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 “Dər biyabər anbeussa yassər” 

 

Spider webs joined together can catch a lion. 
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1.1.1.1. Trace elements in cattleTrace elements in cattleTrace elements in cattleTrace elements in cattle    

1.1.1.1.1.1.1.1. What’s in a name? On metals, minerals and trace What’s in a name? On metals, minerals and trace What’s in a name? On metals, minerals and trace What’s in a name? On metals, minerals and trace 

elementselementselementselements    

Metals are “elements which conduct electricity, have a metallic luster, are malleable and 

ductile, form cations, and have basic oxides” (Duffus, 2002), whereas the main definition 

of a mineral is stated as follows: “an element or chemical compound that is normally 

crystalline and that has been formed as a result of geological processes” (Nickel, 1995). A 

metal can, therefore, be a mineral, and a mineral can be a metal, but not necessarily. For 

instance, Cu is a metal and a mineral, whereas Se and S are minerals but not metals. 

In the context of nutrition, along with vitamins, minerals form the group of 

micronutrients, substances which are required in very small amounts, yet are also 

essential for optimal health (Bender, 2007) (Figure 1). 

    

Figure 1.Figure 1.Figure 1.Figure 1. Essential trace elements in nutrition. 
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With respect to requirements, the trace elements or microminerals, form the tiniest 

within the smallest group, as they constitute less than 1% of the total body ash and are 

required in the diet at less than 1 g/kg dietary dry matter (DM), at levels far below those 

usually required for macrominerals (1-10 g/kg DM) (Smart & Cymbaluk, 1991). 

1.2.1.2.1.2.1.2. Back to the early days of mineral and trace element Back to the early days of mineral and trace element Back to the early days of mineral and trace element Back to the early days of mineral and trace element 

researchresearchresearchresearch    

The earliest clue for the nutritional relevance of minerals was reported by Fordyce in 

1791 (Figure 2). Despite his early account on the necessity of Ca for optimal bird health, 

it took some additional time to fully unravel the essentiality of the trace elements. Aside 

from the importance of Fe and I in human nutrition, little was known about the other 

trace elements. It was not until the late 1920s, that another trace element was 

discovered to be required for optimal health (Hart et al., 1928) (Figure 3). 

After the discovery of Cu being an essential compound for haemoglobin synthesis, the 

trace element era could commence. In these early days, research mainly focussed on 

symptoms in farm animals. At the time of Hart’s publication, in 1928, the young Eric 

Underwood developed a special interest in trace element research (Underwood, 1970) 

(Figure 4). He would eventually become one of the founding fathers of trace element 

research. 

 



 

Figure 2. Figure 2. Figure 2. Figure 2. Portrait of George Fordyce (

of the National Library of 

Figure 3.Figure 3.Figure 3.Figure 3. Portrait of Edwin Bret Hart 

(reproduced with permission from 

(1953)). 
Shortly before (...), a trial was made of the effect of the 

addition of 0.25 mg. daily of copper as copper sulfate 

plus 0.5 mg. of Fe as ferric chloride added to our whole 

milk diet. This was done with an individual rat, No. 

621, which had been made anemic

    

Portrait of George Fordyce (Courtesy 

of the National Library of Medicine). 

“... Birds have also an evident instinct even to 

distinguish one kind of earth from another, as may 

easily be seen in Canary birds; the hen, at the time of 

her laying eggs, requires a quantity of calcareous 

earth, otherwise she is frequently kil

not passing forward properly, as I have in many 

instances observed, to one set of hens a piece of old 

mortar was given, which they broke down and 

swallowed, certainly not mistaking it for Canary seed, 

or any kind of food, but distinguishing

of brick which they did not either break down or 

swallow, another set at the same time were kept 

without any calcareous earth; many of these died, 
while the others, although otherwise exactly in the 

same circumstances, were none of them lo

appears therefore that birds have a necessity for 

stones being swallowed for digestion, and earths for 

other purposes, and that they have an instinct which 

disposes them to choose the proper quantity and 

quality required. ...” (Fordyce, 1791)

 

Portrait of Edwin Bret Hart 

(reproduced with permission from Elvehjem 

 
Shortly before (...), a trial was made of the effect of the 

addition of 0.25 mg. daily of copper as copper sulfate 

plus 0.5 mg. of Fe as ferric chloride added to our whole 

milk diet. This was done with an individual rat, No. 

621, which had been made anemic and had a 

hemoglobin content of only 2.68 gm. per 100 cc. of 

blood (...). We made this trial of a copper salt because 

it fitted into our scheme of testing all inorganic 

elements as supplements to iron which have been 

recognized as present in biological ma

its immediate use was suggested by the fact that we 
had often noticed a pale blue color in the ash of some 

of the materials studies, particularly the ashes of 

lettuce (...). Copper was also suggested by the 

knowledge that in some of the m

it is known to exist as an integral part of the 

compound hemocyanin, which functions as a 

respiratory pigment similar to hemoglobin in the 

higher animals. The response in this preliminary 

experiment of copper sulfate feeding was indee

surprising. This preliminary experiment was with but 

a single animal but the effect was so convincing and 

helpful that we want to record (...) the weight record 

and hemoglobin curve of this single animal if for no 

other reason than its historical interes

this is the first experiment in the literature giving to 

copper in association with iron the specific function of 

hemoglobin building in a mammal on a otherwise 

satisfactory diet. ...” (Hart et al.
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“... Birds have also an evident instinct even to 

distinguish one kind of earth from another, as may 

easily be seen in Canary birds; the hen, at the time of 

her laying eggs, requires a quantity of calcareous 

earth, otherwise she is frequently killed by the eggs 

not passing forward properly, as I have in many 

instances observed, to one set of hens a piece of old 

mortar was given, which they broke down and 

swallowed, certainly not mistaking it for Canary seed, 

or any kind of food, but distinguishing it from a piece 

of brick which they did not either break down or 

swallow, another set at the same time were kept 

without any calcareous earth; many of these died, 
while the others, although otherwise exactly in the 

same circumstances, were none of them lost. It 

appears therefore that birds have a necessity for 

stones being swallowed for digestion, and earths for 

other purposes, and that they have an instinct which 

disposes them to choose the proper quantity and 

(Fordyce, 1791) 

hemoglobin content of only 2.68 gm. per 100 cc. of 

blood (...). We made this trial of a copper salt because 

it fitted into our scheme of testing all inorganic 

elements as supplements to iron which have been 

recognized as present in biological materials. Further, 

its immediate use was suggested by the fact that we 
had often noticed a pale blue color in the ash of some 

of the materials studies, particularly the ashes of 

lettuce (...). Copper was also suggested by the 

knowledge that in some of the molluscs and crustacea 

it is known to exist as an integral part of the 

compound hemocyanin, which functions as a 

respiratory pigment similar to hemoglobin in the 

higher animals. The response in this preliminary 

experiment of copper sulfate feeding was indeed 

surprising. This preliminary experiment was with but 

a single animal but the effect was so convincing and 

helpful that we want to record (...) the weight record 

and hemoglobin curve of this single animal if for no 

other reason than its historical interest. We think that 

this is the first experiment in the literature giving to 

copper in association with iron the specific function of 

hemoglobin building in a mammal on a otherwise 

et al., 1928) 
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Decades later, a short brainstorming session during a coffee break with C.

resulted in the organisation of the first Trace Element Metabolism in Animals 

symposium, forming a much needed discussion forum on “the recent progress in studies 

on the molecular biology, metabolism and functional roles of trace elements” 

McArdle, unpublished work). In his introductory lecture at the Symposium, Underwood, 

great-heartedly admitted that his earlier statement on human nutrition, “for the 

overwhelming bulk of mankind a diet well

likely, on present evidence, to provide the normal individual with an abundance of all 

the trace elements with little chance of deleterious excess”, was a massive blunder, put 

as if humans were immune for 

Figure 4. Figure 4. Figure 4. Figure 4. Portrait of Eric Johan Underwood and cover of the first TEMA symposium (reproduced 

with permission from

 

Indeed, trace element research in animals, including cattle, would prove to be the 

herald of human nutrition research. Later on, the symposium would be renamed to 

Trace Elements in Man and Animals and more recently, the pendulum hit the other side, 

with the human research outnumbering animal research studies ” (Beattie & McArdle, 

unpublished work). Nowadays, researchers call for the preservation of the crosscutting 

position of trace element research, in which the comparative approach remains crucial 

(Suttle, 2010). 

 

Decades later, a short brainstorming session during a coffee break with C.

resulted in the organisation of the first Trace Element Metabolism in Animals 

symposium, forming a much needed discussion forum on “the recent progress in studies 

olecular biology, metabolism and functional roles of trace elements” 

. In his introductory lecture at the Symposium, Underwood, 

heartedly admitted that his earlier statement on human nutrition, “for the 

ng bulk of mankind a diet well-balanced and adequate in other respects is 

likely, on present evidence, to provide the normal individual with an abundance of all 

the trace elements with little chance of deleterious excess”, was a massive blunder, put 

trace element related disorders (Underwood, 1970)

    

Portrait of Eric Johan Underwood and cover of the first TEMA symposium (reproduced 

with permission from Schrauzer (1980)). 

Indeed, trace element research in animals, including cattle, would prove to be the 

herald of human nutrition research. Later on, the symposium would be renamed to 

Trace Elements in Man and Animals and more recently, the pendulum hit the other side, 

e human research outnumbering animal research studies ” (Beattie & McArdle, 

). Nowadays, researchers call for the preservation of the crosscutting 

position of trace element research, in which the comparative approach remains crucial 

 

Decades later, a short brainstorming session during a coffee break with C. F. Mills 

resulted in the organisation of the first Trace Element Metabolism in Animals 

symposium, forming a much needed discussion forum on “the recent progress in studies 

olecular biology, metabolism and functional roles of trace elements” (Beattie & 

. In his introductory lecture at the Symposium, Underwood, 

heartedly admitted that his earlier statement on human nutrition, “for the 

balanced and adequate in other respects is 

likely, on present evidence, to provide the normal individual with an abundance of all 

the trace elements with little chance of deleterious excess”, was a massive blunder, put 

(Underwood, 1970).  

Portrait of Eric Johan Underwood and cover of the first TEMA symposium (reproduced 

Indeed, trace element research in animals, including cattle, would prove to be the 

herald of human nutrition research. Later on, the symposium would be renamed to 

Trace Elements in Man and Animals and more recently, the pendulum hit the other side, 

e human research outnumbering animal research studies ” (Beattie & McArdle, 

). Nowadays, researchers call for the preservation of the crosscutting 

position of trace element research, in which the comparative approach remains crucial 
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1.3.1.3.1.3.1.3. What makes a trace element essential?What makes a trace element essential?What makes a trace element essential?What makes a trace element essential?    

Until now, 15 trace elements have been reported as essential for animal and/or human 

health: Fe, I, Zn, Cu, Mn, Se, Co, Mo, Si, Ni, V, F, Sn, Cr and As (Table 1), although the 

essentiality of the last seven remains under discussion and actual requirements for 

these elements were not really established (NRC, 2001; McDonald et al., 2002; Bender et 

al., 2007; Suttle, 2010; Van Paemel et al., 2010). 

Beneficial effects of others elements, namely Al, B, Cd, Rb, Pb, Li, on animal production 

are known, but researchers are questioning whether or not these are truly essential 

(Suttle, 2010). Perhaps their benefits can be attributed merely to the concept of 

hormesis, in which a substance is adhering to a low-dose stimulation but high-dose 

inhibition pattern (Calabrese & Baldwin, 1998). Yet, their absence may not have a 

negative effect on normal bodily processes (Suttle, 2010). 

Consequently, only some of all trace elements found in the body are actually essential. 

Over time, this essentiality was proven by means of controlled animal experiments with 

purified diets lacking the investigated element (McDonald et al., 2002). The absence of a 

truely essential trace element affects animal health and production. Such an element 

exerts well-defined nutritional and biochemical roles in the body (NRC, 2005) (Table 1.). 

Generally, minerals‘ functions are catalytic (i.e. necessary for enzyme function, e.g., Se 

for glutathione peroxidase), physiological (e.g., Na for acid-base balance), structural (e.g., 

P for bone rigidity) or regulatory (e.g., Ca in signal transduction) (McDonald et al., 2002). 

For trace elements, catalytic functions are most pronounced.  
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Table 1.Table 1.Table 1.Table 1. Non-exhaustive list of trace element functions and deficiency symptoms, summarizing 

McDonald et al. (2002). 

Trace element Role Deficiency symptoms 

Main   

Iron (Fe) Haemoglobin, enzymes in electron transport 
chain (e.g., succinate dehyrogenase) 

Anaemia 

Iodine (I) Triiodothryonine (T3) and tetraiodothyronine 
(T4) 

Goitre, reproductive 
abnormalities 

Zinc (Zn) Cell replication, several enzyme systems (e.g., 
alcohol dehydrogenase, lactate 
dehydrogenase) 

Loss of appetite, skin 
parakeratosis, low 
reproduction 

Copper (Cu) Ceruloplasmine, and enzymes in oxidative 
phosphorylation (cytochrome oxidase) and 
antioxidant system (superoxide dismutase) 

Myelopathy 
(“swayback”), anaemia, 
diarrhoea, 
depigmentation of hair 

Manganese (Mn) Pyruvate  carboxylase, superoxide dismutase, 
enzyme activator 

Poor growth, skeletal 
abnormalities 

Cobalt (Co) Ruminally synthezised vitamin B12 Loss of appetite, pica, 
vague untriftiness 

Selenium (Se) A wide variety of enzyme systems, related 
with antioxidant system (e.g., glutathione 
peroxidase), hormone synthesis (type I 
iodothyronine deiodinase) 

Myopathy (“white 
muscle disease”), ill 
thrift 

Molybdenum 
(Mo) 

Xanthine oxidase, aldehyde oxidase, sulphite 
oxidase 

Low growth, purine 
metabolism disorders 

Additional   

Chromium (Cr) Glucose metabolism, possibly lipid synthesis 
and protein metabolism 

Low growth and 
reproduction 

Tin (Sn) ? Poor growth 

Vanadium (V) Possibly cofactor enzymes, regulation enzyme 
activity (e.g., Na-K ATPase) 

Low growth and 
reproduction 

Fluor (F) ? Poor growth, dental 
caries in humans 

Silicon (Si) Cross-linking agent with structural role Bone abnormalities 

Nickel (Ni) Possibly cofactor/structural component of 
metalloenzymes, nucleic acid metabolism 

Dermatitis 

Arsenic (As) Formation metabolites of methionine Poor growth, rough coat 
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1.4.1.4.1.4.1.4. Ruminant metabolism of trace elementsRuminant metabolism of trace elementsRuminant metabolism of trace elementsRuminant metabolism of trace elements    

Unlike other nutrients, minerals are not broken down intensively and rebuilt to 

metabolizable forms. The absorption of many trace elements, is carefully regulated by 

homeostatic control mechanisms, in an attempt to ascertain a balance between the 

amount of elements retained from the diet and the amount unevitably lost from the 

body (McDonald et al., 2002). 

After absorption, the micromineral is most commonly transported via the portal blood 

stream to the liver and other soft tissues (Figure 5). Afterwards, trace elements can be 

released for distribution through the systemic bloodstream to other parts of the body 

(Bender, 2007). 

Figure 5.Figure 5.Figure 5.Figure 5. Mineral metabolism pathways. 

 

Trace elements can be secreted through sweat and milk and digestive juices (e.g., saliva, 

bile). The latter can, if secreted at pre-absorptional locations, be recycled within in the 

gastrointestinal system. Excretion pathways of trace elements are faeces and urine 

production (Suttle, 2010). 
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Apart from homeostatic control mechanisms, the trace element absorption in the 

ruminant gut is affected mainly by other compounds present in the intestinal lumen 

and at the absorptive site (Smart & Cymbaluk, 1991). Even after absorption, the function 

of trace elements can be influenced by such compounds (Smart & Cymbaluk, 1991). 

These compounds can be divided in two classes: synergistic (positively affecting 

absorption) and antagonistic (negatively affecting absorption) (Bender, 2007). In the 

context of this Introduction, we are mainly interested in the antagonists, as they can 

raise trace element requirements noticeably. These antagonists can be compounds of 

mineral nature or other dietary factors, summarized in Table 2. 

Table 2.Table 2.Table 2.Table 2. Factors negatively affecting trace element requirements for ruminants. 

Trace element Mineral antagonists1  Other factors1 

Fe - Oxalates, phosphates, tannins2 

I - Goitrogens, progoitrins and goitrins 

Zn Cu, Fe, Cd, Pb, Sn, Ca? Tannins2 

Cu S, Mo, Fe, Zn, Ca, Cd Tannins2 

Mn Ca, K, P, Fe - 

Co - - 

Mo - - 

Se Ca, S, Zn? - 

1NRC (2001),  
2Possibly affecting bio-availability of trace elements, based on data from Gillooly et al. (1983) and Karamać 

(2009) 

1.5.1.5.1.5.1.5. On the search for bovine trace element requirementsOn the search for bovine trace element requirementsOn the search for bovine trace element requirementsOn the search for bovine trace element requirements    

The most commonly used methods to establish bovine trace element requirements are 

the factorial method and the dose-response method (Bender, 2007). 

The factorial method calculates the net and gross requirements based on data typical for a 

certain physiological stage. The net requirements are defined as the levels necessary for 

the maintenance of normal physiological functions, increased by those additionally 

required for optimal growth, production (e.g., muscle growth, milk production), 
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reproduction (e.g., foetus development) and extensive work (e.g., ploughing labour). 

These levels are calculated by adding the amount of the elements retained and the 

amount lost endogenously from the animal body (NRC, 2001). 

Furthermore, in the factorial method, the gross requirements can be estimated from the 

net requirements by dividing these by the true absorption coefficient. The latter 

expresses the percentage of the consumed diet truly retained from digestion, taking 

into account the intestinal absorptive capacity and potential absorbability of the 

mineral (Bender, 2007). Obviously, those elements with a lower absorbability will 

require higher dietary requirements and will have a higher safe allowance than those 

with a high absorbability (Suttle, 2010). 

The dose-response method works differently, and is sometimes used in case the true 

absorption coefficient is difficult to establish, the bodily disposition of the element is 

closely related to the intake, even when requirements are met, or other technical 

problems arise (NRC, 2001; Suttle, 2010). This method employs dietary trials with 

different groups of animals fed with a range of levels of the particular element and 

evaluates the general performance, or differences in specified response variables (e.g., 

ceruloplasmine for Cu) (Meschy, 2000).  

The currently established trace element requirements and maximum tolerable 

concentrations, established for Bos taurus cattle are presented in Table 3. As mentioned 

above, no requirements for the other essential or possibly essential trace elements are 

presently available (Van Paemel et al., 2010). 
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Table 3.Table 3.Table 3.Table 3. Guidelines for Bos taurus trace element supply (mg/kg DM) 

Requirements  

Beef cattle1 Dairy cattle2 MTL3 

Cu 10.0 11.0 40.0 

Fe 50.0 12.3 500 

Zn 30.0 43.0 500 

Mn 20.0 14.0 2000 

Se 0.100 0.300 5.00 

Co 0.100 0.110 25.0 

I 0.500 0.600 50.0 

   
 

Cu:Mo4,5 >1-3 >1-3  

Fe:Cu4 <50-100 <50-100  

1NRC, 2000 
2Adult Holstein cow with production of 25 kg milk (NRC, 2001) 
3MTL= maximum tolerable levels (NRC, 2005) 
4Advisory levels for Cu antagonists (Suttle, 2010) 
5Provided that dietary S > 2 g/kg DM and dietary Mo < 15 mg/kg DM (Suttle, 2010) 

1.6.1.6.1.6.1.6. Meeting cattle requirements and establishing an Meeting cattle requirements and establishing an Meeting cattle requirements and establishing an Meeting cattle requirements and establishing an 

adequate traceadequate traceadequate traceadequate trace    element status: the soilelement status: the soilelement status: the soilelement status: the soil----plantplantplantplant----animal flowanimal flowanimal flowanimal flow    

What Underwood only realised at a later stage on trace elements in human nutrition, 

animal nutritionists knew long before: the natural cattle diet is far from flawless in 

establishing an adequate trace element status. Many factors affect the flow of trace 

elements from soil through plant to the animal, and even in case of dietary trace 

element concentrations in line with established requirements, other influences can 

cause variation in trace element status response (Figure 6).  

The amount of trace elements present in the soil is predominantly influenced by the 

parent material and its typical mineral character (Jumba et al., 1995; Thornton, 2002). 

The “availability” of these soil minerals and trace elements for plant uptake is 

influenced by the geochemical character, pH and drainage of the soil. As the soil pH 

lowers, plant Mo uptake lowers whereas Co, Mn and Zn uptake increases (Suttle, 2010), 
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whereas waterlogging induces a change in trace element mobilisation in the flooded 

soils, causing an increased plant uptake of, e.g., Mo (Du Laing et al., 2009).  

    

Figure 6.Figure 6.Figure 6.Figure 6. The soil-plant-animal flow of trace elements and established factors affecting this flow 

(redrawn with permission from Suttle (2010)). 

 

Worldwide, forage trace elements most commonly present in concentrations 

inadequate for cattle nutrition, are Co, Cu, I, Se and Zn (McDowell, 1996). However, 

forages are also known to contain very variable amounts of trace elements 

(Abdelrahman et al., 1998; Faye et al., 1983; Gizachew et al., 2002). Obviously, plant genus 

and type (herbaceous vs. grasses) will explain some of the variation in trace element 

content (Jumba et al., 1995). Other factors playing a role are the stage of maturity of the 

plant, with reduced trace element content as the plant matures (McDowell, 1996) and 

season, with generally lower trace element concentrations in the dry season (Pastrana et 

al., 1991). 

Next to direct dietary supply, soil ingestion can constitute 2 to 20% of dry matter intake 

in grazing cattle (Thornton, 2002). Due to the higher amounts of trace elements in the 

soil in comparison with the plants growing on it, this soil uptake can be both beneficial 



34343434                IntroductionIntroductionIntroductionIntroduction    

 

 

as disadvantageous for the grazing animal (McDowell, 1996), a welcome supplement or a 

poisoned gift. For instance, soil ingestion is known to exacerbate the Cu status because 

of the large amount of Fe present in these particles (Suttle et al, 1984). 

Apart from initial storage, dietary intake, dietary antagonists and physiological stage 

affecting requirements, other factors influence the eventual trace element status and 

response to trace element supply. Generally, with increasing age, trace element 

concentrations in transport pools are also increasing, with the exception of Co, higher 

in neonates. On the other hand, the liver storage only slightly increases with increasing 

age, but not for Se and Cu, of which normal liver concentrations are much higher in 

neonates than in adults (Herdt & Hoff, 2011). Furthermore, male animals could have a 

higher trace element status than female animals (Miranda et al., 2007), indicating a 

certain sex specific status, as seen for Cu in humans (Milne, 1998). Also, increasingly, 

studies are reporting on the possible presence of a breed specific sensitivity towards 

trace element imbalance. More specifically, evidence is piling up on a disparate 

proneness to Cu deficiency in the Simmental and Angus cattle breeds (Ward et al., 1995; 

Mullis et al., 2003; Fry et al., 2013). Consequently, trace element requirements of such 

breeds might differ, but this was not formally established yet. 

1.7.1.7.1.7.1.7. How to evaluate the trace element status in cattleHow to evaluate the trace element status in cattleHow to evaluate the trace element status in cattleHow to evaluate the trace element status in cattle    

1.7.1.1.7.1.1.7.1.1.7.1. General considerations on trace elementGeneral considerations on trace elementGeneral considerations on trace elementGeneral considerations on trace element    diagnosticsdiagnosticsdiagnosticsdiagnostics    

The best diagnosis for inadequate trace element supply is a good response to 

supplementation (Clark et al., 1985). However, trial supplementing of an entire herd is 

often not feasible, very costly or not efficient (Olson, 2007). Therefore, it is equally 

important to design thresholds values or ranges for deficiency based upon responsive 

tissues, for decision making. The evaluation of bovine trace element status is most 

commonly performed by means of the determination of concentrations in either liver 

and/or plasma samples (Kincaid, 2000; Puls, 1988; Suttle, 2010) (Table 4 & 5).  



Introduction                35353535    

 

 

Table 4.Table 4.Table 4.Table 4. Threshold values for trace element deficiency in liver and serum of Bos taurus cattle. 

Liver (mg/kg DW)1  Serum (mg/l) 

Suttle (2010) Kincaid (2000) Puls (1988)  Suttle (2010) Kincaid (2000) Puls (1988) 

Cu 19 33 1.75-35  0.57a 0.50a 0.02-1.20 

Mo2 _ _ 7.0-3500  _ _ 0.10-10.0 

Fe2 1000 159-2100 186-2450  0.6-1.8 4.0-6.0 4.0-6.0 

Zn _ <20-40 70-140  0.40-0.60 0.20-0.40a 0.20-0.60 

Mn 9.0 7.0 3.5  0.020 0.005 0.005 

Se 0.05-0.07 0.10-0.50 0.07-0.60  0.008-0.009 0.060b 0.002-0.060 

Co - _ 0.175  _ _ 0.090b 

I _ _ _  0.030-0.040 0.010-0.050 0.010-0.050 

1Conversion factor FW to DW: x 3.0 (Suttle, 2010), and x 3.5 (Puls, 1988), as advised by these authors 
2Mo and Fe: concentrations indicating excess of these Cu antagonists 
aPlasma,  
bWhole blood 

Diagnostic thresholds and reported normal concentrations range widely between 

authors, rendering decision-making often difficult (Table 4 & 5). Further, often grey 

zones of sub and supraoptimal concentrations exist within reported values of an author, 

of which it is not known whether or not these are harmful for cattle on the long term 

and hence, whether or not intervention is needed (Puls, 1988). This is particularly true 

for the evaluation of Se status, where further research on the topic is needed. 

Furthermore, little is known about the wide applicability of these thresholds, as they 

might not take normal variations among and between breeds into account. 

Table 5.Table 5.Table 5.Table 5. Reference ranges for trace elements in liver and serum in Bos taurus cattle. 

Liver (mg/kg)DW)1  Serum (mg/l)1 

Cu 50-600  0.6-1.1 

Mo 1-4  0.002-0.035 

Fe 140-1000  1.1-2.5 

Zn 90-400  0.6-1.9 

Mn 5-15  0.0009-0.0060 

Se 0.7-2.5  0.065-0.140 

Co 0.10-0.40  0.00017-0.002 

I -  - 

1Herdt & Hoff, 2011 
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1.7.2.1.7.2.1.7.2.1.7.2. Liver samplesLiver samplesLiver samplesLiver samples    

For most elements, the liver is considered the main storage pool and responsive to 

dietary supply (Herdt & Hoff, 2011; Ouweltjes, 2007; Suttle, 2010). The reaction of this 

main storage pool during different phases occurring in case of deficiency and overload 

is visualized in Figure 7.  Due to the above mentioned characteristics, liver sampling is 

regarded as the most precise method to evaluate trace element status in the bovine 

body. For Se, kidney concentrations are higher than liver concentrations (Puls, 1988)    

and the storage of the element Zn seems to be rather evenly distributed over different 

tissues, yet, for both elements, liver is still the best choice sample because of its higher 

responsiveness to dietary intake (Suttle, 2010). 

Nevertheless, liver biopsy is still not commonly performed, due to, although rare, some 

health risks involved with this sampling method, such as clostridium infections, and 

pneumothorax (Vermunt, 2011). Therefore, the search for more easy-to-sample 

indicators is open. 

    
Figure 7.Figure 7.Figure 7.Figure 7. The sequence of phases occurring in mineral deprivation. These phases are related to 

curvilinear changes in trace elements pools responsible for storage (e.g., liver), transport (e.g., 

plasma) or functional (e.g., muscle enzyme) purposes. For all elements, there is a marginal area, 

with nearly exhausted stores and the onset of failure of mineral-dependent functions, but 

where animals seem healthy from outwards (redrawn with permission from Suttle (2010)). 
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1.7.3.1.7.3.1.7.3.1.7.3. Plasma samplesPlasma samplesPlasma samplesPlasma samples    

In contrast to liver sampling, plasma sampling is useful as a more practical way to gain 

insight in the trace element status of cattle and to quickly screen large numbers of 

animals and herds (Herdt & Hoff, 2011). However, some factors falsely reduce or elevate 

plasma concentrations, such as inflammation (↑ Cu: Laven et al., 2007; ↓ Zn: Orr et al., 

1990), gastro-intestinal parasites (↓ Cu: Adogwa et al., 2005), heat stress (↓ Zn: Wegner et 

al., 1973) and partus (↓ Zn: Goff & Stabel, 1990). Therefore, in case of aberrant plasma 

trace element concentrations, the presence of such factors should be investigated. 

Also, depending on the specific metabolism of the trace element, plasma concentrations 

might have a different meaning. For most elements, plasma concentrations, as part of 

the transport pool, will react slower to deficiency than storage values (e.g., Cu) (Figure 

7). For elements with small or slowly mobilized stores, transport and storage pools (e.g., 

Zn) will react simultaneously. For these elements, strong homeostasis mechanisms 

might be present in an attempt to tightly control plasma concentrations of trace 

elements. For instance, in the case of Zn, intestinal absorption is carefully regulated by 

Zn intake (Hiers et al., 1968) and plasma concentrations therefore, remain fairly 

constant, until the border of these homeostasis mechanisms is reached, in case of 

extremely high or low intake. For others, plasma might even serve as the storage pool 

(e.g., Co) (Suttle, 2010). Such patterns of homeostasis, storage and transport might cause 

a misinterpretation of the animal status based on plasma concentrations (Herdt & Hoff, 

2011). Still, when including some caution in evaluating trace element concentrations 

and applying them merely for screening methods, blood continues to have its role in 

trace element diagnostics.  

In order to evaluate the value of blood sampling or any alternative method to 

investigate trace element status of cattle, supplementation trials with rising amounts of 

dietary supply could be utilized, or one could analyse whether or not changes in blood 

concentrations relate well to main storage tissue status changes, either using 

correlation/regression or dichotomized approaches (Claypool et al., 1975; Minatel & 

Carfagnini, 2002). 
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1.8.1.8.1.8.1.8. Investigating the effects of trace element statusInvestigating the effects of trace element statusInvestigating the effects of trace element statusInvestigating the effects of trace element status    

1.8.1.1.8.1.1.8.1.1.8.1. IntrIntrIntrIntroductionoductionoductionoduction    

Trace element research initiated from case reports on severe symptoms related with 

deficiency or direct toxicity. Later on, studies elucidated the role of trace elements as 

cofactors in many important enzymes (Suttle, 2010). However, the background of some 

symptoms, such as severe diarrhoea in Cu deficiency, as well as the effect of deficiency 

on other bodily functions, such as reproduction, is not fully unravelled yet (Wichtel, 

2003). Furthermore, the effects of prolonged marginal deficiency, as a less extreme 

point on the mineral range from severe deficiency to severe toxicity, are not well 

known. Therefore, research is still needed on the effects of trace element status 

(deficiency or excess) on the animal metabolism, in both controlled experiments and 

on-farm trials. 

Within the context of this work, we will focus on the effects on animal health, as 

expressed by optimal parameters of immunity, anti-oxidant status and disease 

resistance, and production, i.e. weight gain and carcass appraisal in beef cattle and milk 

and component yields in dairy cattle, both more generally defined as performance, in 

addition to those influencing human nutrition, i.e. the impact of bovine trace elements 

status on trace element supply through animal products. Reproduction was not included, 

as we defined it out of the scope of this work. 

1.8.2.1.8.2.1.8.2.1.8.2. Considerations on trials investigating impact of trace Considerations on trials investigating impact of trace Considerations on trials investigating impact of trace Considerations on trials investigating impact of trace 

elementselementselementselements    

Supplementation proves to be an effective way to raise trace element status when the 

supply is inadequate (McDowell, 1996) and is, consequently, an appropriate research 

tool to investigate effects of trace element status. However, literature data reveal a very 

heterogeneous group of supplementation trials: organic (Givens et al., 2004; Rabiee et al., 

2010) versus inorganic (Sharma & Joshi, 2005; Sharma et al., 2005) trace element 
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supplementation, with (Bailey et al., 2001; Sprinkle et al., 2006) or without (Uchida et al., 

2001; Cortinhas et al., 2010; Cortinhas et al., 2012) control groups, single (Kumar et al., 

2006; Mandal et al., 2007) versus multiple (Ahola et al., 2004; Hackbart et al., 2010; Dang et 

al., 2013) trace element supplementation, and a wide definition of the concept “control”, 

ranging from below requirements (Engle et al., 2001; Scaletti et al., 2003) to 

concentrations doubling these requirements (Campbell et al., 1999; Lamb et al., 2008; 

Sobhanirad et al., 2010). While all these studies have merit, conclusions should be stated 

with care. Overall, this wild panache of studies may seem to produce conflicting results 

and may confuse future scientists as well as practitioners. The critique is rising on such 

research practices as some authors call out for a nuanced assessment of potentially 

commercially biased experiments (Suttle, 2010), and others advocate a more 

standardized (Weiss & Spears, 2006) and combined research approach, both mechanistic 

and applied (Wichtel, 2003). 

As an alternative for the supplementation trials, new studies are coming up 

investigating the link between the presence of disease on farm level and trace element 

deficiencies, e.g., through odds ratios (Guyot et al., 2009; Machado et al., 2013). 

Furthermore, the association between a certain status and a continuous outcome (using 

regression and/or correlation coefficients) can also be investigated. Finally, the 

unbeaten track of systematically reviewing the effects of trace element 

supplementation could be a promising option to provide more generalized views on the 

topic. 

1.8.3.1.8.3.1.8.3.1.8.3. Performance effects of trace element statusPerformance effects of trace element statusPerformance effects of trace element statusPerformance effects of trace element status    

1.8.3.1. Anti-oxidant status, immunity and disease resistance 

In the context of this work, we consider health as optimal response towards oxidative 

stress and a good immunity. Trace elements are involved in all these processes, which 

are also interrelated.  

Oxidative stress is defined as an imbalance between pro-oxidants and anti-oxidant 

systems in the body, with a final overload of reactive oxygen species (ROS) capable to 
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initiate lipid peroxidation and disrupt cell walls with cell death as a consequence 

(Davies, 2000). If not restrained, the rampant production would lead to loss of vital 

organ functions and eventually, animal death (Davies, 2000). Luckily, the body has a 

broad range of tools to tackle such dangerous compounds. Trace elements perform 

important tasks in this anti-oxidant system, as cofactors of enzymes. Two types of 

superoxide dismutases (SOD), the cytoplasmatic or extracellular Cu,Zn dependent SOD 

and mitochondrial Mn related SOD, as well as the Se dependent glutathione peroxidase 

(GSH-Px), help fight the oxidative burden in ROS reduction reactions (Spears & Weiss, 

2008). Other selenoproteins such as selenoprotein P and five different isoforms of GSH-

Px, are also thought to perform such tasks (Sordillo & Aitken, 2009). Furthermore, the 

molecules ferritin and ceruloplasmin (Cp), Fe and Cu dependent respectively, protect 

the body against metal-mediated oxidation reactions (Davies, 2000). 

Immune cells are very susceptible to oxidative stress since their membranes contain 

high levels of polyunsaturated fatty acids (PUFA). The ROS, however, are also formed as 

a part of the immune response, in order to effectively kill host intruders (Spears & Weiss, 

2008). Within the immune system, trace elements seem to perform important tasks 

based on deficiency symptoms, yet, their true function is ill-defined. For a extended 

overview of current knowledge on these functions in humans, readers are encouraged 

to read the review of Wintergerst et al. (2007).  

Less research on the subject has been performed in ruminants, although some data 

suggest marked differences with human subjects. The combined work of Jerry Spears 

and William Weiss (Spears, 2000; Weiss & Spears, 2006; Spears & Weiss, 2008) nicely 

compiled current knowledge on immune status effects of trace element 

supplementation in ruminants. Briefly, they stated that Cu supplementation seems to 

have a positive effect on neutrophil killing function, but studies investigating effects on 

cellular and humoral immunity are less consistent (Spears, 2000). For Se, on the other 

hand, it is very clear that supplementation, alone or in synergistic combination with 

vitamin E, has a positive influence on immune function, both on phagocytic and specific 

immunity, and hence, resistance towards mastitis (Weiss & Spears, 2006). The authors 

also suggest that the impact of Zn supplementation on immune functions is usually 

minor in ruminants, at least based on study results at the moment. Zn, however, does 
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have an important role in replication of immune cells as well as for integrity of the 

intestinal barrier (Spears, 2000; Weiss & Spears, 2006). It seems that much more is to be 

unravelled in this field of research. 

Theoretically, we expect a strengthened disease resistance in cattle with an improved 

trace element status as a result of improved immunity and anti-oxidant status. Selenium 

is renowned for its positive influence on susceptibility to intramammary infections with 

reduced California Mastitis Test (CMT) scores, expressing the presence and degree of 

subclinical mastitis, whereas reported effects of Cu are inconsistent (Spears, 2000). 

Despite the ill-defined role of Zn in ruminant immunity, the element is able to positively 

affect disease resistance (Spears, 2000). Field trials on beef and dairy farms also linked 

the deficient status of these elements with increased odds ratios for disease (Zn, Cu and 

Se: Enjalbert et al., 2006; Zn, Cu, Se and I: Guyot et al., 2009). 

1.8.3.2. Production 

Production is the main objective of animal husbandry and it is therefore important to 

measure the impact of trace elements on production parameters. Optimal production is 

the result of many factors, including genetic potential, disease burden, nutrition and 

management. The adequacy of the trace element supply only is a small facet in a 

broader picture. However, whether trace element deficiency can have noticeable impact 

on animal production is not fully unravelled.  

In beef cattle, earlier research investigated the effect of trace element supplementation 

on live production characteristics with sometimes conflicting results. Spears & Kegley 

(2002) found a positive effect of Zn supplementation on average daily gain (ADG) in the 

growing, but not in the finishing phase of beef cattle. These authors also found a positive 

effect on quality grade and marbling grades as well as a tendency for positive effects on 

yield grade and back fat thickness. Manganese supplementation on the other hand, did 

not cause an effect on any live performance parameters or on carcass appraisal 

(Legleiter et al., 2005). Furthermore, for Se, Droke & Loerch (1989), did not observe any 

influence of supplementation on production characteristics. 
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In the trial of Ward & Spears (1997), Cu supplementation tended to positively affect 

ADG, and was also associated with leaner carcasses, with a lower yield grade and hot 

dressing percentage and a trend for lower back fat percentage. In the presence of high 

levels of the Cu antagonists Mo and Hansen et al. (2008) also found a higher ADG, dry 

matter intake (DMI) and Gain:Feed ratio in Cu supplemented cattle versus control 

animals. Bailey et al. (2001), García-Vaquero et al. (2011) and Ward et al. (1993), on the 

contrary, did not find any effect of Cu and Engle & Spears (2000) even observed a 

decreased performance in Cu supplemented steers during the finishing phase. The 

effects of other important trace elements as well as the effect of a complete trace 

element mix on beef cattle performance are not investigated well. 

Further, milk yield and milk component (fat, protein, lactose) yield in dairy cattle are 

generally not reported to be affected by the trace element status of the animal. Indeed, 

Engle et al. (2001) did not observe differences in milk production with or without Cu 

supplementation whereas Engel et al. (1964) did not observe an effect on component 

yields. Also, no effects of Se and Zn were found by Juniper et al (2006) and Sobhanirad et 

al. (2010), respectively. The effects on milk and milk component yield were not 

examined for other trace elements or for a complete trace element mix. Enjalbert et al. 

(2006), however, reported an increased odds ratio for low milk production (as reported 

by the dairy farmer) in Zn deficient cattle. 

1.8.4.1.8.4.1.8.4.1.8.4. Trace elements in animal productsTrace elements in animal productsTrace elements in animal productsTrace elements in animal products    

1.8.4.1. Introduction 

Next to their role for animal performance and health, trace elements in animals can also 

fulfil a role in human nutrition, through their storage and secretion in animal products, 

such as milk, meat and organs. The most complete diagnostic data on mineral levels in 

these products, for animal health were provided by Puls (1988) and are presented in 

Table 6.  
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Table 6.Table 6.Table 6.Table 6. Adequate range for trace elements concentrations in bovine tissue (mg/kg WW) and 

milk (mg/l) according to Puls (1988) 

Organ Cu Mo Fe Zn Mn Se Co 

Liver 25-100 0.14-1.40 45-300 25-100 2.5-6.0 0.25-0.50 0.02-0.09 

Kidney 4.0-6.0 0.22-0.57 30-150 18-25 1.2-2.0 1.0-1.5 0.071 

Muscle 1.2-1.5 - 10-12 30-70 0.44-0.84 0.07-0.15 - 

Heart - - - - - - - 

Milk 0.05-0.60 0.028-0.12 0.2-6.3 2.3-7.5 0.02-0.07 0.03-0.05 0.04-1.10 

 

Guidelines for required human trace element supply are summed in Table 7. Within this 

context, the word “adequacy” has a twofold meaning, adequate as in supplying enough 

for optimal animal health and performance, and adequate as in providing a substantial 

amount of trace elements for human nutrition. 

Table 7.Table 7.Table 7.Table 7. Recommendations for human trace element intake 

FNB, IM (2000), RDA1.2  WHO/FAO (2002), RNI3 

Woman Man  Woman  Man 

Se, μg/d 55 55  26 34 

Cu, μg/d 900 900  - - 

Mn, mg/d4 1.8 2.3  - - 

Zn, mg/d 8 11  3-10a 3-10a 

Fe, mg/d 18 8  20-59a 9-27a 

Mo, μg/d 45 45  - - 

I, μg/d 150 150  150 150 

1,2Food and Nutrition Board, Institute of Medicine (2000a,b): RDA = recommended daily allowance,  
3World Health Organization/Food and Agriculture Organization of the United Nations (2002): RNI = 

recommended nutrient intake,  
4AI= adequate intake, 
aRange depending on bio-availability of micronutrient  

1.8.4.2. Organs and meat 

Overall, few data are present on trace element concentrations in bovine organs and meat. 

Most research was performed in polluted areas with a focus on contamination of soils 

with heavy metals (Sedki et al., 2003; Oyaro et al., 2007; Miranda et al., 2009; Waegeneers 

et al., 2009). Also, the true value of the reported ranges of adequacy of Puls (1988) for 

assessing trace element status of these tissues is not well investigated. Doyle and 

Spaulding (1978) reviewed data on trace elements in cattle tissue and they found trace 

element concentrations widely inconsistent with adequate ranges of Puls (1988), 
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especially for Fe, Zn and Mn muscle concentrations (Table 8). Indeed, especially in the 

case of muscle concentrations, literature comparison is difficult, as rarely the type of 

muscle is mentioned, and different types of muscles differ in trace element 

concentrations (García-Vaquero et al., 2011).  

As mentioned above, liver is the main storage organ for many trace elements, whereas 

the kidney often forms the second largest storage pool in the body (Suttle, 2010; Herdt & 

Hoff, 2011). Based on the normal tissue ranges stated in Table 5, this is particularly true 

for Cu, Mo, Fe and Mn. For Zn and Co, normal liver concentrations are high, but do not 

differ much from muscle and kidney levels, respectively (Puls, 1988). The storage of Co is 

still poorly understood, due to its role as integrated part of the cobalamin metabolism 

(Stangl et al., 1999), whereas the more diffuse storage of Zn is rather an indication of a 

poorly developed storage system, with low bodily reserves (Zn) (Miller, 1969). Unlike for 

the other elements, the kidney contains the highest Se concentrations instead of liver 

(Puls, 1988). Adequate liver concentrations of Cu, Mn, Fe, Zn are much more variable 

than those of Se and Co (Puls, 1988). For most elements, kidney concentrations do not 

seem very variable, with the exception of Fe, and trace element muscle concentrations 

reported by the same author, also seem fairly constant (Puls, 1988). Recently, authors 

reported that trace element concentrations in more active muscle types (e.g., 

diaphragm and cardiac muscle) with less fat seem to be higher than in other muscle 

types (e.g., pectoral and semitendinosus muscle) (García-Vaquero et al., 2011). 

Table 8.Table 8.Table 8.Table 8. Reported means of trace elements concentrations found in bovine tissue (mg/kg WW) 

as reviewed by Doyle & Spaulding (1978) 

Organ Cu Mo Fe Zn Mn Se Co 
Liver 44-100 _ 51-81 26-44 2.3-3.5 0.12-1.15 _ 
Kidney 4.8-5.6 _ 69 13-22 0.75-1.25 1.17 _ 
Muscle 1.2-2.7 _ 20 19-31 0.21-0.23 0.05-0.09 _ 
Heart 3.7 _ 64 14-22 0.29-0.74 - _ 

 

There is still a dearth on information on the impact of trace element status on trace 

element concentrations in organ and muscle tissue as, in fact, little knowledge is 

present on how the trace element distribution to tissues is affected, during deficient, 

sufficient and toxic supply periods. The liver is known to be the most responsive organ 
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to an altered trace element status for most elements (Ouweltjes et al., 2007). This is 

particularly true for Cu, Fe and Se, the latter despite having higher kidney 

concentrations. For Zn, Co and Mn, liver concentrations will alter in case of extreme 

changes in trace element status (i.e. toxicity or deficiency) but they are less responsive 

to smaller variations in intake and status (Suttle, 2010). Theoretically, the kidney is 

expected to react in line with liver, as the second most important organ of storage, and 

bodily detoxification. However, this is only true, and to a lesser degree than for liver 

concentrations, for Cu, Fe, Se and Mn (Suttle, 2010). The impact of trace element status 

on trace element disposition in muscle is also not fully unravelled. García-Vaquero et al. 

