapter 3.2). Furthermore, O-glycans seem to mediate the inhibitory 

activity of mucin, as removing the glycans elevated the infection of PrV in the 

MUC5AC-producing cells (Chapter 3.2). Our finding is in concert with some other 

studies which describe that O-glycosylated oligosaccharides present in human milk 

can block the binding and infection of viruses to epithelial cells (Etzold & Bode, 2014; 

Morrow et al., 2005; Ruiz-Palacios et al., 2003). In summary, mucin O-glycans 

possess antiviral activity that is related to a direct block of viral infection, providing 

an indication to a novel antiviral strategy. 

Binding of SIV to the respiratory mucins seemed to be more evident compared to PrV. 

SA, the well-known receptor for influenza virus, comprises most of the termini of 

mucin side chain glycans (Thornton et al., 2008). Fluorescence lectin staining on 

mucus cryosections showed that an abundant amount of SAs were present in the 

porcine respiratory mucus (mucins) (Chapter 4). The binding profile of SIV strain 

was not investigated in this study. However, it has been well documented that SIV 
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isolates, especially those with the avian-like H1 and H3 hemagglutinins can bind both 

a2,3- and a2,6-sialylated glycans without distinct preference (Bradley et al., 2011; 

Chen et al., 2011; Gambaryan et al., 2005). The porcine respiratory mucins, which 

contain both α2,3- and α2,6-linked SAs, provide sufficient receptors for SIV to attach. 

Binding of SIV via HA to the mucins was firmly proved in this thesis, because the 

amount of viral or exogenous NA indeed modulated the extent of viral binding to and 

releasing from the porcine mucus (Chapter 4). Taken together, mucins are 

responsible for the major adhesive effects of the respiratory mucus. In accordance 

with our findings, isolated human salivary mucins have also been suggested to 

directly interact with HIV-1 (Bergey et al., 1994; Habte et al., 2006) and to reduce 

HSV-1 infectivity at the early stage of infection (adsorption and penetration) (Bergey 

et al., 1993). In addition, purified gastric mucins have been described to inhibit the 

infectivity of various types of viruses, including human papillomavirus (HPV), 

Merkel cell polyomavirus (MCV), and influenza A virus (Lieleg et al., 2012).   

Mucin glycans also bind a variety of bacteria and parasites. It is well documented that 

Staphylococcus aureus, a frequently occurring community- as well as 

hospital-acquired pathogen, binds to several types of mucins, including bovine 

submaxillary mucin (Sanford et al., 1989; Thomas et al., 1993), salivary mucin 

(Biesbrock et al., 1991) and human nasal mucin (Shuter et al., 1996). In addition, 

Lactobacillus reuteri binds to mucin glycans via its mucin-binding protein, MUB 

(Mackenzie et al., 2010). Tritrichomonas foetus, a potent veterinary pathogen, and 

Entamoeba histolytica, predominantly infecting humans and other primates, are both 

found to express a SA-specific lectin, which enables them to attach to colonic mucins 

(Chadee et al., 1987; Hicks et al., 2000). This lectin-mediated binding to mucus is one 

of the initial steps in colonization. Unlike bacteria and parasites, which colonize upon 

binding to mucins (Lee et al., 1986; Macfarlane et al., 2005; Tse & Chadee, 1991), 

viruses that are bound to the respiratory mucins may be cleared by mucociliary 

beating and enventually inactivated in the stomach.  

In addition to mucins, a great number of host defense molecules including defensins, 
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lactoferrin, secretory IgA (sIgA), collectins, cathelicidins, histatins and surfactant 

proteins (Schicht et al., 2013; Tjabringa et al., 2005; Vareille et al., 2011) are present 

in the airway secretions. Surfactant proteins D (SP-D) is a C-type lectin (collectin) 

found in the airway secretions of the pig. It is well documented that both purified and 

recombinant porcine SP-D possess antiviral activities against influenza A viruses 

(Hartshorn et al., 1994; Hillaire et al., 2013; LeVine et al., 2001). In addition, 

defensins have been shown to bind several viruses, including influenza virus and HSV, 

and to inhibit the entry of these viruses into target cells (Daher et al., 1986; Doss et al., 

2009; Hazrati et al., 2006). Secretory IgA, which is retained at high concentrations in 

mucus, can efficiently trap diverse pathogens (Jacquot et al., 1992). Lastly, the 

syndecan family of proteoglycans can be produced by ectodomain shedding of the 

epithelial cells (Fitzgerald et al., 2000; Ramani et al., 2012). Thus, it may be 

abundantly present in the respiratory mucus. These molecules may function by 

binding the virions in a receptor-independent pattern. They may be retained in mucus 

by direct binding to mucins or by the biophysical retard of mucus, resulting in 

inactivation and/or indirect entrapment of virus in the mucus barrier. 

