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Samenvatting
– Summary in Dutch –

Omwille van de recente vooruitgang op technologisch vlak is het analyzeren van
vele technische systemen zeer complex geworden. De conventionele benadering
waarbij men prototypes bouwt en metingen uitvoert leidt tot een traag en duur ont-
werpproces. Dit spoort de onderzoekers en technische specialisten in Computer
Aided Design ( CAD ) aan om elektromagnetische simulatoren te ontwikkelen
die het gedrag van systemen nauwkeurig modelleren. Hierdoor kan het bouwen
van dure prototypes voorkomen worden, waardoor men tijd en kosten bespaart.
Dergelijke simulatiegedreven benaderingen zijn tegenwoordig heel populair en
veel probleemspecifieke CAD-tools zijn al ontwikkeld.

Hoewel CAD tools zeer nauwkeurig zijn, is het bouwen van de aangemaakte
modellen vaak duur in termen van de computer rekentijd. Veelvuldige simulaties
zijn vaak vereist, aangezien deze CAD modellen gebruikt worden tijdens het ont-
werpproces van complexe technische systemen. De resulterende simulaties kun-
nen gebruikt worden voor verschillende ontwerpactiviteiten zoals het verkennen
van de parameterruimte, gevoeligheidsanalyse, variabiliteit en robuustheidsstu-
dies, enz. Simulaties met CAD-technieken zijn echter beperkt toepasbaar in de
praktijk omdat ze rekenintensief zijn en het totale ontwerpproces aanzienlijk ver-
tragen. Als alternatief kan men ook gedrags- of surrogaatmodellen bouwen op
basis van een beperkt aantal goedgekozen CAD simulaties, met als doel om deze
complexe modellen zo nauwkeurig mogelijk na te bootsen. Deze surrogaatmodel-
len moeten zeer efficiënt en goedkoop te evalueren zijn. Daardoor vereisen ze veel
minder rekenkracht dan het uitvoeren van directe simulaties met een CAD tool.

Surrogaatmodellen voor dure scalaire functies worden typisch berekend met
behulp van technieken zoals Artificiële Neurale Netwerken, Support Vector Ma-
chines, veelterminterpolatie, Kriging, enz. In dit proefschrift ligt de focus op
het geautomatiseerd berekenen van surrogaatmodellen voor rekenintensieve CAD
simulatoren. De algemene klasse van lineaire tijds-invariante (LTI) systemen wordt
gebruikt. De specifieke focus voor de toepassingen ligt op hoogfrequente elektro-
magnetische (EM) systemen. Surrogaatmodellen van hoogfrequente EM syste-
men moeten de frequentierespons efficiënt kunnen parameteriseren in functie van
de ontwerpparameters. Echter, het parametriseren van de meerpoort frequentiere-
spons van EM-systemen is veel uitdagender dan de parametrisatie van scalaire
functies en moet anders worden behandeld. In de werkwijze die men hier hanteert,
worden rationale modellen berekend voor goedgeselecteerde parameterwaarden



xviii SAMENVATTING

met behulp van een systeemidentificatieaanpak. De parameters van deze model-
len zijn naast de frequentie ook de ontwerpparameters. Het uiteindelijk model
van een willekeurige combinatie van parameters wordt bekomen door verschil-
lende interpolatieschema’s te gebruiken. Aldus wordt de frequentie als een “bij-
zondere”parameter beschouwd die geen deel uitmaakt van de ontwerpparameter-
ruimte. Deze benadering van modelleren heeft twee belangrijke voordelen: 1)
door de frequentierespons van LTI systemen te modelleren met rationale functies
wordt het gemakkelijker om fysische eigenschappen zoals stabiliteit en causaliteit
te handhaven, 2) door het scheiden van de frequentie en de parameters in de ont-
werpruimte wordt de complexiteit van het parametriseren van een EM systeem
significant verlaagd. Dergelijke surrogaat- of gedragsmodellen voor een meer-
poort frequentierespons worden in de literatuur ook geparametriseerde macromo-
dellen of schaalbare macromodellen genoemd. Omwille van uniformiteit wordt
de term geparametriseerd macromodel verder gebruikt doorheen dit proefschrift.
Dit proefschrift behandelt verschillende aspecten van een efficiënte en geautoma-
tiseerde modellering zoals het ramen van de modelcomplexiteit voor de frequen-
tieafhankelijke rationale functies, het kiezen van een geschikte strategie voor de
parametrisatie en een goede selectie van foutmaten om de nauwkeurigheid van de
berekende geparametriseerde macromodellen te valideren.

Daarnaast worden ook een aantal verbeteringen van bestaande geparameter-
iseerde macromodelingstechnieken besproken in dit proefschrift. Bovenop deze
automatisering kunnen de sequentiële bemonsteringsmethoden samen met de ge-
parameteriseerde macromodelingstechnieken parallel worden uitgevoerd en ook
uitgebreid worden naar andere technische gebieden die gerelateerd zijn aan het
gebruik van LTI systemen.

Dit proefschrift is als volgt opgebouwd:
Hoofdstuk 1 geeft een algemene introductie van het doctoraatswerk en een

bespreking van de context en de motivatie voor dit werk.
Een overzicht van de huidige state-of-the-art van geparametriseerde macro-

modelleringsmethoden wordt besproken in hoofdstuk 2. Ook een bespreking van
hun relatieve voordelen, hun beperkingen en hun geschiktheid om te worden uit-
gebreid met efficiënte sequentiële bemonsteringsschema’s wordt bestudeerd.

In hoofdstuk 3 wordt een state-of-the-art techniek voor geparameteriseerde
macromodellering, gebaseerd op interpolatie van de state-space matrices, veral-
gemeend om ook geparametriseerde gevoeligheidsanalyses te kunnen uitvoeren
met modellen. Deze modellen kunnen analytisch de gevoeligheid van het systeem
berekenen voor alle waarden van de ontwerpparameters zodat ze gebruikt kunnen
worden in gradiëntgebaseerde ontwerpoptimalisaties en gevoeligheidsanalyses.

Hoofdstuk 4 behandelt het automatiseren van de extractie van geparameter-
iseerde macromodellen. Dit kan beschouwd worden als de eerste stap van het
geparametriseerde macromodelingsproces. De bemonsteringsschema’s ontwikkeld
in hoofdstuk 4 zijn geschikt voor lokaal geparametriseerde macromodellen. Het
basisidee bestaat erin om de bemonstering van de ontwerpruimte lokaal te verfij-
nen. In hoofdstuk 4 worden twee verschillende grid-gebaseerde bemonsterings-
technieken ontwikkeld om de ontwerpruimte adaptief te bemonsteren.
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Hoofdstuk 5 bevat de toepassing van het geautomatiseerde geparametriseerde
macromodelingsproces met sequentiële bemonstering bij het ontwerp van een real-
life voorbeeld (microgolffilter) te versnellen. In dit hoofdstuk wordt het volledige
ontwerp van de filter besproken, gebruik makend van geparametriseerde macro-
modellen. Het hoofdstuk toont ook aan hoeveel ontwerpcycli bespaard worden
door een geparametriseerd macromodel te gebruiken in plaats van directe EM
simulaties uit te voeren tijdens een extensieve ontwerpoptimalisatie en een Monte-
Carlo gebaseerde variabiliteitsanalyse. De resultaten van de optimalisatie wor-
den uiteindelijk gecontroleerd met behulp van metingen die uitgevoerd worden
op de verwezenlijking van verschillende optimale filterconfiguraties. Bovendien
stelt hoofdstuk 5 ook een verbeterde geparameteriseerde macromodelingsstrate-
gie voor. Hierbij worden verschillende frequentieschalingcoëfficiënten gebruikt
om het berekenen van de overdrachtsfunctie van geparametriseerde frequentiere-
sponsies te verbeteren. In hoofdstuk 6 wordt de sequentiële manier van bemon-
steren uit hoofdstuk 4 uitgebreid naar verspreide roosters met behulp van een goed
geconditioneerde simplex verfijning, genaamd pad-simplex verdeling. Hoofdstuk
7 geeft een slotbeschouwing over het proefschrift en enkele overpeinzingen van
de belangrijkste bijdragen, alsook de mogelijke uitbreidingen en toekomstige on-
derzoekslijnen. Tenslotte wordt in Appendix A een algoritme voor de sequentiële
bemonsteringsschema’s in detail uitgewerkt als hulp voor de lezer.





Summary

With recent advancements in technology, the analysis of many engineering prob-
lems has become very complex. The conventional approach of generating proto-
types and performing measurements in the overall design process became slow and
very expensive. This motivated the researchers and the engineering specialists to
develop Computer Aided Design (CAD) tools such as electromagnetic simulators,
which model the behavior of systems accurately such that expensive prototyping
can be avoided while saving time and cost. Such simulation-driven approaches are
very popular nowadays and many problem specific CAD tools have been devel-
oped.

Even though, such CAD tools are very accurate, the models generated using
these tools are often very expensive in terms of the computational resources. Since,
ultimately these CAD tools are used in the design process of complex engineer-
ing systems, multiple simulations is necessary. The resulting simulations can then
be used in several design activities such as design space exploration, sensitivity
analysis, variability and robustness studies, etc. However, as the CAD tool sim-
ulations are computationally very expensive, the overall design process might be
considerably slow, limiting their applicability in practice. An alternative is to build
behavioral or surrogate models using a limited number of judiciously chosen CAD
simulations to mimic these complex models as accurate as possible. These surro-
gate models must be very efficient and cheap to evaluate and hence can be used in
the design process with much reduced computational expenses in comparison with
direct CAD tool simulations.

Conventionally, building surrogate models for expensive scalar functions is
tackled with the help of tools such as Artificial Neural Networks, Support Vec-
tor Machines, Polynomial Interpolation, Kriging, Response Surface Methodology,
etc. In this PhD thesis, the focus is towards automated generation of surrogate
models for expensive CAD simulators. The general class of Linear Time In-
variant (LTI) systems are modeled, with specific focus towards high-frequency
electromagnetic (EM) systems. Such surrogate models should be able to effi-
ciently parameterize system frequency responses as a function of design param-
eters. However, parameterizing multiport frequency responses of EM systems are
much more challenging than parameterizing scalar functions and must be treated
differently. Here, the methods generate frequency-dependent rational models for
the selected samples using a system identification technique and then parameterize
these rational models with respect to the design parameters using several interpo-
lation schemes. Thus, frequency is considered as a “special” parameter and it is
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not considered as the part of the the design parameter space. This approach to
modeling has two main advantages: firstly, by modeling the frequency responses
of LTI systems as rational function with respect to frequency, it is easier to pre-
serve physical properties such as stability and causality; secondly, by separating
the frequency parameter from the design parameter space, the complexity in pa-
rameterizing the EM system with respect to the design parameters is significantly
reduced. Such surrogate or behavior models for multiport frequency responses are
referred to as parametric macromodels or scalable macromodels in the literature.
For uniformity, the terminology parametric macromodel has been used throughout
this PhD thesis. This PhD thesis discusses different aspects of a fully automated
parametric macromodeling technique, such as estimating the system order for the
frequency-dependent rational functions, choosing an appropriate parameterization
strategy, and proper error criteria for assessing the accuracy of the generated para-
metric macromodels. Additionally, some enhancements to the existing parametric
macromodeling techniques are also discussed in this PhD thesis. In addition to
being fully automated, the sequential sampling methods along with the parametric
macromodeling schemes can be parallelized and also extended to other engineer-
ing fields which work in the framework of general LTI systems.

This PhD thesis is organized as follows: Chapter 1 gives a general introduc-
tion of the PhD work discussing the context as well as the motivation for this work.
An overview of the existing state-of-the-art parametric macromodeling methods is
given in Chapter 2 with a discussion on their relative merits and limitations and
more importantly their suitability to be combined with efficient sequential sam-
pling schemes for automation. In Chapter 3, an extension of the state-of-the-art
parametric macromodeling method based on interpolation of state-space matri-
ces is performed to generate parametric sensitivity macromodels. These para-
metric sensitivity macromodels can generate analytic sensitivities or gradients of
the system responses with respect to the design parameters which can be used in
gradient-based design optimizations and sensitivity analysis. Chapter 4 is con-
cerned with bringing automation into the state-of-the-art parametric macromodel-
ing techniques. This chapter can be considered as the first step towards the automa-
tion of parametric macromodeling process. The sampling schemes developed in
Chapter 4 is tailored towards the local parametric macromodeling schemes which
refine the design space using local regions. In Chapter 4, two different grid-based
sampling schemes have been developed to sample the design space adaptively.
Chapter 5 is application oriented wherein the automated parametric macromod-
eling process with sequential sampling is used to speed-up the design cycle of a
real-life example of a microwave filter. In this chapter, the complete design flow of
the filter is described which is assisted with the help of parametric macromodels,
thereby gaining insight into the design with very little computational cost. The
chapter also shows the amount of design cycle time gained by using a parametric
macromodel instead of direct EM simulations in a robust global design optimiza-
tion and a Monte-Carlo based variability analysis. The results of the optimization
are finally verified with the help of measurements on realization of different opti-
mal filter configurations. Additionally, Chapter 5 also proposes an enhanced para-
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metric macromodeling strategy which uses multiple frequency scaling coefficients
for parameterizing the frequency response transfer function to further improve the
modeling capability. In Chapter 6, the sequential sampling method of Chapter
4 is extended to deal with scattered grids using a well-conditioned simplicial re-
finement called path-simplex division. Chapter 7 gives concluding remarks on
the PhD thesis work with some discussion on the major contribution of this work
along with possible extensions and future directions. Finally, in Appendix A, an
algorithm description of the sequential sampling schemes developed during this
work is given to help the reader in its implementation.





1
Introduction

The Design and the development cycle for complex engineering problems are con-
ventionally tackled with the help of carefully planned experiments. These experi-
ments however used to require the realization and the measurement of actual sys-
tems which can be very expensive and time consuming. To overcome these diffi-
culties, scientists and engineers around the world have developed Computer Aided
Design (CAD) tools (for example, electromagnetic (EM) simulators), which math-
ematically model the behavior of the actual systems as accurate as possible based
on first principles. By using these CAD tools the overall cost of the design and de-
velopment cycle can reduce considerably by minimizing the resources and requires
a minimal number of expensive prototyping. Unfortunately, these accurate simu-
lation tools also have certain disadvantages such as being computationally very
expensive. For a typical design cycle which includes design space exploration, de-
sign optimization, robustness analysis and variability assessment, multiple CAD
simulations are required, hence the computational expense can be considerable. In
some cases, it may not be acceptable in practice.

Building efficient and accurate replacement models for the computationally
expensive CAD tools allows to significantly improve the design process. This has
been investigated in many engineering fields and a large number of general mod-
eling tools have been developed over the recent years. With the help of judiciously
chosen samples from the expensive CAD simulator, accurate replacement models
are built which are computationally very efficient and thus used in the design flow
to further reduce the computational complexity and consequently the design cycle
time. Throughout this PhD thesis such models which act as an efficient surrogate
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Figure 1.1: Role of efficient parametric macromodeling in the overall design process.

for the complex CAD tool are called as parametric macromodels. Fig. 1.1 shows
the role of an efficient parametric macromodeling process in the overall design
cycle. As explained before, the parametric macromodels are replacement models
used to avoid the repetitive use of simulation tools as much as possible. This helps
reduce the computational burden on the designer. The time required for each sim-
ulation or measurement needed to perform design activities is at least an order of
magnitude lower for the parametric macromodel. It is represented by several thin
arrows in Fig. 1.1.

Many engineering fields such as electrical engineering, mechanical engineer-
ing, chemical engineering, signal processing, etc., use the widely studied Linear
Time Invariant (LTI) systems as a cornerstone for design activities. In this PhD the-
sis, the effort was focussed to investigate parametric macromodeling of complex
high-frequency EM systems. The work develops efficient strategies to build accu-
rate parametric macromodels which characterize the system frequency response of
the system under test in the form of Scattering (S), Admittance (Y), or Impedance
(Z) parameters. The EM systems are modeled both as a function of the frequency
and several other design parameters, such as geometric parameters or substrate
features for example.

The parameterization of system frequency responses of multiport systems should
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Figure 1.2: (a) Scalar function parameterization versus (b) frequency response
parameterization.

be clearly distinguished from the parameterization of scalar functions. Fig. 1.2
clarifies the difference between the two different approaches. Building paramet-
ric macromodels for real scalar functions can be done using a large set of well-
known tools such as Response Surface Methodology (RSM), Artificial Neural
Networks (ANN), Support Vector Machines (SVM), Kriging, Polynomial inter-
polation schemes, etc. [1]. However, using such methods to build parameterized
system frequency responses can be quite challenging due to the following facts:

1. The frequency responses are complex functions with a real part and an imag-
inary part. Modeling the real part and the imaginary part separately does not
guarantee preservation of the causality of the system in the model repre-
sentation. The real part and the imaginary part of the analytic frequency
response function are related by the Kramers-Kronig relations [2].

2. It is difficult to ensure other physical properties such as stability and pas-
sivity using these modeling frameworks. This limits their applicability to
time-domain analysis where passivity and stability are mandatory to obtain
a simulated response such as transient or circuit simulations (for example by
using SPICE [3]).

3. Throughout this PhD thesis we deal with parametric macromodels of multi-
port systems. They model the matrix-valued frequency response functions,
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and further increase the modeling complexity.

Keeping in mind the above mentioned problems, the choice was made to di-
rectly parameterize the frequency-dependent rational functions with respect to all
the parameters except frequency over the complete design space. Remember that
this space is spanned by all the design parameters except frequency. This means
that the frequency is kept as a “special” parameter and the system frequency re-
sponses are parameterized with respect to frequency as rational forms with the help
of a system identification method. In this PhD thesis, the frequency-dependent ra-
tional models are referred to as root macromodels. In the next step, these root
macromodels are parameterized with respect to the design parameters using some
carefully crafted interpolation schemes. The methods developed here are more
generally applicable and the formulations can be extended to other engineering
areas which can be analyzed using framework of LTI systems.

In the literature, a considerable amount of work has been done regarding the
parametric macromodeling of the frequency response of EM systems. Almost all
of these methods fall into two main categories, global and local parametric macro-
modeling methods. Global modeling schemes build a single model for the com-
plete design space which includes frequency as well [4–10]. Multi-dimensional
Cauchy methods are one of the popular global modeling schemes for parametric
macromodeling of system frequency responses [5–7, 10]. An adaptive multivariate
rational fitting is reported in [7] which uses Tchebyshev orthogonal polynomials to
improve the conditioning of the matrices to be solved. Neural network and radial
basis function-based methods are also found in the literature [8, 9] which are also
global modeling schemes. However, such global modeling schemes [4–10] suffer
from the following limitations:

1. For these methods, it is difficult to preserve physical properties such as sta-
bility and passivity of the generated macromodels over the design space of
interest.

2. For relatively high dimensions the memory requirement can be prohibitively
high limiting their applicability. Dimensionality reduction techniques such
as [11] could help improve this scenario to a certain extend.

3. It is also difficult to automate these modeling schemes in a robust way.

Local parametric macromodeling schemes distinguish themselves from the
global modeling schemes in many ways. In contrast to the global modeling schemes,
the local schemes work on local regions of the design space even though they are
valid for the complete design space. It should be noted here that this definition
is not equivalent to other definitions of local and global schemes such as [12]
where they are defined as “locally” accurate or “globally” accurate models re-
spectively. Fig. 1.3 shows a two parameter design space region (which excludes
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Figure 1.3: Local parametric macromodeling on a two parameter design space

frequency) divided into different sections in case of a local parametric macromod-
eling method. Each of these subregions has its own local parametric macromodel
which is independent of the others. This makes preserving system properties such
as stability and passivity much easier. Also, since these models can be built se-
quentially (with different regions having different parametric macromodels), there
is simply no need for huge matrices to solve for the response of the parameters
at once as in the case of global modeling schemes. However, the local schemes
do have other limitations such as limited extrapolation capability, compactness in
terms of the modeling parameters and limited differentiation capability. Despite
these limitations, the Local parametric macromodeling methods [13–18], if used
properly, can tackle all the above stated problems associated with the global meth-
ods. Also, local schemes can be easily used in a automated modeling procedure as
it will be shown in this PhD thesis. The work done in this PhD thesis is focused to-
wards sequential sampling strategies for existing local parametric macromodeling
methods.

As discussed above, the local parametric macromodeling schemes are a very
efficient way of generating accurate parametric macromodels for system frequency
responses. To obtain high quality models, such methods assume a priori knowl-
edge on several modeling parameters such as the initial number of expensive EM
simulations needed to build the model, the distribution of these EM simulations
over the design space and the model order for the root macromodels. However,
this information is generally not available to the system designer. Hence, these
efficient methods can only become applicable in a design process, if automation
is provided to obtain the information. The majority of the work done in this PhD
thesis is motivated by the need of automation for such parametric macromodel-
ing methods which otherwise would remain unused despite their straightforward
possible use in an industrial context.

The selection of the amount and distribution of expensive EM simulations in
the design space are of great importance to an automated modeling strategy as
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these define the accuracy of the generated parametric macromodel. If the num-
ber of EM simulations is too low, it might lead to undersampling. This results
in an inaccurate parametric macromodel. On the contrary, if the number of EM
simulations performed is too high, leading to an oversampling, a large amount of
computational resources will be wasted, and this should be avoided at any cost.
Despite the importance of these selections, there is very little work done in the lit-
erature to automate these efficient modeling methods. This lack inspired the PhD
thesis.

The sequential sampling strategies are generally classified into three major
schemes:

Input-Based Methods: fill the design parameter space according to some
measure depending on the density of the selected samples [12, 19]. For
example, the sequential Design of Experiments (DoE) method falls into this
category.

Output-Based Methods: select the EM simulation samples in the design
space depending on the system frequency response [20, 21]. That is, the
raw system frequency responses are analyzed and some measure is gener-
ated (for example, say, the derivatives of the frequency responses) to know
where the new EM simulation has to be performed.

Model-Based Methods: depend on intermediate macromodels to select the
distribution of new samples as described in [5–9, 22]. Even though the
work done in [5–9, 22] treats global parametric macromodeling methods,
the model-based methods can easily be adapted to local parametric macro-
modeling methods too.

Since, efficient local parametric macromodeling schemes are already available,
the best way to go forward is to use them in the sequential sampling process. The
PhD thesis develops model-based sequential sampling strategies which are cou-
pled with local parametric macromodeling methods. Fig. 1.4 shows an example
of such sequential sampling strategies with local parametric macromodeling. Fig.
1.4 is the sequential sampling evolution that leads to Fig. 1.3 which is represented
in a tree-like fashion. It can be seen from Fig. 1.4 that these methods start with
the corner root macromodels and then divide the design space into subregions de-
pending on the used-imposed accuracy target. The user can define varying levels of
accuracy targets thereby generating variable accuracy or multiple fidelity models.

1.1 Research contributions
The PhD thesis investigates the use and develops different new property-preserving,
local parametric macromodeling schemes that can be used in a complete design
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Figure 1.4: Local parametric macromodeling with two parameter design space regions
(left) and the corresponding tree-based structure (right).
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procedure for EM systems. Specifically, the aim was to find an automated, robust,
parametric macromodeling tool which can help the designer to have an efficient
design cycle with very little a priori knowledge on selecting the number and the
distribution of EM simulation samples. This automated modeling tool can there-
fore be integrated in the design as a CAD tool. The goal is that with the push of a
button, an efficient and accurate parametric macromodel is generated. The gener-
ated model serves as a replacement model for the EM solver evaluation, speeding-
up the multiple evaluations in the design procedure. In addition, the macromodel
will also give an insight into the design which can be of tremendous use to the
designer.

In this PhD thesis, Chapter 2 gives a primer on the state-of-the-art property
preserving local parametric macromodeling strategies. Chapter 3 is an initial work
on the possibility of extension of the parametric macromodeling schemes to model
parameterized sensitivities. From Chapter 4 onwards this PhD thesis describes the
work on efficient parametric macromodel generation. A brief description of each
chapter is presented here with their contribution in the overall research as shown
in Fig. 1.5.

Chapter 2

Chapter 2 gives an introduction of the data-driven parametric macromodeling pro-
cess, such as the definition of the design parameter space, frequency-response
identification, different parameterization strategies etc. The chapter also discusses
the motivation for different choices on the error measures, and macromodeling
strategies that maximize the accuracy, flexibility, automation and efficiency of the
entire modeling process. The chapter concludes with the description of a complete
parametric macromodeling flow.

Chapter 3

This chapter extends the state-of-the-art local parametric macromodeling tech-
niques towards the generation of the parameterized output sensitivity responses
of multiport systems. First, the state-space models of the frequency response
data are identified at different design space points using a system identification
technique. Then, the sensitivities are calculated by parameterizing the state-space
models over the design parameters using continuously differentiable interpolation
schemes. Analytical examples are used to validate the parameterized sensitivities.
The models are then used in a microwave filter design context. The calculated sen-
sitivities are supplied to the gradient-based optimizers to improve the optimization
efficiency.
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Figure 1.5: Research contribution.
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Chapter 4

The state-of-the-art parametric macromodeling techniques are very efficient al-
ternatives to direct EM solver evaluations in the design process. However, their
applicability is questionable if these methods can not be automated. This chapter
investigates the use of sequential sampling strategies to make the overall modeling
effective by automating the complete modeling process.

The sampling methods discussed in this chapter use local refinements of the de-
sign parameter space separately in a tree-like fashion with independent branches
forming different refinement regions as shown in Fig. 1.4. Different sampling
schemes are described which refine the local N -dimensional hyperrectangular re-
gions of the design space. This implementation can thus be very easily used for
parallel processing. Also, the chapter investigates several error measures that can
be used to assess the accuracy of the generated macromodels as well as build-
ing multiple fidelity models (Fig. 1.4). Therefore, this chapter can be considered
as a first step towards the automation of several state-of-the-art local parametric
macromodeling techniques.

Chapter 5

The aim of this chapter is to validate the automated parametric macromodeling
methods developed in Chapter 4 by applying them to a complete modeling and
design flow for a real life, microwave filter application. The chapter also devel-
ops a new parametric macromodeling method which enhances upon a previously
proposed modeling scheme to further improve the macromodeling capability. A
detailed explanation is given on how the models are obtained and how they are
used in a design process. Multiple optimization scenarios are tackled here with the
parametric macromodel of the system. Also the parametric macromodel is used for
Monte-Carlo variability analysis on each of the obtained solutions, and is further
validated with measurements.

Chapter 6

This chapter investigates how the grid-based sampling schemes discussed in Chap-
ter 4 can be extended to simplicial refinements. That is, instead of refining the
N -dimensional hyperrectangular girds, the N -simplex regions are refined. The
refinement is kept local so as to keep all the advantages of the local paramet-
ric macromodeling discussed in Chapter 2. A well-conditioned simplicial refine-
ment known as path-simplex division [23] is investigated here. This method is in
contrast with the other refinement procedures, such as the well known Delaunay
refinement [24], since it a local refinement. This ensures the possibility of paral-
lelization, whereas with Delaunay refinement many neighboring simplicial regions
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change, thereby changing the overall model structure. This is explained in detail
in this chapter.

Also, this chapter compares the grid-based and path-simplex refinement schemes.
A hybrid sampling scheme which combines both the refinement strategies is also
discussed here to show, with the help of numerical examples, that an improvement
in sampling distribution and consequently modeling efficiency is indeed possible.
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1.2 Publications

The research results obtained during this PhD have been published in scientific
journals and presented at a series of international conferences. The following list
provides an overview of the publications during the PhD research.

1.2.1 Publications in international journals
(listed in the Science Citation Index 1 )

1. Krishnan Chemmangat, Francesco Ferranti, Luc Knockaert, and Tom
Dhaene. Parametric macromodeling for sensitivity responses from tab-
ulated data, IEEE Microwave and Wireless Components Letters, 21, no. 8
(2011): pp. 397-399.