(2011) suggest that in the case of adequate trace element supply, internal homeostasis 

mechanisms are predominantly affecting trace element storage. During an initial phase 

of depletion, the body often exerts a higher distribution of trace elements to soft tissues 

with an increase or limited reduction of muscle concentrations (Zn: Miller, 1969; Fe: 

Suttle, 2010). After prolonged deficiency, muscle concentrations seem to deplete 

eventually (Cu: Mills et al., 1976). Other studies with generally low trace element supply, 

showed that liver status and muscle storage were linearly related for at least some 

elements (Se: Pavlata et al., 2001).  

1.8.4.3. Milk 

As compared with tissue concentrations, the trace element content of bovine milk in 

cattle with an adequate status is rather low for Cu and Mn, whereas high for Fe, Se, Zn 

and especially Mo (Puls, 1988). Unlike in muscle, trace element concentrations in milk are 

also quite variable (Puls, 1988).  

With regard to the effect of trace element status on secretion of trace elements in milk, for 

some elements, such as Cu, it is known that deficiency will cause a drop in milk 

concentrations. As such, milk concentrations of Zn and Cu can be increased by 

supplementation to normal concentrations but only if prior dietary levels were deficient 

(Zn: Miller, 1970; Cu in dams: Suttle, 2010). Milk Se and Co concentrations can be largely 

increased, without reaching a plateau even when adequate dietary amounts are fed (Se: 

Knowles et al., 1999; Co: Kincaid & Socha, 2007). Although other factors, such as 

processing can also affect trace element concentrations (Coni et al., 1995) and the 
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association with trace element status is not well understood, dietary intake seems to 

affect milk concentrations, at least for some elements. 

2.2.2.2. Trace element supply and cattleTrace element supply and cattleTrace element supply and cattleTrace element supply and cattle    production in production in production in production in 

tropical regionstropical regionstropical regionstropical regions    

The tropics are defined as the zone which is limited by the tropics of Cancer in the 

North and the tropics of Capricorn in the South (El-Swaify et al., 1982). Most tropical 

countries have an arid or tropical type of climate with high temperatures and either 

extremely low (e.g., Sudan, Somalia) or extremely high (e.g., Burundi, Vietnam) annual 

precipitation levels respectively, whereas in others, inclusions with a rather temperate 

climate exist (e.g., Zambia, Ethiopia) (Peel et al., 2007). Many soils found in these areas 

are characterized by low nutrient levels (e.g., Ferralsols, Nitisols) and/or suffer from 

waterlogging (e.g., Vertisols) (Dudal, 1980). As explained above, intrinsically, due to 

certain parent materials, soils in tropical areas often contain low levels of some trace 

elements, combined with toxic levels of others (Dudal, 1980; Faye et al., 1991). Moreover, 

tropical soils are prone to erosion, i.e. the weathering of the land surface through forces 

of nature, such as water and wind and often facilitated by inappropriate land 

management (Dudal, 1980). Hence, trace elements are leached away (Olife et al., 2007), 

leaving even more impoverished grounds behind (Pimentel, 2006). Pastures growing on 

these soils, frequently exhibit low levels of trace elements, e.g., of Cu, Zn, Se and Co, 

whereas Mn and especially Fe concentrations below cattle requirements are very 

uncommon (McDowell & Arthington, 2005). However, the trace element content of 

tropical pastures is equally variable as in non-tropical areas.  

Cattle in the tropics are most often extensively kept and free-ranging on communal 

grazing lands. The major constraints to cattle production in the tropics are the stressful 

climate and high disease burden but also the presence of low quality feeds with low 
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energy and protein levels and often imbalanced trace element supply, as mentioned 

earlier (Leng, 1990; McDowell & Arthington, 2005). Due to their robust nature, the most 

commonly used cattle in the tropics are zebu cattle (Turner, 1980) (Figure 8). 

Figure Figure Figure Figure 8888.... Zebu oxes ploughing the land at the Gilgel Gibe catchment, Ethiopia 

3.3.3.3. Zebu CattleZebu CattleZebu CattleZebu Cattle    

3.1.3.1.3.1.3.1. Domestication waves of cattleDomestication waves of cattleDomestication waves of cattleDomestication waves of cattle    

Generally, two schools of thought exist on the origin of domesticated cattle, classified 

collectively as Bos primigenius (MacHugh et al., 1997). One school postulates that all cattle 

originate from the same ancestor: the aurochs, Bos primigenius primigenius. According to 

this school, the humpless “taurine” type was domesticated first from the feral type 

around 8000 and 9000 years ago in the Near East. Afterwards, the humped “zebu” or 

“indicine” type developed through selection and breeding (Epstein, 1971). Nonetheless, 

another school, which is most widely supported, states that the two types descend from 

different ancestors, diverging at least 200 000 years ago (MacHugh et al., 1997). They 

seemed to be domesticated at separate places, the taurine type would indeed descend 
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from the Bos primigenius primigenius around 10000 years ago at the Fertile Crescent, 

whereas the zebu type would descend from the Bos primigenius namadius, and was 

domesticated around the Indus valley some 2000 years later (Loftus et al., 1994; 

Caramelli, 2006; Ajmone-Marsan et al., 2010) (Figure 9).  

    

Figure Figure Figure Figure 9999.... Cattle migrations worldwide. Roman numbers depict the century of migration. 

Migrations within Europe, as well as to Australia are not included. Reproduced with permission 

from Ajmone-Marsan et al. (2010). 

 

Unmistakenly, the first cattle setting claw on African ground were taurine-typed 

(Bradley et al., 1998; Hanotte et al., 2000). They arrived there around 8000 years ago, at 

the same time of taurine introduction in Europe (Ajmone-Marsan et al., 2010). Much 

later, around 2500 years ago, zebu cattle were introduced for the first time to the 

continent. Nevertheless, these newcomers exerted little impact on the large taurine 

population, although some local crossbred products did arise from their arrival, namely 

the sanga (a crossbred of the African zebu and indigenous taurine cattle) and zenga 

(crossbred of the African zebu and sanga) (Hanotte et al., 2000), although others contest 

this (Grigson, 1991). One way or the other, the Arab invasion some 700 years before 

Christ would leave a much more marked influence on the African cattle population. 

Large groups of mainly male zebu cattle were introduced and quickly penetrated the 
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African population, due to their robustness and distinct tolerance towards rinderpest 

infestations (Ajmone-Marsan et al., 2010). This would result in a remarkable sex-driven 

zebu introgression in the African cattle population, with a high percentage of zebu Y-

chromosome alleles (originating from the bulls) and a high percentage of zebu 

autosomal admixture but hardly any maternally dependent zebu mitochondrial DNA 

(mtDNA) (Suzuki et al., 1993; MacHugh et al., 1997; Hanotte et al., 2000) (Figure 10). 

    

Figure 1Figure 1Figure 1Figure 10000.... Zebu genomic introgression in African cattle as illustrated by three different genetic 

systems. Redrawn with permission from Bradley et al. (1998) 

 

The New World, more specifically North and Central America welcomed its first cattle, 

which were taurine-natured, in the 15th century thanks to Christopher Colombus, 

whereas indicine cattle breeds were imported to Brazil and other countries in the 19th 

century (McTavish et al., 2013).  
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3.2.3.2.3.2.3.2. CCCCharacteristics of zebu cattle morphology and haracteristics of zebu cattle morphology and haracteristics of zebu cattle morphology and haracteristics of zebu cattle morphology and 

adaptations to the environmentadaptations to the environmentadaptations to the environmentadaptations to the environment

Zebu cattle are intermittently referred to as 

al., 2000), Bos primigenius indicus

indicus (Cronin et al., 2013). In official taxonomy, these cattle are defined as 

indicus, although the debate is still on

Whatever their true name might be (in this work we will use “zebu” or “

from now on), they are the most prevalent type of cattle in the tropics 

are clearly distinguishable from 

hump and dewlap (Bradley et al.

their counterparts. Anatomically, they also differ from 

(possibly indicating a slightly different way of holding their head) and because of the 

presence of a flat orbital rim (versus a sharp transition in 

Figure 11.Figure 11.Figure 11.Figure 11. Distribution of different cattle types in the Old World (reproduced with permission 

from Caramelli (2006)). White zones represent areas with low numbers of cattle

haracteristics of zebu cattle morphology and haracteristics of zebu cattle morphology and haracteristics of zebu cattle morphology and haracteristics of zebu cattle morphology and 

adaptations to the environmentadaptations to the environmentadaptations to the environmentadaptations to the environment    

Zebu cattle are intermittently referred to as Bos indicus (MacHugh et al., 1997; Hanotte 

Bos primigenius indicus (Ajmone-Marsan et al., 2010; Hall et al., 2013

In official taxonomy, these cattle are defined as 

, although the debate is still on-going after proof of different ancestry 

Whatever their true name might be (in this work we will use “zebu” or “

ey are the most prevalent type of cattle in the tropics 

are clearly distinguishable from Bos taurus cattle. Most strikingly, they have a thoracic 

et al., 1998) (Figure 9). Often they have a smaller frame than 

counterparts. Anatomically, they also differ from Bos taurus cattle in cranial angles 

(possibly indicating a slightly different way of holding their head) and because of the 

presence of a flat orbital rim (versus a sharp transition in B. taurus) (Grigson, 

Distribution of different cattle types in the Old World (reproduced with permission 

). White zones represent areas with low numbers of cattle
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Moreover, their main adaptive characteristic, heat tolerance, is related to their skin 

anatomy, with well-developed sweat and sebaceous glands and a smooth coat with 

primary hair follicles, they are able to evaporate more moisture and maintain normal 

body temperature in extreme environments. Furthermore, they have a lower 

respiration rate while kept under such conditions (Turner, 1980).  

These cattle are also renowned for their ability to thrive on high roughage diets, making 

more efficient use of the low energy content (Turner, 1980) and digesting a roughage 

diet more quickly with higher production of rumen ammonia (Hunter & Siebert, 1985). 

Zebu cattle might even have adapted to the presence of tannins, an antinutritional 

compound, through the production of salivary proline-rich proteins, usually not seen in 

grazers (Yisehak et al., 2011, 2012). Whether the latter are inherent to zebu cattle or are 

adaptive changes to grazing in this environment, is not known. Zebu cattle also seem to 

have a higher resistance towards rinderpest, ticks, nematodes and Babesia as well as 

Brucella abortus  (Bradley et al., 1998; Macedo et al., 2013), but a lower resistance towards 

trypanosomes (MacHugh et al., 1997). 

When expressed in performance characteristics, zebu cattle are less excelling. They are 

slow growers (Turner, 1980) and their meat is less tender than in B. taurus cattle, due to 

reduced post-mortem degrading of myofibrillar proteins (Whipple et al., 1990). Their 

puberty also starts much later and they have long periods of postpartum anoestrus, 

illustrated by a higher age at first calving (57 vs. 47 months) and long calving intervals 

(457 vs. 450 days, not significantly different) (Abeygunawardena & Dematawewa, 2004; 

Abraha et al., 2009). It is also well known that they have a lower milk yield (2.7 vs. 4.5 

l/day at beginning of lactation) and shorter lactation length (222 vs. 241 days) than 

crossbred cattle (Abraha et al., 2009). 
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3.3.3.3.3.3.3.3. Trace elements in zebu cattlTrace elements in zebu cattlTrace elements in zebu cattlTrace elements in zebu cattle: what do we know?e: what do we know?e: what do we know?e: what do we know?    

3.3.1.3.3.1.3.3.1.3.3.1. Considerations on search methodologyConsiderations on search methodologyConsiderations on search methodologyConsiderations on search methodology    

It is difficult to keep track of zebu trace element research. Often, the terms zebu or Bos 

indicus or alikes are not really used and an educated guess needs to be used to define the 

type of cattle present at a certain study location.  

Based on the maps of Bradley et al. (1998) and Caramelli (2006) (Figure 11), we presumed 

cattle were indicine when originating from India, whereas for African cattle, they were 

regarded as zebu if they were referred to as local, indigenous and if they originated 

from Chad, Sudan, Eritrea, Djibouti, Ethiopia (with exclusion of the taurine Sheko breed 

in the South-West), Somalia, Kenya, Tanzania, Mozambique, Malawi or Central African 

Republic. 

Other African countries were only partially inhabitated with indicine cattle in addition 

to crossbreds or even taurine breeds (Bradley et al., 1998; Caramelli, 2006), we, therefore, 

excluded these from our literature search. Furthermore, data from Yemen, Oman and 

the Emirates were added. Studies performed in Brazil were also included based on the 

presence of the indicine Nellore and Guzerat breeds (McTavish et al., 2013).  

Any other studies specifically stating the use of zebu cattle were also taken into account. 

Finally, an appropriate search term was built in order to identify all available research 

on trace elements in zebu cattle (Table 9) . 
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Table 9.Table 9.Table 9.Table 9. Search terms used for literature review on trace elements in zebu cattle 

  Number of 

Search engine and terms Results Relevant studies 

Pubmed search 101 23 

(zebu[tw]  OR zebus[tw] OR zebu-influenced[tw] OR bos indicus[tw] OR bos taurus indicus[tw] OR 
bos primigenius indicus[tw] OR cattle[mesh] OR cattle[tw] OR bull[tw] OR bulls[tw] OR calve[tw] 
OR calves[tw] OR heifer[tw] OR heifers[tw] OR cow[tw] OR cows[tw]) AND (Brazil[Mesh] OR 
India[Mesh] OR Ethiopia[Mesh] OR Kenya[Mesh] OR Djibouti[Mesh] OR Somalia[Mesh] OR 
Eritrea[Mesh] OR Sudan[Mesh] OR Chad[Mesh] OR Tanzania[Mesh] OR Mozambique[Mesh] OR 
Malawi[Mesh] OR Central African Republic[Mesh] OR Yemen[Mesh] OR Oman[Mesh] OR United 
Arab Emirates[Mesh] OR Brazil[tw] OR India[tw] OR Ethiopia[tw] OR Kenya[tw] OR Djibouti[tw] OR 
Somalia[tw] OR Eritrea[tw] OR Sudan[tw] OR Chad[tw] OR Tanzania[tw] OR Mozambique[tw] OR 
Malawi[tw] OR Central African Republic[tw] OR Yemen[tw] OR Oman[tw] OR Emirates[tw]) AND 
(Trace Elements[Mesh] OR Sulfur[Mesh] OR Iron[Mesh] OR Cobalt[Mesh] OR Iodine[Mesh] OR 
Copper[Mesh] OR Selenium[Mesh] OR Zinc[Mesh] OR Manganese[Mesh] OR Molybdenum[Mesh] 
 OR trace mineral[tw] OR micromineral[tw] OR trace element[tw] OR trace elements[tw] OR 
mineral[tw] OR minerals[tw] OR iodine[tw] OR copper[tw] OR selenium[tw] OR zinc[tw] OR 
manganese[tw] OR iron[tw] OR cobalt[tw] OR molybdenum[tw] OR sulfur[tw] OR sulphur[tw]) 

Web of Knowledge search 328 50 

(zebu  OR zebus OR zebu-influenced OR bos indicus OR bos taurus indicus OR bos primigenius 
indicus OR cattle OR bull OR bulls OR calve OR calves OR heifer OR heifers OR cow OR cows) AND 
(Brazil OR India OR Ethiopia OR Kenya OR Djibouti OR Somalia OR Eritrea OR Sudan OR Chad OR 
Tanzania OR Mozambique OR Malawi OR Central African Republic OR Yemen OR Oman OR 
Emirates) AND (“trace mineral” OR micromineral OR “trace element” OR “trace elements” OR 
mineral OR minerals OR iodine OR copper OR selenium OR zinc OR manganese OR iron OR cobalt 
OR molybdenum OR sulfur OR sulphur) 

Total  429 58a 

aThe total number of relevant studies was calculated by subtracting any identical studies from the searches 

using the two search engines from the total number of relevant studies found.  

3.3.2.3.3.2.3.3.2.3.3.2. Overview of the literature availableOverview of the literature availableOverview of the literature availableOverview of the literature available    

To date, research on trace element nutrition in zebu cattle still predominantly consists 

of reports on the evaluation of trace element supply through the diet and the trace 

element status of zebu cattle (Frøslie et al., 1983a,b; Khalili et al., 1993; Abdelrahman et al., 

1998; Gizachew et al., 2002; Gowda et al., 2004). Most often, an inadequate supply in Cu, 

Zn is seen together with very high levels of the Cu antagonist Fe, concomitantly 

reported with mainly severe shortages of Cu in cattle. However, not all elements were 

analysed in all reported studies, so data are incomplete.  
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Some studies did take the effort to look at the broader picture related to the trace 

element status in zebu cattle. They reported on the presence of the soil-plant-animal flow 

in zebu grazing lands (association of soil-plant-animal concentrations: Kumaresan & 

Bujarbaruah, 2010), tried to unravel factors related to the trace element content of soil 

and forages growing on this soil (parental material: Jumba et al., 1995). Some authors 

called for a broad view on certain disorders, with minerals as an integrated part of the 

cure (postpartum anoestrus: Brar & Nanda, 2008). Another study searched for natural 

alternatives for mineral supplementation (Kabaija, 1989).  

The effect of trace element status on zebu anti-oxidant status was not intensively studied 

before, but Sharma et al. (2005) did see an increase of SOD and Cp in Cu supplemented 

crossbred dairy cattle. When considering the effect on immunity, Dang et al. (2013) 

reported a better cellular immunity, namely higher phagocytic activity pre- and post-

partum in Cu and Zn supplemented as well as a higher B lymphocyte proliferation pre- 

and post-partum in Cu supplemented zebu beef cattle, whereas Sharma et al. (2005) did 

not report a significantly higher phagocytic activity in Cu supplemented crossbred dairy 

cattle. Se supplementation did also cause a better humoral immunity, namely a higher 

antibody response in zebu beef cattle (Reis et al., 2009). Mandal et al. (2007) on the other 

hand, observed a higher antibody response in Zn supplemented crossbred dairy cattle, 

but only with the organic Zn supplement. Studies on other trace elements are absent.  

Focussing on the effect of trace elements on zebu production, Howard (1970) and Roeder 

(1980) observed a greater weight gain in zebu beef cows due to treatment with Cu and 

Co, respectively, while both elements were supplemented in the two studies. Kabaija & 

Little (1991) on the other hand, did not report any difference in weight gain caused by 

Cu (and P) supplementation in zebu beef bulls. Moreover, in crossbred dairy cows, Zn 

supplementation did not induce a higher milk yield (Sharma & Joshi, 2005), whereas the 

effect of the same element on nutrient digestibility and growth in crossbred dairy bulls 

was also absent (Mandal et al., 2007).  

Studies reporting on the trace element status in zebu cattle often include analysis of 

plasma as well as liver samples (Frøslie et al., 1983a,b; Khalili et al., 1993). However, only 

few studies report trace element concentrations in other tissues, and bodily fluids (milk: 
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Murray et al., 1980; Salih et al., 1987; Admasu et al., 2008; Raghu, in press; semen: Aguiar et 

al., 2012; meat: Giuffrida-Mendoza et al., 2007; Oyaro et al., 2007). 
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Throughout the animal kingdom, trace elements are known to be essential for optimal 

health (Bender, 2007). Within the bovine species, numerous historical studies confirmed 

their importance, as supplementation of these elements alleviated elusive symptoms 

and improved cattle production (McDowell & Arthington, 2005).  

From then on, worldwide, authors reported trace element shortages and overload in 

natural pastures, indicating an omnipresent risk for trace element imbalance in grazing 

cattle (Abdelrahman et al., 1998; Mortimer et al., 1999; Govasmark et al., 2005a,b). Indeed, 

the grazing cow has its role in the trace element cycling through soil, plant and animal, 

and the bovine trace element status is directly influenced by this flow, although many 

influencing factors are yet to be unravelled (Suttle, 2010).  

Furthermore, studies investigating the effects of trace elements on some body 

functions, such as immunity (Spears, 2000; Weiss & Spears, 2006; Spears & Weiss, 2008) 

as well as on performance (Ward & Spears, 1997; Engle & Spears, 2000) often produce 

conflicting results. Additionally, few studies investigated their impact under practical 

farming conditions (Wichtel, 2003). Finally, the influence of trace element status in 

edible tissues and milk during different stages of trace element supply, is not well 

understood (García-Vaquero et al., 2011; Rey-Crespo et al., 2013).  

In tropical areas, several environmental characteristics (e. g. parent material, heavy 

rainfall) increase the risk for trace element imbalances in cattle (Dudal, 1980). Overall, in 

such regions, poor grasslands remain the primary bottleneck for optimal cattle 

production (McDowell & Arthington, 2005).  

The zebu cattle type (Bos indicus), domesticated independently from Bos taurus cattle, is 

spread around the globe with a predominant presence in these tropics, e. g. South Asia 

and large parts of Africa (MacHugh et al., 1997; Bradley et al., 1998; Hanotte et al., 2000). 

Zebu cattle are renowned for their adaptive traits to a harsh environment, with a high 

tolerance towards heat stress, high disease burden and poor dietary quality (Turner, 

1980; Bradley et al., 1998; Macedo et al., 2013). However, few work was performed on 

trace elements in Bos indicus (-influenced) cattle. 



Scientific Aims    Scientific Aims    Scientific Aims    Scientific Aims    70707070    

 

 

In Ethiopia, the world’s fifth largest cattle holder (FAO, 2013), poor communal grass 

lands are often characterised by erosion and overgrazing (Devi et al., 2008). A coherent 

grazing management policy is absent and farmers have low financial resources to 

supplement zebu cattle with high quality grains or by-products, let alone commercial 

mineral supplements. In this country, beef oriented zebu cattle dominate the cattle 

population, in addition to dairy oriented crossbreeds with taurine Holstein-Friesians, a 

mix of sanga and zenga cattle (Dadi et al., 2008) and the small indigenous taurine Sheko 

population (≤ 4000 individuals left according to Taye et al. (2009)).  

The Gilgel Gibe catchment (Figure 1), SW Ethiopia, is a typical area in the country and 

was therefore selected as our study site to investigate several aspects of trace elements 

in zebu cattle. The area also forms the main subject of a multidisciplinary research 

project (IUC-JU programme of VLIR-UOS) investigating the impact of a hydroelectric 

power plant with adjacent reservoir and dam on human and animal health, ecology and 

agronomy, in order to improve the life quality of local communities.  

In this area, farmers subside from mixed farming systems (Moti et al., 2012) and cattle 

seem to be mainly of the indicine Guraghe-type (DAGRIS, 2007). Herds of such cattle are 

typically free-ranging on poor pastures. In and around Jimma, the largest city in the 

area, urban dairy farming is commonly practiced. Most cattle on these rather small 

farms are crosses of local zebu and Holstein Friesians. The animals are kept on a zero-

grazing regime with a cut-and-carry feeding system for forages, fed in combination with 

concentrates and by-products (Belay et al., 2012).  
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Figure 1.Figure 1.Figure 1.Figure 1. The Gilgel Gibe catchment in Ethiopia  

(reproduced with permission from Van Ranst et al. (2011)) 

 

In this doctoral thesis, our objective was to obtain a broad insight on trace element 

nutrition in zebu cattle, while compiling research questions arisen from paragraphs 

above. In this respect, the zebu cattle type formed both tool and subject of this thesis, as 

studying trace elements in zebu cattle, would increase overall knowledge on trace 

elements in the bovine species.  

More specifically, as such, our objectives were to:  

----Evaluate the trace elementEvaluate the trace elementEvaluate the trace elementEvaluate the trace element    supplysupplysupplysupply    for zebu (for zebu (for zebu (for zebu (----influenced) cattleinfluenced) cattleinfluenced) cattleinfluenced) cattle, through the 

compilation of data from an exemplary tropical region with literature 

information. 

----Evaluate the trace elementEvaluate the trace elementEvaluate the trace elementEvaluate the trace element    statusstatusstatusstatus    in zebu (in zebu (in zebu (in zebu (----influenced) cattleinfluenced) cattleinfluenced) cattleinfluenced) cattle, again in an 

exemplary tropical region as compared to literature. Also, it also was our intention 

to compare different sampling methods to evaluate this trace elements status and 

to investigate the use of new samples.  
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----Gain more insights on factors influencing the soilGain more insights on factors influencing the soilGain more insights on factors influencing the soilGain more insights on factors influencing the soil----plantplantplantplant----animal flowanimal flowanimal flowanimal flow. . . . In 

particular, we wanted to explore the influence of the environment and 

management as well as the effect of plant factors, such as plant type. Additionally, 

our objective was to fully study the impact of animal factors, including differences 

with Bos taurus cattle. 

----Investigate the effect of status in beef and dairy zebu Investigate the effect of status in beef and dairy zebu Investigate the effect of status in beef and dairy zebu Investigate the effect of status in beef and dairy zebu ((((----influenced) cattle oninfluenced) cattle oninfluenced) cattle oninfluenced) cattle on    

different aspects of bovine health and production. different aspects of bovine health and production. different aspects of bovine health and production. different aspects of bovine health and production. We were interested in 

identifying effects of trace element status on bovine anti-oxidant status, immunity 

and disease resistance in addition to the impact on production, both in beef and in 

dairy cattle. Moreover, we aimed to evaluate trace element status effects on trace 

element storage in edible tissues abd trace element secretion in milk, and to 

analyse their potential for human nutrition 
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As in many tropical countries, natural pastures are the main source of nutrients for 
cattle in Ethiopia. In this study, we evaluated trace element concentrations in 
ingested plant species, estimated the total dietary (ETD) trace element content and 
investigated the effect of environment and management in nineteen herds of zebu 
cattle (Bos indicus) grazing at the Gilgel Gibe valley, Ethiopia. Ingested plants were 
analysed for Cu, Co, Fe, Mo, Mn, S, Se and Zn and total dietary intake estimated 
through ten minute interval bite observation. Inadequate Cu concentrations were 
present in 72% of samples, whereas Se and Zn shortages were present in 59 and 43% 
of plants, respectively. In general, ETD concentrations mirrored this, and contained 
disadvantageous Cu:Mo (19%) and Fe:Cu (41 %) ratios but diets were not considered 
Zn deficient. Concentrations of Cu and S were higher in herbaceous and woody 
plants than in grasses and crop resides, whereas Co concentrations were higher in 
herbaceous than in other plant types. Differences between plant types were also 
present for Fe. Both plant Mn and Zn concentrations were higher at low versus 
medium altitude. Plants growing on Nitisol-Acrisol-Ferralsol soils contained higher 
amounts of Fe than on Planosol-Vertisol (PV) soils. Lower ETD concentrations of Cu 
and Fe and higher Mo concentrations were present in herds grazing on PV soils. 
Communal grazing herds ingested diets with higher ETD Mo and Mn concentrations. 
Herding distance positively affected ETD Mn concentrations. Finally, supplementing 
cattle diets with crop residues had a negative effect on ETD Zn and Se 
concentrations. Overall, micro mineral deficiency is very likely to develop in cattle 
ranging at the studied area. This study is pointing to the major impact of 
environment and management, closely related, on the trace element supply for 
grazing herds.   
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1.11.11.11.1 IntroductionIntroductionIntroductionIntroduction    

Cattle production in tropical areas is predominantly extensive and smallholders are 

majorly dependent on natural pastures and rangelands to provide their cattle with a 

satisfactory nutrient supply (Leng, 1990). Such pastures are often poor in trace elements 

(McDowell & Arthington, 2005). In East Africa, earlier studies described low levels of Se, 

Cu and Zn in native pastures (Chapter 4Chapter 4Chapter 4Chapter 4; Faye & Grillet, 1984; Gizachew et al., 2002; 

Kabaija & Little, 1987; Khalili et al., 1993). Not surprisingly, trace element deficiences (f. 

e. Cu, Se, I) are very common in grazing cattle in this area (Chapter 2Chapter 2Chapter 2Chapter 2,,,,    4, 5 & 64, 5 & 64, 5 & 64, 5 & 6; Schillhorn 

van Veen & Loeffler, 1990).  

It is well known that minerals in particular are subjected to a soil-plant-animal 

continuum (Gupta et al., 2008; Reid & Horvath, 1980), with influencing factors at all 

levels. Jumba et al., (1995) reported on the effect of geology and elevation on herbage 

mineral concentrations. The effect of grazing management is less studied. Coppolillo 

(2000) did describe the effect of ranging management practices on productivity in 

pastoral herds in Tanzania. Grazing in larger herds for longer distances accounted for a 

loss in milk yield and BCS. 

Our objective was to gain more insights on the factors affecting the flow of trace 

elements from soil through plant to the animal in tropical grazing cattle. More 

specifically, we explored 1) the effect of plant type and environment on trace element 

concentrations of ingested plants as well as 2) the effect of environment and 

management practices on total dietary trace element concentrations of grazing zebu 

(Bos indicus) cattle. 
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1.21.21.21.2 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

1.2.1. Study area, herd selection and environmentStudy area, herd selection and environmentStudy area, herd selection and environmentStudy area, herd selection and environment    

An area within a radius of 35 km around the town of Jimma, located in the Gilgel Gibe 

catchment, South-West Ethiopia, was selected as our study site. The Gilgel Gibe 

catchment has an elevation range of 1096-3259 m above sea level (asl) and a subhumid 

climate. The main rainy season, kiremt, presents itself between May and September. This 

study was executed at the end of the kiremt, from September to October. Lower valley 

areas receive a mean annual rainfall of 1300mm, whereas upland regions around 

2000mm. Mean minimum, maximum and average temperatures recorded at the Jimma 

station (1800m altitude) are 11 °C, 25 °C and 17 °C, respectively (Van Ranst et al., 2011). 

Smallholders typically let their cattle roam free on communal rangelands (Yisehak et al., 

2012). 

The study area was divided in three subregions, according to elevation, a “low” region 

within 1700-1800m asl, an “intermediate” region between 1800-2000m asl, and a “high” 

region between 2000 and 2200 m asl. Randomly, 19 herds of free ranging zebu (Bos 

indicus) cattle were selected over these three regions and observed during one grazing 

day (Figure 1.1.). 

The soil types found in the study area were identified based upon visual inspection of 

the top layer. The most commonly found World Reference Soil (WRB) soil groups (IUSS 

Working Group WRB, 2007) at the Gilgel Gibe catchment are Nitisols, Planosols and 

Vertisols (Van Ranst et al., 2011). The free-draining Nitisols, with some minor inclusions 

of Ferralsols and Acrisols (soil association NAF) occur in the level to hilly uplands. These 

finely textured (clayey) weathering products of volcanic rocks are dominantly dark 

reddish brown to yellowish red in color. The soilscapes, with associations of Planosols 

and Vertisols (PV) occur in the flat, lower river terraces and valley areas filled up with 

sediments. Planosols in this catchment have an abrupt textural change at about a depth 

of 40 cm separating a bleached, (dark) gray to light gray, silty topsoil from a black, 

heavy clayey vertic horizon (Vertisol) (IUSS Working Group WRB, 2007). 
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Figure 1.1.Figure 1.1.Figure 1.1.Figure 1.1. Experimental design employed to investigate the impact of environment, plant and 

management on trace element supply in zebu herds (n = 19) grazing at the Gilgel Gibe 

catchment 

1.2.2. ManagementManagementManagementManagement    

Management practices were evaluated based upon grazing strategy, herd size, 

supplementation with crop residues, and the total distance/herding radius covered. The 

grazing strategy (GS) was either communal, in which different herds shared communal 

grazing lands, or individual, in which small herds belonging to individual farmers 

grazed on separate pastures. The crop residue (CR) supplementation was expressed as % 

of the total observations (see section 1.2.3.). The herding distance (HD) was the total 

distance covered from and travelling back to the home stable during the observation 

day, measured using a global positioning system (Garmin® eTrex Legend HCx, Garmin 

International, Olathe, Kansas), attached to the herd observers. 

1.2.3. Ingested plant species and estimation of total dietary trace Ingested plant species and estimation of total dietary trace Ingested plant species and estimation of total dietary trace Ingested plant species and estimation of total dietary trace 

element concentrationselement concentrationselement concentrationselement concentrations    

In every herd, one adult cow was closely monitored during the daily grazing period, 

from the moment the herd left the stable until it returned in the evening. Every 10 

minutes, ingested plant species were recorded and a sample of all ingested plants was 
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collected. The total number of ingested plant species was also recorded. Plants were 

classified as one of the following plant types: grasses, crop residues, herbaceous plants 

or woody plants. Grasses (G) included the “true grasses” or Poaceae and the “sedges” or 

the Cyperaceae. Crop residues (CR) were defined as stovers from cultivated plant species 

offered by farmers to their cattle. Herbaceous plants (H) contained sampled forbs 

whereas the group of woody plants (W) contained leaf samples from trees and shrubs. 

One plant observation was equal to 1 point, several species recorded during an 

observation point were allocated 1 point divided by the number of species recorded, 

thereby estimating the proportion of a single ingested plant species in the total diet. To 

obtain the estimated total dietary (ETD) trace element concentrations, the proportion of 

each ingested plant was multiplied by the trace element contents of the plant and all of 

them were summed. If no sample could be obtained of some plants due to its small size, 

the mineral concentration of the known percentage of ingested plants was extrapolated 

to 100%. Although earlier reported bite masses (Stobbs (1973) 0.29-0.44 mg OM/bite; 

(Gibb et al., 1999) 0.07-0.20 mg OM/bite) could theoretically allow us to calculate 

accurate trace element intake in herds, reported ranges are quite variable, and refer to 

bite masses on pastures. No data exist for crop residues and woody plants. We did, 

therefore, not correct for DM content or bite mass of ingested plants. 

1.2.4. Mineral Mineral Mineral Mineral analysesanalysesanalysesanalyses    

Plant samples were oven dried at 65 °C for 72 hours and ground through a 2 mm screen. 

All plant samples were ashed through microwave destruction with 10 ml HNO3 

(Ultrapure analytical grade for trace element analysis) in closed vessels followed by 

filtration and analysis for concentrations of Cu, Fe, Mo, Zn, Mn, Se and S by means of 

ICP-OES and ICP-MS (Elan DRC-e, Perkin Elmer, Zaventem, Belgium). All glassware and 

microwave vessels were pre-rinsed with diluted HNO3. Throughout the mineral 

analyses, a quality control program was applied. Trace element recovery rates from 

certified reference material (Rye grass ERM-CD281, BCR Reference Materials, Belgium) 

were measured. Average recovery was 97%, with a range between 86% (Zn) and 107% 

(Mo). Detection limits in acid digest were determined as: Mn 0.35 μg/l, Cu 0.25 μg/l, Mo 
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0.33 μg/l, Se 0.13 μg/l, Fe 21.4 μg/l, Zn 16.4 μg/l and Co 0.14 μg/l. Alongside samples, 

standards were run frequently. Furthermore, all analytical results were blank-corrected. 

1.2.5. Statistical analysesStatistical analysesStatistical analysesStatistical analyses    

Statistical analysis was performed using SAS Version 9.3 (SAS Institute Inc., Cary, NC). 

Concentrations of plant trace elements were not normally distributed and therefore log 

transformed. A multivariable fixed effects model with elevation region, soil type and 

plant group as categorical fixed effect was fitted to the log of the plant trace elements. 

Geometric means (GM), and geometric standard error of the means (GSEM), which 

represent the antilog of the arithmic mean and arithmic standard error of the means, 

respectively, of the log-transformed data, were given here. To determine the association 

between categorical variables (i. e. management and environment factors), a Fisher’s 

Exact test was used. To determine the effect of the physical environment and 

management on ETD trace element concentrations, a fixed effects model with one 

categorical or one continuous covariate at a time was fitted to the different response 

variables. Significance was declared at a probability level of p < 0.050. 

1.31.31.31.3 ResultsResultsResultsResults    

1.3.1. Ingested Ingested Ingested Ingested plant species and influence of plant type and plant species and influence of plant type and plant species and influence of plant type and plant species and influence of plant type and 

environmentenvironmentenvironmentenvironment    

Sampled plant species (n = 58) on the two soil types are shown in Table 1.1. Only 28 % of 

plant samples contained adequate Cu concentrations (NRC, 2000). Many plants 

contained toxic levels of Fe (31%), some of Mo (2%) and S (2%) (NRC, 2005). Furthermore, 

deficiencies of Se and Zn were found in 59% and 43% of samples, respectively, whereas 

concentrations of Co and Mn seemed to be adequate in sampled plants (NRC, 2000) (see 

IntroductionIntroductionIntroductionIntroduction: Table 3). 
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Differences in mineral concentrations (shown as geometric means) according to plant 

type are presented in Table 1.2. Briefly, herbaceous and woody plants contained higher 

Cu and S concentrations than grasses and crop residues (p < 0.001). Co concentrations 

were higher in herbaceous plants than in other types of plants (p = 0.005). For Fe, 

differences between plant types existed, but they were not clear cut (p < 0.001).  

Table 1.2.Table 1.2.Table 1.2.Table 1.2. Trace element concentrations (GM)(in mg/kg DM, S in % DM) in different plant types 

sampled around the Gilgel Gibe catchment in South-West Ethiopia. 

Mineral 

Plant type 

GSEM p-value 
Grasses  
(n = 20) 

Crop 
residues  
(n = 7) 

Herbaceous 
plants  
(n = 18) 

Woody 
plants  
(n = 13) 

Co 0.48a 0.25a 0.92b 0.35a 1.128 0.005 

Cu 5.4a 4.2a 8.4b 10.9b 1.072 <0.001 

Fe 769ab 312ac 1276b 286c 1.151 <0.001 

Mn 166 161 222 185 1.111 0.952 

Mo 0.85 0.56 0.93 0.34 1.147 0.122 

S 0.15a 0.13a 0.25b 0.24b 1.066 <0.001 

Se 102 74 116 74 1.091 0.340 

Zn 33 17 38 34.6 1.078 0.082 

a,bDifferent letters within a row differ significantly (p < 0.050), GM = geometric mean, GSEM = geometric 

standard error of the mean. 

Furthermore, higher Mn concentrations were present in plants sampled at low 

elevation than at medium and high elevation (366 versus 157 and 113 mg/kg DM (GM) ± 

1.11 (GSEM), p = 0.011). Zinc concentrations were lower at medium elevation than at 

lowest elevation (23.5 versus 41.0 mg/kg DM ± 1.15, p = 0.020). Plant sampled on NAF 

soils contained slightly more Fe than on PV soils (597 vs. 586 mg/kg DM ± 1.15, p = 

0.048). No other significant differences in trace element concentrations according to 

elevation or soil type were present. 

1.3.2. Association between environment and managementAssociation between environment and managementAssociation between environment and managementAssociation between environment and management    

Soil type (Figure 1.2) and elevation were significantly associated (p < 0.001), with the 

typical occurrence of Planosol/Vertisol associations (PV) at lower elevation. Soil type 
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and elevation were also significantly associated with herd type, as more commun

grazing practices were used at lower elevation and PV soils (p = 0.010, p = 0.030). 

The herding distance was affected by soil and herding type, with cattle grazing for 

longer distance on PV soils (4.1 vs. 1.9 ± 0.5 km, p = 0.020), and in communal herds

vs. 1.7 ± 0.5 km, p = 0.001) than on NAF soils. On the contrary, the amount of crop 

residues provided to the grazing cattle, was not affected by soil or herding type (both p 

> 0.050) (data not shown). 

Figure 1.2.Figure 1.2.Figure 1.2.Figure 1.2. Differences in grazing environment 

catchment, Ethiopia. LeftLeftLeftLeft: greyish waterlogged Planosol/Vertisol soil type, 

drained Nitisol/Acrisol/Ferralsol soil type.

1.3.3. Estimated total diet and influence of environment and Estimated total diet and influence of environment and Estimated total diet and influence of environment and Estimated total diet and influence of environment and 

managementmanagementmanagementmanagement    

ETD trace element concentrations are presented in Table 1.3. All composed diets were 

Cu deficient (19/19 herds), some were Se (4/19) or Zn (1/19) deficient, upon comparison 

with requirements for Bos taurus

ratio considered to indicate a risk for Mo antagonism in combination with S 

concentrations > 0.15 % kg DM, whereas the Fe:Cu ratio was too high in all diets (19/19) 

(Suttle, 2010). 

We then considered the impact of environment on trace element supply. Due to 

high association between soil type and elevation, we mainly focussed on the effect of 

soil type. Soils of the PV type had lower 

and elevation were also significantly associated with herd type, as more commun

grazing practices were used at lower elevation and PV soils (p = 0.010, p = 0.030). 

The herding distance was affected by soil and herding type, with cattle grazing for 

longer distance on PV soils (4.1 vs. 1.9 ± 0.5 km, p = 0.020), and in communal herds

vs. 1.7 ± 0.5 km, p = 0.001) than on NAF soils. On the contrary, the amount of crop 

residues provided to the grazing cattle, was not affected by soil or herding type (both p 

Differences in grazing environment of observed herds (n = 19) at the Gilgel Gibe 

: greyish waterlogged Planosol/Vertisol soil type, RightRightRightRight

drained Nitisol/Acrisol/Ferralsol soil type. 

Estimated total diet and influence of environment and Estimated total diet and influence of environment and Estimated total diet and influence of environment and Estimated total diet and influence of environment and 

e element concentrations are presented in Table 1.3. All composed diets were 

Cu deficient (19/19 herds), some were Se (4/19) or Zn (1/19) deficient, upon comparison 

Bos taurus beef cattle (NRC, 2000). A few diets (3/19) had a Cu:Mo 

tio considered to indicate a risk for Mo antagonism in combination with S 

concentrations > 0.15 % kg DM, whereas the Fe:Cu ratio was too high in all diets (19/19) 

We then considered the impact of environment on trace element supply. Due to 

high association between soil type and elevation, we mainly focussed on the effect of 

soil type. Soils of the PV type had lower number of ingested plant species

 

and elevation were also significantly associated with herd type, as more communal 

grazing practices were used at lower elevation and PV soils (p = 0.010, p = 0.030).  

The herding distance was affected by soil and herding type, with cattle grazing for 

longer distance on PV soils (4.1 vs. 1.9 ± 0.5 km, p = 0.020), and in communal herds (4.9 

vs. 1.7 ± 0.5 km, p = 0.001) than on NAF soils. On the contrary, the amount of crop 

residues provided to the grazing cattle, was not affected by soil or herding type (both p 

of observed herds (n = 19) at the Gilgel Gibe 

RightRightRightRight: red well-

Estimated total diet and influence of environment and Estimated total diet and influence of environment and Estimated total diet and influence of environment and Estimated total diet and influence of environment and 

e element concentrations are presented in Table 1.3. All composed diets were 

Cu deficient (19/19 herds), some were Se (4/19) or Zn (1/19) deficient, upon comparison 

beef cattle (NRC, 2000). A few diets (3/19) had a Cu:Mo 

tio considered to indicate a risk for Mo antagonism in combination with S 

concentrations > 0.15 % kg DM, whereas the Fe:Cu ratio was too high in all diets (19/19) 

We then considered the impact of environment on trace element supply. Due to the 

high association between soil type and elevation, we mainly focussed on the effect of 

number of ingested plant species (10.7 vs. 17.2 ± 
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1.3), and grazing on these soils resulted in lower ETD Cu (4.7 vs. 6.4 ± 0.3 mg/kg DM) and 

Fe concentrations (765 vs. 1672 ± 183 mg/kg DM) whereas concentrations of Mo (1.47 vs. 

0.96 ± 0.10 mg/kg DM) and Mn (331 vs. 173 ± 22 mg/kg DM) were lower on NAF soils (all 

p < 0.050). ETD concentrations of S tended to be lower on PV soils (0.15 vs. 0.19 ± 0.01 % 

DM, p = 0.082).  

Table 1.3.Table 1.3.Table 1.3.Table 1.3. Estimated total dietary mineral concentrations based upon observed ingestion in 

grazing zebu (Bos indicus) cattle herds (n = 19) at the Gilgel Gibe catchment, Ethiopia 

Mineral Mean SD Range Recommendations1,2 

Co, mg/kg DM 0.95 ± 0.78 0.17 - 3.6 >0.10 

Cu, mg/kg DM 5.8 ± 1.3 4.1 - 8.0 >10 

Mn, mg/kg DM 231 ± 96 70 - 412 >20 

Se, μg/kg DM 136 ± 37 57 - 184 >100 

Zn, mg/kg DM 41 ± 7.0 26 - 51 >30 

Mo, mg/kg DM 1.2 ± 0.4 0.5 - 2.0 - 

Fe, mg/kg DM 1338 ± 798 400 - 3855 >50 

S, % kg DM 0.17 ± 0.04 0.13 - 0.27 >0.15 

Cu:Mo ratio 6.0 ± 3.1 2.4 - 12 >1.0-3.0 

Fe:Cu ratio 222 ± 96 98 - 510 <50-100 

SD = standard deviation 
1,2NRC (2000), Suttle (2010) 

Within the influence of management, communal grazing herds had higher ETD 

concentrations of Mo and Mn (Mo: 1.4 vs. 1.0 ± 0.1 mg/kg DM; Mn: 185 vs. 329 ± 22 mg/kg 

DM) whereas the Cu:Mo ratio was higher in individually grazing herds (6.8 vs. 4.0 ± 0.7 

mg/kg DM) (all p < 0.050). Herding distance positively impacted ETD Mn concentrations 

(p = 0.030) and tended to negatively affect the ETD Cu:Mo ratio (p = 0.082). Furthermore, 

the amounts of crop residues offered to grazing animals had a significantly negative 

effect on ETD Zn and Se concentrations (p = 0.033; p < 0.001 respectively) and tended to 

negatively affect ETD Mo and S concentrations (p = 0.064; p = 0.063 respectively). 
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1.41.41.41.4 DDDDiscussioniscussioniscussioniscussion    

In our study, we observed 19 grazing cattle herds in the Gilgel Gibe valley, Ethiopia, in 

order to obtain information about trace element content of ingested plant species, to 

estimate total dietary trace element concentrations and to evaluate the effect of 

management and environment. 