5.3. Different mechanisms for mucus invasion of PrV and SIV  

Most viruses initiate their infection at the mucosal surface of the respiratory tract, 

gastrointestinal tract, eye and/or cervical vagina which are coated with mucus 

(McChlery et al., 2009; Moon & Stappenbeck, 2012; Newman & Gooding, 2013; 

Slots, 2009; Steukers et al., 2012). Different viruses may have evolved different 

mechanisms to overcome the mucus barrier.  

Influenza virus binds via hemagglutinin to SA to initiate its entry into a host cell. 

After assembly, the newly formed virions need to be released from the cell surface, 

which is mediated by neuraminidase. Neuraminidase cleaves the linkage between SA 

and the penultimate galactose, which is abundantly present in mucin glycans. Thus, it 

is assumed that neuraminidase functions to detach influenza virions from 

SA-containing mucin glycans. SIV was demonstrated in Chapter 4 to utilize this 
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enzymatic strategy to get through the mucus layer. We found that 30% of SIV 

particles were diffusing freely in the porcine respiratory mucus as determined by 

single particle tracking. In addition, there was a fraction of viral particles that actively 

penetrated the respiratory mucus, as shown by the virus in-capsule-mucus penetration 

system. This movement of SIV particles was found to be mediated by the effects of 

neuraminidase, as the virus mobility was suppressed by the use of a neuraminidase 

inhibitor, whereas the movement was increased when exogenous neuraminidase was 

added (Fig. 2B and C). These findings suggest that neuraminidase helped to release 

the SIV particles which may have been bound to mucins, and rendered the virions to 

move through the mucus, resulting in traversal penetration through the mucus layer. A 

similar strategy is also employed by a great number of microbes, such as Entamoeba 

histolytica (Frederick & Petri, 2005; Leitch et al., 1988), Vibrio cholerae (Silva et al., 

2003), Helicobacter pylori (Celli et al., 2009), reovirus (Bisaillon et al., 1999) and 

coronavirus (Schwegmann-Wessels & Herrler, 2006). These mibrobes produce several 

kinds of enzymes, such as mucinase, sialidase, glycosidase, elastase, and hydrolase, 

which are able to degrade mucin core proteins or mucin carbohydrates, facilitating 

microbes to pave their way through the mucus layer.  

Unlike SIV, PrV was highly stuck in mucus. It seems to have difficulties in crossing 

the mucus barrier. Hence, the invasion of the virus may depend on defects or 

physiological changes of the mucus. We hypothesize that PrV was not able to 

penetrate through porcine respiratory mucus at body temperature (37 oC), while at 4 
oC, the virus moved more easily through the mucus (Fig. 1). Consistently, the number 

of virions attached to mucus increased with rise of temperature. This was further 

confirmed by using tracheal explant models, for which we found that the percentage 

of PrV which overcomes the mucus barrier and eventually causes infection in the 

epithelium was higher at 4 oC than that at 37 oC (Chapter 3.3). We therefore suggest 

that PrV may benefit from low temperature regarding its penetration through the 

porcine respiratory mucus. To be specific, PrV interacts with mucus, especially 

mucins, with weak bonding. The weak affinity interactions may be thermo-dependent, 
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thus be reduced with decline of temperature. A similar reasoning was made to the 

beneficial role of low temperature in influenza virus transmission in ferrets (Lowen et 

al., 2007). Hence, this effect may be general for the invasion of viruses, and 

contribute to the relationship between cold temperature and higher incidence of 

respiratory viral infections. In addition, pH appears also to be crucial in maintaining 

the physiological functions of mucus. Alterations of it may cause mucus deficiencies. 

