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 ‘... because the liver is a source of many diseases, 

and is a noble organ that serves many organs, 

almost all of them: so it suffers, it is not a small 

suffering, but a great and manifold one’ 

- Paracelsus 
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1 CHILDREN ARE NOT SMALL ADULTS: BETTER MEDICINES 

FOR CHILDREN 

“Paediatrics does not deal with miniature men and 

women, with reduced doses and the same class of 

diseases in smaller bodies, but... it has its own 

independent range and horizon… There is scarcely a 

tissue or an organ which behaves exactly alike in the 

different periods of life... There are anomalies and 

diseases which are encountered in the infant and child 

only. There are those which are mostly found in children, 

or with a symptomatology and course peculiar to them.” 

– Dr Abraham Jacobi 

It was over a 100 years ago that Dr Abraham Jacobi (1830-1919) recognized the 

importance and the need for age-specific pharmacotherapy in his presidential address to 

the American Paediatric Society [1]. It wasn’t nevertheless until 1997 that the first 

legislative changes to encourage paediatric clinical trials were implemented (FDA 

Modernization Act, November 1997) [2]. Subsequently, other regulations were adopted 

in both the United States (the 2002 Best Pharmaceuticals for Children Act; and the 2007 

FDA Revitalization Act) and in Europe (Regulation EC No. 1901/2006 on Medicinal 

Products for Paediatric Use) [3].  

Moreover, in 2007, the World Health Organization (WHO) adopted the “Better medicines 

for children” resolution. This resolution raises the concern on the lack of access to 

essential medicines of assured quality for children, as well as on the insufficient 

investment in clinical trials in and development of drugs for children [4]. The potential 

risk for the public health of children by denying them access to new medicines, or by 

treating them with drugs not assessed in the same age groups has been generally 

recognized. Consequently, pharmaceutical companies registering a new drug are obliged 

by the Regulatory Authorities to submit a Paediatric Investigation Plan (PIP). 

In the current clinical practice, drugs are often used off-label in paediatric patients. Drugs 

are used off-label when they are used outside of regulatory approval. There are different 

categories of off-label use, based on age, weight, absence of paediatric information (no 

information at all), lack of paediatric clinical data (lack of evidence of efficacy and 

safety), contraindicated in children, other indication in children, other route of 

administration [5]. 50 to 75% of drugs currently used in paediatrics are used off-label 

[6,7], and this share is even higher in more specific populations, such as neonates or 
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children with cancer [6]. After a thorough evaluation of the specific situation (indication, 

alternative drugs, benefit-versus-risk, available evidence), the off-label use can be 

considered appropriate, if no alternatives are available and the benefits for the patient 

outweigh the potential risks [8]. Because of the lack of information, each off-label 

administration can be considered as the performance of an uncontrolled N-of-1 trial [9]. 

This results in the exposure of the child to possible risks, such as adverse drug reactions, 

or ineffective treatment.  

Recently, there has been a shift in the thinking process of performing clinical trials in 

children. In the past, children were frantically protected from every possible research, in 

order to avoid exploiting them as vulnerable subjects [8]. Recently, however, it was 

accepted to be an ethical obligation to perform, and a child’s right to participate in, 

research that could potentially benefit children’s health [6]. Despite the increased 

intention to perform paediatric clinical trials, many obstacles still have to be overcome in 

the development and execution of these trials. Firstly, there are the ethical issues, 

amongst which the informed consent (by surrogate consenter and assent of the child 

with sufficient intellectual maturity), the inclusion of healthy children, and the risk 

assessment, in which the risks of not doing research in infants and children should be 

considered in addition to the direct and immediate risks and benefits to the individual 

subject [7]. Secondly, the protocol should be age-appropriate, considering 

inclusion/exclusion, avoidance of excessively ambitious protocols, the use of age-

appropriate dose formulations, and realistic sampling procedures. Moreover, centres 

conducting paediatric clinical trials should dispose of suitable infrastructure and 

experienced staff  [6,7]. 

In short, efforts should be made to avoid the possible compromise of children’s health 

from off-label or unlicensed drug use. Children deserve the same well-tested drugs as 

adults, in the correct dose, using an approved route of administration and for the right 

indication.  

2 DEVELOPMENT OF DRUG DISPOSITION AND ACTION IN 

CHILDREN 

2.1 Developmental pharmacodynamics 

Drug action can be divided into two processes: (1) pharmacokinetics (PK) (“what the 

body does to the drug”), and (2) pharmacodynamics (PD) (“what the drug does to the 

body”). Developmental changes may affect the receptors or therapeutic targets involved 

in drug action and response, consequently also influencing clinical outcomes [10]. Up 

until now, there is a paucity on studies on the ontogeny of the interactions between 
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drugs and receptors, and on the consequence of these interactions [10,11]. The studies 

that were performed, were reviewed by Mulla in 2010 [10]. Table 1 was adapted from 

this review to illustrate some possible effects of maturational changes on the PD 

response.  

Alterations in potency or efficacy of a drug may be due to maturational changes in 

receptor affinity, density or signal transduction, due to complete absence of receptors or 

mediators, or due to changes further downstream the biochemical pathway [10]. Besides 

effects on the therapeutic response, the developmental changes may also affect the risk 

of adverse reactions. For some drugs, the therapeutic window is narrowed or broadened, 

leading to a more or less likely occurrence of adverse events for a given exposure.  

Table 1: Altered PD response in children, as reviewed by Mulla, 2010 [10]. 

Studied drugs Effect in children Developmental difference 
compared with older 
children/adults 

References 

Antidepressants Lack of effect of tricyclics Neurodevelopmental delay 

in noradrenalin system 

[12,13] 

     

Antiepileptics Paradoxical seizures Excitatory GABAA receptor 
instead of inhibitory at 

young age, and increased 

receptor density 

[12-18] 

     

Opioid analgesics Increased sensitivity in 
neonates 

Changes in opioid receptor 
expression 

[19-22] 

     

Immunosuppressants Increased sensitivity Quantitative and qualitative 
differences in immune 
system 

[23-28] 

     

Cardiovascular drugs    

 Angiotensin 

receptor 

antagonists 

? AT2 receptor highly and 

transiently expressed in 

foetal tissues 

[29,30] 

 Drugs prolonging 
QT interval 

Increased propensity for 
QT interval prolongation 

Maturation of myocardial 
potassium channels 

[31] 

Oral anticoagulants Increased sensitivity to 
effects 

Decreased plasma 
concentration of vitamin K-
dependent factors 

[32,33] 

     

AT2= angiotensin receptor, subtype 2; GABAA= gamma aminobutyric acid receptor, subtype A;? 
indicates not known 
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2.2 Developmental pharmacokinetics 

During gestation and after birth, the physiology of children changes significantly. Many of 

these developmental changes profoundly affect the responses to medications. In the last 

decade, many excellent reviews were published describing the relevant changes, such as 

the reviews by Alcorn and McNamara [34,35], Kearns et al [11], Benedetti et al [36,37], 

Anderson [38], and Pogessi [39]. Table 2 gives an overview of the main physiological 

factors that influence the changes in drug disposition during development according to 

these reviews. A very clear figure displaying some of the items mentioned above was 

published by Kearns et al [11] (see Figure 1).  

 

Table 2: Summary of the physiological factors changing during development and likely to affect 

drug therapy (References: [11,34-39]). 

Absorption  Distribution 

Oral administration  Plasma proteins 

 Gastric pH   Concentration 

 Gastric emptying time   Binding capacities 

 Intestinal motility/transit time   Quality 

 Intestinal surface area  Body composition 

 Secretion and activity of bile salts and 
pancreatic fluids 

  Relative extracellular and total body water 
space 

 Enzymes   Adipose stores 

 Transporters  Regional blood flow 

Intrapulmonary administration  Organ perfusion 

 Architecture of the lung  Permeability of cell membranes 

 Ventilator capacity    

Intramuscular administration    

 Muscular blood flow    

 Efficiency of muscular contractions    

Percutaneous administration    

 Relative BSA to weight    
    

Metabolism  Renal excretion 

Relative liver size  Glomerular filtration rate 

Liver microsomal content  Tubular secretion 

Phase I and Phase II enzymes ontogeny  Renal and intrarenal blood flow 
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Figure 1: Physiologic changes in multiple organs and organ systems during development are 

responsible for age-related differences in drug disposition. As reflected by Panel A, the activity of 

many cytochrome P-450 (CYP) isoforms and a single glucuronosyltransferase (UGT) isoform is 

markedly diminished during the first two months of life. In addition, the acquisition of adult activity 

over time is enzyme and isoform specific. Panel B shows age-dependent changes in body 

composition, which influence the apparent volume of distribution for drugs. Infants in the first six 

months of life have markedly expanded total-body water and extracellular water, expressed as a 

percentage of total body weight, as compared with older infants and adults. Panel C shows the 

age-dependent changes in both the structure and function of the gastrointestinal tract. As with 

hepatic drug-metabolizing enzymes (Panel A), the activity of cytochrome P450 1A1 (CYP1A1) in the 

intestine is low during early life. Panel D summarizes the effect of postnatal development on the 

processes of active tubular secretion — represented by the clearance of para-aminohippuric acid - 

and the glomerular filtration rate, both of which approximate adult activity by 6 to 12 months of 

age. Panel E shows age dependence in the thickness, extent of perfusion, and extent of hydration 

of the skin and the relative size of the skin-surface area (reflected by the ratio of body-surface area 

to body weight). Although skin thickness is similar in infants and adults, the extent of perfusion 

and hydration diminishes from infancy to adulthood. (Figure and legend reproduced from Kearns et 

al, 2003 [11]) 
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2.3 The cytochrome P450 enzyme system 

2.3.1 General 

The systemic clearance of the top 200 prescribed drugs occurs mainly by metabolism, 

and predominantly in the liver (see Figure 2). Occasionally, extensive metabolism of a 

drug occurs in one or more other tissues, such as kidneys, lungs, blood, or the gastro-

intestinal wall [40,41]. One of the most important drug-metabolizing enzyme systems in 

humans is the cytochrome P450 (CYP450) enzyme family [42]. CYP450 enzymes are 

involved in the oxidative metabolism of a large number of endogenous compounds (such 

as unsaturated fatty acids, eicosanoids, sterols and steroids, bile acids, retinoids), as well 

as exogenous compounds (such as drugs, environmental chemicals and pollutants, 

natural plant products) [43].  

A standard nomenclature system was created, in order to avoid confusion in the rapidly 

growing amount of studies on CYP genes. Since 1996, CYP enzymes are named using 3 

characters: (1) a number to indicate the gene family (enzymes with ≥ 40% identity on 

the amino sequence level belong to the same family), (2) a letter indicating the 

subfamily (≥ 55% identity), (3) a number indicating the gene [44]. New 

genes/polymorphisms can be consulted on a website (http://www.cypalleles.ki.se). CYP 

families 1-3 are involved in 70-80% of all phase I dependent metabolism of clinically 

used drugs [45-47]. 

  

Figure 2: Relative importance of route and mechanism of elimination of the top 200 prescribed 

drugs. The coloured segments refer to phase I metabolism, the remaining segments refer to either 

phase II conjugative reactions or excretory processes within the liver and kidney. In addition to the 

depicted mechanisms, transporter proteins are also important in the elimination of many drugs. 

(Figure adapted from Williams et al, 2004 [41] and Rowland and Tozer, 2011 [40]).  

 

http://www.cypalleles.ki.se/
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CYPs are mixed-function oxidases (MFO) primarily situated in hepatic parenchymal cells, 

but some isoforms are also present in other tissues, such as intestine, lung, kidney, 

placenta and brain [42,48]. In the parenchymal cells, these hydrophobic enzymes are 

bound to the membranes of the endoplasmatic reticulum [47,49,50]. Fragmentation of 

the cells, followed by differential centrifugation leads to the isolation of the microsomal 

fraction, containing fragments of the endoplasmatic reticulum [49]. Guengerich 

determined that 96% of the CYPs in the liver can be found in the microsomal fraction 

[51].  

CYPs are part of an electron transport system in the endoplasmatic reticulum, requiring 

reduced NADPH (NADPH), molecular oxygen, CYP450, NADPH-cytochrome P450 

reductase, and phospholipids. The latter is involved in the binding of the drug molecule to 

the CYP, and coupling the NADPH-CYP450 reductase to the CYP450. The CYP450 is the 

terminal component of the electron transfer system and acts as both oxygen and 

substrate binding locus for drugs and endogenous substrates, in conjunction with a 

flavoprotein reductase, the NADPH-CYP450 reductase [49]. A general scheme of the 

electron transfer system is represented in Figure 3. 

 

 

Figure 3: Electron flow pathway in the microsomal drug-oxidizing system. (Figure reproduced 

from Alvares, 1990 [52] and Shargel, 1999 [49]). 

 

The activity of CYP enzymes is affected by genetics, age, gender, pathological states, 

environmental influences, intake of drugs, and dietary habits [42,50]. Genetic 

polymorphisms are found in almost all CYPs amongst the families 1-3, except CYP1A1, 

2E1, and 3A4 [47]. These 3 enzymes have an important endogenous function and are 
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therefore possibly better conserved. The higher genetic variation is seen in genes with 

gene products that are active in the metabolism of environmental agents. Polymorphisms 

may lead to abolished, reduced, altered or increased enzyme activity. The clinically most 

important polymorphisms are seen in CYP2C9, 2C19, and 2D6 [47].  

There is no apparent relationship between the abundance of a CYP isoform and its 

relative importance in drug metabolism [40,47,53]. This is illustrated in two ways in 

Figure 4. For example, CYP2D6 is responsible for only about 2-3% of the total CYP 

content, whereas it is responsible for the clearance of 25% of the prescribed drugs. 

 

Figure 4: A. Relative abundance of the major hepatic CYP450 enzymes in the human liver. B. 

Relative contribution of the major CYP450 enzymes in the CYP-mediated clearance of drugs  

[40,53]. C. Relative amount of the CYPs and relative importance for the metabolism of clinically 

used drugs [47].  
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2.3.2 Ontogeny of the CYPs 

Developmental changes in drug-metabolizing enzymes make a major contribution to the 

overall PK differences between adults and children. Knowledge on the ontogeny of these 

enzyme systems has partially been derived from in vivo pharmacokinetic studies in 

neonates, infant, and older children, in which the plasma clearance of the studied drugs 

may reflect the ontogeny of one specific enzyme or a combination of enzymes [54]. 

Additional information on the ontogeny can also be obtained in vivo by using the urinary 

ratio of metabolite/drug or stable isotope labelled probes [55]. These types of in vivo 

studies cope with the same ethical and practical issues as described earlier, such as the 

inclusion of healthy children, the possible risks, the need for age-appropriate protocols, 

and realistic sample procedures [6,7].  

Another approach to investigate the ontogeny is the use of liver tissue samples to 

perform in vitro experiments. However, this type of research is slowed down due to the 

low availability of liver tissue over age ranges [54]. This knowledge gap was partially 

filled by Hines in 2007 [56], who was able to analyze the enzyme contents of 6 key 

cytochromes P450 in the 240 human liver samples, representing ages from 8 weeks 

gestation to 18 years. Although oversimplified, these results, combined with information 

from previously published studies, revealed the apparent existence of three patterns of 

expression [57], as shown in the comprehensive graph adapted from de Wildt (Figure 5) 

[54]. The enzymes following the first pattern of ontogeny are characterized by a 

relatively high expression during foetal life. During postnatal life, these enzymes (e.g. 

CYP3A7, flavin-containing monooxygenase 1 (FMO1) and sulfotransferase 1A3 

(SULT1A3)) are silenced or expressed at low levels. Enzymes from the second group are 

expressed at relatively constant levels throughout gestation and postnatal life. 

Representatives of this group are CYP3A5, SULT1A1, and thiopurine S-mehyltransferase 

(TPMT). The last pattern shows either no expression in the foetus or low levels of 

expression with the onset in the second or third trimester of pregnancy or within hours to 

days after birth. The increases in expression are observed within the first 1-2 years of 

life. A considerable interindividual variability in the postnatal onset and the increase in 

expression can be seen [56].  This last group of enzymes includes, CYP1A2, 2C9, 2C19, 

2D6, 2E1, 3A4, FMO3, and most UDP-glucuronosyltransferases (UGTs). For a detailed 

description of the ontogeny of the individual isoforms, we refer to the review by de Wildt 

(2009) [54]. 
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Figure 5: Developmental patterns of drug-metabolizing enzymes in vitro (modified from de Wildt, 

2011 [54]). 

 

3 LIVER DISEASE 

3.1 Liver disease in adults 

The management of liver disease consists of several dietary and pharmacological 

interventions. In some cases, these interventions are insufficient, and orthotopic liver 

transplantation (OLT) should be considered. The main indications for OLT in adults (see 

Figure 6) are cirrhosis associated with alcoholism (18%) and with hepatitis C (15%). 

Other conditions leading to cirrhosis account for 25%, whereas liver cancers account for 

13%. Other indications are cholestatic diseases (11%), acute liver failure (9%), mainly 

due to acute viral hepatitis or drug intoxication, metabolic diseases (6%), and chronic 

hepatitis  (hepatitis B, autoimmune) (3%) [58].  

 

Figure 6: OLT indications in adults. 
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3.2 Liver disease in infants and children 

Liver disease in infants is relatively rare (prevalence of 1/2500 live births in the USA 

[59]), but is considered a serious cause of morbidity and mortality [60]. In general, liver 

disease can be classified as cholestatic, hepatocellular or cirrhotic. It may be acute or 

chronic (when occurring over periods over 6 months) [61].  

OLT in children has evolved from a life-saving procedure to an established treatment of 

many liver diseases [62]. The pattern of indications most frequently leading to OLT 

differs somewhat between studies. Figure 7 compares the frequencies as reported by 

Sokal et al. (A) [63] and Adam and Hoti (B and C) [58]. It should be noted, however, 

that Sokal et al. did not report the age range of the patients, whereas Adam and Hoti 

clearly divide the population into two groups, i.e. infants from 0-2 years old, and children 

from 2-15 years old. This could explain the (small) discrepancy between the reported 

values. However, the main findings are very similar, i.e. cholestatic diseases account for 

the majority of OLT in children. In adults, the aetiology of liver disease seems to be one 

of the factors which determine the changes in the activity of CYP enzymes [64]. The 

substantial differences in the main causes of liver disease between children and adults 

are an important argument to motivate research in children with liver disease. 

 

Figure 7: Transplant indications for paediatric OLT, as reported by Sokal et al (A) [63] and Adam 

and Hoti for children from 0-2 years old (B) and children from 2-15 years old (C) [58].  

 

Chronic cholestatic diseases are responsible for a high number (>50%) of OLT in - 

especially very young - children (see Figure 7). The main pathology in this group is 

biliary atresia. This disease, for which the actual cause is not elucidated yet, is 

characterized by biliary obstruction with unknown origin, leading to secondary biliary 

cirrhosis [65]. The condition is treated surgically, using the Kasai portoenterostomy, in 
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order to restore some bile flow [66]. This operation is successful for 33% of the patients, 

if performed before the age of 90 days [67]. For 67% of the patients, however, this 

operation is only a bridge to a liver transplantation in the period before adulthood [68]. 

Another cholestatic disease is progressive familial intrahepatic cholestasis (PFIC), which 

leads to severe intrahepatic cholestasis with progressive hepatocellular damage. There 

are 3 types of PFIC, all caused by genetic defects: PFIC-1, also known as Byler disease, 

with a mutation in the FIC1 gene; PFIC-2, bile salt export pump (BSEP) deficiency; and 

PFIC-3, multi-drug resistance gene-3 (MDR-3) deficiency. Types 1 and 2 lead to failure of 

bile acid secretion at the canalicular level [60]. Other cholestatic diseases include Alagille 

syndrome, total parenteral nutrition-related cholestasis, Caroli disease, and idiopathic 

neonatal cholestasis [63]. 

In the category of metabolic diseases, 1 antitrypsin deficiency (A1AD) is the main 

indication for OLT. A1AD is a genetic disorder with a highly variable presentation of liver 

disease. If presented in the neonatal period, it is characterized by jaundice, abdominal 

distension, poor feeding and weight gain, pruritus, hepatomegaly, and splenomegaly 

[69]. Other metabolic diseases for which OLT may be indicated are, amongst others, 

tyrosinemia, urea cycle defects, hyperoxaluria, Wilson’s disease, and glycogen storage 

diseases. Acute liver failure, accounting for 9-15% of OLT in children, often has an 

unknown aetiology [63].  Possible causes are non A-E viral hepatitis, drug toxicity 

(acetaminophen, halothane, valproate, aspirin), or autoimmune hepatitis [70]. Liver 

transplantation has also been proven effective in the treatment of liver tumours. 

Hepatoblastoma is the most common (>70%) tumour in paediatric OLT [63]. Cystic 

fibrosis leads to liver disease in 20% of the adolescents, manifesting as compensated 

cirrhosis [71]. Despite the minimal cholestasis and the satisfactory synthetic function of 

the liver, the patients are in a “cirrhotic status”. Clinical features comprise reduced 

muscle mass, decreased growth, splenomegaly, abdominal pain, poor appetite, and 

malabsorption [63], often requiring OLT. In some patients with Alagille syndrome or 

PFIC, symptoms can be non-life threatening, but can affect the quality of life, due to 

extensive xanthomas or unmanageable pruritus [63]. In these patients, OLT will not save 

lives, but will nevertheless spectacularly improve the patient’s condition, allowing for a 

normal life, without limitations in physical, social, and educational activities.  

In accordance to the Model for End stage Liver Disease (MELD) score in adults (see 4.1) 

an allocation system for available organs was developed and implemented to allocate 

livers to children on the basis of medical need [63]. The Paediatric End-stage Liver 

Disease (PELD) scoring system uses an algorithm based on the objective and measurable 

parameters age (< 1 year), serum albumin, serum total bilirubin, INR, and growth failure 

[72]. In order to avoid discrimination of certain subgroups on the transplant waiting list, 
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the diagnosis is not incorporated in the calculation. For patients older than 12 years, the 

MELD score is applied [63]. If the calculated PELD or MELD score is believed to not 

adequately reflect the pretransplant mortality risk or the severity of the patient’s 

condition (in some conditions, such as tumours, hepatopulmonary syndrome, or 

metabolic liver disease), the addition of exception points may be requested [63]. 

3.3 Treatment of liver disease in children 

The treatment of chronic liver disease requires a multidisciplinary approach, as well as an 

intense monitoring of the patient [73]. Figure 8 summarizes the three categories of 

chronic liver disease, each with their own treatment and management goals, as described 

by El-Shabrawi and Kamal [73].  

 

Figure 8: Chronic liver diseases can be classified in three categories. In each category, other 

treatment and management goals are pursued [73].   

 

The management of liver disease consists mainly of dealing with the organ specific 

deficiencies, but also requires focus on the prevention or reduction of common 

complications of hepatic impairment, such as ascites, portal hypertension and associated 

oesophagogastric varices and bleeding, and pruritus. Moreover, dietary changes are 

needed, in order to address the substrate and nutrient deficiencies due to impaired 

absorption or intake, and impaired hepatic homeostasis. Fat malabsorption, for example, 

leads to fat-soluble vitamins deficiencies, and consequently supplementation of the 

vitamins A, D, E, and K is essential [74]. As mentioned above, orthotopic liver 

transplantation (OLT) is considered when the dietary and pharmacological interventions 

are insufficient.  

Whereas acute liver failure only requires short term treatment, most of the other 

indications for paediatric liver transplantation are chronic diseases, often requiring 

chronic medication. This is reflected in the results of a medication review in 31 paediatric 

patients undergoing liver transplantation at Ghent University Hospital or Cliniques Saint-
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Luc (Belgium), taking into account the 2 weeks prior to the transplantation. The basic 

daily therapy of children with liver disease often consists of the use of the same 

combination of drugs: (1) supplementation of the lipid soluble vitamins A, D, E, and K; 

(2) rifampicin to mitigate pruritus [75]; (3) a proton pump inhibitor ((es)omeprazole) or 

H2-antihistaminic (e.g. ranitidine) to soothe reflux symptoms or dyspepsia; and (4) 

acetaminophen for pain relief. Other drugs are administered in case of the occurrence of 

more severe side effects, or to treat liver related problems. An overview of the drugs 

used in the 31 patients evaluated is depicted in Table 3.  

Table 3: Drugs used in 31 paediatric liver transplant patients, up until 2 weeks prior to 

transplantation.  

Most frequently used: 

Vitamin A (retinol), D (25-OH Vitamin D), E (-tocopherol), K (phytonadione) 

Rifampicin 

(Es)omeprazole, Ranitidine 

Acetaminophen 
 

Other 

Ursodesoxycholic acid 

Amylase, Lipase, Protease 

Antilymphocyt IgG 

Diuretics 

 Furosemide, Potassium canrenoate, Spironolactone 

Anti-hypertensive drugs 

 Amlodipine, Propranolol 

Antibiotics/Antibacterials 

 Amoxicillin, Ampicillin, Cefotaxime, Cefuroxime, Ciprofloxacin, Colistin, Meropenem, 
Penicillamine, Sulfomethoxazole + Trimethoprim, Temocillin, Vancomycin 

Antimycotics 

 Fluconazole, Metronidazole, Nystatin 

Domperidone 

Somatostatin 

Respiratory drugs 

 Dornase alfa, Ipratropium bromide, Salbutamol (aerosol) 

Acetylcysteine 

Antihistamines 

 Dimetindene, Dexchlorpheniramine 

Alprostadil 

Methylprednisolone 

Tranexamic acid 
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4 PHARMACOKINETICS IN LIVER DISEASE 

In patients with liver disease, many changes in drug response can be attributed to 

pharmacokinetic changes. However, altered therapeutic efficiency can also result from 

changes in drug receptor binding, in the affinity of a drug for its receptor, or in the 

intrinsic activity of the receptor [76]. For example, patients with cirrhosis appear to be 

more sensitive to central adverse effects of morphine [77] and midazolam [78], and to 

the renal adverse effects of NSAIDs [79]. In contrast, due to a reduced sensitivity to the 

natriuretic effect of loop diuretics, a higher tubular concentration of diuretics is needed in 

patients with cirrhosis to excrete the same amount of sodium as a healthy individual 

[80].  

4.1 PK in adults with liver disease 

The liver is a key organ in the pharmacokinetics. Not only is it the most important organ 

for drug biotransformation, other parameters, such as liver blood flow, plasma protein 

binding, and biliary excretion, which depend on the normal function of the liver, can 

possibly influence other aspects of pharmacokinetics. It is therefore not surprising that 

liver disease in adults has been shown to significantly affect the pharmacokinetics and 

pharmacodynamics of drugs. In order to avoid drug toxicity due to excessive 

accumulation of a drug, or possibly active metabolites, dose adjustments in these 

patients may be essential [76,81]. The extent of alterations generally varies according to 

the severity of the impairment [39]. In adults, the severity of liver failure can be 

assessed by the Child-Pugh (CP) classification. This score is an empiric compilation of five 

clinical features of end-stage liver failure: serum levels of bilirubin and albumin, 

prothrombin time, ascites, and encephalopathy; and divides the patients into mild (class 

A), moderate (class B) and severe (class C) liver disease (see Table 4)  [82-84].  

Another classification scheme to assess chronic liver disease is the MELD (Model for End 

stage Liver Disease) score. This score was originally developed to assess the short-term 

prognosis of patients with liver cirrhosis undergoing transjugular intrahepatic 

portosystemic shunt (TIPS) procedure [85]. Afterwards, the MELD score was validated to 

be used as a prognostic indicator for patients with advanced chronic liver disease [86]. 

The model uses serum creatinine, total serum bilirubin, INR, and aetiology of cirrhosis to 

calculate the MELD score. The use of only objective parameters determined with 

standardized tests, is one of the advantages of this model compared to the Child-Pugh 

score [87].  
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Table 4: Child-Pugh classification of the severity of liver disease (adapted from Lucey, 2003 [84] 

and Ghany and Hoofnagle, 2008 [88]) 

Variable Points 

 1 2 3 

Hepatic encephalopathy None Minimal Advanced 

Ascites None Easily controlled Poorly 

controlled 

Bilirubin (mg/dL) <2 2-3 >3 

Albumin (g/dL) >3.5 2.8-3.5 <2.8 

Prothrombin time (sec prolonged) 

(INR) 

<4 

(<1.7) 

4-6 

(1.7-2.3) 

>6 

(>2.3) 

Scores are summed to determine Child’s class: A = 5-6, B = 7-9, and C = 10-15 

 

In liver disease, the alterations in drug disposition occur at all levels: absorption, 

distribution, metabolism and excretion. The pharmacokinetics in patients with hepatic 

dysfunction has been reviewed in 2008 by Verbeeck [76].  

4.1.1 Absorption 

Liver disease is often complicated with gastrointestinal dysfunction. Despite the increased 

intestinal permeability in patients with liver disease, the consequences for intestinal 

absorption of drugs are not clear [89]. Chronic liver disease mainly affects the 

bioavailability of orally administered drugs, as a result of reduced presystemic hepatic 

clearance [76]. Drugs with a high or intermediate hepatic extraction ratio undergo an 

important presystemic elimination or first-pass effect. A substantial increase in the bio-

availability of these orally administered drugs is the result of portosystemic shunts, 

resulting in a smaller fraction of mesenteric blood flow passing through the liver, and the 

decreased activity of important drug-metabolizing enzymes [76,90]. The increase in bio-

availability, in combination with the reduced systemic clearance (as discussed further), 

may lead to substantial increases in exposure of flow-limited drugs, necessitating a dose 

reduction. In contrast, a reduced bio-availability was reported for some lipophilic drugs in 

patients with cholestasis, due to fat malabsorption [91].  

4.1.2 Distribution 

The distribution of a drug within the body depends on several parameters, including lipid 

solubility, and reversible binding to blood cells, plasma proteins, and tissue 

macromolecules [91]. Only unbound drug is capable of entering and leaving the tissue 

compartments. In hepatic diseases, the apparent volume of distribution may be affected 

by changes in protein binding, tissue binding and fluid balance. 
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Reduced binding of certain drugs to plasma proteins may occur due to reduced synthesis 

of albumin and 1-acid glycoprotein, changes in affinity due to conformational changes of 

the protein, and accumulation of endogenous compounds, such as bilirubin, inhibiting 

plasma protein binding of certain drugs [92]. Moreover, an increase in the volume of 

distribution of water-soluble drugs is expected in patients with ascites (i.e. accumulation 

of fluid in the peritoneal cavity) [91].  

4.1.3 Elimination 

4.1.3.1 Metabolism 

The hepatic intrinsic clearance (CLint) is defined as the ability of the liver, the main organ 

for drug metabolism, to clear unbound drug in the absence of flow limitations. The CLint 

depends on the activity of drug metabolizing enzymes and of sinusoidal and canalicular 

transporters [76]. The impaired metabolism observed in liver disease is the result of a 

reduction in absolute liver cell mass, a decrease in enzyme activity due to changes in the 

surviving cells, and a reduced uptake of drug and oxygen due to sinusoidal capillarization 

[76,80]. The importance of the microsomal MFO system has been discussed earlier. This 

system, comprising CYP enzymes and NADPH-dependent CYP reductase, requires NADPH 

and oxygen. Consequently, it is very sensitive to lack of oxygen due to these changes 

[93,94]. 

The influence of liver disease on the activity and expression of CYP enzymes has been 

extensively reviewed by Elbekai et al. [95], Villeneuve and Pichet [64] and Johnson and 

Thompson [91]. An interesting study was performed by Frye et al, in which the activity of 

4 important CYP isoforms (CYP1A2, 2C19, 2D6, and 2E1) was assessed in vivo in patients 

with different aetiologies and severity of liver disease [96]. In general, the activity and 

protein content of CYP enzymes decrease with increasing disease severity. Additionally, 

the changes in CYP activity are variable and non-uniform for the different isoforms. These 

findings lead to a sequential progressive model of hepatic dysfunction, as first suggested 

by Branch [97], and later optimized by Frye et al [96]. The model is graphically 

represented in Figure 9. At an early stage of liver disease, the clearance of drugs 

metabolized by CYP2C19 may be expected to be reduced, whereas the clearance of drugs 

metabolized by the other studied CYPs (CYP1A2, 2D6 and 2E1) will be relatively normal. 

At an intermediate level of hepatic dysfunction, the clearances of drugs will be more or 

less affected by the disease, according to the specific isoform involved in their 

metabolism. A patient with decompensated end-stage liver disease will have reduced 

clearances of drugs metabolized by CYP1A2, 2C19, 2D6, and 2E1. A comparable 

conclusion was drawn by Villeneuve and Pichet [64]. They state that the activity and 

expression of CYP is reduced in patients with cirrhosis, and that the reduction is not 
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uniform. CYP1A, 2C19 and 3A seem particularly vulnerable to liver disease, while 2D6, 

2C9 and 2E1 appear to be less affected. It is also recognized that the pattern of CYP 

isoform alteration may vary between liver diseases with different aetiology, as shown in 

several studies [98-101].   

 

Figure 9: The sequential progressive model of hepatic dysfunction as described by Branch [97] 

and Frye et al [96]. 

 

In order to predict the effect on the clearance of a particular drug in an individual patient, 

3 factors should be taken into account: (1) which enzyme(s) is (are) involved in the 

metabolism of the drug?, (2) what is the sensitivity of the enzyme(s) to liver disease?, 

and (3) how severe is the liver disease in the patient? 

Assessment of the CYP activity can be done both in vivo and in vitro. When data obtained 

by using selective in vivo probes are compared to in vitro data, corrections have to be 

made to account for concomitant changes due to liver disease [102]. Firstly, there is a 

decrease in liver size with increasing severity of hepatic impairment [103]. Secondly, as 

described earlier, there is an increase in the fraction of unbound drug due to reduced 

plasma protein binding. Finally, the renal function decreases with deteriorating liver 

function (see further). When these considerations are taken into account, Johnson et al 

concluded there is a reasonable agreement between the currently available in vivo and in 

vitro data on the CYP expression and activity in patients with cirrhosis [102].   

Conjugation reactions (phase II metabolism) were long believed to be affected to a lesser 

extent by cirrhosis. However, older studies appear to have used only patients with mild 

and moderate liver disease [104]. More recent studies included patients with advanced 

cirrhosis and showed impaired glucuronidation of some drugs, such as morphine, 
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lormetazepam, zidovudine, and mycophenolate mofetil [105-108]. Moreover, in 

accordance with the CYP isoforms, a differential effect on the various UGT isoforms 

appears to be present in patients with liver diseases [109]. 

4.1.3.2 Biliary excretion 

Substances that are eliminated by biliary excretion may encounter reduced clearance due 

to extra hepatic or intrahepatic cholestasis. Additionally, biliary obstruction may lead to 

hepatocellular damage with consequent impairment of metabolic drug clearance. For 

example, the activity of CYP2C and CYP2E1 was shown to be reduced in patients with 

end-stage liver cirrhosis with cholestasis [98].  

4.1.3.3 Renal excretion 

A common complication of advanced hepatic disease is an impaired renal function. The 

hepatorenal syndrome is defined as unexplained progressive renal failure occurring in 

patients with chronic liver disease in the absence of clinical, laboratory, or anatomical 

evidence of other known causes of renal failure [76]. Consequently, dosage modifications 

may also be indicated for renally cleared drugs in patients with advanced chronic liver 

disease. An additional pitfall is the assessment of renal function. The estimation of the 

creatinine clearance based on serum creatinine measurements, as in the Cockroft-Gault 

method, is often inaccurate due to reduced muscle mass and impaired metabolism from 

creatin to creatinine in these patients [110]. Actual measurement of creatinine clearance 

also often overestimates the true glomerular filtration rate [111]. A more accurate 

marker seems to be the serum cystatin C level, as this marker is not influenced by 

muscle wasting [110].  

4.2 Dose alterations in adults with liver disease 

The effect of liver disease on drug metabolism is very complex. Additionally, the term 

liver disease comprises a wide variety of aetiologies and pathophysiological changes in 

liver function [90]. A lot of research in the past decades stresses the need for dose 

optimization in patients with liver disease. In contrast to the use of creatinine clearance 

or serum cystatin C for dose adjustments in renal impairment, there is no naturally 

occurring marker that can be used to estimate the hepatic clearance of drugs [112]. 

Although the Child-Pugh and the MELD score are valuable tools in the assessment of the 

severity of the liver disease, they lack the sensitivity to quantitate the specific ability of 

the liver to metabolize individual drugs. Up until now, most of the tests using exogenous 

substances (such as indocyanine green, sorbitol or erythromycin) used for the 

quantification of liver function or liver metabolism are too invasive or time consuming, 

and thus also have limited clinical value. Moreover, they are not able to predict the 

complex metabolism of drugs accurately [113].  
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In 2003 and 2005, the FDA and the EMA, respectively, published recommendations on 

the assessment of the PK of drugs used in patients with impaired hepatic function 

[114,115]. They recommend to perform a study in patients in the following situations: 

(1) if the hepatic metabolism and/or excretion accounts for a substantial portion (>20% 

of absorbed drug) of the elimination of a parent drug or active metabolite, (2) if the drug 

is eliminated to a lesser extent, but is a drug with a narrow therapeutic range, and (3) if 

the metabolism of the drugs is unknown, it should be considered as extensively 

metabolized. A full study should be performed in patients of all 3 Child-Pugh (CP) classes, 

and with at least n=6 in each study arm. If studies are performed only in patients with 

moderate liver disease (CP B), the findings can be used in patients with mild impairment, 

but the drug should be contraindicated in severe dysfunction.  

These recommendations by the FDA apply for newly registered drugs, whereas for older 

drugs, the PK, response and toxicity in patients with liver disease was often not studied. 

Moreover, most of the studies describing dose adjustment in patients with liver disease 

did not include patients with CP class C (severe), whereas the differences in PK often 

associate with severity of liver disease, and the results can consequently not be 

extrapolated [76,116]. Consequently, there are still very limited drugs with specific 

dosage recommendations based on the CP scores [117].  

In 2012, Periáñez-Párraga et al. [112] published a review containing dose adjustment 

recommendations in patients with hepatic impairment, based on the WHO list of 

medicines to avoid or to use with care in patients with liver disease [118], and 

supplemented by therapeutic novelties. This review, however, does not contain 

information on all drugs used in patients with liver disease. For the missing drugs, the 

general recommendations as published by Delco et al [113], Verbeeck [76] and Klotz 

[119] should be followed. These recommendations are based on flow-dependence, first-

pass extraction ratio, hydrophilicity, liver metabolism extent, and plasma protein binding 

[116].  

4.2.1 Hepatic clearance 

The hepatic extraction ratio (ER) is the proportion of the drug that is removed as the 

drug passes through the liver. It is defined as follows: 

  ER = (Cin – Cout)/Cin               (Eqn 1)  

where Cin is the concentration entering the liver, and Cout the concentration leaving the 

liver. The ER can vary from 0 (no extraction) to 1 (complete extraction). The ‘well stirred’ 

or ‘venous equilibrium’ model is a mathematical model relating hepatic clearance (CLH) to 
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hepatic blood flow (Q), the fraction of unbound drug concentration (fu), and the intrinsic 

clearance of the unbound drug (CLint) (Equation 2) [40].  

  CLH (L/h) = Q (L/h) x ER = Q (L/h)   x      fu x CLint   (Eqn 2) 

                             Q + fu x CLint 

This model is used to categorize drugs according to their ER, and subsequently deduce 

dose requirements under different clinical circumstances [91]. 

4.2.2 High ER drugs (ER >0.7) 

In high ER drugs, clearance is very effective and consequently the fu x CLint factor 

dominates the denominator, following which Q becomes negligible. As fu x CLint then 

cancels out, the well stirred model as shown in equation 2 can be simplified into CLH ≈ Q. 

Changes in fu or CLint become less important [91].  

Due to the reduced blood flow in liver disease and the formation of portosystemic shunts, 

there is an increase in bio-availability after oral administration, necessitating a dose 

reduction of both the initial and the maintenance dose [76,113]. The extent of reduction 

is difficult to determine, as blood flow and portosystemic shunts in a patient are usually 

not known. Delco et al. therefore propose a conservative approach, in which a bio-

availability of 100% is assumed in patients with liver disease. Equation 3 can be used to 

calculate the initial dose and the first maintenance:  

  Reduced dose = normal dose x BAv / 100    (Eqn 3) 

The BAv is the bio-availability of the drug in a healthy person [113]. The maintenance 

dose should then be determined, taking into account the desired pharmacological effects, 

as well as the possible toxicity in the patient.  

After systemic (e.g. intravenous) administration of a high ER drug, a decreased clearance 

is expected if the hepatic blood flow is reduced [76]. The initial dose should be the 

normal dose, whereas the maintenance dose should be determined according to the 

hepatic clearance of the drug. As this is reflected by blood flow, clinical tests such as 

Doppler measurements could be used to determine this parameter, but up until now, no 

clinical studies are available to confirm this methodology [113].  

4.2.3 Low ER drugs (<0.3)  

The equation of the well stirred model can be rewritten to CLH ≈ fu x CLint for low ER 

drugs, as the fu x CLint factor in the denominator becomes negligible, and the hepatic 

blood flow can consequently be eliminated [91].  
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The low ER drugs should be divided into two groups: drugs with a high binding to plasma 

proteins (≥ 90%), and drugs with a low plasma protein binding (< 90%). In the latter 

group (low binding), the clearance mainly depends on the intrinsic clearance of the liver. 