Trace element analysis indicated that the available and ingested vegetation in the area 

is most likely to induce trace element deficiencies in ranging cattle. In general, the vast 

majority of plant samples as well as diets (expresseb as ETD), contained Cu 

concentrations considered deficient upon comparison with requirements for beef cattle 

(Bos taurus) as stated by NRC (2000). As the Cu absorption coefficient (ACu) in fresh 

herbage (1.4-2.5 %) is already lower compared to silages (4.9 %) or hays (7.3 %) (Suttle, 

2010), these concentrations are detrimental for the Cu status of grazing cattle. Low Cu 

levels in forages in Ethiopia were earlier described (Chapter 4Chapter 4Chapter 4Chapter 4, 5, 6 & 7, 5, 6 & 7, 5, 6 & 7, 5, 6 & 7; Faye & Grillet, 

1984; Gizachew et al., 2002; Kabaija & Little, 1987; Khalili et al., 1993). Not surprisingly, 

earlier research (Chapter 2Chapter 2Chapter 2Chapter 2, 4, 5 & 6, 4, 5 & 6, 4, 5 & 6, 4, 5 & 6) also found Cu deprived cattle grazing in the same 

region, based upon plasma and liver analyses. 

The primary Cu shortage was probably aggravated by the high ETD Fe:Cu ratios and the 

high prevalence of even toxic plant concentrations. ETD Fe concentrations between 250 

and 500 mg/kg can already cause Cu depletion in cattle (Bremner et al., 1987; Phillippo et 

al., 1987). High concentrations of other antagonists Mo and S can worsen this situation 

through the formation of CuS and/or thiomolybdates in the rumen. Thiomolybdates can 

either bind Cu and form an insoluble complex or can be absorbed, tightly binding Cu to 

plasma albumin (Gooneratne et al., 1989). Based upon ETD S concentrations and Cu:Mo 

ratios, in at least some herds, a risk for Mo and S antagonism was present. Even higher 

concentrations of Mo were found in Ethiopian pastures by Chapter 4Chapter 4Chapter 4Chapter 4 and Faye & Grillet 

(1984), whereas higher S concentrations were reported by Chapter 4Chapter 4Chapter 4Chapter 4. 

Furthermore, deficiencies of Se and Zn in plant samples were prominent, but for Zn, this 

was not reflected in low ETD Zn concentrations. Earlier, Faye & Grillet (1984), Gizachew 
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et al. (2002) and Khalili et al. (1993) found rather low plant Zn levels whereas adequate 

ranges were reported in Chapter 4Chapter 4Chapter 4Chapter 4. Furthermore, our low Se values agree with low Se 

concentrations in grasses (Chapter 4Chapter 4Chapter 4Chapter 4) and with the findings in Chapter 2Chapter 2Chapter 2Chapter 2 which observed 

marginally deficient Se content in 92% of sampled livers from cattle in the same valley. 

Manganese and Co concentrations were in the adequate range and consequently no 

deficiencies in cattle are expected for these elements. These results are in accordance 

with McDowell & Arthington (2005) who perceived Mn deficiencies to be very rare and 

shortage of Co exceptional. 

Trace element concentrations differed significantly between plant types. In general, 

herbaceous plants contained the highest trace element concentrations, whereas 

distribution between other plant types was rather heterogeneous. Suttle (2010) does 

mention that legumineous plants often contain higher amounts of trace elements than 

pure grasses. Leafs from herbaceous plant species might be interesting candidates to use 

as a natural trace element supplement. However, caution is warranted since the highest 

Fe, Mo and S concentrations, as mentioned above, classic Cu antagonists, were also 

found in this plant type. Furthermore, amounts of minerals in woody plants might be 

unavailable due to the high amount of tannins potentially complexing these minerals 

(Yisehak et al., 2012). 

In the current study, there was a strong association between elevation and soil type. 

Elevation seemed to affect plant concentrations of Mn and Zn, which lowered with 

increasing elevation. Jumba et al. (1995) earlier reported lower Se and Cu concentrations 

at low elevation on volcanic bedrock whereas Gizachew et al. (2002) reported 

numerically higher concentrations of a range of macro- and microminerals on low 

elevation in Nitisol association areas. Considering the strong association of soil type and 

elevation in our study as well as geology differences in herbage trace element 

concentrations reported by Jumba et al. (1995), we doubt that a pure elevation effect, 

irrespective of soil type, does exist. The lower ETD Cu concentrations on PV-grounds 

might be explained by the reduction of Cu transport by mycorrhizal fungi associated 

with plant roots, in organic rich wetlands associated with PV (Ragnarsdottir & Hawkins, 

2006). Gizachew et al. (2002) also mentioned that lowlands contain high amounts of 

organic matter. Moreover, in organic rich wetland soil precipitation of Cu sulfides may 
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occur, rendering Cu less mobile and less available to plants. Furthermore, the high 

molecular weight organic matter compounds in the solid soil phase may also reduce the 

availability of Cu (Du Laing et al., 2009). Fox & Doner (2003) reported that at the same 

wetlands, Mo often accumulates until toxic concentrations, which can add to the effect 

of Cu deficient concentrations in the diets of cattle grazing on wetlands and is in line 

with our results. 

As mentioned above, in general, PV soils were frequently present at lower elevation. On 

these soils, large communal herds were grazing for longer distances, the latter in 

accordance to earlier work by Coppolillo (2000). According to the same author, large 

herds tend to move more quickly through a field, leaving less time to ingest plants, and 

if this energy cost is not compensated by improved pasture availability, it is associated 

with a lower BCS. In our study, herding distance positively impacted Mn concentrations, 

but we did not detect a herding distance influence on ETD concentrations of other trace 

elements. 

Finally, supplementation with crop residues did not prove to be beneficial for grazing 

herd trace element supply. According to McDowell (1988), crop residues provide up to 

30 to 90 % of livestock feeds in Africa. Despite their nutritional potential, they generally 

also contain high concentrations of indigestible fibre (McDowell, 1988) and tannins 

(Mueller-Harvey et al., 1988). The latter are capable of forming insoluble complexes with 

microminerals (Karamać, 2009) and high concentrations are associated with reduced Fe 

(Gillooly et al., 1983) and Cu status in cattle (Yisehak et al., 2012). 

ConclusionConclusionConclusionConclusion    

Zebu cattle grazing in the study area were under high risk for Cu deficiency, potentially 

aggravated due to Fe, Mo and S overload. Our data point to the relationship between 

plant mineral concentrations and plant type, soil and elevation. Furthermore, both soil 

type and management practices, intimately related, affected the estimated total dietary 

trace element concentrations.  
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Mineral deficiencies in cattle, widespread in East Africa, impair optimal health and 
production and consequently, place a great burden on the farmers’ income. 
Therefore, detection of shortages and imbalances of specific minerals is essential. 
Our objective was to evaluate the mineral status of grazing cattle around the Gilgel 
Gibe catchment in Ethiopia and associated factors. In study I, individual animal 
plasma and herd faecal Ca, P, Mg, Na, K, S, Fe, Zn, Mn and Cu concentrations were 
determined in adult zebu cattle (Bos indicus; n = 90) grazing at three altitudes 
around the catchment, whilst recording body condition score and sex. In study II, 
liver samples of adult male zebu cattle (n= 53) were analysed for Cu, Zn, Fe, Se and 
Mo concentrations and inspected for parasitic infections. Plasma and liver analyses 
revealed a Cu deficiency problem in the area, since 68 % and 47 % of cattle, 
respectively, were Cu deprived according to diagnostic criteria for Bos taurus cattle. 
High hepatic Mo concentrations in 17% of cases might reflect excessive dietary Mo 
intake. Liver Se and plasma Na concentrations were too low in 92 % and 80 % of 
cattle. Plasma Mn concentrations were largely below the detection limit. Plasma Cu 
as well as Ca concentrations were lower in the lowest compared to the highest 
altitude group (p < 0.050), whereas lean to medium cattle had lower plasma Cu 
concentrations (p < 0.050). No differences in hepatic mineral concentrations were 
detected between cattle with different types of parasitic infection. In conclusion, 
bovine mineral deficiencies were present in the Gilgel Gibe area and were associated 
with grazing altitude and body condition score.  
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2.12.12.12.1 IntroductionIntroductionIntroductionIntroduction    

In Ethiopia, livestock are of major importance as a source of nutrition, employment and 

financial security (Halderman, 2003). However, farmers of zebu (Bos indicus) cattle face 

major constrains in providing optimal nutrition for their grazing herds. One of the 

problems frequently associated with cattle nutrition in the tropics is mineral shortage 

(McDowell & Arthington, 2005). For example, in East African cattle, studies report Cu 

(Ethiopia: Gizachew et al., 2002), Zn (Sudan: Ahmed et al., 2002), I (Sudan: Schillhorn van 

Veen & Loeffler, 1990) and Se deficiencies (Tanzania: Mtui et al., 2007). Common 

disorders linked with mineral deprivation in grazing cattle in the tropics are, among 

others, fragile bones (P), pica and general poor productivity (Na), severe diarrhoea (Cu) 

and parakeratosis (Zn) (McDowell & Arthington, 2005). Hence, mineral deficiencies can 

compromise cattle health, and consequently, the income to the farmers. The aim of this 

study was to investigate the mineral status of grazing cattle around the Gilgel Gibe 

catchment in Ethiopia and to identify factors associated with this status. A survey was 

performed in which plasma and faeces were sampled in cattle herds grazing in the area 

in order to evaluate their mineral status. The association between this mineral status 

and grazing altitude, sex and body condition was investigated. A second study focussed 

on the trace element status of liver samples, obtained from the local abattoir, of cattle 

grazing around the Gilgel Gibe catchment in Ethiopia and the effect of parasitic 

infections on hepatic mineral concentrations. 

2.22.22.22.2 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

2.2.1. Animals andAnimals andAnimals andAnimals and    samplessamplessamplessamples    

 Study I 

At the Gilgel Gibe catchment, situated in south-western Ethiopia, a screening was 

conducted at the beginning of the Ethiopian spring season, called tsedey (October-



100100100100                Chapter 2Chapter 2Chapter 2Chapter 2    

    

 

November). As in the rest of Ethiopia, cattle, owned by smallholders, are typically free-

ranging on communal lands.  

The catchment area was divided into three subregions, i.e. at low altitude (‘1’) adjacent 

to the dam (< 1700 m above sea level (asl), at intermediate altitude (‘2’) (1700-1900 m asl) 

and finally, at high altitude (‘3’) (> 1900 m asl). In every subregion, 6 herds were 

randomly included in the study, while in every herd, five adult Ethiopian highland zebu 

cattle (B. indicus) were randomly selected (n = 90). Sex and body condition score (BCS) of 

every animal were noted, the latter using the 1 to 9 point scale for zebu cattle as 

formulated by Nicholson & Butterworth (1986). BCSs were grouped into categories: 

scores 1, 2 and 3 as “lean”, scores 4, 5 and 6 as “medium” and scores 7, 8 and 9 as “fat”. A 

fresh faecal sample was rectally obtained from the animals and pooled per herd (Figure 

2.1). A blood sample was taken from the vena jugularis using 20 G needles (MN-2038M) 

and sodium heparin tubes (VT-100SH, both Venoject®, Terumo, Leuven, Belgium) 

(Figure 2.1). After sampling, the blood tubes were immediately placed on iced water and 

within 2 hours after sampling, plasma was separated by centrifugation at 1500 × g for 10 

minutes. All samples were stored at -20°C until analysis. 

Figure 2.1. Figure 2.1. Figure 2.1. Figure 2.1. Sampling of zebu cattle grazing (n = 90) at the Gilgel Gibe catchment, Ethiopia.  

Left:Left:Left:Left: faeces sampling. Right:Right:Right:Right: blood sampling.    

 Study II 

A survey was conducted at the municipal abattoir in Jimma, the largest city in the Gilgel 

Gibe catchment area, again at the beginning of the Ethiopian spring season (October). 

Fifty-three adult, Ethiopian highland zebu (B. indicus) bulls were randomly sampled post 
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mortem. Approximately 50 g of liver tissue was collected per animal. The presence of 

parasitic infections in the whole livers was determined by visual inspection and noted. 

2.2.2. Chemical analysesChemical analysesChemical analysesChemical analyses    

Plasma samples were subjected to destruction for mineral analysis with 5ml HNO3 and, 

in between consecutive heating steps, with 3 ml H2O2. Faecal samples were oven-dried at 

65° C for 72 hours, ground through a 2 mm screen and prepared for mineral analysis 

through dry ashing at 500 °C for 4 hours, followed by wet destruction with 10 ml HCl 

during consecutive heating steps. Afterwards, plasma and faecal samples were filtered 

and analysed for concentrations of Ca, P, Na, K, Mg, S, Fe, Cu, Zn and Mn by inductively 

coupled plasma optical emission spectrometry (ICP-OES) (Iris Intrepid II XSP with dual-

view (axial and radial), Thermo Fisher Scientific, Aalst, Belgium).    Liver samples were 

oven-dried at 65° C for 72 hours, ground through a 2 mm screen and were prepared for 

mineral analysis through microwave destruction with 3 ml HNO3 and 3 ml H2O2 in open 

vessels followed by filtration. Hepatic Zn, Cu and Fe concentrations were analysed with 

ICP-OES (Vista MPX radial, Varian, Palo Alto, USA), while hepatic Se and Mo 

concentrations by means of inductively coupled plasma mass spectrometry (ICP-MS) 

(Elan DRC-e, Perkin Elmer, Sunnyvale, CA, USA). Hepatic trace element concentrations 

were expressed on dry weight basis (DW). 

2.2.3. Statistical analyseStatistical analyseStatistical analyseStatistical analysessss    

All statistical analyses were performed using SPSS 20.0 (SPSS Inc., Chicago, IL). To enable 

analysis of variance, non-detectable mineral concentrations were assigned a value of 

half the detection limit. Normal distribution of data was then evaluated with box-plot 

graphs. In study I, all data were submitted to a mixed model with the fixed effects of 

altitude, BCS category, sex and the interactions altitude × sex, BCS category × sex, 

altitude × BCS category, while herd was introduced as a random effect. Adjustment for 

multiple comparisons was done using the Bonferroni-method. In study II, a linear fixed 

effects model was used to detect differences in hepatic trace element concentrations 
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according to the visual presence of parasitic infection, investigating both absence 

versus presence of parasitic and differences between different types of infection. 

Pairwise differences were adjusted using Tukey’s multiple comparisons technique. 

Significance was declared at a probability level of p < 0.050 while 0.050 ≤ p < 0.100 was 

interpreted as a trend. 

2.32.32.32.3 ResultsResultsResultsResults    

2.3.1. Study IStudy IStudy IStudy I    

Average mineral plasma values of the zebu cattle grazing around the Gilgel Gibe 

catchment are presented in Table 2.1. Manganese concentrations in most plasma 

samples were below the detection limit, and are consequently, not presented here.  

Table Table Table Table 2.2.2.2.1111.... Mean plasma mineral concentrations of zebu (Bos indicus) cattle (n = 90) grazing 

around the Gilgel Gibe catchment, Ethiopia. 

   Diagnostic criteria  

Mineral Mean Range Marginal1 Deprived2 Khalili et al.3,4 

Ca, mg/l  218 ± 49 164 - 493 _ 80 110 ± 12 

P, mg/l  102 ± 17 57 - 143 _ 46 61 ± 13 

Na, mg/l 3012 ± 131 2725 - 3596 _ 3219 _ 

K, mg/l 173 ± 28 106 - 257 _ 98 153 ± 21 

Mg, mg/l 47 ± 5 34 - 57 _ 18 22 ± 5 

S, mg/l 1194 ± 138 705 - 1506 _ _ _ 

Fe, mg/l 8 ± 7.4 4.2 - 67 1.3 1 2.2 ± 0.4 

Zn, mg/l 3 ± 1.1 1.6 - 7 0.8 0.6 0.5 ± 0.2 

Cu, mg/l 0.38 ± 0.27 0.05 - 1.15 0.7 0.57 0.57 ± 0.22 

± followed by standard deviation (SD) 
1diagnostic criteria for marginal deficiency in Bos taurus cattle according to Kincaid (2000). 
2upper marginal band for diagnostic criteria indicating a probable deprivation risk in Bos taurus cattle 

according to Suttle (2010). 
3Khalili et al. (1993a): plasma macrominerals in Bos indicus cattle grazing in a comparable environment.  
4Khalili et al. (1993b): plasma microminerals in Bos indicus cattle grazing in a comparable environment. 
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Mean plasma mineral concentrations of cattle grazing at the different altitude regions 

are shown in Figure 2.2. Plasma Ca and Cu concentrations were significantly lower in 

animals at lowest altitude compared to highest altitude (p < 0.050). For P and S, there 

was a trend towards lower concentrations in animals originating from the lowest and 

intermediate altitude, respectively, compared to animals from a different altitude (p = 

0.08, p = 0.09, respectively).  

Figure Figure Figure Figure 2.2.2.2.2222.... Box plots of plasma mineral concentrations in zebu (B. indicus) cattle (n = 90) grazing 

at different altitude subregions (1 = at < 1700 m asl, 2 = at 1700-1900 m asl, 3 = > 1900 m asl) 

around the Gilgel Gibe catchment, Ethiopia. The center line in the box indicates the median; the 

top and bottom of the box, quartile boundaries; whiskers, minimum and maximum values 

within 1.5 times the interquartile range of the quartile boundary; circles, outliers; and asterisks, 

extreme values. a,bPlasma Ca and Cu concentrations in cattle grazing at different altitude 

differed (p < 0.050). 

 

Furthermore, animals assigned different body condition scores (Figure 2.3) differed in 

plasma Cu concentrations (p < 0.050), while a trend was present for K concentrations (p 

= 0.05), i.e. plasma Cu concentrations were higher in fat than in lean and medium 
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animals, whereas plasma K concentrations tended to be lower in fat than in lean 

animals. 

    

FigureFigureFigureFigure    2222....3333.... Box plots of plasma mineral concentrations in lean (1), medium (2) and fat (3) zebu 

(B. indicus) cattle (n = 90) grazing around the Gilgel Gibe catchment, Ethiopia (1= BCS 1, 2, 3; 2= 

BCS 4, 5, 6; 3= BCS 7, 8, 9; using the 1-9 point scale for zebu cattle, formulated by Nicholson & 

Butterworth (1986)). The center line in the box indicates the median; the top and bottom of the 

box, quartile boundaries; whiskers, minimum and maximum values within 1.5 times the 

interquartile range of the quartile boundary; circles, outliers; and asterisks, extreme values. 
a,bPlasma Cu concentrations differed between animals of different BCS categories (p < 0.050). 

 

When comparing sexes (Figure 2.4), a trend towards lower plasma Mg concentrations in 

bulls was present (p = 0.09), while none of the other plasma mineral concentrations 

differed between sexes. Plasma concentrations of Na were affected by a BCS category × 

sex interaction (p < 0.010), while an altitude × sex interaction tended to affect plasma Fe 

concentrations (p = 0.07). Subregional sex and BCS distribution was uniform (p > 0.050). 

The mean BCS over all subregions was 4.2 ± 1.5 (SD) according to the zebu scale of 1 
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(extremely lean) to 9 (extremely fat). Pooled herd faecal mineral concentrations are 

presented in Table 2.2.    

Figure Figure Figure Figure 2.2.2.2.4444.... Box plots of plasma mineral concentrations in female (0) and male (1) zebu (B. 

indicus) cattle (n = 90) grazing around the Gilgel Gibe catchment, Ethiopia. The center line in the 

box indicates the median; the top and bottom of the box, quartile boundaries; whiskers, 

minimum and maximum values within 1.5 times the interquartile range of the quartile 

boundary; circles, outliers; and asterisks, extreme values. 
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Table 2.2.Table 2.2.Table 2.2.Table 2.2. Mean faecal mineral concentrations (dry weight, DW) in herds of free-grazing zebu 

(Bos indicus) cattle (n = 18) around the Gilgel Gibe catchment, Ethiopia. 

Mineral  Mean Range Khalili et al.1,2  

Ca 13 ± 3 9.4 - 19 15.5 ± 7 

P 4.9 ± 1 3.3 - 7 7 ± 2.5 

Na 0.6 ± 0.2 0.3 - 1 1 ± 1.5 

K 12.5 ± 1.3 9.7 - 13.5 18 ± 12 

Mg 3.1 ± 0.7 2 - 4.3 5.5 ± 3 

S 0.87 ± 0.2 0.61 - 1.19 _ 

(g/kg DW) 

Fe 7054 ± 2329 4089 - 12823 12374 ± 8947 

Zn 74 ± 14 45 - 95 84 ± 34 

Cu 16 ± 4 16 - 25 24 ± 9 

Mn 887 ± 280 492 - 1321 823 ± 486 

(mg/kg DW) 

± followed by standard deviation (SD) 
1Khalili et al. (1993a): faecal macrominerals in Bos indicus cattle grazing in a comparable environment. 
2Khalili et al. (1993b): faecal microminerals in Bos indicus cattle grazing in a comparable environment. 

2.3.2. Study IIStudy IIStudy IIStudy II    

Hepatic mineral concentrations of the zebu cattle sampled at the local abattoir are 

shown in Table 2.3.  

Table Table Table Table 2.2.2.2.3333.... Hepatic trace element concentrations (dry weight, DW) of zebu (Bos indicus) bulls (n = 

53) grazing around the Gilgel Gibe catchment, Ethiopia. 

   Diagnostic criteria  
Mineral Mean Range Marginal1 Deprived Khalili et al.3 

Fe, mg/kg DW 388 ± 234 172 - 1250 _ 150 1012 ± 1887 

Zn, mg/kg DW 170 ± 48 96 - 309 40 _ 144 ± 62 

Cu, mg/kg DW 68 ± 107 5 - 591 125 19 15 ± 9 

Mo, mg/kg DW 3.57 ± 0.61 1.22 - 5.27 _ _ _ 

Se, mg/kg DW 0.94 ± 0.22 0.64 - 1.69 1.25 0.07   _   

± followed by standard deviation (SD) 
1diagnostic criteria for marginal deficiency in Bos taurus cattle according to Kincaid (2000). 
2upper marginal band for diagnostic criteria indicating a probable deprivation risk in Bos taurus cattle 

according to Suttle (2010). 
3Khalili et al. (1993b): hepatic microminerals in Bos indicus cattle grazing in a comparable environment. 
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Concerning parasitic infections, Ascaris spp. infestation was identified in the liver of one 

animal, Echinococcus granulosis in 6 cases and Fasciola spp. in 38 cases while parasitic 

infections were not macroscopically identifiable in 8 livers. There were no differences in 

hepatic mineral concentrations between animals with and without parasitic infection as 

detected upon visual inspection, nor among animals infected with different parasite 

species (all p > 0.100) (Figure 2.5). 

Figure Figure Figure Figure 2.2.2.2.5555.... Frequency graph of presence of liver parasites as determined by visual inspection 

and box plots of hepatic mineral concentrations (dry weight) according to liver parasite (0= no 

visual detection of liver parasites, 1= Ascaris spp., 2= Echinococcus granulosis, 3= Fasciola spp.) in 

zebu (Bos indicus) cattle (n = 53) grazing around the Gilgel Gibe catchment, Ethiopia. The center 

line in the box indicates the median; the top and bottom of the box, quartile boundaries; 

whiskers, minimum and maximum values within 1.5 times the interquartile range of the 

quartile boundary; circles, outliers; and asterisks, extreme values. 

2.42.42.42.4 DiscussionDiscussionDiscussionDiscussion    

Plasma Cu concentrations in study I and hepatic Cu concentrations in study II suggest a 

shortage of Cu in grazing zebu cattle around the Gilgel Gibe region. Among the animals 

sampled in study I, 77% were at least marginally Cu deficient (< 0.70 mg/l, Kincaid, 2000), 

while 68% were probably Cu deprived (< 0.57 mg/l, Suttle, 2010), upon comparison of 

plasma Cu concentrations with diagnostic criteria for Bos taurus cattle found in 
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literature. Of the animals sampled at the local abattoir in study II, 81% were at least 

marginally Cu deficient (< 125 mg/kg dry weight (DW), Kincaid, 2000), while 47% were 

probably Cu deprived (< 19 mg/kg DW, Suttle, 2010), based on their hepatic Cu 

concentrations. In general, diagnostic criteria for mineral deficiencies in B. indicus cattle 

are absent and it is uncertain whether those stated for B. taurus cattle are applicable to 

zebu cattle, seeing that differences in mineral requirements exist even among B. taurus 

cattle breeds (Pogge et al., 2012). Low plasma and hepatic Cu concentrations in cattle are 

in accordance with earlier research done in East Africa, e.g. by Gizachew et al. (2002), 

although it is not clear whether this was accompanied with clinical disorders or not. In 

study I, plasma Cu concentrations were lower in animals originating from low altitude 

and in cattle with a lower BCS. Although low altitude might relate to the soil type in this 

study area, the possible influence, if any, on the mineral status of the cattle grazing in 

the area should be further investigated. The lower BCS might have been a consequence 

rather than a cause of the lower Cu status, frequently associated with severe diarrhoea, 

growth retardation and anaemia (Suttle, 2010), but other factors such as differences in 

physiological status might also have affected both BCS and Cu status. In study II, a low 

hepatic Cu status was not associated with the presence of parasites in the liver, which is 

in contrast to the data from Vengušt et al. (2003) in fallow deer, whether applicable or 

not to cattle, who found lower Cu concentrations in livers infected with Fasciola spp.. 

Molybdenum concentrations in sampled cattle livers in study II were outside normal 

ranges for B. taurus cattle (1.0-4.0 mg/kg DW) as stated by Herdt & Hoff (2011) in 17% of 

cases. Molybdenum is known to induce secondary Cu deficiency through the formation 

of the insoluble thiomolybdate complexes with sulphur and in excess, thiomolybdates, 

can bind Cu at post absorption sites, causing thiomolybdate toxicity (Kincaid, 2000). 

Hepatic Mo concentrations, that are responsive to dietary changes (Gardner et al., 2003), 

are being analysed in ruminants in order to investigate the possibility of excessive Mo 

intake (Steinke et al., 2006). In the presence of high ruminal sulfide concentrations, 

relatively high dietary Mo concentrations can cause secondary Cu deficiency and 

thiomolybdate toxicity (Spears, 2003) and therefore, the high hepatic Mo concentrations 

could point to the potential presence of these conditions in at least some of the cattle in 

the area. However, the Cu, Mo and S interaction is complex and thiomolybdate synthesis 
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also occurs at lower dietary Mo concentrations (Spears, 2003). Consequently, more 

information on dietary S concentrations would be needed in order to fully predict the 

occurrence of these phenomena in grazing zebu cattle around the Gilgel Gibe region. 

Iron overload has the potential to aggravate a situation of Cu shortage, given that the 

ingestion of high Fe concentrations (e.g. when prolonged soil ingestion is present) 

induces the formation of insoluble Fe-Cu-S complexes, leaving even less Cu available to 

engage in the thiomolybdate-Cu interactions mentioned above (Gould & Kendall, 2011). 

This effect lowers Cu absorption and hence, results in lower bovine plasma and hepatic 

Cu concentrations (Humphries et al., 1983). Hepatic Fe concentrations above 1000 mg/kg 

DW are considered an indication of excess Fe intake (Suttle, 2010). In this study, 3 out of 

the 53 bulls had hepatic Fe concentrations above this threshold value. We can conclude 

that Fe overload might be present and interfering with Cu but seems to be a minor 

determining factor in the widespread Cu deficiency of cattle in the area. 

Overall, plasma mineral concentrations of study I were higher than those recorded in 

the comparable environment of the Selale Highlands in Ethiopia by Khalili et al. 

(1993a,b), with the sole exception of lower plasma Cu concentrations. Generally, faecal 

mineral concentrations were lower than in Khalili et al. (1993a,b), while mean Fe levels 

in liver samples in study II were lower and hepatic Cu concentrations were higher 

compared to those values of Khalili et al. (1993b). This might indicate that the Cu 

deficiency in animals studied by Khalili et al. (1993b) was probably caused by an excess 

of Fe, whereas in our study, as mentioned above, the Cu deficiency was potentially 

caused by a primary Cu shortage possibly exacerbated by a Mo interaction. 

Furthermore, none of the other mineral concentrations were found to be marginal or 

deficient in the plasma samples, except for Na, Mn and Se. Plasma Na concentrations of 

cattle in study I were deficient in 80% of the cases according to the marginal bands for 

deprivation for B. taurus cattle (< 3219 mg/l) stated by Suttle (2010). Plasma Na 

concentrations should be interpreted carefully, as lower values might be due to non-

nutritional causes, such as profuse sweating and severe diarrhea while higher values 

might be due to dehydration (Suttle, 2010). Furthermore, the sodium heparin tubes used 

in this study may have falsely elevated sodium concentrations in our samples. However, 
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mean herd faecal Na values were mostly below 1000 mg/kg DW and the Na:K ratio of 

these samples were below 0.1, which is suggested by Little (1987) to be indicative of 

deprivation. The values were also lower than those reported by Khalili et al. (1993a) of B. 

indicus cattle grazing in a comparable environment. Tropical forages are indeed known 

to be insufficient in Na (McDowell and Arthington, 2005). 

Claims concerning the presence of animals (marginally) deficient in Mn are difficult to 

substantiate given the large number of animals in study I with plasma Mn 

concentrations below the detection limit. Manganese concentrations in plasma are 

extremely variable and are not a reliable indicator of Mn status (Legleiter et al. 2005). 

However, Mn deficiency is rarely reported in adult ruminants and is not to be expected 

in this environment (McDowell & Arthington, 2005). 

Of the livers sampled in study II, Se concentrations were marginally deficient in 92% of 

the cases according to the diagnostic criteria of Kincaid (2000). However, Se 

concentrations in our study were similar to those found by Frøslie et al. (1983) in Kenya, 

in animals with no clinical symptoms of deficiency. Also, the hepatic Se threshold value 

for marginal Se deficiency provided by Kincaid (2000) (< 1.25 mg/kg DM) lies well above 

the critical hepatic Se concentration mentioned by McDowell & Arthington (2005) (> 

0.25 mg/kg DM) and the marginal ranges for deprivation as stated by Suttle (2010) (> 

0.07 mg/kg DM) while well within normal ranges provided by Herdt & Hoff (2011) (0.70-

2.5 mg/kg DM), indicating yet again the wide range of diagnostic criteria available for 

the evaluation of mineral status in cattle by means of tissue and blood analysis (Hall, 

2005; Suttle, 2010; Herdt & Hoff, 2011). 

The status of the remaining macro- and microminerals (Ca, P, K, Mg, Zn) is considered 

non-deficient, upon comparison with criteria for classification of B. taurus plasma and 

hepatic mineral concentrations found in literature (Kincaid, 2000; Suttle, 2010). 

However, plasma concentrations of Ca, Fe and Zn as well as Mn, for some animals, in 

Study I were substantially higher than normally observed in B. taurus cattle as well as B. 

indicus cattle in comparable environments (Khalili et al., 1993b; Suttle, 2010). Zinc levels 

in this range would imply the presence of a strong zinc-copper antagonism through 

upregulation of metallothionein, thereby minimizing intestinal Cu absorption (Suttle, 
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2010). Nevertheless, the normal faecal values refute the possibility of an abnormally 

high Zn intake. Falsely elevated plasma concentrations of some elements are present in 

case of dehydration (Suttle, 2010), but the low plasma Na concentrations in our study 

contradict the presence of this condition. Another explanation could be haemolysis in 

some samples as concentrations of these minerals are particularly sensitive to this 

(Herdt & Hoff, 2011), although we did not observe a high number of such samples in our 

study. The exact cause of the elevated plasma concentrations of these elements remains 

therefore unclear. 

ConclusionConclusionConclusionConclusion    

Copper deficiency was identified in cattle grazing around the Gilgel Gibe catchment, 

Ethiopia, based upon plasma and hepatic mineral analyses in two studies. High hepatic 

Mo concentrations were observed whilst tissue concentrations of Se and Na were too 

low. In study I, plasma Cu concentrations were lower in cattle with a low to medium BCS 

as well as animals grazing at low altitude. Differences in plasma mineral concentrations 

between altitude groups were also seen for Ca, while trends towards differences existed 

for P and S. Plasma K concentrations tended to differ between cattle in different BCS 

categories whereas Mg concentrations tended to differ between sexes. No differences 

were present in hepatic mineral concentrations according to the presence of parasites 

in the liver in study II.  
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Effective assessment of sulphur (S) status in cattle is important for optimal health 
yet remains difficult. Rumen fluid S concentrations are preferred, but are difficult to 
sample under practical conditions. This study aimed to evaluate salivary S 
concentration as estimator of S status in cattle. Saliva and rumen fluid samples were 
collected from dairy cows (n = 16) as well as samples of different feedstuffs offered to 
the animals. The N and S concentrations were determined using the Dumas 
technique. The average dietary N and S content were calculated as well as N:S ratio 
of saliva, rumen fluid and diet. Salivary S concentrations were not found to be 
predictive for rumen fluid or dietary S concentrations (p > 0.050). The log 
transformed salivary N:S ratio (x) could predict the rumen fluid N:S ratio (y) with a 
linear equation of y = 9.83 (± 4.59) x + 0.39 (± 4.56) (r = 0.497, p = 0.050), but left too 
much residual variation to serve as reliable predictor. Further research should 
investigate this relationship in the search for a S status estimator.  
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3.13.13.13.1 IntroductionIntroductionIntroductionIntroduction    

Copper and selenium deficiency are two of the most common trace element deficiencies 

in grazing cattle (McDowell & Arthington, 2005; Chapter 2Chapter 2Chapter 2Chapter 2). An important antagonist of 

both elements is sulphur (S). Consequently, high levels of this mineral in ruminant diets 

are to be avoided, since they can cause a secondary copper and selenium deficiency 

(Spears, 2003). Moreover, such high intake of sulphur can increase the risk of 

polioencephalomalacia (Gould, 1998). 

However, this macro-mineral is also essential for ruminant health. Rumen bacteria 

convert sulphate to sulphide which can be incorporated in the S containing amino acids, 

methionine and cystein. Through this pathway, S is important for the production of 

microbial protein (Lewis, 1954). Therefore, S deficiency can lead to hypoalbuminaemia 

and decreased total serum protein (Ortolani, 2001). Furthermore, S is involved in 

synthesis of vitamins (thiamine and biotin), glutathione, in rigidity of proteins through 

disulphide bridges (in hair and hoofs) and in many coenzymes (Komarnisky et al., 2003). 

Sulphur deficiency in cattle might occur more often than expected. In tropical regions, 

soil contains low levels of S, due to heavy rainfall and high solubility of S salts (Leng, 

1990). In industrialised areas, the incidence of S deficiency is increasing, caused by a 

reduced S content of soil fertilisers and as a surprising side-effect of global reduction of 

acid rain (Dick et al., 2008).  

Overall, the importance of an adequate but moderate S status for ruminants is clear. 

However, the assessment of S status remains problematic. Several estimators were 

investigated in the past, such as sulphate levels in plasma (Weir & Rendig, 1954), 

sulphide concentration in rumen fluid (Bray & Hemsley, 1969; Qi et al., 1993) and total S 

in plasma (Jacobson et al., 1967; McAdam & O'Del, 1982; Bawala et al., 2009; Chapter 2Chapter 2Chapter 2Chapter 2), 

none of them rendering an accurate estimator of S status in cattle. Preferably, rumen 

fluid is used, considering the S available for microbial protein synthesis in the rumen is 

determining the optimal use of S (Suttle, 2010). In this context, a parameter linked with 

the rumen S metabolism but easier to sample, would considerably promote field work 



118118118118                Chapter 3Chapter 3Chapter 3Chapter 3 

 

 

on S status. Similar to urea in nitrogen (N) metabolism, S undergoes recycling 

mechanisms. Kennedy & Siebert (1972) stated that part of the S is recycled from rumen 

via blood to saliva which could add again to the rumen S metabolism. According to 

Suttle (2010), S levels in saliva decrease as dietary intake and plasma sulphate levels 

decline. Given its practicality, the S concentration in saliva is worthwhile investigating 

as an estimator of S status. The aim of this study is to analyse S concentrations in saliva 

and link them with S concentrations in rumen fluid and feed, thus allowing the 

validation of salivary S concentration as estimator of S status in cattle. 

3.23.23.23.2 MMMMaterials and methodsaterials and methodsaterials and methodsaterials and methods    

3.2.1. Animals and dietsAnimals and dietsAnimals and dietsAnimals and diets    

Sixteen adult Holstein Friesian cows fitted with permanent rumen cannulae were 

included in this study. All animals were selected from scientific projects and studies in 

other research centres which required them to be cannulated, so no animals were fitted 

with a cannula for the purpose of this study. Four animals were included from ILVO 

(Institute for Agricultural and Fisheries Research, Melle, Belgium), seven from CRA-W 

(Walloon Agricultural Research Centre, Gembloux, Belgium) and five from WUR 

(Wageningen University & Research Centre, Wageningen, The Netherlands). The 

experimental diets provided to the animals are characterized in Table 1. Prior to 

sampling, all animals were fed the described rations for at least two weeks in order to 

guarantee the steady state of their S metabolism.  

3.2.2. Samples and analysesSamples and analysesSamples and analysesSamples and analyses    

A sample (approximately 50 ml) of the rumen fluid was collected through the cannula 

by the use of a vacuum pump and a tube. Saliva was sampled by placing a sponge (pre-

rinsed with distilled water and wringed out) in the mouth of the animal and wringing it 

out in a recipient (Figure 3.1). In this way, a sample of mixed saliva (originating from the 



 

different buccal saliva glands) was obtained without fistulation of glands, which implies 

a great practical advantage. All samples were taken between 6 and 8 h following the last 

concentrate meal, to avoid interference caused by the rapid postprandial rise of S 

compounds in saliva and rumen fluid 

Figure 3.1.Figure 3.1.Figure 3.1.Figure 3.1. Sampling of cows (n = 16) to e

LeftLeftLeftLeft: a cow with rumen canula. 

 

A representative sample was taken from all feedstuffs included in the diet and the 

offered quantities of these feedstuffs were recorded

transported on dry ice and stored at 

dried and feed samples oven

Table 3.1.Table 3.1.Table 3.1.Table 3.1. Composition of diets provided to the sampled cows.

 Diet 

Cow Ingredients 

1 Concentrate + soy + corn silage + grass silage

2, 3 Concentrate + corn silage + haylage + straw + supplements

4, 5, 6, 7 Concentrate + corn silage + hay

8 Concentrate + corn silage + haylage + straw + supplements

9 Concentrate + corn silage + grass silage + supplements

10 Concentrate + corn silage + grass silage + supplements

11 Concentrate + corn silage + grass silage + supplements

12, 13 Grass silage 

14, 15, 16 Concentrate + soy + corn silage + haylage

DM = dry matter 

 

Saliva sulphur as an estimator of

different buccal saliva glands) was obtained without fistulation of glands, which implies 

ntage. All samples were taken between 6 and 8 h following the last 

concentrate meal, to avoid interference caused by the rapid postprandial rise of S 

compounds in saliva and rumen fluid (Bray and Hemsley 1969).  

Sampling of cows (n = 16) to evaluate saliva as an indicator of sulphur status. 

: a cow with rumen canula. RightRightRightRight: saliva sampling

A representative sample was taken from all feedstuffs included in the diet and the 

offered quantities of these feedstuffs were recorded (Table 3.1)

transported on dry ice and stored at -18 °C. Saliva and rumen fluid samples were freeze

dried and feed samples oven-dried at 65 °C.  

Composition of diets provided to the sampled cows. 

S concentration (% DM)

Concentrate + soy + corn silage + grass silage 0.20

Concentrate + corn silage + haylage + straw + supplements 0.15

Concentrate + corn silage + hay 0.19

Concentrate + corn silage + haylage + straw + supplements 0.15

corn silage + grass silage + supplements 0.41

Concentrate + corn silage + grass silage + supplements 0.39

Concentrate + corn silage + grass silage + supplements 0.42

0.43

Concentrate + soy + corn silage + haylage 0.15
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different buccal saliva glands) was obtained without fistulation of glands, which implies 

ntage. All samples were taken between 6 and 8 h following the last 

concentrate meal, to avoid interference caused by the rapid postprandial rise of S 

valuate saliva as an indicator of sulphur status.  

: saliva sampling 

A representative sample was taken from all feedstuffs included in the diet and the 

1). All samples were 

18 °C. Saliva and rumen fluid samples were freeze-

S concentration (% DM) 

0.20 

0.15 

0.19 

0.15 

0.41 

0.39 

0.42 

0.43 

0.15 
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Both N and S levels were determined using the Dumas method (Crosland et al., 2001), S 

with a Flash 2000 Organic Elemental Analyser (Interscience, Louvain-la-Neuve, 

Belgium), N with an ANCA-SL (Automated Nitrogen Carbon Analyser-Solids and Liquids) 

interfaced with a SerCon 20-20 IRMS with SysCon electronics (SerCon, Cheshire, UK). 

The average dietary S and N content was calculated through the weighted average of 

feedstuff S and N concentrations, respectively. The division of the average dietary N 

content by the average dietary S content resulted in the dietary N:S ratio. 

3.2.3. Statistical analysesStatistical analysesStatistical analysesStatistical analyses    

Normal distribution of data was tested by means of the Kolmogorov-Smirnov normality 

test with Lilliefors Significance Correction. Sulphur concentrations and N:S ratio in diet 

were non-normally distributed. Nitrogen concentrations in saliva, rumen fluid and diet, 

and the N:S ratio in rumen fluid were normally distributed. The S concentrations in 

saliva and rumen fluid and the N:S ratio in saliva were normally distributed after log 

transformation. Correlation coefficients were calculated using a Spearman correlation 

test in non-normally distributed and mixed data, and a Pearson correlation test in 

normally distributed data. Linear regression analysis was used to calculate the 

predictive value of parameters. All statistical procedures were executed in SPSS19 (SPSS 

Inc., Illinois, Chicago). Significance levels were set at p < 0.050, and a trend was 

considered at a probability of 0.050 ≤ p < 0.100. 

3.33.33.33.3 ReReReResultssultssultssults    

Nitrogen, sulphur concentrations and N:S ratio of mixed saliva, rumen fluid and total 

diet feed samples are summarised in Table 3.2. Nitrogen and S analyses were highly 

reproducible; the average standard deviation between replicates for N in saliva, rumen 

fluid and diet was 0.10, 0.08 and 0.14 mg/100 mg dry matter (DM) respectively, for S in 

all samples 0.02 mg/100 mg DM. 
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Table Table Table Table 3.3.3.3.2.2.2.2. Nitrogen and sulphur concentration and N:S ratio of mixed saliva, rumen fluid and 

total ration samples of dairy cattle (n = 16). 

Variable Sample Mean SD Range 

 N (mg/100 mg DM) Mixed saliva 3.87 1.12 2.36-5.93 

 
Rumen fluid 4.07 1.04 1.94-6.12 

 
Total diet 2.27 0.60 1.30-2.76 

S (mg/100 mg DM) Mixed saliva 0.56 0.44 0.10-1.73 

 
Rumen fluid 0.67 0.48 0.16-1.60 

 
Total diet 0.25 0.12 0.15-0.43 

N:S ratio Mixed saliva 11.59 9.68 2.58-38.19 

 
Rumen fluid 9.59 6.88 2.10-28.87 

 
Total diet 10.97 5.32 5.84-18.30 

SD= standard deviation, DM= dry matter 

A trend towards a positive correlation between the log transformed S concentrations in 

saliva and rumen fluid (r = 0.430, p = 0.096) was observed. The relationship between the 

log S concentrations in saliva and rumen fluid is illustrated in Figure 3.2. Furthermore, 

the log S concentrations in rumen fluid as well as in saliva did not correlate well with 

the dietary S concentrations (all p ≥ 0.100). 

 

Figure Figure Figure Figure 3.3.3.3.2222.... The relationship between the log salivary S concentration and the log rumen fluid S 

concentration in dairy cattle (n = 16). NS, non-significant 

 

y = 0.41 (± 0.23) x - 0.13 (± 0.11) 

r = 0.430, NS 



122122122122                Chapter 3Chapter 3Chapter 3Chapter 3 

 

 

The log salivary N:S ratio (x) provided a near significant, but weak prediction of the N:S 

ratio in rumen fluid (y) (r = 0.497, p = 0.050), with a linear equation of y = 9.83 (± 4.59) x + 

0.39 (± 4.56) (Figure 3.3). Neither the log N:S ratio in saliva, nor the N:S ratio in rumen 

fluid was correlated with the N:S ratio of the diet (all p ≥ 0.100). 

 

 

Figure Figure Figure Figure 3.3.3.3.3333.... The relationship between the log salivary N:S ratio and N:S ratio in rumen fluid in 

dairy cattle (n = 16). 

 

The rumen fluid N concentration was not well predicted by the salivary N concentration 

(r = 0.406, p ≥ 0.100). Finally, both the salivary and rumen fluid N concentrations did not 

correlate well with the dietary N concentrations (all p ≥ 0.100). 

