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Part I. Scope 

Chapter 1: Scope 

CropDesign holds a unique position on world scale. Owing to its unique TraitMill 

phenotyping platform, the company possesses an enormous database linking 

genes to specific phenotypes related to growth or seed yield in rice. These genes 

are involved in various processes, and their inter-relationship is mainly unknown. 

In most cases, the actual cause of how these genes enhance growth or seed yield 

is even unclear. To unravel the mechanisms that define growth or seed yield at 

the molecular level, it is necessary to understand how the molecular machinery 

that determines yield parameters operates.  

One important data layer that provides clarity in a cell’s working mechanisms is 

the unravelling of protein-protein interactions that support genes in their function. 

Indeed, proteins rarely act as single entities. Instead they co-operate, mainly 

through protein-protein interactions, to function as molecular machines.  

The main objective of this project was therefore to build a TAP technology platform 

in rice. Rice is the preferred organism to work with as 1) CropDesign’s yield ‘lead’ 

genes were discovered in rice, 2) rice as a crop is of great commercial importance 

on world scale and 3) rice can be used as a model crop for corn, wheat and other 

important cereal crops.  

A first objective is to develop the optimal tools to perfection TAP in rice. For 

this, we will test different TAP tags and promotors for their efficiency in rice callus 

by using the rice ortholog of CYCLIN-DEPENDENT KINASE REGULATORY SUBUNIT 

1 (CKS1) as bait protein. CKS1 has a conserved role in cell cycle regulation as 

scaffold protein. We will also produce the necessary Gateway® vectors to obtain 

high cloning flexibility. Our goal is to find a TAP tag/promotor combination that 

allows obtaining higher yield and specificity in purifying complexes than the earlier 

published TAPi tag. 

A second goal is the establishment of a functional TAP platform in rice 

callus. The tools to perfection TAP in rice will be tested in rice callus. For this, rice 

CKS1 will be used as a TAP ‘bait’ protein. The interactors of CKS1 are known for 

Arabidopsis and the gene is strongly conserved between Arabidopsis and rice.  

The combination of an optimal TAP tag/promotor with the use of the ultrasensitive 

Orbitrap mass spectrometry offers the possibility to efficiently purify and 

characterize protein complexes from rice plant tissues. We therefore aimed to 

develop a functional TAP platform in rice plants.  

Once we’ll have the tools for an optimised TAP protocol in callus and plant tissues 

at hand, the final target is to identify protein complexes from multiple lead 

baits using the rice callus platform and the rice plant TAP platform. The 

current state of the art of TAP in rice detects interactors for only 23% of the 

screened baits. Our TAP platform should result in a higher throughput and a higher 

success rate compared to this state of the art.  
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Part II. Introductory chapters 

Chapter 2: Improving yield: how to pimp my crop? 

Modern agriculture requires yield increases 

Food or in general nutrition is one of the basic needs for any organism. The advent 

of agriculture, the cultivating of domestic plants, allowed fewer people to provide 

more food. The stability that came with regular, predictable food production led to 

a tremendous increase in population density. This enabled people to do more than 

hunt for daily food requirements: they started to travel, trade, and communicate. 

Continuous improvements in agricultural technologies and practices allowed 

sustaining this population growth. E.g. the introduction of the iron plough, crop 

rotation, synthetic fertilizers and more recently the first Green Revolution provided 

the necessary quantum leaps in agricultural yields. Nowadays, demographic 

projections predict the world population to reach about 9.6 billion people by 2050. 

This population increase and the prospected changes in life style – more people 

tend to eat meat – imply that global agricultural productivity should increase by 

60% to sustain proper human nutrition without significantly increasing the 

cultivated area [1]. The latter implies that with the natural degradation of 

agricultural land, simply augmenting planting of crops is no longer a viable 

solution. Most of the increase in production will thus have to be achieved by 

increasing the yield per area [1]. This poses an enormous pressure on the 

agricultural industry to produce more output than ever before. 

Today’s ways to enhance yield from crops 

A way to enhance yield is to improve the varieties themselves for higher resilience 

and/or higher yield potential. This can be achieved by breeding, exploitation of 

heterosis (through the use of hybrids) and/or genetic modification. The latter offers 

the huge advantage that it adds an enormous potential of novel (transgenic) 

variation to supplement the natural variation for yield or stress resistance traits. 

To date, commercially available genetic engineered crops are mainly focused on 

resilience against biotic stress. Herbicide tolerant GM cultivars (e.g. Clearfield® 

and Roundup Ready® crops) are less susceptible to weed competition and have 

been very successful in maize, soybean and canola. Transgenic insect resistance 

(e.g. crops expressing the insecticidal Bacillus thuringiensis δ-endotoxins, or ‘Bt 

crops’) showed to be very effective in maize and cotton. Also transgenic resistance 

to fungal diseases is being developed (www.croplife.org). In 2013, the first 

transgenic crop that targets yield maintenance under abiotic stress - in this case 

drought stress - was introduced into the market by the Monsanto/BASF 

collaboration (Genuity® DroughtGard™ Hybrids Corn, [2]).  

These higher-resilience traits are extremely suitable in closing yield gaps caused 

by the (a)biotic stresses they target. However, once established, the yield 

increases delivered by controlling pests, disease and weeds cannot be repeated. 

At best they can be maintained [3]. Therefore, continued improvements in crop 

genetics are required to ensure potential yields into the future. Also here, genetic 

modification can greatly aid in adding genetic diversity by breaking the genetic 

boundary of both genes and their spatial and temporal control of expression by 

promoters. 
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Multiple routes for boosting intrinsic yield 

To further boost plant yield, it will be necessary to understand how the molecular 

machinery that determines yield parameters operates. Due to the multifactorial 

nature of the complex trait ‘yield’, many aspects fall in this scope (Figure 1). In 

first instance, maximal exploitation of the plant’s energy sources can be targeted. 

Nutrients taken up through the root system and carbohydrates produced during 

photosynthesis in the leaves are mobilized throughout the plant to sustain its 

growth. Both nutrient uptake and photosynthesis efficiency are therefore excellent 

targets for enhancing plant yield. Not only the capturing, but also the distribution 

of assimilates to the tissues that require these is a potential target to improve 

plant yield. This can be achieved through optimisation of assimilate transport and 

enhancement of sink capacity. Alternatively the orchestration of plant growth could 

be targeted to aim for enhancing growth or seed yield, and/or optimizing plant 

architecture for high density cultivation.  

Figure 1. Illustration of the multifactorial characteristic of the yield trait. 

 
The main developmental and physiological processes targeted for yield enhancement 

described in this chapter are shown. The complexity of the trait is illustrated by the 

interdependency of the different parameters underlying yield, as illustrated by the grey 

arrows. N: nitrogen; C: carbon. 
 

Plants rely for their nutrient supply mainly on what mineral nutrients are available 

in the soil. Nitrogen, phosphorus, magnesium and potassium are the building 

blocks of crucial cellular components, like proteins and nucleic acids, and are 

therefore required in significant quantities. Other minerals, like iron, zinc, 
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manganese and copper are usually chelated or used as cofactors for enzyme 

activity and therefore only needed in small amounts. As non-motile organisms, 

plants are forced to utilize a plethora of sophisticated mechanisms to acquire 

sufficient amounts of these nutrients for proper growth. These mechanisms include 

optimizing root structure to better mine the soil, induction of high affinity 

transporters and the establishment of symbioses for facilitated nutrient uptake. 

For agriculture purposes, engineering of more efficient nutrient uptake can lead to 

plants that make better use of the available fertilizers, leading to higher crop 

yields. This in principle only holds true if the use of sufficient fertilizer is 

guaranteed. In that case, transporters are an excellent route to increase nutrient 

uptake from the soil [4]. Indeed, altering the expression of OsPTR9 (for PEPTIDE 

TRANSPORTER 9), a rice nitrate transporter, was shown to significantly affect 

nitrogen uptake and grain yield under limiting and normal N fertilization in the field 

[5]. Increased nutrient assimilation efficiency can also be achieved by optimizing 

the intracellular assimilation and recycling process. A known target related to this 

strategy is glutamate synthetase, an enzyme that catalyzes the condensation of 

glutamate and ammonia to form glutamine. Overexpression of GLN1-3 (for 

GLUTAMINE SYNTHASE 1-3) in leaves led to 30% increase in kernel number in 

maize [6]. Also in wheat and Arabidopsis, an increase in yield or biomass was 

obtained by overexpressing this enzyme [7–9]. Similarly, rice plants 

overexpressing alanine aminotransferase, catalysing the reversible transfer of an 

amino group from glutamate to pyruvate to form 2-oxoglutarate and alanine, had 

significantly increased biomass and grain yield [10]. 

Plants use the energy of the sun to produce biomass during photosynthesis. They 

absorb specific wavelengths (400-700 nm) of sunlight using the pigment 

chlorophyll, to convert sunlight to chemical energy. This energy is used to ‘fix’ or 

convert atmospheric CO2 into organic compounds. Experiments increasing 

photosynthesis by artificial elevation of [CO2] provide evidence that increasing 

photosynthesis in a crop (in this case soy) under standard field conditions does 

result in an increase in yield of 15% [11]. To achieve similar yield increase without 

having to increase [CO2], different possible targets could be selected. First of all, 

the enzyme taking care of the first committed step in carbon fixation, ribulose 

bisphosphate carboxylase (RubisCo), evolved from an environment that initially 

contained no oxygen. As a consequence, RubisCo has low selectivity in 

distinguishing CO2 from O2 in the carboxylation step of ribulose 1,5-diphosphate. 

Especially in C3 plants, photosynthetic efficiency is dramatically reduced because 

of oxygen being combined with the sugar instead of CO2 in a process called 

photorespiration. In addition, the selectivity of RubisCo is temperature sensitive 

and becomes poorer at higher temperatures. Net losses of carbon due to this 

reduced photosynthetic efficiency are estimated at 25% [12]. C4 plants use a 

compartmentalization system to concentrate the CO2 levels around RubisCo, 

favouring the carboxylation reaction and allowing higher photosynthetic efficiency 

(and higher yields) at high temperatures [13]. In fact, this also results in a net 

increase in water and nitrogen use efficiency [13,14]. The storage of CO2 in the 

bundle-sheath cells results in a lowering of the CO2-levels in the mesophyll cells, 

contributing to a swifter diffusion of CO2 in the leaf. Stomata can thus be smaller 

and/or less numerous, preventing water loss due to transpiration. Since RubisCo 

is more efficiently used in C4 plants, less of the protein has to be produced, saving 
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nitrogen resources [13,14]. There have been many attempts undertaken to 

introduce (parts of) this more efficient C4-like photosynthetic system in C3 crops, 

such as rice (http://c4rice.irri.org/) and potato [15].  

Another route for increasing photosynthetic efficiency is adapting the plant’s 

development as such that the time window of canopy closure (and thus 

photosynthetic capacity) is maximized. A comparison of maize with a relative C4 

grass, the cold-tolerant perennial Miscantus x giganteus, showed that the latter 

produced 60% more biomass [16]. This higher productivity is accounted to a 4 

weeks earlier closing of the canopy and a 4 weeks later senescence. Especially 

delaying senescence is thoroughly studied [17]. For example a chimeric construct 

of the isopentenyl transferase (IPT) encoding gene controlled by the senescence 

promoter PROSAG12 was developed, allowing senescence-specific production of 

cytokinin [18]. The resulting senescence inhibition showed a positive effect on 

photosynthesis and productivity of the entire canopy in various crop species. While 

the long vegetative period showed to be beneficial for biomass production, it might 

however be detrimental for grain yield. Over-prolonged leaf longevity may prevent 

effective nutrient recycling and a good balance between delayed leaf senescence 

and nutrient translocation to sink tissues is probably needed for increasing yield in 

crops [19]. 

Analogous to what was discussed related to nutrient supply, carbon assimilation 

efficiency can also be achieved by optimizing the intracellular assimilation by 

heterotrophic sink tissues. Indeed, carbon fixated in the photosynthetic tissues is 

translocated in the form of sucrose to support non-photosynthetic tissues. Sink 

capacity can be strengthened by either altering the biochemistry of the sink organs 

or enhancing the sucrose phloem loading/unloading capacity. Once the sucrose 

reaches the sink cells, it is either hydrolysed by invertase (INV) to glucose and 

fructose, or degraded by sucrose synthase (SuS) into uridine-diphosphoglucose 

(UDP-glucose) and fructose. Overexpression of a cell wall-located invertase 

(CWIN) in rice grains driven by its native promoter led to increased grain size [20]. 

Similarly, a constitutively expressed CWIN improved grain yield up to 145.3% in 

transgenic maize plants as compared to the wild-type plants [21]. Overexpression 

of SuS in cotton reduces seed abortion, resulting in more mature seeds and higher 

cotton fibre yield [22]. More downstream of the SuS pathway, overexpression of 

the adenosine diphosphoglucose pyrophosphorylase (AGPase), which catalyses the 

first committed step into starch biosynthesis, was targeted. AGPase is a 

heterotetramer defined by 2 small and 2 large subunits. Overexpression under the 

control of an endosperm-specific promoter of either both genes encoding for the 2 

small subunits or the genes for the 2 large subunits enhanced seed weight and 

starch content in maize. The 100-grain weight increased 15% over the wild type 

[23]. Also trehalose-6-phosphate (T6P) plays a crucial role, not only in sugar 

metabolism, but also in signalling and plant development. Its importance is 

reflected in a central role in carbon metabolism and plant development. 

Biosynthesis of the compound consists of a condensation reaction consuming UDP-

glucose and glucose-6-phosphate (G6P) catalysed by trehalose-6-phosphate 

synthase (TPS). UDP-glucose is a known cell wall, cellulose and callose precursor, 

whereas G6P is the starting point for energy metabolism generating NADPH (for 

nicotinamide adenine dinucleotide phosphate) for reductive biosynthesis. Recent 
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studies show that TPS can sense sucrose availability to generate T6P as a signal 

to promote growth and starch and cell wall biosynthesis. This could be achieved 

through the inhibitory effect of T6P on the activity of SUCROSE NON-FERMENTING-

RELATED KINASE 1 (SnRK1) [24,25]. Under restrictive growth conditions but with 

abundant sucrose, T6P makes plants ready to recover by stimulating expression 

of growth-related genes [26]. T6P also plays pivotal signalling roles in regulating 

stress responses [25] and development, including embryogenesis and flowering. 

T6P is therefore a sensitive target for genetic engineering to improve crop yield, 

which will require highly targeted approaches to manipulate T6P metabolism very 

precisely in time, space and magnitude within plant tissues. 

The importance of plant architecture in agriculture is reflected in the breeding 

efforts during the green revolution. Semi-dwarf rice and wheat varieties were 

introduced at that time. This prevents diversion of resources towards stem 

elongation in field conditions (high density growing with high nitrogen input) that 

normally favour this process, and avoids lodging. According to the International 

Rice Research Institute, the ideal rice plant architecture consists of low tiller 

(branches carrying inflorescence) numbers, a high number of productive tillers, 

200-250 grains per panicle (the cluster of flowers at the top of the plant), dark-

green thick and erect leaves and a vigorous and deep root system. The recent 

identification of a discrete number of genes as major players in the increase in 

plant productivity during the Green Revolution can help in further developing rice 

towards this ideal architecture [7]. In this frame IDEAL PLANT ARCHITECTURE and  

WEALTHY FARMER’S PANICLE QTL’s were identified, correlating with much of the 

variation in plant architecture in two rice varieties (respectively Shaoniejing and 

ST-12 varieties) [27,28]. In both cases, fine mapping of the QTL led to the 

identification of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14 as the gene 

that can affect plant architecture. Transgenic lines overexpressing OsSPL14 have 

fewer tillers with stronger culms (stalks) as well as an increased number of panicle 

branches and increased grain yield [27,28]. Reduced levels of OsSPL14 to the 

contrary, lead to shorter plants with more tillers and less grains [27].  

Unlike rice and wheat, corn did not went through a similar yield transformation as 

the Green Revolution. The development of dwarfed corn varieties with unchanged 

kernel yield could therefore open new perspectives [29]. The simple change to 

dwarfing in oilseed rape (Brassica napus) through genetic engineering illustrates 

that yield increase through targeted manipulation is within reach [30]. 

A comprehensive approach for enhancing yield potential is altering the plant’s 

development to achieve enhanced growth or seed yield. For this, Arabidopsis and 

rice are the most common model systems to find genes and regulatory networks 

controlling yield determining processes. In turn, the knowledge from these models 

can be used for further growth improvement in other species including cereals. 

The formation of organs or tissues is studied as a proxy for whole plant 

development. In Arabidopsis research, focus is mainly on unravelling the 

mechanisms behind organ and more particular leaf growth. The general believe is 

that organ growth at the cellular level is determined by spatiotemporal-specific cell 

proliferation and cell differentiation. In a first phase cell proliferation takes place, 

followed by cell elongation. These two events occur at different times during 
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development and in different cell types, each with a different rate. The co-

ordination of both processes is thus both crucial and extremely complex. A variety 

of organ growth regulators were identified streamlining either or both processes 

at different stages throughout leaf development. Some of these genes resulted in 

positive effects in the field. For example the Zea mays ortholog of ARGOS or AUXIN 

REGULATED GENE INVOLVED IN ORGAN SIZE, was shown to enhance maize organ 

growth, grain yield and drought stress tolerance [31]. Also, key regulators 

controlling seed yield were identified. Seed yield is clearly a lot more complicated 

trait than organ size. Not only seed size, but also the number of seeds, defined by 

inflorescence architecture and floral development, and seed filling play pivotal 

roles in the final yield (calculated as total weight of seeds per plant). In addition, 

seed number is often negatively correlated with seed size [32]. A recent effort in 

Arabidopsis assembled the fragmented knowledge on seed yield into a global and 

coherent picture on 46 genes [33]. The study revealed extensive variation for total 

rosette area and the five seed yield parameters studied, complicating the 

interpretation of the biological processes behind the trait. First of all, not all results 

showed to be reproducible, even by using plants with the same genotype. This 

stresses that different (lab) environmental conditions can influence experimental 

reproducibility. Although leaf size was found not correlated with seed yield, some 

of the genes positively regulating seed yield were found to also control leaf growth 

[33]. Indeed, GRF1, GRF5 (for GROWTH-REGULATING FACTOR 1 and 5 

respectively) and BRI1 (for BRASSINOSTEROID INSENSITIVE 1) overexpressors, 

all affecting leaf size, were found to produce larger seeds. Overexpression of the 

GRF transcription factors produced larger cotyledons containing larger (GRF1) and 

more (GRF5) cells [34]. The increased seed size observed in these plants possibly 

resulted from the production of larger embryos containing larger cotyledons. The 

role of brassinosteroids in seed development is stressed by BRI1 overexpression 

affecting seed size. This is not surprising since previous links to brassinosteroid 

signalling to seed size were reported (reviewed in [35]). 

Advances in understanding the transition phases during plant development could 

also provide pivotal information to increase yield [36]. This could for example 

enable to engineer plants that have short vegetative phases and longer 

reproductive phases, leading to higher seed yields. A potential target for this is the 

antagonistic action of miR172 and miR156 miRNAs and their respective targets on 

plant development [36] (Figure 2). Briefly, during early development the levels of 

miR156 are initially high, promoting the juvenile vegetative growth phase in 

Arabidopsis seedlings [37]. As the plant matures, the levels of miR156 steadily 

decrease, allowing for the production of SQUAMOSA PROMOTER BINDING 

PROTEIN-LIKE 9 (SPL9) and SPL10 proteins that promote adult leaf traits [37]. 

Simultaneously, SPL9 and SPL10 directly induce the expression of miR172 genes 

[38]. Increased levels of miR172 result in the down regulation of six APETALA2-

like transcription factors that normally repress flowering. Release from this 

repression, in combination with the flower-promoting actions of SPL3, SPL4 and 

SPL5, makes the plant competent to flower and enables transition to flowering 

[38].  
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Figure 2. Regulation of transition phases in Arabidopsis. 

 

 
During early development the levels of miR156 are initially high, promoting the juvenile 

vegetative growth phase in seedlings. As the plant matures, miR156 levels steadily 

decrease, allowing for the production of SPL9 and SPL10 proteins that promote adult leaf 

traits. At the same time, SPL9 and SPL10 directly induce the expression of MIR172 genes. 

Increased levels of miR172 result in the downregulation of six AP2-like transcription 

factors (denoted as ‘AP2’) that normally repress flowering. Release from this repression, 

in combination with the flower-promoting actions of SPL3, SPL4 and SPL5, makes the 

plant competent to flower and the transition to flowering can occur. Abbreviations: AP2, 

APETALA2; miR156, mature miRNA156; miR172, mature miRNA172. 
 

Genes are also tested in high-throughput fashion to verify if their altered 

expression effects plant yield. This can provide additional information on genes 

and pathways involved in plant development and yield biology. Most high 

throughput testing is performed by private companies such as Mendel 

Biotechnology, which tests mainly transcription factors in Arabidopsis 

(www.mendel.com), and CropDesign. The latter developed TraitMill, a high-

throughput platform that enables large-scale transgenesis and plant evaluation. 

TraitMill allows testing the effect of genes and gene combinations on plant 

phenotypes. It can be used to successfully evaluate hundreds of independent 

promoter-gene combinations per year, either under optimal growth conditions or 

under different abiotic or nutrient stress regimes. The TraitMill platform operates 

in rice and is specially designed to measure alterations in growth with high 

sensitivity [39]. Although slower and more costly as a testing system than 

Arabidopsis, rice has the advantage that it is a crop itself. It can serve as a more 

suitable model for cereal crops, being evolutionary more close than Arabidopsis. 

The potential of the TraitMill platform is determined by the quality of the genes 

that are tested. With the abundant availability of genomic sequences for plants 

and the throughput of approximately 1000 constructs a year, it is a continuous 

challenge to look for innovative ways of making the best gene choices for the 

TraitMill platform. CropDesign possesses a unique databank with more than 500 

lead genes that significantly contribute to an enhancement in at least one of the 

growth and/or yield components under normal or stress conditions. This extensive 



 

11 
 

Part II. Introductory chapters 

databank enables CropDesign to fulfil a pioneering role in the unravelling of 

molecular networks involved in yield. 

Identifying the connections between growth regulators might unravel 
the complexity of yield 

Despite these numerous genes affecting yield identified, our understanding of yield 

biology is still scarce compared to its overwhelming complexity. An illustration of 

our current abilities is nicely provided in the engineering of Brassica napus flowers 

[40 and references within]. These turn bright yellow from the petals held above 

the leaves. The problem is that these petals can block nearly 60% of the 

photosynthetic effective light and facilitate fungal pathogen entry. From the well-

established flower organ specification models from Arabidopsis research, canola 

lines were generated with petals converted into sepals, which are smaller and block 

only little light. This led to increased photosynthesis and higher yield.  

Subsequently, a line was found completely lacking petals with no other deleterious 

effects. This line was mutated in a previously unstudied gene, which function is 

still not understood. That a mutation in an unknown gene would confer such a 

desirable phenotype in the best-studied developmental genetic pathway exposes 

the hiatuses in our understanding of how genes generate phenotypes.  

Apart from knowing all individual growth regulating components, it is clear that 

only a tight co-ordination between these numerous players can support the 

formation of a functional organ. This is illustrated by compensatory responses 

among yield components that sometimes prevent to reach an overall positive yield 

effect [41]. To face this challenge, a better understanding is required of the 

molecular processes that drive intrinsic yield [34], together with their impact on 

the organ level and plant level [40]. The connections between the components of 

the network and their dynamics can be further disentangled through their 

identification. The general trend within the community is therefore to also test 

‘stacked’ constructs, combinations of independent alleles with the aim to achieve 

additional or synergistic effects. A number of efforts on assaying epistatic 

interactions between independent alleles were done in Arabidopsis [42–44]. In the 

most exhaustive study, a pairwise combinatorial screen between 13 transgenic 

Arabidopsis lines with an increased leaf size was performed. The finding was that 

a large proportion of the combinations analysed showed an additional increase in 

leaf size resulting from a positive epistasis on growth [42]. This study clearly shows 

the potential of combinatorial approaches to discover further the connections of 

growth regulatory networks. Studies in yeast have shown that most genetic 

interactions occur between genes involved in the same biological process, except 

for highly connected genes [45,46]. In agreement with this finding, the study in 

Arabidopsis found that combining a GIF1 (for GRF-INTERACTING FACTOR 1) 

overexpressor with a GRF5 overexpressor increased leaf size more than expected 

[42]. GIF1 and GRF5 were indeed found to interact in a yeast two-hybrid assay 

[47]. Similarly, another study showed AtbZIP10 and AtbZIP25 to interact in vivo 

with ABI3 (for ABSCISSIC ACID INSENSITIVE 3), an important regulator of gene 

expression in the seed of Arabidopsis. While transgenic plants ectopically 

overexpressing AtbZIP10, AtbZIP25, and ABI3 revealed that none of these factors 

could significantly activate a reporter gene individually, co-overexpression of 
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AtbZIP10/25 with ABI3 resulted in a remarkable increase in the activation capacity 

over the reporter, suggesting that they are part of a regulatory complex involved 

in seed-specific expression [48]. Similarly, transgenic plants co-expressing 

TOBACCO STRESS-INDUCED 1 (TSI1), a transcription factor that plays an 

important role in both biotic and abiotic stress signalling pathways, and its 

interactor TSI1-INTERACTING PROTEIN 1 (TSIP1) showed to display stronger 

pathogen resistance and salt tolerance than did transgenic plants expressing either 

TSI1 or TSIP1 alone. Concurrent with this, the expression of a subset of stress-

related genes was induced in a cooperative manner in TSI1/TSIP1 transgenic 

plants [49]. 

Protein-protein connections as such also provide a great deal of knowledge on the 

resulting phenotype. Soon after publication of the first proteome-scale human 

interactome network map [50,51], it was observed that proteins involved in the 

same disease are more connected to each other than expected by chance and 

often form densely connected modules [52]. Based on this finding, network 

approaches were successfully developed to understand the connectivity of known 

disease proteins and identify new ones. Interactome analysis focused on proteins 

implicated in ataxia for example revealed not only that ataxia-causing genes 

interact more than expected by chance [53], but also that proteins encoded by 

genetic modifiers of disease risk were found as interaction partners of the disease 

proteins [54]. Similar interactome analyses were successful in identifying novel 

causative genes for a number of human diseases, including schizophrenia [53,55], 

Huntington’s disease [56] and breast cancer [57]. This finding can be extrapolated 

to plants and the phenotype ‘yield’. The identification of interaction partners of 

yield enhancing gene products, might lead to the discovery of new yield enhancing 

genes and give more insight on the connections within a ‘yield enhancing network’. 

The recent effort to unveil the cell cycle machinery for example [58–60], provided 

a myriad of new potential growth regulators in Arabidopsis [61]. 

Protein interaction data was also employed to analyse results from genome wide 

association mapping (GWAM) studies. These studies identify genomic loci, which 

contain a variable amount of genes that show association with complex phenotypes 

as disease susceptibility in humans or crop yield in plants. It is however often 

difficult to exactly pinpoint correlated genes within a given locus. In addition, loci 

without genome-wide statistical significance may still contain variants affecting the 

phenotype. Including information from protein interactions is a potential powerful 

way to address these challenges [62–65]. For example, the combination of 

experimental and computational network analysis of Alzheimer’s disease 

susceptibility proteins demonstrated that Alzheimer susceptibility proteins exhibit 

increased interconnectivity allowing identification of several novel Alzheimer 

candidate genes in GWAM loci [66]. In a similar interactome analysis of multiple 

sclerosis GWAM data, a possible role for axon guidance and synaptic potentiation 

was revealed [62]. These studies illustrate that interaction data hold great 

potential for helping to interpret genetic data for complex phenotypes. Basically, 

GWAM studies examine single nucleotide polymorphisms (SNPs) across the 

genome. A part of these SNP’s that are correlated to the complex phenotype might 

relate to changes in amino acids. For a long time, it is known that disease causing 

point mutations can act through disruption of physical interactions [67]. In a recent 
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large-scale analysis of disease mutations interactome information was integrated 

with data on disease-causing mutations and structural models of interacting 

proteins. This work revealed that disruption of physical interactions appears to be 

a more common disease mechanism than previously appreciated [68]. The authors 

found that in-frame mutations are enriched on the interaction interfaces and that 

mutations in different interfaces often were associated with different diseases.  

Taken together, protein interaction data can play a pivotal role for translating the 

current flood of genetic data into a better understanding of the biological system. 

We therefore propose a targeted proteomic approach to unravel the molecular 

mechanisms behind growth or seed yield. 
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Research highlights 

• Improved AP-MS protocols paved the way for protein complex analysis in 

plants 

• Any sample can be assayed, from cell cultures to very specific isolated 

tissues 

• Sensitive MS and computational filtering allow accurate detection of true 

interactors 

• Orthogonal data integration underscores the reliability of observed 

interactors 

• Established AP protocols allow extension to protein-RNA, -DNA, or -lipid 

interactions 
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Abstract 

Rather than functioning independently, proteins tend to work in concert 

with each other and with other macromolecules to form macromolecular 

complexes. Affinity purification coupled to mass spectrometry (AP-MS) 

can lead to a better understanding of the cellular functions of these 

complexes. With the development of easy purification protocols and ultra-

sensitive MS, AP-MS is currently widely used for screening co-complex 

membership in plants. Studying complexes in their developmental context 

through the isolation of specific organs and tissues has now become 

feasible. Besides, the tagged protein can be employed for probing other 

interactions like protein-DNA and protein-RNA interactions. With the tools 

at hand, protein-centred interaction studies will greatly improve our 

knowledge of how plant cells wire their functional components in relation 

to their function. 

Introduction 

The sequencing and annotation of genomes of numerous organisms revealed that 

the ‘one-gene-one-function’ hypothesis does not sufficiently explain the 

complexity of living organisms. Instead, proteins interact with each other and with 

other macromolecules to form molecular machines [1]. Currently, protein-protein 

interactions (PPIs) are the most rigorously studied interactions. The main 

techniques for screening PPIs are yeast two-hybrid (Y2H), protein 

complementation analysis (PCA) and affinity-purification coupled to mass 

spectrometry (AP-MS).  

Y2H requires the co-expression of hybrid genes that encode a DNA-binding domain 

of the GAL4 transcription factor fused to a target protein or ‘bait’, and a GAL4 

derived activation domain fused to a second protein, the ‘prey’. Interaction of bait 

and prey in the yeast nucleus tether the activation domain and the DNA-binding 

domain, resulting in the reconstitution of a functional transcription factor that can 

activate a downstream reporter [2]. The problem of testing pairs of plant proteins 

in the yeast nucleus is twofold. First, it is a heterologous system as non-yeast 

proteins are tested and second, the assayed proteins are forced to the nucleus 

which is not necessarily their native compartment. Further, the system may lack 

plant-specific co-factors or post-translational modifications leading to false 

negative results and thus reducing sensitivity (estimated to ~36% in Arabidopsis 

[3]). Y2H assays are also prone to false positives due to auto-activation (e.g. in 

the case of transcription factors) and non-specific interactions. The latter are 

caused by high overexpression of proteins, incorrect protein folding or the forced 

localisation in the nucleus. Proteins that allow yeast to overcome nutritional 

selection when overexpressed are also often scored as false positives.   

PCA is a more direct approach in the sense that bait and prey ORFs are fused with 

the two complements of a reporter gene. Interaction leads to recovery of functional 

reporter protein providing a measurable read-out. PCA systems are advantageous 

over Y2H as they can be performed in most cell types or in diverse cell 

compartments, the test proteins are expressed at low level, the signal is a direct 
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result of the interaction, and it is enzymatically amplified leading to increased 

sensitivity. GFP, its derivatives and split luciferase are the most commonly used 

reporters for PCA in plants. The former is referred to as bimolecular fluorescence 

complementation (BiFC) (58). Because of the background auto-fluorescence of 

photosynthetic pigments in plant cells, BiFC signal detection needs to be carried 

out with considerable caution, making the assay not ideal for high-throughput 

performance [4]. The main caveat associated with BiFC is that the reporter 

fragments can spontaneously reassemble, especially when expression levels are 

strongly boosted [5], and the interactions stabilize by refolding, i.e. reconstitution 

of the reporter is irreversible [6]. However, the latter can sometimes be turned 

into an advantage because it facilitates the study of transient interactions, as has 

been shown for kinase substrates in plants [7]. BiFC is generally combined with 

transient expression in Nicotiana benthamiana or Arabidopsis thaliana, but it has 

been used in many other plant systems and/or with stable expression [8].  

In plants, Y2H and PCA showed huge value, delivering comprehensive interaction 

data for both soluble [3] and membrane-linked proteins [9], and dedicated 

datasets ranging from for example host-pathogen interactions [10] to hormonal 

pathways [11,12]. As Y2H investigates interactions ectopically in yeast, PCA and 

AP-MS are closer to the endogenous system of plants. Also the resulting datasets 

differ, with PCA and Y2H delivering pairwise (direct) interactions and AP-MS 

yielding co-complex data (direct and indirect interactions). Therefore, the 

techniques tend to deliver complementary datasets [13]. Both Y2H and PCA 

methods are however limited in terms of the testable search space, as interactions 

can only be assayed from ORFs available in the screening library. The cloning step 

is thus a key bottleneck as the search space is restricted to the square of the 

number of available ORFs. For example, whereas Y2H achieves high throughput, 

because ORFs are available for only half of the Arabidopsis proteome, the 

Arabidopsis interactome mapping project is currently restricted to one-fourth of 

the whole interactome [3]. In contrast, affinity purification methods need only one 

of the interacting proteins to be cloned, and in theory these methods allow the 

identification of interacting proteins in the whole interactome. Practically, however, 

the search space is restricted to the proteins expressed in the chosen tissues. 

Here, we provide an overview of the development of AP-MS in plant research, from 

the early adoption of the technique to cultured plant cells to the latest 

advancements, giving guidance on the decisions that need to be made. We 

consider the whole AP-MS workflow in a step-by-step fashion and show that each 

step is important and crucial for successful identification of interaction partners.  

Strategies for expressing a tagged protein of interest 

Tagging involves fusing the DNA sequence coding for an affinity portion to the 

open reading frame of the protein of interest and having this fusion construct 

expressed in a biological system. Both performance of the tag and the expression 

level of the construct are crucial to the success of the AP-MS experiment. Because 

adding an affinity handle to a protein can compromise the functionality of the 

protein, both N- and C-terminal fusions are preferably assessed. Despite the 

development and testing of a large variety of alternative tags in plants, there is a 
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clear overrepresentation of studies using the classical TAP tag and derivatives such 

as TAPi tag [14] and GS tag [15] on the one hand, and fluorescent protein tags on 

the other hand, reflecting their success (Figure 1). The expression level of the bait 

fusion construct is a second important concern. Unlike in yeast, integration of the 

affinity tag through homologous recombination in plants is only effective in 

mitochondria and plastids [16]. In the plant nucleus, the recombination efficiency 

drops dramatically. Therefore, the bait fusion construct is mostly introduced via 

Agrobacterium tumefaciens through random integration in the genome. 

Consequently, it is generally combined with either a constitutive overexpressing 

promoter or the endogenous promoter. Overexpression is simple and favours 

competition with the endogenous counterpart for incorporation in the complex. 

Massively overexpressed proteins may however exhibit protein misfolding, 

mislocalisation and/or misregulation on cellular level [17]. Functionality of the 

tagged protein can be verified through complementation analysis of the 

overexpression construct in a mutant background [18–25]. On organism level, the 

constitutively expressed bait protein might be present in tissues where it normally 

is not expressed, leading to accumulation of uncomplexed bait or even aberrant 

interactions. To avoid this, expression of the bait can be controlled more tightly by 

using synthetic inducible promoters [26]. Applicability of inducible systems in 

plants is however limited to cell cultured systems or hydroponics. Spraying of the 

inducing chemical on whole plants indeed can compromise the homogeneity of the 

induction. Alternatively, a 1- to 2-kb upstream sequence can be included with the 

bait fusion sequence to encompass the endogenous promoter. In this case, 

competition with the endogenous counterpart should be avoided by introducing 

the TAP cassette in a knock-out mutant. Still, context specific regulation of the 

gene of interest will be lost. A recently proposed way to circumvent this problem 

is to ‘recombineer’ the tag in the endogenous locus within a transformation-

competent Bacterial Artificial Chromosome [27]. 

Through Agrobacterium mediated transformation, the T-DNA containing the TAP 

expression cassette is shuttled to the plant’s nucleus and inserted in the genome 

through illegitimate recombination. Transgene individuals will thus differ mutually 

in insertion position and number of loci. This inevitably leads to differences in 

expression level of the TAP construct between individuals. Generally, this issue is 

addressed by selecting particular transgenic lines with similar expression levels 

[28,29] or by pooling multiple events [30,31]. In mammalian HEK239 cells, the 

Flp-In-T-Rex system allows single integration of the TAP cassette in a fixed 

chromosomal location [32]. This not only permits establishment of relatively 

homogenous cell populations, but makes the whole procedure of integrating TAP 

constructs into the genome more standardised. To date, there is no such system 

available in plant cells however.  

Another promising possibility is to establish a “surrogate homologous 

recombination” by CRISPR-mediated insertion of affinity tags [33–36]. This could 

address both the issues of efficiency of incorporation in the complex and insertion 

locus. To our knowledge, this was not yet tested on plants however. 
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Figure 1. Tags successfully used for purification of protein complexes in plant AP-MS studies. 

 
 

  

tag name sequence/parts purification steps purification scheme reference

c-myc EQKLISEEDL single AP α c-myc - boiling in sample buffer suppl. [1]

FLAG DYKDDDDK single AP α FLAG - FLAG peptide/boiling in sample buffer suppl. [2]

HA YPYDVPDYA single AP α-HA - pH suppl. [3]

His-tag HHHHHH single AP Ni2+-NTA - Imidazole suppl. [4]

StrepII-tag WSHPQFEK single AP StrepTactin - desthiobiotin suppl. [5]

TEV-biotinylation sequence 

tomato

GTVIAPMAGLVVKVLVKDGEKVQE

GQPVLVLEAMKMEHVVKAPANGYV

SGLEIKVGQSVQDGIKLFALKD

single AP streptavidin - hisTEV - Ni2+-NTA suppl. [6]

GFP/CFP/YFP Fluorescent protein single AP α-GFP - pH/boiling in sample buffer/on-bead digestion suppl. [7,8]

tandem AP IgG - TEV - calmodulin - EGTA

single AP IgG - pH

tandem AP IgG - HR3C - Ni2+-NTA - imidazole

single AP α c-myc - boiling in sample buffer

TAP2 6x His-TEV-ProA tandem AP IgG - TEV - GST - Ni2+-NTA - Imidazole [73]

tandem AP IgG - TEV - streptavidin - desthiobiotin

single AP IgG - boiling in sample buffer

GSrhino-tag SBP-HR3C-ProG tandem AP IgG - HR3C - streptavidin - desthiobiotin suppl. [11]

myc-His tag 7x myc-6x His tandem AP Ni2+-NTA - imidazole - α-myc - boiling in sample buffer suppl. [12]

TAPh CBP-TEV-ProA-6x His tandem AP Ni2+-NTA - imidazole - IgG - hisTEV - Ni2+-NTA suppl. [13]

SF-tag 2x Strep-FLAG single AP α FLAG - FLAG suppl. [14]

SBP-FLAG SBP-FLAG tandem AP α FLAG - FLAG - streptavidin - desthiobiotin [47]

csBP-tag CBP-SBP single AP streptavidin - desthiobiotin suppl. [15]

His-FLAG* 8x His-FLAG single AP Ni2+-NTA - imidazole - α-FLAG - FLAG suppl. [16]

HA-StrepIII 3x HA-StrepIII tandem AP StrepTactin - desthiobiotin suppl. [17]

HPB-tag HA-HR3C-biotin tandem AP streptavidin - boiling in sample buffer [21]

HBH-tag* 6x His-BCCD-6x His single AP Ni2+-NTA - imidazole - streptavidin - boiling in sample buffer suppl. [18]

number of reports for a specific tag

peptide tags

protein tags

dual affinity tags

TAP/TAPi CBP-TEV-ProA suppl. [9], [14]

Representation of the ratio of publications reporting the use of a specific tag 

to all plant AP-MS studies. The amount of publications for each affinity tag 

is shown between brackets. Tags for which the use was reported only once 

were grouped in the "other" category. There is a clear overrepresentation of 

the classic TAP tag and the more recent GS-tag. From our experience, 

these bigger domain-like tags tend to stabilize the expression of the bait 

construct and are therefore applicable on a broad variety of bait proteins. 

Also fluorescent proteins are frequently used. The fact that many fluorescent 

reporter-tagged lines are already available from localisation studies 

contributes to the popularity of these tags.

HA, hemagglutinin; GFP, green fluorescent protein; YFP, yellow fluorescent protein; CFP, cyan fluorescent protein; SBP, streptavidin binding peptide; CBP, calmodulin 

binding peptide; TEV, tobacco etch virus protease; 3CRvP, 3C human rhinovirus protease; BCCD, biotin carboxyl carrier domain. * not used for mass spectrometry 

TAPa 9x c-myc-6x His-HR3C-ProA [18]

GS-tag SBP-TEV-ProG suppl. [10]

GS-tag (22)

TAP/TAPi 
(19)

GFP/ 
CFP/YFP (15)

other (10)

TAPa (4)

FLAG (4)

HBH-tag (2) His-tag (2) SF-tag (2)
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Biological systems for protein extract generation 

Once expressed, the bait fusion protein provides an affinity handle to capture the 

complexes in which it participates. Since merely a fraction of the protein extract 

contains actual bait protein, reasonable amounts of total extract are required to 

allow identification via MS. In principle, any plant sample can be used (Figure 2), 

only requiring sufficient and stable bait protein complexes, but the key parameters 

that have an impact on the AP-MS procedure differ significantly between the 

different biomass sources (Figure 3). 

The easiest and fastest way to screen an unknown protein is through cultured cells. 

Once established, they provide an unlimited supply of protein in a reasonable time 

with a fair workload. Suspension cells often have high ploidy levels, providing high 

protein content and fast growth rates. They have been used successfully for the 

screening of about 100 cell-cycle related proteins [37]. The system is easy to 

manipulate by addition or removal of chemicals (e.g. phytohormones) from the 

medium, enabling the focus on complex dynamics related to signalling pathways 

[38–40]. In suspension and callus cultures, each cell will contribute equally in 

relevance for obtaining complexes, requiring less sensitivity from the mass 

spectrometer. Cell cultures are grown isolated from any developmental context. 

Therefore, identified interactions give a hint about their presence in the plant, but 

not where or when during plant development they are actually taking place. 

For pathways related to development, whole plants rather than cultured cells are 

used [41]. For example, five additional interactors of the ANGUSTIFOLIA 3 co-

activator have been found in planta compared to cultured cells, which were 

confirmed through reciprocal purifications using the interactors as a bait protein 

[42••]. Differential analyses of protein complex dynamics in the presence or 

absence of environmental cues have been described [20,25,43–48]. Dependent 

on the tissue/cell type specificity of the bait, extraction from whole plants often 

leads to dilution of the relevant extract. Moreover, during extraction, the protein 

content from different cell types will be blended, possibly leading to false positive 

identifications. For baits present in the majority of cells this problem is not 

imminent [49,50]. Also baits functioning in dividing cells can be screened in young 

seedlings since these have a high ratio of propagative tissue [42••]. Thanks to 

advancements in sensitivity in MS, the amount of input material can be 

downscaled, which allows the use of plant tissues or organs instead of the whole 

plant, favouring the ratio of relevant tissue for more discretely expressed baits 

[19,21,45,47,51–54]. For instance, specifically isolating inflorescence meristems 

allowed Smaczniak et al. to sensitively detect the interaction network of floral 

homeotic MADS-box proteins [55••]. Tissue-specific sampling also allows to zoom 

in on the dynamics of low-abundance protein complexes throughout the growth 

zone in a developing organ [56]. 
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Figure 2. Plant biomass sources for AP-MS. 

 

All types of biomass sources used for AP-MS are illustrated. Per biomass source, the first 

report and the applicability are represented. *References preceded by ‘suppl.’ are listed in 

the supplementary reference file. 
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Figure 3. Comparison on the different biomass sources for AP-MS. 

 
Key parameters of the biomass sources that have an impact on the whole AP-MS 

procedure. The actual performances of each type of biomass source are compared visually 

by representing the individual parameters on each of the six axes. ‘Time lines’ and ‘labour 

intensity’ refer to how long and how much work it takes to generate enough biomass for 

AP-MS purification. A third parameter accounts for the ‘flexibility in treatment’. This is how 

easily the system can be employed for dedicated experiments, such as the addition or 

removal of chemicals, hormones, radio-isotopes etc. With ‘developmental context’, we 

provide an estimate of how much information is acquired from the AP-MS data in the 

context of plant development. ‘Prior knowledge’ indicates how much information about the 

tissue specificity and developmental time frame of the bait protein is required a priori to 

maximize the success in identifying interactors from the type of biomass choses. And last, 

‘mass spec requirements’ shows how much sensitivity is required from the mass 

spectrometer to detect complexes from samples. 

 

Purification of the complex: a balance game between capturing true 
interactors and losing background proteins 

AP-MS involves the isolation of the bait from the plant sample by affinity 

purification under near-physiological conditions. The bait’s binding partners can 

then be recovered from the sample and identified by mass spectrometry.  

After lysis, the cellular environment is replaced by an artificial environment with 

buffers, salts and stabilizers to keep complexes in solution during the purification 

process, while maintaining their integrity. For proteins tightly bound to chromatin 

or membrane proteins, the extraction protocol needs to be adapted to solubilize 

the targeted complexes [57]. Also, a prior fractionation step enriching for e.g. 

chloroplasts [16,58] or nuclei [52] can be performed for baits present in these 

specific subcellular fractions, increasing the sensitivity [59].  

Once the cells are lysed protein complexes will start to dissociate, turning their 

purification in a race against the clock to capture as much interactors as possible. 

The bait is captured from the protein extract by adding an affinity matrix that 

specifically recognizes the tag. The most commonly used affinity matrices are 

antibodies linked to agarose, sepharose or magnetic beads. Long incubation times 

allow the affinity handle to reach equilibrium in binding the matrix, but also result 

in the dissociation of secondary interaction partners of the bait. To maximize 

purification of the complex the purification should be performed in a minimum 

amount of time. Alternatively, chemical cross-linking can be applied to enable 

stringent purification while preserving stable and weak or transient interactions 

[14,21,23]. Apart from the identities of interacting proteins, also cross-linked 

amino acid residues can be identified through mass spectrometry. The latter 
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enables direct molecular evidence describing the physical contacts between and 

within proteins [60]. Protein cross-linking is not frequently used however, due to 

inherent difficulty in the effective MS detection and accurate identification of cross-

linked peptides. Most PPI studies use formaldehyde cross-linking, because of its 

fast kinetics and membrane permeability [14,23]. However, identification of 

formaldehyde cross-linked peptides is extremely challenging because of its 

promiscuous nonspecific reactivity and extremely short spacer length [61]. Efforts 

have been made to address the limitations for cross-linking studies [62], but were 

not transferred to plant systems yet. 

The shortest purification procedures encompass one single purification step. For 

AP-MS experiments, the tag is selected as small as possible to minimize 

interference with the bait’s function. Peptide tags often encompass no more than 

ten amino acids. The GFP-tag is also frequently used for single AP experiments, 

since GFP-tagged lines are already available from subcellular localisation studies. 

The combination of localisation and interaction data is indeed very powerful, as 

was demonstrated in a study identifying a bHLH heterodimer controlling vascular 

tissue establishment [63••]. The binding step can further be speed-up by 

increasing the surface area to which the tagged complex can bind. Although 

magnetic beads possess a 10 times smaller binding capacity, they are 100-150 

times smaller than sepharose/agarose beads. Owing to their high surface area to 

volume, magnetic beads are therefore more suitable for short incubation times 

[64]. With the advancement in sensitivity of mass spectrometry, short incubation 

steps allowed retrieval of substrates of kinases and phosphatases in yeast [65]. 

Short single-step purification has the disadvantage that a considerable amount of 

background contaminants remains in AP-MS experiments. These often ‘mask’ sub-

stoichiometric interactors that only appear after further purification [66,67]. 

Tandem purification (TAP) provides a higher signal-to-noise ratio at the cost of a 

lower yield. Because of the lower binding capacity of magnetic beads, they are less 

suitable for double-step purifications. Therefore, agarose or sepharose beads are 

preferentially used in these types of experiments. The TAP-tag originally developed 

in yeast was improved for plants, yielding the TAPi tag [14]. This tag still has 

limitations, being the calmodulin binding domain, which can be problematic in 

eukaryotic cells [15], and the TEV protease cleavage step, requiring incubation at 

16°C to cleave off the Protein A domain and mildly elute the rest of the bait. Many 

alternatives (Figure 1), i.e. the TAPa tag [18,43,68] and the successful, highly 

specific GS tag [15,37], are available to deal with those weak points.  

Recent increase in MS instrument power obviates the need for extensive pre-

fractionation of the purified sample before MS analysis. The sample can still first 

be applied shortly on gel to get rid of small molecules that interfere with the mass 

spectrometer [41]. In some cases however, peptide extraction efficiency from gel 

can be poor and variable, especially in the case of hydrophobic peptides. 