2. Krishnan Chemmangat, Francesco Ferranti, Tom Dhaene, and Luc
Knockaert. Gradient-based optimization using parametric sensitivity
macromodels, International Journal of Numerical Modelling: Electronic
Networks, Devices and Fields, 25, no. 4 (2012): pp. 347-361.

3. Krishnan Chemmangat, Francesco Ferranti, Tom Dhaene, and Luc
Knockaert. Scalable models of microwave system responses using se-
quential sampling on unstructured grids, International Journal of Numer-
ical Modelling: Electronic Networks, Devices and Fields, 27, no. 1 (2014):
pp. 122-137.

4. Krishnan Chemmangat, Tom Dhaene, and Luc Knockaert. Scalable
Macromodeling of Microwave Systems Responses using Sequential
Sampling with Path-Simplexes, Electronics Letters , 45, no. 15 (2013):
pp. 950-952.

5. Krishnan Chemmangat, Tom Dhaene, and Luc Knockaert. Auto-
generation of Passive Scalable Macromodels for Microwave Com-
ponents using Scattered Sequential Sampling, International Journal
of Microwave and Wireless Technologies, Accepted, Online Available:
http://dx.doi.org/10.1017/S1759078714000038 (2014).

6. Krishnan Chemmangat, Francesco Ferranti, Tom Dhaene and Luc Knock-
aert. Parametric Macromodeling of Linear High-Frequency Systems
using Multiple Frequency Scaling and Sequential Sampling, Electronics
Letters, 50, no.6 (2014): pp. 475-476.

1The publications listed are recognized as ‘A1 publications’, according to the following definition
used by Ghent University: A1 publications are articles listed in the Science Citation Index, the Social
Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science, restricted
to contributions listed as article, review, letter, note or proceedings paper.
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7. Domenico Spina, Krishnan Chemmangat, Francesco Ferranti, Tom
Dhaene, Luc Knockaert and Flavio Canavero. A Comparative Study of
Polynomial Chaos and Stochastic Collocation Methods for Variability
Analysis of Multi-port Systems International Journal of Numerical Mod-
elling: Electronic Networks, Devices and Fields, Submitted (2014).

8. Mostafa Pakparvar, David Plets, Emmeric Tanghe, Dirk Deschrijver, Wei
Liu, Krishnan Chemmangat, Ingrid Moerman, Tom Dhaene, Luc Martens,
and Wout Joseph. A Cognitive QoS Management framework for
WLANs, Wireless Communications and Mobile Computing, Submitted
(2013).

1.2.2 Publications in book chapters

1. Krishnan Chemmangat, Francesco Ferranti, Luc Knockaert, and Tom Dhaene.
Parametric Sensitivity Macromodels for Gradient-Based Optimization,
Simulation-Driven Design Optimization and Modeling for Microwave Engi-
neering, Imperial College Press, pp. 247-270. 2013.

1.2.3 Publications in international conferences
(listed in the Science Citation Index 2 )

1. Krishnan Chemmangat, Francesco Ferranti, Luc Knockaert, and Tom Dhaene.
Sensitivity analysis using data-driven parametric macromodels, 15th
IEEE Workshop on Signal Propagation on Interconnects (SPI-2011), Naples,
Italy, pp. 111-114. IEEE, 2011.

2. Francesco Ferranti, Giulio Antonini, Krishnan Chemmangat, Luc Knock-
aert, and Tom Dhaene. Partial Element Equivalent Circuit models in the
solution of the electric field integral equation, International Conference
on Electromagnetics in Advanced Applications (ICEAA), 2012, Cape Town,
South Africa, pp. 329-332. IEEE, 2012.

3. Krishnan Chemmangat, Dirk Deschrijver, Ivo Couckuyt, Tom Dhaene,
and Luc Knockaert. Fast optimization of microwave filters using surrogate-
based optimization methods, International Conference on Electromagnet-
ics in Advanced Applications (ICEAA), 2012, Cape Town, South Africa, pp.
212-215. IEEE, 2012.

2The publications listed are recognized as ‘P1 publications’, according to the following definition
used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Ci-
tation Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of
the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings
paper, except for publications that are classified as A1.
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4. Krishnan Chemmangat, Francesco Ferranti, Tom Dhaene, and Luc Knock-
aert. Optimization of high-speed electromagnetic systems with accurate
parametric macromodels generated using sequential sampling of the
design space, International Conference on Electromagnetics in Advanced
Applications (ICEAA), 2012, Cape Town, South Africa , pp. 128-131. IEEE,
2012.

5. Francesco Ferranti, Krishnan Chemmangat, Tom Dhaene, and Luc Knock-
aert. Self-Constructing Compact Parametric Macromodels for Efficient
Electronic Design, IEEE 17th Workshop on Signal and Power Integrity
(SPI-2013), Paris, France, pp. 1-4. IEEE 2013.

6. Elizabeth R Samuel, Krishnan Chemmangat, Dirk Deschrijver, Tom Dhaene,
and Luc Knockaert. Model Order Reduction of Parameterized State-
Space Systems with Sequential Sampling, International Symposium on
Electromagnetic Compatibility (EMC Europe-2013), Brugges, Belgium, pp.
342-347. IEEE 2013.

1.2.4 Publications in other international conferences

1. Krishnan Chemmangat, Francesco Ferranti, Tom Dhaene, and Luc Knock-
aert. Tree-based sequential sampling algorithm for scalable macromod-
eling of high-speed systems, IEEE 16th Workshop on Signal and Power
Integrity (SPI-2012), Sorrento, Italy, pp. 49-56. IEEE, 2012.
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2
An Introduction to Parametric

Macromodeling of Linear Multiport
High-Frequency Systems

In this chapter, an introduction to the parametric macromodeling of passive high-
frequency systems is given. The main aim of this chapter is to give the context
of this PhD thesis and the motivation for this work by describing the state-of-the-
art local parametric macromodeling techniques and the need for the opportuni-
ties created by further improvement with automated sequential sampling schemes.
These techniques for building efficient models are discussed here with their corre-
sponding merits and limitations. The chapter also discusses how automation can
be introduced into the complete model building process. This serves as the source
of inspiration for the rest of this PhD thesis.

2.1 Introduction

Generating accurate and efficient parametric macromodels for the frequency re-
sponse of EM systems is an active field of research. In this chapter, different prop-
erty preserving parametric macromodeling methods are discussed briefly. They
consist of different steps such as the rational identification of the complex fre-
quency responses, the passivity preserving interpolation schemes for parameter-
izing these rational forms with respect to other design variables and selection of
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samples in the design space to build the accurate parametric macromodel. The
state-of-the-art of the local parametric macromodeling is discussed in this chapter
along with the limitations of such methods which are the driving points for the
work described in this PhD thesis. Finally, the complete automated and efficient
parametric macromodeling process which incorporates all the steps listed above is
briefly explained. This is later explained in the PhD thesis.

2.2 Rational identification of the system frequency
responses

The first and foremost step of the parametric macromodeling process is to iden-
tify frequency response functions parameterized as a rational model (also called
transfer functions) from known frequency response samples. Such rational models
should be able to preserve system properties such as stability and passivity. In the
case of a rational model, stability means that the poles of the rational form lie on
the left half of the Laplace plane. Passivity refers to the property that systems that
cannot generate more energy than they absorb through their electrical ports. In
this PhD thesis the well-known rational identification scheme called Vector Fitting
(VF) [1–3] is used. The method starts from a set of data samples given by,

(si, g⃗k),H(si, g⃗k), (2.1)

which depend on the complex frequency s = jω and several design parameters
g⃗ = (g(1), g(2), . . . , g(N)), such as layout features or substrate parameters. The
frequency response H(si, g⃗k) ∈ CNport×Nport is a matrix valued complex fre-
quency response with Nport number of ports. In (2.1), i = 1, 2, . . . , Ns are the
samples along the frequency axis and k = 1, . . . ,Ktot are the samples in the rest of
the design parameter space g⃗ which excludes frequency. From these data samples,
for every design space point g⃗k, frequency-dependent rational macromodels called
root macromodels are built using the VF technique [1–3]. Each root macromodel
Rg⃗k(s) has the following pole-residue rational form:

Rg⃗k(s) =

N
g⃗k
P∑

n=1

cg⃗kn

s− ag⃗kn
+ dg⃗k (2.2)

The parameters in the rational model (2.2), ag⃗kn ∈ C, cg⃗kn ∈ CNport×Nport and
dg⃗k ∈ CNport×Nport represent poles, residues and feed forward terms respectively
at the design point g⃗k = (g

(1)
k , g

(2)
k ..., g

(N)
k ). N g⃗k

P is the number of rational terms
in the pole-residue form of the root macromodel Rg⃗k(s). The problem of finding
the unknown coefficients in (2.2) is nonlinear, since the poles ag⃗kn appear in the
denominator and the residues appear in the nominator. VF solves this nonlinear
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problem by separating it into two linear problems following the lines of the proce-
dure described by Sanathanan and Koerner [4]. This is done by introducing a set
of starting poles bn and an unknown rational function σ(s) in a pole-residue form
such that: [

σ(s)Rg⃗k(s)
σ(s)

]
=

∑N
g⃗k
P

n=1
c
g⃗k
n

s−bn
+ dg⃗k∑N

g⃗k
P

n=1
c̃
g⃗k
n

s−bn
+ 1

 (2.3)

From (2.3) we have:

N
g⃗k
P∑

n=1

cg⃗kn
s− bn

+ dg⃗k =

N
g⃗k
P∑

n=1

c̃g⃗kn
s− bn

+ 1

Rg⃗k(s). (2.4)

It should be noted in (2.4) that the rational approximation for σ(s) as well as
σ(s)Rg⃗k(s) has the same number of poles. In the VF formulation this is achieved
since the zeros of the rational function σ(s) are equated to the poles of the original
function Rg⃗k(s).

As stated before, VF solves the nonlinear problem as a sequence of linear
problems in two stages. In the first stage, the unknowns cg⃗kn ∈ CNport×Nport ,
c̃g⃗kn ∈ CNport×Nport and dg⃗k ∈ CNport×Nport in (2.4) are found by solving an
over-determined linear least squares problem over several frequency samples si,
i = 1, 2, . . . , Ns as,

N
g⃗k
P∑

n=1

cg⃗kn
si − bn

+ dg⃗k =

N
g⃗k
P∑

n=1

c̃g⃗kn
si − bn

+ 1

Hg⃗k(si). (2.5)

Note that in (2.5), the rational form Rg⃗k(s) is replaced by the data sample Hg⃗k(si).
In the second stage, the starting poles bn are updated as the zeros of the current
estimate of the rational function σ(s). This new set of poles are calculated from
the old starting poles and the residues c̃g⃗kn of the σ(s) function. These two stages
are repeated iteratively until a convergence is observed [1].

The set of starting poles bn in case of smooth data sets are selected as real
poles either linearly or logarithmically placed over the frequency range. In case
of functions with distinct resonant peaks, complex-conjugate pole pairs with the
imaginary part distributed across the frequency range, are selected. Also, the real
part of each complex pole is selected such that they are significantly smaller (typ-
ically 1

100

th) in magnitude in comparison with the imaginary part. More details of
this procedure are described in [1].

If unstable poles are generated during an iteration (that is, the zeros of the
estimated σ(s) lies in the right half of the Laplace plane), a pole-flipping scheme is
used to enforce stability [1]. The passivity assessment is performed on the system
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Figure 2.1: Local parametric macromodeling region in 2 D design space.

by calculating the Hamiltonian matrix eigenvalues as described in [5, 6]. The
passivity enforcement is accomplished using the standard techniques [7, 8] which
remove the passivity violations by perturbation of the residue matrix eigenvalues.
Other passivity enforcement schemes which work directly on pole perturbation [9]
and residue matrix perturbation [10] of system state-space matrices also exists in
the literature which can be used. This initial step of the proposed method results in
a set of stable and passive root macromodels. The root macromodels in (2.2) can
also be represented in another well-known form called the state-space form given
as,

Rg⃗k(s) = Cg⃗k(sI−Ag⃗k)
−1Bg⃗k +Dg⃗k (2.6)

In (2.6), the matrices Ag⃗k ∈ RN
g⃗k
P Nport×N

g⃗k
P Nport , Bg⃗k ∈ RN

g⃗k
P Nport×Nport ,

Cg⃗k ∈ RNport×N
g⃗k
P Nport , and Dg⃗k ∈ RNport×Nport are the system state-space

matrices and I ∈ RN
g⃗k
P Nport×N

g⃗k
P Nport is the identity matrix.

In this text, the local parametric macromodeling schemes either perform in-
terpolation on the rational models given in (2.2) or on the state-space matrices of
(2.6). This will be explained in detail in the next section.

2.3 Overview of the local parametric macromodel-
ing methods

An overview of the state-of-the-art local parametric macromodeling schemes is
given in the following subsection. These parametric macromodeling frameworks
can be coupled with the sequential sampling schemes proposed in this PhD thesis
to have a robust modeling strategy. As stated before, the word “local” is used
to emphasize the fact that, in these methods, different parametric macromodels
are built for different regions of the design space even though they are “globally”
accurate over the complete design space of interest.

Fig. 2.1 shows two dimensional design space formulation with two design pa-
rameters g⃗ ∈ (g(1), g(2)) which can form either a rectangular (or regular grid) as in
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Fig. 2.1.a or a triangular (or scattered grid) region as in Fig. 2.1.b. The region with
index l is denoted as Ωl. The corner points which span these regions are frequency-
dependent LTI root macromodels which can be represented in a rational form (2.2)
or a state-space form (2.6). The design space Ω consists of a set of several such
regions Ω = {Ωl; l = 1, . . . , L}. Each region has a separate parametric macro-
model RΩl(s, g⃗). Note that in a general N -dimensional design space, a regular
grid will consist of several N -dimensional hyperrectangular regions. Each region
has 2N corner root macromodels. For scattered grids the design space is built-up
by N -simplexes with N + 1 corner root macromodels.

Fig. 2.2 shows the different local parametric macromodeling schemes. Table
2.1 gives a comparison of the local parametric macromodeling schemes shown in
Fig. 2.2 in terms of the measures listed below.

Model Compactness: refers to the model order of the resulting parametric
macromodel rational form which is given scores from low to high. A high
score on the compactness indicates an efficient parametric macromodeling
method.

Modeling power: refers to the ability of the parametric macromodeling
method to generate an accurate model with a minimum number of EM sim-
ulations. This is measured in terms of the number of model parameters (for
example, residues of the rational form) being interpolated over the design
parameter space. A high score on modeling power means a good modeling
scheme. This means that, for a given number of model generation samples,
the one with the low score is less accurate in comparison with the one with
high score.

Passivity preservation: measure refers to the mathematical complexity for
ensuring that the generated models are passive. It is categorized into two
which are namely “cheap” and “expensive” and a detailed explanation is
given in the following subsections.

A brief description of each of the parametric macromodeling methods is given
below.

2.3.1 Interpolation of the system transfer functions

In these methods [11, 12], the root macromodels which are the frequency-dependent
rational functions, identified with the help of VF [1–3] are interpolated along the
design parameters using some special interpolation operators. In the case of Y or
Z-parameter representations, the use of interpolation techniques with positive in-
terpolation kernels are used. These positive interpolation kernel ensures that the
interpolation weights given to each root macromodel for the parameterization is
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Figure 2.2: Overview of different state-of-the-art local parametric macromodeling
techniques.

positive. For S-parameter representation, positive interpolation operator which is
also bounded is used. This special class of interpolation operators ensures that the
generated parametric macromodels are stable and passive over the design space of
interest if the root macromodels are stable and passive.

The method is quite robust but all the root macromodels of the local region are
interpolated and hence the compactness of the model reduces. This is due to the
fact that the total model order is the sum of the orders of the corner root macromod-
els. In case of the grid-based scheme where there are 2N corner root macromodels
it is less compact than a simplicial refinement scheme with N + 1 corners as seen
in Table 2.1. This gives a low and medium scores for grid-based and simplicial
refinement schemes respectively. Since this method is the direct interpolation of
the transfer functions, the modeling power of such methods might be limited with
respect to other schemes as only the residues and direct terms are parameterized.
It is relatively easy to ensure passivity property for the models generated using
positive/bounded interpolation schemes which are extremely cheap to evaluate.



Interpolation Model Compactness Modeling Power Passivity preservation
scheme Rational model Parameterization Interpolation

order (refer eq. (2.2), (2.6) & (2.8)) condition
Transfer Nmin

P ≤ nP ≤ 2NNmax
P (Grid) low cg⃗kn and dg⃗k low positive (Y, Z) cheap

function Nmin
P ≤ nP ≤ (N + 1)Nmax

P (Scat.) medium /bounded (S)
State-space Ag⃗k , Bg⃗k , Cg⃗k , and Dg⃗k high positive (Y, Z) expensive

matrix np = NP high /bounded (S)
+ LMI solution

single scaling Nmin
P ≤ nP ≤ 2NNmax

P (Grid) low cg⃗kn , dg⃗k , and [α1, α2] medium positive (Y, Z) cheap
coefficient Nmin

P ≤ nP ≤ (N + 1)Nmax
P (Scat.) medium (limited DOF) /bounded (S)

multiple scaling Nmin
P ≤ nP ≤ 2NNmax

P (Grid) low cg⃗kn , dg⃗k , and [α1, βn] medium - -
coefficients Nmin

P ≤ nP ≤ (N + 1)Nmax
P (Scat.) medium (multiple DOF) /high

Table 2.1: Comparison of several state-of-the-art local parametric macromodeling methods; in the table, DOF is the degrees of freedom. The
quantities Nmin

P = min
k

N
g⃗k
P and Nmax

P = max
k

N
g⃗k
P are the minimum and maximum orders of the corner root macromodel rational forms.
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2.3.2 Interpolation of the state-space matrices

The system state-space matrices of the obtained root macromodels (refer equation
(2.6)) can also be parameterized as in [13–17] instead of the system transfer func-
tions. The idea here is to first convert each root macromodels obtained in pole-
residue form (2.2) to a state-space form (2.6) and then parameterize them using
special interpolation schemes over the complete design space. Here, the state-
space matrices of the same order are interpolated and hence the model order is
kept same throughout the design parameter space. Thus the model is very compact
and is given a high score in Table 2.1. These methods allow to parameterize poles,
residues and direct terms indirectly by parameterizing the states-pace matrices,
hence their modeling capability is increased with respect to the previous meth-
ods [11, 12], where only residues and direct term are parameterized. So, they are
given a high score in their modeling power (see Table 2.1). The methods [13–17]
are ensured to be stable if positive interpolation operators are used. However, in
addition, the computationally expensive linear matrix inequalities (LMI) have to
be solved to guarantee preservation of passivity. In case of Y or Z-parameter rep-
resentation, the LMI for positive-real systems are solved, whereas the LMI for
bounded-real systems are solved for S-parameter representation [18].

It is a well known problem that, interpolating state-space matrices is not a very
robust parameterization method as there is no unique state-space realization for
rational models. So, interpolating these state-space models becomes difficult. Sev-
eral methods, such as barycentric [16] and Sylvester realizations [19] have been
suggested to have a smooth realization for the state-space matrices. The down-
side is that these smooth interpolation schemes are still an ongoing research area.
Other methods which first convert the rational models from a pole-residue form to
a fractional form with numerator and denominator polynomial and interpolating
these coefficients separately also exist [20]. This methods does not depend on a
specific state-space realization.

Another issue associated with state-space interpolation methods is the fact that
they assume that all the root macromodels have the same modeling order so that the
matrices can be interpolated. However, this assumption can lead to overfitting of
some of the root macromodels deteriorating the smoothness of the matrix elements.
If a local sequential sampling strategy is used, each of the local regions of the
design space (hyperrectangular or simplicial regions) would require that the corner
root macromodels have the same order. This means that for each local region, the
order has to be calculated in advance, hindering the automation process.
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2.3.3 Interpolation with amplitude and frequency scaling coef-
ficients

This method is a kind of hybridization of the two methods discussed above. The
interpolation is performed here on the transfer function models to have a robust
model. But to improve the modeling capability with respect to the simple trans-
fer function interpolation, two additional coefficients, namely an amplitude and a
frequency scaling coefficients are introduced [21, 22]. This ensures that the com-
plex behavior of the frequency response with respect to the design parameters is
better captured by indirectly parameterizing the poles of the systems. The behav-
ior of the poles is captured in the frequency scaling coefficient and not directly
interpolated as in the interpolation of state-space matrices ensuring a robust inter-
polation. For readability, a brief idea of this method is presented in this section.
More information on this macromodeling can be found in Chapter 4.

Starting from the root macromodels of (2.2), parametric macromodeling for
each and every design region Ω = {Ωl; l = 1, . . . , L} is done in the following
way. A two parameter description is presented here for clarity and ease of nota-
tion, even though the method is general for any dimension N of the design space.
The design space region Ωl is defined by four bounding corners g⃗ Ωl

1 = (g11 , g
1
2),

g⃗ Ωl
2 = (g21 , g

1
2), g⃗

Ωl
3 = (g11 , g

2
2), and g⃗ Ωl

4 = (g21 , g
2
2) as in Fig. 2.3. Each corner

possesses a different root macromodels RΩl(s, g⃗k), k = 1, . . . , 4. We will discuss
the interpolation of the root macromodels next. For simplicity and ease of notation
we omit the superscript Ωl. In [21, 22], one amplitude scaling and one frequency

Figure 2.3: A two dimensional design space with four root macromodels.

scaling coefficient (α1, α2) are calculated using the optimization

(α∗
1,km, α

∗
2,km) = argmin

(α1,km,α2,km)

[
Err(R̃m(s, g⃗k),H(s, g⃗m))

]
. (2.7)

In (2.7), R̃m(s, g⃗k) = α1,kmR(sα2,km, g⃗k), is the scaled response of R(s, g⃗k)

obtained to match H(s, g⃗m) and Err(·) is a suitable error measure between the
two responses [21, 22]. The evaluation of the model taken at a generic point g⃗q in
the design space (Fig. 2.3) is done similarly to [21, 22] as:

i For each root macromodel R(s, g⃗k), k = 1, . . . , 2N , the amplitude scaling
coefficient α1,km and frequency scaling coefficient α2,km are interpolated
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using a multilinear interpolation [23] over g⃗ at the point g⃗q to find α1,kq

and α2,kq . This results in the modified root macromodels, R̃q(s, g⃗k) =

α1,kqR(sα2,kq, g⃗k) at g⃗q ,

ii Then the models R̃q(s, g⃗k) are interpolated using the multilinear interpola-
tion [23] over g⃗ to get the final model R(s, g⃗q) at the point g⃗q .

This parametric macromodeling approach is performed for each region Ωl to cover
the complete design space.

In Table 2.1, this is given a medium score in its modeling power. Passivity is
preserved here with the help of positive/bounded interpolation scheme and putting
some constraints on the two scaling coefficients [21, 22] which is relatively cheap
to do in comparison with passivity preservation of state-space matrix interpolation.

The modeling power can be further enhanced by defining multiple frequency
scaling coefficients as it is proposed in Chapter 5, Section 5.1, to parameterize
the movement of different poles independently. Here, the calculated frequency
scaling coefficients α2,km are further refined and improved by defining a separate
frequency scaling coefficient βn,km for every term n in the rational model in a
pole-residue form (2.2). The modified R̃m(s, g⃗k) is given by:

R̃m(s, g⃗k) = α1,km

N
g⃗k
P∑

n=1

cg⃗kn

sβn,km − ag⃗kn
+ dg⃗k (2.8)

The optimal βn,km, n = 1, . . . , N g⃗k
P are found by performing an optimization step

similar to (2.7). The α∗
2,km obtained from (2.7) are used as an initial value for

all βn,km. For the complex-conjugate pole pairs (n1, n2) the coefficients satisfy
βn1,km = βn2,km to preserve the symmetry. This also reduces the number of
coefficients to be optimized. However, ensuring passivity can be a difficult task
for such models.

As in case of the interpolation of system transfer functions, these methods also
suffers from reduction in model compactness in terms of the model order (see
Table 2.1).

2.4 Automated and efficient parametric macromod-
eling

Fig. 2.4 illustrates a complete parametric macromodeling flow with the sequential
sampling strategy. The local parametric macromodeling method of Section 2.3.3
is selected as the most suitable candidate for an efficient sequential sampling since
it scores well in robustness as well as modeling power with moderate complexity.

As shown in Fig. 2.4, at first, the initialization of the parametric macromodel
starts in the definition of the design parameter space and performing some EM
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Figure 2.4: Complete flow of the automated parametric macromodeling.
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simulations on the corner points which defines the convex hull the design space.
Then, root macromodels are generated using rational frequency response identifi-
cation techniques as introduced before. The set of root macromodels are then inter-
polated using a local interpolation technique to generate local parametric macro-
models. Each of the local design space regions (as shown in Fig. 2.1) are validated
with EM validation samples. If they are not accurate enough, new EM samples are
generated, the local region is refined and the parametric macromodel is rebuilt for
the inaccurate regions. Each of these stages in the flowchart will be explained in
detail during the course of this PhD thesis.

2.5 Conclusisons
This chapter introduces the state-of-the-art of the local parameteric macromodel-
ing as applicable to passive high-frequency electrical systems. The context of this
PhD thesis and the motivation for the research work by describing the state-of-the-
art local parametric macromodeling techniques is given here. These techniques for
building efficient models are discussed here with their corresponding merits and
limitations. The chapter also discusses how automation can be introduced into the
complete model building process. This serves as the source of inspiration for the
rest of this PhD thesis.
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In this chapter, we extend the state-of-the-art parametric macromodeling tech-
nique which accurately describes the parameterized frequency behavior of elec-
tromagnetic systems to also model their corresponding parameterized sensitivity
responses with respect to the design parameters. The technique is based on the
interpolation of a set of state-space matrices with a proper choice of the inter-
polation scheme, so that parametric sensitivity macromodels can be computed.
These parametric macromodels, along with the corresponding parametric sensi-
tivity macromodels, can be used in a gradient-based design optimization process.

The numerical example section is divided into two parts. In the first part, two
analytical examples are used to check the accuracy of the generated parametric
sensitivity macromodels. In the second part, the parameterized sensitivity infor-
mation is used in an efficient and accurate gradient-based design optimization for
two numerical microwave filter examples.

3.1 Introduction

When designing high-speed microwave systems, one aims at obtaining the optimal
values of the design parameters for which the system responses satisfy the design
specifications. This process is usually carried out through electromagnetic (EM)
simulations. Optimal values of the design parameters are often determined using
optimization algorithms (optimizers) which drive the EM simulator to obtain the
responses and their sensitivities in consecutive optimization iteration. Unfortu-
nately, multiple consecutive EM simulations are often computationally expensive.
An alternative approach is to generate accurate parametric macromodels up first,
which capture the parameterized frequency behavior of the EM systems and their
corresponding parameterized sensitivity responses with respect to design param-
eters, such as layout and substrate parameters. Efficient and accurate paramet-
ric sensitivity information is required by optimizers which employ state-of-the-art
gradient-based techniques to calculate the optimal design parameters. Parametric
sensitivity macromodels are able to describe sensitivity responses not only in the
vicinity of a single operating point (local sensitivity), but over the entire design
space of interest.

One of the most common approaches to calculate local sensitivities is the ad-
joint variable method. The main attractiveness of this approach is that sensitivity
information can be obtained from at most two systems analyses regardless of the
number of designable parameters [1–3]. However, these methods involve the cal-
culation of the system matrix derivatives with respect to each design parameters,
which is mostly done by finite difference approximations.

Recently, some interpolation-based parametric macromodeling techniques have
been developed [4–9], which interpolate a set of initial univariate macromodels,
called root macromodels. In [4–6], a parametric macromodel is built by inter-



PARAMETRIC SENSITIVITY MACROMODELING 37

polating a set of root macromodels at an input-output level, while in [7–9] the
interpolation process is applied to the internal state-space matrices of the root
macromodels, therefore at a deeper level than in the transfer function-based in-
terpolation approaches [4–6]. The methods [7–9] allow to parameterize both poles
and residues, hence their modeling capability is increased with respect to [4–6],
where only residues are parameterized.