For instance, HSV and HIV are only able to penetrate the cervicovaginal mucus at a 

pH that is increased from acid to neutral by bacterial vaginosis (Ensign et al., 2014; 

Lai et al., 2009).  

Compared to PrV, SIV seems to have evolved more sophisticated mechanisms to 

invade the respiratory tract. This may be related to the restricted epithelial infection of 

influenza virus. SIV hits and runs in a very short time and its skills to cross the mucus 

in a very efficient way and spread in the air fully fit in this concept. In contrast with 

SIV which exclusively infects the epithelial cells, PrV crosses rapidly the basement 

membrane upon primary infection and infects all sorts of cells in the underlying tissue 

in a very cell-associated way for 10-14 days and finally disseminates through the 

whole body (Nauwynck et al., 2007; Nauwynck, 1997). PrV is spreading from 

cell-to-cell without using the apical extracellular route, where it may risk being 

trapped in the respiratory mucus.  

Another mechanism, although not examined in this thesis, may be applied to small 

and capsid viruses to get through the mucus. Human papilloma virus (55 nm) and 

Norwalk virus (38 nm) (Olmsted et al., 2001) have been found to belong to this 

category. These capsid viruses may have developed a strategy to penetrate mucus by 

being small in size, neutral in net surface charge, and/or coated densely with equal 

amounts of positively and negatively charged moieties. Densely coated with equal 

densities of positive and negative charges, capsid viruses expose no or few 

hydrophobic patches on the surface, an adhesion-preventing mechanism present on 

the surface of most soluble proteins (Wada & Nakamura, 1981). Furthermore, 

surfaces densely coated with net neutral surface charge will neither be repelled nor 



Chapter 5 

152 

 

attracted to the negatively charged glycan domains of mucins.  

Lastly, the view of the mucus as a continuous layer that moves in bulk may not be 

correct for all areas of the respiratory tract. Our hypothesis is that mucus may form a 

discontinuous layer with dynamic attachments to the surface. For instance, a scanning 

electron micrograph of mucus on the surface of a trachea was described as forming 

“rafts” and “strands” (Rogers, 2007). Another recent study using three-dimensional 

cell culture demonstrated that mucus can form discontinuous layers with temporary 

attachments to the epithelial surface (Sears et al., 2011). This is due to the fact that the 

mucus does not flow evenly but preferentially concentrates along troughs or grooves 

(Agarwal et al., 1994). These observations indicate that there are some epithelial 

regions that are coated with thin or no mucus at all and these areas may be more 

susceptible to virus invasion. 

In summary, we set up two models, virus particle tracking and a virus 

in-capsule-mucus penetration system, and tracked the movement of PrV and SIV in 

porcine respiratory mucus. We found that they behaved differently in mucus and this 

difference was due to neuraminidase activity in influenza virus. Finally, we propose 

several mechanisms for different respiratory viruses invading the airway mucus. 

i) Producing enzymes enabling the virions to avoid from attaching to decoy 

receptors. 

ii) Viruses, especially the large, enveloped viruses, which lack enzymatic 

functions, may have evolved to get through the mucus layer depending on the 

defects, physiological changes and/or discontinuous property of mucus. 

iii) By being small and neutral in the surface charge, virus may avoid adhesive 

interactions with mucins. 
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Pseudorabies virus (PrV) and swine influenza virus (SIV), which both initiate 

infection in the respiratory mucosa, are two of the most important causative agents of 

pig respiratory disease. The viruses enter the respiratory tract, make contact with the 

mucosal surface and infect the epithelial cells. Before reaching the epithelium, the 

viruses need to overcome the mucus barrier, which outlines the respiratory mucosa. 

Crossing the mucus layer may be a crucial step for the mucosal invasion of PrV and 

SIV. Therefore, we aimed to study the interactions of PrV and SIV with porcine 

respiratory mucus, and to unravel the association between viral behavior in mucus and 

viral pathogenesis.  

In Chapter 1, a brief introduction is given on the classification, the virion structure 

and the pathogenesis of PrV and SIV. The second part focused on the characteristics, 

composition of mucus and the interactions between different classes of pathogens and 

mucus.  

In Chapter 2, the aims are given.  

Chapter 3 describes the investigation of PrV-mucus interactions by the use of single 

particle tracking, a virus in-capsule-mucus penetration system, and explant models. 

