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1. Antibiotic resistance 

 

1.1. Introduction 

The importance of the discovery and the use of antibiotics for the history of mankind is 

undeniable. In 1928, the first antibiotic, penicillin, was serendipitously discovered by Sir 

Alexander Fleming. However, it was not until during World War II that the large scale 

production was developed (Kardos & Demain, 2011) and it is not unthinkable that the 

availability of penicillin to the Allies has affected the outcome of this war (Wainwright, 

2004). This large scale production meant the onset of the "golden age of antibiotic discovery", 

which took place between the 1940s and the 1960s, while since the 1970s the discovery of 

new antibiotic classes has slackened (Walsh & Wencewicz, 2014). Most of the antibiotics 

which were introduced since that time have been chemical modifications of previously 

discovered classes (Powers, 2004). In 1945, in an interview with The New York Times, Sir 

Alexander Fleming cautioned that misuse of penicillin could lead to the appearance of 

resistant mutant bacteria (Alanis, 2005). Unfortunately, he has been proven right and 

nowadays, antibiotic resistance is considered as one of the major global public health threats. 

 

1.2. Definitions  

Although the subject of this thesis is resistance to “antibiotics”, it is nevertheless appropriate 

to define a number of commonly used related terms. The general term “antimicrobial” refers 

to any compound, including antibiotics and biocides, that acts in an inhibitory or lethal way 

against microorganisms (Capita & Alonso-Calleja, 2013). Antibiotics are natural, 

semi-synthetic or synthetic drugs, which are administered at low concentrations to treat, 

control or prevent infectious diseases in humans, animals or plants (Capita & Alonso-Calleja, 

2013). They are also used as growth promoters in animal production to improve the efficiency 

of feed utilization. The mechanisms by which antibiotic growth promoters (AGPs) exert their 

beneficial function is not totally clear yet. The most widely accepted hypothesis is that AGPs 

modulate the intestinal microbiota by an antibacterial action which can result in: I) decreased 

competition for nutrients, II) reduction in microbial metabolites that depress growth, 

III) enhanced nutrient absorption by reduction in gut size, including thinner intestinal villi and 

total gut wall, and IV) reduction in opportunistic pathogens and subclinical infection (Dibner 

& Richards, 2005). The antibacterial mechanism of AGPs however has been doubted and an 

alternative hypothesis, an anti-inflammatory effect of AGPs, has been proposed (Niewold, 
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2007). According to this investigator, phagocytic inflammatory cells can accumulate 

antibiotics resulting in an attenuation of the inflammatory response. Consequently, the levels 

of proinflammatory cytokines would be lower than those in untreated animals, which would 

result in a lower catabolic stimulus (Niewold, 2007). Biocides on the other hand are defined 

as “Active substances and preparations containing one or more active substances, put up in 

the form in which they are supplied to the user, intended to destroy, deter, render harmless, 

prevent the action of, or otherwise exert a controlling effect on any harmful organism by 

chemical or biological means.” (OJEC, 1998). 

Antibiotics are subdivided in different classes with similar structure and mode of action. 

Cross-resistance occurs when the resistance mechanism confers resistance to most or all 

members of a class, due to the fact that they have the same or similar target and mode of 

action. However, cross-resistance can also occur among unrelated classes as a consequence of 

an overlapping target or of the low specificity of the resistance mechanism (EFSA, 2008). 

The term “co-resistance” is applied when resistance genes are physically linked to each other. 

This is the case when the different resistance genes are part of the same genetic element (e.g. 

plasmid, transposon or integron). In co-resistance, the resistance genes are transferred in a 

single event and are expressed jointly (Capita & Alonso-Calleja, 2013). 

There is no standard definition for “multidrug resistance”, however, the following definition 

was recently proposed: “acquired non-susceptibility to at least one agent in three or more 

antimicrobial categories” (Magiorakos et al., 2012).  

 

A distinction can be made between intrinsic and acquired resistance. Intrinsic resistance is a 

feature inherent to a bacterial species and every member of this species exhibits this 

resistance. On the other hand, bacteria can acquire resistance by horizontal gene transfer, by 

which they receive antibiotic resistance genes from other bacteria, or by mutation. 

Mechanisms of horizontal gene spread among bacterial strains or species are often considered 

to be the main mediators of antibiotic resistance (Woodford & Ellington, 2007). Horizontal 

gene transfer will be discussed later in this Chapter (see section 2 Horizontal gene transfer). 

However, mutational resistance may have major clinical importance in certain bacterial 

species, such as Mycobacterium tuberculosis, in which resistance to all therapeutic agents 

(rifampicin, isoniazid, streptomycin, pyrazinamide, ethambutol and fluoroquinolones) is 

mediated by mutations or when considering resistance to particular antibiotics, such as for 

example fluoroquinolones (Woodford & Ellington, 2007). Resistance to fluoroquinolones can 

result from the accumulation of amino acid substitutions in the enzymes DNA gyrase and 
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DNA topoisomerase IV, with increasing numbers of mutations generally correlating with 

increasing MICs (Woodford & Ellington, 2007). 

 

1.3. Mechanisms  

Bacteria guard themselves against the action of antibiotics by developing resistance. 

Resistance to a specific antibiotic can be caused by different mechanisms (Figure 1.1). 

Furthermore, the different types of resistance mechanisms do not work exclusively. For 

fluoroquinolones and β-lactams, it is known that more than one resistance mechanism can be 

active in the same bacterial cell (McDermott et al., 2003). Following mechanisms have been 

described:  

I) Antibiotics can be enzymatically modified or degraded before they reach their 

target site. This strategy is proven very successful by the numerous β-lactamases 

and aminoglycoside modifying enzymes (Ramirez & Tolmasky, 2010; Smet et al., 

2010); 

II)  A second mechanism is lowering the internal concentration of antibiotics in the 

bacterial cell a) by efflux pumps or b) by changing the permeability of the cell 

membrane. Efflux pumps mediate resistance to a wide variety of antibiotics 

(Poole, 2005). The efflux can be increased by the acquisition of specific genes or 

by the overexpression of genes coding for present efflux pumps (Poole, 2005). The 

membrane structure and composition can act as a natural permeability barrier, 

presenting the most common form of intrinsic resistance, but it can also change as 

a result of acquired resistance mechanisms (IFT, 2006). For example, resistance to 

β-lactams and (fluoro)quinolones can be the result of this resistance mechanism 

(Ruiz, 2003; Poole, 2004; Pagès et al., 2008);  

III)  Alteration of the target molecule of the antibiotic by mutations can cause a 

decrease in affinity between the antibiotic and the target molecule. This 

mechanism can cause resistance to for example rifampicin and quinolones (Ruiz, 

2003; Tupin et al., 2010); 

IV)  Lastly, bacteria can become resistant by following an alternative metabolic 

pathway. A typical example of this mechanism is the resistance to sulfonamides 

and trimethoprim (Capita & Alonso-Calleja, 2013).  
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Figure 1.1. Mechanisms of antibiotic resistance: I) enzymatic modification/degradation of the 
antibiotic, II) antibiotic concentration decrease by efflux (a) or by changing cell membrane 
permeability (b), III) target alteration and IV) alternative metabolic pathway. 
 

 

1.4. Origin 

Although antibiotic resistance poses nowadays an enormous threat to public health, it actually 

is an ancient natural phenomenon. Genes encoding resistance to β-lactam, tetracycline and 

glycopeptide antibiotics were found in 30000 years old permafrost sediments (D’Costa et al., 

2011). An antibiotic resistance screening of the Lechuguilla cave in New Mexico, which has 

been isolated for more than 4 million years, revealed the presence of multidrug resistant 

bacteria (Bhullar et al., 2012). Resistance to 3 - 4 different antibiotic classes was found, on 

average, in 70% of the Gram-positive strains and in approximately 65% of the Gram-negative 

strains. Three Streptomyces spp. strains were even resistant to 14 antibiotics (Bhullar et al., 

2012).  

Antibiotic resistance determinants can have a shielding role in natural environments (with low 

antibiotic selective pressure), although this does not always seem to be the primary function 

(Martinez, 2009). They can also be involved in metabolic processes as is the case for a 

chromosomal acetyltransferase in Providencia stuartii, which is involved in the acetylation of 

peptidoglycan (Macinga & Rather, 1999). Another example are multidrug efflux pumps 

which can also be implicated in detoxification, virulence, homeostasis or signal trafficking in 

microbial natural ecosystems (reviewed by Martinez et al., 2009). Since the beginning of the 
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antibiotic era, human activity can have caused a shift in their functionality and has influenced 

the distribution and abundance of resistance genes (Martinez, 2009; Finley et al., 2013). 

 

1.5. Impact of the use of antibiotics in the food production on antibiotic resistance 

During food production, antimicrobial agents are regularly applied in several steps of the 

production and manufacturing process. This is to obtain at the end food from healthy plants 

and animals, which has a high hygienic quality and is safe for human consumption. However, 

these agents can impose a selective pressure on the bacteria which can lead to resistance 

development. The antimicrobial agents used throughout the food chain include disinfectants, 

fungicides, antibiotics and feed preservatives in the primary production, disinfectants, food 

preservatives and decontaminants in the secondary production, disinfectants and food 

preservatives in the tertiary production and disinfectants at the food consumption stage 

(Capita & Alonso-Calleja, 2013). The primary production can be divided in animal 

production (including aquaculture) and plant production. In both domains antibiotics are 

applied, though the amount of antibiotics used in plant agriculture is small compared to the 

amounts used in animal production. In 2009 in the United States, for example, the quantity of 

antibiotics applied to orchards amounted to only 0.12% of the total antibiotics used in animal 

agriculture (Stockwell & Duffy, 2012). In animal production, the administration of antibiotics 

serves four goals, namely the treatment, control and prevention of infectious diseases and 

growth promotion. The European Union uses a more cautious approach (“precautionary 

principle”) than the United States concerning the use of antimicrobials in the food production. 

This is exemplified by the ban of the use of antibiotics as growth promoters since 2006 in the 

European Union (OJEU, 2003a). Bacteria that became resistant due to the selective pressure 

exerted by the administration of antibiotics during primary production can subsequently 

colonize or infect humans. It has been demonstrated that farm workers have a higher 

prevalence of resistant gut bacteria compared to the general public or to workers on farms not 

using antimicrobial growth promoters (Marshall & Levy, 2011). Strong evidence exists that 

consumers can acquire infections with antibiotic resistant bacteria by the consumption or 

handling of food that contains antibiotic resistant bacteria (Marshall & Levy, 2011; 

FAO/OIE/WHO 2003).  
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1.6. Other factors contributing to antibiotic resistance in food  

Antibiotic resistance does not only occur in food as a consequence of the use of antimicrobials 

throughout the food production chain. During each step of the food production chain 

contamination with antibiotic resistant bacteria can occur. When contamination occurs after 

processing, it is called post-contamination. Cross-contamination can occur due to the 

improper handling of food during processing. In the kitchen a variety of sources for 

cross-contamination can be present, e.g. the work surfaces, towels, the refrigerator and even 

the presence of household pets (EFSA, 2008). 

In some types of food, bacteria are intentionally added. This can have several goals: starter 

cultures are added for fermentation, probiotics are added for their beneficial effects on the 

host organism, biopreserving bacteria are added for the extension of shelf life (Verraes et al., 

2013). In 2007, EFSA introduced a pre-market safety assessment, Qualified Presumption of 

Safety (QPS), for the microorganisms that are used in feed/food production in which 

antibiotic resistance criteria are also included and this list is updated yearly (EFSA, 2007). 

Although the application of biocides in the food industry is not explored into more detail in 

this thesis, it is important to mention that there are indications that the use of these compounds 

may contribute to the generation of antibiotic resistance (SCENIHR, 2009). Antibiotics and 

biocides share similarities in their antibacterial properties and in the resistance mechanisms 

used by bacteria (Davin-Regli & Pagès, 2012). Cross-resistance between biocides and 

antibiotics can imply efflux pumps or changes in cell envelope, but biofilms can be involved 

as well (SCENIHR, 2009). Co-resistance also occurs when the genes, encoding the resistant 

phenotypes, are located together on a single mobile genetic element (Chapman, 2003). Both 

kinds of resistance have been reported multiple times in association with resistance to 

quaternary ammonium compounds (Hegstad et al., 2010).  

 

1.7. Significance of the antibiotic resistance problem  

The magnitude of the antimicrobial resistance problem worldwide is still largely unknown. 

The World Health Organization (WHO) has recently published a report in which, for the first 

time, the current worldwide status of surveillance and information on antimicrobial resistance 

at country level, in particular antibacterial resistance, was examined (WHO, 2014). Two key 

findings of this report are: a) very high rates of resistance have been observed in bacteria that 

cause common health-care associated and community-acquired infections (e.g. urinary tract 

infection, pneumonia) in all WHO regions; b) there are significant gaps in surveillance, and a 
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lack of standards for methodology, data sharing and coordination, which consequently 

compromises the ability to assess and monitor the situation. In this report, resistance to 

third-generation cephalosporins and to fluoroquinolones in Escherichia coli was amongst 

others considered. Pathogenic E. coli is the most frequent cause of bloodstream infections, 

community- and hospital-acquired urinary tract infections, and one of the leading causative 

agents in foodborne infections worldwide. Third-generation cephalosporins are widely used 

for intravenous treatment of severe infections in hospitals, while fluoroquinolones are among 

the most widely used oral antibacterial drugs in the community. For both types of antibiotics, 

resistance exceeded 50% in five out of the six WHO regions. Both of them are also 

considered as critically important antimicrobials in the treatment of severe or invasive 

salmonellosis in humans (EFSA/ECDC, 2014). 

On European level, antimicrobial resistance surveillance is assured by European law with for 

example the listing of antimicrobial resistance as a special health issue in Annex 1 of 

Commission Decision 2000/96/EC on the communicable diseases to be progressively covered 

by the Community network under Decision No 2119/98/EC of the European Parliament and 

of the Council (OJEC, 2000) and Directive 2003/99/EC on the monitoring of zoonoses and 

zoonotic agents, which obliges Member States to monitor and report antimicrobial resistance 

in Salmonella and Campylobacter isolates obtained from healthy food-producing animals and 

from food (OJEU, 2003b). The antibiotic resistance (%) in Salmonella spp. from humans and 

from food and animals for 2012 in the EU are represented in Table 1.1 and 1.2. Concerning 

the human isolates, the antibiotic resistance (%) is also reported separately for Salmonella 

enterica subsp. enterica serovar Enteritidis and Salmonella enterica subsp. enterica serovar 

Typhimurium. 

The European Centre for Disease Prevention and Control (ECDC) publishes annually on the 

one hand the "Annual report of the European Antimicrobial Resistance Surveillance Network 

(EARS-Net)" and on the other hand the "European Union Summary Report on antimicrobial 

resistance in zoonotic and indicator bacteria from humans, animals and food", a joint report 

together with EFSA. EARS-Net is a European wide network of national surveillance systems, 

providing European reference data on antimicrobial resistance for public health purposes by 

performing surveillance of antimicrobial resistance based on invasive isolates from blood or 

cerebrospinal fluid from eight bacterial microorganisms of public health importance, one of 

which is E. coli. For 2012, following EU/EEA population-weighted mean percentages of 

resistance were reported in E coli: 57.4% for aminopenicillins, 11.8% for third-generation 

cephalosporins, 22.3% for fluoroquinolones, 10.3% for aminoglycosides and < 0.1% for 
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carbapenem resistance (ECDC, 2013). Statistically significant increases in EU/EEA 

population-weighted mean percentage of resistance during the time period 2009-2012 was 

reported for third-generation cephalosporins and aminoglycosides (ECDC, 2013).  

Human health consequences related to foodborne antibiotic resistance include (Angulo et al., 

2004): I) infections that would not otherwise have occurred if the pathogens were not 

resistant, which can be expressed as the “attributable fraction”. This refers to the increased 

risk that people, who are treated with antibiotics for whatever reason, have of developing 

illness with pathogens resistant to the particular antibiotic; II) increased frequency of 

treatment failure and increased severity of infection. These can lead to prolonged duration of 

illness, increased frequency of bloodstream infections, increased hospitalization and increased 

mortality. Antibiotic resistance may cause early empirical treatment to be less efficient and 

may limit the choices of treatment (Mølbak, 2005). Furthermore, the risk of complications is 

amplified by treatment failure (Capita & Alonso-Calleja, 2013). Additionally, antibiotic 

resistance may be associated with increased virulence by co-selection of antibiotic resistance 

and virulence mechanisms. Several mobile genetic elements such as plasmids, integrative and 

conjugative elements, and outer membrane vesicles may be involved (Beceiro et al., 2013). 

These consequences have mainly been studied in relation to antibiotic resistant Salmonella 

and Campylobacter (reviewed by Angulo, 2004; by Tollefson & Karp, 2004 and by Mølbak, 

2005). Calculations suggest that in the USA antibiotic resistance annually results in an 

additional 29379 non-typhoidal Salmonella infections, leading to 342 hospitalizations and 12 

deaths, and an additional 17668 Campylobacter jejuni infections, leading to 95 

hospitalizations (Barza & Trevors, 2002). Recently, this was also analyzed for 

third-generation cephalosporin resistant E. coli (de Kraker et al., 2011; Collignon et al., 

2013). The burden of disease associated with blood stream infections caused by 

third-generation cephalosporin resistant E. coli in Europe was estimated at 2712 excess deaths 

and 120065 extra hospital days, based on data from 2007 (de Kraker et al., 2011). Inevitably, 

this will result in economical consequences. The total costs attributable to excess hospital 

stays for blood stream infections caused by third-generation cephalosporin resistant E. coli 

were 18.1 million € (de Kraker et al., 2011). In Europe in 2007, the number of infections 

caused by selected multidrug resistant bacteria (with the focus on bacteria most frequently 

isolated from blood cultures and with markers for multidrug resistance) was estimated at 

approximately 400000 with 25000 attributable deaths and 2.5 million extra hospital days 

(ECDC/EMEA, 2009). The costs associated with these infections, including costs concerning 

patient care and productivity losses, were estimated at 1.5 billion € (ECDC/EMEA, 2009). 
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Another aspect to keep in mind is that there is increasing evidence that foodborne infections 

do not only affect the gastrointestinal tract, but that urinary tract infections (UTI) caused by 

antibiotic resistant E. coli can also have a foodborne origin (in particular poultry) (Nordstrom 

et al., 2013). This evidence originates from studies demonstrating the genetic relationship 

between foodborne E. coli and E. coli from UTI cases and the capability of foodborne E. coli 

to cause UTIs in vivo (reviewed by Nordstrom et al., 2013). An epidemiological study 

furthermore indicated that poultry or pork possibly represent a food reservoir for 

antimicrobial resistant, UTI-causing E. coli (Manges et al., 2007). An overview of 

extraintestinal pathogenic E. coli lineages with a possible food reservoir and those with no 

known food animal reservoir has recently been given by Manges & Johnson (2012). This 

consequently enlarges the implications of antibiotic resistant E. coli in the food supply. 



 

 

 

Table 1.1. Antimicrobial resistance (%) in Salmonella spp. (all non-typhoidal serovars), S. enterica serovar Enteritidis and S. enterica serovar 
Typhimurium isolates from humans in 2012, using clinical breakpoints (EFSA/ECDC, 2014). 

 Amp  Cef Chl Cip Gen Kan Nal Str  Sul  Tet  Tri  
Salmonella spp. 27.6 1.1 5.7 5.1 5.0 1.7 14.4 23.6 28.9 30.0 6.9 
S. enterica serovar Enteritidis 5.7 0.7 0.4 4.9 5.5 0.1 18.8 0.9 1.9 2.5 1.5 
S. enterica serovar Typhimurium 66.6 0.9 18.3 2.2 3.0 1.7 6.4 46.2 62.4 63.7 12.0 
Amp: ampicillin; Cef: cefotaxime; Chl: chloramphenicol; Cip: ciprofloxacin; Gen: gentamicin; Kan: kanamycin; Nal: nalidixic acid; Str: streptomycin; Sul: sulfonamides; 
Tet: tetracycline, Tri: trimethoprim. 
 
 
 
Table 1.2. Antimicrobial resistance (%) in Salmonella isolates from food and animals in 2012, using harmonised epidemiological cut-off values 
(EFSA/ECDC, 2014). 
 Amp  Cef  Chl  Cip  Gen  Nal  Sul  Tet  
Broilers & spent hens meat 19.9 4.3 5.9 63.1 4.2 57.3 53.0 48.9 
Gallus Gallus (fowl) 21.2 4.5 4.4 37.3 4.7 34.3 28.3 25.9 
         
Meat from pigs 47.5 0.9 12.6 7.6 2.4 4.2 53.5 49.2 
Pigs 60.2 2.3 14.2 7.6 3.4 5.8 63.3 63.3 
         
Meat from bovine animals 40.0 1.4 9.9 20.0 9.4 8.2 40.8 39.5 
Cattle 34.5 0.4 15.5 9.1 1.1 9.1 42.4 36.0 
Amp: ampicillin; Cef: cefotaxime; Chl: chloramphenicol; Cip: ciprofloxacin; Gen: gentamicin; Nal: nalidixic acid; Sul: sulfonamides; Tet: tetracycline. 
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2. Horizontal gene transfer (HGT) 

 

2.1. Introduction 

In the dissemination of antibiotic resistance, not only the bacteria play a major role, but 

transferable antibiotic resistance genes are key players as well. These antibiotic resistance 

genes can be transferred by means of horizontal gene transfer (HGT). Three main 

mechanisms can be distinguished in HGT, namely conjugation, transformation and 

transduction (Figure 1.2). In the case of antibiotic resistance transfer, conjugation is 

considered the most important mechanism since many antibiotic resistance genes are situated 

on mobile elements such as plasmids and conjugative transposons. Furthermore, conjugation 

of broad-host-range plasmids enables DNA to be transferred over genus and species borders, 

whereas transformation and transduction are usually more limited to the same species (Mathur 

& Singh, 2005). Conjugative or mobilizable plasmids are the most common transmission 

vectors for antibiotic resistance genes (Boerlin & Reid-Smith, 2008; Hawkey & Jones, 2009). 

 

Figure 1.2. The three main mechanisms of horizontal gene transfer: I) Conjugation (transfer 
of genetic material from a donor to a recipient bacterium), II) Transformation (uptake of free 
DNA) and III) Transduction (transfer of genetic material by bacteriophages). 
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2.2. Mechanisms of HGT 

2.2.1. Conjugation 

Conjugation involves the transfer of genetic elements from a donor bacterium to a recipient 

bacterium. This mechanism requires physical contact between the bacteria. A wide range of 

genetic elements are transferred by means of conjugation of which plasmids are the most 

common. Three characteristics are inherent to plasmids: I) they are able to exist 

extrachromosomally and replicate autonomously; II) they can transfer between distinct hosts, 

III) they do not possess housekeeping genes essential to their hosts (Skippington & Ragan, 

2011). Another important feature of plasmids is that they can carry resistance genes for 

practically every type of antibiotic (Barlow, 2009). There are two types of plasmids, namely 

conjugative plasmids and mobilizable plasmids. The latter needs the help of a conjugative 

plasmid to be able to transfer to other cells. Mobilizable plasmids are rather small (< 10kb) 

compared to the conjugative plasmids (> 30kb). This difference in size is explained by the 

presence of genes encoding conjugation functions in the conjugative plasmids (Bennett, 

2008). Plasmids have developed a remarkable diversity of strategies to enable DNA transfer. 

However, basic conjugative steps can be described by common mechanistic principles 

(Zechner et al., 2000). The first step is the intimate contact between cells. Gram-positive and 

Gram-negative bacteria differ in the mechanisms used to achieve cell-cell contact. In 

Gram-negative bacteria this is promoted by plasmid-determined extracellular filaments, sex 

pili. An interaction between the tip of the sex pilus and the surface of the recipient cell leads 

to the initial contact. Intimate association of the cell surfaces is achieved by pilus retraction. 

Subsequently, a mating bridge between the cells is formed, serving as a conduit for DNA 

(Zechner et al., 2000). In Gram-positive bacteria cell-cell contact is induced by other 

mechanisms such as pheromones secreted by the recipient cells or by aggregation (Grohmann 

et al., 2003). The second step is the transport of the DNA as a single-stranded linear molecule. 

This involves cleavage of the transferring DNA by relaxase at the transfer of origin (oriT), 

resulting in a nucleoprotein complex (relaxosome) which is transported to the recipient cell by 

a protein export mechanism (Garcillán-Barcia et al., 2009). The majority of conjugative 

plasmids applies herefore the type IV secretion system (T4SS) (Goessweiner-Mohr et al., 

2013). The DNA is pumped into the recipient cell by the coupling protein T4CP. To be 

established in the recipient cell the incoming plasmid has to be circularized, which is 

relaxase-mediated, and the complementary strand has to be synthesized. Conjugative plasmids 

can exhibit a broad- or a narrow-host-range. For the latter, transfer is restricted generally 

between a small number of similar bacterial species (Bennett, 2008). Many of the conjugative 
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plasmids are supplied with broad-host-range properties among Gram-negative species and a 

small number of these plasmids can also transfer between and replicate in both Gram-negative 

and Gram-positive bacteria (Schröder & Lanka, 2005). It is not our intention to discuss all the 

other genetic elements which can be transferred by conjugation thoroughly, but they are 

briefly mentioned to demonstrate the broad range of opportunities that bacteria have for the 

dissemination of antibiotic resistance.  

Transposons (also called jumping genes) are able to move within and between chromosomes 

and plasmids. In analogy with plasmids, two types of transposons are the conjugative and 

mobilizable transposons. Conjugative transposons belong to a larger group of mobile genetic 

elements, the integrative and conjugative elements (ICEs). ICEs are elements that integrate 

into and excise from the chromosome, replicate with the chromosome and are transferred by 

conjugation (Burrus et al., 2002; Burrus & Waldor, 2004).  

Similarly, mobilizable transposons are part of the integrative mobilizable elements (IMEs). 

A well known example of an integrative mobilizable element that can contribute to the spread 

of antibiotic resistance is the Salmonella genomic island 1 (SGI1) (Doublet et al., 2005). Two 

other transposon types are the unit transposon and the composite transposon. The unit 

transposon encodes an enzyme involved in excision and integration and contains one or 

several accessory (e.g. resistance) genes in one genetic unit (Roberts et al., 2008). In a 

composite transposon, the DNA segment is flanked by insertion sequences (IS) (Roberts et 

al., 2008). The first genes which were recognized as being part of composite transposons were 

antibiotic resistance genes (Merlin et al., 2000). Insertion sequences are small elements, 

carrying only genes necessary for their transposition, and which are mostly delineated by 

inverted terminal repeats of 10-40 bp (Mahillon & Chandler, 1998). Insertion sequence 

common regions (ISCR) elements are IS91-like elements which differ from the classical ISs 

as they lack the typical repeats at the ends and they typically transpose using a rolling circle 

replication mechanism (Boerlin & Reid-Smith, 2008). Whereas most IS elements need two 

flanking copies to mobilize genes, ISCR elements can transpose adjacent DNA sequences, 

mediated by a single copy of the element due to the rolling circle transposition (Toleman et 

al., 2006). ISCR elements are remarkable for their close association with a wide variety of 

antibiotic resistance genes and can contribute to the mobilization of virtually every class of 

antibiotic resistance genes, including those encoding extended-spectrum β-lactamases 

(ESBLs), carbapenemases, and enzymes conferring broad-spectrum aminoglycoside 

resistance, florfenicol/chloramphenicol resistance, and resistance to trimethoprim and 

quinolones (reviewed by Toleman et al., 2006). 
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Integrons represent an example of the fascinating ways bacteria evolve to overcome the 

threat that antibiotics impose. At the beginning of the antibiotic era multiresistance was not 

anticipated, because the co-appearance of multiple mutations conferring resistance was 

considered to be beyond the evolutionary potential of a given bacterial population. In the 

1950s the first multiresistant bacteria were observed and it soon became clear that the 

resistance could be transferred (Watanabe, 1963). In the 1970s, multidrug resistance was 

determined in many cases to be associated with transmissible plasmids (Mazel, 2006). 

Integrons were first described in the late 1980s (Stokes & Hall, 1989). It is becoming clear 

that integrons are actually a common component of bacterial genomes with a long 

evolutionary history and that antibiotic use selected particular integrons from among the 

environmental pool, resulting in the presence of integrons carrying resistance genes in the 

majority of Gram-negative pathogens (Gillings, 2014). The ongoing use of antibiotics in 

clinical and agricultural practice has made mobile resistance integrons extraordinarily 

abundant, in particular class 1 integrons. In healthy humans, including infants who have not 

yet been exposed to antibiotics, they have been observed in 10 to 50% of commensal bacteria. 

The integron carriage by commensal E. coli in farm animals can rise to 80% (Gillings, 2014).  

An integron is an immobile element which can capture, integrate and express or release gene 

cassettes. All the elements necessary for the integration and expression or excision of the gene 

cassette(s) are located within the 5’-CS region, namely an intI gene encoding a site-specific 

tyrosine recombinase, which catalyzes the specific excision and integration of the gene 

cassette(s), a recombination site attI and a common promoter, Pc, for the expression of the 

genes. A gene cassette consists of a gene and a recombination site, attC, by which the cassette 

can be integrated in the integron by site-specific recombination. Figure 1.3 shows how gene 

cassettes are integrated in an integron. Integrons can be associated with mobile DNA elements 

such as plasmids and transposons (mobile integrons, MI) or they can be associated with the 

bacterial chromosome (chromosomal integrons, CI) (Cambray et al., 2010). Chromosomal 

and mobile integrons differ in the number and the function of gene cassettes. Chromosomal 

integrons can carry a variable number of gene cassettes, ranging from zero to hundreds, which 

are usually not implicated in antimicrobial resistance, while MI contain a limited number of 

gene cassettes, mostly involved in antibiotic resistance (Domingues et al., 2012). Five 

different integron classes can be distinguished among the mobile integrons, however only the 

first three classes are historically associated with the dissemination of multiresistance 

(Cambray et al., 2010). There appears to be a link between integrons and multiresistance. 
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Nagachinta and Chen (2009) reported that all integron positive Shiga toxin-producing E. coli 

(STEC) strains examined were resistant to at least three different antibiotics.  