A parametric macromodeling method which apart from building an accurate
model of the responses but also calculate the response sensitivities with respect to
several design parameter is presented in this chapter. As in [7–9], an interpolation
process on the internal state-space matrices of the root macromodels is performed.
However, in [7–9], the focus is on parametric macromodeling which ensures stabil-
ity and passivity over the design space of interest. This is not strictly necessary for
the calculation of parametric sensitivities, which allows the use of more powerful
interpolation schemes which are at least continuously differentiable. The paramet-
ric sensitivity macromodels avoid the use of finite difference approximations in
the optimization process. Also, in [7–9] computationally expensive linear matrix
inequalities (LMI) are solved to guarantee preservation of passivity, which can be
avoided in the present work. The proposed parametric sensitivity macromodeling
method is first verified using two analytical examples so that a direct compari-
son of the sensitivity information is available. as a second part of the numerical
section, the parametric macromodels along with the corresponding parametric sen-
sitivities are used in two pertinent gradient-based design optimization examples of
microwave filters which confirm the applicability of the proposed technique. The
importance of parameterized sensitivity information to speed up the design opti-
mization process is shown in these examples.

3.2 Generation of root macromodels

Starting from a set of data samples {(si, g⃗k),H(si, g⃗k), i = 1, . . . , Ns, k =

1, . . . ,Ktot} which depend on the complex frequency s = jω and several design
parameters g⃗ = (g(1), g(2), . . . , g(N)), such as layout features or substrate param-
eters, a set of frequency-dependent rational macromodels is built for some design
space points by means of the Vector Fitting (VF) technique [10–12]. Each root
macromodel has the following form:

Rg⃗k(s) =

NP∑
n=1

cg⃗kn

s− ag⃗kn
+ dg⃗k (3.1)

The terms in the rational model (3.1), ag⃗kn , cg⃗kn and dg⃗k represent poles, residues
and feed forward terms respectively at the design point g⃗k = (g

(1)
k , ..., g

(N)
k ) as

explained before in Chapter 2. This initial step of the proposed method results
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Figure 3.1: Estimation and Validation grids for a general two parameter design space.

in a set of stable and passive frequency dependent rational models, called root
macromodels.

Two design space grids are used in the modeling process: an estimation grid
and a validation grid. The first grid is utilized to build the parametric macromod-
els. The second grid is utilized to assess the capability of parametric macromodels
of describing the system under study in a set of points of the design space previ-
ously not used for their construction. To clarify the use of these two design space
grids, we show in Fig. 3.1 a possible estimation and validation design space grid
in the case of two design parameters g⃗ = (g(1), g(2)). A root macromodel is built
for each estimation grid point in the design space. This set of root macromodels
is interpolated, as explained in the following section, to build a parametric macro-
model that is evaluated and compared with original data related to the validation
design space points.

3.3 Parametric macromodeling

Each root macromodel Rg⃗k(s), corresponding to a specific design space point
g⃗k = (g

(1)
k , ..., g

(N)
k ), is converted from the pole-residue form (3.1) into a state-

space form:

Rg⃗k(s) = Cg⃗k(sI−Ag⃗k)
−1Bg⃗k +Dg⃗k (3.2)
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Then, this set of state-space matrices Ag⃗k , Bg⃗k , Cg⃗k , Dg⃗k is interpolated entry-
by-entry and the multivariate models A(g⃗),B(g⃗),C(g⃗),D(g⃗) are built using mul-
tivariate interpolation schemes to generate a parametric macromodel R(s, g⃗) for
the entire design space [7, 8]:

R(s, g⃗) = C(g⃗)(sI−A(g⃗))−1B(g⃗) +D(g⃗). (3.3)

The computationally cheap piecewise linear interpolation can not be used to
generate parametric sensitivity macromodels, since it is not continuously differ-
entiable. A proper choice of interpolation schemes which are at least continu-
ously differentiable is necessary. In this work, three interpolation methods are
investigated, namely the cubic spline (CS) interpolation, the piecewise cubic Her-
mite interpolation (PCHIP) and the shape preserving C2 cubic spline interpolation
(SPC2). They are briefly described in what follows.

3.3.1 Cubic Spline Interpolation

Given some data samples (xi, yi)ni=1, the CS interpolation method builds a cubic
polynomial for each interval of the dataset xi ≤ x ≤ xi+1, i = 1, . . . , n.

si(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di (3.4)

The coefficients of the cubic polynomials are obtained by imposing the first and
second order derivative continuity at each data point along with a not-a-knot
end condition, and then solving a tridiagonal linear system [13]. Once these co-
efficients are computed, the derivatives of the overall spline interpolation func-
tion can be analytically calculated in terms of its coefficients ai, bi and ci for
xi ≤ x < xi+1, i = 1, 2, ..., n − 1. If the data under interpolation is in a ma-
trix form, each entry of the matrices is independently interpolated.

The univariate CS interpolation can be extended to higher dimensions by means
of a tensor product implementation [13].

3.3.2 Piecewise Cubic Hermite Interpolation

The PCHIP method is a monotonic shape preserving interpolation scheme. As in
the CS interpolation, each data interval is modeled by a cubic polynomial similar
to (3.4):

pi(x) = fiH1(x) + fi+1H2(x) + diH3(x) + di+1H4(x), (3.5)

where dj =
dp(xj)

dx , j = i, i + 1, and the Hk(x) are the usual cubic Hermite
basis functions for the interval xi ≤ x < xi+1, i = 1, 2, ..., n − 1 : H1(x) =

ϕ((xi+1 − x)/hi), H2(x) = ϕ((x − xi)/hi), H3(x) = −hiψ((xi+1 − x)/hi),
H4(x) = hiψ((x − xi)/hi), where hi = xi+1 − xi, ϕ(t) = 3t2 − 2t3, ψ(t) =
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t3 − t2. The first order derivative di at each data point xi is calculated such that
the local monotonicity is preserved [14]. An extension to higher dimension can
be performed by a tensor product implementation [13]. The calculation of deriva-
tives is done in the same way as in the CS interpolation case. This interpolation
scheme works better for non-smooth datasets, wherein the CS scheme could re-
sult in overshoots or oscillatory behavior of the derivatives. However, the PCHIP
method is only continuous in first derivatives, which affects the smoothness of the
derivatives [14].

3.3.3 Shape Preserving C2 Cubic Spline Interpolation

The SPC2 interpolation is a monotonicity preserving interpolation scheme similar
to PCHIP. However, in contrast to the PCHIP method which is only continuous in
first derivative, the SPC2 method is a second order derivative continuous interpo-
lation scheme. The idea here is to add two extra break points in each subinterval
of the data, such that enough degrees of freedom are generated to construct a cubic
spline interpolant, which is globally second order derivative continuous [15]. Since
the monotonicity of the data is preserved, this scheme works better with respect to
the CS method for non-smooth data sets. Similar to the CS and the PCHIP inter-
polation schemes, a multivariate SPC2 interpolation is performed using a tensor
product implementation [13].

3.4 Parametric Sensitivity Macromodels

Once the parametric macromodel R(s, g⃗) is built, the corresponding sensitivities
can be computed by differentiating (3.3) with respect to the design parameters g⃗

∂

∂g⃗
R(s, g⃗) =

∂C(g⃗)

∂g⃗
(sI−A(g⃗))−1B(g⃗) +C(g⃗)(sI−A(g⃗))−1 ∂A(g⃗)

∂g⃗
×

(sI−A(g⃗))−1B(g⃗) +C(g⃗)(sI−A(g⃗))−1 ∂B(g⃗)

∂g⃗
+
∂D(g⃗)

∂g⃗
(3.6)

In (3.6), ∂
∂g⃗R(s, g⃗) is based on the parameterized state-space matrices A(g⃗), B(g⃗),

C(g⃗), D(g⃗) and the corresponding derivatives, which are computed efficiently and
analytically using the interpolation methods described in Section 3.3.

3.5 Gradient-based Minimax Optimization

Parametric sensitivity macromodels can be used in the optimization process of
electromagnetic systems. Considering microwave filters, a typical optimization
process begins by defining passband and stopband specifications in terms of the
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frequency responses, which are reformulated in the form of a cost function Fi(g⃗),
at optimization frequency samples si, i = 1, 2, ..Ns to be minimized:

Fi(g⃗) = Ri
L −R(si, g⃗) or R(si, g⃗)−Ri

U, i = 1, 2, ..., NS . (3.7)

In (3.7), Ri
L and Ri

U represent lower and upper frequency response thresholds,
respectively, at frequency samples si spread over the frequency range of interest.
A negative cost indicates that the corresponding specification is satisfied, while a
positive cost denotes that the specification is violated. The minimization (3.7) can
be performed by several state-of-the-art optimization algorithms. In this chapter,
we use a minimax optimization algorithm [16] which uses the cost function (3.7)
and its gradients with respect to design parameter g⃗ giving the optimum design
parameters g⃗∗ as,

g⃗∗ = argmin
g⃗

{max
i

[Fi(g⃗)]} (3.8)

The complete optimization process starting from the proposed parametric macro-
modeling technique is depicted in Fig. 3.2.

3.6 Numerical Examples

3.6.1 Analytical examples
3.6.1.1 Coaxial cable

An open-ended coaxial cable is modeled with cross section shown in Fig. 3.3. The
relative permittivity ϵrel of the dielectric is chosen equal to 2.5. The impedance
matrix Z(s, a, L) of the model is calculated analytically [17] as a function of the
radius of the inner conductor a and the length L, in addition to frequency, on a
grid of 150 × 15 × 15 samples (freq, a, L). The corresponding ranges of these
parameters are shown in Table 3.1.

Parameter Min Max
Frequency (freq) 10 KHz 2 GHz
Inner radius (a) 2 mm 3 mm
Length (L) 100 mm 110 mm

Table 3.1: Coaxial cable: Design parameters

A set of stable and passive root macromodels has been built for 8 values of
a and 8 values of L using VF. The remaining data are used for validation. The
number of polesNP for each root macromodel is 18, selected using an error-based
bottom up approach (see Appendix A, section A.2 for more details). Each root
macromodel has been converted to state-space form and the state-space matrices
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Figure 3.2: Complete optimization process flowchart.
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Figure 3.3: Cross section of the coaxial cable.

have been interpolated by the CS and PCHIP interpolation methods. Next, the
parametric sensitivity of Z(s, a, L) with respect to a and L has been computed
by means of the derivatives (3.6) of the trivariate macromodel and the analytical
model computed from [17]. The accuracy of the model and its derivatives for the
two interpolation methods are measured in terms of the weighted rms-error defined
as:

ERMS(g⃗) =

√∑P 2

i=1

∑Ks

k=1 |wZi(s, g⃗)(Ri(sk, g⃗)− Zi(sk, g⃗))|2

P 2Ks
. (3.9)

In (3.9) P is the number of ports, Ks is the number of frequency samples and
wZi = |Zi(sk, g⃗)|−1 is the weighting function for the error. The worst case rms-
error over the validation grid is chosen to assess the accuracy and the quality of
the parametric sensitivity macromodels

EMax
RMS = max

g⃗
ERMS(g⃗), g⃗ ∈ validation grid (3.10)

The maximum weighted rms-error calculated from (3.10) for the model and
its sensitivities is tabulated in Table 3.2. Fig. 3.4 shows the magnitude of Z11

Method
Quantity CS PCHIP
Z(s, a, L) 0.0054 0.0054
∂Z(s,a,L)

∂a 0.0061 0.0325
∂Z(s,a,L)

∂L 0.0119 0.0194

Table 3.2: Coaxial cable: Modeling accuracy of the proposed method

as a function of frequency and a for L = 105 mm, while Fig. 3.5 shows the
magnitude of the corresponding parametric sensitivity ∂Z11

∂a obtained by the CS
scheme. Fig. 3.6 shows the magnitude of Z12 as a function of frequency and L for
a = 2.5mm, while Fig. 3.7 shows the magnitude of the corresponding parametric
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Figure 3.4: Coaxial cable: Magnitude of Z11 for L = 105 mm.
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Figure 3.6: Coaxial cable: Magnitude of Z12 for a = 2.5 mm.
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Figure 3.8: Coaxial cable: Magnitude of ∂Z11
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for a = 2.5 mm and L = 105 mm.
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Figure 3.9: Coaxial cable: Magnitude of ∂Z12
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for a = 2.5 mm and L = 105 mm.
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sensitivity ∂Z12

∂L obtained by the CS scheme. Fig. 3.8 compares the magnitude
of ∂Z11

∂a obtained by the analytical model, and the CS and PCHIP methods for
the values a = 2.5 mm and L = 105 mm, which have not been used for the
generation of the root macromodels. Fig. 3.9 shows the magnitude of ∂Z12

∂L for
the same values of a and L. A very good agreement between the methods can be
observed.

Fig. 3.10 shows the rms-error distribution of the parametric macromodel using
the CS interpolation scheme with respect to the analytical model of [17] over the
complete design space. Fig. 3.11 shows the rms-error distribution of the para-
metric sensitivity macromodel of ∂Z

∂L with respect to the analytical model. Similar
results were obtained for other cases in Table 3.2. We note that a good accuracy
is achieved by both interpolation methods, but the CS scheme leads to a lower
average error, probably due to the continuity of the second derivatives.

3.6.1.2 Microstrip

In this example, a microstrip with a length of 2 cm is modeled. Its cross section is
shown in Fig. 3.12. The relative permittivity of the substrate is equal to ϵr = 4.1.
A trivariate macromodel is built as a function of the width W of the strip and
the height h of the substrate in addition to frequency freq. Their corresponding
ranges are shown in Table 3.3.

Figure 3.12: Cross section of the microstrip.

Parameter Min Max
Frequency (freq) 1 GHz 5 GHz
Width (W ) 200 µm 300 µm
Height (h) 400 µm 500 µm

Table 3.3: Microstrip: Design parameters

The two-port open-circuit impedance parameter matrix Z(s,W, h) has been
computed by means of the analytical quasi-TEM model presented in [18] on a grid
of 150 × 15 × 15 samples (freq,W, h). The accuracy of the model R(s, g⃗) and
its derivatives with respect to the original analytical quasi-TEM model Z(s, g⃗) for
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the two interpolation methods is measured in terms of the relative error defined as:

Erel =

∣∣∣∣R(s, g⃗)− Z(s, g⃗)

Z(s, g⃗)

∣∣∣∣ ; g⃗ = (W,h) ∈ validation grid. (3.11)
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Figure 3.13: Microstrip: Magnitude of Z11 for h = 450 µm.

A set of stable and passive root macromodels has been built for 8 values of W
and 8 values of h using VF, and 14 poles were selected for the root macromodels
using an error-based bottom up approach. The remaining data are used for vali-
dation. Each root macromodel has been converted to a state-space form (3.2) and
the state-space matrices have been interpolated using the CS and PCHIP interpo-
lation methods. The maximum relative error (3.11) of the parametric macromodel
of Z(s,W, h) is −62.23 dB and −57.78 dB, respectively, using the CS and PCHIP
schemes. Then, the parametric sensitivities of Z(s,W, h) with respect to W and h
has been computed by means of the derivatives (3.6) of the trivariate macromodels
and the analytical quasi-TEM model. Figs. 3.13-3.14 are plotted to show the pa-
rameterization of the Z and ∂Z

∂W matrices. Fig. 3.13 shows the parametric behavior
of the magnitude of the (1, 1) entry of the Z(s,W, h) matrix (Z11) as a function
of frequency and W for h = 450 µm, while Fig. 3.14 shows the magnitude of the
corresponding parametric sensitivity ∂Z11

∂W obtained by the CS scheme. In order
to visualize the modeling capability of the proposed method, the Fig. 3.15 shows
sensitivity ∂Z11

∂W obtained by the analytical quasi-TEM model, the CS and PCHIP
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Figure 3.14: Microstrip: Magnitude of ∂Z11
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for h = 450 µm.
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Figure 3.16: Microstrip: Error distribution histogram for ∂Z
∂W

.

methods as a function of frequency for the values W = 250 µm and h = 450

µm, which have not been used for the generation of the root macromodels. A very
good agreement between the methods can be observed.

Fig. 3.16 shows the relative error distribution (3.11) of the parametric sensitiv-
ity macromodel ∂Z

∂W over the grid of 150× 15× 15 samples (freq,W, h). Similar
results are obtained for ∂Z

∂h . We note that a good accuracy is achieved by both
interpolation methods, but the CS scheme leads to a lower average error due to the
continuity of the second derivative. However, in cases where the interpolation is
performed on nonsmooth data sets, the CS scheme may result in oscillations of the
derivatives. In those cases, PCHIP will result in a better accuracy.

3.6.2 Gradient-based optimization of Microwave Filters

3.6.2.1 Double folded stub microwave filter

A Double Folded Stub (DFS) microwave filter on a substrate with relative permi-
tivity ϵr = 9.9 and a thickness of 0.127mm is modeled in this example. The lay-
out of this DFS filter is shown in Fig. 3.17. The spacing S between the stubs and
the length L of the stub are chosen as design parameters in addition to frequency.
Their corresponding ranges are shown in Table 3.4. The design specifications of
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this band-stop filter are given in terms of the scattering parameter, similarly to [19],

|S21| ≥ −3 dB for freq ≤ 9GHz or freq ≥ 17GHz (3.12a)

|S21| ≤ −30 dB for 12GHz ≤ freq ≤ 14GHz (3.12b)

From the design specifications (3.12), a cost function (3.7) is formulated in terms
of S21 and g⃗ = (S,L).

Figure 3.17: Layout of the DFS band-stop filter.

Parameter Min Max
Frequency (freq) 5 GHz 20 GHz
Spacing (S) 0.1 mm 0.25 mm
Length (L) 2.0 mm 3.0 mm

Table 3.4: DFS Filter: Design parameters

The scattering matrix S(s, S, L) has been computed using the ADS Momen-
tum1 software. The number of frequency samples were chosen to be equal to 31.
The estimation and validation grid points for the design parameters are shown in
Fig. 3.18. The average simulation time for each design space point (S,L) has
been found to be equal to, TSimAvg = 32.87 sec. A set of stable and passive root
macromodels has been built for all design space points in the estimation grid of
Fig. 3.18 by means of VF with a fixed number of poles NP = 18, selected using
an error-based bottom-up approach. Each root macromodel has been converted
into a state-space form and the set of state-space matrices has been interpolated
using the CS, PCHIP and SPC2 methods. Let us define the absolute error

Err(g⃗) = max
i,j,k

(∣∣∣(Ri,j(sk, g⃗)−Hi,j(sk, g⃗)
∣∣∣) (3.13)

i = 1, . . . , Pin, j = 1, . . . , Pout, k = 1, . . . , Ns

1Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Figure 3.18: DFS Filter: Estimation and Validation grids for the parametric
macromodeling.

where Pin and Pout are the number of inputs and outputs of the system, respec-
tively, and Ns is equal to the number of frequency samples. The worst case abso-
lute error over the validation grid is chosen to assess the accuracy and the quality
of parametric macromodels

g⃗max = argmax
g⃗

[Err(g⃗)] , g⃗ ∈ validation grid (3.14)

Errmax = Err(g⃗max) (3.15)

The maximum absolute error (3.15) for the parametric macromodel over the vali-
dation grid of Fig. 3.18 is −58.45 dB, −50.23 dB and −50.23 dB, respectively us-
ing the CS, PCHIP and SPC2 interpolation schemes. The CS interpolation scheme
gives the minimum worst-case error (3.15) for this specific example and hence it
has been used in the optimization process to generate the parametric macromodel
and corresponding sensitivities. Fig. 3.19 shows the parametric behavior of the
magnitude of S21 as a function of frequency for five different values of S, and
L = 2.5 mm. In Fig. 3.19, the darkest curve of S21 corresponds to the largest
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value of S. Similarly, Fig. 3.20 shows the magnitude of S21 for five different
values of L, with S = 0.175 mm.
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Figure 3.19: DFS filter: Magnitude of S21 as a function of frequency for five values of S
and L = 2.5 mm.

The cost function (3.7) and its gradients calculated using (3.6), have been sup-
plied to the minimax optimization algorithm (3.8), resulting in the optimum design
parameter values S∗ andL∗. To show the advantage of supplying parametric sensi-
tivity information to the optimizer to speed up the optimization process, two cases
have been considered:

• Case I: No sensitivity information is supplied to the minimax algorithm and
the algorithm estimates it with the help of finite difference approximation
computed using the parametric macromodel.

• Case II: The sensitivity information is calculated from (3.6) and supplied to
the minimax algorithm.

In addition to that, in order to show the advantage of using a parametric macro-
model, the same optimization problem has been performed using the gradient-
based minimax optimization routine in the ADS Momentum software. Table 3.5
compares these three optimization approaches in terms of optimization time for
a particular optimization case. Table 3.5 shows the relevant speed-up in the op-
timization process obtained using the parametric macromodel. We note that the
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Figure 3.20: DFS filter: Magnitude of S21 as a function of frequency for five values of L
and S = 0.175 mm.
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Figure 3.21: DFS filter: Magnitude of S21 before and after optimization.
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Figure 3.22: DFS filter: Magnitude of S21 before and after optimization.
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Figure 3.23: DFS filter: Cost function during optimization.
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Figure 3.24: DFS filter: The trajectory of the optimal design space point (S∗, L∗) during
optimization for the Case I.
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Figure 3.25: DFS filter: The trajectory of the optimal design space point (S∗, L∗) during
optimization for the Case II.
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method Parametric macromodel ADS Momentum
Case I Case II

(S0, L0) [mm] (0.1500, 2.6364) (0.1500, 2.6364) (0.1500, 2.6364)
(S∗, L∗) [mm] (0.2408, 2.1802) (0.2408, 2.1802) (0.2303, 2.1580)
Optimization

time [sec] 19.88 1.23 5115.00
Cost function at
(S∗, L∗) [dB]1 -1.67 -1.67 0.00

Table 3.5: DFS filter: Optimization using parametric macromodel and ADS Momentum
software.

generation of the parametric macromodel requires some initial ADS Momentum
simulations and therefore an initial computational effort of 3714.31 sec (for the es-
timation and validation design space points in Fig. 3.18). However, once the para-
metric macromodel is generated and validated, it acts as an accurate and efficient
surrogate of the original system and can be used for multiple design optimization
scenarios, for instance, changing filter specifications. Fig. 3.21 shows the magni-
tude of S21 for the optimization case of Table 3.5. The actual data generated by the
ADS Momentum software at the optimum design space point (S∗, L∗) obtained
using the parametric macromodel is shown by asterisks in Fig. 3.21. As seen, this
is in good agreement with the parametric macromodel response. Fig. 3.22 shows
the solution obtained using the gradient-based minimax optimization routine of
ADS Momentum software. As clearly seen in Figs. 3.21-3.22, the optimal solu-
tions satisfy all the requirements (3.12), which are shown by thin solid black lines.

Fig. 3.23 shows the value of cost function with respect to the number of cost
function evaluations in the Case I and II, which confirms the improved conver-
gence of the optimization when parametric sensitivity information are provided.
The convergence time taken by the Case I and II are 13.76 sec and 1.73 sec, re-
spectively. The trajectory of the optimum design space point (S∗, L∗) during op-
timization for the Case I is shown in Fig. 3.24 with different points showing the
output of some particular iterations along with the elapsed time. A similar curve is
plotted in Fig. 3.25 for the Case II. Comparing Figs. 3.24-3.25, it is seen that the
time for convergence of the Case II is considerably less compared with the Case I.

Table 3.6 shows the comparison of the Case I and II for some important opti-
mization measures which are related to 200 optimization trials, starting from dif-

1The Gradient-based minimax optimization routine of ADS Momentum software uses the minimax
L1 error function which cannot take a value less than zero.
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Method Number of cost function evaluations Optimization time [sec]
Max Mean STD Max Mean STD

Case I 20004 861.33 2360.10 135.30 6.05 16.31
Case II 1601 50.56 138.82 41.10 1.43 3.62

Table 3.6: DFS filter: Comparison between the Cases I and II.

ferent initial design points spread over the design space. Table 3.6 confirms that,
there is a considerable reduction in the number of cost function evaluations and
the optimization time if derivatives are supplied (Case II).

3.6.2.2 Hairpin bandpass microwave filter

In this example, a hairpin bandpass filter with the layout shown in Fig. 3.26 is
modeled [19] . The relative permittivity of the substrate is ϵr = 9.9, while its
thickness is equal to 0.635 mm. The specifications for the bandpass filter are
given in terms of the scattering parameters S21 and S11:

|S21| > −2.5 dB for 2.4GHz < freq < 2.5GHz (3.16a)

|S11| < −7 dB for 2.4GHz < freq < 2.5GHz (3.16b)

|S21| < −40 dB for freq < 1.7GHz (3.16c)

|S21| < −25 dB for 3.0GHz < freq. (3.16d)

Figure 3.26: Layout of the Hairpin Bandpass Filter.

As shown in Fig. 3.26, three design parameters have been chosen for the de-
sign process namely, the spacing between the port lines and the filter lines S1, the
spacing between the two filter lines S2 and the overlap length L in addition to
frequency. The ranges of the different design parameters are shown in Table 3.7.



60 CHAPTER 3

Parameter Min Max
Frequency (freq) 1.5 GHz 3.5 GHz
Length (L) 12.0 mm 12.5 mm
Spacing (S1) 0.27 mm 0.32 mm
Spacing (S2) 0.67 mm 0.72 mm

Table 3.7: Hairpin filter: Design parameters

The scattering matrix S(s, S, L) has been computed using the ADS Momen-
tum2 software. The number of frequency samples were chosen to be equal to
41. As in the first example, two design space grids are used in the modeling pro-
cess. The average simulation time for each design space point (L, S1, S2) has been
found to be equal to TSimAvg = 34.30 sec. A set of stable and passive root macro-
models has been built for the estimation grid of 6×4×4 (L×S1×S2) samples by
means of VF with a fixed number of poles,NP = 18, selected using an error-based
bottom-up approach. Each root macromodel has been converted into a state-space
form and the set of state-space matrices has been interpolated by the CS, PCHIP
and SPC2 methods. The maximum absolute error (3.15) of the models over the
validation grid of 5× 3× 3 (L×S1×S2) samples is equal to −42.57 dB, −38.27

dB and −38.27 dB for the CS, PCHIP and SPC2 methods, respectively. The CS
technique has been used in the optimization process of this example, since it gives
the best accuracy. Fig. 3.27 shows the parametric behavior of the magnitude of
S21 as a function of frequency for five different values of L and S1 = 0.295 mm,
S2 = 0.695 mm. Fig. 3.28 shows the magnitude of S21 when the parameter S1

changes.
The cost function (3.7) and its gradients calculated using (3.6), have been sup-

plied to the minimax optimization algorithm (3.8), resulting in the optimum design
parameter values L∗, S∗

1and S∗
2 . To show the improved convergence of the opti-

mization when derivatives are supplied, two cases are considered as in the previous
example. In addition to that, in order to show the advantage of using a paramet-
ric macromodel, the same optimization problem has been performed using the
gradient-based minimax optimization routine in the ADS Momentum software.
Table 3.8 compares these three optimization approaches in terms of optimization
time for a particular optimization case. Table 3.8 shows the relevant speed-up
in the optimization process obtained using the parametric macromodel. As men-
tioned in the previous example, the generation of the parametric macromodel re-
quires an initial ADS Momentum simulation cost of 4836.30 sec. However, once
the parametric macromodel is generated and validated, it acts as an accurate and

2Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Figure 3.27: Hairpin filter: Magnitude of S21 as a function of frequency for five values of
L with (S1, S2) = (0.295, 0.695) mm.
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Figure 3.28: Hairpin filter: Magnitude of S21 as a function of frequency for five values of
S1with (L, S2) = (12.25, 0.695) mm.
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Figure 3.29: Hairpin filter: Magnitude of S21 before and after optimization.