3.43.43.43.4 DiscussionDiscussionDiscussionDiscussion    

Our data for N concentrations in saliva and rumen fluid are somewhat higher than data 

from earlier research, such as 0.9-3.6 mg/100 mg DM (McDougall, 1948) and 1-2 mg/100 

y = 9.83 (± 4.59) x + 0.39 (± 4.56) 

r = 0.497, p = 0.05  
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mg DM (Davis & Stallcup, 1967) for N concentrations in saliva and rumen fluid, 

respectively. The S concentrations we measured are much higher than those reported in 

literature (e.g. 0.035-0.112 mg/100 mg DM in saliva (Doyle et al., 1982), 0.29-0.41 mg/100 

mg DM in rumen fluid (Evans & Davis, 1966). However, in the literature, several methods 

for S are considered valid and are used for determination of total sulphur, such as 

induction coupled emission spectrometry, colorimetry, gravimetry, ion 

chromatography, Dumas method (Crosland et al., 2001) and turbidimetry (Van Ranst et 

al., 1999). This renders a comparison of our data with earlier research difficult. Crosland 

et al. (2001) showed high variability between methods and between laboratories for S 

concentration and concluded that the reliability of N:S ratio was limited by the accuracy 

of the S rather than the accuracy of N analysis. Nevertheless, it was not our intention to 

evaluate absolute numbers in our study, rather it was our objective to investigate 

whether variations in salivary S concentrations corresponded with fluctuations in S 

concentrations in rumen fluid and diet. 

The apparent weak relationship (p = 0.096) between S concentrations in saliva and in 

rumen fluid is partly in line with Bray & Hemsley (1969). They reported a significant 

increase in both salivary S and rumen fluid sulphide-S concentrations when dietary S 

concentration increased from 0.058 to 0.143 mg/100 mg DM, but upon a further increase 

to 0.318 mg/100 mg DM, salivary S concentration did not increase further whilst rumen 

fluid sulphide-S concentrations increased. In the present dataset, all of the dietary S 

concentrations are above 0.143 mg/100 mg DM and thus above the value in Bray & 

Hemsley (1969) at which salivary and rumen fluid S concentrations increased. Although 

the salivary S recycling theory is well established (Bray & Hemsley, 1969; Kennedy et al., 

1975; Kandylis, 1983; Durand & Komisarczuk, 1988) and cattle are considered to recycle S 

more efficiently than sheep (Bird, 1974), there is a paucity in research on associations 

between salivary S and rumen fluid S, and between salivary and dietary S 

concentrations. In contrast, in various studies a significant positive relationship 

between rumen fluid and dietary S concentrations was established (Evans and Davis, 

1966; Kennedy & Siebert, 1972; Bawala et al. 2009), but in the present study, the 

relationship between dietary and rumen fluid S concentrations was not significant. 

While our research does not indicate a significant correlation between rumen fluid and 
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saliva concentrations of S mutually nor between these parameters and dietary S 

concentration, this does not exclude the presence of a dietary-rumen fluid-saliva cycle 

in the animals studied. The mean dietary S concentration was 0.25 mg/100 mg DM, 

which is above the requirements for dairy cattle of 0.20 mg/100 mg DM (NRC, 2001). 

Possibly, the dietary S concentrations were not low enough, and consequently, the 

recycling not intensive enough to allow saliva to be a reliable indicator for S status in 

the cows in this study. Moreover, validating an estimator for a wide range of practical 

applications in the field requires an evaluation of this estimator over different farming 

conditions. Obviously, this also might explain the lack of strong association between 

dietary, salivary and rumen fluid S concentrations in contrast to studies under 

controlled conditions, with a single set-up and ration type. 

Nevertheless, the relationship between the N:S ratio in saliva and the N:S ratio in rumen 

fluid warrants further research, in view of the fact that a proper ratio of dietary N and S 

is required for efficient microbial protein synthesis in the rumen (Kandylis, 1983). For 

dairy cattle, a N:S ratio between 10:1 and 12:1 is recommended (NRC, 2001), under the 

condition that both N and S are available for rumen microbes (Kandylis, 1983). However, 

it is clear that more factors need to be identified that affect salivary S concentrations 

before the latter can be used as a sufficiently sensitive and accurate estimator of S status 

in cattle.  
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Trace element deficiencies in cattle are omnipresent, both in developing and 
industrialized regions. Little information is available on the effect of dietary trace 
elements on nutrient digestibility and utilisation, in spite of many deficiency-related 
symptoms suggesting a relevant role, such as loss of appetite in Zn deficiency and 
severe diarrhoea in Cu deficiency. The present study aimed to identify the early 
effects of dietary trace elements on nutrient utilisation in grass-fed zebu (Bos 
indicus) cattle. Adult bulls (n = 8) were randomly assigned to a treatment: control or 
trace element supplementation (Zn, Mn, Cu, Se, I and Co) during 28 days. Grass 
mineral analysis suggested deficient Cu (5.53-9.60 mg/kg) and Se (0.02-0.09 mg/kg) 
concentrations in combination with high S (2577-3855 mg/kg) and Mo (1.52-3.12 
mg/kg) and very high Fe (619-1214 mg/kg) concentrations. Supplementation 
increased plasma Cu (0.82 vs. 0.61 mg/l), Zn (1.40 vs. 0.89 mg/l), Mn (0.30 vs. 0.05 
mg/l) and Se (0.07 vs. 0.06 mg/l) concentrations (all p < 0.050). Faecal Cu, Zn, Mn and 
Se were also increased (p < 0.050), as was faecal Co (p = 0.050) concentration in 
supplemented bulls. On the contrary, trace element supplementation did not affect 
plasma ceruloplasmin and superoxide dismutase activities (p > 0.050). Also, no 
effects on apparent nutrient (dry matter, ash, protein, fat, fibre) digestibility, 
apparent trace element absorption (except for Se and I) or plasma acyl carnitines 
(indicators of available energy substrates) were observed in this study (all p > 0.050). 
Overall, despite clear improvement in trace element status - notwithstanding high 
concentrations of Cu antagonists in the grass diet – supplementation did not affect 
nutrient digestibility or utilisation in grass-fed zebu cattle..  
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4.14.14.14.1 IntroductionIntroductionIntroductionIntroduction    

Studies in different regions of the world demonstrated that the concentrations of trace 

elements in pasture and rangelands can vary considerably with season, and often drop 

to levels of concern for deficiencies in animal nutrition (Blanco-Penedo et al., 2009; 

Khalili et al., 1993; Khan et al., 2008). Optimal trace element supply is well known to be 

essential in ruminants for health and production. For example, Zn is important for 

reproduction and skin health, Fe for oxygen transport in the body and Cu for optimal 

immunity (Suttle, 2010). Several studies linked the presence of trace element 

deficiencies with the increased incidence of a whole range of diseases, such as chronic 

metritis, subclinical mastitis and lameness in cattle herds; these deficiencies were more 

frequent when cows were not supplemented with minerals (Guyot et al., 2009; Mulligan 

et al., 2006). 

Certain functions of trace elements and deficiency-related symptoms are specifically 

associated with the digestive system. Copper deficiency is frequently accompanied by 

severe diarrhoea (McDowell & Arthington, 2005), while down-regulation of the Cu-

dependent lysyl oxidase (EC 1.4.3.13) leads to impaired cross-linking of collagen 

accompanied with damaged gastro-intestinal connective tissue and ulceration (Frank, 

1998), which is well known in humans to be associated with malabsorption syndrome 

(Jensen, 2000). Zinc on its behalf, is known to play a key role in DNA synthesis (Miller et 

al., 1985) and therefore, deprivation of this element is most marked in rapidly dividing 

cells, such as intestinal cells. Consequently, Zn supplementation was able to cure 

intestinal damage in rats (Tran et al., 2003). Furthermore, one of the first symptoms of 

Zn deficiency is loss of appetite (Suttle, 2010). Manganese is linked with lipid and 

carbohydrate metabolism through the activity of pyruvate carboxylase (EC 6.4.1.1), 

responsible for the conversion of pyruvate to oxaloacetate, the latter an important 

intermediate in the citric acid cycle, crucial in the cellular energy metabolism (NRC, 

2000). 

The previous paragraph suggests an important role of trace elements in digestive 

system function and nutrient utilisation. However, to the best of our knowledge, little 
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research has been conducted on the degree to which trace element status affects cattle 

nutrient digestibility and utilisation. One published study (Grace et al., 2002), performed 

with grazing horses, reported no effect of trace element supplementation on the 

digestibility of proximate components (Grace et al., 2002). Given the widespread 

occurrence of trace element deficiencies in grazing cattle around the world, the 

described biochemical and physiological association of trace elements with digestive 

system function and the lack of relevant studies in cattle, our objective was to evaluate 

the early (< one month) effects of trace element supplementation on nutrient 

digestibility and utilisation in grass-fed zebu (Bos indicus) cattle, naturally varying in 

trace element supply. 

4.24.24.24.2 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

4.2.1. Animals and housingAnimals and housingAnimals and housingAnimals and housing    

This study was reviewed and approved by the Ethical Commission of the Faculty of 

Veterinary Medicine at Ghent University (EC: Case 2010_102). The trial was conducted at 

Jimma University College of Agriculture and Veterinary Medicine, Ethiopia. Eight adult 

Ethiopian highland zebu (B. indicus) bulls were obtained from a local livestock market, in 

a region with cattle displaying trace element deficiencies as established by previous 

work (Chapter 2Chapter 2Chapter 2Chapter 2).  

All bulls were aged between 4 and 6 years (mean: 4.9 year ± 0.2) and weighed between 

139 and 189 kg (mean: 163 kg ± 7). The animals had a body condition score between 3 

and 7 (mean: 4.6 ± 0.46) on a scale of 1 to 9 designed for zebus (Nicholson and 

Butterworth, 1986). The bulls were housed in separate stables. After arrival, the animals 

were weighed and dewormed using a combination of ivermectine and clorsulon (Ivomec 

F®, 0.02 ml/kg body weight, Merial Animal Health, Brussels, Belgium) and left to adapt to 

the housing conditions and diet for one week.  
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Table Table Table Table 4.14.14.14.1.... Proximate, fibre and mineral analysis of the grass diet 

 Experimental week1   

Parameter 1 2 3 4 5 SE p 

(g/kg)        

DM 183 208 209 244 209 10 0.52 

(g/kg DM)        

Ash 131a,b 136a,b 119a,b 103b 140a 4 0.03 

EE 22a,b 25a 18b 16b 19a,b 1 0.01 

CP 133 149 137 94 132 7 0.07 

NDF 631 614 679 615 648 9 0.14 

ADF 346 319 353 355 338 7 0.59 

ADL 63 58 76 61 54 6 0.88 

(mg/kg DM)        

S 2601 2899 2963 2577 3855 164 0.06 

Mo 1.5 2.1 3.1 2.3 1.9 0.2 0.10 

Fe 619 2082 1214 879 777 210 0.18 

Mn 114b 175b 189a,b 383a 233a,b 29 0.01 

Zn 44a,b 53a,b 67a 34b 51a,b 4 0.04 

Cu 5.6b 8.6a 9.6a 5.5b 5.8b 0.5 0.001 

I 0.7 0.3 0.3 2.0 3.1 0.5 0.34 

Se 0.02 0.07 0.05 0.09 0.09 0.01 0.14 

Co 0.4 1.1 0.8 0.6 0.5 0.1 0.14 

SE= standard error, , DM = dry matter, EE = ether extract, CP = crude protein, NDF = neutral detergent fibre, 

ADF = acid detergent fibre, ADL = acid detergent lignin 
1week 1: unsupplemented grass diet in both groups, week 2 to 5 : unsupplemented grass diet in control group, 

in the supplementation group, grass diet supplemented with a tablespoon of molasses and trace element mix, 

providing (per kg DM) :  30 mg of Zn, 20 mg of Mn and 10 mg of Cu, as chelated-to-glycine forms, 0.10 mg of Se, 

as premix (all previous: MAAC®, Novus International (St.-Charles, Missouri, USA)), 0.50 mg of I as KI and 0.10 

mg of Co as Co(NO3).6H2O.  
a,bSignificantly different between weeks at p < 0.050 

4.2.2. Diet and supplementationDiet and supplementationDiet and supplementationDiet and supplementation    

Throughout the experimental period, all bulls received a local grass mixture diet in 

order to simulate their natural diet with varying amounts of trace elements. The 

quantity of grasses supplied to the bulls was based on 2% of the individual body weight 

(McDowell, 1996), which was weekly monitored (Figure 4.1), and an average dry matter 

(DM) content of 20% in the grass. The nutrient composition of grass is presented in 

Table 4.1. Baseline measurements without treatment were executed in week 1. In week 
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2, the animals (n = 8) were randomly allocated to a treatment: trace element 

supplementation or control. Supplem

supplying per kg DM of grass: 30 mg of Zn, 20 mg of Mn, 10 mg of Cu, all as chelated to 

glycine MAAC®; 0.1 mg Se as MAAC® Se Premix (Novus International, Inc., St. Charles, 

Missouri, USA); 0.1 mg of Co as Co(NO

and 0.5 mg of I as KI (207969-100G, Sigma

recommendations for beef cattle established by NRC (2000). The mineral powder was 

mixed with a spoon of molasses and top d

intake. 

4.2.3. Samples and storageSamples and storageSamples and storageSamples and storage

The experiment lasted for five weeks (baseline measurements without treatment 

followed by four treatment weeks). At the end of every week, during three subsequent 

days, apparent nutrient digestibility and apparent trace element absorption (see below) 

were estimated through total faecal collection: faeces were collected using faecal 

collection bags and grass refusals were weighed

Figure 4.1.Figure 4.1.Figure 4.1.Figure 4.1. Sampling and measurement procedures during a trial investigating the effect of 

trace element supplementation on nutrient digestibility in grass

Left:Left:Left:Left: faecal collection bags, 

During these three days, daily s

taken and afterwards faeces were individually pooled per faecal collection period. Faecal

and grass samples were oven-dried at 65° C for 72 hours and ground through a 2 mm 

screen. From each animal, a we

8) were randomly allocated to a treatment: trace element 

supplementation or control. Supplementation consisted out of a trace element mix 

supplying per kg DM of grass: 30 mg of Zn, 20 mg of Mn, 10 mg of Cu, all as chelated to 

glycine MAAC®; 0.1 mg Se as MAAC® Se Premix (Novus International, Inc., St. Charles, 

Missouri, USA); 0.1 mg of Co as Co(NO3)2.6H2O (1025360100, Merck, Overijse, Belgium) 

100G, Sigma-Aldrich, Bornem, Belgium), according to the 

recommendations for beef cattle established by NRC (2000). The mineral powder was 

mixed with a spoon of molasses and top dressed on the offered grass to ensure complete 

Samples and storageSamples and storageSamples and storageSamples and storage    

The experiment lasted for five weeks (baseline measurements without treatment 

followed by four treatment weeks). At the end of every week, during three subsequent 

nutrient digestibility and apparent trace element absorption (see below) 

were estimated through total faecal collection: faeces were collected using faecal 

collection bags and grass refusals were weighed (Figure 4.1).  

Sampling and measurement procedures during a trial investigating the effect of 

trace element supplementation on nutrient digestibility in grass-fed zebu bulls (n = 8). 

faecal collection bags, RRRRightightightight: weighing bulls. 

 

During these three days, daily subsamples of offered grass and faeces per animal were 

taken and afterwards faeces were individually pooled per faecal collection period. Faecal

dried at 65° C for 72 hours and ground through a 2 mm 

From each animal, a weekly jugular blood sample was obtained using 20 G 

 

8) were randomly allocated to a treatment: trace element 

entation consisted out of a trace element mix 

supplying per kg DM of grass: 30 mg of Zn, 20 mg of Mn, 10 mg of Cu, all as chelated to 

glycine MAAC®; 0.1 mg Se as MAAC® Se Premix (Novus International, Inc., St. Charles, 

O (1025360100, Merck, Overijse, Belgium) 

Aldrich, Bornem, Belgium), according to the 

recommendations for beef cattle established by NRC (2000). The mineral powder was 

ressed on the offered grass to ensure complete 

The experiment lasted for five weeks (baseline measurements without treatment 

followed by four treatment weeks). At the end of every week, during three subsequent 

nutrient digestibility and apparent trace element absorption (see below) 

were estimated through total faecal collection: faeces were collected using faecal 

Sampling and measurement procedures during a trial investigating the effect of 

fed zebu bulls (n = 8).  

ubsamples of offered grass and faeces per animal were 

taken and afterwards faeces were individually pooled per faecal collection period. Faecal 

dried at 65° C for 72 hours and ground through a 2 mm 

ekly jugular blood sample was obtained using 20 G 
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needles (MN-2038M) and two sodium heparin tubes (VT-100SH, both Venoject®, Terumo, 

Leuven, Belgium). Plasma was obtained through centrifugation at 1500 × g for 10 min. All 

samples were stored at -20°C until further analysis. 

4.2.4. Mineral analyses Mineral analyses Mineral analyses Mineral analyses     

As a preparation step for mineral analysis, faecal and grass samples were ashed through 

microwave destruction with 10 ml HNO3 in closed vessels followed by filtration. 

Afterwards, the faecal and grass samples were analysed for Zn, Cu, Fe and Mn 

concentrations through inductively coupled plasma optical emission spectrometry (ICP-

OES) (Vista MPX radial, Varian, Palo Alto, USA) and for Co, Se, I and S by means of 

inductively coupled plasma mass spectrometry (ICP-MS) (Elan DRC-e, Perkin Elmer, 

Sunnyvale, USA). Plasma samples were prepared for mineral analysis through 

microwave destruction with 10 ml HNO3 in open vessels followed by filtration and 

analysed for Cu and Zn concentrations through ICP-OES and Mn and Se concentrations 

through ICP-MS. 

Throughout mineral analyses, a quality control programme was in use. Sampled 

matrices were spiked with elements under study with two concentrations in the range 

of the measured concentrations and recoveries were measured. Average recovery was 

94%, with a range between 82% (Cu in faeces) and 113% (Se in plasma), which should 

probably be attributed to matrix interferences. Detection limits in acid digest were: Mn 

0.35 μg/l, Cu 0.25 μg/l, Mo 0.33 μg/l, Se 0.13 μg/l, Fe 21.4 μg/l, Zn 16.4 μg/l, Co 0.14 μg/l. 

Standards were regularly run between samples. Analytical results were blank-corrected. 

Prior to use, all glassware and microwave vessels were rinsed with diluted HNO3. 

Ultrapure HNO3 (analytical grade for trace elements) was used during all analytical 

procedures. 

4.2.5. ProxProxProxProximate and fibre analysis and digestibility calculationimate and fibre analysis and digestibility calculationimate and fibre analysis and digestibility calculationimate and fibre analysis and digestibility calculation    

Faecal and grass samples were also analysed for dry matter (920.36), crude protein 

(984.13), crude ash (923.03) and crude fat (920.39) by means of proximate analysis 
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(AOAC, 2000). Additionally, acid detergent fibre (ADF) and acid detergent lignin (ADL) 

were analysed according to AOAC (2000; 973.18) and neutral detergent fibre (NDF) by a 

method of Van Soest et al. (1991). Apparent nutrient digestibility as well as apparent 

mineral absorption were calculated as following: ((Wdiet * Cdiet)-(Wfaeces * Cfaeces)) / (Wdiet * 

Cdiet) * 100 where W is the collected weight, C is the nutrient concentration (both on dry 

matter basis), diet refers to the offered diet including supplement after subtracting 

refusals, faeces refers to the total faecal output. 

4.2.6. Plasma enzyme and acyl carnitines analysisPlasma enzyme and acyl carnitines analysisPlasma enzyme and acyl carnitines analysisPlasma enzyme and acyl carnitines analysis    

Moreover, plasma was analysed for the mineral dependent enzymes ceruloplasmin (EC 

1.16.3.1) with the p-phenylenediamine oxidase method (Sunderman and Nomoto, 1970) 

and total superoxide dismutase (SOD) (EC 15.1.1) by means of the inhibition of WST-1 to 

WST-1 formazan reduction reaction (Peskin & Winterbourn, 2000). The latter reaction 

measured total superoxide dismutase activity in plasma, according to earlier research 

consisting mainly of EC-SOD (SOD3) (EC 15.1.1), a Cu and Zn-containing tetramer, and to 

a lesser degree of CuZnSOD (SOD1) (EC 15.1.1) and MnSOD (SOD2) (EC 15.1.1) as a result 

of leakage out of cells (Marklund, 1984). Finally, acyl carnitines analysis was performed 

through quantitative electrospray tandem mass spectrometry (Rizzo et al., 2003). The 

plasma acyl carnitine profile served as reflection of the mitochondrial acetyl-CoA pool 

and thus, the available energy substrates for the citric acid cycle (Brass and Hoppel, 

1980; Bremer, 1983). 

4.2.7. Statistical analysisStatistical analysisStatistical analysisStatistical analysis    

All statistical analyses were performed using SPSS v17.0 (SPSS Inc., Chicago, IL, USA). 

Missing data (1 value for faecal mineral concentrations and 1 value for plasma acyl 

carnitines, ceruloplasmin and SOD) were replaced with the mean of the non-missing 

values of all individuals at the specific time point (Gadbury et al., 2003). All data except 

feed composition were fit to a repeated measures model with treatment, time and their 

interaction inserted as fixed effects and baseline measurements (week 1) as covariate. 
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Individual animals served as experimental unit. Feed composition data were analysed 

using one-way analysis of variance. Significance was declared at a probability level of p 

< 0.050; p < 0.100 was interpreted to indicate a trend. 

4.34.34.34.3 ResultsResultsResultsResults    

Dietary concentrations of ash, fat, Cu, Zn and Mn differed significantly over the 

experimental period (Table 4.1). Mineral analysis of the grasses indicated a suboptimal 

supply of Cu (< 10 mg/kg DM) and Se (< 0.10 mg/kg DM) throughout the whole trial, 

while I was too low in week 2 and 3 (< 0.50 mg/kg DM), upon comparison with 

recommendations for Bos taurus beef cattle established by NRC (2000). According to 

Suttle (2010), Fe is antagonistic towards Cu when the Fe:Cu ratio is exceeding 50 

whereas S and Mo are significantly depressing Cu absorption when S is higher than 2000 

mg/kg DM combined with a Cu:Mo ratio lower than 3. Diet analysis values of all three 

elements showed values above these thresholds: for Fe constantly, for S and Mo in week 

4, respectively. 

At the onset of the study, three out of eight bulls had plasma Cu concentrations below 

disorder risk values for B. taurus cattle according to Suttle (2010), whereas two for Mn, 

and one for Zn. Supplementation of trace elements resulted in increased plasma 

concentrations of Cu, Zn, Mn and Se (Table 4.2), even though mean baseline and 

estimated marginal means of plasma mineral concentrations were above these risk 

values in both groups. Cu, Zn and Mn plasma values were also affected by a time × 

supplement interaction (all p = 0.001) (data not shown in Table 4.2).  

Faecal concentrations of Cu, Zn, Se and Mn were raised by trace element 

supplementation (all p < 0.050), whereas faecal Co concentrations tended to be higher in 

the supplemented group (p = 0.050), faecal I concentrations, as an exception within the 

supplemented minerals, were not affected by the supplementation (p > 0.050).  
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Table 4.2.Table 4.2.Table 4.2.Table 4.2. Trace element supplementation effects on estimated marginal means of plasma and 

faecal mineral concentrations in grass fed zebu (Bos indicus) bulls. 

  Treatment    

Parameter Baseline1 Control2 Supplement2 SE p Reference values3 

Plasma mineral, mg/l 

Mn 0.031 0.053 0.297 0.025 0.002 >0.020a 

Zn 0.89 0.89 1.40 0.08 0.006 >0.60 

Cu 0.61 0.61 0.82 0.03 0.004 >0.60 

Se 0.070 0.059 0.070 0.002 0.017 >0.020 

Faeces mineral, mg/kg DM 

Mn 441 520 575 14 0.027 _ 

Zn 127 138 196 7 0.001 _ 

Cu 16 19 35 2 0.001 _ 

I 1.0 1.3 1.7 0.1 0.156 _ 

Se 0.13 0.21 0.36 0.02 0.004 _ 

Co 2.0 1.4 1.6 0.1 0.050 _ 

SE = standard error, p = p-value at significance level p < 0.050. 
1Baseline= mean baseline concentrations (n = 8) in week 1 
2Estimated marginal means of the treatment group= means per treatment over all repeated measures of week 

2 to 5 adjusted for the baseline measurements in week 1 (inserted in the model as a covariate). 
3from Suttle (2010) 
areference value for serum, no reference value available for plasma. 

Mineral related ceruloplasmin and SOD activity remained unaffected by 

supplementation (Table 4.3). Mean baseline and estimated marginal means of 

ceruloplasmin activities in both treatment groups were substantially higher than the 

threshold value for Cu deficiency of 15 U/l suggested for B. taurus cattle by Laven et al. 

(2007). 

Table 4.3.Table 4.3.Table 4.3.Table 4.3. Trace element supplementation effects on estimated marginal means of plasma 

mineral related enzyme activity in grass fed zebu (Bos indicus) bulls. 

  Treatment   

Enzyme activity Baseline1 Control2 Supplement2 SE p 

Ceruloplasmin (U/l) 131 100 121 13 0.381 

Superoxide dismutase 
(U/ml) 

6.1 5.8 5.6 0.7 0.875 

SE = standard error, p = p-value at significance level p < 0.050. 
1Baseline= mean baseline enzyme activity (n = 8) in week 1 
2Estimated marginal means of the treatment group= means per treatment over all repeated measures of week 

2 to 5 adjusted for the baseline measurements in week 1 (inserted in the model as a covariate). 
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Trace element supplementation affected apparent digestibility neither of the proximate 

components nor of the fibre fractions (p > 0.050) (Table 4.4). A time × supplementation 

interaction affected apparent DM, crude protein and ADL digestibility (all p < 0.050) 

while apparent ash (p = 0.09) and NDF (p = 0.07) digestibility tended to be affected by this 

interaction. This interaction seemed to originate from a major and consistent shift in 

effect size between the two groups in week 3 of supplementation (data not shown in 

Table 4.4). Apparent Se and I absorption were increased in the supplemented group 

(both p < 0.050). Apparent Mn and I absorption were affected by time × supplementation 

interaction (both p < 0.050) and the same interaction tended to affect apparent Cu and 

Zn absorption (p = 0.07; p = 0.08, respectively) (data not shown in Table 4.4).  

Table Table Table Table 4.4.4.4.4.4.4.4. Trace element supplementation effects on estimated marginal means of apparent 

nutrient digestibility and apparent mineral absorption in grass fed zebu (Bos indicus) bulls. 

   Treatment   

Parameter  Baseline1 Control2 Supplement2 SE p 

Apparent nutrient digestibility  DM  80 76 74 2 0.513 

(%) Ash 62 61 58 3 0.577 

 EE 84 70 69 1 0.461 

 CP 84 79 77 2 0.401 

 NDF 79 72 72 2 0.955 

 ADF 77 69 68 2 0.780 

 ADL 50 34 22 4 0.135 

Apparent mineral absorption Mn 20 46 41 3 0.412 

(%) Zn 41 32 36 6 0.699 

 Cu 40 35 49 6 0.320 

 I 70 51 74 4 0.021 

 Se -13 12 62 9 0.026 

 Co 5 54 50 4 0.631 

DM = dry matter, EE = ether extract, CP = crude protein, NDF = neutral detergent fibre, ADF = acid detergent 

fibre, ADL = acid detergent lignin, SE = standard error, p = p-value at significance level p < 0.050. 
1Baseline= mean baseline apparent nutrient digestibility/apparent mineral absorption (n = 8) in week 1 
2Estimated marginal means of the treatment group= means per treatment over all repeated measures of week 

2 to 5 adjusted for the baseline measurements in week 1 (inserted in the model as a covariate). 

No effect of supplementation was observed on the plasma acyl carnitine profile, as an 

estimate of nutrient utilisation from enzymatic or fermentative origin (p > 0.050) (Table 

4.5). Finally, trace element supplementation did not induce a difference in body weight 

(170 vs. 171 kg ± 3, p = 0.875). 
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Table Table Table Table 4.4.4.4.5.5.5.5. Trace element supplementation effects on estimated marginal means of plasma acyl 

carnitines concentrations in grass fed zebu (Bos indicus) bulls. 

 
 

 Treatment   

Parameter Baseline1 Control2 Supplement2 SE p 

Acyl carnitines Acetyl 6.9 5.5 5.3 0.3 0.670 

(μmol/l) Propionyl  0.67 0.63 0.56 0.08 0.566 

 Butyl  0.34 0.27 0.27 0.02 0.912 

 Isovaleryl  0.09 0.11 0.12 0.01 0.325 

 3-OH-butyryl  0.05 0.03 0.04 0.01 0.184 

 3-OH-isovaleryl  0.07 0.05 0.06 0.007 0.557 

 Methylmalonyl  0.05 0.03 0.04 0.004 0.776 

1Baseline= mean baseline concentrations (n = 8) in week 1 
2Estimated marginal means of the treatment group= means per treatment over all repeated measures of week 

2 to 5 adjusted for the baseline measurements in week 1 (inserted in the model as a covariate). 

4.44.44.44.4 Discussion Discussion Discussion Discussion     

In the current study, trace element supplementation successfully raised plasma and 

faecal trace element concentrations of zebu bulls fed a local grass diet. This increase 

occurred despite natural variation in dietary trace elements, indicating a suboptimal 

supply for some elements (Cu, Se, I) while an adequate supply for others (Mn, Zn, Co) 

upon comparison with B. taurus requirements (NRC, 2000). Furthermore, plasma and 

faecal Cu concentrations were increased despite the presence of high concentrations of 

antagonists (Mo, S, Fe), capable to form insoluble complexes with Cu in the rumen. In 

excess, thiomolybdate complexes (formed by Mo and S), can also bind Cu at post 

absorption sites, additionally causing a thiomolybdate toxicity (Gould and Kendall, 

2011). 

Previous research indicated a Cu, Se and possibly Na deficiency problem in grazing zebu 

cattle in the study area (Chapter 2Chapter 2Chapter 2Chapter 2). In the current study, some animals had initial 

plasma mineral concentrations indicating a risk for trace element disorder according to 

Suttle (2010). Despite this, mean baseline and estimated marginal concentrations in both 

treatment groups were above these threshold values for B. taurus cattle. Insufficient 

research is available to determine whether these values are also applicable to B. indicus 
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cattle. Furthermore, despite the changed Cu and Zn plasma status in the supplemented 

group, activities of Cu and Zn-related enzymes ceruloplasmin and SOD did not differ 

significantly between groups, in contrast to earlier data (ceruloplasmin: Legleiter and 

Spears, 2007; SOD: Cao and Chen, 1991; Shaheen and Abd El-fattah, 1995), and 

ceruloplasmin activity at the onset and throughout the trial was above the threshold 

value suggested for B. taurus cattle by Laven et al. (2007). Consequently, although 

supplementation caused an improved status of the supplemented minerals, the status 

on itself was probably adequate for most bulls throughout the trial according to B. taurus 

threshold values. As the diet provided to the animals prior to purchase could have been 

of adequate mineral quality, the latter could be explained by the capacity of soft tissue 

storage for several minerals, e.g. in liver for Cu, thyroid for I, kidney for Se (NRC, 2005). 

Mineral analysis of several grass species in previous work around the region of origin of 

the animals does contradict the hypothesis of a correct diet prior to the trial: of 20 grass 

samples, 20 had copper concentrations below requirements for beef cattle (NRC, 2000) 

(range: 1.7-9.3 mg/kg DM), 12 for Zn (5.5-59 mg/kg DM) and 18 for Se (10-380 μg/kg DM) 

(Chapter 1Chapter 1Chapter 1Chapter 1). Another explanation for this phenomenon could be a difference between 

cattle species (B. indicus vs. B. taurus) in mineral metabolism resulting in different trace 

element requirements and normal plasma ranges. Earlier research detected such 

differences for plasma Cu concentrations within B. taurus (Mullis et al., 2003; Ward et al., 

1995) as well as for Se (Rowntree et al., 2004), therefore, similar or even larger 

differences could exist between these species as suggested by McDowell (1985). 

Nevertheless, the main objective of the present study was to detect early effects of trace 

element supplementation on nutrient digestibility and utilisation. In the present study, 

trace element supplementation did not affect nutrient digestibility. The presence of the 

time × supplementation interaction for apparent DM, crude protein and ADL 

digestibility and apparent Mn and I absorption, originating from the major shift 

between the two groups in week 3 of supplementation cannot be attributed to a specific 

factor. However, the interaction between time and supplementation did not reflect a 

divergent difference between the two groups. Overall, it can be concluded that trace 

element supplementation did not improve apparent nutrient digestibility nor apparent 

mineral absorption in the present study, which is in accordance with the findings of 
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Grace et al. (2002) in horses. As an exception, the apparent absorption of Se and I was 

affected by supplementation. Both elements seemed to be absorbed to a higher degree 

with increasing dietary intake, which confirms the lack of homeostatically controlled 

absorption mechanisms in these elements (Suttle, 2010). For minerals, apparent 

absorption results should be carefully interpreted, as they merely provide an estimation 

of their bioavailability, since certain post-absorption processes and differences in 

excretion rates can result in differences in bioavailability despite equal apparent 

absorption rates (Ammerman et al., 1995). 

Finally, plasma acyl carnitines were not influenced by trace element supplementation. 

These circulating carnitine esters mirror the available citric acid cycle energy substrates 

and thus nutrient utilisation as described by Verbrugghe et al. (2009). Isovaleryl-, 3-OH-

butyryl-, 3-OH-isovaleryl- as well as methylmalonylcarnitine are products of branched-

chain amino acid catabolism (Michal, 1999) and represent the relative importance of 

amino acids as an energy source. Acetyl-, propionyl-, and butyrylcarnitine reflect the 

contribution of energy from the respective volatile fatty acids produced in fermentation 

(Bremer, 1983). The lack of effect of trace element supplementation on the presented 

products suggests that no alterations in energy metabolism were induced during the 

experimental period. 

ConclusionConclusionConclusionConclusion    

In the current study, concentrations of Mn, Zn, Cu and Se in plasma of grass-fed zebu (B. 

indicus) bulls were increased by trace element supplementation (Mn, Zn, Cu, Se, Co and 

I), indicating an altered mineral status although mean treatment values were still within 

normal ranges for B. taurus cattle. The latter is in sharp contrast to subnormal dietary Se 

and Cu concentrations according to B. taurus guidelines and could have implications for 

the applicability of B. taurus mineral requirements in B. indicus cattle. Ceruloplasmin and 

superoxide dismutase remained unaffected by supplementation. Supplementation of 

trace elements did not induce a difference in nutrient digestibility and utilisation, 

although it did affect apparent Se and I absorption.  
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Small-scale urban dairy farms  (n = 16) in and around Jimma, Ethiopia with 
crossbred (Bos indicus × Bos taurus) cows were enrolled in a double-blinded 
intervention study to investigate the effect of a trace element supplementation 
programme on trace element status and milk concentrations as well as performance 
(body condition score (BCS), milk yield, leptin), milk composition, antioxidant status 
(ferric reducing ability of plasma (FRAP), thiobarbituric acid reactive substances 
(TBARS)), blood biochemistry, serum proteins and immune response (antibody titer 
upon rabies vaccination). The farms were allocated to a 1) placebo or 2) Cu, Zn, Se, 
Co and I supplementation treatment for 150d. On d 0 and d 120, four lactating cows 
per farm were sampled for milk and plasma, and on d 150 for serum, following 
primo-vaccination. Cu deficiency was present in 17% and marginal Se deficiency in 
30 % of initially sampled cows, while no Zn shortage was detected. Over 120 days, 
trace element supplementation caused a bigger increase in plasma Se and Cu 
concentrations, but also a larger decrease of plasma Fe concentrations, as compared 
to the control group,. A larger increase in milk Se concentrations was observed in 
the supplemented group, whereas none of the other elements were affected. BCS 
decreased more over time in the supplemented group. None of the other parameters 
of performance and antioxidant status nor milk composition or blood biochemistry 
were affected by treatment. Antibody response to rabies vaccination did not differ 
between groups whereas α1- globulins tended to be lower and β-globulins tended to 
be higher in the supplemented group. In conclusion, despite improved Cu and Se 
status and Se concentrations in milk, cows on tropical urban dairy farms did not 
seem to benefit from trace element supplementation, with respect to the parameters 
investigated.   
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5.15.15.15.1 IIIIntroductionntroductionntroductionntroduction    

The relationship between trace element status and a broad field of health conditions in 

dairy cattle has been clearly proven in industrialized regions (Enjalbert et al., 2006; 

Guyot et al., 2009), with shortages of Cu, Se and Zn known to be associated with retained 

placenta, impaired locomotion and diarrhoea (Enjalbert et al., 2006). Therefore, trace 

element supplementation is a highly promoted practice, with reported positive effects, 

although most from experimental studies, on the incidence of mastitis (Machado et al., 

2013; Scaletti et al., 2003), and immune response (Xin et al., 1991). 

In tropical regions, dairy cattle are most often the product of crossbreeding local types 

of zebu (Bos indicus) cattle with the temperate Holstein Friesian breed (Bos taurus), 

combining hardiness and productive characteristics (Fekadu et al., 2011). Tropical urban 

dairy cattle are typically kept under challenging conditions, such as limited feed 

resources, high disease pressure and warm climate. Not surprisingly, these cattle are 

also prone to trace element deficiencies (Abdelrahman et al., 1998; Belay et al., 2009; 

Khalili et al., 1993).  

Unfortunately, trace element supplementation remains difficult to implement in 

developing countries, due to high costs and low accessibility. Moreover, trials 

examining the effect of mineral supplementation under tropical farming conditions are 

scarce. Investigating the effect of such supplements on a broad range of parameters, 

would clarify their efficiency under tropical conditions. 

Our objective therefore, was to identify the effect of a trace element supplementation 

programme under tropical urban dairy farming conditions on trace element status, milk 

trace element concentrations, performance, milk composition, antioxidant status, blood 

biochemistry, serum protein electrophoresis and immune response to rabies 

vaccination, in a double-blinded randomized field trial. 
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5.25.25.25.2 MMMMaterials and methodsaterials and methodsaterials and methodsaterials and methods

5.2.1. Farms and dietsFarms and dietsFarms and dietsFarms and diets

In Jimma, South-West Ethiopia, severe bovine trace 

previously documented, with predominant shortages of Cu and Se (

Therefore, this region was selected as our study site. The local urban dairy cooperative, 

Jimma city multipurpose dairy development PLC, was approached and informed about 

our objectives. With their consent, we gathered information on dairy farms of members 

and selected urban (n = 16) dairy farms

include in the trial.  

Figure 5.1.Figure 5.1.Figure 5.1.Figure 5.1. Typical dairy farms enrolled in a double blinded intervention trial testing the effects 

of a trace element supplementation 

crossbred (Bos indicus × Bos taurus

poor housing conditions with 

On these farms, animals were housed in closed stables and were on a zero

regime. Surface area per cow varied between 1.20 and 3.75 m

the trial were Holstein Friesian (

following characteristics, based on farmers’ information, age: 6.8 ± 2.9 (SD) years, parity: 

aterials and methodsaterials and methodsaterials and methodsaterials and methods    

Farms and dietsFarms and dietsFarms and dietsFarms and diets    

West Ethiopia, severe bovine trace element deficiencies have been 

usly documented, with predominant shortages of Cu and Se (

Therefore, this region was selected as our study site. The local urban dairy cooperative, 

Jimma city multipurpose dairy development PLC, was approached and informed about 

With their consent, we gathered information on dairy farms of members 

16) dairy farms (Figure 5.1) with at least 4 lactating dairy cows to 

Typical dairy farms enrolled in a double blinded intervention trial testing the effects 

trace element supplementation programme on health and performance of tropical 

Bos taurus) cows. Left & RightLeft & RightLeft & RightLeft & Right: farms have a low number of 

poor housing conditions with a small surface area per cow. 

 

On these farms, animals were housed in closed stables and were on a zero

regime. Surface area per cow varied between 1.20 and 3.75 m2. All animals included in 

Holstein Friesian (Bos taurus) × zebu (Bos indicus) crossbreeds, with the 

following characteristics, based on farmers’ information, age: 6.8 ± 2.9 (SD) years, parity: 

 

element deficiencies have been 

usly documented, with predominant shortages of Cu and Se (Chapter 2Chapter 2Chapter 2Chapter 2). 

Therefore, this region was selected as our study site. The local urban dairy cooperative, 

Jimma city multipurpose dairy development PLC, was approached and informed about 

With their consent, we gathered information on dairy farms of members 

with at least 4 lactating dairy cows to 

    
Typical dairy farms enrolled in a double blinded intervention trial testing the effects 

health and performance of tropical 

: farms have a low number of animals and 

On these farms, animals were housed in closed stables and were on a zero-grazing 

. All animals included in 

) crossbreeds, with the 

following characteristics, based on farmers’ information, age: 6.8 ± 2.9 (SD) years, parity: 
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3.0 ± 1.7, month of lactation: 6.3 ± 3.8 and top milk yield: 13.5 ± 4.9 l/d. However, none of 

the farmers in the trial had a written account on age, parity, date of partus, milk yield or 

percentage of Holstein-Friesian. Yet, the farmers claimed to know this information by 

heart. 

All animals received their regular diets with roughages and concentrates throughout 

the study. Feedstuffs dominating on the urban dairy farms consisted of concentrates 

and fresh grasses combined with some form of brewers’ grains and bran (Table 5.1), 

with reported amounts of provided concentrates ranging between 4 and 6 kg, supplied 

with 2-5 kg of other grains and grasses/hays ad libitum.  

Table 5.1.Table 5.1.Table 5.1.Table 5.1. Characterization of urban dairy feeding management, Jimma, Ethiopia in terms of 

presence of absence 

 Farm 

Ingredient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Concentrate + + + + + + + + + + + + + + + + 

Wheat bran +  +  + +   +   + +  +  

Bean bran       +  +   +   +  

Rice bran             +    

Brewers grains1 + +  +  + +     + + +   

Atella1 + +  + + +      +     

Oil seed cake             +    

Corn stem  +               

Enset2 +                

Hay  +             +  

Grass +  + + + + + + + + + + + + + + 

Chicken feces            +     

Salt   +  +  +     +   +  

                 

TEM + + + + + + + +         

Placebo         + + + + + + + + 

TEM = trace element mix 
1Brewers grains= industrially processed brewers grains, atella= liquid by-product of local beer breweries 

(Solomon, 2007) 
2Stem of Ensete ventricosum, false banana, widely cultivated as a food crop 

However, farmers did not register diet composition or amounts provided and based on 

farmers’ information, the feeding management could fluctuate within weeks based on 

local availability. No separate mineral supplements were utilized on the farms, except 
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for common table salt on five of sixteen farms. As an incentive for participating in the 

trial, all farmers received one kg of concentrate per dairy cow present at their farm. 

5.2.2. Study design and treatmentStudy design and treatmentStudy design and treatmentStudy design and treatment    

Selected farms were stratified based on number of animals and gender of the farmer, to 

adjust for potential differences in management, such as smaller resources for 

investment and lower access to technical information in female farmers, but also better 

dairy performance when actively involved the implementation of new technologies  

(Mkenda-Mugittu, 2003; Mullins et al., 1996). Afterwards, the farms were randomly 

assigned to a treatment: 1) placebo or 2) trace element supplementation of all adult 

cows present on farm, for 150 days. Placebo supplementation consisted of corn flour, 

supplied at a rate of 5 g/cow/d, providing 16 μg Cu/cow/d, 90 μg Zn/cow/d, 0.072 μg 

Se/cow/d, 1 μg Co/cow/day and 6 μg I/cow/day. Amounts of trace elements supplied 

were related to an estimated dry matter intake (DMI) of 10 kg/day, as 2.5% of an 

estimated body weight of 400 kg. Supplementation comprised of 250 mg Cu/cow/d, 540 

mg Zn/cow/d, 3.0 mg Se/cow/d (organic, as chelated to glycine MAAC; Novus 

International Inc., MO) and inorganic 1.1 mg Co/cow/d (CoSO4.7H20) and 4.4 mg I/cow/d 

(NaI; Sigma-Aldrich, Bornem, Belgium). 

Before the start of the trial, information sessions were organized to explain the function 

of trace elements and to elaborate on deficiency symptoms related to trace element 

shortages. Furthermore, the mode of treatment application, mixed in a spoon of 

molasses and top dressed on concentrate meal, was demonstrated. Supplements were 

distributed on a weekly basis and participation of farms was closely monitored by trial 

assistents, who reported an excellent consumption of supplements due to the high 

palatability of the molasses. Both farmers and trial assistants were blinded to treatment 

allocation to prevent bias. 
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5.2.3. SamplesSamplesSamplesSamples    

On every farm, four adult lactating cows (at least 2 months in lactation) were randomly 

selected for sampling of plasma and milk, on d 0 (rainy season) and d 120 (dry season). 

All cows sampled on d 120 were vaccinated with inactivated rabies vaccine (Novibac 

Rabies, 1 ml IM, Intervet NV, Brussels, Belgium) and sampled for serum on d 150. The 

body condition score (BCS) of sampled animals (1-to-5 point scale) was noted on d 0 and 

d 120 by the same investigator (Wildman et al., 1982). 

Blood samples were obtained from the jugular vein using 18 G needles and two 9 ml 

sodium heparin tubes for plasma at d 0 and d 120, while two 6 ml cloth activator tubes 

(VWR International BVBA, Leuven, Belgium) were used for serum at d 150. Furthermore, 

a milk sample was obtained from each open quarter and equally pooled per cow at d 0 

and d 120. Immediately after sampling, blood and milk samples were placed in ice water 

and within two hours transported to the laboratory. There, sodium heparin tubes were 

centrifuged at 1500 × g for 10 minutes after which plasma was separated, while cloth 

activator tubes were allowed to stand for 2 hours in the refrigerator, after which serum 

was separated through centrifugation at the same velocity. Milk samples were stored at 

4 °C until milk composition analysis and California Mastitis Test (CMT) score 

determination. Aliquots of milk samples as well as plasma samples were stored at -20 °C 

until mineral analysis. Samples of the different feed stuffs, both roughages and 

concentrates, were collected at the onset of the trial. Feed stuff samples were oven-

dried at 65 °C until constant weight and ground to pass a 2 mm screen.  