 

 

Figure 1.3. Integration of gene cassettes in an integron. The integrase (IntI) catalyses the 
site-specific recombination between the attI of the integron and the attC of the gene cassette. 
The integrated gene cassettes are subsequently expressed with the help of the Pc promoter. 
(Source: Cambray et al., 2010) 
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2.2.2. Transformation 

Transformation involves the successful uptake of free DNA from the environment.  

During this process several steps can be distinguished. The first step is the release of DNA 

from cells. Competent cells can subsequently take up this free DNA. The next step is the 

stable integration of the DNA in the recipient cell. The last step in a successful transformation 

is the expression of the acquired trait (Lorenz & Wackernagel, 1994). DNA can be released 

by bacteria both passively after cell death or actively by secretion (Nielsen et al., 2007). This 

extracellular DNA has to circumvent enzymatic degradation and chemical or physical 

inactivation in the environment. The matrix surrounding the DNA influences the stability of 

DNA. This has been demonstrated for example in thermally treated fermented sausages where 

recombinant DNA was protected against the activity of DNase (Straub et al., 1999). Another 

example is soil, in which binding to mineral and humic substances protects the DNA from 

extracellular, microbial DNases and nucleases (Levy-Booth et al., 2007). To be able to 

undergo natural transformation, bacteria have to develop competence. Natural competence 

has been described for several bacterial species belonging to different phyla, however, it is 

expected that more species are able to undergo natural transformation under adequate 

conditions (de Vries & Wackernagel, 2004; Johnsborg et al., 2007). Not all strains of a 

species show the same level of transformability (de Vries & Wackernagel, 2004). 

Furthermore, there is a species dependence of the time span in which competence is 

developed. For example, bacteria such as Helicobacter pylori or Neisseria spp. are 

constitutively competent while in other bacteria natural competence is induced in response of 

environmental signals (Seitz & Blokesch, 2013). Some bacterial species have a preference for 

DNA from the same or closely related species, but most natural competent bacteria are not 

selective (Lorenz & Wackernagel, 1994; Bakkali, 2013). In the case of Haemophilus 

influenzae, a recognition sequence of 11 bp is involved in this specificity, although at low pH 

heterologous DNA can bind, suggesting that non-specific DNA uptake can also occur (Lorenz 

& Wackernagel, 1994). Gram-positive and Gram-negative bacteria have similar DNA uptake 

mechanisms with differences inherent to the differences in the cell wall structure of 

Gram-positive and Gram-negative bacteria (Dubneau, 1999; Chen et al., 2005). Under 

laboratory conditions, competence can be induced by different methods in a wide range of 

bacteria (Aune & Aachmann, 2010). Integration in the bacterial genome is necessary for the 

persistence of the internalized chromosomal DNA. This can be achieved by homologous 

recombination, illegitimate recombination and homology facilitated illegitimate 

recombination (de Vries & Wackernagel, 2004). 
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Species in which natural transformation has contributed to antibiotic resistance are for 

example streptococci, Neisseria meningitidis and the foodborne pathogen C. jejuni (Bowler et 

al., 1994; Janoir et al., 1999; Jeon et al., 2008). 

 

2.2.3. Transduction 

In transduction, genetic material is transferred by bacteriophages (bacterial viruses).  

Three types of genetic exchange are mediated by bacteriophages: generalized transduction, 

specialized transduction and lysogenic conversion (Brabban et al., 2005). In generalized 

transduction, virtually any gene from the infected cell can be transferred to a recipient cell. 

During a lytic infection, the host genome is degraded and bacteriophage reproduction begins. 

Subsequently, functional virions are generated, however, sometimes bacterial host DNA 

instead of viral DNA is accidentally packaged by the bacteriophages head assembly system, 

yielding transducing particles. These transducing particles cannot initiate a normal infection, 

but they can transfer their DNA to a recipient cell. After entry, this DNA is degraded or 

recombined with the new host’s DNA. A much more efficient mechanism is specialized 

transduction. Temperate bacteriophages can enter lysogeny after entry, meaning that the 

expression of bacteriophage genes leading to cell lysis is prevented, and its genome becomes 

integrated into the bacterial genome (prophage). This generally confers immunity to the host 

cell against further infection by the same or similar bacteriophages. During the lytic cycle, the 

prophage is excised. However, sometimes this excision is inaccurate and an adjacent section 

of the bacterial host’s genome is co-excised, which can subsequently be transferred to new 

hosts. No recipient cells are involved in lysogenic conversion. Lysogenic conversion implies 

an altering of the phenotype of the infected host by determinants encoded by the prophage of 

a temperate bacteriophage. 

The contribution of this phenomenon to the dissemination of antibiotic resistance has 

scientifically received less attention than conjugation and transformation. The role of 

transduction in the dissemination of antibiotic resistance has been reviewed by Brabban et al. 

(2005) with emphasis on its role in S. enterica serovar Typhimurium and Pseudomonas 

aeruginosa. Recently, more and more studies have demonstrated the potential of transduction 

in antibiotic resistance transfer (e.g. Zhang & Lejeune, 2008; Di Luca et al., 2010; Varga et 

al., 2012; Goh et al., 2013). 
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2.2.4. Other mechanisms of HGT  

Next to the three main mechanisms discussed above, other mechanisms of horizontal gene 

transfer can occur between bacteria, such as vesicle-mediated translocation and gene transfer 

agents (Keese, 2008). 

In Gram-negative bacteria, outer membrane vesicles (OMV) are naturally occurring structures 

derived from the outer membrane, which were first discovered in the 1960s (Kulp & Kuehn, 

2010). More recently, membrane vesicles were also described in Gram-positive bacteria and 

in Archaea (Manning & Kuehn, 2013). Next to the vesicle-mediated transformation, which is 

assumed to happen by fusion and consequent transfer of the DNA from the vesicle lumen to 

the host cell, (outer) membrane vesicles are also involved in e.g. virulence, stress response to 

both internal as external stresses, cross-species interaction, biofilm formation and 

maintenance (reviewed by Manning & Kuehn, 2013). Vesicle-associated DNA has been 

found to be both bound to the OMV surface and packaged inside the vesicles. The mechanism 

by which DNA is packaged as vesicle cargo is not yet clear. Rumbo et al. (2011) have 

proposed two possible mechanisms to explain the presence of DNA inside OMVs: I) plasmids 

migrate in some way to the periplasm, where they are trapped in OMVs; II) some OMVs 

could contain both inner and outer membrane compounds, trapping cytoplasmic compounds 

and even plasmids. The transfer of carbapenem resistance genes by OMVs has been 

demonstrated in Acinetobacter baumannii strains (Rumbo et al., 2011). 

Gene transfer agents (GTAs) are phage-like elements with tailed-phage structures that 

package small segments of the genome of a GTA-producing cell and transmit these genes 

throughout the environment (Lang et al., 2012). They differ at several points from phages: I) 

the production of GTAs is not the result of a phage infection. Rather, the encoding genes are 

contained within the genome of the cell that produces the GTAs; II) the amount of DNA that 

it contains is a random piece of the genome of the producing cell and is insufficient to encode 

the protein components of the particle itself, while in generalized transducing phages, the 

fragments of packaged DNA are the size of the phage genome and usually only an occasional 

particle contains host genes (Lang et al., 2012). GTAs are presumably released into the 

environment by lysis of the producing cell after which it is likely that GTAs bind to recipient 

cells via specific tail–receptor interactions, but the receptor has not been identified yet (Lang 

et al., 2012). Four genetically unrelated GTAs have been identified to date, but a lot more 

GTA like elements seem to exist (Lang et al., 2012). The GTA of Brachyspira 

hyodysenteriae, VSH-1, was able to transfer tylosin and chloramphenicol resistance genes 

between Brachyspira hyodysenteriae strains after antibiotic induction (Stanton et al., 2008). 
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2.3. Effect of food matrices and food processing on HGT 

A lack of knowledge exists concerning the significance of antibiotic resistance gene transfer 

in food products, neither is there a lot of information about the extent to which food 

processing contributes to the occurrence of HGT.  

Successful plasmid transfer by conjugation was demonstrated for example between 

Lactobacillus curvatus strains during sausage fermentation (Vogel et al., 1992), between 

Enterococcus faecalis strains during cheese and sausage fermentations (Cocconcelli et al., 

2003), between Bacillus thuringiensis and Bacillus cereus in milk and dairy products (Van 

der Auwera et al., 2007; Modrie et al., 2010), from S. enterica serovar Typhimurium to 

E. coli in milk and ground meat (Walsh et al., 2008), between Lactococcus lactis strains in 

yoghurt (Toomey et al., 2009a), from E. faecalis to bacteria involved in meat fermentation 

during sausage fermentation (Gazzola et al., 2012) and between Listeria monocytogenes 

strains on salmon and cheese (Bertsch et al., 2013). Kruse & Sørum (1994) investigated the 

transfer of R plasmids in minced meat (between E. coli) and in fish (from Aeromonas 

salmonicida subsp. salmonicida to E. coli) on a cutting board to simulate food processing in 

the kitchen. Conjugation was found to occur in both food products as well as on the wooden 

cutting board in the case of minced meat. However, lower bacterial numbers were found on 

the cutting board which was possibly due to the bactericidal properties of wood. 

It has been shown that sublethal stresses in modern food preservation systems, such as 

temperature, reduced pH, increased osmotic stress, can have an increasing effect on 

conjugation rates. Concerning temperature, there is a general consensus that low temperatures 

have a negative effect on plasmid transfer (Fernandez-Astorga et al., 1992). 

Walsh et al. (2008) studied the effect of low temperature on antibiotic resistance transfer from 

S. enterica serovar Typhimurium to E. coli in LB broth, milk and ground meat. Transfer was 

detected in all three media at 25 and 37 °C, whereas transfer at 15 °C was only observed in 

ground meat. No transfer was observed at 4 °C, which might be explained by the overall 

reduction in the metabolic rates of the mesophilic donor and recipient strains used 

(Walsh et al., 2008). Fernandez-Astorga et al. (1992) observed plasmid transfer between 

E. coli in a temperature range between 8 and 37 °C, both in Tryptone Soya Broth (TSB) as in 

ultrapure distilled water. Although E. coli belongs to the mesophilic bacteria, which normally 

have minimal growth temperatures between 10 and 15 °C, this bacterium is still able to grow 

at temperatures ≥ 7 °C (Jones et al., 2004). Varying the pH (6.0 – 8.5) had no effect in TSB 

nor in ultrapure distilled water (Fernandez-Astorga et al., 1992). A study on the effect of pH 

on antibiotic resistance transfer between Lactococcus lactis strains demonstrated that varying 
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the pH of the transfer medium between pH 6.0 and 7.0 had no significant effect on transfer 

rate, while at pH 8.0 transfer was inhibited (Toomey et al., 2009b). Together with previous 

studies, this study indicates that the optimum pH may depend on the nature of the plasmid, the 

physiology of donor and recipient cells, or various combinations of these and perhaps other 

complex factors (Toomey et al., 2009b). High salt stress (5% NaCl) increases plasmid transfer 

frequency in B. thuringiensis (Beuls et al., 2012). A stimulating effect of the previously 

mentioned stress factors was observed when prestressed inocula were used (Mc Mahon et al., 

2007a). 

 

Concerning transformation, the research performed in food matrices has been focused rather 

on the effect of food processing on transformation in general than on transformation of 

antibiotic resistance genes. Bauer et al. (1999) demonstrated that transformation of E. coli 

took place in a variety of foodstuffs, even at low temperatures and under conditions 

mimicking homogenization of milk. Bräutigam et al. (1997) found a strong decrease in 

transformation frequency when chromosomal DNA was pre-incubated in ultra-high 

temperature (UHT) milk at 20 °C, while the decrease in transformation frequency happened 

slower when the pre-incubation temperature was 8 °C. van den Eede et al. (2004) provide a 

summary of food chain related factors that can affect DNA integrity. The effect of processing 

on DNA degradation has been investigated in a variety of food products such as sugar beets, 

fermented sausages, potato products, orange juice, soy milk, tofu,… (Klein et al., 1998; 

Straub et al., 1999; Bauer et al., 2003; Kharazmi et al., 2003; Bauer et al., 2004; Weiss et al., 

2007). The food matrix may constitute a protective environment for DNA. Kharazmi et al. 

(2003) analyzed the DNA degrading factors during production of soymilk, tofu, corn masa, 

and cooked potatoes. For soymilk and tofu, grounding was the most important degrading 

factor, while further treatment, which was boiling in the case of soymilk, did not have an 

additional effect. This indicates that a specific food matrix may have a protective effect to 

certain degrading factors, as boiling of the potatoes strongly degraded DNA. This was also 

seen in thermally treated fermented sausages (Straub et al., 1999).  

 

The effect of food matrices and food processing on transduction has been studied to a lesser 

extent. Studies analyzing transduction of Stx phages in milk, bottled water, orange juice, salad 

and ground beef demonstrated that transduction did not take place at low pH or at low 

temperature (Imamovic et al., 2009; Picozzi et al., 2012). On the other hand, Aertsen et 
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al. (2005) demonstrated that high hydrostatic pressure could induce Stx prophages in E. coli 

in LB medium and in whole milk. 
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3. Food production and preservation: Bacteria, biofilm, food processing 

  

3.1. Introduction 

Early 19th century, the initial steps in food microbiology were taken by Louis Pasteur, who 

was the first to acknowledge the presence and role of microorganisms in food by 

demonstrating that the souring of milk was caused by microorganisms (Jay et al., 2005). At 

the end of the same century Salmonella was isolated for the first time from a food poisoning 

outbreak (Griffith, 2006). Bacteria present in food have several roles. They can be beneficial 

for the food production process (starter cultures and biopreservatives) or for human health 

(probiotics), but they can also cause spoilage of food or be pathogenic.  

The food industry strives to I) avoid and eliminate contamination with spoilage or pathogenic 

microorganisms, and II) minimize or inhibit microbial growth during processing and storage. 

Several techniques applied in the food industry are based on affecting intrinsic, extrinsic and 

implicit factors. Intrinsic factors are parameters which are inherent to the food product such as 

pH, water activity (aw), redox potential, nutrient content (water, energy source, nitrogen 

source, minerals, vitamins), natural antimicrobial components (e.g. lysozyme in egg white) 

and biological structures (e.g. skins of fishes and carcasses, peels of vegetables and fruits, …). 

Extrinsic factors include parameters of the surrounding environment, namely temperature, 

relative humidity and atmosphere composition. The implicit factors comprise the mutual 

interactions among the members of the microbial community. To avoid contamination the 

food industry applies hygienic programs based on Hazard Analysis - Critical Control Point 

(HACCP) evaluation. HACCP can be defined as a methodology that identifies, evaluates, and 

controls hazards that are significant for food safety (Jacxsens et al., 2009). 

In this thesis, a limited number of bacterial species was used. They are a model for some of 

the roles bacteria may have in food. The extrinsic factors temperature and modified 

atmosphere were explored, as these can be considered as the primary extrinsic factors 

influencing microbial growth (Montville & Matthews, 2007).  

 

3.2. Bacteria 

In this work, three important foodborne pathogens were used as model organisms in the 

experiments, namely Salmonella spp., human pathogenic E. coli and L. monocytogenes. Based 

on a Belgian study in which foodborne zoonoses were prioritized, these pathogens were 

classified in the “most important” group (Cardoen et al., 2009). Furthermore, Pseudomonas 
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putida and Lactobacillus sakei subsp. sakei were used as model donor organisms, 

representing other roles that bacteria present in food can have. 

 

3.2.1. Salmonella spp. 

The genus Salmonella comprises two species, Salmonella enterica and Salmonella bongori, 

which together contain more than 2500 serovars. The species S. enterica is divided in 6 

subspecies. The subspecies S. enterica subsp. enterica is involved in the vast majority of the 

Salmonella infections in mammals and birds. Strains of the other subspecies only sporadically 

cause infections and are considered commensals of cold-blooded vertebrates (Katribe et al., 

2009). The same is true for S. bongori (Giammanco et al., 2002). It is already known for a 

long time that Salmonella is a causative agent for foodborne disease. In 1880, it was found the 

causative agent of a food poisoning outbreak (Griffith, 2006). In 2005, reporting of foodborne 

outbreaks became mandatory in the EU (EFSA, 2006). In the time period 2005-2011, 

Salmonella was the most frequent causative agent of foodborne outbreaks in the EU. 

Figure 1.4 shows an overview for the time period 2007-2011 of the number of confirmed 

human salmonellosis cases, case fatality rates, number of verified or strong evidence 

foodborne outbreaks and the food implicated in these outbreaks. Eggs and derived products 

are responsible for the majority of the Salmonella associated foodborne outbreaks in Europe 

(Figure 1.4). The case fatality related to Salmonella infections is low, staying far below 1%. 

Clinical symptoms caused by Salmonella are amongst others nausea, vomiting, fever, chills, 

abdominal pain, myalgias, arthralgias and headache (Sánchez-Vargas et al., 2011). Usually 

the symptoms are mild in nature and the Salmonella infection is self-limiting. However, 

sometimes more serious conditions appear and consequently effective antibiotic treatment is 

crucial. Obviously, antibiotic resistance can jeopardize these antibiotic treatments. In 

Salmonella, the degree of antibiotic resistance depends on the serotype (Su et al., 2004). For 

example, S. enterica serovar Enteritidis is a rather susceptible serotype, while S. enterica 

serovar Typhimurium is rather a resistant serotype (Su et al., 2004). Salmonella acquires 

resistance genes primarily via plasmids and class 1 integrons (Alcaine et al., 2007). Michael 

et al. (2006) gives a comprehensive overview of the resistance genes, which were detected in 

Salmonella, their mode of action and their location in the bacterial genome.  
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Figure 1.4. Salmonella spp.: Overview of the number of confirmed human cases, the case 
fatality rates, the number of verified or strong evidence foodborne outbreaks and distribution 
of food implicated in these outbreaks (2007-2011) (EFSA/ECDC 2009a, 2009b, 2010, 2011, 
2012, 2013). 
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Figure 1.4. Continued.  
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3.2.2. Escherichia coli with focus on Shiga toxin producing E. coli 

Although E. coli is a known commensal inhabiting the intestinal tract of humans and animals, 

pathogenic variants do occur. A distinction can be made between diarrheagenic or intestinal 

pathogenic E. coli (IPEC) and extraintestinal pathogenic E. coli (ExPEC). Based on their 

pathogenic features, 6 pathotypes can be distinguished among the intestinal pathogenic E. 

coli, namely enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), 

enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli 

(EIEC) and diffusely adherent E. coli (DAEC) (Nataro & Kaper, 1998). The extraintestinal 

pathogenic E. coli causes for example neonatal meningitis, urinary tract infection, sepsis, 

pneumonia and surgical site infections (Smith et al., 2007). We will focus in this thesis on the 

Shiga toxin-producing E. coli (STEC), a heterogenous subgroup of E. coli, which have the 

production of Shiga toxin, also called verocytotoxin, in common. STEC (E. coli O157:H7) 

was first associated with a foodborne outbreak in 1982 (Riley et al., 1983; Wells et al., 1983). 

Although more than 380 different STEC serotypes have been isolated from humans with 

gastrointestinal disease, the majority of human cases appear to be associated with only a 

limited number of STEC serotypes (Karmali et al., 2010). Since 2008, the number of reported 

human STEC infections has been increasing in the EU (EFSA/ECDC, 2013). In 2011, there 

was an extensive outbreak of STEC O104:H4 in Germany which also affected 14 EU member 

states and the United States (EFSA/ECDC, 2013). This outbreak was associated with the 

consumption of sprouts (Buchholz et al., 2011). The causative agent in this outbreak was an 

E. coli O104:H4 strain which was extremely virulent. In 22% of the patients haemolytic 

uremic syndrome (HUS) developed (Frank et al., 2011). On European level, the percentage of 

HUS ranged between 2.5 – 6.8% in the time period 2006-2010 (EFSA/ECDC, 2007, 2009a; 

2010, 2011, 2012). The German E. coli O104:H4 strain combined the virulence properties of 

EAEC and STEC (Frank et al., 2011). This outbreak demonstrates the ease by which 

foodborne pathogens become more virulent and can subsequently pose a greater threat to the 

community. Antibiotic resistance in Shiga-toxin producing E. coli has not received much 

attention. A reason for this could be the controversy about antibiotic treatment of STEC 

infections (Hilbert et al., 2012). It has been demonstrated that certain antibiotics, such as for 

example fluoroquinolones and trimethoprim-sulfamethoxazole, can increase the risk of 

developing HUS by inducing Stx production (McGannon et al., 2010). An association 

between β-lactam antibiotic treatment of O157 infection and the subsequent development of 

HUS has also been shown (Smith et al., 2012). Nevertheless, it has been reported that 

antibiotic resistance in STEC is increasing since the early 1990s (although to a lesser extent 
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compared to the dramatic increase in antibiotic resistance in S. enterica and Campylobacter 

spp.) (Threlfall et al., 2000). Buvens et al. (2010) demonstrated, by screening a Belgian STEC 

collection, that both O157 and non-O157 strains are frequently resistant to ampicillin, 

streptomycin, sulfonamide, and tetracycline. Furthermore, non-O157 strains were 

significantly more resistant to the previous mentioned antibiotics and to nalidixic acid, 

kanamycin, chloramphenicol and trimethoprim. The most important elements for resistance 

carriage and transfer in E. coli are antimicrobial resistance plasmids (Hilbert et al., 2012). 

Recently, the presence of a complex antibiotic resistance locus encoding resistance to six 

antibiotics (trimethoprim, streptomycin, sulfathiozole, kanamycin, neomycin, β-lactams) on 

the virulence plasmid of an EHEC O26:H- strain was reported (Venturini et al., 2010). This 

highlights the danger that antibiotic use can co-select for virulence determinants, which can 

subsequently lead to an increased disease potential.  

 

3.2.3. Listeria monocytogenes 

In the bacterial genus Listeria 10 species can be discerned 

(http://www.bacterio.net/listeria.html). The vast majority of the human Listeria infections are 

caused by L. monocytogenes, although Listeria ivanovii, Listeria grayi, Listeria innocua and 

Listeria seeligeri have sporadically also been implicated in human infections (Rocourt et 

al.,1986; Perrin et al., 2003; Guillet et al., 2010; Salimnia et al., 2010). L. monocytogenes was 

first identified as a human foodborne pathogen in 1981, causing an outbreak associated with 

contaminated coleslaw in Canada (Schlech et al., 1983). Although L. monocytogenes is a 

relatively rare foodborne pathogen, it is of significant concern because of the severity of 

disease it can cause. Where it causes, generally speaking, self-limited gastroenteritis in 

immunocompetent persons, more severe conditions are encountered in immunocompromised 

people. In invasive listeriosis typically bacteremia with or without an evident focus of 

infection is observed, while in pregnant women complications can include spontaneous 

abortion, stillbirth, preterm delivery and neonatal infection (Drevets & Bronze, 2008). Listeria 

monocytogenes infections are also associated with high case fatality rates. On European level, 

the case fatality ranged between 12.7 and 20.5% during the time period 2007-2011 

(EFSA/ECDC 2009a, 2010, 2011, 2012, 2013).  

Refrigerated ready-to-eat (RTE) food products are particularly of concern as they have 

general physicochemical characteristics that permit L. monocytogenes to grow, and their 

storage for extended times under cold temperature allows the psychrotolerant 

L. monocytogenes to grow, while growth of many competing microorganisms is inhibited 
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(Chan & Wiedmann, 2009). An aspect that contributes to the contamination of RTE food is 

the fact that L. monocytogenes may be persistently present in a food processing environment 

for months or years (Tompkin, 2002). In clinical L. monocytogenes strains multidrug 

resistance is seldom observed and acquired resistance is a recent phenomenon (Morvan et al., 

2010). While clinical isolates appear to remain susceptible to clinically relevant antibiotics at 

this time, the number of reports concerning resistance to an expanding spectrum of clinically 

relevant antimicrobial agents in strains isolated from the food chain are increasing (Allen et 

al., submitted). The antibiotic resistance mechanisms observed in L. monocytogenes involve 

the acquisition of plasmids and conjugative transposons by means of conjugation and the 

presence of efflux pumps (Lungu et al., 2011; Allen et al., submitted). 

 

3.2.4. Pseudomonas putida 

Pseudomonas putida typically inhabits soil and water. In the food industry, this species can be 

associated with spoilage of meat, milk or fish (Whitfield et al., 2000; Boulares et al., 2013; 

Doulgeraki & Nychas, 2013). Human infections of P. putida are mostly acquired 

nosocomially (reviewed by Carpenter et al., 2008). Molina et al. (2014) have recently 

characterized the antibiotic resistant determinants of an exceptional multidrug resistant 

clinical strain, which was resistant to 28 of the 31 tested antibiotics. The strain was resistant to 

4 fluoroquinolones, 5 aminoglycosides, 9 β-lactams, 2 polymyxins, nalidixic acid, 

erythromycin, tetracycline, trimethoprim, chloramphenicol, sulfonamide, vancomycin, 

esperamicin and susceptible to amikacin, rifampicin and nitrofurantoin (Molina et al., 2014). 

The antibiotic resistant determinants were located on the chromosome as well as on a plasmid. 

Resistance to quinolones/fluoroquinolones and cationic antimicrobial peptides was encoded 

chromosomally, while resistance to aminoglycosides, tetracyclines, β-lactams, 

chloramphenicol was encoded both chromosomally and on the plasmid. The plasmid also 

contained resistance determinants to sulfonamides (Molina et al., 2014). Although the 

plasmid was not conjugative nor mobilizable recombination events with the helper plasmid 

were observed. Sequencing data indicate that this strain has been in contact and has 

exchanged DNA with environmental and clinically relevant bacteria.  

 

3.2.5. Lactobacillus sakei 

Although Lb. sakei can be involved in spoilage, it is in general considered to be beneficial due 

to its role in meat fermentation and meat preservation. The spoilage potential of this species 

has been demonstrated for example with brined shrimps and sliced cooked ham where it was 
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associated with contamination during processing (Samelis et al., 1998; Mejlholm et al., 2008, 

2012). Spoilage of refrigerated meat products by lactic acid bacteria can be associated with 

off-odors and off-flavors, discoloration, gas production, slime production and a decrease in 

pH (Borch et al., 1996). Although fermentation contributes to the unique taste, aroma or 

texture of certain food products, this was not its original purpose. Fermentation was initially 

executed for preservation of food (Caplice & Fitzgerald, 1999). Biopreservation serves the 

extension of shelf life and improvement of food safety by using microorganisms and/or their 

metabolites (Ross et al., 2002). The potential of biopreservation by lactic acid bacteria, 

including Lb. sakei, has been reviewed for seafood (Ghanbari et al., 2013), vegetable foods 

(Settani & Corsetti, 2008) and meat (Castellano et al., 2008). The species Lb. sakei has been 

divided in two subspecies, Lb. sakei subsp. sakei and Lb. sakei subsp. carnosus, however a 

recent study has suggested a profound revision of the subspecies definition based on 

multilocus sequence typing (MLST) data (Chaillou et al., 2013). Lb. sakei has the qualified 

presumption of safety (QPS) status. This involves a safety assessment of biological agents 

intentionally added to food and feed based on four pillars: establishing identity, body of 

knowledge, possible pathogenicity and end use. A generic qualification for all bacterial 

taxonomic units on the QPS recommended list is the absence of any acquired antimicrobial 

resistance genes to clinically relevant antibiotics (EFSA, 2012). However, the presence of 

antibiotic resistance genes located on mobile genetic elements has been demonstrated for 

some Lb. sakei strains (Gevers et al., 2003a; Ammor et al., 2008). Concerning lactic acid 

bacteria, there is increasing evidence that they might play an important role as reservoir of 

potentially transferable antibiotic resistance genes (reviewed by Devirgiliis et al., 2013). An 

increasing number of foodborne Lactobacillus species carrying one or more antibiotic 

resistance genes has been reported. The association of these resistance genes with mobile 

elements as well as their possible horizontal transfer were however not always investigated, 

but if so tetracycline and erythromycin resistance were implicated (Devirgiliis et al., 2013). 

 

3.3. Biofilms  

In the food industry, biofilms represent a substantial problem. A biofilm can be defined as “a 

microbially derived sessile community characterized by cells that are irreversibly attached to 

a substratum or interface or to each other, are embedded in a matrix of extracellular polymeric 

substances (EPS) that they have produced, and exhibit an altered phenotype with respect to 

growth rate and gene transcription” (Donlan & Costerton, 2002). Biofilms in the food industry 

can lead to high costs due to their possible contribution to food spoilage, equipment failure 
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and dissemination of pathogens. Bacterial biofilm formation can be considered as the result of 

an interplay between features of the bacterial cells, the substratum and the surrounding 

environment. During biofilm formation five stages can be distinguished: I) initial attachment, 

II) irreversible attachment, III) early development of biofilm architecture, IV) maturation, and 

V) dispersion (Figure 1.5). In the following section, a short overview of the basic principles of 

the different stages is presented (Cloete et al., 2009). The transition from planktonic growth to 

biofilm formation is induced by changes of environmental conditions and is associated with 

alterations in gene regulation. Before biofilm formation takes place, conditioning of the 

surface often occurs, which implies the formation of a film of organic molecules in fluid 

surroundings causing changes in the properties of the substratum. Initial attachment can only 

take place once the organism is in close proximity of the substratum. This can be directed 

passively by gravity, diffusion and fluid dynamics or actively by bacterial cell surface 

properties (Chmielewski & Frank, 2003). Weak forces, such as van der Waals and 

electrostatic forces and hydrophobic interactions are involved in this initial and reversible 

stage of biofilm formation. The second stage, irreversible attachment, also called the 

anchoring or locking stage is assisted by bacterial motility structures, such as flagella and pili, 

bacterial surface proteins and the production of EPS. After this irreversible attachment, 

development and maturation of the biofilm is ensured by genotypic and phenotypic changes. 

Microcolonies are formed when the bacteria start to multiply within the EPS. Further 

development of microcolonies gives rise to macrocolonies. These contain a larger number of 

cells, are divided by fluid-filled channels and demonstrate a higher metabolic and 

physiological heterogeneity, but are still enclosed in the EPS. The number of cells can 

increase in the colonies by translocation of cells on the surface, by the direct attachment of 

planktonic cells or by cell division. Biofilm maturation begins after irreversible attachment is 

established and implies an increase in overall density and complexity of the biofilm structure. 