2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Frequency [GHz]

|S
  21

| [
dB

]

 

 

Before optimization
Solution: No derivatives supplied
Solution: Derivatives supplied
ADS data at the solution

Figure 3.30: Hairpin filter: A zoomed in view of Fig. 3.29.
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Figure 3.31: Hairpin filter: Magnitude of S11 before and after optimization.
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Figure 3.32: Hairpin filter: Magnitude of S21 before and after optimization.
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Figure 3.33: Hairpin filter: Magnitude of S11 before and after optimization.

efficient surrogate of the original system and can be used for multiple design op-
timization scenarios, for instance, changing filter specifications. Fig. 3.29 shows
the magnitude of S21 for the optimization case of Table. 3.8. The actual data
generated by the ADS Momentum software at the optimum design space point
(L∗, S∗

1 , S
∗
2 ) obtained using the parametric macromodel is shown by asterisks in

Fig. 3.29. As seen, this is in agreement with the parametric macromodel response.
The requirements (3.16) are shown by the thin black solid lines. A magnified view
of the passband is shown in Fig. 3.30 for clarity. Similar results are given for the
magnitude of S11 in Fig. 3.31. As clearly seen, all the requirements are met for
the optimal design point. Figs. 3.32-3.33 shows similar results for the solution ob-
tained using the gradient-based minimax optimization routine of ADS Momentum
software. Here also, all the design specifications (3.16) are met. Some important
measures of the optimization process related to 1000 trial runs are shown in Table
3.9, which clearly shows the better convergence properties of the Case II.

Another important thing to be noted here is that, with the increase in the num-
ber of design parameters, the initial number of EM simulations increases consid-
erably due to the curse of dimensionality. Adaptive sampling schemes, which take
into account influence of the design parameters on the system behavior, could be
used to properly sample the design space prior to the parametric macromodeling
and help resolve this issue. For instance, in the second example, from Figs. 3.27
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method Parametric macromodel ADS Momentum
Case I Case II

(L0, S0
1 , S

0
2) [mm] (12.2778, 0.2700, 12.2778, 0.2700, 12.2778, 0.2700,

0.6867) 0.6867) 0.6867)
(L∗, S∗

1 , S
∗
2 ) [mm] (12.0568, 0.2984, (12.0568, 0.2984, (12.0036, 0.2700,

0.7200) 0.7200) 0.6826)
Optimization

time [sec] 13.46 0.79 1251.00
Cost function at
(S∗, L∗) [dB]1 -0.76 -0.76 0.00

Table 3.8: Hairpin filter: Optimization using parametric macromodel and ADS Momentum
software.

Method Number of cost function evaluations Optimization time [sec]
Max Mean STD Max Mean STD

Case I 53183 114.39 1689.71 565.14 1.29 17.95
Case II 99 13.73 5.79 4.69 0.76 0.28

Table 3.9: Hairpin filter: Comparison between the Cases I and II.

and 3.28 it is seen that the overlap length L of the Hairpin Filter is more influ-
ential than the Spacing S1, which allows one to sample along S1 more sparsely
using a wise adaptive sampling scheme, thereby reducing the number of initial
EM simulations needed for the construction of parametric macromodels and the
corresponding computational effort.

3.7 Conclusions

Gradient-based design optimization of microwave systems using parametric sen-
sitivity macromodels has been presented in this chapter. Parameterized frequency-
domain data samples are used to build a set of root macromodels in a state-space
form. Then, this set of state-space matrices is parameterized using suitable inter-
polation schemes which are continuously differentiable. This allows to accurately
and efficiently calculate parametric sensitivities over the entire design space of
interest. First, two analytical examples are used to show the accuracy of this ap-
proach in calculating parameterized sensitivities. Then, parametric macromodels
and corresponding sensitivities are used for the gradient-based design optimiza-
tion in two proposed numerical examples, which confirm the applicability of the
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proposed technique to the optimization process of microwave filters. Also, the
importance of parameterized sensitivity information to speed up the design opti-
mization process has been shown in the examples.
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This chapter presents two sequential sampling algorithms for the macromodel-
ing of parameterized system responses in model-dependent sampling frameworks.
The construction of efficient algorithms for the automatic selection of samples for
building parametric macromodels of frequency-domain responses is addressed in
this chapter. The methods described here are the initial step towards the complete
automation of the parametric macromodeling process. The sequential sampling
algorithms proposed here are tailored towards the application of local paramet-
ric macromodeling schemes on unstructured design space grids. Two pertinent
examples are considered. For the first one, different algorithms are applied and
a comparison is made in terms of the number of samples generated, accuracy
and CPU time. As a second example, four design parameters are taken into ac-
count with one of the proposed algorithms and the generated model is used in a
frequency-domain optimization.

4.1 Introduction

Design space exploration, design optimization and sensitivity analysis of elec-
tromagnetic (EM) systems often require expensive simulations using EM solvers
which normally provide high accuracy at a significant cost in terms of memory
storage and computing time. The computational complexity of these EM solvers
often results in a design cycle that is costly in terms of execution time, which might
not be acceptable in practice.

An alternative is to develop accurate and efficient parametric macromodels
which approximate the complex behavior of EM systems, characterized by fre-
quency and additional design parameters, such as geometrical or substrate features.
Parametric macromodeling of EM systems has attracted a lot of attention during
recent years [1–15]. However, one of the key challenges in these modeling ap-
proaches, which requires further research, is the optimal selection of data samples
over the design parameter space, in order to limit the total number of expensive
EM simulations [1–5, 7, 14].

Sequential sampling techniques can be classified into three main categories,
i.e., the input-based methods, the output-based methods and the model-based meth-
ods. The sequential Design of Experiments (DoE) method falls into the input-
based category, where the input design space is filled according to some measure
depending on the density of the selected samples [16, 17]. The output-based sam-
pling schemes depend on the output system response in order to sequentially select
new samples in the design space [14, 18]. A recent work on sequential sampling of
scattering parameter responses (S-responses) uses output S-responses along with
an exploration-exploitation-based approach [14]. In the exploration phase, which
searches the design space for unidentified regions, a space filling technique is used
to fill the design space uniformly, whereas in the exploitation phase, which iden-
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tifies potentially interesting and dynamic regions of the design space, a local es-
timate of the gradient is used to select new samples. In contrast to the other two
categories, model-based sampling schemes depend on intermediate macromodels
to select the distribution of new samples [1–5, 7].

Apart from the above mentioned categories, there are global and local se-
quential sampling methods. Global sequential sampling algorithms build a sin-
gle model for the complete design space. Multi-dimensional Cauchy methods are
one of the popular global sequential sampling schemes [1–3, 6]. In [1], two dif-
ferent sampling approaches are mentioned. The first approach which uses a sta-
ble recursive Burlisch-Stoer algorithm has an inherent limitation since only the
last parameter can be sampled and the rest of the parameters must lie on a fully
filled grid. The second method, which uses a multi-dimensional rational function
expansion can be very ill-conditioned at higher dimensions, limiting the appli-
cability of this method to relatively simple problems. Total Least Square (TLS)
algorithm was used in [2] to solve for the coefficients of the multivariate ratio-
nal model with a QR factorization, and for each added samples a QR update is
used instead of full QR decomposition to gain computational time. An adaptive
multivariate rational fitting is reported in [3] which uses Tchebyshev orthogonal
polynomials to improve the conditioning of the matrices to be solved. In [6], a
multi-dimensional rational approximation is built using convex optimization with
linear constraints. These constrains ensure that the algorithm is stable and the
value of the interpolated function lies within the physical bounds. Neural network
and radial basis function-based sequential sampling method are also found in the
literature [4, 5] which are also global modeling schemes. However, such global
modeling schemes [1–6] suffer from the following limitations:

1. For these methods, it is difficult to preserve physical properties such as sta-
bility and passivity of the generated macromodels over the design space of
interest which are very important while performing time-domain simula-
tions [19].

2. For most of these methods, the initial sampling of the design space is very
important since they use the difference between two models with different
modeling order to estimate the accuracy. The design space point where the
two models differ the most is sampled. However, if the initial sampling is
not adequate, the estimation of error may not be accurate, which might lead
to a divergence scenario.

3. For relatively high dimensions the memory requirement can be prohibitively
high limiting their applicability. Dimensionality reduction techniques such
as [20] could help improve this scenario to a certain extend.

This chapter describes two sequential sampling algorithms for selecting the
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optimum number of samples such that accurate parametric models for parameter-
ized system responses can be generated. The methods presented here are quite
different from the approach in [1–6, 14], since the proposed algorithms are local
and work on local N -dimensional hyperectangular (n-box) regions of the design
space. This creates the possibility of a tree-based implementation of the algorithms
similar to [21, 22], reducing the model evaluation time and making them portable
to parallel computing platforms. The algorithms based on exploitation of the de-
sign space result in a design space which is suitable for the application of different
passivity-preserving local parametric macromodeling algorithms [9–13, 15]. Also,
in contrast to the global sequential sampling methods [1–6], once the passivity is
enforced on the sampled points, the local interpolation ensures that the models are
stable and passive over the complete design space of interest and hence can be
used in time-domain simulations. Also, the two sequential sampling algorithms
described here are applied on model-based frameworks.

The chapter is organized as follows. Section 2 presents some important aspects
of sampling schemes. Section 3 describes the two proposed sampling algorithms
in detail. Different pertinent numerical examples are presented in order to validate
and compare the different schemes discussed in the chapter, and the corresponding
results are presented in Section 4.

4.2 Sequential Sampling

A sequential sampling algorithm selects those samples which allow to build an
accurate model with respect to some error measures. A design space consists of
all the design parameters such as layout variables or substrate features. Since
frequency is a special parameter whose behavior can be accurately modeled us-
ing a rational function, it is sampled separately and is not considered as a part
of the design space. If needed, an Adaptive Frequency Sampling (AFS) can be
used to sample the frequency axis. In this chapter, the word design sample point
denotes the frequency-domain response of a microwave system for a particular de-
sign configuration. The sampled system response data obtained through an EM
solver are used to build macromodels which accurately describe the parameterized
input-output behavior of the original complex system with a predefined level of
accuracy. Some important aspects of a suitable sequential sampling strategy are
briefly explained in subsections 4.2.1 and 4.2.2.

4.2.1 Error measure

An important aspect of a suitable sequential sampling algorithm is to define proper
error criteria for choosing new samples. During the evolution of the design space
any new point added in the design space considerably reduces a judiciously chosen
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error measure between the system response of the original simulation model and
the intermediate macromodel. Several error measures can be used to compare
frequency-domain responses. The maximum absolute error between the original
frequency response Hi,j and the macromodel Ri,j can be used,

EMaxAbs(g⃗) = max
i,j,k

(∣∣∣Ri,j(sk, g⃗)−Hi,j(sk, g⃗)
∣∣∣) (4.1)

i = 1, . . . , Pin, j = 1, . . . , Pout, k = 1, . . . , Ns

with number of input ports Pin, output ports Pout and frequency samples Ns (sk
is the complex frequency or Laplace variable). However, the maximum absolute
error can be misleading when comparing two frequency responses since this can
give extreme values, e.g. at the resonance peaks. An alternative is to use mean
error measures like the mean absolute error (MAE):

EMAE(g⃗) =

∑Pin

i=1

∑Pout

j=1

∑Ns

k=1 |Ri,j(sk, g⃗)−Hi,j(sk, g⃗)|
PinPoutNs

. (4.2)

This chapter uses the mean of absolute error (4.2) for the sequential sampling
algorithms, as suggested in [23]. In addition, mean error measures capture the
global trend of the underlying response function and hence it is rather smooth over
the design space. This also gives better convergence properties for the adaptive
sampling schemes.

In addition to the absolute error measures discussed above, weighted or relative
error measures such as the relative mean error:

EMAE
Rel (g⃗) =

∑Pin

i=1

∑Pout

j=1

∑Ns

k=1
|Ri,j(sk,g⃗)−Hi,j(sk,g⃗)|

|Hi,j(sk,g⃗)|

PinPoutNs
(4.3)

can be used while modeling impedance or admittance parameters, as these param-
eters are not bounded so that good accuracy is obtained over the complete dynamic
range. Even though this gives a basic idea of how to choose proper error measures,
the selection should be problem specific. For example, in a case where the model-
ing of resonances are important, the absolute maximum is preferred over the mean.
This means that ultimately the selection of error measure should be driven from
the modeling problem under consideration.

4.2.2 Selection of parametric macromodeling method

There are several choices available for a macromodeling scheme to be used in the
sequential sampling and the final design space will depend on this selection. As
discussed in the introduction, the sequential sampling algorithms considered in
this work are local and hence any macromodeling scheme suitable to this scenario
could be used.
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One choice could be to use multivariate local interpolation methods, e.g., the
piecewise multilinear and multivariate simplicial methods [24] on the system fre-
quency response data and build a parametric macromodel. This choice makes the
sequential sampling depend on the system frequency response data and the used
interpolation scheme.

Another alternative is to use one of the local parametric macromodeling schemes
which use the Vector Fitting (VF) technique [25–27] to build frequency-dependent
rational models called root macromodels at the selected design space samples and
then parameterize them, see [9–13, 15]. The parametric macromodeling process
starts with a set of multivariate data samples {(si, g⃗k),H(si, g⃗k), i = 1, 2, . . . , Ns,
k = 1, 2, . . . ,Ktot} which depends on frequency and additional design parame-
ters. From these data samples, a set of root macromodels in pole-residue form are
built for a set of design space samples g⃗k by means of VF yielding a set of root
macromodels R(s, g⃗k). A pole-flipping scheme is used to enforce strict stabil-
ity [25] and passivity assessment and enforcement is achieved using robust stan-
dard techniques [28, 29] resulting in a set of stable and passive root macromodels.
The next step of these parametric macromodeling algorithms is the parameteriza-
tion of the set of root macromodels R(s, g⃗k). In [10, 11], a parametric macromodel
is built by interpolating a set of root macromodels at an input-output level, while
in [9, 12, 13], both poles and residues are parameterized by interpolating the in-
ternal state-space matrices, resulting in higher modeling capability with respect
to [10, 11]. In [15], a novel enhanced interpolation of root macromodels at an
input-output level is described, which is based on the use of some coefficients:
one coefficient as a multiplicative factor at the input/output level of the system and
the other coefficient as a compression or expansion term for the Laplace variable
s. It results in high modeling capability and robustness.

Using stability and passivity enforced VF-based parametric macromodeling
schemes have the following advantages:

1. They generate rational models which are stable and passive over the com-
plete design space, and therefore suitable for time-domain simulations, which
is difficult to achieve using the interpolation of raw frequency response data.

2. By selecting a powerful parametric macromodeling scheme, the number of
EM simulations can be reduced considerably as shown by the numerical
results in Section 4.4.

4.3 Sequential Sampling algorithms

This section describes two sequential sampling algorithms developed in this work.
The proposed sequential sampling algorithms preserve the rectangular nature of
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the sampling grid such that the existing local parametric macromodeling methods
[10, 11, 15] can be directly applied. We call a n-box region of the design space as
a subspace or a node.

The following aspects of the proposed sequential sampling methods distin-
guishes them from the previous methods [1–6]:

1. The sequential sampling described here preserve the physical properties
such as stability and passivity for the entire design space of interest, which
is fundamental for time-domain simulations.

2. The methods presented here are local and hence can efficiently be imple-
mented on parallel computing platforms in a tree-based structure.

3. In contrast to the multivariate rational fitting, several frequency-dependent
models are identified and then parameterized with respect to design param-
eters. This considerably reduces the utilization of memory resources in high
dimensional design spaces.

4.3.1 Algorithm I: Division at the center of a subspace

Here we assume that the model is prone to a high error value at the center of a
subspace. Hence, the idea is to subdivide a subspace at its center, when the er-
ror measure is greater than a predefined threshold. For example, let us consider
a rectangular subspace for a two dimensional design space with four samples as
shown in Fig. 4.1-a for which a bivariate macromodel is generated. A test sample
is selected at the geometric center of the subspace (shown by a gray circle in Fig.
4.1-b) and the frequency responses between the original EM solver and macro-
model are compared at this test point. If the modeling error (4.2) is found to be
greater than a predefined threshold ∆, the subspace is subdivided, generating four
new rectangular subspaces. This procedure is repeated until the error at the geo-
metrical center of each subspace is less than the predefined threshold (Fig. 4.1-c)
and the final design space can for example look like Fig. 4.1-d.

Fig. 4.2 shows the design space of Fig. 4.1-d as a tree structure with each
node (circle) representing a particular subspace. The branches (dotted lines) rep-
resent the connection between a node and its subregions or child nodes. Note
that each node is divided into four child nodes or in general into 2N nodes for
an N -dimensional subspace. The terminal nodes are represented in gray circles
where the required accuracy is achieved. With a tree-based implementation, the
advantage is the portability to parallel computing platforms with a reduction of
computing time.

The sequential sampling process of Algorithm I consists of the following steps:
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Figure 4.1: Algorithm I: Division of the design space.

Figure 4.2: Fig. 4.1-d represented in a tree structure.

I) Generating an initial n-box design space by defining 2N corner points that
define the convex hull of the design space, where N is the number of design
parameters g⃗ = (g(1), . . . , g(N)). The number of subspaces Q = 1.

II) Building a macromodel R(s, g⃗) for the entire design space with Q sub-
spaces.

III) For each particular subspace q = 1, . . . , Q, checking the error criteria at the
center of the subspace.

i. IF(Errq > ∆):

i. Divide the subspace q into 2N new subspaces and increment Q =

Q+ 2N − 1.

ii. Increment q = q + 1 and go to Step II.

ii. ELSE: increment q = q + 1.
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i. IF (q <= Q): Not all subspaces are checked for the error criteria.
Go to Step II.

ii. ELSE: Go to Step IV.

IV) Terminating the sequential sampling algorithm.

4.3.1.1 Demonstration of Algorithm I: four coupled microstrips

Four coupled microstrips, shown in Fig. 4.3, are modeled, where the spacing S be-
tween the lines and the length L of the lines are chosen as the design parameters in
addition to frequency. Table 4.1 shows the ranges of all parameters. The substrate
is chosen with relative permittivity ϵr = 9.6 and thickness equal to 0.125mm

Figure 4.3: Top view of the layout of four coupled microstrips.

Parameter Min Max
Frequency (freq) 0 GHz 10 GHz
Spacing (S) 0.05 mm 0.15 mm
Length (L) 5 mm 10 mm

Table 4.1: Design parameters of four coupled microstrips.

The scattering matrix S(s, S, L) has been computed using the ADS Momen-
tum1 software, and the number of frequency samples has been chosen to be equal
toNs = 51. Fig. 4.4 shows the parametric behavior of the magnitude of S11(s, S, L)

with respect to L and frequency for S = 0.10 mm. Similarly, the parametric be-
havior of the magnitude of S81(s, S, L) with respect to S and frequency is shown
in Fig. 4.5 for L = 7.5 mm. Matlab R2010a2 is used to drive the ADS Momen-
tum simulations to generate Scattering parameter responses (S-responses) which
are then supplied to the proposed sequential sampling algorithm.

1Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
2The Mathworks, Inc., Natick, MA, USA
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Figure 4.4: Parametric behavior of the magnitude of S11 for S = 0.10 mm.
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Modeling accuracy Number
Target [dB] Achieved [dB] of points

-40 -47.98 9
-45 -47.98 9
-50 -50.80 14
-55 -55.88 22
-60 -60.07 42

Table 4.2: Sequential sampling results.
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Figure 4.6: Design space generated by the proposed sequential sampling algorithm.
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Figure 4.7: Magnitude of some S-matrix entries at (S,L) = (0.1125, 8.125) mm.

Table 4.2 shows the number of design space points generated for varying lev-
els of target accuracy in terms of the MAE (4.2). As discussed previously, in the
algorithm the validation points are located at the geometrical center of each sub-
space. The final design space generated using the proposed sequential sampling
algorithm is shown in Fig. 4.6 for the accuracy level equal to −60 dB. Some of the
S-matrix entries at one of the validation point (gray asterisk in Fig. 4.6) are plotted
for the parametric macromodel and compared with the ADS momentum data in
Fig. 4.7, showing the achieved accuracy. One important point to be noted here is
the fact that the decision on the target accuracy should be left to the designer who
uses these models. For examples, considering microwave filter design where we
need to optimize a response with a stop band requirement of -30 dB, an error tar-
get of -40 dB could be set. Also, with these sequential sampling schemes, multiple
fidelity models can be extracted. Hence for the above stated example, the designer
can aim initially for a -30 dB accuracy and use the model in the optimization and
later use the high fidelity model to confirm the design.
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Figure 4.8: Algorithm II: Division of the design space.

4.3.2 Algorithm II: Division at the edge of a subspace followed
by final refinement using Algorithm I

As in Algorithm I, the rectangular grid structure is preserved here. However, in
contrast with Algorithm I, a subspace is subdivided into two equal halves along
the maximum sensitive design parameter instead of the geometric center. The
maximum sensitive parameter in a particular subspace is found in the following
way. Consider a bivariate case with parameter vector g⃗ = (g(1), g(2)) as shown
in Fig. 4.8-a, where the four initial samples are marked by g⃗ij = (g

(1)
i , g

(2)
j );

i, j = 1, 2. Now these points are paired for all four combinations as in Fig. 4.8-b,
and the difference between the macromodel responses R(s, g⃗ij) are measured for
each pair using the error measure given by (4.2). Let us assume that the difference
between the pairs R(s, g⃗21) and R(s, g⃗22):

Diff(g⃗21, g⃗22) =

∑Pin

i=1

∑Pout

j=1

∑Ns

k=1 |Ri,j(sk, g⃗21)−Ri,j(sk, g⃗22)|
PinPoutNs

, (4.4)

is the biggest as shown in Fig. 4.8-c, then a new point is taken at the middle of the
range [⃗g21, g⃗22], shown by the gray circle, and this is used as a test point to check
the accuracy of the macromodel with respect to the original EM solver. If the error
is found to be greater than a predefined threshold ∆, the subspace is divided into
two child nodes along this design parameter which happens to be g(2) in Fig. 4.8.d,
by taking additional points (white circles). Finally, the generated design space is
further refined using Algorithm I.

The sequential sampling process of Algorithm II consists of the following
steps:

I) Same as Step I of Algorithm I.



82 CHAPTER 4

II) Same as Step II of Algorithm I.

III) For each particular subspace q = 1, . . . , Q, finding the maximum sensitive
design parameter and hence the test point as previously explained.

IV) Checking the error criteria at the test point.

i. IF(Errq > ∆):

i. Divide the subspace q into 2 new subspaces and increment Q =

Q+ 1.

ii. Increment q = q + 1 and go to Step II.

ii. ELSE: increment q = q + 1.

i. IF (q <= Q): Not all subspaces are checked for the error criteria.
Go to Step II.

ii. ELSE: Go to Step V.

V) Performing final refinement using Algorithm I.

VI) Terminating the sequential sampling algorithm.

The main advantage of Algorithm II as compared to Algorithm I is that the
number of points added for each subspace division is significantly reduced. Also,
if some of the parameters are highly influential, the algorithm divides along that
direction, ensuring fine refinement along the highly dynamic parameters instead of
dividing all the parameters at the same time as in Algorithm I. Please note that, the
capability to implement the algorithm as a tree structure is preserved.

4.4 Numerical simulations

The proposed algorithms have been implemented in Matlab R2010a3 and used to
drive the ADS Momentum4 simulations to generate S-responses at selected sam-
ples. The numerical simulations have been performed on a Windows 7 platform
on Intel(R) Core(TM)2 Duo P8700 2.53 GHz machine with 2 GB RAM. The pro-
posed sequential sampling algorithms (Section 4.3) are compared and the effect of
the two macromodeling schemes on the sampling is studied on pertinent numerical
examples.

3The Mathworks, Inc., Natick, MA, USA
4Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Figure 4.9: Layout of the DFS band-stop filter.

4.4.1 Double folded stub microwave filter

In this example, a Double Folded Stub (DFS) band-stop microwave filter on a sub-
strate with relative permittivity ϵr = 9.9 and a thickness of 0.127mm is modeled.
The layout of this DFS filter is shown in Fig. 4.9. The spacing S between the stubs
and the length L of the stubs are chosen as design parameters in addition to fre-
quency whose ranges are S ∈ [0.15, 0.25] mm, L ∈ [1.0, 2.5] mm and frequency
∈ [5, 20] GHz.

The S-response matrix S(s, S, L) has been computed using the ADS Momen-
tum solver and the number of frequency samples has been chosen equal to 31. Fig.
4.10 shows the parametric behavior of the magnitude of S11 as a function of S and
frequency for L = 1.75 mm. Similarly, Fig. 4.11 shows the magnitude of S21 as
a function of L and frequency for S = 0.20 mm. Figs. 4.12 and 4.13 show the
surface plots for the Figs. 4.10 and 4.11 respectively.

The two sequential sampling algorithms described in Section 4.3 are imple-
mented using two different macromodeling schemes. In the first implementation,
a local multilinear interpolation of the raw frequency response data is used to build
the intermediate macromodels. The second implementation uses the parametric
macromodeling technique described in [15] which perfectly fits into our proposed
sequential sampling algorithms. The sequential sampling algorithms are applied
on each of these cases, as seen in Table 4.3. Table 4.3 compares all proposed
schemes in terms of the total number of samples, the worst case mean absolute
error over the design space, the CPU time needed to run all the ADS momentum
simulations and the CPU time needed for the sequential sampling algorithms.

The different sequential sampling experiments performed on the DFS structure
are summarized in Table 4.3. The overall target accuracy was set to ∆ = −50 dB.
The number of poles of the root macromodels were calculated using an error-based
bottom-up approach (see Appendix A, section A.2 for more details). The initial
number of poles for this bottom-up approach is selected as the smallest order of
the root macromodels at the corners of the n-box design space. The accuracy of the
final sampling grid is assessed using validation samples generated at the midpoint
of each subspace of the final grid where the response from the EM solver is com-



84 CHAPTER 4

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

M
ag

ni
tu

de
 o

f 
S   1

1 S increasing

Figure 4.10: DFS Filter: Magnitude of S11 for L = 1.75 mm with parametric macromodel
generated using Algorithm II.
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Figure 4.11: DFS Filter: Magnitude of S21 for S = 0.20 mm with parametric macromodel
generated using Algorithm II.
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Figure 4.12: DFS Filter: Magnitude of S11 for L = 1.75 mm with parametric macromodel
generated using Algorithm II.
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Figure 4.13: DFS Filter: Magnitude of S21 for S = 0.20 mm with parametric macromodel
generated using Algorithm II.
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Sampling method Output data Parametric macro-
interpolation modeling [15]

Sampling algorithm I II I II
Number of samples 1460 286 81 51

Accuracy (MAE) [dB] -50.00 -50.01 -52.01 -50.25
CPU time Data generation 171363 56962 15908 10968

[s] Alg. execution 372 35 502 334

Table 4.3: DFS Filter: Comparison of different sampling strategies.

pared with the macromodel using the mean absolute error (4.2). Table 4.3 shows
the results of the sequential sampling algorithms with some important parameters.

The following observations can be made from the tabulated results:

1) Algorithm II generates less number of points in comparison with Algorithm I.
This is in accordance with the expectations of Section 4.3.

2) Using the parametric macromodeling technique of [15], the number of samples
generated is very low in comparison with the approach where the raw frequency
response data is interpolated as shown in Fig. 4.14. This indicates the high
modeling capability of the parametric macromodeling method [15] and its effect
on the sampling.

As a rule of thumb, a good choice is to use the Algorithm II (Section 4.3.2) to sam-
ple the design space such that the influence of each design parameter is taken into
consideration and a good accuracy is achieved. The parametric macromodeling
scheme described in [15] can be used to achieve a considerable gain in terms of
the number of required EM simulations.

4.4.2 Hairpin bandpass microwave filter

A microwave hairpin bandpass filter on a substrate with relative permittivity ϵr =

9.9 and a thickness of 0.635 mm is modeled in this example. The layout of this
filter is shown in Fig. 4.15. Two spacings S1 and S2 and two lengths L1 and L2

are chosen as design parameters (see Fig. 4.15) in addition to frequency whose
ranges are S1 ∈ [0.25, 0.35] mm, S2 ∈ [0.65, 0.75] mm, L1 ∈ [9.5, 14.5] mm,
L2 ∈ [2.75, 3.25] mm and frequency ∈ [1.5, 3.5] GHz.