As described earlier, the clearance depends on the functional status of the liver, as well 

as on the pathways involved in the elimination of the drug. As protein binding is low, only 

small fluctuations in the unbound drug fraction will occur in patients with liver disease, 

consequently having only little or no impact on the clearance [76,113]. For these drugs, 

a normal initial dose can be administered to patients with liver disease. As for the 

maintenance dose, the following recommendations are formulated by Delco et al. [113] if 

no studies with dose requirements are available: (a) in patients with CP score A, 

administer 50% of the dose, (b) in patients with CP score B, use 25%, (c) and in patients 

with CP score C, only use drugs that were proven safe in a clinical trial, that have a PK 

that is not affected by liver disease, or for which therapeutic drug monitoring is available.  

The clearance of low ER drugs with a high plasma protein binding does not only depend 

on the CLint. Decreases in plasma protein binding, as seen in liver disease, result in an 

increased fraction unbound of the drug, and consequently in a more rapid metabolism of 

the drug [113]. However, when only the total concentration of the drug is considered, no 

changes in clearance are observed. Therefore, it is necessary to assess the unbound 

concentration of the drug, as the total concentration can be within the normal range 

[76].  

Klotz added the recommendation to adjust both the initial and maintenance dose if a low 

ER drug has a narrow therapeutic range [119].  

4.2.4 Intermediate ER drugs (0.3 – 0.7) 

Some drugs can be classified as intermediate ER drugs. In the assessment of drug 

clearance, all factors of the well stirred model matter, i.e. Q, fu and CLint. Therefore, it is 

very difficult to predict the clinical outcomes of a drug used in patients with liver cirrhosis 

[91,113].  

4.2.5 Additional considerations 

A major pitfall in classifying drugs according to the previously described method (ER) is 

the scarce availability of reliable data on the hepatic extraction ratio of drugs [113].  

When administering drugs to patients with liver disease some additional considerations 

should be taken into account [76]. For drugs that are partially excreted unchanged by 

the kidneys, dosing is even more complex, as patients with advanced liver disease often 

show concomitant renal insufficiency, or the hepato-renal syndrome. Drugs with a narrow 

therapeutic range should be administered with extreme caution to patients with liver 
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disease. Extreme caution is also recommended when any drug is administered to a 

patient with severe liver disease (CP score C). An increased loading dose might be 

required for hydrophilic drugs, as an increased volume of distribution may occur in 

patients with oedema or ascites, common complications of liver dysfunction.  

4.2.6 Summary 

The general recommendations as described above are summarized in Table 5. The review 

by Periáñez-Párraga et al. [112] contains an extensive list of dose recommendations for 

186 drugs when used in patients with liver disease. Dose adjustments are described for 

drugs used in oncology therapy, anti-infective agents (antibiotics, anti-tuberculosis 

drugs, antifungal and anti-retroviral agents), cardiovascular therapy and other 

pharmacological groups.   

 

Table 5: Dose recommendations in patients with hepatic impairment (Table adapted from 

Periáñez-Párraga [112]) 

Hepatic extraction ratio Protein binding Dose recommendations 

High (>0.7) Any LD and first MD = 

ND x BAv / 100 

Intermediate (0.3 – 0.7)  LD: start in low range of normal 

MD:  

CP-A: 50% of ND 

CP-B: 25% of ND 

CP-C: drug monitoring 

Low (<0.3) ≥ 90% Drug monitoring (unbound 

concentrations) 

< 90% LD: normal 

MD:  

CP-A: 50% of ND 

CP-B: 25% of ND 

CP-C: drug monitoring 

LD = loading dose; MD = maintenance dose; ND = normal dose; BAv = bioavailability 

in healthy person; CP = Child-Pugh score 
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5 SAFER DRUG USE IN CHILDREN WITH LIVER DISEASE: THE 

(POTENTIAL) ROLE OF PBPK MODELLING 

As described earlier (1.1), most drugs in children are used off-label [6,7]. This can be 

attributed to the many ethical and practical pitfalls in performing clinical trials in children, 

such as the difficult inclusion of healthy subjects, the informed consent by a surrogate 

consenter, and the need for an age-appropriate protocol including appropriate 

formulations and realistic sampling procedures [6,7]. Due to the scarce information on 

drug behaviour in children, dose regimens for children are currently often scaled from 

adult doses, using body weight, height and age. These simplified dosing approaches do 

not take into account the known differences in PK response in children. Additionally, 

there are differences between the age groups ((pre)term newborns, infants, toddlers, 

children, and adolescent) in rates of organ maturation, blood flow, body composition, and 

ontogeny of enzymes and transporters [5,11,120]. Moreover, many complex absorption 

and disposition processes are not captured by these “simple” scaling methods [120]. 

Despite the acknowledged vulnerability of the paediatric population, the social awareness 

for the necessity of paediatric clinical trials has grown [120]. Nevertheless, the same 

restraints will keep on hampering the conduction of these trials.  

5.1 Modelling and simulation: tools to meet the current needs? 

In order to minimize the ethical and practical issues, modelling and simulation (M&S) 

strategies have gained a lot of interest in drug development. M&S could become the 3rd 

approach in addressing a therapeutic problem, next to theoretical reasoning and 

hypothesis building, and actual clinical experimentation [121]. Modelling is defined as the 

description of the behaviour of a system or process by a set of mathematical 

expressions, whereas simulations are the application of the mathematical model to 

explore situations that have not been investigated experimentally [121]. Modelling and 

simulation are applied in many stages of (paediatric) drug development and are a useful 

tool to enhance the information gain and the efficiency of the decision-making process 

[121,122]. There are two types of M&S, useful in every drug development process, but 

illustrated here for their application in paediatric studies. A posteriori techniques are 

applied to analyze PK and PK-PD data from paediatric studies, especially using population 

approaches [120]. As such, maximum information can be derived from limited data. A 

priori techniques, such as Physiologically Based Pharmacokinetic (PBPK) models, are 

based on adult data, supplemented with PK and PD information based on preclinical 

species, in vitro experiments, paediatric data from pilot studies, and data from studies in 

older paediatric patients. The development and application of these models have evolved 

extensively in the past decade. In 2003, Nestorov published a comprehensive review on 
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the general structure and development of such models [123]. Several software tools are 

available for PBPK modelling, such as SimCYP®, GastroPlus™ and PK-Sim® [124]. Due to 

the unambiguous usefulness of PBPK modelling in paediatric drug design, many excellent 

reviews on the progresses in the field were published to keep the interested researchers 

up to date [120-122,125-130]. 

5.2 Properties of a PBPK model 

PBPK models are multi-scale models containing both system-specific (patient-specific) 

and drug-specific properties. Relevant physiological, physicochemical and biochemical 

processes that determine the PK behaviour of a drug are mathematically described 

[122]. The in silico system consists of a multi-compartmental model in which each 

compartment represents a specific organ or physiological space. The compartments are 

interconnected by a blood-circulation loop and each have their specific mass-balance 

equation expressing the appearance and exit of the drug through the compartment 

[120]. Figure 10 shows the general structure of PBPK models. Other relevant 

physiological, pharmacogenetic, biochemical and thermodynamic information is also 

incorporated. Moreover, due to the possibility to add system specific information, the 

information on the known maturation processes can be integrated. All the system specific 

properties are independent of the evaluated drug [120].  

 

Figure 10: The left panel shows the realistic physiological pathways of drug absorption, 

distribution and elimination. PBPK models aim to map the complex drug transport scheme into a 

multi-compartment model (right panel). (Figure reproduced from Nestorov [123]) 
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The general development of a PBPK model can be divided into 5 steps, as described by 

Khalil and Läer [122]. At first, the general model structure needs to be specified, 

dependent on the model’s purpose, and physicochemical and pharmacological properties 

of the modelled drug. Moreover, PBPK models can be partial-body, including only certain 

body systems or tissues, or whole-body, when almost all body tissues are included. 

Subsequently, the model of each particular organ or tissue needs to be specified. The 

next step consists of the derivation of the mass-balance model equations. Then, the 

physiological and compound dependent model parameters are defined or estimated. 

Parameters characterizing the anatomical structure or physiological processes of the 

studied species are incorporated. These parameters, such as organ or tissue volumes, 

cardiac outputs, tissue composition, surface area, pH values, transit times for the gastro-

intestinal tract, are known to vary not only among species and subjects, but also among 

age and altered physiological or pathological state [122]. The parameters that can be 

used as input for the model, can be obtained from different sources, i.e. in vitro 

experiments and in vivo studies [131]. Besides the system parameters, compound 

parameters are necessary to build the model. In vitro experiments, extrapolation from in 

vivo values from animals to adults, or estimations using specific algorithms may provide 

information on permeability, lipophilicity, ionization, plasma fraction unbound, amongst 

other relevant physicochemical properties. Finally, PK parameters are estimated or 

simulations are performed after coupling the entire system, using one of the available 

software systems. The output of a model is a set of concentration-time curves illustrating 

the behaviour of the drug in blood/plasma or other relevant organs.  

Due to the incorporation of system-specific information, PBPK models allow the 

description of the PK of a substance based on a physiological reality [125]. Because of 

the integrated inter-individual variability in physiological and drug-related parameters, 

parameters and concentration-time profiles can be predicted realistically for an entire 

population. Moreover, a specific target population can be studied/modelled when 

specificities linked to particular organs and to a given population are used to build the 

model. For example, reasonable estimates of PK parameters of drugs in children can be 

provided after the integration of physiological age-related changes during childhood, as 

well as changes in protein binding, maturation of renal function, and the ontogeny of 

CYPs and transporters [131].  

5.3 Applications of PBPK models 

In general, PBPK models can be used to describe and/or predict drug PK in certain 

individuals, or under certain physiological or pathological conditions [122]. They can 

already be used early in drug development: through the anticipation of PK in animals, 

unnecessary animal testing can be reduced and a significant amount of time can be 
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saved. In the subsequent steps of development, they can help to extend the information 

on the drug, by exploring the effects of food, aging, rest, physical exertion and gender 

differences on the PK [122].  

Many studies, however, focus on the specific use of PBPK models in paediatric drug 

development. Simulation-based trial design may help in guiding paediatric clinical trials. 

After the integration of maturation and growth processes, dose-exposure and exposure-

response relationships can be predicted [121]. Based on this information, more 

informative clinical trials can be designed, as optimal sampling times, number of subjects 

and number of samples per subject may be selected more accurately [131]. Also, this 

may facilitate the first-time-in-paediatrics dose selection [132], a critical point in 

paediatric drug development [120].  

The clearance of drugs in children has already been successfully predicted by PBPK 

models [133]. For this purpose, a generic whole-body Paediatric PBPK model was 

published by Edginton et al. [134], and this model was successfully used to scale PK from 

adults to children. The cause(s) of altered PK in children compared to adults can be 

uncovered through ‘what if’ scenarios using the PBPK model. Recently, a paediatric PBPK 

model was evaluated by performing simulations to replicate previously published 

paediatric clinical trials using this approach [135]. By changing the model parameters, a 

reduction in hepatic blood flow of 30% lead to acceptable predictions of the observed 

clinical values. The use of these what if scenarios may also support future trial design, or 

even guide individual drug treatments [122]. By suggesting age-specific dosing, clinical 

trials may become more “confirmatory” rather than “exploratory”. Consequently, time, 

effort, and the number of trials needed to be performed in children can potentially be 

reduced.  

The models may also provide support in risk assessment. They can for example predict 

or simulate possible drug-drug interactions [135-137]. They can also predict the PK in 

several (critical) situations, such as pregnancy, surgery, or organ impairment, as 

different physiological and pathological conditions may lead to altered PK. The use of 

PBPK modelling to predict the effect of liver cirrhosis was already explored by Edginton 

and Willmann [138]. Quantitative measures of the physiological changes in liver 

cirrhosis, such as organ blood flows, cardiac index, plasma binding proteins, hematocrit, 

functional liver volume, hepatic enzyme activity, and glomerular filtration rate, were used 

to build a PBPK model. The model of Edginton et al. successfully accounted for the 

altered physiology, and consequently the altered PK in the disease. It has been put 

forward as a building block for creating a generic/global whole-body PBPK model for the 

progressive disease of liver cirrhosis, which may facilitate future simulations and 

prediction of other drugs’ PK [122]. The model has already been extended to orally 
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administered drugs by Johnson et al. [102]. It should however be noted that the 

parameters used in these models were all based on data obtained in adults. 

The ultimate goal of all these applications is to provide better and safer drug use in 

children. The use of M&S in clinical situations may provide clinicians with a greater 

confidence in their decisions on dosing drugs in children. Moreover, it may support them 

in optimizing the overall medication use in paediatric patients and providing personalized 

medicine in children [121].  

It should be noted that children are not the only special population for which extra 

attention is needed. As Johnson et al. [139] and la Casa Alberighi et al. [140] state, 

PBPK modelling can be useful at “the extremes of age”, as clinical trials are not only 

difficult in children, but also in frail older people.  

5.4 PBPK models: tools to meet the current needs in paediatric drug use? 

PBPK models rely on accurate and consistent information on physiological, biochemical 

and physicochemical processes [122]. Some of these processes are poorly characterized, 

such as the abundance of transporters or the absorption process in newborns and 

infants. Due to information gaps, a model may fail in optimally describing the PK. As long 

as these gaps remain, the uncertainty on the data used to build the model should be 

stated. Furthermore, future research should aim at identifying and reducing the areas of 

greatest uncertainty [121]. One of the focal points should be the gathering of disease-

related factors that could possibly influence drug PK or PD in order to develop disease-

specific models [141]. However, despite the current limitations, PBPK models could offer 

a solution to reduce the ethical and practical hurdles encountered in the design and 

execution of clinical trials in children.  

It should be noted that another promising approach to obtain in vivo pharmacokinetic 

information in children, is a microdosing study. The main advantage of this technique is 

the absence of a therapeutic effect or adverse events, as only very small amounts of the 

drug are administered. However, some typical practical hurdles of clinical studies in 

children remain, such as sample volume. Moreover, this technology requires very 

sensitive analytical techniques for the analysis of the samples. 

6 CONCLUSION 

The use of medication in children is seldom based on extensive scientific research. There 

is an urgent need for a more solid basis to make decisions concerning which drug to 

administer or the dose regimens and related risks. Due to the large differences between 

adults and children, a simple extrapolation from adult data is not possible. Therefore, 
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more clinical trials in children are required. As these trials are characterized by many 

ethical and practical issues, other resources, such as physiologically based 

pharmacokinetic models may provide important support.  

The use of disease-specific PBPK models may allow the prediction of the PK in a specific 

patient population. The optimization of these models requires population specific 

information on various aspects of drug disposition. Liver disease was shown to have a 

huge impact on the PK of drugs in adults. Amongst others, large changes in CYP activity 

were described. In paediatric patients, however, there is only sparse information. In 

order to take the first step in optimizing a PBPK model in paediatric patients with liver 

disease, information on the CYP activity could be very valuable. Of course, not only the 

CYPs will be affected. In order to build an optimal model, many other parameters, such 

as absorption, should be evaluated. Nevertheless, every piece of information that fills the 

knowledge gap is helpful in the optimization of PBPK models, and as such provides extra 

support to tackle the current needs in paediatric drug use. 
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There is a growing interest in the development and optimization of pediatric PBPK models 

for the prediction of the PK in children. When correctly developed and validated models 

are used, these predictions may serve as a decision making tool in many different steps 

of drug development, such as clinical trial design or safety assessment. Furthermore, 

more specific PBPK models could be useful to investigate drug PK in specific 

subpopulations such as children with hepatic dysfunction. However, it is generally 

acknowledged that essential information to build these models is currently not available.  

In order to partially fill the knowledge gap, the general objective of this thesis was to 

characterize the activity of important cytochrome P450 enzymes in children with liver 

disease. These enzymes were selected based on their importance in drug metabolism and 

the known alterations in their activity in adults with hepatic impairment. In order to 

achieve this objective, the following aims were set:  

Aim 1 was the development of a bioanalytical method for the determination of 

the enzyme activity in human liver microsomes. Six probe substrates were selected 

that are selectively metabolized by one of the assessed CYP isoforms: phenacetin, 

tolbutamide, S-mephenytoin, dextromethorphan, chlorzoxazone, midazolam for CYP1A2, 

2C9, 2C19, 2D6, 2E1, and 3A4, respectively. Two analytical methods for the 

quantification of the metabolites formed during incubation, i.e. acetaminophen, 4’-OH-

mephenytoin, 4-OH-tolbutamide, dextrorphan, 6-OH-chlorzoxazone, and 1-OH-

midazolam were developed and validated. Firstly, Chapter 1 describes a high 

performance liquid chromatography (HPLC) method coupled to a tandem mass 

spectrometric (MS/MS) detection using electrospray ionization (ESI). Prior to analysis, 

the samples were pre-treated by applying a microwave assisted derivatization with 

pyridine-3-sulfonyl chloride (PS), in order to increase the sensitivity and to be able to 

perform a single run in the positive ESI mode. Despite the increased sensitivity, another 

method was developed in order to increase the sample throughput. Chapter 2 describes 

an ultra-high performance liquid chromatography (UPLC) MS/MS method for the 

quantification of the 6 metabolites, with a significantly shorter time of analysis.  

Aim 2 consisted of the development of a quantification method for CYP3A4 and 

CYP2E1, as the abundance of the enzymes is as important as the activity. The 

combination of activity and abundance information may provide valuable information on 

the mechanisms of possible changes in activity. Moreover, abundance information is 

needed for adjustment of the paediatric PBPK model of SimCYP®. The concentration of 

CYP3A4 and 2E1 was determined using indirect enzyme-linked immunosorbent assays 

(ELISA). The optimization and validation of the methods for the quantification of CYP3A4 

and CYP2E1 in human liver microsomes are described in chapter 3 and chapter 4. 
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The third aim was the development of a workflow for the genotyping of the 

included patients. The highly polymorphic nature of many of the CYP isoforms may also 

influence the enzyme activity. Several acknowledged methods were combined (DNA 

extraction and quantification, and SNP analysis using TaqMan probes) in order to create a 

workflow for the genotyping of frequent and significant single nucleotide polymorphisms 

(SNP) of CYP2C9, 2C19 and 2D6 (Chapter 5).  

Aim 4 was the actual determination of the in vitro CYP activity in children with 

hepatic dysfunction. During a sampling period of 5 years, 31 samples from children 

undergoing liver transplantation for various indications were collected at Ghent University 

Hospital and Cliniques Saint-Luc in Brussels. The methods described in chapters 3 to 7 

were applied on the samples. Chapter 6 describes the activity and abundance of the 6 

studied isoforms in the samples. Evaluation of these data, together with patient specific 

information (age, weight, relevant co-medication, genetics), resulted in the identification 

of the determinants of the CYP activity in children with liver disease. 

Due to its importance in in vitro-in vivo extrapolation (IVIVE), aim 5 was to determine 

the microsomal protein per gram of liver (MPPGL) in our study population. The 

optimal method for the determination of this factor was selected and the scaling factor 

was determined in patients with biliary atresia (Chapter 7). 

The last aim, aim 6, consisted of executing a pilot study for a first evaluation of 

the prediction of the PK in children with liver disease (Chapter 8). Based on the 

information already available in SimCYP, the PK of midazolam and omeprazole (drugs 

often used in our study population) was predicted in our patient population. Besides 

being a proof-of-concept, this study also revealed the limitations of our dataset up to 

now, and is as such a good basis for the identification of the knowledge gaps that still 

need to be filled before reliable predictions can be done.  
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ABSTRACT 

For the determination of the in vitro cytochrome P450 activity in microsomes, a 

quantification method for the probe metabolites, formed during incubation, is required. 

Due to insufficient sensitivity of a previously developed high performance liquid 

chromatography-tandem mass spectrometry (HPLC-MS/MS) method for some of the 

metabolites, a fast and easy derivatization method with pyridine-3-sulfonyl chloride (PS) 

is described. Acetaminophen (CYP1A2), dextrorphan (CYP2D6), hydroxy-chlorzoxazone 

(CYP2E1) and hydroxy-mephenytoin (CYP2C19) can be derivatized because of the 

presence of a phenolic OH, whereas hydroxy-midazolam (CYP3A4) and hydroxy-

tolbutamide (CYP2C9) remain unchanged. As PS improves the ionization efficiency in the 

positive electrospray ionization (ESI) mode, the sensitivity of the detection is improved 

significantly and meets requirements for the activity determination. Native negative 

electrospray type molecules, moreover, become positive ESI candidates. The direct 

derivatization in the aqueous incubation medium, without any other sample pre-

treatment steps, such as evaporation or extraction, makes this procedure easy to 

perform. The method using 20 s microwave irradiation was shown to equal a 10 minute 

reaction in a 60°C heating block, consequently simplifying and shortening the process. 

Collision induced fragmentation of the derivatives resulted in at least one native 

compound, rather than derivative, specific product ion, thereby improving the selectivity 

of the method in the multiple reaction monitoring mode. The HPLC-MS/MS method was 

validated, and was demonstrated to be sensitive, selective, precise and accurate. The 

absence of a relative matrix effect was established, notwithstanding that an absolute 

matrix effect was observed. The analysis of a sample after (human) microsomal 

incubation, from which some of the metabolites could not be quantified using the method 

without derivatization, proved the usefulness of the method.  
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1 INTRODUCTION 

Many pre-clinical pharmacokinetic experiments determine the in vitro activity of the 

cytochrome P450 system, as these enzymes play a major role in the metabolism of many 

drugs.  The assessment of the metabolic fate of a new drug, metabolic profiling, potential 

drug-drug interactions, or the activity in a specific patient population, requires the 

incubation of a (sub)cellular system, such as hepatocytes or microsomes, with specific 

probe substrates [1]. Microsomes contain 96 % of the total hepatic CYP content [2] and 

they are easy to use and store, which makes them a valuable tool in these experiments. 

During the incubation, the substrates are metabolized by a specific isoform into a specific 

metabolite. The appropriate substrates for the phenotyping of the six clinically most 

important isoforms 1A2, 2C19, 2C9, 2D6, 2E1 and 3A4 are phenacetin, S-mephenytoin, 

tolbutamide, dextromethorphan, chlorzoxazone and midazolam, respectively [3]. The 

amount of metabolite formed reflects the intrinsic (hepatic) enzymatic activity of the 

patient. LC-MS/MS has been used in many studies for the quantification of these 

metabolites. The literature based HPLC-MS/MS method for the simultaneous 

quantification of the six metabolites [4], implemented in our laboratory, showed 

insufficient sensitivity for the intended applications, i.e. the influence of distinct liver 

pathologies on the CYP activity. Moreover, not all metabolites could be detected in the 

same electrospray ionization method. Hence, the development of another analytical 

method was recommendable.  

Even though electrospray ionization mass spectrometry (ESI-MS) is a valuable tool for 

the analysis of a wide range of molecules, not all compounds can be analyzed with this 

technique. Weakly ionisable compounds, such as neutral, nonpolar molecules, are not 

detected with ESI-MS. The ESI behaviour of these compounds can be altered by the 

attachment of a moiety carrying a formal charge or with high proton affinity, 

consequently improving the detectability of the analytes with ESI-MS and adding a 

degree of analyte selectivity. Furthermore, derivatization may allow detection of a native 

negative charge type analyte in the positive ion mode [5]. The potential of chemical 

derivatization has been proven in previously published reports, where a wide range of 

molecules are being derivatized using several reagents.  

Most of the metabolites formed during the microsomal incubation contain a phenolic OH-

function. A derivatization process commonly used for the derivatization of phenols, is 5-

(dimethylamino)naphthalene-1-sulfonyl chloride (or dansyl chloride) [6-11]. Recently, Xu 

et al described the use of other sulfonyl chlorides for the derivatization of weakly 

ionisable estrogens [12,13]. The formed sulfonate can be protonated in acidic solutions, 
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consequently improving the ionization efficiency significantly. The use of these 

derivatives was suggested for other phenolic compounds [13].  

A major strength of the previously published methods for the detection of (underivatized) 

metabolites is the lack of sample preparation: after incubation, the samples are 

centrifuged and the supernatant is injected as such. Therefore, a derivatization method 

to improve sensitivity should be as short and easy as possible. Most of the described 

derivatization processes consist of several evaporation, reconstitution or extraction steps. 

Furthermore, the reaction is performed in organic solvents. A derivatization reaction 

directly in the incubation medium would allow competitive comparison with non-

derivatized methods. Also, as liquid chromatography is an aqueous system, the injection 

of an aqueous sample is preferred.  

This article describes the development of a derivatization procedure of the metabolites 

formed during the activity assessment of the six most important CYP isoforms 1A2, 

2C19, 2C9, 2D6, 2E1 and 3A4, using phenacetin, S-mephenytoin, tolbutamide, 

dextromethorphan, chlorzoxazone and midazolam, respectively, as probe substrates. The 

pyridine-3-sulfonyl derivatives were formed directly in the aqueous incubation medium 

during the easy and short derivatization process. The LC-MS/MS method was optimized 

and validated, and the complete procedure was assessed through the analysis of a 

human microsomal incubation sample. 

2 EXPERIMENTAL 

2.1 Chemicals 

Phenacetin, acetaminophen (AP), tolbutamide, 4-OH-tolbutamide (HTB), S-mephenytoin, 

4’-OH-mephenytoin (HME), dextromethorphan, dextrorphan (DX), chlorzoxazone, 6-OH-

chlorzoxazone (HCZ), levallorphan (LA), and chlorpropamide (CP) were purchased from 

Sigma-Aldrich (St-Louis, MO, USA). Midazolam and 1-OH-midazolam (HMDZ) were kindly 

donated by Roche (Basel, Switzerland). Pyridine-3-sulfonyl chloride hydrochloride (PS) 

and 4-(1H-pyrazol-1-yl)benzenesulfonyl chloride (PBS) were purchased from Maybridge 

(Cambridge, UK). Nicotinamide adenine dinucleotide phosphate (NADPH) was obtained 

from Biopredic International (Rennes, France). All other chemicals were of analytical 

grade. Commercial rat microsomes were acquired from BD Biosciences (Wistar Han, male 

rat, BD Gentest, BD Biosciences, Erembodegem, Belgium). Human liver microsomes were 

prepared from human liver tissue (approved by the Ethics Committee of Ghent University 

Hospital, B67020084281). 
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2.2 Preparation of standards and quality controls 

Primary stock standards of all metabolites and the internal standard of 1 mg/ml in 

methanol were prepared and stored at -20°C. Stock standards were mixed in the 

appropriate proportions and serially diluted in methanol. Microsomal calibration standards 

consisted of metabolites spiked to the microsomal incubation medium. This incubation 

medium was prepared by mixing 1 ml 5 mM NADPH, 1 ml 1.25 mg/ml microsomal 

protein, 1 ml 1.15% KCl, 1 ml 0.2M potassium phosphate buffer (pH7.4) and 0.5 ml 

stopreagent (H2O/CH3CN/HCOOH; 42:55:3). After vortex mixing and cool down on ice for 

protein denaturation, a specific amount of the stock solution mix was spiked to the 

incubation medium. Water was added to obtain a final volume of 5.5 ml per calibrator. 

Calibrators were centrifuged at 20000xg for 15 min, supernatant was maintained and 

stored at 4°C. 

2.3 Chromatographic conditions 

The chromatographic system consisted of a Kontron instrument (Zurich, Switzerland). 

The separation was carried out using a Luna C18 column (50 mm X 2.0 mm, particle size 

3 µm; Phenomenex, Torrance, CA, USA) with an Alltima C18 guard column (7.5 mm X 

2.1 mm, particle size 5 µm; Grace, Columbia, MD, USA). The injection volume was 10 µl. 

Gradient elution was performed with a flow rate of 0.2 ml/min, starting at 80% eluent A 

(water containing 0.1% formic acid). Eluent B (acetonitrile containing 0.1% formic acid) 

was linearly increased from 20% to 90% during 9 minutes. The initial conditions were 

regained over a 0.1 min time interval, followed by a 5 min equilibration time prior to the 

next injection. This resulted in an overall run time of 14 min.  

2.4 MS conditions 

Detection was performed using a Quattro II triple quadrupole mass spectrometer 

(Waters, Manchester, UK) equipped with an electrospray ionization source in the 

electrospray positive ion mode (ESI+). Nitrogen was used as both drying and nebulising 

gas. Product ions were detected using the multiple reaction monitoring (MRM) mode, 

using argon as collision gas. The capillary voltage and source temperature were 

optimized at 3.6 kV and 120°C, respectively. The collision energy and cone voltage were 

optimized for each compound individually. The collision energy varied from 17 eV to 30 

eV and the cone voltage varied from 35 V to 50 V (see Table 1). Data were collected and 

processed using the MassLynx and QuanLynx software 4.0 (Waters, Manchester, UK). 

Table 1 illustrates the individual parameters and MRM transitions used for detection and 

quantification.  
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Table 1: Instrument parameters for the detection of the (derivatized) metabolites. PS: pyridine-3-

sulfonyl chloride; HMDZ: hydroxy-midazolam; DX-PS: PS-derivatized dextrorphan; LA-PS: PS-

derivatized levallorphan; HTB: hydroxy-tolbutamide; AP-PS: PS-derivatized acetaminophen; HME-

PS: PS-derivatized hydroxy-mephenytoin; HCZ-PS: PS-derivatized hydroxy-chlorzoxazone; IS: 

internal standard. 

  HMDZ DX-PS LA-PS HTB 

Targeted CYP450 isoform CYP3A4 CYP2D6 / (IS) CYP2C9 

Molecular mass metabolite 341.77 257.37 283.41 286.35 

tR (min) 3.75 3.9 4.34 4.46 

Cone voltage (V) 40 50 45 35 

Collision energy (eV) 20 30 30 18 

Precursor ion 342 399 425 287 

Product ion 1 (quantifier) 324 257 283 171 

Product ion 2 (qualifier) 203 199 199 188 

Calibration curve range (ng/ml) 2.3 - 660 1.1 - 245 / 25 - 1500 

  AP-PS HME-PS HCZ-PS 

Targeted CYP450 isoform CYP1A2 CYP2C19 CYP2E1 

Molecular mass metabolite 151.16 234.25 185.56 

tR (min) 5.05 5.95 6.03 

Cone voltage (V) 40 45 35 

Collision energy (eV) 18 23 17 

Precursor ion 293 376 328 

Product ion 1 (quantifier) 151 274 264 

Product ion 2 (qualifier) 109 132 144 

Calibration curve range (ng/ml) 5.6 - 1260 6.9 - 1940 128.1 - 2560 

 

2.5 Derivatization 

The first experiments were conducted following the method described by Xu et al. [13]. 

Shortly, a solution of the metabolites in 100% MeOH was evaporated to dryness under 

N2. Eighty µl of 0.1M sodium bicarbonate (pH 10) and 80 µl of a 1 mg/ml PS or PBS 

solution in acetone were added to the vial. After mixing, the vials were placed in a 

heating block (Multi-Blok Heater, Lab-Line Instruments Inc, Melrose Park, Ill, USA) at 

60°C for 15 minutes for PS and 30 minutes for PBS. Subsequently, the vials were cooled 

on ice for 10 minutes. The reaction mixture was transferred to a 250 µl insert and 

analyzed using an LC-MS/MS system. As described in the results and discussion section, 

this basic protocol was investigated for its performance characteristics, where 

appropriate optimized and adapted to the needs of our specific application, i.e. a 

biological medium containing microsomes. 
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After selection of the most useful approach (i.e. derivatization reagent type, solvent 

medium, …) and optimization of the different key process parameters (time, reaction 

temperature and heating method), the final protocol was: 10 µl 1.75N NaOH, 10 µl 1.25 

µg/ml levallorphan (LA) and 70 µl 1 mg/ml pyridine-3-sulfonyl chloride (PS) 

hydrochloride in acetonitrile were added to 200 µl of incubation medium/calibrator and 

were mixed by vortexing. The derivatization was catalyzed by heating the vial for 20 s in 

an 850W microwave oven (domestic, Daewoo, KOG-376T, Korea). In order to absorb the 

excess microwave energy, a glass container with 60 ml water was placed next to the 

vials [14]. After mixing, the vial was cooled on ice for 10 minutes, and after transfer of 

the sample to a 250 µl insert, the sample could be readily injected.  

2.6 Method validation 

The analytical method was validated according to the FDA Guidance [15]. The following 

parameters were evaluated: selectivity, LLOQ, calibration model, accuracy, precision, and 

stability. Selectivity was evaluated by the analysis of blank microsomes from six different 

sources. The lower limit of quantification was defined as the lowest concentration for 

which the accuracy was 80-120% and precision (RSD %) < 20%, and was used as the 

lowest point of the calibration curve. Furthermore, the signal-to-noise (S/N) ratio of the 

LLOQ should be at least 9. Calibration models were evaluated statistically using 

StatGraphics 4.1 (Warrenton, Virginia, US). Accuracy of the analysis of six QC samples 

on three concentration levels should be within 85-115% of the nominal concentration, 

and within-run (n=6) and between-run (n=6) precision should not exceed 15% (RSD %).  

Stability of the (derivatized) metabolites in the microsomal incubation medium was 

evaluated after three freeze-thaw cycles, after 10 days storage at 4°C and after 24 hours 

of residence in the autosampler. Matrix effect was evaluated through the calculation of 

the internal standard (IS)-normalized matrix factor (MF) [= peak ratio (analyte/IS) in 

presence of matrix ions /  peak ratio (analyte/IS) in absence of matrix ions] [16] in five 

different matrix sources (microsomes from five different patient samples; matrix A to E) 

and at three concentration levels (except for HTB and HCZ-PS, 2 levels). The coefficient 

of variation at each concentration level should not exceed 15%. The relative intensities of 

the qualifier and quantifier ion were identified by the analysis of samples in absence of 

matrix. The maximum permitted tolerances of the ion ratios in presence of matrix were 

used from the EU Guidelines [17].  

2.7 Application of the method 

Rat microsomes were incubated with each probe substrate individually in a concentration 

near their apparent Km [18]. Shortly, the probe substrate was added to 1.25 mg 

microsomal protein/ml, 1.15% KCl and potassium phosphate buffer (pH 7.25). After pre-
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incubation for 3 minutes at 37°C, the addition of NADPH initiated the reaction. After 

exactly 15 minutes (40 min for ME), the reaction was stopped with a reagent containing 

formic acid and acetonitrile (H2O/CH3CN/HCOOH; 42:55:3). Samples were frozen and 

stored at -20°C until analysis. After thawing, samples were derivatized following the 

previously described protocol, and were analyzed using the validated method.  

3 RESULTS AND DISCUSSION 

Due to its major role in the pharmacokinetics of many drugs, the in vitro activity 

determination of the cytochrome P450 enzyme system shows up in many different 

experiments during drug development. In vitro systems are used in the metabolic 

profiling of new drugs and in the evaluation of drug-drug interactions. Furthermore, 

changes in CYP activity in specific patient populations can be examined. In some cases, 

the amount of metabolite formed is (very) low (in inhibition experiments or in patients 

with liver disease). These experiments necessitate a sensitive quantification method for 

the metabolites formed.  

3.1 Derivatization with PS and PBS 

As our developed HPLC-MS/MS method showed insufficient sensitivity, chemical 

derivatization in order to improve ionization efficiency was used. Derivatization of the 

phenolic metabolites with commercially available pyridine-3-sulfonyl chloride (PS) and 4-

(1H-pyrazol-1-yl)benzenesulfonyl chloride (PBS) was assessed.  Figure 1 depicts the 

derivatization reaction with PS. As HTB and HMDZ lack a phenolic OH-function, they will 

not be derivatized by PS or PBS. However, the sensitivity of detection of these 

components already proved sufficient for the application and they can be detected in the 

positive electrospray ionization mode. Thus, derivatization is not essential for these 

components. In contrast, the derivatization of HME is strongly desired, as there is very 

poor sensitivity. Also, as HCZ needs to be detected in the negative ESI mode, 

derivatization may lead to detection in the positive mode. This obviates the need for 

within-run polarity switching (when possible) or double analysis at opposite polarities. 

The phenolic OH-function of DX and AP will also be derivatized.  

In the first series of experiments, mixtures of standard solution (in methanol) of the 

metabolites were used. The metabolites were derivatized following the procedure 

described by Xu et al [13]. After the derivatization reaction, analysis was performed by 

using the multiple reaction monitoring (MRM) mode. All derivatives showed a precursor 

ion on [M + 143]+ or [M + 207]+, with M being the molecular mass of the original 

metabolite minus one hydrogen, and 143 and 207 representing the protonated sulfonate 

moiety of PS and PBS, respectively. The collision induced fragmentation of the precursor 
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ions of the PS derivatives resulted in specific product ions. It is important for the 

qualitative properties of the method that there are other diagnostic fragments rather 

than only the original metabolite after removal of the derivatization moiety. The product 

ion spectrum of the (derivatized) metabolites always showed at least one specific 

fragment from the original metabolite. To illustrate this, the fragment ions of AP-PS, as 

an example, are annotated in Figure 3. The cleavage of the S-O bond between the PS 

and the AP moiety leads to two fragments with m/z of 144 and 151. The m/z 109 

fragment corresponds to the (NH3-C6H4-OH)+ ion obtained after simultaneous CO=CH2 

and PS loss. In contrast, the fragments from the PBS derivatives originated mainly from 

the fragmentation of the PBS moiety. For the quantification in the MRM mode, the most 

abundant product ion was used as quantifier. The specific fragment ion (or qualifier) was 

monitored in order to evaluate possible interference, as the ratio of the areas of the 

quantifier and qualifier should be constant. Figure 2 shows the MS/MS spectra of the (PS-

derivatized) metabolites.  

Prior to the MS detection, the metabolites were separated on a C18 chromatographic 

column. CYP enzymes are responsible for the phase I metabolism of drugs, leading to a 

more polar compound for renal excretion. Due to the derivatization, the polar metabolites 

are turned into less polar molecules, showing more retention on the reversed-phase 

(C18) column than prior to derivatization, and thus favourably influencing the 

chromatographic separation. Due to the less hydrophobic properties of PS, the PS 

derivatives show a lower retention time then the PBS derivatives.  

Evaluation of the ionization efficiency showed a significant improvement of the 

detectability of both the PS and PBS derivatives compared to the non-derivatized 

molecules. The sensitivity of HME increased significantly. Moreover, all compounds, 

including HCZ, could be detected in the positive ESI mode. The decision to select PS as 

reagent to perform the analysis was based on several observations. Due to the more 

favorable fragmentation pattern, a more specific detection is possible. Also, the shorter 

retention times of the derivatives may decrease the total time of analysis.   

3.2 Derivatization with PS in aqueous medium: optimization 

Many of the previously published methods for the quantification of the metabolites after 

microsomal incubation only require a centrifugation step prior to injection. In order to 

keep the method with derivatization as simple as those methods, the evaporation to 

dryness under N2 was omitted from the original procedure, and PS and sodium 

bicarbonate were directly added to the standard methanol solution of the metabolites. 

The derivatized metabolites could still be detected with sufficient sensitivity (data not 

shown).  
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Figure 1: Molecular structures of the (derivatized) metabolites. PS: pyridine-3-sulfonyl chloride; 

HMDZ: hydroxy-midazolam; DX: dextrorphan; DX-PS: PS-derivatized dextrorphan; LA: 

levallorphan; LA-PS: PS-derivatized levallorphan; HTB: hydroxy-tolbutamide; AP: acetaminophen; 

AP-PS: PS-derivatized acetaminophen; HME: hydroxy-mephenytoin; HME-PS: PS-derivatized 

hydroxy-mephenytoin; HCZ: hydroxy-chlorzoxazone; HCZ-PS: PS-derivatized hydroxy-

chlorzoxazone. 
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Figure 2: MS/MS spectra of (a) PS-derivatized acetaminophen (AP-PS); (b) PS-derivatized 

dextrorphan (DX-PS); (c) PS-derivatized hydroxy-mephenytoin (HME-PS); (d) PS-derivatized 

hydroxy-chlorzoxazone (HCZ-PS); (e) hydroxy-midazolam (HMDZ); (f) hydroxy-tolbutamide 

(HTB);  and (g) PS-derivatized levallorphan (LA-PS). Highlighted ions indicate the selected product 

ions used in further analysis.  
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Figure 3: Fragmentation of AP-PS. The product ions m/z 144 and 151 are formed by the cleavage 

of the S-O bond. The specific fragment m/z 109 is obtained after a CO=CH2 neutral loss off the AP 

moiety concurrently with the elimination of PS.   

 

In order to assess the possibility of direct derivatization in the aqueous medium of the 

incubation samples, metabolites were spiked to a mixture of the incubation buffer 

(potassium phosphate, pH 7.25) and 1.15% KCl (50/50 v/v). The addition of PS 

(dissolved in acetone) and sodium bicarbonate to this mixture resulted in precipitation. 

Two parameters of the protocol were changed. Firstly, PS was dissolved in acetonitrile 

instead of in acetone. In accordance to the derivatization with dansyl chloride [6], an 

alkaline pH is important for the derivatization reaction with PS, as the nucleophilic 

phenolate ion reacting with the PS is formed at a pH of 9 – 10. Consequently, another 

buffer was considered. Beaudry et al [19] used 20 µl 100 mM NaOH in 350 µl sample and 

derivatization reagent in order to get a pH near pH 9. Due to the presence of a potassium 
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correct pH. In order to avoid large dilution of the sample, a small volume (10 µl in 200 µl 

sample) of a higher concentrated (1.75N) NaOH solution was added. These interventions 

were successful, as the solution remained clear after addition of these components and 

the PS derivatives could be detected.  

As the FDA recommends the use of calibrators in the same matrix as the actual samples, 
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of 0.25 mg/ml) were used instead of the buffer mixture. After the confirmation that the 

derivatization reaction proceeded in this medium, the process was optimized with the 

intention to increase the yield. The optimal amount of derivatization reagent, the 

temperature of the heating block during reaction and the reaction time were determined. 