Detachment and dispersal are necessary for survival and colonization of new niches. Erosion 

and sloughing are two spontaneous detachment processes. Erosion is the continual 

detachment of small portions or single cells from the biofilm, whereas sloughing implies the 

rapid loss of large portions. Other detachment processes are collisions between biofilm 

carriers (abrasion), human intervention or grazing.  
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Figure 1.5. Stages of bacterial biofilm formation. 1) initial attachment, 2) irreversible 
attachment, 3) early development of biofilm architecture, 4) maturation, and 5) dispersion. 
(Source: Marchand et al., 2012) 
 

 

Biofilms demonstrate high antibiotic tolerance and resistance, which is caused by an interplay 

of different mechanisms, such as restricted penetration, reduced growth rate, metabolic 

heterogeneity within the biofilm, general stress response, the presence of persister cells (i.e. 

dormant variants of regular cells that exhibit multidrug tolerance (Lewis, 2010)), a specific 

biofilm phenotype, quorum sensing, efflux pumps (Mah & O’Toole, 2001; Stewart, 2002; 

Drenkard, 2003; de la Fuente-Núñez et al., 2013). There is a fundamental difference between 

antibiotic tolerance and antibiotic resistance. Antibiotic tolerance is a property of dormant 

cells that survive killing by bactericidal antibiotics in the absence of drug resistance 

mechanisms, while in antibiotic resistance the interaction of an antibiotic with a target is 

prevented by a variety of resistance mechanisms (Lewis, 2010). Recent studies have 

demonstrated that the transfer of antibiotic resistance is higher under biofilm conditions than 

under planktonic conditions (Hennequin et al., 2012; Savage et al., 2013). However, biofilms 

are not only hotspots for horizontal gene transfer, but there is also an interconnection between 

biofilm formation and stabilization and horizontal gene transfer (reviewed by Molin & 

Tolker-Nielsen, 2003 and by Madsen et al., 2012). Several studies have demonstrated that the 

presence of conjugative plasmids in Gram-negative bacteria stimulates biofilm formation 
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(Ghigo, 2001; Dudley et al., 2006; Reisner et al., 2006; Burmølle et al., 2008). Pili or 

fimbriae encoded on the plasmid seem to be responsible, like for example the F conjugative 

pili as demonstrated by Ghigo (2001), the type IV pilus as demonstrated by Dudley et al. 

(2006) or the type 3 fimbriae as demonstrated by Burmølle et al., 2008. In Gram-positive 

bacteria, which apply other conjugative mechanisms than Gram-negative bacteria, the 

stimulating effect of conjugation on biofilm formation has also been demonstrated (Luo et al., 

2005). The presence of a conjugative plasmid however, may also have a host-specific 

negative effect on biofilm formation on solid, abiotic surfaces. The study of Røder et al. 

(2013) indicated that the presence of conjugative plasmids in some species may facilitate tight 

cell–cell attachment, favoring the formation of cell aggregates (flocs) over biofilm formation. 

 

3.4. Processing 

One of the techniques that is being applied to extend the shelf life of food products is 

modified atmosphere packaging (MAP). MAP aims to reduce or inhibite bacterial growth. 

The application of MAP has been reviewed for a wide variety of food products, such as meat, 

fish and fishery products, fruits and vegetables, dairy products, grains and mushrooms (e.g. 

Jayas & Jeyamkondan, 2002; Sivertsvik et al., 2002; Palacios et al., 2011; Arvanitoyannis & 

Stratakos, 2012; Singh et al., 2012; Caleb et al., 2013). Some of these reviews also took into 

consideration the safety concern related to MAP products as this technique could possibly 

enable the growth of psychrotrophic pathogens. The gasses mostly applied in MAP are 

oxygen (O2), nitrogen (N2) and carbon dioxide (CO2). Oxygen is mainly being used in MAP 

of fresh fruits and vegetables to allow these products to respire and in MAP of meat products 

to maintain the red color (Church & Parson, 1995). Oxygen at superatmospheric partial 

pressure ( > 70 kPa O2) may inhibit, have no effect, or even stimulate growth of different 

microorganisms from the same genus (Artés & Allende, 2005). Nitrogen is used as a filler 

gas. Although it has no antimicrobial effect itself, it prevents the growth of aerobic organisms 

by replacing O2. Carbon dioxide has a strong antimicrobial effect causing an extension of the 

lag phase and a reduction in growth rate during the logarithmic phase (Farber, 1991). Several 

underlying mechanisms have been suggested: change in cell-membrane function, direct 

enzyme inhibition or reduced enzyme reaction rates, intracellular pH changes caused by 

penetration of bacterial membranes, alterations of physicochemical properties of cell proteins 

(Farber, 1991). In general, Gram-negative bacteria are more sensitive to CO2 than 

Gram-positive bacteria (Church, 1994). As the solubility of CO2 decreases dramatically with 
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increasing temperatures, temperature plays an important role in the effect of CO2 (Farber, 

1991). 

 

Low temperature itself can also be applied as a preservation technique. Reducing temperature 

slows the rates of chemical reactions and the growth of microorganisms (Farkas, 2007). 

Bacteria are classified based on their optimal growth temperature, namely the psychrophiles, 

the mesophiles and the thermophiles. A special group are the psychrotrophs which are able to 

grow at temperatures between 0 and 7 °C, although they are in fact mesophiles (Jay et al., 

2005). An important psychrotropic foodborne pathogen is L. monocytogenes. In general, it 

grows very slow at temperatures below 4 °C. When the temperature however rises above 

4 °C, the growth rate increases and the lag phase decreases considerably. The risk that comes 

along with storage at slight abuse temperatures is therefore increased as L. monocytogenes can 

grow to numbers which pose a possible threat to human health.  

Low temperature can also have an influence on antibiotic resistance transfer, as has been 

mentioned in section 2.3. 
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4. Objectives 

The spread of antibiotic resistance results from an interplay of factors between humans, 

animals, food and environment. In case of antibiotic resistance transfer to humans through 

food, the food production chain does not only play a passive role but it also affects survival 

and growth of antibiotic resistant bacteria and transfer of antibiotic resistance genes. 

This PhD research aims at providing more insight into the acquisition and dissemination of 

antibiotic resistance during food production and preservation as this has not yet been studied 

extensively. This was done by applying several quantification techniques (plating and flow 

cytometry), using both a Gram-negative as a Gram-positive model system, with bacteria 

having a specific role in the food industry and by considering food production and food 

preservation aspects (Figure 1.6).  

 

The aim of Chapter 2 was to study the transfer of a multiresistance plasmid, which was 

originally isolated from a wastewater treatment plant, to the foodborne pathogens, Salmonella 

spp. and E. coli O157:H7. Two quantification methods, plating and flow cytometry, were 

applied. Antibiotic resistance profiles of recipients and transconjugants were determined. 

 

Integrons represent an interesting mechanism by which bacteria can capture antibiotic 

resistance genes. In Chapter 3, the presence of integrons in a Belgian collection of 

Shiga-toxin producing E. coli, the most significant group of emerging foodborne pathogens, 

was explored and further characterized. The antibiotic resistance of integron-positive 

and -negative strains was compared.  

 

Biofilms are a significant problem in the food industry. It is therefore important to analyze to 

which extent and at which frequencies plasmid transfer may occur in these structures. This 

was the objective of Chapter 4, using a reactor in which three biofilm models, representative 

for biofilms in the food industry, were integrated. P. putida, a model for spoilage organisms, 

was used as donor and E. coli, a model for foodborne pathogens, as recipient.  

 

The food industry increasingly uses minimal processing techniques to provide the consumer 

high quality food, which also possesses a sufficiently long shelf life. Techniques often used to 

achieve this are low temperature and modified atmosphere packaging. How these techniques 

influence plasmid transfer was the subject of Chapter 5. A Gram-positive model was used 
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with the donor Lb. sakei subsp. sakei, as model for spoilage organisms and the well-known 

foodborne pathogen L. monocytogenes as recipient. Cooked ham was used for the validation 

of plasmid transfer under MAP. In a last step, low inoculum densities were applied to 

approach a more realistic situation.  

 

In Chapter 6 the obtained results are discussed in light of the farm to fork concept, starting 

from the primary production up to the consumer, followed by a discussion on the 

methodology. Finally, some conclusions are drawn. 
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Figure 1.6. Schematic overview of the different research chapters. The spread of antibiotic 
resistance results from an interplay of different factors. In this doctoral work, the interplay 
between environment, primary production, food processing and consumer was considered. In 
Chapter 2, the transfer of an environmental plasmid to foodborne pathogens, isolated from 
humans, food or animals was analyzed (Model organisms: P. putida, Salmonella spp. and E. 
coli O157:H7). In Chapter 3, a collection of Belgian Shiga toxin producing E. coli, isolated 
from humans, food or animals was screened for the presence of integrons. In Chapter 4, 
plasmid transfer in biofilm models representative for the food industry was examined (Model 
organisms: P. putida and E. coli). In Chapter 5, the influence of preservation techniques on 
plasmid transfer was explored (Model organisms: Lb. sakei subsp. sakei and L. 
monocytogenes). 
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The topic of this chapter is the interplay between environment and foodborne pathogens. The 

transfer of a multiresistance plasmid, originally isolated from a wastewater treatment plant, 

to foodborne pathogens was investigated by plating and flow cytometry. Subsequently, the 

expression of the acquired resistance genes in the transconjugants was inspected. 
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Abstract 

Pathogens resistant to multiple antibiotics are rapidly emerging, entailing important 

consequences for human health. This study investigated if the broad-host-range 

multiresistance plasmid pB10, isolated from a wastewater treatment plant, harbouring 

amoxicillin, streptomycin, sulfonamide and tetracycline resistance genes, was transferable to 

the foodborne pathogens Salmonella spp. or E. coli O157:H7 and how this transfer alters the 

phenotype of the recipients. The transfer ratio was determined by both plating and flow 

cytometry. Antibiotic resistance profiles were determined for both recipients and 

transconjugants using the disk diffusion method. For 14 of the 15 recipient strains, 

transconjugants were detected. Based on plating, transfer ratios were between 6.8 × 10-9 and 

3.0 × 10-2 while using flow cytometry, transfer ratios were between <1.0 × 10-5 and 1.9 × 10-2. 

With a few exceptions, the transconjugants showed phenotypically increased resistance, 

indicating that most of the transferred resistance genes were expressed. In summary, we 

showed that an environmental plasmid can be transferred into foodborne pathogenic bacteria 

at high transfer ratios. However, the transfer ratio seemed to be recipient strain dependent. 

Moreover, the newly acquired resistance genes could turn antibiotic susceptible strains into 

resistant ones, paving the way to compromise human health.  
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1. Introduction 

The extensive use of antibiotics in human and veterinary medicine and its prophylactic and 

growth promoting use in agriculture and aquaculture have lead to a huge rise of antibiotic 

resistant bacteria (Hamer & Gill, 2002; Cabello, 2006; Walsh & Fanning, 2008) and an 

increase of antibiotic resistance genes in the horizontal gene pool.  

Antibiotic resistance in bacteria can be intrinsic or acquired. In the case of intrinsic resistance, 

bacterial strains are inherently resistant to a certain compound and the resistance cannot be 

transferred horizontally (Fajardo et al., 2008). Acquired resistance occurs by mutation and/or 

horizontal gene transfer events. The main mechanisms of horizontal gene transfer are 

conjugation (mobile genetic elements are being transferred from a donor to a recipient cell), 

transformation (uptake of naked DNA) and transduction (bacteriophages as transporters of 

genetic information). Conjugation is considered as the principal mode for antibiotic resistance 

transfer since many antibiotic resistance genes are situated on mobile elements such as 

plasmids and conjugative transposons. Conjugation of broad-host-range plasmids enables 

DNA to be transferred over genus and species borders, whereas transformation and 

transduction are usually more limited to the same species (Mathur & Singh, 2005). When 

considering a medical point of view, the transfer of antibiotic resistance determinants from 

environmental bacteria to pathogens is of utmost importance, and it is clear that 

environmental bacteria should not be seen as devoid of antibiotic resistance determinants 

because of the physical distance between these bacteria and clinical settings (Moore et al., 

2010). A recent study suggests that infected patients might enhance the spread of 

plasmid-encoded fitness, virulence and antibiotic resistance determinants as inflammation 

elicits concomitant Salmonella and Escherichia coli blooms, which can strongly raise donor 

and recipient densities in the gut, thereby boosting horizontal gene transfer (Stecher et al., 

2012). 

The aim of this study was to investigate if an environmental multiresistance plasmid can be 

transferred to two model Gram-negative foodborne pathogens, that are, Salmonella spp. and 

E. coli O157:H7. It is generally agreed that Gram-negative bacteria pose the greatest risk to 

public health as the increase in resistance of Gram-negative bacteria is faster than in 

Gram-positive bacteria and as there are fewer new and developmental antibiotics active 

against Gram-negative bacteria (Kumarasamy et al., 2010).  

To determine the transfer ratio, the transconjugants were analyzed by both plating and flow 

cytometry (gfp as the reporter gene). The application of flow cytometry for the detection and 
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quantification of plasmid transfer was first described and evaluated by Sørensen et al. (2003). 

Since then, this technique has been applied for the quantification of transconjugants in other 

studies (Boon et al., 2006; Musovic et al., 2006; Shintani et al., 2014). The extent to which 

the phenotype of the transconjugants was influenced, was analyzed by determining the 

antibiotic resistance profiles against five antibiotics for the recipients and the transconjugants. 

 

 

2. Material and Methods 

2.1. Bacterial strains, plasmid and growth conditions 

The plasmid donor strain was Pseudomonas putida strain SM1443, a KT2442 (SM1315) 

strain with the mini-Tn5-lacIq cassette inserted into the chromosome (Christensen et al., 

1998). The lacIq repressor cassette prevented the expression of the gfp gene in the donor 

(Figure 2.1).  

The plasmid used in this study was the broad-host-range plasmid pB10. This plasmid, 

belonging to the IncP-1β subgroup, was isolated from a wastewater treatment plant and 

contains resistance to the antibiotic agents amoxicillin, streptomycin, sulfonamides and 

tetracycline and to inorganic mercury ions (Dröge et al., 2000). To mark the plasmid with a 

gfp gene and a npt gene (kanamycin resistance gene, Km) (Figure 2.1), insertion of the 

mini-Tn5-Km-PA1-04/03::gfp cassette was performed in two steps. First, a triparental mating 

was performed in which the helper plasmid RK600 (Kessler et al., 1992), present in E. coli 

HB101, mobilized the delivery plasmid pJBA120, containing the mini-Tn5 cassette, from the 

donor E. coli MV1190(λ-pir) (Andersen et al., 1998), into the rifampicin resistant recipient 

P. putida UWC1 harbouring pB10. P. putida UWC1 derivatives with the 

mini-Tn5-Km-PA1-04/03::gfp cassette inserted either in the chromosome or in pB10 were 

obtained by selection in Luria Bertani (LB) broth (10 g tryptone, 5 g yeast extract and 5 g 

NaCl per litre) with 10 µg tetracycline mL-1, 50 µg kanamycin mL-1 and 100 µg rifampicin 

mL-1. In the second step, gfp-marked plasmids were obtained by mating the P. putida UWC1 

derivatives with Ralstonia eutropha JMP228n (De Gelder et al., 2005). Selection on LB agar 

plates with 10 µg tetracycline mL-1, 50 µg kanamycin mL-1 and 100 µg nalidixic acid mL-1 

resulted in JMP228n clones carrying pB10 containing a randomly inserted 

mini-Tn5-Km-PA1-04/03:::gfp cassette. Subsequently, one clone, designated 

JMP228n (pB10::gfp), was mated with E. coli MG1655 to obtain E. coli MG1655 (pB10::gfp) 

after selection on LB agar plates with 10 µg tetracycline mL-1 and 50 µg kanamycin mL-1 at 
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43 °C. Ultimately, this strain was mated with P. putida SM1443 to obtain the donor strain for 

the experiments, P. putida SM1443 (pB10::gfp), after selection on LB agar plates with 10 µg 

tetracycline mL-1, 100 µg rifampicin mL-1 and 50 µg kanamycin mL-1 at 28 °C.  

 

Figure 2.1. Principle of the gfp reportersystem. The donor strain contains chromosomally a 
lacIq repressor preventing the expression of the gfp gene located on the plasmid. After 
plasmid transfer the gfp gene is expressed in the transconjugant cell, which consequently can 
be detected by flow cytometry. 
 

 

The recipient strains were 10 Salmonella spp. and five E. coli O157:H7 strains (Table 2.1). 

The tested Salmonella serovars belong to the most frequently occurring Salmonella serotypes 

in human salmonellosis in Europe, with Salmonella enterica subsp. enterica serovar 

Enteritidis and Salmonella enterica subsp. enterica serovar Typhimurium being the most 

frequent (EFSA/ECDC, 2010). None of the five E. coli O157:H7 strains carried stx1 and stx2 

genes. For one strain (LFMFP 476), no additional information on the presence of other 

virulence genes was available, but the four other strains all carried the eae and ehx genes. 
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The recipient strains were first tested on their inability to grow on kanamycin (50 µg mL-1) 

containing plates as this antibiotic was used as selective marker to detect transconjugants 

harbouring pB10::gfp.  

Donor and recipient strains were all grown in LB broth. For all solid media, 1.5% agar was 

added. P. putida was incubated at 28 °C, Salmonella spp. and E. coli at 37 °C. To maintain 

the plasmid in the donor and the transconjugants 50 µg kanamycin mL-1 was added to the 

medium. 

 

Table 2.1. Overview of the recipient strains (ILVO laboratory collection and LFMFP 
laboratory collection).  
Strain Species Serovar / Serotype Origin 

MB 1139 Salmonella enterica Enteritidis Poultry 
MB 1410 Salmonella enterica Enteritidis Egg 
MB 1561 Salmonella enterica Enteritidis Poultry (transport) 
MB 2264 Salmonella enterica Typhimurium Human 
MB 2265 Salmonella enterica Typhimurium Human 
MB 2272 Salmonella enterica Typhimurium Human 
MB 2292 Salmonella enterica Typhimurium Human 
MB 1641 Salmonella enterica Hadar Poultry (cecal drop) 
KS 1-1 Salmonella enterica Infantis Poultry (house) 
KS 87 Salmonella enterica Virchow Poultry (house) 
MB 3885 Escherichia coli O157:H7 Beef (carpaccio) 
MB 3890 Escherichia coli O157:H7 Human 
MB 4021 Escherichia coli O157:H7 Bovine (carcass) 
MB 4260 Escherichia coli O157:H7 Non-human 
LFMFP 476 Escherichia coli O157:H7 Bovine (faeces) 
 

 

2.2. Filter mating 

Mating experiments were conducted in triplicate (biological replicates) on 0.22 µm 

polycarbonate filters (25 mm diameter) (Whatman, UK). The donor and recipient cultures 

were grown overnight and washed twice with sterile saline (0.85% NaCl) to remove 

antibiotics. The OD610nm was adjusted to 0.25-0.35 (approximately 108 cells mL-1) for both 

donor and recipient strains. Seventy-five µL of both donor and recipient was diluted in 2 mL 

of sterile saline and distributed evenly over the filter using a Swinnex device (Millipore, 

USA). The filters were transferred to LB agar plates and incubated overnight at 28 °C. 

Afterwards, the filters were submerged in 5 mL sterile saline and vortexed twice for 1 min. 

The suspended bacteria were analyzed by plate counting (n = 1) and by flow cytometry 
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(n = 3). For the plate counting, LB plates, which contained kanamycin, were incubated at 

42 °C. The presence of the antibiotic counter selected for the recipient strain, while the high 

temperature counter selected for the donor strain. The transfer ratio was determined as the 

number of transconjugant CFU per total cell count (donor, recipient and transconjugant cells), 

as determined by flow cytometry. 

 

2.3. Flow cytometry analysis 

Diluted bacteria were detected and quantified with a Cyan ADP Flow Cytometer (Dako, 

Denmark), using the 488 nm laser. The dilution factor ranged from 1000 to 2500. Dilutions 

were made with filter sterilized Evian water. Each sample consisted of 980 µL of the diluted 

sample, 10 µL Na2EDTA (500 mM, pH8) and 10 µL Dako Cytocount beads. These beads 

were used to determine the cell concentration. Green fluorescence emission was collected 

with a photomultiplier tube using a 530/40 emission filter, for PE 585 fluorescence a 575/25 

emission filter was used and side scatter light (SSC) was collected using a 488/10 emission 

filter. The sheath fluid consisted of Milli-Q water. The threshold trigger was set to SSC. The 

analysis of a sample was done by collecting data for 100 000 events in threefold. Summit v4.3 

software was used to process the results. Pure cultures of donor, recipient and transconjugant 

were analyzed by flow cytometry to set the gate that distinguish between the transconjugant 

population and the donor and recipient population on a Green Log versus PE 585 Log plot. 

When the transconjugants of a specific filter mating sample could not clearly be visually 

detected on the plot, their number was considered to be below the detection limit 

(<1 × 10-5 transconjugants per total cells). The transfer ratio was determined as the number of 

transconjugant cells per total cell count.  

 

2.4. Antibiotic susceptibility screening  

The antibiotic susceptibility of the recipients and transconjugants was determined by using the 

disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI) 

guidelines for five antibiotics (amoxicillin, kanamycin, streptomycin, sulfonamides and 

tetracycline) (CLSI, 2009). The visual turbidity of the bacterial isolates was adjusted to a 

0.5 McFarland standard in sterile saline. The suspension was plated on a Mueller-Hinton agar 

plate (Oxoid, UK) and antibiotic disks (Oxoid) were applied on the plate. Inhibition zone 

diameters were measured after incubating the plates during 16-18 h at 37 °C. Classification as 

“susceptible”, “intermediate resistant” or “resistant” was based on the inhibition zone 
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diameters according to CLSI guidelines. E. coli ATCC 25922 was used as quality control 

strain to monitor the performance of the susceptibility testing. 

 

2.5. Molecular confirmation of plasmid transfer  

Transfer of the plasmid pB10::gfp was confirmed by PCR. DNA from the recipient and 

transconjugant strains was obtained by an alkaline lysis method. For each strain, a few 

bacterial colonies were suspended in 1 mL Ringer solution. After centrifuging the sample for 

two minutes at 14000 g, 100 µL sterile water was added to the pellet. The samples were 

incubated for 15 minutes at 90 °C and subsequently centrifuged for one minute at 14000 g. 

Fifty µL of the supernatant was kept at -20 °C.  

The PCR reaction was performed with the primers trfA_fw and trfA_rev to amplify a 281 bp 

fragment of the replication initiation gene trfA, encoded by the plasmid, as previously 

described (Bahl et al., 2009). These primers are specific for plasmids belonging to the 

IncP-1α, β, ε subgroups. The PCR amplification products were detected by electrophoresis on 

a 1% agarose gel in Tris-Acetate-EDTA (TAE) buffer and visualized by ethidium bromide 

staining. 

 

 

3. Results 

3.1. Characterization of the recipient strains 

Before starting the conjugation experiments, the antibiotic susceptibility profiles of the 

recipient strains and presence of IncP-1α, β, ε plasmids were determined (Table 2.2). The 

three S. Enteritidis strains were susceptible to the tested antibiotics, except one (MB 1139), 

which displayed an intermediate resistance to kanamycin. There was much more variation in 

the antibiotic susceptibility profiles of the S. enterica serovar Typhimurium strains. The 

S. enterica serovar Typhimurium strain MB 2264 was resistant to the four antibiotics which 

are indigenous to the plasmid but susceptible to kanamycin, while S. enterica serovar 

Typhimurium strain MB 2265 was susceptible to all the antibiotics. The two other S. enterica 

serovar Typhimurium strains (MB 2272 and MB 2292) showed resistance to, respectively, 

one (amoxicillin) and two antibiotics (amoxicillin and sulfonamides). The Salmonella 

enterica subsp. enterica serovar Hadar strain MB 1641 was susceptible to kanamycin and 

sulfonamides. The strains of Salmonella enterica subsp. enterica serovar Infantis KS 1-1 and 

Salmonella enterica subsp. enterica serovar Virchow KS 87 were susceptible to all five 
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antibiotics. All the recipient E. coli strains were susceptible to the antibiotics tested, except 

strain MB 3890 which was intermediate resistant to streptomycin. 

The absence of IncP-1α, β, ε plasmids in the recipient strains was confirmed by PCR as in 

none of the 15 recipient strains a PCR fragment of 281 bp, specific for IncP-1α, β, ε plasmids, 

was detected (data not shown). 

 

3.2. Plasmid transfer analyzed by plating 

Suspensions, obtained after filter mating, were plated on LB plates supplemented with 

kanamycin and incubated at 42 °C. Transconjugants were obtained for 13 of the 15 tested 

strains (Figure 2.2). The strains that did not yield transconjugants, were S. enterica serovar 

Enteritidis MB 1139 and S. enterica serovar Hadar MB 1641. Repetition of the conjugation 

experiments confirmed these results (data not shown). The other Salmonella spp. strains 

resulted in transfer ratios ranging from 3.7 × 10-7 to 3.0 × 10-2 transconjugants per total cell 

count. The highest transfer ratios were found for the two remaining S. enterica serovar 

Enteritidis strains (MB 1561: 3.0 × 10-2; MB 1410: 9.1 × 10-4), followed by S. enterica 

serovar Virchow KS 87 (7.2 × 10-4) and S. enterica serovar Infantis KS 1-1 (9.2 × 10-5), while 

the lowest transfer ratios were observed for the S. enterica serovar Typhimurium strains, with 

transfer ratios in the order of 10-7. For MB 2265 a transfer ratio of 1.9 × 10-5 was observed, 

which was the fifth highest transfer ratio found for the Salmonella spp. strains tested. One of 

the E. coli strains (MB 3890) had a similar transfer ratio (2.2 × 10-5) as some Salmonella spp. 

strains, while the other four E. coli strains had much lower transfer ratios (10-8 – 10-9). 



 

 

 

Table 2.2. Antibiotic susceptibility screening by disk diffusion of the recipients (R) and the transconjugants (T). Values represent inhibition zone 
diameters (mm)  

Strain 
Kanamycin Amoxicillin Streptomycin Sulfonamides Tetracycline 

R T R T R T R T R T 
S. enterica serovar Enteritidis (MB 1139) 17 * 28 * 15 * 20 * 23 * 
S. enterica serovar Enteritidis (MB 1410) 20 <7 20 7 17 13 20 <7 21 <7 
S. enterica serovar Enteritidis (MB 1561) 21 <7 27 7 18 13 22 <7 22 <7 
S. enterica serovar Typhimurium (MB 2264) 19 <7 <7 <7 8 8 <7 <7 9 <7 
S. enterica serovar Typhimurium (MB 2265) 20 <7 26 7 15 14 20 <7 21 <7 
S. enterica serovar Typhimurium (MB 2272) 20 <7 <7 <7 15 12 25 <7 21 <7 
S. enterica serovar Typhimurium (MB 2292) 19 <7 <7 <7 15 13 <7 <7 20 <7 
S. enterica serovar Hadar (MB 1641) 18 * <7 * 9 * 21 * < 7 * 
S. enterica serovar Infantis (KS 1-1) 19 <7 25 7 15 12 19 <7 19 <7 
S. enterica serovar Virchow (KS 87) 19 <7 26 7 15 12 21 <7 20 <7 
E. coli O157:H7 (MB 3885) 21 <7 22 7 16 13 24 <7 22 <7 
E. coli O157:H7 (MB 3890) 18 <7 21 7 14 14 24 <7 20 <7 
E. coli O157:H7 (MB 4021) 21 <7 21 7 18 15 24 <7 21 <7 
E. coli O157:H7 (MB 4260) 19 <7 20 7 15 13 24 <7 20 <7 
E. coli O157:H7 (LFMFP 476) 19 <7 22 11 15 14 24 <7 21 <7 
Bold: considered as resistant according to CLSI guidelines. 
Italic: considered as intermediate resistant according to CLSI guidelines. 
*: no transconjugants obtained. 
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Figure 2.2. Transfer ratio, expressed as number of transconjugants per total cell count, 
determined by plating (n = 1) (black bars) and by flow cytometry (n = 3) (grey bars) for the 
15 recipient strains. The dashed line represents the detection limit of flow cytometry. 
 

 

3.3. Plasmid transfer analyzed by flow cytometry  

The conjugation efficiency was also assessed by flow cytometry, because this method allowed 

a rapid and culture-independent screening of the individual transconjugant and parental cells 

(Figure 2.3). Using the same mating mixtures as described above, transconjugants could be 

detected for only five of the 15 tested strains, due to the rather poor detection limit 

(Figure 2.2). These strains were all Salmonella spp., more specifically S. enterica serovar 

Enteritidis (MB 1561: 1.9 × 10-2; MB 1139: 2.5 × 10-4, MB 1410: 1.9 × 10-4), S. enterica 

serovar Virchow (1.5 × 10-4) and S. enterica serovar Infantis (1.2 × 10-4). No transconjugants 

could be obtained by plating for S. enterica serovar Enteritidis MB 1139, while the four other 

strains showed the highest transfer ratio determined by plating. For the 10 other strains the 

transfer ratio was below the detection limit (<1 × 10-5 transconjugants per total cell count). 

This is consistent with the low transfer ratios obtained by plating (10-5 – 10-9). 
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Figure 2.3. Detection of transconjugants by flow cytometry. By analyzing pure cultures of 
donor, recipient and transconjugant a gate was set on a Green Log versus PE 585 Log plot to 
distinguish transconjugants. 
 