We demonstrated that PrV has difficulties in crossing the mucus barrier, and the 

inhibition was attributed to mucins, especially MUC5AC. However, the mucus barrier 

could be overcome by PrV at low temperature (4 oC), which reflects the epidemiology 

of PrV and potentially other respiratory viruses.  

In Chapter 3.1, we measured the barrier properties of porcine respiratory mucus, and 

investigated the mobility of PrV particles in mucus. First, the pore size of the porcine 

respiratory mucus was measured with atomic force microscopy as well as by fitting 

polyethylene glycol coupled (PEGylated) nanoparticles to the mucus. In addition, the 

mobility of PrV in porcine respiratory mucus was examined and compared with that 

of negatively charged, positively charged and PEGylated nanoparticles. We found that 

the pore size of the respiratory mucus ranged between 80 and 1500 nm, and the 
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majority of the pores were larger than the size of the virus. In contrast to the free 

diffusion of neutral PEGylated nanoparticles, PrV, which is negative in net surface 

charge, experienced a severe obstruction in the porcine respiratory mucus, with 96% 

of the viral particles being immobilized. Additionally, the highly negatively and 

positively charged nanoparticles were significantly trapped. Taken together, mobility 

of the particles was related to their surface charge. These findings indicate that the 

mobility of PrV was significantly hindered in porcine respiratory mucus, and that the 

obstruction of PrV was at least partly due to charge interactions rather than size 

exclusion. 

In Chapter 3.2, we investigated the distribution of the major mucin types, MUC5AC 

and MUC5B, along the respiratory tract and the anti-PrV activity of MUC5AC. First, 

the expression of MUC5AC and MUC5B in the porcine respiratory mucosa, including 

nasal mucosa, trachea, bronchus and the lungs, was examined by double 

immunofluorescence staining. We found that both MUC5AC and MUC5B were 

widely expressed in the whole respiratory tract. MUC5AC was mainly expressed in 

the apical epithelium and the MUC5B expression was almost exclusively located in 

the submucosal glands. The content of MUC5AC on the apical epithelium was 

inversely related to the attachment and infection of PrV to/in porcine tracheal explant, 

suggesting a dominant role of MUC5AC in blocking PrV to reach the epithelium. 

Furthermore, the enhancement of PrV infection in MUC5AC-producing cells treated 

with O-glycosidase indicated that O-glycans may mediate the anti-PrV activity of 

mucins. In summary, we suggest that MUC5AC is the dominant mucin type in the 

porcine respiratory tract, and may serve as a major contributor to PrV entrapment via 

its O-glycans to the inhibitory effects of the airway mucus. 

Since most clinical outbreaks of PrV infection occur during winter season, the effect 

of low temperature on interactions of PrV with porcine respiratory mucus was 

investigated in Chapter 3.3. First, the effect of temperature on the binding of PrV to 

porcine respiratory mucus was examined by confocal microscopy. Next to that, the 

penetration depth of PrV through the respiratory mucus was analyzed with the virus 
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in-capsule-mucus penetration system at different temperatures. Furthermore, the 

effect of temperature on the ability of PrV to overcome the mucus barrier was studied 

in a well-established respiratory mucosa explant system (ex vivo) as well as in a 

culture system, where virus was first incubated with pig mucus and mucin solution (in 

vitro) and afterwards brought on top of the susceptible cells. We found that less 

virions were bound to the respiratory mucus at low temperature, which is in line with 

the observation that viral particles penetrated further in the mucus at 4 oC, but not at 

37 oC. Additionally, the mucus almost did not prevent the virus from binding to the 

tracheal apical epithelium at 4 oC, but blocked the viral attachment by 65% at 37 oC. 

Lastly, the percentage of PrV that overcame the mucus and caused infection in 

tracheal explants and cell cultures increased with decline of temperature. Altogether, 

these findings indicate a beneficial role of low temperature in helping PrV to thwart 

the porcine respiratory mucus, which may shed new light on the interactions between 

exposure to cold and high incidence of respiratory viral infections. 

Chapter 4 demonstrated a crucial role of neuraminidase in helping the influenza virus 

to move through the respiratory mucus. Two techniques were applied to track SIV 

H1N1 in porcine mucus. The microscopic diffusion of SIV particles in the mucus was 

analyzed by single particle tracking, and the macroscopic penetration of SIV through 

mucus was studied with a virus in-capsule-mucus penetration system, followed by 

visualizing the translocation of the virions by immunofluorescence staining. 