Alternatively, gel-free alternatives were proposed. These are gaining momentum, 

as they provide decreased sample preparation and measurement time, and 

increased sensitivity [69]. 
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Identification of ‘true’ interacting proteins 

The generic nature of the AP experiments involves background contaminants that 

non-specifically bind to the tag, beads and/or complexes consistently across 

purifications. This characteristic is exploited by implementing control experiments, 

in which proteins from mock extracts are identified and integrated in a subtraction 

list. In that frame a “contaminant repository for affinity purification”, the 

“CRAPome” was presented containing control pull-downs from various laboratories 

performed under various conditions [70]. The repository is however mainly 

focused on yeast and human datasets, and therefore not readily applicable for 

evaluating plant AP-MS experiments. Also, minor changes in the workflow can 

already alter the detected low abundant background binders, making the notion of 

a universal CRAPome problematic [69].  

Different types of quantitative data from the mass spectrometer can be 

implemented (an extended review is found in [71]) to further resolve teasing apart 

bona fide interactors from background proteins. True interactors are expected to 

be enriched throughout purification compared to a control, which should be 

reflected in a higher measure of quantity. Although isotope labelling methods are 

more sensitive, they are either very expensive (Stable Isotope Labelling by Amino 

acids in Cell culture, [72]) or have issues with specificity (iTRAQ, [73]). Due to the 

autotrophy of plants, the incorporation of labelled amino acids by the plant is also 

less evident. Therefore, the community is more in favour of adapting label-free 

methods. These require high numbers of replicates with an additional statistical or 

probabilistic analysis for discrimination. Normalized spectral abundance factors 

(NSAFs) are calculated as the total number of spectra identifying each protein, 

normalized by the protein’s length and the total number of identified spectra in the 

sample [74]. An alternative approach relies on peptide ion counts. Peak areas are 

calculated as the sum of ion counts (total ion current, TIC) over peptide elution 

time for all identified peptides. Relative protein concentrations are then determined 

by comparing peak areas of all peptides from that protein in one sample versus 

those in the other. A well-known algorithm using TIC is MaxQuant. A protocol 

based on MaxQUANT analysis of GFP- or YFP-tagged baits is already at hand [75] 

and has been applied in different studies [55••,63••,76••]. The method is however 

not ideal for analyses using experimental conditions in which controls are very 

clean and should therefore only be applied for single-step AP experiments [71]. 

Although most false positive interactions generally are discarded by simply 

comparing samples versus control purifications, some artificial and bait-specific 

interactions might remain, e.g. interactions occasionally generated during cell 

lysis. Therefore, in addition, proteins co-purifying at high frequency with a variety 

of baits can also be added to the subtraction list [41]. In fact, the large amount of 

unspecific binders detected over different experiments obviates the use of a classic 

untagged control strain and enables comparing to a control group consisting of 

many unrelated pull-downs instead [69]. Correlation of the intensities of the 

potential interactor with the profile of the bait protein over different experiments 

could help in further fine-tuning classification of interactors from background [69]. 
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Alternatively, different scoring methods were developed to estimate the reliability 

of individual associations in interaction datasets from yeast and animal cells [77–

82]. These estimates are then benchmarked against a reference set of reliable, 

known interactions – the ‘Gold Standard’ – and used to derive a final high 

confidence network containing only PPI of acceptable confidence level. However, 

these scoring are usually developed (and optimised) for a particular AP-MS 

dataset. A recent comparison of six popular scoring methods for six different types 

of datasets showed substantial variation in performance of the scoring method 

depending on the dataset [83]. More disturbingly, there was very poor overlap 

between the high confidence datasets from the 6 methods when applied on a same 

AP-MS dataset [83]. The high confidence networks resulting from each scoring 

method were enriched in high abundance proteins and depleted in low abundance 

ones, suggesting that the scoring schemes used to build them may not be as 

effective as expected. The same bias was also present in the reference sets or 

Golden Standards [83]. These factors will need to be addressed by the field to 

move forward. 

Validating and interpreting the list of potential interaction partners 

Validation can be achieved through confirmation in biological repeat experiments 

or through ‘reciprocal tagging’, by performing additional AP-MS experiments using 

the interaction partners as bait. This was illustrated by the elucidation of the 

TPLATE complex, in which an eight-subunit core complex was unravelled through 

extensive screening of all initial interaction partners. Furthermore, the interaction 

network was as such extended, identifying linkage of this core complex to the plant 

endocytosis machinery [76••]. Alternatively, interactors have been validated with 

orthogonal PPI approaches such as Y2H [29,84•], split-luciferase [37] or 

bimolecular fluorescence complementation [55••,85]. Using GFP as tag, its 

fluorescent characteristics can be applied to confirm interactions with FRET/FLIM 

analysis [63••]. Validation by pairwise interaction screening methods can lead to 

considerable amounts of false negatives, because the overlap with affinity purified 

complex data is inherently low [13]. This is partly due to AP-MS experiments 

interrogating a different subspace within the whole interactome than Y2H and PCA, 

and partly because PPI screening methods are associated with low sensitivity. 

Extra confidence in identified prey proteins can be obtained by looking for 

enrichment in relevant features, related to the pathway under investigation [37]. 

On top, the transcript expression correlation between interactors can be verified 

as a measure of confidence [86], together with other orthogonal data as protein 

expression data and/or co-localisation data. An overview of available datasets is 

shown in Table 1. 

The output of an AP-MS experiment is still far away from biological reality, since 

merely a list of potential interaction partners is generated. Additional binary PPI 

approaches can help in unravelling the co-complex data into direct interactions. 

Also co-expressed sub-members of the complex will be more likely involved in a 

direct interaction. Additional literature searches can further help in adding 

knowledge to unravel the biological relevance [85]. Smaller scale studies use the 

outcome of AP-MS experiments as a starting point for thorough molecular study. 

In these cases, knockout or overexpression mutants of preys are analysed and 
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compared with mutant phenotypes of the bait. Also (co-) localisation studies can 

be applied, especially if the bait was tagged with a fluorescent moiety. 

Table 1. Repositories for orthogonal data to strengthen confidence in identified interactions. 

 
*References preceded by ‘suppl.’ are listed in the supplementary reference file. 

 

Broadening the applicability of tagged proteins 

Proteins of course do not only interact with other proteins in a cellular 

environment. Transcription factors target specific binding elements on DNA to 

recruit or block the transcription machinery. Chromatin immune-precipitation 

(ChIP) is used for the identification of genomic regions where specific proteins are 

associated. The use of antibodies can be omitted by tagging the DNA binding 

protein, and performing the appropriate affinity purification [48]. More recently a 

tandem chromatin affinity purification or TChAP protocol has been proposed [87•], 

improving the DNA enrichment ratios. Combined with Illumina sequencing, it 

enables the identification of novel protein-DNA interactions. The downside is that 

more material is required, and therefore the method was currently only used on 

cultured cells [42••,88]. A TChAP approach can also be applied for studying 

protein-RNA interactions, as has been illustrated by the elucidation of the 

interactions of ARGONAUTE 10 (AGO10) with specific miRNAs, thereby acting as a 

decoy for AGO1 and maintaining shoot apical meristem identity [89•]. Another 

variation using tagged proteins allowed the study of protein-lipid interactions for 

yeast proteins [90]. Alternatively, the TAP system was utilized in an innovative 

way to trap and identify sulfenylated proteins in H2O2 stress responses in plant 

data type rationale example repository reference

co-expression data ATTED-II suppl. [26]

BAR suppl. [27]

CorNet suppl. [28]

protein expression data GATOR suppl. [29]

(sub-)localisation data SUBA suppl. [30]

annotation data PlantGO suppl. [31]

GOMapMan suppl. [32]

Arabidopsis Reactome suppl. [33]

phenotypic data RARGE II suppl. [34]

RAPID suppl. [35]

RMD suppl. [36]

protein-protein interaction data AtPIN suppl. [37]

AtPID suppl. [38]

BAR, CorNet suppl. [39,40]

link in literature EVEX suppl. [41]

Textpresso suppl. [42]

Interactors with strong expression correlation 

are often part of a common molecular 

assembly.

Prerequisite for interaction is that both proteins 

are present in the same tissue/organ at the 

same time.

An earlier hypothesized link between 

interacting proteins can further strengthen 

confidence in interactions.

Prerequisite for interaction is that both proteins 

are present in the same compartment at the 

same time.

Interacting proteins are expected to function in 

a common pathway.

Mutants for interacting proteins showing a 

similar phenotype increases the confidence 

that both proteins co-operate.

Identified interactions might overlap with 

previously detected or predicted interactions.
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cells [91•]. This shows that an established AP-MS protocol can further be extended 

in exploring interactions of the bait protein with all other kinds of biomolecules. 

Instead of a targeted search for interaction partners using proteins cloned in 

appropriate expression cassettes, an alternative method has been proposed 

recently relying on immediate chromatographic separation and MS analysis of 

extracts from subcellular fractions of plant tissues [92]. This method has the 

potential to give a comprehensive read-out of the native complexes present in the 

sample tested.  

Concluding remarks 

The dawn of major technical improvements in protein complex purification, mass 

spectrometry and bioinformatics paved the way for facilitated analysis of protein 

interactions. The increase in sensitivity of the protocols permits to zoom in on 

specific plant tissues, enabling to follow complex compositions in a developmental 

context. This will allow to estimate the dynamics of protein complex (dis)assembly 

during plant growth and to get a better understanding of how protein interactions 

play a role in important plant growth processes.  

Acknowledgements 

Maarten Dedecker is supported by a predoctoral fellowship from the Agency for 

Innovation by Science and Technology and CropDesign N.V. (‘Baekeland’ funding, 

IWT 100222). Jelle Van Leene is a Postdoctoral Fellow of the Research Foundation-

Flanders. The authors thank Annick Bleys for help in preparing the manuscript. 

Author contribution 

The PhD candidate wrote this review and designed the figures, JVL and GDJ 

commented on the manuscript. 

  



 

34 
 

Part II. Introductory chapters 

References and recommended reading 

Papers of particular interest, published within the period of review, have been 

highlighted as:  

•  of special interest   

••  of outstanding interest 

1.  Alberts B: The cell as a collection of protein machines: preparing the 
next generation of molecular biologists. Cell 1998, 92:291–294. 

2.  Fields S, Song O: A novel genetic system to detect protein-protein 
interactions. Nature 1989, 340:245–246. 

3.  Evidence for network evolution in an Arabidopsis interactome map. 

Science 2011, 333:601–607. 

4.  Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad 
N: Detection of protein-protein interactions in plants using 

bimolecular fluorescence complementation. Plant J. 2004, 40:419–
427. 

5.  Zamyatnin AA, Solovyev AG, Bozhkov P V, Valkonen JPT, Morozov SY, 

Savenkov EI: Assessment of the integral membrane protein topology 
in living cells. Plant J. 2006, 46:145–154. 

6.  Magliery TJ, Wilson CGM, Pan W, Mishler D, Ghosh I, Hamilton AD, Regan L: 

Detecting protein-protein interactions with a green fluorescent 
protein fragment reassembly trap: scope and mechanism. J. Am. 
Chem. Soc. 2005, 127:146–157. 

7.  Pusch S, Harashima H, Schnittger A: Identification of kinase substrates 

by bimolecular complementation assays. Plant J. 2012, 70:348–356. 

8.  Citovsky V, Gafni Y, Tzfira T: Localizing protein-protein interactions by 
bimolecular fluorescence complementation in planta. Methods 2008, 

45:196–206. 

9.  Jones AM, Xuan Y, Xu M, Wang R-S, Ho C-H, Lalonde S, You CH, Sardi MI, 
Parsa S a, Smith-Valle E, et al.: Border control--a membrane-linked 

interactome of Arabidopsis. Science 2014, 344:711–716. 

10.  Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan 
M, Galli M, Hao T, Nishimura MT, et al.: Independently evolved virulence 
effectors converge onto hubs in a plant immune system network. 

Science 2011, 333:596–601. 

11.  Lumba S, Toh S, Handfield L-F, Swan M, Liu R, Youn J-Y, Cutler SR, 
Subramaniam R, Provart N, Moses A, et al.: A mesoscale abscisic acid 

hormone interactome reveals a dynamic signaling landscape in 
Arabidopsis. Dev. Cell 2014, 29:360–372. 



 

35 
 

Part II. Introductory chapters 

12.  Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva 
M, Das P, Larrieu A, Wells D, et al.: The auxin signalling network 

translates dynamic input into robust patterning at the shoot apex. 
Mol. Syst. Biol. 2011, 7:508. 

13.  Yu H, Braun P, Yildirim M a, Lemmens I, Venkatesan K, Sahalie J, Hirozane-

Kishikawa T, Gebreab F, Li N, Simonis N, et al.: High-quality binary 
protein interaction map of the yeast interactome network. Science 
2008, 322:104–110. 

14.  Rohila JS, Chen M, Cerny R, Fromm ME: Improved tandem affinity 

purification tag and methods for isolation of protein 
heterocomplexes from plants. Plant J. 2004, 38:172–181. 

15.  Van Leene J, Witters E, Inzé D, De Jaeger G: Boosting tandem affinity 

purification of plant protein complexes. Trends Plant Sci. 2008, 13:517–
520. 

16.  Suzuki JY, Ytterberg a J, Beardslee T a, Allison L a, Wijk KJ, Maliga P: Affinity 

purification of the tobacco plastid RNA polymerase and in vitro 
reconstitution of the holoenzyme. Plant J. 2004, 40:164–172. 

17.  Gibson TJ, Seiler M, Veitia RA: The transience of transient 
overexpression. Nat. Methods 2013, 10:715–721. 

18.  Rubio V, Shen Y, Saijo Y, Liu Y, Gusmaroli G, Dinesh-Kumar SP, Deng XW: 
An alternative tandem affinity purification strategy applied to 
Arabidopsis protein complex isolation. Plant J. 2005, 41:767–778. 

19.  Xing D, Chen Z: Effects of mutations and constitutive overexpression 

of EDS1 and PAD4 on plant resistance to different types of microbial 
pathogens. Plant Sci. 2006, 171:251–262. 

20.  Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo 

S, Zhu J-K: SOS2 promotes salt tolerance in part by interacting with 
the vacuolar H+-ATPase and upregulating its transport activity. Mol. 

Cell. Biol. 2007, 27:7781–7790. 

21.  Qi Y, Katagiri F: Purification of low-abundance Arabidopsis plasma-
membrane protein complexes and identification of candidate 
components. Plant J. 2009, 57:932–944. 

22.  Nishimura N, Sarkeshik A, Nito K, Park S-Y, Wang A, Carvalho PC, Lee S, 

Caddell DF, Cutler SR, Chory J, et al.: PYR/PYL/RCAR family members 
are major in-vivo ABI1 protein phosphatase 2C-interacting proteins 

in Arabidopsis. Plant J. 2010, 61:290–299. 

23.  Golisz A, Sikorski PJ, Kruszka K, Kufel J: Arabidopsis thaliana LSM 
proteins function in mRNA splicing and degradation. Nucleic Acids Res. 

2013, 41:6232–6249. 



 

36 
 

Part II. Introductory chapters 

24.  Dong H, Fei G-L, Wu C-Y, Wu F-Q, Sun Y-Y, Chen M-J, Ren Y-L, Zhou K-N, 
Cheng Z-J, Wang J-L, et al.: A rice virescent-yellow leaf mutant reveals 

new insights into the role and assembly of plastid caseinolytic 
protease in higher plants. Plant Physiol. 2013, 162:1867–1880. 

25.  Choi H, Jeong S, Kim DS, Na HJ, Ryu JS, Lee SS, Nam HG, Lim PO, Woo HR: 

The homeodomain-leucine zipper ATHB23, a phytochrome B-
interacting protein, is important for phytochrome B-mediated red 
light signaling. Physiol. Plant. 2014, 150:308–320. 

26.  Nishikiori M, Mori M, Dohi K, Okamura H, Katoh E, Naito S, Meshi T, Ishikawa 

M: A host small GTP-binding protein ARL8 plays crucial roles in 
tobamovirus RNA replication. PLoS Pathog. 2011, 7:e1002409. 

27.  Zhou R, Benavente LM, Stepanova AN, Alonso JM: A recombineering-

based gene tagging system for Arabidopsis. Plant J. 2011, 66:712–723. 

28.  Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, 
Gribskov M, Kanrar S, et al.: Protein-protein interactions of tandem 

affinity purification-tagged protein kinases in rice. Plant J. 2006, 
46:1–13. 

29.  Rohila JS, Chen M, Chen S, Chen J, Cerny RL, Dardick C, Canlas P, Fujii H, 
Gribskov M, Kanrar S, et al.: Protein-protein interactions of tandem 

affinity purified protein kinases from rice. PLoS One 2009, 4:e6685. 

30.  Van Leene J, Stals H, Eeckhout D, Persiau G, Van De Slijke E, Van Isterdael 
G, De Clercq A, Bonnet E, Laukens K, Remmerie N, et al.: A tandem affinity 

purification-based technology platform to study the cell cycle 
interactome in Arabidopsis thaliana. Mol. Cell. Proteomics 2007, 

6:1226–1238. 

31.  Abe M, Fujiwara M, Kurotani K-I, Yokoi S, Shimamoto K: Identification of 
dynamin as an interactor of rice GIGANTEA by tandem affinity 
purification (TAP). Plant Cell Physiol. 2008, 49:420–432. 

32.  Glatter T, Wepf A, Aebersold R, Gstaiger M: An integrated workflow for 
charting the human interaction proteome: insights into the PP2A 
system. Mol. Syst. Biol. 2009, 5:237. 

33.  Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, 

Marraffini LA, et al.: Multiplex genome engineering using CRISPR/Cas 
systems. Science 2013, 339:819–823. 

34.  Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church 

GM: RNA-guided human genome engineering via Cas9. Science 2013, 
339:823–826. 

35.  Park A, Won ST, Pentecost M, Bartkowski W, Lee B: CRISPR/Cas9 allows 

efficient and complete knock-in of a destabilization domain-tagged 



 

37 
 

Part II. Introductory chapters 

essential protein in a human cell line, allowing rapid knockdown of 
protein function. PLoS One 2014, 9:e95101. 

36.  Böttcher R, Hollmann M, Merk K, Nitschko V, Obermaier C, Philippou-Massier 

J, Wieland I, Gaul U, Förstemann K: Efficient chromosomal gene 
modification with CRISPR/cas9 and PCR-based homologous 

recombination donors in cultured Drosophila cells. Nucleic Acids Res. 
2014, 42:e89. 

37.  Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E, Stals H, 
Van Isterdael G, Verkest A, Neirynck S, Buffel Y, et al.: Targeted 

interactomics reveals a complex core cell cycle machinery in 
Arabidopsis thaliana. Mol. Syst. Biol. 2010, 6:397. 

38.  Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio G a, 

Fernandez M a, De Winne N, De Jaeger G, Dietrich D, Bennett MJ, et al.: 
PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the 

regulation of abscisic acid signaling in root. Plant Physiol. 2013, 
161:931–941. 

39.  Bassard J-E, Richert L, Geerinck J, Renault H, Duval F, Ullmann P, Schmitt 
M, Meyer E, Mutterer J, Boerjan W, et al.: Protein-protein and protein-

membrane associations in the lignin pathway. Plant Cell 2012, 
24:4465–4482. 

40.  Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico 

JM, Bossche R Vanden, Sewell J, Gil E, et al.: NINJA connects the co-
repressor TOPLESS to jasmonate signalling. Nature 2010, 464:788–
791. 

41.  Van Leene J, Eeckhout D, Cannoot B, De Winne N, Persiau G, Van De Slijke 
E, Vercruysse L, Dedecker M, Verkest A, Vandepoele K, et al.: An improved 
toolbox to unravel the plant cellular machinery by tandem affinity 

purification of Arabidopsis protein complexes. Nat. Protoc. 2015, 
10:169–187. 

42.  Vercruyssen L, Verkest A, Gonzalez N, Heyndrickx KS, Eeckhout D, Han S-

K, Jégu T, Archacki R, Van Leene J, Andriankaja M, et al.: ANGUSTIFOLIA3 
binds to SWI/SNF chromatin remodeling complexes to regulate 
transcription during Arabidopsis leaf development. Plant Cell 2014, 

26:210–229. 

•• The authors identified ANGUSTAFOLIA3 as an interacting protein of 

SWI/SNF complexes in Arabidopsis and complemented differential 

expression data from inducible nuclear localisation of AN3 with tandem 

chromatin affinity purification coupled to sequencing (TChAP-seq) and 

TAP-MS data to show that AN3 associates with chromatin remodelers to 

regulate transcription required for transition from cell proliferation to cell 

differentiation in the developing leaf. 



 

38 
 

Part II. Introductory chapters 

43.  Saijo Y, Zhu D, Li J, Rubio V, Zhou Z, Shen Y, Hoecker U, Wang H, Deng XW: 
Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with 

distinct phosphorylated forms of phytochrome A in balancing light 
signaling. Mol. Cell 2008, 31:607–613. 

44.  Phee B-K, Shin DH, Cho J-H, Kim S-H, Kim J-I, Lee Y-H, Jeon J-S, Bhoo SH, 

Hahn T-R: Identification of phytochrome-interacting protein 
candidates in Arabidopsis thaliana by co-immunoprecipitation 
coupled with MALDI-TOF MS. Proteomics 2006, 6:3671–3680. 

45.  Liebrand TWH, Smit P, Abd-El-Haliem A, de Jonge R, Cordewener JHG, 

America AHP, Sklenar J, Jones AME, Robatzek S, Thomma BPHJ, et al.: 
Endoplasmic reticulum-quality control chaperones facilitate the 

biogenesis of Cf receptor-like proteins involved in pathogen 
resistance of tomato. Plant Physiol. 2012, 159:1819–1833. 

46.  Kaiserli E, Sullivan S, Jones M a, Feeney K a, Christie JM: Domain swapping 

to assess the mechanistic basis of Arabidopsis phototropin 1 
receptor kinase activation and endocytosis by blue light. Plant Cell 
2009, 21:3226–3244. 

47.  Gutierrez JR, Balmuth AL, Ntoukakis V, Mucyn TS, Gimenez-Ibanez S, Jones 

AME, Rathjen JP: Prf immune complexes of tomato are oligomeric and 
contain multiple Pto-like kinases that diversify effector recognition. 

Plant J. 2010, 61:507–518. 

48.  De Lucia F, Crevillen P, Jones AME, Greb T, Dean C: A PHD-polycomb 
repressive complex 2 triggers the epigenetic silencing of FLC during 
vernalization. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:16831–16836. 

49.  Tamura K, Fukao Y, Iwamoto M, Haraguchi T, Hara-Nishimura I: 
Identification and characterization of nuclear pore complex 
components in Arabidopsis thaliana. Plant Cell 2010, 22:4084–4097. 

50.  Book AJ, Gladman NP, Lee S-S, Scalf M, Smith LM, Vierstra RD: Affinity 

purification of the Arabidopsis 26 S proteasome reveals a diverse 
array of plant proteolytic complexes. J. Biol. Chem. 2010, 285:25554–

25569. 

51.  Tameling WIL, Baulcombe DC: Physical association of the NB-LRR 
resistance protein Rx with a Ran GTPase-activating protein is 

required for extreme resistance to Potato virus X. Plant Cell 2007, 
19:1682–1694. 

52.  Monaghan J, Xu F, Gao M, Zhao Q, Palma K, Long C, Chen S, Zhang Y, Li X: 
Two Prp19-like U-box proteins in the MOS4-associated complex play 

redundant roles in plant innate immunity. PLoS Pathog. 2009, 
5:e1000526. 



 

39 
 

Part II. Introductory chapters 

53.  Li S, Sun P, Williams JS, Kao T: Identification of the self-incompatibility 
locus F-box protein-containing complex in Petunia inflata. Plant 

Reprod. 2014, 27:31–45. 

54.  Fujiwara M, Uemura T, Ebine K, Nishimori Y, Ueda T, Nakano A, Sato MH, 
Fukao Y: Interactomics of Qa-SNARE in Arabidopsis thaliana. Plant Cell 

Physiol. 2014, 55:781–789. 

55.  Smaczniak C, Immink RGH, Muiño JM, Blanvillain R, Busscher M, Busscher-
Lange J, Dinh QDP, Liu S, Westphal AH, Boeren S, et al.: Characterization 
of MADS-domain transcription factor complexes in Arabidopsis 

flower development. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:1560–1565. 

•• This paper describes the experimental validation that the five major 

floral homeotic MADS domain proteins interact in floral tissues as 

proposed in the ‘floral quartet’ model. AP-MS experiments were 

performed on GFP- or YFP-tagged MADS box proteins, and combined with 

MaxQUANT quantitative data analyses. These showed that MADS box 

proteins not only mutually interact, but also associate with other types of 

transcriptional regulators in Arabidopsis plants. 

56.  Nelissen H, Eeckhout D, Demuynck K, Persiau G, Walton A, van Bel M, 

Vervoort M, Candaele J, De Block J, Aesaert S, et al.: Dynamic Changes in 

ANGUSTIFOLIA3 Complex Composition Reveal a Growth Regulatory 

Mechanism in the Maize Leaf. Plant Cell 2015, 27:1605–1619.  

57.  Babu M, Vlasblom J, Pu S, Guo X, Graham C, Bean BDM, Burston HE, 
Vizeacoumar FJ, Snider J, Phanse S, et al.: Interaction landscape of 

membrane-protein complexes in Saccharomyces cerevisiae. Nature 
2012, 489:585–589. 

58.  Stoppel R, Manavski N, Schein A, Schuster G, Teubner M, Schmitz-
Linneweber C, Meurer J: RHON1 is a novel ribonucleic acid-binding 

protein that supports RNase E function in the Arabidopsis 
chloroplast. Nucleic Acids Res. 2012, 40:8593–8606. 

59.  Lavallée-Adam M, Rousseau J, Domecq C, Bouchard A, Forget D, Faubert D, 

Blanchette M, Coulombe B: Discovery of cell compartment specific 
protein-protein interactions using affinity purification combined 
with tandem mass spectrometry. J. Proteome Res. 2013, 12:272–281. 

60.  Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, 
Aebersold R: Probing native protein structures by chemical cross-
linking, mass spectrometry, and bioinformatics.  Mol. Cell. Proteomics 

2010, 9:1634–1649. 

61.  Sutherland BW, Toews J, Kast J: Utility of formaldehyde cross-linking 
and mass spectrometry in the study of protein-protein interactions.  

J. Mass Spectrom. 2008, 43:699–715. 



 

40 
 

Part II. Introductory chapters 

62.  Kaake RM, Wang X, Burke A, Yu C, Kandur W, Yang Y, Novtisky EJ, Second 
T, Duan J, Kao A, et al.: A new in vivo cross-linking mass spectrometry 

platform to define protein-protein interactions in living cells.  Mol. 
Cell. Proteomics 2014, 13:3533–3543. 

63.  De Rybel B, Möller B, Yoshida S, Grabowicz I, Barbier de Reuille P, Boeren 

S, Smith RS, Borst JW, Weijers D: A bHLH complex controls embryonic 
vascular tissue establishment and indeterminate growth in 
Arabidopsis. Dev. Cell 2013, 24:426–437. 

•• An auxin-regulated basic helix-loop-helix (bHLH) transcription factor 

dimer was identified as a critical regulator of vascular development. The 

dimer formation was uncovered by AP-MS using GFP and MaxQUANT data 

analyses. The dimer was shown to operate independently of tissue 

identity, but the overlap of transcription patterns for the interacting bHLH 

subunits was restricted to a small vascular domain. The study offers a 

framework for developmental control of local cell divisions. 

64.  Hubner N, Mann M: Extracting gene function from protein–protein 
interactions using Quantitative BAC InteraCtomics (QUBIC). Methods 
2011, 53: 453-459. 

65.  Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin Z-Y, 
Breitkreutz B-J, Stark C, Liu G, et al.: A global protein kinase and 
phosphatase interaction network in yeast. Science 2010, 328:1043–

1046. 

66.  Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH: A 
protein interaction network for pluripotency of embryonic stem cells. 

Nature 2006, 444:364–368. 

67.  Fernández E, Collins MO, Uren RT, Kopanitsa M V, Komiyama NH, Croning 
MDR, Zografos L, Armstrong JD, Choudhary JS, Grant SGN: Targeted 

tandem affinity purification of PSD-95 recovers core postsynaptic 
complexes and schizophrenia susceptibility proteins. Mol. Syst. Biol. 
2009, 5:269. 

68.  Templeton GW, Nimick M, Morrice N, Campbell D, Goudreault M, Gingras A-

C, Takemiya A, Shimazaki K-I, Moorhead GBG: Identification and 
characterization of AtI-2, an Arabidopsis homologue of an ancient 

protein phosphatase 1 (PP1) regulatory subunit. Biochem. J. 2011, 
435:73–83. 

69.  Keilhauer EC, Hein MY, Mann M: Accurate protein complex retrieval by 
affinity enrichment mass spectrometry (AE-MS) rather than affinity 

purification mass spectrometry (AP-MS). Mol. Cell. Proteomics 2015, 
14:120–135. 

70.  Mellacheruvu D, Wright Z, Couzens AL, Lambert J-P, St-Denis NA, Li T, 

Miteva Y V, Hauri S, Sardiu ME, Low TY, et al.: The CRAPome: a 



 

41 
 

Part II. Introductory chapters 

contaminant repository for affinity purification-mass spectrometry 
data. Nat. Methods 2013, 10:730–736. 

71.  Pardo M, Choudhary JS: Assignment of protein interactions from 

affinity purification/mass spectrometry data. J. Proteome Res. 2012, 
11:1462–1474. 

72.  Rodrigues RB, Sabat G, Minkoff BB, Burch HL, Nguyen TT, Sussman MR: 

Expression of a translationally fused TAP-tagged plasma membrane 
proton pump in Arabidopsis thaliana. Biochemistry 2014, 53:566–578. 

73.  Chang I-F, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon 
A, Harper JF: Proteomic profiling of tandem affinity purified 14-3-3 

protein complexes in Arabidopsis thaliana. Proteomics 2009, 9:2967–
2985. 

74.  Law J a, Ausin I, Johnson LM, Vashisht A a, Zhu J-K, Wohlschlegel J a, 

Jacobsen SE: A protein complex required for polymerase V transcripts 
and RNA- directed DNA methylation in Arabidopsis. Curr. Biol. 2010, 

20:951–956. 

75.  Smaczniak C, Li N, Boeren S, America T, van Dongen W, Goerdayal SS, de 
Vries S, Angenent GC, Kaufmann K: Proteomics-based identification of 
low-abundance signaling and regulatory protein complexes in native 

plant tissues. Nat. Protoc. 2012, 7:2144–2158. 

76.  Gadeyne A, Sánchez-Rodríguez C, Vanneste S, Di Rubbo S, Zauber H, 
Vanneste K, Van Leene J, De Winne N, Eeckhout D, Persiau G, et al.: The 

TPLATE adaptor complex drives clathrin-mediated endocytosis in 
plants. Cell 2014, 156:691–704. 

•• The authors identified the TPLATE complex, essential for plant growth 

via its role as major adaptor module for clathrin-mediated endocytosis. 

The complex was unravelled through exhaustive (reciprocal) TAP and 

single AP purifications of the different subunits. Validation of the complex 

was achieved with binary PPI approaches, and further confirmation was 

obtained through shared mutant phenotypes. 

77.  Choi H, Larsen B, Lin Z-Y, Breitkreutz A, Mellacheruvu D, Fermin D, Qin ZS, 

Tyers M, Gingras A-C, Nesvizhskii AI: SAINT: probabilistic scoring of 
affinity purification-mass spectrometry data. Nat. Methods 2011, 
8:70–73. 

78.  Sowa ME, Bennett EJ, Gygi SP, Harper JW: Defining the human 
deubiquitinating enzyme interaction landscape. Cell 2009, 138:389–
403. 

79.  Guruharsha KG, Rual J-F, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman 

C, Wong C, Rhee DY, Cenaj O, et al.: A protein complex network of 
Drosophila melanogaster. Cell 2011, 147:690–703. 



 

42 
 

Part II. Introductory chapters 

80.  Collins SR, Kemmeren P, Zhao X-C, Greenblatt JF, Spencer F, Holstege FCP, 
Weissman JS, Krogan NJ: Toward a comprehensive atlas of the physical 

interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 2007, 
6:439–450. 

81.  Hart GT, Lee I, Marcotte ER: A high-accuracy consensus map of yeast 

protein complexes reveals modular nature of gene essentiality. BMC 
Bioinformatics 2007, 8:236. 

82.  Zhang B, Park B, Karpinets T, Samatova NF: From pull-down data to 
protein interaction networks and complexes with biological 

relevance. Bioinformatics 2008, 24: 979-986. 

83.  Pu S, Vlasblom J, Turinsky A, Marcon E, Phanse S, Trimble SS, Olsen J, 
Greenblatt J, Emili A, Wodak SJ: Extracting high confidence protein 

interactions from affinity purification data: at the crossroads. J. 
Proteomics 2015, 118:63–80. 

84.  Eloy NB, Gonzalez N, Van Leene J, Maleux K, Vanhaeren H, De Milde L, 

Dhondt S, Vercruysse L, Witters E, Mercier R, et al.: SAMBA, a plant-
specific anaphase-promoting complex/cyclosome regulator is 
involved in early development and A-type cyclin stabilization. Proc. 

Natl. Acad. Sci. U. S. A. 2012, 109:13853–13858. 

• In this paper, the authors describe the characterisation of SAMBA, a 

plant specific negative regulator of the APC/C complex. The interaction 

between SAMBA and the APC/C complex, initially detected in the 

screening of the cell-cycle interactome, was confirmed in planta using TAP 

on seedlings. Y2H assays with the SAMBA protein against all APC subunits 

and its co-activators provided insight in the direct interactions. 

85.  Van Leene J, Boruc J, De Jaeger G, Russinova E, De Veylder L: A 
kaleidoscopic view of the Arabidopsis core cell cycle interactome. 

Trends Plant Sci. 2011, 16:141–150. 

86.  Gunsalus KC, Ge H, Schetter AJ, Goldberg DS, Han J-DJ, Hao T, Berriz GF, 
Bertin N, Huang J, Chuang L-S, et al.: Predictive models of molecular 

machines involved in Caenorhabditis elegans early embryogenesis. 
Nature 2005, 436:861–865. 

87.  Verkest A, Abeel T, Heyndrickx KS, Van Leene J, Lanz C, Van De Slijke E, De 
Winne N, Eeckhout D, Persiau G, Van Breusegem F, et al.: A generic tool 

for transcription factor target gene discovery in Arabidopsis cell 
suspension cultures based on tandem chromatin affinity purification. 

Plant Physiol. 2014, 164:1122–1133. 

• This is a proof of concept paper about tandem chromatin affinity 

purification (TChAP). The method was evaluated by comparing TChAP 

with ChIP and single-step ChAP in Arabidopsis cell suspension cultures. 

The TChAP method showed to improve DNA enrichment ratios compared 



 

43 
 

Part II. Introductory chapters 

to the single affinity approaches at the cost of required initial cell 

material. 

88.  Heyman J, Cools T, Vandenbussche F, Heyndrickx KS, Van Leene J, 
Vercauteren I, Vanderauwera S, Vandepoele K, De Jaeger G, Van Der 

Straeten D, et al.: ERF115 controls root quiescent center cell division 
and stem cell replenishment. Science 2013, 342:860–863. 

89.  Zhu H, Hu F, Wang R, Zhou X, Sze S-H, Liou LW, Barefoot A, Dickman M, 

Zhang X: Arabidopsis Argonaute10 specifically sequesters 
miR166/165 to regulate shoot apical meristem development. Cell 
2011, 145:242–256. 

• The authors show the first application of screening for protein-RNA 

interactions in plants. Small noncoding RNAs bound to AGO10 were 

tandem affinity purified, cloned and identified using Illumina sequencing. 

The authors were able to show that AGO10 specifically interacts with 

miR166/165, functioning as a decoy to maintain the shoot apical 

meristem. 

90.  Maeda K, Poletto M, Chiapparino A, Gavin A-C: A generic protocol for the 

purification and characterization of water-soluble complexes of 
affinity-tagged proteins and lipids. Nat. Protoc. 2014, 9:2256–2266. 

91.  Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, Van Molle I, 

De Smet B, Vertommen D, Gevaert K, et al.: Sulfenome mining in 
Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:11545–

11550. 

• The authors present a trapping system for sulfenylated proteins based 

on a heterologous yeast transcription factor, C-terminally fused to a 

tandem affinity purification tag. The performance of the system was 

illustrated with the identification of ~100 sulfenylated proteins in 

Arabidopsis cultured cells exposed to H2O2 stress. 

92.  Aryal UK, Xiong Y, McBride Z, Kihara D, Xie J, Hall MC, Szymanski DB: A Proteomic 

Strategy for Global Analysis of Plant Protein Complexes. Plant Cell 2014, 26: 

3867-3882.  

Supplementary references: 

Supplementary references to Figure 1: suppl. [1-18] 

Supplementary references to Figure 2: suppl. [19-25] 

Supplementary references to Table 1: suppl. [26-42] 

 

1.  Evan GI, Hancock DC: Studies on the interaction of the human c-myc 

protein with cell nuclei: p62c-myc as a member of a discrete subset of 

nuclear proteins. Cell 1985, 43:253-261. 



 

44 
 

Part II. Introductory chapters 

2.  Hopp TP, Prickett KS, Price VL, Libby RT, March CJ, Pat Cerretti D, Urdal DL, 

Conlon PJ: A short polypeptide marker sequence useful for 

recombinant protein identification and purification. Nat. Biotechnol. 

1988, 6:1204-1210. 

3.  Field J, Nikawa J-I, Broek D, MacDonald B, Rodgers L, Wilson IA, Lerner RA, 

Wigler M: Purification of a RAS-responsive adenylyl cyclase complex 

from Saccharomyces cerevisiae by use of an epitope addition 

method. Mol. Cell. Biol. 1988, 8:2159-2165. 

4.  Hochuli E, Bannwarth W, Döbeli H, Gentz R, Stüber D: Genetic approach 

to facilitate purification of recombinant proteins with a novel metal 

chelate adsorbent. Nat. Biotechnol. 1988, 6:1321-1325. 

5.  Schmidt TGM, Skerra A: One-step affinity purification of bacterially 

produced proteins by means of the ‘Strep tag’ and immobilized 

recombinant core streptavidin. J. Chromatogr. 1994, 676:337-345. 

6.  de Boer AH, van Hunnik E, Korthout HAAJ, Sedee NJA, Wang M: Affinity 

purification of GTPase proteins from oat root plasma membranes 

using biotinylated GTP. FEBS Lett. 1994, 337:281-284. 

7.  Lorković ZJ, Hilscher J, Barta A: Use of fluorescent protein tags to study 

nuclear organization of the spliceosomal machinery in transiently 

transformed living plant cells. Mol. Biol. Cell 2004, 15:3233-3243. 

8.  Rothbauer U, Zolghadr K, Muyldermans S, Schepers A, Cardoso MC, 

Leonhardt H: A versatile nanotrap for biochemical and functional 

studies with fluorescent fusion proteins. Mol. Cell. Proteomics 2008, 

7:282-289. 

9.  Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B: A generic 

protein purification method for protein complex characterization 

and proteome exploration. Nat. Biotechnol. 1999, 17:1030-1032. 

10.  Bürckstümmer T, Bennett KL, Preradovic A, Schütze G, Hantschel O, 

Superti-Furga G, Bauch A: An efficient tandem affinity purification 

procedure for interaction proteomics in mammalian cells. Nat. 

Methods 2006, 3:1013-1019. 

11.  Heijde M, Binkert M, Yin R, Ares-Orpel F, Rizzini L, Van De Slijke E, Persiau 

G, Nolf J, Gevaert K, De Jaeger G et al.: Constitutively active UVR8 

photoreceptor variant in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 

2013, 110:20326-20331. 

12.  Graumann J, Dunipace LA, Seol JH, McDonald WH, Yates JR, Wold BJ, 

Deshaies RJ: Applicability of tandem affinity purification MudPIT to 

pathway proteomics in yeast. Mol. Cell. Proteomics 2004, 3:226-237. 

13.  Wang C, Shang J-X, Chen Q-X, Oses-Prieto Ja, Bai M-Y, Yang Y, Yuan M, 

Zhang Y-L, Mu C-C, Deng Z et al.: Identification of BZR1-interacting 

proteins as potential components of the brassinosteroid signaling 



 

45 
 

Part II. Introductory chapters 

pathway in Arabidopsis through tandem affinity purification. Mol. 

Cell. Proteomics 2013, 12:3653-3665. 

14.  Gloeckner CJ, Boldt K, Schumacher A, Roepman R, Ueffing M: A novel 

tandem affinity purification strategy for the efficient isolation and 

characterisation of native protein complexes. Proteomics 2007, 

7:4228-4234. 

15.  Gustafson MP, Welcker M, Hwang HC, Clurman BE: Zcchc8 is a glycogen 

synthase kinase-3 substrate that interacts with RNA-binding 

proteins. Biochem. Biophys. Res. Commun. 2005, 338:1359-1367. 

16.  Kaneko A, Umeyama T, Hanaoka N, Monk BC, Uehara Y, Niimi M: Tandem 

affinity purification of the Candida albicans septin protein complex. 

Yeast 2004, 21:1025-1033. 

17.  Stoppel R, Manavski N, Schein A, Schuster G, Teubner M, Schmitz-

Linneweber C, Meurer J: RHON1 is a novel ribonucleic acid-binding 

protein that supports RNase E function in the Arabidopsis 

chloroplast. Nucleic. Acids Res. 2012, 40:8593-8606. 

18.  Tagwerker C, Zhang H, Wang X, Larsen LSZ, Lathrop RH, Hatfield GW, Auer 

B, Huang L, Kaiser P: HB tag modules for PCR-based gene tagging and 

tandem affinity purification in Saccharomyces cerevisiae. Yeast 2006, 

23:623-632. 

19.  Zhong J, Haynes PA, Zhang S, Yang X, Andon NL, Eckert D, Yates JR, Wang 

X, Budworth P: Development of a system for the study of protein-

protein interactions in planta: characterization of a TATA-box 

binding protein complex in Oryza sativa. J. Proteome Res. 2003, 2:514-

522. 

20.  Van Leene J, Stals H, Eeckhout D, Persiau G, Van De Slijke E, Van Isterdael 

G, De Clercq A, Bonnet E, Laukens K, Remmerie N et al.: A tandem affinity 

purification-based technology platform to study the cell cycle 

interactome in Arabidopsis thaliana. Mol. Cell. Proteomics 2007, 

6:1226-1238. 

21.  Nishikiori M, Mori M, Dohi K, Okamura H, Katoh E, Naito S, Meshi T, Ishikawa 

M: A host small GTP-binding protein ARL8 plays crucial roles in 

tobamovirus RNA replication. PLoS Pathog. 2011, 7:e1002409. 

22.  Abe M, Fujiwara M, Kurotani K-i, Yokoi S, Shimamoto K: Identification of 

dynamin as an interactor of rice GIGANTEA by tandem affinity 

purification (TAP). Plant Cell Physiol. 2008, 49:420-432. 

23.  Jeong IS, Fukudome A, Aksoy E, Bang WY, Kim S, Guan Q, Bahk JD, May 

Ka, Russell WK, Zhu J et al.: Regulation of abiotic stress signalling by 

Arabidopsis C-terminal domain phosphatase-like 1 requires 

interaction with a K-homology domain-containing protein. PLoS ONE 

2013, 8:e80509. 



 

46 
 

Part II. Introductory chapters 

24.  Rohila JS, Chen M, Cerny R, Fromm ME: Improved tandem affinity 

purification tag and methods for isolation of protein 

heterocomplexes from plants. Plant J. 2004, 38:172-181. 

25.  Witte C-P, Noël LD, Gielbert J, Parker JE, Romeis T: Rapid one-step 

protein purification from plant material using the eight-amino acid 

StrepII epitope. Plant Mol. Biol. 2004, 55:135-147. 

26.  Obayashi T, Okamura Y, Ito S, Tadaka S, Aoki Y, Shirota M, Kinoshita K: 

ATTED-II in 2014: evaluation of gene coexpression in agriculturally 

important plants. Plant Cell Physiol. 2014, 55:e6. 

27.  Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ: An 

‘electronic Fluorescent Pictograph’ browser for exploring and 

analyzing large-scale biological data sets. PLoS ONE 2007, 2:e718. 

28.  De Bodt S, Proost S, Vandepoele K, Rouzé P, Van de Peer Y: Predicting 

protein-protein interactions in Arabidopsis thaliana through 

integration of orthology, gene ontology and co-expression. BMC 

Genomics 2009, 10:288. 

29.  Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K, Gruissem W, Baginsky S, 

Schmidt R, Schulze WX, Sun Q, van Wijk KJ, Egelhofer V et al.: MASCP 

Gator: an aggregation portal for the visualization of Arabidopsis 

proteomics data. Plant Physiol. 2011, 155:259-270. 

30.  Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH: SUBA: the 

Arabidopsis subcellular database. Nucleic Acids Res. 2007, 35:D213-

218. 

31. The Plant Ontology Consortium: The Plant OntologyTM Consortium 

and plant ontologies. Comp. Funct. Genomics 2002, 3:137-142. 

32.  Ramšak Ž, Baebler Š, Rotter A, Korbar M, Mozetič I, Usadel B, Gruden K: 

GoMapMan: integration, consolidation and visualization of plant 

gene annotations within the MapMan ontology. Nucleic Acids Res. 

2014, 42:D1167-1175. 

33.  Tsesmetzis N, Couchman M, Higgins J, Smith A, Doonan JH, Seifert GJ, 

Schmidt EE, Vastrik I, Birney E, Wu G et al.: Arabidopsis reactome: a 

foundation knowledgebase for plant systems biology. Plant Cell 2008, 

20:1426-1436. 

34.  Akiyama K, Kurotani A, Iida K, Kuromori T, Shinozaki K, Sakurai T: RARGE 

II: an integrated phenotype database of Arabidopsis mutant traits 

using a controlled vocabulary. Plant Cell Physiol. 2014, 55:e4. 

35.  Kuromori T, Wada T, Kamiya A, Yuguchi M, Yokouchi T, Imura Y, Takabe H, 

Sakurai T, Akiyama K, Hirayama T et al.: A trial of phenome analysis 

using 4000 Ds-insertional mutants in gene-coding regions of 

Arabidopsis. Plant J. 2006, 47:640-651. 



 

47 
 

Part II. Introductory chapters 

36.  Zhang J, Li C, Wu C, Xiong L, Chen G, Zhang Q, Wang S: RMD: a rice 

mutant database for functional analysis of the rice genome. Nucleic 

Acids Res. 2006, 34:D745-748. 

37.  Brandão MM, Dantas LL, Silva-Filho MC: AtPIN: Arabidopsis thaliana 

Protein Interaction Network. BMC Bioinformatics 2009, 10:454. 

38. Cui J, Li P, Li G, Xu F, Zhao C, Li Y, Yang Z, Wang G, Yu Q, Li Y et al.: AtPID: 

Arabidopsis thaliana protein interactome database — an integrative 

platform for plant systems biology. Nucleic Acids Res. 2008, 36:D999-

1008. 

39.  Geisler-Lee J, O'Toole N, Ammar R, Provart NJ, Millar AH, Geisler M: A 

predicted interactome for Arabidopsis. Plant Physiol. 2007, 145:317-

329. 

40.  De Bodt S, Hollunder J, Nelissen H, Meulemeester N, Inzé D: CORNET 2.0: 

integrating plant coexpression, protein-protein interactions, 

regulatory interactions, gene associations and functional 

annotations. New Phytol. 2012, 195:707-720. 

41.  Van Landeghem S, Hakala K, Rönnqvist S, Salakoski T, Van de Peer Y, Ginter 

F: Exploring biomolecular literature with EVEX: Connecting genes 

through events, homology, and indirect associations. Adv. 

Bioinformatics 2012, 2012:582765. 

42.  Müller H-M, Kenny EE, Sternberg PW: Textpresso: an ontology-based 

information retrieval and extraction system for biological literature. 

PLoS Biol. 2004, 2:e309. 

  



 

48 
 

Part III: Developing an optimized AP-MS workflow in rice 

Part III: 

Developing an 

optimized AP-MS 

workflow in rice 
  



 

49 
 

Part III: Developing an optimized AP-MS workflow in rice 

Chapter 4: Picking the best building blocks for TAP in rice 

A strategy to improve the state of the art of AP-MS in rice 

To accomplish our goal and improve the state of the art of TAP in rice, we first 

defined the most important parameters that drive sensitive protein complex 

purifications. The most crucial elements are the promoter, which determines the 

expression level of the bait encoding gene, and the affinity tag, decisive for the 

purity and yield of the purification. We selected three different promoters. PRO35S 

is the 35S promoter of the Cauliflower mosaic virus (CaMV 35S) [1,2]. This 

promoter is well established for use in dicots, but was also used in rice for TAP 

purposes in a study on the GIGANTEA complex [3]. PROGOS2 is the promoter of the 

rice GOS2 gene [4]. The GOS2 protein is 52% identical to the protein encoded by 

the SUI1 gene of yeast, which is a suppressor locus of translational initiator 

mutants [5]. This suggests that the GOS2 gene product is part of the translation 

machinery. Hence it is annotated as eIF1 (for eukaryotic translation initiation factor 

1) [6]. PROHMG is a HIGH MOBILITY GROUP PROTEIN promoter (WO2004070039 

A2). In house data show that PROGOS2 provides medium constitutive and ubiquitous 

expression. PROHMG gives weak constitutive and ubiquitous expression. The optimal 

promoter should enable to outcompete the non-tagged endogenous bait protein in 

the wild type (WT) genetic background for incorporation into protein complexes, 

whilst not highly exceeding the concentrations of available complex to avoid over-

accumulation of uncomplexed baits. 