 

3.4. Characterization of the transconjugants 

To confirm that plasmid transfer had occurred and to analyze which effect this transfer had on 

the phenotype, the presence of the plasmid in the transconjugants and the antibiotic resistance 

profiles of the transconjugants were examined. Transconjugants were obtained for 13 of the 

15 tested strains by plating (Table 2.2). As expected, the transconjugants were all resistant to 

kanamycin (inhibition zone diameter <7 mm). The inhibition zone diameter of sulfonamides 

and tetracycline was less than 7 mm for all the transconjugants, meaning that they were all 

completely resistant to these compounds. For amoxicillin the inhibition zone diameter was 

7 mm or less, except for E. coli LFMFP 476 for which the inhibition zone diameter was 

11 mm. This value is still considered as resistant according to CLSI guidelines. The decrease 

in inhibition zone diameter was less pronounced for streptomycin. According to the CLSI 

guidelines 11 of the transconjugant strains are considered to be intermediate resistant to 

streptomycin, one E. coli strain (MB 4021) remained susceptible. S. enterica serovar 

Typhimurium MB 2264 was already resistant to amoxicillin, streptomycin, sulfonamides and 

tetracycline before conjugation. Phenotypically, this strain gained only the resistance to 

kanamycin upon conjugation.  

The presence of the pB10 plasmid in the transconjugants was confirmed by PCR. While none 

of the recipient strains contained the fragment (see above), the transconjugant strains all 

showed a clear band of the expected size after gel electrophoresis (data not shown). 

 

 

 

Donor Recipient Transconjugant 
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4. Discussion 

This study demonstrated that the broad-host-range plasmid pB10, carrying multiple resistance 

genes, could be transferred to foodborne pathogens under laboratory conditions and that this 

event made the recipient strains antibiotic resistant. The results show that the antibiotic 

resistance genes present in the general horizontal gene pool can be transferred from 

environmental strains to pathogenic organisms, but that the transfer ratio is dependent on the 

recipient strain. The role of natural environments in the evolution of resistance traits in 

pathogenic bacteria has recently been reviewed (Martinez, 2009). Other studies examined the 

conjugation between food related (pathogenic) bacteria (Pourshaban et al., 2002; Gevers et 

al., 2003b; Mc Mahon et al., 2007a; Toomey et al., 2009a), but to our knowledge there are 

fewer studies describing the transfer from environmental strains to (foodborne) pathogens 

(Bruun et al., 2003; D’Costa et al., 2006; Walsh et al., 2011).  

In this study high transfer ratios were encountered with the highest transfer ratio in the 

S. enterica serovar Enteritidis strain MB 1561 (order of magnitude of 10-2). The plasmid used 

in this study, pB10, is a broad-host-range plasmid that could be transferred between 

laboratory strains of Pseudomonas sp. and E. coli, and from Pseudomonas sp. to 

Sinorhizobium meliloti at high transfer ratios with an order of magnitude of 

10-1 transconjugants per recipient cells (Dröge et al., 2000). Four out of five E. coli 0157:H7 

recipient strains showed lower transfer ratios than those observed for the Salmonella spp. 

strains. Recently, a study was published describing the dissemination of NDM-1-positive 

bacteria in the New Delhi environment and its implications for human health (Walsh et al., 

2011). NDM-1-positive isolates containing the blaNDM-1 gene, were circulating in New Delhi 

as early as 2006 and plasmids carrying the gene can have up to 14 other antibiotic resistance 

determinants. These authors found the presence of the blaNDM-1 gene in non-fermentative 

Gram-negative bacteria, like P. putida, which were not previously reported to carry this gene. 

The transfer of blaNDM-1 was examined from bacteria, isolated from waste seepage, to the 

non-pathogenic E. coli J53 and to clinical strains of S. enterica serovar Enteritidis and 

Shigella sonnei. Transfer into the S. enterica serovar Enteritidis and S. sonnei recipients was 

10 to 1000 times less efficient than into the E. coli J53 lab strain. In our study, transfer was 

more efficient in the Salmonella spp. strains than in the E. coli strains. It has been 

demonstrated that the donor affects the host range of pB10 in an activated-sludge microbial 

community (De Gelder et al., 2005), and it has been posed that in general all conditions 
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influencing the host, including the genetic background of the host, might also influence the 

frequency of plasmid transfer by conjugation (Koraimann, 2004).  

For all strains, except for S. enterica serovar Hadar, transconjugants could be detected by 

plating and/or by flow cytometry. Other studies also showed that S. enterica serovar Hadar is 

less receptive for mobile genetic elements than other Salmonella serovars (Sarowska et al., 

2009; Franiczek et al., 2010). It could be that in S. enterica serovar Hadar a yet unidentified 

mechanism hinders the acquisition of plasmid DNA by conjugation. Bacteria have developed 

defense mechanisms protecting them from invading foreign DNA, some of which directly 

target the incoming DNA such as restriction-modification systems or CRISPR/Cas systems. 

In restriction-modification systems a methyltransferase protects host DNA by modifying 

specific nucleic acids, while the restriction endonuclease cleaves any foreign DNA containing 

a specific recognition site, which has not previously been protected by the same modification 

(Dupuis et al., 2013). Although restriction–modification systems act only against 

double-stranded DNA, it has been demonstrated that the frequency of transconjugants can be 

reduced if the recipient has a restriction system to which the incoming plasmid is susceptible 

(Thomas & Nielsen, 2005). However, a strategy to counteract this has been seen in IncP-1 

plasmids, from which most restriction–modification sites have been eliminated (Skippington 

& Ragan, 2011). The clustered regularly interspaced short palindromic repeats (CRISPR), and 

associated proteins (Cas) system provides bacteria with acquired immunity against viruses 

and plasmids. In CRISPR loci short, partially palindromic DNA repeats that occur at regular 

intervals, CRISPR repeats, alternate with variable sequences, CRISPR spacers (Barrangou & 

Marraffini, 2014). Spacers mostly correspond to segments of captured viral and plasmid 

sequences (Horvath & Barrangou, 2010). The CRISPR spacers and repeats are transcribed 

and processed into small CRISPR RNAs (crRNAs) that specify acquired immunity by a 

sequence-specific mechanism. The prevention of plasmid transfer in Staphylococcus 

epidermidis by this system has been demonstrated by Marraffini & Sontheimer (2008). 

Two methods were used in this study for the detection of transconjugants: a 

cultivation-dependent (plating) and a cultivation-independent method (flow cytometry). The 

most important advantages of flow cytometry are that it provides a rapid screening of 

bacterial cultures, takes into account the non-culturable fraction of the bacteria and is less 

labour intensive than plating. Other studies used flow cytometry in combination with 

evolutionary algorithms to determine the optimal parameters for transconjugant formation 

(Boon et al., 2006) or in combination with automated cell sorting of green fluorescent 

transconjugant cells (Musovic et al., 2006; Shintani et al., 2014). This approach allowed them 
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to identify the transconjugants (Musovic et al., 2006; Shintani et al., 2014). However, in our 

study the detection limit was rather high, so rare events could not be observed. For five of the 

15 analyzed strains transconjugants could be detected by flow cytometry. With plating, 

transconjugants were detected for 13 of the 15 analyzed strains. There was one strain 

(S. enterica serovar Enteritidis MB 1139) for which transconjugants only could be detected by 

flow cytometry and not by plating, even after repeated conjugation experiments. In some 

cases transconjugants cannot be detected by cultivation because the cells enter into a viable 

but non-culturable (VBNC) state (Boon et al., 2006). In a previous study, a strain-dependent 

influence of temperature on the VBNC state was found (Oliver et al., 1995). These authors 

found a different temperature influence for plasmid-bearing cells and plasmid-free cells of 

two Pseudomonas strains, which was not seen in an E. coli strain. Whenever no 

transconjugants were detected by flow cytometry in our study, the transfer ratios determined 

by plating were lower than or just around 10-5. These findings indicate that although flow 

cytometry offers many advantages, it is not always the method of choice due to its high 

detection limit. 

In the last step of this study, the antibiotic resistance profiles of the transconjugants were 

determined to verify whether the recipient phenotype was altered by receiving the plasmid. 

Transconjugants were obtained for 13 of the 15 analyzed strains. All these transconjugants 

showed a decrease in inhibition zone diameter for kanamycin, indicating that they all 

expressed the kanamycin resistance gene. For the plasmid-encoded antibiotic resistances, the 

strains showed complete resistance against amoxicillin, sulfonamides and tetracycline. For 

streptomycin, only slight or no decreases in inhibition zone diameter were observed, resulting 

in intermediate resistant strains. E. coli MB 4021 remained susceptible according to CLSI 

guidelines although there was a decrease in inhibition zone diameter. Even though there can 

be a fair to almost perfect agreement between the measurement of minimum inhibitory 

concentration (MIC) values and the assessment of resistance genes, situations occur in which 

susceptible isolates carry the corresponding resistance genes (Rosengren et al., 2009). These 

resistance genes may not be expressed if they are distant from the promoter or if they are 

associated with a weak promoter in an integron. The same occurs with free gene cassettes 

which are not incorporated into an integron and lack the integron promoter which is required 

for expression (Rosengren et al., 2009). An alternative explanation could be a low MIC test 

sensitivity as is known with aadA genes and streptomycin resistance (Rosengren et al., 2009; 

Sunde & Norström, 2005). A poor agreement was found between genotypes and phenotypes 

for streptomycin (66% agreement) in a previous study (Boerlin et al., 2005). In the majority 
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of cases, this disagreement was due to the presence of an aadA gene in isolates classified as 

susceptible to streptomycin. The streptomycin resistance in pB10 is situated on a truncated 

Tn5393c streptomycin resistance transposon. This transposon contains the strA and strB 

genes, which encode the two different streptomycin resistance proteins 

aminoglycoside-3’-phosphotransferase and aminoglycoside-6-phosphotransferase (Schlüter et 

al., 2003). The association of strA and strB normally leads to high-level expression of 

streptomycin resistance (Boerlin et al., 2005; Chiou & Jones, 1995). At the moment, it is not 

clear to us why the streptomycin resistance was not fully expressed. 

 

 

5. Conclusion 

In this chapter, we demonstrate that an environmental plasmid was transferred to foodborne 

pathogens (Salmonella spp. and E. coli O157:H7) under laboratory conditions. The studied 

recipients contained 10 Salmonella isolates belonging to the five serovars which are targeted 

in the mandatory Salmonella control programmes for breeding flocks of Gallus gallus 

according to Commission Regulation (EC) No 1003/2005 (OJEU, 2005a). In these five 

serovars, and also in a few other serovars, resistance against antibiotics of critical importance 

in human medicine is observed more frequently than in other serovars (EFSA, 2009). The 

detection of transconjugants was done by flow cytometry and by plating. Not only does this 

transfer occur at rather high transfer ratios (up to order of magnitude 10-2), but the acquisition 

of the plasmid also makes the pathogens resistant to multiple antibiotics. In worst case 

scenarios, infections with these plasmid-mediated antibiotic resistant pathogens can lead to 

exacerbation of the patient’s condition, treatment failure and thus compromise human health. 

Therefore, it is important to know if these plasmids can be transferred to potential pathogens 

and if these antibiotic resistance genes can be expressed in the new hosts. 
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In the previous chapter, plasmid transfer to foodborne pathogens was investigated. Plasmids 
can contain integrons which can also contribute to the dissemination of antibiotic resistance. 
In this chapter a Belgian collection of Shiga toxin-producing E. coli is screened for the 
presence of integrons, which are subsequently characterized. 
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Abstract 

The presence of integrons and the antibiotic susceptibility profiles of STEC strains isolated in 

Belgium were analyzed. The collection contained 306 strains, of which 225 were human 

isolates and 81 originated from different food or animal sources. Integrons were detected by 

PCR in 7.5% of the tested isolates and all were class 1 integrons. The integron-positive strains 

all belonged to the human collection. By RFLP, five different types (A, B, C, D, E) were 

distinguished. The antibiotic resistance gene cassettes were identified by sequencing 

representatives of the five different types. Two types of gene cassettes were found in different 

combinations, one encoding resistance to streptomycin/spectinomycin and the other encoding 

resistance to trimethoprim. One of the gene cassettes present was the less frequently detected 

aadA23. Susceptibility profiling of the strains for 11 antibiotics was done by standard disk 

diffusion assays. Among the 23 integron-positive strains, 17 different antibiotic susceptibility 

profiles were found. In the 283 integron-negative strains, 24 different antibiotic susceptibility 

profiles were observed. The majority of these strains were susceptible to all tested antibiotics 

(n = 218, 77.0%). The integron-positive strains were significantly more resistant to eight of 

the eleven tested antibiotics compared to the integron-negative strains (P<0.05). PFGE 

profiles of integron-positive strains within selected serogroups did not cluster together. 
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1. Introduction 

Besides being a commensal species in humans and animals, Escherichia coli also contains 

strains that can cause disease. These pathogenic strains can be divided into two groups, 

intestinal pathogenic E. coli (IPEC) and extraintestinal pathogenic E. coli (ExPEC) (Köhler & 

Dobrindt, 2011). One subgroup of IPEC are the Shiga toxin-producing E. coli (STEC) or 

synonymously the verocytotoxin-producing or verocytotoxigenic E. coli (VTEC). STEC are 

considered as the most significant group of emerging foodborne pathogens (Bolton, 2011), 

causing different symptoms, ranging from uncomplicated diarrhoea to very serious illnesses 

such as haemorrhagic colitis and haemolytic uraemic syndrome (HUS). A few hundred STEC 

serotypes have been isolated from patients with gastrointestinal disease, but only a few of 

them seem to be implicated in the majority of human diseases (Karmali et al., 2010). 

Although antibiotic treatment remains controversial in the case of a STEC infection (Panos et 

al., 2006; McGannon et al., 2010), antibiotics are often used in clinical practice. It is 

important to study how antibiotic resistance genes in STEC can be acquired and possibly be 

transferred to other bacteria. One kind of genetic element that plays a role in the acquisition 

and the dissemination of antibiotic resistance genes is the integron. Integrons were first 

described in the late 1980s (Stokes & Hall, 1989). They are immobile elements that can 

capture, integrate and express or release gene cassettes. Integrons can be divided into two 

groups, the mobile integrons, which are associated with mobile DNA elements such as 

transposons and plasmids, and the chromosomal integrons, which are associated with the 

bacterial chromosome (Cambray et al., 2010). Based on the sequence of the encoded 

integrases, five different integron classes can be distinguished among the mobile integrons, of 

which only the first three are historically associated with the dissemination of multiresistance 

(Cambray et al., 2010). In Gram-negative pathogens, class 1 integrons are the most abundant, 

followed by class 2 integrons and the rarely detected class 3 integrons (Stokes & Gillings, 

2011). Class 1 integrons usually consist of two conserved segments (5’-CS and 3’-CS) 

between which one or more gene cassettes can be integrated. In the 5’-CS elements are 

present for the integration and the expression of the gene cassette(s), namely an intI1 gene, 

encoding an integrase, a recombination site attI and a common promoter Pc (Sáenz et al., 

2010). In the 3’-CS qacE∆1 and sul1 genes are present, encoding resistance to quaternary 

ammonium compounds and resistance to sulfonamides (Sáenz et al., 2010). A gene cassette 

consists of a gene and a recombination site, attC, by which the cassette can be integrated in 
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the integron by site-specific recombination. More than 130 gene cassettes associated with 

antibiotic resistance have been identified in integron classes 1, 2 and 3 (Partridge et al., 2009). 

 

The goal of this study was to screen a large collection of more than 300 STEC strains, isolated 

between 2000 and 2007 in Belgium from humans, food and animals, in order (1) to 

investigate the presence of integrons, (2) to characterize the integron-positive strains, (3) to 

identify the gene cassettes carried by them and (4) to analyze their antibiotic susceptibility. 

For this purpose multiple techniques (antibiotic susceptibility testing, PCR, RFLP, sequencing 

and PFGE) were applied. 

 

 

2. Material and Methods 

2.1. STEC isolates  

A total of 306 strains were investigated in this study. Isolates were collected by the Belgian 

National Reference Center for VTEC/STEC between 2000 and 2007. The collection screened 

contained 225 human isolates and 81 strains originating from different food or animal 

sources. All clinical laboratories in Belgium can submit suspected strains or samples to the 

reference lab. They are encouraged to send strains or stool samples for all severe cases, in 

particular HUS. Serogroups were determined by bacterial agglutination using O antisera 

(Statens Serum Institute, Denmark) for the most prevalent groups. Non-agglutinating isolates 

were sent to Statens Serum Institute for O:H serotyping.  

 

2.2. Antibiotic susceptibility testing 

The susceptibility to 11 antibiotics (ampicillin, chloramphenicol, streptomycin, sulfonamides, 

tetracycline, trimethoprim, ciprofloxacin, gentamicin, kanamycin, nalidixic acid and 

cefotaxime) was determined by the disk diffusion method using European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards 

Institute (CLSI) potency Neo-Sensitabs tablets (Rosco Diagnostica A/S, Denmark). 

Interpretation of zones was done according to CLSI guidelines, as described by the 

manufacturer.  
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2.3. Presence of the virulence genes  

PCR was used to determine the presence of the following virulence genes: stx1, stx2, eae and 

ehx. Preparation of the DNA samples was done according to the protocol of Flamm et al. 

(1984). The DNA extracts were diluted to a final concentration of 25 ng µL-1. One microlitre 

was used in the PCRs. Primers (Table 3.1) and PCR conditions were the same as described by 

Botteldoorn et al. (2003). The PCR amplification products were separated by electrophoresis 

on a 1% Seakem LE agarose gel (Lonza, USA) in 1 × TAE buffer (Invitrogen, USA), 

visualized by ethidium bromide staining and photographed under UV light. 

 

2.4. Presence of integrons 

The degenerate primers hep35 and hep36 were used to detect the presence of integrons (Table 

3.1). These primers amplify the conserved regions of integrase genes intI1, intI2 and intI3 

(White et al., 2000). The PCR mix contained 1 × buffer, 0.75 mM MgCl2, 1.5 U AmpliTaq 

DNA polymerase (Applied Biosystems, USA), 50 µM dNTPs, 1 µM of each primer and 2 µL 

DNA extract (25 ng µL-1) in a total volume of 50 µL. PCR conditions were as described by 

Nagachinta and Chen (2009). The PCR amplification products were separated by agarose gel 

electrophoresis and visualized by ethidium bromide staining as described above. 

The integron class of the integron-positive samples was determined using integron 

class-specific primers, being IntI1-F and IntI1-R for integron class 1 and IntI2-F and IntI2-R 

for integron class 2 (Table 3.1) (Povilonis et al., 2010). The composition of the mix was as 

mentioned above. The PCR programme for integron class 1 was denaturation for 3 min at 

94 °C, followed by 35 cycles of 1 min at 94 °C, 30 s at 68 °C, 1 min at 72 °C, and a final 

extension for 7 min at 72 °C. The PCR programme for integron class 2 was denaturation for 

5 min at 94 °C, followed by 30 cycles of 30 s at 94 °C, 30 s at 62 °C, 1 min at 72 °C, and a 

final extension for 8 min at 72 °C. The PCR amplification products were separated by agarose 

gel electrophoresis and visualized by ethidium bromide staining as described above. 

 

2.5. Characterization of gene cassette arrays 

Amplification of the gene cassette array of class 1 integrons was done by using the primers 

5’CS and 3’CS (Table 3.1) (Povilonis et al., 2010). For this PCR, a long PCR enzyme mix 

(Fermentas, Lithuania) was used as the length of the fragment was unknown. The mix 

consisted of 1 × buffer (MgCl2 included), 200 µM dNTPs, 1.5 U Long PCR Enzyme Mix, 

1 µM of each primer and 1 µL DNA extract (25 ng µL-1) in a total volume of 50 µL. The PCR 
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programme was denaturation for 2 min at 94 °C, followed by 30 cycles of 20 s at 94 °C, 30 s 

at 57 °C, 90 s at 68 °C, and a final extension of 10 min at 68 °C. The PCR amplification 

products were separated by agarose gel electrophoresis and visualized by ethidium bromide 

staining as described above. 

Further characterization was done by Restriction Fragment Length Polymorphism (RFLP) 

analysis using the restriction enzymes HinfI (New England Biolabs, USA) and RsaI (GE 

Healthcare, UK). The restriction mixture for HinfI contained 15 µL amplification product and 

0.5 µL restriction enzyme (5 U), the restriction mixture for RsaI contained 15 µL 

amplification product and 0.5 µL restriction enzyme (3 U). Both restriction mixtures were 

incubated overnight at 37 °C. The restriction fragments were detected by electrophoresis on a 

2% Seakem LE agarose gel in 1 × TAE buffer and visualized by ethidium bromide staining. 

The different RFLP types were designated with letters (A-E). A selection of amplicons (one 

per RFLP type) was sequenced by a commercial sequencing facility (Macrogen Inc., Korea). 

The same primers as for the gene cassette array PCR were used for the sequencing reaction. 

The sequences were analyzed with Kodon version 3.61 (Applied Maths, Belgium) and 

comparisons were made using the Basic Local Alignment Search Tool (BLAST) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

Table 3.1. Primer sequences, target genes, and sizes of amplified PCR products 
Primers Sequence (5’ to 3’)1 Target gene Product size 

(bp) 
Reference 

VT1-F ACACTGGATGATCTCAGTGG stx1 614 Botteldoorn et al., 2003 
VT1-R CTGAATCCCCCTCCATTATG    
VT2-F GGCACTGTCTGAAACTGCTCC stx2 255 Botteldoorn et al., 2003 
VT2-R TCGCCAGTTATCTGACATTCTG    
EAEA-F GTGGCGAATACTGGCGAGACT eae 890 Botteldoorn et al., 2003 
EAEA-R CCCCATTCTTTTTCACCGTCG    
EHECHLY-F ACGATGTGGTTTATTCTGGA ehx 165 Botteldoorn et al., 2003 
EHECHLY-R CTTCACGTGACCATACATAT    
hep35 TGCGGGTYAARGATBTKGATTT intI1, intI2, intI3 491 White et al., 2000 
hep36 CARCACATGCGTRTARAT    
IntI1-F CTGCGTTCGGTCAAGGTTCT intI1 882 Povilonis et al., 2010 
IntI1-R GGAATGGCCGAGCAGATCCT    
IntI2-F CACGGATATGCGACAAAAAGGT intI2 746 Povilonis et al., 2010 
IntI2-R GTAGCAAACGAGTGACGAAATG    
5’CS GGCATCCAAGCAGCAAG Class 1 integron Variable Povilonis et al., 2010 
3’CS AAGCAGACTTGACCTGA    
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2.6. Pulsed Field Gel Electrophoresis 

Strains were characterized by Pulsed Field Gel Electrophoresis (PFGE) according to the rapid 

protocol of Ribot et al. (2006) and as standardized by PulseNet 

(http://www.pulsenetinternational.org/protocols/). DNA was digested with the restriction 

enzyme XbaI (Roche Diagnostics, Germany) and fragments were analyzed in 1% Seakem 

Gold agarose gels (Lonza) in 0.5 × Tris-Borate-EDTA (TBE) buffer at 14 °C using the CHEF 

MAPPER system (Bio-Rad Laboratories, UK). The run time was 19 h at 6 V cm-1, with initial 

and final switch times of 2.16 and 54.17 s, respectively. Gels were digitally visualized after 

staining with ethidium bromide, followed by destaining in water. Gel images were analyzed 

with BioNumerics version 6.5 (Applied Maths). XbaI-digested DNA from Salmonella 

enterica subsp. enterica serovar Braenderup H9812 was used as the normalization reference. 

The similarity between PFGE patterns of the same serogroup was calculated using the Dice 

coefficient (with an optimization of 1.0% and a position tolerance of 1.0%), and the patterns 

were grouped together according to their similarities using the unweighted pair group method 

with arithmetic mean (UPGMA) clustering method. 

 

2.7. Statistical analysis 

A Chi-square test was performed in Excel 2007 (Microsoft, USA) to assess whether 

integron-positive strains were significantly more resistant than integron-negative strains for 

each of the tested antibiotics. For the statistical analysis, intermediate resistant strains were 

considered as resistant. Significance was set at P<0.05. 

 

 

3. Results 

3.1. STEC isolates  

A total of 306 STEC strains were investigated. The isolates were classified according their 

serogroups (Table 3.2). The human strains belonged to more than 25 different serogroups. 

The most prevalent serogroups among the human strains were O157 (n = 112), O26 (n = 31), 

O103 (n = 15), O145 (n = 11) and O111 (n = 10). Eighteen serogroups were represented by 

only one strain. Different clinical manifestations implicated in the human infections were 

reported, ranging from diarrhoea (23.6%), bloody diarrhoea (21.3%) to HUS (21.8%). In 

5.8% of the cases isolates came from patients without diarrhoea, generally in the frame of 

abdominal pain syndromes. All non-human strains belonged to serogroup O157. Food isolates 
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accounted for 93.8% of the non-human strains and more than 95% of these were isolated from 

cattle carcasses, beef and minced beef. The animal isolates came from cattle and from a dog.  

 

3.2. Antibiotic susceptibility 

For each of the strains, the susceptibility to 11 antibiotics was analyzed and antibiotic 

susceptibility profiles were determined. In total, 35 different profiles were found. The 

majority of the strains (71.2%) were susceptible to all the antibiotics tested. This high 

percentage was caused by the high percentage of susceptible strains (87.0%) within the O157 

serogroup. Without taking this serogroup into account, only 44.2% of the strains were 

susceptible to all the antibiotics tested. In Table 3.2, the number of different antibiotic 

susceptibility profiles per serogroup is shown. Serogroup O157 was the least diverse 

serogroup concerning the antibiotic susceptibility profiles, with 11 different profiles among 

193 strains. Serogroup O111 was the most diverse group, with 9 different profiles among 10 

strains, followed by O145 (7 profiles/11 strains) and O26 (18 profiles/31 strains).  

 

3.3. Virulence genes 

Isolates were initially screened for the presence of four important STEC-associated virulence 

genes, i.e. stx1, stx2, eae and ehx. STEC strains are characterized by the presence of stx1 

and/or stx2 genes, which encode Shiga toxins. The eae gene encodes intimin, which is 

associated with adhesion to the intestinal epithelium and the formation of attachment and 

effacement lesions, and ehx is a plasmid-encoded virulence gene encoding enterohaemolysin 

(Buvens et al, 2012).  

Ten different combinations of the four examined virulence genes were found among the 

screened collection (Table 3.2). The most frequently occurring virulence profile was stx1-, 

stx2+, eae+, ehx+, which was present in 56.2% of the strains. Seventy-two of the 306 strains 

(23.5%) contained the stx1 gene, 181 (59.2%) contained the stx2 gene and 53 (17.3%) 

contained both genes. The eae gene was present in 87.9% of the strains, while the ehx gene 

was present in 93.1% of the strains.  

  



 Integron characterization of Belgian STEC isolates 

63 
 

Table 3.2. Overview and characteristics (integron presence, virulence profile and antibiotic 
resistance profile) of the strains classified per serogroup. 

 

  

Serogroup Number 
of strains 

Integron positive 
(%) 

stx1 stx2 eae ehx 
profiles 
(Number) 

Number of 
susceptible 
strains§ 

Number of different 
antibiotic resistance 
profiles 

O3 2 2 (100.0) - + - + (2) 0 2 
O5 1 0 (0) + + + + (1) 1 1 
O6 1 1 (100.0) + - - - (1) 0 1 
O8 1 0 (0) + + - + (1) 0 1 
O15 1 0 (0) + + - - (1) 1 1 
O26 31 6 (19.4) + - + - (6) 

+ - + + (22) 
+ + + + (1) 
- + + + (2) 

4 18 

O38 1 0 (0) + + - + (1) 1 1 
O43 1 0 (0) + + - - (1) 1 1 
O55 1 0 (0) + - - - (1) 0 1 
O79 1 0 (0) + - - - (1) 1 1 
O91 2 0 (0) + + - + (2) 2 1 
O103 15 2 (13.3) + - - + (1) 

+ - + + (13) 
+ + + + (1) 

7 5 

O109/OX182 1* 0 (0) + - - - (1) 1 1 
O111 10 7 (70.0) + + + + (4) 

+ - + + (6) 
1 9 

O113 1 0 (0) + + - + (1) 1 1 
O117 1 0 (0) + - - - (1) 0 1 
O118 1 1 (100.0) + - + + (1) 0 1 
O127 1 0 (0) + - + - (1) 0 1 
O128ab 2 0 (0) + + - + (1) 

- + - + (1) 
2 1 

O145 11 2 (18.2) + - + + (4) 
- + + + (7) 

3 7 

O146 4 1 (25.0) + + - + (2) 
+- - + (1) 
- + - - (1) 

3 2 

O153 1 0 (0) + - + + (1) 1 1 
O156 1 0 (0) + - - + (1) 1 1 
O157 (Human) 112 1 (0.9) + + + + (17) 

- + + + (95) 
98 9  

O157 (Food/Animal) 81 0 (0) + + + + (14) 
- + + + (67) 

70 6  

O166 1 0 (0) + + - + (1) 1 1 
O175 1 0 (0) - + - + (1) 1 1 
O181 1 0 (0) + - - - (1) 0 1 
OX182 3 0 (0) + - + + (1) 

+ - - + (2) 
3 1 

O rough 1 0 (0) - + - - (1) 1 1 
Unknown 14 0 (0) + + - + (2) 

+ - + + (4) 
+ + - - (2) 
+ - - + (2) 
- + - + (1) 
- + - - (2) 
- + + + (1) 

13 
 

2 
 

Total 306 23 (7.5) 10&  218 35 
* Untypable, cross-reactivity with O109 and OX182 antisera. 
§ Susceptible to all 11 tested antibiotics. 
& Number of different profiles. 
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3.4. Integron-positive strains 

All 306 strains were analyzed for the presence of integrons by PCR. Integrons were detected 

in 23 strains (7.5%) belonging to nine serogroups (Table 3.2 and Table 3.3). Only class 1 

integrons were detected. All four strains belonging to serogroups O3, O6 and O118 possessed 

an integron. For the other serogroups the highest percentage of integron-positive strains was 

found in O111 (70.0%), followed by O146 (25.0%), O26 (19.4%) and O145 (18.2%) 

(Table 3.2). In the O157 serogroup only one integron-positive strain was detected, belonging 

to the human subgroup.  

With the gene cassette array PCR, four different lengths of bands were obtained within these 

integron-positive strains, except in strain MB 3936 for which no band was detected. The 

lengths of the bands were visually estimated as ~800 bp, ~1000 bp, ~1600 bp and ~1800 bp. 