Fig. 4.16 shows the parametric behavior of the magnitude of S11 as a function
of S1 and frequency, other values being kept at the mean value of the design space.
Similarly, Fig. 4.17 shows the magnitude of S21 as a function of L1 and frequency.
Figs. 4.18 and 4.19 show the surface plots for the Figs. 4.16 and 4.17 respectively.
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Figure 4.14: DFS Filter: Design space for Algorithm I and Algorithm II using parametric
macromodeling method [15].

Figure 4.15: Layout of the microwave hairpin bandpass filter.

To model the hairpin filter, Algorithm I and Algorithm II are used along with
the parametric macromodeling method presented in [15]. The MAE error measure
(4.2) is used to assess the accuracy of the models generated with a target accuracy
of −50 dB. This it resulted in 513 design space points for Algorithm II, with an
achieved accuracy of −50.67 dB, whereas Algorithm I did not converge even with
13071 points. As evident from these results, Algorithm I samples all the parame-
ters equally while Algorithm II selects the highly influential parameters carefully,
requiring much fewer points. This difference between the two algorithms becomes
severe with higher dimensions.
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Figure 4.16: Hairpin Filter: Magnitude of S11 as a function of S1 with parametric
macromodel generated using Algorithm II.

Fig. 4.20 shows the design space points selected by Algorithm II respectively
using a parallel coordinates plot [30]. In Fig. 4.20, the horizontal axis represents
the four design parameters S1, S2, L1 and L2 and the vertical axis represents their
normalized values. Also, the black dots represent the sample points selected for
each design parameters and the gray dashed lines represent different design sample
points. For instance, the bottom most horizontal line connecting the four black dots
in Fig. 4.20 represent the design space point [S1, S2, L1, L2] = [0, 0, 0, 0]. In Fig.
4.20, the parameter L1 has the maximum number of samples selected on its axis
using Algorithm II, as it is the most dynamic parameter.

To illustrate the usefulness of the proposed method, the parametric macro-
model generated with Algorithm II is used to optimize the bandpass filter. The
specifications for the bandpass filter are given in terms of the scattering parame-
ters S21 and S11:

|S21| > −2.5 dB for 2.4GHz < freq < 2.5GHz (4.5a)

|S11| < −10 dB for 2.4GHz < freq < 2.5GHz (4.5b)

|S21| < −40 dB for freq < 1.7GHz (4.5c)

|S21| < −25 dB for freq > 3.1GHz. (4.5d)
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Figure 4.17: Hairpin Filter: Magnitude of S21 as a function of L1 with parametric
macromodel generated using Algorithm II.

Initial Design Optimal Design # Function Optimal Cost Processor
(S1, S2, L1, L2) (S∗

1 , S
∗
2 , L

∗
1, L

∗
2) Evaluations Time [sec]

[mm] [mm]
[0.30, 0.70, [0.27, 0.75,
12.00, 3.00] 12.10, 3.25] 538 −8.4× 10−4 200.29
[0.34, 0.69, [0.28, 0.75,
14.10, 2.90] 12.19, 3.20] 444 −6.3× 10−4 139.80
[0.33, 0.68, [0.28, 0.75,
11.50, 3.20] 12.10, 3.24] 353 −10.9× 10−4 107.82

Table 4.4: Hairpin Filter: Optimization results.

The minimax optimization function fminimax in Matlab R2010a is used to
perform an optimization with a cost function generated using the requirements of
(4.5). Three optimization cases were considered with different starting conditions
and are tabulated in Table 4.4. The S-response calculated using the parametric
macromodel is supplied to the minimax optimization routine, resulting in optimal
design space points [S∗

1 , S
∗
2 , L

∗
1, L

∗
2] which satisfy the constraints in all three cases.

Fig. 4.21 shows the magnitude of S21 for the second optimization case in
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Figure 4.18: Hairpin Filter: Magnitude of S11 as a function of S1 with parametric
macromodel generated using Algorithm II.

the Table 4.4. The actual data generated by the ADS Momentum software and
that obtained using the parametric macromodel at the optimum design space point
[S∗

1 , S
∗
2 , L

∗
1, L

∗
2] are shown in Fig.4.21. As seen, both are in good agreement. The

requirements (4.5) are shown by the thin black solid lines. Similar results are given
for the magnitude of S11 in Fig. 4.22. As clearly seen, all the filter specifications
are met for the optimal design point.

Since the cheap parametric macromodel is used in the minimax optimization,
the CPU time per optimization is very small. This means that also global opti-
mization schemes, which might require large number of function evaluations, can
be used to avoid local optima without heavily increasing the CPU time. The gen-
erated parametric macromodel can also be used in other design activities such as
sensitivity analysis, design space exploration, etc. Instead, if the ADS Momen-
tum simulations had been used for the optimization, the CPU time would have
been very high. For instance, in case of the hairpin filter structure a single fre-
quency sweep with 31 frequency samples requires approximately 145 seconds in
ADS Momentum and 0.29 seconds with the generated parametric macromodel
with around 500 times speed-up.
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Figure 4.19: Hairpin Filter: Magnitude of S21 as a function of L1 with parametric
macromodel generated using Algorithm II.

4.5 Conclusions

We have presented two sequential sampling algorithms for the macromodeling of
parameterized system responses in model-based sequential sampling frameworks.
Two sequential sampling algorithms for the automated generation of parametric
macromodels have been discussed and investigated. All the proposed techniques
have been validated and compared on pertinent numerical examples in terms of the
number of points needed to cover the complete design space, modeling accuracy
and CPU time. Also, one of the proposed algorithms has been used in the genera-
tion of a parametric macromodel for a microwave filter example with four design
parameters, and the generated parametric model is used in minimax optimization
of the filter, validating the proposed sequential sampling method. However, it
should be noted that these schemes work on grid-based design samples and hence
susceptible to the curse of dimensionality when the number of design parameters
increases.
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Figure 4.20: Hairpin Filter: Design space generated for Hairpin Filter using Algorithm II.
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Figure 4.21: Hairpin Filter: Magnitude of S21 before and after optimization.
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Figure 4.22: Hairpin Filter: Magnitude of S11 before and after optimization.
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This chapter is divided into two parts. In the first part of this chapter, an
enhanced parametric macromodeling scheme for linear high-frequency systems
based on the use of multiple frequency scaling coefficients is presented along with
a sequential sampling algorithm to fully automate the entire modeling process. The
proposed method is applied on a ring resonator bandpass filter example and com-
pared with another state-of-the-art macromodeling method to show its improved
modeling capability and reduced setup time.

In the second part, the enhanced parametric macromodeling scheme along
with the sequential sampling is used in the complete design cycle of a microwave
filter. The design of transmission line (TL) microwave filters nowadays often boils
down to a brute-force optimization of the design using electromagnetic (EM) sim-
ulations. The drawback of this approach is that it is numerically expensive -hence
time consuming- and it does not provide any insight in the design. The parametric
macromodeling scheme is used in the design process here instead. These models
can be obtained in an automated way at a fraction of the numerical cost of the EM
simulations and also can be used and re-used in successive designs. They also can
assist the designer to get more insight in to the design. This proposed approach is
illustrated here with a design example which is validated with measurements.

5.1 Parametric Macromodeling of Linear
High-Frequency Systems using Multiple Frequency
Scaling and Sequential Sampling

5.1.1 Introduction

Design activities of electromagnetic (EM) systems such as design space explo-
ration, optimization, sensitivity analysis, etc., often require a substantial number
of computationally expensive EM simulations. The development of parametric
macromodels acting as accurate and efficient surrogate models for complex EM
systems is an active field of research [1–5]. These models tend to be good approx-
imations of the EM system behavior, characterized by frequency and additional
design parameters (such as geometrical or substrate features) and can be used to
speed-up the design process. Robust interpolation-based parametric macromod-
eling methods have been proposed over the recent years, based on the parame-
terization of a set of frequency-dependent rational models called root macromod-
els [1, 2, 5]. In [5], interpolation of root macromodels at the input-output level,
based on two scaling coefficients was presented : one of the coefficients is a mul-
tiplicative factor at the input/output level of the system (amplitude scaling) and
the other coefficient is a compression or expansion term for the Laplace variable s
(frequency scaling). The approach of [5] results in high modeling capability and
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robustness.
In this section, the parametric macromodeling method proposed in [5] is gen-

eralized by using multiple frequency scaling coefficients for all partial fractions of
the root macromodels. This allows to model the behavior of the partial fractions of
the root macromodels independently, in order to achieve a more flexible modeling
capability. The proposed method is compared with the approach described in [5]
to show its enhanced modeling capability and reduced CPU setup time.

5.1.2 Proposed Parametric Macromodeling Method

A brief recast of the parametric macromodeling process is presented, by which a
parameterized system response of the microwave filter is generated with respect
to the design parameters, similarly to [5, 6]. The first step of the macromodeling
process is to generate a set of parameter-dependent frequency-domain responses,
which we will call the set of multivariate data samples {(sn, g⃗k),H(sn, g⃗k)},
n = 1, . . . , Ns, k = 1, . . . ,Ktot. This set depends on the complex frequency
s = jω and additional N design parameters g⃗ = (g(1), . . . , g(N)). For the specific
filter case, these design parameters describe the geometry of the system and/or the
properties of the substrate that one can vary during the design. An efficient sam-
pling algorithm [7] is used to gather data samples located at maximally informative
positions, i.e. spots in the design space where the response changes rapidly. Both
the parametric macromodeling method and the sequential sampling algorithm are
coupled to provide an automated modeling process. N dimensional hyperrectan-
gular (N -box) regions are used as building blocks for the design space. The design
space consists of the concatenation of several of such regions which are denoted
as Ωl, l = 1, . . . , L. Each of these Ωl contains 2N frequency-dependent ratio-
nal models called root macromodels at the corresponding corner points. Hence
each bounding corner has a root macromodel of the N dimension hyperrectangu-
lar region. This corresponds to 2N rational models. This means that the complex
Laplace frequency s is not considered as an element of the design space. It is mod-
eled separately using root macromodels. These are rational forms of the Laplace
variable also known as frequency response functions (FRFs) which are identified
from the data samples using the well known Vector Fitting (VF) identification
technique [8].

The rational root macromodels RΩl(s, g⃗ Ωl
i ), i = 1, . . . , 2N contained in the

N -box region Ωl are represented in a pole-residue form:

RΩl(s, g⃗ Ωl
i ) =

P
Ωl
i∑

p=1

CΩl
p,i

s− aΩl
p,i

+DΩl
i ; p = 1, . . . , PΩl

i (5.1)

where CΩl
p,i represents the residue matrices, aΩl

p,i denotes the poles PΩl
i and DΩl

i is
the direct-term matrix.
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Later, the parametric macromodeling technique is applied to these N -box re-
gions Ωl. A two parameter description is presented here for clarity and ease of no-
tation, even though the method is general for any dimensionN of the design space.
The design space region Ωl is defined by four bounding corners g⃗ Ωl

1 = (g11 , g
1
2),

g⃗ Ωl
2 = (g21 , g

1
2), g⃗

Ωl
3 = (g11 , g

2
2), and g⃗ Ωl

4 = (g21 , g
2
2) as in Fig. 5.1. Each corner

possesses a different root macromodels RΩl(s, g⃗i), i = 1, . . . , 4. We will discuss
the interpolation of the root macromodels next. For simplicity and ease of notation
we omit the superscript Ωl. In [5, 6], one amplitude scaling and one frequency

Figure 5.1: A two dimensional design space with four root macromodels.

scaling coefficient (α1, α2) are calculated using the optimization

(α∗
1,ij , α

∗
2,ij) = argmin

(α1,ij ,α2,ij)

[
Err(R̃j(s, g⃗i),H(s, g⃗j))

]
. (5.2)

In (5.2), R̃j(s, g⃗i) = α1,ijR(sα2,ij , g⃗i), is the scaled response of R(s, g⃗i) ob-
tained to match R(s, g⃗j) and Err(·) is a suitable error measure between the two
responses. The Mean Absolute Error (MAE) measure or the L1-norm per port
is used to assess the accuracy of the model in every N -box region of the design
space:

EMAE(g⃗) = max
u=1,...,P
v=1,...,P

1

Ns

(
Ns∑
n=1

|Ru,v(sn, g⃗)−Hu,v(sn, g⃗)|

)
. (5.3)

The method compares the EM simulation response Hu,v(s, g⃗) with the parametric
macromodel response Ru,v(s, g⃗), where P is the number of system ports. The
MAE error measure or the L1-norm gives a global view on the error between the
two frequency responses and hence it is preferred over other error measures such
as the L∞-norm that is known to be not very smooth.

The calculated frequency scaling coefficients α2,ij are further refined and im-
proved by defining a separate frequency scaling coefficient βp,ij for every term p

in the rational model in a pole-residue form (5.1). The modified R̃j(s, g⃗i) is given
by:

R̃j(s, g⃗i) = α1,ij

Pi∑
p=1

Cp,i

sβp,ij − ap,i
+Di (5.4)
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The optimal βp,ij , p = 1, . . . , Pi are found by performing an optimization step
similar to (5.2). The α∗

2,ij obtained from (5.2) are used as an initial value for
all βp,ij . For the complex-conjugate pole pairs (p1, p2) the coefficients satisfy
βp1,ij = βp2,ij to preserve the symmetry. This also reduces the number of coeffi-
cients to be optimized. The evaluation of the model taken at a generic point g⃗q in
the design space (Fig. 5.1) is done similarly to [5, 6] as:

i For each root macromodel R(s, g⃗i), i = 1, . . . , 2N , the amplitude scaling
coefficient α1,ij and frequency scaling coefficients βp,ij , p = 1, . . . , Pi are
interpolated using a multilinear interpolation [9] over g⃗ at the point g⃗q to
find α1,iq and βp,iq , p = 1, 2, ...Pi. This results in the modified root macro-
models, R̃q(s, g⃗i) = α1,iq

∑Pi

p=1
Cp,i

sβp,iq−ap,i
+Di at g⃗q ,

ii Then the models R̃q(s, g⃗i) are interpolated using the multilinear interpola-
tion [9] over g⃗ to get the final model R(s, g⃗q) at the point g⃗q .

This parametric macromodeling approach is performed for each region Ωl to cover
the complete design space.

5.1.3 Sequential Sampling Algorithm

This section briefly describes the sequential sampling algorithm used in this work
to scan the design space in an automated way. Fig. 5.2 shows the flowchart of the
algorithm and the different steps are discussed below:

1. Initialization: During this step the design space is defined. It contains N
design parameters of interest g⃗ = (g(1), . . . , g(N)). The initial design space
is defined by the 2N corner points to form one single N -box region Ωl with
l = L = 1.

2. Parametric macromodeling : For each elementary region Ωl, l = 1, . . . , L, a
parametric macromodel RΩl(s, g⃗) is built with the 2N corner points as root
macromodels as explained in Section 5.1.2.

3. Model validation: The selected region Ωl is checked with respect to the
actual EM solver. This requires a subset of EM simulations that are not
used during the estimation. This is done in two steps: first the EM solver is
compared with the macromodel using the MAE measure (5.3) at the center
of the maximum sensitive edge (which is the most difficult-to-model-edge
such that the optimization of (5.2) returns the highest error, i.e., in some
sense the design parameter which is the most difficult to parameterize) and
if found to be accurate, a second level of check is performed at the geometric
center (as done similarly to [7]). Only then the decision is made whether the
region Ωl is accurate or not.
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4. Refinement: If the accuracy of the region Ωl lies within the desired threshold
∆, it is not divided, else the region is split into two sub regions along the
maximum sensitive edge [7] as shown in Fig. 5.2. The accuracy threshold ∆

can be decided based on the application of the scheme. For example, consid-
ering microwave filters, if a passband requirement of −30 dB is required, the
parametric macromodel should be able to describe the filter characteristics
up to an accuracy of −30 dB.

Then after updating the number of regions the algorithm is repeated from Step 2
until all regions Ωl are covered, i.e., l = L.

Figure 5.2: Flowchart of the sequential sampling algorithm.

5.1.4 Numerical Example

The scattering parameter response of a ring resonator bandpass filter (see Fig. 5.3)
has been modeled. ADS Momentum1 has been used as EM solver. The substrate
has a relative permittivity ϵr = 4.32, a loss tangent δ = 0.002 and a thickness
equal to 1.52 mm. The lengths L1 ∈ [20.0, 23.0] mm, L2 ∈ [20.0, 23.0] mm
and the spacing S1 ∈ [0.05, 0.3] mm (see Fig. 5.3) are chosen as three design
parameters in addition to frequency ∈ [1.0, 3.0] GHz. The parametric behavior

1Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.



EFFICIENT DESIGN CYCLE FOR MICROWAVE FILTERS WITH PARAMETRIC

MACROMODELS 103

of the filter is shown in Fig. 5.4. For the sequential sampling algorithm the

Figure 5.3: Layout of the ring resonator bandpass filter.

1 1.5 2 2.5 3
0

0.5

1

|S
 2

1|

1 1.5 2 2.5 3
0

0.5

1

Frequency [GHz]

|S
 1

1|

 S
1
 increasing

 L
2
 increasing

Figure 5.4: Magnitude of S21 and S11 as a function of S1 and L2.

Mean Absolute Error (MAE) measure per port is used to assess the accuracy of
the parametric macromodel in every N -box region of the design space:

EMAE(g⃗) = max
u=1,...,Pin
v=1,...,Pout

1

Ns

(
Ns∑
n=1

|Ru,v(sn, g⃗)−Hu,v(sn, g⃗)|

)
. (5.5)

where the EM simulation response Hu,v(s, g⃗) is compared with the parametric
macromodel response Ru,v(s, g⃗), and Pin and Pout are the number of input and
output ports, respectively. The new parametric macromodeling method as well as
the recent method in [5] have been used along with the grid-based sequential sam-
pling algorithm [7] to build accurate parametric macromodels. The MAE measure
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(5.5) was kept at a target accuracy of ∆ = −40 dB for the sequential sampling.
Some comparison results are shown in Table 5.1. The total number of generation
(Gen.) and validation (Val.) points are shown in the table. As it can be seen,
the new method needs significantly less data samples for the same accuracy tar-
get, proving its improved modeling capability. The overall CPU time to build the
corresponding model is consequently reduced.

Method # Samples CPU Time Accuracy
Gen. Val. Modeling Data Gen. [dB]

proposed 32 18 6 m 56 s 36 m 41 s −40.4
[5] 116 95 22 m 30 s 2 h 31 m 29 s −40.1

Table 5.1: Comparison: proposed method versus the method of [5]
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Figure 5.5: Model generation points in the design space

Fig. 5.5 shows the distribution of design space points selected using the two
parametric macromodeling methods. The method [5] finds more difficult to model
the filter behavior with respect to the design parameters and needs significantly
larger number of points along every design space dimension. Fig. 5.6 compares
the magnitude of S21 between the EM solver and the proposed parametric macro-
model for three random validation points. The different responses show a very
good agreement.
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Figure 5.6: Magnitude of S21 at three random validation points.

5.2 Efficient Design Cycle for Microwave Filters us-
ing Parametric macromodels

5.2.1 Introduction

The design of microwave filters remains important for both research and applica-
tions. Several methods have been proposed to address the design of distributed
filters [10, 11]. As the design process relies on idealized components and be-
havior, most designs require a post-design fine-tuning to meet the desired spec-
ifications. This tuning process involves optimization based on multiple electro-
magnetic (EM) simulations using accurate EM solvers. This accuracy comes at
a price however, these solvers are known to be numerically expensive and hence
time-consuming. Moreover, this brute-force optimization does not provide the
designer with any insight about the behavior of the non-idealities. Even though
this results in accurate designs, the process is typically time consuming and ex-
pensive. To speed up this process, the EM solver can be replaced by a compu-
tationally efficient model. In this chapter, parametric macromodels are used as a
good compromise between model accuracy and complexity. Generating paramet-
ric macromodels to represent the parameterized response of microwave systems
with respect to different geometrical variables and material properties is an active
field of research [1–6, 12–22].

The two main advantages of using such an approach are:

1. The parametric macromodels replace the expensive EM solver to evaluate
the filter response as a function of the design parameters of interest (e.g. ge-
ometrical parameters) for certain parameter ranges. Therefore, these para-
metric macromodels can be used in different optimization scenarios where
changes of the specifications of the filter (e.g. the bandwidth of interest, the
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selectivity, etc.), need to be examined.

2. The parametric macromodels can also be used in other computationally ex-
pensive design activities, such as design variability analysis that is a key
factor for circuit reliability or design space exploration that leads to an intu-
itive understanding of the circuit’s behavior apart from the design optimiza-
tion. All these analyses are obtained without much additional computational
effort.

Even though the extraction process of parametric macromodels is automated
using adaptive sampling approaches [7], it still requires information from the de-
signer. The designer must choose the ranges of the variable design parameters, for
which the model is built. This means that the models must be extracted during the
design process itself.

Including these parametric macromodels early in the design flow can signif-
icantly reduce the overall design cycle time. Considering design optimization of
microwave filters, one such method is the Space Mapping (SM) technique which
locates an optimum given a user-defined performance measure [23–25]. The main
idea in this method is to reduce the computational complexity of optimization by
reducing the number of expensive EM fine model simulations and using a coarse
model as a SM surrogate for the output space of the EM system. The coarse model
is used to drive the optimization and it is corrected for any possible mismatch with
respect to the fine model so that an optimum is found with less computational
cost [23–25]. Surrogate-Based Optimization (SBO) schemes which model the
performance space of the EM systems are also an active field of research [26, 27].
These methods accurately model a scalar performance measure function at the re-
gions of interest, thereby finding an optimum.

In this chapter, we incorporate the parametric macromodels not only for the
design optimization itself but for the complete design flow, where multiple design
optimization and variability analysis steps are performed. This distinguishes the
proposed method from other methods [23–27] that aim at optimizing a particular
performance measure, which leads to restart of the modeling step for optimization
each time the specifications are changed. The parametric macromodels accurately
and efficiently describe the parameterized behavior of EM systems with respect
to frequency and several other design parameters, such as layout parameters and
substrate features. Since a direct scanning or exploration of the design space us-
ing the EM solver becomes very time consuming with an increasing number of
parameters, the use of an intermediate parametric macromodel is a very efficient
alternative. A hairpin filter is used in this chapter to validate the proposed de-
sign approach. This filter is a space-saving alternative of the well known parallel-
coupled transmission-line-resonator filter. Design equations for the latter type of
filter exist and can be used to obtain an initial design for the hairpin filter. Nev-
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ertheless optimization and variability analysis are needed to obtain a design that
fulfills the desired specifications. This makes the design of a hairpin filter a good
example to show the advantages of the macromodels over the conventional EM
solver-based modeling approach.

5.2.2 Parametric Macromodels for Microwave Filters

The parametric macromodeling method is described in detail in Section 5.1.2 along
with the automatic design space scanning using sequential sampling described in
Section 5.1.3 are used to build the parametric macromodel for the filter under
consideration. Once an efficient and accurate parametric macromodel is generated,
it is used in the design process.

5.2.3 Design process

This section illustrates the macromodeling-based design procedure using as an
example the design of a parallel-coupled hairpin resonator filter [28] consisting of
three hairpin resonators (see Fig. 5.9). Such a filter is a space-saving alternative
for the well-known parallel-coupled transmission-line-resonator (TL) filter [29].
This hairpin-line filter is a good example to illustrate macromodel-based design.
On the one hand design equations exist to generate a filter for an approximative
geometry replacing the hairpin by the conventional λ

2 TL resonator. On the other
hand, optimization of the geometry is needed to compensate for the approximation
error and obtain a solution that fulfills the specifications. In the current state of
the art, the latter often uses an iterative optimization loop based on a succession
of computationally expensive EM simulations. We use a macromodel not only for
the optimization of the design, but also for the design sensitivity analysis that leads
to a variability assessment of the performance for reliability evaluation.

5.2.3.1 Overview of the design process and performance assessment

Fig. 5.7 synthesizes the design flow that is used here. The design starts from a
user-specified frequency response template. In the preliminary design step, we
design a parallel-coupled TL that meets the template specifications using design
equations given in [29, 30]. Next, we define the design space. Therefore, we de-
termine the variable and the fixed geometric design parameters to be used for the
hairpin resonator filter. Then, we generate an approximative starting geometry for
the hairpin resonator filter and eventually we determine the ranges of the design
parameters in the design space. Next, we build a parametric macromodel of the
hairpin resonator filter for the chosen design parameters and ranges. The macro-
model is used to optimize the approximative starting geometry to match the desired
response and to perform a design variability analysis. If the optimized solution is
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robust enough to fabrication process variation, the filter is realized and measured
with a Vectorial Network Analyzer of type E8364B (PNA series) that is calibrated
using the electronic Ecal module.

Figure 5.7: Schematic overview of the design process.

5.2.3.2 Specifications

The specifications of a filter are expressed by a frequency template (Fig. 5.8). The
specifications given on the S-parameters of the filter are:

|S21| > −LA,max(dB), fp1 ≤ freq ≤ fp2, (5.6a)

|S11| < −LR,min(dB), fp1 ≤ freq ≤ fp2, (5.6b)

|S21| < −LA,stop1(dB), freq < fs1, (5.6c)

|S21| < −LA,stop2(dB), freq > fs2 (5.6d)

where LA,max is the maximal insertion loss in the passband, LA,stop1 and
LA,stop2 are the minimal attenuation in the stop bands. We also put specifications
on S11, since some filters require a limitation on the return loss. LR,min is the
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Figure 5.8: Specifications on S21.

minimal return loss in the passband. fp1 and fp2 are the passband corner frequen-
cies (fc is the center frequency) and fs1 and fs2 the stop band corner frequencies.
In general LA,stop1 = LA,stop2, but we allow the stopband losses to be different.

5.2.3.3 Preliminary Design

The first step in the preliminary design process is to find a rational approxima-
tion that fulfills the demands of the frequency template. Next a synthesis is per-
formed to obtain a lumped-element normalized lowpass prototype network. Even-
tually an equivalence relation [29, 31] between the lumped-element network and
the parallel-coupled TL filter is used to physically dimension the distributed mi-
crowave filter. This last step can briefly be summarized as follows:

• The ratio between the width of the TL and the thickness of the dielectric h
determines the characteristic impedance Z0 of the TL.

• The length of the TL resonators determines the center frequency fc of the
filter in first order and it should be chosen equal to half the wavelength λc

2 .

• The value of the spacing between the lines determines the coupling between
the lines.

These design equations only hold for the parallel-coupled TL resonator filter.
They act as approximations for the hairpin line filter.



110 CHAPTER 5

5.2.3.4 Design Space

We determine the design space over which we build the design space in three steps.
First we determine the design parameters, next we generate initial values for these
parameters and finally we choose the ranges for these parameters.

Choice of the design parameters

The layout of a hairpin resonator filter shows the geometrical parameters (Fig. 5.9)
:

• W : the width of the lines

• h: the height of the substrate

• D: the length of the legs of the hairpin

• Sh: the spacing between the legs of the hairpin

• S1: the spacing between the feed line and the resonators

• S2: the spacing between the resonators

We want to minimize the number of variable design parameters to reduce the
number of dimensions of the design space. Some geometrical parameters are
known to be related and will therefore be grouped:

• W
h determines the characteristic impedance of the lines.

• D and Sh determine the total length Ltotal of the line and therefore the
resonance frequency of the resonator. Instead of allowing both parameters
to be variable, we fix Sh and only allow D to vary.

• The remaining geometrical parameters S1 and S2 can not be grouped, since
they determine the coupling between different lines.

Since W
h is not affected by the replacement of the TL resonator by a hairpin

resonator, we will use the same design equation to determine it. This leaves us
with 3 variable geometrical design parameters: D, S1 and S2.