5.2.4. Analytical Analytical Analytical Analytical mmmmethodsethodsethodsethods    

Milk samples were first analysed for composition by means of the Julie Z7 Automatic® 

analyser (Scope Electric, Regensburg, Germany), determining milk fat, protein, lactose, 

solids-non fat, solids and density. Also, the CMT was performed to detect and assess the 

degree of subclinical mastitis; the following scores were given to the pooled udder 

samples: 0 for no reaction, 1 for a trace, 2 for a weak positive, 3 for a distinct positive 

and 4 for a strong positive reaction (Bhutto et al., 2012).  
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Feed, plasma and milk samples were analysed for mineral concentrations. Sample 

preparation for this analysis consisted of microwave digestion with 10 ml HNO3 in closed 

vessels for feed samples while in open vessels for plasma and milk samples, both 

followed by filtration of the residue. Feed samples were analysed for Fe, S, Mo, Cu, Zn, 

Mn, Se, Co and I concentrations, while plasma and milk samples for Mo, S, Zn, Cu, Co, Se, 

Fe and Mn, using inductively coupled plasma optical emission spectrometry (ICP-OES) 

(Vista MPX radial, Varian, Palo Alto, CA) and inductively coupled plasma mass 

spectrometry (ICP-MS) (Elan DRC-e, Perkin Elmer, Sunnyvale, CA). ICP-MS was used 

when results were observed to be below the detection limit of ICP-OES. These analytical 

procedures have previously proven to generate accurate data for feed, plasma and milk 

samples. Depending on the element and its concentration, recoveries of certified 

reference materials and standards spiked to the sample matrix varied between 85 and 

110%, with most recoveries varying between 95 and 105%.  

Levels of plasma leptin were determined using a multispecies radio immunoassay (RIA) 

kit (Millipore, St. Charles, MO) with guinea pig antihuman leptin as the antibody; levels 

are expressed as Human Equivalent (Cools et al., 2010). Plasma lipid peroxidation, 

determined quantitatively as the thiobarbituric acid reactive species (TBARS) and 

expressed as malondialdehyde equivalents, was measured spectrophotometrically 

(Ultrospec III Pharmacia LKB Ltd., Cambridge, UK). The reaction between thiobarbituric 

acid (TBA) and malondialdehyde (MDA) in the presence of added antioxidant 

(butylhydroxytoluene) was initiated in acidic conditions at 90°C. After quantitatively 

extracting the produced red chromogen with n-butanol:pyridine (15:1, v/v), the 

absorption at 532 nm in the extract was measured (Ohkawa et al., 1979). For calibration 

and standardization, known concentrations of 1,1,3,3-tetramethoxypropane (TMP) were 

used under the very same test conditions, allowing expression of the oxidative status as 

MDA equivalents. The total antioxidant capacity of plasma, expressed as the ferric 

reducing ability of plasma (FRAP), was determined by the analytical procedure of Benzie 

& Strain (1996). The ferrous (FeII)  ion concentration, produced by the reduction of the 

ferric (FeIII) tripyridyltriazine complex by reducing plasma components, was determined 

spectrophotometrically.  The absorbance at 593 nm was measured after a 5 minute 
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incubation of the mixture of the plasma sample and the reagent at 37°C; a calibration 

curve was established with standards of FeSO4 allowed for quantification. 

Activities of the plasma enzymes alkaline phosphatase (AP, EC 3.1.3.1), creatine kinase 

(CK, EC 2.7.3.2), γ-glutamyltransferase (GGT, EC 2.3.2.2), L-lactate dehydrogenase (LDH, 

EC 1.1.1.27), aspartate aminotransferase (AST, EC 2.6.1.1) as well as plasma total protein, 

urea and creatinin were determined spectrofotometrically using commercial kits 

(Abbott Laboratories, Abbott Park, IL, USA). The amount of serum albumine was 

determined using a colorimetric assay with bromocresol green, again using a 

commercial kit (Cobas, Roche Diagnostics GmbH, Mannheim) whereas serum proteins 

were differentiated with capillary ion electrophoresis. All tests were performed at a 

commercial laboratory (A-M-L, Antwerp, Belgium).  

The neutralizing antibody titer against rabies virus was examined with the Rapid 

Fluorescent Focus Inhibition Test (RFFIT). The RFFIT was performed according to the 

Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Office International 

des Epizooties (OIE), 2011). The neutralizing potency was expressed in International 

Units (IU)/ml in reference to "The Second International Standard for Anti-Rabies 

Immunoglobulin" purchased from the United Kingdom National Institute for Biological 

Standards and Control. According to the WHO convention, a serum titer of 0.50 IU/mL is 

protective in vivo.  

5.2.5. Statistical Statistical Statistical Statistical aaaanalysisnalysisnalysisnalysis    

All statistical analyses were performed using SAS Version 9.3 (SAS Institute Inc., Cary, 

NC). All response variables, with the exception of immune response and electrophoresis 

after primo-vaccination, were submitted to a mixed model with farm and cow nested in 

farm as random effects and sampling day, treatment and their interaction as categorical 

fixed effects. For each response variable, we tested whether the change over 120 days 

differed between the supplemented and control group, i.e. whether treatment and time 

interacted. For immune response and electrophoresis following primo-vaccination, a 

mixed model was used with treatment as fixed effect and farm as random effect, and the 

treatment effect was tested. Searching for association between plasma mineral 
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concentrations and other investigated parameters at the onset of the trial, Pearson 

correlation tests were used. Significance was declared at a probability level of p < 0.050.  

5.35.35.35.3 RRRResultsesultsesultsesults    

Mineral concentration in feed ingredients sampled at the urban dairy farms, are shown 

in Table 5.2. Feedstuffs were most commonly low in Cu and Se, based upon requirements 

for lactating Holstein cattle (Cu: < 11 mg/kg DM; Se: < 0.30 mg/kg DM; NRC (2001)), 

combined with high to even toxic concentrations of the Cu antagonist, Fe (> 1000 mg/kg 

DM; NRC (2005). Mo and S concentrations seemed below antagonistic ranges for Cu (Mo: 

< 1.5 mg/kg DM; S: < 0.2 mg/kg DM; Suttle (2010). Most feedstuff met requirements for 

other trace elements (Zn: > 43 mg/kg DM; Mn: > 14 mg/kg DM; Co: > 0.11 mg/kg DM; I: 

0.60 mg/kg DM; NRC (2001). 

Table 5.2.Table 5.2.Table 5.2.Table 5.2. Mineral concentrations in feedstuff offered at urban dairy farms, Jimma, Ethiopia 

 Zn Cu Se Mn Co I Fe Mo S 

Ingredient mg/kg DM % 

Concentrate  68 11 0.200 99 1.2 0.6 763 1.1 0.23 

Wheat bran 87 11 0.245 125 0.06 0.3 118 1.2 0.16 

Bean bran 39 3.5 0.083 43 0.97 0.7 414 0.84 0.04 

Rice bran 32 5.2 0.110 139 0.65 0.1 713 0.73 0.10 

Brewers grains1 151 22 0.145 64 0.90 2.9 625 1.6 0.25 

Atella1 96 15 0.139 314 2.8 _ 6486 _ 0.21 

Oil seed cake 69 27 0.198 284 7.6 1.5 10567 1.1 0.34 

Corn stem 146 2.0 0.049 258 0.71 3.0 449 0.24 0.11 

Enset2 10 3.1 0.084 1146 1.2 0.4 182 0.26 0.08 

Hay (n = 2)3 33.5 6.55 0.098 501 1.74 1.26 778 0.72 0.08 

 ±2.12 ±2.05 ±0.007 ±54 ±0.39 ±0.01 ±411 ±0.39 ±0.02 

Grass (n = 15)3 49 5.0 0.160 242 1.5 0.9 1811 1.2 0.20 

 ±20 ±2.2 ±0.090 ±163 ±0.7 ±0.7 ±1208 ±0.8 ±0.08 

Chicken feces 224 25 0.552 224 2.62 2.9 2247 2.5 0.36 

Salt ≤1.0 4.6 0.506 2 0.04 2.1 38 3.9 4.7 

1Brewers grains= industrially processed brewers grains, atella= liquid by-product of local beer breweries 

(Solomon, 2007) 
2Stem of Ensete ventricosum, false banana, widely cultivated in Ethiopia as a food crop 
3Mean ± SD 
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Initial plasma Cu concentrations of 17% of animals were indicative of severe deficiency 

(< 0.57 mg/l; Suttle (2010)) whereas 28% was at least marginally Cu deficient upon 

comparison with threshold values for Bos taurus cattle (< 0.70 mg/l, Kincaid (2000). 

Another 30% of initially sampled cows were marginally Se deficient (< 0.060 mg/l; Puls 

(1988). However, no severe Se or Zn deficiency was observed (Se: < 0.030 mg/l; Puls 

(1988); Zn: < 0.58 mg/l; Suttle (2010)). Plasma Fe concentrations and levels of TBARS at 

the onset of the trial were significantly associated (r = 0.57, p < 0.001) (Figure 5.2). 

 
Figure 5.2.Figure 5.2.Figure 5.2.Figure 5.2. Association between plasma Fe and TBARS levels in crossbred (Bos indicus × Bos 

taurus) dairy cows at the onset of the trial. r² = 0.323, p < 0.001 Bent lines represent the 95% 

confidence interval of the mean, TBARS= thiobarbituric acid reactive substances 

 

Over 120 d, cows in the trace element supplementation group experienced an increase 

in plasma concentrations of the supplemented Cu and Se, whereas plasma Cu 

concentrations diminished and plasma Se concentrations remained at the same level in 

the control group (Table 5.3) (both p < 0.001). Also, plasma concentrations of the Cu 

antagonist Fe decreased in the supplemented group, but increased in the control group 

(p < 0.050) (Table 5.3). On the contrary, plasma Mo concentrations tended to increase in 

the supplemented group (p = 0.08). None of the other minerals were affected by a time × 

treatment interaction (all p > 0.050). Overall, cows on d 120 had higher plasma 

concentrations of Zn, S, Se (all p < 0.001), and Mn (p < 0.050), but lower concentrations of 

Cu (p < 0.010) than cows sampled on d 0. 

The positive change in milk concentrations of the supplemented Se over time was 

higher in the supplemented group (+0.025 vs. +0.009 mg/l; p < 0.010) (Table 5.4), but milk 
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concentrations of other minerals remained unaffected. On d 120, milk Cu (p < 0.010), Se 

(p < 0.001) and Co (p < 0.050) concentrations were higher than on d 0.  

Furthermore, the supplemented group experienced a fall in BCS (Figure 5.3) over time 

whereas an increase was observed in the control group (p = 0.001). No differences in 

changes in other performance parameters between treatment groups were observed.  

    
Figure 5.3.Figure 5.3.Figure 5.3.Figure 5.3. Effects of trace element supplementation on performance (milk yield, BCS, leptin ± 

SE) in crossbreed dairy cows. Light grey bars= placebo treatment, dark grey bars= supplement 

treatment, milk yield as perceived by farmers, BCS using a 1-to-5 scale (Wildman et al., 1982). 

***BCS: Significant time × treatment interaction (p < 0.001)    

 

Equally, no differences in changes in milk composition and component yields (Table 5.5) 

between treatment groups were present. Reported milk yield and milk fat yield were 

lower on d 120 (p < 0.050) than on d 0, irrespective of treatment.  

Changes in antioxidant status (Figure 5.4) and blood biochemistry (Table 5.6) did not 

differ significantly between treatment groups (all p > 0.050). TBARS values were lower (p 

< 0.050) on d 120, combined with higher CMT values (p < 0.001) than on d 0 (Figure 5.4). 

Plasma LDH, urea (p < 0.001), TA (p < 0.010), CK and total protein (p < 0.050) all were 

higher in cows sampled on d 120 compared to cows sampled on d 0 (Table 5.6). Average 

values of total protein and AST were above reference interval values provided by the 

laboratory (6.2-7.5 g/dl and 31-52 U/l respectively). 

  

*** 
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Table 5.3.Table 5.3.Table 5.3.Table 5.3. Effects of trace element supplementation on plasma mineral concentrations in 

crossbreed dairy cows 

 

1p-value for the time × treatment interaction 

 

        

 Treatment   

Parameter Control Supplemented SEM p-value1 

Cu, mg/l   0.02 0.005 

d 0 0.73 0.82   

d 120 0.59 0.83   

Zn, mg/l   0.03 0.728 

d 0 1.02 0.95   

d 120 1.51 1.40   

Se, mg/l   0.004 <0.001 

d 0 0.072 0.073   

d 120 0.075 0.143   

Co, mg/l   0.0002 0.415 

d 0 0.0034 0.0026   

d 120 0.0034 0.0029   

Mn, mg/l   0.002 0.406 

d 0 0.017 0.018   

d 120 0.028 0.023   

Mo, mg/l   0.001 0.081 

d 0 0.035 0.033   

d 120 0.034 0.038   

S, mg/l   8 0.179 

d 0 872 906   

d 120 941 1,008   

Fe, mg/l   0.04 0.036 

d 0 1.60 1.73   

d 120 1.78 1.60   
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Table 5.4.Table 5.4.Table 5.4.Table 5.4. Effects of trace element supplementation on milk mineral concentrations in 

crossbreed dairy cows 

 Treatment   

Parameter Control Supplemented SEM p-value1 

Cu, mg/l   0.003 0.886 

d 0 0.077 0.097   

d 120 0.092 0.111   

Zn, mg/l   0.10 0.515 

d 0 3.89 3.97   

d 120 4.09 3.96   

Se, mg/l   0.002 0.010 

d 0 0.024 0.023   

d 120 0.031 0.048   

Co, mg/l   0.0001 0.979 

d 0 0.0068 0.0074   

d 120 0.0083 0.0090   

Mn, mg/l   0.013 0.951 

d 0 0.115 0.098   

d 120 0.117 0.098   

Mo, mg/l   0.002 0.836 

d 0 0.059 0.064   

d 120 0.061 0.064   

S, mg/l   17 0.277 

d 0 272 253   

d 120 367 274   

Fe, mg/l   0.02 0.099 

d 0 0.57 0.62   

d 120 0.62 0.53   

1p-value for the time × treatment interaction  
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Table 5.5.Table 5.5.Table 5.5.Table 5.5. Effects of trace element supplementation on milk composition in crossbreed dairy 

cows 

 Treatment   

Parameter Control Supplemented SEM p-value1 

Fat, %   0.20 0.220 

d 0 4.36 5.33   

d 120 4.79 4.90   

Protein, %   0.04 0.206 

d 0 2.65 2.72   

d 120 2.91 2.77   

Lactose, %   0.06 0.242 

d 0 3.96 4.04   

d 120 4.34 4.13   

SNF, %   0.11 0.239 

d 0 7.22 7.37   

d 120 7.91 7.53   

Fat yield, kg/d   0.08 0.359 

d 0 0.36 0.51   

d 120 0.31 0.38   

Protein yield, kg/d   0.04 0.989 

d 0 0.23 0.25   

d 120 0.20 0.22   

SNF yield, kg/d   0.10 0.994 

d 0 0.62 0.67   

d 120 0.53 0.59   

Density, %   0.4 0.440 

d 0 23.7 23.5   

d 120 25.9 24.4   

Solids, %   0.009 0.270 

d 0 0.593 0.605   

d 120 0.650 0.620   

1p-value for the time × treatment interaction 
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Table 5.6.Table 5.6.Table 5.6.Table 5.6. Effects of trace element supplementation on blood chemistry in crossbreed dairy 

cows 

 Treatment   

Parameter Control Supplemented SEM p-value1 

ALP2, U/l    3 0.573 

d 0 51 53   

d 120 52 58   

CK3, U/l   4 0.387 

d 0 104 108   

d 120 114 130   

GGT4, U/l   1.0 0.346 

d 0 26.6 30.9   

d 120 28.6 29.0   

LDH5, U/l   18 0.317 

d 0 814 853   

d 120 906 1,013   

Total protein, g/dl   0.08 0.276 

d 0 7.98 7.94   

d 120 8.17 8.46   

AST6, U/l   4 0.622 

d 0 64 70   

d 120 82 95   

Urea, mg/dl   0.9 0.145 

d 0 27.8 23.9   

d 120 31.6 31.5   

Creatinin, mg/dl   0.016 0.909 

d 0 0.792 0.796   

d 120 0.832 0.831   

1p-value for the time × treatment interaction 

2alkaline phosphatase activity 

3creatine kinase activity 

4γ-glutamyl transferase activity 

5lactic dehydrogenase activity 

6aspartate aminotransferase activity 
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Figure 5.4.Figure 5.4.Figure 5.4.Figure 5.4. Effects of trace element supplementation on antioxidant status (TBARS, FRAP, CMT ± 

SE) in crossbreed dairy cows. Light grey bars= placebo treatment, dark grey bars= supplement 

treatment, TBARS= thiobarbituric acid reactive substances, FRAP= ferric reducing ability of 

plasma, CMT= California mastitis test. No significant time × treatment interactions (all p > 

0.050). 

 

Alpha1- and especially beta-globulins (Table 5.7) tended to differ between treatment 

groups (p = 0.09 and p = 0.05, resp.). Average beta-globulin percentages were slightly 

higher than the upper values from the reference interval provided by the laboratory 

(11.0-20.0 %). Antibody response to rabies vaccination was not affected by trace element 

supplementation (p > 0.050).  

 
Table Table Table Table 5.5.5.5.7.7.7.7. Effects of trace element supplementation on serum protein differentiation and serum 

antibody titer in response to rabies vaccination in crossbreed dairy cows 

 Treatment   

Parameter Control Supplemented SEM p-value 

Albumine, % 36.5 36.0 0.6 0.792 

α1-globulins, % 5.45 5.08 0.10 0.093 

α2-globulins, % 12.8 12.3 0.2 0.375 

β-globulins, % 21.1 23.8 0.6 0.054 

γ-globulins, % 24.2 22.8 0.6 0.370 

     

NAT1, UI/ml 0.528 0.673 0.065 0.285 

1NAT= rabies virus neutralizing antibody titer at 30 d after primovaccination (log-transformed) 
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5.45.45.45.4 DDDDiscussioniscussioniscussioniscussion    

5.4.1. Feeds, Feeds, Feeds, Feeds, pppplasma and lasma and lasma and lasma and mmmmilk ilk ilk ilk ttttrace race race race eeeelement lement lement lement cccconcentrationsoncentrationsoncentrationsoncentrations    

In our study, although we had no data on total ration trace element concentrations, a 

vast majority of employed feedstuffs on tropical urban dairy farms provided Cu and Se 

concentrations below requirements, implying a high risk for Cu and Se deficiency. 

Furthermore, although, again, we could not calculate total dietary Cu:Mo and Fe:Cu 

ratio, the high Fe concentrations in most feedstuffs, can contribute to an even lower Cu 

absorption coefficient and therefore, to lower total amounts of available Cu (Suttle, 

2010). On the contrary, Mo did not seem to playe an active role in the Cu antagonism. A 

substantial number of cows having plasma Cu concentrations below threshold values for 

Bos taurus cattle, at the onset and in the control group, did indicate that there was an 

inadequate Cu supply. The trace element supplementation programme successfully 

helped to maintain plasma Cu, but in general not to raise them majorly, despite the high 

Cu concentrations included in the supplement (250 mg/cow/day). This does indicate the 

presence of strong antagonists (see above). Furthermore, the strong association 

between plasma Fe and TBARS, only previously reported in rats (Linpisarn et al., 1991), 

points to the negative effect of Fe on lipid peroxidation processes. A decrease in plasma 

Fe concentrations in the treatment group in contrast with an increase in the control 

group might contribute to the fact that supplementation indeed was a way to cope with 

the large Fe intake although we have no certainty on causality and this would contradict 

earlier research, as Hansen et al. (2010) mention that Cu deficiency leads to increased 

hepatic Fe storage and decreased plasma circulation, due to the lowered activity of 

ceruloplasmin. The trend towards a time × treatment interaction for plasma Mo 

concentrations (p = 0.08) with a seemingly larger increase in the supplemented group is 

difficult to interpret but represents a small difference and hence does not provide 

additional information on antagonism mechanisms in the sampled animals. In contrast 

to plasma Cu, concentrations of Se were greatly increased due to supplementation, as 

seen by Stowe and Herdt (1992), although none of the animals was severely Se deficient 

on d 0. Supplementation did not affect plasma Zn concentrations, which suggests an 
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adequate dietary supply and confirms the homeostatic mechanisms controlling the 

additional supply of Zn (Suttle, 2010).  

Milk concentrations of Se were doubled by the supplementation programme which was 

in line with Ceballos et al. (2008), although the rise caused by organic Se 

supplementation was not as great as predicted by those authors (mean + 65 μg/l versus + 

25 μg/l in our study) but equal to the rise observed by Juniper et al. (2006). Milk Cu and 

Zn concentrations on the contrary remained unaffected, confirming differences in 

secretion patterns between trace elements (Suttle, 2010), although Sobhanirad et al. 

(2010) did find increased milk Zn concentrations while supplementing 500 mg Zn/kg 

DM, levels much higher than offered in our study. 

5.4.2. Performance and Performance and Performance and Performance and mmmmilk ilk ilk ilk ccccompositionompositionompositionomposition    

Milk yield as estimated by the farmers was not impacted by the trace element 

supplementation, which is in line with earlier research (Cu: Engle et al. (2001); Se: 

Juniper et al. (2006); Zn: Sobhanirad et al. (2010)), although none of the farmers kept a 

written account of production parameters. Surprisingly, the supplemented group 

experienced a larger fall in BCS over time than the control group. The effect of 

supplementation on BCS during lactation has not been intensively studied before, 

although Sobhanirad et al. (2010) did not find an effect of Zn supplementation. Body 

condition score is affected by many herd related factors, such as stocking rate and level 

of concentrates fed to grazing cows as well as cow related factors, such as BCS at calving, 

parity and age, but also associated with productivity related parameters such as dry 

matter intake and milk production (Roche et al., 2009). Given that parity and age were 

highly variable, the cause of this difference in BCS change is difficult to unravel and 

consequences related to this difference are not clear. Plasma concentrations of leptin, at 

least partially responsible for the regulation of food intake and adiposity of mammals, 

and assumed to decrease in Zn deficiency in rats (Mangian et al., 1998; Kwun et al., 2007), 

were not affected by trace element supplementation. Low leptin levels in dairy cattle 

are related with a negative energy balance and high milk yield (Liefers et al., 2003). 

Consequently, the (insignificantly) higher increase in plasma leptin (p = 0.15) in the 
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supplemented cows in our study, does not seem to support the hypothesis concerning a 

higher milk yield in cows associated with a larger decrease in BCS. Milk composition was 

not impacted by trace element supplementation. For Zn, this is confirming data from 

Sobhanirad et al. (2010), while for Se with Juniper et al. (2006). For Cu, comparative data 

are absent. The meta-analysis of Rabiee et al. (2010) mentions higher milk fat and 

protein levels in cows supplemented with organic forms of Cu, Zn and Mn, however, 

they fail to mention whether this was in comparison with control or inorganic trace 

element supplemented groups. Overall, these trace elements do not seem to be limiting 

in milk composition processes. In general, the low milk protein does indicate a low 

energy supply (Coulon and Rémond, 1991), possibly hindering the full benefits of the 

trace element supplementation to the cows in the study.  

5.4.3. Antioxidant Antioxidant Antioxidant Antioxidant sssstatus and tatus and tatus and tatus and bbbblood lood lood lood bbbbiochemistryiochemistryiochemistryiochemistry    

Trace element supplementation did not significantly affect any of the parameters 

related to antioxidant status. For Se, this in contrast with Calamari et al. (2011), who 

found lowered TBARS values in heat-stressed cows supplemented with Se yeast versus 

control animals and Se selenate supplemented animals. Studies on the effect of Cu and 

Zn supplementation on the parameters studied in our work seem to be absent in 

literature. Summarized, organic Se supplementation might cause a change in the 

antioxidant status of dairy cattle according to earlier data, but this was not observed in 

our study. CMT scores were not affected by supplementation. In the study of Sobhanirad 

et al. (2010) organic Zn supplementation tended to induce a CMT difference in 

comparison with the control group, while for Se, Juniper et al. (2006) detected no 

differences. Blood biochemistry was not influenced by organic trace element 

supplementation, which is in line with Juniper et al. (2006). Overall, levels of AST and 

total serum protein were elevated, indicating chronic inflammatory or hepatic diseases 

(Russell and Roussel, 2007).  
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5.4.4. Serum pSerum pSerum pSerum protein rotein rotein rotein elecelecelecelectrophoresis and trophoresis and trophoresis and trophoresis and iiiimmune mmune mmune mmune rrrresponse after esponse after esponse after esponse after 

vvvvaccinationaccinationaccinationaccination    

The effect of organic micro mineral supplementation on adult dairy cow serum protein 

fractions has not been studied before. Mohri et al. (2005) suggested that vitamin E and Se 

supplementation raised IgM levels in treated calves, causing a higher β-globulin 

fraction. The trend towards a higher level of β-globulins (p = 0.05) in the supplemented 

group in our study could suggest either increased IgM or IgA levels in this group in 

response to the vaccination due to beta-gamma-bridging, either a higher degree of 

chronic infections and/or hepatic diseases in this group (Eckersall, 2008). Although not 

significantly affected by a time × treatment interaction, the relatively larger increase in 

serum total protein (p = 0.28) and AST levels (p = 0.62) may rather point to the second 

hypothesis. Thus, next to the negative effect on BCS, trace element supplementation 

may have negatively affected the presence of chronic inflammatory or hepatic diseases 

in the dairy crossbreeds in our study. Even though relatively higher, antibody response 

was not affected by trace element supplementation (p = 0.29). Comparative data in dairy 

cattle seem to be absent. For Zn, the lack of effect is in correspondence with data from 

Spears and Kegley (2002) investigating immune response to IBR vaccination in finishing 

beef steers fed organic and inorganic Zn versus control, but in contrast with differences 

in antibody response to Brucella abortus strains in crossbreed (Bos indicus × Bos taurus) 

bulls fed inorganic Zn versus control (Mandal et al., 2007). For Cu, Ward et al. (1993) did 

not witness any difference (organic or inorganic versus control) in antibody titer 

against ovalbumin injection in growing beef steers, whereas for dairy cows, no data 

seem to exist. In a study investigating the effect of excess Se supplementation, treated 

growing beef cattle did not exhibit higher antibody titers against sheep red blood cells 

(Nicholson et al., 1993). Consequently, trace element supplementation might affect 

antibody response to an antigen, but this was not seen in our study and contradictory 

data exist on the topic. 

     



168168168168                Chapter 5Chapter 5Chapter 5Chapter 5    

 

 

AAAAcknowlecknowlecknowlecknowleddddggggementsementsementsements    

The present study was funded by the Agency for the Promotion of Innovation through 

Science and Technology in Flanders (IWT-Vlaanderen), grant no. 091348. We would like 

to acknowledge the IUC-JU programme of VLIR-UOS, Tadele Tolosa and Mulugeta Tefera 

for logistical support, Ria Van Hulle for mineral analyses, Daniel Vermeulen for TBARS, 

FRAP and leptin analyses, Roelof Van ‘t Ende for his help during initial sampling, 

Bashahun Gebremichael Dirar for his assistance throughout the trial period during 

sampling and distribution of mineral supplements and the urban dairy farmers for their 

kind cooperation and enthusiasm during the trial. The authors declare that they have 

no conflict of interest. 

RRRReferenceeferenceeferenceeferencessss    

Abdelrahman, M. M., Kincaid, R. L., & Elzubeir, E. A. (1998). Mineral deficiencies in grazing dairy 
cattle in Kordofan and Darfur regions in Western Sudan. Tropical Animal Health and 
Production, 30, 123–135.  

Belay, D., Verbeke, J., Yisehak, K., Solomon, D., Belew, S., Devliegher, S., & Janssens, G. P. J. 
(2009). Relationship between micromineral status and mastitis in urban dairy farms in 
Jimma, Ethiopia. In: P. P. Mussa, J. Nery, A. Schiavone, L. Pozzo, G. Nieddu, & M. G. 
Cappai (Eds.), Proceedings of the 13th Congress of the ESVCN. Oristano, Sardinia, Italy. 

Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of 
“antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70–76.  

Bhutto, A. L., Murray, R. D., & Woldehiwet, Z. (2012). California mastitis test scores as indicators 
of subclinical intra-mammary infections at the end of lactation in dairy cows. Research 
in Veterinary Science, 92, 13–17.  

Calamari, L., Petrera, F., Abeni, F., & Bertin, G. (2011). Metabolic and hematological profiles in 
heat stressed lactating dairy cows fed diets supplemented with different Se sources 
and doses. Livestock Science, 142, 128–137. 

Ceballos, A., Sanchez, J., Barkema, H., Strylm, H., Montgomery, J., & Wichteld, J. (2008). Meta-
analysis of the effect of oral selenium supplementation on milk selenium 
concentration in cattle. In: T. Lam (Ed.), Mastitis Control: From Science to Practice: 
Proceedings of International Conference. The Hague, The Netherlands: Wageningen 
Academic Pub. 

Cools, A., Maes, D., Buyse, J., Kalmar, I. D., Vandermeiren, J., & Janssens, G. P. J. (2010). Effect of 
N,N-dimethylglycine supplementation in parturition feed for sows on metabolism, 
nutrient digestibility and reproductive performance. Animal, 4, 2004–2011.  

Cortinhas, C., Esler de Freitas Junior, J., De Rezende Naves, J., De Felicio Porcionato, M. A., Prada 
e Silva, L. F., Palma Rennó, F., & Veiga dos Santos, M. (2012). Organic and inorganic 



Trace element supplementation effects on health and performance     169169169169 

 

 

sources of zinc, copper and selenium in diets for dairy cows: intake, blood metabolic 
profile, milk yield and composition. Revista Brasileira de Zootecnia, 41, 1477–1483.  

Coulon, J., & Rémond, B. (1991). Variations in milk output and milk protein content in response 
to the level of energy supply to the dairy cow: A review. Livestock Production Science, 
29(1), 31–47.  

Eckersall, P. (2008). Proteins, proteomics, and the dysproteinemias. In: J. Kaneko, J. Harvey, & M. 
Bruss (Eds.), Clinical Biochemistry of Domestic Animals. (6th ed.). Burlington, MA, USA: 
Academic Press. 

Engle, T. E., Fellner, V., & Spears, J. W. (2001). Copper status, serum cholesterol, and milk fatty 
acid profile in Holstein cows fed varying concentrations of copper. Journal of Dairy 
Science, 84, 2308–13.  

Enjalbert, F., Lebreton, P., & Salat, O. (2006). Effects of copper, zinc and selenium status on 
performance and health in commercial dairy and beef herds: retrospective study. 
Journal of Animal Physiology and Animal Nutrition, 90, 459–466.  

Fekadu, A., Kassa, T., & Belehu, K. (2011). Study on reproductive performance of Holstein–
Friesian dairy cows at Alage Dairy Farm, Rift Valley of Ethiopia. Tropical Animal Health 
and Production, 43, 581–586.  

Guyot, H., Saegerman, C., Lebreton, P., Sandersen, C., & Rollin, F. (2009). Epidemiology of trace 
elements deficiencies in Belgian beef and dairy cattle herds. Journal of Trace Elements in 
Medicine and Biology, 23, 116–123.  

Hansen, S. L., Trakooljul, N., Liu, H.-C. S., Hicks, J. a, Ashwell, M. S., & Spears, J. W. (2010). 
Proteins involved in iron metabolism in beef cattle are affected by copper deficiency in 
combination with high dietary manganese, but not by copper deficiency alone. Journal 
of Animal Science, 88, 275–283.  

Juniper, D. T., Phipps, R. H., Jones, a K., & Bertin, G. (2006). Selenium supplementation of 
lactating dairy cows: effect on selenium concentration in blood, milk, urine, and feces. 
Journal of Dairy Science, 89, 3544–3551.  

Khalili, M., Lindgren, E., & Varvikko, T. (1993). A survey of mineral status of soil, feeds and cattle 
in the Selale Ethiopian highlands. II. Trace elements. Tropical Animal Health and 
Pproduction, 25, 193–201.  

Kincaid, R. L. (2000). Assessment of trace mineral status of ruminants: A review. Journal of Animal 
Science, 77, 1–10.  

Kwun, I., Cho, Y., Lomeda, R., Kwon, S.-T., Kim, Y., & Beattie, J. (2007). Marginal zinc deficiency 
in rats decreases leptin expression independently of food intake and corticotrophin-
releasing hormone in relation to food intake. British Journal of Nutrition, 98, 485–489.  

Liefers, S. C., Veerkamp, R. F., Te Pas, M. F. W., Delavaud, C., Chilliard, Y., & Van der Lende, T. 
(2003). Leptin concentrations in relation to energy balance, milk yield, intake, live 
weight, and estrus in dairy cows. Journal of Dairy Science, 86, 799–807.  

Linpisarn, S., Satoh, K., Mikami, T., Orimo, H., Shinjo, S., & Yoshino, Y. (1991). Effects of iron on 
lipid peroxidation. International Journal of Hematology, 54, 181–188. 

Machado, V. S., Bicalho, M. L. S., Pereira, R. V, Caixeta, L. S., Knauer, W. a, Oikonomou, G., 
Gilbert, R. O., & Bicalho, R. C. (2013). Effect of an injectable trace mineral supplement 
containing selenium, copper, zinc, and manganese on the health and production of 
lactating Holstein cows. The Veterinary Journal, 197, 451-456.  

Mandal, G. P., Dass, R. S., Isore, D. P., Garg, a. K., & Ram, G. C. (2007). Effect of zinc 
supplementation from two sources on growth, nutrient utilization and immune 
response in male crossbred cattle (Bos indicus×Bos taurus) bulls. Animal Feed Science and 
Technology, 138, 1–12.  

Mangian, H. F., Lee, R. G., Paul, G. L., Emmert, J. L., & Shay, N. F. (1998). Zinc deficiency suppreses 
plasma leptins concentrations in rats. Nutritional Biochemistry, 9, 47–51. 



170170170170                Chapter 5Chapter 5Chapter 5Chapter 5    

 

 

Mkenda-Mugittu, V. (2003). Measuring the invisibles: Gender mainstreaming and monitoring 
experience from a dairy development project in Tanzania. Development in Practice, 13, 
459–473.  

Mohri, M., Seifi, H. a., & Khodadadi, J. (2005). Effects of preweaning parenteral supplementation 
of vitamin E and selenium on hematology, serum proteins, and weight gain in dairy 
calves. Comparative Clinical Pathology, 14, 149–154.  

Mullins, G., Wahome, L., Tsangari, P., & Maarse, L. (1996). Impacts of intensive dairy production 
on smallholder farm women in coastal Kenya. Human Ecology, 24, 231–253. 

Nicholson, J., Bush, R., & Allen, J. (1993). Antibody responses of growing beef cattle fed silage 
diets with and without selenium supplementation. Canadian Journal of Animal Science, 
73, 355–365.  

NRC (National Research Council of the National Academies) (2001). Nutrient Requirements of Dairy 
Cattle: (7th revised ed.). Washington, DC: National Academy Press. 

NRC (National Research Council of the National Academies) (2005). Mineral Tolerance of Animals. 
(2nd revised ed.). Washington, DC: National Academies Press. 

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by 
thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.  

OIE (World Organisation for Animal Health) (2011). Rabies. Manual of Diagnostic Tests and Vaccines 
for Terrestrial Animals. Chapter 2.1.13. Retrieved from 
http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.13_RABIES.pd
f (Accessed on February 13, 2012) 

Puls, R. (1988). Mineral Levels in Animal Health. Diagnostic Data. Clearbrook, BC: Sherpa 
International. 

Rabiee, a R., Lean, I. J., Stevenson, M. a, & Socha, M. T. (2010). Effects of feeding organic trace 
minerals on milk production and reproductive performance in lactating dairy cows: a 
meta-analysis. Journal of Dairy Science, 93, 4239–4251.  

Roche, J. R., Friggens, N. C., Kay, J. K., Fisher, M. W., Stafford, K. J., & Berry, D. P. (2009). Invited 
review: Body condition score and its association with dairy cow productivity, health, 
and welfare. Journal of Dairy Science, 92, 5769–5801.  

Russell, K. E., & Roussel, A. J. (2007). Evaluation of the ruminant serum chemistry profile. 
Veterinary Clinics of North America. Food Animal Practice, 23, 403–426.  

Scaletti, R. W., Trammell, D. S., Smith, B. a, & Harmon, R. J. (2003). Role of dietary copper in 
enhancing resistance to Escherichia coli mastitis. Journal of Dairy Science, 86, 1240–1249.  

Sobhanirad, S., Carlson, D., & Bahari Kashani, R. (2010). Effect of zinc methionine or zinc sulfate 
supplementation on milk production and composition of milk in lactating dairy cows. 
Biological Trace Element Research, 136, 48–54.  

Solomon, D. (2007). Comparative nutritive value of atella and industrial brewers grains in 
chicken starter ration in Ethiopia. Livestock Research for Rural Development, 19. Retrieved 
from http://lrrd.cipav.org.co/lrrd19/1/deme19008.htm (Accessed on 20-08-2012). 

Spears, J., & Kegley, E. (2002). Effect of zinc source (zinc oxide vs zinc proteinate) and level on 
performance, carcass characteristics, and immune response of growing and finishing 
steers. Journal of Animal Science, 80, 2747–2752.  

Stowe, H. D., & Herdt, T. H. (1992). Clinical assessment of selenium status of livestock. Journal of 
Animal Science, 70, 3928–3933.  

Suttle, N. F. (2010). Mineral Nutrition of Livestock. (4th ed.). Wallingford, Oxfordshire: CABI 
Publishing. 

Ward, J. D., Spears, J. W., & Kegley, E. B. (1993). Effect of copper level and source (copper lysine 
vs copper sulfate) on copper status, performance, and immune response in growing 
steers fed diets with or without supplemental molybdenum and sulfur. Journal of Animal 
Science, 71, 2748–2755.  



Trace element supplementation effects on health and performance     171171171171 

 

 

Wildman, E. E., Jones, G. M., Wagner, P. E., Boman, R. L., Troutt Jr, H. F., & Lesch, T. N. (1982). A 
dairy cow body condition scoring system and its relationship to selected production 
characteristics. Journal of Dairy Science, 65, 495–501.  

Xin, Z., Waterman, D. F., Hemken, R. W., & Harmon, R. J. (1991). Effects of copper status on 
neutrophil function, superoxide dismutase, and copper distribution in steers. Journal of 
Dairy Science, 74, 3078–3083.  



 

 

 



 

 

6666     

Trace element distribution in Trace element distribution in Trace element distribution in Trace element distribution in selected selected selected selected edible edible edible edible 

tissues of zebu (tissues of zebu (tissues of zebu (tissues of zebu (Bos indicus) cattle slaughtered at ) cattle slaughtered at ) cattle slaughtered at ) cattle slaughtered at 

Jimma, SW EthiopiaJimma, SW EthiopiaJimma, SW EthiopiaJimma, SW Ethiopia    

Adapted from: 

V. Dermauw, M. Lopéz Alonso, L. Duchateau, G. Du Laing, T. Tolosa, E. Dierenfeld, M. 

Clauss, G. P. J. Janssens. PloS ONE, waiting for doi.  



174174174174                Chapter 6Chapter 6Chapter 6Chapter 6    

 

 

The amount of trace elements present in edible bovine tissues is of importance for 
both animal health and human nutrition. This study presents data on trace element 
concentrations in semitendinosus and cardiac muscles, livers and kidneys of 60 zebu 
(Bos indicus) bulls, sampled at Jimma, Ethiopia. From 28 of these bulls, blood 
samples were also obtained. Deficient levels of Cu were found in plasma, livers, 
kidneys and semitendinosus muscles. Suboptimal Se concentrations were found in 
plasma and semitendinosus muscles. Semitendinosus muscle contained high Fe 
concentrations. Trace elements were mainly stored in the liver, except for Fe and Se. 
Cardiac muscles generally contained higher concentrations of trace elements than 
semitendinous muscles except for Zn. A strong association was found between liver 
and kidney concentrations of Cu, Fe, Co and Mo. Liver storage was well correlated 
with storage in semitendinosus muscle for Se and with cardiac muscle for Co and Se. 
Plasma concentrations of Cu, Se, Co were well related with their respective liver 
concentrations and for Co and Se, also with cardiac muscle concentrations. The data 
suggest multiple trace element deficiencies in zebu cattle in South-West Ethiopia, 
with lowered tissue concentrations as a consequence. Trace element distribution in 
B. indicus edible tissues seemed quite similar to Bos taurus distribution. However, 
tissue threshold values for deficiency in B. taurus cattle need to be refined and their 
applicability for B. indicus cattle needs to be evaluated.   
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6.16.16.16.1 IntroductionIntroductionIntroductionIntroduction    

Deficiencies in trace elements, such as Se and Zn, are frequently observed in humans in 

tropical regions such as Ethiopia (Amare et al., 2012), with severe health consequences 

(e.g. stunted growth, lowered antioxidant status) (World Health Organization, 1996). 

Meat and organ consumption form an important contribution to human nutrition, as 

these tissues have the capacity to store high amounts of trace elements (Berger, 2005). 

However, in Ethiopia, the world’s fifth largest cattle holder (FAOSTAT, 2013), zebu (Bos 

indicus) cattle are typically free ranging on poor pastures and bovine trace element 

shortages (e.g. Cu deficiencies) are very common (Chapter 1 & 2Chapter 1 & 2Chapter 1 & 2Chapter 1 & 2). Unfortunately, data on 

trace element concentrations in edible tissues (such as meat, liver, kidney, heart) of B. 

indicus cattle and more specifically in Ethiopia are absent.  

In Bos taurus cattle, the liver is considered the main indicator organ for status evaluation 

of several essential trace elements, assuming that it forms the main storage depot and is 

well related with storage in other tissues (Suttle, 2010). For at least some elements (e.g. 

Cu), especially at lower concentrations, a reasonable link of liver with plasma 

concentrations is present (Claypool et al., 1975). A good relationship between liver and 

muscle Co and Zn concentrations was also found in earlier research (Blanco-Penedo et 

al., 2010), whereas such a relationship was not noticed for other trace elements. The 

relationship between trace element concentrations in plasma and edible tissues (other 

than liver), however, was not studied before. The latter could be very important for 

human nutrition, as plasma concentrations might form a practical tool for early 

evaluation of trace element concentrations in meat, essential for optimal human health. 

Furthermore, in B. taurus cattle, the distribution of trace elements over muscle tissues is 

still not well understood. Essential trace elements seem to distribute differently over 

different types of muscles (e.g. semitendinosus versus cardiac muscle) (García-Vaquero 

et al., 2011), possibly related to muscle activity and fat content (Blanco-Penedo et al., 

2010). Furthermore, whether or not cattle with trace element deficiencies have a 

different trace element distribution pattern in edible tissues in comparison with cattle 

with an adequate status is not clear. Moreover, concentrations in B. indicus cattle may 
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differ intrinsically from those in B. taurus cattle. Therefore, the objective of the present 

study was to present tissue trace element distribution in Ethiopian zebu cattle and to 

evaluate the association of plasma and liver trace element concentrations with other 

tissue concentrations. 

6.26.26.26.2 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

6.2.1. Study area, animals and samplesStudy area, animals and samplesStudy area, animals and samplesStudy area, animals and samples    

The study was conducted in Jimma, the largest town in the Gilgel Gibe catchment area, 

Ethiopia, where bovine trace element deficiencies were previously recognized (Chapter Chapter Chapter Chapter 

2222, 4 , 4 , 4 , 4 &    5555). At the local abattoir (Figure 6.1), receiving animals from the urban Jimma zone 

as well as from surrounding areas, adult zebu (B. indicus) bulls (n = 60) were randomly 

selected for sampling. Thereafter, 28 out of 60 bulls were randomly selected for 

immediate post-mortem blood sampling, using two sodium heparin tubes (VT-100SH, 

both Venoject®). Due to an inconsistent slaughtering scheme (Figure 6.1) it was 

impossible to sample both blood and tissues of all selected bulls.  

Subsequently, from all 60 bulls, the cranial part of the left kidney, caudal lobe of the 

liver, semitendinosus and cardiac muscle (apex of the heart) were sampled. We greatly 

acknowledge Keraa abattoir and Jimma municipality for their kind permission to sample 

carcasses. Samples were immediately cooled and transported to the laboratory. Plasma 

was obtained through centrifugation at 1500 × g for 10 minutes and excessive fat was 

removed from tissue samples, where necessary. Samples were stored at -20°C until 

further analysis. 
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Figure 6.1.Figure 6.1.Figure 6.1.Figure 6.1. Keraa abattoir in Jimma, the sampling site of zebu bulls (n = 60) to investigate the 

trace element distribution in edible tissues.  

Left:Left:Left:Left: the main slaughter hall of the abattoir. RightRightRightRight: animal carcasses ready for transport to local 

restaurants and butcheries. 