A comparison of the areas obtained when 50, 60 or 70 µl 1 mg/ml PS were added, 

showed that the volume was preferably 70 µl, as the yield for some of the derivatized 

metabolites was significantly higher in this situation. For all metabolites, temperature and 

reaction time were correlated: higher temperature required shorter reaction time to get 

the same yield. The upper limit of the reaction temperature was 80°C, as a higher 

temperature (90°C) led to a high variability (RSD > 15%; data not shown). Furthermore, 

the samples needed to be cooled down on ice for 10 minutes in order to decrease 

variability.  

The promotion of organic reactions by microwave energy has been suggested in many 

studies, as reviewed by Kappe et al. [20]. Due to the direct delivery of the energy to the 

sample, there is a rapid rise in temperature and consequently a fast completion of the 

reaction [21]. As the purpose of the method under development was to be as short and 

easy as possible, the use of microwave-assisted heating was evaluated. A 20 second 

irradiation of the sample in an 850W microwave oven, showed comparable yield 

compared to the heating block (60°C, 10 minutes) procedure. As indicated before, a 

beaker with 60 ml water was placed on the microwave turning table, alongside the vials, 

to absorb excess energy [14,22]. The use of the microwave-assisted heating significantly 

decreased the total time of analysis, achieving equal overall performance and this 

method was finally adopted throughout.  

3.3 Optimization of the LC-MS/MS analysis of PS-derivatized metabolites 

The chromatographic separation was optimized through the use of gradient elution. The 

linear increase of eluent B (acetonitrile + 0.1% formic acid) from 20% to 90% during 9 

minutes resulted in a chromatographic separation as depicted in Figure 4. As internal 

standard for the analysis, levallorphan (LA) was selected. Not only can this molecule be 

derivatized by PS, it also elutes in the middle of the analytical run.  

Through multiple injections of the derivatized standard solutions, the MS parameters 

were tuned for each individual compound. For the source temperature, gas flows (both 

nitrogen and argon) and capillary voltage, a compromise was made to get optimal 

sensitivity for all the components (see materials and methods). The MRM transitions, 

cone voltage and collision energy were optimized for each (derivatized) metabolite and 

are depicted in Table 1.  
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3.4 Method validation 

The method was validated according to the FDA guidelines. The optimal calibration 

curves were statistically calculated and the relation between ratio and concentration 

showed a linear correlation for all compounds. A 1/x² weighting factor was used to obtain 

the best residuals and consequently the best accuracy. Ranges of the calibration curves 

were partially deduced from the article by Walsky et al [23] (mainly enzyme kinetics 

driven) and were decided in relation to our particular application. The LLOQ was 

established at the lowest concentration of the calibration curve. Precision (< 9.82% RSD) 

and accuracy (91.30-108.70%) at the LLOQ of all analytes were within the limits of the 

FDA guideline (< 20% RSD and between 80-120%, respectively).  

 

Figure 4: Chromatogram of the (PS-derivatized) metabolites and the internal standard after 

gradient elution. (Compound abbreviation identification as in Table 1).   

 

The between-run and within-run precision were < 14.06% and < 9.58% (RSD), 

respectively, and accuracy ranged from 85.48-114.94%, for all metabolites, derivatized 

and underivatized ones. No interference was observed at the retention times of the 

analytes and the IS when analyzing blank microsomes from six independent sources. 

Thus, the method is considered selective.  
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Derivatized samples were proven to be stable for at least three freeze-thaw cycles 

(paired t-test, p > 0.05; accuracy 92.96 – 109.62%), except for DX-PS at low 

concentrations (p < 0.05). However, the mean of the calculated concentration is still 

within the 85-115% limit (104.09%) of the calculated concentration of the freshly 

prepared sample, and therefore acceptable. Except for AP-PS, stability at 4°C was 

acceptable (paired t-test, p > 0.05) for 10 days after derivatization. Nevertheless, for AP-

PS the calculated concentration was still within the aforementioned limits, and therefore 

again acceptable. Poor autosampler stability (24 hours, room temperature around 28°C) 

was observed for almost all the metabolites. Cooling down (e.g. 10°C) the derivatized 

samples in the sampler will be mandatory.   

The maximum permitted tolerances in deviation of the ion intensities are depicted in 

Table 2. Based on a statistically significant number of randomly chosen analyses, it can 

be seen that for all compounds less than 2.5% of the samples would need to be excluded 

based on a deviation of the ion ratio. The IS-normalized matrix factors (MF), determined 

by the analysis of microsomes prepared from five different patient samples (matrix A to 

E), are summarized in Table 3. All samples were analyzed in duplicate. For some 

compounds, the ionization is enhanced in the presence of the matrix (IS-normalized MF 

> 1). For other compounds, ionization is suppressed (IS-normalized MF < 1). The CV at 

the different concentration levels is < 15% for all the compounds.  

 

Table 2: Relative ion intensities of qualifiers (% of base peak). (Compound abbreviation 

identification as in Table 1). 

  
n Relative intensity             

(% of base peak) 
Maximum permitted 
tolerance (relative) 

% of samples 
exceeding tolerance 

HMDZ 80 35.86 ±25 % 2.50 

DX-PS 54 6.74 ±50 % 0 

HTB 50 25.57 ±25 % 0 

HME-PS 78 18.12 ±30 % 0 

AP-PS 76 45.36 ±25 % 1.32 

HCZ-PS 71 58.54 ±20 % 1.41 

 

 

 

 

 



CHAPTER 1 – DERIVATIZATION-HPLC-MS/MS ANALYSIS OF SIX PROBE METABOLITES 

58 

 

Table 3: Internal standard (IS)-normalized matrix factors (MF) were determined in microsomes 

prepared from five different patient samples (patients A to E): the maximum permitted CV (%) = 

15%. Conc.: concentration; CV: coefficient of variation (Compound abbreviation identification as in 

Table 1). 

 

HMDZ  DX-PS  HTB 

(n = 2) Conc. 1 Conc. 2 Conc. 3   Conc. 1 Conc. 2 Conc. 3   Conc. 2 Conc. 3 

Matrix A 0.99 1.06 0.98   1.00 0.93 1.01   1.26 1.24 

Matrix B 1.33 1.01 0.88   1.14 0.94 1.00   1.14 1.16 

Matrix C 0.96 0.81 0.67   0.92 0.89 1.05   0.87 0.85 

Matrix D 1.06 0.79 0.78   1.01 1.09 1.06   1.03 1.09 

Matrix E 0.98 1.04 0.92   0.96 1.03 1.00   1.20 1.25 

CV (%) 14.48 13.88 14.47   8.32 8.30 2.90   14.03 14.61 

 

HME-PS  AP-PS  HCZ-PS 

(n = 2) Conc. 1 Conc. 2 Conc. 3   Conc. 1 Conc. 2 Conc. 3   Conc. 2 Conc. 3 

Matrix A 0.81 0.98 0.58   0.95 0.89 0.73   1.02 2.89 

Matrix B 1.03 0.97 0.55   1.05 0.84 0.69   1.48 2.65 

Matrix C 0.82 1.18 0.70   1.02 1.00 0.79   1.16 2.75 

Matrix D 1.05 1.08 0.77   1.11 1.01 0.84   1.11 2.85 

Matrix E 1.03 1.14 0.63   1.11 0.99 0.69   1.27 3.15 

CV (%) 12.65 8.78 13.36   6.53 7.75 9.04    14.65 6.53 

 

3.5 Comparison with non-derivatized method 

A comparison of the detection method for non-derivatized molecules and the newly 

developed method is summarized in Table 4. After derivatization, the detection of HCZ 

was made possible in positive ESI, with a lower LOQ. Furthermore, the sensitivity of the 

detection of AP and HME was increased significantly. The sensitivity of the detection of 

the metabolites that are not derivatized (HMDZ and HTB) was not affected by the 

procedure. 

Table 4: Comparison of the LOQ’s (ng/ml) of the detection of the metabolites prior and after 

derivatization. (Compound abbreviation identification as in Figure 1). 

Prior to derivatization After derivatization 

HMDZ 2.90 (ESI+) HMDZ 2.30 (ESI+) 

DX 2.10 (ESI+) DX-PS 1.10 (ESI+) 

HTB 25.00 (ESI-) HTB 25.00 (ESI+) 

AP 63.00 (ESI+) AP-PS 5.60 (ESI+) 

HME 971.40 (ESI-) HME-PS 6.90 (ESI+) 

HCZ 256.20 (ESI-) HCZ-PS 128.10 (ESI+) 
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3.6 Application of the method 

After incubation of rat microsomes with the probe substrates, the metabolites in the 

incubation medium were analyzed with the described method. Table 5 depicts the results 

of the analysis. These results show that derivatization was advantageous, as the amount 

of HME was far below the LOQ of the method without derivatization. Also, all 6 

components can be quantified using the same electrospray ionization mode (ESI+). 

Table 5: Results of the incubations of rat microsomes (n = 2) with the six probe substrates. 

Incubation conditions: 0.25 mg microsomal protein/ml; reaction time: 15 min; reaction 

temperature: 37°C. The amount of DX-PS exceeded the ULOQ: the samples were diluted and re-

analysed. SD: standard deviation (Compound abbreviation identification as in Table 1). 

  Human  Metabolite concentration Enzyme activity 

  CYP isoform Mean (± SD) in ng/ml Mean (± SD) pmol/mg/min 

HMDZ 3A4 148.55 (± 11.49) 509.99 (± 39.45) 

DX-PS 2D6 283.00 (± 12.80) 1290.18 (± 58.36) 

HTB 2C9 93.10 (± 6.94) 381.48 (± 28.45) 

HME-PS 2C19 10.15 (± 0.50) 50.84 (± 2.48) 

AP-PS 1A2 100.00 (± 13.50) 776.22 (± 104.81) 

HCZ-PS 2E1 114.75 (± 19.03) 725.59 (± 120.36) 

 

4 CONCLUSION 

A chemical derivatization method was developed for the quantification of the probe 

metabolites formed during in vitro cytochrome P450 activity determination. The 

derivatization with pyridine-3-sulfonyl chloride of the metabolites containing a phenolic 

OH-function in their structure improved the ionization efficiency in positive ES and 

enabled the detection of all six metabolites in the ES+ mode. The method is easy and 

fast, as derivatization proceeds directly in the aqueous incubation medium, without 

additional evaporation, extraction or reconstitution steps. The method met all 

requirements of sensitivity, selectivity, precision, accuracy and stability following the FDA 

guidelines for bioanalytical methods. Proof-of-concept samples from the intended 

(pharmacokinetics) application were successfully analyzed using the newly developed 

procedure. To our knowledge, this is the first report on using aqueous derivatization in 

the LC-MS analysis of CYP activity probe metabolites. Moreover, we believe that the 

simplicity of the approach put forward here can remove some of the disinclination 

towards the use of derivatization in LC-MS for hard to ionize molecules in other 

application fields.  
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‘There is more to life 

than simply increasing its speed’ 

- Mahatma Gandhi 

 

 

 

 

 

 

 

ABSTRACT 

A fast and sensitive UPLC-MS/MS method was developed and validated for the 

simultaneous quantification of six probe metabolites for the in vitro cytochrome P450 

activity determination in hepatic microsomes from patients with hepatic impairment. The 

metabolites acetaminophen (CYP1A2), 4’-hydroxy-mephenytoin (2C19), 4-hydroxy-

tolbutamide (CYP2C9), dextrorphan (CYP2D6), 6-hydroxy-chlorzoxazone (CYP2E1) and 

1-hydroxy-midazolam (CYP3A4), together with the internal standard chlorpropamide, 

were separated on a Waters Acquity UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 µm 

particle size) with VanGuard pre-column (5 mm x 2.1 mm, 1.7 µm particle size). A short 

gradient elution (total run time of 5.25 minutes), using water with 0.1% formic acid 

(eluent A) and acetonitrile with 0.1% formic acid (eluent B) at a flow rate of 400 µl/min, 

was used. The metabolites were detected with a triple quadrupole mass spectrometer in 

the multiple reaction monitoring mode. Two runs, one in the positive ionization mode and 

one in the negative mode, were necessary for the detection of all metabolites. The 

method was selective and showed good accuracy (84.59 to 109.83%) and between-day 

(RSD% < 5.13%) and within-day (RSD% < 9.60%) precision. The LOQ was in full 

accordance with the intended application, and no relative matrix effects were observed. 

Also, the sample incubation extracts were stable after three freeze-thaw cycles. The 

usability of the method was demonstrated by the incubation of pediatric microsomes with 

subsequent quantification of the formed metabolites and CYP activity calculation.   
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1 INTRODUCTION 

The activity of the cytochrome P450 enzyme system may be compromised in patients 

with hepatic pathologies. As this enzyme system is responsible for the metabolism of the 

vast majority of drugs, these patients often show altered drug pharmacokinetics, which 

may lead to inefficient therapy or adverse reactions [1]. In order to study the differential 

alterations in activity of the six most important isoforms (CYP1A2, CYP2C19, CYP2C9, 

CYP2D6, CYP2E1, and CYP3A4), in vitro CYP activity can be investigated in hepatic 

microsomes. For the determination of the enzyme activity, these assays use the 

incubation of the microsomes with well established isoform-specific probe substrates, and 

the quantification of the resulting metabolite levels. Many different combinations of probe 

substrates have been used. The most commonly used and preferred in vitro probe 

substrates are phenacetin (PH; CYP1A2), S-mephenytoin (ME; CYP2C19), tolbutamide 

(TB; CYP2C9), dextromethorphan (DM; CYP2D6), chlorzoxazone (CZ, CYP2E1) and 

midazolam (MDZ; CYP3A4) [2]. 

Liquid chromatography, coupled to mass spectrometry (LC-MS) has been shown to be a 

valuable tool in CYP450 assays for the quantification of the metabolites, as reviewed by 

Youdim et al. [3] and Lahoz et al. [4]. Different LC-MS(MS) methods for simultaneous 

quantification of metabolites have been described [5-9]. However, to our knowledge, 

only two methods used a combination of probes comparable to those mentioned above 

[5,6]. Li et al. [6] used two different HPLC systems with isocratic elution, one coupled to 

an MS with a positive atmospheric pressure chemical ionization interface, and one using 

the negative electrospray ionization mode. In the method of Kim et al. [5], gradient 

elution was performed, followed by detection of most of the metabolites in the positive 

electrospray ionization mode, and one (HCZ) in the negative mode. Both methods 

showed sufficient sensitivity for the intended applications.   

A marked reduction in the time of analysis of LC separations has been established by 

using columns with sub-2 µm particles [10]. The combination of small particles and 

higher solvent flows in ultra-high performance liquid chromatography (UPLC) enables a 

fast elution and improved resolution in the chromatographic separation. This technology 

therefore offers a powerful tool for a high throughput analysis of samples. Recently, a 

UPLC-MS/MS method for the quantification of six probe metabolites was published. 

However, this study lacked the inclusion of a probe for the CYP2E1 isoform activity 

determination [11,12]. As this isoform has been shown to be affected by liver disease 

[13], a probe to evaluate the activity of CYP2E1 is essential in the intended application as 

described above.  
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Matrix effect is a major issue in LC-MS method development [14]. Despite the specificity 

of MS/MS, co-eluting compounds may cause suppression or enhancement of the analyte 

response [15]. Improved chromatographic separation of the analytes or extended sample 

preparation has been suggested to minimize these matrix effects [16]. Therefore, base 

line separation of the chromatographic peaks should be the aim, rather early than late in 

the method development. Furthermore, base line separation also contributes to an 

increased selectivity of the detection method. In the previously cited studies using the 

same combination of probes [5,6], no complete base line separation of the metabolites 

was accomplished. Nevertheless, Li et al [5,6] concluded that matrix effects were absent, 

whereas in the method described by Kim et al [5], matrix effects were not evaluated. 

UPLC could be a favourable approach to yield full chromatographic separation without 

unacceptably prolonging sample turn over times. 

This study aimed for the development of a generic fast chromatographic method that 

could be used for the detection of those metabolites most interesting for CYP activity 

evaluation (acetaminophen (AP), 4’-hydroxy-mephenytoin (HME), 4-hydroxy-tolbutamide 

(HTB), dextrorphan (DX), 6-hydroxy-chlorzoxazone (HCZ) and 1-hydroxy-midazolam 

(HMDZ)). This method is useful in either positive or negative electrospray ionization 

mode. Furthermore, an extensive analytical validation was performed prior to the 

implementation of the method. The developed and validated method was tested for its 

usability in incubation experiments with microsomes of pathological origin.  

2 MATERIALS AND METHODS 

2.1 Chemicals and biological samples 

Phenacetin, acetaminophen, tolbutamide, 4-OH-tolbutamide, S-mephenytoin, 4’-OH-

mephenytoin, dextromethorphan, dextrorphan, chlorzoxazone, 6-OH-chlorzoxazone and 

chlorpropamide (CLP) were purchased from Sigma-Aldrich (St-Louis, MO, USA). 

Midazolam and 1-OH-midazolam were kindly donated by Roche (Basel, Switzerland). 

NADPH was obtained from Biopredic International (Rennes, France). Potassium chloride, 

potassium dihydrogenphosphate and dipotassium hydrogenphosphate were purchased 

from VWR (Leuven, Belgium). All other chemicals were of analytical grade.  

Microsomes were prepared from liver samples [17], collected from the diseased liver 

from children undergoing a liver transplantation (approved by the Ethics Committee of 

Ghent University Hospital, B67020084281). 
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Figure 1: Molecular structures of the metabolites. (AP: acetaminophen, HCZ: 6-OH- 

chlorzoxazone, HME: 4’-OH-mephenytoin, DX: dextrorphan, HMDZ: 1-OH-midazolam, HTB: 4-OH-

tolbutamide, CLP: chlorpropamide, IS: internal standard)  

2.2 Standard solutions and calibrators 

Primary stock standards of 1 mg/ml in methanol of all metabolites and the internal 

standard were prepared and stored at -20°C. Stock standards were mixed in the 

appropriate proportions and serially diluted in methanol. Microsomal calibration standards 

consisted of metabolites spiked to the microsomal incubation medium. This incubation 

medium was prepared by mixing 1 ml 5 mM NADPH, 1 ml 1.25 mg/ml microsomal 

protein, 1 ml 1.15% KCl, 1 ml 0.2M potassium phosphate buffer (pH 7.4) and 0.5 ml 

stopreagent (H2O/CH3CN/HCOOH; 42/55/3 (v/v/v)) containing 220 ng/ml internal 

standard (IS; chlorpropamide). After mixing and protein denaturation, a specific amount 

of stock solution was spiked to the incubation medium. Water was added to obtain a final 

volume of 5.5 ml per calibrator. Calibrators were centrifuged at 20000xg for 15 min at 

4°C, supernatant was separated and stored at 4°C. 
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2.3 Chromatographic conditions 

UPLC was performed on a Waters Acquity UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 

µm particle size) with VanGuard pre-column (5 mm x 2.1 mm, 1.7 µm particle size) 

using a Acquity UPLC system (Waters, Manchester, UK). The column was kept at 35 °C. 

An aliquot of 20 µl was injected using full loop injection. The mobile phase consisted of 

water containing 0.1% formic acid (eluent A) and acetonitrile containing 0.1% formic 

acid (eluent B). At a flow rate of 400 µl/min, the amount of eluent B was increased 

linearly from 5% to 80% in 4 min, kept at 80% B for 0.18 min, and then the column was 

left to re-equilibrate at initial conditions for 1.8 min, resulting in a total turnover time of 

6 min. Due to the presence of the potassium phosphate buffer in the sample, strong 

wash contained 95/5 (v/v) water/methanol, and weak wash and needle wash 50/50 (v/v) 

water/methanol.  

2.4 MS conditions 

Eluting compounds were detected using a Waters Quattro Ultima triple quadrupole 

system (Micromass Waters, Manchester, UK). The electrospray source (orthogonal Z-

spray®) used a standard 120 µm capillary. Optimal source temperature and desolvation 

temperature were 150 and 400 °C, respectively. Cone gas flow and desolvation gas flow 

(both nitrogen) were set at 175 and 575 l/min. Argon was used for the collision-induced 

fragmentation. Due to inadequate ionization for some compounds indebted to their 

particular chemical structure, both the positive and negative electrospray ionization mode 

were used as interface. As the instrument is not capable of effective in-run polarity 

switching, two runs were necessary for each cocktail sample. Data were collected and 

processed using the MassLynx® and QuanLynx® software (Micromass Waters).  

2.5 Microsomal incubations 

Microsomes were incubated with each probe substrate in a concentration near their 

apparent Km (see Table 1) [18]. In short, 50 µl of the probe was added to 50 µl 1.25 mg 

microsomal protein/ml (final concentration of 0.25 mg protein/ml), 50 µl 1.15% KCl and 

50 µl 0.2M potassium phosphate buffer (pH 7.25).  To initiate the reaction, 50 µl of 5 mM 

NADPH was added after pre-incubation of 3 minutes at 37°C (total reaction volume of 

250 µl). The reaction was terminated after exactly 15 minutes (40 minutes for ME) by 

adding 25 µl of the stopreagent (H2O/CH3CN/HCOOH; 42/55/3) containing the internal 

standard, and cooling the mixture on ice. Subsequently, the samples were centrifuged for 

10 minutes at 20000xg (4°C), 200 µl of the supernatant was transferred to a 250 µl 

insert, and samples were frozen at -20°C until analysis. 
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2.6 Method validation 

The method was validated according the “Guidance for Industry -  Bioanalytical Method 

Validation” recommended by the FDA [19]. 

2.6.1 Calibration curve 

Calibration curves were constructed over a specific range for each compound (based on 

Walsky et al [20]). An analysis of variance with lack of fit test (StatGraphics 4.1, 

Warrenton, Virginia, US) was used to determine whether the selected model of the 

relation between analyte-to-IS ratio and concentration was adequate to describe the 

observed data (p>0.10), or whether a more complicated model was required. If 

necessary, a weighting factor was used to increase the accuracy. The statistical 

significance of the terms of the model (slope and intercept) was assessed by the 

comparison of calibration curves analyzed in 5 independent runs using an ANOVA for 

variables in the order fitted (p>0.10).  

Quality control (QC) samples at three different concentration levels (replicate analysis; in 

total 6 samples) were used to either accept or reject the analytical run.  At least four out 

of six of the QC samples should be within 15% of their nominal value, whereas two out of 

six QC samples (not all replicates at the same concentration level) may be outside 15% 

of the nominal value. Table 1 shows the concentration ranges of the different calibration 

curves and the concentration levels of the QC samples.  

2.6.2 Precision, accuracy and LOQ 

Within-day precision and accuracy were determined by analyzing six aliquots of each QC 

sample on the same day. Between-day precision was evaluated by analyzing the QC 

samples in duplicate for five days. Precision was expressed as the relative standard 

deviation (RSD%) of the measured QC samples and accuracy was calculated as trueness.  

2.6.3 Limit of detection (LOD) and limit of quantification (LOQ) 

The limit of detection (LOD) was calculated following the IUPAC definition [21] and was 

defined as 3 times the standard deviation of the intercept, divided by the slope or 

analytical sensitivity. However, as this equation only counts for linear calibration curves, 

the LOD of the metabolites using a quadratic calibration curve was calculated following 

Burkart et al [22]. 

The limit of quantification (LOQ) was defined as the lowest concentration, which could be 

measured (n=6) with a precision not exceeding 20% (RSD%)  and with an accuracy 

between 80% and 120%. The lowest calibrator of the calibration curve was targeted as 

LOQ.  
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2.6.4 Selectivity and stability 

Selectivity was assessed by examining peak interference (signal-to-noise ratio < 9) from 

six independent sources of microsomes. Stability of the sample incubation extracts was 

tested after storage in the autosampler (15°C) for 14 h and after three freeze-thaw 

cycles. The autosampler stability was tested by the analysis of 3 aliquots of a middle 

standard in the beginning of an analytical run, and 3 aliquots 14 h (average total run 

time) later. Stability was determined by statistical comparison of the calculated 

concentrations (t-test, 95% significance level). Freeze-thaw stability was assessed using 

the commonly accepted procedure: after three freeze-thaw cycles, samples were 

compared with regularly analyzed samples with the same amount of analyte (t-test, 95% 

significance level). 

2.6.5 Matrix effect 

Matrix effect was evaluated following Viswanathan et al. [23], through the calculation of 

the internal standard-normalized (IS-normalized) matrix factor (MF), using equation (1).  

IS-normalized Matrix Factor   

        =  peak ratio (analyte/IS) in presence of matrix ions     
(1) 

            peak ratio (analyte/IS) in absence of matrix ions     

    

A value different from 1, indicated an absolute matrix effect. The relative matrix effect 

was evaluated through the determination of the coefficient of variation (CV%) of the IS-

normalized MF of five different matrix sources. This CV% should not exceed 15%. 

2.6.6 Application of the method 

The above described validated analytical method was used for the analysis of samples 

from a pharmacokinetic study. CYP450 enzyme activities were determined in three liver 

samples obtained from explanted livers from children undergoing liver transplantation for 

various reasons (biliary atresia, cystic fibrosis, progressive familial intrahepatic 

cholestasis). The paediatric microsomal samples were incubated with the probe 

substrates, and the formed metabolites were quantified. 

3 RESULTS AND DISCUSSION 

3.1 Method development 

3.1.1 Sample preparation 

Sample preparation is of major importance in LC-MS/MS analysis. In order to reduce 

matrix interference, complex matrix ions, such as proteins, have to be removed from the 

sample. Protein precipitation is the most widely used and easiest technique for this 
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purpose. In CYP450 assays this is typically achieved through the addition of an equal 

volume of organic solvent (mostly acetonitrile), or through acidification. Subsequently, 

the sample can be filtered [20] or centrifuged [5,24] in order to remove the proteins. The 

use of large volumes of organic solvent was deemed highly undesirable in this method, 

as this dilutes the sample at least three times, moreover providing an injection organic 

solvent composition incompatible with good reversed phase chromatography. In CYP450 

assays, protein denaturing can also serve to end the enzymatic incubation, i.e. as a 

stopreagent. Taking all of this into consideration, a small volume (25 µl in 250 µl 

incubation volume) of a reagent containing a combination of acetonitrile and a strong 

acid (formic acid) was used in order to stop the enzymatic reaction and at the same time 

provide adequate conditions to pellet the incubation mix proteins. Addition of a small 

volume of 60% perchloric acid was also evaluated, but as this significantly affected peak 

shape, this method for sample preparation was not retained. Besides acetonitrile and 

formic acid, the stopreagent contained the internal standard, chlorpropamide. The 

terminated incubation medium was vortex mixed and placed on ice for further protein 

precipitation. After centrifugation for 10 minutes at 20000xg and 4°C, supernatant was 

collected and could be readily injected. As the sample preparation step is incorporated in 

the in vitro protocol (termination step of the incubation), sample handling is minimized 

and unduly dilution of the resulting extract is avoided. This in combination with a 

selective and sensitive MS method thus increases the quality of the result, as well as the 

throughput of the method [4]. 

3.1.2 Optimization of the mass spectrometric (MS) detection 

The individual parameters for the detection with the triple quadrupole MS were optimized 

by the infusion of a standard solution of the metabolites (1 µg/ml (100 ng/ml for DX) in 

methanol/water 50/50 (v/v) + 0.1% formic acid). Detection of all metabolites (depicted 

in Figure 1) was evaluated in the positive electrospray ionization (ESI +) mode. No or 

poor MS responses were observed for HCZ and HTB in the positive mode. In contrast, 

intense MS signals were observed for AP, DX and HMDZ. Infusion of HCZ and HTB in the 

negative ESI (ESI -) mode showed strong responses. Therefore, detection of AP, DX and 

HMDZ was performed using the ESI + mode, whereas HCZ and HTB need the ESI- mode. 

As HME showed poor MS response in both ESI + and ESI - mode during infusion, this 

compound was initially detected in both modes. The MS parameters were optimized in 

order to achieve the highest MS response. The optimal cone voltages were determined, 

and an acceptable signal for the detection of HME in ESI + was obtained by an increased 

source (150°C) and desolvation temperature (400°C). Consequently, the preferred 

detection mode of HME was finally ESI +. The collision energy (using argon gas) was 

optimized for each metabolite, based on the product ion mass spectra. Collision energy 
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was varied until the intensity of the precursor ion [M + H]+ was 10 to 20 % of the 

intensity of the quantifier ion (i.e. the product ion with the highest response).  

For the actual detection using multiple reaction monitoring (MRM), the two most 

abundant product ions were selected for each analyte; except for HTB, where only one 

product ion was formed during fragmentation. The most abundant product ion served as 

quantifier (for the quantification), the other as qualifier (confirmation of the 

identification).  

Based on Kim et al. [5], chlorpropamide was selected as internal standard, as this 

molecule can be detected in both ESI + and ESI - mode. The internal standard was 

added to the sample at the end of the incubation reaction (in the stopreagent) and was 

used to correct for variability of the analytical system. Table 1 depicts the MS parameters 

of all the metabolites and the internal standard. 

3.1.3 Optimization of the chromatographic separation 

In order to obtain a short analysis time, a sub 2-µm particle size UPLC column was 

selected. Considering the chemical diversity in structures of the metabolites, gradient 

elution was applied, using water containing 0.1% formic acid as eluent A. Eluent B 

(acetonitrile + 0.1% formic acid) was increased gradually from 5% to 80% during 4 

minutes using a 0.4 ml/min flow. A chromatogram in both ionization modes is shown in 

Figure 2. All peaks were base line separated. 

An increase in flow rate (> 0.4 ml/min) also allowed good separation of the peaks. 

However, quantification with the MS in MRM was no longer adequate, as the MS system 

could not switch masses as fast as needed to obtain sufficient scans per peak (i.e. a 

minimum of 10 points across each peak). This led to a decreased sensitivity, and thus, a 

flow rate of 0.4 ml/min was defined to be optimal. The final gradient already enabled an 

analysis in only 5.25 minutes, including the equilibration time required for the next run.  

3.2 Method validation 

3.2.1 Calibration curves 

Lack of fit analysis of the model describing the relation between the analyte-to-IS ratio 

and concentration demonstrated a linear correlation for AP, DX and HMDZ, and a 

quadratic correlation for HTB, HME and HCZ (p<0.10). Due to the large concentration 

range, a weighting factor of 1/x² and 1/x was necessary for the linear and the quadratic 

models, respectively, to obtain the best residuals, and consequently the best accuracy. 

When five independent calibration curves were compared statistically, they were proven 

to have an equal slope and intercept (p > 0.10).  
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Table 1: Incubation conditions and analytical parameters for the individual metabolites and 

internal standard. 

 

  CYP1A2 CYP2C9 CYP2C19 CYP2D6 

Substrate Phenacetin Tolbutamide S-mephenytoin Dextromethorphan 

Km (µM) 50 100 100 5 

Metabolite Acetaminophen 4-OH-tolbutamide 4'-OH-mephenytoin Dextrorphan 

  (AP) (HTB) (HME) (DX) 

tR (min) 0.99 2.02 1.64 1.48 

Ionization mode ESI + ESI - ESI + ESI + 

Capillary voltage (kV) + 3.25 - 2.80 + 3.25 + 3.25 

Cone voltage (V) 12 24 24 22 

Collision energy (eV) 28 12 14 28 

Precursor ion (m/z) 152.10 285.09 235.41 258.00 

Quantifier (m/z) 110.00 185.60 150.00 156.70 

Qualifier (m/z) 93.00   133.00 132.80 

Range (nM) 18.52 - 8333 2.79 - 5238.34 18.43 - 8293.56 2.13 - 959.29 

QC low (nM) 52.09 21.83 51.83 6.00 

QC medium (nM) 1111.20 698.45 1105.81 127.91 

QC high (nM) 4166.98 2619.17 4146.78 479.65 

  CYP2E1 CYP3A4 Internal standard 

Substrate Chlorzoxazone Midazolam Chlorpropamide (CLP) 

Km (µM) 50 5     

Metabolite 6-OH-chlorzoxazone 1-OH-midazolam     

  (HCZ) (HMDZ)     

tR (min) 1.44 2.08 2.75 

Ionization mode ESI - ESI + ESI + ESI - 

Capillary voltage (kV) - 2.80 + 3.25 + 3.25 - 2.80 

Cone voltage (V) 25 22 25 20 

Collision energy (eV) 14 19 11 11 

Precursor ion (m/z) 183.83 342.04 276.86 274.89 

Quantifier (m/z) 119.80 323.70 174.69 189.57 

Qualifier (m/z) 147.70 202.80 191.65 125.85 

Range (nM) 49.09 - 5522.79 4.29 - 1929.60     

QC low (nM) 86.29 12.06     

QC medium (nM) 1840.93 257.28     

QC high (nM) 3451.77 964.80     
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Figure 2: Representative chromatograms of the metabolites in positive (a) and negative (b) 

electrospray ionization mode, obtained after the injection of QC medium (concentrations: see Table 

1). Concentration of the internal standard: 20 ng/ml.  (compound abbreviation identification as in 

Figure 1). 

 

3.2.2 Limit of detection (LOD) and limit of quantification (LOQ) 

Limits of detection (LOD) and quantification (LOQ) of all metabolites are depicted in Table 

2. Precision and accuracy of the LOQs met the requirements of the FDA (RSD <20%, and 

between 80% and 120%, respectively). The obtained LOQs are evaluated as adequate 

for the intended pharmacokinetic application(s), as very low CYP enzyme activities can 

still be detected, important in diseased liver situations.  

3.2.3 Precision and accuracy  

The between-day and within-day precision were better than 5.13% and 9.60%  (RSD%), 

respectively, and the accuracy ranged from 84.59 to 109.83% (see Table 3). Thus, the 

method proved to be precise and accurate.  
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Table 2: Limit of detection (LOD) and limit of quantification (LOQ) of all metabolites. The precision 

and accuracy of the LOQs met requirements (< 20%, and between 80% and 120%, respectively) 

(compound abbreviation identification as in Figure 1). 

      AP DX HME HMDZ HCZ HTB 

LOD (ng/ml)   0.134 0.088 0.912 0.095 1.871 0.173 

  

      LOQ (ng/ml)   2.8 0.55 4.32 1.47 9.11 0.8 

Precision (RSD%) n = 6 5.13 2.64 4.5 5.33 4.13 3.27 

Accuracy (%) n = 6 107.52 101.51 110.93 92.63 89.62 98.02 

 

Table 3: Validation data: within-day precision, between-day precision and accuracy (compound 

abbreviation identification as in Figure 1). 

   AP DX HME HMDZ HCZ HTB 

Within-day 

precision 
(RSD%) 
n = 6 

QC low 4.48 1.37 1.65 1.97 1.72 2.61 

QC medium 2.16 2.41 2.04 2.66 2.03 2.33 

QC high 5.13 2.37 1.14 4.61 1.1 1.47 

                

Between-day 
precision 
(RSD%) 

n = 6 

QC low 6.29 3.75 5.88 4.63 9.6 3.34 

QC medium 3.01 4.36 5.27 3.84 6.16 3.64 

QC high 2.86 2.69 3.27 4.82 4.29 3.84 

                

Accuracy 
(%) 
n = 6 

QC low 87.75 86.26 91.1 93.52 85.32 95.04 

QC medium 104.61 107.61 105.07 102.61 84.59 99.59 

QC high 107.39 107.46 107.93 97.04 106.83 109.83 

 

 

3.2.4 Selectivity and stability 

No interference was observed at the retention times of the analytes and the IS when 

analyzing blank microsomes from six independent sources (signal-to-noise ratio > 9; 

data not shown).  

Statistical analysis of the autosampler stability only showed significant differences of the 

HME and DX concentration after 14h (p < 0.05). However, the mean of the calculated 

concentration is still within the 85-115% interval of the nominal value (DX: 88.48%, 

HME: 92.11%) and therefore acceptable. Consequently, sample incubation extracts may 

be placed in the autosampler for up to 14h. 

The evaluation of the freeze-thaw stability showed similar results: HME QC high, HMDZ 

QC low and high and HCZ QC mid showed statistically significant differences (p < 0.05), 

but the mean of the calculated concentration is within the 85-115% interval of the 
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nominal value. This means that (large) batches of incubations can be stored temporarily 

upon final analysis. 

3.2.5 Matrix effect 

Co-eluting compounds may cause enhancement or suppression of the ionization of the 

analyte. Due to the scarce sample preparation of the biological matrix (only protein 

precipitation), matrix effects were expected. In order to try to reduce these matrix 

effects base line separation of the metabolites was pursued. As a quantitative measure of 

matrix effect,  the IS-normalized matrix factor (MF) was determined at three different 

concentration levels for all six metabolites, following Viswanathan et al [23]. The absence 

of an absolute matrix effect is not indispensable for a valid bioanalytical method. Variable 

matrix effects in individual subjects, however, would cause a problem of reproducibility of 

the method. As shown in Table 4, an absolute matrix effect (IS-normalized MF ≠ 1) was 

observed for some of the metabolites at some of the concentrations (HMDZ and HCZ). 

Nevertheless, no relative matrix effects were seen, as the coefficients of variation (CV %) 

at each concentration level were < 15% for all compounds. The observed absolute matrix 

effects are in contrast with the study described by Li et al., where ion enhancement or 

suppression from the matrix was found negligible [6].  This is probably due to the more 

selective nature of the sample preparation, consisting of a liquid-liquid extraction, 

followed by evaporation and reconstitution in mobile phase. Despite the lack of matrix 

effects in their method, the sample preparation is much more extended than the fast 

method used in the study described in this article (protein precipitation followed by 

centrifugation).  

These results indicate that the selection of an appropriate internal standard is essential 

for the analytical method to be valid. Also, as the FDA prescribes, calibrators and QC 

samples need to be prepared in the same matrix as the samples. 

3.2.6 Application of the method 

The incubations of the microsomes originating from diseased livers from children 

undergoing liver transplantation resulted in the formation of metabolite concentrations as 

depicted in Table 5. With these metabolite concentrations, enzyme activities were 

calculated. Some of the isoforms showed very low activities, but nevertheless, these 

activities could be determined. These results show that the quantification method can be 

used in the in vitro determination of the enzyme activity of the six most important CYP 

isoforms. Interpretation of the results, however, is not included in this manuscript in view 

of the ongoing nature of the study, as well as the scope of this publication.   
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Table 4: Internal standard-normalized matrix factors of the six metabolites at three concentration 

levels. Despite the absolute matrix effect observed for some of the metabolites (MF ≠ 1), no 

relative matrix effect was seen (CV% < 15%) (compound abbreviation identification as in Figure 1; 

conc: concentration). 

    

Mean  

(n = 5)  CV (%)     

Mean  

(n = 5) CV (%) 

AP Conc 1 0.9 6.89 HME Conc 1 0.95 10.77 

  Conc 2 0.94 4.49   Conc 2 1 3.94 

  Conc 3 0.99 4.06   Conc 3 1.08 3.99 

        

DX Conc 1 0.92 6.84 HCZ Conc 1 1.25 4.46 

  Conc 2 1.01 3.33   Conc 2 0.96 5.14 

  Conc 3 0.99 3.75   Conc 3 0.98 6.62 

        

HMDZ Conc 1 1.23 4.30 HTB Conc 1 0.92 9.82 

  Conc 2 1.25 5.11   Conc 2 0.91 5.34 

  Conc 3 1.22 3.92   Conc 3 0.91 3.00 

 

 

Table 5: Enzyme activities calculated after incubation of paediatric microsomes, with the following 

conditions: 0.25 mg microsomal protein/ml incubation mix, probe substrates near Km, reaction 

time: 15 minutes, reaction temperature 37°C (n = 3). SD: standard deviation (compound 

abbreviation identification as in Figure 1). 

 

  CYP Metabolite concentration Enzyme activity 

  Mean (±SD) in ng/ml Mean (±SD) in pmol/mg/min 

  Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 

AP 1A2 3.51 

(±0.28) 

3.84 

(±0.22) 

6.07 

(±0.57) 

27.23 

(±2.15) 

29.84 

(±1.72) 

47.09 

(±4.41) 

DX 2D6 13.46 

(±0.82) 

32.76 

(±4.29) 

70.52 

(±3.74) 

61.38 

(±3.73) 

149.3 

(±19.54) 

321.51 

(±17.07) 

HME 2C19 < LLOQ 31.13 

(±1.93) 

17.13 

(±1.68) 

< LLOQ 155.9 

(±9.64) 

85.81 

(±8.40) 

HMDZ 3A4 22.27 

(±2.04) 

65.50 

(±5.21) 

6.43 

(±0.55) 

76.47 

(±7.02) 

224.9 

(±17.89) 

22.07 

(±1.87) 

HCZ 2E1 57.35 

(±4.89) 

30.95 

(±2.39) 

214.7 

(±15.90) 

362.6 

(±30.92) 

195.7 

(±15.11) 

1358 

(±100.5) 

HTB 2C9 12.31 

(±1.17) 

38.62 

(±3.12) 

62.49 

(±7.18) 

50.4 

(±4.81) 

158.2 

(±12.78) 

256.1 

(±29.43) 
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4 CONCLUDING REMARKS 

This paper presents the development and validation of a fast and sensitive UPLC-MS/MS 

method for the determination of the in vitro CYP450 enzyme activity. Especially in 

populations with liver dysfunction, a sensitive quantification method is required, as these 

patients often show a reduced activity. The UPLC-MS/MS approach in addition allows 

short sample analysis turn over times, which is interesting for high sample loads. The 

presented method was validated for selectivity, precision and accuracy. Despite the 

observed absolute matrix effects, a relative matrix effect could be ruled out, thus 

corroborating the validity of the obtained quantitative measurements. The sensitivity of 

the method was shown to be adequate for the intended pharmacokinetic applications, i.e. 

the incubation experiments with microsomes originating from liver samples from children 

with severe hepatic dysfunction.  The low activities of some of the CYP isoforms could still 

be calculated. This method will be used in pre-clinical pharmacokinetic experiments.  
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CHAPTER 3 

DEVELOPMENT AND VALIDATION OF AN ENZYME-

LINKED IMMUNOSORBENT ASSAY FOR THE 

QUANTIFICATION OF CYTOCHROME 3A4 IN HUMAN 

LIVER MICROSOMES  
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“Elisa, Elisa 

Elisa les autres on s'en fout, 

Elisa, Elisa 

Elisa rien que toi, moi, nous” 

- Serge Gainsbourg 

 

 

 

 

ABSTRACT 

Little is known about the influence of hepatic pathologies on cytochrome P450 (CYP) 

mediated drug metabolism in children. The determination of the abundance of the 

different isoforms in paediatric microsomes may provide valuable information on the 

mechanisms of possible changes in activity. Until now, western blotting was mostly used 

for abundance measurements, but this technique only provides semi-quantitative data. 