The original TAP tag developed in yeast [7] consists of two immunoglobulin G 

(IgG)-binding units of protein A from Staphylococcus aereus, a cleavage site for 

the tobacco etch virus (TEV) protease and a calmodulin-binding peptide (CBP). 

Despite optimisation of this tag for use in plants [8], it still has some limitations. 

The use of the CBP domain is problematic in eukaryotic cells and purifications 

require EGTA-containing buffers. This results in the non-specific isolation of 

endogenous calmodulin-binding proteins and prevents the purification of cation-

dependent enzyme complexes respectively [9]. Also the overall yield and 

specificity of the process is low and could be improved [9,10]. Complex purification 

was further optimised by testing different TAP tags in Arabidopsis cell suspension 

cells. Evaluation of a SFZZ TAP tag, where the CBP part in the traditional TAP tag 

was replaced by linear peptide epitopes, resulted in reduced background, but also 

in low amounts of purified complexes [9]. A major leap forward in terms of both 

sensitivity and yield was obtained with the implementation of the GS tag [9]. This 

TAP tag combines two IgG-binding domains of protein G with a streptavidin-

binding peptide, separated by two TEV cleavage sites.  

We designed a series of new tags and corresponding vectors based on the two-

step purification principle that proved successful in TAP. Previous experiments with 

the GS tag [9] in rice showed significant proteolysis of the bait protein (Aurine 

Verkest, personal communication). Based on this observation, we opted to test a 

variety of TAP tags (Figure 1), utilizing combinations of the building blocks of TAP 

and GS tag together with new affinity domains. One group includes variants of the 

original TAP tag. The TAPi tag, for ‘improved TAP tag’, is a plant-adapted version 

of the traditional yeast tag, with an optimized codon sequence for plants and 
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without cryptic nuclear localisation signals [8]. The AS tag is equivalent to the TAPi 

tag, but has the CBP domain replaced by a streptavidin-binding peptide [10], and 

for the GS tag the protein A portion was additionally exchanged with two IgG 

binding units of protein G from Streptococcus sp. [9,10]. We also opted to design 

tags containing the green fluorescent protein (GFP) and named these ‘green’ tags. 

The combination of localisation and interaction data is indeed very powerful. Using 

GFP as an affinity domain became feasible only recently, with the development 

commercially available affinity matrices having sufficient specificity for the 

fluorophore (www.miltenyibiotec.com, www.chromotek.com). We designed three 

tags analogous in design to the traditional TAP tag, but with GFP replacing the two 

IgG-binding domains of protein A. The first affinity domain was either the 

calmodulin-binding peptide, the streptavidin-binding peptide or the StrepIII 

peptide respectively, resulting in the Cgreen, GSgreen and SIIIgreen tags (Figure 

1).  

In addition, we developed the GFP-SBP and GFP-VHH tags which contain GFP and 

the streptavidin-binding peptide or a short amino acid sequence respectively. For 

the latter a VHH nanobody was developed (at the Jan Steyaert lab) that specifically 

recognises this epitope. This nanobody could then be used to produce suitable 

affinity resin. A third category of tags we considered were smaller tags. Some 

postulate that a smaller tag minimizes interference with the bait’s function and 

could in that aspect enhance the success rate of the TAP protocol [11]. The 

commercialised CS-tag (Interplay Mammalian TAP system, Agilent technologies, 

Santa Clara, CA, US) consists of the calmodulin-binding peptide and streptavidin-

binding peptide. The StrepIIIC tag comprises the StrepIII peptide followed by a 

calmodulin-binding peptide, and the SH tag contains the streptavidin-binding 

peptide and a hemagglutinin (HA) epitope tag with a TEV cleavage site in between. 

The latter yielded 30-40% purification efficiency in mammalian cell cultures [11]. 

We analysed the efficiency of the 3 promoters and 11 TAP tag variants by using 

the rice ortholog of CYCLIN-DEPENDENT KINASE REGULATORY SUBUNIT 1 (CKS1) 

as bait protein. Rice CKS1 is encoded by loc_os03g05300 and has 91.1% global 

amino acid similarity with its Arabidopsis counterpart. Arabidopsis CKS1 has a 

conserved role in cell cycle regulation as scaffold protein. It functions as a docking 

factor for positive and negative regulators of CYCLIN-DEPENDENT KINASE (CDK) 

activity [12–14]. These regulators were identified in a comprehensive study of the 

cell cycle interactome in Arabidopsis cell suspension cultures [15], some of which 

were confirmed in binary interaction screens [16]. Arabidopsis CKS1 associates 

with A- and B-type CDKs and these CDKs on their turn interact with cyclins. The 

core cell cycle interactome in Arabidopsis mainly represents heterodimeric 

interactions of CDKA1;1 with D- and A3-type cyclins, whereas B-type CDKs 

interact with B- and D-type cyclins [15–17]. Hence, Arabidopsis TAP experiments 

using CKS1 as bait resulted in co-purification of a variety of CDK/cyclin complexes. 

The diversity of CDK’s and cyclins that co-precipitate with CKS1 can be adopted to 

compare the performance of the different TAP building blocks. The more 

CDK/cyclin complexes are co-purified using particular TAP construct, the better 

that construct is performing. 

 

http://www.miltenyibiotec.com/
http://www.chromotek.com/
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Figure 1. Overview of the different affinity domains and proposed combinations for TAP 

tag design. 

 

Establishment of a smooth cloning protocol 

Creating a TAP construct in eukaryotic cells basically encompasses cloning of a 

promoter, the open reading frame (ORF) of the gene of interest and the ORF of 

the TAP tag into one expression vector. To maximise the chance of successfully 

pulling down interactors, traditionally both N- and C-terminal fusion of the TAP tag 

with the gene of interest are produced. We thus needed to acquire a cloning 

protocol that allows fast and versatile combination of the three building blocks for 

creating TAP cassettes.  

We adopted a cloning strategy based on the MultiSite Gateway® recombination 

system established in Arabidopsis [18] for use in rice. To accomplish this, we 

cloned the Gateway® cassette from the pDEST™ R4-R3 Vector II (Life 

Technologies, Carlsbad, CA) into the p05050 destination vector suitable for Oryza 

sativa transformation (WO2011114279 A1). Two types of destination vectors were 

derived from our cloning efforts. One destination vector, p35803, contains the GFP 

screenable marker, whereas this cassette was removed in the p36602 vector. The 

latter is therefore suitable for insertion of TAP cassettes that already contain GFP 

as affinity domain. Our MultiSite Gateway® strategy allows cloning of the different 

building blocks in merely one single recombination step once promoter, gene of 

interest and TAP tag are present in the appropriate pENTRY vectors (Figure 2). In 

contrast to the strategy proposed by Van Leene et al. [18], our workflow requires 

only one type of destination vector for both N- and C-terminal tagging. Also, the 

domain full name affinity to elution pros cons

small tags

GFP-VHH

CS

SH

SIIICAS SIIIgreen

GFP-SBP

TAPi Cgreen

EGTA required in buffers

streptavidin binding peptide streptavidin mild - biotin addition allows mild elution, less background than 

CBP

in vivo biotinylated proteins can non-

specifically interact with the affinity matrix

calmodulin binding peptide calmodulin mild - EGTA addition allows mild elution, small

bulky, requires harsh conditions for 

elution, expensive affinity matrix

hemagglutinin HA antibody mild - addition of HA allows mild elution, small linear

green fluorescent protein GFP antibody harsh - pH/boiling provides localisation signal to the tag

bulky, requires harsh conditions for elution

ZZ domain of protein A IgG harsh - pH/boiling very specific binding bulky, requires harsh conditions for elution

ZZ domain of protein G IgG harsh - pH/boiling very specific binding

linear

TAP tag variants

StrepIII Streptavidin mild - biotin addition allows mild elution, small

"green" tags

GS GSgreen
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residues derived from the Gateway® cloning junction remain the same (attB2) for 

both fusions, ensuring consistency of the cloning products (Figure 2).  

Figure 2. Overview of the MultiSite Gateway® based cloning strategy. 

 

a. For both N- and C- terminal cloning, a three-fragment recombination strategy was 

used. ENTRY vectors are produced by a BP clonase-catalysed recombination step that 

transferred the amplicons of promoter, TAP tag coding sequence and the ORF of the gene 

of interest in the appropriate pDONR™ vectors. For N-terminal tagging, the coding 

sequence of the tag is devoid of its stop codon to allow translational fusion with the ORF. 

Similarly, for C-terminal tagging, the stop codon is removed from the ORF sequence. The 

three fragments are assembled in the pTAP destination vector in a single MultiSite LR 

clonase reaction to produce an expression clone. This destination vector contains within 

the left (LB) and right (RB) T-DNA border sequences, in addition to the Gateway® 

cassette, a Kanamycin resistance (KmR) gene for selection and a GFP cassette as 

screenable marker. For cloning of TAP tags that contain GFP as an affinity domain, a 

destination vector is used that lacks the GFP screenable marker cassette. b. Destination 

vectors developed. The p36602 vector is a derivative of p35803 lacking the GFP 

screenable marker cassette. For clarity reasons, the Streptomycin and Spectinomycin 

resistance gene present in the vector backbone is not shown. TT, termination sequence 

from zein; CmR, Chloramphenicol resistance gene; ccdB, toxic killer gene for negative 

selection. 
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With an established cloning workflow in place, we created 13 TAP constructs for 

testing the efficiency of the different building blocks. The three different promoters 

were combined with a C-terminal fusion of CKS1 and the TAPi tag, cloned in the 

p35803 destination vector. We cloned each of the 11 TAP tag variants as C-

terminal fusions with CKS1, driven by the CaMV 35S promoter. They were cloned 

in the appropriate destination vector according to presence (cloning in p36606) or 

absence (cloning in p35803) of GFP in the tag. All CKS1 test constructs had the 

TAP tag fused to the C-terminus, as prior knowledge from Arabidopsis showed that 

this translational fusion had the least effect on the CKS1 functionality [15]. 

Generation of rice callus cell cultured cells expressing the TAP 
constructs 

In first instance, we used transformed rice callus cells to produce the tagged 

proteins. These cells enable relatively fast generation of an in principle unlimited 

supply of biomass. Because of their undifferentiated nature, they are an ideal 

biomass source to study basal pathways. Briefly, explants from dehusked rice 

seeds were co-cultivated with Agrobacterium tumefaciens strain lba4044/pal4404 

harbouring binary vectors that contain a TAP fusion construct. Three days after co-

cultivation, explants were separated from the seeds, washed and grown on 

selection medium. The selection medium contains G418 disulfate to select for 

transformed callus. After 2 weeks, microcalli were isolated and further proliferated 

on selection medium until 30g of callus was obtained. In principle, each microcallus 

represents an individual transformation event. We opted nonetheless to pool the 

different events to level out positional effects from the T-DNA insertion site [18].  

Evaluation of the performance of the different TAP building blocks 

The different promoters 

We first analysed protein extracts from transgenic callus cell lines expressing the 

TAPi-tagged CKS1 constructs driven by the three different promoters by 

immunoblotting with α-CKS1 to confirm expression. The bait’s expression level is 

clearly stronger when driven by the 35S CaMV compared to the other promoters 

(Figure 3). Also, as expected, the PROGOS2 provides higher bait expression levels 

than PROHMG (Figure 3).  

Subsequently, we performed full scale TAP experiments to gain insight on how the 

bait’s expression levels influence the sensitivity of interactor detection. We used 

50mg of total soluble protein extract for each experiment. The protocol (adapted 

from Rohila et al., [19]) is described in detail in the materials and methods section. 

After purification, the samples were loaded on precast 4-12% gradient NuPAGE 

gels to get rid of chemical contaminants and stained with Coomassie Brilliant Blue 

staining. Gels were then sliced into gel plugs and subjected to in-gel trypsin 

digestion. The resulting peptides were ultimately separated on a nano-liquid 

chromatography (LC) column and analysed on a LTQ Orbitrap Velos mass 

spectrometer. The resulting mass spectra were searched against the Michigan 

State University (MSU) rice annotation database [6] using the SEQUEST engine. 

In principle we retained only proteins that were identified with at least two peptides 

with high confidence rank, of which at least one is unique to the protein. To 
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deconvolute the read-out, the resulting protein identification list was cross-

checked against a preliminary list of nonspecific proteins. This preliminary 

background list was constructed from proteins identified in a ‘mock’ purification 

using wild type callus samples. From the resulting interaction datasets, we created 

a pivot table (Figure 3c). This table compiles how many CDKs and cyclins were 

found; interactors that typically co-purify in a CKS1 pull-down. We further 

appended the table with other proteins potentially related to the cell cycle. For this 

we added proteins with GO annotation ‘cell cycle’ for molecular function. A 

posteriori, we supplemented the interaction dataset with cell cycle related proteins 

resulting from only one significantly detected peptide.  

From these three purifications, we could derive a common interaction dataset of 6 

interacting proteins (Figure 3c, interactors depicted with ‘x’). These include 4 

CDKs, 3 of the A-type and 1 of the B-type, and 3 D-type cyclins. Participation of 

CKS1 in complexes involving CDKA or CDKB and CYCD is thus conserved in rice. 

We can also state that the TAPi tag does not interfere with CKS1 protein function. 

Pull-down experiments from the construct containing the CaMV 35S promoter 

resulted in the detection of the most significant interactors (9). These include two 

additional B-type CDKs that were not found in the datasets from the other two 

constructs. Purification using the PROGOS2-driven construct resulted in only slightly 

less (8) significant interactors, with 6 of the interactors overlapping with the 

experiment from the CaMV 35S-driven construct. Apart from the 6 common 

interacting proteins, we did not find additional significant identifications for 

purifications from the PROHMG-driven construct. This might pinpoint that bait 

expression is suboptimal to provide sensitive detection of interactors.  

We conclude that bait expression levels in callus are sufficient for all three 

promoters to provide successful pull-down of cell-cycle related protein complexes. 

The moderate overlap between datasets can be partially explained by a lack of 

replicate experiments. The interaction dataset derived from the PROHMG-driven 

construct however shows a significant number of proteins derived from single-

peptide detection (Figure 3c, interactors depicted with ‘1’). We therefore decided 

to only retain the 35S CaMV and the PROGOS2 promoters for further TAP 

experiments in rice. 
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Figure 3. Comparison of the performance of three different promoters driving the 

expression of TAP constructs in rice callus 

 
a. Immunoblot analysis using the α-CKS1 antibody. The molecular weight of TAPi-tagged 

CKS1 is 32.4 kDa. b. NuPAGE gel stained with Coomassie Blue of tandem affinity-purified 

samples. c. Interaction dataset resulting from the TAP-MS experiments on each construct. 

Only known CKS1-interaction partners or proteins annotated with GO term ‘cell cycle’ are 

shown. For each protein, the number of matching (high or medium confidence) peptides 

retrieved in the purification are shown. Single peptide identifications would not be withheld 

in standard analysis, hence these are marked in grey. 

 

The different TAP tags 

Next, we tested which affinity tags suit the best to accommodate optimal TAP 

purifications in rice. Analysis by α-CKS1 immunoblotting on protein extracts from 

callus cell lines expressing the different TAP constructs displayed substantial 

differences in bait expression levels between the classes of tags (Figure 4). It 

seems that large protein-like domains tend to stabilize the bait’s expression. Tags 

that contain the large globular IgG-binding domains showed massive expression. 

This was also the case for the ‘green’ tags, although for these affinity handles some 

protein decay was visible (Figure 4). The smaller tags showed quite low 

abundance. We anticipated this as problematic, as in our system the TAP construct 
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has to outcompete its endogenous counterpart for incorporation into protein 

complexes. We therefore decided not to retain the small tags in our toolbox.  

Remarkably, in our hands the GS tag was in fact stable contrary to what was 

observed before (Aurine Verkest, personal communication). We hypothesize that 

the earlier observed instability might have been the result of a different sequence 

context of the Gateway® att sequences or ‘bad luck’ of choosing baits that are 

prone to degradation. From this observation, we opted to further assay the 

performance of two TAP tag variants that contain the SBP-domain – the GS and 

GSgreen tag. SBP has indeed low-nanomolar affinity to streptavidin, can be 

specifically eluted by (desthio)biotin, and was already shown to perform superior 

compared to the CBP domain in mammalian cells [10] and Arabidopsis cells [9]. 

The SBP domain is also preferred to the StrepIII tag as the latter is a linear tag. 

Linear tags can lead to interference in protein folding since they do not possess a 

secondary or tertiary structure. Similar to our strategy for the promoter 

comparison, we performed full scale TAP experiments on the GS, GSgreen and 

TAPi constructs. The latter was considered a comparison to the state of the art. 

For all purifications, 50mg of protein extract was used and purifications were 

performed at least in duplicate, in the most optimal conditions for each tag. For 

the GSgreen tag, we also explored the possibility of performing a single step 

purification using GFP as affinity handle. Details are provided in the materials & 

methods section. Sample preparation, mass spec and data analysis were 

performed as described for the promoter comparison. From the resulting 

interaction datasets, we created a pivot table summarizing how many CDKs and 

cyclins were found, together with proteins with GO annotation ‘cell cycle’ for 

molecular function. We included protein identifications derived from only one 

significantly detected peptide to also consider more weakly associated binders.  

From the nine purifications, we could derive a common interaction dataset of 3 

interacting proteins (Figure 4c); 2 CDKs of the A-type and 1 of the B-type. These 

interactors comprise the complete interaction dataset for the single-step 

purification using the GSgreen construct. The common dataset resulting from all 

two-step purifications included in addition CYCLIN D 6;1 and a cyclin-dependent 

kinase inhibitor. The latter was mainly identified from only one significantly 

detected peptide, stressing its weak interaction. We further retrieved CDKB2;1 in 

both TAPi and GS purifications, whereas it was only found once with one peptide 

matching the protein sequence in the GSgreen purifications. The interaction 

dataset mainly contains D-type cyclins. An explanation could be that CYCDs are 

simply more abundant in the purified sample as both CDKA as CDKB associate with 

CYCDs [17], whereas B-type cyclins only interact with CDKB [17]. Apart from the 

CYCLIN-DEPENDENT KINASE INHIBITOR (CKI) retrieved in all double step 

purifications, we found two additional CKI’s. Each CKI was retrieved in only one 

purification, by one significantly detected peptide. Probably, this is due to a more 

weak or unstable nature of the interaction with the complex. Overall, two-step 

purifications from the TAPi-, GS- and GSgreen-constructs resulted in roughly the 

same amount of significant interactors (Figure 4b). Since the GS tag was shown 

to outperform the TAPi tag in terms of yield and sensitivity using different baits in 

other organisms [9,10], we decided to only retain the GS and the similar GSgreen 

tag for further analysis. 
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Figure 4. Comparison of the performance of different affinity tags in rice callus. 

 

a. Immunoblot analysis using the α-CKS1 antibody. The molecular weights are shown in 

the column on the right. b. Interaction dataset resulting from the TAP-MS experiments on 

each construct. Only known CKS1-interaction partners or proteins annotated with GO term 

‘cell cycle’ are shown. For each protein, the number of matching (high or medium 

confidence) peptides retrieved in the purification are shown. Single peptide identifications 

would not be withheld in standard analysis, hence these are marked in grey. In the last 

column, the total amount of times the protein was identified throughout the different 

purifications is shown. The exact composition of the TAP tags are shown in Figure 1. 

Abbreviations used: repl: replicate; ss: single step; CDKs: cyclin-dependent kinases; CKIs: 

cyclin-dependent kinase inhibitors. 

Conclusion 

Rice has become a well-established model organism for cereal crops. It is 

especially a most suitable model for research in the field of enhancing crop yields, 

being a crop itself. To date, merely individual genes regulating components of plant 

growth or seed yield are known, but their connections are largely unexplored. 
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Nevertheless, biological processes are often carried out by the dynamic interaction 

of proteins in complexes and signalling pathways. Unravelling these 

interconnections can thus greatly speed up our understanding of complex traits as 

yield. AP-MS is the preferred technology to capture protein complexes in planta. 

The technology is state-of-the-art in Arabidopsis, but not in important crop species 

like rice.  Therefore, we optimized each of the different building blocks - promoter, 

TAP tag, expression vector- required for making a TAP construct.  

We opted to constitutively overexpress the TAP tagged construct in rice cells, as 

the tagged proteins produced must be able to outcompete endogenous forms for 

incorporation into the protein complexes. This strategy is the most frequently used 

for TAP in plants and was previously shown to lead to higher complex recovery 

compared to expression with endogenous promoters in WT background of 

Arabidopsis cell suspension cultures [18] and plants [20]. Overexpression might 

also facilitate the detection of interaction partners with lower affinity or more 

transient associations. A trade-off is that overexpression might lead to aberrant 

interactions leading to false positive identifications. We anticipate that the 

constitutive nature of the promoters is not a problem when screening complexes 

from rice callus. These indeed represent mainly a population of undifferentiated 

cells. The issue could be more problematic when plants are used as biomass 

source, as these consist of a multitude of cell types. An alternative is to express 

the TAP construct under control of the endogenous promoter in null mutant 

background. This approach is however very costly in terms of throughput. Also, 

rice mutant collections are not as exhaustive as in Arabidopsis. In our case 

however, we want to analyse the protein complexes from proteins that show 

growth enhancing characteristics when overexpressed. An overexpression strategy 

for our TAP experiments is therefore the most logic choice.  

We tested three different constitutive promoters ranging in level of 

overexpression, in combination with the cell cycle protein CKS1 and the TAPi tag. 

Immunoblot analysis of the different constructs showed the expected differences 

in expression level. For the weaker constitutive promoter PROHMG – the promoter 

of a rice HIGH MOBILITY GROUP PROTEIN – a significant portion of the interactors 

identified resulted from single-peptide identifications. These would not have been 

retained in standard analyses. Purification experiments from constructs containing 

the two other promoters, PROGOS2 – the promoter of the rice GOS2 gene- and 

PRO35S – the Cauliflower Mosaic Virus 35S promoter – resulted in a similar amount 

of interaction partners and were therefore considered as equally fitting for 

incorporation in a TAP construct. Importantly, we only used a single experiment to 

assay each promoter’s performance. Therefore, more elaborate screening of 

multiple baits in replicate experiments will be needed to further validate these 

preliminary results.   

We next tested three groups of TAP tags, representing a total of 11 different affinity 

handles. For their design, we selected and combined affinity domains that showed 

successful in AP-MS experiments in eukaryotes. The TAP tag variants tested 

include the TAPi tag, shown to enable high throughput experiments in rice, the GS 

tag and the AS tag. The GS tag showed to outperform the TAPi tag in both final 

yield and specificity in mammalian and Arabidopsis cells [9,10]. Preliminary tests 
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in rice plants however hinted to potential instability of the tag (Aurine Verkest, 

personal communication), which forced us to reach out for alternatives to develop 

an optimised TAP protocol. An alternative group of tags have the green fluorescent 

protein included as affinity domain. The use of GFP as affinity domain became 

feasible with the recent development of affinity matrices containing efficient 

antibodies. A key advantage is that GFP allows both protein localization and affinity 

purification experiments. In that frame, a ‘localisation and affinity purification’ 

(LAP) tag was introduced in metazoans [21].  

Alternatively, we appended a group of tags consisting of combinations of only small 

domains or linear tags to minimize the size of the affinity handle. A frequently 

posed concern is indeed the large size of the 21 kDa TAP tag and potential 

interference with complex assembly, localisation or functionality of the bait 

protein. In this context, a SH-tag was proposed, comprising only 48 amino acids 

[11]. The authors claimed to achieve overall purification yields between 30 and 

40%, a significant increase compared to the 10% observed with the GS tag.  

In our hands, the SH tag, and in general all small tags tested showed a significantly 

lower expression pattern compared to the larger affinity handles. Clearly, the 

presence of a large domain tends to stabilise bait accumulation. Further, 

comparison of the interaction profiles we retrieved from CKS1 tagged with TAPi, 

GS or GSgreen with the associations already described in literature hints that 

functionality is not compromised, although the tags were in this case double the 

size of the protein. A further confirmation is found from yeast data, where in 82% 

of the cases essential genes were replaced with a tagged version of the gene, a 

viable haploid strain was obtained [22]. This number is deduced from C-terminal 

tagging only and might this be higher if both N- and C-terminal fusions would have 

been tested. From these considerations we decided to drop the small tags from 

further testing because of their low accumulation. A further comparison of the 

resulting interaction datasets from two variants that contain the SBP-domain – the 

GS and GSgreen tag- with the TAPi tag showed similar for all three tags. Since SBP 

performs superior compared to the CBP domain in terms of specificity and 

sensitivity [9,10] we decided to only use the GS and similar GSgreen for further 

experiments. 

Our findings should be seen as provisory, as merely one single bait was used for 

scoring the TAP tools. The test bait was however carefully chosen to quickly scan 

a broad range of tools. As scaffold protein, CKS1 interacts with multiple types of 

different cyclins and CDK’s. We adopted the diversity of CDK’s and cyclins that co-

precipitate with CKS1 to compare the performance of the different TAP building 

blocks and pre-filter the 13 different TAP constructs to two promoters and two TAP 

tags. In a next phase, these tools will be further tested on a range of different 

baits in callus and plant tissues to further consolidate our observations. 

In conclusion, we established a TAP-MS strategy for purifying protein complexes 

from rice callus cells and tested a set of building blocks that can contribute to an 

optimised protocol. We demonstrated this by identifying interactors from the cell 

cycle protein CKS1. These building blocks will subsequently be adapted to study 

the molecular mechanisms that underlie growth or seed yield in (cereal) crops, 

biological processes for which Oryza sativa is generally used as a model system. 
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This functional interactomics approach can help to further pave the way in gaining 

understanding in this complex trait. 

Materials & Methods 

Construction of TAP destination vectors 

We used the p05050 destination vector for rice transformation 

(WO2011114279A1) as starting point to construct the TAP destination vectors. In 

first instance, the p35803 vector was created by replacing the region 

encompassing the GOS2 promoter and attR1-attR2 Gateway® cassette by the 

attR3-attR4 Gateway® cassette. The resulting p35803 vector was verified through 

sequencing the region between left and right border. The p36602 was 

subsequently derived from p35803 by removing the GFP cassette and verified 

through sequencing in the same manner as for p35803. 

Cloning of the TAP building blocks in the appropriate pENTRY vectors 

Vectors containing the PROHMG, PRO35S and PROGOS2 promoters were used as 

template for isolation of the promoter regions by high fidelity PCR using the 

Phusion Hot Start II high-fidelity DNA polymerase kit (Thermo Fisher Scientific, 

Waltham, MA). Primers were designed using VectorNTI primer design. The 

recombination sites for Gateway® cloning were added to the primers. To verify 

amplification, PCR product was loaded on a 1% agarose gel and run for 25 min at 

100V. Subsequently, fragments of the corresponding size were excised from gel 

and extracted using the QIAquick gel extraction kit (Qiagen, Venlo, The 

Netherlands). Next, the promoter sequences were cloned in compatible 

pDONR™P4-P1R vectors (Life Technologies, Carlsbad, CA) according to the 

manufacturer’s instructions. Successful recombination was verified by restriction 

digest analysis and sequencing of the Gateway® cassette. 

All eleven TAP tags were manufactured through gene synthesis (GeneArt®, Life 

Technologies, Carlsbad, MA) including the appropriate att-sites. They were cloned 

in compatible pDONR™P2R-P3 vectors (Life Technologies, Carlsbad, CA) according 

to the manufacturer’s instructions. Successful recombination was verified by 

restriction digest analysis. 

The ORF for CKS1 was amplified from an expression vector that already contained 

the sequence. Primers were designed using the VectorNTI primer design tool with 

the att-sequences added, but in such a way that the CKS1 sequence would be 

amplified without its stop codon. PCR was performed using the Phusion Hot Start 

II high-fidelity DNA polymerase kit (Thermo Fisher Scientific, Waltham, MA). To 

verify amplification, PCR product was loaded on a 1% agarose gel and run for 25 

min at 100V. Subsequently, fragments of the corresponding size were excised from 

gel and extracted using the QIAquick gel extraction kit (Qiagen, Venlo, The 

Netherlands). Next, the CKS1 amplicon was cloned in the compatible pDONR™221 

vector (Life Technologies, Carlsbad, CA) according to the manufacturer’s 

instructions. Successful recombination was verified by restriction digest analysis 

and sequencing of the Gateway® cassette. 

Generation of TAP expression vectors through MultiSite Gateway® 
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Recombination of the promoter, CKS1 sequence and TAP tags was performed using 

the standard MultiSite Gateway® cloning technology to generate the TAP 

destination vectors as described above. The resulting TAP expression vectors were 

verified by restriction digest analysis and transferred to Agrobacterium 

tumefaciens lba4044/pal4404 by electroporation. Transformed bacteria were 

selected on yeast extract broth medium with the appropriate antibiotics and 

verified by colony PCR using Takara Taq polymerase (Takara Bio Inc, Shiga, Japan) 

according to the manufacturer’s instructions. 

Transformation and callus biomass generation 

Agrobacterium tumefaciens-mediated transformation of Oryza sativa (ecotype 

japonica) seeds was performed according to patent WO2001006833 A1 with minor 

modifications. After mechanical dehusking using rice husker Kett US TR120, 150-

200 seeds were surface sterilized with 6% sodium hypochlorite solution for 45 

minutes and washed with sterile water. Afterwards, seeds were transferred to 

callus induction medium (pH 5.8, 4 g/L MS salts, 1 mL/L MS vitamins, 2878 mg/L 

L-Proline, 300 mg/L CasaminoAcids, 30 g/L sucrose, 4 g/L gelrite, 2 mg/L 2,4-D) 

and allowed to germinate at 32°C under continuous light of 3000 lux. Six days 

after germination, the seeds were briefly submerged in liquid infection medium 

(pH 5.2, 4 g/L MS salts, 1 mL/L MS vitamins, 300 mg/L CasaminoAcids, 68.5 g/L 

sucrose, 36 g/L D+ glucose-monohydrate, filter sterilised) containing 100 µM 

acetosyringone and transgenic A. tumefaciens lba4404/pal4404 containing the TAP 

destination vector (OD600 0,05-0,1) and transferred to co-cultivation medium (pH 

5.2, 4 g/L MS salts, 1 mL/L MS vitamins, 300 mg/L CasaminoAcids, 30 g/L sucrose, 

10 g/L D+ glucose-monohydrate, 4 g/L gelrite, 2 mg/L 2,4-dichlorophenoxyacetic 

acid, 100 µM acetosyringone). Co-cultivation was allowed for three days at 25°C 

in darkness. Thereafter, the explants were removed from the seeds, washed with 

250 mg/L cefotaxime and transferred to selection medium (pH 5.8, 4 g/L MS salts, 

1 mL/L MS vitamins, 2878 mg/L L-Proline, 300 mg/L CasaminoAcids, 30 g/L 

sucrose, 7 g/L agarose type 1, 2 mg/L 2,4-dichlorophenoxyacetic acid, 100 mg/L 

cefotaxime, 100 mg/L vancomycin, 35 mg/L G418 disulfate) for incubation under 

continuous light (3000 lux) at 32°C. Twelve days later, microcalli were isolated 

and transferred onto fresh selection medium, refreshed every ten days, and grown 

until 30 g of callus was obtained. The callus material was then harvested in liquid 

nitrogen and stored at -80°C for subsequent analysis. 

Expression analysis of the TAP constructs 

Callus material was ground to homogeneity in liquid nitrogen with mortar and 

pestle. About 200 μL of extraction buffer (25 mM Tris-HCl pH 7.6, 15 mM MgCl2, 

150 mM NaCl, 15 mM pNitrophenyl phospate, 60 mM β- glycerophosphate, 0.1% 

NP-40, 0.1 mM Na3VO4, 1 mM NaF, 1 mM PMSF, 1 μM E64, EDTAfree Ultra 

Complete tablet (1/10 mL) (Roche Diagnostics, Brussels, Belgium), 5% Ethylene 

glycol) was added and homogenized with a 1.5-mL pellet mixer. Homogenized 

samples were flash frozen in liquid nitrogen, thawed on ice and centrifuged twice 

for 15 min at 4°C at 20,800 g. Protein concentrations were determined by Bradford 

assay (Bio-rad, Hercules, CA). Fifty μg of total protein extract was loaded for 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 0.75 

mm 12% Mini-PROTEAN® TGX™ precast gels (Bio-Rad, Hercules, CA) for 20 min 

at 300 V in TGX running buffer (25 mM Tris-HCl, pH 8.3, 1.92M glycine, 35 mM 
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SDS). Resolved proteins were transferred to PVDF membranes using Trans-Blot® 

Turbo™ Mini PVDF transfer packs and the Trans-Blot® Turbo™ Transfer system 

(Bio-rad, Hercules, CA) according to instructions of the manufacturer. Blotted 

PVDF membranes were then incubated in blocking buffer (3% Difco™ skimmed 

milk (w/v) in TBS-T buffer (50 mM Tris, 150 mM NaCl pH8.0, 0.1% Triton X-100)) 

overnight at 4°C or 1 h at room temperature (RT) on an orbital shaker. After this 

blocking step, membranes were incubated for 1 h at RT with peroxidase anti-

peroxidase antibody (Sigma-Aldrich, Saint-Louis, MO) in blocking buffer on an 

orbital shaker. Membranes were washed 1 x 15 min and 4 x 5 min with TBS-T 

buffer. Bound antibody was detected by mixing equal amounts of the two 

chemiluminescent reagents from the ECL-kit (Perkinelmer, Waltham, MA) and 

incubating for 1 min. Membranes were placed in a film cassette and exposed to an 

Amersham hyperfilm™ ECL film (GE Healthcare, Wauwatosa, WI) in a dark room, 

where autoradiograms were also developed. 

Protein extract preparation for TAP purifications 

Callus material was ground to homogeneity in liquid nitrogen with mortar and 

pestle. Crude protein extracts were prepared in two volumes of extraction buffer 

(25 mM Tris-HCl pH 7.6, 15 mM MgCl2, 150 mM NaCl, 15 mM p-nitrophenyl 

phosphate, 60 mM β-glycerophosphate, 0,1% NP-40, 0.1 mM Na3VO4, 1 mM NaF, 

1 mM PMSF, 1 µM E64, EDTA-free Ultra Complete tablet Easypack (1/10 mL) 

(Roche Diagnostics, Brussels, Belgium), 5% Ethylene glycol) at 4°C using an Ultra-

Turrax T25 mixer (IKA Works, Wilmington, NC). Soluble fraction was obtained from 

isolating the supernatans after double centrifugation at 36,900 g for 20 min at 

4°C. The extract was passed through four layers of miracloth (Merck KGaA, 

Darmstadt, Germany) and kept on ice. 

Tandem affinity purification of TAPi-tagged bait 

Extract preparation was performed according to above described, with addition of 

0,5 mM EGTA to the extraction buffer. 

Purifications were performed as described by Van Leene et al. (2007) [16] with 

some modifications. The protein extract was added to 25 µL of effective 

immunoglobulin G (IgG) Sepharose 6 Fast Flow beads (GE Healthcare, Wauwatosa, 

WI), pre-equilibrated with 3x 250 µL extraction buffer. After incubation for 1 hour 

at 4°C under gentle rotation, the beads were transferred to a Poly-Prep column 

(Bio-Rad, Hercules, CA) mounted to a two-way valve in a vacuum manifold system 

(Grace, Columbia, MD) and washed with 375 µL or 150 column volumes wash 

buffer (10 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% NP-40, 0.5 mM EDTA, 1 μM E64, 

1 mM PMSF, 5% Ethylene glycol). Bound complexes were eluted by digestion in a 

mobicol column (MoBiTec GmbH, Göttingen, Germany) using 50 µL wash buffer 

and 2x 10U (2 x 1 µL, second boost after 30 min) AcTEV protease (Life 

Technologies, Carlsbad, MA) for 1 h at 4°C on a shaker.  

Eluate was collected by two consecutive spinning steps of the mobicol column 

(MoBiTec GmbH, Göttingen, Germany) in a 2 mL Eppendorf tube for 30 sec at 

1,500 rpm at 4°C. In between, 100 µL calmodulin binding buffer (10 mM Tris-HCl 

pH8, 150 mM NaCl, 0,1% NP-40, 10 mM β-mercaptoethanol, 1 mM imidazole, 2 

mM CaCl2, 1 mM Mg acetate, 1 mM PMSF, 1 µM E64, 5% Ethylene glycol) was 

added to the beads to collect residual eluate. One mM of CaCl2 was added to the 
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resulting eluate, and this was incubated for 1 h at 4°C under gentle rotation with 

100 µL effective calmodulin agarose beads (Stratagene, La Jolla, CA), pre-

equilibrated with 3x 1 mL calmodulin binding buffer. Calmodulin beads were 

transferred to a mobicol column and washed with 100 column volumes or 10 mL 

wash buffer. Complexes were eluted by adding 1 mL of calmodulin elution buffer 

(10 mM Tris-HCl pH8, 150 mM NaCl, 0,1% NP-40, 10mM β-mercaptoethanol, 1 

mM imidazole, 25 mM EGTA, 5% Ethylene glycol). Eluate was precipitated with 

TCA (25% (v/v) and the resulting protein pellet was washed twice with ice-cold 

acetone containing 50 mM HCl. 

Tandem affinity purification of GS-tagged bait. 

Purifications were performed as described by Van Leene et al. (2010) [13] with 

minor modifications. The protein extract was added to 25 µL of effective 

immunoglobulin G (IgG) Sepharose 6 Fast Flow beads (GE Healthcare, Wauwatosa, 

WI), pre-equilibrated with 3x 250 µL extraction buffer. After incubation for 1 hour 

at 4°C under gentle rotation, the beads were transferred to a Poly-Prep column 

(Bio-Rad, Hercules, CA) mounted to a two-way valve in a vacuum manifold system 

(Grace, Columbia, MD) and washed with 375 µL or 150 column volumes wash 

buffer (10 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.1% NP-40, 0.5 mM EDTA, 1 μM 

E64, 1 mM PMSF, 5% Ethylene glycol). Bound complexes were eluted by digestion 

in a mobicol column (MoBiTec GmbH, Göttingen, Germany) using 50 µL wash 

buffer and 2x 10U (2 x 1 µL, second boost after 30 min) AcTEV protease (Life 

Technologies, Carlsbad, MA) for 1 h at 4°C on a shaker. Eluate was collected by 

two consecutive spinning steps of the mobicol column (MoBiTec GmbH, Göttingen, 

Germany) in a 2 mL Eppendorf tube for 30 sec at 1,500 rpm at 4°C. In between, 

100 µL wash buffer was added to the beads to collect residual eluate. The resulting 

eluate was incubated for 1 h at 4°C under gentle rotation with 25 µL effective 

streptavidin Sepharose High Performance beads (GE Healthcare, Wauwatosa, WI), 

pre-equilibrated with 3x 250 µL wash buffer. Streptavidin beads were transferred 

to a mobicol column and washed with 100 column volumes or 2.5 mL wash buffer. 

Complexes were eluted in 40 µL NuPAGE sample buffer containing 20 mM 

desthiobiotin (Sigma-Aldrich, Saint-Louis, MO) by 5 min incubation on ice, followed 

by centrifugation at 1,500 rpm at 4°C.  

Tandem affinity purification of GSgreen-tagged bait. 

The protein extract was added to 100 µL of effective GFP-Trap® agarose beads 

(Chromotek GmbH, Planegg-Martinsried, Germany), pre-equilibrated with 3x 1 mL 

extraction buffer. After incubation for 1 hour at 4°C under gentle rotation, the 

beads were transferred to a Poly-Prep column (Bio-Rad, Hercules, CA) mounted to 

a two-way valve in a vacuum manifold system (Grace, Columbia, MD) and washed 

with 15 mL or 150 column volumes wash buffer (10 mM Tris-HCl pH 7.6, 150 mM 

NaCl, 0.1% NP-40, 0.5 mM EDTA, 1 μM E64, 1 mM PMSF, 5% Ethylene glycol). 

Bound complexes were eluted by digestion in a mobicol column (MoBiTec GmbH, 

Göttingen, Germany) using 200 µL wash buffer and 2x 40U (2 x 4 µL, second boost 

after 30 min) AcTEV protease (Life Technologies, Carlsbad, MA) for 1 h at 4°C on 

a shaker. Eluate was collected by two consecutive spinning steps of the mobicol 

column (MoBiTec GmbH, Göttingen, Germany) in a 2 mL Eppendorf tube for 30 

sec at 1,500 rpm at 4°C. In between, 400 µL wash buffer was added to the beads 

to collect residual eluate. The resulting eluate was incubated for 1 h at 4°C under 
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gentle rotation with 25 µL effective streptavidin Sepharose High Performance 

beads (GE Healthcare, Wauwatosa, WI), pre-equilibrated with 3x 250 µL wash 

buffer. Streptavidin beads were transferred to a mobicol column and washed with 

100 column volumes or 2.5 mL wash buffer. Complexes were eluted in 40 µL 

NuPAGE sample buffer containing 20 mM desthiobiotin (Sigma-Aldrich, Saint-

Louis, MO) by 5 min incubation on ice, followed by centrifugation at 1,500 rpm at 

4°C. 

Single-step affinity purification of GSgreen-tagged bait. 

The protein extract was added to 100 µL of effective GFP-Trap® agarose beads 

(Chromotek GmbH, Planegg-Martinsried, Germany), pre-equilibrated with 3x 1 mL 

extraction buffer. After incubation for 1 hour at 4°C under gentle rotation, the 

beads were transferred to a Poly-Prep column (Bio-Rad, Hercules, CA) mounted to 

a two-way valve in a vacuum manifold system (Grace, Columbia, MD) and washed 

with 15 mL or 150 column volumes wash buffer (10 mM Tris-HCl pH 7.6, 150 mM 

NaCl, 0.1% NP-40, 0.5 mM EDTA, 1 μM E64, 1 mM PMSF, 5% Ethylene glycol). 

Sample was eluted by boiling in NuPAGE sample buffer. 

Sample preparation 

Purified protein samples were loaded and separated with a short 7-min run on a 

precast 4-12% gradient NuPAGE Bis-Tris gel (Life Technologies, Carlsbad, CA), 

fixed in 50% EtOH/2% H3PO4 and visualized with colloidal Coomassie Brilliant Blue 

G-250 (Sigma-Aldrich, Saint-Louis, MO) staining. 

Proteolysis and peptide isolation 

NuPAGE gel containing purified protein samples was destained twice in HPLC-grade 

water (Thermo Fisher Scientific, Waltham, MA) for 1 h and incubated in 25 mL of 

reducing buffer (6.66 mM DTT plus 50 mM NH4HCO3 in HPLC-grade water) for 40 

min to reduce the polypeptide disulphide bridges. Subsequently, thiol groups were 

alkylated by incubating the gel for 30 min in 25 mL of alkylating buffer (55 mM 

iodoacetamide, 50 mM NH4HCO3 in HPLC-grade water) in the dark before washing 

with HPLC-grade water. The zone containing the protein sample was sliced from 

the gel and sectioned into different gel plugs. These were washed twice with 600 

µL of HPLC-grade water and dehydrated in 600 µL 95% acetonitrile twice for 10 

min. The dehydrated gel plugs were submerged and rehydrated in 90 µL trypsin 

digest buffer (12.5 µg/mL trypsin (MS gold; Promega, Madison, WI) in 50 mM 

NH4HCO3 and 10% (v/v) acetonitrile in HPLC-grade water) for 30 min at 4°C. 

Afterwards, trypsin digestion was allowed for 3.5 h at 37°C. Resulting peptide 

samples were sonicated for 5 min in a sonication bath and the solution covering 

the gel plugs (containing trypsinized peptides) were kept aside. Remaining gel 

plugs were completely dehydrated in 95% acetonitrile for 10 min and the 

remaining acetonitrile solution was added to the first fraction of trypsin digests. 

The resulting trypsin-digested sample was completely dried in a SpeedVac for 2-3 

h at 4°C. 

LC-MS/MS analysis 

A nano LC system (NanoLC Ultra 2D system, Eksigent, Dublin, CA) was connected 

to an LTQ Velos Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, 

MA) with a trapping column (PepMap 100, C18 precolumn with 5-μm particles, 

20mm × 200 μm internal diameter; Dionex), flow rate of 6 μL/min (100% Solvent 
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A) and 5 minutes after injection switched in line with an analytical C18 column 

(Acclaim PepMap 100, 3-μm particles, 150 mm × 75 μm internal diameter; 

Dionex). A chip-based nano-electrospray source (TriVersa, Advion Biosystems, 

Ithaca, NY) operated at 1.8 kV.  

Peptides were solubilised in loading Solvent A (2% acetonitrile, 0.1% acetic acid 

(v/v) in HPLC grade water) and 10 μL of the sample was loaded on the trapping 

column. Peptide samples were separated with a 65 min gradient at a flow rate of 

300 nL/min. MS spectra were recorded in the Orbitrap FT analyzer with a resolution 

of 60,000 (at m/z 400) and an automatic gain control (AGC) target setting of 

500,000. The maximum injection time was set to 500 ms, and lock mass was 

enabled (polysiloxane ion at m/z 445.12024). Collision-induced dissociation 

MS/MS spectra were acquired by the ion trap in data-dependent mode, selecting 

up to the 20 most abundant multiply charged precursor ions from the MS 

spectrum. The maximum injection time was set to 50 ms and an AGC setting of 

7,500. Fragmentation was accomplished by collision- induced dissociation 

wideband activation at normalized collision energy of 35 eV and an activation time 

of 30ms. After MS/MS, the m/z precursors were excluded for 30 s.  

Analysis of the protein interaction data 

Peak lists were generated and submitted for protein identification with Proteome 

Discoverer 1.3.0.339 (Thermo, Bremen, Germany). Spectrum grouping was 

allowed with a maximum retention time of 1 minute and a precursor mass 

tolerance of 2 ppm. Peak lists were generated only for MS/MS spectra containing 

more than 5 peaks, with a total intensity above 50. The relative signal-to-noise 

limit was set to 5. Peak lists were submitted for protein identification against the 

Michigan State University annotation database for rice containing 66,338 sequence 

entries with search engine SEQUEST. Enzyme was set to trypsin, allowing for 

maximum 1 missed cleavage site. Precursor mass tolerance was set to 3 ppm and 

fragment mass tolerance at 0.8 Da. Fixed modifications were set to 

carbamidomethylation of cysteines. Variable modifications were set to methionine 

oxidation and methylation of aspartic acid and glutamic acid, with a maximum of 

4 modifications per peptide. Peptides were validated using a decoy database 

search. The strict target False Discovery Rate (FDR) was set to 0.01 (or 1%), the 

relaxed FDR was set to 0.05 (or 5%). Only high confident (>99%) peptides were 

withheld. Only proteins with at least two matched high confident peptides were 

retained. A posteriori, also proteins identified with one high-confidence peptide 

were added, if they were known CKS1 interactors. A list of nonspecific background 

proteins was assembled by combining background proteins from control 

purifications on mock callus extracts identified with the LC/MS setup. To obtain the 

final list of interactors, these background proteins were subtracted from the list of 

identified proteins. 
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Supplementary information 

Figure S1. Sequence alignment of the amino acid sequence of AtCSK1 

with OsCKS1. 

 
Sequence alignment was generated using the MAFFT alignment tool [23]. 

 

 Figure S2. Primers used in this chapter. 

 
 

Supplementary background list and mass spec files. 

Supplementary files can be found through the following link: 

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd

62d78  (password: rice_TAP) under the filenames SI_Chapter_4_background_list.xlsx, 

SI_Chapter_4_PRO-CKS1_MS_data and SI_Chapter_4_CKS1-TAPtag_MS_data.xlsx 

respectively. 

Author contribution 

The PhD candidate was in charge for generation of the TAP constructs, 

transformation, maintenance and upscaling of callus lines, expression analyses, 

TAP purifications, mass spectrometry data analysis and writing of the manuscript. 

  

primer n° name primer sequence

prm24592 attB1r PROHMG ggggacaagtttgtacaaaaaagcaggctggggactgcttttttgtacaaacttgcggctgaatcctgcgagaa

prm24591 attB4 PROHMG ggggactgcttttttgtacaaacttgcaaatggctgaatcctgcgagaagggcg

prm24590 attB1r PROGOS2 ggggacaagtttgtacaaaaaagcaggctggggactgcttttttgtacaaacttgcgaactttgctggtgaaag

prm24589 attB4 PROGOS2 ggggacaactttgtatagaaaagttgctaatccgaaaagtttctgcaccgt

prm24588 attB1r PRO35S ggggacaagtttgtacaaaaaagcaggctggggactgcttttttgtacaaacttgcgagatagatttgtagagagagact

prm24587 attB4 PRO35S ggggacaactttgtatagaaaagttgctcgacactctcgtctactc

prm25565 attB1 CKS1 no stop ggggacaagtttgtacaaaaaagcaggctatggccagatccagtact

prm25566 attB2 CKS1 no stop ggggaccactttgtacaagaaagctgggtaggtacttgggcagcat

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
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Preface 

With the tools required to optimize TAP in rice selected from callus tissues, we 

further consolidated the technology in plant tissues. For this, we used APC10 and 

CDKD as bait proteins, tagged by an optimised variant of the GS tag and driven 

by the PRO35S. We opted to employ in first instance this subset of our selected 

tools, as we wanted to progress in exploring plant tissues with reasonable effort. 