6.2.2. Mineral analysesMineral analysesMineral analysesMineral analyses    

Muscle, kidney and liver samples were oven dried at 65°C until constant weight and 

ground through a 2-mm screen. Afterwards, samples were ashed through microwave 

destruction with 10 ml HNO3 (Ultrapure analytical grade for trace element analysis) in 

open vessels followed by filtration. Finally, all samples were analysed for Zn, Cu, Fe, Se, 

Mo, Co and Mn concentrations through inductively coupled plasma optical emission 

spectrometry (ICP-OES) (Vista MPX radial, Varian, Palo Alto, USA) and inductively 

coupled plasma mass spectrometry (ICP-MS) (Elan DRC-e, PerkinElmer, Sunnyvale, CA, 

USA). All glassware and microwave vessels were pre-rinsed with diluted HNO3. A quality 

control program was employed throughout mineral analyses. Recovery rates from 

sampled matrices, spiked with two concentrations of the studied trace elements (in the 

range of the determined concentrations) were measured. Average recovery was 98%, 
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with a range between 82% (Zn in plasma) and 109% (Mo in kidney). Detection limits in 

acid digest were determined as: Mn 0.35 μg/l, Cu 0.25 μg/l, Mo 0.33 μg/l, Se 0.13 μg/l, Fe 

21.4 μg/l, Zn 16.4 μg/l and Co 0.14 μg/l. Standards were run frequently alongside 

samples and all analytical results were blank-corrected. 

6.2.3. Statistical analysis and reference value calculationsStatistical analysis and reference value calculationsStatistical analysis and reference value calculationsStatistical analysis and reference value calculations    

To detect whether differences were present for trace element concentrations between 

liver, kidney, semitendinosus and cardiac muscle, tissue concentrations were compared 

using a signed rank test at the 5% significance level with Bonferroni’s adjustment 

technique for pairwise comparisons. Median and the first (Q1) and third (Q3) quartiles 

are reported. Spearman rank correlation coefficients (r) were used to determine the 

association between liver and plasma and other tissue concentrations of trace elements. 

Diagnostic threshold concentrations for B. taurus cattle stated in literature (Puls, 1988) 

and (Suttle, 2010) are expressed on wet weight (WW) basis, and in order to compare 

with the current data, were recalculated to dry weight (DW) basis by multiplying with 

the specific conversion factors stated by these authors: 3.5 for liver, 4.5 for other tissues 

(Puls, 1988); 3.3 for liver respectively (Suttle, 2010).  

6.36.36.36.3 Results and Results and Results and Results and ddddiscussioniscussioniscussioniscussion    

To the best of our knowledge, this is the first study presenting data on trace element 

concentrations in edible tissues in zebu (B. indicus) cattle. However, our data also suggest 

the clear and urgent need for refinement of bovine plasma and liver thresholds of 

deficiency, as a practical reference to evaluate the need for supplementation. 

Discrepancies were present upon evaluation of plasma and liver concentrations based 

on diagnostic criteria for deficiency in B. taurus cattle.  

Upon comparison of liver concentrations with these diagnostic criteria, 42 % of animals 

(n = 60) were considered severely Cu deficient (< 19 mg/kg DW; Suttle, 2010) (Table 6.1). 
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Plasma Cu concentrations in 29% of animals (n = 28) reflected this deficiency (< 0.57 

mg/l; Suttle, 2010) (Table 6.2). Furthermore, semitendinosus muscle and kidney Cu 

concentrations were below concentrations considered adequate in B. taurus cattle in 97% 

and 100% of animals (n = 60; < 5.4 mg/kg DW; <18 mg/kg DW respectively; (Puls, 1988)). 

Therefore, bovine Cu deficiency in this region, as found in previous research (Chapter 2Chapter 2Chapter 2Chapter 2, , , , 

4 & 54 & 54 & 54 & 5) was confirmed by both plasma and liver concentrations.  

On the contrary, it was not clear whether or not a Mn, Fe or Se deficiency was present in 

the area due to conflicting interpretations based upon plasma and liver concentrations 

(Puls, 1988; Suttle, 2010), as well as a wide range in threshold values found in literature, 

mentioned earlier (Chapter 2Chapter 2Chapter 2Chapter 2). For instance, liver samples did not reveal deficiencies for 

Fe, Se (n = 60; all but one > 150, all > 0.07 mg/kg DW respectively; Suttle, 2010) or Co, Zn 

and Mn (all > 0.018, > 70 and > 3.5 mg/kg DW respectively, Puls, 1988). On the contrary, 

plasma concentrations did indicate a severe Mn and Fe deficiency (< 0.02 mg/l and < 1.0 

mg/l respectively, Suttle, 2010) in 29% and 11% of animals (n = 28) respectively. For Se, 

although none of the animals had plasma concentrations below diagnostic thresholds 

for deficiency according to Suttle (2010), 82% of animals (n = 28) had plasma Se 

concentrations considered at least marginally deficient (< 0.06 mg/l), according to Puls 

(1988). In this respect, especially threshold values for Se and Mn both in liver and 

plasma vary largely among authors (Kincaid, 2000; Puls, 1988; Suttle, 2010). 

When comparing kidney and muscle concentrations of other trace elements with 

adequate ranges for B. taurus cattle, most strikingly, semitendinosus muscle Fe 

concentrations registered above this range in 73% of animals (n = 60; 80 > 54 mg/kg DW; 

Puls, 1988), whereas 60% of animals (n = 60) had semitendinosus muscle Se 

concentrations below the adequate range (< 0.32 mg/kg DW, Puls, 1988). It remains 

unclear whether or not the mentioned thresholds values and adequate ranges are to be 

extrapolated from B. taurus to B. indicus cattle as described in Chapter 4Chapter 4Chapter 4Chapter 4, seeing that even 

within B. taurus cattle, differences in breed sensitivity to deficiency are present (Mullis 

et al., 2003;  Ward et al., 1995). Detailed studies at farm level investigating differences 

between B. taurus and B. indicus cattle in response variables (e. g. mRNA expression of 

trace element related genes) to a depletion diet and repletion through supplementation 

are necessary to clarify this.  
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An additional hurdle when comparing tissue concentrations with threshold values or 

other comparative data is the wide variability in dry matter content, both between and 

within tissues. Dry matter concentrations in our study averaged 29% (range: 23-35%) for 

liver samples, 24% (17-42%) for kidney, 23% (15-31%) for semitendinosus and 22% (18-

27%) for cardiac muscle samples. Because of this, if stated concentrations are expressed 

in a different unit, e.g. on fresh matter basis, conversion to this unit using a single 

conversion factor, might create bias. We therefore recommend authors stating data and 

diagnostic threshold concentrations, to at least mention average dry matter 

concentrations per tissue.  

Table 6.2.Table 6.2.Table 6.2.Table 6.2. Trace element concentrations in zebu (Bos indicus) bull (n = 28) plasma sampled at 

Jimma, Ethiopia with median, first quartile (Q1) and third quartile (Q3) as summary statistics 

Mineral Median Q1 - Q3 Adequate1 Threshold value2 

Cu, mg/l 0.7 0.5 - 0.8 0.8 - 1.5 0.6 

Fe, mg/l 1.7 1.2 - 2.0 1.3 - 2.5 1.0 

Mn, μg/l 45 18 - 60 6 - 70 20 

Zn, mg/l 1.2 1.1 - 1.3 0.8 - 1.4 0.6 

Co, μg/l 3.9 2.8 - 5.2  -  0.9a 

Mo, μg/l 26 19 - 34 10 - 50 100b 

Se, μg/l 45 36 - 54 80 - 300 20 

1Adequate range for cattle (Puls, 1988) 
2upper threshold value indicating a deficiency risk in Bos taurus cattle (Suttle, 2010) 
aCo: lower boundary of normal Co concentrations in B. taurus cattle (Puls, 1988),  
bMo: lower boundary of Mo concentrations in B. taurus cattle considered elevated (Puls, 1988) 

In zebu (B. indicus) bulls sampled at Jimma, Ethiopia, liver contained the highest 

concentrations of trace elements compared to kidney, cardiac and semitendinosus 

muscle (Table 6.1), except for Se, of which concentrations were highest in kidney (all p < 

0.010), and for Fe, for which we found no difference between liver and kidney 

concentrations (p = 0.035). Despite significantly higher Se concentrations in the kidney, 

the liver may still function as a main storage tissue for Se due its larger weight, in 

agreement with previous research (Herdt & Hoff, 2011). Fe seemed evenly distributed 

over liver and kidney, but the tissue weight may again result in the liver being the main 

storage entity. Liver contained the highest Zn concentrations, but Zn concentrations did 

not seem to vary widely among liver, kidney and muscle as observed earlier (López 

Alonso et al., 2000).  
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Between muscle types, cardiac muscles systematically contained higher concentrations 

of trace elements than semitendinosus muscles, except for Zn of which concentrations 

were lower in the cardiac muscle samples (all p < 0.001, for Mo: p = 0.001), hence, 

demonstrating a profound difference in micromineral profile between muscle types. 

Comparative data in B. indicus cattle are absent, and data in B. taurus cattle are rare since 

sampled muscles are often not specified. However, our findings are generally in 

agreement with earlier research in B. taurus cattle (García-Vaquero et al., 2011). 

Molybdenum formed an exception, considering the higher concentrations in cardiac 

muscle as compared to semitendinosus muscle in the current study, which contradicts 

the earlier data (García-Vaquero et al., 2011). This may be explained by higher Mo 

concentrations in the environment and forages in the region (Chapter 1 & 4Chapter 1 & 4Chapter 1 & 4Chapter 1 & 4) leading to 

a higher accumulation in the B. indicus cattle in general and in cardiac muscle more 

specifically, although none of the sampled tissues contained Mo concentrations beyond 

the normal ranges stated for B. taurus cattle (Puls, 1988). 

Focussing on the relation between concentrations of trace elements in liver as main 

storage organ and the other edible tissues sampled in the current study, we found a 

strong association between liver and kidney concentrations of Cu, Fe, and Co (r = 0.53, r 

= 0.65, r = 0.80 respectively; all p < 0.001) (Table 6.3), whereas liver and kidney 

concentrations of Mn, Zn and Mo were weakly correlated (r = 0.28, p = 0.03; r = 0.38, p = 

0.003; r = 0.39, p = 0.002 respectively). To conclude, for most trace elements, there was a 

reasonable association between these two tissues, which contradicts previous research 

(López Alonso et al., 2004).  

There was a strong relation between liver and semitendinosus muscle concentrations of 

Se (r = 0.57, p < 0.001) and a weak correlation for Mn (r = 0.36, p = 0.005) whereas for 

other elements, no significant association were found between these two tissues. 

Cardiac muscle concentrations of Co and Se were strongly correlated with liver 

concentrations of the same elements (r = 0.71, r = 0.75, respectively; both p < 0.001). 

Additionally, there was a weak positive association between liver and cardiac 

concentrations of Fe and Mo (r = 0.28, p = 0.03; r = 0.37, p = 0.003) and a weak negative 

association for Zn (r = -0.34; p = 0.007). Blanco-Penedo et al. (2010) earlier found a strong 

association for Co and Zn between liver and diaphragm muscle, but not for Se, the latter 
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being in constrast to our study. Overall, in the present study, liver status seemed to 

correlate reasonably well with storage in other tissues, especially kidney and cardiac 

muscle. 

Table Table Table Table 6.6.6.6.3.3.3.3. Spearman rank correlation coefficient between liver and other tissue concentrations 

of trace elements in zebu (Bos indicus) bulls (n = 60) at Jimma, Ethiopia 

  Liver vs.  Plasma vs. 

Element Plasma 
vs. liver 

Kidney Muscle  Kidney Muscle 

Semitendinosus Cardiac Semitendinosus Cardiac 

Cu 0.68*** 0.53*** 0.01 0.08  0.25 -0.14 0.16 

Fe -0.06 0.65*** 0.19 0.28*  0.29 0.11 0.19 

Mn 0.42* 0.28* 0.36** 0.19  0.22 0.37 0.16 

Zn -0.39* 0.38** -0.24 -0.34**  -0.32 0.08 0.18 

Co 0.61*** 0.80*** 0.14 0.71***  0.82*** 0.24 0.69*** 

Mo 0.25 0.39** 0.05 0.37**  -0.05 -0.31 -0.21 

Se 0.74*** 0.17 0.58** 0.75***  0.15 0.71*** 0.83*** 

*p < 0.050, **p < 0.010, ***p < 0.001  

 

Plasma is often presented as a practical sample to assess trace element status (Herdt & 

Hoff, 2011). In the current study, plasma concentrations of Se, Cu, Co were strongly 

associated with liver concentrations of the same elements (r = 0.74, r = 0.68, r = 0.61; all p 

< 0.001) whereas for Mn and Zn, only a weak relation was present, which was even 

negative for Zn (r = 0.42, r = -0.39; both p < 0.050). For kidney, only Co concentrations 

were significantly associated with plasma concentrations (r = 0.82, p < 0.001). 

Furthermore, only Se semitendinosus muscle concentrations were associated with 

plasma concentrations (r = 0.71; p < 0.001). Finally, Se and Co cardiac muscle 

concentrations were strongly related with plasma Se and Co concentrations (r = 0.83, r = 

0.69; both p < 0.001). Overall, plasma Cu, Co and Se seemed to associate well with their 

respective liver concentrations and reasonably well for Mn. This was not found for Fe 

and Mo or even negative Zn.  

To conclude, although based on a small sample size, our data suggest that plasma Co and 

Se are probably very suitable for evaluation of liver status whereas Cu concentrations 

were well associated but should probably only be used in the case of expected low liver 

Cu concentrations (Claypool et al., 1975). In this regard, the current results discourage 
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the use of plasma Mo, Zn, and especially Fe concentrations, although mentioned 

previously (Herdt & Hoff, 2011). Finally, plasma concentrations of Co and Se were well 

related with cardiac muscle concentrations.  

Overall, our results confirm the differential distribution patterns of Se, Co vs. the other 

elements, explained by different sites of homeostatic control mechanisms. Homeostatic 

control of Se and Co is mediated by renal excretion, causing a continuing rise in storage 

related with rising dietary intake. For the other elements, the intestine is the site of 

homeostatic control, and consequently, tissue storage might plateau when 

requirements are met (Windisch & Ettfie, 2008). In general, our data also point to the 

liver as a better indicator sample than plasma for investigating trace element storage in 

cattle due to the higher number of significant correlations with other tissues. 

ConclusionConclusionConclusionConclusion    

Zebu cattle seemed to have a similar distribution of trace elements in edible tissues as B. 

taurus cattle. Different distribution patterns in edible tissues of Cu, Zn, Mn, Mo and Fe 

versus Co and Se were observed. Within the ranges observed in our study, plasma values 

were well related with liver status of Cu, Se and Co and even with muscle Se and Co 

concentrations. However, this study did confirm the liver as the main indicator organ to 

investigate bovine trace element status, as for most elements, it correlated well with 

other tissues.  
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Copper deficiency is a commonly diagnosed problem in cattle around the globe. In 
Jimma, Ethiopia, 8 zebu (Bos indicus) and 8 zebu ×××× Holstein Friesian cross (Bos 
taurus × Bos indicus) heifers were used in an 11 weeks study, to investigate breed 
type differences in effects of Cu deficiency on concentrations of trace elements in 
plasma and edible tissues as well as mRNA expression of Cu-related proteins. Heifers 
were fed a grass diet (6.4 ± 0.7 (SD) mg Cu/kg DM), supplemented with 1 mg Mo/kg 
DM in week 1 to 4, and 2 mg Mo/kg DM in week 5 to 11, with blood samples collected 
every 2 week and tissue collection post-mortem. Plasma, liver, kidney, 
semitendinosus, and cardiac muscle were analysed for Zn, Cu, Fe, Se, Mo, Co, and 
Mn. Expression of mRNA Cu-related proteins was measured in aorta (lysyl oxidase, 
LOX), liver (Cu transporting β-polypeptide, Atp7b; Cu chaperone for superoxide 
dismutase, CCS; cytochrome c oxidase assembly homolog 17, Cox17; Cu transporter 1 
homolog, Ctr1; superoxide dismutase 1, Sod1), and duodenum (diamine oxidase, 
DAO, metallo-thionein-1A, Mt1a) as well as the Se-related glutathione peroxidase 1 
(Gpx1). Zebu cattle maintained initial plasma Cu concentrations just below the 
threshold value for deficiency, whereas crossbred cattle gradually became severely 
Cu deficient over time (p < 0.001). In contrast, plasma Zn and Co were greater in zebu 
cattle at the onset of the trial but became similar to crossbred cattle towards the end 
of the trial (p < 0.001). Liver Cu (p = 0.002) and Fe (p = 0.0004), kidney Se (p < 0.0001), 
and kidney and cardiac muscle Co (p ≤ 0.0001) concentrations were significantly 
greater in zebu than in crossbred cattle. Increased hepatic mRNA expression of the 
Cu-regulatory proteins Atp7b, Ctr1 (both p = 0.02), CCS (p = 0.03), Cox17 (p = 0.009), 
and Cu-related enzyme Sod1 (p = 0.001) as well as the Se related Gpx1 (p = 0.0002) 
were significantly greater in zebu than in crossbred cattle. However, duodenal 
mRNA expression of DAO (p = 0.8) and Mt1a (p = 0.2), and aortic expression of LOX (p 
= 0.8) were not significantly different. Both the differences in Cu status indices 
(plasma and liver concentrations) and hepatic mRNA expression of Cu regulatory 
proteins point to the possibility of a more efficient use of dietary Cu in B. indicus as 
compared to Bos taurus ×    Bos indicus cattle resulting in greater sensitivity to Cu 
deficiency in Bos taurus crossbred cattle.      
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7.17.17.17.1 IntroductionIntroductionIntroductionIntroduction    

The dietary micromineral supply for cattle is often low in tropical countries (McDowell 

& Arthington, 2005). Mineral imbalances in the soil and consequently in the plants 

growing on this soil, often aggravate the situation (Haque et al., 1993). In Ethiopia, Cu 

deficiency is a frequent problem when grazing on pastures, as low levels of Cu are 

accompanied by high levels of Mo and S and very high levels of Fe (Chapter 1Chapter 1Chapter 1Chapter 1    &    4444; Faye 

et al., 1991; Faye & Grillet, 1984; Roeder, 1980). Consequently, deficiencies of Cu are to be 

expected in cattle in these regions. 

Zebu cattle (Bos indicus) are the most commonly used type of cattle in Ethiopia, and 

renowned for their robustness under tough conditions (Edea et al., 2013). Moreover, they 

seemed to have adapted to their environment very well, with reports indicating an 

ability to cope with dietary antagonists, such as tannins (Yisehak et al., 2012). However, 

because of their low production capacity, crossbreeding these B. indicus cattle with Bos 

taurus types, is becoming popular (Fekadu et al., 2011). Within B. taurus cattle, breed 

related sensitivity to Cu deficiency has been documented, with the Simmental breed 

reported as being most vulnerable (Mullis et al., 2003; Ward et al., 1995).  

Several studies suggest that there may be a difference between B. taurus-influenced and 

B. indicus cattle in their ability to cope with an inadequate Cu supply. Frequently no 

signs of clinical Cu deficiency are seen in studies with zebu cattle despite a severely 

inadequate Cu supply based upon recommended levels for B. taurus cattle (CCCChapter 2hapter 2hapter 2hapter 2; 

Faye & Grillet, 1984; Roeder, 1980). Other studies suggest that there might be a 

difference in response to the same diet between the local zebu and B. taurus crossbred 

cattle (Abu Damir et al., 1988; Friot, 1973). 

As we hypothesized that B. indicus may have adapted to a low Cu intake, hence 

optimising the use of Cu in their metabolism, our aim was to evaluate the effect of a Cu 

deficient diet on concentrations of Cu and other trace elements in plasma and selected 

edible tissues as well as mRNA expression of Cu-related proteins in B. indicus and B. 

taurus × B. indicus cattle. 
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7.27.27.27.2 Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

7.2.1. AnimalAnimalAnimalAnimal    care and experimental designcare and experimental designcare and experimental designcare and experimental design    

Sixteen B. indicus (Abyssinian Highland zebu; n = 8) heifers and B. taurus × B. indicus 

crossbred (Holstein Friesian × Abyssinian Highland zebu; n = 8) heifers with an average 

age of one year and six months (SD: 0.4 years) were purchased and housed at the dairy 

farm of the Jimma University Campus of Agriculture and Veterinary Medicine, Ethiopia. 

In the surrounding area, bovine Cu deficiency was seen on multiple occasions and Se 

deficiency was suspected based upon tissue levels below threshold values for Bos taurus 

cattle (Chapter 2, 4, 5 Chapter 2, 4, 5 Chapter 2, 4, 5 Chapter 2, 4, 5 & 6666).  

Initial BW was lower in zebu than in crosses (91 ±  5.3 vs. 139 ± 12.9 kg, p = 0.004). Zebu 

cattle had an average BCS of 5.0 on a scale of 1 to 9 (Nicholson & Butterworth, 1986), 

whereas crosses had an average BCS of 3.4 ± 0.23    on a scale of 1 to 5 for B. taurus dairy 

cattle (Wildman et al., 1982). Zebu BCS were recalculated to a scale of 1 to 5 afterwards, 

for comparison purposes (mean: 2.8 ± 0.25, type difference: p = 0.1).  

All animals were individually housed and fed with a forage-only diet, consisting of local 

grasses, freshly harvested and chopped, during 11 weeks. This diet contained 6.4 ± 0.2 

mg Cu/kg DM, 2.1 ± 0.4 mg Mo/kg DM and 2.4 ± 0.12 g S/DM (Table 7.1). Daily amounts of 

grasses provided were set to provide an DM intake of 2 % of BW (McDowell, 1996). 

Refusals were weighed and subtracted from the recorded DMI.  

To induce Cu deficiency (Figure 7.1), Mo (as NaMoO4, Sigma-Aldrich, St Louis, MO) was 

supplemented at 1 mg Mo/kg DM during week 1 to 4 and was afterwards raised to 2 mg 

Mo/kg DM from week 5 to week 11. The supplements were mixed in a spoon of molasses 

and top-dressed on the grass diet. 
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Table Table Table Table 7.7.7.7.1.1.1.1. Chemical composition of basal grass diet (n = 11). 

Component Mean SD 

CP, % DM 11.5 1.23 

ADF, % DM 35.4 2.69 

NDF, % DM 67.7 1.96 
S, g/kg DM 2.4 0.03 

Fe, mg/kg DM 250 93 

Mn, mg/kg DM 102 53 

Zn, mg/kg DM 64 13 

Cu, mg/kg DM 6.4 0.7 

Co, mg/kg DM 0.22 0.07 

Mo, mg/kg DM1 2.1 1.3 

Se, mg/kg DM 0.11 0.10 

SD = standard deviation, 1Supplemented with 1.0 mg Mo/kg DM from week 1 to 4, with 2.0 mg Mo/kg DM from 

week 5 to 11, as NaMoO4 

7.2.2. SamplesSamplesSamplesSamples    and storageand storageand storageand storage    

Representative feed samples were obtained and pooled for analysis 3 times a week. 

Every 2 weeks, 9 ml blood was collected from all animals by jugular venipuncture using 

18 G needles (450069) and 2 sodium heparin tubes (455051, both Vacuette®, Greiner 

Labortechnik, Austria).  

At week 11, all animals were brought to a local slaughterhouse and slaughtered. 

Approximately 50 g of liver (caudal lobe), kidney (cranial part of left kidney), cardiac 

(heart apex) and semitendinosus muscle were collected to determine trace element 

concentrations in these tissues (Figure 7.1). Additionally, samples of aorta, small 

intestine and liver were collected to determine mRNA expression of Cu transporters and 

Cu related enzymes. 

Plasma was obtained through centrifugation at 1500 × g for 10 minutes at 25 °Cand was 

stored at -20°C until further analysis. Grass samples as well as liver, kidney, cardiac and 

semitendinosus muscle samples were initially frozen at – 40 °C, afterwards oven dried at 

65°C until constant weight and ground through 2 mm sieve. Tissue samples for mRNA 

analyses were immediately immersed in 10 ml RNAlater (Sigma-Aldirch, St Louis, MO) 

and frozen at -40 °C. 
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Figure 7.1.Figure 7.1.Figure 7.1.Figure 7.1. Experimental procedures in a trial investigating differences in trace elements in 

zebu and crossbred heifers fed a Cu deficient diet. Upper leftUpper leftUpper leftUpper left: heifers ingesting the Cu deficient 

diet. Lower leftLower leftLower leftLower left: a close-up of one heifers exhibiting depigmentation of hairs around the eyes, a 

typical sign of Cu deficiency (called “copper glasses”). Upper rightUpper rightUpper rightUpper right: sampling muscle. Lower Lower Lower Lower 

rightrightrightright: obtaining aliquot of intestinal sample for mRNA analysis. 

 

7.2.3. Analytical proceduresAnalytical proceduresAnalytical proceduresAnalytical procedures    

Grass samples were analysed for crude protein (CP) (984.13) by means of proximate 

analysis (AOAC, 1996). Additionally, acid detergent fibre (ADF) was analysed according 

to AOAC (1996); 973.18 and neutral detergent fibre (NDF) by a method of Van Soest 

(1991).    Plasma, grasses and tissue samples were prepared for mineral analysis through 

microwave destruction with 10 ml HNO3 (Ultrapure analytical grade for trace element 

analysis) in open vessels followed by filtration. All samples were analysed for Zn, Cu, Fe, 

Se, Mo, Co and Mn concentrations through inductively coupled plasma optical emission 

spectrometry (ICP-OES) (Vista MPX radial, Varian, Palo Alto, USA) and inductively 

coupled plasma mass spectrometry (ICP-MS) (Elan DRC-e, PerkinElmer, Sunnyvale, CA, 

USA). All glassware and microwave vessels were pre-rinsed with diluted HNO3. A quality 
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control program was employed throughout mineral analyses. Recovery rates from 

sampled matrices, spiked with two concentrations of the studied trace elements (in the 

range of the determined concentrations), were measured. Average recovery was 98%, 

with a range between 82% (Zn in plasma) and 109% (Mo in kidney). Detection limits in 

acid digest were determined as: Mn 0.35 μg/l, Cu 0.25 μg/l, Mo 0.33 μg/l, Se 0.13 μg/l, Fe 

21.4 μg/l, Zn 16.4 μg/l and Co 0.14 μg/l. Standards were run frequently alongside 

samples and all analytical results were blank-corrected.  

7.2.4. Quantitative Real Time PCRQuantitative Real Time PCRQuantitative Real Time PCRQuantitative Real Time PCR    

Total RNA was isolated from tissue samples using either the (intestine and liver) RNeasy 

Mini Kit or (aorta and skin) RNeasy Fibrous Tissue Mini Kit (both QIAGEN, Manchester, 

UK). Tissue samples (mean: 48 mg, range: 35-60 mg) were homogenised in a TissueLyser 

(Qiagen), using 500 µl of lysis buffer from the extraction kits and a 5 mm steel ball 

bearing in a 2 ml Safe-Lock tube (Eppendorf, Stevenage, UK), with 3 cycles of shaking at 

20Hz for 2 minutes. Lysates were then processed as per the manufacturer’s instructions, 

including the optional on-column DNase digestion step. The RNA was eluted in 2 x 50 μl 

of nuclease-free water. Further DNase digestion of the RNA solution was carried out 

using RQ1 RNase-Free DNase (Promega, Southampton, UK) as per the manufacturer's 

instructions with the sample incubated for 30 min at room temperature. To remove the 

DNase and reaction buffer from the purified RNA, it was passed through the RNeasy 

Mini Kit using the RNA clean-up protocol and was eluted in 2 x 40 μl of elution buffer (10 

mM Tris HCl, pH 8.4). The RNA concentration in the eluate was measured using the 

Qubit RNA Assay Kit (Invitrogen, Paisley, Scotland). 

Primers and probes (Table 7.2) were designed using Primer 3 (Rozen & Skaletsky, 2000) 

(http://frodo.wi.mit.edu/) and M-Fold using the bovine-specific GenBank sequences for 

the potential housekeeper genes: beta-2-microglobulin (B2M: NM 173893), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH, NM 001034034), hypoxanthine 

phosphoribosyl-transferase 1 (HPRT1: NM 001034035), ribosomal protein S8 (RPS8: NM 

001025317), succinate dehydrogenase complex, subunit A (SDHA: NM 174178), and 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta 
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polypeptide (YWAZ: XM 001788370), as well as; ATPase, copper transporting, beta 

polypeptide (Atp7b: XM 002691794), copper chaperone for superoxide dismutase (CCS: 

NM 001046187), cytochrome c oxidase assembly homolog 17 (Cox17: XM 002684734), 

copper transport 1 homolog (Ctr1: NM 001100381), diamine oxidase (DAO: NM 

001034361), glutathione peroxidase 1 (Gpx1: NM 174076), lysyl oxidase (LOX: NM 173932), 

metallothionein-1A (Mt1a: NM 001040492), and superoxide dismutase 1 (Sod1: NM 

174615, as described previously (Peters et al., 2004). Primer specificity was tested using 

the Primer BLAST algorithm (www.ncbi.nlm.nih.giv).  

Table 7.2.Table 7.2.Table 7.2.Table 7.2. Real-time RT-PCR primers of Cu regulatory proteins examined in aorta, duodenum, 

and liver of zebu (B. indicus) and crossbreed (B. indicus × B. taurus) heifers on a Cu-deficient diet. 

Gene Assay Forward Primer Reverse Primer PS (bp) E PMT 

Atp7b Control TAGAAGGCAAGATCGGGAAA CTGGGGAGACGAGAGAAGG 435     

qPCR TAGAAGGCAAGATCGGGAAA ATGTGGTCCCTGAGGTCTTG 121 94.9 87.0 

B2M Control GTTCCATCCACCCCAGATT TTACAGGTCTCGATCCCACTT 211     

qPCR GTTCACTCCCAACAGCAAGG ACTATCCGGGGTTGTTCCA 72 98.7 82.0 

CCS Control CTGTGGGGACCACTTTAACC AGGCCATCACAGGAGCAG 388     

qPCR CAGGATCACAGGAAACTCAGG GCTTGGGGTTCTGGAAGAG 80 96.1 85.5 

Cox17 Control TGAGTCGCAGGAGAAGAAGC TCAGCAAGGAACTCCCAAAG 233     

qPCR GAAAGGAGAAGAGCAATGTGGA ATTCACTCCCAGAGCAGACC 102 99.1 83.0 

Ctr1 Control TGGGGATGAACATGGATATG AATGGCAATGCTCTGTGATG 549     

qPCR CCCAACCACTTCATCTGACC AAAGCTCCAGCCATTTCTCC 138 99.3 83.0 

DAO Control GCACTGTACGGAGGACACAC CCGTTGGGGTAGAAGATGAA 350     

qPCR ACGCCCTCCACTACTACGAC GGGCATCTCGAAGAGACAGA 71 96.7 86.0 

GAPDH Control ACCAGGGCTGCTTTTAATTCT GGTCATAAGTCCCTCCACGA 474     

qPCR GGGTCATCATCTCTGCACCT GGAGGCATTGCTGACAATCT 101 99.6 84.5 

Gpx1 Control AACGTAGCATCGCTCTGAGG AGCATAAAGTTGGGCTCGAA 203     

qPCR CGGGACTACACCCAGATGA TCCTCGTTCTTGGCGTTT 113 93.5 89.5 

HPRT1 Control CCAGTCAACAGGCGACATAA GGCTCGTAGTGCAAATGAAG
A 

527     

qPCR GCGAAACTGGAAAAGCAAAA GCCACAGAACAAGAACATTG
G 

116 93.0 82.0 

LOX Control ATACGGCACCGGCTACTTC CCCTCAGCCACTCTCCTCT 348     

qPCR CCCCAGAGAGTGAAAAACCA TGGCATCAAGCAGGTCATAG 139 95.7 84.0 

Mt1a Control CTGCTTTGCCACTTGTTCTG GCACCAGGTCAGATTGTATG
AA 

342     

qPCR CTGATGTCGGGGAGAACCT AAGGTAATGTAGCACCAGGT
CAG 

101 98.2 79.0 

RPS8 Control CATCTCTCGGGACAACTGG TTCGCGTTCTTTTTCCTCTC 464     

qPCR CATCTCTCGGGACAACTGG GCGTCCCAGCTCATACTTTC 88 96.7 86.0 

SDHA Control TGCAGACCCGGAGATAAAGT CGTACTCGTCAACCCTCTCC 391     

qPCR TAAACCAAATGCTGGGGAAG CTGCATGTTGAGTCGCAGTT 97 95.1 81.5 

SOD1 Control GCAAGGCACCATCCACTT CACCTCTGCCCAAGTCATCT 341     

qPCR GGATTCCACGTCCATCAGTT GGTCTCCAACATGCCTCTCT 121 98.4 84.0 

YWAZ Control GCTTCACAAGCAGAGAGCAA CCGATGTCCACAATGTCAAG 367     

qPCR ACTGGGTCTGGCCCTTAACT TGGCTTCATCAAATGCTGTC 98 97.9 82.0 

PS= product size, E = efficiency, PMT = product melting temperature 
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Synthesis of cDNA was carried out with 500 ng of random hexamers using the ImProm-II 

Reverse Transcription System (Promega Corporation) using 600-1000 ng (liver and 

intestine) and 200 ng (aorta) of total RNA in a final volume of 40 µl. All reactions were 

prepared according to the manufacturer’s instructions giving a final magnesium 

chloride concentration of 3 mM.  

Reverse transcription was performed in a PTC-200 DNA engine (Bio-Rad Laboratories). 

Duplicate RT reactions were performed for each RNA sample. All cDNAs were diluted to 

a final volume of 200 µl (1:5 dilution) using EB Buffer (10mM Tris-HCl pH-8.4, Qiagen 

Ltd.) and then stored at -20 °C for future use.  No template controls were performed by 

addition of nuclease free water in place of RNA. 

Quantitative PCR (qPCR) was performed using GoTaq Colourless Master Mix (Promega). 

Gene specific amplification was performed using 0.2 µM of each primer, SYBR Green 1 

(1:100,000 final concentration, Invitrogen), ROX (1:5000, Invitrogen) and 5 µl of diluted 

cDNA in a final volume of 25 µl. Magnesium chloride concentrations were adjusted to 4.5 

mM in the final reaction by addition of 50 mM MgCl2. 

Sample incubations were performed in an MxPro 3005P (Agilent, Wokingham,Berkshire, 

UK) at 95 °C for 2 min and then 45 cycles of 95 °C for 10 sec and 60 °C for 30 sec during 

which the fluorescence data were collected. Threshold values (Ct) for the samples were 

calculated using the MxPro qPCR software (ver 4.1) using the multiple experiment 

analyser with run-to-run variations in Ct normalised using a positive control of known 

copy number and ROX as a passive reference dye. 

The absence of genomic contamination of the RNA samples was confirmed before to the 

RT reactions and none of the samples showed evidence of amplifiable genomic DNA 

with the SDHA qPCR assay. One qPCR reaction was run for each RT repeat resulting in 2 

Ct values for each RNA sample. 

To determine the most appropriate housekeeper genes for the study, all seven potential 

genes were quantified in six cDNA samples from each tissue type. A mean Ct value was 

calculated for each sample using the two measured Ct values for each sample for each of 

the potential housekeeper genes. The mean Ct value was converted to a relative copy 
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number value using the E∆Ct method (E: reaction efficiency as determined from a 

standard curve) with ∆Ct values calculated relative to the sample with the largest Ct 

(fewest gene copies). The geNorm VBA applet for Microsoft Excel was used to determine 

the most stable genes from the set of tested genes (Vandesompele et al., 2002). The three 

most stable housekeeper genes for the aorta samples were B2M, HPRT1, and SDHA; for the 

intestine were GAPDH, SDHA and YWAZ; for the liver were B2M, HPRT1, and SDHA. The 

three selected housekeeper genes were then quantified in the remaining samples and 

these genes were then used to normalize the results for the other genes quantified. 

A relative copy number was calculated for each sample using the qBase applet for 

Microsoft Excel (http://medgen.ugent.be/qbase/) using the 3 housekeeper genes to 

normalise the results, using the methods described by Vandesompele et al. (2002). The 

sample with the fewest gene copies (latest Ct value) is given a relative copy number of 1 

and all other samples are given values relative to this sample. This relative copy number 

result was used for all comparisons involving mRNA expression. 

To assess reaction efficiency, a set of primers was designed for each gene target to 

amplify a larger fragment, which included the portion amplified by the qPCR assay. 

These assays were tested against a cDNA obtained from RNA extracted from each of the 

tissues. Products were separated by 2% agarose gel electrophoresis, purified by 

NucleoSpin Extract II kit (Macherey-Nagel) and then quantified using the Qubit dsDNA 

BR Assay (Invitrogen). The number of copies per µl of purified product was calculated 

and then a 1:10 dilution series from 107 to 1 copy per qPCR was analysed in triplicate 

using the qPCR assay and the reaction efficiency calculated using the MxPro software. 

7.2.5. Statistical analysesStatistical analysesStatistical analysesStatistical analyses    

All statistical procedures were performed using the mixed model (SAS Inst. Inc., Cary, 

NC). For weight, BCS and plasma mineral concentrations, the model included sampling 

week as a continuous fixed effect, type as categorical fixed effect, and their interaction. 

Animal was considered as the experimental unit and was inserted as a random effect. 

For tissue mineral concentrations, the model included tissue and type as a categorical 

fixed effect and their interaction. Again, animal was incorporated as a random effect. To 
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compare mRNA expression and performance data, a fixed effects model was used with 

type included as categorical fixed effect. Associations between trace element storage 

and mRNA expression was evaluated using Spearman correlation tests. 

7.37.37.37.3 ResultsResultsResultsResults    

7.3.1. Plasma mineral concentrationsPlasma mineral concentrationsPlasma mineral concentrationsPlasma mineral concentrations    

Plasma Cu concentrations evolved differently over time in the two breed types (type × 

week interaction; p < 0.001) (Figure 7.2), with concentrations in crossbred cattle 

decreasing more dramatically than in zebu cattle. Overall, plasma Cu concentrations 

decreased throughout the trial (week; p < 0.001). Plasma concentrations of both Fe and 

Mo were not affected by breed type (type × week interaction; p = 0.8, p = 0.3, 

respectively). Over time, plasma Mo increased (week; p = 0.038), whereas plasma Fe 

concentrations decreased (week; p < 0.001).  

Plasma Zn concentrations changed differently over time between the two breed types 

(type × week interaction; p = 0.035). However, unlike in the case of Cu, plasma Zn 

concentrations seemed to differ between types at the start of the trial with a 

diminishing difference throughout the trial. Overall, plasma Zn concentrations were 

also affected by a type effect (type; p = 0.001), with lower concentrations in crossbreeds 

than in zebu heifers throughout the trial. Over time, plasma Zn concentrations 

decreased (week; p < 0.001).  

Plasma Mn concentrations were not affected by breed type (type × week interaction; p = 

0.3), but tended to decrease slightly over time (week; p = 0.053). Throughout the trial, 

plasma Se concentrations increased (week; p < 0.001) but did not differ between breed 

types (type × week interaction; p = 0.2). Over time, plasma Co concentrations evolved 

differently in both breed types (type × week interaction; p = 0.001), where the difference 

between types seemed large at the onset of the trial, but afterwards a smaller difference 

remained constant over time. Plasma Co concentrations were also subjected to an 
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overall breed effect throughout the trial (p < 0.001). Again, concentrations in 

crossbreeds were lower than in zebu heifers. Throughout the trial, plasma Co 

concentrations decreased (p < 0.001). 

    
Figure Figure Figure Figure 7.7.7.7.2222.... Plasma mineral concentrations and BCS in zebu (Bos indicus) (n = 8) and crossbreed 

(Bos indicus × Bos taurus) (n = 8) heifers on a Cu-deficient diet. Full lines represent zebu (Bos 

indicus) heifers, dotted lines represent crosses (Bos indicus × Bos taurus) heifers. Error bars 

represent ± SE. Significant time effect for all (p < 0.050), trend for Mn (p = 0.050), significant type 

effect for Zn and Co (p < 0.050), significant type × week effect for Zn, Co, Cu and BCS (p < 0.050). 

7.3.2. Tissue mineral concentrationsTissue mineral concentrationsTissue mineral concentrationsTissue mineral concentrations    

The relative Cu tissue concentrations in the different organs tended to be different in 

the two breed types (type × organ interaction; p = 0.055) (Figure 7.3). Liver Cu 

concentrations were greater in zebu than in crossbreed heifers (p = 0.002). No 

differences were found for other tissues (cardiac muscle: p = 1.0, kidney and 

semitendinsosus muscle: p = 0.9).  
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Figure Figure Figure Figure 7.7.7.7.3333.... Tissue (1 = semitendinosus muscle, 2 = cardiac muscle, 3 = kidney, 4 = liver) trace 

element concentrations (dry weight) in zebu (Bos indicus) (n = 8) and crossbreed (Bos indicus × Bos 

taurus) (n = 8) heifers on a Cu-deficient diet. Clear bars represent zebu (Bos indicus) heifers, dark 

bars represent crosses (Bos indicus × Bos taurus) heifers. Error bars represent ± SE. Asterisks 

represent significant difference in tissue trace element concentrations between types of cattle 

(p < 0.050) 

 

Relative tissue Mo concentrations were not impacted by breed type (type × organ 

interaction; p = 1.0). On the contrary, relative tissue concentrations of Fe were different 

in the two breed types (type × organ interaction; p = 0.010): Fe liver concentrations were 

greater in zebu than in crossbreed cattle (p < 0.001), other tissues were not impacted 

(cardiac muscle: p = 0.9, kidney: p = 0.7, semitendinosus muscle: p = 1.0). For Zn and Mn 

concentrations, no differences in tissue concentrations were found between the two 

types of cattle (type × organ interaction; Zn: p = 0.6; Mn: p = 0.4). Relative tissue Se 

concentrations differed in the two breed types (type × organ interaction; p < 0.001): zebu 

kidney Se concentrations were greater than crossbreed kidney Se concentrations (p < 

0.001), but no differences were found for other tissues (cardiac and semitendinosus 

* 

* * 

* * 
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muscle: p = 0.7; liver: p = 0.4).    Finally, relative tissue Co concentrations were also 

affected by breed type (type × organ interaction; p < 0.001), both cardiac muscle and 

kidney Co concentrations were greater in zebu than in crossbreed heifers (p < 0.001). 

7.3.3. Tissue gene expressionTissue gene expressionTissue gene expressionTissue gene expression    

For Cu regulatory proteins, no significant type differences in relative expression of 

duodenal Mt1a mRNA were found (Table 7.3). However, hepatic mRNA expression of Cu 

regulatory proteins Ctr1 (p = 0.025), Cox17 (p = 0.009), Atp7b (p = 0.022) and CCS (p = 0.029) 

as well as SOD1 (p = 0.001) were greater in zebu than in crossbred cattle. Relative 

expression mRNA of proteins related to Cu function, duodenal DAO and aorta LOX were 

not affected by type (both: p = 0.8). Type did affect relative mRNA expression of the Se 

related Gpx1 in liver (p < 0.001). 

Relative mRNA expression of Mt1a and CCS were correlated with liver Cu concentrations, 

whereas liver Mo, Co and Mn concentrations were related to duodenal DAO mRNA 

expression. Kidney Se concentrations were positively associated with liver mRNA 

expression of Atp7b, CCS, Cox17, Ctr1, Sod1, and Gpx1 (all r > 0.5, all p < 0.050) (Table 7.4). 

Table Table Table Table 7.7.7.7.3333.... Relative mRNA expression of trace element related proteins in tissues harvested from 

zebu (B. indicus) (n = 8) and crossbreed (B. indicus × B. taurus) (n = 8) heifers on a Cu-deficient diet. 

Tissue Gene Zebu Crossbreed SEM p 

Cu regulatory proteins 

Duodenum Mt1a 29 8 8 0.234 

Liver Ctr1 3.7 2.0 0.4 0.025 

 CCS 5.0 2.6 0.6 0.029 

 Cox17 2.5 1.5 0.2 0.009 

 Sod1 3.4 1.6 2.6 0.001 

 Atp7b 1.9 1.3 0.1 0.022 

Cu related proteins 

Aorta LOX 2.5 2.4 0.3 0.836 

Duodenum DAO 9.1 10.3 1.9 0.769 

 

Se related protein 

Liver Gpx1 3.0 1.5 0.2 <0.001 

aValues are expressed relative to the three most stable housekeeper genes per tissue. 
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Table Table Table Table 7.7.7.7.4444.... Correlation coefficients between trace element storage and relative mRNA expression 

of trace element related proteins in  tissues harvested from zebu (B. indicus) (n = 8) and 

crossbreed (B. indicus × B. taurus) (n = 8) heifers on a Cu-deficient diet. 

Aorta  Intestine  Liver 

LOX  DAO Mt1a  Atp7b CCS Cox17 Ctr1 Sod1 Gpx1 

Liver Cu 0.12  0.38 0.60*  0.07 0.58* 0.17 -0.13 0.15 0.22 

Liver Mo -0.27  0.65** -0.21  -0.26 -0.29 -0.39 -0.32 -0.28 -0.33 

Liver Fe -0.06  0.33 0.15  0.36 0.23 0.13 0.15 0.28 0.33 

Liver Mn 0.01  0.58* 0.03  0.09 0.17 0.06 0.01 0.23 0.17 

Liver Zn -0.06  -0.26 0.02  -0.07 -0.12 -0.10 -0.06 -0.15 -0.17 

Kidney Se 0.22  -0.09 -0.20  0.57* 0.64** 0.55* 0.59* 0.73** 0.84** 

Liver Co 0.09  0.53* 0.43  0.25 0.26 0.29 0.27 0.39 0.28 

*p < 0.050, **p < 0.010 

7.3.4. PerformancePerformancePerformancePerformance    

Average daily gain seemed similar for both types (p = 0.3), but when expressed as 

percentage of initial body weight, zebu gained more than crosses (p = 0.014), although 

the latter displayed a greater absolute DM intake (p = 0.009), but not as percentage of 

body weight (p = 0.433). Concomitantly, the gain:feed ratio was greater in zebu than in 

crosses (p = 0.014) (Table 7.5). The BCS also evolved more positively for zebu than for 

crossbreeds (type × week interaction; p = 0.006) (Figure 7.2). 