Starting geometry

Now that we have parameterized the structure, we generate a starting geometry for
it. First we determine values for the fixed geometric parameters: W,h and Sh next
D, S1 and S2:

• We calculate W
h to obtain a desired Z0 using empirical laws [32].
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• On the one hand, Sh must be large enough such that there is not too much
coupling between the legs of the hairpin. On the other hand it can not be too
large either, as otherwise the length D over which the hairpins are coupled
becomes too small. In the numerical example (section 5.2.4), we therefore
choose it equal to 1.307 mm for an approximate total length of 42 mm.

• We initialize D such that the total length of the hairpin is λc

2 : D0 =
λc
2 −Sh

2

• The lengths over which the straight TL and the hairpin resonators are cou-
pled differ, so we rescale the spacings found for the parallel-coupled TL
filter to compensate for this difference in length: S1,hairpin = S1,TL

D
λc
2

Ranges of the design space

The ranges of the design space are the boundary values of the variable design
parameters. They must be chosen such that the design space contains the initial
design point and most (preferably all) design points that satisfy the constraints.
Therefore these ranges must be wide enough. Nevertheless we have to avoid to
model for values that are physically impractical (due to the fabrication process) or
that lead to irrelevant S-parameters (e.g. too much insertion loss). The ranges for
the design parameters D,S1, S2 are chosen as follows:

• We choose the range of D such that the initial value for D0 and λc

4 are
within it. Since we a priori do not know how the folding of the TL resonator
affects the resonance frequency, we consider a range wide enough to make
sure that the desired resonance frequency is certainly captured. The range
of D is chosen such that ltotal

λc
2

= [0.95 : 1.05].

• The initial value of S1 is very close to the minimal distance that is physically
feasible, therefore this minimal distance is chosen as the lower boundary.
The upper boundary is chosen large enough to allow one to check whether
there are also solutions in the lower coupling region of the design space.
However it can not become too high, because then almost no energy is cou-
pled from the feedline to the first resonator. The range of S1 is chosen such
that the normalized spacing is approximately S1

h = [0.16 : 1.75].

• The range of S2 is chosen wide enough to capture as many desired solutions
as possible. The higher value is chosen not to be too large, otherwise there is
too much insertion loss. The range of S2 is chosen such that the normalized
spacing is approximately S2

h = [0.9 : 2.6].
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5.2.3.5 Generate the Parametric Macromodel

Section 5.2.2 shows that the generation of the parametric model is automated.
Nevertheless the user has to specify the design space, the frequency span and the
accuracy for the model. The choice of the design space is already discussed in
subsection 5.2.3.4. The frequency span is chosen wide enough such that fs1 and
fs2 are within it. The choice of the accuracy is based on the minimal attenuation
desired in the stopband. In the numerical example this is -30 dB. The accuracy
of the model is therefore set to -40 dB. Next the macromodel is generated as is
explained in Section 5.2.2. We denote the macromodel as R(s, g⃗), where s is the
Laplace variable and where g⃗ = [S1, S2, D].

5.2.3.6 Optimization

The parametric macromodel of the microwave filter R(s, g⃗) is used to optimize the
initial design such that it fulfills the specifications. The global optimization func-
tion GlobalSearch in Matlab R2012a2 is used to perform an optimization with a
cost function generated using the requirements of (5.6). The GlobalSearch routine
first generates scattered points in the design space with a scatter search. Start-
ing from these points, several constraint nonlinear optimizations using a gradient-
based local nonlinear optimizer are performed, generating multiple solutions. The
function then ranks the solutions in terms of their values in ascending order. More
details of the method can be found in [33].

Considering microwave systems, a typical optimization process begins by defin-
ing passband and stopband specifications in terms of the S-parameter responses,
which are reformulated in the form of a cost function F (sm, g⃗), at optimization
frequency samples sm, m = 1, 2, ..NOP

s to be minimized:

F (sm, g⃗) = Rm
L −R(sm, g⃗) or R(sm, g⃗)−Rm

U . (5.7)

In (5.7), Rm
L and Rm

U represents the lower and upper frequency response thresh-
olds, respectively, at frequency samples sm,m = 1, . . . , NOP

s , spread over the fre-
quency range of interest. Also note in (5.7) shows that the optimization frequency
samples sm, m = 1, . . . , NOP

s can be different from the modeling frequency sam-
ples sn, n = 1, . . . , Ns described in Section 5.1.2. The frequency samples sn
are generated by the EM solver and hence very expensive whereas the optimiza-
tion frequency samples sm are generated from the parametric macromodel R(s, g⃗)

which is cheap to evaluate. This means that, for the optimization case, more fre-
quency samples could be selected to have a better estimation of the cost function
F (sm, g⃗) (i.e., NOP

s > Ns).
For the specifications of the filter given in (5.6), −LA,max is a lower bound

Rm
L and −LR,min, −LA,stop1 and −LA,stop2 are upper bounds Rm

U . A negative

2The Mathworks, Inc., Natick, MA, USA
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cost indicates that the corresponding specification is satisfied, while a positive cost
denotes that the specification is violated. The final cost to be optimized at a design
space point g⃗ is then given as

F (g⃗) = max
sm

F (sm, g⃗). (5.8)

It should be noted that, the cost function described in (5.8) is derived from the
constraint on the frequency response of a specific port. If optimization constraints
are given for different ports, the worst-case violation over all the ports has to be
calculated as the final cost as given below:

F (g⃗) = max
i,j

max
sm

Fi,j(sm, g⃗). (5.9)

where, Fi,j represents the cost function on the (i, j)th port. The cost function (5.9)
is then supplied to the GlobalSearch optimization routine, resulting in multiple
optimal design space points [S∗

1 , S
∗
2 , D

∗] which satisfy the constraints. Such an
optimization is illustrated in section 5.2.4.

5.2.3.7 Variability Analysis

The GlobalSearch optimization routine results in multiple optimal design space
points [S∗

1 , S
∗
2 , D

∗] which satisfy the constraints (Subsection 5.2.3.6). These points
are ranked according in terms of the cost function value at these points. Instead of
choosing the point for which the cost function value is the least, we also check how
robust the points are with respect to fabrication process variation. The specifica-
tions of the milling machine to realize the filters, determine the maximal possible
variation of the design parameters. Using this maximal variations we obtain a 3
dimensional region around each of the found feasable optimal values [S∗

1 , S
∗
2 , D

∗].
The aim is to perform a Monte Carlo analysis in the 3 dimensional region of the
design space around [S∗

1 , S
∗
2 , D

∗] , assuming a uniform distribution of the design
parameters in the 3 dimensional region. This analysis however requires a more
accurate macromodel than the macromodel built in Subsection 5.2.3.5 to capture
the variations of the S-parameters due to tiny variations of the design parameters.
Since the region for which we have to build these more accurate models is small, it
only requires a small number of additional EM simulations to boost the accuracy
level locally of the tree-based parametric macromodel. Since the evaluation of the
macromodel only takes little time, we can perform a Monte Carlo analysis with a
high number of realization samples to obtain the robustness of the obtained solu-
tions and its distribution. A limitation of this variability analysis is that it does not
take into account the eventual variation on other parameters such as ϵr, W , h and
Sh. If this would be required, these parameters can be added in the analysis.
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5.2.3.8 Realization and Measurements

The last step in the design process is to realize the filter. The hairpin filter is
realized with a milling machine of type ProtoMat C100/HF3 in a RO4003 material.
The filter is measured with a Vectorial Network Analyzer of type E8364B (PNA
series) calibrated using the electronic calibration Ecal module. The frequency span
of the measurements is chosen to be larger than the frequency span of the model
to be sure that we can compare our model to the measurements and to see what
happens at frequencies that are not modeled.

5.2.4 Numerical examples

In this section, the steps outlined in Section 5.2.3 are illustrated with three numer-
ical examples for three optimization cases. The examples are chosen such that the
same macromodel can be used for all three optimizations.

5.2.4.1 Specifications

The specifications on the S-parameters of the filters are:

|S21| > −3 dB, fp1 ≤ freq ≤ fp2, (5.10a)

|S11| < −8 dB, fp1 ≤ freq ≤ fp2, (5.10b)

|S21| < −30 dB, freq < fs1, (5.10c)

|S21| < −30 dB, freq > fs2, (5.10d)

with three optimization cases:

I. (fp1, fp2, fs1, fs2) = (1.87, 1.94, 1.75, 2.06) GHz.

II. (fp1, fp2, fs1, fs2) = (1.86, 1.92, 1.76, 2.03) GHz.

III. (fp1, fp2, fs1, fs2) = (1.89, 1.95, 1.78, 2.07) GHz.

5.2.4.2 Preliminary Design

We generate starting geometries for the hairpin bandpass filter (see Fig. 5.9) for the
three cases using the design equations given in Section 5.2.3.3. The substrate is the
standard RO4003 with a relative permitivity ϵr = 3.55, a loss tangent δ = 0.0021

and a thickness h of 1.524mm. The characteristic impedance of the lines is chosen
to be 50 Ω, which corresponds to a width W = 3.4 mm. Table 5.2 shows the
starting values for the variable design parameters [S1, S2, D] for the three cases.

3LPKF Laser&Electronics AG, Osteriede 7, 30827 Garbsen, Germany
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Parameter D (mm) S1 (mm) S2 (mm)
Case I 20.348 0.790 3.378
Case II 20.474 0.846 3.780
Case III 20.102 0.835 3.583

Table 5.2: Initial values for the design parameters

Figure 5.9: Layout of the hairpin bandpass filter.

Parameter Min Max
Frequency (freq) 1.5 GHz 2.5 GHz
Spacing 1 (S1) 0.25 mm 2.0 mm
Spacing 2 (S2) 1.5 mm 4.0 mm
Length (D) 20.0 mm 22.0 mm

Table 5.3: Hairpin Filter: Design parameters

5.2.4.3 Design space and parametric macromodeling of the filter

Section 5.2.3.4 shows that the two spacings S1 and S2 along with the length D
are chosen as design parameters in addition to the frequency. The corresponding
ranges are shown in Table 5.3.

The scattering parameter response (S-response) matrix S(s, S1, S2, D) has been
computed using the ADS Momentum4 software with Adaptive Frequency Sam-

4Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Figure 5.10: Magnitude of S21 for three different values of S2.

pling (AFS). The number of simulated frequency samples is extracted from AFS.
The number of frequency samples Ns has been chosen equal to 201 for the para-
metric macromodeling so that the sharp behavior of S-response of the microwave
filter with respect to frequency is well captured. Fig. 5.10 shows the parametric
behavior of the magnitude of S11 as a function of S2 and frequency for S1 = 0.5

mm and D = 21 mm. Similarly, Fig. 5.11 shows the magnitude of S21 as a
function of D for S1 = 0.5 mm and S2 = 2.5 mm.

The parametric macromodeling along with the sequential sampling scheme
discussed in Section 5.2.2 have been implemented in Matlab R2012a and used to
drive the ADS Momentum simulations to generate S-parameters at selected design
space samples. The MAE error measure (5.3) is used to asses the accuracy of
the parametric macromodel. The numerical simulations have been performed on a
Linux platform on Intel(R) Xeon(R) CPU E5504 @ 2.00 GHz machine with 6 GB
RAM. Table 5.4 reports the total number of design space samples, the worst case
mean absolute error (5.3) over the design space, the CPU time needed to run all
the ADS Momentum simulations and the CPU time needed for the parametric
macromodeling with the sequential sampling. The CPU time needed by ADS
Momentum (using AFS) and the parametric macromodel for one frequency sweep
is also shown in Table 5.4. This measure is critical in judging the advantage of
such an approach while performing the design optimization.



EFFICIENT DESIGN CYCLE FOR MICROWAVE FILTERS WITH PARAMETRIC

MACROMODELS 117

1.5 2 2.5
−25

−20

−15

−10

−5

0

Frequency (GHz)

M
ag

ni
tu

de
 o

f S
 1

1 (
dB

)

 

 

 D = 20.0 mm
 D = 21.0 mm
 D = 22.0 mm

Figure 5.11: Magnitude of S11 for three different values of D.

# Samples CPU Time Accuracy
Generation Validation Modeling Data Gen. [dB]

104 86 29 min 48 s 2 h 27 min 38 s −40
CPU Time for one ADS Momentum frequency sweep = 46.6 s
CPU Time for one parametric macromodel frequency sweep = 0.0209 s
Speed-up = 2230×

Table 5.4: Hairpin Filter: Parametric macromodeling

5.2.4.4 Design optimization

The generated parametric macromodel is used in the design optimization of the fil-
ter. As explained in Section 5.2.3.6, the global optimization function GlobalSearch
in Matlab R2012a is used to perform an optimization with a cost function formu-
lated in (5.9) using the requirements of (5.6). The results of the three optimization
cases are tabulated in Table 5.5. For each of the three optimization cases, the
function GlobalSearch found three different optimization solutions (Solution i to
Solution iii) [S∗(x)

1 , S
∗(x)
2 , D∗(x)], x = i, ii, iii, which satisfy the constraints in all

three cases. The Solution i to Solution iii are ranked according in terms of the cost
function value at these points.

Figs. 5.12 and 5.13 show the optimization results for Solution i of Case I
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Figure 5.12: Case I, Solution i: Magnitude of S21 before and after optimization. ADS
optimal response is the EM simulation performed at the optimal solution point to verify

that the model is accurate.

wherein the different S-responses are shown before and after optimization. The
constraints are shown by the solid black lines and as evident from the two figures,
all the constraints are satisfied. Similar curves were observed for Case II and Case
III.

5.2.4.5 Variability Analysis

Once multiple optimization solutions (Solution i to iii) are found for the three op-
timization cases, the next step is to see which solution is the most robust in terms
of a variability analysis with respect to the three design parameters [S1, S2, D]

around the solutions [S∗(x)
1 , S

∗(x)
2 , D∗(x)], x = i, ii, iii. Assuming a uniform dis-

tribution of the three design parameters around the found optima, a Monte Carlo
analysis with 10000 samples is performed to see the robustness of the obtained
solutions of Table 5.5. For this, a locally refined parametric macromodel is built
with a higher accuracy of −50 dB of MAE (5.3) on a 3D N -box region of the
design space around each of the found solutions with ±10 µm of tolerance on all
the three design parameters. Each additional parametric macromodel requires only
8 generation and 1 validation points, defined by the 8 corner points [S

∗(x)
1 ± 10

µm, S
∗(x)
2 ±10 µm, D∗(x)±10 µm]. The Monte Carlo is then performed on these
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Figure 5.13: Case I, Solution i: Magnitude of S11 before and after optimization. ADS
optimal response is the EM simulation performed at the optimal solution point to verify

that the model is accurate.

local parametric macromodels in terms of the cost function to see the robustness of
the found solutions. The Monte Carlo results are also tabulated in Table 5.5. Here,
the robustness can be judged looking at the mean value and the standard deviation
(STD) of the Monte Carlo solutions. A lower mean and a smaller STD is always
preferred as the robust solution over the other solutions (in bold font, Table. 5.5)



Initial design Optimal design Variability Monte Carlo,
Case (S1, S2, D) Solution (S∗

1 , S
∗
2 , D

∗) # Function Optimization modeling cost [dB] Monte Carlo
[mm] [mm] evaluations time [s] time [s] Mean STD time [s]

i [0.374,2.30,21.629] 3 min, 7 min, 11 s −0.659 0.105 2 min, 50 s
I [0.790, 3.378, ii [0.388, 2.318, 21.628] 9598 13 s 7 min, 6.5 s −0.528 0.138 2 min, 50 s

20.348] iii [0.383, 2.256, 21.602] 7 min, 19 s −0.149 0.126 2min, 50 s
i [0.439,2.504,21.768] 1 min, 7 min, 36 s −0.950 0.100 2 min, 52 s

II [0.864, 3.780, ii [0.439, 2.501, 21.770] 6101 58 s 7 min, 33 s −0.929 0.110 2 min, 52 s
20.474] iii [0.439, 2.499, 21.763] 7 min, 33 s −0.893 0.099 2 min, 52 s

i [0.408, 2.419, 21.376] 2 min, 6 min, 55 s −0.865 0.101 2 min, 51 s
III [0.835, 3.583, ii [0.406,2.420,21.375] 7269 11 s 6 min, 55 s −0.898 0.08 2 min, 51 s

20.102] iii [0.381, 2.434, 21.37] 6 min, 56 s −0.816 0.073 2 min, 51 s

Table 5.5: Hairpin Filter: Optimization results.
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Figure 5.14: Case I: Distribution of the cost function with the Monte Carlo analysis.

Figs. 5.14, 5.15 and 5.16 show the distribution of the cost functions after
performing the Monte Carlo analysis for Case I, Case II and Case III respectively.
In Fig. 5.14, for Case I, it can be easily seen that Solution i is the most robust
solution followed by Solution ii and Solution iii as also seen in Table. 5.5. It is
interesting to note that for Case III in Fig. 5.16, even though the minimum cost
was obtained for Solution i, Solution ii turns out to be the most robust solution.

5.2.4.6 Fabrication and measurements

After the optimization process and the variability analysis, the filters are fabricated.
For each case, 2 filters are realized. The difference between the two realizations
is the length of the microstripline that is added to the feed lines in order to place
the connectors. For the first realization this length is 5 mm and for the second
one it is equal to 15 mm. We expect that the behavior in the pass band is not
influenced by this difference in length, since for the passband frequencies the filter
is matched. Nevertheless we want to check how the stopbands are influenced by
this difference. Fig. 5.17 shows a picture of the realization of the filter for Case I
with 5 mm feedline.

The S-parameters of each realization are measured with a Vectorial Network
Analyzer from 1 GHz to 3 GHz with a resolution of 1 MHz. Since the frequen-
cies of the optimization and the measurements do not coincide, the measurement



122 CHAPTER 5

−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6
0

200

400

600

800

1000

1200

Cost function (dB)

N
um

be
r 

of
 o

cc
ur

re
nc

es

 

 

Solution 1
Solution 2
Solution 3

Figure 5.15: Case II: Distribution of the cost function with the Monte Carlo analysis.

−1.1 −1 −0.9 −0.8 −0.7 −0.6
0

200

400

600

800

1000

1200

Cost function (dB)

N
um

be
r 

of
 o

cc
ur

re
nc

es

 

 

Solution 1
Solution 2
Solution 3

Figure 5.16: Case III: Distribution of the cost function with the Monte Carlo analysis.
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Figure 5.17: Realization of the hairpin filter for Case I with 5 mm feedline.

points are interpolated using cubic splines such that we can compare the results
of the model to the measurements. We neglect the error due to the cubic splines
interpolation. Fig. 5.18 shows the interpolation of the measurements for the first
realization of Case I.
The filters are fabricated with a milling machine of type ProtoMat C100/HF. It is
possible that due to the fabrication technique a part of the top layer of the dielec-
tric that is not covered by stripline is milled away, which changes the height of the
dielectric at ranges where the dielectric is not covered by metal. Also we assume
that the relative permittivity of the substrate ϵr is 3.55, whereas the exact value
might be different. This might introduce a frequency shift. Since we do not take
into account these effects in our variability analysis, we do not know how they
effect the S-parameters.
Tables 5.6 and 5.7 compare the measurement results to the optimization specifi-
cations. For each of the filters we observe a frequency shift of 10 to 25 MHz,
which can be explained by the difference in height and relative permittivity. In
our performance evaluation we take this shift into account. As an estimate of
the shift we take the difference between the mean of the observed fp1 and fp2



124 CHAPTER 5

Case, realization fp1 fp2 fs1 fs2
(GHz) (GHz) (GHz) (GHz)

Spec I 1.87 1.94 1.75 2.06
Case I,1 1.898 1.961 1.823 2.115
Case I,2 1.874 1.914 1.800 2.170
Spec II 1.86 1.92 1.76 2.03

Case II,1 1.892 1.924 1.814 2.075
Case II,2 1.890 1.936 1.822 2.101
Spec III 1.89 1.95 1.78 2.07

Case III,1 1.905 1.965 1.833 2.104
Case III,2 1.911 1.972 1.845 2.323

Table 5.6: Measurement results: S21

namely fc,observed =
fp1,observed+fp2,observed

2 (Table 5.6) and the specified fp1 and
fp2, namely fc,spec =

fp1,spec+fp2,spec
2 . Thus the estimated frequency shift is

fc,spec − fc,observed. For fp1 we take the highest of Table 5.6 and 5.7 and for
fp2 the lowest so that we consider the worst-case violation. We evaluate the per-
formance of the filters by comparing the positions of fp1, fp2, fs1 and fs2 of the
measurements to the specifications. If the observed fp1 and fs2 are lower than
and the observed fp2 and fs1 are higher than the specified frequencies the specifi-
cations are fulfilled. Table 5.8 contains the frequency shifts and the compensated
frequencies for each of the filters. When we analyze these results we notice the
following behavior:

• The specification on fs2 is always violated. Moreover we observe that the
for the cases where a line 15 mm is added the difference between fs2 and
fs2,measured becomes larger. This expected since out of the pass band, the
structure is no longer matched.

• The specification on fs1 is always met.

• For Case I and Case II, the width of the pass bands is smaller than the spec-
ified width. Case III fulfills the specifications on the pass band.

• The specifications on S11 are always met.

Considering the fact that the fabrication process introduces some unmodeled
effects, we conclude that filters perform well.

5.3 Conclusions
This chapter is divided into two parts: In the first part, we have presented an en-
hanced parametric macromodeling method for linear high-frequency systems. It is
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Case, realization fp1 (GHz) fp2 (GHz)
Spec I 1.87 1.94

Case I,1 1.891 1.971
Case I,2 1.862 1.944
Spec II 1.86 1.92

Case II,1 1.871 1.942
Case II,2 1.878 1.949
Spec III 1.89 1.95

Case III,1 1.897 1.975
Case III,2 1.903 1.981

Table 5.7: Measurement results: S11

Case, realization fp1 fp2 fs1 fs2 Shift
(GHz) (GHz) (GHz) (GHz) (MHz)

Spec I 1.87 1.94 1.75 2.06 0
Case I,1 1.874 1.937 1.799 2.091 -24.5
Case I,2 1.885 1.925 1.811 2.181 +11.0
Spec II 1.86 1.92 1.76 2.03 0

Case II,1 1.874 1.906 1.796 2.057 -18.0
Case II,2 1.867 1.913 1.799 2.078 -23.0
Spec III 1.89 1.95 1.78 2.07 0

Case III,1 1.890 1.950 1.818 2.089 -15.0
Case III,2 1.890 1.951 1.824 2.302 -21.5

Table 5.8: Performance evaluation

combined with a sequential sampling scheme is able to generate accurate paramet-
ric macromodels in an efficient and fully automated way. A comparison is made
with state-of-the-art modeling approach on a pertinent numerical example to show
the improved modeling capability and efficiency of the new method.

In the second part, we introduce parametric macromodels, developed in the
first part of the chapter, in the design cycle of microwave filters. The main ad-
vantage of these macromodels is that they are cheap to evaluate with a suitable
accuracy. Hence, the macromodels can replace the expensive EM solver in the
optimization step of the filter, which makes this step much less time-consuming.
Moreover the macromodels can be used to perform a variability analysis. We must
however keep in mind that it also takes time to generate the macromodel and that
this must be done during the design cycle. But even when we take this model gen-
eration time into account, the overall design cycle time for design activities (op-
timization and variability analysis) is much less than in the case an EM solver is
used. We have illustrated this macromodeling-based design approach by applying
it to the design of a hairpin resonator filter. Although the generation of the macro-
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Figure 5.18: Measurement results Case I,1.

models is an automated process, it still requires some information from the user,
namely the ranges of the design parameters, the desired accuracy and the frequency
span. How a designer can hand this information to the macromodel generation pro-
cess, is explained in detail in this chapter. Next, we show how the macromodel can
be used for optimization and variability analysis. An important remark about the
variability analysis, is that in general a more accurate macromodel must be gen-
erated in addition to the macromodel initially used to represent the parameterized
system behavior over the complete design space.Since the design space regions
for which these more accurate macromodels have to be generated are small, a very
limited number of EM-simulations is required. Eventually three different filters
are designed, fabricated and measured using this design approach. The designs are
validated with measurements. The found performances of the filters confirms that
macromodeling-based design approach works very well.
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In this chapter we extend the sequential sampling method from N-dimensional
hyperrectangular design space regions, described in the earlier chapter, to simpli-
cial partitions to be used in the macromodeling of parameterized system responses.
The chapter is divided into two main parts.

In the first part, the new refinement strategy using the well-conditioned local
path-simplex refinement is discussed. A numerical example is also provided to
validate the approach.

In the second part, a more elaborate discussion on the pros and cons of the
grid-based and the path-simplex based refinement strategies are discussed. A hy-
brid scheme is later proposed to take the good points of both the schemes to make
the sampling and the modeling strategy more efficient. Several numerical examples
are provided to validate the method.

All the methods discussed here are tailored towards the local parametric macro-
modeling schemes on scattered grids.

6.1 Parametric Macromodeling of Microwave Sys-
tems Responses using Sequential Sampling with
Path-Simplexes

6.1.1 Introduction

Efficient design of electromagnetic (EM) systems often requires expensive simula-
tions using EM solvers which normally provide high accuracy at a significant cost
in terms of memory storage and computing time. Alternatively, parametric macro-
models can be used, which approximate the complex behavior of EM systems,
characterized by frequency and additional design parameters, such as geometrical
or substrate features. Parametric macromodeling of EM systems has attracted a
lot of attention during recent years [1–3]. However, one of the key issues in these
modeling approaches is that they select the number of modeling samples a priori
which might result in under sampling or over sampling at the cost of computational
resources.

In this chapter the state-of-the art parametric macromodeling schemes are au-
tomated with the help of a scattered sampling scheme which works on local refine-
ment of well-conditioned simplexes such that optimum number of data samples are
selected [4]. The refinement on the simplexes can be done in many ways such as di-
viding along in-center. However, this might lead to the creation of ill-conditioned
simplexes called slivers. Generation of slivers can be avoided by refining either
locally [5, 6] or globally [7, 8]. The local refinement scheme [5, 6] starts from
the corner points of an N -cube and then refines it into smaller simplexes in a tree
fashion like the sequential sampling method of [4], whereas the global refinement
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schemes [7, 8] work on a primary Delaunay tessellation and then refine it to im-
prove the conditioning of simplexes. Hence the local path-simplex method [5, 6]
assures good partition from the beginning of the sampling process and is suitable
for the application of different passivity-preserving parametric macromodeling al-
gorithms on scattered grids [1–3]. In case if the global refinement schemes [7, 8]
were used, the existing mesh has to undergo global refinement indicating that the
local interpolated models change significantly with a consequent computational
burden. Moreover, the tessellation generated by the method of path-simplexes is
proved to be Delaunay by construction [6], and for the above mentioned reasons it
is used in this chapter.

6.1.2 Passivity Preserving Parametric Macromodeling

In this chapter, we use one of the local parametric macromodeling schemes which
use the Vector Fitting (VF) technique [9] to build frequency-dependent rational
models called root macromodels at the selected design space samples and then pa-
rameterize them, see [1–3]. These methods preserve stability and passivity over
the complete design space, and therefore are suitable for time-domain simulations.
The parametric macromodeling process starts with a set of multivariate data sam-
ples {(s, g⃗)k,H(s, g⃗)k}Ktot

k=1 which depends on frequency and additional design
parameters. From these data samples, a set of root macromodels in pole-residue
form are built for a set of design space samples g⃗k by means of VF yielding a set of
root macromodels R(s, g⃗k). Stability and passivity are enforced using robust stan-
dard techniques [9, 10], resulting in a set of stable and passive root macromodels.
The next step of these parametric macromodeling algorithms is the parameteriza-
tion of the set of root macromodels R(s, g⃗k). In [1], a parametric macromodel
is built by interpolating a set of root macromodels at an input-output level, while
in [2, 3], a novel enhanced interpolation of root macromodels is described, which
results in high modeling capability and robustness in comparison to [1].