An elaborate screening of multiple baits in the callus and plant platforms using our 

selected tools is addressed in a next chapter (chapter 6.1). 

Abstract 

Proteins are the cell’s functional entities that mainly interact with other proteins, 

rather than operating independently. Therefore, capturing in vivo protein 

complexes is crucial to gain understanding of their functioning in a cellular context.  

Affinity purification coupled to mass spectrometry (AP-MS) has proven to yield a 

wealth of information about protein complex constitutions for a broad range of 

organisms. For Oryza sativa, the technique has been initiated in callus and shoots, 

but has not been optimized ever since. Therefore, we translated an optimized 

tandem affinity purification (TAP) approach from Arabidopsis thaliana toward 

Oryza sativa, and demonstrated its applicability in a variety of rice tissues. A list 

of non-specific and false positive interactors is presented, based on re-occurrence 

in over more than 170 independent experiments, to cross-check bona fide 

interactors. We demonstrate the sensitivity of our approach by isolating the 

complexes for the ANAPHASE PROMOTING COMPLEX SUBUNIT 10 (APC10) and 

CYCLIN-DEPENDENT KINASE D (CDKD) proteins from the proliferation zone of the 

emerging fourth leaf. Next to APC10 and CDKD we tested several additional baits 

in the different rice tissues and reproducibly retrieved at least one interactor for 

81.4% of the baits screened for in callus tissue and T1 seedlings.  

Hence, by transferring an optimized TAP tag combined with ultrasensitive mass 

spectrometry, our TAP protocol enables high chances of finding interactors for a 

wide range of bait proteins and opens the possibility to capture complex dynamics 

by comparing tissues at different stages of a developing rice organ.  



 

72 
 

Part III: Developing an optimized AP-MS workflow in rice 

Introduction 

Proteins are the main ‘workhorse-entities’ of the cells. They exert their function by 

participating in or affecting macromolecular assemblies, resulting in complex 

dynamic networks. Plant cells, that due to their sessile lifestyle need to cope with 

different types of environmental changes, exploit the properties of those networks 

to pertain homeostasis, which is translated in a huge variety of cellular processes. 

Understanding these processes thus requires a deep understanding of the network 

topology behind it. One way to gather this type of information is through the 

identification of protein-protein interactions (PPIs). Three methods are the main 

drivers for the elucidation of PPIs in plants. The yeast two-hybrid (Y2H) method 

identifies binary protein interactions through screening of the interaction partners 

in yeast. The method enables both comprehensive screening of open reading 

frames (ORFs), as was done for Arabidopsis [1], and a more targeted approach 

focusing on specific pathways or tissues [2,3]. Alternatively, one-to-one 

interactions can be screened within plant cells, through protein complementation 

analysis (PCA) [4]. Affinity purification coupled to mass spectrometry (AP-MS) 

identifies all proteins that co-purify with the pull-down of a tagged ‘bait’ protein 

under near-physiological conditions and thus also captures indirect interactions. 

The technique already proved its merits in various plant species (Arabidopsis, rice, 

petunia, tomato, tobacco) for different cellular processes, including the cell cycle 

[5], flowering [6], leaf development [7] and endocytosis [8].  

Owing to its rather small (389 Mb), fully annotated genome, Oryza sativa is in 

addition to being the most important food crop in the world also an excellent model 

for biological research on cereals. In that frame, five AP-MS approaches have so 

far been presented using rice for screening PPIs. Three used cultured cells, and 

their performance has been proven with the isolation of interaction partners of the 

TATA-BOX BINDING PROTEIN (TBP) [9], GIGANTEA [10] or the Oryza sativa 

FERTILIZATION-INDEPENDENT ENDOSPERM 2-polycomb protein complex [11]. 

The fourth approach reported the purification of VIRESCENT YELLOW LEAF 

associated proteins from shoots of 6- to 8-week-old seedlings [12]. A last, more 

high-throughput effort was presented by Rohila and coworkers. They identified 

interaction partners for 23% of the 129 rice kinases screened, starting from the 

shoots of 6- to 8-week-old seedlings [13,14]. The low success rate in this study 

emphasizes that creating a comprehensive picture of possible interactions for a 

given complex in plants is a daunting task and that there is room for improvement 

of TAP protocols for plants. Indeed, plants contain a tremendous variety of cell 

types and cellular states, each of these shaped by specific PPI networks.  

To overcome this major hurdle, we developed a more improved protocol utilizing 

the GSrhino TAP tag. It consists of a tandem repeat of the IgG-binding ZZ domain 

of protein G and a streptavidin-binding peptide (SBP), separated by a tandem 

repeat of the specific human rhinovirus 3C (HR3C) cleavage site for gentle elution. 

This TAP tag is based on the GS tag that has shown a higher efficiency in terms of 

purification specificity and yield in higher eukaryotic cells like mammalian cells 

[16] or plant cells [17], as compared to the classical TAP tag developed for yeast. 

In Arabidopsis, combination of the GS tag and ultrasensitive MS has allowed 

successful optimization of the TAP procedure. In cell cultures, the approach has 
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enabled the identification of on average 5.6 specific interactors in common per bait 

protein used in a duplicate TAP experiment, with a success rate of 65% for 

identifying at least one interactor per bait protein, confirmed in both duplicate TAP 

experiments. Moreover, integration of ultrasensitive MS has allowed extrapolation 

of the TAP procedure to Arabidopsis seedlings to study protein complexes in a 

developmental context [15]. From these encouraging results in Arabidopsis, we 

tested the applicability of the procedure in rice, a major model for cereal crops. 

We applied our procedure to screen interaction partners for the ANAPHASE 

PROMOTING COMPLEX SUBUNIT 10 (APC10) and the CYCLIN-DEPENDENT KINASE 

D (CDKD) in a variety of rice tissues, including dissected organ parts.  

The APC plays an important regulatory role in the eukaryotic cell cycle controlling 

the specificity of sister-chromatid separation and exit from mitosis by ubiquitin-

mediated proteolysis of cell cycle regulators, such as CYCLIN B and SECURIN. In 

addition to cell cycle regulation, the APC has important roles in developmental 

processes in plants, as was demonstrated in Arabidopsis and rice [18–20]. Apart 

from two subunits required for ubiquitin ligase activity, i.e. the CULLIN-related 

protein APC2 and the REALLY INTERESTING NEWG GENE (RING) finger protein 

APC11, the APC contains at least nine additional subunits [21]. The complex is 

guided toward its targets by either CELL DIVISION CYCLE 20 or CCS52A (for CELL 

CYCLE SWITCH PROTEIN 52A) activators. These contain a WD40 protein-binding 

domain, which recognizes D-box, KEN-box or A-box destruction motifs [22].  

CDKD was previously shown to form a heterotrimeric CDK-activating kinase (CAK) 

complex with a regulatory CYCLIN H (CYCH) subunit and the assembly factor 

‘MENAGE A TROIS 1’ (MAT1) both in rice [13] and Arabidopsis [5]. In the same 

studies, the other sub-complex of the general transcription factor II H (TFIIH), i.e. 

the five-subunit core consisting of XERODERMA PIGMENTOSUM B (XPB), p34, p52, 

p62 and p44, was co-purified, together with another helicase subunit XERODERMA 

PIGMENTOSUM D (XPD), which links both complexes of the TFIIH. As part of the 

CAK complex, CDKD not only phosphorylates the C-terminal domain of RNA 

polymerase II, but also the T-loop of CDKs [23,24]. CDKD itself is thought to be 

activated by a CAK-activating kinase, CDKF [25]. 

With our protocol, we screened the APC10- and CDKD-containing complexes in 

different tissues and developmental contexts, i.e. callus, regenerated shoot, 

seedling and proliferative tissue. We retrieved the core complexes throughout the 

different tissues and believe that the proposed analytical procedure will set a 

benchmark for assaying protein complex constitutions, from cultured cells to 

different developmental contexts in crop plants. The proposed workflow allows for 

screening of multiple baits in a portfolio of different rice tissues and provides a 

success rate of up to 81.4% of the baits screened for. 

Results 

Developing a portfolio of TAP-MS workflows to study rice protein 

complexes 

Targeted screening of protein complexes through AP-MS is based on four main 

steps: cloning, generation of sufficient biomass producing the tagged bait protein, 

protein complex purification and identification of the co-purified proteins through 
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mass spectrometry. We developed a rice AP-MS workflow by optimizing each step 

and streamlining them into one efficient process. On top, we examined a portfolio 

of plant tissues for their efficiency to express the bait, enabling to screen 

complexes in the most suitable cellular environment, depending on the biological 

question and on prior knowledge of the bait protein. Our platform is built from the 

following consecutive steps: (i) flexible and Gateway®-compatible cloning, (ii) 

versatile generation of plant material producing the bait protein, (iii) performant 

affinity purification to increase complex recovery and protocol sensitivity, (iv) 

liquid chromatography coupled to tandem mass spectrometry, and (v) data 

analysis for identification of purified complex components. In the coming sections, 

we will describe all individual steps of the workflow and document its performance 

for systematic protein complex analysis, as shown for the APC10 and CDKD 

complexes and covering different plant tissues. 

Construction of TAP-fusion cassettes 

Traditionally, a TAP construct consists of a desired promoter driving the expression 

of a translational fusion of the affinity tag and the protein of interest. Since the 

affinity tag can interfere with the function of the bait protein, both N- and C-

terminal fusions are tested. This increases the chance to obtain a protein fusion 

that maintains functionality, improving the success rate of the purifications. We 

constructed a rice-specific destination vector – named pTAP – compatible with 

MultiSite Gateway® recombination-based cloning for both N- and C-terminal 

tagging (Figure 1a). This destination vector contains in between the left and right 

T-DNA border sequences a kanamycin resistance gene (KmR) for selection and the 

Gateway® cassette followed by the termination sequence from zein. A selected 

promoter sequence and the coding sequences for either bait or affinity tag are first 

cloned into the appropriate entry vectors and subsequently recombined into the 

destination vector as shown in Figure 1a.  

Based on earlier experiments in Arabidopsis thaliana [5], we made only an N-

terminal fusion for APC10 and a C-terminal fusion for CDKD. The TAP tag we 

employed was the recently developed GSrhino tag that already has proven its 

superiority in Arabidopsis [15]. The tag. We opted to use the Cauliflower Mozaic 

Virus 35S promoter to drive expression of our fusion construct. This in contrast to 

previous studies in rice, which used the ubiquitin promoter derived from maize 

[9,13,14]. We argued that the lower activity of the 35S promoter in monocot 

tissues (10x less in maize, Christensen et al. [26] would prevent overaccumulation 

of non-complexed bait, ensuring a higher sensitivity of the protocol. Moreover, 

being constitutive, 35S guarantees bait expression in all tissues. Although 

overexpression is simple and favours competition with the endogenous counterpart 

for incorporation in the complex, some concerns might be raised regarding the 

possibility to induce protein misfolding, mislocalisation and/or misregulation at the 

cellular level. However, when comparing the interaction profiles we retrieved with 

the associations already described in literature, this hardly seems to be the case.  

Establishing a portfolio of rice tissues 

We assayed the interaction partners for our two baits in four different tissues, 

varying throughout rice plant development (Figure 1c). In all cases, we used a 

series of different transformation events to level out positional effects from the T-
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DNA insertion site on bait expression, as previously suggested [27]. For fast 

generation of sufficient cells expressing the tagged bait, we developed a protocol 

based on the generation of transgenic callus tissue (Figure 1c). The required 

amount of callus tissue is grown within 3.5 months after co-cultivation. Since callus 

cells are kept undifferentiated through the hormone balance in the medium, they 

mainly support basal pathways during their lifecycle. To detect interaction partners 

that show a more discrete expression pattern during development, proteins should 

be extracted from differentiated plant tissues rather than from undifferentiated 

cultured cells. We initially tested shoots immediately regenerated from callus and 

grown for two weeks after regeneration (‘T0 shoots’) (Figure 1c). Acquiring 

sufficient biomass using T0 shoots takes nearly as long as generating sufficient 

callus tissue. The trade-off is a high dependence on the regeneration efficiency. 

Therefore, we tested the use of 2-week-old T1-seedlings (Figure 1c). Since we 

went over one generation to grow seedlings, segregation of the offspring resulted 

in a mixed population containing homozygous, heterozygous and null individuals. 

To enrich for transgenic individuals, we grew the plants on medium containing the 

selective agent, analogous to growing cultured cells and T0 shoots. However, by 

sampling a whole seedling, different tissues, each containing several cell types, 

will be mixed. Since these cells vary in relevance to the bait’s function and the 

presence of its interaction partners, extraction from whole plants will lead to a 

dilution of relevant extract, or to false positive identifications when proteins that 

normally do not occur together, but possess affinity for each other, might be 

identified as interactors. To increase the specificity of the protocol, we therefore 

explored the purification of complexes from the proliferating zone of the emerging 

fourth leaf (Figure 1c). Of course, in principle any type of tissue could be assayed, 

as long as enough complex can be purified to allow detection through MS. 

Purification of complexes from rice tissues 

Prior to purification, we confirmed bait accumulation by western blotting in all 

tissues tested (Figure S1). From every sample type, except for T0 shoots, sufficient 

protein extract was generated to perform two successful independent purifications 

in parallel. Protein input per experiment ranged from 7.5 mg protein extract from 

the proliferation zone over 50 mg from callus tissues to 150 mg from seedlings. 

The protein input from shoots varied depending on regeneration efficiency (130 mg 

protein extract for APC10 and 50 mg for CDKD). Because interactors found in two 

repeat experiments are more reliable as compared with interactors found only 

once, the technical repeats help minimizing false positive identifications caused by 

sample handling. Protein complexes were isolated through a recently improved 

version of the GS tag, the GSrhrino tag [15] (Figure 1d). The HR3C protease is low-

temperature active [28], being a significant advantage compared to the TEV 

protease used with the original GS tag that requires 16°C for sufficient activity, 

since incubation for the proteolysis step at 4°C provides higher chances to preserve 

more unstable interaction partners. Bait and associated prey proteins are first 

retained by IgG-sepharose beads through binding with the ZZ domain of the 

tagged protein, followed by release from the immuno-precipitated ZZ domain 

through addition of HR3C protease and enrichment for a second time using 

streptavidin sepharose beads. Finally, they are eluted by addition of desthiobiotin 

due to competitive binding. We added desthiobiotin immediately to the sample 

buffer. Consequently, the eluate can be applied directly on gel for further sample 
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preparation MS. We performed in-gel trypsin digestion (Figure 1e) prior to highly 

sensitive MS analysis (Figure 1f). For callus and proliferation zone samples, the 

first purification step was performed ‘in-batch’, meaning that the affinity beads 

were simply added to the extract for binding. For shoots and seedlings, the 

relatively larger extract (around 25 mL on average) was brought consecutive times 

onto a column containing the affinity resin of the first affinity binding step, in order 

to optimize binding with the bait protein in the large extraction volume. 
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Figure 1. Overview of the TAP procedure. 
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a. Schematic representation of the strategy for cloning TAP constructs using MultiSite 

Gateway®. Both for N- and C-terminal cloning, a three fragment recombination strategy is 

performed, requiring only one type of destination vector that is suitable for any of the 

fusions. TT, zein-terminator; 35S, Cauliflower Mozaic Virus 35S promoter; KmR, kanamycin 

resistance gene for selection of transformed callus; LB and RB, resp. left and right border 

for T-DNA insertion; CcdB, toxic killer gene for negative selection; CmR, chloramphenicol 

resistance gene. b. Illustration of the formation of microcalli after Agrobacterium-mediated 

gene transfer. Microcalli are isolated and transferred to selective medium. c. Overview of 

the different types of biomass sources tested. T0 callus tissue and T0 shoots regenerated 

from callus are harvested immediately after co-cultivation and sufficient growth. For T1 

seedlings and T1 proliferative tissue from the fourth leaf, regenerated plants were fully 

grown for seed harvesting. These seeds were then used for biomass generation. d. 

Overview of the TAP purification strategy as modified from Van Leene et al. (2015). In 

short, extracted proteins are incubated with IgG resin. Binding through the IgG-binding ZZ 

domain of the bait retains both bait and its associated proteins. Next, retained proteins are 

washed to remove contaminating background (bg) proteins and gently eluted by specific 

cleavage through the addition of human rhinovirus 3C (HR3C) protease (scissors). The 

eluate is then incubated with streptavidin resin binding the remaining affinity handle, i.e. 

the streptavidin-binding peptide (SBP). The captured protein complexes are washed to 

remove residual HR3C protease and contaminating proteins, and finally eluted through 

competitive binding with desthiobiotin. e. Residual chemicals that could interfere with the 

MS analysis are removed by a short run on a NuPAGE gel. Afterwards, the gel slice 

containing the proteins is cut out and incubated with trypsin. f. Peptides derived from the 

gel slices are separated on a nano-LC column prior to analysis on the mass spectrometer. 

g. Schematic representation of the time aspect of the different steps of the TAP-MS protocol 

starting from different plant resources. 

 

Establishment of a subtraction list of non-specific and false positive 

binders: separating the wheat from the chaff for co-purified interactors 

in rice 

The detection sensitivity of true interactors with the bait protein during AP-MS 

experiments is typically reduced by contaminant proteins which bind non-

specifically to the beads or the tag. In our TAP approach, these are kept at minimal 

levels by applying the two-step purification strategy, in which non-specific binders 

to the ZZ domain and the IgG-sepharose matrix that remain after washing, are 

physically separated from the bait and its associated proteins during the first 

proteolytic cleavage elution step, followed by a second washing and elution step 

through competitive binding with desthiobiotin.  

To filter remaining non-specific bait binders that complicate interpretation of the 

results, we built a dataset of re-occurring proteins generated from a large set of 

various baits analyzed with the same purification protocol. Background 

contaminants that bind to the tag and/or beads or non-specific interactors of bait 

proteins such as household proteins (e.g. chaperones, ribosomal proteins, 

cytoskeletal proteins, protein translation factors, etc.) are consistent across 

purifications. We exploited this characteristic by compiling all interaction data from 

in total 174 TAP experiments with a multitude of baits. To minimize potential bias 

resulting from baits expected to function in related pathways or biological 

processes, we created 34 ‘bait classes’ and considered proteins found with more 

than two different classes of baits as non-specific or background binders. A similar 

approach was recently successfully applied in Arabidopsis [15]. The majority of the 

purifications considered were performed on callus tissue (115 purifications), while 

purifications from plant tissue varied for shoots, seedlings and proliferation zone 
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with respectively 25, 26 and 8 experiments. As this dataset represent a smaller 

fraction of experiments derived from plants, we assigned a separate cut-off for 

determining non-specific proteins in experiments performed on plant tissues. Here, 

the cut-off was set for proteins present in more than one different class of baits. 

Importantly, this way of filtering discriminates specific from non-specific 

interactors rather than bona fide from background identifications. This assumes 

we will miss proteins that are genuinely in common between seemingly unrelated 

processes. True positive interactors that are present in the re-occurrence 

background list could be further retained by adding (semi-) quantitative data [28].  

The resulting list of background and non-specific interactors that we removed from 

our interactor lists in rice holds up to 951 potential contaminants (Table S1), 

allowing more efficient filtering of non-specific proteins (Figure S2) as compared 

to a previous background list of 152 proteins [14]. The remaining identified 

proteins were considered specific for a bait and from these specific interactors, in 

principle only experimentally confirmed interactions were retained (Figure 2). 
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Figure 2. Proteins identified with our TAP protocol for CDKD and APC10 baits. 

 
Detected baits (in blue) and proteins co-purifying with the baits (in black) are shown. Accession 

numbers are from the MSU database, except for SAMBA and APC1, which are from the RAP database. 

In principle, co-purifying proteins are only shown when confirmed in more than one experimental 

repeat (in black). CDKF is also shown however (in grey), since there is additional evidence from the 

SPRK-motif present in the protein sequence and a previously reported interaction from Y2H analysis 

[25]. The amount of times the protein was identified for each tissue is shown, with the number of 

replicate experiments for each tissue shown between brackets. For CDKD, the interaction data is 

compared with data from rice shoots [13]. From this study, proteins were identified from only one 

significant peptide. For APC10, the presence of a potential APC recognition motif in the interactor’s 

protein sequence is specified. 

Investigation of the complex composition throughout different tissues  

To benchmark our method, we followed the constitution of two already established 

complexes throughout plant development using the four proposed types of plant 

tissues. The CAK complex of the TFIIH containing CDKD was unravelled both in 

rice shoots and in Arabidopsis cell suspensions by TAP [5,13]. The composition of 

the conserved APC in plants has been identified by TAP experiments with 

Arabidopsis cells suspension cultures and seedlings [5,29]. In the latter 

experiment, the plant-specific APC regulator SAMBA was used as bait protein 

instead of APC10. We performed a total of seven purifications for each bait protein, 

covering two technical TAP repeats on extracts derived from callus, seedlings and 

tissues from the proliferation zone, and a single experiment on extracts from T0 

accession description symbol

callus (2) T0 shoots (1) T1 seedlings 

(2)

proliferation 

zone (2) Rohila 2006 (1)

loc_os05g32600 CYCLIN-DEPENDENT KINASE D 1;3 CDKD1;3 2 1 2 2 x

loc_os03g52750 CYCLIN H-1 CYCH1 2 1 2 2 x

loc_os11g28350 MENAGE A TROIS 1 MAT1 2 1 2 2 x

loc_os06g07480 MENAGE A TROIS 1 MAT1 2 1 2 1

loc_os05g05260 XERODERMA PIGMENTOSUM D XPD 2 1 2 2 x

loc_os02g03340 TFIIH p34 subunit 2 1 2 2 x

loc_os04g42990 TFIIH p44 subunit 2 1 2 2 x

loc_os04g58350 TFIIH p52 subunit 2 1 2 2 x

loc_os08g25060 TFIIH p62 subunit 2 1 2 2 x

loc_os06g22820 CDKF-1/CAK1AT CDKF1 1

accession description symbol

callus (2) T0 shoots (1) T1 seedlings 

(2)

proliferation 

zone (2) destruction box

loc_os05g50360 ANAPHASE PROMOTING COMPLEX 10 APC10 2 1 2 2

loc_os06g41750 ANAPHASE-PROMOTING COMPLEX 3 APC3 2 1 2 2

loc_os03g13370 ANAPHASE PROMOTING COMPLEX 6 APC6 2 1 2

loc_os05g05720 ANAPHASE-PROMOTING COMPLEX 7 APC7 2 1 2 2

loc_os02g43920 ANAPHASE-PROMOTING COMPLEX 8 APC8 2 1 2 2 D-box (RxxLxxxxN)

os05g0354300 ANAPHASE PROMOTING COMPLEX 1 APC1 2 1 2 2

loc_os02g54490 ANAPHASE PROMOTING COMPLEX 4 APC4 2 1 2

loc_os12g43120 ANAPHASE PROMOTING COMPLEX 5 APC5 2 1 2 2 D-box (RxxLxxxxN)

loc_os04g40830 ANAPHASE-PROMOTING COMPLEX 2 APC2 2 1 2 2

loc_os03g19059 ANAPHASE-PROMOTING COMPLEX 11 APC11 2

loc_os03g03150 CELL CYCLE SWITCH PROTEIN 52A 1 CCS52A1 1 2 C-box (DRFIP)

os10g0575950 SAMBA 2

loc_os02g10920 zinc finger family protein 2 1

loc_os06g07090 AP-1 complex subunit gamma-1 1 1

loc_os03g61160 expressed protein 2

loc_os03g24220 VILLIN 2 VLN2 2 GxEN-box

loc_os03g18130 asparagine synthetase 2

loc_os09g36300 LON PROTEASE 2 LON2 2

loc_os07g07490 YT521-B domain protein 2 KEN-box, GxEN-box

loc_os03g06240 YT521-B domain protein 2

loc_os11g10060 SEUSS SEU 2

loc_os06g07210 RIBONUCLEOTIDE REDUCTASE 1 RNR1 2

CDK-

activating 

kinase 

complex

TFIIH sub-

complex

TPR-lobe

lid

catalytic 

core

regulatory 

subunits
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shoots. The obtained mass spectra from the Q Exactive mass spectrometer were 

applied for searches using the Mascot search engine against both the rice 

annotation project (RAP) database [30] and against the Michigan State University 

(MSU) rice database [31], containing 82,162 and 66,338 entries, respectively. 

Only proteins identified with at least two significant peptides, of which one is 

unique, were retained, and non-specific and background proteins were filtered out 

as described above. Figure 2 shows co-purified proteins that were confirmed in at 

least two independent TAP purifications. For both complexes, we were able to 

retrieve the interaction partners identified from previous experiments, with on top 

novel candidate interaction partners, indicating the higher sensitivity of our 

protocol. 

CDKD 

In first instance, we confirmed the participation of CDKD into the general TFIIH 

complex. TFIIH is responsible for two separate functions in eukaryotes: it melts 

the DNA around a lesion during nucleotide excision repair and helps to open the 

DNA template during the process of gene transcription. The complex consists of 

two sub-complexes: a trimeric sub-complex containing CDKD, CYCH and MAT1, 

and a core complex built from XPB, p34, p52, p44 and p62; both sub-complexes 

are linked by the helicase XPD. Similar to previous reports from rice leaves [13], 

we retrieved only eight of the nine expected subunits of TFIIH. We could not 

retrieve the XPB subunit. Three dimensional structure studies of yeast and 

mammalian TFIIH show that XPB is the most distal to the CAK trimer, and only 

linked to the complex through binding with p52. Probably this association is too 

weak to withstand the lengthy TAP protocol. 

The complex composition was clearly very stable throughout plant development, 

since we were able to retrieve all components in all assayed tissues, including the 

leaf proliferation zone. In addition, we identified an alternative MAT1 assembly 

factor as potential interactor and purified the CDKF1 activating subunit. The 

interaction with the latter represents a kinase-substrate interaction [32], which is 

a typical transient short-living interaction, explaining why we found it only once in 

a callus purification experiment. In rice, the direct interaction of CDKD with CDKF1 

has been detected earlier using a Y2H assay [25]. 

APC 

The APC is a highly conserved multi-subunit E3 ligase complex required for sister 

chromatin separation during anaphase and establishment of the G1 phase in the 

cell cycle [24]. A TAP-MS study using cell suspension cultured cells identified at 

least 11 APC subunits in Arabidopsis [5]. Three dimensional reconstruction of 

human APC has shown that the complex adopts a triangular shape, a bit similar-

looking as an open shell [33]. The backbone contains a lobe of tetratricopeptide 

(TPR) domain-containing subunits APC3, APC6, APC7 and APC8, and a platform 

build out of APC1, APC4 and APC5. The APC10 subunit we used as bait protein 

functions in recognizing and recruiting D-box containing proteins for ubiquitination 

[34]. APC10 docks on the APC through interaction with the tetratricopeptide 

domain of APC3. In Arabidopsis thaliana, APC3 is encoded by two isoforms, namely 

APC3a/CDC27a and APC3b/HOBBIT, whereas rice contains only one APC3 
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ortholog. The catalytic core of APC is built from APC2, a CULLIN domain subunit, 

and APC11, a RING domain subunit.  

Our experiments largely confirmed this complex constitution in rice (Figure 2). In 

callus, containing a population of mainly dividing cells, we purified all complex 

constituents found in Arabidopsis, together with the recently identified APC 

regulator called SAMBA [29]. We detected the APC11 subunit, previously reported 

to be notoriously difficult to identify from TAP purifications because of its small size 

[29]. Also the known APC activator CCS52A was identified in callus tissue and 

seedlings, however only once in callus. This can be due to the very cell cycle-

specific and temporal expression pattern of the protein [34].  

The retrieval of the APC from complicated plant tissues (shoots and seedlings) was 

more challenging even with the use of more than double the amount of protein 

extract (130 and 150 mg, respectively) as compared to callus tissue (50 mg), since 

sampling of whole plants results in a mixed population of different cell types, 

hampering the detection sensitivity of interactors. We failed for example to detect 

the APC11 subunit from both shoots and seedlings, APC6 from shoots, and APC4 

from seedlings (Figure 2). Also none of the CCS52 activators were retrieved from 

shoots, but CCS52A1 was identified and experimentally validated from seedlings.  

By using specifically the proliferation zone of the leaf instead of whole T0 seedlings 

or T1 shoots, the ratio of relevant proliferating tissue is favoured, leading to the 

purification of the whole core of the APC (Figure 3, red highlighted subunits), even 

with a six times lower protein input as compared to callus tissues. We were also 

able to purify two new intriguing potential interaction partners (Figure 2). SEUSS 

is a well-known transcriptional co-regulator involved in flower development 

[35,36]. However, it was recently also found to play a more general role in lateral 

organ patterning [37]. In addition, we found two YT521-B domain-containing 

proteins, one of which contains the GxEN-box destruction motif [38]. 
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Figure 3. Visualization of the detected APC10 interactors over different rice tissues. 

 

Nodes are coloured according to the tissues in which they were detected. The APC holo-

complex as discovered in this study is highlighted and coloured according to their function: 

subunits highlighted in red are APC/C backbone subunits, catalytic subunits are marked 

orange, activator subunits in green and negative regulators in blue. TPR-lobe: 

tetratricopeptide-lobe. 

 

Discussion 

Rice is, next to Arabidopsis, a very successful model species in plant biology. Quite 

large sets of genetic, molecular and genomic resources are already available, and 

being a monocot and a crop species itself, it also provides an excellent model for 

cereal biology. One of the key aspects in understanding biological processes is 

identifying the interactions between proteins to form complexes. Different 

technologies have been developed to screen for these types of interactions, such 

as Y2H, PCA and AP-MS. The former two certainly have shown their merits in the 

identification of binary interactions; AP-MS is complementary to Y2H and PCA, 

since it isolates and identifies protein complexes rather than binary interactions.  

Several studies reported the development of an AP-MS approach in rice, two based 

on purification from cultured cells [9,10], and three based on experiments on 6- 

to 8-week-old seedlings [12–14]. However, the majority only purified one 

complex, which makes it difficult to evaluate these individual platforms. Only the 

two studies on rice kinases [13,14] demonstrated the screening of a significant 

amount of baits, with 23% of these baits yielding actual interaction partners. Their 

low success rate can however partly be attributed to the screening of kinases, 

which might be a tricky class of proteins to screen interactors from, and the fact 

that they only tested N-terminal fusions. Both parameters might have 
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compromised the true potential of their platform. Rohila et al. used the traditional 

TAP tag developed in yeast to design their bait proteins. It was stipulated however 

that the calmodulin-binding peptide (CBP) affinity domain in that tag might cause 

troubles when used in higher eukaryotic cells. The requirement of calmodulin and 

EGTA-containing buffers indeed can result respectively in the non-specific isolation 

of endogenous calmodulin-binding proteins and prevents the purification of cation-

dependent enzyme complexes [17]. In that context, the GS tag has been 

developed, in which the CBP domain was replaced by a streptavidin-binding 

domain. In addition, the ZZ domain of protein A was replaced with that of protein 

G, resulting in a TAP tag that outperforms the traditional TAP tag in terms of 

specificity and complex yield in higher eukaryotes including plants [16,17]. In a 

later stage, the TEV protease cleavage site in the GS tag was replaced with the 

HR3C cleavage site for improved protein complex stability during purification [15]. 

We implemented these recent technical advances and combined them with the 

latest and most sensitive MS technology to develop an AP-MS protocol in rice that 

significantly improves the state of the art of AP-MS in rice. This is reflected in the 

significantly higher success rate we obtained. Next to APC10 and CDKD, several 

additional baits were tested in the different rice tissues, showing a success rate of 

81.4 % of the baits screened for in callus tissue and T1 seedlings. 

These improvements are required to satisfy needs not only for screening 

complexes in tissues that provide sufficient protein extract, such as cultured cells, 

but also for screening in more technically demanding tissues, such as whole plants, 

or even specifically isolated organs or tissues. To our opinion, this versatility is key 

for elucidating biological processes, since protein complexes are known to be 

dynamic rather than static entities. The APC, for example, is constitutively present 

over the plant’s life cycle, but has been shown to exist in different constitutions 

during development in Arabidopsis [22]. Dependent on the developmental context, 

different interaction partners will result in a different biological signalling and 

outcome. As a proof of concept, we implemented our AP-MS protocol in rice callus 

tissues, shoots immediately regenerated from the callus, 2-week-old seedlings and 

the proliferation zone of the emerging fourth leaf, and show the constitution of the 

APC and the CDKD-associated complex in these different tissues. We postulate 

that all tissues tested have their merit. Cultured cells in the form of callus tissue 

provide fast means for an unlimited supply of protein extract. Since they represent 

only one (undifferentiated) cell type, their protein extract will be equally relevant 

for obtaining complexes. This reasonably low sample complexity, together with the 

absence of functional chloroplasts (and in particular RubisCo), results in not too 

much sensitivity requirements from the mass spectrometer, which is reflected in 

the identification of the smaller SAMBA and APC11 proteins as interaction partners 

of APC10 and  of the more transient interactor CDKF for the CDKD-associated 

complex.  

Since undifferentiated cells mainly support active division and basal pathways, 

interaction partners that are expressed more discretely in developmental context 

might be missed. To circumvent this, interaction data from callus tissue can be 

complemented with interaction data from plant samples. In first instance, we 

tested two types of ‘brute force’ biomass sources, containing young areal plant 

tissues. Shoots immediately regenerated from callus (T0 shoots) provide a way to 
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have this more complex tissue type in a comparable timeframe as callus material. 

The downside is that we suffered from a high dependency on the regeneration 

efficiency for the generation of sufficient shoot biomass. Nevertheless, we were 

able to retrieve all core interactors with CDKD and the majority of the core subunits 

from the APC. To circumvent this dependency, we generated seeds from 60 

individual transgenic events and selected lines having only one transgene copy for 

growing of plants. TAP experiments with 2-week-old seedlings revealed the core 

CDKD complex and, apart from APC11 and APC4, also the APC’s backbone and 

catalytic sub-complexes. We co-purified some additional potential APC-interactors. 

One of these, VILLIN 2, contains the GxEN destruction box and could therefore be 

a potential substrate for APC-mediated proteolysis. VILLINs are a class of actin-

bundling proteins that can cross-link adjacent actin filaments into bundles [39,40], 

which serve as preferred tracks for myosin-dependent movement of organelles 

and provide structure to the cytoplasm [41]. Since the APC is active in dividing or 

endoreduplicating cells requiring dynamic actin organisation, VILLIN 2 as an APC-

target clearly makes sense. Another, LON2 is a multifunctional ATP-dependent 

protease which exists in bacteria, archaea and within organelles in eukaryotic cells 

[42]. In Arabidopsis, LON2 was found involved in peroxisome biogenesis and 

maintenance of function. The protease function of LON2 is required for degradation 

of unnecessary proteins, whereas chaperone function is involved in normal folding 

or assembly of proteins that may contribute to proper action of peroxisomes [43]. 

Remarkably, Arabidopsis LON2 showed to have a mitotic-specific activation motif 

and a cell cycle related expression profile, hinting towards a genuine interaction 

with APC [44]. 

A combination of lowering the sample complexity and isolating interaction partners 

from the relevant developmental and anatomical context is provided when the 

specific tissue of interest is isolated and used for purification. We provided a proof 

of concept by isolating the proliferation zone of the emerging fourth leaf for 

performing our TAP experiments. Both the complexes containing CDKD and APC10 

were isolated with a rather small input of 7.5 mg of protein, extracted from the 

proliferation zone of the fourth leaf of 550 seedlings. Especially for the APC10, we 

detected interesting potential interaction partners (Figure 2). The two YT521-B-

domain-containing proteins could link APC function to selective removal of specific 

mRNAs. The homologs in Arabidopsis are the ECT-proteins (for EVOLUTIONARY 

CONSERVED C-TERMINUS). The conserved C-terminal domain in these proteins is 

in fact the YT521-B domain, and was found to be required and sufficient for 

interaction with CALCINEURIN B-LIKE-INTERACTING PROTEIN KINASE 1 (CIPK1), 

and translocation to the nucleus [45]. This domain, the YTH-domain, is conserved 

across all eukaryotes. YT521-B was found to modulate alternative splice-site 

selection in a concentration-dependent way in human cells [46]. Further, the 

YT521-B homology domain present in Mmi (for MEIOTIC MRNA INTERCEPTION) 

was shown to be responsible for the selective removal of meiosis-specific 

transcripts during vegetative growth in fission yeast [47]. It could be possible that 

in plants, the APC regulates plant YT521-B concentrations to regulate gene 

expression, or even to control the expression of specific splice variants. SEUSS, 

another potential APC10-interaction partner, is primarily known as a 

transcriptional co-regulator involved in flower development [35], but was also 

found to act in leaf organ patterning [37]. The APC was previously shown to control 
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the stability of Arabidopsis transcription factors [48]. Although speculative, this 

illustrates the power of our protocol in uncovering new links that will help to 

understand and elucidate biological processes in planta. 

In conclusion, we transferred an improved the AP-MS procedure to rice and 

exploited these advances to provide a portfolio of possible biological tissues to 

screen interaction partners for proteins of interest. This updated TAP workflow 

enables a success rate of retrieving interactors for a wide range of bait proteins of 

81.4%. The portfolio of rice tissues that can be assayed range from tissues that 

provide a large amount of protein extract such as cultured cells, to more technically 

demanding tissues, such as whole plants and even specifically isolated parts of the 

plant. The latter should be envisioned as a proof of concept for assaying protein 

complexes from any plant organ. Indeed, our optimized protocol in combination 

with the ultrasensitive MS now allows to identify complexes from minute samples. 

This opens possibilities for elucidating biological processes by comparing protein 

complexes assayed from different organs or from organs at different 

developmental stages. This could be key in gaining a comprehensive view on the 

biology behind the interactors, since protein complexes are known to be dynamic 

rather than static entities. For this, rice is a more suitable model compared to 

Arabidopsis, since assaying plant organs in Arabidopsis is more difficult, since 

some of the plant’s organs are too small at the stages when e.g. proliferation is 

occurring. 

Materials & Methods 

Construction of TAP expression vectors 

The destination vector for creating TAP expression constructs was derived from 

p05050, a destination vector used for Oryza sativa transformation 

(WO2011114279A1) by replacing the attR1-attR2, the GFP cassette and the GOS2 

promoter region by the attR3-attR4 Gateway® cassette. The final destination 

vector pTAP was verified by sequence analysis.  

Sequences for the N-terminal and C-terminal GSrhino tag with the necessary 

recombination sites (att sites) for Gateway® cloning were created by gene 

synthesis. The Gateway® cassettes containing the N-terminal and C-terminal 

GSrhino tag were cloned in compatible pDONR™221 and pDONR™P2R-P3 vectors 

(Life Technologies, Carlsbad, CA) respectively according to the manufacturer’s 

instructions. 

ORFs from genes of interest were isolated with Phusion Hot Start II High-Fidelity 

DNA Polymerase (Thermo Fisher Scientific, Waltham, MA) on complement DNA 

(cDNA) of O. sativa (ecotype japonica). Primers used to isolate the different ORFs 

were designed using vector NTI software (Life Technologies, Carlsbad, CA) and 

sequences of the necessary recombination sites (att sites) for Gateway® cloning 

were added to the primers. To verify amplification, PCR products were loaded on 

a 1% agarose gel and run for 25 min at 100V. Subsequently, fragments of the 

corresponding gene size were excised from gel and then extracted using the 

QIAquick gel extraction kit (Qiagen, Venlo, The Netherlands). Next, ORFs were 

cloned in compatible pDONR™221 (for C-terminal tagging) or pDONR™P2R-P3 (for 

N-terminal tagging) vectors (Life Technologies, Carlsbad, CA) according to the 
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manufacturer’s instructions. Further cloning was performed using the standard 

MultiSite Gateway® cloning technology to generate the TAP destination vectors. 

Entry vectors were verified by sequence analysis. TAP expression vectors were 

then transferred to Agrobacterium tumefaciens lba4404/pal4404 by 

electroporation. Transformed bacteria were selected on yeast extract broth 

medium with the appropriate antibiotics and verified by colony PCR with Takara 

Taq polymerase (Takara Bio Inc, Shiga, Japan) according to the manufacturer’s 

instructions. 

Generation of plant tissues expressing the TAP constructs  

A. tumefaciens-mediated transformation of O. sativa seeds was done according to 

patent WO2001006844 A1 with minor modifications. After mechanical dehusking 

using rice husker Kett US TR120, 150-200 seeds were surface sterilized with 6% 

sodium hypochlorite solution for 45 minutes and washed with sterile water. 

Afterwards, seeds were transferred to induction medium (pH 5.8, 4 g/L MS salts, 

1 mL/L MS vitamins, 2878 mg/L L-Proline, 300 mg/L CasaminoAcids, 30 g/L 

sucrose, 4 g/L gelrite, 2 mg/L 2,4-D) and allowed to germinate at 32°C under 

continuous light of 3000 lux. Six days after germination, the seeds were briefly 

submerged in liquid infection medium (pH 5.2, 4 g/L MS salts, 1 mL/L MS vitamins, 

300 mg/L CasaminoAcids, 68.5 g/L sucrose, 36 g/L D+ glucose-monohydrate, filter 

sterilised) containing 100 µM acetosyringone and transgenic A. tumefaciens 

lba4404/pal4404 containing the TAP destination vector (OD600 0,05-0,1) and 

transferred to co-cultivation medium (pH 5.2, 4 g/L MS salts, 1 mL/L MS vitamins, 

300 mg/L CasaminoAcids, 30 g/L sucrose, 10 g/L D+ glucose-monohydrate, 4 g/L 

gelrite, 2 mg/L 2,4-dichlorophenoxyacetic acid, 100 µM acetosyringone). Co-

cultivation was allowed for three days at 25°C in darkness. Thereafter, the explants 

were removed from the seeds, washed with 250 mg/L cefotaxime and transferred 

to selection medium (pH 5.8, 4 g/L MS salts, 1 mL/L MS vitamins, 2878 mg/L L-

Proline, 300 mg/L CasaminoAcids, 30 g/L sucrose, 7 g/L agarose type 1, 2 mg/L 

2,4-dichlorophenoxyacetic acid, 100 mg/L cefotaxime, 100 mg/L vancomycin, 35 

mg/L G418 disulfate) for incubation under continuous light (3000 lux) at 32°C. 

Twelve days later, microcalli were isolated and transferred onto fresh selection 

medium, refreshed every ten days, and grown until 30 g of callus was obtained. 

The callus material was then harvested in liquid nitrogen and stored at -80°C for 

subsequent analysis. 

For the generation of T0 shoot material, the same transformation protocol was 

utilized as described above. After isolation, the microcalli were transferred onto 

pre-regeneration medium (pH 5.8, 4 g/L MS salts, 1 mL/L MS vitamins, 500 mg/L 

L-Proline, 300 mg/L CasaminoAcids, 30 g/L sucrose, 7 g/L agarose type 1, 2 mg/L 

kinetin, 1 mg/L α-naphthalene acetic acid, 5 mg/L abscissic acid, 100 mg/L 

cefotaxime, 100 mg/L vancomycin, 20 mg/L G418 disulfate) and incubated for one 

week at 32°C under continuous light (3000 lux). Resistant callus was first brought 

to regeneration medium I (pH 5.8, 4.3 g/L MS salts, 1 mL/L MS vitamins, 2 g/L 

CasaminoAcids, 30 g/L sucrose, 30 g/L sorbitol, 10 g/L agarose type 1, 2 mg/L 

kinetin, 0.02 mg/L α-naphthalene acetic acid, 100 mg/L cefotaxime, 100 mg/L 

vancomycin, 20 mg/L G418 disulfate) for seven days and then transferred to 

regeneration medium II (pH 5.8, 4.3 g/L MS salts, 1 mL/L MS vitamins, 2 g/L 

CasaminoAcids, 30 g/L sucrose, 30 g/L sorbitol, 7 g/L agarose type 1, 2 mg/L 
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kinetin, 0.02 mg/L α-naphthalene acetic acid, 100 mg/L cefotaxime, 100 mg/L 

vancomycin, 20 mg/L G418 disulfate) for two additional weeks at 32°C under 

continuous light (lux 3000). Plants whose shoot and root grew more than 1 cm in 

length were ultimately transferred to growth medium (pH 5.8, 2.15 g/L MS 

medium micro and macro, 0.5 mL (0.5 x) B5 vitamins, 10 g/L sucrose, 0.05 mg/L 

α-naphthalene acetic acid, 0.75 g/L MgCl2.6H2O, 2.5 g/L gelrite) and incubated for 

two weeks at 32°C under continuous light (3000 lux) before being harvested in 

liquid nitrogen and stored at -80°C for subsequent analysis. 

Transgenic seeds containing the TAP expression vector were derived from the 

transformation protocol generating shoots described above. Instead of harvesting, 

60 plants, each derived from an individual transformation event, were transferred 

to the greenhouse and further grown until seeds could be harvested. For growing 

seedlings, seeds were first dehusked and sterilized as previously described before 

sowing them on growth medium containing the selective agent (pH 5.8, 2.15 g/L 

MS medium micro and macro, 0.5 mL (0.5 x) B5 vitamins, 10 g/L sucrose, 0.05 

mg/L α-naphthalene acetic acid, 0.75 g/L MgCl2.6H2O, 7 g/L agarose, 20 mg/L 

G418 disulfate). T1 seedlings were grown in a growth chamber under short day 

conditions at 32°C, and harvested two weeks after sowing in liquid nitrogen and 

stored at -80°C for subsequent analysis. Plants for isolation of the proliferation 

zone were grown in jiffies in the greenhouse under short day light conditions. Once 

the 4th leaf started emerging (approximately after two weeks), leafs were carefully 

separated and the 4th leaf was collected. The first cm from the base was then 

collected in liquid nitrogen. 

Expression analysis of the bait proteins 

Plant material was ground to homogeneity in liquid nitrogen with mortar and 

pestle. About 200 μL of extraction buffer (25 mM Tris-HCl pH 7.6, 15 mM MgCl2, 

150 mM NaCl, 15 mM pNitrophenyl phospate, 60 mM β- glycerophosphate, 0.1% 

NP-40, 0.1 mM Na3VO4, 1 mM NaF, 1 mM PMSF, 1 μM E64, EDTA-free Ultra 

Complete tablet (1/10 mL) (Roche Diagnostics, Brussels, Belgium), 5% Ethylene 

glycol) was added and homogenized with a 1.5-mL pellet mixer. Homogenized 

samples were flash frozen in liquid nitrogen, thawed on ice and centrifuged twice 

for 15 min at 4°C at 20,800 g. Protein concentrations were determined by Bradford 

assay (Bio-rad, Hercules, CA). Fifty μg of total protein extract was loaded for 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 0.75 

mm 12% Mini-PROTEAN® TGX™ precast gels (Bio-Rad, Hercules, CA) for 20 min 

at 300 V in TGX running buffer (25 mM Tris-HCl, pH 8.3, 1.92M glycine, 35 mM 

SDS). Resolved proteins were transferred to PVDF membranes using Trans-Blot® 

Turbo™ Mini PVDF transfer packs and the Trans-Blot® Turbo™ Transfer system 

(Bio-rad, Hercules, CA) according to instructions of the manufacturer. Blotted 

PVDF membranes were then incubated in blocking buffer (3% Difco™ skimmed 

milk (w/v) in TBS-T buffer (50 mM Tris, 150 mM NaCl pH8.0, 0.1% Triton X-100)) 

overnight at 4°C or 1 h at room temperature (RT) on an orbital shaker. After this 

blocking step, membranes were incubated for 1 h at RT with peroxidase anti-

peroxidase antibody (Sigma-Aldrich, Saint-Louis, MO) in blocking buffer on an 

orbital shaker. Membranes were washed 1 x 15 min and 4 x 5 min with TBS-T 

buffer. Bound antibody was detected by mixing equal amounts of the two 

chemiluminescent reagents from the ECL-kit (Perkinelmer, Waltham, MA) and 
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incubating for 1 min. Membranes were placed in a film cassette and exposed to an 

Amersham hyperfilm™ ECL film (GE Healthcare, Wauwatosa, WI) in a dark room, 

where autoradiograms were also developed. 

Tandem affinity purification of protein complexes 

Callus material was ground to homogeneity in liquid nitrogen with mortar and 

pestle. Plant material (shoots, seedlings and tissues from the proliferation zone) 

was ground to homogeneity in liquid nitrogen with a hand blender (Braun GmbH, 

Kronberg, Germany). Crude protein extracts were prepared in two volumes of 

extraction buffer (25 mM Tris-HCl pH 7.6, 15 mM MgCl2, 150 mM NaCl, 15 mM p-

nitrophenyl phosphate, 60 mM β-glycerophosphate, 0,1% NP-40, 0.1 mM Na3VO4, 

1 mM NaF, 1 mM PMSF, 1 µM E64, EDTA-free Ultra Complete tablet Easypack (1/10 

mL) (Roche Diagnostics, Brussels, Belgium), 5% Ethylene glycol) at 4°C using an 

Ultra-Turrax T25 mixer (IKA Works, Wilmington, NC). Soluble fraction was 

obtained from isolating the supernatans after double centrifugation at 36,900 g for 

20 min at 4°C. The extract was passed through four layers of miracloth (Merck 

KGaA, Darmstadt, Germany) and kept on ice. 