Therefore, this study aimed to develop and validate an indirect ELISA for the 

quantification of the most important CYP isoform, CYP3A4, in human liver microsomes, 

using commercially available reagents. Samples, calibrators and validation samples were 

diluted to a final concentration of 10 µg microsomal protein/ml. A polyclonal antibody 

raised against the full length human protein was used as primary antibody, horseradish 

peroxidase conjugated secondary antibodies for detection. The assay was validated for 

sensitivity, working range and calibration, accuracy and precision. Amounts of CYP3A4 

between 2 and 300 pmol/mg microsomal protein could be quantified with a 5-parameter 

logistics function with 1/x weighting factor. Coefficients of variation of intra and inter 

assay variability were between 9.54 and 13.98 % (16.34% at LLOQ), and between 10.51 

and 14.55% (19.44% at LLOQ), respectively. The relative error (%RE) varied between -

5.96 and 6.68% (11.53% at LLOQ), and the total error between 11.93 and 21.23% 

(30.97% at LLOQ).  The cross-reactivity of the method with human CYP2E1 showed to 

have no significant effect on the accuracy of the results. Successful analysis of five 

samples from an ongoing study demonstrated the usefulness of the method.  
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1 INTRODUCTION 

Cytochrome P450 (CYP) enzymes are a superfamily of enzymes involved in the 

metabolism of endogenous substrates, many drugs and other xenobiotics. The main CYP 

isoforms involved in drug metabolism are CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 

and CYP3A4. The presence of these isoforms has initially been determined by Shimada et 

al [1]. The most abundant isoform is CYP3A4 (~30% of total CYP). This protein, 

composed of 503 amino acids [2], is responsible for the metabolism of over 50% of the 

drugs currently on the market [1]. CYP3A4 is one of the four members of the CYP3A 

subfamily. Apart from CYP3A4, CYP3A5 is the only member of the CYP3A family that was 

detected in significant concentrations in the liver [1], albeit in much lower concentrations 

than CYP3A4 [3]. Only very rare polymorphic sites of CYP3A4 were identified. This 

isoform is probably well preserved because of its role in the metabolism of many 

endogenous and environmental factors [3]. 

CYP-mediated drug metabolism has been shown to be impaired in adult patients with 

hepatic dysfunction [4]. Furthermore, the degree of impairment in adults correlates with 

the severeness of the hepatic dysfunction [5], as well as with the aetiology of the disease 

[6].  In children, however, no similar investigation was performed up till now. The effect 

of pathology on drug metabolism can be investigated through phenotyping reactions in 

regard to CYP activity. Furthermore, the abundance of the relevant isoforms can be 

determined. CYPs are mainly located in the liver and 96% of the CYPs can be found in 

the subcellular fraction called microsomes [7]. As microsomes are easy to prepare and 

have excellent long term stability, they are a good choice to perform the 

characterizations mentioned before (phenotyping and abundance). Previous studies in 

adults showed a positive correlation between activity and abundance [1,8]. This 

relationship between enzyme activity and abundance may offer valuable information on 

the causes of possible changes in enzyme activity. A reduced abundance has been 

described in patients with liver cirrhosis, as clearly reviewed by Villeneuve et al [5].  

Post-translational mechanisms, on the other hand, may result in low activities but regular 

abundances of quantifiable CYP protein.  

To determine CYP abundance in e.g. microsomes, many studies have used the technique 

of western blotting. These methods, however, are time consuming and electrophoresis is 

relatively prone to technical complications. Also, quite large amounts of microsomal 

protein are necessary. Therefore, Snawder et al developed an indirect enzyme linked 

immunosorbent assay (ELISA), using primary antibodies against CYPs in rats [8]. These 

methods for immunoquantification have a substantially higher throughput and are easier 

to perform than western blots. This is a clear advantage in studies with a larger number 
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of samples. Barter et al. developed an indirect competitive ELISA for the quantification of 

human CYP3A4 and CYP3A5 [9], using primary antibodies against the C-terminus of the 

3A4 enzyme [10]. Immunologically targeting only part of the protein might introduce 

bias in the correlation between activity and abundance as protein dysfunctions (e.g. 

truncation) in the non-targeted but active part of the protein would go undetected. 

Therefore, the study described here aims to develop a sensitive indirect ELISA using 

commercially available primary antibodies raised against the full length human protein, in 

order to obtain supportive information for a pharmacokinetic study on the impact of 

disease on hepatic biotransformation in children. The method was thoroughly validated 

according to the recommendations of DeSilva et al [11]. Furthermore, as a proof of 

concept, samples from the ongoing pharmacokinetic study were analyzed.  

2 MATERIALS AND METHODS 

2.1 Chemicals 

Sodium carbonate and bicarbonate, sodium chloride, and Tween 20® were purchased 

from VWR (Leuven, Belgium), tris(hydroxy-methyl)aminomethane from Sigma-Aldrich 

(Buchs, Switserland), and hydrochloric acid from Acros Organics (Geel, Belgium). All 

chemicals were at least reagent grade.  

2.2 Calibrators: recombinant CYP3A4  

For the preparation of the calibrators and for certain validation aspects, microsomes 

prepared from insect cells infected with a virus engineered to express human CYP3A4 

were used (2000 pmol CYP3A4/ml; 2.1 mg microsomal protein/ml BD Supersomes™, BD 

Gentest, Franklin Lakes, USA). As negative controls (blanks) for the analysis, Control 

Supersomes™ (BD Gentest) were used. These control supersomes were prepared from 

the same type of insect cells, but no human CYPs were expressed. After optimization of 

the protocol, the final composition and concentrations of the calibrators were 300, 150, 

60, 30, 15, 7.5, 4 and 2 pmol rCYP3A4/mg protein in a pH 9.4 carbonate-bicarbonate 

plating buffer. Additional Control Supersomes™ were added to each calibrator, in order to 

obtain a final concentration of total microsomal protein of 10 µg/ml. The validation 

samples (VS), with final concentrations of 2, 5, 100, 200 and 300 pmol rCYP3A4/mg 

protein, were prepared similarly. For the cross-reactivity experiment, Supersomes™ of 

insect cells which expressed human CYP2E1 (BD Gentest) were used.  

2.3 Patient samples: microsomes 

Liver samples were collected from the diseased liver from children undergoing a liver 

transplantation (approved by the Ethics Committee of Ghent University Hospital, 
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B67020084281). Microsomes were prepared following the method of Wilson et al [7]. 

Protein content of the microsomal samples was determined by the method of Bradford 

[12]. 

2.4 Primary and secondary antibodies 

For the indirect ELISA, two types of antibodies were necessary. The primary antibody to 

bind the antigen was a polyclonal antibody raised in rabbit against the full-length human 

CYP3A4 protein (MaxPab® antibody, Abnova, Taiwan). As the secondary antibody, a goat 

anti-rabbit IgG conjugated with horse radish peroxidase (HRP) was purchased from 

Thermo Scientific (Rockford, USA). 

2.5 Development of indirect ELISA for CYP3A4 in human microsomes 

Microsomal samples were diluted to a concentration of 10 µg of microsomal protein/ml 

using a carbonate-bicarbonate buffer pH 9.4. One hundred microliters of the pH 9.4 

carbonate-bicarbonate plating buffer dilution of the calibrators or unknown samples were 

loaded on a black 96-well MaxiSorp® micro-titre plate (Nunc, Roskilde, Denmark). After 

an overnight incubation at 4°C, the plating solution was removed. Subsequently, plates 

were washed 3 times by the addition of 300 µl wash buffer (Tris-buffered saline (TBS) 

with 0.05% (v/v) Tween 20®, pH 7.2), soaking during 2.5 minutes and aspiration of the 

buffer. Nonspecific binding sites were blocked with 300 µl/well of StartingBlock™ blocking 

buffer in TBS with Tween 20® (Thermo Scientific, Rockford, USA) and incubation for 1h 

at room temperature (±23°C). After aspiration of the blocking buffer, plates were 

washed 3 times as described previously. The primary antibody was diluted in blocking 

buffer (1:3200), and 100 µl was added to each well, followed by incubation of the plates 

for 1h at 37°C. Primary antibody was aspirated and plates were washed as described 

previously. For the detection of the primary antibodies, 100 µl of secondary antibody 

dilution in blocking buffer (1:20000) was added and plates were then incubated at room 

temperature for 1 h. The unbound secondary antibody was removed and plates were 

washed, and 100 µl of premixed HRP substrate (QuantaBlu™ Fluorogenic peroxidase 

substrate and peroxide, Thermo Scientific, Rockford, USA) was added to each well. After 

30 minutes at 37°C, the reaction was stopped with the stop solution from the 

QuantaBlu™ kit, and fluorescence was determined at an excitation wavelength of 320 

nm, and emission at 405 nm (Ascent Fluoroscan, Thermo Scientific, Rockford, USA). 

Calibration curves were fitted and data were analyzed using the Masterplex® Readerfit 

2010 software (Hitachi, San Francisco, CA, USA) and Microsoft® Excel (v 2007). The 

amounts of CYP3A4 were expressed in pmol/mg microsomal protein. 

The final protocol was obtained after the optimization of several parameters. Optimal 

concentrations of primary and secondary antibodies were determined by a checkerboard 
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titration experiment. In this experiment, samples with CYP3A4 at 3 concentration levels 

(0, 5, and 100 pmol/mg protein) were analyzed using the combination of 10 

concentrations of primary antibody (2500, 1250, 625, 417, 312.5, 208, 156, 75, 40, and 

20 ng/ml), with 4 concentrations of secondary antibody (25, 50, 75, and 100 ng/ml, 

according to the manufacturers guidelines). Furthermore, the optimal amount of protein 

to load in each well (0.5, 1 or 1.5 µg protein), the blocking buffer, incubation times and 

temperature were determined. 

2.6 Validation of indirect ELISA for CYP3A4 in human microsomes 

The method was validated for assay sensitivity, linearity of dilution, spiking recovery, 

calibration model and working range, intra and inter assay variability and precision, and 

cross-reactivity.  

The calibration model was assessed as described by DeSilva et al [11]. The curve was 

fitted for six independent assay runs. The appropriateness of the model was evaluated by 

analysis of the relative error (%RE) of the back-calculated calibration points (%RE = 100 

x (calculated concentration - nominal concentration)/nominal concentration). The %RE 

should be ≤20% (≤25% at LLOQ) for ≥75% of the calibrators within a curve. 

Furthermore, the mean %RE and %CV calculated from all runs (n=6) should both be 

≤15% for each calibrator, except at the LLOQ where both should be ≤20%.   

Sensitivity of the method was determined by calculating the mean response of 10 blank 

samples plus 3 standard deviations. The concentration calculated with this response was 

defined as the lowest concentration that could be distinguished from a blank sample, and 

was used as the lower limit of the working range. The upper limit of the working range 

was defined based on literature information (based on naturally occurring CYP3A4 

abundance in microsomes) and compliance with the validation criteria was tested. 

Linearity of dilution was determined by diluting a sample with a known concentration 

above the upper limit of the working range 1:2, 1:3, 1:4 and 1:6. The recovery (%) of 

the observed concentration to the expected concentration should be within the 85-115% 

interval. In order to evaluate matrix effects, a spiking recovery experiment was set up. 

Samples were prepared at five concentration levels in both dilution buffer (carbonate-

bicarbonate, pH 9.4) and in blank matrix (blank supersomes, final protein concentration 

of 10 µg/ml). The recovery (%) of the observed concentration to the nominal 

concentration was calculated and evaluated against the 85-115% interval in both 

matrices. 

Assessment of the intra assay and inter assay precision and accuracy was also performed 

according to the recommendations of DeSilva et al [11].  Method precision and accuracy 

were estimated by the analysis of validation samples prepared in the sample matrix at 
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five concentration levels: anticipated LLOQ, less than 3 times LLOQ, medium, high and 

anticipated upper limit of the working range. For each validation sample, at least 2 

independent determinations were done each run, for a minimum of 6 runs. The statistical 

methods used for the evaluation of the repeated measurements of each validation 

sample were described by DeSilva et al [11].  The coefficient of variation used to express 

the intra assay precision was calculated by dividing the pooled intra assay standard 

deviations of the calculated assay run means with the sample nominal concentration. The 

standard deviation needed for the calculation of the %CV for the inter assay precision 

was calculated by the method of analysis of variance (ANOVA). Method accuracy (%RE) 

was determined by the percent deviation of the weighted sample mean from the sample 

nominal concentration.  The a priori set target limits were an intra assay and inter assay 

precision (%CV) and absolute value of the mean bias (%RE) ≤ 20% (25% at LLOQ). In 

addition, the total error of the method (= sum of %CV and absolute value of the %RE) 

should be ≤ 30% (40% at LLOQ).  

The cross-reactivity was assessed following MacFarlane et al [13], according to the 

equation: 

 [(observed concentration - control concentration)/ supplemented concentration] * 100, 

with observed concentration = calculated CYP3A4 concentration, control concentration = 

calculated CYP3A4 concentration in a sample without supplementation of rCYP2E1, and 

supplemented concentration = concentration of rCYP2E1 supplemented. Also, the 

calculated mean concentrations from the samples with supplementation of recombinantly 

expressed CYP2E1 at 4 concentration levels (zero - low – expected physiologically – high) 

were compared with one-way ANOVA (using Microsoft Excel® 2007).  

In-study validation was performed during each patient sample analysis run. Two 

determinations of validation samples at 3 concentration levels (less than 3 times LLOQ, 

medium and high) were measured. These results were evaluated with the 4:6:30 rule 

[11], i.e. 4 out of the 6 VS should have a total error below 30%, and the 2 samples not 

meeting this requirement should not be at the same concentration level. Furthermore, 

≥75% of the standard points should have a %RE of ≤ ±15%. 

2.7 Application of the method 

Five patient samples from an ongoing pharmacokinetic study were analyzed with the 

validated method. After determination of the total protein content, the microsomal 

suspensions were diluted in the plating buffer to a final protein concentration of 10 

µg/ml. For each of the samples, two wells were loaded with hundred µl of the dilution. 
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The actual concentration of the samples was determined by the average concentration of 

the two wells. 

3 RESULTS 

3.1 Validation 

Based on six independent assay runs, a five-parameter logistics (5-PL) curve with a 1/x 

weighting factor was validated (Figure 1). Eight calibrators within the range of 2 to 300 

pmol CYP3A4/mg protein were used to fit the model. The %RE of the individual 

calibration points, and the intercurve mean %RE and %CV of each calibrator are shown 

in Table 1, and were all within the specified limits. The signal bigger than the mean signal 

of blank microsomes + 3 SD corresponded with a concentration of 2 pmol/mg protein.  

Table 1: Validation of the standard curve: Relative error (%) of the back-calculated standard 

concentrations, mean relative error and coefficient of variation (%CV). 

Batch  run 

Nominal concentration (pmol CYP3A4/mg protein) 

2 4 7.5 15 30 60 150 300 

1 6.00 -8.00 4.00 -6.67 7.93 -1.65 -2.50 1.67 

2 5.50 -9.50 8.00 -6.60 4.17 -0.25 -1.90 1.77 

3 -0.50 2.50 -0.53 -1.33 1.23 0.22 -0.93 1.16 

4 6.00 -7.25 0.40 -0.53 2.27 0.70 -2.31 1.42 

5 1.00 -3.75 3.47 -3.87 1.80 -1.75 0.23 0.13 

6 -6.00 12.00 0.00 -6.53 3.03 2.80 -3.59 1.72 

                  

Mean %RE 4.25 -5.56 2.97 -3.78 3.90 -0.25 -1.91 1.51 

%CV  3.05 5.78 3.77 3.44 2.84 1.02 0.71 0.27 

 

 

The results from the spiking recovery experiment for the evaluation of the matrix effects 

are shown in Table 2. Dilution of the stock solution of rCYP3A4 with plating buffer 

revealed bad recovery, whereas samples diluted in blank matrix and with a final protein 

concentration of 10 µg/ml, showed a recovery within the 85-115% limits.  

Dilution of a sample with a known concentration of 450 pmol CYP3A4/mg protein, which 

is above the upper limit of the working range of 300 pmol CYP3A4/mg protein, resulted 

in concentrations with a recovery within the 85-115% limits (Table 3).  
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Table 2: Spiking recovery experiment: Percent recovery of the observed concentration compared 

to the nominal concentration. Samples diluted in plating buffer showed very poor recovery at the 

lower concentrations. 

Nominal concentration 
(pmol CYP3A4/mg protein) 

Observed concentration  
(pmol CYP3A4/mg protein)   

Recovery % 

  
Diluted in              

blank matrix 
Diluted in 

plating buffer 
 Diluted in            

blank matrix 
Diluted in 

plating buffer 

2 1.84 0.58   92 28.9 

5 5.18 3.32   104 66.4 

100 107 84.3   107 84.3 

200 187 180   93.4 90.3 

300 279 275   93.1 91.7 

 

 

 

 

Figure 1: Representative calibration curve (range 2-300 pmol CYP3A4/mg protein) from the 

indirect ELISA for human CYP3A4, calculated with a five-parameter logistics curve, with 1/x 

weighting factor. 
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Table 3: Recovery of the diluted samples (in blank matrix, with a final protein concentration of 10 

µg/ml), compared to the expected concentration of 450 pmol CYP3A4/mg protein. 

Dilution Factor (DF) Observed concentration             
(pmol CYP3A4/mg protein) x DF 

Recovery % 

2 426.2 94.7 

3 436.5 97.0 

4 431.6 95.9 

6 433.3 96.3 

 

The results of the statistical analysis of the precision and accuracy at the 5 concentration 

levels of the validation samples are presented in Table 4. Intra assay and inter assay 

precision were between 9.54 and 16.34%, and 10.51 and 19.44%, respectively. The 

mean bias (%RE) was always ≤ ±11.53%. Furthermore, the total error of the method at 

the 5 concentration levels was always substantially below the required 30% (≤40% at 

LLOQ). 

Table 4: Precision and accuracy assessment. 

    
Nominal concentration  

(pmol CYP3A4/mg protein) 

Characteristic Statistic 2 5 100 200 300 

# Results N 18 18 18 18 18 

Accuracy Mean bias (%RE) 11.53 6.68 0.69 -1.41 -5.96 

Precision Intra assay(%CV) 16.34 13.98 10.27 11.62 9.54 

  Inter assay (%CV)  19.44 14.55 11.24 11.62 10.51 

    

     

Total error           
(Accuracy + Precision) 

|Mean bias| + 
Inter assay %CV 

30.97 21.23 11.93 13.03 16.47 

 

The cross-reactivity with human CYP2E1 was assessed through the calculation of the 

percentage of cross-reactivity (Table 5). The % deviation from the nominal concentration 

value was always within the method (inter assay) precision interval. One can conclude 

that the deviation from nominal seen is due to normal variability and cross reactivity can 

be considered insignificant. This was confirmed by the ANOVA, which showed a p-value > 

0.05.  
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Table 5: Cross-reactivity experiment with recombinant CYP2E1. 

Supplemented concentration 
CYP2E1 (pmol/mg protein) 

Mean observed concentration 
CYP3A4 (pmol/mg protein) (± SD) % cross reactivity 

0 125.7 ± 12.4 

 20 124.5 ± 7.5 -5.9 

140 140.5 ± 6.3 10.5 

280 132.5 ± 8.5 2.4 

 

3.2 Application of the method 

Table 6 depicts the results of the analysis of microsomes prepared from explanted liver 

tissue from five children with biliary atresia. 

Table 6: CYP3A4 content of microsomes prepared from explanted liver tissue from five children 

with biliary atresia.  

Sex Age at transplantation CYP3A4 abundance 

  (months) (pmol/mg protein) 

M 4.7 54.32 

M 7.3 4.14 

F 8.9 133.36 

F 9.4 6.55 

F 9.5 18.76 

 

4 DISCUSSION 

An indirect ELISA was developed for the quantification of CYP3A4 in human liver 

microsomes. A fit-for-purpose optimization was performed in order to optimize all 

parameters in relation to the intended applications [14].  

Commercially available polyclonal antibodies against full length human protein were used 

for the primary detection of the antigen. This type of antibody was considered essential 

for this method, as the antigen, i.e. the microsomal vesicle membrane bound CYP3A4 

enzyme, is being adsorbed to the wall of the microplate. As it is unpredictable which part 

or side of the enzyme would be exposed for antibody binding, it would be advantageous 

to add polyclonal antibodies to maximize the chance of antigen-antibody interaction. The 

down side of this approach could possibly be the fact that truncated and non-functional 

protein, e.g. due to pathological conditions, would most probably also be measured. In 

contrast, monoclonal antibodies targeted at the active part of the protein would not 

include truncated and non-functional protein in the abundance measure.  We, however, 

think the use of monoclonal antibodies would introduce bias in the activity/abundance 
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picture because abundance measurement then already includes an activity estimation. 

The optimal concentrations of primary and secondary antibody were determined by a 

checkerboard titration experiment (see methods). Based on outcome parameters such as 

a background signal as low as possible, combined with sufficient sensitivity for the low 

concentrations and no saturation for the higher concentration, a combination of 312.5 

ng/ml of primary antibody, and 50 ng/ml of secondary antibody was further used. 

Incubation times and temperatures of the antibodies were also optimized, aiming for 

optimal sensitivity. Also, the amount of protein to be plated was tested. 0.5 µg protein 

per well showed insufficient sensitivity, as the response from the spiked sample 

containing 2 pmol/mg protein could not be distinguished from the blank samples. 1 µg 

was shown to be the optimal plating concentration, as a higher amount (1.5 µg protein 

per well) resulted in a significantly higher background signal. For reducing the non-

specific binding, two types of commercially available blocking buffers were compared. 

The Starting Block buffer finally chosen provided an assay with highest precision. 

The selection of the calibration model was achieved based on the %RE of the back-

calculated concentrations. A visual inspection of the relationship between the response 

and the concentration already suggested the use of a 5-parameter logistics (5-PL) 

function, due to clear asymmetry (compared to a 4-parameter logistics function) of the 

curve (see Figure 1).  A comparison of the mean %RE in back-calculated concentrations 

from an unweighted and a weighted 5-PL model is depicted in Figure 2.  A weighting 

factor was shown to be necessary in order to obtain sufficient accuracy at the lower 

concentration level. The 5-PL function with 1/x weighting factor met all requirements of 

%RE and %CV to validate the calibration model (see Table 1).  

The working range was selected based on previously determined mean concentrations of 

CYP3A4 in adults [8]. Nevertheless, as no information is present on this parameter in 

children (our research focus), nor on the effect of liver disease on the abundance in 

children, the possibility of lower or higher concentrations should be taken into account. 

The aspired lower limit of the working range was based on the mean abundance of 

CYP3A4 in adult liver (i.e. ± 100 pmol/mg protein). If liver disease would reduce the 

abundance with 90%, the remaining 10 pmol/mg protein should still be detectable. 

However, Snawder et al. reported a minimum of 19.7 pmol CYP3A4/mg protein in adult 

microsomes [8]. If the method should be able to detect a 90% reduction, an LOQ of 1.97 

pmol/mg protein would then be required. Our validated lower limit of 2 pmol/mg protein 

meets this requirement. Achieving this LLOQ meant optimizing for sensitivity. For 

example, a clear increase in sensitivity, or decrease in background signal, was obtained 

by diluting the antibodies (both primary and secondary) in the commercially prepared 

blocking buffer, instead of in a 2% BSA solution in the wash buffer (TBS with 0.05% 
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Tween 20®, pH 7.2). The results from the spiking recovery experiment (Table 2) show a 

clear influence of the matrix proteins on the response. If the microsomes used for the 

calibrator samples would be diluted in a buffer without additional proteins, a low 

concentration in a sample would be severely overestimated. This is probably due to non-

specific binding of the antibodies. Therefore, all calibrators and validation samples should 

be diluted in blank matrix, in order to have an equal final microsomal protein content in 

all samples (10 µg/ml).  

 

Figure 2. Comparison of the mean (± standard error) percent relative errors in back-calculated 

concentrations from an unweighted and weighted 5-PL function. The weighted model showed a 
better fit than the unweighted model, which showed an unacceptable accuracy at the lower range 
of the curve. 

 

A dilution experiment was set up in order to define the approach for the determination of 

samples with a concentration above the upper limit of the working range (300 pmol/mg 

protein). A sample was spiked at a high CYP concentration, and was subsequently diluted 

2, 3, 4 and 6 fold. Again, it was important to adjust final protein content using blank 

microsomes. Table 3 shows that the concentrations, calculated after multiplying the 

observed concentration with the dilution factor, all were within the 85-115% interval of 

the nominal concentration, indicating dilution of high dosed samples will not deteriorate 

the quantitative measurement results. 

The variability of the results for the same sample analyzed under repeatability conditions 

and the intermediate precision are determined by the intra and inter assay precision, 

respectively. The coefficient of variation calculated to express these variabilities should 

not exceed 20% (25% at the LLOQ). The precision of this assay was evaluated at 5 
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concentration levels by performing 6 independent assay runs (with n = 3 within each 

run). Furthermore, these 6 assay runs were used for the assessment of the assay’s 

accuracy (expressed as %RE). The assay’s total error, i.e. the sum of the absolute mean 

value of the %RE and the inter assay %CV, should be below 30% (40% at LLOQ). The 

results from these analyses are summarized in Table 4. Both precision (intra and inter 

assay) and accuracy, as well as the total error, showed results below these limits at all 5 

concentrations. 

The CYPs are a group of hemoproteins classified according to their homology in amino 

acid sequence. Consequently, isoforms from the same family have ≥40 % homology, 

whereas members from the same subfamily show at least 55% similarity [15]. This 

homology may lead to cross-reactivity of the primary antibody. The ability of this assay 

to differentiate between CYP3A4 and other human CYPs was tested through the addition 

of CYP2E1 to a sample with a known concentration of CYP3A4. Even at a physiologically 

high abundance of CYP2E1, the method showed sufficient selectivity towards the 

detection of CYP3A4 (Table 5). 

The method was tested through the analysis of samples from an ongoing PK study. The 

CYP3A4 abundance could be determined in all five samples, which proved the 

applicability of the method. 

5 CONCLUSION 

An indirect ELISA was developed for the quantification of CYP3A4 in human liver 

microsomes. After optimization of several parameters, the method was successfully 

validated. Concentrations of CYP3A4 between 2 and 300 pmol/mg microsomal protein 

could be selectively determined with adequate accuracy and precision. All samples, 

including validation samples and dilutions of samples with a concentration above the 

working range, should have a concentration of total protein of 10 µg/ml, as proven by 

the spiking recovery experiment. This method will be applied to samples from a 

pharmacokinetic study investigating the impact of disease on the metabolic capacity of 

the liver in children. The analysis of five samples from the study showed that the method 

has adequate sensitivity for the intended application.  
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“Things should be made as simple as possible,  

but not any simpler” 

- Albert Einstein 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

CYP2E1 is an important cytochrome P450 isoform in many endogenous processes and in 

the metabolism of organic solvents, a number of drugs and pre-carcinogens. Information 

on the abundance of the enzyme may be valuable in various types of research in the field 

of toxicology and pharmacology. An indirect ELISA for the quantification of CYP2E1 in 

human liver microsomes was developed and successfully validated. All samples, including 

validation samples and calibrators, were diluted to a final concentration of microsomal 

protein of 10 µg/ml. Detection of the antigen was obtained through binding of a 

polyclonal antibody raised against the full length protein, followed by the addition of 

horseradish peroxidase conjugated secondary antibodies and enzymatic detection. A five-

parameter logistics function with 1/x weighting was used for quantification within the 

concentration range of 4-256 pmol CYP2E1/mg microsomal protein. The method showed 

acceptable intra- and inter-assay precision, with calculated coefficients of variation of 

6.3-15.2% and 11.3-21.0%, respectively. The relative error varied between -2.3 and 

8.9%, and the total error between 16.0 and 27.2%. No significant cross reactivity with 

other abundant CYP isoforms was observed. The method was evaluated through the 

analysis of samples from a pharmacokinetic study, and the comparison with the CYP2E1 

activity in those samples.   
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1 INTRODUCTION 

Cytochrome P450 (CYP) enzymes are key enzymes in the metabolism of many 

endogenous compounds and numerous xenobiotics. One member of the CYP superfamily 

is the isoform CYP2E1, which has broad substrate specificity. Besides being the main 

enzyme in the biotransformation of organic solvents, it also metabolizes certain drugs 

and pre-carcinogens. CYP2E1 is reasonably conserved between mammalian species, 

probably due to its important endogenous role [1]. The enzyme is highly inducible by 

alcohol, and many of its substrates often are also inducers. Due to its important function 

in the biotransformation of xenobiotics, information on CYP2E1 may be needed in various 

types of studies in the fields of, amongst others, toxicology and pharmacokinetics. 

Changes in the enzyme in specific situations may occur on the level of mRNA expression, 

protein expression or enzyme activity. For example, Liddle et al investigated the effects 

of growth hormone on the mRNA expression, the protein level and the activity of CYP3A4 

[2]. They observed a similar change in all three measures, and thus suggested that the 

changes occurred at a pretranslational level. The same factors were evaluated by George 

et al in patients with cirrhosis [3,4]. For some isoforms (CYP1A2, 3A, and 2C), a good 

correlation was observed between the three measures, indicating pretranslational 

alterations in liver diseases. For CYP2E1 however, there was no strong correlation 

between the mRNA and protein levels, suggesting both pre- and posttranslational effects 

of the disease. These examples show the importance of abundance measurements in the 

characterization of enzymes in a specific situation. 

The CYP enzymes are mainly located in the liver and 96% of these enzymes are present 

in the subcellular fraction called microsomes [5]. Microsomes are easy to prepare and 

have an excellent long term stability [6,7]. Therefore, they are a good choice to perform 

abundance measurements. About 10% of the total CYP content of the liver consists of 

CYP2E1 [1,8]. In adults, an average abundance of 50 pmol CYP2E1/mg microsomal 

protein was detected. Several techniques can be used to determine CYP abundance. 

Western blotting is the most widely used technique, but it has some disadvantages, such 

as the time consuming process and the susceptibility to technical difficulties. Moreover, it 

provides only semi-quantitative data. In order to overcome these disadvantages, 

Snawder et al developed an indirect ELISA for the quantification of several CYPs in rat 

liver microsomes [8]. This method has a higher throughput and is easier to perform than 

a western blot. However, the described method is applied to rat samples, not to human 

samples, and a primary antibody raised against only a part of the protein is used. 

Consequently, some proteins may be missed during analysis, as it is unpredictable which 

part of the protein is available for antigen-antibody interaction after adsorption of the 

microsomally embedded antigen to the microplate. 
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In this article, we report the development and validation of an indirect enzyme-linked 

immunosorbent assay for the quantification of CYP2E1 in human liver microsomes, using 

a polyclonal primary antibody raised against the full length protein.   

2 MATERIALS AND METHODS 

2.1 Chemicals 

Tween 20®, sodium chloride, potassium chloride, and sodium carbonate and bicarbonate 

were purchased from VWR (Leuven, Belgium), hydrochloric acid from Acros Organics 

(Geel, Belgium), and tris(hydroxy-methyl)aminomethane, and chlorzoxazone from 

Sigma-Aldrich (Buchs, Switserland). NADPH was obtained from Biopredic International 

(Rennes, France). All other chemicals were at least reagent grade.  

2.2 Recombinant CYP enzymes 

Microsomes prepared from insect cells infected with a virus engineered to express human 

CYP2E1 were used (2000 pmol rCYP2E1/ml, 8.4 mg microsomal protein/ml, BD 

Supersomes™, BD Gentest, Franklin Lakes, USA) to prepare calibrators and validation 

samples. Corresponding Control Supersomes™ (BD Gentest), i.e. microsomes prepared 

from the same type of insect cells but without expression of human CYP2E1, were used 

as negative controls (blanks) for the analysis. The final composition and concentrations 

of the calibrators were 256, 128, 64, 32, 16, 8, 4 and 2 pmol rCYP2E1/mg protein in a 

pH 9.4 carbonate-bicarbonate plating buffer. A final concentration of total microsomal 

protein of 10 µg/ml was obtained by adding Control Supersomes™, if necessary. The 

validation samples (VS), with final concentrations of 4, 10, 50, 130 and 256 pmol 

rCYP2E1/mg protein, were prepared similarly. For the cross-reactivity experiments, the 

Supermix Supersomes™ of BD Gentest were used. These were prepared from the same 

type of insect cells as described above, but which expressed human CYP1A2, CYP2C8, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A4. 

2.3 Determination of CYP2E1 in human microsomes 

Prior to plating one µg of microsomal protein/well in a black 96-well MaxiSorp® micro-

titer plate (Nunc, Roskilde, Denmark), the microsomal samples were diluted to a 

concentration of 10 µg of microsomal protein/ml using a carbonate-bicarbonate buffer pH 

9.4. Plates were incubated overnight at 4°C, after which the plating solution was 

removed. Subsequently, plates were washed 3 times by adding 300 µl wash buffer (Tris-

buffered saline (TBS) with 0.05% (v/v) Tween 20®, pH 7.2), soaking during 2.5 minutes 

and aspiration of the buffer. Three hundred µl of StartingBlock™ blocking buffer in TBS 

with Tween 20® (Thermo Scientific, Rockford, USA) was added as a blocking agent, and 

plates were incubated for 1h at room temperature (±23°C). After aspiration of the 
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blocking buffer, plates were washed 3 times as described previously. The primary 

antibody, i.e. a polyclonal antibody raised in rabbit against the full-length human CYP2E1 

protein (MaxPab® antibody, Abnova, Taiwan), was diluted in blocking buffer (1:1600). 

Hundred µl was added to each well, followed by incubation of the plates for 1h at 37°C. 

Primary antibody was removed and plates were washed as described above. 

Subsequently, 100 µl of secondary antibody dilution in blocking buffer (1:10000) goat 

anti-rabbit IgG conjugated with horse radish peroxidase (HRP) from Thermo Scientific 

(Rockford, USA) was added and plates were incubated at for 1 h at 37°C. Unbound 

secondary antibody was removed, plates were washed, and 100 µl of premixed HRP 

substrate (QuantaBlu™ Fluorogenic peroxidase substrate and peroxide, Thermo 

Scientific, Rockford, USA) was added to each well. The reaction was stopped after 60 

minutes at 37°C with the stop solution from the QuantaBlu™ kit, and fluorescence was 

determined at an excitation wavelength of 320 nm, and emission at 405 nm (Ascent 

Fluoroscan, Thermo Scientific, Rockford, USA). Curve fitting and data analysis was 

performed using the Masterplex® Readerfit 2010 software (Hitachi, San Francisco, CA, 

USA) and Microsoft® Excel (v 2007). The calculated amounts of CYP2E1 were expressed 

in pmol/mg microsomal protein. 

The antibodies were stored and handled following manufacturer’s recommendations in 

order to guarantee optimal stability. The primary antibody was stored in small aliquots at 

-80°C in order to avoid repeated freeze-thawing. The reconstitution solution of the 

secondary antibody contained glycerol in order to prolong long term stability at -20°C. 

During the experiments, all solutions were stored on ice.  

2.4 Method validation 

Assay sensitivity, calibration model, linearity of dilution, spiking recovery, working range, 

intra and inter assay variability and precision, and cross-reactivity were evaluated prior 

to analysis of study samples.  

For the evaluation of the calibration model, a curve was fitted for each of six independent 

assay runs. The suitability of the model was evaluated by analysis of the relative error 

(%RE) of the back-calculated calibration points within each run (%RE = 100 x (calculated 

concentration - nominal concentration)/nominal concentration). The %RE should be 

≤20% (≤25% at LLOQ) for ≥75% of the calibrators within a curve. Furthermore, the 

mean %RE and mean %CV calculated from all runs (n=6) should both be ≤15% for each 

calibrator, except at the LLOQ where both should be ≤20% [9].   

The mean response of 10 blank samples plus 3 standard deviations was calculated to 

determine the assay sensitivity. The concentration corresponding with this response was 

defined as the lowest concentration that could be distinguished from a blank sample, and 



CHAPTER 4 – QUANTIFICATION OF CYP2E1 BY INDIRECT ELISA 

102 

 

was used as the lower limit of the working range. The upper limit of the working range 

was defined based on literature information (based on naturally occurring CYP2E1 

abundance in microsomes) and tested to comply with validation criteria. Linearity of 

dilution was evaluated by diluting a sample with a known concentration (500 pmol 

CYP2E1/mg protein) above the upper limit of the working range 1:3, 1:4 and 1:6. The 

recovery (%) of the observed concentration to the expected concentration should be 

within the 85-115% interval. A spiking recovery experiment was used to assess matrix 

effects. Hereto, samples were prepared at five concentration levels in both dilution buffer 

(carbonate-bicarbonate, pH 9.4) and in blank matrix (blank supersomes, final protein 

concentration of 10 µg/ml). The recovery (%) of the observed concentration to the 

nominal concentration was calculated and evaluated against the 85-115% interval in 

both matrices. 

Intra assay and inter assay precision and accuracy were also evaluated according to the 

recommendations of and the statistical methods described by DeSilva et al [9]. The 

formulas used to perform this evaluation can be found at the end of the publication by De 

Silva et al. Validation samples were prepared in the sample matrix at five concentration 

levels: anticipated LLOQ, less than 3 times LLOQ, medium, high and anticipated upper 

limit of the working range. Three independent determinations were done each run, for a 

minimum of 6 runs. The intra assay precision was estimated by the coefficient of 

variation, obtained after dividing the pooled intrabatch standard deviation of measured 

concentration values from the calculated run means with the sample nominal 

concentration. The standard deviation needed for the calculation of the %CV for the inter 

assay precision was calculated by the method of analysis of variance (ANOVA). Method 

accuracy (%RE) was determined by the percent deviation of the weighted sample mean 

from the sample nominal concentration. The target limits were an intra assay and inter 

assay precision (%CV) and absolute value of the mean bias (%RE) ≤ 20% (25% at 

LLOQ). In addition, the total error of the method (= sum of %CV and absolute value of 

the %RE) should be ≤ 30% (40% at LLOQ).  

Possible cross-reactivity with the most abundant CYP isoforms in liver microsomes was 

evaluated in 2 of the validation runs. In the first run, a mix of recombinantly expressed 

CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 (“Supermix”) was added at 4 

concentration levels (zero - low – intermediate – high) to a sample with a fixed 

concentration of CYP2E1. In order to cover the complete range of known important and 

abundant CYPs, cross-reactivity with recombinant CYP2A6 and CYP2B6 (Corning® 

Supersomes™, Corning BV Life Sciences EMEA, Amsterdam, The Netherlands) was 

assessed in the second run. CYP2A6 was added at 4 concentration levels (zero - low – 

intermediate (and physiologically expected) – high), whereas CYP2B6 was only added in 
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a low and intermediate concentration, due to the high protein content of the Supersomes 

and the consequent impossibility to prepare a sample with a protein concentration of 10 

µg/ml. The cross-reactivity was evaluated following MacFarlane et al [10], according to 

the equation: 

[(observed concentration - control concentration)/ supplemented concentration] * 100, 

with observed concentration = calculated CYP2E1 concentration of the supplemented 

sample, control concentration = calculated CYP2E1 concentration of the sample with no 

other CYP isoform(s) added, and supplemented concentration = concentration of the  

supplemented CYP(s). Additionally, the calculated mean concentrations were compared 

with one-way ANOVA (using Microsoft Excel® 2007). 

During sample analysis, in-study validation was performed within each run through the 

measurement of two validation samples, each of 3 concentration levels (less than 3 times 

LLOQ, medium and high). In order to accept the run, these results should meet the 

4:6:30 rule [9], i.e. 4 out of the 6 VS should have a total error below 30%, and the 2 

samples not meeting this requirement should not be at the same concentration level. 

Furthermore, ≥75% of the calibration points should have a %RE of ≤ ±15%. 

2.5 Proof of concept: application of the method and CYP activity determination 

Liver tissue samples were taken from the explanted livers from children undergoing liver 

transplantation, after obtaining written informed consent from the parent(s), as approved 

by the Ethics Committee of Ghent University Hospital (B67020084281). Microsomes were 

prepared following the method of Wilson et al [5] and subsequently analyzed with the 

validated method. Total protein content was estimated with the method of Bradford et al 

[11], and the microsomal suspensions were diluted to a final protein concentration of 10 

µg/ml in the plating buffer (carbonate-bicarbonate, pH 9.4). For each of the samples, two 

wells were loaded with 100 µl of the dilution, and the average concentration in those two 

wells was considered the actual concentration of the samples. 