Table Table Table Table 7.7.7.7.5555.... Performance in zebu (B. indicus) (n = 8) and crossbreed (B. indicus × B. taurus) (n = 8) 

heifers on a Cu-deficient diet. 

 
Zebu Crossbreed SEM p 

Final body weight, kg 103 148 9.4 0.012 

ADG, kg 0.16 0.12 0.02 0.323 

DMI, kg/d 1.92 2.82 0.18 0.009 

Gain:feed 0.08 0.04 0.009 0.012 

DMI, % bodyweight 1.98 1.98 0.003 0.510 

Total gain, % initial bodyweight 13 6.0 1.0 0.014 

ADG = average daily gain, DMI = dry matter intake, Gain:feed = gain/feed ratio, SEM 

= standard error of means 
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7.47.47.47.4 DiscussionDiscussionDiscussionDiscussion    

In the present study, zebu and crossbred cattle were kept on a Cu deficient diet, 

supplemented with Mo over 11 weeks to investigate the effect on plasma and tissue Cu 

and other trace elements and related mRNA expression. With the given dietary Mo and 

S concentrations and supplemented Mo, at the onset of the trial, the calculated 

absorption of Cu (ACu) of the unsupplemented diet, using the formula of Suttle (1983) for 

grass diets, ACu = 5.7 - 1.3 S - 2.785 loge Mo + 0.227 (Mo × S), was 3.0%, whereas 

supplemented with 1 mg Mo/kg DM, ACu dropped to 1.8%, and when supplementation 

was raised to 2 mg Mo/kg DM, ACu finally decreased to 0.7%. These values in 

combination with the low dietary Cu concentrations inevitably lead to a very low Cu 

uptake from the diet, with rapidly depleting reserves in the body as a consequence. 

Dietary Cu forms complexes with sulfides and thiomolybdates (by interaction with Mo 

and S), thus rendering Cu unabsorbable. The thiomolybdates could also have been 

absorbed through the rumen wall, thereafter systemically binding Cu and causing a real 

thiomolybdate toxicity rather than a Cu deficiency (Gould & Kendall, 2011). However, 

the depletion of Cu reserves was reflected in the decreasing plasma Cu concentrations 

over time and low liver Cu concentrations at the end of the trial (overall mean: 26 mg 

Cu/kg DM). Mo concentrations in plasma, on the other hand, were slightly increased 

over time as seen by Ivan and Veira (1985): although most of the Mo will be excreted in 

the form of the thiomolybdates, some may also be absorbed as MoO4 (Ferguson et al., 

1943). Concerning S, unfortunately, there is still no practical tool to evaluate the S status 

of cattle, as pointed out in Chapter 3Chapter 3Chapter 3Chapter 3 and it was therefore not possible to investigate the 

evolution of this status over time.  

Overall, the Cu deficiency caused by Mo and S interaction was evident. However, the 

response to the causative diet differed distinctly between the two types of cattle. 

Although plasma Cu concentrations were quite similar at the onset of the trial, over 

time they slowly decreased in B. indicus cattle to concentrations just below the threshold 

value for deficiency in B. taurus cattle (< 0.57 mg Cu/l; Suttle, 2010), whereas B. taurus × B. 

indicus crosses developed extremely low plasma Cu concentrations. Furthermore, liver 
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Cu concentrations were greater, yet also more variable, in zebu than in crossbred cattle 

(42 vs. 10 mg Cu/kg DM), 19 mg Cu/kg DM being the threshold for deficiency in B. taurus 

cattle (Suttle, 2010). Seemingly, crosses were more prone to Cu deficiency than zebu 

cattle. Miranda et al. (2010) suggested 4 different reasons for differences between cattle 

breeds in sensitivity towards Cu deficiency: differences in efficiency of absorption, in 

distribution among tissues, in excretion or in feed intake. Concerning the latter, in the 

present study, we saw a similar DM intake (% of BW) accompanied by a lower weight 

gain (% initial weight) in crossbred cattle. Therefore, the hypothesis of a greater feed 

intake does not seem to match with the results of our study.  

Previous studies of breed sensitivity to Cu deficiency found differences between Angus 

and Simmental cattle, with much lower plasma Cu concentrations in Simmental cattle 

(Smart & Christensen, 1985). This was further investigated by Gooneratne et al. (1994), 

who found that Simmental cattle had a much greater biliary excretion of Cu. In the 

current study, we did not investigate differences in Cu excretion. Ward et al. (1995) 

showed that the Simmental breed seemed to have a lower apparent Cu absorption and 

Cu retention. Subsequently, Hansen et al. (2009) detected that Cu deficiency reduced 

mRNA expression of hepatic Sod1, whereas Fry et al. (2009) found decreased mRNA 

expression of Cox17 and Atp7b and Hepburn et al., 2009    increased expression of CCS mRNA 

in Cu deficient cattle. Fry et al. (2013) investigated differences in expression of Cu 

chaperones and transporters between Angus and Simmental cattle and detected a lower 

expression of duodenal copper transporters Ctr1 and tendency for less Atp7a in 

Simmental cattle, suggesting a lower ability in these cattle to absorb and utilize dietary 

Cu. However, they did not detect differences in hepatic mRNA expression levels.  

In our study, where the induced Cu deficiency was more severe than in the study of Fry 

et al. (2013), zebu cattle seemed to have greater relative expression of the hepatic Cu 

transporters and chaperones CCS, Ctr1, Cox17, Sod1, and Atp7b mRNA. We did not 

investigate the intestinal expression of these genes, but zebu and crossbred cattle may 

also differ in expression of intestinal Cu transporters and chaperones, which could point 

to better absorption mechanisms in zebu versus crossbred cattle, with greater liver and 

plasma Cu levels as a consequence. Although high variability in Mt1a mRNA expression 

did not allow discerning the potential differences between types, the positive 
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correlation with liver Cu concentrations does point in this direction. Further research is 

necessary to confirm this. The expression of CCS was also positively associated with liver 

Cu, in contradiction with earlier data from Han et al. (2009). At this point, we could 

hypothesise that the greater expression of the hepatic Cu transporters and chaperones 

suggest that the zebu cattle have a higher Cu uptake in hepatocyte (Ctr1), combined with 

a higher Cu circulation (CCS) and incorporation in ceruloplasmin (Atp7b) and 

cytochrome c oxidase (Cox17), used for scavenging of superoxide ions (Sod1) within the 

hepatocyte as well as higher Cu excretion from the hepatocyte (Atp7b) (Prohaska, 2004; 

Fry et al., 2013).  

An overload of Fe can exacerbate a Cu deficiency, through exchanges of Fe sulfides with 

Cu to unabsorbable Cu sulfides or through formation of an equally insoluble Fe-Cu-S 

complex (Gould & Kendall, 2011). In the present study, Fe concentrations in the diet 

were not as high as previously found values in grasses in the same region (Chapter 1, 4, Chapter 1, 4, Chapter 1, 4, Chapter 1, 4, 

5 5 5 5 &    7777), and the critical dietary Fe:Cu ratio was not reached (50-100; Suttle, 2010), so an 

additive effect of Fe on the Cu deficiency was not to be expected. On the contrary, the 

Cu deficiency seemed to have affected the Fe metabolism which was reflected in our 

study by decreasing, but not deficient, plasma Fe concentrations over time and high 

liver Fe concentrations (overall mean: 801 mg Fe/kg DM). Hansen et al. (2010) postulated 

that “Limited ceruloplasmin activity probably prevented Fe from being mobilized out of 

the liver, causing Fe to accumulate in the liver and limiting Fe availability for 

extrahepatic tissues”, which may explain the decreasing plasma Fe concentrations 

noted in our study. The evolution of plasma Fe concentration over time did not differ 

between the two types of cattle. However, zebu cattle did have more variable and 

greater liver Fe concentrations than crossbred cattle, which were also greater than 

found in previous research in the area (Chapter 2 Chapter 2 Chapter 2 Chapter 2 &    6666). Although this difference seems 

to contradict the ceruloplasmin explanation of Hansen et al. (2010), dietary Cu levels 

were lower than in the supplemented study group of Hansen et al. (2010), and therefore, 

the range in Cu status range is much smaller in our study. Nevertheless, the extremely 

high liver Fe concentrations in zebu cattle were striking and further research is 

warranted to determine the physiological reason of this.  
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In the current study, zebu cattle had greater kidney Se concentrations than crosses and 

Gpx1 mRNA expression was higher in zebu than in crosses, but no type × week 

interaction affected plasma Se concentrations. Langlands et al. (1980) previously found 

greater whole blood Se and Gpx1-Se activity in B. indicus (Afrikaander) than in B. taurus 

(Hereford-Shorthorn) cattle, with crosses having intermediate values. We know of no 

other studies investigating breed differences in bovine blood Se status, nor in kidney Se 

concentrations or Gpx1 mRNA expression. We do know that Cu and Se metabolism are 

interrelated, with lower Gpx1 activity, Gpx1 mRNA expression and higher faecal 

excretion of Se in Cu deficient rats (Jenkinson et al., 1982; Olin et al., 1994). In this 

respect, the seemingly lower ability in crosses to cope with this Cu deficiency might 

have caused the lower mRNA expression of Gpx1. The positive association of Se storage 

and mRNA expression of Cu regulatory proteins, Ctr1, CCS, Atp7b, Cox17, Sod1 suggests 

shared pathways between Cu and Se, yet to be elucidated. Overall, Se concentrations 

increased throughout the trial, which contradict the greater faecal excretion in Cu 

deficiency, but the rise, although significantly different over time, is small and may not 

be relevant. Finally, the differences between cattle types in plasma Co, semitendinosus 

and kidney Co concentrations may be irrespective of the Cu deficiency but warrant 

further research on differences in trace element metabolism between B. indicus and B. 

taurus types of cattle. 

In conclusion, B. indicus and B. taurus × B. indicus cattle had a disparate response to a Cu 

deficient diet supplemented with Mo. Concentrations of Cu, both in transport and 

storage pools were greater in B. indicus cattle than in crossbred cattle. In B. indicus cattle, 

this coincided with a greater mRNA expression of Cu-regulatory proteins and Cu-related 

enzymes in the liver. This may suggest a more efficient use of dietary Cu in B. indicus and 

a lower proneness to Cu deficiency in comparison with Bos taurus × Bos indicus cattle. In 

B. indicus cattle, concentrations of Zn and Co in the transport pool and concentrations of 

Fe, Se and Co in certain storage pools as well as a higher hepatic mRNA expression of the 

Se related enzyme Gpx1, were also observed to be greater. Overall, future research is 

warranted to fully unravel these potential differences in trace element metabolism 

between B. indicus and B. taurus × B. indicus cattle and to investigate to which extent they 

may translate in disparate trace element requirements.  
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The risk for trace element deficiency in cattle is omnipresent and tropical regions 

where zebu cattle dominate, are particularly prone to this. In this doctoral thesis, which 

had the Gilgel Gibe catchment as major study site, the trace element supply for grazing 

cattle and effect of plant type, environment and management were examined (Chapter Chapter Chapter Chapter 

1111) and the concomitant mineral status and associated animal factors were investigated 

(Chapter 2Chapter 2Chapter 2Chapter 2). Afterwards, the value of saliva as alternative sample for sulphur status 

estimation was evaluated (Chapter 3Chapter 3Chapter 3Chapter 3). Consequently, the effects of trace element 

supplementation in zebu cattle on anti-oxidant status and performance were studied 

(Chapter 4Chapter 4Chapter 4Chapter 4) as well as the effects of the same measure under practical farming 

conditions in crossbred cattle on trace element status and secretion, anti-oxidant status, 

immune response and production (Chapter 5Chapter 5Chapter 5Chapter 5). Then, trace element distribution in zebu 

cattle in edible tissues was examined in addition to the association of this distribution 

between all investigated samples (Chapter 6Chapter 6Chapter 6Chapter 6). Finally, the ability to cope with a diet 

deficient in trace elements was compared in zebu and crossbred cattle (Chapter 7Chapter 7Chapter 7Chapter 7). 

By means of these studies, an attempt was made to formulate an answer on the 

following questions: 

Evaluate the trace elementEvaluate the trace elementEvaluate the trace elementEvaluate the trace element    supplysupplysupplysupply    for zebu (for zebu (for zebu (for zebu (----influenced) cattleinfluenced) cattleinfluenced) cattleinfluenced) cattle    

Evaluate the trace elementEvaluate the trace elementEvaluate the trace elementEvaluate the trace element    statusstatusstatusstatus    in zebu (in zebu (in zebu (in zebu (----influenced) cattleinfluenced) cattleinfluenced) cattleinfluenced) cattle    

Gain more insights on Gain more insights on Gain more insights on Gain more insights on factorsfactorsfactorsfactors    influencing the soilinfluencing the soilinfluencing the soilinfluencing the soil----plantplantplantplant----animal flowanimal flowanimal flowanimal flow    

Investigate the broad Investigate the broad Investigate the broad Investigate the broad effecteffecteffecteffect    of status in beef and dairy zebu (of status in beef and dairy zebu (of status in beef and dairy zebu (of status in beef and dairy zebu (----influenced) cattleinfluenced) cattleinfluenced) cattleinfluenced) cattle    
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1.1.1.1. Evaluation of trace element supply in forages for Evaluation of trace element supply in forages for Evaluation of trace element supply in forages for Evaluation of trace element supply in forages for 

zebu (zebu (zebu (zebu (----influenced) cattle in the influenced) cattle in the influenced) cattle in the influenced) cattle in the Gilgel Gibe Gilgel Gibe Gilgel Gibe Gilgel Gibe 

catchmecatchmecatchmecatchment, Ethiopiant, Ethiopiant, Ethiopiant, Ethiopia    

1.1.1.1.1.1.1.1.     Do tropical forages meet zebu requirements?Do tropical forages meet zebu requirements?Do tropical forages meet zebu requirements?Do tropical forages meet zebu requirements?    

Trace element supply is known to be low in natural forages around the world. In and 

around Jimma, Ethiopia (Chapters 1, 4, 5 Chapters 1, 4, 5 Chapters 1, 4, 5 Chapters 1, 4, 5 &    7777), this is no different (Figure 1). However, it 

is not known whether a “deficient” or “imbalanced” supply according to Bos taurus 

requirements, could be defined as such for zebu (-influenced) cattle, as little or no 

research has been performed on this topic. 

Nevertheless, almost all sampled forages failed to meet both beef and dairy Bos taurus 

requirements for Cu (NRC, 2000, 2001). Concentrations of Mo and S never reached toxic 

levels (NRC, 2005), but borderline critical Cu:Mo ratios occurred (Suttle, 2010). Such 

ratios, in combination with forage S concentrations above 2 g/kg DM (Suttle, 2010), will, 

in some cases, lower the Cu absorption through the ruminal formation of insoluble CuS 

and CuMoS complexes (Gould & Kendall, 2011), leading to even lower amounts of Cu 

available for the animal. Further, forage Fe:Cu ratios easily reached ranges with an 

antagonistic impact on Cu (Suttle, 2010), concomitantly lowering the hampered Cu 

absorption through the formation of insoluble FeCuS complexes (Gould & Kendall, 2011) 

and down-regulation of the intestinal non-specific divalent metal transporter (DMT1), 

able to absorb both Fe and Cu (Hansen & Spears, 2008). Furthermore, toxic levels of Fe 

(NRC, 2005) were common in the sampled forages.  
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Figure 1. Figure 1. Figure 1. Figure 1. Box plots of trace    element concentrations in forages samples (n = 69) ingested by zebu 

(-influenced) (Bos indicus and Bos indicus × Bos taurus) cattle in Chapters 1, 4, 5 Chapters 1, 4, 5 Chapters 1, 4, 5 Chapters 1, 4, 5 &    7777. Horizontal 

lines represent requirements (NRC, 2000, 2001) for Cu, Zn, Mn, Se and Co, and maximum 

tolerable concentrations (NRC, 2005) for Mo, S and Fe, for beef (    ) and dairy (- -) (Bos taurus) 

cattle. The center line in the box indicates the median; the top and bottom of the box, quartile 

boundaries; whiskers, minimum and maximum values within 1.5 times the interquartile range 

of the quartile boundary; circles, outliers; and asterisks, extreme values. Sampled forages 

represented total mixed grass diets for Chapters 4Chapters 4Chapters 4Chapters 4 and 7777, whereas, in Chapter 1Chapter 1Chapter 1Chapter 1 and 5555, animals 

also consumed other ingredients than grasses and herbaceous plants. 

 

In general, the Se supply in tested forages was too low, especially for dairy cattle (NRC, 

2001). In some cases, inadequate Zn concentrations for dairy cattle were present in 

forages (NRC, 2001), but generally sampled forages met Bos taurus requirements. Other 

trace elements, such as Mn and Co seemed to be adequately supplied in forages for dairy 

and beef cattle (NRC, 2000, 2001). 
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1.2.1.2.1.2.1.2. Factors related with plant trace element supplyFactors related with plant trace element supplyFactors related with plant trace element supplyFactors related with plant trace element supply    

The flow of trace elements from soil to animal is influenced by a number of factors. In 

the first stage of the trace element transfer from soil to animal, the soil type, closely 

related with elevation, appeared to be a major factor determining the estimated dietary 

trace element concentrations (ChChChChapter 1apter 1apter 1apter 1). The trace element profile of a soil is known to 

be determined by certain parent layers. For instance, in the Rift Valley of East Africa, 

sediments of volcanic grounds with high amounts of Mo, and low concentrations of Cu, 

deposit and increase the risk for an imbalanced trace element supply (Faye et al., 1991). 

Furthermore, erosion has a significant effect on plant trace element concentrations 

through the loss of fine soil particles which contain high amounts of trace elements 

(Pimentel, 2006). The humid tropics, as the studied area, are very prone to leaching and 

weathering of the soil (Hawando, 1997) due to certain soil characteristics, heavy rainfall 

and high temperatures (Conrad & McDowell, 1984). An increasing slope of the landscape 

is associated with higher erosion rates (Hawando, 1997) and might explain the joint 

impact of soil and elevation on trace element supply, seen in our data. Moreover, the 

presence of the Planosol-Vertisol associations, one of the two most common soil types 

in the area, which often flood (Van Ranst et al., 2011), will have a large impact on trace 

element uptake by plants, with an increased uptake of Mo, a Cu antagonist. Also, this 

soil type has a rather neutral pH, whereas the other common soil type in the region has 

a more pronounced acidic pH. Again, plants growing on the first type will have a higher 

uptake of Mo (Tulema et al., 2007). Although we did not have data on the individual 

impact of sub-factors, a combination of them will be highly likely to have caused the 

strong association between a certain soil type and plant trace element supply.  

Besides the soil effect, intrinsic factors related to the sampled plants, were found to play 

a role in the trace element content of the sampled forages (Chapter 1Chapter 1Chapter 1Chapter 1). As in literature  

studying forage trace element concentrations in other areas (Abdelrahman et al., 1998; 

Faye et al., 1983; Gizachew et al., 2002), trace element concentrations were highly 

variable in forages sampled around the Gilgel Gibe catchment. Plant types (herbaceous 

vs. grasses) differed largely (Chapter 1Chapter 1Chapter 1Chapter 1).  
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In traditional herdsmen communities of the area, herding management (e. g., grazing 

distance, communal grazing) and environment were also closely related, possibly 

indicating applied coping strategies of herders on different grazing lands and hence, 

different trace element supply for their cattle (Chapter 1Chapter 1Chapter 1Chapter 1), although a causal relation has 

not been investigated yet. If these results could be confirmed in new studies, adaptive 

grazing management practices could allow herdsmen to cope with poor grasslands. As 

such, pastoralism, often marginalized by ruling powers, might prove to make most 

efficient use of grazing lands in areas with environmental challenges (Catley et al., 2013). 

 

 

 

 

 

 

Conclusions 

The trace element supply for zebu-influenced cattle in the Gilgel Gibe catchment, Ethiopia, was 

imbalanced, although the applicability of Bos taurus requirements for this type of cattle was 

not established yet. Sampled forages contained low amounts of Cu, probably aggravated by 

high levels of Fe and possibly Mo and S. The trace elements Se and to a lesser degree, Zn were 

supplied in concentrations below requirements, especially for dairy cattle. Concentrations of 

other trace elements seemed sufficient for cattle (Chapters 1,Chapters 1,Chapters 1,Chapters 1,    4, 5 4, 5 4, 5 4, 5 &    7777). Soil type, elevation and 

plant group seemed to be major determining factors for trace element supply. Environment 

and certain grazing strategies were intimately related, and might provide both explanation 

and solution for hampered trace element supply (Chapter 1Chapter 1Chapter 1Chapter 1). The trace element status in 

sampled cattle, associated with this imbalanced trace element supply is evaluated further 

below. 
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2.2.2.2. Evaluation of trace element status of zebuEvaluation of trace element status of zebuEvaluation of trace element status of zebuEvaluation of trace element status of zebu----

influenced cattle in the Gilgel Gibe catchment, influenced cattle in the Gilgel Gibe catchment, influenced cattle in the Gilgel Gibe catchment, influenced cattle in the Gilgel Gibe catchment, 

EthiopiaEthiopiaEthiopiaEthiopia    

2.1.2.1.2.1.2.1. LivLivLivLiver sampleser sampleser sampleser samples    

A large number (44.2 %) of liver samples of zebu (Bos indicus) cattle sampled around 

Jimma, Ethiopia (ChaptersChaptersChaptersChapters 2222 and 6666), contained concentrations of Cu which would 

indicate a deficient status in Bos taurus cattle (Puls, 1988; Suttle, 2010) (Figure 2). As 

explained in the Introduction, trace element status can be negatively affected by dietary 

antagonists. Molybdenum, in combination with S, and Fe are known to have a high 

antagonistic potential towards Cu (Gould & Kendall, 2011). All sampled livers had Mo 

concentrations below excess threshold values, whereas some but not many livers 

contained excess Fe concentrations (Puls, 1988).  

Concentrations of Zn and Co seemed to indicate an adequate status of these elements in 

the sampled Bos indicus cattle (Puls, 1988; Suttle, 2010). For Se and Mn, as shown in the 

Introduction, authors disagree on hepatic threshold values/ranges for deficiency and 

therefore, the evaluation of the status of these elements is inconclusive (Puls, 1988; 

Suttle, 2010). Based upon threshold values of Suttle (2010) many cattle sampled in the 

region were Mn deficient but none Se deficient, although according to Puls (1988), this 

should be reported the other way around. We will elaborate on this subject further 

below.  
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2.2.2.2.2.2.2.2. PlasmaPlasmaPlasmaPlasma    samplessamplessamplessamples    

Compiled data of plasma trace element concentrations in zebu (-influenced) cattle in 

and around Jimma, Ethiopia (Chapter 2, 4, 5, 6 Chapter 2, 4, 5, 6 Chapter 2, 4, 5, 6 Chapter 2, 4, 5, 6 &    7777), largely brought the same 

conclusions as with liver samples (Figure 3). Many (46.8 %) cattle were Cu deficient, 

whereas Zn and Co status could be considered adequate based on comparison with Bos 

taurus thresholds (Puls, 1988; Suttle, 2010). As for the liver samples, for plasma samples, 

interpretations based on different authors resulted in conflicting reports on Mn and Se 

status. Based upon threshold values of Suttle (2010), at least some cattle were Mn 

deficient but none Se deficient, while this was reversed according to Puls (1988).  

Levels of the Cu antagonists were evaluated. None of the sampled cattle had plasma Mo 

concentrations indicating an excessive intake, whereas all cattle exhibited elevated 

plasma Fe concentrations (Puls, 1988; Suttle, 2010). The status of another important 

antagonist of Cu, the macromineral S, remains difficult to determine. The sample of 

choice, rumen fluid (Suttle, 2010), is too invasive to obtain on a regular basis. Despite the 

well described recycling of S from blood through saliva back to the rumen (Kennedy & 

Siebert, 1972), we did not prove that, at higher S intakes, saliva S was a reliable indicator 

of S status either (Chapter 3Chapter 3Chapter 3Chapter 3). The value of plasma S was not investigated yet (Chapter 2Chapter 2Chapter 2Chapter 2). 

Hence, the correct evaluation of bovine S status remains challenging. 
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2.3.2.3.2.3.2.3. Association between liver and plasma samplesAssociation between liver and plasma samplesAssociation between liver and plasma samplesAssociation between liver and plasma samples    

To assess whether plasma levels of trace elements could be used as a predictor of trace 

element status in zebu (-influenced) cattle, we investigated their relation with levels in 

liver, as main storage pool, through scatter plots and the linear regression method 

(Chapters 6 Chapters 6 Chapters 6 Chapters 6 &    7777) (Figure 4). Based on these scatter plots, one would suggest that only 

plasma Co and Se concentrations could weakly predict liver concentrations, at least 

when expressed by linear regression parameters. A rather curvilinear relationship was 

seen for Cu, in agreement with Claypool et al. (1975), whereas a negative association was 

seen for Zn, in line with Littledike et al. (1995).  

However, as mentioned by Minatel & Carfagnini (2002), the dichotomized approach 

might spread a different light on the capacity of plasma concentrations to predict liver 

status. Using our data (Chapters 6 Chapters 6 Chapters 6 Chapters 6 &    7777), we dichotomized the outcome variable, liver 

trace element concentrations, as “adequate” or “deficient” (or “excess” for Mo and Fe) 

and calculated the ability of plasma concentrations to predict this adequate or deficient 

status in the liver by means of the receiver operating characteristic (ROC) method.  

The high area under the curve, as seen in Figure 5, for plasma Cu concentrations, 

indicates that plasma Cu proves to be an excellent diagnostic test for insufficient or 

adequate Cu liver storage, at least for the range of concentrations found in our data. For 

Mn and Fe, dichotomizing the outcome variable liver did not prove to be valuable for 

trace element diagnostics. Other elements couldn’t be tested with ROC curves due to 

absence of liver concentrations below or above cut-off points. 
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As seen above, the establishment of definite diagnostic thresholds for Mn and Se 

deficiency in cattle is problematic. At least threshold values in plasma and liver should 

not lead to conflicting status interpretations within authors, especially for Se, given the 

weak predictive value of plasma Se for liver concentrations in the linear regression 

model.  

Judging on the higher agreement of status evaluation based on liver and plasma 

thresholds (Chapters 6 Chapters 6 Chapters 6 Chapters 6 &    7777), we could state that the Se status evaluation of Suttle (2010) 

has a better performance than the Puls (1988) evaluation (Table 1). For Mn, the Puls 

(1988) plasma and liver thresholds were in better agreement than plasma and liver 

thresholds of Suttle (2010). This, however, does not provide any information on the 

accuracy of these threshold values, merely on their consistency. 

 

 

Figure 5Figure 5Figure 5Figure 5.... Receiver operating characteristic (ROC) 

curves for plasma trace element concentrations as a 

predictor of “deficiency” (for Cu and Mn) or 

“excess” (for Fe), as measured against liver cut-off 

values (Suttle, 2010) in zebu-influenced cattle (n = 

44) sampled in ChaptersChaptersChaptersChapters 6 & 76 & 76 & 76 & 7. Other elements 

couldn’t be tested with ROC curves due to absence of 

liver concentrations below or above cut-off points. 

Sensitivity = proportion of positives correctly 

identified, specificity = proportion of negatives 

correctly identified, AUC = area under the curve.  
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Table 1.Table 1.Table 1.Table 1. Agreement of bovine Se and Mn status evaluation by means of plasma and liver 

thresholds stated by Suttle (2010) and Puls (1988). 

 Percentage of deficiency according to author: 

 Suttle (2010)  Puls (1988) 

Trace element Liver Plasma  Liver Plasma 

Se 0% (0/44) 0% (0/44)  18% (8/44) 89% (39/44) 

Mn 11% (5/44) 48% (21/44)  0% (0/44) 0% (0/44) 

2.4.2.4.2.4.2.4. Factors related with bovine trace element statusFactors related with bovine trace element statusFactors related with bovine trace element statusFactors related with bovine trace element status    

The end stage in the flow of trace elements from soil to animal, namely an adequate 

bovine trace element status, is influenced by a number of factors, other than dietary 

supply. Soil ingestion could have exacerbated the already low Cu status because of the 

large amount of Fe in the soil (Suttle et al, 1984). Active geophagy was not observed in 

the zebu cattle sampled at the region (Chapter 1Chapter 1Chapter 1Chapter 1). However, during the dry season, dust 

particles were floating around and accumulated heavily on plants, with discoloration of 

leaves. Passive soil ingestion through this pathway might have greatly increased the 

intake of trace elements. In the Gilgel Gibe catchment, the reddish Nitisols, as one of two 

most common soil types, are renowned for high levels of Fe (Tulema et al., 2007). 

The influence of other factors was investigated. We compiled data from plasma trace 

element concentrations in sampled zebu (-influenced) cattle in the Gilgel Gibe 

catchment (ChaptersChaptersChaptersChapters 4, 5, 6 & 74, 5, 6 & 74, 5, 6 & 74, 5, 6 & 7). Due to unusual high plasma Fe and Zn concentrations 

in Chapter 2Chapter 2Chapter 2Chapter 2, as mentioned there, we excluded them from the following analyses. In the 

remaining pooled dataset, only weak associations were found between these plasma 

trace element concentrations and age. Age was positively correlated with plasma Se and 

Cu concentrations (Spearman correlation test, r = 0.53 and r = 0.34), whereas a negative 

association was found between age and plasma Zn, Co and Mo concentrations (r= - 0.34, 

r = -0.35, r = -0.21 respectively) (all p ≤ 0.001, Mo: p = 0.035). For Zn and Mo, this is in 

contrast with other data (Herdt & Hoff, 2011) 

Furthermore, in the pooled dataset (ChaptersChaptersChaptersChapters 4, 5, 6 & 74, 5, 6 & 74, 5, 6 & 74, 5, 6 & 7), bulls had higher 

concentrations of Mn (0.064 vs. 0.017 ± 0.007 mg/l (SE)) and Co (4.5 vs. 3.1 ± 0.2 μg/l) 
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(ANOVA, both p < 0.050) than cows. In the same animals (ChaptersChaptersChaptersChapters 4, 5, 6 & 74, 5, 6 & 74, 5, 6 & 74, 5, 6 & 7), cattle 

were assigned a body condition score (BCS), either from 1 to 9 for zebu cattle (Nicholson 

& Butterworth, 1986), or from 1 to 5 for the crossbred cattle (Wildman et al., 1982), 

scores of the latter type were recalculated to the zebu scale. Cattle with a BCS of the 

highest category (scores 7, 8 or 9 on the scale of 1 to 9) had the highest plasma Cu (0.84 

vs. 0.70 and 0.68 ± 0.02 mg/l) and Se (0.072 vs. 0.066 and 0.053 ± 0.002 mg/l) 

concentrations and at the same time the lowest Zn (0.94 vs. 1.2 and 1.1 ± 0.03 mg/l) (all p 

< 0.050) and a trend for the lowest Mo concentrations (0.029 vs. 0.037 and 0.037 ± 0.001 

mg/l) (p = 0.080) over cattle with a medium (scores 4, 5 or 6) or low BCS (scores 1, 2 or 3). 

Although not significantly different, we did see increasing plasma Fe concentrations as 

the BCS lowered (high BCS: 1.68, medium: 1.78, low: 1.87 ± 0.05 mg/l). 

From most of these factors, it is not known whether these are circumstantial and 

confounding factors (e. g. due to higher DM intake in male animals, as suggested by 

Miranda et al. (2007) or higher requirements in female animals in reproductive stages), a 

consequence rather than a cause (e. f. a lower BCS because of diarrhoea in Cu deficient 

cattle, Mills et al. (1976)) or really indicating a difference related to trace element 

metabolism. 

Besides the above mentioned factors, evidence is piling up on breed sensitivity towards 

trace elements deficiency. Upon comparison of plasma trace element concentrations of 

Bos indicus and Bos indicus × Bos taurus cattle sampled in the Gilgel Gibe catchment 

(ChaptersChaptersChaptersChapters 4, 5, 6 & 74, 5, 6 & 74, 5, 6 & 74, 5, 6 & 7), without taking any trial or diet effect into consideration, we found 

higher Zn (1.3 vs. 1.0 ± 0.03 mg/l), Mn (0.055 vs. 0.017 ± 0.007 mg/l) and Co (4.9 vs. 2.7 ± 

0.2 μg/l) concentrations in zebu cattle (simple independent t-test, all p ≤ 0.005), whereas 

higher Se (0.068 vs. 0.052 ± 0.002 mg/l) and Cu (0.76 vs. 0.68 ± 0.02 mg/l) concentrations 

were found in crossbred cattle (p < 0.001, p < 0.050 respectively). These differences were 

probably at least partly caused by differences in dietary supply, namely a more 

intensive feeding system with higher quality concentrates fed to the crossbred dairy 

cattle in Chapter 5Chapter 5Chapter 5Chapter 5, whereas zebu cattle were extensively kept, typically grazing on poor 

pastures. Another study, however, presented in this PhD thesis, indicated that the B. 

indicus type rather has a more efficient Cu metabolism than the Bos indicus × Bos taurus 

type, with higher plasma and liver trace element concentrations and a more active 
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mRNA expression of Cu related proteins and chaperone, when fed an identical Cu 

deficient diet (Chapter 7Chapter 7Chapter 7Chapter 7). In this trial, zebu cattle also had higher plasma 

concentrations of Zn and Co and higher tissue concentrations of Fe, Se and Co. Further 

research is warranted to unravel the true metabolic background of these exciting 

differences between cattle types. 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

Concomitantly with the low dietary trace element supply found in the Gilgel Gibe catchment, 

low trace element concentrations were found in transport and storage pools of sampled zebu-

influenced cattle in the region. More specifically, Cu deficiency was observed in almost half of 

sampled animals (Chapter 2, 4, 5, 6 and 7Chapter 2, 4, 5, 6 and 7Chapter 2, 4, 5, 6 and 7Chapter 2, 4, 5, 6 and 7), based on status evaluation by means of plasma and 

liver samples. However, the value of Bos taurus threshold values necessary to assess trace 

element status has not been investigated yet for zebu-influenced cattle. Depending on 

thresholds from different authors, Mn and/or Se deficiency was present in cattle in the area. 

The status of other trace elements seemed adequate. Based on the tissue levels, Fe seemed the 

most important Cu antagonist for cattle in the region, which is in line with forage data. The 

status of another antagonist, S, remained difficult to determine, and saliva concentrations did 

not prove to be indicative of rumen fluid S concentrations (Chapter 3Chapter 3Chapter 3Chapter 3). Linear regression 

analysis showed that for Co and Se, plasma samples could be useful for prediction of liver 

values (Chapter 6 & 7Chapter 6 & 7Chapter 6 & 7Chapter 6 & 7). Using the dichotomized approach, plasma Cu concentrations proved to 

be very strong predictors of liver concentrations above or below cut-off point for deficiency 

(Chapter 6 & 7Chapter 6 & 7Chapter 6 & 7Chapter 6 & 7). Factors related with a certain trace element status (Chapter Chapter Chapter Chapter 4, 5, 6 and 74, 5, 6 and 74, 5, 6 and 74, 5, 6 and 7) were 

age, sex, body condition score and type of cattle. More research is needed to fully unravel the 

extent of the impact of these factors, particularly in zebu cattle. Moreover, the potential 

difference in trace element metabolism between different types (Bos indicus vs. Bos indicus × 

Bos taurus) of cattle (Chapter 7Chapter 7Chapter 7Chapter 7) requires extra attention, as it might have a huge impact on 

the optimal nutritional management of these animals. 
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3.3.3.3. Effects of trace element status in zebuEffects of trace element status in zebuEffects of trace element status in zebuEffects of trace element status in zebu        

((((----influenced cattle)influenced cattle)influenced cattle)influenced cattle)    

3.1.3.1.3.1.3.1. PerPerPerPerformanceformanceformanceformance    

3.1.1. AntiAntiAntiAnti----oxidant status, immunity and disease resistanceoxidant status, immunity and disease resistanceoxidant status, immunity and disease resistanceoxidant status, immunity and disease resistance    

In zebu and crossbred cattle sampled around the Gilgel Gibe catchment, trace element 

(Zn, Cu, Mn, Se, Co and I) supplementation did not seem to affect anti-oxidant status. In 

zebu cattle, increased plasma trace element concentrations did not coincide with higher 

levels of superoxide dismutase (Cu, ZnSOD) or ceruloplasmine (Cp) (Chapter 4Chapter 4Chapter 4Chapter 4). For SOD, 

this is largely in contrast with other work supplementing Cu to cattle (Xin et al., 1991; 

Arthington et al., 1996; Ward & Spears, 1997), although Gengelbach and Spears (1998) did 

not observe differences in SOD either. Arthington et al. (1996) and (Gengelbach & Spears, 

1998) saw an increase in Cp during Cu supplementation. In crossbred zebu cattle, 

Sharma et al. (2005) saw an increase in levels of both enzymes. Some authors even 

suggest to use Cp as an indicator of Cu reserve (Blakley & Hamilton, 1985). In 

comparison with that study, pooling all data from Chapter 4Chapter 4Chapter 4Chapter 4 without taking any animal 

effect into consideration, resulted in a weak association of plasma Cu with Cp levels 

(Spearman correlation test, r = 0.46, p = 0.001). The cause of differences between our 

data and other reported results is unclear. 

Furthermore, no effects of a trace element mix (Zn, Cu, Se and Co) on measures of 

oxidative stress (thiobarbituretic acid reactive species (TBARS)) and anti-oxidant 

capacity (ferric reducing ability (FRAP)) were observed in crossbred cattle kept under 

tropical conditions despite increased plasma trace element concentrations (Chapter 5Chapter 5Chapter 5Chapter 5). 

In contrast, Calamari et al. (2011) found lowered TBARS values in heat-stressed Se 

supplemented cows. Other studies investigating the effect of Cu and Zn 

supplementation on TBARS and FRAP studied in our work seem to be absent. However, 
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plasma Fe concentrations and TBARS levels were positively associated (Chapter 5Chapter 5Chapter 5Chapter 5), 

indicating the impact of high dietary supply of this element on oxidative stress. This is 

confirming earlier work, stating that, high dietary Fe levels (see section 2) are highly 

cytotoxic and will cause peroxidative damage to lipid membranes (Jenkins & Kramer, 

1988). 

Next to the lack of effects on anti-oxidant status, no effects of the trace element mix 

(Zn, Cu, Se, Co and I) were observed on immunity, measured by antibody response to 

rabies vaccination in crossbred dairy cattle kept in and around Jimma (Chapter 5Chapter 5Chapter 5Chapter 5), 

despite raised trace element concentrations in plasma of the supplemented group. This 

is largely in line with literature conclusions mentioned in the Introduction, stating that 

for Zn and Cu, no effects on humoral response are known. For Se, however, our data are 

contrasting the current knowledge in the field, as this element is mostly reported to 

affect this antibody response (Spears, 2000; Weiss & Spears, 2006; Spears & Weiss, 2008). 

In zebu beef cattle, Reis et al. (2009) did also observe a better antibody response in Se 

supplemented cattle than in controls and Mandal et al. (2007) even reported the positive 

effect of Zn supplementation in crossbred bulls. Other components of the immune 

system were considered out of the scope of this work. 

Furthermore, our data also did not report any effects of the trace element mix (Zn, Cu, 

Se and Co) on disease response, as expressed by California mastitis test (CMT) scores 

detecting subclinical mastitis in crossbreed cattle kept under tropical conditions 

(Chapter 5Chapter 5Chapter 5Chapter 5), despite raised trace element concentrations in plasma in the supplemented 

group. Furthermore, no differences in plasma trace element concentrations were found 

between animals with different CMT scores at pre-interventional sampling point 

(ANOVA, all p > 0.050) (Chapter 5Chapter 5Chapter 5Chapter 5). Again, for Se, this is largely contradicting literature 

data (Weiss et al., 1990; Spears, 2000). Positive effects of Cu and Se supplementation on 

somatic cell count (SCC) reduction were found in studies of Scaletti et al. (2003) and 

Weiss et al. (1990), respectively, whereas, Juniper et al. (2006) detected no differences for 

Se supplementation. In the study of Sobhanirad et al. (2010) even Zn supplementation 

tended to induce a CMT difference in comparison with the control group. However, 

under practical farming conditions, Enjalbert et al. (2006) did not report an increased 

odds ratio for mastitis in Zn or Se deficient animals and Machado et al. (2013) did not 



232232232232                General DiscussionGeneral DiscussionGeneral DiscussionGeneral Discussion    

 

 

find a lower odds ratio for mastitis in Se, Co, Zn and Mn treated animals. Yet, in the 

latter study, the treatment did influence the odds ratio for subclinical mastitis (Machado 

et al., 2013). For more literature on this and the previous paragraph, please refer to 

Chapter 5Chapter 5Chapter 5Chapter 5. 

It seems that there is still some gap between theory and practice, between controlled 

experiments and practical farming conditions, which could indicate that the full impact 

of management might be greater than is currently known. 

3.1.2. ProductionProductionProductionProduction    

Our study investigating the short term effects of a complete trace element mix (Zn, Cu, 

Mn, Se, Co and I) in zebu beef cattle, did not indicate an effect on dietary digestibility nor 

on live performance parameters (Chapter Chapter Chapter Chapter 4444) (Table 2), despite increased trace element 

concentrations in plasma. Mandal et al. (2007) observed the same in crossbred bulls 

supplemented with Zn. Moreover, the data obtained in this study did not show 

associations between pre-interventionally measured parameters and plasma trace 

element concentrations (Spearman correlation test, all p > 0.050). 

Table 2.Table 2.Table 2.Table 2. Performance parameters in control and trace element supplemented zebu (Bos indicus) 

bulls during a four weeks supplementation (Zn, Cu, Mn, Se, Co and I) trial (Chapter 4Chapter 4Chapter 4Chapter 4). 

Control Trace element mix SEM p-value 

Initial weight, kg 156 170 7 0.369 

Final weight, kg 161 179 9 0.339 

DMI, kg/d 3.2 3.5 0.2 0.419 

ADG, kg/d 0.15 0.30 0.08 0.384 

Gain:Feed 0.04 0.09 0.02 0.304 

DMI = dry matter intake, ADG = average daily gain, SEM = standard error of means 

Literature data are inconsistent on effects of trace element status on live performance 

characteristics in beef cattle. For Cu, some studies report positive effects (Ward & 

Spears, 1997; Hansen et al., 2008) whereas in others, effects are absent (Ward et al., 1993; 

Bailey et al., 2001; García-Vaquero et al., 2011) or even negative (Engle & Spears, 2000). In 

zebu cattle, Kabaija & Little (1991) did not report differences in weight gain in Cu 

supplemented and control bulls, but both Howard (1970) and Roeder (1980) did observe 
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a greater weight gain in zebu beef cows due to treatment with Cu and Co. For Zn, 

reported differences in live performance parameters in supplemented and non-

supplemented animals, were rather small (Spears & Kegley, 2002) and both for Se and 

Mn, effects seem absent (Se: Droke & Loerch, 1989; Mn: Legleiter et al., 2005). 

In urban crossbred dairy cattle kept under tropical conditions, notwithstanding raised 

plasma trace element concentrations, a trace element mix (Zn, Cu, Se and Co) did not 

influence milk yield or component yields (Chapter 5Chapter 5Chapter 5Chapter 5), results comparable with other 

trace element supplementation studies (Cu: Engel et al., 1964; Engle et al., 2001; Se: 

Juniper et al., 2006; Zn: Sobhanirad et al., 2010). Also, in crossbred zebu, Zn 

supplementation did not induce a higher milk yield (Sharma & Joshi, 2005). However, at 

pre-interventional sampling a negative association existed between milk yield and 

plasma Mo (Spearman correlation, r = -0.48, p < 0.001). Moreover, Enjalbert et al. (2006) 

reported a significantly higher odds ratio for low milk production (as reported by the 

dairy farmer) in Zn deficient cattle.  

More on-farm trials should aim to unravel the complex interaction between 

management and nutrition related to milk and component yield, resulting in either 

successful supplementation effects or failure to induce any effect. 
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3.2.3.2.3.2.3.2. TraTraTraTrace elements in animal productsce elements in animal productsce elements in animal productsce elements in animal products    

3.2.1. Meat and organsMeat and organsMeat and organsMeat and organs    

Reported trace elements concentrations in edible tissues of B. taurus and B. indicus cattle 

(including data from Chapter 6Chapter 6Chapter 6Chapter 6) are presented in Table 3, 4, 5 and 6.  

In general, few data are available on tissue trace element concentrations, especially for 

B. indicus-cattle. Furthermore, considering differences in trace element concentrations 

in different types of muscles (García-Vaquero et al., 2011, Chapter 6Chapter 6Chapter 6Chapter 6) and seen that 

authors rarely describe the specific muscle sampled, comparison of literature data for 

this tissue is difficult. 

Conclusions 

In zebu and crossbred cattle originating from the Gilgel Gibe catchment, Ethiopia, consuming 

diets low in trace elements and with an inadequate trace element status as a consequence, 

trace element supplementation raised trace element concentrations in the plasma transport 

pool (Chapter 4 & 5Chapter 4 & 5Chapter 4 & 5Chapter 4 & 5). Nonetheless, in the same cattle, we did not witness any beneficial effects 

of such trace element supplementation on anti-oxidant status, immunity and disease 

resistance or on production (Chapter 4 & 5Chapter 4 & 5Chapter 4 & 5Chapter 4 & 5). More specifically, trace element supplementation 

did not seem to increase levels of the antioxidant enzymes (Cp and SOD) in zebu cattle (Chapter Chapter Chapter Chapter 

4444), nor did it seem to increase measures of antioxidant power (FRAP) or decrease the amount of 

oxidative stress (TBARS) in crossbred cattle (Chapter 5Chapter 5Chapter 5Chapter 5). Likewise, no effect was observed on 

immune response (antibody titer upon vaccination) nor on disease resistance (degree of 

mastitis) in crossbred cattle (Chapter 5Chapter 5Chapter 5Chapter 5). Finally, trace element supplementation did not seem 

to affect production, neither in the more beef orientated zebu cattle (Chapter 4Chapter 4Chapter 4Chapter 4) nor in the 

dairy crossbred cattle (Chapter 5Chapter 5Chapter 5Chapter 5). Comparable studies in zebu cattle are largely absent. At the 

same time, contradicting study reports exist on almost all of the above mentioned subjects in 

Bos taurus cattle, probably partly because the large heterogenuity of experiments performed. 