Purifications were performed as described by Van Leene et al. (2015) [15] with 

minor modifications. For material from callus material and tissues from the 

proliferation zone, all purifications were performed in batch. The protein extract 

was added to 25 µL of effective immunoglobulin G (IgG) Sepharose 6 Fast Flow 

beads (GE Healthcare, Wauwatosa, WI), pre-equilibrated with 3x 250 mL 

extraction buffer. After incubation for 1 hour at 4°C under gentle rotation, the 

beads were transferred to a Poly-Prep column (Bio-Rad, Hercules, CA) mounted to 

a two-way valve in a vacuum manifold system (Grace, Columbia, MD) and washed 

with 15 mL or 150 column volumes wash buffer (10 mM Tris-HCl pH 7.6, 150 mM 

NaCl, 0.1% NP-40, 0.5 mM EDTA, 1 μM E64, 1 mM PMSF, 5% Ethylene glycol). 

Bound complexes were eluted by digestion in a mobicol column (MoBiTec GmbH, 

Göttingen, Germany) using 100 µL wash buffer and 2x 10U (2 x 1 µL, second boost 

after 30 min) rhinovirus 3C protease (GE Healthcare, Wauwatosa, WI) for 1 h at 

4°C on a shaker. Eluate was collected by two consecutive spinning steps of the 

mobicol column (MoBiTec GmbH, Göttingen, Germany) in a 2-mL Eppendorf tube 

for 30 sec at 1,500 rpm at 4°C. In between, 100 µL wash buffer was added to the 

beads to collect residual eluate. The resulting eluate was incubated for 1 h at 4°C 

under gentle rotation with 25 µL effective streptavidin Sepharose High 

Performance beads (GE Healthcare, Wauwatosa, WI), pre-equilibrated with 3x 250 

µL wash buffer. Streptavidin beads were transferred to a mobicol column and 

washed with 100 column volumes or 2.5 mL wash buffer. Complexes were eluted 

in 40 µL NuPAGE sample buffer containing 20 mM desthiobiotin (Sigma-Aldrich, 

Saint-Louis, MO) by 5 min incubation on ice, followed by centrifugation at 1,500 

rpm at 4°C.  

For seedling and shoot material, the first affinity purification step was performed 

on a Poly-Prep column (Bio-Rad, Hercules, CA) containing 100 µL of effective IgG 

Sepharose 6 Fast Flow beads (GE Healthcare, Wauwatosa, WI), pre-equilibrated 

with 3x 1 mL extraction buffer, with a peristaltic pump (GE Healthcare, 

Wauwatosa, WI), at flow rate 1 mL/min. The Poly-Prep column was then mounted 

to a two-way valve in a vacuum manifold system for washing with 150 mL or 15 
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column volumes wash buffer (10 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.1% NP-40, 

0.5 mM EDTA, 1 μM E64, 1 mM PMSF, 5% Ethylene glycol). Bound complexes were 

eluted by digestion in a mobicol column (MoBiTec GmbH, Göttingen, Germany) 

using 200 µL wash buffer and 2x 40U (2 x 4 µL, second boost after 30 min) 

rhinovirus 3C protease (GE Healthcare, Wauwatosa, WI) for 1 h at 4°C on a shaker. 

Eluate was collected by two consecutive spinning steps of the mobicol column 

(MoBiTec GmbH, Göttingen, Germany) in a 2 mL Eppendorf tube for 30 sec at 

1,500 rpm at 4°C. In between, 400 µL wash buffer was added to the beads to 

collect residual eluate. The rest of the protocol proceeded similarly as described 

above. 

Purified protein samples were loaded and separated with a short 7-min run on a 

precast 4-12% gradient NuPAGE Bis-Tris gel (Life Technologies, Carlsbad, CA), 

fixed in 50% EtOH/2% H3PO4 and visualized with colloidal Coomassie Brilliant Blue 

G-250 (Sigma-Aldrich, Saint-Louis, MO) staining. 

Proteolysis and peptide isolation 

NuPAGE gel containing purified protein samples was destained twice in HPLC-grade 

water (Thermo Fisher Scientific, Waltham, MA) for 1 h and incubated in 25 mL of 

reducing buffer (6.66 mM DTT plus 50 mM NH4HCO3 in HPLC-grade water) for 40 

min to reduce the polypeptide disulphide bridges. Subsequently, thiol groups were 

alkylated by incubating the gel for 30 min in 25 mL of alkylating buffer (55 mM 

iodoacetamide, 50 mM NH4HCO3 in HPLC-grade water) in the dark before washing 

with HPLC-grade water. The zone containing the protein sample was sliced from 

the gel and sectioned into different gel plugs. These were washed twice with 600 

µL of HPLC-grade water and dehydrated in 600 µL 95% acetonitrile twice for 10 

min. The dehydrated gel plugs were submerged and rehydrated in 90 µL trypsin 

digest buffer (12.5 µg/mL trypsin (MS gold; Promega, Madison, WI) in 50 mM 

NH4HCO3 and 10% (v/v) acetonitrile in HPLC-grade water) for 30 min at 4°C. 

Afterwards, trypsin digestion was allowed for 3.5 h at 37°C. Resulting peptide 

samples were sonicated for 5 min in a sonication bath and the solution covering 

the gel plugs (containing trypsinized peptides) were kept aside. Remaining gel 

plugs were completely dehydrated in 95% acetonitrile for 10 min and the 

remaining acetonitrile solution was added to the first fraction of trypsin digests. 

The resulting trypsin-digested sample was completely dried in a SpeedVac for 2-

3 h at 4°C. 

LC-MS/MS analysis 

A nano LC system (Ultimate 3000 RSLC nano, Dionex, Amsterdam, The 

Netherlands) was set up connected in-line to the Q-Exative (Thermo Fisher 

Scientific, Waltham, MA), with a trapping column (PepMap 100) of 100-µm internal 

diameter (I.D.) x 20 mm (length) with 5-µm C18 Reprosil-HD beads (Dionex, 

Amsterdam, The Netherlands), a flow rate 6 µL/min and, 5 min after injection, 

switched in-line with a reverse phase analytical separating column (Acclaim, 

PepMap 100) of 75 µm I.D. x 150 mm with 3 µm C18 Reprosil-HD beads (Dionex, 

Amsterdam, The Netherlands). 

Peptides were solubilized in 15 µL of loading Solvent A (0.1% (v/v) 

trifluoroacetic acid, 2% (v/v) acetonitrile in HPLC grade water), and 5 µL of the 

peptide sample was loaded on the trapping column. Peptide samples were 
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separated with a 30-min gradient from 2% mobile phase solvent A’ (0.1% (v/v) 

formic acid in HPLC-grade water) to 50% mobile phase solvent B’ (0.1% (v/v) 

formic acid and 80% acetonitrile in HPLC-grade water) at a flow rate of 300 nL/min. 

The Q Exactive was operated in data-dependent mode to automatically switch 

between MS and MS/MS acquisition for the ten most abundant peaks in a given 

MS spectrum. Full-scan MS spectra were acquired in the Orbitrap at a target value 

of 1E6 with a resolution of 60.000. The ten most intense ions were isolated for 

fragmentation in the quadrupole, with a dynamic exclusion of 20 seconds. Target 

value for filling the quadrupole was set to 1E4 ion counts. 

Analysis of the protein interaction data 

Mascot generic files were created with the Mascot Distiller software. Grouping of 

spectra with a maximum intermediate retention time of 30 s and 0.005-Da 

precursor tolerance was allowed together with a maximum intermediate scan 

count of five if possible. No de-isotoping was used and the relative signal-to-noise 

limit was set to 2. A peak list was generated only when the MS/MS spectrum 

contained more than ten peaks. The Mascot Daemon interface was used to search 

peak lists with the Mascot search engine against the rice annotation project (RAP) 

database [30] and against the Michigan State University rice database (MSU) [31]. 

Search parameters in Mascot Daemon were as follows: variable modifications set 

to methionine oxidation and methylation of aspartic acid and glutamic acid, fixed 

modifications to carbamidomethylation of cysteines, mass tolerance on MS 10 

ppm, MS/MS tolerance 20 mmu, ESI-QUAD as instrument, 2+ and 3+ as peptide 

charge and protease trypsin/P, allowing for 1 missed cleavage. In the Mascot result 

URL, a Mascot select summary was created with following settings: significance 

threshold p>0.01, maximum number of hits AUTO, Mudpit scoring, Ion score or 

expectancy cut-off >0.01, require bold red. Identifications were retained when at 

least two peptides matched a high confidence rank, with at least one peptide 

unique to the protein. The resulting protein identification list was cross-checked 

against the list of non-specific proteins. Only specific binders were retained in the 

final list. 
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Supplementary information 

Figure S1. Expression analysis of the bait proteins in the different rice tissues. 

 

Protein extracts of the transgenic lines were analyzed by immunoblotting with peroxidase 

anti-peroxidase antibody against the GSrhino tag to verify protein levels of the CDKD (a.) 

and APC10 (b.) bait. Molecular marker values are provided in the left panel in kilo Dalton 

(kDa). The molecular weight of the tagged proteins is 69.8 kDa for CDKD and 43.5 kDa 

for APC10. 

 

Figure S2. Overlap between background datasets. 

 
The overlap of potential background binders from this study 

compared to the background dataset reported in Rohila et 

al. [14] is shown. 

 

Supplementary background list, interaction data and mass spec files. 

Supplementary files can be found through the following link: 

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd

62d78  (password: rice_TAP). The established background list based on re-occurrence of 

a protein over independent experiments from different bait groups can be found under 

filename SI_Chapter_5_background_list.xlsx. The table of APC10 and CDKD-interactors, 

including non-confirmed interaction partners can be found in 

SI_Chapter_5_Full_Interaction_Datasets.xlsx. The mass spec files for APC10 and CDKD 

interaction data described in this chapter can be found in 

SI_Chapter_5_APC10_MS_data.xlsx and SI_Chapter_5_CDKD_MS_data.xlsx respectively. 

 

  

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
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Chapter 6. A high-throughput platform for screening yield 

enhancement genes 

6.1 The more the merrier: High-throughput screening of yield 

enhancement genes 

Introduction 

The improvement of intrinsic yield qualities in crops is one of the main goals in the 

agro-industry. Conventional breeding provided significant improvements, but is 

limited within the boundaries of the species. The use of biotechnological tools 

enables to break that genetic boundary, but also poses huge challenges. To decide 

which promoter-gene combination could alter a plant’s intrinsic yield 

characteristics, thorough knowledge is required about where and when growth 

regulators are crucial in contributing to an enhanced yield phenotype. In the past 

decades, this was tackled by bluntly empirical testing the effect of changing 

expression levels of genes in model plants and extrapolating the results to the 

crops. This is illustrated by two private initiatives. The company Mendel biotech 

for example tested numerous transcription factors by constitutive overexpression 

in Arabidopsis. CropDesign developed TraitMill, an automated plant evaluation 

platform that allows high-throughput testing of the effect of transgenes on yield 

and other agronomical valuable traits in rice. Rice is considered as an appropriate 

model for cereal crops such as maize and wheat with its rather small genome (389 

Mb) and evolutionary relatedness. These efforts led to the elucidation of numerous 

individual growth regulators, but knowledge from these scattered data is still far 

from sufficient to efficiently engineer complex biological traits such as growth or 

seed yield. Finding the links between individual growth regulators will be key to 

define which molecular networks play in defining yield traits. A significant part of 

connections between biological entities is defined by protein-protein interactions 

(PPI). PPI are indeed known to form the basis of many cellular processes and 

biological functions. Elucidation of the molecular interactions between yield 

stimulating proteins, collectively called the ‘yield interactome’, could therefore gain 

insight in how molecular networks control complex phenotypes 

In the previous chapters, we described the development of a functional 

interactomics tool that enables screening for protein complex data in different rice 

tissues. For this, we established a workflow that has the potential to increase the 

efficiency of TAP as compared to the state of the art [1]. The workflow includes a 

Gateway® technology adapted cloning toolbox that allows versatile combination 

of a gene of interest with different promoters and TAP tags, reasonably fast 

biomass generation, an optimised purification protocol based on the GS and 

GSgreen tag and ultrasensitive mass spectrometry. The building blocks we 

selected based on experiments using the cell cycle protein CKS1 were the 

Cauliflower Mozaic Virus 35S (PRO35S) and the rice GOS2 promoter (PROGOS2), 

along with the GS and GSgreen tag.  

We now employed this technology for screening 33 genes that showed to have an 

effect on growth or seed yield in rice upon perturbation. The majority (25) of the 
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genes was tested in rice callus, but we also further explored screening PPI from 

shoots immediately regenerated from T0 shoots (10 genes) and T1 seedlings (5 

genes). The purpose is twofold; first we wanted to mine the protein interaction 

networks around these 33 genes and second, the assaying of a large amount of 

different genes allowed to make an estimate on the performance of the retained 

TAP tools in rice.  

Overview of the platform 

Selection and cloning of the baits  

We screened a total of 33 additional genes for protein-protein interactions in 

different rice tissues. Indications from literature or in house phenotypic screens of 

overexpression or down-regulation constructs hinted to involvement of these 

genes in the regulation of growth or seed yield processes. To challenge the 

versatility of the TAP platform towards different kinds of protein baits, we chose 

the genes as such that they vary in biological function or protein type. To further 

consolidate previous results with the CKS1 test bait in finding optimal TAP tools 

for use in rice, we fused the bait once with the GS tag and once with the GSgreen 

tag. We ensured that the two tags were equally tagged as N-terminal and C-

terminal fusion, by alternating the fusion orientation of the tags across all baits. 

In general, GS-tagged constructs were combined with the PRO35S and GSgreen-

tagged constructs by the PROGOS2. We opted to combine the GSgreen tag with a 

less strong expressing promoter, since significant decay of the tag was visible with 

the PRO35S driven CKS1 construct and we were afraid that the GFP breakdown 

product could interfere with complex purification. Therefore we opted for lowering 

the bait’s expression level and hence also lowering the decay product. 

Overview of the experimental settings 

Purifications were performed based on the earlier described experiments. Briefly, 

for callus purifications, 15g of callus was used for 2 replicate purifications. A total 

protein input of 50mg was used per purification from GS-tagged proteins. For 

GSgreen-tagged proteins, only 25mg input was applied, because the affinity matrix 

had a significantly lower binding capacity (7.5 µg for GFP trap agarose compared 

to 50µg for IgG sepharose for 25µL effective beads). A large excess of beads or 

capture antibody in relation to protein extract should indeed be avoided, to keep 

the amount of background binding proteins as low as possible [2]. The protein 

extract was incubated with IgG sepharose or GFP-trap agarose affinity beads for 

GS- and GSgreen-tagged baits respectively. Bait was subsequently eluted by 

proteolytic cleavage catalysed by the Tobacco Etch Virus (TEV) protease at 16°C 

for 1 hour. After a second enrichment step using streptavidin sepharose beads, 

the complexes were eluted by addition of 40µL of NuPAGE sample buffer containing 

20mM desthiobiotin. After a short NuPAGE run, samples were digested in-gel by 

trypsin before mass spectrometry analysis using a nano LC-coupled Velos LTQ 

Orbitrap system. For purifications on plant tissues (seedlings and shoots), the 

same purification protocol was applied, with the exception of the first affinity step 

and the mass spectrometer used. There, the protein extracts (ideally in the range 

of 150mg total protein per experiment) from the plant cells were applied on affinity 

beads immobilised on a column, connected with a peristaltic pump. The extract 

was applied multiple (3-4) times over the column to ensure high contact ration of 
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extract with the beads. The samples were then analysed on the Q Exactive instead 

of the Velos LTQ Orbitrap system. 

A well-known challenge associated with any AP-MS experiment is the 

discrimination of bona fide interactors from non-specific background associations. 

We gave preference to a subtraction list containing potential background binders 

based on the principle that contaminating proteins re-occur over independent 

experiments. This strategy was already successfully applied in the analysis of 100 

human protein complexes [3] and was recently introduced for background filtering 

from AP-MS experiments in Arabidopsis [4]. We built our list of nonspecific proteins 

based on the occurrence of proteins in all TAP read-outs from both negative control 

purifications with wild type samples and from TAP-MS samples, representing 174 

experiments in total. Some caution regarding the approach is advised, since this 

way of filtering does not take into account whether the baits are expected to 

function in the same pathway or biological process and thus might share some 

common interactors. We therefore assigned the baits to 34 ‘bait classes’, based on 

shared membership in the same protein complex, the same gene family [5] or the 

same biological process according to their gene ontology annotation [6]. We set 

an arbitrary threshold as such that proteins present in two or more different bait 

groups were considered nonspecific. This resulted in a list of 683 potential 

background and non-specific interactors that we removed from our interactor lists. 

Evidently, this type of background filtering gains in discriminative power with an 

increasing number of experiments. Due to the yet limited (60 experiments from 

13 bait groups representing 16 different proteins) experiments supporting a 

frequent binders list from plant experiments, we set the cut-off for assigning an 

interactor as nonspecific in this case to proteins present in more than one different 

bait group. Here we obtained a list of 951 potential background proteins. Besides 

the obvious problem that the frequency filters are arbitrarily chosen, it is possible 

that a true high abundance interactor for a given bait is also detected in lower 

abundance with other baits in negative control runs. For these reasons, obtaining 

a quantitative measure for the presence of the given hit or prey protein across all 

purifications may assist in determining the likelihood that the interaction is indeed 

significant [4,7]. 

Another crucial parameter in verifying which proteins are ‘true’ binders is 

reproducibility. In general, interactions identified in at least two independent 

purifications are considered as high confidence [8]. Proteins co-purified in only one 

experiment are in that case mentioned in an additional ‘low-confidence’ dataset, 

representing potential interaction partners that are only weakly associated with 

the complex and requiring additional data to confirm genuine association. In the 

following sections, proteins will be considered a potential interactor if it was found 

in at least two independent experiments unless otherwise stated.  

Overview of the callus platform 

Generation of transgenic callus expressing the bait proteins is the most 

straightforward way to produce relatively fast an in principle unlimited amount of 

protein extract. Twenty-five baits were screened in callus tissue. For three of them, 

we were not able to retrieve the bait in any fusion construct. These bait proteins 

might be subjected to heavy protein-turnover, or their function might be 
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compromised by the addition of the bulky tags. For three additional baits, only one 

fusion resulted in successful retrieval of bait protein. In this case, we hypothesise 

that one specific fusion resulted in the bait construct being recognised as ‘aberrant’ 

and therefore targeted for degradation by the cellular machinery. Summarised, for 

25 bait proteins, we constructed 50 TAP constructs, 41 of which were purified in 

amounts sufficient for their identification by mass spectrometry (Figure S1). As 

mentioned earlier, most of the bait proteins were tested in a TAP construct 

containing PRO35S and the GS tag and in a construct with the PRGOS2 and the 

GSgreen tag. For 19 of the 20 GS-tagged constructs that were sufficiently 

expressed for detection after AP-MS, we were able to isolate complexes with one 

or more interacting proteins. This boils down to a success rate of 79% and an 

average retrieval of 7.6 interactors per construct (Figure 1a). Nineteen of the 25 

GSgreen-tagged constructs accumulated sufficiently for retrieval in the MS read-

out after purification. From these 19, 12 resulted in the co-precipitation of 

interactors. Hence, the success rate (50%) and the average number of interactors 

retrieved per construct (1.4) was significantly lower compared to GS purifications 

(Figure 1b). Two factors could contribute to this significant lower success rate. 

First, the initial input from GSgreen purifications is only half of the input from GS 

purifications. This could result in sub-optimal levels of final eluate for mass spec 

analysis. Second, the PROGOS2 driving the expression of the GSgreen-tagged 

constructs results in lower protein levels than constructs under control of the 

PRO35S. Possibly this hampers optimal competition of the bait with its endogenous 

counterpart in the wild type background for incorporation in the complexes, 

resulting in accumulation and ultimate purification of mainly empty bait. We 

challenged the first possibility by repeating GSgreen purification for 4 baits, this 

time using 50mg as total protein input and observed a trend of recovering more 

interacting proteins (Figure S2). The effect of the promoter on the bait was tested 

in additional experiments with CDKD and APC10 (Figure 2). The two proteins were 

tested as a GSrhino-tagged fusion protein in combination with both PRO35S and 

PROGOS2. AP-MS experiments showed no significant differences between the two 

promoters, leading to the conclusion that the low success rate from GSgreen-

tagged constructs was due to a too low biomass input. 
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Figure 1. Comparison of the performance parameters for different constructs and platforms. 

 
Performance parameters for screening 33 bait proteins are shown for callus, T0 shoots and T1 

seedling platforms for GS (a) and GSgreen (b) constructs described in this work and for the 

platform described by Rohila et al. [1] (c). The asterisk for performance data from Rohila et al. 

[1] and T0 shoots stresses the fact that this is related to nonreplicate experiments. The orientation 

of the TAP tags in the figure do not necessarily hold true for the actual constructs tested. 

 

 

Figure 2. Comparison of promoter performance using GSrhino-tagged APC10 and CDKD. 

 

symbol PROGOS2 PRO35S PROGOS2 PRO35S PROGOS2 PRO35S

loc_os05g32600 CYCLIN-DEPENDENT KINASE D 1;3 CDKD1;3 2 2 1 1 2 2

loc_os03g52750 CYCLIN H 1 CYCH1 2 2 1 1 2 2

loc_os11g28350 CAK assembly factor MAT1 MAT1 2 2 1 1 2 2

loc_os06g07480 CAK assembly factor MAT1 MAT1 2 2 1 1 2

loc_os05g05260 XERODERMA PIGMENTOSUM D XPD 2 2 1 1 2 2

loc_os02g03340 TFIIH p34 subunit 2 2 1 1 2 2

loc_os04g42990 TFIIH p44 subunit 2 2 1 1 2 2

loc_os04g58350 TFIIH p52 subunit 2 2 1 1 2 2

loc_os08g25060 TFIIH p62 subunit 2 2 1 1 2 2

loc_os06g22820 CDKF-1/CAK1AT CDKF1 1

symbol PROGOS2 PRO35S PROGOS2 PRO35S PROGOS2 PRO35S

loc_os05g50360 ANAPHASE PROMOTING COMPLEX SUBUNIT 10 APC10 2 2 1 1 2 2

loc_os06g41750 ANAPHASE PROMOTING COMPLEX SUBUNIT 3 APC3 2 2 1 1 2 2

loc_os03g13370 ANAPHASE PROMOTING COMPLEX SUBUNIT 6 APC6 2 2 1 1

loc_os05g05720 ANAPHASE PROMOTING COMPLEX SUBUNIT 7 APC7 2 2 1 1 1 2

loc_os02g43920 ANAPHASE PROMOTING COMPLEX SUBUNIT 8 APC8 2 2 1 1 2 2

os05g0354300 ANAPHASE PROMOTING COMPLEX SUBUNIT 1 APC1 2 2 1 1 2 2

loc_os02g54490 ANAPHASE PROMOTING COMPLEX SUBUNIT 4 APC4 1 2 1 1

loc_os12g43120 ANAPHASE PROMOTING COMPLEX SUBUNIT 5 APC5 1 2 1 1 2 2

loc_os04g40830 ANAPHASE PROMOTING COMPLEX SUBUNIT 2 APC2 2 2 1 1 2 2

loc_os03g19059 ANAPHASE PROMOTING COMPLEX SUBUNIT 11 APC11 2

loc_os03g03150 CELL CYCLE SWITCH PROTEIN 52A 1 CCS52A1 1 2

os10g0575950 SAMBA SAMBA 2

T1 seedlings

accession description

callus T0 shoots

T1 seedlings

accession description

callus T0 shoots
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From interaction datasets using PRO35S- and PRGOS2-driven APC10 and CDKD baits, only the core 

complex constituents are shown. Numbers illustrate how many times the protein was retrieved. 

Purifications using callus and T1 seedling biomass were performed twice per construct, purifications 

using T0 shoots only once. 

 

Exploration of the purification strategy in plant tissues 

Some proteins are discretely expressed or associate with proteins that are 

discretely expressed. In that case, screening interactions from callus tissue will 

result in false negatives, since the appropriate development or anatomical context 

is not in place. In that case, the complex can be purified from plant samples. We 

opted to sample the plants in an early stage to have a high ratio of proliferative 

cells with the underlying assumption that genes controlling growth processes are 

active in this phase. By regenerating shoots from callus, we could obtain this type 

of tissue in reasonable time. We tested 14 constructs comprising 10 baits and 

found 13 of them sufficiently expressed for detection after TAP-MS (Figure S3). 

Experiments were only performed once, because the high dependency on 

regeneration efficiency compromised obtaining sufficient biomass to provide 

protein input for two replicate purifications. This is of course problematic for 

assessing the performance and reproducibility of the method. Alternatively, T1 

seeds were harvested from transgenic lines expressing the TAP constructs. From 

these seeds, we cultivated two week old seedlings. These were grown on selection 

medium to favour growth of homozygous over heterozygous plants and eliminate 

null-segregants. From 550 plants, we harvested on average 20g of biomass, 

providing 300mg of total protein. This was sufficient for two replicate experiments 

using 150mg total protein each. Here, we screened 5 baits using 10 constructs 

that were also tested in callus (Figure S4). For 1 of the 5 baits we failed in 

accumulating sufficient protein levels for retrieval in the MS read-out after 

purification for both the GS- and GSgreen-tagged fusion construct. The other 4 

baits did result in successful bait recovery. In the case of GS-tagged constructs all 

four baits co-purified proteins (80% success rate), with an average of 12 retrieved 

interactors (Figure 1a). For GSgreen-tagged constructs, we found interactors in 

three of the four cases (60% success rates) and obtained an average of 5 

interactors (Figure 1b). Since the five proteins screened in seedlings were also 

tested in callus, we were able to compare the proteins that were identified (data 

not shown). The significant amount of proteins uniquely observed in seedlings for 

some of the baits might hint to proteins that are only present in a developing 

context. However, it is important to take into account that, with in total 15 proteins 

screened from plant tissues, the background list is at this stage not sufficiently 

reflecting which proteins might re-occur over independent experiments. Therefore 

a large part of the ‘plant-specific’ interactors could also represent false positives.  

Conclusion from the high-throughput platform 

We further elaborated the integrated workflow developed from pilot experiments 

using CKS1, CDKD and APC10 to assay the throughput of baits and screened 25 

proteins in rice callus, 9 proteins in shoots regenerated from callus, and 5 proteins 

from seedlings grown from seeds from selected transgenic lines. In rice, the major 

model for cereal crops, there is only one exhaustive TAP-MS study to date to our 
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knowledge. This study, reported over 2 publications, encompasses the unravelling 

of kinase complexes from rice plants in nonreplicate experiments. They found at 

least one interaction partner for 23% of the 129 kinases screened [1,9]. Kinases 

are a tricky class of proteins to screen interactors from though. This, and the fact 

that they only tested N-terminal fusions, might have compromised the true 

potential of their platform. Our workflow, when compared with this previous 

method, has numerous favourable properties. First, it significantly saves 

resources, labour and time for the systematic generation of cell or seed lines for 

expression of affinity-tagged bait proteins. Next, it has higher sensitivity and thus 

minimises sample amounts required for successful isolation and analysis of protein 

complexes. And last, it generates protein interaction data with increased success 

rates, average amounts of interactors and reproducibility. For fair comparison, we 

retrieved interactors for all 4 of the baits annotated as protein kinase (Figure S5). 

As these were mainly screened in rice callus, the increased success rate for GS 

purifications could also (partially) be attributed to the use of this more 

straightforward biological system.    

In the presented method, we used MultiSite Gateway®-mediated recombination 

of promoter, gene of interest and TAP tag for rapid generation of TAP expression 

vectors. This takes advantage of the versatility of the Gateway® system to 

combine any gene with the desired promoter and TAP tag in both N- or C-terminal 

fusions. Starting from a cDNA entry clone, sufficient callus cells expressing the bait 

are reliably obtained within 3.5 months. A similar timeframe is required to 

generate shoot material, which is significantly less than the time needed for 

generating plant material with previous methods. The dependence on regeneration 

efficiency is however a major trade-off, preventing to provide amounts sufficient 

for duplicate experiments. This hampers the assessment of reproducibility. We 

therefore also tested the use of two weeks old T1 seedlings, prolonging the timeline 

to 10.5 months.  

Another bottleneck in the previous TAP analysis is linked to the limited overall 

sensitivity of the workflow, requiring starting material in the range of 50-60g 

material. This in turn poses huge pressure on available resources and experimental 

logistics for high throughput study. Overall sensitivity in TAP experiments is 

determined by both the purification procedure and the mass spectrometric 

analysis. We introduce a purification strategy based on the GS tag and the related 

GSgreen tag, in combination with the ultrasensitive Orbitrap MS. The GS tag was 

shown to allow efficient double-affinity with higher specificity and higher yields 

compared to the classical tag [10,11]. The GSgreen tag is basically similar to the 

GS tag with a GFP portion replacing the tandem repeat of the ZZ domain of protein 

G. The combined purification approach with Orbitrap mass spectrometry allows the 

identification of specific complex partners from a minimal protein input of 50mg 

per purification. We tested halving the protein input with GSgreen purifications, 

but observed a significant decrease in success rate. 

To generate a reliable dataset of potential interactors, a clear estimation of the 

false-positive interactions is required. First, the GS and GSgreen tag allow efficient 

removal of the bulk of contaminants during the two-step purification process. Next, 

we built a contaminant dataset based on occurrence over independent purifications 
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of unrelated bait groups to efficiently remove the remainder of the contaminants. 

Importantly, there are drawbacks to this type of heuristic management of the 

interaction data. First, frequency filters are only really applicable to larger scale 

studies, but not to studies of individual proteins or small numbers of baits [12]. 

This is illustrated in our dataset of plant purifications. The limited set of 

experiments forced us to also consider callus experiments and required the filter 

to be set very stringently. Second, the frequency filters are often chosen in a 

context or data-dependent manner, and are hard to apply if baits are functionally 

related and copurify with similar sets of proteins. To address this issue, we grouped 

our baits according to co-membership in protein complexes, gene families of 

biological processes and considered the resulting 34 bait groups for applying the 

frequency filters. In addition, the filtering method is only based on binary data 

(presence or absence of the interactor in each bait dataset), and ignore 

quantitative features of the mass spectrometry results. Genuine abundant 

interactors of any given bait are often missed since they are occasionally identified 

as low abundance interactors with several other baits. Quantitiave measures of 

protein abundance in interaction data sets are therefore important to resolve 

whether the interaction bait-prey is specific [4,7]. Another quality parameter in 

TAP-MS experiments is reproducibility. To offer the best quality interaction dataset, 

we only considered interactions confirmed in at least two replicate experiments as 

bona fide. 

The resulting interaction datasets of the 33 baits screened revealed their local 

protein interactions providing a peak insight into the gene’s potential functioning. 

The acquired knowledge enables to make more targeted choices when selecting 

genes for testing as candidate yield-improvement gene. Also, in regard to the guilt-

by-association concept, interaction partners from yield-enhancing genes might 

have the same yield stimulating characteristic. And third, the initial bait and the 

interaction partner can be combined in a co-expression construct, allowing additive 

or synergistic effects. These factors will help to increase the success rate of 

successfully identifying optimal transgenes for enhancing yield phenotypes.  

Our callus platform supports screening unknown proteins as it enables easy and 

fast assaying for interactors. Undifferentiated cells are indeed an excellent 

hypothesis-generating tool and cover a wealth of basic cellular processes, such as 

cell cycle regulation, hormone signalling and intracellular trafficking. For proteins 

involved in processes related to specific stages in development, such as for 

example light responses, circadian clock or photosynthesis, whole plants rather 

than cultured cells should be used for screening interactors. Low abundant proteins 

or proteins that show a very discrete expression pattern throughout development, 

might require specific sampling of the tissues where and when the protein of 

interest is expressed. In that light we provided a proof of concept by assaying the 

interaction partners of APC10 and CDKD from the proliferation zone of the leaf 

(cfr. Chapter 5). A recent, more elaborated study in corn showed that TAP 

purification from dissected tissues enables studying dynamics of low-abundance 

protein complexes throughout the growth zone in a developing organ [12].   

Whereas the lower performance of the GSgreen tag in callus purifications could 

(partially) be attributed to a lower protein input, this does not hold true for 
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purifications from plant tissues. Therefore we suggest to use the GS tag for future 

purifications. As this underperforming of the GSgreen tag might be caused by a 

lower binding capacity we further recommend re-evaluating GSgreen purifications 

if more performant affinity matrices for GFP enrichment would become available. 

Comparison of the PROGOS2 and PRO35S using three different bait proteins (CKS1 

described in chapter 4, APC10 and CDKD described in this chapter) resulted in 

similar purification yields. It is therefore advisable to retain the same promoter as 

for which a yield effect was observed when screening for interactors. 

In conclusion, we developed an improved functional interactomics approach that 

sustains high-throughput screening for protein interactions from a portfolio of rice 

tissues. Interaction datasets generated from this workflow will be key in systems-

oriented efforts to understand the biological processes behind plant growth or seed 

yield. It is indeed the only method to retrieve global information on how proteins 

are organized into systems of functionally interacting complexes. We 

demonstrated the potential of our workflow by screening 33 growth and/or seed 

yield-related genes in different rice tissues and will discuss the interaction datasets 

from 3 of these gene in more detail in the upcoming chapters. 

Materials & Methods 

Generation of TAP-compatible ENTRY vectors 

Open Reading Frames from the genes under investigation were amplified from 

expression vectors that contained the sequence and previously were used in the 

TraitMill platform. Primers were designed using the VectorNTI primer design tool 

with the att-sequences added.   

For generating amplicons for N-terminal tagging, primers were selected as such 

that no Kozak sequence was picked up. PCR was performed using the Phusion Hot 

Start II high-fidelity DNA polymerase kit (Thermo Fisher Scientific, Waltham, MA). 

To verify amplification, PCR product was loaded on a 1% agarose gel and run for 

25 min at 100V. Subsequently, fragments of the corresponding size were excised 

from gel and extracted using the QIAquick gel extraction kit (Qiagen, Venlo, The 

Netherlands). Next, the amplicon was cloned in the compatible pDONR™P2R-P3 

vector (Life Technologies, Carlsbad, CA) according to the manufacturer’s 

instructions. Successful recombination was verified by restriction digest analysis 

and sequencing of the Gateway® cassette. 

For C-terminal tagging, primers were selected as such that no stop codon was 

present in the amplicon. PCR was performed using the Phusion Hot Start II high-

fidelity DNA polymerase kit (Thermo Fisher Scientific, Waltham, MA). To verify 

amplification, PCR product was loaded on a 1% agarose gel and run for 25 min at 

100V. Subsequently, fragments of the corresponding size were excised from gel 

and extracted using the QIAquick gel extraction kit (Qiagen, Venlo, The 

Netherlands). Next, the amplicon was cloned in the compatible pDONR™221 vector 

(Life Technologies, Carlsbad, CA) according to the manufacturer’s instructions. 

Successful recombination was verified by restriction digest analysis and 

sequencing of the Gateway® cassette. 

Gateway® cloning to generate TAP expression vectors 
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Recombination of the promoter, gene sequence and TAP tags was performed using 

the standard MultiSite Gateway® cloning technology to generate TAP destination 

vectors. 

The resulting TAP expression vectors were verified by restriction digest analysis 

and transferred to Agrobacterium tumefaciens lba4044/pal4404 by 

electroporation. Transformed bacteria were selected on yeast extract borth 

medium with the appropriate antibiotics and verified by colony PCR using Takara 

Taq polymerase (Takara Bio Inc, Shiga, Japan) according to the manufacturer’s 

instructions. 

Transformation and biomass generation 

Agrobacterium tumefaciens mediated transformation of Oryza sativa (ecotype 

japonica) seeds was performed according to patent WO2001006833 A1 with minor 

modifications. After mechanical dehusking using rice husker Kett US TR120, 150-

200 seeds were surface sterilized with 6% sodium hypochlorite solution for 45 

minutes and washed with sterile water. Afterwards, seeds were transferred to 

induction medium (pH 5.8, 4 g/L MS salts, 1 mL/L MS vitamins, 2878 mg/L L-

Proline, 300 mg/L CasaminoAcids, 30 g/L sucrose, 4 g/L gelrite, 2 mg/L 2,4-D) 

and allowed to germinate at 32°C under continuous light of 3000 lux. Six days 

after germination, the seeds were briefly submerged in liquid infection medium 

(pH 5.2, 4 g/L MS salts, 1 mL/L MS vitamins, 300 mg/L CasaminoAcids, 68.5 g/L 

sucrose, 36 g/L D+ glucose-monohydrate, filter sterilised) containing 100 µM 

acetosyringone and transgenic A. tumefaciens lba4404/pal4404 containing the TAP 

destination vector (OD600 0,05-0,1) and transferred to co-cultivation medium (pH 

5.2, 4 g/L MS salts, 1 mL/L MS vitamins, 300 mg/L CasaminoAcids, 30 g/L sucrose, 

10 g/L D+ glucose-monohydrate, 4 g/L gelrite, 2 mg/L 2,4-dichlorophenoxyacetic 

acid, 100 µM acetosyringone). Co-cultivation was allowed for three days at 25°C 

in darkness. Thereafter, the explants were removed from the seeds, washed with 

250 mg/L cefotaxime and transferred to selection medium (pH 5.8, 4 g/L MS salts, 

1 mL/L MS vitamins, 2878 mg/L L-Proline, 300 mg/L CasaminoAcids, 30 g/L 

sucrose, 7 g/L agarose type 1, 2 mg/L 2,4-dichlorophenoxyacetic acid, 100 mg/L 

cefotaxime, 100 mg/L vancomycin, 35 mg/L G418 disulfate) for incubation under 

continuous light (3000 lux) at 32°C. Twelve days later, microcalli were isolated 

and transferred onto fresh selection medium, refreshed every ten days, and grown 

until 30 g of callus was obtained. The callus material was then harvested in liquid 

nitrogen and stored at -80°C for subsequent analysis. 

Transformation and T0 shoot generation 

For the generation of T0 shoot material, the same transformation protocol was 

utilized as described above. After isolation, the microcalli were transferred onto 

pre-regeneration medium (pH 5.8, 4 g/L MS salts, 1 mL/L MS vitamins, 500 mg/L 

L-Proline, 300 mg/L CasaminoAcids, 30 g/L sucrose, 7 g/L agarose type 1, 2 mg/L 

kinetin, 1 mg/L α-naphthalene acetic acid, 5 mg/L abscissic acid, 100 mg/L 

cefotaxime, 100 mg/L vancomycin, 20 mg/L G418 disulfate) and incubated for one 

week at 32°C under continuous light (3000 lux). Resistant callus was first brought 

to regeneration medium I (pH 5.8, 4.3 g/L MS salts, 1 mL/L MS vitamins, 2 g/L 

CasaminoAcids, 30 g/L sucrose, 30 g/L sorbitol, 10 g/L agarose type 1, 2 mg/L 

kinetin, 0.02 mg/L α-naphthalene acetic acid, 100 mg/L cefotaxime, 100 mg/L 
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vancomycin, 20 mg/L G418 disulfate) for seven days and then transferred to 

regeneration medium II (pH 5.8, 4.3 g/L MS salts, 1 mL/L MS vitamins, 2 g/L 

CasaminoAcids, 30 g/L sucrose, 30 g/L sorbitol, 7 g/L agarose type 1, 2 mg/L 

kinetin, 0.02 mg/L α-naphthalene acetic acid, 100 mg/L cefotaxime, 100 mg/L 

vancomycin, 20 mg/L G418 disulfate) for two additional weeks at 32°C under 

continuous light (lux 3000). Plants whose shoot and root grew more than 1 cm in 

length were ultimately transferred to growth medium (pH 5.8, 2.15 g/L MS 

medium micro and macro, 0.5 mL (0.5 x) B5 vitamins, 10 g/L sucrose, 0.05 mg/L 

α-naphthalene acetic acid, 0.75 g/L MgCl2.6H2O, 2.5 g/L gelrite) and incubated for 

two weeks at 32°C under continuous light (3000 lux) before being harvested in 

liquid nitrogen and stored at -80°C for subsequent analysis. 

Transformation and T1 seedling generation 

Transgenic seeds containing the TAP expression vector were derived from the 

transformation protocol generating shoots described above. Instead of harvesting, 

60 plants, each derived from an individual transformation event, were transferred 

to the greenhouse and further grown until seeds could be harvested. For growing 

seedlings, seeds were first dehusked and sterilized as previously described before 

sowing them on growth medium containing the selective agent (pH 5.8, 2.15 g/L 

MS medium micro and macro, 0.5 mL (0.5 x) B5 vitamins, 10 g/L sucrose, 0.05 

mg/L α-naphthalene acetic acid, 0.75 g/L MgCl2.6H2O, 7 g/L agarose, 20 mg/L 

G418 disulfate). T1 seedlings were grown in a growth chamber under short day 

conditions at 32°C, and harvested two weeks after sowing in liquid nitrogen and 

stored at -80°C for subsequent analysis.  

Expression analysis of the bait proteins 

Material was ground to homogeneity in liquid nitrogen with mortar and pestle. 

About 200 μL of extraction buffer (25 mM Tris-HCl pH 7.6, 15 mM MgCl2, 150 mM 

NaCl, 15 mM pNitrophenyl phospate, 60 mM β- glycerophosphate, 0.1% NP-40, 

0.1 mM Na3VO4, 1 mM NaF, 1 mM PMSF, 1 μM E64, EDTAfree Ultra Complete 

tablet (1/10 mL) (Roche Diagnostics, Brussels, Belgium), 5% Ethylene glycol) was 

added and homogenized with a 1.5-mL pellet mixer. Homogenized samples were 

flash frozen in liquid nitrogen, thawed on ice and centrifuged twice for 15 min at 

4°C at 20,800 g. Protein concentrations were determined by Bradford assay (Bio-

rad, Hercules, CA). Fifty μg of total protein extract was loaded for sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 0.75 mm 12% Mini-

PROTEAN® TGX™ precast gels (Bio-Rad, Hercules, CA) for 20 min at 300 V in TGX 

running buffer (25 mM Tris-HCl, pH 8.3, 1.92M glycine, 35 mM SDS). Resolved 

proteins were transferred to PVDF membranes using Trans-Blot® Turbo™ Mini 

PVDF transfer packs and the Trans-Blot® Turbo™ Transfer system (Bio-rad, 

Hercules, CA) according to instructions of the manufacturer. Blotted PVDF 

membranes were then incubated in blocking buffer (3% Difco™ skimmed milk 

(w/v) in TBS-T buffer (50 mM Tris, 150 mM NaCl pH8.0, 0.1% Triton X-100)) 

overnight at 4°C or 1 h at room temperature (RT) on an orbital shaker. After this 

blocking step, membranes were incubated for 1 h at RT with peroxidase anti-

peroxidase antibody (Sigma-Aldrich, Saint-Louis, MO) in blocking buffer on an 

orbital shaker. Membranes were washed 1 x 15 min and 4 x 5 min with TBS-T 

buffer. Bound antibody was detected by mixing equal amounts of the two 

chemiluminescent reagents from the ECL-kit (Perkinelmer, Waltham, MA) and 
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incubating for 1 min. Membranes were placed in a film cassette and exposed to an 

Amersham hyperfilm™ ECL film (GE Healthcare, Wauwatosa, WI) in a dark room, 

where autoradiograms were also developed. 

Protein extraction for TAP experiments 

Callus material was ground to homogeneity in liquid nitrogen with mortar and 

pestle. Plant material (T0 shoots, T1 seedlings) was ground to homogeneity in 

liquid nitrogen with a hand blender (Braun GmbH, Kronberg, Germany). Crude 

protein extracts were prepared in two volumes of extraction buffer (25 mM Tris-

HCl pH 7.6, 15 mM MgCl2, 150 mM NaCl, 15 mM p-nitrophenyl phosphate, 60 mM 

β-glycerophosphate, 0,1% NP-40, 0.1 mM Na3VO4, 1 mM NaF, 1 mM PMSF, 1 µM 

E64, EDTA-free Ultra Complete tablet Easypack (1/10 mL) (Roche Diagnostics, 

Brussels, Belgium), 5% Ethylene glycol) at 4°C using an Ultra-Turrax T25 mixer 

(IKA Works, Wilmington, NC). Soluble fraction was obtained from isolating the 

supernatans after double centrifugation at 36,900 g for 20 min at 4°C. The extract 

was passed through four layers of miracloth (Merck KGaA, Darmstadt, Germany) 

and kept on ice. 

GS TAP purifications 

For purifications from callus cells, purifications were performed as described by 

Van Leene et al. (2010) [8] with minor modifications. The protein extract was 

added to 25 µL of effective immunoglobulin G (IgG) Sepharose 6 Fast Flow beads 

(GE Healthcare, Wauwatosa, WI), pre-equilibrated with 3x 250 µL extraction 

buffer. After incubation for 1 hour at 4°C under gentle rotation, the beads were 

transferred to a Poly-Prep column (Bio-Rad, Hercules, CA) mounted to a two-way 

valve in a vacuum manifold system (Grace, Columbia, MD) and washed with 375 

µL or 150 column volumes wash buffer (10 mM Tris-HCl pH 7.6, 150 mM NaCl, 

0.1% NP-40, 0.5 mM EDTA, 1 μM E64, 1 mM PMSF, 5% Ethylene glycol). Bound 

complexes were eluted by digestion in a mobicol column (MoBiTec GmbH, 

Göttingen, Germany) using 50 µL wash buffer and 2x 10U (2 x 1 µL, second boost 

after 30 min) AcTEV protease (Life Technologies, Carlsbad, MA) for 1 h at 4°C on 

a shaker. Eluate was collected by two consecutive spinning steps of the mobicol 

column (MoBiTec GmbH, Göttingen, Germany) in a 2 mL Eppendorf tube for 30 

sec at 1,500 rpm at 4°C. In between, 100 µL wash buffer was added to the beads 

to collect residual eluate. The resulting eluate was incubated for 1 h at 4°C under 

gentle rotation with 25 µL effective streptavidin Sepharose High Performance 

beads (GE Healthcare, Wauwatosa, WI), pre-equilibrated with 3x 250 µL wash 

buffer. Streptavidin beads were transferred to a mobicol column and washed with 

100 column volumes or 2.5 mL wash buffer. Complexes were eluted in 40 µL 

NuPAGE sample buffer containing 20 mM desthiobiotin (Sigma-Aldrich, Saint-

Louis, MO) by 5 min incubation on ice, followed by centrifugation at 1,500 rpm at 

4°C.  

For seedling and shoot material, the first affinity purification step was performed 

on a Poly-Prep column (Bio-Rad, Hercules, CA) containing 100 µL of effective IgG 

Sepharose 6 Fast Flow beads (GE Healthcare, Wauwatosa, WI), pre-equilibrated 

with 3x 1 mL extraction buffer, with a peristaltic pump (GE Healthcare, 

Wauwatosa, WI), at flow rate 1 mL/min. The Poly-Prep column was then mounted 

to a two-way valve in a vacuum manifold system for washing with 150 mL or 15 
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column volumes wash buffer (10 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.1% NP-40, 

0.5 mM EDTA, 1 μM E64, 1 mM PMSF, 5% Ethylene glycol). Bound complexes were 

eluted by digestion in a mobicol column (MoBiTec GmbH, Göttingen, Germany) 

using 200 µL wash buffer and 2x 40U (2 x 4 µL, second boost after 30 min) AcTEV 

protease (Life Technologies, Carlsbad, MA) for 1 h at 4°C on a shaker. Eluate was 

collected by two consecutive spinning steps of the mobicol column (MoBiTec 

GmbH, Göttingen, Germany) in a 2 mL Eppendorf tube for 30 sec at 1,500 rpm at 

4°C. In between, 400 µL wash buffer was added to the beads to collect residual 

eluate. The rest of the protocol proceeded similarly as described above. 

GSgreen TAP purifications 

The protein extract was added to 100 µL of effective GFP-Trap® agarose beads 

(Chromotek GmbH, Planegg-Martinsried, Germany), pre-equilibrated with 3x 1 mL 

extraction buffer. After incubation for 1 hour at 4°C under gentle rotation, the 

beads were transferred to a Poly-Prep column (Bio-Rad, Hercules, CA) mounted to 

a two-way valve in a vacuum manifold system (Grace, Columbia, MD) and washed 

with 15 mL or 150 column volumes wash buffer (10 mM Tris-HCl pH 7.6, 150 mM 

NaCl, 0.1% NP-40, 0.5 mM EDTA, 1 μM E64, 1 mM PMSF, 5% Ethylene glycol). 

Bound complexes were eluted by digestion in a mobicol column (MoBiTec GmbH, 

Göttingen, Germany) using 200 µL wash buffer and 2x 40U (2 x 4 µL, second boost 

after 30 min) AcTEV protease (Life Technologies, Carlsbad, MA) for 1 h at 4°C on 

a shaker. Eluate was collected by two consecutive spinning steps of the mobicol 

column (MoBiTec GmbH, Göttingen, Germany) in a 2 mL Eppendorf tube for 30 

sec at 1,500 rpm at 4°C. In between, 400 µL wash buffer was added to the beads 

to collect residual eluate. The resulting eluate was incubated for 1 h at 4°C under 

gentle rotation with 25 µL effective streptavidin Sepharose High Performance 

beads (GE Healthcare, Wauwatosa, WI), pre-equilibrated with 3x 250 µL wash 

buffer. Streptavidin beads were transferred to a mobicol column and washed with 

100 column volumes or 2.5 mL wash buffer. Complexes were eluted in 40 µL 

NuPAGE sample buffer containing 20 mM desthiobiotin (Sigma-Aldrich, Saint-

Louis, MO) by 5 min incubation on ice, followed by centrifugation at 1,500 rpm at 

4°C. 