Furthermore, CYP2E1 activity was determined through incubation of the microsomes with 

chlorzoxazone (CZ). The reaction was initiated by the addition of NADPH to the reaction 

mixture containing the microsomes, KCl, phosphate buffer and CZ. After 15 minutes, 

reactions were stopped using a mixture of formic acid, acetonitrile, and water (3:55:42 

(v:v:v)), and the amount of hydroxy-chlorzoxazone (HCZ) was quantified using UPLC-

MS/MS [12].  

The relationship between the activity and abundance was evaluated graphically using 

locally weighted scatter plot smoothing (LOWESS). Moreover, the Pearson’s correlation 

coefficient was calculated. All data analysis was performed using R® v.2.13 (R 

foundation for statistical computing, Vienna, Austria).  
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3 RESULTS AND DISCUSSION 

Quantification of a specific CYP isoform in microsomes requires recombinant CYP 

enzymes (rCYP) for the preparation of calibrators. The rCYP2E1 enzymes used in this 

protocol were expressed in a baculovirus/insect cell system. This expression system has 

a high yield of functional CYP enzymes [13]. Moreover, it is capable to perform post-

translational modifications, such as phosphorylation or O-linked glycosylation [14]. The 

obtained microsomes containing the enzyme are preferred over the purified enzyme, as 

purified rCYPs have a different conformation compared to the enzyme embedded in the 

endoplasmatic membrane [15].  

The final protocol for the quantification of CYP2E1 in microsomes using indirect ELISA 

was obtained after the optimization of several parameters, such as primary and 

secondary antibody concentration, optimal amount of protein to load in each well, the 

choice of blocking buffer, incubation times and temperatures.  

3.1 Choice of primary and secondary antibody 

Cytochrome P450 enzymes are embedded in the membrane of the smooth endoplasmatic 

reticulum, and remain as such during the preparation of the microsomes. Upon 

adsorption of the antigen, i.e. the CYP enzyme, to the wall of the microplate, some parts 

will be available for interaction with the antibody. However, it is unpredictable which 

parts are exposed and thus available. Therefore, the use of a polyclonal antibody raised 

against the full length human protein would be favorable in order to increase the 

probability of antigen-antibody interaction.  

3.2 Optimization of the protocol 

Several parameters were optimized in order to achieve a background signal as low as 

possible, in combination with sufficient sensitivity. Previously published studies describe 

average concentrations of 50 pmol CYP2E1/mg protein, and a minimum amount of 11 

pmol CYP2E1/mg protein [8]. Based on these observations, a sensitivity of about 5 pmol 

CYP2E1/mg protein was aimed for. As such, decreases of up to 50% in CYP2E1 

abundance could still be detected.  

The method for the evaluation of the assay sensitivity, i.e. the analysis of 10 blank 

samples, followed by the calculation of the concentration corresponding to the mean 

response plus 3 standard deviations, was used in order to determine the optimal 

conditions. Those conditions leading to the highest sensitivity were eventually chosen for 

validation. An assay sensitivity of 4 pmol CYP2E1/mg protein was obtained, thus allowing 

the detection of large decreases in CYP2E1 abundance compared to healthy adult 

individuals. Comparison of the sensitivity with other published methods for the 
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quantification of CYP2E1 is difficult, as often the method is described, but without the 

validation parameters. One study, published by Kornilayev et al [16], describes the 

method characteristics of the quantification of CYP2E1 tryptic peptides using both ELISA 

and western blot. The ELISA method shows comparable sensitivity to our method, 

whereas the sensitivity of the western blot method was 10 pmol CYP2E1/mg protein. The 

same issue arises when trying to compare the sensitivity of our method to previously 

published western blot methods: the validation parameters are seldom described. 

Moreover, due to the semi-quantitative nature of western blot methods, where often the 

amount of investigated protein is relatively expressed compared to a control sample or 

other sample, an absolute comparison of the sensitivity is difficult to perform.  

In order to determine the optimal assay conditions, the most favorable concentrations of 

primary and secondary antibody were determined by a checkerboard titration 

experiment. Samples containing 3 concentrations of CYP2E1 (0, 5 and 100 pmol/mg 

protein) were analyzed using different combinations of primary antibody concentration 

(156, 312, 468, 625, 938, 1250 ng/ml) and secondary antibody concentration (50, 75, 

and 100 ng/ml, according to the manufacturers guidelines). The combination of 625 

ng/ml of primary antibody, and 100 ng/ml of secondary antibody was further used. 

Furthermore, in order to increase sensitivity by decreasing the background signal, the 

antibodies (both primary and secondary) were diluted in Starting Block buffer, a 

commercially prepared buffer, instead of in a 2% BSA solution in the wash buffer (TBS 

with 0.05% Tween 20®, pH 7.2). The dilution in the blocking buffer most likely 

decreased non-specific binding. The optimal amount of protein to load in each well was 

evaluated by comparing the signals after plating 0.5 µg, 1 µg and 1.5 µg protein per well. 

One µg protein was chosen above 0.5 µg and 1.5 µg, which resulted in insufficient 

sensitivity and higher background signal, respectively. The incubation times and 

temperatures of the antibodies were also optimized, aiming for optimal sensitivity. Two 

types of commercially available blocking buffers were compared in order to aim for 

minimal non-specific binding. The highest precision was obtained by using the Starting 

Block buffer. 

3.3 Validation 

3.3.1 Calibration model 

After the determination of the assay sensitivity as described above, the working range of 

the assay was selected based on previously determined (mean) concentrations of CYP2E1 

in adults [8]. The lowest calibrator was determined to be 4 pmol CYP2E1/mg protein, the 

upper limit was chosen at 256 pmol CYP2E1/mg protein. Consequently, very low 
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abundances, corresponding with a 50% reduction of the lowest reported concentration, 

as well as rather high abundances can be measured.  

The calibration model was selected based on the %RE of the back-calculated 

concentrations. Due to the clear asymmetry (compared to a 4-parameter logistics 

function) of the curve, a 5-parameter logistics (5-PL) was suggested (see Figure 1). 

Evaluation of the mean %RE in back-calculated concentrations showed the necessity of a 

1/x weighting factor, in order to obtain sufficient accuracy at the lower concentrations. 

This model, a 5-PL function with 1/x weighting factor, was validated based on six 

independent assay runs. All requirements of %RE and %CV were met (see Table 1).  

 

Figure 1: Representative 5-PL calibration curve with 1/x weighting factor.  

 

3.3.2 Spike and recovery 

A clear influence of the matrix proteins on the response was demonstrated by the spiking 

recovery experiment. As depicted in Table 2, the samples of rCYP2E1 diluted in plating 

buffer showed a low recovery, outside the 85-115% limits. In contrast, the samples 

diluted in blank matrix, thus having a final protein content of 10 µg/ml, showed a 

recovery within those limits. These results show that all calibrators and validation 

samples should be diluted in blank matrix, in order to have an equal final microsomal 

protein content in all samples (10 µg/ml). If this would not be done, and the calibrator 

samples would be diluted in a buffer without additional proteins, a low concentration in a 

sample would be severely overestimated, probably due to non-specific binding of the 

antibodies.  
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Table 1: Validation of the calibration model: %RE of the back-calculated concentrations was ≤20% 

(≤25% at LLOQ) for ≥75% of the calibrators within each batch run. The mean %RE and %CV 

calculated from all runs (n=6) were both be ≤15% for each calibrator (≤20% at LLOQ).  

Batch  run 

Nominal concentration (pmol CYP2E1/mg protein) 

4 8 16 32 64 128 256 

1 -7.00 2.00 1.90 -3.00 1.70 -0.40 0.50 

2 -8.80 4.50 -5.30 4.60 -0.20 -1.20 0.40 

3 -10.0 8.30 -7.90 5.40 -2.90 1.00 0.80 

4 -5.80 -2.40 2.80 1.00 -0.90 0.50 -0.40 

5 -5.50 -2.80 -7.60 12.10 -3.80 -0.70 0.40 

6 0.80 10.4 2.60 -1.90 -3.20 2.00 -0.70 

                

Mean %RE -6.00 3.30 -2.20 3.00 -1.50 0.20 0.20 

%CV 4.00 5.20 5.30 5.40 2.10 1.20 0.50 

 

Table 2: Spike-and-recovery experiment: samples diluted in plating buffer show poor recovery, 

especially around the LLOQ, all samples should have a total protein content of 10 µg/ml (dilution in 

blank matrix) in order to obtain a good recovery. 

Nominal concentration 
(pmol CYP2E1/mg protein) 

Observed concentration 
(pmol CYP2E1/mg protein)   

Recovery % 

  
Diluted in              

blank matrix 
Diluted in 

plating buffer 

  

Diluted in            
blank matrix 

Diluted in 
plating buffer 

4 3.68 2.93   91.9 73.3 

10 11.6 10.1   116 101 

50 52.9 47.9   106 95.7 

100 101 90.0   101 89.9 

130 131 122   101 94.1 

 

3.3.3 Dilution experiment 

As CYP2E1 is a highly inducible enzyme, high amounts of CYP2E1 can be expected. 

Increasing the upper limit of the working range was not possible due to the total protein 

content of the calibrators, which could not exceed 10 µg/ml. Therefore, a dilution 

experiment was set up in order to define the approach for the determination of samples 

with a concentration above the upper limit of the working range (256 pmol CYP2E1/mg 

protein). The recoveries of the 3-fold, 4-fold, and 6-fold dilutions in blank matrix of a 

sample with a high CYP2E1 concentration are shown in Table 3. After multiplication of the 

observed concentration with the dilution factor, all samples were within the 85-115% 

interval of the nominal concentration. Thus, dilution of samples with a concentration 
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above the upper limit of quantification will provide reliable quantitative measurement 

results. 

Table 3: Dilution of a sample with a concentration of CYP2E1 above the upper limit of 

quantification of 256 pmol CYP2E1/mg protein. 

Dilution Factor (DF) Observed concentration             
(pmol CYP2E1/mg protein) x DF 

Recovery % 

3 454 90.8 

4 447 89.3 

6 480 96.0 

 

3.3.4 Accuracy and precision 

The results of the accuracy and precision evaluation are depicted in Table 4. The intra 

and inter assay precisions determine the variability of the results for the same sample 

analyzed under repeatability conditions and the intermediate precision, respectively. The 

assay precision was evaluated at 5 concentration levels in 6 independent assay runs, 

with n=3 within each run. The coefficient of variation did not exceed 20% (25% at the 

LLOQ) for the intra assay precision (6.3 – 15.2%RSD), as well as for the intermediate 

precision (11.3 – 21.0%RSD), except for the 50 pmol CYP2E1 sample, where a minor 

deviation of the limit was seen. The assay accuracy (expressed as the %RE) was 

determined using the same 6 assay runs. The absolute value of the mean bias did not 

exceed the limit of 20% (25% at the LLOQ), indicating a good accuracy. Moreover, the 

assay’s total error was below 27.2 % at all concentration levels.  

Table 4: Accuracy and precision evaluation 

    
Nominal concentration  

(pmol CYP2E1/mg protein) 

Characteristic Statistic 4 10 50 130 256 

# Results N 18 18 18 18 16 

Accuracy Mean bias (%RE) 0.9 8.9 6.0 4.7 -16.4 

Precision Intra assay(%CV) 15.2 6.3 7.0 6.4 6.8 

  Inter assay (%CV)  19.7 16.5 21.0 11.3 9.8 

    

     Total error     
(Accuracy + Precision) 

|Mean bias| + 
Inter assay %CV 

20.5 25.4 27.2 16.0 26.2 
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3.3.5 Cross reactivity 

The homology in amino acid sequence between CYP isoforms from the same family 

(>40%) or subfamily (>55%) may lead to cross-reactivity of the primary antibody. The 

selectivity of the primary antibody was tested through the addition of CYP isoforms 

(CYP2A6, CYP2B6, CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4), selected 

based on their high abundance or high importance in drug metabolism [1]. Table 5 

summarizes the results from the cross-reactivity experiments. The percentage of cross 

reactivity appears to be quite high at low supplemented concentrations of CYP2B6 

(25%). At a higher and physiologically more relevant concentration, a much lower % 

cross-reactivity was calculated (13.5%). As the same trend in results was observed for 

the cross-reactivity with the Supermix, this probably rather reflects the uncertainty of the 

measurement at the different concentration levels, than cross-reactivity. This is 

corroborated by the mean observed CYP2E1 concentration which is, irrespective of the 

supplemented concentration of cross reactant, always basically equal. Also, the recovery 

was within the 85-115% interval of the concentration of the non-supplemented CYP2E1 

sample for all the samples. Consequently, the method showed sufficient selectivity 

towards the detection of CYP2E1 in the presence of other abundant CYP isoforms, as 

shown in Table 5. 

3.4 Application of the method 

The validated method for the quantitative determination of CYP2E1 was applied for the 

analysis of samples from an ongoing PK study. Additionally, the CYP2E1 activity was 

determined through the evaluation of the chlorzoxazone hydroxylase activity. Figure 2 

shows a weak correlation (Pearson’s correlation = 0.371) between the two variables after 

logarithmic transformation. Protein alterations in the studied pharmacokinetic situation 

can consequently not solely be attributed to pre-translational changes.  

 

Figure 2: Correlation of CYP2E1 abundance as determined by ELISA with the chlorzoxazone 

hydroxylase activity: protein levels were weakly correlated with CZ-OH activity. 
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Table 5: Cross-reactivity with CYP2A6, CYP2B6 and the BD Supermix®, containing human 

CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. Cross-reactivity was calculated as: 

[(observed concentration - control concentration)/ supplemented concentration] * 100,  

with observed concentration = calculated CYP2E1 concentration of the supplemented sample, 

control concentration = calculated CYP2E1 concentration of the sample with no other CYP 

isoform(s) added, and supplemented concentration = concentration of the supplemented CYP(s). 

 

Supplemented 
concentration  

(pmol CYP/mg protein) 

Mean observed  
concentration CYP2E1  

(pmol/mg protein) (± SD) 
% cross 

reactivity 
% 

recovery 

Run 1         

CYP2E1   52.7 ± 2.2     

Supermix 20 47.9 ± 2.4 -23.9 90.9 

  50 47.6 ± 2.7 -10.1 90.4 

  350 46.0 ± 3.1 -1.91 87.3 

          

Run 2         

CYP2E1   53.1 ± 1.6     

CYP2A6 10 53.7 ± 2.5 5.39 101 

  50 57.1 ± 4.8 7.96 107 

  250 57.9 ± 2.0 1.91 109 

          

CYP2B6 10 55.6 ± 2.3 25 105 

  50 59.9 ± 4.2 13.5 113 

 

4 CONCLUSION 

This article describes the development and full validation of an indirect ELISA for the 

quantification of CYP2E1 in human liver microsomes in a concentration range of 4 and 

256 pmol CYP2E1/mg microsomal protein. The method was proven to be accurate and 

precise. The spiking recovery experiment showed the importance of an equal 

concentration of total protein in all samples, validation samples and calibrators. The 

polyclonal antibody against the full length protein showed acceptable cross-reactivity 

with the other abundant CYP isoforms. Analysis of samples from a pharmacokinetic study 

showed the suitability of this ELISA in the quantification of CYP2E1. We conclude that a 

valuable alternative to Western blot analysis has been presented, appropriate for use in 

various fields of research, e.g. toxicology and pharmacokinetics. 
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 “A four-letter alphabet called DNA.” 

- Matt Ridley 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

The polymorphic nature of many of the CYP isoforms leads to large interindividual 

differences in drug clearance and respons. Single nucleotide polymorphisms (SNPs) are 

the most common genetic mutations and may lead to altered activity, either abolished or 

reduced, or increased. CYP2C9, 2C19, and 2D6 belong to the Class II CYP isoforms, 

which are highly polymorphic. Based on the frequency in the Caucasian population and 

on the significant effect on the enzyme activity, the following SNPs were studied: 

CYP2C9*2, 2C9*3, 2C19*2, 2C19*17, 2D6*4, 2D6*10, 2D6*41. A protocol for the 

analysis of these SNPs was set up using well established methods. After the extraction of 

the DNA from liver tissue samples with a Qiagen QIAamp DNA Mini kit, it was quantified 

using the Picogreen® assay. TaqMan® genotyping assays were performed in order to 

detect the presence of the SNPs, and the patients were consequently characterized as 

homozygous wild type, heterozygous or homozygous SNP. The analysis of the patient 

samples was shown to be reliable, as the observed minor allele frequencies were similar 

to previously reported frequencies based on the analysis of large populations. 

http://www.goodreads.com/author/show/3151.Matt_Ridley
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1 INTRODUCTION 

Polymorphisms of drug-metabolizing genes have by far the largest role in interindividual 

differences in drug response and drug clearance, and are highly relevant in the 

consequent adverse drug reactions [1,2]. Genetic polymorphism is defined as a stable 

variation in a given locus of the genetic sequence, which is detected in 1% or more of a 

specific population [3]. The cytochrome P450 (CYP) enzymes, key drug-metabolizing 

enzymes, have a polymorphic nature. The most common genetic mutations seen in 

human CYP genes are single nucleotide polymorphisms (SNP). The functionally important 

SNPs are the non synonymous SNPs, as they occur in a coding region and cause amino-

acid changes in the corresponding enzyme [3]. The mutations can cause enzymes with 

abolished, reduced, altered or increased activity [2]. A population can be divided based 

on four phenotypes: poor metabolizers (PM), intermediate metabolizers (IM), extensive 

metabolizers (EM), and ultra rapid metabolizers (UM). The distribution of these 

phenotypes in a population is ethnicity dependent [3].  

The main CYP enzymes can be divided into two classes [4]: 

 Class I, composed of CYP1A1, CYP1A2, CYP2E1 and CYP3A4: these isoforms are 

well conserved, do not have important functional polymorphisms, and are active 

in the metabolism of pre-carcinogens and drugs. 

 Class II, composed of CYP2B6, CYP2C9, CYP2C19 and CYP2D6, which are highly 

polymorphic and active in the metabolism of clinically important drugs, but not of 

pre-carcinogens. 

In order to uniformly name the alleles throughout the scientific community, a website 

was established, where information and recommended nomenclature of various allelic 

forms of P450s are continuously updated. The site also contains a link to relevant 

literature references and the dbSNP database (http://www.cypalleles.ki.se/). 

Different methods for genotyping are available, amongst which restriction fragment 

length polymorphism (RFLP) analysis, denaturing high-performance liquid 

chromatography (dHPLC), mass spectrometry, microarrays, allele-specific amplification 

using real-time PCR, and whole-exome sequencing [5,6]. RFLP analysis is one of the 

hallmark methods to identify known mutations. It has some major drawbacks, however, 

as it is labor-intensive, costly and not suitable for large-scale clinical applications.  dHPLC 

is a rapid, cost-effective and accurate method for the identification of known and 

unknown sequence variations in PCR products. Mass spectrometry, more specific matrix-

assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), 

also provides a sensitive method for the detection of polymorphisms. These latter two 

http://www.cypalleles.ki.se/
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methods, however, require specialized instruments. Other methods generating a large 

amount of data on multiple mutations from several genes within one experiment, are the 

microarray or whole-exome sequencing. Despite this major advantage, the expenses of 

the special equipment required for this technology are often limiting factors for the 

implementation of the methods. The rapid evolution in these approaches, however, could 

lead to a reduction on the cost per sample in the near future. 

Also, most of the previous methods all require a post-PCR analysis, whereas this is not 

necessary in allele-specific amplification methods, such as TaqMan™ DNA probes. In this 

method, the DNA region containing the SNP is amplified during PCR. Two probes that 

differ only at the polymorphic site, and are thus specific for one or the other allele, are 

also incorporated in the reaction. At the 5’ end of the probe a specific reporter dye is 

attached, and a quencher dye is covalently attached to the 3’ end. Thus, the fluorescence 

of the reporter dye is quenched. The probes anneal specifically to the complementary 

sequence between the forward and reverse primer sites. The DNA polymerase extends 

the primers bound to the genomic DNA template, and cleaves the probes that are 

hybridized to the target. Cleavage of the probes separates the reporter dye from the 

quencher dye, which results in an increased fluorescence of the reporter. As the reporter 

dyes attached to the two primers have different fluorescence signals, the signals 

generated after PCR amplification indicate which alleles are present in the sample. As 

such, the genotype of the patient sample can be determined. The advantages of this 

method are the ease to perform the experiment, as (1) no post-PCR processing is 

necessary, (2) ready-to-use, validated assays are available, and (3) this technology can 

easily be automated to increase throughput.  

In the light of a pharmacokinetic study, we aimed to establish a workflow for the 

genotyping of the patient samples, in order to add an extra variable in the evaluation of 

the CYP activity. 

2 MATERIALS AND METHODS 

2.1 Samples 

Liver tissue samples were taken from the explanted livers of 31 children undergoing a 

liver transplantation at Ghent University Hospital (Ethical Committee B67020084281) and 

Saint-Luc Clinics Brussels.  

2.2 DNA extraction from liver tissue 

DNA was extracted from the liver tissue using the QIAamp DNA Mini kit from Qiagen 

(Santa Clarita, CA, USA). The composition of the buffers in this kit is proprietary 
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information. About 25 mg of liver tissue was excised from the sample and was cut up 

into small pieces. The minced tissue was put into 180 µl of Buffer ATL and 20 µl of 

Proteinase K (>600 mAU/ml). After vortex mixing, the sample was incubated overnight 

at 56°C in a shaking heating block. Four µl of RNase A (100 mg/ml) was added, the 

sample was vortex mixed and incubated for 2 minutes at room temperature (RT). Buffer 

AL was added, followed by incubation at 70°C for 10 min. Two hundred µl of ethanol (96-

100%) was added, and the entire mixture was applied onto a QIAmp Mini spin column. 

After centrifugation at 6000xg for 1 min, the filtrate was discarded. Subsequently, 500 µl 

Buffer AW1 was added onto the column, the sample was centrifuged (6000xg for 1 min), 

and the filtrate was again discarded. The same procedure was then repeated using Buffer 

AW2. Elution buffer, Buffer AE, was applied on the column (200 µl) and incubated for 5 

min at RT. The genomic DNA was recovered after centrifugation for 1 min at 6000xg. In 

order to increase the DNA yield, the elution step was repeated. Both eluates were pooled, 

and the DNA was stored at -20°C. 

2.3 Quantification of DNA 

The concentration of DNA was determined with a PicoGreen® dsDNA (double-stranded 

DNA) assay kit (Invitrogen, Life Technologies, Carlsbad, CA, USA). In short, calibrators 

containing 0 to 30 ng dsDNA were prepared, and all patient DNA samples were diluted 

1:5, 1:10 and 1:50 in 1X Tris-EDTA (TE) buffer. Forty-nine µl of 1X TE was added into 

the wells of a black 384-well plate (Greiner Bio-One, Frickenhausen, Germany). 

Subsequently, 1 µl of sample (undiluted or diluted) or calibrator was added to the TE in 

the appropriate well. After the addition of 50 µl of PicoGreen® reagent to each well, the 

fluorescence was determined at an excitation wavelength of 480 nm, and emission at 

520 nm (Magellan™ v6 and Safire2, Tecan, Männedorf, Switserland). 

2.4 SNP analysis using TaqMan probes 

The samples were genotyped using TaqMan® Drug Metabolism Genotyping Assays from 

Applied Biosystems (Life Technologies, Carlsbad, CA, USA). DNA samples were diluted to 

a concentration of 10 ng/2.25 µl, and for each assay, 2.25 µl of the dilution was added to 

a well of a black Corning® Thermowell GOLD 384-well PCR plate (Corning, Tewksbury, 

MA, USA). Moreover, three no-template controls (NTC) were plated for each assay. A 

reaction mix was prepared for each of the assays, containing TaqMan® Universal PCR 

Master Mix (2X) and the SNP working solution. The Master Mix consists of AmpliTaq 

Gold® DNA Polymerase, a blend of dNTPs with dTTP⁄dUTP and Uracil-DNA Glycosylase 

(UDG) to minimize carry-over PCR contamination, and a passive internal reference based 

on the ROX™ dye. The working solution contains: (a) 2 unlabelled PCR primers, forward 

and reverse (primers at 900 nM final concentration); (b) 1 VIC® dye – MGB (minor 
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groove binder) labeled probe detects the Allele 1 sequence (probes at 200 nM final 

concentration); (c) 1 FAM™ dye – MGB labeled probe detects the Allele 2 sequence 

(probes at 200 nM final concentration). The evaluated SNPs are depicted in Table 1. A 

volume of 2.75 µl of the reaction mix was added to the appropriate wells. After 

centrifugation of the plate, PCR (GeneAmp® PCR System 9700 Thermal Cycler, Applied 

Biosystems) was performed. Cycling conditions were an initial denaturation at 95°C for 

10 min, followed by 50 cycles of denaturation at 92°C for 15 sec, and annealing and 

extension at 60°C for 90 sec. Upon termination of the PCR process, the fluorescence of 

the microplate is measured (Tecan Safire², with Magelan v6.3 software) at 3 pairs of 

excitation and emission wavelengths: (1) 538 – 554 nm for VIC®; (2) 494 – 522 nm for 

FAM™; and (3) 587 – 607 nm for ROX™. The IS corrected fluorescence signals, 

VIC®/ROX™ and FAM™/ROX™, were used for further data analysis. 

Table 1: Evaluated SNPs 

Allele Nucleotide change (gene) NCBI dbSNP identification 
numbers 

CYP2C9*2 3608C>T rs1799853 

CYP2C9*3 42614A>C rs1057910 

CYP2C19*2 19154G>A rs4244285 

CYP2C19*17 -806C>T rs12248560 

CYP2D6*4 1846G>A rs3892097 

CYP2D6*10 100C>T rs1065852 

CYP2D6*41 2988G>A rs28371725 

 

Data analysis was performed with Microsoft®  Excel (v 2007). The normalized intensity of 

the reporter dyes of each individual sample were plotted on an allelic discrimination plot. 

The clusters (homozygote VIC®, homozygote FAM™, or heterozygote) were determined 

graphically, and each sample was assigned to a particular cluster.   

3 RESULTS AND DISCUSSION 

3.1 DNA extraction from liver tissue 

DNA can be extracted from blood or from tissue samples. In order to minimize the 

burden for the patients, no blood samples were taken for the study on the PK of drugs in 

children with liver disease. The liver samples, considered surgical waste, were therefore 

the only available source of DNA. Commercially available kits, from which the 

composition of the buffers is unfortunately proprietary information, offer a 

straightforward procedure to extract DNA from any tissue sample. Following the 

manufacturer’s guidelines, about 25 mg of liver tissue from each patient (mean 26.27 



CHAPTER 5 – GENOTYPING OF IMPORTANT CYP2C9, 2C19, AND 2D6 SNPS 

 

119 

 

±2.27 mg) was used. The amount of DNA was quantified using Picogreen, a 

fluorochrome that selectively binds double stranded DNA (dsDNA). Upon binding to the 

dsDNA, the Picogreen causes a high fluorescence enhancement. As the unbound dye has 

virtually no fluoresce, little background occurs [7].  A typical calibration curve is shown in 

Figure 1. The average yield of DNA after extraction of the patient liver samples was 1.12 

± 0.47 µg DNA/mg tissue.  

 

Figure 1: Typical calibration curve (range 0 – 30 ng/µl) for the quantification of DNA using the 

Picogreen dsDNA kit.  

 

3.2 Selection of relevant SNPs 

Our study contained 3 Class II CYPs (CYP2C9, 2C19, and 2D6) for which SNPs needed to 

be assessed. The available literature on CYP polymorphisms was consulted in order to 

determine the relevant SNPs for our patient population, i.e. Caucasians. Those SNPs were 

selected that have a significant prevalence in the Caucasian population, as well as a 

significant influence on the enzyme activity. Evidently, many other SNPs may occur 

within the genotype of the patients, but those often have a very low frequency of 

occurrence. Moreover, many SNPs, some even with high frequency, have been shown to 

leave CYP activity practically unaltered. A summary of the SNPs, their frequency and 

influence on the activity is given in Table 2.  

3.2.1 CYP2C9 

To date, 44 haplotypes of CYP2C9 have been identified (http://www.cypalleles.ki.se/, last 

update 13-nov-2013). In addition, there are other SNPs for which the haplotype has not 

yet been determined. The most common CYP2C9 allelic variants in Caucasians are 

CYP2C9*2 and *3. Other mutations or haplotypes were described as being rare [8]. 

http://www.cypalleles.ki.se/
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Table 2: Allelic frequency in the Caucasian population and effect of the SNP on the enzyme 

activity.  

Isoform Allele Polymorphism Allele frequency (%) Enzyme activity 

CYP2C9 *2 3608C>T 8 - 19 decreased 

 

*3 42614A>C 3.3 - 16.2 decreased 

CYP2C19 *2 19154G>A 13 - 15 null 

 

*17 -806C>T 18 increased 

CYP2D6 *4 1846G>A 12 - 25 null 

 

*10 100C>T 2 - 6 decreased 

 

*41 2988G>A 8.4 decreased 

 

The nonsynonymous 3608C>T mutation in the CYP2C9*2 allele causes an Arg144Cys 

exchange, resulting in a decrease in enzyme activity of 20-30% towards CYP2C9 

substrates [3]. About 1% of the Caucasians are homozygous carriers, 22% are 

heterozygous carriers [9]. Xie et al. performed a quantitative meta-analysis in order to 

define the population frequencies of CYP2C9*2 variant alleles.  The CYP2C9*2 variant 

was shown to be absent in East Asian populations, whereas Ethiopian and African-

Americans carry CYP2C9*2 with an overall allele frequency of 3.2%. The allele 

frequencies reported in Caucasians show a high heterogeneity of 8% to 19%, as 

confirmed by the reported allele frequencies by Sullivan-Klose et al. and Yasar et al. of 

8% and 10.7%, respectively [9,10].  

The CYP2C9*3 allele is characterized by the 42416A>C SNP, causing an Ile359Leu 

exchange. The reduction in activity caused by the CYP2C9*3 allele can be up to 70%. 

This allele is less frequent than the *2 allele, but still 0.4% and 15% of Caucasians are 

homozygous or heterozygous carriers, respectively. Similar to the allele frequency of *2, 

a large heterogeneity was seen in the allele frequency of *3 in Caucasians (3.3 – 16.2 

%). Lower frequencies were described in East Asian populations (1.1-3.3%) and Blacks 

(1.3%) [8].    

For both alleles (*2 and *3), the loss in activity is possibly due to enzyme conformational 

changes that reduce the enzyme’s ability to bind substrates [3]. Haining et al. suggested 

it is more likely that the consequence of the mutation in CYP2C9*3 is a change in 

catalytical activity, rather than a gross alteration in substrate orientation, as the 

mutation is situated in the putative, distal substrate binding domain [11]. The decrease 

in in vitro activity of CYP2C9 due to these alleles has been described by several studies 

[11-13]. Moreover, many studies were conducted to assess the effect of common 

CYP2C9 SNPs on the clinical use of CYP2C9 substrates, such as the anticoagulant 

warfarin [13,14], the anticonvulsant phenytoin [15], and the angiotensin II receptor 
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antagonist losartan [16]. These results, and the influence of CYP genotype on the PK and 

PD of other frequently used drugs, such as NSAIDs, torasemide (diuretic), and 

fluvastatin, have been reviewed comprehensively [3,17].  

3.2.2 CYP2C19 

Up till now, 48 allelic variants of CYP2C19 have been described 

(http://www.cypalleles.ki.se/, last update 27-may-2013). CYP2C19*2 and *3 are the two 

genetic defects responsible for the majority of PMs for CYP2C19 [18], but the *3 variant 

is extremely rare in Caucasians (allele frequency of 0.04%) [19]. The *2 variant 

accounts for 75-85% of the CYP2C19 PMs in Caucasians. Allele frequencies of 13-15% 

were described for *2 [18,20]. The other variants responsible for the PMs are *4, *5, *6, 

*7, and *8 [18]. About 1-8% of the Caucasian population is CYP2C19 PM. The 

substitution of 19154G>A (gene, 681G>A cDNA) in exon 5 in the *2A variant causes a 

splicing defect, leading to a premature stop codon [21]. The subvariants *2B and *2C 

also carry additional SNPs [22]. CYP2C19*2A, *2B and *2C are null alleles resulting in a 

total loss of activity, due to the formation of a truncated protein [21,23].  

The large interindividual variation in CYP2C19 activity is not only due to the existence of 

the previously described alleles causing loss of protein activity. Sim et al. described the 

presence of a CYP2C19 gene variant causing ultra rapid drug metabolism [24]. The 

CYP2C19*17 allele is characterised by a Ile331Val exchange, due to the presence of the -

806C>T SNP in the 5’-flanking region of the gene. This SNP results in an increased 

transcription of the CYP2C19 gene, and a consequent rapid metabolism of CYP2C19 

substrates. An allele frequency of 18% was described in Caucasians [24]. 

Approximately 10% of the commonly used drugs are metabolized by CYP2C19 [3,17,25]. 

The clinical implications of the CYP2C19 genotype are elaborately reviewed previously 

[3,17,25].  Proton pump inhibitors are a widely used group of drugs mainly metabolized 

by CYP2C19. The influence of both PM [26] and UM [27] metabolism on omeprazole 

kinetics has been extensively described. Other commonly used drugs studied in this 

context are citalopram [28] and the antiplatelet therapy with clopidogrel (UM [29], and 

PM [30]). 

3.2.3 CYP2D6 

A considerable variation in CYP2D6 activity occurs within a population. The interindividual 

variation in enzyme expression and activity is largely the responsibility of genetic 

variation, as, unlike other CYPs, CYP2D6 is not inducible [3]. The website of the human 

cytochrome P450 allele nomenclature committee (http://www.cypalleles.ki.se/, last 

update 27-may-2013) reports a large list of variants and subvariants (from *1A to 

http://www.cypalleles.ki.se/
http://www.cypalleles.ki.se/
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*105). Due to these mutations, four distinct metabolizer types of CYP2D6 (PM, IM, EM, 

and UM) can be distinguished in each population due to a complete absence of enzyme 

activity, reduced activity, normal activity, or increased activity. Besides a large number 

of low-frequency alleles, the most important variants of CYP2D6 associated with the PM 

phenotype are *2, *3, *4, *5, *10, *17, and *41. 

Seven to ten percent of the Caucasian population is a poor metabolizer for CYP2D6 

[31,32]. CYP2D6*2 and *4 account for 80% of all allelic variants [33]. The *2 variant 

results in a functional protein with an activity comparable to that of the wild type 

enzyme, and was consequently not analyzed in our study. The 1846G>A substitution in 

the *4 allele results in an incorrectly spliced primary transcript, leading to a truncated 

protein with complete loss of activity [34,35]. CYP2D6*4 is by far the most frequent null 

allele in Caucasians, with allelic frequencies of 12 to 25% in Caucasians [31,36]. About 

70-90% of the PMs can be explained by this variant  [33,37,38].  

The 100C>T nucleotide change associated with the *10 variant leads to a Pro34Ser 

exchange. This results in a very unstable enzyme with abnormal folding and reduced 

affinity for the substrates [39]. The metabolic capacity of the enzyme is situated between 

the EM and PM type, and individuals carrying this mutation were therefore classified as 

IM. This variant is very common in Asian populations (33-50%), but rarer in Caucasians. 

Despite its low frequency (~2-6% [36]), this SNP was selected for investigation, as it 

accounts for 10-20% of individuals with IM phenotype. 

Another variant leading to the IM phenotype is the CYP2D6*41 allele, which can be 

specifically identified by genotyping for 2988G>A [40]. This mutation is involved in a low 

expression of CYP2D6 in affected individuals, due to a complex effect on splicing of the 

gene [41,42]. The analysis of this SNP with an allele frequency of about 8.4% in 

Caucasians, an additional 60% of the IM in Caucasians can be explained [40].  

Due to the existence of many polymorphisms and different metabolizing types, significant 

differences in the pharmacokinetics and – dynamics of drugs metabolized by CYP2D6 

have been described [3,17]. The drug classes that could be affected by these 

polymorphisms are, amongst others, antidepressants (tricyclic, SSRIs, and others), a 

variety of antipsychotics, and anti-arrhythmic drugs.  

3.3 Allelic determination 

The individual samples were classified into one of the three groups (homozygous for 

allele 1, homozygous for allele 2, or heterozygous) for each of the studied CYPs based on 

the allelic discrimination plots. The presence of an individual data point in one of the 

three clusters enabled the classification of the sample. 
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The validity of the analysis was examined through the calculation of the allele frequencies 

within our patient population, and by comparing the result with the frequencies reported 

in the manufacturer’s specification sheet. As shown in Table 3, the calculated minor allele 

frequencies in our patient samples were comparable to the expected frequencies.  

Table 3: Minor allele frequencies of the studied SNPs in our patient population 

Isoform Allele Minor allele frequency Allele frequency in patient samples 

CYP2C9 *2 0.17 0.065 

 

*3 0.10 0.081 

CYP2C19 *2 0.14 0.194 

 

*17 0.17 0.194 

CYP2D6 *4 0.19 0.242 

 

*10 0.21 0.242 

 

*41 0.11 0.097 

 

The 31 patient samples were analyzed for the presence or absence of the 7 previously 

discussed SNPs. In Figures 2(a) to 2(g), the allelic discrimination plots are depicted. 

Interpretation of the graphs resulted in the classification of the patients in one of the 

clusters as summarized in Table 4. 

 

Table 4: Classification of the 31 patients for the studied SNPs 

Isoform         

CYP2C9 

 

wt/wt wt/*2 *2/*2 

 

n 27 4 0 

  

wt/wt wt/*3 *3/*3 

 

n 26 5 0 

CYP2C19 

 

wt/wt wt/*2 *2/*2 

 

n 20 10 1 

  

wt/wt wt/*17 *17/*17 

 

n 20 10 1 

CYP2D6 

 

wt/wt wt/*4 *4/*4 

 

n 19 9 3 

  

wt/wt wt/*10 *10/*10 

 

n 19 9 3 

  

wt/wt wt/*41 *41/*41 

 

n 25 6 0 
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Figure 2(a) to (g): Allelic discrimination plots of the analysis of the 31 patients samples. Four (or 

less) clusters could be distinguished in the plots: o: homozygous VIC® cluster, : heterozygous 

cluster,  homozygous FAM™ cluster, : no-template controls (NTC). 

(a) 

(b) 
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Figure 2 (continued): Allelic discrimination plots of the analysis of the 31 patients samples. Four 

(or less) clusters could be distinguished in the plots: o: homozygous VIC® cluster, : heterozygous 

cluster,  homozygous FAM™ cluster, : no-template controls (NTC). 

(c) 

(d) 
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Figure 2 (continued): Allelic discrimination plots of the analysis of the 31 patients samples. Four 

(or less) clusters could be distinguished in the plots: o: homozygous VIC® cluster, : heterozygous 

cluster,  homozygous FAM™ cluster, : no-template controls (NTC). 

(e) 

(f) 
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Figure 2 (continued): Allelic discrimination plots of the analysis of the 31 patients samples. Four 

(or less) clusters could be distinguished in the plots: o: homozygous VIC® cluster, : heterozygous 

cluster,  homozygous FAM™ cluster, : no-template controls (NTC). 

 

4 CONCLUSION 

A workflow was successfully created for the genotyping of SNPs of CYP2C9, 2C19 and 

2D6, relevant in pharmacokinetic studies. These SNPs were carefully selected based on 

their frequency of occurrence in the Caucasian population, as well as on their significant 

effect on enzyme activity. Established methods for the extraction and quantification of 

DNA, using a Qiagen QIAamp DNA Mini kit and the Picogreen® assay, respectively, were 

combined. Straightforward TaqMan analysis was performed for the analysis of several 

SNPs. Analysis of a set of samples showed that the method is reliable, as the observed 

minor allele frequencies were similar to previously reported frequencies based on the 

analysis of large populations. 

  

(g) 
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‘A model is a lie that helps you see the truth’ 

- Howard Skipper 

 

 

 

 

 

 

 

 

 

ABSTRACT 

To improve modelling and simulation of the pharmacokinetics (PK) in paediatric patients, 

there is a need for research on developmental and disease-specific determinants. This 

article describes the evaluation of the in vitro cytochrome P450 activity, an important 

enzyme family in drug metabolism, in children with hepatic dysfunction. The activity of 6 

CYP isoforms, CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4 was evaluated in thirty-one 

patients with different pathologies, mainly biliary atresia (n=23). A hypervariable activity 

was observed for all the isoforms. Compared to an average adult activity, low activities 

were seen for CYP1A2, 2C19, 2E1, and 3A4. For CYP3A4, a positive correlation between 

activity and abundance was observed. For CYP2E1 at the other hand, the correlation was 

poor. In this population, age, co-medication, and genotype (unless a null-allele was 

present) could not be used as predictors for the CYP activity. In contrast, the Paediatric 

End-stage Liver Disease score was negatively correlated with the ln(activity). This 

suggests a decrease in CYP activity with deteriorating hepatic function. Moreover, the 

activity of all isoforms was correlated, demonstrating a concomitant decrease of all 

isoforms in young patients with liver disease. To our knowledge, this is the first study to 

evaluate CYP activity in children with hepatic impairment. The presented data may 

provide support in the further optimization of a disease-specific model in this patient 

population.   



CHAPTER 6 – DECREASING P450 ACTIVITY WITH INCREASING PELD SCORE 

 

133 

 

1 INTRODUCTION 

There is a paucity of approved drugs to treat children and young infants. It is estimated 

that 50 to 75% of drugs in children are used off-label [1]. Many of the dosing regimens 

of drugs currently used in children are derived using coarse methodologies, such as linear 

extrapolations from adult doses on the basis of mere body weight. Information on the  

behaviour of pharmacology of drugs in children is difficult to acquire, due to the ethical 

and practical restraints of performing clinical studies in the paediatric population [2]. 