RFLP analysis of these fragments with the restriction enzymes HinfI and RsaI revealed five 

different types (A, B, C, D, E). The two restriction enzymes revealed the same profile 

distinction. Fourteen strains (60.9%) belonged to type A and five strains (21.7%) belonged to 

type C. The other types (B, D and E) were represented by only one strain. By means of 

sequence analysis the identity of the gene cassette(s) present in the different types was 

determined. Three types (A, B, E) contained only one gene cassette. Type A and E contained 

respectively the gene cassette aadA1 and aadA23, encoding resistance to 

streptomycin/spectinomycin, while type B contained the gene cassette dfrA7, encoding 

resistance to trimethoprim. Although type C and D both contained two gene cassettes, of 

which one encoded resistance to streptomycin/spectinomycin and the other encoded resistance 

to trimethoprim, they differed in the antibiotic resistance genes identified. In type C aadA1 

and dfrA1 were present while in type D aadA2 and dfrA12 were detected. The antibiotic 

resistance profiles of the integron-positive strains are shown in Table 3.3. The strains 

belonging to type A were all, except one, resistant to streptomycin, as was the case for the 

strain belonging to type E. The strain of type B (MB 3926) was resistant to trimethoprim. All 

strains of type C were resistant to streptomycin and trimethoprim while the strain of type D 

showed intermediate resistance to streptomycin and was completely resistant to trimethoprim. 



 

 
 

Table 3.3. Overview of the integron-positive STEC strains. 
Strain Integron type Serogroup Virulence profile  Antibiotic resistance profile1 Clinical 

manifestation 
        stx1 stx2 eae ehx  Str2 Tri 3 Sul Amp Chl Tet Cip Gen Kan Nal Cef 

MB 4083 A O3 - + - +  R S R S S S S S R S S Unknown 

MB 4243 A O3 - + - +  R S R S S R S S R R S Unknown 

MB 3909 A O26 + - + +  R S R R R R S S S S S Diarrhoea 

MB 4114 A O26 + - + +  R S R S S S S S S S S Diarrhoea 

MB 4126 A O26 + - + -  R R R R S R S S S S S Diarrhoea 

MB 4127 A O26 - + + +  R S R R S R S S S S S Unknown 

MB 4133 A O26 + - + -  R S R R R R S S S R S Bloody diarrhoea 

MB 4119 A O103 + - + +  R S R R S S S S S S S Diarrhoea 

MB 4116 A O111 + - + +  R S R S S R S S S S S Diarrhoea 

MB 4122 A O111  + - + +  S R R S S R S S S S S Bloody diarrhoea 

MB 4239 A O118 + - + +  R S R S R R S I R R S Unknown 

MB 3938 A O145 - + + +  R R R R R R S S S S S HUS 

MB 4115 A O145 + - + +  R S R R R R S S S S S Unknown 

MB 4079 A O146 - + - -  R S R S S S S S S S S Bloody diarrhoea 

MB 3926 B O157 - + + +  R R R R S R S S S S S Bloody diarrhoea 

MB 4050 C O6 + - - -  R R R R S R S S S S S Bloody diarrhoea 

MB 3980 C O111 + - + +  R R R R S R S S S R S Diarrhoea 

MB 4030 C O111 + + + +  R R R R S R S S S R S Bloody diarrhoea 

MB 4033 C O111 + + + +  R R R R S R S S S S S HUS 

MB 4108 C O111 + + + +  R R R R S S S S S S S Bloody diarrhoea 

MB 4134 D O111 + - + +  I R S S S R S S S S S Unknown 

MB 4131 E O103 + - + +  R S R R S R S R S S S Diarrhoea 

MB 3936 No result O26 + + + +  R R R S S R S S S S S HUS 
1Antibiotic resistance profile was determined for 11 antibiotics: streptomycin (Str), trimethoprim (Tri), sulfonamides (Sul), ampicillin (Amp), chloramphenicol (Chl), tetracycline (Tet), ciprofloxacin (Cip),  
gentamicin (Gen), kanamycin (Kan), nalidixic acid (Nal) and cefotaxime (Cef). 
2Streptomycin resistance gene cassettes present in the integrons: type A: aadA1; type C: aadA1; type D: aadA2, type E: aadA23. 
3Trimethoprim resistance gene cassettes present in the integrons: type B: dfrA7; type C: dfrA1; type D: dfrA12. 
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3.5. Comparison of integron-positive and integron-negative strains 

Among the 23 integron-positive strains, 17 different antibiotic susceptibility profiles were 

found. The profile with resistance to ampicillin, streptomycin, sulfonamides, tetracycline and 

trimethoprim was the most common (n = 4, 17.4%). In the integron-negative strains, 24 

different profiles were observed. The most common among these was the completely 

susceptible profile (n = 218, 77.0%), followed by the profile with resistances to both 

streptomycin and sulfonamides (n = 16, 5.7%). 

In integron-positive strains, resistance to sulfonamides (95.7%), streptomycin (95.7%), 

tetracycline (78.3%), ampicillin (60.9%) and trimethoprim (47.8%) was common. When 

comparing the susceptibilities to these antibiotics, integron-positive strains were significantly 

more resistant than the integron-negative strains (Table 3.4). Other antibiotic resistances were 

more restricted, such as resistance to chloramphenicol and kanamycin, which occurred only in 

some strains of integron type A, while resistance to nalidixic acid occurred in some strains of 

type A and C (Table 3.3). Integron-positive strains were significantly more resistant to 

chloramphenicol, gentamicin and nalidixic acid than integron-negative strains. Resistance to 

ciprofloxacin and cefotaxime was not observed in the integron-positive strains. All 

integron-negative strains were also susceptible to cefotaxime.  

A comparison of PFGE profiles was made between integron-positive and integron-negative 

strains of serogroups O26, O111 and O145. These serogroups were analyzed because of their 

relatively high number of integron-positive strains. Among the serogroups studied, clustering 

of the integron-positive strains was not observed (data not shown).  

 

Table 3.4. Overview of the antibiotic resistance (%) of the integron-positive and 
integron-negative strains. Comparison of the resistances between integron-positive and 
integron-negative strains were done using Chi square tests. The Chi square values and the 
P-values are listed in the table. P-values <0.05 were considered to be significant. ND, Not 
determined. 

Subgroup Number Str Tri Sul Amp Chl Tet Cip Gen Kan Nal Cef 

Integron-positive 23 95.7 47.8 95.7 60.9 21.7 78.3 0.0 8.7 13.0 21.7 0.0 

Integron-negative 283 19.8 2.5 17.7 7.8 1.1 10.2 0.7 0.4 5.7 1.1 0.0 

Total 306 25.5 5.9 23.5 11.8 2.6 15.4 0.7 1.0 6.2 2.6 0.0 

Chi square value 64.5 79.0 71.9 57.8 35.7 75.7 0.2 15.2 2.0 35.7 ND 

P-value <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.69 <0.05 0.16 <0.05 ND 
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4. Discussion 

Antibiotic resistance is becoming more and more common in STEC (Nagachinta & Chen, 

2009, Buvens et al., 2010; Karmali et al., 2010; Cergole-Novella et al., 2011). One type of 

genetic element by which these organisms can gain and disseminate antibiotic resistance 

genes is the integron. The screening of a collection of more than 300 STEC strains of human, 

food and animal origin revealed that integrons were present in 7.5% of the strains. Only 

integron class 1 was detected. These results are similar to the results of a North American 

study in which 177 STEC strains were analyzed (Nagachinta and Chen, 2009). The authors 

found that integron class 1 was present in 7.9% and integron class 2 in 0.6% of the strains. In 

contrast, Cergole-Novella et al. (2011) found a higher percentage (22%) of STEC strains 

containing integron class 1, isolated from humans and cattle in São Paulo (Brazil). This 

difference could be due to characteristics of the analyzed collection. They analyzed 32 

antibiotic resistant non-O157 STEC strains, while in the study presented here also antibiotic 

susceptible strains, belonging to O157 and non-O157 serogroups, were analyzed. Taking only 

the non-O157 serogroups into account in the current study, 19.5% of the analyzed strains 

were integron-positive. Singh et al. (2005) found that 16% of the 274 analyzed STEC strains, 

isolated in the USA and originating from human patients (n = 81) and sick animals (n = 193; 

poultry, cattle and swine), contained integron class 1 and in the study of Zhao et al. (2001) 

18% of the 50 analyzed STEC strains originating from humans, animals and food were 

integron class 1 positive. 

Five different RFLP types could be distinguished among the integron-positive strains. Only 

for strain MB 3936 the RFLP type could not be determined as there was no amplification of 

the gene cassette array. It is possible that this strain lacks the 3’-conserved segment 

preventing one of the primers from annealing, as demonstrated by Sáenz et al. (2010). There 

was not much variation in the antibiotic resistance gene cassettes present in the different 

types. They all contained genes coding for resistance to streptomycin/spectinomycin (aadA1, 

aadA2, aadA23) and/or trimethoprim (dfrA1, dfrA7, dfrA12). These results are in accordance 

with other studies (Cergole-Novella et al., 2011; Povilonis et al., 2010; Skurnik et al., 2005). 

In the study of Skurnik et al. (2005) 85.7% of the class 1 integrons carried dfr and/or aadA 

genes. Povilonis et al. (2010) reported that the aadA- and the dfr-containing gene cassettes 

were the most common in their study, with a frequency of aadA1 of 60% in the class 1 

integron-positive isolates. With its presence in 14 of the 23 integron-positive strains, aadA1 is 

also the most common gene cassette array (60.9%) in the current study, followed by the 
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dfrA1 - aadA1 gene cassette array (21.7%). These two types belong to the most common 

integron types encountered in E. coli isolates, originating from humans and animals in Europe 

and the USA (Povilonis et al., 2010). The gene cassette present in type E, aadA23, is less 

common. It was first described in a Salmonella enterica subsp. enterica serovar Agona strain 

isolated from a pig carcass in Brazil in 2005 (Michael et al., 2005). Thereafter, it has been 

reported in human Salmonella enterica subsp. enterica serovar Enteritidis and Salmonella 

enterica subsp. enterica serovar Bredeney strains in Hungary (Nógrády et al., 2005), in E. coli 

from broilers isolated in the Netherlands in 2004 (van Essen-Zandbergen et al., 2007), in an 

E. coli strain, isolated from neonatal calf diarrhea in Egypt (Ahmed et al., 2009) and in E. coli 

strains isolated from food-producing animals and humans in China (Ho et al., 2009). For 21 

of the integron-positive strains, there was a good agreement between the antibiotic resistance 

phenotype and the gene cassette(s) present. For two strains (MB 4122 and MB 4134) the 

streptomycin resistance did not come (fully) to expression. This is not surprising, as it is 

known that the presence of aadA gene cassettes in integrons confers low-level streptomycin 

resistance and therefore represents an obstacle in classifying E. coli as susceptible or resistant 

to streptomycin (Sunde & Norström, 2005). 

Most of the integron-positive strains (91.3%) were resistant to at least three different 

antibiotics. In the integron-negative strains, 13.1% were resistant to at least three antibiotics. 

Nagachinta and Chen (2009) reported that all integron-positive strains examined in their study 

were resistant to at least three different antibiotics. The highest resistances among the 

integron-positive strains were found to sulfonamides (95.7%), streptomycin (95.7%), 

tetracycline (78.3%), ampicillin (60.9%) and trimethoprim (47.8%). The integron-positive 

strains were significantly more resistant to these antibiotics than the integron-negative strains. 

The resistance to sulfonamides, streptomycin and trimethoprim is related to the presence of 

the integron, while the resistance to tetracycline and ampicillin could be due to the association 

of mobile integrons with plasmids and transposons (White et al., 2001).  

PFGE is used for subtyping of both O157 and non-O157 subgroups and is considered the gold 

standard of subtyping techniques for epidemiological studies (Karama & Gyles, 2010). In this 

study, PFGE did not reveal any clustering of the integron-positive strains in the selected 

serogroups. In the study of Cergole-Novella et al. (2011) most of the integron-positive strains, 

belonging to the O111 serogroup, clustered into two subgroups with more than 90% 

similarity, while Ho et al. (2009) found no clonal relationship (>85% similarity) between 

human and animal isolates with identical cassettes and also Kang et al. (2005) found distinct 

patterns among E. coli isolates carrying identical types of class 1 integrons.  
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In this study, we report the presence of class 1 integrons in STEC strains circulating in 

Belgium. The identification of the antibiotic resistance gene cassettes revealed that only two 

types of antibiotic resistance genes were present in the gene cassettes, but other antibiotic 

resistances were also present in the integron-positive strains. This is in contrast to the 

integron-negative strains, of which the majority was susceptible to the tested antibiotics. As 

integrons are often associated with mobile elements, which can carry additional antibiotic 

resistance genes, it remains very important to monitor integrons and the antibiotic resistance 

present in STEC as they can transfer their resistance genes to other (pathogenic) bacteria. 
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In Chapter 2, plasmid transfer to foodborne pathogens was investigated. In this chapter, we 
take one step closer towards the food industry by analyzing plasmid transfer in biofilm models 
representative for this sector. 
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Abstract 

Biofilms represent a substantial problem in the food industry, with food spoilage, equipment 

failure, and public health aspects to consider. Besides, biofilms may be a hotspot for plasmid 

transfer, by which antibiotic resistance can be disseminated to potential foodborne pathogens. 

This study investigated biomass and plasmid transfer in dual-species (P. putida and E. coli) 

biofilm models relevant to the food industry. Two different configurations (flow-through and 

drip-flow) and two different inoculation procedures (donor-recipient and recipient-donor) 

were tested. The drip-flow configuration integrated stainless steel coupons in the setup while 

the flow-through configuration included a glass flow cell and silicone tubing. The highest 

biomass density [10 log (cells cm-²)] was obtained in the silicone tubing when first the 

recipient strain was inoculated. High plasmid transfer ratios, up to 1/10 (transconjugants/total 

bacteria), were found. Depending on the order of inoculation, a difference in transfer 

efficiency between the biofilm models could be found. The ease by which the multiresistance 

plasmid was transferred highlights the importance of biofilms in the food industry as hotspots 

for the acquisition of multiresistance plasmids. This can impede the treatment of foodborne 

illnesses if pathogens acquire this multiresistance in or from the biofilm.  
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1. Introduction 

Biofilms are the favorable lifestyle of bacteria as they create an advantageous and protective 

environment. According to Donlan and Costerton (2002), a biofilm is defined as ‘a 

microbially derived sessile community characterized by cells that are irreversibly attached to 

a substratum or interface or to each other, are embedded in a matrix of extracellular polymeric 

substances that they have produced, and exhibit an altered phenotype with respect to growth 

rate and gene transcription’. In food industry, biofilms can become a persisting source of 

contamination. They can be found everywhere: on the food processing equipment, on the 

walls or floors of the workspaces, on the walls of storage/transport tanks, or even on the food 

itself. Both spoilage as pathogenic bacteria can be involved, threatening both the quality of 

the product as human health. Consequently, this contamination imposes an enormous annual 

cost of millions (Brooks & Flint, 2008). Concerns for food safety related to biofilms in the 

food industry have been raised for example in the produce industry (Jahid & Ha, 2012), the 

dairy industry (Marchand et al., 2012) and the meat industry (Sofos & Geornaras, 2010). 

Another important public health aspect associated with the occurrence of biofilms in the food 

industry is the inherent higher resistance to antimicrobial agents. Several factors can play a 

role in this feature, such as the matrix, the growth rate, the heterogeneity within the biofilm, 

the general stress response, quorum sensing, the induction of a biofilm phenotype, and efflux 

pumps (Mah & O’Toole, 2001; Drenkard, 2003). Besides this inherent resistance, bacteria in 

biofilms can acquire additional antibiotic resistances from other organisms by horizontal gene 

transfer. In horizontal gene transfer, three main mechanisms can be distinguished: conjugation 

(mobile genetic elements are being transferred from a donor to a recipient cell), 

transformation (uptake of naked DNA), and transduction (bacteriophages as transporters of 

genetic information). The occurrence of conjugation and transformation in biofilms has been 

reviewed by Molin and Tolker-Nielsen (2003), and it is becoming more and more clear that 

both conjugation and transformation are interconnected with biofilm formation (Luo et al., 

2005; Reisner et al., 2006; Madsen et al., 2012). The presence of plasmids can positively 

influence biofilm formation (Ghigo, 2001; Dudley et al., 2006; Burmølle et al., 2008), but it 

can also have a negative effect as was shown by Røder et al. (2013).  

As mixed species biofilms are a better representation of biofilms found in the food industry, 

dual-species biofilms were used in this study. The choice of the bacteria was based on their 

role in the food industry, namely Pseudomonas putida was used as a model for food spoilage 

organisms, as this environmental species can cause spoilage of, for example, vegetables 
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(Settanni et al., 2013) and milk (He et al., 2009). Escherichia coli was chosen as a model for 

pathogenic organisms. Although E. coli is a commensal species in humans and animals, 

pathogenic variants, for example Shiga toxin-producing E. coli (STEC), exist. Previous 

studies on different food types such as milk, vegetables, or fish, have also used P. putida as an 

example of spoilage organisms and E. coli as an example of pathogenic bacteria (Gunasekera 

et al., 2002; Feliciano et al., 2010; Settanni et al., 2013). 

As biofilms are on one hand an important issue in the food industry and on the other hand 

ideal environments for horizontal gene transfer, the goal of this study was to (1) quantify 

dual-species biofilm formation and (2) analyze plasmid transfer in these biofilms. For this 

purpose, three models were used which differed from each other in the attachment material 

and in the flow configuration. The attachment material used was stainless steel, silicone, and 

glass. Stainless steel is a preferred material in the food industry because of its chemical, 

bacteriological, and organoleptical neutrality, its ease to clean, its durability, and its 

mechanical characteristics (Zottola & Sasahara, 1994; Marchand et al., 2012). The two 

biofilm models used are flow displacement models (Coenye & Nelis, 2010). While in the 

flow-through system, the biofilm is formed under continuous flow conditions with no direct 

contact with air, the drip-flow system provides an environment for biofilm formation close to 

the air–liquid interface (Buckingham-Meyer et al., 2007; Goeres et al., 2009). Both models 

are representative for the food processing environment as the flow-through configuration can 

be interpreted as model for pipes and tubing, while the drip-flow configuration can stand as a 

model for conveyor belts or places where drops from leakages hit a metal surface. To our 

knowledge, it is the first time that a drip-flow reactor in this configuration is used to study 

plasmid transfer. 

 

 

2. Material and Methods 

2.1. Strains, plasmid, and growth conditions 

In this study, P. putida SM1443 (Christensen et al., 1998), which carried the pB10 plasmid, 

was used as donor strain, and the laboratory strain E. coli DH5α was used as recipient strain. 

P. putida is a strict aerobe bacterium, while E. coli is a facultative anaerobe bacterium. The 

broad-host-range plasmid pB10, belonging to the IncP-1β subgroup, was isolated from a 

wastewater treatment plant and contains resistance to the antibiotic agents amoxicillin, 

streptomycin, sulfonamides, and tetracycline and to inorganic mercury ions (Dröge et al., 
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2000). The plasmid was marked with a gfp gene and a kanamycin resistance gene by the 

insertion of the mini-Tn5-Km-PA1-04/03::gfp cassette (Van Meervenne et al., 2012). The 

presence of the gfp gene enabled the detection of transconjugants by flow cytometry as the 

donor strain carried the mini-Tn5-lacIq cassette in its chromosome, preventing the expression 

of the gfp gene in the donor (Christensen et al., 1998). 

Preparation of the cultures for inoculating the reactors was the same for the donor and the 

recipient strain, except that the donor strain was incubated at 28 °C while the recipient strain 

was incubated at 37 °C, and was standardized as follows: stock cultures of the strains were 

inoculated on Luria–Bertani (LB) agar plates (10 g tryptone, 5 g yeast extract, 5 g NaCl and 

15 g agar per liter). For the donor strain, the LB agar plates contained kanamycin 

(50 µg mL-1). After overnight incubation, one colony was transferred to 5 mL LB broth. The 

next day, the OD610 nm of this culture was adjusted with LB broth to 0.3, and 2 mL of the 

adjusted culture was added to 250 mL LB broth. After overnight growth, the culture could be 

applied to the reactor, having an OD610 nm between 0.8 and 1.1 for P. putida and between 1.0 

and 1.3 for E. coli DH5α. 

 

2.2. Biofilm growth reactor 

To analyze plasmid transfer in biofilms, in-house reactors were built, combining two different 

flow displacement models, a flow-through system and a drip-flow system (Figure 4.1). 

The analyzed flow through system of each reactor, consisted of 4 cm silicone, peroxide 

cross-linked tubing (VWR International, USA) followed by a glass flow cell consisting of 

5.8 - 6.0 cm borosilicate square tubing (Friedrich & Dimmock Inc., USA). Both flow-through 

systems had an inner diameter of 1 mm. Last in line was the drip-flow system, which was 

created by enclosing a stainless steel (316L) coupon (7.5 x 2.5 cm) in the reactor on which 

inocula or media drips. The stainless steel coupons were first cleansed according the protocol 

used by Speranza et al. (2011). The reactors were autoclaved and subsequently placed at an 

angle of 10° (Goeres et al., 2009). 
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Figure 4.1. Schematic overview of the in-house reactor. (SS, stainless steel; ST, silicone 
tubing; GF, glass flow cell). 
 

 

2.3. Biofilm growth and plasmid transfer conditions 

The reactors were placed at 28 °C. In total, eight reactors, containing three types of biofilms, 

were analyzed. Two inoculation procedures were applied. A first series of four reactors was 

first inoculated with the donor strain, while the second series of four reactors was first 

inoculated with the recipient strain. Table 4.1 gives an overview of the different biofilm 

models. Before the start of the experiment, 0.1 × LB medium was pumped in the reactor for 

half an hour. Inoculation of the reactors with the first strain was done by pumping an 

overnight culture during 6 h at a rate of 21–24 mL h-1. This corresponds to a flow rate of 

45-51 cm min-1 and 35-40 cm min-1 for the silicone tubing and the glass flow cell respectively. 

The rate was kept stable for each reactor, and it corresponded to 15–16 droplets min-1 for the 

drip-flow system. The second strain was provided to the system in the same manner 48 h after 

the start of the experiment. Between and after the inoculation of the strains, 0.1 × LB medium 

was applied to the reactor. The reactor was stopped 96 h after the start of the experiment. 

Subsequently, the stainless steel coupons, the silicone tubing, and the borosilicate tubing were 

removed for analysis. 
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Table 4.1. Overview of the biofilm models. 
Biofilm model Inoculation strategy Material  Repeats1 

DR-SS Donor-Recipient (DR) Stainless steel (SS) 4 

DR-ST Donor-Recipient (DR) Silicone tubing (ST) 4 

DR-GF Donor-Recipient (DR) Glass flow cell (GF) 3 

RD-SS Recipient-Donor (RD) Stainless steel (SS) 4 

RD-ST Recipient-Donor (RD) Silicone tubing (ST) 4 

RD-GF Recipient-Donor (RD) Glass flow cell (GF) 4 

1 the repeats are biological replicates. 

 

 

2.4. Biofilm analysis 

The stainless steel coupons were washed three times in 0.85% NaCl. The biofilms were 

removed from the stainless steel with a sterile swab, which was subsequently wringed in a 

falcon tube containing 10 mL 0.85% NaCl. This was repeated with a second sterile swab. The 

biofilms attached to the silicone tubing and to the glass flow cell were removed by passing 

five times 1 mL 0.85% NaCl through each side into a falcon tube. The falcon tubes were 

vortexed, and biofilms or cell clumps were further mechanically disrupted by pipetting the 

fluid through a 0.6-mm needle three times.  

To analyze the obtained solution, a culture-independent technique, flow cytometry, was 

chosen as it was not known whether the conditions encountered by the bacteria in the reactor 

would be able to induce the viable but non-culturable (VBNC) status. By flow cytometry, the 

total biomass (cells cm-2) and transfer ratio (number of transconjugants/total cell count) were 

determined. Detection and quantification of (transconjugant) bacteria by flow cytometry were 

performed with a Cyan ADP Flow Cytometer (Dako, Denmark), using the 488-nm laser. The 

dilution factor was visually assessed and ranged from 10 to 1000. Dilutions were made with 

filter-sterilized Evian water. Samples were analyzed without and with a live/dead staining. 

The staining solution contained propidium iodide and SYBR® Green I, and it was prepared as 

described by De Roy et al. (2012). The unstained samples consisted of 980 µL of the diluted 

sample, 10 µL Na2EDTA (500 mM, pH 8), and 10 µL Dako Cytocount beads, while the 

stained samples consisted of 970 µL of the diluted sample, 10 µL Na2EDTA (500 mM, pH 8), 

10 µL live/dead staining, and 10 µL Dako Cytocount beads. The beads were used to 
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determine the cell concentration. Green fluorescence emission was collected with a 

photomultiplier tube using a 530/40 emission filter, for PE 585 and 670 fluorescence a 575/25 

and 680/30 emission filter was used, and side light scatter (SSC) was collected using a 488/10 

emission filter. The sheath fluid consisted of Milli-Q water. The threshold trigger was set to 

SSC for the unstained samples and to green fluorescence for the stained samples. The analysis 

of a sample was performed by collecting data for 1 min in threefold. SUMMIT v4.3 software 

was used to process the results. By analysis of the unstained samples, the number of 

transconjugant cells could be determined on a Green Log vs. PE 585 Log plot, while analysis 

of the stained samples determined the total cell count using a Green Log vs. 670 Log plot. The 

total cell count equals the sum of the live and dead cell counts. 

 

2.5. Filter mating 

In previous experiments, plasmid transfer between E. coli DH5α and P. putida SM1443 

(pB10::gfp) was studied by filter mating. The filter mating and analysis by flow cytometry 

were performed as described by Van Meervenne et al. (2012). 

 

2.6. Denaturing gradient gel electrophoresis 

Denaturing gradient gel electrophoresis (DGGE) was used to exclude contamination of the 

cultures or the biofilms and to obtain an idea of the relative abundance of P. putida and E. coli 

in each biofilm. Therefore, both donor and recipient cultures as samples from the different 

biofilms were analyzed by DGGE. DNA extractions were performed according to Boon et al. 

(2000). DGGE was applied to separate PCR products of 16S rRNA genes obtained with 

general bacterial primers (338F-GC and 518R) (Muyzer et al., 1993). The PCR products were 

loaded onto 8% polyacrylamide gels with a denaturing gradient from 45% to 60%. The gels 

were run on an Ingeny PhorU-2 × 2 apparatus (Ingeny International, The Netherlands). 

Analysis was carried out using BIONUMERICS software version 5.10 (Applied Math, 

Belgium). Previous studies have evaluated the potential of DGGE as a semi-quantitative tool 

(Riemann et al., 1999; Casamayor et al., 2000; Schauer et al., 2000; Lyautey et al., 2005). To 

assess the relative abundance of P. putida and E. coli, the ratio of the peak height for one of 

each strains to the sum of the peak heights for P. putida and E. coli was determined. 
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2.7. Statistical analysis 

All statistical analyses were performed in R. The significance level was set at 0.05. Normality 

of the residuals was studied by means of QQ-plotting and the Kolmogorov-Smirnov test. 

Biomass density, transconjugant density, and plasmid transfer ratio were log-transformed so 

that normality of the residuals was respected. Homoscedasticity of the variances was assessed 

using the modified Levene’s test. Significant differences were detected using one-way 

ANOVA followed by post hoc analysis according to Tukey. 

Outliers were detected by calculating studentized residuals. Their impact on the outcome of 

the statistical model was evaluated using DfFITS and Cook’s distance. 

 

 

3. Results and Discussion 

We analyzed the potential of plasmid transfer among bacteria growing in biofilms, formed in 

model systems that are representative for food industry (Figure 4.1). The models were placed 

in a serial order with the last one being the drip-flow system, in which a preferred material of 

the food industry, namely stainless steel, was used. In the flow-through system, the glass flow 

cell was chosen as this setup is regularly used in biofilm studies. For the third model, a 

flow-through system as well, a material was used that was air permeable and that could be 

found in the food industry, namely silicone. For these three different attachment materials, 

two inoculation procedures were applied (Table 4.1). A first inoculation procedure involved 

the formation of plasmid-donating biofilms and subsequent inoculation with a recipient strain. 

In the second inoculation procedure, biofilms were formed with a plasmid-receiving strain 

upon which the donor strain was added. 

 

3.1. Biofilm biomass 

To compare the biomass obtained in the different biofilm models, biomass density was 

calculated as the log number of cells per cm2 (Figure 4.2). Enumeration of the cells was done 

by flow cytometry. For the first inoculation procedure (donor–recipient), the stainless steel 

model yielded a slightly higher biomass density [8.80 ± 0.17 log (cells cm-2)] than the silicone 

tubing model [8.20 ± 0.38 log (cells cm-2), P = 0.01] and the glass flow model 

[8.30 ± 0.24 log (cells cm-2), P = 0.08]. For the second inoculation procedure 

(recipient-donor), a remarkable increase in average biomass density was found in the silicone 

tubing model [10.23 ± 0.05 log (cells cm-2)]. One of four replicates of the former model 
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yielded outlying results (Figure 4.2). The reason for this outlier is unclear to us. The reactors 

were composed and run pairwise under the same conditions. Furthermore, the OD610 nm of the 

inocula was comparable for both the recipient as the donor strain (data not shown). Based on 

the DfFITS and Cook’s distance analyses, it was concluded that the outlier had a strong 

influence on the outcome of the statistical model, and it was therefore decided not to include 

this value. 

 

Figure 4.2. Biomass density for the different biofilm models. See Table 4.1 for the 
abbreviations. Circles represent the separate values of the replicates, while the line 
represents the average of the model. The circle between the brackets represents the outlier, 
which was not included in the analysis. Mean values sharing common lowercase letters are 
not significantly different (P < 0.05). 
 