6.1.3 Refinement using Well Conditioned Path-Simplexes

A path-simplex in RN is defined as an N -Simplex having N mutually orthogonal
edges which, in the sense of graph theory, form a path [6]. Two edges are mutually
orthogonal if they are perpendicular to each other. The property of a path-simplex
which makes it attractive for the proposed sequential sampling is the fact that it is
a non-obtuse simplex. To understand what a non-obtuse simplex is, it is necessary
to define the facets and the dihedral angles of an N -simplex. A facet is defined as
the N + 1 convex hulls of N distinct vertices or corner points of the N -simplex
(for example, the face of a tetrahedron in 3D; facet is the generalization in higher
dimensional spaces). The dihedral angle between two facets are the angles made
between the inward normals of these facets. A non-obtuse simplex is then defined
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as an N -simplex with all of its 1
2N(N + 1) dihedral angles greater than π

2 . This
ensures that, slivers are never created during the local refinement of a simplex, en-
suring convergence of the algorithm. The proposed sequential sampling algorithm
starts from a single N -box region of the design space which is then normalized to
a N -cube and divided into N ! path-simplexes using the result of [6].

Figure 6.1: Coexter’s trisection of the path-simplex in R3 (as in [5]).

In [5], Brandts et al. prove that given a path-simplex in RN , it can be divided
into N path-subsimplexes using Coxeter’s trisection method generating N − 1

new sample points. Fig. 6.1 shows such a division for a path-simplex in R3. The
corners of the path-simplex are represented by the position vectors p0, p1, p2, and
p3 with respect to any arbitrary origin, and the edges p0− p1, p1− p2, and p2− p3
are the three orthogonal edges which form a path. Three new path-simplexes are
formed using the points y2 and y3 calculated as

yj = pj(∥p1∥2/∥pj∥2), j = 2, 3, . . . , N, (6.1)

where, ∥.∥ is the Euclidean norm [5]. In (6.1), yj , j = 2, 3, . . . , N are position
vectors with respect to the same origin as for pj . Generation of slivers during the
local refinement can be monitored by calculating the aspect ratio,

Rasp = N
d

D
. (6.2)

in (6.2), d and D are the diameters of the inscribing and circumscribing N -
spheres of theN -simplex respectively. Root macromodels are created at the corner
points of these simplexes and using the parametric macromodeling method of [2],
passive interpolated models are created for the parameterized frequency responses.

6.1.4 Proposed Sequential Sampling Algorithm

The sequential sampling algorithm consists of the following steps:

I) Initialization: Define a N -box design space with N design parameters g⃗ =

(g(1), . . . , g(N)) and generate Q = N ! path-simplexes.
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II) Update the parametric macromodel R(s, g⃗) for the entire design space with
Q path-simplexes using the method of [2].

III) For each path-simplex q = 1, . . . , Q, check the error criteria at its in-center,

1. IF: (Errq > ∆): Divide qthpath-simplex into N path-subsimplexes
[5], update Q = Q+N − 1, q = q + 1 and go to Step II.

2. ELSE: increment q = q + 1.

i. IF (q ≤ Q): Not all subspaces are checked for the error criteria,
go to Step III;

ii. ELSE: Go to Step IV.

IV) Terminate the algorithm. The final parametric macromodel with the required
accuracy target is found.

6.1.5 Numerical Example

The S-Parameter response of a Hairpin bandpass filter generated with the help of
ADS Momentum1 on a substrate with relative permittivity ϵr = 9.9 and a thickness
of 0.0635 mm is modeled (Fig. 6.2). Two spacings S1 and S2 and two lengths L1

and L2 are chosen as design parameters (see Fig. 6.2) in addition to frequency.
Their corresponding ranges are shown in Table 6.1. The parametric behavior of
the filter is shown in Fig. 6.3.

Parameter Min Max
Frequency (freq) 1.5 GHz 3.5 GHz
Spacing 1 (S1) 0.25 mm 0.35 mm
Spacing 2 (S2) 0.65 mm 0.75 mm
Length 1 (L1) 12.0 mm 12.5 mm
Length 2 (L2) 2.75 mm 3.25 mm

Table 6.1: Design parameters of hairpin bandpass filter.

For the sequential sampling the Mean Absolute Error (MAE) is used

EMAE(g⃗) =

Pin∑
i=1

Pout∑
j=1

Ns∑
k=1

|Ri,j(sk, g⃗)−Hi,j(sk, g⃗)|
PinPoutNs

, (6.3)

1Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Figure 6.2: Layout of the microwave hairpin bandpass filter.
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Figure 6.3: Parameterization: |S11| and |S21| as a function of L1 and S1 resp.

to assess the accuracy of the model at the in-center of each simplex. The method
compares the actual EM simulation response Hi,j(s, g⃗) to the parametric macro-
model response Ri,j(s, g⃗), with Pin input ports, Pout output ports and Ns fre-
quency samples. The proposed sequential sampling algorithm is used along with
the parametric macromodeling method of [2, 3]. The MAE measure of (6.3) is
used to assess the accuracy of the models generated with a target accuracy of −50

dB. This resulted in the selection of 68 design space points, with an achieved ac-
curacy of −50.21 dB.

Fig. 6.4 shows the normalized values of the 68 design space points selected,
using a parallel coordinate plot [11]. In Fig. 6.4, the black dots represent the
sample points selected for each design parameters with the gray lines representing
different samples points in four dimension. The minimum aspect ratio was found
to be equal to 0.0514, meaning no slivers were created. Fig. 6.5 compares the
magnitude of S-parameter matrix entry S21 between the actual momentum simu-
lation with the macromodel for three random validation points in the design space
and the responses overlap showing the accuracy. In order to check the passivity,
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the H∞ norm ||R(s, S1, S2, L1, L2)||∞ of the parametric macromodel for a dense
grid of 5× 5× 5× 5 (S1, S2, L1, L2) was calculated and was found to be within
the passivity bound, ||R(s, S1, S2, L1, L2)||∞ ≤ 1.
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6.2 Parametric macromodeling using sequential sam-
pling with a combination of grid-based and path-
simplex based sampling

6.2.1 Introduction

Efficient design of electromagnetic (EM) systems using accurate parametric macro-
models is an active field of research [1–3, 12–16]. These parametric macromodels
are computationally cheap and they act as a replacement model for the expensive
EM solvers thereby reducing the overall computational burden. The parametric
macromodeling schemes are also able to preserve system properties such as stabil-
ity and passivity and hence can be used in time-domain simulations [1–3, 12–16].
However, these state-of-the-art macromodeling schemes suffer from the fact that
the sample distribution over the design parameter space should be known a priori
based on rules of thumb [1–3, 12–16].

Several sequential sampling algorithms have been suggested in the literature
for automatically building parametric macromodels for the EM systems [17–22].
All of these sampling schemes are global but often fail to guarantee stability and
passivity. Preserving system properties is very important especially if the model
thus generated is employed in time-domain simulations [23]. Also, for relatively
high dimensions the memory requirement for these methods can be relatively high
since big matrices has to be solved, limiting their applicability [17–19, 22]. Re-
cently a local tree-based sequential sampling has been proposed in [4] which uses
interpolation-based local parametric macromodeling method to build accurate pa-
rameterized macromodels. The method is able to preserve system properties and
can also build multi-fidelity models. This means that the designer can already
begin the design process once sufficient accuracy is reached for the intermediate
model while the model is still being refined. Also the method is implemented as a
tree with independent branches for different regions of the design space making it
easily expandable and portable to parallel computing platforms.

In this chapter, we improve the method of [4], which we refer throughout this
chapter as grid method, on the following aspects:

1 The grid method deals with hyperrectangular regions of the design space
which are called subspaces in this chapter. In the previous method, after
performing an edge-based division the algorithm finally divides along the
center of the subspace. This is an exploratory step which tends to generate
a considerable number of samples per division. This becomes more critical
with higher dimension. In this work, the final refinement after the edge-
based division is performed using a scattered division with well-conditioned
simplicial partitions called path-simplexes [5, 6] reducing the overall com-
plexity of the problem.
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2 The grid method requires validation samples to access the accuracy of the
terminal subspaces which need not be used further in the final model. In this
chapter, the validation samples are altogether eliminated by using a level-
based check wherein two subsequent levels of models are compared for con-
vergence. This results in a considerable reduction in the overall number of
points required.

The refinement on the simplexes is done using the well-conditioned path-
simplex division (see Section 6.1.3). However, since the path-simplex method
gives more importance to conditioning of the simplexes, it is more a space-filling
strategy. So, in this work a hybrid scheme which combines all the benefits of the
grid-based refinement and the path-simplex refinement is used to get an efficient
sequential sampling strategy requiring less computational resources.

6.2.2 Preliminaries

This section briefly explains a robust parametric macromodeling method used in
the chapter and also recapitulate the grid-based sequential sampling method of [4].

6.2.2.1 Passivity Preserving Parametric Macromodeling

As discussed in Section 6.1.2, the novel enhanced interpolation method of [2, 3]
is used here. To understand the macromodeling method of [2, 3], let us consider
a 2 parameter design space region Ωl, l = 1, . . . , L given in Fig. 6.6. A two pa-
rameter description is presented here for clarity and ease of notation, even though
the method is general for any dimension N of the design space. The rational root
macromodels RΩl(s, g⃗ Ωl

i ), i = 1, . . . , 2N contained in the N -box region Ωl are
represented in a pole-residue form:

RΩl(s, g⃗ Ωl
i ) =

P
Ωl
i∑

p=1

CΩl
p,i

s− aΩl
p,i

+DΩl
i ; p = 1, . . . , PΩl

i (6.4)

where CΩl
p,i represents the residue matrices, aΩl

p,i the pole PΩl
i . DΩl

i is the direct-
term matrix.

Later, the parametric macromodeling is applied on these N -box regions Ωl.
The design space region Ωl is defined by four bounding corners g⃗ Ωl

1 = (g11 , g
1
2),

g⃗ Ωl
2 = (g21 , g

1
2), g⃗

Ωl
3 = (g11 , g

2
2), and g⃗ Ωl

4 = (g21 , g
2
2) as in Fig. 6.6. Each corner

possesses a different root macromodel RΩl(s, g⃗i), i = 1, . . . , 4. We will discuss
the interpolation of the root macromodels next. For simplicity and ease of notation
we omit the superscript Ωl. In [2, 3], one amplitude scaling and one frequency
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Figure 6.6: A two dimensional design space with four root macromodels.

scaling coefficient (α1, α2) are calculated using the optimization

(α∗
1,ij , α

∗
2,ij) = argmin

(α1,ij ,α2,ij)

[
Err(R̃j(s, g⃗i),R(s, g⃗j))

]
. i = 1, . . . , 4; j = 1, . . . , 4;

(6.5)
In (6.5), R̃j(s, g⃗i) = α1,ijR(sα2,ij , g⃗i), is the interpolated response of R(s, g⃗i)

obtained to match R(s, g⃗j) and Err(·) is a suitable error measure between the two
responses [2, 3]. Note that, α∗

1,ij = α∗
2,ij = 1 when i = j.

The evaluation of the model taken at a generic point g⃗q in the design space
(Fig. 6.6) is done similarly to [2, 3] as:

i. For each root macromodel R(s, g⃗i), i = 1, . . . , 4, the amplitude scaling
coefficient α1,ij and frequency scaling coefficient α2,ij are interpolated us-
ing a multilinear interpolation [24] over g⃗ at the point g⃗q to find α1,iq and
α2,iq. This results in the modified root macromodels, R̃q(s, g⃗i) = α1,iq×∑Pi

p=1
Cp,i

sα2,iq−ap,i
+Di at g⃗q ,

ii. Then the models R̃q(s, g⃗i), are interpolated using the multilinear interpola-
tion [24] over g⃗ to get the final model interpolated at the points g⃗q , R(s, g⃗q).

This parametric macromodeling approach is performed for each region Ωl which
can either be a N-dimensional hyperrectangle or a N-simplex to cover the complete
design space.

6.2.2.2 Sequential sampling using Grid-Based Refinement

The grid-based refinement scheme of [4] works on hyperrectangular grids and gen-
erates local parametric macromodel for each and every subspace. The grid-based
sequential sampling algorithm begins from a single subspace with 2N corners de-
fined by the design parameter ranges [4]. Then it finds the maximum sensitive
edge by checking difference between two responses of every edge and selects the
edge with maximum difference. Later, a (N − 1)-Hyperplane perpendicular to
the selected edge is used to divide the subspace into two child subspaces if the
accuracy is not satisfactory. This procedure is repeated until all the subspaces are
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accurate and then finally a center refinement is used to complete the process as
clearly explained in [4].

The idea of selecting the maximum sensitive edge is slightly modified in this
work to make use of the available information generated by [2, 3]. The idea here
is to find the most difficult-to-model edge in terms of the macromodeling method
of [2, 3] as explained in detail below.

Figure 6.7: Subspace division along the most difficult-to-model edge.

As in Section 6.2.2.1, let us consider a two parameter design space g⃗ ∈ (g1, g2)

defined by four corners g⃗1 = (g11 , g
1
2), g⃗2 = (g21 , g

1
2), g⃗3 = (g11 , g

2
2), and g⃗4 =

(g21 , g
2
2) of a rectangular region (two dimensional subspace) as in Fig. 6.7. In the

parametric macromodeling method of [2, 3], one amplitude scaling and another
frequency scaling coefficients (α∗

1,ij , α
∗
2,ij) are calculated as in (6.5). The error

information obtained from (6.5) can be used as a measure of the modeling dif-
ficulty of each and every edge 1 ≤ (i, j)edge ≤ 4 (see Fig. 6.7), and the most
difficult-to-model edge is the edge with the worst-case error given by the formula,

(i, j)max
edge = argmax

(i,j)edge

(
min

(α1,ij ,α2,ij)

[
Err(R̃(s, g⃗i),R(s, g⃗j))

])
. (6.6)

Then, a hyperplane perpendicular to the edge (i, j)max
edge is used to divide the sub-

space into two halves. In Fig. 6.7, the pair (2, 4) was selected as the most difficult-
to-model edge and a line perpendicular to that edge is used to divide the subspace
into two.

However, the grid-based scheme suffers from the following:

1. The final refinement after the edge-based refinement of each subspace is
performed at the center [4], and to keep the hyperrectangular nature of the
grid all the lower dimensional hyperplanes such as edges, faces etc., of the
subspace are divided generating a lot of points.

2. The local parametric macromodel is build by linearly interpolating 2N root
macromodels for every subspace [4]. Since the root macromodel transfer
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functions are appended as in [2, 3], the order of the final parametric macro-
model inside a subspace can have high values (in proportion to 2N ). This
increases the evaluation time for the macromodel especially for time-domain
simulations.

Both of the above mentioned issues become even more troublesome with higher
dimensions. Therefore, a scattered refinement using well-conditioned simplexes
becomes necessary to overcome these issues.

6.2.3 Path-Simplexes

The scattered refinement as discussed in Section 6.1.3 is done with the help of
well-conditioned simplicial partition using path-simplexes. In this section we give
a much more elaborate discussion on this local refinement strategy. A path-simplex
has the following properties which makes it useful for the proposed sequential
sampling [6]:

i. a path-simplex in RN is a non-obtuse simplex and all its (N − i)-simplexes,
i = 1, 2, ..(N − 1) are also path-simplexes,

ii. it contains its circumcenter ensuring good conditioning,

iii. path-simplex refinement is assured to be Delaunay by construction,

iv. every alternate division performed on path-simplex generates geometrically
similar simplexes.

The above mentioned points ensures that slivers are never created during the lo-
cal refinement of a simplex, ensuring convergence of the algorithm [25]. The pro-
posed sequential sampling algorithm starts from an edge-based refinement scheme
described above and then uses the result of [6] to refine a N -box region of the de-
sign space into N ! path-simplexes. Then these path-simplexes are further divided
as in the Coxeter’s trisection method [5] which is described in Section 6.1.3.

To see the advantage of using a path-simplex division, it is compared with re-
spect to a division at the incenter of the simplex and the minimum aspect ratio
(6.2) for each level of division is plotted in Fig. 6.8. The comparison is made
with respect to the number of times the simplex is divided as well as the dimen-
sion N of the simplex. Both the division techniques start from a path-simplex of
unit orthonormal edges. As seen in Fig. 6.8, the path-simplex division preserves
the aspect ratio of the simplexes thereby assuring a good conditioning. This is
much better as compared to the incenter division. As stated in [5], a path-simplex
if divided twice, one of the sub-sub-simplexes is similar to the original simplex
keeping its aspect ratio. This can also be seen in Fig. 6.8, where the aspect ratio
shows oscillatory behavior showing each alternate division levels are similar.
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Figure 6.8: Comparison of Coxeter’s trisection method versus incenter-based division.

Next, to show why a scattered sampling is required, some important parameters
for the edge-based and center-based subspace division of [4] is compared with
the path-simplex division and is tabulated in Table 6.2. By using a simplex-based
division, the number of expensive samples generated per refinement can be brought
down to (N −1). Note that the number of points created per center-based division
is calculated by summing all the possible hyperplanes such as edges, faces, etc.,
which are divided. Also, the order of the final macromodel can be reduced from
that proportional to a factor of 2N for the grid-based scheme to a factor of (N +

1) for the scattered scheme. This creates considerable speed-ups in macromodel
evaluations both in frequency and time-domain.

Refinement # points per # regions per model order
Method refinement refinement proportional to

Edge-based 2N−1 2 2N

Center-based 1 +
N−1∑
m=1

2N−mN !
m!(N−m)! 2N 2N

Path-simplex N − 1 N N + 1

Table 6.2: Comparison of different refinement strategies.
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However, one of the issues with the path-simplex based division is that the
method acts as a space-filling strategy by generating well-conditional simplexes
with less emphasis on sequential sampling. Therefore a hybrid method is pro-
posed in this chapter which brings the advantages of both schemes to get a better
sequential sampling strategy as will be explained in Section 6.2.5.

6.2.4 Error estimation without validation points

In [4], the accuracy of the model is calculated by comparing the parametric macro-
model with the actual EM simulations at each and every terminal subspaces. When
a subspace is found to be accurate, it is not further divided and the expensive vali-
dation points from the EM solver may not used [4]. This can be tackled to a certain
extend by performing an estimation of the accuracy or the error at each and every
subspace as described here.

Figure 6.9: Error estimation with two subsequent model levels: (a) Rectangular region
and (b) Simplicial region.

In this chapter, a comparison between two subsequent levels of parametric
macromodels is proposed to assess the convergence of the sequential sampling as
shown in Fig. 6.9.a for a 2D case on a rectangular grid. Two different parametric
macromodels are compared, one from the parent subspace (region 1-2-3-4, solid
line arrows) and the other from the child subspace (region 5-6-3-4, dashed line ar-
rows) at the center of the child subspace region. On the other hand, if the simplexes
are divided, a similar strategy is used, wherein the two macromodels are compared
at the incenter of the child simplex as shown in Fig. 6.9.b. When a convergence is
observed between the two levels, the algorithm is terminated.

6.2.5 Proposed sequential sampling algorithm

Fig. 6.10 shows the flowchart of the proposed sequential sampling algorithm. The
algorithm is divided into different stages as explained below.

Stage 1:Initialization is done by defining the boundaries of the design space
and then generating the 2N corner root macromodels. Then an initial parametric
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Figure 6.10: Flow chart of the proposed sequential sampling.

macromodel is built for this subspace by using [2, 3] and this is the starting point
of the tree-based sequential sampling. The number of EM simulations at this stage
is only the 2N corner points of the design space.

Stage 2:Then, the grid-based refinement is performed to refine the initial para-
metric macromodel using the edge refinement method as in Section 6.2.2.2. At
every iteration a subspace is selected and the modeling error is estimated using the



148 CHAPTER 6

parent-child response comparison as explained in Section 6.2.4. If the subspace is
found to be inaccurate, the subspace is divided using a hyperplane perpendicular
to the most difficult-to-model edge as per Section 6.2.2.2 similar to Fig. 6.7. This
step is continued till all the subspaces are sufficiently accurate.

This initial accuracy target can only be set depending on the problem at hand.
For example, considering microwave filter, if a passband requirement of -30 dB is
required, the parametric macromodel should be able to describe the filter charac-
teristics up to an accuracy of -30 dB. So, the initial modeling accuracy can be set to
the bare minimum accuracy required by the designer (-30 dB in the example stated
here) such that this low fidelity model can already be used the design process. The
number of EM simulations at this stage depends on the grid-based refinement.

Stage 3:In the next step, the initial grid generated is rearranged into path-
simplexes regions. No additional EM simulations are required at this stage. Here,
the model generated using the grid-based refinement is used as the starting point
and then each and every terminal subspaces are refined into path-simplexes [6]. It
should be noted that, during this process only hyperrectangular regions are con-
verted into path-simplex regions and no further calculation of amplitude and fre-
quency scaling parameters for the parametric macromodeling [2, 3] is needed since
the root-macromodels stays the same.

One important point to note here is that, the refined hyperrectangular regions
can already be long (meaning some edges are significantly longer than the others)
according to the relative importance of different design parameters. So, if these
hyperrectangular regions are converted directly into path-simplexes, the generated
path-simplexes can have poor aspect ratio. Therefore, the hyperrectangular regions
are first normalized to unit cubes before being refined into simplicial regions to
avoid such a scenario.

Stage 4: Finally, the Scattered refinement is done using the method of path-
simplexes by which the final target accuracy is to be achieved. After this con-
version, the simplex regions are selected and error is estimated at their incenters
similar to Section 6.2.4. A higher accuracy can be selected here compared to Stage
2, but since the error is estimated between two different models (as in Setcion IV),
the accuracy target at Stage 2 and Stage 4 can very well be equal and the conver-
gence is checked by estimating the error between the two models. If the accuracy
is not satisfied for some simplicial regions, they are further divided using the path-
simplex refinement procedure of Section 6.1.3 until all the simplexes are accurate.
As in the case of grid-based refinement, the number of EM simulation is decided
by the scattered refinement process.

Stage 5: Once all the simplicial regions are accurate, the sequential sampling
algorithm is terminated. No further EM simulations are required at this stage.

It is important to note that, when the range of the design space is increased, the
algorithm takes care of the change by exploring the design space. This is done by
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generating additional samples (or root macromodels) in the newly added regions.
Thus, by generating additional samples and refining the bigger regions into smaller
domains, the algorithm will ensure that the parametric macromodeling scheme is
able to build accurate models over the complete design space.

6.2.6 Numerical results

In this section three numerical examples are presented which demonstrate the ca-
pability of the proposed sequential sampling method for efficiently building the
parametric macromodels for EM systems. For comparison purposes in terms of
the computational time, all the numerical simulations have been performed on a
Linux platform on Intel(R) Xeon(R) CPU E5504 @ 2.00 GHz machine with 6 GB
RAM.

6.2.6.1 Example I: Microstrip bandpass filter

A microstrip bandpass filter on a substrate with relative permittivity ϵr = 9.0 and
a thickness of 0.660 mm is modeled in this example. The S-Parameter response
of the filter is generated with the help of ADS Momentum2. The ADS Momentum
simulation engine is used in full-wave mode. All ports are defined as single mode
ports, with 50 Ω characteristic impedance. The automatic meshing (with edge
mesh) uses 20 cells per wavelength, at a mesh frequency of 6 GHz. The layout
of this filter is shown in Fig. 6.11. Two lengths L1 and L2 and the spacing S are
chosen as design parameters (see Fig. 6.11) in addition to frequency whose ranges
are L1 ∈ [6.0, 7.0] mm, L2 ∈ [4.0, 5.0] mm, S ∈ [0.05, 0.10] mm, and frequency
∈ [4.0, 6.0] GHz. The Mean Absolute Error (MAE) measure or the L1-norm per
port is used to assess the accuracy of the model in everyN -box region of the design
space:

EMAE(g⃗) = max
u=1,...,P
v=1,...,P

1

Ns

(
Ns∑
n=1

|Ru,v(sn, g⃗)−Hu,v(sn, g⃗)|

)
. (6.7)

The method compares the EM simulation response Hu,v(s, g⃗) with the parametric
macromodel response Ru,v(s, g⃗), where P is the number of system ports. The
MAE error measure or the L1-norm gives a global view on the error between the
two frequency responses and hence it is preferred. The target accuracy was kept
at -45 dB and the initial refinement accuracy for the proposed method also kept at
-45 dB.

Fig. 6.12 shows the parametric behavior of the magnitude of S11 as a func-
tion of L1 and frequency, other values being kept at the mean value of the design

2Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Figure 6.11: Example I: Layout of the microstrip bandpass filter.
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Figure 6.12: Example I: Magnitude of S11 as a function of L1.

space. Similarly, Fig. 6.13 shows the magnitude of S21 as a function of S and fre-
quency. The proposed algorithm and the grid method [4] have been implemented
in Matlab R2012a3 and used to drive the ADS Momentum simulations to generate
S-responses with 31 frequency points at selected samples. The dotted curves in
Figs. 6.12 and 6.13 represent the response of the parametric macromodel obtained
from the proposed method. As seen, a good agreement can be observed.

Fig. 6.14 shows the distribution of the design sample points with the proposed

3The Mathworks, Inc., Natick, MA, USA
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Figure 6.13: Example I: Magnitude of S21 as a function of S.
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Figure 6.14: Example I: Sample distribution with the proposed algorithm.
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Figure 6.15: Example I: Verification sample distribution.

hybrid sequential sampling algorithm. The tessellation with the path-simplexes are
also shown here. It can be observed from Fig. 6.14 that along the design parameter
L2, the maximum number of samples are taken, which means that this parameter
is highly influential on the output S-parameters of the filter. The design parameter
S is the least influential and hence it is sparsely sampled. Also, it can be noticed
that the higher values of the design parameter L2 ∈ (4.5, 5.0) mm is more densely
sampled than the other parts of the design space. This indicates a high sensitivity
of the output S-parameter response of the filter to the changes in L2 ∈ (4.5, 5.0)

mm in comparison with the lower values, L2 ∈ (4.0, 4.5) mm. In order to show
the capability of the proposed algorithm, it is compared with the grid method on
125 verification points spread across the design space as shown in Fig. 6.15 using
a Latin hypercube space filling.

Fig. 6.16 shows the mean absolute error distribution for both sequential sam-
pling methods over the final verification points. As seen in the figure, a comparable
accuracy is achieved for the proposed sequential sampling scheme without having
to use any validation points during the sampling process like the grid method.
Next, to check the advantage gained by performing a hybrid algorithm, the para-
metric macromodeling is performed directly on the scattered sampling. That is, the
Stage 2 of the algorithm in Fig. 6.10 is not performed and the algorithm is checked
for its convergence. It was observed that the algorithm, even after generating 492
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Figure 6.16: Example I: Mean absolute error distribution for the final verification samples.
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Figure 6.17: Example I: H∞ norm for the final verification samples.
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Sampling # Samples Max. Error Max. Evaluation Speed-up
Method Gen. Val. Order (dB) ||H||∞ Time (s)

Proposed 275 - 86 -43.8 0.999 0.136 199 ×
grid [4] 438 248 164 -48.3 0.999 0.256 105 ×

CPU time for EM simulator to calculate a single frequency response = 27 s.

Table 6.3: Example I: Comparison of different sampling strategies.

samples could converge only to an accuracy level of −25.11 dB. As explained
in Section 6.1.3, the path-simplex division, even though very well-conditioned,
is highly exploratory in nature and hence slow in converging to a good model-
ing accuracy. Thus combining the advantages of both grid-based refinement and
the simplicial refinement becomes necessary to have an efficient and automated
sampling strategy.

In order to check the passivity, the H∞ norm ||R(s, L1, L2, S)||∞ of the para-
metric macromodel was calculated for the final 125 points and is plotted in Fig.
6.17. From the figure, it is clear that maximum norm is bounded by unity as
expected. Table 6.3 compares the two sampling schemes over some important pa-
rameters. As seen in the table, the maximum order of the parametric macromodel
is relatively high for the grid method in comparison to the proposed scheme. This
is because of the fact that all the 2N corner root macromodels of a subspace is
augmented in the grid method whereas there are only N + 1 corner root macro-
models defining a simplex for the proposed scheme. This becomes more severe
with higher dimensions as will be seen in a later example. The table also shows
the worst case mean absolute error for the two schemes and as expected, the pro-
posed scheme has a slightly lower accuracy level, but only requires 40% of the
samples compared to grid method (please note that the target accuracy level was
-45dB). This is because of the fact that the error is estimated at each level dur-
ing the sampling whereas for the grid method it is validated using expensive EM
simulations. This is the tradeoff between the two sampling schemes.