Modelling and simulation of the pharmacokinetics (PK) and pharmacodynamics (PD) of 

drugs in children has therefore gained a lot of interest. Many attempts have been made 

to create models to predict the PK and/or PD of specific drugs in children. These models, 

integrating information on the paediatric biological system, are predicted to replace the 

currently used empirical and allometric models [3], albeit that more in-depth model 

optimization is still an obvious necessity. Determinants of the PK in paediatric patients 

should be investigated, such as drug absorption in neonates and infants, the ontogeny of 

transporters, or age-related changes in PD [4,5]. Besides the important developmental 

changes, variability due to environmental, genetic and disease related factors also need 

to be incorporated [6]. The latter have been shown to influence both PK and PD of drugs, 

underlining the need for disease-specific models. 

In the development of disease-specific models, there is a particular interest in hepatic 

failure. Hepatic impairment has been identified as a condition leading to changes in the 

PK of drugs through various mechanisms, such as changes in the hepatic blood flow 

(portal-systemic shunts in cirrhosis), or an impaired metabolic clearance (as in biliary 

obstruction, where hepatocellular damage can be seen) [7]. The specific mechanisms of 

the alterations in PK can be elucidated through in vitro studies each focusing on one 

particular aspect of the PK, such as e.g. the activity of drug metabolizing enzymes. 

Johnson et al. recently published a semi-mechanistic model for the prediction of drug 

clearance in adult patients with liver cirrhosis [8]. The model was based on specific 

mechanistic data that were previously published, such as the study conducted by George 

et al. [9]. In this study, the activity and abundance of several cytochrome P450 (CYP) 

isoforms, the main enzymes involved in drug metabolism, were evaluated in patients 

with severe chronic liver disease [9]. Based on these in vitro data, they concluded that 

the CYP isoforms were selectively altered in liver disease, with some isoforms showing a 

profound decrease, whereas others were only slightly or even not affected. Frye et al. 

demonstrated a similar selective regulation of the various enzymes in liver disease in 

vivo, with variable and non-uniform alterations in CYP activity [10]. The results from 

comparable studies were reviewed by Villeneuve and Pichette [11], and Elbekai et al. 

[12]. 
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In these previously published studies investigating the effect of hepatic impairment on 

drug PK, no children were included. Moreover, several studies concluded that the 

changes in PK depend on the aetiology of the disease, as well as the degree of hepatic 

impairment (as reviewed by Villeneuve and Pichette [11]). The aetiology of severe 

hepatic dysfunction differs considerably between adults and children. In adults, the main 

indication for liver transplantation are noncholestatic liver cirrhosis (± 60%) due to 

alcoholism or hepatitis C, liver cancers (± 10%), cholestatic diseases (± 10%), acute 

hepatic failure and metabolic disorders [13]. In children however, biliary atresia is the 

main indication for liver transplantation, followed by fulminant liver failure, other 

cholestatic diseases, such as progressive familial intrahepatic cholestatis (PFIC) and 

Alagille syndrome, and other metabolic diseases [13-15].  

The available data on the influence of liver disease on CYP activity in adults cannot be 

extrapolated to the paediatric population, due to the aforementioned ontogeny of several 

systems, as well as to the differences in aetiology of the liver disease. Information on the 

influence of liver disease on the CYP activity is pivotal for the development of disease-

specific models for this particular patient population. This study therefore aimed to 

evaluate the in vitro CYP activity in samples of liver explants of children with severe 

hepatic dysfunction, in view of it being a determinant parameter in such disease-specific 

physiology based pharmacokinetic (PBPK) models. 

2 MATERIALS AND METHODS 

This study was approved by the Ethics Committee of Ghent University Hospital 

(B67020084281) and in accordance with the Ethical Committee approval of Saint-Luc 

Clinics Brussels.  

2.1 Sample collection 

Liver samples were obtained from the explanted liver of 31 paediatric patients who 

underwent liver transplantation at Ghent University Hospital or Saint-Luc Clinics Brussels 

(see Table 2). The clinical record was consulted for clinical and laboratory data, such as 

age, gender, weight, pre-operative medication, and relevant liver function tests. Part of 

this information was used to calculate the Paediatric End-stage Liver Disease (PELD) 

score [16].  

From each liver, small blocks of tissue (1-4 cm³) were taken on four different sample 

sites (superficial and central of both right and left lobe). The tissue samples were snap 

frozen within 15 minutes after explantation of the liver, and were stored at -80°C until 

processing.  
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2.2 Preparation of liver microsomes 

Part of the liver tissue sample was processed into microsomes using a modification of the 

method of Wilson et al. [17]. The samples were thawed on iced, rinsed with 

homogenization buffer (0.25 M phosphate buffer pH 7.25, 1.15% KCl) and blot dried. 

After weighing (0.6 – 4 g), the tissue was minced with scissors and homogenized in 

homogenization buffer (4 ml g-1 tissue) using an automated Potter-Elvehjem system 

(VWR, Leuven, Belgium). Tissue homogenates were centrifuged at 10,000 x g for 15 

minutes at 4°C (Beckman L8-70M Ultracentrifuge, Beckman Coulter Limited, High 

Wycombe, Buckinghamshire, UK). In order to form a microsomal pellet, the resulting 

supernatant (S9 fraction) was centrifuged at 100,000 x g for 75 minutes at 4°C. The 

supernatant (cytosolic fraction) was kept aside, and the microsomal pellet was re-

suspended and washed using 4 ml homogenization buffer per gram tissue. Centrifugation 

at 100,000 x g was repeated, and the final microsomal pellet was re-suspended in 1.5 

volumes of resuspension buffer (homogenization buffer, containing 30% v/v glycerol). All 

fractions were snap frozen in liquid nitrogen and stored at -80°C until analysis. The total 

protein content of the microsomes was estimated using the method of Bradford [18]. 

2.3 Cytochrome P450 activity determinations 

In order to exclude possible zonal differences in activity, a microsomal pool, consisting of 

the four different zones according to their relative weight, was prepared for each patient 

sample. Microsomal activities of CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4 were 

determined by incubating the microsomes with specific probe substrates that are mainly 

metabolized to marker metabolites by one of the studied isoforms (see Table 1). 

Incubations were performed in triplicate (with CV% always < 15%), and in parallel with 

each of the specific substrates individually. The final reaction medium (total volume 250 

µl) consisted of 1 mM NADPH, 0.2 M phosphate buffer (pH 7.4), 0.25 mg protein/ml and 

one of the substrates at its apparent Km [19]. The samples were incubated in a shaking 

heating block at 37°C for 15 minutes, except for the CYP2C19 assay, which was 

incubated for 40 minutes. The enzymatic reactions were stopped with 25 µl of ice cold 

stopreagent containing the internal standard (chlorpropamide), 3% v/v formic acid, and 

55% v/v acetonitrile. The terminated reaction mixtures were vortex mixed and placed on 

ice. In order to pellet the proteins, samples were centrifuged at 20,000 x g for 10 

minutes at 4°C. The formed metabolites were quantified with a previously described ultra 

high performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) 

method [20], and activities were expressed as pmol metabolite formed/(minute x mg 

protein).  
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Table 1: Specific substrates and conditions for the incubation experiments.  

Total microsomal protein content was 0.25 mg/ml.  

Enzyme Substrate Concentration (µM) Time (min) Metabolite 

CYP1A2 Phenacetin 50 15 Acetaminophen 

CYP2C9 Tolbutamide 100 15 4-Hydroxytolbutamide 

CYP2C19 S-Mephenytoin 100 40 4'-Hydroxymephenytoin 

CYP2D6 Dextromethorphan 5 15 Dextrorphan 

CYP2E1 Chlorzoxazone 50 15 6-Hydroxychlorzoxazone 

CYP3A4 Midazolam 5 15 1-Hydroxymidazolam 

 

Besides the incubation of the patient microsomes, two commercially available adult 

microsomal pools were incubated under the same conditions (Xtreme 200 HLM, Xeno 

Tech, Lenexa KS, USA, and BD UltraPool HLM 150, BD Biosciences, Bedford MA, USA). 

2.4 DNA extraction and genotyping 

DNA was extracted from 25 mg of the remaining liver tissue sample using the QIAamp 

DNA Mini kit from Qiagen (Santa Clarita, CA, USA). The samples were genotyped using 

TaqMan® Drug Metabolism Genotyping Assays from Applied Biosystems (Life 

Technologies, Carlsbad, CA, USA)  for the following  NCBI dbSNP identification numbers:  

rs3892097 (2D6*4, 1846G>A), rs1065852 (2D6*10, 100C>T), rs28371725 (2D6*41, 

2988G>A), rs1799853 (2C9*2, 3608C>T), and rs1057910 (2C9*3, 42614A>C), 

rs4244285 (2C19*2, 19154G>A), and rs12248560 (2C19*17, -806C>T). 

2.5 CYP3A4 and 2E1 abundance determination 

The abundance of CYP3A4 was determined in the microsomal suspension using an 

indirect ELISA [21]. CYP2E1 abundance was determined using a similar method with 

optimized calibration range (4 – 256 pmol CYP2E1/mg microsomal protein), primary and 

secondary antibody concentration (1:1,600 and 1:10,000, respectively), and incubation 

times (secondary antibody incubation at 37°C, and incubation with substrate for 60 

minutes) [22]. 

2.6 Data analysis 

The individual activities of the 6 isoforms were compared graphically. Subsequently, the 

isoform activities were grouped based on their percentage of the mean isoform activity in 

the adult microsomal pools. Five groups were selected: <25%; 25-55%, 55-85%, 85-

115% (considered equal to adult activity, based on the allowed analytical variability of ± 

15%), and >115%. The possible influence of age, weight, co-medication, and genotype 

was also evaluated graphically. The relationship between ln(activity) and ln(abundance), 
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and ln(activity) and PELD score was evaluated graphically using locally weighted scatter 

plot smoothing (LOWESS). Moreover, the Pearson’s correlation coefficient was calculated 

for these pairs of variables. Furthermore, the correlation between the activities of the 

isoforms was evaluated (graphically and with Pearson’s correlation). All data analysis was 

performed using R® v.2.13 (R foundation for statistical computing, Vienna, Austria), 

except for the influence of co-medication, which was evaluated using ANOVA analysis 

with post-hoc Bonferoni correction using SPSS Statistics 20 (SPSS Inc, Chicago, IL, USA). 

For all statistical analyses, p < 0.05 was accepted as indicating a significant difference.  

3 RESULTS  

3.1 Patient characteristics 

Thirty-one patients were included in the study. The patients suffered from biliary atresia 

(BA; n = 23), 1 antitrypsin deficiency (A1AD; n = 1), a combination of BA and A1AD 

(n=1), progressive familial intrahepatic cholestasis (PFIC; n = 2), cystic fibrosis (CF; n = 

1), Caroli’s disease (CAR; n = 1), acute liver failure (ALF; n = 1), or neonatal 

hemochromatosis (NH; n = 1). A summary of the patient characteristics is given in Table 

2.  

3.2 Cytochrome P450 enzyme activities 

The results of the individual enzyme activity measurements are depicted in Figure 1. Due 

to the non-normal distribution, activities were ln transformed. The mean adult ln(activity) 

of the isoforms, determined in the two commercially available adult pools, was added to 

the graph as a point of reference (dashed line). For all isoforms, a high inter-individual 

variability was observed. A low ln(activity) of CYP3A4, 1A2, 2E1 and 2D6 was seen in 

many patients, compared to the adult reference. The CYP2C9 ln(activities) were spread 

around the adult reference, with both very low and very high activities in some patients. 

Figure 2 shows the same activity data after grouping the results into five groups, based 

on the percentage of the mean reference adult activity. A different pattern can be seen 

between the different isoforms. Fifty percent or more of the patients show a CYP3A4, 

2E1, 1A2 and 2C19 activity below 25% of the adult activity. In contrast, about 50% of 

the patients had a CYP2C9 activity higher than in adults. As for the CYP2D6 activity, the 

patients were more or less equally distributed over all five groups.  

The evaluation of the relation between the activity and the age and weight of the patients 

showed no correlation (data not shown).  
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Table 2: Patient information. Summary of the gender, age at transplantation, diagnosis and PELD 

of the 31 included patients (M: male; F: female; OLT: orthotopic liver transplantation; PELD: 

Paediatric End-Stage Liver Disease; A1AD: -1 antitrypsin deficiency; PFIC: progressive familial 

intrahepatic cholestasis). 

Patient ID 
(n = 31) 

Gender Age at transplantation 
(months) 

Indication for OLT PELD  

ID1 F 6.3 Biliary atresia 23 

ID2 M 0.7 Neonatal hemochromatosis 38 

ID3 M 7.3 Biliary atresia 13 

ID4 M 9 Biliary atresia 26 

ID5 M 4.7 Biliary atresia 35 

ID6 F 6.5 Biliary atresia 15 

ID7 F 9.5 Biliary atresia 7 

ID9 F 7.4 Biliary atresia 18 

ID10 M 132 Cystic fibrosis with cirrhosis 8 

ID11 M 9.2 Biliary atresia 38 

ID12 M 15.3 Biliary atresia 20 

ID13 M 6.4 Biliary atresia 31 

ID14 F 108 Acute liver failure 34 

ID15 M 13 Biliary atresia 26 

ID16 M 23.7 Biliary atresia 1 

ID17 M 11.4 Biliary atresia 19 

ID18 M 25.4 Biliary atresia 17 

ID19 M 11.5 Biliary atresia 19 

ID20 M 11.5 A1AD 32 

ID21 F 60.7 Caroli's disease 12 

ID22 F 7.8 Biliary atresia 24 

ID23 F 9.4 Biliary atresia 18 

ID24 M 24.5 Biliary atresia 0 

ID25 F 51.4 PFIC II 11 

ID26 M 11 Biliary atresia 37 

ID27 M 7.1 Biliary atresia 30 

ID28 M 8.1 Biliary atresia 19 

ID29 M 78.1 Biliary atresia + A1AD 33 

ID30 F 11.6 Biliary atresia 10 

ID31 F 8.9 Biliary atresia 3 

ID32 M 83.8 PFIC III 6 
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Figure 1: Ln(activity) of the 6 CYP isoforms of the 31 patients. Indications for OLT: A1AD: -1 

antitrypsin deficiency; ALF: acute liver failure; BA: biliary atresia; CAR: Caroli’s disease; CF: cystic 

fibrosis; NH: neonatal hemochromatosis; PFIC: progressive familial intrahepatic cholestasis. The 

dashed line represents the mean ln(activity) as determined in two commercially available adult 

microsome pools.  
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Figure 2: The activity of the CYP isoforms in terms of percentage of the adult activity. The results 

were classified into 5 groups, and the percentage of the study population (n=31) present in a 

group is depicted.  

 

3.3 Possible influence of co-medication 

A list of the known inducing or inhibiting drugs taken in the 2 weeks prior to the 

transplantation is presented in Table 3. Graphical comparison of the ln(activity) of the 6 

isoforms between patients receiving inhibitors, inducers, both, or no co—medication is 

depicted in Figure 3. Statistical comparison showed significant differences (p<0.05) in 

ln(activity) of CYP2C9 between the patients receiving no co-medication and those 

receiving both an inhibitor and an inducer, as well as between the patients receiving an 

inhibitor and those receiving both. The same results were obtained for CYP2C19. For 

CYP3A4, significant differences were seen between: (1) no co-medication and inhibitor + 

inducer; (2) no co-medication and inducer; (3) inhibitor and inhibitor + inducer; (4) 

inhibitor and inducer. 

3.4 Correlation genotype and activity 

A comparable graphical analysis was performed for the evaluated polymorphisms. For all 

SNPs, a reduced activity was expected compared to the wild type, except for 

CYP2C19*17, where an increased activity was anticipated. As shown in Figure 4, this 

trend was seen for CYP2D6*4 and *10, 2C9*2 (except for one extreme value), and in the 

patient homozygous for the CYP2C19*2 null allele. The other expected trends were not 

reflected in the data.  
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Figure 3: Comparison of the ln(activity) between patients receiving co-medication known to induce 

or inhibit CYP activity and patients who did not receive these drugs. (Inh: inhibitor; ind: inducer; 

comed: co-medication). (*p<0.05, –: median ln(activity) within each group) 
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Table 3: Medication history. Summary of the administered pre-operative medication, known to 

influence (induce or inhibit) CYP activity. 

  

  

Number of patients 

receiving the drug 

Affected CYP 

isoform(s) 

Reference(s) 

Inhibiting drugs    

 retinol 14 CYP2C9, 2C19 [23,24] 

 cholecalciferol 13 CYP2C9, 2C19, 2D6 [23] 

 somatostatin 4 CYP2D6, 3A4 [25] 

 sulfamethoxazole 1 CYP2C9 [26] 

 fluconazole 2 CYP2C9, 2C19 [26] 

 (es)omeprazole 8 CYP2C9, 2C19 [27] 

 amlodipine 1 CYP2C9, 2D6, 3A4 [28] 

 ciprofloxacine 1 CYP1A2, 3A4 [29,30] 

 propranolol 5 CYP1A2, 2D6 [31,32] 

Inducing drugs    

 (es)omeprazole 8 CYP1A2 [33] 

 rifampicin 7 CYP2C9, 2C19, 3A4 [34] 

 

3.5 Correlation abundance and activity 

In Figure 5, the correlation between the ln(activity) and the ln(abundance) of CYP3A4 

and CYP2E1 is shown. For CYP3A4, a clear positive correlation could be observed 

graphically. This is also reflected in the Pearson’s correlation coefficient of 0.869. For 

CYP2E1, a very weak correlation between activity and abundance could be seen 

(Pearson’s correlation = 0.371). 

3.6 Correlation of the CYP enzyme activity with PELD score 

The ln(activity) was correlated with the PELD score at time of transplantation. This can 

be seen graphically (LOWESS line) as depicted in Figure 6. This negative correlation is 

confirmed by the Pearson’s correlation coefficients of -0.769 for CYP1A2, -0.461 for 

CYP2C9, -0.721 for CYP2C19, -0.492 for CYP2D6, -0.545 for CYP2E1, and -0.643 for 

CYP3A4. 
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Figure 4: Analysis of the effects of SNPs on the activity of CYP2D6 (*4, *10, *41), CYP2C9 (*2, 

*3), and CYP2C19 (*2, *17). Allelic combinations are arranged from expected lowest (left) to 

expected highest (right) activity. 

 

Figure 5: Ln(activity) and ln(abundance) of CYP2E1 and 3A4 were positively correlated. 
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Figure 6: Correlation of ln(activity) and PELD score. A negative  correlation was observed for all 6 

isoforms.  

 

3.7 Correlation of the 6 isoforms 

A possible correlation in ln(activity) between the different isoforms was evaluated. As 

shown in Figure 7 and Table 4, all isoform activities are positively correlated (see also 

Table 4). 
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Figure 7: Graphical representation of the positive correlation of the ln(activities) of the 6 isoforms. 

 

Table 4: Pearson’s correlation between the CYP isoforms. A positive correlation between the 

ln(activities) of all six CYP isoforms was observed.  

  CYP1A2  CYP2C9  CYP2C19  CYP2D6  CYP2E1  

CYP2C9 0.756 

    CYP2C19 0.581 0.768 

   CYP2D6 0.693 0.571 0.603 

  CYP2E1 0.846 0.794 0.755 0.738 

 CYP3A4 0.594 0.648 0.74 0.594 0.682 
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4 DISCUSSION 

The cytochrome P450 enzyme system has shown to be altered in adults with liver 

dysfunction [7]. As in vivo studies in the paediatric population are fraught with ethical 

and practical considerations, in vitro data can be used to optimize models that may be 

helpful in determining optimal dosing strategies, in both pre-clinical and clinical settings. 

This study is the first to describe the CYP activity in children with severe hepatic 

dysfunction, demonstrating a high inter-individual variability for all studied isoforms. 

Comparison with the average adult activity showed a mainly lower activity for CYP1A2, 

2C19, 2E1, and 3A4, and an activity more spread around adult activity for CYP2C9 and 

2C19. Nevertheless, merely relating activities to a “reference activity” obscures the true 

nature of these physiological findings. Besides the possible influence of liver disease, its 

aetiology and the degree of impairment, many other factors such as age, inhibiting or 

inducing co-medication, and genetic polymorphisms, are known to affect enzyme activity, 

precluding the interpretation of activities as such.  

About 75% of the children included in the study suffered from biliary atresia (BA). A 

large group of patients with this condition was expected, as this is the main cause for 

OLT in children [13-15]. Contradictory to the expected large group of fulminant hepatic 

failure, only one patient was included during the time period of collection. This is 

probably due to the type of recruitment in one of the hospitals, where only planned 

transplantations by living donor were included. Due to the small number of patients in 

some groups, the results of patients with different diseases were analysed together. The 

aetiology of liver disease has been shown to be an important factor in the changes in CYP 

activity in adults [11]. However, as shown in Figure 1, the variability in ln(activity) in the 

BA group is larger than the variability between the different groups. Therefore, the 

patients were considered as one large group for data analysis.  Consequently, these 

results should be interpreted with some caution in respect to these disease types. 

The patients included in the study covered a wide age range (from 0.7 months to almost 

12 years), with the majority of the patients being age 2 or younger. Age is an important 

characteristic to take into account in the interpretation of the results, as some of the 

important CYP isoforms show a certain maturation during development [35-37]. The in 

vitro activity of the 6 enzymes studied, show a gradual increase in activity during the 

first 2 years of life in healthy children. However, considerable inter-individual differences 

were observed in the maturation [38]. Nevertheless, a certain correlation between the 

activity and the age of the patients in our study was expected. It was, however, not 

observed (data not shown). The lack of correlation between age and activity suggests a 

disturbance of the normal maturation pattern in children with hepatic dysfunction, or a 



CHAPTER 6 – DECREASING P450 ACTIVITY WITH INCREASING PELD SCORE 

 

147 

 

stronger influence of another parameter than age. This failure to show a correlation is an 

important point in the mechanistic elucidation of the influence of hepatic dysfunction on 

CYP activity in children. Evaluation of the relation between activity and other patient 

related characteristics, such as weight, also showed no correlation.  

Most of the children included in the study are chronically ill and thus often receive chronic 

medication. Most of the CYPs have been shown to be sensitive to induction or inhibition 

by several drugs [39]. The influence of inducing or inhibiting pre-operative medication 

should therefore also be taken into account. Some of the effects of known inducers were 

observed either graphically or statistically. In contrast, inhibiting effects were not 

observed. This could be expected, as all the inhibitors that were pre-operatively 

administered to the patients are competitive, reversible inhibitors. During the preparation 

of the microsomes the competitive inhibitors are most likely (partially) removed from the 

microsomal pellet, which may cancel out the influence of (competitive) inhibitors in our 

experimental set up. This is however an advantage, as this study aims to characterise 

the activity of the enzymes of the patient as such.  

Another issue in the evaluation of CYP activity is the highly polymorphic nature of the 

CYP enzymes. Three of our studied isoforms, CYP2C9, 2C19 and 2D6 are Class II CYPs, 

or highly polymorphic CYPs. The other 3 isoforms, CYP3A4, 1A2 and 2E1 are well 

conserved and do not have important functional polymorphisms, and are therefore Class 

I CYPs [40]. The presence of one or more polymorphic sites in the genome of the 

patients may cause significant changes in the observed enzyme activity. The previously 

mentioned classification could not be perceived in the obtained activities in this study, as 

the variability in the class I CYPs was similar to that of the Class II CYPs. Moreover, not 

all the expected effects of the SNPs on the activity were reflected in the data. As shown 

in Figure 4, this trend was seen for CYP2D6*4 and *10, 2C9*2 (except for one extreme 

value), and in the patient homozygote for the CYP2C19*2 null allele. The other effects, 

however, could not be perceived. Despite the observed trends in activity due to some 

SNPs, the CYP genotype is not the only predictor of the CYP activity in this population.  

The analysis of the abundance of the isoforms in the microsomes may give information 

on the nature of the possible changes in enzyme activity. The positive correlation 

between activity and abundance of CYP3A4 could infer that the observed changes are 

due to pre-translational or translational alterations in patients with hepatic dysfunction.  

The poorer correlation between CYP2E1 activity and abundance could be due to other 

mechanisms of alterations or to the small range of the observed abundances.  

The Paediatric End-Stage Liver Disease (PELD) score was calculated for each patient at 

the time of transplantation. The PELD score is used in the liver allocation system for 
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paediatric transplant patients. This severity-of-illness score expresses the urgency for 

transplantation, based on the objective and measurable elements age (< 1 year), serum 

albumin and total bilirubin, INR, and growth failure [16]. The diagnosis is not 

incorporated in the calculation of the PELD score, as it may lead to discrimination of 

certain subgroups of patients on the transplant waiting list. In this study, the PELD score 

was used to estimate the degree of hepatic impairment. Evaluation of the relationship 

between the PELD score (ranging from 0 to 38) and the ln(activity) showed a negative 

correlation for all six isoforms. The PELD score appears to be the only factor that could 

give a certain idea on the CYP status of the patient. The observed negative correlation 

suggests a progressive decrease in enzymatic activity with deteriorating hepatic disease. 

This negative correlation is in accordance with the in vitro findings in adults [11,12], 

where the CYP activity was shown to decrease with the Child-Pugh score, an indicator for 

hepatic dysfunction in adults. Moreover, this negative effect of disease on the CYP 

activity has recently been described in two in vivo studies evaluating the midazolam 

clearance in children.  The clearance of midazolam is determined by CYP3A4/5-mediated 

clearance, uridine diphosphate glucuronosyltransferase (UGT)-mediated clearance, and 

renal clearance. Ince et al. [41] studied the age-related changes in midazolam clearance 

in relation to other covariates, such as specific subpopulations or severity of disease. 

They showed that critical illness is a major determinant for midazolam clearance in 

children. Simulations using a PBPK model suggested a major impact of reduced CYP3A4 

and 3A5 enzyme abundance on the midazolam clearance. These results were confirmed 

by another study by Vet et al. [42], where a reduced midazolam clearance was observed 

with increasing critical illness in children on the paediatric intensive care unit. The 

authors suggested that a reduced CYP3A activity could be the cause for the reduced 

midazolam clearance. Our in vitro data on CYP3A4 activity support this hypothesis.  

The activities of all isoforms in our dataset were correlated positively, meaning that a 

decrease in activity in one isoform often implies a concomitant decrease in the activities 

of the others. This correlation, however, gives no information on the degree of the 

change in activity.  In previously published studies evaluating the effects of hepatic 

impairment on CYP activity in adults, some of the CYPs have been shown more sensitive 

to the effects of hepatic dysfunction than others. Frye et al [10] suggested a sequential 

progressive model of hepatic dysfunction in adults, as CYP2C19 was shown to be affected 

very early in the development of liver failure, whereas CYP2E1 activity decreased later in 

disease progression. Further research should be conducted in order to develop a similar 

model for the course of CYP decrease in children with hepatic dysfunction.  

In order to evaluate the effects on CYP activity of pathology alone, without confounding 

contribution of the other abovementioned factors except inducers or inhibitors, the 
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presented activity data could be compared with activity data obtained in healthy children. 

This would allow a paired comparison between a patient from the study and a healthy 

child with the same characteristics (such as age, gender, genotype,..). However, the 

availability of healthy paediatric liver tissue is, for obvious reasons, limited.  

5 CONCLUSION 

This article is to our knowledge the first to describe the in vitro CYP activity in children 

with hepatic dysfunction. The severity of hepatic dysfunction, expressed as the PELD 

score, seems to be a major determinant of the in vitro CYP activity in children. Although 

our results show a wide variability in activity of all CYP studied, we believe this study 

delivers an important contribution to the increase in knowledge on the pharmacokinetics 

in a particular paediatric population, i.e. children with severe hepatic dysfunction. These 

results may provide some support in the improvement of paediatric pharmacokinetic 

models, but also highlight the difficulties in developing such models. 
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‘If we knew what it was we were doing, 

it would not be called research, 

would it?’ 

- Albert Einstein 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

The microsomal protein per gram of liver (MPPGL) is an important scaling factor in the in 

vitro-in vivo extrapolation of metabolic data obtained in liver microsomes. This study 

aimed to determine the MPPGL in 4 biliary atresia patients (0.6 - 1.6 years old) 

undergoing liver transplantation, as it is known that the MPPGL is affected by age and 

possibly by liver disease. Due to presence of bilirubin in the homogenates and 

microsomes, the NADPH-cytochrome reductase activity was used to determine the 

recovery factor, rather than methods using the dithionite difference spectrum. A mean 

value of 18.73 (± 2.82) mg/g (geometric mean ± SD, n=4) was observed, which is lower 

than the expected MPPGL based on the age of the patients (26.60 ± 0.40 mg/g). This 

suggests a decreased amount of microsomal protein in the livers of biliary atresia 

patients. Moreover, no differences in MPPGL between different zones of the liver could be 

detected.   
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1 INTRODUCTION 

In the pre-clinical development of drugs, in vitro experiments are performed to obtain 

meaningful estimates of the in vivo pharmacokinetic behaviour of drugs prior to 

administration to humans [1]. The in vitro-in vivo extrapolation (IVIVE) procedure can be 

divided into different components. Firstly, the kinetic parameters are expressed as a rate 

per functional unit of the in vitro system under which in vitro incubations were 

performed. Then, a scaling factor is necessary to express the rate in function of the 

whole liver capacity. This step is followed by multiplication by liver weight 

(experimentally determined or calculated following Johnson et al [2]). Finally, other 

physiological parameters, such as hepatic blood flow, drug-protein binding, and hepatic 

transporters, are taken into account to predict an in vivo clearance [3-5]. 

The in vitro systems used to investigate drug metabolism are hepatic slices, hepatocytes, 

liver microsomes and recombinantly expressed enzymes. The prediction of hepatic 

clearance using hepatocytes was shown to be of high fidelity and very accurate [1]. The 

downside of this in vitro system is the limited availability of suitable fresh human tissue 

for hepatocyte preparation, especially in specific populations [1,6]. An advantage of the 

use of hepatocytes is the straightforward scaling factor that can be used to scale the 

results from the in vitro incubation to the whole liver, by just multiplying the data/million 

cells with the hepatocellularity [4]. As an alternative, hepatic microsomes are often used, 

as they have a high stability for years of storage at -80°C [7]. However, a more 

complicated scaling factor is needed.  Joly et al. were the first to investigate the loss of 

microsomal enzymes during the destructive process of differential centrifugation to 

isolate the microsomal fraction [8]. The microsomal protein per gram liver (MPPGL) is the 

theoretical estimate that accounts for the inefficiency of the fractionation process in 

recovering the microsomal protein from liver samples [3]. This factor is necessary to 

scale to units of liver weight with sufficient accuracy.  

In 2007, Barter et al reviewed the reporting of MPPGL data since the 1970’s [3]. In many 

published studies, researchers used estimations of the MPPGL obtained in laboratory 

animals, despite their smaller diversity in genetics and environment compared to the 

variation in humans [9]. Human MPPGL values of 40 mg/g were assumed as being 

correct for healthy adults [4], whereas others established a value of 33 mg/g (with a 

CV% of 25%) [9]. The latter result was also used by Johnson et al. in a paediatric 

physiologically based pharmacokinetic (PBPK) model, due to the absence of a clear 

paediatric MPPGL value [10], irrespective of the results published by Pelkonen et al. in 

1973, i.e. 26 mg/g, in 11 foetal liver samples [11]. Johnson et al. justified the use of this 

value by suggesting a similar MPPGL in children at different ages, as the smooth 
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endoplasmatic reticulum is fully developed in the stage of late gestation. However, 

multiple linear regression analysis of the pooled data of previously reported MPPGL 

values identified age as a significant covariate of the MPPGL [3], with a decrease in 

MPPGL with increasing age. Further extension of the obtained log-linear model with 

additional paediatric information (4 Caucasian livers and the results reported by Pelkonen 

et al [11]) leads to an equation (Eq. 1) to describe the nonmonotonic relationship 

between age and MPPGL [12]: 

MPPGL= 10^(1.407+0.0158*age-0.00038*age²+0.0000024*age³) (age in years)(Eq. 1) 

In short, MPPGL increases from birth (with a value about 36% lower than in 25 year old 

adults) to reach a maximum around the age of 28 of 40 mg/g. Afterwards, a decreasing 

trend is observed with values of 29 mg/g at the age of 65. The above mentioned 

equation has been used in several studies to calculate the MPPGL of the used liver 

samples [13,14]. 

Besides the influence of age, liver disease might also affect the MPPGL. Hakooz et al. 

stated that it cannot be assumed that the values obtained in previous studies will also 

apply to patients with compromised liver function, for example in hepatitis [4]. In some 

studies, the expected change in MPPGL does not have to be specified as such, as it will 

possibly be subsumed in the altered liver size and decreased functional hepatocyte 

volume [15]. However, when the functional hepatocyte volume is not determined, the 

need for a reliable value of the MPPGL remains.  

Additionally, it is possible that the MPPGL differs across the lobes of a human liver [9]. 

No information is available on the zonal distribution of the MPPGL, but in rat, a significant 

zonal difference in CYP450 content per mg microsomal protein has been reported by 

Sumner et al [16]. In contrast, Joly et al. reported no difference in CYP450 content in 

homogenate between different parts of the rat liver [8]. Another study reported the 

CYP450 content per mg microsomal protein on 10 different locations in one human liver 

[17], where no zonal differences were observed.  

Variance in both the content and activity of drug-metabolizing enzymes of the liver may 

have a direct effect on risk-relevant PK outcomes [18]. In that context, we recently 

published a study on the metabolic capacity of the cytochrome P450 (CYP) enzyme 

system in children with severe hepatic dysfunction [19]. The current follow up study 

aimed to determine the MPPGL in liver samples from children with biliary atresia, the 

most common indication for paediatric liver transplantation [20], in order to provide a 

useful scaling factor for in vitro experiments in this specific population. Moreover, 
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different zones of the liver were compared in order to map out possible zonal differences 

in MPPGL.   

2 MATERIALS AND METHODS 

2.1 Chemicals and reagents 

Equine heart cytochrome c and potassium cyanide were obtained from Sigma-Aldrich 

(Buchs, Switserland), NADPH from Biopredic International (Rennes, France). All other 

chemicals were purchased from VWR International (Leuven, Belgium).  

2.2 Liver samples: collection and processing 

The collection of liver samples was executed according to the recommendations of the 

Ethical Committee of Ghent University Hospital (B67020084281), and in accordance with 

approval of the ethical committee of Saint-Luc Clinics Brussels. Samples were taken from 

the explanted livers of children undergoing liver transplantation due to biliary atresia in 

one of the aforementioned university hospitals. The intact livers were weighed, and 

subsequently blocks of approximately 1 cm³ were taken from 4 different zones from the 

liver (right lobe and left lobe, deep and peripheral). Samples were snap frozen in liquid 

nitrogen within 15 minutes after explantation and stored at -80°C until preparation of 

microsomes. The patient information of the 4 included biliary atresia patients is 

summarized in Table 1.  

Table 1: Patient information 

Patient Age (years) PELD 

1 0.66 22 

2 1.64 21 

3 0.99 17 

4 1.39 13 

 

Hepatic microsomes were prepared from each separate zone as previously described 

[19]. In short, the weighed samples were minced with scissors and homogenized in 

homogenization buffer (0.25 M phosphate buffer, pH 7.25, 1.15% KCl) using an 

automated Potter-Elvehjem system (VWR, Leuven, Belgium). An aliquot of the tissue 

homogenate was kept aside, while the remaining homogenates were centrifuged at 

10,000g for 15 minutes at 4°C (Beckman L8-70M Ultracentrifuge, Beckman Coulter 

Limited, High Wycombe, Buckinghamshire, UK). Subsequently, the resulting supernatant 

(S9 fraction) was centrifuged at 100,000g for 75 minutes at 4°C, followed by a washing 

step of the microsomal pellet. Centrifugation at 100,000g was repeated, and the final 
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microsomal pellet was resuspended in 1.5 volumes of resuspension buffer 

(homogenization buffer, containing 30% v/v glycerol). Both homogenate and microsomal 

suspension were snap-frozen in liquid nitrogen and stored at -80°C until analysis. The 

total protein content of the microsomes was estimated using the method of Bradford 

[21]. 

2.3 Determination of the NADPH-cytochrome reductase activity and calculation 

of the microsomal protein per gram of liver (MPPGL) 

The microsomal recovery factor was estimated through the analysis of the NADPH-

cytochrome P450 reductase (NCR) activity in homogenate and microsomes according to 

Guengerich et al. [22]. The NCR activity was determined on the homogenates and 

microsomes from each zone separately, as well as on pools of homogenate and 

microsomes, prepared for each patient, by mixing the four different zones according to 

their relative weight. Homogenate and microsomes were diluted to contain the same 

amount of liver tissue (minimum 50 mg/ml). Equine heart cytochrome c stock solution 

was prepared (0.5 mM in 10 mM potassium phosphate buffer pH 7.7) and frozen until 

use. Eighty µl of cytochrome c (0.5 mM), 900 µl of 0.3 M potassium phosphate buffer (pH 

7.7) containing 1 mM KCN and 10 µl of the diluted homogenate or microsomes were 

mixed. Ten µl of reduced NADPH solution (10 mM in water, prepared daily) was added to 

initiate the cytochrome c reduction. After mixing of the sample, the absorbance at 550 

nm was monitored for 4 minutes. The rate of cytochrome c reduction was calculated 

following Eq. 2: 

A550/min/0.021 = nmol of cytochrome c reduced per minute in the cuvette (1 mL)(Eq. 

2) 

with 0.021 mM-1 cm-1 being the extinction coefficient of reduced cytochrome c. The 

microsomal recovery factor was provided by the ratio of the reductase activity in the 

microsomes and in the homogenate. The MPPGL was consequently calculated by the 

following equation (Eq. 3): 

MPPGL (mg g-1) = yield of microsomal protein (mg g-1) / microsomal recovery factor 

(Eq.3) 

Comparison of the observed and expected MPPGL was done using a paired t-test. The 

MPPGL values of the different zones were compared using ANOVA (SPSS). P-values equal 

to or below 0.05 were considered significant.  
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3 RESULTS AND DISCUSSION 

In vitro - in vivo extrapolations require scaling factors for the specific in vitro system that 

was used. Besides the known influence of age on the MPPGL, it is not clearly known 

whether the values or equations suggested in the literature are applicable to samples 

from diseased livers. Therefore, this study aimed to determine the MPPGL in children with 

biliary atresia, in support of the study attempting to characterize CYP activity in this 

patient population. 

3.1 Determination of the recovery factor in cholestatic livers: methodological 

considerations 

In order to calculate the MPPGL, the amount of microsomal protein needs be quantified. 

Also, a microsome specific marker needs to be determined in order to calculate the 

microsomal recovery factor. Up until now, 2 methods were generally used for this 

purpose: the spectrophotometric determination of the total CYP450 content in 

homogenate and microsomes through the dithionite difference spectrum at 450 nm 

[23,24], and a method based on the determination of the NADPH-cytochrome P450 

reductase (NCR) activity [3,25]. Another method that was applied in some studies was 

based on the immunoquantification of total CYP levels or of one or more individual CYP 

isoforms [26]. This method, however, may not be accurate, as the antibodies may not 

asses active (holo-) protein alone, but also apo-protein [9]. The comparison of the 2 

frequently used methods showed that the resulting scaling factors were comparable 

[4,9,11,27]. Therefore, the choice of method does not affect the final calculated scaling 

factor.  

In both methods, some assumptions should be made [4,9]. In the spectrophotometric 

determination, it is assumed that all the CYP450 enzymes in the homogenate are 

microsomal in origin. This was confirmed by Guengerich et al., who showed that over 

96% of the CYPs in the liver are microsomal [28]. As for the determination of the NCR 

activity, a comparable assumption should be made, i.e. that all reductase activity is 

microsomal. Paine et al. [29] showed the existence of a cytosolic reductase, which was 

found to be 5.8% of the total homogenate reductase activity by Wilson et al. [9]. 

However, Hakooz et al. concluded that no correction for nonmicrosomal expression of the 

enzyme was necessary [4].  Nevertheless, potassium cyanide was added to the reaction 

medium in order to inhibit other reductases, and thus prevent interference of other 

reductases [22].  

The methods described by Omura [23] and Matsubara [24] were not suitable for the type 

of samples used in this study, i.e. liver samples originating from diseased and cholestatic 
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livers. The included patients typically have (very) high serum total bilirubin levels 

(patients 1-4: 15.4 – 38.3 mg/dL – reference interval 0.3 – 1.2 mg/dL). The large 

amount of bilirubin still present in the samples (as seen by the yellow colour of the 

homogenates and microsomes) is believed to interfere with the dithionite difference 

method (450 nm and 490 nm), as bilirubin shows an absorption maximum at 453 nm 

(see Figure 1). Despite the use of a reference sample, the interference by bilirubin could 

not be eliminated. Moreover, the obtained spectral differences between the reference and 

sample cuvettes were too small to be reliable. This method was therefore not applicable 

for the samples from diseased, often cholestatic, livers. Also, to our impression, the 

spectrophotometric analysis of any sample with that much turbidity is not reliable. 

 

Figure 1: Absorbance spectrum of bilirubin (adapted from Bhadri et al. [30]) 

 

The NCR method is based on the catalysis of electron transfer from NADPH to 

cytochrome c [25]. The increased amount of reduced cytochrome c increases the 

absorption at 550 nm, a wavelength at which much less interference of bilirubin is 

expected. Moreover, due to the small amount of sample (10 µl) in the total reaction 

volume (1000 µl), less interference due to turbidity is encountered. The method was 

optimized following the recommendations of Guengerich et al. [22]. Achour et al. 

described a protocol in which the addition of 1 µg liver tissue was sufficient [31]. 