Particularly, studies investigating the effects of trace element supplementation under field 

conditions are essential to unravel the magnitude of trace element status impact on cattle 

performance and production. 
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Table 3.Table 3.Table 3.Table 3. Literature review of trace element concentrations in bovine liver (mg/kg WW) 

Reference Country Cu Mo Fe Zn Mn Se Co 
B. taurus         

Blanco-Penedo et al. (2006) Spain 90 1.4 44 54 3.5 0.2 0.07 

Korsrud et al. (1985) Canada 28 - - 45 - 0.3 - 

López-Alonso et al. (2000) Spain 60 - - 60 - - - 

López-Alonso et al.(2004)1 Spain 40 1.1 70 49 2.4 0.2 0.10 

Nriagu et al. (2009) Jamaica 20 - - 30 - 0.4 - 

Pavlata et al. (2001) Czech Republic - - - - - 0.1 - 

Sedki et al. (2003) Morocco 32 - - 37 - - - 

Waegeneers et al. (2009) Belgium 80 - - 40 - - - 

         

B. indicus2         

Frøslie et al. (1983a,b) Kenya 21 - - 37 - 0.1 - 

Khalili et al. (1993) Ethiopia 4 - 293 42 4.1 - - 

Tartour (1975) Sudan 67 - - - - - - 

Chapter 6Chapter 6Chapter 6Chapter 6    Ethiopia 18 1.1 118 47 3.8 0.2 0.20 

1Geometric mean, 2Presumably B. indicus cattle based upon location or mentioned as such 

Table 4.Table 4.Table 4.Table 4. Literature review of trace element concentrations in bovine kidney (mg/kg WW) 

Reference Country Cu Mo Fe Zn Mn Se Co 

B. taurus         

Blanco-Penedo et al. (2006) Spain 4.6 0.5 59 26 1.2 1.4 0.03 

Korsrud et al. (1985) Canada 5.4 - - 22 - 0.8 - 

López-Alonso et al. (2000) Spain 3.7 - - 22 - - - 

López-Alonso et al. (2004)1 Spain 3.1 0.3 51 15 0.7 1.0 0.04 

Nriagu et al. (2009) Jamaica 3.9 - - 20 - 1.0 - 

Sedki et al. (2003) Morocco 7.3 - - 20 - - - 

Waegeneers et al. (2009) Belgium 5.0 - - 18 - - - 

         

B. indicus × B. taurus         

Benemariya et al. (1993)b Burundi 3.4 - - 23 - 1.4 - 

         

B. indicus         

Chapter 6Chapter 6Chapter 6Chapter 6    Ethiopia 3.3 0.5 97 27 1.3 1.1 0.10 

1Geometric mean, 2Presumably B. indicus crossbred cattle based upon location or mentioned as such 

In sampled zebu cattle originating from different places in the Gilgel Gibe catchment, 

Ethiopia, low tissue levels of Se and especially Cu were found, in combination with high 

levels of Fe (ChapterChapterChapterChapter    6666). In literature, reported tissue concentrations of Cu 
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concentrations seem to be generally low or at the lower border of adequacy reported by 

Puls (1988), especially in B. indicus cattle. On the contrary, in literature, liver, kidney and 

muscle Fe seem to be at the higher end of or above adequacy ranges stated by the same 

author (Puls, 1988).  

Table 5.Table 5.Table 5.Table 5. Literature review of trace element concentrations in bovine muscle (mg/kg WW) 

Source Country Cu Mo Fe Zn Mn Se Co 

B. taurus         

Cabrera et al. (2010)1 Uruguay 0.4 - 42 25 0.2 0.62 - 

de Freitas et al. (2014)2 Brazil - - 13 34 - - - 

Duckett et al. (2009)a,2 USA - - 17 41 - - - 

García-Vaquero et al. (2011)1 Spain 0.8 0.13 19 35 0.1 0.10 0.004 

Huerta-Leidenz et al. (2003)a,2 Venezuela 0.8 - 19 41 0.3 - - 

Leheska et al. (2008)a,4 USA 0.7 - 20 41 0.1 0.18 - 

López-Alonso et al. (2000)3 Spain 1.3 - - 53 - - - 

López-Alonso et al. (2004)b,3 Spain 1.7 0.09 39 50 0.2 ND 0.016 

Pavlata et al. (2001)3 Czech Republic  - - - - - 0.04 - 

Sedki et al. (2003)4 Morocco 1.0 - - 27 - - - 

Waegeneers et al. (2009)4 Belgium 1.6 - - 43 - - - 

         

B. indicus × B. taurus         

Benemariya et al. (1993)c, 4 Burundi 1.1 - - 54 - 0.20 - 

Cabrera et al. (2010)1 Uruguay 0.6 - 38 24 0.5 0.55 - 

de Freitas et al. (2014)2 Brazil - - 13 35 - - - 

Giuffrida-Mendoza et al. (2007)2 Venezuela 0.9 - 18 38 0.1 - - 

         

B. indicus         

Chapter 6Chapter 6Chapter 6Chapter 61 Ethiopia 0.7 0.07 29 27 0.8 0.10 0.020 

aUnsure whether B. taurus or crossbred, bGeometric mean, cPresumably B. indicus × B. taurus crossbred cattle 

based on location, 1Semitendinosus muscle, 2Longissimus dorsi thoracis muscle, 3Diafragm muscle, 4Not-

specified 

Adequate concentrations are generally observed for Zn, whereas Mn concentrations are 

rather low and Se often too low in comparison with ranges for adequacy of Puls (1988). 

This all might point to a generalized trace element imbalance in the cattle sampled in 

literature. However, it might also indicate that the ranges mentioned by Puls (1988) 

need to be re-evaluated, as they might not reflect bovine trace element status well. The 
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need for clarification is urgent as such reported ranges have a large impact on how we 

evaluate tissue concentrations in cattle.  

Table 6.Table 6.Table 6.Table 6. Literature review of trace element concentrations in bovine heart (mg/kg WW) 

Reference Country Cu Mo Fe Zn Mn Se Co 
B. taurus         
García-Vaquero et al. (2011) Spain 4.4 0.02 45 17 0.3 0.3 0.01 
         
B. indicus × B. taurus         

Benemariya et al. (1993)1 Burundi 4.0 - - 20 - 0.3 - 
         
B. indicus         

Chapter 6Chapter 6Chapter 6Chapter 6    Ethiopia 3.5 0.09 49 18 0.6 0.2 0.06 

1Presumably B. indicus × B. taurus crossbred cattle based on location 

Furthermore, few studies have investigated potential differences in trace element 

distribution both within the Bos taurus type of cattle and between Bos taurus and Bos 

indicus cattle. When comparing literature data on B. taurus and B. indicus cattle, liver and 

kidney Fe concentrations as well as cardiac Mo concentrations seemed higher in B. 

indicus than in B. taurus cattle. Moreover, seemingly, tissue Co concentrations are often 

higher in B. indicus than in B. taurus cattle (see also Chapter 7Chapter 7Chapter 7Chapter 7). Tissue concentrations in 

B. indicus and B. indicus × B. taurus crossbred cattle also reacted remarkably different to 

the prolonged consumption of a Cu deficient diet (Chapter 7Chapter 7Chapter 7Chapter 7). 

In the above mentioned cattle, sampled in Ethiopia, we investigated the association 

between trace element concentrations in liver as the main storage organ and other 

tissues, in order to unravel the impact of trace element status on tissue distribution 

(Chapter 6 & 7Chapter 6 & 7Chapter 6 & 7Chapter 6 & 7). For this analysis, we excluded all values below detection limits. Overall, 

concentrations of trace elements in zebu (-influenced) kidney, semitendinosus muscle 

and heart mirrored liver concentrations very poorly (most r² < 0.20). Few exceptions 

were present, with Co concentrations in semitendinosus muscle and kidney being a 

reasonable reflection of liver Co status (r² = 0.52, r² = 0.49, respectively, both p ≤ 0.001) 

and cardiac concentrations of Se representing liver Se status reasonably well (r² = 0.52, p 

< 0.001). To a much lower degree, Se in semitendinosus muscle, Co in cardiac muscle and 

Zn in kidney were indicative of liver Se, Co and Zn status respectively (r² = 0.24, r² = 0.18, 

r² = 0.23, all p ≤ 0.001).  
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However, as mentioned above, linear regression analysis is not the only tool to analyse 

associations and using other methods might spread a different light on this subject. 

When using Spearman correlation tests, we generally saw a greater coherence between 

liver status and tissue distribution as already emphasized in Chapter 6Chapter 6Chapter 6Chapter 6. Results from the 

compiled dataset with removed concentrations below detection limits, were comparable 

to those in Chapter 6 Chapter 6 Chapter 6 Chapter 6 (Table 6.3), although now, we did also see an improved association 

between liver status and semitendinosus muscle concentrations of Co and Zn (r = 0.65, p 

= 0.001; r = -0.29, p = 0.010, respectively) as well as between liver Se status and kidney Se 

concentrations (r = 0.24, p = 0.037).  

Thus, the renally excreted Se and Co exhibit the strongest link between liver status and 

distribution to other tissues, which is in agreement with the statements of Windisch & 

Ettfie (2008). The distribution of Zn seems odd with a negative association between liver 

and muscle storage in line with Blanco-Penedo et al. (2010), but it is known that a real 

storage pool for Zn is absent (Suttle, 2010), as mentioned in the Introduction. For the 

other trace elements, failure to observe a good agreement between linear regression 

and Spearman correlation results might, among others, indicate a non-linear relation 

between the two variables. For these elements, Cu, Fe, Mn and Mo, this non-linear 

association may adhere to the theoretical curvilinear pattern of distribution between 

liver and other storage sites (Suttle, 2010; Herdt & Hoff, 2011), as demonstrated in the 

Introduction. Overall, trace element status is definitely affecting tissue storage and 

therefore the trace element supply for human nutrition.  

To evaluate the potential value of Ethiopian zebu tissue for human trace element supply, 

we compared trace element concentrations in 100 g of tissue (Chapter 6Chapter 6Chapter 6Chapter 6), called a 

portion, with recommended daily allowance for adult men and women as advised by the 

Food and Nutrition Board and Institute of Medicine (2000a,b) (Figure 6 & 7).  

Overall, portions of kidney and liver could contribute a reasonable amount of trace 

elements for human nutrition. For instance, daily recommendations for Mo and Se 

would easily be met through consumption of 100 g of liver and kidney respectively. 

Moreover, a portion of liver and kidney could provide enough Fe for men, while 
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menstruating women would require additional sources of this element (Food and 

Nutrition Board, Institute of Medicine, 2000a,b).  

In contrast, the two muscle types were generally poor suppliers of trace elements with 

the cardiac muscle being a slightly better supplier for almost all trace elements. A 

portion of zebu semitendinosus muscle generally contributed similar amounts for 

human nutrition as reported by Cabrera et al. (2010), although Se and Fe were lower in 

our study (Chapter 6Chapter 6Chapter 6Chapter 6). Generally, daily Zn and Mn requirements could not be reached 

through consumption of 100 g of any the sampled tissues (Figure 7). Equally important, 

Figure 7 also calls for a nuanced assessment of trace element supply for humans 

through zebu tissue, as for some tissue trace elements, concentrations were very 

variable which would lead to an inaccuracy when simply using average trace element 

content. For instance, on average, consumption of 100 g of liver would supply enough 

Cu for both men and women, although such a portion did not meet human Cu 

requirements in the majority of sampled livers (Figure 7).   
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3.2.2. MilkMilkMilkMilk    

Crossbreeding B. indicus and B. taurus is mainly executed in order to obtain a higher 

production and reproduction. In the case of crossbreeding zebu with Holstein Friesian 

cattle, a higher milk production is the main objective (Abraha et al., 2009; Fekadu et al., 

2011). In crossbred urban dairy cattle sampled around Jimma, Ethiopia, milk samples 

generally contained normal levels of trace elements upon comparison with adequate 

ranges stated by Puls (1988) (Chapter 5Chapter 5Chapter 5Chapter 5), although Cu and Se concentrations were rather 

low and Mn concentrations rather high. However, our results are quite similar to values 

reported in other studies (Table 7).  

Studies investigating milk mineral levels in B. indicus (or crossbreeds) are rare, 

rendering a comparison difficult. Concentrations of trace elements in milk in B. taurus 

and B. indicus (or crossbreeds of the latter) seem generally quite similar, but 

concentrations of Mn seem higher in zebu (-influenced cattle).  

Table 7.Table 7.Table 7.Table 7. Literature review of trace element concentrations in bovine milk (mg/l) 

Reference Country Cu Mo Fe Zn Mn Se Co 
B. taurus         
Flynn (1992) Several 0.09 0.05 0.50 3.5 0.03 0.010 0.001 
Fransson & Lönnerdal (1983) USA 0.10 - 0.29 3.5 - - - 

Rey-Crespo et al. (2013)1 Spain 0.07 0.04 0.35 3.9 0.03 0.019 0.005 

Elmastas et al. (2005) Turkey 0.07 - - 8.2 - - - 

Admasu et al. (2008) Ethiopia - - 1.40 5.0 - - - 
         

B. indicus × B. taurus         

Admasu et al. (2008) Ethiopia - - 1.60 4.5 - - - 

Benemariya et al. (1993)2 Burundi 0.10 - - 4.4 - 0.026 - 

Raghu (in press) India 0.15 - - 3.7 0.12 - - 

Chapter 5Chapter 5Chapter 5Chapter 5    Ethiopia 0.09 0.06 0.59 4.0 0.10 0.022 0.005 
         
B. indicus         

Murray et al. (1980) Kenya - - 0.34 - - - - 

Raghu (in press) India - - - 4.9 0.09 - - 

Salih et al. (1987) USA 0.32 0.04 0.51 4.2 0.09 0.010 - 

1Geometric mean in supermarket milk, 2Presumably B. indicus × B. taurus crossbred cattle, based on location 

In the sampled crossbred dairy cattle, we also investigated the impact of trace element 

status on milk trace element concentrations (Chapter 5Chapter 5Chapter 5Chapter 5) (Table 8). No liver samples, 

considered the golden standard for evaluating bovine trace element status, were 
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obtained in this study, hence, we employed plasma concentrations as proxy. Using 

linear regression, milk concentrations of almost all trace elements reflected plasma 

status very poorly (all r² < 0.10, p > 0.050). As an exception, milk concentrations of Se, 

mirrored plasma concentrations reasonably well, whereas for Co, only a poor relation 

was found (r² = 0.39, r² = 0.11 respectively, both p < 0.001). Results of Spearman 

correlation tests largely brought the same conclusions, except for milk Cu, of which 

concentrations were also significantly correlated with plasma Cu concentrations (Table 

8). Our results are in line with earlier research for Co and Se, although the link found in 

our data is stronger for Se (Se: Knowles et al., 1999: r² = 0.24; Co: Kincaid & Socha, 2007: 

no r² calculated). 

Table 8.Table 8.Table 8.Table 8. Spearman rank coefficients for correlation between plasma and milk mineral 

concentrations (Chapter 5Chapter 5Chapter 5Chapter 5) 

  Plasma 

 Cu Mo Fe Zn Mn Co Se 

M
il

k 

Cu 0.234**  

Mo 0.007  

Fe 0.150  

Zn 0.077  

Mn 0.151  

Co 0.192*  

Se 0.591** 

*p < 0.050, **p < 0.001 

Milk of B. indicus × B. taurus cattle sampled in and around Jimma, Ethiopia, generally 

contributed very little to meet human requirements of Cu, Fe and Mn (Chapter 5Chapter 5Chapter 5Chapter 5) (Figure 

8). On the contrary, milk seemed a good supplier of Zn and Se for human nutrition and 

very large supplier of Mo. The Cu and Fe findings are generally in agreement with the 

calculations of Cashman (2006) for Bos taurus cattle, but contributions of Zn, Mo and Mn 

seem much higher. Yet, for some elements, milk concentrations were variable and 

should again be used with care when considering the potential contribution to human 

nutrition. 
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Figure 8.Figure 8.Figure 8.Figure 8. Trace element contents in 200ml of B. indicus × B. taurus crossbred cattle (pre-

interventional time-point) (Chapter 5Chapter 5Chapter 5Chapter 5) and the contribution of the mean trace element 

concentrations for human nutrition, according to requirements established by Food and 

Nutrition Board, Institute of Medicine (2000a,b).  
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4.4.4.4. Future perspectivesFuture perspectivesFuture perspectivesFuture perspectives    

As demonstrated in this PhD thesis, the low trace element supply in forages in tropical 

areas will inevitably cause trace element imbalances in grazing zebu cattle. 

Unfortunately, bovine trace element-related pathologies are neither restricted to these 

regions, nor to this type of cattle alone. Worldwide, both grazing and stall-fed cattle are 

prone to an imbalanced trace element supply, deficient or toxic, in an acute or chronic 

manner. Based on the compiled work, investigating trace elements in zebu cattle in a 

selected area with frequently observed deficiencies, we were able to shed some new 

light on many aspects of trace elements in cattle. Below are some proposals for 

continued research in this exciting field (Figure 9). 

Conclusions 

In zebu and crossbreed cattle grazing at the Gilgel Gibe catchment, Ethiopia, low dietary 

supply of trace elements and low trace element status coincided with lowered trace element 

distribution and secretion (Chapter Chapter Chapter Chapter 5 & 5 & 5 & 5 & 6666). In zebu cattle, low tissue levels of Cu and Se were 

observed, whereas Fe levels were rather high, based upon comparison with reported ranges for 

Bos taurus cattle and other literature (Chapter 6Chapter 6Chapter 6Chapter 6). Based on ranks, for most elements, kidney 

trace element concentrations were reasonably associated with trace element status. For 

concentrations in muscle (semitendinosus and cardiac muscle), this was less pronounced, but a 

strong association with status was observed for Co and Se (Chapter 6Chapter 6Chapter 6Chapter 6). On average, the 

potential contribution of a portion of kidney and liver to human trace element nutrition was 

large, whereas both muscle types were poor suppliers of trace elements for humans (Chapter Chapter Chapter Chapter 

6666). In crossbred dairy cattle, milk concentrations of Cu and Se were low and Mn concentrations 

high, but all were within reported normal ranges (Chapter 5Chapter 5Chapter 5Chapter 5). Based on ranks, for most 

elements, a poor association was observed between milk trace element concentrations and 

trace element status, except for milk Se, which corresponded reasonably well with status 

(Chapter 5Chapter 5Chapter 5Chapter 5). A glass of milk was a rather poor supplier of trace elements for human nutrition, 

except for Mo (Chapter 5Chapter 5Chapter 5Chapter 5). More studies are needed to unravel the factors which contribute to 

any remaining variation in the association between trace element status and trace element 

distribution and secretion. 
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First of all, both for farmers and researchers, it is of utmost importance to be able to 

accurately evaluate bovine trace element status, for farmers to identify those animals 

suffering most from imbalanced supply and the need for intervention, and for 

researchers to truly investigate all effects (e.g. on health, production) of this status. 

Therefore, it is necessary to perform large scale studies to set or at least refine current 

diagnostic ranges for status, especially in liver and plasma samples, as at present, ranges 

for deficiency or adequacy remain ill-defined. For some elements, these samples seem 

poor responders to changing dietary intake. Moreover, in remote areas, preservation 

and analysis of these samples might be hampered. In both cases, researchers should 

investigate alternative samples or methods to evaluate status, adapted to practical 

farming.  

In case of deficiency, supplementation is a valuable tool to improve trace element 

status, but it is often very costly to implement this measure and especially for grazing 

cattle, desired trace element intake is not guaranteed. In other regions, 

supplementation is restricted because of environmental impact concerns or a shift to 

organic farming systems. The present work is pointing to the intimate association 

between environment and management, with an impact on trace element content of the 

grazed diet. A different approach to trace element imbalance could be developed by 

scientists, taking both specific physical characteristics of grasslands and local grazing 

customs into account. Additionally, tracking plants accumulating trace elements and 

exploring their use, might offer an effective and sustainable tool to meet trace element 

requirements of grazing cattle, worldwide. 

Furthermore, at present, a knowledge gap still exists on biochemical pathways and 

bodily processes affected by trace element status, as the etiology of some trace element 

responsive symptoms remains unclear. Also, long-term effects of suboptimal status, the 

stage before deficiency, are not well mapped. Consequently, fundamental research with 

a comparative approach across animal species continues to have its role in trace 

element research. Yet, the present work also suggests that despite the clear theory, with 

a fully unravelled mechanistic background, the practice is whimsical. Fundamental 

research should therefore always be tested in field trials, to investigate the nature of 

any loose ends between practice and theory. 
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Moreover, trace element status is affecting trace element concentrations in organs, 

meat and milk, which should be further confirmed in new studies. In spite of this work, 

few studies were performed to unravel complete distribution patterns during different 

trace element supply stages. Considering the potential contribution of these tissues for 

human trace element supply, surely, we should not leave such an important field 

uninvestigated.  

Finally, we return to our starting point, both the tool and the subject of this work: trace 

elements in zebu cattle. At present, studies are too few to make general statements on 

specific characteristics of trace element metabolism in zebu cattle, but the present work 

does suggest that these cattle might cope differently with deficiency. In fact, to be able 

to fully investigate this subject, renewed knowledge on all above mentioned themes is 

urgently needed. 

 

Figure 9.Figure 9.Figure 9.Figure 9. Future perspectives on trace element research in (zebu) cattle. 
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Worldwide, grazing cattle are prone to trace element deficiencies. The IntroductionIntroductionIntroductionIntroduction 

elaborated on current knowledge on trace elements in cattle. In an ideal world, trace 

elements, gifts of nature, freely cycle from soil through plant to animal and back. 

However, such equilibrium is rarely observed. In spite of earlier research, all factors 

affecting the trace element flow, hampering or facilitating the achievement of an 

optimal bovine trace element status were not completely mapped. Furthermore, more 

insights are needed on the broad impact of bovine trace element status as for instance, 

reported effects of trace element status on immunity and production are conflicting, 

and rarely, these effects were studied under practical farming conditions. Additionally, 

the influence of trace element status on trace element concentrations in edible tissues 

and milk, potentially affecting human trace element supply, is not well understood. 

Moreover, little research has been performed on trace element nutrition in zebu cattle, 

the dominant cattle type in tropical regions, where a higher risk for trace element 

imbalance exists. Therefore, these aspects formed the main focus points of the present 

thesis. To fully investigate the formulated research aims, we selected the Gilgel Gibe 

catchment in South-West Ethiopia, as our study site. 

Chapter 1Chapter 1Chapter 1Chapter 1 investigated the trace element content of consumed diets of grazing bovines 

and the effect of plant factors, environment and management on this content. Plants 

ingested by grazing herds of zebu cattle (n = 19) were sampled and total dietary intake 

was estimated through ten minute interval bite observation. In these herds, 

environment and management were interrelated, with the typical occurrence of 

communal grazing for longer distances on Planosol-Vertisol (PV) associations, at lower 

altitude. Many sampled plants contained inadequate Cu (72 %), Se (59 %) and Zn (43 %) 

concentrations, and composed diets also frequently contained disadvantageous Cu:Mo 

(19%) and Fe:Cu (41 %) ratios. Overall, herbaceous and woody plants contained higher 

amounts of trace elements than grasses and crop resides (e.g. Cu and its main 

antagonist, S), whereas for other elements, plant concentrations differed according to 

the sampled grazing altitude (e. g. Mn and Zn). Furthermore, the soil affected plant 

trace element supply, with plants growing on Nitisol-Acrisol-Ferralsol associations 

containing more Fe than those on PV associations and herds grazing on PV soils 

ingesting more Cu and Fe and less Mo those on NAFs. Communal grazing herds ingested 
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more Mo and Mn than individual grazing ones and herding distance had a positive effect 

on dietary Mn, whereas supplementing cattle diets with crop residues negatively 

affected dietary Zn and Se. Overall, environment and certain grazing strategies were 

intimately related, and might provide both explanation and solution for hampered trace 

element supply. 

Consequently, Chapter 2 Chapter 2 Chapter 2 Chapter 2 aimed to evaluate the mineral status of grazing zebu cattle and 

to unravel associated factors. In two studies, individual plasma and pooled herd faeces 

were sampled in adult zebu cattle grazing at the catchment (n = 90) and liver in adult 

zebu bulls slaugthered at the local abattoir (n = 53). Plasma and liver analyses revealed a 

Cu deficiency problem in the area, since 68 % and 47 % of cattle, respectively, were Cu 

deprived according to diagnostic criteria for Bos taurus cattle. High hepatic Mo 

concentrations in 17% of cases possibly reflected excessive dietary Mo intake. Selenium 

was too low in 92% and 80% of cattle, whereas plasma Mn concentrations were largely 

below the detection limit. Plasma Cu concentrations were lower in cattle grazing at 

lowest versus those grazing at the highest altitude and were also lower in lean to 

medium cattle than in more fat inidividuals. No differences in hepatic mineral 

concentrations were detected between cattle with different types of parasitic infection. 

In conclusion, bovine mineral deficiencies were present in the Gilgel Gibe area and were 

associated with grazing altitude and body condition score. 

Considering the highly prevalence of Cu deficiency, and the role of S as an Cu 

antagonist, effective assessment of the status of this element is important yet remains 

difficult. Rumen fluid S concentrations are preferred, but are difficult to sample under 

practical conditions. In Chapter 3Chapter 3Chapter 3Chapter 3, the objective was to evaluate salivary S concentration 

as estimator of S status in cattle. Saliva and rumen fluid samples were collected from 

dairy cows (n = 16) with a rumen fistel as well as samples of different feedstuffs offered 

to the animals and N and S concentrations were determined. Salivary S concentrations 

were not found to be predictive for rumen fluid or dietary S concentrations. The log 

transformed salivary N:S ratio could linearly predict the rumen fluid N:S ratio but left 

too much residual variation to serve as a reliable predictor. 
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The next study, presented in Chapter 4Chapter 4Chapter 4Chapter 4, aimed to identify the early effects of dietary 

trace elements on anti-oxidant status and performance. Compared to the control group, 

in adult grass-fed zebu bulls (n = 8) receiving trace element supplementation (Zn, Mn, 

Cu, Se, I and Co) during four weeks, plasma Cu, Zn, Mn and Se concentrations and faecal 

Cu, Zn, Mn and Se were increased. On the contrary, trace element supplementation did 

not affect anti-oxidant status, namely plasma ceruloplasmin and superoxide dismutase 

activities. Also, no effects on apparent nutrient digestibility, apparent trace element 

absorption (except for Se and I) or plasma acyl carnitines (indicators of available energy 

substrates) were observed. Overall, despite clear improvement in trace element status, 

supplementation did not affect anti-oxidant status, nutrient digestibility or utilisation 

in grass-fed zebu beef cattle. 

Subsequently, the effect of trace element supplementation under practical farming 

conditions on bovine trace element status and milk concentrations as well as anti-

oxidant status, immune response and performance was investigated (Chapter 5Chapter 5Chapter 5Chapter 5). At 

small-scale urban dairy farms (n = 16) with crossbred (zebu × taurine) cows, Cu (17 %) 

and marginal Se (30 %) deficiencies were present and measures for oxidative stress were 

associated with plasma Fe concentrations. In a double-blinded intervention study, cows 

on farms enrolled in a trace element supplementation (Cu, Zn, Se, Co and I) programme 

for 150 days, experienced a bigger increase in plasma Se and Cu and milk Se, coinciding 

with a larger decrease of plasma Fe concentrations. None of the parameters for 

antioxidant status and immune response nor of performance were affected by 

treatment. In the supplemented group, body condition scores of cows even decreased 

more than in the control group. In conclusion, despite improved Cu and Se status and Se 

concentrations in milk, cows on tropical urban dairy farms did not seem to benefit from 

trace element supplementation, with respect to the parameters investigated. 

Afterwards, Chapter 6Chapter 6Chapter 6Chapter 6 studied the trace element distribution in edible bovine tissues, as 

these are of importance both for animal health and human nutrition. Adult zebu bull 

semitendinosus and cardiac muscle, liver and kidney (n = 60) and plasma (n = 28) were 

sampled at the local abattoir. Deficient levels of Cu were found in plasma, livers, kidneys 

and semitendinosus muscles in addition to the suboptimal Se concentrations observed 

in plasma and semitendinosus muscles and high levels of Fe in semitendinosus muscles. 
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Trace elements were mainly stored in the liver and cardiac muscles generally contained 

higher concentrations of trace elements than semitendinous muscles. A strong 

association was found between liver and kidney concentrations of most elements, while 

on the contrary, for few elements (Co, Se), liver storage correlated well with storage in 

muscle. Plasma concentrations of Cu, Se, Co were well related with their respective liver 

concentrations and for Co and Se, also with cardiac muscle concentrations. As 

previously shown, multiple trace element deficiencies were present in zebu cattle in the 

area, and these affected tissue concentrations.  

In the last research chapter, namely Chapter 7Chapter 7Chapter 7Chapter 7, the objective was to investigate potential 

differences in trace element metabolism in zebu and crossbred cattle. Throughout an 

eleven weeks trial, feeding zebu and zebu × Holstein Friesian cross heifers (n = 16) a Cu 

deficient grass-diet supplemented with the Cu antagonist Mo, zebu cattle maintained 

initial plasma Cu concentrations just below the threshold for deficiency, whereas 

crossbred cattle gradually became severely Cu deficient. In contrast, at the onset of the 

trial, plasma Co and Zn were higher in zebu cattle, but evolved to values similar to those 

in crossbred cattle. At the end of the trial, kidney Se; liver Fe and Cu; kidney and cardiac 

muscle Co concentrations were significantly higher in zebu than in crossbred heifers. 

Increased hepatic mRNA expression of selected Cu-regulatory proteins and Cu-related 

enzymes was significantly greater in zebu than in crossbred cattle. In contrast, duodenal 

mRNA expression of such compounds was not found to differ between types of cattle. 

Above mentioned data point to the possibility of a more efficient use of dietary Cu in 

zebu as compared to zebu × taurine crossbred cattle resulting in higher sensitivity to Cu 

deficiency in B. taurus influenced cattle. 

Finally, in the General DiscussionGeneral DiscussionGeneral DiscussionGeneral Discussion, the obtained insights from the research chapters 

were compared with current scientific literature and all data were compiled in order to 

gain a broader perspective on the raised research questions.  

Overall, we concluded that the trace element supply for zebu-influenced cattle in an 

exemplary tropical region was imbalanced and related to plant, environment and 

management factors. Concomitantly, low trace element concentrations were found in 

bovine transport and storage pools, which associated with age, sex, body condition 
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score and type of cattle (zebu versus crossbred). The urgent need for refinement of 

current requirements and threshold values both in zebu and taurine cattle was 

emphasised. Linear regression analysis (Co and Se) as well as the receiver operator 

characteristic method (Cu) showed that plasma was useful to predict liver status. In 

these cattle, trace element supplementation effectively raised concentrations in the 

transport pool but performance and production did not benefit from this, the latter 

suggesting a significant role of management. However, trace element status did affect 

trace element distribution and secretion and therefore human nutrition, although with 

respect to the latter, concentrations were variable and averages should be employed 

with care. 
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Wereldwijd is grazend vee gevoelig voor tekorten aan sporenelementen. In de InleidingInleidingInleidingInleiding 

van dit werk werd de huidige kennis over sporenelementen in rundvee besproken. In 

een ideale wereld kunnen sporenelementen, “geschenken uit de natuur”, vrij bewegen 

doorheen de bodem-plant-dier cyclus. Een dergelijk evenwicht wordt echter zelden 

waargenomen en in weerwil van eerder onderzoek, werden nog niet alle factoren die de 

stroom aan sporenelementen beïnvloeden, en op deze manier het bestendigen van een 

optimale sporenelementen status in runderen belemmeren of faciliteren, in kaart 

gebracht. Bovendien is er weinig geweten over de brede impact van 

sporenelementenstatus in runderen. Zo zijn bijvoorbeeld de gerapporteerde effecten 

van verschillen in sporenelementstatus op immuniteit en productie tegenstrijdig. 

Bovenden werden deze effecten tot heden, zelden bestudeerd onder 

praktijkomstandigheden. Daarnaast wordt de invloed van de sporenelementenstatus op 

concentraties aan sporenelementen in eetbare weefsels en melk, potentieel belangrijk 

voor de menselijke aanvoer van sporenelementen, niet goed begrepen. Bovendien is er 

weinig onderzoek verricht naar sporenelementen in zebu-vee, de dominante vee-soort 

in tropische gebieden, desondanks er in deze gebieden een hoger risico voor 

onevenwichten bestaat. Daarom vormden deze aspecten de belangrijkste 

aandachtspunten van dit proefschrift. Om de geformuleerde onderzoeksdoeleinden 

volledig te onderzoeken werd het Gilgel Gibe stroomgebied, in Zuid-West Ethiopië, 

geselecteerd als onderzoekssite. 

Hoofdstuk 1Hoofdstuk 1Hoofdstuk 1Hoofdstuk 1 onderzocht het gehalte aan sporenelementen in diëten van grazende 

runderen en het effect van plantenfactoren, milieu en management op dit gehalte. 

Planten geconsumeerd door grazende zebu-vee kuddes (n = 19) werden bemonsterd en 

de totale diëtaire inname aan sporenelementen werd geschat door middel van 

monitoring van planten-opname. Omgeving en management waren intens verbonden in 

deze kuddes, met het typisch voorkomen van gezamenlijk grazen in grote kuddes over 

langere afstanden op Planosol-Vertisol (PV) bodemtypes, op lagere hoogte. De 

bemonsterde planten Cu bevatten matige Cu (72 %), Se (59 %) en Zn (43 %) 

concentraties, en de samengestelde diëten bevatten ook vaak nadelige Cu:Mo (19 %) en 

Fe:Cu (41 %) verhoudingen. Over het algemeen bevatten kruidachtige en houtachtige 



266266266266                SamenvattingSamenvattingSamenvattingSamenvatting    

 

 

planten grotere hoeveelheden sporenelementen dan grassen en gewasresten (bv. Cu en 

z’n belangrijkste antagonist, S), terwijl voor andere elementen, plantenconcentraties 

verschilden volgens de hoogte van het graasgebied (bv. Mn en Zn). Bovendien was de 

hoeveelheid aangevoerde sporenelementen in planten geassocieerd met bodemtype; 

planten groeiend op Nitisol-Acrisol-Ferralsol bodem types bevatten nl. meer Fe dan die 

op PV bodems. Kuddes die op PV bodems graasden hadden een hogere inname van Cu 

en Fe maar minder Mo dan die op NAF bodem. Gemeenschappelijk grazende kuddes 

namen hogere gehaltes aan Mo en Mn op dan individueel grazende en de afgelegde 

afstand tijdens het grazen had een positief effect op diëtar Mn, terwijl het 

supplementeren van het dieet met gewasresten het diëtaire Zn- en Se-gehalte negatief 

beïnvloedde. Omgeving en bepaalde managementsstrategiëen waren dus nauw 

verbonden, en kunnen zowel de verklaring als de oplossing bieden voor de belemmerde 

aanvoer van sporenelementen. 

Hoofdstuk 2Hoofdstuk 2Hoofdstuk 2Hoofdstuk 2 richtte zich vervolgens op het evalueren van de mineralenstatus in grazend 

zebu-vee en het blootleggen van geassocieerde factoren. Analyses van plasma- en 

leverstalen bemonsterd in volwassen zebu-vee grazend in het stroomgebied (n = 90) en 

zebu-stieren geslacht in het lokale abattoir  (n = 53) respectievelijk, brachten een Cu-

tekort in het gebied aan het licht, aangezien respectievelijk 68 % en 47 % van het vee, 

gedepriveerd waren aan Cu. De hoge lever Mo-concentraties in 17 % van de gevallen 

waren mogelijks een uiting van overmatige Mo inname. De Se status was te laag in 92 % 

en 80 % van de respectievelijk bemonsterde runderen, terwijl plasma Mn-concentraties 

zich grotendeels onder de detectielimiet bevonden. Plasma Cu-concentraties waren 

lager bij runderen grazend op lagere dan op de hoogste graslanden en waren ook lager 

in mager tot normaal vee dan in vettere individuen. Er werden geen verschillen in lever 

mineralenconcentraties geobserveerd tussen runderen met verschillende parasitaire 

infecties. In conclusie, kan er gesteld worden dat tekorten aan mineralen aanwezig 

waren  in vee van het Gilgel Gibe gebied en dat deze tekorten geassocieerd waren met 

graashoogte en conditiescore. 

Gezien de hoge prevalentie aan Cu-deficiëntie in vee, en de rol van S als Cu-antagonist, 

is een effectieve beoordeling van de dierlijke status van dit element belangrijk. 

Zwavelconcentraties in de pensvloeistof genieten de voorkeur als schatter, maar zo’n 
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stalen zijn moeilijk te verkrijgen onder praktijkomstandigheden. Hoofdstuk 3Hoofdstuk 3Hoofdstuk 3Hoofdstuk 3 beoogde 

het evalueren van S-concentraties in speeksel als schatter van S-status in rundvee. 

Concentrations aan N en S werden bepaald op speeksel- en pensvloeistofmonsters 

verzameld in melkkoeien (n = 16) met een pensfistel, evenals op monsters van de 

verschillende voedingsmiddelen aangeboden aan de dieren. We konden niet aantonen 

dat speeksel S-concentraties een voorspellende waarde hadden voor S-concentraties in 

pensvloeistof of dieet. De log-getransformeerde N:S verhouding in speeksel kon de N:S 

verhouding in de pensvloeistof lineair voorspellen maar deze verhouding vertoonde te 

veel residuele variatie om op dit moment ingezet te worden als betrouwbare schatter. 

De volgende studie, gepresenteerd in Hoofdstuk 4Hoofdstuk 4Hoofdstuk 4Hoofdstuk 4, had tot doel de vroege effecten van 

diëtaire sporenelementen op anti-oxidant status en prestaties te onderzoeken. 

Vergeleken met de controlegroep, hadden volwassen gras-gevoederde zebu-stieren (n = 

8) gedurende vier weken gesupplementeerd met sporenelementen (Zn , Mn , Cu , Se , I 

en Co), hogere plasma Cu-, Zn-, Mn- en Se- en fecale Cu-, Zn-, Mn- en Se-concentraties. 

Daarentegen werden geen effecten van supplementatie op anti-oxidant status nl. 

plasma ceruloplasmine en superoxide dismutase activiteiten, geobserveerd. Ook werden 

er geen effecten waargenomen op de schijnbare verteerbaarheid van het dieet, op de 

schijnbare sporenelementenabsorptie (behalve voor Se en I) of plasma acylcarnitines 

(dewelke indicatoren zijn voor beschikbare energiesubstraten). Ondanks duidelijke 

verbetering van de sporenelementenstatus leek supplementatie dus geen invloed te 

hebben op anti-oxidant status en diëtaire verteerbaarheid of benutting in 

grasgevoerderde zebu-runderen. 

Vervolgens werd onder praktijkomstandigheden het effect onderzocht van 

sporenelementen supplementatie op runderstatus en melk concentraties onderzocht 

alsook op anti-oxidant status, immuunrespons en prestaties (Hoofdstuk 5Hoofdstuk 5Hoofdstuk 5Hoofdstuk 5). Op 

kleinschalige stedelijke melkveebedrijven (n = 16) met gekruiste (zebu × taurine) 

runderen, waren tekorten aan Cu (17 %) en marginale tekorten aan Se (30 %) aanwezig. 

Tevens waren parameters voor oxidatieve stress geassocieerd met plasma Fe-

concentraties. In een dubbel-blinde interventiestudie, ervaarden runderen afkomstig 

van bedrijven die gedurende 150 dagen deelnamen aan een sporenelementen (Cu, Zn, 

Se, Co en I) supplementatie-programma, een grotere toename van de plasma Se- en Cu- 
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en melk Se-concentraties, samenvallend met een grotere afname van plasma Fe 

concentraties. Geen van de parameters voor antioxidant status, immuunrespons of 

productie werden beïnvloed door de supplementatie. In de gesupplementeerde groep 

gingen lichaamsconditie-scores zelfs sterker achteruit dan in de controlegroep. Ter 

conclusie stellen we, ondanks een verbeterde Cu- en Se-status en Se-gehaltes in melk, 

dat runderen op tropische melkveebedrijven niet leken te profiteren van 

sporenelementensupplementatie, met betrekking tot de onderzochte parameters . 

Daarna werd in Hoofdstuk 6Hoofdstuk 6Hoofdstuk 6Hoofdstuk 6 de distributie aan sporenelementen in eetbare weefsels van 

zebu-runderen bestudeerd. Dit speelt zowel voor de gezondheid van dieren en 

menselijke voeding een belangrijke rol. Van volwassen zebu stieren werden 

semitendinosus- en hartspier, lever, nier (n = 60) en plasma (n = 28) bemonsterd in het 

plaatselijke slachthuis. Deficiënte niveaus aan Cu werden gevonden in plasma, lever, 

nier en semitendinosus spier. Hiernaast werden suboptimale Se concentraties 

waargenomen in plasma en de semitendinosus spier en een hoog niveau aan Fe in de 

semitendinosus spier. Sporenelementen werden voornamelijk opgeslagen in de lever en 

de hartspier bevatte over het algemeen hogere concentraties aan sporenelementen dan 

de semitendinosus spier. Voor de meeste elementen werd een sterke associatie 

gevonden tussen lever- en nierconcentraties, terwijl daarentegen van slechts enkele 

elementen (Co , Se), de leveropslag goed correleerde met de opslag in de spieren. 

Plasmaconcentraties aan Cu, Se and Co waren goed gecorreleerd met hun 

respectievelijke leverconcentraties en voor Co en Se, ook met hartspiergehaltes. Zoals 

eerder aangegeven, waren er meerdere tekorten aan sporenelementen in zebu runderen 

in het gebied. Deze tekorten beïnvloedden de weefselconcentraties. 

In het laatste onderzoekshoofdstuk, nl. Hoofdstuk 7Hoofdstuk 7Hoofdstuk 7Hoofdstuk 7, was het onderzoeken van mogelijke 

verschillen in sporenelementen metabolisme in zebu en gekruiste runderen het doel. 

Over een elf weken-durende proef, waarin zebu en gekruiste zebu × Holstein Friesian 

vaarzen (n = 16) aan een Cu deficiënt grasdieet aangevuld met de Cu -antagonist Mo, 

blootgesteld werden, onderhielden de zebu vaarsen hun plasma Cu-concentraties net 

onder de drempel voor deficiëntie, terwijl gekruiste vaarzen langzamerhand ernstig Cu-

depriveerd werden. Echter, bij het begin van de proef, waren plasma Co en Zn hoger in 

zebu runderen maar de concentraties evolueerden tot waarden vergelijkbaar met die in 
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gekruiste runderen. Aan het einde van de proef, waren nier Co- en Se-, lever Fe- en Cu- 

en hartspier Co concentraties significant hoger in zebu- dan in gekruiste vaarzen. De 

verhoogde lever mRNA expressie van geselecteerde Cu-regulerende eiwitten en 

verwante enzymen was ook significant hoger in zebu- dan in gekruiste vaarzen terwijl 

de duodenale mRNA expressie niet verschilde tussen de rundertypes. Bovenstaande 

gegevens wijzen op de mogelijkheid van een efficiënter gebruik van diëtair Cu in zebu 

tegenover zebu × taurine vee, resulterend in een hogere gevoeligheid voor Cu 

deficiëntie in runderen met een taurine invloed. 

Tenslotte werden in de Algemene DiscussieAlgemene DiscussieAlgemene DiscussieAlgemene Discussie, de verkregen inzichten uit de 

onderzoekshoofdstukken vergeleken met de huidige wetenschappelijke literatuur en 

alle gegevens gecompileerd met het oog op het verkrijgen van een breder perspectief op 

de vooraf geformuleerde onderzoeksvragen. 

We concludeerden dat de aanvoer aan sporenelementen voor zebu-beïnvloed vee, in 

een tropische voorbeeldregio, onevenwichtig is en geassocieerd met plantaardige, 

omgevings- en managementsfactoren. Tergelijkertijd werden lage gehaltes aan 

sporenelementen gevonden in de transport- en opslag pool van runderen, die in 

verband stonden met leeftijd, geslacht, conditiescore en type vee (zebu versus kruising). 

De dringende behoefte aan verfijning van de huidige sporenelementen vereisten en 

diagnostische drempelwaarden zowel in zebu en taurine vee werd benadrukt. Uit 

lineaire regressieanalyse (Co en Se) en de receiver operator characteristic methode (Cu) 

bleek dat plasma nuttig was om de leverstatus voorspellen. Sporenelementen 

supplementatie verhoogde de concentraties in de transport pool, maar de prestaties en 

de productie leken niet te zijn beïnvloed, hetgeen kan duiden op een belangrijke rol van 

management. Daarentegen beïnvloedde sporenelementen supplementatie wel degelijk 

de sporenelementen distributie en secretie en dus menselijke voeding, hoewel, met 

betrekking tot dit laatste, concentraties variabel waren. Er dient dus met zorg met 

gemiddelde waarden moet omgesprongen worden. 
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