Furthermore, the effects of neuraminidase on SIV getting through or binding to the 

mucus were studied by using zanamivir, a neuraminidase inhibitor, and Arthrobacter 

ureafaciens neuraminidase. Results showed that 70% of SIV particles were entrapped, 

while the rest diffused freely in the mucus. Additionally, SIV was able to penetrate the 

respiratory mucus with time, and travelled a distance of 65 µm at 30 min post virus 

addition. Both the microscopic diffusion and macroscopic penetration were enhanced 

by exogenous neuraminidase treatment, while they were in contrast diminished by the 

use of neuraminidase inhibitor. Moreover, the exogenous neuraminidase suppressed 

binding of SIV to mucus which was inversely enhanced by the addition of the 
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neuraminidase inhibitor. These findings demonstrated that the neuraminidase helps 

SIV to move through the mucus, which is important for the virus to reach and infect 

epithelial cells as well as to eventually become shed into the lumen of the respiratory 

tract. 

Chapter 5 summarizes the overall results of this thesis and presents a general 

discussion regarding the different interactions of PrV and SIV with porcine 

respiratory mucus, and proposes possible strategies for both viruses to overcome the 

mucus. Both PrV and SIV were found with single particle tracking to be immobilized 

in the porcine respiratory mucus, though the extent of hindrance was different. PrV 

experienced a significant obstruction in porcine tracheal respiratory mucus, with 

approximately 96% of the viral particles being entrapped. Seventy percent of the 

neuraminidase-producing SIV was entrapped in the mucus. Mucins, especially 

MUC5AC, were responsible for the entrapment of PrV in the respiratory mucus, as 

shown by binding of the virions to mucus cryosections and the inverse relation 

between MUC5AC content and PrV release. Thus, the virus likely depends on mucus 

defects, which for example may be caused by low temperature to invade the mucus 

barrier. On the other hand, SIV has evolved to produce neuraminidase which is able to 

release the SIV particles which may be bound to mucins, thereby enabling the virus to 

move through the respiratory mucus. The in-depth investigation of mucus invasion of 

these viruses may provide novel insights into the study of prophylactic treatment of 

swine influenza, Aujeszky’s disease and other related and perhaps unrelated viruses.  
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Samenvatting 

Pseudorabies virus (PrV) en swine influenza virus (SIV), welke allebei de bovenste 

luchtwegen van varkens infecteren, zijn twee van de meest belangrijke oorzaken van 

ademhalingsstoornissen bij varkens. De virussen worden geïnhaleerd, maken contact 

met de mucosa en infecteren vervolgens epitheelcellen. Vooraleer ze tot bij deze 

epitheelcellen geraken, moeten ze echter de overliggende mucusbarrière overwinnen. 

Aangezien dit een cruciale stap kan zijn in de mucosale invasie van PrV en SIV, was 

de doelstelling in deze thesis om de interactie van beide virussen met respiratoire 

mucus te bestuderen. Op deze manier konden we eveneens mogelije verbanden leggen 

tussen de gedragingen van het virus in de mucus en hun pathogenese achterhalen. 

In Hoofdstuk 1 werd er eerst een korte introductie gegeven over de classificatie, 

structuur en pathogenese van PrV en SIV. In het tweede deel ligt de focus op de 

karakteristieken en samenstelling van mucus. Bijkomend worden ook de interacties 

tussen verschillende soorten pathogenen en mucus besproken. 

In Hoofdstuk 2 worden de algemene doelstellingen van het onderzoek uiteengezet. 

Hoofdstuk 3 beschrijft het onderzoek van PrV-mucus interacties door gebruik te 

maken van single particle tracking, het virus-in-capsule-mucus penetratie systeem en 

explantmodellen. We hebben aangetoond dat dit virus moeite had om de 

mucusbarrière te doorbreken. Mucines, waaronder vooral MUC5AC, droegen bij tot 

deze inhibitie. De mucusbarrière kon echter wel overwonnen worden bij een lage 

temperatuur (4 °C), wat overeenkomt met de epidemiologie van PrV en mogelijks 

andere respiratoire virussen. 