For seedling and shoot material, the first affinity purification step was performed 

on a Poly-Prep column (Bio-Rad, Hercules, CA) containing 100 µL of effective IgG 

Sepharose 6 Fast Flow beads (GE Healthcare, Wauwatosa, WI), pre-equilibrated 

with 3x 1 mL extraction buffer, with a peristaltic pump (GE Healthcare, 

Wauwatosa, WI), at flow rate 1 mL/min. The Poly-Prep column was then mounted 

to a two-way valve in a vacuum manifold system for washing with 150 mL or 15 

column volumes wash buffer (10 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.1% NP-40, 

0.5 mM EDTA, 1 μM E64, 1 mM PMSF, 5% Ethylene glycol). The rest of the protocol 

proceeded similarly as described above. 

Sample preparation 

Purified protein samples were loaded and separated with a short 7-min run on a 

precast 4-12% gradient NuPAGE Bis-Tris gel (Life Technologies, Carlsbad, CA), 

fixed in 50% EtOH/2% H3PO4 and visualized with colloidal Coomassie Brilliant Blue 

G-250 (Sigma-Aldrich, Saint-Louis, MO) staining. 
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NuPAGE gel containing purified protein samples was destained twice in HPLC-grade 

water (Thermo Fisher Scientific, Waltham, MA) for 1 h and incubated in 25 mL of 

reducing buffer (6.66 mM DTT plus 50 mM NH4HCO3 in HPLC-grade water) for 40 

min to reduce the polypeptide disulphide bridges. Subsequently, thiol groups were 

alkylated by incubating the gel for 30 min in 25 mL of alkylating buffer (55 mM 

iodoacetamide, 50 mM NH4HCO3 in HPLC-grade water) in the dark before washing 

with HPLC-grade water. The zone containing the protein sample was sliced from 

the gel and sectioned into different gel plugs. These were washed twice with 600 

µL of HPLC-grade water and dehydrated in 600 µL 95% acetonitrile twice for 10 

min. The dehydrated gel plugs were submerged and rehydrated in 90 µL trypsin 

digest buffer (12.5 µg/mL trypsin (MS gold; Promega, Madison, WI) in 50 mM 

NH4HCO3 and 10% (v/v) acetonitrile in HPLC-grade water) for 30 min at 4°C. 

Afterwards, trypsin digestion was allowed for 3.5 h at 37°C. Resulting peptide 

samples were sonicated for 5 min in a sonication bath and the solution covering 

the gel plugs (containing trypsinized peptides) were kept aside. Remaining gel 

plugs were completely dehydrated in 95% acetonitrile for 10 min and the 

remaining acetonitrile solution was added to the first fraction of trypsin digests. 

The resulting trypsin-digested sample was completely dried in a SpeedVac for 2-3 

h at 4°C. 

Mass spectrometry analysis using the LTQ velos Orbitrap 

Samples from TAP purifications on callus tissues were analysed using a LTQ Velos 

Orbitrap mass spectrometer. 

A nano LC system (NanoLC Ultra 2D system, Eksigent, Dublin, CA) was connected 

to an LTQ Velos Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, 

MA) with a trapping column (PepMap 100, C18 precolumn with 5-μm particles, 

20mm × 200 μm internal diameter; Dionex), flow rate of 6 μL/min (100% Solvent 

A) and 5 minutes after injection switched in line with an analytical C18 column 

(Acclaim PepMap 100, 3-μm particles, 150 mm × 75 μm internal diameter; 

Dionex). A chip-based nano-electrospray source (TriVersa, Advion Biosystems, 

Ithaca, NY) operated at 1.8 kV.  

Peptides were solubilised in loading Solvent A (2% acetonitrile, 0.1% acetic acid 

(v/v) in HPLC grade water) and 10 μL of the sample was loaded on the trapping 

column. Peptide samples were separated with a 65 min gradient at a flow rate of 

300 nL/min. MS spectra were recorded in the Orbitrap FT analyzer with a resolution 

of 60,000 (at m/z 400) and an automatic gain control (AGC) target setting of 

500,000. The maximum injection time was set to 500 ms, and lock mass was 

enabled (polysiloxane ion at m/z 445.12024). Collision-induced dissociation 

MS/MS spectra were acquired by the ion trap in data-dependent mode, selecting 

up to the 20 most abundant multiply charged precursor ions from the MS 

spectrum. The maximum injection time was set to 50 ms and an AGC setting of 

7,500. Fragmentation was accomplished by collision- induced dissociation 

wideband activation at normalized collision energy of 35 eV and an activation time 

of 30ms. After MS/MS, the m/z precursors were excluded for 30 s.  

Mass spectrometry analysis using the Q Exactive 

Samples from TAP purifications on plant tissues were analysed using a Q Exactive 

mass spectrometer. 
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A nano LC system (Ultimate 3000 RSLC nano, Dionex, Amsterdam, The 

Netherlands) was set up connected in-line to the Q Exative (Thermo Fisher 

Scientific, Waltham, MA), with a trapping column (PepMap 100) of 100-µm internal 

diameter (I.D.) x 20 mm (length) with 5-µm C18 Reprosil-HD beads (Dionex, 

Amsterdam, The Netherlands), a flow rate 6 µL/min and, 5 min after injection, 

switched in-line with a reverse phase analytical separating column (Acclaim, 

PepMap 100) of 75 µm I.D. x 150 mm with 3 µm C18 Reprosil-HD beads (Dionex, 

Amsterdam, The Netherlands). 

Peptides were solubilized in 15 µL of loading Solvent A (0.1% (v/v) trifluoroacetic 

acid, 2% (v/v) acetonitrile in HPLC grade water), and 5 µL of the peptide sample 

was loaded on the trapping column. Peptide samples were separated with a 30-min 

gradient from 2% mobile phase solvent A’ (0.1% (v/v) formic acid in HPLC-grade 

water) to 50% mobile phase solvent B’ (0.1% (v/v) formic acid and 80% 

acetonitrile in HPLC-grade water) at a flow rate of 300 nL/min. The Q Exactive was 

operated in data-dependent mode to automatically switch between MS and MS/MS 

acquisition for the ten most abundant peaks in a given MS spectrum. Full-scan MS 

spectra were acquired in the Orbitrap at a target value of 1E6 with a resolution of 

60.000. The ten most intense ions were isolated for fragmentation in the 

quadrupole, with a dynamic exclusion of 20 seconds. Target value for filling the 

quadrupole was set to 1E4 ion counts. 

Data analysis of mass spectra 

Mascot generic files were created with the Mascot Distiller software. Grouping of 

spectra with a maximum intermediate retention time of 30 s and 0.005-Da 

precursor tolerance was allowed together with a maximum intermediate scan 

count of five if possible. No de-isotoping was used and the relative signal-to-noise 

limit was set to 2. A peak list was generated only when the MS/MS spectrum 

contained more than ten peaks. The Mascot Daemon interface was used to search 

peak lists with the Mascot search engine against the rice annotation project (RAP) 

database [13] and against the Michigan State University rice database (MSU) [14].  

Search parameters for data from the LTQ Velos Orbitrap mass spectrometer in 

Mascot Daemon were as follows: as variable modifications: methionine oxidation 

and methylation of aspartic acid and glutamic acid, as fixed modifications: 

carbamidomethylation of cysteines, as mass tolerance on MS: 10 ppm, as MS/MS 

tolerance: 0.5 Da, as instrument: ESI-TRAP, as peptide charge: of 1+,2+,3+ and 

as protease: trypsin/P, allowing for one missed cleavage. 

Search parameters for data from the Q Exactive mass spectrometer in Mascot 

Daemon were as follows: variable modifications set to methionine oxidation and 

methylation of aspartic acid and glutamic acid, fixed modifications to 

carbamidomethylation of cysteines, mass tolerance on MS 10 ppm, MS/MS 

tolerance 20 mmu, ESI-QUAD as instrument, 2+ and 3+ as peptide charge and 

protease trypsin/P, allowing for 1 missed cleavage.  

In the Mascot result URL, a Mascot select summary was created with following 

settings: significance threshold p>0.01, maximum number of hits AUTO, Mudpit 

scoring, Ion score or expectancy cut-off >0.01, require bold red. Identifications 

were retained when at least two peptides matched a high confidence rank, with at 
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least one peptide unique to the protein. The resulting protein identification list was 

cross-checked against the list of non-specific proteins. Only specific binders were 

retained in the final list. 
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Supplementary information 

Figure S1. Overview of high-throughput screening in callus 

 
Overview of the results from screening 25 baits in callus cells. Each bait protein was tagged 

in an N- and C-terminal fusion construct. The construct for these fusions is specified for 

each bait in the ‘construct’ column. In the ‘bait’ column, the number of times the bait was 

retrieved is given. We only considered baits as retrieved for a certain construct if these 

were found in both purifications. The number of interactors shown reflect the interactors 

that were reproducibly found, i.e. in at least two independent purifications. 

 

Figure S2. Effect of protein input increase for GSgreen purifications 

 
Illustration of the effect of increasing the protein input for GSgreen purifications from 25mg 

to 50mg. As reference, identified interactors for GS purifications are given in the right 

panel. 

 

bait n° construct bait interactors construct bait interactors

total 

interactors

bait 1 PRO35S:GS-bait 2 3 PROGOS2:bait-GSgr 2 0 3

bait 2 PRO35S:GS-bait 2 0 PRO35S:bait-GS 2 3 3

bait 3 PRO35S:GS-bait 2 4 PROGOS2:bait-GSgr 2 2 4

bait 4 PRO35S:GS-bait 2 5 PROGOS2:bait-GSgr 2 4 5

bait 5 PRO35S:GS-bait 1 0 PROGOS2:bait-GSgr 2 1 1

bait 6 PROGOS2:GSgr-bait 2 7 PRO35S:bait-GS 2 8 9

bait 7 PRO35S:GS-bait 2 11 PROGOS2:bait-GSgr 2 6 12

bait 8 PROGOS2:GSgr-bait 2 0 PRO35S:bait-GS 2 2 2

bait 9 PRO35S:GS-bait 2 2 PROGOS2:bait-GSgr 2 0 2

bait 10 PRO35S:GS-bait 2 1 PROGOS2:bait-GSgr 2 1 1

bait 11 PRO35S:GS-bait 2 5 PROGOS2:bait-GSgr 0 0 5

bait 12 PROGOS2:GSgr-bait 1 0 PRO35S:bait-GS 2 4 4

bait 13 PROGOS2:GSgr-bait 2 2 PRO35S:bait-GS 2 12 12

bait 14 PROGOS2:GSgr-bait 2 4 PRO35S:bait-GS 2 5 7

bait 15 PRO35S:GS-bait 2 0 PROGOS2:bait-GSgr 2 0 0

bait 16 PROGOS2:GSgr-bait 0 0 PRO35S:bait-GS 0 0 0

bait 17 PRO35S:GS-bait 2 18 PROGOS2:bait-GSgr 2 2 18

bait 18 PRO35S:GS-bait 1 0 PROGOS2:bait-GSgr 0 0 0

bait 19 PRO35S:GS-bait 2 5 PROGOS2:bait-GSgr 2 0 5

bait 20 PROGOS2:GSgr-bait 2 0 PRO35S:bait-GS 2 9 9

bait 21 PROGOS2:GSgr-bait 2 0 PROGOS2:bait-GSgr 2 1 1

bait 22 PROGOS2:GSgr-bait 0 0 PRO35S:bait-GS 0 0 0

bait 23 PROGOS2:GSgr-bait 2 3 PRO35S:bait-GS 2 78 78

bait 24 PROGOS2:GSgr-bait 2 1 PRO35S:bait-GS 2 5 5

bait 25 PROGOS2:GSgr-bait 2 0 PRO35S:bait-GS 2 3 3

N-terminal fusion construct C-terminal fusion construct

interactors

bait n° construct bait 25mg 50mg construct bait 50mg

bait 3 PROGOS2:bait-GSgr 2 2 2 PRO35S:GS-bait 2 4

bait 4 PROGOS2:bait-GSgr 2 4 6 PRO35S:GS-bait 2 5

bait 7 PROGOS2:bait-GSgr 2 6 7 PRO35S:GS-bait 2 11

bait 14 PROGOS2:GSgr-bait 2 4 4 PRO35S:bait-GS 2 5

GS

interactors

GSgreen
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Figure S3. Overview of high-throughput screening in T0 shoots 

 
Overview of the results from screening of 10 baits in T0 shoots. Each bait protein was 

tagged in an N- and C-terminal fusion construct, but not all construct were effectively 

tested however. The construct for the TAP fusions is specified for each bait in the ‘construct’ 

column. In the ‘bait’ column, the number of times the bait was retrieved is given. The 

number of interactors shown reflect the interactors that found. As only one purification was 

performed per construct, these were not necessarily reproducibly found, hence the 

asterisk. 

 

Figure S4. Overview of high-throughput screening in T1 seedlings 

 
Overview of the results from screening of 5 baits in T1 seedlings. Each bait protein was 

tagged in an N- and C-terminal fusion construct. The construct for these fusions is specified 

for each bait in the ‘construct’ column. In the ‘bait’ column, the number of times the bait 

was retrieved is given. We only considered baits as retrieved for a certain construct if these 

were found in both purifications. The number of interactors shown reflect the interactors 

that were reproducibly found, i.e. in at least two independent purifications. 

 

bait n° construct bait interactors* construct bait interactors*

total 

interactors*

bait 4 PRO35S:GS-bait 1 2 not tested - - 2

bait 7 PRO35S:GS-bait 1 28 not tested - - 28

bait 26 PRO35S:GS-bait 1 1 PROGOS2:bait-GSgr 1 1 2

bait 27 PRO35S:GS-bait 1 2 PROGOS2:bait-GSgr 1 3 5

bait 28 PRO35S:GS-bait 1 0 PROGOS2:bait-GSgr 1 6 6

bait 29 not tested - - PROGOS2:bait-GSgr 1 0 0

bait 30 not tested - - PROGOS2:bait-GS 1 3 3

bait 31 not tested - - PROGOS2:bait-GS 1 2 2

bait 32 PROGOS2:GSgr-bait 1 - PROGOS2:bait-GS 1 6 6

bait 33 PROGOS2:GSgr-bait 0 0 not tested - - 0

N-terminal fusion construct C-terminal fusion construct

bait n° construct bait interactors construct bait interactors

total 

interactors

bait 3 PRO35S:GS-bait 2 18 PROGOS2:bait-GSgr 2 6 18

bait 4 PRO35S:GS-bait 2 4 PROGOS2:bait-GSgr 2 3 4

bait 7 PRO35S:GS-bait 2 31 PROGOS2:bait-GSgr 2 16 32

bait 14 PROGOS2:GSgr-bait 2 0 PRO35S:bait-GS 2 7 7

bait 22 PROGOS2:GSgr-bait 0 0 PRO35S:bait-GS 0 0 0

N-terminal fusion construct C-terminal fusion construct
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Figure S5. Overview of the protein kinases screened in our TAP-MS workflow. 

 
Illustration of the performance of our platform when screening rice kinases as bait. Each 

bait protein was tagged in an N- and C-terminal fusion construct. The construct for these 

fusions is specified for each bait in the ‘construct’ column. In the ‘bait’ column, the number 

of times the bait was retrieved is given. We only considered baits as retrieved for a certain 

construct if these were found in both purifications. The number of interactors shown reflect 

the interactors that were reproducibly found, i.e. in at least two independent purifications. 
 

Supplementary background list and mass spec files. 

Supplementary files can be found through the following link: 

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd

62d78  (password: rice_TAP).  

The established background list based on re-occurrence of a protein over independent 

experiments from different bait groups can be found under filename 

SI_Chapter_5_background_list.xlsx. The mass spec files for APC10 and CDKD interaction 

data described in this chapter can be found in SI_Chapter_6_1_PRO-APC10_MS_data.xlsx 

and SI_Chapter_6_1_PRO-CDKD_MS_data.xlsx respectively. 

Author contribution 

The PhD candidate was in charge for generation of the TAP constructs, the 

transformations, the maintenance and upscaling of callus cell lines and plant 

material, and analysis of the mass spectrometry data. He also wrote the chapter. 

For cloning and transformation, CropDesign employees helped sustaining the 

platform. TAP purifications and mass spectrometry measurements were mainly 

done by employees of VIB.  

 

  

bait n° platform construct bait interactors construct bait interactors

total 

interactors

bait 1 PRO35S:GS-bait 2 3 PROGOS2:bait-GSgr 2 0 3

bait 4 PRO35S:GS-bait 2 5 PROGOS2:bait-GSgr 2 4 5

bait 8 PROGOS2:GSgr-bait 2 0 PRO35S:bait-GS 2 2 2

bait 25 PROGOS2:GSgr-bait 2 0 PRO35S:bait-GS 2 3 3

bait 4 T0  shoots PRO35S:GS-bait 1 2 not tested - - 2

bait 4 T1 seedlings PRO35S:GS-bait 2 4 PROGOS2:bait-GSgr 2 3 4

callus cells

N-terminal fusion construct C-terminal fusion construct

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
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6.2 Ta_HLH, a lead gene linked to cell elongation and seed size 

Importance of grain size for yield 

Grain size is an important yield component. Seed production in rice is determined 

by inflorescence and grain development. The rice inflorescence or ‘panicle’ is the 

terminal component of the rice tiller (the ‘rice stems’). A panicle bears rice 

spikelets, and it’s the spikelets that develop into grains. The spikelet is the basic 

unit of the panicle and could be considered as the rice ‘flower’. The floral organs 

are inside the lemma and the palea. The lemma is a larger protective glume 

covering the floral organs, the smaller one is referred to as the palea. A schematic 

overview of the rice inflorescence is shown in Figure 1. Once (self-) pollinated, the 

ovary ripens into a rice grain consisting of embryo and endosperm, with the lemma 

and palea firmly attached to it. This way they provide mechanical protection. On 

the other hand, the sizes of lemma and palea physically restrict the size of the 

grain (i.e., grain length, width, and thickness) [1]. Therefore, with ideal grain 

filling, the size of the lemma and palea determines the final grain weight. 

Figure 1. Overview of the rice inflorescence 

 
a. A rice panicle, bearing multiple spikelets. b. Floral organs in the spikelet during 

flowering. c. Rice grain, once (self-) pollinated, the ovary ripens into a rice grain 

consisting of embryo and endosperm, with the lemma and palea firmly attached to it. 

 

Recent studies have identified some underlying QTLs (Quantitative Trait Loci) for 

grain weight positively influencing crop yields [2–12]. However, the current 

understanding of the mechanisms of grain weight regulation remains fragmentary, 

and the precise mechanism by which each of the yield-enhancing components 

function is unknown. 

Results from TraitMill 

We screened a Triticum aestivum basic helix-loop-helix (bHLH) gene, Ta_HLH, in 

TraitMill under control of the medium constitutive PROGOS2. Although considered a 
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bHLH, the protein lacks the basic domain necessary for DNA binding. Three 

independent phenotypic yield screens showed a clear positive effect on seed size. 

Indeed, the Thousand Kernel Weight (TKW) parameter was significantly increased 

in the transgenes compared to the null segregants for all three screens. 

Concomitant however, there was a negative effect on the number of panicles and 

thus flowers and on the fill rate. Fill rate is an indication of filling of the seeds and 

is defined as the proportion of number of filled seeds over the number or florets. 

Overall the overexpression of the HLH thus resulted in a neutral to negative yield 

effect. 

Phylogenetic analysis 

Based on sequence similarity, Ta_HLH is closest related to rice loc_os10g26460 

(Figure 2a). This gene was previously denoted as ILI7, part of a seven member 

gene family based on similarity to INCREASED LEAF INCLINATION 1 (ILI1) [13]. 

The Arabidopsis homologs to the ILI family members were previously denoted 

PACLUBUTRAZOL RESISTANCE (PRE). Arabidopsis PRE and rice ILI families 

appeared to have evolved after separation of monocots and dicots suggesting 

functional specification related to specific developmental processes [13].  

Figure 2. Overview of the homologs of TA_HLH in Arabidopsis and rice. 

 
a. Phylogenetic tree illustrating the relation of TA_HLH with the rice ILI and Arabidopsis 

PRE families. b. Overview of the PRE and ILI family members in Arabidopsis and rice 

respectively, and their aliases. BNQ: BANQUO; ATBS1: ACTIVATION-TAGGED 

SUPPRESSOR OF BRI1-103; TMO7: TARGET OF MONOPTEROS 7; KDR: KIDARI; BU1: 

BR UPREGULATED 1; PGL: PROMOTER OF GRAIN LENGTH. 



 

123 
 

Part IV. Unravelling complex traits by complex identification 

 

The PRE/ILI family of proteins represent ‘atypical’ bHLH’s as they do not contain a 

basic domain and consequently are presumed not to possess DNA binding activity 

[13] (Figure S1). Instead, they regulate the activity of other bHLH’s by 

heterodimerisation [13]. By doing so, they perturb the formation of functional 

protein dimers (or multimers) by forming non-functional protein complexes with 

their targets, which they regulate in a dominant negative manner. These proteins 

were referred to as ‘microProteins’ because their actions are analogous to 

microRNAs which are negative regulators of mRNAs [14]. Similar action of 

microProteins also evolved in the animal kingdom, with the Id- and Id2-proteins 

regulating cell-fate choices [15–17] and circadian clock [18] respectively. The 

concept of microProteins was further extended from atypical bHLH proteins to 

other types of proteins which retained a dimerization domain, but lacked a 

functional domain [14]. 

Arabidopsis literature 

In Arabidopsis, at least three of the PRE family members act in tripartite modules, 

positively regulating cell elongation [19–22] (Figure 2). According to this 

mechanism, the PRE proteins attenuate a negative regulator by competitively 

forming non-functional heterodimers, releasing a transcription factor from the 

transcriptionally inactive complex. The activities of this tri-antagonistic module 

occur downstream of several hormonal and environmental stimuli, suggesting that 

these signals converge on this cascade.  

Figure 2. Illustration of the tripartite module Arabidopsis PRE proteins are 

participating in. 

 
Genuine bHLH proteins can bind DNA and activate downstream target genes. An 

atypical bHLH protein suppresses bHLH activity by forming non-DNA-binding 

complexes with the bHLH monomers. The plant PRE/ILI HLH protein sequesters the 

atypical bHLH by forming an attenuated complex, and shifts the equilibrium to 

bHLHs allowing them to form active homodimers. Plant PRE/ILI family proteins 

regulate cell elongation and expansion in response to various hormonal and/or 

environmental factors. 

 

PRE1 for example binds the negative regulator INCREASED LEAF INCLINATION1 

BINDING BHLH (IBH1) [13]. PRE1 expression is activated by brassinosteroids 

(BRs) and gibberellic acid (GA) and repressed by light [23,24], whereas IBH1 
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function is negatively regulated by BRs [13]. IBH1, a HLH-type protein, lacks a 

basic domain required for binding DNA and acts as a transcriptional repressor. It 

interacts with regular bHLH transcription factors and prevents their 

homodimerization required for binding DNA and activating gene expression 

[19,20] Several bHLH proteins, including HOMOLOG OF BEE2 INTERACTING WITH 

IBH1 (HBI1), ACTIVATOR FOR CELL ELONGATION 1 (ACE1), ACE2, ACE3 and 

CRYPTOCHROME INTERACTING BHLH 1 (CIB1) are thus inhibited by IBH1 through 

heterodimerization [19–21]. HBI1, ACEs and CIB1 positively regulate cell 

elongation in response to BRs, GAs, temperature and light signalling [19–21]. In 

the proposed triantagonistic model HBI1, ACEs and CIB1 promote expression of 

cell elongation stimulating factors (e.g. expansins) and are negatively regulated 

through dimerization with IBH1 [19,20]. IBH1 itself can be sequestered through 

dimerization with PRE1, releasing ACEs and HBIs for homodimerization and 

promotion of cell elongation. 

A similar triantagonistic model involves the PRE family member ACTIVATION-

TAGGED BRI1-301 SUPPRESSOR1 (ATBS1, 80.65% coverage, 85.71% similarity 

to TA_HLH) and the putative non-DNA binding HLH proteins ATBS1-INTERACTING 

FACTOR1 (AIF1), AIF2, AIF3 and AIF4. ATBS1 upregulation was shown to 

complement the bri1-301 phenotype (hence, ACTIVATION-TAGGED BRI1-301 

SUPPRESSOR1 or ATBS1), which is a weak mutant of the brassinosteroid receptor 

BRI1 (BRASSINOSTEROID INSENSITIVE 1). Therefore ATBS1 potentially plays a 

role in BR signalling [25]. ATBS1 was also shown to be a target of MONOPTEROS 

in root initiation and is potentially involved in auxin signalling [26]. AIFs negatively 

regulate BR signalling and cell elongation through heterodimerisation with DNA-

binding bHLH transcription factors, and are antagonized by PRE1 and ATBS1 [21].  

PRE-member proteins also regulate cell elongation in response to light signalling. 

Overexpression of KIDARI (PRE6) reduces light sensitivity and causes a long 

hypocotyl phenotype. Expression of KIDARI shows circadian oscillation, and 

KIDARI is proposed to mediate circadian regulation of light-responsive cell 

elongation by inhibiting LONG HYPOCOTYL IN FAR RED 1 (HFR1) [22,27]. HFR1 is 

a bHLH transcription factor that plays a role in plant photomorphogenesis by 

forming non-DNA binding heterodimers with PHYTOCHROME INTERACTING 

FACTORS (PIFs). Similarly, PRE1 antagonizes PHYTOCHROME RAPIDLY 

REGULATED (PAR), which inhibits PIF4 [28]. Hence both PRE1 and KIDARI are also 

in this case involved in a tripartite transcriptional regulation module. The PRE1 and 

KIDARI proteins attenuate PAR and HFR1 activity respectively by competitively 

forming non-functional heterodimers, causing liberation of PIFs from the 

transcriptionally inactive PAR-PIF and HFR1-PIF complexes. 

Rice literature 

The PRE-like family seems evolutionary conserved in encoding transcriptional 

regulators that control cell elongation and expansion in specific organs. Tomato 

STYLE2.1 for example controls cell elongation in the developing tomato style [29]. 

In rice, overexpression of PRE-homologs INCREASED LEAF INCLINATION 1 (ILI1), 

BRASSINOSTEROID UPREGULATED 1 (BU1), PROMOTER OF GRAIN LENGTH 1 

(PGL1) and PGL2 resulted in an increased lamina inclination and enhanced grain 
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size phenotype [13,30,31,32]. The lamina joint is a border region between the leaf 

blade and sheath, and is an especially sensitive organ to brassinosteroids. It is 

severely bent after exposure to active BRs [33] (Figure 3). The increased lamina 

joint inclination is the result of greater cell expansion of adaxial cells relative to 

the adorsal cell in the joint region (Figure 3). Leaf angle is an important trait in 

cereal crops as it allows higher density planting and therefore can have a major 

impact on biomass and grain yield per hectare [34]. Indeed, rice plants with an 

erect leaf phenotype and no negative effect on seed size were estimated to lead 

to a ~30% increase in grain yield under high planting density [35]. Therefore, 

control of bending of the lamina joint via regulating expression of PRE-like proteins 

may lead to increased biomass and grain yield. In addition, overexpression of BU1, 

PGL1 and PGL2 display a valuable phenotype, namely enlarged grains. There is 

also convincing evidence for a role of BRs in plant seed production. Knock-out or 

downregulation of non-redundant BR biosynthetic genes and positive regulators of 

the BR signalling pathway in rice generally result in sterility and/or strongly 

reduced seed yield due to smaller and rounder seeds [35–41].  In contrast, rice 

transgenic plants overexpressing the transcription factors BRASSINOSTEROID 

UPREGULATED 1, a positive regulator of BR signalling have enlarged seeds [42].  

Whereas the molecular mechanisms by which BRs affect seed size remain to be 

determined [43], overexpression of the PRE-like genes in rice led to larger grains 

due to increased cell elongation in the lemma and palea [31,32]. Further studies 

of downstream effects of these proteins may thus provide important insights for 

engineering the plant’s architecture and increasing grain yield. 

BU1 is a positive regulator of BR responses. It is a primary response gene that 

participates in BR-signalling pathways and controls bending of the lamina joint 

downstream of BR signalling components OsBRI1 (for Oryza sativa 

BRASSINOSTEROID INSENSITIVE 1) and OsD1/RGA1 (for Rice heterotrimeric G-

protein α-subunit) [30]. 

ILI1 interacts with OsIBH1 to regulate rice leaf angle antagonistically. The 

brassinosteroid-regulated transcription factor BZR1 (BRASSINAZOLE-RESISTANT 

1) directly binds to the promoter of these two genes to induce ILI1 and represses 

IBH1 expression [13]. In fact, the Arabidopsis representatives, PRE1 and AtIBH1 

were identified through searching for orthologous genes of rice ILI1 and OsIBH1. 

Analogous to their orthologs in Arabidopsis, rice ILI1 binds and inhibits OsIBH1 

activity to regulate cell elongation. The conserved function of ILI1/PRE1 and IBH1 

in rice and Arabidopsis suggests that there could be a rice ortholog of HBI1 

involved in the BR-signalling pathway to control leaf bending.  
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Figure 3. Effect of brassinosteroids on leaf inclination in rice. 

 
This figure illustrates the effect of brassinosteroids on the 

inclination angle of the lamina joint. a. The untreated or wild 

type situation. b. The leaf bending phenotype after induction 

or upregulation of brassinosteroid signalling. The red drawings 

show the lamina joint, the linker between leaf blade and leaf 

sheath, mediating leaf bending. In plants where 

brassinosteroid signalling is induced or upregulated, adaxial 

cell elongation will be promoted, leading to plants that show 

bended leafs. 

 

A closely similar rice protein to TA_HLH is PROMOTER OF GRAIN LENGTH, PGL1. 

PGL1 was found in an antagonistic pair of basic helix-loop-helix (bHLH) proteins 

determining rice grain length through regulation of cell elongation in the lemma 

and palea cells [31]. Consequently, overexpression of PGL1 in lemma/palea 

increased grain length and weight in transgenic rice. Similarly, grain-specific 

overexpression of POSITIVE REGULATOR OF GRAIN LENGTH 2 (PGL2) increased 

grain length [32]. Both PGL1 and PGL2 counteract ANTAGONIST OF PGL1 (APG) 

through heterodimerisation. Silencing of APG produced the same phenotype as 

overexpression of PGL1, suggesting antagonistic roles for the two genes. While 

APG retains a basic domain and the necessary amino acids for DNA binding, actual 

transcriptional activation/repression was not tested.   

So far, only two-component antagonistic pairs were uncovered in rice. It is not 

clear whether these take part in an evolutionary conserved tripartite module, 

similar to Arabidopsis. Further, rice PRE-homologs were only confirmed to function 

in the context of BR signalling. E.g. only Arabidopsis PRE1 but not rice ILI1 was 

induced by GA and auxin [13]. Whether GA and auxins regulate other members of 

the PRE/ILI family in rice remains to be tested. 
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Results 

The aim of the experiment was in fact twofold. First we wanted to find interaction 

partners for the Ta_HLH lead gene. Second, we were seeking for further validation 

of our assay. Therefore part of the proteins we assayed overlap with baits that 

were previously screened using Arabidopsis cell suspension cells by the Functional 

Interactomics group at the ‘Vlaams Instituut voor Biotechnologie’ according to the 

protocol of Van Leene et al., 2008 [44].  We expected that at least part of the 

interactors found in the suspension cells would overlap with homologous 

interacting proteins in rice. For these reasons, the Ta_HLH protein was assayed in 

both callus cells and whole seedlings. Although the latter might be less informative 

in relation to yield (as the yield effect was mainly related to seed size), it could 

help us assess our protocol in this plant tissue. 

To identify interacting partners of TA_HLH, we created a TAP-tagged version of the 

protein for tandem affinity purification coupled to mass spectrometry (TAP-MS).  

We designed translational fusions with an N-terminal GSgreen tag expressed by 

PROGOS2, and with a C-terminal GS tag under control of PRO35S. These constructs 

were introduced in rice callus and T1 seedlings. Expression of the TAP constructs 

in the transgenic tissues was verified at the protein level before performing 

purification experiments (Figure S2). 

We executed in total nine purifications on the two types of material. From 

transgenic callus cells expressing the C-terminal GS-tagged bait, we performed 

two replicate experiments on 50mg total protein. Transgenic callus expressing the 

GSgreen-tagged bait was used for two replicate experiments on 25 mg and one 

experiment on 50mg total protein. In parallel, we screened the bait constructs in 

plant tissues. Transgenic seeds from 60 independent transgenic events were sown 

to grow 2 weeks old seedlings (‘T1 seedlings’) expressing the baits for duplicate 

purifications on both TAP fusions. We could further compare the results (Figure 

3a) with interaction data from previous experiments using C- and N-terminal 

fusions of TA_HLH to the GS TAP tag expressed under the control of the 35S 

promoter in Arabidopsis cell cultures (Figure 3b).  
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Figure 3. Interactions identified from experiments in Arabidopsis and rice tissues. 
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a. Interaction table for proteins retrieved from TAP experiments from rice T0 callus, T0 

shoots and T1 seedlings. For GSgreen constructs, purifications were performed on 25mg 

and 50mg (asterisk) of total protein from transgenic callus. b. TAP interaction data from 

Arabidopsis. The number of replicate experiments for a construct are shown between 

brackets. Proteins identified from the rice protein annotation database with peptides 

matching to the TA_HLH sequence are shown in blue. Proteins that were not reproducibly 

found are shown in grey. Proteins that were identified in experiments with more than two 

other unrelated bait groups, and normally would have been considered non-specific/false 

positive, are shown in red. c. Commonalities between Arabidopsis and rice interactions. 

The protein type is reflected in the shape of the nodes; transcriptional regulators are shown 

as ellipses, proteins involved in histone chaperoning as hexagons and proteins regulating 

protein degradation as rounded squares. The border width of the nodes reflects the amount 

of times the protein was found over the purifications. The node colours illustrate the protein 

family to which the protein belongs: yellow: AIF family of HLH proteins; orange: PAR-like 

family or HLH proteins; green: IBH1-like family of HLH proteins; blue: PRE-like family of 

HLH proteins; purple: NAP family; grey: orphan (UPBEAT1) or not checked. 

 

Since TA_HLH is a wheat protein, its sequence is not annotated in the searched 

databases. Therefore it was only indirectly identified through its rice homologs 

PGL1 and ILI7. In most of the experiments the bait was characterised as PGL1. In 

two experiments from seedlings, it was also found as ILI7. As no peptides were 

identified that uniquely match to PGL1 or ILI7 protein sequences, the 

identifications most likely reflect detection of the bait. We cannot exclude however 

that also the respective PRE-like members were found. We therefore propose that 

these identifications should be looked at as possible isoforms whilst considering 

that mutual interactions between PRE family members were not observed 

previously.  

Despite the evolutionary distance between Arabidopsis and rice, we still found 

reasonable overlap between the interaction datasets. Two families of HLH proteins 

had representatives in both datasets. Loc_os01g14110 and at3g06590 are both 

member of the PAR-like subfamily of bHLH’s, or subfamily 21 as proposed in [45]. 

Other members of this subfamily are PHYTOCHROME RAPIDLY REGULATED 1 

(PAR1) and PAR2, which act as negative regulators of a variety of shade avoidance 

syndrome (SAS) responses. As such, PAR1 and PAR2 antagonise conventional 

bHLH transcription factors by forming heterodimers, and preventing their binding 

to DNA or other transcription factors [46,47] (Figure 4b). If the PAR-like 

interactors we identified act in a similar mechanism, this could hint towards the 

existence of triantagonistic regulation mechanisms in rice. In that case, TA_HLH 

would act as a positive regulator by counteracting the PAR-like negative regulators, 

and releasing conventional bHLH transcription factors to exert their function in 

activating gene expression. PRE1 and KIDARI, Arabidopsis orthologs of the bait 

protein, were already shown to sequester PAR1 in a module that controls 

skotomorphogenesis (seedling development in the dark) and shade avoidance 

[28].  

Another family represented in both Arabidopsis and rice datasets is the ATBS1-

Interacting Factor (AIF) family of HLH proteins. We found a rice ortholog of AIF1 

and Arabidopsis AIF2 in callus and cell suspension cultures respectively. AIF1, for 

which we found the rice ortholog, differs from the other three Arabidopsis AIFs as 

it does not interact with the HLH PRE1 or the conventional bHLH ACTIVATOR FOR 
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CELL ELONGATION1 (ACE1) [21]. It was also the only AIF member involved in BR 

signalling. AIF2 does interact with PRE1 in Y2H assay, and also potentially 

regulates DNA binding activities of BIG PETAL (BPE) and CHRYPTOCHROME 

INTERACTING BHLH 1 (CIB1) in addition to that of ACE transcription factors (Figure 

4c). 

AIFs were included in a larger family of atypical bHLH subfamily together with 

Arabidopsis IBH1 and UPB1 [19]. We found the OsIBH1 protein in rice purifications 

and the UPBEAT1 protein in Arabidopsis purifications. Similar as to what was found 

for the PAR-like interactors, the identification of the rice ortholog of IBH1 suggests 

that a trimodular regulation system is present in rice (Figure 4a). OsIBH1 and its 

Arabidopsis counterpart differ however in some aspects. Arabidopsis IBH is an 

integration point of different regulation mechanism involving BRs, GAs, light and 

temperature [23,24,48], whereas for OsIBH1 only involvement in BR signalling 

could be determined [13]. The UPBEAT1 (UPB1) HLH protein found only in 

Arabidopsis cell suspension cells was shown to control the balance between cellular 

proliferation and differentiation through transcriptional regulation [49] (Figure 4d). 

Strikingly, UPBEAT1 seemed to stimulate rather than inhibit elongation in contrast 

to IBH1, PARs or AIFs. UPB1 binds DNA and effectively activates transcription of a 

set of peroxidases that modulate the balance of reactive oxygen species (ROS) 

between the zones of cell proliferation and the zone of cell elongation where 

differentiation begins [49].  

Apart from HLH proteins, we found another class of potential transcriptional 

regulators. Indeed, we co-purified NAP-(for NUCLEOSOME ASSEMBLY PROTEIN) 

domain containing proteins in both Arabidopsis and rice. NAPs are thought to act 

as histone chaperones, shuttling both core and linker histones from their site of 

synthesis in the cytoplasm to the nucleus. Therefore these proteins may be 

involved in regulating gene expression. 

Apart from proteins involved in transcription regulation we retrieved the DDB1-

CUL4 ASSOCIATED FACTOR (DCAF) together with UV-DAMAGED DNA BINDING 

PROTEIN (DDB1A) and S-PHASE KINASE ASSOCIATED PROTEIN 1 (SKP1) from 

callus. Human DCAF proteins have been reported to interact directly with DDB1 

through the WDxR motif in their WD40 domain and function as substrate-

recognition receptors for CULLIN4-based E3 ubiquitin ligases [50]. Also in 

Arabidopsis, the homolog of human DCAF1 was found to physically interact with 

DDB1 in Y2H assay [51].  
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Figure 4. Homologies with Arabidopsis components hint towards the existence of 

triantagonistic regulation systems in rice. 

 
Proteins identified as potential interactors of TA_HLH (marked with an asterisk) all belong 

to the class of negatively regulating HLH proteins. Data from Arabidopsis hints towards 

participation of TA_HLH in trimodular regulation systems involving the identified interactors 

and conventional bHLH’s as depicted in the figure. a., b. and c. highlight the regulatory 

mechanisms where IBH1, PAR and AIF subfamily members of HLH proteins participate in 

respectively. d. UPBEAT1 seems to be an exceptional case, in which the HLH protein is able 

to bind DNA and activate transcription of peroxireductases in the switch from proliferation 

to differentiation in Arabidopsis roots. Grey dashed line marks homology between the 

proteins.  SAS: Shade Avoidance Syndrome response; ILI1: INCREASED LEAF 

INCLINATION 1; IBH1: INCREASED LEAF INCLINATION1 BINDING BHLH; HBI: HOMOLOG 

OF BEE2 INTERACTING WITH IBH1; BEE: BR ENHANCED EXPRESSION ; BPE: BIG PETAL; 

CIB: CHRYPTOCHROME INTERACTING BHLH 1; PRE1: PACLUBUTRAZOL RESISTANT 1; 

KDR: KIDARI; PARL: PAR-LIKE; PAR1: PHYTOCROME RAPIDLY REGULATED 1; SAUR: 

SMALL AUXIN UPREGULATED; BIM: BES1-INTERACTING MYC-LIKE; ATBS1: ACTIVATION-

TAGGED SUPPRESSOR OF BRI-1 301; AIF: ATBS1-INTERACTING FACTOR; ACE: 

ACTIVATOR OF CELL ELONGATION; UPB1: UPBEAT 1. 

Conclusions 

Rice grain is tightly enclosed by a hull composed of lemma, palea and two empty 

glumes. During the process of grain filling, endosperm cells expand and 

accumulate a massive amount of nutrients, mainly starch. Rice grain weight is 

largely determined by the endosperm size, which is linked to the constraints 

determined by lemma and palea size. Dozens of genes or QTL’s involved in rice 

grain weight were isolated and characterized. In an ideal situation where the entire 

panicle is fully filled, grain weight is determined by grain size.  

PGL1 and APG encode an antagonistic pair of bHLH proteins that interact to 

regulate rice grain length [31]. PGL1 and PGL2 redundantly suppress the function 

of APG to form elongated grains [32]. Phenotypic screening of an overexpression 
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construct of TA_HLH, a wheat homolog of PGL1 and PGL2, in our TraitMill platform 

confirmed a positive effect on seed size. This coincides however with a negative 

effect on the number of panicles and flowers resulting in an overall neutral yield 

effect. The potential of the PRE/ILI family in increasing seed yield is reflected in 

the recent identification of the GW6 (Grain Weight 6) QTL [12]. This quantitative 

trait locus encodes a GCN5-related N-acetyltransferases (GNAT)-like protein that 

harbours intrinsic histone acetyltransferase activity (OsIHAT1). The favourable 

allele of OsIHAT1 resulted in elevated expression, enhancing grain weight and yield 

by enlarging spikelet hulls through increased cell number and accelerated grain 

filling, and increasing global acetylation levels of histone H4. OslHAT1 localizes to 

the nucleus, where it likely functions through the regulation of transcription. 

Interestingly, transgenic overexpression of OslHAT1 resulted in activation of PGL2 

expression [12]. Analysis of ILI1 and BU1, two other members of the family of HLH 

proteins to which PGL1 and PGL2 also belong, in rice hinted towards involvement 

of the BR pathway in affecting rice grain size. A series of mutants related to the 

synthesis and signalling pathway of BR such as d61, brd1 (brassinosteroid 

dependent 1) and short grain1 (sg1) display shorter grain phenotype than their 

wild types [52–54] and confirm the potential involvement of BR in determining 

kernel phenotype. 

To gain insight in potential pathways to increase seed size and make an 

assessment to avoid negatively affecting the panicle and flower number 

parameters, we screened for interaction partners of the TA_HLH gene. TAP 

experiments were performed both in Arabidopsis cell suspension cultures, rice 

callus cells and two weeks old rice seedlings. We retrieved different subfamilies of 

HLH-proteins from Arabidopsis as well as from rice experiments, and found that 

some could be traced back to matching subfamilies. As such, we identified 

representatives of the AIF and PAR families of HLH proteins in both species. In 

addition, we could retrieve UPBEAT1 in Arabidopsis, and OsIBH in rice. We found 

a representative of the AIF-subfamily and the PAR-subfamily of HLH proteins in 

both Arabidopsis and rice. Proteins from these families are considered negative 

regulators of transcription. They act through heterodimerization with conventional 

bHLH’s and prevent these as such to form DNA-binding homodimers that can 

activate gene transcription. In that case, TA_HLH would be part of different 

tripartite modules regulating transcription as described in Arabidopsis. Such a 

triantagonistic model could also be in place for the OsIBH uniquely found in rice 

tissues. We further found UPBEAT1 uniquely in Arabidopsis cells. This is the only 

HLH protein in the dataset for which actual DNA binding and gene activation was 

observed [49]. 

Surprisingly, ANTAGONIST OF PGL1, a direct interaction partner of PGL1 in rice 

picked up by yeast two-hybrid was not retrieved in our experiments. Although the 

overlap between datasets from Y2H and TAP is only modest (10%, [55]), we don’t 

expect that this is the reason of not detecting APG, since we were able to confirm 

other similar interactors that were established through Y2H. Instead we presume 

that the reason of failed detection is the seed specific expression pattern of APG 

[31]. From the transcriptional regulators we did co-purify, an AIF-homolog (100% 

coverage and 75.11% similarity with at3g06590) was tested in the TraitMill 

platform. PROGOS2-driven overexpression led to a significant negative effect for 
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seed size (TKW) compared to the null segregants. This opposite phenotype 

confirms that TA_HLH is antagonising the AIF-like regulators, at least in regulating 

the size of the seeds. 

We were not able to identify the bHLH transcription factors that are downstream 

of the tripartite regulation modules and are responsible for transcriptional 

activation. Possibly binding of each (b)HLH component within the module is 

mutually exclusive. Therefore, to gain a comprehensive view on which 

transcription factors are most downstream of the module where TA_HLH takes part 

in, reciprocal TAP purifications using the IBH1, UPB1, AIFs and PARs as bait could 

be proposed. Further, the reasonably high number of different types of HLH-

binding partners found, suggests that constitutive overexpression of TA_HLH may 

cause concomitant negative effects on the other yield parameters resulting in a 

generally neutral yield phenotype. PRE/ILI family members were indeed shown to 

be able to act redundantly in their function, and aberrant overexpression of an 

additional family member might result in pleiotropic effects. For example, UPBEAT1 

attenuation in the roots by TA_HLH might explain the negative root phenotypes 

for 2 yield experiments, since UPB1 is responsible for control over expression of 

peroxidases that modulate the balance of reactive oxygen species (ROS) between 

the zones of cell proliferation and the zone of cell elongation where differentiation 

begins. Disruption of UPB1 activity alters this ROS balance, leading to a delay in 

the onset of differentiation.  

Specifically from callus tissues, we co-purified a DCAF-DDB1 module and SKP1 

with the TA_HLH bait. These are known to be part of substrate targeting units 

within distinct CULLIN-RING ubiquitin E3 ligases (CRL’s); respectively the CUL4A 

RING (CRL4A) and SKP1-CULLIN1-F-box (SCF) complexes. In the former module, 

the DCAF protein is responsible for substrate recognition whereas the DDB1 acts 

as adapter protein, providing the link with CULLIN4. The C-terminal domain of 

CULLIN then binds to its RING partner, which recruits ubiquitin-loaded E2 enzymes 

for catalysis. The CULLIN nor the RING-box protein partner were retrieved in our 

purifications. SKP1 acts as the adapter protein for an alternative substrate 

targeting unit, an F-box protein within the SCF complex, linking it to CULLIN1. We 

failed to detect the F-box recognition unit in this complex. We also do not know of 

any previous interaction between the SKP1 adapter and DCAF forming a substrate 

targeting unit. At this point, it is unclear whether TA_HLH or PRE/ILI family 

members in general are recruiting this E3 ubiquitin ligase complex to target the 

negative regulator HLH for degradation, or if it is the PRE/ILI members themselves 

that are the targets for proteolysis. But apart from this, this illustrates that TAP 

can provide also insights in protein complex constitutions other than the initial 

complex started from, providing links to the surrounding protein machineries. 

We conclude that tandem affinity purification experiments on the TA_HLH lead, a 

PRE/ILI member within the bHLH family resulted in the successful identification of 

a set of interactors. This dataset helped us in gaining insight in the biological 

functioning of the bait, and gave hints to potential pleiotropic participation in 

complexes containing different HLH family members. This could explain the 

negative phenotypes observed with the gain in kernel weight.  
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Materials & Methods 

Phylogenetic analysis of the PRE/ILI family of HLH proteins 

The protein sequences of the Arabidopsis PRE and rice ILI proteins used in the 

homology analyses were retrieved from TAIR and MSU databases respectively. The 

sequences were aligned with MAFFT [56] by using the L-INS-I option. This iterative 

refinement search sustains global multiple sequence alignments and integrates 

strong local alignments to enrich for alignment of functional domains. The 

Maximum Likelihood trees were calculated with PhyML (Version 3.0) [57]. The 

three was visualised using Dendroscope (Version 3.2.8) [58]. 

Screening of the TA_HLH bait in the rice TAP platforms 

Screening of the bait in callus, T0 shoots and T1 seedlings was done as described 

in the materials and methods in chapter 6.1. 
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Supplementary information 

Figure S1. The PRE/ILI-like proteins are HLH proteins. 

 
MAFFT multiple amino acid sequence alignment of ILI and PRE family proteins and Ta_HLH. 

The red lines indicate the helix regions and the green line indicates the loop region. 
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Figure S2. Expression analysis of the bait protein. 

 

Protein extracts of the transgenic lines were analyzed by immunoblotting with antibodies 

against the GS tag or GSgreen tag to verify protein levels of the TA_HLH bait. a. Bait 

expression levels from callus extracts. b. Expression levels from T1 seedling extracts. 

Molecular marker values are provided in kilo Dalton (kDa) in the left panel. The molecular 

weight of the tagged proteins is 45.6 kDa for the GSgreen-tagged bait and 38.5 kDa for 

the GS-tagged bait. 