Finally, to see the speed-up gained by using a parametric macromodel in the
design process, the time required for one single frequency response evaluation of
the parametric macromodels are compared with the corresponding EM simulator
time and the speed-up is tabulated in Table 6.3. The speed-up for each case is
calculated by comparing the evaluation time for one frequency sweep using the
macromodel (column 7 of Table 6.3) with the CPU time for the EM simulator.
However, it should be noted that the generation of the parametric macromodel
requires some initial EM simulations, but once the model is built, it can be used
in multiple design optimization scenarios such as changing specifications, to make
the overall design cycle very efficient.

So, in conclusion the following points can be observed from Table 6.3:
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1. The number of samples required for the proposed scheme is reduced in com-
parison with the methods of [4, 25].

2. The validation samples are completely removed by estimating error by com-
paring two different levels of the model as in Section 6.2.4.

3. Estimating the error means that the accuracy of the proposed method might
not be as good as the grid method of [4]. This is the tradeoff between the
validation points and error estimation.

4. The modeling complexity is reduced in comparison with grid method of [4]
as explained before in Table 6.2. This also gains in the speed-up in terms of
the parametric macromodel evaluation as clear from the last column of the
table.

5. It should be noted here that the order of rational models for both methods
are significantly huge in comparison with the root macromodels. This is
because of the fact that the parametric macromodeling method described
in [2, 3] performs the weighted averaging of different root macromodels
which increases the interpolated rational model order.

6.2.6.2 Example II:Microstrip with two coupled vias

A microstrip with two coupled vias on a substrate with relative permittivity ϵr =

9.0 and a thickness of 500 µm is modeled in this example. The S-parameter re-
sponse of the structure is generated with ADS Momentum. The ADS Momentum
simulation engine is used in full-wave mode. All ports are defined as single mode
ports, with 50 Ω characteristic impedance. The automatic meshing (with edge
mesh) uses 30 cells per wavelength, at a mesh frequency of 5 GHz. Fig. 6.18
shows the top and cross sectional view of the structure. The length of the two
vias L, the distance between the two vias D and the radius of the vias r are cho-
sen as design parameters (see Fig. 6.18) in addition to frequency whose ranges
are L ∈ [150, 250] µm, D ∈ [1.5, 2.5] mm, r ∈ [0.1, 0.4] mm, and frequency
∈ [0.1, 10.0] GHz. The target accuracy (6.7) was kept at -45 dB and the initial
refinement accuracy for the proposed method also kept at -45 dB. Fig. 6.19 shows
the parametric behavior of the magnitude of S11 as a function of L and frequency,
other values being kept at the mean value of the design space. Similarly, Fig.
6.20 shows the magnitude of S21 as a function of r and frequency. As in Exam-
ple I, the proposed algorithm and the grid method [4] have been implemented in
Matlab R2012a and used to drive the ADS Momentum simulations to generate S-
responses at selected samples. The dotted curves in Figs. 6.19 and 6.20 represent
the response of the parametric macromodel obtained from the proposed method.
As seen a good agreement can be observed.
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Figure 6.18: Example II: Layout of Microstrip with two coupled vias: (a) Top view, (b)
cross sectional view.
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Figure 6.19: Example II: Magnitude of S11 as a function of L.

As in the previous example, the proposed algorithm is compared with the grid
method on 125 verification points spread across the design space using a Latin hy-
percube space filling. Fig.6.21 shows the mean absolute error distribution for the
sequential sampling methods over the final verification points. A comparable accu-
racy is achieved for the proposed sequential sampling scheme as it was observed
for Example I. The H∞ norm ||R(s, L,D, r)||∞ of the parametric macromodel
was calculated for the final 125 points and is plotted in Fig.6.22 and it is observed
to be passive.
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Figure 6.20: Example II: Magnitude of S21 as a function of r.

Sampling # Samples Max. Error Max. Evaluation Speed-up
Method Gen. Val. Order (dB) ||H||∞ Time [s]

Proposed 30 - 64 -40.72 0.999 0.1180 1008 ×
Grid [4] 92 38 128 -45.41 0.999 0.2017 590 ×

CPU time for EM simulator to calculate a single frequency response = 119 s.

Table 6.4: Example II: Comparison of different sampling strategies.

Table 6.4 compares the two sampling schemes over some important parameters
similar to Table 6.3 for the first example. As for the Example I, a similar conclusion
can be derived for the different quantities such as maximum model order, mean
error etc. Note that the target accuracy level was -40 dB. The tradeoff between the
two sampling schemes in terms of the error versus number of modeling samples
required is also clear in the Table 6.4.

As in the first example, to show the speed-up gained by using a parametric
macromodel in the design process, the time required for one single frequency re-
sponse evaluation of the parametric macromodels are compared with the corre-
sponding EM simulator time and the speed-up is tabulated in Table 6.4.

So from Table 6.4 a similar conclusion can be derived as in the case of Example
I
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Figure 6.21: Example II: Mean absolute error distribution for the final verification
samples.

6.2.6.3 Example III: Ring resonator filter

A Ring resonator bandpass filter on a substrate with relative permittivity ϵr = 4.32

and a thickness of 152 µm is modeled in this example. The layout of this fil-
ter is shown in Fig. 6.23. The S-parameter response of the structure is gener-
ated with ADS Momentum. The ADS Momentum simulation engine is used in
full-wave mode. All ports are defined as single mode ports, with 50 Ω charac-
teristic impedance. The automatic meshing (with edge mesh) uses 20 cells per
wavelength, at a mesh frequency of 4 GHz. Two spacings S1 and S2 and three
lengths L1, L2 and L3 are chosen as design parameters (see Fig. 6.23) in addi-
tion to frequency whose ranges are S1 ∈ [0.20, 0.30] mm, S2 ∈ [0.04, 0.06] mm,
L1 ∈ [20.0, 24.0] mm, L2 ∈ [19.0, 21.0] mm, L3 ∈ [26.0, 27.0] mm and frequency
∈ [1.0, 3.0] GHz. The MEA measure (6.7) was used to estimate the modeling ac-
curacy. The target accuracy was kept at -40 dB and the initial refinement accuracy
for the proposed method also kept at -40 dB.

Parametric behavior of some of the S-Parameter matrix entries of the filter are
shown in Figs. 6.24, 6.25 and 6.26 with respect to some design parameters. In
Fig. 6.24, the magnitude of S11 and the S21 of the filter are shown for five dif-
ferent values of L1 keeping the other parameters constant at their mid values of
range. Similar plot can be observed in Figs. 6.25 and 6.26 for the parameters
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Figure 6.22: Example II: H∞ norm for the final verification samples.

Figure 6.23: Example III: Layout of ring resonator bandpass filter.

L2 and S1 respectively. The dotted curves in Figs. 6.24, 6.25 and 6.26 represent
the response of the parametric macromodel obtained from the proposed method.
As seen a good agreement can be observed. For this example, first a parametric
macromodeling is performed using the proposed and the grid method generating
two different macromodels and then as a next step, a global optimization is per-
formed on these two macromodels generated. Finally, the modeling part as well as
the optimization part for the two sequential sampling algorithms are compared in
terms of important parameters.

Macromodeling of the ring resonator filter

As in Example I and II, The proposed algorithm and the grid method [4] have been
implemented in Matlab R2012a and used to drive the ADS Momentum simulations
to generate S-responses at selected samples. As in the previous examples, the
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Figure 6.24: Example III: Magnitude of S11 and S21 as a function of L1.
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Figure 6.25: Example III: Magnitude of S11 and S21 as a function of L2.
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Figure 6.26: Example III: Magnitude of S11 and S21 as a function of S1.

proposed algorithm is compared with the grid method on 250 verification points
spread across the design space using a Latin hypercube space filling. The MEA
measure (6.7) was used to estimate the modeling accuracy.

Table 6.5 compares the two sequential sampling schemes over some important
parameters such as the number of samples required, the worst-case accuracy over
the 250 verification samples, the maximum macromodel order and the speed-up.

Sampling # Samples Max. Error Evaluation Speed-up
Method Gen. Val. Order (dB) Time [s]

Proposed 306 - 156 -42.92 0.3156 434 ×
Grid [4] 405 66 832 -42.03 1.9584 70 ×

CPU time for EM simulator to calculate a single frequency response = 137 s.

Table 6.5: Example III: Comparison of different sampling strategies.

So, as in the case of Example I and II, the following can be observed from the
table:

i. considerable reduction in the number of samples and consequently in overall
complexity for the proposed scheme over the grid method,

ii. computational complexity of the parametric macromodel generated using
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the grid method is higher than the proposed scheme as explained in Section
6.1.3 in Table 6.2, and finally

iii. Comparable accuracy for the proposed method and the grid method is ob-
served.

Optimization of the ring resonator filter

The two parametric macromodels generated using the grid method and the pro-
posed method were used in a design optimization scenario. The design specifica-
tions of the filter are given in terms of the scattering parameters S21:

|S21| > −2.0 dB for 1.75GHz ≤ freq ≤ 2.25GHz (6.8a)

|S21| < −25 dB for freq < 1.5GHz , freq > 2.5GHz (6.8b)

From the design specifications (6.8), a cost function is formulated in terms of S21

and frequency. A global optimization method based on the DIviding RECTangle
(DIRECT) strategy [26] is used to minimize the cost function. The method [26]
balances between a global and local search and finds an optimization solution
g⃗∗ = (L∗

1, L
∗
2, L

∗
3, S

∗
1 , S

∗
2 ). Since the cost functions are generated with the help of

the parametric macromodels generated with the grid method [4] and the proposed
sampling scheme, the evaluation time is much less in comparison with the actual
ADS simulations.

Sampling method Proposed Grid method [4]
# model evaluations 802 802

Optimization time (s) 311.6 2099.5
Final solution [22.96, 21.00, [22.96, 21.00,
g⃗∗ (mm) 26.67, 0.30, 0.06] 26.67, 0.30, 0.06]

Optimum cost -0.0018 -0.0018

Table 6.6: Example III: Optimization results.

It can be observed from Table 6.6 that the average macromodel evaluation time
per sample for the grid method is relatively higher in comparison with the proposed
scheme. This is indeed because of the increasing complexity of the macromodel
generated using the grid-based interpolation in comparison with the scattered inter-
polation as described before (Table. 6.5). However, both the macromodels finds a
single optimum and is also verified with ADS Momentum simulation and is shown
in Fig. 6.27. In the figure the requirements (6.8) are shown by the dotted lines. The
two responses generated by the ADS Momentum at the solutions given in Table
6.6 are also shown in Fig. 6.27 which satisfy the requirements.
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Figure 6.27: Example III: ADS Momentum response at the optimal solutions generated
with the two macromodels.

6.2.7 Discussions

In this section, a brief discussion about the relative pros and cons of the hybrid
method with respect to the grid-based sampling scheme of [4] is given.

The advantages of using such an approach are:

i. Preserving the structure of grid is no more needed as in [4] which helps in
refining the grids into finer regions.

ii. The interpolated parametric macromodels have a smaller rational order in
comparison with the grid-based scheme as it is evident from Table 6.2 and
also from the three numerical examples of Section 6.2.6. This generate much
compact parametric macromodels.

iii. The model-based refinement strategy can be used here since the comparison
is also done between a local parametric macromodel which is on a hyperrect-
angular grid and the one on a simplicial grid. This ensures that two different
models are compared which gives more credibility to the estimated error.
A model-based refinement strategy reduces the number of EM simulations
considerably.

Unfortunately, the proposed approach also has some limitations which are:
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i. It is difficult to go for an output-based validation as in [4] because each
hyperrectangular grids generate N ! path-simplexes. The validation of the
generated simplexes (at their incenters) with EM simulations becomes ex-
pensive. This is also a reason for model-based refinement strategy.

ii. The model-based refinement strategy gives good estimation of the error, but
is often optimistic which is a limitation of this method. It is also difficult
to quantify the estimated error with respect to the true error. Some work
is needed in improving such an algorithm so as to get rid of the validation
samples and at the same time getting a good estimate of the modeling error.

iii. In the grid-based scheme, the advantage is that along the edges only one
parameter is varied at a time which is an advantage for the local parametric
macromodeling. This is not possible with scattered scheme which can put
additional modeling challenge on the simplicial refinement schemes.

In conclusion, it is true that the hybrid scheme also has some limitations with
respect to the grid-based scheme. Nevertheless, the scheme is able to give good
results despite these limitations as it is evident from the three numerical exam-
ples. It is to be noted here that this is the state-of-the-art for the scattered sampling
scheme which automate the property-preserving parametric macromodeling pro-
cess for EM systems and needs further investigation.

6.3 Conclusions
This chapter is divided into two parts: in the first part, a scattered sampling algo-
rithm for the automatic construction of stable and passive macromodels of param-
eterized system responses. The proposed method avoids the generation of slivers
by using path-simplex based refinement. The proposed technique is validated on a
pertinent numerical example.

A hybrid sequential sampling scheme on scattered grids for automatic con-
struction of parametric macromodels for microwave systems is presented in the
second part of this chapter. The method uses a passivity-preserving parametric
macromodeling method along with a sampling based on well-conditioned simpli-
cial refinement strategy to build the parametric macromodels. The method is also
compared with previous hyperrectangular sampling method in terms of several
important parameters. Three pertinent numerical examples show the modeling
capability of the proposed sequential sampling method with less computational
resource requirements. One of the example also demonstrates a design optimiza-
tion scenario using the generated macromodels. These numerical examples show
the advantages of using the proposed method in generating accurate parametric
macromodels automatically from the EM simulation data, over the design space of
interest, with minimum computational resources.
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7
Conclusions

7.1 General Conclusions

In this PhD thesis, the work was focused towards developing robust data-driven
parametric macromodeling strategies for high-frequency linear time-invariant sys-
tems using automated sequential sampling strategies and parametric macromod-
els. Developing modeling tools for generating accurate parametric macromodels
for such systems is crucial for an efficient and successful design. These paramet-
ric macromodels replace the expensive simulators in the design cycle and hence
reduce the computational cost. They additionally give much more insight for the
designer to understand the system. They also can be used in different design ac-
tivities such as design space optimization, sensitivity analysis, robustness studies,
etc., which is a very significant added advantage.

In Chapter 2, an introduction and overview of the several state-of-the-art para-
metric macromodeling methods is given. Their relative merits and limitations have
also been addressed here. The need for having an automated parametric macro-
modeling scheme which can be efficiently used in the design process were also dis-
cussed here. The general flow of the parametric macromodeling starting from the
rational identification of the frequency responses and different parameterization
methods for the rational models over the design space were introduced. In Chapter
3, an extension of the state-of-the-art parametric macromodel using interpolation
of state-space matrices is performed to generate parametric sensitivity macromod-
els. These parametric sensitivity macromodels can generate analytic sensitivities
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or gradients of the output responses with respect to the design parameters which
can be used in gradient-based design optimizations or sensitivity analysis. Chap-
ter 4 is concerned with bringing automation into the state-of-the-art parametric
macromodeling techniques. The sampling schemes developed in this PhD thesis
are tailored towards the local parametric macromodeling schemes which refines
local regions of the design space. In Chapter 4, two different grid-based sam-
pling schemes have been developed to sample the design space adaptively. Chap-
ter 5 uses the fully automated parametric macromodeling process with sequential
sampling to build a real-life example of a microwave filter. In this chapter, the
complete design flow of the filter is described which is assisted with the help of
the parametric macromodel, thereby gaining insight into the design with very lit-
tle computational cost. The chapter also shows the amount of design cycle time
gained by using a parametric macromodel instead of the direct EM simulations in
a robust global design optimization and a Monte-Carlo variability analysis. Addi-
tionally, Chapter 5 also proposes an enhanced parametric macromodeling strategy
which parameterize the poles of the frequency response transfer function to have a
better parametric macromodeling strategy. In Chapter 6, the grid-based refinement
scheme for sequential sampling had been generalized to scattered refinement using
well-conditioned simplicial refinements.

7.2 Major Research Contributions

The work done in this PhD thesis made the following contributions in the field of
efficient and automated parametric macromodeling of LTI EM systems:

1. Bringing automation into the parametric macromodeling of system fre-
quency responses was the most important contribution of this PhD work.
Several sequential sampling strategies to optimally sample the design space
were proposed such as the grid-based refinement schemes, the simplicial or
scattered schemes with well-conditioned simplex refinement, and the hybrid
scheme which combines both grid-based and simplicial refinement methods.

2. Selecting suitable parametric macromodeling methods from existing state-
of-the-art methods for the efficient sequential sampling process. Improving
existing parametric macromodeling methods to increase their modeling
power and robustness so as to reduce the number of expensive EM simula-
tions for modeling.

3. Choosing appropriate error measures from several possibilities for as-
sessing the model accuracy, and using them in the parametric macromod-
eling process. The error measure has a significant influence on the number
of expensive EM simulations required for modeling and an appropriate one
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should be selected to ensure the generation of an efficient replacement model
for the EM simulator with as little expensive EM simulations as possible.

4. Validating such an automated modeling procedure by incorporating it in
the design flow of a real-life microwave filter example. The automated mod-
eling process is applied to the microwave filter and the parametric macro-
model generated is used in the complete design cycle with several steps such
as design space optimization and variability analysis. The optimal design
solution is then fabricated and measured.

7.3 Possible Improvements and Future Directions

7.3.1 Scalability to Higher dimensions

Even though the parametric macromodeling techniques developed are very effi-
cient, these methods, like any other modeling method, are limited by the curse of
dimensionality which refers to the difficulties associated with analysis in higher di-
mensional spaces [1]. Building interpolation models for parameterized frequency
response systems which are accurate over the complete design space of interest
can be quite challenging as the dimensionality increases. Considering the corner
frequency response simulations itself become computationally very expensive as
it is exponentially proportional to the number of design parameters.

Several screening methods such as Morris method, Sobol method and Fast
Amplitude Screening Test (FAST) may be investigated in the future as a possi-
ble solution. These methods screen the important parameters by prioritizing them
based on their influence on the system response to be modeled [2]. Once the less
important parameters are screened out the parametric macromodeling can be per-
formed on the reduced set of design parameters. Also, another possibility, which
could be investigated is to use state-of-the-art dimensionality reduction techniques
such as Principle Component Analysis (PCA), Kernel PCA and Local Linear Em-
bedding (LLE) [3].

7.3.2 Parallelization of the Sequential Sampling Algorithm

Parallel computing capability is nowadays very common with computers which
use multiple processors to carry out several independent tasks. For computation-
ally expensive tasks, parallel computing can be a way to significantly reduce the
corresponding computational cost. As explained in the introduction of this PhD
thesis, the sequential sampling algorithms developed during this work are in a tree-
fashion with independent branches modeling different parts of the design space.
This can thus speed-up the parametric macromodeling process considerably. As
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an improvement, standard computational tools such as MATLAB Parallel Com-
puting Toolbox [4] can be used to perform the parallelization of the sequential
sampling algorithms developed in this PhD thesis.

7.3.3 Applications to Other Engineering Fields

The work done in this PhD thesis is focused towards developing parametric macro-
models for the system frequency responses of electromagnetic systems. These sys-
tems fall under the framework of LTI systems which finds it application in other
disciplines such as mechanical engineering, chemical engineering and signal pro-
cessing. For example, a parametric macromodel for the system frequency response
can be built for the 3D cantilever system of [5]. Design parameters such as length
of the beam L, the height of the beam h and thickness t can be considered. Thus
as a possible future work, the state-of-the-art parametric macromodeling method
can be extended to other research areas and applications.
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A
Implementation Details of the

Sequential Sampling Algorithms

In this Appendix, the implementation details of both grid-based and scattered
sequential sampling schemes discussed in Chapter 4 and 6 respectively will be
explained. The factors such as the memory requirement, the storage structure of
the parametric macromodeling coefficients and automatic selection of the order of
the root macromodel will be described in more detail.

A.1 Tree-based algorithm

As explained in Chapter 4, the sequential sampling algorithm is implemented in a
tree-like fashion. The word “tree” in the discussion here is mapped to the hyper-
rectangular space formed by the design parameters of interest which is referred to
as the design space. The sequential sampling algorithm whether it is scattered or
grid-based, starts from a single hyperrectangular design space. This can be con-
sidered as the main stem of the tree which is also referred to as a node. Then based
on the refinement criteria, the node or the main stem is branched to different sub-
regions. The refinement can be grid-based or scattered and it is usually modeling
error driven. After finishing all the error-based refinement, the terminal nodes are
called the leaves of the tree and they represent the accurate subregions of the initial
hyperrectangular space.

This kind of implementation has certain advantages over the global sampling.
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The algorithm divide different regions of the design space independently. Thus,
parallelization is very much possible here. If a local parametric macromodeling
scheme which builds different models for different sub-regions of the design space
is used, parallelization will be very effective. This will increase the computational
efficiency by making use of the multiple core processing power.

Figure A.1: Evolution of the design space during sampling.

To understand the tree-based sequential sampling implementation, lets con-
sider a 2 parameter design space with two design parameters (g(1), g(2)), for which
the design space is defined by four corners of a rectangle as shown in Fig. A.1.a.
Here the grid-based sequential sampling scheme of Chapter 4 is used to explain the
concept. For the local parametric macromodeling methods discussed in this PhD
thesis, frequency is treated as a special parameter and does not belong to the sam-
pling space. Here the frequency responses are approximated as rational functions
of complex Laplace variable s identified with the help of the well-known Vector
Fitting (VF) technique [1]. Thus each of the corner points in Fig. A.1.a represent
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a frequency dependent rational model or a state-space model called root macro-
model. Parametric macromodels are generated by interpolating the root macro-
models and the subspace is refined using some error criteria which compares the
EM simulation response with the parametric macromodel at some validation point
(for example, light gray circle in Fig. A.1.b). This refinement procedure is re-
peated until the modeling error satisfies a predefined error threshold ∆err. Note
that the same procedure can be applied for scattered sequential sampling wherein
only the refinement strategy changes from hyperrectangular refinement to simpli-
cial refinement (Chapter 6). As shown in Fig.A.1, the algorithm can be represented
in a tree structure with each circle representing a particular subspace.

Following points can be observed from the tree-based implementation:

1. as stated before, each of the points in the hyperrectangular region represent
a frequency-dependent root macromodels. The sub-regions irrespective of
scattered or grid-based refinement strategies, share these root macromodels
along their boundaries. Thus the memory requirement of storing the root
macromodel coefficients is proportional to the number of sample points.

2. The local parametric macromodels are different for different sub-regions of
the design space. This means that unlike the global modeling schemes, the
parameterization variables such as interpolation coefficients are not shared
among the sub-regions. Consequently, with the number of sub-regions gen-
erated by the sampling scheme, the memory requirement for storing the pa-
rameterization variables increases proportionally.

In the next section, the parametric macromodeling is explained in detail with
the implementation details such as how the code is organized and the model pa-
rameters are stored.

A.2 Parametric macromodeling
This section gives a detailed description of the implementation of parametric macro-
modeling with the tree-based sequential sampling. The local parametric macro-
modeling method of [2, 3] which uses a robust interpolation scheme is used in this
section for description purpose. Other local parametric macromodeling schemes
can also be used. Also, the 2D design space considered in Section A.1 and the
associated Fig. A.1 are used to explain the concept.

A.2.1 Generation of root macromodels and their storage

The first step in these macromodeling methods is to generate a set of root macro-
models which form the interpolation nodes for the modeling. The decision has to
be made about the order of the rational model to fit the frequency response using
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the VF method. In this PhD thesis, to ensure complete automation in the modeling
process, a bottom-up approach is used. That is, the order of the rational approxi-
mation is gradually increased and the VF accuracy is calculated. Once a desirable
accuracy is reached with the minimum order of the rational function, the iteration
is stopped and the order is fixed at the found out value. This is illustrated in Fig.
A.2.

Figure A.2: Model order selection of a root macromodel.

Once the rational model is calculated, it can be stored in the modeling database
in the form of either rational functions or state-space models. The rational root
macromodels RΩ(s, g⃗ Ω

rm), rm = a, b . . . , s contained in the N -box region Ωl are
represented in a pole-residue form:

RΩ(s, g⃗ Ω
rm) =

PΩ
rm∑

p=1

CΩ
p,rm

s− aΩp,rm
+DΩ

rm ; p = 1, . . . , PΩ
rm (A.1)

where CΩ
p,rm represents the residue matrices, aΩp,rm the pole PΩ

rm. This can either
be a real pole or one of the members of a complex-conjugate pole pair. DΩ

rm is the
direct-term matrix.

It should be noted that, there will be one root macromodel per design space
sample point. The root macromodels are shared between different sub-regions of
the design space and they are mapped from the sub-space to the root macromodel
array using indexing.

Fig. A.3 illustrates this concept. Fig. A.1.d is reproduced here for the purpose.
In Fig. A.3, the root macromodels are named from alphabet a to s. For example,
it is seen that the root macromodel j is shared between four sub-regions of the
design space namely 10, 11, 12 and 13. And for example, for sub-region 4, the
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Figure A.3: Sample distribution and the corresponding modeling database.
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index which maps the sub-region database to the root macromodel database is give
as

Mapping Index(4) = [a, i, f, e], (A.2)

which is also shown in Fig. A.3.

A.2.2 Calculation of model parameters and storing them

This subsection describes briefly the amplitude and frequency scaling coefficient-
based parametric macromodeling scheme of [2, 3] and describes how these coeffi-
cients are stored in the sub-region database (Fig. A.3).

Lets consider the design space region Ω = 4 which is defined by four bound-
ing corner root macromodels with indexes [a, i, f, e] as in Fig. A.3. For any de-
sign space region Ω, several amplitude scaling and frequency scaling coefficients
(α⃗Ω

1 , α⃗
Ω
2 ) are calculated [2]. For example, the pair (a, i) of the region Ω = 4 the

coefficients (α4
1,ai, α

4
2,ai) are calculated using the optimization

(αΩ
1,ai, α

Ω
2,ai) = argmin

(α1,α2)

[
Err(R̃i(s, a),H(s, i))

]
. (A.3)

In (A.3), R̃i(s, a) = α1R(sα2, a⃗), is the interpolated response of R(s, a) ob-
tained to match R(s, i) and Err(·) is a suitable error measure between the two
responses [2].

From (A.3), for the region Ω = 4, the amplitude and frequency scaling coeffi-
cients can be expressed in the form of row vectors as

α⃗4
x = [α4

x,ai, α
4
x,af , α

4
x,ae, α

4
x,ia, α

4
x,if , α

4
x,ie,

α4
x,fa, α

4
x,fi, α

4
x,fe, α

4
x,ea, α

4
x,ei, α

4
x,ef ].

(A.4)

In case of the parametric macromodeling method of [2, 3], we have for N -
dimensional design space,

Number of 2− variable optimizations =
1

2

Nc!

(Nc − 2)!
, (A.5)

Number of elements in (α⃗Ω
1 , α⃗

Ω
2 ) = 2

Nc!

(Nc − 2)!
, (A.6)

where, Nc is the number of corner points which is equal to 2N and N + 1 for
grid-based and scattered schemes respectively. Similarly, for multiple frequency
scaling based parametric macromodeling method of Chapter 5, forN -dimensional
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design space we have

Number of multi− variable optimizations =
Nc!

(Nc − 2)!
, (A.7)

Number of elements in α⃗Ω
1 ,=

Nc!

(Nc − 2)!
, (A.8)

Number of elements in α⃗Ω
2 =

Nc!

(Nc − 2)!

Nc∑
n=1

(
P real
n + P comp

n

)
, (A.9)

with P real
n , real and P comp

n complex poles of n = 1, . . . Nc corner root macromod-
els.
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