In Hoofdstuk 3.1 hebben we naast de eigenschappen van porciene respiratoire mucus, 

ook de mobiliteit van PrV in deze mucus onderzocht. Eerst werd de poriegrootte van 

de mucus gemeten met “atomic force” microscopie en met het inbrengen van 

polyethyleen glycol gekoppelde (PEGylated) nanopartikels in de mucus. Bijkomend 

werd de beweging van PrV in porciene respiratoire mucus onderzocht en vergeleken 



Samenvatting 

165 

 

met die van negatief geladen, positief geladen en PEGylated nanopartikels. We 

hebben aangetoond dat de poriegrootte van deze mucus varieert tussen 80 en 1500 nm 

en dat de meerderheid van deze poriën dus groter zijn dan de grootte van het virus. In 

tegenstelling tot neutrale PEGylated nanopartikels, welke vrij in de mucus konden 

bewegen, werden de negatief geladen PrV partikels tegengehouden in de mucus. 

Ongeveer 96% van de viruspartikels werd hierin immers geïmmobiliseerd. De 

negatief en positief geladen nanopartikels werden eveneens gecapteerd in de mucus. 

Hieruit besloten we dat de mobiliteit van partikels afhangt van hun oppervlaktelading. 

Deze bevindingen suggereren dat de obstructie van PrV in porciene respiratoire 

mucus vooral veroorzaakt wordt door ladinginteracties en niet zozeer door hun 

grootte. 

In Hoofdstuk 3.2 werd enerzijds de distributie van de belangrijkste mucines 

(MUC5AC en MUC5B) in het ademhalingssysteem en anderzijds het antiviraal effect 

van MUC5AC op PrV onderzocht. Eerst werd de expressie van MUC5AC en 

MUC5B d.m.v. fluorescentiekleuringen onderzocht in de verschillende delen van het 

ademhalingsstelsel, nl. de nasale mucosa, de trachea, de bronchiën en de longen. 

Mucines bleken omnipresent te zijn in het porcien ademhalingssysteem, alhoewel de 

verdeling type-afhankelijk is. Zo komt MUC5AC sterk tot expressie in het apicaal 

epitheel en is MUC5B voornamelijk aanwezig in de submucosale klieren. Daarnaast 

werd in het porcien explantsysteem een omgekeerd evenredig verband vastgesteld 

tussen de graad van PrV-infectie en de expressie van MUC5AC. Dit suggereert dat 

MUC5AC een blokkerende rol speelt in het bereiken van en aanhechten van PrV aan 

het epitheel. Meer specifiek werd, door gebruik van O-glycosidase, aangetoond dat 

deze obstructie door MUC5AC te wijten is aan O-gelinkte glycanen. Er werd dus 

aangetoond door MUC5AC het dominante type van mucines is in het porcien 

ademhalingsstelsel en dat O-gelinkte glycanen een belangrijke rol spelen in het 

inhiberend effect van mucus op PrV infectie. 
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Aangezien de meeste klinische uitbraken van PrV zich voordoen in de winter, werd in 

Hoofdstuk 3.3 de interactie van PrV met de porciene respiratoire mucus bij een lage 

temperatuur onderzocht. Initieel werd er met behulp van confocale microscopie het 

effect van de temperatuur op de binding van PrV aan de porciene respiratoire mucus 

onderzocht. Vervolgens werd de penetratiediepte van PrV t.h.v. de respiratoire mucus 

op verschillende temperaturen geanalyseerd met het virus-in-capsule-mucus 

penetratie systeem. De interactie tussen PrV, temperatuur en migratie efficiëntie 

doorheen de mucus werd onderzocht met zowel het respiratoir mucosa explant 

systeem (ex vivo) als in een in vitro cultuursysteem. In dit in vitro systeem werd het 

virus eerst geïncubeerd met varkensmucus en een mucine oplossing of vervolgens 

werd het aangebracht op gevoelige cellen. 

Hierbij werd waargenomen dat bij een lage temperatuur minder viruspartikels binden 

aan de respiratoire mucus. Dit komt overeen met de observatie dat viruspartikels 

dieper in de mucus penetreren bij 4 C, dan bij 37 C. Bovendien verhinderde de 

mucus niet dat het virus bindt aan het tracheale apicale epitheel bij 4 C, terwijl bij 37 
oC de aanhechting van 65% van de virions geblokkeerd werd.  