 

It is difficult to explain why the highest biomass density was obtained in the silicone tubing 

with the second inoculation procedure. Bacterial attachment is influenced by a variety of 

factors, including bacterial features (e.g. bacterial hydrophobicity, cellular surface charge, 

surface structures, and outer membrane proteins), but also features of the used material (e.g. 

chemical composition, surface roughness, hydrophobicity) and features of the surrounding 

environment (Goulter et al., 2009; Shi & Zhu, 2009). Previous studies have found, for 

example, that anaerobic conditions inhibit E. coli biofilm formation (Colón-González et al., 

2004; Cabellos-Avelar et al., 2006); however, in biofilm flow cells, traces of oxygen are 
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expected, and the silicone tubing used is air permeable. Another factor that can influence the 

bacterial attachment is the hydrophobicity of the material. Both the silicone tubing and the 

stainless steel are hydrophobic material, while glass is hydrophilic. Andersen et al. (2010) 

showed using uropathogenic E. coli that the influence of the hydrophobicity of the contact 

material is not species-dependent but rather isolate-dependent. 

Interestingly, DGGE analysis indicated that the relative abundance of E. coli DH5α was much 

higher in both flow-through systems when the recipient strain was inoculated before the donor 

strain (Figure 4.3). In the other biofilm models, a comparable relative abundance was found 

for both E. coli and P. putida. The lack of oxygen may possibly play a role herein. Very few 

studies which worked with E. coli and P. putida biofilms looked at the abundances of the 

strains. Castonguay et al. (2006) found equal concentrations of E. coli and P. putida in mixed 

biofilms, formed in glass tubes, while Gilbert et al. (2003) found a significantly higher 

proportion of P. putida in mixed biofilms formed in flow cells, which was attributed to the 

different ability to adhere of the two strains. However, these studies were not conducted with 

the same experimental design, which complicates the comparison of results. The process that 

was mimicked in our experiments was co-adhesion, which means that planktonic cells adhere 

to biofilm cells (Bos et al., 1994; Rickard et al., 2003), while in the two mentioned studies, 

the inoculum was mixed. 

Overall, the results indicate that for the biomass, it is difficult to assign determining factors, 

but it seems that order of inoculation and attachment material rather than flow configuration 

may play a role. Considering the relative abundances of E. coli DH5α and P. putida SM1443 

(pB10:: gfp), it appears that depending on the order of inoculation, the flow configuration can 

have an influence. 
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Figure 4.3. Estimated relative frequency of P. putida (black bars) and E. coli (grey bars) in 
the different biofilm models (n = 4, for DR-GF n = 3) determined by DGGE. See Table 4.1 for 
the abbreviations. 
 

 

3.2. Plasmid transfer 

In the present study, plasmid transfer ratio was expressed as the log of the ratio of the number 

of transconjugants to the total cell count. Table 4.2 shows the number of transconjugants for 

each replicate of the different models. In previous experiments, the transfer ratio was 

determined for filter mating. In those experiments, an average transfer ratio of 1/100 was 

obtained (data not shown). In the biofilm models, the average transfer ratio for the first 

inoculation procedure (donor–recipient) ranged between 2/100 and 1/10, and no significant 

difference was found between the three models (Figure 4.4). With the other inoculation 

procedure (recipient–donor), the average transfer ratio ranged between 5/10 000 and 8/100. 

The transfer ratio obtained for the three models using this inoculation procedure differed 

significantly from each other. Furthermore, the RD-ST model differed significantly from the 

DR-ST model, indicating an influence of the order of inoculation involved. As donor and 

recipient strain are not the same strain with or without the plasmid, it is difficult to obtain 

indications about the influence of the plasmid. 
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Table 4.2. Number of transconjugants, expressed as log (cells cm-2) for each replicate of the 
different models. The value between brackets represents the outlier as determined by the 
statistical analysis of the biomass.  
 DR-SS DR-ST DR-GF RD-SS RD-ST RD-GF 
Reactor 1 7.25 7.17 6.81 7.30 (6.52) 6.45 
Reactor 2 7.00 7.50 6.08 6.93 7.14 6.37 
Reactor 3 7.34 6.62 6.80 7.15 6.77 6.12 
Reactor 4 6.95 6.67 - 7.00 6.91 6.52 
 

 

 

Figure 4.4. Transfer ratio of the different biofilm models. See Table 4.1 for the abbreviations. 
Circles represent the separate values of the replicates, while the line represents the average 
of the model. The circle between the brackets represents the outlier, which was not included 
in the analysis. Mean values sharing common lowercase letters are not significantly different 
(P < 0.05). 
 

 

Biofilms are considered to be hotspots for plasmid transfer. Several studies have found higher 

transfer frequencies under biofilm conditions than with planktonic cultures (Lampkowska et 

al., 2008; Nguyen et al., 2010; Hennequin et al., 2012; Savage et al., 2013). The plasmid used 

in this study, pB10, belongs to the incompatibility group IncP-1β. The IncP-1 plasmids, which 

are known to encode short rigid pili, transfer best in surface matings (Bradley et al., 1980; 

Bradley, 1983). Comparing the obtained transfer results with the results of previous studies is 

difficult due to differences in experimental design, such as reactor design, used strains and 

plasmids, inoculation methods, detection methods, etc. For instance, De Gelder et al. (2005) 
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found that, when using the same plasmid (pB10, rfp labeled), the diversity of transconjugants 

depended on the chosen donor and on the mating type. Furthermore, Lilley and Bailey (2002) 

showed that the recipient had a significant influence on the transfer efficiency of pQBR11-V1 

from P. putida. In both studies, the same donor strain as in this study was used. High transfer 

ratios were obtained in the present study, both for the flow-through as for the drip-flow 

conditions. This is in contrast to the study of Król et al. (2011) who found a very low 

occurrence of plasmid transfer in submerged biofilms formed in closed horizontal flow cells 

under different conditions, but a large number of transconjugants in a biofilm formed at the 

air–liquid interface. An explanation for this could be the observed spatial separation of donor 

and recipient cells as for the biofilm formation of the strains they used (E. coli K-12), the 

presence of conjugative plasmids (in this case pB10) was required. Furthermore, these authors 

found that there was no statistically significant difference in conjugation efficiency between 

aerobic and anaerobic matings with aerobically grown donor and recipient cultures. 

Nevertheless, our study also indicates that the air–liquid interface can be a place of preference 

for plasmid transfer. 

In our experiments, no clear link between transfer ratio and surface hydrophobicity could be 

observed. In a previous study in which plasmid transfer was analyzed in biofilms formed on 

hydrophilic and hydrophobic glass beads, a more efficient transfer was observed on the 

hydrophilic surface (Angles et al., 1993). A possible explanation for this was the difference in 

biofilm structure as it appeared that morphological changes were induced in the marine 

bacterium that was used in this study. On the hydrophobic surface, tightly packed biofilms 

were formed while on the hydrophilic surface, tangled filaments were formed that could 

possibly trap more donor cells resulting in greater gene transfer frequencies (Dalton et al., 

1994). 

 

In conclusion, the obtained results suggest that depending on the order of inoculation, an 

effect of biofilm model on plasmid transfer ratio can occur. Furthermore, this study also 

demonstrated that the drip-flow configuration can be used to study plasmid transfer. 

The threat that the presence of antibiotic resistance in the food industry poses on human 

health has recently been reviewed (Capita & Alonso-Calleja, 2013; Verraes et al., 2013). 

Using two different flow configurations and three different attachment materials, it was 

shown that (1) biofilms were easily obtained in models relevant to the food industry and (2) a 

multiresistance plasmid could easily be transferred in the different biofilm models. Together, 
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these results highlight the importance of biofilms in the food industry as hotspots for the 

acquisition of multiresistance plasmids next to their obvious contamination potential. 
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The previous chapters have dealt with antibiotic resistance in Gram-negative bacteria. It was 
found that Gram-negative foodborne pathogens can acquire antibiotic resistance and that the 
obtained transconjugants express the acquired resistance genes. Subsequently plasmid 
transfer was demonstrated in biofilm models representative for the food industry. In this 
chapter the focus is on the influence of food preservation on plasmid transfer using a 
Gram-positive model. 
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Abstract 

It is acknowledged that food is an important route by which antibiotic resistant bacteria can 

disseminate. However, there is a lack of knowledge about how factors, which are used during 

food production and preservation, contribute to the transfer of antibiotic resistance genes.  

In this study, the effect of two important techniques widely applied in food preservation, low 

temperature and modified atmosphere packaging (MAP), on antibiotic resistance transfer 

have been evaluated. Filter mating experiments with high density inocula were conducted on 

non-selective agar plates to analyze the temperature range in which an antibiotic resistance 

plasmid is transferred from Lb. sakei subsp. sakei to L. monocytogenes and to assess the effect 

of three atmospheres (air, 50% CO2/50% N2 and 100% N2) on the occurrence of plasmid 

transfer. MAP experiments were subsequently performed on slices of cooked ham, first with 

high density inocula and afterwards with low density inocula to approach more realistic 

conditions. 

In the temperature experiment, plasmid transfer was observed between 10 °C and 37 °C. The 

lower limit could be decreased when the incubation period was prolonged. When high density 

inocula were used, transconjugants were detected, both on agar plates and cooked ham, under 

the three atmospheres at 7 °C yielding an average transfer ratio (number of 

transconjugants/number of recipients) with an order of magnitude of 10-4 – 10-6. In the more 

realistic set-up, with low density inocula, transfer was only detected under the 100% N2 

atmosphere after an incubation period of 10 days at 7 °C, yielding a transfer ratio of 10-5. 

Under this condition the highest bacterial density was obtained. 

Overall, it seems that low temperature and MAP, two important hurdles preventing bacterial 

growth in the food industry, do not necessarily prevent plasmid transfer to occur. 
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1. Introduction 

The food chain is an important source of antibiotic resistance. Contamination of food with 

antibiotic resistant bacteria can occur in several ways: I) the use of antibiotics in the primary 

production exerts a selective pressure towards antibiotic resistant bacteria, which can 

contaminate the primary food product, II) bacteria that are intentionally added to the food can 

be vectors for the transfer of antibiotic resistance, III) in every step of food production 

contamination with antibiotic resistant bacteria is possible (Verraes et al., 2013). 

To meet the consumer demand for safe and high-quality food, the food industry has switched 

increasingly to minimal processing techniques. Minimal processing involves processing 

methods that change the inherent fresh-like quality characteristics of the food as little as 

possible (minimally) but at the same time provide the food product with a sufficient shelf life 

(Ohlsson, 1994). The stress imposed on bacteria during minimal processing can however 

influence the expression of antibiotic resistance (phenotypic antibiotic resistance). Both 

increases as decreases in phenotypic antibiotic resistance have been observed. McMahon et 

al. (2007b) observed a decreased phenotypic antibiotic resistance under temperature stress, 

while an increased phenotypic antibiotic resistance was observed under acid and salt stress for 

Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium and 

Staphylococcus aureus. They also demonstrated that in some cases the change in phenotypic 

antibiotic resistance was maintained even after removal of the food preservation stress 

(McMahon et al., 2007b). Ganjian et al. (2012) found that salt stress significantly increased 

antibiotic resistance to rifampicin, penicillin and methicillin in S. aureus, while for 

gentamicin a small decrease in antibiotic resistance was observed. Al-Nabulsi et al. (2011) 

analyzed the effect of heat, cold, extreme pH conditions and desiccation on the phenotypic 

antibiotic resistance of Cronobacter sakazakii to 13 antibiotics. Different responses were 

observed depending on the stress/antibiotic combination, with also strain dependent effects. 

Another important aspect to be considered is the fact that some stress parameters which are 

used during food production and preservation (such as low temperature, reduced pH, 

increased osmotic stress) can have an influence on the rate of plasmid transfer and hence on 

the transfer of plasmid located antibiotic resistance genes. The influence of biotic and abiotic 

factors on plasmid transfer, has indeed been observed in environmental microbiological 

studies (reviewed by van Elsas & Bailey, 2002). This has been less extensively analyzed in 

food processing related studies. The studies performed indicated that the sublethal stresses 

(e.g. temperature, pH, salt) imposed on food pathogens in modern food preservation systems 
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can have an increasing effect on conjugation rates (Beuls et al., 2012; Toomey et al., 2009b; 

Walsh et al., 2008; Mc Mahon et al., 2007a).  

One important technique applied in minimal processing is modified atmosphere packaging 

(MAP). Nowadays, it often forms an essential hurdle to guarantee an acceptable microbial 

shelf life. In MAP, the air in the package is replaced by a specific mixture of gases of which 

carbon dioxide (CO2), nitrogen (N2) and oxygen (O2) are the most frequently applied (Farber, 

1991). Although each gas has its specific function, it is especially CO2 that has antimicrobial 

effects and it is most effective in foods where aerobic, Gram-negative psychrotrophic bacteria 

constitute the normal spoilage community (Philips, 1996). Some Gram-positive spoilage 

bacteria such as Lactobacillus spp. or Brochotrix thermosphacta are usually resistant against 

inhibition by CO2 (Farber, 1991). As the solubility of CO2 decreases with increasing 

temperatures, it is important to respect the low storage temperatures (Farber, 1991). At cold 

temperatures only psychrotrophic and psychrophilic bacteria are able to grow. One of the few 

bacterial pathogens that can multiply at low temperatures is Listeria monocytogenes. The 

major public health concern related to this pathogen is its high mortality rate. Recent 

surveillance data indicated case fatality rates of 12.7% and 21% (EFSA/ECDC, 2013; Silk et 

al., 2013). Ready-to-eat (RTE) foods with a prolonged shelf life and stored under refrigerated 

conditions, are considered to be risk products for listeriosis (Uyttendaele et al., 2009). A 

recent European Union level survey on three types of RTE food showed a prevalence of L. 

monocytogenes of 10.3% in fish, 2.07% in meat and 0.47% in cheese, while the percentages 

exceeding the level of 100 CFU g-1 at the end of shelf life amounted to 1.7%, 0.43% and 

0.06% for fish, meat and cheese samples, respectively (EFSA, 2013).  

The aim of this study was to 1) investigate the temperature range in which plasmid transfer 

from Lactobacillus sakei subsp. sakei to L. monocytogenes occurs, and 2) evaluate the effect 

of atmosphere on plasmid transfer as it is currently unknown if MAP can have an influence on 

plasmid transfer. For this purpose, Lb. sakei subsp. sakei was used as donor strain as this is a 

typical Gram-positive spoilage bacterium and L. monocytogenes was used as recipient strain 

representing a Gram-positive psychrotrophic pathogen. Furthermore, these two species can be 

found on RTE food packaged under modified atmosphere. The experiments analyzing 

plasmid transfer under MAP conditions were conducted on non-selective agar plates and on 

slices of cooked ham. Experiments were first conducted with high density inocula to verify 

the possibility of occurrence of plasmid transfer under optimal conditions and subsequently 

with low density inocula on the slices of cooked ham to mimic more realistic conditions. 
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2. Material and Methods 

2.1. Bacterial strains and preparation of bacterial stocks 

The donor strain, Lb. sakei subsp. sakei (LMG 21682), was obtained from the BCCM/LMG 

public collection. This strain carries a plasmid-encoded tet(M) gene and was originally 

isolated from fermented dry sausage (Gevers et al., 2003a). The plasmid had a size of 

approximately 10 kb and the tet(M) gene was not located on a transposon of the 

Tn916/Tn1545 family (Gevers et al., 2003a). Partial sequencing of the tet(M) open reading 

frame (GenBank accession number AY149584) indicated high sequence similarities (>99.6%) 

with tet(M) genes previously reported in Neisseria meningitidis (Gevers et al., 2003a). The 

recipient strain, L. monocytogenes 4b (MB 4572), was isolated from meat. The recipient strain 

was made resistant to rifampicin by reculturing it daily on Tryptone Soya Agar (TSA) plates 

containing a doublefold rifampicin concentration. Bacterial stock cultures stored at -80 °C 

were used to prepare the inocula for the filter mating experiments. These stock cultures were 

made by diluting a fresh liquid culture in de Man, Rogosa and Sharpe (MRS) broth for the 

donor strain and in Brain Heart Infusion (BHI) broth for the recipient strain and subsequently 

incubating at 37 °C (aerobically for the recipient strain and anaerobically for the donor strain). 

Bacteria were collected at an optical density at 600 nm (OD600 nm) of 1.0 for the donor strain 

and 0.75 for the recipient strain. Subsequently, 15% (v/v %) glycerol was added and aliquots 

were stored at -80 °C.  

 

2.2. Filter mating 

Plasmid transfer experiments were conducted on sterile 0.45 µm mixed cellulose esters filters 

(25 mm diameter) (Millipore, USA). For each experiment, frozen aliquots of the stock 

cultures of the donor and recipient strain were left 5 minutes at room temperature before 

adding 200 µL of these to 5 mL of MRS broth for the donor strain and of TSB containing 

0.6% yeast extract (TSBYE) for the recipient strain. After 3.5 hours incubation at 37 °C under 

microaerophilic (5% O2) conditions (donor strain) and aerobic conditions (recipient strain), 

the strains were diluted. Subsequently, 1 mL of the donor strain was mixed with 1 mL of the 

recipient strain. This mixture was applied on the filters using a Swinnex filter holder 

(Millipore). The inoculated filters were subsequently put on the appropriate medium and 

incubated at the conditions indicated below. After incubation, the filters were transferred into 

2 mL Ringer solution (Oxoid) and were vortexed twice during 1 minute (wash solution). The 

suspended bacteria were analyzed by plate counting of serial dilutions. For the detection of 
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transconjugants TSAYE plates containing 50 µg mL-1 rifampicin and 10 µg mL-1 tetracycline 

were used. The enumeration of the donor strain was done on MRS plates containing 

10 µg mL-1 tetracycline, while for the enumeration of the recipient strain TSAYE plates 

containing 50 µg mL-1 rifampicin were used. The plates selective for the transconjugants and 

the recipient strain were incubated for 48 hours at 37 °C under aerobic conditions, while the 

plates selective for the donor strain were incubated for 48 hours at 37 °C under 

microaerophilic conditions.  

The transfer ratio was determined as ratio of the number of transconjugants to the number of 

recipients. 

 

2.3. Influence of temperature 

To analyze the influence of temperature on plasmid transfer, both cultures of donor and 

recipient were diluted 100 times in the suitable liquid growth medium before applying on the 

filter. The filters were subsequently put on TSAYE plates. These plates were incubated at 

7 °C, 10 °C, 15 °C, 22 °C and 37 °C. After an incubation period of 20 hours, the filters were 

washed and analyzed. For each temperature 4 filters were analyzed. 

 

2.4. Influence of modified atmosphere packaging 

To determine the influence of modified atmosphere packaging on plasmid transfer, three 

different experiments were conducted in which each time three different atmospheric 

conditions were tested: air, 50% CO2/50% N2 and 100% N2. The packaging under modified 

atmosphere was done as follows: the plates containing the filters (n = 3) were attached in 

polypropylene trays. These trays were sealed after adding the right gas mixture with a 

PET/CPP NPAF foil using a tray sealing machine (vc999, Switzerland). The foil is 62 µm 

thick and has an oxygen permeability of 190 cm3 m-2 24h-1 (25 °C, 50% R.H.). In the first 

experiment (Agar_High density), filters were prepared as described above and subsequently 

put on TSAYE plates. After packaging, the trays were incubated at 7 °C and the filters were 

analyzed after 5 and 10 days. Before analyzing the filters, the gas composition in the trays 

was determined using a headspace gas analyzer (PBI-Dansensor A/S, Denmark). In the 

second experiment (Ham_High density), the filters were put on slices of cooked ham 

(6.5 ± 0.4 g), which were put into Petri dishes. The cooked ham was bought in a Belgian 

supermarket. Both physicochemical and microbiological parameters of the cooked ham were 

determined by different labs of the Technology and Food Science Unit of ILVO (Table 5.1). 
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The preparation of the filters was done as in the first MAP experiment, except that in this 

experiment both donor and recipient strains were diluted in maximum recovery diluent 

(MRD) (Oxoid) instead of liquid growth medium. After packaging, the trays were incubated 

at 7 °C during 5 days. The third experiment (Ham_Low density) was conducted in the same 

manner as the second experiment, with the only exception that the filters were inoculated with 

a lower density of donor and recipient strain as this represents a more realistic situation. The 

donor and recipient strains were respectively 106 and 107 times diluted in MRD before adding 

on the filters. Filters were analyzed after 5 and 10 days. In this last experiment tenfold 

dilutions of the wash solution were made for the enumeration of donor and recipient bacteria, 

but for the detection of transconjugants the remaining wash solution was plated totally on 

double selective medium. 

 

Table 5.1. Range of physicochemical and microbiological parameters of the cooked ham used 
in the different experiments. 
Parameter High density experiment Low density experiment 

pH 6.01 - 6.15 6.10 - 6.17 

aw  0.976 - 0.978 0.973 - 0.974 

Salt (%)  1.9 - 2.1 1.1 - 1.2 

Moisture content (%)  74.1 - 74.6 73.4 - 73.6 

Lactate (%)  0.709 - 0.785 0.629 - 0.655 

Acetate (%)  0.059 - 0.135 0.006 - 0.009 

L. monocytogenes Absent Absent 

Lactic acid bacteria (CFU g-1)  8.5 x 102 - >3.0 x 105 < 10.0 

Total psychrotrophic number 
(Aerobic) (CFU g-1) 

1.3 x 103 - >3.0 x 105 < 10.0 

Total psychrotrophic number 
(Anaerobic) (CFU g-1) 

1.1 x 103 - >3.0 x 105 < 10.0 

 

 

2.5. Confirmation of the transconjugant status 

To confirm that the colonies detected on the double selective plates were indeed 

L. monocytogenes containing the plasmid, a selection of putative transconjugants were picked 

from the double selective plates and plated onto new double selective plates. After overnight 

incubation at 37 °C under aerobic conditions, lysates were made by adding a full inoculation 

loop to 100 µL sterile water and boiling this for 10 minutes. The lysates were stored at -20 °C. 

For the specific detection of L. monocytogenes, a PCR was performed with the primers 
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Lm486-505F (5’-ACAAGCTGCACCTGTTGCAG-3’) and Lm1060-1079R 

(5’-GAACCTTGATTAGCATTCGT-3’) as described by Van Coillie et al. (2004). A second 

PCR detected the presence of the tet(M) gene using the primers tet(M)-F 

(5’-GTGGACAAAGGTACAACGAG-3’) and tet(M)-R (5’-CGGTAAAGTTCGTCA 

CACAC-3’) according to the thermal cycling protocol of Toomey et al. (2009a). 

 

2.6. Statistical analysis 

Before analysis, normality was tested by the Shapiro-Wilk test. Because normality could not 

be obtained for every situation, not even after transformation of the data and because the 

small number of repeats, it was decided to perform non-parametric tests using the 

Kruskal-Wallis test. Analyses were performed using IBM SPSS 22.0 (IBM Corp., USA) and 

significant differences were considered at P < 0.05. 

 

 

3. Results 

The filter mating technique was used to study the transfer of an antibiotic resistance plasmid 

from Lb. sakei subsp. sakei to L. monocytogenes under several food related stress factors. In 

each experiment the transfer ratio is expressed as the log of the ratio of the number of 

transconjugants to the number of recipients. 

 

3.1. Influence of temperature 

To analyze the effect of cold temperature, the filters were inoculated with a mixture of 

107 CFU mL-1 donor and 107 CFU mL-1 recipient and incubated overnight at temperatures 

ranging between 7 °C and 37 °C. At 7 °C no transconjugants were formed and at 10 °C only 

for one of the 4 filters one transconjugant was detected on the double selective plate (Figure 

5.1a). The transconjugant status, being L. monocytogenes carrying the tet(M) gene was 

confirmed by PCR. Among the three remaining temperatures, the number of transconjugants 

ranged between (2.75 ± 0.50) × 101 CFU mL-1 and (2.45 ± 0.51) × 103 CFU mL-1 with the 

highest number of transconjugants at 22 °C. At 22 °C the highest number of recipients 

((8.52 ± 6.99) × 108 CFU mL-1) was found. The number of donors ranged between 

(3.13 ± 1.41) × 107 CFU mL-1 and (3.53 ± 1.03) × 108 CFU mL-1. The transfer ratio decreased 

with decreasing temperature, with almost a 2 log reduction in transfer ratio from 

(1.12 ± 0.51) × 10-5 to 1.41 × 10-7 between 37 °C and 10 °C (Figure 5.1b). 
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3.2. Influence of modified atmosphere packaging 

The influence of MAP was explored by three different experiments. In each experiment the 

same filter mating technique as above was used, but they differed from each other by the 

medium on which the filter was applied and by the inoculation density. 

In the first experiment (Agar_High density), a mixture of 107 CFU mL-1 donor and 

108 CFU mL-1 recipient was brought onto the filters which were subsequently placed on agar 

plates. The plates were placed in trays and packaged under three different conditions, air, 

50% CO2/50% N2 and 100% N2. The trays were subsequently placed at 7 °C and after 5 and 

10 days the filters were analyzed (Figure 5.2a). In contrast to the previous experiment 

(influence of temperature) in which no transconjugants were observed after an incubation of 

the filters for 20 h at 7 °C, transconjugants were detected in this experiment in which the 

filters were incubated for 5 and 10 days at 7 °C. The number of transconjugants ranged 

between (3.70 ± 1.59) × 102 CFU mL-1 and (1.28 ± 0.74) × 103 CFU mL-1 for the three 

conditions on day 5 and on day 10 the range was between (1.04 ± 0.33) × 103 CFU mL-1 and 

(7.85 ± 3.23) × 103 CFU mL-1. No statistically significant differences were found between the 

different atmospheres on the two time points, nor between the two time points for the 

different atmospheres. The lowest number of recipients was found on the filters that were 

incubated under the 50% CO2/50% N2 atmosphere. Both on day 5 and on day 10, the number 

of recipients remained below the number of recipients which was added on the filter. The 

donor was able to grow and reached under every condition an order of magnitude of 

109 CFU mL-1. Although it seems that the transfer ratio is higher under modified atmosphere 

conditions (order of magnitude 10-4 - 10-5) than under ambient air (order of magnitude 10-6), 

this was not confirmed statistically (Figure 5.2b and Table 5.2). 
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Figure 5.1. (a) Cell densities obtained on filters incubated on agar at different temperatures; 
(b) transfer ratio obtained on filters incubated on agar at different temperatures. Mean values 
sharing common lowercase letters are not significantly different (

(a) 

(b) 

(a) Cell densities obtained on filters incubated on agar at different temperatures; 
(b) transfer ratio obtained on filters incubated on agar at different temperatures. Mean values 
sharing common lowercase letters are not significantly different (P <0.05).

 

 

(a) Cell densities obtained on filters incubated on agar at different temperatures; 
(b) transfer ratio obtained on filters incubated on agar at different temperatures. Mean values 
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Figure 5.2. (a) Cell densities obtained on filters incubated on agar under different 
atmospheres at 7 °C for 5 and 10 days; (b) transfer ratio obtained on filters incubated for 5 
and 10 days on agar under different atmospheres at 7
lowercase letters are not significantly different (

(a) 

(b) 

Low  temperature and modified atmosphere: Hurdles for antibiotic resistance transfer

(a) Cell densities obtained on filters incubated on agar under different 
°C for 5 and 10 days; (b) transfer ratio obtained on filters incubated for 5 

and 10 days on agar under different atmospheres at 7 °C. Mean values sharing common 
significantly different (P <0.05). 
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(a) Cell densities obtained on filters incubated on agar under different 
°C for 5 and 10 days; (b) transfer ratio obtained on filters incubated for 5 

°C. Mean values sharing common 
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In the second experiment (Ham_High density) the same high inoculation densities 

(107 CFU mL-1 donor and 108 CFU mL-1 recipient ) were used and plasmid transfer was 

examined under the same conditions (air, 50% CO2/50% N2 and 100% N2) after 5 days, but 

the filters were now placed on slices of cooked ham (Figure 5.3a). The number of 

transconjugants ranged from (2.00 ± 0.16) × 102 CFU mL-1 to (7.55 ± 4.45) × 102 CFU mL-1 

with no statistically significant differences. For all three atmosphere conditions, the number of 

recipients decreased slightly compared to the inoculation density. The donor strain was able to 

grow under the three conditions as the number of donors detected on the filters had an order 

of magnitude of 108 CFU mL-1 with no statistically significant differences between the three 

conditions. The transfer ratio for the three conditions was comparable, with an order of 

magnitude of 10-5 (Fig 5.3b and table 5.2). 
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Figure 5.3. (a) Cell densities obtained on filters inoculated with high cell densities and 
incubated on cooked ham under different atmospheres at 7
ratio obtained on filters inoculated with high cell densities and incubated on cooked 
under different atmospheres at 7
letters are not significantly different (

(b) 

(a) 

Low  temperature and modified atmosphere: Hurdles for antibiotic resistance transfer

(a) Cell densities obtained on filters inoculated with high cell densities and 
incubated on cooked ham under different atmospheres at 7 °C during 5 days; (b) Transfer 
ratio obtained on filters inoculated with high cell densities and incubated on cooked 
under different atmospheres at 7 °C during 5 days. Mean values sharing common lowercase 
letters are not significantly different (P <0.05). 
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(a) Cell densities obtained on filters inoculated with high cell densities and 
°C during 5 days; (b) Transfer 

ratio obtained on filters inoculated with high cell densities and incubated on cooked ham 
°C during 5 days. Mean values sharing common lowercase 
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In the last experiment (Ham_Low density) the filters were inoculated with a low density 

mixture, containing on av

(4.24 ± 1.01) × 102 CFU mL-1

done after 5 and 10 days (Figure 5.4). Twice a transconjugant was detected on a filter which 

was incubated under 100% N2

was confirmed by PCR. After 5 days the number of recipients had not increased much 

compared to the inoculation density and the number of recipient for the 50%

condition had stayed below the inoculation level. However, no statistically significant 

differences were observed between the three conditions. After 10 days the number of 

recipients had increased to an order of magnitude of 10

statistically significant differences were observed between the three atmosphere conditions. 

The donor had already increased after 5 days (10

107 - 108 CFU mL-1 after 10 days. The two detected transconjugants yielded a transfer ratio of 

10-5 (Table 5.2). 