 

Figure S3. Primers used in this chapter. 

 

 

Supplementary mass spec files. 

Supplementary files can be found through the following link: 

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd

62d78  (password: rice_TAP)  

The mass spec files for TA_HLH interaction data described in this chapter can be found in 

SI_Chapter_6_2_TA_HLH_MS_data.xlsx. 

Author contribution 

The PhD candidate was in charge of generating the TAP constructs, the 

transformations, maintenance and upscaling of callus cell lines and plant material, 

analysis of the mass spectrometry data. He also wrote the manuscript. TAP 

purifications and mass spectrometry measurements were mainly done by 

employees of VIB.  

  

primer n° name primer sequence

prm27139 attB1 kozak Ta_HLH ggggacaagtttgtacaaaaaagcaggctccaccatgtcgagccgtaggtcaaggtc

prm27155 attB2 Ta_HLH no stop ggggaccactttgtacaagaaagctgggtcggcagtgttgttgggttcag

prm27171 attB2r no start Ta_HLH ggggaccactttgtacaagaaagctgggtggggacagctttcttgtacaaagtggccatgtcgagccgtagg

prm27187 attB3 Ta_HLH stop ggggacaactttgtataataaagttggctacatcagcaagctgc

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
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6.3 SnRK1, a potential yield enhancing gene linked to 

source/sink distribution 

Importance of source/sink distribution for yield 

Plants are autotrophic organisms for carbon assimilation, which implies that they 

assimilate or ‘eat’ carbon dioxide during photosynthesis in chloroplasts and 

subsequently allocate the assimilated carbon throughout the plant. Two types of 

organs can be distinguished: net photoassimilate exporters, mainly mature green 

‘source’ leaves and net importers, the ‘sinks’ e.g., roots, flowers, and storage 

organs like seeds. The general route of photoassimilates can be briefly described 

as follows. Upon fixation of carbon dioxide in the chloroplasts of mesophyll cells, 

triose phosphates either enter the cytosol for mainly sucrose formation or remain 

in the stroma to form transiently stored starch which is degraded during the night 

and enters the cytosol as maltose or glucose to be further metabolized to sucrose. 

In both cases, sucrose enters the phloem for long distance transport or is 

transiently stored in the vacuole. In the majority of plant species, sucrose is 

actively loaded into the phloem through the apoplast. Following long distance 

transport, it is released into sink organs through plasmodesmata (symplastic 

transport) or the cell wall (apoplastic transport), where it enters cells providing a 

source of carbon and energy. In storage organs, sucrose is stored as such or 

transformed to starch for storage in plastids, to oil in oil bodies, or – in combination 

with nitrogen – to protein in protein storage vacuoles and protein bodies.  

Apart from autotrophic, plants are also sessile organisms. Integration of 

environmental signals with local sink establishment, carbon metabolism and sugar 

accumulation is thus particularly important. For example, to build a healthy body, 

plants need 25-30 chemical elements other than carbon, oxygen and hydrogen. 

As the availability of these elements (except for nitrogen in cultured crops) is finite 

per unit land area, plants have to compete for sufficient uptake. In addition, 

different types of stress can result in energy deprivation. Indeed, a reduction in 

photosynthesis and/or respiration is often associated with stress, in turn resulting 

in energy deprivation and ultimately in growth arrest or even cell death [1,2]. 

Stress could thus be partly decoded as an energy-deficiency signal that triggers 

convergent responses independently of the origin of its cause [3]. Hence, plants 

need to co-ordinate carbon assimilation to what their environment permits. Co-

ordinating energy and metabolic homeostasis is thus a major challenge, and an 

intimate relationship exists between energy availability and nutrient availability, 

stress tolerance, survival, cell growth and longevity [1]. Summarized, although 

traditionally associated with sugar deprivation and darkness, energy deficit is, to 

varying degrees, probably also triggered by all adverse conditions that impinge on 

cellular energy and metabolite levels. Based on recent findings, a role of energy 

signalling mediated by SUCROSE NON-FERMENTING RELATED KINASE 1 (SnRK1) 

in the orchestration of transcriptional and post-translational responses was 

suggested [1,4,5]. From these findings, the view emerged that SnRK1 is a major 

regulatory switch that integrates various nutrient and metabolic signalling 

pathways, regulating energy and stress responses [6]. 
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The SnRK1-family of protein kinases. 

The Ser/Thr protein kinase family of SUCROSE NON-FERMENTING RELATED 

KINASE 1 proteins is structurally and functionally analogous to its yeast and 

mammalian counterparts, SUCROSE NON-FERMENTING (SNF1) and AMP-

ACTIVATED PROTEIN KINASE (AMPK) respectively [7]. Similar to their yeast and 

mammalian counterparts, SnRK1 proteins function as fuel gauge sensors that 

sense cellular carbohydrate status and/or AMP/ATP levels in order to maintain 

growth in response to available energy [6,8–10]. As such, SnRK1 kinases regulate 

global metabolism and energy status of the plant, for example in response to low 

glucose/high sucrose levels, dark period, hypoxia, salinity and/or pathogen or 

herbivore attack [5]. They control metabolic and signalling pathways at the post-

translational and transcriptional levels respectively, leading to modulation of 

nitrogen, sucrose, and lipid metabolism, organogenesis, and senescence [4,8]. 

SnRK1 proteins participate as the catalytic (α) subunit in heterotrimeric protein 

complexes, further composed of two regulatory subunits β- and γ [10] (Figure 1a). 

In plants, γ-related subunits homologous to the yeast activating SNF4 subunit can 

be grouped in three classes, KINβγ [11,12], KINγ [13] and the PV42/BsnIP1-type 

[14] proteins. They contain four in-tandem cystathionine β-synthase (CBS) motifs 

that function as dimers to form two domains constituting the site of fixation of the 

regulatory AMP or ATP molecules in mammals [15,16] (Figure 1a). The plant-

specific AKINβγ-types of subunits resulted from the fusion between a γ-type 

protein and a carbohydrate-binding module (CBM) of β-subunits [12]. This CBM 

can mediate the interaction of AKINβγ with two proteins that are related to plant-

pathogen interactions [17]. Curiously, nevertheless this extension AKINβγ proteins 

complement snf4 yeast mutants [11] unlike classical AKINγ-subunits [13] and are 

therefore considered the ‘true’ orthologs of SNF4 [18]. 

The β-subunits include three domains and mediate the interactions between the 

α- and γ-subunits within the heterotrimeric complex (Figure 1a). The functions of 

these three domains were elaborated in studies from Saccharomyces cerevisiae 

and mammals. The association-to-the-complex (ASC) domain located at the C-

terminus allows interaction of the β-subunit with the γ- and α- subunits, enabling 

its role as scaffold [19,20]. An internal kinase-interacting sequence (KIS) 

designates the region comprising the interaction site of the β-subunits with the 

kinase subunit and the carbohydrate-binding module (CBM) [19]. The CBM shows 

characteristics of an N-isoamylase domain and binds in some cases to glycogen in 

mammals [21]. Although this module was found in the β-subunits of all three 

kingdoms, its function in plants remains unclear [22]. Plant β-subunits can be 

subdivided into two classes [13]. The first class including Arabidopsis KINβ1 and 

KINβ2 shares all the above mentioned characteristics with yeast and mammalian 

β-subunits. The other class of atypical KINβ3-subunits is truncated at the N-

terminus and therefore lacks the CBM domain [23]. Despite this deletion, one of 

these atypical proteins complemented the yeast triple β-subunit mutant, 

suggesting that some basic functions have been conserved [23].  

The SnRK1 α-subunit contains an N-terminal protein kinase catalytic domain and 

a C-terminal regulatory domain (Figure 1a). The kinase domain contains an 
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activation loop (T-loop), but phosphorylation of this T-loop did not seem to be 

essential for SnRK1 activity [4]. The regulatory domain interacts with the γ- and/or 

βγ-subunits [24] and contains a ubiquitin-associated (UBA) and a kinase-

associated 1 (KA1) domain. The former could mediate interaction with 

ubiquitinated proteins [25], whereas the latter is responsible for interaction with 

regulatory subunits and upstream phosphatases [11]. The Arabidopsis SnRK1 

family consists of three members, SnRK1.1/AKIN10, SnRK1.2/AKIN11, and 

SnRK1.3/AKIN12, of which the latter is probably a pseudogene [1]. The AKIN10 

and AKIN11 kinases were identified as central regulators of the transcriptome in 

response to darkness and multiple types of stress signals [1]. Overexpression of 

AKIN10 in Arabidopsis leads to metabolic re-programming with resulting delay in 

flowering and senescence of mature plants [1].  Whereas AKIN10 is broadly 

expressed, AKIN11 expression is spatially restricted [26]. Also in contrast to 

AKIN10, overexpression of AKIN11 resulted in early rather than delayed flowering 

[26]. 

Rice contains three SnRK1 genes, which are classified into the SnRK1a (OSK1) and 

SnRK1b (OSK24 and OSK35) sub-families, based on amino acid sequence 

similarities as well as expression patterns [27,28] (Figure 1b). The SnRK1a sub-

family is more closely related to the homologs present in dicots, whereas the 

SnRK1b subfamily is unique to cereals [29]. The conserved function of SnRK1 

protein kinases in rice was demonstrated in the sugar starvation signalling cascade 

in growing seedlings [30]. Studies on rice embryos indicated that SnRK1a/OSK1 

acts upstream of the MYBS1 transcription factor to induce the α-amylase gene 

αAMY3 during the early stages of germination to nourish the embryo through 

degradation of the starchy endosperm [30]. Therefore it plays a key role in 

regulating seed germination and seedling growth in rice. This process is of 

particular importance under conditions of extreme sugar starvation like hypoxia 

[30]. It indeed seems that OSK1 activity is determinant for the tolerance of some 

varieties of young rice seedlings to flooding [31]. OSK1 is thought to play a broader 

role in sugar role than SnRK1b’s, as OSK1 is uniformly expressed in various 

growing tissues, including young roots and shoots, flowers and immature seeds 

[27]. In contrast, the OSK24 and OSK35 are preferentially expressed in the 

caryopsis (the rice grain) [28]. It is therefore tempting to speculate that SnRK1bs 

play some role in the starch accumulation in cereals. Especially the spatial and 

developmental patterns of the OSK24 gene expression appear to be closely related 

to sucrose and starch metabolisms in the developing caryopsis and the leaf sheath 

where sink to source transition occurs [28].  
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Figure 1. Components of plant SnRK1 heterotrimeric complexes. 

 
a. Composition of the heterotrimeric SnRK1 complex and structure of the different subunits. 

The α-subunit (blue) contains a catalytic domain and a regulatory domain. The catalytic domain 

encompasses a regulatory T-loop, whereas the regulatory domain possesses a ubiquitin-

associated (UBA) and a kinase-associated (KA1) domain for binding the β- and βγ-subunits.  

The βγ-subunit (yellow) has two ‘Bateman’, each built from two cystathionine-β-synthase 

(CBS) domains, and a β-interacting sequence (βIS). Resulting from domain fusion throughout 

evolution, the βγ-subunits acquired a carbohydrate-binding module (CBM, orange) at the N-

terminus. Nonetheless, they were the only plant γ-subunits found to complement the snf4 

mutant phenotype in yeast and are therefore considered ‘true’ orthologs of the yeast and 

mammalian γ-subunits.  The β-subunit (red) harbours an association-to-the-complex (ASC) 

domain, containing the sites of interaction with γ- and α-subunits, a CBM and an N-terminal 

extension. The kinase interacting sequence (KIS) encompasses the region comprising CBM and 

interaction site with the α-subunit. KINβ3-subunits are atypical, as they lack the N-terminus 

including the CBM domain. b. SnRK1 subunits encoded in the Arabidopsis and rice genomes, 

and their relation to yeast and mammalian SNF1 and AMPK subunits respectively. Rice 

SnRK1α-subunits can be subdivided in a SnRK1a and cereal-specific SnRK1b subfamily, based 

on sequence similarities and expression patterns. 

 

Regulation of and by SnRK1 complexes 

SnRK1 is a master regulator of metabolism and transcription in response to energy 

deprivation and abscissic acid (ABA) signals, and is inactivated by sugars that 

restore energy balance [4,32,33]. At the post-translational level, SnRK1 directly 

regulates substrates varying from key metabolic enzymes such as sucrose 

phosphate synthase, nitrate reductase and 3-hydroxy-3-methylglutaryl-coenzyme 
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A reductase (HMG-CoA reductase) [7], over transcription factors like FUSCA3 [34], 

to factors regulating cell cycle progression [35] (Figure 2b). Indirectly, SnRK1 

activates adenosine diphosphoglucose pyrophosphorylase (AGPase, the enzyme 

catalysing the first committed step in starch synthesis) in response to high sucrose 

levels, potentially through modulation of its redox-status [36]. In addition, SnRK1 

is able to induce major shifts in gene expression [1] (Figure 2b). More specifically, 

Arabidopsis KIN10 promotes catabolism by regulating expression of a broad array 

of genes involved in a variety of major catabolic pathways that provide alternative 

sources of energy and metabolites. Conversely, a large set of genes involved in 

the energy-consuming ribosome biogenesis and anabolism are co-ordinately 

repressed by KIN10 [1]. SnRK1s control a large number of genes encoding 

transcription factors, chromatin remodelling proteins, and a plethora of signal 

transduction components [4]. Besides their role in metabolism and stress 

responses these kinases regulate virtually all aspects of cell function as well as 

multiple developmental processes. For example, SnRK1 showed crucial in seed 

filling and maturation, and to affect embryo development and cotyledon growth in 

pea [37,38], as well as pollen development in barley [39], and lateral organ 

development and phase transition in Arabidopsis [34] (Figure 2b). Strict regulation 

of the SnRK1 complex’s activity is therefore crucial to maintain normal plant 

functioning and development. Different layers of SnRK1 regulation exist and are 

illustrated in Figure 2a. 

A first layer of regulation is provided by the subunit availability and composition of 

the SnRK1 heterotrimers. Since each subunit of the SnRK1 complex is represented 

by different members in plants, several assemblies are possible in vivo. These add 

up to 12 and 24 options in Arabidopsis and rice respectively. Also, oligomerisation 

between individual heterotrimers is possible and can influence the kinase activity. 

Oligomerisation of SNF1 heterotrimers were observed in the yeast and mammalian 

field [40–43]. How this oligomerisation impacts kinase activity is not yet fully 

investigated. For mammalian AMPK, formation of higher order oligomers was 

associated to an inactive state of the complex which upon activation would 

disassemble into dimeric and monomeric units of the heterotrimeric complex [43]. 

On the other hand, the activation loop of SNF1 becomes inaccessible for 

phosphorylation by upstream kinases when the catalytic subunits form dimers, 

suggesting that also the dimeric forms of heterotrimers would be inactive [44]. 

Yeast and mammalian α-subunits require phosphorylation of a threonine residue 

in the T-loop for kinase activity. In plants, this could not be unambiguously 

determined [1]. The phosphorylation status of the T-loop can be altered by 

antagonising kinases and phosphatases. SnRK1 activating kinases (SnAKs) in 

Arabidopsis [45] and CIPK15 (CALCINEURIN B-LIKE-INTERACTING PROTEIN 

KINASE 15) in rice [46] were proposed as potential upstream regulators, but for 

none of these in vivo biochemical validation could be provided.  As antagonists of 

T-loop phosphorylation, two protein phosphatase 2C phosphatases (PP2C), named 

ABI1 (for ABA INSENSTIVE 1) and PP2C1 were proposed to dephosphorylate 

SnRK1 [33]. These phosphatases are well known negative regulators of the ABA 

pathway. Upon ABA perception, ABA receptors block the repressive actions of ABI1 

and PP2C1, thereby activating SnRK1 activity [47].  
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Remarkably, ABA also represses SnRK1 signalling, through SNRK1-INTERACTING 

NEGATIVE REGULATORS (SKINs) during germination and early seedling growth 

[48]. This may relate to the suggestion that the effect of ABA may differ between 

source and sink tissues in a similar manner as animal hormones control AMPK in 

opposite manner in different tissues [49].  

Apart from kinase activity, also protein stability is a potential layer of regulation. 

In agreement with this, AKIN10 is targeted for proteasomal degradation under low 

nutrient conditions through interplay between two WD40-repeat domain 

containing proteins [50]. Both myo-inositol polyphosphate 5-phosphatase 

(5PTase13) and PRL1 (for PLEITROPIC REGULATOR LOCUS 1) interact with AKIN10 

and regulate the delivery of AKIN10 to the CUL4-DDB1 complex for proteasomal 

degradation [51,52]. It was suggested that 5PTase13 and PRL1 have opposing 

functions regarding AKIN10 stability under low-nutrient and sugar-stress 

conditions. In this model, 5PTase13 acts as a positive regulator of AKIN10 under 

low-nutrient or sugar-stress conditions by reducing the amount of the kinase 

targeted for proteasomal degradation. In contrast, PRL1 acts as a negative 

regulator and facilitates its destruction [50].  

Although T-loop phosphorylation and ubiquitination are the best studied 

mechanisms of regulating activity, several other post-translational modifications 

are known from yeast and mammals, including acetylation, SUMOylation and 

myristoylation [49]. These still have to be fully established for plant SnRK1s 

however. Apart from regulation at the post-translational or complex assembly 

level, SnRK1 activity is further influenced by AMP/ATP ratio and sugar phosphates 

such as glucose-1-phosphate, glucose-6-phosphate and trehalose-6-phosphate. 

Whereas the adenylates probably function through AMP by protecting the T-loop 

from dephosphorylation [53], the sugar phosphates are acting via an intermediary 

factor that is separable from SnRK1 [54]. 
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Figure 2. The SnRK1 complex regulates and is regulated. 

 
a. Overview of the regulatory mechanisms controlling SnRK1 activity. Factors negatively 

regulating SnRK1 function are marked red, whereas positive regulators are depicted 

green. ABA and 5PTase have a more ambiguous control over SnRK1, depending on the 

stress and energy status of the cell and the developmental context.  ABA: abscissic acid; 

SKINs: SnRK1A-interacting negative regulators; PP2C: phosphatase 2C; AMP: adenosine 

monophosphate; PRL1: pleiotropic regulatory locus 1; 5PTase13: myo-inositol 

polyphosphate 5-phosphatase; G6P: Glucose-6-phosphate; G1P: Glucose-1-phosphate; 

T6P: Trehalose-6-phosphate; P: phosphorylation; Ub: ubiquitination. b. The SnRK1 

master regulator controls multiple biological levels. Activated components are marked 

green, repressed components red. FUS3: B3-domain transcription factor FUSCA3; KRP: 

KIP-related protein; P: phosphate; HMG CoA reductase: 3-hydroxy-3-methylglutaryl-

coenzyme A reductase; TCA: tricarboxylic acid cycle 
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Established protein-protein interactions for SnRK1 

Yeast two hybrid experiments using the rice SnRK1 proteins OSK1 and OSK24 

resulted in the identification of respectively 24 and 26 potential interaction 

partners [55]. A representation of the OSK1-interactions is shown in Figure 4f. The 

expected interactions between these α-subunits and the β-subunits 

loc_os05g41220 and loc_os09g20010 were confirmed.  The latter is a member of 

the β3-subfamily that lacks the N-terminal region as mentioned before. Both bait 

SnRKs also interacted with loc_os03g63940, belonging to the class of βγ-subunits 

and loc_os02g38780, a putative 2C protein phosphatase (PP2C). This phosphatase 

could be involved in regulation of the phosphorylation status of the T-loop of the 

two SnRK1’s [55] (Figure 2a).  

Consistent with the observations from the Y2H experiments, the βγ-subunit 

loc_os03g63940 was identified in a complex with OSK1 in TAP tag analyses on rice 

leaves [56]. Interaction data from this study for OSK1 are shown in Figure 4e. 

OSK1 and OSK35, another α-subunit, were used as bait protein. In fact, both baits 

were found associated with the two βγ-subunits in rice, loc_os03g63940 and 

loc_os04g32880 [56]. Also interactions between two β-subunits loc_os0920010 

and loc_os05g41220, and OSK1 were confirmed, whereas OSK35 rather 

associated with β-subunit loc_os05g41220. In addition, both SnRK1α subunits co-

purified the β-subunit loc_os03g20340. Curiously, the TAP experiments did not 

detect any γ-subunits. Instead, OSK24 was identified in association with OSK35. 

This finding, together with the detecting of both βγ- and β-subunits in the same 

protein complex, led to the author’s suggestion that different SnRK1 heterotrimers 

could associate in vivo [56].  

Tandem affinity purification of Arabidopsis AKIN10 

Similar to the experimental set-up for Ta_HLH, the aim of purifying interactors 

from AKIN10 was twofold. First we wanted to obtain a molecular view on the action 

mechanism of the AKIN10 gene in rice. Second, we were seeking for further 

validation by comparing the output from our workflow with the interaction dataset 

resulting from an earlier screen with AKIN10 using Arabidopsis cell suspension 

cells by the Functional Interactomics group at the ‘Vlaams Instituut voor 

Biotechnologie’ according to the protocol of Van Leene et al., 2008 [57].  As the 

SnRK1 complex thus was purified from both Arabidopsis and rice [56], this was a 

feasible opportunity to verify whether a homologous protein is able to participate 

in endogenous complexes. We selected AKIN10 rather than AKIN11 as the latter 

had a more restricted expression pattern [26], which might be less suitable in our 

whole seedling-based screening protocol. Also, it was shown that SnRK1 activity 

in Arabidopsis cells is mostly a function of the AKIN 10 gene product, thus the 

AKIN 11 gene may play a rather restricted role in regulating most plant 

metabolism, stress and/or energy sensing [58]. 

We TAP-tagged and affinity-purified the Arabidopsis α-subunit of the SnRK1 

complex AKIN10. As a sensor and signal transducer for deprivation of sugar and 

energy, AKIN10 targets a broad array of genes that orchestrate transcription 

networks, promoting catabolism and suppressing anabolism [1]. We designed an 
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N-terminal fusion of AKIN10 with the GS tag expressed by PRO35S and a C-terminal 

fusion with the GSgreen tag expressed under control of PROGOS2. These 

translational fusions were introduced in rice callus, T0 shoots and T1 seedlings. 

Expression of the TAP constructs in the different transgenic tissues was verified at 

the protein level before engaging to the actual purification experiments (Figure 

S2). 

We executed in total eleven purifications on the three types of material. From 

transgenic callus cells expressing the C-terminal GS-tagged bait, we performed 

two replicate experiments on 50mg total protein. Transgenic callus expressing the 

GSgreen-tagged bait was used for two replicate experiments on 25 mg and on 

50mg total protein. In parallel, we screened the bait constructs in plant tissues. 

T0 shoots, immediately generated from the transgenic callus cells described above, 

were employed for nonreplicate experiments on the N-terminal fused bait. 

Transgenic seeds from 60 independent transgenic events were sown to grow 2 

weeks old seedlings expressing the baits for duplicate purifications on both TAP 

fusions. We could further compare our results with interaction data from previous 

experiments using C- and N-terminal fusions of AKIN10 to the GS TAP tag 

expressed under the control of the 35S promoter in Arabidopsis cell cultures 

(Figure 3). 
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Figure 3. Interaction data from TAP experiments on the Arabidopsis SnRK1 α-subunit AKIN10 in rice. 

 
Interaction table for proteins retrieved from TAP experiments from rice T0 callus, T0 shoots and T1 seedlings. 

For GSgreen constructs, two replicate purifications were performed on 25mg and 50mg (asterisk) of total 

protein from transgenic callus. The number of replicate experiments for a construct are shown between 

brackets. The rice α-subunits are only accounted for if – in addition to our normal standards- at least one 

peptide uniquely matched the sequence of that specific rice protein and not AKIN10. Protein identifications 

that were not reproducibly found are shown in grey. Potential interactors that were retrieved in multiple bait 

groups and normally would have been assigned as background are marked red. ara: marked when the 

interactor was found in TAP experiments from N- or C-terminal GS-tagged AKIN10 in Arabidopsis cell 

suspensions. Y2H: marked when the interaction was confirmed in yeast-two hybrid interaction screening of 

rice kinases [55]. rice: marked when the protein was found to co-purify with TAPi-tagged OSK1 in rice leaves 

[56]. Target: illustrates how many times a SnRK1 substrate recognition site was found in the protein’s 

sequence. 

 

From the eleven purifications that were performed, we recurrently found multiple 

peptides matching with not only the AKIN10 protein, but also with OSK1, OSK24 

and/or OSK35. Since the AKIN10 sequence was not present in the database we 

used for searching, we could not unambiguously show that the bait was identified. 
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In all purifications, we could detect peptides uniquely matching to OSK1 and not 

AKIN10, whereas OSK24 and OSK35 were unambiguously observed in callus and 

shoot purifications respectively (Figure 3). This hints towards co-purification of 

these protein with the AKIN10 bait. Rice SnRK1 α-subunits from the b-type were 

previously shown to co-precipitate [56]. This finding made the authors suggest 

that SnRK1 heterotrimers are associating in vivo. Our results are in line with that 

finding and hint towards association of different SnRK1 heterotrimers containing 

SnRK1 α-subunits from both the a- and b-type. As mentioned, oligomerisation of 

SNF1 heterotrimers and/or dimerization of α-subunits were previously observed in 

the yeast and mammalian field. It is however not clear what the impact is on the 

kinase activity. Further supporting the general believe that SnRK1s function as 

heterotrimers, we found all three β- and two βγ-subunits present in the rice 

genome co-purified. This thus implies that the Arabidopsis AKIN10 is able to at 

least participate in endogenous rice complexes. Similar as what was observed 

previously, no γ-subunits were detected. Accordingly, it was indicated from a 

phylogenetic study that in fact plant KINβγ-subunits are the true orthologs of γ-

subunit genes from fungi and animals [18].  

Apart from the core constituents of the SnRK1 complex, we retrieved two known 

repressors of SnRK1 activity. We detected a SnRK1-interacting negative regulator 

2 (SKIN2) [48] and its potential Arabidopsis ortholog in rice callus and Arabidopsis 

cell suspension cultures respectively. Interaction of SKIN2 with OSK1 was initially 

detected through Y2H and confirmed in rice embryos [48]. SKIN proteins contain 

a distinct KSD domain that is required for antagonizing OSK1 function [48]. During 

germination and early seedling growth, ABA shifts SKIN2 localisation from nucleus 

to cytoplasm, where it binds and represses OSK1 function [48]. It is thought that 

in this pathway OSK1 regulates source-sink communication during seedling 

growth, whereas under abiotic stress ABA – through SKINs - antagonizes the 

function of OSK1 to restrict seedling vigor [48]. We found a second SnRK1 

repressor in a rice protein homologous to PRL1. Arabidopsis PRL1 potentially 

mediates AKIN10 degradation by acting as the substrate receptor of a CUL4-based 

E3 ubiquitin ligase [52].  

To verify whether some of these co-purifying proteins could be genuine targets of 

AKIN10, we checked for presence of the kinase recognition motif defined [7].  The 

phosphorylation of sucrose synthase by SnRK1 was already established for plants. 

We found various members of the trehalose phosphate synthase (TPS) family as 

potential substrates. A previous study already suggested in vitro phosphorylation 

of Arabidopsis thaliana TPS isozymes containing the SnRK1 consensus recognition 

[59]. Trehalose-6-phosphate (T6P) is known to regulate (inhibit) SnRK1 activity 

through an intermediary factor. It is therefore plausible that SnRK1 controls T6P 

metabolism through regulation of its metabolic enzymes providing a feedback 

mechanism. Another metabolism related target was found in a bifunctional 

aspartate kinase/homoserine dehydrogenase. These two activities catalyze the 

first and the third steps toward the synthesis of the essential amino acids 

threonine, isoleucine and methionine and hint that SnRK1 is controlling these 

committed steps in synthesis of these amino acids.  
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Also OsO3L4 and OsO3L3 (for Oryza sativa OXIDATIVE STRESS 3-LIKE 4 and 3 

respectively) contained the SnRK1 phosphorylation motif. These are homologous 

to the Arabidopsis OXIDATIVE STRESS 3 (OXS 3) protein. OXIDATIVE STRESS 3 

was discovered through Cadmium tolerance selection screening in 

Schizosaccharomyces pombe.  Fission yeast overexpressing either the Brassica 

juncea homolog for OXS3 or the Arabidopsis OXS3 cDNA enhanced tolerance to a 

range of metals and oxidizing chemicals [60]. Analysis of Arabidopsis mutant and 

overexpression lines confirmed a role of OXS3 in oxidative stress tolerance [60]. 

The OXS3 family of proteins share a highly conserved domain corresponding to a 

putative N-acetyltransferase or thioltransferase catalytic site and OXS3 proteins 

localise in the nucleosome, in discrete parts of the chromatin. Therefore it was 

hypothesized that OXS3 might act as a chromatin remodelling factor to anticipate 

stress responses [60]. We found OsO3L4 and OsO3L3 in experiments from rice 

callus, for which OsO3L4 was confirmed through yeast two hybrid experiments 

[55]. The latter hints to direct interaction of the kinase subunit with the OXS-

proteins. Remarkably, OsO3L4 and OsO3L3 (and OXS3-like proteins in general) 

contain the same distinct KSD domain that is necessary for SKIN proteins to 

antagonize OSK1 function (Figure S3). Therefore, OsO3L4 and OsO3L3 could be 

potential negative regulators of SnRK1. 

Another interesting interactor found was MIRNA’S REGULATED AND ABIOTIC 

STRESS INDUCED F-BOX 1 (MAIF1). Although not found reproducibly, previous 

findings from rice hint toward involvement of MAIF1 in the SnRK1 pathway. MAIF1 

expression was found induced by sucrose, ABA and abiotic stresses [61]. Further, 

MAIF1 expression is induced during cell division of root tips and transgenic rice 

plants overexpressing the gene showed promoted root growth and reduced ABA 

sensitivity and abiotic stress tolerance [61]. This implies that under abiotic stress 

conditions, MAIF1 overexpressors lose their root growth constraint. 
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Figure 4. Cytoscape representation of protein-protein interaction data retrieved from SnRK1 in rice 

and Arabidopsis. 

 
Cytoscape networks based on interaction data retrieved from Arabidopsis cell suspension cultures (a.), 

rice T0 callus (b.), T0 shoots (c.), T1 seedlings (d.), 6-8 weeks old seedlings from a study on rice 

kinases [56] (e.), and yeast-two hybrid experiments on rice kinases [55] (f.). The SnRK1 components 

are illustrated as rounded rectangles in blue, yellow and red for α-, βγ-, and β-subunits respectively. 

Other symbols used are: hexagon: chromatin modifier; parallelogram: metabolic enzyme; diamond: 

potential SnRK1 regulator; V-shape: (proteasome-mediated) protein degradation; octagon: 

transcriptional regulator; oval: unknown. Proteins that have a SnRK1 potential substrate recognition 

site in their sequence have border in bold. 
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Conclusion 

Plant growth and development are tightly controlled in response to environmental 

conditions that influence the availability of photosynthetic carbon in the form of 

sucrose. SnRK1 is an important regulation switch involved in controlling plant 

growth and development in response to carbon availability. Developmental 

processes that are regulated by SnRK1s range from embryo development to leaf 

senescence. SnRK1 is most likely involved in the adjustment of metabolism and 

growth in response to starvation. A potential yield benefit is demonstrated from 

transgenic tomato lines overexpressing apple rootstock SnRK1 [62]. These showed 

increased photosynthetic rate, higher starch content in leaves and higher red-

ripening fruits compared to the wild type. The transgenic fruits also ripened ~10 

days earlier compared to the wild type. Further, the transgenic lines had a more 

efficient N-uptake, suggesting that overexpressing SnRK1 can increase both the 

carbon and nitrogen assimilation rate of the plant as well as regulate development 

in fruit [62]. 

Energy status sensing is also of crucial importance in relation to seed yield. Grain 

weight is determined by grain size provided that the entire panicle is fully filled. 

Grain yield in rice can thus be defined as the product of filling efficiency [63]. This 

grain filling rate is characterized by the capability of carbohydrate accumulation in 

the leaves and stems (the source) and the translocation of assimilates from these 

source tissues to the grains (the sink) [64]. Members of the cereal-specific SnRK1b 

subfamily show distinct expression in the caryopsis and are considered to be 

associated with the development of sink tissue capacity in developing seeds 

[28,65]. They could therefore provide a potential target for improving seed yield.  

We utilised our established TAP platform to identify potential interactors for the 

Arabidopsis α-subunit of the SnRK1 complex in rice. The strength of our workflow 

is illustrated by the retrieval of not only the core complex members, but also known 

regulators. In addition, we uncovered potential new regulators and even putative 

SnRK1 targets, as some interactors contained the kinase recognition motif for 

phosphorylation. 

From retrieval of the expected β- and βγ-subunits, we could deduce that the 

Arabidopsis AKIN10 protein is able to participate in endogenous rice heterotrimeric 

complexes. Similar to observations from earlier experiments on the rice α-subunits 

of the SnRK1 complex [55,56], the bait seemed to interact with the other α-

subunits. This was also observed for yeast SNF1 and mammalian AMPK subunits 

[43,44]. The physiological significance of this behaviour is however still unclear. 

Also in line what was earlier observed, we could not detect interaction with a γ-

subunit. A potential cause suggested was the lack of an annotated γ-subunit in the 

rice protein databases [56]. Another possibility is that the βγ-subunits we did 

retrieve are the true orthologs for yeast SNF4 [18], and that γ-subunits are simply 

not participating in in vivo SnRK1 complexes.  

Apart from the core complex, we were able to retrieve two known negative 

regulators of SnRK1 activity. SKIN2 is regulated by ABA and retains SnRK1 in the 

cytoplasm upon stress, thereby preventing SnRK1 to enter the nucleus and trigger 

responses for mobilisation of nutrients [48]. The other repressor is a potential rice 
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homolog of PRL1 and functions in targeting SnRK1 for proteolysis through the E3 

ubiquitination pathway [52]. Further, we found OXS3-like proteins as novel 

potential SnRK1 regulators since these also contain a KSD domain necessary for 

SKIN proteins to antagonise SnRK1 activity [48]. It is therefore plausible that 

OXS3-like proteins, similar to SKINs, negatively regulate SnRK1. OXS3-like 

proteins may on their turn be regulated by SnRK1, as both interactors contained 

potential SnRK1 phosphorylation sites. Previous studies presumed the OXS3 

proteins to be chromatin remodelling factors that anticipate stress responses [60]. 

Also SNF1 and AMPK are both involved in regulating chromatin remodelling. AMPK 

can phosphorylate histone H2B, thereby activating transcription in response to 

stress [66], while SNF1 can activate gene expression by histone H3 acetylation, 

probably through recruiting the acetyl-transferase GCN5 (for GENERAL CONTROL 

OF AMINO ACID SYNTHESIS 5) [67]. Finding two proteins that could be linked to 

chromatin remodelling in our interaction dataset is in line with these observations. 

Through presence of the kinase substrate motif for SnRK1 in their amino acid 

sequence, we further tagged two sucrose phosphates, six trehalose-phosphate 

synthases and a bifunctional aspartate kinase/homoserine dehydrogenase as 

potential SnRK1 targets. While sucrose synthases are known SnRK1 substrates, 

and phosphorylation Arabidopsis TPS isoforms was already confirmed in vitro, the 

bifunctional aspartate kinase/homoserine dehydrogenase and the earlier 

mentioned OXS3-like proteins are new and yet uncharted SnRK1 substrates. This 

hints that our protocol is sensitive enough to retrieve potential substrates of the 

SnRK1 kinase. 

Unfortunately, although SnRK1 is known to regulate some transcription factors as 

FUS3 [68] and PETAL LOSS [69] in Arabidopsis and possibly MYBS1 in rice [30], 

we could not detect any transcriptional regulators in our TAP experiments. This in 

contrast to Y2H data from a kinase study, where multiple transcription factors were 

identified as potential interactors of OSK1 [55] (Figure 4f). One explanation could 

be that the interaction between SnRK1 and the transcription factors is too weak to 

survive the lengthy TAP protocol. Another possibility is that we simply didn’t assay 

the complex in the right physiological or developmental context. Indeed, the cDNA 

library used for Y2H analysis was based on a pool of RNA extracts from multiple 

conditions [55]. This greatly enlarges the chance to detect interactors available in 

any conditions, but also hampers interpretation of the results. In our system, both 

T0 callus, T0 shoots and T1 seedlings were grown on saturating levels of sucrose 

to sustain growth. It will be interesting to see if the complex constitution would 

change in relation to altered growth conditions.  

Based on our filtering methods, some interactors would have been missed (Figure 

2, proteins marked red). The only reason we could retrieve these proteins from 

the background list, is that their interaction with the SnRK1 complex was 

previously described. This illustrates the possible weakness of a subtraction list 

based on recurring proteins over independent purifications. Not only clear artefacts 

such as background proteins aspecifically binding tag or beads are included in the 

subtraction list, but also some bona fide interactors that simply bind to a broad 

range of proteins in vivo. Including quantitative measures such as normalised 
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spectral abundance factors could in this case help in indicating which frequently 

co-purifying proteins could be specific interactors in this case [70].  

Materials & Methods 

Screening of the AKIN10 bait in the rice TAP platforms 

Screening of the bait in callus, T0 shoots and T1 seedlings was done as described 

in the materials and methods in chapter 6.1. 

Supplementary information 

Figure S1. Primers used in this chapter. 

 
 

Figure S2. Expression analysis of the bait protein. 

 
Protein extracts of the transgenic lines were analyzed by immunoblotting with antibodies 

against the GS tag or GSgreen tag to verify protein levels of the AKIN10 bait. a. Bait 

expression levels from callus extracts. b. Expression levels from T0 shoot extracts. c. 

Protein expression from T1 seedling extracts. Molecular marker values are provided in kilo 

Dalton (kDa) in the left panel. The molecular weight of the tagged proteins is 98.8 kDa for 

the GSgreen-tagged bait and 81.8 kDa for the GS-tagged bait. 

 

primer n° name primer sequence

prm27131 attB1 kozak SnRK1 ggggacaagtttgtacaaaaaagcaggctccaccatgttcaaacgagtagatgagttta

prm27147 attB2 SnRK1 no stop ggggaccactttgtacaagaaagctgggtcgtttgaaggaggaaactttttgaagtg

prm27163 attB2r no start SnRK1 ggggaccactttgtacaagaaagctgggtggggacagctttcttgtacaaagtggccatgttcaaacgagtagatgagt

prm27179 attB3 SnRK1 stop ggggacaactttgtataataaagttggtcagaggactcggagct
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Figure S3. SKIN2 and OXS3-like proteins share the KSD domain. 

 

 
Sequence alignment of rice SKIN and OXS3-like proteins as described in [48] and [59]. 

The KSD domain, described by [48] is shown in highlighted with the red rectangle. 

Alignment was performed using the MAFFT tool [71], using the L-INS-I option. This 

iterative refinement search sustains global multiple sequence alignments and integrates 

strong local alignments to enrich for alignment of functional domains. 
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Supplementary background list and mass spec files. 

Supplementary files can be found through the following link: 

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd

62d78  (password: rice_TAP).  

The mass spec files for SnRK1 interaction data described in this chapter can be found in 

SI_Chapter_6_3_SnRK1_MS_data.xlsx. 

Author contribution 

The PhD candidate was in charge of generating the TAP constructs, the 

transformations, maintenance and upscaling of callus cell lines and plant material, 

analysis of the mass spectrometry data. He also wrote the manuscript. TAP 

purifications and mass spectrometry measurements were mainly done by 

employees of VIB.  

  

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
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6.4 Golden2-Like transcription factor: boosting photosynthesis 

through chloroplast development 

Introduction 

Plants use the energy of the sun to ‘fix’ or convert atmospheric CO2 into organic 

compounds. This fixed carbon is used for developing a healthy plant body and to 

allocate the sugars or starches to the seeds or fruits that we harvest for food. 

However, not all plants are able to exert this carbon conversion step as efficient 

as other plants do.  The majority of plants, including rice, first fix CO2 into a three-

carbon (C3) compound, phosphoglycerate. This reaction, known as C3 

photosynthesis, is catalysed by ribulose bisphosphate carboxylase (RubisCo). This 

enzyme is inherently inefficient, because it evolved from an environment that 

initially contained no oxygen. Consequently, RubisCo has low selectivity in 

distinguishing CO2 from O2 as a substrate. Catalysing the reaction with oxygen 

results in photorespiration instead of photosynthesis, thus dramatically reducing 

the photosynthetic efficiency. In addition, this selectivity of RubisCo for CO2 is 

temperature sensitive, becoming poorer at higher temperatures. Net losses of 

carbon by this reduced photosynthetic efficiency are estimated at 25% [1]. 

Some flowering plants evolved to a more efficient photosynthetic pathway with a 

4-carbon (C4) compound, oxaloacetate, as the first photosynthetic intermediate. 

The advantage of C4 over C3 photosynthesis is mainly due to 

compartmentalisation of reactions, based on the Kranz anatomy of the leaves. In 

brief, a typical grass leaf is made of a blade and sheath regions delimited by a 

ligule. The leaf is divided longitudinally by several parallel veins, with the largest 

vein being the midrib. Surrounding the veins are rings of bundle sheath cells, which 

are on their turn surrounded by mesophyll cells. In C3 grasses (e.g. wheat, rice, 

barley) only the mesophyll cells are photosynthetic, whereas in C4 plants (e.g. 

maize) both bundle sheath and mesophyll cells are photosynthetic (Figure 1). This 

is the so-called ‘Kranz’ anatomy. The two cell types in the Kranz anatomy each 

have different types of chloroplasts that accumulate complementary 

photosynthetic enzymes. Initially, CO2 is assimilated in the mesophyll cells by 

phosphoenol pyruvate carboxylase (PEPC), an enzyme insensitive to oxygen. 

Malate, derived from oxaloacetate, then diffuses to the bundle sheet cells which 

contain RubisCo. There, malate is decarboxylated and the released CO2 is fixed by 

RubisCo. This mechanism thus concentrates CO2 around RubisCo in the bundle 

sheet cells which favours the carboxylation reaction, resulting in higher 

photosynthetic efficiency [2]. In fact, this also results in a net increase in water 

and nitrogen use efficiency [2,3]. Because storage of CO2 in the bundle-sheath 

cells results in a lowering of the CO2-levels in the mesophyll cells, CO2 diffuses 

more swiftly into the leaf. Stomata can thus be smaller and/or less numerous, 

preventing water loss due to transpiration. Also, because RubisCo activity is more 

efficient in C4 plants, less of the protein is needed, saving nitrogen resources [2,3]. 

C4 plants are therefore better adapted to hotter and dryer environments. Also C4 

species that do not rely on the Kranz anatomy were discovered [4,5]. These single 

cell C4 (SCC4) species also seem to compartmentalise their photosynthetic 

reactions, but in this case by two types of chloroplasts within the same cells [6]. 
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In both the Kranz anatomy-based as the single cell C4 species, 

compartmentalisation is only possible with the advent of two complementary types 

of chloroplasts. A thorough understanding of plastid development, and the 

formation of dimorphic chloroplasts is therefore crucial to engineer C3 

photosynthesis for higher efficiency. 

Figure 1. Overview of C3 versus C4 metabolism. 

 

Rice is a C3 photosynthetic organism. This means that only the mesophyll cells are 

photosynthetic (filled green in the picture), and that all photosynthetic cells contain one 

type of chloroplasts (outlined in white). These fix CO2 by RubisCo activity. Due to the 

ambiguous carboxylase and oxygenase activity of RubisCo, RuBP can be oxidised instead of 

carboxylated, resulting in loss of substrate and consumption of energy. C4 plants bypass 

this low selectivity of RubisCo by actively delivering and concentrating CO2 to a specific 

compartment where the RubisCo enzyme resides. For this, C4 plants express two types of 

chloroplasts. One type resides in the mesophyll cells, whereas another type is located in the 

bundle sheath cells. The chloroplasts in the mesophyll cells incorporate carbon dioxide 

through the action of PEP carboxylase, an enzyme inert to oxygen. The resulting 

oxaloacetate is converted to malate and transported to the chloroplasts in bundle sheath 

cells. There, malate is decarboxylated, and the resulting CO2 is used to generate 

carbohydrates by the conventional C3 pathway. RubisCo: Ribulose bisphosphate 

carboxylase; RuBP: Ribulose-1,5-bisphosphate; PEPC: phosphoenol pyruvate carboxylase; 

OA: oxaloacetate; PEP: phoshpoenol pyruvate. 

 

Chloroplast differentiation in flowering plants is influenced by both environmental 

and developmental cues. From a developmental perspective, there is a major 

difference in chloroplast differentiation for C3 compared to C4 plants. C3 plants 

require only one single chloroplast type for all photosynthetic cells, whereas in C4 

plants, chloroplasts will develop from a default state comparable with C3 

chloroplasts to specialised forms according to the cell type they reside in [7,8]. 
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Chloroplasts functioning in mesophyll cells will sustain carbon fixation and 

conversion to malate (by expressing PEPC, pyruvate phosphate dikinase (PPDK) 

and NADP malate dehydrogenase (NADP-MPDH). Bundle sheath cell chloroplasts 

on the other hand will accumulate NADP-Malic enzyme (NADP-ME) and RubisCo 

for malate decarboxylation and actual photosynthesis [9]. Distinct regulatory 

mechanisms must therefore operate in mesophyll cells and bundle sheath cells of 

C4 plants to control chloroplast development. 

GOLDEN2-like transcription factors 

One of the few established transcriptional regulators of chloroplast development 

are the GOLDEN2-LIKE (GLK) transcription factors. GOLDEN2 was first 

characterised in maize [10]. Later it was found that plant species contain one to 

four paralogous GOLDEN2-like genes, and that these regulate chloroplast 

development [11,12]. The GLK genes are members of the GARP (after maize 

GOLDEN2, the ARR B-class proteins from Arabidopsis, and Chlamydomonas Psr1) 

superfamily and contain one distant MYB-related domain and a specific GOLDEN2 

terminal domain [13,14].  

GLK genes are required for chloroplast development and for chloroplast 

specialization in C4 plants [15]. In maize, two GLKs are expressed; GOLDEN2 and 

GOLDEN2-LIKE 1 (GLK1). The GOLDEN2 gene is expressed in bundle sheath cells 

whereas the GLK1 gene is expressed in mesophyll cells [14]. Moreover, the 

golden2 mutation led to aberrant bundle sheath chloroplasts. Therefore, the GLK 

transcription factors could be the genes to trigger functional differentiation of 

bundle sheath cells. The extent to which compartmentalization of GLK gene 

function in maize is representative of a more general C4 regulatory mechanism 

has not yet been investigated however.  

GLK transcription factors also occur in pairs in C3 species like Physcomitrella 

patens [15], Arabidopsis [11], tomato [16] and rice [14]. In all cases, the GLK 

proteins are expressed in all photosynthetic cells. In P. patens and Arabidopsis, 

the gene pairs are probably redundant in gene function [15]. The rice GLKs show 

orthologous relationship with their maize counterparts; OsGLK1 is an ortholog of 

ZmGLK1 and OsGLK2 is an ortholog of GOLDEN2 [14]. As such, GLK gene 

duplication in this lineage preceded the speciation of rice and maize and evolution 

of C4 physiology associated with chloroplast dimorphism [12]. Despite this, 

OsGLK1 and OsGLK2 regulate chloroplast development in both bundle sheath and 

mesophyll cells [12]. 

Studies from different C3 plant species pointed out that GLKs are involved in light 

adaptation in plants. Observations from rice overexpression lines for OsGLK1 

strongly suggest that OsGLK1 is controlled by light and phytohormones, and that 

it is a key regulator of chloroplast development [17]. A potential pathway for 

OsGLK1 is that the transcription factor upregulates sigma factor genes (SIG) and 

other nuclear encoded genes for photosynthetic machinery. Then SIGs, together 

with PEP (plastid-encoded plastid RNA polymerase) core subunits, induce 

expression of plastid encoded genes for photosynthetic machinery. Consequently, 

proplastids develop into chloroplasts and acquire photosynthetic function [17]. 

Experiments from Arabidopsis showed that AtGLK1 and AtGLK2 interact with 
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proline-rich regions of G-box-binding bZIP factors [18]. GLK1 is functionally 

redundant with GLK2. Double mutants are pale green in all photosynthetic tissues 

and show reduced granal thylakoids in chloroplasts [11]. This pale green 

phenotype was also observed for rice double mutants [19]. 

In tomato, GLK1 was found to be more important in leaves while GLK2 is more 

predominant in fruits. Overexpression of GLKs resulted in increased chlorophyll 

and carotenoid content, as well as increased photosynthesis and carbohydrate 

accumulation [16]. Physcomitrella patens GLK genes regulate chloroplast 

development in the moss [15]. Together, these findings indicate that transcription 

factors encoded by GLK genes positively regulate chloroplast development by a 

mechanism conserved widely in the plant kingdom. 

Golden2-like transcription factor in TraitMill 

The rice GOLDEN2-like gene OsGLK1 was screened in TraitMill. Whereas its paralog 

OsGLK2 contains a nuclear localisation signal (NLS) similar to GOLDEN2 in maize 

and the Arabidopsis GLKs, GLK1 has no classical NLS [14]. The gene was 

overexpressed under control of PROGOS2, a medium constitutive promoter, and 

showed a positive yield phenotype expressed as total weight of the seeds per plant. 