However, no increase in absorbance was observed when using this amount. According to 

the recommendations of Guengerich et al., more of the biological sample was added, as 

this probably meant the concentration of reductase was too low. The analysis of several 

samples showed that a concentration of at least 50 mg liver tissue/ml was necessary to 

obtain the recommended 0.02 increase in absorbance unit per minute. Moreover, the 

assay was carried out in the recommended absorbance range of 0.05 – 1.0 in order to 
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have sufficient absorbance to allow accurate measurements. A representative dynamic 

spectrum is shown in Figure 2. 

 

Figure 2: Dynamic spectra of the determination of the NCR activity in the homogenate and 

microsomes from the LP (left peripheral) sample from patient 3. 66 mg liver tissue/ml was added 

to the reaction medium. NADPH was added at t = 0 seconds. The recovery factor was calculated 

based on the slopes of the graphs. 

 

The above described methods for the determination of the MPPGL both rely on the mixed 

function oxidase system enzymes, i.e. cytochrome P450 and NADPH-cytochrome P450 

reductase. Miyagi et al. suggested that possibly a different scalar for the MPPGL may be 

needed in studies evaluating enzymes other than CYP/NCR [14]. 

3.2 Estimation of the MPPGL in pre-transplant biliary atresia patients: results 

In accordance to the incubation experiments previously performed in this study [19], 

pools were made based on the amount of liver, in order to rule out possible zonal 

differences. The NCR activity was determined in the homogenates and microsomes, and 

the recovery factor was calculated. The results are summarized in Table 2. Low recovery 

factors were seen for some samples, probably due to the cirrhotic nature of the samples 

and the consequent longer and stronger homogenization needed. A mean (±SD) MPPGL 

of 18.73 (±2.82) mg/g was determined in patients with biliary atresia. According to the 

equation reported by Barter et al. (Eq. 1) [12], however, a mean (±SD) MPPGL of 26.60 

(±0.40) mg/g was expected based on the age of the patients (see Table 2). The 
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significant difference between the observed and the expected MPPGL (p < 0.01), 

suggests a decreased MPPGL in biliary atresia patients.  

Table 2: Total microsomal protein content before and after correction. The mean MPPGL was 

estimated at 18.73 mg/g liver tissue. The expected MPPGL was calculated based on Eq. 1, as 

previously reported by Barter et al. [12].  

Patient 
Uncorrected microsomal 

protein content per gram liver 
Recovery 

factor 
Corrected 

MPPGL 
Expected 
MPPGL 

  (mg/g liver) 

 

(mg/g liver) (mg/g liver) 

1 6.10 0.28 21.81 26.13 

2 7.63 0.50 15.26 27.04 

3 9.65 0.53 18.34 26.44 

4 4.27 0.21 20.28 26.81 

     

   

geometric mean 

   

18.73 (± 2.82) 26.60 (± 0.40) 

 

3.3 Evaluation of the zonal differences in MPPGL 

The possible difference in MPPGL between different sampling locations of the liver was 

investigated through the comparison of 4 zones (left lobe deep (LD) – left lobe peripheral 

(LP) – right lobe deep (RD) – right lobe peripheral (RP)). The same methods were 

applied as for the pooled samples and the MPPGL was calculated for each zone separately 

(Table 3). No significant difference was seen between the 4 zones (ANOVA, p>0.05). Due 

to the high variability, a high number of samples would be needed to detect a possible 

zonal difference. Therefore, it is recommended to keep using pooled samples from 

different zones of the liver in characterization experiments, such as the determination of 

the MPPGL or enzyme phenotyping reactions.  

Table 3: MPPGL measured in 4 zones of the liver, in 4 different patients (left lobe deep (LD) – left 

lobe peripheral (LP) – right lobe deep (RD) – right lobe peripheral (RP)). 

 

MPPGL (mg/g liver) 

Patient RD RP LD LP POOL 

1 19.02 16.90 26.09 27.54 21.81 

2 17.69 15.67 13.61 14.31 15.26 

3 13.62 13.25 16.24 20.19 18.34 

4 28.67 16.89 12.60 19.05 20.28 
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4 CONCLUSION 

In conclusion, the MPPGL in biliary atresia patients undergoing liver transplantation 

should be determined by using the NADPH-cytochrome reductase activity rather than 

methods using the dithionite difference spectrum, due to the presence of bilirubin. A 

mean value of 18.73 mg/g was observed in 4 patients, which was shown to be lower 

than the expected MPPGL. This suggests a decreased amount of microsomal protein in 

these pathological livers. Moreover, no zonal differences in MPPGL could be detected. 

The presented results have some limitations due to which they should be interpreted with 

caution. Firstly, the results are based on a low number of included patients (n = 4). This 

is due to the dependency of available samples in the cooperating transplantation centres. 

Also, the comparison of the observed MPPGL with the expected MPPGL does not take into 

account the inter-individual variability of the MPPGL. Despite these limitations, the 

findings are considered relevant in the light of filling the knowledge gap on specific 

paediatric patient populations. 
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CHAPTER 8 

PREDICTION OF THE PHARMACOKINETICS OF 

OMEPRAZOLE AND MIDAZOLAM IN CHILDREN WITH 

LIVER DISEASE: ARE WE THERE YET?  
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‘Science never solves a problem 

 without creating ten more’ 

- George Bernard Shaw 

 
 

 

 

 

 

 

 

 

ABSTRACT 

The effects of liver disease on the PK of children can be predicted using population-

specific PBPK models. This, however, requires the incorporation of disease related 

physiological changes into the model. A decrease in cytochrome P450 activity with 

deteriorating liver disease, as expressed by an increasing paediatric end-stage liver 

disease (PELD) score, was observed in a previous study. By introducing several 

assumptions, the activity results from this previous study were transformed into 

abundance data after dividing the patients in 4 categories based on the PELD score (A: 0-

10, B: 11-20, C: 21-30, D: 31-40). The PK of the model compounds omeprazole and 

midazolam was then predicted using the SimCYP® PBPK model. Large increases in the 

AUC of omeprazole were predicted in patients with a high PELD score (C or D). The same 

trend was observed for the plasma concentration of midazolam, where increases up to 5 

fold compared to healthy children were predicted in patients with a PELD score of 10 or 

higher. The adjustments done to the available paediatric model in order to create a 

diseased population are however not sufficient to capture the complex combination of 

physiological changes in liver disease. Nevertheless, the sole influence of changes in CYP 

abundance on the PK already provides valuable information, not in the least regarding 

more future (data)requirements to bridge the knowledge gap. 
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1 CASE 

T., a boy with biliary atresia, underwent living donor liver transplantation from his 

mother at the age of 8 months. After undergoing a Kasai portoenterostomy at a younger 

age, his condition deteriorated and a transplant was considered the only treatment 

option. On the admission for the surgery, the patient’s weight was 6.4 kg and his length 

64 cm. His albumin level was 3 g/dl (3.4-4.8 g/dl), INR 1.6, bilirubin 15.1 mg/dl (0.3-1.2 

mg/dl), ALT 235 IU/l (14-63 IU/l), and AST 568 (6-33 IU/l). At the time of 

transplantation he had a PELD score of 19. Prior to the transplantation, the boy needed 

several drugs to relieve symptoms associated with common complications of liver 

disease: omeprazole 5 mg once daily to treat reflux symptoms, furosemide (6 mg twice 

daily) and spironolactone (30 mg per day) to treat ascites and portal hypertension, and 

vitamin E and K to avoid hypovitaminosis due to the fat-malabsorption associated with 

intestinal bile acid deficiency. The boy also received co-trimoxazole (trimethoprim 40 mg 

and sulfamethoxazole 8 mg, twice a day) to treat cholangitis.  

2 INTRODUCTION 

T. is only one of the children being treated for biliary atresia and its complications. In 

Western Europe, biliary atresia occurs in 1/18000 live births [1]. The extent of the 

disease is different among patients [2]. The initial management consists of a surgical 

intervention (the Kasai portoenterostomy), in order to restore some bile flow [3]. 

However, due to the progressive nature of the disease, all children will develop portal 

fibrosis, cirrhosis and portal hypertension, to a greater or lesser extent [4]. They need 

pharmacological treatment for the associated complications, such as hypovitaminosis, 

portal hypertension and ascites.  

Liver disease is known to influence drug PK in adults [5], and dose adjustments are 

recommended in several cases, depending on the PK and toxicity properties of the drug, 

as well as the severity of liver dysfunction [5,6]. In paediatrics, however, similar dose 

adjustments are not yet common practice. The dosing regimens used in these children 

are generally based on the bodyweight or body surface area of the child, as applied for 

all children, with or without co morbidity. In the cooperating centres of our study, 

currently only the dose of paracetamol is consistently lowered (10 mg/kg instead of 15 

mg/kg). Based on the information in adults, and on the results of our study indicating a 

considerable influence of liver disease on the CYP activity in children (see Chapter 6 and 

[7]), we believe dose adjustments could be necessary for other drugs to avoid toxic 

reactions in or mistreatment of children with liver diseases. Therefore, we would like to 

investigate whether these patients actually receive the optimal dose to treat their 
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symptoms or to conquer the infection and to avoid possible adverse or toxic reactions of 

the drug.  

Due to the many practical and ethical difficulties encountered in all paediatric clinical 

trials [8,9], obtaining this information by performing an actual trial in children with liver 

disease is not obvious. Physiologically based pharmacokinetic (PBPK) modelling could 

offer an in silico approach to predict the exposure to drugs in this vulnerable population 

[10]. PBPK models are multi-scale models containing both system-specific (patient-

specific) and drug-specific properties. A specific target population can be modelled when 

specificities linked to particular organs and to a given population are used to build the 

model. In order to develop disease-specific models, disease-related physiological changes 

need to be accurately identified, as PBPK models rely on accurate and consistent 

information on physiological, biochemical and physicochemical processes [11,12]. A PBPK 

model for the prediction of the effect of liver cirrhosis on the PK of IV drugs in adults was 

successfully developed by  Edginton and Willmann [13], and extended for oral drugs by 

Johnson et al. [14]. The model contains the physiological changes in liver cirrhosis, such 

as organ blood flows, cardiac index, plasma binding proteins, hematocrit, functional liver 

volume, hepatic enzyme activity, and glomerular filtration rate. These models focus on 

an adult patient population, and are therefore not suitable for predictions in children, as 

the changes in children may not be comparable to those in adults. Moreover, the 

ontogeny information also needs to be taken into account when performing predictions in 

a paediatric population.  

To our knowledge, the paediatric PBPK models published up until now incorporated the 

maturation profiles of the enzymes or other systems, but no study was found in which a 

disease state, and more particularly liver disease, was implemented. Therefore, this 

exercise aimed to use the available algorithm for paediatric predictions, and to extend it 

with the obtained in vitro data on CYP activity in children with liver disease [7]. The 

model was used for the prediction of the PK of two model compounds, omeprazole and 

midazolam. Additionally, due to the exploratory nature of this pilot study, it is expected 

that the information gaps that hamper further optimization of the model will be revealed. 

3 METHODS 

3.1 SimCYP® Population Based ADME simulator: substrate parameters and 

clinical trial settings 

The Paediatric module of the SimCYP® ADME simulator [15] was used to simulate clinical 

trials. The prediction of the pharmacokinetics in healthy children of the model compounds 

midazolam (CYP3A4) and omeprazole (CYP2C19 and 3A4) by SimCYP® was previously 



CHAPTER 8 –PREDICTION OF THE PHARMACOKINETICS IN CHILDREN WITH LIVER DISEASE 

 

171 

 

validated by Johnson et al. [10]. The incorporation of developmental changes in 

physiology and in CYP450 expression led to the development of the paediatric module 

within the software. The substrate information, as incorporated in SimCYP® is described 

in Table 1. Simulated median clearance values were within 2- fold of the observed 

values.  

Table 1: Substrate information required to predict the PK of midazolam and omeprazole 

with SimCYP®, adapted from Johnson et al. [10]. Abbreviations: 1-HMDZ = 1-

hydroxymidazolam; 4-HMDZ =4-hydroxymidazolam; 5-HOME = 5-hydroxyomeprazole; 

B/P = blood plasma ratio; CLR = renal clearance;; fa = fraction absorbed; fu = fraction 

unbound in plasma; fuGut = unbound fraction in gut (enterocytes); fuMic = unbound 

fraction in microsomes; HLM = human liver microsomes; Km = Michaelis-Menten 

constant; MW = molecular weight; OME-S = omeprazole sulphone; QGut = drug specific 

nominal blood flow/permeability descriptor; Vmax = maximum rate. 

 

Midazolam Omeprazole 

MW (g/mol) 325.8 345.4 

fa 1 1 

fu 0.034 0.065 

fuMic 0.922 0.729 

B/P 0.55 0.6 

CLR adult (L/h) 0.085 0.034 

CYP involved 3A4 3A4 3A4 2C8 2C19 3A4 

Metabolite 1-HMDZ 4-HMDZ OME-S 5-HOME 5-HOME 5-HOME 

Km (µmol/L) 6.35 56.7 71 300 12.2 50 

Vmax ((pmol/min/pmol 
CYP) or (pmol/min/mg 
protein))  

20.6 20.7 18.2 3.3 10.8 10.9 

System a HLM Yeast b 

QGut 20 / 

fuGut 1 / 

a Microsomal system used to generate the enzyme PK parameters 
b Saccaromyces Cerevisiae cells 

 

In order to predict the PK, a virtual clinical study was performed in 1000 virtual patients 

aged 0-2 years, for each PELD category, as well as for healthy children. Dosing of 

midazolam was set at an intravenous bolus of 0.1 mg/kg, followed by a 24 h infusion of 

0.05 mg/kg/h (dose regimen for postoperative sedation [16]). The plasma concentration 

– time profiles and the concentration at steady state were evaluated, as this PK 

parameter is correlated to the degree of sedation. For omeprazole, a single dose of 1 

mg/kg of an oral solution was virtually administered. As the area under the plasma 

concentration – time curve (AUC) is correlated with the acid suppression [17], this 

parameter was compared between the groups.  
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3.2 SimCYP® Population Based ADME simulator: population parameters 

In order to evaluate the difference between the healthy paediatric population and the 

target population, i.e. children with liver disease, several ‘what if’ scenarios were created 

at the level of the abundance of the CYP isoforms. All the other population parameters 

defined in SimCYP® were left unchanged.   

The results from a previous study were used to adjust the population parameters [7]. 

The in vitro CYP activity of the six most important CYP isoforms (CYP1A2, 2C9, 2C19, 

2D6, 2E1, and 3A4) was determined in microsomes from paediatric patients undergoing 

liver transplantation for various indications [7]. Additionally, the abundance of CYP2E1 

and 3A4 was determined. In order to obtain a more homogenous data set, only the 

results of the 23 patients diagnosed with biliary atresia were selected for the clinical trial 

simulations. Due to the small number of patients, 4 categories (A to D) were created 

based on the PELD score, as depicted in Table 2. 

Table 2: Grouping of the biliary atresia patients into 4 categories following PELD score. 

Category PELD score n Mean age (years) 

A 0 - 10 5 1.30 

B 11 - 20 8 0.95 

C 21 - 30 5 0.72 

D 31 - 40 5 0.71 

 

As information on the abundance, rather than activity, is needed to insert into the 

software for the PBPK model, and abundance information was experimentally obtained 

only for CYP2E1 and 3A4, a strategy was developed to convert the available activity data 

into usable abundance data for the model. Several assumptions were made during this 

process, thus necessitating caution in the interpretation of the final results. Figure 1 

shows a summary of the assumptions and the calculations, as described hereafter.  

Due to the high variability of the activities of the isoforms, the percentage of the mean 

adult activity was calculated for each of the patients, as described in De Bock et al. [7]. 

These data show a relative result, instead of an absolute activity, and create a more 

uniform result for all isoforms.  

For CYP3A4, and in a lesser extent for CYP2E1, a positive correlation between the activity 

and abundance was observed (Figure 2). As there is no experimentally obtained 

information on the abundance of the other 4 studied isoforms (CYP1A2, 2C9, 2C19 and 

2D6), the same mechanism of changes was assumed as for CYP3A4 (and 2E1). 

Consequently, assumption 1 states that the abundance and the activity are correlated for 
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all isoforms. Following this assumption, assumption 2 can be made. This states that the 

calculated fraction of the adult activity can be considered equal to the fraction of the 

adult abundance. As such, we can convert the available results (activity) into the needed 

information (abundance). 

 

Figure 2: Positive correlation between the activity and the abundance of CYP3A4, and to a lesser 

extent of CYP2E1 (Pearson correlation coefficient of 0.869 and 0.371, respectively). 

 

The currently available information on the ontogeny of the abundance of the CYP 

isoforms is mainly expressed as the fraction of the mean adult abundance at a certain 

age. The most specific information, which is currently used in the SimCYP® model, was 

described by Johnson et al. [10]. The functions published in this article, can be used to 

calculate the predicted fraction of the adult abundance at a specific age. This point 

estimate is assumed to be correct (assumption 3), despite the known variability in 

enzyme expression. 

After application of assumptions 1 to 3, an observed and a predicted fraction of adult 

abundance of each isoform are available for each patient. The percentage difference 

between the observed and predicted fraction represents the net effect of disease on the 

abundance in the patient. The important effect of age is already taken into account when 

calculating the predicted fraction by using the ontogeny functions of Johnson et al. As 

such, assumption 4 states that the isolated effect of disease can be determined. This is 

important, as the SimCYP® simulations apply the ontogeny functions as programmed in 

the software. If the effects of disease would not be isolated from the effect of age, the 

age associated effects would be applied twice: once in the determination of the 

abundance in the patient, as this contains an effect of age per definition, and once during 

simulation by applying the ontogeny profiles of the single isoforms.  
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Subsequently, the CYP enzyme abundances as used in SimCYP® (Table 3) were adjusted 

following the percentage difference as calculated after the implementation of assumption 

4, in order to obtain an absolute abundance value (pmol/mg), usable for the execution of 

the ‘what if’ scenarios. The abundances incorporated in SimCYP® are based on a meta-

analysis of 42 to 241 liver samples [18]. 

Table 3: Default CYP isoform abundance (pmol per mg microsomal protein) in healthy adults in 

SimCYP®. Abbreviations: PM: poor metabolizers – UM: ultra rapid metabolizers. 

  Abundance 

  (pmol/mg) 

CYP1A2 52 

CYP2C9 73 

CYP2C9 PM 29 

CYP2C19 14 

CYP2D6 8 

CYP2D6 UM 16 

CYP2E1 61 

CYP3A4 137 

 

‘What if’ scenarios were performed for each PELD category. The mean effect of the 

disease was simulated by using the geometric mean of the obtained abundances within 

each category. Also, the minimal and maximal abundance of the isoforms within each 

category were used for a simulation, in order to provide information on the extremes of 

the population, i.e. what if the abundance is well conserved or induced, and what if the 

abundance is (extremely) low? Moreover, the individual variability of the abundance was 

excluded by setting the coefficient of variation (CV) on zero. As such, exclusive 

information on the effect of the disease on the abundance is provided by the simulations 

(Assumption 5).   

Finally, these ‘what if’ scenarios suggest that only the abundance is affected by the 

disease (Assumption 6). Other expected effects of the disease are ignored, such as 

potential changes in protein binding, MPPGL, and/or blood flow, on the one hand due to 

lack of data, and on the other hand for reasons of limiting the complexity. 

The obtained data after using this strategy on the available data are summarized in 

Tables 3 and 4. Table 4 illustrates, as an example, the calculations performed in order to 

obtain the geometric mean abundance of CYP3A4 of the patients in PELD category D. The 

final abundances of all the isoforms, as used for the simulations, are summarized in 

Table 5. 
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Table 4: Calculations performed in order to obtain the geometric mean abundance of CYP3A4 of 

the patients in PELD category D. The average adult activity determined in pooled human liver 

microsomes was 2020 pmol HMDZ/ (min x mg pr), the abundance used in SimCYP® is 137 pmol 

CYP3A4/mg. Abbreviations: y: years - PELD: paediatric end-stage liver disease score - HMDZ: 1-

OH-midazolam – pr: protein.  
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Table 5: Calculated abundances as used in the simulations. 

  PELD A PELD B 

  Low Mean High Low Mean High 

CYP1A2 35.5 73.1 199.9 2.1 7.3 81.5 

CYP2C9 104.6 215.6 982.0* 26.1 73.0 176.6 

CYP2C9 PM 41.6 85.6 390.1* 10.4 29.0 70.2 

CYP2C19 13.7 79.0 497.2* 0.3 7.0 653.8* 

CYP2D6 3.7 7.4 16.5 0.1 2.4 17.7 

CYP2D6 UM 7.4 14.7 33.0 0.2 4.8 35.4 

CYP2E1 32.0 66.2 149.2 9.6 30.2 111.1 

CYP3A4 45.7 130.1 272.3 2.4 13.6 313.8 

  PELD C PELD D 

  Low Mean High Low Mean High 

CYP1A2 1.1 2.3 6.2 1.6 5.5 26.0 

CYP2C9 13.0 29.0 131.1 18.3 39.8 65.9 

CYP2C9 PM 5.2 11.5 52.1 7.3 15.8 26.2 

CYP2C19 0.0** 0.5 9.7 0.9 7.9 66.9 

CYP2D6 0.0** 0.8 3.3 0.7 3.0 9.4 

CYP2D6 UM 0.1 1.7 6.6 1.4 6.0 18.8 

CYP2E1 9.1 20.0 48.7 13.7 30.5 79.4 

CYP3A4 0.7 3.8 23.4 1.1 6.7 135.3 

* SimCYP® does not accept values above 300, therefore 300 was used  

   if the abundance exceeded 300 

** SimCYP® does not accept values of 0, therefore 0.01 (the minimal 

    Accepted value) was used 

 

 

3.3 Data analysis 

The results of the predictions were graphically analysed using R® v.2.13 (R foundation 

for statistical computing, Vienna, Austria). 
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Figure 1: Flow chart of the generation of usable abundance data for the incorporation in the PBPK 

model, by stating several assumptions (grey areas).   

4 RESULTS 

The simulated AUC after administration of 1 mg/kg omeprazole in oral solution in healthy 

children from 0 to 2 years old was 1.44 mg/L.h (geometric mean; 1.39 – 1.50 mg/L.h 

95% confidence interval; median 1.35 mg/L.h). As shown in Figure 2a, significantly 

higher AUCs (15 to 65-fold higher) were predicted in the average patient in PELD 

category C, as well as in the patients in category B, C and D with the lowest CYP 

abundances. In order to be able to see the differences between healthy children and the 

other categories, Figure 2b shows the same results, but with the AUC in log scale. The 

patients in PELD category A have a similar or lower AUC than the healthy children. A 

lower or rather comparable AUC (max 2 fold higher) is to be expected in the average 
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patients in PELD category B or D, as well as in the patients in category B, C and D with 

the highest CYP abundances.   

 

 

Figure 2 a and b: Simulated AUCs of omeprazole for healthy children, and children in the 4 PELD 

categories, each time using the geometric mean value (mean) and the extremes (low: lowest CYP 

abundances, high: highest CYP abundances). Each box represents the median of the 1000 patients 

with 25 and 75% quartiles, whiskers show the minimum and maximum values, whereas the dots 

represent outliers within each group. (a) = linear y-axis. 

(a) 
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Figure 2 a and b (continued): Simulated AUCs of omeprazole for healthy children, and children 

in the 4 PELD categories, each time using the geometric mean value (mean) and the extremes 

(low: lowest CYP abundances, high: highest CYP abundances). Each box represents the median of 

the 1000 patients with 25 and 75% quartiles, whiskers show the minimum and maximum values, 

whereas the dots represent outliers within each group. (b) = log scale y-axis. 

 

The predicted plasma concentration – time profiles of midazolam of the patients in PELD 

category A were comparable to those predicted in the healthy children (see Figure 3). 

Patients with the highest abundance in category B and D also show a comparable profile 

to healthy children. In the average patient in category B, C, and D, as well as in the 

patients with lowest expected CYP abundances in these categories, a significant higher 

plasma concentration was predicted. Maximum plasma concentrations of about 5 times 

higher than in the average healthy child can be expected (Figure 3). 

 

(b) 
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Figure 3: Simulated plasma concentration – time profiles of midazolam. The grey area represents 

the 5 to 95% confidence interval of the simulations in healthy children. In each category, the 

lowest, mean and highest abundance were used to predict the PK. Compared to the healthy 

children, patients with PELD scores in the categories B, C, and D are likely to have an increased 

plasma concentration. (conc = concentration)  

5 DISCUSSION 

Drug disposition is expected to be altered in children with liver disease. However, the 

influence of liver dysfunction in children on the PK of drugs has not yet been extensively 

studied mechanistically. A recent in vitro study showed a decrease in absolute activity of 

the six most important CYP isoforms (CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4) with 

deteriorating liver dysfunction, as expressed by the PELD (paediatric end-stage liver 

disease) score [7]. PBPK modelling and simulation provides a useful tool to gain insight in 
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the (changing) PK in these patients. By means of “what if” scenarios, the effect of the 

change in enzyme activity or abundance on the PK of the model compounds omeprazole 

and midazolam can be evaluated. These compounds were selected as they are often used 

in the patients to relieve reflux symptoms and in (post-operative) sedation, respectively. 

Moreover, the compound information of these molecules available in SimCYP® is 

extensive and has been used before in paediatric PBPK models [10].  

The results from the study investigating in vitro CYP activity in the target population 

could not be used as such in the PBPK modelling software (SimCYP®). The absolute 

activity data were transformed into enzyme abundances, a process that needed the 

adoption of several assumptions. These assumptions oblige us to be careful with the 

conclusions drawn from the results. Nevertheless, by combining previously published 

ontogeny functions of the enzyme abundance [10], and the available data, the effect of 

the disease could be separated from the effect of the maturation of the enzyme 

expression. As such, the abundance in patients with a PELD score in a certain range 

could be estimated.  

The suppression of gastric acid secretion by omeprazole is correlated with the area under 

the plasma concentration – time curve (AUC) [17,19,20]. As omeprazole depends 

significantly on CYP2C19 for its metabolism, changes in the level of CYP2C19 activity will 

affect its clearance and thus the systemic exposure to the drug. A reduced clearance of 

omeprazole has been described in adults with cirrhosis, necessitating dose reductions up 

to 50% [21-25]. In children, however, the impact of liver disease on the disposition of 

omeprazole has not yet been studied. The elimination in one 5-year-old patient with liver 

disease was shown to be delayed [26]. Compared to healthy children, simulations of the 

oral administration of omeprazole 1 mg/kg to virtual populations of 1000 patients 

predicted higher AUCs of omeprazole in paediatric patients with a high PELD score 

(category C = 20-30), as well as in patients with a possible low CYP abundance and an 

intermediate to high PELD score (categories B, C, D = 10-40). These observations were 

as expected, as the patient groups in which the highest AUCs were predicted, also 

showed very low CYP2C19 abundances (even down to virtually zero). Moreover, the 

predicted AUCs within the same PELD category often showed large variability (up to 50 or 

even 500-fold), as the predictions were performed on the mean (n = 5 or 8), as well as 

on the extreme abundance values as observed in the patients within each category. This 

variability should be taken into account in further studies.  

It should be noted that CYP2C19 shows important polymorphisms which are known to 

affect enzyme activity [27], resulting in either ultra rapid metabolizers (CYP2C19*17) 

[28], or poor metabolizers (CYP2C19*2, amongst others) [29]. The genotype of the 

patients included in the study was determined, but was shown to be a poor predictor of 
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the CYP activity, as no reduced or increased activity was seen in patients carrying a SNP 

known to affect enzyme activity [7]. Therefore, the genotype was not taken into account 

when calculating the abundances necessary for this pilot study. Nevertheless, the known 

genetic variation of the different CYPs is incorporated in the SimCYP® algorithm, and is 

thus inserted in the diseased population.  

The effect of the increased AUC of omeprazole is difficult to predict, as the therapeutic 

target AUC in children is not known [19]. A larger increase in intra-gastric pH is unlikely, 

as an increased AUC has been shown to not necessarily result in a larger effect in adults 

[30]. The low risk (1-3%) of minor adverse events, such as headache, diarrhoea, and 

nausea [31] could increase due to the significant increase in predicted AUC (up to 65 

fold). Moreover, the risk of serious adverse events could become more real. Costa-

Rodrigues et al., for example, reported a dose dependent effect on the in vitro cellular 

function of osteoclasts and osteoblasts [32], with possible deleterious effects on bone 

density, and consequently a higher risk of fractures. Spontaneous bacterial peritonitis 

associated with incorrect omeprazole dosing was also observed in adults [33]. These 

examples show the importance of correct dosing of omeprazole in order to avoid possible 

severe adverse reactions. As such, a large number of paediatric patients with liver 

disease is more likely to experience adverse events when using omeprazole.   

Midazolam, a drug often used in the sedation of paediatric patients, is a widely used 

model compound to investigate CYP3A4/5 mediated drug metabolism [34,35]. The PK 

parameters were estimated after the virtual administration of the generic dose for 

paediatric post-operative monitoring, i.e. a bolus of 0.1 mg/kg, followed by an infusion of 

0.05 mg/kg/h. It should be noted that in paediatric clinical practice, the dosing is 

continuously adjusted based on the COMFORT sale, a score comprising both physiological 

and behavioural items to specifically asses sedation in paediatric intensive care patients 

and pain in postoperative infants [36,37]. Nevertheless, the simulations using the 

generic dosing give a valuable insight in the mechanisms of the changes in midazolam PK 

in children with liver disease. In children with a PELD score between 1 and 10 (category 

A), and thus with only mild liver dysfunction, plasma concentration – time profiles similar 

to those in healthy children were predicted. A distinct difference to healthy children was 

however seen when the abundances in children with higher PELD scores were 

implemented in the PBPK model (categories B, C, D = 10-40). Due to the major role of 

CYP3A4 in the metabolism of midazolam, it is not surprising that higher plasma 

concentrations are observed in children with impaired liver function and the associated 

low CYP3A4 abundance. Plasma-concentrations of up to 5-fold of the mean healthy 

concentration were predicted, due to the low CYP3A4 abundance, and the consequent 

lower midazolam clearance.  
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A similar observation was previously described by Ince et al. in children on the PICU 

during an in vivo trial, where a reduced midazolam clearance was observed due to 

inflammation. A simulation in which the known reduction in CYP3A4 abundance due to 

inflammation was applied, showed that this reduction by 80% was the major determinant 

of the reduced midazolam clearance [34]. The large variability in the PK of midazolam, 

together with the observed influence of liver disease on the PK, stresses the relevance of 

a dynamic dosing of midazolam, as over sedation is expected in children with moderate 

to severe liver disease (PELD score of 11 and higher). 

The unusual trend of a higher plasma concentration in PELD C than in PELD D for 

midazolam, and a higher AUC in PELD C than PELD D for omeprazole, is probably a result 

of the low number of patients within each group, combined with the high variability in 

activity. Moreover, by chance there is a patient with (very) high activity of all isoforms in 

PELD category D, despite his severe liver disease. This causes the strange deviation of 

the expected trend.  

6 PBPK MODELLING IN CHILDREN WITH LIVER DISEASE: 

UNCOVERING THE NEEDS 

As assumptions were needed due to incompatibilities between the collected information 

and the data needed in the simulation algorithm, continuation of this research is needed. 

Based on the predictions reported here, several options for the continuation of this 

research can be explored.  

In our opinion, increasing the number of samples would not drastically change the trend 

of the results, but could decrease the uncertainty related to the high inter-individual 

variability. The available microsomes could be further characterized. Determination of the 

abundance of all the isoforms could possibly evaluate the assumption stating that the 

abundance and the activity are correlated in all the isoforms.  

The physiological changes due to liver disease also comprise more than just altered 

CYP450 concentration and/or function. For example, changes in albumin concentrations, 

the MPPGL, liver blood flow, amongst others, were reported in adults with liver 

dysfunction [5]. As the MPPGL is an important scaling factor, we focused on the MPPGL in 

children with biliary atresia in chapter 7 of this thesis. However, additional information is 

needed before the changes in MPPGL due to liver disease could be incorporated in the 

PBPK model. Firstly, despite the observed decreased MPPGL in the patients, these results 

are based on only 4 samples. Therefore, a similar study set up should focus on the  

storage of the homogenates, in order to be able to determine the MPPGL. As such, more 

reliable information on the effect of liver disease on this scaling factor could be 
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determined. Additionally, the PBPK model adjusts the MPPGL of the virtual patients 

according to the model defined by Barter et al. [38] A correct way to change the 

coefficients of this model in function of the degree of severity of liver disease should be 

determined. 

The possible role of inflammatory cytokines, such as interleukin-6 (IL-6) in the regulation 

of the CYP activity in seriously ill paediatric patients was previously described [34,39]. 

Therefore, besides the standard tests, such as albumin, bilirubin and INR, amongst 

others, extra parameters, such as IL-6, should be investigated [34]. Hereto, a more 

profound pre-operative protocol should be developed in cooperation with the treating 

doctors, in order to fix which clinical biology tests should be performed prior to the 

transplantation. Additionally, a standardized test to determine the liver blood flow in the 

patients could provide valuable information in the investigation of drug metabolism, 

especially when the PK of high extraction ratio drugs (blood flow limited) is predicted.  

PBPK simulation results can be assessed by performing sensitivity analyses, identifying 

the key dependencies of the model [40]. Moreover, although there are no generally 

accepted criteria to validate a model, a visual predictive check can be performed to 

compare the predicted results with observed results from in vivo studies [41]. The lack of 

comprehensive in vivo results from the PK of drugs, and more specifically of the used 

model compounds omeprazole and midazolam, in children with liver disease has been 

one of the major limitations of the current study. Consequently, the execution of a 

clinical trial to provide this in vivo information should have great priority in a follow up 

study. 

7 CONCLUSION 

This study was a first attempt to incorporate in vitro obtained disease related changes 

into PBPK models. Predictions of the PK of 2 model compounds, omeprazole and 

midazolam, showed that liver disease in children may have a (large) effect on the PK of 

drugs which depend on CYP450 for their metabolism. However, the extent of the changes 

as predicted by the PBPK model should be interpreted with caution due to the many 

assumptions that were made. Moreover, the adjustments done to the available paediatric 

model (i.e. changing the absolute abundance of the CYP isoforms) in order to create a 

diseased population are not sufficient to capture the complex combination of 

physiological changes in liver disease. The information from this pilot study is 

nevertheless valuable as a starting point in guiding follow up studies in this research 

field.  
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 “The important thing is to not stop questioning.”  

― Albert Einstein

http://www.goodreads.com/author/show/9810.Albert_Einstein
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The general aim of this thesis was to investigate whether CYP450 characteristics could 

bridge the present knowledge gap on drug disposition in children with liver disease. Due 

to their important role in drug metabolism, the isoforms CYP1A2, 2C9, 2C19, 2D6, 2E1 

and 3A4 were selected for investigation. In order to determine several characteristics, 

the necessary methods were developed. For the determination of the enzyme activity in 

human liver microsomes, 2 methods were successfully developed and validated: (1) a 

derivatization-HPLC-MS/MS method and (2) a UPLC-MS/MS method. The main advantage 

of the derivatization method with pyridine-3-sulfonyl chloride was the simultaneous 

quantification of all metabolites in a single analytical run with positive ESI for mass 

spectrometric detection. Nevertheless, the UPLC-MS/MS method was eventually chosen 

to analyze the patient samples, as it showed a better sensitivity and shorter time of 

analysis than the derivatization method. Moreover, experiments showed that incubations 

of the microsomes needed to be performed with each probe substrate individually, rather 

than in cocktail. As the aim of this study is to determine absolute activity of the CYPs, 

such interactions between probe substrates could confound the results. Some other 

analytical and practical problems were encountered when performing the incubations in 

cocktail. The results of these incubations showed a larger imprecision. Moreover, the 

preparation of the cocktail of the probes in the correct concentration was difficult, as 

some probes have a poor solubility, and the maximum solvent concentration within the 

incubation should not exceed 1%. As only one metabolite of interest is present in each 

incubation sample, the correct ESI mode could be chosen for each sample individually. 

Pooling of the samples after incubation was also not possible, as this would dilute the 

samples and would probably lead to sensitivity issues for the detection of some of the  

metabolites. A possible solution to this would be the use of a mass spectrometer capable 

of in-run ESI mode switching. 

For the quantification of CYP2E1 and 3A4 in the microsomes, 2 indirect ELISAs were 

developed and validated. This type of method was preferred above a western blotting 

method, as the latter is more time-consuming and relatively prone to technical 

difficulties. Moreover, ELISAs have a higher sample throughput. Other techniques that 

can be used for the quantification of CYP enzymes are proteomics approaches or the use 

of AQUA (Absolute Quantification) probes. These MS based techniques have a high 

throughput and very good sensitivity and selectivity, but require a more difficult 

optimization procedure, as well as specialized equipment. After the fit-for-purpose 

optimization, the developed ELISAs proved to be usable for the quantification of the 

study samples. Despite the advantages over other techniques, it should be noted that the 

method for the quantification of CYP3A4 could lack specificity and could possibly also 

detect CYP3A5, but this was not evaluated during the optimization. 
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In order to determine the genotype of the patients, a workflow was implemented to 

analyse important SNPs of the highly polymorphic CYP2C9, 2C19 and 2D6 using TaqMan® 

genotyping assays. Seven SNPs (CYP2C9*2 and *3, CYP2C19*2 and *17, CYP2D6*4, 

*10 and *41) were selected based on their prevalence in the Caucasian population and 

on their significant effect on enzyme activity. Despite their high prevalence, these 7 SNPs 

are only a small fraction of the known SNPs (44, 48, +80 known haplotypes for CYP2C9, 

2C19, and 2D6, respectively). In order to obtain a more complete genotype, other 

genotyping methods, such as microarrays or next-generation sequencing should be 

considered in future experiments or studies.  

A clinical study was set up in order to collect liver samples from paediatric patients 

undergoing liver transplantation. The total number of samples collected in the study was 

only 32 (one patient was excluded due to resistant gram negative sepsis at the time of 

operation). This low number reflects the (luckily) low prevalence of end-stage liver 

disease in children, but also impeded the study as the sample size, in combination with 

the high variability of the results, was too low for a thorough statistical analysis of the 

results.  

The developed bio-analytical methods were applied to analyse the patient samples. After 

determination of the enzyme activity, the determinants of the CYP activity in this patient 

population were derived. No significant correlation of the activity with age, weight, co-

medication or genotype (despite the observation of some expected trends) was found. 

However, a clear negative correlation between the CYP activity and the Paediatric End-

Stage Liver Disease (PELD) score was observed, suggesting a decrease in activity with 

deteriorating liver function. This negative correlation is in accordance with the findings in 

adults where the CYP activity was shown to decrease with the Child-Pugh score, an 

indicator for hepatic dysfunction in adults. Moreover, the decrease in activity occurred in 

all isoforms concomitantly. Dose adjustments of drugs which depend on the CYPs for 

their metabolism seems therefore as important in children as in adults. Currently, only 

paracetamol is systematically administered in a lower dose in the paeditric patients, but 

no other dose adjustments are carried out. This is in striking contrast with the large list 

of dose recommendations for adult with liver dysfunction. 

The MPPGL (microsomal protein per gram liver) is an important scaling factor in in vitro-

in vivo extrapolation of metabolic data. The determination of the MPPGL requires the 

quantification or estimation of the CYP content of both homogenates and microsomes. 

During the project, the widely used method of Omura or Matsubara, based on the 

dithionite-difference spectrum, proved to be unusable for the study samples. The 

presence of high concentrations of bilirubin in the cholestatic samples interfered with 

spectrophotometric detection. The publication of the NCR (NADPH-cytochrome P450 
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reductase activity) method in the course of the project, in combination with the first 

article in which the method was successfully applied, provided a new possibility to 

determine the MPPGL. As the method was optimized only near the end of the project, the 

MPPGL was determined in only 4 patient samples. The results showed a decrease in 

MPGGL in paediatric patients with biliary atresia, compared to the expected value based 

on the age of the patients. In order to obtain sufficient information on the MPPGL to be 

able to adjust the age-related function in the PBPK model of SimCYP®, the MPPGL should 

be determined in patient samples over the entire age-range (from neonates to elderly) 

and in patients with different degrees of liver dysfunction. 

The generated CYP characteristics were implemented in a PBPK model in order to create 

a virtual specific population of paediatric patients with liver disease. The drug disposition 

of the model compounds omeprazole and midazolam was predicted in patients with 

varying degrees of liver dysfunction, as expressed by the PELD score. Prior to the 

predictions, several assumptions had to be made, due to missing information or 

incompatibilities between the available data and the data needed to be implemented in 

the model. Moreover, the performed adjustments to the available paediatric model in 

order to create a diseased population are not sufficient to capture the complex 

combination of physiological changes in liver disease Therefore, the results should be 

interpreted with caution. Nevertheless, alarming trends were predicted. For both model 

compounds, a large increase in exposure to the drug was predicted, starting in patients 

with moderate liver disease (PELD score >10), and reaching alarmingly high levels in 

patients with severe to very severe (PELD >20) liver dysfunction. These predictions 

provide another argument for the need for dose adjustments in children with liver 

disease. 

Despite the valuable information obtained in this study, many other aspects of the 

physiological changes in paediatric liver disease should be investigated. Or, to say it 

metaphorically: “we believe the construction works have been started, the contractor 

arrived at the construction site and the first layers of concrete to build the bridge were 

poured. However, in order to cross the huge knowledge gap, many more bricks will need 

to be produced before the bridge can be built and can be used with full confidence.”  