 

Figure 5.4. Cell densities obtained on filters inoculated with low cell densities and incubated 
on cooked ham under different atmospheres at 7
sharing common lowercase letters ar
 

In the last experiment (Ham_Low density) the filters were inoculated with a low density 

mixture, containing on average (5.26 ± 0.56) × 102 CFU mL
1 recipient, and placed on slices of cooked ham. Analysis was 

done after 5 and 10 days (Figure 5.4). Twice a transconjugant was detected on a filter which 

2 during 10 days. The transconjugant status of these two colonies 

was confirmed by PCR. After 5 days the number of recipients had not increased much 

compared to the inoculation density and the number of recipient for the 50%

low the inoculation level. However, no statistically significant 

differences were observed between the three conditions. After 10 days the number of 

recipients had increased to an order of magnitude of 103 - 104 CFU mL

cant differences were observed between the three atmosphere conditions. 

The donor had already increased after 5 days (104 - 106 CFU mL-1) and reached a density of 

after 10 days. The two detected transconjugants yielded a transfer ratio of 

Cell densities obtained on filters inoculated with low cell densities and incubated 
on cooked ham under different atmospheres at 7 °C during 5 and 10 days. Mean values 
sharing common lowercase letters are not significantly different (P <0.05).

In the last experiment (Ham_Low density) the filters were inoculated with a low density 

mL-1 donor and 

recipient, and placed on slices of cooked ham. Analysis was 

done after 5 and 10 days (Figure 5.4). Twice a transconjugant was detected on a filter which 

uring 10 days. The transconjugant status of these two colonies 

was confirmed by PCR. After 5 days the number of recipients had not increased much 

compared to the inoculation density and the number of recipient for the 50% CO2/50% N2 

low the inoculation level. However, no statistically significant 

differences were observed between the three conditions. After 10 days the number of 

mL-1, but again no 

cant differences were observed between the three atmosphere conditions. 

) and reached a density of 

after 10 days. The two detected transconjugants yielded a transfer ratio of 

 
Cell densities obtained on filters inoculated with low cell densities and incubated 

10 days. Mean values 
<0.05). 
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Table 5.2. Range of the transfer ratio (number of transconjugants/number of recipients) 
obtained in the different MAP experiments. 
Experimental set-up Incubation time 

(days) 

Atmosphere Transfer ratio range 

Agar_High density 5 Air 1.87 × 10-6 – 3.29 × 10-6 

  50% CO2/50% N2 2.93 × 10-5 – 9.64 × 10-5 

  100% N2 5.74 × 10-6 – 2.78 × 10-5 

 10 Air 7.08 × 10-7 – 3.34 × 10-6 

  50% CO2/50% N2 2.94 × 10-6 – 3.93 × 10-4 

  100% N2 2.08 × 10-5 – 5.26 × 10-5 

Ham_High density 5 Air 1.65 × 10-5 – 4.32 × 10-5 

  50% CO2/50% N2 1.80 × 10-5 – 2.09 × 10-5 

  100% N2 5.94 × 10-6 – 1.88 × 10-5 

Ham_Low density 5 Air No transfer detected 

  50% CO2/50% N2 No transfer detected 

  100% N2 No transfer detected 

 10 Air No transfer detected 

  50% CO2/50% N2 No transfer detected 

  100% N2 3.75 × 10-5 – 4.14 × 10-5 

 

 

4. Discussion 

The role of the food industry in the emergence of antibiotic resistance has recently been 

reviewed by Capita & Alonso-Calleja (2013) and Verraes et al. (2013). Although the use of 

antibiotics in the primary production is considered as a main risk factor, the influence of food 

processing may not be ignored. Sublethal food preservation stress has been shown to 

contribute to both the phenotypic antibiotic resistance as to the transfer of antibiotic resistance 

determinants (Mc Mahon et al., 2007a; McMahon et al., 2007b; Walsh et al., 2008; Toomey 

et al., 2009b; Al-Nabulsi et al., 2011; Beuls et al., 2012; Ganjian et al. 2012). In the case of 

antibiotic resistance transfer, conjugation is considered as the most important mechanism as 

conjugative or mobilizable plasmids are the most common transmission vectors for antibiotic 

resistance genes (Boerlin & Reid-Smith, 2008; Hawkey & Jones, 2009). In this study, the 
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effect of low temperature and of MAP on plasmid transfer was investigated. To our 

knowledge, the effect of MAP on plasmid transfer has never been evaluated before. 

Antibiotic resistance transfer from Lb. sakei subsp. sakei to L. monocytogenes was studied in 

a temperature range of 7 °C – 37 °C. After 20 hours of incubation transfer was detected in the 

range of 10 °C – 37 °C. The results also indicate that transfer ratio decreases with decreasing 

temperature. This finding is in line with the general consensus that low temperatures have a 

negative effect on plasmid transfer (Fernandez-Astorga et al., 1992). However, precaution is 

warranted when defining the range within which plasmid transfer occurs as this seems to be 

dependent of the experimental set-up. In this study transfer was not observed at 7 °C when the 

filters were incubated during 20 hours. In the subsequent experiment, however, 

transconjugants were detected after an incubation period of 5 and 10 days at 7 °C, yielding an 

average transfer ratio of 10-6 at both time points (Figure 5.2). Singleton & Anson (1981) also 

demonstrated that by prolonging the mating period, transfer could be detected at a lower 

temperature. Additionally, the nature of the transfer environment can play a role. The transfer 

ratios obtained in this study were about one log higher on cooked ham than on the agar plates 

(Figure 5.2b and Figure 5.3b). Walsh et al. (2008) observed that at 15 °C transfer only 

occurred in meat and not in milk or broth. Cocconcelli et al. (2003) followed antibiotic 

resistance gene transfer in Enterococcus faecalis during cheese and sausage fermentation at 

10 and 30 °C. In the cheese model, transconjugants were observed after a longer period of 

time at 10 °C than at 30 °C. In sausages, higher transfer rates were obtained than in cheese. 

Furthermore, similar transconjugant kinetics were found in sausages at both temperatures. 

Rizzotti et al (2009) found that tetracycline resistance transfer took place at 30 °C between 

one of three E. faecalis donor strains and Listeria innocua on fresh pork meat and dry 

fermented sausage slice samples whereas no transfer was observed at 10 °C. Because of the 

diversity in experimental set-up of the previous mentioned studies, it is however very difficult 

to compare our results and draw general conclusions, urging the need for more studies in this 

field. 

Further in this study, the effect of modified atmosphere packaging on plasmid transfer was 

analyzed. This was first done in vitro via filter matings on agar plates with high density 

inocula and subsequently in situ on cooked ham slices with both high and low density inocula. 

Cooked ham was chosen as food product because it can represent processed RTE foods that 

can be considered as high risk foods with regard to L. monocytogenes due to the possibility of 

contamination during processing or further handling and which have a prolonged storage time 

under refrigeration. In Belgium, the prevalence of L. monocytogenes on cooked meat products 
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was 4.9% during 1997 - 1998 and 1.1% during 2005 - 2007 (Uyttendaele et al., 1999; 

Uyttendaele et al., 2009). On EU level a prevalence of 2.07% at the end of shelf life has been 

reported for packaged heat-treated meat products (EFSA, 2013). The origin of contamination 

of cooked ham is most likely post processing. This was indicated in the study of Uyttendaele 

et al. (1999), who found a prevalence of 1.40% on cooked ham before slicing and 6.14% after 

slicing. In a recent outbreak of L. monocytogenes associated with cooked ham in Switzerland, 

the source of contamination was not the production plant, but a company where the slicing 

and the packaging was done (Hächler et al., 2013). Lactobacillus spp. (predominantly 

Lb. sakei and Lb. curvatus) is one of the most important members of the spoilage microbiota 

of vacuum or modified atmosphere packaged cooked meats (Vermeiren et al., 2004). 

Lb. sakei has for example been associated with spoilage of sliced cooked ham (Samelis et al., 

1998). This species is considered as one of the most psychrophilic species of lactobacilli as 

some strains are able to grow at 2–4 °C (Champomier-Vergès et al., 2002). In the in vitro 

situation (agar – high density), L. monocytogenes was not able to grow under the 50% 

CO2/50% N2 modified atmosphere, not after 5 days nor after 10 days, while the donor strain 

grew under every condition to a density of 109 CFU mL-1. Plasmid transfer was observed 

under every condition. Although it seemed that the transfer ratio is higher under modified 

atmosphere conditions (order of magnitude 10-4 - 10-5) than under ambient air (order of 

magnitude 10-6), this was not confirmed statistically (Figure 5.2b). Nevertheless, the results 

suggest that it is rather the absence of oxygen causing an effect on plasmid transfer than the 

presence of CO2. From these results, it is clear that plasmid transfer can occur at least as 

easily under modified atmospheres as under air conditions. When filters with high density 

inocula were applied on the cooked ham (cooked ham – high density), L. monocytogenes was 

not able to grow after 5 days under any of the three conditions, while Lb. sakei subsp. sakei 

was again able to grow under every circumstance (Figure 5.3a). Under the three conditions, 

plasmid transfer had occurred and the obtained average transfer ratio had an order of 

magnitude of 10-5 (Figure 5.3b). Although, lower donor and recipient densities were obtained 

on the filters incubated on cooked ham, the transfer ratio was in the range that was reached in 

the in vitro experiment. These results indicate that cooked ham can represent an environment 

suitable for antibiotic resistance transfer between lactic acid bacteria and the pathogen 

L. monocytogenes.  

All the experiments so far were performed with high density inocula to provide a proof of 

concept. These high densities of L. monocytogenes were far above the EU legal safety criteria 

which state that L. monocytogenes in RTE foods, other than those intended for infants and for 
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special medical purposes should not exceed the limit of 100 CFU g-1 throughout the shelf life 

(OJEU, 2005b). With regard to psychrotrophic lactic acid bacteria, there is a target value of 

107 CFU g-1 at the end of shelf life. The food product should however only be rejected on 

condition that there are unacceptable sensory abnormalities (Uyttendaele et al., 2010). Taking 

these values into account, an experiment with low densities was conducted to simulate a more 

realistic condition (Figure 5.4). After 5 days, the number of L. monocytogenes had slightly 

increased, except under the 50% CO2/50% N2 condition. After 10 days, L. monocytogenes 

obtained, under the aerobic and 100% N2 conditions, a density in the order of magnitude of 

104 CFU mL-1. After 5 days, the number of donor bacteria had increased with at least 2 log 

and an increase with 5 log-6 log was obtained after 10 days. After 10 days and only under the 

100% N2 condition, a few transconjugants were detected. Under this condition, the highest 

bacterial density was observed on the filters. For successful plasmid transfer, there has to be 

cell-cell contact and the cells have to be metabolic active. There are no indications that the 

cells were not metabolic active as growth of both donor and recipient was observed. This 

suggests that close cell-cell contact, and thus bacterial density, was the determining factor. 

Although only two transconjugants were observed, this presented a transfer ratio in the order 

of magnitude of 10-5, which is in the same range as the transfer ratios obtained in the above-

mentioned MAP experiments with high density inocula. After 10 days however, the safety 

criteria (<100 CFU g-1) for L. monocytogenes had been exceeded approximately a hundred 

times.  

 

Overall, it can be concluded that antibiotic resistance can be transferred from Lb. sakei subsp. 

sakei to L. monocytogenes under low temperature and under MAP conditions. The results 

indicate the importance of respecting the cold chain as it seems that the risk of plasmid 

transfer increases with increasing temperature. Furthermore, the results suggested that density 

could be a determining factor. In this study, transfer was only observed under densities which 

exceeded the food safety criteria or guidelines, indicating that when these are respected with 

the aid of good manufacturing practice (GMP) and good hygiene practice (GHP), the chance 

of antibiotic resistance transfer under these circumstances is minimal, however not 

unimportant. In this respect, it is again important to respect the cold chain as on the one hand 

low temperatures reduce the growth of bacteria and on the other hand low temperatures are 

needed to guarantee the inhibiting effect of CO2. Still, in order to conclude that the role of 

MAP in the contribution of the food production chain to the dissemination of antibiotic 

resistance determinants is indeed minimal more studies are necessary. 
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Following headlines appeared in the media last year: “Superbacterie duikt meer en meer op in 

ons vlees” (http://www.deredactie.be, dd. 25/05/2013), “Antibiotic-Resistant 'Superbugs' 

Creep Into Nation's Food Supply” (http://www.cnbc.com, dd. 18/04/2013). The particular 

feature of superbugs is their multidrug resistance. Consequently, they are difficult or 

impossible to treat (Collignon, 2013). But where does this antibiotic resistance come from?  

 

 

1. The food chain 

In food production several critical points can be encountered which may contribute to the 

emergence and dissemination of antibiotic resistance. Main stages in the food production 

chain are primary production, processing, distribution and preparation.  

 

1.1. Primary animal production, selection for antibiotic resistance and horizontal 

gene transfer 

In the case of food from animal origin, the primary production includes the breeding and 

rearing of the animals intended for consumption. It is generally agreed that the use of 

antibiotics in the primary production is a main driving force in the emergence of antibiotic 

resistance, since at that stage there is already a selection for resistant bacteria.  

The ways and the speed by which bacteria can become antibiotic resistant are both very 

intriguing, but also terrifying. Bacteria can acquire extra genetic material by three main 

mechanisms, conjugation, transduction and transformation. In the case of antibiotic resistance, 

conjugation plays a major role. In Chapter 2, we have demonstrated that a multiresistance 

plasmid with an environmental origin can be transferred successfully to Salmonella spp. and 

Escherichia coli O157:H7. A remarkable observation was that Salmonella enterica subsp. 

enterica serovar Enteritidis, which is considered to be a “susceptible” serovar, seemed to 

acquire the plasmid the most readily. Salmonella enterica subsp. enterica serovar 

Typhimurium, on the other hand, is often associated with multiresistance. The classic 

example is S. enterica serovar Typhimurium DT104 which carries five antibiotic resistance 

genes associated with the presence of the Salmonella genomic island 1. These resistance 

genes are located in a complex class 1 integron. Integrons are an example of the genius 

systems that bacteria possess to capture antibiotic resistance genes. In Chapter 3, a Belgian 

collection of STEC strains was screened for the presence of integrons and subsequently the 

present gene cassettes were identified. Although only two types of gene cassettes, encoding 
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resistance to streptomycin/spectinomycin and to trimethoprim, were retrieved in this specific 

collection, it is appropriate to approach integrons with caution as they are often associated 

with multiresistance and are found widespread in Gram-negative pathogens. Even though in 

our study integrons were only found among the human samples, there are multiple reports in 

the literature about integron-positive E. coli originating from food animals (swine, cattle, 

poultry, sheep, goat) (e.g. Zhao et al., 2001; White et al., 2002; Guerra et al., 2003; Sáenz et 

al., 2004; Sunde, 2005; Box et al., 2005; Lapierre et al., 2008; Povilonis et al., 2010; Soufi et 

al., 2011; Glenn et al., 2012; Ben Sallem et al., 2012; Marchant et al., 2013; Ramos et al., 

2013) and food products, such as ready-to-eat salads in Portugal (Campos et al., 2013), retail 

chicken products in Portugal (Silva et al., 2012), raw chicken meat in Thailand (Chaisatit et 

al., 2012), fish & seafood in Korea (Ryu et al., 2012), retail meat products in China (Li et al., 

2011), traditional Egyptian cheese (Hammad et al., 2009), turkey meat products in the USA 

(Khaitsa et al., 2008). These studies involved both pathogenic as non-pathogenic E. coli.  

 

Once antibiotic resistance has emerged in food animals it can reach humans by several routes, 

of which food is the most important one, but direct contact with the animals and the 

environment can also play a role. Several control measures can be applied to lower the 

development and dissemination of resistant bacteria among food animals and in food 

products. These are based on three fundamental aspects (Aarestrup et al., 2008):  

I) Knowledge of the magnitude & nature of the problem. This knowledge can be 

gathered by monitoring antibiotic resistance as well as antibiotic usage. Recently, 

a Center of Expertise on Antimicrobial Consumption and Resistance in Animals 

(AMCRA) was founded in Belgium with the aim of protecting both public and 

animal health and welfare, and accomplishing a sustainable policy of veterinary 

antimicrobial use in Belgium. An example of the activities of AMCRA are the 

guides which have been prepared for different sectors (pigs, poultry and cattle) on 

animal health on farms, well-considered use of antibacterial agents and 

formularies.  

II)  Limiting the selective pressure by controlling antibiotic usage. This can be 

obtained by for example altering the prescription and application policy and 

behavior or by banning antibiotics, such as the EU wide ban of antibiotics as 

additives in animal nutrition for growth promoting purposes (EC regulation 

1831/2003 (OJEU, 2003a)).  
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III)  Controlling spread of resistant bacteria. Two measures related to this aspect are 

improving hygiene and setting thresholds for certain types of resistant bacteria. 

One of the forerunners in controlling the emergence and spread of antibiotic 

resistant bacteria is Denmark, where several control measures have been 

implemented, such as among others the ban on the routine prophylactic use of 

antimicrobials in animals, the limitation of the profit veterinarians can generate 

from the direct sale of drugs, restriction on the use of antimicrobials of particular 

public health significance, the development of veterinary treatment guidelines, the 

implementation of preventive veterinary medicinal strategies (Wegener, 2006). 

 

1.2. Food processing 

1.2.1. Legislation, self-checking, GHP and HACCP  

In 2002, the European Union issued regulation (EC) No 178/2002 laying down the general 

principles and requirements of food law, establishing the European Food Safety Authority and 

laying down procedures in matters of food safety, also known as the general food law (OJEC, 

2002). This regulation was implemented in Belgian law by the Royal Decision of 

14th November 2003 (KB-14/11/2003) regarding self-checking (autocontrole), compulsory 

notification and traceability in the food chain (Belgisch Staatsblad, 2003). This self-checking 

system should include good hygiene practices (GHP), Hazard Analysis - Critical Control 

Point (HACCP) principles, policies, traceability and recall requirements in the specific 

company setting. Good hygiene practices comprise the conditions and measures necessary to 

ensure the safety and suitability of food at all stages of the food chain (FAO/WHO, 2007), 

while HACCP can be defined as a methodology that identifies, evaluates, and controls 

hazards that are significant for food safety (Jacxsens et al., 2009). It is mandatory for all 

business operators with activities in the food chain to introduce, implement and sustain a 

self-checking system with the exception of the primary sector. This last sector has to perform 

controls on the hygiene requirements and has to keep registers as mentioned in the Royal 

Decision of 14th November 2003 (Belgisch Staatsblad, 2003). Food hygiene is also regulated 

on European level by the hygiene package, which consists out of three regulations, one on the 

hygiene of foodstuffs ((EC) No 852/2004), one with specific hygiene rules for food of animal 

origin ((EC) No 853/2004) and the last one with specific rules for the organization of official 

controls on products of animal origin intended for human consumption ((EC) No 854/2004) 

(OJEU, 2004a, b, c). Microbiological criteria (both food safety criteria as well as process 
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hygiene criteria) for foodstuffs have been laid down in regulation (EC) No 2073/2005 (OJEU, 

2005b). It goes without saying that these (hygiene) regulations also contribute to the 

restriction of the transfer of antibiotic resistant bacteria to humans through food. 

 

1.2.2. Biofilms, multiple aspects to reflect on in the food industry 

One of the major concerns of the food industry is the presence of biofilms in a food 

processing environment, which can form a persisting source of contamination during food 

production. Both spoilage and pathogenic bacterial species can be involved. As an example, 

biofilms in an ice cream plant contained following Gram-negative bacteria: Proteus, 

Enterobacter, Citrobacter, Shigella, Escherichia, Edwardsiella, Aeromonas, Plesiomonas, 

Moraxella, Pseudomonas and Alcaligenes spp. and following Gram-positive bacteria: 

Staphylococcus, Bacillus, Listeria spp. and lactic acid bacteria such as Streptococcus, 

Leuconostoc or Pediococcus spp. (Gunduz & Tuncel, 2006). Furthermore, biofilms are 

considered to be hotspots for horizontal gene transfer (Sørensen et al., 2005). In Chapter 4, 

high transfer rates of a multiresistance plasmid in biofilm models which are representative for 

biofilms in the food industry were found. This indicates the importance to not only consider 

biofilms as a source of contamination in the food processing environment, but also as a source 

for the further dissemination of antibiotic resistance due to increased plasmid transfer. It is 

therefore of uttermost importance to eliminate biofilms in the food industry. However, this is 

easier said than done. The standard method to remove biofilms is cleaning and disinfection. 

Cleaning comprises the removal of food debris and other residues that may contain 

microorganisms or promote microbial growth, while disinfection aims at diminishing the 

surface population of viable cells left after cleaning and prevent microbial growth on surfaces 

before production restart (Simões et al., 2010). Up to 90% or more of surface-associated 

microorganisms can be removed by the cleaning process, however it is not suited to kill them 

(Chmielewski & Frank, 2003). Two aspects concerning the use of disinfectants deserve 

consideration, namely the higher resistance to these compounds in biofilms and the possible 

link between biocide usage and antibiotic resistance. Biofilm cells are in general more 

resistant to disinfectants than planktonic cells. Potential mechanisms involved in this 

resistance are transport limitations, which seem to be related mainly to interactions between 

the biocide and biofilm components; phenotypic adaptations of biofilm cells as a result of 

adaptive responses to sublethal concentrations of disinfectants; phenotypic adaptations of 

cells in a biofilm environment resulting from the expression of specific genes in response to 

their direct microenvironmental conditions; horizontal gene transfer of biocide resistance 



 General Discussion 

111 

 

genes and mutations; protection due to the presence of multiple species in the biofilm 

(reviewed by Bridier et al., 2011). As reported in the introduction, the use of biocides can lead 

to the emergence of antibiotic resistance. This has been demonstrated multiple times under 

laboratory conditions (reviewed by SCENIHR, 2009). There is however still some ambiguity 

about this link. 

The aforementioned issues associated with biocides drive the need for new biofilm control 

strategies. Some anti-biofilm strategies that have recently been explored are amongst other 

enzyme-based detergents, bacteriophages, essential oils, bacteriocins, quorum sensing 

inhibitors, etc. (Simões et al., 2010; Bridier et al., 2011; Giaouris et al., 2014). Enzymes 

could be helpful in the cleaning process by promoting the natural degradation of the biofilm 

matrix (Bridier et al., 2011). There are however some drawbacks (Simões et al., 2010). The 

specificity in the enzyme mode of action makes the use of formulations containing several 

different enzymes essential for a successful biofilm control strategy. Furthermore, enzymes 

are expensive compared to chemicals. Bacteriophages have been successful in controlling 

biofilms of Pseudomonas fluorescens, Pseudomonas aeruginosa, Staphylococcus epidermidis 

and Listeria monocytogenes (Soni & Nannapaneni, 2010). Essential oils are active volatile 

compounds that are produced as secondary metabolites by many herbs and spices (Giaouris et 

al., 2014). Giaouris et al. (2014) gives an overview of studies which have demonstrated the 

anti-biofilm action of several essential oils and their components. However, further research is 

needed as increased bacterial biofilm formation after subinhibitory exposure to essential oil 

compounds has also been demonstrated (Sandasi et al., 2008). Bacteriocins are ribosomally 

synthesized antimicrobial peptides produced by one bacterium that are active against other 

bacteria, either in the same species (narrow-spectrum), or across genera (broad-spectrum) 

(Cotter et al., 2005). The biofilm control potential of bacteriocins has been studied for 

example against L. monocytogenes (García-Almendárez et al., 2008; Winkelströter et al., 

2011; Gómez et al., 2012). Quorum sensing inhibitors which inhibit biofilm formation are for 

example brominated furanones and acyl homoserine lactones (AHL) analogs (Sintim et al., 

2010). The indications that bacteria could possibly develop resistance against quorum sensing 

inhibitors (Defoirdt et al., 2010) demonstrate the need for further research concerning the 

possibilities of resistance development against these mechanisms by bacteria. 
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1.2.3. Minimal food processing 

The food industry increasingly applies minimal processing techniques to satisfy the consumer 

demand for healthy food with superior organoleptic properties. These methods change the 

inherent fresh-like quality characteristics of the food as little as possible (minimally), but at 

the same time provide the food product with a sufficient shelf life (Ohlsson, 1994). However, 

there is a lack of knowledge about how these techniques contribute to the emergence and the 

dissemination of antibiotic resistance in our food.  

 

In food preservation, combination technology is applied. This means that the microorganisms 

present on the food are subjected to a combination of different hurdles, namely preservation 

techniques at low intensities, with the aim to prevent growth and proliferation of the 

undesired microorganisms. More than 60 possible hurdles have been described of which 

temperature (high or low), water activity (aw), acidity (pH), redox potential (Eh), 

preservatives (e.g. nitrite, sorbate, sulphite), and competitive microorganisms (e.g. lactic acid 

bacteria) are the most important (Leistner, 2000). The effect of some of these hurdles (mainly 

temperature and pH) on plasmid transfer has been explored. Modified atmosphere packaging 

is a hurdle that is increasingly applied in food preservation, but which has to our knowledge 

not been implicated in studies on plasmid transfer. In Chapter 5, plasmid transfer under low 

temperature and under modified atmosphere conditions was evaluated. Our in vitro results 

(agar plates with high inoculum densities) indicated that the lower limit at which plasmid 

transfer occurs can vary according to the storage period. Although the modified atmosphere 

could prevent or retard the growth of the recipient strain (L. monocytogenes), it could not 

prevent plasmid transfer and transfer rates obtained under different atmosphere conditions 

were not significantly different. In other words, there is a risk of plasmid transfer during food 

preservation. This was also observed in the in situ experiments with cooked ham at high 

inoculum densities. At European level microbiological criteria are established to ensure food 

safety (EC No 2073/2005 (OJEU, 2005b)). For ready-to-eat foods able to support the growth 

of L. monocytogenes (other than those intended for infants and for special medical purposes) 

the threshold of L. monocytogenes is set at 100 CFU g-1 at the end of the shelf life. Keeping 

this in mind, an experiment with cooked ham was performed with similar low inoculum 

densities of both recipient and donor strain. Lactobacillus sakei subsp. sakei was used as 

donor strain. Only under the condition (10 days at 100% N2) which yielded an average of 

108 CFU mL-1 donor and 104 CFU mL-1 recipient, a few transconjugants were detected. For 

lactic acid bacteria, there are no strict criteria formulated, however there are guidelines which 
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mention a threshold of 107 CFU g-1 at the end of shelf life (Uyttendaele, 2010). The successful 

transfer in the former experiment was accompanied by numbers of the recipient strain which 

exceeded the legal microbiological criteria approximately a hundred times, and by numbers of 

the donor strain which can be associated with food spoilage. These findings indicate that 

under normal circumstances the risk of plasmid transfer is minimal. Further research is 

needed to resolve if it is negligible as well. 

 

1.2.4. SOS response 

Stress encountered by bacteria during food processing and preservation may trigger bacterial 

responses leading to enhanced survival. An example of such a mechanism is the SOS 

response, a global regulatory network targeted at addressing DNA damage (Erill et al., 2007). 

The SOS response from a food safety perspective has recently been reviewed by van der Veen 

& Abee (2011). Stress factors that possibly provoke the SOS response include food 

preservation factors (e.g. UV-radiation, preservatives), food processing factors (e.g. heat, high 

pressure) and/or cleaning agents such as oxidative compounds, which can result in increased 

stress resistance and induction of genetic diversity (van der Veen & Abee, 2011). Several 

aspects addressed in this thesis are associated in some way with the SOS response. Antibiotics 

can be inducers of the SOS response resulting in antibiotic resistance by the formation of 

persisters, enhancing the mutation rate or by stimulating horizontal gene transfer (reviewed by 

Rodríguez-Rojas et al., 2013). Furthermore, it was recently discovered that the SOS response 

controls integron recombination (Guerin et al., 2009). Both conjugation and transformation 

can induce the SOS response, hereby triggering integrase expression (Baharoglu et al., 2010, 

2012). The SOS response also plays a role in biofilm formation as has been demonstrated for 

example in L. monocytogenes (van der Veen & Abee, 2010) and in P. aeruginosa (Chellappa 

et al., 2013). In heterogeneous and nutrient-deprived biofilm microenvironments, the 

induction of the SOS response can lead to biofilm-specific high tolerance to the antibiotic 

ofloxacin (Bernier et al., 2013). The above clearly shows that the SOS response plays an 

important role in the adaptive capacity of bacteria during adverse conditions. 
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1.3. Antibiotic resistance transfer during food production and preservation: the 

example of cooked ham 

Cooked ham is generally prepared from porcine whole muscles. The raw material has to pass 

several processing steps before cooked ham is obtained. The main processes are brining, 

tumbling, cooking, cooling, slicing and packaging. The bacterial count of the raw material 

should be as low as possible, preferably between 102 – 104 CFU g-1, as this helps to keep the 

bacterial count low throughout the manufacturing process and it greatly enhances the shelf 

life of the cooked product (Feiner, 2006). During brining, a solution of sodium chloride, 

nitrites and possibly other ingredients are injected into the meat. The brine injection level and 

the ingredients used are characteristic for each product and determine the cooked ham quality 

(Casiraghi et al., 2007). In order to avoid bacterial growth in the injected meat, it is important 

that the brine is kept at a low temperature (Feiner, 2006). Tumbling is a mechanical operation 

by which the brine is evenly distributed in the meat and proteins are extracted from muscle 

fibres (Casiraghi et al., 2007). This is also best done at low temperature (Feiner, 2006). 

Before cooking, the tumbled meat is formed by placing it in moulds or casings. Sometimes 

the tumbled meat is first vacuum packed before putting it into the moulds. The cooked 

product can yield in this way long shelf lives as no recontamination can occur after cooking 

under normal conditions. The cooking normally takes place at 74 - 80 °C until a core 

temperature of 69 - 72 °C is obtained and serves to denature proteins, stabilize the curing 

colour, intensify the flavour, improve the texture and destroy pathogens (Feiner, 2006). After 

cooking, it is essential to bring the meat quickly to a temperature below 10 °C as spores who 

have survived the cooking process can germinate and grow at temperatures above 10 °C. The 

products are usually first showered or bathed in cold water before placing them in a blast 

chiller. Slicing represents the stage with the highest risk of contamination. This risk can be 

decreased by providing a strict separation between pre- and post-cook areas, by maintaining 

high personal hygiene and by applying a positive or negative air pressure in the slicing rooms 

(Feiner, 2006). The formation of condensation has to be avoided as well. Sliced products are 

predominantly packed under modified atmospheres so that the individual slices do not stick 

together and the product is not squeezed as if packed under vacuum. For an optimal shelf life 

and to prevent bacterial growth as much as possible, packed products should be stored 

between -1 and 4 °C (Feiner, 2006). 