This yield phenotype was mainly driven by a higher number of seeds combined 

with a concomitant higher fill rate as compared to null segregants. Fill rate is an 

indication of filling of the seeds and is defined as the proportion of number of filled 

seeds over the number or florets.  

Tandem affinity purification of OsGLK1 

We screened the OsGLK1 protein as bait in tandem affinity purification 

experiments, followed by mass spectrometry (TAP-MS) to identify potential 

interactors. For this, we designed bait constructs encompassing an N- and C-

terminal fusion of the GS tag, driven by the PRO35S, and introduced these 

constructs in rice callus. We performed two replicate experiments from 50mg total 

protein on transgenic callus expressing each fusion construct. These four 

independent TAP experiments from callus resulted in the identification of four 

interactors that could be confirmed from at least two independent purifications 

(Figure 2). Additionally, we found one protein that was retrieved in only one 

experiment. Remarkably, we only found the bait and an importin for the N-terminal 

fusion, suggesting that this construct might not be functional. 
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Figure 2. Interaction data for the OsGLK1 bait. 

 
Interaction table for proteins retrieved from TAP experiments from rice T0 callus. For both N- 

and C-terminal fusions, two replicate purifications were performed on 50mg of total protein 

extract. Potential interactors that were retrieved in multiple bait groups and normally would 

have been assigned as non-specific/false positive are marked red. 

 

GLK1 interactors from rice callus mainly confirm role in light 
perception 

From our interaction dataset, we found two proteins potentially related to light 

perception and signalling. One of these is annotated as the rice ortholog of 

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). COP1 is a protein involved in 

ubiquitin-mediated protein degradation and represses photomorphogenesis [20], 

in part by degradation of transcription factors which mediate light response [21].  

The other is plant-specific domain TIGR01589 family protein. This interactor has a 

very similar expression pattern to OsGLK1, as could be derived from 

Genevestigator data for anatomy and development (Figure S1). The upstream 

sequence of the gene contains a G-box, a well-characterized light-responsive 

element (LRE) [22]. However, presence of the G-box alone in a gene’s promoter 

is insufficient to confer light regulation of gene expression [23]. Data from the two 

potential Arabidopsis orthologs at3g55240 (68.42% coverage, 80% similarity) and 

at5g02580 (70.33% coverage, 79.69% similarity) further hinted towards 

involvement in the light signalling pathway. Both genes also contain a core G-box 

in their promoter regions. For at3g55240, binding of the LONG HYPOCOTYL 5 (HY5) 

transcription factor to its promoter was confirmed experimentally [24]. HY5 is a 

basic leucine zipper (bZIP) transcription factor involved in light-regulated 

transcriptional activation of G-box-containing promoters [25]. In addition, the 

gene was found to contain an unstable, circadian clock-regulated transcript [26]. 

Plants overexpressing the gene were phenotypically characterised as pale green, 

with fast plant development and taller growth than wild-type plants [27]. This 

phenotype resembles that of wild type plants grown under weak light conditions. 

Therefore the gene was designated PEL for ‘PSEUDO-ETIOLATION IN LIGHT’ [27]. 

The PEL overexpressors had normal photosynthetic activity and relatively normal 

chloroplast structure except for a lower level of membrane stacking and starch 

accumulation [27]. Transcripts of the gene were preferentially expressed in rosette 

leaves in wild-type plants. Downregulation of the gene by RNAi led to plant death 
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at very early stages of development, hence the knockout phenotype of the 

at4g55240 gene may be lethal [27]. At5g02580 is induced by PHYTOCHROME 

INTERACTING FACTOR 5 (PIF5), and its promoter region is bound by PIF1/PIL5 

and PIF3 [28–30]. Phytochrome interacting factors (PIFs) are in general involved 

in regulating response in absence to light. They repress chlorophyll and carotenoid 

biosynthesis by binding sequence-specifically to a core DNA G-box motif [31].   

From these observations from Arabidopsis, it is likely that the TIGR01589 family 

protein indeed is involved in chloroplast development. The etiolated phenotype 

resulting from overexpressing one of the homologs suggests that it might be an 

antagonist of OsGLK1. A poplar homolog [63.37% coverage, 76.56% similarity] 

was tested in TraitMill under control of the PROGOS2 and also showed a negative 

trend in Greenness before flowering. This fits with the phenotype from PEL 

overexpression in Arabidopsis.  

Conclusion 

Corn GOLDEN2, was one of the first transcription factors identified through genetic 

analysis as potentially playing a role in C4 photosynthesis [32]. Also, the GOLDEN2 

transcript was enriched in bundle sheath cells, and GLK1 was enriched in mesophyll 

cells [10,14]. The function of GOLDEN2 and its paralog GLK1 were further 

elucidated through the characterisation of the homologs in Arabidopsis thaliana. 

Double mutants of the two Arabidopsis GLK genes remained pale green throughout 

development and showed reduced thylakoid stacking [11], a phenotype that was 

also observed for rice double mutants [19]. Furthermore, AtGLK1 and AtGLK2 were 

found functionally redundant. Recent studies demonstrated that the regulation of 

chloroplast development by light, auxin/cytokinin and plastid-derived retrograde 

signals is dependent on the GOLDEN2-LIKE transcription factors (GLKs),  which 

are required for the expression of several chlorophyll biosynthesis genes [34], 

[35]. Characterization of transcriptional targets of AtGLK1 and AtGLK2 identified 

at least 100 targets, most of which encode components of the photosynthetic 

apparatus, such as photosystem I and II, as well as tetrapyrrole biosynthesis [33]. 

The function of GLK transcription factors seems to be conserved in rice, as GLK1 

controls the expression of photosynthesis-related nuclear genes [17]. 

Overexpression of GLK1 induces chloroplast development in rice. Therefore, GLK 

transcription factors are positive regulators of chloroplast development. 

Overexpression of GLK transcription factors can be beneficial for fruit/seed quality. 

This was shown in tomato, where overexpression of GLKs increased fruit quality 

without affecting non-fruit parts. This means that overexpression of GLKs can be 

employed as a means of affecting fruit quality through improved sugar levels, 

carotenoids, organic acids which also translates to favourable flavours. They also 

found that quality effects of the transcription factors are additive, which presents 

a potential for amplified fruit quality improvement [16]. Related to that, in 

Arabidopsis only AtGLK2 was expressed in siliques, and mutants for this gene 

showed pale siliques [11].  

We screened the chloroplast development regulator OsGLK1 for potential 

interactors in rice callus and co-purified two potential light signalling regulators of 

which one is novel. Of these two interactors, COP1 is the best established. COP1 
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is an E3 ubiquitin ligase that represses photomorphogenesis [20] in part by 

degradation of transcription factors which mediate light responses. In that light, 

GLK1 could fit as a potential novel COP1 target in rice. 

Another interactor we found is a TIGR01589 family protein. We deduced potential 

involvement in chloroplast development, as the phenotypes of Arabidopsis 

overexpression lines and rice plants overexpressing a Populus trichocarpa homolog 

showed a paler green phenotype. This is in line with the phenotypes of COP1 

overexpression lines and glk mutants which in fact also show an etiolated 

phenotype in Arabidopsis [11,21]. We therefore suggest that the TIGR01589 

family protein and COP1 have a similar role as negative regulators of chloroplast 

development, antagonizing OsGLK1. 

To have a clear view on the exact functioning of the TIGR01589 family protein in 

the chloroplast development pathway, additional experiments would be required. 

For example, TAP experiments under normal light conditions, specifically from leaf 

samples could point out the context-specific relevance of the interactions we 

detected. Further, it would be interesting to see if the dark-grown phenotype of 

TIGR01589 family protein overexpression lines resemble the cop1 phenotype 

(skotomorphogenesis in the dark).  

We conclude that our TAP approach at least paved the way to uncover new players 

in connecting light signalling with chloroplast development. 

Materials & Methods 

Screening of the OsGLK1 bait in the rice TAP platforms 

Screening of the bait in callus, T0 shoots and T1 seedlings was done as described 

in the materials and methods in chapter 6.1. 
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Supplementary information 

Figure S1. OsGLK1 and the PEL-homolog display similar expression profiles in rice. 

 
Data retrieved from Genevestigator [34] for OsGLK1 (loc_os06g24070) and the PEL-

homolog (loc_os01g62060) for development (left panel) and anatomy (right panel). 

 

Figure S2. Primers used in this chapter. 

 
 

primer n° name primer sequence

prm27565 attB1 kozak ATG OsGLK1 ggggacaagtttgtacaaaaaagcaggctccaccatgcttgccgtg

prm27566 attB2 no stop OsGLK1 ggggaccactttgtacaagaaagctgggtctccacacgctgg

prm27567 attB2r no start OsGLK1 ggggacagctttcttgtacaaagtggccatgcttgccgtgtcg

prm27568 attB3 stop OsGLK1 ggggacaactttgtataataaagttggtcatccacacgct
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Figure S3. Expression analysis of the OsGLK1 bait 

protein in callus. 

 
Protein extracts of the transgenic lines were 

analyzed by immunoblotting with peroxidase anti-

peroxidase antibody against the GS tag to verify 

protein levels of the OsGLK1 bait N- (left) and C- 

(right) terminal tagged with the GS tag. Molecular 

marker values are provided in the left panel in kilo 

Dalton (kDa). The molecular weight of the tagged 

proteins is 74.6 kDa. 

 

Supplementary background list and mass spec files. 

Supplementary files can be found through the following link: 

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd

62d78  (password: rice_TAP). 

The mass spec files for SnRK1 interaction data described in this chapter can be found in 

SI_Chapter_6_4_GLK1_MS_data.xlsx. 

Author contribution 

The PhD candidate was in charge of generating the TAP constructs, the 

transformations, maintenance and upscaling of callus cell lines and plant material, 

analysis of the mass spectrometry data. He also wrote the manuscript. TAP 

purifications and mass spectrometry measurements were mainly done by 

employees of VIB.  

  

https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
https://floppy.psb.ugent.be/public.php?service=files&t=fb92196c73b5e9eaed39e3678dd62d78
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Chapter 7. Discussion and perspectives 

For our food supply, we depend almost exclusively on plants either directly or 

indirectly. Increasing crop yield is therefore a major challenge for modern 

agriculture. One of the major food crops, rice, feeds more than half of the world’s 

population. Further, it is a model organism for other cereals as corn and wheat. A 

lot of research efforts were made to genetically engineer crops to transform them 

into more stress resilient varieties and/or varieties that provide more seed yield. 

To achieve this, it will be necessary to understand how the molecular machinery 

that determines these parameters operate. To date, merely individual genes 

regulating components of plant growth or seed yield are known, but their 

connections are largely unexplored. Nevertheless, biological processes are often 

carried out by the dynamic interaction of proteins in complexes and signalling 

pathways. Unravelling these interconnections can thus greatly speed up our 

understanding of complex traits as yield. In that light, the main objective of this 

work was to build a platform for high-throughput screening of protein-protein 

interactions in rice.  

Establishment of a TAP-MS platform in rice 

To achieve this goal, we optimised a Tandem Affinity Purification coupled to Mass 

Spectrometry (TAP-MS) protocol in rice, and subsequently used the technology to 

study the protein-protein interactions of genes with a potential yield effect. 

Currently, TAP is the most powerful method to isolate protein complexes and 

discover unknown protein associations. Yeast-two hybrid (Y2H) and protein 

complementation assay (PCA) also allow for screening of protein-protein 

interactions, but rather provide a binary read-out. They are therefore 

complementary to TAP-MS [1]. Other PPI screening methods such as protein 

arrays, which rely on immobilization of proteins on chemically derivatized glass 

slides to enable interrogation of interaction partners [2], and size-exclusion 

chromatography coupled to mass spectrometry (SEC-MS) look promising but are 

still in their infancy for use in plant protein interaction studies [2–4].  

We established a TAP platform in rice by optimizing each of the different building 

blocks – promoter, TAP tag, expression vector - required for making a TAP 

construct, streamlining every step in the AP-MS workflow, implementing the latest 

and most sensitive MS technology, and further integrating recent technical 

advances from research in Arabidopsis. In parallel with fine-tuning the protocol, 

we assayed its quality by screening interaction partners for CKS1, APC10 and 

CDKD. These three baits are proteins that participate in well-known, conserved 

complexes. The improvements we implemented allowed to apply the protocol on 

a portfolio of different types of rice biomass, ranging from tissues that provide a 

wealth of protein extract such as cultured cells, but also more technically 

demanding tissues, such as whole plants, or even specifically isolated organs or 

tissues.  
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With the tools for an optimised protocol at hand, we screened multiple baits related 

to enhanced growth or seed yield in the different rice tissues available. We assayed 

in total 28 baits in callus cells, and succeeded in recovering 25 of the 28 baits in a 

reproducible manner. For 24 of the 25 recovered baits we retrieved interacting 

proteins in at least two independent purifications. This amounts to 85.7% of the 

baits screened. Also for plants, we obtained similar success rates. Six of the in 

total seven baits tested in T1 seedlings were recovered, and for all six at least one 

interactor was retrieved reproducibly. The numbers from experiments on T0 shoots 

are harder to compare, as we performed nonreplicate experiments. Here, nine out 

of the ten baits were detected, with eight of them co-purifying at least one 

interactor in one experiment. Summarized, we obtained significantly higher 

success rates with our protocol as compared to the rice kinase study of Rohila et 

al. [5,6] (23%). We are aware that kinases are a tricky class of baits to screen 

interactors from, and that screening these kinases by using only N-terminal 

tagging might have compromised the ‘true’ success rate of the their protocol. On 

the other hand, they calculated the success rate from nonreplicate experiments. 

We screened in total 5 kinases (including CDKD), and were able to reproducibly 

retrieve interactors for all of them. 

In this work, three baits related to enhanced growth or seed yield were highlighted. 

TA_HLH is related to the PRE/ILI family of HLH proteins and resulted in an 

increased seed size phenotype when overexpressed. SnRK1 is an evolutionary 

conserved fuel gauge, controlling plant growth and development in response to 

carbon availability. OsGLK1 is involved in chloroplast development and regulation 

and gave a yield increase phenotype, expressed as total seed weight per plant. We 

will further discuss different aspects of our TAP workflow, with references to the 

baits highlighted in this work to pinpoint potential room for improvement or for 

variations on the standard procedure that could be envisioned for future work. 

With our TAP workflow, we enabled to make a choice in the biological material to 

screen for interactors. Each biomass type has its merits, and we recommend 

careful consideration of the pro’s and con’s before selecting a biomass type to 

screen a protein of interest in. Using callus cells as biological starting material 

allows to screen complexes in reasonable timelines with high success rates. 

Moreover, callus cells allow for easy upscaling if higher levels of protein input would 

be required. Currently we proliferate the callus on gel medium. This in contrast to 

cell suspension cells, which are grown in liquid medium and allow for easy addition 

or removal of chemicals or hormones. A possible extension of our protocol could 

therefore be to transfer transformed microcalli into liquid medium to start a cell 

suspension culture [7]. This system would then allow to track complex dynamics 

in response to addition or removal of chemicals or hormones from the liquid 

medium [8–10]. It would for example be interesting to assay the complex 

constitution for SnRK1 in sucrose-depleted conditions, as the kinase is active under 

these conditions. An obvious limitation in using cultured cells arises when the gene 

encoding the protein of interest has a discrete expression profile in either 

developmental or anatomical context. Also, in our current protocol, callus cells are 
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indeed not greened, and grown under continuous light conditions. This could result 

in false negatives when the bait is involved in a biological process that is linked to 

circadian clock or light regulation. For example, the screening of GLK1 in callus 

cells grown in continuous light might not have been ideal, as GLK1 is involved on 

chloroplast development. It will be interesting to see if GLK1 screened from plant 

or leaf tissues would provide a more specific protein interaction profile. 

To allow screening of PPI related to these more specialised pathways, we extended 

our protocol to plants. For this, we established a short-term protocol based on T0 

shoot and a longer one based on 2 weeks old T1 seedlings. These can provide a 

more comprehensive developmental picture of complexes. In the SnRK1 

interaction data for example, we retrieved more potential kinase targets related to 

metabolism as sucrose phosphate synthases, multiple trehalose synthase isoforms 

and a bifunctional aspartokinase-homoserine dehydrogenase from purifications 

from plant tissues as compared to callus cells. As shoots or seedlings are composed 

from a mixture of organs, complex dynamics in relation to organ development is 

lost. In principle, this could partially be solved by mapping expression data on the 

protein interaction data. Regulation at the post-transcriptional level is in that case 

not accounted for however. For discretely expressed baits, sensitivity of the 

protocol can also drop, as there is a dilution effect of the relevant tissues with the 

remainder of the plant’s cells.  

We anticipate that assaying specific tissues will gain more and more momentum 

in the interactomics field. First, sampling specifically the tissues where a bait is 

functioning increases sensitivity of the protocol while maintaining the context in 

plant development. We purified complexes for APC10 and CDKD from the 

proliferation zone of the emerging 4th leaf as a proof of concept. Complex isolation 

from minute samples opens possibilities for elucidating biological processes by 

comparing protein complexes assayed from different organs or from organs at 

different developmental stages. For this, rice is a more suitable model compared 

to Arabidopsis, since sampling from its larger organs is less problematic for this 

type of experiments. It will be interesting to test other tissue types as caryopsis 

or inflorescence.  

We opted for an overexpression strategy to drive TAP construct expression in wild 

type background. Our study made use of two constitutive promoters, PROGOS2, the 

rice GOS2 promoter, and PRO35S, the CaMV 35S promoter. We are aware that 

overexpression might lead to aberrant levels of the bait that exceed normal 

physiological conditions. This can result in unspecific associations lowering the 

signal to noise. The optimal situation to preserve conditions implies completely 

replacing the endogenous protein by the tagged version, similar to the result after 

homologous recombination. A possible surrogate for homologous recombination 

could be CRISPR-mediated insertion of affinity tags [11–14], but to our knowledge 

this was not yet tested in plants. Alternatively an additional copy of the tagged 

transgene under control of the endogenous locus could be introduced through BAC 

transgenesis [15]. We are however interested in the biological context of the 

overexpression constructs, as these were responsible for the increased yield 
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phenotype. In that sense, experiments with PROGOS2-driven expression could gain 

momentum as the GOS2 promoter is most frequently used for TraitMill screening.   

For isolation of the complexes, we preferred developing a two-step affinity 

purification protocol as this provides a higher signal-to-noise ratio. Indeed, 

identification of protein complex components requires that they are present in 

sufficient absolute as well as relative amounts. While the Orbitrap-MS mass 

spectrometer is extremely sensitive, the more limited dynamic range and loading 

capacity of the MS and LC-column respectively may hamper detection of bona fide 

complex components among an excess of non-specific contaminant proteins. 

Possibly, that explains why testing a single-affinity protocol using GFP did not yield 

better results in our hands (data not shown). It is worth noting however that 

improvements in sample handling practices and available reagents have largely 

superseded the need for tandem affinity procedures to obtain high signal/low 

background results, especially in the yeast and mammalian field. There, single-

step affinity capture has proven sufficient, and being shorter in duration, it 

increases the chances of observing labile interactors [16,17]. 

A major challenge associated with TAP-MS experiments is making the distinction 

between bona fide interactions that make biological sense and non-specific 

background interactions. In this work, we used frequency filtering based on the 

principle of re-occurrence of contaminating proteins to address this issue. This 

approach integrates information from all runs, i.e. 174 purifications on 38 different 

bait proteins, which allows to zoom in on the specificity of different protein 

associations. Briefly, for evaluating the interactors of a specific bait protein our 

filtering method uses all the purifications of other baits as negative control 

purifications. As baits belonging to the same process can show overlapping 

interaction profiles, we rather considered bait groups. These were assigned 

dependent on biological relatedness. With more purifications on different baits 

performed in the future, the threshold currently set will need to be re-evaluated. 

The background list will thus evolve according to the status of the TAP platform. 

An important remark here is that this way of filtering discriminates specific from 

non-specific interactors rather than bona fide from background identifications. This 

became apparent in purifications from the SnRK1 and TA_HLH baits. For the SnRK1 

interaction dataset, we were able to revoke some proteins from the background 

as ‘true’ interactors because their interaction with the SnRK1 complex was 

previously described. Similarly, in the TA_HLH interaction dataset, we assigned UV 

DAMAGED DNA-BINDING 1A – normally considered background – as genuine 

interactor as Y2H experiments in Arabidopsis showed physical interaction with 

another genuine interactor DDB1 AND CULLIN4 ASSOCIATED FACTOR1 [18].  

Therefore, quantitative data from the mass spectrometer can be implemented for 

evaluating each interactor. Since true interactors are expected to be enriched 

throughout purification compared to a control, the enrichment should be reflected 

in a higher measure of quantity. In addition, the quantitative aspect enables 

determining the changes in the dynamics in protein complex composition during 

development. 
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A myriad of possible methods exist for relative quantification. In brief, isotope 

labelling methods based on either metabolic or chemical labelling are not 

frequently used in plants because of insufficient uptake for incorporation of the 

labels or because of issues with specificity [19], respectively. Alternatively label-

free MS methods are generally considered. Here, computational approaches are 

used to obtain quantitative information from MS data. Label-free quantification is 

less accurate compared to labelling strategies, so reliable quantification requires a 

higher number of replicates with an additional statistical or probabilistic analysis. 

A nice overview of the existing methods is provided in [20]. Summarized, two 

types of quantitative mass spectrometry methods exist, based on either analysis 

of the MS1 spectra of the MS2 spectra. Identification of proteins by MS usually 

involves two measurement steps of peptides generated by a site-specific enzyme. 

In a first ‘survey’ scan (MS1) the m/s of the intact ionized peptide is monitored. A 

pre-set amount of most abundant peptides are then isolated and selected for 

fragmentation. The fragments’ m/z ratios are recorded in the second ‘fragment’ 

spectrum (MS2). These fragment ion spectra are then assigned to peptide 

sequences and ultimately proteins using computational approaches for peptide. In 

general, methods based on MS1 intensity are potentially more accurate than 

methods based on MS2 spectra. During shotgun sequencing only the most intense 

MS1 peptides are selected for MS2. In other words, there is a bias of MS2 data 

towards high abundance peptides, which limits the accuracy of measurements in 

the low abundance range. The drawback of using MS1 data is that these rely on 

alignment of the peaks with the retention time of the LC. Therefore, the 

purifications and LC runs need to be carried out as reproducible as possible [21]. 

Even after subtraction of background proteins, the read-out of TAP experiments is 

still merely a list of proteins that co-precipitated with the bait. This implies that 

the configuration of direct interactions between these proteins is not reflected, it 

is even not clear whether one or more (different) complexes are retrieved. Further, 

our current platform only provides a static snapshot of the protein complexes 

under investigation, whereas in reality many proteins belong to complexes with a 

dynamically changing composition depending on the general state of the biological 

process they function in.  

Quantitative mass spectrometry can apart from discriminating background 

binders, also be used for charting the dynamics of protein complexes. With the 

platform we developed, quantitative analysis can be applied to assay composition 

of complexes during organ development by sampling tissues at different time 

points in growth. Another option is the mapping of orthogonal data layers onto the 

detected interactions. For example, interactors with strong expression correlation 

could hint to a common molecular assembly [22]. The expression correlation can 

be deduced directly, from protein expression datasets, or indirectly though co-

expression data. This was illustrated for the PSEUDO ETIOLATION IN LIGHT (PEL)-

homolog found in the GLK1 dataset, which showed a very similar transcription 

expression profile as the GLK1 bait.  In support, protein sub-localisation data 

provide supportive information towards the co-localisation of interaction partners 
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in a specific cellular compartments. In a similar way, annotation data as gene 

ontology or MapMan annotation can indicate whether interaction partners are 

functioning in common biological pathways or exerting a similar molecular 

function. 

Another missing layer of information is the directionality of the protein links. In 

most cases, proteins influence the functioning of their interaction partner in a 

positive or a negative way. A study in Drosophila computationally integrated PPI 

networks with genetic RNAi screens to predict the directions of the interactions 

[23]. They were able to construct a ‘signed’ PPI network identifying positive and 

negative regulators of signalling pathways and protein complexes. In that sense, 

phenotypic data can greatly aid in assessing the directionality of the interactions. 

For example, the overexpression phenotype of PEL, the Arabidopsis homolog of an 

interactor found in the GLK1 dataset, was pale green. This is contrary to the 

phenotype of GLK1 overexpression, suggesting that GLK1 and PEL might be 

antagonists in chloroplast development. Whether PEL is acting up-or downstream 

of GLK1 still needs to be clarified. 

Added value of interaction data resulting from the TAP workflow 

This work can be considered as a ‘model example’ of how a certain cutting-edge 

technology was developed at an academic research institute and then – once the 

technology perfected – has been transferred to the biotech industry. The 

established TAP workflow in rice enables to obtain a ‘molecular snapshot’ around 

a specific protein of interest. For any biotech company, this type of information is 

of enormous value, as it provides a unique piece of additional information to help 

understanding the molecular mechanisms that steer a lead gene’s yield 

enhancement phenotype. This also provides an advantage towards competitors, 

as to our knowledge only Syngenta probably has a similar platform [24]. We 

envision that the interaction data resulting from our TAP workflow can further be 

employed as both a hypothesis-generating tool and as a framework for data 

integration and network analysis. Both reason from the ‘guilt by association’ 

concept [25]. Within a complex, each protein may have a specialized function that 

contributes to the overall function of the complex [26]. Thus, proteins participating 

in a common complex might provide the same yield effect or result in additional 

or synergistic effects when combined with the initial lead. Interaction data can also 

help in unravelling the molecular function of a lead, as the role of a protein can be 

inferred from its functional context provided by associated proteins which may 

have a known function. Even when studying proteins of known function, novel 

insights can be obtained from describing their molecular environment.  

The success of the TraitMill phenotyping platform greatly depends on the genes 

that are selected as input. Until recently a single transgene approach was used to 

test the effect in rice plants. The unique database of genes that showed a 

significant positive effect on growth or seed yield enables CropDesign to unravel 

yet uncharted networks that may steer growth or seed yield. A better view in the 

underlying molecular mechanisms will allow to make more targeted gene choices 

for TraitMill screening which will raise the lead hit ratio. In addition, the field is 
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moving towards multi transgene approaches to further increase yield enhancing 

effects. This strategy implies testing the effect of two potential lead genes in the 

same plant, and one expects that two genes from a same or two interacting 

pathways could deliver additive or even synergistic effects.  

Orthogonal data used to gain confidence in the interactors such as co-expression 

data, text mining and/or phenotypic data can be further utilised to prioritise which 

interactor to select for phenotypic screening for a yield-enhancing effect. The same 

datasets can also provide hints for designing the transgenic construct. For 

example, if interactors lead to a similar phenotype when mutated or 

overexpressed, there is a good chance that they co-operate within the complex. 

Interactors that rather show contrasting phenotypes on the other hand, will 

probably antagonise within the complex. For example, overexpression of the 

ANAPHASE-PROMOTING COMPLEX 10 (APC10) subunit of the anaphase promoting 

complex (APC) results in larger leaves [27], whereas the plant-specific negative 

regulator of the APC, SAMBA, needs to be downregulated to result in the same 

phenotype [28]. Expression data can provide additional hints in which promoter to 

choose to screen the new yield-enhancement candidate with. 

The resulting candidate can be selected for screening either as a single gene 

construct, or stacked with another interactor or the initial lead. When stacking two 

genes, the epistatic effect aimed for is in fact the result of genetic interaction 

between the two stacking partners. Genetic interactions reflect functional 

relationships between genes, in which the phenotypic effect of one gene is modified 

by another. Genetic interactions are generally assayed by comparing the effect of 

mutating each gene individually to the effect of the double mutant. In the extreme, 

synthetic lethality can occur when the combination of two mutations leads to 

lethality [29]. In plants, synthetic lethal genetic interactions have been explored 

mainly by RNAi to detect genes whose products act in the same essential pathway 

[30,31]. In yeast, large networks of genetic interactions have been measured 

genome-wide [32]. Analysis of these datasets learned that 10-20% of the protein-

protein interactions were also genetic interactions, which is significantly higher 

than expected randomly (~3%) [32]. Moreover, PPI found from TAP-MS showed 

the highest enrichment in overlap (20%) compared to PPI found from Y2H (10%) 

and PCA (~10%) assays [32]. Conversely however, only a small fraction of the 

genetic interaction pairs (~1%) were also physically linked [32]. This suggests 

that the vast majority of genetic interactions occurs between rather than within 

protein complexes.  

These findings were derived from screening of mutants for synthetic lethality in 

single cells. Therefore it is difficult to assess whether these will still hold true for 

data from TraitMill, which is generally derived from overexpression (and mostly 

gain of function) screening from a multicellular organism. We anticipate that the 

more straightforward ways to derive stacking constructs from TAP data would 

probably be through combining the components that are limiting within a complex 

or by integrating factors that provide links between different molecular assemblies. 

The former case has been illustrated through the epistatic effects from combining 

GIF and GRF5 for leaf size [33], bZIP10 and ABI3 or bZIP25 and ABI3 for the 

expression of a reporter gene for seed specific expression [34] and TSI and TSIP 
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for enhanced pathogen resistance and salt tolerance [35]. These examples are 

mainly an illustration of combining both partners of heterodimers, such as 

transcription factor complexes, each required for transcription 

activation/repression. For the latter case, it is important to notice that Y2H 

interactions rather tends to deliver links between pathways, whereas TAP data 

tends to unravel the molecular assemblies [36]. 

Protein-protein interaction data also provide an excellent framework for further 

data integration and subsequent network analysis. There are different types of 

molecular networks that have been developed and associational networks are the 

most frequently used. These networks –akin to social networks as Facebook or 

LinkedIn – are based on the principle that one can guess things about a gene (or 

person) based on other genes (or people) it is connected to. For example, 

properties of genes can be identified from omics data and used to link the genes 

that share the properties, resulting in a co-function network [37]. Co-function 

networks can be really powerful when used in the context of specific biological 

contexts. 

Perspectives 

Proteins do not only interact with other proteins in a cellular environment. 

Transcription factors target specific binding elements on DNA to recruit or block 

the transcription machinery. Traditionally, chromatin immunoprecipitation (ChIP) 

is used for the identification of genomic regions where specific proteins are 

associated. An antibody is required to enrich for the protein bound to the DNA 

locus. The associated region is then identified by qPCR or sequencing. The use of 

antibodies can be omitted by tagging the DNA binding protein by an affinity tag, 

and performing the appropriate affinity purification protocol (chromatin affinity 

purification or ChAP). This was for example done for studying the binding of 

VERNALIZATION (VRN) proteins to the FLOWERING LOCUS C (FLC) using TAP-

tagged VRN2 and VRN5. The association of VRN proteins with the FLC locus was 

quantified by qPCR after enrichment of cross-linked VRN baits by single step IgG 

purification [38]. More recently a tandem chromatin affinity purification or TChAP 

protocol was proposed [39]. By using a double step enrichment using the cross-

linking-resistant His-Biotin-His-tag, the DNA enrichment ratios were improved 

compared to ChIP and ChAP. Combined with Illumina sequencing, it enables the 

identification of novel TF-DNA interactions. The downside is that more material is 

required. Therefore the method was currently only used in cell suspension cultures 

[40,41]. A TChAP approach can also be applied for studying protein-RNA 

interactions. This was for example done by Zhu et al, who used a combination of 

tandem affinity purification with Illumina sequencing to study the interplay of 2 

ARGONAUTE proteins with miRNA’s in regulating shoot apical meristem [42]. 

Instead of the protein-centric approach for analysing protein-DNA interactions, 

also the ‘reverse’, a DNA-centric approach, is possible. Here, a DNA sequence is 

used to pull down proteins that bind to it.  In this manner, transcription factors 

and other DNA binding proteins that bind to a specific DNA region can be identified. 
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Reverse-ChIP is based on adding heterologous cis elements to a genomic region 

of interest. Cells are transformed with both the heterologous cis-elements flanking 

the genomic region and a tagged heterologous DNA binding protein which binds to 

the cis-elements [43]. Prior to purification, in vivo crosslinking is used to maintain 

all interactions. The complex, including the genomic region of interest and its DNA 

binding proteins, are then affinity purified. After elution and de-crosslinked, the 

components are identified by mass spectrometry and/or qPCR. The approach was 

recently further modified, by using affinity-tagged TALE (for transcription 

activator-like effector) and CRISPR (for clustered regularly interspaced short 

palindromic repeats) molecules respectively that target a specific DNA region of 

interest [44,45] 

Another variation using epitope tagged proteins was used for the study of protein-

lipid interactions for yeast proteins [46]. This shows that establishing an AP-MS 

protocol is worthwhile to study protein-protein interactions and can further be 

extended in exploring interactions of the bait protein with all other kinds of 

biomolecules. 

In conclusion, we established a tandem affinity purification coupled to mass 

spectrometry protocol for Oryza sativa. This method can be employed for the 

screening of protein-protein interaction of specific proteins of interest. Information 

on the protein complex can help in the analysis of biological networks, functional 

gene analysis and gene discovery. In this work, we used the method to elucidate 

the protein interaction context for genes that are related to increased growth or 

seed yield. This will help in the functional characterization of these specific genes 

and their relation to their yield enhancing characteristics. However, in the nearby 

future, this technique can also be adapted to study other types of interactions, as 

protein-DNA, protein-RNA or protein-lipid interactions. Hence, by developing this 

protocol of TAP in rice, we have extended the molecular toolbox of this model 

species and helped to pave a way for its continued success as model species for 

cereal crops. 
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Chapter 8. Executive summary 

Summary 

Agriculture needs to continuously improve to sustain growing food demand of an 

increasing world population. Further, to preserve the planet’s sustainability in 

terms of flora and fauna, global agricultural productivity should increase without 

significantly increasing the cultivated area. In other words, most of the increase in 

production will have to be achieved by increasing the yield per area. This poses an 

enormous pressure on the agricultural industry to produce more output than ever 

before [1]. The improvement of intrinsic yield qualities in crops is therefore one of 

the main goals in the agro-industry. Conventional breeding provided significant 

improvements, but is limited within the boundaries of the species. The use of 

biotechnology tools enables to break that genetic boundary, but also poses huge 

challenges. To decide which promoter-gene combination could alter a plant’s 

intrinsic yield characteristics, thorough knowledge is required about where and 

when growth regulators are crucial in contributing to an enhanced yield phenotype.  

In the past decades, this was tackled by bluntly empirical testing the effect of 

changing expression levels of genes in model plants and extrapolating the results 

to crops. This is illustrated by two private initiatives. The company Mendel biotech 

for example tested numerous transcription factors by constitutive overexpression 

in Arabidopsis. CropDesign developed TraitMill, an automated plant evaluation 

platform allowing high-throughput testing of the effect of transgenes on yield and 

other agronomical valuable traits in rice. Rice is considered as an appropriate 

model for cereal crops such as maize and wheat with its rather small genome (389 

Mb) and evolutionary relatedness. These efforts led to the elucidation of numerous 

individual growth regulators, but knowledge from these scattered data is still far 

from sufficient to efficiently engineer complex biological traits such as growth or 

seed yield. Finding the links between individual growth regulators will be key to 

determine which molecular networks play in defining yield traits. A significant part 

of connections between biological entities is defined by protein-protein interactions 

(PPI). PPI are indeed known to form the basis of many cellular processes and 

biological functions. Elucidation of the molecular interactions between yield 

stimulating proteins, collectively called the ‘yield interactome’, could therefore gain 

insight in how molecular networks control complex phenotypes. 

The main objective of this work was therefore to build a platform for high-

throughput screening of protein-protein interactions in rice. For this, we optimised 

a tandem affinity purification coupled to mass spectrometry (TAP-MS) protocol in 

this excellent model for cereal crops. 

We established a TAP platform in rice by optimizing each of the different building 

blocks – promoter, TAP tag, expression vector - required for making a TAP 

construct, streamlining every step in the AP-MS workflow, implementing the latest 

and most sensitive MS technology, and further integrating recent technical 

advances from research in Arabidopsis. In parallel with fine-tuning the protocol, 
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we assayed its quality by screening interaction partners for CKS1, APC10 and 

CDKD. These three baits are proteins that participate in well-known, conserved 

complexes. The improvements we implemented allowed to apply the protocol on 

a portfolio of different types of rice biomass, ranging from tissues that provide a 

wealth of protein extract such as cultured cells, but also more technically 

demanding tissues, such as whole plants, or even specifically isolated organs or 

tissues. Complex isolation from minute samples opens possibilities for elucidating 

biological processes by comparing protein complexes assayed from different 

organs or from organs at different developmental stages. 

With the tools for an optimised protocol at hand, we screened multiple baits related 

to enhanced growth or seed yield in the different rice tissues available. We assayed 

in total 28 bait in callus cells, 25 of which we recovered in a reproducible manner. 

Of these 25 recovered baits, 24 had interacting proteins that were reproducibly 

found. This amounts to 85.7% of the baits screened. A total of seven baits were 

tested in T1 seedlings. Here, the numbers boil down to six of the seven baits 

recovered reproducibly, and for all six, at least one interactor was retrieved 

reproducibly. Hence, the success rate is 85.7% for T1 seedlings. Summarized, we 

obtained significantly higher success rates with our protocol as compared to the 

rice kinase study of Rohila et al. [2,3].  

In this work, three baits related to enhanced growth or seed yield were highlighted. 

TA_HLH is related to the PRE/ILI family of HLH proteins and resulted in an 

increased seed size phenotype when overexpressed. SnRK1 is an evolutionary 

conserved fuel gauge, controlling plant growth and development in response to 

carbon availability. OsGLK1 is involved in chloroplast development and regulation 

and gave a yield increase phenotype, expressed as total seed weight per plant. In 

all cases, the TAP read-out provided a unique insight in the working mechanisms 

of these baits. For TA_HLH, we found diverse subfamilies of helix-loop-helix 

proteins, which hint towards the existence of a trimodular regulation mechanisms 

for cell elongation in rice, comparable as what was found in Arabidopsis. For SnRK1 

we found both interactors that might influence the activity of the kinase and 

potential kinase substrates. And last, two interactors for OsGLK1 are potentially 

involved in light signalling and might be antagonising OsGLK1 function in 

chloroplast development.  

In conclusion, we established a tandem affinity purification coupled to mass 

spectrometry protocol for Oryza sativa. This method can be employed for the 

screening of protein-protein interaction of specific proteins of interest. Information 

on the protein complex can help in the analysis of biological networks, functional 

gene analysis and gene discovery. In this work, we used the method to elucidate 

the protein interaction context for genes that are related to increased growth or 

seed yield. This will help in the functional characterization of these specific genes 

and their relation to their yield enhancing characteristics. However, in the nearby 

future, this technique can also be adapted to study other types of interactions, as 

protein-DNA, protein-RNA or protein-lipid interactions. Hence, by developing this 

protocol of TAP in rice, we have extended the molecular toolbox of this model 
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species and helped to pave a way for its continued success as model species for 

cereal crops. 
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Samenvatting 

De landbouwsector blijft innoveren om een steeds groeiende vraag naar voedsel 

van een toenemende wereldbevolking te ondersteunen. Daarnaast wordt rekening 

gehouden met duurzaamheid in termen van zowel flora als fauna. Dat betekent 

dat de globale landbouwproductiviteit in principe moet toenemen zonder het totaal 

oppervlak aan landbouwgrond te vergroten. In andere woorden, het merendeel 

van de productie zal afhangen van een verhoogde opbrengst per oppervlakte [1]. 

Dit legt een enorme druk op de agrarische industrie om meer output dan ooit te 

produceren. Het verbeteren van opbrengsten in gewassen is daarom een van de 

hoofddoelen van de agro-industrie. Conventioneel veredelen biedt significante 

verbetering, maar is gelimiteerd binnen de grenzen van species. Het gebruik van 

biotechnologie staat toe om die ‘genetische grens’ te verbreken, maar stelt ons 

tegelijk voor gigantische uitdagingen. Om te beslissen welke combinatie van 

promoter en gen precies nodig is om de opbrengst in een gewas te verhogen, is 

een degelijke kennis nodig over waar en wanneer groei regulatoren cruciaal zijn in 

het bijdragen aan dat phenotype.  

In de voorbije tien jaar werd dit probleem voornamelijk opgelost door het bluntweg 

empirisch testen van veranderingen in expressieniveaus van genen in model 

planten, en de resultaten daarna te extrapoleren naar gewasssen. Twee private 

initiatieven zijn hier een schoolvoorbeeld van. Het bedrijf Mendel Biotech testte 

talrijke transcriptiefactoren via constitutieve overexpressie in de zandraket. 

CropDesign ontwikkelde TraitMill, een geautomatiseerd plant evaluatie platform 

dat toestaat om het effect van transgenen in rijst in hoge doorvoer te testen op 

agronomisch waardevolle kenmerken. Rijst wordt hier als gepast model voor 

graangewassen als maïs en tarwe beschouwd, gezien het evolutionair gerelateerd 

is en een redelijk klein genoom (398 Mb) heeft. Deze initiatieven leidden tot de 

opheldering van talrijke individuele groeiregulatoren, maar kennis uit deze 

verspreide data is ver van voldoende om efficient complexe biologische kenmerken 

als groei of zaadopbrengst om te bouwen. Het vinden van linken tussen de 

verscheidene groeiregulatoren zal daarom één van de sleutels zijn in het definiëren 

van welke moleculare netwerken meespelen in het bepalen van opbrengst. Een 

signifcant deel van de connecties tussen biologische entiteiten wordt gedefinieerd 

door eiwit-eiwit interacties. Van deze is immers geweten dat ze de basis vormen 

van veel cellulaire processen en biologische functies. Het ophelderen van de 

molecularie interacties tussen opbrengst verhogende eiwtten, ‘het opbrengst 

interactoom’, zou daarom inzicht kunnen bieden in hoe moleculaire netwerken 

complexe phenotypes controlleren.  

Het hoofddoel van dit werk is het bouwen van een platform dat instaat voor een 

hoge-doorvoer screening van eiwit-eiwit-interacties in rijst.  Hiertoe 

optimaliseerden we een ‘tandem affinity purification coupled to mass spectrometry’ 

(TAP-MS) protocol in dit uitstekend model voor graangewassen. 

We slaagden in het opbouwen van een TAP-MS platform in rijst door elke 

bouwsteen nodig voor het maken van een TAP construct te optimaliseren, elke 

stap binnen de workflow te stroomlijnen, de laatste en meest gevoelig MS 

technologie in te bouwen, en de meest recente technische vooruitgang uit 
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onderzoek in Arabidopsis te integreren. Parallel met het verfijnen van het protocol, 

schatten we de kwaliteit in door te screenen naar interactiepartners voor CKS1, 

APC10 en CDKD. Deze 3 baits zijn eiwitten die deel uitmaken van goed gekende 

en geconserveerde complexen. De verbeteringen die we aanbrachten stelden ons 

in staat om het TAP protocol toe te passen op een portfolio van verschillende types 

rijst biomassa. Deze varieren van weefsels die een weelde aan eiwitextract bieden, 

zoals callus cellen, tot meer technisch veeleisende weefsels zoals planten en zelfs 

specifiek geisoleerde organen of stukjes weefsel. Het isoleren van complexen uit 

minuscule stalen opent mogelijkheden tot het ophelderen van biologische 

processen door vergelijking van complexen uit verschillende organen of uit 

organen in een verschillend ontwikkelingsstadium. 

Met dit geoptimaliseerd protocol voorhanden, screenden we verscheidene baits die 

gerelateerd zijn aan groei of verhoogde opbrengst in de verschillende beschikbare 

types biomassa. We testten in totaal 28 baits in callus cellen. Hiervan werden er 

25 op een reproduceerbare wijze teruggevonden. Voor 24 van deze 25 baits, pikten 

we ook interactoren op in op zijn minst twee verschillende zuiveringen. Dit komt 

neer op 85,7% van de geteste baits. Ook voor planten bekwamen we eenzelfde 

‘success rate’. Zes van de in totaal 7 baits gescreend in T1 zaailingen konden we 

succesvol terugvinden, en deze zes leidden allen tot reproduceerbare identificatie 

van interactoren. Samengevat verkregen we duidelijk hogere success rates in 

vergelijking met de rijst kinases studie van Rohila et al. [2,3].  

In deze thesis werden 3 baits gerelateerd aan verhoogde groei en zaadopbrengst 

naar voor gebracht. TA_HLH is verwant aan de PRE/ILI familie van helix-loop-helix 

eiwitten en overexpressie leidde tot grotere zaden. SnRK1 is een evolutionair 

geconserveerde ‘brandstofmeter’ die plantengroei en -ontwikkeling controlleert als 

reactie op beschikbaarheid van koolstof. OsGLK1 is betrokken in de ontwikkeling 

en regulatie van chloroplasten. Overexpressie van OsGLK1 gaf verhoogde 

opbrengst, uitgedrukt als totaal gewicht van de zaden per plant. In alle gevallen 

gaven de TAP resultaten een uniek inzicht in de werkingsmechanismen van deze 

baits. Voor TA_HLH vonden we verscheidene subfamilies helix-loop-helix eiwitten, 

die aanwijzing geven naar het bestaan van een trimodulair regulatiemechanisme 

voor cel elongatie in rijst, vergelijkbaar met Arabidopsis. Voor SnRK1 vonden we 

zowel interactoren die waarschijnlijk de activiteit van het kinase beïnvloedden als 

enkele mogelijke kinase substraten. Twee interactoren voor OsGLK1 tenslotte, zijn 

waarschijnlijk mee betrokken in licht signalisatie en zouden OsGLK1 tegenwerken 

als regulator van chloroplast ontwikkeling.   

Samengevat hebben we een TAP-MS protocol ontwikkeld voor Oryza sativa. De 

methode kan gebruikt worden voor het screenen van eiwit-eiwit interacties voor 

bepaalde eiwitten van interesse. De resulterende informatie rond het eiwitcomplex 

kan helpen in het analyseren van biologische netwerken, in het ontrafelen van de 

genfunctie en in het ontdekken van nieuwe genen. Wij hebben de methode 

aangewend om de eiwit interactie context voor genen die gerelateerd zijn aan groei 

of verhoogde zaadopbrengst op te helderen. Dit zal helpen in het functioneel 

karakteriseren van deze genen en hun relatie met opbrengst verhoging. De 
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bouwstenen voor het TAP platform kunnen in de nabije toekomst ook aangewend 

worden om andere types interacties te bestuderen, zoals eiwit-DNA, eiwit-RNA of 

eiwit-lipide interacties. Door de ontwikkeling van dit TAP-MS platform in rijst 

hebben we dus de moleculaire gereedschapskist tot het verbeteren van 

graangewassen helpen uitbreiden. 
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Thanks 

Thanks 
With about finishing my manuscript and (finally!) getting to the expression of my 

gratitude to the many people I’d like to thank, I needed to reflect on how it all 

started. I was finishing my master thesis, and was looking for someone who could 

help me in setting up a Baekeland project I really wanted to do. Without Geert and 

his group, and the work they had done before this would never have been possible. 

I think that in this case the statement of ‘standing on the shoulders of giants’ is 

quite suitable. So thank you Geert, Jelle, Nancy, Dominique, Geert P, Jan, Leen, 

Bernard, Astrid, Aurine and in a later phase Nienke, Michiel and Caroline. Not only 

for your hard work of course, but also for the help, the good advices, the kindness. 

Although I was not that much around, it still felt familiar with you guys. 

Also thank you so much Steven! At the time I don’t think I realised how much 

effort it must have been to convince the ‘guys above’ within BASF to approve this 
project. Therefore I was primarily happy when you said you had good and bad new 

(the bad news was that I had to start writing a project proposal), but now I am 
also very grateful.  
 

I think I need to thank Geert and Steven again by the way, for their support and 
superb guidance throughout my PhD as my promoters. I enjoyed every one of our 

update meetings and it was always reassuring to have two big-shots of knowledge 
behind my back. Later on, we were re-enforced by Durba and Srijeet. To both of 
you also thank you so much for your good advices and help.  

 
In the meantime, I feel myself very lucky being adopted in the Sysbio group. Tom, 

thanks for sharing the non-confidential room with me. It was really a pleasure! I 
am sure that the Germans will soon uncover your talents. Annelies, it is good to 
know that you are passing your talented genes on to the next generation. Berenice, 

you are a great “mother hen” of Sysbio! Koen, thank you for letting me join this 
fantastic group. 

 
Also thanks to each of my jury members for your time and precious suggestions 
to improve the quality of this manuscript. 

 
Ook mijn vrienden en familie mogen niet ontbreken natuurlijk! Simon, Tom, cici, 

p-man, Helder en Jellyman: ik heb prachtige tijden beleefd in de maagden- en 
akkerstraat. Het zijn momenten die ik voor altijd zal koesteren. Jullie zijn vrienden 

voor het leven. O’s, Donny en Zlatan, weet dat ik jullie graag zie. Jullie zijn elk op 
jullie manier kanjers! Hoyo, ik denk niet dat er iets is dat ik niet aan je te danken 
heb…Bedankt voor je zorg en liefde, je bent de allerbeste mama! En je 

introduceerde Wilfried, deze topper moet je houden! Luc, Kaat, Lieselot, Geert, 
Rovertje: dankjewel om mij op te nemen in jullie leuke familie! 

 
Hannelore, we wisten het eigenlijk al véél vroeger, maar ik ben blij dat we er toch 
achter gekomen zijn dat we voor elkaar gemaakt zijn. Bedankt om me zo goed te 

soigneren tijdens het schrijven en om van ons stulpje ons paradijs te maken. Ik 
hou zielsveel van je. 
 