The further optimization of the PBPK model requires more information on the changes of 

other physiological parameters, such as protein binding or liver blood flow. Also, 

information on the influence of liver disease on creatinine clearance could be interesting 

in order to optimize the renal compartment of the PBPK model. This will however be an 

intricate task, as renal function also shows a certain ontogeny, and has been shown to 

often be compromised in patients with advanced liver disease (hepato-renal syndrome). 
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In our study, the absolute CYP activity was determined by using specific probe 

substrates. Another way to study the changes in metabolic capacity would be the in vitro 

determination of the intrinsic clearance of a certain model compound in the collected 

paediatric samples. This compound is ideally already defined in SimCYP (as the 

physicochemical characterization of the drug would be beyond the scope of the study), 

and preferably used in the regular clinical treatment of the patients. If the selected drug 

meets the latter requirement, the collection of in vivo data needed for the validation of 

the model would be less complicated, as clinical trials in children are hindered with many 

ethical and practical hurdles. If the administration of the drug is already part of the 

regular treatment, one of the main problems can be eliminated. Other considerations, 

such as sampling, still need to be taken into account. The availability of in vivo data is of 

great importance for the validation of the PBPK model. Consequently, to our knowledge, 

follow up research should most definitely focus on the design and execution of an 

informative clinical trial that provides information to validate the PBPK model.  

PBPK models can be used to help in the design of clinical trials, by providing information 

on the optimal sampling times, number of subjects and number of samples per subject. 

As many drugs are used off label, and very little information is available on drug dosing 

in children with liver disease, clinical trials in this population are needed. After the 

optimization and validation of a PBPK model for paediatric patients with liver disease, it 

could be used for this purpose.  

The optimal end point of PBPK based predictions would be the development of dose 

changing algorithms in children with liver disease. If a validated PBPK model would be 

able to accurately predict the PK in children with a certain degree of liver dysfunction, for 

example based on the PELD scores as done in this study, decreases (or increases) in 

dose could be advised. Consequently, adverse events or toxic effects could be avoided in 

case of possible overdosing, whereas the therapeutic efficiency could be increased if the 

drug dose would be too low. 

All the previously described research topics focus on the pre-transplant patients. 

However, during transplantation, many children receive (parts of) an organ originating 

from an adult donor. As such, another question arises: what is the metabolic capacity of 

the transplanted organ and how does it develop? Should we consider the age of the 

receiving patient and the known maturation of the enzymes? Or should we consider them 

as adult metabolizers? This could be important for the post-transplant treatment, for 

example for the correct dosing of the immunosuppressive drugs these patients receive. 

In summary, we successfully developed several methods for the characterization of 

CYP450 enzymes in human liver microsomes originating from diseased paediatric livers. 
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The extensively validated methods provided information on the activity and the 

abundance of (some of) the studied isoforms CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A4. 

Moreover, the most important SNPs from CYP2C9, 2C19, and 2D6 were evaluated in the 

patients. Combination of all the results leads to the identification of the paediatric end-

stage liver disease (PELD) score, a measure for the degree of liver disease, as a 

determinant of the CYP activity in children with liver disease. In contrast, no correlation 

between the activity and other patient characteristics, such as age, weight, or the 

administration of inducing or inhibiting co-medication, could be demonstrated. The 

MPPGL, an important scaling factor in in vitro-in vivo extrapolation, was shown to be 

lower in patients with biliary atresia than in healthy children. A first attempt to use a 

PBPK-model for the prediction of the drug disposition of 2 model compounds, omeprazole 

and midazolam, showed a large effect of moderate to severe liver dysfunction on the 

exposure to the drug. These predictions, however, were based on a number of 

assumptions, which make the results somewhat tricky to interpret. Nonetheless, this 

study identified the changes in CYP activity in children with liver disease and provides an 

interesting starting point to guide further studies on the pharmacokinetics in this patient 

population.  
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Very little is known on the influence of liver disease on the pharmacokinetics (PK) of 

drugs in paediatric patients. Due to many practical and ethical issues in the set up and 

execution of clinical trials in children, the use of modelling and simulation techniques, 

such as physiologically-based pharmacokinetic (PBPK) models, has gained interest. 

Disease-specific PBPK models require adequately obtained in vitro information on the 

physiological processes that are influenced by the disease. Therefore, this thesis aimed to 

characterize the CYP activity in children with hepatic dysfunction, in order to optimize a 

PBPK model specifically for this patient population. This research can be roughly divided 

in two parts: (1) a major part consisting of the development of several methods for the 

characterization of CYP450 enzymes in human liver microsomes originating from 

diseased paediatric livers, and (2) a part in which these methods were applied on patient 

samples, and in which the obtained results were used to perform a pilot-study to predict 

the drug disposition in the target population using a PBPK model.  

In the introduction the problem of off-label drug use in children is discussed. The 

administration of drugs to children without a sound knowledge on a correct 

dosing was the main reason to start up this study. One of the problems encountered in 

paediatric drug dosing is the change in drug disposition with age due to the maturation of 

the underlying physiological processes. On top of these changes with age, pathological 

conditions can also alter drug disposition. Liver disease is known to alter the drug 

disposition in adults, and recommendations for dose adjustments are available for these 

patients. However, the combination of the maturational changes in drug disposition and 

the different aetiology of liver disease in children, make it impossible to extrapolate these 

recommendations to children. After the explanation of the structure of PBPK models, 

their applications are discussed.  

The determination of the activity of the most important CYP450 isoforms CYP1A2, 2C9, 

2C19, 2D6, 2E1, and 3A4 is done through the incubation of hepatic microsomes with 

specific probe substrates, phenacetin, tolbutamide, S-mephenytoin, dextromethorphan, 

chlorzoxazone, and midazolam, respectively. The formed metabolites need to be 

quantified in order to calculate the enzyme activity. Due to insufficient sensitivity of a 

previously developed high performance liquid chromatography-tandem mass 

spectrometry (HPLC-MS/MS) method for some of the metabolites, a fast and easy 

derivatization method with pyridine-3-sulfonyl chloride (PS) is described in 

Chapter 1. Acetaminophen (CYP1A2), dextrorphan (CYP2D6), hydroxy-chlorzoxazone 

(CYP2E1) and hydroxy-mephenytoin (CYP2C19) can be derivatized because of the 

presence of a phenolic OH, whereas hydroxy-midazolam (CYP3A4) and hydroxy-

tolbutamide (CYP2C9) remain unchanged. As PS improves the ionization efficiency in the 

positive electrospray ionization (ESI) mode, the sensitivity of the detection is improved 
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significantly and meets the requirements for the activity determination. Native negative 

electrospray type molecules, moreover, become positive ESI candidates. The direct 

derivatization in the aqueous incubation medium using 20 s microwave irradiation, 

without any other sample pre-treatment steps, such as evaporation or extraction, makes 

this procedure easy to perform. Collision induced fragmentation of the derivatives 

resulted in at least one native compound, rather than derivative, specific product ion, 

thereby improving the selectivity of the method in the multiple reaction monitoring 

mode. The HPLC-MS/MS method was validated, and was demonstrated to be 

sensitive, selective, precise and accurate. The absence of a relative matrix effect was 

established, notwithstanding that an absolute matrix effect was observed.  

Despite the improved sensitivity and the necessity of only 1 generic method in the ESI + 

mode after derivatization of the metabolites with PS, the analytical run time was 14 

minutes. In order to increase the throughput of the method, an ultra high 

performance LC-MS/MS (UPLC-MS/MS) method was developed (Chapter 2). The 

metabolites, together with the internal standard chlorpropamide, were separated on a 

UPLC BEH C18 column with pre-column. A short gradient elution (total run time of 5.25 

minutes), using water with 0.1% formic acid (eluent A) and acetonitrile with 0.1% formic 

acid (eluent B) at a flow rate of 400 µl/min, was used. The metabolites were detected 

with a triple quadrupole mass spectrometer in the multiple reaction monitoring mode. 

Two runs, one in the positive ionization mode and one in the negative mode, were 

necessary for the detection of all metabolites. The necessity of two ionization modes did 

not derogate the high throughput of the method, as the incubations were performed for 

each probe individually, rather than in a cocktail, in order to avoid interactions between 

probes. As such, the ESI mode needed for the metabolite of interest can be selected for 

each incubation individually. The method was selective and showed good accuracy and 

between-day and within-day precision. The LOQ was lower than the method described in 

chapter 1 and was in full accordance with the intended application. Also, no relative 

matrix effects were observed, and the sample incubation extracts were stable after three 

freeze-thaw cycles.  

The determination of the abundance of the different isoforms in paediatric microsomes 

may provide valuable information on the mechanisms of possible changes in CYP activity 

in liver disease. Until now, western blotting was mostly used for abundance 

measurements, but this technique only provides semi-quantitative data. Therefore, this 

study aimed to develop and validate an indirect ELISA for the quantification of 

the most important CYP isoform, CYP3A4, in human liver microsomes, using 

commercially available reagents (Chapter 3). Samples, calibrators and validation 

samples were diluted to a final concentration of 10 µg microsomal protein/ml. A 
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polyclonal antibody raised against the full length human protein was used as primary 

antibody, horseradish peroxidase conjugated secondary antibodies were used for 

detection. The assay was validated for sensitivity, working range and calibration, 

accuracy and precision. Amounts of CYP3A4 between 2 and 300 pmol/mg microsomal 

protein could be quantified with a 5-parameter logistics function with 1/x weighting 

factor. Coefficients of variation of intra and inter assay variability, as well as the relative 

error and the total error, were acceptable. The cross-reactivity of the method with 

human CYP2E1 showed to have no significant effect on the accuracy of the results.  

A similar approach was used to develop an indirect ELISA for CYP2E1, an important 

isoform in many endogenous processes and in the metabolism of organic solvents 

(Chapter 4). In accordance to the CYP3A4 assay, a 5-parameter logistics function with 

1/x weighting was used for quantification. The concentration range of this assay was 4-

256 pmol CYP2E1/mg microsomal protein. The method showed acceptable intra- and 

inter-assay precision, relative error and total error. No significant cross reactivity with 

other abundant CYP isoforms was observed. 

Chapter 5 describes the workflow for genotyping of the patient samples. The 

polymorphic nature of many of the CYP isoforms leads to large interindividual differences 

in drug clearance and respons. Single nucleotide polymorphisms (SNPs) are the most 

common genetic mutations and may lead to altered activity, either abolished or reduced, 

or increased. CYP2C9, 2C19, and 2D6 belong to the Class II CYP isoforms, which are 

highly polymorphic. Based on the frequency in the Caucasian population, and on the 

significant effect on the enzyme activity, the following SNPs were studied: CYP2C9*2, 

2C9*3, 2C19*2, 2C19*17, 2D6*4, 2D6*10, 2D6*41. After the extraction of the DNA 

from liver tissue samples with a Qiagen QIAamp DNA Mini kit, it was quantified using the 

Picogreen® assay. TaqMan® genotyping assays were performed in order to detect the 

presence of the SNPs, and the patients were consequently characterized as homozygous 

wild type, heterozygous or homozygous SNP. The analysis of the patient samples was 

shown to be reliable, as the observed minor allele frequencies were similar to previously 

reported frequencies based on the analysis of large populations.  

A study was set up to collect samples from the explanted livers from children undergoing 

liver transplantation for various indications, such as biliary atresia, antitrypsin 

deficiency, and cystic fibrosis, amongst others. Chapter 6 describes the analysis of the 

patient samples using the previously described developed methods, in order to obtain 

information on several CYP characteristics. A hypervariable activity was observed for all 

the isoforms. Compared to an average adult activity, low activities were seen for CYP1A2, 

2C19, 2E1 and 3A4. For CYP3A4, and to a lesser extent for CYP2E1, a positive correlation 

between activity and abundance was observed. In this population, age, co-medication, 
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and genotype (unless a null-allele was present) could not be used as predictors for the 

CYP activity. In contrast, the Paediatric End-stage Liver Disease (PELD) score was 

negatively correlated with the ln(activity). This suggests a decrease in CYP activity 

with deteriorating hepatic function. Moreover, the activity of all isoforms was 

correlated, demonstrating a concomitant decrease of all isoforms in young 

patients with liver disease. To our knowledge, this is the first study to evaluate CYP 

activity in children with hepatic impairment. The presented data may provide support in 

the further optimization of a disease-specific model in this patient population.  

In Chapter 7, the determination of the microsomal protein per gram of liver (MPPGL) in 

4 biliary atresia patients undergoing liver transplantation is described. The MPPGL is an 

important scaling factor in the in vitro-in vivo extrapolation (IVIVE) of metabolic data 

obtained in liver microsomes. It is known to be affected by age and possibly by liver 

disease. An important methodological consideration is discussed, as the presence of 

bilirubin in the homogenates and microsomes makes it impossible to use the dithionite 

difference spectrum. Therefore, the NADPH-cytochrome reductase activity was used to 

determine the recovery factor. A mean value of 18.73 (± 2.82) mg/g (geometric mean ± 

SD, n=4, 0.6-1.6 years old) was observed, which is lower than the expected MPPGL 

based on the age of the patients (26.60 ± 0.40 mg/g). This suggests a decreased 

amount of microsomal protein in the livers of biliary atresia patients. Moreover, 

no differences in MPPGL between different zones of the liver could be detected. 

The population-specific information on the CYP characteristics was subsequently 

implemented in a paediatric PBPK model (SimCYP®) for the prediction of the drug 

disposition of the model compounds omeprazole and midazolam (Chapter 8). The 

patients were divided in 4 categories based on the PELD score (A: 0-10, B: 11-20, C: 21-

30, D: 31-40), as previously a decrease in cytochrome P450 activity with deteriorating 

liver disease, as expressed by an increasing PELD score, was observed. The activity 

results within each category were transformed into abundance data, by introducing 5 

assumptions. The predictions of the drug disposition showed a large increase in the AUC 

of omeprazole in patients with a high PELD score (C or D). Moreover, the results within 

each category were highly variable. The same trend was observed for the plasma 

concentration of midazolam, where increases up to 5 fold compared to healthy children 

were predicted in patients with a PELD score of 10 or higher. We acknowledge however 

that the performed adjustments to the available paediatric model in order to 

create a diseased population are not sufficient to capture the complex 

combination of physiological changes in liver disease. Nevertheless, the sole 

influence of changes in CYP abundance on the drug disposition already provides valuable 

information to start filling the knowledge gap. 
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Er is weinig bekend over de invloed van leverlijden op de farmacokinetiek (PK) van 

geneesmiddelen in pediatrische patiënten. Het opzetten en uitvoeren van klinische 

studies in kinderen brengt verschillende praktische en ethische hindernissen met zich 

mee. Daardoor groeit de interesse in modellerings en simulatie (M&S) technieken, zoals 

fysiologisch-gebaseerde farmacokinetische (physiologically-based pharmacokinetic; 

PBPK) modellen. PBPK modellen die specifiek voor een bepaalde pathologie gebruikt 

worden, vereisen adequaat verkregen in vitro informatie omtrent de fysiologische 

processen die beïnvloed worden door de betrokken ziekte. Het doel van deze thesis was 

het karakteriseren van de cytochroom P450 (CYP450) activiteit in kinderen met 

leverlijden om het PBPK model specifiek voor deze populatie (verder) te optimaliseren. 

Het project kan opgedeeld worden in 2 delen: (1) een groot deel bestaat uit de 

ontwikkeling van diverse methodes voor de karakterisatie van de CYP450 enzymen in 

humane levermicrosomen afkomstig van pediatrische leverpatiënten, gevolgd door (2) 

het toepassen van deze methodes op de patiëntstalen. De bekomen resultaten werden 

vervolgens gebruikt in een pilootstudie, waarin de farmacokinetiek in de doelpopulatie 

werd voorspeld met behulp van het PBPK model.  

De introductie beschrijft het probleem van off-label gebruik van geneesmiddelen in 

kinderen. Het frequent gebruik van geneesmiddelen aan kinderen zonder 

uitgebreide kennis over correcte dosering was de drijfveer van deze studie. Een 

belangrijk aspect van dit probleem vindt zijn oorsprong in de verandering van de 

geneesmiddeldispositie met de leeftijd door de ontwikkeling van de onderliggende 

fysiologische processen. Het is bovendien gekend dat leverlijden ook de PK in 

volwassenen beïnvloedt en bijgevolg zijn er aanbevelingen voor doseringsaanpassingen 

beschikbaar voor gebruik in deze patiënten. De combinatie van de 

ontwikkelingsgerelateerde veranderingen en de andere etiologie van leveraandoeningen 

in kinderen, zorgt ervoor dat deze doseringsaanpassingen niet zomaar geëxtrapoleerd 

kunnen worden naar kinderen. Verder wordt in de introductie de structuur van PBPK 

modellen besproken, alsook hun applicaties.  

De activiteit van de belangrijkste CYP450 isovormen CYP1A2, 2C9, 2C19, 2D6, 2E1 en 

3A4 kan worden bepaald door incubaties van levermicrosomen met specifieke probes  

(respectievelijk fenacetine, tolbutamide, S-mefenytoïne, dextromethorfan, 

chlorzoxazone, en midazolam). Om de enzymactiviteit te berekenen moeten de 

gevormde metabolieten gekwantificeerd worden. Aangezien een vorige hogedruk 

vloeistof chromatografie-tandem massa spectrometrische (HPLC-MS/MS) methode 

onvoldoende gevoelig was voor de kwantificatie van sommige metabolieten, werd een 

snelle en makkelijke derivatizatiemethode met pyridine-3-sulfonyl chloride (PS) 

ontwikkeld (Hoofdstuk 1). De aanwezigheid van een fenolische hydroxylfunctie zorgde 
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ervoor dat de metabolieten acetaminofen (CYP1A2), dextrorfan (CYP2D6), hydroxy-

chlorzoxazone (CYP2E1) en hydroxy-mefenytoïne (CYP2C19) gederivatiseerd worden; 

hydroxy-midazolam (CYP3A4) en hydroxy-tolbutamide (CYP2C9) bleven onveranderd. De 

sensitiviteit van de elektrospray ionizatie (ESI) detectie werd significant verhoogd door 

de aanwezigheid van de PS-groep en voldeed aan de eisen voor de activiteitsbepalingen. 

Bovendien werd het mogelijk moleculen met intrinsieke negatieve ESI eigenschappen 

toch in de positieve ESI modus te detecteren. De directe derivatizatie in waterig milieu 

werd uitgevoerd door 20 s microgolf bestraling, zonder voorafgaande staalvoorbereiding 

zoals evaporatie of extractie. Bijgevolg is dit een snelle en makkelijk uitvoerbare 

procedure. Na fragmentatie van de gederivatiseerde moleculen werd een product-ion 

gevormd specifiek aan de oorspronkelijke molecule, waardoor de selectiviteit van de 

methode in de ‘multiple reaction monitoring’ modus verhoogd werd. De HPLC-MS/MS 

methode werd gevalideerd en was sensitief, selectief, precies en accuraat. Er werd 

een absoluut matrix effect geconstateerd, maar geen relatief matrix effect.  

De derivatizatiemethode leidde tot een verbeterde gevoeligheid en slechts 1 generische 

methode in de ESI+ modus, maar had een analysetijd van 14 minuten. Om de 

performantie te verhogen werd een ultra high performance LC-MS/MS (UPLC-

MS/MS) methode ontwikkeld (Hoofdstuk 2). De metabolieten en de interne 

standaard werden gescheiden op een UPLC BEH C18 kolom met pre-kolom. Een korte 

gradiëntelutie (totale analysetijd 5,25 minuten) werd toegepast met water met 0,1% 

mierenzuur (eluens A) en acetonitrile met 0,1% mierenzuur (eluens B) aan een 

vloeisnelheid van 400 µL/min. De metabolieten werden gedetecteerd met een triple 

quadrupool massaspectrometer in de ‘multiple reaction monitoring’ modus. Detectie van 

alle metabolieten vereiste 2 analysegangen: één in de positieve ESI modus, en één in de 

negatieve ESI modus. De noodzaak voor 2 analysegangen bracht de performantie van de 

methode echter niet in het gedrang, aangezien de incubaties steeds werden uitgevoerd 

met slechts 1 probe en niet in een cocktail, en dit om interacties tussen de probes te 

vermijden. Bijgevolg kon telkens voor de gewenste metaboliet de aangepaste ESI modus 

geselecteerd worden. De methode was selectief en had een goede accuraatheid en 

precisie. De kwantificatielimiet lag lager dan bij de derivatizatiemethode uit hoofdstuk 1 

en voldeed aan de noden voor de applicatie. Er werd eveneens geen relatief matrixeffect 

geconstateerd, en de stalen waren stabiel na 3 vries-dooi cycli.  

De abundantie van de verschillende CYP isovormen in pediatrische microsomen kan 

waardevolle informatie aanleveren m.b.t. de mechanismen van de mogelijke 

veranderingen in CYP activiteit ten gevolge van leverlijden. Western blotting werd tot op 

heden het vaakst gebruikt voor de bepaling van de abundantie, maar deze techniek 

levert enkel semi-kwantitatieve resultaten op. Daarom werd met behulp van commercieel 
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beschikbare reagentia een indirecte ELISA ontwikkeld en gevalideerd voor de 

kwantificatie van de belangrijkste isovorm CYP3A4 in humane levermicrosomen 

(Hoofdstuk 3). Stalen, kalibratoren en validatiestalen werden verdund tot een finale 

concentratie van 10 µg microsomaal proteïne/mL. Een polyclonaal antilichaam gericht 

tegen het volledige humaan proteïne werd gebruikt als primair antilichaam. Het 

secundaire detectieantilichaam was geconjugeerd met mierikswortelperoxidase voor 

detectie. De methode werd gevalideerd voor sensitiviteit, bereik en kalibratiecurve, 

accuraatheid en precisie. Concentraties CYP3A4 tussen 2 en 300 pmol/mg microsomaal 

proteïne konden gekwantificeerd worden met een 5-parameter logistische functie met 

een 1/x weegfactor. De variatiecoëfficiënten van de intra- en inter-assay variabiliteit 

waren aanvaardbaar goed, net zoals de relatieve fout (accuraatheid) en de totale fout. Er 

was geen significante kruisreactiviteit met CYP2E1. 

Een gelijkaardige benadering werd gebruikt voor de ontwikkeling van een indirecte 

ELISA voor de kwantificatie van CYP2E1, een isovorm met een belangrijke rol in 

verschillende endogene processen en in de metabolisatie van organische solventen 

(Hoofdstuk 4). Net zoals in de CYP3A4 methode werd een 5-parameter logistische 

functie met 1/x weegfactor gebruikt voor de kwantificatie. De methode had een goede 

intra- en inter-assay precisie, relatieve fout en totale fout. De methode vertoonde geen 

kruisreactiviteit met andere abundante CYP isovormen.  

In hoofdstuk 5 wordt de workflow voor het genotyperen van de patiënten 

besproken. Er ontstaat een grote interindividuele variabiliteit in geneesmiddelklaring en -

respons door de polymorfismen van sommige CYP isovormen. Single nucleotide 

polymorphismen (SNPs) zijn de meest voorkomende genetische mutaties en kunnen 

leiden tot veranderde activiteit, zowel verlaagd, onbestaande, als verhoogd. Doordat ze 

belangrijke polymorfismen bevatten, zijn CYP2C9, 2C19 en 2D6 zgn. Klasse II CYPs. Op 

basis van voorkomen in de Kaukasische populatie en significant effect op de 

enzymactiviteit werden volgende SNPs bestudeerd: CYP2C9*2, 2C9*3, 2C19*2, 

2C19*17, 2D6*4, 2D6*10, 2D6*41. Na extractie van DNA met behulp van een Qiagen 

QIAamp DNA Mini kit uit de leverstalen, werd het DNA gekwantificeerd met de 

Picogreen® assay. TaqMan® genotyping assays werden gebruikt om de aanwezigheid van 

de SNPs te detecteren. Vervolgens werden de patiënten gekarakteriseerd als homozygoot 

wild type, heterozygoot of homozygoot voor de SNP. De analyse van de patiëntstalen 

bleek betrouwbaar, aangezien de gevonden allelefrequenties gelijkaardig waren aan deze 

bekomen na analyse van grotere populaties.  

Er werd een studie opgezet om leverstalen te collecteren van de geëxplanteerde levers 

van kinderen die een levertransplantatie ondergaan voor verschillende indicaties, zoals 

o.a. biliaire atresie, antitrypsine deficiëntie of mucoviscidose. In hoofdstuk 6 wordt 
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de analyse van de patiëntstalen om informatie over de CYP eigenschappen te bekomen 

met behulp van de hierboven beschreven methodes besproken. Voor alle isovormen werd 

een ‘hypervariabele’ activiteit geobserveerd. Vergeleken met de activiteit in volwassenen, 

vertoonden vooral CYP1A2, 2C19, 2E1 en 3A4 een lage activiteit. Voor CYP3A4, en in 

mindere mate voor CYP2E1, werd een positieve correlatie tussen de activiteit en de 

abundantie gezien. Leeftijd, co-medicatie of genotype (tenzij er een nul-allele aanwezig 

is) waren geen goede predictoren van de CYP activiteit in deze populatie. De Paediatric 

End-stage Liver Disease (PELD) score was wel negatief gecorreleerd met de ln(activiteit), 

wat suggereert dat de CYP activiteit daalt wanneer de leverfunctie slechter wordt. 

Bovendien was de activiteit van alle isovormen gecorreleerd, wat wijst op een 

gelijktijdige daling in de activiteit van alle isovormen in jonge patiënten met 

leverlijden. Dit is de eerste studie die de CYP activiteit evalueert in kinderen met 

leverlijden. De bekomen resultaten kunnen ondersteuning bieden in de verdere 

optimalisatie van een pathologie-specifiek model in deze patiënten populatie.  

De bepaling van de MPPGL (microsomaal proteïne per gram lever) in 4 patiënten met 

biliaire atresie wordt beschreven in hoofdstuk 7. De MPPGL is een belangrijke 

schalingsfactor in de in vitro-in vivo extrapolatie (IVIVE) van metabole gegevens 

verkregen in microsomen. Het is gekend dat de MPPGL afhankelijk is van leeftijd en 

mogelijk van leverziekte. Enkele belangrijke methodologische overwegingen worden 

besproken, zoals de aanwezigheid van bilirubine die de analyse met het ‘dithioniet-

difference spectrum’ onmogelijk maakt. Bijgevolg wordt de recoveryfactor bepaald d.m.v. 

de NADPH-cytochroom reductase activiteit. Een gemiddelde waarde van 18,73 (±2,82) 

mg/g (geometrisch gemiddelde ± SD, n=4, 0,6-1,6 jaar oud) werd bepaald in de 

patiënten, een resultaat lager dan de verwachte MPPGL op basis van hun leeftijd (26,60 

± 0,40 mg/g). Dit suggereert een gedaalde hoeveelheid microsomaal proteïnen in de 

lever van patiënten met biliaire atresie. Bovendien werden er geen zonale verschillen in 

MPPGL gedetecteerd.  

De verkregen populatiespecifieke informatie over de CYP eigenschappen werd vervolgens 

geïmplementeerd in een pediatrisch PBPK model (SimCYP®). De PK van de 

modelcomponenten omeprazole en midazolam werd voorspeld (hoofdstuk 8). De 

patiënten werden verdeeld in 4 categorieën op basis van de PELD score (A: 0-10, B: 11-

20, C: 21-30, D: 31-40), aangezien aangetoond werd dat de CYP activiteit gecorreleerd 

is met de PELD score. De activiteitsdata werden getransformeerd in informatie m.b.t. de 

abundantie aan de hand van verschillende assumpties. De voorspelde PK toonde een 

grote stijging in de plasma AUC van omeprazole in de patiënten met een hoge PELD 

score (C of D). Bovendien waren de resultaten binnen elke categorie ook zeer variabel. 

Dezelfde trend werd voorspeld voor de plasmaconcentraties van midazolam, waarvoor 
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stijgingen tot 5-voud werden voorspeld t.o.v. gezonde kinderen in patiënten met een 

PELD score van 10 of hoger. We benadrukken echter wel dat de bovenstaande 

aanpassingen aan het pediatrische PBPK model om deze pathologie specifieke 

populatie te creëren, onvoldoende zijn om de complexe combinatie van 

fysiologische veranderingen in de lever volledig te omvatten. Desondanks bezorgt 

de invloed van enkel de verandering in CYP abundantie op de farmacokinetiek in kinderen 

met leverlijden ons reeds waardevolle informatie om het opvullen van de huidige 

kenniskloof aan te vatten.  



 

 

 



211 

 

CURRICULUM VITAE - LIES DE BOCK 

PERSONALIA 

Name:  Lies De Bock 

Address: Georges Dumontstraat 29

  9600 Ronse 

 

Date of Birth:  14/11/1985 

Place of Birth:  Ronse 

Nationality:  Belgian 

 

 

PHD PROJECT 

Pharmacokinetics in children with liver disease: can population-specific ex vivo 

obtained CYP450 characteristics bridge the knowledge gap? 

Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University 

Prof. Dr. Jan Van Bocxlaer and Prof. Dr. Koen Boussery  

Start September 2008 - Expected graduation: June 2014 

 

This study aimed to characterise the cytochrome P450 enzymes in children with liver 

disease. After the development of the necessary analytical methods, the evaluation of the 

information on the activity, abundance, and genotype of the 6 most important isoforms 

showed that the CYP activity decreases with deteriorating liver function. The obtained in 

vitro results are valuable for the optimization of a disease-specific PBPK model.   

 

Educational activities 

 Guidance of Master thesis students (MSc in Pharmaceutical Care and MSc in Drug 

Development): 

 

o De invloed van leverlijden op de metaboliserende capaciteit van de lever bij 

kinderen: bereiding, karakterisatie en kwalitatieve controle van microsomen (The 

influence of liver disease on the metabolic capacity of the liver in children: 

preparation, characterization and qualitative control of microsomes). Els 

Dumoulin, 1st Master Pharmaceutical care (2008-2009). 

 

o Optimalisatie en validatie van een LC-MS methode voor gederivatiseerde 

metabolieten m.b.t. de in vitro activiteitsbepaling van CYP450 bij kinderen met 

ernstig leverlijden (Optimization and validation of an LC-MS method for 

derivatized metabolites in the in vitro activity determination of CYP450 in children 

with liver disease). Sylvie Mulliez, 1st Master in Drug Development (2009-2010). 

 

o Optimalisatie en validatie van een enzyme-linked immunosorbent assay methode 

voor de kwantificatie van CYP2E1 in microsomen (Optimization and validation of 

an enzyme-linked immunosorbent, assay for the quantification of CYP2E1 in 

microsomes). Michiel Beckers, 1st Master Pharmaceutical care (2010-2011). 

  

o Invloed van T-2 toxine, al dan niet in combinatie met een mycotoxine binder, in 

varkensvoeder op de activiteit van CYP3A bij het varken (The influence of T-2 

toxin in pig feeds, with or without the addition of a mycotoxin binder, on the 

activity of CYP3A in pigs). Tine De Vleeschouwer, 1st Master Pharmaceutical care 

(2011-2012). 



CURRICULUM VITAE – LIES DE BOCK 

212 

 

 Organization and guidance of the practical exercises of the course “Medical 

Biochemistry”  (3rd BSc in Pharmaceutical Sciences) 

 

 Guidance of student groups in the Pharmaceutical Bachelor projects of the BSc in 

Pharmaceutical Sciences 

 

Extra training  

 Workshop on Pharmacokinetic and Pharmacodynamic Modelling using The Population 

Approach. By Prof. Dr. Nick Holford (University of Auckland). July, 6-7, 2009. Woluwe, 

Belgium. 

 

 Pharmacokinetics. Advanced Course organized by the Leiden/Amsterdam Centre for 

Drug Research (LACDR). September 27-29, 2010. Oegstgeest, the Netherlands. 

 

 Clinical studies: study design, implementation and reporting. August 29-30, 2012. 

Ghent, Belgium. 

 

 Project Management. May 6-8, 2014. Ghent, Belgium. 

 

Memberships 

 Belgian Society for Mass Spectrometry (BSMS): 2009–2014 

 International Society for the Study of Xenobiotics (ISSX): 2012–2013 

 American Society for Pharmacology and Experimental Therapeutics (ASPET): 2012-

2013 

 

EDUCATION 

Master in Pharmaceutical Sciences  

Ghent University  

Graduated June 2008 with distinction 

 

Master Thesis: Mimicking the lipid composition, organization and the properties of the 

unique skin-surface biofilm vernix caseosa. 

Leiden/Amsterdam Centre for Drug Research (LACDR), Department of Drug Delivery 

Technology, Prof. Dr. Joke Bouwstra (Erasmus Exchange Program, 2006-2007) 

 

Student delegate (3rd BSc, 1st and 2nd MSc), graduation speech on the solemn 

proclamation of the MSc in Pharmaceutical Sciences, 2008. 

 

Specific Teachers training 

CVO De Vlaamse Ardennen   

Graduated June 2012 with great distinction 

 

Latin-Mathematics (8h) 

Koninklijk Atheneum Ronse   

Graduated June 2003 

 

 



CURRICULUM VITAE – LIES DE BOCK 

213 

 

PUBLICATIONS 

Papers published in peer reviewed journals 

 

L. De Bock, S. Vande Casteele, S. Mulliez, K. Boussery, J. Van Bocxlaer. In vitro 

cytochrome P450 activity: Development and validation of a sensitive high performance 

liquid chromatography-tandem mass spectrometry method for the quantification of six 

probe metabolites after derivatization with pyridine-3-sulfonyl chloride. Journal of 

Chromatography A, 1218 (2011) 793-801. 

 

L. De Bock, K. Boussery, P. Colin, J. De Smet, H. T’jollyn, J. Van Bocxlaer. Development 

and validation of a fast and sensitive UPLC-MS/MS method for the simultaneous 

quantification of six probe metabolites for the in vitro determination of cytochrome P450 

activity. Talanta, 89 (2012) 209-216. 

 

L. De Bock, P. Colin, K. Boussery, J. Van Bocxlaer. Development and validation of an 

enzyme-linked immunosorbent assay for the quantification of cytochrome 3A4 in human 

liver microsomes. Talanta, 99 (2012) 357-362. 

 

P. Colin, L. De Bock, H. T’jollyn, K. Boussery, J. Van Bocxlaer. Development and 

qualification of a fast and uniform approach to quantify β-lactam antibiotics in human 

plasma by solid phase extraction-liquid chromatography-electrospray-tandem mass 

spectrometry. Talanta, 103 (2013) 285-293. 

 

L. De Bock, K. Boussery, M. Van Winckel, P. De Paepe, X. Rogiers, X. Stephenne, E. 

Sokal, J. Van Bocxlaer. In vitro cytochrome P450 activity decreases in children with high 

Paediatric End-Stage Liver Disease scores. Drug Metabolism and Disposition, 41 (2013) 

390-397. 

 

L. De Bock and A. Osselaere, V. Eeckhoudt, P. De Backer, J. Van Bocxlaer, K. Boussery, 

S. Croubels. Hepatic and intestinal CYP3A expression and activity in broilers. Journal of 

Veterinary Pharmacology and Therapeutics, 36 (2013) 588-593. 

 

A. Osselaere, S.J. Li, L. De Bock, M. Devreese, J. Goossens,V. Vandenbroucke, J. Van 

Bocxlaer, K. Boussery, F. Pasmans, A. Martel, P. De Backer, S. Croubels. Toxic Effects of 

Dietary Exposure To T-2 Toxin On Intestinal And Hepatic Biotransformation Enzymes and 

Drug Transporter Systems In Broilers. Food and Chemical Toxicology, 55 (2013) 150-155. 

 

L. De Bock and J. Goossens, A. Osselaere, E. Verbrugghe, M. Devreese, K. Boussery, J. 

Van Bocxlaer, P. De Backer, S. Croubels. The mycotoxin T-2 inhibits hepatic cytochrome 

P4503A activity in pigs. Food and Chemical Toxicology, 57 (2013) 54-56. 

 

K. Cattoor, M. Dresel, L. De Bock, K. Boussery, J. Van Bocxlaer, Remon J-P, D. De 

Keukeleire, D. Deforce, T. Hofmann, A. Heyerick. Metabolism of Hop-Derived Bitter Acids. 

Journal of Agricultural and Food Chemistry, 61 (2013) 7916–7924. 

 

L. De Bock, P. Colin, K. Boussery, J. Van Bocxlaer. Quantification of cytochrome 2E1 in 

human liver microsomes using a validated indirect ELISA. Journal of Pharmaceutical and 

Biomedical Analysis, 88 (2014) 536-541. 

 



CURRICULUM VITAE – LIES DE BOCK 

214 

 

L. De Bock, K. Boussery, R. De Bruyne, M. Van Winckel, X. Stephenne, E. Sokal, J. Van 

Bocxlaer. Microsomal protein per gram of liver (MPPGL) in paediatric biliary atresia 

patients. Journal of Biopharmaceutics and Drug Disposition, (2014) DOI: 

10.1002/bdd.1895. 

 

CONFERENCE PARTICIPATIONS 

Oral presentations 

 

Annual BSMS Meeting on Mass spectrometry. April 29, 2011. Le Grand Hornu, Belgium. 

In vitro cytochrome P450 activity: Development and validation of a sensitive high 

performance liquid chromatography-tandem mass spectrometry method for the 

quantification of six probe metabolites after derivatization with pyridine-3-sulfonyl 

chloride.  

L. De Bock, S. Vande Casteele, S. Mulliez, K. Boussery and J. Van Bocxlaer. 

 

Poster presentations 

 

Annual BSMS Meeting on Mass spectrometry. April 16, 2010. Woluwe, Belgium.  

In vitro cytochrome P450 activity in children with severe hepatic dysfunction: a UPLC-

MS/MS method for the simultaneous quantification of six probe metabolites.  

L. De Bock, K. Boussery, M. Van Winckel, P. De Paepe, E. Sokal, X. Stephenne, J. Van 

Bocxlaer. 

 

Annual Pharmacokinetics United Kingdom (PKUK) Meeting. November 9-11, 2011. 

Durham, United Kingdom.  

The influence of severe hepatic dysfunction on the metabolic capacity of the liver in 

children: Composition and characterization of a liver tissue bank.  

L. De Bock, K. Boussery, M. Van Winckel, P. De Paepe, X. Stephenne, E. Sokal, J. Van 

Bocxlaer. 

 

International Conference on Mass spectrometry NVMS-BSMS. March 29-30, 2012. 

Kerkrade, the Netherlands.  

Cytochrome P450 activity in children with severe hepatic dysfunction: application of a 

UPLC-MS/MS method.  

L. De Bock, K. Boussery, M. Van Winckel, P. De Paepe, X. Stephenne, E. Sokal, J. Van 

Bocxlaer. 

 

19th MDO and 12th European ISSX Meeting. June 17-21, 2012. Noordwijk-aan-Zee, the 

Netherlands. 

Hypervariable cytochrome P450 activity in children with severe hepatic dysfunction.  

L. De Bock, K. Boussery, M. Van Winckel, P. De Paepe, X. Stephenne, E. Sokal, J. Van 

Bocxlaer. 

 

Knowledge for growth. May 30, 2013. Ghent, Belgium.  

CYP450 activity in children decreases with high pediatric end-stage liver disease scores.  

L. De Bock, K. Boussery, M. Van Winckel, P. De Paepe, X. Rogiers, X. Stephenne, E. 

Sokal, J. Van Bocxlaer. 

 



CURRICULUM VITAE – LIES DE BOCK 

215 

 

Other attended conferences 

 

International Conference on Mass spectrometry NVMS-BSMS. March 26-27, 2009. 

Kerkrade, the Netherlands. 

 

Joint Beltox-Invitrom Congress: “Liver toxicity: from in vitro to man”. November 25, 

2009. Edegem, Belgium. 

 

Recent progress in drug disposition science: let’s think mechanisms. Mini symposium 

organized by the Department of Pharmaceutical Sciences of the Katholieke Universiteit 

Leuven. March 25, 2010. Leuven, Belgium. 

 

20 years of hepato-pancreato and biliary surgery at UZ Ghent. September 9-10, 2010. 

Ghent, Belgium.  

 

First Symposium of the BPCRN (Belgian Pediatric Clinical Research Network). September 

9, 2011. Brussels, Belgium. 

 

Opening lecture of EDAN: The role of PBPK modelling in drug development, by Malcolm 

Rowland. March 25, 2012. Leuven, Belgium. 

 

Annual BSMS Meeting on Mass Spectrometry. May 3, 2013. Antwerp. Belgium. 



 

 

 

 



 

 

I may not have gone  

where I intended to go,  

but I think I have ended up  

where I needed to be  

- Douglas Adams 

 

 

 

 

 

 


	1 DOCTORAAT op 060514
	2 DOCTORAAT - chapter INTRODUCTION-FINAL
	3 DOCTORAAT - chapter AIMS and OUTLINE-FINAL
	4 DOCTORAAT - chapter DERIVATIZATION method-FINAL
	5 DOCTORAAT - chapter UPLC method-FINAL
	6 DOCTORAAT - chapter ELISA 3A4 method-FINAL
	7 DOCTORAAT - chapter ELISA 2E1 method-FINAL
	8 DOCTORAAT - chapter Genotyping-FINAL
	9 DOCTORAAT - chapter RESULTS-FINAL
	a10 DOCTORAAT - chapter MPPGL-FINAL
	a11DOCTORAAT - chapter PBPK MODEL-FINAL
	a12 DOCTORAAT - GENERAL CONCLUSION and FUTURE PERSPECTIVES-FINAL
	a13 DOCTORAAT - SUMMARY-FINAL
	a14 DOCTORAAT - SAMENVATTING-FINAL
	a15 DOCTORAAT - Curriculum vitae-FINAL