Samelis et al. (1998) followed the microbiology at several stages during the manufacturing of 

cooked ham. At the beginning of the process pseudomonads dominated the microbiota, while 
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during tumbling, lactic acid bacteria became dominant. It was also during tumbling that 

cross-contamination of the meat with L. monocytogenes occurred. L. monocytogenes was 

eliminated by the heat processing step and was absent during storage. After heat processing 

and cooling only lactic acid bacteria were able to grow during storage in vacuum packs. The 

microbiota of Belgian artisan cooked ham packed under modified atmosphere consisted of 

Leuconostoc spp., Carnobacterium spp. and Brochothrix thermosphacta (Vasilopoulos et al., 

2010). These bacteria were also detected in raw tumbled meat suggesting the presence of a 

“house microbiota”, consisting of microorganisms which are introduced onto surfaces and 

into the environment of the processing line through contact with the meat and of its handling 

by the personnel (Vasilopoulos et al., 2010). As the heat treatment during the processing of 

cooked ham will kill most vegetative cells, it is more likely that recontamination of cooked 

meat products occurs during handling, slicing and/or packaging. Audenaert et al. (2010) 

reported a common lactic acid bacteria contamination in a study of cooked ham, turkey and 

chicken products. The processing occurred on different locations for poultry and pork, while 

the slicing and the packaging took place in the same production plant. Contamination with the 

pathogen L. monocytogenes also occurs most likely during post-processing (Uyttendaele et 

al., 1999). The source of contamination in a recent L. monocytogenes outbreak in Switzerland 

associated with cooked ham, was not the production plant itself, but a company where the 

slicing and the packaging was done (Hächler et al., 2013).  

Based on the results obtained in Chapter 5 the risk for antibiotic resistance transfer seems 

highest during storage under modified atmosphere as the bacteria reach the highest densities 

at this stage. Raw material can contain lactic acid bacteria in an order of magnitude of 

3 log CFU g-1 (Samelis et al., 1998; Vasilopoulos et al., 2010). In the experiments conducted 

in Chapter 5, transfer on cooked ham was only detected when a bacterial density of 

8 log CFU mL-1 was reached. In the study of Samelis et al. (1998) this density was reached 

after storage of vacuum packed, cooked ham during 6 to 12 days. For MAP artisan-type 

cooked ham packages, it took several weeks to obtain this density at 4 and 7 °C. However, 

during this period the practical threshold of 6 log CFU g-1 for total viable bacterial counts, as 

used in artisan-type ham practice for rejection of the product, was already exceeded 

(Vasilopoulos et al., 2008). The lowest density of the recipient bacterium at which transfer 

was observed in Chapter 5 was in the order of magnitude of 4 log CFU mL-1. In a recent 

European survey on the prevalence of L. monocytogenes in certain ready-to-eat foods, 

densities of > 4 log CFU g-1 were observed in 0.06% of the analyzed packaged heat-treated 

meat product samples (EFSA, 2013). In Chapter 5 the tip of the veil was lifted by 
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demonstrating that antibiotic resistance transfer can take place on food products packed under 

modified atmosphere. Further research is necessary to assess the importance of this 

phenomenon. 

 

1.4. Consumer 

Can we still enjoy our food as “bon vivants”? 

Of course, as long as you are aware of the presence of bacteria and you act accordingly 

to minimize the risk of acquiring a foodborne disease. 

In the fight against foodborne bacterial infections and intoxications, a part of the 

responsibility lies, obviously, with the consumer. In the time period 2007-2011, the setting 

“household/domestic kitchen” was reported to be involved in 32.7 – 38.7% of the foodborne 

outbreaks (EFSA/ECDC, 2009b, 2010, 2011, 2012, 2013). There are several factors 

contributing to these high frequencies, e.g. the majority of the food we eat is prepared at 

home, a false sense of being safe from foodborne illnesses with insufficient attention to 

general hygiene principles as a consequence, the multifunctionality of the kitchen, too high 

refrigerator temperatures (Byrd-Bredbenner et al., 2013). Antibiotic resistance is not often 

integrated in the bacteriological screening of domestic kitchens. Marshall et al. (2012) found 

in their screening of kitchen sites overall no significant differences or trends in antibiotic 

resistance between users and non-users of biocide agents. In another study, Cronobacter 

sakazakii was found to be present in 26.9% of the evaluated domestic kitchens and overall a 

resistance to two or more antibiotics was observed (Kilonzo-Nthenge et al., 2012). The same 

author found in a previous screening of domestic refrigerators no L. monocytogenes, while 

several species belonging to the Enterobacteriaceae were detected, most of which are not 

usually associated with foodborne pathogens and are considered non-pathogenic to healthy 

adults, except for Enterobacter sakazakii (2.2%) and Yersinia enterocolitica (0.7%) 

(Kilonzo-Nthenge et al., 2008). Among the Enterobacteriaceae isolates antibiotic resistance 

was observed, with multidrug resistance found only in Klebsiella spp. The occurrence of 

antibiotic resistance gene transfer in a domestic kitchen environment has been investigated 

very seldom. Kruse & Sørum (1994) demonstrated that plasmid transfer could take place on a 

hand towel and that cutting boards can transfer recipient strains to food products on which 

subsequently successful transfer can take place. Transfer was also detected in the remnants on 

the cutting board. 
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To prevent foodborne diseases at consumer level, five keys have been published by the World 

Health Organization (WHO): keep clean, separate raw and cooked food, cook food 

thoroughly, keep food at safe temperatures, use safe water and raw materials 

(http://www.who.int/foodsafety/consumer/5keys/en/). It goes without saying that these 

measures will also constrain the transfer of antibiotic resistance. 

 

 

2. Does the story end with antibiotic resistant pathogens present in our 

food? 

No, absolutely not. 

Although our main concern are the pathogenic antibiotic resistant bacteria as they represent 

the main direct threat to the public health, the role of the commensal bacteria present in our 

food should not be underestimated. Commensals are bacteria which belong physiologically to 

the human or animal microbiota and which are not primarily considered as pathogenic for 

their host. The most studied commensal species are E. coli and Enterococcus spp. Both 

species have a number of characteristics in common: I) they can be found in the 

gastrointestinal system of humans and animals; II) they are possible food contaminants; III) 

they may carry transmissible resistance genes; IV) they are facultative pathogens. 

Commensals can pose an indirect hazard if they carry transferable antibiotic resistance genes, 

which they can pass to human pathogenic bacteria. According to some, the commensal 

antibiotic resistance reservoir can be considered a more global threat to health than the direct 

selection pressure on the pathogens themselves, as the occasional de novo development of 

resistance in a pathogen may be less frequent and less impactful than the constant gene traffic 

from the vast commensal reservoir into the relatively small pathogen pool (Boerlin & 

Reid-Smith, 2008). Furthermore, it seems that multidrug resistant commensal E. coli has the 

highest significance in the food animal industry, where it may act as reservoir for intra- and 

interspecies exchange and as a source for dissemination of multidrug resistant determinants 

through contaminated food to humans (Szmolka & Nagy, 2013). Werner et al. (2013) has 

recently reviewed the role of antibiotic resistant enterococci as “resistance gene trafficker” 

highlighting the importance of preventing the development of new resistant strains and the 

transfer of multiple resistant enterococci via the food chain.  

A suitable place where bacteria can transfer their antibiotic resistance genes is the human 

gastrointestinal tract. This has been demonstrated by several model systems, such as a 
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single-stage continuous fermenter system to simulate the microbial ecosystem of the proximal 

infant colon (Haug et al., 2011), an in situ continuous flow culture system, simulating the 

human caecum and the ascending colon (Smet et al., 2011), but also different in vivo models 

have been applied (Schjørring & Krogfelt, 2011). It is generally accepted that the human gut 

is likewise a reservoir of antibiotic resistance genes and that there is an interplay among 

environmental, food, and gut microbiota of humans and animals whereby genetic exchanges 

can occur at any step (Figure 6.1). 

 

 

Figure 6.1. Graphic representation of the interplay among environmental, food, and gut 
microbiota of humans and animals. Genetic exchanges can occur at any step. (Adapted from 
Devirgiliis et al., 2011) 
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3. Applied methodology 

In this doctoral work two techniques were applied for the quantification of plasmid transfer: 

plating and flow cytometry. Plating, the traditional detection technique in bacteriology, is 

time consuming and unable to detect VBNC bacteria. The use of flow cytometry to study 

conjugation is a relatively new technique which was first described in 2003 (Sørensen et al., 

2003). Major advantages of this technique are its rapidity and the possibility to detect VBNC 

bacteria. However, there are also some disadvantages. The setting of the gates is performed 

arbitrarily, which can complicate the comparison of results. Another drawback is, that in order 

to be able to analyze conjugation by flow cytometry, a reporter system has to be integrated. In 

this doctoral work, this meant manipulating the donor strain and the plasmid. Concerning the 

insertion of the mini-Tn5-Km-PA1-04/03::gfp cassette, it is not known where it has integrated in 

the plasmid. However, with the current sequencing techniques it is nowadays possible to 

sequence the plasmid to detect where it has inserted and if this could influence its 

transferability or stability.  

In Chapter 2 and 4 where flow cytometry was used to quantify plasmid transfer, the transfer 

ratio was expressed as the ratio of the number of transconjugants to the total cell number. In 

theory, it would be possible to induce gfp expression in the donor bacteria by the addition of 

isopropyl-thio-β-D-galactoside (IPTG). In pseudomonads however, it has previously been 

shown that lac-type promoters are less efficiently induced by IPTG (Sørensen et al., 2003).  

Another factor to keep in mind is that the fluorescence of GFP can be impaired by some 

environmental conditions, such as high salt, low pH and lack of oxygen (Sørensen et al., 

2005). Considering the case of low oxygen, Hansen et al. (2001) have demonstrated that when 

shifting an anaerobically grown (non-fluorescent) >50 µm thick Streptococcus gordonii 

biofilm to aerobic conditions, GFP fluorescence could be detected within 4 minutes, reaching 

a maximum over the next 16 minutes. In Chapter 2, cells were removed from the filters by 

vortexing and in Chapter 4 biofilms were removed from the attachment material and 

mechanically disrupted. These manipulations were conducted under aerobic conditions giving 

the cells the opportunity to become fluorescent. Recently, a new fluorescent reporter system 

allowing quantitative analysis of plasmid transfer under both aerobic and anaerobic conditions 

has been designed (Król et al., 2010). 

In an ideal situation, anyone planning conjugation experiments should consider these aspects 

carefully for the experimental design. However, practical considerations cannot be neglected. 
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The biomass acquired in filter mating experiments (Chapter 2 and Chapter 5) can also be 

considered as a biofilm. The difference between filter mating and the biofilm models used in 

Chapter 4 is that the biofilm on the filter is formed under static conditions while the biofilms 

in Chapter 4 were formed under flow condition. The preference for one of the approaches 

depends on the research question. 

 

In this doctoral work, filter matings were applied to study plasmid transfer on a food product. 

This was done to obtain a standardized methodology to apply and recover the bacteria, but 

also to give the bacteria the best chance of making contact. Other methods have been 

described in literature. Walsh et al. (2008), for example, verified that the ground meat they 

used were Salmonella free and E. coli free. Ground meat samples were inoculated by 

immersing them in an inoculating suspension after which they were drained and reminced. 

Gazzola et al. (2012), who used a fermented sausage model to assess horizontal gene transfer, 

sterilized pork meat batter by gamma ray irradiation treatment (6 KGy) to eliminate the 

adventitious microbiota present in the raw meat. Bertsch et al. (2013) spread the inoculation 

suspension on the surface of smoked salmon and of smear-ripened cheese. After incubation, 

the cheese smear was scraped off with a sterile knife whereas the complete salmon sample 

was analyzed. By applying the filter mating method, we gave the bacteria the best chance to 

make contact, however, the methods applied by Walsh et al. (2008) and by Bertsch et al. 

(2013) approach the real life situation more closely.  
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4. Conclusion 

The topic of this PhD research was the study of antibiotic resistance transfer during food 

production and preservation, addressing a few aspects of the dissemination of antibiotic 

resistance from farm to fork. Several nice findings were obtained. First of all, the transfer of 

an environmental multiresistance plasmid (originally isolated from a wastewater treatment 

plant) to foodborne pathogens has shown that the environment and the food production chain 

are not strictly separated niches, but that they certainly can interact with each other. Secondly, 

the diversity of the gene cassettes present in integrons in a Belgian collection of STEC 

seemed to be limited. As such, this might be positive, however, more than 90% of the 

integron-positive STEC strains displayed resistance to three or more antibiotics. This clearly 

illustrates the importance of monitoring antibiotic resistance in STEC, a research area which 

has not received a lot of attention. Thirdly, the biofilm research reveals that existing biofilms 

which are representative for biofilms in the food industry can serve as a source or a receiver 

for multiresistance plasmids. This is without a doubt a point requiring further attention. 

Finally, modified atmosphere packaging did not seem to be a parameter preventing plasmid 

transfer. Plasmid transfer even took place on cooked ham packed under modified atmosphere. 

It has to be noted, however, that plasmid transfer was observed only with densities that greatly 

exceeded food safety criteria/guidelines. 

 

Considering the farm to fork route, it is clear that the use of antibiotics in the primary 

production has an immense impact on the emergence of antibiotic resistance. This is certainly 

a point that requires further attention in the fight against antibiotic resistance. It is however 

imperative to always keep in mind that the different stages in the farm to fork concept are not 

strictly defined units, but that interactions may occur. Once antibiotic resistance has emerged, 

it is important to look at the factors that can contribute to a further spread of antibiotic 

resistance. From this PhD research, it can be concluded that during food production and 

preservation there are definitely factors contributing to a further dissemination of antibiotic 

resistance by means of plasmid transfer. These conclusions, however, only relate to the model 

systems applied in this PhD research, indicating the need for further research on this topic. It 

would be interesting to apply the biofilm reactor in other experimental approaches in which 

more realistic situations are mimicked by adapting for example the temperature and/or the 

medium. Other model organisms should also be tested. To our knowledge, it is the first time 

that the effect of MAP conditions on plasmid transfer has been explored. Again, more 



Chapter 6 

122 

 

research with other food products and other model organisms is necessary to confirm our 

findings on the role of MAP in the dissemination of antibiotic resistance determinants.  
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Antibiotic resistance is a worldwide public health problem. The dissemination of antibiotic 

resistance results from an interplay of factors between humans, animals, food and 

environment. There are strong indications that the use of antibiotics in primary production 

contributes to human infections with antibiotic resistant bacteria. Food serves hereby as an 

important vector. Regarding the dissemination of antibiotic resistance through food, a 

distinction exists between the direct risk, which refers to the dissemination of antibiotic 

resistant bacteria themselves, including the foodborne pathogens, and the indirect risk, which 

comprises the dissemination of antibiotic resistance genes. Although there are three main 

mechanisms by which bacteria can obtain exogenous genes, namely conjugation, 

transformation and transduction, it is assumed that conjugation is the most important 

mechanism concerning antibiotic resistance transfer. Conjugation involves the transfer of 

genetic elements from a donor to a recipient. The genetic element most frequently transferred 

via conjugation is a plasmid. The contribution of food production and preservation to 

antibiotic resistance transfer by means of plasmids, has however only been scarcely studied. 

This topic represents the focus of this doctoral work. 

 

In a first phase, the transfer of a multiresistance plasmid to foodborne pathogens was analyzed 

(Chapter 2). The plasmid, pB10, originally isolated from a wastewater treatment plant, 

contains resistance genes against the antibiotics streptomycin, amoxicillin, tetracycline and 

sulfonamides. A Pseudomonas putida strain was used as donor. P. putida is a typical 

inhabitant of water and soil, but can also be associated with food spoilage. A selection of 

Salmonella and Escherichia coli O157:H7 strains, both notorious foodborne pathogens, was 

chosen as recipient. Conjugation was analyzed by plating and by flow cytometry. For 14 of 

the 15 analyzed strains transconjugants were detected. The transfer ratio, i.e. the ratio of the 

number of transconjugants to the total cell count, seemed to be recipient strain dependent and 

could reach an order of magnitude of 10-2, in other words one out of 100 bacteria obtained the 

plasmid. Based on the antibiotic susceptibility profiles of the recipients and the 

transconjugants it could be confirmed that the bacteria, after obtaining the plasmid, became 

resistant against abovementioned antibiotics. 

 

Integrons are genetic elements that are often associated with plasmids. They are a fine 

example of the fascinating way by which bacteria can acquire and further disseminate 

antibiotic resistance. In Chapter 3 a Belgian collection of Shiga-toxin producing E. coli 

(STEC) was screened for the presence of integrons. STEC is considered to be the most 
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important group of emerging foodborne pathogens. Antibiotic resistance in STEC, however, 

is hardly investigated. Integrons were detected in 7.5% of the analyzed strains, all from 

human origin. They were all class 1 integrons, which is the most common class in 

Gram-negative bacteria. Further characterization demonstrated that the detected integrons 

carried antibiotic resistance genes against two types of antibiotics, namely 

streptomycin/spectinomycin and trimethoprim. This would be good news, but analysis of the 

antibiotic susceptibility profiles showed that 91.3% of the integron-positive strains showed 

resistance to at least three different antibiotics. On the other hand, 77.0% of the 

integron-negative strains were susceptible for all the tested antibiotics. 

 

In the food industry biofilms can form a persistent source of contamination, which may 

contribute to food spoilage, damage the equipment and which may constitute a risk to human 

health if pathogenic bacteria are involved. Moreover, these structures are considered as 

hotspots for plasmid transfer, whereby they can contribute to the dissemination of antibiotic 

resistance. In Chapter 4, the transfer of the multiresistance plasmid, pB10, was examined in 

biofilm models, representative of biofilms in the food industry. Two different flow 

configurations (flow-through and drip-flow) and three attachment materials (silicone, glass 

and stainless steel) were used. Just as in Chapter 2, P. putida was used as donor and E. coli as 

recipient. The inoculation strategy comprised first the formation of a biofilm with one of the 

two bacterial species and subsequently the application of the second bacterial species. This 

way, plasmid transfer was studied by means, on the one hand, of a biofilm with plasmid 

donating capacity and, on the other hand, of a biofilm with plasmid receiving capacity. High 

transfer ratios (the ratio of the number of transconjugants to the total cell number) were 

obtained, which could reach an order of magnitude of 10-1. 

  

To provide food with a sufficient shelf life, preservation techniques are used that prevent the 

outgrowth of bacteria present on food. Two such techniques are low temperature and 

modified atmosphere packaging (MAP). In Chapter 5, the effect of these two techniques on 

plasmid transfer was studied in a Gram-positive model. Lactobacillus sakei subsp. sakei, a 

typical Gram-positive spoilage organism, was used as donor and Listeria monocytogenes, a 

Gram-positive psychrotrophic pathogen, was used as recipient. Both species can be found on 

ready-to-eat foods, packaged under modified atmosphere. Concerning temperature, plasmid 

transfer was observed in a range between 10 °C and 37 °C. However, the lower limit could be 

decreased by extending the incubation period. To examine the effect of modified atmosphere 
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three gas compositions (air, 50% CO2/50% N2 and 100% N2) were applied. When high 

inoculum densities were used, plasmid transfer was observed under each condition, both in 

vitro, on agar plates, as in situ, on slices of cooked ham. To simulate a more realistic situation, 

plasmid transfer was also analyzed on cooked ham with low inoculum densities. Transfer was 

observed only under the 100% N2 condition after ten days incubation. Under this condition, 

the highest bacterial density was obtained. In the MAP experiments the transfer ratio, 

expressed as the ratio of the number of transconjugants to the number of recipients, was of the 

order of magnitude of 10-4 - 10-6. It should be noted though that transfer was only observed 

with donor and recipient densities which exceed the food safety criteria or guidelines. If these 

criteria/guidelines can be guaranteed, the contribution to antibiotic resistance dissemination 

seems to be minimal. 

 

This PhD research highlighted a small aspect of the factors involved in the problem of 

antibiotic resistance dissemination. Nevertheless, there were a number of important findings. 

First of all, it was shown that the environment and the food are not strictly defined niches, but 

that they certainly can interact with each other. Secondly, it appeared important to further 

monitor integrons, as these are often associated with mobile genetic elements that can carry 

additional antibiotic resistance genes. Furthermore, it became clear that biofilms are not only 

a source of contamination in the food industry, but the risk of antibiotic resistance 

dissemination by plasmid transfer in biofilms should also be acknowledged. Finally, two 

commonly used preservation techniques which prevent bacterial growth in the food industry, 

do not necessarily seem to prevent plasmid transfer. 

Further research with other model systems is, however, necessary to expand our knowledge 

on the role that food production and preservation play in the dissemination of antibiotic 

resistance. 
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Antibioticumresistentie is een wereldwijd probleem voor de volksgezondheid. De 

verspreiding van antibioticumresistentie resulteert uit een samenspel van factoren tussen 

mens, dier, voeding en omgeving. Er zijn sterke aanwijzingen dat het gebruik van antibiotica 

in de primaire productie bijdraagt aan humane infecties met antibioticumresistente bacteriën, 

waarbij voeding een belangrijke overdrager is. Wat de verspreiding van 

antibioticumresistentie via de voeding betreft, is er een onderscheid tussen het directe risico, 

dat betrekking heeft op de verspreiding van antibioticumresistente bacteriën zelf, waaronder 

de voedselgebonden pathogenen, en het indirecte risico, waarmee gedoeld wordt op de 

verspreiding van antibioticumresistentiegenen. Hoewel er drie belangrijke mechanismen 

bestaan waardoor bacteriën exogene genen kunnen verkrijgen, zijnde conjugatie, 

transformatie en transductie, wordt er aangenomen dat conjugatie in het geval van de 

overdracht van antibioticumresistentie het belangrijkste mechanisme is. Tijdens conjugatie 

worden er genetische elementen overgedragen van een donor naar een acceptor. Het genetisch 

element dat het vaakst via conjugatie wordt overgedragen is een plasmide. Naar de bijdrage 

die de voedselproductie en -bewaring levert aan de overdracht van antibioticumresistentie 

d.m.v. plasmiden, is er echter weinig onderzoek uitgevoerd. Hierin ligt dan ook de focus van 

dit doctoraatswerk.  

 

In een eerste fase werd de overdracht van een multiresistent plasmide naar voedselpathogenen 

geanalyseerd (Hoofdstuk 2). Het plasmide, pB10, oorspronkelijk geïsoleerd uit een 

afvalwaterzuiveringsinstallatie, bevat resistentiegenen tegen de antibiotica streptomycine, 

amoxicilline, tetracycline en sulfonamides. Als donor werd er gebruikt gemaakt van een 

Pseudomonas putida stam. P. putida is een typische bewoner van water en bodem, maar kan 

ook betrokken zijn bij voedselbederf. Als acceptor werd er gekozen voor een selectie van 

Salmonella en Escherichia coli O157:H7 stammen, beide beruchte voedselpathogenen. 

Conjugatie werd geanalyseerd d.m.v. uitplatingen en flow cytometrie. Voor 14 van de 15 

geteste stammen werden er transconjuganten gedetecteerd. De transfer ratio, zijnde de 

verhouding van het aantal transconjuganten t.o.v. het totale celaantal, bleek afhankelijk te zijn 

van de acceptor stam en kon oplopen tot een grootteorde van 10-2, m.a.w. 1 op 100 bacteriën 

verkregen het plasmide. Aan de hand van antibioticumgevoeligheidsprofielen van de 

acceptoren en de transconjuganten kon bevestigd worden dat de bacteriën na het verkrijgen 

van het plasmide resistentie vertoonden tegen bovenvermelde antibiotica.  
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Integrons zijn genetische elementen die vaak geassocieerd zijn met plasmiden. Ze zijn een 

mooi voorbeeld van de fascinerende wijze waarop bacteriën antibioticumresistentie kunnen 

verwerven en verder verspreiden. In Hoofdstuk 3 werd een Belgische collectie van 

Shiga-toxine producerende E. coli (STEC) gescreend op de aanwezigheid van integrons. 

STEC wordt beschouwd als de belangrijkste groep van opkomende voedselgebonden 

pathogenen. Integrons werden teruggevonden in 7.5% van de geanalyseerde stammen, 

allemaal van humane oorsprong. Ze behoorden allemaal tot klasse 1 integrons. Deze klasse is 

de meest voorkomende in Gram-negatieve bacteriën. Verdere karakterisering toonde aan dat 

de gedetecteerde integrons antibioticumresistentiegenen bevatten tegen twee types van 

antibiotica, namelijk tegen streptomycine/spectinomycine en tegen trimethoprim. Dit zou 

goed nieuws kunnen zijn, maar analyse van de antibioticumgevoeligheidsprofielen toonde aan 

dat 91.3% van de integron-positieve stammen resistentie vertoonde tegen minstens drie 

verschillende antibiotica. Van de integron-negatieve stammen daarentegen waren er 77.0% 

gevoelig voor al de geteste antibiotica.  

 

In de voedingsindustrie kunnen biofilms een persisterende bron van contaminatie vormen, 

welke kan bijdragen aan voedselbederf, schade aan de apparatuur en een risico kan vormen 

voor de volksgezondheid indien pathogene bacteriën betrokken zijn. Bovendien worden deze 

structuren beschouwd als hotspots voor plasmidetransfer, waardoor zij kunnen bijdragen aan 

de verspreiding van antibioticumresistentie. In Hoofdstuk 4 werd de transfer van het 

multiresistent plasmide, pB10, nagegaan in biofilm modellen, representatief voor biofilms uit 

de voedingsindustrie. Hiervoor werd er gebruik gemaakt van twee verschillende 

vloeistofstroomconfiguraties (continu en druppelsgewijs) en drie aanhechtingsmaterialen 

(siliconen, glas en roestvrij staal). Net zoals in Hoofdstuk 2, werd er gewerkt met P. putida als 

donor en E. coli als acceptor. Als inoculatiestrategie werd er gekozen om eerst een biofilm te 

vormen met één van de twee bacteriesoorten en dan pas de tweede er op aan te brengen. Zo 

werd plasmidetransfer bestudeerd door middel van enerzijds een biofilm met plasmide 

donerende capaciteit en anderzijds een biofilm met plasmide ontvangende capaciteit.  

Hoge transfer ratio’s (aantal transconjuganten t.o.v. het totale celaantal) werden bekomen, die 

konden oplopen tot de grootteorde 10-1.  

 

Om voedsel gedurende voldoende tijd te kunnen bewaren wordt er gebruik gemaakt van 

bewaringstechnieken, die ervoor zorgen dat de bacteriën aanwezig op de voeding niet kunnen 

uitgroeien. Twee dergelijke technieken zijn lage temperatuur en het verpakken van 
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voedingsmiddelen onder gemodificeerde atmosfeer. In Hoofdstuk 5 werd het effect van deze 

twee technieken op plasmidetransfer in een Gram-positief model bestudeerd. Als donor werd 

er gebruik gemaakt van Lactobacillus sakei subsp. sakei, een typische Gram-positieve 

bederver, en als acceptor werd Listeria monocytogenes, een Gram-positieve psychrotrofe 

pathogeen, gebruikt. Beide soorten kunnen aangetroffen worden op kant-en-klare 

levensmiddelen, verpakt onder gemodificeerde atmosfeer (MAP). Wat temperatuur betreft, 

werd er plasmidetransfer geobserveerd in een range tussen 10 °C en 37 °C. De ondergrens 

kon echter wel verlaagd worden door de incubatieperiode te verlengen. Om het effect van 

gemodificeerde atmosfeer na te gaan werden er drie gassamenstellingen (lucht, 50% CO2/50% 

N2 en 100% N2) toegepast. Wanneer er hoge startdensiteiten werden aangewend, werd 

plasmidetransfer onder elke conditie waargenomen. Dit zowel in vitro, op agarplaten, als in 

situ, op sneetjes gekookte ham. Om tot een realistischere situatie te komen, werd 

plasmidetransfer ook geanalyseerd op gekookte ham met lage startdensiteiten. Hierbij werd er 

enkel transfer waargenomen bij de 100% N2 conditie na tien dagen incubatie. Onder deze 

conditie werd de hoogste bacteriële densiteit bekomen. Bij de MAP experimenten lag de 

transfer ratio, uitgedrukt als de verhouding transconjuganten t.o.v. het aantal acceptoren, 

steeds in de grootteorde 10-4 – 10-6. Hierbij dient er wel opgemerkt te worden dat transfer 

enkel werd waargenomen bij donor en acceptor densiteiten die de voedselveiligheidscriteria 

of -richtlijnen overschrijden. Indien men dus deze criteria/richtlijnen kan waarborgen, lijkt de 

bijdrage aan de verspreiding van antibioticumresistentie minimaal. 

 

Het onderzoek uitgevoerd in dit doctoraat belichtte een klein aspect van de factoren betrokken 

bij de problematiek van de verspreiding van antibioticumresistentie. Niettemin werden er een 

aantal belangrijke bevindingen gedaan. Eerst en vooral werd er aangetoond dat de omgeving 

en de voeding geen strikt afgebakende niches zijn, maar dat deze ongetwijfeld kunnen 

interageren met elkaar. Ten tweede blijkt het toch van belang om integrons verder op te 

volgen, gezien zij vaak geassocieerd zijn met mobiele genetische elementen die bijkomende 

antibioticumresistentiegenen kunnen dragen. Verder werd duidelijk dat biofilms niet enkel 

een bron van contaminatie zijn in de voedingsindustrie, maar dat men ook op de hoede moet 

zijn voor het risico op verspreiding van antibioticumresistentie via plasmidetransfer in 

biofilms. Ten slotte bleken twee veel gebruikte bewaringstechnieken aangewend ter 

voorkoming van bacteriële groei in de voedingsindustrie, niet noodzakelijkerwijs 

plasmidetransfer te verhinderen. 
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Verder onderzoek met andere modelsystemen is echter noodzakelijk om onze kennis 

betreffende de rol die de voedselproductie en -bewaring speelt in de verspreiding van 

antibioticumresistentie te verruimen. 
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