Tot slot werd in de tracheale explanten en celculturen waargenomen dat het 

percentage van PrV-virions dat de mucus overwon en infectie veroorzaakte, toenam 

bij een dalende temperatuur. 

Deze resultaten wijzen erop dat de lage temperatuur PrV helpt om de respiratoire 

mucus te overwinnen. Dit geeft nieuwe inzichten in de interacties tussen koude 

temperaturen en de hogere incidentie van respiratoire virale infecties. 

In Hoofstuk 4 werd er dieper ingegaan op de cruciale helpende rol van neuraminidase 

bij het migreren van het influenzavirus doorheen de respiratoire mucus. Twee 

technieken werden toegepast om SIV H1N1 te lokaliseren in de porciene mucus. 

De diffusie van SIV-partikels werd microscopisch geanalyseerd met ‘single particle 

tracking’ en de microscopische penetratie van SIV doorheen de mucus werd 

geanalyseerd met een virus-in-capsule-mucus penetratie systeem, gevolgd door het 

visualiseren van de viriontranslocatie met immunofluorescentiekleuring. Vervolgens 
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werd het effect van neuraminidase op de SIV-binding en translocatie doorheen de 

mucus bestudeerd met zanamivir, een neuraminidase-inhibitor, en Arthrobacter 

ureafaciens neuraminidase. Hierbij werd 70% van de SIV-partikels gevangen in de 

mucus, terwijl het overige percentage zich vrij in de mucus bevond. Bovendien was 

SIV, mits de nodige tijd, in staat de respiratoire mucus te penetreren en een afstand 

van 65 µm af te leggen binnen de 30 minuten nadat het virus was toegevoegd. Zowel 

de microscopische diffusie als de macroscopische penetratie verhoogden door het 

behandelen met een exogeen neuraminidase, terwijl ze afnamen na behandeling met 

een neuraminidase inhibitor. Bovendien verhinderde het exogene neuraminidase de 

binding van SIV aan de mucus, terwijl de neuraminidase inhibitor deze binding 

bevorderde. Deze resultaten tonen dat het neuraminidase SIV helpt doorheen de 

mucus te migreren, wat belangrijk is voor het virus om de epitheelcellen te bereiken 

en te infecteren, om uiteindelijk uitgescheiden te worden in het lumen van de 

luchtwegen. 

In Hoofdstuk 5 worden alle resultaten, bekomen in deze thesis op een rijtje gezet en 

besproken. De interacties van PrV en SIV met mucus worden hierbij vergeleken en 

verscheidene hypotheses werden opgesteld om het effect van mucus op het virus te 

omzeilen. Zowel PrV als SIV worden sterk geremd in hun migratie doorheen de 

mucus, de grootte-orde van dit effect was echter virus-afhankelijk. Zo wordt PrV 

bijna volledig geblokkeerd in de tracheale mucus, daar 96% van de PrV viruspartikels 

geïmmobiliseerd raken. Voor SIV bleek dit slechts voor 70% van de viruspartikels op 

te gaan. De mucines, en meer specifiek MUC5AC, zijn verantwoordelijk voor het 

inhiberen van de migratie van viruspartikels door de mucus. Dit werd enerzijds 

aangetoond door de rechtstreekse binding van viruspartikels aan mucus en anderzijds 

door het omgekeerd evenredig verband tussen MUC5AC-expressie en PrV-infectie. 

Hieruit kunnen we concluderen dat het virus afhankelijk is van onregelmatigheden in 

de mucus, deze kunnen o.a. veroorzaakt worden door lagere temperaturen. In 

tegenstelling tot PrV, heeft SIV een mechanisme ontwikkeld om zijn virion opnieuw 

los te maken van de mucines. SIV produceert namelijk neuraminidase, dat in staat is 
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de binding tussen viruspartikel en mucines te verbreken, waardoor het virus zich kan 

voortbewegen door de mucus. Dit onderzoek naar invasie van virussen doorheen de 

mucus kan nieuwe inzichten opleveren voor de ontwikkeling van profylactische 

behandelingen voor zowel varkensgriep als de ziekte van Aujeszky en mogelijks 

andere (verwante) virussen. 
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